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1introduction

Multidimensional unfolding is an analysis technique that creates configu-
rations for two sets of objects based on the pairwise preferences between
elements of these two sets. The distances between the objects correspond
as closely as possible with the given preferences between them, such that
high preferences correspond to small distances and low preferences to large
distances. For example, in 1972, 42 respondents (21 mba students and their
spouses) rank ordered 15 breakfast items according to their preference. Unfold-
ing now portrays both respondents and items as points in a configuration, as
illustrated in Figure 1.1, such that respondents are closest to their first ranked
item and furthest from their last ranked item. Moving away in any direction
from a respondent’s point thus decreases his/her preference for an item. The
respondent’s point itself, the so-called ideal point, thus makes up the high-
est point on the respondent’s preference surface, which has the shape of a
single-peaked function.

The rank numbers for the 15 breakfast items, albeit 1 to 15 for all respon-
dents, are thus retrieved by the distances in the configuration, whether the
respondents actually like the breakfast items or not. Furthermore, it is not
said that when a blueberry muffin is most preferred by two respondents the
muffin is also equally liked by these respondents. To cope with the differ-
ences in the preference scale within and between respondents, the actual rank
numbers are allowed to be changed in magnitude as long as the order per
respondent is maintained. The subsequent respondent-conditional mono-
tone transformation of the rank numbers is optimally determined by the least
squares unfolding technique, and consequently provides a metric solution
from nonmetric data, creating distances from rank orders, respectively.

Notwithstanding the conceptual appeal, unfolding has not been usedmuch
in applications in the last few decades. As Heiser and Busing (2004) put it:
“Applications of multidimensional unfolding lag seriously behind, undoubt-
edly due to the many technical problems that formed a serious obstacle to
successful data analysis …” (Heiser & Busing, 2004, p. 27). The serious ob-
stacle concerns degenerate solutions: Solutions that are perfect in terms of
optimization of the least squares loss function, but useless in terms of interpre-
tation of the unfolding solution. It is a problem that has become a trademark
for unfolding. A mature analysis technique should operate faultlessly and
this could hardly be claimed of unfolding. The freedom of the monotone
transformation, the transformation that changes the nonmetric rank orders
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toast pop-up

buttered toast and jelly

English muffin and margarine

corn muffin and butter

blueberry muffin and margarine

cinnamon toast

hard rolls and butter

toast and marmalade

buttered toast

toast and margarine

cinnamon bun

Danish pastry

glazed donut

coffee cake

jelly donut

Figure 1.1 PREFSCAL unfolding solution for the breakfast data (Green and Rao, 1972) with 42 respondents
(represented by dots) and 15 breakfast items.

into metric pseudo-distances, allows the different rank numbers to become
(almost) identical. With the distances between the respondents and the items
also (almost) identical and in addition equal to the transformed rank numbers,
the solution can be achieved which is perfect in terms of fit, but completely
worthless in terms of interpretative use. The (nonmetric) unfolding model is
no longer identified as the freedom of transformation is such that any arbitrary
data set results in a degenerate solution.

This monograph discusses the type of unfolding analysis that suffers from
the degeneracy problem. It is characterized by an alternating least squares
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minimization procedure for a multidimensional unfolding model that allows
for optimal transformations of the data, irrespective the conditionality of the
data. As such, it deviates from other types of unfolding analysis on model
specification and minimization procedure. Unfolding irt models (Andrich,
1988, 1989; Roberts & Laughlin, 1996; Roberts, Donoghue, & Laughlin, 2000),
for example, exhibit single-peaked, nonmonotonic functions for unidimen-
sional polytomous responses, intended for items that discriminate respondents,
whereas probabilistic unfolding (Sixtl, 1973; Zinnes & Griggs, 1974; de Soete,
Carroll, & DeSarbo, 1986; DeSarbo, de Soete, & Eliashberg, 1987; Ennis, 1993;
MacKay & Zinnes, 1995; Hojo, 1997; MacKay, 2001; Hinich, 2005; MacKay &
Zinnes, 2008) uses a different modeling strategy, using maximum likelihood
estimation to obtain the model parameters.

The remainder of this monograph is composed as follows. Chapter 2
discusses the history of the degeneracy problem at length, specifically the sci-
entific contributions that uncover, discuss, and resolve the obstinate problem.
Multidimensional unfolding can not be considered a fully fledged analysis
technique with this inconvenient problem on the side. The next two chap-
ters, Chapters 3 and 4, offer solutions for the degeneracy problem, the former
for metric unfolding only and the latter for all possible data transformations.
With the degeneracy problem eliminated, multidimensional unfolding can be
developed into a valuable analysis technique. Chapter 5 discusses one such
a development: The addition of independent predictor variables to the un-
folding model not only enhances the interpretation of the solutions, it also
enables us to make predictions. Depending on the available information, this
restricted unfolding model uses demographical information on respondents
to predict respondent locations and item attributes to predict item locations,
or vice versa, that is, the model uses additional locations to predict the variable
values. Chapter 6 investigates the extent to which preferences can be missing
while still maintaining a proper unfolding solution. This monograph finally
discusses some topics for further research.

The technical appendix describes the implementation of the algorithm
developed in Chapter 4. A strong extract of the program ’in development’,
prefscal , belongs to the categories module of ibm spss statistics since
version 14.0 (autumn 2005). The glossary provides insight in the (degen-
erate) solution types used throughout the monograph. It may be said that
multidimensional unfolding is a truly amazing technique, which can handle
all kinds of distance-like data, uses a simple and transparent minimization
method (implementation of prefscal), and produces commonly understand-
able graphical results. Too bad it was not working from the beginning.

5





2unfolding degeneracies’ history

This chapter discusses the contributions that were made to the prob-
lem of degenerate solutions in multidimensional unfolding during the
twentieth century. First, the conceptual and technical foundations of
multidimensional unfolding are given. Then, the work of Roskam (1968),
Kruskal and Carroll (1969), Lingoes (1977), Heiser (1981), Borg and Berg-
ermaier (1982), de Leeuw (1983), DeSarbo and Rao (1984), Heiser (1989),
Kim, Rangaswamy, and DeSarbo (1999) is discussed. We conclude with
a summary and some recent developments.

2.1 introduction

In this chapter, a short historical overview of the developments in the domain
of multidimensional unfolding in the twentieth century is given, with special
attention for the problem of degenerate solutions . Multidimensional unfold-
ing (mdu) is a technique that maps the row and column entities involved in
ranking data jointly onto a low-dimensional space in such a way that the order
of the distances reflects the rank orders. mdu is known to result in degenerate
solutions. These are solutions that fit well and that are characterized by a clus-
tering of the points such that an interpretation of the configuration becomes
infeasible. From the overview, it will be clear that the problem of degeneracies
popped up together with the first feasible algorithms, and that the problem
is a very persistent one. However, almost forty years of stubborn attempts to
overcome it seem to be justified, as these have led to important conceptual
and technical refinements of a beautiful method.

First, we will discuss the conceptual and technical foundations of mul-
tidimensional unfolding, and at the same time we will delineate what we
consider multidimensional unfolding. Then, the main part of the chapter
follows, which is organized in the following way: A chronological order is
maintained, organized around the important contributions that were made
with respect to degenerate solutions. Each new contribution is discussed and
‘illustrated’ with an empirical example on the preferences of 21 mba students
and their wives for 15 breakfast items (P. E. Green & Rao, 1972) (see Table 2.1).
We have chosen these data as they became some kind of norm in the domain:
The success of an unfolding technique is measured by its performance for the

This chapter is a revised version of Busing, F.M.T.A., & Van Deun, K. (2005). Unfolding De-
generacies’ History. In K. Van Deun, Degeneracies in multidimensional unfolding (pp. 29–75).
Unpublished doctoral dissertation, Catholic University Leuven.



unfolding degeneracies’ history

breakfast data. Our analyses of these data are based on strong convergence
criteria, since, as mentioned in de Leeuw (1983, p. 5), Heiser conjectured that
published nontrivial unfolding solutions are probably nontrivial because the
iterations were stopped before the process had properly converged.

2.2 foundations of multidimensional unfolding

The unfolding method itself was at the heart of important contributions that
weremade to the general idea of scaling in the psychological and social sciences
in the first half of the twentieth century: In that period, it was realized that
measurement is possible for things that are not directly related to physical
continua. As we will see, multidimensional unfolding (mdu) is the merger of
two lines of development within this broad domain of scaling: Coombs and
his coworkers introduced the concept of multidimensional unfolding, but a
solution to the problem found its origins in multidimensional scaling (mds).
Part of what will be described here, was inspired by Delbeke (1968) and de
Leeuw and Heiser (1980).

Conceptual foundations

The history ofUnfolding started in 1950 when Coombs, a student ofThurstone,
published a paper in Psychological Review that showed how mere preference
rankings contain metric information. This work built further on the ideas of
indirect measurement by the method of paired comparisons, mainly inspired
by Thurstone, and on the ideas of Guttman (1944, 1946): With his famous
Guttman Scale, Guttman showed how both subjects as well as items can be
scaled, while he only relied on qualitative data and made no distributional
assumptions. Coombs (1950) developed a new type of scale which introduced
a joint continuum, called J scale, on which both individuals and stimuli have
fixed positions, and which “falls logically between an interval scale and an
ordinal scale”(Coombs, 1950, p. 145). The position of the subject represents
his ideal such that when asked which of two stimuli he prefers, this will be
the one which is nearer to his own position on the continuum. The term
Unfolding stems from the following metaphor: “Imagining a hinge located on

Table 2.1 Breakfast items and plotting codes.

Code Breakfast Item Code Breakfast Item Code Breakfast Item

TP toast pop-up CT cinnamon toast CB cinnamon bun
BTJ buttered toast and jelly HRB hard rolls and butter DP Danish pastry
EMM English muffin and margarine TMd toast and marmalade GD glazed donut
CMB corn muffin and butter BT buttered toast CC coffee cake
BMM blueberry muffin and margarine TMn toast and margarine JD jelly donut
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2.2 foundations of multidimensional unfolding

the J scale at the Ci value of the individual and folding the left side of the J
scale over and merging it with the right side. The stimuli on the two sides of
the individual will mesh in such a way that the quantity |Ci −Qj| will be in
progressively ascending magnitude from left to right. The order of the stimuli
on the folded J scale is the I scale for the individual whose Ci value coincides
with the hinge.” (Coombs, 1950, p. 147). Unfolding is the reverse operation,
where the preference orders of the subjects (the I scales) form the data and
the objective is to find the J scale.

The unfolding idea was extended to the multidimensional case by Bennett
and Hays (1960) and Hays and Bennett (1961). The first paper introduced the
multidimensional unfolding model and focused on the problem of determin-
ing the minimum dimensionality required to represent the data. An example
of preferences for hobbies was used to introduce theMultidimensional Unfold-
ing Model: “The model states that each hobby can be characterized by its own
position on each of several underlying attributes ….The model states further
that every subject can be characterized by his own maximum preferences on
each of these attributes, and that he will rank the hobbies according to their
increasing distances from the ideal hobby defined by his own maximum pref-
erence on each attribute …let the attributes be the axes of a multidimensional
space, and interpret ‘distance’ literally as the distance from the point repre-
senting the subject’s ideal …to another point representing one of the hobbies”
(Bennett & Hays, 1960, pp. 27–28). The remainder of the paper discussed
how to find the minimum dimensionality needed to represent the preference
rankings, while the 1961 paper discussed how to derive the configuration.
Note that these papers formed the basis of the chapter on multidimensional
unfolding of Coombs’ influential 1964 book.

Coombs’ work, and that of his coworkers, had an enormous impact on the
conceptual level. However, the solution methods proposed are not tractable:
As noted in Shepard (1962a), these methods yield nonmetric solutions (that
is, subjects are not represented by fixed positions but by isotonic regions) for
ordinal data and rely on certain rules of thumb, so that it is very difficult to set
up algorithms that can be implemented in computer programs. To overcome
these problems, metric unfolding was developed, initiated by Coombs and
Kao (1960) who factor-analyzed the matrix of correlations between subject
rankings, supposing that in this way the coordinates of the preference space
can be found after eliminating an extra dimension labeled as a ‘social utility
dimension’. Ross and Cliff (1964) refined this idea by showing that a principal
components analysis of the double centeredmatrix of squared distances allows
to recover the rank of the space, and finally Schönemann (1970) proposed
an algebraic solution for the metric unfolding model. A high price had to
be paid for this solution, namely the beautiful idea that metric (numerical)
information, i.e., distances, can be derived from qualitative (ordinal) data had

9
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to be given up: the ordinal data are simply treated as numerical data. However,
as will be discussed here below, it is possible to solve the problem in the true
spirit of Coombs and Bennett and Hays, that is, a joint mapping of ranking
data into a multidimensional space such that the order of the distances reflect
the rank orders.

Technical foundations

In the same period that Coombs and Hays worked on the nonmetric multidi-
mensional unfolding model, a big leap was made in the domain of multidi-
mensional scaling, “an approach that has become feasible, only recently, with
the advent of digital computers of sufficient speed and capacity” (Shepard,
1962a, p. 128). Important contributions of Shepard’s paper were: The explicit
formulation of the objective of the algorithm under construction, namely that
a configuration is sought such that the distances are monotonically related to
the data or proximity measures (a collective noun for observed similarities or
dissimilarities), the demonstration that the ranked data “are generally suffi-
cient to lead to a unique and quantitative solution” (Shepard, 1962a, p. 128), and
the development of a computer algorithm that meets the objective. Shepard
(1962a, 1962b) succeeded in achieving the objective put forward by Coombs,
namely obtaining a metric solution from nonmetric data. However, his work
still missed a rigorous numerical foundation and his computer algorithm
contained several ad hoc elements (see Shepard, 1974).

Kruskal (1964a, 1964b) gave multidimensional scaling a firm theoretical
foundation by introducing a “natural quantitative measure of nonmonotonic-
ity” (Kruskal, 1964a, p. 26). This is the well known Stress, possible acronym for
standardized residual sum-of-squares, with raw stress defined as the root
sum-of-squares

r-stress =
√∑

i<j

(γij − dij)
2, (.)

where the γij are the optimally transformed data and the dij are the distances
between a stimulus i and stimulus j. Further on in this chapter, i is used
as an index for subjects and j gets its own summation sign for the stimuli.
Formula (2.1), however, refers to (one-mode) multidimensional scaling. With
the introduction of stress, the sound idea of finding a solution by optimizing
a measurable criterion entered the domain of scaling. Kruskal not only in-
troduced a loss function but he also showed how it could be minimized. The
ability of analyzing incomplete data was also an important feature, especially
for unfolding. Monotone regression was introduced as a technique to find
optimally transformed data that minimizes stress for fixed distances. Nine-
teen hundred sixty four was the year that heralded in an era of research into
nonmetric models for proximity data: A nonmetric breakthrough was realized.
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2.3 roskam, 1968

An integration of the conceptual and technical insights, is found in the
work of Gleason (1967) and Roskam (1968). Gleason developed a general
model for multidimensional scaling that includes the analysis of conditional
off-diagonal proximity data as a special case. An application of his program
to empirical data can be found in the work of Delbeke (1968). Roskam is
discussed in the following section.

In Table 2.2, an overview is given of the key contributions to multidimen-
sional unfolding: For each contribution, the year of apparition, the author(s),
the important findings, and the related computer program are provided.

2.3 roskam, 1968

The dissertation of Roskam (1968) introduced a loss function currently known
as Stress-2 and represented a first systematic study of the nonmetric unfolding
model as a tool for the analysis of preference data. This was the first time
that the need of a proper adaptation of the loss function in order to avoid
trivial solutions was pointed out. Nevertheless, even when using stress-2,
Roskam reported unsatisfying results. Shortly after receiving his phd, he
developed together with Lingoes theminissa program, an acronym that stands
for Michigan-Israel-Netherlands-Integrated-Smallest-Space-Analysis. Both
the dissertation and the software are discussed hereafter. More biographical
information and some references to the work of Roskam can be found in
Bezembinder (1997).

Table 2.2 Overview of key papers and computer programs.

Year Author(s) Contribution Program

1968 Roskam Systematic study of nonmetric unfolding; Development of
Stress-2 to avoid trivial solutions; Notification of importance
of conditionality.

MINIRSA

1969 Kruskal Development of Stress-2 to avoid trivial solutions; First
mention of the problem of degenerate solutions.

KYST
Carroll

1977 Lingoes Imputation of the diagonal blocks and ordinary MDS analysis
to avoid degeneracies.

SSAP

1981 Heiser Restriction with bounds for the unrestrained ordinal transfor-
mations to avoid degeneracies.

SMACOF-3

1982 Borg Combining interval and ordinal transformations to avoid
degeneracies.

(KYST)
Bergermaier

1983 de Leeuw Theoretical proof of the failure of Stress-2; Classification of
degeneracy types.

1984 DeSarbo Fixed cell weights emphasizing certain cells to avoid
degeneracies; Fast algorithmminimizing Stress-2.

GENFOLD-2
Rao

1989 Heiser Improvement of bounded monotone regression, avoiding
user specification of extra parameters.

SMACOF-3

1999 Kim A priori nonmetric transformation followed by a metric
analysis to avoid degeneracies.

NEWFOLD
Rangaswamy
DeSarbo

11
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“Metric Analysis of Ordinal Data in Psychology”

In essence, Roskam’s dissertation is a systematic application of the principles
laid down by Kruskal to several existing formal models for conjoint data: The
distance model, the compensatory distance model, the linear model, and the
additive model. It mainly treats the analysis of rectangular data matrices,
which is typical for unfolding data. Roskam also knew the work of Guttman
and Lingoes, and taking hints from them, he expanded the work of Kruskal
by accounting for the conditionality of the data, at the same time McGee
(1968) permitted matrix-conditional transformations for individual differ-
ences models. This led to the development of a sound unfolding algorithm,
and Roskam was the first one to thoroughly investigate the unfolding model.
An important insight of Roskam was to use the variance of the distances as
a normalizing factor, in order to avoid the occurrence of degenerate solutions
of the equal distance type. The unconditional form of the loss function was
introduced by Kruskal (1965) in the context of factorial experiments. Un-
conditional functions are characterized by the fact that they do not rely on a
partition of the data whereas, for example, row-conditional functions rely on
calculations (mainly transformations) performed row-wise. Kruskal (1965)
used the variance as a scale factor for reasons of computational efficiency.
Roskam’s conditional stress formula is given by,

stress-2 =

√√√√ 1
n

∑
i

∑
j(γij − dij)2∑
j(dij − di)2

, (.)

with i = 1, . . . ,n the row entries (judges) and j = 1, . . . ,m the column entries
(items). Note that normalizing is done for each judge, so that the type of trivial
solution where all items are equidistant from the judges but at a different
distance for different judges, the so-called object-point degeneracy (see de
Leeuw, 1983), cannot occur. To our knowledge, Roskam was not aware of
this phenomenon. His only motivation to normalize per judge was the row-
conditional nature of preference data.

Roskam (1968) gave some thoughts on trivial and degenerate solutions. He
pointed out problems related to the weak order introduced by the monotone
regression procedure: On the one hand, he noted that trivial solutions should
be prevented by a proper normalization of the stress function (such that it is
not possible that all items coincide or are equidistant), on the other hand he
also noted that this does not necessarily exclude that some points will coincide.
What Roskammeant precisely with degenerate and trivial solutions is not very
clear: It seems that he used the word trivial for solutions that have zero stress
due to some collapsed points and degenerate for solutions that are completely
trivial.

12



2.3 roskam, 1968

In the chapter on unfolding, Roskampresented results that show an objects-
circle degeneracy (items on the circumference of a circle and judges in the
middle) which, however, was not recognized as a shortcoming of the unfolding
algorithm (2.2) used. On the contrary, these disappointing results led Roskam
to consider the distance model as probably inappropriate for preference and
other types of two-mode data: “It will be noted that the points are more or
less on the perimeter of the ellipse. Arrangements like these are encountered
often ….The space appears to have an empty region. This may contradict the
assumptions of the distance model …. If indeed the space cannot be filled, one
must reject the distance model as an adequate theory in such cases” (Roskam,
1968, p. 75).

minirsa

Roskam knew the work of Kruskal very well and when working together
with Lingoes in Michigan, he extensively compared the algorithms developed
by Kruskal (m-d-scal, see Kruskal & Carmone, 1969) and by Guttman and
Lingoes (ssa). This collaboration resulted in a monograph supplement of Psy-
chometrika (Lingoes & Roskam, 1973) and in the minissa (Roskam& Lingoes,
1970) program. minissa is structurally equivalent to the program developed
by Kruskal, but uses a hybrid computational approach to the minimization
problem, involving techniques originated by both Kruskal and Guttman: On
the one hand, the optimally transformed data are found using themonotone re-
gression procedure introduced by Kruskal, and on the other hand, coordinates
are found using the (adapted) C-matrix method of Guttman (1968), which
assures convergence (as proven by de Leeuw & Heiser, 1977). So the strengths
of both algorithms are combined in the mini series. Other mini algorithms
were constructed, including minirsa for the analysis of off-diagonal matrices
(published under Roskam’s name, as mentioned by Lingoes & Roskam, 1973).

An aspect of minirsa that is worthmentioning, is the importance attached
to the choice of the initial configuration. One reason for this importance is
to avoid degenerate solutions (Lingoes & Roskam, 1973, p. 8). We analyzed
the breakfast data with default values for the minirsa program that can be
downloaded from the mds(x) site at http://www.newmdsx.com/mini-rsa/
minirsa.htm. The resulting configuration is depicted in Figure 2.1. The break-
fast items are represented by the letter codes. The descriptions of the labels
are presented in Table 2.1. The respondents are represented by dots. This
configuration is a near-degenerate solution of the objects-sphere type as most
of the breakfast items lie on a circle centered around a lot of judges.

13
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TP

BT

EMM

JD

CT
BMM

HRB

TMd
BTJ
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Figure 2.1 MINIRSA solution for the breakfast data (left-hand panel) and KYST unfolding solution of the
breakfast data using Stress-2 and a rational start (right-hand panel).

2.4 kruskal and carroll, 1969

Kruskal made amajor contribution to the domain of multidimensional scaling
in general by formalizing the work of Shepard, and more particularly by
introducing the stress function. His 1964 papers concernedmultidimensional
scaling but later, together with Carroll, he also considered the unfolding case,
for which Carroll, in more than one occasion, laid down the taxonomy. Carroll
defined a degenerate configuration as a nominal perfect solution, one that
is guaranteed to yield zero stress independent of the data. Carroll states:
“Thus it follows that the only way in which a nonmetric analysis of any off-
diagonal matrix should be done is to split by rows (i.e., treat the matrix as
conditional, even if it is not) and use stressform2”, which summarized the
1969 publication which we will discuss here below.

“Geometrical models and badness-of-fit functions”

r-stress, as defined in (2.1), is dependent on the size of the configuration;
shrinking the configuration will decrease stress. Initially, Kruskal and Carroll
proposed two normalizing factors: The sum of squared distances and the
variance of the distances (Kruskal, 1964a). In his 1964 papers, Kruskal chose
the first factor and stress was there defined by

stress-1 =
√∑

i<j(γij − dij)2∑
i<j d

2
ij

.
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2.4 kruskal and carroll, 1969

Later on (Kruskal & Carroll, 1969), the two stress functions based on differ-
ent normalization functions were compared. It is at this point that the names
stress formula one (stress-1) and stress formula two (stress-2) were
introduced. Kruskal’s stress-2 is exactly the same formula as the one pro-
posed by Roskam expressed in (2.2). The use of stress formula two was
recommended to avoid trivial solutions in the unfolding case. Unfolding was
not yet really seen as a special case of multidimensional scaling: “In a situation
which closely resembles [emphasis added] unfolding, namely where the only
dissimilarities which have been observed are between objects of two different
types and no dissimilarities have been observed between the objects of each
type.” (Kruskal & Carroll, 1969, pp. 661–662). Unfolding was clearly pre-
sented as a special case of multidimensional scaling by Kruskal and Shepard
in their 1974 paper, where it was named the so-called ‘off-diagonal rectangular
sub-matrix generalization’.

The preference for stress-2 was motivated by the following observation:
A two-point solution where all subjects fall together in one point and all ob-
jects fall together in another point (see Figure 4.1) would have a stress-1
equal to zero giving a trivial solution with a perfect fit. With stress-2 this
configuration cannot occur. In the same paper, Kruskal and Carroll stressed
the importance of calculating stress-2 for each judge separately with separate
monotone regressions for each judge (row-conditional) and taking the mean
of these values as an overall badness-of-fit measure. In case that the denomi-
nator in (2.2) would be replaced by a summation of the individual variances,
another trivial solution is possible: The two-plus-two-point solution where
all judges except one fall together and all objects except one fall together (the
so-called two-plus-two-point configuration, see Figure 4.1). Note that this sit-
uation differs from the one where the denominator is set equal to the variance
calculated over all subjects: In this case, an object-point trivial solution will
occur, as mentioned in Section 2.3 on Roskam.

In spite of all these precautions (and others, like taking the square root
over the mean squared stress-2 instead of taking the mean of stress-2),
degenerate solutions could not be avoided: “Our personal belief is that our
badness-of-fit function is still not the right one to use in this situation. We are
looking for some mathematically satisfying way of changing it which would
appear to provide a way out. So far we have not been able to find it.” (Kruskal
& Carroll, 1969, p. 670).

kyst

kyst is a program for multidimensional scaling and unfolding analysis. It
represents a merger of m-d-scal, the first program(s) written by Kruskal to
perform multidimensional scaling, and torsca (F. W. Young & Torgerson,
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1967). The program and an accompanying manual can be downloaded from
the netlib site at http://www.netlib.no/netlib/mds/. Here we used it to
perform an unfolding analysis of the breakfast data. The initial configuration
was obtained with a classical Torgerson Scaling. The resulting configuration is
depicted in Figure 2.1: The breakfast items approximately lie on a circle with a
lot of subjects situated in the center. This is a near-degenerate solution of the
objects-sphere type.

2.5 lingoes, 1977

The major contribution of Lingoes to the domain of multidimensional unfold-
ing is formed by the computer programs he developed together with Guttman
and with Roskam. In collaboration with Guttman, he developed the Guttman-
Lingoes, or g-l, series of programs, which include programs for multidimen-
sional scaling or smallest space analysis (ssa), but also for multidimensional
scalogram analysis (msa) and for conjoint measurement (cm). Among these
programs, we find an early unfolding program, ssar-ii , a program for the
smallest space analysis of “off-diagonal rectangular sub-matrices involving
the much weaker constraints of maintaining order information within rows
(columns) only” (Lingoes, 1966, p. 322). Later, Lingoes and Roskam developed
minissa and minirsa (see Section 2.3 on Roskam). Lingoes explicitly con-
tributed to the problem of degenerate solutions by developing an approach
based on the idea of completing the mds matrix (Lingoes, 1977) This publi-
cation will be discussed in the next subsection, although it should be noted
that it is based on a reprint of material published by the Centre National de la
Recherche Scientifique that must have appeared in 1971 or 1972, as informed
to us by the cnrs. We did not find the original publication, however.

“A general nonparametric model for representing objects and attributes in a joint
metric space”

Within the nonmetric g-l program series our special interest goes to the pro-
grams that handle extended data matrices (Lingoes, 1977), the g-l ssap series.
The initial data matrix is either a score matrix (ordinal) or an attribute matrix
(binary). A square symmetric matrix, suitable for mds (multidimensional
scaling), is obtained by measuring the association between the row elements
and also between the column elements. For example, the similarity between
two judges can be measured by calculating the Spearman rank correlation
between their rankings. In this way, the matrix of between-subject dissimilar-
ities can be derived from the preference data. Lingoes proposed to use the
same measure to derive the matrix of between-object dissimilarities. Joining
the two derived matrices to the preference scores matrix yields a super-matrix

16



2.5 lingoes, 1977

TPBTEMMJDCTBMMHRBTMdBTJTMnCBDPGDCCCMB

TP

BT

EMM

JD

CTBMM

HRB

TMdBTJ

TMn

CB

DP

GD

CC
CMB

Figure 2.2 SSAP-II unfolding solution of the breakfast data (left-hand panel) with all breakfast items in a
clutter of black ink on the left side and a mixed ordinal-interval unfolding solution of the breakfast data
(right-hand panel).

of conjoined matrices which “retain all of their separate properties in respect
to order-ability and comparability” (Lingoes, 1977, p. 481). This means that the
two diagonal blocks are treated as matrix conditional while the off-diagonal
block is treated as row-conditional. No comparisons are made between blocks.
Note that Lingoes proposed this approach as a means to solve the problem
of degenerate solutions. He conjectured that for techniques that only use
“inter-set information, the solutions may at times be so weakly constrained
that patterning is either lost or obscured or even degeneracy may result in
some cases” (Lingoes, 1977, p. 480).

ssap-ii

We illustrate the ssap-ii program with the breakfast data. As we did not find
the original program, we wrote one following the guidelines in Lingoes (1977):
The loss function is r-stress, normalized by the sum of squared distances,
which, following Lingoes is minimized in an iterative and alternating way
where the transformed data are computed by using the rank-image approach
and where the coordinates where computed by using the Guttman transform.
As a measure of association, we used Spearman’s rank correlation. With a
rational start, we obtained after 100 iterations the configuration depicted in
Figure 2.2. This is clearly an object-point degeneracy, where the items are
clustered at the bottom-left of the plot.
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2.6 heiser, 1981

Heiser started working on algorithms and (restrictions in) multidimensional
scaling and unfolding in the late seventies, collaborating with de Leeuw (de
Leeuw & Heiser, 1977; Heiser & de Leeuw, 1979b; de Leeuw & Heiser, 1980,
1982). A convergent multidimensional scaling algorithm was developed, based
on work of Guttman (see de Leeuw & Heiser, 1977), using an iterative ma-
jorization approach: “This algorithm is an improvement over alscal in two
major ways (a) It is simpler, faster, and more elegant; and (b) the algorithm
fits distances instead of squared distances, which is more desirable. …, [it]
will become the least squares program of choice, particulary if made available
in a major statistical system.” (F. W. Young, 1987, p. 33).

A convergent unfolding algorithm was laid down in Heiser (1987a), based
on earlier work in de Leeuw and Heiser (1977); Heiser and de Leeuw (1979b)
and de Leeuw and Heiser (1980), but his first attempt to overcome the degen-
eracy problem appeared in his dissertation (Heiser, 1981). This comprehensive
work on unfolding discusses many topics, of which ‘restrictions on the trans-
formations’ discusses a procedure to overcome the degeneracy problem.

“Unfolding analysis of proximity data”

In his dissertation, Heiser showed that a nonmetric algorithm is biased towards
transformations that render equal transformed proximities and concluded that
the solution space for ordinal transformations in nonmetric unfolding is too
big: “We shouldn’t have made these cones that big in the first place” (Heiser,
1981, p. 221), a similar conclusion as Lingoes (1977) when hementioned ‘weakly
constraint unfolding solutions’. A flat transformation, that is, a degenerate
solution, should be avoided by tightening up the cones, i.e., by restricting the
solution space. Heiser decided to explore bounded monotone regression, which
defines a smaller class of ‘smooth’ functions. For this purpose, Heiser defines
lower bounds (α) and upper bounds (β) for the transformed data (Γ), based on
the raw data (Δ) with the smallest dissimilarity set to zero (Heiser, 1981, p. 223),
such that β(δl − δl−1) � γl − γl−1 � α(δl − δl−1). With α = 0 and β = ∞,
this reduces to an ordinary monotone regression problem with non-negativity
restrictions, and with α = β = 1, it reduces to metric unfolding. For reasons
of symmetry, Heiser chose β = 1/α with 0 � α � 1, making α smaller means
a bigger cone, and introducing degeneracies for α → 0. To determine an
optimal α, Heiser realized that, although minimizing a variant of stress-2 led
to certain degenerate solutions, not minimizing this function, but computing
it as a separate statistic along with the minimization of r-stress, may provide
a sensitive measure of degeneracy, a measure that can at least be employed to
define an optimal value for α, if there are no other grounds to choose. Heiser
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showed that bounded monotone regression can be successfully employed, and
he did so on multiple data sets. “Thus it seems that the bounded regression
approach enables us to avoid the non-informative circles and spheres which
pop up all the time with ordinary unfolding programs. Maybe it should be
emphasized that we did not really ‘solve’ the problem, in the sense of improving
technical aspects of the algorithm. We simply defined another problem, which
we solve, but which lacks the elegance of uniqueness” (Heiser, 1981, pp. 230–
331).

smacof-3b

The algorithms originating from de Leeuw and Heiser (1977) are implemented
in a series of programs called smacof , acronym for scaling by majorizing a
complex function (see also de Leeuw & Heiser, 1980). The metric unfolding
variant is called smacof-3 (Heiser & de Leeuw, 1979a, 1979b), whereas the
nonmetricmultidimensional unfolding spin-off is called smacof-3b (Heiser,
1987b). Unfortunately, the code doesn’t exist anymore. An example of the
successor of bounded monotone regression will be shown in Section 2.10.

One interesting option in smacof-3 is the centroid start, where the column
objects are restricted to be in the centroids of those rows objects that have the
highest preferences for those particular column objects. These restrictions are
only used to provide better initial configurations (Heiser & de Leeuw, 1979a),
following Lingoes and Roskam (1973, p. 8), or to provide better interpretation
(Heiser, personal communication, May 18, 2005). The centroid restrictions,
however, are an extreme case of an approach further developed in quite a
different way by DeSarbo and Rao (1984, p. 155) and as such also applicable to
avoid degeneracies.

2.7 borg and bergermaier, 1982

Borg is the author and editor of several books on multidimensional scaling
and the author of a number of journal papers on the same topic. Within this
domain, his focus is on facet theory, applied problems, and the scaling of
individual differences. One of his papers, co-authored by Bergermaier (see
Borg & Bergermaier, 1982, but also, Borg & Groenen, 2005, Chapter 14), deals
with the problem of degenerate solutions in unfolding: A solution is proposed
that is based on a mixed ordinal-interval approach.

“Degenerationsprobleme im Unfolding und Ihre Lösung”

Borg and Bergermaier (1982), who applied kyst to minimize stress-2, ob-
served that ordinal unfolding may yield degenerate solutions and that interval
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unfolding may yield the wrong slope, that is, more preferred items are more
distant in the configuration, an artefact that can be avoided by using non-
negative least squares. They proposed, however, to use a hybrid ordinal-linear
approach: “Ordinal unfolding guarantees that the regression line has the right
slope, while interval unfolding succeeds in avoiding degeneracies. Thus, it ap-
pears natural to combine both models into a hybrid model.” (Borg & Groenen,
2005, p. 249). Such a hybrid model can be realized by minimizing

stress-2hybrid = a× stress-2ordinal + (1− a)× stress-2interval (.)

with 0 � a � 1. This type of loss function can be minimized with kyst:
“Sometimes it is desirable to do a scaling or an unfolding using linear (or poly-
nomial) regression, but it is necessary to assure that the regression function is
essentially monotone over the region containing the data values. While kyst
cannot manage quite this, it can approximate it.” (Kruskal, Young, & Seery,
1978, p. 28).

Mixed ordinal-interval approach (kyst)

We used the hybrid model proposed by Borg and Bergermaier (1982) to unfold
the breakfast data. To attain this goal, we used kyst for a mixed ordinal-
interval row-conditional unfolding, with a = 0.5, minimizing (2.3). The
resulting configuration is plotted in Figure 2.2: Although the solution is not
completely degenerate, it still is difficult to interpret and tends to a degeneracy
of the objects-sphere type. This partially degenerate solution comes as no big
surprise as, in the mean time, it is known that even unfolding with an interval
transformation may lead to degenerate solutions (see Chapter 3). Borg and
Groenen (2005) changed the ordinal-interval approach into a working ordinal-
ratio approach, due to the fixed (zero) intercept of the ratio transformation.

2.8 de leeuw, 1983

Early contributions of de Leeuw to mds were to the development of algorithms,
with special attention for convergence properties (de Leeuw, 1977a; de Leeuw
& Heiser, 1977, 1980; Takane, Young, & de Leeuw, 1977). This has led to the
alscal (Takane et al., 1977; F. W. Young & Lewyckyj, 1979) and smacof algo-
rithms (see Section 2.6 on Heiser) that both guarantee monotone convergence
of the loss function values. In de Leeuw, 1977a, a convergence proof was given
for an mds algorithm that defines loss on the untransformed distances, and
not, as is the case with alscal, on the squared distances. The metric version
of this algorithm turns out to be identical to Guttman’s C-matrix method (see
Guttman, 1968). A convergent nonmetric algorithm was then obtained by
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2.8 de leeuw, 1983

combining the metric step with monotone regression. De Leeuw (1983) made
an important contribution to unfolding by proving that even the use of a smart
loss function, such as the conditional version of stress-2, cannot prevent the
occurrence of degenerate solutions. In fact, this paper was the first one to
formally prove how problematic the approach to unfolding as a special form
of multidimensional scaling is: “The conclusion is that nonmetric unfolding,
as currently formalized, is an inherently ill-posed problem and that a different
approach is called for.” (de Leeuw, 1983, p. ii).

“On degenerate nonmetric unfolding solutions”

In de Leeuw, 1983, first an overview is given of the different stress functions
that have been used in unfolding analysis. The construction of these functions
was led by one principle, namely avoiding trivial solutions that occur by
making loss undefined (that is, equal to 0/0) at these trivial solutions. With
this objective in mind, the conditional version of stress-2 was introduced
both by Roskam (1968) and Kruskal and Carroll (1969). No trivial solution
was found for stress-2, but degenerate solutions appeared often (and, as
communicated by Heiser, in de Leeuw, 1983, p. 5, one may wonder if the
non-degenerate solutions that were reported are suboptimal solutions, in the
sense that they were obtained with too few iterations). De Leeuw made a clear
distinction between trivial and degenerate solutions: Trivial solutions have zero
stress, are not interpretable, and can be avoided by a proper normalization,
while degenerate solutions have often non-zero stress, are not interpretable,
and cannot be avoided by a proper normalization. De Leeuw (1983, p. 5)
showed that “the whole idea of hoping that a clever choice of the denominator
solves all problems is basically unsound. There is no reason at all why the
iterative process should keep away from 0/0.”

The formal proof of the problem can be described briefly as follows. De
Leeuw started from trivial solutions like the objects-circle to which he added
small perturbations. He then proved two theorems by using l’Hospital rule to
study the behavior of stress-2 along differentiable paths in the neighborhood
of trivial solutions. The first theoremmakes clear that, when the perturbations
decrease to zero (this is, the solution converges to the trivial solution), stress
converges to a finite value and not to 0/0, such that the solution is not steered
away from the trivial solution. The second theorem shows that a configura-
tion can be found arbitrarily close to a trivial solution with arbitrarily small
derivatives, or, the function can converge to a minimum in the very near
neighborhood of a trivial solution.

By studying the behavior of stress-2 in the neighborhood of frequently
occurring degeneracies of the objects-circle, object-point and two-point type,
de Leeuw showed that respectively a vector model, a signed compensatory
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Figure 2.3 Configuration for the breakfast data when minimizing Stress-2 with a convergent algorithm. The
right-hand panel depicts a detail of the left-hand panel.

distance model, or a row-conditional version of the additive model is fitted.
This paper, originally a technical report of the Department of Data Theory,
University of Leiden, May 1983, can be obtained at http://repositories
.cdlib.org/uclastat/papers/2006010109/, ucla, Department of Statistics
Papers.

Application: Breakfast data

We illustrate the statements made by de Leeuw for the unfolding analysis of
the breakfast data. Here, we used an algorithm that minimizes stress-2 by
an alternation between monotone regression and an update of the coordi-
nates based on iterative majorization (van Deun, Groenen, Heiser, Busing, &
Delbeke, 2005): In practice, stress-2 is decreased in each step. The resulting
configuration is depicted in Figure 2.3: For most of the subjects, it shows the
same type of objects-circle degeneracy found previously when minimizing
stress-2 with minirsa and kyst. Conform to de Leeuw (1983), we found a
configuration that is partially degenerate, with a few subjects that are distant
in the configuration which corresponds to a vector model representation (the
left-hand panel of Figure 2.3), and with the breakfast items on a circle where
the center is formed by most of the subjects which corresponds to a signed
compensatory model representation (the right-hand panel of Figure 2.3).
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2.9 desarbo and rao, 1984

DeSarbo wrote his doctoral dissertation (DeSarbo, 1978), an unpublished
memorandum (DeSarbo & Carroll, 1983), and several articles on (weighted)
least squares unfolding (DeSarbo & Carroll, 1980; DeSarbo & Rao, 1984;
DeSarbo &Carroll, 1985). In these publications, DeSarbo describes two related
models: Two-way unfolding (DeSarbo & Rao, 1984) and three-way unfolding
(DeSarbo & Carroll, 1985) models. In these papers, weighting is suggested as a
mean to avoid degenerate solutions.

From 1986 on, as far as unfolding is concerned, DeSarbo specializes in
probabilistic multidimensional unfolding models, threshold models (DeSarbo
& Hoffman, 1987), and maximum likelihood estimation for paired compari-
son data, (asymmetric) binary choice data, and pick any/j data (DeSarbo &
Cho, 1989). Degeneracy in unfolding is not an issue for some time, until his
cooperation with Kim and Rangaswamy (Kim et al., 1999).

“genfold2: A set of models and algorithms for the general unfolding
analysis of preference/dominance data”

DeSarbo and Rao (1984) is the first published version of DeSarbo (1978),
although it was already in an ama proceedings article in 1979 (personal com-
munication, 2005), and in DeSarbo and Carroll (1983), and fully published in
DeSarbo and Carroll (1985). DeSarbo and Rao (1984) describe a general set of
unfolding models for analyzing two-way preference or dominance data. The
set contains many models or options, such as, internal and external unfolding
(Carroll, 1972), constrained and unconstrained analysis (see also de Leeuw &
Heiser, 1980), conditional and unconditional as well as metric and nonmetric
transformations, and simple, weighted, and generalized unfolding models
(Carroll & Chang, 1967). The objective function for all models is weighted
r-stress with squared distances and the function is minimized by alternat-
ing weighted least squares. The three-way variant only estimates the metric
unfolding model (DeSarbo & Carroll, 1985).

In order to avoid degeneracy, DeSarbo and his co-authors propose to use
weights for the data. Since the possible cause of degeneracy is considered to
be the error in the data, dissimilarities are allowed to be weighted depending
on their reliability. For ratio data, the weights may be defined aswij = δ

−p
ij ,

whereas for interval and ordinal data the weighting function might be more
meaningful using the (row) ranks of the data r(δij) instead of δij, or bimodal
or step weighting functions might be specified (DeSarbo & Rao, 1984, p. 156).
Both the weighting function and the value of p can be made by trial and
error, i.e., the choice of p and the accompanying function is a empirical issue,
depending upon the data.
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Figure 2.4 GENFOLD solution with p=2 for the breakfast data minimizing Stress-2 (left-hand panel) and
Stress-1 (right-hand panel).

In a Monte Carlo study, evidence was provided for the robustness of the
methodology, although a proper, more extensive mc study has yet to be done.
Nevertheless, applications with Pain Reliever Preference Data, Residential
Communication Devices Data, Reading Profile Data, and the Miller-Nicely
Data show that the genfold procedure is able to provide interpretable con-
figurations, without a general form of the weights and a trial-and-error choice
of p.

genfold-2

genfold-2 (DeSarbo&Rao, 1984) (Kim, Rangaswamy, &DeSarbo, 1999, even
mention a genfold)was nevermade publicly available, but the loss function is
simple enough to be minimized with another unfolding program, of which we
have chosen kyst, as long as data weighting is available. In kyst, the weights
can be specified as a function of the data, such that it conforms towij = δ

−p
ij =

r(δij)
−p, as the breakfast data contain complete rank order information for

each row, and with p = 2. In Figure 2.4, left-hand panel, the unfolding solution
for the breakfast data is obtained for stress-2. Although DeSarbo and Rao
(1984, p. 168) mention that the appropriate loss function to be used in the case
of non-metric analyses is stress-2, Figure 2.4, right-hand panel, shows the
solution obtained with stress-1. This allows us to differentiate between non-
degeneracy due to the specific weighting function (as proposed by DeSarbo
& Rao, 1984) and non-degeneracy due to normalization on the variance (as
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proposed by Roskam, 1968). Clearly, without the latter, weighting the data is
not enough to prevent degeneracy.

2.10 heiser, 1989

Heiser (1981) showed that bounded monotone regression offered a way out
of non-informative circles and spheres, but introduced unwanted additional
parameters. In the years following his dissertation, Heiser continued working
on this problem, which finally leaded to a smooth monotone regression pro-
cedure (Heiser & Meulman, 1983b; Heiser, 1985, 1986, 1987b, 1989): Bounded
monotone regression with internal bounds.

“Order invariant unfolding analysis under smoothness restrictions”

Already in his dissertation, Heiser realized that the two additional parameters
for the bounded monotone regression were a nuisance. Although flexible, the
detailed manipulation of the bounds was not attractive for a general procedure
or strategy. Instead of external or user-specified bounds, Heiser searched for
more natural or internally determined bounds, and found them in the form
of a mean step. Details on computation, treatment of ties, and application
of this approach to square symmetric nonmetric multidimensional scaling
can be found in Heiser (1985). In later publications, the procedure is applied
to the unfolding case (cf. Heiser, 1986, 1987b, 1989). The general idea of
smooth monotone regression, as bounded monotone regression with the
mean step is called, is the following. Assume there is only one vector with
dissimilarities to be transformed and the dissimilarities are in increasing
order. While monotonicity is a condition on the first order differences, i.e.,
γl − γl−1 � 0, smoothness is defined as a condition on the second order
differences, as |θl − θl−1 | � θ, where θl = γl − γl−1 and θ is themean step.
In words: Each step may not deviate more from the previous step than the
mean step. Even with this smoothness restriction, considerable amounts of
nonlinearity, such as quadratically and logarithmically increasing values, are
still possible. The technical report further describes the treatment of ties and
discusses algorithmic considerations, such as the use of explicit normalization
on the transformed proximities and the switch to a fasterminimization strategy.
This last improvement can not diminish the huge computational burden of the
smooth monotone regression procedure, which in those days already became
overwhelming for 25 objects, i.e., for (25× 24)/2 = 300 dissimilarities.

Heiser (1989) described different forms of degenerate solutions and why
these solutions occur so often in unfolding. Normalization on the variance
seems to be the best choice, but not for an unconditional transformation
of the data. With row-conditional transformations, even when using the
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Figure 2.5 SMACOF-3b solution for the breakfast data (left-hand panel) and NEWFOLD solution for the
breakfast data (right-hand panel).

variance normalization (per row), degenerate solutions occur and can take
all kinds of forms. Smooth monotone regression can be used to avoid “a
distance distribution in which all mass is concentrated at one or two values”
(Heiser, 1989, p. 15) and doesn’t even ‘need’ the variance normalization. For
the applications to the study of the 1960 presidential campaign (Sherif, Sherif,
& Nebergall, 1965) and power in the classroom (Gold, 1958), “use was made of
the fortran program smacof-3b, which has been designed to minimize the
normalized raw stress under the smoothness restrictions, with the sum of
squared transformed proximities as the norm” (Heiser, 1989, p. 19).

smacof-3b

Although smacof-3b does not exist anymore, prefscal (Busing, Heiser,
Neufeglise, & Meulman, 2005) is used here to perform the unfolding analy-
sis with smooth monotone regression. prefscal, with the penalty function
incorporated in the algorithm disabled, uses an identical minimization func-
tion as smacof-3b: prefscal uses implicit normalization instead of explicit
normalization and a slightly different update algorithm (see Technical Ap-
pendix B). In Figure 2.5, the solution for the breakfast data is obtained for
normalized raw stress with smooth monotone regression. The solution
does not appear to be degenerate, but it took more than 2 minutes with the
default convergence criteria and more than 30 minutes with the strictest con-
vergence criteria (with the ordinary monotone regression procedure, it took
about 0.4 seconds).
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2.11 kim, rangaswamy, and desarbo, 1999

The main idea of Kim’s dissertation (Kim, 1990) was published as Kim, Ran-
gaswamy, and DeSarbo (1999) and presented earlier at two marketing science
conferences in 1989 and 1990. Concerning multidimensional scaling and un-
folding, there were no further publications by these authors, although there is
work in progress in the field of external unfolding (fixfold): A microsoft
windows version of fixfold is released in the next release of the Marketing
Engineering software at http://www.mktgeng.com.

“A quasi-metric approach to multidimensional unfolding for reducing the
occurrence of degenerate solutions”

Kim, Rangaswamy, and DeSarbo (1999) describe an approach that reduces
the occurrence of degenerate solutions. A non-degenerate solution is charac-
terized by intermixedness of both sets of objects in the configuration. Such a
configuration is pursued by “maximally differentiating the point in the joint
space while, at the same time, maintaining correspondence as closely as pos-
sible to the rank order of the preference” (Kim et al., 1999, p. 150), i.e., by
maximizing the preference differentials, the differences between consecutive
preferences. In the model, the preference differentials are bounded between
lower and upper limits, which are implicitly incorporated in the objective
function and in the scaling algorithm. “To prevent degeneracy and assure
intermixedness, our algorithm uses the raw data to set up an a priorimatrix of
target distances between the ideal point and the stimulus points, to be satisfied
by a resulting configuration. This matrix, denoted asΔ, incorporates the lower
bound on the preference differentials, …” (Kim et al., 1999, p. 152). This part
of the approach is similar to the bounded regression approach used by Heiser
(see Section 2.6).

The target set of distances for nonmetric unfolding can be equally spaced
or unequally spaced. The equal option conforms to a linear function between
differentials and distances, while the unequal option specifies the differentials
randomly (drawn from a normal distribution), with increased spacing depend-
ing on the preference ranks. The target set of distances for metric unfolding
simply sets the lowest value of the data equal to zero, by lowering the data
with its minimum value. After this a priori transformation of the data, Kim
et al. continue with a row-conditional metric analysis without estimating an
additive constant.

A Monte Carlo simulation study shows that, “on average, the proposed
model dominates the competing models on all measures” and “is generally
robust across a number of experimental factors” (Kim et al., 1999, pp. 160–
163). In two applications, consumer studies of preference for mba programs
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and analgesic preference, the proposed procedure performs better than kyst,
alscal, smacof-3, and genfold-3, and “does not appear to be trading off as
much preference recovery with non-degenerate solutions” (Kim et al., 1999,
pp. 163–172).

newfold

newfold is described in Kim et al. (1999) and specific details of the opti-
mization procedure can be found in Kim (1990). newfold is a dos program
and will only run in console mode under microsoft windows. It handles
both metric and non-metric data for both internal and external unfolding.
The starting configuration for the program can either be rational for stimuli,
random, or user-provided. After the a priori computation of the target set
of distances, a conjugate-gradient method with restarts is used to find the
optimal locations for the respondent and product points. In Figure 2.5, the
solution for the breakfast data is obtained for newfold with the unequal
option for nonmetric data and a rational starting stimuli configuration. The
points of both sets are well intermixed, but the trade-off with correspondence
(between data and differentials) is bound to provide solutions with worse fit
statistics than solutions with optimally transformed data.

2.12 summary

We can summarize this history on the degeneracy problem in multidimen-
sional unfolding as follows. Roskam, who was the first one to systematically
investigate multidimensional unfolding with a sound algorithm, discovered
the need to adapt the stress function used in multidimensional scaling, in
order to avoid trivial solutions like the objects-sphere. This has led to the
development of what is currently known as stress-2, a function characterized
by a normalization on the variance of the distances per row of the data matrix.
Both Roskam (1968) and Kruskal and Carroll (1969) reported disappointing
results as solutions kept popping up that are degenerate: Although the loss
function effectively avoids trivial solutions, very often configurations were
found that highly resemble the trivial solutions found with inappropriate
normalizations of the stress function (stress-1). In 1983, de Leeuw proved
that minimizing stress-2 is no guarantee against degeneracies as it does not
stir solutions away from trivial solutions. He also showed that the unfolding
algorithms are even attracted to the neighborhood of trivial solutions, and
that in these neighborhoods other models are fitted.

Early on, the realization that adaptations of the loss function did not yield
the desired results, drew attention to other aspects of the multidimensional
unfolding procedure. Lingoes, probably in 1971 (see Lingoes, 1977), turned
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his attention to the fact that the unfolding problem is weakly constrained by
only supplying inter-set information: To avoid degeneracies, he constrained
the data more by completing the diagonal blocks of the matrix that forms
the input of the multidimensional scaling analysis. The weakness stems from
the monotone regression procedure: It is based on averaging over distances
that are not in the proper order, with the result that a lot of transformed data
become equal. These equal data, in turn, result in a lot of equal distances, a
situation that is typical of degenerate solutions. In this framework, the work
of Heiser (1981, 1989), Borg and Bergermaier (1982), and Kim et al. (1999) is
situated, who all restrict the transformation in some way, making the weakly
constrained unfolding problem less weak.

A last aspect of the unfolding situation that was considered, is found in
the work of DeSarbo and Rao (1984) who used weights to reduce the error in
the data, which they thought to be responsible for degeneracies.

2.13 recent developments

The search for non-degenerate solutions did not end with the contribution of
Kim et al. (1999). Nevertheless, recent developments are tributary to the ideas
developed in the contributions we discussed here.

The work of Lingoes (1977) is in line with Steverink, Heiser, and van der
Kloot (2002), Borg and Groenen (2005) and van Deun, Heiser, and Delbeke
(2007), who developed unfolding as a multidimensional scaling analysis of a
completed super-matrix. In line with Lingoes (1977), van Deun et al. (2007)
proposed a mdu technique that relies on a mds analysis of a completed super-
matrix. Because a block conditional approach yields degenerate solutions,
they stressed the need of comparable dissimilarities such that an uncondi-
tional mds analysis is warranted. Their proposal is used as one of the possible
initial configurations for prefscal. A matlab procedure can be obtained
from katrijn.vandeun@psy.kuleuven.be. Except for extending the work of
Lingoes (1977), Borg and Groenen (2005) also correct the approach taken
in Borg and Bergermaier (1982). Since it is now known that unfolding with
interval transformations can also lead to degenerate solution (see Chapter 3),
the ordinal-interval approach is replaced with an ordinal-ratio approach.

The work of de Leeuw (1983) is extended by van Deun, Groenen, Heiser, et
al. (2005). They illustrate how degenerate solutions are informative and fit the
data well, and how these solutions can be made interpretable by resorting to
another type of representation than a distance type. The insight of de Leeuw
(1983) that a vector model is fitted in the neighborhood of an object point
degeneracy and a research suggestion from DeSarbo and Rao (1984), inspired
van Deun, Groenen, and Delbeke (2006) to solve the occurrence of (some)
degeneracies by using a hybrid vector ideal point model for the representation
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of preference data. To solve their model, a least squares loss function was
introduced and they developed an accompanying algorithm called vipscal ,
acronym for vector ideal point scaling. vipscal is available in matlab from
katrijn.vandeun@psy.kuleuven.be.

In the same tradition as Borg and Bergermaier (1982), Busing (2006)
proposes to adjust the transformation function, by adding a penalty on an
unwanted high intercept to force an uphill slope for the transformation(s) to
avoid degenerate solutions. This idea is further developed in Chapter 3. Finally,
there is the work of Roskam (1968), Kruskal and Carroll (1969), Heiser (1981,
1989), and Groenen (1993) that has inspired Busing, Groenen, and Heiser
(2005) to develop a penalized stress function to overcome the degeneracy
problem. The details of this approach are discussed in Chapter 4.
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It has long been thought that degeneracy in unfolding only concerned
nonmetric unfolding. In the next chapter we will establish that degener-
acy occurs for all transformations which include estimation of an inter-
cept and a slope. Consequently, degeneracy also plaguesmetric unfolding,
since one member of the metric transformation family, the interval trans-
formation, includes estimation of both an intercept and a slope. In this
chapter, a simple solution is proposed to the degeneracy problem for met-
ric unfolding by penalizing for an undesirable intercept. An application
of this approach will illustrate its potential.

3.1 introduction

Unfolding is a technique that analyzes proximity data between two sets of
objects (Bennett & Hays, 1960; Coombs, 1964). Well-known examples of such
proximity data are rank orders of breakfast items scored by mba students
and their wives (P. E. Green & Rao, 1972), paired comparison preferences
from students for tea, with different tea temperatures and different amounts
of sugar (Carroll, 1972), and citation frequencies between scientific journals
(Weeks & Bentler, 1982). In all these cases, the proximities can be interpreted
in terms of distances between two objects from different sets. As such, small
distances should correspond to students and their highest ranked breakfast
item, to students and their most preferred cup of tea, or between journals
with many co-citations. On the other hand, large distances should be reserved
for students and their lowest ranked breakfast items, for students and their
least favorable cups of tea, or for journals with no or very few co-citations.
Unfolding finds distances that correspond closest to the proximities.

Programs for unfolding are scarce. Programs for unfolding which are able
to produce non-degenerate solutions are even more difficult to find (character-
istics of (non)degenerate solutions will be described later). The commercially
available programs, alscal (Takane et al., 1977) and systat (Wilkinson, 1999),
tend to produce degenerate solutions, although premature termination of the
algorithm often provides a solution on its way towards a degenerate solution.
genfold (DeSarbo & Rao, 1984) is not available at all, besides, it uses a weight-
ing scheme that is unable to avoid degenerate solutions (see Busing, Groenen,

This chapter is an adapted version of Busing, F.M.T.A. (2006). Avoiding degeneracy in metric
unfolding by penalising the intercept. British Journal of Mathematical and Statistical Psychology,
59, 419–427.
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& Heiser, 2005). The quasi-metric approach employed in newfold (Kim et
al., 1999) avoids trivial solutions, but closer inspection of the algorithm shows
that the procedure restricts itself to only one kind of metric transformation,
a limited transformation that also avoids degenerate solutions in other pro-
grams. Currently, two loss functions are able to avoid degenerate solutions,
stress-2 (Kruskal & Carroll, 1969) and p-stress (Busing, Groenen, & Heiser,
2005), implemented in kyst (Kruskal et al., 1978) and ibm spss prefscal,
respectively, but these functions need a penalty on the variance or variation to
do so, and even then, stress-2 doesn’t always succeed in avoiding a degenerate
solution (see Borg & Groenen, 2005).

In this chapter, a simple but effective solution is proposed to the degener-
acy problem in metric unfolding: Penalize the undesirable intercept to avoid
identical transformed proximities, a characteristic feature of degenerate solu-
tions. The proposed procedure is easily implemented in mathematical general
purpose programs, like matlab or s-plus, or can be setup in a general mds
program.

In the following, first, an illustrative example is shown of a degenerate
solution, followed by a formal description of metric unfolding, which, among
others, includes unfolding with an interval transformation. Then, cases will
be discussed in which metric unfolding leads to degenerate solutions. Finally,
the penalty proposal is formulated in more formal terms and applied to the
earlier example to show the benefit of the proposal.

3.2 example

For the following unfolding example, Price and Bouffard (1974) asked 52
students from introductory psychology classes at Indiana University to rate
the 225 combinations of 15 behaviors and 15 situations on a scale from 0, the
behavior is extremely inappropriate in this situation, to 9, the behavior is
extremely appropriate in this situation. The average rates over persons ranged
from 0.62, for fighting in a church, to 8.85, for sleeping in your own room.
The data values were subtracted from 9.0, the highest possible value, to obtain
dissimilarity data so that, a lower score (or small distance) now corresponds to
more appropriate behavior in a situation. The results of an unfolding analysis
with an interval transformation of the proximities is shown in Figure 3.1.

The configuration (left-hand panel) consists of an imaginary circle with
the various types of behavior in the center (only indicated by ###) and the
situations on the (left side) edge of the circle. The distance from the situations
to the behaviors is identical for all behavior in all situations. This fact is also
reflected in the transformation plot (right-hand panel), where the horizontal
transformation line indicates identical transformed proximities for any of
the original proximities. This solution is perfect in terms of fit (after 223
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Figure 3.1 Interval unfolding solution for the behavior-situation appropriateness data. The situations
are (uppercase): CLASS, DATE, BUS, FAMILY DINNER, PARK, CHURCH, JOB INTERVIEW, SIDEWALK, MOVIES,
BAR, ELEVATOR, RESTROOM, OWN ROOM, DORM LOUNGE, and FOOTBALL GAME. The behaviors (in the
configuration only indicated by ###): Run, Talk, Kiss, Write, Eat, Sleep, Mumble, Read, Fight, Belch, Argue,
Jump, Cry, Laugh, And Shout.

iterations, nmse = 0.000000, as will become clear later on), but completely
useless from an interpretational point of view. This phenomenon is called
a degenerate solution and can occur with any kind of data, while using an
interval transformation.

With identical loss functions, commercially available software programs,
like alscal and systat, produce similar solutions. Although the modest
default convergence criteria of these programs terminate the iterative process
early, the final configurations are clearly degenerate.

3.3 metric unfolding

Multidimensional unfolding is a technique that finds low-dimensional config-
urations for two sets of objects. Here, the proximities δ between the two sets,
given in vector form, are expected to be dissimilarities. The objective of un-
folding is to find coordinates for the two sets of objects such that the distances
d between the coordinates correspond as closely as possible to the proximities
δ, or a transformation γ = f(δ) thereof. Correspondence is usually measured
as the mean squared error between γ and d, that is,

mse(γ,d) = ‖γ− d‖2, (.)
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where ‖ · ‖ represents the Euclidean norm. Since minimization is concerned
with both γ and d, these quantities are iteratively updated (Shepard, 1962a;
Kruskal, 1964a). This update strategy requires some form of normalization to
avoid the so-called one point solution (Kruskal & Carroll, 1969). Here, after
each iteration, (3.1) is explicitly normalized by letting ‖d‖2 = nm, where n
and m are the number of objects in each set, although an implicit normal-
ization would also suffice. The consequence of the explicit normalization,
which fixes the sum-of-squares of the distances to nm, is the dilation of the
configuration to a fixed size, which avoids the situation where everything
becomes equal to zero, i.e., the one point solution. The normalized version of
(3.1), i.e., ‖d‖−2‖δ− d‖2, is also known as Kruskal’s Stress-1 and is used as a
minimization function in systat and kyst, whereas a squared version, i.e.,
‖δ2‖−2‖δ2 − d2‖2, is also known as Young’s S-Stress-1, one of alscal’s loss
functions.

The metric transformation function is defined as

γ = b1 + b2δ, (.)

subject to b2 � 0 to assure a positive linear relation between δ and γ and
subject to b1 � −b2δmin, with δmin as the smallest element of δ, to prevent
negative transformed proximities. Using δ̃ = δ − δmin subject to b1 � 0
instead of δ subject to b1 � −b2δmin amounts to the same problem, but
simplifies the estimation of b1 and b2, as described in Appendix 3.A. Despite
the non-negativity restriction, (3.2) satisfies the axioms for an interval scale
measurement (see Stevens, 1946) and is subsequently referred to as an interval
transformation. The term interval unfolding is used to indicate a metric
unfolding using an interval transformation of the type specified in (3.2). Fixing
either or both b1 and b2 to a constant provides another member of the metric
transformation family (see Table 3.1).

Combining (3.1) and (3.2) and adding the explicit normalization factor
‖d‖2 defines the complete objective function for metric unfolding as

nmse(b1,b2,d) = ‖d‖−2‖b1 + b2δ̃− d‖2, (.)

subject to ‖d‖2 = nm, b1 � 0, and b2 � 0.

Table 3.1 Metric transformation family.

Slope b2

Intercept b1 Fixed Free

Fixed no transformation ratio transformation
Free intercept transformation interval transformation
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3.4 degeneracy

Degenerate unfolding solutions occur when transformations are allowed free
estimation of both intercept and slope, in which case the unfolding model
is not identified. Busing, Groenen, and Heiser (2005) state that an absolute
degenerate solution possesses two characteristic features: The mean squared
error between the (transformed) proximities and the distances is zero and all
distances are equal to a constant. If we exclude the single point solution, which
is obviously a degenerate solution, by the sum-of-squares normalization, the
degenerate configuration usually shows two or four points at equal distance,
containing objects of just one set per point. The transformation plot of an
absolute degenerate solution is recognized by a horizontal line, correspond-
ing to a zero slope and an intercept equal to some positive constant (in our
case b1 = 1). The value of the constant depends, however, on the chosen
normalization.

Nevertheless, a degenerate unfolding solution, as described in the intro-
duction, only occurs if both b1 and b2 are estimated freely. In that case, nmse
reduces to zero, with b1 = 1 and b2 = 0, setting γ = 1, and d = 1, where 1 is a
unit vector. Note that for b1 = 1, the normalization restriction is satisfied since
‖1‖2 = nm. Fixing either or both parameters to a constant will identify the
model and subsequently avoid degeneracy. If b1 is fixed to zero, a degenerate
solution can only occur for b2 = 0, setting all proximities and distances equal
to zero, but this situation is avoided by the sum-of-squares normalization. This
transformation, with only a free slope, coincides with a ratio transformation
(see Table 3.1) and will not lead to a degenerate solution. Alternatively, b2
can be fixed to a non-zero constant and only b1 needs to be estimated (an
intercept transformation). A similar approach was followed by de Soete and
Heiser (1993) with b2 = 1. Since the slope of the transformation remains fixed
in this case, equal transformed proximities cannot occur and a degenerate
solution will be avoided. Consequently, fixing both parameters will not lead
to a degenerate solution.

3.5 penalizing the intercept

For interval unfolding, the intercept b1 can be penalized for deviating from
zero, which subsequently prevents a zero slopeb2. In other words, the intercept
is ‘pulled down’, but since ‖d‖2 must remain equal to nm, the transformation
line cannot remain horizontal, and a non-zero slope results. With a small
penalty, b1 will still approach one, but with a large penalty, b1 will tend to zero,
setting the smallest transformed proximity equal to zero. Choosing amoderate
penalty will place b1 between zero and one, at one point corresponding to a
ratio transformation.
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The introduction of a penalty forces us to make a small adjustment to (3.3),
adding a quadratic term as,

pmse(b1,b2,d, κ) = ‖d‖−2
(
‖b1 + b2δ̃− d‖2 + κ‖b1‖2

)
, (.)

with penalty parameter κ � 0. For κ = 0, (3.4) is identical to (3.3). The current
penalty corresponds with the penalty employed in ridge regression. Ridge
regression (Hoerl & Kennard, 1970; Tikhonov & Arsenin, 1977), however,
shrinks all estimators by penalizing their size, while the current procedure
only shrinks the intercept parameter. Rearranging terms shows that b1, b2,
andd can be estimated with the same routines and under the same restrictions
(‖d‖2 = nm, b1 � 0, and b2 � 0) as before, since

pmse(b1,b2,d, κ) = ‖d‖−2
(
‖b1 + b2δ̃− d‖2 + κ‖b1‖2

)
= ‖d‖−2 (‖Hb− d‖2 + κ‖b1‖2)
= ‖d‖−2‖H∗b− d∗‖2,

whereH = [1 δ̃], b = [b1 b2]
′, andH and d are augmented with [

√
nmκ 0]

and [0] to obtain H∗ and d∗, respectively. Note that the normalization of
the distances remains the same, since ‖d∗‖2 = ‖d‖2. Minimization of (3.4)
is easily implemented in high-level languages like matlab. Appendix 3.C
contains the code of the m-file used for the analyses in this chapter.

Groenen (personal communication, 2002) noted that the above procedure
can also be performed by an ordinary unfolding or mds program, such as kyst
(Kruskal et al., 1978), spss proxscal (Meulman, Heiser, & SPSS, 1999), or spss
prefscal (Busing, Heiser, et al., 2005), as long as proximity weights (w) and
fixed coordinates are allowed. To do this, add one dummy object to each set,
say r and c, for which it holds that δrc = 0, drc = 0 using fixed coordinates,
wij = 1 for all i, j,wrj = 0 for all j, andwic = 0 for all i. Finally, the weight
between r and c is used as the penalty by settingwrc = nmκ. Since there is
no relation between the dummy objects r and c and the original objects, since
these weights are zero, the influence of the dummy objects in (3.3) is equal to
κb2

1 . An example of the above suggestion is given in Appendix 3.B, using ibm
spss prefscal.

3.6 example (continued)

The penalized interval unfolding solution in Figure 3.2 is not a degenerate
solution, since the transformed proximities, as well as the distances, have
sufficient variation. The penalty ‘pulled’ the intercept ‘down’, resulting in a
significant non-zero slope (see right-hand panel Figure 3.2), but also a non-
zero nmse (after 471 iterations, nmse = 0.035848 and pmse = 0.040504).
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Figure 3.2 Penalized interval unfolding solution for the behavior-situation appropriateness data using pmse
with κ=0.5.

The current unfolding solution shows a scatter of objects throughout the
configuration space with different distances between situations and behaviors
(see left-hand panel).

The interrelationship between behaviors and situations was investigated
in 1974 by Price and Bouffard with a three-way analysis of variance (persons
× situations × behaviors). There was a relatively large effect obtained from
differences among situations, behaviors, and their interaction, which in turn
accounted for fairly large proportions of variance in judgements of behavioral
appropriateness. Price and Bouffard then separately classified behaviors and
situations. The analysis resulted in two separate dimensions: (1) behavioral
appropriateness, with fight and belch on the inappropriate end and laugh and
talk on the appropriate end, and (2) situational constraint, with church and job
interview on the restricted end, and park and own room on the unrestricted
end.

In Figure 3.2 (left-hand panel), the unconstrained situations, like own
room and park, are in the center of the configuration, indicating the many
optional behaviors within reach. church, class, restroom, and job interview
in the upper left-hand part are restricted situations according to Price and
Bouffard and positioned here, further away from any behavior. More social
events are gathered in the lower left-hand part of the configuration, closer to
laugh, eat, and kiss. The behavioral appropriateness dimension from Price
and Bouffard runs from left (appropriate) to right (inappropriate) through the
configuration. The more quiet behaviors (read, write, mumble) are positioned
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original data row dummy column dummy weights penalty fixed coordinates

Figure 3.3 SPSS data example.

above the center and the louder andmore physical behavior (shout, run, jump)
lie below the center.

3.7 conclusion

In this chapter, a simple but effective solution is proposed to the degeneracy
problem in metric unfolding. With the aid of a simple penalty on the intercept
of the transformation function, it is possible to prevent the transformation
line from attaining a horizontal position, which in turn leads to variation in
the transformed proximities, and, consequently, in the distances.

Instead of penalizing the intercept, one might choose to penalize the slope
for attaining the unwanted zero value. This, however, is computationally more
complex but will undoubtedly lead to the same result.

The current approach is not applicable for ordinal transformations, since
restricting the intercept does not necessarily identify the ordinal unfolding
model. An ordinal transformation is a step function and as such, every proxim-
ity can act as an unwilling intercept, in a sense that every proximity may take
a step large enough to level the transformation function. Smooth monotone
regression (Heiser, 1989) does impose comparable restrictions on the proxim-
ities, but also bounds the differences between one transformed proximity and
the next, such that one big step is impossible.

Although this chapter only discusses unconditional and unweighted un-
folding, the procedure could be generalized to weighted unfolding or row-
conditional unfolding. For weighted unfolding, a weighted metric is added to
the Euclidean norms in (3.4) and the procedure in Appendix 3.A is adapted
accordingly. The metric transformation function (3.2) is extended for row-
conditional unfolding to γi = b1i + b2iδ̃i, where i is a row indicator and
b1i and b2i can be fixed in numerous ways (see, for example, DeSarbo &
Rao, 1984, pages 165–168) to obtain different forms of row-conditional metric
transformation functions.
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appendix 3.a penalized interval transformation

A non-negative least squares procedure is used to find estimates for b1 and b2

under the restriction that b1 � 0 and b2 � 0, given δ̃ and d. Since only two
parameters need to be estimated, a limited number of steps suffice. Expanding
(3.4), and setting the derivative with respect to b equal to zero, gives two
equations with two unknowns as

b1ω+ b21
′δ̃ = 1 ′d (.)

b1δ̃
′1+ b2δ̃

′δ̃ = δ̃ ′d, (.)

where ω = 1 ′1 + nmκ = (1 + κ)nm with κ � 0. For κ = 0, the penalty is
not in effect and (3.3) is optimized instead. Substitution of b1 from (3.5) in
(3.6) provides an estimate for b2 as

b̂2 =
ωδ̃ ′d− δ̃ ′11 ′d

ωδ̃ ′δ̃− δ̃ ′11 ′δ̃
.

If b̂2 is smaller than zero, then b̂2 is set to zero. Using b̂2 in either (3.5) or (3.6)
provides b̂1. If, however, b̂1 is smaller than zero, then b̂1 is set to zero and b2
is re-estimated, using either (3.5) or (3.6), with b1 = 0.

appendix 3.b example: ibm spss prefscal specification for pmse

The syntax for an interval unfolding with prefscal is given below.

Code Start

1 PREFSCAL
2 VARIABLES = Run Talk Kiss Write Eat Dummy
3 /WEIGHTS = W_Run W_Talk W_Kiss W_Write W_Eat W_Dummy
4 /INPUT = ROWS(rowid)
5 /PROXIMITIES = DISSIMILARITIES
6 /INITIAL = CLASSICAL
7 /CONDITIONALITY = UNCONDITIONAL
8 /TRANSFORMATION = LINEAR(INTERCEPT)
9 /PENALTY = LAMBDA(1.0) OMEGA(0.0)
10 /CRITERIA = MINSTRESS(0.0) DIFFSTRESS(0.0)
11 /RESTRICTIONS =
12 ROW(COOR(’Penalized Interval Unfolding Example.sav’) Fdim1 Fdim2)
13 COLUMN(COOR(’Penalized Interval Unfolding Example.sav’) Fdim1 Fdim2)
14 /PRINT = HISTORY MEASURES DECOMPOSITION
15 /PLOT = INITIAL COMMON TRANSFORMATIONS RESIDUALS.

Code End

The data consists of the first five rows and columns (line 2) of the behavior-
situation appropriateness data. Figure 3.3 shows the data setup in spss for the
penalized interval unfolding. In this case, the spss data file also contains the
fixed coordinates (lines 12–13) for the dummy variables (Fdim1 and Fdim2).
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appendix 3.c example: matlab code for pmse

Code Start

1 function [X,Y,Gamma,new] = pmse (Delta,X,Y,kappa)
2
3 % pre-processing
4 [n,m] = size(Delta); n1 = ones(n,1); m1 = ones(m,1);
5 G = pinv(n*eye(m)-n*m);
6 ave = sum([X;Y])./(n+m); X = X-n1*ave; Y = Y-m1*ave;
7 D = sqrt(sum(X.*X,2)*m1’+n1*sum(Y.*Y,2)’-2*X*Y’);
8 r = sqrt(n*m/sum(sum(D.ˆ2))); D = r*D; X = r*X; Y = r*Y;
9 mse = sum(sum((Delta-D).ˆ2));
10 DeltaTilde = Delta-min(min(Delta));
11 sumf = sum(sum(DeltaTilde));
12 ssqf = sum(sum(DeltaTilde.ˆ2));
13
14 % main iterations
15 for iter = 1:10000
16
17 % transformation update
18 sumd = sum(sum(D));
19 cros = sum(sum(DeltaTilde.*D));
20 sumw = (1+kappa)*n*m;
21 work = ssqf*sumw-sumfˆ2;
22 if (work == 0) b2 = 0; else b2 = (cros*sumw-sumf*sumd)/work; end;
23 if (b2 < 0), b2 = 0; end;
24 b1 = (sumd-b*sumf)/sumw;
25 if (b1 < 0) b1 = 0; b2 = cros/ssqf; if (b2 < 0), b2 = 0; end; end;
26 Gamma = b1+b2*DeltaTilde;
27
28 % configuration update
29 E = D <= eps; B = Gamma./(D+E); B = B.*(E==0);
30 Xtilde = diag(sum(B’))*X-B*Y;
31 Ytilde = diag(sum(B))*Y-B’*X;
32 Y = G*(Ytilde+m1*sum(Xtilde)./m);
33 X = (Xtilde+n1*sum(Y))./m;
34 ave = sum([X;Y])./(n+m); X = X-n1*ave; Y = Y-m1*ave;
35 D = sqrt(sum(X.*X,2)*m1’+n1*sum(Y.*Y,2)’-2*X*Y’);
36 r = sqrt(n*m/sum(sum(D.ˆ2))); D = r*D; X = r*X; Y = r*Y;
37
38 % post-processing
39 mse = sum(sum((Gamma-D).ˆ2));
40 penalty = kappa*n*m*b1*b1;
41 new = (mse+penalty)/(n*m);
42 if (iter > 1), if (old-new < eps), break; end; end;
43 old = new;
44 end

Code End
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4the coefficient of variation penalty

Multidimensional unfolding methods suffer from the degeneracy prob-
lem in almost all circumstances. Most degeneracies are easily recognized:
The solutions are perfect but trivial, characterized by approximately equal
distances between points from different sets. A definition of an absolutely
degenerate solution is proposed which makes clear that these solutions
only occur when an intercept is present in the transformation function.
Many solutions for the degeneracy problem have been proposed and
tested, but with little success so far. In this chapter, we offer a substantial
modification of an approach initiated by Kruskal and Carroll (1969) that
introduced a normalization factor based on the variance in the usual
least squares loss function. Heiser (1981) and de Leeuw (1983) showed
that the normalization factor proposed by Kruskal and Carroll was not
strong enough to avoid degeneracies. The factor proposed in the present
chapter, based on the coefficient of variation, discourages or penalizes
(nonmetric) transformations of the proximities with small variation, so
that the procedure steers away from solutions with small variation in
the inter-point distances. An algorithm is described for minimizing the
re-adjusted loss function, based on iterative majorization. The results of a
simulation study are discussed, in which the optimal range of the penalty
parameters is determined. Two empirical data sets are analyzed by our
method, clearly showing the benefits of the proposed loss function.

4.1 introduction

Nonmetric multidimensional unfolding has been an idea that defeated most
– if not all – attempts so far to develop it into a regular analysis method
for preference rankings or two-mode proximity data. In Coombs’ original
formulation of unidimensional unfolding (Coombs, 1950, 1964), we have
rankings ofn individuals overm stimulus objects, and the objective is to find a
common dimension called the quantitative J scale (joint scale), which contains
ideal points representing the individuals and stimulus points representing
the stimulus objects. On the J scale, each individual’s preference ordering
corresponds to the rank order of the distances of the stimulus points from the
ideal point, the nearest being the most preferred.

This chapter is an adapted version of Busing, F.M.T.A., Groenen, P.J.F., & Heiser, W.J. (2005).
Avoiding degeneracy in multidimensional unfolding by penalizing on the coefficient of variation.
Psychometrika, 70, 71–98.
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Figure 4.1 Typical degenerate solutions. The big dot representsmultiple ideal points, the little dot represents
a single ideal point, the cross representsmultiple stimulus points, and theplus sign represents a single stimulus
point.

Analytical procedures for fitting a quantitative J scale to a given set of
rankings have been developed by, amongst others, McClelland and Coombs
(1975); Roskam (1968), and van Blokland-Vogelesang (1989, 1993). These
procedures usually consist of two steps: (1) a combinatorial search over the set
of all possible partial orders on the distances between midpoints (defined as
points that are equally distant to a pair of ideal points), and (2) a solution to a
set of linear equations to find numerical scale values. Although in principle
both steps could be generalized to the multidimensional case (Bennett & Hays,
1960; Hays & Bennett, 1961), no successful applications on real data have been
reported in the literature, probably because, as Marden (1995, p. 256) has put
it, “the computational aspects are a bit daunting”.

Using a reformulation of Coombsean unfolding with J scales into a mul-
tidimensional scaling (mds) method, characterized by the optimization of
some (usually least squares) badness-of-fit function of the model distances,
including possible transformations of the data, several authors have proposed
iterative fitting methods for nonmetric unfolding (Roskam, 1968; Kruskal
& Carroll, 1969; F. W. Young, 1972; Takane et al., 1977; Heiser, 1981). As
already noted by Carroll (1972), many of these procedures have theoretical
problems due to the badness-of-fit function being optimized that can lead to
degeneracies yielding a nominally perfect badness-of-fit value, but convey no
information. Degenerate solutions are recognized by the fact that all or almost
all distances from ideal points to stimulus points are the same (see Figure 4.1).

It should be stressed that degeneracies do not only occur with ordinal data
(the classic nonmetric case), but also with interval data, where we allow for an
additive constant (Borg & Lingoes, 1987, p. 181). The fundamental cause of
degeneracy is that the assumption of ordinal or interval measurement level
allows transformations of the data that equalize them to a single intercept term,
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which can be perfectly reproduced by an equal distance solution consisting,
for example, of all individual points collapsed into one single point, and
all stimulus points collapsed into another, distinct point (left-hand panel of
Figure 4.1).

To avoid such degeneracies, Kruskal and Carroll (1969) proposed alterna-
tive badness-of-fit functions that incorporate normalization factors based on
the variance of the distances, thus posing a penalty on equal distance solutions
with zero variance. However, Kruskal and Carroll themselves reported that,
although their method works nicely with artificial data, it had so far performed
less than fully satisfactorily with real data. In fact, they say that “the method
may now be good enough to be successful with some data in some cases, even
though we do not have such examples” (Kruskal & Carroll, 1969, p. 669).
Similar observations of continuing degeneracies, even when normalizing on
the variance, have been reported by Heiser (1981, ch. 7), DeSarbo and Rao
(1984), and Borg and Groenen (1997, p. 247).

In this chapter, we propose a new method for multidimensional unfolding
of ordinal and interval data that solves the degeneracy problem for most
practical purposes. We will first discuss the mds formulation of unfolding and
the fundamental cause of degeneracy in more detail. Current solutions for the
degeneracy problem are reviewed in that light. The approach in this chapter
is similar to Kruskal and Carroll’s (1969) in using a badness-of-fit function
that steers away from undesired solutions. The major difference with Kruskal
and Carroll’s approach is that instead of using a penalty based on the variance
we use a penalty based on the coefficient of variation. Our motivation for
this choice is first explained for the unconditional case, and then the penalty
function is extended to the more common conditional case, in which the
data are transformed for each individual separately. The two cases result in
a similar badness-of-fit function that is the simple product of two factors,
called penalized Stress. Details of our computational method to minimize
penalized stress are treated in the technical appendix. penalized stress
contains two parameters that control the focus of its behavior, and we report
the results of a simulation study offering guidelines for the choice of these
parameters. Finally, we illustrate our unfolding method with two applications
and conclude the chapter with a summary.

4.2 badness-of-fit functions in unfolding

Any mds approach to unfolding is characterized by the badness-of-fit function
it tries to minimize. Let us denote the coordinates of the ideal points that
represent the individuals by xik, with i = 1, . . . ,n and k = 1, . . . ,p, where p
equals the pre-chosen dimensionality of the solution. For each individual,
the xik are collected in the p-vector xi, and the xi’s are in turn collected in
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the n× pmatrix X. Furthermore, the coordinates of the stimulus points that
represent stimulus objects are given in the m × p matrix Y , with elements
yjk (j = 1, . . . ,m and k = 1, . . . ,p) and rows yj. The data of the problem are
either a set of dissimilarities δij, or a set of similarities ρij, where the indices
have the same range as before. In both cases, we need to find a new set of
quantities γij of transformed data. The latter quantities are called pseudo-
distances (Kruskal, 1977), and they are defined either as γij = f(δij), with
f(·) some monotonically increasing function, or as γij = g(ρij), with g(·)
some monotonically decreasing function. Various special cases of f(·) and g(·)
can be distinguished, the most common of which are a linear transformation
without intercept (for ratio-scale data), a linear transformation with intercept
(for interval-scale data), an arbitrary monotone function (for ordinal-scale
data), and a monotone spline transformation (for quasi-nonmetric data, using
the terminology of Winsberg & Carroll, 1989).

The pseudo-distances are to be found by the method so that they match as
closely as possible with the Euclidean distances d(xi,yj) between ideal points
and stimulus points, defined as

d(xi,yj) =

√√√√ p∑
k=1

(xik − yjk)2.

The mismatch or badness-of-fit between the pseudo-distances and the dis-
tances is usually measured in mds by the ratio of a (weighted) least squares
function and some normalization function (Kruskal & Carroll, 1969). If we
denote the weights bywij, then their row sums arewi+ =

∑m
j=1 wij and their

total sum isw++ =
∑n

i=1 wi+. For individual i, the weighted mean squared
error is given by

σ2
row(γi, xi,Y) =

1
wi+

m∑
j=1

wij

(
γij − d(xi,yj)

)2, (.)

and for the total group of individuals we obtain

σ2
r(Γ,X,Y) =

1
w++

n∑
i=1

wi+σ
2
row(γi, xi,Y). (.)

The notation σ2
row(γi, xi,Y) and σ2

r(Γ,X,Y) is used to make explicit that the
mean squared error is considered to be a function not only of the configura-
tions X and Y , but also of the pseudo-distances, collected in the n×mmatrix
Γ. If we minimize (4.2) over the set of functions f(·) or g(·), the resulting
pseudo-distances are often denoted by d̂ij, called d-hats, and the resulting
function σ2

r(D̂,X,Y) is now only a function of X and Y , since D̂ is explicitly
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available givenX and Y . The square root of σ2
r(D̂,X,Y) is in the mds literature

commonly referred to as raw Stress, a tribute to Kruskal (1964a, 1964b).
Several normalization functions can be used in the badness-of-fit function

to control the range of values of either Γ or X and Y , or both. For example,
the square of Kruskal’s stress-1 is given by

σ2
1 (X,Y) =

σ2
r(D̂,X,Y)
η2
1 (X,Y)

, (.)

where η2
1 (X,Y) = w−1

++

∑n
i=1

∑m
j=1 wijd

2(xi,yj). The normalization func-
tion η2

1 (X,Y) is effective in avoiding the situation in which all objects tend
to collapse into one single point, since in that case η2

1 (X,Y) would become
very small, and hence (4.3) would become very large. In unfolding, usually
another normalization function is recommended, since stress-1 still allows
degenerate solutions to occur in the ordinal-scale and interval-scale case. The
cause of this fundamental problem is the fact that d̂ij may become equal for
all i, j if the set of transformations includes an intercept. The next subsection
gives the exact conditions under which this phenomenon arises.

Necessary and Sufficient Conditions for the Incidence of Degenerate Solutions

In the following, we want to prove formally that the presence of an intercept in
the transformation is a necessary and sufficient condition for a degeneracy in
unfolding. We have to be precise about the definition of degenerate solutions
and about the context in which they arise. First, we treat the unconditional
case, in which there is only one transformation, and then the conditional case,
in which there are n separate transformations, one for each row of the data
matrix.

A solution (X,Y) is called absolutely degenerate in the unconditional case
if and only if r-stress (4.2) is zero and d(xi,yj) = d for all i, j, with d some
positive constant. Although the data may contain ties (δij = δi′j′ for some i, j
and i ′, j ′), it is assumed that they are not completely tied; that is, we assume
that we don’t have δij = δ for all i, j. Such data would defeat the purpose of
unfolding, which is to account for variation in the dissimilarities. It is also
initially assumed that all weights are strictly positive, or wij > 0 for all i, j.
The set of transformationsΩ is always a cone, that is, it always satisfies the
condition that Γ ∈ Ω implies βΓ ∈ Ω, for any non-negative scalar β. Finally,
presence of an intercept in the transformation means thatΩ is closed under
nondecreasing linear transformations, that is, it satisfies the condition that
Γ ∈ Ω implies (βΓ+αE) ∈ Ω, for non-negative α and β, where E is an n×m

matrix of ones. It is easy to verify that the latter condition indeed applies to
both interval-scale data and ordinal-scale data. We are now ready for the first
proposition.
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Proposition 1 In unconditional weighted least squares unfolding an absolutely
degenerate solution exists if and only if the set of transformations is closed under
nondecreasing linear transformations.

Proof. SupposeΩ is closed under nondecreasing linear transformations.
Then it is valid to select from the cone the pseudo-distances αE ∈ Ω for some
positive α, so that r-stress becomes

σ2
r(αE,X,Y) =

1
w++

n∑
i=1

m∑
j=1

wij

(
α− d(xi,yj)

)2.
Taking yj = 0 and xi = α‖ai‖−1ai, where ai is some arbitrary p-vector,
yields d(xi,yj) = α, so that all residuals become zero and hence r-stress
becomes zero for any choice ofwij. Conversely, suppose that we have some
configuration satisfying d(xi,yj) = α. To obtain a r-stress of zero we must
have, for all i, j,

wij(γij − α)2 = 0.

Since by assumptionwij > 0, these equations are satisfied only if there exist
pseudo-distances γij = α for all i, j, which implies that we must have αE ∈ Ω.

Proposition 1 establishes existence, but not uniqueness. Thus, there may
be other solutions that are absolutely degenerate (for instance, translations
and rotations of the particular one specified in the proof of the proposition),
and there may be other solutions with zero stress but without constant dis-
tance. In case thatwij = 0 for some i, j, there similarly may be zero stress
solutions that are not absolutely degenerate, even though they do trivialize
all dissimilarity information that is taken into account in the loss function.
Although Proposition 1 is formulated in terms of r-stress, it also holds for
Kruskal’s stress-1 defined in (3), since an absolutely degenerate solution has
η2
1 (X,Y) = α2 > 0.
For the conditional case, we call a solution (X,Y) absolutely degenerate if

and only if r-stress (4.2) is zero and d(xi,yj) = di for all i, j, with di some
row-specific positive constant. With respect to ties, we exclude cases in which
δij = δi for any i. We now work with row-specific conesΩi that are closed
under nondecreasing linear transformations. Proposition 2 is given without
proof, since the argument is completely analogous to that of Proposition 1.

Proposition 2 In conditional weighted least squares unfolding an absolutely
degenerate solution exists if and only if all sets of transformations are closed
under nondecreasing linear transformations.
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In this case, the class of absolutely degenerate solutions is even larger
than in the unconditional case, because we may now take xi = αi‖ai‖−1ai

for any positive αi, together with yi = 0. Thus, xi is in fact completely
arbitrary, and solutions of this type have the property that thematrix of pseudo-
distances satisfies Γ = αem, with em anm-vector of ones and α an n-vector
of intercepts.

For the conditional case, an even larger class of degenerate solutions exists,
which is often met in practice, when only a few rows are absolutely degener-
ate. In this case, a solution (X,Y) is called partially degenerate if and only if
r-stress (4.1) is zero and d(xi,yj) = di for some i (1 � i < n), with di some
row-specific positive constant. Examples of this type of degeneracy will be
shown in the applications.

Overview of Solutions for the Degeneracy Problem

Solutions for the degeneracy problem, proposed in the literature so far, can
be classified into three approaches, each modifying one of the conditions in
Propositions 1 and 2. First, there are the bounded regression approach ofHeiser
(1981, sec. 7.3), the quasi-metric approach of Kim et al. (1999), the smoothed
monotone regression approach of Heiser (1989), and the mixed ordinal-linear
approach of Borg and Lingoes (1987, sec. 11.6). These approaches modify
the definition of the conesΩ orΩi, so that the intercept is no longer free to
vary and attached to zero. For example, Kim et al. use lower bound values
of zero to assure that the most preferred stimulus point will fall close to the
corresponding ideal point.

Except for Heiser’s (1989) approach, these approaches are not truly non-
metric or ordinal anymore in the sense of Kruskal (1964b) and Kruskal and
Carroll (1969). Specifically, if the cones are a function of the actual data values
(instead of only their rank order), the implication is that if one changes the
original data with an admissible transformation, the unfolding solution does
not remain the same, because the definition of the cones has been changed.
Although these methods successfully avoid absolutely degenerate solutions,
they tend to introduce bias in situations where the transformations coincide
with the borders of the cones. The approach of Kim et al. avoids this situation
altogether by using an a-priori transformation of the data and continuing with
a row-conditional metric analysis without estimating an additive constant.

Second, there is the approach ofDeSarbo andRao (1984), whichworkswith
data dependent weights in an attempt to de-emphasize large dissimilarities
that supposedly are especially prone to error. Propositions 1 and 2 show that
this approach is bound to fail, since absolutely degenerate solutions are not
excluded by any weighting structure.
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Finally, there are the approaches of Kruskal and Carroll (1969) and the
present approach, which modify r-stress in such a way that absolutely degen-
erate solutions no longer correspond to low values of the modified badness-
of-fit function and hence are not candidate solutions anymore.

Normalization on the Variance

The usual recommendation to prevent absolutely degenerate solutions is
to use the ‘split-by-rows’ option and normalization on the variance of the
distances. Writing σ2

row(d̂i, xi,Y) for the result of minimizing (4.1) over
the pseudo-distances of the i-th individual, and defining the variance of
the distances with respect to the ideal point of individual i as η2

2(xi,Y) =

w−1
i+

∑m
j=1 wij(d(xi,yj)−di)

2, wheredi = w−1
i+

∑m
j=1 wijd(xi,yj), the square

of Kruskal’s stress-2 generalized to the weighted row-conditional or split-by-
rows case is defined as

σ2
2(X,Y) =

1
w++

n∑
i=1

wi+σ
2
row(d̂i, xi,Y)
η2
2(xi,Y)

. (.)

Splitting the stress by rows and using the variance as a normalization function
in (4.4) avoids implosion into a single point, and supposedly avoids degeneracy
at the same time, since an absolutely degenerate solution has η2

2(xi,Y) = 0, so
that (4.4) would grow to infinity when approaching a degeneracy. However,
numerous testruns with kyst (Kruskal et al., 1978) using stress-2, of which
we will show two examples in the application section, still appear to give
approximately degenerate solutions in many cases. To clarify this unexpected
finding, de Leeuw (1983) has shown, by what essentially is an application of
l’Hopital’s rule, that in arbitrarily small neighborhoods of degenerate solutions
σ2
2(X,Y) can have a low value and that the algorithm optimizes a bilinear

model rather than a distance model.
Heiser (1981) has experimented with normalization on the variance of the

pseudo-distances. He used the equally weighted version of the badness-of-fit
function

σ2
3(Γ,X,Y) =

1
w++

n∑
i=1

wi+σ
2
row(γi, xi,Y)
η2
3(γi)

. (.)

with η2
3(γi) = w−1

i+

∑m
j=1 wij(γij −γi)

2, where γi = w−1
i+

∑m
j=1 wijγij. Note

that (4.5) does not include Kruskal’s d-hats, since optimizing over the pseudo-
distances cannot be done on the r-stress anymore, but should involve the
normalization function as well, requiring a specialized procedure. This ap-
proach has the advantage that finding X and Y for any given Γ can be done by
a single and stable algorithm. It tries to avoid degeneracy indirectly, by staying

52



4.3 penalizing the coefficient of variation

away from undesired transformations of the data. Unfortunately, Heiser (1981)
reported solutions that were very similar to solutions obtained with (4.4), and
hence (4.5) did not solve the degeneracy problem either.

4.3 unfolding by penalizing on the coefficient of variation

The current research started from two ideas. The first was to try to change the
balance between numerator and denominator of the badness-of-fit function by
introducing a power function for only one of them (a device successfully used
in Groenen and Heiser (1996)). The second was to look at another measure of
variability, since the variance is invariant under addition of a constant, and
therefore it does not discriminate well between solutions with small average
distance between ideal points and stimulus points and solutionswith uniformly
large average distance, which are typically obtained in degenerate solutions.
The traditional normalization factors are insufficient to avoid degeneracy
and other measures of variability might provide more adequate penalties
for entering undesirable regions of the parameter space (see Trosset (1998)
for interpreting normalization factors as penalty functions in the context
of nonmetric multidimensional scaling). In the next two sections, we will
first introduce our penalty function for the unconditional case, in which
the badness-of-fit (and the transformation) is not split by individuals, and
after that treat the more common conditional case, in which we do split the
transformation by individuals, but aggregate the r-stress and the penalty
separately, as in (4.3).

Unconditional Case

For distributions of positive quantities that have a scale whose origin is not
arbitrary, but meaningful – like mass, frequency, but also similarity and dis-
tance – variability is best measured with respect to the origin, rather than with
respect to the mean. Karl Pearson’s coefficient of variation (Pearson, 1896) is a
scale-free, relative measure of variability that takes the standard deviation as
a fraction of the mean. For any T-vector a with non-negative values at, the
variation coefficient υ(a) can be written as

υ(a) =
s(a)

a
=

√√√√ T−1 ∑T
t=1 a

2
t(

T−1 ∑T
t=1 at

)2 − 1. (.)

It is clear from (4.6) that υ(a) achieves its minimal value when all at are equal,
that is, υ(a) = 0 iff at = a for all t. It is equal to one ifa has an evenly divided
bimodal distribution with one mode at zero, and attains an upper bound of√
T − 1 if all but one of the at are zero (Katsnelson & Kotz, 1957).
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Figure 4.2 Penalty functionμ(Γ) versus variation coefficient υ(Γ) for different values ofω (see legend).

We will define our badness-of-fit function σ2
p(Γ,X,Y), called penalized

Stress, to have the following form:

σ2
p(Γ,X,Y) = σ2λ

r (Γ,X,Y)μ(Γ), (.)

where λ is a lack-of-penalty parameter (0 < λ � 1) that controls the balance
between the r-stress σ2

r(Γ,X,Y) and the penalty function μ(Γ). When λ

increases, the influence of the penalty term decreases, and vice versa. For the
penalty term, we follow the same approach as Heiser (1981) in penalizing on
some function of Γ, so that for any given value of Γ minimizing σ2

p(Γ,X,Y)
amounts to minimizing σ2

r(Γ,X,Y). The penalty function is chosen to be a
multiplicative factor, and such that it approaches 1 when υ(Γ) becomes large,
and grows to infinity when υ(Γ) goes to zero. A simple set of functions that
has these properties is defined as

μ(Γ) = 1+
ω

υ2(Γ)
, (.)

where ω is a range parameterrange: When ω is small, μ(Γ) is especially
effective when υ(Γ) is small, while for large values ofω, larger values of the
variation coefficient will cause relatively effective penalties as well.

The shape of (4.8) as a function of υ is illustrated in Figure 4.2 for different
values ofω. In all cases, the penalty will be highest if the mean of the trans-
formed data is relatively large and the standard deviation relatively small – a
condition that typically arises under degeneracy.

Conditional Case

For ratings or rankings of n individuals overm stimulus objects it is natural
to require n separate transformations that are conditional on the rows of the
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data matrix. Since the r-stress (4.2) is additive over individuals, it can be
minimized over γi row after row, and there is no need to adjust that part of
penalized stress. However, the penalty function (4.8) does need adjustment,
because we want to penalize lack of variation in each and every transformation.
Denoting the variation of the pseudo-distances in row i by υ(γi), we use the
harmonic mean to aggregate them, yielding the penalty function

μc(Γ) = 1+
ω( 1

n

∑n
i=1 υ

−2(γi)
)−1 , (.)

for the conditional case. We use the harmonic mean of the variation coeffi-
cients, because of its property that it is never greater than the geometric mean,
which in turn is never greater than the arithmetic mean (cf. Hardy, Littlewood,
& Polya, 1952, p. 26), because it is relatively strongly affected when one of the
individual variation coefficients becomes very small, and because the resulting
penalty term can be conveniently minimized. By simple algebra, we have the
result

1+
ω( 1

n

∑n
i=1 υ

−2(γi)
)−1 = 1+ω

1
n

n∑
i=1

1
υ2(γi)

=
1
n

n∑
i=1

(
1+

ω

υ2(γi)

)
,

(.)
showing that μc(Γ) can be written as an additive function over individuals. So
the penalty function based on the harmonic mean of the individual variation
coefficients is equal to the arithmetic mean of the individual penalty terms.

We think it is essential to aggregate the badness-of-fit and the penalty
terms separately, instead of aggregating their row-wise products as in (4.4)
and (4.5), because in the latter case low variability for some individual can
be compensated by low r-stress of the same individual. This compensation
makes a method based on (4.4) or (4.5) less reactive to degeneracies at the
individual level than our method based on (4.9). Our method also ensures
a correct weighting of individuals when fitting X and Y , because it does not
contaminatewi+ with the individual penalty terms, which give relatively little
weight to individuals with highly variable pseudo-distances.

An Alternating Update Strategy using Iterative Majorization

penalized stress can be minimized by an alternating procedure, following
the general strategy first used in mds by Takane et al. (1977), in which we
alternate between finding an update for the configuration given the current
estimate of the transformation(s) and finding an update for the transforma-
tion(s), given the current estimate of the configuration. In the present case,
each of these two steps is carried out by iterative majorization. For the theory
of iterative majorization in mds, we refer to de Leeuw (1977a) andHeiser (1995)
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as basic papers, and to Groenen (1993) and Groenen and Heiser (1996) for
some extensions used to minimize penalized stress. The minimization of
penalized stress is extensively described in the technical appendix.

4.4 simulation study

The parameters λ andω in penalized stress both influence the strength of
the penalty. However, for a practical implementation and reasons of parsimony,
it is preferable to restrict at least one parameter to a constant, or suggest limits
for their values. To determine reasonable values for λ andω, we conducted
the following simulation study.

The data in this simulation study were generated as follows. First, 30 row
coordinates and 15 column coordinates in two dimensions were drawn from
a standard normal distribution (the Polar Box-Muller method was used to
obtain standard normal deviates (see, for example, Dagpunar, 1988), with
uniform pseudo-random numbers from maximally equidistributed combined
lfsr generators (L’Ecuyer, 1999)) and the Euclidean distances between these
coordinates were computed (a similar design was used by Coombs and Kao
(1960) and Kruskal and Carroll (1969)). Error was added by multiplying the
simulated distances with the exponential of a percentage of a standard normal
distribution, corresponding to imposing log-normal error on the distances
(see Wagenaar & Padmos, 1971). Two error percentages were chosen, 0
and 25, corresponding to an error-free and an error-perturbed condition.
Transformations were conducted for two types of data: Interval data was
transformed using linear regressionwith an intercept (using non-negative least
squares to ensure non-negative pseudo-distances), and monotone regression
(Kruskal, 1964b) was used to transform ordinal data. Transformations in the
unconditional case were based on all data, whereas in the row-conditional
case, the data were transformed for each row separately. A wide range of values
was chosen for λ andω, based on the results of several pilot studies. Values for
λ ranged from 0.1 to 1 with increments of 0.1 and values forω were chosen as
0.1, 0.25, 0.5, 1, 2.5, and 5. A strong penalty is marked by small values for λ in
combination with large values forω, whereas a weak penalty has the opposite
values for both parameters.

We have also considered other factors in pilot studies, but since the influ-
ence of the number of rows, columns, and dimensions and the level of error on

Table 4.1 Summary of independent factors and levels for the simulation study.

Factor # Levels Factor # Levels

Error Percentage 2 0%, 25% λ 10 0.1, 0.2, 0.3, …, 0.9, 1.0
Data Level 2 Interval, Ordinal ω 6 0.1, 0.25, 0.5, 1.0, 2.5, 5.0
Conditionality 2 Unconditional, Row-Conditional
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the behavior of λ andω was negligible, single neutral values for these factors
suffice. The independent factors in the simulation study are summarized in
Table 4.1. We used a full factorial design for the five factors. For each of the
480 cells, 62 replications were drawn. The initial configuration used in the
analysis is described in Step 1 of the algorithm.

To assess the level of degeneracy, we cannot rely on a single measure.
A good solution has low stress and reasonable variation in both pseudo-
distances and distances. For the variation of the pseudo-distances, it is essen-
tial to discriminate between unconditional and row-conditional variation, as
the variation of row-conditional transformations depends on single rows. This
difference does not apply for the distances, because the variation in a configu-
ration ismostly determined unconditionally, that is, by looking at the complete
configuration. The measures that need simultaneous inspection are: r-stress
σ2
r(Γ,X,Y), the (conditional) variation coefficient of the pseudo-distances,

that is, υ(Γ) for the unconditional case and υc(Γ) = [n−1 ∑n
i=1 υ

−1(γi)]
−1 for

the row-conditional case, and the variation coefficient of the distances υ(D).
For the error-free condition, it is expected that r-stress becomes zero,

while both variation coefficients remain distinctively non-zero. Although the
error-perturbed condition lacks the pre-defined outcome of zero r-stress,
r-stress is expected to improve beyond the r-stress imposed initially dur-
ing the simulation process, but remains distinctively non-zero. For the error-
perturbed condition, we also require that solutions must have variation coeffi-
cients that are distinctively non-zero.

Results

The results for the error-free condition are as expected. In all cases, r-stress
was zero or very close to zero, while the variation coefficients of both distances
and pseudo-distances ranged between 0.4 and 0.6. This outcome applied to
all values of λ andω. An alternative explanation for the non-occurrence of
degeneracies in the error-free condition might be the good initial configura-
tion. Kruskal and Carroll (1969) mention that even with an older loss function
(stress-1, a function that later proved to be unable to prevent degeneracies),
F. W. Young and Torgerson (1967) succeeded in avoiding degeneracies, due
to a very good, rationally generated starting configuration, and then moving
into a nearby local minimum. This alternative explanation can be tested by
using random starts.

In Table 4.2, the results are shown of a small additional simulation study
using random starts, with the same independent factors as before, but with
fewer levels for λ andω. With certain choices of λ andω, the algorithm typi-
cally finds the same non-degenerate solution from randomly generated initial

57



the coefficient of variation penalty

configurations that it finds from a very good rationally generated initial config-
uration. This suggests that non-degeneracy is built into the penalized stress
objective function, rather than fortuitously appearing in local solutions near
good initial configurations. Specifically, it turns out that strong penalty pa-
rameters have a tendency towards transformations with equal increments,
especially in the row-conditional case. This artifact of strong penalties (e. g.,
λ = 0.1 andω = 5.0) sets the smallest pseudo-distance to zero, and puts the re-
maining pseudo-distances at equal increments, which ultimately prevents the
algorithm from finding the perfect solution. There is a considerable difference
between unconditional and row-conditional transformations. One of the rea-
sons for this difference could be the amount of freedom in the transformations.
Generally, the unconditional case is stricter than the row-conditional case.
With row-conditional ordinal data, for example, there are atmostnm(m−1)/2
inequalities to be satisfied, compared to a maximum nm(nm − 1)/2 in the
unconditional case. Consequently, the restrictions on the solution are harder
to satisfy in the latter case, and therefore local minima may occur more of-
ten with unconditional transformations. In conclusion, we can say that the
procedure is capable of finding the perfect configuration, given error-free
data, without the aid of a good (rational) start, provided we choose λ in the
neighborhood of 0.5.

For the error-perturbed condition, the results are presented in Figure 4.3.
Note that the average r-stress for the error-perturbed condition imposed
during the simulation process is 0.245.

For the unconditional case (top six panels of Figure 4.3), only the weakest
penalty tends to some form of degeneracy, indicated by diminishing r-stress

Table 4.2 Recovery percentage for error-free data for 2500 random configurations.

Unconditional Row-Conditional

Data Level λ ω =0.1 ω =0.5 ω =5.0 ω =0.1 ω =0.5 ω =5.0

Interval 0.1 10 10 11 61 0 0
0.5 26 14 14 95 99 97
1.0 8 15 14 42 94 99

Ordinal 0.1 8 10 10 89 0 0
0.5 28 10 12 97 98 97
1.0 7 24 12 75 99 99

Figure 4.3 (facing page) Multiple line plots for the following conditions: Unconditional interval (top three
panels), unconditional ordinal (next three panels), row-conditional interval (next three panels), and row-
conditional ordinal (bottom three panels). The panels represent (from left to right): σr(Γ,X,Y), υc(Γ), and
υ(D), with lines showing the averages over 50 replications for different values ofω (the legend for all panels
is displayed in the top-left-hand panel).
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and diminishing variation coefficients for both distances and pseudo-distances.
The choice λ = 0.5 andω > 0.1 performs well for all unconditional analyses.

For the row-conditional case, things are more complicated, although both
interval and ordinal transformations show the same pattern, as was the case for
the unconditional transformations. Strong penalties fail to improve r-stress
beyond the r-stress imposed during the simulation process, probably due
to a strong tendency towards transformations with equal increments. As the
penalty becomes weaker, r-stress decreases, until it is really close to zero for
the weakest penalties, indicating the presence of degeneracies.

The conditional variation coefficients of the pseudo-distances confirm
the presence of degeneracies for the weaker penalties: Average values rapidly
decrease as λ becomes larger than 0.6. The conditional variation coefficient
of the pseudo-distances and the variation coefficient of the distances (an
unconditional coefficient) show opposite results: With a decreasing penalty,
the values of the former decrease while the latter increase. This result is not
caused by the fact that one coefficient uses pseudo-distances and the other
uses distances, but is due to the use of unconditional and conditional variation
coefficients. The ultimate cause is the specific type of degeneracy that occurs
here. For the weak penalties, degeneracies appear in every single row. When
n− 1 rows have low variation with a mean close to zero and one row also has
low variation but with a substantial mean, the conditional variation coefficient
will be close to zero, while the unconditional variation coefficient will be large,
closer to its upper bound. The row-configuration of such a solution shows a
cluster of n − 1 points and, at a relative large distance, the other, remaining
point. This type of degeneracy is already known from ordinal mds, where it
occurs when objects are clustered, with smaller within-cluster distances than
between-cluster distances. With a relatively high dimensionality with respect
to the number of clusters, all objects within a cluster will end up in a single
point, causing the type of degeneracy described above, which incidentally
implies that the penalty function developed here should also be able to prevent
degeneracies in ordinal mds.

In conclusion, the simulation study made clear that combinations of weak
penalty parameters are unable to prevent degeneracies. On the other hand,
strong penalties tend to induce transformations with equal increments, thus
showing little improvement in stress and reducing the ability of the method
to distinguish clearly between nonmetric (ordinal) and metric (interval) solu-
tions. Unconditional transformations are clearly less sensitive to degeneracies
and thus allow for weaker penalties. Finally, setting λ to 0.5 specifies the
function as a usual square root, whereas ω can be used as a conventional
penalty parameter, with a default value of 0.5, a value that can be decreased or
increased as circumstances require.
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4.5 applications

Two different applications of unfolding are presented to illustrate the behavior
of penalized stress (or p-stress), implemented in prefscal. For this pur-
pose, prefscal was compared with publicly available programs for unfolding,
or programs that claim to be able to avoid degenerate solutions, namely with
alscal (Takane et al., 1977), kyst (Kruskal et al., 1978), genfold (DeSarbo
& Rao, 1984), and newfold (Kim et al., 1999). All programs but genfold
are publicly available. genfold was mimicked with prefscal using λ = 1,
ω = 0, and a user-provided weighting structurewij = r(γij)

−p, where r(γij)

represents the (row-)rank of γij and p is provided by the user (for more details,
see DeSarbo & Rao, 1984, pp. 154–157). We have used genfold with p = 2,
which, according to DeSarbo and Rao, appears to work well.

In the first application, we analyze the brewery data of Borg and Berger-
maier (1982) using an unconditional interval transformation for the similarities.
In the second application, the breakfast data of P. E. Green and Rao (1972) are
used to illustrate unfolding with row-conditional ordinal transformations of
the data. For these analyses, the program’s default initial configuration and
the strictest convergence criteria were used, without limiting the number of
iterations used, to obtain results that are as accurate as possible.

For a numerical comparison, it is advisable to consider several measures
simultaneously. First, there are several fit measures to consider, indicating
how well the distances fit the pseudo-distances (see Technical Appendix G,
page 213). Instead of r-stress, which was used in the simulation study, we
now use stress-2 (4.4) as a badness-of-fit measure, since stress-2 is more
commonly known and scale-independent. Several goodness-of-fit measures
are provided to give additional information about the recovery of information.
Variance accounted for (vaf), which is equal to the square of Pearson’s product-
moment correlation coefficient, is computed over all values, irrespective of
the conditionality of the analysis. For the remaining goodness-of-fit measures,
the conditionality is taken into account as the arithmetic mean is computed
over rows in case of the row-conditional analyses of the breakfast data. This
is true for Pearson’s product-moment correlation coefficient (r), Spearman’s
rank correlation coefficient (ρ; rho), and Kendall’s tau-b coefficient (τb; tau).

Then, variability measures are provided to indicate the spread of either
pseudo-distances or distances (see Technical Appendix G, page 220). For this
purpose, we provide both the variance (var) and the coefficient of variation (υ).
The distances are considered unconditional, since a configuration is looked
upon as a whole, while the interest in the pseudo-distances depends on the
conditionality chosen for the analysis. These conditional measures are taken
to be the harmonic mean over rows, providing a conservative measure of
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variability, since the harmonic mean tends to put more emphasis on rows with
little variation.

Finally, we provide a non-degeneracy index (d-index), suggested by
Shepard (1974), and an intermixedness index (i-index), suggested by DeSarbo,
Young, and Rangaswamy (1997) (for formulas, see Technical Appendix G,
pages 220–221). Shepard described “a rough index of the nondegeneracy of a
solution” as the ratio of the number of distinct distances to the total number
of distances. Here, a distance is distinct from another distance, when the
difference between the two distances is more than one tenth of the sum of
the two distances. DeSarbo et al. introduced three indices, I1 = ln(dy/dxy),
I2 = ln(dx/dxy), and I3 = ln(dy/dx), where dx and dy are the average
within-set-distances and dxy is the average between-set-distance. These in-
dices aim to indicate a well-interspersed configuration when all three indices
are near zero, or, equivalently, when the sum-of-squares, denoted by i-index,
is close to zero.

Brewery Data

In Borg and Bergermaier (1982), the brewery data set is used to demonstrate
some of the degeneracy problems in unfolding. These data were obtained by
asking beer drinkers to rate 9 breweries on 26 attributes on a 6-point scale
ranging from 1=‘not true at all’ to 6=‘very true’. Averaged over individuals, the
values are taken to be similarities on an interval level. In a few consecutive
steps, using kyst (Kruskal et al., 1978), Borg and Bergermaier showed that
stress-2with ametric transformationwithout additive constant comes closest
to an acceptable solution.

Figures 4.4 and 4.5 show the configurations (left-side panels) and transfor-
mation plots (right-side panels) for the brewery data with an unconditional
interval transformation (which includes an additive constant). genfold (with
p = 2) provides an absolutely degenerate solution (see Figure 4.4, bottom
panels): stress-2 is zero and all distances are equal to some positive constant,
resulting in zero variability for the distances (see Table 4.3). The transforma-
tion plot (right-side panel) shows an horizontal (zero) slope, again indicating
no variability in the pseudo-distances. The configuration shows that the brew-
eries (indicated by numbers) are situated in the middle of an imaginary circle
with the attributes (indicated by black dots) on the circumference of the circle.
The radius of the circle is equal to the intercept of the interval transforma-
tion, which is a clear case of an absolutely degenerate solution. The weighting

Figure 4.4 (facing page) Configurations (left-side panels) and transformation plots (right-side panels) for
the brewery data set with an unconditional interval transformation using ALSCAL (top panel), KYST (middle
panels), and GENFOLD with p=2 (bottom panels).
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structure was not able to avoid a degenerate solution, as was already predicted
in the overview of solutions for the degeneracy problem in Section 4.2. Irre-
spective of the minimization method used (prefscal uses majorization and
alternating least squares), the current genfold solution is a global minimum
as the weighted sum-of-squares function reached its lowest value possible.
With various values of p, absolutely degenerate solutions were found invari-
ably, even though sometimes other zero stress solutions occurred as well,
especially when p was large (p > 5). In the latter case, the effective number of
data points dropped below the number of estimated parameters, because an
increasing majority of the weights tends to zero as p → ∞.

The solutions of alscal and kyst are closely related, which might be a
consequence of the correspondence in loss functions. Both solutions show
some variability in the distances (see Table 4.3), but the two sets (breweries
and attributes) are clearly separated in the configuration, as can be seen in
Figure 4.4 (left-side panels) and in Table 4.3, indicated by the intermixedness
index i-index. The fit measures for both analyses are quite good; kyst has
even the lowest stress-2 value of all interpretable analyses. This is not a
coincidence, since kystminimizes stress-2, and is supposed to find a solution
with a lower stress-2 value, as alscal minimizes s-stress-2, which uses
squared distances and squared pseudo-distances instead of the unsquared
versions. Note that the transformation plot is not available for alscal, since
the program erroneously provides distances instead of pseudo-distances in its
output.

Table 4.3 Various measures for ALSCAL, KYST, GENFOLD, NEWFOLD, and PREFSCAL for the brewery data set.

ALSCAL KYST GENFOLD NEWFOLD PREFSCAL

Badness-of-Fit
Stress-2 0.540 0.310 0.000 0.907 0.326

Goodness-of-Fit
VAF 0.885 0.904 0.000 0.341 0.911
R 0.941 0.951 0.000 0.584 0.955
RHO 0.952 0.955 0.011 0.681 0.967
TAUb 0.824 0.835 0.000 0.495 0.844

Variability
var(D) 0.020 0.022 0.000 0.158 0.143
υ(D) 0.144 0.150 0.000 0.433 0.404
var(Γ) N/A 0.020 0.000 0.165 0.165
υ(Γ) N/A 0.142 0.000 0.444 0.445

Non-Degeneracy and Intermixedness
D-INDEX 0.658 0.701 0.004 0.838 0.855
I-INDEX 1.344 1.676 582.651 0.276 0.195

N/A = not available.
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Figure 4.5 Configurations (left-side panels) and transformation plot (right-side panel) for the brewery data
set with an unconditional interval transformation using NEWFOLD (top panel) and PREFSCAL with λ=0.5 and
ω=0.5 (bottom panels).

The solutions of newfold and prefscal (Figure 4.5) show more variabil-
ity in the distances. The breweries and the attributes are less clearly separated
than with alscal and kyst. The improved spread of points is confirmed with
the higher variability measures in Table 4.3. Also, Shepard’s d-index and
DeSarbo’s i-index have improved over alscal and kyst. However, the fit
measures for newfold are not good; thesemeasures are evenworse than those
for alscal and kyst. This could be expected, since newfold, after its a-priori
transformation, does not pursue an optimal interval transformation. In the
interval case, the a-priori transformation consists of subtracting the smallest
dissimilarity from the data and newfold continues with a row-conditional
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metric unfolding, without estimating an intercept. This quasi-metric anal-
ysis assures a non-degenerate solution, but without estimating an optimal
intercept, it is bound to produce worse fit statistics.

The prefscal solution in Figure 4.5 (bottom panels) provides the best fit
statistics, non-degeneracy index d-index, and intermixedness index i-index,
while maintaining sufficient variability in both pseudo-distances and distances.
Yet the prefscal configuration is in close agreement with the metric solution
without additive constant obtained by Borg and Bergermaier.

Breakfast Data

P. E. Green and Rao (1972) obtained rankings from 21 Wharton School mba
students and their wives concerning their overall preference for 15 breakfast
items. Every individual placed the stimulus number of an item in the rank
positions from highest (1 =‘most preferred’) to lowest (15 =‘least preferred’),
indicating their closeness or proximity towards a breakfast item, which re-
sulted in row-conditional ordinal (preference) data. Figure 4.6 shows the
configurations (left-side panels) and transformation plots (right-side panels)
obtained with alscal, kyst, and genfold, respectively. The breakfast items
are indicated by their plotting code and the individuals are shown as black
dots.

In Figure 4.6, both alscal and genfold show degenerate solutions. For
alscal, the breakfast items are situated on the circumference of an imaginary
circle, with the majority of individuals in the center of the circle. This config-
uration shows very little variability in the distances, which is confirmed by
the variability measures and Shepard’s d-index (see Table 4.4). The genfold
solution is an absolute degenerate solution in the conditional sense (cf. Propo-
sition 2): The distances to the breakfast items are identical within individuals as
d(xi,yj) = di for all i, j, but not necessarily across individuals (see Figure 4.6,
bottom right-hand panel). All individual transformations have horizontal
lines, but the lines differ in intercept, which is acknowledged in Table 4.4,
as the conditional variability measures and Shepard’s d-index are zero or
close to zero. The value of stress-2 is remarkable. Closer inspection of the
results shows that the stress-2 function value becomes 0/0. Actually, the
value becomes ε/ε2 = ε−1, where ε is a very small number: The numerator
indicates that the weighted sum-of-squares loss function is close to zero (ε),

Figure 4.6 (facing page) Configurations (left-hand panels) and transformation plots (right-hand panels) for
the breakfast data set with row-conditional ordinal transformations using ALSCAL (top panel), KYST (middle
panels), and GENFOLD with p=2 (bottom panels). The breakfast items (and plotting codes) are given in
Table 2.1.
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but with a denominator even closer to zero (ε2), the actual stress-2 function
value becomes huge. This condition also explains the perfect value for vaf.

Although, upon first inspection, the kyst configuration (Figure 4.6) shows
no apparent degeneracy, the transformation plots for 15 out of 42 individuals
(right-side panel) indicate at least a partially degenerate solution: Irrespective
of the ranking of the items, all transformed proximities obtain one and the
same value, except for rank 15, which slightly deviates under influence of
the normalization factor. In the transformation plot, these transformations
are indicated by an horizontal line with an intercept of about 1.37. In the
configuration, the ideal point of such an individual, situated in the center of
the configuration, has nearly the same distance towards all breakfast items,
except for TP, which is slightly larger. kyst shows a substantial improvement
over alscal and genfold, though. Considering the variability measures for
kyst in Table 4.4, both variance and variation of the distances are satisfactory:
The inter-set distances in the configuration show enough variability. The
conditional variability measures, however, indicate that within individuals
there is very little variability. We deduced the same fact earlier from both the
configuration and the transformation plot.

Both newfold and prefscal (Figure 4.7), on the other hand, show no
apparent form of degeneracy. Both individuals and items are well spread
throughout the configuration, which is also indicated by the variability mea-
sures in Table 4.4, and the individual transformations show distinct non-zero
slopes. newfold does not provide final pseudo-distances (for the numerical

Table 4.4 Various measures for ALSCAL, KYST, GENFOLD, NEWFOLD, and PREFSCAL for the breakfast data
set.

ALSCAL KYST GENFOLD NEWFOLD PREFSCAL

Badness-of-Fit
Stress-2 792.8 0.399 176212 0.974 0.560

Goodness-of-Fit
VAF 0.034 0.833 1.000 0.481 0.807
R 0.463 0.911 NAN 0.747 0.874
RHO 0.478 0.615 0.523 0.730 0.798
TAUb 0.360 0.608 NAN 0.580 0.709

Variability
var(D) 0.013 0.122 0.091 0.197 0.192
υ(D) 0.114 0.374 0.317 0.495 0.483
varc(Γ) N/A 0.003 0.000 0.369 0.233
υc(Γ) N/A 0.078 0.000 0.750 0.575

Non-Degeneracy and Intermixedness
D-INDEX 0.094 0.492 0.054 0.741 0.749
I-INDEX 12.542 0.544 0.872 0.055 0.184

N/A = not available; NAN = not a number (due to divisions by zero).
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Figure 4.7 Configurations (left-side panels) and transformation plot (right-side panel) for the breakfast data
set with row-conditional ordinal transformations using NEWFOLD (top panel) and PREFSCAL with λ=0.5 and
ω=0.3 (bottom panels). For the breakfast plotting codes, see Table 2.1.

results, the a-priori pseudo-distances were used instead), so a transformation
plot could not be created, but a similar plot as for prefscalmight be expected.
Again, prefscal outperforms newfold on the fit measures. Since newfold
does not perform a nonmetric analysis, but a row-conditional metric analysis
without an intercept after an a-priori transformation, this could be expected.
In the ordinal case, the a-priori transformation consists of replacing rank order
one with a zero and drawing the differences between subsequent rank orders
from a normal distribution (Kim et al., 1999, and A. Rangaswamy, personal
communication, August 20, 2003). Introducing random error and using a
metric transformation leads to relatively poor fit statistics. On the whole,

69



the coefficient of variation penalty

prefscal performs well on all measures, providing a solution with variability
in both distances and conditional pseudo-distances as well as acceptable fit
statistics.

For an interpretation of the prefscal configuration in Figure 4.7, two
dimensions can be identified. Thehorizontal dimension discriminates between
soft and hard bread or toast. The vertical dimension has nonfat items on one
end and the more fattening items on the other, lower end. Some clusters can
be identified too. On the upper left-hand side there are toast and hard breads
with margarine or butter, in the middle on the right there are sweet donuts
and coffee cakes, and on the lower side of the configuration there are muffins.

4.6 summary

Degenerate solutions are a common problem in nonmetric unfolding. The
origin of this problem kept many researchers occupied, but without a clear
conclusion. DeSarbo and Carroll (1985) believed “that a possible cause for
degeneracy is the error in the data” and although Carroll (1972) mentioned
that “the problem is theoretically tractable”, according to Kim et al. (1999) “the
exact causes of degeneracy are currently unknown”. This chapter has formally
identified what the exact necessary and sufficient conditions for degeneracy
are, insofar as degeneracy is defined as a solution with zero stress and con-
stant distances. Shepard (1974) proposed the percentage of distinct distances
among all distances as a “rough index of the nondegeneracy of a solution”.
Although the measure is able to indicate an absolutely degenerate solution, the
magnitude of a degeneracy is more difficult to grasp. In order to determine
the extent of a degeneracy, DeSarbo et al. (1997) have defined degeneracy
indices that measure how well the two sets of points are interspersed. The
sum-of-squares of these indices come close to a single measure, but still in-
dicates intermixedness, not degeneracy. In conclusion, we have to rely on
multiple measures to determine whether a solution is near-, quasi-, strongly,
or extremely degenerate.

An approach initiated by Kruskal and Carroll (1969) used a normalization
or penalty function to avoid solutions in which the interset distances become
equal. Although solving these problems with a penalty function was quali-
fied as “basically unsound” by de Leeuw (1983), Kruskal and Carroll (1969)
believed that their method might be successful, even though for real data the
method performed less than fully satisfactorily. About the use of stress-2
they remarked: “However, the second scale factor is zero for each judge except
the distinguished judge. Consequently, with one exception, the individual
badness-of-fit values are 0/0. While this is not a positively reassuring sign, it
does suggest that a computation which seeks to minimize the overall badness-
of-fit will avoid this kind of configuration.” We believe that De Leeuw’s results
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do not indicate that Kruskal and Carroll’s approach was conceptually flawed,
but that the remedy was not strong enough, and their considerable optimism
for the future now turns out to be warranted.

In this chapter, it is argued that the cause for degeneracies resides in the
set of admissible transformations. When this set includes an additive constant,
all data values are allowed to become equal. Admissibility of an additive con-
stant is not limited to nonmetric (ordinal) transformations, but also applies
to interval or spline transformations. However, if we resort to methods that
work by restricting the set of admissible transformations we do loose gen-
erality and have to make quite a number of arbitrary specifications. So it is
better to find some other way to make solutions with a large additive constant
unattractive, without ad hoc interventions. In this chapter, we have shown
that our adaptation of Kruskal and Carroll’s approach into penalized stress
does work. Using the coefficient of variation, a scale-free and relative measure
of variability, in the adapted penalty function, and using the harmonic mean
for determining the penalty in the row-conditional case, we obtain a general
badness-of-fit function that successfully avoids a degenerate solution in a wide
range of circumstances. Additionally, two strength parameters were intro-
duced in penalized stress to be able to adjust the balance between r-stress
and the penalty. The simulation study made clear that one of these parame-
ters could be restricted to a constant value, whereas the other parameter was
best chosen in a specific interval. Two applications showed that our method
compares favorably with other methods, not only with artificial data, but also
with real data.
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5restricted unfolding

The fundamentals of preference mapping are revisited in the context of a
new restricted unfolding method that has potential for wide application
to product optimization for consumers. Since more of an attribute is not
necessarily preferred, the unfolding distance model provides estimates
of ideal points for consumers and therefore provides a more adequate
representation of the preference relationships, compared to conventional
internal preference mapping. Compared to other ideal point methods,
the new unfolding technique offers advantages in terms of allowing for
the ordinal nature of the ratings, rather than implicitly assuming that
ratings are linear. The proposed restricted unfolding model incorporates
property fitting, both passive, as a separate, second step, and active, as a
restriction on the product locations. This is also available as a restriction
on the respondents’ locations and as such establishing a link between
internal and external preference mapping.

5.1 introduction

There are many different methods of preference mapping analysis and it has
been a subject of continuous development through from the 1960’s to the
present day. Often alternative types of analysis need to be carried out and
compared before choosing the most appropriate model for any given set of
data. Traditionally there are two basic classes of preference mapping tech-
niques. A recent comparison of both types is discussed in van Kleef, van
Trijp, and Luning (2006): “ Internal preference analysis gives precedence to
consumer preferences and uses perceptual information as a complementary
source of information. External analysis, on the other hand, gives priority
to perceptual information by building the product map based on attribute
ratings and only fits consumer preferences at a later stage.” (van Kleef et al.,
2006, page 388). From a conceptual point of view, internal preference anal-
ysis achieves a multidimensional space representing differences among the
products based on the preference data, whereas external preference analysis
finds a multidimensional representation based on attribute ratings. From a
technical point of view, both analyses are quite similar. Internal preference

This chapter is an adapted version of Busing, F.M.T.A., Heiser,W.J., &Cleaver, G. (2009). Restricted
unfolding: Preference analysis with optimal transformations of preferences and attributes. Food
Quality and Preference, 21, 82–92.
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analysis estimates consumer respondent vectors and product points by inter-
nal preference mapping (Carroll & Chang, 1970; Carroll, 1980) or (categorical)
principal component analysis, and then estimates vectors for the attributes
with (multiple) regression analysis, given the product points, an additional
analysis also known as property fitting (Carroll & Chang, 1964a). The term
internal is due to Carroll (1972), referring to the simultaneous (internal) es-
timation of both respondent and product coordinates. External preference
analysis, on the other hand, first estimates attribute vectors and product points,
essentially by the same techniques as internal preference analysis, and then
estimates consumer respondent points or vectors, given the product points, by
some form of (multiple) regression analysis, also known as external unfolding
(see Carroll, 1972; Schiffman, Reynolds, & Young, 1981; Meulman, Heiser, &
Carroll, 1986). The term external, also due to Carroll (1972), entails the second
step, in which the respondent coordinates are estimated, given (externally) the
products points. Examples of both types of preference analysis can be found
in McEwan andThomson (1989), Daillant-Spinnler, MacFie, Beyts, and Hed-
derley (1996), Arditti (1997), Murray and Delahunty (2000), andThompson,
Drake, Lopetcharat, and Yates (2004).

The model proposed in this chapter, the restricted unfolding model, finds
points for respondents and products, possibly restricted by additional vari-
ables. Themodel is similar to internal preference analysis as it gives precedence
to the preference data and uses additional attribute data to enhance interpreta-
tion. However, the proposed model deviates from existing models on several
important aspects, namely concerning the representation of individuals (ideal
point or vectors), the type ofmodel (restricted or not), the number of (analysis)
steps (one, two, or both), the type of transformations (especially monotone
transformations), and concerning measures against degenerate unfolding so-
lutions. Themodel elaborates on and combines the work of Carroll and Chang
(1964a), Carroll (1972), de Leeuw and Heiser (1980), DeSarbo and Rao (1984),
and Busing, Groenen, and Heiser (2005).

The remainder of this chapter discusses the restricted unfolding model
in detail and elaborates on an extensive example on preferences for different
types of tomato soup. Possible extensions for product development are reintro-
duced and comparisons are made with existing models, namely with Principal
Component Analysis (pca), Landscape Segmentation Analysis (lsa), and
Euclidean Distance Ideal Point Mapping (edipm). The chapter concludes with
a discussion.

5.2 the restricted unfolding model

The unrestricted unfolding model finds a lower-dimensional representation of
respondents and products, where the distances between both sets correspond
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as closely as possible with the preferences of the respondents for the products,
that is, Δ � d(X,Y), where Δ represents the preferences, d(X,Y) represents
the Euclidean distances between the respondent coordinatesX and the product
coordinates Y , and � represents a least squares relation. Large distances
correspond to the products least preferred and, consequently, small distances
correspond to themost preferred products. Products that appear close together
are analogously preferred just as respondents with similar preference profiles
share the same positions in space.

The preferences, often measured at the ordinal measurement level, are
allowed to be optimally transformed to fit the distances as closely as possible,
i.e., Γ = f(Δ), where f(·) is a class of monotone transformation functions.
This class of functions includes linear and ordinal transformation functions,
but also, for example, monotone spline transformation functions. The unre-
stricted unfolding model with optimal transformations of the preferences is
then given as Γ � d(X,Y). Transformations of the preferences Δ are usually
performed per respondent (i.e. row-conditional) due to the inter-respondent
incomparability of the preferences, that is, γi = fi(δi) for each respondent i.
Unconditional transformations, allowing comparisons over respondents, are
also available.

For the restricted unfolding model, the coordinates for their part can be
restricted to form a linear combination of variables E, such that X = ExBx

or Y = EyBy, giving the model as Γ � d(ExBx,EyBy). The variables, as
columns in E, often referred to as prediction variables, explanatory variables,
external variables, or attribute variables, are also allowed to be optimally
transformed to fit (the projection of) the coordinates, such that Q = g(E),
where g(·) is a class of transformations, not necessarily monotone. The full
restricted unfolding model with optimal transformation of both preferences
and variables is then given as Γ � d(QxBx,QyBy).

The restricted unfolding model corresponding with the example in the
next section is given as

Γ � d(X,QB). (.)

The coordinates of the products Y are thus a linear combination of the trans-
formed variablesQ, with B as the matrix with regression coefficients. This
relation corresponds with property fitting (Carroll & Chang, 1964a) or, equiv-
alently, the second step in internal preference analysis (van Kleef et al., 2006).
Both procedures determine directions in the configuration based on the vari-
ables E. However, the unified restricted unfolding model actually restricts
the coordinates, whereas property fitting is a separate analysis and poses no
restrictions on the configuration.

The optimal direction in the configuration for variable q is determined by

p � q, (.)
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where p is the projection of the product coordinates Y onto direction vector a,
i.e.,p = Ya. The direction vectora for variableq is given bya = (Y ′Y)−1Y ′q
(see Chang & Carroll, 1969). Although (5.2) is not minimized directly by
minimizing (5.1), Meulman and Heiser (1984) showed that minimizing (5.1)
results in product coordinates Y = QB offering projections P with improved
approximations of the variablesQ as compared to property fitting. Moreover,
the direction vectors, collected as columns in the matrixA, are used to plot
the directions of the variables in the configuration, as with property fitting,
since these provide the optimal variable values after projection of a location
(coordinate) onto the direction. The directions provided by B would be used
for optimal interpolation, that is, finding an optimal location based on variable
values.

For the restricted unfolding model, an alternating least squares and itera-
tive majorization framework is used to estimate all parameters. In order to
avoid degenerate solutions, a persistent problem that pursued unfolding for
decades (see van Deun, 2005, for a recent review), the coefficient of variation is
used in a penalty function as described in Busing, Groenen, and Heiser (2005)
and used in ibm spss prefscal (Busing, Heiser, et al., 2005). The technical
appendix (page 147 and further) discusses the algorithm, as well as the differ-
ences and extensions to Busing, Groenen, and Heiser (2005), in detail. A more
general reference for multidimensional unfolding and iterative majorization
is Borg and Groenen (2005).

5.3 case study

A consumer study was carried out to guide the optimal product characteristics
of tomato soup. Nine different formulations of soup were developed and each
was tasted and assessed by 298 consumers recruited to take part in the study.
A small portion of each soup was consumed, with palate cleansing between
each product, to minimize the effects of taster fatigue. Each consumer was
classified according to gender (male, female), age group (22-31, 32-40) and
soup consumption frequency (low, medium, high). Each product was rated
on a 9-point liking scale, ranging from 1=dislike extremely to 9=like extremely.
The particular feature of this case study was that a formulation-based design
was used to create 3 × 3 factorial set of products with the two formulation
factors chosen to vary systematically over two key sensory dimensions and
which for simplicity are referred to here as (1) Flavor Intensity and (2) Sourness,
both with levels set as ’Low’, ’Medium’ and ’High’ (see Table 5.1). In subsequent
analyses and graphics, individual products are identified by the particular
combination of Flavor Intensity (Low=I1, Medium=I2, and High=I3) and
Sourness (Low=S1, Medium=S2, and High=S3). Table 5.1 (upper part) shows
the average liking over all consumers. The most liked product overall was the
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medium Flavor Intensity and low Sourness (I2-S1) tomato soup. An mixed
model analysis of variance (Table 5.1, lower part) shows that all fixed effects
are significant, with smaller F-values for Flavor Intensity and the interaction
between Flavor Intensity and Sourness, indicating smaller differences between
the liking of all Flavor Intensity levels, contrasted by the strong significant
differences between the levels of Sourness. The random effect parameters are
all significant: respondents have different preferences for soups, with respect
to both Flavor Intensity and Sourness levels. These effects will be explored in
more detail by the restricted unfolding analysis to follow.

From a trained sensory panel additional data was collected on the nine
different types of soup. From an initial set of 29 sensory attributes, a reduced

Table 5.1 Descriptive statistics (upper part with median, mean, and standard deviations of overall likings
and share of choices) and amixedmodel analysis of variance (lower part) comparing 9 different tomato soups
on flavor intensity and sourness.

Descriptive Statistics

Share
Flavor Standard of
Intensity Sourness Median Mean Deviation Choices

Low Low 6 6.01 2.08 14%
Medium 6 5.93 2.00 13%
High 5 4.97 2.14 5%

Medium Low 7 6.32 2.06 17%
Medium 6 5.95 1.92 11%
High 6 5.52 1.97 8%

High Low 6 6.01 2.14 15%
Medium 6 5.91 1.98 11%
High 5 5.25 2.02 6%

Share of choices = percentage of first choices.

Mixed Model Analysis of Variance

Numerator Denominator
Fixed Effects DF DF F Sig.

Flavor Intensity 2 594 5.25 .005
Sourness 2 594 57.40 .000
Flavor Intensity x Sourness 4 1188 2.41 .048

Standard
Random Effects Estimate Error Wald Z Sig.

Respondents 0.94 0.12 7.50 .000
Respondents x Flavor Intensity 0.50 0.08 5.99 .000
Respondents x Sourness 0.27 0.07 3.76 .000

Residuals 2.44 0.10 24.37 .000
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set of 10 was included in the analysis with the selection based on removing
attributes which were less discriminating between the products and creating a
reduced set that captured the underlying sensory space effectively. The actual
identities of the selected attributes are not included in the analysis output
because of potential issues of commercial sensitivity. From the (significant)
correlations between the attributes, two groups of related attributes can be
deduced: the Flavor Intensity group consists of A01, A02, A03, A08, and A10,
while the Sourness group consists of A06, A07, and A09, where A06 has a
negative correlation with Sourness.

Restricted Unfolding

A restricted unfolding model, the model provided in (5.1), for the tomato
soup data results in a two-dimensional preference map for 298 respondents
and 9 soups. The two dimensions are optimal, which was assessed through
a scree plot. In Figure 5.1, the respondents are represented by dots and the
soups by the levels of the two variables, Flavor Intensity and Sourness. The
preference scale was reversed, without loss of generality, to get the preferences
in line with the distances: small distances now correspond to high preference
and vice versa. More specifically, the distances between respondents and
soups correspond with the monotonically transformed preferences of the
respondents. The applied transformation relaxes the equally spaced preference
scale, while maintaining the order restriction on the preferences. Figure 5.1
shows that there is a concentration of respondents near the low sour soups (S1).
This is consistent with the mean overall likings from Table 5.1 as well as with
the mixed model analysis of variance result. The respondents are distributed
about evenly over the levels of Flavor Intensity, matching the smaller F-value
for Flavor Intensity and Flavor Intensity-Sourness interaction in Table 5.1. The
other sources of variation are reflected by the fact that respondents differ in
position with respect to the nine soups, Flavor Intensity, and Sourness.

The two variables used to define the types of soup are represented as direc-
tions (or dimensions or axes) in the configuration. The original variables are
uncorrelated (r = 0.000), which does not preclude correlated directions in
the solution (actual r = −0.023) due to changing variable values by optimal
variable transformations. The projections of the soup coordinates onto these
directions correspond with the levels (values) of the variables. The variables
are equally spaced in formulation terms (actual concoction of substance), but
not necessarily in perceptual terms. The variables are optimally monotoni-
cally transformed to meet this feature. The variable Sourness, initially with
categories 1 (Low), 2 (Medium), and 3 (High), is transformed monotonically,
keeping ties tied. In the plot, this phenomenon results in identically projected
values for soups of the same Sourness (for example, the transformed value for
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Figure 5.1 Restricted unfolding solutions for the tomato soup data with two active variables (flavor intensity
and sourness) restricting the product configuration.

low sour soups becomes -2.76, see Table 5.2). The monotone transformation,
however, accommodates differences in intervals, as the distance between pro-
jection of the low and medium sour soups differs from the distance between
projections of the medium and high sour soups. Since the transformation of
the factor Flavor Intensity allows ties to be untied, this fact is not observed for
Flavor Intensity: medium Flavor Intensity and low Flavor Intensity appear
closer together for medium sour soups than for high sour soups. However, as
with the keep ties tied option for the monotone transformation of Sourness,
the order of soups after projection remains restricted to the initial order of
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the variables: a low Flavor Intensity soup never overtakes a medium Flavor
Intensity soup on the Flavor Intensity direction. Respecting unequal spacing
in perceptual terms should also allow the transformation for Sourness to untie
ties, but this is omitted for illustrative purposes. The actual choice for either
handling of ties depends on both substantive (data properties, interpretation,
frugality) and statistical (fit, variation) considerations.

Although the current solution has a variance accounted for (vaf; Average
squared correlation between the transformed preferences and the distances)
of 0.82, it is more appropriate to use the sum-of-squares accounted for (ssaf;
Average of the sum of squared differences between the transformed prefer-
ences and the distances divided by the product of the sum-of-squares of the
transformed preferences and the distances) or even a rank order coefficient,
considering the monotonically transformed data. Kruskal’s stress-1 (Kruskal,
1964a) equals 0.17, which corresponds to a ssaf of 0.97 (see Busing & de Rooij,
2009), and Spearman’s rho, providing the average rank order correlation be-
tween the transformed preferences and the distances, equals 0.85. In 71 of
the cases, the respondent is closest to its highest preferred type of soup (first;
Proportion indicating the correspondence of the highest preference(s) with the
smallest distance(s) relative to the total number of respondents; see Technical
Appendix G). For the unrestricted unfolding solution, these values are 0.80,
0.98, 0.84, and 65, respectively, for vaf, ssaf, rho, and first. The variation
of the distances and the transformed preferences, an important ingredient of
the loss function penalized stress (see Busing, Groenen, & Heiser, 2005),
equal 0.47 and 0.46, respectively. In terms of fit and variation, this solution is
a quite good solution, especially when compared to the unrestricted solution,
as restricting the product configuration even improves some statistics while
maintaining others on a comparable level. An optimal model follows the data
characteristics concerning transformation function(s) and conditionality, has
the best or comparable fit and variation statistics, allows for easy interpretation

Table 5.2 Initial and transformed variables for the tomato soup data.

Soup Initial Transformed Initial Transformed
Type Flavor Intensity Flavor Intensity Sourness Sourness

I1-S1 1 -1.81 1 -2.76
I1-S2 1 -2.15 2 0.72
I1-S3 1 -3.01 3 2.04
I2-S1 2 0.08 1 -2.76
I2-S2 2 -0.57 2 0.72
I2-S3 2 0.64 3 2.04
I3-S1 3 1.98 1 -2.76
I3-S2 3 2.41 2 0.72
I3-S3 3 2.42 3 2.04
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and prediction, and is parsimonious. The current restricted unfolding solution
corresponds adequately to these characteristics.

Active and Passive Variables

The restricted unfolding model presented in Figure 5.1 uses two variables
describing the products to restrict the configuration. These variables are
incorporated in the model, and one single analysis suffices to link preferences
and variables. These variables are called active variables, which means that
the variables participate actively in finding an optimal configuration, keeping
a strict relation between coordinates and variables, i.e., Y = QB. During
the iterative optimization process, variables are transformed and regression
coefficients updated to result in optimally transformed variables, optimally
fitting the (by then transformed) preferences.

Property fitting, on the other hand, entails a separate analysis, fitting
variables concerning products or respondents to a fixed configuration. In this
case, the external variables are called passive variables, variables that have no
influence on the (fixed) configuration. Still, these variables can be optimally
transformed (van der Kooij, 2007), which makes it feasible to enter nominal
or ordinal variables in the equation. Optimal transformations also result in
improved fit, but only so far as the fixed configuration permits.

Figure 5.2 shows the same restricted unfolding solution, except that for an
improved interpretation or prediction of the soups, the 10 attribute variables
from the trained sensory panel were fitted to the configuration. The measure-
ment level is assumed to be numerical for these average ratings, and thus a
numerical transformation is chosen. The demographic variables describing
the respondents are ordinal (age groups and consumption frequency), ties
allowed to be untied, and nominal (gender). In Figure 5.2, these demographi-
cal variables are passive, but it is also possible to use respondent variables to
restrict the configuration, for example to estimate an ideal point discriminant
model (Takane, Bozdogan, & Shibayama, 1987).

All variables, active and passive, respondent and product related, can be
described in terms of direction (direction vectors) and strength (variance
accounted for, vaf). The variables are graphically represented by the straight
lines (numerical transformed variables) and dotted lines (monotonically trans-
formed variables), black for active variables and gray for passive variables.
The endpoints of the lines provide the minimum and maximum values of the
original variables as reference, unless one of the endpoint falls outside the
perimeter, in which case the midpoint value is provided.

Two inserted boxes in Figure 5.2 contain information about the association
strength of the passive variables. The vaf per variable is computed as the
squared correlation between the transformed variable (q) and the projection
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Figure 5.2 Restricted unfolding solutions for the tomato soup data with both active and passive variables,
the first set restricting the product configuration, the latter two sets superimposed on respondents and
product configuration, but only after convergence.

of the respective coordinates onto the direction vector of the variable (p). With
two active variables restricting the configuration, and two dimensions, the
vaf of the active variables is perfect (1.000). Concerning the passive variables,
the vaf’s of the demographic variables are rather small (right-hand side box),
while the vaf’s of the attributes are considerable (left-hand side box). Themean
variance accounted for (values after MEAN) provides an overall fit measure
for the variables. Predicting the respondent and soup coordinates with the
aid of these variables explains 32 and 81 of the variance in respondent
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and product coordinates, respectively. Selection of variables for the restricted
unfolding model faces the same difficulties as variable selection for (linear)
regression models (see, for example, A. Miller, 2002) and worse, since the
regression model is only a subproblem in the restricted unfolding model.

5.4 optimizing product development

The restricted unfolding model is well suited for the optimization of products.
There exists a variety of proposals in the literature on how to determine opti-
mal locations for new products, given the locations for existing products and
respondents, both for deterministic or single choice models and for proba-
bilistic choice models (see, for example, Shocker & Srinivasan, 1974; Albers &
Brockhoff, 1977; P. E. Green & Krieger, 1989; Baier & Gaul, 1999). Providing
the best procedure is beyond the scope of this chapter, so we merely demon-
strate the potential use of the restricted unfolding model maximizing the
share of choices using some heuristic methods, the method of “search through
coarse and fine grid”, which proved flexible in a variety of distance metrics,
cost functions, choice models, search boundaries, and the like (Shocker &
Srinivasan, 1974). Note that the restricted unfolding model optimizes dis-
tances, so the following examples are also described in terms of distances.
Once an optimal location is determined, the restricted unfolding model allows
for an easy description of the product in terms of product attributes or relate
the product to respondent characteristics.

Finding the optimal product from several prototypes

The optimal position for a prototype product can be defined as the position
where it will attract the most consumer respondents. Logically, in a deter-
ministic framework, this position is located somewhere in the center of the
respondents. There are, however, several possibilities for the definition of this
center. Since the results from the previous section are given in two dimensions,
the present centers are also defined in two dimensions, but easily generalized
to more than two dimensions.

The center that is optimally related to the distances from the unfolding
solution is not the min-max center, which is in the middle of the respondents,
c ′
1 = (min{X}+max{X})/2, nor is it the mean center c ′

2 = n−11 ′X, which is
the point that minimizes the sum of the squared distances to the respondents
points, i.e., min

∑ ‖Xi − c ′
2‖2, but it is the median center c3, which is the

point that minimizes the sum of the distances to the respondents points,
i.e., min

∑ ‖Xi − c ′
3‖. This problem is known as the Fermat-Weber location

problem, as it arises in the optimization of the location of sales units (Weber,
1909), or as the problemof finding the spatialmedian in quantitative geography
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Figure 5.3 Restricted unfolding solution for the tomato soup data with four optimal clusters with centers
through probabilistic d-clustering and 90% convex hulls.

or geometry (Hayford, 1902; Sviatlovsky & Eells, 1937). Descent algorithms for
finding the median center c3 are suggested in Gower (1974) and Bedall and
Zimmermann (1979), and recommended in Brown (1985), and Chaudhuri
(1996), while an iterative solution, actually one of the first examples of iterative
majorization (see de Leeuw, 1977a; Groenen, 1993; Heiser, 1995, for iterative
majorization in an mds framework), is given by Weiszfeld (1937).

When the respondents fall apart into two distinct clusters, the median
center probably ends up somewhere in between the two clusters, a location
not preferred by either group of respondents. In that case, multiple centers are
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preferred, one center for each cluster. The researcher has then to decide which
cluster to pursue, aided by additional information on clusters or respondents,
either by labeling, averaging, or by incorporating active or passive variables
into the restricted unfolding model describing respondent characteristics.
A recently proposed probabilistic d-clustering procedure determines cluster
centers based on the median center (Ben-Israel & Iyigun, 2007). Additional
features allow for the computation of different cluster sizes and the number of
clusters (see Iyigun, 2007; Iyigun & Ben-Israel, 2008). For now, an adapted
version of the Calinski and Harabasz (1974) statistic indicates that the optimal
cluster solution consists of four clusters. Figure 5.3 shows the four cluster
solution with 90 convex hull (nonparametric) confidence intervals. The
share proportion per cluster corresponds well with the average score per
cluster, as can be seen from Table 5.3. The soups with the highest mean share
proportion per cluster coincides with the soups of cluster 3, which are the
low sour tomato soups, specifically the medium flavor intensity and low sour
tomato soup.

Now, suppose we use the median center of cluster 3 with coordinates
(1.17, 3.68) as the location for the new soup and we want to determine the scale
values for Flavor Intensity and Sourness related to this location. Projection
of the center coordinates onto the variable vectors gives −0.15 for Flavor
Intensity and −2.72 for Sourness. Back-transformation or calibration (Gower
& Hand, 1996; Gower, Meulman, & Arnold, 1999), that is, e = g−1(q), using
linear interpolation (for intermediate values) or extrapolation (for out-of-scale
values), is used to reduce the transformed values to the original variable levels,
such that Flavor Intensity becomes 2.00, as projection of the center ends up in
between the medium Flavor Intensities, as can be deduced from Figure 5.3,
and Sourness becomes 1.01, after linear interpolation. Both calibrated values
can also be computed from Table 5.2, as −0.57 � 0.15 � 0.64 (third column)

Table 5.3 Average score and share proportion per cluster for each soup.

Average Score per Cluster Share Proportion per Cluster∗

Soup 1 2 3 4 1 2 3 4 Mean

I1-S1 5.175 4.970 7.132 6.680 0.237 0.400 0.159
I1-S2 4.888 6.030 6.013 6.880 0.015 0.480 0.124
I1-S3 4.100 4.806 4.697 6.333 0.030 0.093 0.031
I2-S1 6.263 5.552 7.750 5.627 0.013 0.104 0.671 0.197
I2-S2 5.638 6.552 5.842 5.867 0.507 0.027 0.134
I2-S3 5.475 6.567 5.105 5.067 0.194 0.049
I3-S1 7.038 5.194 7.000 4.653 0.537 0.092 0.157
I3-S2 6.875 6.104 5.697 4.907 0.450 0.119 0.142
I3-S3 6.362 5.507 4.763 4.320 0.030 0.008

∗zero’s are omitted.
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and Flavor Intensity becomes 2.00 (second column), and as−2.72 is very close
to −2.76 (fifth column), Sourness becomes 1.01 (after linear interpolation).

From a probabilistic point of view, the optimal locations maximize the
probability products are chosen. The probability for product k by respondent
i is defined in terms of inverse distances as pik = cd−1

ik , where dik is the
distance between product k and respondent i and c a constant that ensures
that the chances add up to one. Maximizing the choice over all products is
identical tominimizing the inverse of the sum over all inverse distances, that is,
max

∑
k pik = min(

∑
k cd

−1
ik )

−1. Finding the locations for all respondents
is related to the harmonic means cluster function (see Zhang, Hsu, & Dayal,
1999; Zhang, 2000). A solution for the probabilistic case is not pursued here.

Finding the optimal product among competitors

The restricted unfoldingmodel can also be used to identify the optimal profiles
for products facing competition. For the next two examples, we will use a
simple grid search with contour plots for both deterministic and probabilistic
choice models (see, for example, Baier & Gaul, 1999).

For the first example, suppose the current solution (Figure 5.1) represents
the current tomato soup market and we would like to launch a new product
that has first choice for most respondents. Specifying a grid with potential
soups on top of the solution from Figure 5.1 and interpolating equal grid values
provides the contour plot given in Figure 5.4. Grid values are determined
by first rank ordering the distances from all respondents to current (large
dots) and potential (grid) soups, counting the number of first choices for the
potential soups, and dividing the sum by the number of respondents. The core
of a matlab function accompanying Figure 5.4 computes these grid values
as Z (line 6), which can be plotted with one of the matlab contour functions
(line 9).

The grid values in Figure 5.4 indicate the proportion of respondents with
first choice for the potential soup in that area. The plot shows two major areas
where the proportion is over 0.16. Also considering the areas with more than
0.12 or 0.14 and considering the direction of both variables, we considered the
crossed area as the location for our new tomato soup, since this area benefits
from the adjacent 0.12 and 0.14 areas on both variables.

Having identified the position for the new tomato soup (−2.9, 1.3), projec-
tion of the new soup coordinates onto the two directions provides only the
transformed values for the attribute variables. Again, back-transformation
is used to reduce the transformed value to the original variable level (see
Table 5.2). For Flavor Intensity, projection onto the direction vector gives the
value 2.22, which gives 3.0 exactly for the original level of Flavor Intensity. For
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Code Start

1 mind = min (D’); % minimum distance per respondent
2 for i = 1:nx % loop over grid x-axis
3 for j = 1:ny % loop over grid y-axis
4 g = [x(i),y(j)]; % grid coordinate
5 d = distance (g,X); % distances to all respondents
6 Z(i,j) = sum (d < mind)/n; % proportion first choices
7 end % end loop grid y-axis
8 end % end loop grid x-axis
9 contourf (x,y,Z’); % filled contour plot

Code End

Figure 5.4 Restricted unfolding solution with discrete choice contours, correspondingMATLAB code, and an
optimal product location (X). The products represent own internal prototype products in relation to potential
competitor products.
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Sourness, projection ends up in between two observations, with the trans-
formed value of−0.48. Linear interpolation gives 1.66 as the original Sourness
level for the new product. If the scale type of Sourness would be categorical,
instead of numerical (imagine that the level of sourness was manipulated by
varying the number of lumps of sugar), the numerical value is rounded off to
the nearest available category value, in this case the value 2.

For the second example, suppose the current solution (Figure 5.1) rep-
resents the current tomato soup market and we would like to launch a new
product that has the highest chance of being chosen by all respondents. In this
case, we use the probability for product k by respondent i defined in terms of
inverse distances as pik = (1+ dik

∑
j d

−1
ij )

−1, where dik is the distance be-
tween respondent i and new product k. Specifying a grid with potential soups
on top of the solution from Figure 5.1 and computing the average probability
over respondents for each position (represented by Z in the matlab code, line
6) provides the contour plot given in Figure 5.5. Part of the matlab function
is provided below the corresponding figure.

The plot shows two areas where the average probability is over 0.13. Assum-
ing that the position for the new soup close to the currently most preferred
soup would be a too great commercial risk, the area with the cross is cho-
sen as the best position for the new soup. Again, the new soup coordinates
(−0.62, 1.60) are projected onto the two variables providing the transformed
values for both attribute variables. Back-transformation gives numerical values
2.05 and 1.50, respectively, for Flavor Intensity and for Sourness.

5.5 comparison

The restricted unfolding model creates configurations with locations for re-
spondents and products from the respondents preferences for these products,
while taking into account product attributes or respondent characteristics.
Commonly, these data are handled with external or internal preference analy-
sis (see van Kleef et al., 2006). The primacy of the product locations is on the
preferences, which are based on perceived benefits (Meyers & Shocker, 1981),
not on the perceptions, which are similarity judgements based on characteris-
tic attributes. Using preferences instead of perceptions is recommended by
Derbaix and Sjöberg (1994) as these are more stable and certain judgements.
This rules in favor of internal preference analysis (over external preference
analysis) and we will therefor compare the restricted unfolding solution with
three such analyses, a vector model, Principal Components Analysis (pca),
and two ideal point models, Landscape Segmentation Analysis (lsa) (Ennis,
1999, 2005; Rousseau & Ennis, 2008) fromThe Institute for Perception (Rich-
mond, VA) and Euclidean Distance Ideal Point Mapping (Meullenet, Lovely,
Threlfall, Morris, & Striegler, 2008).
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Code Start

1 sumd = sum (1./D’); % sum over inverse distances per respondent
2 for i = 1:nx % loop over grid x-axis
3 for j = 1:ny % loop over grid y-axis
4 g = [x(i),y(j)]; % grid coordinate
5 d = distance (g,X); % distances to all respondents
6 Z(i,j) = mean (1./(1+d.*sumd)); % probability for soup on grid coordinate
7 end % end loop grid y-axis
8 end % end loop grid x-axis
9 contourf (x,y,Z’); % filled contour plot

Code End

Figure 5.5 Restricted unfolding solution with probability choice contours, corresponding MATLAB code,
and an optimal product location (X). The products represent own internal prototype products in relation to
potential competitor products.
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Comparison with the vector model

The vector model represents respondents as vectors or directions instead of
points in the configuration. Although the preferences are still defined in terms
of distances, an intermediate projection step is needed for the vector model.
This is, in contrast with a remark from van Kleef et al. (2006, p. 390), not only
a practical but also a conceptual issue. The underlying preference curves for
the vector model are either linear (pca or mdpref , see Chang and Carroll
(1969); Carroll and Chang (1970)) or monotonically increasing (catpca ,
see Meulman, van der Kooij, and Heiser (2004); Meulman, Heiser, and spss
(2005); Linting, Meulman, Groenen, and van der Kooij (2007)), meaning
that a vector points in the direction of maximum preference. The further a
product projects onto a vector, the more it is preferred. The projection model
thus assumes that consumer respondents have extreme optimum points, since
the ideal product is situated (far) outside the cloud of actual product points.
The vectors indicate the ideal direction without specifying the location. As a
consequence, the projection model forces the actual most preferred products
to be on the edge of the product cloud, and optimal products even further (see
Figure 5.6). As Ennis (2005) notes, “this type of model is well suited to account
for attributes, such as luxury or off-taste, for which the consumer’s ideal will
fall outside any conceivable region of the sensory space into which products
are placed”, but not for accounting attributes “such as sweetness or flavor level,
for which the consumer will reject products with too much or too little of the
attribute”. Consumer preference data, however, is almost only considered of
the last type and projection models are thus less suited to describe the optimal
locations as opposed to the distance model, where a single peaked preference
curve is utilized. Here, a respondents’ position coincides with its ideal product
and moving away from this point in any direction decreases its preference.

Practically, the vector model configuration must always be interpreted
through projection. First, products are projected onto the respondents’ vector,
and then, differences between the projections are interpreted in terms of
distance. The intermediate stepmakes it more difficult to “read” a vectormodel
configuration as compared to a distance model configuration. Sometimes, the
respondent vectors are only represented by their endpoint, due to the vast
amount of black ink generated by the vectors. Omitting the vectors might
arouse confusion, because the impressionmight be raised that distances can be
interpreted directly, between products points and respondent vector endpoints,
which is definitely not allowed according to the model.

There are several methods to estimate the parameters of the vector model,
two of themost renowned beingMultidimensional Preference Scaling (mdpref)
(Chang & Carroll, 1969; Carroll & Chang, 1970), and Principal Component
Analysis (pca). The methods differ in the preliminary normalization of the
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data and the scaling of the configuration and the vectors. Figure 5.6 (left-hand
panel) displays the resulting pca configuration. The product configuration
shows the same pattern of soups as observed before, accounted for by the
content of the soups based on Flavor Intensity and Sourness, although the
clear gap between the low sour soups (S1) and the other soups has vanished.
The majority of respondent vectors are directed towards the low sour soups
(S1), and not towards the (low intensity – I1) sour soups (S3), which is in
agreement with the data and previous results. The length of a respondent
vector corresponds with the vaf per respondent, which is not the case for
mdpref, as mdpref normalizes the vectors to equal lengths. The proportion
of correct first choices (first = 0.57) cannot match the restricted unfolding
solution results (first = 0.71). Main reasons for the difference between pca
and restricted unfolding are the handling of the data, the unfolding analysis
optimally monotonically transforms the data, and the underlying preference
model. Allowing optimal transformations of the preferences in pca, that is,
using Categorical Principal Component Analysis (catpca) and specifying
an ordinal optimal scaling level for the preferences, increases the vaf from
0.42 to 0.61. Nevertheless, as discussed before, linear preference curves do
not fit this type of data well and catpca does not overcome this drawback.
The contours in Figure 5.6 (left-hand panel) indicate the proportion of first
choices, similar to Figure 5.4. Illustrative for the underlying linear preference
curves in vector models are the outside positions for the most preferred soups
and the even further positioned optima for new soups.

Comparison with other ideal point methods

An internal ideal point model used quite widely is Landscape Segmentation
Analysis (lsa). It employs a probabilistic similarity model (Ennis, Palen, &
Mullen, 1988; Mullen & Ennis, 1991; Ennis, 1993) to position respondents and
products on amap. Themodel uses a fixed transformation of the liking ratings,
for example from a 9-point hedonic scale, as a similarity measure between
the products and the consumer’s ideal point. Sensory information from the
same set of products may be superimposed on the resulting plot to estimate
the sensory profile of positions on the map with a high density of consumer
ideals. This amounts to property fitting or the passive variables approach in
the restricted unfolding analysis. The right-hand panel of Figure 5.6 shows
the solution of a landscape segmentation analysis (ifpress v7.3), where the
contours were plotted using the matlab code shown below the figure. Here, as
with the ifpress software (Ennis & Rousseau, 2004), the contours display the
proportion of respondents per unit area in the configuration. The darker the
area, the more dense the number of respondents. Note that the matlab code
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Code Start

1 ...
2 P = Y*X’; % projections
3 maxp = max (P); % maximum
4 for i = 1:nx % x-loop
5 for j = 1:ny % y-loop
6 g = [x(i),y(j)]; % coordinate
7 d = g*X’; % projections
8 Z(i,j) = sum (d > maxp)/n; % proportion
9 end % end loop
10 end % end loop
11 contourf (x,y,Z’); % plot
12 ...

Code End

Code Start

1 ...
2 for i = 1:nx % x-loop
3 for j = 1:ny % y-loop
4 g = [x(i),y(j)]; % coordinate
5 d = distance (g,X); % distances
6 Z(i,j) = sum (d < unit)/n; % density
7 end % end loop
8 end % end loop
9 contourf (x,y,Z’); % plot
10 ...

Code End

Figure 5.6 PCA solution (left-hand panel) and landscape segmentation analysis solution (right-hand panel)
for the tomato soup data with first choice contours and corresponding MATLAB code.

is similar to the function for the contours with proportions of first choices
(see code below Figure 5.4), replacing ’mind’ with some fixed ’unit’.

The lsa solution shows almost the same solution for the product locations,
although mirrored on both axes, but a quite different solution for the locations
of the respondents. The highest density of respondents is situated in the cen-
ter of the solution, surrounded by the 6 most preferred soups. The statistics
(computed on optimally transformed data for a fair comparison and displayed
in Table 5.4) indicate that the preference orders (rho) are slightly worse re-
covered as compared to the restricted unfolding solution, and only half of
the most preferred soups of the respondents (first) are represented by the
distance relations in the configuration (with 0.71 for the restricted unfolding
solution). The sum-of-squares accounted for is identical to the sum-of-squares
accounted for of the restricted unfolding model, while the variance accounted
for is slightly worse. The fact that lsa is a probabilistic procedure and the
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restricted unfolding method a deterministic procedure has not been taken
into account.

The Euclidean Distance Ideal Point Mapping (edipm) method Meullenet
et al. (2008) is an extension of mdpref (Chang & Carroll, 1969) and identifies
ideal points for the respondents in a pca product configuration. Although
edipm combines the vector model (to determine product locations) with the
ideal point model (to determine respondent locations), the result is a true
distance model. A related model, the vipscal model (van Deun, 2005; van
Deun, Groenen, & Delbeke, 2005), also combines both models but allows
respondents to be represented by either vectors or points. The edipm method
works as follows. First, pca (equivalent with mdpref on mean centered data)
is used to obtain a product configuration. Then, a fine grid is searched for
the optimal locations of each respondents ideal point. For this purpose, the
correlation at each grid point is computed between the respondents preference
scores and the distances between the grid point and the product locations.
The grid point with the best correlation is chosen as ideal point for a respon-
dent. This search is repeated for each respondent. The contours in Figure 5.7
are the overlaid acceptable regions of all respondents. An acceptable region
for a single respondent consists of all grid points that are statistically non-
significantly different (α = 0.10) from the respondents ideal point concerning
the correlations previously determined.

The product configuration from Figure 5.7 is identical to the configuration
from the vector model (Figure 5.6, left-hand panel), obviously, since both
configurations are determined by pca. However, in contrast with the restricted
unfolding model and the landscape segmentation analysis, most respondent
locations are not only situated on the outside edge of the product configuration,
but even on the outside edge of the specified grid (see Figure 5.7, left-hand
panel). The grid, that was used for Figure 5.7, is about ten times the range of
the product configuration, quite arbitrarily, although the extreme respondent
positions are observed for a wide range of grid sizes. These extreme positions
were to be expected, since the vector model is identical to an ideal point model
with the ideal points at infinity (Carroll, 1972; DeSarbo & Rao, 1986; Borg &
Groenen, 2005; van Deun, 2005). With the products located according to the

Table 5.4 Goodness-of-fit statistics ideal point methods.

Restricted Landscape Euclidean Distance
Unfolding Segmentation Ideal Point

Statistic Model Analysis Model

VAF 0.82 0.73 0.45
SSAF 0.97 0.97 0.88
RHO 0.85 0.81 0.76
FIRST 0.71 0.49 0.64
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Figure 5.7 EDIPM solution for the tomato soup data (left-hand panel) with contours based on overlaid
acceptable regions (right-hand panel). The right-hand panel depicts a detail of the left-hand panel, omitting
the respondents and including contours.

vector model, with high preferred products on the outside of the configuration,
as described before, respondent ideal points are prone to be at the periphery of
the configuration, except for less well fitting respondents, who might reside in
the vicinity of the products. The edipmmerger of vector and ideal pointmodels
provides a contour plot with more or less parallel density paths (Figure 5.7,
right-hand panel), similar to the pca contour plot, instead of circular paths as
with the ’real’ ideal point models.

The goodness-of-fit statistics (see Table 5.4) for the edipm solution im-
proves on those for pca (vaf = 0.42), because badly fitting respondents in the
vector model are better off in edipm, since they might find a better location
in the middle of the products than on the periphery. The other statistics,
again using optimally transformed data, are worse as compared to the land-
scape segmentations analysis (except for first) and the restricted unfolding
model, although the differences in configurations, particularly concerning the
respondent locations, are more remarkable.

5.6 discussion

The restricted unfolding model, as proposed in this chapter, enables the re-
searcher to represent both preference data and attributes data in one lower-
dimensional configuration. Optimal transformations allow the use of both
numerical and ordinal data and, in combination with the specification of active
and passive variables, more or less restricted configurations are determined for
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the respondents or products. The loss function compares preferences and true
distances, not squared distances or projections. As a consequence, the inter-
pretation of the resulting configuration is straightforward. The distance-based
interpretation also extends to the additional analyses, such as the probabilistic
d-clustering analysis and the grid search for both deterministic and proba-
bilistic choice models.

The current model extends the genfold-2 model (DeSarbo & Rao, 1984,
1986), which was designated as “the most advanced modelling of mds-based
componential segmentation” by P. E. Green and Krieger (1989), where com-
ponential segmentation refers to the use of external variables to restrict the
configuration. Moreover, the serious problems related to the mds-approach,
as described by P. E. Green and Krieger (1989, p. 132), are currently under
control: The difficulty of constructing joint spaces and ideal points, relating
perceived dimensions to manipulable attributes, and problems of computa-
tional time (see also P. E. Green, Carroll, & Goldberg, 1981, p. 19). Difficulties
in achieving global optima are reduced with the use of multiple (random)
starts. Improvements with respect to the degeneracy problem (see Busing,
Groenen, & Heiser, 2005), the addition of external variables, the extended
choices in transformation functions, and the general availability in a major
statistical package (ibm spss statistics), assure a valuable enhancement of
the ideal point unfolding model.

Future research might concentrate on the (prior) specification of variables,
specifically which variables to include in the model. Although this problem
is also observed in, for example, multiple linear regression (A. Miller, 2002),
progress in other fields might create opportunities for the restricted unfolding
model as well, although the various transformation and restriction options
might complicate things (see van der Kooij, 2007). Another open research
topic concerns back-transformation or calibration. Calibration, currently
achieved by linear interpolation and extrapolation, might be improved for
better prediction, especially when monotone transformation are concerned.
It is hoped that further applications in consumer and marketing research will
prove the value of the restricted unfolding model.
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6unfolding incomplete data

Unfolding creates configurations from preference information. In this
chapter, it is argued that not all preference information needs to be col-
lected and that good solutions are still obtained, even when more than
half of the data is missing. Simulation studies are conducted to compare
missing data treatments, sources of missing data, and designs for the
specification of missing data. Guidelines are provided and used in actual
practice.

6.1 introduction

Multidimensional unfolding methods create perceptual spaces well-suited for
consumers research (DeSarbo, Kim, Choi, & Spaulding, 2002) and marketing
research (Balabanis &Diamantopoulos, 2004; DeSarbo et al., 1997). Unfolding
represents both consumers and products as points in Euclidean space. The
distance relation between consumers and products provides information about
the preference structure of the consumers in such a way that consumers are
closer to the products they prefer. The geometrical properties of the Euclidean
space allow for simple and comprehensible interpretation of the relationships.

In consumer or marketing research, it would be more than convenient if
consumer respondents only evaluate a subset of products. Respondents may
be unable or unwilling to comply and fail to complete the evaluation of the
full set of products. For example, in memory-based evaluations, respondents
must have knowledge or at least be aware of the products under considera-
tion to provide a useful evaluation. Without providing the respondents with
additional information, which may be undesirable for several reasons, the
evaluation set for each respondent might differ: Certain familiar products
are evaluated more often than other products and some respondents evalu-
ate more products than other respondents. Free-choice profiling (Arnold &
Williams, 1986; Dijksterhuis & Gower, 1991) and the repertory grid method
(Kelly, 1955; Rowe et al., 2005) also provide unequally distributed incomplete
data, as respondents exploit different vocabularies. On the other hand, in
studies involving tasting food products, sensory fatigue is a real issue which
means that one wants to restrict the number of products tasted. All respon-
dents evaluate an equally sized subset of all products under evaluation. The

This chapter is an adapted version of Busing, F.M.T.A., & de Rooij, M. (2009). Unfolding incom-
plete data: Guidelines for Unfolding row-conditional rank order data with random missings.
Journal of Classification, 26, 329–360.
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expensive alternative is asking respondents to return on another occasion to
complete the entire evaluation.

From a technical point of view, it is not at all necessary that the respondents
evaluate all products. Most unfolding procedures allow for missing data
without falling back on complete case analysis or listwise deletion. Consumer
respondents may judge a subset of products and the unfolding procedures only
use the valid, non-missing data, either by skipping the missing observations
during computations (pairwise deletion) or by inserting ‘valid’ data at the
missing observation, i.e., by imputation of missing data. Obtaining a good
solution with incomplete data can help researchers get the most out of limited
resources.

The focus of this chapter is (1) to investigate missing data designs for
unfolding, (2) to determine key success factors for unfolding incomplete data,
and (3) to provide guidelines for the proportion of non-missing data, required
for a good correspondence with the results of a complete data analysis. In the
following, we will first present unfolding, then briefly discuss the degeneracy
problem that haunted this technique for decades, and discuss how this problem
is currently solved. Then, incomplete data designs are presented that will be
used in the Monte Carlo simulation study that aims to provide guidelines for
researchers and data collectors, as to the amount of data that is still sufficient
for proper solutions. An example with empirical data will be shown and we
conclude with some general remarks.

6.2 unfolding

Multidimensional unfolding is a technique that finds low-dimensional config-
urations for two sets of objects, the consumers and the products. The distances
in the configuration between consumers and products should correspond
as closely as possible with the preference ratings of the consumers for these
products, in such a way that consumers are closest to the products they prefer
the most. Unfolding in general consists of several different models. In this
chapter, we use the model initiated by Coombs (1950) and generalized to the
multidimensional case by Bennett and Hays (1960). In this model, n con-
sumers andm products are represented as points in multidimensional space.
The coordinate xi of a consumer is generally referred to as its ideal point;
hence, this model is called the ideal-point model. The closer a product is to a
consumers ideal point, the more this product is preferred by this consumer.
Specific models have been suggested (external unfolding, weighted unfolding
(Carroll, 1972)), but the most influential model was the nonmetric model,
which joined nonmetric data and metric distances. Typical ‘unfolding data’
consist of rankings of products. These ranking data only contain ordinal infor-
mation (i.e., no metric information) and the data are thus called nonmetric.
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6.2 unfolding

Shepard (1962a) showed that transformations, specifically ordinal transfor-
mations, can be used to shape this nonmetric relation in multidimensional
scaling. Keeping the order relations of the original data intact, ordinal or
nonmetric data are transformed into intermediate ratio data, which in turn
are used to construct a metric Euclidean space (Kruskal, 1964a). Kruskal
proposed to use the standardized residual sum-of-squares, abbreviated ‘Stress’,
with stress-1 (Kruskal & Carroll, 1969) given as

σ1(Δ,X,Y) = ‖γ− d‖2/‖d‖2, (.)

where Δ is an n×mmatrix with preferences and X and Y are the n× p and
m× p coordinate matrices for consumers and products, respectively. In the
unfolding case, ‖γ−d‖2 is the squared Euclidean norm ‖·‖2 of the differences
between some monotone transformation f(·) of the consumer’s preferences
Δ, with γ = f(Δ), and the distances d = d(X,Y), where γ = vec (Γ) and
d = vec (D). The vec operator stacks the columns of its matrix argument.
Standardization is regulated by ‖d‖2, the sum-of-squares of the distances.

Nonmetric multidimensional scaling was one of the biggest breakthroughs
in psychological researchmethods, but it ultimately caused unfolding’s existen-
tial crisis: The freedom of the coordinates in space and the almost unrestricted
transformations ensured that the thus weakly constrained unfolding model
(Lingoes, 1977) was no longer identifiable (Busing, 2006). As a result, analyses
tend to produce perfect (in terms of loss function) but meaningless (in terms
of interpretation) configurations of points (Kruskal & Carroll, 1969; Roskam,
1968). Attempts to resolve the degeneracy problem often ended up in relatively
unknown procedures or procedures with still uncertain results (see Borg &
Groenen, 2005; Busing, Groenen, & Heiser, 2005, for an overview). Currently,
there is a revival of attempts to set afloat unfolding with more prominent
results (Kim et al., 1999; Busing, Groenen, & Heiser, 2005; Busing, 2006; van
Deun, Groenen, & Delbeke, 2005; van Deun et al., 2007). All these attempts
somehow restrict the model, either by restricting the transformations or by
restricting the coordinates. An overview of the history of unfolding, the degen-
eracy problem, and currently available (computer) procedures can be found
in van Deun (2005) and this monograph, Chapter 2.

To avoid the degeneracy problem, researchers often restrict themselves
to a metric unfolding analysis. Although this chapter focusses on nonmetric
unfolding analyses, a comparison is made between both types of analysis,
but the results are relegated to Appendix 6.A. For the nonmetric unfolding
analyses, we use the penalty approach of Busing, Groenen, and Heiser (2005)
implemented in prefscal (available in ibm spss statistics), which avoids
degeneracy by penalizing on the coefficient of variation υ(·) (Pearson, 1896).
Solutions with no or low variation in the transformed preferences and/or
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distances, characteristics of degenerate solutions, are avoided by dividing (6.1)
with a function of the variation coefficient υ(γ), i.e., the standard deviation of
γ divided by its mean. The division causes the loss function to attainminimum
values only in combination with a definite non-zero variation coefficient, that
is, with sufficient variation in transformed preferences. penalized stress is
defined as

σp(Δ,X,Y ,ω, λ) = σ1(Δ,X,Y)/μ(Δ,ω, λ)

where μ(Δ,ω, λ) = 1 +ωυ(γ)2/λ with penalty parameters ω � 0 and 0 <

λ � 1. Strong penalty parameters, with high values for ω and values for λ
closer to zero, tend to produce linear transformations, whereas weak penalty
parameters, with ω close to zero and λ closer to one, are prone to result
in degenerate solutions. Details can be found in Chapter 4 or in Busing,
Groenen, and Heiser (2005), although the function currently implemented
in ibm spss prefscal deviates slightly from the function presented therein:
normalized raw stress (normalization done with the sum-of-squares of
the transformed preferences) is used instead of r-stress (no normalization)
and an additional constant (υ(δ)2) is used in combination withω. The default
value forω changed from 0.5 to 1.0 under the influence of this last addition
(see Technical Appendix B).

In subsequent sections, the default settings of prefscal are used: Classical
scaling start with data imputation based on the triangle inequality (Heiser &
de Leeuw, 1979a), row-conditional, ordinal (ties are kept tied) transformations,
and default values for penalty parameters and convergence criteria, except for
themaximumnumber of iterations, which was doubled to prevent imprecision
due to premature termination of the iterative algorithm. Important in the
present context is that prefscal allows for a preference weight matrix with
fixed non-negative weights. When this matrix is specified as an incidence
matrix (a matrix with solely zeros and ones) it allows for the specification of
missing data.

6.3 missing data

Missing data can be initiated by the researcher when only a subset of the
products is presented to a respondent for evaluation. Proper factorial designs
can be used to define subsets which in turn can be randomly assigned to
respondents. On the other hand, missing data may be a consequence of the
knowledge set of the respondent. In this case, missing datamight be irregularly
distributed over both respondents and products. Whatever the source of the
missing data, unfolding needs to cope with the fact that some data is absent.
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6.3 missing data

Handling missing data

In general, there are two common approaches for dealing with missing data:
Deletion and imputation. The first approach simply excludes cases containing
missing data, either for all computations (listwise deletion), or only for those
computations where a missing for that case is involved (pairwise deletion).
Either deletion scheme, listwise or pairwise, ignores possible systematic dif-
ferences between complete and incomplete samples and produces unbiased
estimates only if deleted records are a random sub-sample of the original
sample. Data imputation, on the other hand, replaces missing data with ‘valid’
data through either single (deterministic) or multiple (stochastic) imputation
and could lead to the minimization of bias. However, no imputation model is
free of assumptions and the imputation results should hence be thoroughly
checked for their statistical properties, such as distributional characteristics
as well as heuristically for their meaningfulness (e.g., whether, for example,
negative imputed values are possible). See Little and Rubin (1987) for well-
documented drawbacks of either approach. We will now compare the two
methods in a small simulation study.

Simulation study: Imputation versus deletion

The breakfast data (P. E. Green & Rao, 1972; DeSarbo et al., 1997; Borg &
Groenen, 2005; Busing, Groenen, & Heiser, 2005; van Deun, 2005) for which
21 mba students and their wives rank ordered 15 breakfast items, are used
to compare the recovery of the complete data solution using three methods:
Deletion (no imputation), respondent average imputation, and product aver-
age imputation. To create incomplete data, 5 out of 15 items per respondent
were set missing by specifying an incidence matrix using a known balanced
incomplete block design (see Table 6.1). Each method was replicated 1000

Table 6.1 Incomplete block design for v=15, k=5, r=14, and b=42, taken fromDesign Computing∗ specifying
the column numbers with either missing or non-missing data for a 42× 15 incidence matrix. The entries
indicate the 5 column numbers, displayed in 3 blocks of 14.

12 3 9 13 14 9 13 1 4 12 8 5 1 12 6 14 10 3 6 12 12 14 2 10 7 15 4 1 2 13
6 11 15 4 3 1 10 9 2 15 11 12 13 14 15 13 7 5 9 15 3 8 13 10 11 3 1 4 10 5
8 1 3 9 15 12 9 2 5 6 15 4 5 14 8 13 3 12 5 2 14 7 2 5 1 3 6 13 9 7

11 2 5 7 3 4 9 7 8 12 14 7 1 9 11 5 10 6 9 15 1 6 13 14 8 11 1 13 6 5
1 4 12 3 10 7 15 11 8 12 4 7 13 2 10 13 15 8 10 2 7 13 8 10 6 11 6 9 4 2
6 7 11 1 10 9 4 10 14 11 6 12 15 7 4 1 7 15 14 3 3 11 8 9 2 5 10 12 15 11
2 6 3 14 15 2 4 8 14 6 7 4 8 5 3 10 14 8 9 5 11 12 8 1 2 11 13 4 5 14

∗see http://www.designcomputing.net/gendex/bib/b4.html.
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unfolding incomplete data

times with permutated rows and columns of the incidence matrix on each
instance.

The quality of the equivalence between the distances of the unfolding
analyses with and without missing data, i.e., the recovery of the unfolding
solution, is quantified using Tucker’s congruence coefficient φxy comparing
both sets (respondents and products) and φy comparing the product sets
only (Burt, 1948b; Tucker, 1951). By using φ, a scale-independent similarity
measure for ratio data, a Procrustes analysis to match configurations becomes
superfluous, since the distances are independent of rotation and translation
and the congruence coefficient is independent of dilation (see Technical Ap-
pendix G). At the individual level, the influence of missing data is determined
with Kendall’s rank order correlation τb (Kendall, 1948), comparing the rank
ordered distances of the complete and incomplete data solutions for identical
respondents, averaged over respondents. The comparison measures φxy, φy,
and τb, take all distances into account, also the distances associated with
missing data.

A multivariate analysis of variance indicates a significant overall difference
between the recovery capabilities of the three imputation methods (using
Wilks’ Lambda: F(6, 5944) = 227.990;p < .001;η2

p = .187). Table 6.2 provides
descriptive statistics and the tests of the between-subject effects, including
effect sizes, expressed as partial eta squared (η2

p). For the simulation studies,
emphasis is on the effect sizes as the number of replications can always be
increased to obtain significant results. Here, all differences are significant, but
the descriptive statistics and the effect sizes indicate that the differences in
recovery are not very serious. According to Cohen (1988), a partial eta squared
of .010 indicates a small effect, .059 a medium effect, and .138 a large effect.
The deletion method is slightly better than the imputation methods for φy

and τb, but worse for φxy.
The actual solutions from the incomplete data are superior for the deletion

method. Table 6.3 shows stress-1, indicated by σ−
1 based on the valid data

Table 6.2 Descriptive statistics (upper part, with means and standard deviations in parentheses) and
MANOVA tests of between-subjects effects (lower part, with F-statistics, significance in parenthesis, and
effect sizes on the second line) comparing recovery of unfolding solutions using deletion (no imputation),
respondent average imputation, and product average imputation methods.

Method φxy φy τb

Deletion .957 (.015) .967 (.019) .661 (.054)
Respondent Average Imputation .964 (.008) .957 (.025) .645 (.055)
Product Average Imputation .965 (.008) .962 (.023) .658 (.047)

Between-Subjects Effects φxy φy τb

F (p) 157.536 (.000) 48.601 (.000) 27.169 (.000)
η2
p .096 .032 .018
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only, and the rank order correlations (τ−b ). The overall difference is significant
(using Wilk’s Lambda: F(4, 5946) = 6145.930;p < .001;η2

p = .805) and the
tests of the between-subject effects show large effects for all measures in favor
of the deletion method. Where the deletion method improves considerably
on stress-1 and rank order correlations as compared to the complete data
solution (with σ1 = .241 and τb = .701, respectively), the imputation methods
worsen (see descriptives from Table 6.3). The introduction of additional error
by imputation, causes higher stress-1 values for the imputation methods.
The deletion method uses its freedom to find a better solution, mainly in
the transformation part of the loss function, but without deviating from the
imputation methods concerning the recovery of the unfolding solution. In
conclusion, due to the inconclusive recovery results, the better actual solutions
for the deletion method, and the absence of assumptions concerning the
missing data, the deletion method is preferred for further analysis.

Missing data by researcher

Researchers may only want to provide a subset of products to a respondent for
evaluation. These planned missings both reduces the burden on respondents,
improving the quality of their evaluations, and saves time and money. With
the missing data under the control of the researcher, the missing completely at
random (mcar) assumptions apply, if the missings are properly randomized
(Little & Rubin, 1987). To determine which subset of products is presented to
a respondent, simple missing data designs can be considered, but since the
relations between objects of different sets are in order, rather than just means,
more complicated fractional block designs might be necessary. A balanced
incomplete block design (bibd) (Cochran & Cox, 1957) is such a sophisticated
fractional block design. A bibd is usually defined as an arrangement of v
distinct objects in b blocks, such that each block contains k distinct objects,

Table 6.3 Descriptive statistics (upper part, with means and standard deviations in parentheses) and
MANOVA tests of between-subjects effects (lower part, with F-statistics, significance in parenthesis, and effect
sizes on the second line) comparing fit of unfolding solutions using deletion (no imputation), respondent
average imputation, and product average imputation methods.

Method σ−
1 τ−

b

Deletion .164 (.025) .770 (.022)
Respondent Average Imputation .298 (.013) .545 (.023)
Product Average Imputation .273 (.015) .618 (.023)

Between-Subjects Effects σ−
1 τ−

b

F (p) 15160.740 (.000) 25362.813 (.000)
η2
p .911 .945
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     A  B  C  D

1    1  1  0  0
2    0  1  1  0
3    0  0  1  1
4    1  0  1  0
5    1  0  0  1
6    0  1  0  1
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5    0  1  0  1
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Figure 6.1 Example of a balanced incomplete block design (BIBD) (left-hand panel) and a row-balanced
incomplete block design (row-BIBD) (right-hand panel), where valid data is represented by a connection (line)
between respondents (numbers) and products (letters).

each object occurs in exactly r different blocks, and every two objects occur
together in exactly λ blocks (definition by Prestwich, 2001). Convenient for
the current topic, with the same set of parameters, a bibd can be defined in
terms of an incidence matrix I, which is then a binary matrix with v rows
and b columns where each row sums to r and each column sums to k (see,
for an example, Figure 6.1, left-hand panel). Any pair of distinct rows has
scalar product λ = I ′iIj for all i � j. Since the parameters are not independent
(vr = bk and λ(v− 1) = r(k− 1)), a bibd is commonly expressed in terms of
v, k, and λ. The term ‘incomplete’ stems from the fact that k < v.

Although the description of a bibd is relatively simple, the generation of
a bibd is a complex problem. bibd’s are only available for a limited series of
particular parameter values (see for example Clatworthy’s (1973) catalog) and
solvable for small parameter values within an acceptable period of time (see
Nguyen, 1994). These features pose a serious problem for a Monte Carlo study,
which depends on fast problem solving, handling thousands of computational
problems within a limited time period. To overcome this practical problem, a
design is explored where each row sums to r, but where the requirement of
sum k per column and scalar product λ between rows is relaxed. Still, vr = bk,
but now k is a random variable with mean vr/b and some variation. This
design is referred to as a row-balanced incomplete block design (row-bibd),
indicating that every respondent evaluates the same number (r) of products,
but productsmight not be evaluated the same number (k) of times (an example
is given in Figure 6.1, right-hand panel). Different k’s for different columns
seems to be a minor problem, since the number of consumers is typically large
compared to the number of products.
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Simulation study: bibd versus row-bibd

The breakfast data are used to evaluate the difference between a bibd and a
row-bibd concerning the recovery of unfolding solutions. A known bibd,
with v = 15, k = 5, and λ = 8 (Nguyen, 1993, 1994), is used that matched
the breakfast data. The resulting incidence matrix is transposed and zero’s
and ones are interchanged to get a bibd with v = 42, k = 14, and λ = 18
(see Table 6.1). The incomplete unfolding using the bibd is replicated 1000
times, each time randomly interchanging rows and columns of the incidence
matrix. For the analyses using the row-bibd, 1000 runs are conducted creating
another incidence structure on each instance. Both designs exclude 5 out of 15
products per respondent.

A multivariate analysis of variance indicates a significant overall differ-
ence between the recovery capabilities of both designs (using Wilks’ Lambda:
F(3, 1996) = 2.840;p = .037). The effect size, however, is very small (η2

p =

.004), which is reflected in the tests of the between-subject effects provided in
Table 6.4: None of the three statistics shows a significant result. The descrip-
tive statistics also show that the differences are very small, which leads to the
conclusion that both designs perform alike. Subsequently, the more flexible
and faster row-bibd is used to specify the missing data by researcher.

Missing data by respondent

In memory-based evaluations, only products that are known to the respon-
dents are available for evaluation. If a researcher still offers all products to the
respondents, the results for the unknown products will mostly be neutral, ran-
dom, invalid, or missing. Shocker, Ben-Akiva, Boccara, and Nedungadi (1991)
discuss a hierarchical chain of sets modeling decision-making. In their view,
consumers use a universal set, which contains an awareness or knowledge
set, which in turn contains a consideration set, which contains a choice set,

Table 6.4 Descriptive statistics (upper part, with means and standard deviations in parentheses) and
MANOVA tests of between-subjects effects (lower part, with F-statistics, significance in parenthesis, and effect
sizes on the second line) comparing recovery of unfolding solutions using balanced incomplete block designs
(BIBD) and row-balanced incomplete block designs (row-BIBD).

Design φxy φy τb

BIBD .957 (.014) .967 (.018) .659 (.055)
row-BIBD .957 (.016) .968 (.017) .662 (.054)

Between-Subjects Effects φxy φy τb

F (p) .155 (.694) 2.777 (.096) 2.583 (.108)
η2
p .000 .001 .001
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Figure 6.2 Example of a knowledge set design (left-hand panel) and a product familiarity design (right-hand
panel), where valid data is represented by a connection (line) between respondents (numbers) and products
(letters).

which finally contains the product of choice. Each set is smaller in number of
products than or equal to the previous set. For the present research this means
that the researcher offers a universal set for evaluation to all respondents, but
respondents only evaluate the products they know, i.e., products from their
knowledge set. For an even higher quality of their evaluations, the researcher
might persuade respondents to use their consideration set or even their choice
set. As a result of the use of knowledge sets, different respondents may evaluate
a different number of products, simply because some respondents know more
products than others. A simulation study is used to determine the conse-
quences of the variation in the number of products per respondent for the
recovery of the unfolding solutions. The products in the knowledge sets might
be uniformly distributed over the entire product range, but this is not expected
in practice. Some products are more familiar than other products, for example
due to more advertising, longer existence, or wider availability. As a result,
the knowledge sets are expected to be unequally distributed over the products.
The impact of the unequal number of respondents per product on the recovery
of unfolding solutions is investigated in another simulation study.

The missing data in the present case is related to the respondents (knowl-
edge sets) or to the products (familiarity), hence the missing data is not com-
pletely at random (mcar), but only missing at random (mar). Since the mcar
assumptions no longer apply, it is imperative that additional analyses are per-
formed to get a thorough insight in the distribution of the missing data over
both respondents and products.

Simulation study: Knowledge sets

Thebreakfast data are used to determine the influence of knowledge sets on the
recovery of unfolding solutions using incomplete data. To simulate knowledge
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sets, the number of evaluations per respondent is varied. The variation is set by
drawing the number of non-missings from a normal distribution withmean 10
(as in the previous simulation studies) and standard deviationa. Theminimum
number of non-missings is set to 2. An example of a knowledge set design is
given in Figure 6.2 (left-hand panel), where different respondents know a
different number of products, represented by a line between respondents
(numbers) and products (letters). The levels of factor a are set from 0 to 10
with steps of 1, where a = 0 specifies no variation, thus 10 evaluations per
respondent exactly. This study uses 1000 replications of incomplete data per
level of factor a.

A multivariate analysis of variance indicates a significant difference (using
Wilks’s Lambda: F(30, 32247) = 304.186;p < .001;η2

p = .216) between the
variation levels a. The between-subject effects (Table 6.5, lower part) show
significant differences with large effects and the descriptive statistics of all
recovery measures give the same result: As the variation level a increases,
i.e.,, as the differences in number of evaluations per respondent increase,
the recovery of the unfolding solutions worsens. Since the total number
of missings is equal for all levels of a, the variation in number of missings
definitely influences recovery. Especially the respondent points suffer from
the variation, as can be concluded from the effect sizes and the differences in
decrease of φxy, φy, and τb, for increasing a.

Table 6.5 Descriptive statistics (upper part, with means and standard deviations in parentheses) and
MANOVA tests of between-subjects effects (lower part, with F-statistics, significance in parenthesis, and effect
sizes on the second line) comparing recovery of unfolding solutions usingmissing data designs with different
levels of variation in number of products per respondent (a).

Variation Level a φxy φy τb

0 .957 (.015) .966 (.019) .657 (.055)
1 .952 (.015) .964 (.019) .649 (.056)
2 .941 (.019) .960 (.020) .633 (.054)
3 .923 (.026) .950 (.022) .604 (.056)
4 .909 (.028) .941 (.023) .579 (.054)
5 .892 (.037) .931 (.025) .559 (.056)
6 .883 (.040) .928 (.026) .545 (.058)
7 .875 (.042) .923 (.027) .537 (.058)
8 .869 (.046) .921 (.029) .529 (.060)
9 .866 (.047) .920 (.029) .527 (.061)
10 .863 (.049) .918 (.027) .521 (.060)

Between-Subjects Effects φxy φy τb

F (p) 1006.808 (.000) 587.935 (.000) 806.964 (.000)
η2
p .478 .349 .423
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Simulation study: Product familiarity

The breakfast data are used to determine the influence of product familiar-
ity on the recovery of unfolding solutions using incomplete data. Product
familiarity is reflected by increasing the chance that a product is chosen for
evaluation, which differs from the approach taken by Chatterjee and DeSarbo
(1992), where familiarity is linked with reliability and preferences require addi-
tional uncertainty information. For the current simulation study, the chance
to choose the first 3 products (20) for evaluation is b times greater than
the chance to choose the remaining products, thus defining high familiar
and low familiar products. Corresponding comparison measures φhigh

xy and
φlow

xy only use the distances between the respondents and the products under
consideration, that is, the first 20 or the last 80 of the products. The levels
of factor b are set from 1 to 10 with steps of 1, with equal chances for b = 1. An
example of the missing data design is given in Figure 6.2 (right-hand panel).
This study uses 1000 replications of incomplete data for each level of factor b.

A multivariate analysis of variance indicates significant differences (using
Wilks’s Lambda: F(27, 29165) = 2.186;p < .001) between the familiarity levels
b, but with an effect size close to zero (η2

p = .002). The between-subject effects
indicate that the differences are due to φy and τb, but also with an effect sizes
close to zero (see lower part of Table 6.6). Comparing the familiarity levels
shows that only b = 1 is responsible for the differences, and not even with all
other levels of b. It is nevertheless save to conclude that the familiarity level
has no influence on the recovery of the unfolding solutions.

Table 6.6 Descriptive statistics (upper part, with means and standard deviations in parentheses) and
MANOVA tests of between-subjects effects (lower part, with F-statistics, significance in parenthesis, and effect
sizes on the second line) comparing recovery of unfolding solution using missing data designs with different
familiarity level of the products (b).

Familiarity Level b φxy φy τb

1 .957 (.014) .967 (.018) .659 (.056)
2 .957 (.015) .969 (.017) .662 (.052)
3 .957 (.016) .968 (.017) .665 (.051)
4 .958 (.014) .970 (.016) .668 (.048)
5 .957 (.017) .969 (.016) .665 (.050)
6 .957 (.017) .968 (.016) .666 (.049)
7 .957 (.017) .969 (.016) .668 (.050)
8 .957 (.017) .969 (.017) .667 (.051)
9 .957 (.016) .968 (.017) .667 (.049)
10 .958 (.014) .969 (.016) .668 (.048)

Between-Subjects Effects φxy φy τb

F (p) .846 (.574) 2.613 (.005) 3.061 (.001)
η2
p .001 .002 .003
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However, some of the products are more familiar than others and it is the
difference between these two sets, high familiar and low familiar products, we
are interested in. Table 6.7 (lower part) gives the results of a two-way analysis of
variance with familiarity level and high-low familiarity as fixed factors. As for
themultivariate analysis of variance, the familiarity level has a significant effect
on recovery, but an effect size close to zero. The difference, however, between
high familiar products and low familiar products is significant, together with
a large effect size (η2

p = .245). It is therefore important to make a distinction
between high familiar and low familiar products, whereas the familiarity level
is a matter of secondary significance.

Impossible missing data

Unfolding is unable to compute a solution from an unconnected block design
and it is therefore required that the incidence graph of any block design
previously discussed is connected (i.e., that there exists a path joining any
two of its vertices). In Figure 6.3, an example is shown of an unconnected
design, as one small block, with respondent 4 and product C, is not connected
with the large block of respondents (1, 2, 3, 5, and 6) and products (A, B, and
D). Determining the positions of both blocks with respect to one another is
impossible. Thus, wewill ensure in the following that each design is connected.

Table 6.7 Average congruence coefficients for high familiar and low familiar products (upper part, with
standard deviations in parentheses), and the univariate two-way analysis of variance (lower part) comparing
recovery of high familiar and low familiar products in unfolding solutions using missing data designs with
different familiarity levels of the products (b).

Descriptive Statistics

Familiarity Level b φ
high
xy φlow

xy Familiarity Level b φ
high
xy φlow

xy

1 .965 (.014) .953 (.015) 6 .971 (.015) .952 (.018)
2 .968 (.013) .953 (.016) 7 .971 (.015) .952 (.019)
3 .970 (.014) .953 (.017) 8 .971 (.014) .952 (.018)
4 .971 (.012) .953 (.016) 9 .971 (.014) .952 (.017)
5 .970 (.015) .952 (.018) 10 .972 (.012) .953 (.015)

Univariate Two-Way Analysis of Variance

Source SS df MS F p η2
p

Familiarity Level b .016 9 .002 7.468 .000 .003
High-Low 1.539 1 1.539 6485.668 .000 .245
Interaction .027 9 .003 12.470 .000 .006

109



unfolding incomplete data

     A  B  C  D

1    1  1  0  0
2    1  0  0  0
3    1  0  0  1
4    0  0  1  0
5    1  1  0  1
6    1  1  0  1

A B

C D

1

2

3

4 5 6

Figure 6.3 Example of an unconnected design, where valid data is represented by a connection (line)
between respondents (numbers) and products (letters).

6.4 monte carlo simulation study

A comparison is made between unfolding on a complete and an incomplete
set of data, for which an incidence matrix is used to specify the incomplete
set of data. The current Monte Carlo simulation study attempts to determine
key success factors for unfolding with incomplete data and aims at providing
guidelines for researchers and data collectors.

Data is generated according to the model of Wagenaar and Padmos (1971),
that is, δij = ‖xi−yj‖×expN(0,e). After generating i = 1, . . . ,n points for the
respondents and j = 1, . . . ,m points for the products in a p-dimensional space
from a uniform distribution, 5 outliers are created in each set. Using the
distances from the centroid of the configuration, points are shifted 1.5–3.0 times
the interquartile range of the distances outside the maximum distance from
the centroid to become an outlier. This choice is similar to the outlier definition
in boxplots (see, for example, SPSS, 2006), when applied to the distances of
points to the origin. Next, the distances between the sets are computed and
perturbed by multiplying them with a log normal distribution (expN(0,e)),
generating a normally distributed error pattern e on the distances. The levels of
error are roughly equivalent to Kruskal’s stress-1 values corresponding with a
perfect to a very poor fit (Kruskal, 1964a), with slightly higher stress-1 values
for the three-dimensional case. For each respondent, the (error-perturbed)
distances are replaced with their rank number. The variation in the rank
numbers, expressed in values of Kendall’s rank order correlation τb, average

Table 6.8 Summary of independent factors and accompanying levels for the simulation study.

Factor Description # Levels Factor Description # Levels

n # Respondents 5 10, 20, 40, 80, 160 p # Dimensions 2 2, 3
m # Products 4 5, 10, 20, 40 e Error Level 3 0.00, 0.10, 0.25
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0.87 and 0.70 for the error levels 0.10 and 0.25, respectively. The levels for the
independent factors in the simulation study are summarized in Table 6.8.

For each generated data set, a complete unfolding as well asm− p incom-
plete unfolding solutions are computed, as the number of inclusions (i, i.e., the
number of non-missing products), starts at p (the dimensionality) and ends
atm− 1 (the total number of products minus one, i.e., with one missing per
respondent). The factors from Table 6.8 are studied in a fully crossed factorial
design with 1000 replications for each cell. Cases for which the incidence
matrix is not connected or with insufficient free parameters are excluded from
further analyses.

Based on the results of the simulation studies from the previous section,
two types of incidence matrices are used to specify the incomplete data. The
first type specifies missing data by researcher with a row-bibd, where each
respondent evaluates the same number of products and products are evaluated
about the same number of times. The second type of incidence matrices
specifies missing data by respondent, where the number of evaluations per
respondent varies depending on the number of products (a = m/4) and 20
of the products (high familiar products) are evaluated b = 10 times more
often than others (low familiar products).

Guidelines for missing data by researcher

The influence on recovery for the factors from Table 6.8 are determined with
a multivariate analysis of covariance (main effects and 2-way interactions
only), where the continuous variable inclusion proportion (prop(i) = i/m) is
specified as a covariate. All multivariate tests are significant (p < .001), but
with varying effect sizes. As indicated by the effect sizes of the multivariate
effects (Table 6.9, second column), there is better recovery for data with fewer
missings, more products (m), and more observations (n × m). It is also
beneficial to have data with a low level of error (e), while increasing the
number of respondents (n) or changing the dimensionality (p) only has a
marginal effect on recovery. The tests of the between-subject effects are also
significant (p < .001) for all factors and for all recovery measures. Table 6.9
shows the effect sizes in the last three columns. These results lead to the same
key success factors. Additionally to the multivariate effects, the number of
respondents (n) does influence the recovery of the product configuration (φy)
and the rank order recovery per respondent (τb), as η2

p = .067 and η2
p = .068,

respectively. The number of observations (n ×m) has a large effect on the
rank order correlation with η2

p = .173.
Figure 6.4 provides guidelines for applied research when the researcher

is in control of the missing data. The panels show I-beams and markers for
all factors of the Monte Carlo simulation study, except for dimensionality,
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which has an insufficient effect on recovery to be included. We first explain the
elements of such I-beam plots and then indicate how they should be read. The
I-beam and markers, i.e., the high, low, and close in high-low graphs, indicate
high, low and medium recovery. For the congruence coefficients φ, these
indicators correspond with the values .99, .95, and .98, respectively. Although
Tucker (1951) employs .80 and Cureton and D’Agostino (1983) and Mulaik
(1972) advocate .90 to identify congruent factors or component loadings, the
relation between φ and σ1 as discussed in Technical Appendix G combined
with the rules-of-thumb by Kruskal (1964a) (although not specified for unfold-
ing) called for much stricter values for φ. For the rank order correlation τb,
values of .90, .70, and .80 are considered sufficiently high in actual practice,
also considering the variation in rank order correlations for the different error
levels. The actual values for the three recovery measures are reached with 95
accuracy, providing a common 5 type-I error.

Figure 6.4 can be read as follows. Suppose we have about 10 products, 20
respondents, and we expect almost errorfree data. Suppose we are interested
in the rank order correlations for which we are satisfied with only τb = .70
recovery. In this case, we use the upper left-hand panel for 10 products and
20 respondents and the left-hand side cluster for error level 0.0. The rank
order correlation is on the right-hand side of the cluster, indicated with a
square marker. The lower part of the I-beam provides the minimal τb = .70
rank order correlation, which in this case allows for an inclusion proportion
of .70. Thus, with a 95 chance that the rank orders corresponds at least

Table 6.9 Effect sizes for themain effects (Wilks’Lambda) and effect sizes for the tests of the between-subject
effects of the multivariate covariance analysis comparing the recovery of unfolding solutions for different
number of respondents (n), number of products (m), number of dimensions (p), and error levels (e), with
inclusion proportion (prop(i)) as covariate.

Source Wilks’λ φxy φy τb

prop(i) .551∗∗∗ .214∗∗∗ .172∗∗∗ .538∗∗∗

n .041∗ .004 .067∗∗ .068∗∗
m .071∗∗ .105∗∗ .024∗ .134∗∗
p .039∗ .018∗ .008 .002
e .061∗∗ .066∗∗ .027∗ .096∗∗
n×m .072∗∗ .083∗∗ .106∗∗ .173∗∗∗
n× p .016∗ .005 .016∗ .005
m× p .005 .005 .002 .008
n× e .016∗ .010∗ .037∗ .016∗
m× e .018∗ .032∗ .004 .007
p× e .007 .000 .001 .006

R2 .407 .455 .672

∗ , ∗∗ , and ∗∗∗ indicate small, medium, and large effect sizes.
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Figure 6.4 High-low graphs for inclusion proportions when data are missing by researcher, where the
I-beams (low-close-high) indicate 95% chances on minimal values forφxy (.95–.98–.99),φy (.95–.98–.99),
and τb (.70–.80–.90), indicated by stars, dots and squares, respectively.
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τb = .70 with the complete unfolding solution 3 products can be set missing
per respondent.

The three different foundations (φxy, φy, and τb) for the inclusion pro-
portions in Figure 6.4 and the multivariate covariance analysis provide similar
results: More products (m), more observations (n × m), and less error (e)
allow for lower inclusion proportions. Figure 6.4 lacks small sample sizes with
n = 10 andm = 5, because for these cases the inclusion proportion is always
equal to 1.0. The recovery of the product configuration, quantified with φy,
and situated in the middle of the clusters of three with the dot marker, allows
for the lowest inclusion proportions. This is plausible considering the number
of parameters to be estimated and the amount of data available. Notable is the
fact that the high error levels often allows for a lower inclusion proportion
as compared with the medium error levels, as can be seen in Figure 6.4 for
n = 20 andm = 40 and for n = 80 andm = 20.

Guidelines for missing data by respondent

The influence on recovery when the data are missing by respondent are deter-
mined with a multivariate covariance analysis. Recovery of the entire config-
uration (φxy) is split up into the recovery of a high familiar set of products
(φhigh

xy ) and the recovery of a low familiar set of products (φlow
xy ).

All tests (multivariate and between-subjects) are significant (p < .001)
and Table 6.10 shows the effect sizes only. The conclusions are similar to

Table 6.10 Main effects (Wilks’ Lambda) and effect sizes for the tests of the between-subject effects of two
multivariate covariance analyses, one for missing data by researcher and one for missing data by respondent,
comparing the recovery of unfolding solutions for number of respondents (n), number of products (m),
number of dimensions (p), and error level (e), with inclusion proportion (prop(i)) as covariate.

Source Wilks’λ φ
high
xy φlow

xy φy τb

prop(i) .679∗∗∗ .424∗∗∗ .434∗∗∗ .261∗∗∗ .662∗∗∗

n .036∗ .032∗ .028∗ .027∗ .048∗
m .069∗∗ .086∗∗ .088∗∗ .004 .099∗∗
p .037∗ .019∗ .021∗ .004 .001
e .057∗ .003 .003 .009 .095∗∗
n×m .063∗∗ .028∗ .036∗ .071∗∗ .204∗∗∗
n× p .010∗ .013∗ .014∗ .003 .018∗
m× p .006 .001 .001 .003 .005
n× e .020∗ .050∗ .058∗ .031∗ .018∗
m× e .015∗ .034∗ .037∗ .001 .004
p× e .007 .004 .004 .000 .009

R2 .539 .549 .402 .737

∗ , ∗∗ , and ∗∗∗ indicate small, medium, and large effect sizes.
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Figure 6.5 High-low graphs for inclusion proportions when data are missing by respondent, where the
I-beams (low-close-high) indicate 95% chances on minimal values forφhigh

xy (.95–.98–.99),φlow
xy (.95–.98–.99),

φy (.95–.98–.99), and τb (.70–.80–.90), indicated by diamonds, polygons, dots and squares, respectively.
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the conclusions from the missing data by researcher design, although less
pronounced: Unfolding solutions are better recovered for data with fewer
missings (prop(i)), more products (m), less error(e), and more observations
(n×m). There are small effects for the number of respondents (n), dimen-
sionality (p), and some of the interactions. Considering the between-subject
effects (last four columns of Table 6.10), the rank order correlation benefits ex-
ceptionally well from additional observations, but recovery of the correlation
is also sensitive to error. Finally, it should be noted that although high familiar
products are better recovered than low familiar products (significantly with
very small effect sizes (not shown here)), the independent factors have similar
effects on both sets of products.

Guidelines for applied research when the data is missing due to respon-
dents are given in Figure 6.5. In general, the inclusion proportions are seriously
higher than for the missing data by researcher design (Figure 6.4). Only for a
large number of observations, and then even with a large number of products,
the inclusion proportions approach 50. Compare, for example, n = 160
andm = 10 with n = 40 andm = 40: Both samples have the same number
of observations, but the latter, with more products, allows for more missing
data.

6.5 example

The results of the Monte Carlo simulation study are used to determine the
inclusion proportion for the breakfast data. The breakfast data consists of 42
respondents and 15 products (breakfast items) and the inclusion proportion
is determined by taking the average between inclusion proportions ofm =

10 and m = 20 for n = 40 and e = .25. In this case, the error level is
known from the complete set of data, which is something to be guessed at
in other circumstances. The number of missing preferences per respondent
can be chosen, depending on the quality of recovery (low, medium, or high),
on the primary interest of the researcher (the product configuration, the
respondents rank orders, or the entire configuration), and on the missing
data design (by researcher or by respondent). For the current illustration,
we are interested in the product configuration and thus focuss on φy. The
inclusion proportions for low, medium, and high recoverability are .825, .95,
and .975, for the missing data by researcher design and .90, .975, and .975 for
the missing data by respondent design. With 15 products, this leads to 0–3
missing preferences per respondent. Since the complete set of data is available,
multiple incomplete data analyses are possible and 1000 replications are used
to create the configurations and boxplots.

Figure 6.6 shows the unit standard deviation confidence ellipses (Meulman
& Heiser, 1983) or confidence regions for the incomplete data solutions after
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Figure 6.6 Configurations with unit standard deviation confidence ellipses for the incomplete breakfast
data with 1, 2, and 3 missings (top-down) using two different designs for specifying missing data: Missing
data by researcher design (left-hand panels) and missing data by respondent design (right-hand panels). The
breakfast items (and plotting codes) are given in Table 2.1.
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1000 replications. The incomplete data solutions are optimally rotated, trans-
lated, and dilated by orthogonal Procrustes analysis (Cliff, 1966) to match the
complete unfolding solution. It is obvious, even by sight, that the solutions
with fewer missing preferences per respondent and the solutions from the
missing data by researcher design contain smaller regions. These solutions
are more alike and provide better recovery of the complete data solution. Nev-
ertheless, the three high familiar products in the missing data by respondent
design, toast pop-up (TP), buttered toast (BT), and English muffin and mar-
garine (EMM), indicated in the configurations by filled confidence regions,
deviate from this general observation by maintaining their small regions, such
that these products are comparable with the missing data by researcher design.
Compare, for example, the confidence regions of CT and EMM, where the
region of the latter remains small, while the region of the former increases
considerably with each additional missing preference per respondent. In all
cases, the true product points (indicated by the plotting codes) lie within the
boundaries of their confidence region. This indicates that the incomplete data
configurations are indeed very similar to the complete data configuration,
although the variation of the coordinates from the incomplete data solutions
increases for additional missing data.

The boxplots in Figure 6.7 display the distributions of the recovery mea-
sures. For the missing data by researcher design, nearly all congruence coeffi-
cients are greater than .98 (panel a and b), and even greater than .99 considering
only the product configuration (panel b). It seems that the guidelines from
Table 6.4 are somewhat conservative, since φy � .99 was expected for data
without missings andφy � .98 for data with only one missing per respondent.
For the missing data by respondent design, the recovery is acceptable for one
or two missing preferences per respondent, but recovery quickly worsens for
additional missing data. High familiar products are better recovered than low
familiar products (panel d), but extra missing data results in inferior configu-
rations for the high familiar products too. However, returning to where we
started from, the product configuration is recovered quite well, also for two
and even three missing preferences, which is better than predicted from the
Monte Carlo simulation study results.

6.6 conclusion

An extensive study was performed that investigated the effects of incomplete
data on the results of a multidimensional unfolding analysis. We focused
on two research designs that are often utilized in consumer and marketing
research. In the first, the missing data pattern is imposed by the researcher,
while in the second design the respondent ‘controls’ the missing data pattern.
The goal of the study was to propose guidelines to researchers about the
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Figure 6.7 Boxplots of the recovery measures (φxy ,φy , and τb , for the left-hand, middle, and right-hand
panels, respectively; lower left-hand panel includes bothφ

high
xy (filled) andφlow

xy ) for the incomplete breakfast
data (boxes within a panel represent results for 1, 2, and 3missings) using two different designs for specifying
missing data: Missing data by researcher design (upper panels) andmissing data by respondent design (lower
panels).

amount of missing data that unfolding can handle without corrupting the
results of the analysis. Therefore, we compared all incomplete data solutions
with solutions obtained on complete data using two resemblance measures:
Tucker’s congruence coefficient (φ) and Kendall’s rank order correlation (τb).

Unfolding analysis has the possibility to include a weight matrix. When
this weight matrix is coded as a zero-one matrix, it can be used to handle
missing data. This option is equal to the pairwise deletion scheme, as for a zero
weight both the (missing) data and the corresponding distance are ignored in
computations. Often, researchers choose to impute data for the missings. We
compared the pairwise deletion scheme with two simple imputation methods,
and it can be concluded that pairwise deletion works better (Tables 6.2 and
6.3). Of course, more elaborate imputation schemes could be thought off, but
this is left for future research.

The first design, where the researcher controls the missing data, conforms
to a situation where the data are missing completely at random (mcar). In
this case, often a balanced incomplete block design is utilized in order to
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make the study as efficient as possible. For our simulation study, however,
such a bibd poses insurmountable problems and we proposed a row-balanced
incomplete block design (row-bibd). We investigated efficiency loss using
a row-bibd compared to a bibd and it can be concluded that this loss is
negligible (Table 6.4). All our further studies used the row-bibd. In practical
settings, where only a single analysis has to be performed, we advice to use a
real bibd (if available) to have a somewhat higher efficiency though.

The second design, where the respondent controls the missing data, con-
forms to a situation where the data are missing at random (mar). Two factors
determine the missing data pattern: The knowledge set of the respondent and
product familiarity. The knowledge set corresponds to the set of products the
respondent knows and so is able to judge. This knowledge set may differ over
subjects in size and content. Product familiarity corresponds to the fact that
some products are very well known (and thus in the knowledge set of every
respondent) and others are less well known. We distinguished between high
and low familiarity. We found that variance in knowledge set has a large influ-
ence on the recoverability (Table 6.5), while product familiarity on average
has only a minor influence (Table 6.6). However, high familiar products are
recovered better than low familiar products (Table 6.7).

Knowing this, we investigated recovery of the complete data unfolding
solution using the two designs, where in the second design knowledge set vari-
ance and familiarity were used as additional factors. We varied the proportion
of included data, the number of respondents, the number of products, the
number of dimensions, and the error level. Key success factors in the recovery
of the unfolding solution using incomplete data are (in order of importance):
The proportion of non-missing data, the number of observations, the number
of products, and the error in the data.

Figure 6.4 and 6.5 can be used as guidelines for researchers to choose
on the amount of information to be collected. The first figure is for the case
where the researcher can determine the missing data pattern. This case is
the least sensitive to missing data and it was concluded that up to 80 of the
data could be missing without real deterioration. In the second design, where
respondents control the missing data pattern, unfolding is more sensitive.
Researchers should be careful to include at least 50 of the data to have a
good recovery. In both situation, when there are less respondents, or less
products, the more the percentage of valid data should increase. In all cases,
the researcher is advised to be careful in the research design to keep the error at
the lowest possible level. The guidelines presented are in a sense conservative:
Even for lower inclusion proportions than presented, and thus with lower
recovery measures, the incomplete data solutions remain similar such that
substantive conclusions would not change.
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The guidelines were illustrated with an example on empirical data. In
Figures 6.6 and 6.7, the effects can be seen of various amounts of missing data
and the influence of both designs. It was concluded that the solutions are all
very similar. Substantive conclusions of these different solutions will be equal.

The two set-ups studied correspond to situations where the data are miss-
ing completely at random or missing at random. A third case exists when
data are not missing at random (nmar). Such a situation would occur, for
example, if the respondent is asked to indicate the top r ranked products (see,
for example, DeSarbo et al., 1997). The possibilities to construct data in this
manner are enormous and a thorough investigation would require (computer)
time, (journal) space, and a serious (human) effort. It is beyond the scope of
this chapter and left for future research.

The problem of local minima was not addressed in this chapter, although
predecessors of theMonte Carlo simulation study used both random and close
starts. Using random starts introduced unwanted variation in the somewhat
more conservative results, while the close starts, using the results of the com-
plete data solution, provided unrealistically good results. Results from these
studies (not reported here) indicate that it is always better to use a good start,
using available information about locations of products whenever possible.
Random starts can not match the guideline results presented here, although
prefscal performed fairly well under both circumstances.

The results obtained are very promising. Although really small samples
have low recoverability when data are missing for each respondent, for studies
involving more products, less than half of the data has to be included with-
out danger of changing the conclusions. This is of major importance for all
consumer research: A lot of time and money can be saved.

appendix 6.a simulation study

In many cases, and certainly due to the huge problem of degenerate solutions
in unfolding, nonmetric data are often analyzed metrically. In a simulation
study using the breakfast data (P. E. Green & Rao, 1972), metric unfolding,
only estimating a dilation parameter for each respondent, is compared with
nonmetric unfolding, where the preferences of each respondent are trans-
formed monotonically. The study was replicated 1000 times with a shuffled
bibd (see Table 6.1) on each instance. The metric and nonmetric unfolding so-
lutions are both compared on their own merits and concerning their recovery
capabilities.

The original metric unfolding solution for the complete data set is not a
particular good solution with σ+

1 = .299 and τ+b = .608, while the variation of
the distances is quite good. The incomplete data solutions, with 33 less data
to fit, only improves a little over the complete data solution with σ−

1 = .272
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and τ−b = .647 (see Table 6.11). The nonmetric unfolding solution for the
complete data is definitely better than its metric counterpart with σ+

1 = .241
and τ+b = .701, while the variation of both transformed preferences and
distances are comparable. The nonmetric unfolding solution is certainly not
degenerate. However, in contrast with the incomplete data solutions of the
metric unfolding, the nonmetric unfolding solutions improve considerably
with one third of the data missing, especially on stress, with σ−

1 = .162 and
τ−b = .772. Amultivariate analysis of variance indicates a significant difference
(usingWilks’ Lambda: F = 11868.735;p = .000;η2

p = .922) between themetric
and the nonmetric unfolding solutions with incomplete data. The between-
subject effects for both σ−

1 and τ−b are significant with large effect sizes (see
Table 6.11).

For the discussion of the recovery of both unfolding methods, we have
to keep in mind that different solutions need to be recovered. A multivariate
analysis of variance indicates a significant difference (using Wilks’ Lambda:
F = 630.381;p = .000;η2

p = .487) between the recovery of the metric and the
nonmetric unfolding solution. Although the differences in recovery are only
minor for the whole configuration (φxy) and the configuration of the products
(φy), there is a large effect for the differences in rank order recovery (τb): The

Table 6.11 Descriptive statistics (upper part, with means and standard deviations in parentheses) and
MANOVA tests of the between-subjects effects (lower part, with F-statistics, significance in parenthesis, and
effect sizes on the second line) comparing the fit ofmetric and nonmetric unfolding solutionswith incomplete
data.

Analysis σ−
1 τ−

b

Metric Unfolding .272 (.009) .647 (.019)
Nonmetric Unfolding .162 (.024) .772 (.020)

Between-Subjects Effects σ−
1 τ−

b

F (p) 18206.414 (.000) 19862.169 (.000)
η2
p .901 .909

Table 6.12 Descriptive statistics (upper part, with means and standard deviations in parentheses) and the
tests of the between-subjects effects (lower part, with F-statistics, significance in parenthesis, and effect sizes
on the second line) comparing the recovery of metric and nonmetric unfolding solutions.

Analysis φxy φy τb

Metric Unfolding .953 (.021) .971 (.019) .714 (.054)
Nonmetric Unfolding .957 (.015) .968 (.018) .661 (.055)

Between-Subjects Effects φxy φy τb

F (p) 27.180 (.000) 13.270 (.000) 478.766 (.000)
η2
p .013 .007 .193
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metric unfolding recovers the rank orders better than the nonmetric unfolding
does (see Table 6.12, last column). This is noticeable, but appearances may be
deceiving. The complete data metric unfolding has a worse fit for the rank
orders (τ+b = .608) as mentioned before, but it recovers these less fitting rank
orders better (τb = .714) than the nonmetric unfolding does (τb = .661) for
its better fitting rank orders (τ+b = .701).

In conclusion, it is safe to state that the metric unfolding on incomplete
data recovers the inferior complete data solution about equally well as the
nonmetric unfolding does for the superior complete data solution.
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7conclusion

This monograph has discussed some advances in multidimensional unfolding.
The history of unfolding degeneracies, discussed in Chapter 2, made clear
that little headway was made, especially since the technical conception of
unfolding as a special form of multidimensional scaling. Chapter 3 discussed
a small improvement as the intercept penalty allows metric unfolding to run
without getting bogged down in degeneracy troubles. It is a simple procedure,
which is applicable in almost any general computational software package. A
more versatile approach to overcome the degeneracy problem was discussed
in Chapter 4. A penalty on the variation of the transformed preferences, ad-
justable with two penalty parameters, provides an unfolding loss function
that is available for all model options. With the degeneracy problem under
control, it is now possible for multidimensional unfolding to attain its full
development as a valuable data analysis technique. Examples of such devel-
opments were presented in subsequent chapters: Chapter 5 elaborated on a
previously published model extension, restricting the coordinates to be linear
combinations of independent variables, and Chapter 6 discussed the handling
and possible extent of missing data in multidimensional unfolding.

The path from an idea to an ultimate publication, not to mention to the
implementation of an idea in software or even to the application in other
research areas, depends on many factors and takes a lot of time. During
the research for this monograph, other, additional ideas came up. Although
these ideas deserve a place in this monograph, they could not be inserted
in the completed chapters, because these were published in journal articles.
Therefore, we conclude with a short retrospect and somewhat longer prospect,
combined per chapter, omitting the history chapter for obvious reasons.

7.1 the intercept penalty

Chapter 3 established that degeneracy also occurs for unfolding with metric
transformations of the preferences. By penalizing for an undesirable (large)
intercept, the linear transformation is prevented from attaining a horizontal
position, which consequently leads to variation in the transformed prefer-
ences. The loss function, finding a correspondence between the transformed
preferences and the distances, then produces variation in the distances too.

A major drawback of the proposed procedure, besides the restricted set of
transformations, is the addition of a penalty parameter. This parameter must
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be provided in advance. Since the optimal value is unknown beforehand, the
value is commonly determined by trial and error, thus leading to a series of
analyses guided by subjective choices. To obviate this drawback, we propose
to use resampling to help asses the optimal value or use a procedure that
eliminates the penalty parameter from the loss function.

Finding the optimal penalty parameter

For the determination of the optimal value for the penalty parameter κ, which
tunes the intercept penalty, a series of unfolding analyses can be performed, for
example for κ = 0, . . . ,K, after which different fit, variation, and degeneracy
measures can be compared. The simultaneous comparison of multiple mea-
sures undoubtedly leaves room for discussion. Using an automated procedure
to determine the optimal parameter value, which circumvents this uncertainty,
runs into the trouble of finding a single measure for degeneracy, probably a
combination of (a subset of) existing measures. An attempt for such a measure
will be discussed later (see page 129). Other procedures might prove a way out
as well. Resampling techniques, for example, allow for the quantification of
the stability of a solution by just repeating the analysis with slightly deviating
data, and as such allow for the definition of a single measure to assess the
quality of an unfolding solution.

From all the resampling techniques that are at our disposal, cross-validation
seems to be an appropriate candidate. See Larson (1931) and Horst (1941)
for early applications, Lachenbruch (1965, 1968), who developed the cross-
validation criterion, Mosteller and Tukey (1968) for coining the term cross-
validation, and Shao andTu (1995) for amore recent reference. Cross-validation
is applied as follows: Using a part of the data as training set and the remaining
part of the data as test set, the mean squared error of prediction

msep =
1

nm

n∑
i=1

m∑
j=1

(
δij − δ̂ij

)2
,

where δ̂ij = f−1(dij) = (dij − b1)/b2 (with b1 and b2 as intercept and slope,
respectively) is the predicted value of δij (from the test set), can be used to
assess the predictive validity of the model (Allen, 1974). The training set is
specified by randomly selecting a specific number of cells from the data set.
The training set is not required to be half of the original data set, which is
known as two-fold cross-validation, or all data except one observation (hence
the confusing relation with the leave-one-out jackknife, see Stone, 1974) but
can be any integer division, such as, for example, 10 for a ten-fold cross-
validation, defining a training set with 90 of the data and a test set consisting
of the remaining 10. The results from Chapter 6 might help to decide which
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division is most appropriate for the data set at hand. The cross-validation
procedure is repeated for all folds, making sure that all data belonged to the
test set once. All folds are repeated R � 1 times.

It should be noted, however, that the degeneracy problem might inter-
fere (again), since a degenerate solution might prove very stable indeed. The
prediction error msep of a degenerate solution might be very small, since
the almost constant distances d of a degenerate solution transform back
f−1(dij) = (dij − b1)/b2 into quite different estimated preferences δ̂ due
to accompanying extreme regression parameters b1 and b2.

Instead of cross-validation where the data cells are used as training and
test sets, whole rows can serve this purpose. Using n− K rows of the data set
as training set and the remaining K rows as test set, opens up the possibility to
use external unfolding to find the coordinates of the test set rows, using the
column coordinates of the training set as fixed coordinates. This approach
circumvents the problemswith the extreme regression parameters as described
above, since the external unfolding does not need the regression parameters
from the training set. The results of small test runs with this approach are
promising. Future research should allow us to determine the best approach to
use cross-validation for unfolding.

Eliminating the penalty parameter

There are a few observations to make on how we can keep the metric transfor-
mations of the data under control and how this might lead to an improved
(penalty parameter free) procedure.

The working principle for the intercept penalty relies on an explicit nor-
malization of the loss function and, obviously, on a penalty for the intercept.
For the normalization, the sum-of-squares of the transformed preferences are
explicitly set equal to the number of preferences (cf. Equation 3.3). The thus
defined loss function is penalized for an intercept deviating from zero. This
concludes the first observation.

The second and third observation are concerned with smooth monotone
regression (Heiser, 1989). Chapter 2 described that the step size for bounded
monotone regression is restricted by a lower and an upper bound, both ac-
companied with a parameter to specify the relative size of the bounds (Heiser,
1981). Heiser immediately acknowledged the fact that the solution for the
degeneracy problem “lacks the elegance of uniqueness”, which he solved in
1989 by presenting the procedure of smooth monotone regression. This latter
procedure omits both parameters and uses data-specific bounds based on the
mean step of successive preferences.

However, due to the vast amount of inequality constraints, the procedure is
very slow, even with the increase in computer speed over the last few decades.
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Depending on the conditionality and the handling and number of ties, smooth
monotone regression is considerable slower than ordinary monotone regres-
sion. For example, the breakfast data is unfolded (10 iterations only on a
pentium(r)d cpu 2.80 ghz) with an unconditional ordinal transformation,
untying ties, in less than a tenth of a second, while the smooth monotone
transformation takes about 30minutes, which is more than 18000 times slower.

The fact that a monotone spline transformation forms an intermediate
transformation between a linear and a monotone transformation constitutes
the final observation. On one extreme, a monotone spline transformation
with linear polynomials and (only) two boundary knots is equal to a linear
transformation including an intercept and a slope. On the other extreme, a
monotone spline with a knot on each unique preference value amounts to a
monotone (stepwise) transformation.

A combination of the above observations resulted in the following research
in progress (Busing, Heiser, & Eilers, in preparation): Avoiding degeneracies
in unfolding using smooth monotone spline (sms) transformations, where a
sms transformation is defined as a monotone spline transformation (Ramsay,
1988) with smoothness restrictions on the knots. Typical features of the sms
transformation are that (1) the left most boundary (exterior) knot is linked to
zero, corresponding to the first observation, and (2) the next consecutive steps
(from knot to knot) are bounded by a mean step (cf. the second observation).
Since the sms transformation can be specified with fewer interior knots, the
number of inequality constraints are decreased and consequently an increase
in speed is realized (third observation). The sms transformation function is
more flexible (cf. fourth observation) and faster, and does not include a penalty
parameter, which makes the procedure much simpler, a clear advantage, both
theoretically and practically.

7.2 the coefficient of variation penalty

In Chapter 4, the conditions for degeneracy were identified, insofar as de-
generacy is defined as a solution with zero stress and constant distances. It
was argued that the set of admissible transformations contains the cause for
degeneracies. Using the coefficient of variation in a penalty function, a general
badness-of-fit function was obtained that successfully avoids a degenerate
solution in a wide range of circumstances. For this purpose, the penalty func-
tion was equipped with two penalty parameters to fine tune the penalty. The
simulation study made clear that one of these parameters could be restricted
to a constant value, whereas the other parameter was best chosen in a specific
interval.

Despite the provision of default values, each analysis might require a
different set of penalty parameters and it is left for the user to determine the
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exact values. Specifying the penalty parameters too weak causes the solution
to be(come) degenerate. Although goodness-of-fit will improve in this case,
variation and degeneracy measures will indicate (signs of) degeneracy. On
the other hand, when the penalty parameters are set too strong, this will
not provide a degenerate solution but a solution with linearly transformed
preferences, and with worse fit statistics.

Finding the optimal penalty parameters

It is not a trivial task to find a combination of optimal penalty parameters.
This is mainly due to the difficult simultaneous comparison of multiple fit,
variation, and degeneracy measures that are currently at our disposal. There
are essentially two ways to proceed: Use existing measures and consolidate a
selection into one single measure or find a new measure. Both ways would en-
able us to determine the ’best’ unfolding solution with corresponding optimal
penalty parameters

To start with the former way to proceed, there are several measures that
seem suitable for the definition of a proper unfolding solution. Fit measures,
however, are rather ambiguous: Both perfect (non-degenerate) and degener-
ate solutions have (near) perfect fit measures, thus making it impossible to
distinguish between these two situations using a fit measure. A similar prob-
lem arises for degeneracy measures. For example, the intermixedness index
(i-index, see Chapter 4 and Technical Appendix G) measures intermixed-
ness of the two sets of objects in the configuration. It might occur, however,
that an otherwise normal solution with low stress and sufficient variation
exhibits separated sets of objects, and thus an undeserved high intermixed-
ness index. The inadequacy of these measures to distinguish automatically
between good and bad unfolding solutions disqualify these measures as com-
ponents of a single quality measure. Further, the most appropriate measure,
the penalized stress function value, is not an option, since its magnitude
depends on the penalty parameters. Nevertheless, it is still possible to define a
quality measure for unfolding solutions based on existing measures. Although
this measure might fail at providing us with the optimal solution, it enables us
at least to avoid solutions with unattractive characteristics.

Within this framework, attractive features of an unfolding solution can be
specified as follows: Variation in both distances and transformed preferences
(Busing, Groenen, & Heiser, 2005), preferably about equal; low stress values
(Kruskal & Carroll, 1969); intermixed sets of objects (i-index) (DeSarbo &
Rao, 1986; Busing, Groenen, &Heiser, 2005); and a high number of sufficiently
different values for both distances (Shepard, 1974) and transformed preferences
(d-index) (see Technical Appendix G for a description of these measures). To
keep away from a too complex combination, i-index andd-index are dropped
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due to the objections raised before and stress can be omitted because it is
minimized by the least squares loss function. We therefore concentrate on
the use of the variation coefficients for the transformed preferences and the
distances.

The values for the coefficient of variation of the distances for normally or
uniformly distributed coordinates are approximately equal to t = .15+ (2p)−1

as determined by simulation, where p is the dimensionality of the solution.
This means that the following plausible rules might be applied: The coefficient
of variation of the distances υ(D) must be equal to the target (t) and the
coefficients of variation of the distances υ(D) and the conditional coefficient
of variation of the transformed proximities υc(Γ) must be equal. A single
quality measure is then given as

q = | ln
(
υ(D)

t

)
|+ | ln

(
υ(D)

υc(Γ)

)
|,

where q is equal to zero when we are dealing with a proper unfolding solution,
since ln(1) = 0. When the fractions deviate from 1, q becomes larger than
zero. To what extend qmay deviate from zero for proper unfolding solutions
is still unknown. Further research should judge the validity of q for comparing
different unfolding solutions.

Instead of using existing measures, it might be feasible to determine a
new measure. In the past, and in the previous section, researchers proposed
to use resampling methods to assess the quality of multidimensional scaling
solutions (Heiser & Meulman, 1983a; Weinberg, Carroll, & Cohen, 1984; de
Leeuw &Meulman, 1986) or multidimensional unfolding solutions (Heiser
& de Leeuw, 1979a; Heiser, 1981). The assessment consisted of crude non-
parametric confidence regions (Heiser & de Leeuw, 1979a; Heiser, 1981) or
variance estimates and accompanying confidence regions (based on multi-
variate normal distributions) (Weinberg et al., 1984) for the coordinates, or
actual stability measures (Heiser & Meulman, 1983a; de Leeuw &Meulman,
1986) and cross-validation and dispersion measures for the entire solution (de
Leeuw &Meulman, 1986).

Currently, van de Velden, de Beuckelaer, Groenen, and Busing (2010)
uses the bootstrap procedure to find stability measures for the coordinates
of an unfolding solution. These stability measures, bias, variation, and mean
squared error, are combined into a single stability measure, which is used to
compare solutions with different values of the penalty parameters. Preliminary
results indicate that the measure is at least capable of distinguishing proper
from improper solutions and in most cases even indicates the ’best’ solution.
Improper solutions are often highly instable due to widely differing degenerate
solutions, while proper of even the best solutions exhibit improved stability co-
efficients. Even strongly penalized solutions, which are often relatively stable,
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are distinguished from less penalized solutions with improved fit and trans-
formations. Although currently an entire grid of penalty parameter values is
searched, an automated procedure is being drawn up. Welcome side-products
of the bootstrap procedure are the stability measures for the coordinates (for
space weights, for regression coefficients, etc), allowing for nonparametric
adjusted parameter estimates and (nonparametric) confidence intervals. The
bootstrap procedure is further discussed in Technical Appendix F (page 196)

An adjusted coefficient of variation penalty

Apart from a single measure, it is also an option to continue the development
of the penalty function. A closer inspection of the results of the Monte Carlo
simulation study from Chapter 4 (Figure 4.3) reveals that in the conditional
case the coefficient of variation of the distances increases dramatically for small
values ofω and large values of λ (see page 58), which defines a weak penalty.
In these cases, it seems that one column object isolates itself from the rest of
the objects, by which the distances with this object become relatively large,
as compared to the other distances. It is hypothesized that this phenomenon
arises when penalized stress maximizes the coefficient of variation.

Lemma 1 The coefficient of variation of the transformed preferences γ given as

υ(γ) =

√
(n− 1)−1 ∑(γi − γ)2

γ
, (.)

where γ = n−1 ∑γi is the average of γ, is maximized for

γi =

{
0 for i = 1, . . . ,n− 1√
n otherwise

given the arbitrary normalization that
∑

γ2
i = n.

Proof. 1 Given the arbitrary normalization that
∑

γ2
i = n, the variation

coefficient of the transformed preferences γ, under the constraint that γi �

1 Thanks are due to E. Meijer for the formal proof, personal communication, January 15, 2009.
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0 ∀ i = 1, . . . ,n and thus γ > 0, can be rewritten as

υ(γ) =

√
(n− 1)−1 ∑(γi − γ)2

γ

=

[
(n− 1)−1 ∑γ2

i − (n− 1)−1nγ2

γ2

].5
=

[
n

n− 1

(
1− γ2

γ2

)].5
=

[
n

n− 1

(
1
γ2 − 1

)].5
,

which means that the coefficient of variation is maximized for a minimum av-
erage transformed preference. Given the constraints, maxυ(γ) or min

∑
γi,

which is equivalent to minγ, is found as follows. For γi, there are two pos-
sibilities: either γi = 0 or γi > 0, so let the first k elements of γ be zero
and the last n− k elements be positive. The Lagrange function with the two
restrictions is given as

L(γ, λ,μ) = f(γ) + η [h(γ) − c] + μ [g(γ) − d]

=
∑

γi + η
[∑

γ2
i − n

]
+
[∑

μiγi

]
,

where f(γ) =
∑

γi is the function that is maximized, both h(γ) =
∑

γ2
i = n

and g(γ) =
∑

γi � 0 are the restrictions, and η and μ are the Lagrange
multipliers. For an optimum, the following conditions must apply

∂L

∂γi
=

{
1+ 2ηγi + μi = 1+ μi = 0 for i = 1, . . . , k (γi = 0),
1+ 2ηγi + μi = 1+ 2ηγi = 0, for i = k+ 1, . . . ,n (γi > 0),

(.)
and the partial derivatives ∂L/∂η = 0, ∂L/∂μi = 0 for γi = 0 (obligatory
restriction), and ∂L/∂μi = 0 for γi > 0 (non-obligatory restriction). It
follows from (7.2) that γi = −(2η)−1 ∀ i > k, for which all γi are equal. Thus,

γi =

{
0 for i = 1, . . . , k, and
c for i = k+ 1, . . . ,n,

where c = −(2η)−1. Remains the determination of the values for c and k.
Since

n∑
i=1

γ2
i =

k∑
i=1

γ2
i +

n∑
i=k+1

γ2
i = k× 0+ (n− k)× c2 = n,
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c =
√

n
n−k

. Now, k can be determined to minimize γ with γi = 0 ∀ i =

1, . . . , k and γi =
√
n/

√
n− k ∀ i = k+ 1, . . . ,n as

γ =

n∑
i=1

γi

n
=

k∑
i=1

γi

n
+

n∑
i=k+1

γi

n
=

k× 0
n

+
(n− k)

n

√
n

n− k
=

√
n− k√
n

and γ is thus minimized for a maximum k. Since k is an integer value and k

cannot be equal to n, due to the
∑

γ2
i = n restriction, the minimum for γ is

found for k = n− 1, which gives the solution as

γi =

{
0 for i = 1, . . . ,n− 1√
n otherwise

with γ = 1/
√
n and υ =

√
n.

A maximum coefficient of variation thus coincides with one large value
and many small or zero values. This is identical to the observed phenomenon
with one distant column object, but it is only effective for the row-conditional
model: For each row object, all column objects are close, except for one column
object, that is at a large distance. This allows the coefficient of variation to
become maximal for each row and thus for the penalty as a whole.

Although the above argumentation indicates that the penalized stress
function (B.4) maximizes the coefficient of variation in such a case, this is not
completely true, since the penalized stress function does not exclusively
consists of the penalty function and the penalty function itself does not con-
sists only of the inverse of the variation coefficient. The penalty function
(B.2) also consists of 1+, a component of the penalty function that is easily
overlooked. This component was used for the first time in Groenen (1993,
pp. 54–55) to overcome the problem of ’attraction to the horizon’. Due to the
1+, penalized stress minimizes

σ2
p(γ,d) = σ2

n(γ,d) + σ2
n(γ,d)

(
ω

υ2(γ)

)1/λ

, (.)

which shows that maximizing the coefficient of variation only minimizes half
of the penalized stress function, the second part on the right-hand side of
(7.3), depending on the values forω and λ. Maximization of the coefficient
of variation must therefore also be advantageous for the stress part of the
penalized stress function, which is not the case when the distant single
column object is not the least preferred by all row objects. If this is the case,
however, it might be argued that we are dealing with an outlier, and that the
object might be removed from the data for this reason.
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Figure 7.1 Function plots for the current penalty function (left-hand panel) and the suggested penalty
function (right-hand panel).

Another way to proceed is that the penalty function can be adapted in
order to avoid the undesirable side effects of maximization of the coefficient
of variation. Let us recall the penalty function from Chapter 4. Figure 7.1
(left-hand panel) shows a plot of the function

μ(ω, λ) =
(
1.0+ωυ−2(γ))1/λ (.)

withω = 0.5 for different values of υ(γ) and for λ = 1.0, 0.5, 0.25. It shows
that an increase of the variation coefficient (horizontal axis) causes a decrease
in penalty function values (vertical axis). Maximizing the variation coefficient
thusminimizes the penalty function and consequently also penalized stress,
to a certain extend, as indicated above.

In order to avoid a continuous decrease in penalty function values for
increasing variation coefficients, an adjusted penalty function should increase
its values after a certain point, thus avoiding ’attraction to the horizon’. This
requirementmeans that the adjusted penalty function will have aminimum, as
the function increases in value for both smaller and larger variation coefficients.
The minimum of the adjusted penalty function may conveniently be locked
either to the variation coefficient of the original preferences or to the target
variation coefficient. An adjusted penalty function might be specified as

μa(ωa, λa) =
(
0.25+ 0.25ω2

aυ
−2(γ)+ 0.5ω−1

a υ
(
γ
))1/λa

, (.)

where ωa assumes the role of ω and λa the role of λ, as compared to the
original penalty function. The minimum of μa(ωa, λa) is found for ωa,
which allows one to specify the minimum at either of the above suggested
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values. Pre-specifyingωa has the additional advantage of reducing the penalty
parameter set with one parameter, leaving only λa to be specified. The function
value at the minimum ωa is equal to 1.0 (due to the specific fractions used
in (7.5)), irrespective of the values forωa and λa. In addition, this allows a
fair comparison of adjusted penalized stress values from different solutions.
Figure 7.1 (right-hand panel) shows a plot of the adjusted penalty function
μa(0.5, λa) for different values of υ(γ) and for λa = 1.0, 0.5, 0.25 withωa =

0.5. The minimum for μa(0.5, λa) is attained for ωa at 0.5, as discussed
above, and moving in either direction causes the penalty function to increase.
For smaller values of λa, μa(0.5, λa) shows a steeper increase in function
values, while maintaining its minimum at ωa = 0.5. Further development
and implementation of such an adjusted penalty function is left as plan for
the future.

7.3 restricted unfolding

The restricted unfolding model finds an optimal configuration of two sets of
objects, where the coordinates of either one or both sets are restricted to be a
linear combination of independent variables. The model further allows for
optimal transformations of the variables. The merger of linear combinations
and optimal transformations is equivalent with categorical regression analysis
(catreg, van der Kooij & Meulman, 2004). The restricted unfolding model is
discussed in Chapter 5.

Most problems related to the restricted unfolding model, as described
by P. E. Green and Krieger (1989, p. 132), have been resolved by the current
unfolding approach, specifically the difficulty of constructing joint spaces
and ideal points and relating perceived dimensions to manipulable attributes.
Future research concentrates on the (prior) specification of variables (e.g.,
model or subset selection), improved prediction and interpolation, specifically
with optimal transformations, and optimal graphical representations (Gower
& Hand, 1996; Tufte, 2001). In the following, we will only touch upon the
former problem, the selection of variables for the restricted unfolding model.

Subset selection of variables in restricted unfolding

There are different situations in which it is desired to use only a subset of a
large number of variables. A. Miller (2002) is concerned with the situation in
which the value of one variable (say a coordinate) is predicted from a number
of other variables (say a number of independent variables) and uses subset
selection to improve prediction. Another situation occurs when the number of
variables exceeds the number of objects, in which case the (regression) model
is not identified. At least two complications arise when selecting subsets for the
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restricted unfolding model: The model employs (optimal) transformations for
the variables and the actual regression procedure is only a subproblem of the
entire model estimation. The latter might form a serious obstacle, for which
possible solutions are discussed hereafter, whereas the former was recently
addressed by van der Kooij (2007).

The number of variables can be reduced in advance by using a linear com-
bination of independent variables, as suggested by DeSarbo and Rao (1986),
who used a principal component analysis as a guard against multicollinearity.
DeSarbo and Rao derived the principal component scores and replaced the
variables with the scores. Instead of retaining all components, as in the case of
DeSarbo and Rao, only the first few components can be used, components
that correspond with the largest singular values of the matrix with indepen-
dent variables. The disadvantages of this method are limited to the need for
measuring all variables and the possible correlation of the predictand with low
singular value scores. The method is not restricted to retaining orthogonal
scores, and it is even possible to meet the categorical nature of the indepen-
dent variables by using a categorical principal component analysis (catpca,
Meulman et al., 2004). Whatever analysis is used, the interpretation of the
model is not facilitated by the use of fewer components than variables. Direct
relations between coordinates and variable categories are no longer present
since additional reparametrizations (via scores and eigenvalues) are necessary
to reestablish the original variable category scores.

Another procedure to reduce the number of variables is offered by the
lasso , the least absolute shrinkage and selection operator, as one example of
a constrained version of ordinary least squares regression. The lasso shrinks
some coefficients and sets others to zero (Tibshirani, 1996), and as such it can
be used for subset selection. The backfitting algorithm, already implemented
to deal conveniently with the variable transformations, also ensures an easy
implementation of the lasso (cf. van der Kooij, 2007). Once the subset is
identified, the regression weights can be computed without shrinkage. The
advantages of the lasso over a linear combination of variables are the use of
the original variables and the possible optimal transformation thereof. For the
interpretation, the original variables are used, transformed or not, although
some variables are lost due to a coefficient equal to zero. A disadvantage of
the lasso, in the case of the restricted unfolding model, is the preliminary
specification of the number of variables remaining in the model. Although
the lasso, as for example used in catreg (van der Kooij, 2007), allows for
the optimal determination of the shrinkage factor through bootstrap or cross-
validation, it is premature to conclude that this will work for the restricted
unfoldingmodel. The variable restrictions are only a small subproblem, hidden
deep in the unfolding algorithm (see Technical Appendix E), and all kinds of
dependencies and time considerations will probably make the implementation
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unfeasible. Only specifying the number of variables in advance seems to offer
a practicable alternative.

Finally, it is also possible that the number of variables is reduced by finding
an optimal subset of variables via forward selection, backward elimination,
sequential replacement, branch-and-bound techniques, or exhaustive search
(see, for example, A. Miller, 2002), but the iterative unfolding algorithmmakes
it very hard to combine one of these procedures with the variable restriction
option of the unfolding model.

7.4 unfolding incomplete data

It has been known, since Kruskal, 1964a, 1964b, that the least squares loss
function for multidimensional scaling allows for missing data. Although
this is also true for multidimensional unfolding, the extend to which data
can be missing without changing the conclusions based on the results of the
unfolding with incomplete data has been unknown. Some advances in this
field were discussed in Chapter 6, Unfolding Incomplete Data. Research on
incomplete data in least squares unfolding was initiated with the master thesis
of Velderman (2005). The results from a subsequent publication (Busing
& de Rooij, 2009), reproduced in Chapter 6, are promising: Moderate to
large samples recover the original solution more than satisfactory with even
half of the data missing. The method that was used to deal with the missing
values is known as pairwise deletion, that is, the missing data was not replaced
(imputed) but just ignored. A small comparison with imputed values was
inconclusive and other considerations than recovery led to the choice for
pairwise deletion (see Chapter 6, page 101).

For small samples, however, the deletionmethod performs less satisfactory,
and, as was pointed out by one of the referees of Busing and de Rooij (2009),
small samples are frequently observed in practical research with the potential
use for unfolding. Research in progress by Busing (2010) now focusses on
imputation techniques for small samples. Elaborating on the publication by
Hedderley andWakeling (1995), several imputation techniques are considered
for comparison.

Imputation techniques for unfolding incomplete small samples

The simplest class of imputation methods is single imputation, of which the
oldest method is probablymean imputation (presumably suggested by Wilks,
1932). The missing value is replaced by the mean based on (parts of) the re-
maining data, which might be the row mean δi (the average of the preferences
of a row object) or the columnmean δj (the average of the preferences for a col-
umn object), or a more sophisticatedmean such as δij = δi+δj−δ, where δ is
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the overall mean (Bernaards & Sijtsma, 2000). This last method is commonly
augmented with some random component, whether or not leading to multiple
imputed values (see van Ginkel, van der Ark, & Sijtsma, 2007), and known
as two-way imputation. Another remarkable simple imputation method was
developed by Krzanowski (1988). The missing value is reconstructed based on
the singular-value decompositions Δ = UDV ′ of two matrices, one matrix
Δ̃ omitting the row containing the missing value and one matrix Δ omitting
the column containing the missing value, hence the name row-column im-
putation. The imputed value is computed as δij =

∑
[ũitd̃

.5
t ][vjtd

.5
t ], where

the summation is over t, the pre-specified dimensionality. A modification
of this method, as described in Bergamo, dos Santos Dias, and Krzanowski
(2008), leads to a multiple imputation method with differential weighting of
the two singular values d̃ and d, although the advantages are rather unclear.
For multiple missing values, the row-column imputation uses an iterative
scheme to update the imputed values, which keeps iterating until the values
stabilize.

An imputation method loosely based on the EM algorithm (Dempster,
Laird, & Rubin, 1977; Little & Rubin, 1987), but utilizing the unfolding model,
is the following. Starting with an initial guess (or starting with the deletion
method), an unfolding solution is determined of which the distances are used
to estimate the imputed values. The procedure is repeated until the solution
stabilizes.

Themost recent class of imputationmethods concernsmultiple imputation.
Without regard to the possibility of adding random error in one of themethods
described above, multivariate normal imputation randomly draws values
from the conditional distribution of the missing values, given the observed
preferences and the model parameters. The method is well-known, performs
well, and is robust against departure from the multivariate normal model
(Graham & Schafer, 1999), but, nevertheless, assumes a distribution, which
can not be said from the other methods. The processing of the different
imputed data sets can be handled in different ways. The simplest continuation
is to unfold each imputed data set separately and combine the results to obtain
point estimates (means) and interval estimates (variances), or display (non-
parametric) confidence intervals in one final configuration (see Figure 7.2,
left-hand panel). Another approach, graphically depicted in Figure 7.2 (right-
hand panel), creates a third way stacking the imputed data sets and proceeds
with a three-way unfolding analysis. This way, the point estimates are directly
observed as the final coordinates and a decomposition of the mean squared
error provides interval estimates or variances for the coordinates.

Further research should give answers to what method is preferred under
which circumstances, circumstances that differ in data size, measurement
level, transformation function, conditionality, error, and dimensionality.
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7.5 final conclusions

Figure 7.2 Processing ofmultiple imputed data sets with two-way unfolding (left-hand panel) and three-way
unfolding (right-hand panel).

7.5 final conclusions

This monograph has tried to develop the unfolding technique into a more
reliable and practical method for data analysis. It goes without saying that
many advances are still needed some of which were indicated briefly in these
conclusions. Other, seemingly less urgent, but definitely long-standing topics
need to be addressed as well. For example, measures should be developed for
obtaining rectangular matrices with data appropriate for unfolding analysis,
assuring adequate use of different type of data, such as dichotomous data,
paired-comparisons, frequencies, or abundances. The effectiveness of initial
configurations needs to be evaluated and these procedures need to be properly
matched with data characteristics and model options. Confirmatory analyses
using resampling methods, such as the jackknife, bootstrap, cross-validation,
and permutation analysis, should be implemented to help researchers make
decisions, for example concerning the adequacy of transformation functions.
Additional analyses, based on the unfolding outcomes, such as the analysis
of angular variation, outlier analysis, cluster analysis, or latent class analysis,
should be available as unfolding analysis options to facilitate the interpreta-
tion of the results. And finally, graphical output should be improved, with
attention for the principles laid down by, for example, Tufte (2001) and col-
leagues. Research on these and previously described topics is only feasible
after the creation of a firm basis. Least squares unfolding, as presented in this
monograph, with its sound algorithm based on alternating least squares and
iterative majorization, with its optimal transformations of the preferences,
with its ability to handlemissing data, andwith its versatile restriction facilities,
offers such a basis.
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Anotation overview

a.1 notation conventions

Three-way arrays are denoted by underlined bold uppercase characters (Δ),
two-way arrays or matrices by bold uppercase characters (Δ), and one-way
arrays or vectors by bold lowercase characters (δ). Scalars are denoted by
lowercase characters (δ) without discriminating between integers and floating
point numbers. Functions are also denoted by lowercase characters, but these
are followed by a set of parentheses containing the function parameters (e.g.,
f(δ)). Vectorized arrays are denoted as δ = vecΔ, indicating a matrix Δ with
successive columns strung out below each other in a single vector δ. A matrix
with δ on the diagonal is denoted as Δ = diag (δ), whereas δ = diag (Δ)

specifies a vector δ containing the diagonal of matrix Δ. The functions tr ,
vec , and diag only use a set of parentheses to avoid ambiguity.

The underlining for three-way arrays is described in Kiers (2000). Fur-
ther notation originates from publications on multidimensional scaling and
multidimensional unfolding.

a.2 symbols

The following symbols, describing the two-way unfolding model, are used
throughout this monograph, unless defined otherwise.

n number of row objects
m number of column objects
pmin minimum dimensionality
pmax maximum dimensionality
p current dimensionality
h number of independent variables, either row or column

λ penalty parameter (strength)
ω penalty parameter (range)

0 vector with zeros
1 vector with ones
I identity matrix
J centering matrix, where J = I− 11 ′/1 ′1



notation overview

Δ raw preferences
Γ transformed preferences Γ = f(Δ)

Γ2 element-wise squared preferences Γ
Γ+ (n+m)× (n+m) data matrix with Γ on off-diagonal
•
γ previous update of transformed preferences γ = vec Γ
ξ majorization vector for transformed preferences γ

W preference weights
R diagonal matrix with column sums ofW, R = diag (W1)

C diagonal matrix with row sums ofW, C = diag (1 ′W)

X0 initial coordinate matrix for row objects
Y0 initial coordinate matrix for column objects
X coordinate matrix for row objects
Y coordinate matrix for column objects
Z coordinate matrix for row and column objects Z = [X ′,Y ′] ′

X+ update for row coordinates X
Y+ update for column coordinates Y

D distances between rows of X and rows of Y ,D = d(X,Y)

X̃ preliminary update for X, X̃ = PX− BY

Ỹ preliminary update for Y , Ỹ = QY − B ′X
•

X̃ preliminary update for X from previous iteration
•

Ỹ preliminary update for Y from previous iteration

xi individual space row object coordinates for row object i
Yi individual space column objects coordinates for row object i
A space weights, such that xi = xiAi and Yi = YAi

A+ update for space weightsA

E independent variables for row or column objects
Q transformed independent variables for row or column objects
Q∗ unrestricted update for transformed independent variablesQ
Q+ restricted update for transformed independent variablesQ
B matrix with regression coefficients for row or column objects
B+ update for the regression coefficients B
A matrix with direction coefficients for row or column objects
P matrix with variable projections, P = XA or P = YA

Symbols used for the two-way model are generalized to the three-way model
by adding an extra dimension to the appropriate array of the two-way model.
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a.3 functions

Specific and deviating symbols for the three-way model are provided here.

s number of sources, slices, matrices, or two-way arrays
Δ raw preferences
W preference weights
Xk individual space row objects coordinates for source k
Yk individual space column objects coordinates for source k
A space weights, such that Xk = XAk and Yk = YAk

a.3 functions

σ badness-of-fit function stress
σr badness-of-fit function raw stress
σn badness-of-fit function normalized raw stress
σ1 badness-of-fit function stress-1
σ2 badness-of-fit function stress-2
σs1 badness-of-fit function s-stress-1
σs2 badness-of-fit function s-stress-2
σp badness-of-fit function penalized stress

υ(·) coefficient of variation of the argument’s elements
μ(·) penalty function in penalized stress

f(·) (transformation) function
g(·) majorizing function
d(·) Euclidean distance function

argmin (·) minimum value of the argument’s elements
argmax (·) maximum value of the argument’s elements
med (·) median of the argument’s elements

a.4 acronyms

Function acronyms

daf goodness-of-fit function dispersion accounted for
d-index distinctness index
first percentage of first choices correctly recovered
i-index intermixedness index
kappa goodness-of-fit function Cohen’s κ
n-stress badness-of-fit function normalized raw stress
orders recovered preference orders
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notation overview

phi goodness-of-fit function Tuckers’ congruence coefficient φ
p-stress badness-of-fit function penalized stress
rho Spearman’s rank order correlation ρ

r-stress badness-of-fit function raw stress
ssaf sum-of-squares accounted for
s-stress-1 badness-of-fit function Young’s stress formula one
s-stress-2 badness-of-fit function Young’s stress formula two
stress-1 badness-of-fit function Kruskal’s stress formula one
stress-2 badness-of-fit function Kruskal’s stress formula two
stress (standardized) residual sum-of-squares
tau Kendall’s rank order correlation τ

vaf variance accounted for

Software acronyms

alscal alternating least squares mds program (ibm spss procedure)
catpca categorical principal component analysis (ibm spss procedure)
genfold general unfolding program, different variants
ibm international business machines corporation
kyst Kruskal-Young-Shepard-Torgerson mds and mdu program
lsa landscape segmentation analysis
mdpref multidimensional preference scaling
mds(x) multidimensional scaling program suite
minirsa Michigan Israel Netherland integrated rectangular space analysis
minissa Michigan Israel Netherland integrated smallest space analysis
newfold new multidimensional unfolding program
prefmap external unfolding program, different variants
prefscal preference scaling (ibm spss procedure)
profit property fitting
proxscal proximity scaling (ibm spss procedure)
smacof scaling by majorizing a complicated function, different variants
spss software package for the social sciences, an ibm company
ssa smallest space analysis, different variants
torsca Torgerson (classical) scaling
vipscal vector ideal point scaling

Other acronyms

als alternating least squares minimization procedure
anava analysis of angular variation
bibd balanced incomplete block design
im iterative majorization
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a.4 acronyms

lasso least absolute shrinkage and selection operator
mar missing at random
mcar missing completely at random
mds multidimensional scaling
mdu multidimensional unfolding
nmar not missing at random
pca principal components analysis
row-bibd row-balanced incomplete block design
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Bleast squares unfolding algorithm

prefscal minimizes a loss function called penalized stress , of which the
square is defined as the square of normalized raw stress times a penalty
function, i.e.,

σ2
p(γ,d) = σ2λ

n (γ,d)μ(γ).

The square of normalized raw stress, the same stress function that is
minimized by ibm spss proxscal, is given by

σ2
n(γ,d) =

‖γ− d‖2W
‖γ‖2W

, (B.)

where ‖γ− d‖2W is the weighted squared Euclidean norm of the differences
between the transformed preferencesγ = vec (Γ) and the distancesd = vecD
in the metricW and ‖γ‖2W is the weighted sum-of-squares of γ. Note thatW
is somewhat confusingly defined as diag (vec (W)), where the vec (·) operation
is performed over the original matrix with preference weights. The penalty
function μ(γ) is defined as one plus the inverse of the squared coefficient of
variation of the transformed preferences γ, that is,

μ(γ) = 1+ω∗ υ
2(δ)

υ2(γ)
, (B.)

where υ2(γ) is the squared variation coefficient which is defined as

υ2(γ) =
w−1

++γ
′Wγ−w−2

++γ
′ww ′γ

w−2
++γ

′ww ′γ

=
γ ′Wγ−w−1

++γ
′ww ′γ

w−1
++γ

′ww ′γ

=
‖γ‖2V
‖γ‖2M

, (B.)

where w++ = w ′w, M = w−1
++ww ′, and V = W −M. Now, combining

(B.1), (B.2), and (B.3) and re-introducing the two penalty parameters, λ and
ω = ω∗υ2(δ), expresses the square of penalized stress as

σ2
p(γ,d) =

(‖γ− d‖2W
‖γ‖2W

)λ(‖γ‖2V +ω‖γ‖2M
‖γ‖2V

)
, (B.)



least squares unfolding algorithm
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Figure B.1 PREFSCAL algorithm.

where λ, ω, and ω∗ are scalars, with 0 < λ � 1, ω∗ � 0. Since υ2(δ) � 0,
ω � 0. Both λ andω∗ are specified by the user.

penalized stress (B.4) is minimized by an alternating least squares (als)
procedure, following the general strategy first used in mds by Takane, Young,
and de Leeuw (1977), in which we alternate between finding an update for the
configuration given the current estimate of the transformed preferences and
finding an update for the transformed preferences, given the current estimate
of the configuration. In the present case, each of these two steps is carried out
by iterative majorization (im). A general discussion on iterative majorization,
in the context of multidimensional scaling and multidimensional unfolding,
can be found in de Leeuw (1977a), de Leeuw and Heiser (1980), Heiser (1981),
Heiser (1987a), de Leeuw (1988), Heiser (1995), and Borg and Groenen (2005).
More details and specific functions can be found in Heiser and Stoop (1986),
Heiser (1991), Commandeur and Heiser (1993), Groenen (1993), Groenen,
Mathar, and Heiser (1995), and Groenen and Heiser (1996).

The minimization of penalized stress, which will be discussed in detail
hereafter, and is schematically depicted in Figure B.1, consists of the following
successive steps:

Step 1. Choose an initial configuration and evaluate the function (AppendixC);
Step 2. Compute an update for the transformed preferences (Appendix D);
Step 3. Compute an update for the configuration (Appendix E);
Step 4. Evaluate the function and if some predefined termination criterion is

satisfied, continue; otherwise, go to Step 2 (Appendix F);
Step 5. Compute tables, figures, and measures (Appendix G).

penalized stress considerations. The penalized stress function imple-
mented in prefscal deviates from the function discussed in Busing, Groenen,
and Heiser (2005) with respect to two parts of the loss function. First, initiated
by the implementation of the three-way models, normalized raw stress
(B.1) is used instead of raw stress, which adds anotherγ-based normalization
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to the penalized stress function. Secondly,ω is set dependent on the varia-
tion of the raw preferences, such that when the user specifiesω∗ = 1, it ensures
a unit proportion between the variation of the original preferences and the
transformed preferences. Busing, Groenen, and Heiser (2005) provide an ex-
tensive appendix describing the procedure to minimize the penalized stress
function with a user-providedω and raw stress.

prefscal considerations. prefscal actually exists as two related programs.
The first prefscal program is the beta version, a stand-alone console ap-
plication developed at Leiden University to perform three-way three-mode
multidimensional unfolding with restrictions through iterative majorization
and alternating least squares of penalized stress. Following the taxonomy
of scaling methods according to Carroll and Arabie (1980), who separate data
and model properties, the implementation contains for the following data
properties: Two-way two-mode and three-way three-mode data, ordinal, in-
terval, and ratio data, unconditional, row-conditional, and matrix-conditional
data, and complete and incomplete data. The properties of the multidimen-
sional measurement model include the Euclidean distance model for one
(configuration) or two spaces (space weights), internal and external (one set
of points fixed) solutions, and both coordinate and variable constraints on
the coordinates whether or not combined. prefscal beta is executed in a
command window under microsoft windows, uses simple text input, and
provides simple text output (and one LATEX2ε figure). Since research is still
being done to polish, improve, and add certain options to the program, beta
testers are a prerequisite for helping us to deliver good software, which makes
it inescapable to make the beta version freely available, under certain restric-
tions. The second prefscal program is implemented in ibm spss statistics.
This version consists of a selection of options from the beta version, a selection
that has been tested, polished, improved, tested, and polished again, and thus
provides nice tables and smooth figures for output. The first implementation
of prefscal was in spss version 14.0. Since then, only a few bugs needed to
be fixed.
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Cpre-processing
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The pre-processing for prefscal consists of several steps, mainly computa-
tions to ensure that the main algorithm is able to proceed without problems.
For this purpose, the raw data is checked for missing elements and anoma-
lies, initial transformations are computed for the raw data, as well as other
preliminary computations are performed, for example, for the forthcoming
computation of the optimally transformed preferences (Technical AppendixD)
and the computation of the initial configuration.

Some computations, especially those linked with transformations, are
executed per partition. A partition consists of a specific part of the data,
mainly depending on the conditionality of the unfolding model. A partition
therefore consists of a row for the row-conditional model, a matrix for the
matrix-conditional model, and a partition consists of the complete data for
the unconditional model.

c.1 preliminary work

The raw preferencesΔ are checked for negative values. If negative values exist,
these preferences, and the accompanying preference weightsW, are set to zero.
If negative weights exist, these weights, and the accompanying preferences
values, are also set to zero. When the values for either preferences orweights are
missing (user-specifiedmissing values), the respective preferences and weights
are set to zero. Setting a preference weight to zero excludes the preference
from subsequent calculations.

The preferences should correspond to the distances such that high pref-
erence values correspond to large distances and vice versa. Several initial
transformations, replacing the original data, exist to establish this relationship.
For example, for two-way models, for the exponential decay function δij =



pre-processing

− log δij (Shepard, 1957), for the Gaussian decay function δij =
√
− log δij,

or δij =
√
−2 log(fij/max(fij)) and δij = fi+f+j/f++fij for frequencies,

δij = 1/(1+ sij) for similarities, and δij =
√
2(1− rij) for correlations, but

only a similarity transformation is offered internally: When the preferences
are similarities (s), the scale of the preferences is reversed, keeping both range
and endpoints, i.e., δijk = cik − sijk. Depending on the conditionality of the
model, the value for cik is computed per partition as

cik =

⎧⎪⎨
⎪⎩
argmax

(
Δ
)
+ argmin

(
Δ
)

if model = unconditional,
argmax

(
Δk

)
+ argmin

(
Δk

)
if model = matrix-conditional,

argmax
(
δik

)
+ argmin

(
δik

)
if model = row-conditional.

Note that an initial transformation differs from an optimal transformation as
an initial transformation, specified by the user, is performed only once, at the
pre-processing step, while an optimal transformation, although the type of
transformation is also specified by the user, is repeatedly optimized during
the minimization process carried out by the als-im algorithm.

The scaling constant υ2(δ) that linksωwithω∗ (see page 147) is computed
per partition and remains constant for the rest of the process. Since the
penalized stress function is unable to cope with no variation, the algorithm
terminates when υ(δ) = 0 for one or more partitions. This difficulty might be
circumvented by removing the unwilling partitions, in this case rows, with
the following spss syntax.

Code Start

1 COMPUTE novariation = SD(column_1,column_2,column_j,column_m) = 0.
2 COMPUTE removerow = (novariation = 0).
3 FILTER BY removerow.
4 EXECUTE.

Code End

For very low values of the variation coefficient υ(δ), a warning is issued.
The weights are checked for rows or columns that add up to zero, since

these rows or columns are clearly unavailable for coordinate estimation. Row
and column sums of the preference weights are gathered in diagonal arrays
for each k as

Rk = diag
(
Wk1

)
, Ck = diag

(
1 ′Wk

)
,

and all weight related arrays are summed over the third way as

W =

s∑
k=1

Wk, R =

s∑
k=1

Rk, and C =

s∑
k=1

Ck.

For the initialization of the transformations, the number of non-missing el-
ements and, analogously, the number and size of the tie-blocks are determined.
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c.1 preliminary work

The preferences are sorted and an index array is kept for further reference.
When the type of transformation is ordinal or smooth ordinal, the initially
transformed preferences γ are set to their respective rank numbers. For mono-
tone spline transformation(s), which are essentially piecewise polynomials,
the number of unique elements in each partition is determined. This number
must be larger than the sum of the number of interior knots and the spline
order, which define the degree and range of the polynomial pieces. The knot
sequence is created and with this sequence the spline basis S is computed
(Ramsay, 1988). Note that at this point, the raw preferences δ are ’transported’
to the transformed preferencesγ, initially transformed or not, and that compu-
tations from here on use the transformed preferences γ. The raw preferences
δ are kept for further reference and for the computation of the final results.

Before computing the initial configuration, and for the three-way models
only, weighted average preferences and average weights are computed as

γij =
1
s

∑s
k=1 wijkγijk

1
s

∑s
k=1 wijk

, andwij =
1
s

s∑
k=1

wijk,

since a two-way (rectangular) matrix suffices for the computation of the initial
configuration. When it is not possible to determine a valid value for γij, i.e.,
when wij = 0, γij is considered a missing value and is replaced (imputed)
with

γij =

⎧⎪⎨
⎪⎩
cj if initial imputation = column mean,
ri if initial imputation = row mean,
cj + ri − t if initial imputation = total mean,

where

cj =

(
n∑
i=1

wij

)−1 n∑
i=1

wijγij,

ri =

⎛⎝ m∑
j=1

wij

⎞⎠−1
m∑
j=1

wijγij, and

t =

⎛⎝ n∑
i=1

m∑
j=1

wij

⎞⎠−1
n∑
i=1

m∑
j=1

wijγij

are the weighted column mean, the weighted row mean, and the weighted
total mean, respectively.

As might be deduced from the above calculations, for the pre-processing
sofar, restrictions have not been taken into account, that is, the model is as-
sumed to be the identity model and both fixed coordinates and independent
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pre-processing

variables are assumed to be nonexistent. Nevertheless, the variables are ini-
tially transformed just like the preferences, depending on the user-specified
transformations, and when there are more dimensions than variables, i.e.,
p > h, l = p− h dummy variables are created such that for l = h+ 1, . . . ,p

qli =

{
(l− h)/n− 1 for i = 1, . . . , l− h

(l− h)/n for i = l− h+ 1, . . . ,n,

which gives the first 3 dummy variables as⎡⎢⎢⎢⎢⎢⎣
1
n
− 1 2

n
− 1 3

n
− 1 · · ·

1
n

2
n
− 1 3

n
− 1 · · ·

1
n

2
n

3
n
− 1 · · ·

1
n

2
n

3
n

· · ·
...

...
...

. . .

⎤⎥⎥⎥⎥⎥⎦ .

All variables are centered and normalized, except when the variable in question
is not transformed during iterations (transformation = none).

c.2 initial configuration

There are several ways to compute the initial configuration. The two classes of
rational ways, besides a user-provided configuration and a random start, are
based on either the rectangular preference matrix or the augmented square
symmetric super-matrix. After reading, sampling, or computing the initial
configuration, the distances are optimally dilated to fit the preferences, since
these quantities might be of a quite different scale, and all coordinates are
adapted accordingly. In case of restrictions, the initial configuration is adapted
to follow the restriction requirements.

User-provided configuration

The user is allowed to provide an initial configuration, either for the coordi-
nates of the row objects, for the coordinates of the column objects, or for the
coordinates of both sets of objects. If the coordinates of the row objects are
omitted, an initial row objects configuration is determined by

X0 = −0.5
(
Γ2 − 1a ′)Y0

(
Y ′
0Y0

)−1, (C.)

where Γ2 is equal to Γ with all elements squared, a is the vector with the row
sums of Y0Y

′
0, and 1 a unit vector of appropriate length. In the opposite case,

the initial column objects configuration is determined by

Y0 = −0.5
(
Γ2 − b1 ′) ′X0

(
X ′

0X0
)−1,

where b is the vector with row sums of X0X
′
0.
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c.2 initial configuration

(multiple) Random configuration

The random start option in prefscal is provided for the use with multiple
starts. Coordinates are drawn from an independent standard normal distribu-
tion. The Polar Box-Muller method is used to obtain standard normal deviates
(see, for example, Dagpunar, 1988), with uniform pseudo-random numbers
from the Mersenne Twister (Matsumoto & Nishimura, 1998).

Rational configuration based on rectangular data

Ross and Cliff (1964). The Ross-Cliff start is based on the article of Ross and
Cliff (1964), but similar derivations can also be found in Schönemann (1970),
Carroll (1980), Heiser (1981), and Greenacre and Browne (1986). First, the
preferences are squared, double centered, and multiplied with −0.5 to obtain

B = −0.5JΓ2J.

A singular-value decomposition B = PΦQ ′ provides left and right singular
vectors,P andQ, respectively, and singular valuesΦ. The initial configuration
is set as

X0 = P

Y0 = QΦ.

Heiser (personal communication, October 24, 2005) suggested to use some
additional scaling, such that the variances of both X0 and Y0 are equal on the
first dimension by letting

X0 = P
√
s1n

Y0 = QΦ∗ √s1m,

where s1 is the largest (singular) value inΦ andΦ∗ = s−1
1 Φ. Recent publica-

tions (Nakanishi & Cooper, 2003; Kuga & Mayekawa, 2008) provide improve-
ments over procedures suggested by Ross and Cliff (1964) and Schönemann
(1970). These improvements are under review for implementation.

Correspondence analysis. Details on the Correspondence start can be found
in Heiser (1981). The start is based on chi-square distances with row and
column means removed and using a symmetrical normalization. A singular-
value decomposition B = PΦQ ′ is computed based on a matrix B with
elements

bij =
γ∗
ij√

γ∗
i+γ

∗
+j

−

√
γ∗
i+γ

∗
+j

γ∗
++

,
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where γ∗
ij = max(Γ) − γij and γ∗

i+, γ∗
+j, and γ∗

++ are the row totals, column
totals, and overall total of Γ∗, respectively. The initial configuration is set as

X0 =
Φ.5P√
γ∗
i+/γ

∗
++

Y0 =
Φ.5Q√
γ∗
+j/γ

∗
++

.

Note that the Correspondence start with prefscal without transforma-
tions is identical to the ibm spss correspondence procedure with the follow-
ing syntax:

Code Start

1 CORRESPONDENCE
2 /TABLE = ALL (n,m)
3 /MEASURE = CHISQ
4 /STANDARDIZE = RCMEAN
5 /DIMENSION = p
6 /NORMALIZATION = SYMMETRICAL
7 /PRINT = TABLE RPOINTS CPOINTS.

Code End

Heiser and de Leeuw (1979). The centroid restriction was not meant as a
restriction on the final configuration, according to Heiser (personal commu-
nication, 2005), but merely intended as a useful initial configuration. Suppose
the column coordinates are in the centroid of the row coordinates, that is,

Y0 = M−1EX0,

whereE is an×m indicatormatrix of first, second, third, etc choices andM is
am×mmatrix containing the marginal frequencies of E, i.e.,M = diag (1E).
The maximum number of choices in E is restricted to n and the columns of E
contain 1 for a first, second, third, etc choice and 0 otherwise. The number of
choices are provided by the user. Using the classical scaling decomposition of
the distances, the initial column coordinates Y0 can be found by an eigenvalue
decomposition of 0.5M−1E ′Γ2 + 0.5(M−1E ′Γ2) ′. Coordinates for the row
objects are estimated by least squares as in (C.1). Details on the Centroid start
can be found in Heiser and de Leeuw (1979a).

Rational configuration based on square symmetric data

Classical scaling can be used to estimate coordinates from a square symmetric
distancematrix. Suppose a distancematrixD is given, containing the distances
between n + m objects, in a p-dimensional Euclidean space. The squared
distances are then given by

D2 = c1 ′ + 1c ′ − 2ZZ ′,
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c.2 initial configuration

where c are the diagonal elements of ZZ ′ and Z contains the coordinate
values of the n+m objects. Since distances are preserved under translation,
we assume that Z has column means equal to zero. Double centering ofD2

and multiplying by −0.5 gives

−0.5JD2J = −0.5J
(
c1 ′ + 1c ′ − 2ZZ ′)J

= −0.5Jc1 ′J− 0.5J1c ′J+ 0.5J
(
2ZZ ′)J

= −0.5Jc0− 0.50c ′J+ JZZ ′J

= ZZ ′,

since centering a vector of ones yields a vector of zeros and centering of
ZZ ′ can be ignored due to the assumed column centering of Z. Now, the
eigenvalue decomposition ZZ ′ = VΛV ′ = (VΛ1/2)(VΛ1/2) ′ gives the
coordinate values Z = VΛ1/2, where only the first p ordered eigenvalues
(λ1 � λ2 � . . . � λn+m) and eigenvectors are used. Because ZZ ′ is a symmet-
ric, positive semi-definite matrix of rank p, it has p non-negative eigenvalues.
The n+m− p zero or negative eigenvalues are ignored as error.

This technique, classical scaling, although initiated byG. Young andHouse-
holder (1938) and based on the Eckart-Young theorem (Eckart and Young,
first issue of Psychometrika, 1936) is due to Torgerson (1952, 1958) and Gower
(1966) and also known under the names Torgerson scaling, Torgerson-Gower
scaling, Principal Coordinate Analysis, or even YoHoToGo scaling. Using
classical scaling for unfolding requires, however, the estimation of the intra-set
distances for both sets of objects. The resulting (n+m)×(n+m) super-matrix,

Γ+ =

[
Γr Γ ′

Γ Γc

]
,

with row intra-set distances Γr and column intra-set distances Γc, is decom-
posed to obtain initial coordinates for the row objects (first n rows of Z) and
the column objects (last m rows of Z) (cf. Lingoes, 1970 as cited in Heiser,
1981).

It must be noted, however, that the data aremostly considered comparative
distances, distances with an undetermined true zero point, i.e., a distance
minus an unknown constant. Following Torgerson (1952), this constant is
practically estimated with the ’triple equality’ procedure from Carroll and
Wish (1974), based upon Torgerson (1958), as

c0 = max(γ+
ik − γ+

ij − γ+
jk) ∀ i, j, k,

and also known as the triple equality difference (ted) test (see Coxon, 1982,
p. 128). Suggestions concerning the additive constant problem by Saito (1978)
or Cailliez (1983) have not been taken into consideration yet.
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pre-processing

Heiser and de Leeuw (1979). For the Triangle start, the triangle inequality is
used to compute the intra-set values. The triangle inequality states that the
distance between two objects, given the distances of both objects with a third
object, is bounded between the sum of the distances with the third object and
the absolute difference between these two distances, i.e., the distance between
objects i and j satisfies∣∣dik − djk

∣∣ � dij �
(
dik + djk

)
.

This is true for all objects k. Indeed, for multiple third objects (k = 1, . . . ,K),
the distance between object i and object j lies in the intersection of K intervals:

K
max
k=1

∣∣dik − djk

∣∣ � dij �
K

min
k=1

(
dik + djk

)
,

with equality if there is one object on the line passing through objects i and
j. With unequal boundaries the distance between object i and object j lies in
between the least upper bound and the greatest lower bound. Heiser and de
Leeuw (1979a) suggests to use the midpoint of the least upper bound and the
greatest lower bound, derived from the data, as

γij =
1
2

(
K

max
k=1

∣∣γik − γjk

∣∣+ K

min
k=1

(
γik + γjk

))
,

which coincides with the average of the first rows (Level 1) of S (sorted sum)
andD (sorted absolute difference) as given by Rabinowitz (1976, Table 1). The
actual procedure of Rabinowitz is on the implementation nomination.

Van Deun, Heiser, and Delbeke (2007). The Spearman start computes the co-
ordinates of both sets by classical scaling through the imputation of spearman
distances between the row objects and the use of the preference sphere for
the column objects. Details can be found in van Deun et al. (2007), although
the current start deviates in the final stage from the procedure described in
van Deun, Marchal, Heiser, Engelen, and van Mechelen (2008). The current
procedure is given by the following steps. Addm additional rows Γc to the
preference data Γ that represent the objects by tied ranks as

γc
ij =

{
γc
ij = 1 if i = j,

γc
ij = 1+m/2 if i � j

and center the data with respect to c = [(m+ 1)/2]1. Now, equalize the norm
for each row by dividing the row elements withm−1(

∑
j γ

c
ij
2).5 and double

center the result, which is now a (n+m)×m data matrix [Γ ′, Γc ′] ′. The result
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c.2 initial configuration

of the singular-value decomposition [Γ ′, Γc ′] ′ = PΦQ ′ is used to obtain first
estimates of the coordinates for both sets of objects as[

X ′
0,Y ′

0
] ′

= PΦ2,

whereΦ2 is a matrix with the squared elements ofΦ. Finally, the configura-
tion is centered on the column coordinates Y0, the norm for the row object
coordinates is set to a maximum of 1, and the coordinates of the two sets are
intermixed, based on the median distances from the origin, that is, the column
object coordinates are scaled by multiplying with

s =
med

(
d
(
0,X0

))
med

(
d
(
0,Y0

)) ,
where med (·) returns the median of its argument and d(0,X) and d(0,Y) are
the distances from the origin, for the row and column coordinates, respectively.

One of the initial configurations that is still missing in prefscal is the start
discussed by Lingoes and Roskam (1973) and Guttman (1968), which is imple-
mented in minissa. This start is on the implementation list for prefscal.

Restrictions

Fixed coordinates. Except for a random start, a Procrustes analysis is per-
formed (named after Procrustes, the Greek innkeeper in Attica who always
managed to fit his guests into his one-size beds by cutting or stretching their
legs as necessary; Oreskovich, Klein, & Sutherland, 1991) to adapt the ini-
tial coordinates Z = [X ′,Y ′] ′ to the fixed coordinates Z. For this purpose,
Zf and Zf only contains the nf objects that are fixed in Z and Z, respec-
tively. The Procrustes analysis computes a rotation matrix R = PQ ′, where
P and Q are the left and right singular values from the singular-value de-
composition Z ′

fJZf = PΦQ ′ and J is a centering matrix of appropriate
size, a scaling factor s = tr (R ′Z ′

fJZf)/tr (Z ′
fJZf), and a translation vector

t = 1 ′R(Zf − sZfR)
′/(nfs). After applying the Procrustes transformation

Z+ = s(Z− 1 ′t)R, the fixed coordinates Z replace the corresponding coordi-
nates in Z+ to get a 100 match. The above procedure, due to Gower (1975),
requires all coordinates of a point to be present. It is also possible to fix only
one coordinate and leaving the other p− 1 coordinates free. For this purpose,
missing values should be allowed through the use of an intermediate (diago-
nal) weight matrix. Details on this procedure can be found in Commandeur
(1991).
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pre-processing

Independent variables. The unrestricted configuration is matched as closely
as possible with the independent variables. For this purpose, and considering
a restricting on the row objects only, the regression coefficients B are com-
puted as bhp = (q ′

hWhqh)
−1q ′

hWhxp, where qh is independent variable
h, xp are the row coordinates for dimension p, andWh is a diagonal matrix
containing zero’s and ones to account for missing values in qh. After normal-
izing the regression coefficients for identification, such that pmax = b ′

hbh

and adapting the variables accordingly, the restricted initial row configuration
is computed as X = QB. The same procedure is applied for independent
variables restricting the column coordinates Y .
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For the transformation update of penalized stress ,

σ2
p(γ,d) =

(‖γ− d‖2W
‖γ‖2W

)λ(‖γ‖2V +ω‖γ‖2M
‖γ‖2V

)
,

optimally transforming the preferences according to the conditionality and
transformation function supplied, we developed a similar approach asGroenen
and Heiser (1996). Given the current estimate of d, we use iterative majoriza-
tion to obtain a majorizing function in each iteration, that is,

cm‖γ− ξ‖2W + ca, (D.)

which is in the metricW and quadratic in γ, and where cm, ξ and ca do not
depend on γ. Function (D.1) can subsequently be minimized using standard
least squares transformation routines, such as Kruskal’s monotone regression.

d.1 majorization functions

For the theory of iterative majorization in mds, we refer to de Leeuw (1977a)
and Heiser (1995) as basic papers, and to Groenen (1993) and Groenen and
Heiser (1996) for some extensions used in this appendix. The iterative ma-
jorization approach is briefly summarized as follows. Iterative majorization is
a minimization method that uses an auxiliary function g(a,b), the so-called
majorizing function, as an aid in finding the minimum of the original func-
tion f(a). For this purpose, a majorizing function has to fulfill the following
requirements:

f(a) � g(a,b), for all a,b (D.)
f(al) = g(al,al), for l = 0, 1, . . . (D.)



transformation update

a2 a1 a0

f(a2)

g(a2,a1)

f(a1)

g(a1,a0)
f(a0)

g(a,a1) g(a,a0)

f(a)

Figure D.1 Iterative majorization, where f(a) is the function to be minimized and g(a,a0) and g(a,a1) are
majorizing functions that are located on or above the original function f(a).

where b is a known estimate of a and l is an iteration counter. In words, the

conditions above mean that the majorizing function always lies above the

original function, or touches the function, but is never smaller than the origi-

nal function (cf. (D.2)) and the majorizing function must touch the original

function at the current estimate (cf. (D.3)), the so-called supporting point (al).

Note that a sum of functions can be majorized by using a separate majorizing

function for each function in the summation. Repeatedly minimizing consec-

utive majorizing functions produces a non-increasing sequence of objective

function values. If the objective function is bounded from below, then this se-

quence has a limit. Furthermore, if consecutive function values are equal, that

is, if iterative majorization fails to progress, then it has identi�ed a stationary

point of the objective function.

Deriving the unconditional case

Starting from the penalized stress function (B.4) and using the following

additional substitutions,

f1 = ‖γ− d‖2W , (D.)

f2 = ‖γ‖2W , (D.)

f3 = ‖γ‖2V +ω‖γ‖2M, and (D.)

f4 = ‖γ‖2V , (D.)
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d.1 majorization functions

the square root of (B.4) can be written as

f
λ/2
1 f

1/2
3

f
λ/2
2 f

1/2
4

=
fn

fd
, (D.)

with numerator fn = f
λ/2
1 f

1/2
3 and denominator fd = f

λ/2
2 f

1/2
4 .

A majorizing function for (D.8) can be found by substitution of separate
majorizing functions for (D.4) to (D.7) as long as (D.8) consists of a sum of
functions. For this purpose, we first remove the fraction fn/fd, then split
up the product fλ/21 f

1/2
3 , as well as the product fλ/22 f

1/2
4 , and remove λ/2 as a

power in both f
λ/2
1 and f

λ/2
2 . Then, substitution of the separate majorizing

functions provides the final majorizing function for (B.4).

Fractional programming the fraction. Assume that we have f = fn/fd �
gn/gd = g, where, considering f in the current step, g is the function value
in the previous step of the iterative majorization algorithm. The reasoning
of fractional programming (Dinkelbach, 1967) is that if fn/fd � gn/gd,
then fn/fd − gn/gd � 0, and thus fn − fdgn/gd � 0, provided fd > 0,
which holds in our case. Applying fractional programming to (D.8) says that
minimizing

f
λ/2
1 f

1/2
3 − f

λ/2
2 f

1/2
4

g
λ/2
1 g

1/2
3

g
λ/2
2 g

1/2
4

= f
λ/2
1 f

1/2
3 − gf

λ/2
2 f

1/2
4 , (D.)

also reduces the value of the fraction in (D.8). The auxiliary function (D.9) is
the product of two functions, fλ/21 and f

1/2
3 , minus the product of the previous

function value g (a constant in minimizing (D.9)) and the product of fλ/22 and
f
1/2
4 .

Majorizing the product. Following Groenen (1993), the product of the two
functions fλ/21 f

1/2
3 can be majorized as follows. Because the square of a real

argument is non-negative, it is true that(
f
λ/2
1

g
λ/2
1

−
f
1/2
3

g
1/2
3

)2

� 0, and thus fλ/21 f
1/2
3 � 1

2
fλ1

g
1/2
3

g
λ/2
1

+
1
2
f3
g
λ/2
1

g
1/2
3

, (D.)

for gλ/2
1 > 0 and g

1/2
3 > 0, which majorizes the product by a sum of functions,

leaving us with only one obstacle: λ in fλ1 .
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transformation update

Majorizing the λ root. The first term on the right-hand side of (D.10) is a
constant times fλ1 . Because 0 < λ � 1, fλ1 is concave and can be linearly
majorized (see Groenen, 1993). Hardy et al. (1952) state that

xλ � (1− λ) + λx,

for 0 � λ � 1, and substituting f1/g1 for x gives

fλ1 � (1− λ)gλ
1 + λf1g

λ−1
1 , (D.)

which eliminates λ as a power in fλ1 .

Majorizing minus the product. The second product on the right-hand side of
(D.9), −f

λ/2
2 f

1/2
4 , can be majorized as follows (see Groenen, 2002). Because

the square of the sum of two differences is non-negative, it is true that[(
f
λ/2
2 − g

λ/2
2

)
+
(
f
1/2
4 − g

1/2
4

)]2
� 0, and thus

−f
λ/2
2 f

1/2
4 � 1

2
(
fλ2 + gλ

2 + f4 + g4
)
−
(
f
λ/2
2 + f

1/2
4

)(
g
λ/2
2 + g

1/2
4

)
+g

λ/2
2 g

1/2
4 ,

which majorizes minus the product by a sum of functions, leaving us with two
final obstacles: λ in fλ2 and λ/2 in −f

λ/2
2 .

Majorizing the λ root again. Themajorizing function for fλ2 is identical to
(D.11), the majorizing function for fλ1 , and thus, for 0 � λ � 1,

fλ2 � (1− λ)gλ
2 + λf2g

λ−1
2 ,

which eliminates λ as a power in fλ2 .

Majorizingminus the λ root. Kiers andGroenen (1996) provide the inequality
for minus a root as

−xλ � (1− λ)x2 + (λ− 2)x.

Replacing x with f
1/2
2 /g

1/2
2 gives the majorizing function for −f

λ/2
2 as

−f
λ/2
2 � (1− λ)

f2

g
1−λ/2
2

+ (λ− 2)
f
1/2
2

g
1/2−λ/2
2

, (D.)

where 0 < λ � 1 and both f2 and g2 are positive, which is true in our case.
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d.1 majorization functions

Combining the majorization results sofar. Combining (D.9) to (D.12) gives
the majorizing function for the square root of (B.4) as a sum of the functions
f1, f2, −f

1/2
2 , f3, f4, and −f

1/2
4 , i.e.,

σp(γ,d) � c+ α2f1 + α1f3 + (α5 + α6)f2 + α3f4 − α7f
1/2
2 − α4f

1/2
4
(D.)

with α1 to α7 defined as

α1 = (1/2)gλ/2
1 g

−1/2
3

α2 = (1/2)λg1/2
3 g

λ/2−1
1

α3 = (1/2)g

α4 = g
(
g
λ/2
2 + g

1/2
4

)
α5 = g(1/2)λgλ−1

2

α6 = g
(
g
λ/2
2 + g

1/2
4

)
(1− λ)g

λ/2−1
2

α7 = g
(
g
λ/2
2 + g

1/2
4

)
(2− λ)g

λ/2−1/2
2

and

c =
1
2
(1− λ)g

λ/2
1 g

1/2
3 + gg

λ/2
2 g

1/2
4 +

1
2
ggλ

2 +
1
2
gg4 +

1
2
(1− λ)ggλ

2

=
1
2
(1− λ)g

λ/2
1 g

1/2
3 +

1
2
g
(
2gλ/2

2 g
1/2
4 + g4 + (2− λ)gλ

2

)
,

which are all non-negative and constant in minimizing σp(γ,d), and now
only separate majorizing functions are needed for f1, f2, −f

1/2
2 , f3, f4, and

−f
1/2
4 . In order to provide a majorizing function equivalent to (D.1), terms in

the separate majorizing functions must be linear or quadratic in γ, all in the
metricW, so that substitution in (D.13) will provide (D.1).

Majorization of f1. Expanding f1 shows that

‖γ− d‖2W = γ ′Wγ− 2γ ′Wd+ d ′Wd

= β1γ
′Wγ− 2γ ′Wb1 + β2, (D.)

where β1 = 1, b1 = d, and β2 = d ′Wd. Equation (D.14) is both linear and
quadratic in γ, in the metricW.

Majorization of f2. Expanding f2 gives

‖γ‖2W = β3γ
′Wγ, (D.)

which is quadratic in γ, in the metricW, with β3 = 1.
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Majorization of −f
1/2
2 . For the majorization of −f

1/2
2 , it follows from the

Cauchy-Schwarz inequality that

−‖γ‖W � −
γ ′W •

γ

‖ •
γ‖W

= −2γ ′Wb2, (D.)

with b2 = (1/2)‖ •
γ‖−1

W

•
γ and where •

γ is the previous update of γ.

Majorization of f3. Expanding f3 gives

‖γ‖2V +ω‖γ‖2M = γ ′Wγ− γ ′Mγ+ωγ ′Mγ. (D.)

BecauseM is a positive semi-definitematrix, it is true that (γ− •
γ) ′M(γ−

•
γ) �

0 and the linear majorizing function of a minus quadratic function is written
as

−γ ′Mγ � −2γ ′M •
γ+

•
γ ′M •

γ. (D.)

For the last part of (D.17) quadratic majorization is used. BecauseV = W−M

is also a positive semi-definite matrix, it is also true that (γ− •
γ) ′V(γ−

•
γ) � 0,

and it follows that,

γ ′Vγ− 2γ ′V •
γ+

•
γ ′V •

γ � 0,
γ ′Wγ− γ ′Mγ− 2γ ′W •

γ+ 2γ ′M •
γ+

•
γ ′W •

γ−
•
γ ′M •

γ � 0, and
γ ′Mγ � γ ′Wγ− 2γ ′W •

γ+ 2γ ′M •
γ+

•
γ ′W •

γ−
•
γ ′M •

γ. (D.)

However, 2γ ′M •
γ = 2w−1

++γ
′ww ′γ in (D.19) might lead to negative values

for ξ. This is an undesired situation. To solve this problem, we need the
following lemma.

Lemma 2 The quadratic majorizing function for γ ′W1 is given by

γ ′W1 � τ1γ
′Wγ− 2γ ′Wt1 + τ2, (D.)

where τ1 = min{(2γmin)
−1, ε−1} with γmin = argmini(

•
γ) and ε some small

number, t1 = τ1
•
γ− 1

21, and τ2 = −τ1
•
γ ′W •

γ+ 2t ′1W
•
γ+

•
γ ′w.

Proof. The requirements (D.2) and (D.3) must hold for (D.20) to be a
proper majorizing function. Substitution of t1 and τ2 in (D.20) shows that
τ1(γ−

•
γ) ′W(γ−

•
γ) � 0, becauseW is a positive semi-definite matrix and

τ1 is a positive scalar. Equality occurs if γ =
•
γ, which proves (D.3).
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d.1 majorization functions

The term 2γ ′W •
γ can be rewritten as 2τ3γ ′W1 with τ3 = w−1

++w
′ •
γ.

Using Lemma 2, and substitution of the majorization results (D.18) to (D.20)
in (D.17) gives

‖γ‖2V +ω‖γ‖2M � β4γ
′Wγ− 2γ ′Wb3 + β5, (D.)

where β4 = 1 + ω + 2ωτ3τ1, b3 = τ31 + ω
•
γ + 2ωτ3t1, and β5 = (1 −

ω)w−1
++

•
γ ′ww ′ •

γ+ 2ωτ3τ2 +ω
•
γ ′W •

γ, providing the majorizing function for
f3.

Majorization of f4. Expanding f4 gives

‖γ‖2V = γ ′Wγ− γ ′Mγ.

Using the same substitutions as for the majorization of f3, provides the ma-
jorizing function for f4 as

‖γ‖2V � β6γ
′Wγ− 2γ ′Wb4 + β7, (D.)

with β6 = 1, b4 = τ31, and β7 =
•
γ ′M •

γ.

Majorization of −f
1/2
4 . For the majorization of −f

1/2
4 , it follows again from

the Cauchy-Schwarz inequality that

−‖γ‖V � −
γ ′V •

γ

‖ •
γ‖V

=
−γ ′W •

γ+ γ ′M •
γ

‖ •
γ‖V

= −2γ ′Wt2 + τ4γ
′W1, (D.)

where t2 = (2‖ •
γ‖V)−1 •

γ and τ4 = (‖ •
γ‖V)−1w−1

++w
′ •
γ. Although (D.23) is

a valid majorizing function for −‖γ‖V , γ ′M •
γ may again lead to negative

values for ξ. Lemma 2 is used to avoid these negative values. Combining
(D.20) and (D.23) gives

−‖γ‖V � β8γ
′Wγ− 2γ ′Wb5 + β9, (D.)

where β8 = τ4τ1, b5 = t2 + τ4t1, and β9 = τ4τ2, providing the majorizing
function for −f

1/2
4 .
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Combining majorization results. Themajorizing functions for f1, f2, −f
1/2
2 ,

f3, f4, and −f
1/2
4 , all containing terms linear and quadratic in γ, can now be

combined to provide the overall majorizing function for penalized stress.
Substitution of (D.14), (D.15), (D.16), (D.21), (D.22), and (D.24) in (D.13) gives
the majorizing function for penalized stress as

σp(γ,d) � c+ α2(β1γ
′Wγ− 2γ ′Wb1 + β2)

+ α1(β4γ
′Wγ− 2γ ′Wb3 + β5)

+ (α5 + α6)(β3γ
′Wγ)

+ α3(β6γ
′Wγ− 2γ ′Wb4 + β7)

+ α7(−2γ ′Wb2)

+ α4(β8γ
′Wγ− 2γ ′Wb5 + β9).

This leads to the following expression for ξ in (D.1),

ξ = c−1
m (α2b1 + α1b3 + α3b4 + α7b2 + α4b5) ,

where cm = α2β1+α1β4+(α5+α6)β3+α3β6+α4β8. As indicated before, ξ is
a vector with non-negative values and ξ can be used in standard minimization
routines to find optimally transformed values of γ.

Deriving the conditional case

The variation of the transformed preferences in row i is denoted as υ(γi),
yielding the penalty function

μc(Γ) = 1+ω∗ 1(
1
n

∑n
i=1 υ

2
(
δi

)
υ−2

(
γi

))−1 (D.)

for the conditional case. The row-conditional penalized stress function can,
considering (D.25), be written as

σp(γ,d) =

[(
1
n

n∑
i=1

‖γi − di‖2Wi

‖γi‖2Wi

)λ( 1
n

n∑
i=1

‖γi‖2Vi
+ω‖γi‖2Mi

‖γi‖2Vi

)]1/2
,

(D.)
where the subscript i indicates that it only concerns elements corresponding
to row i.

Block relaxation. For the minimization of (D.26) we use block relaxation,
which updates one row at the time, while keeping the other rows fixed. Con-
sider one single row i, while keeping the other n− 1 rows fixed. Now, (D.26)
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d.1 majorization functions

is written as

σp(γi,di) =

[(
nc1i‖γi‖2Wi

+ ‖γi − di‖2Wi

n‖γi‖2Wi

)λ

(
(1+ nc2i)‖γi‖2Vi

+ω‖γi‖2Mi

n‖γi‖2Vi

)]1/2
,

where

c1i =

n∑
j�i

‖γj − dj‖2Wj

n‖γj‖2Wj

and c2i =

n∑
j�i

‖γj‖2Vj
+ω‖γj‖2Mj

n‖γj‖2Vj

.

Conditional derivations. For the row-conditional case, the substitutions de-
scribed in (D.4) to (D.7) are,

f1i = nc1i‖γi‖2Wi
+ ‖γi − di‖2Wi

,
f2i = n‖γi‖2Wi

,
f3i = (1+ nc2i)‖γi‖2Vi

+ω‖γi‖2Mi
, and

f4i = n‖γi‖2Vi
.

Since the initial derivations (D.9) to (D.12) are equivalent for the conditional
case, only the majorizing functions for f1i, f2i, f3i, and f4i need to be adapted
and only in those cases where the constants c1i, c2i, and n are concerned. For
the quadratic part, the following constants are adapted for the conditional
case as:

β1i = 1+ nc1i,
β3i = n,
β4i = 1+ nc2i +ω+ 2ωτ3τ1,
β6i = n, and

β8i = n1/2τ4τ1,

whereas for the linear part, the following vectors are adapted:

b2i = (1/2)n1/2‖ •
γi‖−1

Wi

•
γi,

b3i = τ31+ τ3nc2i1+ω
•
γi + 2ωτ3t1,

b4i = nτ31, and

b5i = n1/2t2 + n1/2τ4t1.

Remaining constants and vectors are taken from the unconditional derivations,
considering only row i.
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transformation update

Combiningmajorization results. Combining the results for the row-conditional
case gives the majorizing function for the row-conditional penalized stress
as

σp(γi,di) � ci + α2i(β1iγ
′
iWiγi − 2γ ′

iWib1i + β2i)

+ α1i(β4iγ
′
iWiγi − 2γ ′

iWib3i + β5i)

+ (α5i + α6i)(β3iγ
′
iWiγi)

+ α3i(β6iγ
′
iWiγi − 2γ ′

iWib4i + β7i)

+ α7i(−2γ ′
iWib2i)

+ α4i(β8iγ
′
iWiγi − 2γ ′

iWib5i + β9i),

which provides the following expression for ξi in (D.1),

ξi = c−1
mi

(
α2ib1i + α1ib3i + α3ib4i + α7ib2i + α4ib5i

)
,

where cmi = α2iβ1i+α1iβ4i+(α5i+α6i)β3i+α3iβ6i+α4iβ8i. As indicated
before, again, ξi is a vector with non-negative values and ξi can be used in
standard minimization routines to find optimally transformed values of γi.

d.2 transformation functions

Transformations are performed over different parts of the data, depending
on the conditionality of the data, as specified by the user. For the discussion
of the following transformation functions, it is assumed that the transforma-
tion is computed over a single vector, without reference to a row (in case
of row-conditional transformations), source (in case of matrix-conditional
transformations), or complete data array (in case of unconditional transfor-
mations).

Linear transformations

The linear transformation is defined as

γ = b11+ b2δ (D.)

with b2 � 0 to ensure increasing values of γ for increasing values of δ and
γ = b11+ b2δ � 0 for all elements of γ to ensure non-negative transformed
preferences. By subtracting argmin (δ) from δ the latter constraint becomes
b1 � 0. This shift by argmin (δ) is restored afterwards. Now, a non-negative
least squares procedure can be used to find estimates for b1 and b2 under the
non-negativity restrictions, minimizing (D.1) given δ and ξ. Since only two
parameters need to be estimated, a limited number of steps suffice. Expanding
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d.2 transformation functions

(D.1), substituting (D.27) for γ, and adding a diagonal matrix with preference
weightsW, gives two equations with two unknowns as

b11
′W1+ b21

′Wδ = 1 ′Wξ (D.)
b1δ

′W1+ b2δ
′Wδ = δ ′Wξ. (D.)

Substitution of b1 from (D.28) in (D.29) provides an estimate for b2 as

b̂2 =
1 ′W1δ ′Wξ− δ ′W11 ′Wξ

1 ′W1δ ′Wδ− δ ′W11 ′Wδ
.

If b̂2 is smaller than zero, then b̂2 is set to zero. Substitution of b̂2 in (D.28)
provides the estimate for b1 as

b̂1 =
ξ ′W1− b̂2δ

′W1

1 ′W1
.

If, however, b̂1 is smaller than zero, then b̂1 is set to zero and b2 is re-estimated,
using either (D.28) or (D.29), with b1 = 0.

Special cases of the linear transformation (D.27) exist for b1 = 0, a slope-
only or ratio transformation, b2 = 1, an intercept-only transformation, and
both b1 = 0 and b2 = 1, which implies no transformation, obviously.

Monotone transformations

Monotone splines. For the monotone spline transformations (Winsberg &
Ramsay, 1983; Ramsay, 1988), smooth nondecreasing piecewise polynomial
transformations, additional pre-processing is required, which is described
in Technical Appendix C, pre-processing, page 153. A weighted regression
ξ = SBwith spline basisS is computed in each iteration of themain algorithm.
The regression coefficients B are restricted to be non-negative and computed
using the non-negative least squares procedure of Lawson and Hanson (1974).

Note that monotone spline transformations establish a link between linear
transformations and monotone regression (discussed hereafter). Without inte-
rior knots, thus only using two boundary knots, and with a linear polynomial,
the monotone spline transformation is identical to the linear transformation,
estimating an intercept (boundary knot) and a slope (linear polynomial).
When, on the other hand, there exists a knot for every preference value, the
monotone spline transformation conforms to a monotone regression transfor-
mation, that is, to a stepwise transformation with nondecreasing steps (due to
the non-negativity constraint on B) on each knot.
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Monotone regression. Kruskal (1964a) discusses monotone regression in his
famous article discussing nonmetric mds. By itself, monotone regression
was already known from Ayer, Brunk, Ewing, Reid, and Silverman (1955),
Barton andMallows (1961), Bartholomew (1959, 1961), andMiles (1959). Other
references (in the context of mds) are: Kruskal (1971), proving existence and
continuity of the gradient, de Leeuw (1977b), proving correctness in case
of ties, and van Waning (1976), finding an optimal computer procedure. A
good discussion under the name isotone regression can be found in Barlow,
Bartholomew, Bremner, and Brunk (1972).

Monotone regression, in our case, finds a vector γ that minimizes (D.1)
under the inequality restrictions γ1 � γ2 � . . . � γn for an ordered vector ξ.
The index order of ξ is identical to the index order of the ascendingly sorted
original preferences δ. In case of ties, there are two approaches implemented:
Ties are allowed to be untied or ties must be kept tied. The first (primary)
approach to ties uses the entire transformation vector ξ and sorts the vector
according to the original preferences δ. The pool-adjacent-violators algo-
rithm (Ayer et al., 1955), or equivalently the up-and-down blocks algorithm
(Kruskal, 1964b), now re-establishes the correct monotone order in ξ, whereas
within tie-blocks the values are set in optimal (least squares) order. The second
(secondary) approach to ties requires ties to be kept tied. In this case, the
preferences within tie-blocks are first contracted (and expanded afterwards),
that is, tie-blocks are represented in the sorted vector by their means, leading
to a transformation vector ξ∗ that is number-of-tie-blocks large. This vec-
tor is, in turn, feeded to the up-and-down blocks algorithm to re-establish
monotonicity. A third (tertiary) approach is discussed by de Leeuw (1977b).

The master thesis of van Waning (1976) discusses several algorithms for
monotone regression in terms of speed and memory requirements. A simple
and fast version of the up-and-down blocks algorithm, using a minimum of
memory, is used in prefscal.

Smooth monotone regression. An alternative algorithm for monotone regres-
sion is non-negative least squares. Using an ordered vector ξ and a special
coefficient matrix

E =

⎡⎢⎢⎣
1 0 0 0
−1 1 0 0
0 −1 1 0
0 0 −1 1

⎤⎥⎥⎦ ,

specifying the constraints (here for four elements only), leads to a monotone
regression procedure similar to

min
β�0

‖Eβ− ξ‖2W , (D.)
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d.2 transformation functions

providing the solution as Eβ. With monotonicity as a condition on the first
order differences θ(1)l = ξl−ξl−1 � 0, smoothness is defined as a condition on
the second order differences θ(2)l = |θ

(1)
l −θ

(1)
l−1 | � θ

(1), where θ(1) is themean
step, which leads to a somewhat more complicated coefficient matrix E, but to
the same non-negative least squares minimization procedure. Heiser (1985,
1986, 1989) discusses an alternating least squares algorithm to find a solution
for (D.30), but mainly due to the huge number of inequalities, the algorithm
is very slow for only a limited number of elements in ξ. Nevertheless, smooth
monotone regression functions adequately and is able to avoid degenerate
solutions.
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For the configuration update of penalized stress ,

σ2
p(γ,d) =

(‖γ− d‖2W
‖γ‖2W

)λ(‖γ‖2V +ω‖γ‖2M
‖γ‖2V

)
, (E.)

we developed an approach first discussed in the context of unfolding by
Heiser (1987a). Minimizing penalized stress reduces to the minimization
of normalized raw stress , as the penalty function (B.2), i.e., the second
part on the right-hand side of (E.1), and the penalty parameters λ andω are
constants with respect to the configuration. Re-definingW as ‖γ‖−2

WW, i.e.,
dividing the weights with the weighted sum-of-squares of the transformed
preferences, yields raw stress

σ2
r(d) = ‖γ− d‖2W (E.)

as the objective function for the configuration update, which is minimized
using iterative majorization (see Section D.1 for the theory of iterative ma-
jorization and Heiser, 1987a for unfolding specific derivations) and alternating
least squares (see Takane et al., 1977; Greenacre & Browne, 1986; Heiser, 1987a).
Depending on the individual differences model and the restrictions on the
configuration, updates are determined for the row coordinates X, the column
coordinates Y , the space weightsA, and the independent variablesQ and cor-
responding regression coefficients B (see de Leeuw & Heiser, 1980; DeSarbo
& Rao, 1984; DeSarbo & Carroll, 1985; DeSarbo & Rao, 1986).

The general strategy to find an update is first to rewrite the function such
that only relevant quantities remain. The non-relevant quantities, i.e., variables
that are constant in the minimization, are gathered in a variable c, using a
subscript indicating the (non-)fixed content. Then, the function is rewritten,
enabling us the take the derivative, which is set equal to zero to provide us
with the minimum and thus the update of the variable in question.



configuration update

e.1 common space update

The basic two-way unfolding loss function (E.2), defined as a weighted least
squares function, can be written as

f2 = ‖γ− d‖2W
= c2 + tr

(
X ′RX+ Y ′CY − 2X ′WY − 2X ′X̃− 2Y ′Ỹ

)
, (E.)

where c2 = trγ ′Wγ, R = diag (W1), C = diag (1 ′W), X̃ = PX − BY , and
Ỹ = QY − B ′X, where B is defined with elements

bij =

{
wijγij/d(xi,yj) if d(xi,yj) > 0.0
0.0 if d(xi,yj) = 0.0

andP = diag (B1) andQ = diag (1 ′B). Manipulation of the Cauchy-Schwarz
inequality

d(xi,yj)d(
•
xi,

•
yj) � (xi − yj)

′(•
xi −

•
yj),

where •
x and •

y are other instances of x and y, respectively, shows that

−trX ′X̃− trY ′Ỹ � −trX ′
•

X̃− trY ′
•

Ỹ , (E.)

where
•

X̃ and
•

Ỹ are the previous updates of X̃ and Ỹ , respectively. Combining
(E.3) and (E.4) provides the majorizing function for f2 as

g2 = c2 + tr
(
X ′RX+ Y ′CY − 2X ′WY − 2X ′

•

X̃− 2Y ′
•

Ỹ
)
. (E.)

After some rearrangement of terms, it is clear that (E.5) can be minimized by
alternating least squares, i.e., by alternating between minimizing g2 for X and
minimizing g2 for Y , keeping the other terms fixed. The solutions for X and Y

are then given by

X+ = R−1
( •

X̃+WY
)
and (E.)

Y+ = C−1
( •

Ỹ +W ′X+
)
. (E.)

Repeatedly updating X and Y until convergence provides at least a local mini-
mum of the loss function.
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e.2 two-way unfolding models

e.2 two-way unfolding models

In 1972, Carroll introduced additional models which allows for different, indi-
vidual points of view, such that an individual (row object) is allowed to view
the common space in a certain way. These two-way individual differences
models are specified as:

xi = xiAi,

Yi = YAi,
(E.)

where xi specifies a row vector with common space coordinates for row object
i and xi specifies a row vector with the individual point of view. The models
allow for different weighting and/or rotation of the common space X,Y for
each individual. The different forms of the space weights matricesAi result in
the following individual differences models:

• Ai = I ∀ i = 1, . . . ,n; Identity model, where I is an identity matrix,
specifying individual spaces xi,Yi identical to the common space xi,Y ;

• Ai = Di; Diagonal or weighted Euclidean model, with diagonal ma-
tricesAi, resulting in individual dimension weighting of the common
space for each individual space;

• Ai = Fi; Full or generalized Euclideanmodel, with full space weightma-
tricesAi, which can be divided into individual rotation and dimension
weighting matrices for each individual space;

• Ai = Ri; Rectangular or reduced rank model, with rectangular space
weight matricesAi, which can be divided into individual rotation, di-
mension weighting, and dimension reduction matrices for each indi-
vidual space, where the rank of an individual space is smaller than the
rank of the common space.

Incorporating the space weightsA into the two-way loss function (E.5) gives
the general two-way individual differences model as

g ′
2 = c2 +

1
n

n∑
i=1

tr
(
A ′

ix
′
iriixiAi +A ′

iY
′diag

(
wi

)
YAi − 2A ′

ix
′
iwiYAi

− 2A ′
ix

′
i

•
x̃i − 2A ′

iY
′
•

Ỹi

)
(E.)

which is simply an average over all n row objects.
Note that unfolding irt models need the diagonal or weighted Euclidean

model for each column rather than each row, so that each item canhave different
diagonal discrimination matrices (J. S. Roberts, personal communication,
March 24, 2009).
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configuration update

Row coordinates update. (E.9) is minimized with respect to the row coordi-
nates X for each row i separately, while keeping the other n − 1 rows fixed.
For this purpose, (E.9) is written as

g ′
2 = cxi

+ trAiA
′
ix

′
iriixi − 2tr x ′

iwiYAiA
′
i − 2tr x ′

i

•
x̃iA

′
i. (E.)

Using the equalities

trABCD =
(
vecD

) ′(
A⊗C ′)vecB ′ and

trA ′B =
(
vecA

) ′vecB (E.)

(see, for example, Magnus & Neudecker, 1988), (E.10) can be written as

g ′
2 = cxi

+
(
vec xi

) ′(
AiA

′
i ⊗ r ′ii

)
vec x ′

i

− 2
(
vec xi

) ′vecwiYAiA
′
i − 2

(
vec xi

) ′vec •
x̃iA

′
i, (E.)

which provides the update for xi as

vec x+i =
[
AiA

′
i ⊗ r ′ii

]−1[
vecwiYAiA

′
i + vec

•
x̃iA

′
i

]
,

which reduces to (E.6) for the identity model with Ai = I ∀ i = 1, . . . ,n.
Writing vec in front of xi is redundant, but left as it is for clarity and for
correspondence with matrix arguments.

Column coordinates update. The minimization of (E.9) with respect to Y

cannot be performed per row or column. In this case, g ′
2 is written as

g ′
2 = cY +

1
n

n∑
i=1

trAiA
′
iY

′diag
(
wi

)
Y

− 2
1
n

n∑
i=1

trAiA
′
ix

′
iwiY − 2

1
n

n∑
i=1

trY ′
•

ỸiA
′
i (E.)

and after using the equalities (E.11) the function becomes

g ′
2 = cY +

(
vecY

) ′( 1
n

n∑
i=1

AiA
′
i ⊗ diagwi

)
vecY

− 2
(
vecY

) ′vec 1
n

n∑
i=1

w ′
ixiAiA

′
i − 2

(
vecY

) ′vec 1
n

n∑
i=1

•

ỸiA
′
i. (E.)

The update is then given as

vecY+ =

[
1
n

n∑
i=1

AiA
′
i ⊗ diagwi

]−1[
vec

1
n

n∑
i=1

(
w ′

ixiAiA
′
i +

•

ỸiA
′
i

)]
,

which reduces to (E.7) when Ai = I ∀ i = 1, . . . ,n as AiA
′
i = I and C =∑

i diagwi.
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Space weights update. For the minimization of (E.9) with respect toA, we
consider oneAi at the time. The equalities (E.11) need not be applied, since
Ai is on the outside edge of terms and the update forAi is given as

A+
i =

(
x ′
i

•
x̃i + Y ′

•

Ỹi

)(
x ′
iriixi + Y ′diag

(
wi

)
Y − x ′

iwiY − Y ′w ′
ixi

)−1

.

For the diagonal model, with diagonalAi’s, only the diagonals are used of the
numerator and denominator, and for the rectangular model, the best rank r

approximation is used. For this purpose the singular-value decomposition
Ai = PΦQ ′ is used with the singular values in nondecreasing order on the
diagonal ofΦ and specifyAi for the rectangular model as PΦ using only the
first r (reduced rank) columns of P andΦ. After updatingA, the individual
spaces are computed according to (E.8).

e.3 three-way unfolding models

Allowing for multiple sources, i.e., multiple rectangular n×mmatrices, the
relationship between the common space X,Y and the s individual spaces
Xk,Yk (k = 1, . . . , s) is specified by the following model:

Xk = XAk

Yk = YAk.
(E.)

The different forms of the space weights matricesAk (k = 1, . . . , s) result in
the same individual differences models as described for the two-way model
(see page 177). The two-way loss function (E.5) is extended with an additional
way, using the average over s sources, which provides the three-way individual
differences model as

g ′
3 = c3 +

1
s

s∑
k=1

tr
(
X ′

kRkXk + Y ′
kCkYk − 2X ′

kWkYk − 2X ′
k

•

X̃k − 2Y ′
k

•

Ỹk

)

= c3 +
1
s

s∑
k=1

tr
(
A ′

kX
′RkXAk +A ′

kY
′CkYAk − 2A ′

kX
′WkYAk

− 2A ′
kX

′
•

X̃k − 2A ′
kY

′
•

Ỹk

)
. (E.)

The individual differences in the three-way model thus refer to differences
between the additional third way matrices or sources and not between the
rows as in the two-way model.
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configuration update

Row coordinates update. Using the equalities (E.11), and moving the summa-
tion over s inside each term, such that the sum over traces becomes the trace
of sums, (E.16) is written as

g ′
3 = cX +

1
s

s∑
k=1

tr
(
AkA

′
kX

′RkX− 2X ′WkYAkA
′
k − 2A ′

kX
′
•

X̃k

)

= cX +
(
vecX

) ′( 1
s

s∑
k=1

AkA
′
k ⊗ R ′

k

)
vecX

− 2
(
vecX

) ′vec 1
s

s∑
k=1

WkYAkA
′
k − 2

(
vecX

) ′vec 1
s

s∑
k=1

•

X̃kA
′
k.

(E.)

The update for X is now given as

vecX+ =

[
1
s

s∑
k=1

AkA
′
k ⊗ R ′

k

]−1[
vec

1
s

s∑
k=1

(
WkYAkA

′
k +

•

X̃kA
′
k

)]
.

Computational considerations. For the identity model, whereAk = I ∀ k =

1, . . . , s, allAkA
′
k are also equal to I, and the update for X is reduced to

X+ =

[
1
s

s∑
k=1

Rk

]−1[ 1
s

s∑
k=1

WkY +
1
s

s∑
k=1

•

X̃k

]
,

where the inverse is very simple, due to the diagonal matricesRk (see page 152).
For the diagonal model,

∑
AkA

′
k ⊗ R ′

k is diagonal and simple divisions also
suffice for the update. The inverse for the full model is somewhatmore difficult,
since

∑
AkA

′
k ⊗ R ′

k is a block diagonal matrix as theAk’s are full matrices
and the Rk’s are diagonal matrices. Still, the inverse of such a matrix is com-
puted very fast by taking the corresponding diagonal elements of each block,
combining them into one matrix, taking the proper inverse and transferring
the elements back to the original position in the matrix. This means taking n
times the inverse of a p×pmatrix for the complete update ofX. However, this
is not the update strategy for this or any other model in prefscal, because
updating the coordinates one by one even eliminates the computation of the
inverses as described above (see Greenacre & Browne, 1986). The one-by-one
procedure is described in the section concerning the coordinate restrictions.

Column coordinates update. The update for the column coordinates follows
the same steps as for the update of the row coordinates.
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e.4 coordinate restrictions

Space weights update. Minimizing (E.16) with respect to the space weights
A can be solved for oneAk at the time, keeping the other s− 1 fixed. As with
the two-way models, rewriting (E.16) in vector notation using (E.11) is not
necessary. The derivative with respect toAk is straightforward and provides
the update forAk as

A+
k =

(
X ′

•

X̃k + Y ′
•

Ỹk

)(
X ′RkX+ Y ′CkY − X ′WkY − Y ′W ′

kX

)−1

.

Note that because −2AkX
′WkYAk is not symmetric, the derivative is taken

from −A ′
kX

′WkYAk −A ′
kY

′W ′
kXAk instead. The identity model does not

need any update forAk, sinceAk = I ∀ k = 1, . . . , s, whereas for the diagonal
model, only the diagonals are needed, that is,

A+
k = diag

(
X ′

•

X̃k+Y ′
•

Ỹk

)
diag

(
X ′RkX+Y ′CkY−X ′WkY−Y ′W ′

kX

)−1

,

which is a simple division instead of a multiplication with an inverse. For the
rectangular model, the best rank r approximation is used. To this end, we use
the singular-value decomposition Ak = PΦQ ′ with the singular values in
nondecreasing order on the diagonal ofΦ and specifyAk for the rectangular
model as PΦ using only the first r columns of P and Φ. After updating A,
the individual spaces are computed according to (E.15).

e.4 coordinate restrictions

Restricting coordinates are easily incorporated when the coordinates are com-
puted, not only point after point, but coordinate after coordinate. For this
purpose (E.9) for the two-way models and (E.16) for the three-way models
are rewritten such that the updates can be computed per coordinate. Fixed
coordinates are simply skipped while updating the coordinates.

Two-way model, row coordinate update. The vector with coordinates for row
i can be written as xi = x− + ex, where x− is equal to xi, except for one
element, x, which is set equal to zero in x−, where e has a one and zero’s
elsewhere. Using this decomposition, (E.12) can be written as

g ′
2 = cxi

+
(
x− + ex

) ′(
AiA

′
i ⊗ r ′ii

)(
x− + ex

)
− 2

(
x− + ex

) ′vecwiYAiA
′
i − 2

(
x− + ex

) ′vec •
x̃iA

′
i

= cx + 2xe ′(AiA
′
i ⊗ r ′ii

)
x− + xe ′(AiA

′
i ⊗ r ′ii

)
ex

− 2xe ′vecwiYAiA
′
i − 2xe ′vec

•
x̃iA

′
i.
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The update for x is now given as

x+ =
[
e ′(AiA

′
i⊗r ′ii

)
e
]−1[

e ′vec
(
wiYAiA

′
i+

•
x̃iA

′
i

)
−e ′(AiA

′
i⊗r ′ii

)
x−
]
,

which is repeated for all np coordinates.

Two-way model, column coordinate update. The vector with column coordi-
nates can be written as vecY = y− + ey, where y− is equal to vecY , except
for one element, y, which is set equal to zero in y−, where e has a one and
zero’s elsewhere. Substitution is (E.14) gives

g ′
2 = cY +

(
y− + ey

) ′( 1
n

n∑
i=1

AiA
′
i ⊗ diagwi

)(
y− + ey

)
− 2

(
y− + ey

) ′vec 1
n

n∑
i=1

w ′
ixiAiA

′
i − 2

(
y− + ey

) ′vec 1
n

n∑
i=1

•

ỸiA
′
i

= cy + 2ye ′
(
1
n

n∑
i=1

AiA
′
i ⊗ diagwi

)
y−

+ ye ′
(
1
n

n∑
i=1

AiA
′
i ⊗ diagwi

)
ey

− 2ye ′vec
1
n

n∑
i=1

w ′
ixiAiA

′
i − 2ye ′vec

1
n

n∑
i=1

•

ỸiA
′
i.

The update for y is now given as

y+ =

[
e ′
(
1
n

n∑
i=1

AiA
′
i ⊗ diagwi

)
e

]−1

[
e ′vec

1
n

n∑
i=1

(
w ′

ixiAiA
′
i +

•

ỸiA
′
i

)
− e ′

(
1
n

n∑
i=1

AiA
′
i ⊗ diagwi

)
y−

]
,

which is repeated for allmp coordinates.

Three-way model, row coordinate update. The vector with coordinates can be
written as vecX = x−+ex, where x− is equal to vecX, except for one element,
x, which is set equal to zero in x−, where e has a one and zero’s elsewhere.
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Combining this decomposition with (E.17) gives

g ′
3 = cX +

(
x− + ex

) ′( 1
s

s∑
k=1

AkA
′
k ⊗ R ′

k

)(
x− + ex

)
− 2

(
x− + ex

) ′vec 1
s

s∑
k=1

WkYAkA
′
k − 2

(
x− + ex

) ′vec 1
s

s∑
k=1

•

X̃kA
′
k

= cx + 2xe ′
(
1
s

s∑
k=1

AkA
′
k ⊗ R ′

k

)
x− + xe ′

(
1
s

s∑
k=1

AkA
′
k ⊗ R ′

k

)
ex

− 2xe ′vec
1
s

s∑
k=1

WkYAkA
′
k − 2xe ′vec

1
s

s∑
k=1

•

X̃kA
′
k.

The update for each coordinate x is given as

x+ =

[
e ′
(
1
s

s∑
k=1

AkA
′
k ⊗ R ′

k

)
e

]−1

[
e ′vec

1
s

s∑
k=1

(
WkYAkA

′
k +

•

X̃kA
′
k

)
− e ′

(
1
s

s∑
k=1

AkA
′
k ⊗ R ′

k

)
x−
]
.

Three-way model, column coordinate update. The update for a column co-
ordinate follows the same steps as for the update of a three-way model row
coordinate.

Computational considerations. Note that the vector e contains only zero’s
and a single one, so after multiplication with another vector (inner product)
only a scalar remains. The Kronecker product is even pre- and post-multiplied
with e, thus providing one diagonal element of the product, a scalar, which
reduces the inverse to a simple division. For both identity and diagonalmodels,
the terms e ′(

∑
. . .⊗ . . .)x− and e ′(

∑
. . .⊗ . . .)y− are equal to zero, due to

the special form of e, x−, and y−. For the full model, these terms are not
equal to zero, but consist of a summation over p − 1 off-diagonal products,
where p is the dimensionality of the model.

e.5 variable restrictions

The coordinates of the row objects of common space can be restricted to be a
linear combination of independent variables, i.e.,X = QB, whereX is a n×p

matrix with common space row coordinates,Q is an×hmatrix ofh optimally
transformed independent variables, and B is a h× pmatrix with regression
coefficients. Instead of updating X, updates are computed for the optimally
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transformed variables Q (if needed) and for the regression coefficients B.
These updates are computed iteratively per variable until converged. The same
restrictions can be applied to the column objects of the common space. To
avoid too many subscripts, superscripts, or other scripts, we use the same
characters for both row and column regression coefficients and variables,
although their sizes and contents differ, of course.

Two-way model, row regression coefficients update. For the update of B, we
substitute qiB for xi in (E.10) and rearrange terms yielding

g ′
2 = cB +

1
n

n∑
i=1

tr
(
A ′

iBq
′
iriiqiBAi − 2A ′

iB
′q ′

iwiYAi − 2A ′
iB

′q ′
i

•
x̃i

)
.

(E.)

Letting

qiB =

h∑
t=1

qitb
′
t = qilb

′
l +

h∑
t�l

qitb
′
t = Ul + qilb

′
l (E.)

allows us to find an update for B one row at the time. Substituting (E.19) in
(E.18) and writing the equation for one row l only, omitting the subscript l for
q, b, andU, gives

g ′
2 = cb +

1
n

n∑
i=1

tr
(
AiA

′
ibq

′
iriiqib

′ − 2bq ′
iriiUAiA

′
i

− 2bq ′
iwiYAiA

′
i − 2bq ′

i

•
x̃iA

′
i

)
and using the equalities from (E.11) and the fact that vecb = b gives

g ′
2 = cb + b

(
1
n

n∑
i=1

AiA
′
i ⊗ q ′

iriiqi

)
b ′

+ 2b
(
vec

1
n

n∑
i=1

q ′
iriiUAiA

′
i − vec

1
n

n∑
i=1

q ′
iwiYAiA

′
i

− vec
1
n

n∑
i=1

q ′
i

•
x̃iA

′
i

)
.
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Now, using the same strategy as with the coordinates restriction, that is, update
one b at the time by setting b = be ′ + b−, such that

g ′
2 = cb + be ′

(
1
n

n∑
i=1

AiA
′
i ⊗ q ′

iriiqi

)
eb

+ 2be ′
(
1
n

n∑
i=1

AiA
′
i ⊗ q ′

iriiqi

)
b− + 2be ′

(
vec

1
n

n∑
i=1

q ′
iriiUAiA

′
i

− vec
1
n

n∑
i=1

q ′
iwiYAiA

′
i − vec

1
n

n∑
i=1

q ′
i

•
x̃iA

′
i

)
,

which provides the update for b as

b+ =

[
e ′
(
1
n

n∑
i=1

AiA
′
i ⊗ q ′

iriiqi

)
e

]−1

e ′
[
vec

1
n

n∑
i=1

q ′
iwiYAiA

′
i + vec

1
n

n∑
i=1

q ′
i

•
x̃iA

′
i

−

(
1
n

n∑
i=1

AiA
′
i ⊗ q ′

iriiqi

)
b− − vec

1
n

n∑
i=1

q ′
iriiUAiA

′
i

]
.

This update is repeated for all hp regression coefficients.

Two-way model, row variable update. For a variable, two updates are neces-
sary: An unrestricted and a restricted update. The latter update restricts the
variables conform the user-specified transformations of the original indepen-
dent variables E.

For the unrestricted update, using (E.19) and updating q for one row i at
the time, (E.10) is written as

g ′
2 = cqi

+ tr
(
b ′AiA

′
ibq

′
iriiqi + 2q ′

iriiUAiA
′
ib

− 2q ′
iwiYAiA

′
ib− 2q ′

i

•
x̃iA

′
ib
)
.

Applying the equalities from (E.11) gives

g ′
2 = cqi

+ q ′
i

(
b ′AiA

′
ib⊗ r ′ii

)
qi + 2q ′

ivec riiUAiA
′
ib

− 2q ′
ivecwiYAiA

′
ib− 2q ′

ivec
•
x̃iA

′
ib, (E.)

which provides the unrestricted update for qi as

q∗
i =

[
riib

′AiA
′
ib
]−1[

wiYAiA
′
ib+

•
x̃iA

′
ib− riiUAiA

′
ib
]
, (E.)
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which is repeated nh times.
For the restricted update, first rewrite (E.20) for one variable h as

g ′
2 = cq + q ′Vq− 2q ′Tb, (E.)

whereV is ann×nmatrix with diagonal elements vii = riib
′AiA

′
ib and T is

an n×pmatrix with row elements ti = wiYAiA
′
i +

•
x̃iA

′
i − riiUAiA

′
i. The

general solution for an unrestricted variable q is then given as q∗ = V−1Tb,
as can be deduced from (E.21), and thus

Vq∗ = Tb. (E.)

Combining (E.22) and (E.23) gives the objective function for a restricted
variable q as

g ′
2 = cq + q ′Vq− 2q ′Vq∗

= cq +
(
q− q∗) ′V(q− q∗),

which provides the update for a restricted variable q as

q+ =
(
q ′Vq

)−1
q ′Vq∗. (E.)

Since (E.24) is a weighted least squares function with weights V, standard
weighted least squares procedures suffice to find a solution for the restricted
variable q+.

Two-way model, column regression coefficients update. Starting from (E.13)
and substitutingQB for Y gives

g ′
2 = cB +

1
n

n∑
i=1

tr
(
A ′

iB
′Q ′diag

(
wi

)
QBAi

− 2A ′
iB

′Q ′w ′
ixiAi − 2A ′

iB
′Q ′

•

Ỹi

)
.

Now, replacing Y with the sum of rank-one matrices

QB =

h∑
t=1

qtb
′
t = qlb

′
l +

h∑
t�l

qtb
′
t = qlb

′
l +Ul (E.)
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and changing to vectors using (E.11), the objective function becomes

g ′
2 = cb +

1
n

n∑
i=1

(
AiA

′
ibq

′diag
(
wi

)
qb ′ + 2bq ′diag

(
wi

)
UAiA

′
i

− 2bq ′w ′
ixiAiA

′
i − 2bq ′

•

ỸiA
′
i

)

= cb + b ′
(
1
n

n∑
i=1

AiA
′
i ⊗ q ′diag

(
wi

)
q

)
b

+ 2b ′vec
1
n

n∑
i=1

(
q ′diag

(
wi

)
UAiA

′
i − q ′w ′

ixiAiA
′
i − q ′

•

ỸiA
′
i

)
,

where the subscript l is omitted for b, q, and U. By setting b = be ′ + b−,
the function is written in terms of only one regression coefficient b as

g ′
2 = cb + be ′

(
1
n

n∑
i=1

AiA
′
i ⊗ q ′diag

(
wi

)
q

)
eb

+ 2be ′
(
1
n

n∑
i=1

AiA
′
i ⊗ q ′diag

(
wi

)
q

)
b−

+ 2be ′vec
1
n

n∑
i=1

(
q ′diag

(
wi

)
UAiA

′
i − q ′w ′

ixiAiA
′
i − q ′

•

ỸiA
′
i

)
,

which gives the update for b as

b+ =

[
e ′
(
1
n

n∑
i=1

AiA
′
i ⊗ q ′diag

(
wi

)
q

)
e

]−1

e ′
[
vec

1
n

n∑
i=1

(
q ′w ′

ixiAiA
′
i + q ′

•

ỸiA
′
i − q ′diag

(
wi

)
UAiA

′
i

)
−

(
1
n

n∑
i=1

AiA
′
i ⊗ q ′diag

(
wi

)
q

)
b−

]
.
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Two-way model, column variable update. For the unrestricted update, we
rewrite (E.13) for one variable q using (E.25) as

g ′
2 = cq +

1
n

n∑
i=1

tr
(
b ′AiA

′
ibq

′diag
(
wi

)
q

+ 2q ′diag
(
wi

)
UAiA

′
ib− 2q ′w ′

ixiAiA
′
ib− 2q ′

•

ỸiA
′
ib

)
= cq + q ′

(
1
n

n∑
i=1

b ′AiA
′
ib⊗ diagwi

)
q

+ 2q ′vec
1
n

n∑
i=1

(
diag

(
wi

)
UAiA

′
ib−w ′

ixiAiA
′
ib−

•

ỸiA
′
ib

)
,

which provide the unrestricted update for q as

q∗ =

[
1
n

n∑
i=1

b ′AiA
′
ib⊗ diagwi

]−1

[
vec

1
n

n∑
i=1

(
w ′

ixiAiA
′
ib+

•

ỸiA
′
ib− diag

(
wi

)
UAiA

′
ib

)]
.

The restricted update for a column variable follows the same steps as for the
restricted update of a row variable (see page 186).

Three-way model, row regression coefficients update. The three-way model
(E.16) substitutingQB for X is written as

g ′
3 = cQB +

1
s

s∑
k=1

tr
(
A ′

kB
′Q ′RkQBAk − 2A ′

kB
′Q ′WkYAk

− 2A ′
kB

′Q ′
•

X̃k

)
,

which in turn is rewritten as

g ′
3 = cqb′ +

1
s

s∑
k=1

tr
(
q ′Rkqb

′AkA
′
kb+ 2q ′RkUAkA

′
kb

− 2q ′WkYAkA
′
kb− 2q ′

•

X̃kA
′
kb

)
, (E.)

whereQB is replaced with the sum of rank-one matrices as given in (E.25)
with the index l omitted. By using the equalities in (E.11) first and then setting
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b = be ′ + b−, the function is written in terms of one b only as

g ′
3 = cb + b ′

(
1
s

s∑
k=1

AkA
′
k ⊗ q ′Rkq

)
b+ 2b ′vec

1
s

s∑
k=1

q ′RkUAkA
′
k

− 2b ′vec
1
s

s∑
k=1

q ′WkYAkA
′
k − 2b ′vec

1
s

s∑
k=1

q ′
•

X̃kA
′
k

= cb + be ′
(
1
s

s∑
k=1

AkA
′
k ⊗ q ′Rkq

)
eb+ 2be ′

(
1
s

s∑
k=1

AkA
′
k ⊗ q ′Rkq

)
b−

+ 2be ′
(
1
s

s∑
k=1

q ′RkUAkA
′
k

)
− 2be ′

(
1
s

s∑
k=1

q ′WkYAkA
′
k

)

− 2be ′
(
1
s

s∑
k=1

q ′
•

X̃kA
′
k

)
,

which provides the update for b as

b+ =

[
e ′
(
1
s

s∑
k=1

AkA
′
k ⊗ q ′Rkq

)
e

]−1

[
e ′
(
1
s

s∑
k=1

q ′WkYAkA
′
k

)
+ e ′

(
1
s

s∑
k=1

q ′
•

X̃kA
′
k

)

− e ′
(
1
s

s∑
k=1

AkA
′
k ⊗ q ′Rkq

)
b− − e ′

(
1
s

s∑
k=1

q ′RkUAkA
′
k

)]
.

Note that e ′(. . .)b− is zero, and thus drops out of the equation, for diagonal
Ak’s, that is, for the identity models and the diagonal models.

Three-way model, row variable update. The unrestricted update for a row
variable q is found by first rewriting (E.26) as

g ′
3 = cqb′ + q ′

(
1
s

s∑
k=1

Rk ⊗ b ′AkA
′
kb

)
q+ 2q ′vec

1
s

s∑
k=1

RkUAkA
′
kb

− 2q ′vec
1
s

s∑
k=1

WkYAkA
′
kb− 2q ′vec

1
s

s∑
k=1

•

X̃kA
′
kb,

which gives the unrestricted update of q as

q∗ =

[
1
s

s∑
k=1

Rk ⊗ b ′AkA
′
kb

]−1

[
vec

1
s

s∑
k=1

(
WkYAkA

′
kb+

•

X̃kA
′
kb− RkUAkA

′
kb
)]

.
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Note that b ′AkA
′
kb is a scalar, so, irrespective of the model, the Kronecker

product Rk ⊗ b ′AkA
′
kb results in a diagonal matrix for which the inverse

consists of simple divisions. Then, for an update of the restricted q, we use
g ′
3 = cq + q ′Vq− 2q ′Tb = cq + q ′Vq− 2q ′Vq∗ with

V =
1
s

s∑
k=1

Rk ⊗ b ′AkA
′
kb and

T = vec
1
s

s∑
k=1

(
WkYAkA

′
k +

•

X̃kA
′
k − RkUAkA

′
k

)
,

which gives the update satisfying the constraints as (E.24). SinceV is a diagonal
matrix, standardweighted least squares procedures suffice for a transformation
of an unrestricted variable q∗ to obtain a restricted variable q+.

Computational considerations. Updates for the variablesQ and for the regres-
sion coefficients B are computed per variable h, iterating over updates q∗, q+,
and b+ until convergence is reached. For this purpose,

∑
WkYAkA

′
k and∑ •

X̃kA
′
k can be computed in advance. SinceU does not changewhile working

on variable h,
∑

RkUAkA
′
k is computed before iterations start, whereU is

computed asX−qb ′. Finally, after convergence, an update forX is computed
as X+ = U + q+b+ ′. It might happen that a monotonically transformed
variable becomes constant, i.e., q+ = c1, in which case the direction of the
variable q∗ as well as other related quantities (for example, rank-indices and
tie-blocks) are reversed, and new updates for the restricted variable q and the
regression coefficients b are computed. Optimal procedures, besides constant
transformed variables, such as minimizing the number of ties, maximizing
variable variation, minimizing loss, or maximizing the correlation between
the original and the transformed variables, are still under investigation.

Three-way model, column regression coefficients update. The update for a
column regression coefficient follows the same steps as for the update of a row
regression coefficient discussed on page 188.

Three-way model, column variable update. The update for a column variable
follows the same steps as for the update of a row variable (see page 189).

Identification considerations. In contrast with proxscal, for prefscal it is
not allowed to center the variables after updating Q and B as centering in
prefscal changes the distancesD. But sinceQB = QTT−1B = Q∗B∗, with
Q∗ = QT and B∗ = T−1B, for an arbitrary matrix T for which the inverse
exists, identification is needed for QB and satisfied by letting b ′b = p for
each row of B. The corresponding columns ofQ are adapted accordingly, so
thatQB remains the same.
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e.6 other restrictions

Other restrictions, besides coordinate and variable restrictions, are possible
for the configuration. These restrictions are on the implementation list, but
currently not available in prefscal.

The restriction that follows logically from the centroid start is the centroid
restriction. Objects from one set can be restricted to be located in the centroid
of objects from the other set, i.e., Y = M−1EX, whereM and E are defined
as before (see page 156). For example, product coordinates can be placed
in the centroid of the respondents that ranked the product highest. Using
only the closest respondents conforms to an indicator matrix E with first
choices only. Also using second or third placed respondents expands the
indicator matrix with second and third choices. Obviously, the number of
choices must be smaller than the number of products, because all products
will otherwise be placed in the same centroid, the centroid of all respondents.
It is possible to combine the centroid restriction for one set with another
restriction, coordinate or variable restriction, on the other set. The centroid
restriction is similar to the approach taken by DeSarbo and Rao to avoid
degenerate solutions.

Another restriction is the orthogonality restriction. One of the (dis)ad-
vantages of principal component analysis are the uncorrelated dimensions.
This is not true for multidimensional unfolding. To meet with this feature,
an orthogonality restriction can be placed on the configuration. Currently it
is unknown whether such a restriction will also lead to nested models, that
is, whether the two dimensions of a two-dimensional solution are identical
to the first two dimensions of a three-dimensional solution. Future research
should reveal the practical value of such a restriction.
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pre-processing
-preliminary work
-initial configuration

transformation update
-majorization vector(s)
-transformation(s)
-repeat until converged

configuration update
-common space
-space weights
for variable restrictions:
  -regression coefficients
  -variables
  -repeat until converged

post-processing
-convergence
-uniqueness
-multiple analyses
-additional analyses

results
-tables
-figures
-measures

multiple analyses

not converged
1 2 3 54

After the iterative process has stopped, unique solutions are computed for the
common space, with the space weights adapted accordingly. When multiple
unfolding analyses, for example multiple random starts, are requested, the
process returns to the pre-processing step (Technical Appendix C). Before
computing the final results (Technical Appendix G), additional analyses, for
example cluster analysis, can be performed on request to enhance the results
of the multidimensional unfolding analysis.

f.1 algorithm termination

The algorithm is terminated if any of the three following criteria is satisfied (cf.
Dennis & Schnabel, 1983, pp. 159–161). If the current p-stress value is close to
zero, i.e., σp < ε, the lower bound of the function, the problem is solved and
iterations are no longer continued. Further, if the algorithm has converged or
if it has stalled, i.e., σold

p − σnew
p � Δσp

(σold
p + σnew

p + ε)/2, or if the current
p-stress value is sufficiently small, i.e., σp < σmin

p , iterations are stopped.
Finally, to avoid an unlimited amount of computer time, an iteration limit is
imposed on the algorithm. Once the number of iterations exceeds a predefined
maximum, i.e., l > lmax, the iterations are terminated. Default specifications
for closeness (σmin

p = 0.0001), change criterion (Δσp
= 0.000001), and

maximum number of iterations (lmax = 5000) can be modified by the user.

f.2 uniqueness

An unrestricted common space has the freedom of both dilation and rotation.
For the different models, a unique orientation of the common space is given in
the next subsections. This transformation, discussed for the three-way models
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only, is needed to overcome an indeterminacy in ZAk, where Z =
[
X ′,Y ′] ′,

since there always exists a non-singular matrix T , such that ZT−1TAk, thus
providing an equally good solution with Z∗ = ZT−1 and A∗

k = TAk. The
unique orientations are also optimal for changing from a higher dimensionality
to a lower dimensionality, since the maximum variation in coordinates is
retained in the lower dimensionality. Once restrictions are involved, rotation
and dilation of the common space are not allowed, since the orientation is
then determined by the restrictions.

Identity model. The common space of the identity model may be rotated
and uniformly dilated freely. For a unique solution, the common space is
rotated to principal axes. First, an eigenvalue decomposition is computed on
the common space,

Z ′Z = VΛV ′,

whereV ′V = VV ′ = I, andΛ is a diagonal matrix with descending elements
on the diagonal. Then, the rotated common space is computed as

X+ = XV

Y+ = YV,

such that Z+ ′
Z+ = V ′Z ′ZV = V ′VΛV ′V = Λ.

Diagonal model. The three-way diagonal model has a unique orientation,
except for the uniform dilation part. Carroll and Chang (1970) suggest two
normalizations: Normalize each individual’s sum of squared scalar products,
or normalize the variance of the projections of the points on each axis. Since
prefscal does not use scalar products, the first normalization can not be used.
Instead, the normalization used in proxscal (Commandeur & Heiser, 1993;
Commandeur, 1994) is applied, where the dilated common space is computed
as

Z+ =
(
n+m

).5
Z
(
diagZ ′Z

)−.5,

meaning that diag (Z+ ′
Z+) = (n + m)I. The inverse transformation is

applied to the space weights. Further, the dimensions of the common space are
permutated depending on the sum of squared space weights per dimension,
where the largest sum-of-squares is related to the first dimension and so
on, which eventually corresponds to the second normalization suggested by
Carroll and Chang and also suggested by Gower and Hand (1996, p. 219).
These latter authors also suggest the parameterization s−1 ∑s

k=1 Ak = I.
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Full and rectangular model. The three-way full model and the rectangular
model allow for rotation and non-uniform dilation of the common space,
as long as the space weights are rotated and dilated inversely. For a unique
orientation, again, proxscal is followed (see Commandeur & Heiser, 1993;
Commandeur, 1994). Using the Cholesky decomposition Z ′Z = LL ′, the
common space is normalized by adapting the common space and the space
weights as

Z+ =
(
n+m

).5
Z
(
L ′)−1

A+
k = L ′Ak ∀ k = 1, . . . , s,

such that Z+ ′
Z+ = (n+m)I.

f.3 multiple analyses

It is possible to perform multiple unfolding analyses to address issues like
local minima or stability. Besides multiple random starts and dimensionality
reduction, which both address the issue of local minima, resampling methods
are used to evaluate the stability of the parameters of the unfolding model.

Dimensionality reduction. prefscal allows the user to specify different val-
ues for the minimum and maximum dimensionality, such that pmin < pmax.
The reduced rank dimensionality must in turn be smaller than pmin, whenever
the rectangular model is specified. When the dimensionality of the common
space is lowered, the transformed preferences need to be re-computed based
on the lower dimensionality. Since the configurations are optimal in some
sense, as described above (page 193), the first p− 1 (most important) dimen-
sions are used for this purpose. The initial configuration and the space weights
for the p− 1 analysis also use these optimal dimensions, which illustrates the
way local minima are avoided. The results of the lowest dimensionality speci-
fied are provided afterwards. Dimensionality reduction in combination with
restrictions on the common space is not allowed. If dimensionality reduction
is desired anyway, it can be performed manually.

Multiple random starts. The user can specify the number of random starts, as
well as the seed for the random number generator (see Technical Appendix C,
pre-processing, page 155). The seed can be used to replicate the analyses with
exactly the same numbers. From all random starts, the best solution is chosen,
and replicated for output. The user specifies one of the following criteria by
which the best solution is determined: p-stress, daf, vaf, rho, and kappa.
These criteria are discussed in Technical Appendix G, results. Analyzing the
statistics of multiple random starts provides insight in the reliability of the
results, especially concerning the existence of local minima.
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Bootstrap. The bootstrap (Efron, 1982) is used to determine the reliability or
stability of the unfolding solution. Heiser and Meulman (1983a) andWeinberg
et al. (1984) already discuss the advantages of the bootstrap in case of an
unknown distribution function and a complicated loss function as in the case
of mds and mdu models. Assuming a distribution function, as in probabilistic
models, often provides a too optimistic stability picture (Weinberg et al., 1984).
Using a bootstrap procedure, the stability of the solution is measured in terms
of mean squared error, bias, and variance of the parameters. Following Heiser
and de Leeuw (1979a) and van de Velden et al. (2010), the bootstrap procedure
consists of the following steps:

Step 1. Compute unfolding solution and keep results for further reference;
Step 2. Draw bootstrap sample of n rows from original preferences Δ;
Step 3. Compute unfolding solution for bootstrap sample;
Step 4. Use Procrustes to match bootstrap to original configuration;
Step 5. Save intermediate, augmented bootstrap sample results;
Step 6. Repeat Step 2–5 R times;
Step 7. Compute measures based on bootstrap sample results.

The unfolding analysis from Step 3 can start with any initial configuration, but
in order to avoid local minima it is started with the final configuration from
Step 1 (see Weinberg et al., 1984, p. 483). The bootstrap used here is a balanced
bootstrap (see, for example, Davison, Hinkley, & Schechtman, 1986; Hinkley,
1988). This means that although the rows are randomly drawn without re-
placement, and within one bootstrap sample the rows are probably unequally
distributed, after drawing R bootstrap samples, each row is drawn R times.
Obviously, each column is also used (but not drawn) R times. The Procrustes
analysis (see page 159) from Step 4 only matches the column objects of the
bootstrap and original configuration, since these points are always present in
each bootstrap sample analysis. The number of bootstrap replications must be
large (R > 500), due to the interest in variation and the tail of the distribution.
The jackknife (another resampling technique) uses much less computation,
but relies on a linear approximation of the statistic for the estimation of the
accompanying standard error (Efron & Gong, 1983). The results of the R boot-
strap analyses are used to compute three measures to assess stability: Bias,
variance, and mean squared error. All measures are computed for the row and
column coordinates separately. The squared bias for row object i is defined as

bias2xi
=
(
xi − xbi

) ′(
xi − xbi

)
, (F.)

where xi is the original coordinate of row object i and xbi = R−1 ∑
r x

b
ir is

the average over R bootstrap replications of the coordinate of row object i.
The squared bias is thus equal to the squared distance between the original
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coordinate xi and the average of the bootstrap coordinates xbi . The variance
(although divided by R instead of R− 1) for row object i is defined as

varxi
=

1
R

R∑
r=1

(
xbir − xbi

) ′(
xbir − xbi

)
, (F.)

which is the average of the squared distances between the bootstrap coordi-
nates xbir and the bootstrap average xbi . The sum of (F.1) and (F.2) defines the
mean squared error for row object i as

msexi
= bias2xi

+ varxi

=
(
xi − xbi

) ′(
xi − xbi

)
+

1
R

R∑
r=1

(
xbir − xbi

) ′(
xbir − xbi

)
=

1
R

R∑
r=1

(
xbir − xi

) ′(
xbir − xi

)
, (F.)

which is equal to the average of the squared distances between the bootstrap
coordinates xbir and the original coordinate xi.

Heiser and Meulman (1983a) compare mds models on overall stability
using the within and total ratio sum-of-squares, which is defined as

stab =

∑
i

∑
r

(
xbir − xbi

) ′(
xbir − xbi

)∑
i

∑
r

(
xbir − xb

) ′(
xbir − xb

) ,
where xb = (nR)−1 ∑

i

∑
r x

b
ir. In Heiser and Meulman (1983a), xb is as-

sumed to be zero. Also in that publication, a clever procedure is used to obtain
a plot of the confidence regions. The bootstrap distances are first subjected
to an indscal analysis (Pruzansky, 1975), of which the results are used as a
target for an orthogonal Procrustes rotation (Cliff, 1966).

Instead, van de Velden et al., working on mdu models, use the average of
(F.3) over row coordinates and column coordinates separately to ensure that
both sets have an equal share in the assessment of stability, thus avoiding that
the row objects, which are often in the majority, dominate the mse measure.
The normalization establishes a comparison with the variation of the original
configuration. The stability measure of van de Velden et al. is now given as
the relative mean squared error,

rel-mse =
1
2

∑n
i=1

∑R
r=1
(
xbir − xi

) ′(
xbir − xi

)
R
∑n

i=1
(
xi − x

) ′(
xi − x

)
+
1
2

∑m
j=1

∑R
r=1
(
yb
jr − yj

) ′(
yb
jr − yj

)
R
∑m

j=1
(
yj − y

) ′(
yj − y

) , (F.)

197



post-processing

where x = n−1 ∑
i xi and y = m−1 ∑

j yj, which are assumed zero in van
de Velden et al. (2010). The rel-mse measure equals 1.0 when the bootstrap
variation around the unfolding solution is equal to the variation of the original
solution. Smaller values are obviously more desirable, whereas solutions with
values greater than 1.0 demonstrate larger bias and/or higher variation.

An optimal solution, concerning the penalty parameters, can be found
by alternatingly running the bootstrap procedure for different values of one
parameter, while fixing the other parameter, using the optimal parameter
values in subsequent runs. Subsequent runsmight employ smaller intervals for
the trial values. Usually, after 2-4 cycles the procedure converges. Experiments
show that, starting with λ = 0.5 andω∗ = 1.0 and varyingω∗ by doubling or
halving its value repeatedly (1.0, 2.0, 0.5, 4.0, 0.25, . . .), this procedure provides
encouraging results.

Other measures, comparing the inter-set variability of the bootstrap coor-
dinates, are currently being developed. An adequate unfolding solution should
after all exhibit non-overlapping intra-set bootstrap clouds (a cloud consists
of R bootstrap points for one object only) to display individual differences for
row and column objects and overlapping inter-set bootstrap clouds to mark
the relations between row and columns objects.

Permutation test. Following Manly (1991), ter Braak (1992b), ter Braak and
Prentice (1988), ter Braak and Šmilauer (1998), and Lepš and Šmilauer (1999),
the permutation test is used to determine the significance level of the cor-
relation rqp between the independent variable q and the projection of the
coordinates (onto the variable’s direction) p. The permutation procedure
consists of the following steps:

Step 1. Compute restricted unfolding solution and save results;
Step 2. Permutate rows of independent variables matrix E;
Step 3. Compute restricted unfolding solution with permutated E;
Step 4. Save intermediate results, i.e., correlations rpqp;
Step 5. Repeat Step 2–4 R times;
Step 6. Compute significance level p of rqp by using (F.5).

The procedure preserves the correlational structure of the variables, the pref-
erences remain unchanged, but the relation between the variables and the
preferences is altered. The null hypothesis is that the coordinates are inde-
pendent of the variables. If that is the case, the distribution of the correlation
structure remain the same in the original data and in the permutated data.
The significance level p from Step 6 is determined by

p =
1+ #

(
r
p
qp > rqp

)
1+ R

or p =
1+ #

(
|r
p
qp| > |rqp|

)
1+ R

, (F.)

198



f.4 additional analyses

for a one-tailed test or a two-tailed test respectively. The estimate of the p-value
is improved by adding one extra result more extreme than the observed results.
Other evaluations are also possible through a randomization or permutation
test (see, for example, Wakeling, Raats, & MacFie, 1992). Fit statistics, for
example, can be tested against the randomized data statistics using a Student’s
t-test (Wemelsfelder, Hunter, Mendl, & Lawrence, 2000). Note that exact
permutation tests require all possible permutations, which for the current
case entails n!− 1 possibilities. Random permutation tests use only a small
portion of the possible replications, but require a mere 500 re-arrangements
for a reliable estimate of the significance level, and even more than 10000
replications for accurate results.

f.4 additional analyses

After termination of the algorithm, determination of a unique solution, and,
possibly, multiple analyses, additional analyses can be performed on request
of the user for clarification and easier interpretation of the basic results.

Property fitting. Independent variables can be used to facilitate the interpre-
tation of the unfolding solution, i.e., the common space. In the following, the
variables are discussed in relation to the row objects, but the same reasoning
can be applied to the variables in relation to the column objects. A proce-
dure based on linear regression (J. E. Miller, Shepard, & Chang, 1964) and
a procedure based on optimizing an index of nonlinear correlation (Carroll
& Chang, 1964a, 1964b) are implemented in the computer program profit
(Chang & Carroll, 1968) to perform property fitting. prefscal only uses the
first procedure that minimizes

f
(
Q,A

)
= tr

(
Q− XA

) ′(
Q− XA

)
, (F.)

whereQ is a matrix containing h independent variables, the regression coeffi-
cientsA are the so-called direction cosines (Chang & Carroll, 1968), and X is
defined as before. The projection of the coordinates onto the directions of the
variables are thus defined by P = XA. A solution for the direction coefficients
A is given as

A =
(
X ′X

)−1
X ′Q, (F.)

which is computed in alteration with a transformation update of the vari-
ablesQ. This also specifies the difference with profit, which does not allow
transformations of the independent variables.

By now, there are four (two times two) options for the independent vari-
ables of either set (rows or columns): The variables can be used to restrict the
common space (direct, as compared to direct gradient analysis, see ter Braak
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& Prentice, 1988) or the variables can be used afterwards, after the common
space has been determined and is considered fixed (indirect, as compared to
indirect gradient analysis, see ter Braak & Prentice, 1988). The other options
are determined by what is regressed on what.

On the one hand, the variables used to restrict one set of coordinates as
described in Technical Appendix E, configuration update, can be used to
find optimal locations for the objects and thus the coordinates X are regressed
on the variablesQ, which essentially minimizes

f
(
Q,B

)
= tr

(
X−QB

) ′(
X−QB

)
,

providing a solution for the regression coefficients B as

B =
(
Q ′Q

)−1
Q ′X. (F.)

Gower andHand (1996) refer to this process of finding a position in the display
as interpolation.

On the other hand, optimal quantifications for the original variables are
found by regressing the variables Q on the coordinates X as in (F.6) with
the solution for the direction coefficients A given in (F.7), a process called
prediction by Gower and Hand (1996). A summary of the options is given in
Table F.1.

Restricting the coordinates X asQB and computing the direction coeffi-
cientsA with fixed X andQ shows that the relation betweenA and B is given
asAB = I since

A = (X ′X)−1X ′Q = (B ′Q ′QB)−1B ′Q ′Q.

Depending on the researcher’s intentions, one should use eitherA or B with
corresponding optimally transformed variablesQ. Suppose a location xn+1 is

Table F.1 Independent variables options summary∗ .

Variables

Goal Direct (Restriction) Indirect

Optimal estimate location given quantification(s) estimate location given quantification(s)
Locations min tr

(
X−QB

) ′(
X−QB

)
min tr

(
X−QB

) ′(
X−QB

)
(Interpolation) setX = QB

useB =
(
Q ′Q

)−1
Q ′X useB =

(
Q ′Q

)−1
Q ′X

Optimal estimate quantification(s) given location estimate quantification(s) given location
Quantifications min tr

(
X−QB

) ′(
X−QB

)
min tr

(
Q−XA

) ′(
Q−XA

)
(Prediction) setX = QB

useA =
(
X ′X

)−1
X ′Q useA =

(
X ′X

)−1
X ′Q

(see Meulman & Heiser, 1984)

∗Options are provided for the row objects only. Transfer to the columns objects is straightforward.
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Figure F.1 Interpolation: Finding location xn+1 based on variables values en+1.
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Figure F.2 Prediction: Finding quantifications en+1 based on location xn+1.

searched for based on additional independent variables values en+1 (interpo-
lation). In this case, the transformed quantifications qn+1 are determined first,
based on the known transformation functionsq = f(e), as shown in Figure F.1
(left-hand panels). We then use the corresponding regression coefficients B
to compute the location as xn+1 = qn+1B (see Figure F.1, right-hand panel,
the interpolative biplot, Gower & Hand, 1996). Whether Q and B are the
result of a restricted or an unrestricted procedure is a matter of secondary
concern. Instead, suppose we want to find quantifications en+1 based on an
additional location xn+1 (prediction). Then, we first project the coordinates
xn+1 onto the direction of the independent variablesQ to obtain the projected
values pn+1 (Figure F.2, left-hand panel, the predictive biplot, Gower & Hand,
1996). Setting qn+1 = pn+1 and using the known transformation functions
q = f(e), original quantifications en+1 are found by back-transformation
(see Figure F.2, right-hand panels), i.e., e = f−1(q) (see Gower & Hand, 1996;
Gower et al., 1999).

Another method to find quantifications en+1 based on (optimal) location
xn+1 is given by Danzart, Sieffermann, and Delarue (2004) and Blumenthal
(2004). Estimating xn+1 based on three close and surrounding points xi,
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xj, and xk as xn+1 = wixi + wjxj + wkxk, where wi + wj + wk = 1,
provides weightsw that can be used to determine theweighted averageen+1 =

wiei+wjej+wkek. A solution for theweights is given byw =
(
G ′G

)−1
G ′h,

whereG = [(xi, xj, xk), 1] ′ and h = [xn+1, 1] ′. This procedure, the barycenter
method, is especially useful when products (locations) do not consist of actual
sensory properties (quantifications), but the (optimal) product is composed of
a mixture of products, such as, for example, blends of whiskies (Lee, Paterson,
Piggott, & Richardson, 2001) or Muscadine juices (Meullenet et al., 2008).

References on the topics of projection, prediction, interpolation, and the
interpretation of variables in configurations are Gower and Hand (1996) and
Gower et al. (1999) in the context of biplots and de Leeuw and Heiser (1980),
Heiser (1981), de Leeuw andHeiser (1982), Meulman andHeiser (1984), and ter
Braak (1992a) in the context of multidimensional scaling. Especially, Meulman
and Heiser (1984) is interesting in our context, since they show that despite op-
timizing the relationX = QB, the relationQ = XA improves simultaneously.
The argumentation is as follows. When tr

(
U − QB

) ′(
U − QB

)
is mini-

mized with respect toB, whereU is the unrestricted configuration, this results
in the restricted configuration R = QB with projector P = Q(Q ′Q)−1Q ′

(symmetric and idempotent) linking the restricted and the unrestricted con-
figurations as R = PU. Meulman and Heiser now state that for the restricted
configuration R, there are projections on some directions A that are a bet-
ter approximations of the independent variables than the projections of the
unrestricted configuration on some directionsA, as, with respect toA,

min tr
(
Q−UA

) ′(
Q−UA

)
� min tr

(
Q−UA

) ′
P
(
Q−UA

)
= min tr

(
Q− PUA

) ′(
Q− PUA

)
= min tr

(
Q− RA

) ′(
Q− RA

)
,

which means that although restricted unfolding restricts the configuration to
be a linear combination of variables as X = QB, at the same time the configu-
ration holds improved projections of points onto the variables directions as
Q = XA.

Probabilistic distance clustering. A probabilistic distance clustering analy-
sis is performed on the row coordinates X to facilitate the interpretation of
the configuration. The following is based on Ben-Israel and Iyigun (2007)
and Iyigun and Ben-Israel (2008). After computing initial cluster centers
ck ∀ k = 1, . . . ,K, equally spaced and diagonal in the configuration as ckp =

argmin (xp)+k(argmax (xp)−argmin (xp))/(k+1), four steps are performed
until convergence:

Step 1. Compute distances d(xi, ck) for all i, k;
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Step 2. Update cluster sizes q+
k according to (F.9);

Step 3. Update the cluster centers c+k according to (F.11);
Step 4. Check for convergence and if some predefined termination criterion

is satisfied, continue; otherwise, go to Step 1.

It might occur that a row object coincides with a cluster center, in which case
the distance between the row object and the cluster center is set to an arbitrary
small value ε. The cluster sizes are updated in Step 2 as

q+
k = n

(
n∑
i=1

d
(
xi, ck

)
p2
k

(
xi
)).5[ K∑

l=1

(
n∑
i=1

d
(
xi, cl

)
p2
l

(
xi
)).5]−1

, (F.)

where the membership probability for cluster k of row object i is defined as

pk

(
xi
)
=

[
K∑
j=1

d
(
xi, ck

)
/qk

d
(
xi, cj

)
/qj

]−1

, (F.)

withqk andqj specifying the current size of cluster k and j, respectively. When
the cluster sizes are fixed, the cluster sizes remain untouched, obviously. The
cluster centers ck from Step 3 are updated by

c+k =

n∑
i=1

p2
k

(
xi
)
/d
(
xi, ck

)∑n
t=1 p

2
k

(
xt
)
/d
(
xt, ck

)xi, (F.)

with updated membership probabilities pk

(
xi
)
and pk

(
xt
)
. Convergence is

established when either the sum of the distances between cluster centers of
two consecutive iterations is smaller than some critical value, or when the
number of iterations exceeds some maximum.

An adjusted Calinsky-Harabasz index (original index from Calinski &
Harabasz, 1974) is used to determine the optimal number of clusters, although
substantive interpretation of the clusters must not be overlooked. The adjusted
index is computed as

CHadjusted =
(n− K)

∑K
k=1 d

(
ck, c

)
(K− 1)

∑n
i=1 d

(
xi, cmax(i)

) , (F.)

where c is the median center of the cluster centers ck and cmax(i) specifies the
cluster with maximum probability for row object i.

Analysis of angular variation. The dimension weights of the non-identity
models are often misinterpreted (Takane et al., 1977; MacCallum, 1977). The
actual values of the weights must not be interpreted as points in space, but
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as endpoints of vectors, of which the angles are interpretable. Directional
statistics are thus needed to further (correctly) analyze the dimension weights
(Heiser & Meulman, 1983a).

An analysis of angular variation (anava) splits the total variation of the
dimension weights (diagonal, full, and rectangular models only) in a between
groups and a within groups part. The resulting F-statistic is too optimistic
because the weights are not independent, but only conditional independent
upon the given (unchanging) configuration. Nevertheless, an anava is a
good starting point to facilitate the interpretation of the unfolding results, as
advised by Shepard (1972). Following Schiffman et al. (1981), the following
steps are taken to perform an anava in case of a three-way non-identity model.
Transfer to the two-way model is straightforward and therefore omitted. First,
the dimension weights are normalized such that the weights have equal length,
that is,

wkp =
akpp(∑pmin

t=1 a
2
ktt

).5 , (F.)

with akpp as the dimension weight for source k and dimension p. Now, the
weights have length 1 from the origin for each k. The mean direction per
dimension is given as the average,mp = 1

s

∑s
k=1 wkp, and themean resultant

length is given as R = (
∑pmin

t=1 m
2
t)

1/2. A statistic that indicates the degree of
variation in dimension weights, the index of angular variation (Mardia, 1972),
is the counterpart of the mean resultant length, i.e., S = 1− R. The index of
angular variation can be divided into

sS =

(
s−

s∑
t=1

gtRt

)
+

(
s∑

t=1
gtRt − R

)
,

where R = sR and gt specifies group membership (0/1). The analysis of
angular variation results are given in Table F.2.

The index of angular variation ranges from 0 to 1, but for non-negative
weights, which is the case here, the maximum is 1− (1/pmin)

1/2. Computing
S∗ = S/(1− (1/pmin)

1/2) sets the range for S∗ to [0, 1], with values close to 0
indicating no or very little variation, and values close to 1 indication much
variation in dimension weight directions. Mardia (1972) proposes to transform

Table F.2 Analysis of angular variation table.

Source SS DF MS F

Between-Groups
∑s

t=1 gtRt − R (pmin − 1)(q− 1) SSb/dfb MSb/MSw
Within-Groups s−

∑s
t=1 gtRt (pmin − 1)(s− q) SSw/dfw

Total m− R (pmin − 1)(s− 1)
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S∗ such that the range becomes [0,∞], like an ordinary standard deviation.
The resulting circular standard deviation index is given by

sw =
√
−2 log

(
1− S∗

)
.

Additionally, the simplicity index is computed, analogous to the character-
istic of a simple structure matrix in factor analysis (Thurstone, 1947, p. 335),
and named after Kaiser (1958), as he mentions the definition of the simplicity of
factorial composition of a test or multiple tests. The simplicity index is identical
to the weirdness index of F. W. Young (1982) (see also F. W. Young & Harris,
1997). The simplicity index has a value of 0 when a vector of dimension weights
is proportional to the average vector, and a value of 1 for an extremely deviating
vector. The value of 1 is only reached when one of the dimension weights is
zero, and thus coincides with a simple structure as described by Thurstone
(1947). The simplicity index is computed as follows: First, the weights are
normalized so that the average vector has a 45◦ angle,w ′

kp = akpp/
∑

k akpp,
after which the normalized weights are set to unit length as in (F.13). The differ-
ence in angles can be defined as cos−1 p−.5

min
∑

p wkp and finally, the simplicity
index is given as a value between 0 and 1 by

w̃k =
cos−1(p−.5

min
∑pmin

p=1 wkp

)
cos−1 p−.5

min
. (F.)

Finally, dimension importance is determined as the explained sum-of-
squares of the dimension weights,

Ip =

∑s
k=1 a

2
kpp∑s

k=1
∑pmin

t=1 a
2
ktt

. (F.)

It is also possible to perform a Watson-Williams test (Watson &Williams,
1956), which corresponds with an analysis of angular variation (Schiffman
et al., 1981), although nonparametric tests (Wheeler & Watson, 1964, only
for two dimensions) seem more appropriate, due to the problems with the
distributional assumptions (dependence among angles) in the analysis of
angular variation. Jones (1983) states that linear statistics can also be used,
whereas Coxon and Jones (1974, 1978) use the logs of the within-subject ratio
of the dimension weights for this purpose. Other references concerning this
topic are Batschelet (1981), Bijleveld and Commandeur (1987), and van der
Kloot, Bijleveld, and Commandeur (1990).
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The results of an unfolding analysis consists of data and measures presented
in tables and figures. These results are discussed here, with special attention
for fit and degeneracy measures.

g.1 table output

Initial results. Input data, such as the original preferences Δ and the pref-
erence weights W, fixed coordinates and independent variables, are given
for verification. The results of the pre-processing, discussed in Technical Ap-
pendix C, pre-processing, which determine the input for themain algorithm,
are: The initially transformed preferences Γ and the initial configurations X0
and Y0. Additionally, the eigenvalues resulting from initial configuration com-
putations are given, as well as the additive constant when computed in advance
of a classical scaling, that is, for the triangle and the spearman starts, and the
dilation factor which adapts the configuration to match the preferences.

Intermediate results. Themain algorithm iterates over updates of the trans-
formed preferences Γ and the configurations X and Y , restricted or not, and
the space weights A. After each iteration, the iteration history is updated,
which displays: Iteration number, number of inner iterations (transformation
update), p-stress function value, difference with previous p-stress function
value, and the decomposition of p-stress in (B.1) and (B.2), σ2

n(γ,d) and
μ(γ), respectively.

For the optionmultiple random starts, the following results of each analysis
are displayed: The number of the start, the initial seed for the start, and some fit
and variation measures. Additionally, the initial seed (for the random number
generator) is given, as well as the multiple random start criterion, which can
either be p-stress, daf, vaf, rho, or kappa, all to be discussed hereafter.
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Fit-, variation-, and degeneracy measures. Several measures have been sug-
gested to assess the quality of the unfolding solution. Every unfolding program
specifies its own measures. For prefscal, we attempt to provide all available
and sensible measures. These measures will be discussed after the discussion
of the figure output. penalized stress and raw stress decompositions per
observation or per partition are discussed here.

Depending on the conditionality of the model, penalized stress is de-
composed in a stress and a penalty part. Both parts, (B.1) and (B.2), are
given for each partition, that is, per row (row-conditional), per source (matrix-
conditional), or for all observations simultaneously (unconditional). Addi-
tionally, raw stress is decomposed for each cell of Γ andD. Per row and per
column, the averages and standard deviations are given.

Fit measures per partition are also provided, one for each measurement
(transformation) level: ssaf for ratio transformed preferences, vaf for interval
transformed preferences, and tau for monotonically transformed preferences.
Finally, a simple outlier analysis provides z-scores and Mahalanobis distances
per row.

Configurations. The main result of the unfolding analysis is the common
spaceX,Y . The correlations between the dimensions are displayed for each set,
since the dimensions of the common space are not necessarily orthogonal. For
models not equal to the identity model, the individual spaces, xi,Yi for the
two-way models or Xk,Yk for the three-way models, and the space weightsA
are provided in the output. The distances d(X,Y) and d(xi,Yi) or d(Xk,Yk)

are given for all configurations, upon request.

Space weights. Irrespective of the orientation or size of the common space
and the space weights, the space weights are additionally decomposed for the
full and rectangularmodels for both two-way and three-waymodels. Hereafter,
only the decompositions for the three-way model are given for one source k
at the time. Transfer to the two-way model is straightforward and therefore
omitted.

For the decomposition of the space weights, the approach of de Leeuw and
Heiser is adapted, as described in Commandeur (1994). After computing the
singular-value decompositionAk = PkΦkQ

′
k, the space weights are divided

into a rotation matrix Pk and a dimension weights matrix Φk. Since the
individual coordinate matrices Xk and Yk are post-multiplied withQk, the
common space remains unaltered as

ZkQk = ZAkQk = ZPkΦkQ
′
kQk = ZPkΦk,

where the complete individual configuration is specified asZk = [X ′
k,Y ′

k]
′ and

the adapted individual spaces and space weights are defined as X∗
k = XkQk,

Y∗
k = YkQk, andA∗

k = PkΦk.
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g.1 table output

Tucker (1972) andHarshman (1972) use the decompositionAk = SkCkS
′
k,

where Sk is a diagonal matrix andCk is a symmetric matrix with the diagonal
elements equal to unity. In this way, Sk can be interpreted as a matrix with
standard deviations and Ck as a correlation matrix. Computations are as
follows for each source k: First computeHk = AkA

′
k and set the variances as

S2
k = diagHk. The correlation matrix is now set as Rk = S−1

k HkS
−1
k .

Thedifference between the twoprocedures is that the procedure of de Leeuw
and Heiser first rotates (orthogonally) and then stretches the dimensions,
while the procedure of Tucker and Harshman first stretches and then rotates
(obliquely) the dimensions (Borg & Groenen, 2005). Furthermore, the decom-
position of de Leeuw and Heiser coincides with the decomposition suggested
by Carroll and Chang (1972) and described in Carroll and Wish (1974).

Analysis of angular variation. For the dimension weights, we provide an
analysis of angular variation table as described on page 204, together with the
mean resultant length, the index of angular variation, and the circular standard
deviation index. Finally, the simplicity index (F.14) is given per row (two-way
model) or per source (three-way model), and the dimension importance (F.15)
per dimension.

Transformations. The optimally transformed preferences Γ are given and, in
case of linear transformations, the regression coefficients are provided too.

Independent variables. For both sets of objects, row and column objects,
independent variables can be specified, either as a restriction (direct) or not
(indirect). The output is the same for both sets and consists of all statistics
described hereafter.

The optimally transformed variablesQ are displayed in combination with
corresponding regressions coefficients B. These latter coefficients are the un-
standardized regression coefficients (F.8), also called the canonical coefficients
(ter Braak, 1986). The standardized regression coefficients are equal to the cor-
relations between the variablesQ and the axes of the common space, i.e., the
columns ofX, also known as intra-set correlations r(Q,X). These correlations
are displayed as directions in the configuration by ter Braak (1992a) due to the
strength interpretation of the values, but ter Braak agrees that the direction
coefficients (F.7) leading to optimal projected values makes theoretical more
sense to display.

The direction coefficientsA are given in combination with the projections
P = XA, and the transformed independent variablesQ. The squared corre-
lation between the projection p and the variable q can be interpreted as the
variance accounted for (vaf) by this variable. The average over direct and
indirect variables separately indicates the fit achieved by the respective (group
of) variables.
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Clustering. The additional analysis distance clustering gives information
about the number of clusters and the corresponding adjustedCalinsky-Harabasz
index (F.12), as well as the resulting optimal number of clusters.

For the optimal number of clusters, or for the user-specified number of
clusters, the distances d(xi, ck) are given, and the probabilities per row and
per cluster pk(xi), according to (F.10), as well as the share of choices based
on the distances and based on the probabilities and the average probabilities
and distances for each cluster. The share of choices gives the proportion of
row objects that have either the highest probability pk(xi) for cluster k or the
smallest distance d(xi, ck) to cluster center ck for each cluster k. The average
probabilities pk and distances d(ck) for each cluster k are computed as

pk = n−1
n∑
i=1

pk(xi)

dk = n−1
k

n∑
i=1

wikd(xi, ck),

where nk is the number of row objects with maximum probability for cluster
k and wik = 1 for the cluster with maximum probability for object i and
wik = 0 otherwise. We also provide the cluster centers ck as given by (F.11)
for each cluster k, the average scores of the column objects per cluster,

δjk =

∑n
i=1 wikδij

pk

,

and the share proportion of the column objects per cluster,

sjk =

∑n
i=1 sijk

pk

,

where sjk = 1 for k = max(i) and j = min(i), sjk = 0 otherwise. Here,
j = min(i) specifies the column object that is closest for object i. The values
for sjk provide information about which product coincides with which cluster.

Bootstrap. It is commonly known that resampling methods in general, and
bootstrap procedures in particular, provide a profusion of information which
must be carefully diminished to result in conveniently arranged tables and
measures. After running the bootstrap procedure in prefscal, tables are
provided for row objects and column object separately, for squared bias (F.1),
variance (F.2), and mean squared error (F.3). The aggregated measures are also
broken down for the row objects and the column objects separately. Finally,
stability measures are provided as described in Technical Appendix F, post-
processing, page 197.
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Permutation. The permutation procedure determines the significance levels
of the correlations rQP. The output is arranged per variable and consists of
the variable number, the true (non-permutated) value of the correlation, the
minimum, mean, and maximum value over permutations, and the p-value,
following (F.5).

g.2 figure output

Whether it was Fred R. Barnard who used it in an article to promote the
use of images in advertisements “One Look is Worth A Thousand Words”
(Barnard, 1921) or “One Picture is Worth Ten Thousand Words” (Barnard,
1927) and labeled it a Chinese proverb, soon to be attributed to Confucius,
or whether it was the Russian writer Ivan Turgenef, who wrote: “A picture
shows me at a glance what it takes dozens of pages of a book to expound”
(Turgenef, 1867) or whether it was Napoleon Bonaparte who said: “Un bon
croquis vaut mieux qu’un long discours” (“a good sketch is better than a
long speech”) (source: wikipedia), fact remains that a configuration or a
transformation plot is appealing, comprehensive, and easily interpretable,
even for non-mathematicians.

Scree plot. A scree plot displays functions values, or derivatives thereof,
against the dimensionality of the model. This plot can only be produced
when the maximum dimensionality differs from the minimum dimensionality,
that is, when pmax > pmin. The scree plot allows one to visually inspect the
optimal model dimensionality. The optimal dimensionality occurs at the
number of dimensions indicated by the elbow. This criterion differs from the
criterion used in factor analysis, where the number before the elbow indicates
the number of latent factors (Cattell, 1966).

Configurations. A configuration is a scatter plot with markers and/or colors
indicating the row objects, the column objects, or both row- and columns
objects. Besides the common space, a plot representing the row object coordi-
nates X and the column object coordinates Y , configurations are plotted for
the initial configuration X0,Y0, the individual spaces for the two-way models
xi,Yi and for the three-way models Xk,Yk and a plot for the dimensions
weights. Plots for the individual spaces and the dimension weights are omitted
for the identity model. Note that it is of the utmost importance that the aspect
ratio of these configurations is equal to 1.0. Changing the aspect ratio changes
the distances and a different (non-optimal) solution remains. Unfortunate
examples can be found in the results of ibm spss alscal. The independent
variables, when present, are plotted as lines, solid lines for numerical vari-
ables and dashed lines for categorical variables, with originally valued markers
calibrated on the lines.
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base largest area

point removed

hull

next hull

Figure G.1 Peeling the hull based on iterative polygon area minimization.

Transformation plots. The transformation plots give the original preferences
on the horizontal axes and the optimally transformed preferences on the
vertical axes. Depending on the conditionality of the unfoldingmodel, separate
plots are provided for the rows or sources (matrices).

Fit and Residual plots. The fit plots and the residual plots provide the same
information but in a different form. A fit plot gives the optimally transformed
preferences on the horizontal axis and the distances on the vertical axis. A
good fit is thus provided by a 45◦ line from the origin in the lower left-hand
corner to the upper right-hand corner. A residual plot gives the optimally
transformed preferences on the horizontal axis and the difference between the
optimally transformed preferences and the distances on the vertical axis. Here,
a good fit is recognized by a horizontal line starting from the origin.

Independent variable plots. For the independent variables, transformation
and regression plots are produced for each variable. A transformation plot
gives the original independent variable e on the horizontal axis and the opti-
mally transformed independent variable q on the vertical axis. A regression
plot gives either X or Q on the horizontal axis and X = QB or P = XA,
respectively, on the vertical axis. The former regression plot is only provided
for the unrestricted case.

Nonparametric confidence intervals. Nonparametric (emphasizing the distri-
bution free least squares approach) confidence intervals are plotted to facilitate
the interpretation of the unfolding configuration. The computation of a convex
hull is based on the procedure suggested by P. J. Green and Silverman (1979)
and executed with the envelope code by A. Miller (1987). Peeling the hull one
point at the time is based on the size of the area of the polygon, computed by
adding all triangle areas from one base point (see Figure G.1, left-hand panel)
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g.3 fit measures

The point removed in subsequent steps is the point that minimizes the area
of the polygon (see Figure G.1, right-hand panel). The process is repeated
until the desired percentage of points is reached. The confidence intervals
are plotted on request of the user, after providing one or more vectors with
zero’s (not included in the hull computations) and ones (included in the hull
computations) to indicate the group of row objects to be taken into account
(for example, husbands or wives in the breakfast data), or the intervals are
plotted to show the clusters after the distance clustering analysis. The perunage
(percentage/100) or proportion (default equals one) for the interval can be
provided by the user.

g.3 fit measures

Fit measures comparing γ and d

prefscal optimizes a loss function that compares the transformed preferences
γ and the distances d. Other loss functions are minimized by other programs
and prefscal provides as many loss functions as possible. These functions
are averaged over partitions (Kruskal & Carroll, 1969), so for clarity only the
unconditional (two-way model) version is provided.

For an objective comparison between γ and d, where γmight also be the
distance vector of another configuration when comparing configurations, or
d is the result of a fixed configuration from another analysis, note that the
optimal dilation factor α for the distances is found by minimizing the loss
function with respect to α. The optimal values for α are provided for each loss
function.

r-stress. raw stress is defined as the weighted sum of squared differences
between γ and d:

σr = ‖γ− d‖2W = γ ′Wγ+ d ′Wd− 2γ ′Wd (G.)

Despite the optimal dilation factor α = (γ ′Wd)/(d ′Wd) and taking the
average over all difference, the magnitude of r-stress is scale-dependent
and therefore not shown in the output, but mentioned here because of the
important position among other stress functions.

n-stress. normalized raw stress is defined as raw stress divided by
(normalized with) the weighted sum of squared transformed preferences γ:

σn =
‖γ− d‖2W
‖γ‖2W

=
γ ′Wγ+ d ′Wd− 2γ ′Wd

γ ′Wγ
.
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n-stress is the function that is used by ibm spss proxscal (Commandeur
& Heiser, 1993; Busing, Commandeur, & Heiser, 1997; Meulman et al., 1999).
Due to explicit normalization in proxscal by letting γ ′Wγ = 1, n-stress
is equivalent to r-stress. In 1977, de Leeuw and Heiser proved, that for a
local minimum of n-stress, it holds that d ′Wd = γ ′Wd. Therefore, after
convergence, α = (γ ′Wd)/(d ′Wd) = 1. Substituting α (r-stress) in (G.1)
and dividing both sides by γ ′Wγ gives

σr(α)

γ ′Wγ
+

(γ ′Wd)2

(d ′Wd)(γ ′Wγ)
= 1, (G.)

which links normalized raw stress with dispersion accounted for (daf)
(after Commandeur & Heiser, 1993, p. 70). Using rank images, n-stress is
equivalent to the alienation coefficient K (see phi).

stress-1. The square of Kruskal’s stress-1 (Kruskal & Carroll, 1969) is de-
fined as the sum of squared differences between γ and d, divided by the sum
of squared distances d,

σ2
1 =

‖γ− d‖2W
‖d‖2W

=
γ ′Wγ+ d ′Wd− 2γ ′Wd

d ′Wd
. (G.)

Substituting the optimal dilation factor α = (γ ′Wγ)/(γ ′Wd) in (G.3) and
using (G.2) shows that, in a local minimum, the square of Kruskal’s stress-1
is equal to normalized raw stress as

σ2
1 =

γ ′Wγ+ (γ ′Wd)−2(γ ′Wγ)2(d ′Wd) − 2(γ ′Wd)−1(γ ′Wγ)(γ ′Wd)

(γ ′Wd)−2(γ ′Wγ)2(d ′Wd)

= 1−
(γ ′Wd)2

(d ′Wd)(γ ′Wγ)

=
σr

γ ′Wγ

= σn.

stress-2. Thesquare of Kruskal’s stress-2 (Kruskal &Carroll, 1969; Kruskal
et al., 1978) is defined as the sum of squared differences between γ and d,
divided by the variance of the distances. Defining d = (nm)−1 ∑

i

∑
j dij

and d = 1d gives stress-2 as

σ2
2 =

‖γ− d‖2W
‖d− d‖2W

=
γ ′Wγ+ d ′Wd− 2γ ′Wd

d ′Wd+ d
′
Wd− 2d ′Wd

.

The optimal dilation factor α is equal to (γ ′Wγ)/(γ ′Wd).
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s-stress-1. Young’s s-stress-1 (Takane et al., 1977) uses squared preferences
and squared distances instead of preferences and distances. For the rest,
s-stress-1 is equal to stress-1, so with a2 specifying that each element of
vector a is squared, s-stress-1 is given by

σ2
S1 =

‖γ2 − d2‖2W
‖d2‖2W

=
γ2 ′Wγ2 + d2 ′Wd2 − 2γ2 ′Wd2

d2 ′Wd2 .

The optimal dilation factor α = (γ2 ′Wγ2)/(γ2 ′Wd2) is the reverse of the
one mentioned in Takane et al. (1977), because it is applied to the preferences
instead of the distances as in our case.

s-stress-1 is minimized by ibm spss alscal . Note that minimizing
s-stress-1 emphasizes large preferences and large distances. This can be
illustrated as follows. Assume that s-stress is given as ‖δ2 − d2‖2. Then,

‖δ2 − d2‖2 =
∑
i

∑
j

(
δ2ij − d2

ij

)2
=

∑
i

∑
j

(
δij + dij

)2(
δij − dij

)2
=

∑
i

∑
j

wij

(
δij − dij

)2,
wherewij = (δij + dij)

2. Assuming relatively small residuals, i.e., δij ≈ dij,
it shows that s-stress is similar to stress with weights equal to 4δ2ij (Heiser,
1988; Borg & Groenen, 2005), thus illustrating the (over-)emphasis of large
preferences. Weinberg and Menil (1993) state that this is a reason for not
using alscal: Since the error variances of dissimilarities tend to be positively
correlated with their means, large dissimilarities should be down-weighted, if
anything, relative to small dissimilarities.

s-stress-2. Young’s s-stress-2 also uses squared variants of the preferences
and the distances. Otherwise, the function is equal to Kruskal’s stress-2 and
given as

σ2
S2 =

‖γ2 − d2‖2W
‖d2 − d

2‖2W
=

γ2 ′Wγ2 + d2 ′Wd2 − 2γ2 ′Wd2

d2 ′Wd2 + d
2 ′Wd

2
− 2d2 ′Wd

2 ,

with the optimal dilation factor α is equal to (γ2 ′Wγ2)/(γ2 ′Wd2).

daf. Dispersion accounted for (daf) is a goodness-of-fit statistic, dividing
the co-sum-of-squares by the product of the sum-of-squares (compare co-
variance and standard deviations), which is equal to one minus n-stress . As
before, defining r-stress as

σr = γ ′Wγ+ d ′Wd− 2γ ′Wd,
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dilating the distances withα, normalizing withγ ′Wγ, and re-arranging terms
gives (G.2). Since in a local minimum d ′Wd = γ ′Wd,

1 =
σr

γ ′Wγ
+

(γ ′Wd)2

(d ′Wd)(γ ′Wγ)
=

σr

γ ′Wγ
+

γ ′Wd

γ ′Wγ
= σn +

γ ′Wd

γ ′Wγ
,

which divides one in a badness-of-fit part, n-stress, and a goodness-of-fit
part,

daf =
(γ ′Wd)2

(d ′Wd)(γ ′Wγ)
=

γ ′Wd

γ ′Wγ
. (G.)

Dispersion accounted for (Heiser & Groenen, 1997) is also referred to as
sum-of-squares accounted for (ssaf) by DeSarbo and Carroll (1985), although
DeSarbo and Carroll match the preferences with squared distances and always
compute ssaf unconditionally. ssaf is used as one of the convergence criteria
in genfold (DeSarbo & Rao, 1984; DeSarbo & Carroll, 1985).

phi. The square root of daf (or ssaf) is equal to Tucker’s congruence coeffi-
cient φ (Burt, 1948a; Tucker, 1951; Wrigley & Neuhaus, 1955),

phi =

√
γ ′Wd

γ ′Wγ
,

which makes the squared congruence coefficient the counterpart of n-stress
too, i.e., phi2 = 1− n-stress. Using distances and rank images, phi is equiva-
lent to Guttman’s (1981) monotonicity coefficient μ and related to n-stress,
stress-1, and alienation coefficient K as K = (1−φ2)1/2 = (1−(1−σn))

1/2 =

σ
1/2
n = σ1 (see Borg & Groenen, 2005). Due to the normalization factors

(the denominators), the function values of n-stress, stress-1, daf, ssaf, and
phi are insensitive to differences in scale and/or sample size and thus well-
suited to objectively compare distances of different multidimensional scaling
configurations.

vaf. Variance accounted for (vaf) is defined as the squared correlation
betweenγ andd. Pearson’s correlation r is ameasure for direction and strength
of a linear relation between two variables of (at least) the interval measurement
level. The correlation coefficient can be computed as

r =
1

nm− 1

n∑
i=1

m∑
j=1

(
γij − γ

sγ

)(
dij − d

sd

)
, (G.)

but in prefscal a weighted version is computed which defines variance ac-
counted for as

vaf =

(
(1 ′W1)(γ ′Wd) − (1 ′Wγ)(1 ′Wd)

)2
(1 ′W1)(γ ′Wγ) − (1 ′Wγ)2(1 ′W1)(d ′Wd) − (1 ′Wd)2

.
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g.3 fit measures

Just like for the combination of n-stress and daf, stress-2 and vaf are
counterparts as

vaf = 1−
‖γ− d2‖2W
‖γ− γ‖2W

,

as described by DeSarbo and Carroll (1985, p. 296), where it is used as one
of the convergence criteria for genfold , especially for interval scaled data.
Note that genfold minimizes squared distances, always computes vaf un-
conditionally, and that the stress-2 function uses γ in the denominator for
the normalization.

Fit measures comparing rank(δ) and rank(d)

There are several functions that measure the recovery of the preferences by the
distances. Since the transformed preferences might form an disturbing inter-
mediate entity, we can use the rank orders of both δ and d for the comparison,
thus circumventing the transformations.

first. The statistic ‘first choices’ (first) only takes the first choice of a row
(usually a respondent) into consideration. This is especially important for
discrete or deterministic choice processes. When there are tied first choices,
all these choices are considered the first choice. When there are tied smallest
distances, something that is not likely to happen (much), all distances are
considered smallest. first is defined as

first = (sn)−1
s∑

k=1

n∑
i=1

#{argmin (δi1k, . . . , δimk) = argmin (di1k, . . . ,dimk)}

first is computed per row, averaged over rows, and results in values between
zero and one.

orders. The recovered preference orders provides the percentage of pair-
wise compared preferences recovered by the distances. For this purpose, a
concordant pair is defined as sign (δi−δj) = sign (di−dj), where sign (x) = 1
for x � 0 and sign (x) = −1 for x � 0. Ties contribute positively to the result.
The statistic orders is now defined as the number of concordant pairs nc

relative to the total number of pairs (total),

orders =
nc

total
.

orders is computed per partition, averaged over partitions, and possible
values for orders range from zero to one.
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rho. Spearman’s rank order correlation rho (ρ) is commonly used as a
nonparametric measure of correlation between two ordinal variables (see
Kendall, 1948). For all non-missing cases, the values of original preferences and
the distances are ranked from smallest to largest and the Pearson’s correlation
coefficient r (G.5) is computed on the ranks. rho is computed per partition
and averaged over partitions. The sign of the coefficient indicates the direction
of the relationship, and its absolute value indicates the strength, with larger
absolute values indicating stronger relationships. Possible values range from
minus one to plus one. Significance of rho is determined by z = ρ

√
n− 1 for

n > 2000 using standard normal probabilities and by t = ρ
√
n− 2/

√
1− ρ2

with df = n− 2 and the critical values of a t-distribution otherwise.

tau. Kendall’s rank order correlation tau (τ) is a nonparametric measure of
association for ordinal or ranked variables that takes ties into account (τb for
square tables and τc for rectangular tables) (Kendall, 1938, 1948). prefscal
displays tau (τb) as

tau =
nc − nd

n(n− 1)/2
(G.)

where nc is the number of concordant pairs, nd is the number of discordant
pairs, andn(n−1)/2 is the total number of pairs (n depends on the chosen con-
ditionality). A concordant pair is defined as sign (δi−δj) = sign (di−dj) and
a discordant pair as sign (δi − δj) = −sign (di − dj), where sign (x) = −1 for
x < 0, sign (x) = 1 for x > 0, and sign (x) = 0 for x = 0. For ties, the denom-
inator is corrected accordingly. tau is computed per partition and averaged
over partitions. The sign of the coefficient indicates the direction of the relation-
ship, and its absolute value indicates the strength, with larger absolute values
indicating stronger relationships. Possible values range fromminus one to plus
one, but a value of minus one or plus one can only be obtained from square
tables. Significance for tau is determined by z = 3τ

√
n(n− 1)/

√
2(2n+ 5)

using standard normal probabilities.

Fit measures comparing δ and δ̂

Theoriginal preferences are transformed to obtain the transformedpreferences.
The transformed preferences are least squares approximated by the distances.
Recovery of the original preferences can thus be determined by reversing
the optimization process: The distances are back-transformed (or inversely
transformed) to the scale of the original preferences and the results are used
to compute a recovery or fit measure, which depends on the scale type of the
original preferences.
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g.3 fit measures

The computation of the inverse transformation depends on the trans-
formation function. For a linear transformation (see page 170), the inverse
transformation is given by

δ̂ijk =
dijk − b1ik

b2ik
,

where the estimation of the original preference for row object i, column object
j, and source k depends on the distance between row object i and column
object j for source k, and the linear transformation parameters b1ik and b2ik.
Obviously, the linear transformation parameters depend on the conditionality
of the unfolding model, such that for the unconditional model b1ik = b1 and
b2ik = b2 and for the matrix-conditional model b1ik = b1k and b2ik = b2k.

For an ordinal transformation, the distances are compared to the results of
the monotone regression procedure. Linear interpolation and extrapolation
are used to compute the estimated value δ̂ijk for δijk, when the distance
does not coincide with one of the existing values. Interpolation is used when
the distance falls in between two values and extrapolation is used when the
distance falls outside the range of values.

ssaf. For a numerical scale type, the sum-of-squares accounted for (ssaf) is
computed between the original preferences Δ and the estimated preferences
Δ̂, taken into account the conditionality. For the unconditional model,

ssaf = 1−
∑n

i=1
∑m

j=1
∑s

k=1
(
δijk − δ̂ijk

)2∑n
i=1

∑m
j=1

∑s
k=1 δ

2
ijk

,

which is identical to (G.4). ssaf is averaged over partitions.

tau. For an ordinal scale type, Kendall’s rank order correlation tau (τ) is
computed, comparing the ranks of the original preferencesΔ and the estimated
preferences Δ̂ per partition. tau is computed according to (G.6), whereD is
replaced with Δ̂.

kappa. Cohen’s kappa coefficient κ measures the agreement between the
original preferences and the estimated preferences when the preferences are
categorical data (with a limited number of categories), taking into account the
agreement occurring by chance. prefscal gives the weighted version of κ,
which is defined as

kappa =

∑c
i=1

∑c
j=1 wijpij −

∑c
i=1

∑c
j=1 wijpi+p+j

1−
∑c

i=1
∑c

j=1 wijpi+p+j
,
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results

where c is the number of categories, pij is the proportion observed in cell i, j,
pi+ and p+j are the row and column totals, respectively, and W is defined
with elementswij = 1− (i− j)2/(k− 1)2. Key references are: Galton (1892),
Cohen (1960, 1968), and Fleiss and Cohen (1973).

g.4 variation measures

For the original preferences Δ, the transformed preferences Γ, and the dis-
tancesD, variances and variation coefficients are reported. For Δ and Γ, the
computation of the variation coefficients depend on the conditionality of the
model.

Variance. The variance or the standard deviation are variation measures
that depend on the magnitude of the data. When the data is scaled up by a
factor 3, the variance is scaled up by a factor 32. Since prefscal is implicitly
normalized, the scales of the configurations are not constant. Variances and
standard deviation should thus be interpreted with care. Whether the variance
is computed over the complete data array Γ, or averaged over partitions, is
indicated in the output.

Variation. The coefficient of variation (Pearson, 1896) is defined as the stan-
dard deviation divided by the mean. For the transformed preferences, the
coefficient of variation is computed per partition. Since the variation of the
preferences is observed per partition, the variation coefficient is computed per
partition and averaged over partitions. In order to stay close to the penalty
of the penalized stress function, the harmonic mean is used for this aver-
age. Note that the harmonic mean emphasizes small values, so a very small
variation in one of the partitions is not likely to be compensated by larger
variations in other partitions. Since the distances are observed in the context of
a configuration, the coefficient of variation for the distances are not computed
per partition, but for the distance array (D orD) as a whole.

g.5 degeneracy indices

d-index. Shepard (1974) describes “a rough index of the non-degeneracy of
a solution” as the ratio of the number of distinct distances to the total number
of distances. Distinctness was difficult to define and a slightly modified version
as compared to Shepard (1974) is used in prefscal. Distinctness is defined as

vij(d) =

{
1 if (di − dj)/(di + dj) > 0.1,
0 if (di − dj)/(di + dj) � 0.1.
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g.5 degeneracy indices

Each distance is compared to every other distance and considered distinct
whenever the ratio of the difference and the sum of the two distances exceeds
0.1. The sumof distinct distances is divided by the total number of comparisons
to obtain the distinctness index

d-index =

∑n
i=1

∑m
j=1 vij(d)

nm(nm− 1)/2

d-index is computed per partition (row, matrix, or complete array), depend-
ing on the conditionality of the model, and then averaged over the partitions.
The distinctness index is also computed for the original preferencesΔ and the
transformed preferences Γ.

i-index. DeSarbo, Young, and Rangaswamy (1997) introduce three indices
that measure the intermixedness of two sets of points. The indices stem from
the observation that degenerate solutions often show separated sets of row and
column points, or, alternatively, show large differences in average within-set
and/or between-set distances. The average within-set distances are defined as

dx =
1

n(n− 1)/2

n−1∑
i=1

n∑
j=i+1

(
pmin∑
p=1

(
xip − xjp

)2).5

dy =
1

m(m− 1)/2

m−1∑
j=1

m∑
i=j+1

(
pmin∑
p=1

(
yjp − yip

)2).5

,

whereas the average between-set distance is defined as

dxy =
1

nm

n∑
i=1

m∑
j=1

dij.

Now, DeSarbo et al. define three indices to flag common types of degeneracies,
based on these average distances, as

I1 = log
dx

dxy

, I2 = log
dy

dxy

, and I3 = log
dx

dy

.

These indices can be used as a diagnostic aid and aim to indicate a well-
interspersed configurationwhen all three indices are near zero, or, equivalently,
when the sum-of-squares of the indices is close to zero (Busing, Groenen, &
Heiser, 2005). The sum-of-squares of the indices is reported by prefscal as
the intermixedness index, i-index = I21 + I22 + I23 .
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glossary of solutions

This glossary contains terms directly related with degenerate solutions, which,
in general, are zero stress solutions that fail to preserve the structure that is
contained in the data. Other terms can be found through the subject index.

Trivial solution — A perfect but meaningless solution having zero stress.
Often, this solution can be avoided by using a proper normalization of the
stress function. The most renowned trivial solutions are the two-point or
object-sphere solution for unconditional unfolding using raw stress, the
two-plus-two-point solution using stress-1, and the object-point solution for
row-conditional unfolding using stress-2 with an improper summation for
the normalization factor.

Absolutely or completely degenerate solution — A flawless but purposeless
zero stress solution without variation in the transformed preferences or the
distances that cannot be avoided by using a proper normalization of the stress
function. An absolutely degenerate solution resembles a trivial solution, such
as the object-sphere solution, but differs in computational respect to that
solution.

Partially degenerate solution—An impeccable but ineffectual row-conditional
zero stress solution without variation in the rows of the transformed prefer-
ences or the distances that cannot be avoided by using a proper normalization
of the stress function. A partially degenerate solution resembles a trivial
solution, for example an object-point solution, but deviates in view of compu-
tational aspects.

Extremely, near(ly), quasi, strongly, or approximately degenerate solution —
A solution that tends to a absolutely or partially degenerated solution, but
deviates from this solution due to non-convergence, local minima, or other
anomalies. Such a solution is difficult to identify, because only part of the
solution is absolutely or partially degenerate. Commonly, this solution shows
conspicuously low variation in either the transformed preferences or the
distances and has a strikingly low stress value.



glossary of solutions

For the following solutions, subjects (rows) are represented by a small

dot (one subject) or a large dot (multiple subject) and objects (columns) are

represented by a plus sign (one object) or a cross (multiple objects).

Two-point solution—�is zero stress solution holds

only one distance value for all subject-object distances.

�is equal distance solution is the result of minimiz-

ing raw stress without a normalization factor.�e

transformation of the preferences results in one value

for all transformed preferences, i.e., γ = c, and with

distances identical to this value, i.e., d = c, r-stress

‖γ− d‖2 is equal to zero.
Two-plus-two-point solution—�is zero stress so-

lution contains one distance value for all subject-

object distances, except for one subject-object dis-

tance, which has a di�erent value. �is solution is

the result of minimizing stress-1 with the sum-of-

squares of the distances as normalization factor. Due

to the one di�ering distance value, and correspond-

ing transformed preferences, the normalization fac-

tor ‖d‖2 remains unequal to zero, while stress-1
‖γ− d‖2/‖d‖2 is equal to zero.
Object-sphere solution—�is zero stress solution

forms an extension of the two-point solution as there

only exist one value for the distances. Whether the

subjects are on the edge of the circle with the object

in the center or the objects are on the fringe with the

subjects in the middle, is of subordinate signi�cance,

since only subject-object distances matter for the loss

function.

Object-point solution—�is zero stress solution con-

cerns a speci�c row-conditional solution with an im-

proper normalization factor. Each subject has one

value for the subject-object distances, but di�erent

values may exist for di�erent subjects. A normaliza-

tion factor, even a variance-based normalization fac-

tor as used in stress-2 or s-stress-2, that considers

all distances simultaneously (i.e., improper summa-

tion), remains unequal to zero, while the raw stress

part of the loss function is equal to zero.
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listwise 98, 101
pairwise 98, 101

dilation 36, 102
optimal 213
uniform 194

non- 195
dimension importance 205
dimensionality 194

changing 194
maximum 195
minimum 9, 195
optimal 211
reduced rank 195
reduction 195

direction 78
coefficient 199, 209
cosines 199
vector 76

dispersion accounted for 215
distance 3

Euclidean 48, 75

pseudo- 4, 48, 52
distinctness index 62, 221

Euclidean distance ideal point mapping
93

first choices 217
fractional programming 163
function

badness-of-fit 14, 46, 48, 54, 61,
129

n-stress 26, 100, 147, 175,
213–216

p-stress 47, 54, 55, 147, 148,
161, 175

r-stress 10, 49, 50, 100, 213
s-stress-1 215
s-stress-2 215
stress 99
stress-1 14, 15, 49, 99, 214
stress-2 12, 15, 61, 214, 217

goodness-of-fit 61, 94, 129
daf 215, 216
first 217
kappa 219
orders 217
phi 102, 216
rho 61, 218
ssaf 216, 219
tau 61, 102, 218, 219
vaf 61, 216

loss 147, 176, 213
majorizing 161, 163

sum of 163
normalization 48, 49
penalty 53–55, 147

adjusted 134
intercept 38

single-peaked 3
weighting 23, 24

ideal point 3, 45, 98
at infinity 93
coordinate 47

identification 190
incidence
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graph 109
matrix 100, 101, 104

incomplete block design
balanced 101

index
Calinsky-Harabasz

adjusted 203, 210
circular standard deviation 205
distinctness 62, 220, 221
intermixedness 62, 221
of angular variation 204
simplicity 205

individual space 177, 179
inequality

Cauchy-Schwarz 166, 167, 176
constraint 127, 128
triangle 100, 158

initial configuration see start
configuration

intermixedness 27
intermixedness index 62, 221
interpolation 200, 201
intra-set correlation 209
iteration history 207

jackknife 196

kappa coefficient 219

landscape segmentation analysis 91
lasso 136
least squares

alternating 4, 139, 148, 175
non-negative 41, 170–172
weighted 48, 176, 186, 190

local minima 58, 121

majorization
iterative 18, 55, 139, 148, 161
linear 164, 166
quadratic 166

mds 8, 16, 20, 47, 197
mean

arithmetic 55, 61
geometric 55
harmonic 55, 61, 220

mean resultant length 204
measure see function
missing at random 106
missing completely at random 103, 106
missing value 153

mar 106
mcar 103, 106
nmar 121

model
additive 22
diagonal 177, 179, 181, 194
distance 90, 93, 149

signed compensatory 22
full 177, 195
generalized Euclidean 177
ideal point 74, 98

internal 91
identity 177, 181, 194
individual differences 177

three-way 179
two-way 177

mixed vector ideal point 29
projection 90
rectangular 177, 179, 181, 195
reduced rank 177, 179
vector 21, 29, 74, 90
weighted Euclidean 177

monotonicity 25, 172, 173
non- 10

multidimensional scaling seemds
multidimensional scalogram analysis

16
multiple random starts 193, 195, 207
multiple starts 155

normalization
explicit 25, 36
factor 47
proper 21
sum-of-squares 37
variance 52

normalized raw stress see
(n-stress) function

not missing at random 121

optimal locations 200
optimal quantifications 200
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p-stress
adjusted 135
row-conditional 168, 170
unconditional 162

paired comparisons
method of 8

pca 90, 136
penalized stress see (p-stress)

function
penalty 99
penalty function 133, 168
penalty parameter 38, 54, 100, 126, 128,

129, 147
lack-of- 54

permutation 198, 211
plot

fit 212
regression 212
residual 212
scatter 39, 211
scree 78, 211
transformation 34, 212

prediction 135, 200, 201
preference 3

analysis
external 73, 74
internal 73, 74

curves 90
mapping 73, 74
rankings 8, 45, 98

preference scaling 90
principal axes 194
principal component analysis 90, 136

categorical 91, 136
principal coordinate analysis 157
Procrustes analysis 118, 159, 197

rotation matrix 159
scaling factor 159
translation vector 159

product familiarity 108
product optimization 83
projection 76, 90, 209
projector 202
property fitting 74, 75, 81, 199

rank-images 17

raw stress see (r-stress) function
recovered preference orders 217
regression

categorical 135
isotone 172
least squares

ordinary 136
monotone 10, 18, 171, 172

bounded 18, 25
smooth 25, 127, 173

restriction 159
centroid 19, 156, 191
common space 194
configuration 175
coordinate 181
inequality 172
non-negativity 18, 36, 170
normalization 37
order 78
orthogonality 191
smoothness 25, 128, 173
variable 136, 137, 183, 209

row-balanced incomplete block design
104

scale
Guttman 8
I 9
interval 8
J 8

folded 9
ordinal 8

set
awareness 97, 105
choice 105
consideration 97, 105, 106
evaluation 97, 100, 103, 108
knowledge 97, 100, 105, 106, 120
universal 105

smallest space analysis 16
software

alscal 20, 61, 215
catpca 90, 91
catreg 135
cm 16
edipm 93
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genfold 24, 61, 217
genfold-2 11, 24, 95
genfold-3 24
kyst 11, 15, 61
lsa 91
mdpref 90, 93
minirsa 11, 13
minissa 11, 13
msa 16
newfold 11, 28, 61
prefscal 5, 26, 61, 99, 100, 148,

149, 213
profit 199
proxscal 214
smacof 19
smacof-3 11, 19
smacof-3b 19, 26
ssa 16
ssap 11
ssar-ii 16
vipscal 30, 93

solution
degenerate 3, 21, 35, 37, 49

absolutely 49, 51
partially 51

equal distance 47
object-point 12, 17, 21
objects-circle 13, 21, 22
objects-sphere 13, 16, 20
trivial 21
two-plus-two-point 15
two-point 15, 21

split-by-rows 52
stability 196

measure 130, 197, 210
start configuration

centroid 19, 156
correspondence 155
random 155, 195, 207
rational 155, 156
Ross-Cliff 155
Spearman 158
triangle 158
user-provided 154

statistic see function
stress formula one 15

stress formula two 15
subset selection 135
sum-of-squares accounted for 216, 219
super-matrix 16, 29, 157
supporting point 162

ties 172, 218
primary approach to 172
secondary approach to 172

Torgerson scaling 157
Torgerson-Gower scaling 157
transformation 170

admissible 71
back- 85, 95, 127, 201, 218
initial 151, 152
initialization 152
intercept 37, 171
interval 36

penalized 41
inverse 219
linear 75, 170, 171

with intercept 48
without intercept 48

matrix-conditional 170
metric 36

row-conditional 40
monotone 3, 75, 79
monotone spline 75, 128, 153, 171

smooth 128
optimal 5, 152
ordinal 40, 75, 99
ratio 37, 171
row-conditional 56, 170
unconditional 56, 170
update 161
variable 78

unfolding 3, 7–9, 11
algorithm 12, 18, 136, 137
degenerate 7
external 74, 98
interval

penalized 38
irt model 5
least squares 139

weighted 23
metric 9
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mixed ordinal-interval 19, 20
mixed ordinal-ratio 29
nonmetric 9–11
probabilistic 5
quasi-metric 27
restricted 74, 75
row-conditional 40
three-way 23, 179
two-way 23, 176, 177
unrestricted 74
weighted 40, 98

update
configuration 175, 176
regression coefficients 184
space weights 179, 181
variable 184

restricted 186, 188, 190
unrestricted 185, 188, 189

variable
active 81
additional 74, 77
attribute 75
direct 209

explanatory 75
external 75
independent 183
indirect 209
passive 81
prediction 75

variable direction 81
variable strength 81
variance 220

accounted for 61, 216
variation coefficient 53, 55, 71, 99, 100,

130, 131, 220
conditional 130
maximization of 131, 133
squared 147

Watson-Williams test 205
weight

dimension 177, 203, 204, 208, 209
preference 100, 147, 151, 207
rotation 177, 208
space 177, 179, 208

YoHoToGo scaling 157
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samenvatting

Als ik even, nogmaals, de samenvatting mag geven
want anders komen we natuurlijk niet verder.

— Rutger Kopland

Meerdimensionale ontvouwing is een analyse techniek die afbeeldingenmaakt
van twee sets van objecten, bijvoorbeeld van personen en producten, geba-
seerd op de voorkeuren van de personen voor die producten. De afstanden
tussen de personen en de producten in de afbeelding dienen zo goed mogelijk
te corresponderen met deze voorkeuren en wel zo dat een kleine afstand over-
eenkomt met een grote voorkeur, terwijl een grote afstand correspondeert
met een geringe voorkeur.

Bijvoorbeeld, voor het boek van Green en Rao (1972) hebben 21 studenten
en hun partners hun voorkeur aangegeven voor 15 ontbijtbroodjes. Meerdi-
mensionale ontvouwing maakt van deze persoonlijke voorkeuren een afbeel-
ding met personen en broodjes als punten in de ruimte, zoals te zien is in
Figuur 1 op de volgende bladzijde, waarbij de personen (zwarte stippen) het
dichtst liggen bij hun meest geprefereerde broodje. Hoe verder de broodjes
verwijderd liggen van een persoonspunt, hoe minder de broodjes worden
gewaardeerd door die persoon.

De voorkeuren voor de 15 broodjes zijn door de personen aangegeven met
de rangnummers 1 tot en met 15, met op 1 het meest geprefereerde broodje,
ongeacht of de persoon in kwestie van broodjes houdt of niet. Dus zowel een
persoon die in het algemeen van broodjes houdt als een persoon die in het
algemeen broodjes verafschuwt, hebben beiden een broodje op plaats 1 staan.
Om met deze absolute verschillen in waardering om te kunnen gaan, mogen
de rangnummers (de getallen 1 tot en met 15) worden veranderd voor iedere
persoon afzonderlijk en wel zodanig dat de getalswaarden mogen veranderen,
maar de volgorde van de (nieuwe) getallen, genaamd pseudo-afstanden, in
stand moet blijven. De persoon die van broodjes houdt, krijgt kleinere waar-
den (bijvoorbeeld 0.1, 0.2, . . . , 1.4, 1.5), terwijl hogere waarden (bijvoorbeeld
13.6, 13.7, 13.8, . . . , 14.9, 15.0) beter passen bij de persoon die niet van broodjes
houdt. Deze zogenaamde persoonsgebondenmonotone transformatie van de
rangnummers wordt door het ontvouwingsprogramma (optimaal) bepaald.
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geroosterd
brood

geroosterd brood
met boter en jam

theegebakje
met margarine

maiscakeje
met boter

bosbescakeje
 met margarine

geroosterd
kaneelbroodje

hard broodje
met boter

geroosterd brood
met marmelade

geroosterd brood
met boter

geroosterd brood
met margarine

kaneel
taartje

Deens
gebakje

geglazuurde
donut

koffie
taartje

donut
met jam

Figuur 1 PREFSCAL ontvouwingsoplossing voor de ontbijtbroodjes gegevens (Green en Rao, 1972) met 42
personen (stippen) en 15 broodjes (namen).

Het ontvouwingsalgoritme gaat nu als volgt: Eerst worden de rangnummers
omgezet in de zogenaamde pseudo-afstanden, waarna de pseudo-afstanden
zo goed mogelijk worden weergegeven als afstanden in de afbeelding. De
broodjeshater komt dus ver van de broodjes te liggen (13.6 − 15.0), terwijl
de broodjesverorberaar er vlak bij zal liggen (0.1 − 1.5) Als zodanig levert
ontvouwing dus een metrische oplossing (afstanden) op basis van louter niet-
metrische gegevens (voorkeuren of rangnummers).

Ondanks dit unieke gegeven is ontvouwing tot op de dag van vandaag
geen populaire techniek: “Toepassingen van meerdimensionale ontvouwing
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blijven ernstig achter, ongetwijfeld door de vele technische problemen die
een hardnekkig obstakel vormen voor succesvolle data analyse …” (Heiser en
Busing, 2004, p. 27, vertaling fb). Het serieuze obstakel betreft gedegenereerde
oplossingen: Ontvouwing geeft vaak oplossingen die perfect zijn in termen van
de verliesfunctie (de afstanden geven de voorkeuren perfect weer), maar die
volstrekt onbruikbaar zijn in termen van interpretatie (de perfecte weergave is
nietszeggend). Het is een probleem dat volkomen versmolten is geraakt met
ontvouwing. De vrijheid van de monotone transformatie staat (bijna) gelijke
waarden toe voor de pseudo-afstanden. Wanneer de afstanden hieraanworden
gelijkgesteld, levert dat een perfecte oplossing op in termen van ‘overeenkomst’,
maar een waardeloze oplossing in termen van ‘interpretatie’. De broodjes
liggen in zo’n geval allemaal op dezelfde afstand van een persoon, hetgeen
eenzelfde voorkeur voor alle broodjes impliceert. We weten echter dat dit niet
het geval is, daar de personen hun voorkeuren hebben aangegeven middels
de rangnummer 1 tot en met 15. Het meerdimensionale ontvouwingsmodel is
als zodanig niet geïdentificeerd, daar ongeacht welke gegevens geanalyseerd
worden, het immer eenzelfde soort, niet te interpreteren afbeelding oplevert.

Gedegenereerde oplossingen ontstonden gelijktijdig met de eerste algo-
ritmen voor ontvouwing. Het conceptuele idee van ontvouwing dat daaraan
vooraf ging, is afkomstig van Coombs en collega’s. De term ontvouwing komt
van de volgende metafoor: Stel je een kralenketting voor met zwarte en witte
kralen, waarbij de zwarte kralen de personen voorstellen en de witte kralen de
broodjes. Pak één van de zwarte kralen tussen duim en wijsvinger en laat de
ketting hangen, zodat beide zijden van de ketting nu naast elkaar hangen. De
broodjes, eerst nog aan twee kanten van de persoon, vallen nu samen en wel zo
dat de positie van de persoon zich bovenaan de ketting bevindt en de broodjes
eronder hangen. De volgorde van de broodjes op de gevouwen ketting, geme-
ten vanaf de zwarte persoonskraal, correspondeert met de voorkeuren van
de persoon. Ontvouwen is de omgekeerde operatie, waarbij de individuele
voorkeuren van de personen (gevouwen kettingen) gebruikt worden om één
lange kralenketting met alle zwarte en witte kralen te rijgen.

Het ontvouwingsidee is uitgebreid naar meer dimensies door Bennett en
Hayes (1960) en Hayes en Bennett (1961). In plaats van een één-dimensionale
kralenketting hebben we nu bijvoorbeeld een twee-dimensionaal gehaakte
sprei met zwarte en witte kralen. Het basisprincipe blijft echter gelijk: De
afstanden tussen de persoonspunten (zwarte kralen) en de broodjespunten
(witte kralen) dienen overeen te komen met de eventueel getransformeerde
voorkeuren.

Coombs’ werk had een enorme impact op het conceptuele niveau, maar
technisch gezien stelde het teleur. Hiervoor moest gewacht worden op een
spin-off uit de hoek van de meerdimensionale schaling. Met name Shepard
(1962a, 1962b) en Kruskal (1964a, 1964b) lieten zien dat rangnummers (niet-
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metrische gegevens) voldoende informatie in zich hadden voor een unieke en
bovenal kwantitatieve (metrische) oplossing en zorgden voor een expliciete
formulering van de verliesfunctie. Negentienhonderdvierenzestig was het jaar
van de niet-metrische doorbraak.

Kruskal zelf maakte in 1969 het probleem van de gedegenereerde oplossin-
gen wereldkundig, terwijl Gleason (1967) en Roskam (1968) zich er al eerder
mee bezig hielden. Gleason benadrukte de noodzaak voor persoonsgebonden
transformaties en Roskam stelde een aangepaste verliesfunctie voor, net als
Kruskal zelf overigens. Zowel Roskam (1968) als Kruskal en Carroll (1969)
rapporteerden teleurstellende resultaten. Hoewel de aangepaste verliesfunc-
tie triviale oplossingen vermeed, leken de oplossingen erg op oplossingen
zonder de noodzakelijk geachte aanpassingen. In 1983 bewees de Leeuw dat
de aangepaste verliesfunctie geen garantie biedt tegen degeneraties. Lingoes
(1977) stelde voor om de schalingsvariant aan te houden. Daar schaling geen
degeneraties kent, althans meestal niet, kunnen deze in ontvouwing worden
voorkomen door ontvouwing te definiëren als een schalingsprobleem met
ontbrekende diagonaalblokken. Heiser (1981), Borg en Bergermaier (1982)
en Heiser (1989) probeerden het degeneratieprobleem te voorkomen door
de transformaties minder vrijheid te geven. Heiser (1981) stelde grenzen aan
de verschillen tussen opeenvolgende pseudo-afstanden, eerst met hard geco-
deerde grenzen, latermet intern bepaalde grenzen, terwijl Borg enBergermaier
(1982) het zochten in een (gewogen) combinatie van monotone en lineaire
transformaties. DeSarbo en Rao (1984) legden de schuld van de degeneraties
bij de meetfouten in de gegevens en gebruiken gewichten voor de gegevens
om deze meetfouten af te zwakken en zo degeneraties te voorkomen. En
passant kwamen ze met een snel algoritme voor het minimaliseren van de
verliesfunctie. Net voor het sluiten van de twintigste eeuw opperden Kim,
Rangaswamy en DeSarbo (1999) een algoritme waarbij vooraf één monotone
transformatie wordt gedaan, maar verder een metrische ontvouwing wordt
uitgevoerd, zonder monotone transformatie.

Om verschillende redenen hebben geen van bovenstaande aanpakken ge-
leid tot een definitieve oplossing voor het degeneratieprobleem. De zoektocht
naar niet-gedegenereerde oplossingen stopte echter niet bij de eeuwwisseling.
Recente ontwikkelingen (Steverink, Heiser en van der Kloot, 2002; Borg en
Groenen, 2005; van Deun, Groenen, Heiser, Busing en Delbeke, 2005; van
Deun, Groenen en Delbeke, 2006; van Deun, Heiser en Delbeke, 2007) staan
echter wel in het teken van de ontwikkelingen zoals hierboven geschetst.

Uit het voorgaandemag de indruk gewekt zijn dat het degeneratieprobleem
alleen maar voor zou komen bij het ontvouwen van volgorde of niet-metrische
gegevens. Niets is minder waar. Degeneraties komen ook voor bij ontvouwing
met lineaire transformaties. Een eenvoudige oplossing voor dit specifieke
probleem is het onder controle houden van een ongewenst hoog intercept,
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terwijl de slope ongelijk aan nul wordt gehouden. Op deze manier blijven de
pseudo-afstanden ongelijk en wordt metrische ontvouwing uit de degenera-
tieproblemen gehouden. De methode is eenvoudig toepasbaar in algemene
rekensoftware (matlab of r) of statistische software (sas of spss).

Een algemener toepasbare oplossing voor het degeneratieprobleem is ge-
vonden in een substantiële aanpassing van de aanpak voorgesteld door Roskam
(1968) en Kruskal en Carroll (1969). Om gelijke pseudo-afstanden te vermij-
den, wordt de verliesfunctie gedeeld door de variatie van de pseudo-afstanden.
Wanneer deze variatie steeds kleiner wordt, zal de waarde van de verliesfunctie
steeds groter worden: een onaantrekkelijke situatie. De deling door de variatie,
gemeten middels de coefficient of variation (Pearson, 1896), ontmoedigt aldus
persoonsgebonden pseudo-afstanden met weinig variatie en vermijdt zo ook
oplossingen met weinig variatie in de afstanden. Twee penalty parameters
zorgen voor voldoende power (een omissie in eerdere aanpassingen) en fine
tuning. Een algoritme voor het minimaliseren van de aangepaste verliesfunc-
tie, gebaseerd op iterative majorization (im) en alternating least squares (als),
staat beschreven in de technische appendix. De resultaten van een simulatie-
studie en de analyse van empirische gegevens verschaffen advieswaarden voor
de twee penalty parameters en laten zien dat de voorgestelde aanpassingen
werken.

Met de controle over het degeneratieprobleem is de weg vrij gemaakt
om het ontvouwingsmodel verder te ontwikkelen. Eén mogelijke uitbreiding
van het model is het toevoegen van verklarende variabelen, niet alleen om
de interpretatie te vereenvoudigen, maar ook om voorspellingen te kunnen
doen. Afhankelijk van de toegevoegde informatie, gebruikt het zogenaamde
gerestricteerde ontvouwingsmodel persoonskenmerken om de persoonspunten
te restricteren of broodjeskenmerken om de broodjespunten te restricteren.
De leeftijd of het geslacht van een persoon of het aantal calorieën of de hard-
heid van een broodje kunnen zorgen voor een bepaalde indeling van de ruimte.
Deze variabelen helpen vervolgens om de ruimte eenvoudiger te kunnen inter-
preteren. Aangezien de coördinaten gelijk zijn aan een lineaire combinatie van
de respectievelijke variabelen, kunnen zowel de variabelen gebruikt worden
om locaties te voorspellen als locaties om waarden van variabelen te voorspel-
len. Transformaties van de variabelen maken het mogelijk de coördinaten
in meer of mindere mate te restricteren. Dit is mede afhankelijk van het
meetniveau van de variabelen.

Een andere ontwikkeling in dit proefschrift vormt het onderzoek naar de
mate waarin gegevens mogen ontbreken zonder een doorslaggevende invloed
te hebben op de eindoplossing, de afbeelding. Het blijkt dat met name voor
relatief grote data sets zelfs bijna de helft van deze gegevens mogen ontbreken
zonder de conclusies te verstoren. Proefpersonen hoeven bijvoorbeeld maar
de helft van de items te beoordelen, hetgeen nauwkeuriger gegevens oplevert
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(minder vermoeidheid en personen beoordelen broodjes die ze kennen) in
minder tijd (goedkoper, ook door minder uitval).

Dit proefschrift heeft ontvouwing verder ontwikkeld in de richting van een
meer betrouwbare en praktische methode voor gegevensanalyse. Het moge
duidelijk zijn dat deze ontwikkeling nog niet tot stilstand is gekomen: Onder-
zoek naar locale minima, start configuraties, stabiliteit, aanvullende analyses,
en onderzoek naar verbeterde grafische weergaven van de resultaten, zijn maar
enkele voorbeelden van mogelijke onderzoeksgebieden. Deze ontwikkelingen
zijn alleen mogelijk na het creëren van een stevige basis. Ontvouwing, zoals
gepresenteerd in dit proefschrift, met z’n flexibele algoritme gebaseerd op
alternating least squares en iterative majorization, met z’n mogelijkheden voor
optimale transformaties van de gegevens en het omgaan met ontbrekende
gegevens, en met z’n uitgebreide mogelijkheden voor allerhande restricties,
heeft deze basis gelegd.
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