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Chapter 1

Introduction

Today we have the technology to quickly sequence entire genomes, but annotating
those sequences is still a daunting task. Discerning their function is even a more mas-
sive challenge. With only four nucleotides, the genome encodes tens of thousands of
genes. Sequence content also determines regulation, providing sites for regulatory ele-
ments to control gene transcription. Regulatory elements that bind to genomic DNA
can be in the form of proteins termed transcription factors (TFs). However, regula-
tion goes beyond just sequence, encompassing epigenetic factors, from methylation to
chromatin remodeling. To even further complicate the picture, regulation can occur
at the RNA level by microRNAs, degradation, and alternative splicing. Translational
control and post-translational modifications may also further determine the final gene
product (a protein for many genes). The comprehensive picture is extremely com-
plicated and too large for one individual to master. This thesis is devoted to one
fraction of this picture: TFs and their target binding sites. We have studied two bio-
logical processes: the cell cycle (control) and myogenesis. By using a combination of
in silico and wet lab work, including next-generation sequencing technology, we can
better understand the TFs involved in transcriptional regulation of these processes,
as outlined in this thesis.

1.1 Biological Background Information

Genetics and Genomics

The genomic code is embedded in our DNA, which is composed of a double helix
of strands of nucleotides. There are four nucleotides: adenine (A), thymine (T),
cytosine (C), and guanine (G). DNA can be transcribed into RNA, composed of the
same nucleotides other than T becoming uracil (U). RNA synthesis occurs in what
is termed a 5′ to 3′ direction, using the DNA as a template. RNA in turn can be
directly functional or translated into amino acids, the building blocks of proteins.
Genetics is the study of genes. Classically genes were considered the portions of DNA
that are transcribed into RNA, which is spliced in higher organisms. The portions
of RNA (and corrosponding original DNA template sequence) that is retained after
splicing are called exons and the portions removed are called introns. Most of the
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1 Introduction

spliced RNA is then translated into amino acids. What is not translated is called the
untranslated region (UTR).

All the nucleotides in a person’s DNA make up their genome. Traditionally, focus
was only on all the genes in an organism. However, as our knowledge expanded to
comprise regulatory elements not within genes the full genome became an interest of
study. Genomics is the study of the genome. This includes how much of a gene is
transcribed into RNA, termed gene expression, or transcriptomics. The number of
genes in the human genome is difficult to know for sure. One explanation is that in one
annotation transcripts may overlap constituting one gene and in another annotation
the overlap may not be found indicating two separate genes. The initial sequencing
of the human genome estimated 30,000 to 40,000 protein-coding genes (1) and a year
later the number of genes was estimated to be closer to the low end of 30,000 protein-
coding genes (2). Currently, as annotated by Ensembl v53 (3), there are 37,435 total
genes (Biomart query, including non-protein coding genes (3; 4)). As more and more
high-throughput datasets become available this number should become more reliable.

TFs and Promoters

TFs are regulatory proteins, or protein complexes, that bind to DNA, and positively
or negatively influence gene expression. Pattern finding algorithms have been devel-
oped to identify TF binding sites (TFBSs) that are presumed to occur in a group of
nucleotide sequences. A group of target nucleotide sequences could be known pro-
moters. Promoters are typically a variable amount of base pairs (bp) surrounding the
transcription start site (TSS) at the 5′ end of a gene. For promoters, pattern finding
is based on the presumption that promoters with similar regulation/expression have
common regulators, and therefore similar TFBSs in their sequences. These regulat-
ing TFBSs should therefore have a high occurrence in similarly regulated/expressed
genes’ promoters.

TFs may also bind other TFs, and are then termed coactivators. There is evidence
that some TFs may preferentially bind one strand of the DNA (5). Traditionally, the
binding sites of TFs were looked for in the promoter region. One early example of
promoter binding is Sp1, which binds the promoter region of beta globin genes (6),
as well as 1641 promoters in an additional study(7).

Properly defining the promoter region of genes has been difficult. The promoter
is often considered around the TSS, so the first exons of currently annotated genes
indicate potential promoters. Many traditional annotation approaches have been
results of sequencing RNA and aligning those sequences to a reference genome to
infer exon locations. This was often done from the 3′ end and the process was often
considered complete when a full coding sequence was determined. Therefore, many
exons with non-protein coding sequence were not annotated. In addition, genes do not
necessarily have a single transcript per gene. Often, genes have multiple transcripts,
comprised of different combinations of exons. This is a process that contributes to
cells being different in one tissue than another. Due to these alternative transcripts,
the promoter being used in a specific cell may be around a different exon than the
annotated first exon of a gene.

Promoters may also be divided into several classes. Some promoters, such as
those containing a TATA box (the target sequence of the polymerase II complex),
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1.1 Biological Background Information

have TSSs with very specific locations, whereas others may contain broad TSSs with
multiple positions of transcription initiation (8). The first class of promoters tend to
be tissue specific, whereas the second class is more likely to be associated with house
keeping genes (8). The latter promoters also tend to contain a higher number of GC
dinucleotides than expected, termed CpG islands (8; 9; 10). CpG island promoters
encompass a majority of mammalian promoters, whereas a minority of promoters are
CpG poor (8). These issues are important to keep in mind since TFs may have a
preference for one promoter type over another.

However, TFs may bind regions other than the promoter. When looking at some
TFs, such as p53, TFBSs may also be located in introns and 3′ regions (11). TFs may
actually bind far from a gene. These regions, which also regulate gene expression, are
termed enhancers. The difference between promoters and enhancers is that both are
regulatory regions, but promoters also contains the sites that basic transcriptional
machinery binds to.

Whether a TF can bind its target DNA or not can also be regulated by the ac-
cessibility of the DNA. Open chromatin, accessible to the transcriptional machinery
and associated with active gene expression, is termed euchromatin. Many epigenetic
factors (not encoded by the DNA) are associated with euchromatin, including hy-
pomethylation of CpG islands, multiple histone modifications and variants, and chro-
matin remodeling complexes (12). All of these factors can therefore have an influence
on whether a TF can bind its target DNA or not. Whole regions of the chromosome,
potentially containing multiple genes, may be regulated by what are termed locus
control regions. One example is that of the locus control region for beta globin genes
where binding of proteins to the locus control region play a critical role in multiple
(up to 80 kb away) genes’ activation (reviewed in (13)).

Better understanding TFs will give us greater knowledge into how the genome is
regulated. In a larger view it may help us to even define what makes us human. With
the high concordance between coding DNA in the human and chimpanzee (>99% at
the protein level) it has long been believed that what largely makes us human is not
the genes themselves, but the regulation of their transcriptome (14).

The Cell Cycle

One of the hallmarks of living cells is the process of cell duplication. This so-called
cell (division) cycle is a tightly regulated process due to the expression and activation
of stage-specific proteins that control the different cell cycle transitions (G1/S, S,
and G2/M phases; reviewed by Satyanarayana and Kaldis, 2009 (15) and Malumbres
and Barbacid, 2009 (16)). Loss of control of the cell cycle can lead to increased cell
proliferation, resulting in tumors. By better understanding the regulators of the cell
cycle scientists hope to guide research into cures for diseases such as cancer. Chapter
5 of this thesis involves a study of TFs which play a role in the cell cycle.

Many factors contribute to cell cycle regulation, including hormones, growth fac-
tors, cytokines, cyclin-dependent protein kinases, cyclins, the retinoblastoma (RB)
protein, bcl-2 protein, myc protein, bax protein, the E2F family of TFs, and the TF
p53 (17; 18). The tumor suppressor p53 is a crucial cell cycle regulator, with an esti-
mated 50% of tumors carrying a mutation in the p53 encoding gene (18). In Chapter
3, based on in silico predictions, we identify TFs that potentially cooperate with p53.
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p53 itself can be regulated by coactivators such as p300 and CBP (19). Besides by in-
teractions with TFs, these acetyltransferases also regulate gene expression by altering
chromatin accessibility via the acetylation of proximal nucleosomal histones. Despite
their high levels of homology, the coactivators are not able to substitute for each other
during embryogenesis as was shown by mouse knockout experiments (20; 21). Thus,
in chapter 5 we selected these two coactivators for study.

Myogenesis

Several other parts of this thesis (chapters 2, 3,and 6) aim at elucidating the roles
of TFs regulating myogenesis. Myogenesis is the process of muscle formation and
development. The process of myogenesis may be divided into two parts: embryonic
and adult. During embryogenesis somites develop into mesodermal precursor cells
(22; 23). These mesodermal precursor cells are pushed towards a myogenic lineage by
two primary myogenic TFs: MyoD and Myf5 (22). These resulting cells are termed
myoblasts, which further differentiate into primary and secondary myofibers.

We focus on the process of adult myogenesis, through which myoblasts cease pro-
liferating and fuse together to form multinucleated myofibers. In skeletal muscle
this was traditionally and simplistically believed to be controlled by four major TFs:
MyoD, Myf5, Myogenin, and MRF4, with the first two functioning in early differ-
entiation and latter two in late differentiation (24). However, as our knowledge of
biological pathways and processes expands it is becoming apparent that many TFs
and other elements are responsible for the regulation of myogenesis. Besides the four
major TFs, Charge et al. 2004 review many molecules, including other TFs (includ-
ing Pax7, Pax3, Slug, myocyte nuclear factor (MNF), and Msx1) that contribute to
myogenesis (22). A year later an initial blueprint of myogenic differentiation was
published including MyoD, Myogenin, and MEF2 targeting a large number of addi-
tional TFs, with connections being made to TEAD4/TEF-3, ARNT, Copeb/KLF6,
NFE2l2/NRF2, and ATF4 (25). As genetics moves forward it is likely more and more
TFs will be identified that play a role in myogenesis.

Figure 1.1: Proliferating and Differentiating Mouse C2C12 cells

Several systems exist to study myogenesis in the laboratory. These includes patient

10



1.2 Conventional Wet-lab Methods

samples, mouse strains, and cell lines. This thesis primarily uses a mouse cell line
termed C2C12. These cells proliferate with serum, but when serum deprived stop
proliferating and begin to differentiate and fuse into myotubes (Figure 1.1). This
process typically takes seven to nine days.

Defects in myogenic regulation (via a TF mutation or alteration of its target)
result in a multitude of diseases, including myotonic dystrophy, rhabdomyosarcomas,
Waardenburg syndrome type 2, congenital myasthenia, and diseases related to muscle
regeneration (overview in Martin 2003 (26)). By gaining a better understanding of the
genetic architecture of late myogenesis we hope to aid researchers towards developing
cures for such illnesses.

1.2 Conventional Wet-lab Methods

RNA Expression

Many kits and techniques now exist for the isolation of RNA. A traditional method for
over twenty years is an extraction with guanidinium thiocyanate, Phenol-chloroform,
and sodium acetate, followed by isoproponal precipitation clean-up (27).

Serial Analysis of Gene Expression (SAGE) (28) (Figure 1.2) and Cap Analysis of
Gene Expression (CAGE) (29) (Figure 1.3) are two methods to isolate small parts at
either end of mRNAs. These were classically concatenated and cloned into libraries
and then sequenced. With next generation sequencing technology (see below) it is
possible to directly sequence the SAGE/CAGE sequences (termed DeepSAGE (30)
and DeepCAGE (31)).

SAGE is a method developed to quantify all the transcripts expressed in a genome
(28). This commonly works by isolating RNA poly-A tails with oligo(dT) beads,
converting into cDNA, performing a first restriction digest (NlaIII which cuts at
CATG’s), retaining the 3′ most fragments, adding a linker to the 5′ end with a
restriction site, then using an additional enzyme that recogizes the linker site (such
as MmeI) to cut a certain number of bp from the 5′ end each fragment, typically
14-20, adding a second linker to the 3′ end, and finally cloned and sequenced (32)
(Figure 1.2).

CAGE is a technique to sequence the 5′ end of transcripts and therefore better
annotate TSSs, which can be used to provide better promoter annotation (29). CAGE
works first by creating single strand cDNA and then capturing the 5′ cap, present
on all mRNAs, with an antibody or biotinylated cap-trapper (Figure 1.3)(29). A
linker sequence is then added to the 5′ end which contains sequence to bind to the
sequencer’s glass slide (for Illumina next-generation sequencing), a sequencing primer,
and a restriction enzyme site. Double strand cDNA synthesis is then performed and a
restriction enzyme actually cuts a number of bp downstream of the linker restriction
enzyme site, providing approximately 20-26 bp of the original 5′ end of the transcript.
A final linker is added for the sequencing protocol and in current protocols the library
is run through a next-generation sequencing machine.

In contrast to 5′ or 3′-end focused methods, true whole transcriptome sequencing,
also called mRNA-seq, is a method by which cDNA generated on the total RNA
by random priming is amplified, sheared, and sequenced (33). This method therefore
provides a more complete picture of RNAs, but can be more complicated for expression
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Figure 1.2: DeepSAGE: Sequencing of serial analysis of gene expression libraries starts
by capturing the poly-A tail of mRNAs with oligo-dT beads. RNA is converted to
cDNA and made double stranded, followed by a first restriction digest. The 3′ most
fragments are retained, sequencing specific linkers adapted with a restriction site,
and a second restriction digest performed that cuts downstream of the introduced
restriction site. A second linker sequence is adapted and next-generation sequencing
can then be performed.

analysis since one transcript may be represented by a greater diversity of tags. Having
multiple random tags per transcript also reduces the quantity of total transcripts
detected, reducing statistical power for calling differential expression levels. This is
increasingly offset by the major increases in sequencing depth.

Isolating TF bound DNA

Chromatin immunoprecipitation (ChIP), is a wet lab technique to identify the targets
of a specific TF (Figure 1.4). In general, this technique begins by formaldehyde fixing
cells so that the TFs are fixed to the DNA. The cells and nucleus are then lysed, often
with detergents, and the chromatin (DNA bound by RNA and protein) is isolated
and cleaned up. This chromatin is then fragmented with chemicals or sonication.
TF bound fragments of chromatin are then immunoprecipitated using an antibody
targeting the TF of choice. This isolated pool of TF bound chromatin fragments
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Figure 1.3: DeepCAGE: Sequencing of cap analysis of gene expression libraries starts
with random priming for single strand cDNA synthesis and then capturing RNAs by
their 5′ cap. A linker with a restriction site and sequencing linker is ligated and double
stranded cDNA synthesized. A restriction enzyme is used that cuts downstream of
the restriction site. The 5′ fragments are retained and a second linker ligated to
the 3′ end of the fragment. These linker adapted sequences can then be applied to
next-generation sequencers.

are then reverse cross-linked and cleaned up to leave only DNA fragments that were
originally bound by the TF of interest.

The ChIP wet-lab method can be coupled with several genomic technologies to
analyze ChIP target sequences genome-wide. When ChIP sequences are hybridized
to a microarray (see below) it is termed ChIP-chip (or ChIP-on-chip) (34). An alter-
nate approach is massive parallel sequencing, either with a paired-end ditag approach
(ChIP-PET) (11), or directly using a next-generation sequencer (ChIP-seq) (35), as
addressed below. These methods both start with ChIP, resulting in a pool of TF
bound DNA. In ChIP-PET these are cloned into a plasmid vector, converted to con-
catenated and cloned PETS, and then sequenced (11). ChIP-seq is less laborious,
omitting the cloning and concatenation steps, by just directly ligating linkers and
sequencing the ChIP DNA.

Only several ChIP-seq experiments have been published at the time of this thesis,
though large numbers of ChIP-chip studies have been published. ChIP-seq is expected
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Figure 1.4: ChIP techniques: Chromatin immunoprecipitation (ChIP) works by cross-
linking TFs to the DNA with formaldehyde, lysing cells, fragmenting chromatin with
sonication, immunoprecipitating TF bound DNA fragments with an antibody, reverse
cross-linking to remove TFs, and cleaning up the final pool of DNA fragments (orig-
inally bound by the TF of interest). These pools of DNA fragments can be analyzed
by PCR, microarray (ChIP-(on)-chip), or next-generation sequencers (ChIP-seq).

to be an up and coming technology. It has the advantage, in comparison to ChIP-chip,
of requiring less input material, the potential to identify TFBSs with low affinity, not
being limited to target regions (i.e. probes on a microarray), not having hybridization
errors, and is less costly for whole genome analysis (35). This method will rewrite the
books on how TFs bind genome wide, identifying many TFBSs in intragenic regions
that were not studied previously or were bound at too low a concentration to be
detected by microarrays. This additional wealth of data will provide more sequences
to mine for position weight matrices (PWMs, see below) and improve upon existing
PWMs, resulting in improved in silico predictions.

Single Target Readout methods

The polymerase chain reaction (PCR) is a method to amplify a stretch (up to several
kilobases) of DNA. DNA regions are targeted using primers specific to the DNA
region. A polymerase is used to read the DNA and replicate it. The simplest use of
this is to see if the DNA stretch is present in the genome. After amplification the
product can be viewed on an agarose gel, and if appropriate markers are included
the size can be estimated. The intensity of a band (compared with a control sample)
on this gel can represent the relative quantity of DNA in the original sample, but to
be more precise an adaptation of PCR is used. Quantitative real-time PCR, termed
qPCR, uses fluorescent dyes or probes to quantify the amount of target DNA. RNA

14



1.2 Conventional Wet-lab Methods

can also be converted to cDNA with a reverse transcriptase and qPCR performed,
termed RT-qPCR. This is especially useful and cost-effective to determine expression
levels of RNA because of simplicity and high sensitivity.

Other methods also exist to detect TF bound DNA. This includes luciferase assays,
deletion constructs, gel shift assays, and the TransFactor kit. Luciferase assays are
a technology in which a promoter from a gene is cloned in front of a gene encoding
a luciferase gene. When activating TFs bind to this promoter they activate the
luciferase gene, causing the cell or organism to produce light under proper conditions.
Deletion constructs are a means of eliminating a portion of a gene’s promoter, then
observing the effect.

Gel shift assays, involves running DNA through a gel. If a stretch of DNA has a
TF bound to it, the sequence will run out slower on a gel. This is a relatively faster
method than the previous two, but only indicates binding and no regulatory function.
The TransFactor kit works on a similar level, determining binding of a TF to a target
DNA sequence using a TF specific antibody, a secondary antibody, and colorimetry.

High-throughput Readout methods

Microarrays were one of the first technologies to study genetics at a genomic scale
in a single test. Microarrays traditionally consist of a glass slide with thousands
or millions of probes attached to it. These probes have sequences that bind target
sequences. The target sequences are labeled with a dye that cause bound probes to
give a fluorescent signal. Therefore, spots, consisting of clusters of probes, give a
signal relative to the quantity of their target sequences in the sample analyzed. The
most common use of microarrays involves hybridizing RNA to study gene expression
levels.

Alternatively, microarrays used in conjunction with ChIP can search for a large
number of TF targets. Promoter based and whole genome tiling arrays also exist
to analyze the afore mentioned ChIP samples. These arrays consist of probes that
are ”tiled” (spaced) across promoters, or the entire genome. These can provide ideal
target regions to study ChIP.

In the past few years several new technology platforms have emerged that perform
DNA sequencing on a massive scale at a fraction of the speed and cost of traditional
sequencing technologies. The primary three systems are the 454 by Roche, the Il-
lumina Genome Analyzer (formerly Solexa) by Illumina, and the SOLiD by Applied
Biosystems. Our department has two Illumina Genome Analyzers so this thesis’s
next-generation sequencing (NGS) has been performed on this system.

Though all classified as second or next-generation sequencers, these platforms have
very different mechanics. The 454 is based on attaching DNA fragments to beads (one
fragment to one bead), emulsion PCR amplification of the fragments on the beads,
and loaded onto a PicoTiterPlate (one bead per well) for sequencing (www.454.com).
Sequencing is performed by sequentially adding complementary nucleotides that emit
a florescent signal, detected by a camera (www.454.com). SOLiD also uses beads
and emulsion PCR, but then the amplified products are applied to a glass slide
(www.appliedbiosystems.com). Several series of ligations are performed in which fluo-
rescently labeled di-base probes are used for detection (www.appliedbiosystems.com).
This system differs in that a fluorescent signal does not reflect the addition of an exact
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nucleotide, but a pair (which is termed colorspace) (www.appliedbiosystems.com). Il-
lumina differs in that no beads or emulsion PCR are used. Adapter ligated sequences
are first attached to a slide, and then bridge amplification is performed on the slide
(www.illumina.com). Nucleotides are then sequentially added which emit a different
fluorescent signal for each of the four nucleotides, which is recorded by a camera
(www.illumina.com).

Table 1.1: Next-Generation Sequencing System Specifications
Company Applied Roche Illumina Applied

Biosystems Biosystems
Machine traditional FLX Genome SOLiD 3

sequencing Titanium Analyzer IIx Plus System
(3730xl DNA
Analyzer)

read length up to 900 bp 400-500* bp 35-100 bp 35-100* bp
# reads 96 or 384 ∼1 million ∼150-200 million* ∼200 million*

per run x 16 plates
run time 0.5-3 hours 10 hours 2-9.5 days** 3.5-14 days**
reference www.applied www.454.com www.illumina.com www.applied

biosystems.com biosystems.com

*Numbers from website adapted based on personal experience. **Run times depend
on the number of cycles (bp sequenced per read). Machine details are based on
website specifications in February 2010.

These systems can produce vast amounts of data, however the read length, total bp
sequenced, and sequence time vary between instruments (Table 1.1). The read length
and total bp sequenced are also continuously increasing with advancements in chem-
istry and mechanics. It has been shown that next-generation sequencers outperform
microarrays in precision, reproducibility, and sensitivity, likely by avoiding the prob-
lems associated with hybridization techniques (36). NGS (also called deep-sequencing
or second-generation sequencing) also escapes the limitation of only looking at the
targets that have been spotted on a microarray, i.e. performing a ”content-limited”
analysis.

Typically NGS analysis begins by converting data to sequences and filtering for
quality. For the Illumina Genome Analyzer, this means converting image files and
filtering on quality with their pipeline. For most NGS applications the next step is to
align to a reference genome. Traditionally for longer reads alignments could be done
with BLAST (37) or BLAT (38), but these algorithms do not perform well with large
numbers of short reads, such as those provided by the Illumina Genome Analyzer. To
align short reads many different alignment algorithms have been developed in the past
years, including Eland (part of the Illumina GA Analysis Pipeline: fast, but only good
for reads ≤ 32bp), Maq (39), Rmap (slow, but accurate) (40), Cloudburst (fast and
accurate, but large system requirements) (41), Bowtie (fast) (42), and BWA (fast)
(43). When a reference genome is not available, sequences are often built into contigs
with the tool Velvet (44). From here analysis is very dependent on the application
being analyzed.
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1.3 In silico Prediction of TFs and TFBSs

Pattern Finders

As mentioned earlier, pattern finding algorithms can be used to identify TFBSs in
sets of TF bound DNA sequences. Modern pattern finders include MEME (45; 46)
and Gibbs samplers (47; 48; 49), which can find one or more variable patterns in DNA
or protein sequences.

Position Weight Matrices

One method to identify TFBSs for known TFs is using PWMs (50). These matrices
summarize experimental information on the sequential preference of a TF (Figure
1.5). The two leading databases of experimentally determined PWMs are TRANSFAC
(51; 52) and JASPAR (53; 54). TRANSFAC has the advantage of more PWMs (834
matrices (release 11.4, December 2007)) (52) compared to JASPAR (123 matrices)
(54). However, to use the larger TRANSFAC Professional (there is also a smaller
public version free to all non-commercial users) a paid license is required, whereas
JASPAR is free. These PWMs are used by programs like Match (51; 55) or Sunflower
(56) to identify TFBSs in a nucleotide sequence by evaluating the nucleotide similarity
of the PWM with the sequence.

Figure 1.5: A Theoretical Position Weight Matrix (PWM): At the top is a theoretical
chart of a 5 nucleotide PWM made up from 10 experiments. For each nucleotide is
a count of how many experiments found that nucleotide. Below is shown a visual
representation of the chart information.

Over-Representation of TFBSs

However, even with PWMs, identifying TFBSs is a difficult task, considering genomes
may be in the billions of base pairs and TFBSs may be only 12-14 bp in size (49).

One method to improve upon TFBS predictions in a set of genes is to look for
over-representation of TFBSs in the promoters of co-regulated/co-expressed genes.
Using a similar presumption as described for pattern finders, it is presumed that
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similarly regulated/expressed genes’ promoters contain common regulators. There-
fore, target TFBSs identified through PWMs should occur more often in a similarly
regulated/expressed set of genes’ promoters than in a random set of genes’ promot-
ers. This method has been developed to include work on complex organisms such as
human (57). This method relies on using proper target sequences. Therefore, good
gene/promoter annotation is critical, such as that provided by CAGE techniques.

Conservation of TFBSs

Another method to look for de novo TFBSs is by searching for conservation between
orthologous promoters (58). This method is based on the presumption that functional
elements are evolutionarily conserved and mutations in these elements could therefore
be detrimental to the organism (58; 59). Programs that use conservation to determine
TFBSs include oPOSSUM (60) and ConTra (61).

1.4 Thesis Overview

This thesis looks at TFs and TFBSs discovery first through in silico predictions based
on previous ChIP and expression data, then wet lab work with in silico confirmation.
Chapter two focuses on CORE TF, a web site developed to identify over-represented
and cross-species conserved TFBSs in a set of similarly regulated genomic regions,
such as up-regulated genes’ promoters from a microarray study. The third chapter
achieves a similar goal to chapter two to identify over-represented TFBSs, but also
models competition between TFs, which better models the true biological system and,
thus, improves results. Chapter four presents a pipeline, titled GAPSS, to analyze
NGS data that was used for data analysis of chapters five and six. Chapter five focuses
on ChIP-seq wet-lab work and data-analysis, including GAPSS and CORE TF, to
better understand the role of CBP and p300 in cell cycle control. The sixth chapter
primarily focuses on using CAGE to better annotate muscle specific TSSs which
should improve promoter based TFBS predictions. Chapters seven to nine wrap up
this work, explaining how a combination of multiple in silico and wet lab techniques
lead to a better understanding of the transcriptional control of genes.
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Chapter 2

CORE TF: a User-Friendly
Interface to Identify
Evolutionary Conserved
Transcription Factor Binding
Sites in Sets of Co-Regulated
Genes

Matthew S. Hestand, Michiel van Galen, Michel P. Villerius,
Gert-Jan B. van Ommen, Johan T. den Dunnen, Peter A.C. ’t Hoen

The Center for Human and Clinical Genetics, Leiden University Medical Center, Postzone
S4-0P, PO Box 9600, 2300 RC Leiden, The Netherlands.

BMC Bioinformatics 2008, 9:495
Parts of this manuscript have been adapted to more appropriately fit this thesis.
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2 CORE TF

2.1 Abstract

Background: The identification of transcription factor binding sites is difficult since
they are only a small number of nucleotides in size, resulting in large numbers of false
positives and false negatives in current approaches. Computational methods to reduce
false positives are to look for over-representation of transcription factor binding sites
in a set of similarly regulated promoters or to look for conservation in orthologous
promoter alignments.

Results: We have developed a novel tool, ”CORE TF” (Conserved and Over-REpre-
sented Transcription Factor binding sites) that identifies common transcription factor
binding sites in promoters of co-regulated genes. To improve upon existing binding
site predictions, the tool searches for position weight matrices from the TRANSFACR

database that are over-represented in an experimental set compared to a random set
of promoters and identifies cross-species conservation of the predicted transcription
factor binding sites. The algorithm has been evaluated with expression and chromatin-
immunoprecipitation on microarray data. We also implement and demonstrate the
importance of matching the random set of promoters to the experimental promoters
by GC content, which is a unique feature of our tool.

Conclusion: The program CORE TF is accessible in a user friendly web interface at
http://www.LGTC.nl/CORE TF. It provides a table of over-represented transcrip-
tion factor binding sites in the users input genes’ promoters and a graphical view
of evolutionary conserved transcription factor binding sites. In our test data sets it
successfully predicts target transcription factors and their binding sites.
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2.2 Background

There are both experimental and computational approaches to identify transcription
factors (TFs) and their relevant binding sites. In the wet lab, hypothesis driven
techniques, such as deletion constructs with luciferase reporter assays and chromatin-
immunoprecipitation on microarrays (ChIP-on-chip), can be used to identify TF bind-
ing site (TFBS) regions. Luciferase assays can prove that a specific region has reg-
ulatory function, but they are laborious and time consuming. ChIP-on-chip is more
global, but requires prior knowledge of which TF to target using a specific antibody
and is laborious, time consuming, and expensive. Faster and cheaper in silico meth-
ods have been in development which can identify potential TFs and their binding
sites. They also tend to target more precise the TFBS instead of just containing a
TFBS region. However, finding TFBSs can be extremely difficult since they may be
less than 12-14 bp long and their consensus binding sites may be fairly loose (49).

One method to identify TFBSs for known TFs is using position weight matrices
(PWMs) (50). PWMs summarize experimental information on the sequence prefer-
ence of TFs. TRANSFAC (51; 52) is the leading PWM database for TFBSs with
834 matrices in total (release 11.4, December 2007), compared to 123 in JASPAR
(53; 54).

An additional method to look for new (de novo) TFBSs is by searching for con-
servation between orthologous promoters (58). This is based on the presumption that
functional elements are evolutionary conserved since mutations to such elements could
be detrimental to the organism (58; 59).

However, both the sequence conservation-based and the PWM approach alone
produce many false positives and false negatives. We therefore created CORE TF, a
program using both methods to reduce false predictions. We first look for TFs involved
in a biological process of interest, relying on the presumption that similarly expressed
genes have common TFs as regulators. To do this, and reduce false predictions with
PWMs, we search for TFBSs that occur more often in a co-regulated set of promoters
compared to random promoters. This algorithm, in analogy to the work of Elkon
et al, 2003 (57), implements a binomial test to evaluate for this over-representation.
Some PWMs have a bias towards certain nucleotides, such as T’s and A’s for a TATA
box binding TF and would therefore likely be over-represented if an experimental
set had high numbers of T’s and A’s and the random set had equal content of all
four nucleotides. We therefore also offer the option to exclude biases based on GC
content by matching random promoters with approximately equal GC content to
the experimental promoters. To identify individual TFBSs with increased precision,
and add additional support for the relevant TFs, we subsequently scan individual
promoters for cross-species conservation, again employing TRANSFAC matrices. All
steps are flexible allowing for a multitude of input types (Ensembl (62) gene IDs,
nucleotide sequences, or selected by CORE TF).

We also compared CORE TF to two existing programs: oPOSSUM (60) and
ConTra (61).

CORE TF is accessible as a web-page. In this paper, we present and evaluate the
performance of our web-based tool for identification of TFBSs.
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2.3 Implementation

2.3.1 CORE TF Construction Format

The main script is written in Perl and presented in HTML on an Apache web-server.
Input and table sorting is done using an edited Java script: sorttable.js (63). By
default, following the title page, there are 6 pages that are run in a linear fashion
feeding the results of one page into the next (Figure 2.1).

Page one allows a user to select run options and input criteria, including a p-
value cut-off for highlighting data (see below), 6 different Match (the program that
aligns TRANSFAC PWMs to nucleotide sequences) (51; 55) settings (minimize false
positives, minimize false negatives, minimize the sum of both error rates, and non-
redundant sets of these 3 settings), and data input type for a set of experimental
promoters and a set of random promoters. The experimental promoter lists are en-
tered as sequences in fasta format or Ensembl gene IDs. Five options are available
for the random promoter list input: sequences in fasta format, an Ensembl gene ID
list, randomly retrieve Ensembl promoters, pre-constructed promoter sets, and pre-
retrieved sequence sets that are matched to the experimental set based on percentage
of GC content. There is also an option to skip the over-representation analysis and
go directly to page 4.

Depending on the selections from page 1, page 2 presents text boxes to paste in
lists of fasta format sequences or Ensembl gene IDs, or radio-buttons to select a certain
number of random promoters for the appropriate species, or species based check boxes
for pre-constructed runs or %GC matched runs. If CORE TF must retrieve promoters
there are two options to define promoter sequences. The first option is to call a
promoter as exon 1 plus a user defined number of base-pairs (bp) upstream. The
second option is to define a promoter sequence as a user specified number of bp before
and after the start of exon 1. The pre-constructed (approximately 3000 promoters)
and pre-retrieved sets to match %GC on (approximately 10000 promoters, of which
3000 are selected) are based on 1000 bp upstream of exon 1 and exon 1 sequence.

If requested, page 3 (Figure 2.2) uses Ensembl API to retrieve promoters from a
locally installed Ensembl database or from the web-based Ensembl database depend-
ing on CORE TF installation. If the option to use %GC matched random sequences
is selected CORE TF matches pre-retrieved promoter sequences to the experimental
promoter sequences so that at least 3000 similar %GC promoters are obtained. It
then uses Match to scan all sequences for the presence of TRANSFAC Professional
(note: web based CORE TF is still free access to non-commercial users) vertebrate
PWMs passing the PWMs’ alignment threshold provided on page 1 (pre-constructed
random promoter sets also have pre-executed Match runs and initial number of hits
counted). A binomial test is carried out with the Perl module Math::Cephes (64) to
identify TFBSs that are over-represented in the experimental set over the random set.
This is displayed on the screen as a sortable table with the TFBSs’ name, p-value
(10 digits are displayed), hits and total number in the experimental and random sets,
as well as the number of PWM hits in each experimental promoter. For clarity, p-
values below a defined threshold from page 1 are highlighted in blue. The table can
be downloaded as an HTML file or a tab-delimited text file. The user can select a
number of TFBSs plus a promoter of interest and continue to the next page. There
is also a Java script with a button to automatically select all TFBSs with a p-value
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2.3 Implementation

Figure 2.1: Flowchart of CORE TF runs: CORE TF runs linearly through 6 web
pages. Pages 1 and 2 take as input experimental gene/promoter lists and random
gene/promoter lists or requests to create random lists. Depending on format, se-
quences are retrieved with Ensembl API or random lists generated before identifying
TFBSs with Match/TRANSFAC. A binomial test is run to identify over-represented
TFBSs in the experimental set compared to the random set and displayed in page
3 as a table. In the table TFs and a promoter can be selected which are sent to
page 4. If requested homologs and sequences or genomic alignments are retrieved
from Ensembl for the selected promoter. If not already a genomic alignment, input
sequences or retrieved sequences are aligned with BLASTz. TFBSs are identified
with Match/TRANSFAC, overlapping TFBSs are identified and scores calculated,
and the data is displayed in page 5. Conserved TFBSs can be selected and displayed
as highlights in the alignment in page 6.

below the defined threshold.

Page 4 gives the user the opportunity to use Ensembl defined orthologs or aligned
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2 CORE TF

Figure 2.2: Page 3 screen-shot: Page 3 of CORE TF displays the following columns:
selection boxes for the next page’s analysis, all TFBS PWMs with hits, the p-value,
the number of experimental promoters hit, the number of experimental promoters
analyzed, the number of random promoters hit, the number of random promoters
analyzed, frequency of hits in the random data, as well as a column for each exper-
imental promoter analyzed indicating the number of TFBSs hit in it. Our page is
lengthy, so for display purposes in this figure we deleted the middle TFBSs as indi-
cated by the large black bar. For a full color figure see www.biomedcentral.com/1471-
2105/9/495/figure/F2.

genomic regions in a selection of species (currently H. sapiens, P. troglodytes, M.
musculus, R. norvegicus, B. taurus, C. familiaris, and G. gallus) or enter user defined
orthologous sequences in fasta format. There is also the option to define promoters
as was done in page 2. If the user skipped over-representation analysis there is a list
of TFBSs to chose from for analysis, otherwise CORE TF uses TFBS selection from
page 3.

This is given to page 5 which, if necessary, retrieves either orthologous IDs and
sequences or aligned genomic regions with Ensembl API. Aligned genomic regions are
pairwise alignments, but CORE TF places them into a multi-species viewed align-
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ment. Sequences are again scanned by Match and TRANSFAC. If Ensembl genome
alignments were not used, the first sequence entered or the ID used for orthologous
retrieval is used as the reference to carry out a promoter sequence alignment with
BLASTz (65). Alignments are displayed on the screen. Tables are shown with each
TFBS selected and the following information: total score, region score, number of
promoters aligned at that point, and the length of the TFBS. The region score is
defined by taking the sum of 100 times the percent of each nucleotide aligned (Figure
2.3A). The total score is defined as the region score divided by the pattern length
divided by 100 (Figure 2.3B). More specific details of these region numbers are dis-
played on additional tables lower in the page. The user may select a TF and submit
this to the final page.

Figure 2.3: Formulas for conservation scores.

Page 6 (Figure 2.4) allows for visualization in the alignment by displaying the
alignment with selected TFBSs highlighted according to the strand bound: blue (pos-
itive strand), purple (both strands), or red (negative strand). There is also evidence
that some TFs may preferentially bind one strand over the other (5). It is up to the
user to decide if their TF is strand specific or not.

2.3.2 CORE TF Evaluation with Expression and ChIP-on-chip
Data

To verify the performance of our algorithms we used expression and ChIP-on-chip data
from Cao et al 2006 (66). They studied the promoter binding of two major regula-
tors of muscle differentiation (MyoD and Myog) and expression profiles in embryonic
fibroblasts from MyoD/Myf5 knockout mouse transduced with a MyoD-estrogen re-
ceptor hormone binding fusion protein (termed MDER cells). These cells have been
modified so that they can be studied during differentiation with or without MyoD or
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Figure 2.4: Page 6 screen-shot of a conserved MyoD TFBS in the LAMA4 pro-
moter: Page 6 of CORE TF displays two identical boxes containing aligned pro-
moters with conserved TFBSs highlighted by color; blue if on the positive strand,
purple if on both strands, and red if on the negative strand. For a full color figure
see www.biomedcentral.com/1471-2105/9/495/figure/F4. If requested in the previous
page to show run details (not shown in this figure), boxes with score construction for
all conserved TFBSs are also displayed, as well as the patterns of all selected PWMs
hit. Here we show an example of a MyoD TFBS (PWM MyoD Q6 01) in the LAMA4
promoter conserved in human, chimp, and dog on both strands.

Myog present. Promoter binding was also studied in a common mouse myoblast cell
line (C2C12).

ChIP-on-chip is a technique using a TF targeting antibody that is used to pull-
down TF bound DNA fragments, which are then amplified, labeled, and hybridized
to a (promoter or tiling) microarray. As a positive control set for TF binding, we
took those promoters from the ChIP-on-chip data that showed enrichment for MyoD
or Myog binding sites (p-value < 0.001). We re-analyzed the Affymetrix expression
data by applying a RMA summarization and normalization and using the R package
limma (67; 68) to fit a linear model containing the following factors: MyoD expression
(yes/no), Myog expression (yes/no), and time of differentiation (0, 24, 48, and 96 h).
As a positive control set for MyoD or Myog-induced regulation of gene expression
we took the top 200 or less genes based on the effect of MyoD or Myog expression,
respectively. When needed, accession numbers were converted to Ensembl gene IDs
using Idconverter (69).

For the 200 most significantly induced genes, we evaluated whether their promoters
contained MyoD or Myog TFBSs according to the ChIP-on-chip data. We expect
that the smaller more specific lists would have a higher percent of promoters with
true TFBSs (significant on the ChIP-on-chip platform) and therefore likely to contain
more significantly over-representated TFBSs in our predictions. We found that as
a general trend this is true that the smaller more specific expression lists contain a
higher percent of true positives (significant ChIP-on-chip genes) (Additional File 2.1).

2.3.3 Random Data Size Evaluation

We evaluated what would be an appropriate number of random promoters by running
a set of 14 experimental promoters against several random set sizes; 500, 1000, 2000,
and 4000. For this, the Match cutoff was set to minimize the sum of false positives
and negatives. For this test we used a promoter size of 1000 bp before exon 1 and all
of exon 1. The larger the random size used the more consistent the number of TFBSs
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that were identified (Additional File 2.2), but also the longer the run time. We found
a random size of 2000 promoters to be the best trade off between accuracy and speed.

2.3.4 Promoter Size Evaluation

We evaluated an appropriate promoter size for our TFs of interest by taking the
Cao et al. 2006 expression data top 50 MyoD- or Myog-responsive promoters for the
appropriate stimulation (MyoD or Myog) compared to 2000 purely random mouse
Ensembl promoters. We varied the promoter size to include exon 1 plus an additional
number of bp upstream; 500, 1000, 2000, and 4000. Analysis showed that with a
Match setting to minimize false positives a promoter size of 2000 bp + exon 1 was best,
whereas with a Match setting to minimize the sum of false positives and negatives a
promoter size of 1000 bp + exon 1 was preferable (Additional File 2.3). We continued
with a Match setting to minimize the sum of false positives and negatives setting
using 1000 bp upstream + exon 1 as our promoter size.

2.3.5 Evaluation of GC Content

To evaluate the effect of GC content we ran purely random Ensembl promoters (the
FAST setting of CORE TF) on all Cao et al ChIP data. We then compared that to
runs with the option to get random promoters of approximately equal %GC content
compared to the experimental set (the Similar %GC option).

2.3.6 Wet-lab Verification of a CORE TF Predicted Conserved
TFBS

To give wet-lab confirmation to the results of the CORE TF conservation predic-
tions we used the TransFactor kit with double stranded DNA designed on a LAMA4
(ENSG00000112769) MyoD predicted TFBS conserved between human, chimp, and
dog (Figure 2.4). This was an Ensembl genomic alignment run with a Match setting
to minimize the sum of false positives and false negatives. The promoter size was
defined as 3000 bp upstream of exon 1 and including exon 1. We also included a neg-
ative control of the same DNA sequence with four mutations. Recombinant MyoD
protein was used to test for binding. For more details on the TransFactor run see the
additional material (Additional File 2.4).

2.3.7 CORE TF Compared to an Existing Program: oPOS-
SUM

To evaluate our script with existing technology we ran the Cao et al 2006 expression
data (most significant 20, 50, 100, and 200 genes) through the oPOSSUM website (60).
We chose oPOSSUM for comparison since it performs similar analysis and is freely
available. We used their custom single site analysis page. Other than setting to mouse,
vertebrate JASPAR PWMs, retrieving 1000 bp up and 433 bp downstream (using
Ensembl API we calculated this as the average size of exon 1) of the transcription
start site, and showing all results, all settings used their defaults. It must be noted
that JASPAR only has a PWM for Myf, which represents a TF family including
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MyoD and Myog. We also used their number of hits in their background and target
genes to run a binomial test in the statistical package R to match our data.

2.3.8 CORE TF Compared to an Existing Program: ConTra

We also chose to evaluate CORE TF versus an additional easily viewable cross-species
conservation program, ConTra (61). As a test promoter for comparison we used
the LAMA4 (ENSG00000112769) promoter, for which we had a lab verified MyoD
TFBS. The ConTra website was run on all default parameters (selecting transcript
ENST00000230538), except for looking at 3000 bp upstream instead of 2000 bp up-
stream (giving a promoter the same size as the CORE TF run). We looked at the
PWM MyoD Q6 01. This was the only PWM for MyoD available at the ConTra
website and the best performing for CORE TF with this promoter.

2.4 Results and Discussion

2.4.1 CORE TF Work Flow and Function

We have developed a series of web pages to identify TFBSs in two sequential processes.
First, pages 1 to 3 allow a user to predict TFs that regulate a set of co-regulated
genes. This is done by identifying TFBSs that are over-represented in the promoters
of an experimental (e.g. similar expressed genes from microarray data) compared
to a random data set, taking GC content into account if requested. These results
are displayed in a sortable table in page 3 (Figure 2.2). Secondly, pages 4 to 6
allow a user to identify specific TFBSs by looking for across species conservation of
TFBSs selected from the TFBSs in page 3 and the promoters of page 3. This is done
on Ensembl genomic alignments or BLASTz alignments of orthologous promoters
provided by Ensembl or the user. Across species conserved TFBSs are displayed in
tables (calculations as in Figure 2.3) in page 5 and as aligned promoters in a graphical
format (Figure 2.4) in page 6.

Alternatively, if a user did not wish to look at a list of promoters, but just a
single promoter they could look purely for cross-species conserved TFBSs by skipping
straight to page 4 from page 1. They must then provide which promoter they want
to search and a set of TFBSs from a web displayed list. In theory they could paste
the sequences conserved in the alignments back into the over-representation pages to
find TFBSs over-represented in conserved regions (as opposed to the normal order of
looking for conservation with over-represented TFBSs).

2.4.2 Prediction of Over-Represented TFBSs

To evaluate the performance of our tool we first used the Cao et al 2006 ChIP-on-chip
data as a positive control. We tested whether the promoters in the ChIP pull-down
were enriched for the TFBSs for the TFs targeted in the ChIP experiments compared
to a random set of promoters. To evaluate the effect of matching promoters for %GC
content, CORE TF was run with a purely random selected set of promoters (FAST
option) and a random set of promoters with matched %GC content as controls (similar
%GC option). Using both sets of random promoters, CORE TF found a significant
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over-representation (p-value < 0.05, after applying multiple test correction with Ben-
jamini Hochberg in R (70)) for the MyoD PWM MYOD Q6 in the MyoD bound
promoters and the Myog PWM MYOGENIN Q6 in the Myog bound promoters, in
both C2C12 and MDER cells (Additional File 2.5). The MyoD PWM MYOD Q6 01
was also significant in all MyoD targeted runs except the MDER MyoD with random
promoters matched on %GC content.

Strikingly, by ranking TFBSs on p-value, we demonstrate that the target TFs
were higher ranked with the %GC matched promoters as control rather than with the
purely random set of control promoters (Table 2.1), indicating that improper matching
of GC content leads to false positive identification of TFBSs. By evaluating the
distribution of p-values for all TFs using both random sets, we observed purely random
promoters yield more high and low p-values than a random set of promoters matched
on %GC content (Additional File 2.6). Since our target ChIP TFs remained significant
when using %GC matched promoters, resulting in a smaller list of significant TFBSs,
we believe this method to yield less false positives.

To demonstrate that our algorithm is able to find shared regulatory sites in co-
regulated genes identified in expression microarray data we evaluated whether genes
for which the expression level increased upon MyoD or Myog activation were en-
riched for MyoD or Myog TFBSs. We ran sets consisting of the 20, 50, 100, and 200
genes most significantly affected by MyoD or Myog activation versus a random set of
approximately equal %GC content (Additional File 2.7). We found significant enrich-
ment of the MyoD Q6 PWM in all MyoD enriched sets. We also found MYOD Q6 01
enriched in the top 50 and top 100 MyoD enriched sets. MYOGENIN Q6 was found
enriched in the top 20 Myog enriched set only. Other PWMs for MyoD or Myog
and other sets of promoters were not significant or considered ”NA” due to 100%
of promoters hit in the experimental data. The same data was also run through
with the CORE TF FAST setting. We found that the two settings perform similar,
with slightly higher frequencies but slightly less significant p-values when matching on
%GC (Figure 2.5). Additionally, as expected the smaller more specific lists generally
have higher frequencies and lower p-values than larger, less specific lists (Figure 2.5).
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2.4 Results and Discussion

Figure 2.5: Significance of myogenic TFBSs in expression data: The (A) signifi-
cance (as the absolute value of the log10 p-value) and (B) frequency of MyoD (PWM
MyoD Q6) or Myog (PWM MYOGENIN Q6) TFBSs in varying number of promoters
from genes with increasingly less significant differences in expression upon MyoD or
Myog activation are shown. As would be expected, the smaller more significant lists
generally have higher frequency and more significant p-values than larger less specific
lists.

2.4.3 Orthologous Alignments Versus Genomic Alignments

In many CORE TF runs we assessed the conserved TFBSs using alignments based
on homologous Ensembl promoters as well as Ensembl genomic alignments. Ensembl
pairwise alignments can be considered syntenic (they are grouped to make the actual
Ensembl synteny blocks) (71). Ensembl orthologs are identified using protein tree
calculations (62). The number of promoters aligning and the quality of the alignment
to the reference promoter varies tremendously amongst different promoters for both
methods (data not shown), but we did not find one method outperforming the other.
Synteny does not imply the start of one gene corresponds to the start of a gene in
another species. Therefore, this could give poor predictions for TFs that bind and
function close to the transcription start site. However, due to many incorrect exon 1
annotations it is also possible that using orthologous promoter alignments may align
regions that are not corresponding regions (if an annotation missed exon 1, exon 2
would be annotated as exon 1 and we would instead align to it). Therefore there is
not one alignment method that outperforms another to predict conserved TFBSs.

2.4.4 TFBSs Conserved in Orthologous Alignments

The top 10 ranked genes of the Myog-induced genes were inspected for the presence of
MYOGENIN Q6 motifs. To this end, all available orthologs for the mouse genes were
retrieved. All conserved TFBSs and their conservation scores are reported in Table
2.2. There are seven promoters which appear to have conserved TFBSs. Four of these
promoters (Chrng, Myog, Acta1, and Tnnc1 ) had hits in three or more orthologs. We
also inspected the MyoD induced genes presence of MyoD 01 motifs using the same
approach and identified two promoters with conserved TFBSs (Table 2.2). Only one
promoter was found conserved over three or more orthologs (Rgs16 ). In addition, of
the nine across species conserved TFBSs all except Tnnc1 (not on the array), Tnnc2,
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2 CORE TF

Rgs16, and Nptx1 were found significant in the ChIP-on-chip data. Literature was
examined to see if predictions were correct. We found evidence for binding of Myog
to Myog (72), Tnni1 (73), and Chrng (74). We also found evidence for MyoD binding
Nptx1, also called NP1 (75).

Table 2.2: Orthologous conservation of target TFBSs in target genes
A
Gene GeneID TF Name Tot. Score #Promos Length
Name Score
Chrng ENSMUSG00000026253 MYOGENIN Q6 1 1000 5 10
Chrng ENSMUSG00000026253 MYOGENIN Q6 1 1000 5 10
Tnnt3 ENSMUSG00000061723 MYOGENIN Q6 1 1000 2 10
Tnnc2 ENSMUSG00000017300 MYOGENIN Q6 1 800 2 8
Tnni1 ENSMUSG00000026418 MYOGENIN Q6 1 800 2 8
Myog ENSMUSG00000026459 MYOGENIN Q6 0.83 666.7 5 8
Acta1 ENSMUSG00000031972 MYOGENIN Q6 0.8 640 4 8
Tnnc1 ENSMUSG00000021909 MYOGENIN Q6 0.72 720 4 10
Acta1 ENSMUSG00000031972 MYOGENIN Q6 0.6 480 3 8
B
Gene GeneID TF Name Tot. Score #Promos Length
Name Score
Rgs16 ENSMUSG00000026475 MYOD 01 1 1200 4 12
Rgs16 ENSMUSG00000026475 MYOD 01 0.5 600 2 12
Nptx1 ENSMUSG00000025582 MYOD 01 0.4 840 2 21
Nptx1 ENSMUSG00000025582 MYOD 01 0.4 480 2 12
Conserved TFBSs for (A) Myog (PWM MYOGENIN Q6) and (B) MyoD (PWM
MYOD 01) from target genes’ promoters in expression data. Total score represents a
score of conservation from 0 to 1 over the conserved TFBS length. Score represents an
additive score over the TFBS. Promos is the number of promoters with the conserved
TFBS. Length is the length of the TFBS.

2.4.5 Wet-lab Confirmation of a CORE TF Predicted Con-
served TFBS

To confirm a CORE TF conserved TFBS in the lab we looked at a MyoD predicted
TFBS in the LAMA4 promoter. Using Ensembl defined genomic alignments we found
the matrix MyoD Q6 01 conserved in human, chimp, and dog (Figure 2.4). Using a
recombinant MyoD protein and the TransFactor kit we found significant (p-value
1.5E-35) binding to our target TFBS compared to a mutated one (Additional File
2.4).

2.4.6 CORE TF Compared to Existing Programs: oPOSSUM

We compared the performance of CORE TF (using a random set with similar %GC)
to oPOSSUM, a webtool with similar objectives as ours. oPOSSUM looks for over-
represented JASPAR PWMs in pre-defined species alignments, but is limited to spe-
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2.4 Results and Discussion

cific species alignments (e.g. human-mouse) and use of the smaller JASPAR PWM
database. We used the previously mentioned expression microarray datasets for
the evaluation of both programs performances. Our runs on the oPOSSUM web-
site showed that our binomial test performs similar to their Fisher test (Additional
File 2.8). Unlike our frequency observations, the frequency identified by oPOSSUM
of TFBS hits in the MyoD induced set did not show the expected high to low pat-
tern (Additional File 2.9). When comparing p-values from the binomial tests for the
predictions by the two programs, we see similar patterns between the two programs
across the top 20, 50, 100, and 200 genes, but CORE TF has more significant MyoD
predictions and oPOSSUM has more significant Myog predictions (Additional File
2.9). It must be noted that we are only comparing over-represented TFBSs whereas
oPOSSUM has already taken conservation into their program at this point which
may explain higher sensitivity for Myog promoters. We instead do this on individ-
ual promoters and display it graphically in the next step. We believe this graphical
representation to be more interpretable.

Since we can do better in one out of two tested TFs without our orthologous
promoter conservation we believe CORE TF to be a superior tool. The two programs
differ on several other levels. oPOSSUM only takes Ensembl IDs as input, whereas
we also accept nucleotide sequences. We also offer a larger choice of random data
sets and conservation methods, as well as the choice to account for GC content.
In addition, our number of vertebrate species available is six, all of which can be
compared together. oPOSSUM only accepts two species comparisons at a time. For
vertebrates oPOSSUM is limited to only human and mouse, both of which are in
CORE TF. In addition, we display our across-species TFBSs in a graphical format,
whereas oPOSSUM presents their data in a less intuitive tabular format.

2.4.7 CORE TF Compared to an Existing Program: ConTra

We also evaluated CORE TF versus ConTra using the LAMA4 promoter, for which
we had experimental data available, as an example. ConTra is a website to iden-
tify and easily view conserved TFBSs in a single cross-species promoter alignment,
but cannot look for over-representation in a large promoter set. We found that in
CORE TF genomic alignment predictions there were three MyoD TFBSs conserved
between human and chimp and one TFBS conserved between human, chimp, and dog
(Figure 2.4). ConTra found the same TFBSs, but also three additional (Additional
File 2.10 and data not shown). Two of the three human/chimp CORE TF conserved
TFBSs and the human/chimp/dog CORE TF conserved TFBS were also found con-
served in the macaque in ConTra. CORE TF did not search for macaque, but it is
extremely similar to human and chimp so we believe it would not add much informa-
tion. However, if a user wanted any Ensembl species added to CORE TF adding an
additional species to the scripts is very simple. It is not surprising the same TFBSs
were identified since both programs use Ensembl alignments and TRANSFAC PWMs.
ConTra does have the disadvantage of only using human as a reference genome for
automated alignment retrievals, whereas CORE TF can do this for all six species
currently installed. Additionally, CORE TF does not use an Ensembl multi-species
defined alignment, but combines many Ensembl pair-wise alignments into one, allow-
ing any number of Ensembl species to be included in one alignment. ConTra does not
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2 CORE TF

display strand specific binding which CORE TF does by color coding. Additionally,
ConTra does not search for over-represented TFBSs in a group of promoters.

2.4.8 Future Efforts

An item that can be improved in the future is our evolutionary scoring algorithm, e.g.
by taking into account the confidence of each nucleotide in the PWM. An additional
improvement will be to analyze combinations of TFBSs.

2.5 Conclusion

We have developed a tool for identifying over-represented TFBSs in promoters from
co-expressed genes aided by the evaluation of cross-species conservation. CORE TF is
easy to use and displays results in tables or graphically allowing for easy interpretation
of the results. Our method seems to correctly predict the presence of experimentally
verified TFBSs, as shown by our extensive analysis on Cao et al. 2006 expression
and ChIP-on-chip data and wet-lab confirmation of a MyoD predicted TFBS in the
LAMA4 promoter. We also show improvements over two existing programs (oPOS-
SUM and ConTra) with greater flexibility in input data, coverage of a larger number
of species, more intuitive output, and the option to account for GC content.

Our tool is provided as a web service free to all non-commercial users.

2.6 Availability and Requirements

Project name: CORE TF
Project home page: http://www.LGTC.nl/CORE TF
Operating system(s): Linux
Programming language: Perl (we used 5.8.4)
Other requirements: TransFac Professional (we used 11.2), BLASTz, sorttable.js,

Math::Cephes (Perl module), Apache (we used 1.3.33)
License: GNU General Public License, v3 http://www.gnu.org/licenses/
Any restrictions to use by non-academics: none for website use, TransFac Profes-

sional license for a local install

2.7 Authors’ contributions

MH, JD, GO, and PH conceived of the primary concepts of the software. MH and MG
did the primary programming and debugging. MV performed all primary installations
on the web-server and helped in debugging code. MH, MG, and PH performed the
software evaluation on expression and ChIP-on-chip data. Wet-lab work was done by
MH. Manuscript drafting was done by MH, MG, JD, GO, and PH. All authors read
and approved the final manuscript.
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2.9 Additional Files

Additional File 2.1

Overlap of most significant expression genes in ChIP-on-chip data. Indicated are the
size of the lists for the top expressed genes and the percent of those contained in the

significant ChIP-on-chip genes (true-positives). There is a trend that the smaller
more selective expression gene lists contain a higher percent of true positives.
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2.9 Additional Files

Additional File 2.2

Consistency of TF identification in different random set sizes. Indicated are the
number of TFs that occur in 1, 2, or 3 out of 3 total runs. As expected, the larger
the random set size (500, 1000, 2000, or 4000 promoters) the larger the consistency
over runs. However, as indicated by the y-axis scale, this is not a very large effect.
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Additional File 2.3

Optimal promoter size. The p-value and frequency of promoters with size 500, 1000,
2000, and 4000 bp and exon 1 with Match settings to minimize false positives

(Min pos) or minimize the sum of false positives and negatives (Min sum). Overall,
we see a promoter of (A) 1000 bp + exon 1 works best for Min sum runs and (B)

2000 bp + exon 1 works best for Min pos runs. As expected, (C and D) frequency of
TFBSs hit increases as the promoters become larger. For a full color figure see

www.biomedcentral.com/content/supplementary/1471-2105-9-495-s3.tiff.
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2.9 Additional Files

Additional File 2.4
TransFactor LAMA4 -MyoD. Set-up and data analysis of MyoD binding a LAMA4
promoter derived sequence with the TransFactor kit.

TransFactor confirmation MyoD binds the LAMA4
(ENSG00000112769:ENST00000230538) promoter

Materials:

TransFactor Kit (Clontech product 631956)
Oligos: (ordered from Operon, bring up in TE to 100µm)

LAMA4 MyoD F biotin tgctttcCACCAGCTGTGCgaccttg
LAMA4 MyoD R caaggtcgcacagctggtggaaacga
Neg MyoD F biotin tgctttcCTCGAGGAGTGCgaccttg
Neg MyoD R caaggtcgcactcctcgaggaaagca
* Nucleotides are the mutated nucleotides from the original target sequence

Antibodies: Primary: Santa Cruz MyoD (M318): sc760
Secondary: goat anti rabbit IgGHRP from TransFactor Kit

Protein: Recombinant MyoD protein
Plate Reader: BIOTEK Synergy HT

Methods:

Oligo preparation done as:
-mix 10µl forward + 10µl reverse oligo
-place 95◦C heat block 10 minutes
-cool on desktop 30 minutes
-mix 20µl with 198µl Mg to make 1µM concentration, vortex briefly

The TransFactor Kit User Manual: V. Colorimetric TransFactor ELISA
Procedure is followed with the following additions/changes:
-dilute MyoD antibody 1:100
-dilute goat anti rabbit antibody 1:1000
-step F1: after adding the TMB substrate place directly into the reader
-plate reader protocol: 1. Kinetic 13x5 minute intervals

2. Absorbance
3. Wavelength: 655nm
4. Shake 30s/read
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Results:
Measurements over 5 time points:
slope: Tn-T(n-1)
T2-T1 sample 9-26-06 9-29-06 10-6-06
Neg MyoD 0.01 0.008 0.003 0.005 0.027 0.028
LAMA4 MyoD 0.021 0.034 0.026 0.03 0.612 0.455
T3-T2 sample
Neg MyoD 0.008 0.007 0.001 0.003 0.023 0.022
LAMA4 MyoD 0.019 0.029 0.024 0.024 0.48 0.355
T4-T3 sample
Neg MyoD 0.007 0.006 0.001 0.001 0.017 0.02
LAMA4 MyoD 0.017 0.024 0.019 0.02 0.387 0.292
T5-T4 sample
Neg MyoD 0.007 0.006 0 0.003 0.017 0.017
LAMA4 MyoD 0.015 0.02 0.019 0.019 0.322 0.246

Gnumeric spreadsheet Anova single factor results:
Groups Count Sum Average Variance
measurements 48 3.756 0.07825 0.02247
sample 48 72 1.5 0.25532
day 48 96 2 0.68085

ANOVA
Source of Variation SS df MS F P-value F critical
Between Groups 95.4319 2 47.7160 149.324 1.5E-35 3.06029
Within Groups 45.0561 141 0.31955
Total 140.488 143

Conclusion: With a p-value of 1.5E-35 there is a very significant difference in
MyoD binging between the negative and target oligos. It is therefore highly likely
that the target sequence is a TFBS for MyoD.
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Additional File 2.5
Cao et al 2006 ChIP CORE TF. CORE TF run results to identify over-represented
TFBSs in MyoD/Myog ChIP-on-chip data.
(http://www.ncbi.nlm.nih.gov/pmc/articles/PMC2613159/bin/1471-2105-9-495-S5.
xls)

Additional File 2.6

CORE TF using random FAST runs vs runs with similar %GC. It is visible that in
all ChIP-on-chip data tested the runs on purely random Ensembl promoters (FAST
runs) has a bias towards high and low p-values while the random set with a similar
%GC follows a more normal distribution. This could account for false positives in

the FAST runs.

Additional File 2.7
Cao et al 2006 expression CORE TF. CORE TF run results to identify over-represented
TFBSs in expression array data.
(http://www.ncbi.nlm.nih.gov/pmc/articles/PMC2613159/bin/1471-2105-9-495-S7.
xls)
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Additional File 2.8

oPOSSUM runs on expression data. Custom oPOSSUM runs using the top 10, 20,
50, 100, and 200 genes from Cao et al 2006 expression data. oPOSSUM supplies (A)

Fisher and (B) z-scores. (C) We also used their hits in the experimental and
background data to generate a binomial test p-value similar to our program. (D)

Frequency of TFBS hits overall declines as we stray from the top hits, as expected,
but this is not an entirely smooth curve.

Additional File 2.9

CORE TF vs oPOSSUM. CORE TF and oPOSSUM binomial test p-values for the
top 20, 50, 100, and 200 genes from Cao et al 2006 expression data for

over-expression (A) of MyoD or Myog in the appropriately induced cell line. We see
comparable results in the top 20, 50, 100, and 200 sets, but better overall

performance in oPOSSUM for Myog and in CORE TF for MyoD. Frequency (B) of
MyoD or Myog hits was also plotted. As expected, the smaller more significant lists

generally have higher frequency and more significant p-values than larger less
specific lists. Frequency of TFBSs in the promoters was also overall higher in

experimental data than random promoters as expected. The oPOSSUM MyoD
frequency was the only plot that did not seem concordant.
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Additional File 2.10

Identifying MyoD TFBSs conserved in the LAMA4 promoter with ConTra and
CORE TF. Many conserved TFBSs were found identically between the two
programs. Shown here is the most conserved TFBSs found, a MyoD TFBS

conserved between human, chimp, and dog in (B) CORE TF and also macaque in
(A) ConTra. Though found by both programs, CORE TF also identifies the TFBS

is on both strands of the DNA. For a full color figure see
www.biomedcentral.com/content/supplementary/1471-2105-9-495-s10.png.
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3 Enrichment with Sunflower

3.1 Abstract

Background: Existing computational methods for prediction of transcription factor
binding sites largely ignore competition between transcription factors for binding the
same target DNA sequence. We used Sunflower, a program that implements a hid-
den Markov model to calculate the probability of transcription factor binding to each
nucleotide position in a DNA sequence and to account for competition effects. We
utilized Sunflower in conjunction with over-representation analysis for predictions of
transcription factor binding sites in sets of co-regulated genes.

Results: The validity of our method is demonstrated by the significantly increased
probability of binding of transcription factors targeted in chromatin immunoprecip-
itation (ChIP) experiments in the immunoprecipitated DNA sequences. This was
established for different transcription factors (MyoD, Myog, p53, and STAT1) and
technological platforms (ChIP-chip, ChIP-paired end ditag sequencing, and ChIP-
seq). We observed that the a priori binding probabilities were dependent on the
DNA sequence characteristics. It is therefore essential to match the background
DNA sequence to the sequence regions of interest, e.g. separate CpG islands and
CpG deserts.

Conclusion: With this method, it is possible to predict transcription factor binding
sites in sets of co-regulated genes and predict transcription factors that co-regulate
gene expression with transcription factors targeted in ChIP experiments. Our method
outperforms other approaches that do not account for competition between tran-
scription factors. Furthermore, our approach models the true biological state more
realistically in which transcription factors may compete for similar genomic regions.
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3.2 Introduction

Several laboratory methods for the identification of transcription factor (TF) binding
sites (TFBSs) are available. These include luciferase reporter assays and chromatin-
immunoprecipitation coupled with either a microarray assay (ChIP-chip) (34), paired-
end ditag sequencing (ChIP-PET) (11), or next-generation sequencing (ChIP-seq)
(35). However, all of these methods are time-consuming and expensive. In addition,
they tend to identify binding regions rather than binding sites at single base pair res-
olution. To identify TFBSs more quickly, less expensively, and more precisely, several
computational tools have been developed. However, also computational identification
of TFBSs can be a cumbersome process. A TFBS may be less than 12–14 base pairs
(bp) long and have a fairly loose consensus sequence (49). Position weight matrices
(PWMs), which summarize experimental information on the sequence preference of
TFs, are commonly used in the search for TFBSs of known TFs (50). Two leading
databases of PWMs are TRANSFAC (51; 52) and JASPAR (53; 54). TRANSFAC
is larger with 834 PWMs in total (release 11.4, December 2007), compared to 123
in JASPAR. However, one may use the complete database of JASPAR PWMs for
free, while licensing fees are required to use the complete database of TRANSFAC
Professional PWMs. Existing programs, such as Match (55; 51), identify TFBSs
by evaluating the nucleotide similarity of the PWM with the genomic sequence of
interest. A TFBS is predicted when the similarity score passes a threshold.

To increase prediction accuracy, reported PWM alignments are usually further
filtered. Several methods take information on the evolutionary conservation of TFBSs
into account (76; 61; 77; 60). Another commonly used approach is to search for
shared TFBSs in co-regulated genes as it is presumed that similarly expressed genes
have common regulators (57). A binomial or analogous statistical test is frequently
used to test whether the number of TFBSs predicted in the sequences of interest is
statistically higher (i.e. erniched) than in a random group of genomic sequences (76).
These methods are implemented in several web applications, such as ConTra (61)
and COTRASIF (77) for conservation, PSCAN (78), Asap (79), and OTFBS (80) for
over-representation analysis, and CORE TF (76) and oPOSSUM (60) for both.

Few PWM-based algorithms model competition between different TFs. Models
have been used to identify TFBSs in insects (81; 82), such as Drosophila, which
take into account competition. Segal et al. 2008 (81) use a competitive model that
also requires TF expression levels, but with the aim to predict target gene expression
levels. Sinha 2006 (82) take into account competition, but aim at predicting unknown
binding motifs. To our knowledge, the first model to address TF binding competition
in vertebrates for known TFs is Sunflower (56). Sunflower uses a hidden Markov
model which assumes steric hindrance between TFs for the same DNA sequence.
This is accomplished by permitting a single path through the model to traverse only
one PWM at a time, disallowing TFs to bind to the same place at the same time.
Sunflower sums the probabilities of all possible paths through the model using the
forward-backward algorithm (83), resulting in a posterior probability per nucleotide
position. This probability thus accounts not just for the PWM of that TF, but also
for competitive effects due to overlap with PWMs of other TFs. The multitude of
different circular paths (from unbound via bound back to the unbound state ) gives
Sunflower its name, as each path can be represented by one flower leaf attached to
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the heart of the Sunflower. For simplicity we declare the DNA region to be bound by
the TF when the probability exceeds a given threshold. In the current paper, we use
Sunflower in conjunction with enrichment analysis to identify TFBSs.

When searching for enriched TFBSs, it is essential to select an appropriate group
of background sequences. It is common practice to select a group of random promoter
sequences. However, different classes of promoters may exist. Some promoters, such
as those containing a TATA box, have transcription start sites with very defined
specific locations, whereas others may contain broad transcription start sites with
multiple peaks of transcription (8). The latter promoters are more likely to contain
a CpG island (8; 9). Different classes may have different binding affinities for TFs.
Furthermore, if the abundance of T/A or G/C nucleotides in target experimental
sequences is different from the background sequence set, the estimation of the binding
probabilities and frequencies may be incorrect, in particular for PWMs with skewed
nucleotide contents. An example of this is finding the GC-enriched PWM for Sp1
over-represented when not selecting appropriate GC content background sequences
(84; 85). CpG islands have a higher GC content by definition (10) so one means of
separating sequences on their GC content is by discriminating on CpG content as
CpG islands or CpG deserts. Incorporating GC and/or CpG content into predictions
for both de novo motifs and known PWMs has previously been shown to improve
results (86; 87; 76; 85). Since CpG islands and CpG deserts have potentially different
promoter binding behavior, we followed the philosophy of Roider et al. (85) and
considered CpG desert and CpG island sequences separately, as well as demonstrate
their different behaviors in our model.

In this paper, we evaluated and optimized Sunflower in conjunction with our en-
richment algorithms using ChIP-chip, ChIP-PET, and ChIP-seq data where we knew
in advance which TF should bind the target sequences. In addition to rediscovering
the targeted TFs, we discovered potential co-regulators with over-represented TFBSs
in the regions bound by the targeted TF.

3.3 Results

3.3.1 Optimal PWMs

We set out to improve computational TFBS predictions by accounting for competition
between TFs, which is not done in existing PWM-based methods (55; 51; 60; 76). The
program Sunflower (56) was used to determine the binding probability of a TF at a
specific nucleotide position. We considered a TF bound to a specific nucleotide if the
probability at that nucleotide position exceeded 0.1. Subsequently, a binomial test was
used to evaluate the enrichment of TFBSs in a selected set of genomic regions over a set
of background sequences. To demonstrate the validity of our approach, we evaluated
whether genomic regions bound by TFs, as determined in ChIP experiments, were
significantly enriched for TFBSs for the TFs targeted in the ChIP procedure. Initial
ChIP identified regions were from MyoD and Myog immunoprecipitation experiments
(66).

Since (partially) redundant PWMs representing the same TF may compete for
each other, it is essential to choose an optimal selection of non-redundant PWMs.
Given the competition element, our method can also be used to select the best PWM
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for a given TF. We took PWMs, including the MyoD and Myog PWMs available, from
both TRANSFAC and JASPAR (MyoD/Myog are represented by the Myf PWM in
JASPAR, Additional File 3.1). Using the MyoD or Myog bound promoter sequences
(±1000 bp around the transcription start site), identified by ChIP-chip, and random
promoter sequences retrieved and sorted by CpG content, we ran Sunflower to cal-
culate the binding probability of each nucleotide in a sequence by each PWM and
evaluated the enrichment of each PWM.

We saw in both CpG deserts and CpG islands that MyoD/Myog TRANSFAC
PWMs had lower p-values and thus higher ranks than the JASPAR Myf PWM (Ta-
ble 3.1). It should be cautioned that we only compared TRANSFAC and JASPAR
MyoD/Myog PWMs for these specific MyoD/Myog ChIP-chip experiments. TRANS-
FAC PWMs may not have greater significance than JASPAR PWMs for other TFs
and experimental sequences. None of the TRANSFAC PWMs were consistently bet-
ter than the others. To better identify which TRANSFAC MyoD/Myog PWMs were
optimal we took a slightly larger selection of PWMs (Additional File 3.1) and ob-
served their performances at a range of TF concentrations in the Sunflower model.
This was done by adjusting the prior probability of the unbound state, which is in-
versely correlated to the concentration of TFs in the model. We adjusted the prior
probability of the unbound state from the default of 0.9, to also 0.95, 0.985, 0.99,
and 0.999. When increasing the prior probability of the unbound state, one MyoD
PWM (V$MyoD Q6 01) and one Myog PWM (V$MYOGNF1 01) remained signif-
icant, while the significance of other PWMs for MyoD or Myog decreased (Figure
3.1). These same two PWMs are also used in TRANSFAC’s non-redundant PWM
set. Since a higher prior probability of the unbound state invokes stronger competition
we believe these two PWMs drive the other MyoD/Myog PWMs out by competition.
This also indicates that increasing the stringency by raising the prior probability of
0.999 is best-suited for identification of true TFBSs. We therefore performed the re-
mainder of the analysis with the V$MyoD Q6 01 and V$MYOGNF1 01 PWMs and
a prior probability of the unbound state fixed to 0.999. Using TRANSFAC’s non-
redundant PWM set, we extended the size of our PWM selection to a total of 102
PWMs (Additional File 3.1). With a larger selection of PWMs, each nucleotide has
more TFs competing to bind it and we therefore reduced the threshold to declare a
bound nucleotide in the binomial tests from 0.1 to 0.01 for the remaining analyses.

3.3.2 Background Set Analysis

When looking for enrichment of a factor in an experimental compared to a back-
ground set, the use of different background sets can have a major impact on reported
significance (88; 89). We studied different ways to select experimental sequence re-
gions and random sequences and evaluated the effect on the prediction of MyoD and
Myog binding sites in promoters of genes identified in the MyoD/Myog ChIP-chip
experiments. For experimental sequences we used all Ensembl (3) promoters, or only
promoters from presumed better annotated Ensembl genes (minimum 5′ UTR of 40
bp). As background sequences, we tested random sets of Ensembl promoters, random
better annotated Ensembl promoters, promoters that were negative in the ChIP-chip
experiments, and random genomic sequences (Figure 3.2). Greatest significance was
found when random genomic regions were used as background, confirming the a priori
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Table 3.1: JASPAR versus TRANSFAC PWMs
ChIP-chip CpG deserts CpG islands

target PWM p-value rank p-value rank
MyoD V$MYOD 01 1.84× 10−4 7 6.47× 10−1 31
MyoD V$MYOD Q6 7.16× 10−5 5 1.77× 10−6 1
MyoD V$MYOD Q6 01 0 1* 4.64× 10−2 11
MyoD Myf 1.14× 10−3 11 8.77× 10−2 14
Myog V$MYOGENIN Q6 2.62× 10−4 7 4.33× 10−4 2
Myog V$MYOGNF1 01 5.76× 10−5 6 6.45× 10−1 37
Myog Myf 1.41× 10−1 15 3.62× 10−3 5

*tied for 1st place with 2 other PWMs.
JASPAR (Myf) and TRANSFAC (V$MYOD 01, V$MYOD Q6, V$MYOD Q6 01,
V$MYOGENIN Q6, V$MYOGNF1 01) PWMs p-values and ranks (within p-values,
sorted on significance) vs all other 49 PWMs and the unbound state for binomial tests
on CpG-separated MyoD/Myog ChIP-chip data.

assumption that TFs are more likely to bind near genes. There were no large differ-
ences between promoters from normal Ensembl genes and more confidently annotated
Ensembl genes nor between randomly selected promoters and promoters shown to be
negative in the ChIP-chip experiments. We continued with what we considered to be
theoretically best, using random Ensembl promoters for genes identified in promoter
microarray experiments and random genomic regions for ChIP-PET or ChIP-seq ex-
periments.

3.3.3 Testing for Enrichment With Four ChIP Data Sets

To test the overall validity of our method, we used the larger set of 102 PWMs with
four data sets: the previous MyoD and Myog ChIP-chip sequences, sequences from
ChIP-PET with p53 (11), and STAT1 ChIP-seq sequences (35). For ChIP-chip anal-
ysis we used random promoters (separated on CpG content) as background sequences
and for ChIP-PET and ChIP-seq we used random genomic sequences (separated on
CpG content) as background sequences.

We first evaluated the significance of the MyoD and Myog PWM in the MyoD/Myog
ChIP-chip sequences, and compared their p-values with those of other PWMs. The
MyoD PWM was highly significant in the MyoD-immunoprecipitated promoters clas-
sified as CpG deserts and also significant (p-value = 0.01) in CpG islands (Table 3.2).
Results for the Myog PWM in Myog-immunoprecipitated promoters were overall less
significant, but were still significant (p-value <0.05) for CpG deserts (Table 3.3). The
TFBSs most significantly enriched in the MyoD/Myog ChIP regions (Tables 3.2 and
3.3), could be binding sites for co-regulators, binding to the same genomic regions as
the targeted TFs. We evaluated whether there was literature evidence for this, using
the text mining tool Anni (90). Anni uses concept profiles, which summarize the
literature context in which a term, such as a biological process or gene, is mentioned
in. Out of 10,850 potential Gene Ontology (GO) (91; 92) biological processes terms,
the top 10 TFs in MyoD CpG deserts, MyoD CpG islands, and Myog CpG deserts
were most strongly associated with the concept profile for myogenesis, the process
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Figure 3.1: Varying the prior probability of the unbound state: Plots of the − log10(p-
value from binomial tests) from MyoD PWMs and Myog PWMs in MyoD/Myog ChIP-
chip data, sorted on CpG content, when varying the prior probability of the unbound
state, P(unbound), in the Sunflower model. Displayed p-values have a minimum of
1× 10−17.

in which MyoD and Myog are involved. In Myog CpG islands, myogenesis had the
sixth best match. Since MyoD itself contributed considerably to the association with
myogenesis, we excluded MyoD and performed the same analysis. Still, myogenesis
ranked at position 21 or better for all biological processes. For many TFs predicted
as potential co-regulators in myogenesis Anni found co-occurrences of TFs and “myo-
genesis” in the same MEDLINE abstracts, suggesting potential involvement of these
TFs in myogenesis (Tables 3.2 and 3.3).

In the p53 ChIP-PET sequences, we found p53 TFBSs to be highly enriched
in ChIP regions classified as CpG deserts and CpG islands (Table 3.4). Similarly,
through a literature search to identify potential co-regulators of p53, we found cell
cycle arrest and tumor suppressor activity among the best matching biological pro-
cesses. These are also well-established functions for p53 itself.

We also found STAT1 TFBSs to be highly significant in both ChIP regions sorted
as CpG deserts and CpG islands (Table 3.5). In summary, we have validated our ap-
proach through prediction of experimentally determined TFBSs and predicted many
potential TFBSs for co-regulators in four independent datasets with widely different
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Figure 3.2: Evaluation of background sequences: Plots of the − log10(p-value from
binomial tests) from CpG stratified MyoD and Myog ChIP-chip data using several
experimental and background sequence types: promoters from normal Ensembl genes
(N), promoters from Ensembl genes with at least 40 bp of 5′ UTR (UTR), negative
ChIP-chip promoters (neg), and random genomic sequence (RndG). Displayed p-
values have a minimum of 1× 10−10.

characteristics.

3.3.4 Excluding PWM Nucleotide Composition Bias

To exclude the possibility that the significance of PWMs was caused by nucleotide
composition rather than the actual sequence, we replaced the MyoD PWM in the
larger selection of 102 non-redundant PWMs with either a PWM in which the last
half of the PWM was moved to the first half, or with a PWM in which the nucleotides
were placed in completely random order. As expected, the unaltered MyoD PWM was
much more significant than the shuffled MyoD PWMs (Table 3.6). We also shuffled
the p53 PWM similarly and found the unshuffled p53 PWM to be more significant
than the shuffled p53 PWMs (Table 3.6).

3.3.5 Comparison to Existing Programs

For a comparison to other methods, we took the MyoD/Myog ChIP-chip promoters
as input and applied them to two other programs that also use statistical tests for
enrichment of TFBSs: CORE TF (76) and PSCAN (78). We tried to keep the same
settings for all programs as close as possible. We compared the p-values provided by
each method and found that our Sunflower based method had the most significant
p-value in three out of the four sets of ChIP sequences (Figure 3.3). CORE TF
and our Sunflower method use the same binomial test for over-representation, but
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Table 3.2: Top 10 significant PWMs from MyoD ChIP-chip sequences and literature
evidence

CpG deserts literature
PWM p-value evidence*

V$AP2ALPHA 01 0 Y
V$KROX Q6 0 Y

V$MYOD Q6 01 0 Y
V$SP1 Q2 01 0 Y
V$ZNF219 01 0 -

V$E2A Q2 1.00× 10−10 Y
V$SREBP Q6 1.00× 10−10 N

V$HIC1 02 2.09× 10−8 N
V$PAX5 01 4.22× 10−8 Y
V$HEN1 01 1.47× 10−7 Y

CpG islands literature
PWM p-value evidence*

unbound 0
V$IRF Q6 4.46× 10−6 Y
V$E2A Q2 2.11× 10−4 Y

V$KAISO 01 3.71× 10−4 N
V$TAL1BETAE47 01 9.14× 10−3 Y

V$SRY 02 1.09× 10−2 Y
V$NF1 Q6 01 1.20× 10−2 N

V$MYOD Q6 01 1.26× 10−2 Y
V$TBX5 01 1.36× 10−2 Y

V$AP1 Q4 01 2.52× 10−2 Y
Significance is determined by p-values from a binomial test. *Literature evidence
is based on co-occurrence of the TF’s concept profile with the concept profile for
“myogenesis.” A “-” indicates a defined literature-based concept that did not have a
profile.

PSCAN uses a z-test. To compare between these we sorted p-values in descending
significance and reported the rank of the target PWM compared to the total number
of PWMs. We found that our Sunflower based method performed consistenly best on
the evaluated datasets (Figure 3.3), with most pronounced performance on the MyoG
CpG islands.

3.4 Discussion

We present a new method for the prediction of enriched TFBSs. The method includes
the use of Sunflower, a program that calculates the probabilities of TF binding to
nucleotide sequences with a hidden Markov model. These probabilities reflect kinetic
rates for TF binding. Most current applications do not take competition between
TFs into account, while our system naturally incorporates the competition of different
TFs for the same site. In theory, this method should better model the real biological
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3 Enrichment with Sunflower

Table 3.3: Top 10 significant PWMs from Myog ChIP-chip sequences and literature
evidence

CpG deserts literature
PWM p-value evidence*

V$LHX3 01 0 N
V$MYOD Q6 01 0 Y

V$SP1 Q2 01 0 Y
V$ZNF219 01 0 -
V$KROX Q6 1.00× 10−10 Y

V$AP2ALPHA 01 8.00× 10−10 Y
V$E2A Q2 1.80× 10−9 Y
V$HIC1 02 2.70× 10−9 N

V$SREBP Q6 3.70× 10−9 N
V$HEN1 01 7.13× 10−7 Y

CpG islands literature
PWM p-value evidence*

unbound 0
V$AP4 01 2.64× 10−3 N

V$HAND1E47 01 4.39× 10−3 Y
V$IRF Q6 9.42× 10−3 Y
V$E2A Q2 1.87× 10−2 Y

V$TAL1BETAE47 01 1.92× 10−2 Y
V$PAX6 Q2 2.79× 10−2 Y
V$SOX9 B1 2.80× 10−2 Y
V$TBX5 01 4.57× 10−2 Y
V$EVI1 03 4.61× 10−2 N

Significance is determined by p-values from a binomial test. *Literature evidence
is based on co-occurrence of the TF’s concept profile with the concept profile for
“myogenesis.” A “-” indicates a defined literature-based concept that did not have
a profile. Myog ChIP-chip data had p-values of 3.67 × 10−2 (30th most significant
PWM) and 3.52 × 10−1 (36th most significant PWM) for V$MYOGNF1 01 in CpG
deserts and CpG islands respectively.

system. We demonstrated its validity and improvement over existing methods by
correct prediction of TFBSs in ChIP regions. Besides the rediscovery of targeted TFs
by our method, the method can identify potential co-regulators in the ChIP regions,
as evidenced by literature searches. This could be especially useful to identify DNA
binding regulatory elements in ChIP-based methods with an antibody directed against
proteins that do not bind the DNA directly (e.g. CBP or p300 (93)). The system
could also be used to derive TFs common to a set of co-regulated genes identified in
expression data.

Besides identifying TFBSs from PWMs, this method can be used to evaluate
PWMs themselves. By shuffling the order of the nucleotides (Table 3.6) we could
evaluate how much of a PWMs performance is based on the sequence compared
to mere nucleotide content. We see shuffling PWMs results in less significant p-
values but not complete insignificance, indicating that the nucleotide content alone
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Table 3.4: Top 10 significant p53 ChIP-PET PWMs
CpG deserts CpG islands

PWM p-value PWM p-value
unbound 0 unbound 0

V$HEN1 01 0 V$P53 02 0
V$NFY Q6 01 0 V$BACH2 01 8.21× 10−3

V$P53 02 0 V$POU6F1 01 1.05× 10−2

V$SRF Q6 3.00× 10−9 V$TEL2 Q6 1.26× 10−2

V$NRSF Q4 5.20× 10−7 V$AP1 Q4 01 1.53× 10−2

V$AP1 Q4 01 3.69× 10−5 $EGR1 01 1.64× 10−2

V$PPARA 02 4.64× 10−5 V$AP2ALPHA 01 2.10× 10−2

V$VDR Q3 1.95× 10−4 V$USF Q6 01 2.45× 10−2

V$STAF 02 3.07× 10−4 V$ZEC 01 3.00× 10−2

Significance is determined by p-values from a binomial test.

Table 3.5: Top 10 significant STAT1 ChIP-seq PWMs
CpG deserts CpG islands

PWM p-value PWM p-value
V$AP1 Q4 01 0 unbound 0
V$BACH2 01 0 V$SP1 Q2 01 0
V$STAT1 01 0 V$STAT1 01 1.06× 10−8

V$SP1 Q2 01 8.00× 10−10 V$KROX Q6 8.73× 10−7

V$ZNF219 01 4.50× 10−9 V$ZNF219 01 7.35× 10−5

V$PPARA 02 1.54× 10−8 V$STAF 02 1.37× 10−3

V$HEN1 01 1.60× 10−7 V$P53 02 2.47× 10−3

V$NRSF Q4 2.33× 10−7 V$CREB Q4 01 3.06× 10−3

V$USF Q6 01 8.99× 10−6 V$HLF 01 4.53× 10−3

V$HIC1 02 1.44× 10−3 V$ZEC 01 4.53× 10−3

Significance is determined by p-values from a binomial test.

Table 3.6: Shuffling the MyoD and p53 PWMs
TF & Sequence Flip first/last Randomized

CpG content Normal PWM half PWM PWM
MyoD CpG desert 0 (1*) 2.78× 10−6 (12) 4.4× 10−5 (13)
MyoD CpG island 1.26× 10−2 (8) 1.00 (88) 1.00 (91)
p53 CpG desert 0 (1**) 0 (1**) 1.89× 10−2 (18)
p53 CpG island 0 (1***) 3.32× 10−2 (10) 4.04× 10−1 (52)

Indicated for each condition: p-value and rank (within parenthesis) out of 102 PWMs
and the unbound state (sorted on decreasing significance). *tied for 1st place with
4 additional PWMs. **tied for 1st place with 3 additional PWMs. ***tied for 1st
place with 1 additional PWM.

has some predictive value. Besides evaluating a PWM itself, we can compare PWMs
for the same TF to find the best performing PWM, as hinted by our MyoD and Myog
comparisons (Figure 3.1). The best performing PWMs for MyoD and Myog had the
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Figure 3.3: We compared our Sunflower results to the programs CORE TF and
PSCAN. The top chart plots rankings of target PWMs in over-representation re-
sults between different programs, as indicated by 1 - (rank / total number of PWMs).
Therefore, the closer to one the better the performance. The lower chart plots the
− log10(p-value) from each method.

longest consensus sequence. This may reflect a bias in the Sunflower algorithm. The
longer a PWM is the longer the path in the Sunflower model will be, resulting in a
larger posterior probability of TF binding. This is an issue that should be addressed
in a future version of Sunflower.

The issue of using appropriate background sequences when searching for over-
represented TFBSs has been addressed before (85), but many programs, such as
PSCAN, still do not take into account background set differences. We found that
for MyoD our predictions performed relatively similar to PSCAN that did not take
into account background CpG content, but for Myog our method did perform better
(Figure 3.3). To see how well our system would work if we did not separate on CpG
content we analyzed the MyoD/Myog data without sorting experimental or back-
ground sequences on CpG content. Without sorting we still find the MyoD PMW
among the top ranked PWMs (near 0 p-value and tied for first place in ranking).
However, we found poorer performance for Myog with a rank of 45 out of 103 (in-
cluding the unbound state, p-value of 2.08 × 10−1). In line with the suggestion by
Roider et al. 2009 (85), we recommend that CpG islands and CpG deserts be treated
separately.

Another argument for separating CpG deserts and CpG islands is their inherently
different binding properties. An indiciation for this is that, after shuffling the nu-
cleotide sequence in the PWMs, more significance was retained in CpG deserts than
CpG islands. This is probably not due to a GC bias in PWMs since most PWMs
had near 50% GC content (Additional File 3.2). In the evaluation of the MyoD,

56



3.5 Materials and Methods

Myog, p53, and STAT1 datasets, we generally observed higher significane levels in
CpG deserts than CpG islands. Finding higher significance for TF binding in CpG
poor compared to CpG rich regions has been reported previously (85). In line with
this, the unbound state is highly significant in CpG islands but not in CpG deserts
(with the exception of p53). This reflects a higher overall likelihood of TF binding in
CpG deserts than CpG islands.

Different from the effect of matching on CpG content, we found no large influences
of the promoter type. However, the TF binding properties of promoter regions were
clearly distinct from those of genomic regions (Figure 3.2). We therefore recommend
that the background sequences should be matched as closely as possible to the ex-
perimental sequences: random promoters for genes identified in expression profiling
or promoter microarray experiments and random genomic regions for ChIP-PET or
ChIP-seq experiments. This approach parallels the over-representation approaches
suggested for matching appropriate background sets to differential gene expression
sets from microarray experiments to identify enriched GO terms (88; 89).

To conclude, we have developed a new method for the prediction of enriched
TFBSs. Its validity was confirmed by the rediscovery of TFBSs for different TFs
(MyoD, Myog, p53, and STAT1) targeted in ChIP-chip, ChIP-PET, and ChIP-seq
experiments. In a novel step, we have accounted for TF binding competition in our
method with the Sunflower algorithm. Sunflower has the potential to model TF
binding in a much more realistic way than its predecessors and should be used, in
conjunction with this work, more extensively in the future. By using a model more
representative of the actual biological state, where TFs compete for binding in the
same regions of DNA, this method will prove valuable in analyses of a variety of ChIP
and expression applications. The selection of proper background set also remains an
important issue for methods that investigate the enrichment of TFBSs.

3.5 Materials and Methods

3.5.1 Obtaining Experimental ChIP Sequences

We used four data sets for evaluation purposes: MyoD and Myog ChIP-chip data
(66), p53 ChIP-PET data (11), and STAT1 ChIP-seq data (35). MyoD/Myog ChIP-
chip results were from a differentiating mouse myoblast cell line (C2C12). Positive
ChIP-chip lists were identified as those promoters enriched for MyoD or Myog, as
defined by Cao et al., 2006 with a p-value below 0.001. The third data set was
a p53 chromatin-immunoprecipitated human colorectal cancer cell sample coupled
with a PET sequencing approach. We used the 542 genomic loci identified and re-
ported for p53 in Wei et al., 2006’s supplemental table 4 for p53 positive ChIP-PET
regions. The fourth data set was a STAT1 chromatin-immunoprecipitated IFN-γ-
stimulated human HeLa S3 cells coupled with next-generation sequencing on an Il-
lumina 1G system. We used the ChIP-seq regions from their Supplemental Data 1
(file “STAT1 hg18 IFNg ht11.peaks.txt”) that contained over 500 sequencing reads
as positive ChIP-seq regions.

For the MyoD/Myog ChIP-chip data, we converted to Ensembl (3) stable iden-
tifiers with Idconverter (69) and used the Ensembl Perl API to retrieve promoter
sequences, defined as 1000 bp before and 1000 bp after each transcription start site.
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As experimental sequences we also tested promoters from Ensembl genes with highly
confident annotation (with at least 40 bp of 5′ UTR).

The p53 ChIP-PET and STAT1 ChIP-seq data were of variable lengths, but due
to constraints in Sunflower’s reporting and testing process we needed sequences of
identical length. Therefore we truncated or expanded regions on both ends to a size
of 1186 bp (the mean original PET sequence size) and retrieved sequences with the
Perl API scripts. ChIP-seq regions were on average 2626 bp, but we chose to use the
same length as the ChIP-PET data to give a more precise binding target and to make
background sets comparable.

Unless otherwise stated, all ChIP regions were separated on CpG content (classi-
fied as CpG deserts or CpG islands) using the EMBOSS suite (newcpgreport) (94).

3.5.2 Obtaining Random Data Sequences

For random sequences, we tried promoters from random Ensembl genes, random En-
sembl genes with at least 40 bp of 5′ UTR, negative ChIP-chip genes (genes within the
worst 1500 p-values), and random genomic regions. All sequences were retrieved with
the Ensembl Perl API and (unless otherwise stated) separated by CpG content using
the EMBOSS suite (newcpgreport). For random genomic regions we used the same
sequence length as the corresponding experimental sequences. After CpG sorting, we
arrived at random sets consisting of 200 regions.

3.5.3 JASPAR and TRANSFAC PWM Selections

For a Sunflower usable format we converted a TRANSFAC .dat file to a JASPAR-style
format with a custom Perl script.

JASPAR has solely the Myf family (representative for both MyoD and Myog)
PWM, but TRANSFAC Professional has 3 separate MyoD and 2 separate Myog
PWMs. We made a selection of PWMs with a mix of TRANSFAC and JASPAR
PWMs (including all Myf/MyoD/Myog PWMs). We also made a selection of TRANS-
FAC only PWMs (including all MyoD/Myog PWMs), and a larger more inclusive
selection of 102 non-redundant TRANSFAC-only PWMs (from the TRANSFAC ver-
tebrate non-redundant minimum false positives PWM set, including only one MyoD
PWM, V$MYOD Q6 01, and one Myog PWM, V$MYOGNF1 01). Full lists of all
PWM selections are in Additional File 3.1.

For each selection of PWMs, the unbound state was trained with emission proba-
bilities from the background distribution of unambiguous nucleotides in the sequenced
genome of the target species (human NCBI36 or mouse NCBIM37 reference genomes)
using the fastacomposition script of the exonerate package (95) and Sunrecompose
(from Sunflower).

3.5.4 Setting the Prior Probability of the Unbound State

We adjusted the Sunflower model parameter of the prior probability of the unbound
state, which essentially represents the concentration of TFs in the model. Initially
the selection of mixed TRANSFAC/JASPAR PWMs used a prior probability of the
unbound state fixed to the default 0.9. To analyze varying concentrations of TFs in
the model, we varied the prior probability of the unbound state to 0.95, 0.985, 0.99,
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and 0.999 with our selection of TRANSFAC only redundant PWMs. We created the
final selection of 102 TRANSFAC non-redundant PWMs with a prior probability of
0.999.

3.5.5 Shuffling PWMs

To investigate the influence of sequence specificity versus nucleotide content we also
made copies of the selection of 102 PWMs, one with the last half of the MyoD or
p53 PWM moved to the first half and one with a completely randomized order of the
MyoD or p53 PWM nucleotides.

3.5.6 Binomial Tests

We performed binomial tests with the Math::Cephes module
(http://search.cpan.org/ dist/Math-Cephes/lib/Math/Cephes.pod). These tests ana-
lyzed the number of TFBSs with a Sunflower probability greater than a user-defined
flat cutoff (0.1 for PWM sets with mixed TRANSFAC/JASPAR PWMs and re-
dundant TRANSFAC PWMs, and 0.01 for the larger selection of 102 TRANSFAC
PWMs).

3.5.7 Identifying Potential Co-Regulators

To analyze if the best predicted PWM for each selection of PWMs represents TFs
serving as potential co-regulators we converted the PWMs to factor names using the
TRANSFAC website. These were used as input for Anni v2.0 (90). When a literature-
based concept profile was not found for a factor name we used a gene alias that had
a concept profile. Each set of concept profiles was then matched against the GO
annotation consortium (91; 92) biological process concept file supplied in Anni.

3.5.8 Comparison to Existing Programs

We took the MyoD/Myog ChIP-chip promoter sequences (or gene IDs for PSCAN),
all separated by CpG content, and ran these through CORE TF and PSCAN. These
were chosen since they all look for over-representation of TFBSs. For CORE TF
we used the same ChIP target sequences and 200 random promoters as used for the
Sunflower analysis. PSCAN does not have the option to import sequences, but only a
gene list. It also does not give a choice to give random data. We therefore gave input
as Refseq IDs and defined sequences as close to the Sunflower work as possible: mouse
promoters defined a -950 to +50 around the transcription start site. For all programs
we used TRANSFAC PWMs (CORE TF: a Match setting to minimize false positives
in a non-redundant vertebrate TRANSFAC 11.2, PSCAN: TRANSFAC public).

3.6 Acknowledgements
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3.7 Additional Files

Additional File 3.1
Mixed* TRANSFAC (small, redundant) TRANSFAC (102, non-redundant)

E2F1 V$AML1 Q6 V$MYOGENIN Q6V$AHRHIF Q6 V$MYOD Q6 01
ELK1 V$AP1 Q2 01 V$MYOGNF1 01 V$AIRE 02 V$MYOGNF1 01
Gata1 V$AP2ALPHA 02V$MZF1 01 V$AP1 Q4 01 V$NF1 Q6 01
GATA2 V$COUPTF Q6 V$MZF1 02 V$AP2ALPHA 01 V$NFAT Q4 01
HLF V$CREB 01 V$NERF Q2 V$AP4 01 V$NFKB Q6 01
MAX V$CREL 01 V$NFKB C V$ARNT 01 V$NFY Q6 01
MEF2A V$E2F1 Q3 V$NFKB Q6 V$ATF6 01 V$NKX3A 01
Myf V$ELK1 01 V$NRF2 01 V$BACH2 01 V$NRSF Q4
NFKB1 V$ELK1 02 V$P53 01 V$BCL6 Q3 V$OCT1 03
Pax6 V$FOXD3 01 V$PAX6 01 V$BRCA 01 V$OCT4 01
Pbx V$FREAC2 01 V$PBX1 01 V$CEBP Q3 V$P300 01
SOX9 V$FREAC3 01 V$PPARG 01 V$CREB Q4 01 V$P53 02
SP1 V$FREAC7 01 V$PPARG 02 V$E2A Q2 V$PAX2 02
SRF V$GATA2 01 V$PPARG 03 V$E2F Q6 01 V$PAX3 B
SRY V$GATA3 01 V$PU1 Q6 V$E4BP4 01 V$PAX4 03
TBP V$HAND1E47 01 V$RORA1 01 V$EGR1 01 V$PAX5 01
TP53 V$HEN1 01 V$RORA2 01 V$ER Q6 V$PAX6 Q2
USF1 V$HFH3 01 V$RREB1 01 V$EVI1 03 V$PAX8 01
V$E2F1 Q3 V$HLF 01 V$SOX9 B1 V$FOXJ2 02 V$PBX1 03
V$ELK1 01 V$HNF1 Q6 V$SP1 01 V$FOXP1 01 V$POU1F1 Q6
V$GATA1 01 V$HOX13 01 V$SRF 01 V$FXR Q3 V$POU3F2 02
V$GATA2 01 V$IRF1 01 V$SRY 01 V$GABP B V$POU6F1 01
V$HLF 01 V$IRF2 01 V$TAL1 Q6 V$GATA6 01 V$PPARA 02
V$MAX 01 V$MAX 01 V$TBP 01 V$GFI1 Q6 V$PPARG 01
V$MEF2 01 V$MEF2 01 V$TEF Q6 V$GLI Q2 V$RORA Q4
V$MEF2 02 V$MYCMAX 01 V$USF 02 V$GRE C V$RSRFC4 Q2
V$MEF2 03 V$MYOD 01 V$VDR Q3 V$HAND1E47 01 V$SF1 Q6 01
V$MEF2 04 V$MYOD Q6 V$YY1 01 V$HEN1 01 V$SMAD3 Q6
V$MEF2 Q6 01 V$MYOD Q6 01 V$HFH1 01 V$SOX9 B1
V$MYOD 01 V$HIC1 02 V$SP1 Q2 01
V$MYOD Q6 V$HIF1 Q3 V$SP3 Q3
V$MYOD Q6 01 V$HLF 01 V$SREBP Q6
V$MYOGENIN Q6 V$HNF1 Q6 V$SRF Q6
V$MYOGNF1 01 V$HNF3ALPHA Q6V$SRY 02
V$NFKB Q6 V$HNF3B 01 V$STAF 02
V$P53 01 V$HNF4 Q6 01 V$STAT1 01
V$P53 02 V$HNF6 Q6 V$TAL1BETAE47 01
V$PAX6 01 V$HOX13 01 V$TBP Q6
V$PBX1 01 V$HOXA7 01 V$TBX5 01
V$SOX9 B1 V$IRF Q6 V$TCF11 01
V$SP1 01 V$KAISO 01 V$TEL2 Q6
V$SRF 01 V$KROX Q6 V$USF Q6 01
V$SRY 01 V$LEF1 Q2 01 V$VDR Q3
V$SRY 02 V$LHX3 01 V$VJUN 01
V$TBP 01 V$LXR Q3 V$VMYB 02
V$TBP Q6 V$MAF Q6 01 V$WT1 Q6
V$USF 02 V$MAZ Q6 V$YY1 Q6
V$YY1 01 V$MEF2 03 V$ZEC 01
YY1 V$MEIS1 01 V$ZF5 B

V$MYB Q3 V$ZIC2 01
V$MYCMAX 03 V$ZNF219 01

Lists of all PWMs used in each PWM selection.
*TRANSFAC and JASPAR PWMs. TRANSFAC PWMs start with V$

61



3 Enrichment with Sunflower

Additional File 3.2
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A density plot of the log10(TA/GC) of each PWM used in the selection of 102
PWMs.
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4 GAPSS

4.1 Abstract

Background: A simple to use generic system to perform primary analysis and anno-
tation of second-generation sequencing data would be a valuable tool. Most software
currently available is geared towards a specific application and requires considerable
computer expertise.

Results: We have created GAPPS, which takes as input FASTA, FASTQ, or scarf
files of second-generation sequencers’ data and generates a report file (including the
number of tags used as input and the number of tags aligned), UCSC genome browser
tracks, files with basic annotation of regionally clustered tags, and a SNP report.

Conclusion: GAPSS is freely available, providing a simple to use tool for the average
biologist to begin analysis of their second-generation sequencing data.
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4.2 Background

Second-generation, also called next-generation, sequencing platforms (SSPs) can se-
quence gigabases of nucleotide sequence in a single run. Several platforms have been
developed in the past years, each with their own unique qualities.

Processing and annotation of SSP data is difficult, requiring a basic level of bioin-
formatics expertise. This can include extensive knowledge of command line program-
ming and difficult installations. This is often outside of the realm of the average bi-
ologist’s knowledge. Often, for different applications, different analysis pipelines and
programs were required. Chromatin immunoprecipitation coupled with SSP technol-
ogy (ChIP-seq) analysis alone has had a multitude of applications developed for it,
such as SISSRs (96), QuEST (97), a pipeline by Kharchenko and colleagues (98), and
FindPeaks (99).

We focused on making a generic pipeline that can be used to perform a primary
analysis of data from different SSPs and applications. Applications that can be ad-
dressed with this pipeline (with a reference genome) is analysis of SSP technology
coupled with Cap Analysis of Gene Expression (CAGE) (29; 31), Serial Analysis of
Gene Expression (SAGE) (28; 36; 100), and ChIP. It can also be used with basic
SNP analysis compared to a reference genome. Our pipeline, titled GAPSS (General
Analysis Pipeline for Second-generation Sequencers) automates primary SSP analysis
in a user friendly manner.

4.3 Implementation

4.3.1 The Pipeline and Interface

GAPSS is controlled by a single Perl script that calls additional Perl scripts, Linux
commands, and an alignment executable in a linear fashion (Figure 4.1), as described
in the following sections.

GAPSS is run by executing a single script that prompts the user to answer several
questions within a Linux terminal. For the faster version (discussed below) of GAPSS
we also provide a GUI interface (Figure 4.2) programmed in PerlTk.

4.3.2 Sequence Editing

Step one (Figure 4.1) of GAPSS is to take all tags in each file and reduce them into
a non-redundant set of tags. There is a user choice to retain the number of replicate
tags or not, where replicate tags are considered to be derived from amplification of
single products (101). Then, if requested, all tags are trimmed of their first nucleotide
since this is often of low quality compared to other 5’ nucleotides (102).

Linker sequences can potentially be in sequence reads when sequencing more cycles
than the fragment length. Therefore, we provide the option to edit for defined linker
sequences. These are removed from either the 5’ or 3’ ends of all tags, allowing for 0 or
1 mismatches. GAPSS tries to match the entire linker sequence first, and then shifts
towards matching partial sequences nearer the requested end of the tag, requiring at
least 3 nucleotides of linker sequence.
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4 GAPSS

Figure 4.1: The GAPSS Pipeline: The data flow scheme (A) and arbitrary example
files (B) for a GAPSS run. When a user option is available the example files are based
on the choice presented in bold and underlined.
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4.3 Implementation

Figure 4.2: GAPSS B GUI Interface

All sequences from every file are placed in FASTA files of unique sequence length
due to constraints of some SSP alignment algorithms, including one which we utilize.
We retain the names of files of origin in the FASTA headers.

4.3.3 Alignment

FASTA files containing specific length sequences are then run through the alignment
tools Rmap (40) or Bowtie (42) (Figure 4.1). Both alignment tools are run for FASTA
input on default parameters against a user defined reference, with a user choice in the
number of mismatches permitted. For Bowtie we also implement the ”–best” option
to get the optimum alignment, not the first alignment encountered, for each sequence.
All output files are then concatenated into one large file.

4.3.4 Wiggle and Region File Creation

These large alignment files of all concatenated data are separated back into individual
files and converted to UCSC (103) style wiggle files, one file per original input file.
This is possible since we retain file origins in our FASTA headers. There is also an
option to export both DNA strands as one file or two separate files by strand. These
can then be uploaded as ”custom tracks” and viewed in the UCSC genome browser.

If requested, an additional step is entered to convert the wiggle files into region
files. Region files are created by identifying all nucleotides that have adjacent hits
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in the wiggle file. They include several columns of data, including region location
(chromosome:start-stop), region length, the total number of tags hit on all nucleotides
(similar to an ”area-under-the-curve”), the average number of tags hit per nucleotide,
the estimated number of tags in the region, the number of tags at the peak of the
region, and the location of the peak of the region. Users can compress any number
of regions within a user-defined window size into one region to suppress the presence
of small gaps in the covered genomic sequence, retaining the afore mentioned region
file data. These region files can serve as a post-GAPSS base for annotation (such as
in Ensembl BioMart (3; 4)) and additional analysis.

4.3.5 SNP Report

In addition, GAPSS has the option to generate a SNP report (Figure 4.1). This is
done by reading in the concatenated alignment outputs, sorting them by their file
of origin, and extracting the location of mismatches in the sequence. Bowtie reports
which nucleotides have mismatches, but for Rmap we infer this by comparing the
aligned sequence back to the reference genome. All nucleotides with a mismatch are
reported in a SNP report file that contains chromosomal position, the number of reads
aligned to the reference, the number of reads aligned to each strand, the reference
nucleotide, and the number of tags with an A, T, G, and C at this position.

4.4 Results and Discussion

4.4.1 Variants

Two variants of GAPSS have been created: GAPSS R and GAPSS B. GAPSS R uses
the alignment tool Rmap (40). GAPSS B uses Bowtie (42) for alignment. Both have
their advantages: Rmap for theoretical alignment accuracy and Bowtie for speed.
Due to long run times GAPSS R is only implemented as a command line executable,
whereas GAPSS B has been implemented as both a command line and GUI interface
(Figure 4.2).

4.4.2 Usage

GAPPS is run by executing a Perl script that enables a command line or GUI interface.
Users answer several questions and GAPSS then automates the entire analysis process.

This takes as input FASTA, FASTQ, or scarf (Illumina Genome Analyzer’s pipeline
GERALD output) format files and converts them to a variety of output: a general
report file, wiggle files (viewable as tracks in the UCSC Genome Browser), region
files, and a SNP report. The report file contains information on the run, including
the number of tags in each input file, the number of tags aligned, and additional
details on sequence analysis and editing.

We have successfully tested GAPSS on a variety of Illumina Genome Analyzer
and Roche 454 data. With the option to use FASTA and FASTQ format input we
believe it can also be used with additional platforms.

GAPSS is run on Linux. For Ubuntu users, an install script is included to easily
install GAPSS B and additional files. For other systems and GAPSS R a manual
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installation is available. The individual Perl scripts are also available for bioinfor-
maticians to tailor make their own pipelines.

4.4.3 Performance

Using GAPSS B, with 4xCPU(W5580 @ 3.20 GHz), data from 2 experiments (one
human ChIP-seq experiment, one mouse DeepCAGE experiment, both with 2 lanes
of data from the Illumina Genome Analyzer) was analyzed against reference genomes
in approximately 70 minutes per experiment using approximately 2 GB memory (Ad-
ditional File 4.1).

4.4.4 Plans

GAPSS has been programmed in a very modular fashion so we may incorporate newer
software, such as improved alignment programs, as technology improves. As hardware
and software improve the speed of analysis will improve, hopefully allowing for a web-
based GAPSS in the future. This would enable even easier access and usage to the
average biologist.

4.5 Conclusions

GAPSS is a simple to run generic pipeline, providing biologists with a comprehensive
system to begin analyzing their SSP results. GAPSS and example data is freely
available for download at www.lgtc.nl/GAPSS.

4.6 Availability and requirements

Project name: GAPSS
Project home page: www.lgtc.nl/GAPSS
Operating system(s): Linux
Programming language: Perl
Other requirements: Rmap and BioPerl for GAPSS R. Bowtie and PerlTk for GAPSS B.
License: GNU General Public License
Any restrictions to use by non-academics: none

4.7 Authors Contributions

MH was involved in developing the concept, primary programming, debugging, and
manuscript drafting. MG performed primary programming and debugging. MV per-
formed GUI programming, debugging, and installation assistance. JH performed
SNP programming and debugging. GO, JD, and PH were involved in developing the
concept and manuscript drafting.
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4.9 Additional Files

Additional File 4.1
Performance Evaluation details

Maximum Number of CPUs Used: 4 x 3.40GHz
Available Memory: 32GB
GAPSS version used: GAPSS B (GUI)
Settings used across runs:

-file type: scarf
-retain replicate tags
-remove first nucleotide from tags
-allow 2 mismatches when aligning to reference genome
-create SNP reports
-create region files
-compress region files (size 100)

Reference files were obtained from the Bowtie website
(http://bowtie-bio.sourceforge.net/tutorial.shtml)

Test Data 1: 2 Human ChIP-seq samples
(one lane of the Illumina Genome Analyzer per sample)

-read length: 32 NT
-11826172 total tags

Test Data 2: 2 Mouse Deep-Cage samples
(one lane of the Illumina Genome Analyzer per sample)

-read length: 36 NT
-9946382 total tags

Edit linkers Approx.
Test (NT long, Separate Memory Run
Data Reference mismatches) by strand Used Time
1 Human No No 7% (∼2.24GB) 144

(contigs, 36) minutes
2 Mouse Yes (21, 1) Yes 20% (∼6.4GB) 109

(contigs, 37) minutes
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5 CBP/p300 ChIP-seq

5.1 Abstract

Despite high levels of homology, transcription coactivators p300 and CREB binding
protein (CBP) are both indispensable during embryogenesis. They are known to
largely regulate the same genes. To identify genes preferentially regulated by p300
or CBP, we performed an extensive genome-wide survey using ChIP-seq on cell-cycle
synchronized cells. We found that 57% of the tags were within genes or proximal
promoters, with an overall preference for binding to transcription start and end sites.
The heterogeneous binding patterns possibly reflect the divergent roles of CBP and
p300 in transcriptional regulation. Most of the 16,103 genes were bound by both CBP
and p300. However, after stimulation 89 and 1944 genes were preferentially bound by
CBP or p300, respectively. Target genes were found to be primarily involved in the
regulation of metabolic and developmental processes, and transcription, with CBP
showing a stronger preference than p300 for genes active in negative regulation of
transcription. Analysis of transcription factor binding sites suggest that CBP and
p300 have many partners in common, but AP-1 and Serum Response Factor (SRF)
appear to be more prominent in CBP-specific sequences, whereas AP-2 and SP1 are
enriched in p300-specific targets. Taken together, our findings further elucidate the
distinct roles of coactivators p300 and CBP in transcriptional regulation.
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5.2 Introduction

The primary mechanism to control cellular processes, such as proliferation and dif-
ferentiation, is by regulation of gene expression (reviewed in (104; 105; 106)). Gene
expression is a highly coordinated process that results in the synthesis of messen-
ger RNA after recruitment of histone modifying factors, the pre-initiation complex,
and transcription factors (TFs) to regulatory regions of the chromatin. The histone
modifications that take place during this process, including methylation and acetyla-
tion, play a critical role in gene regulation, and defects have been implicated in many
pathological conditions from cancer to autoimmune diseases (107; 108; 109). Recently,
chromatin immunoprecipitation (ChIP) has been extensively applied in combination
with high-throughput sequencing to map genome-wide chromatin modification pro-
files in human T cells (110; 111) and in mouse ES cells (112). Binding sites of
the insulator binding protein CTCF (110), RNA pol II (113; 110) and several TFs
(114; 115; 116; 35) have also been mapped. The acetylation profile in primary human
T cells was further investigated by determining the binding of several histone deacety-
lases (117) and histone acetyltransferases (HATs) including p300. Binding of p300
was found both at genes and at intergenic DNase hypersensitive sites, consistent with
binding to enhancers, found in other p300 ChIP-sequencing experiments (118; 119).

The HAT p300 and its family member CREB-binding protein (CBP) are transcrip-
tion coactivators for a broad range of genes involved in multiple cellular processes such
as proliferation, differentiation, apoptosis, and DNA repair (reviewed in (120; 121)).
In addition, a number of studies suggested the involvement of p300 and CBP in patho-
logical disorders such as the RubinsteinTaybi Syndrome (reviewed in (122)) and the
development of cancer (reviewed in (123)). Originally, CBP was identified through
its association with the phosphorylated TF CREB (124), but CBP and p300 also
interact with many other TFs, such as cJun (125), p53 (19), and MyoD (126). Apart
from the transcriptional regulation through acetylation of histones and other factors,
p300 and CBP can also act as a bridge or as a scaffold between upstream TFs and
the basal transcription machinery.

A crucial role for both p300 and CBP in development was shown in mice with
a homozygous deletion of either gene (Ep300 and Crebbp for the proteins p300 and
CBP) resulting in embryonic lethality at a very early stage (20; 21). Interestingly, the
double heterozygous Ep300 +/−/Crebbp+/− mice also die in utero (20), indicating that
a fine-tuned balance in the expression of both proteins is needed to ensure the normal
development. From phenotypic changes in the knock-out mice it is indicated that p300
and CBP have different functions, which has been further illustrated in additional in
vivo studies (127; 128; 129). A comparison between the acetyltransferase domains
of p300 and CBP showed that they differ structurally (130). In part, this might
contribute to their functional differences. However, the current detailed mechanism
of action of p300 and CBP and the differences between these transcription coactivators
is not clear.

In contrast to the in vivo situation, most studies with cells cultured ex vivo show
similar functions for p300 and CBP, and only limited differential roles for p300 and
CBP have been described (reviewed in (120)). To obtain a better insight into genes
regulated by the general transcription coactivators p300 or CBP next-generation se-
quencing of ChIP genomic fragments (ChIP-seq) (35) was performed. ChIP-seq and
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ChIP-on-microarray (ChIP-chip) have high correspondence in results, but ChIP-seq
offers the advantages of requiring less input material, potential to identify binding sites
with low affinity, not being limited to target regions (i.e. probes on a microarray),
not having hybridization errors and it is less costly for whole genome analysis (35).
In this study, we used the glioblastoma cell line T98G. T98G cells can easily be syn-
chronized by serum-deprivation and reintroduced into the cell cycle upon stimulation
with serum and TPA. Previously, RNA pol II ChIP was performed in growth factor
stimulated T98G cells (131), and this showed that 30 minutes upon growth factor
stimulation occupancy of the polymerase at the promoters of immediate early genes
was maximal. We observed that maximal occupancy of p300 and CBP at promoters
of immediate early genes was also around 30 min (Y.F.M.R., unpublished results).

We show p300 and CBP binding to the chromatin in quiescent and stimulated cells,
and alterations in their binding to a large number of genes after stimulation. In most
cases there is overlap between regions bound by p300 and CBP, but we also identified
distinct regions of binding, indicating specific targets for each of these acetyltrans-
ferases. Bound regions were analyzed genome-wide for their position relative to genes
and were found to have a preference for transcription start sites (TSSs) and transcript
ends. Interestingly, functional classification of target genes suggests that CBP is more
involved in the regulation of transcription inhibition than p300. A list of TFs that
might be involved in the transcription regulation of the identified genes together with
p300 and/or CBP was obtained by searching for enriched TF binding sites (TFBSs) in
the bound regions. Results show previously established binding partners, and suggest
differences for p300 and CBP in their preferences for TFs.

5.3 Materials and Methods

5.3.1 Cell Culture, ChIP, qPCR, and Sequencing

Human glioblastoma T98G cells were maintained in Dulbecco’s modified Eagle’s
medium (DMEM) supplemented with 10% fetal bovine serum (FBS), penicillin (100
µg/ml) and streptomycin (100 µg/ml). Prior to stimulation with serum (20%) and
tetradecanoyl phorbol acetate (TPA 100 ng/ml; Sigma), cells were serum starved for
23 days (DMEM supplemented with 0.1% FBS).

For sequencing, chromatin was isolated from serum-starved cells (T0) and from
cells stimulated for 30 min with serum and TPA (T30). Chromatin from T30 samples
was prepared in duplicate, each being used for individual ChIPs, sequencing and
downstream analysis. In addition, for more time-point specific data (analyzed only by
ChIP and quantitative PCR) we isolated chromatin at 0, 2, 5, 15, 30, 60, 90, 120 and
360 min following stimulation. Chromatin was prepared and ChIPs were carried out
as previously described, including fragmentation by sonication (132) (fragment size
500 bp). Immunoprecipitations were performed for p300 using the p300-(2) antibody
produced in our lab (125), and for CBP with a commercially available antibody (A22
from Santa Cruz).

For Reverse Transcriptase-Polymerase Chain Reaction (RT-PCR) analysis, RNA
was isolated using the SV Total RNA isolation System (Promega Corporation Benelux),
according to the manufacturers’ protocol, and first-strand cDNA synthesis was per-
formed using 1 µg of RNA and ImProm II reverse transcriptase (Promega Corporation
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Benelux).
Quantitative PCR for ChIP and for cDNA samples was carried out using the

Applied Biosystems 7900HT Fast Real-Time PCR System with SYBR Green PCR
Master Mix (Applied Biosystems Europe). Primers were designed using the Primer
Express program from Applied Biosystems (for sequences of primers see Additional
Table 5.1). Efficiency of the ChIP is presented as percentage of the input. Expres-
sion levels of the genes as determined by quantitative RT-PCR were normalized to
GAPDH, and fold induction was calculated with reference to the untreated samples
(t = 0 minutes).

For ChIP-seq all samples were prepared with Illumina’s DNA sampleprep Kit (FC-
102-1001) according to the manufacturer’s protocol. Single ends of each sample were
then sequenced on a single lane of the Illumina Genome Analyzer (GAI for samples
CBP T0 and T30-1 and p300 T0 and T30-1, GAII for samples CBP T30-2 and p300
T30-2) for 36 cycles.

Illumina Genome Analyzer Sequencing Analysis

Sequencing results were run through the standard Illumina GAPipeline (v1.0 for GAI
runs and v1.3 for GAII runs) to convert images to reads (unaligned sequences pro-
duced by the Illumina Genome Analyzer) and edit for quality (FIRECREST, Bustard
and GERALD). A general overview of the entire ChIP-seq analysis is provided in Ad-
ditional Figure 5.1A. The reads were then trimmed to the first 32 bp to remove lower
quality base calls at the 3′-end of the read. These were then run through the develop-
ing GAPSS R (www.lgtc.nl/GAPSS ) pipeline. This pipeline took the reads, removed
the first base pair (often low quality compared to other 5′ nucleotides), converted to
FASTA format, aligned to the human reference genome (NCBI build 36) with Rmap
v0.41 (40), permitting up to two mismatches, and exported tags (the term for aligned
reads) into region files (merging adjacent nucleotides with at least one aligned read
into one region, followed by compressing those regions within 100 bp into one (based
on a range of compression sizes, see below and Additional Figures 5.1B and 5.2).
The pipeline also created wiggle files (viewable in the UCSC genome browser (103)).
These tracks had positions with only a single read removed, in order to create more
manageable files.

All unedited wiggle files were concatenated to one with custom Perl scripts and
converted to a region file (a range of compression windows (20, 50, 100, 150 and 200
bp) were used) with GAPSS R scripts. The compression windows account for small
gaps in the genomic sequences covered, such as the result of non-unique genomic
sequences (Rmap does not map to these). An appropriate compression size is hard to
determine, considering a bigger window results in less regions (Additional Figure 5.2)
and therefore specificity, but covers larger genomic repeats. We settled on a window
of 100 bp to retain a large number of regions, while at the same time accounting for
small repetitive elements. This consensus region file had the number of tags from the
individual region files mapped to it with a custom Perl script. To make data more
manageable and reduce background or very low affinity binding we removed regions
with <6 tags (total over all samples). To further reduce the noise only regions with at
least 1 tag/million reads aligned (18.1 tags across all total samples) were evaluated.
Without applying this threshold performance was poorer, as addressed in the results.
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To annotate regions we downloaded from Ensembl 54 Biomart (3; 4) for all genes
(with an HGNC ID) the chromosomal location, strand, gene start, gene end, transcript
start, transcript end and gene ID. These were loaded into a custom mysql database
that was queried to annotate regions for overlap with genes (including flanking 1
kb). We also annotated for distance to the nearest TSSs and transcript ends. His-
tograms were plotted in the statistical language R to visualize the distance to TSSs
and transcript ends.

5.3.2 Statistical Analysis

The statistical language R was used to evaluate reproducibility and overlap across
samples and to determine genes with differential TF binding across different condi-
tions. To be able to compare data across samples, samples were scaled to the average
total number of tags per condition/coactivator. A square root transformation was
applied before calculating the reproducibility and comparability across samples. This
was to stabilize the variance, inherent to the counting process, over the entire intensity
range (133), and to spread the data points better over the intensity range (Additional
Figure 5.3). After this, to give a better estimation of the comparability of the data
from the different samples Pearsons correlations were calculated in R. This was done
on all regions with abundance >1 tag/million tags and a square root transformation
applied before calculating the correlations. The Pearsons correlations on the linear
scale were slightly lower.

Subsequently, data were summarized at the gene level by adding all tags within
a gene or its 1 kb flanking regions. To determine the genes different between con-
ditions/coactivators Fishers exact p-values were calculated in R. For each individual
gene, a two-by-two table was created containing the number of tags for this gene in
condition 1 and condition 2 and the total number of tags in condition 1 and condition
2. We then applied the method of Benjamini and Hochberg to correct for multiple
testing.

5.3.3 Functional Classification

A list of 250 genes, identified as most significantly different between the time points
for each coactivator (T30/T0 with adjusted p-value <0.001), was uploaded in DAVID
2008 (89; 134) for functional enrichment analysis. To obtain a general impression of
the types of processes in which CBP and p300 are involved, functional annotation
charts were generated for the Gene Ontology (GO) term GOTERM BP ALL (91; 92)
using a human background.

In addition, significantly different genes at T30 were divided into two groups where
either CBP or p300 binding was higher. From these groups, the 250 genes most sig-
nificantly different were uploaded in DAVID 2008 for functional enrichment analysis.
Individual GO-terms with a p-value <0.001 are shown for genes with higher CBP or
p300 binding.

5.3.4 CORE TF Analysis for TF Partners of p300/CBP

We took the same significant gene sets as from the functional analysis and retrieved
the most substantially sequenced region (most number of tags in this particular re-
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gion) for these genes. These regions were extended at both sides to a final length of 2
kb and sequences retrieved with Ensembl Perl API. As a background set, we retrieved
3000 random genes’ TSSs from Ensembl Biomart that were located on chromosomes
1−22, X and Y and retrieved the sequences +/−1 kb from these TSSs. The regions
based on significantly different genes were entered into CORE TF (76) as experimen-
tal sequences and the random TSS sequences were entered as background regions. We
evaluated enrichment of TFBSs (defined as TRANSFAC (51) position weight matri-
ces) in the experimental sequences using the most stringent Match setting (55; 51) to
minimize false positives. P-values representing the significance of over-representation
were calculated with a binomial test.

5.4 Results

5.4.1 Initial Sequencing Analysis

Stringent regulation of gene expression is fundamental to control cellular processes
such as proliferation and differentiation. The general coactivators p300 and CBP play
an important role in the regulation of gene transcription by virtue of their acetyltrans-
ferase activity. We set out to determine and compare genes regulated by p300 and
CBP. Chromatin was isolated from serum-starved (T0) and from stimulated (T30,
done in duplo) human glioblastoma cells and ChIP-seq performed using CBP-and
p300-specific antibodies.

Sequence files generated by the Illumina GAPipeline were submitted to the NCBI
Sequence Read Archive (SRA; http://www.ncbi.nlm.nih.gov/Traces/sra: SRS009476,
SRS009457, SRS009477, SRS009478, SRS009479 and SRS009480) (135). The reads
passing quality control were mapped to the human reference genome and adjacent tags
were joined into regions (Table 5.1). We also have made sequencing data available
as UCSC hg18 viewable wiggle tracks (excluding positions with only one tag aligned,
Additional Files 5.1-5.6).

5.4.2 Preferential Binding in Genes and Promoters

Without applying a threshold of 1 tag/million tags, we found low overlap of identified
regions in the replicated samples indicating that regions with low abundance represent
noise (data not shown). With the threshold of 1 tag/million tags, we found a high
consistency in the identified regions between all samples (47.96 and 47.43% overlap
between CBP and p300 at T0 and T30, respectively; Table 5.2). Concordantly, the
reproducibility between biological replicates was high (Pearsons correlation: 0.77 and
0.87 for CBP and p300, respectively). A similarly high correlation was found across
the different samples (Pearsons correlation 0.81 on average between all time points
and coactivators; Additional Table 5.2), indicating relatively minor differences in
the distribution of p300 and CBP binding sites across the genome. In subsequent
analyses, datasets of the T30 biological replicates were summed and treated as one
sample, which provided us with high-quality results.

To study the biological implications of our data, we annotated the regions obtained
from sequencing with Ensembl and found that the sequenced regions covered 16,103
annotated genes in total. When looking at conditions and coactivators independently
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Table 5.1: Sequencing Results
CBP

t(min) # reads # aligned % aligned # regions*
T0 5498759 4018590 73 713141

T301 6389605 4849826 76 889781
T302 6047530 5001204 83 851988

p300
t(min) # reads # aligned % aligned # regions*

T0 6327413 5086340 80 841029
T301 6446269 5156450 80 802627
T302 6065594 5124836 84 684222

The total number of reads, reads aligned, percentage aligned and number of regions
created (*after compressing regions within 100 bp into one and excluding regions
composed of only a single tag) for each condition (T0: quiescent cells and T30: 30
min after growth factor stimulation) and for each transcription coactivator (CBP or
p300). For T30-independent biological replicates were sequenced as indicated by 1

and 2.

Table 5.2: Region overlap
CBP T0 CBP T302 CBP T301 p300 T0 p300 T302 p300 T301

CBP T0 267562 129089 133493 140245 120092 134799
CBP T302 315020 143160 152520 136405 148669
CBP T301 322556 151519 136685 150180
p300 T0 322354 138933 158708
p300 T302 267804 139592
p300 T301 304880
The number of regions, after applying thresholds (> 1 tag/million tags), overlap-
ping between conditions (T0 and T30) and coactivators (CBP and p300). For T30-
independent biological replicates were sequenced as indicated by 1 and 2.

there were 16,045, 16,075, 15,684, and 15,996 genes identified as bound by CBP at T0
and T30, and by p300 at T0 and T30, respectively. We observed similar percentages
of tags in genes and their 1 kb flanking regions in all samples (57.08, 57.10, 57.30
and 59.93% for CBP-T0, CBP-T30, p300-T0 and p300-T30, respectively). Therefore,
both CBP and p300 appear to be needed to maintain basal levels of expression in
quiescent cells as well as to activate or repress transcription after serum stimulation.

Previous studies have focused on the binding of p300 to enhancers (118; 117).
First, we evaluated the distance for all regions bound by CBP or p300 to the nearest
TSS and transcript end (polyadenylation site). We found that genome-wide, 57%
of all tags could be annotated to genes (1 kb) and a clear preference for TSSs and
transcript ends was observed (Figure 5.1A and B). There were no apparent differences
between the profiles of CBP and p300 (data not shown). Also, different from what
has been shown before for most TFs or histone modification maps, p300 and CBP
show three distinct patterns of binding, including a distinguished peak (binding to a
specific site like the TSS, e.g. ZNF688 ; Figure 5.1C), binding across the gene with
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no clear preference for a specific region (e.g. EGR1 ; Figure 5.1D), and so-called U-
shaped binding (binding across the gene with a bias toward the TSS and transcript
end, e.g. DUSP1 ; Figure 5.1E).

Figure 5.1: Histogram for the compilation of ChIP-seq regions showing the frequency
of the distance from the localization of a sequenced region to the nearest transcription
start site (blue) and transcript end (red) (full plot in (A), zoomed in (B)), which
indicates a preference for binding to TSSs and transcript ends (color figure available
at http://nar.oxfordjournals.org/cgi/content-nw/full/gkq184v1/F1 ). Representative
examples of the different types of binding are shown as custom tracks on the UCSC
genome browser: binding to a specific site resulting in a peak (C), binding across the
gene (D), and U-shaped binding, with binding across the gene with preference for
both TSS and transcript end (E). The y-axis indicates the number of tags aligned at
each position in the genome. The black line in Figure 5.1C-E indicates a value of 5
tags in the custom tracks.

5.4.3 Differential Binding by CBP and p300

With most data corresponding to a genic region, we focused our following analyses
to genes, and on those regions within 1 kb upstream of TSSs and 1 kb downstream
transcript ends, (16,103 genes across all four samples). Since we were especially
interested in genes that were preferentially regulated by p300 or CBP during entry in
the cell cycle, a Fishers exact test was performed to determine statistically significant
differences in the total number of tags localized to a certain gene in different conditions
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(between time points or between coactivators) studied.
Despite high overlap in regions bound by CBP and p300 in quiescent and in

stimulated cells (Table 5.2), there was also a considerable number of quantitative
changes in CBP and p300 binding upon stimulation. Significant differences between
p300 and CBP binding was found for 120 and for 1611 genes at a false discovery rate
of 0.1% at T0 and T30, respectively (Figure 5.2A). At a false discovery rate of 1% this
was 256 and 2502 at T0 and T30, respectively (Additional Table 5.3). From the genes
differentially bound by p300 and CBP in quiescent cells (T0), only 25 did not have
significantly different binding upon growth factor stimulation (Figure 5.2A). These
results indicate very high overlap in genes bound by p300 as well as by CBP in the
quiescent state and a divergence of the roles of CBP and p300 mainly during periods
of activated transcription. Analysis of the 250 genes that were most significantly
different in our data, showed that for the majority p300 binding was higher than
CBP binding (191 and 227 of 250 genes, for T0 and T30, respectively).

Figure 5.2: Genes differentially bound by CBP and p300 (A) and between time points
(B). P-values (Fishers exact test) for the indicated comparisons were sorted in rising
order and plotted (Upper panels). Under the null hypothesis of no significant differ-
ences, this would give a straight line on the diagonal. However, as becomes evident
by the curve shape there is a bias towards low p-values. The number of genes with
significant differences between conditions are indicated in the graphs (false discovery
rate of 0.1%). Venn diagrams (Lower panels) demonstrate the number of significantly
different bound genes, as shown in the plots above, that overlap between time points
(A) or coactivators (B).

When comparing between time points, we found 765 genes differentially bound by
CBP and 2620 genes differentially bound by p300 (Figure 5.2B). Of the 250 genes,
which were most significantly different between time points, the majority (209 and
155 for CBP and p300, respectively) demonstrated higher binding for both, p300 and
CBP, at T30 when compared to T0. In addition, the majority of genes with changed
binding of CBP after stimulation also demonstrated difference in binding by p300 (676
out of 765 and 2620 genes, respectively; Figure 5.2B). The apparently higher number
of genes with significant changes in p300 binding is likely due to the higher efficiency
of the p300 antibody causing better signal-to-noise ratios and higher sensitivity in the
detection of quantitative changes in binding profiles (see below). The high level of
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overlap between coactivators can explain the restricted number of differences found
thus far in functions of p300 and CBP.

We present a full list of genes bound by CBP and p300 at T0 and T30 in Additional
File 5.7. Table 5.3 lists the 10 genes for which levels of binding differ most significantly
between the four samples. Among the genes with strongest CBP and p300 binding
and most significantly different between T30 and T0 are many immediate-early genes
that are bound by both p300 and CBP (Table 3; e.g. ATF3, FOSB, and DUSP1 ).

Table 5.3:
CBP T30 vs T0 p300 T30 vs T0

gene p-value ratio gene p-value ratio
CATSPER3 0 2.58 THBS1 6.13× 10−251 6.07
ATF3 5.58× 10−101 4.51 ATF3 1.50× 10−240 5.83
TRIP13 4.63× 10−94 11.07 FOSB 2.22× 10−213 14.03
CYR61 4.15× 10−80 6.43 CYR61 1.27× 10−187 6.33
FOSB 5.04× 10−75 10.03 EGR1 1.66× 10−178 14.11
SMAD3 8.18× 10−72 2.09 TPM1 2.25× 10−175 4.81
TMEM49 4.60× 10−71 2.32 DUSP1 2.05× 10−147 6.81
MYH9 2.15× 10−69 2.39 MYH9 8.27× 10−144 2.84
CRISPLD2 1.45× 10−67 2.89 NR4A1 4.74× 10−143 13.16
THBS1 1.32× 10−66 4.15 CRISPLD2 1.45× 10−140 4.04

T0 p300 vs CBP T30 p300 vs CBP
gene p-value ratio gene p-value ratio
CXXC1 8.28× 10−229 22.71 CXXC1 3.06× 10−43 20.32
AKT1S1 1.39× 10−192 6.03 MKKS 1.66× 10−41 3.87
FBXL19 9.96× 10−172 5.56 CATSPER3 1.07× 10−30 1.44
MKKS 1.67× 10−154 4.73 AKT1S1 6.27× 10−24 4.46
C3orf19 2.39× 10−135 7.93 FAM40A 1.94× 10−22 4.21
BSCL2 3.52× 10−130 8.25 FBXL19 1.09× 10−21 3.27
THBS1 5.46× 10−120 2.1 ZNF350 1.09× 10−21 9.14
MADCAM1 1.24× 10−112 7.85 METTL3 1.50× 10−19 13.47
ZNF175 1.01× 10−103 17.86 MADCAM1 1.30× 10−18 7.2
C1orf174 1.17× 10−102 9.84 C1orf174 1.84× 10−17 7.25

Top 10 genes that are most significantly different between time points and coactivators
according to the p-values of the Fishers exact test. The ratio shows the quantitative
difference in binding as expressed by the number of tags between the two samples
that are compared: from T30 and T0 (upper half of the table) and from p300 and
CBP (lower half of the table).

5.4.4 Validation

To validate our results and to refine the temporal resolution of the experiment, genes
were selected to further characterize with ChIP and quantitative PCR in a time-course
from 0 to 360 min following stimulation with serum and TPA. The genes included
genes bound by both CBP and p300 and genes unique to one of the coactivators,
and spanned a wide range of significance values (Figure 5.3E). In general, the recov-
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ery obtained (as a percentage of the input) for CBP is lower than for p300 (Figure
5.3A-D), consistent with the generally lower number of tags for CBP in each region of
the ChIP-seq experiment (significant quantitative correlation between results of the
qPCR and ChIP-seq experiment for the genes presented here are shown in Additional
Figure 5.4). The qPCR results also confirm the differential binding across time points
established with ChIP-seq analysis for all genes analyzed (Figure 5.3A-D and Addi-
tional Figure 5.5), and demonstrate that for most genes the temporal binding pattern
is comparable between CBP (black bars) and p300 (white bars). This is true for the
increased binding to the promoter of CTGF, as well as for the decreased binding to the
promoter of ZNF608 in stimulated cells compared to unstimulated cells (Figure 5.3A
and B). Binding to the promoter of CDK5 differs for p300 and CBP (Figure 5.3C).
Binding of p300 is increased in time with a maximum at 60 min post-stimulation,
while there is hardly any change in the binding of CBP. These results correlate with
the statistical analysis, that demonstrated significant changes between p300 and CBP
at T30, and a significant increase in p300 but not CBP binding between T30 and T0
(Figure 5.3E). The binding of p300 and CBP to the SERPINE1 gene increased signif-
icantly over time (p-value of 1.88×10−17 for CBP T30 versus T0 and 1.59×10−24 for
p300 T30 versus T0). Inspection of the wiggle track (Figure 5.3D) revealed that p300
and CBP bound mainly to the 3′-UTR and to a lesser extent to the region around
the TSS of the SERPINE1 gene. Also, the small increase observed around the TSS
could be confirmed by qPCR. The wiggle file for SERPINE1 also shows a stronger
binding >2 kb upstream of the TSS (Figure 5.3D). The interaction to this putative
enhancer region and the change upon stimulation was also confirmed by qPCR of
ChIP samples (Additional Figure 5.5J).
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Figure 5.3 (continues on next page)

To evaluate whether changes in p300 and CBP binding also affected gene expres-
sion, we performed quantitative RT-PCR for the genes CTGF, ZNF608, CDK5, and
SERPINE1 (Figure 5.3A-D: the line in the graphs shows fold induction in the time
course). For the three genes with increased binding, two (CTGF and SERPINE1 )
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Figure 5.3: (continued from previous page): ChIP-analysis for time-course experi-
ment (0, 2, 5, 15, 30, 60, 90, 120 and 360 min after stimulation of serum-starved
T98G cells with serum and TPA). Shown are graphs for qPCR results (x-axis: time
in minutes; left y-axis: ChIP recovery in percentages of the input; right y-axis: fold
induction for the RT-qPCR with reference to the untreated samples (t = 0 min)) and
screen-shots from custom tracks of the UCSC genome browser for the ChIP-seq data
(T0 and T30 only) for CTGF (A), ZNF608 (B), CDK5 (C), and SERPINE1 (D).
White bars: p300 ChIP; black bars: CBP ChIP; RT-qPCR data are indicated as dots,
interconnected; arrows in the screen-shots indicate the position of the PCR-amplicon.
Also indicated for these genes is the adjusted P-value and the ratio difference between
time-points (T30 versus T0) and coactivators (p300 versus CBP) of the total number
of reads along the whole gene, plus 1 kb up- or downstream from all ChIP-seq data (E).

show increased expression. The gene ZNF608 shows a decrease in expression over
time, consistent with decreased binding of p300/CBP. CDK5 did not show any dif-
ferences in expression. This is consistent with the uniform levels of CBP binding over
time, but not with the increased binding of p300. Most likely, for CDK5 and possibly
also for other genes binding of p300/CBP is not sufficient to induce the expression
but other factors that play a critical role are also required. Obviously, gene expression
is a complex process and highly variable between genes, so only detailed studies can
unravel the role of specific factors.
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5.4.5 Biological Processes Coordinated by p300 and CBP

To get an impression of the biological implications of p300 and CBP binding, we clus-
tered genes regulated by CBP and p300 into functional pathways. We used DAVID
2008 (89; 134) to classify the 250 genes most significantly differing between time
points (for both CBP and p300). The analysis (p-value < 0.001) shows that CBP as
well as p300 are mainly involved in transcription regulation of genes controlling de-
velopmental processes and metabolic processes (such as NR4A, CRISPLD2, CRIM1,
CYCLIN-L1, and PER1 ) and of genes coding for proteins that control gene expres-
sion (such as ATF3, FOSB, SP3 and HES1 ; see Additional File 5.8). Next, using
DAVID 2008 we wanted to specify in more detail whether certain groups of genes
were preferentially bound by CBP or by p300. Remarkably, in the cluster of genes
regulating transcription, those with significantly higher CBP than p300 binding are
involved in negative regulation of transcription (Table 5.4, and Additional File 5.8).
Another interesting observation for genes preferentially bound by CBP is the presence
of clusters related to signal transcription/cell communication. In the list obtained for
higher levels of p300, mainly clusters relate to transcription and metabolic processes
are found.

5.4.6 Analysis of ChIP-seq Regions for Consensus Transcrip-
tion Factor Binding Sites

CBP and p300 do not bind DNA directly, but regulate by binding to many different
protein partners. Therefore, to identify (DNA-binding) partners of p300/CBP, we
looked for enrichment of TFBSs in and around the regions bound by CBP and/or
p300 in the 250 genes that differ most significantly between time points (the same
genes that were used for DAVID analysis). We found a significant over-representation
of AP-1, CREB, NFKB and SRF binding sites in the gene regions bound by both
CBP and p300 (Table 5.5 and Additional File 5.9), which are known to be regulated
by CBP and/or p300 (136). As mentioned before, there is more binding of p300 and
CBP to the chromatin at T30 after stimulation. Therefore, enrichment of the TFBSs
in our sequences likely reflects increased binding of these factors upon growth factor
stimulation.

We also compared genes significantly different between coactivators at T30 using
the same lists of 250 genes as used for the functional classification. CREB and YY1
are significantly enriched in both gene sets (Table 5.5; all results are presented in
Additional File 5.9). However, CBP binding was found to correlate more with AP-1
and SRF binding partners than p300, whereas p300 binding was more correlated to
AP-2, E2F and SP1-binding. These results indicate that CBP and p300 share some,
but not all, regulatory partners.

5.5 Discussion

Transcription coactivators CBP and p300 share high levels of homology and, in many
cases, the same regulatory regions are targeted for transcription regulation. This is
in contrast with the fact that both proteins are indispensable during embryogenesis.
To investigate which genes are regulated, and whether there is a difference in those
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Table 5.4: Functional classification for genes bound by CBP or p300
T30 p300 higher than CBP Enrich-

ID (GO:#)Term Count % p-value ment
0010467 gene expression 81 38.76 2.57× 10−12 2.06
0044237 cellular metabolic process 127 60.77 3.75× 10−10 1.44
0008152 metabolic process 135 64.59 5.27× 10−10 1.38
0044238 primary metabolic process 126 60.29 1.36× 10−9 1.42
0043170 macromolecule metabolic process 111 53.11 8.79× 10−8 1.44
0006350 transcription 56 26.79 4.10× 10−7 1.95
0006139 nucleobase, nucleoside, nucleotide and 72 34.45 1.41× 10−6 1.66

nucleic acid metabolic process
0045449 regulation of transcription 53 25.36 1.82× 10−6 1.91
0016070 RNA metabolic process 58 27.75 3.07× 10−6 1.8
0019219 regulation of nucleobase, nucleoside, 53 25.36 3.64× 10−6 1.87

nucleotide and nucleic acid metabolic process
0010468 regulation of gene expression 54 25.84 4.93× 10−6 1.83
0031323 regulation of cellular metabolic process 54 25.84 1.62× 10−5 1.76
0043283 biopolymer metabolic process 84 40.19 1.78× 10−5 1.47
0019222 regulation of metabolic process 55 26.32 2.08× 10−5 1.73
0006351 transcription, DNA-dependent 48 22.97 3.29× 10−5 1.81
0032774 RNA biosynthetic process 48 22.97 3.39× 10−5 1.81
0006355 regulation of transcription, DNA-dependent 46 22.01 8.66× 10−5 1.77
0006979 response to oxidative stress 7 3.35 5.49× 10−4 6.83
0050794 regulation of cellular process 67 32.06 8.46× 10−4 1.42

T30 CBP higher than p300 Enrich-
ID (GO:#)Term Count % p-value ment
0051056 regulation of small GTPase mediated 18 7.06 8.70× 10−9 5.97

signal transduction
0046578 regulation of Ras protein signal transduction 13 5.10 5.62× 10−6 5.36
0007242 intracellular signaling cascade 38 14.90 2.47× 10−5 2.06
0009966 regulation of signal transduction 21 8.24 2.49× 10−5 2.98
0007154 cell communication 77 30.20 3.31× 10−5 1.52
0007165 signal transduction 71 27.84 6.04× 10−5 1.54
0007265 Ras protein signal transduction 13 5.10 9.42× 10−5 4.03
0007264 small GTPase mediated signal transduction 18 7.06 1.32× 10−4 2.94
0007399 nervous system development 23 9.02 2.26× 10−4 2.4
0016481 negative regulation of transcription 13 5.10 3.31× 10−4 3.52
0045934 negative regulation of nucleobase, nucleoside, 13 5.10 7.31× 10−4 3.22

nucleotide and nucleic acid metabolic process

Significantly enriched GO categories for genes that show higher binding of CBP or p300 at
30 min after stimulation with TPA and serum (ID: GO-category-number, term: description of
the GO category; count: number of significant genes in this GO category; %: percentage of
signifiacnt genes in this GO category; p-value: statistical significance of the GO category (p-value
from hypergeometric test for over-representation); enrichment: fold enrichment of significant genes
compared to the background.

regulated by p300 and by CBP upon growth factor stimulation a genome-wide screen
was performed in T98G cells. Although there is a high concordance between binding
targets of p300 and CBP, and both seem to regulate the same biological pathways,
we have identified significant differences in the levels and targets of binding. These
differences include the diversity in the regulation of genes involved in transcription,
and in cell death and cell adhesion. In addition, regulatory regions of these genes
showed significant differences in binding sites of other TFs and TF families such as
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Table 5.5: Enrichment for transcription factor binding sites in CBP/p300 bound
sequences

T30 vs T0 T30
TFBS CBP p300 TFBS CBP>p300 p300>CBP
AP-1 0 0 AP-1 0 2.83× 10−2

CREB 8.21× 10−5 1.84× 10−5 AP-2 9.69× 10−1 7.30× 10−9

NFKB 4.55× 10−7 1.49× 10−4 CREB 2.96× 10−4 7.60× 10−9

SRF 3.41× 10−7 1.51× 10−5 E2F 2.39× 10−1 0
SP1 9.98× 10−1 2.21× 10−7

SRF 8.81× 10−4 2.12× 10−1

YY1 2.55× 10−6 0
TFBSs with the most significant p-values for enrichment in regions bound by CBP
and p300 at 0 and 30 min after stimulation with serum and TPA.

AP-1, AP-2, SP1, E2F and SRF.
It is well established that p300/CBP associate to both enhancers and TSSs. Pre-

vious studies have focused on the enhancer-binding of p300 (119; 118; 117). Although
we also found examples of enhancer-binding, over 57% of all tags are within genes or
proximal promoters (+/−1 kb), and genome-wide we find that binding is primarily
located around TSSs and to some extend also to transcript ends (Figure 5.1A and B).
Therefore, we chose to focus our analysis of CBP/p300 in relation to genic regions.
In all, we found 16,103 genes bound by CBP or p300 at T0 or T30, with over 97.4%
of genes bound by both coactivators at both time points.

When analyzing the binding of CBP/p300 to genes, we did not only observe dis-
tinct regions of binding. There was a high variety in binding patterns for both coacti-
vators. This includes binding to a clear and distinct region (e.g. to the TSS; referred
to as peak), binding across the gene, or a combination of more prominent binding
around the TSS and the transcript end, as well as binding across the gene (in the text
referred to as U-shaped binding; Figure 5.1C-E).

At present, the mechanisms that determine the diverse binding patterns remain to
be established. Possibly, it is dependent on the way p300/CBP regulate transcription
of a particular gene. Both, p300 and CBP can bind to specific TFs, and this might
result in a distinguished peak around the TSS and transcript end. In addition, p300
and CBP regulate chromatin structure via the acetylation of histones, thereby making
the chromatin more prone to be targeted for transcription. This might account for
binding (to the histones) across the gene. Binding across a gene was previously
described to occur also by protein kinases (137). Chow et al. (137) propose that
in this way the kinases may contribute to transcription initiation and elongation, or
processes such as 5′ capping, and splicing. Binding to both the TSS and transcript
end has previously been observed for RNA polymerase II (138). Interaction between
CBP/p300 and RNA polymerase II (139) may explain the presence of similar ChIP-seq
patterns for these acetyltransferases. Enrichment at the TSS might correlate to the
longer time needed for transcription initiation compared to transcript elongation. The
peak at the transcript end might correlate to widespread transcription of antisense
transcripts (140), a phenomena that is particularly prominent in the 3′-end of genes
(36).
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Our ChIP-seq data are from arrested cells and from cells 30 min after stimulation.
Therefore, over-representation of genes required early in the cell cycle was expected
at T30. The number of reads correlates roughly to the binding affinity of proteins
for that region and immediate-early genes are among the genes with the highest
number of tags. Analysis of a number of these genes with quantitative RT-PCR
(Figure 5.3A, Additional Figure 5.5, and data not shown), also showed increase in
gene expression for immediate-early genes. Our data suggest that at T30 CBP and
p300 are more intimately involved in the regulation of transcriptional activation of
immediate-early genes compared to other groups of genes. Consistently, Tullai et al.
(131) previously published microarray data on gene expression of serum-starved T98G
cells upon growth stimulation. We found that from 49 immediate-early genes that
were identified, 36 demonstrated significantly increased binding by CBP and p300 at
T30 compared to T0 in our analysis (3 out of 49 could not be identified in Ensembl).

With the time-course experiment, most genes that were analyzed show maximal
binding between 30 and 60 min after stimulation. The time-course experiment con-
firms high accuracy of our data since all genes tested, although different levels of
significance (from 2× 10−147 to 9× 10−1) and variable ratios of difference (from 1 to
9) were chosen, confirm binding of the coactivators and changes in time.

Binding of p300 and CBP to the chromatin occurs through the interaction with
TFs. To obtain more insight in transcription regulatory complexes bound by p300
and/or CBP, we set out to identify possible partners of CBP and p300 for the genes
identified in our experiment. Therefore, we analyzed for the enrichment of TFBSs.
When looking at genes with significant binding at T30 for each coactivator, we found
some examples of TFBSs that were found to be specific only for CBP or for p300.
For example, AP-1 and SRF binding sites were significantly enriched in CBP bound
regions, while AP-2, E2F and SP1 binding sites were more abundant in p300 bound
regions. This may represent TFs that are regulated during the cell cycle, in most
cases, solely by CBP or p300 and contribute to their unique functions.

We observed overlap in enrichment of TFBSs for proteins such as YY1 and CREB.
Interestingly, YY1 is known to contribute to cell-cycle regulation and can serve both,
as a transcriptional repressor and an activator (141). Also, YY1 is known to interact
with p300/CBP, as well as with other TFs identified in this study (AP-1, AP-2,
NFKB, E2, SP1 and CREB) (141; 142; 143). Our functional classification suggested
that CBP is more associated with transcriptional repression, whereas p300 is more
associated with transcriptional activation. It could be speculated that YY1 is a
putative partner involved in this functional difference between p300 and CBP, while
the p300-YY1 complex might activate transcription in vivo, the CBP-YY1 complex
might account for transcriptional repression.

In the future, it would be valuable to perform ChIP-seq in the same cell line and
conditions with antibodies for the coactivator specific TFs in this study (AP-1, AP-2,
SP1, E2F and SRF, and YY1). This will confirm whether genome-wide CBP/p300
and their specific regulatory partners cooperate, and it will help to further elucidate
their role in cell-cycle control. In addition, ChIP-seq with antibodies specific to open
chromatin states will be helpful to unravel the mechanisms leading to the diverse
binding patterns.
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5.6 Conclusion

Transcription coactivators CBP and p300 share high levels of homology and, in many
cases, the same regulatory regions are targeted for transcription regulation. This is
in contrast with the fact that both proteins are indispensable during embryogenesis.
To investigate which genes are regulated, and whether there is a difference in those
regulated by p300 and by CBP upon growth factor stimulation a genome-wide screen
was performed in T98G cells. Although there is a high concordance between binding
targets of p300 and CBP and both seem to regulate the same biological pathways, we
have identified significant differences in the levels and targets of binding. In addition,
regulatory regions of target genes also showed significant differences in TFBSs of other
TFs such as AP-1, AP-2, SP1, E2F and SRF.

Besides the differences in targets of p300 and CBP, we identified various binding-
patterns that potentially correlate with different types of transcription regulation by
p300 and CBP. Most interestingly, we observed a so-called U-shaped binding with high
levels of p300/CBP at both, TSS and transcript end. Possibly, the acetyltransferases
contribute to other processes such as transcription elongation and reverse transcrip-
tion. Taken together, our data contribute to the improvement of our knowledge of
processes that regulate gene expression by the transcription coactivators p300 and
CBP, and confirm that regulation by these coactivators is not identical.
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Additional Figure 5.1

Flow chart of the experimental set-up (A). Also demonstrated is the creation of
regions from aligned reads and compressing regions within a window of X bps (B).
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Additional Figure 5.2

To demonstrate the effect of compressing regions with variable window sizes (x-axis)
we plotted the number of regions obtained (y-axis).

91



5 CBP/p300 ChIP-seq

Additional Figure 5.3

To demonstrate the variance stabilizing property of the square root transformation,
we plotted the standardized difference (=difference divided by the mean) of the tags

per region in the two biological replicates for CBP T30 (A) and P300 T30 (B)
against the average number of tags per region for those samples. Top panels are on

the linear scale. Lower panels are on the square root scale. Left panels show the
entire range of tags; right panels zoom in on the majority of regions with lower
number of tags. The plot shows that the variance is much more homogeneously

distributed on the square root scale.
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Additional Figure 5.4

Correlation between ChIP-seq and ChIP-qPCR data for CBP (left) and p300
(right). For all genomic regions validated by qPCR (CDK5, CDK6, CTGF, DHX8,
DUSP10, FRA1, GSK3A, MKP1, PDE4DIP, SERPINE1 (TSS), SERPINE1 (2kb
upstream), TAF15, ZNF608, and ZNF688 ), we plotted the T30/T0 ratio obtained

from the ChIP-Seq experiments (x-axis) against the T30/T0 ratio obtained from the
ChIP-qPCR experiments (y-axis). Since deltaCt values plotted for the qPCR
experiments reflect 2log differences in binding, also the ratio of the number of

sequences from the ChIP-Seq experiments were 2log transformed. We counted the
number of sequences aligned to each bp in the region spanned by the PCR primers

+/- the average fragment length of 500 nucleotides. This was done because only the
starts of fragments were sequenced and aligned, and these may fall outside of the
PCR region, despite the presence of the PCR region in the fragment. We plotted
delta Ct (y-axis) to provide a positive correlation since lower Ct values represent
more binding, and higher Ct values less binding. The Ct values for time point T0
and T30 were obtained after fitting of a second-order polynomial through the Ct

values of the time course from 0 to 90 minutes to improve the precision. The
Pearson correlation coefficient and the p-value representing the significance of the

correlation are given.
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Additional Figure 5.5A-D

continued on next page
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Additional Figure 5.5E-H

continued on next page
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Additional Figure 5.5I-K

(continued from previous page): ChIP-analysis for time course experiment (0, 2, 5,
15, 30, 60, 90, 120, and 360 minutes after stimulation of growth arrested T98G cells
with serum and TPA). Shown are graphs for qPCR results (x-axis: time in minutes;
left y-axis: ChIP recovery in percentages of the input; right y-axis: fold induction

for the RT-qPCR with reference to the untreated samples (t=0 minutes)) and
screen-shots from custom tracks of the UCSC genome browser for the ChIP-seq

results (T0 and T30 only) for CDK6 (A), MKP-1 (B), ZNF688 (C), FRA-1 (D),
GSK3A (E), DHX8 (F), PDE4DIP (G), DUSP10 (H), TAF15 (I), and SERPINE1
(J; 2 kb upstream of the TSS). Arrows indicate the position of the PCR-amplicon.
Also indicated for these genes is the adj. p-value and the ratio difference between

time points (T30 versus T0) and coactivators (p300 versus CBP) of the total number
of sequences from all ChIP-seq data (K). (White bars: p300 ChIP; black bars: CBP

ChIP; line: fold induction of RT-qPCR; arrows in the screen-shots indicate the
position of the PCR-amplicon. Also indicated for these genes is the adjusted p-value

and ratio difference between time-points (T30 versus T0) and coactivators (p300
versus CBP) of the total number of reads from all ChIP-seq data (K)).
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Additional Table 5.1

Sequence of primers used for qPCR analysis of the ChIPs (A) and for RT-qPCR (B).
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Additional Table 5.2

A) Pearson
Correlation CBP T0 CBP T301 CBP T302 p300 T0 p300 T301 p300 T302

CBP T0 1 0.6698245 0.7215659 0.7663312 0.660192 0.722461
CBP T301 1 0.7654689 0.740022 0.869117 0.85208
CBP T302 1 0.7202088 0.773906 0.805657
p300 T0 1 0.753338 0.808835
p300 T301 1 0.869657
p300 T302 1

Pearson correlation between the different samples (A) and scatter plots (B).
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Additional Table 5.3

Fisher adj.p-value adj.p-value difference
Test <0.01 <0.001 >= 5x
CBP T30vsT0 1231 765 11
p300 T30vsT0 3730 2620 44
T0 p300 vs CBP 256 120 22
T30 p300 vs CBP 2502 1611 42

Number of genes significantly different between the different samples for adjuvant
p-values <0.01 and <0.001, as determined with Fisher Exact Test, and the number of
genes with p-values <0.001, with a difference of at least 5 times between the samples.

Additional Files 5.1 to 5.6
Wiggle files for CBP T0, CBP T301, CBP T302, p300 T0, p300 T301, and p300 T302,
created as described in Materials and Methods and viewable in the UCSC genome
browser ((103) (single reads were removed) are available at nar.oxfordjournals.org/cgi/
content/full/gkq184/DC1.

Additional File 5.7
Genes annotated for p300 and CBP ChIP-seq in quiescent (T0) and in growth factor
stimulated (T30) cells. Sheet 1 shows the 1,6103 genes that were identified (as ex-
plained in Sheet 2, the Ensemble gene ID, the sum of the number of tags sequenced
and the number after normalization for gene length, the ratio between the different
samples, the p-value, and the adjusted p-value for the ratios are shown). Available at
http://nar.oxfordjournals.org/content/vol0/issue2010/images/data/gkq184/DC1/NAR-
02256-X-2009 R2 supplemental file 7.xls.

Additional File 5.8
Functional classification performed with DAVID 2008 Functional Annotation
(http://david.abcc.ncifcrf.gov/home.jsp) of 250 genes that differed most significantly
at T30 versus T0 for binding by CBP (worksheet CBP T30vsT0), by p300 (worksheet
p300 T30vsT0), and of 250 genes where CBP binding is significantly higher than
p300 binding (worksheet T30 CBPhigherthanp300) or where p300 binding is signifi-
cantly higher than CBP binding (worksheet T30 p300higherthanCBP). Available at
http://nar.oxfordjournals.org/content/vol0/issue2010/images/data/gkq184/DC1/NAR-
02256-X-2009 R2 supplemental file 8.xls.

Additional File 5.9
Full list of Transcription Factor binding sites that were found to be enriched for T30
versus T0, and for p300 versus CBP, as analyzed with CORE TF (76). Available at
http://nar.oxfordjournals.org/content/vol0/issue2010/images/data/gkq184/DC1/NAR-
02256-X-2009 R2 supplemental file 9.xls.
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6 CAGE/SAGE: muscle gene structure

6.1 Abstract

Next-generation sequencing is excellently suited to evaluate the abundance of mRNAs
to study gene expression. Here we compare two alternative technologies, cap analysis
of gene expression (CAGE) and serial analysis of gene expression (SAGE), for the
same RNA samples. Along with quantifying gene expression levels, CAGE can be
used to identify tissue-specific transcription start sites, while SAGE monitors 3′ end
usage. We used both methods to get more insight into the transcriptional control
of myogenesis studying differential gene expression in differentiated and proliferating
C2C12 myoblast cells with statistical evaluation of reproducibility and differential
gene expression. Both CAGE and SAGE provided highly reproducible data (Pearson
correlations > 0.92 between biological triplicates). With both methods we found
around 10,000 genes expressed at levels > 2 transcripts per million (∼0.3 copies per
cell), with an overlap of 86%. We identified 4,304 and 3,846 genes differentially
expressed between proliferating and differentiated C2C12 cells by CAGE and SAGE
respectively, with an overlap of 2,144. We identified 196 novel regulatory regions with
preferential use in proliferating or differentiated cells. Next-generation sequencing
of CAGE and SAGE libraries provides consistent expression levels and can enrich
current genome annotations with tissue-specific promoters and alternative 3′ UTR
usage.
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6.2 Introduction

Next-generation sequencing (NGS) platforms have provided us with the technology
needed to expand genomic methods to a new scale. Depending on the technology,
these machines can produce gigabases of sequences per day. Due to its superior res-
olution and sensitivity, NGS is increasingly used to replace array technologies, in
particular the genome-wide evaluation of chromatin immunoprecipitation (ChIP-seq)
and gene expression profiling experiments. Sequence-based expression analysis can
be performed using several approaches. The traditional SAGE (serial analysis of
gene expression) method (28), starts with capturing RNA poly-A tails with oligo(dT)
beads. Double-stranded cDNA synthesis is performed and a digestion with a re-
striction enzyme, commonly NlaIII (32), is performed. With the fragments resulting
from the digestion only the most 3′ fragment is retained. An additional restriction
digest is then performed with MmeI (cuts ∼20 base pairs downstream) to create a
fragment of acceptable length for sequencing. In the original method short cDNA
fragments, each representing the 3′ most NlaIII digestion site of a specific transcript,
were concatenated and cloned, followed by traditional sequencing. However, now the
concatenation and cloning steps can be omitted. Instead SAGE library sequences are
directly equipped with appropriate sequencing linkers and analyzed in next-generation
sequencers (30).

An alternative method is CAGE (cap analysis of gene expression) (29), specifically
designed to study gene expression at transcription initiation sites by capturing 5′ ends
of mRNAs. After trapping the 5′ cap-structures of mRNAs, sequences are converted
to double-stranded cDNA and equipped with a linker containing a restriction site
for the enzyme MmeI (or EcoP15I) that cuts ∼20 (or 25-27) base pairs downstream
to create a fragment of appropriate length for sequencing and for mapping. Thus
where SAGE captures the 3′ most NlaIII digestion site of mRNA and is thus 3′ end
biased, CAGE tags represent the ultimate 5′ end of the transcript and indicate the ge-
nomic transcription start site (TSS). In both SAGE and CAGE, one transcript is only
represented by a single read and (next-generation) sequencing of SAGE and CAGE
libraries is therefore referred to as Digital Gene Expression profiling or DeepSAGE
and DeepCAGE (30; 31). For simplicity we refer to these in this manuscript simply
as SAGE and CAGE. In RNASeq (144), which starts with random fragmentation of
the RNA or cDNA, the entire transcript is sequenced. Consequently, a transcript is
commonly represented by multiple reads and the amount of reads is dependent on
the transcript length. RNASeq gives more detailed information about the structure
of the transcripts and alternative splicing, in particular when combined with paired
end sequencing, while CAGE is more suitable for analysis of alternative transcription
start sites and SAGE for analysis of alterantive polyadenylation sites.

Myogenesis is an essential process for muscle development and regeneration, with
defects resulting in diseases such as muscular dystrophies. To support our studies
towards treatment of muscle-related diseases, we have performed extensive analysis
of muscle-derived gene expression profiles (145; 146; 147). This included the analysis
of muscle differentiation using a well-established model, the mouse myoblast cell line
(C2C12) (148). Two primary transcription factors (TFs) regulating this process are
MyoD and Myogenin, but many other regulatory elements have been identified (re-
viewed in Pownall et al. 2002 (24) and Sartolli and Caretti 2005 (149)). For a better
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understanding of how expression profiles change during adaptation to different bio-
logical situations, it is important to consider promoter activities and their regulation.
Several bioinformatic approaches have been designed for this, including CORE TF
(76) and oPOSSUM (60), searching for shared TF binding sites (TFBSs) in the pro-
moter region. However, these approaches critically depend on correct genome anno-
tations regarding TSSs, which can vary by tissue type. Unfortunately, most studies
performed thus far use methods directed at the 3′ end of RNA transcripts (including
the well known oligo dT primed cDNA synthesis). Consequently gene annotation is
weakest at the 5′ end. CAGE is therefore excellently suitable for the identification of
alternative TSSs and putative regulatory regions upstream of those TSSs. We applied
both CAGE and SAGE to study muscle differentiation to assess their concordance in
estimation of gene expression levels and complementarity in gene annotation.

6.3 Materials and Methods:

6.3.1 Cells, RNA Isolation, and Differentiation Markers

Proliferating C2C12 mouse myoblasts were grown out on collagen coated plates in
Dulbecco’s modified Eagle medium (DMEM) supplemented with 10% fetal bovine
serum (FBS). To induce fusion into myotubes cells were serum deprived by changing
to a medium of DMEM supplemented with 2% FBS for nine days (referred to as
differentiated cells).

For CAGE and SAGE, RNA was isolated from proliferating and differentiated
cells. RNA was isolated from three independent cultures (biological triplicates). Cells
grown in (175 cm2) flasks where harvested by trypsinization and centrifugation be-
fore RNA extraction with a Nucleospin RNA L kit from Macherey-Nagel. RNA
quality was high, as determined with Agilent’s Lab-on-chip total RNA nano assay
(RNA integrity number >9). Myogenic properties of the cells were confirmed in RT-
PCR/qPCR experiments using primer sets (Additional Table 6.1) specific for Myod1,
Myogenin,GAPDH, and HPRT. RT-PCR experiments were performed using oligo dT
priming for cDNA synthesis and qPCR was carried out using a Roche Lightcycler
480.

6.3.2 Library Preparation and Next-Generation Sequencing

Separate CAGE libraries were prepared as described previously (31) for each individ-
ual RNA sample. The following modifications to the protocol were made: we used
modified adapters in the 5′ and 3′ end ligation steps that have linker sequences (pro-
liferating - CCGACAGGTTCAGAGTTCTACAGAGACAGCAG and differentiated
- CCGACAGGTTCAGAGTTCTACAGCTTCAGCAG) for Illumina Genome Ana-
lyzer II sequencing and have a recognition site for EcoP15I used instead of MmeI.

SAGE libraries were prepared for each individual RNA sample with a FC-102-1005
DGE-Tag Profiling NlaIII SamplePrepKit from Illumina.

Each CAGE and SAGE library was then sequenced on an individual lane on an
Illumina Genome Analyzer II for 36 cycles. One CAGE sample from each time point
was also sequenced a second time with 32 cycles.
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6.3.3 Initial Sequence Analysis

All sequenced lanes were run through the initial Illumina Genome Analyzer Pipeline
(Firecrest ⇒ Bustard ⇒ Gerald) for image analysis and quality control, yielding
one scarf file per sample (lane). For reads from SAGE samples, the NlaIII recogni-
tion sequence “CATG” was introduced at the 5́-end with Linux commands. Scarf
files were then run through the open source GAPSS R pipeline developed in house
(www.lgtc.nl/GAPSS ). In general, this pipeline takes sequences and has the options
to: remove first bases (often of lower quality than other 5′ nucleotides (102)), edits for
linkers (present in the sequence reads when sequencing more cycles than the fragment
length), aligns to a reference genome with Rmap (40), and reports data as region files
(reporting tags in a region, a region defined as a stretch of adjacent nucleotides with
aligned reads), and creating UCSC genome browser (103) (http://genome.ucsc.edu/ )
viewable wiggle tracks.

We ran GAPSS R with the parameters discussed in the following text. The first
base (lower quality) was removed in CAGE samples. CAGE and SAGE samples
were edited for 3′ linker sequences (TCGTATGCCGTCTTCTGCTTG for CAGE and
TCGTATGCCGTCTTCTGCTTGAAAAAAAAAAAAAAA for SAGE), permitting
1 mismatch in the linker (to account for sequencing errors, which occur more towards
the 3′ end (102) where linkers were edited from). After linker editing, the majority
of CAGE reads were 26 bases in length, whereas SAGE reads were 21 or 22 bases
in length (including the ”CATG”). Alignment was performed against the mouse
repeat masked reference genome build 37 with Rmap v0.41, an alignment tool that
reports only unique alignments. Default settings were used during alignment, except
to use fasta input and permitting 2 mismatches with CAGE reads and 1 mismatch
with SAGE reads. The choice of mismatches permitted is because longer sequences
(CAGE) are more likely to contain a sequencing error because the number of errors
increases at later sequencing cycles. Region files were created and for CAGE regions
we combined adjacent regions, permitting gaps of maximal 100 bases to cluster TSSs
and make sure that newly identified TSSs were well separated from annotated TSSs.
We kept all data separated by strand since both methods preserve information on the
transcribed strand. Wiggle files for visualization in the UCSC genome browser were
also separated by strand.

Custom Perl scripts were run on all CAGE and SAGE region files to create ref-
erence region files (strand separated) composed of the overlapping regions from all
samples. For CAGE region files we again permitted gaps of a maximum by 100 bases.
Another custom Perl script was used to link all individual region files to their refer-
ence region file, reporting the estimated number of tags in each individual region of
the reference region file.

6.3.4 Statistical and Biological Processes Analysis

The statistical language R was then used for analysis of differential expression for
CAGE and SAGE data. A threshold of two tags per million aligned reads (average
across all samples) was applied to remove transcription events that do not pass the
lower limit for consistent detection given our read depth. In addition, for CAGE
data, we excluded regions of length 33 or lower. These are likely sample preparation
artifcats, since these were usually caused by exactly identical reads of 33 nt, which did
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not contain the linker sequence. Even sharply defined TSSs demonstrate variability
in start position, resulting in regions that cover >33 nt. Each region was tested
separately with a Bayesian algorithm that takes into account library size (150; 36). A
Bayesian error rate lower than 0.05 was considered significant. For gene level tests, all
tags overlapping a gene (including 1000 bases upstream and downstream of the gene)
were summarized before statistical testing. For the calculation of expression ratios
between differentiated and proliferating cells, data was first scaled to the average
total number of aligned reads. For analysis of reproducibility, data was square root
transformed to stabilize variance between samples, after which the Pearson correlation
coefficient was calculated.

To compare differentially expressed genes to previously published microarray data
we took results from Tomczak et al. 2004 (148), performed VSN normalization (151),
and analyzed data from differentiated versus proliferating cells with limma (67; 68)
in R. Multiple testing was done according to Benjamini and Hochberg (70). Probes
were annotated with NetAffx from the Affymetrix website (www.affymetrix.com) and
linked to the CAGE and SAGE top 30 genes based on gene symbols.

To annotate the biological processes we took the top 30 differentially regulated
genes from CAGE and SAGE (with a Bayesian Error rate < 1 × 10−50 and sorted
for differentiated cells on a ratio of differentiated to proliferating cells), as well as
the microarray data (sorted on adjusted p-value), and ran these against 7,689 GO
(91; 92) Biological Processes in Anni 2.1 (90).

6.3.5 Sequence Annotation

All CAGE and SAGE regions were annotated based on the ElDorado genome anno-
tation (Genomatix, Version 07-2008) for being located in exons, introns, or intergenic
regions. Regions that covered an exon and neighboring intron or intergenic region
were categorized as partial. In addition a region was categorized as a promoter if it
was located in the ElDorado defined promoter region of a transcript. The distance to
the nearest TSS (upstream or downstream) was also calculated. CAGE regions were
correlated with CAGE data available in ElDorado (originating from the FANTOM3
project (8)).

6.3.6 CAGE Region Confirmation

To confirm that our CAGE regions represented newly discovered 5́-ends of transcripts,
we designed primers within CAGE regions upstream of 8 genes (Bpag, Cpeb1, Junb,
Myl1, Pik3ca, Ppt2, Sertad4x, and Usp34, primers in Additional Table 6.1). RT-PCR
experiments were performed using random hexamer priming for cDNA synthesis and
qPCR performed on a Roche Lightcycler 480. To provide additional validity to these
CAGE regions we inspected multiple UCSC tracks (UCSC genes, Ensembl (3) genes,
Vega genes, Other RefSeq, AceView Genes, N-SCAN, and Transcriptome).

To validate that our novel CAGE regions were indicative of myogenic promoters we
took all differentially expressed CAGE regions (see Results), expanded or contracted
them to a length of 2000 bp, retrieved sequences with Ensembl Perl API scripts, and
ran them through CORE TF (76), a program that identifies over-represented TFBSs.
For a background sequence we used 2000 mouse promoters defined as 1000bp before
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and 1000bp after the annotated TSS. A Match (55; 51) setting to minimize the sum
of false positives and false negatives was used.

We looked into more detail at the upstream CAGE regions of Myl1, a myogenic
gene that was confirmed to have differential expression in the differentiation anal-
ysis. To this we performed standard PCR for a primer set that spans the novel
CAGE region into the first UCSC exon (F- TCAGCCAAAATTCCAAGTTGA, R-
CCTCCAGAAGAACCTGTCAGA). We also checked this CAGE region, plus 500
bases upstream sequence, for functional evidence. This was done by taking the mouse
sequence, searching for orthologous sequences, and identifying conserved patterns of
TFBSs, as has been previously described (152; 153).

6.4 Results:

6.4.1 The Biological Model and Experimental Set-up

To study gene expression levels during myogenic differentiation we used C2C12 mouse
myoblasts, a common cell model for myogenesis, combined with NGS technology.
RNA was isolated from three independent cultures, both of proliferating and differ-
entiated cells. At the latter condition, cells had differentiated into fused and multi-
nucleated myotubes. To confirm successful differentiation, qPCR was performed to
determine the expression levels of the genes encoding the late myogenic TF Myo-
genin and the master myogenic regulator MyoD. Both of these should be expressed
at higher levels in differentiated than proliferating cells. qPCR confirmed that cells
had started to express Myogenin in differentiated cells and had higher expression of
MyoD in differentiated cells (Additional Figure 6.1). CAGE and SAGE libraries were
then prepared from all six RNA samples (three independent cell cultures for both
proliferating and differentiated cells) and used to determine expression levels based
on measurements in the 5′ and 3′ region of the transcripts, respectively. We used both
methods to evaluate how well transcript level measurements compare and to improve
transcript structure annotation. The latter is essential to facilitate bioinformatic ap-
proaches to analyze overall transcription regulation based on shared TFBS promoter
profiles.

6.4.2 General Sequencing Data and Alignments

Each CAGE and SAGE library was sequenced on a single lane of the Illumina Genome
Analyzer II. To investigate technical reproducibility, two CAGE samples (one from
proliferating and one from differentiated cells) were sequenced in duplicate. After run-
ning the Illumina Genome Analyzer Pipeline for image and sequence quality analysis,
we obtained on average 4.5 and 6.9 million reads from the CAGE and SAGE libraries,
respectively (Table 6.1). The scarf files, converted to FASTQ format, containing the
reads are available at GEO (154) under the accession number GSE21580. We aligned
these reads to the repeat masked mouse reference genome and were able to uniquely
map (reporting alignments that are unique to one position in the genome), on aver-
age, 1.9 million (42%) and 4.1 million (59%) tags for CAGE and SAGE, respectively
(Table 6.1).
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Table 6.1: Sequencing Results
CAGE sample # reads sequenced # reads aligned percent aligned
Prolif-1 4886341 2086233 42.7%
Prolif-1 duplo 3933233 1770247 45.0%
Prolif-2 5003964 2421443 48.4%
Prolif-3 4734605 2062081 43.6%
Diff-1 4525321 1679081 37.1%
Diff-1 duplo 3101153 1252451 40.4%
Diff-2 5060041 2195263 43.4%
Diff-3 4830194 1578087 32.7%
SAGE sample # reads sequenced # reads aligned percent aligned
Prolif-1 5941753 3351426 56.4%
Prolif-2 7768787 4464057 57.5%
Prolif-3 6723476 3878953 57.7%
Diff-1 9467926 5811947 61.4%
Diff-2 7269002 4618715 63.5%
Diff-3 4392416 2494618 56.8%

Indicators for CAGE and SAGE samples: Prolif for proliferating cells and Diff for
differentiating cells, followed by a number representing the biological triplicates. For
CAGE there are sequencing duplicates indicated by ”duplo.” The table contains the
number of reads, the number of reads that align uniquely to the repeat masked
genome, and the percent aligned.

For visual analysis we constructed UCSC genome browser wiggle files. The wiggle
files are available at GEO under accession number GSE21580 and at
http://www.lgtc.nl/publications/Hestand 2010 CAGE SAGE wig/. To retain infor-
mation on the direction of transcription, there is one file for each strand. In Figure
6.1 we show an example wiggle track for the Myod1 gene. We clearly see the sharp
SAGE peak starting at the most 3′-CATG site followed by 18 additional nucleotides.
The CAGE peak at the 5′-end of the transcript is wider, reflecting the variability in
the transcription start position. As observed before (8), and observed for many other
genes in the current study, CAGE also detects transcription starts in the 3′-region
of the gene. This phenomenon is further discussed in the Annotation and Discussion
sections. As expected, CAGE and SAGE consistently detect higher expression of
Myod1 in differentiated compared to proliferating cells.

We identified 742,355 CAGE regions, consisting of adjacent nucleotides with aligned
reads (after concatenating reads permitting gaps of maximally 100 nucleotides to
resolve gaps in alignments due to non-unique genomic sequences). 361,655 SAGE
regions (not concatenated, since SAGE tags always start at a fixed position) were
identified. After applying a threshold of two tags-per-million, a threshold for very
low abundant expression (∼0.3 copies per cell (36)), 41,862 CAGE and 43,512 SAGE
regions remained. The CAGE regions have median lengths of 314 nucelotides, and
usually represent clusters of TSSs (plus ∼26 nucleotides of downstream sequence).
The SAGE tags were 21 or 22 nucleotides long (including the 4 CATG nucleotides
representing the NlaIII restriction site).
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Figure 6.1: CAGE and SAGE wiggle tracks for proliferating (Prolif) and differentiated
(Diff) cells in the UCSC Genome Browser for the myogenic marker Myod1. We
only display reads aligning to the forward strand, the coding direction for Myod1.
Chromosomal positions are indicated at the top. For each track the Y-axis scale
corresponds to the number of tags aligned at that genomic position. Scales use a
maximum from each relevant technique in this viewing window (129 for CAGE and
3912 for SAGE). There is 5′ and 3′ concordance for CAGE and SAGE samples,
respectively. CAGE provides broader peaks, reflecting TSSs plus ∼26 nucleotides
of downstream sequence, wheres SAGE provides discrete peaks. A higher number of
tags are in differentiated compared to proliferating samples.

6.4.3 Technical Reproducibility and Biological Overlap

A high correlation was found between the technical CAGE replicates (median Pearson
correlation of 0.981) as well as the biological triplicates (median Pearson correlation
of 0.963 (Figure 6.2A/B, Additional Table 6.2). As expected, correlation between
proliferating and differentiated cells was lower (median Pearson correlation of 0.771)
(Figure 6.2C, Additional Table 6.2). Similarly, we observed a high reproducibility
for the SAGE experiments (median Pearson correlation of 0.930) between biological
triplicates (Figure 6.2D and Additional Table 6.2). Again, the correlation between
proliferating and differentiated cells (median Pearson correlation of 0.839) was lower
than between cells from the same condition (Figure 6.2E and Additional Table 6.2).
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Figure 6.2: High reproducibility was found in CAGE regions between sequencing du-
plicates (A) and biological replicates (B). Panel C shows correlation between CAGE
samples from proliferating and differentiated cells. High reproducibility can also be
found between SAGE biological replicates (D). Panel E shows the correlation be-
tween CAGE samples from proliferating and differentiated cells. The plotted values
represent the square root of the number of tags per region.

6.4.4 Annotation of Regions

We annotated the 41,862 CAGE regions using Eldorado’s mouse genome annota-
tion: 9,957 regions map to an annotated exon, 27,190 partially overlap an exon and
intron/intergenic region, 2,368 map to an intron, and 2,347 regions are purely inter-
genic. The median number of tags in the exonic and partial regions (63 tags and 90
tags respectively) were higher than in the intronic and intergenic regions (45 tags and
54 tags, respectively). These data clearly show that our CAGE experiments identifies
many (lower abundant) TSSs / transcribed regions that have not yet been identified
and/or annotated as such in current genome databases.

Based on ElDorado annotation of our 41,862 CAGE regions, 13,541 of the CAGE
regions (32%) contained an annotated TSS, 6,331 CAGE regions (15%) were anno-
tated as promoters (i.e. a genomic region surrounding a TSS containing functional
elements like TFBSs that are responsible for the regulation of the expression of the
transcript), and 8,028 (19%) CAGE regions contained an annotated transcript 3′-
end. 3′-end alignments are consistent with the previously observed (8) significant
amount of (shorter) transcripts originating from the 3′-ends of genes. We compared
our CAGE results to previous CAGE studies (FANTOM3) contained in ElDorado
and identified 31,680 regions (76%) overlapping with at least one on the FANTOM3
CAGE tags. Only 6,119 (15%) and 5,635 (13%) of these regions were observed in
FANTOM3 muscle and heart CAGE libraries, respectively. This is explained by the
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small size of these muscle and heart libraries (8), together representing only 1% of all
available CAGE tags in FANTOM3.

6.4.5 Comparison of CAGE, SAGE, and Microarray Expres-
sion Data

To compare overall expression level measurements we assigned CAGE and SAGE
regions to genes (including 1000 bases upstream and downstream of the gene). Ex-
pression above a threshold of 2 transcripts per million (∼0.3 copies per cell) (155)
was observed for 10,409 and 10,987 genes respectively. Expression profiles for both
methods showed a high correlation (Figure 6.3A-C), with 9,240 genes being expressed
in both methods above 2 transcripts per million (Figure 6.3D). Additional Figure
6.2 shows that the relative overlap is even bigger when higher detection thresholds
are applied, obviously at the expense of many more genes not reaching the detection
threshold. 4,304 genes were differentially expressed between proliferating and differ-
entiated cells (Bayesian error rate < 0.05) according to the CAGE data and 3,846
according to the SAGE data with 2,144 genes present in both lists of significant genes
(Figure 6.3E). Most others were just borderline significant according to one of both
methods.

Figure 6.3: Correlation of CAGE versus SAGE for proliferating samples (A), differ-
entiated samples (B), and the ratio of proliferating / differentiated cells (C). Values
are the square root of the number of tags per gene for A and B. For C the values
are the log ratio of the normalized number of tags per gene in differentiated over
proliferating cells. The overlap of detectable genes (D) and differentially expressed
genes (E) between CAGE and SAGE is indicated.

We compared the top 30 most differentially expressed genes for both methods
(Table 6.2A) to results from a similar microarray dataset on myogenic differentiation
in the same cell line (148). In general, the genes identified by CAGE and SAGE
also demonstrated very significant changes on the microarrays. However, in the top
30, 13 genes identified by CAGE and 10 identified by SAGE were not represented
on the array, demonstrating the comprehensive nature of the CAGE and SAGE-
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based gene expression profiling techniques. The biological processes controlled by
the top 30 CAGE, SAGE, and microarray genes, were annotated with the Anni2.1
text-mining tool (Table 6.2B). All CAGE and SAGE-derived GO terms can read-
ily be related to muscle development, whereas 3/10 GO terms associated with the
microarray-derived gene list can not (”cyclin-dependent protein kinase inhibitor ac-
tivity,” ”6-phosphofructokinase,” and ”tumor suppressor activity”).

6.4.6 Differential TSS Use and Validation

In our CAGE data, we identified 111 regions upstream of the start of a known gene
and 85 CAGE regions downstream of an annotated gene containing significantly dif-
ferent numbers of tags in proliferating and differentiated cells (Additional Table 6.3).
The differential expression of transcripts originating from 7 out of 8 of these regions
(upstream from genes Bpag, Cpeb1, Junb, Myl1, Pik3ca, Ppt2, Sertad4x, and Usp34 )
were confirmed by RT-PCR/qPCR (Figure 6.4B and Additional Figure 6.3). To eval-
uate if these novel exons were contained in a transcript of the gene of interest we
inspected the following tracks in he UCSC genome browser: UCSC genes, Ensembl
genes, Vega genes, Other RefSeq, AceView Genes, N-SCAN, and Transcriptome (Fig-
ure 6.4A and Additional Figure 6.4). In all but Junb we found the CAGE regions
overlapping at least one exon from an additional track connected to the gene of inter-
est (Figure 6.4A and Additional Figure 6.4). This indicates that these CAGE regions
usually represented alternative transcripts that are not yet properly annotated in all
resources, including the mainstream UCSC and Ensembl annotations. This suggests
that the mainstream genome annotation are far from complete and that additional
evidence, including our CAGE data, is required to more precisely define transcript
structure.

To support that differential transcription in the 196 CAGE regions is regulated by
myogenic TFs, we searched for over-represented TFBSs and found the binding sites
for the master regulators MyoD (p-value 6.49×10−03 from CORE TF’s binomial test)
and Myogenin (p-value: 3.87 × 10−02 ) and the Ebox motif (p-value 6.02 × 10−03)
(frequently found in muscle promoters (156; 157)) to be significantly over-represented
in 2,000 bp of sequence composed of the CAGE and surrounding regions (Additional
Table 6.4).

For one of these novel CAGE regions, Myl1, we confirmed by standard RT-PCR
that there is a transcript extending from the novel CAGE region into the UCSC de-
fined exon 1 (Figure 6.4C). The CAGE sequencing, RT-PCR/qPCR within the region,
and the standard PCR into exon 1 all confirmed that this transcript is only present
in differentiated cells, explaining why it is missing in standard genome annotations.
For functional evidence that this region is used as a promoter, we also looked for
conserved TFBSs in and upstream of this region. Within the Genomatix Suite we
identified orthologous sequence regions from human and horse corresponding to the
CAGE region and 5′ upstream (promoter) sequence. In this area we identified con-
served TFBSs for NKX, GATA, and SRF (Figure 6.4D), all of which are known to be
involved in the regulation of muscle genes (158). This makes it likely that the region
directly upstream of the novel exon 1 is used as an alternative promoter.
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Table 6.2: Differential Gene Expression
A.CAGE Gene Ratio Microarray p-val SAGE Gene Ratio Microarray p-val

Hfe2 4073 NA RP23-36P22.5 576 NA
Myom3 1624 NA Neb 525 NA
Lmod2 1305 NA Mylpf 504 1.70× 10−15

Myh7 1124 5.98× 10−3 Ttn 380 NA
Mb 908 1.07× 10−14 Myh3 368 2.40× 10−14

RP23-36P22.5 735 NA Xirp1 306 2.24× 10−13

Pygm 717 4.82× 10−17 1110002H13Rik263 NA
Myl4 614 8.86× 10−20 Tnnc1 232 1.24× 10−11

Synpo2l 595 NA Cav3 150 3.58× 10−22

Myh1 561 3.64× 10−15 Cbfa2t3 133 2.89× 10−10

Tnni1 529 2.24× 10−9 Chrng 115 4.63× 10−9

Tnni2 442 3.20× 10−11 Myom2 105 6.66× 10−16

Mpa2l 410 NA Tnnt1 100 1.15× 10−10

Ctrb1 406 7.55× 10−7 Ryr1 92 7.03× 10−14

Ttn 402 NA Apobec2 84 2.95× 10−15

Neb 374 NA Cox6a2 72 2.45× 10−16

Kcnq4 365 NA Dio2 64 2.14× 10−10

Mylpf 341 1.70× 10−15 C1qtnf3 52 4.36× 10−5

1110002H13Rik 341 NA Htr2b 43 3.76× 10−6

Inpp4b 328 NA Sgcg 42 1.15× 10−12

Xirp1 307 2.24× 10−13 Fndc5 39 NA
Atp2a1 304 2.06× 10−14 Jsrp1 36 NA
Casq2 297 4.74× 10−6 Ankrd23 36 NA
Cacna1s 296 5.20× 10−19 AK031267 29 NA
Ces2 245 NA Sema6a 26 3.08× 10−3

Cox6a2 241 2.45× 10−16 Lgr5 23 9.33× 10−1

Myog 238 2.36× 10−6 Pdlim3 22 3.18× 10−6

Myh3 234 2.40× 10−14 Klhl31 22 NA
Tmem182 216 NA ORF63 21 NA
Tnnc1 215 1.24× 10−11 Gfra2 19 2.98× 10−2

B.CAGE GO SAGE GO microarray GO
1)regulation of striated 1)regulation of 1)cyclin-dependent protein

muscle contraction muscle contraction kinase inhibitor activity
2)cardiac muscle contraction 2)cardiac muscle contraction 2)Myogenesis
3)Myogenesis 3)Myogenesis 3)skeletal muscle development
4)regulation of 4)regulation of striated 4)myoblast differentiation

muscle contraction muscle contraction 5)6-phosphofructokinase
5)skeletal muscle development 5)skeletal muscle development activity
6)Muscle Development 6)myofibril assembly 6)Muscle Development
7)striated muscle contraction 7)Muscle Development 7)muscle cell differentiation
8)myoblast differentiation 8)myoblast fusion 8)tumor suppressor activity
9)muscle cell differentiation 9)striated muscle contraction 9)myofibril assembly
10)sarcomere organization 10)muscle cell differentiation 10)heart development

Top 30 genes from SAGE and CAGE expression data (A). All genes with a Bayesian
error rate < 1 × 10−50 were sorted on the ratio (normalized tags from differentiated
/ proliferating cells) and the highest ratios for differentiated cells displayed. The
microarray p-values are adjusted p-values for differential gene expression from a
similar experiment (proliferating and differentiated C2C12 cells (148)). NA = no
probe annotation for the gene. The top 10 GO biological processes (B) associated
with the top 30 genes for CAGE, SAGE, and microarray experiments indicate clear
muscle relations, with the exception of 3 (in italics) processes in the microarray data.
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Figure 6.4: The UCSC display of (A) UCSC/Ensembl defined first exon and an up-
stream CAGE region for Myl1 (reverse strand reads only, on which the gene lies) for
samples Prolif-1 and Diff-1. The Y-axis indicates the number of tags aligned at each
position in the genome. We also display additional track information (UCSC genes,
Ensembl genes, Vega genes, Other RefSeq, AceView Genes, N-SCAN, and Transcrip-
tome), several of which confirm the presence of the upstream CAGE region. (B) qPCR
with primers within the CAGE region for Prolif, Prolif-C (reverse transcriptase con-
trol), Diff, and Diff-C (reverse transcriptase control). The qPCR results are plotted
as threshold cycle (Cp) values (lower = higher expression), with bars indicating a
range of one standard deviation between technical duplicates. (C) standard PCR on
agarose gel with forward primer in the novel CAGE region and reverse primer in the
conventional exon 1. Comparison with the genomic control verifies the presence of
an intron of 200 bases. A 100 bp ladder is included. Panels A-C are all consistent
with higher expression in differentiated than proliferating cells. (D) Cross-species
conserved muscle specific TFBSs around and upstream of the Myl1 CAGE region
support its role as a promoter for this region.

6.5 Discussion

Using CAGE and SAGE methods with NGS we have measured gene expression levels
during myogenic differentiation and identified muscle specific TSSs. By elucidating
promoter regions and regulation in these myogenic cells we hope to better understand
the process of muscle development and regeneration, providing clues to cure muscle
related illnesses. Since biologists and clinicians often study (first) exons and 5′ pro-
moter regions it is crucial to know the positions of TSSs in the genome. Our data
will help them identify potentially pathogenic mutations in transcripts and promoters
used during myogenic differentiation, which might have been over looked with current
genome annotations. On a technical level, this is the first time CAGE and SAGE have
been evaluated using the same RNA samples.

We found both the technically demanding CAGE method and the slightly less
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laborious SAGE method to be extremely robust. Biological triplicates with indepen-
dent sample preparations and sequencing runs were found to have high correlations
(Figure 6.2, Additional Table 6.2). This is in line with previous findings in the FAN-
TOM4 CAGE study (159) and our previous (36) finding with SAGE. Higher technical
reproducibility also enhances the ability to verify low expressed genes, which was an
obstacle in microarray analysis. The high quality of the data implies that more in-
vestments should be made in biological than technical replicates, as demonstrated for
CAGE for the first time in the current paper.

This study also highlights other advantages over microarrays. For a third of the
top 30 genes (13/31 CAGE genes and 10/30 SAGE genes, Table 6.2A) there was no
probe on the microarray. Finding many more significant genes not interrogated by
the microarrays stresses the more comprehensive transcript profiling by NGS based
methods. We also found more muscle related biological processes associated with the
top 30 CAGE and SAGE genes compared to the microarray top 30 genes (Table 6.2B)
indicating the higher relevance of the top hits for the process under study.

The data provided by these methods have greatly expanded our knowledge of
muscle specific transcription. 56% of the analyzed CAGE regions contained an anno-
tated TSS, indicating discovery of many novel TSSs. 76% of CAGE regions matched
known FANTOM3 CAGE tags, but less than 20% of those matched known muscle
related CAGE tags. This is likely due to the lower sequencing depth in the previous
FANTOM3 CAGE studies. High overlap with the previous FANTOM CAGE regions
indicates these reflect true TSSs, but there is a lack of information on the defini-
tion of TSS usage in relation to tissue. To exemplify this point, we identified 196
intergenic regions significantly different between proliferating and differentiated cells,
indicating muscle-specific alternative promoter and first exon usage. Several of these
were verified by PCR and additional UCSC track evidence. We also identified over-
represented muscle specific TFBSs in the 196 CAGE regions and additional conserved
muscle specific TFBSs upstream of a novel first exon of the Myl1 gene, coding for
one of the light chains of the myosin protein complex involved in muscle contraction.
These muscle specific TFBSs indicate that the identified regions potentially serve as
a promoters.

This is the first study to compare NGS of CAGE and SAGE libraries from the same
RNA samples. Gene expression measurements by CAGE and SAGE are generally
consistent. The high correlation between methods (Figures 6.3A-C), large overlap
between genes detected (Figure 6.3D) and differential gene lists (Figure 6.3E), and
gene involvement in similar biological pathways (Table 6.2B) indicates these methods
are interchangeable for expression analysis. Only when transcript structure (5′ or
3′) is important is one method preferential over another. Correct 5′ usage is crucial
for promoter based regulation studies, whereas proper 3′ usage is needed for studies
concerning micro-RNA regulation.

Of the 4,304 and 3,846 genes differentially expressed between proliferating and
differentiated cells with CAGE and SAGE, respectively, over half (2,144) of the genes
are identical. More changes in CAGE than SAGE levels could indicate alternative
promoter usage is more common than that of alternative 3′ ends. The detection of
genes by one technique, but not the other, is mostly inherent to the use of thresholds.
In addition, a minority of transcripts may be missed entirely by one of the methods
due to the absence of a CATG site in the transcript (SAGE) or the sequence around
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the TSS not being unique in the genome (CAGE). Rmap does not report a read when
it aligns with equal mismatches to multiple regions in the genome. Therefore non-
unique TSS sequences will not be reported and included in our analysis. For both
techniques, we frequently detected multiple regions in the same gene. 75% of the genes
had multiple SAGE tags with abundance above the threshold of 2 transcripts per
million. In our previous paper (36), we discussed that this is probably not a technical
artifact but most likely due to different 3′ ends and usage of multiple polyadenylation
sites.

Similar to previous studies(8), we found a large number of CAGE tags aligning
to the 3′ end of known transcripts. This phenomenon has been previously validated
by the RACE method and explained as potential 3′ derived regulatory noncoding
RNAs (8). With additional analysis this could serve a a method for identification
of noncoding RNAs. In addition, these should be recognized as a source of false
expression levels identified by the 3′ based SAGE method and microarrays based on
3′ probes.

67% of the genes contained multiple CAGE regions. This phenomenon was previ-
ously referred to as ”exon painting” (160). Examples of genes where nearly all exons
are covered by CAGE tags are Col1a1 and Col1a2 (Additional Figure 6.5A/B, re-
spectively). This is unexpected since the RNA integrity was high in all samples, the
CAGE technique only captures capped transcripts, and even when some non-capped
transcripts may be included, the method will only create tags from the ultimate 5′

end. Together with the observation of genes with a highly abundant peak at the 5′

end without any exon painting (Additional Figure 6.5C/D) and the fact that the exon
painting patterns are highly reproducible in independent CAGE sample preparations,
this suggests that there is a biological explanation for the exon painting phenomenon.
The observation of exon painting is consistent with the finding of many short tran-
scripts from exonic regions in a tiling array study (160). It is not clear whether these
short transcripts are degradation products from larger transcripts, true de novo tran-
scriptional events, or a combination of both. From our study, it is highly likely that
many of these shorter transcripts contain a cap structure. The process of recapping
of transcript fragments has been documented before (160). Fejes-Toth et al. propose
long RNAs are spliced into mature and translatable RNAs, but that these mature
RNAs can also be further processed (160). This further processing involves cleavage
into smaller RNA fragments and possible modification by additional 5′ capping (160).
The presence of exon painting complicates the identification of novel TSSs and is the
reason why we focused on the discovery of novel TSSs in intergenic regions and did
not report alternative TSSs within annotated genes. A positive consequence of the
exon painting phenomenon is that the CAGE technique gives additional information
on the exon structure of many genes.

The large data yield and reproducibility should serve as an example of the advan-
tages of applying NGS to CAGE and SAGE techniques. These methodologies should
be expanded to other tissues and processes in the future to enrich our knowledge of
the genome of many organisms. This work has provided a substantial increase in
our knowledge of myogenic TSSs and expression. This has also demonstrated the
technical advantages of CAGE and SAGE in conjunction with NGS.
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6.9 Additional Files

Additional Figure 6.1

Myogenic confirmation of RNA. Expression levels are relative to the control genes
GAPDH or HPRT.
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Additional Figure 6.2

Overlap between genes detected by SAGE and CAGE. We compared the genes
detected by SAGE at different threshold values (expression levels in transcripts per
million, x-axis, 10log scale) with the genes detected in CAGE with a fixed threshold

of 2 transcripts per million. The number of genes also detected by CAGE is
expressed as a percentage of the total number of genes detected by SAGE at

different thresholds is plotted in open symbols. The closed symbols represent the
percentage of genes remaining after thresholding of the SAGE data.

Additional Figure 6.3

PCR validation of CAGE tags in novel upstream exons. -B in the legend indicates a
no enzyme reverse transcriptase control. The Y-axis is the threshold cycle (Cp)

value (lower = higher expression), with plotted bars indicating +/- one standard
deviation.
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Additional Figure 6.4

UCSC/Ensembl defined first exon and an upstream CAGE region for 8 example
genes (only reads on the strand which the genes lie on are displayed) for samples

proliferating-1 and differentiated-1. The Y-axis indicates the number of tags aligned
at each position in the genome. We also display additional track information (UCSC

genes, Ensembl genes, Vega genes, Other RefSeq, AceView Genes, N-SCAN, and
Transcriptome), several of which confirm the presence of the upstream CAGE

regions. A larger color figure is available upon request

120



6.9 Additional Files

Additional Figure 6.5

Examples of exon painting conservation in 8 different CAGE datasets divided over
each strand (F or R) across the genes Col1a1 (A) and Col1a2 (B). The same

datasets are also plotted against the genes Fgf11 (C) and Got2 (D), which do not
show exon painting. To ensure regions with a low number of tags are visible and not
over-shadowed by regions with a high number of tags the maximum display is set to

25 tags per position.
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Additional Table 6.1

Expression
Primer Name Sequence
MyoD ex3-F CCCAATGCGATTTATCAGGT
MyoD ex3-R TCTGCTCTTCCCTTCCCTCT
MyoD ex1-F GACAGGGAGGAGGGGTAGAG
MyoD ex1-R AAGTCTATGTCCCGGAGTGG
MyoG-R TGGGAGTTGCATTCACTGG
MyoG-F CCTTGCTCAGCTCCCTCA
HPRT-F TCCCTGGTTAAGCAGTACAGCC
HPRT-R CGAGAGGTCCTTTTCACCAGC
GAPDH-F TCCATGACAACTTTGGCATTG
GAPDH-R TCACGCCACAGCTTTCCA
CAGE region
Primer Name Sequence
Myl1 CF TCAGCCAAAATTCCAAGTTGA
Myl1 CR CCACTTCCTAAGAAGCTTTACCG
Usp34 CF CGGACGGAAGAGGAAAGG
Usp34 CR GCCTCTCTCCGCACACAC
Ppt2 CF CACTGGCAGGGTTTGTGTC
Ppt2 CR GACAAACTGCTCCTCAGATCC
Bpag CF GTGCTGAGTCATGGCGAGAG
Bpag CR CCGGAACGACTGATGGAG
Pik3 CF GTGGGGAAGAGTTCGTTGTTT
Pik3 CR GGTCTCTCTTTCCGCTCACAT
Cpeb CF GTCTGGTCCAGCCCTAGC
Cpeb CR GAAGCTGTTGTTCCGAGAGG
Sert CF GCTCAGTCCAGCTCTGACATC
Sert CR CTTCCCCTCTGTACAGCACAC
Junb CF GGAAGGAGGACTTAAGGGTCA
Junb CR GTAGGGGCATTGGAGAAGAAG

PCR primers used in study.
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Additional Table 6.2

CAGE Prolif-1d Prolif-1 Prolif-2 Prolif-3 Diff-1d Diff-1 Diff-2 Diff-3
Prolif-1d 1.000 0.983 0.960 0.959 0.754 0.754 0.787 0.770
Prolif-1 0.983 1.000 0.961 0.959 0.751 0.755 0.790 0.771
Prolif-2 0.960 0.961 1.000 0.982 0.771 0.774 0.810 0.783
Prolif-3 0.959 0.959 0.982 1.000 0.765 0.767 0.804 0.777
Diff-1d 0.754 0.751 0.771 0.765 1.000 0.978 0.963 0.962
Diff-1 0.754 0.755 0.774 0.767 0.978 1.000 0.970 0.967
Diff-2 0.787 0.790 0.810 0.804 0.963 0.970 1.000 0.966
Diff-3 0.770 0.771 0.783 0.777 0.962 0.967 0.966 1.000
SAGE Prolif-1 Prolif-2 Prolif-3 Diff-1 Diff-2 Diff-3
Prolif-1 1.000 0.968 0.920 0.806 0.879 0.839
Prolif-2 0.968 1.000 0.940 0.802 0.885 0.851
Prolif-3 0.920 0.940 1.000 0.721 0.852 0.838
Diff-1 0.806 0.802 0.721 1.000 0.887 0.824
Diff-2 0.879 0.885 0.852 0.887 1.000 0.941
Diff-3 0.839 0.851 0.838 0.824 0.941 1.000

Reproducibility of CAGE and SAGE methods: Pearson correlations. d = sequencing
duplicate.

Additional Table 6.3
available upon request
Regions upstream and downstream of a known genes that were significantly different
between proliferating and differentiated cells. Distance is distance from the CAGE
region to the TSS. Bay.error is the Bayesian error rate.
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6 CAGE/SAGE: muscle gene structure

Additional Table 6.4

TFBS p-value
V$SREBP1 Q6 6.9010× 10−04

V$BACH2 01 3.6910× 10−03

V$CREB 01 5.7810× 10−03

V$EBOX Q6 01 6.0210× 10−03

V$BACH1 01 6.2110× 10−03

V$MYOD 01 6.4910× 10−03

V$PTF1BETA Q6 8.0810× 10−03

V$PR 01 1.0110× 10−02

V$NRSE B 1.0610× 10−02

V$TFE Q6 1.1210× 10−02

V$USF C 1.1710× 10−02

V$E12 Q6 1.2110× 10−02

V$SZF11 01 1.4010× 10−02

V$AML1 01 1.4510× 10−02

V$CACBINDINGPROTEIN Q6 1.4610× 10−02

V$SREBP Q3 1.6310× 10−02

V$TGIF 01 1.6910× 10−02

V$FXR IR1 Q6 1.7110× 10−02

V$AP4 01 1.7210× 10−02

V$PADS C 1.8410× 10−02

V$STRA13 01 2.1910× 10−02

V$AREB6 03 2.9110× 10−02

V$RREB1 01 3.0710× 10−02

V$NFY C 3.3510× 10−02

V$ETS1 B 3.3910× 10−02

V$HTF 01 3.6310× 10−02

V$NANOG 01 3.7510× 10−02

V$MYOGENIN Q6 3.8710× 10−02

V$ZTA Q2 4.5110× 10−02

V$COUP DR1 Q6 4.6510× 10−02

Top 30 (sorted on decreasing p-value significance) CORE TF over-represented TF-
BSs (represented as a TRANSFAC position weight matrix) in the 196 differentially
expressed intergenic CAGE regions.
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Chapter 7

Discussion

This thesis presents dry and wet lab techniques to elucidate the involvement of tran-
scription factors (TFs) in the regulation of the cell cycle and myogenesis. However,
the techniques described in this manuscript could be used for the study of other TFs
in these and other biological processes. These two methodologies complement each
other. In silico analysis provides clues into what to verify in the wet lab, which can
be used as the basis for additional in silico predictions. When developing genetics
and genomics to study complex cellular processes these methodologies are essential
to successfully tackle the large quantities and complexities of data successfully.

7.1 In Silico Prediction of Transcription Factor Bind-
ing Sites: Past, Present, and Future

Figure 7.1: PWM evolution: The sequence affinity of TFBSs has evolved from single
sequences, to PWMs, to larger and larger databases of PWMs.

Computational predictions of TF binding sites (TFBSs) have come a long way.
From initial single specific sequences, such as myogenic regulatory factors binding an
E-box (simply the sequence CANNTG, reviewed in Sabourin et al. 2000 (161)), the
jump was made to position weight matrices (PWMs), accounting for the variation in
sequences bound by specific TFs (Figure 7.1). PWMs have also accounted for combi-
nations of TFs serving as complexes, such as the TRANSFAC PWM V$MYOGNF1 01
for Myogenin and NF1 (162). As more PWMs become available (such as in a database)
we can mine sequences for multiple PWMs indicating co-regulation and competition
between multiple TFs.

However, since at present there are only a few hundred PWMs and the human
proteome is estimated to contain approximately 2600 proteins with DNA binding
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7 Discussion

domains (163), there is still a lot to discover. Existing methods for obtaining exper-
imental based PWMs include analysis of ChIP-chip and ChIP-seq data. With the
cost of ChIP-seq decreasing and the popularity increasing there are more and more
sequences defined as TF targets, for which we can extrapolate motifs using programs
like MEME (45; 46) and Gibbs samplers (47; 48; 49). The major limitation in obtain-
ing PWMs based on ChIP-seq data is becoming the availability of good antibodies,
placing the bottleneck more on the biology and less on the informatics. Hopefully in
the near future we will have a greater number of PWMs, based on a larger quantity
of data resulting in higher quality.

The use of a PWM to predict TFBSs has also evolved over time. In the past pro-
grams like Match (51; 55) could identify whether a single PWM matched a sequence
or not, given a similarity over a given threshold. This could be done in a batch setting
for multiple PWMs, but calculations were still done one TF at a time. This program
is still useful today due to its speed, but has several theoretical limitations. Three
limitations are using a threshold, not accounting for competition, and not considering
the TF concentration in a cell. All three of these principles are accounted for in Sun-
flower (56). Sunflower does not report back a black or white, bound or not bound,
report, but instead a probability of a TF binding a sequence. Therefore, this also
models the binding affinity of a TF. The Sunflower algorithm, by nature, introduces
competition between PWMs for the same nucleotide sequence. We showed improved
results when looking for enrichment of TFBSs in sequences with Sunflower compared
to Match in chapter 3. In addition, though the current model sets the concentration
of all TFs equal by default, they can be adjusted on a TF by TF basis. In the future,
models will take into account additional factors that contribute to the binding and
functionality of TFs, including TF concentration, chromatin state, and methylated
nucleotides. The first steps have been made in this direction: e.g. Segal et al. (81)
have included TF concentrations in their model to identify TFBSs in Drosophila.

One issue, addressed in chapters 2 and 3, is the use of proper background sequences
when looking for enrichment in a foreground set of sequences. One argument is that
background sets should have similar properties as the foreground set to identify TFBSs
properly. For example, when a foreground set has a high TA content compared to the
background set there is a high likelihood that TATA binding proteins will be predicted.
Therefore, TATA box proteins predicted may well be false positives. However, TFs
have access to all sequences in the genome so some may argue that it is improper
to make these selections. In our searches for MyoD and Myog in expression data
we found that matching foreground and background promoters based on GC content
improved results. Incorporating GC content into predictions for de novo motifs has
also been shown to improve results (86; 87). Since CpG islands have a higher GC
content by definition (10) and potentially different promoter binding behavior (8; 9)
it is also appropriate to sort data on CpG content. Besides sorting on GC and
CpG content, we investigated, in chapter 3 with ChIP-chip and ChIP-PET data,
sorting on presumed better annotated promoters (containing a 5′ UTR in Ensembl).
However, we found that this did yield better results. In the same chapter we also
compared the use of random genomic sequence as background instead of promoters.
Greater significance was found using random genomic regions, confirming the a priori
assumption that TFs are more likely to bind sequences near genes. This is due
to differences in sequence composition between genic regions and non-genic regions,
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7.2 Wet Lab Identification and Analysis of Transcription Factor Binding Sites:
Past, Present, and Future

including an overall higher GC content in coding regions (164). However, with ChIP-
chip promoter based foreground sets the relative enrichment of targeted TFs compared
to other TFs searched for was usually not more enriched, indicating a higher number
of false positives. We therefore suggest, as has been for the similar enrichment of GO
terms (91; 92; 88; 89), that for identifying over-represented TFBSs in a foreground
versus background set of sequences, that both foreground and background sequences
have similar properties, e.g. GC content, CpG content, and genic or genomic basis.

7.2 Wet Lab Identification and Analysis of Tran-
scription Factor Binding Sites: Past, Present,
and Future

Traditional methods, like the TransFactor kit, luciferase assays, and deletion con-
structs, only identified one TFBS at a time. Chromatin immunoprecipitation (ChIP)
permitted the isolation of all sequences bound in the cell by a given TF, but was also,
at first, limited to only analyzing a small number of targets at a time by site spe-
cific PCRs. With the invention of the microarray these ChIP fragments (ChIP-chip)
could be analyzed on a genomic scale, though still limited by cost and target region
(i.e. probes on the array). Lately, the costs for genome-wide ChIP analysis has gone
down and nowadays the targetting of specific regions can be avoided by the use of
ChIP in conjunction with next-generation sequencing machines (ChIP-seq). ChIP-
seq also requires less input material and, potentially, can identify low affinity TFBSs
(35). However, ChIP-seq is still costly and requires days of preparation. With newer
technologies being introduced that permit single molecule sequencing the costs and
man hours to produce data will continue to decrease. Already, articles are published
using the first of these machines: the Heliscope Single Molecule Sequencer by Helicos
(165; 166).

Besides using ChIP-seq and ChIP-chip for direct targeting of TFBSs, other tech-
niques can be used to infer TFBSs. As addressed in chapters 2 and 3, groups of genes
with differential expression from expression studies can be used to mine for common
sequence patterns indicating shared regulatory elements (i.e. TFs). Like ChIP-seq
and ChIP-chip, expression applications previously done on a target by target scale
have been upgraded to genome wide analysis. Expression, originally analyzed by sim-
ple PCRs and gels or qPCR, can be done genome wide with a microarray or in con-
junction with next-generation sequencing. Next-generation sequencing for expression
analysis proves more precise, reproducible, and sensitive compared to microarrays,
likely due to avoiding the background issues of hybridization techniques (36). This
also provides data on genes that have similar regulation, for which the regulators
(e.g. TFs), can be searched for. Still, the location of regulatory regions of such genes
has to be determined, such as promoter regions which are often loosely defined as
sequences flanking the first exon of a transcript. Techniques like DeepCAGE (Cap-
analysis of Gene Expression with high throughput sequencing) can refine this. With
these two applications, provided in multiple cell types and conditions, we will have
greater quantity and quality of regions to search for TFBSs with in silico analysis.

The analysis methods of data from for next-generation sequencing applications,
including ChIP-seq, have moved dramatically forward. Initially the primary limitation
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7 Discussion

was time. Though sufficient for machines with longer reads, for millions of small reads
the traditional programs of BLAST (37) or BLAT (38) were not sufficient. The Eland
alignment tool provided by Illumina increased speed dramatically, but was limited to
a short read length of 32bp. Other programs were introduced that could handle
longer reads at high quality, like Rmap (40) and Maq (39), though at a longer run
time. Old algorithms were reexamined and the Burrows-Wheeler algorithm took on
new life with the current short read alignment standards: Bowtie (42) and BWA (43).
Alignments are getting faster and faster, though accuracy should be maintained. The
ability to align massive quantities of data will continue to be an important issue as
current platforms produce more data per run and future platforms are introduced
that provide even larger quantities of sequence.

As outlined in chapter 5, we find binding of regulatory proteins with discrete
peaks (most frequently around the transcription start site (TSS)), binding across a
gene with a bias for the TSS and transcript end (a so-called ”U” shape), and binding
across the whole gene (Figure 5.1C-E). Possibly, these patterns are related to the
different ways in which p300 and CBP are able to regulate transcription: the local
peaks might be associated with genes where p300/CBP bind specifically to the TFs
that regulate gene expression in contrast to the gene-wide binding where p300/CBP
regulate the expression via histone acetylation to open up the chromatin structure
facilitating transcription activation. The combination of association with TFs and
histones may account for the ”U” shaped binding.

A major problem in ChIP-seq analysis is defining a proper peak, which indicates
the target of TF binding in a sequence. These multiple binding patterns could prove
troublesome for some current peak detection algorithms. Multiple programs have been
designed for ChIP-seq analysis, SISSRs (96), QuEST (97), a pipeline by Kharchenko
and colleagues (98), and FindPeaks (99). All of these models are based on strand
biases, in which a double peak is created due to the fact that only the 5’ ends of
all DNA fragments are sequenced and for both strands (Figure 7.2A). When ChIP-
seq sample p300 (T30-2, chapter 5) is reanalyzed with GAPSS B (chapter 4) and
we keep tags strand-separated we do see this configuration for many TFBSs (Figure
7.2B). However, this same data also shows cases of very close tags that may not follow
these models perfectly (Figure 7.2C). We also see large genomic regions of binding
(Figure 5.1D), which we speculate as histone interactions. Since these regions do
not represent peaks, but broad binding it is not clear if algorithms will detect these
properly. Distinct binding patterns, such as in Figure 7.2B, should perform well
with current prediction systems, but further evaluation should be made on broader
binding, such as in Figure 5.1D. Future programs should focus on better addressing
and identifying multiple peak-shapes, and not just one shape.

The future of ChIP-seq data production and analysis will be faster runs at higher
quality, generating more accurate data. Single molecule sequencing allows one to
sequence the DNA of a single cell. This will enable more detailed experiments with
precise expression and ChIP analysis from a single cell, not a mix of cells common to
many cultures and samples.
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7.3 TFs and Disease

Figure 7.2: Peaks: ChIP-fragments (in full represented by arrows in the top panel
A), with darker ends representing what is sequenced are aligned to the genome with
strand specificity. The coverage of the sequences are represented by the light ”peaks,”
shown as strand specific (top panel A) and represented as a consensus (bottom panel
A). The assumption of sequence tag distribution in programs like FindPeaks, QuEST,
and SISSRS is a double peak pattern (A). UCSC browser wiggle tracks (B/C) of tags
plotted on the forward (F), reverse (R), or both (F&R) for a p300 ChIP-seq dataset
(T30-2 from chapter 5). When we plot p300 ChIP-seq data we see these strand specific
patterns for some regions (e.g. ZNF688 ) (B), but for other binding events the strand
bias is much less prominent (e.g. SERPINE1 ) (C).

7.3 TFs and Disease

Many diseases are some how associated with function and dysfunction of TFs. This
work focuses on TFs involved with two biological processes, myogenesis and cell cycle
(control), both of which are linked to multiple diseases (26; 18; 122; 123). In chapters
2 and 3 we identify many TFBSs over-represented in MyoD or Myogenin bound DNA
fragments, indicating other TFs that also regulate these fragments. As shown in tables
3.2 and 3.3, these additional TFs already have evidence linking them to the process of
myogenesis. If not already identified as disease related, these serve as ideal candidate
genes for any disease study involving muscle development and regulation, of which
MyoD and Myogenin are master regulators. In chapter 5 we use the same approach
to identify TFBSs over-represented in p300 and CBP bound DNA fragments, serving
as ideal candidate genes for CBP/p300 related diseases such as Rubinstein-Taybi
Syndrome and cancer. Several of these, such as YY1, already have known relations
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to cell cycle regulation.
As more ChIP-seq data series become available, we will design better PWMs to

search for TFBSs. This knowledge, coupled with whole genome sequencing of patients,
will lead to discovering the cause of many diseases. Besides looking at the obvious for
mutations (the coding regions of these genes), mutated target TFBS should also be
observed. In addition, besides looking for the loss of a TFBS, gain of TFBSs should
also be identified. A gain or loss of regulation can lead to dis-regulation and disease.
In the future it will be crucial to screen for this on a patient by patient basis, termed
personal medicine.

7.4 The Future of Genomics

The development of several platforms that can sequence billions of base-pairs of DNA
sequence in less than a week offers new solutions to existing problems, but also gen-
erate new problems. We can now look at DNA sequences genome wide without the
biases of hybridization that were part of the micro-array era. This technology has
moved us closer to having the means to sequence any individual’s genome at a rea-
sonable price and speed, a step needed to truly provide personalized medication.
However, billions of base-pairs in terabytes of data provides new difficulties in data
analysis and storage. The bottleneck in such experiments has dramatically shifted
and will continue to shift more from the wet-lab work towards bioinformatic analysis.

These large quantities of data will place demands on storage, access, and interpre-
tation. For storage of the current next-generation sequencer data the NCBI Sequence
Read Archive (SRA, http://www.ncbi.nlm.nih.gov/Traces/sra (135) has been created.
However, we can expect that instead of a lab generating gigabytes of (processed) data
in a week, a lab will generate terabytes in an hour. It will be constant competition be-
tween increase in data generation and the rapidly decreasing cost of storage. Besides
the actual storage devices, the access speed to these devices must be considered. Even
if we can keep up with the data storage, analysis will be dramatically slowed down if
connections to these storages are not increased. Finally, more methods must be devel-
oped to make the data transparent. As next-generation sequencing becomes everyday
practice in research groups and clinics, the tools to extrapolate the information must
be made intuitive to the average biologist and clinician.

One observation from current next-generation sequencing applications, is that
many unannotated parts of the genome have functional support. Therefore the ’old’
term ”junk” DNA should be appended, or even removed altogether, in the future.
There is also functional support for this from other databases (Figure 6.4A), but the
challenge is incorporating all of this into a usable and visible means. Evidence also
exists that a majority of bases in the genome are transcribed (167). Traditionally
DNA that did not code for a protein was termed junk DNA. However, it quickly
became apparent that gene regulation occurred in such junk DNA, such as TFBSs.
Also some TFs need space between their TFBSs and the gene promoter, so the spacer
DNA can not be truly called junk. In addition, there are genes, such as regulatory
non-coding RNAs, that encode an RNA, but not a protein. As we discover more and
more about the genome it becomes apparent that most nucleotides serve a purpose
and thus the term ”junk” DNA has become meaningless.

Another fundamental process that should be addressed concerns evidence that
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7.4 The Future of Genomics

Figure 7.3: Variations from traditional transcription: CAGE tags from all differenti-
ating samples in chapter 6 aligning to both the sense (F) and antisense (R) strands
of the myogenin gene. Also, reads align to both 3′ and 5′ ends. Sample 3 is shown
as a full wiggle track while other samples are shown as dense tracks to save space.
Sample 3 y-axis is indicative of the number of tags at each position, with a maximum
per sample of the highest number of tags on a position in this viewing window.

transcription of genes may not always occur on the traditional sense strand. More
and more we find evidence for what is termed ”antisense” transcription, where a
gene is transcribed from the non-coding strand. Antisense transcripts have been
previously reported, and in some cases even have higher expression levels than their
sense counterparts (168; 36). Though not as prominent as sense strand results, in
chapter 5 we do find CAGE and SAGE tags aligning to the non-coding strand. ’t
Hoen et al. (36) have published evidence of SAGE antisense transcription, which even
indicated that in 11% of their genes antisense transcription was even more prominent
than sense transcription. A human genome-wide study also presented approximately
1600 transcripts with evidence of transcription from both strands (169). We also find
binding on the opposite end of the genes as expected (3′ for CAGE and 5′ for SAGE,
CAGE example in Figure 6.1). This is also observed for CBP/p300 binding, where in
addition to binding transcript starts there is transcript end binding (Figure 5.1A-B).
Finding TF binding and CAGE tags at the transcript ends has also been found in
other studies (138; 160). In addition, we see in the CAGE/SAGE tags aligning to the
gene end on the anti-sense strand. Examples of CAGE tags aligning to the antisense
strand, gene end, and both are shown in Figure 7.3. These CAGE/SAGE/ChIP-seq
data that show unexpected results (antisense, gene end, or both) were regarded as
artifacts in the past, but as many different methods point towards these phenomenons
they must be considered as a true biological process. As the increased quantity of less
biased genomic data arises the process of reverse and/or antisense transcription will
hopefully become more evident.

Next-generation sequencing has provided us with the means to also take the ge-
nomics field to the next level. It is becoming more cost-effective and accurate to
measure gene expression and genome-wide TF binding. These methods are becoming
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more quantitative, with genes expressed in exact numbers of sequences, as apposed
to previous methods (i.e. probe intensities on an array). In addition, as shown in
chapter six, we have the methods to better annotate gene structure, such as TSSs,
used in specific cells/tissues under exact conditions. This chapter demonstrates that
the current genome annotation, however impressive, is not complete. Though not
addressed in this thesis, there are also next-generation applications to identify DNA
methylation and chromatin accessibility (via ChIP-seq). The challenge of the bioin-
formatician in the near future will be combining existing and upcoming information
about gene expression, gene structure, DNA methylation, chromatin composition, TF
binding, and additional genome properties to construct a more complete model of the
entire biological processes in the genome of an animal, including man. This can even
be made more complete by combining more fields, such as proteomics, to construct a
complete picture of life and its regulation. Besides a picture of life in general, these
high throughput methods are, and will increasingly, be used to identify variation with
a single individual or population, leading to true personalized medicine and increased
effectiveness of health care.
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Chapter 8

Summary

Transcription factors (TFs) are an essential part of gene regulation. Mutations
in TFs, and their binding sites (TFBSs), can result in muscle diseases such as
myotonic dystrophy, rhabdomyosarcoma, Waardenburg syndrome type 2, congenital
myasthenia, and diseases related to muscle regeneration, (overview in Martin 2003
(26)). 50% of tumors, resulting from loss of cell cycle control, carry a mutation in
the TF p53 (18). Therefore, to cure these diseases and many more it is essential we
better understand TFs, their genomic targets, and function.

One research area that has improved greatly with modern sequencing technologies
is the study of TFs. Chromatin-immunoprecipitation (ChIP) provides a means to
isolate stretches of DNA bound by a protein, such as TFs. These fragments of
DNA can be sequenced, resulting in genome wide identification of TFBSs. Previously
polymerase-chain reactions (PCRs) and micro-array technologies mostly only looked
at target regions, such as promoters, missing many binding regions. Currently,
next-generation sequencing of ChIP DNA provides full genome (target free) results, at
a lower cost, higher reproducibility, and with the ability to detect low-affinity binding
sites.

We have focused on two biological processes of interest: the cell cycle and muscle
differentiation. Both are essential processes: cell cycle for replication/division and
myogenesis for muscle development and regeneration. Defects in the cell cycle result in
death and cancer, whereas muscular dystrophies may result from impaired myogenesis.
TFs, such as p300 or CBP for cell cycle control, or MyoD or Myogenin for myogenesis,
have been identified to regulate their parent processes, though full details of their
binding locations and regulation have not been eluted. Still, many other TFs have
not been discovered or related to either process. We have made an approach to further
broaden our knowledge of cell cycle and myogenic control through known TFs.

In chapter 2 we present a web application called CORE TF (Conserved and
Over-REpresented Transcription Factor binding sites) that identifies TFs that occur
more often in an experimental set of sequences compared to a random set of
sequences. It also has the ability to identify TFBSs that are conserved across different
organisms. Initially this was developed to identify TFs that potentially regulate
co-expressed genes from micro-array studies. However, CORE TF can also be used
with next-generation sequencing expression studies and to identify co-regulators from
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micro-array or next-generation sequencing of ChIP samples.
We expanded on CORE TF’s principle of identifying over-represented TFBSs in

Chapter 3. Instead of using CORE TF’s Match to identify binding sites, we used a
novel tool called Sunflower. Sunflower models competition between TFs for the same
nucleotide sequences. This is closer to the actual biological state. After identifying
potential TFBSs with Sunflower, we used the same statistical test as CORE TF to
identify TFBSs that are enriched in an experimental set compared to a random set.
This process is not as user friendly or fast as CORE TF, but gives improved results.

As we began to implement our own wet-lab work with a next-generation sequencing
platform (Illumina’s Genome Analyzer) we realized we needed a general pipeline
to begin analysis of our data. Therefore, we developed GAPSS (General Analysis
Pipeline for Second-generation Sequencers). As discussed in chapter 4, GAPSS gives
us the possibility to quickly edit for contaminating linker sequences, align our data to
the genome, make it viewable in a genome browser, and present this data as defined
regions.

In chapter 5 we investigated cell cycle control, as regulated by the TFs CBP and
p300. ChIP-seq was performed in a model cell line. The data was analyzed initially
with the GAPSS pipeline described in chapter 4. By using CORE TF (chapter 2) we
managed to identify TFs that work as partners with CBP and p300. Though these
TFs are highly similar and seem to regulate similar genes, we were able to identify
targets specific to each TF and potential regulatory partners (e.g. AP-1, AP-2, SP1,
and SRF).

Our work in chapters 2 and 3 often relied on analyzing promoter regions. However,
often alternative (or previously unannotated) promoters are used during particular
processes, in different tissues, and at distinct time points. In chapter 6 we used
CAGE and SAGE techniques coupled with next-generation sequencing to provide
a better look into the promoters and genes that differed between proliferating and
differentiating mouse myoblasts. This used the GAPSS pipeline of chapter 4 for initial
data analysis. To prove these novel promoter regions were muscle specific we searched
for and found over-representation of muscle specific TFs.

This thesis demonstrates techniques to identify TFs regulating a process, both with
novel in silico and modern wet lab techniques, such as next-generation sequencing
of ChIP DNA. We elucidated the roles of myogenic and cell cycle control TFs,
specifically MyoD, Myogenin, CBP, and p300, but these techniques could be applied
to transcriptional control of any other biological process.
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Chapter 9

Samenvatting

Transcriptiefactoren zijn een essentieel deel van genregulatie. Mutaties in
transcriptiefactoren en hun bindingsplaatsen kunnen resulteren in spierziekten zoals
myotone dystrofie, rhabdomyosarcoma, Waardenburg syndrome type 2, congenitale
myasthenia en andere spierafbraak gerelateerde ziektes (overzicht in Martin 2003
(26)). Vijftig procent van de tumoren die het gevolg zijn van het verliezen van de
controle over de celcyclus bevatten een mutatie in transcriptiefactor p53 (18). Om
deze ziektes te genezen is het noodzakelijk dat we begrijpen wat transcriptiefactoren
zijn, waar deze binden en wat hun functie is.

Een onderzoeksgebied dat enorm verbeterd is met de moderne
sequencing technologieën is het bestuderen van transcriptiefactoren.
Chromatine-ImmunoPrecipitatie (ChIP) maakt het mogelijk om DNA strengen
te isoleren die gebonden zijn aan een eiwit, bijvoorbeeld een transcriptiefactor.
Deze DNA fragmenten kunnen gesequenced worden wat resulteert in een
genoomwijde identificatie van transcriptiefactor-bindingsplaatsen. Voorheen
zijn met polymerase-kettingreactie (PCRs) en micro-arrays vooral specifieke
regio’s bestudeerd, zoals promotoren, waardoor veel bindingsplaatsen werden
gemist. Vandaag de dag zorgt de next-generation sequencing van ChIP DNA voor
genoomwijde resultaten tegen lagere kosten en met hogere reproduceerbaarheid.
Daarnaast geeft het de mogelijkheid om bindingsplaatsen met een lage affiniteit te
detecteren.

We hebben onze aandacht gericht op twee essentiële biologische processen: de
celcyclus en spier differentiatie. De celcyclus is belangrijk voor de replicatie en
deling, en myogenese voor spierontwikkeling en reparatie. Defecten in de celcyclus
resulteren in kanker, en spierdystrofieën zijn het gevolg van nadelig bëınvloede
myogenese. Transcriptiefactoren zoals p300 of CBP die zorgen voor controle over
de celcyclus, en MyoD en Myogenin voor myogenese, zijn bekend deze processen
te reguleren. Volledige details over hun bindingsplaatsen en regulatie zijn echter
onbekend. Daarnaast zijn vele andere transcriptiefactoren nog niet ontdekt of
gerelateerd aan beide processen. We hebben een aanzet gemaakt om onze kennis
over de controle van celcyclus en myogenese via transcriptiefactoren te verbreden.

In hoofdstuk 2 introduceren we de webapplicatie CORE TF (Conserved and
Over-REpresented Transcription Factor binding sites) die transcriptiefactoren
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9 Samenvatting

identificeert die vaker voorkomen in een experimentele set sequenties, ten
opzichte van een willekeurige set. Het geeft ook de mogelijkheid om
transcriptiefactor-bindingsplaatsen te identificeren die geconserveerd zijn tussen
verschillende organismen. In eerste instantie is dit ontwikkeld om transcriptiefactoren
te vinden die mogelijk co-gexpresseerde genen reguleren binnen micro-array studies.
Echter, CORE TF kan ook worden gebruikt met next-generation sequencing expressie
studies en om co-regulatoren te vinden met behulp van data van micro-arrays of
next-generation sequencing van ChIP monsters.

Het principe van identificatie van overgerepresenteerde
transcriptiefactor-bindingsplaatsen met CORE TF wordt verder uitgelicht in
hoofdstuk 3. In plaats van CORE TF’s Match om bindingsrichtpunten te
identificeren, is gebruikt gemaakt van de opkomende software Sunflower. Sunflower
modelleert de competiviteit tussen transcriptiefactoren die binden aan dezelfde
nucleotide sequenties waarmee dit beter bij de biologische werkelijkheid aansluit.
Nadat potentiële bindingsplaatsen zijn gevonden door Sunflower, is dezelfde
statistische test gebruikt als in CORE TF, om transcriptiefactor-bindingsplaatsen
te identificeren die verrijkt zijn in een experimentele set ten opzichte van een
willekeurige set. Dit proces is minder gebruiksvriendelijk en snel dan CORE TF,
maar geeft betere resultaten.

Op het moment dat ons eigen laboratoriumwerk met een next-generation
sequencing machine (Illumina’s Genome Analyzer) tot stand kwam, realiseerden wij
ons dat een algemeen protocol nodig was om met de data analyse te beginnen.
Hiervoor is GAPSS (General Analysis Pipeline for Second-generation Sequencers)
ontwikkeld. In hoofdstuk 4 staat beschreven hoe GAPSS de mogelijkheid biedt om
snel vervuilende linker sequenties weg te filteren, data naar het genoom te mappen,
te visualiseren in een genoom browser en te presenteren in gedefinieerde regio’s.

In hoofdstuk 5 wordt de celcyclus controle, gereguleerd door de
transcriptiefactoren CBP en p300, nader onderzocht. Hiervoor is een ChIP-seq
uitgevoerd op een cellijn model. De data is in eerste instantie geanalyseerd met
GAPSS, zoals beschreven in hoofdstuk 4. Met behulp van CORE TF (hoofdstuk
2) werden transcriptiefactoren gëıdentificeerd die samenwerken met CBP en p300.
Ondanks dat deze transcriptiefactoren sterk overeenkomen en dezelfde genen lijken
te reguleren, waren we alsnog in staat om bindingsplaatsen specifiek voor iedere
transcriptiefactor en potentiële regulerende partners te identificeren (bijv. AP-1,
AP-2, SP1 en SRF).

Het werk in hoofdstuk 2 en 3 berust vooral op het analyseren van promotoren.
Niettemin worden alternatieve (of voorheen onbekende) promotoren gebruikt tijdens
bepaalde processen, in verschillende weefsels en in verschillende tijdspunten. In
hoofdstuk 6 worden CAGE en SAGE technieken gekoppeld aan next-generation
sequencing om een beter inzicht te krijgen in promotoren en genen die verschillen
tussen vermenigvuldigende en differentiërende muisspierstamcellen. Hierbij is voor de
initiële data analyse gebruik gemaakt van GAPSS uit hoofdstuk 4. Om te bewijzen
dat deze nieuwe promotoren specifiek zijn voor spieren is er met succes gezocht naar
overrepresentatie van spierspecifieke transcriptiefactoren.

Dit proefschrift demonstreert technieken om proces regulerende
transcriptiefactoren te identificeren door middel van nieuwe, in silico en moderne
laboratorium technieken zoals next-generation sequencing van ChIP DNA.
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Daarnaast verduidelijken we de rol van myogenese en celcyclus controlerende
transcriptiefactoren. In het bijzonder MyoD, Myog, CBP en p300. Deze technieken
kunnen echter toegepast worden op de transcriptionele controle van elk willekeurig
biologisch proces.
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Abbreviations

Commonly used Abbreviations in this thesis:

bp = base pair(s)
CAGE = Cap Analysis of Gene Expression
ChIP = chromatin immuniprecipitation
ChIP-(on-)chip = ChIP hybridized to a microarray
ChIP-PET = ChIP with paired-end ditag sequencing
ChIP-seq = ChIP with next-generation sequencing
DeepCAGE = next-generation sequencing of CAGE sequences
DeepSAGE = next-generation sequencing of SAGE sequences
HAT = histone acetyltransferase
Kb = kilo base(s)
NGS = next-generation sequencers or sequencing
PCR = polymerase chain reaction
PWM = position weight matrix
qPCR = quantitative (real-time) PCR
RT-PCR = reverse transcriptase PCR
SAGE = Serial Analysis of Gene Expression
TF = transcription factor
TFBS = transcription factor binding site
TSS = transcription start site
UTR = untranslated region

The four nucleobases of DNA:
A = adenine
T = thymine
C = cytosine
G = guanine
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