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Given a connected smooth projective surface X over C, together with a simple normal
crossings divisor D on it, we study finite normal covers Y → X that are unramified
outside D. Given further a fibration of X onto a curve C, we prove that the “height”
of Y over C is bounded linearly in terms of the degree of Y → X. We indicate how an
arithmetic analog of this result, if true, can be auxiliary in proving the existence of a
polynomial time algorithm that computes the mod-� Galois representations associated to
a given smooth projective geometrically connected surface over Q. A precise conjecture
is formulated.
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1. Introduction

In this paper, we suppose that the following data are given:

• a connected smooth projective surface X over C;
• a simple normal crossings divisor D on X (i.e. all components of D are smooth,

and they intersect transversally);
• a connected smooth projective curve C over C;
• a flat morphism h : X → C.

We emphasize that we do not require the fibers of h to be connected. We denote
by U the complement of D in X . We are interested in finite étale covers V → U

that are not necessarily connected; these are considered to be the “variable” in our
set-up. Given a finite étale cover V → U denote by π : Y → X the normalization
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of X in the product of the function fields of the connected components of V . By
“finiteness of integral closure,” the map π is finite. As the topological fundamental
group of U is finitely generated, cf. [12, Exposé II, Théorème 2.3.1], there are only
finitely many V → U of a given degree. In particular, for a fixed degree, the height
over C of the associated covers Y → X is bounded. Our aim is to prove an effective
version of this result. Let ρ : Y ′ → Y be a minimal resolution of singularities of Y ,
and denote by f : Y ′ → C the composed morphism hπρ. Note that Y ′ and Y are
projective and flat over C (C being a Dedekind scheme).

Theorem 1.1. Let h : X → C and U ⊂ X be given as above. Then there is an
integer c such that for all finite étale π : V → U we have, in the notation as above:

| deg detR·f∗OY ′ | ≤ c · deg(π) .

Here det R·f∗OY ′ stands for the determinant of cohomology of OY ′ , cf. [3]. This
is an invertible sheaf on C with c1(detR·f∗OY ′) = c1(R0f∗OY ′) − c1(R1f∗OY ′) in
the Chow ring of C. According to [16, Theorem 3.6(v)], the degree deg detR·f∗OY ′

is non-negative if the fibers of f are connected and the arithmetic genus of the fibers
of f is positive.

Our proof uses the Grothendieck–Riemann–Roch theorem, intersection theory
on the normal surface Y and precise information about the minimal resolution of
singularities of Y . In the last section we state an arithmetic analog of our result
as a conjecture, motivated by a possible application to the complexity of counting
points on reductions over finite fields of a fixed surface over Q.

In a previous version of this text, our bound in Theorem 1.1 was quadratic
in deg(π). Esnault and Viehweg showed us how to deduce a linear upper bound,
with a precise constant, from Arakelov’s inequality. This result is now included as
Theorem 4.1. A closer inspection of our proof of Theorem 1.1 also gave a linear
bound.

A good reason to include several proofs of the main result of this article is that
this may help to find a proof that can be made to work in the arithmetic context.
Since more than 25 years from now, attempts were made to prove an arithmetic ana-
log of Arakelov’s inequality, without success so far. Such an analog would have led
to an effective version of Faltings’s theorem (previously Mordell’s conjecture). The
same observations apply to the Bogomolov–Miyaoka–Yau inequality. On the other
hand, we do believe that our conjectural analog (Conjecture 5.1) of Theorem 1.1 is
not too hard to prove.

2. Preliminaries

Let π : V → U be as in the statement of Theorem 1.1, and let V =
∐

i Vi be
the decomposition of V into connected components. Then also Y =

∐
i Yi, and

Y ′ =
∐

i Y ′
i . Let fi := f |Y ′

i
. It follows that deg detR·f∗OY ′ =

∑
i deg detR·fi,∗OY ′

i
.

Hence, in order to prove Theorem 1.1, we can and do assume that V is connected.
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Denote by d the degree of V → U . By [15, Lemma 2], the map π : Y → X is
finite locally free of rank d. We write Dsing for the singular locus of D.

Lemma 2.1. The singularities of Y occur in the inverse image under π of Dsing.
Furthermore, the map π−1(D − Dsing) → D − Dsing is étale.

Proof. We base our argument on a consideration of fundamental groups, as in [1,
pp. 102–103]. Let x be a closed point of X lying on D but not on Dsing. Locally for
the analytic topology we identify a neighborhood W of x in X with the bi-disk Z =
{(z1, z2) ∈ C2 : |z1| < 1, |z2| < 1}, identifying x with the origin and D locally with
the zero set of z1. Let y be a point of Y mapping to x, and consider the connected
component B of π−1W that contains y. We have then that B − π−1(D) → W −D

is a connected finite degree topological covering. Thus Γ = π∗(π1(B−π−1(D))) is a
subgroup of finite index of π1(W −D). The latter is infinite cyclic; let e be the index
of the subgroup Γ. As the map W → W given by (z1, z2) �→ (ze

1, z2) is a connected
cover of W , homeomorphic above W − D to the covering B − π−1(D) → W − D,
we have by a theorem of Grauert–Remmert (cf. [11, Exposé XII, Théorème 5.4])
that B itself is analytically isomorphic to W and the holomorphic map B → W

equivalent to the given map W → W . We deduce that Y is regular above D−Dsing

and that π−1(D − Dsing) → D − Dsing is étale.

Write D =
∑

i∈I Di for the decomposition of D into prime components, and
write π−1(Di) =

∑
j∈Ji

Dij for the decomposition into prime components of the
inverse image with reduced structure under π of a Di. For i ∈ I and j ∈ Ji denote
by eij the ramification index of π along Dij (i.e. the ramification index of π at the
generic point of Dij) and denote by fij the degree of Dij over Di. For each i ∈ I

we have
∑

j∈Ji
eijfij = d. If x is a closed point on X and y is a point of Y mapping

to x we denote by dy the rank of the completed local ring ÔY,y as a free module
over ÔX,x. For all closed points x on X we have

∑
y : y �→x dy = d.

A point on a complex surface is said to have type An,q if the complete local ring
at that point is isomorphic as a C-algebra to the complete local ring at the image
of (0, 0) of the quotient of C2 under the action (w1, w2) �→ (ζnw1, ζ

q
nw2), where n

and q are integers with n > 0, gcd(n, q) = 1 and where ζn = exp(2πi/n). For n > 1
this type is known as the cyclic quotient singularity of type An,q. For n = 1 such a
point is nonsingular; this case is included for notational convenience.

Lemma 2.2. Let y be a point of Y mapping to Dsing, say π(y) = x ∈ Di ∩ Di′ .

(i) There are unique j ∈ Ji and j′ ∈ Ji′ such that y ∈ Dij ∩ Di′j′ .
(ii) Let eij be the ramification index of π along Dij , and let ei′j′ be the ramification

index of π along Di′j′ . Then there are positive integers n, m1, m2 depending
on y such that the following holds: eij = nm1, ei′j′ = nm2, the rank dy of
ÔY,y over ÔX,x equals nm1m2. If y is a singular point of Y then y is a cyclic
quotient singularity of type An,q for some positive integer q with gcd(n, q) = 1.
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Proof. As in the previous lemma we base our argument on a consideration of fun-
damental groups, following [1, pp. 102–103]. We identify a local neighborhood W

of x with the bi-disk Z = {(z1, z2) ∈ C2 : |z1| < 1, |z2| < 1}, letting Di correspond
to the zero set of z1 and Di′ to the zero set of z2. Let Z∗ = Z − {z1z2 = 0} and
W ∗ the corresponding open subset of W . If γi ∈ π1(Z∗) is the class of a posi-
tively oriented little loop around the zi axis, then π1(Z∗) ∼= Z × Z with generators
γ1 = (1, 0) and γ2 = (0, 1). Let B be the connected component of π−1W that
contains y. Put B∗ = B − π−1D. We have then that B∗ → W ∗ is a connected
finite degree topological covering. Let Γ = π∗(π1(B∗)) be the image of the topo-
logical fundamental group of B∗ in π1(W ∗) ∼= Z × Z. Then Γ is of finite index
in π1(W ∗). We pick generators of Γ as follows: Γ ∩ (Z × 0) is nontrivial, so there
is a unique n′ > 0 such that (n′, 0) generates this intersection. As the quotient
Γ/Z(n′, 0) is isomorphic to Z there is a unique (q′, m2) ∈ Γ with 0 ≤ q′ < n′ and
m2 > 0 such that (n′, 0) and (q′, m2) generate Γ. Let m1 = gcd(n′, q′) and write
n′ = nm1, q′ = qm1. Thus Γ = Z(nm1, 0) + Z(qm1, m2) which is of index nm1m2

in Z × Z. Let Γ′ = Z(nm1, 0) + Z(0, nm2) ⊂ Γ. Then Γ′ is the largest subgroup of
Γ of the form Z(∗, 0) + Z(0, ∗), and the quotient Γ/Γ′ ⊂ m1Z/nm1Z ×m2Z/nm2Z

is cyclic of order n and projects isomorphically to both factors. Let W̃ ∗ → W ∗

be a universal cover. Then B∗ = W̃ ∗/Γ. Now W̃ ∗/Γ′ → W ∗ is isomorphic to
the cover Z∗ → Z∗, which is given by (z1, z2) �→ (znm1

1 , znm2
2 ). Via normalization

this induces the ramified cover Z → Z, given by the same formula. The group
Γ/Γ′ acts on Z, with quotient B; this action is free outside (0, 0). Hence y is
a singular point of Y if and only if n > 1. We conclude that eij = nm1 and
ei′j′ = nm2, and we have natural inclusions of C-algebras C[[z1, z2]] ∼= ÔX,x �
ÔY,y = C[[z1/nm1

1 , z
1/nm2
2 ]]Γ/Γ′

, where the generator given by (qm1, m2) acts as
z
1/nm1
1 �→ ζq

nz
1/nm1
1 , z

1/nm2
2 �→ ζnz

1/nm2
2 . This realizes ÔY,y as a direct sum-

mand of the free ÔX,x-module C[[z1/nm1
1 , z

1/nm2
2 ]]. Statement (i) follows. We see

that ÔY,y is free of rank nm1m2 as an ÔX,x-module whereas C[[z1/nm1
1 , z

1/nm2
2 ]]

is finite free of rank n2m1m2 as an ÔX,x-module. We get dy = nm1m2, and if
n > 1, the singularity y is a cyclic quotient singularity of type An,q. The lemma is
proved.

Let ρ : Y ′ → Y be a minimal resolution of singularities of Y and denote by
E1, . . . , Es the exceptional components of Y ′ → Y . Let KY be the Weil divisor
obtained by taking the closure in Y of a canonical divisor on the nonsingular locus
of Y . Since Y has only cyclic quotient singularities, each Weil divisor on Y is
Q-Cartier, i.e. has the property that a certain integer multiple of it is a Cartier
divisor on Y . Let ρ∗KY be the pull-back of the Q-Cartier divisor KY . On Y ′−∪iEi,
ρ∗KY is a canonical divisor. Hence for a canonical divisor KY ′ of Y ′ there is a linear
equivalence of Q-Cartier divisors:

KY ′ ≡ ρ∗KY +
s∑

i=1

aiEi,
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where the ai are rational numbers. Such ai are unique, because any rational function
on Y ′ whose divisor is a linear combination of the Ei is a rational function on Y

that is regular outside the singular locus, and hence constant.
We have the following local statement. Let y in Y be a singular point, hence

a cyclic quotient singularity, say of type An,q. Then for any Weil divisor W on Y ,
n ·W is Cartier at y (see [8, Proposition 5.15] and its proof). The minimal resolution
of y is described in [1, pp. 100–101]. We have n > 1, and can and do assume that
q < n. Write:

n

q
= b1 − 1

b2 − 1
b3−···

= [b1, . . . , bλ]

with bi ∈ Z>0 for the Hirzebruch–Jung continued fraction of n/q. Then the
reduced exceptional locus ρ−1(y) is a chain of λ P1’s with self-intersections
−b1,−b2, . . . ,−bλ. We will need some estimates related to this resolution of
singularities.

Lemma 2.3. Let y be a singular point of Y of type An,q. Assume that E1, . . . , Eλ

are the Ei above y, numbered as they appear in the chain. For i in {1, . . . , λ}, let
bi = −(Ei, Ei). Then 2 ≤ bi ≤ n for each i = 1, . . . , λ. The number λ of components
is bounded by n as well. The ai are determined by the recursion biai−ai−1−ai+1 =
2−bi with boundary conditions a0 = 0 = aλ+1. We have ai ∈ (−1, 0] for i = 1, . . . , λ

and the rational number
∑λ

i=1 ai(bi −2) is bounded from above by 2 and from below
by −n.

Proof. That bi ≥ 2 is clear from the way the bi are defined. Spelling out the
definition, the integers bi are determined by the following recursion (variant of
the Euclidean algorithm) for integers ci: ci = bi+2ci+1 − ci+2, 0 ≤ ci+2 < ci+1

for i = −1, . . . , λ − 2 with initial conditions c−1 := n, c0 := q. It follows that
bi ≤ ci−2 ≤ c−1 = n. Further we have n = c−1 > c0 > c1 > · · · > cλ = 0 so that
the number λ is bounded from above by n.

By the adjunction formula we have (KY ′ + Ei, Ei) = −2 for all i so we see that
the ai form the unique solution to the recursion biai − ai−1 − ai+1 = 2 − bi for
i = 1, . . . , λ with boundary conditions a0 = 0 = aλ+1.

Suppose that there is an i in {1, . . . , λ} with ai ≥ 0. Let j with 1 ≤ j ≤ λ be
an index with aj = maxi ai. We find

aj =
aj−1 + aj+1

bj
+

2 − bj

bj
=

2aj

bj
+

aj−1 − aj + aj+1 − aj

bj
+

2 − bj

bj

≤ aj +
aj−1 − aj

bj
+

aj+1 − aj

bj

whence aj−1 = aj = aj+1 and bj = 2. Hence the maximum of the ai is also attained
at j − 1 and at j + 1. Continuing with the same reasoning we find that all bi = 2
and all ai = 0. Hence all ai ≤ 0.
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Let j with 1 ≤ j ≤ λ be an index with aj = mini ai. Our recursion can be
written as (bi − 2)(ai + 1) = (ai−1 − ai) + (ai+1 − ai), so we see that if aj ≤ −1,
then aj−1 = aj = aj+1, and aj−1 and aj+1 are also minimal and ≤ −1, and we get
the contradiction 0 = a0 ≤ −1. Hence for all i we have ai > −1.

By adding the equalities ci = bi+2ci+1 − ci+2 for i = −1, . . . , λ − 2 we find

n + q + 1 + 2
λ−2∑
i=1

ci =
λ∑

i=1

bici−1,

and hence

n + q + 1 =
λ∑

i=1

(bi − 2)ci−1 + 2cλ−1 + 2c0 =
λ∑

i=1

(bi − 2)ci−1 + 2 + 2q .

Since ci−1 ≥ 1 and bi ≥ 2 for i = 1, . . . , λ we find
∑λ

i=1(bi − 2) ≤ n − q − 1 < n.
Adding the equalities biai − ai−1 − ai+1 = 2 − bi for i = 1, . . . , λ we find that∑λ

i=1 ai(bi − 2) =
∑λ

i=1(−bi + 2) − (a1 + aλ). Since
∑λ

i=1(−bi + 2) > −n and
a1+aλ ≤ 0 we find that

∑λ
i=1 ai(bi−2) > −n. The upper bound

∑λ
i=1 ai(bi−2) ≤ 2

follows since bi ≥ 2 always and a1 + aλ > −2.

We will need to compare the topological Euler characteristics of X and Y . The
following general lemma is useful for this. We denote by H·

c(−, Q) the cohomology
with compact supports and with rational coefficients on the category of paracom-
pact Hausdorff spaces. We use the notation ec(−) for the compactly supported
Euler characteristic ec(−) =

∑
i(−1)i dim Hi

c(−, Q); this is a well-defined integer
for separated C-schemes of finite type.

Lemma 2.4. Let M, N be separated C-schemes of finite type.

(i) If Z is a closed subscheme of M, then ec(M) = ec(Z) + ec(M − Z).
(ii) If M → N is a finite étale cover of degree n then ec(M) = n · ec(N).

Proof. The first statement follows from the long exact sequence of compactly
supported cohomology:

· · · → Hi
c(M − Z) → Hi

c(M) → Hi
c(Z) → Hi+1

c (M − Z) → · · ·
As to the second statement, we may assume first of all that M and N are connected.
Second, we may reduce to the case that M → N is Galois. Indeed, let P → N be a
Galois closure of M → N , and denote by G the group of automorphisms of P such
that N = P/G. Let H be the subgroup of G such that M = P/H . If the result is
true for Galois covers, we find

ec(N) =
1

#G
ec(P ) =

#H

#G
ec(M) =

1
n

ec(M)

and the result also follows in the general case. So let us assume that M → N is
Galois, with group G. If V is a Q[G]-module of finite type, let [V ] be the class of
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V in the Grothendieck group of such modules. More generally, if V is a Z-graded
Q[G]-module of finite type, like Hc(M) for example, then we denote by [V ] the class
of
∑

i(−1)iV i. Now remark that G acts freely on M , hence by the Lefschetz trace
formula for compactly supported cohomology (see [4, Theorem 3.2]) we have for all
nontrivial g ∈ G that

∑
i(−1)itrace(g, Hi

c(M)) = 0. By character theory it follows
that [Hc(M)] is a multiple of [Q[G]], the class of the regular representation of G,
say [Hc(M)] = m · [Q[G]] with m ∈ Z. Since we also have that Hc(N) = Hc(M)G

we get ec(N) = dimQ Hc(M)G = m. As ec(M) = dimQ Hc(M) = m · #G the result
follows.

Finally we want to work with the Grothendieck–Riemann–Roch theorem. We
recall the statement and all notions that go into it. Let M, N be smooth quasi-
projective varieties over C. One has a Grothendieck group K0(M) for coherent
sheaves on M . This group is isomorphic to its analog for locally free OM -modules
of finite rank, and therefore, it has a natural ring structure. There is also a Chow
ring CH(M), coming with a natural grading. For p : M → N a projective morphism
one has a map p! : K0(M) → K0(N) given by p!([F ]) =

∑
i(−1)i[Rip∗F ]. Also one

has a map p∗ : CH(M) → CH(N) given by proper push-forward of cycles. The
Chern character ch gives a ring homomorphism ch: K0(M)Q → CH(M)Q. Each
coherent sheaf F on M has a Todd class td(F) in CH(M)Q. The Todd class td(M)
of M is by definition the Todd class of the tangent bundle TM of M .

The Grothendieck–Riemann–Roch theorem reads as follows.

Theorem 2.1. Let M, N be smooth quasi-projective varieties over C. Let p : M →
N be a projective morphism and let F be a coherent sheaf on M . Then the equality

ch(p!F) · td(N) = p∗(ch(F) · td(M))

holds in CH(N)Q.

We recall the formulas

ch(F) = c0(F) + c1(F) +
1
2
(c2

1(F) − 2c2(F)) + h.o.t.

and

td(F) = 1 +
1
2
c1(F) +

1
12

(c2
1(F) + c2(F)) + h.o.t.

We have c0(F) = rank(F) if F is locally free. Finally c1(F) = c1(detF). In partic-
ular c1(detR·f∗OY ′) = c1(f!OY ′).

3. Proof of Theorem 1.1

We recall that we assumed V to be connected. We start by deriving a useful expres-
sion for c1(f!OY ′). We recall that the singular points of Y are cyclic quotient sin-
gularities. According to [1, Proposition III.3.1] such singularities are rational, i.e.
we have

ρ∗OY ′ = OY , Riρ∗OY ′ = 0 for i > 0 .
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Using the Leray spectral sequence we find, writing π̄ = πρ, that Riπ̄∗OY ′ = Riπ∗OY

for all i. As π is finite we obtain

π̄∗OY ′ = π∗OY , Riπ̄∗OY ′ = 0 for i > 0 .

Applying then the Leray spectral sequence to the diagram

Y ′

f ���
��

��
��

� π̄
�� X

h

��
C

we obtain Rif∗OY ′ = (Rih∗)(π̄∗OY ′) = (Rih∗)(π∗OY ) for all i and hence

f!OY ′ = h!(π∗OY ) .

The Grothendieck–Riemann–Roch theorem then gives

ch(f!OY ′) · td(C) = h∗(ch(π∗OY ) · td(X)) .

We recall that we write d for the degree of π. Also we recall that the sheaf π∗OY is
locally free of rank d. Comparing terms in degree 0 therefore yields

c0(f!OY ′) = h∗(d · td(X)(1) + c1(π∗OY )) .

On the other hand the Grothendieck–Riemann–Roch theorem applied directly to f

gives

ch(f!OY ′) · td(C) = f∗(ch(OY ′) · td(Y ′)) = f∗(td(Y ′)) .

Comparing terms in degree 1 we find

c1(f!OY ′) + c0(f!OY ′) · td(C)(1) = f∗(td(Y ′)(2)).

Comparing with our previous expression for c0(f!OY ′) we get

c1(f!OY ′) = f∗(td(Y ′)(2)) − h∗(d · td(X)(1) + c1(π∗OY )) · td(C)(1)

hence deg detR·f∗OY ′ equals the degree of

1
12

f∗
(
c2
1(TY ′) + c2(TY ′)

)− h∗(d · td(X)(1) + c1(π∗OY )) · td(C)(1)

in CH1(C)Q. We are done once we show that the degrees of c2
1(TY ′), c2(TY ′) and of

h∗(c1(π∗OY )) · td(C)(1) are bounded from above and below by linear polynomials
in d with coefficients depending only on D and h. We start by considering the term
involving c1(π∗OY ). As before, write D =

∑
i∈I Di for the decomposition of D

into its prime components. Define R to be the Weil divisor, supported on π−1(D),
given as follows: let Dij be a component of π−1(D) mapping onto Di, then the
multiplicity of Dij in R is (eij−1). Put B := π∗R. Note that we have a trace pairing
π∗OY ⊗OX π∗OY → OX . This induces a monomorphism (detπ∗OY )⊗2 � OX ,
identifying (detπ∗OY )⊗2 with the ideal sheaf OX(−B) of B, as a local computation
shows (see e.g. [14, III, Sec. 6, Proposition 13]). We obtain c1(π∗OY ) = − 1

2 [B] in
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CH(X)Q so we are done for this term if we could show that the multiplicity of each
Di in B is bounded linearly in d. But this multiplicity is

∑
j∈Ji

(eij − 1)fij with fij

the degree of Dij over Di, which is bounded by d.
Next we consider the term c2(TY ′). We recall that by a version of the Gauss–

Bonnet formula (see e.g. [7, p. 416]) we have deg c2(TY ′) = ec(Y ′), the topological
Euler characteristic of Y ′. For each i ∈ I write di :=

∑
j∈Ji

fij . By Lemma 2.1 the
map π−1(D − Dsing) → D − Dsing is étale, so we have, invoking Lemma 2.4

ec(Y ) = ec(π−1U) + ec(π−1D)

= dec(U) +
∑
i∈I

diec(Di − Dsing) + ec(π−1Dsing)

= dec(U) +
∑
i∈I

diec(Di − Dsing) + #π−1Dsing

with Dsing the singular locus of D. This shows that ec(Y ) is bounded from above
and below by linear polynomials in d with coefficients depending only on D.
Now ec(Y ′) = ec(Y ) + s, where s is the total number of exceptional components
E1, . . . , Es of Y ′ → Y . If y is a singular point of Y of type An,q, say, and mapping
to x on X , then by Lemma 2.3 the number of exceptional components above y is
bounded from above by n. By Lemma 2.2 this is again bounded from above by
the local degree dy of y over x. Since for any x on X we have

∑
y : y �→x dy = d we

obtain that ec(Y ′) is bounded from above and below by linear polynomials in d

with coefficients depending only on D.
Finally we consider c2

1(TY ′). Note that we can write deg c2
1(TY ′) = (KY ′ , KY ′),

the self-intersection number of the divisor KY ′ on Y ′. We compute this self-
intersection number. By [17, Theorem 4.1] the normal surface Y is an Alexander
scheme, implying (cf. [17, Note 2.4]) among other things that for the proper maps
ρ : Y ′ → Y and π : Y → X one has a projection formula for Weil divisors, pro-
vided that one works on Y with the intersection theory with Q-coefficients as in
[10, Sec. IIb]. Thus we compute:

(KY ′ , KY ′) =

(
ρ∗KY +

∑
i

aiEi, KY ′

)
= (ρ∗KY , KY ′) +

∑
i

ai(bi − 2)

= (KY , KY ) +
∑

i

ai(bi − 2) .

But KY = π∗KX + R, so

(KY , KY ) = d · (KX , KX) + 2(π∗KX , R) + (R, R)

= d · (KX , KX) + 2(KX , B) + (R, R) .

We are done once we show that
∑

i ai(bi − 2), (KX , B) and (R, R) are bounded
from above and below by linear polynomials in d with coefficients depending only
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on D. We start with the term
∑

i ai(bi−2). By Lemma 2.3 the contribution coming
from one singularity y is bounded from above by 2 and from below by −n with
n determined as usual by the type of y. Again, since n is bounded by dy and∑

y : y �→x dy = d for all x on X we get in total that the sum
∑

i ai(bi − 2) is
bounded by at most linear polynomials in d with coefficients depending only on D.

The intersection number (KX , B) is bounded linearly in d by our description of
B given earlier in this proof. As for (R, R), we obtain from Lemmas 2.1 and 2.2
that the irreducible components of the inverse image under π of a Di are disjoint
and hence we can write:

(R, R) =
∑
i,j

(eij − 1)2(Dij , Dij) +
∑

(i,i′),j,j′

i�=i′

(eij − 1)(ei′j′ − 1)(Dij , Di′j′) .

We have, for each i ∈ I, that π∗Di =
∑

j eijDij , so on the one hand for a given j0

(Dij0 , π
∗Di) =

∑
j

eij(Dij , Dij0 ) = eij0(Dij0 , Dij0)

by the disjointness of the Dij , and on the other hand

(Dij0 , π
∗Di) = (π∗Dij0 , Di) = fij0 (Di, Di)

by the projection formula. Thus

(Dij0 , Dij0) =
fij0

eij0

(Di, Di)

and hence for a given i∑
j

(eij − 1)2(Dij , Dij) =
∑

j

(eij − 1)2
fij

eij
(Di, Di) .

As 0 ≤∑j(eij − 1)2 fij

eij
< d we are done for the first term

∑
i,j(eij − 1)2(Dij , Dij)

in our formula for (R, R). The second term∑
(i,i′),j,j′

i�=i′

(eij − 1)(ei′j′ − 1)(Dij , Di′j′ )

can be written as∑
(i,i′)
i�=i′

∑
x∈Di∩Di′

∑
y �→x

∑
j,j′

(eij − 1)(ei′j′ − 1)(Dij , Di′j′)y .

But as is stated in Lemma 2.2 for each y �→ x with x ∈ Di ∩ Di′ there is exactly
one pair (j, j′) such that (Dij , Di′j′)y = 0. So, the summation over j and j′

can be replaced by a single term with indices j(y) and j′(y). We can compute
(Dij(y), Di′j′(y))y as follows. Let An,q be the type of y. By what we said before
Lemma 2.3, n · Dij(y) is a Cartier divisor at y. But then as Di′j′(y) is smooth the
intersection number (Dij(y), Di′j′(y))y is just given as 1/n times the valuation in
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ODi′j′(y),y of a local function defining n · Dij(y) around y on Y . Since this function
is a local coordinate around y on Di′j′(y) we find (Dij(y), Di′j′(y))y to be equal
to 1/n. By Lemma 2.2 there exist positive integers m1, m2 such that eij(y) = nm1,
ei′j′(y) = nm2, dy = nm1m2, hence

(eij(y) − 1)(ei′j′(y) − 1)(Dij(y), Di′j′(y))y ≤ eij(y)ei′j′(y)(Dij(y), Di′j′(y))y

= (nm1)(nm2)/n = nm1m2 = dy .

Keeping in mind that
∑

y : y �→x dy = d for all x on X we find that∑
(i,i′)
i�=i′

∑
x∈Di∩Di′

∑
y �→x

(eij(y) − 1)(ei′j′(y) − 1)(Dij(y), Di′j′(y))y

is bounded by a linear polynomial in d with coefficients depending only on D. This
finishes the proof.

4. Alternative Proofs

Esnault and Viehweg have proposed another proof of (the upper bound of)
Theorem 1.1, based on Arakelov’s inequality. In fact, their method leads to a more
precise version.

Theorem 4.1 (Esnault–Viehweg). Take the assumptions of Theorem 1.1, and
assume moreover that h : X → C is semi-stable (i.e. the singularities in its fibers
are ordinary double points), with connected fibers, and that D = Dhor +h−1DC with
Dhor → C étale and with DC a divisor on C. Let g(C) be the genus of C, and g(F )
the genus of any smooth fiber F of h : X → C. Let S ⊂ C be the set of s ∈ C such
that the fiber Xs of h is singular. Then, for every finite étale π : V → U we have:

deg det R·f∗OY ′ ≤
(

g(F ) +
1
2
(Dhor, F )

)
·
(

g(C) + 2#DC +
1
2
(1 + #S)

)
· deg(π) .

Proof. We may and do assume that V is connected.
The results of the beginning of Sec. 2 show the following statements. The reduced

fibers of f : Y ′ → C are normal crossings divisors on Y ′. For s ∈ C with s ∈ DC ,
the fiber f−1s is semi-stable. Let Sing(f) denote the singular set of f , i.e. the set
where the tangent map of f vanishes. Then fSing(f) ⊂ S ∪ DC .

We write ωY ′ := Ω2
Y ′ and ωC := Ω1

C for the dualizing sheaves of Y ′ and C. We
define ωY ′/C := ωY ′ ⊗ (f∗ωC)∨, the relative dualizing sheaf for f . We note that
ωY ′/C coincides with Ω1

Y ′/C on the complement of Sing(f). By [9, Theorem 5.1]
we have (R1f∗OY ′)∨ = f∗ωY ′/C . On the other hand, f∗OY ′ is the OC -algebra
corresponding to the Stein factorization Y ′ → C̃ → C of f . As Y ′ is reduced, the
same is true for C̃, hence the trace form gives an injection of (det O eC)⊗2 into OC ,
hence deg det f∗OY ′ ≤ 0. We get:

deg detR·f∗OY ′ = deg c1R0f∗OY ′ − deg c1R1f∗OY ′ ≤ − deg c1R1f∗OY ′ . (4.1)
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The coherent OC -module R1f∗OY ′ sits in an exact sequence

0 → (R1f∗OY ′)tors → R1f∗OY ′ → R1f∗OY ′ → 0 ,

given by its torsion submodule and its locally free quotient. This implies:

− deg c1(R1f∗OY ′) = − deg c1(R1f∗OY ′) − deg c1(R1f∗OY ′)tors
≤ − deg c1(R1f∗OY ′) . (4.2)

As (R1f∗OY ′)∨ = (R1f∗OY ′)∨, Eqs. (4.1) and (4.2) give:

deg detR·f∗OY ′ ≤ deg det f∗ωY ′/C .

The main idea of the proof is now to use Arakelov’s inequality (to be explained
below), but for that we need a finite base change b : C′ → C, with C′ a smooth
connected projective complex curve, after which Y ′ admits a semi-stable model
Y ′′ → C′. This precisely means that the ramification indices of b at the s ∈ DC

must be sufficiently divisible. We pick any s0 in C−DC . Then π1(C − ({s0}∪DC))
is freely generated by the usual kind of generators ai, bi with 1 ≤ i ≤ g(C), and γs

for s ∈ DC . This shows that a b : C′ → C does exist as it is required, unramified
outside EC := {s0} ∪ DC . We pick such a b.

Let f ′ : Y ′′ → C′ be obtained by pull-back via b of f : Y ′ → C, then normaliza-
tion, and then minimal resolution of singularities. Then f ′ is semi-stable (see [13; 6,
p. 83]), and we have a commutative diagram:

Y ′′ b′ ��

f ′

��

Y ′

f

��
C′ b �� C

Lemma 4.1. In this situation, there is an injection of b∗f∗ωY ′/C into the locally
free OC′-module b∗OC(EC) ⊗ f ′

∗ωY ′′/C′ .

Proof. To start with, the projection formula gives f∗ωY ′/C = (f∗ωY ′) ⊗ ω∨
C ,

and, similarly, f ′
∗ωY ′′/C′ = (f ′

∗ωY ′′) ⊗ ω∨
C′ . The pull-back of two-forms along

b′ gives a morphism of OY ′ -modules (b′)∗ωY ′ → ωY ′′ , which is generically an
isomorphism. Applying f ′

∗ to this morphism, and composing with the natural
morphism b∗f∗ωY ′ → f ′∗(b′)∗ωY ′ gives a morphism of locally free OC′ -modules
b∗f∗ωY ′ → f ′∗ωY ′′ which is generically an isomorphism. Pull-back of one-forms via
b gives a morphism of invertible OC′ -modules b∗ωC → ωC′ , which is an isomorphism
outside b−1EC . If P is in C′ and ω is a generating one-form at b(P ), then b∗ω has
a zero of order e(P ) − 1 at P , where e(P ) is the ramification index of b at P . It
follows that we have an inclusion of b∗OC(−EC)⊗ωC′ into b∗ωC . Dually, this gives
an inclusion of b∗ω∨

C into the coherent OC′ -module b∗OC(EC)⊗ω∨
C′ . Combining all

this gives an inclusion:

b∗f∗ωY ′/C = b∗f∗ωY ′ ⊗b∗ω∨
C → f ′

∗ωY ′′ ⊗b∗OC(EC)⊗ω∨
C′ = b∗OC(EC)⊗f ′

∗ωY ′′/C′ ,

as required.
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We are now ready to invoke Arakelov’s inequality (see [13, p. 58]):

deg det(f ′
∗ωY ′′/C′) ≤ 1

2
rank(f ′

∗ωY ′′/C′) · (2g(C′) − 2 + #f ′Singf ′) . (4.3)

The rank of f ′∗ωY ′′/C′ equals that of f∗ωY ′/C , both being the sum of the genera of
the connected components of the geometric generic fiber of f . Combining this with
our previous inequalities, we obtain:

deg det R·f∗OY ′ ≤ deg det f∗ωY ′/C =
1

deg b
deg det(b∗f∗ωY ′/C)

≤ 1
deg b

deg det(b∗OC(EC) ⊗ f ′
∗ωY ′′/C′)

=
1

deg b
(deg(b∗OC(EC)) · rankf ′

∗ωY ′′/C′ + deg det f ′
∗ωY ′′/C′)

≤ (#EC)rankf∗ωY ′/C

+
1

2 deg b
(rankf∗ωY ′/C) · (2g(C′) − 2 + #(f ′Singf ′)) . (4.4)

Finally, we bound the quantities in the last term. Letting dj be the degrees of the
connected components Zj of the geometric generic fiber of f over the geometric
generic fiber of h, and gj the genera of the Zj , we have

∑
i di = deg(π), and

Hurwitz’s formula gives

2gi − 2 = di · (2g(F ) − 2) + deg Ri , deg Ri ≤ (di − 1)(Dhor, F ) .

This leads to:

rank f∗ωY ′/C ≤ (g(F ) + (Dhor, F )/2) deg(π) . (4.5)

For g(C′), we note that b : C′ → C is unramified outside EC = {s0} ∪DC . Hurwitz’s
formula gives:

1
deg b

(2g(C′) − 2) ≤ 2g(C) − 2 + 1 + #DC . (4.6)

At the beginning of the proof we noticed that fSingf is contained in S ∪ DC .
Therefore, f ′Singf ′ is contained in b−1(S ∪ DC), so

1
deg b

#(f ′Singf ′) ≤ #S + #DC . (4.7)

Combining (4.4)–(4.7) we get:

deg detR · f∗OY ′ ≤
(

g(F ) +
1
2
(Dhor, F )

)
·
(

g(C) + 2#DC +
1
2
(1 + #S)

)
· deg(π).

This ends our proof of Theorem 4.1.
We remark that instead of invoking Arakelov’s inequality it is also possi-

ble, again at least for the upper bound implied by Theorem 1.1, to invoke the
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Bogomolov–Miyaoka–Yau inequality. Indeed, our work done at the beginning of
Sec. 3 showed that Theorem 1.1 can be reduced to providing linear bounds in
deg(π) for the degrees of each of the three terms c2

1(TY ′), c2(TY ′) and h∗(c1(π∗OY ))·
td(C)(1). The latter two were relatively easily to deal with, whereas the term c2

1(TY ′)
required significantly more work. Now instead of calculating the c2

1 directly, one
can also remark that there exist a priori inequalities relating the c2 and the c2

1. [1,
Chapter VI, Table 10] first of all shows that for smooth compact connected com-
plex surfaces which are not of general type c2

1 is bounded absolutely from above
by 9. The Bogomolov–Miyaoka–Yau inequality [1, Theorem VII.4.1] says that for a
smooth compact connected complex surface which is of general type, the inequality
c2
1 ≤ 3c2 holds. Invoking these results one obtains yet another proof of Theorem 1.1.

5. An Arithmetic Analog

In [5] an algorithm is given that computes the GL2(Fλ) Galois representations
associated to a given normalized Hecke eigenform f of level 1 in time polynomial in
#(Fλ). Here λ runs through the finite degree 1 places of the field of coefficients of
the form. By a famous argument due to Schoof, this leads to an algorithm that on
input a prime number p computes the p-th coefficient of the Fourier development
of f , in time polynomial in log p. As a consequence, the number of vectors with half
length-squared equal to p in a fixed even unimodular lattice can be computed in
time polynomial in log p.

Generalizations of the above results seem possible in various different direc-
tions. For example, one could look at the case of mod-� Galois representations
occurring in the étale cohomology of a given smooth, projective and geometrically
connected surface S over Q. Letting � be a prime number, one has the cohomology
groups Hi(SQ,et, F�) for 0 ≤ i ≤ 4, being finite dimensional F�-vector spaces with
Gal(Q/Q)-action. It seems reasonable to suspect that, again, there is an algorithm
that on input a prime � computes these cohomology groups, with their Gal(Q/Q)-
action, in time polynomial in �. Once such an algorithm is known, one also has an
algorithm that, on input a prime p of good reduction of S gives the number of points
#S(Fp) of S over Fp in time polynomial in log p. This result would be of interest
because the known p-adic algorithms for finding such numbers have running time
exponential in log p.

The idea in [5] to compute mod-� étale cohomology is to trivialize the sheaves
involved, using suitable covers of (modular) curves, and to reduce to computing in
the �-torsion of their Jacobians. In our case, using a Lefschetz fibration, one can first
reduce to computing cohomology groups H1(U

Q
,Fl), where U is a nonempty open

subscheme of P1
Q determined by S and the chosen Lefschetz fibration, and where Fl

are certain étale locally constant sheaves of F�-vector spaces of a fixed dimension,
say r. For each � let V� := IsomU (Fr

� ,Fl). Then each cover V� → U is finite Galois
with group G ∼= GLr(F�), and the group H1(UQ,Fl) can be related to H1(V�,Q, Fr

�)
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which sits in the �-torsion of the Jacobian of the smooth projective model V� of V�.
It is our hope that methods as in [5] can show that we have a polynomial algorithm
for computing these cohomology groups once we have a bound for the Faltings
height of V� that is polynomial in �.

A recent result of Bilu and Strambi, see [2, Theorem 1.2], suggests at least the
existence of an exponential bound: it implies that if Y

Q
→ P1

Q
is any connected

degree d ≥ 2 cover, unramified outside a finite subset B of P1
Q
, then Y

Q
has a plane

model given by an equation F (u, v) with coefficients in Q such that degu F = d,
degv F ≤ d · (#B/2), and such that the affine logarithmic height of F is bounded
from above by

(h + 1)(d3 · #B)5d2·#B+12d .

Here h is the maximum of the logarithmic projective heights of the elements of B.
Note, however, that in our situation we can take more restrictive assumptions

than in the result of Bilu and Strambi. For one thing, our covers V� → U are defined
over Q. For another, our covers V� → U have the property that there is a nonempty
open subscheme U ′ of P1

Z containing U , such that each V� extends to a finite étale
cover of U ′

Z[1/�]. We would like therefore to propose the following arithmetic analog
of the main theorem of this note.

Conjecture 5.1. Let U ⊂ P1
Z be a nonempty open subscheme. Then there are

integers a and b with the following property. For any prime number �, and for any
connected finite étale cover π : V → UZ[1/�], the absolute value of the Faltings height
of the normalization of P1

Q in the function field of V is bounded by deg(π)a·�b.

As an example, let us mention that for the family of modular curves X1(�), all
covers of the j-line, where one can take U = P1

Z − {0, 1728,∞}, it is proved in [5]
that the Faltings height is bounded above as O(�2 log �). It is tempting to interpret
�2 (up to a constant factor) as the degree of X1(�) over the j-line, and the factor
log � as coming from the ramification at �. As in our application the degree of π

itself depends polynomially on �, it is irrelevant for this application if the bound in
the conjecture is deg(π)a·�b or deg(π)a·(log �)b. Of course, one may also ask about
the conjecture with this stronger bound.
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[3] P. Deligne, Le déterminant de la cohomologie, in Current Trends in Arithmetical Alge-
braic Geometry (Arcata, California, 1985) Contemp. Math., Vol. 67 (Amer. Math.
Soc., Providence, RI, 1987), pp. 93–177.

[4] P. Deligne and G. Lusztig, Representations of reductive groups over finite fields, Ann.
Math. 103(2) (1976) 103–161.

[5] J.-M. Couveignes and B. Edixhoven (eds.), With the collaboration of R. de Jong, F.
Merkl and J. Bosman, Computational Aspects of Modular Forms and Galois Repre-
sentations, to appear in Annals of Mathematics Studies (Princeton University Press).

[6] H. Esnault and E. Viehweg, Effective bounds for semipositive sheaves and for the
height of points on curves over complex function fields, Compos. Math. 76 (1990)
69–85.

[7] P. Griffiths and J. Harris, Principles of Algebraic Geometry (John Wiley and Sons,
1978).

[8] J. Kollár and S. Mori, Birational Geometry of Algebraic Varieties, with the collabo-
ration of C. H. Clemens and A. Corti, Cambridge Tracts in Mathematics, Vol. 134
(Cambridge University Press, Cambridge, 1998).

[9] J. Lipman, Dualizing sheaves, differentials and residues on algebraic varieties,
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