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Melman: Yeah. I often doze off while I’m getting
an MRI.
Alex: Melman, you’re not getting an MRI!
Melman: CAT scan?
Alex: No! No CAT scan! It’s a zoo transfer!
Melman: ZOO TRANSFER?!

MADAGASCAR (2005)

C
ORONARY artery disease is a condition in which plaque builds up inside the coro-

nary arteries, causing disruption of the supply of oxygen-rich blood to the myo-
cardium. The prevalence, incidence, hospitalization rate and costs of this dis-
ease in the developed countries have steadily increased [1]. It has been a lead-

ing cause of death in Europe and North America, and it may even accelerate the pro-
gression of heart failure, and as such, it is responsible for 70% of congestive heart failure
cases [2].

Ischaemia is a condition of the heart when the supply of blood to the myocardium is
significantly reduced, mainly as the result of coronary artery disease. The imbalance in
supply and demand of oxygen in the circulation leads to functional sequelae known as the
ischaemic cascade. This starts with perfusion abnormalities, metabolic changes (silent
ischaemia), wall motion abnormalities, diastolic dysfunction, systolic dysfunction, angina
and ultimately infarction [3, 4]. As a result of chronic contractile dysfunction, myocardium
may turn into a hibernating state. Hibernating myocardium is an equilibrial condition
after prolonged subacute or chronic ischaemia in which metabolism and contractile func-
tion are reduced to match the blood supply. The hibernating myocardium is capable of
returning to normal or near-normal function after restoration of an adequate blood sup-
ply [5]. Hibernating myocardium thus suggests the presence of viable tissue, which may
gain functional improvement after treatment [6]. In the absence of a significant amount
of viable myocardium, restoring the blood flow is not beneficial anymore. Assessment
of dysfunctional but viable myocardium has become an important determinant in the
prognosis of ischaemic heart disease for long term survival.

A common treatment for restoring blood flow to the heart is coronary revasculari-
zation. Two common revascularization procedures are coronary artery bypass grafting
(CABG) and percutaneous coronary intervention (PCI). CABG restores blood flow of an
obstructive coronary artery by rerouting the artery with a new vessel. PCI is performed by
angioplasty, i.e., threading a balloon-tipped tube to be inflated, compressing the plaque
and dilating the narrowed coronary artery to improve the blood flow again, and then fol-
lowed by vascular stenting to keep the vessel open. Although overall survival has improved
due to these revascularization treatments, the result remains a partial success [7]. This
emphasizes the need for and the importance of an early and noninvasive diagnosis and
quantification of ischaemic heart disease.
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FIGURE 1.1: Resting (TOP) and dobutamine stress (BOTTOM) cine-MR images from the same
patient at a single MR acquisition session. An increase of dobutamine-induced wall thickening
is visible at the inferior region (the bottom arrows). This indicates a possible viable myocar-
dium. At the anteroseptal region (the top arrows), there is no increase of LV function from rest
to stress, which suggests non-viable tissue.

1.1 Imaging techniques for diagnosis of ischaemic heart disease

In the last few decades, an enormous amount of research has been carried out towards
imaging of ischaemic heart disease. Different image acquisition approaches have emerged,
either to detect the disease before symptoms occur, to assess the presence and the extent
of the disease in the symptomatic patient, or to monitor the disease progression over
time. Particularly for viability assessment, hibernating myocardium can be traced with
some imaging techniques, which can detect either the presence of myocardial tissue that
contracts if stimulated (wall motion analysis) or the persistence of metabolic activities
within the regions of dysfunctional myocardium (perfusion analysis).

Though head-to-head comparisons between imaging techniques have been performed
with respect to viability, no single test has been reported to have a perfect or nearly perfect
sensitivity and specificity [8]. An integrated use of different image acquisitions is therefore
needed in clinical decision making [8, 9]. In the following sections, clinical applicability of
different image modalities to assess ischaemic heart disease is briefly presented.

1.1.1 Magnetic resonance imaging (MRI)

MRI has a unique position in the management of ischaemic heart disease because it is
the only single image modality that allows visualization of all ischaemic events through

4
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different MR protocols [3]. In a single session, perfusion defects, resting cardiac function,
stress imaging and infarct images can be acquired with MRI [2, 4, 10]. Hence, MRI has the
potential to be implemented as a “one-stop shop” imaging modality for the diagnosis of
ischaemic heart disease.

1.1.1.1 Resting cine-MR images

Cine MR images are generally used in standard clinical practice for quantification of global
and regional LV functions, e.g., ejection fraction, stroke volume, wall thickening, and wall
thickness, because of its superb contrast delineation of myocardium with the blood pool,
right ventricle and other tissues. Cine MR imaging captures a full cardiac cycle in an
MR time sequence. Hence, cine MRI allows quantification of wall motion as well as end-
diastolic wall thickness (EDWT) and systolic wall thickening (SWT), which are key func-
tional parameters for quantifying ischemic heart disease.

1.1.1.2 Dobutamine stress MR (DSMR)

In the assessment of myocardial viability, the presence of contractile reserve is frequently
used to identify viable myocardium. Contractile reserve can be assessed by low dose
dobutamine injection prior to MR acquisition, which will produce cardiac stress MRI [2,
11]. Contractile reserve is shown by the increase of the dobutamine-induced systolic
function compared against the corresponding resting cine-MRI.

The diagnostic procedure with DSMR starts from visual wall motion scoring of myo-
cardial segments in resting MR. Four visual score levels are defined: normokinetic (nor-
mal), hypokinetic (reduced), dyskinetic (abnormal) and akinetic (no contraction). The
hypokinetic score may sometimes be divided into mild and severe hypokinetic. Subse-
quently, observers predict functional improvement in non normokinetic segments by com-
paring cine MR sequences between resting MR and DSMR. Figure 1.1 shows an example of
a comparison between resting and dobutamine-stress cine MRI. Observer experience in-
evitably affects the diagnostic quality of DSMR [12, 13]. Quantitatively, viable myocardium
can also be characterized by the preserved EDWT and SWT from rest to stress MR [14, 15].

1.1.1.3 MR perfusion

An MR perfusion study is performed by the injection of gadolinium pentaacetic acid (Gd-
DPTA) prior acquisition. The contrast agent enables full inspection of myocardial tissue
perfusion during the first-pass myocardial intensity enhancement (see Figure 1.2). First-
pass MR perfusion images are usually evaluated by an upslope analysis of myocardial
time-intensity curves.

Coronary artery disease can be assessed by the combination of rest and stress perfu-
sion studies [16, 17]. During stress, the blood flow through myocardium increases three-
to fourfold. The ratio of the maximum blood flow to the baseline, known as myocardial
perfusion reserve index (MPRI), has been used as an index of functional severity of a
coronary lesion [18].

5



1.1.1.4 Contrast-enhanced MRI (CE-MRI)

FIGURE 1.3: An example of CE-MRI.

Following a rest MR perfusion study, the
amount of washed-out contrast agent inside
myocardium can be quantified. In an in-
farcted region, extracellular contrast agent
passively diffuses into the intercellular space
due to myocyte death. This accumulation
of contrast agent increases tissue-level con-
trast. Chronic infarcts are characterized
by the absence of living myocytes, which
widens interstitial space between collagen fi-
bres. This increases contrast agent concen-
tration that results in hyperenhancement [2].
Figure 1.3 shows an example of a contrast-
enhanced MRI in which hyperenhancement
is notably present at the anterior region of
the myocardium.

Typically, a contrast-enhanced MR ac-
quisition is performed 10–20 minutes after the intravenous introduction of the con-
trast agent and therefore CE-MRI is often referred to delayed-enhancement or late-
enhancement MRI. CE-MRI is effective in identifying the presence, location and extent of
acute and chronic myocardial infarction. Transmural extent has become the main metric
of infarct assessment in CE-MRI, because there is a strong correlation between infarct
transmurality and the infarct size [19].

Additionaly, CE-MRI allows prediction of functional improvement in ischaemia. Vi-
able and non-viable tissue can be distinguished by setting a threshold value on infarct
transmurality. However, it is still an open debate how to define this threshold value; some
define a transmural extent of less than 75% as viable [11, 20, 21], while others prefer a more
moderate 50% threshold value [22–24].

FIGURE 1.2: A sequence of first-pass MR perfusion images. The paramagnetic contrast agent
starts entering the right ventricle (LEFTMOST), fills the right ventricle and then left ventricle
before it leaves the ventricle completely (RIGHTMOST). Image courtesy of Vikas Gupta, LKEB,
LUMC, the Netherlands.
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1.1.2 Echocardiography

Echocardiography has gained much popularity for the assessment of ischaemic heart dis-
ease because it is a noninvasive low-cost imaging technique that is available in many clini-
cal scenarios. Echocardiographic imaging can also assess tissue viability through different
protocols [25, 26], i.e. dobutamine stress echocardiography, tissue doppler imaging and
myocardial contrast echocardiography.

Dobutamine stress echocardiography (DSE) assesses the functional response of the
heart at stress after the administration of low-dose dobutamine infusion. Viability is noted
in DSE by the improvement of ejection fraction from rest to stress, which is directly related
to the number of myocardial segments with contractile reserve [27]. Applying DSE in
patients with poor acoustic window however is still problematic. DSE suffers from low
interobserver and interinstitutional agreement due to different interpretations of stress
echocardiograms [28, 29]. Better standardization of visual assessment [30], which can be
assisted by an automated method [31], is needed to allow objective evaluation of viable
tissue with DSE.

Tissue Doppler imaging (TDI) is a color Doppler imaging technique which analyzes
point velocities, accelerations and Doppler signal strength in the myocardium instead
of in the blood pool [32]. Several efforts have been made to exploit TDI for viability as-
sessment, but inconsistent prediction of functional recovery from TDI parameters was
found [25]. From TDI, strain and strain rate imaging can be derived. Strain rate of scar
tissue deteriorates as the extent of infarct transmurality increases and this measurement
can improve the accuracy of TDI to assess viability [33]. The main drawback of TDI is
the continuum of velocity measurements that often produces false abnormal velocity of a
normal segment tethered by jeopardized neighboring segments.

Myocardial contrast echocardiography (MCE) is another echocardiographic imaging
protocol that measures cellular viability in myocardium. Myocardial necrosis is associated
with the loss of microvasculature, which can determine viable and non-viable tissue [34].

1.1.3 18F-fluorodeoxyglucose (FDG) PET imaging

Under normal resting conditions, free fatty acid (FFA) and glucose are two main energy
sources of cardiac metabolism. Under ischaemia, oxygen supply decreases which reduces
metabolism of FFA. Consequently, exogenous glucose becomes the primary metabolic
substrate for myocardium [35]. The increase of glucose uptake by myocardium is therefore
an important indicator for ischaemia.

Glucose metabolism in the organ system can be traced by the glucose analog 2-[F-
18]-2-deoxy-2-fluoro-D-glucose (FDG) uptake. Myocardial FDG uptake can be imaged
by using positron emission tomography (PET). For predicting LV functional improvement
after revascularization, FDG-PET has been regarded as the standard of reference for other
imaging techniques [36] However, its limited availability and high costs hamper its appli-
cation for daily clinical routine.

Cardiac FDG-PET images are relatively low resolution and lack anatomical detail. To
provide morphological information, FDG-PET imaging is sometimes combined with other

7



imaging modalities, such as MR or CT images [37–41]. This approach requires a good
registration method to allow an accurate quantitative analysis.

1.1.4 Electrocardiographically-gated perfusion SPECT imaging

Electrocardiographically-gated SPECT (radionuclide perfusion imaging) is a tomographic
imaging technique with a radioisotope perfusion tracer. The acquisition is controlled
by electrocardiography (ECG) to generate full cardiac cycle of perfusion images [42, 43].
Three perfusion tracers: 99mTc-sestamibi, 99mTc-tetrofosmin and 201Ti (Thallium), are
routinely used in clinical practice. Standard myocardial perfusion SPECT can be per-
formed at rest or after pharmacologically induced stress. ECG-gated SPECT imaging pro-
vides several prognostic values for ischaemic heart disease, including myocardial viabil-
ity [44, 45] and disease monitoring following a revascularization procedure [46–48].

1.2 Computer-assisted diagnosis for ischaemia

The first articles of computerized methods for analyzing medical image data appeared
in the 1960s [49, 50], which marked the beginning of CAD development. Initially, a con-
siderable optimism was exalted that a computerized method could provide a complete
diagnosis. This expectation gradually abated over time. Instead of assigning the com-
puter the role of a diagnostician, CAD methods have gradually shifted towards computer-
generated diagnostic systems to support the physicians’ own assessment [51]. A modern
CAD method acts as a second reader that automatically highlights candidates of a lesion,
providing a second opinion to the first reader (radiologist/clinician).

The role of CAD as a second reader has been fostered for the detection of lesion, that
are prone to be missed by radiologists alone. That includes the detection of pulmonary
nodules in chest radiographic images [52–56], the detection of colorectal polyps from CT
colonographic images (virtual colonoscopy) [57–60], and the detection of breast cancer
from mammography in breast screening programs [61–63]. A large body of research has
been published in these fields, resulting in hundreds of proposed CAD methods with vary-
ing results [64, 65]. Common in these results was a substantial increase of sensitivity by
the CAD-supported assessment, although the increase varied with the experience of the
reader. The advent of CAD has helped radiologists to reduce their reading time [58, 66, 67]
and it has also decreased interobserver variability among readers [68, 69].

Also in other areas, several attempts have been made to develop a CAD system to
detect lesions or abnormalities. CAD was applied to identify suspected intracranial aneu-
rysms in MR angiographic images [70, 71], to detect pulmonary embolisms [72], to identify
arteriolar narrowing in fundus images [73], and mainly other tumor detection applica-
tions.

For cardiac applications, a simple computer-aided detection system cannot be ap-
plied because of the dynamic nature of the heart. A CAD system for heart disease must
be based on what is known as differential diagnosis [65], which is based on quantitative
differences between two reference points. Currently, CAD for ischaemic heart disease is
still in its infancy. Most of the proposed automated methods focused on presenting direct
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TABLE 1.1: Comparison of existing automated wall motion assessment methods.

Method Regional Modality Sample size

Douglass et. al. [90] LDA yes gated SPECT 31
Remme et. al. [91] SSM no cine MRI 13
Bosch et. al. [78] SSM yes (limited) DSE 64
Herz et. al. [92] PI yes 3D echo 1 (canine)
Ruiz Dominguez et. al. [93] PI yes echo 10
Caiani et. al. [94] TV yes cine MRI 18
Kachenoura et. al. [95] PI yes cine MRI 13
Lekadir et. al. [88] SSM yes cine MRI 40
Qazi et. al. [96] LDA no echo —
Leung et. al. [97] SSM yes DSE 129
Mansor et. al. [98] HMM yes DSE 44
Suinesiaputra et. al. [99, 100] SSM yes cine MRI 45

LDA = linear discriminant analysis, SSM = statistical shape model, PI = parametric image,

TV = threshold value, HMM = hidden markov model

raw quantification of global or regional LV function to the clinicians [74, 75]. Much effort
has been spent on the development of automated quantification of cardiac images, which
includes segmentation, registration and cardiac modeling [76, 77].

The first automated classification of wall motion abnormalities (WMA) by using sta-
tistical knowledge of myocardial contours was presented by Bosch et. al. [78]. This CAD
method utilized a statistical shape model (SSM) of endocardial contours, which was origi-
nally used for the segmentation of endocardial borders in echocardiograms [79]. A linear
correlation was found between diagnostic predictors (active appearance motion model
shape coefficients) with visual wall motion scores.

SSMs provide a morphometric analysis of biological shapes, which are characterized
by a set of correspondent anatomical, geometrical or mathematical landmark points [80].
When a set of shapes from the same group is used to build the model, statistical inferences
such as the mean shape and the modes of variation will only expose plausible shapes
according to that group. The key problem is that the model needs to be specific enough to
only generate representative examples. This is the underlying mechanism of Active Shape
Models (ASM) [81], an automated segmentation method which has gained popularity for
segmenting medical images in general [82, 83], and also for cardiac images [84–86].

SSMs require proper registration of training shapes to eliminate pose related variations
(translation, scale and rotation). Post registration, SSMs will contain residual variations
that only describe the true inter-subject differences. These variations should be small if all
training shapes are taken from the same group, e.g., non pathological subjects. Fitting an
SSM onto shapes from outside the model group may produce significantly large variations
and errors. This particular feature becomes the main ingredient of characterizing normal
and pathological shapes with SSMs [79, 87–89].

Parameterization of left ventricular (LV) motion appears to be a suitable approach
to model myocardial contraction for CAD of ischaemia. Aside from SSMs, other CAD
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approaches have been proposed to parameterize LV motion. A finite element model was
introduced to parameterize wall motion [92]. A Hammer map projection was then applied
to map the three-dimensional LV wall into continuous values of ischaemic zones: normal,
hypokinesis, akinesis and dyskinesis. Finite element modeling was also combined with
SSMs to estimate the deformation of the heart to distinguish normal and patients [91].

Other automated WMA classification methods include outlier detection in SSMs by
inter-landmark distances [88], Hidden Markov Models [98], parametric imaging of wall
motion[93, 95], linear classifiers [90, 96], and threshold-based LV function indicators [94].
A comparison of existing CAD methods for ischaemic heart disease based on wall motion
analysis is given in Table 1.1.

1.3 Motivation and objectives

With the increasing prevalence and hospitalization rate of ischaemic heart disease, an
explosive growth of diagnostic imaging for ischaemia is ongoing. Clinical decision making
on revascularization procedures requires reliable viability assessment to assure long-term
patient survival and to elevate cost effectiveness of the therapy and treatment. As such,
the demand is increasing for a CAD method for ischaemic heart disease that supports cli-
nicians with an objective analysis of infarct severity, a viability assessment or a prediction
of potential functional improvement before performing revascularization.

The goal of this thesis was to explore novel mechanisms that can be used for CAD in
ischemic heart disease, particularly through wall motion analysis from cardiac MR images.
Existing diagnostic treatment of wall motion analysis from cardiac MR relies on visual wall
motion scoring, which suffers from inter- and intra-observer variability. To minimize this
variability, the automated method must contain essential knowledge on how the heart
contracts normally. This enables quantification of hypokinetic myocardial segments, de-
tection of segments with contractile reserve and prediction of functional improvement in
stress. As such, the objectives of this thesis are threefold:

1. To find a proper shape parameterization for myocardial contraction. The dynamic
nature of cardiac contraction must be represented in such a way that myocardial
shapes from healthy subjects in this representation differ from shapes from ischae-
mic patients.

2. Define good descriptors and classifiers that are capable of detecting, locating and
quantifying regional wall motion abnormalities (RWMA). Hence, locality is a key
factor for providing automated segmental analysis of wall motion.

3. Investigate the possibility of applying the automated RWMA method for predicting
regional functional improvement from rest to stress MR images.

1.4 Outline

This thesis is organized as follows.
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Chapter 1 lays out the background and motivation of this thesis and presents a survey of
current imaging techniques and CAD methods for ischaemic heart disease.

Chapter 2 describes a preliminary investigation on wall motion analysis to extract dense
velocity vector fields from tagged MR imaging by using multiscale optic flow. This
means velocity vectors from all pixels inside myocardium are automatically calcu-
lated over the full cardiac cycle. Quantitative validation is performed by comparing
the estimated velocity vector fields with velocity-encoded (VEC) MRI.

Chapter 3 presents an exploratory study to find a proper shape representation for myo-
cardial contraction. To model the dynamics of myocardial contraction in the static
representation of SSMs, shape vectors are defined by serially concatenating endo-
and epicardial contours at end-diastole (ED) with endo- and epicardial contours at
end-systole (ES). Shapes from both healthy subjects and patients are combined into
one SSM. Contractility patterns are extracted by using Principal Component Analy-
sis (PCA) and Independent Component Analysis (ICA), and a comparison between
the two decomposition methods is presented. In this chapter, the advantage of ICA
to extract local shape features is demonstrated.

Chapter 4 gives the first application of ICA to detect regional wall motion abnormality
(RWMA). Segments with abnormal wall motion are detected by the location of ab-
normal independent components (ICs) in myocardium. Qualitative evaluation of
RWMA on six infarct patients is presented by correlating the position of abnormal
ICs with hyperenhanced areas from the corresponding CE-MRI of the same patients.

Chapter 5: With the capability of ICA to detect RWMA for ischaemic patients as given in
Chapter 4, we explored the method’s potential use for predicting regional contractile
improvement. Qualitative comparison of RWMA at rest with RWMA at stress is
presented in this chapter. By comparing independent component coefficients from
rest to stress, the potential to detect myocardial contractile improvement from rest
to stress is investigated.

Chapter 6 represents the core of our CAD method for automated RWMA evaluation. The
methodological formulation to estimate RWMA probability density functions is re-
fined and improved by propagating the density functions from the independent
component domain to the shape domain. This allows a direct quantification of
RWMA at the landmark point level without the need to project a patient shape onto
the ICA model. Quantitative validation results from 45 patients with ischaemic heart
disease are also presented in this chapter.

Chapter 7: investigates of the possibility to automatically detect regional functional im-
provement when rest and stress cardiac MR data are combined. The statistical model
is slightly adapted to accommodate the comparison between rest and stress data
during the shapes alignment. A new evaluation of RWMA probability changes from
rest to stress is proposed. Correlation with infarct transmuralities from CE-MRI is
presented in this chapter.
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Chapter 8 summarizes the CAD development for ischaemic heart disease. Future di-
rections for building a computer-assisted cardiac ischaemia diagnosis method are
presented at the end of this chapter.
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2
OPTIC FLOW COMPUTATION FROM CARDIAC MR

TAGGING USING A MULTISCALE DIFFERENTIAL

METHOD: A COMPARATIVE STUDY WITH

VELOCITY-ENCODED MRI



Abstract

The computation of an optic flow field to reconstruct a dense velocity field from a se-
quence of tagged MR images faces a major difficulty: a non-constant pixel intensity. In
this chapter, this problem was resolved by regarding the MRI sequence as density images,
which adhere to a principle of conservation of intensity. Based on this principle, optic flow
equations were developed based on Gaussian derivatives as differential operators. The
multiscale optic flow method was applied to cardiac tagged MRI. A quantitative analysis
is presented comparing the reconstructed dense velocity field with a directly acquired
velocity field using the velocity-encoded (VEC) MRI.

This chapter was adapted from:
A. Suinesiaputra, L. M. J. Florack, J. J. M. Westenberg, B. M. ter Haar Romeny, J. H. C. Reiber, and
B. P. F. Lelieveldt. Optic flow computation from cardiac MR tagging using a multiscale differential
method: A comparative study with velocity-encoded MRI. In R. E. Ellis and T. M. Peters, editors,
Medical Image Computing and Computer-Assisted Intervention - MICCAI 2003, volume 2878 of
Lecture Notes in Computer Science, pages 483–490. Springer, Nov 2003.
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There is an optical illusion about every person we
meet.

Essay II – Experience
RALPH WALDO EMERSON

M
OTION analysis is becoming increasingly important in cardiovascular ima-

ging. The cine-MR tagging protocol [1] enables the inspection of myocar-
dial motion, because of temporary tag pattern in the myocardium wall. The
tag pattern is induced within a tissue, which will follow the tissue deforma-

tion. The tissue motion is clearly visible through the deformed pattern.

Automatic reconstruction of a dense velocity field from tagged MRI is the next step
toward a detailed cardiac motion analysis. The velocity field can be computed directly
by following the apparent pixel movement, which can be derived using optic flow (OF)
methods [2]. A large number of different optic flow methods have been proposed (see [3]
for a comparison between various OF methods). However, only a few were proposed
for extracting the dense OF field from tagged MRI because of one major problem: the
brightness variation problem.

In the OF computation, a constant pixel intensity is assumed. This is contained in the
formulation that a total derivative of the image function L is zero.

dL

d t
= 0 or ∇L ·v = 0; v ∈R3 (2.1)

The MR signal however, linearly depends on the accumulated protons in a certain area.
Therefore the tissue deformation causes variation in the pixel intensity due to the diver-
gence of the flow. This chapter presents:

• a new dense optic flow framework, that does not assume a constant pixel intensity,
but a constant density. This greatly reduces the sensitivity to brightness variation
over time, and therefore enables a more reliable reconstruction of a dense velocity
field from tagging MR images, and

• the first direct comparison between reconstructed and directly acquired (using VEC
MRI) dense velocity field in clinically representative cases.

The remainder of this chapter is structured as follows. Section 2.1 discusses the pro-
posed approach to the brightness variation problem in tagging MRI and the OF method
in detail. In Section 2.2, results from applying the optic flow method to cardiac MR tag-
ging sequences are presented, and statistically compared to the corresponding velocity-
encoded (VEC) MR images. Section 4 concludes with a discussion.
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2.1 Methodology

2.1.1 Conservation principle in tagging MRI

Let L : R3 → R be a raw image function and Lv be the Lie derivative, a generalization
notion of the directional derivative of a function, with respect to a spatiotemporal vector
v ∈ R3. The optic flow field is defined as a spatiotemporal vector field that satisfies the
following constraint

Lv L = 0 (2.2)

This is called the Optic Flow Constraint Equation (OFCE). It defines the mathematical
concept of the optic flow field in a more general formulation than (2.1).

Florack et. al. defined two different kind of pixel flows in an image: scalar and den-
sity images [4]. In scalar images, the pixel intensity is assumed to be constant. Horn
& Schunck’s OF equation [2] deals with these images. In density images, the conserved
quantity is not a single pixel value, but the intensity is integrated over a local region. Pixel
intensities in the density images may vary, but its total integral is conserved: the local
"intensity mass" is preserved.

Tagging MRI is a typical example of density images, because the MR signal is formed
by the net magnetization of excited protons [5]. The total number of protons in a tissue
is preserved, even if the tissue is deformed. Optic flow analysis of tagging MRI therefore
greatly benefits from the derivation of OFCE based on the density conservation principle.

Let Lρ :R3 →R be a raw image function that holds the density images property. The Lie
derivative of Lρ with respect to a vector v is defined by taking the derivative of the density
function together with the vector field.

Lv Lρ =
3∑

µ=1
∂µ

(
Lρ vµ

)=∇· (Lρ v
)= 0 (2.3)

Equation (2.3) is the OFCE definition for the density images. It has an interesting
physical interpretation as the divergence of a vector v representing the rate of expansion
per unit volume under the flow. Thus it accounts for the change of volume of the local
integrated region. In the next sections, unless stated otherwise, we use the notation of L
for the density images.

2.1.2 The First Order Density Multiscale OFCE

Let vT = (w(x),u(x), v(x)), x ∈R3 be the optic flow vector, which equals the spatiotemporal
vector v in (2.2), but in a more general form. The function w : R3 → R+ is the temporal
component and u, v :R3 →R are the spatial components in x and y directions respectively.

As the Lie derivative vanishes in (2.3), its convolution with a Gaussian kernel in the
scale-space framework also vanishes. Therefore (2.3) in the Gaussian scale-space frame-
work will be

−
∫

R3
L (∇φσ,τ ·v) dx = 0, σ,τ ∈R+ (2.4)

where φσ,τ is a three dimensional Gaussian kernel with an isotrophic spatial scale σ and a
temporal scale τ.
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To eliminate the aperture problem [6], an additional constraint is required. Since the
exact cardiac motion is not a-priori known, a perpendicular vector to the tangential vector
is applied as the additional constraint: the normal flow constraint. If vT = (w,u, v) is the
normal vector, then vT

t = (0,−v,u) is its tangential vector. The vectors v and vt can be
substituted into (2.4) to get a unique solution.

Another constraint is the temporal gauge constraint, which means fixing w(x) → 1.
This states that there are no creation or elimination of pixel intensities. Using (2.4) for
the normal and tangential vector and imposing the temporal gauge condition, the first
order OFCE can be defined for the density image. It consists of 8 unknowns (the two
components of flow vectors and their derivatives with respect to x, y and t ) in 8 linear
equations:

−Lt = Lx u +Ly v +τ2Lxt ut +τ2Ly t vt + (L+σ2Lxx )ux +σ2Lx y vx+
σ2Lx y uy + (L+σ2Ly y )vy

−Lt t = Lxt u +Ly t v + (Lx +τ2Lxt t )ut + (Ly +τ2Ly t t )vt + (Lt +σ2Lxxt )ux+
σ2Lx y t vx +σ2Lx y t uy + (Lt +σ2Ly y t )vy

−Lxt = Lxx u +Lx y v +τ2Lxxt ut +τ2Lx y t vt + (2Lx +σ2Lxxx )ux+
(Ly +σ2Lxx y )vx +σ2Lxx y uy + (Lx +σ2Lx y y )vy

−Ly t = Lx y u +Ly y v +τ2Lx y t ut +τ2Ly y t vt + (Ly +σ2Lxx y )ux +σ2Lx y y vx+
(Lx +σ2Lx y y )uy + (2Ly +σ2Ly y y )vy

0 = −Ly u +Lx v −τ2Ly t ut +τ2Lxt vt −σ2Lx y ux + (L+σ2Lxx )vx−
(L+σ2Ly y )uy +σ2Lx y vy

0 = Ly t u −Lxt v + (Ly +τ2Ly t t )ut − (Lx +τ2Lxt t )vt +σ2Lx y t ux−
(Lt +σ2Lxxt )vx + (Lt +σ2Ly y t )uy −σ2Lx y t vy

0 = Lx y u −Lxx v +τ2Lx y t ut −τ2Lxxt vt + (Ly +σ2Lxx y )ux−
(2Lx +σ2Lxxx )vx + (Lx +σ2Lx y y )uy −σ2Lxx y vy

0 = Ly y u −Lx y v +τ2Ly y t ut −τ2Lx y t vt +σ2Lx y y ux − (Ly +σ2Lxx y )vx+
(2Ly +σ2Ly y y )uy − (Lx +σ2Lx y y )vy

(2.5)

Lµ is the image derivative in the Gaussian scale space representation, defined as the con-
volution of the original image L (as the initial condition) with the Gaussian derivative ker-
nelφσ,τ in the µ dimension [7]. Although there are derivatives of each velocity component
in (2.5), this chapter only presents the u and v component, as x and y velocity component
respectively.

2.1.3 The multiscale scheme

Two parameters are left undefined in (2.5): the scale parameters σ and τ. Although the
scale is a free parameter, one proper scale is enough to get a unique solution. Niessen et.
al. [8] has studied a scale selection method based on a numerical stability of the solution.
The "best result" is defined numerically as the most stable solution of the linear equation
system in (2.5). By using the Frobenius norm of the coefficient matrix of (2.5), numerical
stable solutions can be estimated.

The next step after solving (2.5) is the integration of scale space, which smoothes the
output optic flow field [9]. The energy minimization in [9] is modified into the convolution
with Gaussian kernels.
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(a) Mid-systole dense OF (b) Mid-diastole dense OF

FIGURE 2.1: One sample comparison result between dense OF from tagging and VEC MRI.

Let ṽ(x),x ∈R3 be an optic flow vector after the integration and vσ,τ(x) be an optic flow
vector after the computation of (2.5) with spatial scale σ and temporal scale τ. The notion
of σ,τ in the vector v is added to incorporate the scale selection scheme. The integration
of scale space is given by the following convolution process:

ṽµ(x0) =
∫

x∈R3
p(x0)vµσ,τ(x0)φσ,τ(x−x0)dx (2.6)

where µ is one of vector’s components, p(x) is a penalty function and φσ,τ(x) is the Gaus-
sian kernel. The penalty function p(x) in (2.6) is defined as:

p(x) = exp

(
−λ κ(x)

Nκ

)
(2.7)

where κ(x) is the Frobenius norm of the coefficient matrix of (2.5) at the spatiotemporal
position x. The value λ is a constant in the range of (0..1] and Nκ is a normalization factor.
The value of (2.7) decreases exponentially when κ is large, which means that the more
unstable solution contributes less in the final optic flow result.

2.2 Experimental results

The multiscale OF method for tagged MRI has been tested and validated on several ana-
lytical images and tagging MRI of a phantom agar [10]. In this chapter, the method is
applied to real cardiac tagged MR images from a number of cardiac-healthy subjects. The
OF method is restricted to estimate only for in-planar motion (2D) in tagging MRI. The
results are compared to directly acquired VEC MRI.
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TABLE 2.1: Correlation coefficients

Components Full cycle Systolic Diastolic
Radial r = 0.86 (SD = 0.04) r = 0.98 (SD = 0.01) r = 0.71 (SD = 0.13)
Circumferential r = 0.42 (SD = 0.17) r = 0.52 (SD = 0.18) r = 0.23 (SD = 0.29)

2.2.1 Clinical Data

Eight healthy volunteers were selected without history of valvular disease, proven from
echocardiography. VEC MR images were acquired in a short-axis orientation at a mid-
ventricular level. A standard spoiled gradient-echo was applied with velocity-encoding in
three directions (maximal velocity sensitivity is 20 cm/s). Retrospective gating with de-
layed reconstruction was used to cover the full cardiac cycle (30 phases). This acquisition
was performed during free breathing.

An MR tissue tagging sequence is used in the same short-axis orientation and position
for comparison. Rectangular grid tagging is performed with tag grid spacing = 8.3 mm.
Prospective triggering is used with maximum number of heart phases reconstructed, re-
sulting in typical 20-30 phases during one cardiac cycle. This acquisition is performed
under breath-holding (in expiration).

Both the VEC and tagging MR images for all patients were acquired in the same study
time, with same patient positioning. Due to different breathing conditions, the left ven-
tricular (LV) contours were drawn separately. Contours for tagging images were drawn
manually using a dedicated cardiac MR analytical software package (MASS, v5.0, Medis,
Leiden, the Netherlands [11]). Contours were drawn in the regular short-axis image, at
the closest slice position to the tagging image, because of the better visibility of the myo-
cardial contours in (non-tagged) short-axis slices. Contours for the VEC MRI were drawn
manually in the through-plane velocity image, because it gives clearer definition of the
myocardial wall than the in-plane velocity images.

In the analysis, time phases of tagging and VEC sequences were normalized into a
single cycle. Since the number of phases in tagging images was not equal, MR tagging
images were interpolated 30 time frames according to the time steps in the VEC MRI.

2.2.2 Results

The region of interest is the LV myocardium. Figure 2.1 and Figure 2.2 shows one sample
result of the OF field from a subject compared visually with their corresponding VEC MR
images at mid-systole and mid-diastole phases. Only vectors inside the LV myocardium
are shown. Notice how the tagging patterns are fading at later phases.

For this comparison between VEC MRI and the computed OF from tagging, only the
in-plane motion of the VEC MRI was analyzed. Therefore the z-velocity components were
discarded. The comparison is focused at the global LV wall motion, instead of regional
wall motion, because the scope of this paper is to investigate how the LV wall motion from
optic flow globally relates to VEC MRI.
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(a) Mid-systole VEC (b) Mid-diastole VEC

FIGURE 2.2: One sample comparison result between dense OF from tagging and VEC MRI.

The LV wall undergoes two basic motions, i.e. radial and circumferential components.
The radial component defines contraction motion relative to the center of the LV, while
the circumferential defines the torsion movement. Figure 2.3 shows the comparison of
the mean global radial and circumferential velocity components between the computed
OF and VEC MRI.

The correlation coefficient for each components were calculated to investigate the
relation between the OF and VEC MRI. As can be seen in Figure 2.4, the OF and the VEC
radial velocity has high correlation (r = 0.86). This is not the case for the circumferential
velocity (r = 0.42). Also the radial velocity correlates better at the systolic part of the cycle,
while the diastolic half (second half cycle) is less correlated (Table 2.1). In the scatter plot
(Figure 2.4), this phenomenon is shown by a cluster of systolic plots (asterisk signs) and
diastolic plots (plus signs).

2.3 Discussion

The circumferential component correlates less good (r = 0.42). This can be explained by
two factors. The circumferential movements in the VEC images are more visually apparent
than the circumferential movements in the tagging images. This may be caused by the
longer trigger delay time of the tagging images, i.e. the rapid torsion at the start of the
contraction is not sufficiently covered by the tagging sequence. Therefore the optic flow
method is unable to produce the motion that is not sufficiently present in the image data.

Moreover the aperture problem was solved using the normal flow constraint, which
reduces all pixel motions to be in the direction of the image gradient. In order to over-
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come this limitation, the normal flow constraint should be replaced by a more knowledge-
driven motion constraint. If a-priori knowledge of the LV wall motion is integrated, for
instance taking into account the torsion movement, then it would be better to replace the
normal flow constraint with this knowledge.

The computed dense OF field from tagged MRI shows a very good correlation with the
VEC MRI for the LV wall radial contraction. Especially in the systolic part of the cardiac
cycle this correlation is stronger (r = 0.98 in systole and r = 0.71 in diastole). In most
cases, the cardiac systolic function is clinically more meaningful than the diastolic part.
Systolic function gives information of how well the heart can pump the blood to the whole
body. Based on this observation, the proposed dense OF method shows a promising non-
invasive technique to assess the velocity field during the systolic part of the cardiac cycle.

The proposed method has the flexibility to be extended to 4D by adding one more spa-
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tial component in the spatiotemporal vector definiton. The optic flow equations would
become more complex and more additional constraint equations are needed.
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3
EXTRACTION OF MYOCARDIAL CONTRACTILITY

PATTERNS FROM SHORT-AXIS MR IMAGES USING

INDEPENDENT COMPONENT ANALYSIS



Abstract

Regional wall motion analysis has been used in clinical routine to assess myocardial
disease, particularly in ischaemia. This disease can be distinguished from normals by
looking at the local abnormality of cardiac motion. In this chapter, the first result of a
feature extraction experiment using Independent Component Analysis (ICA) is presented,
where abnormal patterns of myocardial contraction from patients are recognizable and
distinguishable from normal subjects.

This chapter was adapted from:
A. Suinesiaputra, A. F. Frangi, M. Üzümcü, J. H. C. R. Reiber, and B. P. F. Lelieveldt. Extraction
of myocardial contractility patterns from short-axis MR images using independent component
analysis. In M. Sonka, I. A. Kakadiaris, and J. Kybic, editors, Computer Vision and Mathematical
Methods in Medical and Biomedical Image Analysis, volume 3117 of Lecture Notes in Computer
Science, pages 75–86. Springer, 2004.
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There are things we know that we know. There
are known unknowns. That is to say there are
things that we now know we don’t know. But
there are also unknown unknowns. There are
things we don’t know we don’t know.

NATO Press Conference, 6 June 2002
DONALD RUMSFELD

M
YOCARDIAL contractility is an important quantitative indicator for the diag-

nosis of myocardial diseases. This function can be visually examined and
quantified by using a cine MRI sequence. Two most important phases for
myocardial contraction are the end-diastole (ED), or the start of contrac-

tion, and the end-systole (ES), or the end of contraction.
Abnormal myocardial contraction is mainly caused by the occlusion of coronary arte-

ries. Coronary artery occlusion causes the imbalance of oxygen supply to the heart which
triggers the so-called ischaemic events starting from perfusion abnormalities, wall motion
abnormalities and finally myocardial infarction. Figure 3.1 shows two examples of MRI
images from a healthy volunteer and an infarct patient, both at ES phase. Note that the
inferior region (indicated by a white arrow) of the infarct patient does not contract. This
region has a small wall thickness value.

To extract myocardial contractility patterns, shape decomposition technique is ap-
plied through subspace analysis. Subspace analysis techniques have been used in many
areas, including appearance-based modeling and recognition. Principal Component Anal-
ysis (PCA) is the common subspace analysis for dimensionality reduction. Independent
Component Analysis (ICA) is another subspace analysis, which seeks statistically indepen-
dent components of the observed data. ICA is commonly used for blind source separation
of an observed signal.

In machine learning, both PCA and ICA can be used for feature extraction [1–3]. There
exists some literature showing a comparison between both methods with different results.
Moghaddam [4] shows no statistical differences between PCA and ICA. Draper et al. [5]
compared ICA and PCA for face recognition and reported that some ICA algorithms give
better performance than PCA, but some do not.

Regardless of these comparisons, PCA and ICA are both linear generative models, be-
cause every training shape can be approximated by a linear combination of the compo-
nents. An important difference between ICA and PCA lies in the shape variation. Inde-
pendent components from ICA create local shape variation, while principal components
from PCA give a global shape variation [6]. This indicates that ICA is more suitable for
extracting local shape features compared to PCA. Local feature extraction is a desirable
property specifically in this study.

In this chapter, an ICA-based local feature extraction method for the diagnosis of myo-
cardial disease is presented, especially for myocardial infarction. Section 3.1 describes
the myocardial shape model, the ICA method and a new sorting method for ICA modes.
Section 3.2 presents experimental results, followed by a discussion in Section 3.3.
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(a) healthy volunteer (b) infarct patient

FIGURE 3.1: MRI images of a healthy volunteer and an infarct patient at end-systole (the
final contraction phase in the cardiac cycle). White arrow points to the infarcted tissue of the
patient, where that myocardial region has a small contraction.

3.1 Methodology

3.1.1 ICA model

In this study, the observation data are left ventricular (LV) myocardial contours, manually
drawn from short-axis cardiac MR images at ED and ES phases. Samples for each obser-
vation are landmark points, defined by equal angular distance along each contour.

To model the contractility pattern between ED and ES, contours for each subject are
combined serially into one shape vector. A shape x ∈R2m is defined by m landmark points
from 4 contours together in the following order: endocardium (inner) contour at ED, epi-
cardium (outer) contour at ED, endocardium contour at ES and epicardium contour at ES.
Thus the shape analysis is performed on all concatenated contours together, preserving
the aspect ratio between ED and ES. This keeps the contractility patterns among different
subjects (shapes).

The shape vector x consists of m pairs of (x, y) coordinates of landmark points:

x = (
x1, y1, x2, y2, . . . , xm , ym

)T (3.1)

The mean shape x̄ from n shapes is defined by

x̄ = 1

n

n∑
i=1

xi (3.2)

Each observed data (shape) x can be generated by a linear combination of a compo-
nent matrixΦ ∈R2m×p . This linear generative model is formulated as follows

x ≈ x̄+Φb, (3.3)
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where x̄ is the mean shape and b ∈Rp is the component weighting vector.
In ICA, the basis of the subspace is sought to be statistically independent, with the

main assumption of the non-gaussian distribution of the observed data [7]. The resulting
subspace is non orthogonal and unordered. There is no closed form solution for ICA.
Several numerical algorithms to estimate ICA are available (see [8] for the survey of ICA
algorithms).

When applied to shape modeling, there is an important property of ICA in its modes.
As the number of computed independent components increases, the component gives
more localized shape variations. On the contrary, if the number of independent com-
ponents is too small, then the component gives global shape variation, much like PCA
modes. A shape variation in ICA has a general shape of a local bump, whereas the re-
mainder of the shape is unaffected (see Figure 3.2(a)). This is the difference between ICA
and PCA: PCA modes give global shape variations, distributed over the entire contour (see
Figure 3.2(b)). Üzümcü et. al. [6] have presented the comparison between PCA and ICA in
the modelling of cardiac shapes.

3.1.2 Geometry-based sorting for ICA modes

In subspace analysis, the number of selected components is usually less than the dimen-
sion of the observed data. This allows a lower dimensional representation that still covers
enough information of the observed data, either for description, detection or recognition.

Principal components are ordered from higher variance to the lowest, making it straight-
forward to select which and how many components to retain for further analysis; this is
however not the case in ICA. There is no natural sorting criteria for independent compo-
nents. One needs to define a sorting method for independent components that is suitable
for a specific application. Since ICA components are local, they can be sorted based on
their local position along the contour and this sorting criterion gives a more intuitive
interpretation of local shape variations.

Let i th mode x̂i be defined as the shape variation at the i th column ofΦ:

x̂i = x̄+Φei (3.4)

where 1 ≤ i ≤ p and ei ∈ Rp is a vector that has element 1 at the i th position whereas the
rest are 0. Thus, x̂i describes the i th mode of shape variation.

To locate the position of each x̂i along a contour, a bank of Gaussian filters were ap-
plied and then followed by the normalized cross-correlation of each of the filters with a
distance vector of each mode x̂i . The i th mode distance vector di ∈ Rm+ is defined as
the distance of each landmark point in the shape variation xi to the mean shape. Each
element j of the i th distance vector is defined by

d( j )
i =

√√√√ 2 j∑
k=2 j−1

(
x̂(k)

i − x̄(k)
)2

, (3.5)

where j = 1,2, . . . ,m. The cross-correlation is performed only on a particular contour,
circularly. Thus there are four cross-correlation processes, because there are four contours
for each shape.
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(a) ICA mode (variation is at ED-epi)

(b) The first PCA mode

FIGURE 3.2: Examples of local shape variation from an ICA mode. As a comparison, the first
PCA mode is given. The mean shape is shown with dashed lines. The solid lines are modes of
shape variation.

The Gaussian filter giving the maximum cross-correlation for vector di is stored. The
center of this filter defines the position of the i-th component; the width of the Gaussian
filter represents the width of the component. Figure 3.3(a) shows an example of the cross-
correlation response from a component.

There is an extra advantage of using the normalized cross-correlation for sorting ICA
modes. Modes that consist of noise are automatically detected and thus can be elimi-
nated. Noise modes have a global wrinkled shape variation along the whole contour,
which correlates best with the widest Gaussian filter. Figure 3.3(b) shows an example of
the cross-correlation response for a noise component. After all modes have been cross-
correlated, positions of all modes are determined. Subsequently, ICA modes are sorted
based on position along the contour.

36



C
H

A
P

T
E

R
3

—
E

X
T

R
A

C
T

IO
N

O
F

M
Y

O
C

A
R

D
IA

L
C

O
N

T
R

A
C

T
IL

IT
Y

P
A

T
T

E
R

N
S

F
R

O
M

M
R

I
U

S
IN

G
IC

A

! " # $ % & ' () (( (* (! (" (# ($ (% (& (' *) *( **
)

)+(

)+*

)+!

)+"

)+#

)+$

)+%

)+&

)+'

,
-.
/
/
!
,
.
--
0
12
34
.
5

647389.:9;2<//4259=0-501

>2?4><>
,-.//!,.--01234.5

@A!057.
@A!0B4
@C!057.
@C!0B4

(a) a component

! " # $ % & ' () (( (* (! (" (# ($ (% (& (' *) *( **
)

)+(

)+*

)+!

)+"

)+#

)+$

)+%

,
-.
/
/
!
,
.
--
0
12
34
.
5

647389.:9;2<//4259=0-501

>?!057.
>?!0@4
>A!057.
>A!0@4
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FIGURE 3.3: Example of maximum cross-correlation results from two components.

3.1.3 Cluster measurement metrics

To evaluate the cluster formation between normal and patient subjects, a number of q
components (q ≤ p) are selected from the weighting coefficient matrix b.

Let D = ∑c
i Di ⊂ Rq be a subset of the weighting coefficient matrix b, after q compo-

nents are selected. Let c be the number of classes. In this case, c = 2, because there are
only two classes, i.e. normals and patients.

The first measurement is called within-cluster scatter matrix, which measures the com-
pactness of a cluster. The within-cluster scatter matrix SW is defined as the sum of scatter
matrices for each group:

SW =
c∑

i=1

∑
x∈Di

(x−mi )(x−mi )T , (3.6)

where mi is the mean ("center of gravity") of the cluster i .
A scalar value representing the measurement of the compactness from this metric is

simply its trace. The trace of a scatter matrix accounts for the square of the scattering
radius, because it is actually the sum of the variances in each coordinate direction. This
scalar value is equal to the sum-of-squared error. Thus one seeks the minimum of this
value to get the best representation of a cluster. The compactness measurement JW can
be defined as follows

JW = tr[SW ] (3.7)

The second measurement is between-cluster scatter matrix measurement SB , which
represents how far clusters are separated. It is defined as follows

SB =
c∑

i=1
ni (mi −m)(mi −m)T , (3.8)
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where ni is the number of subject of the i th cluster and m is the total mean:

m = 1

n

∑
x∈D

x (3.9)

The scalar measurement value of the between-cluster scatter matrix is also its trace:

JB = tr[SB ] (3.10)

The within-cluster and between-cluster scatter matrices are mostly used to design
cluster validity indices for clustering methods [3]. In this study, these measurements are
used to compare the quality of the cluster representation given by PCA and ICA compo-
nents.

To visualize the cluster distribution, the Fisher discriminant line [3] is calculated and
coefficient values from the selected components are projected to the Fisher line. Fisher
linear discriminant accounts the ratio between the between-cluster and the within-cluster
matrix measurements and it is given by:

w = S−1
W (m1 +m2) , (3.11)

where w is a vector with the direction that maximizes the separation between the two
clusters m1 and m2.

3.2 Experimental results

Forty-two normal subjects and forty-seven patients suffering from myocardial infarction
were investigated. For each subject, endocardial and epicardial contours at ED and ES
phases from short-axis view MRI were drawn manually by experts.

All contours were resampled to 40 landmarks defined by equi-angular sampling, start-
ing from the intersection point between the lower right ventricular myocardium with the
left ventricular myocardium. The total number of landmark points for each shape were
160 points.

ICA calculation was performed by using the JADE algorithm [9], implemented in Mat-
lab (Matlab v7.0, The Mathworks, Natick, MA, USA). The number of ICA modes was se-
lected carefully to 40 in this study, that gives enough local shape variations for each of the
four contours. If the number is too small, then the shape variations become more global.
If the number is too large, then too many local shape variations may occur, which look like
noise components.

For the ICA mode sorting, 20 Gaussian filters were used, ranging from width 3 to 22.
Modes correlating with a Gaussian filter, which has width larger than 20 (half of a contour),
were considered to be noise. From the original 40 ICA modes, the sorting method retained
35 modes, thus eliminated 5 noise modes.

3.2.1 Weighting coefficient matrix

Figure 3.4(a) shows the weighting matrix b of the ICA model that is constructed from
shapes of normal subjects and infarct patients. The weighting coefficient matrix con-
tains values that are needed to generate each training shape. These coefficient values
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FIGURE 3.4: The weighting coefficient between normal subjects and infarct patients.

are different for each subject. Thus the weighting matrix b is the most important value for
classification purposes.

From Figure 3.4(a), the boundary between normal and patient subjects is clearly dis-
tuingishable in the endocardium at the ES phase. As a comparison, Figure 3.4(b) shows
the PCA model from the same data. With PCA, the difference between the two groups is
less pronounced. It is clearly visible only from the first component.

3.2.2 Mean cluster distance

To enable the comparison between PCA and ICA, the weighting coefficient matrices for
both models are normalized, such that ||b|| = 1. Hence weighting coefficient matrices for
PCA and ICA are both in the same unit.

The distance between means of normal and patient subjects for each component is
calculated using the mean cluster distance (MCD), as given by:

di = |mn,i −mp,i |, (3.12)

where i is an index of a component, mn,i and mp,i are the mean of the weighting coeffi-
cient values at the i -th component for normal and patient subjects respectively. Figure 3.5
shows the bar plot of the MCD of PCA and ICA for each mode.

A t-test experiment was conducted on each of independent and principal component
to see whether the two means from normal and patient coefficient values come from two
different clusters. The result is illustrated in Figure 3.5. From 35 selected independent
components, there are 27 components with each has statistically significant difference of
two means, while PCA only gives 1 component (the first principal component). The t-tests
were performed with 95% confidence interval.
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FIGURE 3.5: Mean cluster distance of each component from ICA and PCA. The results of t-test
experiment on each component are shown as dark gray for p < 0.05 and light gray bars for
p ≥ 0.05.

It is evident that independent components at ES-endo are among the highest MCD
value. Mean cluster distance of the first PCA mode is the highest among others, even
compared with ICA.

3.2.3 Cluster analysis

In this study, only an analysis of cluster properties are presented, but not yet a classi-
fication result. Clusters are defined by selecting all independent components from ICA
and principal components that covers 95% of total variance from PCA. This gives 35 ICA
components and 16 PCA components.

Table 3.1 shows the measurement results using (3.7) for the cluster compactness and
(3.10) for the cluster separation. Figure 3.6 shows result of the projected coefficient values
to their Fisher discriminant line.

PCA gives better compactness than ICA, but less separable (see Table 3.1). However
the projection to the Fisher discriminant line favors ICA (see Figure 3.6). There is only one
point of misclassification in ICA, if a threshold value is defined. However there are more
overlaps in the projection of principal components to the Fisher discriminant line.

TABLE 3.1: Cluster validity measurement results.

compactness separation
(JW ) (JB )

ICA 1.84 0.66
PCA 0.65 0.12
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FIGURE 3.6: Projection of independent components (above) and principal component (below)
to their Fisher discriminant line.

3.2.4 Separation degree

The MCD in (3.12) can be used to map the cluster separation for each component onto
the same information for each landmark points. This enables a more intuitive regional
interpretation of the differences between the two groups.

From the sorting of independent components, location and width of each component
are retrieved. Thus the corresponding Gaussian function for each component can be
generated and multiply it with its MCD, resulting a Gaussian mixture for each landmark
point. The sum of the Gaussian mixture is called separation degree. Figure 3.7(a) shows
the separation degree of the ICA model from normal and patient subjects. Figure 3.7(b)
also shows the same visualization, but a more intuitive way using the bullseye plot, where
the color denotes the separation degree.

Figure 3.7(b) corresponds with Figure 3.4(a), where the most important feature to dis-
tinguish between normal and patient is the endocardium at ES phase. The least important
features lie on the epicardium contour at ES phase, where there is a small separation
degree.
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FIGURE 3.7: The separation degree of the ICA model between normal subjects and infarct
patients.

3.3 Discussion

The potential of ICA in the computer-aided diagnosis of myocardial diseases has been
investigated. The first result indicates that the ICA method is a promising analysis tool to
extract local shape deformations from observed data. The sorting method of independent
components based on their position leads to an anatomically meaningful interpretation
for classification purposes. The weighting coefficient matrix from the ICA model can
clearly distinguish between the two different groups in the endo-contour at ES.

From the cluster analysis, projection of independent components to the Fisher dis-
criminant line gives better cluster representation than principal components. Given the
ability to classify globally and to extract local features, ICA is a powerful tool to detect and
to localize shape abnormalities, comparing favorably to PCA.

The experimental results revealed that most of the infarction area affects the endo-
cardium in the infero-lateral wall, because the data contains most patients who have in-
farction in the lateral and inferior regions. A few patients have infarction in the septum
area. From this study, the endocardium at end-systole phase is the most distinguishable
feature, because this is the part of myocardium having the most deformation process due
to contraction.
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The reason why classification was not performed in this experiment is that the pro-
blem of classifying a patient versus normal is a toy problem. In clinical routine, it is not
interesting to determine a subject as a patient. It is more important to detect if there is an
anomaly, to localize it and then to quantify the disease.

The number of computed independent components is a free parameter to choose. The
smaller the number is, the more global the independent components are for a shape vari-
ation. On the other hand, the shape variation becomes more localized if this parameter
is increased. Thus a method to find an optimal number of independent components is
needed. An analysis of how sensitive this parameter is to the diagnostic performance in
this case will be helpful to define the optimal value.

The next important clinical question for the diagnosis of myocardial infarction is at
which particular region of myocardium a patient has an infarction. This basically to local-
ize the local abnormality and to quantify the severity of the disease.

3.4 References

[1] M. S. Bartlett, J. R. Movellan, and T. J. Sejnowski, “Face recognition by Independent Component
Analysis,” IEEE Trans. on Neural Networks, vol. 13, no. 6, pp. 1450–1464, Nov. 2002.

[2] T.-W. Lee, M. S. Lewicki, and T. J. Sejnowski, “ICA mixture models for unsupervised classification
of non-Gaussian classes and automatic context switching in blind signal separation,” IEEE
Trans. Pattern Anal. Mach. Intell., vol. 22, no. 10, pp. 1078–1089, 2000.

[3] R. O. Duda, P. E. Hart, and D. G. Stork, Pattern Classification, 2nd ed. John Wiley & Sons, Inc.,
2001.

[4] B. Moghaddam, “Principal manifolds and probabilistic subspaces for visual recognition,” IEEE
Trans. Pattern Anal. Mach. Intell., vol. 24, no. 6, pp. 780–788, 2002.

[5] B. A. Draper, K. Baek, M. S. Bartlett, and J. R. Beveridge, “Recognizing faces with PCA and ICA,”
Computer Vision and Image Understanding, vol. 91, no. 1-2, pp. 115–137, 2003.

[6] M. Üzümcü, A. F. Frangi, J. H. Reiber, and B. P. Lelieveldt, “Independent Component Analysis in
statistical shape models,” in Proc. of SPIE, M. Sonka and J. M. Fitzpatrick, Eds., vol. 5032, May
2003, pp. 375–383.

[7] A. Hyvärinen and E. Oja, “Independent component analysis: algorithms and applications,”
Neural Networks, vol. 13, no. 4-5, pp. 411–430, 2000.

[8] A. Hyvärinen, “Survey on Independent Component Analysis,” Neural Computing Surveys, vol. 2,
pp. 94–128, 1999.

[9] J. Cardoso and A. Souloumiac, “Blind beamforming for non Gaussian signals,” IEEE Proceedings-
F, vol. 140, pp. 362–370, 1993.

43





4
DETECTING REGIONAL ABNORMAL CARDIAC

CONTRACTION IN SHORT-AXIS MR IMAGES USING

INDEPENDENT COMPONENT ANALYSIS



Abstract

Regional wall motion analysis is used in clinical routine to assess myocardial diseases such
as infarction or hypertrophy. Physicians/radiologists can recognize abnormal cardiac mo-
tion because they have knowledge about normal heart contraction. This chapter explores
the potential of Independent Component Analysis (ICA) to extract local myocardial con-
tractility patterns and to use them for the automatic detection of regional abnormalities. A
qualitative evaluation was performed using 42 healthy volunteers to train the ICA model
and 6 infarct patients to test the detection and localization. By visual comparison, the
experimental results show that automated detection of regional abnormal contraction
correlate very well to hyperenhanced areas from delayed-enhancement MR images.

This chapter was adapted from:
A. Suinesiaputra, M. Üzümcü, A. F. Frangi, J. H. C. Reiber, and B. P. F. Lelieveldt. Detecting regional
abnormal cardiac contraction in short-axis MR images using independent component analysis. In
C. Barillot, D. R. Haynor, and P. Hellier, editors, Medical Image Computing and Computer-Assisted
Intervention – MICCAI 2004, volume 3216 of Lecture Notes in Computer Science, pages 737–744.
Springer, Oct 2004.
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You know, Donkey, sometimes things are more
than they appear.

SHREK (2001)

I
DENTIFICATION of reversible myocardial ischemic injury is a crucial assessment be-

fore coronary revascularization. Myocardial infarction is characterized by the pres-
ence of hypokinetic regions. Myocardial infarction can be assessed by using late
constrast-enhanced MRI or known also as delayed-enhancement MRI [1].

In the previous chapter, the capability of Independent Component Analysis (ICA) to
extract local shape abnormalities was investigated. In this chapter, ICA-based local shape
feature detection is applied to automate the detection of abnormal cardiac motion from
short-axis MR images. This is achieved by deriving a statistical model of normal heart
contraction (normokinetic model) and its local contractility patterns. Hence, unlike the
previous chapter, the ICA model is trained only from normokinetic heart images.

The objectives of this chapter is summarized as follows:

• A geometry-based sorting method of independent components is proposed, which
provides an intuitive anatomical interpretation of the ICA modes.

• The potential of ICA in cardiac shape modeling to detect local contraction abnor-
malities in infarcted patients is investigated.

• A qualitative evaluation of the detection and localization of myocardial infarctions
is presented. Results are visually compared with the corresponding delayed enhan-
cement MRI images.

Section 4.1 describes shape modeling with ICA, the new sorting method for independent
components and the method to detect local abnormalities. In Section 4.2, qualitative
evaluation results are presented, followed by a discussion in Section 4.3.

4.1 Methodology

4.1.1 ICA modeling of the normal cardiac contraction

ICA is originally used for finding source signals from a mixture of unknown signals without
prior knowledge other than the number of sources. In machine learning, ICA has been
applied for feature extraction [2] and face recognition [3]. ICA can be applied to statistical
shape modeling to extract independent components of the shape variation [4].

ICA is a linear generative model, where every training shape can be approximated by
a linear combination of its components. Let x = (x1, y1, . . . , xm , ym)T be a shape vector,
consisting of m pairs of (x, y) coordinates of landmark points. The linear generative model
is formulated as follows:

x ≈ x̄+Φb . (4.1)
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Mode 1 Mode 2 Mode 3 Mode 4

FIGURE 4.1: Examples of the first four geometrically sorted ICA modes.

The matrixΦ ∈R2m×p defines the independent components (ICs) and b ∈Rp is the weight
coefficient vector. The mean shape, x̄, is defined by

x̄ = 1

n

n∑
i=1

xi . (4.2)

where n is the number of shapes and p is the number of retained components.
The goal of ICA is to find a matrix,Ψ, such that

b =Ψ (x− x̄) (4.3)

with a constraint that columns of Ψ correspond to statistically independent directions.
Thus the independent components are given byΦ=Ψ−1. The matrixΨ is estimated by an
optimisation algorithm (see [5] for survey of ICA).

Some pre-processing steps are necessarily performed before the ICA computation.
The training shapes must be aligned, such that all shapes are invariant under Euclidean
similarity transformations (rotation, translation and scaling). Procrustes analysis [6] is
used for the shape alignment. Point correspondence between shapes is usually obtained
by taking landmark points with the same anatomical interpretation. The resulting training
shapes are zero mean, unit variance and all points are registered between shapes.

In this application, the observed data are left ventricular (LV) myocardial contours
from short-axis cardiac MR images at end-diastole (ED) and end-systole (ES) phases. To
model the contractility pattern, contours for each subject are combined serially into one
shape vector in the following order: endocardium contour at ED, epicardium contour at
ED, endocardium contour at ES and epicardium contour at ES.

Figure 4.1 shows examples of ICA derived modes of shape variation sorted geometri-
cally. For comparison, the first mode of shape variation with PCA from the same data is
shown in Figure 3.2(b). ICA modes have a general shape of a local "bump", whereas the
remainder of the shape is unaffected. This is an important property of ICA, which can be
used to detect local shape anomalies. In contrast, PCA modes give global shape variations,
distributed over the entire contour. A comparison study of ICA and PCA in cardiac shape
modeling is given in [4].
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The same geometry-based sorting of independent components described in Chapter 3
is used. Figure 4.1 shows an example of the first four ICA modes after the sorting process.
Note that the local shape variations are orderded clockwise.

4.1.2 Determining the number of independent components

One important parameter to determine is the number of independent components to
estimate during the computation of ICA. Predicting this number with PCA may not always
be a good idea, because PCA has a risk to eliminate "weak" ICs in the reduced data [7]. In
shape modeling, this parameter affects appearance of the shape variations. As the number
of computed ICs increases, the components represent more localized shape variations. If
this parameter is too small, then the component gives global shape variation, much like
PCA modes.

The determination of the optimal number of computed ICs is task-specific. In this
application to detect local abnormalities, we need sufficient regional segments. Too few
segments will give an inaccurate localization. More segments will improve the detection
resolution, but this is constrained by the computation time and the number of available
shapes to avoid overlearning [8]. Figure 4.2 shows the number of segments as a function
of the number of computed ICs from 42 shapes of normal hearts.
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FIGURE 4.2: A plot of the number of ICs per contour as a function of the number of computed
ICs. Note that small number of computed ICs produced zero number of ICs per contour
because all ICs were detected as noise components, i.e., their shape variation width is larger
than the largest Gaussian filter (see Chapter 3).

49



0 5 10 15 20 25 30

−0.8

−0.6

−0.4

−0.2

0

0.2

0.4

0.6

0.8

sorted modes

we
igh

ting
 co

effi
cie

nts

ED−endo ED−epi ES−endo ES−epi

FIGURE 4.3: Projection of six patients to the ICA model of normal heart. Weight vectors (solid
lines) of patients with the distribution of the ICA model (error bars). The dotted lines are the
boundary of the normal contraction (±3σi for i = 1, . . . , p).

4.1.3 Detection of abnormal contractility patterns

Let y ∈R2m be a shape vector, fitted onto the mean shape of the model using the Procrustes
fit [6]. The weight vector of the sample y is given by

by =Φ−1 (
y− x̄

)
(4.4)

which represents the parameters approximating the patient shape. Patient anomalies are
estimated by elements in the weight vector that lie outside the distribution of parameters
of the ICA model.

An anomaly at the i-th component q (i )
y is defined as a value that falls beyond ±3σi

(99.7%), to make sure that the anomaly is an outlier. Thus the anomaly vector qy is defined
by taking the outlier components, normalized by their standard deviation. Each element
of qy is defined by

q (i )
y =


0 if −3σi ≤ b(i )

y ≤ 3σi

b(i )
y

σi
otherwise

for i = 1, . . . , p (4.5)

The anomaly vector (4.5) is mapped to a shape vector to facilitate a more intuitive
regional interpretation. From the sorted ICs, the corresponding Gaussian filters giving the
maximum responses for each IC are known. These Gaussian filters are generated to model
the local bumps, resulting in a mixture of Gaussian functions. The regional sum of the
Gaussian mixture gives a shape vector that indicates regional abnormal heart contraction
of a patient.
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(a) Infarction in the inferior wall. (b) Infarction in the septal wall.

(c) Multiple infarctions. (d) Infarction in the inferior wall.

(e) Infarction in the septal wall. (f) Infarction in the septal wall.

FIGURE 4.4: Qualitative evaluation results from six patients. Abnormal shapes are shown in the
myocardial regions (ED=solid, ES=dashed). Dark areas have high abnormality value, whereas
white areas are normal. The corresponding DE-MRI images are shown at the right side.

4.2 Experimental Results

An ICA model was constructed from 42 healthy volunteers. The mid-ventricular level
from short-axis MRI was taken from each subject. Contours were drawn manually and
resampled to 40 landmarks defined by equi-angular sampling, starting from the inter-
section between left and right ventricle. The calculation of ICA was performed using the
JADE algorithm [9], implemented in Matlab. The optimal number of computed ICs with
minimum of 7 segments per contour is 40 (see Figure 4.2).

To evaluate the infarct detection and localization of the method, MRI data of 6 pa-
tients with all necrotic infarcts were investigated. Mid-ventricular short-axis (SA) MRI
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images and the corresponding delayed-enhancement (DE) MRI images with the same
orientation and the distance only < 1 mm were acquired. Regional abnormal contraction
was compared visually with the corresponding DE-MRI. The myocardial infarct regions in
the DE-MRI are demonstrated by signal hyperenhancement, corresponding to myocardial
necrosis [1].

Six representative evaluation results are presented in Figure 4.4. The anomaly vec-
tors of patients were projected to the corresponding myocardial regions. The contraction
patterns are also shown in the plot of ED contours (solid line) and ES contours (dashed
line). It is clearly seen from Figure 4.4, that the dark areas have a reduced contraction.
The corresponding DE-MRI are given in the right side where the infarction regions are
depicted by hyperintensity regions.

4.3 Discussion

This chapter shows the potential of ICA as an analysis tool for extracting local shape de-
formation. Using ICA to train a model of normal cardiac contraction, both global and
regional motions are captured. To this end, the method can automatically distinguish
between abnormal and healthy cardiac motion.

An intuitive anatomical interpretation of the normal contraction model is achieved
by ordering the ICs of the model geometrically along the whole contour. From this, ana-
tomical shape information can be inferred, providing a method to localize the motion
abnormalities.

In the qualitative comparison for 6 patients, the hypokinetic regions show an excel-
lent correspondence to the hyperintensity regions of the "gold standard" DE-MRI. This
demonstrates that the ICA-based infarct detection and localization from short-axis MRI
images is a promising technique for computer aided infarct localization.

4.4 References

[1] R. J. Kim, E. Wu, A. Rafael, E. L. Chen, M. A. Parker, O. Simonetti, F. J. Klocke, R. O. Bonow, and
R. M. Judd, “The use of contrast-enhanced magnetic resonance imaging to identify reversible
myocardial dysfunction,” N Engl J Med, vol. 343, no. 20, pp. 1445–53, Nov 2000.

[2] P. O. Hoyer and A. Hyvärinen, “Independent component analysis applied to feature extraction
from colour and stereo images,” Network: Computation in Neural System, vol. 11, no. 3, pp. 191–
210, 2000.

[3] M. S. Bartlett, J. R. Movellan, and T. J. Sejnowski, “Face recognition by Independent Component
Analysis,” IEEE Trans. on Neural Networks, vol. 13, no. 6, pp. 1450–1464, Nov. 2002.

[4] M. Üzümcü, A. F. Frangi, J. H. Reiber, and B. P. Lelieveldt, “Independent Component Analysis in
statistical shape models,” in Proc. of SPIE, M. Sonka and J. M. Fitzpatrick, Eds., vol. 5032, May
2003, pp. 375–383.

[5] A. Hyvärinen, “Survey on independent component analysis,” Neural Computing Surveys, vol. 2,
pp. 94–128, 1999.

52



C
H

A
P

T
E

R
4

—
D

E
T

E
C

T
IN

G
R

E
G

IO
N

A
L

A
B

N
O

R
M

A
L

C
A

R
D

IA
C

C
O

N
T

R
A

C
T

IO
N

IN
M

R
I

U
S

IN
G

IC
A

[6] I. L. Dryden and K. V. Mardia, Statistical Shape Analysis. John Wiley & Sons, 2002.

[7] J.-P. Nadal, E. Korutcheva, and F. Aires, “Blind source separation in the presence of weak
sources,” Neural Networks, vol. 13, no. 6, pp. 589–596, 2000.

[8] A. Hyvärinen, J.Särelä, and R. Vígario, “Bumps and spikes: artifacts generated by independent
component analysis with insufficient sample size,” in Proc. Int. Workshop on ICA and BSS, 1999,
pp. 425–249.

[9] J. Cardoso and A. Souloumiac, “Blind beamforming for non Gaussian signals,” IEEE Proceedings-
F, vol. 140, pp. 362–370, 1993.

53





5
AUTOMATIC PREDICTION OF MYOCARDIAL

CONTRACTILITY IMPROVEMENT IN STRESS MRI
USING SHAPE MORPHOMETRICS WITH

INDEPENDENT COMPONENT ANALYSIS



Abstract

An important assessment in patients with ischaemic heart disease is whether myocardial
contractility may improve after treatment. The prediction of myocardial contractility
improvement is generally performed under physical or pharmalogical stress conditions.
In this chapter, a technique to build a statistical model of healthy myocardial contraction
using independent component analysis is presented. The model is applied for detecting
regions with abnormal contraction in patients both during rest and stress.

This chapter was adapted from:
A. Suinesiaputra, A. F. Frangi, H. J. Lamb, J. H. C. Reiber, and B. P. F. Lelieveldt. Automatic prediction
of myocardial contractility improvement in stress MRI using shape morphometrics with indepen-
dent component analysis. In G. E. Christensen and M. Sonka, editors, Information Processing in
Medical Imaging, volume 3565 of Lecture Notes in Computer Science, pages 321–332. Springer,
2005.
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He deals the cards to find the answer.
The sacred geometry of chance.
The hidden law of probable outcome.
The numbers lead a dance.

Shape of My Heart
STING

I
SCHAEMIC heart disease is a major heart disease in the western world. Non-invasive

diagnosis of ischaemia has been developed in recent years (see [1] for the survey of
different imaging techniques). Among others, Magnetic Resonance Imaging (MRI)
has attracted many clinicians due to its excellent spatial and temporal resolution,

high-contrast of soft tissue, accurate and reproducible global and regional ventricular
functions, flow and perfusion during rest and pharmacological stress, and the possibility
of using paramagnetic contrast agent to enhance the intensity of myocardial infarction
areas [2, 3].

One crucial assessment in ischaemic heart disease is to determine the presence of
hibernating myocardium. This is a viable but dysfunctional myocardium, which may
improve its function after treatment [1]. The prediction of improvement of myocardial
contraction is only possible during physical or pharmacological stress [4]. Thus, the iden-
tification of dysfunctional myocardium that improves under stress is an important factor
in the treatment of ischaemic heart disease.

Low-dose dobutamine stress MRI can be used to evaluate improvement of myocardial
contraction in ischaemic patients [1, 5]. In this procedure, a low dose of dobutamine is ad-
ministered prior to MR acquisition to produce stress images. Usually, visual comparison
between the rest and stress cine images is performed for visual wall motion scoring. How-
ever, this visual assessment is very difficult and subjective, because differences between
rest and stress motion may be very subtle.

The goal of this work is to develop a method to automatically detect subtle changes in
cardiac contraction between rest and stress. In this chapter, further expansion of previ-
ously described work (see Chapter 4) on modeling the myocardial contraction of healthy
hearts is presented [6]. A statistical contraction model is trained from myocardial contours
in rest condition using Independent Component Analysis (ICA) to construct a set of locally
selective basis functions. Analysis is performed by projecting patient shapes onto this
basis, and in Chapter 4, this model is used to automatically detect and localize abnormal
cardiac contraction in rest. The main improvements of this chapter are twofold:

• The ICA modeling framework is improved by adopting a principled way of selecting
the optimal number of components, and introducing kernel density estimation to
describe the model parameter distributions for normal contraction.

• The rest-stress comparison framework is introduced. By comparing the projection
parameters in rest and stress conditions, one can assess which regions of myocar-
dium show contractility improvement under stress, and therefore may be viable.
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This chapter is organized as follows. Section 5.1 describes the statistical modeling
of normal contraction by using ICA. In Section 5.2, we present the qualitative prediction
results of myocardial viability in stress condition, followed by a discussion in Section 5.3.

5.1 Methodology

ICA is originally used for finding source signals from a mixture of unknown signals without
prior knowledge other than the number of sources [7]. There have been some studies to
use ICA in machine learning for feature extraction [8], face recognition [9] and classifi-
cation [10]. Previously, a statistical model to detect regional abnormalities from infarct
patients using ICA has been reported [6]. The advantage of using ICA over other de-
compositions is the fact that ICA yields locally independent detectors that can be used
to determine regional shape abnormalities, whereas PCA yields global shape variations
that influence the entire shape.

ICA is a linear generative model, where every training shape can be approximated by
a linear combination of its components. Let x = (x1, y1, . . . , xm , ym)T be a shape vector,
consisting of m pairs of (x, y) coordinates of landmark points. The linear generative model
is formulated as follows:

x ≈ x̄+Φb . (5.1)

The matrixΦ ∈R2m×p defines the independent components (ICs) and b ∈Rp is the weight
coefficient vector. The mean shape, x̄, is defined by

x̄ = 1

n

n∑
i=1

xi . (5.2)

where n is the number of shapes and p is the number of retained components.
The goal of ICA is to find a matrix,Ψ, such that

b =Ψ (x− x̄) (5.3)

with a constraint that columns of Ψ correspond to statistically independent directions.
Thus the independent components are given by Φ=Ψ−1. The matrixΨ is estimated by a
suitable optimisation algorithm (see [11] for survey of ICA).

5.1.1 Modeling contraction of healthy myocardium

The observed shapes are taken from LV epi- and endocardial contours from short-axis
MR images. To model the contractility pattern, contours for each subject are combined
serially into one shape vector in the following order: endocardial contour at end-diastole
(ED), epicardial contour at ED, endocardial contour at end-systole (ES) and epicardial
contour at ES.

Prior to shape modeling, Procrustes shape alignment on the four contours at once was
performed as a pre-processing step to eliminate global shape differences in pose and scale
between the samples [12]. Mean shape of the training shapes after the alignment is shown
in Figure 5.1.
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Since the improvement of motion contraction from rest to stress is the main issue,
centerline points, i.e. points in the the middle between epi- and endocardial contours,
were used in ICA. The centerline method has already been used in a rest and stress study
to diagnose coronary artery disease [13]. Figure 5.1(c) shows the centerline points from
the mean shape.

Four examples of independent components from the centerline model are shown in
Figure 5.2. The independent components (ICs) show an interesting and important prop-
erty where shape variations are local. In the diagnosis, these shape variations are used as
detectors to determine local shape abnormalities, i.e. regions with abnormal contraction.

5.1.2 Optimal number of independent components

If the number of source signals in ICA is not known a priori, the number of components
needs to be determined. Many methods have been proposed to estimate this param-
eter, for instance, by using mutual information [14], neural networks [15], a Bayesian
approach [16], and clustering techniques [17]. Though these approaches are different,
the basic idea is to determine which are "weak" and "strong" independent components.
Strong ICs represents reliable components.

For this study, the clustering technique proposed by Himberg et. al. [17]1 is adopted.
This approach selects reliable ICs from a number of different realizations of ICs with dif-
ferent initializations. The selection is performed by clustering the resulting ICs. This
approach was selected because of stochastic nature of computing ICs with the FastICA [7],
the most popular and robust ICA algorithm that we used in this study.

After each trial, each IC is represented as a single point in a source space. The reliability
of the estimated ICs can be analyzed by looking at the spread of the obtained ICs. The ICs
form clusters in the source space, and the more compact and isolated the cluster of an
IC, the more reliable is the IC (see Figure 5.3(b)). To measure the reliability of a cluster,

1The implementation is known as the Icasso package [17].

(a) aligned shapes at ED (b) aligned shapes at ES (c) centerline points

FIGURE 5.1: Mean shape of the aligned training shapes.
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FIGURE 5.2: Four examples of independent components from model. Dots are shape varia-
tions, where the maximum is ±3σ (standard deviation). The inner and outer contours are ES
and ED centerline points, respectively.

an agglomerative hierarchical clustering is performed. A quality index of an IC, Iq , that
reflects the compactness and isolating of a cluster, is defined as

Iq (Cm) = 1

|Cm |2
∑

i , j∈Cm

σi j − 1

|Cm ||C−m |
∑

i∈Cm

∑
j∈C−m

σi j (5.4)

where Cm and C−m are the set of indices that belong and do not belong to the m-cluster,
respectively. The σi j is a similarity measurement between i -th and j -th IC using their
mutual correlation coefficient ri j , i.e.

σi j = |ri j | . (5.5)

The value of Iq increases when Cm becomes more compact and isolated.
Another measurement to indicate reliable ICs in the clustering technique is the R-

index, IR

IR = 1

L

L∑
m=1

Sin
m

Sex
m

(5.6)

where

Sin
m = 1

|Cm |2
∑

i , j∈Cm

di j

Sex
m = min

m′ 6=m

1

|Cm ||Cm′ |
∑

i∈Cm

∑
j∈Cm′

di j .

di j is a dissimilarity measurement, defined as di j = 1−σi j . The R-index is basically a ratio
between the within-cluster and between-cluster ratio.

The R-index and the quality index indicate improved clustering in opposite directions.
The optimal value for the number of computed ICs is when Iq is large and IR is small. The
plot of Iq and IR for our study is shown in Figure 5.3(a).
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(a) The quality and the R-index. (b) Cluster visualization

FIGURE 5.3: Iq and IR plot and the visualization of the estimated ICs in the cluster space.
In the right figure, clusters are indicated by convex hull borders. Grey lines connect estimates
whose similarity is larger than a threshold, the darker the line the stronger the similarity. Labels
correspond to independent components. Notice that reliable components are compact and
isolated.

The visualization of IC clusters is shown in Figure 5.3(b). Each estimated IC is rep-
resented as a single point in the cluster space. Reliable ICs form compact and isolated
clusters. In Figure 5.3(b), ICs number 1 until 19 are reliable, whereas the remaining ICs
are not reliable (they are glued together as one cluster number 20). The gray lines in
Figure 5.3(b) denote dependencies at some threshold values between clusters.

5.1.3 Density estimation of coefficient values from the ICA model

In (5.1), the b vector represents the projection of a shape X onto the IC basis Φ. The b
vector contains coefficient values for the model that are needed to approximate the shape
X from the IC basis. If the shape of X is similar to the shapes that construct the IC basis,
then the coefficient values are within the distribution of the b vector of the model. On
the contrary, the coefficient values are outside of the distribution. Hence, the detection of
abnormal shapes becomes a problem of estimating the probability density function of the
model coefficient values.

Since the ICA model is built from n training shapes, (5.1) can be simply reformulated
in matrix form as:

X = x̄ ·1T +ΦB . (5.7)

The probability density function is estimated from of each column in matrix B. Figure 5.4
shows the distribution of each coefficient value from the healthy heart contraction for
each IC (column of B), with an example of a projected patient shape.
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FIGURE 5.4: Distribution of coefficient values of healthy heart contraction (crosses) with an
example of coefficient values from the projected shape of a patient (solid lines).

In ICA, components are sought to be statistically independent. This is achieved by
finding the direction of components that maximizes the nongaussianity. The result is an
independent basis which is non-orthogonal. The components have non-gaussian distri-
bution, or at most only one with a gaussian distribution [7]. By statistical independency
assumption, the multivariate density estimation of the matrix B can be simplified into
univariate density estimation. Therefore, the probability density function on each of IC
can be estimated separately.

To estimate the density function, a non-parametric kernel density estimation is ap-
plied on each of the independent component [19]. The kernel density estimation for the
j -th component is defined by

f̂ j (x) = 1

nh

n∑
i=1

K

(
x −Bi , j

h

)
(5.8)

where Bi , j is the coefficient values in the matrix B in (5.7) at j -th independent compo-
nent. The bandwidth h and the kernel function K (u) are the two parameters of the kernel
density estimation method.

Gaussian function is used for the kernel function, i.e.,

K (u) = 1p
2π

exp

(
−u2

2

)
(5.9)

Note that the choice of kernel function is not really critical for the kernel density estima-
tion, but rather for the choice of bandwidth [19].

The bandwidth h controls the amount of smoothing. A small difference in setting h
can yield a big difference in the probability function. We applied the Sheather-Jones solve-
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the-plugin method level 2 to estimate the optimal bandwidth [20]. This solve-the-plugin
method solves an unknown functional parameter in the optimal bandwidth equation di-
rectly from the sample distribution.

After estimating the probability density function f̂ j (x) for each IC, the quantification
of abnormalities is straightforward. A probability map of being abnormal for each IC is
defined as

p̂ j (x) = 1− f̂ j (x) . (5.10)

A threshold value ρ is defined to determine the abnormality. Coefficient values that fall
below that threshold are considered to be normal.

5.2 Experimental Results

5.2.1 Model construction

An ICA model of healthy myocardial heart contraction was built by selecting epicardial
and endocardial borders at ED and ES phases from 42 healthy volunteers. The mid ven-
tricular level from short-axis MRI was taken from each subject. Contours were drawn
manually by an expert and used 60 landmark points per contour, defined by equi-angular
sampling from the center of the myocardium. To ensure point correspondence between
shapes, a fixed reference point was defined at the intersection between left and right
ventricle.

ICA was performed using FastICA algorithm [7], implemented in Matlab (Matlab v6.5,
The Mathworks, Natick, MA, USA). FastICA uses an optimization algorithm to maximize
the non-Gaussianity of each component’s direction to ensure that components are statis-
tically independent between each other. The nonlinearity objective function used in the
optimization process is g (y) = 3y2 (or pow) and with symmetric orthogonalization. The
number of independent components was determined following Himberg’s approach [17],
as has been described in Section 5.1.2. The number of trials was set to 20.

5.2.2 Qualitative prediction results of contractility improvement

To qualitatively evaluate the prediction of myocardial contractility improvement under
stress, MR data of six representative patients with acute myocardial infarction were se-
lected. The threshold value, ρ, separating abnormal from normal coefficient values, is
empirically defined as 0.8. Figure 5.5 and Figure 5.6 show the visualization of abnormal
regions in rest and stress for the six patients.

The left and middle figures are the quantification of abnormal contraction regions
from the method in rest and stress, respectively. Regions with abnormal contraction are
shown with dark colors inside of the myocardium. The darker the color, the more abnor-
mal the regional motion. Thus regions with contractility improvement are visible by the
decreasing amount of darkness from rest to stress in the corresponding regions.

Each of the abnormal regions has a corresponding abnormal independent compo-
nent that is shown as bar plot at the right figure, given as the probability value of being
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FIGURE 5.5: Qualitative prediction results of myocardial contractility improvement from Pa-
tients 1, 2, and 3. The leftmost and middle figures are quantification of abnormal regions
from rest and stress respectively. ED and ES contours are drawn in solid and dashed lines
respectively, to visualize contraction of the heart. The right most figure shows the abnormal
independent components.

abnormal. Contractility improvement of an IC is shown as a decreasing amount of the
probability value from rest to stress.

Contraction motion is visualized with the ED (solid lines) & ES (dashed lines) contours
that are plotted together. It can be seen from Figure 5.5 and Figure 5.6 that regions with
abnormal contraction motion correspond visually with the dark areas.

Arrows in Figure 5.5 and Figure 5.6 point to some interesting regions in each patient. If
contraction in a region is improved, then the arrow is marked with ‘+’ sign (Patient 3 and
5). Regions with a lot of contractility improvement, where they are detected as normal in
stress, are marked with ‘++’ sign. These are seen at Patient 1, 2, 3, 4 and 6.
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FIGURE 5.6: Qualitative prediction results of myocardial contractility improvement from Pa-
tients 4, 5, and 6. The leftmost and middle figures are quantification of abnormal regions
from rest and stress respectively. ED and ES contours are drawn in solid and dashed lines
respectively, to visualize contraction of the heart. The right most figure shows the abnormal
independent components.

There is a case where an abnormal region does not improve its contractility in stress
(Patient 4 with ‘0’ sign) or even the contraction is getting worse in stress (Patient 5 with
‘–’ sign). Another interesting case appears in Patient 2, where there is a region that has a
small contraction in rest (see the arrow with ‘D’ sign), an improved contraction in stress,
but abnormal motion in stress. This is detected by the model as an abnormal region.
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5.3 Discussion

This chapter explores the potential of using ICA to model contraction of healthy hearts.
The model is applied for detecting myocardial regions with abnormal contraction, both
in rest and stress. Comparing the detection between rest and stress gives an indication of
areas that may improve after treatment.

In Figure 5.5 and Figure 5.6, six examples of the prediction results using the ICA model
are demonstrated. These examples show that the method is capable to perform compar-
ative morphometrics between rest and stress. Abnormal myocardial regions in rest with
decreasing probability value in stress are identified as viable but dysfunctional myocar-
dium. These are regions that may gain improvement after treatment.

The detected abnormal regions both in rest and stress correspond visually with the
lack of contractility on those regions (see Figure 5.5 and Figure 5.6). The method can also
detect an abnormal motion in stress, even with increased contraction. This is possible,
because the model is statistically trained from normal cardiac contraction, all deviations
from normal contraction or motion are labeled as abnormal.

The current validation is still lack of gold standard data. The gold standard for the
assessment of ischaemic heart disease is post-treatment data when it comes to the ques-
tion whether myocardium improves or not after treatment. A proper validation for an
automated contractility improvement assessment should utilize these data set.

To gain more accurate prediction of contractility improvement for the whole heart,
extending the ICA model into a 3D model is necessary to detect abnormal myocardial
segments [21]. This involves inclusion of three levels of short-axis MRI (apical, middle
and basal) and one segment from vertical long axis.
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6
AUTOMATED DETECTION OF REGIONAL WALL

MOTION ABNORMALITIES BASED ON A STATISTICAL

MODEL APPLIED TO MULTI-SLICE SHORT-AXIS

CARDIAC MR IMAGES



Abstract

In this section, a statistical shape analysis method for myocardial contraction is presented
that was built to detect and locate regional wall motion abnormalities (RWMA). For each
slice level (base, middle and apex), 44 short-axis MR images were selected from healthy
volunteers to train a statistical model of normal myocardial contraction using indepen-
dent component analysis (ICA). A classification algorithm was constructed from the ICA
components to automatically detect and localize abnormally contracting regions of the
myocardium. The algorithm was validated on 45 patients suffering from ischemic heart
disease. Two validations were performed; one with visual wall motion scores (VWMS) and
the other with wall thickening (WT) used as references. Accuracy of the ICA-based method
on each slice level was 69.93% (base), 89.63% (middle) and 72.78% (apex) when WT was
used as reference, and 63.70% (base), 67.41% (middle) and 66.67% (apex) when VWMS
was used as reference. From this observation, it is concluded that the proposed method
is a promising diagnostic support tool to assist clinicians in reducing the subjectivity in
VWMS.

This chapter was adapted from:
A. Suinesiaputra, A. F. Frangi, T. A. M. Kaandorp, H. J. Lamb, J. J. Bax, J. H. C. Reiber, and
B. P. F. Lelieveldt. Automated detection of regional wall motion abnormalities based on a statistical
model applied to multi-slice short-axis cardiac MR images. IEEE Trans Med Imaging, 4(28):595–607,
Apr 2009.
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All the knowledge I possess everyone else can
acquire, but my heart is all my own.

Die Leiden des jungen Werther
(The Sorrows of Young Werther)

JOHANN WOLFGANG VON GOETHE

A
SSESSMENT of wall motion is important to determine cardiac function in rest, in

stress-induced ischemia (with high dose dobutamine echocardiographic proto-
cols) and in the assessment of viability (with low dose dobutamine protocols).
In practice, dobutamine stress echo is often applied, but there are some diffi-

culties to image the heart properly in patients with a bad acoustic window. The analysis
is also subjective, with moderate reproducibility, and quantification is not very accurate.
Dobutamine MRI is an alternative method to assess regional wall motion abnormalities
(RWMA). MRI has a higher resolution and does not depend on acoustic window and there-
fore enables more accurate quantification.

In clinical practice however, RWMA assessment mainly relies on visual analysis and
interpretation of wall motion. Visual Wall Motion Scoring (VWMS) is commonly per-
formed by following a standard issued by the American Heart Association (AHA) [1], where
seventeen myocardial segments are graded by an expert from cine-MR images. Segments
are graded on a five point scale: normo-kinetic, mild-hypokinetic, severe hypokinetic,
akinetic and dyskinetic.

The main problem with VWMS is the high interobserver variability. The subtle dif-
ferences in cardiac motion abnormalities are difficult to score, which makes VWMS less
reproducible and less objective. Also, the segment boundaries are often decided based
on qualitative criteria, and may vary depending on the location of the diseased myocar-
dium. In two studies, the interobserver agreement to assess RWMA has been investigated.
Paetsch et al. [2], assessed interobserver agreement of RWMA from stress studies and
their kappa coefficient (κ) is 0.59. Hoffmann et al. [3] compared 3 different modalities:
echocardiography (κ= 0.41 without contrast agent and κ= 0.77 with contrast agent), MRI
(κ= 0.43) and cineventriculography (κ= 0.56). In conclusion, there was no modality that
achieved a near perfect agreement and reader differences continue to exist even with high
quality images [3]. Both studies underscore that VWMS is very subjective, not to mention
that it requires an elaborate training of the observer.

The goal of the present study is to develop an automated tool to detect and localize
myocardial regions that show an abnormal contractile behavior based on statistics trained
from healthy wall motion. Such an automated tool would have the advantage that it would
reduce the inter- and intra observer variability and subjectivity in the analysis, and as
subsequently it may assist less experienced readers to arrive at a reliable assessment of
regional wall motion abnormalities.
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6.1 Introduction

6.1.1 Automated RWMA detection methods

There have been prior studies aimed at developing an automatic detection of wall motion
abnormalities. These studies are mainly based on shape statistics, that are described using
a point distribution model (PDM) [4]. In a PDM, myocardial shapes are subsampled into a
number of landmark points. A statistical model is then estimated from the set of landmark
points, expressing the training population as a linear combination of an average shape
and a set of characteristic eigenvariations. PDMs have been used extensively, particularly
for segmentation purposes, because the model has been restricted to search such a statis-
tically plausible shape in the image, e.g. [5, 6].

Shape parameterization using PDMs for the diagnosis of cardiac shape abnormalities
was first explored by Mitchell et al. [7]. A mixed model of patients and healthy volunteers
is created by taking myocardial contours only from end-diastole (ED) phase. Principal
component analysis (PCA) is then used to parameterize the model. The classification
between normal and abnormal shapes was evaluated by leave-one-out validation using
three classification techniques: linear discriminant analysis (LDA), kernel LDA and near-
est neighbor classifier. A comparable performance was found for all three classifiers. In
spite of that, the model was based on static ED images, therefore solely based on shape,
not incorporating any motion or contraction.

Remme et al. [8] developed a 3D left ventricle (LV) model using a fitted finite-element
mesh onto the ED LV surface and selected nine clinically-termed deformation modes that
were calculated by PCA. The LV deformation was estimated using tagged MR images. Two
models from normal and patient subjects were investigated and the statistical inference
on each nine PCA modes were estimated independently. Five out of nine PCA modes
showed significant differences between normal and patient subjects. The method is useful
to make a global classification between normal and patients, but not to locate the RWMA.

The first attempt to make a statistical model to quantify RWMA was proposed by Bosch
et al. [9]. Only infarct patients from echocardiographic images were included to build
the statistical model. The classification performance was tested by randomly splitting the
data into training and test sets. PCA was used to parameterize the shape. To perform
regional classification, multivariate linear regression was used to select principal compo-
nents that have good correlation with the corresponding VWMS values. Bosch et al.’s study
showed that VWMS correlated to the global PCA modes, although only weak correlations
were found.

The drawbacks of the previous automatic wall motion abnormality studies lie on two
main issues of their shape modeling. First, the typical PCA modes of shape variation
affect global shape. Classifying different shape groups can only reveal global shape differ-
ences [10]. There is no information on the exact location of shape differences through PCA
components. Second, the model generalization ability is limited because both patients
and normal subjects are mixed in the training set (Mitchell study [7]), or only patients are
included (Bosch et al. study [9]). These models are biased towards the trained pathology
and they may not generalize well towards other pathologies.
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6.1.2 Sparse decomposition in statistical shape analysis

Recently, an extension of PCA, which exploits sparseness by adding constraints of the
number of nonzero loadings [11], has gained interest in shape analysis. Local variations
of landmark position, as well as texture, can be achieved from Sparse PCA [12]. Applied
to corpus callosum shapes, Sparse PCA reveals some position preferences of a local shape
variation over a certain physiologically meaningful clinical outcome [13]. A preliminary
report of Sparse PCA for characterizing myocardial wall motion abnormality from echocar-
diograms has also been reported [14].

Sparsity in Sparse PCA is induced deliberately with the additional constraint. Rather
than imposing some regression techniques to enforce sparsity, an assumption of statis-
tical independency can be applied to get a sparse decomposition. Here, Independent
Component Analysis (ICA) is applied in the shape domain. ICA was originally developed
in signal processing to separate mixing signals into sources without any knowledge, ex-
cept the mixing signals themselves [15, 16]. The only assumption that can be made is
that the source signals are independent. Typically, a mixture of signals is observed and
the independent source signals can be estimated either by maximizing non-Gaussianity
(the FastICA method [16]), maximizing entropy (the infomax principle [17])), or by using
fourth-order cumulant matrix (the JADE algorithm [18]), among other ICA algorithms.

In shape analysis, the observed mixed signals are the training shapes. Since these
signals are taken from the same group, all signals have similar characteristics and after
ICA, the independent sources exhibit sparse regional spikes. Regional spike signals appear
because these signals maximize statistical independency between each other for similar
source signals. This phenomenon is what drives sparse decomposition for shape mod-
eling with ICA. Unlike Sparse PCA, sparsity comes directly from ICA without additional
constraints.

The statistical independency property gives an advantage of ICA over Sparse PCA for
classification purposes. It allows a simple joint probability density function estimation
from all components. Consequently, a probability density function can be defined for
each landmark point, as will be explained in details in Section 6.2. One limitation of
ICA compared to PCA (and Sparse PCA) is that the ICA components are not necessarily
linked to any anatomical or physiological meaning of the training shapes. For some ICA
algorithms, such as FastICA, the source signal results can even vary between different
estimations due to its stochastic nature. In this study, however, anatomically meaningful
sparse decomposition is not the main interest. ICA is used only for feature extraction
rather than for anatomical description.

ICA has been previously used for statistical shape analysis [19, 20]. The sparseness
characteristic of ICA has been exploited for an automated detection of tissue disorders in
3D aortic vessels [21] and for image segmentation [22]. In a comparison study of statisti-
cal shape analysis between different non-Euclidean metrics, it is reported that a method
equivalent with ICA (Maximum Autocorrelation Factors) is one of the superior methods
to decompose large shape variations [23].
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6.1.3 Contribution of this chapter

In Chapter 3, it has been demonstrated that ICA has an advantage over PCA for local shape
classification, because ICA decomposes shapes into local shape descriptors [10]. There-
fore ICA is suitable to be used as a local feature classifier compared to PCA. In Chapter 4,
ICA has been applied in cardiac shapes to locate abnormal regions in mid-ventricular
slice level of myocardium [24]. By selecting ‘abnormal’ independent components, an
ICA-based classifier gives good visual correspondence with infarcted regions indicated by
delayed-enhancement MR images.

In this chapter, the ICA-based detection method is improved and quantitative valida-
tions are presented. The contribution of this chapter is twofold:

1. Proposing a statistical method to extract local myocardial contraction patterns from
multi-slice short-axis MRI by ICA, and a method to detect and to localize regional
wall motion abnormalities based on the ICA shape parameterization.

2. Quantitative validations of the proposed statistics-based method are presented with
45 patients suffering from ischemic heart disease.

This chapter is further organized as follows. Section 6.2 describes the methodology
in-depth from building the statistical model of healthy cardiac contraction until the con-
struction of RWMA detectors. In Section 6.3, the method is quantitatively validated, fol-
lowed by a discussion in Section 6.4 and conclusions in Section 6.5.

6.2 Methodology

This section starts off by introducing the cardiac contraction modeling from a set of myo-
cardial contours, such that all pose and shape variations, including shapes at the starting
point of contraction (end-diastolic phase), are eliminated. In Section 6.2.2, the model
is decomposed into local shape descriptors using ICA. The ICA algorithm requires the
number of independent components as a parameter. A robust estimation method to
estimate this parameter is given in Section 6.2.3. After the ICA model is constructed,
distributions of model’s coefficient can be estimated, as described in Section 6.2.4. Finally,
Section 6.2.5 explains the RWMA detection method by propagating probability density
functions from ICA domain into shape domain.

6.2.1 Statistical Shape Modeling of Cardiac Contraction

Landmark-based statistical shape analysis was introduced in 1980s as a method to inves-
tigate the geometrical statistics of a set of shapes and their relative positions [25]. Land-
marks are homologous points with point-to-point correspondences between shapes, that
can be defined either mathematically, anatomically or manually. Let (xi , yi ) be a 2D Carte-
sian coordinate of the i -th landmark point. A shape vector x ∈ R2P with P landmarks is
defined by

x = [
x1, y1, x2, y2, . . . , xP, yP

]T . (6.1)
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Shapes are aligned by using Procrustes alignment [26] to eliminate variations in loca-
tion, size and shape orientation. This is given by

xp = xT µ̂x

xT x
, (6.2)

where xp is the shape x aligned to the mean shape µ̂. The aligned shapes are invariant
under scale, translation and rotation transformations.

The mean shape µ̂ is estimated from a training set {xi }, i = 1, . . . , N . Let S be a matrix
defined as

S =
N∑

i=1

xi xT
i

xT
i xi

. (6.3)

The mean shape µ̂ can be found as the eigenvector corresponding to the largest eigenvalue
of S, provided that {xi} are centered to its origin, i.e. xi ·1 = 0. It has been proven that µ̂ is
unique up to rotation [26]. All rotations of µ̂ are also solutions, which correspond to the
same mean shape.

The aligned shape xp can be expressed in a linear generative model, given as

xp = µ̂+Φc, (6.4)

where Φ ∈ R2P×M is the component matrix with M ≤ 2P number of components and
c ∈ RM is a coefficient vector. The matrix Φ decomposes the training set {xi } into M
components.

In Chapter 4, four contours (endocardial and epicardial contours at end-diastole (ED)
and end-systole (ES)) were combined serially to form a shape vector [24]. This sufficed
to capture myocardial contraction. However, since the main focus is to statistically com-
pare ‘contraction shapes’ between two individuals, geometrical variation of shapes at the
beginning of contraction must be removed. Consequently, all training samples start the
contraction from the same shape, providing a unit contraction model. This is similar to
Bookstein’s coordinate system [27], where two landmark points are sent to a fixed posi-
tion (known as baseline landmarks) allowing P −2 non-zero variation of landmark point
distributions.

However, instead of using a rigid similarity transformation, thin-plate splines are ap-
plied [28] to allow deformation of the heart shape. This is necessary in particular for
patients because their myocardial shapes are dissimilar from normal subjects. As an ex-
ample, the effect of thin-plate spline warping on a patient shape is shown in Figure 6.1
(light gray arrows) and it is noticeable on the lower part of myocardium. On the contrary,
only moving contraction vectors from the patient shape to the mean shape (dark gray
arrows in Figure 6.1) does not compensate for deformation.

With the unit contraction model, the linear generative model (6.4) can be estimated
only from the ES shape part. This gives an advantage of reducing half the dimension dur-
ing ICA computation while preserving the contraction information. Figure 6.2 shows com-
parison of the point distribution model between serially combined vectors (Figure 6.2(a))
and the unit contraction model (Figure 6.2(b)).
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FIGURE 6.1: An example of the effect of thin-plate splines warping to the mean shape (dashed
lines) during the unit contraction modeling. Light gray arrows show original contraction vector
from ED to ES, while dark gray arrows show unit contraction vector from ED to ES.
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(b) Unit contraction model

FIGURE 6.2: Shapes of endocardial and epicardial contours from 50 healthy volunteers after
the Procrustes fit. The mean shapes are depicted as black thick solid lines.

6.2.2 Myocardial Shape Decomposition with ICA

Independent component analysis (ICA) is then applied to estimate Φ and c in (6.4) by
maximizing the statistical independency. In ICA terminology, the mixed signals are {xp

i −µ̂}
vectors, the source signals are {ci } vectors and the mixing matrix isΦ.

The k-th mode of shape variation, zk ∈R2P , is defined by

zk = µ̂+Φδek , e(i )
k =

{
1 i = k,

0 i 6= k.
(6.5)

The modes of shape variation describe variation of the landmark point’s location, trig-
gered only by one component. The value of δ determines the distance of the generated
shape zk from the mean shape. It is usually determined from the variance of the k-th
coefficient values σ2

k from the model, e.g. −3σk ≤ δ≤ 3σk .
Four examples of ICA modes of variation from the myocardial contraction shape are

shown in Figure 6.3, which clearly show local shape variations associated with a certain
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FIGURE 6.3: ICA modes of shape variation applied for myocardial contraction with their
associated regions in the myocardium.

region in the myocardium. The modes of shape variation are useful to inspect a statistical
shape model or to generate a new shape. In this study, the component matrix Φ is going
to be exploited for classification purposes.

6.2.3 Robust Estimation of Independent Components

The main difficulty in ICA is to determine the number of independent components (ICs)
into which the source signals should be decomposed. Any number can be given between 1
and N . It is straightforward for a case where the number of source signals is a priori known,
however, in many cases, the number of real ICs that constitute the dataset is unknown.

The number of ICs can be estimated by selecting ICs that are reliable. An IC is said
to be reliable if the source signal passes a test based on specific criteria. There have been
several approaches to such a reliability test, i.e. by using mutual information [29], neural
networks [30], a Bayesian approach [31] or clustering techniques[32].

The clustering technique, proposed by Himberg et al. [32], is chosen in this work, be-
cause this approach is suitable for the FastICA algorithm [16]. Reliable ICs are calculated
from a certain number of different ICA estimations. At each realization, ICs are collected
and mapped onto a cluster space. Strong ICs are shown by their clusters that are compact
and well separated from the other clusters. One disadvantage of this technique is that
it needs to perform the ICA algorithm several times to estimate the number of reliable
components. However, in model construction, computation time is not a critical issue,
because building the ICA model is only performed once.
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FIGURE 6.4: The IR vs number of clusters plot (left) and the clusters of ICs from the unit
contraction model (right). The model was reduced first by PCA to eliminate noise by retaining
99% of the total variance. Note that the left figure only to show relative IR values, therefore the
y-axis units are not given.

To indicate strong ICs, the ratio between the within-cluster and between-cluster scat-
ter matrices is used. It is defined as

IR = 1

M

M∑
k=1

Sin
k

Sex
k

. (6.6)

where Sin
k and Sex

k are the within-cluster and between-cluster scatter matrices respectively,
defined by

Sin
k = 1

|Ck |2
∑

i , j∈Ck

(1−αi j ),

Sex
k = min

k ′ 6=k

1

|Ck ||Ck ′ |
∑

i∈Ck

∑
j∈Ck′

(1−αi j ),

with Ck and Ck ′ ,k = 1, . . . , M are two sets of indices that belong and do not belong to the
k-th cluster, respectively. The αi j is a similarity measurement between the i -th and j -th
clusters, using the absolute value of their mutual correlation coefficient. A compact clus-
ter has a high Sex

k value and an isolated cluster shows a low Sin
k value. A minimal IR value is

preferred. An example of an IR plot over the number of ICs is shown in Figure 6.4(a). The
corresponding cluster space is shown in Figure 6.4(b).

This clustering method is applied to determine two FastICA parameters: the number
of computed ICs and the initial guess position. The number of computed ICs is selected
from clusters that give a low IR from (6.6). The initial guess parameter value is defined
from the centroid of the IC clusters.

78



C
H

A
P

T
E

R
6

—
A

U
T

O
M

A
T

E
D

D
E

T
E

C
T

IO
N

O
F

R
W

M
A

IN
C

A
R

D
IA

C
M

R
I

Independent Components

Pa
tie

nt
s

He
al

th
y

1 2 3 4 5 6 7 8 9 10111213141516171819202122232425262728

1

45

96

(a) Basal level ICA model
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(c) Apical level ICA model

FIGURE 6.5: Three images of coefficient values from three ICA models (basal, middle and
apical levels), where rows are shapes and columns are independent components. There are
two groups for each figure separated by a solid black line; the lower part is a group of patient
shapes with ischemia (a test set) and the bottom part is a group of healthy volunteer shapes
(the training set). Note that the different pattern of the two groups is apparent.

The modes of shape variation in ICA are not ordered, because all independent compo-
nents are equally important. This is not a problem in this study, because all independent
components are used as local shape detectors for abnormal shape components.

6.2.4 Estimating Density Functions of Independent Components

Let y ∈R2P be a new shape that is not in the training shapes {xi }, and it is aligned by (6.2).
Using the Moore-Penrose pseudo-inverse, the projection of y ontoΦ can be calculated by

cy =
(
ΦTΦ

)−1
ΦT (

y− µ̂)
. (6.7)

If shape y is similar to the training shapes {xi }, then cy resembles any one of {ci } in
(6.4). On the contrary, if y comes from a different group, for example y is a pathological
shape and {xi } is normal (healthy) shapes, then the coefficient values of cy lie outside the
distribution of {ci }. This is shown in Figure 6.5, which displays the coefficient values from
the control group (healthy volunteers) and ischemic patient group from basal, middle and
apical ICA models.

Classification is then performed by specifying which elements of cy lie outside the
distribution of the model. Since an IC is related to a certain segment in a shape (an ICA
mode of variation exhibits local shape variation as seen in Figure 6.6(d)), detecting the i -th
element of cy as an outlier yields a segment in the shape that deviates from the model.

Let Wk ,k = 1, . . . , M , be random variables, each corresponds to the k-th component.
By the independency, the joint probability density function of the ICA model coefficient
values is defined by

fW1,W2,...,WM (w1, w2, . . . , wM ) =
M∏

k=1
fWk (wk ). (6.8)
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Hence, the distribution of the ICA model coefficient values can be simplified by estimating
the density function of each component separately.

ICs have non Gaussian distributions, or at most only one component with a normal
distribution [16]. Consequently, the normal density assumption cannot be used to esti-
mate the density functions. Non-parametric kernel density estimation [33] is more suit-
able, because it does not assume a particular distribution. The density function for the
k-th component can be estimated by

f̂Wk (w) = 1

N h

N∑
i=1

K
( w −ci ,k

h

)
, (6.9)

where w is a real value, h is the bandwidth of a kernel function K (u) and ci ,k is the k-the
element of the model coefficient vector ci .

Kernel density estimation method uses a mixture of N kernel functions, where N is
the number of samples. Notice that in (6.9), each kernel is centered on each sample. The
specific choice of kernel function is not critical [33], so the unit Gaussian kernel function
is chosen, as defined below

K (u) = 1p
2π

exp

(
−u2

2

)
. (6.10)

However, the selection of bandwidth h is the important factor [33]. The bandwidth
controls the amount of smoothing. A small difference in h can yield a big difference in the
density function. The Sheather-Jones solve-the-plugin method [34] is applied to estimate
the optimal bandwidth, which solves unknown functional parameters directly from the
sample distribution.

6.2.5 Detecting Abnormal Regions

Based on the combination of the localized ICA model of myocardial contraction and the
estimated density functions, a classification boundary separating normal and abnormal
subjects can be developed. ‘Abnormal components’ can be defined from parameters that
yield low probability values from the corresponding density functions. By selecting only
these abnormal components, and due to the local nature of the ICA modes, the spatial
location of the wall motion abnormality can be located, and thus RWMA assessment can
be automatically carried out.

Classifying a component as abnormal does not directly identify abnormal regions. The
abnormal components need to be mapped to the shape domain to identify abnormal
regions. Therefore, propagation of the estimated M density functions

{
f̂Wk (w)

}
to the

shape domain is needed, resulting in a density function for each element in the shape
vector.

The propagation of density functions can be calculated by using the inverse relation
of (6.7), which transforms values in the component domain to the shape domain with
the same form as in (6.4). Let µ̂ in (6.7) be defined as 0. For notational simplicity, let us
focus only on a single element in a shape vector and define Y as a random variable for the
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element. From the inverse of (6.7), the random variable Y is defined as

Y =φ1W1 +φ2W2 +·· ·+φM WM =
M∑

k=1
φkWk , (6.11)

whereφ1, . . . ,φM are elements of the corresponding row ofΦ for the shape vector element.
Let U1, . . . ,UM be M new random variables, each defined as

Uk =φkWk . (6.12)

It is obvious that Uk is independent from Ul for (k 6= l ), and its density function can be
defined as

fUk (uk ) = 1

|φk |
fWk

(
uk

φk

)
. (6.13)

Substitute (6.9) with (6.13) yields

fUk (uk ) = 1

|φk |N h

N∑
i=1

K

(
uk −ci ,kφk

φk h

)
. (6.14)

The density function of the sum of two independent random variables Uk and Ul is
given by the convolution of fUk (uk ) and fUl (ul ) [35]. By introducing another M auxiliary
random variables

Y1 =U1

Y2 = Y1 +U2

...

YM−1 = YM−2 +UM−1

YM = YM−1 +UM ,

(6.15)

the joint density function of Y in (6.11) can be recursively solved as follows

fY (y) = fYM (yM )

=
∫

fUM (yM − yM−1) fYM−1 (yM−1) d yM−1

=
Ï

fUM (yM − yM−1) fUM−1 (yM−1 − yM−2)

fYM−2 (yM−2) d yM−2d yM−1

=
∫

. . .
∫

fUM (yM − yM−1) fUM−1 (yM−1 − yM−2)

. . . fU1 (y1) d y1 . . .d yM−2d yM−1

= fUM ∗ fUM−1 ∗ . . .∗ fU1 .

(6.16)

Equation (6.16) defines the density function of an element of a shape vector. It is given as
the series of convolutions of M density functions

{
fUi (ui )

}
in (6.14), which are defined for

each element IC.
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FIGURE 6.6: An example of an automatic RWMA detection on a patient dataset. The septal
(label A and B) and the inferior (arrow) regions show reduced wall motion. (a) Raw patient
contours (as vectors from ED to ES) projected on the patient’s MR image at ED. (b) Coefficient
values for the same patient (solid line) after projection onto the ICA model, superimposed on
the model parameter distributions. Each column shows one distribution of an independent
component. The values in the greyscale bar indicate probability values of a healthy wall mo-
tion. Two components (label A and B) are specially noted that have the two lowest probability
values. (c) The detection result. Dark areas indicate abnormal wall motion based on the
estimated density functions (6.15) on each landmark point. (d) Shape variations from the
first IC (label A) and the 19th IC (label B), both of which show local shape variations (dashed
line is the mean shape, and solid lines are ±3 times standard deviation of the component’s
coefficients). The lines crossing myocardium indicate the first landmark points at endo and
epicardial contours.

82



C
H

A
P

T
E

R
6

—
A

U
T

O
M

A
T

E
D

D
E

T
E

C
T

IO
N

O
F

R
W

M
A

IN
C

A
R

D
IA

C
M

R
I

An example of how the density function propagation works is shown in Figure 6.6,
which uses the mid-ventricular ICA model. The input contours are shown in Figure 6.6(a)
as vectors from ED to ES contours that represent the myocardial contraction. The de-
tection result is given in Figure 6.6(c), which is shown as probability values of having an
abnormal shape at each landmark point. Note also how hypokinetic motion in the inferior
region (the small arrow in Figure 6.6(a)) points to regions with high probability values of
being abnormal (the small arrow in Figure 6.6(c)).

In Figure 6.6(b), two independent components (the 1st and the 19th ICs), which have
the largest deviations of coefficient values from the model coefficient values, were labeled
as A and B, respectively. When the ICA modes of variations from these two ICs are in-
spected (see Figure 6.6(d)), the local shape variations correlate with regions with abnormal
motion. The first IC (label A) detects a reverse contraction motion in the septal region,
while the 19th IC (label B) detects small wall thickening in the upper part of the septum.

6.3 Experimental Results

6.3.1 Data description and preprocessing

TABLE 6.1: Patient and Control Groups Statistics.

Patients Controls

Samples 45 44

Males/females 42/3 33/11

Ejection fraction (%) 36.30±10.7 61.99±6.4

Stroke volume (ml) 75.57±19.6 94.94±21.5

Myocardial contours of short-axis MR images were collected from two groups: a con-
trol group for model training and a patient group for classification testing. The control
group consists of healthy volunteers, whereas the patient group consists of patients suffer-
ing from chronic coronary artery disease, with a depressed LV function. Baseline statistics
of both groups are shown in Table 6.1, which also shows that ejection fraction and stroke
volume is significantly different between the two groups.

MR images were acquired by 1.5T Gyroscan ACS-NT MRI scanner (Philips Medical
Systems, Best, The Netherlands) and only short-axis view datasets were used that cover
the LV from apex to base. End-diastole (ED) and end-systole (ES) phases from basal, mid-
ventricular and apical levels were selected. Epi- and endocardial contours were manually
drawn by an expert.

Visual wall motion scores (VWMS) for the patient group were performed for each seg-
ment by an experienced cardiologist on a 5-point scale: normokinetic, mild-hypokinetic,
severe-hypokinetic, akinetic and dyskinetic. During the scoring process, cine-MRI view-
ing of the short-axis views was used and the observer was blinded to the result of the
proposed method. VWMS was performed on 6 segments at the basal level, 6 segments
at the mid-ventricular level, and 4 segments at the apical level. To determine the segment
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TABLE 6.2: RWMA validations using WT (top) and VWMS (bottom) as reference

Validation using WT as a reference (WT benchmarking)
ICA-based Method VWMS

acc. (%) sens. (%) spec. (%) acc. (%) sens. (%) spec. (%)

base 69.63 76.92 66.67 66.67 69.23 65.62
middle 89.63 85.48 90.87 76.30 56.45 82.21
apex 72.78 72.97 72.73 63.33 54.05 65.73

Validation using VWMS as a reference (VWMS benchmarking)
ICA-based Method WT

acc. (%) sens. (%) spec. (%) acc. (%) sens. (%) spec. (%)

base 63.70 60.83 66.00 70.00 65.83 73.33
middle 67.41 65.12 69.50 68.52 60.47 75.89
apex 66.67 59.42 71.17 62.22 60.87 63.06

Each percentage value was computed with all segments included after determining the optimal cut-
off boundary value.

locations, the American Heart Association (AHA) standard for myocardial segmentation
was adopted [1]. Wall thickening (WT) was calculated by using dedicated quantitative
MR measurement software MR Analytical Software System (MASS v5.0, Medis, Leiden, the
Netherlands) [36]). WT is defined in term of percentage systolic thickening, calculated per
landmark point as defined by

WT = wes −wed

wed
×100%, (6.17)

where wes and wed are myocardial wall thickness (the distance from endocardial and
epicardial contours) at end systolic and end diastolic respectively.

For ICA modeling, landmarks were defined by equi-angular sampling of epi- and en-
docardial contours from the center of myocardium. The number of landmarks per seg-
ment was set to 10, producing 60 landmarks per contour for basal and middle slices and
40 for apical slices. To ensure point-to-point correspondence between subjects, a fixed
anatomical reference point was defined at the intersection between the left and right
ventricle at the inferior region. The ICA model was calculated with FastICA algorithm [16],
implemented in Matlab (Matlab v6.5, The Mathworks, Natick, MA, USA). The non-linear
objective function parameter in FastICA was g (y) = 3y2 and the symmetric orthogonal-
ization parameter was used.

6.3.2 Validation Method

As described before, VWMS is sensitive to high subjectivity and variability [2, 3]. Therefore,
to enable an objective performance assesment of the proposed method, two validations
were performed by establishing two types of benchmarking. The first one is by selecting
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FIGURE 6.7: The performance of the ICA-based method compared with VWMS from the WT
benchmarking.
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FIGURE 6.8: The performance of the ICA-based method compared with WT from the VWMS
benchmarking.

WT as a point of reference to compare the ICA-based method with VWMS (WT bench-
marking) and the second one is by selecting VWMS as another point of reference to com-
pare the ICA-based method with WT (VWMS benchmarking). In the WT benchmarking,
a threshold value of 10% was determined as the boundary between normal and reduced
WT [37]. In the VWMS benchmarking, the classification boundary is converted into binary
values: 0 for normokinetic region and 1 for other dyskinetic regions.

To evaluate the performance of the diagnostic methods in both benchmarking tests,
receiver operating characteristics (ROC) curves were used. ROC graph is a standard graph-
ical tool to visually compare different classification methods [38]. The optimal cut-off
value to define classification boundary can also be estimated by using ROC curve, which
is defined by minimizing (1−sensitivity)2+(1−specificity)2. The optimal cut-off value was
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then used to calculate the performance of a method in terms of accuracy, sensitivity and
specificity, as given by

acc = TP +TN

P +N
, spec = TN

N
, sens = TP

P
, (6.18)

where TP and TN are true positive (the number of segments that are correctly identified
as abnormal) and true negative (the number of segments that are correctly identified as
normal) values, respectively. The total number of abnormal (positive) and normal (neg-
ative) segments are P and N . The ROC package developed by [39] was used to generate
ROC graphs.

6.3.3 Classification performance

Five examples of the automated detection result are presented in Figure 6.9, side-by-side
with the corresponding MR image sequences. Corresponding RWMA areas (white ar-
rows) are found in the same place with the estimated abnormal wall motion from the
automated method. Table 6.2 shows the classification performance using the WT and
the VWMS benchmarking tests. Compared to VWMS in the WT benchmarking, accuracy
of the ICA-based method is significantly higher. This is also the case for sensitivity and
specificity measurements. The highest performance was achieved in the mid-ventricular
slice model with the average of almost 89.6% for accuracy, 85.5% of sensitivity and 90.9%
of specificity. During the VWMS benchmarking, the ICA-based method performance is
comparable with WT.

ROC curves from each ventricular slice level are given in Figure 6.7 and Figure 6.8.
In all cases, the area under ROC curves of the proposed method are larger than VWMS,
indicating that the ICA-based method gives a higher performance. The area under ROC
curve of the ICA-based method for the basal slice is slightly smaller than WT, while it
is slightly larger for the apical slice. Interestingly, the area under the ROC curve of the
proposed method for the mid-ventricular slice is almost the equal with WT, but this does
not imply that the results of both methods are equal (see Section 6.3.5).

6.3.4 Disagreement with visual wall motion score

A common disagreement between the ICA-based method with VWMS lies in the extend of
abnormal landmark points that cross segment boundaries. Observers score on segments,
instead of points. Boundaries between segments can be visually repositioned according
to the observer’s interpertation while looking at the cine images. Therefore it is often the
case that the automated method detected abnormal points only in a partial myocardial
segment as pointed by arrows in Figure 6.10(a). The false positive result in Figure 6.10(a)
belongs to the same abnormal motion of the inferior segment marked by VWMS. The
visual score assigned the abnormal motion only to one segment, while the automated
method detected all the abnormal points preserving the wall motion continuity.

Another problem of the proposed method in the current study is the lack of full cardiac
cycle information in the shapes that are defined only by ED and ES phases. In a few cases,
as one given in Figure 6.10(b), the observer detected a wall motion peculiarity from the
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End−Diastole End−Systole Detection

End−Diastole End−Systole Detection

End−Diastole End−Systole Detection

End−Diastole End−Systole Detection

End−Diastole End−Systole Detection

FIGURE 6.9: Five automated detection results compared to the associated myocardial motion
taken from MR image sequences (four frames from End-Diastole to End-Systole). Dark color in
the rightmost column indicates high probability of having an abnormal motion. White arrows
in the End-Systole images show corresponding RWMA areas with the automated detection.
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(a) Automated method detects abnormal regions in areas pointed by arrows, while VWMS scores normal
segments.
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(b) Automated method detects normal regions in the area pointed by an arrow while VWMS scores
abnormal segment, because input contours in that area look normal according to the model.

FIGURE 6.10: Examples of disagreement between the automated method with VWMS. The
visual scores are graded per segment (dark grey=abnormal, white=normal). Intensity of dark
areas in the detection result figures denote probability values of having an abnormal motion.

cine images, while the automated method detected normal contraction because shapes at
ES looks normal according to the statistics of the model. The arrow in Figure 6.10(b) shows
a good ED to ES contraction. In this case, the automated method missed the abnormal
wall motion because it did not include the information of the contour positions between
ED and ES phases.

6.3.5 Disagreement with wall thickening

ROC curves of the ICA-based method and wall thickening during the VWMS benchmark-
ing in Figure 6.8 show high degree of similar performances. The main reason is that
statistical shapes in the ICA-based method was constructed from ED and ES contours,
which are the same phases to define the wall thickening value (see (6.17)). However there
are substantial differences between the ICA-based method and wall thickening results.
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(a) Automated method detects abnormal motion in the area pointed by an arrow, while WT measures high
thickening.
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(b) Automated method shows normal motion in the area pointed by an arrow due to rotational motion,
but WT measures low wall thickening value in that area.

FIGURE 6.11: Examples of disagreement between the automated method with wall thickening
measurements. Wall thickening values range from +100% to −100%, as defined in (6.17).
Intensity of dark areas in the detection result figures denote probability values of having an
abnormal motion.

WT measurement does not consider geometry of the contours. It only subtracts myo-
cardial thickness from ES to ED, regardless whether the contraction movement performs
in an unusual way. An example of this case is shown in Figure 6.11(a), where the myocar-
dium at the anteroseptal region (pointed by an arrow) is moving towards the right ventri-
cle. It means that the myocardium at that region is dilating instead of contracting. The
ICA-based method however is still capable to detect this kind of movement as abnormal
This shows that the statistical model does not merely imitate wall thickening, but it also
includes wall motion information implicitly.

As the statistical model contains wall motion, the automated method sometimes de-
tects regions with low thickening as normal, because the contraction shape is still normal
according to the model. Figure 6.11(b) shows this case of disagreement. The myocardial
region pointed by an arrow in Figure 6.11(b) shows rotational movement while contracting
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FIGURE 6.12: Comparisons between the ICA-based detection method with the direct landmark
density estimation using a bivariate normal (2D Gaussian) density model. Both ROC curves
were calculated from mid-ventricular slice level.

with low wall thickening.

6.3.6 Comparison with direct landmark density estimation

The proposed method starts off by modeling statistics of training shapes with ICA. The
estimated density functions in the IC domain are then propagated into the shape domain
(6.16), resulting a density function for each landmark point. Having density functions at
the level of landmark points may raise some issues over the benefit of using ICA modeling
instead of directly estimating probability density functions at each landmark point, e.g. by
using a bivariate normal distribution model, which would reduce the complexity.

In this study, ICA is particularly used as a feature extraction to model the shape of myo-
cardial contraction. The contraction shape at one landmark is not only determined by the
distribution of that particular landmark, but is also affected by its neighbors. The closer
the neighbor landmark, the higher its contribution. Density functions for each landmark
point have been calculated based on all independent components, which means that all
other point distributions contribute to estimating it. This is different from direct land-
mark point density estimation which only estimates a distribution model of a particular
landmark point without considering its spatial context.

To perform a comparison between ICA and direct landmark density estimation, two
bivariate density functions were estimated directly at each landmark point [40]: one with
a gaussian function and the other with a non-parametric kernel density function. Only the
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mid-ventricular slice level was used because the contraction motion is most pronounced
in this level. All the three methods received the same input points, which are the landmark
points from End-Systole contours after unit contraction (see Figure 6.2(b)). Hence, they
only differ in how the probability density functions are estimated.

Figure 6.12(a) and Figure 6.12(b) show the ROC curves of the three methods during
the WT and VWMS benchmarking tests, respectively. The ROC curves show that the ICA-
based method gives much better performance compared to the direct landmark density
estimations, especially in Figure 6.12(b). This proves that direct landmark density estima-
tion is not enough to capture motion contraction, and that modeling landmarks in their
shape context is thus necessary. ICA was chosen because it gives local shape variation and
it allows the propagation of the density functions to the shape domain.

6.4 Discussion

6.4.1 Method performance

From both benchmarking tests, the mid-ventricular slice level gives the highest perfor-
mance (almost 90% in WT benchmarking and 67% in VWMS benchmarking). This is
due to fact that wall motion in the mid-ventricular level is well defined and more stable
compared with basal and apical levels; thus regional wall motion abnormalities can be
well separated from the control group.

In the basal level, there are large shape variations in the septal region due to the close
proximity of the valve opening which gives a lower accuracy for abnormal motion in that
region. This conforms with the lowest accuracy outcome in the basal level compared with
the other levels in both benchmarking tests. In the apical level, the ICA-based method is
still capable to detect abnormal motion (73% and 67%). However, the method’s sensitivity
reduced significantly (59% in VWMS benchmarking).

6.4.2 Study limitations

Both the ICA model and the RWMA detection method are sensitive to the quality of the
myocardial contours. To construct a good ICA model, high quality myocardial contours
are required. This requires a low inter- and intraobserver variation in the contours (if
they are manually drawn), or a low segmentation error (if the contours are segmented
automatically). This issue is not specific to the proposed method, but it is inherent to any
quantitative regional LV function measurement.

In the present study, a binary classification between normal and abnormal motion
is proposed. Classification of a specific type of abnormal motion, i.e. hypokinetic, aki-
netic and dyskinetic, are not presented yet. As yet, the method therefore only serves as a
computer-aided tool to draw the clinician’s attention to the suspected abnormal motion
areas in the myocardium; staging of the wall motion abnormality may still be performed
visually.

The current automated method works by modeling contractility patterns for each ven-
tricular slice level. Therefore the method does not capture the three dimensional heart
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motion. It is natural to extend the ICA model into 3D but we decided to model 2D car-
diac contraction based on two reasons. During visual scoring, observers assess RWMA
by looking at planar motion on multi-slice cine-MR sequences. Therefore by modeling
multi-slice 2D ICA model, VWMS is emulated. Another reason is the dimensionality pro-
blem. Increasing the shape dimensionality also increases the necessary amount of train-
ing shapes required to generate a representative model.

The main benefit of the proposed method over previously described work on auto-
matic wall motion classification (Bosch et al. [9], Mitchell et al. [7] and Remme et al. [41]
studies) is that the method does not only distinguish between normals and patients, but
also localizes the anomalies. Furthermore, the model is trained on normal subjects, there-
fore it is not biased towards a specific pathology, and can be deployed to other disease
processes that manifest themselves in regional contraction anomalies.

6.4.3 Clinical utility

The accuracy of the automated method in comparison with visual observers’ scores ranges
from 63.70%–67.41%. This disagreement still hinders the application of the proposed
method in clinical routines. Even VWMS is often difficult to be applied in clinical settings
due to high intra- and interobserver variations [2, 3]. Hoffmann et al. study [3] found that
the accuracy of RWMA assessment from cine MRI from three independent observers is
62%, 55% and 86%. In the current validation, only one observer performed the scoring.
To make a better quantitative validation, it may therefore be needed to set a consensus
reading from more than one independent observer.

Nonetheless, there is still room for improving the proposed method to reach the agree-
ment with visual observers. The most prominent difference between visual observers with
the automated method is the temporal resolution. This problem has been addressed in
Section 6.3.4. There are two possibilities to enhance the statistical model with respect to
this problem. First is to include more shapes taken from in between ED and ES frames.
Interpolation might be needed in this case, because the number of images per one car-
diac cycle is different between subjects. Second is to enhance point correspondences
between time frames. In the current implementation, there is no particular verification
of point correspondences between ED and ES. This solution can improve the statistical
model particularly in basal slice where valve opening causes a lot of shape variations in
the septum.

6.5 Conclusion

A statistical model-based method to automatically detect RWMA in cardiac MR short-axis
views of the myocardium has been presented. The model can capture the myocardial
contractility pattern in a framework where all shapes contract from the same shape. This
leads to a direct statistical analysis of the contraction by eliminating the shape variations
at the ED phase. Furthermore, the automated process does not depend on a specific
segmentation algorithm to produce the diagnostic results. The idea behind this approach
is to construct a full pipeline of automated cardiac MRI analysis from segmentation to
diagnosis, aimed to help clinicians in their daily routines.
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Modeling by ICA proved very suitable in this study, because ICA produces local shape
variations that are needed by the detection method to locate RWMA segments. The statis-
tical independence property of ICA gives a benefit of an easy derivation of local probability
density functions from the component domain to the shape domain.

The validation showed an almost similar performance compared to WT during the
VWMS benchmarking, and a higher accuracy performance than VWMS during the WT
benchmarking. Two advantages of this method over VWMS are (1) given myocardial con-
tours, the detection method is automatic, and (2) the method does not require a special-
ized rater, as VWMS does, to arrive to a clinically meaningful interpretation.

Having a reference of normal cardiac contraction has another advantage. The same
model can be used for follow-up studies, for instance the stress MR study or post-operative
MRI, to investigate whether the same patient exhibits improvement in the cardiac func-
tion towards the normal behavior reference. This opens the path towards an automated vi-
ability assessment, an important diagnosis in the clinical routines. With the same concept
of detecting RWMA regions, viability can be analyzed from stress MR studies by comparing
RWMA regions in the corresponding rest MR studies. The functional improvement can be
detected by measuring the direction of the patient’s coefficient value from rest to stress. A
pilot study to assess functional improvement has been presented in [42], as well as linking
this method with an automated segmentation of cardiac MR images [43, 44], enabling a
full pipeline of automated cardiac MR image analysis.
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7
AN AUTOMATED REGIONAL WALL MOTION

ABNORMALITY DETECTION BY COMBINING REST AND

STRESS CARDIAC MRI: CORRELATION WITH

INFARCT TRANSMURALITY FROM

CONTRAST-ENHANCED MRI



Abstract

Objective: To evaluate the performance of an automated regional wall motion abnormal-
ity (RWMA) detection method given the combination of rest and dobutamine-induced
stress cardiac MR data and to correlate the automated RWMA results with infarct trans-
murality assessments from contrast-enhanced MRI.
Materials and Methods: The automated RWMA method is built upon a statistical model
of normokinetic myocardial contours. Forty-one rest cine-MRI of healthy volunteers were
collected to build the model. Independent Component Analysis (ICA) was used to gen-
erate the probability distributions of normokinetic myocardium after several registration
steps. Three normokinetic ICA models were built independently: base, mid-ventricular
and apex. Twelve patients with the presence of myocardial infarction were included in the
experiment. Their rest, dobutamine-induced stress and contrast-enhanced MR images in
short-axis view were semi-automatically analyzed.
Results: A total of 192 myocardial segments were analyzed; 116 scar and 76 non-scar
(normal) segments. For scar tissue detection, adding stress data significantly improved
the performance compared to rest data only. Mean RWMA probability value differences
between scar and non-scar regions with rest-stress data were wider and significant differ-
ences (p < 0.001, CI = 99.9%) were present in all ICA models. Combined sensitivity was
79% (base: 90%, mid: 79%, apex: 67%) and specificity was 80% (base: 83%, mid: 85%,
apex: 70%). Correlated with CE-MRI, RWMA probability values decrease progressively as
infarct transmurality increases.
Conclusion: Combining rest and stress MR data using automated RWMA assessment
method detects scar regions more accurately than using resting MRI alone. The presented
automated abnormality detector correlates well with infarct transmurality.

Submitted.
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To know is to remember what you have seen.
To see is to know without remembering.

Benim Adım Kırmızı (My Name Is Red)
ORHAN PAMUK

C
ORONARY artery disease (CAD) has been a leading cause of death in Europe and

North America and is responsible for 70% of congestive heart failure cases [1].
Although overall survival has improved, its treatment is a partial success [2, 3].
In patients with contractile reserve, where reversible myocardial dysfunction is

present, treatment by coronary revascularization may lead to significant functional im-
provements.

In clinical practice, the assessment of dysfunctional but viable myocardium is indi-
cated by the increase of systolic wall thickening from rest to stress. Reversible myocardial
dysfunction can also be identified by contrast-enhanced MRI (CE-MRI) [4, 5]. CE-MRI
allows imaging of myocardial infarction, in which scar tissues appear hyperenhanced, and
the extent of infarction is the main predictor for functional outcome after revasculariza-
tion. Head-to-head comparisons between rest-stress MR with infarct transmurality from
CE-MRI for predicting functional improvement have been performed and they have been
proven to be correlated [6–8].

During the assessment of LV functional improvement, rest and dobutamine-induced
stress cine-MR images are usually compared visually. Visual wall motion scoring is prone
to observer variability. Observer experience clearly affects the quality of the assessment [9].
A computer-assisted diagnosis method for the assessment of myocardial contractile re-
serve can be helpful to reduce the variability.

A model-based automated RWMA method has been developed in [10] and it shows
good correlation with systolic wall thickening and visual wall motion score from rest MRI.
This paper focuses on the improvement of the automated RWMA detection through the
integration of rest and stress MR data. Evaluation is performed against scar regions (in-
farct transmurality) from CE-MRI.

7.1 Materials and Methods

7.1.1 Study design

Two study protocols were designed to collect control and patient groups. For the control
group, forty-one healthy subjects were voluntarily enrolled in a cardiac MRI acquisition
session. These subjects were part of a larger study to collect normal cardiac cine MR
images from healthy population which was conducted between 2000–2004. Only short-
axis view MR images were included in this study.

The patient group consisted of twelve patients suffering from chronic coronary artery
disease. Each patient gave written informed consent to the study protocol that was ap-
proved by the local ethics committee. Mild to severe myocardial infarctions were present
in these patients. The baseline characteristics of the patient and control groups are given
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TABLE 7.1: Patient and Control Groups Statistics.a

Patients Controls
Subjects 12 41
Males/females 12/0 30/11

Ejection fraction (%)
44.85 (21.30)b 67.91 (11.13)
41.40 (17.23)c

Stroke volume (ml)
117.62 (73.87)b 105.04 (32.16)
82.44 (32.73)c

a All statistics are in average (standard deviation) form.
b Values from rest MR.
c Values from stress MR.

in Table 7.1. The mean ejection fraction in Table 7.1 indicates separation between the two
groups.

7.1.2 Data acquisition

Acquisition of baseline MR images was performed on 1.5T Gyroscan ACS-NT MRI Scanner
(Philips Medical System, Best, the Netherlands) using a 5-element synergy coil during
breath-holds and were gated to the electrocardiogram. The heart was imaged from apex to
base with 10 to 12 imaging levels in the short-axis orientation. Typical imaging parameters
are 400× 400 mm2 field-of-view, 10 mm slice thickness, 256× 256 image resolution and
1.5 mm pixel size.

Geometry settings in baseline scans were stored and repeated for low-dose dobutamine
and contrast-enhanced acquisitions. The dobutamine-induced stress (DSMR) and CE-
MRI acquisitions were only applied to the patient group. CE-MR images were acquired 15
minutes after a bolus injection of gadolinium diethylenetriamine pentaacetic acid (0.15
mmol/kg, Magnevist; Schering/Berlex, Berlin, Germany). Typical imaging parameters for
dobutamine MRI were similar with the rest condition and also for the CE-MRI, except that
the slice thickness for CE-MRI is smaller (5 mm), which gives CE-MRI more slice levels
than rest MRI.

7.1.3 Slice selection

Three short-axis slice levels were visually determined in rest MRI by using particular ana-
tomical landmarks. The basal level was defined at the short-axis slice level before the
septal opening is visible. The apical level was set to the short-axis slice level where LV
blood cavity is still visible in all cardiac phases. The mid-ventricular level was defined at
the middle level between the basal and the apical slices. Their corresponding slice levels
in DSMR and CE-MRI were automatically calculated based on 3D geometrical informa-
tion obtained by using MR Analytical Software System (MASS, v5.0, Medis, Leiden, the
Netherlands) [11]. Due to the smaller slice thickness of CE-MRI compared to cine-MRI,
one or two CE-MR images can be associated to a slice level in cine-MRI. In case of two
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(a) (b) (c) (d)

FIGURE 7.1: Patient shape results after each registration step: (a) input contours, (b) post
Procrustes alignment, (c) unit contraction, and (d) post rest-stress normalization. Vectors show
contraction from ED to ES. Rest and dobutamine-induced stress contraction are shown with
light grey and dark grey vectors, respectively.

CE-MR images were selected, the analysis of infarct transmurality from these images were
averaged.

7.1.4 Myocardial contour delineation and segmental definition

An expert delineated endo- and epicardial contours by using the MASS software [11].
Papillary muscles were considered as part of LV cavity and epicardial fat was excluded.
Only contours at end-diastole (ED) and end-systole (ES) were taken for the automated
analysis. The same software was used to delineate infarct regions on CE-MRI.

Between endo- and epicardial contours, the myocardium was divided into several
segments during the validation. The 17-segment model conforming to American Heart
Association [12] was applied. Only the 17th segment (the apical tip in long-axis view) was
excluded in this study.

7.1.5 Normokinetic myocardial shape models

A myocardial shape was defined as a sequential concatenation of endo- and epicardial
landmark points, which were taken from both end-diastole (ED) and end-systole (ES)
cardiac phases. Landmark points were determined by equi-angular homologous sam-
pling starting from the inferior intersection between right and left ventricles clockwise. A
normokinetic myocardial shape is a myocardial shape from the control group. To elim-
inate shape variations induced by cardiac position, orientation, size and movement be-
tween individual subjects, Procrustes alignment and thin-plate spline warping methods
were applied [10].

The registration method in Chapter 6 was modified to allow a proper comparison
between rest and stress myocardial shapes. Additional thin-plate spline warping was per-
formed at the last registration step to remove epicardial shape variations at ES. Without
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FIGURE 7.2: Schematic diagram of the automated RWMA assessment. An example of a patient
with hypokinetic segment around the lateral inferior wall is presented (light gray=rest, dark
gray=stress). These hypokinetic landmark points fall outside the normokinetic distributions
(the black strip region in the rightmost figure).

this step, shapes induced by dobutamine stress may produce false abnormal region from
epicardial contour. Epicardial landmark points at ES might fall outside the distribution
of control points. An example of step-by-step registration results are shown in Figure 7.1.
After the last registration step, shape variations are only present in the es-endo contour.

7.1.6 Building RWMA probability density functions

The processes of building the statistical shape model and estimating RWMA density func-
tions were equivalent to the methods reported earlier in Chapter 6. Independent Compo-
nent Analysis (ICA) was applied to decompose local shape variations. Probability density
functions of control group coefficient values were constructed for each independent com-
ponent. Based on the statistical independency assumption of ICA, the density functions
were propagated from the independent component domain to the shape domain. This
allows direct landmark point evaluation of a patient shape without projecting it first into
the ICA model. The schematic diagram of the RWMA assessment is shown in Figure 7.2.

7.1.7 RWMA evaluation

RWMA evaluation was performed by aligning a patient myocardial shape with the ICA
model of the control group and calculating the probability values from the aligned shape
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FIGURE 7.3: An example of RWMA probability values from rest (top row images) and stress
(bottom row images) MR images. This example is taken from the mid-ventricular level (seg-
ments S7, S8, S9, S10, S11 and S12).

with respect to the RWMA density functions. When the RWMA probability values of two
myocardial shapes from the same patient were evaluated, they will produce similar profile
lines. This behavior was observed in the rest and stress shapes of the same patient (see
Figure 7.3(c) and Figure 7.3(f) for an example). Hypokinetic regions that do not increase
its function at stress will be visible due to the last registration step that normalizes myo-
cardial shape at stress. In the example in Figure 7.3, non-improved hypokinetic regions
are present in segment S10 and S11. These segments show small increase of RWMA prob-
ability values from rest to stress.

The combination of rest and stress data can therefore be used to detect improved
and non-improved segments in terms of RWMA probability value changes. Since the ICA
model was built from baseline control groups, the myocardial shape at rest can be used as
the baseline to quantify the changes.

Let N be the total number of landmark points from concatenating epicardial and en-
docardial contours after the equi-angular sampling. Each landmark point will have its
own RWMA density function, i = 1, . . . , N . Let ρ(i )

r and ρ(i )
s be the RWMA probability val-

ues of the ith landmark point for rest and stress, respectively. The magnitude of RWMA
probability value changes from rest to stress can be formulated as follows

∆P (i ) = ρ(i )
r −ρ(i )

s

1+max
{
ρ(i )

r ,ρ(i )
s

} (7.1)

A negative value of ∆P (i ) indicates no wall motion improvement and a positive ∆P (i )

103



FIGURE 7.4: Transmurality chord lines. In the left figure, the white segments are the transmural
extent of the chord lines (gray lines).

value shows a possible improvement of the myocardium towards normokinetic motion.
The RWMA probability value changes from rest to stress is given by

P (i ) = (1−ρ(i )
r )+∆P (i ) (7.2)

7.1.8 Transmural extent

Infarct transmurality was calculated by creating a series of chord lines (see Figure 7.4). The
percentage of transmurality is defined as

TE = AB

w
×100% (7.3)

where AB is the transmural length over the chord line and w is the wall thickness.
During the experiment, TE values were averaged on each myocardial segment and

graded into the following groups: absence of hyperenhancement, transmural extent of
less than 25%, transmural extent of between 25%–50%, between 50%–75%, and transmu-
ral extent more than 75%.

7.1.9 Statistical analysis

Statistical shape modeling, registrations, and patient evaluation were implemented in
Matlab (Matlab v7.0, The Mathworks, Natick, MA, USA). The Matlab implementation of
FastICA method to generate ICA components was applied [13]. Receiver operating char-
acteristics (ROC) graph was produced by ROCR library package (ROCR v1.0.2) [14]. The
optimal cut-off value from the ROC curve is defined by minimizing (1−sensitivity)2 + (1−
specificity)2. Standard sensitivity and specificity measurements were used to show the
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TABLE 7.2: Segmental RWMA probability values.

segments samples rest only rest-stress
S′ S P̂r ∈S′ P̂r ∈S P̂s ∈S′ P̂s ∈S

basal anterior 9 3 0.25 (0.14) 0.43 (0.15) 0.29 (0.10) 0.5 (0.23)
basal anteroseptal 11 1 0.33 (0.15) ∗ 0.32 (0.15) ∗
basal inferoseptal 7 5 0.15 (0.12) 0.39 (0.13) 0.41 (0.16) 0.46 (0.26)
basal inferior 4 8 0.34 (0.13) 0.38 (0.13) 0.27 (0.07) 0.74 (0.20)
basal inferolateral 3 9 0.36 (0.21) 0.57 (0.18) 0.24 (0.10) 0.81 (0.15)
basal anterolateral 4 8 0.39 (0.20) 0.44 (0.12) 0.27 (0.20) 0.57 (0.26)
base 38 34 0.30 (0.16) 0.46 (0.14) 0.30 (0.13) 0.62 (0.22)
mid anterior 6 6 0.39 (0.29) 0.48 (0.07) 0.31 (0.10) 0.62 (0.20)
mid anteroseptal 5 7 0.39 (0.39) 0.53 (0.11) 0.27 (0.20) 0.71 ( 0.18)
mid inferoseptal 4 8 0.33 (0.16) 0.44 (0.14) 0.42 (0.22) 0.54 (0.15)
mid inferior 5 7 0.55 (0.16) 0.43 (0.19) 0.32 (0.20) 0.82 (0.12)
mid inferolateral 3 9 0.48 (0.13) 0.62 (0.18) 0.27 (0.15) 0.81 (0.17)
mid anterolateral 3 9 0.74 (0.13) 0.44 (0.17) 0.39 (0.26) 0.63 (0.16)
middle 26 46 0.48 (0.21) 0.49 (0.14) 0.33 (0.19) 0.69 (0.16)
apical anterior 5 7 0.68 (0.22) 0.66 (0.17) 0.47 (0.25) 0.82 (0.16)
apical septal 2 10 0.68 (0.09) 0.72 (0.17) 0.44 (0.24) 0.61 (0.20)
apical inferior 2 10 0.81 (0.17) 0.75 (0.15) 0.68 (0.01) 0.80 (0.13)
apical lateral 3 9 0.77 (0.05) 0.67 (0.21) 0.66 (0.10) 0.88 (0.10)
apex 12 36 0.74 (0.13) 0.70 (0.17) 0.56 (0.15) 0.78 (0.15)

S′ is non-scar segments and S is scar segments. P̂r ∈S′ and P̂r ∈S are the mean RWMA probability values at
rest for non-scar and scar segments, respectively. P̂s ∈S′ and P̂s ∈S are the mean RWMA probability values at
stress for non-scar and scar segments, respectively. All values are in mean (standard deviation) format. The
symbol ∗ indicates non-available statistical data because the number of samples for that particular case is
not enough. Segments are labeled as defined by American Heart Association standardization for myocardial
segments [12].

method’s performance [15]. The significant differences of RWMA probability values be-
tween scar and non-scar segments were tested by unpaired two-tailed t-tests with 99.9%
confidence interval. P-values < 0.001 were considered significant.

7.2 Results

7.2.1 Rest versus rest-stress data

Two evaluations for scar tissue detection were compared: RWMA probability values from
rest MRI only and RWMA probability values from the combination of rest and stress MRI.
A scar tissue is a region where transmural extent exceeds 1%. The results are shown in
Table 7.2.

The mean differences between scar and non-scar segments for rest-stress data in Ta-
ble 7.2 are significantly larger than for rest data only. This indicates a better separation
of scar tissues by the combination of rest and stress data. The unpaired t-tests resulted
in significant differences of mean RWMA probability values between scar and non-scar
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FIGURE 7.5: Distributions of RWMA probability values from scar and non-scar (normal)
segments for each slice model, presented by box-and-whisker plots. Unpaired t-tests were
performed with 99% confidence level to get the p-values.

segments in all three slice levels (p < 0.001 for base, mid-ventricular and apex) when rest
and stress data were combined. If only rest data were used, then only the basal model
showed significant difference (p < 0.001); the mid-ventricular model resulted p = 0.06
and apical model was p = 0.94. These findings are graphically presented by box plots in
Figure 7.5. Based on this observation, the remaining experimental studies in this paper
used only the combination of rest and stress data.

7.2.2 Scar tissue detection

Receiver operating characteristics (ROC) curve to detect scar tissue by using rest and stress
data is given in Figure 7.6. The area under the ROC curve was 0.88. Sensitivity and speci-
ficity of the method were 79% and 80%, respectively. These were combined from basal,
mid-ventricular and apical models. The sensitivity values for each model were 90% (base),
79% (mid-ventricular) and 67% (apex), while for specificity values were 83% (base), 85%
(mid-ventricular) and 70% (apex).
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FIGURE 7.6: ROC curve of the
method performance to detect
hyperenhanced segments.
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FIGURE 7.7: Distributions of RWMA
probability values grouped by infarct
transmuralities. Error bars indicate
standard error values.

7.2.3 Correlation with infarct transmurality

From the total of 192 segments, 116 (60.4%) segments showed hyperenhancement. Out
of these scar segments, 32 (16.7%) segments had less than 25% transmurality, 40 (20.8%)
segments with 25%–50% transmurality and 32 (16.7%) segments with 50%–75% transmu-
rality. Severe infarct transmurality of over 75% was observed in 12 (6.2%) segments.

Distributions of RWMA probability values over each of the scarring score groups are
shown in Figure 7.7. It shows that the RWMA probability values decrease progressively
as infarct transmurality increases. There is a clear separation between transmural and
non-transmural regions. This shows that the automated rest-stress RWMA assessment
method correlates well with the infarct transmurality from CE-MRI. A visual example of
this finding is illustrated in Figure 7.8.

7.3 Discussion

Two main objectives were addressed in this chapter: (1) to evaluate the performance of
the automated RWMA detection method when stress and rest data are combined, and (2)
to correlate the RWMA probability changes estimated from the automated method with
infarct transmurality from CE-MR images. From the result section, the RWMA probabil-
ity values from the combined rest and stress data has proven to produce a significant
improvement in distinguishing scar regions compared to the use of rest data only. The
separation between scar and non-scar regions widened considerably when stress data was
included.

On the detection of scar regions, the performance of the automated method with the
combination of rest and stress data was relatively high. The area under RWMA probability
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FIGURE 7.8: Visual comparisons of RWMA profile lines (top rows) and their corresponding CE-
MR images (bottom rows). In the profile lines, solid lines are infarct transmurality and the
dashed lines are the RWMA probability values from rest to stress.

value curve was 0.88 (see Figure 7.6), which proves the method’s capability to detect scar
regions. Significant differences of mean RWMA probability values between scar and non-
scar regions were demonstrated in all models.

Correlated with the infarct transmurality, the automated detection method produced
decreasing RWMA probability values as the transmural extent increases. In Kim et. al. [4]
the likelihood of improvement in dysfunctional segments after revascularization increases
when the transmural extent decreases. This means that the estimated RWMA probability
values may explain the same likelihood of contractile reserve.

Currently, myocardial contours for both control and patient groups, including the hy-
perenhanced boundaries, were drawn manually by an expert. This experimental study
was conducted to demonstrate the proof of concept of the automated RWMA assessment
for the rest and stress data. However, providing manual contours is prone to subjectiv-
ity and a tedious task. Especially for the apical regions, drawing endocardial borders is
problematic because of the low contrast at the later systolic phases. Endocardial borders
were sometimes almost invisible at end-systole. As a result, the apical model yielded the
lowest score in detecting scar regions (67% sensitivity and 70% specificity) compared to
basal and mid-ventrical models. This raises the necessity to apply an objective segmen-
tation method for myocardium. Statistical-based segmentation methods that incorporate
temporal information, e.g. [16–18], can be applied in this case to solve this problem.

The main limitation of this study is the lack of follow up data after revascularization
to assess functional recovery completely. The current validation used infarct transmu-
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rality as the ground truth, but CE-MRI also possesses significant problems for viability
assessment [19]. Therefore this study does not evaluate the method’s capability to assess
myocardial viability, but the proposed method shows good correlation with infarct trans-
murality. Additional pre- and post-treatment patient data is needed to further explore the
capability of the proposed method to quantify regional LV functional improvement.

The current statistical model is trained from ED and ES phases only. The results show
that building the statistical model from these two phases is enough to capture the kinetics
of heart motion. However, a higher temporal resolution may improve the performance of
the method, but at the expense of more contour drawing.

In conclusion, we have presented an automatic quantification method of RWMA anal-
ysis that combines information from resting and stress MR. Validated against CE-MRI,
the automated method behaves as expected, i.e., it decreases when transmural extent
increases. Hence, the proposed method correlates well with CE-MRI and therefore is a
promising diagnostic tool to automatically assess RWMA from cardiac MR images.

7.4 References

[1] H. Mahrholdt, I. Klem, and U. Sechtem, “Cardiovascular MRI for detection of myocardial
viability and ischaemia,” Heart, vol. 93, no. 1, pp. 122–129, 2007.

[2] T. E. Owan, D. O. Hodge, R. M. Herges, S. J. Jacobsen, V. L. Roger, and M. M. Redfield, “Trends
in prevalence and outcome of heart failure with preserved ejection fraction,” N Engl J Med, vol.
355, no. 3, pp. 251–259, Jul 2006.

[3] P. G. Camici, S. K. Prasad, and O. E. Rimoldi, “Stunning, hibernation, and assessment of
myocardial viability,” Circulation, vol. 117, no. 1, pp. 103–114, Jan 2008.

[4] R. J. Kim, E. Wu, A. Rafael, E. L. Chen, M. A. Parker, O. Simonetti, F. J. Klocke, R. O. Bonow, and
R. M. Judd, “The use of contrast-enhanced magnetic resonance imaging to identify reversible
myocardial dysfunction,” N Engl J Med, vol. 343, no. 20, pp. 1445–1453, Nov 2000.

[5] A. Saraste, S. Nekolla, and M. Schwaiger, “Contrast-enhanced magnetic resonance imaging in
the assessment of myocardial infarction and viability,” J Nucl Cardiol, vol. 15, no. 1, pp. 105–
117, Jan-Feb 2008.

[6] M. Gutberlet, M. Frohlich, S. Mehl, H. Amthauer, H. Hausmann, R. Meyer, H. Siniawski,
J. Ruf, M. Plotkin, T. Denecke, B. Schnackenburg, R. Hetzer, and R. Felix, “Myocardial viability
assessment in patients with highly impaired left ventricular function: Comparison of delayed
enhancement, dobutamine stress MRI, end-diastolic wall thickness, and TI201-SPECT with
functional recovery after revascularization,” Eur Radiol, vol. 15, no. 5, pp. 872–880, May 2005.

[7] T. A. M. Kaandorp, J. J. Bax, J. D. Schuijf, E. P. Viergever, E. E. van Der Wall, A. de Roos, and H. J.
Lamb, “Head-to-head comparison between contrast-enhanced magnetic resonance imaging
and dobutamine magnetic resonance imaging in men with ischemic cardiomyopathy,” Am J
Cardiol, vol. 93, no. 12, pp. 1461–4, Jun 2004.

[8] E. Wellnhofer, A. Olariu, C. Klein, M. Grafe, A. Wahl, E. Fleck, and E. Nagel, “Magnetic resonance
low-dose dobutamine test is superior to SCAR quantification for the prediction of functional
recovery,” Circulation, vol. 109, no. 18, pp. 2172–2174, May 2004.

109



[9] I. Paetsch, C. Jahnke, V. A. Ferrari, F. E. Rademakers, P. A. Pellikka, W. G. Hundley, D. Poldermans,
J. J. Bax, K. Wegscheider, E. Fleck, and E. Nagel, “Determination of interobserver variability
for identifying inducible left ventricular wall motion abnormalities during dobutamine stress
magnetic resonance imaging,” Eur Heart J, vol. 27, no. 12, pp. 1459–1464, Jun 2006.

[10] A. Suinesiaputra, A. F. Frangi, T. A. M. Kaandorp, H. J. Lamb, J. J. Bax, J. H. C. Reiber, and B. P. F.
Lelieveldt, “Automated detection of regional wall motion abnormalities based on a statistical
model applied to multislice short-axis cardiac MR images,” IEEE Trans Med Imaging, vol. 28,
no. 4, pp. 595–607, Apr 2009.

[11] R. J. van der Geest, V. G. Buller, E. Jansen, H. J. Lamb, L. H. Baur, E. E. van der Wall, A. de Roos,
and J. H. Reiber, “Comparison between manual and semiautomated analysis of left ventricular
volume parameters from short-axis MR images,” J Comput Assist Tomogr, vol. 21, no. 5, pp.
756–765, Sep-Oct 1997.

[12] M. D. Cerqueira, N. J. Weissman, V. Dilsizian, A. K. Jacobs, S. Kaul, W. K. Laskey, D. J. Pen-
nell, J. A. Rumberger, T. Ryan, and M. S. Verani, “Standardized myocardial segmentation and
nomenclature for tomographic imaging of the heart: a statement for healthcare professionals
from the Cardiac Imaging Committee of the Council on Clinical Cardiology of the American
Heart Association,” Circulation, vol. 105, no. 4, pp. 539–542, 2002.

[13] A. Hyvärinen and E. Oja, “Independent component analysis: algorithms and applications,”
Neural Networks, vol. 13, pp. 411–430, June 2000.

[14] T. Sing, O. Sander, N. Beerenwinkel, and T. Lengauer, “ROCR: visualizing classifier performance
in R,” Bioinformatics, vol. 21, no. 20, pp. 3940–3941, 2005.

[15] T. A. Lasko, J. G. Bhagwat, K. H. Zou, and L. Ohno-Machado, “The use of receiver operating
characteristic curves in biomedical informatics,” J Biomed Inform, vol. 38, no. 5, pp. 404–415,
2005.

[16] A. Andreopoulos and J. K. Tsotsos, “Efficient and generalizable statistical models of shape and
appearance for analysis of cardiac MRI,” Medical Image Analysis, vol. 12, no. 3, pp. 335–357,
JUN 2008.

[17] R. Lapp, M. Lorenzo-Valdes, and D. Rueckert, “3D/4D cardiac segmentation using active ap-
pearance models, non-rigid registration, and the insight toolkit,” in Medical Image Computing
and Computer-Assisted Intervention - MICCAI 2004, Part 1, Proceedings, ser. Lecture Notes in
Computer Science, C. Barillot, D. Haynor, and P. Hellier, Eds., vol. 3216. Springer, 2004, pp.
419–426.

[18] S. C. Mitchell, J. G. Bosch, B. P. F. Lelieveldt, R. J. van der Geest, J. H. C. Reiber, and M. Sonka, “3-
D active appearance models: segmentation of cardiac MR and ultrasound images,” IEEE Trans
Med Imaging, vol. 21, no. 9, pp. 1167–1178, Sep 2002.

[19] S. D. Roes, T. A. M. Kaandorp, N. A. Marsan, J. J. M. Westenberg, P. Dibbets-Schneider, M. P.
Stokkel, H. J. Lamb, E. E. van der Wall, A. de Roos, and J. J. Bax, “Agreement and disagreement
between contrast-enhanced magnetic resonance imaging and nuclear imaging for assessment
of myocardial viability,” Eur J Nucl Med Mol Imaging, vol. 36, no. 4, pp. 594–601, Apr 2009.

110



8
SUMMARY





C
H

A
P

T
E

R
8

—
S

U
M

M
A

R
Y

Columbus is not the only person who has
discovered a new continent. So too have I.

Anak Semua Bangsa (Child of All Nations)
PRAMOEDYA ANANTA TOER

8.1 Myocardial wall motion modeling

T
HE first objective of this thesis was to explore possible shape parameterizations

to model normal myocardial contraction. Two different approaches to extract
wall motion patterns were presented in this thesis. Chapter 2 presented a study
towards direct velocity vector field quantification from tagged MRI, while in

Chapter 3, myocardial contractility patterns were extracted from landmark-based endo-
cardial and epicardial contours.

MR tagging allows full inspection of wall motion, not only for myocardial borders, but
for all pixels inside the myocardium. The spatially induced tag patterns in MR tagging
follow the deformation of the heart, allowing quantification of myocardial deformation
fields. Dense velocity vector fields of myocardium can be extracted automatically by using
the first order density multiscale optic flow method. This dense optic flow framework
does not assume constant pixel intensity, but a constant integral of pixel intensities over
a region (local “intensity mass” preservation). It is therefore relatively robust with respect
to the problem of decaying intensity of the tag patterns over the cardiac cycle.

In Chapter 2, the proposed dense optic flow method was compared to velocity-encoded
(VEC) MRI. Experimental results show strong correlation in the radial direction, but not
in the circumferential direction. The correlation is also stronger for velocity vectors in the
systolic phase compared to the diastolic phase. Further improvements are still required
for this method to overcome this problem, for instance by estimating the optic flow field
in the frequency domain instead of in the spatial domain [1, 2].

MR tagging is useful for analyzing local myocardial contraction. In clinical practice
however, MR tagging is not included in many routine diagnostic imaging protocols for
ischemic heart disease. For this reason, we shifted the research focus to the extraction of
myocardial contractility patterns from cine MRI.

Myocardial contours from cine MRI, which include epicardial and endocardial bor-
ders, are the main prerequisites for analyzing regional and global LV function. Ejection
fraction, wall thickening, wall thinning and stroke volume, to name a few, use both con-
tours from the end-diastolic (ED) and end-systolic (ES) phase. To parameterize these
contractility patterns in the remainder of this thesis, endo- and epicardial contours were
combined serially to form a myocardial contraction shape. Equi-angular landmark points
were sampled to establish anatomical point-to-point correspondence of shapes between
subjects.

In Chapter 3, we investigated the potential of this myocardial contraction shape def-
inition to distinguish between 42 normal and 47 pathological (ischemic) subjects. Two
linear generative models were used to decompose the shapes, i.e., Principal Component
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Analysis (PCA) and Independent Component Analysis (ICA). In terms of modes of shape
variation, PCA produced global shape variations while ICA generated more local shape
variations. In terms of discriminating between normal and pathological subjects, only the
first component of the PCA model was sufficient to separate the two groups. For the ICA
model, 27 out of 35 (77%) components were required to achieve the same discrimination
performance.

From this, we concluded that PCA is suitable for shape decomposition because it can
produce a compact model. For classification purposes, the PCA decomposition can only
discriminate two groups globally. There is no geometrical interpretation of the classifi-
cation result that can be deduced from the discriminating principal components. ICA
may not be suitable to produce a compact representation of a shape model, because all
independent components contribute evenly to the model. However, independent com-
ponents cannot only discriminate shapes between two groups, but also they can locate
the position of the shape differences. This locality property makes ICA more suitable than
PCA for the detection and localization of regional wall motion abnormalities. Based on
this observation, ICA was used in the remaining chapters as the statistical tool of choice
to extract local shape features from myocardial shapes.

8.2 Automated evaluation of regional wall motion abnormalities

The second objective of this thesis was to define a good classifier to detect, to locate and to
quantify regional wall motion abnormalities (RWMA). Since an independent component
intrinsically contains local geometry of where the component lies in the shape domain,
each localized shape component is centered around a “central” landmark point and de-
tection of abnormal regions can be performed by selecting the “abnormal components”.
This study was given in Chapter 4. First, a patient shape was projected onto the ICA
model to reveal its independent component coefficients. Probability density functions of
the healthy subject coefficient values were estimated by assuming normal distributions.
An abnormal component was defined as a component with a coefficient value which lies
outside the normal distribution (beyond±3 times standard deviation) of coefficient values
of a healthy population.

In Chapter 4, a qualitative validation of the automated RWMA evaluation with ab-
normal independent components was performed on six infarct patients. These abnor-
mal components were mapped onto myocardial regions by using a mixture of Gaussian
functions to color-code RWMA values on cine MRI. A comparison was made with the
corresponding CE-MRI. All of the six patients showed good visual correlation between the
position of segments with high RWMA values and the hyperenhanced (scarred) segments.

The study in Chapter 4 demonstrated that ICA-based RWMA classifiers are capable
of detecting and locating RWMA. In Chapter 6, quantification of RWMA was formulated
based on probability values and the process of mapping the abnormal components to the
shape domain was refined. The probability density functions of healthy coefficient values
were propagated into probability density functions of landmark points. Such propagation
is allowed because of the statistical independence property of ICA. This propagation re-
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sults in a probability density function for each landmark point that is estimated based on
all components, integrating contextual information from neighboring landmarks.

Quantitative validations in Chapter 6 were performed with cross referencing experi-
ments. A comparison with visual wall motion scoring (VWMS) was made by using wall
thickening as the reference; in that case the automated RWMA method performed signif-
icantly better. If VWMS was used as the reference standard, then the automated RWMA
method performance was slightly better than wall thickening. This study demonstrated
the capability of the ICA model for detecting segments with abnormal regional wall mo-
tion.

8.3 Automated prediction of functional improvement

The last objective of this thesis was to correlate the automated RWMA evaluation method
with indicators that may predict functional improvement. Hence, contours from dobu-
tamine stress MR (DSMR) images were used and their RWMA values were compared with
RWMA from resting (baseline) MRI. Research hypothesis was that when two myocardial
contraction shapes from rest and stress MR from the same patient are evaluated with the
ICA-based RWMA method, then the differences in RWMA values could be indicative for
myocardial viability.

The pilot study described in Chapter 5 compared the probability values derived from
rest and stress contours of independent components that were classified as abnormal. A
qualitative comparison in six patients suffering from myocardial ischemia revealed that
when contraction from rest to stress improved, the automatically estimated RWMA prob-
ability values of abnormal components decreased from rest to stress. An interesting ob-
servation was that the automated method detected an improved wall thickening from rest
to stress as abnormal for a dyskinetic segment. This fact shows that the automated RWMA
method not only incorporates information on wall thickening, but also on wall motion.

In Chapter 7, the methodology was further improved to allow proper comparison of
myocardial contraction shapes at stress with baseline (rest) shapes. After rigid (Procrustes)
and non-rigid (thin-plate splines) registrations, another non-rigid registration (also with
thin-plate splines) was applied to eliminate shape variations at epicardial contours. Hence,
only relative motion from endocardial contours with respect to epicardium was modeled.
Without this additional registration, false positive samples could occur because strong
myocardial contractions at stress could be classified as abnormal.

To quantitatively validate the method for predicting myocardial viability, longitudi-
nal pre- and post-revascularization data is required. However, such data was not avail-
able. In Chapter 7, the combination of rest and stress RWMA values was therefore corre-
lated against infarct transmurality from CE-MRI, because CE-MRI is also used to predict
functional recovery after revascularization [3]. The automated RWMA probability values
achieved strong positive correlation with infarct transmurality in all slice levels. RWMA
probability values from the combined rest-stress data progressively decrease as infarct
transmurality increases. The method shows high accuracy in the detection of myocardial
segments with scar tissue, as confirmed in a validation against CE-MRI.
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8.4 Future directions

FIGURE 8.1: Pipeline of an automated analysis of cardiac MR images from segmentation to
the interpretation of diagnostic values, i.e., RWMA, global and regional LV function, by using
statistical shape models.

This thesis presented a number of steps towards the development of automated wall
motion analysis to assist in the diagnosis of ischemic heart disease. Further improvements
and extensions can be made in several ways. These include the extension of the shape
model into a three-dimensional surface of the left ventricle, the inclusion of more tempo-
ral samples, and a validation against pre and post revascularization data to properly assess
the method’s performance for classifying viable tissues.

The presented automated method would fit perfectly at the end of a cardiac MR image
processing pipeline for cardiac MRI decision support. Currently, the studies reported
in this thesis used manually drawn contours as input. In the future, these myocardial
contours could be detected from an automated segmentation method, regardless of the
underlying segmentation algorithm. It would be more appropriate to connect compo-
nents in the pipeline with statistical shape models. For instance, morphometrics based
segmentation methods, such as Active Shape Models [4–6] and Active Appearance Mod-
els [7, 8], could be used in this pipeline. The ASM/AAM parameters of the segmentation
can be used for building a normokinetic model. Figure 8.1 displays how a fully automatic
pipeline of cardiac MR analysis with statistical shape models could be realized in this way.

The CAD methods described in this thesis are based on contours from cardiac MRI,
but the underlying algorithm does not depend on the imaging modality. The presented
method could therefore be used for the diagnosis of RWMA in e.g. echocardiography, but
this will require further experimental studies.

Diagnostic results from the automated RWMA evaluation method could also be com-
bined with other diagnostic imaging modalities, for example in a combination of cine MRI

116



C
H

A
P

T
E

R
8

—
S

U
M

M
A

R
Y

and MR perfusion imaging, FDG-PET imaging, gated SPECT imaging and/or contrast-
based images (CE-MRI or MCE). Also information on myocardial deformation could be
derived from MR tagging, strain-encoded MR, velocity-encoded MRI or color Doppler
echocardiograms. The integration of information on contraction, deformation and per-
fusion may be a next step towards a more comprehensive CAD method for ischemic heart
disease.
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MARIUS STARING

9.1 Statistische modellering van de wandbeweging van het
linkerventrikel

D
IT proefschrift verkent als eerste twee mogelijke parametrisaties om normale

wandbeweging van het contraherende myocard wiskundig te beschrijven. Ho-
ofdstuk 2 beschrijft een pilotstudie naar directe kwantificatie van wandbe-
weging op basis van MR tagging technieken, terwijl in Hoofdstuk 3, vormken-

merken over myocardcontractie worden afgeleid uit endo- en epicardiale contouren in
cine MRI-beelden.

MR tagging maakt een volledige beschrijving van wandbeweging mogelijk, niet alleen
van de myocardcontouren, maar voor een continuum aan posities in het myocard. De met
MR tagging aangebrachte spatiële patronen volgen de contractie van het hart, hetgeen een
kwantitatieve bepaling van de myocardvervorming mogelijk maakt. Hieruit kan automa-
tisch een snelheidsveld worden afgeleid door gebruik te maken van een multi-schaal optic
flow methode. Deze techniek doet geen aannames over een constante pixelintensiteit
in de tijd, maar gaat uit van een constante integraal van pixelintensiteiten binnen een
regio (behoud van “intensiteitsmassa”). Als zodanig is de methode relatief robuust met
betrekking tot het typische probleem van vervagende streeppatronen in MR tagging in de
hartcyclus.

In Hoofdstuk 2 wordt de voorgestelde optic flow techniek vergeleken met snelheids-
gecodeerde MRI (VEC-MRI). Resultaten tonen een sterke correlatie in de radiële richting,
maar niet in de tangentiële richting. De correlatie is sterker voor snelheidsvectoren in
de systolische fase dan die in de diastolische fase. Om dit probleem op te lossen zijn
nog verdere algoritmische verbeteringen nodig, bijvoorbeeld door het optic-flow veld te
berekenen in het frequentiedomein in plaats van het spatiële domein [1, 2].

MR tagging is nuttig voor de analyse van myocardcontractiliteit. In de klinische prak-
tijk is MR tagging momenteel niet opgenomen in routine diagnostische protocollen voor
ischemische hartziekten. Om die reden hebben we de focus van dit onderzoek verlegd
naar de mogelijkheid om myocardcontractie te karakteriseren uit cine MRI-beelden, in
plaats van uit MR tagging.

Om de globale en lokale functie van het LV myocard te analyseren in cine-MRI zijn de
endo- en epicardiale contouren vereist, zowel in ED als ES. Op basis hiervan kunnen pa-
rameters als ejectiefractie, wandverdikking, wanddikte en slagvolume worden berekend.
Om de contractie van het myocard te karakteriseren met behulp van statistische modellen,
combineren we deze contouren in een vormparametrisatie van myocardcontractie, waar-
bij landmark punten worden bemonsterd langs equi-angulaire intervallen om puntcorre-
spondentie tussen contouren te bewerkstelligen. In Hoofdstuk 3 werd onderzocht of het
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mogelijk is om met deze vormparametrisatie de contractie van 42 normale vrijwilligers au-
tomatisch te onderscheiden van 47 patiënten met ischemische hartziekten. Twee lineair
generatieve modellen werden gebruikt om de vormbeschrijvingen te ontbinden in com-
ponenten: Principal Component Analysis (PCA) en Independent Component Analysis
(ICA). Wat betreft de vormeigenvariaties leverde PCA globale vormvariaties op, waar ICA
meer lokale vormvariaties genereerde. Qua onderscheidend vermogen tussen normalen
en patiënten gold dat voor PCA alleen de 1e component al voldoende was om beide klasses
te onderscheiden. Voor het ICA model gold dat 27 van de 35 componenten (77.14%)
componenten nodig waren om hetzelfde onderscheidend vermogen te realiseren. Hieruit
kan worden geconcludeerd dat PCA een compactere vormdecompositie oplevert dan ICA.

Voor klassificatiedoeleinden kan de PCA decompositie de twee groepen alleen schei-
den op globale vormverschillen. Uit de onderscheidende componenten kan geen ge-
ometrische interpretatie van het klassificatieresultaat worden afgeleid. ICA genereert een
minder compacte vormrepresentatie dan PCA, omdat de vormvariatie gelijkmatig over
alle componenten is verdeeld. De ICA decompositie daarentegen onderscheidt niet alleen
de twee groepen, maar kan ook de positie van de onderscheidende vormverschillen lokalis-
eren. Deze lokaliteitseigenschap maakt ICA geschikter dan PCA voor het detecteren en
lokaliseren van regional wandbewegingsafwijkingen. Op basis van deze observatie is ICA
in de verdere hoofdstukken gekozen als vormdecompositie om locale vormkenmerken uit
myocardvormen af te leiden.

9.2 Automatische detectie van afwijkingen in regionale wandbeweging
van het LV

Het tweede doel van dit proefschrift was het ontwikkelen van een algoritme voor automa-
tische detectie en lokalisatie van afwijkingen in LV regionale wandbeweging. Aangezien
een Independent Component intrinsiek de lokale geometrie beschrijft van de vormpara-
metrisatie, kan detectie van lokale regionale wandbewegingsstoornissen worden uitgevo-
erd door “abnormale componenten” te identificeren: dit zijn componenten waarvan de
coefficienten buiten de op gezonde proefpersonen getrainde statistisch plausibele limi-
eten vallen. Dit concept is beschreven in Hoofdstuk 4, waarbij de kansverdelingen werden
geschat op basis van de aanname van een normale kansverdeling. Klassificatiegrenzen
werden gedefiniëerd op 99.7% range, of ±3 de standaardafwijking.

Een kwalitatieve validatie van deze automatische RWMA methode werd uitgevoerd op
MRI beelden van zes infarctpatienten. De afwijkende componentcoefficiënten werden
geprojecteerd op het myocard in de cine MRI beelden met behulp van een kleurcoder-
ing, die is afgeleid van een combinatie van de IC coefficiëntwaarden, en een vergelijk-
ing werd gemaakt met Delayed Enhancement MRI. In alle zes patiënten was een goede
overeenkomst zichtbaar tussen de als abnormaal gedetecteerde segmenten en de hyper-
enhanced gebieden in de Delayed Enhancement MRI.

De studie in Hoofdstuk 4 liet zien dat de ICA-gebaseerde detectie in staat is om re-
gionale wandbewegingsafwijkingen te herkennen en te lokaliseren. In Hoofdstuk 6 werd
de kwantificatie van RWMA gebaseerd op geschatte kansverdelingen, en werd het proces
van transformeren van componenten naar het spatiële domein verbeterd. De kansverdelin-
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gen van de modelcoefficiënten van gezonde personen werden omgerekend in kansverdelin-
gen per landmarkpunt; deze propagatie van kansverdelingen is alleen mogelijk door de
ICA eigenschap van statistische onafhankelijkheid tussen de componenten. Deze propa-
gatie geeft voor elk landmarkpunt een kansverdeling, die wordt geschat op basis van alle
ICs, waardoor contextinformatie uit naastgelegen landmarks geŢntegreerd wordt.

Hoofdstuk 6 beschrijft een kwantitatieve validatie op basis van kruisvalidatie. Een
vergelijking met visuele wandbewegingsscores werd gemaakt met wandverdikking als ref-
erentie, waarbij de automatische RWMA techniek significant beter scoorde. Met visuele
wandbewegingsscores als referentie scoort de automatische detectie licht beter dan wand-
verdikkingsmetingen. Deze studie toonde de potentie aan van de ICA methode voor het
automatisch detecteren van myocardsegmenten met abnormale regionale wandbeweg-
ing.

9.3 Automatische bepaling van functionele verbeteringen in
wandbeweging

Het laatste onderzoeksdoel van dit proefschrift was het bepalen van de voorspellende
waarde van de automatische RWMA detectie door deze te correleren met andere prognos-
tische indices voor het vermogen tot herstel van het myocard na interventie (viabiliteit).
LV contouren in dobutamine stress MR (DSMR) beelden werden gebruikt in de automa-
tische RWMA detectie, en vergeleken met automatisch berekende RWMA waarden in rust.
Onderzoekshypothese was dat als de contour sets uit verschillende stressniveaus worden
vergeleken, verschillen in automatische RWMA waarden indicatief kunnen zijn voor my-
ocardviabiliteit.

Hoofdstuk 5 onderzocht de verschillen in automatische RWMA waarden tussen rust
en stress. Een kwalitatieve evaluatie in zes patienten met ischemische hartziekten toonde
aan dat een verbetering in contractie van rust naar stress correspondeerde met een ver-
laging van de automatische RWMA waarde, die de mate van wandbewegingsabnormaliteit
uitdrukt. In andere woorden, een verbetering in contractiliteit tussen rust en stress cor-
releerde met een statistisch normalere contractie, en omgekeerd. Interessante bevinding
was ook dat de methode een verbetering in wandverdikking als abnormaal klassificeerde
in geval van diskinetische wandbeweging. Dit geeft aan dat de automatische RWMA meth-
ode niet alleen wandverdikking beschouwt, maar tegelijk ook wandbeweging.

In Hoofdstuk 7 werd deze techniek verder verbeterd om een betere vergelijking tussen
contouren uit de beide stressniveaus mogelijk te maken. Na rigide (Procrustes) en niet-
rigide registratie, werd een tweede niet-rigide registratie toegepast om vormverschillen
tussen het epicardcontouren te elimineren. Alleen relatieve verschillen in endocardbe-
weging ten opzichte van het epicard werden zo gemodelleerd. Zonder deze aanvullende
registratie kunnen er fout-positieve klassificaties optreden omdat sterke contracties in
stress anders als abnormaal kunnen worden geklassificeerd.

Idealiter is longitudinale pre- en post-revascularisatie data nodig om een mogelijke
prognostische indicator voor myocardviabiliteit te valideren. Dergelijke data was niet
voorhanden. Daarom werd in Hoofdstuk 7 een vergelijking beschreven met infarct trans-
muraliteit afgeleid uit Delayed Enhancement MRI, omdat deze maat correleert met de
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mogelijkheid tot functioneel herstel na revascularisatie [3]. De automatische RWMA waar-
den bleken op alle slice niveaus sterk te correleren met infarct transmuraliteit, waarbij
de RWMA waarden monotoon afnamen bij een toenemende infarct transmuraliteit. De
methode gaf een hoge successcore bij de detectie van myocardsegmenten met litteken-
weefsel, zoals bevestigd in DE MRI beelden.

9.4 Vervolgonderzoek

FIGURE 9.1: Systeem voor een automatische analyse van cardiale MR beelden van segmentatie
tot computer-ondersteunde interpretatie van RWMA, globale en regionale functie met statis-
tische vormmodellen.

Dit proefschrift beschrijft een aantal stappen in de ontwikkeling van een systeem voor
automatische analyse van wandbeweging in cine MRI ter ondersteuning van de diagnos-
tiek van ischemische hartziekten. De beschreven methoden kunnen op meerdere manieren
worden verbeterd en uitgebreid. Dit betreft de uitbreiding van het vormmodel naar drie
dimensies, het toevoegen van meerdere tijdpunten in de hartcyclus, en een validatie op
basis van pre- and post revascularisatie data om myocardviabiliteit te identificeren.

De gepresenteerde technieken om automatisch wandbeweging te klassificeren als nor-
maal of abnormaal zouden goed kunnen worden ingepast in een volautomatisch systeem
voor beslissingsondersteuning in cardiale MRI. De in dit proefschrift beschreven tech-
nieken maken gebruik van handmatig getekende contouren; dit is gedaan om een mo-
gelijk verstorend effect van segmentatiefouten uit te sluiten. Met een robuuste automatis-
che segmentatiemethode kunnen deze contouren ook automatisch worden aangeleverd,
bijvoorbeeld door gebruik te maken van segmentatietechnieken gebaseerd op statistis-
che vormmodellen zoals Active Shape Models [4–6] en Active Appearance Models [7, 8].
De ASM en AAM parameters zouden dan direct kunnen dienen als invoer voor de in dit
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proefschrift beschreven CAD technieken. Figuur 9.1 illustreert hoe op deze manier een
volautomatisch CAD systeem voor cardiale MRI zou kunnen worden gerealiseerd.

De in dit proefschrift beschreven CAD methode voor automatische RWMA analyse
is gebaseerd op contouren uit cardiale MRI, maar het onderliggende algoritme is niet
afhankelijk van de gebruikte beeldmodaliteit. De beschreven methoden zouden daarom
ook toegepast kunnen worden voor bijvoorbeeld de detectie van RWMA in echocardio-
grafie, maar dit vereist nadere experimentele studies.

De diagnostische resultaten van de automatische RWMA analyse zouden ook kunnen
worden gecombineerd met andere beeldmodaliteiten, bijvoorbeeld in een combinatie
van cine MRI en MR perfusie imaging, FDG-PET imaging, gated SPECT imaging en/of
MR infarct imaging (DE-MRI). Ook zou myocard deformatie kunnen worden afgeleid uit
MR tagging, strain-encoded MRI, velocity-encoded MR of echo-doppler beelden van het
myocard. De integratie van informatie over contractie, vervorming en perfusie zou een
volgende stap kunnen zijn in de ontwikkeling van een compleet CAD systeem voor onder-
steuning van de diagnostiek van ischemische hartziekten.
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