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Preface

In the past forty years, models of Random Walks in Random Environments (RWREs)

have been intensively studied by the physics and the mathematics community, giving

rise to an important and still lively research area that is part of the field of disordered

systems. RWREs on Zd are Random Walks (RWs) evolving according to a random tran-

sition kernel, i.e., their transition probabilities depend on a random field or a random

process ξ on Zd called Random Environment (RE). What makes these models interesting

is that, depending on the RE, several unusual phenomena arise, such as sub-diffusive

behavior, sub-exponential decay of probabilities of large deviations, and trapping effects.

The REs can be divided into two main classes: static and dynamic. We refer to static

RE if ξ is chosen at random at time zero and is kept fixed throughout the time evolution

of the RW, while we refer to dynamic RE when ξ changes in time according to some

stochastic dynamics. For static RE, in one dimension the picture is fairly well under-

stood: recurrence criteria, laws of large numbers, invariance principles and refined large

deviation estimates have been obtained in a series of papers. In higher dimensions many

results have been obtained as well, but still many questions remain open. In dynamic

RE the state of the art is poorer, even in one dimension. In this thesis we will focus on a

class of RWs in dynamic REs constituted by interacting particle systems. The analysis

of these models leads us to derive new results and to formulate challenging questions for

the future.

The thesis is organized as follows. In Chapter 1 we review what is known in the literature,

both for static and dynamic RE, and we introduce the class of models we are interested

in. In Chapter 2 we prove a strong law of large numbers under a certain space-time

mixing condition on the RE, both in one and in higher dimensions. Furthermore, by

using a perturbation argument, we give a series expansion in the size of the drift for the

asymptotic speed of RWs with small drifts in highly disordered REs. Chapter 3 focuses

on the scaling limits of such processes. By adapting to our context a proof of Comets

and Zeitouni [36] for multi-dimensional RWs in static REs, we show that, under a certain

space-time mixing condition, an annealed invariance principle holds in any dimension.

We further give an alternative proof of this invariance principle in the context of highly

disordered REs under small drift assumptions. Chapter 4 deals with the large deviation

analysis for the empirical speed of one-dimensional RWs in dynamic REs. We prove

a quenched and an annealed large deviation principle and we exhibit some qualitative

properties of the associated rate functions. In particular, we give examples of fast
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and slow-mixing REs for which, respectively, exponential and sub-exponential decay of

large deviation probabilities occur. In Chapter 5 we prove a law of large numbers for

transient RWs on top of a simple symmetric exclusion process and we conclude with a

brief discussion about possible extensions to more general slow-mixing REs, which are

part of an ongoing project.



Chapter 1

Introduction: Random walks in

random environments (RWRE)

In Sections 1.1 and 1.2 we introduce RWs in static and dynamic REs and we present a

brief overview of the known results relevant for our discussion. In Section 1.3 we define

the class of models that are the core of this thesis, i.e., RWs on interacting particle

systems. In Section 1.4 we briefly mention other topics related to RWRE that are not

covered in this introduction.

1.1 Static RE

The first model of a static RWRE appeared in the biophysics literature (Chernov [33],

Temkin [93]) as a toy model for replication of DNA chains. In the early 70’ Solomon

[80] began a rigorous mathematical analysis of such models by considering a RW in a

static RE on the one-dimensional integer lattice. Nowadays the behavior of this random

process is completely understood. An overview of the results relevant for our discussion

will be presented in Section 1.1.1. In Section 1.1.2 we describe the multi-dimensional

case. Most of the techniques used in one dimension cannot be applied in the multi-

dimensional setting, due to a more complicated structure of hitting times. Although

powerful tools have been developed in the last twenty years and many important results

have been achieved, several problems are still open. We will briefly describe what is

known in the literature. For detailed statements, proofs and methods we refer the

reader to [89, 99].

A formal definition of RW in static RE on Zd is as follows.

1



2 1. Introduction: Random walks in random environments (RWRE)

Definition 1.1. (RW in static RE)

For each site x ∈ Zd, consider a 2d-dimensional vector ξ(x, ·) = {ξ(x, e) ∈ [0, 1] : e ∈
Zd, |e| = 1} such that

∑
e:|e|=1 ξ(x, e) = 1. Let S be the set of all possible values of

these vectors, and let Ω = SZd
. Given a probability measure µ on Ω, we call a random

environment an element ξ ∈ Ω distributed according to µ. For each realization of ξ ∈ Ω,

we define the RW X in the environment ξ as the Markov chain X = (Xn)n∈N with state

space Zd and transition probabilities

P ξ(Xn+1 = x+ e|Xn = x) = ξ(x, e), e ∈ Zd, |e| = 1. (1.1)

We write P ξ
z to denote the quenched law of the RW in the environment ξ starting from

position z. We write Pz to denote the annealed law starting from z, i.e.,

Pz(X ∈ ·) =
∫

Ω
P ξ

z (X ∈ ·)µ(dξ). (1.2)

We write Eξ
z ,Ez and Eµ, respectively, for expectation with respect to the laws P ξ

z ,Pz

and µ.

Henceforth we say that a statement involving the RW X holds Pz-a.s., if for µ-almost

every ξ the statement holds P ξ
z -a.s. Note that under the quenched law X is a space-

inhomogeneous Markov chain, whereas under the annealed law X is space-homogeneous

but not Markovian. The definition above could have been stated without the nearest-

neighbor restriction. This choice was made to avoid cumbersome notations and further

technicalities. In the sequel we will sometimes point out when results hold without this

restriction.

1.1.1 One dimension

1.1.1.1 Ergodic behavior

The first natural problem is to determine when X is transient or recurrent, whether it

admits an asymptotic deterministic speed (under the quenched and the annealed law),

i.e., a Law of Large Numbers (LLN), and what can be said about this speed. The next

theorem answers these questions.

Theorem 1.2. (Transience, recurrence, LLN)

Let ξx = ξ(x, 1) and ρx = (1− ξx)/ξx. Assume that

µ(ξx ∈ (0, 1)) = 1, (1.3)
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and that µ is stationary and ergodic under translations. Then

1. P0-a.s., X is recurrent if Eµ[log ρ0] = 0, transient to the left if Eµ[log ρ0] > 0, and

transient to the right if Eµ[log ρ0] < 0.

2. P0-a.s., there exists a deterministic v ∈ (−1, 1) such that

lim
n→∞

Xn

n
= v



> 0, if
∞∑
i=1

Eµ

[ i∏
j=0

ρ−j

]
<∞,

< 0, if
∞∑
i=1

Eµ

[ i∏
j=0

ρ−1
−j

]
<∞,

= 0, if both these conditions fail.

(1.4)

3. If µ is a product measure, then

v =


(1− Eµ[ρ0])/(1 + Eµ[ρ0]), if Eµ[ρ0] < 1,

−(1− Eµ[ρ−1
0 ])/(1 + Eµ[ρ−1

0 ]), if Eµ[ρ−1
0 ] < 1,

0, otherwise.

(1.5)

This result is mainly due to Solomon [80]. The original paper only deals with the case

in which µ is a product measure. The generalization to the ergodic setup was proven

later in [1].

When µ is a product measure, we can already appreciate some surprising features. For

instance, if Eµ[log ρ0] < 0, then µ-a.s. lim
n→∞

Xn = +∞. However, by Jensen’s inequality,

Eµ[log ρ0] ≤ log Eµ[ρ0], and if Eµ[ρ0] > 1, then v = 0, in which case X is transient with

zero speed. In other words, the RWRE moves to infinity in a sub-ballistic manner, a

phenomenon that never happens for a homogeneous RW. This behavior is due to the

presence of ‘traps’ in the environment: localized pockets in which the walk spends a long

time because the transition probabilities push it towards the center of the pocket. In

particular, it can be shown that if v ≥ 0, then v < 2Eµ[ξ0]− 1 = v̄. By interpreting v̄ as

the speed of a homogeneous nearest-neighbor RW jumping to the right with probability

Eµ[ξ0] and to the left with probability 1 − Eµ[ξ0] (‘average medium RW’), we see that

in general the RE causes a slow-down with respect to the average environment.

1.1.1.2 Scaling limits

Next, we may ask whether X when properly scaled admits a limiting law. Results in

this direction have been derived in a number of papers. The invariance principles are

typically different under the quenched and the annealed law, and several types of scaling
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laws occur depending on µ. For example, in the recurrent case (Eµ[log ρ0] = 0), Sinai

[79] proved that extreme sub-diffusive behavior holds, i.e. ,

σ2Xn

(log n)2
(P0)−→

n→∞
Z, σ2 = Eµ[(log ρ0)2] ∈ (0,∞), (1.6)

where Z is a functional of a standard Wiener process (independent of µ) with a non-

trivial law that was later identified by Kesten [59].

1.1.1.3 Large deviations

The last item of interest for our introduction is the analysis of the large deviation

behavior of the empirical speed of X. We briefly recall that a family of probability

measures (Pn)n∈N satisfies a Large Deviation Principle (LDP) with rate an and with

rate function I if, for any measurable set A,

− inf
θ∈int(A)

I(θ) ≤ lim inf
n→∞

1
an

logPn(A) ≤ lim sup
n→∞

1
an

logPn(A) ≤ − inf
θ∈Ā

I(θ), (1.7)

where Ā and int(A), are, respectively, the closure and the interior of A. If we consider

the family of probability measures associated with the empirical speed of X, i.e., Pn(·) =

P (Xn/n ∈ · ), n ∈ N, then a LDP for this family tells us how unlikely it is to observe

the walk travelling at any given speed we may be interested in. The most general large

deviation result for the one-dimensional RWRE is the following.

Theorem 1.3. (Quenched and Annealed LDP)

Assume that µ is stationary and ergodic. Then, for µ-a.e. realization of ξ, the family

of probability measures P ξ
0 (Xn/n ∈ · ), n ∈ N, satisfies a LDP with rate n and with

convex deterministic rate function Ique
µ . Moreover, the family of probability measures

P0(Xn/n ∈ · ), n ∈ N, satisfies a LDP with rate n and with convex rate function

Iann
µ (θ) = inf

ν∈Me

[h(ν|µ) + Ique
ν (θ)], (1.8)

where Me denotes the set of stationary and ergodic measures on Ω, and h(ν|µ) is the

relative entropy of ν with respect to µ. In particular, Iann
µ (θ) ≤ Ique

µ (θ). Furthermore in

some cases both rate functions are not strictly convex, and are zero in the interval [0, v]

(and only in this interval).

From this general statement, we can already appreciate two interesting and unusual

features: the rate functions need not be strictly convex and they may vanish on [0, v],

indicating sub-exponential decay for the probability of slow-down. In contrast, we recall
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that for homogeneous RWs the corresponding rate function is strictly convex and van-

ishes only at the typical speed v (see e.g. [39, 52]). The quenched LDP when (ξx)x∈Z is an

i.i.d. sequence was derived in [49], while the annealed LDP, refined quenched estimates

and the generalization to ergodic REs were obtained later in [34, 38, 46, 70, 71, 99]. In

the next section we give an explicit example.

1.1.1.4 An example

Let ξ = (ξx)x∈Z ∈ {0, 1}Z be a random sequence distributed according to a Bernoulli

product measure νρ with parameter ρ ∈ (0, 1). When ξx = 1 we say that site x is

occupied, while when ξx = 0 we say that it is vacant. In particular, ρ represents the

density of the occupied sites. Conditional on ξ, let X = (Xn)n∈N0 be the RW with local

transition probabilities

P ξ(Xn+1 = x+ e | Xn = x) =

{
pξx + q(1− ξx), if e = +1,

qξx + p(1− ξx), if e = −1,
(1.9)

where w.l.o.g. we assume that p = 1 − q ∈
(

1
2 , 1
)
. Note that the formulation of the

model in this example is consistent with (1.1). Thus, on occupied sites the RW has a

local drift to the right while on vacant sites it has a local drift to the left, of the same

size. Note that for p = 1
2 the model reduces to a simple RW and for ρ = 1(respectively

0) to a RW with drift 2p− 1( respectively 1− 2p). From Theorem 1.2, we have that X

is recurrent if ρ = 1
2 , transient to the right(left) if ρ > 1

2

(
< 1

2

)
. Moreover, µ-a.s.,

lim
n→∞

Xn/n = v


= 0, if ρ ∈ [q, p],

> 0, if ρ ∈ (p, 1],

< 0, if ρ ∈ [0, q).

(1.10)

We thus see that if ρ ∈
(

1
2 , p
]
, then the walk will eventually go to the right but at

zero speed. This effect is due to the presence of ‘traps’ in the environment. Indeed,

even though occupied sites are more frequent than vacant sites, on its way to +∞, X

will cross arbitrarily long intervals in which the local drift is pointing to the left, which

results in a displacement of X that grows sub-linearly.

When we look at the large deviations of the empirical speed of X, we see that ‘trapping

effects’ play an important role even in the transient regime with non-zero speed. Without

loss of generality we will restrict to the case ρ ∈
[

1
2 , 1
)
.

Theorem 1.4. (Quenched LDP)

For µ-a.e. ξ, the family of probability measures P ξ
0 (Xn/n ∈ · ), n ∈ N, satisfies a LDP
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with rate n and with deterministic rate function Ique that can be computed in terms of

a variational problem and that has the following properties:

1. Ique is continuous and convex on [−1, 1] and infinite elsewhere.

2. Ique(−θ) = Ique(θ) + θ(2ρ− 1) log
(

p
q

)
for θ ∈ (0, 1].

3. Ique is zero on [0, v] and strictly positive on (v, 1].

4. Ique is strictly convex and analytic on (v, 1).

Here are qualitative pictures of θ 7→ Ique(θ) on [−1, 1] in the three respective cases:

(i)

I(θ)

〈log(1+ρ)〉

θ+1−1

(ii)

I(θ)

〈log(1+ρ
−1)〉

〈log(1+ρ)〉

θ+1−1 −vα
vα

(iii)

I(θ)

〈log(1+ρ
−1)〉

〈log(1+ρ)〉

θ+1−1

Figure 1.1: (i) recurrent; (ii) transient: positive speed; (iii) transient: zero speed.
Permission to use the picture has been kindly granted by F. den Hollander [52]. The

notations I(θ), ρ and < · >, stand for Ique, q
pξ0 + p

q [1− ξ0] and Eξ, respectively.

From Theorem 1.4 (see [34, 49]) we see that both in the recurrent case and in the

transient case with zero speed the rate function has a unique zero at θ = 0 and is strictly

convex everywhere, while in the transient case with positive speed the rate function has

two linear pieces: one horizontal piece for θ ∈ [0, v] and one tilted piece for θ ∈ [−v, 0].

The flat piece means that speeds smaller than the typical speed v are not exponentially

costly. This is again because the RE contains long stretches of sites where the local

drifts point to the left. Between 0 and θn the longest stretches have a length of order

log n, and for the walker to lose a time of order n in these stretches has a cost that is

sub-exponential in n.
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Under the annealed measure, as stated in Theorem 1.3, an LDP is satisfied as well. The

corresponding rate function Iann is given by (1.8). A symmetry relation as in part 2 of

Theorem 1.4 does not hold. In particular, Iann and Ique coincide on [0, v]. Moreover a

small linear piece can be present in the annealed rate function for some choice of the

parameters, see [34].

1.1.2 Higher dimensions

In the multi-dimensional setup, even fundamental questions like recurrence vs. transience

and the existence of a limiting speed remain partially open. We give here a brief summary

of the main results and formulate unsolved conjectures. For a more detailed overview

we refer the reader to [89, 99]. In what follows we restrict to the case where
(
ξ(x, ·)

)
x∈Zd

is an i.i.d. sequence satisfying the so-called ellipticity condition

µ

(
inf
|e|=1

ξ(x, e) > 0
)

= 1. (1.11)

Let Sd−1 be the unit sphere. Given a vector l ∈ Sd−1, consider the event

Al =
{

lim
n→∞

Xn · l =∞
}
, (1.12)

where · denotes the vector inner product. In 1981 [58] Kalikow proved that P0(Al∪A−l) ∈
{0, 1} for all l ∈ Sd−1 and d ≥ 1, and he conjectured that if µ is uniformly elliptic, i.e.,

there exists a constant δ > 0 such that

µ

(
inf
|e|=1

ξ(x, e) > δ

)
= 1, (1.13)

then

P0(Al) ∈ {0, 1} ∀l ∈ Sd−1. (1.14)

Furthermore, he formulated a technical condition (known as Kalikow’s condition; see

[58]) that ensures a strong bias in the direction l and implies (1.14).

In d = 1, the 0-1 law in (1.14) is a simple consequence of Theorem 1.2. For d = 2, (1.14)

has been proven in [92] under the ellipticity condition in (1.11). For d ≥ 3, (1.14) is still

open and is a cornerstone to prove a LLN, as shown by the following theorem.

Theorem 1.5. (LLN)

Assume that µ is uniformly elliptic. Fix l ∈ Sd−1. Then there exist v+, v− ∈ [0, 1] such

that

lim
n→∞

Xn · l
n

= v+1Al
− v−1A−l

P0 − a.s. (1.15)
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In particular, for d = 2 the LLN holds.

The proof of this theorem [92, 101], and many other results in the multi-dimensional

setting, are based on a construction of regeneration times introduced by Sznitman and

Zerner [92]. Roughly speaking, a random time τ ∈ N is a regeneration time in direction

l if Xτ · l ≥ Xn · l for all n ≤ τ and Xτ · l < Xn · l for all n > τ , i.e., Xn · l achieves

a record at time τ and never moves backward from that record. Once these times are

constructed, it is possible to show that the sequences of space and time increments

between regeneration times form i.i.d. sequences, from which the LLN and the CLT can

be derived.

Further results when µ is i.i.d. and uniformly elliptic were obtained in [8, 95]. In these

papers it is shown that there are at most two deterministic limit points for the sequence

(Xn/n)n∈N, say, v1 and v2. If v1 6= v2 then there exists a constant a ≥ 0 such that

v2 = −av1. For d ≥ 5, [8] proves that if v1 6= v2, then at least one of them is zero.

There is no general criterion to establish when RWRE in d ≥ 2 is transient or recurrent,

although one expects transience as soon as d ≥ 3. Moreover, when the LLN holds,

no explicit formula for the limiting speed v is known. A natural question is to at least

understand under which condition RWRE is ballistic, i.e., v 6= 0. Some results have been

obtained in this direction in the last decade. This problem is related to the properties

of the RE and the possible presence of ‘traps’ (i.e., regions where the walk may spend a

long time with a high probability). In [100], the author considered the drift at the origin

d0 =
d∑

i=1

[ξ(0, ei)− ξ(0,−ei)] · ei, (1.16)

with {ei}di=1 the canonical basis of Zd, and showed that if, for some l ∈ Sd−1, d0 · l > 0

for µ-a.e. environment, then Xn/n converges to a deterministic v with v · l > 0. Such

REs are called non-nestling. The interest is in understanding the so-called nestling

REs, i.e., when the origin belongs to the closed convex hull of the support of d0, for

which a non-ballistic regime might be possible . Some progress has been achieved by

Sznitman in [88, 89], who formulated the following conditions that guarantee ballisticity

even for the nestling case. Given a direction l ∈ Sd−1 and b, L > 0, define the slab

Ub,l,L = {x ∈ Zd : −bL < x · l < L} and the exit time τb,l,L = inf{n ∈ N : Xn /∈ Ub,l,L}.
Let γ ∈ (0, 1]. Condition (T )γ |l is said to hold relative to l ∈ Sd−1 if, for all l′ ∈ Sd−1 in

a neighborhood of l and all b > 0,

lim sup
L→∞

L−γ log P0(Xτb,l′,L · l
′ < 0) < 0. (1.17)
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In words, consider a slab in Zd contained between the hyperplanes normal to l at distance

L and −bL in direction l. When γ = 1, the condition (T )1|l holds if the probability of

exit from this slab in direction −l is exponentially small in L. Condition (T ′)|l is said

to hold if condition (T )γ |l holds for all γ ∈ (0, 1). Clearly

(T )1|l =⇒ (T ′)|l =⇒ (T )γ |l for γ ∈ (0, 1), (1.18)

and it is believed that (T )1|l, (T ′)|l and (T )γ |l are equivalent. This equivalence is still

open and some recent progress can be found in [43, 44, 78]. The importance of these

conditions is given by the following theorem due to Sznitman [88].

Theorem 1.6. (Ballisticity and CLT under Sznitman’s (T ′)|l condition)

Assume that µ is i.i.d. and uniformly elliptic and that condition (T ′)|l holds relative

to l ∈ Sd−1. Then X satisfies a LLN with a deterministic limiting speed v such that

v · l > 0. Moreover, there exists a deterministic σ > 0 such that, under the annealed

measure P0, (Xn − nv)/σ
√
n converges in distribution to a standard Gaussian random

variable.

Other recent results in the i.i.d. setting can be found in [27, 28].

When we drop the i.i.d. assumption on µ further complications arise. If the environment

has a finite-range dependence, then a slight modification of the arguments for the i.i.d.

situation, developed in [76, 99], shows that the LLN and the CLT carry over. If the

space correlations are long-range but strong mixing in some appropriate sense, then

only few results have been obtained. In this context, [35, 36] derived a LLN and a CLT

via a regeneration-time argument under a uniform mixing condition. In [72] a LLN was

derived by analyzing the environment process, i.e., the environment as seen from the

point of view of the walker. [29] developed a renormalization scheme to prove a CLT

when the transition probabilities of the RW are sufficiently close to those of a simple

RW.

Large deviations for the empirical speed Xn/n have been studied only recently. The

main result is stated in the next theorem due to Varadhan [94].

Theorem 1.7. (Quenched and Annealed LDP)

Let d ≥ 2. Assume that µ is uniformly elliptic and ergodic. Then, for µ-a.e. realization

of ξ, the family of probability measures P ξ
0 (Xn/n ∈ · ), n ∈ N, satisfies a LDP with rate

n and with convex deterministic rate function Ique. If µ is i.i.d., then also an annealed

LDP is satisfied with rate n and with convex rate function Iann. Furthermore, in the

latter case Ique and Iann have the same zero set, and this set is convex and consists of

either a single point or a line segment.
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The proof of Theorem 1.7 is based on a subadditivity argument. As for d = 1, the rate

functions are in general not strictly convex. A relation like (1.8) is not available. It is

not known under which conditions and in which region the two rate functions coincide.

Partial progress and relalted results can be found in [73, 86, 87, 97].

1.2 Dynamic RE

In this section we introduce RWs in dynamic REs, which will be the main topic of this

thesis. This is a variant of the problem in the previous section (see Definition 1.1) in

which the environment ξ evolves in time according to a given autonomous dynamics. In

other words, ξ is given by a collection of random vectors {ξn(x, ·) : x ∈ Zd, n ∈ N0} with

a prescribed joint law, and X is a RW with space-time dependent transition probabilities

given by

P ξ(Xn+1 = x+ e|Xn = x) = ξn(x, e), e ∈ Zd, |e| = 1, n ∈ N0. (1.19)

Under the quenched law P ξ
0 , X is now a space-time inhomogeneous Markov chain. Due

to the dynamics of the environment, we expect different behavior than in the static

situation. In particular, trapping phenomena, which played a chief role in static models,

may not survive. The next sections are devoted to a brief exposition of the different

types of problems that have been studied so far in the literature. We will first describe

the easiest models and then move on to the more challenging ones.

1.2.1 Early work

In 1986 [64] Madras studied a one-dimensional RW that is a deterministic functional of

a randomly fluctuating environment, which can be considered as a degenerate case of a

RW in a dynamic RE. The model is defined as follows. For each x ∈ Z, let ξ = (ξt(x))t≥0

be an independent stationary continuous-time Markov process with state space {+1,−1}
and transition probability matrix(

p−1,−1(t) p−1,+1(t)

p+1,−1(t) p+1,+1(t)

)
=

(
q + prt p− prt

q − qrt p+ qrt

)
,

where p = α/(α + β), q = 1 − p, r = e−(α+β), and α, β ∈ (0,∞). Let X = (Xt)t≥0 be a

RW, starting from the origin (X0 = 0) and moving on R as follows. For i ∈ N0, define

Xt = Xi + (t− i)ξi(Xi), i < t ≤ i+ 1. (1.20)
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Thus, X represents the motion of a particle, travelling on R at unit speed, that at each

unit of time chooses its direction according to the state of the local environment. By

using the ergodic properties of ξ it can be shown that the process X has a stationary

and exponentially mixing measure, which can be used to derive a recurrence criterion,

a strong LLN and a CLT. In particular, X is recurrent if and only if α = β. This model

does not exhibit surprising behavior and, in contrast to RWRE models, has just one level

of randomness. Nevertheless, the above results were obtained with the help of highly

non-trivial methods and were the first in the dynamic setting.

1.2.2 Space-time i.i.d. RE

In 1992, Boldrighini et al. [16] introduced the first model of a RW in a dynamic RE.

Since then this model has been studied intensively under several assumptions and using

different tools. Though results like LLNs and CLTs have been derived, the general

picture is far from being understood. The simplest setting is when the environment

ξ = {ξn(x, ·) : x ∈ Zd, n ∈ N} is a collection of i.i.d. random variables, which we call i.i.d.

space-time RE. Note that this is equivalent to a (d+1)-dimensional RW in a static i.i.d.

RE in which, at each time step, one coordinate of the walk increases deterministically

by one unit. Under the annealed measure, this RWRE becomes a simple RW in an

averaged environment. Thus, the interest is in studying the quenched properties. The

most general result has been derived in [74]. With the help of a martingale approach

for additive functionals of a Markov chain, they obtained a quenched CLT in arbitrary

dimension. In particular, they showed that the displacement of the RW in the i.i.d.

space-time RE always has diffusive behavior with deterministic parameters. Similar

results under a somewhat stronger condition on the RE were already found in [11],

[22–24], via a cluster-expansion technique together with a small-noise assumption (see

(1.21)), and in [6], with the help of generating functions.

A variant of the i.i.d. setting has been considered in [26]. Here, the environment is

independent in time but has spatial correlation, i.e., at each time unit a new RE is

sampled from a given distribution with dependence in space. The RW X is taken to be

a perturbation of a homogeneous RW with transition kernel p(e), namely,

P ξ(Xn+1 = x+ e|Xn = x) = p(e) + εc(e; ξn(x)), e ∈ Zd, |e| = 1, (1.21)

where ε is a small positive parameter. The function c is such that (1.21) are transition

probabilities, and represents the influence of ξ on the evolution of X. For ε small (‘small

noise regime’), a quenched CLT was proved with Brownian motion as scaling limit.
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An analysis of the large deviations for RW in a space-time i.i.d. RE is presented in [98].

Except for our result in Chapter 4, this is the only paper dealing with LDPs in the

dynamic setup. Indeed, as we pointed out in Section 1.1.2, even for static RE in d ≥ 2

the large deviation analysis is difficult and is still far from being understood. Under

the annealed law, RW in a space-time i.i.d. RE behaves like a homogeneous RW, for

which the LDP for the empirical speed is given by Cramer’s theorem [39, 52]. [98] shows

that also under the quenched law a LDP for the empirical speed holds when d ≥ 3. In

particular, for speeds that are sufficiently close to the typical speed v, the quenched and

annealed rate functions coincide. Furthermore, conditioned on any rare event (i.e., the

empirical speed being any value different from v), the empirical process associated with

the environment process, i.e., the environment as seen from the walker, converges to a

certain stationary process, both under the quenched and the annealed law.

1.2.3 Time-dependent RE

Further complications arise when considering dynamic RE ξ in which the collection

ξ = {ξn(x, ·) : x ∈ Zd, n ∈ N} is i.i.d. in space but Markovian in time, i.e., at each

site x there is an independent copy of the same ergodic Markov chain. Note that, in

this setup, the loss of time-independence makes even the annealed properties of X non-

trivial. Such problems have been investigated in [5], [13], [41]. [13] considers the case in

which the transition probabilities of the RW depend weakly on the environment (‘small

noise regime’; see (1.21)). By means of a cluster-expansion technique, it is proved that

a quenched CLT holds a.s. for any d ≥ 3. Similar results have been obtained in [5]. Via

a probabilistic argument based on regeneration times, and under ellipticity conditions

weaker than in [13], a strong LLN and a CLT were derived under the annealed law for

any d ≥ 1, and a quenched invariance principle only in high dimensions, namely, d > 7.

Further progress was achieved with the help of an analytical approach to analyze the

environment process in two recent papers [41, 42]. [41] deals with the case in which the

transition probabilities of the RW are again weakly dependent on the environment, while

the environment has a deterministic but strongly chaotic evolution. In [42], the authors

consider a RW that is strongly dependent on a dynamic RE that again is assumed to be

independent in space and Markovian in time. In both papers, a strong LLN and a CLT

have been proven, under both the annealed and the quenched law.

1.2.4 Space-time mixing RE

A major challenge is to consider more general REs in which correlations in both space

and time are allowed. Results in this direction have been obtained recently in [30, 40].
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Both papers deal with finite-range RWs whose transition probabilities depend weakly on

a RE whose space-time correlations decay exponentially. By means of a renormalization

group technique [30], respectively, by analyzing the environment process via a martingale

approximation [40], they proved a LLN and showed that in the scaling limit the behavior

is diffusive for any d ≥ 1. In particular, [30] does not assume a Markovian structure of

the RE.

1.3 RW on an Interacting Particle System (IPS)

We are finally ready to introduce a class of RW in dynamic RE that will be the main

subject of this thesis, namely, our RE will evolve as an Interacting Particle System

(IPS). The main reason for this choice is that IPSs constitute a well-established research

area and are natural examples of dynamic RE with space-time correlations. In the next

sections we first define the class of IPSs we are interested in, providing some explicit

examples, and then introduce our class of RWs. To avoid heavy notation, the definitions

are stated for d = 1 and for nearest-neighbor RW, even though they easily extend to

d ≥ 2 and/or to more general step distributions. Such possible extensions will be pointed

out in the next chapters.

1.3.1 IPS

1.3.1.1 Definition

Let Ω = {0, 1}Zd
. Denote by DΩ[0,∞) the set of paths in Ω that are right-continuous

and have left limits. Let {P η, η ∈ Ω} be a collection of probability measures on DΩ[0,∞)

satisfying the Markov property. An IPS

ξ = (ξt)t≥0 with ξt = {ξt(x) : x ∈ Zd}, (1.22)

is a Markov process on Ω with law P η, when ξ0 = η ∈ Ω is the starting configuration.

We say that site x at time t is vacant or occupied when ξt(x) = 0 or 1.

Let P(Ω) be the set of probability measures on Ω. Given µ ∈ P(Ω), we denote by Pµ

the law of ξ when ξ0 is drawn from µ ∈ P(Ω), i.e.,

Pµ(·) =
∫

Ω
P η(·)µ(dη). (1.23)
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Throughout the sequel we will assume that

Pµ is stationary and ergodic under space-time shifts. (1.24)

Thus, in particular, µ is a homogeneous extremal equilibrium for ξ.

Let C(Ω) be the set of continuous functions on Ω taking values in R, viewed as a Banach

space with norm

‖f‖∞ = sup
η∈Ω
|f(η)|. (1.25)

The Markov semigroup associated with ξ is denoted by SIPS = (SIPS(t))t≥0. This semi-

group acts from the left on C(Ω) as

(
SIPS(t)f

)
(·) = E(·)[f(ξt)], f ∈ C(Ω), (1.26)

and acts from the right on P(Ω) as

(
νSIPS(t)

)
(·) = P ν(ξt ∈ · ), ν ∈ P(Ω). (1.27)

In particular, we assume that ξ is a Feller process, i.e., SIPS(t)f ∈ C(Ω) for every t ≥ 0

and f ∈ C(Ω).

Informally, an IPS is a collection of particles on the integer lattice evolving in a Marko-

vian way. Depending on the specific transition rates between the different configurations,

we obtain several types of IPS. Each particle may interact with the others: the evolution

of each particle is defined in terms of local transition rates that may depend on the state

of the system in a neighborhood of the particle. For a formal construction, we refer the

reader to Liggett [63], Chapter I. Some explicit examples will be given below, and in the

next chapters whenever needed.

1.3.1.2 Examples

(1) Stochastic Ising Model (SIM)

This model goes back to Glauber [48] and was introduced as a model for magnetism. The

SIM is a Markov process on Ω′ = {+1,−1}Zd
, where each site represents an iron atom

whose spin can be either up (+1) or down (−1). In the original and easiest formulation,

the dynamics can be described as follows. Let β = T−1 ≥ 0 represent the inverse of the

temperature T of the system. Given a starting configuration of spins η ∈ Ω′, the spin



1.3. RW on an Interacting Particle System (IPS) 15

η(x) at site x flips to −η(x) at rate

c(x, η) = exp
{
− β

∑
y:|y−x|=1

η(x)η(y)
}
, x ∈ Zd, η ∈ Ω′. (1.28)

With this choice of the rates we see that each spin tends to be aligned with its neigh-

borhood. Indeed, the flip rate in (1.28) is higher when the spin at x differs from most

of its neighbors than when it agrees with most of them. Such a monotonicity property

is called attractiveness (see Section 2.4.2). In the language of statistical mechanics it

is referred to as ferromagnetism. Note that, replacing the state space Ω′ by Ω, we can

pass from the ‘spin interpretation’ of the system to an interpretation of an IPS in which

particles/holes flip into holes/particles.

Depending on the temperature and the dimension, the SIM shows interesting behavior.

For example, when d = 1 it admits a unique ergodic measure for any β ∈ R+, while for

d ≥ 2 there exists a critical βc(d) such that for β > βc(d) there are at least two extremal

invariant measures (which means that the system has a phase transition).

For d ≥ 1, if β = 0, then the SIM is an example of an independent spin-flip dynamics

(see Section 2.5), namely, the coordinates ηt(x) become independent two-state Markov

chains and the system has a unique ergodic measure given by the Bernoulli product

measure with density 1
2 . The dynamics defined by the rates in (1.28) is only an example

of a SIM. It is possible to also consider flip rates that depend not only on nearest-

neighbor sites. For a general definition of the stochastic Ising model, see Liggett [63]

Chapter 4.

(2) Exclusion Process (EP)

Let p(x, y), x, y ∈ Zd, be a transition kernel of a finite-range homogeneous RW on Zd.

Given a configuration η ∈ Ω = {0, 1}Zd
, let {x ∈ Zd : η(x) = 1} be the set of locations

of the particles at time 0. The exclusion process is the IPS in which particles move

according to the following rules:

• A particle at site x waits an exponential time with mean 1 and then chooses a site

y with probability p(x, y).

• The particle jumps to site y if this site is vacant, but does not jump when it is

occupied.

The exclusion process is an example of a conservative IPS (i.e., the number of particles

is preserved by the evolution) in which at each transition two coordinates of the system

may change. It was originally introduced by Spitzer [81] as a model for a lattice gas at

infinite temperature.
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(3) Contact Process (CP)

The contact process (introduced by Harris [50]) is a toy model for the spread of an

infection in a large population of individuals. Let Ω = {0, 1}Zd
. Each site x ∈ Zd

represents an individual. Given η ∈ Ω, we say that the individual x is infected or

healthy if η(x) equals 1 respectively 0. The evolution of the system makes a healthy

individual infected at rate λ times the number of infected neighbors, while infected

individuals recover independently at rate 1. In other words, for each x ∈ Zd, if η(x) = 1,

then η(x) flips to 0 at rate 1, while if η(x) = 0, then it flips to 1 at rate λ
∑

y:|y−x|=1

η(y),

where λ ≥ 0 is a parameter representing the intensity of the infection spread. It is

easy to see that the pointmass concentrated at the configuration with all 0’s is a trivial

invariant measure. It is possible to prove that for any d ≥ 1 there exists a critical value

λc(d) ∈ (0,∞) such that for λ > λc(d) the system has at least one non-trivial invariant

measure.

1.3.2 RW on IPS

Conditional on a realization of an IPS ξ, let

X = (Xt)t≥0 (1.29)

be the RW with local transition rates

x→ x+ 1 at rate α1 ξt(x) + α0 [1− ξt(x)],

x→ x− 1 at rate β1 ξt(x) + β0 [1− ξt(x)],
(1.30)

where α1, β1, α0, β0 ∈ (0,∞) with α1 + β1 = α0 + β0. Thus, on occupied sites the RW

has a local drift α1− β1, while on vacant sites it has a local drift α0− β0. Note that the

sum of the jump rates is independent of ξ. Let P ξ
0 denote the law of X starting from

X0 = 0 conditional on ξ, which is the quenched law of X. The annealed law of X is

Pµ,0(·) =
∫

DΩ[0,∞)
P ξ

0 (·)Pµ(dξ). (1.31)

Note that X is a continuous-time variant of the RW in a dynamic RE defined in (1.19).

By choosing α1 = β0, α0 = β1 with α1 > β1, we obtain the continuous-time dynamic

analogue of the static model given in Section 1.1.1.4, where α1/(α1 + β1) takes over the

role of p.
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1.4 Related models

We close by listing some topics which are closely related to RWRE but not covered in

this introduction.

• Non-nearest-neighbor RWRE : When dealing with non-nearest-neighbor finite-range

RW in static and dynamic RE, some results and techniques we discussed in this

chapter can be easily extended; see e.g. [40, 41, 73, 95]. Nevertheless, in dropping

the nearest-neighbor assumption extra difficulties may arise and tools to analyze

Lyapunov exponents associated with certain random matrices are needed (see e.g.

[31, 60]).

• RW in dynamic RE with mutual interaction: These are models in which the dy-

namics of the RE is locally affected by the evolution of the RW (recall that in

Section 1.2 we dealt with situations where the RE is completely independent of

the RW). Under certain assumptions on the mutual interaction, LLNs, CLTs and

LDPs have been obtained for such models in [11, 16, 19–21, 56].

• RW on random graphs: Several papers in the literature have been focusing on the

asymptotic properties of RWs that evolves on a realization of a random graph.

Two main classes concern random subgraphs of Zd like percolation clusters (see

e.g. [9, 10, 68, 90]), and random trees like Galton-Watson branching processes (see

e.g. [37, 69]).

• Random conductance model : In these models, with each bond (x, y) of the integer

lattice Zd is associated a random variable Cx,y ≥ 0 representing a conductance,

with C = {Cx,y}x,y∈Zd i.i.d. Given a realization of C, the aim is to study the

behavior of the RW whose transition probabilities from site x to site y are given

by Cx,y/
∑

z:|z−x|=1Cx,z. Such a model is closely related to RWs on supercritical

percolation clusters. Annealed and quenched CLTs for this RW were derived in

[15, 62, 77].

• Diffusion with random potential : These models represent the natural analogue of

RWRE in the theory of diffusion processes. Informally speaking, the idea is to find

a ‘solution’ to the stochastic differential equation dXt = −1
2∇V (Xt)dt+dWt, X0 =

0, where the function V = F +B is a sum of a deterministic function F : Rd → R
plus a random field B indexed by Rd, B = (B(x))x∈Rd , and W is a d-dimensional

Brownian motion independent of V . For results on this topic we refer the reader

to [32, 67, 91] and the references therein.





Chapter 2

Law of large numbers for a class

of RW in dynamic RE

This chapter is based on a paper with Frank den Hollander and Frank Redig that has

been submitted to Electronic Journal of Probability.

Abstract

In this paper we consider a class of one-dimensional interacting particle systems in equi-

librium, constituting a dynamic random environment, together with a nearest-neighbor

random walk that on occupied/vacant sites has a local drift to the right/left. We adapt a

regeneration-time argument originally developed by Comets and Zeitouni [35] for static

random environments to prove that, under a space-time mixing property for the dynamic

random environment called cone-mixing, the random walk has an a.s. constant global

speed. In addition, we show that if the dynamic random environment is exponentially

mixing in space-time and the local drifts are small, then the global speed can be written

as a power series in the size of the local drifts. From the first term in this series the sign

of the global speed can be read off.

The results can be easily extended to higher dimensions.
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2.1 Introduction and main result

In Section 2.1 we define the random walk in dynamic random environment, introduce a

space-time mixing property for the random environment called cone-mixing, and state

our law of large numbers for the random walk subject to cone-mixing. In Section 2.2 we

give the proof of the law of large numbers with the help of a space-time regeneration-

time argument. In Section 2.3 we assume a stronger space-time mixing property, namely,

exponential mixing, and derive a series expansion for the global speed of the random walk

in powers of the size of the local drifts. This series expansion converges for small enough

local drifts and its first term allows us to determine the sign of the global speed. (The

perturbation argument underlying the series expansion provides an alternative proof of

the law of large numbers.) In Section 2.4 we give examples of random environments that

are cone-mixing. In Section 2.5 we compute the first three terms in the expansion for

an independent spin-flip dynamics.

2.1.1 Model

Let Ω = {0, 1}Z. Let C(Ω) be the set of continuous functions on Ω taking values in R,

P(Ω) the set of probability measures on Ω, and DΩ[0,∞) the path space, i.e., the set of

càdlàg functions on [0,∞) taking values in Ω. In what follows,

ξ = (ξt)t≥0 with ξt = {ξt(x) : x ∈ Z} (2.1)

is an interacting particle system taking values in Ω, with ξt(x) = 0 meaning that site

x is vacant at time t and ξt(x) = 1 that it is occupied. The paths of ξ take values in

DΩ[0,∞). The law of ξ starting from ξ0 = η is denoted by P η. The law of ξ when ξ0 is

drawn from µ ∈ P(Ω) is denoted by Pµ, and is given by

Pµ(·) =
∫

Ω
P η(·)µ(dη). (2.2)

Through the sequel we will assume that

Pµ is stationary and ergodic under space-time shifts. (2.3)

Thus, in particular, µ is a homogeneous extremal equilibrium for ξ. The Markov semi-

group associated with ξ is denoted by SIPS = (SIPS(t))t≥0. This semigroup acts from

the left on C(Ω) as

(
SIPS(t)f

)
(·) = E(·)[f(ξt)], f ∈ C(Ω), (2.4)
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and acts from the right on P(Ω) as

(
νSIPS(t)

)
(·) = P ν(ξt ∈ · ), ν ∈ P(Ω). (2.5)

See Liggett [63], Chapter I, for a formal construction.

Conditional on ξ, let

X = (Xt)t≥0 (2.6)

be the random walk with local transition rates

x→ x+ 1 at rate α ξt(x) + β [1− ξt(x)],

x→ x− 1 at rate β ξt(x) + α [1− ξt(x)],
(2.7)

where w.l.o.g.

0 < β < α <∞. (2.8)

Thus, on occupied sites the random walk has a local drift to the right while on vacant

sites it has a local drift to the left, of the same size. Note that the sum of the jump rates

α+β is independent of ξ. Let P ξ
0 denote the law of X starting from X0 = 0 conditional

on ξ, which is the quenched law of X. The annealed law of X is

Pµ,0(·) =
∫

DΩ[0,∞)
P ξ

0 (·)Pµ(dξ). (2.9)

2.1.2 Cone-mixing and law of large numbers

In what follows we will need a mixing property for the law Pµ of ξ. Let · and ‖ · ‖
denote the inner product, respectively, the Euclidean norm on R2. Put ` = (0, 1). For

θ ∈ (0, 1
2π) and t ≥ 0, let

Cθ
t =

{
u ∈ Z× [0,∞) : (u− t`) · ` ≥ ‖u− t`‖ cos θ

}
(2.10)

be the cone whose tip is at t` = (0, t) and whose wedge opens up in the direction ` with

an angle θ on either side (see Figure 2.1). Note that if θ = 1
2π (θ = 1

4π), then the cone

is the half-plane (quarter-plane) above t`.

Definition 2.1. A probability measure Pµ on DΩ[0,∞) satisfying (2.3) is said to be

cone-mixing if, for all θ ∈ (0, 1
2π),

lim
t→∞

sup
A∈F0, B∈Fθ

t
Pµ(A)>0

∣∣∣Pµ(B | A)− Pµ(B)
∣∣∣ = 0, (2.11)
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Figure 2.1: The cone Cθ
t .

where
F0 = σ

{
ξ0(x) : x ∈ Z

}
,

Fθ
t = σ

{
ξs(x) : (x, s) ∈ Cθ

t

}
.

(2.12)

In Section 2.4 we give examples of interacting particle systems that are cone-mixing.

We are now ready to formulate our law of large numbers (LLN).

Theorem 2.2. Assume (2.3). If Pµ is cone-mixing, then there exists a v ∈ R such that

lim
t→∞

Xt/t = v Pµ,0 − a.s. (2.13)

The proof of Theorem 2.2 is given in Section 2.2, and is based on a regeneration-time

argument originally developed by Comets and Zeitouni [35] for static random environ-

ments (based on earlier work by Sznitman and Zerner [92]).

We have no criterion for when v < 0, v = 0 or v > 0. In view of (2.8), a naive guess

would be that these regimes correspond to ρ < 1
2 , ρ = 1

2 and ρ > 1
2 , respectively, with

ρ = Pµ(ξ0(0) = 1) the density of occupied sites. However, v = (2ρ̃ − 1)(α − β), with ρ̃

the asymptotic fraction of time spent by the walk on occupied sites, and the latter is a

non-trivial function of Pµ, α and β. We do not (!) expect that ρ̃ = 1
2 when ρ = 1

2 in

general. Clearly, if Pµ is invariant under swapping the states 0 and 1, then v = 0.

2.1.3 Global speed for small local drifts

For small α − β, X is a perturbation of simple symmetric random walk. In that case

it is possible to derive an expansion of v in powers of α − β, provided Pµ satisfies an

exponential space-time mixing property referred to as M < ε (Liggett [63], Section I.3).

Under this mixing property, µ is even uniquely ergodic.
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Suppose that ξ has shift-invariant local transition rates

c(A, η), A ⊂ Z finite, η ∈ Ω, (2.14)

i.e., c(A, η) is the rate in the configuration η to change the states at the sites in A, and

c(A, η) = c(A+ x, τxη) for all x ∈ Z with τx the shift of space over x. Define

M =
∑
A30

∑
x 6=0

sup
η∈Ω
|c(A, η)− c(A, ηx)|,

ε = inf
η∈Ω

∑
A30

|c(A, η) + c(A, η0)|,
(2.15)

where ηx is the configuration obtained from x by changing the state at site x. The

interpretation of (2.15) is that M is a measure for the maximal dependence of the

transition rates on the states of single sites, while ε is a measure for the minimal rate

at which the states of single sites change. See Liggett [63], Section I.4, for examples.

Theorem 2.3. Assume (2.3) and suppose that M < ε. If α− β < 1
2(ε−M), then

v =
∑
n∈N

cn (α− β)n ∈ R with cn = cn(α+ β;Pµ), (2.16)

where c1 = 2ρ− 1 and cn ∈ R, n ∈ N\{1}, are given by a recursive formula (see Section

2.3.3).

The proof of Theorem 2.3 is given in Section 2.3, and is based on an analysis of the

semigroup associated with the environment process, i.e., the environment as seen relative

to the random walk. The generator of this process turns out to be a sum of a large part

and a small part, which allows for a perturbation argument. In Section 2.4 we show

that M < ε implies cone-mixing for spin-flip systems, i.e., systems for which c(A, η) = 0

when |A| ≥ 2.

It follows from Theorem 2.3 that for α−β small enough the global speed v changes sign

at ρ = 1
2 :

v = (2ρ− 1)(α− β) +O
(
(α− β)2

)
as α ↓ β for ρ fixed. (2.17)

We will see in Section 2.3.3 that c2 = 0 when µ is a reversible equilibrium, in which case

the error term in (2.17) is O((α− β)3).

In Section 2.5 we consider an independent spin-flip dynamics such that 0 changes to 1

at rate γ and 1 changes to 0 at rate δ, where 0 < γ, δ <∞. By reversibility, c2 = 0. We

show that

c3 =
4
U2

ρ(1− ρ)(2ρ− 1) f(U, V ), f(U, V ) =
2U + V√
V 2 + 2UV

− 2U + 2V√
V 2 + UV

+ 1, (2.18)
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with U = α + β, V = γ + δ and ρ = γ/(γ + δ). Note that f(U, V ) < 0 for all U, V and

limV →∞ f(U, V ) = 0 for all U . Therefore (2.18) shows that

(1) c3 > 0 for ρ < 1
2 , c3 = 0 for ρ = 1

2 , c3 < 0 for ρ > 1
2 ,

(2) c3 → 0 as γ + δ →∞ for fixed ρ 6= 1
2 and fixed α+ β.

(2.19)

If ρ = 1
2 , then the dynamics is invariant under swapping the states 0 and 1, so that

v = 0. If ρ > 1
2 , then v > 0 for α− β > 0 small enough, but v is smaller in the random

environment than in the average environment, for which v = (2ρ−1)(α−β) (“slow-down

phenomenon”). In the limit γ + δ →∞ the walk sees the average environment.

2.1.4 Discussion and outline

Three classes of dynamic random environments have been studied in the literature so

far:

(1) Independent in time: globally updated at each unit of time ;

(2) Independent in space: locally updated according to independent single-site Markov

chains;

(3) Dependent in space and time.

Our models fit into class (3), which is the most challenging and still is far from being

understood. For an extended list of references we refer the reader to [4].

Many results, like a LLN, annealed and quenched invariance principles or decay of corre-

lations, have been obtained for the above three classes under suitable extra assumptions.

In particular, it is assumed either that the random enviornment has a strong space-time

mixing property and/or that the transition probabilities of the walks are close to con-

stant, i.e., small perturbation of a homogeneous random walk.

The LLN in Theorem 2.2 is a successful attempt to move away from the restrictions.

Cone mixing is one of the weakest mixing conditions under which we may expect to be

able to derive a LLN via regeneration times: no rate of mixing is imposed in (2.11).

Still, (2.11) is not optimal because it is a uniform mixing condition. For instance,

the simple symmetric exclusion process, which has a one-parameter family of equilibria

parameterized by the particle density, is not cone-mixing.

Our expansion of the global speed in Theorem 2.3 which is a perturbation of a homo-

geneous random walk falls in class (3), but unlike what was done in previous works, it
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offers an explicit control on the coefficients and on the domain of convergence of the

expansion.

Both Theorem 2.2 and 2.3 are easily extended to higher dimensions (with the obvious

generalization of cone-mixing), and to random walks whose step rates are local functions

of the environment, i.e., in (2.7) replace ξt(x) by R(τxξt), with τx the shift over x and R

any cylinder function on Ω. It is even possible to allow for steps with a finite range. All

that is needed is that the total jump rate is independent of the random environment.

The reader is invited to take a look at the proofs in Sections 2.2 and 2.3 to see why.

In the context of Theorem 2.3, the LLN can be extended to a central limit theorem

(CLT) with somewhat strong mixing assumptions and to a large deviation principle

(LDP), issues which we plan to address in future work.

2.2 Proof of Theorem 2.2

In this section we prove Theorem 2.2 by adapting the proof of the LLN for random

walks in static random environments developed by Comets and Zeitouni [35]. The proof

proceeds in seven steps. In Section 2.2.1 we look at a discrete-time random walk X on

Z in a dynamic random environment and show that it is equivalent to a discrete-time

random walk Y on

H = Z× N0 (2.20)

in a static random environment that is directed in the vertical direction. In Section 2.2.2

we show that Y in turn is equivalent to a discrete-time random walk Z on H that

suffers time lapses, i.e., random times intervals during which it does not observe the

random environment and does not move in the horizontal direction. Because of the

cone-mixing property of the random environment, these time lapses have the effect

of wiping out the memory. In Section 2.2.3 we introduce regeneration times at which,

roughly speaking, the future of Z becomes independent of its past. Because Z is directed,

these regeneration times are stopping times. In Section 2.2.4 we derive a bound on the

moments of the gaps between the regeneration times. In Section 2.2.5 we recall a basic

coupling property for sequences of random variables that are weakly dependent. In

Section 2.2.6, we collect the various ingredients and prove the LLN for Z, which will

immediately imply the LLN for X. In Section 2.2.7, finally, we show how the LLN for

X can be extended from discrete time to continuous time.

The main ideas in the proof all come from [35]. In fact, by exploiting the directedness

we are able to simplify the argument in [35] considerably.
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2.2.1 Space-time embedding

Conditional on ξ, we define a discrete-time random walk on Z

X = (Xn)n∈N0 (2.21)

with transition probabilities

P ξ
0

(
Xn+1 = x+ i | Xn = x

)
=


p ξn+1(x) + q [1− ξn+1(x)] if i = 1,

q ξn+1(x) + p [1− ξn+1(x)] if i = −1,

0 otherwise,

(2.22)

where x ∈ Z, p ∈ (1
2 , 1), q = 1 − p, and P ξ

0 denotes the law of X starting from X0 = 0

conditional on ξ. This is the discrete-time version of the random walk defined in (2.6–

2.7), with p and q taking over the role of α/(α+ β) and β/(α+ β). As in Section 2.1.1,

we write P ξ
0 to denote the quenched law of X and Pµ,0 to denote the annealed law of X.

Our interacting particle system ξ is assumed to start from an equilibrium measure µ

such that the path measure Pµ is stationary and ergodic under space-time shifts and is

cone-mixing. Given a realization of ξ, we observe the values of ξ at integer times n ∈ Z,

and introduce a random walk on H

Y = (Yn)n∈N0 (2.23)

with transition probabilities

P ξ
(0,0)

(
Yn+1 = x+ e | Yn = x

)
=


p ξx2+1(x1) + q [1− ξx2+1(x1)] if e = `+,

q ξx2+1(x1) + p [1− ξx2+1(x1)] if e = `−,

0 otherwise,

(2.24)

where x = (x1, x2) ∈ H, `+ = (1, 1), `− = (−1, 1), and P ξ
(0,0) denotes the law of Y given

Y0 = (0, 0) conditional on ξ. By construction, Y is the random walk on H that moves

inside the cone with tip at (0, 0) and angle 1
4π, and jumps in the directions either l+ or

l−, such that

Yn = (Xn, n), n ∈ N0. (2.25)

We refer to P ξ
(0,0) as the quenched law of Y and to

Pµ,(0,0)(·) =
∫

DΩ[0,∞)
P ξ

(0,0)(·)P
µ(dξ) (2.26)
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as the annealed law of Y . If we manage to prove that there exists a u = (u1, u2) ∈ R2

such that

lim
n→∞

Yn/n = u Pµ,(0,0) − a.s., (2.27)

then, by (2.25), u2 = 1, and the LLN in Theorem 2.2 holds with v = u1.

2.2.2 Adding time lapses

Put Λ = {0, `+, `−}. Let ε = (εi)i∈N be an i.i.d. sequence of random variables taking

values in Λ according to the product law W = w⊗N with marginal

w(ε1 = e) =

{
r if e ∈ {`+, `−},
p if e = 0,

(2.28)

with r = 1
2q. For fixed ξ and ε, introduce a second random walk on H

Z = (Zn)n∈N0 (2.29)

with transition probabilities

P̄ ξ,ε
(0,0)

(
Zn+1 = x+ e | Zn = x

)
= 1{εn+1=e} +

1
p

1{εn+1=0}

[
P ξ

(0,0)

(
Yn+1 = x+ e | Yn = x

)
− r
]
,

(2.30)

where x ∈ H and e ∈ {`+, `−}, and P̄ ξ,ε
(0,0) denotes the law of Z given Z0 = (0, 0)

conditional on ξ, ε. In words, if εn+1 ∈ {`+, `−}, then Z takes step εn+1 at time n + 1,

while if εn+1 = 0, then Z copies the step of Y .

The quenched and annealed laws of Z defined by

P̄ ξ
(0,0)(·) =

∫
ΛN
P̄ ξ,ε

(0,0)(·)W (dε), P̄µ,(0,0)(·) =
∫

DΩ[0,∞)
P̄ ξ

(0,0)(·)P
µ(dξ), (2.31)

coincide with those of Y , i.e.,

P̄ ξ
(0,0)(Z ∈ · ) = P ξ

(0,0)(Y ∈ · ), P̄µ,(0,0)(Z ∈ · ) = Pµ,(0,0)(Y ∈ · ). (2.32)

In words, Z becomes Y when the average over ε is taken. The importance of (2.32) is

two-fold. First, to prove the LLN for Y in (2.27) it suffices to prove the LLN for Z.

Second, Z suffers time lapses during which its transitions are dictated by ε rather than

ξ. By the cone-mixing property of ξ, these time lapses will allow ξ to steadily loose

memory, which will be a crucial element in the proof of the LLN for Z.
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2.2.3 Regeneration times

Fix L ∈ 2N and define the L-vector

ε(L) = (`+, `−, . . . , `+, `−), (2.33)

where the pair `+, `− is alternated 1
2L times. Given n ∈ N0 and ε ∈ ΛN with (εn+1, . . . ,

εn+L) = ε(L), we see from (2.30) that (because `+ + `− = (0, 2) = 2`)

P̄ ξ,ε
(0,0)

(
Zn+L = x+ L` | Zn = x

)
= 1, x ∈ H, (2.34)

which means that the stretch of walk Zn, . . . , Zn+L travels in the vertical direction `

irrespective of ξ.

Define regeneration times

τ
(L)
0 = 0, τ

(L)
k+1 = inf

{
n > τ

(L)
k + L : (εn−L, . . . , εn−1) = ε(L)

}
, k ∈ N. (2.35)

Note that these are stopping times w.r.t. the filtration G = (Gn)n∈N given by

Gn = σ{εi : 1 ≤ i ≤ n}, n ∈ N. (2.36)

Also note that, by the product structure ofW = w⊗N defined in (2.28), we have τ (L)
k <∞

P̄0-a.s. for all k ∈ N.

Recall Definition 2.1 and put

Φ(t) = sup
A∈F0, B∈Fθ

t
Pµ(A)>0

∣∣∣Pµ(B | A)− Pµ(B)
∣∣∣. (2.37)

Cone-mixing is the property that limt→∞ Φ(t) = 0 (for all cone angles θ ∈ (0, 1
2π), in

particular, for θ = 1
4π needed here). Let

Hk = σ
(
(τ (L)

i )k
i=0, (Zi)

τ
(L)
k

i=0 , (εi)
τ
(L)
k −1

i=0 , {ξt : 0 ≤ t ≤ τ (L)
k − L}

)
, k ∈ N. (2.38)

This sequence of sigma-fields allows us to keep track of the walk, the time lapses and

the environment up to each regeneration time. Our main result in the section is the

following.

Lemma 2.4. For all L ∈ 2N and k ∈ N,∥∥∥ P̄µ,(0,0)

(
Z [k] ∈ · | Hk

)
− P̄µ,(0,0)

(
Z ∈ ·

) ∥∥∥
tv
≤ Φ(L), (2.39)
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where

Z [k] =
(
Z

τ
(L)
k +n

− Z
τ
(L)
k

)
n∈N0

(2.40)

and ‖ · ‖tv is the total variation norm.

Proof. We give the proof for k = 1. Let A ∈ σ(HN0) be arbitrary, and abbreviate

1A = 1{Z∈A}. Let h be any H1-measurable non-negative random variable. Then, for all

x ∈ H and n ∈ N, there exists a random variable hx,n, measurable w.r.t. the sigma-field

σ
(
(Zi)n

i=0, (εi)n−1
i=0 , {ξt : 0 ≤ t < n− L}

)
, (2.41)

such that h = hx,n on the event {Zn = x, τ
(L)
1 = n}. Let EP µ⊗W and CovP µ⊗W denote

expectation and covariance w.r.t. Pµ⊗W , and write θn to denote the shift of time over

n. Then

Ēµ,(0,0)

(
h
[
1A ◦ θτ

(L)
1

])
=

∑
x∈H,n∈N

EP µ⊗W

(
Ēξ,ε

0

(
hx,n [1A ◦ θn] 1n

Zn=x,τ
(L)
1 =n

o

))
=

∑
x∈H,n∈N

EP µ⊗W

(
fx,n(ξ, ε) gx,n(ξ, ε)

)
= Ēµ,(0,0)(h) P̄µ,(0,0)(A) + ρA,

(2.42)

where

fx,n(ξ, ε) = Ēξ,ε
(0,0)

(
hx,n 1n

Zn=x,τ
(L)
1 =n

o

)
, gx,n(ξ, ε) = P̄ θnξ,θnε

x (A), (2.43)

and

ρA =
∑

x∈H,n∈N
CovP µ⊗W

(
fx,n(ξ, ε), gx,n(ξ, ε)

)
. (2.44)

By (2.11), we have

|ρA| ≤
∑

x∈H,n∈N

∣∣CovP µ⊗W

(
fx,n(ξ, ε), gx,n(ξ, ε)

)∣∣
≤

∑
x∈H,n∈N

Φ(L)EP µ⊗W

(
fx,n(ξ, ε)

)
sup
ξ,ε

gx,n(ξ, ε)

≤ Φ(L)
∑

x∈H,n∈N
EP µ⊗W

(
fx,n(ξ, ε)

)
= Φ(L) Ēµ,(0,0)(h).

(2.45)

Combining (2.42) and (2.45), we get∣∣∣Ēµ,(0,0)

(
h
[
1A ◦ θτ

(L)
1

])
− Ēµ,(0,0)(h) P̄µ,(0,0)(A)

∣∣∣ ≤ Φ(L) Ēµ,(0,0)(h). (2.46)
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Now pick h = 1B with B ∈ H1 arbitrary. Then (2.46) yields∣∣∣P̄µ,(0,0)

(
Z [k] ∈ A | B

)
− P̄µ,(0,0) (Z ∈ A)

∣∣∣ ≤ Φ(L) for all A ∈ σ(HN0), B ∈ H1. (2.47)

There are only countably many cylinders in HN0 , and so there is a subset of H1 with

Pµ-measure 1 such that, for all B in this set, the above inequality holds simultaneously

for all A. Take the supremum over A to get the claim for k = 1.

The extension to k ∈ N is straightforward.

2.2.4 Gaps between regeneration times

Define (recall (2.35))

T
(L)
k = rL

(
τ

(L)
k − τ (L)

k−1

)
, k ∈ N. (2.48)

Note that T (L)
k , k ∈ N, are i.i.d. In this section we prove two lemmas that control the

moments of these increments.

Lemma 2.5. For every α > 1 there exists an M(α) <∞ such that

sup
L∈2N

Ēµ,(0,0)

(
[T (L)

1 ]α
)
≤M(α). (2.49)

Proof. Fix α > 1. Since T (L)
1 is independent of ξ, we have

Ēµ,(0,0)

(
[T (L)

1 ]α
)

= EW

(
[T (L)

1 ]α
)
≤ sup

L∈2N
EW

(
[T (L)

1 ]α
)
, (2.50)

where EW is expectation w.r.t. W . Moreover, for all a > 0, there exists a constant

C = C(α, a) such that

[aT (L)
1 ]α ≤ C eaT

(L)
1 , (2.51)

and hence

Ēµ,(0,0)

(
[T (L)

1 ]α
)
≤ C

aα
sup
L∈2N

EW

(
eaT

(L)
1

)
. (2.52)

Thus, to get the claim it suffices to show that, for a small enough,

sup
L∈2N

EW

(
eaT

(L)
1

)
<∞. (2.53)

To prove (2.53), let

I = inf
{
m ∈ N : (εmL, . . . , ε(m+1)L−1) = ε(L)

}
. (2.54)
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By (2.28), I is geometrically distributed with parameter rL. Moreover, τ (L)
1 ≤ (I + 1)L.

Therefore

EW

(
eaT

(L)
1

)
= EW

(
earLτ

(L)
1

)
≤ earLLEW

(
earLIL

)
= earLL

∑
j∈N

(earLL)j (1− rL)j−1 rL =
rLe2arLL

earLL(1− rL)
,

(2.55)

with the sum convergent for 0 < a < (1/rLL) log[1/(1 − rL)] and tending to zero as

L→∞ (because r < 1). Hence we can choose a small enough so that (2.53) holds.

Lemma 2.6. lim infL→∞ Ēµ,(0,0)(T
(L)
1 ) > 0.

Proof. Note that Ēµ,(0,0)(T
(L)
1 ) < ∞ by Lemma 2.5. Let N = (Nn)n∈N0 be the Markov

chain with state space S = {0, 1, . . . , L}, starting from N0 = 0, such that Nn = s when

s = 0 ∨ max
{
k ∈ N : (εn−k, . . . , εn−1) = (ε(L)

1 , . . . , ε
(L)
k )
}

(2.56)

(with max ∅ = 0). This Markov chain moves up one unit with probability r, drops to 0

with probability p+r when it is even, and drops to 0 or 1 with probability p, respectively,

r when it is odd. Since τ (L)
1 = min{n ∈ N0 : Nn = L}, it follows that τ (L)

1 is bounded

from below by a sum of independent random variables, each bounded from below by 1,

whose number is geometrically distributed with parameter rL−1. Hence

P̄µ,(0,0)

(
τ

(L)
1 ≥ c r−L

)
≥ (1− rL−1)bcr

−Lc. (2.57)

Since

Ēµ,(0,0)(T
(L)
1 ) = rL Ēµ,(0,0)(τ

(L)
1 )

≥ rL Ēµ,(0,0)

(
τ

(L)
1 1{τ (L)

1 ≥cr−L}

)
≥ c P̄µ,(0,0)

(
τ

(L)
1 ≥ cr−L

)
,

(2.58)

it follows that

lim inf
L→∞

Ēµ,(0,0)(τ
(L)
1 ) ≥ c e−c/r. (2.59)

This proves the claim.

2.2.5 A coupling property for random sequences

In this section we recall a technical lemma that will be needed in Section 2.2.6. The

proof of this lemma is a standard coupling argument (see e.g. Berbee [7], Lemma 2.1).
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Lemma 2.7. Let (Ui)i∈N be a sequence of random variables whose joint probability law

P is such that, for some marginal probability law µ and a ∈ [0, 1],∥∥∥P (Ui ∈ · | σ{Uj : 1 ≤ j < i}
)
− µ(·)

∥∥∥
tv
≤ a a.s. ∀ i ∈ N. (2.60)

Then there exists a sequence of triples of random variables (Ũi,∆i, Ûi)i∈N satisfying

(a) (Ũi,∆i)i∈N are i.i.d.,

(b) Ũi has probability law µ,

(c) P (∆i = 0) = 1− a, P (∆i = 1) = a,

(d) ∆i is independent of (Ũj ,∆j)1≤j<i and Ûi,

such that for all i ∈ N

Ui = (1−∆i)Ũi + ∆iÛi in distribution. (2.61)

2.2.6 LLN for Y

Similarly as in (2.48), define

Z
(L)
k = rL

(
Z

τ
(L)
k

− Z
τ
(L)
k−1

)
, k ∈ N. (2.62)

In this section we prove the LLN for these increments and this will imply the LLN in

(2.27).

Proof. By Lemma 2.4, we have∥∥∥P̄µ,(0,0)

(
(T (L)

k , Z
(L)
k ) ∈ · | Hk−1

)
− µ(L)(·)

∥∥∥
tv
≤ Φ(L) a.s. ∀ k ∈ N, (2.63)

where

µ(L)(A×B) = P̄µ,(0,0)

(
T

(L)
1 ∈ A,Z(L)

1 ∈ B
)

∀A ⊂ rLN, B ⊂ rLH. (2.64)

Therefore, by Lemma 2.7, there exists an i.i.d. sequence of random variables

(T̃ (L)
k , Z̃

(L)
k ,∆(L)

k )k∈N (2.65)

on rLN × rLH × {0, 1}, where (T̃ (L)
k , Z̃

(L)
k ) is distributed according to µ(L) and ∆(L)

k is

Bernoulli distributed with parameter Φ(L), and also a sequence of random variables

(Ẑ(L)
k , Ẑ

(L)
k )k∈N, (2.66)
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where ∆(L)
k is independent of (Ẑ(L)

k , Ẑ
(L)
k ) and of

G̃k = σ
{
(T̃ (L)

l , Z̃
(L)
l ,∆(L)

l ) : 1 ≤ l < k
}
, (2.67)

such that

(T (L)
k , Z

(L)
k ) = (1−∆(L)

k ) (T̃ (L)
k , Z̃

(L)
k ) + ∆(L)

k (Ẑ(L)
k , Ẑ

(L)
k ). (2.68)

Let

zL = Ēµ,(0,0)(Z
(L)
1 ), (2.69)

which is finite by Lemma 2.5 because |Z(L)
1 | ≤ T

(L)
1 .

Lemma 2.8. There exists a sequence of numbers (δL)L∈N0, satisfying limL→∞ δL = 0,

such that

lim sup
n→∞

∣∣∣∣∣ 1n
n∑

k=1

Z
(L)
k − zL

∣∣∣∣∣ < δL P̄µ,(0,0) − a.s. (2.70)

Proof. With the help of (2.68) we can write

1
n

n∑
k=1

Z
(L)
k =

1
n

n∑
k=1

Z̃
(L)
k − 1

n

n∑
k=1

∆(L)
k Z̃

(L)
k +

1
n

n∑
k=1

∆(L)
k Ẑ

(L)
k . (2.71)

By independence, the first term in the r.h.s. of (2.71) converges P̄µ,(0,0)-a.s. to zL as

L → ∞. Hölder’s inequality applied to the second term gives, for α, α′ > 1 with

α−1 + α′−1 = 1,

∣∣∣∣∣ 1n
n∑

k=1

∆(L)
k Z̃

(L)
k

∣∣∣∣∣ ≤
(

1
n

n∑
k=1

∣∣∣∆(L)
k

∣∣∣α′
) 1

α′
(

1
n

n∑
k=1

∣∣∣Z̃(L)
k

∣∣∣α) 1
α

. (2.72)

Hence, by Lemma 2.5 and the inequality |Z̃(L)
k | ≤ T̃

(L)
k (compare (2.48) and (2.62)), we

have

lim sup
n→∞

∣∣∣∣∣ 1n
n∑

k=1

∆(L)
k Z̃

(L)
k

∣∣∣∣∣ ≤ Φ(L)
1
α′ M(α)

1
α P̄µ,(0,0) − a.s. (2.73)

It remains to analyze the third term in the r.h.s. of (2.71). Since |∆(L)
k Ẑ

(L)
k | ≤ Z

(L)
k , it

follows from Lemma 2.5 that

M(α) ≥ Ēµ,(0,0)

(
|Z(L)

k |
α
)

≥ Ēµ,(0,0)

(
|∆(L)

k Ẑ
(L)
k |

α | G̃k

)
= Φ(L) Ēµ,(0,0)

(
|Ẑ(L)

k |
α | G̃k

)
a.s.

(2.74)
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Next, put Ẑ∗(L)
k = Ēµ,(0,0)(Ẑ

(L)
k | G̃k) and note that

Mn =
1
n

n∑
k=1

∆(L)
k

(
Ẑ

(L)
k − Ẑ∗(L)

k

)
(2.75)

is a mean-zero martingale w.r.t. the filtration G̃ = (G̃k)k∈N. By the Burkholder-Gundy

maximal inequality (Williams [96], (14.18)), it follows that, for β = α ∧ 2,

Ēµ,(0,0)

(∣∣∣ sup
n∈N

Mn

∣∣∣β) ≤ C(β) Ēµ,(0,0)

(∑
k∈N

[∆(L)
k (Ẑ(L)

k − Ẑ∗(L)
k )]2

k2

)β/2

≤ C(β)
∑
k∈N

Ēµ,(0,0)

(
|∆(L)

k (Ẑ(L)
k − Ẑ∗(L)

k )|β

kβ

)
≤ C ′(β),

(2.76)

for some constants C(β), C ′(β) <∞. Hence Mn a.s. converges to an integrable random

variable as n → ∞, and by Kronecker’s lemma limn→∞Mn = 0 a.s. Moreover, if

Φ(L) > 0, then by Jensen’s inequality and (2.74) we have

|Ẑ∗(L)
k | ≤

[
Ēµ,(0,0)

(∣∣Ẑ(L)
k

∣∣α | G̃k

)] 1
α ≤

(
M(α)
Φ(L)

) 1
α

P̄µ,(0,0) − a.s. (2.77)

Hence ∣∣∣∣∣ 1n
n∑

k=1

∆(L)
k Ẑ

∗(L)
k

∣∣∣∣∣ ≤
(
M(α)
Φ(L)

) 1
α 1
n

n∑
k=1

∆(L)
k . (2.78)

As n→∞, the r.h.s. converges P̄µ,(0,0)-a.s. to M(α)
1
α Φ(L)

1
α′ . Therefore, recalling (2.78)

and choosing δL = 2M(α)
1
α Φ(L)

1
α′ , we get the claim.

Finally, since Z̃(L)
k ≥ rL and

1
n

n∑
k=1

T
(L)
k = tL = Ēµ,(0,0)(T

(L)
1 ) > 0 P̄µ,(0,0) − a.s., (2.79)

Lemma 2.8 yields

lim sup
n→∞

∣∣∣∣∣ 1
n

∑n
k=1 Z

(L)
k

1
n

∑n
k=1 T

(L)
k

− zL
tL

∣∣∣∣∣ < C1 δL P̄µ,(0,0) − a.s. (2.80)

for some constant C1 < ∞ and L large enough. By (2.48) and (2.62), the quotient of

sums in the l.h.s. equals Z
τ
(L)
n
/τ

(L)
n . It therefore follows from a standard interpolation

argument that

lim sup
n→∞

∣∣∣∣Zn

n
− zL
tL

∣∣∣∣ < C2 δL P̄µ,(0,0) − a.s. (2.81)
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for some constant C2 < ∞ and L large enough. This implies the existence of the limit

limL→∞ zL/tL, as well as the fact that limn→∞ Zn/n = u P̄µ,(0,0)-a.s., which in view of

(2.32) is equivalent to the statement in (2.27) with u = (v, 1).

2.2.7 From discrete to continuous time

It remains to show that the LLN derived in Sections 2.2.1–2.2.6 for the discrete-time

random walk defined in (2.21–2.22) can be extended to the continuous-time random

walk defined in (2.6–2.7).

Let χ = (χn)n∈N0 denote the jump times of the continuous-time random walk X =

(Xt)t≥0 (with χ0 = 0). Let Q denote the law of χ. The increments of χ are i.i.d. random

variables, independent of ξ, whose distribution is exponential with mean 1/(α + β).

Define
ξ∗ = (ξ∗n)n∈N0 with ξ∗n = ξχn ,

X∗ = (X∗
n)n∈N0 with X∗

n = Xχn .
(2.82)

Then X∗ is a discrete-time random walk in a discrete-time random environment of

the type considered in Sections 2.2.1–2.2.6, with p = α/(α + β) and q = β/(α + β).

Lemma 2.9 below shows that the cone-mixing property of ξ carries over to ξ∗ under the

joint law Pµ ×Q. Therefore we have (recall (2.9))

lim
n→∞

X∗
n/n = v∗ exists (Pµ,0 ×Q)− a.s. (2.83)

Since limn→∞ χn/n = 1/(α+ β) Q-a.s., it follows that

lim
n→∞

Xχn/χn = (α+ β)v∗ exists (Pµ,0 ×Q)− a.s. (2.84)

A standard interpolation argument now yields (2.13) with v = (α+ β)v∗.

Lemma 2.9. If ξ is cone-mixing with angle θ > arctan(α+ β), then ξ∗ is cone-mixing

with angle 1
4π.

Proof. Fix θ > arctan(α+ β), and put c = c(θ) = cot θ < 1/(α+ β). Recall from (2.10)

that Cθ
t is the cone with angle θ whose tip is at (0, t). For M ∈ N, let Cθ

t,M be the cone

obtained from Cθ
t by extending the tip to a rectangle with base M , i.e.,

Cθ
t,M = Cθ

t ∪ {([−M,M ] ∩ Z)× [t,∞)}. (2.85)

Because ξ is cone-mixing with angle θ, and

Cθ
t,M ⊂ Cθ

t−cM , M ∈ N, (2.86)
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ξ is cone-mixing with angle θ and base M , i.e., (2.11) holds with Cθ
t replaced by Cθ

t,M .

This is true for every M ∈ N.

Define, for t ≥ 0 and M ∈ N,

Fθ
t = σ

{
ξs(x) : (x, s) ∈ Cθ

t

}
,

Fθ
t,M = σ

{
ξs(x) : (x, s) ∈ Cθ

t,M

}
,

(2.87)

and, for n ∈ N,

F∗
n = σ

{
ξ∗m(x) : (x,m) ∈ C

1
4π
n

}
,

Gn = σ
{
χm : m ≥ n

}
,

(2.88)

where C
1
4π
n is the discrete-time cone with tip (0, n) and angle 1

4π.

Fix δ > 0. Then there exists an M = M(δ) ∈ N such that Q(D[M ]) ≥ 1 − δ with

D[M ] = {χn/n ≥ c ∀n ≥M}. For n ∈ N, define

Dn =
{
χn/n ≥ c

}
∩ σnD[M ], (2.89)

where σ is the left-shift acting on χ. Since c < 1/(α+ β), we have P (χn/n ≥ c) ≥ 1− δ
for n ≥ N = N(δ), and hence P (Dn) ≥ (1 − δ)2 ≥ 1 − 2δ for n ≥ N = N(δ). Next,

observe that

B ∈ F∗
n =⇒ B ∩Dn ∈ Fθ

cn,M ⊗ Gn (2.90)

(the r.h.s. is the product sigma-algebra). Indeed, on the event Dn we have χm ≥ cm for

m ≥ n+M , which implies that, for m ≥M ,

(x,m) ∈ C
1
4π
n =⇒ |x|+m ≥ n =⇒ c|x|+ χn ≥ cn =⇒ (x, χm) ∈ Cθ

cn,M . (2.91)

Now put P̄µ = Pµ ⊗Q and, for A ∈ F0 with Pµ(A) > 0 and B ∈ F∗
n estimate

|P̄µ(B | A)− P̄µ(B)| ≤ I + II + III (2.92)

with
I = |P̄µ(B | A)− P̄µ(B ∩Dn | A)|,

II = |P̄µ(B ∩Dn | A)− P̄µ(B ∩Dn)|,

III = |P̄µ(B ∩Dn)− P̄µ(B)|.

(2.93)
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Since Dn is independent of A,B and P (Dn) ≥ 1−2δ, it follows that I ≤ 2δ and III ≤ 2δ

uniformly in A and B. To bound II, we use (2.90) to estimate

II ≤ sup
A∈F0, B′∈Fθ

cn,M
⊗Gn

Pµ(A)>0

|P̄µ(B′ | A)− P̄µ(B′)|. (2.94)

But the r.h.s. is bounded from above by

sup
A∈F0, B′′∈Fθ

cn,M
Pµ(A)>0

|Pµ(B′′ | A)− Pµ(B′′)| (2.95)

because, for every B′′ ∈ Fθ
cn,M and C ∈ Gn,

|P̄µ(B′′×C | A)−P̄µ(B′′×C)| = |[Pµ(B′′ | A)−Pµ(B′′)]Q(C)| ≤ |Pµ(B′′ | A)−Pµ(B′′)|,
(2.96)

where we use that C is independent of A,B′′.

Finally, because ξ is cone-mixing with angle θ and base M , (2.95) tends to zero as

n→∞, and so by combining (2.92–2.95) we get

lim sup
n→∞

sup
A∈F0, B∈F∗

n
Pµ(A)>0

|P̄µ(B | A)− P̄µ(B)| ≤ 4δ. (2.97)

Now let δ ↓ 0 to obtain that ξ∗ is cone mixing with angle 1
4π.

2.2.8 Remarks on the cone-mixing assumption

By using the cone-mixing assumption and the auxiliary process Z introduced in Sec-

tion 2.2.2, we could have followed a shorter approach to derive the strong LLN in The-

orem 2.2, avoiding the technicalities of Sections 2.2.5 and 2.2.6. Indeed, it is possible to

deduce that the process of the environment as seen from the walk admits a mixing equi-

librium measure µe. Consequently, a weak law of large numbers, L2 convergence, and

an almost sure convergence with respect to µe can be inferred. If we could subsequently

show that the equilibrium measure µ is absolutely continuous with respect to µe (which

is not trivial in the present generality), then Theorem 2.2 would follow.

As pointed out in Section 2.1.4, cone-mixing is one of the weakest assumptions under

which we may expect to get the strong LLN, since no rate of mixing is imposed in (2.11).

If we strengthen (2.11) to an exponential decay of the function in (2.37), then it seems

possible to adapt the proof in [36] to derive an annealed CLT in the present context.
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2.3 Series expansion for M < ε

Throughout this section we assume that the dynamic random environment ξ falls in

the regime for which M < ε (recall (2.14)). In Section 2.3.1 we define the environment

process, i.e., the environment as seen relative to the position of the random walk. In

Section 2.3.2 we prove that this environment process has a unique ergodic equilibrium

µe, and we derive a series expansion for µe in powers of α − β that converges when

α− β < 1
2(ε−M). In Section 2.3.3 we use the latter to derive a series expansion for the

global speed v of the random walk.

2.3.1 Definition of the environment process

Let X = (Xt)t≥0 be the random walk defined in (2.6–2.7). For x ∈ Z, let τx denote the

shift of space over x.

Definition 2.10. The environment process is the Markov process ζ = (ζt)t≥0 with state

space Ω given by

ζt = τXtξt, t ≥ 0, (2.98)

where

(τXtξt)(x) = ξt(x+Xt), x ∈ Z, t ≥ 0. (2.99)

Equivalently, if ξ has generator LIPS, then ζ has generator L given by

(Lf)(η) = c+(η)
[
f(τ1η)−f(η)

]
+c−(η)

[
f(τ−1η)−f(η)

]
+(LIPSf)(η), η ∈ Ω, (2.100)

where f is an arbitrary cylinder function on Ω and

c+(η) = αη(0) + β [1− η(0)],

c−(η) = β η(0) + α [1− η(0)].
(2.101)

Let S = (S(t))t≥0 be the semigroup associated with the generator L. Suppose that we

manage to prove that ζ is ergodic, i.e., there exists a unique probability measure µe on

Ω such that, for any cylinder function f on Ω,

lim
t→∞

(S(t)f)(η) = 〈f〉µe ∀ η ∈ Ω, (2.102)

where 〈·〉µe denotes expectation w.r.t. µe. Then, picking f = φ0 with φ0(η) = η(0),

η ∈ Ω, we have

lim
t→∞

(S(t)φ0)(η) = 〈φ0〉µe = ρ̃ ∀ η ∈ Ω (2.103)
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for some ρ̃ ∈ [0, 1], which represents the limiting probability that X is on an occupied

site given that ξ0 = ζ0 = η (note that (S(t)φ0)(η) = Eη(ζt(0)) = Eη(ξt(Xt))).

Next, let N+
t and N−

t be the number of shifts to the right, respectively, left up to time

t in the environment process. Then Xt = N+
t − N

−
t . Since M j

t = N j
t −

∫ t
0 c

j(ηs) ds,

j ∈ {+,−}, are martingales with stationary and ergodic increments, we have

Xt = Mt + (α− β)
∫ t

0

(
2ηs(0)− 1

)
ds (2.104)

with Mt = M+
t −M

−
t a martingale with stationary and ergodic increments. It follows

from (2.103–2.104) that

lim
t→∞

Xt/t = (2ρ̃− 1)(α− β) µ− a.s. (2.105)

In Section 2.3.2 we prove the existence of µe, and show that it can be expanded in powers

of α − β when α − β < 1
2(ε −M). In Section 2.3.3 we use this expansion to obtain an

expansion of ρ̃.

2.3.2 Unique ergodic equilibrium measure for the environment process

In Section 2.3.2.1 we prove four lemmas controlling the evolution of ζ. In Section 2.3.2.2

we use these lemmas to show that ζ has a unique ergodic equilibrium measure µe that

can be expanded in powers of α− β, provided α− β < 1
2(ε−M).

We need some notation. Let ‖ · ‖∞ be the sup-norm on C(Ω). Let 9 · 9 be the triple

norm on Ω defined as follows. For x ∈ Z and a cylinder function f on Ω, let

∆f (x) = sup
η∈Ω
|f(ηx)− f(η)| (2.106)

be the maximum variation of f at x, where ηx is the configuration obtained from η by

flipping the state at site x, and put

9f9 =
∑
x∈Z

∆f (x). (2.107)

It is easy to check that, for arbitrary cylinder functions f and g on Ω,

9fg9 ≤ ‖f‖∞ 9g9 + ‖g‖∞ 9f9. (2.108)
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2.3.2.1 Decomposition of the generator of the environment process

Lemma 2.11. Assume (2.3) and suppose that M < ε. Write the generator of the

environment process ζ defined in (2.100) as

L = L0 + L∗ = (LSRW + LIPS) + L∗, (2.109)

where
(LSRWf)(η) = 1

2(α+ β)
[
f(τ1η) + f(τ−1η)− 2f(η)

]
,

(L∗f)(η) = 1
2(α− β)

[
f(τ1η)− f(τ−1η)

] (
2η(0)− 1

)
.

(2.110)

Then L0 is the generator of a Markov process that still has µ as an equilibrium, and that

satisfies 9S0(t)f9 ≤ e−ct 9f9 (2.111)

and

‖S0(t)f − 〈f〉µ‖∞ ≤ C e−ct 9f9, (2.112)

where S0 = (S0(t))t≥0 is the semigroup associated with the generator L0, c = ε−M , and

C <∞ is a positive constant.

Proof. Note that LSRW and LIPS commute. Therefore, for an arbitrary cylinder function

f on Ω, we have

9S0(t)f9 = 9etLSRW
(
etLIPSf

)9 ≤ 9etLIPSf9 ≤ e−ct 9f9, (2.113)

where the first inequality uses that etLSRW is a contraction semigroup, and the second

inequality follows from the fact that ξ falls in the regime M < ε (see Liggett [63],

Theorem I.3.9). The inequality in (2.112) follows by a similar argument. Indeed,

‖S0(t)f − 〈f〉µ‖∞ = ‖etLSRW
(
etLIPSf

)
− 〈f〉µ‖∞ ≤ ‖etLIPSf − 〈f〉µ‖∞ ≤ C e−ct 9f9,

(2.114)

where the last inequality again uses that ξ falls in the regime M < ε (see Liggett [63],

Theorem I.4.1). The fact that µ is an equilibrium measure is trivial, since LSRW only

acts on η by shifting it.

Note that LSRW is the generator of simple random walk on Z jumping at rate α+β. We

view L0 as the generator of an unperturbed Markov process and L∗ as a perturbation

of L0. The following lemma gives us control of the latter.
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Lemma 2.12. For any cylinder function f on Ω,

‖L∗ f‖∞ ≤ (α− β)‖f‖∞ (2.115)

and 9L∗ f9 ≤ 2(α− β) 9f9 if 〈f〉µ = 0. (2.116)

Proof. To prove (2.115), estimate

‖L∗ f‖∞ = 1
2(α− β) ‖

[
f(τ1 ·)− f(τ−1 ·)

] (
2φ0(·)− 1

)
‖∞

≤ 1
2(α− β) ‖f(τ1 ·) + f(τ−1 ·)‖∞ ≤ (α− β) ‖f‖∞.

(2.117)

To prove (2.116), recall (2.110) and estimate

9L∗f9 = 1
2(α− β) 9[f(τ1 ·)− f(τ−1 ·)

] (
2φ0(·)− 1

)9
≤ 1

2(α− β)
(9f(τ1·)(2φ0(·)− 1)9 + 9f(τ−1·)(2φ0(·)− 1)9)

≤ (α− β)
(
‖f‖∞ 9 (2φ0 − 1)9 + 9f9 ‖(2φ0 − 1)‖∞

)
= (α− β)

(
‖f‖∞ + 9f9) ≤ 2(α− β)9f9,

(2.118)

where the second inequality uses (2.108) and the third inequality follows from the fact

that ‖f‖∞ ≤ 9f9 for any f such that 〈f〉µ = 0.

We are now ready to expand the semigroup S of ζ. Henceforth abbreviate

c = ε−M. (2.119)

Lemma 2.13. Let S0 = (S0(t))t≥0 be the semigroup associated with the generator L0

defined in (2.110). Then, for any t ≥ 0 and any cylinder function f on Ω,

S(t)f =
∑
n∈N

gn(t, f), (2.120)

where

g1(t, f) = S0(t)f and gn+1(t, f) =
∫ t

0
S0(t− s)L∗ gn(s, f) ds, n ∈ N. (2.121)

Moreover, for all n ∈ N,

‖gn(t, f)‖∞ ≤ 9f9 (2(α− β)
c

)n−1

(2.122)
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and 9gn(t, f)9 ≤ e−ct [2(α− β)t]n−1

(n− 1)!
9f9, (2.123)

where 0! = 1. In particular, for all t > 0 and α− β < 1
2c the series in (2.120) converges

uniformly in η.

Proof. Since L = L0 + L∗, Dyson’s formula gives

etL f = etL0f +
∫ t

0
e(t−s)L0 L∗ esL f ds, (2.124)

which, in terms of semigroups, reads

S(t)f = S0(t)f +
∫ t

0
S0(t− s)L∗ S(s)f ds. (2.125)

The expansion in (2.120–2.121) follows from (2.125) by induction on n.

We next prove (2.123) by induction on n. For n = 1 the claim is immediate. Indeed, by

Lemma 2.11 we have the exponential bound

9g1(t, f)9 = 9S0(t)f9 ≤ e−ct 9f9. (2.126)

Suppose that the statement in (2.123) is true up to n. Then

9gn+1(t, f)9 = 9∫ t

0
S0(t− s)L∗ gn(s, f) ds9

≤
∫ t

0
9S0(t− s)L∗ gn(s, f)9 ds

≤
∫ t

0
e−c(t−s) 9L∗ gn(s, f)9 ds

=
∫ t

0
e−c(t−s) 9L∗

(
gn(s, f)− 〈gn(s, f)〉µ

)9 ds

≤ 2(α− β)
∫ t

0
e−c(t−s) 9gn(s, f)9 ds,

≤ 9f9 e−ct [2(α− β)]n
∫ t

0

sn−1

(n− 1)!
ds

= 9f9 e−ct [2(α− β)t]n

n!
,

(2.127)

where the third inequality uses (2.116), and the fourth inequality relies on the induction

hypothesis.
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Using (2.123), we can now prove (2.122). Estimate

‖gn+1(t, f)‖∞ =
∥∥∥∥∫ t

0
S0(t− s)L∗ gn(s, f)ds

∥∥∥∥
∞

≤
∫ t

0
‖L∗ gn(s, f)‖∞ ds

=
∫ t

0

∥∥L∗
(
gn(s, f)− 〈gn(s, f)〉µ

)∥∥
∞ ds

≤ (α− β)
∫ t

0

∥∥gn(s, f)− 〈gn(s, f)〉µ
∥∥
∞ ds

≤ (α− β)
∫ t

0
9gn(s, f)9 ds

≤ (α− β)9f9∫ t

0
e−cs [2(α− β)s]n−1

(n− 1)!
ds

≤ 9f9(2(α− β)
c

)n

,

(2.128)

where the first inequality uses that S0(t) is a contraction semigroup, while the second

and fourth inequality rely on (2.115) and (2.123).

We next show that the functions in (2.120) are uniformly close to their average value.

Lemma 2.14. Let

hn(t, f) = gn(t, f)− 〈gn(t, f)〉µ, t ≥ 0, n ∈ N. (2.129)

Then

‖hn(t, f)‖∞ ≤ C e−ct [2(α− β)t]n−1

(n− 1)!
9f9, (2.130)

for some C <∞.

Proof. Note that 9hn(t, f)9 = 9gn(t, f)9 for t ≥ 0 and n ∈ N, and estimate

‖hn+1(t, f)‖∞ =
∥∥∥∥∫ t

0

(
S0(t− s)L∗ gn(s, f)− 〈L∗ gn(s, f)〉µ

)
ds
∥∥∥∥
∞

≤ C
∫ t

0
e−c(t−s) 9L∗ gn(s, f)9 ds

= C

∫ t

0
e−c(t−s) 9L∗ hn(s, f)9 ds

≤ C 2(α− β)
∫ t

0
e−c(t−s) 9hn(s, f)9 ds

≤ C 9f9 e−ct [2(α− β)]n
∫ t

0

sn−1

(n− 1)!
ds

= C 9f9 e−ct [2(α− β)t]n

n!
,

(2.131)
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where the first inequality uses (2.112), while the second and third inequality rely on

(2.116) and (2.123).

2.3.2.2 Expansion of the equilibrium measure of the environment process

We are finally ready to state the main result of this section.

Theorem 2.15. For α − β < 1
2c, the environment process ζ has a unique invariant

measure µe. In particular, for any cylinder function f on Ω,

〈f〉µe = lim
t→∞
〈S(t)f〉µ =

∑
n∈N

lim
t→∞
〈gn(t, f)〉µ. (2.132)

Proof. By Lemma 2.14, we have

∥∥∥S(t)f − 〈S(t)f〉µ
∥∥∥
∞

=

∥∥∥∥∥∑
n∈N

gn(t, f)− 〈
∑
n∈N

gn(t, f)〉µ

∥∥∥∥∥
∞

=

∥∥∥∥∥∑
n∈N

hn(t, f)

∥∥∥∥∥
∞

≤
∑
n∈N
‖hn(t, f)‖∞ ≤ C e−ct 9f9∑

n∈N

[2(α− β)t]n

n!

= C9f9 e−t[c−2(α−β)].

(2.133)

Since α−β < 1
2c, we see that the r.h.s. of (2.133) tends to zero as t→∞. Consequently,

the l.h.s. tends to zero uniformly in η, and this is sufficient to conclude that the set I of

equilibrium measures of the environment process is a singleton, i.e., I = {µe}. Indeed,

suppose that there are two equilibrium measures ν, ν ′ ∈ I. Then

|〈f〉ν − 〈f〉ν′ | = |〈S(t)f〉ν − 〈S(t)f〉ν′ |

≤ |〈S(t)f〉ν − 〈S(t)f〉µ|+ |〈S(t)f〉ν′ − 〈S(t)f〉µ|

= |〈
[
S(t)f − 〈S(t)f〉µ]〉ν |+ |〈

[
S(t)f − 〈S(t)f〉µ]〉ν′ |

≤ 2 ‖S(t)f − 〈S(t)f〉µ‖∞ .

(2.134)

Since the l.h.s. of (2.134) does not depend on t, and the r.h.s. tends to zero as t→∞, we

have ν = ν ′ = µe. Next, µe is uniquely ergodic, meaning that the environment process

converges to µe as t → ∞ no matter what its starting distribution is. Indeed, for any

µ′,

|〈S(t)f〉µ′ − 〈S(t)f〉µ| = |〈
[
S(t)f − 〈S(t)f〉µ]〉µ′ | ≤ ‖S(t)f − 〈S(t)f〉µ‖∞ , (2.135)
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and therefore

〈f〉µe = lim
t→∞

S(t)f = lim
t→∞
〈S(t)f〉µ = lim

t→∞

〈∑
n∈N

gn(t, f)

〉
µ

= lim
t→∞

∑
n∈N
〈gn(t, f)〉µ =

∑
n∈N

lim
t→∞
〈gn(t, f)〉µ,

(2.136)

where the last equality is justified by the bound in (2.122) in combination with the

dominated convergence theorem.

We close this section by giving a more transparent description of µe, more suitable for

explicit computation.

Theorem 2.16. For α− β < 1
2c,

〈f〉µe =
∑
n∈N
〈Ψn〉µ (2.137)

with

Ψ1 = f and Ψn+1 = L∗L
−1
0 (Ψn − 〈Ψn〉µ), n ∈ N, (2.138)

where L−1
0 =

∫∞
0 S0(t) dt (whose domain is the set of all f ∈ C(Ω) with 〈f〉µ = 0).

Proof. By (2.136), the claim is equivalent to showing that for all n ≥ 1

lim
t→∞
〈gn(t, f)〉µ = 〈Ψn〉µ. (2.139)

First consider the case n = 2. Then

lim
t→∞
〈g2(t, f)〉µ = lim

t→∞

〈∫ t

0
ds S0(t− s)L∗ g1(s, f)

〉
µ

= lim
t→∞

〈∫ t

0
ds L∗ g1(s, f)

〉
µ

= lim
t→∞

〈∫ t

0
ds L∗S0(s)f

〉
µ

= lim
t→∞

〈∫ t

0
ds L∗

[
S0(s)(f − 〈f〉µ)

]〉
µ

=
〈

lim
t→∞

L∗

∫ t

0
ds S0(s)(f − 〈f〉µ)

〉
µ

= 〈L∗L
−1
0 (f − 〈f〉µ)〉µ,

(2.140)

where the second equality uses that µ is invariant w.r.t. S0, while the fifth equality uses

the linearity and continuity of L∗ in combination with the bound in (2.122).
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For general n, the argument runs as follows. First write

〈gn(t, f)〉µ

=
〈∫ t

0
ds S0(t− t1)L∗ gn−1(t1, f)

〉
µ

=
〈∫ t

0
dt1 L∗ gn−1(t1, f)

〉
µ

=
〈∫ t

0
dt1
∫ t1

0
dt2 · · ·

∫ tn−1

0
dtn

[
L∗S0(t1 − t2) · · ·L∗S0(tn−1 − tn)L∗S0(tn)

]
f

〉
µ

=
〈∫ t

0
dtn

∫ t−tn

0
dtn−1 · · ·

∫ t−t2

0
dt1
[
L∗S0(t1)L∗S0(t2) · · ·L∗S0(tn−1)L∗S0(tn)

]
f

〉
µ

.

(2.141)

Next let t→∞ to obtain

lim
t→∞
〈gn(t, f)〉µ

=
〈∫ ∞

0
dtn

∫ ∞

0
dtn−1 · · ·

∫ ∞

0
dt1
[
L∗S0(t1)L∗S0(t2) · · ·L∗S0(tn−1)L∗S0(tn)

]
f

〉
µ

=
〈
L∗

∫ ∞

0
dt1 S0(t1)L∗

∫ ∞

0
dt2 S0(t2) · · ·L∗

∫ ∞

0
dtn S0(tn) (f − 〈f〉µ)

〉
µ

=
〈
L∗

∫ ∞

0
dt1 S0(t1)L∗

∫ ∞

0
dt2 S0(t2) · · ·L∗L

−1
0 (f − 〈f〉µ)

〉
µ

=
〈
L∗

∫ ∞

0
dt1 S0(t1)L∗

∫ ∞

0
dt2 S0(t2) · · ·L∗

∫ ∞

0
dtn−1 S0(tn−1)Ψ2

〉
µ

,

(2.142)

where we insert L∗L
−1
0 (f − 〈f〉µ) = Ψ2. Iteration shows that the latter expression is

equal to〈
L∗

∫ ∞

0
dt1 S0(t1)Ψn−1

〉
µ

=
〈
L∗

∫ ∞

0
dt1 S0(t1)(Ψn−1 − 〈Ψn−1〉µ)

〉
µ

=
〈
L∗L

−1
0 (Ψn−1 − 〈Ψn−1〉µ)

〉
µ

= 〈Ψn〉µ.
(2.143)

2.3.3 Expansion of the global speed

As we argued in (2.105), the global speed of X is given by

v = (2ρ̃− 1)(α− β) (2.144)

with ρ̃ = 〈φ0〉µe . By using Theorem 2.16, we can now expand ρ̃.
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First, if 〈φ0〉µ = ρ is the particle density, then

ρ̃ = 〈φ0〉µe = ρ+
∞∑

n=2

〈Ψn〉µ, (2.145)

where Ψn is constructed recursively via (2.138) with f = φ0. We have

〈Ψn〉µ = dn (α− β)n−1, n ∈ N, (2.146)

where dn = dn(α + β;Pµ), and the factor (α − β)n−1 comes from the fact that the

operator L∗ is applied n − 1 times to compute Ψn, as is seen from (2.138). Recall

that, in (2.110), LSRW caries the prefactor α + β, while L∗ carries the prefactor α − β.

Combining (2.144–2.145), we have

v =
∑
n∈N

cn (α− β)n, (2.147)

with c1 = 2ρ− 1 and cn = 2dn, n ∈ N\{1}.

For n = 2, 3 we have

c2 = 2
〈
φ0L

−1
0

(
φ1 − φ−1

)〉
µ

c3 = 1
2

〈
ψ0L

−1
0

[
ψ−1L

−1
0 φ̄−2 − ψ1L

−1
0 φ̄0 − ψ−1L

−1
0 φ̄0 + ψ1L

−1
0 φ̄2

]〉
µ
,

(2.148)

where φi(η) = η(i), η ∈ Ω, φ̄i = φi − 〈φi〉µ and ψi = 2φi − 1. It is possible to compute

c2 and c3 for appropriate choices of ξ.

If the law of ξ is invariant under reflection w.r.t. the origin, then ξ has the same distri-

bution as ξ′ defined by ξ′(x) = ξ(−x), x ∈ Z. In that case c2 = 0, and consequently

v = (2ρ − 1)(α − β) + O((α − β)3). For examples of interacting particle systems with

M < ε, see Liggett [63], Section I.4. Some of these examples have the reflection symme-

try property.

An alternative formula for c2 is (recall (2.110))

c2 = 2
∫ ∞

0
dt
(
ESRW,1[K(Yt, t)]− ESRW,−1[K(Yt, t)]

)
, (2.149)

where

K(i, t) = EP µ [ξ0(0)ξt(i)] = 〈φ0 (SIPS(t)φi)〉µ, i ∈ Z, t ≥ 0, (2.150)

is the space-time correlation function of the interacting particle system (with generator

LIPS), and ESRW,i is the expectation over simple random walk Y = (Yt)t≥0 jumping at
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rate α+ β (with generator LSRW) starting from i. If µ is a reversible equilibrium, then

(recall (2.3))

K(i, t) = 〈φ0 (SIPS(t)φi)〉µ = 〈(SIPS(t)φ0)φi〉µ = 〈(SIPS(t)φ−i)φ0〉µ = K(−i, t),
(2.151)

implying that c2 = 0.

In Section 2.5 we compute c3 for the independent spin-flip dynamics, for which c2 = 0.

2.4 Examples of cone-mixing

2.4.1 Spin-flip systems in the regime M < ε

Let ξ be a spin-flip system for which M < ε. We recall that in a spin-flip system only

one coordinate changes in a single transition. The rate to flip the spin at site x ∈ Z in

configuration η ∈ Ω is c(x, η). As shown in Steif [85] and in Maes and Shlosman [65],

two copies ξ, ξ′ of the spin-flip system starting from configurations η, η′ can be coupled

such that, uniformly in t and η, η′,

P̂η,η′
(
∃ s ≥ t : ξs(x) 6= ξ′s(x)

)
≤

∑
y∈Z:

η(y) 6=η′(y)

e−εt
(
eΓt
)
(y, x) ≤ e−(ε−M)t, (2.152)

where P̂η,η′ is the Vasershtein coupling (or basic coupling), and Γ is the matrix Γ =

(γ(u, v))u,v∈Z with elements

γ(u, v) = sup
η∈Ω
|c(u, η)− c(u, ηv)|. (2.153)

Recall (2.15) to see that Γ is a bounded operator on `1(Z) with norm M (see also

Liggett [63], Section I.3).

Define

ρ(t) = sup
η,η′∈Ω

P̂η,η′
(
∃ s ≥ t : ξs(0) 6= ξ′s(0)

)
, t ≥ 0. (2.154)
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Recall Definition 2.1, fix θ ∈ (0, 1
2π) and put c = c(θ) = cot θ. For B ∈ Fθ

t , estimate

|Pη(B)− Pη′(B)| ≤ P̂η,η′
(
∃x ∈ Z ∃ s ≥ t+ c|x| : ξs(x) 6= ξ′s(x)

)
≤
∑
x∈Z

P̂η,η′
(
∃ s ≥ t+ c|x| : ξs(x) 6= ξ′s(x)

)
≤
∑
x∈Z

ρ(t+ c|x|)

≤ ρ(t) + 2
∫ ∞

0
ρ(t+ cu) du

= ρ(t) +
2
c

∫ ∞

0
ρ(t+ v) dv.

(2.155)

Since this estimate is uniform in B and η, η′, it follows that for the cone mixing property

to hold it suffices that ∫ ∞

0
ρ(v) dv <∞. (2.156)

It follows from (2.152) that ρ(t) ≤ e−(ε−M)t, which indeed is integrable.

Note that if the supremum in (2.154) is attained at the same pair of starting configura-

tions η, η′ for all t ≥ 0, then (2.156) amounts to the condition that the average coupling

time at the origin for this pair is finite.

2.4.2 Attractive spin-flip dynamics

An attractive spin-flip system ξ has rates c(x, η) satisfying

c(x, η) ≤ c(x, η′) if η(x) = η′(x) = 0,

c(x, η) ≥ c(x, η′) if η(x) = η′(x) = 1,
(2.157)

whenever η ≤ η′ (see Liggett [63], Chapter III). If c(x, η) = c(x + y, τyη) for all y ∈ Z,

then attractivity implies that, for any pair of configurations η, η′,

P̂η,η′
(
∃ s ≥ t : ξs(x) 6= ξ′s(x)

)
≤ P̂[0],[1]

(
∃ s ≥ t : ξs(0) 6= ξ′s(0)

)
, (2.158)

where [0] and [1] are the configurations with all 0’s and all 1’s, respectively. Proceeding

as in (2.155), we find that for the cone-mixing property to hold it suffices that∫ ∞

0
ρ∗(v) dv <∞, ρ∗(t) = P̂[0],[1]

(
∃ s ≥ t : ξs(0) 6= ξ′s(0)

)
. (2.159)

Examples of attractive spin-flip systems are the (ferromagnetic) Stochastic Ising Model,

the Contact Process, the Voter Model, and the Majority Vote Process (see Liggett [63],
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Chapter III). For the one-dimensional Stochastic Ising Model, t 7→ ρ∗(t) decays exponen-

tially fast at any temperature (see Holley [53]). The same is true for the one-dimensional

Majority Vote Process (Liggett [63], Example III.2.12). Hence both are cone-mixing.

The one-dimensional Voter Model has equilibria pδ[0]+(1−p)δ[1], p ∈ [0, 1], and therefore

is not interesting for us. The Contact Process has equilibria pδ[0] + (1 − p)ν, p ∈ [0, 1],

but ν is not cone-mixing.

In view of the remark made at the end of Section 2.1.4, we note the following. For the

Stochastic Ising Model in dimensions d ≥ 2 exponentially fast decay occurs only at high

enough temperature (Martinelli [66], Theorem 4.1). The Voter Model in dimensions

d ≥ 3 has non-trivial ergodic equilibria, but none of these is cone-mixing. The same is

true for the Contact Process in dimensions d ≥ 2.

2.4.3 Space-time Gibbs measures

We next give an example of a discrete-time dynamic random environment that is cone-

mixing but not Markovian. Accordingly, in (2.12) we must replace F0 by F−N0 =

{ξt(x) : x ∈ Z, t ∈ (−N0)}. Let σ = {σ(x, y) : (x, y) ∈ Z2} be a two-dimensional

Gibbsian random field in the Dobrushin regime (see Georgii [47], Section 8.2). We can

define a discrete-time dynamic random environment ξ on Ω by putting

ξt(x) = σ(x, t) (x, t) ∈ Z2. (2.160)

The cone-mixing condition for ξ follows from the mixing condition of σ in the Dobrushin

regime. In particular, the decay of the mixing function Φ in (2.37) is like the decay of

the Dobrushin matrix, which can be polynomial.

2.5 Independent spin-flips

Let ξ be the Markov process with generator LISF given by

(LISFf)(η) =
∑
x∈Z

c(x, η)
[
f(ηx)− f(η)

]
, η ∈ Ω, (2.161)

where

c(x, η) = γ[1− η(x)] + δη(x), (2.162)

i.e., 0’s flip to 1’s at rate γ and 1’s flip to 0’s at rate δ, independently of each other.

Such a ξ is an example of a dynamics with M < ε, for which Theorem 2.16 holds. From

the expansion of the global speed in (2.147) we see that c2 = 0, because the dynamics is
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invariant under reflection in the origin. We explain the main ingredients that are needed

to compute c3 in (2.18).

The equilibrium measure of ξ is the Bernoulli product measure νρ with parameter ρ =

γ/(γ + δ). We therefore see from (2.148) that we must compute expressions of the form

I(j, i) =
〈
(2η(0)− 1)L−1

0

[
(2η(j)− 1)L−1

0 (η(i)− ρ)
]〉

νρ
, (2.163)

where η is a typical configuration of the environment process ζ = (ζt)t≥0 = (τXtξt)t≥0

(recall Definition 2.10), and

(j, i) ∈ A = {(−1,−2), (−1, 0), (1, 0), (1, 2)}. (2.164)

By Lemma 2.11 we have L0 = LSRW +LISF, with LSRW the generator of simple random

walk on Z jumping at rate U = α+ β. Hence

(S0(t)η)(i) = Eη
R[ηt(i)] =

∑
y∈Z

pUt(0, y)E
τyη
ISF[ηt(i)] =

∑
y∈Z

pUt(0, y)E
η
ISF[ηt(i−y)], (2.165)

where τy is the shift of space over y, and

Eη
ISF[ηt(i)] = η(i) e−V t + ρ(1− e−V t) (2.166)

with V = γ+δ, and pt(0, y) is the transition kernel of simple random walk on Z jumping

at rate 1. Therefore, by (2.165–2.166), we have

L−1
0 (η(i)− ρ) =

∫ ∞

0
S0(t)(η(i)− ρ) dt =

∑
y∈Z

η(i− y)GV (y)− ρ 1
V

(2.167)

with

GV (y) =
∫ ∞

0
e−V t pUt(0, y) dt. (2.168)

With these ingredients we can compute (2.163), ending up with

c3 =
∑

(j,i)∈A

I(j, i) =
4
U
ρ(2ρ− 1)(1− ρ)

[
2U + V

U
GV (0)− 3U + 2V

U
G2V (0)−G2V (1)

]
.

(2.169)

The expression between square brackets can be worked out, because

GV (0) =
∫ ∞

0
e−V t pUt(0, 0) dt =

1
2π

∫ π

−π

dθ
(U + V )− U cos θ

=
1√

(U + V )2 − U2

(2.170)

and

GV (1) =
U + V

U
GV (0)− 1

U
, (2.171)
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where the latter is derived by using that

∂

∂t
pUt(0, 0) = 1

2U
[
pUt(0, 1) + pUt(0,−1)− 2pUt(0, 0)

]
(2.172)

and pUt(0, 1) = pUt(0,−1). This leads to (2.18).



Chapter 3

Annealed central limit theorem

for RW in mixing dynamic RE

3.1 Introduction and main result

In this chapter we continue to investigate the model in Section 2.1.1. We show that under

a certain strong-mixing assumption on the RE ξ, called n-cone-mixing (see Definition

3.1), the RW X satisfies an annealed invariance principle with a Brownian motion as

scaling limit. The proof of this functional CLT relies on a direct adaptation of a technique

used in [36] for static REs. The n-cone-mixing property is a technical assumption directly

connected with the machinery used in the proof. In Section 3.2.4 we will exhibit examples

of dynamic REs satisfying this assumption.

We first need some definitions. Recall (2.20), and let ‖ · ‖ denote the Euclidean norm

on R2. Put ` = (0, 1). For x = (z,m) ∈ H = Z× N0, let

CN (x) =
{
u ∈ R× [0,∞) :

√
2/2‖u− x‖ ≤ (u− x) · ` ≤ N

}
(3.1)

be the cone of angle π/2 with tip in (z,m) truncated at time N +m.

For fixed L ≥ 0, let {CNi(xi) : xi = (zi,mi) ∈ H}ni=1 be a set of n truncated cones such

that, for 1 ≤ i < n,

m1 ≥ L, mi+1 = Ni +mi + L, | zi+1 − zi |≤ Ni. (3.2)

We call these nested-cones. In words, we are considering n space-time truncated cones

separated in time by a distance L such that the (i+ 1)-st cone is contained in the i-th

extended cone.

53
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Figure 3.1: Example of 4 nested-cones.

Definition 3.1. Fix L ≥ 0 and any set of n nested-cones {CNi(xi) : xi = (zi,mi) ∈ H}ni=1.

A dynamic RE ξ on Ω = {0, 1}Z is said to be n-cone-mixing if for any n ∈ N there exists

a function Ψ : R+ → R+, with ∫ ∞

0
Ψ(t)dt <∞, (3.3)

such that

sup
A∈Gn,B∈G<n

η,η′∈Ω

∣∣∣Pη(A | B)− Pη′(A | B)
∣∣∣ ≤ Ψ(nL), (3.4)

where
Gn = σ

{
ξs(z) : (z, s) ∈ CNn(xn)

}
,

G<n = σ

{
ξs(z) : (z, s) ∈

n−1∪
i=1

CNi(xi)

}
.

(3.5)

Note that if a dynamic RE is n-cone-mixing, then the associated path measure Pµ in

(1.23) satisfies the cone-mixing property in Definition 2.1. Indeed, (2.11) follows easily

from (3.4) with n = 1. Therefore, by Theorem 2.2, X satisfies a strong LLN with

asymptotic speed v. We are now ready to state the main result of this chapter.

Theorem 3.2. Assume (2.3) and suppose that ξ is n-cone-mixing. Then there ex-

ists a deterministic σ2 ∈ (0,∞) such that, under the annealed measure Pµ,0, the path

(St(s))s≥0, with

St(s) =
Xts − vts√

t
(3.6)

and taking values in the space of right-continuous functions with left limits, converges

weakly to a Brownian motion with variance σ2 as t→∞.
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The proof of Theorem 3.2 will be given in Section 3.2. In Section 3.3 we give an

alternative proof in the context of the perturbative regime introduced in Section 2.3.

Indeed, in the latter regime, the strong control on the environment process allows for a

much simpler proof than in the general case, and the claim can be easily obtained via a

martingale approximation in the spirit of Kipnis-Varhadan [61].

3.2 Proof of Theorem 3.2

In this section we prove Theorem 3.2 by adapting the proof of the CLT for random

walks in static random environments developed by Comets and Zeitouni [36]. The proof

heavily uses the regeneration scheme introduced in Section 2.2.3 and is based on the

following steps. In Section 3.2.1 we show that the path of the RW Z in (2.29), together

with the evolution of the RE ξ between regeneration times, can be encoded into a

chain with complete connections for which the dependence of the future on the past can

be controlled by the n-cone-mixing condition. Chains with complete connections are

natural extensions of Markov chains when the transitions of the associated stochastic

process depend on its full past. For details we refer the reader to [45, 57]. In Section

3.2.2, using standard results from the theory of such chains, we prove an invariance

principle. In Section 3.2.3, we show how Theorem 3.2 follows from the latter.

3.2.1 A chain with complete connections

We construct a chain with complete connections that carries the necessary information

relative to the evolution of the path of the RW Z in (2.29), together with the states

of the RE ξ inside the truncated cones visited by the path between regeneration times.

Lemma 3.3 below uses the n-cone-mixing property to control the dependence of the

future evolution of the chain on its past. In particular, we will see that the influence of

the past decays as fast as the correlations in the RE.

We start by defining the relevant state space. Recall (3.1) and for N ∈ N let

PN =
{

x = (x(0), x(1), . . . , x(N)) ∈ CN (0)N :
x(0) = 0, x(i+ 1) ∼ x(i), i = 0, 1, . . . , N − 1

}
(3.7)

be the set of possible paths of the process Z within the truncated cone CN (0), where

x(i+ 1) ∼ x(i) stands for |x1(i+ 1)− x1(i)| = 1, x2(i+ 1)− x2(i) = 1. Define

T =
∪

N∈N
{N} × PN × EN , (3.8)
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where EN = {ξt(z) : (z, t) ∈ CN (0)} is the set of possible values of the environment ξ in

the cone CN (0). Let

W =
{
T ∪ {s}

}N (3.9)

be the set of infinite vectors with components either in T or equal to the stopping

symbol s, with the restriction that if wk = s then wi = s for i ≥ k. Note that, for fixed

L ∈ N, the sequence of regeneration times
(
τ

(L)
k

)
k∈N

in (2.35), together with the path

Z, determine an infinite sequence r = (r1, r2, . . . ) ∈ W given by

rk =
(
Sk+1,L,

(
Z

τ
(L)
k +j

)Sk+1,L

j=1
,
{
ξt(z) : (z, t) ∈ CSk+1,L

(
Z

τ
(L)
k

)})
∈ T , k ∈ N,

(3.10)

with

Sk,L = τ
(L)
k − τ (L)

k−1 − L, k ∈ N. (3.11)

Observe that the sequence r = (r1, r2, . . . ) ∈ W encodes the information relative to the

environment and the path of the walker just after time S1,L = τ
(L)
1 − L.

Next, we define a set in which we can gather the information prior to time S1,L, i.e.,

U =
{

u =
(
M,y(1), y(2), . . . , y(M), ξ(u)

)
:

M ∈ N, y(i) ∈ H, y(i+ 1) ∼ y(i), i = 0, 1, . . . ,M − 1

}
(3.12)

with ξ(u) = {ξt : t ≤M}.

Recall the sigma-fields in (2.38). For A ∈ H1, write

A =
∪

(z,n)∈H

Az,n, Az,n = A ∩
{
S1,L = n,ZS1,L

= (z, n)
}
∈ U . (3.13)

Then the law P̄µ,(0,0) induces a probability measure Q on U such that

Q(Az,n) = P̄µ,(0,0)

((
S1,L, Z1, . . . , Zn, {ξt : t ≤ n}

)
∈ Az,n

)
, (z, n) ∈ H. (3.14)

Furthermore, the law P̄µ,(0,0)(· | H1) induces a probability distribution on the sequence

r = (r1, r2, . . . ) ∈ W in (3.10). Indeed, for fixed k ∈ N, note that P̄µ,(0,0)(rk ∈ · | Hk)

defines a measurable function hk(· | wk−1, . . . , w1, u) on U × T k−1 such that

Ēµ,(0,0)[1A1B] = Ēµ,(0,0)[1AP̄µ,(0,0)((r1, . . . , rk) ∈ B | H1)]

=
∫

A
Q(du)

∫
T
· · ·
∫
T
1B

k∏
i=1

hi(dwi | wi−1, . . . , w1, u),
(3.15)
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with B ⊂ T k.

In the following lemma we provide an estimate to control the dependence on the past in

the sequence r whose law is governed by the random kernels (hk)k∈N. In particular, we

show that the influence of the past decays as fast as the correlations in the environment

controlled by the Ψ-function in Definition 3.1.

Lemma 3.3. Let j ≥ i ≥ k, w(i) = (wi, . . . , w1) and w′(j) = (w′
j , . . . , w

′
1) be such that

wi−l = w′
j−l for l = 0, 1, . . . , k. Then

sup
u,u′∈U

∥∥∥hi+1(· | w(i), u)− hj+1(· | w′(j), u′)
∥∥∥

tv
≤ Ψ(kL). (3.16)

Proof. Observe that the maximum in the left-hand side of (3.16) is attained for i = j = k.

Therefore, we restrict the proof to this case.

For u = (M,y(1), y(2), . . . , y(M), ξ(u)) ∈ U and wi = (Ni, x(1), x(2), . . . , x(Ni), ξ(Ci)) ∈
T , where ξ(Ci) denotes the state of the environment in a certain truncated cone Ci, let

π be the projection on U and T , given by, respectively, π(u) = (M,y(1), y(2), . . . , y(M))

and π(wi) = (Ni, x(1), x(2), . . . , x(Ni)). Thus, the first i regeneration points and regen-

eration times can be reconstructed from u,w(i) as follows:

x0 = Z
τ
(L)
1

= y(M) + (0, L), xi = Z
τ
(L)
i+1

= xi−1 + x(Ni) + (0, L), (3.17)

ti = τ
(L)
i+1 = M + L+

i∑
j=1

(Nj + L). (3.18)

Note that the entire path of Z up to time ti is also encoded in (π(u), π(w1), . . . , π(wi)).

Hereafter we denote this path by x̃ = x̃
(
π(u), π(w1), . . . , π(wi)

)
, and its k-th component

by x̃[k]. In particular, x̃[tj ] = xj .

Next, consider a non-negative bounded random variable F measurable w.r.t.H1. For any

given π0 ∈ π(T ), there exists a non-negative bounded random variable Fπ0 , measurable

w.r.t. σ
(
ξ(u), {εk : k = 1, . . . ,M}

)
, such that F = Fπ0 on the event {π(r0) = π0}.

Similarly, letG be a non-negative bounded random variable measurable w.r.t. σ(r1, . . . , ri).

For all π(i) ∈ π(T )i, there exists a random variable Gπ(i) measurable w.r.t. σ(Λξ(i)),

with

Λξ(i) =

ξt(z) : (z, t) ∈
i∪

j=1

(Cj + xj−1)

 , (3.19)

such that G = Gπ(i) on the event {π(rk) = πk : k = 1, . . . , i}.
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Next, define the events

B(π0) = {Zk = x̃[k] : k = 0, . . . , t0}, (3.20)

and

B(π(i)) = {Zk+t0
− Zt0

= x̃[k + t0]− x̃[t0] : k = 0, . . . , ti − t0}, (3.21)

and the random variable

G′
π0,π(i) = Gπ(i)P̄

ξ,ε
0

(
B (π (i)) | Zn, n ≤ t0, Yt0

= x0

)
, (3.22)

which is measurable w.r.t. the σ-algebra generated by Λξ(i). Abbreviate 1A = 1{r0∈A}

for a measurable subset A ⊂ T , and write θn to denote the shift of time over n.

By using the above notations and the Markov property, we can write

Ēµ,(0,0)

(
FG

[
1A ◦ θτ

(L)
i+1

])
=
∑

π0,π(i)

EP µ⊗W

(
Ēξ,ε

0

(
Fπ0 1B(π0)Gπ(i)1B(π(i))

[
1A ◦ θti

]))
=
∑

π0,π(i)

EP µ⊗W

(
Ēξ,ε

0

(
Fπ0 1B(π0)Gπ(i)1B(π(i))

)
P̄

θti
(ξ,ε)

xi
(A)
)

=
∑

π0,π(i)

EP µ⊗W

(
EP µ⊗W

(
Ēξ,ε

0

(
Fπ0 1B(π0)Gπ(i)1B(π(i))

)
P̄

θti
(ξ,ε)

xi
(A)

∣∣∣Λξ(i)
))

=
∑

π0,π(i)

EP µ⊗W

(
G′

π0,π(i)EP µ⊗W

(
Fπ0P̄

ξ,ε
0 (B(π0)) P̄

θti
(ξ,ε)

xi
(A)

∣∣∣Λξ(i)
))

,

(3.23)

where the sum on π0, π(i) runs over π(T )i+1. Define

ρA = CovP µ⊗W (·|Λξ(i))

[
P̄

θti
(ξ,ε)

xi
(A);Fπ0P̄

ξ,ε
0 (B(π0))

]
, (3.24)

and

ρ̃A =
∑

π0,π(i)

EP µ⊗W

(
G′

π0,π(i)ρA

)
. (3.25)

Write h̃i+1(· | w(i)) for the conditional law of ri+1 given r(i) = (r1, . . . , ri), and note that

h̃i+1(A | w(i)) = EP µ⊗W

(
P̄

θti
(ξ,ε)

xi
(A)

∣∣∣Λξ(i)
)

(3.26)

on the event B(π(i)) ∩B(π0). Combining (3.23), (3.25) and (3.26), we have
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Ēµ,(0,0)

(
FG

[
1A ◦ θτ

(L)
i+1

])
= ρ̃A+∑

π0,π(i)

EP µ⊗W

(
G′

π0,π(i)EP µ⊗W

(
Fπ0P̄

ξ,ε
0 (B(π0))

∣∣∣Λξ(i)
)
EP µ⊗W

(
P̄

θti
(ξ,ε)

xi
(A)

∣∣∣Λξ(i)
))

= ρ̃A +
∑

π0,π(i)

EP µ⊗W

(
G′

π0,π(i)EP µ⊗W

(
Fπ0P̄

ξ,ε
0 (B(π0))

∣∣∣Λξ(i)
)
h̃i+1(A | w(i))

)
= ρ̃A +

∑
π0,π(i)

Ēµ,(0,0)

(
Fπ0 1B(π0)Gπ(i)1B(π(i))h̃i+1(A | w(i))

)
= ρ̃A + Ēµ,(0,0)

(
FG h̃i+1(A | r(i))

)
.

(3.27)

Observe at this point that, for g measurable w.r.t. σ
(
ξt(z) : (z, t) ∈ Ci+1 + xi

)
, the

n-cone-mixing in (3.4), together with the Markovian nature of the RE ξ, imply that,

P̄µ,(0,0)-a.s.

∣∣Eµ

[
g | ξ(u) ∪ Λξ(i)

]
− Eµ [g | Λξ(i)]

∣∣ ≤ Ψ(iL)‖g‖∞. (3.28)

Consequently, for f measurable w.r.t. σ
(
ξ(u)

)
, we have

∣∣Eµ [fg | Λξ(i)]− Eµ [f | Λξ(i)]Eµ [g | Λξ(i)]
∣∣

=
∣∣Eµ

[
fEµ

[
g |ξ(u) ∪ Λξ(i)

]
| Λξ(i)

]
− Eµ [f | Λξ(i)]Eµ [g | Λξ(i)]

∣∣
≤ Ψ(iL)‖g‖∞Eµ [|f | | Λξ(i)] .

(3.29)

By estimating (3.24) with the help of (3.29), we obtain from (3.25) that

|ρ̃A| ≤ Ψ(iL)Ēµ,(0,0) (FG) . (3.30)

Finally, combining (3.27) and (3.30), we get

∣∣∣∣Ēµ,(0,0)

(
FG

[
1A ◦ θτ

(L)
i+1

])
− Ēµ,(0,0)

(
FG h̃i+1(A | r(i))

)∣∣∣∣ ≤ Ψ(iL)Ēµ,(0,0) (FG) ,

(3.31)

which, in view of (3.15), implies(3.16).

With the help of Lemma 3.3, we show in the following lemma that the kernel hk converges

as k →∞ to a kernel h that is independent of u ∈ U .
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Lemma 3.4. Let d(w,w′) = 2−min{i∈N : wi 6=w′
i} be the lexicographic distance on the space

W defined in (3.9), and let M(T ) be the set of probability measures on T . For w(k) =

(wk, wk−1, . . . , w1) ∈ T k, define w = (wk, wk−1, . . . , w1, s, s, . . . ) ∈ W. Then, there

exists a measurable kernel

h :W −→M(T ) (3.32)

such that

sup
k≥i, u∈U, w(k−1)∈T k−1,

w′∈W: d(w,w′)<2−i

∥∥∥hk(· | w(k−1), u)− h(· | w′)
∥∥∥

tv
≤ Ψ(iL) (3.33)

and

sup
w,w′∈W: d(w,w′)<2−k

∥∥h(· | w)− h(· | w′)
∥∥

tv
≤ 2Ψ(kL). (3.34)

Proof. Fix u ∈ U and w = (w1, w2, . . . ) ∈ W, and put w(k) = (w1, . . . , wk) ∈ T k. By

Lemma 3.3, we have that

sup
u,u′∈U , w∈W

∥∥∥hk(· | w(k−1), u)− hk′(· | w(k′−1), u′)
∥∥∥

tv
≤ Ψ((k ∧ k′)L). (3.35)

Therefore the sequence
(
hk(· | w(k−1), u)

)
k∈N of kernels in M(T ) forms a Cauchy se-

quence w.r.t. the total variation distance, and the completeness of M(T ) ensures the

existence of a limit h(· | w, u). Furthermore, from (3.35) we have that

sup
u,u′∈U , w∈W

∥∥∥hk(· | w(k−1), u′)− h(· | w, u)
∥∥∥

tv
≤
∑
i≥k

Ψ(iL),

which, in view of (3.3), implies that h(· | w, u) = h(· | w) does not depend on u ∈ U . In

particular, the estimates in (3.33) and (3.34) follow easily from (3.35).

3.2.2 Invariance principle for the chain with complete connections

In Section 3.2.1 we constructed a chain with complete connections on W defined via

the kernel h. From the latter we next construct a Markov chain (w(n))n∈N with state

space W for which we can use standard results from the theory of chains with complete

connections.
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Let w(n) = (w1(n), w2(n), . . . ) ∈ W, and let y(n + 1) ∈ T be a random variable

distributed according to h(· | w(n)). The next state of the chain, w(n+ 1), is obtained

by setting

w1(n+ 1) = y(n+ 1), wi(n+ 1) = wi−1(n), i ≥ 2. (3.36)

In particular, Lemma 3.4 implies that the chain (w(n))n∈N satisfies conditions FLS(T , 1)

andM(1) in [57], pages 47 and 51. Thus, by Theorem 2.2.7 in [57], it is uniformly ergodic

with a unique invariant measure Pw. Next, given y = (N, x(1), x(2), . . . , x(N), ξ(C)) ∈
T , set f(y) = x(N) and g(y) = N . The integrability condition (2.49) in Lemma 2.5

implies that

sup
w∈W

∫
T
|f(y)|αh(dy|w) <∞, α > 1. (3.37)

Therefore, by Proposition 4.1.1 and Theorem 4.1.2 in [57], we have that, Pw-a.s. ,

lim
n→∞

1
n

n∑
i=1

g(w1(i)) = EP w [g(w1)] = C1, lim
n→∞

1
n

n∑
i=1

f(w1(i)) = EP w [f(w1)] = C2.

(3.38)

Furthermore, by the φ mixing property (see [57]) of f(w1(i)) given by Theorem 2.1.5 in

[57], together with (3.37) and Theorem 4.1.5 in [57], the following invariance principle

holds. Let c = C2/C1, and

Υn(t) =
1√
n

bntc∑
i=1

[
f(w1(i))− cg(w1(i))

]
, n ∈ N, t ≥ 0. (3.39)

Then, under Pw, the path Υn(t), converges weakly to a Brownian motion with a non-

degenerate deterministic variance that is independent of the initial condition w.

3.2.3 Invariance principle for the random walk

It remains to show that the invariance principle in Section 3.2.2 for the chain (w(n))n∈N0

implies the invariance principle of Theorem 3.2. To this aim, consider the random process

(
S̃n(k)

)
k∈N

with S̃n(k) =
Z

τ
(L)
k

− cτ (L)
k

√
n

. (3.40)

We first construct a coupling that allows us to compare S̃n with Υn. After that we pass

from S̃n to St defined in (3.6).

Fix w ∈ W and ε ∈ (0, 1). Consider an enlarged probability space, with law Pε,w, on

which there exist a sequence (rk)k∈N distributed according to P̄µ,(0,0)(r ∈ · | H1), with

r as in (3.10), and a sequence (w(k))k∈N distributed according to Pw. On this enlarged
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probability space, by using (3.33), we can couple (rk)k∈N and (w(k))k∈N in a recursive

manner such that

Pε,w

(
ri+1 = w1(i+ 1) | r1, . . . , ri, w1(1), . . . , w1(i)

)
≥ 1−Ψ(kL) (3.41)

on the event {rl = w1(l), i − k + 1 ≤ l ≤ i} for any k ∈ {1, . . . , i}. Hence, by (3.41)

and the fact that
∑

k∈N Ψ(kL) <∞, we have a sequence k0(ε) <∞, with k0(ε)→∞ as

ε→ 0, such that

Pε,w

(
∃k ≥ k0(ε) : rk 6= w1(k)

)
≤ ε. (3.42)

Next, recall Lemma 2.6, fix T > 0, and let

IT = 2(T + 1)/(Jr−L) with J = lim inf
L→∞

Ēµ,(0,0)(T
(L)
1 ). (3.43)

From (3.42), we have that

Pε,w

(
sup

k0(ε)≤k≤nIT

‖S̃n(k)− S̃n(k0(ε))−Υn(k/n)−Υn(k0(ε)/n)‖1 > 0

)
≤ ε. (3.44)

Moreover, for any δ > 0,

lim
n→∞

P̄µ,(0,0)

 sup
t≤τ

(L)
1

‖Zt‖1 > δ
√
n

 ≤ lim
n→∞

P̄µ,(0,0)

(
τ

(L)
1 > δ

√
n
)

= 0, (3.45)

and, by using (2.49) with α > 1, we get

P̄µ,(0,0)

 sup
1≤k≤n

 sup
τ
(L)
k ≤t≤τ

(L)
k+1

{
‖Zt − Zτ

(L)
k

‖1 + (t− τ (L)
k )

} > 3δ
√
n | H1


≤ P̄µ,(0,0)

(
sup

1≤k≤n

{
τ

(L)
k+1 − τ

(L)
k

}
> δ
√
n

)
= 1−

[
1− P̄µ,(0,0)

(
τ

(L)
1 > δ

√
n
)]n

≤ 1−

1−
Ēµ,(0,0)

[(
τ

(L)
1

)α]
(δ
√
n)α

n

≤ 1−
[
1− M(α)r−αL

(δ
√
n)α

]n

,

. (3.46)

The r.h.s. of (3.46) tends to zero as n → ∞. Therefore, in view of (3.45) and (3.46),

taking first n → ∞ and then ε → 0 in (3.44), we see that the invariance principle for

Υn in (3.39) can be transferred to an invariance principle for S̃n(btnc) under P̄µ,(0,0), on

the interval [0, IT ], with the same covariance.

To return to the original process Z, note that by (3.38) and (3.44) we have that
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lim sup
n→∞

P̄µ,(0,0)

(
sup

k≤nIT

|
τ

(L)
k

n
− C1

k

n
|> δ

)

≤ lim sup
ε→0

lim sup
n→∞

Pε,w

(
sup

k≤nIT

|
τ

(L)
k

n
− C1

k

n
| > δ

)
= 0

. (3.47)

On the other hand, by (3.42), we have that

lim sup
n→∞

P̄µ,(0,0)

(
τ

(L)
nIT

< Tn
)
≤ lim sup

ε→0
lim sup

n→∞
Pε,w

(
τ

(L)
nIT

< Tn
)

= 0. (3.48)

Thus, by (3.44) and the stability of the invariance principle under random time changes

(see [14]) we obtain the invariance principle under P̄µ,(0,0), for(
Zbntc − vnt√

n

)
n∈N

,

which due to (2.32) carries over to Y , and in particular to its first component (see (2.25)).

To pass to continuous time, note that the jump times of X in (2.6) are distributed

according to a Poisson process with parameter α+β independently of the environment.

Therefore, again by the stability of the invariance principle under random time changes,

Theorem 3.2 holds.

3.2.4 Examples of mixing dynamic RE

We give here some example of n-cone-mixing dynamic RE according to Definition 3.1.

(1) Independent spin-flip dynamics

Let ξ = (ξt)t≥0 be an independent spin-flip dynamics (see Section 2.5). Recall the

notations of Section 3.1. Fix a set of n nested-cones {CNi(xi) : xi = (zi,mi) ∈ H}ni=1.

Define

Rn = {y ∈ Z : | y − zn | ≤ Nn}

to be the set of sites in Z belonging to the n-th cone, and

R<n = {y ∈ Z : (y, s) ∈ CNi(xi) for some i ≤ n− 1}
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to be the set of sites belonging to the first n−1 cones. For any subsets A ∈ Gn, B ∈ G<n,

and any two starting configurations η, η′ ∈ Ω, in the spirit of Section 2.4.1, estimate∣∣∣Pη(A | B)− Pη′(A | B)
∣∣∣ ≤ P̂η,η′

(
∃ (z, s) ∈ CNn(xn) : ξs(z) 6= ξ′s(z) | B

)
≤

∑
z∈Rn\R<n

P̂
(
∃ s ≥ mn + |zn − z| : ξs(0) 6= ξ′s(0)

)
≤ c1e−c2mn ≤ c1e−c2nL,

(3.49)

for some constants c1, c2 > 0. In the second inequality we have used the independence

in space and P̂ stands for the single-site basic coupling measure. In the third inequality

we used the exponential convergence to equilibrium and in the fourth inequality that

mn ≥ nL.

(2) Space-time strong-mixing Gibbsian field and IPS in the regime M < ε

Consider a dynamic RE ξ constituted by a space-time Gibbsian field as in the example

of Section 2.4.3. As shown in [36] (see just after Eq. (2.7) therein), by requiring that

the Gibbsian field ξ is strong-mixing in the sense of Definition 1.7 in [36] (see Eq. (1.9)

therein), it follows that ξ is an n-cone-mixing dynamic RE.

If ξ is a spin-flip system in the regime M < ε (see Section 2.4.1), then due to spatial

correlations the argument used in (3.49) does not hold. Nevertheless, such systems are

equivalent, in terms of mixing properties, to a Gibbsian field in the uniqueness regime

at high temperature (see e.g. [65, 66]), and are therefore expected to satisfy the n-

cone-mixing property in Definition 3.1. We plan to settle this technical issue in the

future.

3.3 CLT in the perturbative regime

In the context of Section 2.3, the proof of Theorem 3.2 does not need the machinery of

the previous section. Indeed, as we pointed out in (2.104), Xt − vt can be decomposed

as a sum of a martingale (Mt)t≥0 and an additive functional of the environment process

(ηt)t≥0, i.e.,

Xt − vt = Mt + (α− β)
∫ t

0

(
2ηs(0)− 1

)
ds− vt = Mt +

∫ t

0
f(ηs)ds. (3.50)

In the spirit of Kipnis-Varadhan [61], we would like to write the additive functional in

(3.50) as the sum of a martingale (M ′
t)t≥0 plus a term (εt)t≥0 that is negligible when we
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divide by
√
t, i.e., ∫ t

0
f(ηs)ds = M ′

t + εt, εt = o(
√
t). (3.51)

Since the environment process is not in general a reversible Markov process in L2(µe), we

cannot directly apply the theorem stated in [61]. Nevertheless, several refinements of the

Kipnis-Varadhan approach have been obtained for non-reversible Markov processes, e.g.

[54], Corollary 3.2, gives a sufficient condition for a martingale approximation, namely,∫ ∞

1
t−1/2 ‖S(t)f‖2 dt <∞, (3.52)

where (S(t))t≥0 is the semigroup associated with (ηt)t≥0 and ‖·‖2 denote the L2(µe)-

norm. From (2.133) we easily see that (3.52) holds. Indeed,

‖S(t)f‖2 ≤ ‖S(t)f‖∞ ≤ Ce
−[c−2(α−β)]t. (3.53)

Hence, (3.50) holds, and we can write

Xt − vt = Mt +
∫ t

0
f(ηs)ds = Mt +M ′

t + εt = M ′′
t + εt. (3.54)

The invariance principle for (Xt)t≥0 then follows from the standard invariance principle

for martingales (see e.g. [14]).





Chapter 4

Large deviation principle for

one-dimensional RW in dynamic

RE: attractive spin-flips and

simple symmetric exclusion

This chapter appeared in the form of a paper [4] and is based on joint work with Frank

den Hollander and Frank Redig.

Abstract

Consider a one-dimensional shift-invariant attractive spin-flip system in equilibrium, con-

stituting a dynamic random environment, together with a nearest-neighbor random walk

that on occupied sites has a local drift to the right but on vacant sites has a local drift

to the left. In [3] we proved a law of large numbers for dynamic random environments

satisfying a space-time mixing property called cone-mixing. If an attractive spin-flip

system has a finite average coupling time at the origin for two copies starting from the

all-occupied and the all-vacant configuration, respectively, then it is cone-mixing.

In the present paper we prove a large deviation principle for the empirical speed of

the random walk, both quenched and annealed, and exhibit some properties of the

associated rate functions. Under an exponential space-time mixing condition for the

spin-flip system, which is stronger than cone-mixing, the two rate functions have a

unique zero, i.e., the slow-down phenomenon known to be possible in a static random

environment does not survive in a fast mixing dynamic random environment. In contrast,

67
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4. Large deviation principle for one-dimensional RWs in dynamic REs: attractive

spin-flips and simple symmetric exclusion

we show that for the simple symmetric exclusion dynamics, which is not cone-mixing

(and which is not a spin-flip system either), slow-down does occur.

4.1 Introduction and main results

4.1.1 Random walk in dynamic random environment: attractive spin-

flips

Let

ξ = (ξt)t≥0 with ξt = {ξt(x) : x ∈ Z} (4.1)

denote a one-dimensional spin-flip system, i.e., a Markov process on state space Ω =

{0, 1}Z with generator L given by

(Lf)(η) =
∑
x∈Z

c(x, η)[f(ηx)− f(η)], η ∈ Ω, (4.2)

where f is any cylinder function on Ω, c(x, η) is the local rate to flip the spin at site x

in the configuration η, and ηx is the configuration obtained from η by flipping the spin

at site x. We think of ξt(x) = 1 (ξt(x) = 0) as meaning that site x is occupied (vacant)

at time t. We assume that ξ is shift-invariant, i.e., for all x ∈ Z and η ∈ Ω,

c(x, η) = c(x+ y, τyη), y ∈ Z, (4.3)

where (τyη)(z) = η(z− y), z ∈ Z, and also that ξ is attractive, i.e., if η ≤ ζ, then, for all

x ∈ Z,
c(x, η) ≤ c(x, ζ) if η(x) = ζ(x) = 0,

c(x, η) ≥ c(x, ζ) if η(x) = ζ(x) = 1.
(4.4)

For more on shift-invariant attractive spin-flip systems we refer to [63], Chapter III.

Examples are the (ferromagnetic) Stochastic Ising Model, the Voter Model, the Majority

Vote Process and the Contact Process.

We assume that

ξ has an equilibrium µ that is shift-invariant and shift-ergodic. (4.5)

For η ∈ Ω, we write P η to denote the law of ξ starting from ξ(0) = η, which is a

probability measure on the path space DΩ[0,∞), i.e., the set of trajectories in Ω that
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are right-continuous and have left limits (see [63], Section I.1). We denote by

Pµ(·) =
∫
Ω

P η(·)µ(dη) (4.6)

the law of ξ when ξ(0) is drawn from µ. We further assume that

Pµ is tail trivial, (4.7)

i.e., all events in the tail σ-algebra T = ∩s≥0 σ{ξt : t ≥ s} have probability 0 or 1 under

Pµ. Conditional on ξ, let

X = (Xt)t≥0 (4.8)

be the random walk with local transition rates

x→ x+ 1 at rate α ξt(x) + β [1− ξt(x)],

x→ x− 1 at rate β ξt(x) + α [1− ξt(x)],
(4.9)

where w.l.o.g.

0 < β < α <∞. (4.10)

In words, on occupied sites the random walk jumps to the right at rate α and to the left

at rate β, while at vacant sites it does the opposite. Note that, by (4.10), on occupied

sites the drift is positive, while on vacant sites it is negative. Also note that the sum of

the jump rates is α + β and is independent of ξ. For x ∈ Z, we write P ξ
0 to denote the

law of X starting from X0 = 0 conditional on ξ, and

Pµ,0(·) =
∫

DΩ[0,∞)

P ξ
0 (·)Pµ(dξ) (4.11)

to denote the law of X averaged over ξ. We refer to P ξ
0 as the quenched law and to Pµ,0

as the annealed law.

4.1.2 Large deviation principles

Let · and ‖ · ‖ denote the inner product, respectively, the Euclidean norm on R2. Put

` = (0, 1). For θ ∈ (0, π/2) and t ≥ 0, let

Cθ
t =

{
u ∈ Z× [0,∞) : (u− t`) · ` ≥ ‖u− t`‖ cos θ

}
(4.12)

be the cone whose tip is at t` = (0, t) and whose wedge opens up in the direction ` with

an angle θ on either side. Note that if θ = π/2, then the cone is the half-plane above t`.
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Definition 4.1. An attractive spin-flip system ξ satisfying (4.5) is said to be cone-

mixing if, for all θ ∈ (0, π/2),

lim
t→∞

sup
A∈F0, B∈Fθ

t
µ(A)>0

∣∣∣Pµ(B | A)− Pµ(B)
∣∣∣ = 0, (4.13)

where

F0 = σ
{
ξ0(x) : x ∈ Z

}
, Fθ

t = σ
{
ξs(x) : (x, s) ∈ Cθ

t

}
. (4.14)

In [3] we proved that if ξ is cone-mixing, then X satisfies a law of large numbers (LLN),

i.e., there exists a v ∈ R such that

lim
t→∞

t−1Xt = v Pµ,0 -a.s. (4.15)

In particular, we showed that all attractive spin-flip systems for which the coupling time

at the origin, starting from the configurations η ≡ 1 and η ≡ 0, has finite mean are

cone-mixing. Theorems 4.2–4.3 below state that X satisfies both an annealed and a

quenched large deviation principle (LDP).

Define
M =

∑
x 6=0

sup
η∈Ω
|c(0, η)− c(0, ηx)|,

ε = inf
η∈Ω
|c(0, η) + c(0, η0)|.

(4.16)

The interpretation of (4.16) is that M is a measure for the maximal dependence of the

transition rates on the states of single sites, while ε is a measure for the minimal rate

at which the states of single sites change. See [63], Section I.4, for examples. In [3] we

showed that if M < ε then ξ is cone-mixing.

Theorem 4.2. (Annealed LDP)

Assume (4.3)–(4.5), and let v be as in (4.15).

(a) There exists a convex rate function Iann : R→ [0,∞), satisfying

Iann(θ)

{
= 0, if θ ∈ [vann

− , vann
+ ],

> 0, if θ ∈ R\[vann
− , vann

+ ],
(4.17)

for some −(α− β) ≤ vann
− ≤ v ≤ vann

+ ≤ α− β, such that

lim
t→∞

1
t

log Pµ,0

(
t−1Xt ∈ K

)
= − inf

θ∈K
Iann(θ) (4.18)

for all intervals K such that either K * [vann
− , vann

+ ] or int(K) 3 v.
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(b) lim|θ|→∞ Iann(θ)/|θ| =∞.

(c) If M < ε and α− β < 1
2(ε−M), then

vann
− = v = vann

+ . (4.19)

Theorem 4.3. (Quenched LDP)

Assume (4.3)–(4.5) and (4.7).

(a) There exists a convex rate function Ique : R→ [0,∞), satisfying

Ique(θ)

{
= 0, if θ ∈ [vque

− , vque
+ ],

> 0, if θ ∈ R\[vque
− , vque

+ ],
(4.20)

for some −(α− β) ≤ vque
− ≤ v ≤ vque

+ ≤ α− β, such that

lim
t→∞

1
t

logP ξ
(
t−1Xt ∈ K

)
= − inf

θ∈K
Ique(θ) ξ-a.s. (4.21)

for all intervals K.

(b) lim|θ|→∞ Ique(θ)/|θ| =∞ and

Ique(−θ) = Ique(θ) + θ(2ρ− 1) log(α/β), θ ≥ 0. (4.22)

(c) If M < ε and α− β < 1
2(ε−M), then

vque
− = v = vque

+ . (4.23)

The v in Theorems 4.2 and 4.3 is the speed in the LLN in (4.15). In [3] we have only

proved (4.15) under the additional assumption that ξ is cone-mixing. Theorems 4.2 and

4.3 are proved in Sections 4.2 and 4.3, respectively. The interval K in (4.18) and (4.21)

can be open, closed, half-open or half-closed. We are not able to show that (4.18) holds

for all intervals K, although we expect this to be true in general.

Because

Ique ≥ Iann, (4.24)

Theorems 4.3(b)–(c) follow from Theorems 4.2(b)–(c), with the exception of the sym-

metry relation (4.22). There is no symmetry relation analogous to (4.22) for Iann. It

follows from (4.24) that

vann
− ≤ vque

− ≤ v ≤ vque
+ ≤ vann

+ . (4.25)
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4.1.3 Random walk in dynamic random environment: simple symmet-

ric exclusion

It is natural to ask whether in a dynamic random environment the rate functions always

have a unique zero. The answer is no. In this section we show that when ξ is the simple

symmetric exclusion process in equilibrium with an arbitrary density of occupied sites

ρ ∈ (0, 1), then for any 0 < β < α < ∞ the probability that Xt is near the origin

decays slower than exponential in t. Thus, slow-down is possible not only in a static

random environment (see Section 4.1.4), but also in a dynamic random environment,

provided it is not fast mixing. Indeed, the simple symmetric exclusion process is not

even cone-mixing.

The one-dimensional simple symmetric exclusion process

ξ = {ξt(x) : x ∈ Z, t ≥ 0} (4.26)

is the Markov process on state space Ω = {0, 1}Z with generator L given by

(Lf)(η) =
∑
x,y∈Z
x∼y

[f(ηxy)− f(η)], η ∈ Ω, (4.27)

where f is any cylinder function on R, the sum runs over unordered neighboring pairs

of sites in Z, and ηxy is the configuration obtained from η by interchanging the states

at sites x and y. We will assume that ξ starts from the Bernoulli product measure with

density ρ ∈ (0, 1), i.e., at time t = 0 each site is occupied with probability ρ and vacant

with probability 1− ρ. This measure, which we denote by νρ, is an equilibrium for the

dynamics (see [63], Theorem VIII.1.44).

Conditional on ξ, the random walk

X = (Xt)t≥0 (4.28)

has the same local transition rates as in (4.9)–(4.10). We also retain the definition of

the quenched law P ξ
0 and the annealed law Pνρ,0, as in (4.11) with µ = νρ.

Since the simple symmetric exclusion process is not cone-mixing (the space-time mixing

property assumed in [3]), we do not have the LLN. Since it is not an attractive spin-flip

system either, we also do not have the LDP. We plan to address these issues in future

work. Our main result here is the following.

Theorem 4.4. For all ρ ∈ (0, 1),

lim
t→∞

1
t

log Pνρ,0

(
|Xt| ≤ 2

√
t log t

)
= 0. (4.29)



4.1. Introduction and main results 73

Theorem 4.4 is proved in Section 4.4.

4.1.4 Discussion

Literature. Random walk in static random environment has been an intensive research

area since the early 1970’s. One-dimensional models are well understood. In particular,

recurrence vs. transience criteria, laws of large numbers and central theorems have been

derived, as well as quenched and annealed large deviation principles. In higher dimen-

sions a lot is known as well, but some important questions still remain open. For an

overview of these results, we refer the reader to [89, 99].

For random walk in dynamic random environment the state of the art is rather more

modest, even in one dimension. Early work was done in [64], which considers a one-

dimensional environment consisting of spins flipping independently between −1 and +1,

and a walk that at integer times jumps left or right according to the spin it sees at that

time. A necessary and sufficient criterion for recurrence is derived, as well as a law of

large numbers.

Three classes of dynamic random environments have been studied in the literature so

far:

(1) Independent in time: globally updated at each unit of time [6, 11–13, 22, 24, 26,

74, 83, 98];

(2) Independent in space: locally updated according to independent single-site Markov

chains [5, 16–21, 23, 25, 41, 42, 55, 56];

(3) Dependent in space and time: [30, 40].

The focus of these references is: transience vs. recurrence [55, 64], law of large numbers

and central limit theorem [5, 6, 11–13, 16, 19, 22–26, 30, 40–42, 74, 83], decay of

correlations in space and time [17, 18, 20], convergence of the law of the environment

as seen from the walk [21], large deviations [56, 98]. Some papers allow for a mutual

interaction between the walk and the environment [11, 16, 19–21, 56].

Classes (2) and (3) are the most challenging. Most papers require additional assump-

tions, e.g. a strong decay of the time, respectively, space-time correlations in the random

environment, or the transition probabilities of the random walk depend only weakly on

the random environment (i.e., a small perturbation of a homogeneous random walk). In

[3] we improved on this situation by proving a law of large numbers for a class of dynamic

random environments in class (3) satisfying only a mild space-time mixing condition,
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called cone-mixing (see Definition 4.1). We showed that a large class of uniquely ergodic

attractive spin-flip systems is cone-mixing.

Consider a static random environment η with law νρ, the Bernoulli product measure

with density ρ ∈ (0, 1), and a random walk X = (Xt)t≥0 with transition rates (compare

with (4.9))
x→ x+ 1 at rate αη(x) + β[1− η(x)],

x→ x− 1 at rate βη(x) + α[1− η(x)],
(4.30)

where 0 < β < α <∞. In [80] it is shown thatX is recurrent when ρ = 1/2 and transient

to the right when ρ > 1/2. In the transient case both ballistic and non-ballistic behavior

occur, i.e., limt→∞Xt/t = v for Pνρ-a.e. ξ, and

v

{
= 0 if ρ ∈ [1/2, ρc],

> 0 if ρ ∈ (ρc, 1],
(4.31)

where

ρc =
α

α+ β
∈ (1

2 , 1), (4.32)

and, for ρ ∈ (ρc, 1],

v = v(ρ, α, β) = (α+ β)
αβ + ρ(α2 − β2)− α2

αβ − ρ(α2 − β2) + α2

= (α− β)
ρ− ρc

ρ(1− ρc) + ρc(1− ρ)
. (4.33)

Attractive spin flips. The analogues of (4.18) and (4.21) in the static random en-

vironment (with no restriction on the interval K in the annealed case) were proved in

[49] (quenched) and [34] (quenched and annealed). Both Iann and Ique are zero on the

interval [0, v] and are strictly positive outside (“slow-down phenomenon”). For Ique the

same symmetry property as in (4.22) holds. Moreover, an explicit formula for Ique is

known in terms of random continued fractions.

We do not have explicit expressions for Iann and Ique in the dynamic random environ-

ment. Even the characterization of their zero sets remains open, although under the

stronger assumptions that M < ε and α − β < (ε −M)/2 we know that both have a

unique zero at v.

Theorems 4.2–4.3 can be generalized beyond spin-flip systems, i.e., systems where more

than one site can flip state at a time. We will see in Sections 4.2–4.3 that what really

matters is that the system has positive correlations in space and time. As shown in [51],

this holds for monotone systems (see [63], Definition II.2.3) if and only if all transitions
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are such that they make the configuration either larger or smaller in the partial order

induced by inclusion.

Simple symmetric exclusion. What Theorem 4.4 says is that, for all choices of the

parameters, the annealed rate function (if it exists) is zero at 0, and so there is a slow-

down phenomenon similar to what happens in the static random environment. We will

see in Section 4.4 that this slow-down comes from the fact that the simple symmetric

exclusion process suffers “traffic jams”, i.e., long strings of occupied and vacant sites

have an appreciable probability to survive for a long time.

To test the validity of the LLN for the simple symmetric exclusion process, we performed

a simulation the outcome of which is drawn in Figs. 4.1–4.2. For each point in these

figures, we drew 103 initial configurations according to the Bernoulli product measure

with density ρ, and from each of these configurations ran a discrete-time exclusion

process with parallel updating for 104 steps. Given the latter, we ran a discrete-time

random walk for 104 steps, both in the static environment (ignoring the updating) and

in the dynamic environment (respecting the updating), and afterwards averaged the

displacement of the walk over the 103 initial configurations. The probability to jump to

the right was taken to be p on an occupied site and q = 1− p on a vacant site, where p

replaces α/(α+ β) in the continuous-time model. In Figs. 4.1–4.2, the speeds resulting

from these simulations are plotted as a function of p for ρ = 0.8, respectively, as a

function of ρ for p = 0.7. In each figure we plot four curves: (1) the theoretical speed in

the static case (as described by (4.33)); (2) the simulated speed in the static case; (3)

the simulated speed in the dynamic case; (4) the speed for the average environment, i.e.,

(2ρ− 1)(2p− 1). The order in which these curves appear in the figures is from bottom

to top.

Fig. 4.1 shows that, in the static case with ρ fixed, as p increases the speed first goes up

(because there are more occupied than vacant sites), and then goes down (because the

vacant sites become more efficient to act as a barrier). In the dynamic case, however,

the speed is an increasing function of p: the vacant sites are not frozen but move around

and make way for the walk. It is clear from Fig. 4.2 that the only value of ρ for which

there is a zero speed in the dynamic case is ρ = 1/2, for which the random walk is

recurrent. Thus, the simulation suggests that there is no (!) non-ballistic behavior in

the transient case. In view of Theorem 4.4, this in turn suggests that the annealed rate

function (if it exists) has zero set [0, v].

In both pictures the two curves at the bottom should coincide. Indeed, they almost

coincide, except for values of the parameters that are close to the transition between

ballistic and non-ballistic behavior, for which fluctuations are to be expected. Note that
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Figure 4.1: Speeds as a function of p for ρ = 0.8.

Figure 4.2: Speeds as a function of ρ for p = 0.7.

the simulated speed in the dynamic environment lies in between the speed for the static

environment and the speed for the average environment. We may think of the latter two

as corresponding to a simple symmetric exclusion process running at rate 0, respectively,

∞ rather than at rate 1 as in (4.27).

4.2 Proof of Theorem 4.2

In Section 4.2.1 we prove three lemmas for the probability that the empirical speed is

above a given threshold. These lemmas will be used in Section 4.2.2 to prove Theo-

rems 4.2(a)–(b). In Section 4.2.3 we prove Theorems 4.2(c).

4.2.1 Three lemmas

Lemma 4.5. For all θ ∈ R,

J+(θ) = − lim
t→∞

1
t

log Pµ,0(Xt ≥ θt) exists and is finite. (4.34)
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Proof. For z ∈ Z and u ≥ 0, let σz,u denote the operator acting on ξ as

(σz,uξ)(x, t) = ξ(z + x, u+ t), x ∈ Z, t ≥ 0. (4.35)

Fix θ 6= 0, and let Gθ = {t ≥ 0: θt ∈ Z} be the non-negative grid of width 1/|θ|. For

any s, t ∈ Gθ, we have

Pµ,0

(
Xs+t ≥ θ(s+ t)

)
= Eµ

[
P ξ

0

(
Xs+t ≥ θ(s+ t)

)]
=
∑
y∈Z

Eµ
[
P ξ

0 (Xs = y)P σ0,sξ
y

(
Xt ≥ θ(s+ t)

)]
≥
∑
y≥θs

Eµ
[
P ξ

0 (Xs = y)P σ0,sξ
θs

(
Xt ≥ θ(s+ t)

)]
= Eµ

[
P ξ

0 (Xs ≥ θs)P
σθs,sξ
0

(
Xt ≥ θt

)]
≥ Eµ

[
P ξ

0 (Xs ≥ θs)
]
Eµ
[
P

σθs,sξ
0

(
Xt ≥ θt

)]
= Pµ,0(Xs ≥ θs) Pµ,0(Xt ≥ θt). (4.36)

The first inequality holds because two copies of the random walk running on the same

realization of the random environment can be coupled so that they remain ordered. The

second inequality uses that

ξ 7→ P ξ
0 (Xs ≥ θs) and ξ 7→ P

σθs,sξ
0

(
Xt ≥ θt

)
(4.37)

are non-decreasing and that the law Pµ of an attractive spin-flip system has the FKG-

property in space-time (see [63], Corollary II.2.12). Let

g(t) = − log Pµ,0(Xt ≥ θt). (4.38)

Then it follows from (4.36) that (g(t))t≥0 is subadditive along Gθ, i.e., g(s+ t) ≤ g(s) +

g(t) for all s, t ∈ Gθ. Since Pµ,0(Xt ≥ θt) > 0 for all t ≥ 0, it therefore follows that

J+(θ) = − lim
t→∞
t∈Gθ

1
t

log Pµ,0(Xt ≥ θt) exists and is finite. (4.39)

Because X takes values in Z, the restriction t ∈ Gθ can be removed. This proves the

claim for θ 6= 0. The claim easily extends to θ = 0, because the transition rates of the

random walk are bounded away from 0 and ∞ uniformly in ξ (recall (4.9)).

Lemma 4.6. θ 7→ J+(θ) is non-decreasing and convex on R.
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Proof. We follow an argument similar to that in the proof of Proposition 4.5. Fix

θ, γ ∈ R and p ∈ [0, 1] such that pγ, (1− p)θ ∈ Z. Estimate

Pµ,0

(
Xt ≥ [pγ + (1− p)θ] t

)
= Eµ

[
P ξ

0

(
Xt ≥ [pγ + (1− p)θ] t

)]
=
∑
y∈Z

Eµ
[
P ξ

0 (Xpt = y)P σ0,ptξ
y

(
Xt(1−p) ≥ [pγ + (1− p)θ] t

)]
≥
∑

y≥pγt

Eµ
[
P ξ

0 (Xpt = y)P σ0,ptξ
pγt

(
Xt(1−p) ≥ [pγ + (1− p)θ] t

)]
= Eµ

[
P ξ

0 (Xpt ≥ pγt)P
σpγt,ptξ
0

(
Xt(1−p) ≥ (1− p)θt

)]
(4.40)

≥ Eµ
[
P ξ

0 (Xpt ≥ pγt)
]
Eµ
[
P

σpγt,ptξ
pγ t

(
Xt(1−p) ≥ (1− p)θt

)]
= Pµ,0(Xpt ≥ pγt) Pµ,0

(
Xt(1−p) ≥ (1− p)θt

)
.

It follows from (4.40) and the remark below (4.39) that

− J+
(
pγ + (1− p)θ

)
≥ −pJ+(γ)− (1− p)J+(θ), (4.41)

which settles the convexity.

Lemma 4.7. J+(θ) > 0 for θ > α− β and limθ→∞ J+(θ)/θ =∞.

Proof. Let (Yt)t≥0 be the nearest-neighbor random walk on Z that jumps to the right

at rate α and to the left at rate β. Write PRW
0 to denote its law starting from Y (0) = 0.

Clearly,

Pµ,0(Xt ≥ θt) ≤ PRW
0 (Yt ≥ θt) ∀ θ ∈ R. (4.42)

Moreover,

JRW(θ) = − lim
t→∞

1
t

log PRW
0 (Yt ≥ θt) (4.43)

exists, is finite and satisfies

JRW (α− β) = 0, JRW(θ) > 0 for θ > α− β, lim
θ→∞

JRW(θ)/θ =∞. (4.44)

Combining (4.42)–(4.44), we get the claim.

Lemmas 4.5–4.7 imply that an upward annealed LPD holds with a rate function J+

whose qualitative shape is given in Fig. 4.3.
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v vann
+

θ

J+(θ)

s
Figure 4.3: Shape of θ 7→ J+(θ).

vvann
−

θ

J−(θ)

s
Figure 4.4: Shape of θ 7→ J−(θ).

4.2.2 Annealed LDP

Clearly, J+ depends on Pµ, α and β. Write

J+ = JP µ,α,β (4.45)

to exhibit this dependence. So far we have not used the restriction α > β in (4.10). By

noting that −Xt is equal in distribution to Xt when α and β are swapped and Pµ is

replaced by P̄µ, the image of Pµ under reflection in the origin (recall (4.9)), we see that

the upward annealed LDP proved in Section 4.2.1 also yields a downward annealed LDP

J−(θ) = − lim
t→∞

1
t

log Pµ,0(Xt ≤ θt), θ ∈ R, (4.46)

with

J− = JP̄ µ,β,α, (4.47)

whose qualitative shape is given in Fig. 4.4. Note that

vann
− ≤ v ≤ vann

+ , (4.48)
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because v, the speed in the LLN proved in [3], must lie in the zero set of both J+ and

J−.

Our task is to turn the upward and downward annealed LDP’s into the annealed LDP

of Theorem 4.2.

Proposition 4.8. Let

Iann(θ) =

{
JP µ,α,β(θ) if θ ≥ v,
JP̄ µ,β,α(−θ) if θ ≤ v.

(4.49)

Then

lim
t→∞

1
t

log Pµ,0

(
t−1Xt ∈ K) = − inf

θ∈K
Iann(θ) (4.50)

for all closed intervals such that either K * [vann
− , vann

+ ] or int(K) 3 v.

Proof. We distinguish three cases.

(1) K ⊂ [v,∞), K * [v, vann
+ ]: Let cl(K) = [a, b]. Then, because J+ is continuous,

1
t

log Pµ,0

(
t−1Xt ∈ K

)
=

1
t

log
[
e−tJ+(a)+o(t) − e−tJ+(b)+o(t)

]
. (4.51)

By Lemma 4.6, J+ is strictly increasing on [vann
+ ,∞), and so J+(b) > J+(a). Letting

t→∞ in (4.51), we therefore see that

lim
t→∞

1
t

log Pµ,0

(
t−1Xt ∈ K

)
= −J+(a) = − inf

θ∈K
Iann(θ). (4.52)

(2) K ⊂ (−∞, v], K * [vann
− , v]: Same as for (1) with J− replacing J+.

(3) int(K) 3 v: In this case (4.50) is an immediate consequence of the LLN in (4.15).

Proposition 4.8 completes the proof of Theorems 4.2(a)–(b). Recall (4.45) and (4.47).

The restriction on K comes from the fact that the difference of two terms that are both

exp[o(t)] may itself not be exp[o(t)].

4.2.3 Unique zero of Iann when M < ε

In [3] we showed that if M < ε and α − β < (ε −M)/2, then a proof of the LLN can

be given that is based on a perturbation argument for the generator of the environment

process

ζ = (ζt)t≥0, ζt = τXtξt, (4.53)
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i.e., the random environment as seen relative to the random walk. In particular, it is

shown that ζ is uniquely ergodic with equilibrium µe. This leads to a series expansion

for v in powers of α − β, with coefficients that are functions of Pµ and α + β and that

are computable via a recursive scheme. The speed in the LLN is given by

v = (2ρ̃− 1)(α− β) (4.54)

with ρ̃ = 〈η(0)〉µe , where 〈·〉µe denotes expectation over µe (ρ̃ is the fraction of time X

spends on occupied sites).

Proposition 4.9. Let ξ be an attractive spin-flip system with M < ε. If α − β <

(ε−M)/2, then the rate function Iann in (4.51) has a unique zero at v.

Proof. It suffices to show that

lim sup
t→∞

1
t

log Pµ,0

(
|t−1Xt − v| ≥ 2δ

)
< 0 ∀ δ > 0. (4.55)

To that end, put γ = δ/2(α−β) > 0. Then, by (4.54), v± δ = [2(ρ̃±γ)−1](α−β). Let

At =

t∫
0

ξs(Xs) ds (4.56)

be the time X spends on occupied sites up to time t, and define

Et =
{
|t−1At − ρ̃| ≥ γ

}
. (4.57)

Estimate

Pµ,0(|t−1Xt − v| ≥ 2δ
)
≤ Pµ,0(Et) + Pµ,0

(
|t−1Xt − v| ≥ 2δ | Ec

t

)
. (4.58)

Conditional on Ec
t , X behaves like a homogeneous random walk with speed in [v−δ, v+δ].

Therefore the second term in the r.h.s. of (4.58) vanishes exponentially fast in t. In [3],

Lemma 3.4, Eq. (3.26) and Eq. (3.36), we proved that

9S(t)f9 ≤ e−c1t 9f9 and
∥∥S(t)f − 〈f〉µe

∥∥
∞ ≤ c2 e−(ε−M)t 9f9 (4.59)

for some c1, c2 ∈ (0,∞), where S = (S(t))t≥0 denotes the semigroup associated with the

environment process ζ, and 9f9 denotes the triple norm of f . As shown in [75], (4.59)

implies a Gaussian concentration bound for additive functionals, namely,

Pµ,0

(∣∣∣∣t−1

t∫
0

f(ζs)− 〈f〉µ
∣∣∣∣ ≥ γ) ≤ c3 exp{−γ2t/c4 9f92} (4.60)
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for some c3, c4 ∈ (0,∞), uniformly in t > 0, f with 9f9 < ∞ and γ > 0. By picking

f(η) = η(0), η ∈ Ω, we get

Pµ,0

(
Et

)
≤ c5 exp{−c6t} (4.61)

for some c5, c6 ∈ (0,∞). Therefore also the first term in the r.h.s. of (4.58) vanishes

exponentially fast in t.

Proposition 4.9 completes the proof of Theorems 4.2(c).

4.3 Proof of Theorem 4.3

In Section 4.3.1 we prove three lemmas for the probability that the empirical speed equals

a given value. These lemmas will be used in Section 4.3.2 to prove Theorems 4.3(a)–(b).

In Section 4.3.3 we prove Theorem 4.3(c). Theorem 4.3(d) follows from Theorem 4.2(c)

because Ique ≥ Iann.

4.3.1 Three lemmas

In this section we state three lemmas that are the analogues of Lemmas 4.5–4.7.

Lemma 4.10. For all θ ∈ R,

Ique(θ) = − lim
t→∞

1
t

logP ξ
0 (Xt = bθtc) (4.62)

exists, is finite and is constant ξ-a.s.

Proof. Fix θ 6= 0, and recall that Gθ = {t ≥ 0: θt ∈ Z} is the non-negative grid of width

1/|θ|. For any s, t ∈ Gθ, we have

P ξ
0

(
Xs+t = θ(s+ t)

)
≥ P ξ

0

(
Xs = θs

)
P ξ

0

(
Xs+t = θ(s+ t) | Xs = θs

)
= P ξ

0

(
Xs = θs

)
P Tsξ

0 (Xt = θt),
(4.63)

where Ts = σθs,s. Let

gt(ξ) = − logP ξ
0 (Xt = θt). (4.64)

Then it follows from (4.63) that (gt(ξ))t≥0 is a subadditive random process along Gθ,

i.e., gs+t(ξ) ≤ gs(ξ) + gt(Tsξ) for all s, t ∈ Gθ. From Kingman’s subadditive ergodic

theorem (see e.g. [84]) it therefore follows that

lim
t→∞
t∈Gθ

1
t

logP ξ
0 (Xt = θt) = −Ique(θ) (4.65)
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exists, is finite ξ-a.s, and is Ts-invariant for every s ∈ Gθ. Moreover, since ξ is ergodic

under space-time shifts (recall (4.5) and (4.7)), this limit is constant ξ-a.s. Because

the transition rates of the random walk are bounded away from 0 and ∞ uniformly

in ξ (recall (4.9)), the restriction t ∈ Gθ may be removed after Xt = θt is replaced

by Xt = bθtc in (4.65). This proves the claim for θ 6= 0. By the boundedness of the

transition rates, the claim easily extends to θ = 0.

Lemma 4.11. θ 7→ Ique(θ) is convex on R.

Proof. The proof is similar to that of Proposition 4.5. Fix θ, ζ ∈ R and p ∈ [0, 1]. For

any t ≥ 0 such that pζt, (1− p)θt ∈ Z, we have

P ξ
0

(
Xt ≥ [pζ + (1− p)θ] t

)
≥ P ξ

0

(
Xpt = pζt

)
P ξ

0

(
Xt = [pζ + (1− p)θ] t | Xpt = pζt

)
= P ξ

0

(
Xpt = pζt

)
P

σpζt,ptξ
0

(
X(1−p)t = (1− p)θt

)
.

(4.66)

It follows from (4.66) and the remark below (4.39) that

− Ique
(
pζ + (1− p)θ

)
≥ −pIque(ζ)− (1− p)Ique(θ), (4.67)

which settles the convexity.

Lemma 4.12. Ique(θ) > 0 for |θ| > α− β and

lim
θ→∞

Ique(θ)/|θ| =∞.

Proof. Same as Lemma 4.7.

4.3.2 Quenched LDP

We are now ready to prove the quenched LDP.

Proposition 4.13. For Pµ-a.e. ξ, the family of probability measures

P ξ
0 (Xt/t ∈ · ), t > 0,

satisfies the LDP with rate t and with deterministic rate function Ique.

Proof. Use Lemmas 4.10–4.12.
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Proposition 4.13 completes the proof of Theorems 4.3, except for the symmetry relation

in (4.22), which will be proved in Section 4.3.3. Recall (4.24) and the remark below it.

4.3.3 A quenched symmetry relation

Proposition 4.14. For all θ ∈ R, the rate function in Theorem 4.13 satisfies the sym-

metry relation

Ique(−θ) = Ique(θ) + θ(2ρ− 1) log(α/β). (4.68)

Proof. We first consider a discrete-time random walk, i.e., a random walk that observes

the random environment and jumps at integer times. Afterwards we will extend the

argument to the continuous-time random walk defined in (4.8)–(4.10).

1. Path probabilities

Let

X = (Xn)n∈N0 (4.69)

be the random walk with transition probabilities

x→ x+ 1 with probability p ξn(x) + q [1− ξn(x)],

x→ x− 1 with probability q ξn(x) + p [1− ξn(x)],
(4.70)

where w.l.o.g. p > q. For an oriented edge e = (i, i ± 1), i ∈ Z, write e = (i ± 1, i) to

denote the reverse edge. Let pn(e) denote the probability for the walk to jump along

the edge e at time n. Note that in the static random environment these probabilities

are time-independent, i.e., pn(e) = p0(e) for all n ∈ N.

We will be interested in n-step paths ω = (ω0, . . . , ωn) ∈ Zn with ω0 = 0 and ωn = bθnc
for a given θ 6= 0. Write Θω to denote the time-reversed path, i.e., Θω = (ωn, . . . , ω0).

Let Ne(ω) denote the number of times the edge e is crossed by ω, and write tje(ω),

j = 1, . . . , Ne(ω), to denote the successive times at which the edge e is crossed. Let

E(ω) denote the set of edges in the path ω, and E+(ω) the subset of forward edges, i.e.,

edges of the form (i, i+ 1). Then we have

Ne(Θω) = Ne(ω) (4.71)

and

tje(Θω) = n+ 1− tNe(ω)+1−j
e (ω), j = 1, . . . , Ne(Θω) = Ne(ω). (4.72)
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Given a realization of ξ, the probability that the walk follows the path ω equals

P ξ(ω) =
∏

e∈E(ω)

Ne(ω)∏
j=1

p
tje(ω)

(e)

=
∏

e∈E+(ω)

Ne(ω)∏
j=1

p
tje(ω)

(e)
Ne(ω)∏
j=1

p
tje(ω)

(e). (4.73)

The probability of the reversed path is, by (4.71)–(4.72),

P ξ(Θω) =
∏

e∈E(ω)

Ne(Θω)∏
j=1

p
tje(Θω)

(e)

=
∏

e∈E(ω)

Ne(ω)∏
j=1

p
n+1−t

Ne(ω)+1−j
e (ω)

(e)

=
∏

e∈E(ω)

Ne(ω)∏
j=1

p
n+1−tje(ω)

(e) (4.74)

=
∏

e∈E+(ω)

Ne(ω)∏
j=1

p
n+1−tje(ω)

(e)
Ne(ω)∏
j=1

p
n+1−tje(ω)

(e).

Given a path going from ω0 to ωn, all the edges e in between ω0 and ωn pointing in

the direction of ωn, which we denote by E(ω0, ωn), are traversed one time more than

their reverse edges, while all other edges are traversed as often as their reverse edges.

Therefore we obtain, assuming w.l.o.g. that ωn > ω0 (or θ > 0),

log
P ξ(Θω)
P ξ(ω)

=
∑

e∈E(ω0,ωn)

log
p

n+1−t
Ne(ω)
e (ω)

(e)

p
t
Ne(ω)
e (ω)

(e)

+
∑

e∈E+(ω)

Ne(ω)∑
j=1

log
(p

n+1−tje(ω)
(e)p

n+1−tje(ω)
(e)

p
tje(ω)

(e)p
tje(ω)

(e)

)
.

(4.75)

In the static random environment we have pn(e) = p0(e) for all n ∈ N and e ∈ E(ω),

and hence the second sum in (4.75) is identically zero, while by the ergodic theorem the

first sum equals

(ωn − ω0)〈log[p0(1, 0)/p0(0, 1)]〉νρ + o(n) (4.76)

= (ωn − ω0)(2ρ− 1) log(p/q) + o(n), n→∞,

where νρ is the Bernoulli product measure on Ω with density ρ (which is the law that is
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typically chosen for the static random environment). In the dynamic random environ-

ment, both sums in (4.75) still look like ergodic sums, but since in general

p
tje(ω)

(e) 6= ptie(ω)(e), i 6= j, (4.77)

we have to use space-time ergodicity.

2. Space-time ergodicity

Rewrite (4.75) as

log
P ξ(Θω)
P ξ(ω)

=
∑

e∈E(ω0,ωn)

log p
n+1−t

Ne(ω)
e (ω)

(e)−
∑

e∈E(ω0,ωn)

log p
t
Ne(ω)
e (ω)

(e)

+
∑

e∈E+(ω)

log pn+1−t1e(ω)(e) +
∑

e∈E+(ω)

log pn+1−t1e(ω)(e)

−
∑

e∈E+(ω)

log pt1e(ω)(e)−
∑

e∈E+(ω)

log pt1e(ω)(e)

+
∑

e∈E+(ω)

Ne(ω)∑
j=2

log
(p

n+1−tje(ω)
(e)p

n+1−tje(ω)
(e)

p
tje(ω)

(e)p
tje(ω)

(e)

)
,

(4.78)

and note that all the sums in (4.78) are of the form

N∑
i=1

log pt(i)(ω0 + i) =


(log p)

N∑
i=1

ξti(ω0 + i) + (log q)
N∑

i=1

[1− ξti(ω0 + i)],

(log q)
N∑

i=1

ξti(ω0 + i) + (log p)
N∑

i=1

[1− ξti(ω0 + i)],

(4.79)

where ti = t((i, i + 1)), with t = t(ω) : {0, 1, . . . , N} → {0, 1, . . . , n} either strictly

increasing or strictly decreasing with image set In(t) ⊂ {0, 1, . . . , n} such that |In(t)| is
of order n. Note that N = N(ω) = |E(ω0, ωn)| = ωn − ω0 = bθnc in the first two sums

in (4.78), N = N(ω) = |E+(ω)| ≥ ωn − ω0 = bθnc in the remaining sums, and

|tj − ti| ≥ j − i, j > i. (4.80)

The aim is to show that

lim
N→∞

1
N

N∑
i=1

log pti(i) = 〈log p0(0)〉µ = ρ log p+ (1− ρ) log q ξ-a.s. for all ω (4.81)
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or, equivalently,

lim
N→∞

1
N

N∑
i=1

ξti(i) = 〈ξ0(0)〉µ = ρ ξ-a.s. for all ω, (4.82)

where, since we take the limit N → ∞, we think of ω as an infinite path in which the

n-step path (ω0, . . . , ωn) with ω0 = 0 and ωn = bθnc is embedded. Because Pµ is tail

trivial (recall (4.7)) and limi→∞ ti =∞ for all ω by (4.80), the limit exists ξ-a.s. for all

ω. To prove that the limit equals ρ we argue as follows. Write

VarP µ

(
1
N

N∑
i=1

ξti(i)
)

=
ρ(1− ρ)

N
+

2
N2

N∑
i=1

∑
j>i

CovP µ(
ξti(i), ξtj (j)

)
. (4.83)

By (4.5), we have

CovP µ(
ξti(i), ξtj (j)

)
= CovP µ(

ξ0(0), ξ|tj−ti|(j − i)
)
. (4.84)

In view of (4.80), it therefore follows that

lim
k→∞

sup
l≥k

CovP µ(
ξ0(0), ξl(k)

)
= 0 =⇒ lim

N→∞
VarP µ

(
1
N

N∑
i=1

ξti(i)
)

= 0. (4.85)

But the l.h.s. of (4.85) is true by the tail triviality of Pµ.

3. Implication for the rate function

Having proved (4.81) holds, we can now use (4.78)–(4.79) and (4.81)–(4.82) to obtain

P ξ(Θω)
P ξ(ω)

= exp{A(ωn − ω0) + o(n)} with A = (2ρ− 1) log (p/q). (4.86)

Thus, the probability that the walk moves from 0 to bθnc in n steps is given by

P ξ(ωn = bθnc | ω0 = 0) =
∑

ω : |ω|=n
ω0=0,ωn=bθnc

P ξ(ω)

=
∑

ω : |ω|=n
ω0=0,ωn=bθnc

P ξ(Θω) e−Abθnc+o(n) (4.87)

= e−Abθnc+o(n)
∑

ω : |ω|=n
ω0=bθnc,ωn=0

P ξ(ω)

= e−Abθnc+o(n) P ξ(ωn = 0 | ω0 = bθnc).



88
4. Large deviation principle for one-dimensional RWs in dynamic REs: attractive

spin-flips and simple symmetric exclusion

Since the quenched rate function is ξ-a.s. constant, we have

P ξ(ωn = bθnc | ω0 = 0) = P ξ
0 (Xn = bθnc) = e−nIque(θ)+o(n),

P ξ(ωn = 0 | ω0 = bθnc) = P
τbθncξ
0 (Xn = −bθnc) = e−nIque(−θ)+o(n),

(4.88)

and hence
1
n

log
(
P ξ(ωn = bθnc | ω0 = 0)
P ξ(ωn = 0 | ω0 = bθnc)

)
→ −Ique(θ) + Ique(−θ). (4.89)

Together with (4.87), this leads to the symmetry relation

− Ique(θ) + Ique(−θ) = −Aθ. (4.90)

4. From discrete to continuous time

Let χ = (χn)n∈N0 denote the jump times of the continuous-time random walk X =

(Xt)t≥0 (with χ0 = 0). Let Q denote the law of χ. The increments of χ are i.i.d. random

variables, independent of ξ, whose distribution is exponential with mean 1/(α + β).

Define
ξ∗ = (ξ∗n)n∈N0 with ξ∗n = ξχn ,

X∗ = (X∗
n)n∈N0 with X∗

n = Xχn .
(4.91)

Then X∗ is a discrete-time random walk in a random environment ξ∗ of the type con-

sidered in Steps 1–3, with p = α/(α + β) and q = β/(α + β). The analogue of (4.82)

reads

lim
N→∞

1
N

N∑
i=1

ξχti
(i) = ρ ξ, χ-a.s. for all ω, (4.92)

where we use that the law of χ is invariant under permutations of its increments. All

we have to do is to show that

lim
N→∞

EQ

(
VarP µ

(
1
N

N∑
i=1

ξχti
(i)
))

= 0. (4.93)

But

EQ
(
CovP µ(

ξχti
(i), ξχtj

(j)
))

= EQ
(
CovP µ(

ξ0(0), ξ|χtj−χti |(j − i)
))
, (4.94)

while (4.80) ensures that limj→∞ |χtj −χti | → ∞ χ-a.s. for all ω as j− i→∞. Together

with the tail triviality of Pµ assumed in (4.7), this proves (4.93).
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4.4 Proof of Theorem 4.4

In Section 4.4.1 we show that the simple symmetric exclusion process suffers traffic jams.

In Section 4.4.2 we prove that these traffic jams cause the slow-down of the random walk.

4.4.1 Traffic jams

In this section we derive two lemmas stating that long strings of occupied and vacant sites

have an appreciable probability to survive for a long time under the simple symmetric

exclusion dynamics, both when they are alone (Lemma 4.15) and when they are together

but sufficiently separated from each other (Lemma 4.16). These lemmas, which are

proved with the help of the graphical representation, are in the spirit of [2].

In the graphical representation of the simple symmetric exclusion process, space is drawn

sidewards, time is drawn upwards, and for each pair of nearest-neighbor sites x, y ∈ Z
links are drawn between x and y at Poisson rate 1. The configuration at time t is

obtained from the one at time 0 by transporting the local states along paths that move

upwards with time and sidewards along links (see Fig. 4.5).

x

y

0

t

→
←

←

↑

↑

↑

↑

r

r

Zd

Figure 4.5: Graphical representation. The dashed lines are links. The arrows repre-
sent a path from (x, 0) to (y, t).

Lemma 4.15. There exists a C = C(ρ) > 0 such that, for all Q ⊂ Z and all t ≥ 1,

P νρ
(
ξs(x) = 0 ∀x ∈ Q ∀ s ∈ [0, t]

)
≥ e−C|Q|

√
t. (4.95)

Proof. Denote by G the graphical representation. Let

HQ
t =

{
x ∈ Z : ∃ path in G from (x, 0) to Q× [0, t]

}
. (4.96)

Note that HQ
0 = Q and that t 7→ HQ

t is non-decreasing. Denote by P and E , respectively,

probability and expectation w.r.t. G. Let V0 = {x ∈ Z : ξ0(x) = 0} be the set of initial
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locations of the vacancies. Then

P νρ
(
ξs(x) = 0 ∀x ∈ Q ∀ s ∈ [0, t]

)
= (P ⊗ νρ)

(
HQ

t ⊂ V0

)
. (4.97)

Indeed, if ξ0(x) = 1 for some x ∈ HQ
t , then this 1 will propagate into Q prior to time t

(see Fig. 4.6).

x
0

t

[ ]Q −→←−

→
→

→

↑
↑

↑

r

r

Figure 4.6: A path from (x, 0) to Q× [0, t].

By Jensen’s inequality,

(P ⊗ νρ)
(
HQ

t ⊂ V0

)
= E

(
(1− ρ)|H

Q
t |) ≥ (1− ρ)E(|HQ

t |). (4.98)

Moreover, since HQ
t = ∪x∈QH

x
t and E(|Hx

t |) does not depend on x, we have

E(|HQ
t |) ≤ |Q| E(|H0

t |), (4.99)

and, by time reversal, we see that

E(|H0
t |) =

∑
x∈Z
P
(
∃ path in G from (x, 0) to {0} × [0, t]

)
=
∑
x∈Z

PSRW
0 (τx ≤ t) = ESRW

0 (|Rt|),
(4.100)

where PSRW
0 is the law of simple symmetric random walk jumping at rate 1 starting from

0, Rt is the range (= number of distinct sites visited) at time t and τx is the first hitting

time of x. Combining (4.97)–(4.100), we get

P νρ
(
ξs(x) = 0 ∀x ∈ Q ∀ s ∈ [0, t]

)
≥ (1− ρ)|Q|ESRW

0 (|Rt|). (4.101)

The claim now follows from the fact that R0 = 1 and ESRW
0 (|Rt|) ∼ C ′√t as t → ∞ for

some C ′ > 0 (see [82], Section 1).
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Lemma 4.16. There exist C = C(ρ) > 0 and δ > 0 such that, for all intervals Q,Q′ ⊂ Z
separated by a distance at least 2

√
t log t and all t ≥ 1,

P νρ
{
ξs(x) = 1, ξs(y) = 0 ∀x ∈ Q ∀ y ∈ Q′ ∀ s ∈ [0, t]

}
≥ δ e−C(|Q|+|Q′|)

√
t. (4.102)

Proof. Recall (4.96) and abbreviate At = {HQ
t ∩H

Q′

t = ∅}. Similarly as in (4.97)–(4.98),

we have

l.h.s.(4.102) = (P ⊗ νρ)(At) = E
(
1At ρ

|HQ
t | (1− ρ)|H

Q′
t |). (4.103)

Both |HQ
t | and |HQ′

t | are non-decreasing in the number of arrows in G, while 1At is

non-increasing in the number of arrows in G. Therefore, by the FKG-inequality ([63],

Chapter II), we have

E
(
1At ρ

|HQ
t |(1− ρ)|H

Q′
t |) ≥ P(At) E

(
ρ|H

Q
t |) E((1− ρ)|HQ′

t |). (4.104)

We saw in the proof of Lemma 4.15 that, for t ≥ 1 and some C > 0,

E
(
ρ|H

Q
t |) E((1− ρ)|HQ′

t |) ≥ e−C(|Q|+|Q′|)
√

t. (4.105)

Thus, to complete the proof it suffices to show that there exists a δ > 0 such that

P(At) ≥ δ for t ≥ 1. (4.106)

To that end, let q = max{x ∈ Q}, q′ = min{x′ ∈ Q′} (where without loss of generality

we assume that Q lies to the left of Q′). Then, using that Q,Q′ are intervals, we may

estimate (see Fig. 4.6)

P([At]c) = P
(
∃ z ∈ Z : (z, 0)→ ∂Q× [0, t], (z, 0)→ ∂Q′ × [0, t]

)
≤
∑
x∈∂Q

x′∈∂Q′

t∫
0

[
P
(
∃ z ∈ Z : (z, 0)→ x× [s, s+ ds], (x, s)→ x′ × [s, t]

)
+ P

(
∃ z ∈ Z : (z, 0)→ x′ × [s, s+ ds], (x′, s)→ x× [s, t]

)]
=
∑
x∈∂Q

x′∈∂Q′

t∫
0

[
P
(
∃ z ∈ Z : (z, 0)→ x× [s, s+ ds]

)
P
(
(x, s)→ x′ × [s, t]

)
+ P

(
∃ z ∈ Z : (z, 0)→ x′ × [s, s+ ds]

)
P
(
(x′, s)→ x× [s, t]

)]
≤4

t∫
0

P
(
∃ z ∈ Z : (z, 0)→ 0× [s, s+ ds]

)
P
(
(0, 0)→ q′ − q × [0, t− s]

)
≤ 4 ESRW

0 (|Rt|) PSRW
0 (τq′−q ≤ t),

(4.107)
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where the last inequality uses (4.100). We already saw that ESRW
0 (|Rt|) ∼ C ′√t as

t → ∞. By using, respectively, the reflection principle, the fact that q′ − q ≥ 2
√
t log t,

and the Azuma-Hoeffding inequality (see [96], (E14.2)), we get

PSRW
0 (τq′−q ≤ t) = 2PSRW

0 (St ≥ q′ − q) ≤ 2PSRW
0 (St ≥ 2

√
t log t)

≤ 2 exp
{
−4t log t

2t

}
=

2
t2
. (4.108)

Combining (4.107)–(4.108), we get P([At]c) ≤ 2C ′/t3/2, which tends to zero as t → ∞.

This proves the claim in (4.106), because P(At) > 0 for all t ≥ 0.

4.4.2 Slow-down

We are now ready to prove Theorem 4.4. The proof comes in two lemmas.

Lemma 4.17. For all ρ ∈ (0, 1) and C > 1/ log(α/β),

lim
t→∞

1
t

log Pνρ,0(Xt ≤ C log t) = 0,

lim
t→∞

1
t

log Pνρ,0(Xt ≥ −C log t) = 0.
(4.109)

Proof. To prove the first half of (4.109), the idea is to force ξ to vacate an interval of

length C log t to the right of 0 up to time t and to show that, with probability tending

to 1 as t → ∞, X does not manage to cross this interval up to time t when C is large

enough.

For t > 0, let Lt = C log t and

Et =
{
ξs(x) = 0 ∀x ∈ [0, Lt] ∩ Z ∀ s ∈ [0, t]

}
. (4.110)

By Lemma 4.15 we have, for some C ′ > 0 and t large enough,

P νρ(Et) ≥ e−C′√t log t. (4.111)

Hence

Pνρ,0(Xt ≤ Lt) ≥ Pνρ,0(Xt ≤ Lt | Et)P νρ(Et)

≥ Pνρ,0(Xt ≤ Lt | Et) e−C′√t log t. (4.112)

To complete the proof it therefore suffices to show that

lim
t→∞

Pνρ,0(Xt ≤ Lt | Et) = 1. (4.113)
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Let τLt = inf{t ≥ 0: Xt > Lt}. Then {Xt ≤ Lt | Et} ⊃ {τLt > t | Et}, and so it suffices

to show that

lim
t→∞

Pνρ,0(τLt > t | Et) = 1. (4.114)

We say that X starts a trial when it enters the interval [0, Lt] ∩ Z from the left prior.

We say that the trial is successful when X hits Lt before returning to 0. Let M(t) be the

number of trials prior to time t, and let An be the event that the n-th trial is successful.

Since

{τLt ≤ t} ⊂
M(t)∪
n=1

An, (4.115)

we have

Pνρ,0 (τLt ≤ t | Et) ≤ Pνρ,0

M(t)∪
n=1

An

∣∣∣Et


≤ Pνρ,0

 2(α+β)t∪
n=1

An, M(t) ≤ 2(α+ β)t
∣∣∣Et


+ Pνρ,0 (M(t) > 2(α+ β)t | Et) .

(4.116)

We will show that both terms in the r.h.s. tend to zero as t→∞.

To estimate the second term in (4.116), let N(t) be the number of jumps by X prior to

time t, which is Poisson distributed with mean (α+ β)t and is independent of ξ. Since

N(t) ≥M(t), it follows that

Pνρ,0

(
M(t) > 2(α+ β)t | Et

)
≤ Poi

(
N(t) > 2(α+ β)t

)
, (4.117)

which tends to zero as t → ∞. To estimate the first term in (4.116), note that, since

Pνρ,0(An | Et) is independent of n, we have

Pνρ,0

 2(α+β)t∪
n=1

An, M(t) ≤ 2(α+ β)t
∣∣∣Et


≤ Pνρ,0

 2(α+β)t∪
n=1

An

∣∣∣Et

 ≤ 2(α+ β)t Pνρ,0 (A1 | Et) .

(4.118)

But Pνρ,0

(
A1 | Et

)
is the probability that the random walk on Z that jumps to the right

with probability β/(α + β) and to the left with probability α/(α + β) hits Lt before 0

when it starts from 1. Consequently,

2(α+ β)t Pνρ,0

(
A1 | Et

)
= 2(α+ β)t

(α/β)− 1
(α/β)Lt − 1

, (4.119)
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which tends to zero as t→∞ when Lt > C log t with C > 1/ log(α/β). This completes

the proof of the first half of (4.109).

To get the second half of (4.109), note that −Xt is equal in distribution to Xt when ρ

is replaced by 1− ρ.

Lemma 4.18. For all ρ ∈ (0, 1),

lim
t→∞

1
t

log Pνρ,0(|Xt| ≤ 2
√
t log t) = 0. (4.120)

Proof. The idea is to create a trap around 0 by forcing ξ up to time t to vacate an

interval to the right of 0 and occupy an interval to the left of 0, separated by a suitable

distance.

0

Q1 Q2

−Mt Mt

Figure 4.7: Location of the intervals Q1 and Q2. The width of Q1, Q2 is 2Lt. The
interval spanning Q1, Q2 and the space in between is It.

For t > 0, let Lt = C log t with C > log(α/β), Mt =
√
t log t,

Q1 =
(
−Mt + [−Lt, Lt]

)
∩ Z, Q2 =

(
Mt + [−Lt, Lt]

)
∩ Z, (4.121)

and It = [−Mt − Lt,Mt + Lt] ∩ Z (see Fig. 4.7). For i = 1, 2 and j = 0, 1, define the

event

Ej
i =

{
ξs(x) = j ∀x ∈ Qi, ∀ s ∈ [0, t]

}
. (4.122)

Estimate, noting that Lt ≤Mt for t large enough,

Pνρ,0

(
|Xt| ≤ 2Mt

)
≥ Pνρ,0

(
Xt ∈ It

)
≥ Pνρ,0

(
Xt ∈ It, E1

1 , E
0
2

)
= Pνρ,0

(
Xt ∈ It | E1

1 , E
0
2

)
Pνρ,0

(
E1

1 , E
0
2

)
.

(4.123)

Since limt→∞
1
t log Pνρ,0

(
E1

1 , E
0
2

)
= 0 by Lemma 4.16, it suffices to show that

lim
t→∞

Pνρ,0

(
Xt ∈ It | E1

1 , E
0
2

)
= 1. (4.124)

To that end, estimate

Pνρ,0

(
Xt ∈ It | E1

1 , E
0
2

)
≥ Pνρ,0

(
Xt ≤Mt + Lt | E1

1 , E
0
2

)
+ Pνρ,0

(
Xt ≥ −Mt − Lt | E1

1 , E
0
2

)
− 1.

(4.125)
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Now, irrespective of what ξ does in between Q1 and Q2 up to time t, the same argument

as in the proof of Lemma 4.17 shows that

lim
t→∞

Pνρ,0

(
Xt ≤Mt + Lt | E1

1 , E
0
2

)
= 1,

lim
t→∞

Pνρ,0

(
Xt ≥ −Mt − Lt | E1

1 , E
0
2

)
= 1.

(4.126)

Combine this with (4.125) to obtain (4.124).





Chapter 5

Law of large numbers for

one-dimensional transient RW on

the exclusion process

5.1 Introduction and result

In this chapter we present some results from an ongoing project with R.S. dos Santos

and F. Völlering.

5.1.1 Slow-mixing REs and the exclusion process

In Chapter 2 we derived a LLN for the RW in (2.6) when the dynamic RE has the

cone-mixing property in Definition 2.1. In particular, Theorem 2.2 holds for the more

general model in Section 1.3.2 in which the RW X has two different (not only opposite)

drifts α0 − β0 and α1 − β1 on top of holes and particles, respectively. The weak point

of Theorem 2.2 is that many natural and interesting examples of dynamic REs are not

cone-mixing, e.g., conservative dynamics like the exclusion process or, more generally,

Kawasaki dynamics.

It is worthwhile to investigate examples of slow-mixing REs, because significantly dif-

ferent behavior may occur compared to fast-mixing REs, such as cone-mixing REs.

Indeed, in Chapter 4 we have already met the case of a RW X on the one-dimensional

simple symmetric exclusion (SSE) with opposite drifts on top of particles and holes (i.e.,

α1 − β1 = β0 − α0). In particular, in Section 4.1.4 we presented the results of some

simulations for the asymptotic speed of X, which suggest that X is recurrent if and only
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if ρ = 1
2 , and that X is ballistic as soon as it is transient. Thus, the transient regime

with zero speed, which is known to occur for static REs (see Section 1.1.1.1), does not

survive in the dynamic setup, because even a ‘slow’ motion of the particles in the RE

makes it hard for a ‘trap’ to survive. Nevertheless, similarly to the one-dimensional

static RE and in contrast to the fast-mixing dynamic RE, Proposition 4.4 shows that

when we look at large deviation estimates for the empirical speed of X, the slow-mixing

properties of the exclusion process allow for a ‘trap’ to persist up to time t with a prob-

ability that is decaying sub-exponentially in t. Furthermore, similarly to the static RE

(see Section 1.1.1.2), we may expect a sub-diffusive scaling limit for X to occur at least

in the recurrent case, i.e., for ρ = 1
2 .

These results and observations motivate the interest in slow-mixing REs. In this chapter

we prove a LLN under a somewhat strong drift condition, which represents a small step

forward. At the end we mention some further extensions that are still part of a work in

progress.

5.1.2 Model and main theorem

Consider a dynamic RE ξ constituted by a SSE (see Section 4.1.3) starting from a

Bernoulli product measure νρ of density ρ. Let

X = (X)t≥0 (5.1)

be the RW in dynamic RE defined in Section 1.3.2, under the the following drift condi-

tions:

α1 > α0 > β0 > β1 > 0, α1 + β1 = α0 + β0, α0 − β0 > 1. (5.2)

Note that the jump rate of the SSE equals 1 and that the latter condition implies

lim inf
t→∞

Xt/t ≥ α0 − β0 > 1 Pνρ,0 − a.s. (5.3)

Theorem 5.1. Assume (5.2). Then, for any ρ ∈ (0, 1), there exists a constant v > 1

such that

lim
t→∞

Xt/t = v Pνρ,0 − a.s. (5.4)

5.2 Proof of Theorem 5.1

The main idea in the proof is that, under the third condition in (5.2), X travels to the

right faster than the ‘information’ in the RE. As a consequence, it is possible to construct
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certain regeneration times at which the RE to the right of X is freshly sampled from its

equilibrium distribution.

5.2.1 Coupling and minimal walker

In this section we show that the RW X defined in (5.1) can be constructed from an

independent homogeneous RW and the RE. In particular, the following construction is

valid for any general dynamic RE constituted by an IPS ξ = (ξt)t≥0.

Let M = (Mt)t≥0 be a homogeneous continuous-time RW with jump rates α0 and β0,

to the right and to the left, respectively. Let (bn)n∈N an i.i.d. sequence of Bernoulli

random variables with parameter (α1 − α0)/β0. The path of the RW X in (5.1) can be

constructed as a function of

(M, (bn)n∈N, ξ) (5.5)

by using the following rules:

1. M0 = X0 = 0.

2. X jumps only when M jumps.

3. If Mt jumps to the right at time t, then so does Xt.

4. If Mt jumps to the left at time t and Xt is on top of a hole, i.e., ξt(Xt) = 0, then

Xt jumps to the left too.

5. If Mt jumps to the left at time t and X is on top of a particle, i.e., ξt(Xt) = 1,

then Xt jumps to the right when an independent Bernoulli trial with parameter

(α1 − α0)/β0 succeeds, and jumps to the left otherwise.

Denote by (
P̃ ,Γ,Ft

)
(5.6)

the probability space associated with (5.5), with

Ft = σ ({Ms}s≤t, {bn}n≤mt , {ξs}s≤t) , (5.7)

where mt is the number of jumps of M up to time t, which is distributed according to

a Poisson random variable with parameter (α0 + β0)t.

By construction, for any t ≥ 0,

Mt ≤ Xt P̃ − a.s. (5.8)
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We are therefore justified to call M the minimal walker.

5.2.2 Graphical representation: symmetric exclusion as an interchange

process

The interchange process γ = (γt)t≥0 on Z is a process, taking values on the permutations

of Z, that can be defined through a graphical representation as follows. Start with a

permutation γ0. We call the state of the coordinates of γ ‘agents’. We take γ0 to be

the identity, i.e., the agents are (. . . ,−2,−1, 0, 1, 2, . . .). Associate to each non-directed

nearest-neighbor edge (x, x+ 1) in Z an independent Poisson clock Ix,x+1 = (Ix,x+1
t )t≥0

ticking at rate 1. Denote by

I = {Ix,x+1 : x ∈ Z} (5.9)

the set of all those clocks. Then γt is obtained from γ0 by exchanging the labels of x

and x + 1 each time the Poisson clock Ix,x+1 rings. In particular, γt(x) ∈ Z represents

the starting position of the agent who at time t is at site x.

↔
↔

↔

↔

↔

↔

↔

↔

γt(x)

x

0

t

Zdr

r

Figure 5.1: Graphical representation. The dashed lines are the links given by the
realization of I. The thick line represents the path of the agent γt(x).

Given the interchange process γ, the simple symmetric exclusion process (SSE) (see

Section 4.1.3) ξ = (ξt)t≥0 on Z starting from a configuration η ∈ Ω = {0, 1}Z can be

obtained from γ by putting ξt(x) = η(γt(x)).

The interpretation is that, in the interchange process, the agents move around in the

lattice by exchanging their places with their nearest neighbors. For exclusion, we choose

one of two states for these agents at the start (1 or 0, which we refer to as ‘particle’ and

‘hole’) and assign the state of a site at a later time as the initial state of the agent who

is there at this time.

Next, recall (5.5). By the coupling with the minimal walker M of the previous section,

we have that, for any starting configuration η ∈ Ω, X is a function of

(M, (bn)n∈N, I) and η, (5.10)
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where, in the coupling space (5.6), Ft is given by

Ft = σ ({Ms}s≤t, {bn}n≤mt , {Is}s≤t) . (5.11)

In particular, if we consider ζ, η ∈ Ω such that ζ � η (where � denotes the partial order

on Ω), then for any t ≥ 0 we have by construction

Mt ≤ Xt(η) ≤ Xt(ζ) P̃ − a.s., (5.12)

where Xt(η) and Xt(ζ) represent the RW starting from η and ζ, respectively.

5.2.3 Marked agents set

As the RW X moves, it will meet the agents of the interchange process. Sometimes, due

to the coupling with the minimal walker, it will not need to know their state in order to

proceed, i.e., when the minimal walker M goes to the right. If M goes to the left, then

X will have to ‘ask’ the agent at its current position what is its state to know how to

move. We say that at this time X and the agent ‘meet’, and we call an agent marked

at time t if it has met X at some time s ≤ t. For any t ≥ 0, we can define At to be the

set of marked agents up to time t. For reasons that will become clear at the end of this

section, we add to this marked agents set all the agents x ≤ 0.

Formally, define A0 = {x ∈ Z : x ≤ 0}, let t be a time at which Mt jumps to the left,

and put

At = At− ∪ {γt(Xt)}. (5.13)

Next, let

U1 = inf{t > 0: Mt 6= 0} = inf{t > 0: Xt 6= 0} (5.14)

and define

τ0 = inf
{
t ≥ U1 : Xt > max{x ∈ Z : γt(x) ∈ At}

}
, (5.15)

i.e., the first time such that all the sites with marked agents are to the left of Xt.

Lemma 5.2. Let τ0 be as in (5.15) and denote by Ẽ the expectation w.r.t. P̃ . Then

Ẽ[τ2
0 ] <∞.

Proof. Let

Y = (Yt)t≥0 (5.16)
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be a path starting from 0 that jumps to the right according to the realization of the

process I in (5.9), see Figure 5.2.

↔

↔

↔

↔

↔

↔

↔

↔

0

t

0
−3 −2 −1

Yt

r r r r

rr

Zd

Figure 5.2: As in Figure 5.1, the dashed lines are links given by the realization of I.
The path Y starts at the origin and goes only to the right following the links determined

by I.

Then Y is distributed according to a Poisson process with rate 1.

Denote by γ−1(x) =
(
γ−1

t (x)
)
t≥0

the path of the agent x. By construction, for any x ≤ 0

and t ≥ 0, γ−1
t (x) ≤ Yt. Furthermore, let S1 = inf{t > 0: Mt − Yt > 0}, and note that

τ0 ≤ S1. (5.17)

Recalling that the minimal walker M is independent of the RE, while Y is a function of

the RE, we have that Z = (Zt)t≥0 with Zt = Mt−Yt is a continuous-time homogeneous

RW, starting from the origin, that jumps to the right at rate α0 and to the left at rate

β0 +1. Since α0−β0 > 1 by the third condition in (5.2), Z is transient to the right with

positive speed α0 − β0 − 1 > 0. Thus, E[S2
1 ] <∞, and the claim follows from (5.17).

The crucial point, which we state in the next proposition, is that if we start from a

configuration η ∈ Ω sampled from νρ to the right of the origin, then, no matter what is

η to the left of the origin, the RW X at time τ0 will still see to its right a configuration

that is freshly sampled from νρ. Such a fact is related to the nature of the SSE and its

construction from the interchange process, and it is the main ingredient for the proof of

the LLN.

Let Z>0 = {x ∈ Z : x > 0}, and put Z≤0 = Z \Z>0. Given ζ ∈ {0, 1}Z≤0 , let ν(ζ)
ρ be the

product measure of single site measures on Ω given by

ν(ζ)
ρ (η(x) = ζ(x)) = 1, if x ∈ Z≤0,

ν(ζ)
ρ (η(x) = 1) = ρ, otherwise,

(5.18)

i.e., ν(ζ)
ρ coincides with νρ on {0, 1}Z>0 , and is the delta measure δζ on {0, 1}Z≤0 .
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Proposition 5.3. For any ζ ∈ {0, 1}Z≤0, let ξ be the SSE starting from ν
(ζ)
ρ , and denote

by P
ν
(ζ)
ρ ,0

the law P̃ when the starting configuration η is sampled from ν
(ζ)
ρ . Then, for

any finite B ⊂ {0, 1}Z>0,

P
ν
(ζ)
ρ ,0

(
ξτ0(Xτ0 + ·) ∈ B | (Xt)t≤τ0

)
= νρ(B), (5.19)

i.e., the SSE at time τ0 to the right of Xτ0 is independent of (Xt)t≤τ0, and is distributed

according to νρ.

Proof. (Xt)t≤τ0 is a function of (Mt)t≤τ0 , {bn}n≤mτ0
, (It)t≤τ0 (see (5.10)), and the state

of the agents belonging to Aτ0 . Therefore (Xt)t≤τ0 is independent of {ξ0(x) : x ∈ Z\Aτ0}.
By the definition of τ0, γτ0(x) ∈ Z>0\Aτ0 , for all x > Xτ0 . Therefore, since ν(ζ)

ρ coincides

with νρ on {0, 1}Z>0 , it follows that ξτ0(x) is a Bernoulli random variable with parameter

ρ for x > Xτ0 .

5.2.4 Right walker and a sub-additivity argument

Denote by 1 ∈ {0, 1}Z≤0 the configuration with all coordinates equal to 1. Let

R = (Rt)t≥0 (5.20)

be the RW X starting from ν
(1)
ρ . For any ζ ∈ {0, 1}Z≤0 , if we denote by X(ζ) a RW

starting from ν
(ζ)
ρ , then, as a consequence of (5.12), for any t ≥ 0 we have that

Mt ≤ Xt(ζ) ≤ Rt P̃ − a.s. (5.21)

We call R the right walker. We anticipate that in the sequel we first prove that R

satisfies a LLN, and then Theorem 5.1 follows by showing that the limiting speed of the

right walker does not depend on the configuration 1.

We next construct a renewal structure in the coupling space (5.6). The idea of this

construction is that, starting from R and from the τ0 associated to R, we have that, by

Proposition 5.3, at time τ0 the states of the SSE ξ to the right of R(0)
τ0 are distributed

according to νρ. At time τ0 we define a new configuration η(1) of the SSE from ξτ0 , by

replacing all its states to the left of Rτ0 by 1 (i.e., put ξτ0(x) = 1 for x ≤ Rτ0 ), and we

define R(1) to be the RW evolving as X in Section 5.2.1 starting at time τ0 at position

Rτ0 from this new configuration of the SSE. In particular, such R(1) has the following

properties:

1. R(1) is a function of
(
{Mt}t≥τ0 , {bn}n≥mτ0

, {I}t≥τ0

)
and η(1).
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2. By (5.12), R(1) is coupled to R in such a way that Rt+τ0 −Rτ0 ≤ R
(1)
t for t ≥ 0.

3. R and
(
R

(1)
t −R

(1)
0

)
t≥0

have the same distribution.

We can then repeat the same argument to construct a new RW R(n) from R(n−1) for

any n ∈ N.

More precisely, let η(0) ∈ Ω be a configuration sampled from ν
(1)
ρ , set R(0) = R, and

construct inductively the random vector-sequence{(
η(n), R(n), τn

)}
n∈N

, R(n) =
(
R

(n)
t

)
t≥0

, (5.22)

as follows. For n ∈ N, let η(n) ∈ Ω given by

η(n)(x) =

{
η(n−1)

(
γτn−1(x)

)
, if x > R

(n−1)
τn−1 ,

1, otherwise.
(5.23)

For t ≥ τn−1, let R(n) =
(
R

(n)
t

)
t≥0

be the RW evolving according to the rules given for

X in Section 5.2.1, starting from R
(n−1)
τn−1 with initial states of the RE given by η(n).

Let A(n)
t be the marked agents set constructed from R

(n)
t as in (5.13), namely, set

A
(n)
0 =

{
x ∈ Z : x ≤ R(n)

0 = R
(n−1)
τn−1

}
, let t be a time at which Mτn−1+t jumps to the left,

and put

A
(n)
t = A

(n)
t− ∪

{
γt

(
R

(n)
t

)}
. (5.24)

Define

τn = inf
{
t ≥ U1 : R(n)

t > max
{
x ∈ Z : γt(x) ∈ A(n)

t

}}
. (5.25)

As a consequence of this construction, it follows from (5.12) that

R
(n)
t+τn
−R(n)

τn
≤ R(n+1)

t P̃ − a.s. (5.26)

The main advantage is now that, by Proposition 5.3,
{(
η(n), R(n), τn

)}
n∈N is a stationary

sequence.

Lemma 5.4. Let Tn =
∑n

i=1 τn. For integers 0 ≤ m < n, define the double indexed

random variables

R̄m,n = R
(m)
Tn−Tm

. (5.27)

Then there exists a constant c(R) ∈ R such that

lim
n→∞

R̄0,n

n
= lim

n→∞

RTn

n
= c(R) P̃ − a.s. (5.28)
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Proof. The proof relies on the subadditive ergodic theorem of Liggett (see Theorem 1.10

in [63]). By (5.26), for any 0 ≤ m < n, we have

R̄0,n = R̄0,m + (R̄0,n − R̄0,m) ≤ R̄0,m + R̄m,n P̃ − a.s. (5.29)

Moreover, by construction and since
{
(R(n), τn)

}
n∈N is a stationary sequence, for every

n > m, {R̄m+k,n+k}k∈N0 is a sequence of i.i.d. random variables. Therefore, for each

m ∈ N0, the joint distribution of
{
R̄m+1,m+k+1

}
k∈N is the same as that of

{
R̄m,m+k

}
k∈N.

Furthermore, for each k ∈ N, we have that
{
R̄nk,(n+1)k

}
n∈N is a stationary and ergodic

process. Therefore the assumptions of Theorem 1.10 in [63] are satisfied, and the claim

follows.

5.2.5 LLN

Lemma 5.5. There exists a constant v(R) > 1 such that

lim
t→∞

Rt

t
= v(R) P

ν
(1)
ρ ,0
− a.s. (5.30)

Proof. For t ≥ 0, let n(t) be such that

Tn(t) ≤ t < Tn(t)+1. (5.31)

Denote by E
ν
(1)
ρ ,0

the expectation associated to P
ν
(1)
ρ ,0

. By Lemma 5.2, E
ν
(1)
ρ ,0

[τ0] <∞.

Since Tn(t)/n(t) → E
ν
(1)
ρ ,0

[τ0] as n → ∞, dividing by n(t) and taking t → ∞ in (5.31),

we have

lim
t→∞

n(t)
t

=
1

E
ν
(1)
ρ ,0

[τ0]
P

ν
(1)
ρ ,0
− a.s. (5.32)

By Lemma 5.4 and (5.32), we get

lim
t→∞

R
(0)
Tn(t)

t
= lim

t→∞

RTn(t)

n(t)
n(t)
t

=
c(R)

E
ν
(1)
ρ ,0

[τ0]
=: v(R). (5.33)

Since
Rt

t
=
|Rt −RTn(t)

|
t

+
RTn(t)

t
, (5.34)

the claim follows by combining (5.33) and (5.34), and observing that

lim sup
t→∞

|Rt −RTn(t)
|

t
= 0 P

ν
(1)
ρ ,0
− a.s. (5.35)
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To show (5.35) we argue as follows. Note first that R can be coupled with a Poisson

process N = (Nt)t≥0 of rate α0 + β0 such that

Rt ≤ Nt for any t ≥ 0. (5.36)

In particular, it follows from Lemma 5.2 that E
ν
(1)
ρ ,0

[
N2

τ0

]
< ∞, which together with

(5.36) ensures that there exists a constant C ∈ (0,∞) such that

E
ν
(1)
ρ ,0

[
max
t≤τ0
|Rt|2

]
≤ C. (5.37)

By the Markov inequality and (5.37), for any ε > 0 we have

P
ν
(1)
ρ ,0

(
|Rt −RTn(t)

| ≥ εt
)
≤ P

ν
(1)
ρ ,0

(
max

Tn(t)≤t≤Tn(t)+1

|Rt −RTn(t)
| ≥ εt

)

= P
ν
(1)
ρ ,0

(
max
t≤τ0
|Rt| ≥ εt

)
≤

E
ν
(1)
ρ ,0

[
max
t≤τ0
|Rt|2

]
(εt)2

≤ C(εt)−2.

(5.38)

Finally, (5.35) follows from (5.38) and the Borel-Cantelli lemma.

Next, let 0 ∈ {0, 1}Z≤0 be the configuration with all coordinates equal to 0. Let

L = (Lt)t≥0 (5.39)

be the RW X starting from ν
(0)
ρ .

For any ζ ∈ {0, 1}Z≤0 , if we denote by X(ζ) the RW starting from ν
(ζ)
ρ , then, as a

consequence of (5.12), for any t ≥ 0 we have that

Mt ≤ Lt ≤ Xt(ζ) ≤ Rt P̃ − a.s. (5.40)

Note that by repeating the same argument as in Section 5.2.4 and in the proof of Lemma

5.5 for the left walker L, we get that there exists a constant v(L) > 1 such that

lim
t→∞

Lt

t
= v(L) P

ν
(0)
ρ ,0
− a.s.

The only difference is that in Lemma 5.5 we obtain super-additivity instead of sub-

additivity. Finally, by observing that v(R) = v(L), Theorem 5.1 follows from (5.40).
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To see this latter observation we argue as follows. As both L and R are identical if they

do not encounter an agent from the left of the origin, the associated speeds are the same

on this event. Thus, if this event is not a null-set, then, as the speeds are a.s. constants

on the whole space, we obtain v(R) = v(L). To show that the latter event has positive

probability, recall the RW Y in (5.16) and observe that the event that L and R do not

encounter an agent from the left of the origin includes the event {Mt > Yt, ∀t ≥ 0},
which has positive probability due to the third drift condition in (5.2).

5.3 Concluding remarks

The assumption that the total jump rates of X are the same on top of particles or

holes (i.e., α0 + β0 = α1 + β1 in (5.2)) is not relevant for the proof and can be easily

dropped by constructing a different coupling with the minimal walker in Section 5.2.1,

and essentially keeping the rest of the proof unchanged. We made this assumption just

to avoid cumbersome notations.

The proof of Theorem 5.1 is simple and uses the specific nature of the SSE. Indeed, we

exploited the graphical representation of the SSE, in particular, its construction from

the interchange process, to ensure the integrability of the time τ0 in (5.15) and to ensure

that the sequence in (5.22) is stationary.

We are currently working on extensions of Theorem 2.2 for a larger class of dynamic RE

under strong drift assumptions as in (5.3), namely, for dynamic RE in which, intuitively,

the ‘information’ travels to the right slower than the minimal drift of X. If we consider

other dynamic RE, like e.g. an asymmetric exclusion process or a Poissonian field of

independent RWs, then we cannot a priori be sure of the existence of a non-degenerate

integrable time at which X observes to its right a RE in equilibrium. A heavier regener-

ation scheme in the spirit of Chapter 2 seems to be needed. We plan to treat such cases

in future works.
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Samenvatting

Gedurende de afgelopen veertig jaar zijn modellen voor “Random Wandelingen in Ran-

dom Omgevingen” (RWRO) intensief bestudeerd, zowel in de natuurkundige als in de

wiskundige gemeenschap. Dit heeft geleid tot een zeer levendig onderzoeksgebied, dat

een onderdeel is van het grotere onderzoeksgebied van wanordelijke systemen. RWROs

in Zd zijn Random Wandelingen (RWs) die evolueren volgens een random overgangs-

matrix, d.w.z. hun overgangskansen hangen af van een stochastisch veld of proces ξ

op Zd, genaamd Random Omgeving (RO). Wat deze modellen zo interessant maakt is

dat zich, afhankelijk van de RO, verschillende typen verschijnselen kunnen voordoen:

sub-diffusief gedrag, sub-exponentieel vervalvan correlaties of van kansen op grote afwi-

jkingen, en trap-effecten. De ROs kunnen worden onderverdeeld in twee hoofdklassen:

statisch en dynamisch. In een statische RO wordt ξ willekeurig gekozen op tijstip 0

en wordt vervolgens constant gehouden gedurende de tijdsevolutie van de RW. In een

dynamische RO, daarentegen, verandert ξ in de loop van de tijd volgens een van te voren

gekozen stochastisch process.

Statische RO’s in 1 dimensie zijn goed begrepen: recurrentie criteria, wetten van grote

aantallen, invariantie-principes en schattingen voor grote afwijkingen zijn uitgebreid

bestudeerd in een lange reeks van artikelen. Ook in hogere dimensies zijn er vele fraaie

resultaten verkregen, maar tegelijk zijn er nog vele open vragen.

Dynamische RO’s zijn, zelfs in 1 dimensie, nog niet zo ver ontwikkeld. In dit proefschrift

richten we onze aandacht op een klasse van RWs in dynamische ROs bestaande uit een

systeem van deeltjes die onderling met elkaar wisselwerken. De analyse van dit soort

modellen leidt niet alleen tot interessante nieuwe resultaten, maar geeft ook aanleiding

tot het formuleren van uitdagende open vragen voor de toekomst.

Dit proefschrift heeft de volgende opbouw. In hoofdstuk 1 geven we een samenvatting

van de bestaande literatuur voor zowel statische als dynamische ROs. Tevens intro-

duceren we de klasse van modellen waarin we in dit proefschrift geinteresseerd zijn. In

hoofdstuk 1 bewijzen we, onder bepaalde ruimte-tijd-mengingsvoorwaarden, een sterke

wet van de grote aantallen voor ROs in zowel 1 als meer dimensies. Bovendien lei-

den we, met behulp van een verstoringsargument, een reeksontwikkeling af, in termen

van de grootte van de drift, voor de asymptotische snelheid van RWs met een kleine

drift in sterk wanordelijke ROs. Hoofdstuk 3 richt zich op de schalingslimieten van

dergelijke processen. Door een bewijs van Comets en Zeitouni [36] voor statische ROs in

hogere dimensies aan te passen en te vereenvoudigen, bewijzen we, onder een bepaalde

ruimte-tijd-mengingsvoowaarde, een annealed invariantie principe voor iedere dimensie.
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Verder geven we een alternatief bewijs voor dit invariantieprincipe in de context van

sterk wanordelijke ROs.

Hoofdstuk 4 behandelt grote afwijkingen voor de empirische snelheid van 1-dimensionale

RWs in dynamische ROs. We bewijzen een quenched en een annealed grote afwijkingen

principe en we leiden een aantal kwalitatieve eigenschappen van de geassocieerde rate-

functies af. In het bijzonder geven we voorbeelden van snelle en langzaam mengende

ROs, die exponentieel respectievelijk sub-exponentieel gedrag van de grote afwijkingen

kansen vertonen. In hoofdstuk 5 bewijzen we een wet van de grote aantallen voor

transiente RWs voor een RO een symmetrisch exclusieproces is, en sluiten we af met een

korte discussie over mogelijke uitbreidingen naar meer algemene langzaam-mengende

ROs. Het laatste maakt deel uit van een nog lopend project.
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