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We report a new and efficient factorized algorithm for the determination of the adaptive compound mobility
matrix B in a stochastic quasi-Newton method �S-QN� that does not require additional potential evaluations.
For one-dimensional and two-dimensional test systems, we previously showed that S-QN gives rise to efficient
configurational space sampling with good thermodynamic consistency �C. D. Chau, G. J. A. Sevink, and J. G.
E. M. Fraaije, J. Chem. Phys. 128, 244110 �2008��. Potential applications of S-QN are quite ambitious, and
include structure optimization, analysis of correlations and automated extraction of cooperative modes. How-
ever, the potential can only be fully exploited if the computational and memory requirements of the original
algorithm are significantly reduced. In this paper, we consider a factorized mobility matrix B=JJT and focus on
the nontrivial fundamentals of an efficient algorithm for updating the noise multiplier J. The new algorithm
requires O�n2� multiplications per time step instead of the O�n3� multiplications in the original scheme due to
Choleski decomposition. In a recursive form, the update scheme circumvents matrix storage and enables
limited-memory implementation, in the spirit of the well-known limited-memory Broyden-Fletcher-Goldfarb-
Shanno �L-BFGS� method, allowing for a further reduction of the computational effort to O�n�. We analyze in
detail the performance of the factorized �FSU� and limited-memory �L-FSU� algorithms in terms of conver-
gence and �multiscale� sampling, for an elementary but relevant system that involves multiple time and length
scales. Finally, we use this analysis to formulate conditions for the simulation of the complex high-dimensional
potential energy landscapes of interest.
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I. INTRODUCTION

The development of general-purpose methods for large-
scale molecular simulation is an important scientific goal.
The area of application is large and diverse, but one may
think of typical phase separation phenomena in hard and soft
matter systems, including particle cluster optimization, mem-
brane formation, protein folding, micelles, and polymer dy-
namics. The magnitude of the challenges involved cannot be
underestimated, since in many chemical systems of rel-
evance, the starting point for the model is necessarily atomic
or molecular, while the emerging collective behavior on long
length and time scales—determining the relevant material
properties and function—essentially is not. A prime example
is protein-folding, where the characteristic �length and time�
scales associated with the smallest constitutive elements
�electrons or atoms� deviate many orders of magnitude from
those associated with the co-operative motion of protein do-
mains, such as beta sheets or alpha helixes. Since the simu-
lated system evolution, or, alternatively, the sampling rate on
the complex energy hypersurface, is dictated by the smallest
scale in the model description, this co-operative motion re-
mains inaccessible even on present-day supercomputers.

A common strategy to overcome some of these problems
is by going from high to lower resolution, i.e., by averaging
over the smallest degrees of freedom. Our starting point �1�
is such a coarse-grained model, the general position Lange-
vin equation describing the Brownian behavior of N interact-
ing particles in the high friction limit, written in Ito form as

dx = − B � ��x�dt + �2kTBdW�t� , �1�

for a molecular potential energy � depending on the system
state x�R3N, with Boltzmann constant kB, temperature T
and W�t� a multivariate Wiener process with �dWi�t�dWj�t��
=�ijdt. The standard mobility B is constant and inversely
proportional to the viscosity of the surrounding medium.
Typically, such a �Brownian� dynamics model is simulated
by an Euler scheme, over many, many time steps. The time
step is determined by the fastest modes in the coarse-grained
representation, associated with the steepest gradients in the
energy landscape, and hence the scheme is again rather inef-
ficient for slow modes associated with shallow gradients.
Near phase boundaries these systems suffer from critical
slowing down �we borrow the following arguments and no-
tation from Dünweg �2�� due to the appearance of a very
long correlation times. In these conditions, the system exhib-
its large correlated objects or “critical clusters” of typical
size � �the correlation length�, which can be made arbitrarily
large by means of some control parameter. As a general fea-
ture very many configurations are easily accessible, since the
typical energy to change, create or delete such an object is, at
most, of order of the thermal excitation energy kBT. The key
challenge in simulating these systems is that the physical
dynamics is usually local, whereas the collective behavior is
not. The rearrangement on a larger scale depends on the
spread of information through the smaller scales �for diffu-
sive dynamics, with rearrangement time ���2� and thus con-
sumes increasingly more time for increasing object size �. In
other words: the hypersurface associated with conforma-
tional �re�arrangement on a larger scale is relatively flat, and
the dynamics dictated by Eq. �1� slows down extremely due
to it local nature, the constant mobility and �almost� vanish-*c.chau@chem.leidenuniv.nl
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ing gradients. The system becomes increasingly soft and
sluggish—the true hallmark of soft matter.

Common strategies to circumvent the limitations in acces-
sible time and length scales are based on selecting and up-
dating large length scales with artificially high rates. In mo-
lecular modeling of �bio�molecule dynamics, one often relies
on enhanced sampling via parallel tempering/replica ex-
change �3,4�, simulated tempering �5�, solute tempering �6�,
multicanonical molecular dynamics �MD� �7�, and Wang-
Landau �8�. Others, like metadynamics �9� and hyper-MD
�10�, introduce a bias on a small set of collective variables
and recast the problem in terms of transition-state theory.
Our S-QN method can also be seen as a method for enhanced
sampling and �global� optimization �1�. Our focus here is its
general applicability and on the multiscale features, in par-
ticular the multiplicity of time steps that is automatically
introduced by including curvature information of the unbi-
ased potential energy hypersurface. Our approach is essen-
tially a real-space generalization of existing accelerated al-
gorithms that use filtering for the separation of different
length/time scales �11–13�. This Fourier acceleration �FA�
technique �2� attempts to renormalize the characteristic times
associated with different �Fourier� modes by using a mass
matrix as a preconditioner to the forces in the Fourier do-
main. As such, it enables a multiplicity of time steps. Conse-
quently, the determination of an appropriate mass matrix is
key to the success of this technique. The mass matrix should
be positive definite �due to the appearance of a square root in
the noise term�, and is often regularized to avoid problems
associated with very small wave vectors. The renormalizing
mass matrix can be determined analytically for a purely
Gaussian model �a quadratic potential�, where Fourier modes
completely decouple and the integration can be carried out
independently. For this model Hamiltonian, FA has indeed
been shown to completely eliminate critical slowing down
�14�. For general Hamiltonians with higher order terms, dif-
ferent modes may be coupled, and preconditioning with this
mass matrix can easily fail. In particular, it is a priori uncer-
tain if FA will work at all �15� and FA is also known to suffer
from discretization artifacts �16�. We explicitly note that fol-
lowing or �re�constructing the actual “physical” dynamics of
the system is not our purpose. In this sense, the S-QN
method is very similar to FA and many of the other methods
on different levels of description that are aimed at acceler-
ated or enhanced sampling of energy landscapes. By con-
struction, however, the characteristics of large-scale dynam-
ics and important correlations will always be directly
accessible.

We first clarify the central idea of S-QN. For simplicity,
we omit the spurious drift term �1�. We consider one of the
simplest systems possible, a Harmonic potential ��x�= h

2x2

�x�R�, with h �in J /m2� the force/spring constant. After
introducing a second differential equation for the adaptive
mobility B, the Langevin equation for this system is given by
�1�

dx = − Bhxdt + �2kBTBdW�t� initial state, �2�

dB

dt
= − B +

1

h
, �3�

B�0� = 1. �4�

We note that the second equation is only used for the purpose
of illustration: in the S-QN method, the constant inverse
Hessian of �, 1 /h, is recursively determined using QN
methodology. From Eq. �2�, it is clear that the initial behav-
ior at t=0 is the same as for Eq. �1�, i.e., Langevin dynamics
with a constant B=1. In this stage, the noise is decoupled
from the energy landscape, and only the drift term acknowl-
edges the local gradients on the potential energy hypersur-
face. In the stationary state �B=1 /h�, however, Eq. �2� sim-
plifies to

dx = − xdt +�2
kBT

h
dW�t� stationary state. �5�

We observe reversed roles: the drift term is no longer depen-
dent on the gradient, but the random displacement is strongly
dependent on the gradient through the proportionality to
�1 /h, and will therefore decrease in magnitude for increas-
ing h. In addition, depending on the value of h, the drift term
in Eq. �5� gives rise to an acceleration �h�1� or slowing
down �h�1� compared to Eq. �1�, or, alternatively, an effec-
tive scaling of the time by 1 /h. More general, the method
was designed to automatically apply dense sampling in nar-
row basins with steep gradients containing minima and larger
sampling steps in almost flat parts of the energy hypersurface
where the gradients almost vanish. The noise term facilitates
the escape from basins �1�. This differentiated sampling rate
�for fixed dt� is obtained by acknowledging the topography
of the hypersurface via curvature information. Hence, effi-
cient incorporation of proper curvature information is vital,
and we previously showed �1� that the standard QN frame-
work for numerical optimization provides such methodology.
In particular, for a constant time step dt, the inverse Hessian
is iteratively constructed by a Broyden-Fletcher-Goldfarb-
Shanno �BFGS� method using only gradient information in
subsequent sampling points. However, we recognize that for
the target systems involving multiple scales or, equivalent,
large n, memory requirements and/or the computational load
can still become limiting for the application of the S-QN
method. The Cholesky factorisation, necessary for comput-
ing the noise term �1�, represents a considerable ��O�n3��
computational burden for each iteration. Storage may be-
come an additional burden, since several n�n matrices
should be updated and/or stored at each step. Consequently,
algorithmic improvements that leave the general properties
of the method unaffected but substantially reduce the storage
and computational requirements are of great importance for
the value of S-QN as an efficient general-purpose simulation
method. Here, we focus on the derivation of such new and
efficient algorithms. Factorized QN methods using triangular
matrices have been considered, but these methods were pri-
marily designed to avoid positive semidefinite or negative
definite updates due to rounding errors, i.e., to enhance nu-
merical stability �17,18�. Since our aim is different, i.e., to
update J via a direct procedure, we derive a factorized secant
update scheme �FSU� for B+ of the Brodlie form �19�. The
same secant condition should now hold for the B+= �I
+vyT�B�I+vyT�T that is very similar to the one introduced by
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matrix B=JJT and B is, by construction, positive definite. We
will show that this FSU scheme reduces the total computa-
tional costs to �O�n2� for each iteration, which remains trac-
table even for large n. To further reduce the requirements and
avoid matrix storage, we cast FSU in a new recursive scheme
inspired by limited-memory BFGS �L-BFGS�. The L-BFGS
method was earlier developed �20� to address large-scale
problems, and has the advantage that the amount of storage
�and thus the cost per iteration� can be controlled by the user,
while retaining good overall performance. Our limited-
memory FSU �L-FSU� scheme stores only three vectors of
length n per iteration, and provides means to further restrict
the computational costs per iteration by limiting the number
of stored corrections �m� incorporated in J �and thus B�. The
analogy between the QN and S-QN frameworks is illustrated
in Table I.

The paper is organized as follows: in the theory section,
we derive the factorized FSU and L-FSU scheme, and quan-
tify how further reduction of computational costs and storage
is possible with L-FSU. In Sec. III we consider the perfor-
mance of FSU and L-FSU for a set of coupled harmonic
oscillators. We consider this system for simple reasons: �a�
the Hessian H is analytically known and the convergence
properties of Bk, as determined by FSU and L-FSU, can be
quantitatively analyzed, �b� multiple time and length scales
play a role in the dynamics of this system, �c� the system is
a starting point for coarse-grained protein modeling. In the
analysis we focus on the convergence of B→H−1, the pres-
ence of cooperative motion along the sampling pathway and
the sampling distribution at long time scales. In particular,
we focus on the effect of truncation �L-FSU� on these prop-
erties and the determination of a good history depth m. We
will shortly elaborate on additional properties of the method,
e.g., how the mobility can be used for introducing a multi-
plicity of time scales and the efficient and automated calcu-
lation of correlations in local or global minima.

II. THEORY

A. S-QN

The S-QN method is based on a new stochastic Langevin
equation for general n dimensional potentials � given by �1�

dx = �− B�x� � ��x� + kBT � · B�x��dt + �2kBTJ�x�dW�t� ,

�6�

where J�x� is related to the mobility B�x� through

B�x� = J�x�J�x�T. �7�

The new second term in the right hand side of Eq. �6� is the
spurious drift term or flux caused by the random force. The
crucial ingredient of our S-QN method is the mobility B�x�
or, in the discrete form, the n�n matrix B. We have previ-
ously discussed that our choice for the mobility matrix is
inspired by Newton methods, i.e., H−1, the inverse Hessian
of � �1�. We relied on the BFGS standard in Quasi-Newton
numerical optimization for constructing a series of positive
definite matrices Bk �with k the time index in the discretized
Langevin equations�, such that Bk→H−1 under specific con-
ditions �1�. These Bk constitute the adaptive compound mo-
bility matrix that responds to the energy landscape by a
memory function. We note that the �inverse� Hessian for the
potentials � considered in the examples section is always a
constant. Consequently, the spurious drift term in Eq. �6� is
negligible for all Bk due to the closeness property and van-
ishes completely when Bk has converged to the inverse Hes-
sian. For simplicity, we have therefore disregarded the spu-
rious drift term in the remainder. We validated this explicitly
for the systems considered in the examples section. The
S-QN method and our new update algorithms for the mobil-
ity are, however, not in any way restricted to this special
case. In particular, the update scheme for Eq. �6� in Appen-
dix, Sec. 1 shows how the general case is only a correction to
this special case, at the expense of additional costs.

We note that efficiency, i.e., avoiding the computation of
the exact Hessian for large n, is not the only reason for the
choice of BFGS. In general n-dimensional problems, the
Hessian can and will become negative definite or even sin-
gular in parts of the energy landscape. This results in condi-
tions for B that are principally equal to the implicit condition
for the mass matrix in FA: B should always be positive defi-
nite to guarantee the existence of J in Eq. �7�. When the
secant condition is satisfied the BFGS update method guar-
antees the construction of such a positive definite B. Never-
theless, the sampling path will have to cross over concave
and flat regions of the energy landscape, and we need to
somehow adapt the mobility in these regions �1� �see in the
body of this paper�. The most important feature of the gen-
eral methodology is that the mobility B always exists and
remains positive definite, since the BFGS update method
constructs an approximate inverse Hessian, even when the
Hessian itself is singular. This property is equivalent to the
somewhat ad hoc regularisation in FA methods, but auto-
matic. By using this nonsingular approximation, sampling of
the longer wavelength modes associated with zero �and other
very small� eigenvalues of the Hessian is enhanced, hence
the automatic scaling in our system. It is this property that
will allow one to introduce a multiplicity of time steps by
taking differential steps in different directions while main-
taining thermodynamic consistency. Hence, the S-QN
method bridges between general directed search methods
such as QN and random search methods such as Monte Carlo
�MC� or simulated annealing �SA�. The QN method only
ensures that the sampling path on this hypersurface is always
in the descending direction, and is therefore principally lo-
cal. In particular, QN does not sample according to a distri-

TABLE I. Schematics of methodology: Complete update and
Limited memory update in QN and S-QN methods.

Minimization method

Update scheme

Full Truncated

QN method BFGS L-BFGS

S-QN method FSU L-FSU
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bution. The update schemes in MC/SA incorporate global
hypersurface information only weakly in the form of rules
for acceptance or rejection based on a sampling distribution
that favors configurations x with lower ��x� �21,22�. A well-
known drawback of this method is performance: for large
systems �large n�, the random sampling and subsequent sub-
stantial increase of the number of sampling points or func-
tion evaluations can make these algorithms computationally
intractable.

B. Factorized secant update scheme

As mentioned in the introduction, a factorized update
scheme was earlier developed to circumvent problems with
the positive definiteness of B due to numerical errors �17,18�.
The method of Goldfarb updates a lower triangular matrix L

to J̄, followed by a decomposition of the matrix J̄ into an
orthogonal Q and a right triangular matrix R, i.e., a QR fac-

torization, to obtain the new L with J̄J̄T=B−1. Since B−1

=LQTQLT=LLT, the next QN direction �	x� can be deter-
mined by solving LLT	x=−��. Here, the particular reason
for developing a factorised scheme for the QN-matrix J�x� is
rather different. In particular, apart from the drift term

− B�x� � ��x�dt = − J�x�J�x�T � ��x�dt , �8�

such a scheme enables a direct calculation of the noise term

�2kBTJ�x�dW�t� , �9�

without an additional Choleski factorization of the matrix B.
In the following, we consider a discrete set of equations,
with equidistant time steps labeled by k �starting from t
=kdt=0�. In line with common practice in QN, the matrix Bk
�the approximate of the inverse Hessian� is updated each
iteration step to obtain a new matrix Bk+1=Bk+	Bk, with
	Bk a correction matrix. Suitable conditions for incorporat-
ing second-order information of � in this new matrix should
be formulated, and we use the standard secant condition,
based on expanding �� in xk−xk+1 around the new point
xk+1 as a Taylor expansion

���xk� 	 ���xk+1� + �2��xk+1��xk − xk+1� . �10�

The property that Bk+1
−1 approximates �2��xk+1� is equivalent

to the secant condition given by

Bk+1yk = Jk+1Jk+1
T yk = sk, �11�

where sk=xk+1−xk and yk=���xk+1�−���xk�. Other prop-
erties that Bk+1 should inherit from Bk include symmetry and
positive definiteness. Unlike in standard QN these properties
of Bk+1 are automatic, since the product JJT is always sym-
metric positive definite for nonsingular matrices J�Rn�n. To
determine a unique update Jk+1, we have to impose an addi-
tional condition on J. From all matrices J that satisfy the
secant condition �11�, we determine the one that is closest to
Jk in some sense �see below�, such that useful information
stored in Jk is not lost in the update. The proximity condition,
giving rise to a unique Jk+1, is casted into

min
Jk+1


Jk+1 − Jk
 , �12�

Jk+1vk = sk, �13�

Jk+1
T yk = vk. �14�

where the last two equations express the secant conditions on
Jk+1. The convergence property of J is hereby satisfied: if all
curvature information is stored in Jk, it is automatically in-
herited by Jk+1=Jk. There exist a nonsingular Jk+1 satisfying
Eq. �11�, if and only if the curvature condition sk

Tyk�0 holds.
When 
 · 
 is the Frobenius norm, the solution to Eqs. �12�
and �13� is even unique and Jk+1 is given in terms of vectors
sk and vk. The uniqueness and existence proof is analog to
the proof �17� given for

min
J̄k+1


J̄k+1 − Lk
 , �15�

where Lk is a lower triangular matrix, with the secant condi-

tion on Bk+1
−1 = J̄k+1J̄k+1

T . We note that the lower triangular ma-
trix L in this scheme was chosen for convenience: the rela-
tion for the update 	x, LLT	x=−��, is easily solved for
such L by forward and backward substitutions. Here, we
want the update Jk+1 in closed form �in terms of sk and vk�
instead, because this allows us to cast the scheme into a
recursive form. In the next section we show how this recur-
sive scheme can be exploited for limited-memory purposes.
Using Eq. �14�, vk can be determined �see appendix 2� and
Jk+1 is given by

Jk+1 = Jk +

kskyk

TJk − 
k
2JkJk

Tykyk
TJk

yk
Tsk

, �16�

with


k
2 =

yk
Tsk

yk
TJkJk

Tyk

. �17�

We can take the square root if yk
Tsk�0, the curvature condi-

tion, assuring the positive definiteness of the QN-matrix. In
particular, we consider the positive root of 
k for which Jk+1
is minimal in Eq. �12�. We note that, in order to enhance the
sampling of the potential energy hypersurface in concave or
flat regions, we avoid the usual backtracking algorithms and
use a constant increment dt instead. Gradient information is
therefore always only calculated once during each update. It
is essential to have a good strategy when the curvature con-
dition is violated. In such case, we update sk and yk but keep
the matrix B fixed, i.e., Jk+1=Jk, to ensure positive definite-
ness. As a tradeoff, the secant condition Bk+1yk=Bkyk=sk is
not necessarily satisfied. However, since the next step is ef-
fectively a reinitialization of the scheme with J0=Jk, the se-
cant condition is restored in step k+2 and can be disregarded
at step k+1. We refer to our previous work �1� and the dis-
cussion section for more details on this particular choice.

We conclude that the factorized secant update �FSU� of
Eq. �16� gives rise to a direct calculation of the drift �Eq. �8��
and noise �Eq. �9�� terms without further factorizations.
Since the FSU update for B is equivalent to the update ob-
tained from the Davidon-Fletcher-Powell �DFP� method of
the convex BFGS family �see Appendix, Sec. 2� we shortly
review some general properties of DFP for a quadratic ob-
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jective function such as Eq. �21�. Fletcher and Powell
showed that, for a nonsingular Hessian H, the matrix B con-
verges to H−1 and xk finds the minimum of � in exactly n
steps if exact line searches are used �23�. The proof is based
on showing that sk �k=0, . . . ,n−1�, with step size 
k selected
based on exact line searches, are linearly independent eigen-
vectors of BnH with eigenvalue unity �in other words, sk k
=0, . . . ,n−1 is an basis for Rn and BnH= I�. In reality, exact
line searches are seldom used. They are considered ineffi-
cient, as often very many costly �-evaluations are required
for the determination of the QN stepsize 
k in each iteration
step. The preferred backtracking algorithms �24� are less ef-
ficient in terms of convergence, but the number of
�-evaluations per iteration is also considerably reduced. In
our procedure backtracking was not considered for various
reasons, and the number of �-evaluations per iteration step
is further reduced �to one�. Returning to exact line searches
�23�, the update Bk+1=Bk+Ak+Ak� consists of two rank-one
contributions to Bk. The first contribution Ak ensures that the
secant condition Bk+1yk=sk is always satisfied, or, alterna-
tively, that sk is an eigenvector of Bk+1H with unit eigen-
value. The second contribution Ak� deals with the conver-
gence of B to H−1, and one can show that H−1=�k=0

n−1Ak�. For
an inexact or constant step size the vector sk is in general not
orthogonal to gk+1=���xk+1� and, consequently, the buildup
of information of H−1 in Ak� will be �much� slower. We note
that the noise in Eq. �20� adds a ‘random’ displacement d to
the QN-update, and this d is likely to also contain displace-
ments orthogonal to gk+1. For general inexact line searches,
the update can be seen as successive rank reduction and rank
restoration �25�. The first step Ak always reduces the rank of
Bk by one. The second step Ak� restores the rank to the rank of
Bk and gives rise to a positive definite Bk+1, all provided that
the curvature condition yk

Tsk�0 is satisfied. The difference
Bk+1−Bk is a symmetric matrix of rank at most two, with
column and row spaces spanned by sk and hk=Bkyk. A rank-
two update is obtained only for linearly independent sk and
hk; otherwise the update is of rank one �26�. Davidon �27�
showed that the generalized eigenvalue problem Bk+1z
=�Bkz has n−2 unity eigenvalues and 2 eigenvalues that
may differ from 1. These eigenvalues can be determined ana-
lytically as a function of a=yk

TBkyk, b=yk
Tsk, and c=sk

TBk
−1sk

�27,26�.
However, when minimizing a system of size n, the com-

putational and storage costs may still be impractical for large
n. In the next section we therefore propose an efficient
implementation of FSU, which leads to a reduction of the n2

storage and O �n2� manipulations of the scheme described in
Eq. �16�.

C. Recursive limited-memory update

Limited memory methods in the Broyden family are in
general based on truncating the history in the iterative update
schemes for the approximate Hessian or inverse Hessian B.
The direct advantage is in storage: at iteration k only a fixed
number m �the history depth� of vector sets is stored, instead
of the linearly growing number of sets ��k� in the FSU
update scheme. In particular, for k�m the oldest information

contained in B is discarded and replaced by the new one.
Although one could intuitively expect this truncation to af-
fect the performance of the method, numerical evaluations
show that this procedure for BFGS �the L-BFGS method�
gives rise to good convergence properties in practice, even
for small m �20�. A theoretical understanding of this property
for general cases is still lacking.

In Appendix, Sec. 4, we provide the details of a recursive
scheme that is suited for both FSU and limited-memory FSU
�L-FSU�. The strategy is to avoid the use of expensive
matrix-vector products by loop unrolling. Instead of n2 stor-
age for the matrix J in Eq. �16�, this scheme requires storage
of three vectors �sk ,yk ,hk, each of length n. For L-FSU, this
results in a total storage of 3mn, with m in general small �see
appendices�. The starting matrix for the limited-memory up-
dates, J0, can be freely chosen, but should reflect the dis-
carded information for the problem at hand. A standard
choice is the same initial value for J0 as considered for FSU,
i.e., J0= I, but scaling J0=�kI with

�k = yk
Tsk/
yk
2 �18�

was identified a simple and effective way of introducing a
scale in the algorithm and improving its performance �20�.
However, the analysis and the numerical examples �see next
section� use J0= I. Just like in the L-BFGS the starting matrix
J0 can be freely adjusted in our scheme during the iterative
process.

In contrast to FSU, one should take special care when the
update is temporarily stalled due to a violation of the curva-
ture conditions yk

Tsk�0. The limited-memory algorithm em-
ploys a shifting window of m vector-triplets �y ,s ,h to up-
date the B matrix at each k step, starting from the initial
condition J0= I �all eigenvalues=1�. Since the update scheme
is of rank two at most, a maximum of 2m eigenvalues of B
will deviate from �=1 �see also previous section� at any
stage of the simulation. All local-curvature information, or,
alternatively, information about the different modes in the
system, is contained in the eigenvectors with eigenvalue �
�1. The history contained in this window may stretch over a
much longer range than simply anticipated from the recur-
sive schemes, since B is not always updated. For the sake of

the argument, we suppose k= k̄m when the curvature con-
dition is first violated and that the second violation takes
place after an additional number of steps m. The general
case is more involved but straightforward. In Appendix, Sec.
3 we have shown that, in order to satisfy the secant condition

at all times, adapted Vk based on h̃ instead of h are required

after m updates. Upon updating B at step k̄+1, one option is
to disregard the information contained in B and restart the
L-FSU scheme with J0= I, since by definition this informa-
tion can be restored in m steps. As in FSU �see Sec. II B� one
can also see the next step as an effective re-initialization of
the scheme with J0=Jk̄, based on the logic that especially for
large m the matrix Jk̄ contains valuable Hessian information.
In the latter case, one can either store the n�n matrix Jk̄ or
build Jk̄ recursively from its particular window of past
vector-triplets �a maximum of m�. In both cases, the use of Jk̄
introduces additional memory and/or computational require-
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ments. The secant condition is restored in step k̄+2 and can

be disregarded at step k̄+1. Whatever restart method is most
efficient depends on the values of m and n. For both J0,
however, it is important to note that the L-FSU scheme
should not truncate during the first m step, i.e., L-FSU and
FSU after restart are equal and Vk based on h should be
considered in the update.

We shortly analyze the computational load by considering
the total number of elementary operations for one update
cycle �Eq. �6��. As a reference, the FSU update �see Eq. �16��
requires 4n2 multiplications �first calculate Jk

Tyk and reuse
this vector in the update�. Calculating the drift part directly
from JkJk

T�� requires 2n2 multiplications. A total of n2 mul-
tiplications are needed for the noise part JkdW. Summing all
up, the total number of multiplications using the FSU update
is 7n2. In the recursive L-FSU update scheme, 10mn+2n and
2mn+n multiplications are required for the calculation of the
drift and noise term, respectively �see Appendix, Sec. 4 for
details�. A total of 12mn+3n multiplications is therefore re-
quired for the L-FSU update. A conclusion from this simple
analysis is that L-FSU is more efficient than the FSU update
scheme, in terms of computational as well as memory costs
for m�n /2 and definitely better than using Cholesky de-
composition. Since memory and computational constraints
are typically problematic for large n, this is a much desired
property.

III. RESULTS AND DISCUSSION

In the following examples, we have discretized Eq. �6�
into

xk+1 = xk + 	xk, �19�

	xk = − J�xk�J�xk� � ��xk�	t + �2kBTJ�xk�	W . �20�

using an explicit Euler scheme. Here �=�spring is a har-
monic potential, describing the behavior of n connected par-
ticles at x= �x1 , . . . ,xn�T on a line, with

�spring = �
i=1

n−1

�xi,i+1 − 1�2; �21�

and xi,i+1= �xi−xi+1� the distance between particle i and i+1.
For simplicity, we have set the equilibrium distance and
spring constants to unity. We note that the considered model
is related to the well-known Rouse model in polymer dynam-
ics, which we can obtain by taking a spring constant
3kBTb−2, with b the Kuhn segment length, and a vanishing
equilibrium length in Eq. �21� and constant mobility B
=JJT=�−1 in Eq. �20�, where � is the friction coefficient due
to the surrounding medium. Although our one-dimensional
�1D� particle-spring system seems trivial at first sight, it pos-
sesses many features, in particular critical slowing down,
that are present in nontrivial models, which automatically
require simulation. An clear advantage is that the analytic
Hessian H is easily calculated, and H can thus be directly
compared to Bk

−1. In particular, this Hessian H�spring
is a tridi-

agonal matrix,

H = �
2 − 2 0

− 2 4 − 2

� � �

− 2 4 − 2

0 − 2 2
� , �22�

which is singular. The kernel or null-space of H, Null �H�, is
spanned by the n dimensional vector 1= �1. . .1�T, corre-
sponding to the translational invariance of the energy poten-
tial �spring, i.e., the insensitivity of the potential to a transla-
tion of the string of particles as a whole. An equivalent
Gaussian model was analytically considered by Dünweg �2�,
who derived it from the well-known Landau-Ginzburg
Hamiltonian by omitting the �4 term. Dünweg showed that
the correlation times of longer-wavelength modes �smaller p�
become increasingly large. With an increasing length scale,
the system therefore becomes increasingly soft or—
correspondingly—increasingly sluggish.

We concentrate on three features: �1� the similarity be-
tween Bk and the inverse Hessian, �2� the sampling perfor-
mance, and �3� the sampling distribution.

A. Comparison of the adaptive mobility to the inverse Hessian

One consequence of the singularity of the Hessian is that
a direct comparison between H−1 and Bk is impossible. We
can use the generalized inverse matrix H− �28�, that exists
for any H such that HH−H=H, but for a singular matrix it
will not be unique. In particular, for any given generalized
inverse H−, the class can be generated by H−+U
−H−HUHH− with U any arbitrary matrix. For a nonsingular
H the inverse is unique and H−=H−1. The adaptive mobility
Bk itself is positive definite by construction, and the inverse
Bk

−1 can be obtained in O�n3� operations. However, we cir-
cumvent the additional inversion at each iteration step k, and
focus on the properties of Bk itself, starting with the eigen-
values of Bk. Rates of convergence can be determined from

HBkH−H
F, the Frobenius norm, as Bk itself may converge
to any member of the class of generalized inverses of H. In
the discussion we show that for the considered system it is in
principle possible to use BkH− I instead. In addition, we deal
with the singularity of H by constraining the system. The
first and rather crude option is to reject displacements asso-
ciated with Null �H� in the update of Bk, by applying an
affine translation after each step such that the chain’s center
of mass ck+1=c�xk+1�=�i=1

N xi is always reset to the initial
value c0. A better option, that resolves the singularity itself,
is to regularize the system by adding a penalty function con-
taining c�x� to the harmonic potential �Eq. �21��. First, we
evaluate the properties of Bk for the unconstrained case. Con-
sequently, we relate the eigenvalue spectrum for this Bk to
the eigenvalue spectrum of the regularized H, using elemen-
tary linear algebra.

For a quadratic potential, the buildup of information in Bk
is independent of the variables 	t and kBT in Eq. �20�, as
long as Bk is updated �yk

Tsk�0� for each k. Moreover, this
process is insensitive to x0, the initial state in Eq. �20�. For
these reasons, the spectral properties and rates of conver-
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gence of Bk considered in the next subsections are universal.
The sampling pathway itself depends on the values of kBT
and 	t, as well as the initial state, and should be chosen with
care. In particular, we have selected kBT=0.01 in Figs. 1–5.
For the results shown in Fig. 1 and 3 	t=0.0001 and 	t
=0.01 for Fig. 2. In Figs. 4 and 5 we chose 	t=10−6 since a
small time step promotes yk

Tsk�0.

1. FSU

We focus on the convergence of Bk, obtained by FSU, for
the spring potential Eq. �21� using Eq. �20�. We first consider
the eigenvalues of the mobility matrices Bk �we omit k de-
pendence for simplicity of notation�. Multiple length and
time scales should play an important role in systems with a
larger number of degrees of freedom, and we start with n
=100. The simulated k-evolution of the eigenvalue spectrum
of B is shown in Fig. 1�a�. It is clear that the eigenvalues,
apart from the extremes, approach a constant value with in-
creasing k within the limited time of simulation �20 000
steps�. The largest �smallest� eigenvalues continue to in-
crease �decrease� with increasing k: focusing on the maxi-
mum �max this increase is approximately linear with k. Visual

inspection of the spring dynamics �see next section for de-
tails� shows a dominant and random movement of the spring
as a whole at later k stages, signaling that the smallest eigen-
value of the inverse of the nonsingular B indeed converges to
zero with increasing k �or alternatively, �max→� for B�.
Force contributions along the eigenvector 1, the null space of
H, will thus be amplified with increasing k, leading to the
dominance of coordinated but diffusive movement of the
string at later stages. Figure 1�b� shows the eigenvalue spec-
trum for a system with a smaller number of degrees of free-
dom �n=27� and is qualitatively very similar. From a com-
parison between both spectra we observe that the time scale
at which most eigenvalues approach constant values depends
on the number of degrees of freedom n. We quantify the
simulated rate of convergence further by considering the
evolution of 
HBH−H
F �Fig. 2�a�� and the scaled norm
�1 /n2�
HBH−H
F �Fig. 2�b�� for varying n=10,20, . . . ,100.
Since the Frobenius norm sums over all elements of the n
�n residual matrix HBH−H, the scaled norm in Fig. 2�b�
provides the average residual per matrix element. From Fig.
2, we observe that for all considered n the matrix Bk con-
verges to a generalized inverse H−, within certain error
bounds, and that the residual norm has a typical S-shape. In
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the initial stages, the FSU scheme starts updating B0=J0= I
�all eigenvalues=1� if and only if the curvature condition is
satisfied. Focusing on selected simulations shown in Fig. 2,
we indeed observed that either one or two eigenvalues be-
come �1 after each update. In addition to these two eigen-
values, all other eigenvalues �1 are adjusted in each update.
All eigenvalues are therefore �1 for k� �n /2, . . ,n� steps.
From Fig. 2�b�, we can identify this process as the first
smooth and slowly decreasing part of the S-curve that termi-
nates in a plateau value after approximately n steps. The
second stage, the noisy plateau region, deals with correction
and further buildup of linear independent curvature informa-
tion via new sk and hk. The plateau value of the residual
norm itself seems independent of n �Fig. 2�a��. This plateau
could be seen as an exited state with a lifetime Tn that de-
pends on the dimensionality n of the system. From the Tn vs
n plot, shown as insets on a log-log scale in Fig. 2�a�, we
determined the life time as Tn=0.05n3. The noisy plateau
region terminates via a drop, signaling that the construction
of a �generalized� inverse Hessian H− becomes completed.
The constant slope associated with this drop was used in the

determination of Tn. Combining Figs. 1 and 2 for n=27, we
find that prior to the drop most intermediate eigenvalues
have almost reached their final and constant value �Fig. 1�.
The drop at k	1000 �Fig. 2� corresponds to the convergence
of all n−2 eigenvalues to constant values, although small
fluctuations around these values can be observed at later
stages. Only the two extreme eigenvalues are still increasing
��max� and decreasing ��min� for k�1000. The fact that �min
and �max do not level off with increasing k shows that the
condition number of Bk increases with k and is consistent
with the rank-two nature of the update scheme. Moreover,
these eigenvalues are inversely proportional to the extremes
for H, corresponding to the fastest and slowest modes in the
system. This observation is consistent with the simple analy-
sis in the discussion section, which anticipated that the relax-
ation rates associated with the slowest �fastest� modes is in-
creased �decreased� with respect to standard Langevin
dynamics �Bk= I�, respectively. For n=100 the instantaneous
drop occurs at k	50 000 �Fig. 2�. We conclude that the ear-
lier observation, i.e., all n−2 eigenvalues have converged at
k=20 000, is not strictly valid. Close re-examination of Fig.
1 shows indeed that the one but lowest eigenvalue has ap-
parently not converged at k=20 000. Also for n=100 most
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intermediate eigenvalues have �almost� reached their steady-
state value for rather small k.

2. Regularization

A nonsingular H̃ is obtained for the constrained potential
given by

�̃ = � + �com, �23�

with �com= �ck−c0�2 and ck=c�xk�=�i=1
N xi. Adding this term

to the potential has the effect of conditioning the eigenval-
ues. We focus on the smallest system from the previous sec-

tion, n=27, for illustration purposes. The eigenvalues of B̃
obtained by FSU �not shown here� level off to constant lim-
iting values for increasing k�k�1000�, including �max that is

now bounded. Owing to the nonsingular H̃, we can directly

compare the steady-state eigenvalue spectrum of B̃ to the

analytic spectrum for H̃−1. In addition, we can compare this
analytic spectrum to the steady-state eigenvalue spectrum of
B itself �see Fig. 1�b��. Linear algebra provides the tools for
such a direct comparison, in terms of an expression for the
change in eigenvalues of a matrix when a rank one matrix is
added. Let u and v be two n-dimensional vectors and u an
eigenvector of the n�n matrix A. The eigenvalues of A
+uvT are then given by:

��A + uvT� = ���A� \ �u � ��u + uTv , �24�

where �u is the eigenvalue from corresponding eigenvector
u. Taking A=B−1, u= �1. . .1�T and vT= �2. . .2�, and thus uvT

equal to the Hessian of �com �Hcom�, we can directly com-
pare the spectrum of B−1+Hcom to the analytic spectrum of

H̃. For consistency, we plot in Fig. 3 the inverse of the ei-
genvalues calculated using this relation. We note for com-
pleteness that the eigenvalue �u in Eq. �24� is the previously
mentioned �max

−1 of B.
From the spectra in Fig. 3, we observe that the smallest

eigenvalues of B�+,k=10 000� and B̃�� ,k=2000� coincide,
while the largest eigenvalues deviate considerably. The eight
largest eigenvalues of B are increasingly exceeding the ones

for B̃, and we note that the highest eigenvalue ��max	351�
of B even exceeds the chosen vertical axis limit. Condition-
ing the eigenvalue spectrum by the penalty function �com in
Eq. �23� thus only acts on the smallest eigenvalue of H

�B−1, as could be expected. Comparing the spectrum of B̃

� � � and the analytic spectrum for H̃−1 � · � shows that they

coincide in detail. We conclude that for �̃, FSU constructs a
perfect approximate of the inverse Hessian starting from k
	1000. Finally, we used the relation �24� to project the spec-

trum of B onto the analytic values for H̃−1 �� �. From the
perfect match, we conclude again that B−1 is an accurate
approximate of H, in particular at the considered later
k-stages �k=10 000�. Finally we carried out an additional
FSU simulation for the unconstrained potential �. After each
k update, the chain center of mass is reset to the original
position by an affine translation. The eigenvalue spectrum
�denoted by large +� coincides with the analytic values, and

we conclude that even with this ad hoc regularization proce-
dure FSU generates a very accurate inverse Hessian.

B. L-FSU

From numerical evaluation on a range of test problems,
L-BFGS is known to be an efficient general-purpose method
for determining optimal solutions in nonlinear problems, i.e.,
x� such that ��x�� is optimal, even for relatively small m
�20�. L-BFGS is therefore the most popular member of the
�convex� Broyden family of limited-memory methods, but
the performance of L-DFP is known to be comparable �29�.
As far as we know, some properties, like the convergence of
Bk to H−1, have not been considered in detail. The conver-
gence to optimal solutions suggests that at least some Hes-
sian information is stored in B. The important issue consid-
ered here is which, and how much, Hessian information is
stored in B, and which m is optimal in this sense.

We consider L-FSU for n=30. The history depth m is
varied from small �2, 4, and 5� to larger values �15, 20, and
50�. Figure 4�a� shows the �unscaled� residual norm as a
function of k and m. For all m, the norm in the initial m steps
is equal to the FSU norm �see Fig. 2�. Starting from k=m,
older information is disregarded in favor of new information.
For small m �m=2,4 ,5�, the residual norm is observed to
oscillate around a constant value that is roughly equal to the
residual norm of Bm. The effect of truncation is more distinct
for larger m and gives rise to large oscillations that damp out
while the residual norm reaches an almost constant value.
The apparent periodicity of these oscillations shows an intri-
cate effect. Since n=30, all eigenvectors/eigenvalues are af-
fected by the update process for m�15 and H− will be in-
creasingly approximated by Bm. As shown before in Fig. 2,
the initial stages �k�n /2� give rise to a fast decrease of the
residual norm relative to the correction at later stages, which
is associated with the noisy plateau region. Disregarding the
Vk of these initial stages will naturally give rise to a jump in
the residual norm. This information will be restored by the
iterative process and give rise to apparent periodicity. As the
information that can be incorporated in Bk is limited to m
vector triplets, also this residual norm will converge to a
constant value, but this value may be slightly higher than the
residual norm of Bm if the process of reiterating the disre-
garded information cannot keep up with the truncation pro-
cess. For this constant Hessian, one could therefore choose to
keep Bk=Bm fixed during the iterative process for k�m. For
general potentials, the Hessian will vary and the Bk obtained
by L-FSU will be slaved by the pathway on the energy hy-
persurface. The k evolution of the eigenvalues of Bk is shown
in Fig. 5, for varying m. Except for the eigenvalues=1, origi-
nating from J0= I, none of the eigenvalues levels off to a
constant value. Instead, and although hidden by the logarith-
mic scale used in Fig. 5, they show tiny oscillations around a
constant value due to the truncation process. It shows the

convergence of Bk to a stationary state B̄�m�. It is clear that
2m eigenvalues differ from unity and that the range of the
eigenvalue spectrum increases with increasing m. Since these
eigenvalues directly correspond to a multiplicity of time
steps, we conclude that the multiscale nature is enhanced by
considering larger m.
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Finally, we validate the new L-FSU method by consider-
ing L-BFGS for the same system and varying m �see Fig.
4�b��. We used Choleski decomposition for the noise factor.
We identify the same type of oscillation around a constant
value as in L-FSU for small m �Fig. 4�a��. Apparently, the
L-BFGS scheme is more stable against truncation for large m
by the particular form of the update scheme. It only shows
that the update schemes are conceptually different. From Fig.
4 and k�m, one can conclude that FSU gives a better ap-
proximation for the inverse Hessian than the standard BFGS
for this particular potential. Nevertheless, the residual norms

of the stationary states B̄�m� are roughly equal to the ones
obtained from L-FSU.

C. Multiscale simulation

Although some information is provided in the previous
sections, we further concentrate on the multiscale nature of
FSU and L-FSU. Analogous to effective diffusion, the mo-
bility on larger length and time scales �coordinated move-
ments� can be determined from the root mean square dis-
placement of the chain’s center of mass. Throughout the rest
of this paper, the simulation variables are set to 	t=0.01 and
kBT=10−5. We have chosen n=27, in order to complement
the results of the previous section. A relatively small n allows

us to concentrate on the role of the adaptive mobility when
one could assume that larger modes are less important. At the
end of this section, we consider the performance for n=100
as well. Another important choice for the sampling behavior
is the initial state x0. For x0 close �far� from the optimal state
x� of �, with ��x��=0, cooperative motion will play a less
�more� significant role. We consider two different initial
states. In the first scenario, we initially position all particles
at a distance xi,i+1=0.95, rather close to the equilibrium dis-
tance. We note that the topography of the potential energy
hypersurface around the optimal state is symmetric, since all
spring constants were set to unity.

Starting with FSU, the chain’s contour length and the rela-
tive chain displacement 	k=ck−ck−1 are shown in Figs. 6�a�
and 6�b�, respectively. The potential energy difference be-
tween successive steps 	�k=��xk�−��xk−1� and the poten-
tial energy value are shown in Figs. 6�c� and 6�d�. From Figs.
1 and 2, we concluded that Bk is increasingly approximating
H−, while the largest eigenvalue continues to rise approxi-
mately linear with k. Figure 6�a� shows that the chain’s con-
tour length l rises to the equilibrium length l0=26 very fast
due to larger modes in the system. The line intersects with l0
after 	500 steps and fluctuates around l0 at later stages.
From Figs. 6�c� and 6�d� one can see that the system has to
overcome a small barrier during the equilibration process
and that the potential energy hardly changes after the equi-
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librium contour length is reached. At k	1000, the optimal
state x� is reached and Eq. �20� starts sampling the basin
around x� with a decreased and rather small noise amplitude.
Apparently, the contour length l0 is reached before all par-
ticles arrive at their equilibrium distances. From Fig. 6�b�
shows that 	k changes very rapidly between successive steps
and that the average 	k increases monotonically with k. At
later stages, 	k becomes much larger than 	t. We conclude
from Fig. 6 that the chain moves as a whole during the later
stages, due to the increasing �max associated with displace-
ments in the null-space of H. This chain movement is ran-
dom, the true hallmark of diffusion.

We also compared the performance of Eq. �20�, with Jk
determined by FSU, and conventional Langevin dynamics
�CLD�. The value of the scalar mobility in B=MI, resulting
from friction due to the surrounding medium, depends to a
high degree on the unknown topography of the energy hy-
persurface. This M constitutes an effective scaling of the
time step 	t �M	t for all modes�, which is automatic and
mode-dependent in Langevin dynamics with curvature-
dependent mobility. For the special case considered here, this
topography is quite simple since all spring constants=1, and

M = 
H̃−1
F / 
I
F=1 /n
H̃−1
F=7.4068 would be a good value,
but one need to explicitly include information of the analytic
inverse Hessian for the constrained �. In general, and even
for a Harmonic potential with different spring constants, the

determination of an optimal M is much more difficult. In
those cases M is determined on physical grounds or by trial
simulations in the vicinity of the starting state. The starting
point for FSU is B0= I, and we therefore consider M =1 here.
All motion is local and the noise samples around the steepest
descent direction, i.e., the drift term for Bk= I. From Fig. 7�a�
we find that the contour length l approaches the equilibrium
value l0 but has not reached it at k=104. The relative chain
displacement 	k and potential energy difference between
successive steps 	�k for CLD are shown in Fig. 7�b� and
7�c�, respectively. We find that 	k�	t and the average 	k is
apparently a very small constant. In other words, the chain
center of mass moves only marginally due to displacements
of individual particles and cooperative displacements are ab-
sent. The barrier of Fig. 6�c� is absent in Fig. 7�c�, signaling
that also the pathway on the potential energy hypersurface is
different. The potential energy � has almost reached the op-
timal x� at k=104, but the amplitude of the noise is roughly
equal during the whole simulation pathway.

For L-FSU, we considered the sampling performance for
m=5 and m=50. Figure 8�a� shows the contour length l,
relative chain displacement 	k �Fig. 8�b�� and potential en-
ergy difference between successive steps 	�k �Fig. 8�c��. It
is clear that for small m=5 the sampling performance is con-
siderably reduced compared to FSU. The convergence of l
and xk to l0 and x�, respectively, are comparable with CLD
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FIG. 7. Sampling properties obtained using conventional Langevin dynamics for the spring potential with n=27 and equidistant initial
particle distances; xi,i+1=0.95. �a�Total chain length l vs iteration index k. �b� Relative chain displacement 	k vs iteration index k. �c�
Potential energy difference 	� vs iteration index k. �d� Potential energy ��xk� vs iteration index k.
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�Figs. 7 and 8�. From the analysis of eigenvalues �Fig. 5, for
m=4� it is clear that the spectrum is very narrow and that the
eigenvalues only slightly deviate from unity. In certain parts
of the potential hypersurface, the direction of search will
therefore be rather similar to the one in steepest descent, and
some modes will be accelerated while others will be slightly
damped. This effect can also be observed in 	k �Fig. 8�b��.
The spread of 	k marginally increases with k and the noise
amplitude in 	�k decreases only very mildly while ap-
proaching the optimal state of the system �Figs. 8�c� and
8�d��. For larger m=50, the performance improves. The equi-
librium length l0 is reached at k	2600 and l fluctuates
around l0 at later stages. The optimal state is first found at
roughly the same k	2500, after which the basin is sampled.
The contribution of larger modes in the displacement is re-
duced compared to FSU due to truncation �compare Figs.
1�a� and 5 for m=50�. Although not very significant, the
spread of 	k increases with increasing k and the maximum
displacement is larger than for m=5 �Fig. 8�b��. From Fig.
8�c�, one can observe that also for m=50 the simulation path-
way crosses a small barrier. Note again the reduced noise
amplitude close to the optimal state.

We shortly consider the sampling performance for x0 fur-
ther from the optimal x�, where xi,i+1 is randomly chosen
between 0.5 and 5. In Fig. 9�a� the contour length l and
relative chain displacement 	k �Fig. 9�b�� are compared for

Jk derived by FSU, J= I �CLD� and Jk derived by L-FSU for
m=5 and m=15. In Fig. 9�a�, l can be seen to drop very fast
toward l0 for both FSU and L-FSU, within 	500 steps, and
rather independent of m. In the case of L-FSU, the incorpo-
ration of curvature information speeds up this process con-
siderably �compare to CLD� even for small m. When the
chain has �almost� contracted to the equilibrium contour
length l0, cooperative chain movements in the drift term be-
come less important, with an exception for the movement of
the whole chain. The noise term in Eq. �20� gains importance
since xk is close to the optimal state x� at k	500 in both
schemes. As the noise contribution is fairly small �kBT
=10−5�, the result is a distinct kink in the l-curve. We find
that the overall convergence to the optimal state x� in �L-
�FSU is one order of magnitude faster than for CLD. The
information in Fig. 9�b� supports this analysis. The 	k for
FSU is again governed by the increasing �max or movements
of the whole chain. For L-FSU and small m, full-chain
movements are considerably damped due to the truncation
process. We observe rather large 	k in the initial stages for
both values of m due to cooperative motion in the drift term.
At later stages, when for L-FSU the contribution due to the
drift term is reduced and the basin around the optimal state is
mainly sampled due to the noise term, the features of 	k for
L-FSU �m=5,15� and CLD only marginally differ. This con-
firms the earlier findings �see previous paragraphs� that the
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FIG. 8. Sampling properties obtained using L-FSU, m=5 and m=50, for the spring potential with with n=27 and equidistant initial
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sampling of this basin is rather independent of curvature in-
formation. Since all spring constants were set to unity, this
behavior could be expected �see discussion of the time step�.
Finally, we compare the sampling performance of FSU,
L-FSU and CLD using the same x0, i.e., random interparticle
distances between 0.5 and 5, for a much larger system, n
=100. We find very similar features for the contour length l
�Fig. 9�c�� and the relative chain displacement �Fig. 9�d��
compared to n=27 in Figs. 9�a� and 9�b�. However, there are
also subtle differences. For FSU, the chain length l mildly
overshoots the equilibrium length l0, directly followed by a
correction. This overshoot shows the significance of larger
modes. When the length of the chain is close to the equilib-
rium value, the contributions of larger modes to the particle
displacements becomes much smaller but do not completely
disappear. Due to the amplification of these modes in FSU,
the chain continues to shorten fast. When the chain becomes
too short, the forces associated with these modes change
sign. Consequently, the chain extends and the chain length
convergences to the equilibrium value very fast. For L-FSU
�m=5 and m=15� the contribution of the larger modes is
damped due to truncation. As a result, the fast decrease of l
in the initial stages �first 103 steps� due to the larger modes is
followed by slower contraction when the contribution due to
these modes becomes less significant, and we again observe

a distinct kink. The details of Fig. 9�d� support this analysis.
In particular, the graphs indicate that in the initial stage the
relative displacements for L-FSU are considerably larger
than for the equivalent simulations with n=27. After this
stage, 	k for L-FSU and CLD again become rather compa-
rable.

D. Sampling distribution

We have written J�xk�=Jk in Eq. �20� so far. In reality, the
iterative update scheme for J introduces memory effects and
J contains also previous system states, Jk=J�x0 ,x1 , . . . ,xk�.
The usual derivation for the Fokker-Planck equation from a
stochastic differential equation �sde� like Eq. �6� assumes a
Markov process, i.e., no memory effects, but it can be shown
that this sde implies the Fokker-Planck equation even when
the mobility depends on a finite history of earlier states
�30,31�. In our case, Bk=JkJk

T always contains a finite history
of earlier states, either due to convergence or truncation.
More generally, the number of updates will always be finite.
We have previously shown that our general sde indeed gives
rise to thermodynamically consistent sampling, i.e., the Bolt-
zmann distribution in equilibrium, for low dimensional sys-
tems �1�. We note that the spurious drift term in this general
sde gives rise to a predictor-corrector scheme that requires
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FIG. 9. �Color� Sampling properties obtained using FSU, L-FSU �m=5 and 15� and conventional Langevin dynamics for the spring
potential where the particles are initially placed at random interparticle distances between 0.5 and 5. �a�Total chain length l vs iteration index
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Bk
−1 �see Appendix, Sec. 1�. However, this general sde re-

duces to the discrete Eq. �20� for systems with constant mo-
bility. Although the �inverse� Hessian is a constant for the
considered systems, the adaptive mobility Bk is only strictly
constant when Bk has converged. It seemed, however, justi-
fied to always omit the spurious drift term for the considered
quadratic potentials, since either Bk converges fast to a con-
stant value or Bk is very slowly varying along the pathway, in
which case the effect of spurious drift is minute and can be
neglected �see the results of the previous subsections�. Here,
we consider the validity of the assumption by analyzing the
actual sampling distributions for the systems in the preceding
subsection.

In Fig. 10, we compare the theoretical equilibrium bond-
length sampling distribution �TESD� to the simulated sam-
pling distribution using Eq. �20� for 104 steps, unless other-
wise mentioned. Since all equilibrium bond-lengths are
unity, we expect a single peak centered around one. The Jk
was obtained by FSU �Fig. 6� or by L-FSU, with m=5 and
m=50 �Fig. 8�. The simulated sampling distribution using
FSU in Fig. 10�a� fits the TESD very well. Both the spread
and the height match perfectly. For L-FSU we expect that an
increased number of iterations are required to obtain close to
the equilibrium distribution. For m=50 �Fig. 10�b�� it is clear
that the simulated distribution converges to the TESD, de-
spite a small remaining shoulder due to the limited number
of samples. For m=5 this shoulder is more pronounced after
104 steps and bond-lengths �1 are clearly undersampled.
Increasing the number of samples will reduce the height of
the shoulder in favor of a peak centered around one. We
conclude that, also in this case, the TESD will be obtained
with increased sampling. Finally, we considered the simu-
lated sampling distribution for x0 further away from the op-
timal state using L-FSU �m=15, see Fig. 9�. Figure 11 shows
the sampling distribution at different stages: k=4000, 6000,
and 104. Increasing the number of samples in the simulated
sampling distribution leads to a shift of the peak value to one
and a decrease of the shoulder on the right. We conclude that
also this sampling distribution will converge to the TESD.

E. Discussion

1. Inverse Hessian for the unconstrained case

One important issue that is often disregarded in the QN
literature is the actual convergence of Bk to the inverse Hes-
sian. As mentioned, the potential � may be invariant under
particular translations or rotations and H can thus be singu-
lar. The mobility Bk may converge to any of the generalized
inverses of H, and we should consider 
HBkH−H
F to deter-
mine convergence properties. Here, we show that it is in-
structive to consider 
BkH− I
F nevertheless, after special
taken care of the null-space of H. By definition, BkH= I, or
alternatively H=Bk

−1, if BkHx= Ix=x ∀x�Rn. One can eas-
ily see that since BkH�x+c1�=BkHx for any scalar c, this
equality does not have a solution. For the 1D chain consid-
ered in the examples, we can resolve this problem. Since the
matrix H is Hermitian positive semidefinite, we can write H
as H=U�UT, with U a unitary matrix and � a diagonal ma-
trix containing the singular values �i �i=1, . . . ,n�. The col-
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umns ui�i=1, . . . ,n� of U form a orthonormal basis for Rn,
i.e., ui

Tu j =0 for i� j and =1 for i= j. Let un be the basis
vector associated with the singular value 0 �the null space�.
We note that for our system un=n−11=n−1�1. . .1�T, due to
the invariance of the potential � under translation of the
whole chain. Writing x=�i=1

N aiui one easily see that when we
add a matrix B= �unun . . .un�T=n−1�1 . . .1�T to the left hand
side of BkH= I, i.e., BkH+B= I or equivalent �BkH+B�x
=x , ∀x�Rn, this equation can have a solution Bk. We can
even make B more general by replacing it by B
= ��i

n�i��
−1��1M, where 1M is a matrix with all unit elements

and �� is a diagonal matrix. We note that the n values of �i�
on the diagonal of �� can be freely determined, for instance
by the requirement that the diagonal elements in BkH+B are
unity. In the examples, we have therefore always considered

BkHBk− I
F for the unconstrained cases, with �i� appropri-
ately chosen. Returning to the original issue of the singular-
ity of H, we see that this procedure essentially allows us to
determine an equivalent BkH in which the contribution asso-
ciated with the null space of H, i.e., un, is removed from each
column of BkH. In principle, these contributions can also be
obtained from A=UTBkU, by resetting the entries associated

with un to zero in a new matrix Ã. We can then compute

B̃k=UÃUT, followed by an evaluation of 
B̃kH− I
F.

2. Accelerated sampling and regularization

The idea of reducing or even eliminating critical slowing
down by scaling is also present in the Fourier acceleration
method for lattice field theory �14�. The application of Fou-
rier acceleration has been extended to Langevin molecular
dynamics �15�, where acceleration is accomplished by am-
plifying the slow modes, after transforming the equation of
motion to the Fourier domain. Our proposed update does not
require any transformation and decoupling of the modes,
which is also not always possible in nontrivial models. From
the results in the previous sections, we conclude that collec-
tive motion, or an effective multiplicity of time steps, is in-
troduced by the new mobility as determined by FSU. Trun-
cation �L-FSU� leads to a slowing down of the collective
modes. Although m=5 showed good performance for our
particular system, one should take care in determining the

optimal history depth m. Since all columns and rows of B̄�m�
contain curvature information for n /2�k�n, a good choice
is m=n /2. Using this m, the computational costs for L-FSU
�6n2+3n� are less than FSU �7n2� for n�1. Using �L-�FSU,
we obtain an automated treatment of different time and
length scales in the system. Although the acceleration due to
the translational degrees of freedom can be desired in some
cases, we showed that it can easily be reduced or even
avoided by introducing translational constraints. In general,
the null space related to singular values of H can contain
more degrees of freedom than only translation, and it makes
sense to constrain them by regularization. We will consider
this issue in more detail in a future publication.

3. Time step

Although the time step 	t in S-QN is at first sight equiva-
lent to the step size 
k in QN methods �1�, its role is signifi-

cantly different. The step size 
k in QN depends on hyper-
surface information and varies. Langevin dynamics,
however, is a coarse-grained description for the purely diffu-
sive motion of n particles on a time scale that is large enough
to integrate out the rapid modes and replace them by friction
and noise. Although this concept can be further exploited for
a separation of time scales in the coarse-grained description
�32�, most conventional Langevin simulations use a single
constant time step 	t. In particular, there is no a priori mea-
sure based on which one could vary the time step during
simulation. The time step 	t is lower bounded by the re-
quirement that these rapid modes in the detailed description
are always in local thermodynamic equilibrium, and upper
bounded by the fastest modes in the diffusive description, in
particular by the requirement that these modes are sampled
with the correct canonical distribution. In our examples sec-
tion, we have also used a fixed 	t. The question remains:
what is a good value for 	t in S-QN in terms of accurate and
efficient sampling? Analysis for a single one-dimensional
harmonic oscillator, �= k

2x2, with spring constant k provides
some insight. An analysis of the time scales involved in the
problem using conventional Langevin dynamics gives

d�x�
dt

= − k�x� �25�

with � · � the ensemble average. We have scaled the time by
setting the friction coefficient � to unity. Equation �25�
shows that when a harmonic degree of freedom is disturbed
from equilibrium, it will relax exponentially with a charac-
teristic time k−1. Using S-QN for the same system, i.e.,
d�x� /dt=−�x�, shows that the characteristic time for relax-
ation that is now the same for any spring constant k, i.e.,
accelerated for k�1 and slowed down for k�1 with respect
to Eq. �25�. Further simple analysis of the stability conditions
for the discrete time step in Eq. �20� shows that a stable
scheme is obtained for 	t�1. In comparison, the conven-
tional Langevin equation is stable for 	t�k−1. The same
analysis can be carried out for coupled harmonic oscillators
and provides similar results �33�. We note, however, that we
have assumed B=H−1 and that the analysis is linear. For
systems where the higher moments of � are significant, a
large time step may result in numerical instability and the
optimal time step should be determined by numerical testing.
Also in the early stages for a quadratic �, when the inverse
Hessian information stored in Bk is still very sparse, a large
time step may give rise to erratic behavior and increased
violations of the curvature condition. Since violation of the
curvature condition leads to a truncation of updating local
Hessian information in Bk, this is very undesired from an
algorithmic point of view. In the numerical testing, we found
that a large time step �but still 	t�1� can indeed initially
give rise to features of instability, but that proper behavior is
automatically restored at later stages, when the inverse Hes-
sian in increasingly approximated by Bk. We therefore con-
clude that the time step 	t can in general be much larger than
in conventional Langevin dynamics �see also results section�.
The incorporation of backtracking, similar to QN, could pro-
vide a solution to the mentioned problems, but will seriously
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affect the computationally efficiency and is, if restricted to
part of the sampling pathway, rather ad hoc. To resolve the
time step issue in the early stages of simulation, it is much
simpler to build Hessian information by local sampling, i.e.,
using Eq. �20� for ��=0 �only noise�, and to input the ob-
tained J as J0 in the FSU method. We believe that the main
benefit of our approach originates from introducing a genu-
ine multiplicity of time steps, i.e., different scaling for modes
in the system depending on information of the inverse Hes-
sian.

4. Other energy landscapes

The considered system represents a special case, since
H−1 is constant. For such systems, the properties of Bk are
independent of the sampling part of the energy landscape.
For proteins, the potential energy landscape is more complex
and commonly referred to as the folding funnel. In particular,
it is locally rugged but with an overall funnel shape of the
low-energy part, so that most initial conditions are driven
toward a “natural” native state �34�. One may argue that the
fast degrees of freedom, such as bond lengths and angles, can
be reasonably well described by a harmonic potential energy
with different spring constants. However, this is typically not
true for all degrees of freedom in a Langevin description.
The inverse Hessian will in general significantly change
along the sampling pathway, and the approximate Bk has to
follow this change accordingly. Consequently, the typical
number of steps k�B� for which this memory function can
adapt itself to this new situation becomes important. Since
the sampling density of the energy landscape is not uniform,
the rate �=k�B� /k�H−1� rather than k�B� itself provides a
good estimate, where k�H−1� is the typical number of steps in
which H−1 changes significantly. We are aware that the defi-
nition of these variables is unprecise, but they suffice for our
current discussion. We conclude that for ��1, the incorpo-
ration of new Hessian information falls behind, and we ex-
pect suboptimal Bk. For the considered harmonic system,
k�B� can be seen as the rate of convergence, which depends
on the chosen threshold value for the difference norm, see
the examples section �k�B��n3�. Although k�H−1� is infinite
in our case, and � is therefore always smaller than 1, the
value of k�B� for a piecewise quadratic � may be taken
much smaller. Most eigenvalues/eigenvectors of Bk are rea-
sonably approximated in the earlier stages, long before the
drop of 
HBkH−H
F, and one may argue that the actual
k�B��n. Our results for n=27 and m=5 support this view.

Truncating the history in the L-FSU scheme for constant
H−1 can have a profound effect, as discarded older informa-
tion has to be reconstructed by the new iterate�s�. This is
most apparent for small n, where convergence is fast and the
majority of information about the inverse Hessian is stored in
only a few Vk. Discarding such matrices Vk gives rise to a
loss of information, to an extent that the value of m can be
detected from periodic steps in the difference norm. The pe-
riodicity stems from the periodic removal and restoration of
information, since the discarded information is swiftly recov-
ered in the next few steps. For varying H−1, however,
memory of unrelated parts in the sampling pathway should
be removed from Bk, and thus L-FSU for a “good” choice of

m could be more appropriate than FSU and lead to a reduced
value of kB. Since this property only applies for more com-
plex energy landscapes, we will consider this issue in greater
detail elsewhere.

IV. CONCLUSION

We have constructed a factorized secant update �FSU� for
the adaptive compound mobility matrix B in an existing sto-
chastic quasi-Newton �S-QN� method �1�. The S-QN method
is related to the conventional Langevin equation but differs
by the fact that curvature information is contained in the
mobility via the inverse Hessian, thereby enabling an auto-
mated separation of time scales for the different modes in the
system. By updating the factorized J instead of B=JJT itself,
we avoid the cost expensive Choleski factorization for the
noise term in the original scheme and B is always positive
definite. The computational costs of FSU are restricted to 7n2

multiplications per time step for updating J. In particular,
FSU does not require additional evaluations of the potential
of interest �. For very large n, a limited-memory �L-FSU�
update method was derived that allows the user to limit both
computational and memory requirements. The approach is
based on truncating the memory to m previous updates, simi-
lar to the approach in L-BFGS, and requires 12nm+3n mul-
tiplications and no matrix storage. The arithmetics of the new
L-FSU method is found to be even more optimal than the
L-BFGS method. The recursive scheme in L-FSU has the
additional advantage to FSU that the initial matrix J0 is iso-
lated from the rest of the computations, allowing this matrix
to be chosen differently in every iteration.

We have in detail evaluated the FSU and L-FSU method
for a simple but appropriate 1D system of N particles con-
nected by harmonic springs. This system has the advantage
of a known analytic Hessian H and involves multiple length
and times scales. We analyzed FSU and L-FSU in terms of
convergence of Bk to the inverse Hessian, multiscale sam-
pling performance and equilibrium sampling distribution. We
found that the Bk determined by FSU converges to a gener-
alized inverse H− �since H is singular� within k�n3 steps.
Due to the truncation, the matrix Bk from L-FSU converges

to a stationary B̄�m�. Analysis of the eigenvalue spectra of Bk
suggests that a reasonable good approximate of H− in FSU is
obtained for k�n. From the analysis of the sampling perfor-
mance we find that the adaptive mobility indeed gives rise to
automated separation of time and length scales. Collective
motions, captured by the Jk in both FSU and L-FSU, lead to
at least an order of magnitude faster convergence to the low-
est energy potential compared to conventional Langevin dy-
namics. Although for a quadratic � good performance was
observed for m=5, our analysis suggests that m=n /2 is op-
timal in L-FSU for general �. The theoretical �Boltzmann�
equilibrium distribution was obtained as a limiting case for
both FSU and L-FSU.
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APPENDIX

1. Predictor-corrector scheme for the spurious drift term

The generalized S-QN equation is given by

dx = �− B�x� � ��x� + kBT � · B�x��dt + �2kBTJ�x�dW�t� .

�A1�

We have previously shown �1� that Eq. �A1� can be dis-
cretized using the predictor-corrector scheme introduced by
Hütter and Öttinger �37� as

xk+1 = xk + 	xk, �A2�

	xk = −
1

2
�B�xk + 	xk

p� � ��xk + 	xk
p� + B�xk� � ��xk��	t

+
1

2
�B�xk + 	xk

p�B−1�xk� + I��2kBTJ�xk�	Wt,	xk
p	 ,

	xk
p = − B�xk� � ��xk�	t + �2kBTJ�xk�	Wt, �A3�

where Eq. �A3� is the predictor step and Eq. �A2� is the
correction. Direct inversion of B would be costly and should
therefore be avoided. Using the Sherman-Morrison theorem,
the exact inverse Gk=G�xk�=B−1�xk� of B�xk� in dual space
can be calculated explicitly by

Gk = �I −
yk−1sk−1

T

yk−1
T sk−1

�Gk−1�I −
sk−1yk−1

T

yk−1
T sk−1

� +
yk−1yk−1

T

yk−1
T sk−1

�A4�

reusing the vectors yk−1 and sk−1 stored for updating Bk−1.
Disregarding the costs associated with the computation of
���xk+	xk

p� and the storage of G, we can calculate the
costs of this predictor-corrector scheme employed for gen-
eral �. For quadratic potentials, when the predictor Eq. �A3�
suffices and 	xk=	xk

p, the total costs are 7n2 �see the theory
section�. Due to the very related structure, the corrector Eq.
�A2� is 7n2 as well �if we reuse terms� plus an additional 2n2

for B−1�xk� using Eq. �A4�. The additional costs for Eq. �A2�
are thus 9n2 and the total costs for the predictor-corrector
scheme using FSU are 16n2. The Sherman-Morrison theorem
can also be applied to derive an analytic expression for Dk
=Jk

−1 from Eq. �16�, providing an efficient method for deter-
mining B−1�xk� for L-FSU. Again, the total costs of the full
scheme are roughly doubled compared to using only the pre-
dictor term. Since this calculation is straightforward but in-
volved, the full technical details are given in future publica-
tions for general �. As a concluding remark, we note that the
calculation of the divergence itself may actually be more
efficient than the predictor-corrector scheme, because of the
special nature of the update B�xk�=B�xk−1�+V, with V a
rank-two correction.

2. Derivation of the FSU algorithm

The derivation of the update for J is equivalent to the
update for the lower triangular matrix L �17�. By interchang-
ing s and y and replacing L with J, the matrices LLT and JJT

become approximates of the Hessian and the inverse Hes-
sian, respectively. Here we focus on the derivation of the
update scheme for J.

Given 
 · 
 is the Frobenius norm and

min
Jk+1


Jk+1 − Jk
 , �A5�

Jk+1vk = sk, �A6�

Jk+1 is uniquely given by

Jk+1 = Jk +
sk − Jkvk

vk
Tvk

vk
T. �A7�

Substitute Jk+1 into

Jk+1
T yk = vk, �A8�

gives

vk = Jk+1
T yk = �Jk +

sk − Jkvk

vk
Tvk

vk
T�T

yk,

=Jk
Tyk +

�sk − Jkvk�Tyk

vk
Tvk

vk �A9�

⇒�1 −
�sk − Jkvk�Tyk

vk
Tvk

�vk = Jk
Tyk. �A10�

Hence, vk=
kJk
Tyk and after substituting this into Eq. �A9�

gives


k
2 =

yk
Tsk

yk
TJkJk

Tyk

, �A11�

which has a real solution for 
k due to the curvature condi-
tion and positive definiteness of JkJk

T. The update scheme for
Jk+1 is now given by

Jk+1 = Jk +

kskyk

TJk − 
k
2JkJk

Tykyk
TJk

yk
Tsk

. �A12�

Using this update we find after some algebraic operations
that JJT is equal to the update derived from the DFP scheme

Jk+1Jk+1
T = JkJk

T −
JkJk

Tykyk
TJkJk

T

yk
TJkJk

Tyk

+
sksk

T

yk
Tsk

,

=Bk −
Bkykyk

TBk

yk
TBkyk

+
sksk

T

yk
Tsk

. �A13�

3. Limited-memory update scheme

We consider our L-FSU method in the framework of
limited-memory approaches. To arrive at a limited-memory
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BFGS method, two different strategies have been used. The
L-BFGS method of Liu and Nocedal �20� recasts BFGS into
a multiplicative form Bk+1=Vk

TBkVk+�ksksk
T, and truncates by

only using the information stored in Vk and sk during the last
m updates. In particular, given a �often diagonal� B0, the
L-BFGS update is provided by

Bk+1 = �Vk
T . . . Vk−m+1

T �B0�Vk−m+1 . . . Vk�

+ �k−m+1�Vk
T . . . Vk−m+2

T �sk−m+1sk−m+1
T �Vk−m+2 . . . Vk�

+ �k−m+2�Vk
T . . . Vk−m+3

T �sk−m+2sk−m+2
T �Vk−m+3 . . . Vk�

+ . . . + �k−1Vk
Tsk−1sk−1

T Vk + �ksksk
T. �A14�

This approach was recently generalized by Reed �29� for the
convex Broyden family of Quasi-Newton updates. The vari-
able storage conjugate gradient �VSCG� method of Buckley
and LeNir �35� is based on the BFGS formula in the additive
form and overwrites the most recent update once m is
reached. If only the current update is stored, both algorithms
reduce to the memoryless QN method of Shannon and Phua
�36�. It is generally recognized that L-BFGS with Shanno
scaling is the most efficient and reliable method across a
range of test problems.

We can rewrite the update scheme for Jk+1 in Eq. �16� as
Jk+1=VkJk= �� j=0

k Vk−j�J0 with

Vk = �I −
1

�k
vkyk

T� �A15�

with vk=hk−sk /
k, hk=JkJk
Tyk and �k=hk

Tyk. Using the addi-
tional condition, Bk+1=Jk+1Jk+1

T , we obtain

Bk+1 = Jk+1Jk+1
T = VkVk−1 . . . V0J0J0

TV0
T . . . Vk−1

T Vk
T

�A16�

=VkJkJk
TVk

T = VkBkVk
T. �A17�

Rewriting this expression in the additive form, several terms
cancel and we obtain exactly the additive Davidon-Fletcher-
Powell �DFP� formula �see also Appendix, Sec. 2� �29�.
Hence, the multiplicative DFP formula

Bk+1 = Vk
TBkVk + �ksksk

T with Vk = �I −
1

�k
ykhk

T�
�A18�

and the update scheme in FSU are equivalent. The principle
difference is that we casted Eq. �A18� into a factorized form
Eq. �A17�. The recursive expression �A16�, obtained by loop
unrolling, can serve as a basis for limited-memory imple-
mentation. The recursive algorithm also allows for a limita-
tion of the memory requirements of FSU, by storing at each
k step vectors �yk ,sk ,hk instead of matrices Jk and Bk in the
original scheme �Eq. �A12��, however, at the expense of an
additional computational load.

Since Eq. �16� is multiplicative, we adapt the L-BFGS
strategy for limited-memory implementation of FSU �L-
FSU�. However, instead of truncating the incorporation of Vk
in B, we truncate in J, i.e.,

Jk+1 = VkVk−1 . . . Vk−m+1J0 �A19�

for km, and apply the second relation to update the mobil-
ity B

Jk+1Jk+1
T = VkVk−1 . . . Vk−m+1J0J0

TVk−m+1
T . . . Vk−1

T Vk
T,

for k  m . �A20�

For k�m, the FSU relations apply. Upon comparing L-FSU
to L-BFGS in Eq. �A14�, with Vk as in Eq. �A18�, we note
three important properties: �a� L-FSU is factorized, �b� the
memory requirements of L-FSU are the same as in L-BFGS,
�c� assuming B0= I, the number of matrix-vector products in
L-FSU �2m� is of a different order than L-BFGS �2m
+m�m−1�, or 2m+m�m−1� /2 if case of reusing informa-
tion�. One remaining issue is whether the secant condition is
satisfied by L-FSU for km.The L-Broyden family �29� was
specially designed to satisfy the secant condition Bk+1yk=sk
for all k, since Vkyk=0. By construction, the L-FSU method
satisfies the secant condition for k�m. Let m�1 and k

m, we define a matrix B̃k= J̃kJ̃k
T by

J̃k = Vk−1 . . . Vk−m+1J0 �A21�

and we find that

Bk+1yk = Jk+1Jk+1
T yk = 
k�h̃k − �khk� + �ksk. �A22�

with h̃k= B̃kyk and �k= h̃k
Tyk /hk

Tyk. Consequently, the secant

condition is satisfied only when h̃k=hk=JkJk
Tyk, which is

generally not the case. We now redefine Vk as

Vk = �I −
1

h̃k
Tyk

�h̃k −
sk


̃k
�yk

T� �A23�

with 
̃k
2=sk

Tyk / h̃k
Tyk. Substituting this into Eq. �A20� gives

Jk+1Jk+1
T yk = VkB̃kVk

Tyk = 
̃kVkB̃kyk = 
̃kVkh̃k = sk

�A24�

and the secant condition is again satisfied. We note that only
the hk for km are affected by this redefinition of Vk.

4. Recursive scheme for the limited-memory update

The update scheme can be casted into Algorithm 1.

d = d�xK+1�; �A25�

�
for i = K, . . . ,max�0,K − m + 1�
vi = hi − si/
i;

�i = vi
Td;

d = d − ��i/hi
Tyi�yi;

end
� �A26�

d = J0J0
Td; �A27�
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�
for i = max�0,K − m + 1�, . . . ,K

�i = yi
Td;

d = d − ��i/hi
Tyi�vi;

end
� �A28�

stop with result d = J�xK+1�J�xK+1�Td . �A29�

It is clear that for K=k, the procedure in Algorithm 1 pro-
vides the drift term in Eq. �6� for d=d�xk+1�=−���xk+1�	t
in Eq. �A25�. The noise term can be calculated using the
second part of Algorithm 1, starting with Eq. �A27� and d
=�2kBTJ0	Wt. For k�m, the vector hk=JkJk

Tyk can also be
obtained using Algorithm 1 by setting d=yk and K=k−1.
Consequently, we obtain 
k from


k = 
k�hk� =� sk
Tyk

hk
Tyk

�A30�

and store this new value 
k in a vector 
. For km, h̃k

= B̃kyk can be obtained from Algorithm 1 starting with d

=yk with the recursive index running between k−1 to k−m

+1. We store 
k=
k�h̃k� and hk= h̃k=d. This scheme requires
only permanent storage of vector triplets �sk ,yk ,hk �each of
length n� for each iteration step k. In agreement with general
practice the small additional effort for storing and calculating
the vector 
 of length m is not considered in the analysis
�24�.

Upon analyzing the computational load, operations Eqs.
�A26� and �A28� add up to 3mn and 2mn multiplications,
respectively. An additional n operations are needed for Eq.
�A27�, if we assume J0 is a diagonal �positive definite� ma-
trix, giving rise to 5mn+n operations. Recursive calculation
of hk requires a maximum of 5mn+n operations �for k=m
−1�, and slightly less for other k. The total is a maximum of
10mn+2n multiplications per step for the drift term only. For
the noise term only the second part of the algorithm is re-
quired. Assuming again a diagonal J0, we find that n multi-
plications are required for �2kBTJ0	Wt and 2mn multiplica-
tions for Eq. �A28�. This brings us to a total of 2mn+n
multiplications for the noise term, and a total of 12nm+3n
for the complete cycle at time step k.
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