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Introduction

The subject of this thesis is Resonant Inelastic X-ray Scattering (RIXS), which
is a technique to study, amongst others, the properties of materials. This is
done by making a sort of X-ray photo (called a spectrum) in a synchrotron – a
huge, circular particle accelerator (with a circumference of a few hundred meters)
that produces very high intensity X-rays. These X-ray spectra are compared to
calculations based on various models of the material under study. This way, it is
possible to falsify the models.

An improtant category of materials that are often investigated with RIXS are
the stongly correlated electron materials. To this class belong, for instance, the
high critical temperature superconductors that can conduct an eletrical current
without resistance when they are cooled below the so-called critical temperature.
In this thesis, we calculate and discuss the RIXS spectra for various models
of a range of strongly correlated electron materials, each with its own special
properties.

1.1 Resonant Inelastic X-ray Scattering (RIXS)

1.1.1 What is RIXS?

RIXS is an X-ray ‘photon in – photon out’ technique, meaning that one irradiates
a sample with X-rays, and observes the scattered X-ray photons. In RIXS, one is
only interested in processes in which the photons lose energy (and momentum)
to the sample, leaving it in an excited state. Hence the ‘inelastic’. RIXS is a
resonant technique, meaning that the energy of the incident photons corresponds
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to a certain resonance in the system: an electron from a deep-lying atomic core
state is promoted to an empty state around the Fermi level. An example is the
atomic 1s → 4p transition in Cu2+ ions. After a very short time, the hole in
the core levels (the so-called core hole) is filled by the same or another electron,
producing the outgoing X-ray photon.

The quantities one measures in RIXS are the momentum and energy of the
outgoing photons. Because the energy and momentum of the incident photons
can be chosen by the experimentalist, one can deduce what energy and momen-
tum were left behind in the sample, using conservation laws. Thus RIXS enables
one to measure the dispersion of excitations. In principle, it is also possible to
measure the outgoing photon’s polarization, although this has rarely been done
in practice yet [1]. It would provide additional information on the type of excita-
tions that are created in the RIXS process. Basically all excitations of solids can
be probed by RIXS, ranging from charge, spin, orbital and lattice excitations to
exotic mixed spin-orbital ones. In principle, the only constraint is that the exci-
tations should be overall charge-neutral, as no electrons are added to or removed
from the system.

One might wonder what the advantage is of tuning to a resonance, because the
theoretical treatment of resonant scattering processes is much more complicated
than non-resonant ones. A big advantage is that at resonance, the cross section is
enhanced by many orders of magnitude. Choosing a resonance also gives control
over where in the unit cell excitations are made. Further, the more complicated
scattering process enables one to probe more types of excitations, like magnetic
ones.

Comprehensive overviews of RIXS can be found in Refs. [2] and [3]. Much of
this chapter is published in the latter work.

1.1.2 Direct and indirect RIXS

Excitations can be made in two distinct ways, which are called direct RIXS
and indirect RIXS. Direct RIXS is the simplest of the two: a core electron is
excited into the valence band, and then an electron from another valence state
fills the core hole, emitting an outgoing X-ray photon. The process is illustrated in
Fig. 1.1. The RIXS process creates a valence excitation with momentum ~k−~k′

and energy ~ωk−~ωk′ , where the primed quantities refer to the outgoing photon
and the unprimed ones to the incoming photon.

Indirect RIXS has one extra step compared to direct RIXS: in the intermediate
state, the valence electrons scatter off the core hole. This leads to excitations of
the valence electrons. When the core hole decays, the system is left in an excited
state. This process is shown in Fig. 1.2. The interaction is mediated either by
the Coulomb force of (mainly) the localized core hole, or by the Pauli exclusion
principle. The latter interaction occurs when the photo-excited electron blocks
the movements of the valence electrons. Typically, the photo-excited electron
ends up far above the Fermi level and acts as a spectator, i.e., it does not interact
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Figure 1.1: In the direct RIXS pro-
cess the incoming X-ray photon excites
an electron from a deep-lying core level
into an empty valence level. The empty
core state is then filled by an electron
from the occupied valence states under
the emission of an X-ray. Figure repro-
duced with permission from Ref. [3].

strongly with the valence electrons [4, 5].

energy

photon in

INITIAL

photon out

FINALINTERMEDIATE

valence band
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Uc

Figure 1.2: In an indirect RIXS process, an electron is excited from a deep-
lying core level into the conductance band. Excitations are created through the
Coulomb interaction Uc between the core hole (and in some cases the photo-
excited electron) and the valence electrons. In chapter 4, we show that the
interaction can also be the consequence of the Pauli exclusion principle. Finally,
the core hole is filled by the photo-excited electron. Figure reproduced with
permission from Ref. [3].

1.1.3 Features and limitations of RIXS

RIXS has a number of features that set it apart from other spectroscopic tech-
niques like Angle-Resolved Photo-Emission Spectroscopy (ARPES) and inelastic
neutron scattering:

1. RIXS measures the energy and momentum dependence of excitations in a
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large part, or even all, of the Brillouin zone. This comes about because X-
ray photons have a very high energy and momentum, in contrast to optical
photons (see Sec. 1.1.4). Therefore, the available phase space for RIXS
experiments is huge compared to many other probes.

2. Polarization sensitivity. In principle, it is possible to measure the outgoing
photon’s polarization. This has rarely been done in practice yet [1], though
the incident photon’s polarization is frequently varied. One can make use
of various polarization-related selection rules to characterize the symmetry
and nature of the excitations. It is important to note that a polarization
change of the photon is related to an angular momentum change. Conser-
vation of angular momentum ensures that any angular momentum lost by
the scattered photons has been transferred to the excitations in the solid.

3. Chemical specificity. Varying the energy of the incident photons, it can be
tuned to different resonances, and one can choose which core electron to
excite to which valence orbital. The different resonances are called ‘edges’1.
This makes RIXS not only element-specfic, but also orbital-specific. Fur-
ther, it is possible to tune the incident photons to chemically inequivalent
ions, like in La2−xSrxCuO4, where one can probe either occupied or unoc-
cupied copper ions, see Sec. 4.6. This is possible only if the two chemically
inequivalent sites are resolvable in the X-ray absorption spectrum.

4. Bulk sensitivity. The penetration depth of X-rays depends strongly on their
energy. This depth can be of the order of a few µm in the hard x-ray regime
(i.e., around 10 keV) and of the order of 0.1 µm in the soft x-ray regime
(around 1 keV). This makes RIXS bulk-sensitive: in general, the scattering
takes place far away from the surface of the sample.

5. Small sample volume. Compared to neutron scattering, X-ray scattering
experiments need only very tiny samples. This is because neutron sources
produce much less particles per second per m2 than X-ray synchrotrons.
Further, the interaction of neutrons with the sample is much weaker than
that of X-rays. That RIXS needs only very small samples enables one to
study nano objects or materials that can only be grown in thin films.

There are also a number of limitations to RIXS:

1. The experiments require many incident photons to collect enough scattered
photons in a reasonable time. Higher energy and momentum resolutions
require more time.

1The edges are labelled according to the core electron that is excited: promoting an electron
with principal quantum number n = 1 is called the K edge, n = 2 is called the L edge, n = 3
M edge, etc. [6]
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RIXS spectra of La2CuO4 at Cu L3 edge

‐3 ‐2 ‐1 0 21

(a) 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(b) 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eV

(c) 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(e) 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ΔE=0.13 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Figure 1.3: Progress in RIXS resolu-
tion at the Cu L edge (931 eV). (a)
Ichikawa et al. [7], BLBB @ Photon Fac-
tory (b) Duda et al. [8], I511-3 @ MAX
II, (c) Ghiringhelli et al. [9], AXES @
ID08, ESRF (d) Braicovich et al. [10],
AXES @ ID08, ESRF (e) Braicovich
et al. [11], SAXES @ SLS. Figure by
G. Ghiringhelli and L. Braicovich, re-
produced with permission.

2. Energy resolution. Because there is a huge difference between the energy
scale of the X-ray photons and the energy scale of the elementary excitations
we are interested in, a tremendous resolving power is needed for RIXS
experiments. For example, at the Cu2+ 1s → 4p transition (corresponding
to roughly 9 keV) the resolving power needs to be 105 in order to get an
energy resolution of 90 meV. For a long time, RIXS has been limited to
energy resolutions of the order of 1 eV. However, recent progress in RIXS
instrumentation has been dramatic and this situation is now changing, see
Fig. 1.3.

Note that these two limitations are not independent of each other: a low photon
flux can be one of the factors that limit the energy resolution. (Other factors
that play a role are, e.g., the instrument’s spectrometer or the distribution of the
energy of the incident photons.)

1.1.4 Comparison to other spectroscopies

When one wants to probe the properties of solid state systems, there are many
spectroscopies available, each with its own advantages and disadvantages. In this
section we briefly outline the contrasts of RIXS with some of the more established
experimental techniques of condensed matter physics. We restrict ourselves to
spectrosopies that do not change the total charge of the system.

• IXS. The term inelastic X-ray scattering (IXS) is reserved for non-resonant
processes where the photon scatters inelastically by interacting with the
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charge density of the system. IXS does not involve core holes to excite the
system. It measures the dynamics charge structure factor S(q, ω).

• XAS. X-ray absorption spectroscopy (XAS) is the first step of the RIXS
process: an electron is excited from a core orbital to an empty state, above
the Fermi level. A common way to measure X-ray absorption is to study the
decay products of the core hole that the absorbed X-ray has created, either
by measuring the electron yield from a variety of Auger and higher-order
processes (known as electron yield) or by measuring the radiative decay (flu-
orescence yield). The total fluorescence yield corresponds approximately to
the integration of all possible RIXS processes.

• Raman scattering. Raman scattering with optical or UV photons is con-
fined to zero momentum transfer because of the low energy of these pho-
tons2. It is still possible to probe elementary excitations with non-zero
momentum ~k in an indirect way by exciting two of them: one with mo-
mentum +~k and one with −~k. This is done in, for instance, bimagnon
Raman scattering in the high-Tc cuprates. An advantage of Raman scat-
tering over RIXS is its energy resolution, which not only makes it possible
to probe excitations at very low energies, but also resolve their line shapes.
Optical Raman scattering can be employed at resonance as well, although
it is restricted to resonances up to a few eV due to the low energy of the
optical photons.

• Inelastic neutron scattering. The dispersion of neutrons in free space is
E = (~k)2/2m where m = 1.67 · 10−27 kg. To reach the Brillouin zone
boundary at momentum ~k ≈ 1 ~Å−1, the neutrons need to have an energy
of at least E ≈ 2.1 meV. This is a problem for probing excitations at
the energy scale of 1 eV, some two orders of magnitude larger than the
energy carried by neutrons with momenta corresponding to the inverse
lattice parameter. High energy neutrons pass through the crystal very
fast, reducing the already small neutron cross section. Further, spin-1/2
neutrons can transfer 0 or 1 unit of angular momentum to the system, while
spin-1 photons can also probe ∆Jz = 2 final states.

• EELS. The Electron energy loss spectroscopy (EELS) cross section is
determined by the charge structure factor S(q, ω) of the system under
study [12,13] and is, therefore, closely related to IXS and RIXS (see chap-
ter 3). It is an electron-in electron-out process. The EELS intensity is
limited due to space charge effects in the beam. It has the advantage that

2Visible light has a wave length of λ ≈ 500 nm, and therefore carries momentum ~k =
2π~/λ ≈ 1.3 · 10−3 ~Å−1. At the edge of the Brillouin zone, the momentum is typically
π~/a ∼ 1010 ~m−1 ≈ 1 ~Å−1 (assuming a lattice constant a ≈ 3 Å). Therefore, Raman
scattering experiments can only probe the center of the Brillouin zone. For comparison, the
photon energy necessary to probe this Brillouin zone boundary is approximately ~ck ≈ 2.0 keV.
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it is very sensitive for low momentum transfers, but its intensity rapidly de-
creases for large momentum transfers. Further, at large momentum trans-
fer, multiple scattering effects become increasingly important, making it
hard to interpret the spectra above ∼ 0.5 − 1.0 Å−1. Since momentum
resolved EELS is measured in transmission, it requires thin samples. Mea-
surements in the presence of electromagnetic fields are not possible due to
their detrimental effect on the electron beam. There are no such restrictions
for X-ray scattering.

1.1.5 General features of RIXS spectra

Most RIXS spectra have a number of features in common: almost all have an
elastic peak, i.e., scattered photons with zero energy loss. Next to the elastic
peak, there is the inelastic spectral weight, in which one is ultimately interested
because it gives information about the energy and momentum of the excitations
of the material. Then, there is the question of normalization of the data, which
comes up in every RIXS study. In the next chapters of this thesis, the inelastic
features are extensively discussed. Here, we will briefly touch upon the elastic
line and the normalization.

Elastic line. Elastic scattering obscures the low energy excitations in many
RIXS experiments. For instance, at the transition metal K and M edge, the
elastic line is huge compared to the low energy inelastic features [14,15].

The amplitude for elastically scattering a photon from wave vector k to k′,
starting from a source at position ra and scattering from an ion at position r to
the detector at position rb, is composed of three parts. First, the amplitude to
go from the source to the scattering ion is3 eik·(r−ra). Second, the amplitude of
the scattering event itself, including both resonant and non-resonant scattering,
is denoted by the complex number ζ. Third, the amplitude to go from the ion to
the detector is eik

′·(rb−r). Multiplying all amplitudes, we get a total scattering
amplitude of ζei(k−k′)·re−ik·ra+ik′·rb . The second exponential does not depend
on the position of the scattering ion, and it may be absorbed in ζ.

RIXS is a coherent process, which means that an incident photon can be
absorbed at any of the N equivalent sites i of the solid, and all these processes
interfere. The total elastic scattering amplitude is therefore

Fel =
1

N

∑
i

ζie
i(k−k′)·ri . (1.1)

In the case of a perfect crystal, all ζi are equal, resulting in Bragg peaks: Fel =
ζ
∑

G δq,G where q = k−k′ and G is a reciprocal lattice vector. For transferred
momenta away from Bragg conditions, there is no elastic line. Note that this is
a general statement, independent of the details of the scattering process. The

3We discard the modulus of this amplitude because it is irrelevant to the calculation.
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question therefore is not why transition metal L edges have a small elastic line,
but why it is big at the K and M edges (see, e.g., Refs. [11, 14,15]).

One reason could be that the huge observed elastic peaks are not truely elastic
peaks, but rather consist of low energy excitations, like phonons, that cannot be
resolved from the true elastic signal [3]. There is evidence for this from high
resolution measurements at the Cu K edge of CuO2 by Yavaş et al. [16].

Elastic scattering can also be seen away from Bragg conditions for crystals
with imperfections. There are many ways for crystals to be imperfect:

• N does not go to infinity, for example, because the X-ray beam illuminates
only a finite volume, or some ions are missing. When the sample is a
very smooth slab of finite thickness (say n ions), crystal truncation rods
appear: the Bragg peaks broaden in the direction perpendicular to the
slab as 2/nq2

⊥ where n is the thickness (in number of layers) and q⊥ is the
transferred momentum perpendicular to the surface, measured from the
Bragg peak [17]. Taking into account the penetration depth gives a similar
effect.

• Thermal motion, defects or inhomogeneities, strain, etc. cause the ions
to go out of their equilibrium position: ri = Ri + ui, where ui is the
displacement from the equilibrium position Ri. For small, uncorrelated
displacements in an otherwise perfect crystal, one finds to order O(

〈
u2
〉
):

〈Iel(q)〉 =
∑
G

δq,G

(
1− 1

3

〈
u2
〉

G2

)
+

1

3N

〈
u2
〉

q2 (1.2)

where 〈. . . 〉 denotes an average over many experiments, assuming that the
lattice moves a lot over the course of the experiment. Spectral weight is
transferred from the Bragg peaks to other parts of the Brillouin zone. The
elastic scattering away from Bragg conditions increases with q2, and is
therefore expected to be strongest at the high energy edges [18].

• ζi 6= ζj . When one ion’s electronic structure is different, the amplitude for
scattering a photon changes. When the change is periodic, as in typical
resonant (elastic) X-ray scattering experiments, this generates additional
elastic peaks away from the Bragg peaks.

Normalization. The theoretical calculations of RIXS cross sections presented
in this thesis are often given in arbitrary units. For current experiments, this
suffices because one cannot measure the cross section on an absolute scale. Even
comparing spectra at different transferred momenta is difficult because the scale
might not be the same. There are two main factors that set the intensity scale
in experiments:

• Self-absorption. A scattered photon might be absorbed a second time by
the sample. Since the vast majority of core hole decay processes are through
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Auger or fluorescence channels, self-absorption attenuates the RIXS inten-
sity. The longer the path of the scattered photons through the sample is,
the stronger is the attenuation. Self-absorption is q dependent because dif-
ferent q generally have different scattering geometries, meaning exit paths
of different lengths. Self-absorption can be corrected for, see for example
Ref. [4].

• Irradiated volume. The cross section scales with the irradiated part of the
sample volume: if a photon meets more ions, that increases the probability
of scattering. The irradiated volume is not easily determined because of
the penetration depth (which depends on, amongst others, polarization),
beam profile, surface effects, etc. In practice, correcting for the effects that
determine the irradiated volume is very difficult.

Further, variations in the beam’s intensity can also play a role. Obtaining
experimental RIXS spectra on an absolute intensity scale is thus near-impossible,
making comparison of spectra at different q a complicated affair. If one wants to
compare the intensities at different q, one has to normalize the data in one way
or another. There are several options:

• Normalization to acquisition time. This is the simplest approach, which
basically ignores the normalization problems. In experiments on thin films,
however, this might be a viable approach since the penetration depth and
beam size can be larger than the sample, reducing the uncertainty in the
irradiated volume. Note that self-absorption and variations in the beam
intensity should be corrected for in this approach.

• Normalization to well-known features. If one of the features in the experi-
mental RIXS spectra is very well understood, it can be used as a reference
for normalization. In experiments at the Cu L edge of cuprates, for ex-
ample, the line shapes of the dd excitations are reproduced very well by
theory [19, 20], and one can normalize the data to the spectral weight of
the dd excitations [21].

1.2 Excitations of strongly correlated systems

In this thesis, we investigate how numerous types of excitations show up in RIXS
spectra. The types of excitations that one encounters in this thesis are briefly
reviewed here. The focus is on strongly correlated systems. Fig. 1.4 schematically
indicates the energy scales of the excitations.

Charge transfer excitations. In a Mott insulator, the electrons are dis-
tributed over the ions of the material in such a way to minimize Coulomb re-
pulsion between them. The electrons are very much localized: because of their
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Figure 1.4: Approximate en-
ergy scales of different excita-
tions in condensed matter sys-
tems. Reproduced with per-
mission from Ref. [3].

large Coulomb repulsion, they block each other’s way. On top of this ordering,
one can create charge transfer excitations: an electron is transferred from one
type of ion to another. The energy scale of such an excitation is set by the
intra-ionic Coulomb repulsion, which can be several eV in typical Mott insula-
tors, and the on-site energies of the different ions [22]. Charge excitations across
the Mott gap between ions of the same type are very similar; only the energy
scale is different. In chapter 3, we study the RIXS spectra of, amongst others,
a single-band Hubbard model, and find that the cross section is proportional to
the dynamical charge response function S(q, ω) for spinless fermions, a model
applicable to many doped cuprates. Charge transfer excitations are interesting
by themselves, and in addition they can provide us with the parameters of the
high energy theories of solids (e.g., the Hubbard model’s t and U), who in turn
determine the parameters of the effective low energy theories.

Orbital excitations. Many strongly correlated systems exhibit an orbital de-
gree of freedom, that is, the valence electrons can occupy different sets of orbitals.
Orbitally active ions are also magnetic: they have a partially filled outer shell.
The orbital degree of freedom determines many physical properties of the solid,
both directly, and because the orbitals couple to other degrees of freedom. For
instance, the orbital’s charge distribution couples to the lattice, and according
to the Goodenough-Kanamori rules for superexchange the orbital order also de-
termines the spin-spin interactions. The orbitally active ions can couple to each
other via the lattica or via superexchange interactions. Both can drive the system
into an orbitally ordered state.

Orbital excitations appear in many different forms. They all have in common
that they involve a transition of an electron from one orbital to another, on the
same ion. In some materials, the crystal field is very large, and the orbitals are
split by ∼ 1 eV. The transitions between the crystal field levels are called dd
excitations (in transition metal compounds, the 3d levels are the orbitally active
levels, hence the name). In highly symmetric materials, the crystal field splitting
is small and the orbital dynamics are dominated by superexchange interactions
between neighboring ions. In this case, collective orbital excitations arise. These
excitations, called orbitons, are the main subject of chapter 5. The energy scale
of orbitons is thus set by superexchange interactions, which can be as large as
250 meV.
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Magnetic excitations. Many transition metal compounds contain magnetic
ions, whose outer shell is only partly filled. The magnetic moments of these ions
often interact with each other, and this can result in magnetic order: the global
spin rotation symmetry in the material is broken. As a result, characteristic
collective magnetic excitations emerge. These quasiparticles (e.g., magnons and
spinons), and the interactions between them determine all low temperature mag-
netic properties. Magnon energies can extend up to ∼ 0.4 eV (e.g., in cuprates)
and their momenta up to ∼ 1 ~ Å−1, covering the entire Brillouin zone. Melting
of the long-range ordering, for instance through the introduction of mobile charge
carriers in a localized spin system or by the frustration of magnetic interactions
between the spins, can result in the formation of spin-liquid groundstates. Spin
liquids potentially have elusive properties such as high-temperature supercon-
ductivity or topological ordering.

In most transition metal compounds, the magnetic interaction is governed
by superexchange, which yields an isotropic, Heisenberg form of the interaction
between neighboring spins. Alternatively, spin ice compounds [23] with their
huge magnetic moments also have magnetic dipole-dipole interactions, leading to
an Ising interaction. Often, the strength of a magnetic bond is determined by
the involved orbitals, as described above.

Combined spin-orbital excitations. When the crystal field forces the or-
bitals to order, the magnetic degrees of freedom are usually still active: the
magnetic and orbital degrees of freedom are separated. Alternatively, when the
crystal field is weak, the spin and orbital degrees of freedom can become inter-
twined. This can happen, for example, via Kugel-Khomskii superexchange in-
teractions [24] or via intra-ionic, relativistic spin-orbit coupling [25]. The energy
scale of the excitations of these models is set, respectively, by the superexchange
interaction (∼ 50− 500 meV) and by the relativistic spin-orbit coupling (∼ 400
meV in the late transition metals).

Phonons. Excitations of the lattice are found at low energies (10− 100 meV),
comparable to the present state-of-the-art energy resolution of RIXS experiments.
The spatial arrangment of the lattice is adapted to minimize the total Coulomb
energy of the system. Lattice displacements can be induced by changes in the
distribution of the electrons of the solid, as the ions are charged as well. The
quanta of lattice displacement modes are called phonons. Phonons are crucial
for many properties of condensed matter, ranging from sound propagation to
superconductivity.

1.3 This thesis

Now that we have given a general introduction to RIXS, how it works, and what
it can measure, we will proceed with the theory of RIXS in chapter 2. The
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basic formula for the RIXS cross section (the Kramers-Heisenberg formula) is
(re-)derived and discuss in detail the approximation scheme used often in this
thesis: the Ultra-short Core hole Lifetime (UCL) expansion. In the following
chapters, we set out to investigate how RIXS probes the various excitations
discussed above. Chapters 3, 4, 5, 6, and 7 deal with charge, magnetic, orbital,
combined spin-orbital and lattice response, respectively. Finally, we conclude
this work with an outlook in chapter 8.



Cha p t e r 2

Theory of Resonant Inelastic
X-ray Scattering

2.1 Introduction

Before embarking on the calculation of RIXS cross sections, we consider the ba-
sic theory in this chapter. Starting at a very basic level, we first review how the
X-ray photons interact with matter. The relativistic theory of quantum electro-
dynamics (QED) gives a general desciption of this interaction, but it deals with
positrons which are obviously not needed to describe RIXS experiments on con-
densed matter systems. Therefore, we start this chapter with an approximation
scheme to QED at low energies. This low energy expansion yields a Hamiltonian,
which has only two components (electrons with spin up and down) instead of the
four degrees of freedom of QED which also include positrons.

The low energy limit of QED requires small electromagnetic fields, and
therefore interactions between photons and electrons are weak: the interac-
tion strength is controlled by the dimensionless fine structure constant α =
e2/4πε0~c ≈ 1/137. We treat interactions with X-ray photons as a perturba-
tion to the quantum system under study. Resonant X-ray scattering processes
can be described by the Fermi Golden Rule to second order. The result is the
Kramers-Heisenberg equation, which describes the resonant cross section.

The Kramers-Heisenberg cross section contains many quantities, some per-
taining to the material, and some to the experimental setup. It is possible to
disentangle them, although this is beyond the scope of this thesis [3, 26]. We
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consider only dipole transitions, and isolate the polarization dependence from
the collective response of the system.

In Sec. 2.4, we distinguish two RIXS processes: direct and indirect RIXS.
Direct RIXS corresponds to two consecutive dipole transitions, with no scattering
from the core hole in the intermediate state. Because the RIXS process is a very
fast one, this is often a good way of thinking about RIXS: the core hole has
decayed before it can scatter an electron. However, some transitions, like the 1s
→ 4p edge, cannot produce any excitation unless the core hole and the valence
electrons scatter off each other. This process, where the core hole has an impact
on the valence electrons in between the two dipole transitions, is called indirect
RIXS.

The Kramers-Heisenberg equation is difficult to solve exactly, and we are
able to come up with an exact solution only in the case of localized excitations.
In Sec. 2.5, we develop an approximation to the Kramers-Heisenberg equation:
the Ultra-short Core hole Lifetime (UCL) expansion. It makes use of the fact
that RIXS processes are usually very fast, leaving little time for the valence
electrons to react to the core hole. The UCL series expansion trades the sum
over intermediate states (which is hard to compute) for an expansion in the
lifetime of the core hole.

This chapter is organized as follows: we start out with the basic electron-
photon coupling theory in Sec. 2.2. Then, we use it to obtain the Kramers-
Heisenberg equation in Sec. 2.3. The distinction between direct and indirect
RIXS is illustrated in Sec. 2.4. The chapter will be conculded by the introduction
of the UCL expansion in Sec. 2.5.

2.2 Electron-photon coupling

To develop the theory of RIXS, one needs to consider the interaction of the
X-ray photons with the electrons in the sample under study. This interaction
is described by the theory of quantum electrodynamics (QED). A treatment of
the RIXS cross section in terms of QED would be very complicated, and one
would prefer to use an effective low-energy approximation to QED where the
positron degrees of freedom are integrated out. In this section, such a low-energy
expansion of QED is developed, which produces a Hamiltonian that describes the
interaction of photons with electrons. The expansion applies to cases where the
electrons are non-relativistic and the electromagnetic fields are small compared to
the electron mass. It is equivalent to the approach of Foldy and Wouthuysen [27].

2.2.1 Low energy expansion of QED

The electromagnetic field, including the incident X-rays, are described by an
electric potential φ(r) and a vector potential A(r), which are combined in the
four-vector Aµ = (φ/c,A). The coupling between such a field and electrons is
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given by the theory of QED, see Peskin and Schroeder [28] for details. In SI
units, the QED action is

SQED =

∫
d4x ψ̄ (i~��D −mc)ψ + SEM (2.1)

with m the mass of the electron, and where SEM is the action for the elec-
tromagnetic field, which contains Maxwell’s equations. ψ is a four-component
vector describing the fermion field (whose excitation quanta are electrons and
positrons), and ψ̄ = ψ†γ0. Further, ��D = γµDµ = γµ(∂µ − ieAµ/~) with the
elementary charge e ≈ +1.6 · 10−19 C, and γµ are the gamma matrices. From
this action, one obtains the Euler-Lagrange equation for ψ̄:

(i~��D −mc)ψ = 0. (2.2)

This is the Dirac equation in the presence of an electromagnetic field. The theory
has a conserved current jµ = ψ̄γµψ, i.e., ∂µj

µ = 0 if ψ obeys the Dirac equation
(including Aµ). The formula for the associated conserved charge, Q =

∫
d3x j0 =

const., is a normalization condition, which can be set to 1 by rescaling ψ:∫
d3x ψ†ψ = 1. (2.3)

Eq. (2.2) contains both electrons and positrons, but at the low energy scales
of condensed matter physics, the latter are irrelevant. They can be integrated out
by taking two limits, and the result will be the Schrödinger equation for electrons
in an electromagnetic field. First, we consider the case of the fermions having
low speeds v compared to the speed of light, as is typical for condensed matter
systems without very heavy nuclei. Second, the electromagnetic field strength is
low compared to twice the mass of the electron: eAµ/c� 2m.

In the limiting case Aµ = 0, the solutions to the Dirac equation are plane
waves. In the Dirac basis, the fermion field is

ψ(x) = e−ip·x/~

(
α(p)

− σipi
p0+mcα(p)

)
. (2.4)

where the four-vector pµ = (E/c,p) must satisfy Einstein’s energy-momentum
relation E2 = (mc2)2 + (pc)2. α(p) can be any two-component spinor. The

solution for p = 0 in zero field is ψ(x) = e−ip0x
0/~
(
α
0

)
with p0 = mc and

x0 = ct. For small momenta, the lower spinor is of order O(pi/mc) ∼ O(v/c).
The plane wave solutions have two degrees of freedom in α(p), corresponding to
an electron with spin up and down. In other words, ψ(x) is the mode whose
excitation quanta are electrons with momentum p.

Another solution can be obtained by taking ψ(x) = eip·xv(p), which again
has two degrees of freedom. These are the positron modes, which will not be
considered here.
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In order to derive the effective low energy electron-photon coupling Hamil-
tonian from Eq. (2.2), we introduce a small electromagnetic field eAµ/c � m
and allow the electron to have a finite (but small) speed v � c. In this
regime, the equation of motion for the electron is the Schrödinger equation with
electron-photon coupling. Departing as said from the extreme limit, the Ansatz

ψ = e−imc
2t/~

(
α(x)
β(x)

)
is introduced in Eq. (2.2). The idea behind this Ansatz

is that for small electromagnetic fields and slow electrons α(x) and β(x) will start
to oscillate, but at a frequency much lower than mc2/~. One finds

i~D0α(x) + i~σiDiβ(x) = 0 (2.5)

(2mc+ i~D0)β(x) + i~σiDiα(x) = 0 (2.6)

where σi are the Pauli spin matrices. Eq. (2.6) can be rewritten as

β(x) = D̃α(x) + D̃0β(x) =

∞∑
n=0

D̃n
0 D̃α(x). (2.7)

where D̃ = −i~
2mcσ

iDi and D̃0 = −i~
2mcD0. (One can think of these quantities as

part of the four-vector product −i~σµDµ/2mc, with σ0 the 2 × 2 unit matrix.)
These results are still exact. By substituting Eq. (2.7) in Eq. (2.5), a Schrödinger
equation for α(x) can be obtained.

The high-n terms in Eq. (2.7) will be small in the limit of interest: the total
wave function has an oscillation frequency set by the energy of the electron,
and since the rest energy was explicitly isolated in the Ansatz, the oscillation
frequency of α(x) is (E −mc2)/~. For a slow electron in a small elecromagnetic
field, this is much smaller than 2mc2/~. Therefore Eq. (2.7) enables one to expand
the Dirac equation in a controlled way, and obtain the Schrödinger equation to
any order of precision. A convenient way to keep track of the orders in the
expansion is the mass: order n gives a contribution to the Hamiltonian that is
proportional to 1/mn+1.

The expansion is controlled as long as one satisfies the two limits. The first
of these was that the electrons should be non-relativistic, i.e., they that travel at
speeds small compared to the speed of light. This is a good approximation, even
for, for instance, graphene where the Fermi velocity vF ≈ c/300, or for copper 1s
core electrons, where we estimate v ∼ ~Z/ma0 ≈ 0.21c with Z the atomic number
for copper and a0 the Bohr radius. At first glance, v/c might appear not small
here, but γ = 1/

√
1− v2/c2 ≈ 1.02 and relativistic effects are still small. The

second limit was that the potentials related to both the electrons and photons are
small compared to twice the mass of the electron: eφ/2mc2, e |A| /2mc� 1 (m
is the electron mass). Because the potentials can be gauged, this means that the
expansion breaks down if there is a potential difference in the problem enough to
have an electron gain 2mc2 in energy, enough to produce electron-positron pairs.
The intrinsic potentials of materials do not strictly satisfy this condition close to
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the nuclei. However, the expansion can be consistently applied to cases where the
average of the potentials over a region of the size of the reduced Compton wave
length satisfies this limit [29]. A crude estimate indicates that the expansion may
be applied to all known elements: up to Z ∼ 2 · 102, see also Ref. [30]. However,
in future very strongly focussed X-ray Free Electron Lasers, the electric field of
the photons is projected to exceed 1016 V/m [31], which gives e |A| ∼ 2mc at a
photon energy of ∼ 8 keV, so the low energy expansion of QED breaks down.

2.2.2 Evaluation of the expansion to third order

First order. The first order of the expansion is obtained by approximating
β(x) to order n = 0. Substitution of β(x) in Eq. (2.5) gives the equation of
motion for α(x). Using

(2mcD̃)2 = (−i~)2
(
δij + iεijkσk

)
DiDj = (p + eA)2 + e~σ ·B, (2.8)

one obtains the Schrödinger equation

i~∂tα(x) =

[
1

2m
(p + eA)2 +

e~
2m
σ ·B− eφ

]
α(x). (2.9)

The expression in straight brackets is the electron-photon coupling Hamiltonian
to order n = 0 (order 1/m). The first term contains the kinetic energy of the
electron p2/2m, and two different electron-photon coupling terms: ep ·A/m and
e2A2/2m. The other terms are the Zeeman and Coulomb energies, respectively.

Second order. Going to second order (n = 1) in Eq. (2.7) yields the equation
of motion

i~D0α(x) + i~σiDi

(
D̃ + D̃0D̃

)
α(x) = 0. (2.10)

Using

i~ [D0, Di] = i [∂0,−ieAi] + i [−ieA0, ∂i] = e [(∂0Ai)− (∂iA0)] =
e

c
Ei (2.11)

with Ei the electric field components, the n = 1 equation of motion is simplified
to

i~∂tα(x) =

[
(p + eA)2

2m
+

e~
2m
σ ·B− eφ

]
α(x)

−
(
−i~
2mc

)2

σiσj
(
i~cDiDjD0 + eDiE

j
)
α(x) =

[
. . .

]
α(x)

−
(
−i~
2mc

)2

σiσj
(
DiDji~cD0 + e(∂iE

j) + eEjDi

)
α(x) (2.12)
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To obtain a Schrödinger equation from this equation, i.e., an equation linear in ∂t,
one substitutes D0 on the right hand side by the n = 0 Schrödinger equation. The
result of this substitution is of higher order than O(m−2), and will be dropped
here. The other correction terms become

σiσje
(
(∂iE

j) + EjDi

)
α(x) = e

(
δij + iεijkσk

) (
(∂iE

j) + EjDi

)
α(x)

= e

(
ρ

ε0
+
i

~
E · (p + eA) + σ ·

[
1

~
E× (p + eA)− i∂tB

])
α(x) (2.13)

where Maxwell’s equations ∇ · E = ρ/ε0 and ∇ × E = −∂tB are used. The
equation of motion for α(x) becomes

i~∂tα(x) =

[
(p + eA)2

2m
+

e~
2m
σ ·B− eφ+

e~
(2mc)2

σ ·E× (p + eA)

+
e~2ρ

(2mc)2ε0

]
α(x) +

ie~
(2mc)2

[E · (p + eA)− σ · (~∂tB)]α(x). (2.14)

The appearance of imaginary terms is natural: from the normalization con-
dition Eq. (2.3), one finds∫

d3x
[
α(x)†α(x) + β(x)†β(x)

]
= 1 (2.15)

and it is clear that when β acquires a finite value, α cannot constitute the nor-
malized wave function anymore. If one tries to obtain an equation of the form
i~∂tα = Hαα, Hα is expected to have non-Hermitian terms as soon as β acquires
a non-zero value. These terms vanish when α is normalized at this stage [32].
We define Ψ(x) = Ωα(x), and require that Ψ is normalized to 1. Up to order
O(m−2), the normalization condition is∫

d3x

(
α(x)†α(x) +

(
D̃α(x)

)†
D̃α(x)

)
= 1. (2.16)

Integrating by parts (assuming that the boundary term vanishes), one obtains∫
d3x α(x)†

(
1 + D̃2

)
α(x) = 1. (2.17)

This gives, to order O(m−2),

Ω = 1 +
1

2
D̃2 = Ω†. (2.18)

Ψ then obeys the equation

i~∂tΨ(x) =
[
ΩHαΩ−1 + i~(∂tΩ)Ω−1

]
Ψ(x) (2.19)
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with Ω−1 = 1 − 1
2D̃

2. The Hamiltonian for Ψ is therefore HΨ = ΩHαΩ−1 +
i~(∂tΩ)Ω−1. The normalization procedure can also be applied at an earlier stage,
before expanding the Dirac equation [27]. In that case, it is just a transformation
to a different representation of the Dirac theory.

The normalization is non-local and introduces coarse-graining on the scale of
the Compton wave length [27,29]. This can be seen by writing the wave functions
in the position representation:

〈x|α〉 = 〈x| e−D̃
2/2 |Ψ〉 (2.20)

In the absence of electromagnetic fields, this becomes

〈x|α〉 =
1

(2π~)3

∫∫
dp dx′ eip·(x−x′)/~e−p2/8(mc)2 〈x′|Ψ〉

= λ−3
C

√
(2/π)3

∫
dx′ e−2(x−x′)2/λ2

C 〈x′|Ψ〉 (2.21)

where the reduced Compton wave length λC = ~/mc. For a specific solution
Ψ(x), one obtains α(x) by averaging Ψ over a region around x of the size of the
Compton wave length.

The detailed calculation of HΨ is given in Appendix A. The result is

H
(2)
Ψ =

(p + eA)2

2m
+

e~
2m
σ ·B− eφ+

e2~
(2mc)2

σ ·E×A +
1

2

e~2ρ

(2mc)2ε0

+
e~

2(2mc)2
σ · (E× p− p×E). (2.22)

This result slightly differs from those of Blume [33] and in the book of Schülke [34].
In the case of electrostatics, it coincides with previous work [32,35].

The term proportional to ρ is called the Darwin term. In the hydrogen atom,
this term shifts the energy of the s orbitals, because they are the only ones
to overlap with the charge density of the nucleus. The last term of Eq. (2.22)
contains relativistic spin-orbit coupling. This can be seen by inserting the elec-
tric field of a nucleus with charge Ze: ignoring commutation relations, one gets
e2Z~

(2mc)2r3σ · r × p = e2Z
2(mc)2r3 S · L [32]. In the absence of electron-electron inter-

actions, the expectation value of 1/r is proportional to the charge of the nucleus
Ze. The relativistic spin-orbit coupling is then proportional to Z4, meaning it is
strong in the heavy elements like iridium, the object of study in chapter 6. Fur-
ther, it can be seen that for fixed Z, the core orbitals with their small 〈r〉 have
a much larger spin-orbit coupling than the valence orbitals, which is important,
e.g., for probing the magnon dispersion in cuprates (see chapter 4).

Third order. The derivation of the third order HΨ (n = 2 or m−3) is given in
appendix A. The procedure is analogous to the second order calculation above.



20 Theory of Resonant Inelastic X-ray Scattering

The result is

H
(3)
Ψ = · · ·+ 1

(2mc)3

[
−c
{

(p + eA)2 + e~σ ·B
}2

+
e~2

2c

{
(∂tE) · (p + eA) + (p + eA) · (∂tE) + ~σ · (∂2

tB)
}]
. (2.23)

We interpret the different correction terms. In the absence of electromagnetic
fields, only the term proportional to p4 is left. It gives a relativistic correction
to the classical kinetic energy of the electron. The terms involving time deriva-
tives disappear for static fields, but when one considers plane wave radiation
of angular frequency ω, they renormalize lower order terms: ∂tE → ω2A and
∂2
tB → −ω2B, renormalizing the first order Hamiltonian. The renormalization

is of order (~ω/mc2)2. In these simple cases of static fields or radiation fields,
only the term without time derivatives yields new electron-photon interaction
processes, involving three and four photons. Another interesting case is when no
electrons are present. Of the three- and four-photon terms, only the A4 term
remains and gives photon-photon scattering and conversion of three low energy
photons to one high energy photon (or vice versa), and is relevant in, for instance,
Free Electron Lasers [36].

To conclude this section, we consider the limit of high fields in an X-ray Free
Electron Laser (XFEL). The electric field for the LCLS XFEL beam is designed
to reach 2.5 · 1010 V/m for an unfocussed beam at a wave length of λ = 1.5 Å
(corresponding to a photon energy ~ω = 8.3 keV) [31]. The electric field strength
is related to the vector potential by |A| = |E| /ω, where we assumed that the
beam is a plane wave in free space. We see that the low field limit is satisfied
by the unfocussed beam: e |A| /2mc = 5.8 · 10−7. The electric field can be
increased to ∼ 1014 V/m by focusing the beam to a 100 nm spot, and with future
technology, this can perhaps be increased to fields as strong as ∼ 1018 V/m for
a 1 nm spot [37] . At field strengths beyond |E| = 4 · 1016 V/m, e |A| /2mc is
larger than unity and the low energy expansion of QED breaks down.

2.3 Kramers-Heisenberg equation

Now that the Hamiltonian describing the interaction of the X-ray photons with
the electrons in the material under study is derived, we proceed to analyze X-ray
scattering processes. This section is largely along the lines of Ref. [3].

The initial state of the scattering process is |g〉 = |g; kε〉, which describes the
state g of the material under study, and a photon with wave vector k, angular
frequency ωk = c |k|, and polarization ε. After the scattering process is com-
pleted, the material is left in the state f and the photon is scattered to k′, ωk′ , ε

′.
The total final state is denoted as |f〉 = |f ; k′ε′〉.

We separate the Hamiltonian (2.22) into H0 + H ′ where H0 affects only the
electrons or only the photons, while the perturbation H ′ contains electron-photon
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interaction terms. H0 contains the electron’s kinetic and potential energy, the
Darwin term, and relativistic spin-orbit coupling. The free photon’s energy was
omitted after Eq. (2.1), but is also included in H0. The states |g〉 and |f〉 are
eigenstates of H0 with energies Eg = Eg +~ωk and Ef = Ef +~ωk′ , respectively,
where Eg and Ef are the initial and final state energy of the material. Photon
scattering can induce a transition in the material from the intial state |g〉 to
final state |f〉, but total energy and momentum are conserved in the scattering
process. The photons appear in the electron-photon Hamiltonian through A,
which can be expanded in plane waves as

A(r) =
∑
κ,ε

√
~

2Vε0ωκ
(
ε aκεe

iκ·r + ε∗a†κεe
−iκ·r) , (2.24)

where V is the volume of the system. When the electromagnetic field is quan-

tized, a
(†)
κε annihilates (creates) a photon in the mode with wave vector κ and

polarization vector ε. The electric and magnetic fields in the electron-photon
coupling Hamiltonian can be expressed in the potentials φ and A.

H ′ can be treated as a perturbation to H0 because electon-photon interactions
are controlled by the small fine structure constant. We now calculate the X-ray
scattering amplitude in this perturbation scheme. Fermi’s Golden Rule to second
order gives the transition rate w for scattering processes in which the photon loses
momentum ~q = ~k− ~k′ and energy ~ω = ~ωk − ~ωk′ to the sample:

w =
2π

~
∑
f

∣∣∣∣〈f|H ′ |g〉+
∑
n

〈f|H ′ |n〉 〈n|H ′ |g〉
Eg − En

∣∣∣∣2δ(Ef − Eg) (2.25)

where the |n〉 are intermediate states, which are eigenstates of H0 with energy
En. The first order amplitude in general dominates the second order, but when
the incoming X-rays are in resonance with a specific transition in the material
(Eg ≈ En), then the second order amplitude becomes large. The second order
amplitude contains resonant scattering, while the first order yields non-resonant
scattering only. Third order contributions to w are neglected because they are
at least of order α3/2.

It is useful to classify the electron-photon coupling terms by powers of A.
Terms of H that are quadratic in A are the only ones to contribute to the first
order scattering amplitude, because they contain terms proportional to a†k′ε′akε

and akεa
†
k′ε′ . To be specific, the quadratic terms of (2.22) give rise to non-

resonant scattering [first term of (2.22)] and magnetic non-resonant scattering
[fourth term of (2.22)]. Although both appear in the first order scattering ampli-
tude, they in principle also contribute to the second order, but we neglect these
processes because they are of order α3/2.

The interaction terms of H that are linear in A do not contribute to the first
order scattering amplitude, but do contribute to the second order. They thus may
give rise to resonant processes. In the following, we neglect such contributions
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that come from the σ ·∇φ ×A term and from the last term of (2.22), because
they are of second order in two separate expansions [33]. First, these terms of
H are of second order in the low energy expansion of QED, and second, they
appear in the second order of the scattering amplitude.

The relevant remaining terms are

H ′ =

N∑
i=1

[
e

m
A(ri) · pi +

e2

2m
A2(ri) +

e~
2m
σi · ∇ ×A(ri)

− e2~
(2mc)2

σi ·
∂A(ri)

∂t
×A(ri)

]
, (2.26)

where the gauge was fixed by choosing ∇ ·A(r) = 0, and the sum is over all N
electrons in the sample.

The two terms of H ′ that contribute to the first order amplitude are the one
proportional to A2 and the σ · (∂A/∂t) × A term. The latter is smaller than
the former by a factor ~ωk(′)/mc

2 � 1, and is therefore neglected [33]. The first
order term in Eq. (2.25) then becomes

e2

2m
〈f|
∑
i

A2(ri) |g〉 =
~e2

2mVε0
ε′∗ · ε
√
ωkωk′

〈f |
∑
i

eiq·ri |g〉 (2.27)

with q = k−k′. When the incident energy ~ωk is much larger than any resonance
of the material, the scattering amplitude is dominated by this channel, which is
called Thompson scattering (see, for instance, page 51 of Ref. [32]). In scattering
from a crystal at zero energy transfer, this term contributes amongst others
to the Bragg peaks. It also gives rise to non-resonant inelastic scattering. In
practice, RIXS spectra show a strong resonance behavior, demonstrating that,
for RIXS, it is the second order scattering amplitude that dominates the first
order. Also single atom LDA calculations show that the resonant cross section is
larger than the non-resonant cross section by two orders of magnitude [38]. We
therefore omit the A2 contribution in the following. More details on non-resonant
inelastic X-ray scattering can be found in, for instance, Refs. [34, 39].

The second order scattering amplitude in Eq. (2.25) becomes large when ~ωk

matches a resonance energy of the system, and the incoming photon is absorbed
first in the intermediate state, creating a core hole. The denominator Eg+~ωk−
En is then small, greatly enhancing the second order scattering amplitude. We
neglect the other, off-resonant processes here, though they do give an important
contribution to non-resonant scattering, as in the case of Rayleigh scattering
[32,33]. The resonant part of the second order amplitude is

e2~
2m2Vε0

√
ωkωk′

∑
n

N∑
i,j=1

〈f | e−ik′·ri
(
ε′∗ · pi − i~

2 σi · k
′ × ε′∗

)
|n〉

Eg + ~ωk − En + iΓn

× 〈n| eik·rj
(
ε · pj +

i~
2
σj · k× ε

)
|g〉 , (2.28)
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where a lifetime broadening Γn is introduced for the intermediate states to ac-
counts for the usually short lifetime of the core hole (see, for instance, page 341 of
Ref. [40]). The decay is dominated by channels other than RIXS, such as Auger
decay and fluorescent decay, see page 13 in Ref. [6]. Usually, these processes only
involve the core levels, and all Γn at a certain edge can then be assumed equal.
In the rest of this thesis, we take Γn = Γ.

Resonant scattering can thus occur via a non-magnetic and magnetic term.
An estimate shows that the former dominates. The size of localized 1s copper core
orbitals is roughly a0/Z ≈ 0.018 Å so that for 10 keV photons the exponential
eik·r is close to unity and can be expanded. In a typical RIXS experiment,
the X-ray energy is tuned to a dipole transition. The magnetic terms can then
be neglected because they generate only very small dipole transitions. The non-
magnetic term can induce a dipole transition of order |p| ∼ ~Z/a0 ∼ 5.9·10−23 kg
m/s, whereas the magnetic term gives a dipole transition of order (k ·r)~ |k| /2 ∼
2.5 · 10−25 kg m/s. We therefore ignore the magnetic term here, and the relevant
transition operator for the RIXS cross section is

D =
1

imωk

N∑
i=1

eik·riε · pi, (2.29)

where a prefactor has been introduced for convenience in the following expres-
sions.

The double-differential cross section is obtained by multiplying w by the den-
sity of photon states in the solid angle dΩ (= Vk′2d|k′|dΩ/(2π)3), and dividing
by the incident photon flux c/V [32–34,41,42]:

d2σ

d~ωdΩ
= r2

em
2ω3

k′ωk

∑
f

|Ffg|2 δ(Eg − Ef + ~ω), (2.30)

where the classical electron radius re = 1
4πε0

e2

mc2 . The scattering amplitude Ffg
at zero temperature is given by

Ffg(k,k′, ε, ε′, ωk, ωk′) =
∑
n

〈f | D′† |n〉 〈n| D |g〉
Eg + ~ωk − En + iΓ

, (2.31)

where the prime in D′ indicates it refers to transitions related to the outgoing X-
rays. Eqs. (2.30) and (2.31) are referred to as the Kramers-Heisenberg equation,
which is generally used to calculate the RIXS cross section.

At finite temperature T , this generalizes to

d2σ

d~ωdΩ
= r2

em
2ω3

k′ωk

∑
i,f

1

Z
e−Ei/kBT |Ffi|2 δ(Ei − Ef + ~ω), (2.32)
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where kB is Boltzmann’s constant and Z is the partition function.
Alternatively, we can rewrite the denominator for the intermediate states in

terms of a Green’s function, which is also referred to as the core hole propagator:

G(zk) =
1

zk −H0
=
∑
n

|n〉 〈n|
zk − En

, (2.33)

where {|n〉} forms a complete basis set and

zk = Eg + ~ωk + iΓ. (2.34)

In the following we will often suppress the explicit label k of zk and denote it
simply by z, with an implicit incident energy dependence. With the core hole
propagator G and transition operators D in place, the RIXS scattering amplitude
Ffg finally reduces to the elegant expression

Ffg = 〈f | D′†G(zk)D |g〉 . (2.35)

2.3.1 Dipole approximation and separation of polarization
dependence

Eqs. (2.30) and (2.31) give the Kramers-Heisenberg expression for RIXS. One
typically wants to separate the part pertaining to the geometry of the experiment
from the fundamental scattering amplitudes that relate to the physical properties
of the system. We restrict ourselves here to dipole transitions. Higher multipoles
of the transition operator D can be found in, for instance, Ref. [3].

In the dipole limit, one asumes that eik·ri is approximately constant at the
length scale of the atomic wave functions: eik·ri ≈ eik·Ri where Ri points to the
nucleus of the atom to which the electron i is bound. Ri is not an operator. This
has as a result that the electronic transitions are due to the momentum operator
p and Eq. (2.29) becomes

D = ε ·D with D =
1

imωk

N∑
i=1

eik·Ripi, (2.36)

Generally, the matrix elements are expressed in terms of the position operator r.
For example, in the absorption step, one can write

〈n|D |g〉 =

N∑
i=1

1

imωk
eik·Ri 〈n|pi |g〉 =

N∑
i=1

1

~ωk
eik·Ri 〈n| [ p2

i

2m
, ri] |g〉

≈
N∑
i=1

1

~ωk
eik·Ri(En − Eg) 〈n| ri |g〉 ≈

N∑
i=1

eik·Ri 〈n| ri |g〉 (2.37)
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where ~ωk ≈ En − Eg. The operator thus reduces to the well-known dipole

operator D =
∑N
i=1 e

ik·Riri that causes electronic transitions.

After making the dipole approximation, the next step is to separate the part
that pertains to the geometry of the experiment (the polarization vectors ε′ and
ε) from the physical properties of the system. Ultimately, our interest lies in
the spectral functions of a material. The experimental geometry is chosen in an
optimal way to measure them.

In second quantization, the dipole operator reads

D =

N∑
i=1

eik·Ri

∑
n,ν,m,µ

c†nν 〈φnν | ri |φmµ〉 cmµ (2.38)

where φnν is the νth Wannier wave function on site n, and cnν is the corresponding
annihilation operator. For definiteness, one can use the transition metal K edge
(1s→ 4p) as an example. Then, φmµ would be the transition metal 1s core states
(µ indexes the 1s states with spin up and down) and φnν would be the transition
metal 4p states (ν could index the orbitals 4px,y,z and spin up and down).

Because the core states are very much localized, only excited states on the
same ion are reached1: n = m. The Wannier wave functions are the same at all
lattice sites, so

D ≈
∑
ν,µ

〈φν | r |φµ〉
∑
i

eik·Ric†iνciµ (2.39)

where the wave functions φ are centered at the origin. For our purposes, the sum
over i can be restricted to electrons in the core states. For de-excitation,

D′† ≈
∑
ν,µ

〈φµ| r |φν〉
∑
i

e−ik
′·Ric†iµciν . (2.40)

Note that the spin is not changed in the radiative transitions, and ν and µ have
the same spin.

Since the core orbitals are very small compared to the lattice parameters, it
is often assumed that the core hole does not disperse during the RIXS process: it
is created and annihilated at the same site. In this case, the scattering amplitude
(2.31) is

Ffg =
∑

µ′,ν′,ν,µ

Tµ′ν′νµ(ε′, ε)
∑
i

eiq·Ri

∑
n

〈f | c†iµ′ciν′ |n〉 〈n| c
†
iνciµ |g〉

Eg + ~ωk − En + iΓ
, (2.41)

1Considering, for instance, the transition metal K edge, one could object that the 4p wave
functions are quite large, and there is some overlap between the core states on one ion and the
4p wave functions of neighboring ions. However, dipole transitions are still very small since the
4p wave functions from the neighboring ions are approximately constant over the core state’s
volume.
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where the polarization factor is

Tµ′ν′νµ(ε′, ε) = 〈φµ′ | ε′∗ · r |φν′〉 〈φν | ε · r |φµ〉 . (2.42)

µ′, ν′, ν and µ index the different scattering channels, which have different po-
larization dependencies Tµ′ν′νµ(ε′, ε). In practice, we replace the Wannier wave
functions by the atomic wave functions to compute it. The radial parts of the
dipole transition amplitudes in Eq. (2.42) are often irrelevant, as they only give
an overall scaling factor to the RIXS spectra. In the absence of inter-ionic in-
teractions, Tµ′ν′νµ(ε′, ε) gives the full RIXS scattering amplitude. We therefore
name it the ‘atomic scattering factor’. It does not carry any information on
the material’s correlation functions. The incident energy dependence is the only
RIXS-specific part of the cross section that is not included in the atomic scatter-
ing factor.

In a typical RIXS experiment, the polarization of the incoming photon is
linear. It is mostly chosen to be either parallel (επ) or perpendicular (εσ) to
the scattering plane2 (the plane spanned by k and k′). The outgoing photon’s
polarization is not measured, and the cross section should therefore be summed
over two orthogonal outgoing polarizations.

2.4 Direct and Indirect RIXS

In Sec. 2.3, the Kramers-Heisenberg expression for the RIXS scattering ampli-
tude Ffg, Eq. (2.31), was derived and re-expressed as a product of a photon
absorption operator D, the intermediate state propagator G and a photon emis-
sion operator D†, sandwiched between the RIXS final state and ground state,
yielding Eq. (2.35). The presence of the intermediate state propagator is what
makes the theory of RIXS complicated – and interesting. The propagator G
is defined in terms of the inverse of the total Hamiltonian H of the material,
G(zk) = (zk − H)−1, where the operator H naturally divides into the ground-
state Hamiltonian H0 (governing the quantum system without a core hole) and
the core hole Hamiltonian HC perturbing the system after photon absorption:
H = H0 + HC . It should be noted that even if one commonly refers to HC as
the core hole Hamiltonian, it also includes the interaction between the electron
excited into the conduction band and the rest of the material. As core hole and
excited electron together form an exciton, their separate effects on the system
cannot, in principle, be disentangled.

At this point it is useful to separate the full propagator G into an unperturbed
one G0 = (zk −H0)−1 and a term that contains the core hole Hamiltonian HC ,
using the identity G = G0 + G0HCG. This also separates the RIXS amplitude
into two parts, which define direct and indirect RIXS [3,49]:

Fdirectfg = 〈f | D†G0D |g〉 for direct RIXS (2.43)

2π and σ come from the German parallel and senkrecht – parallel and perpendicular.
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and

F indirectfg = 〈f | D†G0HCGD |g〉 for indirect RIXS. (2.44)

Note that this definition of direct and indirect RIXS, based on the Kramers-
Heisenberg expression, is exact. Adding the two amplitudes, one retrieves the
total scattering amplitude Ffg. Table 2.1 summarizes the categorization of the
scattering amplitude into direct and indirect RIXS, and also shows the subsequent
approximations that are often used.

For the direct RIXS amplitude, the core hole does not play a role – the photon
absorption and emission matrix elements determine which electronic transitions
are allowed. The physical picture that arises for direct RIXS is that an incoming
photon promotes a core electron to an empty valence states and subsequently an
electron from a different state in the valence band decays, annihilating the core
hole (see Fig. 1.1). Thus for direct RIXS to occur, both photoelectric transitions
– the initial one from core to valence state and the succeeding one from valence
state to fill the core hole – must be possible. These transitions can, for example,
be an initial dipolar transition of 1s → 2p followed by the decay of another
electron in the 2p band: 2p→ 1s. This happens at the K edge of oxygen, carbon
and silicon. At transition metal L edges, dipole transitions causing direct RIXS
are possible via 2p → 3d and 3d → 2p dipolar transitions. In all these cases,
RIXS probes the valence and conduction states directly.

For indirect RIXS, the scattering amplitude depends critically on the perturb-
ing core hole Hamiltonian – without it the indirect scattering amplitude vanishes.
In general, the scattering amplitude F indirectfg arises from the combined impact of

HC and the transition matrix elements D. Most often, for indirect RIXS D/D†
create/annihilate an electron in the same state, far above the Fermi level. For
instance at the transition metal K edge, the 1s ↔ 4p process creates/annihilates
an electron in 4p states several electonvolts above the transition metal 3d valence
shell. The delocalized 4p electron can then be approximated as being a specta-
tor because (Coulomb) interactions involving the localized core hole are usually
much stronger and dominate the scattering cross section.

It should be noted that if scattering is direct, as for instance at transition
metal L edges, indirect processes can also contribute to the total scattering am-
plitude. However, as indirect scattering arises in this case as a higher order
process, it is normally weaker than the leading order direct scattering amplitude.
We speak of indirect RIXS when direct processes are absent.

2.5 Ultra-short core hole lifetime expansion

The potential that the core hole exerts on the valence electrons of transition
metals is strong: the attraction between a 1s core hole and 3d electron is typi-
cally ∼ 6 − 8 eV, which is of the same order as the 3d-3d intra-ionic Coulomb
interaction. Treating such a strong interaction as a weak perturbation renders
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a perturbation expansion uncontrolled. To deal with the strong core hole in-
teraction, the Ultrashort Core hole Lifetime (UCL) expansion was developed in
Refs. [48–50], which treats the core hole potential as the dominating energy scale
(see Table 2.1).

For most RIXS intermediate states, the core hole lifetime broadening is quite
large: typically Γ is of the order of 1 eV. This yields a timescale τ = 1/2Γ = 4 fs.
Only during this ultrashort time, the system is perturbed by the core hole. Many
elementary excitations have an intrinsic timescale that is much larger than 4 fs.
For example, phonons have a typical energy scale up to 100 meV, and magnons
up to 350 meV, thus corresponding to timescales almost an order of magnitude
larger. Even low energy electronic valence band excitations can be within this
range.

The resulting physical picture of a RIXS process involving low energy excita-
tions is that the dynamics in the intermediate state are limited because of lack
of time.

The calculation of the RIXS amplitude within the UCL expansion in Refs. [48–
50] is based on a series expansion of the Kramers-Heisenberg equation, Eq. (2.31),
which is elaborated on in chapter 3. Here we present an analogous derivation.
We first introduce the identity

G(z) =
∑
n

|n〉 〈n|
z − En

=
1

i~

∫ ∞
0

dt e−i(H−z)t/~. (2.45)

The scattering amplitude then becomes

Ffg =
1

i~

∫ ∞
0

dt 〈f | D†e−i(H−z)t/~D |g〉 , (2.46)

which gives a natural picture of the RIXS process: it starts with excitation, then
the intermediate state evolves over a time t, followed by radiative decay of the
core hole. Since z has an imaginary part, RIXS processes with long intermediate
state lifetimes are suppressed. Because the decay time t is not measured, all
processes with different t’s interfere, hence the integral.

Because Γ is assumed to be the largest energy scale in the problem, we fac-
torize the exponential e−i(H−z)t/~ = e−i(H−Re{z})t/~e−Γt/~ in Eq. (2.46), and
expand the exponential with the smallest exponent:

Ffg =
1

i~

∫ ∞
0

dt 〈f | D†
∞∑
l=0

1

l!

(
−iH̃t
~

)l
e−Γt/~D |g〉 , (2.47)

where H̃ = H − Eg − ~ωk. Integration over time gives

Ffg =
1

i~
〈f | D†

∞∑
l=0

(
−iH̃
~

)l
~l+1

Γl+1
D |g〉 =

1

iΓ

∞∑
l=0

〈f | D†
(
H̃

iΓ

)l
D |g〉 , (2.48)
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The sum over intermediate states is traded for a series in H̃/Γ, which con-
verges if the lifetime broadening is the largest energy scale in the problem:
Γ > |En − Eg − ~ωk| for all n. The idea now is to approximate the series with
the first few terms. One just has to calculate the matrix elements of (some power
of) H to get the scattering amplitude.

The simplest approximation is to retain only l = 0. This is called the fast
collision approximation (see table 2.1): the RIXS process is completely deter-
mined by the dipole transitions, without any dynamics in the intermediate state.
For indirect RIXS, the cross section is therefore zero in this approximation. For
direct RIXS however, the fast collision approximation yields a simple description
of, e.g., single magnon RIXS in the cuprates (chapter 4) and the L edge cross
section of iridates (chapter 6). In certain cases, one can resum a series of terms
with different l [48–50].

Convergence is not a priori guaranteed for the expansion: when the incoming
photons are far off resonance, |En − Eg − ~ωk| > Γ. This divergence can easily be
removed by modifying the expansion. To better account for the effect of detuning
from the resonant edge, we introduce the resonance energy ~ωres, which is chosen
to be somewhere in the resonant absorption region (e.g., the peak of the absorp-
tion spectrum). Writing e−i(H−z)t/~ = e−i(H−Eg−~ωres)t/~ei(~[ωk−ωres]+iΓ)t/~, we
find

Ffg =
1

∆

∞∑
l=0

〈f | D†
(
H − Eg − ~ωres

∆

)l
D |g〉 , (2.49)

with ∆ = ~(ωk−ωres)+iΓ. This is the UCL expansion. Now, the series converges
if (En−Eg−~ωres)

2 < (~ωk−~ωres)
2+Γ2. Physically, this means that off-resonant

scattering is an even faster process than resonant scattering. We conclude that
far off resonance, the UCL expansion (2.49) form converges very rapidly.

The UCL series formally diverges in another way: there are always some inter-
mediate states for which |En − Eg − ~ωk| > Γ, for example, states from another
edge. Only when such intermediate states give sufficiently small contributions
to the scattering amplitude can one hope to obtain a sensible result from the
UCL expansion. Usually, that is the case as these states are far off-resonance.
The Hamiltonian can be replaced by an effective Hamiltonian where the far off-
resonant states have been integrated out (see, for instance, the treatment of
magnetic indirect RIXS in cuprates in chapter 4).

An alternative approach with Green’s functions is equally viable [3]. Besides
charge excitations [48–50], many other excitations that arise in indirect RIXS
were studied with the UCL expansion. The single- and two-magnon response of
antiferromagnetic La2CuO4 was calculated within the UCL expansion [19,51,52],
agreeing nicely with experiments [11, 14, 53]. Collective orbital excitations were
investigated theoretically for LaMnO3 [54]. Indirect RIXS investigations within
the UCL expansion on charge, magnetic, orbital and lattice excitations will be
reviewed in chapters 3, 4, 5, and 7, respectively.
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Charge excitations

3.1 Introduction

Charge excitations occur at quite high energies (typically, the gap of Mott in-
sulators is of the order of a few eV), which placed them within reach of RIXS
experiments already in the early stages of the development of the technique.
Charge excitations, both charge transfer excitations and exctitations across the
Mott gap [22], are interesting by themselves, but also because the high energy
theory that describes them contains the low energy physics as well. The latter
are of interest when one studies the elementary magnetic and orbital excitations
of the solid.

Other questions that can be addressed with RIXS relate to the nature of
the charge excitations – whether or not they form bound exciton states, if these
propagate coherently, etc. [3].

In this chapter, we study the indirect RIXS response of Hubbard models. The
simplest case of a single band Hubbard model with spinless fermions yields a RIXS
spectrum proportional to the dynamic charge correlation function S(q, ω). This
model is of interest in, e.g., doped cuprates, since the Coulomb repulsion is so
large that doubly occupied sites only virtually form. The spin degree of freedom
is, to first order, irrelevant for the charge excitations in these systems. Intro-
ducing spin or multiple bands complicates this picture somewhat, and yields less
simple correlation functions. The work in Sec. 3.2 is published in Phys. Rev. B.
We present some extensions of that work after fruitful discussions with Y.-J. Kim,
describing in more detail the difference between the well and poorly screened in-
termediate states. The experimental results of Y.-J. Kim are reviewed at the end
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of this chapter. In Sec. 3.3, the first order corrections to the charge scattering
cross section for strong core hole potentials are presented, which yield information
about the hopping amplitudes. Sec. 3.4 contains an analysis of the polarization
dependence of transition metal K edge RIXS.

3.2 UCL approach to charge scattering

Published as ‘Ultrashort Lifetime Expansion for Indirect Resonant Inelastic X-
ray Scattering’ in Phys. Rev. B 75, 115118 (2007) with Fiona Forte and Jeroen
van den Brink.

Abstract. In indirect resonant inelastic X-ray scattering (RIXS) an interme-
diate state is created with a core hole that has an ultra-short lifetime. The core
hole potential therefore acts as a femtosecond pulse on the valence electrons. We
show that this fact can be exploited to integrate out the intermediate states from
the expressions for the scattering cross section. By doing so we obtain an ef-
fective scattering cross section that only contains the initial and final scattering
states. This effective cross section which turns out to be a resonant scattering
factor times a linear combination of the charge response function S(q, ω) and
the dynamic longitudinal spin density correlation function, both with a resonant
prefactor. This result is asymptotically exact for both strong and weak local core
hole potentials and ultra-short lifetimes. The resonant scattering pre-factor is
shown to be weakly temperature dependent. We also derive a sum rule for the
total scattering intensity and generalize the results to multi-band systems. One
of the remarkable outcomes is that one can change the relative charge and spin
contribution to the inelastic spectral weight by varying the incident photon energy.

3.2.1 Introduction

It is a well-known fact that the 1s core hole that is created in indirect RIXS has an
ultra-short lifetime, of the order of femtoseconds. The reason is that the core hole
has a very high energy and is prone to decay via all sorts of radiative and non-
radiative processes, severely cutting down the efficiency of RIXS. In the canonical
theoretical treatments of RIXS this lifetime effect is normally introduced as a core
hole broadening and disregarded from that point on.

In a previous study [49], however, we have shown that from the theory per-
spective there is a great advantage to the extremely short lifetime of the core hole.
The ultra-short lifetime implies that for the electrons in the solid –particularly
for the slow ones that are close to the Fermi-energy– the core hole potential is
almost an instantaneous delta-function in time. Although the core hole potential
by itself can be large and therefore a strong perturbation to the electrons, the
very short duration of this perturbing potential allows for a systematic expan-
sion of the scattering cross section in terms of the core hole lifetime. Here we
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present a detailed derivation and various generalizations of this result. We shall
see that the most important consequence of the ultra-short core hole lifetime is
that for indirect RIXS the effective scattering cross section is proportional to the
charge structurefactor S(q, ω) and the longitudinal spin structure factor that is
associated with it.

The indirect RIXS process is shown schematically in Fig. 1.2. In transition
metal systems the photo-electron is promoted from a 1s core orbital to empty 4p
states that are far (10-20 eV) above the Fermi level. So the X-rays do not cause
direct transitions of the 1s electron into the lowest 3d-like conduction bands of
the system. Still RIXS is sensitive to excitations of electrons near the Fermi level.
The Coulomb potential of 1s core hole causes, e.g., very low energy electron-hole
excitations in the conduction/valence band: the core hole potential is screened
by the valence electrons. When the excited 4p electron recombines with the 1s
core hole and the outgoing photon is emitted, the system can therefore be left
behind in an excited final state. Since the excitations are caused by the core hole,
we refer to this scattering mechanism as indirect RIXS.

In this chapter, we derive in detail the dynamical correlation function that is
measured in indirect RIXS. We aim to give a full and self-contained derivation
of the results that were presented earlier [49] and we elaborate on several gen-
eralizations. In particular we will show that for local core hole potentials and
ultra-short lifetimes, the dynamical correlation function is a linear combination
of the charge density and longitudinal spin density response function. For a sin-
gle band system the actual linear combination that is measured depends on the
energy of the incoming photons and we determine the precise energy dependence
of its coefficients. A sum rule is derived and we generalize these results to the
case of finite temperature and for multi-band systems.

3.2.2 Series expansion of the scattering cross section

The Kramers-Heisenberg formula [33,41,42,55] for the resonant X-ray scattering
cross section at finite temperature is given by Eq. (2.32). In the following we will
take the groundstate energy of our system as reference energy for the electronic
system: Eg ≡ 0. We define the resonance energy ~ωres to be somewhere in the
middle of the resonant edge: it is just a number serving as a reference energy
in the intermediate state. The energy of the incoming X-rays with respect to
the resonance energy is ~ωin (this energy can thus either be negative or positive:
ωin = ωk − ωres) and in the following, En is the energy of intermediate state
|n〉 with respect to the resonance energy. In the intermediate state a core hole
and a photo-excited electron are present. When we take the Coulomb interaction
between the intermediate state core hole and the valence band electrons into
account, we obtain a finite inelastic scattering amplitude. In that case there is a
non-zero probability that an electron-hole excitation is present in the final state,
see Fig. 1.2.

Crucial to our further considerations will be the fact that the intermediate
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state is not a steady state. The reason is that the highly energetic 1s core hole
quickly decays, e.g., via Auger processes, and the core hole lifetime is very short.
The Heisenberg time-energy uncertainty relationship then implies that the core
hole energy has an appreciable uncertainty. This uncertainty appears in the
formalism above as the core hole energy broadening Γ which is proportional to
the inverse core hole lifetime, which is of the order of electronvolts as the lifetime
is ultra-short, of the order of femtoseconds. Note that the lifetime broadening
only appears in the intermediate states and not in the final or initial states –these
both have very long lifetimes. This implies that the core hole broadening does
not present an intrinsic limit to the experimental resolution of RIXS: the loss
energy ω is completely determined by kinematics.

When the incoming energy of the X-rays is equal to a resonant energy of the
system ~ωin − En = 0 and we see from Eqs. (2.30) and (2.31) that the resonant
enhancement of the X-ray scattering cross section is (~ωres/Γ)2, which is ∼ 106

for a transition metal K edge [33].
In a resonant scattering process, the measured system is generally strongly

perturbed. Formally this is clear from the Kramers-Heisenberg formula (2.31),
in which both the energy and the wavefunction of the intermediate state –where
a potentially strongly perturbing core hole is present– appear. This is in contrast
with canonical optical/electron energy loss experiments, where the probing pho-
ton/electron presents a weak perturbation to the system that is to be measured.

To calculate RIXS amplitudes, one possibility is to numerically evaluate the
Kramers-Heisenberg expression. To do so, all initial, intermediate and final state
energies and wavefunctions need to be known exactly, so that in practice a di-
rect evaluation is only possible for systems that, for example, consist of a small
cluster of atoms [56,57]. In this chapter, however, we show that under the appro-
priate conditions we can integrate out the intermediate states from the Kramers-
Heisenberg expression. After doing so, we can directly relate RIXS amplitudes
to linear charge and spin response functions of the unperturbed system. For
non-resonant scattering, one is familiar with the situation that the scattering in-
tensity is proportional to a linear response function, but for a resonant scattering
experiment this is a quite unexpected result.

Let us proceed by formally expanding the scattering amplitude in a power
series, following Eq. (2.49):

Ffg =
1

~ωin + iΓ

∞∑
l=0

Ml, (3.1)

where we introduced the matrix elements

Ml =
∑
n

(
En

~ωin + iΓ

)l
〈f | D† |n〉 〈n| D |g〉 . (3.2)

The formal radius of convergence of this power series is given by E2
n/[(~ωin)2+Γ2],

so that the series is obviously convergent when the incoming X-ray energy is, e.g.,
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far enough below the resonance, i.e., when |ωin| � 0. But also at resonance, when
ωin = 0 the series is convergent for intermediate energies that are smaller than
the core hole broadening Γ. Thus this expansion is controlled for ultra-short
core hole lifetimes, which implies that Γ is large. In the following we will be
performing resummations of this series.

We denote the denominator of the expansion parameter ~ωin + iΓ by the
complex number ∆, so that

Ml =
1

∆l

∑
n

〈f | D† |n〉 (En)l 〈n| D |i〉 =
1

∆l
〈f | D†(Hint)

lD |i〉 , (3.3)

where Hint is the Hamiltonian in the intermediate state. We thus obtain the
following series expansion for the resonant cross section:

d2σ

dωdΩ

∣∣∣∣
res

∝

〈∑
f

∣∣∣∣∣ 1

∆

∞∑
l=0

Ml

∣∣∣∣∣
2

δ(ω − ωfi)

〉
T

(3.4)

where 〈. . . 〉T denotes a thermal average and ~ωfi is the energy gained by the
material.

3.2.3 Indirect RIXS for spinless fermions: T = 0

As in Ref. [49], we will first calculate the resonant X-ray cross section at zero
temperature in the case where the valence and conduction electrons are effec-
tively described by a single band of spinless fermions: spin and orbital degrees of
freedom of the valence electron system are suppressed. Physically this situation
can be realized in a fully saturated ferromagnet.

The final and initial states of the system are determined by a Hamiltonian
H0 that describes the electrons around the Fermi level. The generic form of the
full many-body Hamiltonian is

H0 =
∑
i,j

tij(c
†
i cj + c†jci ) + c†i ciVijc

†
jcj , (3.5)

where i and j denote lattice sites with lattice vectors Ri and Rj . Note that the
sum is over each pair i, j once, with i, j ranging from 1 to N , where N is the
number of sites in the system. The hopping amplitudes of the valence electrons
are denoted by tij and the c/c†-operators annihilate/create such electrons. The
Coulomb interaction between valence electrons is Vij = V (|Ri −Rj |), as the
Coulomb interaction only depends on the relative distance between two particles.

The intermediate states are eigenstates of the Hamiltonian Hint = H0 + Hc,
where Hc accounts for the Coulomb coupling between the intermediate state core
hole and the valence electrons:

Hc =
∑
i,j

sis
†
iV

c
ijcjc

†
j , (3.6)
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where si creates a core hole on site i. The form of Hc has been chosen such that
the well-screened intermediate state is at energy ~ωres, so the UCL expansion
is around the well-screened part of the absorption edge. We assume that the
core hole is fully localized and has no dispersion. We will see shortly that this
leads to major simplifications in the theoretical treatment of indirect RIXS. The
core hole-valence electron interaction is attractive: V c > 0. An analysis of the
polarization dependence is given in Sec. 3.4. For now, we simplify the dipole
operators by taking

D =
∑
i

e−ik·Risip
†
i + eik

′·Ris†ipi + h.c., (3.7)

where p† creates a photo-excited electron in a 4p state and h.c. denotes the
hermitian conjugate of both terms.

Short Lifetime Approximation: Algebraic Form. In order to calculate
the cross section, we need to evaluate the operator (Hint)

l = (H0 + Hc)
l in

equation (3.3). A direct evaluation of this operator is complicated by the fact
that [H0, Hc] 6= 0. We therefore proceed by approximating H l

int with a series
that contains the leading terms to the scattering cross section for both strong
and weak core hole potentials – as long as the core hole lifetime is short. After
that we will do a full resummation of that series. This approximation is central
to the results in this chapter.

Expanding (H0 +Hc)
l gives a series with 2l terms of the form

H l
int = H l

c +

l−1∑
n=0

Hn
c H0 H

l−n−1
c + · · ·+

l−1∑
n=0

Hn
0 Hc H

l−n−1
0 +H l

0. (3.8)

Using H0D |g〉 = DH0 |g〉 ≡ 0, this series reduces to

H l
intD |g〉 =

(
H l
c +

l−2∑
n=0

Hn
c H0 H

l−n−1
c + · · ·+H l−1

0 Hc

)
D |g〉 . (3.9)

Using in addition that 〈f | D†H0 = 〈f |H0D† = Ef 〈f | D†, we find

〈f | D†H l
intD |g〉 = 〈f | D†

(
H l
c + EfH

l−1
c +

l−2∑
n=1

Hn
c H0 H

l−n−1
c

+ · · ·+ El−1
f Hc

)
D |g〉 . (3.10)

For strong core hole potentials, the leading term of H l
int is H l

c. Corrections to
this term contain at least one factor of H0 and are therefore smaller by a factor
of t/V c. For weak core hole potentials, the leading order term, H l

0, vanishes
because [H0,D] = 0. In this limit, the leading term in the inelastic scattering
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amplitude is therefore El−1
f Hc. Correction terms contain at least two factors of

Hc, which make them at least a factor of V c/t smaller.

Let us now consider the approximate expression

H l
intD |g〉 ≈

l∑
m=0

Hm
0 H

l−m
c D |g〉 . (3.11)

From the arguments above, it is easy to see that the leading order terms for
both strong (m = 0) and weak (m = l − 1) core hole potentials are included
in the sum; but a large series of other terms are included as well; they can
be neglected in the case that we strictly consider either limit. Including them,
however, means that we consider in addition a set of higher order scattering
processes. A major advantage of including these is that the terms will give rise
to a smooth interpolation between the two extreme limits. Note that the m = l
term in Eq. (3.11) is 0, so that it can be removed from the sum. After performing
the same manipulations as above, we obtain

〈f | D†
l−1∑
m=0

Hm
0 H

l−m
c D |g〉 =

l−1∑
m=0

Emf 〈f | D†H l−m
c D |g〉

= 〈f | D†
(
H l
c + EfH

l−1
c + · · ·+ El−1

f Hc

)
D |g〉 . (3.12)

Comparing Eqs. (3.10) and (3.12), it can be seen that the approximation (3.11)
is exact in the limit of both strong and weak core hole potentials.

Short Lifetime Approximation: Graphical Representation. We can also
represent the series expansion and its approximation graphically (Fig. 3.1). When
we expand (A+B)l, where A and B are non-commuting operators, each term in
the series corresponds to a graph on the grid of graph 1. Each graph occurs only
once and can be constructed by starting at the lower left corner of the grid and
moving either to the right, representing an A, or up, representing a B. At the
next vertex a new move (right or up) is made. We perform this procedure l times
and in this way we can obtain 2l distinct graphs, each corresponding to a term
in the expansion of (A+B)l. For example moving l times to the right represents
the term Al and moving l times up corresponds to Bl, see graphs 2 and 3. All
other terms in the series can be constructed by moving up and right a different
number of times and in different order. As we consider a fixed value of l (l = 8 in
Fig. 3.1), all graphs must end on the diagonal of the triangle that forms the grid.
In the series for (H0 +Hc)

lD |g〉 (H0 = A and Hc = B) we have the simplification
that terms ending with H0 acting on the groundstate give zero. These terms can
thus be removed from the expansion. The graphs for this expansion now live on
a reduced grid where the horizontal grid-lines at the diagonal of the triangle are
absent, see graph 5: these represent all terms ending on A.
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Figure 3.1: Graphical rep-
resentation of the expansion
of (A + B)l, where A = H0

and B = Hc are two non-
commuting operators. In this
example l = 8.
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In Fig. 3.1 we also represent the approximate series of the right-hand side
of Eq. (3.11). Graphically this sum corresponds to the set of graphs on the
reduced grid of graph 5, with either one kink (graphs 6-9) or without kinks
(graphs 2 and 3). Thus, in our approximation in Eq. (3.11) of the exact series
for (H0 +Hc)

l we neglect all graphs with two or more kinks (graphs 4, 10-12). In
the limit of either very A or very large B, the graphs that we neglect correspond
to sub-leading order corrections. When A is largest, the leading terms are, first,
graph 2, which is however zero because it ends on A. The leading term is therefore
of the order A7 and shown in graph 6. Other higher order terms are shown in
the graphs 7, 8, 10 and 11. The last two graphs are neglected in our approximate
expansion. In case B is dominating, the leading term is B8, graph 3, and next to
leading is graph 9, with B7. The highest order terms that are neglected in our
approximate series are of the type shown in graph 12.

Resummation of Series for Scattering Cross Section. In order to obtain
Ml and from there the scattering amplitude Ffg and finally the scattering cross
section, in Eq.(3.12) we need to evaluate expressions of the kind

Hn
c D |g〉 = Hn−1

c

∑
i,l,j

sl s
†
lV

c
ljcjc

†
je
−ik·Risip

†
i |g〉 . (3.13)

In the initial state no core hole is present: just one core hole is created by the
dipole operator. We therefore have that sl s

†
l si |g〉 = δl,isi |g〉. Inserting this in
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Eq. (3.13), we obtain

Hn
c D |g〉 = Hn−1

c

∑
i

e−ik·Risip
†
i

∑
j

V cijcjc
†
j |g〉 (3.14)

and by recurrence

Hn
c D |g〉 =

∑
i

e−ik·Risip
†
i

∑
j

V cijcjc
†
j

n |g〉 . (3.15)

Let us for the moment consider the strong core hole potential limit and keep
in the expansion Eq. (3.11) only the term m = 0. Inserting the results above in
Eq. (3.3), we find that

Ml =
1

∆l
〈f |
∑
i

eiq·Ri

∑
j

V cijcjc
†
j

l |g〉 if V c � t (3.16)

where the transfered momentum ~q ≡ ~k′ − ~k.
The first important observation is that the term l = 0 does not contribute

to the inelastic X-ray scattering intensity because M0 = 〈f |
∑
i e
iq·Ri |g〉 =

Nδq,0δf,g, which only contributes to the elastic scattering intensity at q = 0
(and other multiples of the reciprocal lattice vectors). From inspection of equa-
tion (3.2) we see immediately that the l = 0 term actually vanishes irrespective of
the strength of the core hole potential. This is of relevance when we consider the
scattering cross section in the so-called ‘fast collision approximation’ [58]. This
approximation corresponds to the limit where the core hole lifetime broadening is
the largest energy scale in system (Γ→∞ or, equivalently, Im{∆} → ∞). In this
limit only the l = 0 term contributes to the indirect RIXS amplitude and the res-
onant inelastic signal vanishes. In any theoretical treatment of indirect resonant
scattering one therefore needs to go beyond the fast-collision approximation.

This vanishing of spectral weight is ultimately due to an interference effect.
If we study a process in which we start from the initial state and reach a certain
final state, we need to consider all different possible paths for this excitation–
de-excitation process. When the core hole broadening is very large we can reach
the final state via any intermediate state and in order to obtain the scattering
amplitude we thus add up coherently the contributions of all intermediate states.
We then obtain F =

∑
n 〈f |n〉 〈n|g〉. When the set of intermediate states that we

sum over is complete (which by definition is the case when Γ→∞ ), this leaves
us with F = 〈f |g〉 which is, because of the orthogonality of eigenstates, only non-
zero when the initial and final state are equal–hence only when the scattering is
elastic. Alternatively, one could say that the scattering process happens so fast
that the valence electrons do not have enough time to react: they remain in the
ground state.
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The second observation is that Ml is a 2l-particle correlation function. If
we measure far away from resonance, where |Re{∆}| � 0, the scattering cross
section is dominated by the l = 1, two-particle, response function. When the
incoming photon energy approaches the resonance, gradually the four, six, eight
etc. particle response functions add more and more spectral weight to the in-
elastic scattering amplitude. Generally these multi-particle response functions
interfere. We will show, however, that in the local core hole approximation the
multi-particle correlation functions in expansion (3.11) collapse onto the dynamic
two-particle (charge-charge) and four-particle (spin-spin) correlation function.

Local core hole potentials. In hard X-ray electron spectroscopies one often
makes the approximation that the core hole potential is local. This corresponds
to the widely used Anderson impurity approximation in the theoretical analysis
of, e.g., X-ray absorption and photo-emission, introduced in Refs. [59–61]. This
approximation is reasonable as the Coulomb potential is certainly largest on the
atom where the core hole is located.

In the present case, moreover, we can consider the potential generated by
both the localized core hole and photo-excited electron at the same time. As this
exciton is a neutral object, its monopole contribution to the potential vanishes
for distances larger than the exciton radius. The multi-polar contributions that
we are left with in this case are generally small and drop off quickly with distance.

We insert a local core hole potential V cij = Uδij in our equations and aim to
resum the approximate series expansion in Eq. (3.11) for arbitrary values of the
local core hole potential. We find from Eq. (3.15) that

Hn
c D |g〉 =

∑
i

e−ik·Risip
†
iU

n[ci c
†
i ]
n |g〉 (3.17)

Using that for fermions [ci c
†
i ]
n = ci c

†
i , we obtain for our spinless fermions

Msf
l =

1

∆l
〈f |
∑
i

eiq·Rici c
†
i |g〉

l−1∑
m=0

Emf U
l−m. (3.18)

The sum over m can easily be performed:

l−1∑
m=0

Emf U
l−m = U l

l−1∑
m=0

(Ef/U)m =
U l − Elf

1− Ef/U
(3.19)

and we obtain for the inelastic part

Msf
l = − 1

∆l

U l − Elf
1− Ef/U

〈f |
∑
i

eiq·Ric†i ci |i〉 . (3.20)

Note that
∑
i e
iq·Ric†i ci =

∑
k c
†
k−qck ≡ ρq is the density operator.
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We now have to perform the sum over l in equation (3.1). The l = 0 term is
zero, as we discussed above, so that the scattering amplitude is

Ffg =
1

∆

∞∑
l=1

Ml. (3.21)

Using
∞∑
l=1

(U/∆)l − (Ef/∆)l = ∆
U − Ef

(∆− U)(∆− Ef )
(3.22)

we finally find that the indirect resonant inelastic scattering amplitude for spinless
fermions is

Fsffg = P1(ω,U) 〈f | ρq |g〉 , (3.23)

where the resonant enhancement factor is P1(ω,U) ≡ −U [(∆ − U)(∆ − ~ω)]−1

and ~ω = Ef . For spinless fermions with a local core hole potential the scattering
cross section thus turns out to be the density response function –a two-particle
correlation function– with a resonant prefactor P1(ω) that depends on the loss
energy ~ω, the distance from resonance ~ωin(= Re{∆}), on the core hole potential
U and on the core hole lifetime broadening Γ(= −Im{∆}). We see that the
resonant enhancement is largest when the energy of the incoming photons is
either equal to the core hole potential (~ωin = U ⇒ ~ωk = ~ωres + U) or to the
loss energy, which one could refer to as a “final state resonance” (~ωin = ~ω ⇒
~ωk′ = ~ωres).

Alternatively, one can perform the UCL expansion at a different intermediate
state/~ωres. Expanding around the poorly screened state by taking

Hc = U
∑
i

sis
†
i c
†
i ci (3.24)

one gets
Ffg = P1(ω,−U) 〈f | ρq |g〉 . (3.25)

Now, ~ωres refers to the poorly screened state, which is at an energy U above
the well-screened state ~ωwsres. Resonance is thus expected when ~ωin = −U ⇒
~ωk = ~ωwsres and ~ωin = ~ω ⇒ ~ωk′ = ~ωwsres + U . This corresponds to energy
gain scattering, but that does not occur at low temperatures. Therefore, this
resonant behavior cannot be seen in practice.

One then might wonder around which ~ωres to expand, since the choice of
~ωres determines the resonant behavior. One way to deal with this problem is
simply to take an average of both expansion points. Both resonances are recov-
ered, of which one (the energy-gain resonance) is experimentally inaccessible.

The density response function is related to the dielectric function ε(q, ω) and
the dynamic structure factor S(q, ω) (see, e.g., Ref. [62], p. 322), so that we
obtain for the resonant scattering cross section

d2σ

dΩdω

∣∣∣∣sf
res

∝ − |P1(ω)|2 Im
{

1

Vqε(q, ω)

}
∝ |P1(ω)|2 S(q, ω), (3.26)
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for a fixed value of the core hole potential U . Vq is the Fourier transform of the
Coulomb potential. For weak core hole potentials the total scattering intensity
is proportional to U2 and for strong core hole potentials, where U � Γ, the
scattering intensity at resonance (ωin = 0) is to first order independent of the
strength of the core hole potential. Far away from the edge, however, where
|~ωin| � U , the scattering intensity is again proportional to U2, just as for weak

core hole potentials. Integrating |P1(ω)|2 over all incoming photon energies, we
obtain the integrated inelastic intensity at fixed loss energy ~ω and momentum
~q ∫ ∞

−∞
d(~ωin)

d2σ

dΩdω

∣∣∣∣sf
res

= r2
em

2ω4
res

2πU2

Γ(4Γ2 + (U − ~ω)2)
S(q, ω) (3.27)

where we have taken ωk(′) constant (= ωres) in the domain of integration:
(−∞,+∞) implies integration over the energy range described by our theory,
i.e., ∼ 10 eV around the edge. It seems that the resonant enhancement factor
of the integrated intensity has a maximum when the loss energy is equal to the
core hole potential. However, the core hole potential is attractive and therefore
lower than zero, and the loss energy ~ω is by definition greater than zero. So the
integrated intensity is maximal at energy loss ~ω = 0.

3.2.4 Indirect RIXS for spinless fermions: finite T

In this section, we generalize the previous calculation to the case of finite tem-
perature. The starting point is Eq. (2.32):

d2σ

dΩdω

∣∣∣∣
res

∝ 1

Z

∑
i,f

e−βEi |Ffi|2 δ(ω − ωfi), (3.28)

where Z =
∑
i e
−βEi is the partition function and β = 1/kBT . Eq. (3.28)

represents the statistical average over all the initial states |i〉, where now the
more general relation H0 |i〉 = Ei |i〉 holds.

We expand the scattering amplitude Ffi, using again the ultra-short lifetime
of the core hole as in Eq. (3.1). We are left with the evaluation of the operator
(Hint)

l. We proceed by expanding it in the following way:

(Hint)
lD |i〉 = (H0 +Hc)

lD |i〉

≈
l−1∑
n=0

l−n−1∑
m=0

(H0)m(Hc)
l−m−n(H0)nD |i〉 , (3.29)

where we neglected the term H l
0, as it will not contribute to the inelastic scatter-

ing cross section. This approximation reproduces the correct leading order terms,
which represent the strong and weak coupling case, respectively. Moreover, it is
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a generalization of (3.11), that takes into account that the initial state is no
longer the ground state so that H0 |i〉 = Ei |i〉. In our graphical representation,
with respect to the T = 0 case, it corresponds to retain all the additional terms,
having more than one kink, that start and finish with a horizontal step. In doing
this, we are neglecting again the sub-leading order terms H l−1−n

c H0H
n
c .

After inserting expansion (3.29) in the expression (3.3) for Ml, we finally have
to evaluate

〈f | D†
∑
n,m

(H0)m(Hc)
l−m−n(H0)nD |i〉 =

∑
n,m

Emf E
n
i 〈f | D†H l−m−n

c D |i〉 . (3.30)

In the local core hole approximation, we can resum this approximate series ex-
pansion. By using the results of Eqs. (3.17) and (3.18), we obtain for spinless
fermions

Msf
l = − 1

∆l
〈f | ρq |i〉

∑
n,m

Emf E
n
i U

l−m−n. (3.31)

By performing the sums over n and m

∑
n,m

Emf E
n
i U

l−m−n = U l
l−1∑
n=0

(Ei/U)n
l−n−1∑
m=0

(Ef/U)m, (3.32)

and after summing over l, we finally obtain

Fsffi = P1(Ef , U)
∆

∆− Ei
〈f | ρq |i〉 . (3.33)

This equation clearly shows that one of the main effects of finite temperature
is to modify the resonant enhancement factor, nevertheless preserving the same
structure for the scattering amplitude.

At this point we observe that at resonance |∆| = Γ, which is of the order of
electronvolts and thus several orders of magnitude larger than Ei, even at high
temperature. This allows us to approximate the prefactor in Eq. (3.33) as

P1(Ef , U)
∆

∆− Ei
≈ P1(ω,U)

(
1 +

Ei
∆− ~ω

+ . . .

)(
1 +

Ei
∆

+ . . .

)
. (3.34)

At the lowest order in Ei/Γ, the prefactor is not modified by T at all, hence we
conclude that the major modifications to the cross section are induced by thermal
averaging of the correlation function. After integrating over all the incoming
photon energies, we get the following approximate expression for the thermal
average of the inelastic intensity at loss energy ~ω and momentum ~q:

d2σ

dΩdω

∣∣∣∣
res,T

∝ |P1(ω)|2 〈S(q, ω)〉T . (3.35)
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In this expression the temperature dependence is entirely due to the tem-
perature dependence of S(q, ω). The prefactor is in leading order temperature
independent. Note that at finite temperatures also energy gain scattering oc-
curs: the photon can gain an energy of the order of kBT from the system, which
corresponds to a negative energy loss.

3.2.5 Fermions with spin

We generalize the calculation above to the situation where the electrons have an
additional spin degree of freedom. In the Hamiltonians (3.5) and (3.6) we now
include a spin index σ (with σ =↑ or ↓) to the annihilation and creation operators:
ci → ciσ and cj → cjσ′ and sum over these indices, taking into account that the
hopping part of the Hamiltonian is diagonal in the spin variables. In order to
resum the series in Eq. (3.11) we now need to evaluate expansions of the kind
(n↑ + n↓)

l when we expand around the unscreened part of the resonant edge.
Using

(n↑ + n↓)
l = n↑ + n↓ + (2l − 2)n↑n↓, (3.36)

for l > 0, we obtain for the inelastic part

Ffi = 〈f |
(
P1(ω,−U)[ρq − 2ρ↑↓q ] + 2P2(ω,−U)ρ↑↓q

)
|i〉 , (3.37)

with P2(ω,U) = P1(ω, 2U)/2 and ρ↑↓q ≡
∑
i e
iq·Rini↑ni↓. We see that in the

case that each site can only be occupied by at most one valence electron, this
equation reduces to Eq. (3.23) with ρq = ρ↑q+ρ↓q. The two terms in the scattering
amplitude can also be written in terms of density and spin operators. Using
(ni↑ − ni↓)2 = (2Szi )2 = 4

3S2
i , we obtain ρq − 2ρ↑↓q = S2

q, where we introduce

the longitudinal spin density correlation function S2
q ≡ 1

S(S+1)

∑
k Sk+q ·S−k. In

terms of these correlation functions the scattering amplitude for spinfull fermions
is

Ffi = [P1(ω,−U)− P2(ω,−U)] 〈f |S2
q |i〉+ P2(ω,−U) 〈f | ρq |i〉 , (3.38)

Clearly the contributions to the scattering rate from the dynamic longitudinal
spin correlation function and the density correlation function need to be treated
on equal footing as they interfere. On a heuristic basis sometimes only the
charge density response function is considered for the calculation of RIXS spectra,
e.g., [63–66]. Note that based on qualitative arguments, it was anticipated that
the RIXS cross section should depend on a dynamic four-particle correlation
function [38].

The spin and charge correlation functions have different resonant enhance-
ments, see Fig. 3.2. For instance when Re{∆} = −U , the scattering amplitude is
dominated by P1(ω) and hence by the longitudinal spin response function. When
the photons are tuned to the well-screened intermediate state on the other hand,
i.e., where Re{∆} = −2U , P2(ω) is resonating so that the contributions to the
inelastic scattering amplitude of charge and spin are approximately equal.
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Figure 3.2: Prefactors to the
scattering intensity at fixed loss
energy (~ω/Γ = 1) as a function of
incoming photon energy ~ωin/Γ,
for different values of the local
core hole potential U/Γ. The solid

line refers to |P1(ω,U)|2 and the

dashed line refers to |P2(ω,U)|2.

Again, these resonances are at energy-gain scattering. Alternatively, we can
expand around the well-screened intermediate states. We then use the core hole
Hamiltonian

Hc = U
∑
i

sis
†
i (2− ni↑ − ni↓) = U

∑
i

sis
†
i (ci↑c

†
i↑ + ci↓c

†
i↓) (3.39)

and obtain by an analogous procedure

Ffi = [P2(ω,U)−P1(ω,U)] 〈f |S2
q |i〉+ [3P2(ω,U)−2P1(ω,U)] 〈f | ρq |i〉 . (3.40)

In the case of the cuprates, the spinless fermion scenario is appropriate when
considering charge scattering: the intra-ionic Coulomb repulsion is so large that
the fermions will virtually never occupy the same site (n↑n↓ = 0), which makes
the spin degree of freedom irrelevant. In this limit S2

q = ρq, and the scat-
tering amplitudes for the spinless and spinfull fermions, expanded around the
unscreened intermediate states – Eqs. (3.25) and (3.38) respectively – are equal.
The well-screened intermediate states do not have an analogue in the spinless
case, as no two fermions can occupy the same site to screen the core hole.

3.2.6 Multi-band systems

Let us consider systems with more than one band and take as an explicit example
a transition metal with a 3d and a 4s band. The Coulomb attraction between
the 1s core hole and an electron in the 3d state (Ud) is much larger than the
interaction with a 4s electron (Us). Neglecting spin degrees of freedom we would
naively expect that the indirect RIXS response in the two-band system is simply
the sum of the responses of the two individual electronic systems, with possi-
ble interference between the two scattering channels: we expect the scattering
amplitude to be equal to

Fs+dfi = P1(ω,Ud) 〈f | ρdq |i〉+ P1(ω,Us) 〈f | ρsq |i〉 . (3.41)
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However, already from the calculation for the spinfull fermions we know that the
situation should be more complicated, as in that case the full response function
is not just the sum of the two response functions for spinless fermions. The point
is that when both a 3d and 4s electron screen the core hole, the intermediate
state is at a lower energy (at ~ωin = Ud + Us) compared to the situation where
only a single d or s electron screens the core hole (with a resonance at ~ωin = Ud
or Us, respectively.) In the situation that both electrons screen the core hole, the
resonance therefore appears at a different incoming photon energy.

According to Eq. (3.15), we now need to evaluate expressions of the sort
(Udn

d + Usn
s)l for l > 0 when expanding around the unscreened intermediate

states. After using the binomial theorem and summing the resulting series, we
obtain

(Udn
d + Usn

s)l = U ldn
d + U lsn

s + ndns
[
(Ud + Us)

l − U ld − U ls
]
, (3.42)

which leads to a scattering amplitude

Fsdfi = Fs+dfi + [P1(ω,−Ud − Us)− P1(ω,−Ud)− P1(ω,−Us)] 〈f | ρdsq |i〉 , (3.43)

where ρdsq ≡
∑
i e
iq·Rindi n

s
i . This is an interesting term, physically, as it directly

measures the density correlations between the d and s electron density on a
transition metal atom.

Alternatively, we again expand around the well-screened intermediate states
where both the d and s orbitals are occupied:

Hc =
∑
i

ci c
†
i (Uddid

†
i + Us sis

†
i ) (3.44)

where ci, di and si represent the core, d and s electron annihilation operators
respectively. The corresponding scattering amplitude is

Fsdfi = [P1(ω,Ud + Us)− P1(ω,Us)] 〈f | ρdq |i〉
+ [P1(ω,Ud + Us)− P1(ω,Ud)] 〈f | ρsq |i〉
+ [P1(ω,Ud) + P1(ω,Us)− P1(ω,Ud + Us)] 〈f | ρdsq |i〉 (3.45)

where ρd,sq ≡
∑
i e
iq·Rind,si . Note that [P1(ω,Ud + Us)− P1(ω,Us)] = 0 when

Ud = 0.

3.2.7 Conclusions

On the basis of the ultra-short lifetime of the core hole in the intermediate state
we presented a series expansion of the indirect resonant inelastic X-ray scattering
amplitude, which is asymptotically exact for both small and large local core
hole potentials. This algebraic series is also given in a graphical representation.
By resumming the terms in the series, we find the dynamical charge and spin
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correlation functions that are measured in RIXS. The resonant prefactor is only
weakly temperature dependent. We have also derived a sum rule for the total
scattering intensity and considered RIXS in both single and multi-band systems.
On the basis of our results, the charge and spin structure factor that is obtained
from ab initio density functional calculations or from, e.g., Hubbard-like model
Hamiltonians can directly be compared to experimental RIXS spectra. Moreover,
our results open up the possibility to compare the measurements of S(q, ω) by
RIXS and, for instance, electron energy loss spectroscopy [67]. In this way one
can actually determine experimentally the resonant scattering prefactors that we
have calculated.

We should stress that four basic assumptions underly our results, which other-
wise are general. First, the RIXS process that we consider is indirect, i.e., in the
scattering process electrons are not directly promoted into the conduction band
of the solid. Rather the inelastic scattering that we consider is due to the po-
tential of the core hole which is present in the intermediate state. This situation
arises, for instance, at the K edge of transition metal atoms, but can also occur
at the L edge of lanthanide ions. We assumed, furthermore, that the core hole
is localized and that its lifetime is short – reasonable premises for the deep core
holes that are involved. The final assumption is that scattering is dominated by
the coupling between the core hole and electrons (of d character if we consider a
transition metal K edge) on the same atom. This is a good approximation when
the d electrons are localized and the on-site Coulomb interaction is much larger
than the one between neighboring atoms. In that sense our ultra-short lifetime
expansion is expected to work very well for 3d systems and possibly less so for
the 4d or 5d transition metal ions.

Finally, we assumed that the charge and longitudinal spin responses of the
system that we consider are not vanishing, i.e., they are the leading order re-
sponse function. In insulators at energies below the gap, however, these two
response functions do vanish. This in principle opens a way to observe cor-
relation functions beyond the ones that we have considered here, for instance,
transversal spin (chapter 4) or orbital response functions (chapter 5) and thus
to measure magnon dispersions or even orbiton properties with RIXS – a very
exciting prospect indeed.
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3.3 Corrections to the cross section for strong
core hole potentials

In this section we consider the first order correction to the UCL results given
in Sec. 3.2. We treat the cases of spinless fermions (Sec. 3.3.1) and fermions
with spin (Sec. 3.3.2) in the limit of a strong core hole potential. The resulting
correction terms to the RIXS scattering amplitude contain information on the
hopping matrix elements.

3.3.1 Spinless fermions

In Sec. 3.2, H l
int was approximated in the limit of a strong core hole potential as

(H0 +Hc)
l ≈ H l

c. The first order correction to this approximation has one factor
of H0 and l − 1 factors of Hc, and those terms are not properly included in the
UCL expansion for l ≥ 2. We therefore improve the approximation:

(H0 +Hc)
l = H l

c +

l−2∑
n=0

Hn
c H0H

l−1−n
c +O(H2

0 ) (3.46)

for l > 2. The l ≤ 2 terms were exact already in Sec. 3.2. The n = 0 term
was also already included. The first order corrections to Eq. (3.2) for spinless
fermions are therefore of the form

〈f | D†
l−2∑
n=1

Hn
c H0H

l−1−n
c D |i〉 = U l−1(l − 2) 〈f |

∑
i

eiq·Rici c
†
iH0ci c

†
i |i〉 (3.47)

when expanding around the well-screened intermediate states.
Now we commute H0 to the right:[

H0, ci c
†
i

]
=
∑
j

tij

(
c†i cj − c

†
jci

)
. (3.48)

where we assumed tij and tji are equal and real numbers. The correction terms
(3.47) then become

〈f | D†
l−2∑
n=1

Hn
c H0H

l−1−n
c D |i〉 = −U l−1(l − 2) 〈f |

∑
i,j

eiq·Ritijc
†
jci |i〉 . (3.49)

Fourier transforming gives

〈f | D†
l−2∑
n=1

Hn
c H0H

l−1−n
c D |i〉 = −U l−1(l − 2) 〈f |

∑
k

tkc
†
kck−q |i〉 , (3.50)

where the tk =
∑
i ti0e

−ik·Ri are the Fourier components of tij , assuming tij to
be invariant under translations.
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The inelastic scattering amplitude becomes

Ffi =
1

∆

∞∑
l=1

1

∆l
〈f | D†(H0 +Hc)

lD |i〉 (3.51)

≈ P1 〈f | ρq |i〉 −
U

∆3

∞∑
l=2

(
U

∆

)l−2

(l − 2) 〈f |
∑
k

tkc
†
kck−q |i〉 (3.52)

= P1 〈f | ρq |i〉+ P3 〈f |
∑
k

tkc
†
kck−q |i〉 (3.53)

with P3 = − U2

∆2(∆−U)2 . The correction terms carry information about the hop-

ping matrix elements tij . They involve two-site correlation functions. Higher
order correction terms can generate correlation functions with more and more
sites. Especially for systems with only a single fermion, or at least very few
fermions, that are at a fixed momentum, RIXS is able to directly probe the hop-
ping matrix elements. It should be noted, however, that the P1 and P3 terms
of the scattering amplitude interfere, and that this interference term is of order
tij/∆ stronger than the |P3|2 term.

3.3.2 Fermions with spin 1/2

When the fermions have a spin index, we have to evaluate for l > 2:

〈f | D†
l−2∑
n=1

Hn
c H0H

l−1−n
c D |i〉

= U l−1
l−2∑
n=1

〈f |
∑
i

eiq·Ri

(∑
σ

ciσc
†
iσ

)n
H0

(∑
σ′

ciσ′c
†
iσ′

)l−1−n

|i〉

= U l−1
l−2∑
n=1

〈f |
∑
i

eiq·Ri

(
ci↑c

†
i↑ + ci↓c

†
i↓ + (2n − 2)ci↑c

†
i↑ci↓c

†
i↓

)
×

H0

(
ci↑c

†
i↑ + ci↓c

†
i↓ + (2l−1−n − 2)ci↑c

†
i↑ci↓c

†
i↓

)
|i〉 . (3.54)

H0 is commuted to the right:[
H0,

(
ci↑c

†
i↑ + ci↓c

†
i↓ + (2l−1−n − 2)ci↑c

†
i↑ci↓c

†
i↓

)]
=
∑
j,σ

tij

(
c†iσcjσ − c

†
jσciσ

)
+ (2l−1−n − 2)

([
H0, ci↑c

†
i↑

]
ci↓c

†
i↓ + ci↑c

†
i↑

[
H0, ci↓c

†
i↓

])
=
∑
j,σ

tij

(
c†iσcjσ − c

†
jσciσ

)(
2l−1−n − 1 + (2l−1−n − 2)niσ̄

)
, (3.55)
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where σ̄ =↑ if σ =↓, and vice versa. We find after some algebra

〈f | D†
l−2∑
n=1

Hn
c H0H

l−1−n
c D |i〉

= U l−1
∑
i,j,σ

eiq·Ritij 〈f |
[
− (l − 2) c†jσciσ −

(
(l − 3)2l−1 + 4− l

)
ciσ̄c

†
iσ̄c
†
jσciσ

+
(
2l−1 − l

)
ciσ̄c

†
iσ̄c
†
iσcjσ

]
|i〉 . (3.56)

The inelastic scattering amplitude Ffi is then

Ffi =
1

∆

∞∑
l=1

1

∆l
〈f | D†(H0 +Hc)

lD |i〉 (3.57)

≈ (uncorrected terms) + P3

∑
i,j,σ

tije
iq·Ri 〈f |

[
c†jσciσ

− ∆

∆− 2U
ciσ̄c

†
iσ̄c
†
iσcjσ +

∆2 + 2U∆− 4U2

(∆− 2U)2
ciσ̄c

†
iσ̄c
†
jσciσ

]
|i〉 , (3.58)

where “uncorrected terms” refers to Eq. (3.40).

For the special case of a half-filled system without doubly occupied sites in
the initial state, the scattering amplitude is

Ffi = (uncorr.) + P3

∑
k,σ

[
2∆(∆− U)

(∆− 2U)2
tk+q −

∆

∆− 2U
tk

]
〈f | c†k+q,σckσ |i〉 .

(3.59)

3.4 Polarization dependence of transition metal
K edge RIXS

In Sec. 3.2, the polarization details of the indirect RIXS scattering process at the
transition metal K edge were neglected: all T (ε′, ε) were set to 1. In this section,
the polarization dependence of the two dipole transitions is investigated in more
detail. The previous results is modified by a polarization-dependent prefactor
T (ε′, ε).

In the following, it is assumed that the 4p electron acts as a spectator, that is,
different 4p states do not give rise to different scattering processes [4, 5]. These
are determined by the 1s core hole alone.

In an octahedral crystal feld, the polarization dependence of indirect RIXS
at the transition metal K edge might at first sight seem trivial: excitation of
a 1s core electron into a 4p level and the consecutive de-excitation yields the
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polarization dependence (2.42)

T (ε′, ε) =
∑
i

〈1s| ε′∗ · r |4pi〉 〈4pi| ε · r |1s〉 ∝
∑
i,n,m

∫∫
drdr′ ε′∗n r

′
nr
′
iriεmrm

∝
∑
i,n,m

ε′∗n δn,iδi,mεm = ε′∗ · ε. (3.60)

Deviations from octahedral symmetry induce an anisotropy. In La2CuO4, for
instance, the 4pz state is at a slightly different energy than the 4px,y because of
the planar structure of the material. In the extreme case that the off-resonant
4pz states do not contribute at all to the RIXS scattering amplitude, T (ε′, ε) =
ε′∗x εx + ε′∗y εy.

Apart from these local effects, however, there is another important anisotropic
contribution to the polarization dependence. The 4p states form bands, and
the 4px and 4py orbitals can mix. We now show the effect of this mixing in a
minimal model for the 4p states. Nearest neighbor 4p orbitals only have non-zero
hopping from 4px to 4px and from 4py to 4py. Next-nearest neighbor hopping
is substantial because of the extended nature of the 4p states. This can couple
4px and 4py orbitals, and we only include this part of the next-nearest neighbor
hopping in the Hamiltonian:

H = −t
∑
i,δ

(
p†x,ipx,i+δ + p†y,ipy,i+δ

)
− t′

∑
i,δ′

(
p†y,ipx,i+δ′ + p†x,ipy,i+δ′

)
(3.61)

where px,y annihilates an electron in the 4px,y orbital. t is the nearest neighbor
hopping amplitude, which is assumed to be equal in all directions for simplic-
ity, and t′ is the hopping amplitude for next-nearest neighbors. δ and δ′ point
to nearest and next-nearest neighbors, respectively. This Hamiltonian is easily
diagonalized in k space:

H =
∑
k

[(
−ztγk + z′t′γ′k

)
α†kαk +

(
−ztγk − z

′t′γ′k

)
β†kβk

]
(3.62)

where γk(′) =
∑
δ(′) e

ik·δ(′)/z(′) with z the number of nearest neighbors and

z′ the number of next-nearest neighbors. We introduced transformed fermion
operators αk and βk: (

px,k
py,k

)
=

1√
2

(
1 1
−1 1

)(
αk

βk

)
. (3.63)

Within this model, the polarization factors (2.42) are

Tα(ε′, ε) = 〈1s| ε′∗ · r |αk〉 〈αk| ε · r |1s〉 ∝
∫∫

drdr′ ε′∗ · r′(x′ − y′)(x− y)ε · r

∝ (ε′∗x − ε′∗y )(εx − εy), (3.64)
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Tβ(ε′, ε) = 〈1s| ε′∗ · r |βk〉 〈βk| ε · r |1s〉 ∝
∫∫

drdr′ ε′∗ · r′(x′ + y′)(x+ y)ε · r

∝ (ε′∗x + ε′∗y )(εx + εy). (3.65)

The 4pz states will contribute a term proportional to ε′∗z εz. When t′ = 0, |αk〉 and
|βk〉 are degenerate and we recover the result for atomic 4p states: Tα+Tβ ∝ ε′∗·ε.
However, when next-nearest neighbor hopping is non-zero, the degeneracy of the
4p states is lifted. When this splitting becomes of the order of Γ, the energy
denominator in Eq. (2.41) becomes appreciably different and the polarization
dependences of Tα and Tβ no longer add with equal weight.

In our simple model, the hopping t′ introduces a mixing of 4px and 4py
orbitals, which of course can also be introduced in other ways, like spin-orbit
coupling, scattering off the valence electrons, etc. In general, all these effects,
together with the deviations from the cubic crystal field mentioned above, will
produce an anisotropic polarization dependence.

3.5 Comparison to experiments

The observation that within the UCL the RIXS cross section can be factored
into a resonant prefactor and the dynamic structure factor S(q, ω), was tested
experimentally by Kim et al. [67]. They reported an empirical comparison of
Cu K edge indirect RIXS spectra, taken at the Brillouin zone center, with op-
tical dielectric loss functions measured in a number of copper oxides: Bi2CuO4,
CuGeO3, Sr2Cu3O4Cl2, La2CuO4, and Sr2CuO2Cl2. Analyzing both incident
and scattered photon resonances, they extracted a response function that is
independent of the incident energy. The overall spectral features of the in-
direct RIXS spectral function were found to be in reasonable agreement with
the optical dielectric loss function over a wide energy range. In the case of
Bi2CuO4 and CuGeO3, Ref. [67] observes that the incident energy-independent
response function, S(q = 0, ω), matches very well with the dielectric loss func-
tion, −Im{1/ε(ω)} measured with spectroscopic ellipsometry, suggesting that
the local core hole approximation treatment of the UCL works well in these more
localized electron systems. Corner sharing two-dimensional copper oxides exhibit
more complex excitation features than observed in the dielectric loss functions,
likely related to non-local core hole screening effects.
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Magnetic RIXS on 2D cuprates

4.1 Introduction

Over the past three years, RIXS has made tremendous progress in probing mag-
netic excitations. From the 3D material NiO via the 2D high-Tc superconductors
to the 1D telephone number compounds, many materials have been studied with
RIXS. What used to be the exlusive domain of neutron scattering, and to lesser
degree Raman spectroscopy and optical conductivity measurements, now is being
entered by RIXS.

Neutron scattering measures the dispersion, or, more generally, the dynamic
spin susceptibility χ(q, ω) of magnetic compounds with a very high energy resolu-
tion (down to the µeV range [68]). Neutrons, however, have a number of intrinsic
difficulties: they require large samples or very high flux, especially at high en-
ergy transfers. Some elements are intrinsically unsuitable for neutron scattering
because they strongly absorb neutrons (e.g., cadmium and gadolinium [68]).

RIXS does not suffer from these limitations. The energy resolution of RIXS
experiments has improved dramatically over the last few years, allowing for the
measurement of low energy magnetic excitations down to ∼ 50 meV. This brings
the high-Tc cuprates into the domain of magnetic RIXS, and this will be the
main subject of this chapter.

Because of the very rapid developments in instrumentation, theory has trouble
keeping up with experiments. Magnetic RIXS measurements on the 2D cuprates
have been done at the Cu K edge [14,53], L edge [10,11,21,69], M edge [15] and
O K edge [70,71].
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In the scattering process, angular momentum can be transferred to the solid.
RIXS is not restricted to ∆S = 0, 1 like neutrons, which carry spin 1/2, but can
also transfer two units of angular momentum since photons have spin 1. Photons
couple only very weakly to the spin angular momentum of the electron. Rather,
the photon’s angular momentum is transferred to the orbital angular momentum
of the electron. This might seem a problem for creating magnetic excitations
with X-rays, because in most solids the relativistic spin-orbit coupling is small.

However, for some core states involved in RIXS, the spin-orbit coupling is
very large (of the order of 10 eV). Consequently, the spin and orbital degrees
of freedom are coupled, so the photon’s angular momentum can be transferred
indirectly to the spins, creating a magnetic excitation with ∆Sz = ±1 or ±2.
This channel is direct RIXS: the final state can be reached without any dynamics
in the intermediate state.

1s core states have no orbital angular momentum, and therefore magnetic
excitations with ∆Sz = ±1 or ±2 cannot be created at the K edges. However, it
is possible to induce a ∆Sz = 0 magnetic excitation, like in two-magnon Raman
scattering in the cuprates. This process can arise because the RIXS process
creates a magnetic impurity in the intermediate state, which is then screened
by the surrounding valence electrons: the magnetic background is rearranged
around the core hole site, and left behind in an excited final state. Note that
indirect processes can also play a role at edges where there is strong core state
spin-orbit coupling (and hence direct RIXS); the indirect RIXS spectral weight
will be of sub-leading order, however.

Sec. 4.4 deals with indirect RIXS at the transition metal K edge, where the 1s
core hole couples to the spin degree of freedom by locally modifying the superex-
change interactions [14, 51–53]. In such a process, the total spin of the valence
electrons is conserved, and only excitations where at least two spins are flipped
(with total ∆Sz = 0) are allowed. A similar indirect process can also occur at
the oxygen K edge [70,71], see Sec. 4.7.

The first theoretical work on magnetic excitations was done by De Groot et
al. [72]. They studied Ni2+ and Cu2+ numerically, and showed that there are no
pure spin flips present for a Cu2+ ion when the spin is aligned along the z axis
and the hole occupies the 3dx2−y2 orbital in a D4h crystal field, see also Ref. [73].
Instead, they predict spin flips accompanying dd excitations. In Sec. 4.5 it will
be shown that spin flips are possible when the spin is in the xy plane, and that
the resulting RIXS spectrum follows the magnon dispersion [11, 19, 21, 69, 74].
For the cuprates, these results put L edge RIXS as a technique on equal footing
with neutron scattering. The first observation of magnetic excitations with RIXS
was done by Harada et al. [71], who claim to see two-magnon excitations at the
oxygen K edge.

We distinguish between magnetic RIXS processes that locally change the
size of the magnetic moment and those that do not. The final state contains
respectively a longitudinal or a transversal magnetic excitation. Transitions with
∆S = 1 and 2 are allowed for certain magnetic ions, for instance, a transition of
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Figure 4.1: The crystal struc-
ture of La2CuO4. The CuO2 lay-
ers are separated by electronically
inactive LaO layers. Figure by
M. Berciu.

high spin Ni2+ to its low spin state. The energy scale of excitations with ∆S 6= 0
is set by Hund’s rule coupling JH , which is typically of the order of 1 eV. These
excitations therefore have a much higher energy than the transversal ones, whose
energy scale is usually set by the superexchange constant J ∼ 100 meV. Magnetic
excitations with ∆S 6= 0 are described in chapter 3, and are beyond the scope of
this chapter.

This chapter starts with a brief review of the theory for magnetic excitations
in cuprates in Sec. 4.2. The following sections contain a general formulation of
the magnetic RIXS cross section (Sec. 4.3), which is then applied in Sec. 4.4 to
the copper K edge, in Sec. 4.5 to the copper L and M edges, and to the oxygen
K edge in Sec. 4.7. Finally, the relevance of the screening of a magnetic impurity
in the Heisenberg model for angle-resolved photo-emission spectroscopy will be
discussed in Sec. 4.8.

4.2 Theory of magnetic excitations

4.2.1 Electronic structure of cuprates

All work in this chapter is focussed on cuprate supercondutors and their Mott
insulating parent compounds. The cuprates investigated here have a perovskite
structure, as shown in Fig. 4.1 for La2CuO4: layers of CuO2 are stacked on top
of each other, sometimes separated by a different layer (as in La2CuO4).

The copper ions are often situated at the center of octahedrons of oxygen
ions. In the insulating state, the copper 3d subshell contains (approximately) 9
electrons, while the surrounding oxygen ions are in a 2p6 configuration, so they
have a charge of −2e. This creates a crystal field that splits the Cu 3d states. If
the oxygen ions form a perfectly cubic octahedron, the 5 Cu 3d levels are split
in a t2g triplet and an eg doublet, see Fig. 4.2. The eg orbitals point towards
the negatively charged oxygen ions, and therefore have a higher Coulomb energy
than the t2g orbitals (which are directed away from the oxygen ions). Because
of the stacking of the CuO2 layers, the octahedra are usually elongated along
the z axis (perpendicular to the CuO2 planes), which splits the t2g and eg levels
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further, as shown in Fig. 4.2. In La2CuO4, for instance, the hole in the 3d
subshell populates the 3dx2−y2 orbital in the ground state: the 3d3z2−r2 orbital
is lowered in energy because its Coulomb interaction with the apical oxygen ions
(i.e., those along the z axis) is reduced. In other compounds, like Nd2CuO4 and
CaCuO2, the apical oxygens are absent, which could be regarded as if they are
moved to infinity. Because the crystal field splitting is of the order of 2 eV in the
insulating cuprates [70], the 3d orbital degree of freedom is frozen out already
far above room temperature.
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Figure 4.2: Crystal field splitting of the Cu 3d levels in an octahedral environ-
ment (Oh symmetry) and in an elongated octahedron (D4h symmetry). Figure
reproduced with permission from Ref. [70].

The electronic state of a 3d9 copper ion is still degenerate however, due to
the spin degree of freedom. Superexchange interactions between neighboring Cu
ions can split the spin states. In an antiferromagnetic superexchange process, a
hole hops to a neighboring Cu ion that is populated by another hole of different
spin. The latter hole moves in the opposite direction, and the two holes have
effectively exchanged their spin [75]. Because of the Pauli exclusion principle,
neighboring holes with the same spin cannot move to each other’s site. This
confinement increases their kinetic energy, and therefore the superexchange in-
teraction is antiferromagnetic. In case the spins cannot reach each other’s places
as described above, as for instance when the Cu-O-Cu bonds make 90◦ angles,
weakly ferromagnetic superexchange interactions can arise [76].

The undoped cuprates are well described at low temperature by the S = 1/2
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Heisenberg model:

H0 = J
∑
〈i,j〉

Si · Sj , (4.1)

where the sum is over all pairs i, j of nearest neighbors.
The direction of the staggered magnetization is not yet fixed by the Heisenberg

model; the isotropy is broken by perturbations. In the cuprates, the direction of
the staggered magnetization is particularly important for single-magnon RIXS:
alignment in the CuO2 planes gives the strongest signal. This alignment is favored
by, for instance, the Dzyaloshinsky-Moriya interaction that arises when the CuO6

octahedra are rotated around the [110] direction [77,78].

4.2.2 Boson mappings of the 2D Heisenberg model

No exact solution of the Heisenberg model in 2 dimensions is known. An approx-
imate solution can be obtained by bosonizing the spins [79,80]. There are various
boson formulations. We briefly review the Holstein-Primakoff and Dyson-Maleev
approaches here.

Spin to boson mappings. In both boson mappings, the state of the spin is
represented by a single boson mode. The state |S,m〉 with m = +S is identified
with the boson vacuum state. If the spin is lowered by n units, the statem = S−n
is represented by n bosons in the mode, etc. The angular momentum identities

〈S,m|Sz |S,m〉 = ~m (4.2)

〈S,m± 1|S± |S,m〉 = ~
√
S(S + 1)−m(m± 1) (4.3)

fix Sz = ~(S− a†a), where a(†) creates (annihilates) a boson. The bosons satisfy
[a, a†] = 1. The form of the raising and lowering operators S± differs for the two
mappings. In the Holstein-Primakoff mapping,

S+ = ~
√

2S

√
1− a†a

2S
a and S− = (S+)†. (4.4)

It can be easily verified that this mapping satisfies Eq. (4.3). The square-root of
the boson operators is defined by the expansion

√
1− x = 1− x/2− x2/8− . . .

This boson mapping satisfies the angular momentum commutation relations.
The expansion of the square-root introduces infinitely many multi-boson

terms. This complicates the boson mapping as one has to decide where to cut off
this expansion in practical calculations. The (conjugate) Dyson-Maleev mapping
solves this problem by the alternative definition

S+ = ~a, (4.5)

S− = ~
√

2Sa†
(

1− a†a

2S

)
. (4.6)
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Note that with this mapping, (S+)† 6= S−. For convenience, we will set ~ = 1
from hereon.

Both boson formulations suffer from the problem that the Hilbert spaces
are not the same before and after the boson mapping: the boson mode can be
populated by any number of bosons, which makes the Hilbert space infinite. On
the other side, the spin can only be in 2S + 1 orthogonal states. Boson states
with more than 2S bosons are therefore unphysical. Although S± do not take
one out of the physical Hilbert space, they do if one approximates the square-root
in the Holstein-Primakoff formulation. Therefore, all spin operators should be
projected on the physical subspace after expansion of the square-root [81].

Holstein-Primakoff theory for the Heisenberg antiferromagnet. When
boson theories are applied to the Heisenberg antiferromagnet, each spin in the
system is represented by a boson mode. One takes the classical, antiferromagnetic
Néel state as the reference state: it is identified with the boson vacuum. The
boson vacuum should not be confused with the (approximate) ground state; it is
just a zeroth order approximation to it, which will be refined within the boson
formalism. When defining the Holstein-Primakoff bosons above, we assumed that
the m = S state was directed along the z direction. Therefore, we rotate the spin
operators for every site to align them with the ordered moment. Then, we can
still use the same boson definitions as above. Since the Heisenberg Hamiltonian
is invariant under rotations, we might as well take spins of the spin-up sublattice
to be aligned along the z axis, so that only the spins of the spin-down sublattice
have to be rotated by 180◦ around the x axis: S± 7→ S′∓ and Sz 7→ −S′z. In
these locally rotated coordinates, the antiferromagnetic Heisenberg model is

H0 = J
∑
i∈↑,δ

(
−S′zi S′zi+δ +

1

2

[
S′+i S′+i+δ + S′−i S′−i+δ

])
(4.7)

where the sum over i is only over the spin-up sublattice, and δ points to the near-
est neighbors. In terms of Holstein-Primakoff bosons, the Hamiltonian consists
of two-boson terms and also many multi-boson interaction terms.

The Hamiltonian can be approximated by neglecting all interaction terms:
all square roots are approximated with 1. This so-called linear spin wave theory
becomes exact in the limit of large spin, but also turns out to work reasonably
well for S = 1/2. One obtains

H0 = −JzNS
2

2
+ JS

∑
i∈↑,δ

(
a†iai + a†i+δai+δ + aiai+δ + a†ia

†
i+δ

)
, (4.8)

where the constant represents the energy of the classical Néel state. A Fourier
transform gives

H0 = −JzNS
2

2
+
JzS

2

∑
k

(
2a†kak + γk

(
a−kak + a†−ka

†
k

))
, (4.9)
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where γk =
∑
δ e

ik·δ/z with z the number of nearest neighbors. The result is

Bogoliubov transformed as ak = ukαk − vkα
†
−k, where

uk =

√
1

2
√

1− γ2
k

+
1

2
and vk = sign(γk)

√
1

2
√

1− γ2
k

− 1

2
. (4.10)

Since the cuprates studied in this thesis are (approximately) invariant under
inversion of space, γk = γ−k, uk = u−k and vk = v−k, and one obtains

H0 = −JzNS
2

2
+ JzS

∑
k

(
v2
k − γkukvk

)
+
∑
k

ωkα
†
kαk. (4.11)

The Bogoliubov bosons are called magnons and are the quanta of the spin wave
modes. Their dispersion is

ωk = JzS
√

1− γ2
k. (4.12)

The ground state (the magnon vacuum) has a reduced energy with respect to the
Néel state because of quantum fluctuations. The magnon vacuum |0〉 is defined
by αp |0〉 = 0, and is related to the Néel state |Néel〉 by

|0〉 = e
∑

k θk(a†ka
†
−k−aka−k) |Néel〉 = e

∑
i,j θij(a

†
ia
†
j−ajai) |Néel〉 (4.13)

where tanh 2θk = −vk/uk. In real space, θij = 1
N

∑
k e

ik·(Ri−Rj)θk. Note that
θk and θij are real, so θij = θji. Further, θk+(π,π) = −θk, so θii = 0. Numerical
evaluation shows that θij is of the order of ±0.02, which means that the magnon
vacuum is quite close to the Néel state.

Because of the breaking of rotational invariance of the Heisenberg model by
the antiferromagnetic ground state, a Goldstone boson is present. Indeed, the
magnon dispersion goes to zero at the Γ point. Magnon-magnon interactions do
not change the spectrum at the Γ point, and magnons around k = (0, 0) ≡ 0 are
stable against decay into multiple bosons.

The Heisenberg model appears from the more general Hubbard model when
correlations are very strong compared to the hopping. Starting from a single
band Hubbard model, one can expand in the small parameter t/U and obtain, to
lowest order, the Heisenberg model: the charge degree of freedom of the Hubbard
model is frozen out, and only the spin degree of freedom remains. The next order
contains further-neighbor exchange interactions, including ring exchange, which
rearranges 4 neighboring spins on a square plaquette. The latter interaction is
relatively strong because there are many hopping processes that lead to such
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interactions. The result of the expansion in t/U to fourth order is

H0 =

(
4t2

U
− 24t4

U3

) ∑
〈i,j〉1

Si · Sj +
4t4

U3

∑
〈i,j〉2

Si · Sj +
4t4

U3

∑
〈i,j〉3

Si · Sj

+
80t4

U3

∑
〈i,j,k,l〉

[(Si · Sj)(Sk · Sl) + (Si · Sl)(Sj · Sk)− (Si · Sk)(Sj · Sl)]

(4.14)

where 〈i, j〉n indicates all pairs of nth neighbors [82]. 〈i, jk, l〉 indexes all square
plaquettes, where i, j, k, l point to the spins on the corners of the squares in
clock-wise order. When treated on a mean-field level, the ring exchange term

renormalizes the first and second neighbor exchange interactions: J 7→ 4t2

U −
64t4

U3

and J ′ 7→ − 16t4

U3 , respectively [83].
The linear spin wave solution of the nearest-neighbor Heisenberg model can

be easily extended to interactions between more distant neighbors, as long as the
ground state stays antiferromagnetic. The Hamiltonian can be written as

H0 =
1

2

∑
i,j

JijSi · Sj , (4.15)

where Jij is the superexchange coupling between spins i and j. The sum is over all
i, j, and the factor 1/2 prevents double counting of the bonds. The function Jij
is split in two: the first part contains coupling between different sublattices and
the second part contains the intra-sublattice couplings. The Fourier transforms
of these parts are Jk and J ′k respectively. Again, a Bogoliubov transform can be
employed and one finds

H0 = const.+
∑
k

Ωkα
†
kαk, (4.16)

where the magnon dispersion is

Ωk = S
[
(J0 − J ′0 + J ′k)(U2

k + V 2
k )− 2JkUkVk

]
, (4.17)

and the new Bogoliubov coefficients are

Uk =

√√√√ J0 − J ′0 + J ′k

2
√

(J0 − J ′0 + J ′k)2 − J2
k

+
1

2
and Vk = sign(Jk)(U2

k − 1). (4.18)

4.3 Magnetic RIXS scattering amplitude

As explained in Sec. 4.1, both direct and indirect RIXS can probe magnetic
excitations, be it of different kind. For direct RIXS, single spin flip excitations
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can be made at the 2p, 3p→ 3d edges of transition metal ions because of the large
spin-orbit coupling of the 2p core hole [19,72,73]. For copper, with its simple 3d10

intermediate state of the valence electrons, these edges split into intermediate
states with total angular momentum in the core states of J = 1/2 (L2, M2

edges) and J = 3/2 (L3, M3 edges). The edges are well resolved in XAS spectra
(particularly at the L edge [84]), and therefore in RIXS one selects either the
intermediate states with J = 1/2 or J = 3/2. This allows neglecting contributions
from one edge if the incoming X-ray photons are at resonance with the other, as
can be seen explicitly from Eq. (2.41). This is the fast collision approximation.
Because the p-like core states have a strong spin-orbit coupling, the spin and
orbital angular momentum separately are no longer good quantum numbers in
the separated J = 1/2 and 3/2 intermediate states. Therefore orbital and spin
orbital angular momentum can be exchanged and direct spin flip processes can
in principle be allowed in RIXS, unlike in optical spectroscopy. Because of the
superexchange interaction present in the cuprates, single spin flips will disperse:
they are in essence a superposition of single magnon states. Direct RIXS is thus
able to probe the single magnon dispersion [19,74].

In addition to spin flip processes, RIXS can also reach final states with a
different orbital occupation of the 3d levels via similar scattering channels. These
excitations are called dd excitations, and can be accompanied by a spin flip. In
Sec. 4.5.1, the cross sections for dd excitations and single spin flip excitations in
the cuprates are calculated in a single ion model.

Indirect RIXS is always present, but in general becomes dominant only when
direct RIXS is absent. This happens at the K edges of copper and oxygen,
because there is no spin-orbit coupling in the 1s levels (L = 0). When indirect
RIXS is not dominant, one can sometimes use the polarization dependence to
resolve the indirect RIXS channel.

In the following, we discuss the polarization dependence (Sec. 4.3.1) of both
direct and indirect magnetic RIXS. In Sec. 4.3.2 the mechanisms are discussed
by which magnetic excitations are created.

4.3.1 Polarization dependence

Since all of the work in this chapter is focused on the cuprates, we analyze here
the full RIXS scattering amplitude (2.41) for the Cu K edge and Cu L and M
edges. The O K edge is a special case and will be treated separately in Sec. 4.7.

We classify the RIXS processes by the indices µ, ν, ν′ and µ′ as in Eq. (2.42),
i.e., by the dipole transitions. At the Cu K edge, one excites an electron with
spin up or down from the 1s orbital into a 4p orbital: µ = 1s, ν = 4px,y,z. We
assume that the 4p electron is a spectator, i.e., it does not interact with the
valence electrons [4, 5]. In that case, ν′ = ν, and µ′ = µ. Since the spin of the
photo-excited electron is irrelevant if the 4p electron is only a spectator, we can
integrate it out without effort. The only remaining index is ν (= ν′) ∈ {4px,y,z}.
Next, one has to determine the energy of the 4p states. Since these are assumed
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to be decoupled from the valence electrons, this is a relatively simple task. As
explained in Sec. 3.4, band effects play a role, as well as the crystal field. The
simplest polarization dependence arises when we assume that all 4p states have
an equal energy: the scattering amplitude at the Cu K edge then simplifies to

Ffg = TK(ε′, ε)
∑
i

eiq·Ri

∑
n

〈f | c†i,1s |n〉 〈n| ci,1s |g〉
Eg + ~ωk − En + iΓ

, (4.19)

where the 4p states are integrated out, and

TK(ε′, ε) =
∑
i

〈1s| ε′∗ · r |4pi〉 〈4pi| ε · r |1s〉 ∝ ε′∗ · ε. (4.20)

At the Cu L2,3 edges of the cuprates, the indices µ and µ′ relate to the core
orbitals. Since in the intermediate state a 3d10 configuration is created, the core
orbitals do not interact with the on-site valence electrons. If one neglects longer
range interactions, the core states decouple from the valence states, and they
can be integrated out from the scattering amplitude. To do so, we first find the
core hole’s eigenstates, which are determined mainly by the core level spin-orbit
coupling. They split in two sets (J = 1/2 and J = 3/2, corresponding to L2 and
L3, respectively) which are well-separated in energy: ∼ 20 eV [84]. Since the
separation is an order of magnitude larger than Γ, we neglect any contribution
from one edge (L2 or L3) if the X-ray photons are tuned to the other. At the L2

edge, we therefore sum over the J = 1/2 core states µ = µ′ with mJ = ±1/2:

|mJ = +1/2〉 =
√

1
3 (|pz ↑〉+ |px ↓〉+ i |py ↓〉) , (4.21)

|mJ = −1/2〉 =
√

1
3 (|pz ↓〉 − |px ↑〉+ i |py ↑〉) (4.22)

At the L3 edge, we sum over all J = 3/2 core states

|mJ = +3/2〉 = −
√

1
2 (|px ↑〉+ i |py ↑〉) , (4.23)

|mJ = +1/2〉 =
√

2
3 |pz ↓〉+

√
1
6 (|px ↓〉+ i |py ↓〉) , (4.24)

|mJ = −1/2〉 =
√

2
3 |pz ↓〉+

√
1
6 (|px ↑〉 − i |py ↑〉) , (4.25)

|mJ = −3/2〉 =
√

1
2 (|px ↓〉 − i |py ↓〉) . (4.26)

When the core hole degree of freedom is integrated out from the scattering am-
plitude, we find for the L2/3 edge:

Ffg =
∑
ν′

TL2/3,ν′(ε
′, ε)

∑
i

eiq·Ri

∑
n

〈f | ci,ν′ |n〉 〈n| c
†
i,ν |g〉

Eg + ~ωk − En + iΓ
, (4.27)
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where the spin-orbital ν is fixed by the initial state: c†ν fills the 3d hole of the
initial state. ν′ labels the different scattering channels. For example, ν′ = ν is the
elastic scattering channel, and when ν′ describes an electron in the same orbital
as ν, but with opposite spin, we have spin flip scattering. Also, dd excitations
can be described when ν′ refers to other 3d orbitals than x2-y2.

Note that the Cu L and M edges are very similar: only the radial wave
functions of the core states differ, giving different overal intensities; the angular
parts are the same. The main difference between the edges is the maximum q,
which is larger at the L edge.

4.3.2 Direct & indirect magnetic RIXS – UCL expansion

After splitting off the polarization dependence from the scattering amplitude,
the next step in obtaining the (approximate) cross sections of magnetic RIXS
on the antiferromagnetic cuprates is to deal with the intermediate states. The
UCL expansion (see Sec. 2.5) offers a convenient way to do that, as the energy
scale of the magnetic excitations is usually much lower than Γ. To zeroth order,
the Kramers-Heisenberg amplitude (2.41) is reduced to the operation of two
dipole operators; there is not enough time available to allow for dynamics in the
intermediate state. This is equivalent to the fast collision approximation [26],
which is a good approximation to the direct RIXS scattering amplitude of 2D
cuprates [11,19,21,74].

At the Cu K edge, the direct scattering channel does not give inelastic inten-
sity, but at the Cu L2,3 and M2,3 edges, spin flip processes can occur to zeroth
order in the UCL expansion, as explained in Sec. 4.3.1. We get for the zeroth
order

F (0)
fg =

Tsf(ε
′, ε)

iΓ
〈f |
∑
i

eiq·Riciσ̄c
†
iσ |g〉 , (4.28)

where Tsf is the polarization factor for spin flip processes, and σ is the spin of
the 3d hole (assuming it is fully polarized). σ̄ is the opposite spin of σ. This
amplitude will be discussed in more detail in Sec. 4.5.1.

To get the leading order scattering amplitude for the Cu K edge, we proceed
to the next order of the UCL expansion, which introduces intermediate state
dynamics:

F (1)
fg =

TK(ε′, ε)

iΓ
〈f |
∑
i

eiq·Ric†i,1s
H̄

iΓ
ci,1s |g〉 . (4.29)

The 4p electrons have been integrated out since they are assumed to be specta-
tors. The Hamiltonian describes the dynamics around the core hole site, where
the superexchange bonds are frustrated. This creates two-magnon excitations,
as will be discussed in Sec. 4.4. Higher orders of the UCL expansion will add
excitations with even numbers of magnons. Odd numbers of magnons are not
allowed because the Heisenberg form of the magnetic bonds conserves the total
spin. A single magnon carries spin 1.
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A simple example is given by the Heisenberg ferromagnet. At the Cu L2,3

edges, the spin flip channel allows for single magnon scattering. The inelastic
weight at the Cu K edge is zero because H̄ rearranges the spins of a ferromagnet,
which cannot create two-magnon excitations.

It might not be obvious from Eq. (4.28) that RIXS can measure the dispersion
of magnons: the spin is flipped on site i, while the magnon is a highly delocal-
ized magnetic excitation. One should keep in mind, however, that the incident
photon can be scattered at any equivalent site, leading to a final state that is a
superposition of spin flips at equivalent sites. Such a final state carries a non-
local magnetic excitation with momentum ~q. Just as in neutron scattering, the
RIXS cross section therefore consists of a local structure factor (2.42) depending
on the polarization and the excitation mechanism, multiplied by the appropri-
ate spin susceptibility [19, 74]. For non-interacting spins, the susceptibility is
uniform and featureless, but for systems with interatomic spin-spin interactions
the susceptibility acquires a strong q dependence, which may be measured in
momentum-resolved RIXS.

4.4 Copper K edge

Published as ‘Magnetic Excitations in La2CuO4 probed by Indirect Resonant In-
elastic X-ray Scattering’ in Phys. Rev. B 77, 134428 (2008) with Fiona Forte and
Jeroen van den Brink.

Abstract. Recent experiments on La2CuO4 suggest that indirect resonant in-
elastic X-ray scattering (RIXS) might provide a probe for transversal spin dynam-
ics. We present in detail a systematic expansion of the relevant magnetic RIXS
cross section by using the ultrashort core hole lifetime (UCL) approximation. We
compute the scattering intensity and its momentum dependence in leading order
of the UCL expansion. The scattering is due to two-magnon processes and is
calculated within a linear spin wave expansion of the Heisenberg spin model for
this compound, including longer range and cyclic spin interactions. We observe
that the latter terms in the Hamiltonian enhance the first moment of the spec-
trum if they strengthen the antiferromagnetic ordering. The theoretical spectra
agree very well with experimental data, including the observation that scattering
intensity vanishes for the transferred momenta q = (0, 0) and q = (π, π). We
show that at finite temperature there is an additional single-magnon contribution
to the scattering with a spectral weight proportional to T 3. We also compute the
leading corrections to the UCL approximation and find them to be small, putting
the UCL results on a solid basis. All this univocally points to the conclusion that
the observed low temperature RIXS intensity in La2CuO4 is due to two-magnon
scattering.
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Introduction. In indirect RIXS, the energy of the incoming photons is tuned
to match a resonance that corresponds to exciting a core electron to an outer
shell. The K edge of transition metal ions is particularly useful since it promotes
a 1s core electron to an outer 4p shell, which is well above the Fermi level, so
that the X-rays do not cause direct transitions of the 1s electron into the lowest
3d-like conduction bands [2, 44,46,57,85–95].

Due to the large energy involved (∼ 5−10 keV), the core hole is ultrashortlived
and it induces an almost delta function-like potential (in time) on the valence
electrons [48–50]. Consequently, elementary excitations of the valence electrons
will screen the local potential, but have little time to do so. When the core hole
decays, the system can be left behind in an excited state. By observing the energy
and momentum of the outgoing photon, one probes the elementary excitations
of the valence electrons including, in particular, their momentum dependence.

Recently, RIXS measurements performed by J.P. Hill et al. on the high-Tc
cuprate superconductor La2−xSrxCuO4 revealed that RIXS is potentially able to
detect transversal spin excitations – magnons [14]. Later, Ellis et al. confirmed
these measurements in a follow-up experiment [53]. The experiments show that
the magnetic RIXS signal is strongest in the undoped cuprate La2CuO4. The
magnetic loss features are at energies well below the charge gap of this magnetic
insulator, at energies where the charge response function S(q, ω) vanishes (see
chapter 3), as well as the longitudinal spin one – which is in fact a higher order
charge response function. The proposed scattering mechanism is a two-magnon
scattering process in which two spin waves are created [14,51].

In a previous theoretical analysis it was shown that the magnetic correlation
function that is measured by indirect RIXS is a four-spin correlation one, prob-
ing two-magnon excitations [51]. This makes indirect RIXS a technique that is
essentially complementary to magnetic neutron scattering, which probes single
magnon properties and two-spin correlations. In this section, we present the the-
oretical framework of Ref. [51] in more detail and use it for an analysis of the
experimental magnetic RIXS data on perovskite CuO2 layers of La2CuO4.

We expand upon the previous considerations by providing a detailed compar-
ison between the theory and experiment, including also longer range magnetic
exchange interactions in the theory, with values known from neutron scattering
data. We develop the theory to account also for the effects of finite temperature,
which give rise to a non-trivial single-magnon contribution to the RIXS signal.
We also compare with the results of Nagao and Igarashi [96], who computed the
magnetic RIXS spectra based on the theoretical framework of Ref. [51], taking
also some of the magnon-magnon interactions into account.

The theory is developed on basis of the UCL expansion. We compute leading
order corrections to this expansion and show that they are small. This makes
sure that the UCL approximation provides a reliable route to analyze the indirect
RIXS spectra.

This section is organized as follows: first we obtain an expression for the cross
section of the 2D S = 1/2 Heisenberg antiferromagnet in linear spin wave theory
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in terms of magnon creation and annihilation operators. Then we evaluate the
cross section at T = 0 and we also consider the low temperature case. Next, the
leading correction to the cross section in the UCL approximation is calculated.
Finally, we will present our conclusions.

Cross Section for Indirect RIXS on a Heisenberg AFM. Recently, Hill
et al. [14] and Ellis et al. [53] observed that RIXS on the high-Tc supercon-
ductor La2−xSrxCuO4 picks up transversal spin dynamics: magnons. In the
undoped regime, the RIXS intensity turns out to be highest. The same feature
was observed in the related compound Nd2CuO4 [14]. These cuprates consist
of perovskite CuO2 layers with a hole in the Cu 3d subshell. The low energy
spin dynamics of these systems are properly described by a single band Hubbard
model at half filling. The strong interactions between holes in the Cu 3d sub-
shells drive these materials into the Mott insulating regime, where the low energy
excitations are the ones of the S = 1/2 2D Heisenberg antiferromagnet (4.1) with
J ≈ 146 meV for nearest neighbors [83]. In the antiferromagnetic groundstate,
the Hamiltonian can be bosonized in linear spin wave theory (LSWT) where

Szi 7→ 1/2 − a†iai , S
+
i 7→ ai and S−i 7→ a†i for i ∈ A (A being the sublattice

with spin-up) and Szj 7→ b†jbj − 1/2, S+
j 7→ b†j and S−j 7→ bj for j ∈ B (the

spin-down sublattice). Note that we now introduce two boson species in a dou-
bled unit cell, so the Brillouin zone will be twice as small as before in Sec. 4.2.
A Bogoliubov transformation in reciprocal space is necessary to diagonalize the
Heisenberg Hamiltonian:

αk = Ukak + Vkb
†
−k, (4.30)

βk = Ukbk + Vka
†
−k (4.31)

with Uk, Vk as in Eq. (4.18). For interactions up to third nearest neighbors we
get

Jk =J (cos akx + cos aky) (4.32)

J ′k =2J ′ cos akx cos aky + J ′′ (cos 2akx + cos 2aky) (4.33)

with a the lattice constant and J, J ′, J ′′ the first through third nearest neighbor
couplings. The final linear spin wave Hamiltonian in terms of boson operators is

H0 = const +
∑
k

Ωk

(
α†kαk + β†kβk

)
(4.34)

with Ωk as in Sec. 4.2.
Our aim is to understand how this picture changes when doing indirect RIXS.

In RIXS, one uses X-rays to promote a Cu 1s electron to a 4p state. For an ul-
trashort time, one creates a core hole at a certain site which lowers the Coulomb
repulsion U on that site with an amount Uc. As in chapter 3, we again assume
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that the core hole potential is local; i.e., it acts only at the core hole site. This
approximation is reasonable as the Coulomb potential is certainly largest on the
atom where the core hole is located. Moreover, we can consider the potential
generated by both the localized core hole and photo-excited electron at the same
time. As this exciton is a neutral object, its monopole contribution to the po-
tential vanishes for distances larger than the exciton radius. The multi-polar
contributions that we are left with in this case are generally small and drop off
quickly with distance.

The strong core hole potential in the intermediate state alters the superex-
change processes between the 3d valence electrons. This causes RIXS to couple
to multi-magnon excitations, as was first pointed out in Ref. [51]. The simplest
microscopic mechanism for this coupling is obtained within the strong-coupling
Hubbard model, in which the doubly occupied and empty virtual states shift in
energy in presence of the core hole [51, 96]. Adding the amplitudes for the two
possible processes shown in Fig. 4.3 leads to an exchange integral in presence of
a core hole on site i of

Jcij =
2t2ij

U + Uc
+

2t2ij
U − Uc

= Jij (1 + η) (4.35)

where j is a site neighboring to i and η = U2
c /(U

2 − U2
c ). This enables us to

write down the generic Hamiltonian for the intermediate states [51]:

Hint = H0 + η
∑
i,j

sis
†
iJijSi ·Sj (4.36)

where si creates a core hole and s†i annihilates one at site i. In the Hubbard
framework, one could identify U with the Coulomb energy associated with two
holes in a 3d orbital, Ud = 8.8 eV, which together with Uc = 7.0 eV [97,98] leads
to η = 1.7; from U/Uc = 2/3, as suggested in Ref. [99], one finds η = −0.8.

The situation in the cuprates, however, is more complex and one needs to go
beyond the single band Hubbard model to obtain a value of η from microscopic
considerations. We will do so by considering a three-band model in the strong
coupling limit. However, it should be emphasized that for the end result – the
computed RIXS spectrum in the UCL approach – η just determines the overall
scale of the inelastic scattering intensity. As we will show, higher order corrections
in the UCL approach are determined by the value of η, because ηJ/Γ appears
as a small parameter in this expansion. As for the cuprates J/Γ ≈ 1/5, such
corrections are small for the relevant possible values of η.

In the three-band Hubbard model that includes also the oxygen states, two im-
portant kinds of intermediate states appear: the poorly- and well-screened ones.
Because the Coulomb interaction of the core-hole with the valence electrons is
large (Uc = 7.0 eV, compared to a charge transfer energy ∆ = 3.0 eV [98]),
a copper hole can transfer to a neighboring oxygen to form a well-screened in-
termediate state. The low-energy sector now also encompasses an oxygen hole,
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Figure 4.3: In RIXS, a photon tuned to the K edge of a transition metal ion
creates a core hole at a certain site. The superexchange interaction between
this site and a neighboring site is modified because the energy of the virtual
intermediate states is changed. The same-site Coulomb repulsion U is lowered
by Uc if the core hole site contains no holes and is raised by Uc if there are
two holes present. Summing the amplitudes for both processes, we obtain the
modified superexchange interaction [see Eq. (4.35)].

equally distributed over the ligands. We will show that, starting from a three
band Hubbard model, Eq. (4.36) gives a proper description of both the well- and
poorly-screened intermediate states, with η now a function of the parameters of
the three band model. Before presenting these results we remark that scattering
processes that scatter a well-screened state into a poorly-screened state or vice
versa yield a large energy loss ~ω. These are not important at low ω, where one
will only observe scattering in the magnetic channel, not the charge one.

Cu with

core-hole
CuO

!
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CuO
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exchange

Figure 4.4: Modification of the superexchange interaction in the well- and
poorly-screened intermediate states. In the poorly-screened state, the core hole
potential Uc modifies the superexchange. For the well-screened state, however,
the copper 3d hole on the core hole site is transfered to a neighboring oxygen
ion, and superexchange is only of order O(t2pd), independent of Uc.
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The magnetic scattering processes for the poorly-screened state are very sim-
ilar to the single band picture: all copper ions have one hole and all oxygen ions
are filled-shell. The superexchange processes are shown in Fig. (4.4). We consider
the Anderson and Geertsma contributions to the superexchange [97] and find

ηps =
Ud∆

2(Up + 2∆)

2(2Ud + 2∆ + Up)

(
1

(Ud − Uc)(Uc −∆)2
+

1

(Ud + Uc)∆2

+
[1/∆ + 1/(∆− Uc)]2

2∆− Uc + Up

)
− 1, (4.37)

which results in η = −0.3 using the parameters Ud = 8.8 eV, Up = 6.0 eV,
tpd = 1.3 eV, ∆ = 3.0 eV, and Uc = 7.0 eV [97, 98], where tpd is the copper-
oxygen hoping integral and Up the on-site Coulomb repulsion of two oxygen holes.

The well-screened intermediate states have a similarly modified superexchange
interaction, as shown in Fig. 4.4. Because of the large core hole Coulomb inter-
action, an electron from the neighboring oxygen atoms moves in to screen it, or,
equivalently, the copper hole is transferred to the in-plane oxygen ions. Transfer
out of the plane is not considered since the Cu 3dx2−y2 hole only couples to the
in-plane oxygens. Because the Cu hole is transfered in the direction of one of its
neighboring Cu ions, the contribution to the superexchange interaction for the
well-screened state is of second order in tpd, instead of fourth order between two
Cu sites (see Fig. 4.4). The rotational invariance around the core-hole site of
the transfered hole ensures that the intermediate state Hamiltonian of the form
Eq. (4.36) gives the correct scattering amplitude. To lowest order in tpd we hence
find

ηws =
Ud(Ud + Up)∆

2(Up + 2∆)

2(Ud −∆)t2pd(2Ud + Up + 2∆)(Up + ∆)
− 4, (4.38)

which results in η = −1.3 – again restricting ourselves to superexchange of the
Anderson and Geertsma type. We see that to lowest order, the core hole po-
tential Uc does not appear in the well-screened intermediate state. From these
microscopic considerations, we conclude that the intermediate state Hamiltonian
Eq. (4.36) is the correct one and higher order corrections to it are small because
for the cuprates η is a number of order unity.

In chapter 3, we have shown in detail how to derive the cross section for
RIXS processes with a local core hole using the UCL expansion Eq. (2.49). As
in chapter 3, we take the energy Ei of the initial state as a reference energy:
Ei = 0. We also measure the energy En of the intermediate state with respect
to the resonance energy ~ωres as before. The detuning of the incoming photon
energy from ~ωres is defined as ~ωin = ~ωk − ~ωres. If Γ > En, we can expand
the amplitude Ffi in a powerseries (2.49). We assume that the energy of the
incoming photon is tuned to the resonance (ωin = 0):

Ffi =
1

iΓ

∞∑
l=1

1

(iΓ)l
〈f | D†(Hint)

lD |i〉 . (4.39)
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Note that we left out the l = 0 term because it only contributes to elastic scat-
tering. The leading order non-vanishing term in the sum is l = 1, since the core
hole broadening is quite large compared to J . At the copper K edge, 2Γ ≈ 1.5 eV
according to Refs. [100, 101], and 2Γ ≈ 3 eV for the closely related ions Mn and
Ge according to Refs. [102,103], which in either case is large compared to J . As
in the three-band model η = −1.3 or −0.3 for the well- or poorly-screened inter-
mediate state respectively, the largest value we find is ηJ/Γ ≈ −0.22. Note that
the UCL expansion therefore converges very well – even faster for the poorly-
screened state than for the well-screened state (where |η| is larger). It is possible
to directly include a number of terms with l ≥ 2 in the cross section by using the
expansion

∞∑
l=1

(Hint)
l

(iΓ)l
≈
∞∑
l=1

(
H l

0

(iΓ)l
+
H l−1

0 H ′

(iΓ)l

)
+O

(
[ηJ/Γ]2

)
(4.40)

with H ′ = η
∑
i,j sis

†
iJijSi ·Sj . Since [H0,D] = 0 and H0 |i〉 ≡ 0, all terms with

H0 on the right can be safely neglected. Using Eq. (4.40), Ffi simplifies to

Ffi =
1

iΓ

η

iΓ− ~ω
〈f | Ôq |i〉 (4.41)

with the scattering operator

Ôq =
∑
i,j

eiq·RiJijSi ·Sj , (4.42)

where we neglected the polarization dependence in the same way as in Eq. (3.7).
The polarization dependence is discussed in more detail in Sec. 3.4.

From Eq. 4.42, we can deduce two important features. First, indirect RIXS
probes a momentum dependent four-spin correlation function [51]. Second, Ôq

commutes with the z component of total spin Sz, so the allowed scattering pro-
cesses should leave Sz unchanged. Only an even number of magnons can be
created or annihilated.

To bosonize Eq. (4.42), we split Ôq in four parts,

Ôq =
∑
i,j∈A

· · ·+
∑
i,j∈B

· · ·+
∑

i∈A, j∈B
· · ·+

∑
i∈B, j∈A

. . . (4.43)

Next, we rewrite this expression using LSWT as introduced above. Fourier trans-
forming the result gives

Ôq = const.+ S
∑
k

[(
J ′k+q/2 + J ′k−q/2 − J

′
0 − J ′q + J0 + Jq

)
×(

a†k+q/2ak−q/2 + b†k+q/2bk−q/2

)
+(

Jk+q/2 + Jk−q/2

)(
ak−q/2b−k−q/2 + a†k+q/2b

†
−k+q/2

)]
, (4.44)
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and we can write Ôq in terms of the magnon operators using the inverses of
Eqs. (4.30) and (4.31). This leads to

Ôq = Ô(1)
q + Ô(2)

q (4.45)

where Ô
(1,2)
q are lengthy expressions that contain the one- and two-magnon scat-

tering part respectively. The next section deals with the two-magnon part Ô
(2)
q

where two magnons are created or annihilated. The one-magnon part Ô
(1)
q (where

the change in the number of magnons is zero) is treated in Sec. 4.4.

Two-Magnon Scattering at T = 0 K. At T = 0 K, the system is in its
ground state, where no magnons are present: |i〉 = |0〉. Adding conservation
of Sz, the only allowed scattering processes are the ones in which two magnons
are created, so we consider the two-magnon part of the scattering operator of
Eq. (4.45) with S = 1/2:

Ô(2)
q =

∑
k∈MBZ

[
−
(
J ′k+q/2 + J ′k−q/2 − J

′
0 − J ′q + J0 + Jq

)
×(

Uk+q/2Vk−q/2 + Uk−q/2Vk+q/2

)
+
(
Jk+q/2 + Jk−q/2

)(
Uk+q/2Uk−q/2 + Vk+q/2Vk−q/2

)]
×(

αk−q/2β−k−q/2 + α†k+q/2β
†
−k+q/2

)
(4.46)

The two-magnon spectrum is shown in Fig. 4.5(a). Several remarkable features
can be seen.
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Figure 4.5: RIXS spectrum (a) and two-magnon DOS (b) for a nearest neighbor
Heisenberg antiferromagnet with exchange interaction J as a function of trans-
ferred momentum q for a cut through the Brillouin zone (c). The dashed line
indicates the magnetic BZ boundary.

First of all the spectral weight vanishes at q = (0, 0) and q = (π, π), as can
be seen in Fig. 4.6(b). This is in agreement with experimental observations [14].
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Figure 4.6: (a) First moment and (b) total spectral weight of the RIXS spec-
trum. The solid lines are obtained by using interaction strengths determined
from neutron data (next neighbor coupling J = 146.3 meV, second and third
neighbor couplings J ′ = J ′′ = 2 meV and ring exchange J� = 61 meV) [83]. The
dashed lines have only nearest neighbor interaction.

The vanishing of the RIXS intensity at q = 0 is obvious: from Eq. (4.42) we
see that at q = 0, Ôq reduces to 2H0 (the factor of 2 arises from the fact that
the sum in Eq. (4.42) is over all i and j). At zero temperature, |i〉 = |0〉 and
consequently H0 |i〉 = 0 –the RIXS intensity vanishes. At nonzero temperatures,
H0 |i〉 = Ei |i〉 and according to Eq. (4.41) only elastic scattering occurs. It is
easy to show that at q = (π, π) the RIXS intensity always vanishes, regardless of
the temperature or the form of Jij . This holds because q = (π, π) is a reciprocal
magnetic lattice vector: eiq·Ri = 1 if Ri is in sublattice A and eiq·Ri = −1 if
Ri is in sublattice B (assuming that at Ri = (0, 0) we are in sublattice A). We
obtain

Ôq=(π,π) =
∑
i∈A,j

JijSi ·Sj −
∑
i∈B,j

JijSi ·Sj . (4.47)

Adding all terms where j ∈ B in the first term and j ∈ A in the latter, we get
zero. What remains is

Ôq=(π,π) =
∑
i,j∈A

JijSi ·Sj −
∑
i,j∈B

JijSi ·Sj . (4.48)

This operator commute with the Hamiltonian and therefore does not contribute
to inelastic scattering.

The other remarkable feature of the magnetic RIXS spectrum is its strong
dispersion. This is apparent from Fig. 4.5(a) and 4.6(a), showing the first mo-
ment (average peak position) of the spectrum. The calculations for the nearest
neighbor Heisenberg antiferromagnet [see the dashed line in Fig. 4.6(a)] show that
the magnetic scattering disperses from about ω ≈ 0 around (0, 0) to ω ≈ 4J at
(π, 0) and (π/2, π/2). Longer range couplings tend to reduce (increase) the first
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moment of the RIXS spectrum if they weaken (reinforce) the antiferromagnetic
order [see the solid line in Fig. 4.6(a)]. The observed dispersion in Fig. 4.5(a) has
a twofold origin. It is in part due to the q-dependence of the two-magnon density
of states (DOS), combined with the scattering matrix elements that tend to pro-
nounce the low energy tails of the two-magnon DOS. In Fig. 4.5(b), it looks as if
the two-magnon DOS has two branches. The most energetic one around q = 0 is
strongly suppressed by the matrix elements throughout the Brillouin zone (BZ).

The consistency at q = (0, 0) and q = (π, π) of the theoretical results and
experimental data was already noticed, but at other wave vectors, the agree-
ment stands out even more. The data on La2CuO4 for q = (π, 0) shows a peak
at around 500 meV, precisely where we find it on the basis of a nearest neigh-
bor Heisenberg model with J = 146 meV – a value found by the analysis of
neutron scattering data [83]. Similar agreement is found at q = (0.6π, 0) and
q = (0.6π, 0.6π) [14]. Even better agreement is found when we take into account
the second and third nearest neighbors and ring exchange according to the neu-
tron data. The ring exchange interaction, which we treat on a mean field level,
simply renormalizes first- and second-nearest neighbors exchange [83].

In Fig. 4.7, we compare the results for the two-magnon scattering intensity
with experimental data [14], using the interaction strengths determined from
neutron data [83], for three values of q in the BZ. Note that we use the wave
vector independent renormalization factor Zc here, which takes into account some
of the magnon-magnon interactions [104]. This simply changes the energy scale
by a factor Zc ≈ 1.18 but does not affect the intensity of the spectrum. Each
panel shows the theoretical prediction (dashed line), the theory convoluted with
the current instrumental resolution (solid line), and the experimental data. The
only free parameter in the theoretical spectra is the overall scale of the scattering
intensity. We find it to vary by a factor of 2.5 comparing different q’s, which is
within the error bars of the experiment [105].

Many qualitative features such as the occurrence of intense peaks at the mag-
netic BZ boundary and the large dispersion characterizing the total spectrum
are in accordance with our earlier results [51] and the results of Nagao and
Igarashi [96]. The spectra of Ref. [96], taking two-magnon interactions partially
into account, show slight quantitative differences with respect to our results:
the RIXS peaks soften and broaden somewhat as a consequence of the magnon-
magnon interaction, particularly for the (π,0) point. The range of the dispersion
in the spectrum is therefore smaller (the mean ω/J varies between 1 and 3 instead
of 1 and 4).

Finite T : single-magnon scattering. The Sztot symmetry allows scattering
processes where no additional magnons are created. In the finite temperature
case, an initial magnon of momentum k can be scattered to k + q. The one-
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Figure 4.7: RIXS intensity for various points in the BZ. Each figure contains the
bare theoretical data (dashed line), the convolution with experimental resolution
(solid line), and the experimental data from Ref. [14]. For these figures, we used
J = 146.3 meV, second and third neighbor couplings J ′ = J ′′ = 2 meV and ring
exchange J� = 61 meV. The latter contribution is evaluated theoretically using a
mean field approximation. These values were found in neutron scattering experi-
ments [83]. These experiments were analyzed using the wave vector independent
renormalization factor Zc = 1.18, which is also used to generate the theoretical
curves. The theoretical intensity is scaled independently in each figure to match
the experiment. The overall scale factors differ at most by a factor 2.5, which is
comparable to experimental uncertainty in absolute intensities [105].

magnon part of the scattering operator, within LSWT, takes the following form:

Ô(1)
q = S

∑
k∈MBZ

[(
J0 + Jq − J ′0 − J ′q + J ′k + J ′k+q

)(
UkUk+q + VkVk+q

)
−
(
Jk + Jk+q

)(
UkVk+q + VkUk+q

)](
α†k+qαk + β†k+qβk

)
.

(4.49)
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We choose to concentrate on the basic case where the only non-vanishing inter-
action is the nearest-neighbors coupling J , for a 2D Heisenberg antiferromagnet
with S = 1/2.

In the low temperature regime, a few magnons of low momentum k are present
in the system. Their energy can be approximated for T → 0 by letting k → 0:
Ωk ≈

√
2J |k|. In this limit Uk and Vk can be substituted by the following

approximate expressions:

Uk ≈ 1√√
2|k|

(1 +
√

2
4 |k|),

Vk ≈ 1√√
2|k|

(1−
√

2
4 |k|).

(4.50)

In order to calculate the one-magnon contribution to the cross section, we
have to evaluate the scattering amplitude expressed by Eq. (4.41). In the low

temperature case we can consider a one-magnon initial state |i〉 = α†k |0〉1. The

only contribution to F (1)
fi comes from the final state with a single magnon of

momentum k + q

F (1)
fi = S [(J0 + Jq)(UkUk+q + VkVk+q)− (Jk + Jk+q)(UkVk+q + VkUk+q)]

≈ S√
2
√

2
(J0 + Jq) (Uq − Vq)

√
|k| (4.51)

where we used the condition |k| � |q| and inserted the expressions of Eqs. (4.50)
for Uk and Vk, retaining the leading order term in |k|.

These approximations allow the analytic evaluation of the scattering intensity.
At finite T , the cross section is given by

d2σ(1)

dΩdω

∣∣∣∣
res

∝
∑
i,f

1

eβEi − 1

∣∣∣F (1)
fi

∣∣∣2 δ(~ω − Ef + Ei). (4.52)

For k ≈ 0, and by taking the continuum limit, we obtain

d2σ(1)

dΩdω
∝ P (q)

∫
MBZ

dkxdky
|k|

eβΩk − 1
δ(~ω − Ωk+q + Ωk), (4.53)

where we defined P (q) = S2 (J0 + Jq)
2

(Uq − Vq)2. In the low temperature
limit, the Bose factor goes to zero rapidly for high |k|, so the only substantial
contribution to the integral comes from |k| ≈ 0. Therefore we can extend the
domain of integration to the entire k space. Replacing Ωk with its approximate
expression in the limit of low |k|, and assuming polar coordinates, we obtain

d2σ(1)

dΩdω
∝ P (q)

∫ ∞
0

dk
k2

eβ
√

2Jk − 1
δ(~ω − Ωq +

√
2Jk) (4.54)

1At finite temperature, more than one magnon can exist. This modifies the action of the

Ô
(1)
q operator in addition to the Bose factor. It is easy to show that, in the low temperature

limit, the main contribution to this factor arises from nk = 1, since other terms rapidly go to
zero for β →∞.
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Note that we used the replacement Ωk+q → Ωq, which breaks down at q = 0
and the BZ corners. This integral can simply evaluated to be

d2σ(1)

dΩdω
∝ P (q)

(~ω − Ωq)
2

e−β(~ω−Ωq) − 1
θ (Ωq − ~ω) , (4.55)

and the spectral weight for T/J � 1 is

W1 =

∫
d2σ(1)

dΩdω
dω ∝ P (q)

1

(βJ)
3 . (4.56)

The T 3 behavior also shows up in the numerical evaluation of W1 (without assum-
ing |k| � |q|), as shown in Fig. 4.8 as a function of the transferred momentum
q, for various temperatures (dashed lines). According to the considerations dis-
cussed in the previous section, the RIXS intensity is vanishing for (π, π). The
average peak position and the peak width are expected to be modified as a func-
tion of temperature. We can easily estimate these modifications by evaluating
the first moment

〈~ωmax〉 ≈ Ωq −
π4

30ζ(3)
T, (4.57)

and the variance
〈~ωmax〉2 − 〈~ωmax〉2 ∝ T 2. (4.58)

We conclude that the peak position is shifted from Ωq towards lower values of
~ω, by an amount that grows linearly with T and at the same time the peak
broadens proportional to T .

We now determine the relative intensity of the one- and two-magnon scatter-
ing processes. Even if a direct comparison is not possible, since the one-magnon
and the two-magnon peaks occur at different lost energies ~ω, it is useful to
compare the one-magnon and the two-magnon total spectral weight for the 2D
Heisenberg antiferromagnet. The latter is evaluated numerically at T = 0, and
the former at various temperatures without making the approximation k+q ≈ q.
In Fig. 4.8 we plot the two-magnon (solid line) and the one-magnon weight for
different temperatures (dashed lines). At room temperature, the one-magnon
weight is one or two orders of magnitude smaller for almost every value of q and
is expected to decrease with decreasing T , according to Eq. (4.56). This allows
us to conclude that the two-magnon scattering is the dominant process at low
temperatures. A rough estimate for the temperature at which the one-magnon
process becomes significant gives a value of ∼ 1 eV in the case of La2CuO4,
which is well above room temperature. These results support the conclusion
that two-magnon scattering dominates the magnetic RIXS intensities in this ma-
terial observed by Hill et al. [14] and Ellis et al. [53]. In other materials this
of course needs not necessarily be so, depending on the temperature at which
the experiments are performed. One can expect for instance interesting RIXS
scattering signals from high temperature paramagnons.
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Figure 4.8: Comparison between spec-
tral weight for single-magnon scattering
W1 (dashed lines) for various tempera-
tures and zero temperature two-magnon
scattering W2 (solid line), all obtained
numerically. The vertical scale has ar-
bitrary units. W1 displays the T 3 be-
havior from Eq. (4.56) for the single-
magnon intensity. For La2CuO4, J ≈
146 meV, and at room temperature we
have βrtJ ≈ 5.8.

Leading correction to ultrashort lifetime approximation. The UCL ex-
pansion offers a systematic way of calculating the Kramers-Heisenberg equation.
In this section we calculate the leading correction term to the two-magnon cross
section in the UCL approximation. This is especially relevant at q = (0, 0) where
the intensity is vanishing to first order, but non-zero to second order. The leading
order correction is taken into account by including all terms up to O((ηJ/Γ)2)
in Eq. (4.40). Again we can include a number of extra correction terms by using
an expansion of the type

∞∑
l=1

H l
int

(iΓ)l
≈
∞∑
l=1

(
H l

0

(iΓ)l
+
H l−1

0 H ′

(iΓ)l

)
+

∞∑
l=2

H l−2
0 (H ′)2

(iΓ)l
+O

(
(ηJ/Γ)3

)
. (4.59)

The contribution of the last term to the UCL scattering amplitude is

1

Γ2

η2

~ω − iΓ
〈f |
∑
i

eiq·Ri

∑
j,k

JijJik(Si · Sj)(Si · Sk) |i〉 (4.60)

This scattering amplitude that corresponds to this term is non-zero at q = 0,
which can be easily checked in linear spin wave theory. The reason is that the
resulting scattering operator at zero transferred momentum does not commute
with the Hamiltonian. For the LSW analysis, we make use of the identity∑
j,k

JijJik(Si ·Sj)(Si ·Sk) =
1

4

∑
j 6=k

JijJikSj ·Sk−
1

2

∑
j

J2
ijSi ·Sj + const. (4.61)

We drop the constant because it does not contribute to inelastic scattering. For
simplicity, we only take nearest neighbor interactions into account. The last term
in Eq. (4.61) is proportional to the first order result for the scattering amplitude,
which has already been analyzed in LSWT. The other term can be treated in
LSWT too and yields a two-magnon contribution to the scattering amplitude at
zero temperature of:

− 1

4Γ2

(ηJ)2

~ω − iΓ
∑
k

〈f | f(k,q)(UkVk−q + Uk−qVk )α†kβ
†
−k+q |0〉 (4.62)
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with f(k,q) = −6(cos qx + cos qy) + 4 cos kx cos(ky − qy) + 4 cos ky cos(kx− qx) +
2 cos(2kx − qx) + 2 cos(2ky − qy). Since the phase of the first order amplitude
differs from the second order amplitude by π/2, there is no interference of these
terms. The consequence is that the leading corrections to the first order scattering
intensity are down by a factor (ηJ/Γ)2 ≈ 0.06 for the well-screened intermediate
state. This makes the UCL expansion a viable way of computing magnetic RIXS
spectra. The contribution Eq. (4.60) is shown in Fig. 4.9(a), and the full cross
section in Fig. 4.9(b). Only at q = 0, there is an appreciable difference from the
first order result shown in Fig. 4.5 (a). At q = (π, π), there is again no intensity,
which can be understood by the same argument as for the first order result in
Sec. 4.4.
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Figure 4.9: The leading order correction to the scattering amplitude does not
interfere with the first order. Fig. (a) shows the contribution to the cross section
from Eq. (4.60). The full, corrected cross section is shown in Fig. (b). There is
an appreciable correction only at q = 0.

Comparison to two-magnon Raman scattering. In Raman scattering, one
can select the symmetry of the two-magnon mode by selecting a certain polariza-
tion configuration. The Loudon-Fleury Raman scattering operator is [106–108]

ÔLF ∝
∑
i,δ

P (δ)Si · Si+δ. (4.63)

The polarization configuration determines the symmetry of the scattering oper-
ator through P (δ) = (δ · ε′)(δ · ε). In two-magnon RIXS at the Cu K edge, in
contrast, the polarization dependence can be disentangled from the scattering
operator, and the polarization cannot be used to select the symmetry of the ex-
citations one probes. However, RIXS has momentum dependence, with which
one can obtain the same effect: the role of P (δ) is taken over by the phase factor
eiq·Ri in RIXS: compare Eq. (4.42) for nearest neighbors to Eq. (4.63). RIXS can
also select two-magnon modes of different symmetry by tuning to specific q’s.
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The simplest case is that of A1g symmetry [i.e., P (δ) transforms as A1g under
the symmetry operations of D4h, so PA1g

(δ) = 1], which corresponds to RIXS at
q = 0, so eiq·Ri = 1. In this case, both Raman and RIXS do not show inelastic
weight (in theory).

For the less trivial symmetries, we rewrite the RIXS phase factor as:

Ôq ∝
∑
i,δ

eiq·RiSi · Si+δ =
∑
i,δ

1

2
eiq·Ri(1 + eiq·δ)Si · Si+δ. (4.64)

The phase factor on the right-hand side is now symmetric under the exchange of
neighbors i and i+ δ. To probe the B2g two-magnon mode (which transforms as
xy), one needs

1

2
eiq·Ri(1 + eiq·δ) = PB2g

(δ) = 0, (4.65)

which is satisfied for all Ri at q = (π, π). Indeed, both RIXS and Raman scat-
tering predict zero intensity for a nearest neighbor Heisenberg antiferromagnet.

For B1g symmetry (x2-y2), the RIXS phase factor must satisfy impossible
conditions:

const.× eiq·Ri(1 + e±iq·x̂) = PB1g
(±x̂) = +1 (4.66)

const.× eiq·Ri(1 + e±iq·ŷ) = PB1g
(±ŷ) = −1. (4.67)

The first condition implies qy = 0, which is incompatible with the second one.
Thus, Cu K edge RIXS cannot probe the B1g two-magnon mode.

The only other wave vector for RIXS that we might expect to be special is
q = (π, 0), but this leads to a mode that is not symmetric under, for example,
rotations over 90◦ and therefore cannot be classified as a representation of the
symmetry group D4h.

We conclude that indirect RIXS on a nearest neighbor Heisenberg antiferro-
magnet can probe two-magnon excitations of a certain symmetry by choosing
an appropriate q, instead of choosing the polarization as in Raman scattering.
Unfortunately, this is only possible for the A1g and B2g cases, which give no in-
elastic weight for both Raman and RIXS spectra, at least in theory. Comparison
of any residual two-magnon feature in experimental RIXS and Raman spectra
(resulting from, e.g., longer range interactions [109]) is not necessarily expected
to show agreement.

Conclusions. We derived the two-magnon scattering cross section which is
measured in magnetic RIXS at the Cu K edge, taking advantage of a series
expansion in the UCL of the intermediate state. In the context of LSWT, we
calculated the magnetic RIXS spectrum for a 2D S = 1/2 Heisenberg antifer-
romagnet, in the more general case where the superexchange is not limited to
nearest neighbors. Our results strongly suggest a multi-magnon scattering sce-
nario, where two-magnon excitations are created in the system as a consequence
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of the modifications in the superexchange interaction induced by the core hole
potential.

Our results for the two-magnon scattering agree very well with experimental
data on La2CuO4. The vanishing of the RIXS intensity for the elastic case
q = (0, 0) and the antiferromagnetic point q = (π, π) is recovered. The latter
feature turns out to be a consequence of an underlying symmetry property of the
scattering operator and does not depend on the range of the exchange interaction.
The excellent quantitative agreement between our results and experiments is
testified by the occurrence of an intense peak at q = (π, 0) for ~ω ≈ 500 meV.
We have generalized the theory to include also finite temperature scattering,
for which we find that also one-magnon processes contribute. For La2CuO4 at
room temperature, the single-magnon spectral weight is very small compared to
two-magnon scattering.

The subleading order in the UCL expansion of the cross section is shown to be
of order O((ηJ/Γ)2) smaller than the first order result. This makes the expansion
a rigorous method for this case to calculate the Kramers-Heisenberg relation.
The introduction of longer range interactions (according to data from neutron
experiments) improves the correspondence between theory and magnetic RIXS
experiments on La2CuO4. The generalization of the analysis to doped systems
will be an interesting next step towards understanding multi-spin correlations in
the spin liquid phase of the high-Tc superconductors.
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4.5 Copper L edge

4.5.1 Theory of probing single magnons in cuprates with
RIXS

Published as ‘Theoretical Demonstration of How the Dispersion of Magnetic Ex-
citations in Cuprate Compounds can be Determined Using Resonant Inelastic
X-Ray Scattering’ in Phys. Rev. Lett. 103, 117003 (2009) with Giacomo Ghir-
inghelli, Marco Moretti Sala, Lucio Braicovich, and Jeroen van den Brink.

Abstract. We show that in Resonant Inelastic X-ray Scattering at the copper
L and M edge direct spin flip scattering is in principle allowed. We demonstrate
how this possibility can be exploited to probe the dispersion of magnetic excita-
tions, for instance magnons, of cuprates such as the high-Tc superconductors. We
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compute the relevant local and momentum dependent magnetic scattering ampli-
tudes, which we compare to the elastic and dd excitation scattering intensities.
For cuprates these theoretical results put RIXS as a technique on the same footing
as neutron scattering.

Introduction. Here we show that contrary to common belief [2, 72, 73, 110],
RIXS at the copper L edge is also a powerful probe of single spin flip excita-
tions and related magnetic dispersions. The presence of this magnetic scattering
channel is an important theoretical result because it puts L edge RIXS on, for
instance, the high-Tc superconductors, as a technique on the same footing as
neutron scattering.

Soft X-ray RIXS has been much used in transition metal oxides to study local
transitions, such as dd excitations in cuprates [9,73,110] and spin flips [111,112]
in NiO. Although interesting in themselves, these experiments do not exploit a
unique capability of RIXS: to measure the dispersion of excitations by determin-
ing both momentum change and energy loss of the scattered X-ray photons. This
capability is far beyond the possibilities of traditional low energy optical tech-
niques, which are constrained to essentially zero momentum transfer because,
as opposed to high energy X-rays, photons in the visible range carry negligible
momentum. This asset of RIXS has already been exploited to determine the
momentum dependence of charge [85, 86], bimagnon [14, 51, 52, 96] and orbital
excitations [54] at Cu K and L3 edges.

In order to prove that at the Cu L edge RIXS can probe dispersion of collec-
tive magnetic excitations, we will first determine the local spin flip cross section
for a copper d9 ion in a tetragonal crystal field. This is the familiar case en-
countered in numerous cuprates, with one hole occupying the x2-y2 orbital. The
important observation is that the local spin flip process can either be forbidden or
allowed, depending on the spatial orientation of the copper spin. Subsequently,
we calculate the momentum (q) dependence of the magnon cross section for a
spin system with a collective response. As an example we consider the Heisenberg
antiferromagnet, where we find a vanishing of the magnon scattering intensity
around the center of the Brillouin zone proportional to |q| and a strong peak at
the antiferromagnetic wave vector.

Local spin flip scattering at Cu L edge. From the viewpoint of inelastic
magnetic scattering, RIXS and neutron scattering appear to be very different
techniques. It is easy to show, for instance, that in transition metal K edge RIXS
single spin flip scattering is forbidden [51] because of the absence of spin orbit
coupling in the intermediate state. Ever since the seminal work of Kuiper and
coworkers [110], more than a decade ago, it is believed that also at the copper L
and M edge spin flip scattering is not allowed for Cu2+ in a tetragonal crystal field,
unless the spin flip excitation is accompanied by a dd excitation [2,72,73]. Based
on a symmetry analysis of the wavefunction of the copper hole, Ref. [72] concludes



82 Magnetic RIXS on 2D cuprates

that “the reason is that the x2-y2 state, a linear combination of atomic Y2,2 and
Y2,−2 states, does not allow a direct spin flip transition.” The observation that the
spin flip excitations are intrinsically entangled with dd excitations implies that
mapping out momentum dependencies of magnetic excitations with L edge RIXS
would be a hopeless endeavor. As will be clarified shortly, the dd-excitations act
as a momentum sink, which would limit the information that can be gained from
RIXS in this case to momentum averaged properties of the magnetic excitations,
preempting the possibility to observe, e.g., a single magnon dispersion.

We will show in the following, however, that the symmetry analysis on which
these assertions rely [72,73] is incomplete because it is restricted to directions of
the spin moment along an axis that is orthogonal to the x2-y2 orbital. In fact we
will show that for any other spin orientation direct spin flip scattering is allowed.
This includes, in particular, Néel ordered cuprates, where the magnetic moment
lies in the plane of the x2-y2 orbital: for example, in La2CuO4, Sr2CuO2Cl2
and (CaSr)CuO2 [113,114], spins order along the [x, y, z]=[110] direction and in
Nd2CuO4 along [100] and [010] in alternating planes [115].

The dependence of the direct spin flip scattering amplitude on photon po-
larization, scattering angle and momentum transfer can be computed from the
Kramers-Heisenberg expression (2.41). At the copper L edge we are dealing with
the local electronic process 2p63d9 → 2p53d10 → 2p63d9∗, where ∗ denotes an
excited state with a dd excitation and/or spin flip. At the L3 resonance the inter-
mediate states |n〉 are just the multiplets corresponding to the four Jz = Lz +Sz

states of the spin-orbit coupled 2p3/2 core hole.
It is easy to see that direct spin flip excitations are forbidden if the spin of the

hole in the x2-y2 ∝ (Y2,2 +Y2,−2)/
√

2 initial state is aligned along [001], which is
the situation considered previously [72,73]. In the first step of the RIXS process
a dipole allowed 2p → 3d transition creates a core hole in a linear combination
of Y1,1 and Y1,−1, while conserving the spin. In this intermediate state the spin-
orbit coupling of the core hole L · S = LzSz + (L+S− + L−S+)/2 can cause
a spin flip S− (or S+) in combination with a raising (or lowering) L+ (or L−)
of the orbital moment. In either case a Y1,0 core hole state with reversed spin
is the result [72, 73, 116]. The last step to end up in a final state with only a
spin flip excitation, requires the optical decay of the Y1,0 2p core hole into a
(Y2,2 + Y2,−2)/

√
2 3d valence band hole. But this transition is dipole forbidden

because it requires ∆Lz = 2, which thus forbids direct spin flip scattering.
The situation changes drastically when the local magnetic moment is oriented

in the xy plane: we will show that in this case direct spin flip excitations are fully
allowed. This is best illustrated by a direct calculation of the RIXS amplitudes
in the different channels for Cu2+ in a tetragonal crystal field. We consider a
scattering geometry as in Fig. 4.10(a), with fixed scattering angle of 90◦ and
π (σ) linear polarization of the incident photons parallel (perpendicular) to the
scattering plane. In this geometry θIN is the azimuthal angle between incident
beam and [001] axis. In Fig. 4.10(b) we show the polarization and momentum
dependent RIXS matrix elements to all possible final states for the starting con-
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Figure 4.10: L3 RIXS cross sec-
tion for a single Cu2+ ion with σ
and π polarization of the incident
beam. (a) The geometry: the scat-
tering plane is (100), scattering an-
gle 90◦, the incident photons im-
pinge at an angle θIN to the [001]
direction (c axis). (b) Scattering
intensities to different orbital and
spin orientations, starting from a
(x2-y2)↓z state (left panels) and a
(x2-y2)↓xy groundstate (right pan-
els) as a function of θIN or alterna-
tively the in-plane transferred mo-
mentum q‖. For ↓z, i.e., spin along
[001], the spin flip cross section
vanishes (bottom left), not so for
↓xy, with spin along [110] (right).
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Figure 4.11: The dependence
of scattering cross section for spin
flip scattering to (x2-y2)↑ final
states on the atomic spin orien-
tation for selected cases of scat-
tering geometry given by varying
θIN and fixed φIN = 0.

figuration of a hole in the x2-y2 orbital with a spin oriented either along [001]
(left panels) or along [110] (right panels), denoted by (x2-y2)↓z and (x2-y2)↓xy,
respectively, so that (x2-y2)↑ is a final state with only a spin flip excitation.

Note that along the [100] direction the nuclear Brillouin zone boundary is
in q‖ ≈ 0.826 Å−1 for a = 3.8 Å an in-plane lattice parameter that is typical
for cuprates. At 90◦ scattering Cu L3 RIXS can explore half of the reciprocal
space, but going to backscattering geometry q‖ grows considerably and almost
all the Brillouin zone can be covered. Fig. 4.10(b) shows that the spin flip to
dd excitation intensity ratio varies from zero at the zone center to about 0.1
at the zone edge. From the lower panels in Fig. 4.10 at the left and right it is
clear that for a spin along [110] the spin flip cross section is allowed for both σ
and π polarizations, whereas it is in all cases forbidden for a spin along [001].
It is interesting to note that for the σ polarization the elastic peak is more
than 4 times stronger than the spin flip scattering channel, whereas for π the
two intensities are similar. The direct spin flip cross section for a generic spin
direction, characterized by the Euler angles (θspin, φspin) is shown in Fig. 4.11 for
a number of azimuthal angles θIN.

The upshot of these numerical results can easily be understood on the basis of
a symmetry argument. If the spin of the x2-y2 hole points along the x axis, it is
in the spin state (|↑〉+ |↓〉)/

√
2, corresponding to Sx = 1/2. In the intermediate

2p3/2 core hole state the diagonal part of the spin-orbit coupling, LzSz, causes

a transition of this spin state into (|↑〉 − |↓〉)/
√

2 (corresponding to Sx = −1/2),
while the angular part of the core hole wavefunction stays in a linear combination
of Y1,1 and Y1,−1. The transition of the core hole back into the 3d x2-y2 orbital
is therefore dipole allowed while at the same time the spin along the x axis is
flipped.

Momentum dependence of magnon cross section. We now wish to gen-
eralize the cross section from local spin flips to collective magnetic excitations,
which are characterized by their momentum quantum number q. There are sev-
eral ways to compute the q dependence of this cross section, but a particularly
transparent one is by the UCL expansion (2.49), which we will employ to zeroth
order. This corresponds with summing over only the J = 3/2 core states in the
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Figure 4.12: Momentum de-
pendence of the magnetic RIXS
spectral weight at the Cu L3

edge (black) and the magnon dis-
persion (gray) for a simple 2D
Heisenberg model (solid curves)
and an extended model relevant
for La2CuO4 [83] (dashed).

sum over intermediate states. The dipole operators D and D′† now allow for a
direct creation of a spin flip upon de-excitation. The corresponding amplitude
Tsf,L3

(ε′, ε) depends on incident and outgoing polarization, as clarified above and
shown in Figs. 4.10 and 4.11. We thus obtain

Ffg =
1

iΓ

∑
L3

Tsf,L3(ε′, ε)
∑
i

eiq·Ri 〈f |σzi |g〉 (4.68)

where the operator σz flips the spin when it is in the xy plane. The sum is over
all intermediate core hole states of the L3 edge, and we denote the shorthand
Tsf(ε

′, ε) =
∑
L3
Tsf,L3(ε′, ε).

It is instructive to compute with this generic expression the single magnon
RIXS spectrum for an antiferromagnetic 2D Heisenberg model, given by Eq. 4.1.
Rotating the spin operators to align the staggered magnetization along the z axis,
introducing Holstein-Primakoff bosons and adopting linear spin wave theory one
finds after a Fourier and a Bogoliubov transformation the magnon scattering
amplitude

Ffg =
√
N

1

iΓ
Tsf(ε

′, ε)(uq − vq) 〈f |α−q + α†q |g〉 (4.69)

with N the total number of sites. The resulting zero-temperature single magnon
spectrum,

d2σ

dΩdω
∝ |Tsf(ε

′, ε)|2 (uq − vq)2δ(ω − ωq), (4.70)

is shown in Fig. 4.12. At q = (0, 0) the magnon scattering amplitude vanishes
because in this situation the scattering operator is proportional to the total spin in
the z direction Sztot, which does not cause inelastic processes because this operator
commutes with the Heisenberg Hamiltonian. For small transferred momenta,
|q| → 0, the magnon scattering intensity vanishes as ωq/4J . We also observe that
the magnon cross section diverges at q = (π, π) as 4J/ωq, similar to the neutron
scattering form factor. This divergence is due to the RIXS photons scattering
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on spin fluctuations: at q = (π, π) the scattering operator is proportional to
the staggered spin along the z axis Szstag, so that the total, energy integrated,

scattering intensity
∫
dω
∑
f |Ffg|2δ(~ω − Ef ) ∝

〈
(Szstag)2

〉
and the inelastic

scattering intensity is proportional to the variance
〈
(Szstag)2

〉
−
〈
Szstag

〉2
. We

performed the same calculation for a Hamiltonian including longer-range and
ring exchange terms, with a parameterization derived from neutron scattering2.
Fig. 4.12 shows that these additional interactions cause only small changes in the
momentum dependence of the magnetic scattering cross section.

Using the same formalism, we can compute the q dependent scattering ampli-
tude of a spin flip entangled with a dd excitation. If the local spin flip operator is
S−i and the operator corresponding to the dd transiton is T+

i , the inelastic scat-
tering amplitude is Ffg ∝ 〈f |

∑
i e
iq·RiS−i T

+
i |g〉 = 〈f |

∑
k S
−
k T

+
k−q |g〉. Clearly

part of the momentum is absorbed by the dd excitation, so that RIXS measures a
momentum convolution of the two excitations. In particular, the magnetic scat-
tering amplitude looses all q dependence if the dd excitation is dispersionless,
exemplifying that in order to determine magnon dispersions the presence of a
direct spin flip process is essential.

Conclusions. Depending on the spatial orientation of the copper spin, the local
spin flip process for RIXS at the L3 edge can be forbidden or allowed. This makes
RIXS a very sensitive probe of the orientation of the local magnetic moment.
In typical cuprates direct spin flip scattering is allowed and for this case we
determined the spin flip and magnon cross section, which turns out to be strongly
momentum and polarization dependent. Our theory holds at both the copper L
and M edges. At the M edge (~ωk ≈ 75eV) the photon momentum is small, so
that only magnons in a very small portion of the Brillouin zone can be probed.
But at the copper L3 edge the X-ray photon carries a momentum |qin| ∼ 0.47
Å−1, which is in a typical cuprate large enough to observe magnetic excitations
in almost all of the Brillouin zone. Indeed very recently high resolution soft X-
ray RIXS experiments on La2CuO4 have for the first time resolved the single
magnon dispersion, confirming our predictions [11,21]. Thus, at least for high-Tc
superconductors, L edge RIXS can be placed on the same footing as neutron
scattering – with the additional great advantage that for photon scattering only
small sample volumes are required so that the measurement of the spin dynamics
of thin films, oxide heterostructures and other nanostructures comes now within
experimental reach.
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4.5.2 Experimental verification of the single magnon the-
ory

Soon after the predictions of Ref. [19] for the single magnon cross section, the
single magnon dispersion was measured by Braicovich et al. [11]. A typical RIXS
spectrum is shown in Fig. 4.13, together with the dispersion found by the authors.
The dispersion is obtained by tracing the peak of the low energy spectrum along
the [100] direction. The agreement with the dispersion obtained by neutron
scattering is excellent.

Figure 4.13: Left panel: a typical low energy RIXS spectrum of 2D cuprates.
Shown here is a spectrum at the Cu L3 edge of La2CuO4 at q = (0.6π, 0). The
spectrum is decomposed in (A) the elastic peak, (B) a single magnon peak (by
fitting a Gaussian at the spectrum’s maximum), leaving (C) multiple magnon
modes at higher energy and (D) optical phonons at lower energy. In the inset the
L3 X-ray Absorption Spectrum is shown, where the arrow indicates excitation en-
ergy. Tracing the maximum of the RIXS spectra at different transferred momenta
along the [100] direction, RIXS can determine the single magnon dispersion, as
shown in the right panel. The black dots were found by RIXS experiments [11]
and the dashed, gray line by inelastic neutron scattering [83]. All RIXS measure-
ments were done at T = 15 K. Figures from Ref. [11].

More data was taken by Guarise et al. [69], who also used the Cu L3 edge.
Their data are shown and compared to theory in Fig. 4.14. They are consistent
with the results from inelastic neutron scattering on La2CuO4 [83], and cover
for the first time the full dispersion in Sr2CuO2Cl2 up to the boundary of the
magnetic Brillouin zone. They reveal a striking 70 meV difference between the
magnon energies of 310 meV at (π, 0) and 240 meV at (π/2, π/2), suggesting
that further neighbor interactions are important. The large disersion along the
magnetic Brillouin zone boundary can be compared with the smaller ∼ 20 meV
dispersion in La2CuO4 [83]. The dispersion along the magnetic zone boundary
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is also predicted by recent LDA+U theory, which, however, underestimates the
energy at q = (π, 0) in Sr2CuO2Cl2 by almost 50 meV [117].
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Figure 4.14: Single magnon dispersion measured at the Cu L3 edge of
Sr2CuO2Cl2. Open and closed symbols stem from 2 independent measurements
on different samples. In the [100] direction, data for both qx > 0 and qx < 0 are
collapsed on the same (0, 0) − (π, 0) branch. The dot-dashed line is the LSWT
result (including the Oguchi correction [104]) for a nearest neighbor Heisenberg
model with J = 130 meV. The black dashed line is a nearest-neighbor Hubbard
model fit for t = 0.261 ± 0.004 eV and U = 1.59 ± 0.04 eV. For the gray lines,
further neighbor hoppings are added to the Hubbard model. Reasonable fits can
also be obtained at larger U : the thickness of the gray band is generated by tak-
ing 1.9 eV < U < 4 eV, while fitting the hopping parameters. Guarise et al. [69]
experimentally establish a relation between U and the hopping parameters. All
measurements were done at T = 15 K. Figure from Ref. [69]

RIXS experiments have not only mapped out the magnon dispersion, they
have also verified the predicted spectral weight of the magnon peak in various
cuprates. Since the experimental spectral weight is sensitive to, amongst others,
self-absorption, Braicovich et al. [21] compared the ratio of spectral weights for
σ and π polarization while keeping the incident and outgoing photon directions
constant – thus reducing the effect of self-absorption. The data and theory are
first normalized to the spectral weight of the dd excitations, which are well-
understood theoretically [19, 20]. Then, the single magnon spectral weight for
σ polarization is divided by the signal for π polarization. One finds that the
resulting linear dichroism ratio R of the (renormalized) theoretical intensities is

R =
Iσ
Iπ

=

∑
ε′ |Tsf(ε

′, εσ)|2∑
ε′ |Tsf(ε′, επ)|2

, (4.71)

i.e., independent of the dynamic, q dependent spin susceptibilities. Only the
local, atomic spin flip scattering factors Tsf remain in the ratio. Fig. 4.15 shows
the linear dichroism ratio, which has a clear asymmetry between +q and −q.
The agreement between theory and experiments is again very good.
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Figure 4.15: Single magnon
spectral weight measured at
the copper L3 edge of various
cuprates with transferred mo-
mentum along (a) the [100] di-
rection, and (b) the [110] di-
rection. The open circles re-
fer to La2CuO4, the filled cir-
cles to (Sr,Ca)CuO2 (prepared
as a thin film on SrTiO3), and
the stars to strongly under-
doped NdBa2Cu3O6+δ. The
data were taken at T = 15 K.
α is the scattering angle. Fig-
ures from Ref. [21].

4.5.3 Bimagnon excitations at the Cu L edge

Published in ‘Dispersion of Magnetic Excitations in the Cuprate La2CuO4 and
CaCuO2 Compounds Measured Using Resonant X-Ray Scattering’, Phys. Rev.
Lett. 102, 167401 (2009) with L. Braicovich, V. Bisogni, F. Forte, C. Aruta, G.
Balestrino, N. B. Brookes, G. M. De Luca, P. G. Medaglia, F. Miletto Granozio,
M. Radovic, M. Salluzzo, J. van den Brink, and G. Ghiringhelli.

Next to single magnons, the Cu L edge can also exhibit bimagnon excita-
tions [10]. Single magnons will dominate the RIXS spectrum as they arise in
direct RIXS processes, but at the high energy side of the single magnon peak, a
tail is observed [11]. This could well be multi-magnon excitations.

Bimagnon excitations arise in RIXS at the Cu L edge because the 3d10 con-
figuration in the intermediate state blocks all superexchange. The spins of its
neighbors reorient themselves, and this process can be described in terms of bi-
magnon excitations. The blocking of superexchange bonds is formalized in the
intermediate state Hamiltonian

H̄ = H0 − J
∑
i,δ

pip
†
iSi ·Si+δ, (4.72)

where pi annihilates a 2p core electron at site i and δ points to nearest neighbors.
To first order in the UCL expansion, we find

Ffi =
Tel(ε

′, ε)

(iΓ)2
〈f |
∑
i

eiq·Rip†i H̄pi |i〉 (4.73)
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where the polarization dependence is the same as for elastic scattering as the
Hamiltonian should excite the valence electrons in indirect RIXS. Of course, the
dipole transitions can also add other excitations like dd or spin flip excitations,
but we are not interested in these processes here. As Eqs. (4.72) and (4.36) have
the same form, the Cu L edge bimagnon spectra have the same line shape as the
bimagnon spectra at the Cu K edge [see Fig. 4.5(a)], and we therefore will not
elaborate on this subject here.

4.5.4 Chemical pressure effects

Published as ‘Effect of the chemical pressure on bimagnons in antiferromagnetic
insulators: CaCuO2 and BaCuO2 studied with Cu-L3 resonant inelastic X-ray
scattering’ in Eur. Phys. J. Special Topics 169, 141 (2009) with V. Bisogni, C.
Aruta, G. Balestrino, N. B. Brookes, F. Forte, G. Ghiringhelli, P. G. Medaglia,
J. van den Brink, and L. Braicovich.

When the lattice parameter of a magnetic solid is changed, the hopping am-
plitudes change too, and ultimately also the superexchange constant is altered.
A comparison of CaCuO2 with BaCuO2 with Cu L3 edge RIXS is presented by
Bisogni et al. [118]. Ba is a bigger ion than Ca and therefore increases the lattice
parameters by a factor of 1.03 in-plane, and 1.27 along the z axis, making the
crystal field in BaCuO2 more cubic. The increase in the in-plane lattice param-
eters reduces the superexchange constant. An energy shift is observed for the
magnetic spectrum, implying that J is reduced by a factor of 0.67 ± 0.06 when
substituting Ca by Ba.

For the dd excitations, the (average) observed scaling factor for the energy is
different: 0.8± 0.06. This should be ascribed to the more cubic symmetry of the
crystal field, which rearranges the energies of the different dd excitations.

Further, a reduction in the spectral weight of the low energy spectrum is seen
of at least a factor 0.5 when the data is normalized to the total dd excitations’
spectral weight. In interpreting this fact, one has to take into account that the
large increase of the lattice parameter in the z direction changes the radial matrix
elements. The radial parts of all the wave functions become more similar in the
more cubic Ba compound, while in CaCuO2, the radial parts differ substantially
for the different 3d orbtals because of the D4h crystal field splitting.

4.5.5 Spectral weight at the Γ point

Both the single magnon and the bimagnon spectral weight vanish at q = 0. The
question then arises which higher order process gives spectral weight at the Γ
point. The single magnon DOS vanishes at q = 0, so unless there is some mixing
with other wave vectors, there cannot be any single magnon spectral weight at
the Γ point. The bimagnon DOS, however, is very large at q = 0 [see Fig. 4.5(b)].
In Sec. 4.4, we discussed bimagnon excitations that arise in the second order of
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the UCL expansion, generating spectral weight at q = 0, proportional to (J/Γ)4.
This also holds at the Cu L edge, of course. Here, we consider another possible
mechanism: multi-site exchange mechanisms that are not included in the simple
Heisenberg model also give rise to bimagnon excitations, in particular at the Γ
point.

Starting from a single-band Hubbard model, multi-site exchange processes
appear in the effective spin Hamiltonian at fourth order in t/U . Such processes
contribute to the scattering amplitude in two ways: first, the initial and final
states are modified. Second, the intermediate state energies are modified, and in
the UCL expansion, this is reflected in a modified H̄.

The Heisenberg Hamiltonian to fourth order in t/U without a core hole is
given by Eq. (4.14). The corresponding magnon (approximate) eigenstates that
determine the initial and final states are given in Sec. 4.2.

The fourth order contribution to the intermediate state Hamiltonian (i.e.,
including the core hole) is obtained through a tedious calculation using degenerate
perturbation theory of the Hubbard model to fourth order [82,119]. The Hubbard
Hamiltonian of the system with a core hole is written as H̄ = h + V where h
contains the Coulomb repulsion part (including the 2p-3d Coulomb energy Uc)
and V contains the hopping. Turning off the hopping, the (degenerate) ground
state has the core hole site doubly occupied and all other sites singly occupied.
The projector on the space spanned by all these ground states is P0. Turning
on a small hopping parameter t introduces exchange interactions. The effective
Hamiltonian to fourth order in t/U is [82, 119]:

H̄
(4)
eff = P0V SV P0 + P0V SV SV SV P0

− 1

2

(
P0V S

2V P0V SV P0 + P0V SV P0V S
2V P0

)
(4.74)

where S = (P0 − 11)/h. Because of the projectors P0, the eigenstates of the
effective Hamiltonian are also eigenstates of P0 and can be reformulated in terms
of spins, see Eq. (2.14) of Ref. [82]. The first term on the right-hand side of
Eq. (4.74) generates the familiar nearest neighbor exchange (which is blocked at
the core hole site, however). The other terms in Eq. (4.74) involve four hops,
which after two hops may [terms between parentheses in Eq. (4.74)] or may not
[P0V SV SV SV P0] return to the space of unperturbed ground states.

The details of the derivation of the low energy effective Hamiltonian H̄eff to
4th order in t/U(c) can be found in appendix D. The resulting intermediate state
Hamiltonian in the mean field approximation is

H̄
(4)
eff = H0 +

∑
i

pip
†
i

[ nn∑
j

(
64t4

U3
− 4t2

U

)
Si · Sj +

nnn∑
j

20t4

U3
Si · Sj

+
∑
j 6=k

(
4t4

UU2
c

+
8t4

U2
c (2Uc + U)

− 4t4

U3

)
Sj · Sk+
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+
∑

squares

{(
24t4

U3
− 2t4

U3
c

− 2t4

UU2
c

)
(Sj · Sk + Sk · Sl)

+

(
20t4

U3
− 2t4

U3
c

− 2t4

UU2
c

)
Sj · Sl

}]
. (4.75)

The sums between the straight brackets are, respectively, over all nearest neigh-
bors (nn) j of i, over all next nearest neighbors (nnn) j of i, over all pairs j, k of
nearest neighbors of i, and over all squares of 2× 2 sites containing i.

Eq. (4.75) is substituted in the UCL expansion. The leading inelastic order
is

Ffi =
1

(iΓ)2
〈f | D†H̄(4)

eff D |i〉 = −Tel(ε
′, ε)

Γ2
〈f |
∑
i

eiq·Ri [. . . ] |i〉 , (4.76)

where [. . . ] represents the lengthy expression between striaght brackets in
Eq. (4.75). The polarization factor for elastic scattering is the same as in
Eq. (4.73).

In appendix D.2, the scattering amplitude for two-magnon creation processes
at zero temperature is evaluated. The result is

Ffi =− Tel(ε
′, ε)

Γ2

∑
k

[{
−
(

20t4

U3
− 2t4

U3
c

− 2t4

UU2
c

)
fb(k,q)− 20t4

U3
fnnn(k,q)

−

(
4t4

UU2
c

+
8t4

U2
c (2Uc + U)

− 4t4

U3

)
fa(k,q)−

(
64t4

U3
− 4t2

U

)
(1 + γq)

−
(

24t4

U3
− 2t4

U3
c

− 2t4

UU2
c

)
fc1(q)

}
(UkVk−q + Uk−qVk)

+

{(
64t4

U3
− 4t2

U

)
(γk−q + γk) +

(
24t4

U3
− 2t4

U3
c

− 2t4

UU2
c

)
fc2(k,q)

}
× (UkUk−q + Vk−qVk)

]
〈f |α†kα

†
−k+q |0〉 . (4.77)

At q = 0, the amplitude reduces to

Ffi =
Tel(ε

′, ε)

Γ2

∑
k

[{(
4t4

UU2
c

+
8t4

U2
c (2Uc + U)

− 4t4

U3

)
fa(k,0)(

30t4

U3
− 2t4

U3
c

− 2t4

UU2
c

)
fb(k,0)

}
2UkVk

]
〈f |α†kα

†
−k |0〉 (4.78)

with

fa(k,0) = 2γ2k − 2 + fb(k,0), fb(k,0) = 4 cos kx cos ky − 4. (4.79)
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Using the parameters (obtained by neutron scattering on La2CuO4) t = 0.33 eV,
U = 2.9 eV [83], and Uc = 4.1 eV [61], one finds

4t4

UU2
c

+
8t4

U2
c (2Uc + U)

− 4t4

U3
≈ −0.4 meV, (4.80)

30t4

U3
− 2t4

U3
c

− 2t4

UU2
c

≈ 13.7 meV. (4.81)

We now make a rough comparison between the spectral weight coming from
corrections to the Hamiltonian, and from the second order of the UCL expansion.
In Sec. 4.4, it is shown that the second order of the UCL expansion (4.62) gives
the following contribution at q = 0:

F2ndUCL =
Tel(ε

′, ε)

Γ2

J2

4iΓ

∑
k

〈f | fa(k,0)2UkVkα
†
kα
†
−k |0〉 . (4.82)

Ignoring all details in the functions f , we compare 13.7− 0.4 = 13.3 meV for the
higher order exchange scenario with J2/2Γ ≈ 15.6 meV for the second order of
the UCL expansion at the Cu L3 edge. We conclude that both the second order of
the UCL expansion and higher order exchange processes contribute significantly
to the Cu L3 RIXS intensity at the Γ point. It should be noted that the higher
order exchange processes dominate the q = 0 RIXS intensity when Γ is larger,
as, e.g., at the L2 and K edges.

4.6 Copper L edge of doped cuprates

Now that the magnetic RIXS spectrum of the undoped cuprates is understood
to a fair level of detail, the next question to be addressed is the following: how
does the low energy L3 edge RIXS spectrum evolve upon doping?

The X-ray absorption spectrum of undoped La2CuO4 at the Cu L3 edge shows
a single peak, corresponding (mainly) to the transition 3d9 → 2p3/23d10. When
La2CuO4 is doped with holes, this peak aquires a tail at the high energy side,
which is interpreted as 3d9L → 2p3/23d10L [84]. The energy is slightly higher
because one breaks up a Zhang Rice Singlet (ZRS) in the latter process, which
costs some energy. From the XAS spectra, it therefore seems possible to tune X-
ray photons so that they are absorbed either at the undoped or at the doped sites
of La2−xSrxCuO4. These resonances are called the L3 and L′3 edges, respectively.

We assume that the low energy physics of doped cuprates are described by
the t-J model. Of course, phonons will also play a role, but the treatment of
phonon excitations in RIXS is postponed to chapter 7. The Hamiltonian for the
t-J model reads

H0 = Ht +HJ = −t
∑
〈i,j〉,σ

(
d†iσdjσ + h.c.

)
+ J

∑
〈i,j〉

Si · Sj . (4.83)
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The d
(†)
iσ operators annihilate (create) an electron on site i with spin σ, and the

sums over 〈i, j〉 count each bond once. Unoccupied sites correspond to ZRS’s.

4.6.1 RIXS amplitude for doped cuprates

We now consider the RIXS amplitude when the X-ray photons are tuned to the
L3 edge. As mentioned above, we assume that only sites that do not carry ZRS’s
are excited. This can be incorporated in the Kramers-Heisenberg equation by
projecting out all intermediate states that have a ZRS at the core hole site. We
write Eq. 2.41 as

Ffi =
∑

ζ∈{el,sf}

Tζ(ε
′, ε)

∑
i

eiq·Ri

∑
n

〈f | diσ′p
†
iσ′P |n〉 〈n|P piσd

†
iσ |i〉

z − En
(4.84)

where ζ indicates either a spin flip process or an elastic scattering event, and
determines the spins σ and σ′. Further, z = Eg + ~ωk + iΓ, piσ is the 2p core
electron annihilation operator and P the projection operator

P =
∑
i,σ

piσp
†
iσni↑ni↓, (4.85)

removing any contribution to the amplitude coming from X-ray transitions at
ZRS sites. Note that niσ = d†iσdiσ. We assume that the RIXS process remains
a predominantly local one, i.e., a local 3d10 intermediate state is created, so the
polarization factors Tζ are the same as for the undoped cuprates: at low energy
loss, they either yield a spin flip or an elastic process.

At the Cu L3 edge of the undoped compounds, the main source of low energy
inelastic spectral weight is spin flip scattering. In doped cuprates, it is also
possible to rearrange the charges. As will be shown below, charge scattering
happens even when the intermediate state dynamics are absent, and springs
from the elastic scattering channel when the Cu ions are interacting with each
other. This is analogous to the spin flip cross section for single ions, which also
depends strongly on the way the electrons of the system interact. We ignore
the dd excitations here, because they do not affect the low energy spectra. The
question now arises which channel dominates the low energy RIXS spectra of
doped cuprates: magnetic or charge scattering?

4.6.2 Fast collision approximation

To answer the question which scattering channel dominates the low energy RIXS
spectra of the cuprates, we first make the fast collision approximation, i.e., keep-
ing only the zeroth order of the UCL expansion.In the undoped case, the single
magnon spectrum is quite accurately described by the fast collision approxima-
tion (4.68). When the system is doped and the incident energy is tuned to the
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sites with a spin, the sum over sites should exclude all hole sites. This is enforced
in Eq. (4.84) by the projection operator P . The spin flip scattering amplitude is

F sf
fi =

Tsf(ε
′, ε)

iΓ
〈f |
∑
i

eiq·Riσzi ρi ) |i〉+O(Γ−2) (4.86)

where we introduced the density operator ρi = n↑i + n↓i.
Calculating this correlation function within the t-J model is, of course, diffi-

cult. Compared to the undoped compounds, we expect spectral weight to leak to
higher energies because of the new, higher energy scale introduced by hopping.
Also, the magnon peak is expected to significantly broaden and lose weight (it
loses coherence), analogous to the evolution of the two-magnon Raman spectra
with doping [120]. To see how much spectral weight is in the spin flip cross
section, we integrate it over energy loss and transferred momentum, and get

1

N

∑
q

∫
dω

d2σ

dΩdω
=
|Tsf(ε

′, ε)|2

Γ2
〈i|
∑
q,i,j

e−iq·Rj

N
ρjσ

z
j e
iq·Riσzi ρi |i〉

=
|Tsf(ε

′, ε)|2

Γ2
〈i|
∑
i

ρi (σ
z
i )2ρi |i〉

=
|Tsf(ε

′, ε)|2

Γ2
〈i|
∑
i

ρi |i〉 =
|Tsf(ε

′, ε)|2

Γ2
N(1− x). (4.87)

We conclude that the total spin flip intensity scales linearly with doping. This
result is valid for all doping x.

Next to spin flip scattering, there is also the elastic scattering channel. Note
that we mean with ‘elastic scattering channel’ that ν = ν′ in Eq. (2.42), and
emphatically not that ω = 0. In an ideal crystal, all intensity is pushed to the
Bragg conditions G. Upon doping, the elastic scattering channel at the L3 edge
in the fast collision approximation becomes

Fel
fi =

Tel(ε
′, ε)

iΓ
〈f |
∑
i

eiq·Riρi |i〉+O(Γ−2), (4.88)

with Tel(ε
′, ε) the atomic scattering factor for the elastic channel. The elastic

channel thus gives rise to charge scattering.
It might appear strange that one arrives at charge scattering through the

elastic scattering channel. In the case of non-interacting ions, there is no inelastic
scattering: the above expression gives spectral weight at ω = 0 only. The elastic
peak is expected to gain intensity away from Bragg conditions upon doping as the
holes constitute impurities in the crystal from the photon’s perspective. When
the ions interact, the holes are allowed to move, and hole and spin sites mix.

As with the magnetic cross section, it is complicated to evaluate the exact
correlation function for charge scattering in the t-J model. The total spectral
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weight of the elastic channel for the hole-doped cuprates is

1

N

∑
q

∫
dω

d2σ

dΩdω
=
|Tel(ε

′, ε)|2

Γ2N

∑
q

〈i| ρ−qρq |i〉+O(Γ−3)

=
|Tel(ε

′, ε)|2

Γ2
〈i|
∑
i,j

δi,jρiρj |i〉 =
|Tel(ε

′, ε)|2

Γ2
N(1− x). (4.89)

The elastic channel is reduced as 1 − x, as expected for a decreasing number of
scattering centers. It can be easily checked that the intensity of the Bragg peak
reduces as 1− 2x, and it follows that the elastic scattering channel gives rise to
inelastic charge scattering with intensity proportional to x.

The evaluation of the charge scattering operator is a difficult task, and the
center of much effort. In the special case of very low doping, the holes in hole-
doped cuprates reside around (π/2, π/2), according to ARPES data. In RIXS,
these holes are scattered to approximately (π/2, π/2) + q. There are xN holes
around (π/2, π/2) in the initial state, so we approximate the charge intensity as

d2σ

dΩdω

∣∣∣∣
charge

≈ Tel(ε
′, ε)2xN

Γ2
δ(ω − εq+(π/2,π/2)) (4.90)

where εq is the ‘energy’ of a hole with momentum q. This is of course a sloppy
approach: the holes are heavily dressed by, for instance, phonons, see Shen et
al. [121]. Therefore, the hole dispersion relation is fuzzy and not a delta function3.
The dispersion of quasiparticles in several strongly underdoped compounds is
given in, for instance, Ref. [122–125]. For higher dopings (up to the overdoped,
Fermi liquid phase of the t-J model), the dynamic charge and spin correlation
functions are calculated in, e.g., Refs. [126–129].

Although the exact magnetic and charge spectra are hard to predict, we have
shown above that charge scattering scales linearly with doping, and is propor-
tional to the elastic atomic scattering factor. Similarly, the magnetic RIXS in-
tensity decreases linearly with doping, and stays proportional to Tsf(ε

′, ε). Since
the dynamic spin and charge correlation functions are symmetric under inversion
of space, any asymmetry between spectra at +q and −q is generated by the
atomic scattering factors. In particular, for q along the (π, 0) direction, Tel is
also symmetric under inversion [19], and any asymmetry seen in such spectra
arises through to the magnetic scattering channel. Further, in the special case of
q = (0, 0), it can be seen from Eqs. (4.86) and (4.88) that the inelastic magnetic
and charge signals are zero. In the case of magnetic scattering, the scattering
operator is proportional to the total spin along the z axis, which is a constant.
In the case of charge scattering, the scattering operator counts the total charge,

3Note that we do not remove electrons as in ARPES. The number of holes is conserved in
RIXS, and in the charge-neutral final state the coupling to phonons might be reduced compared
to ARPES.
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which also is a constant. In the limit of very low doping, we found that the RIXS
charge cross section traces the hole dispersion.

4.6.3 Experimental data

Although it is difficult to make a detailed comparison between theory and experi-
ment because of the complicated correlation functions in the theory, recent RIXS
experiments on 8.5% doped La2−xSrxCuO4 [11] can put the theory to some tests.

Figure 4.16: RIXS data on 8.5% doped La2−xSrxCuO4 at T = 15 K, i.e., in
the superconducting state, with transferred momentum along the (π, 0) direction,
show (a) two dispersing branches that (b) merge into a single branch at room
temperature. At low energy loss, the two features are hard to resolve because
of phonons. In Fig. (a), the dotted line is the magnon dispersion from the un-
doped compound, multiplied by 1.09. The solid line is a guide to the eye. (c)
Comparison to inelastic neutron scattering data taken around q = (π, π) (dotted
line: x = 0.05, dashed line: x = 0.085, thick line: x = 0.16). Note that the RIXS
data is taken around the center of the Brillouin zone, and that these regions are
not necessarily equivalent in a doped compound where the long range magnetic
order is absent. Figure from Braicovich et al. [11].

First, our theory predicts that both the elastic and magnetic scattering chan-
nels give no spectral weight at the Γ point. This agrees quite well with the RIXS
data of Ref. [11], which mainly shows an elastic line at q = 0.

Second, at low doping, the magnetic spectral weight is reduced by only
x = 8.5% relative to the undoped compound. Since the RIXS spectra of the un-
doped compound are magnetic in nature (there is no charge contribution there),
we expect the spectra of the doped compounds to be dominated by magnetic
scattering as well. Indeed, the low energy spectra from Ref. [11] are very dif-
ferent for +q and −q, implying that the spectra are dominated by magnetic
scattering, as explained above.

In the data, two dispersing branches are seen, whose dispersions are shown
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in Fig. 4.16. (Both are ascribed to the magnetic channel.) The lower branch is
also observed with neutron scattering, the higher one not. That could be due
to experimental limitations of neutron scattering. The higher branch coincides
with the magnon dispersion if the latter is rescaled by a factor 1.09. However, in
Raman scattering data, the two-magnon excitation is seen to go down in energy
upon doping: in Fig. 9(b) of Ref. [120], the two-magnon signal moves from 3300
cm−1 in La2CuO4 to 2700 cm−1 in the 8% doped compound.

4.7 Oxygen K edge

The oxygen K edge (1s → 2p) is a peculiar edge since it is in principle direct
RIXS (the core electron is excited into the 2p valence bands), but the core level
spin-orbit coupling is absent. Single spin flips are therefore forbidden at the O K
edge, and low energy excitations can only occur via the indirect channel. Two-
magnon excitations are allowed and give a strong, non-dispersive signal at high
energy loss, even for small q, as will be shown in Sec. 4.7.2.

The O K edge is a difficult edge for experiments, since in the cuprates the O
ions have a filled 2p subshell. Only through hybridization with the Cu hole is it
possible to excite a core electron. Usually, the Cu hole is in the 3dx2−y2 orbital
and this orbital hybridizes with the O 2p orbitals that are directed towards the
lobes of the x2-y2 wave function: 2px along the x direction and 2py along the y
direction. The wave function of the valence hole is therefore

|ψ〉 = cos θ
∣∣3d9

〉
+ sin θ

∣∣3d10L
〉

(4.91)

where both states have x2− y2 symmetry and θ is a small number parametrizing
the hybridization. L means that the hole is on the oxygen ions. The dipole
matrix element 〈ψ| D |O 1s〉 is small: it is controlled by sin θ and the smallness of
the overlap of O 1s with Cu 3d orbitals. The result is that O K edge experiments
suffer from low intensity. Most of the radiative decay processes will be via the
fluorescence channels, where the hole in the final state is on an O ion.

Notwithstanding this difficulty, RIXS experiments at the O K edge of
La2CuO4 have been successfully performed [70]. The low energy region shows
spectral weight ranging from 0 to 1 eV, peaking at 0.5 eV and dispersing very
little.

In this section, we discuss the magnetic excitations to be expected at the O K
edge. The polarization dependence is strikingly different from the Cu edges, and
will be explained in Sec. 4.7.1. Then, the expected magnetic RIXS signal will be
presented in detail in Sec. 4.7.2 and compared to the present data [70]. Finally,
we will consider other possible contributions to the low energy RIXS spectrum
in Sec. 4.7.3.
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Figure 4.17: Polarization dependence
of the absorption of X-rays at the O K
edge. The oxygen ions with the black
2p orbitals can be excited with RIXS
when the polarization is directed along
the y axis, while the gray oxygen ions
are then inactive. The gray circles with
black borders represent the Cu ions.

4.7.1 Polarization dependence

It is assumed that only the 2px,y orbitals of the in-plane O ions hybridize with
the Cu levels. The 2p orbitals of the out-of-plane O ions do not hybridize because
of the x2-y2 symmetry of the hole wave function. Therefore, the out-of-plane O
ions are assumed not to be active in O K edge RIXS. In that case, one finds
a remarkable polarization dependence: when the polarization vector of the in-
coming photon is aligned along the x axis, only the O ions that connect Cu ions
along the x direction are excited. When the polarization vector is aligned along
the y direction, only those O ions are excited that connect Cu ions along the
y direction, see Fig. 4.17. This can be easily seen by writing the dipole matrix
elements as 〈

O 2pxj
∣∣D |O 1s〉 ∝

∫
dr xjxiεi ∝ εj . (4.92)

The full dipole operator is

D ∝
〈
3d10

∣∣D |ψ〉 · ε ∝∑
i

eik·Ri sin θ 〈2px|x |1s〉

×
[
εx(e−ik·x̂si−x̂ − eik·x̂si+x̂) + εy(eik·ŷsi+ŷ − e−ik·ŷsi−ŷ)

]
, (4.93)

where 3d10 represents the Cu 3d10, O 2p6 intermediate state. The minus signs in
front of the 1s core electron annihilation operators si come from the way the 2p
orbitals are hybridized with the Cu x2-y2 orbital. The creation operators for the
2p electrons are suppressed. The vectors x̂, ŷ point from the central Cu ion at
position Ri to the neighboring in-plane oxygen ions. The dipole matrix element
of the O 1s core orbital with the Cu 3dx2−y2 orbital is neglected here, but give
approximately the same polarization dependence.

The above polarization dependence introduces an anisotropy in the scattering
amplitude. Magnetic scattering is therefore expected to be different from the Cu
edges, where the modification of the superexchange bonds is isotropic. Now,
only bonds along either the x or the y direction are modified. If the polarization
vector is directed along the [110] direction, all oxygens are active, but because of
the photon phase factors, we do not expect to recover the Cu results.
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4.7.2 Two-magnon contribution to the RIXS spectrum

Since the direct RIXS channel is absent in oxygen, we calculate the indirect
magnetic RIXS spectrum to first order in the UCL expansion. The result is a two-
magnon spectrum, like at the Cu K edge, but with different RIXS matrix elements
because of the different excitation processes. As can be seen in Fig. 4.5(b), most
of the two-magnon states have energies around 4J (neglecting renormalizations
due to magnon-magnon interactions). The large dispersion of the two-magnon
spectrum at the Cu edges is therefore a peculiar matrix element effect. Since at
the O K edge, the matrix elements are different, one would in general not expect
that this peculiar effect survives. The O K edge RIXS signal would likely be
more like the two-magnon DOS: peaked at high energy loss for all transferred
momenta.

Since the oxygen orbitals play an important role at the O K edge, we analyze
the RIXS process within the three-band Hubbard model. The photo-excited
electron creates a 3d10 configuration on a neighboring copper ion. With two Cu-
O hoppings (with amplitude tpd), the 3d10 can be transferred to the other Cu
ion neighboring the core hole site. To second order in tpd, the matrix element
for this process to happen is t2pd/(∆ + Uc) where ∆ is the energy to transfer an
electron from O to Cu and where Uc is the screening potential of the core hole.
After the X-ray emission at the end of the RIXS process, the two Cu spins can be
left behind interchanged. The Cu L edge superexchange blocking mechanism can
be neglected here, as it is of order t4pd. To leading order, the low energy effective
spin Hamiltonian is

Hint = H0 + (Jeff − J)
∑
i

si+δs
†
i+δSi ·Si+2δ (4.94)

with Jeff =
2t2pd

∆+Uc
and where δ points from a copper to an oxygen ion. The

original Heisenberg Hamiltonian H0 is modified at the core hole site. Note that
the Heisenberg form of the bond is preserved.

The effective scattering operator to first order in the UCL expansion is

Ôq ∝
∑
i

eiq·Ri

 ∑
δ=±x̂

ε′∗x εxe
iq·δSi · Si+2δ +

∑
δ=±ŷ

ε′∗y εye
iq·δSi · Si+2δ

 . (4.95)

In general, one would expect spectral weight at q = 0 since the scattering oper-
ator does not reduce to the Hamiltonian in this case. Only when ε′∗x εx = ε′∗y εy
(and q = 0) is the RIXS intensity zero.

At this point, it is instructive to make a comparison with Raman scattering.
In Sec. 4.4 we established that at the Cu edges one can probe certain two-magnon
modes with a definite symmetry by tuning the transferred momentum, mimicking
the polarization dependence of Raman scattering. At the O K edge, however,
one can also use the polarization, in addition to q, as is clear from Eq. (4.95).
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The isotropic Raman mode (A1g) is obtained with RIXS at q = 0 when ε′∗x εx =
ε′∗y εy, as can be seen directly from Eq. (4.95) because the bonds are modified
in an isotropic way. Indeed, the intensity should then vanish in RIXS, as noted
above. The Raman B1g mode (x2-y2 symmetry) can be probed by q = 0 RIXS
when ε′∗x εx = −ε′∗y εy. This is the case when we transfer two units of angular
momentum to the sample, e.g., when ε = (1, i, 0) and ε′ = (1,−i, 0). The Raman
scattering operator for the B2g mode (xy symmetry) vanishes for a nearest-
neighbor Heisenberg antiferromagnet, which also happens in RIXS when one
chooses, for instance, ε = (1, 0, 0) and ε′ = (0, 1, 0) at q = 0.

In terms of two-magnon creation processes, the general form of the RIXS
scattering operator is

Ôq ∝
1

N

∑
k

[
ε′∗x εxAx + ε′∗y εyAy

]
α†kα

†
−k+q (4.96)

where

Ax,y = − cos
(qx,y

2

)(
ukvk−q + uk−qvk

)
+ cos

(
kx,y −

qx,y
2

)
vkvk−q

+
1

2

[
cos

(
kx,y −

3qx,y
2

)
+ cos

(
kx,y +

qx,y
2

)]
ukuk−q. (4.97)

One can choose to excite only half of the in-plane oxygen ions by choosing
an appropriate polarization, as explained in Sec. 4.7.1. Typically, this happens
for q directed along the [100] direction and incident π or σ polarization. For a
scattering angle of 2θ, the two-magnon intensity for q along the [100] direction
is

I(π) ∝ [cosϕ cos(2θ + ϕ)]2

N

∑
k

A2
xδ(~ω − ωk − ω−k+q) (4.98)

I(σ) ∝ 1

N

∑
k

A2
yδ(~ω − ωk − ω−k+q) (4.99)

for π and σ polarization respectively. ϕ is the angle between the incident X-rays
and the normal to the CuO2 planes.

The results for 2θ = 90◦ are shown in Figs. 4.18 and 4.19. There is very
little dispersion for either polarization. The intensity fluctuates, however, as
one increases q or changes the polarization. The spectra are symmetric with
respect to +q↔ −q. Note that magnon-magnon interactions are not taken into
account in these figures and all the following ones in this section. Magnon-magnon
interactions would probably lower the energy by∼ 25%, as in two-magnon Raman
scattering [130]. The vanishing of the π polarization spectra at certain q is due
to the vanishing of the absorption amplitudes.

Note that the angle ϕ is related to q: they cannot be chosen independently.
The O K edge is at an energy of around 531.2 eV [131] (and corresponding mo-
mentum of 0.269 ~Å−1) which means that in a 90◦ scattering geometry one can
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Figure 4.18: Leading order two-magnon contribution to the O K edge RIXS
spectra in 90◦ scattering geometry for q along the [100] direction with (a) incident
π polarization and (b) incident σ polarization. The outgoing polarization is
averaged over. The plots are restricted to roughly half the Brillouin zone, because
this is the theoretical limit to the momentum transfer at the O K edge. The gray
scales cannot be compared; for a comparison of spectral weight see Fig. 4.19(a).
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Figure 4.19: (a) Comparison of the spectral weight of the two-magnon spectra
in π and σ polarization along the [100] direction, obtained by integrating the
spectra shown in Fig. 4.18 over energy loss. The scattering angle 2θ = 90◦. (b)
The first moment of the same spectra.
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transfer a momentum of 0.380 ~Å−1. The (π, 0) point of the Brillouin zone is at
0.827 ~Å−1 in La2CuO4, so one can in theory access momenta up to about 46%
of the Brillouin zone boundary. In practice, when the crystal is cut parallel to the
CuO2 planes, it is impossible to reach more than 32% in a 90◦ geometry because
the X-rays cannot go through the sample and its holder. (Cutting the sample
in a different way circumvents this constraint [132].) This implies that the spec-
tra of Figs. 4.18 and 4.19 cannot be probed beyond qx ≈ ±0.32π. These cases
correspond to grazing and normal incidence, where the dipole transitions are for-
bidden in π polarization, explaining the zeroes in the spectral weight. In the 90◦

scattering geometry, the in-plane component of q is q‖ = 0.380 ~Å−1 sin(π/4−ϕ).
Grazing incidence means qx < 0, and normal incidence corresponds to qx > 0.

If the polarization is directed along the diagonal of the CuO2 plaquettes, i.e.,
along the [110] or [−110] direction, all oxygen ions are excited. When ε′ = ε, the
cross section is proportional to [Ax+Ay]2, which is equal to the effective scattering
operator of the Cu K edge when q is along the [110] direction. Thus, for such a
geometry, the scattering intensity will vanish at q = 0. However, it is currently
not experimentally feasible to measure the outgoing photon’s polarization. The
polarization-averaged cross sections for q along the [110] direction are

I(π) ∝
∑
k

(
[cosϕ cos(2θ + ϕ)]2

4N
[Ax +Ay]

2
+

cos2 ϕ

4N
[Ax −Ay]

2

)
× δ(~ω − ωk − ω−k+q), (4.100)

I(σ) ∝
∑
k

(
1

4N
[Ax +Ay]

2
+

cos2(2θ + ϕ)

4N
[Ax −Ay]

2

)
× δ(~ω − ωk − ω−k+q), (4.101)

The spectra for transferred momentum along the [110] direction in 2θ = 90◦

scattering geometry with π and σ polarization are shown in Fig. 4.20, and the
corresponding spectral weights and first moments are displayed in Fig. 4.21. As
mentioned above, the spectra of Figs. 4.18 and 4.20 have non-zero intensity at q =
0, which is very different from the Cu edges. Similar to the spectra of Fig. 4.18,
there is very little dispersion. Only the intensity changes as one increases q or
changes the polarization. A difference with the spectra along the [100] direction
is the symmetry of +q↔ −q: this symmetry is not present in the spectra along
the [110] direction. At the Γ point, a discontinuity in the spectral weight arises
when the scattering plane is rotated by 45◦. This becomes clear when comparing
Figs. 4.19(a) and 4.21(a).

The dip in the first moment of the σ spectrum around q = (π/4, π/4) in
Fig. 4.21(b) is due to the [Ax + Ay]2 term, which is proportional to the Cu K
edge bimagnon RIXS spectrum. It is very small (but finite) at the low q values
accessible at the O K edge. Around q = (π/4, π/4), the [Ax − Ay]2 term is
quenched and the dispersing Cu K edge bimagnon spectrum becomes visible,
shifting the first moment down. For π polarization, the spectral weight does
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Figure 4.20: The two-magnon RIXS spectra at the O K edge for 90◦ scattering
geometry and q along the [110] direction, with (a) incident π polarization and (b)
incident σ polarization. The outgoing polarization is averaged over. The plots
are again restricted to the theoretical limit to the transferred momentum at the
O K edge. In practice, the experimental geometry limits this region even further
to |qx| < 0.23π when the crystal is cut parallel to the CuO2 planes.
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Figure 4.21: (a) Comparison of the spectral weight of the two-magnon spectra
for q along the [110] direction in 90◦ scattering geometry, obtained by integrating
the spectra shown in Fig. 4.20 over energy loss. The scale is the same as in
Fig. 4.19(a). (b) The first moment of the spectra.
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completely vanish at φ = π/2 because in that case, the absorption amplitude is
zero.

The RIXS experiments at the O K edge of La2CuO4 reported in Ref. [70] agree
on a qualitative level with our calculations, although Bisogni et al. use a 110◦

scattering angle, while the calculations presented in this section are evaluated for
a 90◦ geometry. In the low energy region, Bisogni et al. observe a broad feature
ranging from 0 to 1 eV, which peaks at 500 meV and disperses downward by
∼ 50 meV when going from the center of the Brillouin zone to q = (0.3π, 0.3π)
or (0.3π, 0). This small dispersion is also seen in Fig. 4.19(b). From neutron
scattering, it is found that J ≈ 120 meV [83], and with this value we reproduce the
500 meV peak and the downward dispersion of 0.7J ≈ 84 meV in π polarization
going along the [100] direction. Magnon-magnon interactions will likely make
the correspondence between theory and experiment less good, as it probably
decreases the theoretical peak’s energy.

4.7.3 Other contributions to the low energy RIXS spec-
trum

In the experiments, the low energy spectral weight extends up to 1 eV. Any
spectral weight above ∼ 0.5 eV cannot be due to two-magnon excitations, since
the two-magnon DOS is zero there. This suggests that higher order magnon
excitations are also important, like four-magnon excitations.

From other work, both theoretical [82] and experimental [83], it is clear that
ring exchange is quite large in the cuprates: the large numerical prefactor com-
pensates for the smallness of the expansion parameter. At the Cu edges, ring
exchange is modified or blocked by the core hole. Therefore, the effective scatter-
ing operator has a term of order t8pd, giving (amongst other things) four-magnon
final states.

In contrast, at the O K edge, one can flip all four spins on a Néel ordered
square of neighboring copper ions with only 6 hops (in the three-band Hubbard
model), so the four-magnon contribution will contribute to the scattering ampli-
tude proportional to something like t6pd/∆

5, which is in principle small, but again
could have a huge prefactor because of the myriad of different ways in which the
four spins can be flipped. Note that, to order t6pd, one only gets four-spin terms in
the effective scattering operator and not in the Hamiltonian (without core hole),
because the four-spin contribution to the Hamiltonian is of order t8pd. Therefore,

one obtains a four-spin contribution at the O K edge to order t6pd, but not at the
Cu edges. This might explain the high energy tail of the 500 meV feature.

The (non-interacting) four-magnon DOS shows a broad peak between 4J and
8J at q = 0 [130]. The dispersion is minimal: the four-magnon DOS curves from
all over the BZ virtually coincide. In principle it could extend from 0 to 8J since
the single magnon energy ranges from 0 to 2J , but as is evident, the low energy
region is virtually devoid of states. Whatever the exact form of the effective
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scattering operator, it is clear that the four-magnon spectrum will be ‘gapped’
by approximately 4J . This value could be smaller, however: for two-magnon
RIXS at the Cu edges, the low energy part of the DOS is more pronounced by
the matrix elements (see Fig. 4.5). The same effect could play a role in four-
magnon RIXS too.

An entirely different contribution to the O K edge might come from phonons.
At the O K edge, the phonon contribution is expected to be larger than at the
Cu edges because of the nature of the intermediate states. For the Cu edges,
the photo-excited electron stays relatively close to the core hole: they remain on
the same ion. At the O K edge, however, the core hole is on the O ion while
the photo-excited electron fills the Cu 3d subshell. Because the centers of mass
of the two charges are separated, there will be a relatively large attractive force
between the O and the Cu ions. A strong coupling to phonons is thus expected
at the O K edge.

Acknowledgements. We would like to thank L. Braicovich, G. Ghiringhelli,
V. Bisogni and M. Moretti Sala for valuable discussions, and the ESRF, Grenoble,
where part of this work was done, for its hospitality.

4.8 Two-magnon screening of holes in the t-J
model probed by angle-resolved photoemis-
sion

Because two-magnon excitations show up so prominently in RIXS, one could ask
the question if two-magnon excitations are also important in other spectroscopic
techniques, or, on a more fundamental level, in the t-J model. In this section,
we investigate the two-magnon screening effect on angle-resolved photoemission
spectroscopy (ARPES), and calculate the contribution of two-magnon excitations
to the self-energy of a hole in an antiferromagnetic background.

4.8.1 Introduction

It has been put forward that the t-J model, perhaps supplemented with phonons,
captures the physics essential to high temperature superconductivity in cuprates.
Yet understanding even the basic properties of this model is a hard task. Even the
regime of very low doping of an antiferromagnet (AFM) is complicated because of
the interplay between the hopping of holes and the antiferromagnetic background.
The situation becomes tractable in the extreme limit of a single hole in a 2D
AFM background, which has become a classic theory problem [123–125,133–141].
Experimentally, this regime can be probed with ARPES [121,122,142–150] and,
as we will expand upon below, RIXS.
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In the t-J model, the hole interacts with the spins: a moving hole rearranges
the spin background, causing spin flips that correspond to single magnon excita-
tions of the AFM. This effect is accounted for in the canonical theory approaches
such as the diagrammatic self-consistent Born-approximation [123–125,133–141].
There is another channel for spin-hole scattering that is not taken into account in
these approaches. A hole in an AFM reduces the number of magnetic neighbors
of the surrounding spins, and these spins react to the presence of a hole. The
spins thus dynamically screen any moving or static hole in the system, which is
an effect that in lowest order is described by two-magnon excitations of the AFM.
Precisely these two-magnon modes and their dispersions have recently been mea-
sured in the cuprates by momentum resolved RIXS at the Cu K edge [14,52,53]
and possibly at the L edge too [70]. At the Cu M edge, zero momentum two-
magnon excitations have been reported [15]. Describing the motion of holes in
the t-J model in terms of screening by magnons only makes sense in the limit of
very low doping, as magnons are not well-defined away from this limit.

The question arises how the coupling to these magnetic modes affects other
physical properties. In this context we focus here on the quasiparticle (QP)
excitation spectrum of the t-J model – experimentally accessible by ARPES.
To this end we study theoretically the effect of the two-magnon modes on the
magnetic dressing of mobile holes in the t-J model.

ARPES. In the limit of large S the two-magnon coupling mechanism can be
neglected in the t-J model, which can be seen most easily by casting the problem
into a form where the hole carries spin S − 1/2 [124]. However, it is a priori
not obvious that this argument can be extrapolated to the S = 1/2 limit of the
high-Tc cuprates, and two-magnon screening can in principle become important
there. In particular one could speculate that the two-magnon coupling might be
relevant in the context of a long standing challenge for theory posed by ARPES
data: the width of the Zhang-Rice Singlet (ZRS) peak is broader than theory
predicts. The peak width is approximately 0.3 eV at k = (π/2, π/2) for undoped
cuprates at room temperature [142,143], increasing with temperature by 1.0±0.3
meV/K [146,150].

This problem has attracted considerable theoretical effort [140,151–153]. Po-
laron formation appears to be the best candidate solution available [121,154,155]:
due to the string of flipped spins left behind by a hopping hole, it is slowed down
and therefore becomes more susceptible to electron-phonon interaction. The
broad peak in this picture is actually the multi-phonon satellite of the quasipar-
ticle.

In addition to contributing to slowing down the hole, the two-magnon screen-
ing of a hole in principle provides an additional mechanism to broaden the ARPES
features. To settle these issues we consider the hole – two-magnon vertex quan-
titatively and in detail. We will first establish that the coupling of holes to
two-magnon modes is independent of the hole’s momentum. Subsequently we
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derive the resulting self-energy of the hole, and calculate the effect of two-magnon
screening on the ARPES spectra. In general, we find that the effect of this in-
teraction is small and conclude that the two-magnon screening redistributes less
than 1% of the QP spectral weight.

4.8.2 Two-magnon – charge interaction

Magnetic scattering vertices. To treat the AFM t-J model on a bipartite,
inversion-symmetric lattice in the (very) low doping limit, we start from a Heisen-
berg model and introduce Holstein-Primakoff bosons for the magnetic degrees of
freedom, see Eq. (4.11) in Sec. 4.2. When holes are introduced, they couple to the
spins in two ways. First, when a hole hops from one site to another, it rearranges
the spins. In an AFM background, a hopping hole creates or annihilates single
magnons [123, 124, 135]. This leads to an effective reduction in the bandwidth
from order t to order J because, loosely speaking, the hole has to wait for the
relaxation of the string of energetically unfavorable spins it left behind before
the hole can continue its motion [125]. In contrast, the coupling of holes to two-
magnons is unrelated to the movements of a hole. Because the spins next to a
hole have one less magnetic neighbor, they evolve in a different way than in an
undoped AFM. In lowest order, they screen the hole with two-magnon excitations
as in the screening process the z component of the total spin is conserved.

To quantify the two-magnon screening, it is advantageous to introduce a vir-
tual spin at every hole site. If all magnetic bonds that these virtual spins have
with the physical spins are subsequently subtracted from the Hamiltonian, it is
still possible to use Eq. (4.11) as a starting point and simply add the two-magnon
coupling term

H2 = −J
∑
i,δ

h†ihiSi · Si+δ, (4.102)

where h
(†)
i is the hole annihilation (creation) operator, and δ points to nearest

neighbors. We assume for simplicity that holes are surrounded only by spins,
which is reasonable at low doping and certainly true for a single hole in undoped
cuprates, as one encounters in the RIXS intermediate state. H2 does not commute
with H0. Rewriting H2 in terms of magnon operators at the linear spin wave
level, one arrives at

H2 =
∑
k,p,l

gk,ph
†
l−k−phl (α†kα

†
p + α−kα−p) +

∑
k,p,l

fk,ph
†
l−k−phlα

†
kα−p

+
∑

l

h†lhl

[
zJS2 − 1

N

∑
k

(ωk − zJS)

]
, (4.103)
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with vertices

fk,p = −zJS
N

[(1 + γk+p)(ukup + vkvp)− (γk + γp)(ukvp + vkup)] , (4.104)

gk,p = +
zJS

2N
[(1 + γk+p)(ukvp + vkup)− (γk + γp)(ukup + vkvp)] . (4.105)

The vertices are independent of the hole momentum, and symmetric under the
exchange of the magnon momenta k and p. Furthermore, because of energy and
momentum conservation for a hole producing two magnons, gk,−k = 0. The last
term in Eq. (4.103) corresponds to the energy cost of breaking z magnetic bonds
in the classical Néel state, plus quantum corrections from linear spin wave theory.
It cancels the contribution of the unphysical spins to the constant in Eq. (4.11).

Although H2 has no intrinsically small parameter, it will turn out that its
effects are in all respects quite small. This comes about because of the Bogoliubov
coefficients uk and vk that make fk,p and gk,p in general small. At the only
momenta for which uk and vk diverge, i.e., k = (0, 0) and k = (π, π), the
number of available magnon states is so small that processes involving the low
energy magnons at these wave vectors do not contribute much to the hole’s self-
energy in the thermodynamic limit. This observation justifies a perturbation
approach.

Hole self-energy and spectral function. In the following we calculate the
loewst order contribution of two-magnon screening processes to the QP self-
energy. The dispersion of the propagating hole is renormalized by single-magnon
excitations, and the QP energy is

∑
k εkh

†
khk. The effective dispersion εk can be

obtained from a variational analysis [125] extended with (effective) second and
third neighbor hopping [156], so that

εk = 4t′ cos kx cos ky + 2t′′(cos 2kx + cos 2ky)

−
√

0.44J2 + t2{4.56− 0.70(cos kx + cos ky)2}+ const. (4.106)

where the constant is chosen such that the minimum of εk is 0. Further, we take
t = 3.1J , t′ = −0.36J , t′′ = 0.18J to get a best fit to data on the Mott insulator
Sr2CuO2Cl2 [142, 153]. εk is consistent with the effective QP dispersion derived
in Ref. [153].

The lowest order self-energy diagram of the QP at zero temperature due to
interaction with two-magnon modes is shown in Fig. 4.22(a). Expanding gk,p
around the singular points k → 0,π [with 0 = (0, 0) and π = (π, π)], we find
that g0,0 = gπ,0 = gπ,π → 0, so the holes do not couple to long wavelength
magnons via H2, regardless of the hole dispersion. Consequently, two-magnon
broadening of the QP peak around the bottom of the band will vanish because of
a lack of decay processes. To compute the two-magnon contribution to the QP



110 Magnetic RIXS on 2D cuprates

p

k−q−p

q

kk

p k

l

-

(a) (b)

Figure 4.22: (a) Self-energy diagram for two-magnon screening of a hole with
momentum k. The solid lines represent the hole, the dashed lines represent
magnons. The vertices indicate an interaction via the gk,p term of Eq. (4.103).
(b) At finite temperatures, long wavelength magnons are present in the system
and they can scatter off the holes via the fk,p term, increasing their linewidth.

self-energy we introduce the hole and magnon Green’s functions, respectively, as

G(k, t− t′) = −i 〈ψ0|T{hk(t)h†k(t′)} |ψ0〉 , (4.107)

D(k, t− t′) = −i 〈ψ0|T{αk(t)α†k(t′)} |ψ0〉 (4.108)

where |ψ0〉 is the ground state of the perturbed system. The unperturbed Green’s
functions are

D(0)(k, ω) =

∫ ∞
−∞

dt eiωtD(0)(k, t) =
1

ω − ωk + iη
, (4.109)

G(0)(k, ω) =

∫ ∞
−∞

dt eiωtG(0)(k, t) =
1

ω − εk + iη
, (4.110)

where η is a (very small) convergence factor. When the perturbation H2 is turned
on, the hole Green’s function acquires a self-energy:

G(k, ω) =
1

ω − εk − Σ(k, ω) + iη
. (4.111)

To second order in the interaction, the self-energy diagram, shown in Fig. 4.22(a),
is

Σ(2)(k, ω) =
∑
p,q

2g2
p,q

ω − ωp − ωq − εk−p−q + iη
. (4.112)

The hole spectral function is by definition

A(k, ω) = − 1

π
Im{G(k, ω)} =

1

π

|Im{Σ}|
(ω − εk −Re{Σ})2 + |Im{Σ}|2

. (4.113)

We evaluated the QP spectral function within the formalism above and the re-
sult is shown in Fig. 4.23. From the bottom two figures showing the spectrum
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with the second order self-energy, it can be seen that the QP broadening due
to two-magnon screening is below about 0.1J ≈ 12 meV. For more broadening
at momenta away from (π/2, π/2), the bare hole dispersion would have to reach
higher energies, around 4J , where the two-magnon DOS is highest and thus the
number of decay channels is maximized. This observation is reflected in Im{Σ(2)}
peaking in this region to about −0.12J , broadening the peak just a little more.
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Figure 4.23: Hole self-energy to second order in H2 (top figures) and the cor-
responding spectra (bottom figures). In the top figures, the solid line represents
the real part of Σ(2), while the dashed line represents the imaginary part. The
left figures show k ranging from (0, 0) to (π, 0), while the right figures show (0, 0)
to (π, π). The dashed gray lines indicate the bare hole dispersion (4.106). A
tiny artificial broadening of 0.02J is introduced for the numerical evaluation of
the spectra. Around (π/2, π/2), the spectrum approaches a delta function; their
height is artificially limited due to the finite energy resolution of the numerical
evaluation of the spectra.

Although the zero temperature mechanism we considered above does not
explain the ARPES ZRS peak broadening, we can also consider finite temperature
effects, where the coupling fk,p becomes important. At non-zero temperatures,
low energy magnons are present in the system and they can scatter off the holes
via the vertex fk,p, as shown in Fig. 4.22(b). This decreases the lifetime of
the quasiparticles. Holes at the bottom of the band can only scatter the low
energy magnons into other low energy modes because of energy conservation.
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Figure 4.24: The spectrum of a
static, two-magnon screened hole.
The spectrum is independent of
the hole’s momentum. It consists
of a sharp quasiparticle peak at
ω ≈ 0 and a two-magnon incoher-
ent feature at ω ≈ 2− 4J .
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By expanding fk,p around the singular points at the center and corners of the
BZ, we see that f0,0 = fπ,0 = fπ,π → 0, and the amplitude for this kind of
scattering process vanishes. We conclude that, even if low energy magnons are
present at finite temperatures, the lifetime of quasiparticles near the bottom of
the band does not increase due to single magnon scattering via H2, and the zero
temperature results are robust with respect to finite temperature effects.

To make a connection with RIXS at the Cu L edge, we calculate the spectrum
for a flat band εk → const. This situation corresponds to RIXS since to good
approximation the intermediate state is excitonic [157]: the 3d10 configuration is
bound to the local core hole, and its dispersion is zero. Then, Σ(2) is independent
of k, and so is the spectrum A(k, ω). The resulting spectrum is shown in Fig. 4.24.

As is clear from Fig. 4.24, the two-magnon satellite between J and 4J car-
ries approximately 1.1% of the total spectral weight. At first glance this small
number might be surprising, considering that the two-magnon excitations appear
so strongly in RIXS, particularly at the K edge [14, 52, 53]. We first note that
in RIXS the elastic signal is (largely) pushed to the Bragg peaks and in that
sense the dominating quasiparticle peak of Fig. 4.24 is absent. This argument
is of course heuristic because the RIXS cross section is not directly related to
the single particle spectral function A(k, ω), but rather given by the Kramers-
Heisenberg relation (2.30). Also, at the Cu L edge, the two-magnon peak seems
to be quite small compared to other magnetic features [11], which is at least
qualitatively agreeing with the theoretical result presented here. It might be due
to the absence of any other spectral weight that two-magnon excitations are seen
so clearly in Cu K edge RIXS.

4.8.3 Conclusions

We conclude that the two-magnon screening of holes in the t-J model is a very
small effect. It is by far not enough to explain the broad ARPES peaks: two-
magnon screening gives a broadening of at most 0.1J ≈ 12 meV, while experi-
mentally the peaks have a broadening of 0.3 eV. Earlier work [140] has already
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excluded broadening due to single magnon processes, and our results are in agree-
ment with Ref. [143], which states that the ZRS peak broadening is probably not
due to interactions with the Cu spins. Their reasoning is that at certain mo-
menta, ARPES ejects O 2p electrons from the sample that, by symmetry, do not
hybridize with the magnetic Cu ions. These ARPES peaks have exactly the same
low energy line shape as the ZRS peaks that do communicate with the Cu ions.
The authors therefore assume that the ZRS too owes it lineshape not to the Cu
spins, but to something else.

The calculations for a dispersionless hole indicate that two-magnon excita-
tions should show up only weakly in RIXS processes with a 3d10 intermediate
state: we expect two-magnon excitations to be some two orders of magnitude
smaller in intensity than direct RIXS processes that lead to the elastic line, sin-
gle magnons and dd excitations. That a two-magnon signal is observed at the
Cu K and L edges illustrates how sensitive RIXS is becoming [11,14,53].

4.8.4 Acknowledgements

We thank George Sawatzky, Byron Freelon and Tom Devereaux for fruitful dis-
cussions. This work is supported by the U.S. Department of Energy, Office of
Basic Energy Sciences under contract DE-AC02-76SF00515 and benefited from
the RIXS collaboration supported by the Computational Materials Science Net-
work (CMSN) program under grant number DE-FG02-08ER46540. This work
is supported by the Dutch ‘Stichting voor Fundamenteel Onderzoek der Materie
(FOM)’.



114 Magnetic RIXS on 2D cuprates



Cha p t e r 5

Orbital RIXS

5.1 Introduction

The orbital degree of freedom arises when the valence shell of an ion is not
completely filled: the electrons can be distributed over the orbitals in different
ways. For instance, a Ti3+ ion has one electron in the 3d subshell, making the
ground state five-fold degenerate. It follows that orbitally active ions are also
magnetic, although the converse is not necessarily true.

In many cases, the orbital degree of freedom is quenched by a large crystal
field of low symmetry. In La2CuO4, for instance, the x2 − y2 orbital of Cu2+

is separated from the other 3d orbitals by more than 1.5 eV [70]. Transitions
between those crystal field levels are called dd or crystal field excitations. The
coupling of the Cu ions with their neighbors only introduces a small perturbation
to this picture. Consequently, the crystal field excitations disperse only very little
and are thus essentially local.

Much more interesting (from the point of view of orbital physics) are systems
where the couplings between ions dominate over the local lattice coupling.

In general, orbital degeneracy can remain to very low temperatures in mate-
rials with highly symmetric lattices. In principle all local degeneracy can still be
removed by the lattice through Jahn-Teller (JT) instabilities if the temperature
is low enough [158, 159]. However, other interactions can dominate over the JT
couplings, like superexchange (SE) interactions [24, 160–162] or relativistic spin-
orbit coupling [25]. Lattice effects can then be regarded as only a perturbation to
the orbital dynamics. In this chapter, we discuss the case where SE interactions
dominate. Chapter 6 treats the case of dominant relativistic spin-orbit coupling.
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Figure 5.1: Top: a cartoon picture of
an orbitally ordered ground state. Bot-
tom: a snapshot of an orbital wave.
Reprinted by permission from Macmil-
lan Publishers Ltd: Nature 410, 180
(2001).

When the lattice interacts strongly with the charge degree of freedom, phonons
become visible in RIXS, as studied in Chapter 7.

Both the JT and SE interaction can couple neighboring orbitals and lead to
orbital order. However, the excitations on top of the respective orbitally ordered
ground states are very different. The lattice-dominated case yields localized dd
excitations, while in SE-driven systems, collective orbital waves emerge. Fig. 5.1
shows a snapshot of such a wave, which can be crudely thought of as a dispersing
dd excitation. The quanta of orbital waves are called orbitons, in analogy to spin
waves and magnons.

Orbitons are a hot topic, yet they are difficult to observe in practice [163,164].
The interpretation of Raman scattering data of LaMnO3 in terms of orbitons
remains controversial [163,165,166]. In any case, Raman scattering is hindered by
the fact that it cannot show momentum dependence, which is the distinguishing
feature of a collective excitation. In contrast, RIXS has enough momentum
to probe their dispersion in a large part of the Brillouin zone. Also, RIXS is
directly sensitive to dipole forbidden dd excitations, unlike, for instance, optical
conductivity measurements.

In section 5.2 the orbital excitations will be introduced in more detail. Also, it
will be discussed how they are probed with RIXS. The remainder of the chapter
describes the specific cases of 2D eg systems like LaMnO3 (section 5.3), and the
t2g system YTiO3 (section 5.4).

5.2 Theory

Orbitally active ions can be coupled together via JT or SE interactions. In
section 5.2.1 we discuss these couplings and their implications for the excitation
spectrum. How the excitation spectrum of an orbitally active system is probed
with RIXS is explained in section 5.2.2.

5.2.1 Orbital excitations

Superexchange is well-known to generate magnetic interactions between spins. It
relies on the presence of virtual hopping processes that, on 180◦ bonds, promote
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antiferromagnetic alignment of electron spins. In the virtual hopping processes,
not only the spins of the electrons can be effectively interchanged, but also the
orbitals that they occupy. These processes are described by the Kugel-Khomskii
model, which can be derived by taking the low energy limit of a multi-band
Hubbard model for a Mott insulator [24]. The type of orbital order promoted
by SE is closely related to the magnetic order, because the hopping amplitudes
depend both on the spins and orbitals involved, as stated by the Goodenough-
Kanamori rules [162,167]. Fig. 5.2 shows an example of a virtual hopping process.

Kugel-Khomskii models are often frustrated because of the impossibility to
optimize the superexchange bonds to a certain ion in all directions simultaneously.
As a consequence, such a system often has a small orbital order parameter, or is
in an orbital liquid state. In the case of an ordered ground state, a certain orbital
condenses in the ground state, analogous to the Heisenberg antiferromagnet. The
orbiton excitations on top of this condensate are collective, dispersing ones.

3d eg

Initial Intermediate Final

3z2-r2

x2-y2

Figure 5.2: An example of a spin-orbital superexchange process on two neigh-
boring transition metal ions with a half-filled 3d eg subshell. The electrons usu-
ally hop via oxygen ions in between the orbitally active ions; these are omitted in
the figure. The amplitude for these processes depends on the hopping integrals
between the involved orbitals and the energy of the intermediate state, which
involves Coulomb repulsion and Hund’s rule exchange.

When JT interactions dominate over SE in orbitally active systems, the or-
bital dynamics are different. The lattice couples to the charge distribution of the
orbitals and can mediate a cooperative JT phase transition that polarizes the
orbital state. The orbital degrees of freedom are frozen out at low temperatures.
Remaining degrees of freedom, e.g., magnetic ones, are in a sense decoupled
from the orbitals. Although the orbital pattern is fixed at low energies, the
magnetic interactions are still determined by the orbital pattern, following the
Goodenough-Kanamori rules [162,167].

Orbital excitations on the JT-induced ground state are more localized in
nature. Orbital excitations have to drag along lattice deformations due to the
JT interaction, which reduce the orbiton band width or even localize the orbital
excitations [168–170]. Another way to look at the localization is to regard the
JT phonons as a bath to which the orbital degree of freedom couples. When
one looks only at the orbital excitations and ignores the lattice, the orbitals
constitute an open quantum system. The lattice acts as a bath and is a source
of decoherence for the orbital excitations. Because of the local nature of the
JT interaction, decoherence localizes the orbital excitations. In contrast, SE
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interactions between orbitally active ions are not mediated by another degree of
freedom, and therefore do not have this intrinsic source of decoherence.

The two types of orbital interactions suppress each other. When JT distor-
tions are large, virtual excursions of electrons to neighboring sites are suppressed
because of the large energy cost of populating excited state orbitals. Vice versa,
if there are large orbital fluctuations, the slower JT distortions cannot keep up
with them, and the JT energy gain is lowered.

When looking for systems that exhibit orbitons, the JT coupling needs to be
small. Typically, in transition-metal oxides with octahedral symmetry, the eg
orbitals are pointing towards the negatively charged oxygen ions, so they couple
stronger to the lattice than the t2g orbitals. On the other side, SE interactions are
enhanced near the Mott transition, i.e., when the hopping parameter t is large
and the Hubbard U is small. From an experimental point of view, a highly sym-
metric lattice signals small JT couplings. Further, structural and magnetic phase
transitions can be compared: because in a JT-dominated system the spin degrees
of freedom can remain active after the orbital ones have frozen out, one expects
the cooperative structural phase transition and the magnetic phase transition to
be at different temperatures (as in LaMnO3 [168, 171]). In SE-dominated sys-
tems, the spins and orbitals are entangled and order simultaneously. In LaTiO3,
for instance, no separate transitions have been observed. Finally, the magnetic
excitation spectrum depends on the orbital physics. When lattice distortions
dominate, the orbital polarization generally induces an anisotropic magnetic SE
interaction through the Goodenough-Kanamori rules. The magnetic spectra of
the titanates LaTiO3 and YTiO3 are isotropic [160].

5.2.2 Orbital RIXS

RIXS is capable of detecting the full dynamics of orbitons. Recently, astounding
progress was made in the energy and momentum resolution of RIXS, allowing, for
instance, the observation of magnon excitations and their dispersions in copper
oxides, see Refs. [11, 14, 53] and chapter 4. The improved resolution opens the
way for probing orbitons, which are predicted to exist at similar energy scales.

Ishihara and Maekawa [66] mention three types of RIXS processes.
The first one is direct RIXS: the incident X-ray photon promotes a core elec-

tron to a certain valence orbital, and an electron from a different orbital fills the
core hole.

In indirect RIXS, the core hole and photo-excited electron can affect the va-
lence electrons in two ways: first, through the potential of the core hole and
the excited electron (from hereon referred to simply as core hole potential) and
second, by the Pauli exclusion principle (if the electron is excited into the va-
lence band). These interactions lead to two indirect RIXS processes: a single-site
shakeup mechanism and two-site SE bond modulation. In a single-site shakeup
process, the core hole potential changes the orbit of one of the valence electrons
at the core hole site. Which transitions can be effected is determined by the sym-
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metry of the potential. In two-site SE bond modulation, the core hole potential
influences the SE bond strength J ∼ t2/U by modifying U in the intermediate
state. The orbitals on the two sites involved in the bond can flip, in analogy to
bimagnon RIXS at the Cu K edge. Also, the Pauli exclusion principle may play
a role in SE bond modulation, in analogy to bimagnon RIXS at the Cu L edge.
Of course, there are many more channels, like non-local shakeup, three-site SE
modification, etc., but these are all of higher order.

Multiplet effects, like relativistic core spin-orbit coupling and intra-ionic
Coulomb interactions, drive the rapid evolution of the intermediate states and so
tend to wash out any particular symmetry of the core hole potential when the core
hole lifetime broadening is smaller than the multiplet energy scales. Transitions
of different symmetries are expected to become equal in strength. Therefore, the
shakeup channel gives low energy spectra that are very similar for different edges:
the differences in the initial multiplet structures are averaged out rapidly.

The effective scattering operator can in general be expanded in the number
of sites involved in the scattering process:

Ôq =
∑
i

eiq·Ri

(
Ôi + Ôij + . . .

)
. (5.1)

The phase factor comes from the dipole operators. Direct RIXS belongs to the
single-site processes. Indirect RIXS contributes to both single- and two-site pro-
cesses. The shakeup processes belong to the single-site part, while the SE bond
modulation processes belong to the two-site part. One might think that the
two-site part is a higher order correction to shakeup processes. However, since
the core hole potential is averaged by multiplet effects, it is dominated by the
isotropic part. The isotropic part of the potential does not contribute to on-site
shakeup processes, but it does contribute to intersite bond modulation processes.
It follows that it is a priori not clear which mechanism dominates indirect orbital
RIXS.

One may distinguish two regimes for RIXS processes: in the first regime Γ
is much larger than the relevant energy scales of the intermediate states, and
these processes can be easily analyzed with the Ultra-short Core hole Lifetime
expansion [48,50], see section 2.5. In the other regime, Γ is small and its inverse
is irrelevant as a cut-off time of the intermediate state dynamics. The lifetime
broadening at the transition metal L edges, for instance, is relatively small, and
the effects of the core hole on the valence electrons is averaged over many pre-
cessions of the core hole due to the large spin-orbit coupling in the core levels of
transition metal ions.

5.3 RIXS spectra of 2D eg systems

Published as ‘Single and Double Orbital Excitations Probed by Resonant Inelastic
X-ray Scattering’ in Phys. Rev. Lett. 101, 106406 (2008) with Fiona Forte and
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Jeroen van den Brink.

Abstract. The dispersion of the elusive elementary excitations of orbital or-
dered systems, orbitons, has escaped detection so far. The recent advances in
resonant inelastic x-ray scattering (RIXS) techniques have made it, in principle,
a powerful new probe of orbiton dynamics. We compute the detailed traces that
orbitons leave in RIXS for an eg orbital ordered system, using the ultra-short
core hole lifetime expansion for RIXS. We observe that both single- and double-
orbiton excitations are allowed, where the former, at lower energy, have sharper
features. The rich energy- and momentum-dependent intensity variations that we
observe make clear that RIXS is an ideal method to identify and map out orbiton
dispersions.

5.3.1 Introduction

The exotic phases and phenomena exhibited by many transition metal oxides
originate from the interplay of their electronic spin, charge and orbital degrees
of freedom, coupled to the lattice dynamics [162, 172]. The orbital degree of
freedom, originating from the unlifted or only partially lifted local orbital degen-
eracy of the 3d electrons, plays a particularly important role in for instance the
physics of Colossal-Magneto-Resistence (CMR) manganites [24, 173, 174]. The
orbitals also stand out because –in contrast to the other degrees of freedom– the
dynamics of these elementary excitations is still far from being fully understood.
The main reason is that it has proven very difficult to access orbital excitations
experimentally.

The first claim of the observation of these elusive orbital excitations, orbitons,
in LaMnO3 by optical Raman scattering [163] is very controversial [165]. Irre-
spective of the interpretation of these data, however, a severe limitation of the Ra-
man technique is its selectiveness to excitations carrying zero momentum. This
method is thus intrinsically unsuitable to map out orbiton dispersions. Other
evidence for the existence of orbital excitations comes from very recent opti-
cal pump-probe experiments on manganites [164]. Even if very ingenious, also
these experiments cannot provide information on the momentum dependence of
orbitons.

The success of theory in describing the dispersive magnetic RIXS data [51,52,
96] and, in particular, the success of the so-called ultra-short core hole lifetime
(UCL) expansion [49, 50] provide the motivation to uncover also the signatures
of orbital excitations using this theoretical framework. We therefore set out to
compute and predict the detailed fingerprints of the orbitons in RIXS, finding
that both single- and double-orbiton excitations are allowed, with the former
having sharper features, appearing at lower energy. Orbiton scattering causes
characteristic energy- and momentum-dependent intensity variations in RIXS
with certain selection rules. Matrix element effects also make, for instance, the
two-orbiton scattering intensity very different from the bare two-orbiton density
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of states. This bolsters the case that from a theoretical perspective RIXS is
ideally suited to map out the orbiton dispersions [66,175].

In RIXS a material is resonantly excited by tuning the energy of incoming
X-rays to an atomic absorption edge. In manganites, for instance, one can use
the Mn K or L edge. At the Mn K edge the incoming photon promotes a 1s
electron into the 4p state far above the Fermi energy, see Fig. 5.3. The present
experimental resolution at the Mn edges is ∼ 100 meV. In the very near future,
instrumentation with an improvement with an order of magnitude in resolution
at the K edge will become feasible [176], allowing the detection of low lying orbital
excitations.
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Figure 5.3: The effect of the core hole on the orbital exchange. An X-ray
with energy ~ωk and momentum ~k excites the 1s electron to a 4p state. Via
an intermediate state, the system reaches a final state and the core hole decays,
emitting a photon of energy ~ωk′ and momentum ~k′. In the figure, the matrix
element 〈↓i↑j |H |↑i↑j〉 is considered in presence of a core hole. There are two
alternative intermediate states to reach the final state. In the upper case, the
amplitude is proportional to txztxx/(U+Uc) and in the lower case to txztzz/(U−
Uc). Adding these gives a modified exchange J ′ = J (1 + η) where η depends on
Uc.

We determine the orbiton RIXS spectrum for an orbital ordered system with
orbitals of eg symmetry, but the approach that we outline can equally well be used
for other orbital ordering symmetries. In order to compute the RIXS spectrum
it is key to determine how the intermediate state core hole modifies the orbital-
dependent superexchange processes between the 3d electrons. After doing so, our
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calculations based on the UCL expansion will show how such modifications give
rise to both single- and double-orbiton features in the RIXS spectrum. The one-
orbiton part turns out to carry most spectral weight. This is in stark contrast with
magnetic RIXS, where only two-magnon scattering is allowed at zero temperature
[51, 52]. The computed orbiton spectrum for the eg orbital ordering of LaMnO3

shows, besides the orbiton dispersions, also strong momentum dependence of
scattering intensity, with, in particular, a vanishing of it at q=(0,0) and (π,π)
for all but one orbiton branch. The orbiton is also expected to have phonon
sidebands [169], observable in RIXS as well.

5.3.2 Model Hamiltonian

We focus on orbital excitations in a system with staggered eg orbital order, such
as LaMnO3, the mother compound of CMR manganites. The methods used
below can without restriction be applied to different orbital ordered eg or t2g
systems as well. In the undoped manganite, three 3d electrons occupy the Mn
t2g orbitals and a fourth 3d electron can be in either one of the two Mn eg
orbitals. Below 780 K, the eg orbitals order in an antiferro-orbital fashion. At
lower temperatures, the spins order in an A-type magnetic structure, where the
ferromagnetic, orbital ordered planes are stacked antiferromagnetically along the
c axis [175,177,178].

The orbital physics of LaMnO3 can be cast in a simple pseudo-spin model,
where the pseudo-spin represents the Mn 3d eg orbital that is occupied. It is
derived starting from a generic Kondo lattice Hamiltonian [179,180], with a local
Coulomb repulsion U between the electrons in the eg subspace. In the resulting
Kugel-Khomskii model [24], the orbitals of classical antiparallel spins decouple if
one neglects the Hund’s rule exchange compared to the on-site Coulomb repul-
sion. As the quantum fluctuations associated with the large Mn core spin on the
A-type AFM structure are typically small, in leading order the orbital degrees of
freedom effectively decouple along the c axis, simplifying the orbital dispersion
to a two-dimensional one.

The orbitals in the ab-plane are described by pseudospins, where pseudospin
up corresponds to the orbital |z〉 ∼ (3r2−z2)/

√
6 and down to |x〉 ∼ (x2−y2)/

√
2.

The in-plane hopping integrals are |txx| = 3
4 t, |t

zz| = 1
4 t and |txz| =

√
3

4 t, with
reference t = |tzz| along the z direction. After a rotation in pseudospin space
over an angle θ = π/4, the orbital model Hamiltonian is H0 = J

2

∑
〈ij〉H

0
ij with

H0
ij = 3T zi T

z
j + T xi T

x
j ±
√

3
(
T zi T

x
j + T xi T

z
j

)
, (5.2)

where J = t2/U [175]. The prefactor of the
√

3 term is positive in the x direction
and negative in the y direction. The classical ground state has electrons alter-
nately occupying the orbitals 1√

2
(|x〉+|z〉) and 1√

2
(|x〉−|z〉). We introduce sublat-

tice A with pseudospin up and B with pseudospin down and Holstein-Primakoff
bosons T+

i∈A = ai, T
z
i∈A = 1/2 − a†iai and T+

j∈B = a†j , T
z
j∈B = a†jaj − 1/2.
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To obtain the orbital excitations we retain the terms up to quadratic order in
the boson operators. After Fourier transforming the Hamiltonian and a Bogoli-
ubov transformation, the orbiton Hamiltonian is H0 = const. +

∑
k εkα

†
kαk with

εk = 3J
√

1 + 1
6 (cos kx + cos ky). The orbiton spectrum is gapped: as our orbital

Hamiltonian does not have a continuous symmetry, Goldstone modes are absent.

5.3.3 Modifications by core hole

In the RIXS intermediate state, a core hole is present, and the Hamiltonian
becomes H = H0 +Hcore, which includes the interaction between the core hole
and the orbital degrees of freedom. The main effect of the core hole potential
is to lower the Coulomb repulsion U between two eg electrons at the core hole
site by an amount Uc, disrupting the superexchange processes [52]. This effect
is substantial as Uc ≈ 7 eV [181]. To calculate the matrix elements of Hcore, we
consider how the core hole changes the superexchange processes for all different
pseudospin orientations. In Fig. 5.3, the two exchange paths for the specific
case 〈↓i↑j |H |↑i↑j〉 are shown. The upper process involves txztxx/U , where U is
increased in presence of a core hole with Uc. The lower process involves txztzz/U
and decreases the intermediate energy U by Uc. These two processes result in

〈↓↑|Hcore
ij |↑↑〉 = 2

(
txztzz

U − Uc
− txztxx

U + Uc

)
〈↓↑|T−i T

z
j |↑↑〉

= ±
√

3

4
J ′ 〈↓↑|T−i T

z
j |↑↑〉 (5.3)

with J ′/J = 1 + Uc(Uc−2U)
U2−U2

c
. Note that J ′ is, in general, different for each matrix

element. Collecting the matrix elements, one finds H = H0 + J
2

∑
<i,j>H

core
ij sis

†
i

with

Hcore
ij = η1H

0
ij + η2

[(
T xj − T xi

)
∓
√

3
(
T zj − T zi

)]
, (5.4)

where si creates a core hole and the dimensionless coupling constants are η1 =
U2
c

U2−U2
c

and η2 = UUc
U2−U2

c
. The ∓ sign is − for bonds along the x direction and +

along the y direction. The first term in Hcore
ij is similar to the one encountered

in magnetic RIXS scattering. Physically it is due to the fact that the core hole
modifies the strength of the superexchange bonds to all neighboring sites. Its
analytic form implies the selection rule that RIXS intensity vanishes for q =
(0, 0), as at zero momentum transfer the scattering operator is proportional to
the Hamiltonian H0 and thus commutes with it [51, 52]. The second term, with
coefficient η2, contains single orbital operators and is specific for core hole orbital
coupling – in spin systems such a coupling is not allowed by conservation of Sztot.
The presence of this term will allow the observation of single-orbiton scattering.



124 Orbital RIXS

Figure 5.4: The indirect RIXS spec-
trum for a cut through the Brillouin
zone. The lower two branches originate
from single orbiton excitations, the up-
per, continuous spectrum from double
orbiton scattering. Selection rules are
such that at q = (0, 0) all spectral weight
vanishes and at q = (π, π) only one
single-orbiton branch is active. (0,0) (!,0) (!,!) (0,0)
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5.3.4 Scattering Cross section

Having derived the Hamiltonian, we can compute the RIXS spectrum using the
ultra-short core hole lifetime (UCL) expansion [49,50], see section 2.5. The zeroth
order term gives only elastic scattering and is thus omitted in the following. We
can retain only the lowest order terms in η1,2J/Γ ≈ 0.2 in the expansion of H l =
(H0+Hcore)l. This approximation is controlled by the large core hole broadening
(Γ ≈ 0.58 eV at the Mn K-edge, 1.3 eV at the Mn L1-edge and 0.16 eV at the
Mn L2,3-edges [100]) and the values of J ≈ 25 meV [181, 182] and Uc/U ≈ 1.1.

With this the expression for the scattering simplifies to Afi = ωres

iΓ
1

iΓ+ω 〈f | Ôq |i〉,
with the effective scattering operator Ôq = J

2

∑
<i,j> e

iq·RiHcore
ij . We evaluate

this expression in terms of the boson creation and annihilation operators, in
linear spinwave approximation. After Fourier transforming and introducing the
Bogoliubov transformed orbiton operators, we obtain the single- and double-

orbiton scattering operators, Ô
(1)
q and Ô

(2)
q =

∑
k Ô

(2)
k,q, respectively. At T = 0,

the single-orbiton scattering operator is

Ô(1)
q =− η1

√
3N

8
J−q (uq̄ − vq̄)α†−q̄

+
η2

√
N

4
(Jq − J0) (uq − vq)α†−q (5.5)

and the double orbiton scattering operator

Ô
(2)
k,q =− η1

8
[(6(Jq + J0) + Jk + Jk+q)ukvk+q

− Jk+q (ukuk+q + vkvk+q)]α†kα
†
−k−q

+
η2

√
3

2
J−q ukvk+q̄α

†
kα
†
−k−q̄, (5.6)

where uk and vk are the coefficients of the Bogoliubov transformation, q̄ =

q + (π, π), J
x(y)
k = 2J cos kx(y), Jk = Jxk + Jyk and J−k = Jxk − J

y
k . As expected,

since the z component of the total pseudospin T ztot =
∑
i T

z
i is not conserved

in the scattering process, we get a contribution to the scattering intensity both
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Figure 5.5: Comparison of
the energy integrated spectral
weight of the one- and two-
orbiton RIXS spectra at fixed
momentum transfer q.

from the one- and two-orbiton part. This is a fundamental difference with re-
spect to magnetic RIXS spectrum, where the conservation of total Sz allows only
creation/annihilation of an even number of magnons [51,52].

The resulting RIXS spectrum is shown in Fig. 5.4. We observe that the two-
orbiton spectrum vanishes not only at q = (0, 0) but also at the antiferro-orbital
ordering wavevector (π, π). This is due to the RIXS matrix elements and not to
the two-orbiton DOS, which actually peaks at (π, π). The total spectral weight
of the orbiton spectrum is strongly q-dependent. In Fig. (5.5) we compare the
spectral weights: the one-orbiton weight dominates and peaks at q = (π, π),
where the two-orbiton spectrum vanishes. The two-orbiton spectrum has its
maximum total weight at (π, 0), where the total two-orbiton intensity actually
outweighs the one-orbiton one. An exchange constant of J ≈ 25 meV [181, 182]
will put the two-orbiton spectrum around ω ≈ 150 meV. The one-orbiton peak at
(π, π) is much more intense, but at ω ≈ 2.4J ≈ 60 meV, might be more difficult
to discern from the tail of the elastic peak.

5.3.5 Conclusion

Our calculations shown that in resonant inelastic X-ray experiments orbital ex-
citations are distinguishable by characteristic variations in scattering amplitude
as a function of both energy and momentum transfer. Both single- and double-
orbiton excitations are allowed, with intensities that are of the same order. The
single orbiton features are sharp and lower in energy; the double orbiton ones are
higher in energy and more smeared out. At high symmetry points in the Brillouin
zone, the intensity of specific orbiton branches vanishes. Our detailed predictions
on the orbiton spectrum of an eg orbital ordered system bolster the case that
with RIXS it will for the first time be possible to directly probe orbiton dynamics
and dispersions. The necessary energy and momentum resolution starts to come
within reach of experiment. An observation of orbitons in RIXS will open the
way to probe new orbital related quasiparticles, for instance, orbiton-magnon
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bound states for which so far only theoretical evidence exists [183].
Acknowledgements. We thank Sumio Ishihara, Giniyat Khaliullin and Jan

Zaanen for stimulating discussions.

5.4 RIXS spectra of YTiO3

Published as ‘Theory of Raman and Resonant Inelastic X-ray Scattering from
Collective Orbital Excitations in YTiO3’ in Phys. Rev. B 103, 107205 (2009)
with Giniyat Khaliullin.

Abstract. We present two different theories for Raman scattering and Res-
onant Inelastic X-ray Scattering (RIXS) in the low temperature ferromagnetic
phase of YTiO3 and compare this to the available experimental data. For descrip-
tion of the orbital ground-state and orbital excitations, we consider two models
corresponding to two theoretical limits: one where the t2g orbitals are degenerate,
and the other where strong lattice distortions split them. In the former model
the orbitals interact through superexchange. The resulting superexchange Hamil-
tonian yields an orbitally ordered ground state with collective orbital excitations
on top of it – the orbitons. In the orbital-lattice model, on the other hand, dis-
tortions lead to local dd-transitions between crystal field levels. Correspondingly,
the orbital response functions that determine Raman and RIXS lineshapes and
intensities are of cooperative or single-ion character. We find that the superex-
change model yields theoretical Raman and RIXS spectra that fit very well to the
experimental data.

5.4.1 Introduction

The titanates, with a pseudo-cubic perovskite lattice structure, are good candi-
dates to support orbitons. The Ti ions with their 3d1 configuration have one
electron in one of the three nearly degenerate t2g orbitals. Since these orbitals
are directed away from the neighboring oxygen ions, the coupling to the lat-
tice is expected to be small. Further, it has been shown that a SE-only model
explains many of the ground state properties of YTiO3 [184, 185]. Also, there
is experimental evidence that LaTiO3 is a (SE-driven) orbital liquid [186–188].
On the other hand, local crystal field models also well reproduce some of the
physical properties of the titanates [189–199]. Both models have their short-
comings as well: a JT dominated description is not able to reproduce the spin
wave spectrum, which is nearly isotropic in both spin and real space, while the
SE model has difficulties explaining the experimentally observed orbital polar-
ization [196–199]. Consequently, it still remains controversial which mechanism
dominates the orbitals in titanates [160].

In order to resolve this controversy, it is of crucial importance to compare
recent Raman and RIXS experiments on titanates [200–202] to both of the com-
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peting theories. We analyze recent Raman and RIXS spectra [200–202] for YTiO3

from the point of view of a SE-only model and the alternative extreme of a com-
pletely local, lattice distortion dominated model. We find that while the orbital-
lattice model can be finetuned to capture some aspects of the observed spectra,
the collective superexchange model yields a much better overall description of
the Raman and RIXS data.

This section is organized as follows: Sec. 5.4.2 compactly reviews previous
work on YTiO3 and introduces the SE formalism and the local crystal field model.
Sections 5.4.3 and 5.4.4 deal with the theory of Raman scattering and RIXS
respectively, in both the SE and crystal field models.

5.4.2 Two models of YTiO3

For the existence of collective excitations of orbitals, the so-called orbitons, it
makes a difference whether the orbital order is driven by JT distortions or SE [24,
159]. For large JT distortions, the crystal field splitting is large and a local
picture applies: the collective nature of the orbital excitations characteristic of
orbitons is lost. In materials where the orbital-lattice coupling is small, the SE
interactions between orbitals can dominate over crystal field splittings due to
lattice distortions. The Ti ions have a 3d1 configuration, and the octahedral
crystal field induces a splitting between the higher energy eg and lower energy
t2g levels. Because the t2g orbitals are not directed towards neighboring oxygen
ions, they are not expected to couple strongly to lattice distortions.

Building on this assumption, one can derive a superexchange Hamiltonian
starting from a Hubbard model. Below, we follow Refs. [184, 185] closely. By
symmetry, the hopping term connects, for instance, the zx to zx and yz to yz
orbitals along the z direction (c axis) via the intermediate oxygen 2pπ states.
xy orbitals are not coupled along this direction. In the limit of large on-site
Coulomb repulsion U , this leads to a SE interaction that depends on the spatial
direction of a bond, and the resulting model is intrinsically frustrated: on any
given ion, there is no orbital that minimizes the bond energy in all directions
simultaneously.

Because YTiO3 is ferromagnetic at low temperature (Tc ≈ 30 K) [203], we
restrict ourselves to the completely ferromagnetic part of the Hilbert space. Then
one obtains the simple Hamiltonian

Ĥ0 =
1

2
Jorb

∑
〈i,j〉

(
Â

(γ)
ij +

nγ,i + nγ,j
2

)
, (5.7)

with the orbital exchange integral Jorb = r1JSE , where r1 = 1/(1 − 3JH/U) ≈
1.56 parametrizing Hund’s rule coupling JH and JSE = 4t2/U is the superex-

change constant derived from the Hubbard model. The operator Â
(γ)
ij depends

on the direction γ of the bond ij. For example, in the z direction we have

Â
(c)
ij = na,ina,j + nb,inb,j + a†i bi b

†
jaj + b†iaia

†
jbj . (5.8)
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The operators a†, b† and c† create an electron in the yz-, zx- and xy-orbital,
respectively, and na = a†a. The Hamiltonian can also be written in terms of
interacting effective angular momenta l = 1, operating on the t2g triplet. Because
of the orbital frustration, these can form a myriad of different classical ground
states. Refs. [184, 185] conclude that a 4-sublattice quadrupole ordered state is
favored, in which the orbitals

|ψc〉 =
1√
3

(|dyz〉 ± |dzx〉 ± |dxy〉) (5.9)

are condensed. The signs ± alternate between the sublattices, such that nearest-
neighbor orbitals are orthogonal, supporting ferromagnetic order. On top of this
condensate, two species of orbitons can be created, loosely speaking by populating
either one of the two orbitals orthogonal to ψc. The orbiton spectrum has 3N1/3

Goldstone modes (where N is the total number of Ti ions), because the number
of orbitals of a specific “color” is conserved in the plane in which it is lying.
However, in YTiO3 the TiO6 octahedra are tilted. Because of this, hopping
between different t2g orbitals is now no longer symmetry forbidden, and the
conservation of orbital “color” is violated, removing the Goldstone modes. When
also some anharmonic terms of the Hamiltonian are taken into account on a mean
field level, the orbiton dispersion becomes [185]

ω1/2,k =
√
ZεZfJorb{1− (1− 2ε)(1− 2f)(γ1,k ± κk)2

− 2(ε− f)(γ1,k ± κk)}1/2, (5.10)

where we use the signs + and − for ω1,k and ω2,k respectively. Further,
√
ZεZf ≈

1.96, f ≈ 0.086, ε ≈ 0.18, γ1,k = (cx + cy + cz)/3 and κk =
√
γ2

2,k + γ2
2,k with

γ2,k =
√

3(cy − cx)/6 and γ3,k = (2cz − cx − cy)/6 with cα = cos kα. Eq. (5.10)
describes the collective orbital modes that disperse up to energies of 2Jorb and
have a gap of approximately Jorb.

In the second orbital model for YTiO3 that we consider, lattice distor-
tions dominate over superexchange interactions. Pavarini et al. [190, 191] did a
DMFT+LDA calculation and found that lattice distortions of the GdFeO3-type
lift the orbital degeneracy. They also obtained four sublattices. The resulting
local eigenstates of the t2g system are [191]

|1〉 = 0.781 |yz〉 − 0.073 |zx〉+ 0.620 |xy〉 (5.11)

|2〉 = −0.571 |yz〉+ 0.319 |zx〉+ 0.757 |xy〉 (5.12)

|3〉 = 0.253 |yz〉+ 0.945 |zx〉 − 0.207 |xy〉 (5.13)

for sublattice 1, with corresponding orbital energies ε1 = 289 meV, ε2 = 488
meV and ε3 = 620 meV. This yields excitation energies ω1 = ε2− ε1 = 199 meV,
ω2 = ε3 − ε1 = 331 meV. The orbital states on the other sublattices can be
obtained from lattice symmetry considerations [191]. Superexchange processes
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are treated as a perturbation in this model, broadening the states generated by
lattice distortions. This picture is also supported by other theoretical work [189,
193,204,205].

It is possible to rotate the axes on each of the sublattices in such a way that in
the new coordinates, the eigenstates are still given by Eqs. (5.11) through (5.13):

subl. 1 : (x, y, z) 7→ (x, y, z) (5.14)

subl. 2 : (x, y, z) 7→ (y, x, z) (5.15)

subl. 3 : (x, y, z) 7→ (x, y,−z) (5.16)

subl. 4 : (x, y, z) 7→ (y, x,−z). (5.17)

Correspondingly, the orbiton operators transform as follows:

subl. 1 : (a, b, c) 7→ (a, b, c) (5.18)

subl. 2 : (a, b, c) 7→ (b, a, c) (5.19)

subl. 3 : (a, b, c) 7→ (−a,−b, c) (5.20)

subl. 4 : (a, b, c) 7→ (−b,−a, c). (5.21)

5.4.3 Raman scattering

In the search for orbitons, Raman scattering has been an important tool for ex-
perimentalists. After the controversial first observation of orbitons in LaMnO3

[163,165,166], the titanates now seem to be a more promising candidate. In addi-
tion to the reasons mentioned in previous sections, recent Raman data by Ulrich
et al. [200] should be noted, which shows a striking temperature dependence:
the spectral weight of the 235 meV peak in YTiO3 increases dramatically when
temperature is lowered. This can be naturally explained by collective orbitons:
as temperature drops, the orbitons gain coherence and the spectral weight in-
creases, analogous to two-magnon Raman scattering in the cuprates [206]. From
the local dd-excitation point of view, temperature should not affect the intensity
of local transitions between crystal field levels. Also, Ulrich et al. found that
the polarization dependence of the spectra is hard to reconcile with the local
excitation picture a result that we will reproduce below. In optical data [207], a
peak is seen at the same energy and was ascribed to orbital excitations.

Earlier theoretical work on Raman scattering in the titanates [205] built on
the assumption that JT-distortions determine the symmetry of the orbital order.
In this paper, we investigate the Raman spectrum of YTiO3 in both the lattice
distortion and superexchange frameworks laid out in Sec. 5.4.2. We start out
with the Loudon-Fleury effective Raman scattering operator [106,107]

R̂ ∝
∑
〈i,j〉

(εi · δij) (εf · δij)
(
Â

(γ)
ij +

nγ,i + nγ,j
2

)
(5.22)
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where the usual spin exchange Hamiltonian has been replaced by the orbital
Hamiltonian of Eq. (5.7). εi,f are the polarization vectors of the in- and out-
going light, δij connects nearest neighbors i and j. The physical picture is that
the light induces an electric dipole transition to the intermediate state where a
3d t2g electron ends up on a neighboring Ti ion, after which one of the electrons
of this now doubly occupied site can hop back in another transition. In this
process, the two involved electrons can end up in different orbitals, resulting in a
two-orbiton excitation, in full analogy with two-magnon Raman scattering in the
cuprates. As the light forces the electrons to perform a superexchange process
independently of the intrinsic coupling mechanism of the orbitals, this effective
Raman operator holds for the lattice distortion model too.

With this scattering operator, we calculate the Raman spectrum for the
superexchange model. Similar calculations have been done before in the con-
text of Raman scattering on orbital excitations in vanadates [208]. Adopt-
ing the geometry used in the experiment of Ref. [200], we take the polar-
ization vectors to be in the plane parallel to the [110] and [001] directions:
εi(f) ∝ ( 1√

2
sin θi(f),

1√
2

sin θi(f), cos θi(f)) where θi(f) is the angle the polariza-

tion vector makes with the c axis. Throughout this section we use a coordinate
system in which the nearest neighbor Ti-Ti bonds are parallel to the coordinate
axes. Substituting into Eq. (5.22) and using that

∑
i nγ,i is a conserved quantity

in the superexchange model and that Ĥ0 |0〉 ∝ |0〉, we find for inelastic Raman
scattering

R̂ ∝
(

cos θi cos θf −
1

2
sin θi sin θf

) ∑
〈i,j〉c

Â
(c)
ij (5.23)

where the sum is over bonds in the c-direction only. Performing the transfor-
mations mentioned in Sec. 5.4.2, condensing ψc and Fourier transforming, we
obtain ∑

〈i,j〉c

Â(c) =
2

3

∑
k

[
(a†k − b

†
k)(ak − bk) +

cz
2

(a†k − b
†
k)(a†−k − b

†
−k)

+
cz
2

(a−k − b−k)(ak − bk)
]

(5.24)

where only quadratic terms in the operators are retained. Linear terms do not
appear. Next, this result is Bogoliubov transformed according to

ak = ukch θ1,kα1,k + vkch θ2,kα2,k

− uksh θ1,kα
†
1,−k − vksh θ2,kα

†
2,−k, (5.25)

bk =− vkch θ1,kα1,k + ukch θ2,kα2,k

+ vksh θ1,kα
†
1,−k − uksh θ2,kα

†
2,−k, (5.26)
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where the indices 1, 2 refer to the orbiton branch. This transformation diagonal-
izes Ĥ0 up to quadratic order if

uk =

√
1

2
+
γ2,k

2κk
(5.27)

vk = sign(γ3,k)

√
1

2
− γ2,k

2κk
(5.28)

tanh 2θ1(2),k = γ1,k ± κk. (5.29)

The effective Raman scattering operator now either produces two orbitons or
scatters single orbitons already present in the initial state. At zero temperature,
the initial state has no orbitons (in “linear orbital wave theory”, i.e. if we neglect
orbiton-orbiton interactions), so we keep only the two-orbiton creation part of∑
〈i,j〉c

Â(c) in Eq. (5.24):

1

3

∑
k

[{
(u+ v)2(czch 2θ1 − sh 2θ1)

}
α†1,kα

†
1,−k

+
{

(u− v)2(czch 2θ2 − sh 2θ2)
}
α†2,kα

†
2,−k

+ 2
{

(u2 − v2)[sh (θ1 + θ2) −czch (θ1 + θ2)]}α†1,kα
†
2,−k

]
(5.30)

where cz = cos kz and the index k is implied on every u, v, θ1 and θ2.
The cross section at zero temperature now is

d2σ

dωdΩ
∝
∑
f

∣∣∣〈f | R̂ |0〉∣∣∣2 δ(ω − ωf ) (5.31)

with f labelling the two-orbiton final states with energy ωf . The corresponding
matrix elements are given by Eq. (5.30).

Because there are orbiton-orbiton interaction terms in the Hamiltonian which
are neglected in “linear orbital wave theory”, we introduce a phenomenological
orbiton damping of γ = 30 meV. Also, broadening from other sources such as
interaction with phonons and magnons can be mimicked this way.

The result is displayed in Fig. 5.6, compared to the data from Ref. [200].
In the superexchange model, only two-orbiton creation processes contribute to
the Raman spectrum. The best fit is obtained for Jorb = 65 meV, close to
the value estimated in Ref. [185] from magnon data of YTiO3 [209]. Including
orbiton-orbiton interactions will probably reduce the peak energy (in analogy to
two-magnon Raman scattering), increasing the fit parameter JSE .

The local model of YTiO3 also yields Raman spectra via Eq. (5.22). In
this model, the orbital order makes the c-direction different from the a and b
ones. Therefore, all bond directions are considered separately. For technical
convenience, the rotations Eqs. (5.18) through (5.21) are first performed. Bonds
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Figure 5.6: Raman spectrum of YTiO3 at T = 13 K in (z, z) geometry, taken
from Ref. [200]. A background is subtracted from the data. The sharp peak
around 170 meV in the data is the two-phonon Raman signal, and is not consid-
ered in our theory. The thin-solid line is the superexchange theory curve. The
anisotropy of the local model is reflected in its Raman spectra: (z, z) polariza-
tion (dashed line) gives a very different spectrum from (x, x) polarization (dotted
line). In the superexchange model, the xx, yy- and zz-polarizations are equiva-
lent. It should be noted that the experimental Raman spectra are also of cubic
symmetry [200].

in the c-direction connect sublattice 1 to sublattice 3, and 2 to 4. Both these
bonds give the same contribution to the Raman operator:∑

〈i,j〉c

(
Â

(c)
ij +

1

2
(nc,i + nc,j)

)
=

∑
〈i,j〉c

(
na,ina,j + nb,inb,j + a†i bi b

†
jaj + b†iaia

†
jbj +

1

2
(na,i + nb,j)

)
. (5.32)

Note that the expression is symmetric in i, j. Similarly, for the a- and b-directions,
we obtain again the same contribution for both bonds with i ∈ sublattice 1 and
j ∈ sublattice 2, and for bonds with i ∈ 3 and j ∈ 4:∑

〈i,j〉a

(
nb,ina,j + nc,inc,j + b†i ci c

†
jaj + c†i bia

†
jcj +

1

2
(na,i + nb,j)

)
, (5.33)

∑
〈i,j〉b

(
na,inb,j + nc,inc,j + a†i ci c

†
jbj + c†iai b

†
jcj +

1

2
(nb,i + na,j)

)
. (5.34)

In general, these operators give rise to final states with one and two dd-
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excitations. Using the local wave functions proposed in Ref. [204], final states
with one dd-excitation cannot be reached in (z, z) polarization configuration, in
agreement with the findings of Ref. [205]. Because the wave functions Eqs. (5.11)
through (5.13) of Pavarini et al. are close to these states, there is little single
dd-excitation weight (in particular in (z, z) polarization), and the spectrum is
dominated by double dd-excitations. In the numerical calculations of the Raman
spectra, the same broadening of γ = 30 meV as above is included.

The resulting Raman spectra are shown in Fig. 5.6, together with the ex-
perimental data. The experimental data peaks around 230 meV in the (z, z)
polarization configuration shown here. In the experiment, other configurations
give very similar line shapes, with the maximum shifting around no more than
∼ 40 meV. The intensity is strongest when both in- and outgoing polarizations
are directed along one of the cubic axes [200], i.e., in the zz, xx, yy polarization
geometries.

Even though we have included possible orbiton-orbiton interactions only as a
phenomenological damping, the superexchange model gives a very good fit to the
experimental line shape: it reproduces a single peak without internal structure at
approximately the right energy. The cubic isotropy of the superexchange model
is in agreement with experiment, as noted in Ref. [200].

An interpretation of the Raman spectrum in terms of local crystal field exci-
tations is problematic. Not only is the predicted strong polarization dependence
of the intensity (a stark contrast between the c axis and the a, b axes) opposite of
what is seen in experiment (which obeys cubic symmetry [200]), the suppression
of the single dd-excitations with respect to double excitations leads to a wrong
prediction of the peak energy. We tried to include corrections to the Raman op-
erator from nondiagonal hoppings between t2g orbitals but this did not improve
the fit. Also, to blur the multiple peaks together into one peak, a large broad-
ening is needed. Finally, the temperature dependence of the peak as observed in
Ref. [200] is difficult to explain in the context of local dd-excitations.

5.4.4 RIXS

In the experiment [202] we analyze, the L3 edge is used, where the 2p core
electron is promoted from the spin-orbit split j = 3/2 state to a 3d state. The
intermediate states have a complicated multiplet structure, with large spin-orbit
coupling in the core levels, strong intra-ionic Coulomb interactions altered by the
core potential, etc, which makes the RIXS process hard to analyze microscopically
in an exact way. Fortunately, it is possible to disentangle the problem of the
intermediate states from the low energy orbital transitions in the final states.
Namely, since the intermediate states dynamics is much faster than that of orbital
fluctuations, one can construct – based on pure symmetry grounds – a general
RIXS operator describing orbital transitions between the initial and final states.
In this operator, the problem of the intermediate states can be cast in the form of
phenomenological matrix elements that depend only on the energy of the incident
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photon and its polarization factors. These martix elements can then be calculated
independently, e.g., by means of well developed quantum chemistry methods on
small clusters. This approach is general, but can be simplified in the (physically
relevant) case where the energy dependence of martix elements is smooth: they
can then be regarded as effective constants at energy scales corresponding to the
low frequency orbital dynamics.

RIXS spectra are described by the Kramers-Heisenberg formula, which can
be written in terms of an effective scattering operator Ôq:

Afi = 〈f | D̂ 1

Ei −H − iΓ
D̂ |i〉 = 〈f | Ôq |i〉 (5.35)

The cross section can be written in terms of the Green’s function for the effective
scattering operator:

d2σ

dωdΩ
∝
∑
f

∣∣∣〈f | Ôq |i〉
∣∣∣2 δ(ω − ωfi) = − 1

π
Im {G(ω)} (5.36)

with

G(ω) = −i
∫ ∞

0

dteiωt 〈i| Ô†q(t)Ôq(0) |i〉 . (5.37)

In Eq. (5.1), we neglect RIXS processes that create excitations on more than
two sites in the final state, and further assume that the two-site processes are
dominated by processes on nearest neighbors. Further, we assume that the ti-
tanates belong to the regime of small Γ, and that the internal dynamics of inter-
mediate states is the fastest process in the problem. The core hole potential is
then dominated by the A1g component, but this only gives contributions to the
Bragg peaks in the leading order (single site) of Eq. (5.1). The subleading order
therefore consists of single site processes Ôi of other than A1g symmetries, and

of two-site processes Ôij of A1g symmetry.
The single site coupling of RIXS to the orbitals can be dubbed a “shakeup”

process. If we allow the core hole potential to have a symmetry other than A1g,
it can locally induce an orbital flip. If the orbital ground-state is dominated
by superexchange many-body interactions, a local flipped orbital will strongly
interact with the neighboring sites and thus becomes a superposition of extended
(multi-)orbitons. In the limit of strong crystal field splittings, however, this
excitation remains a localized, on-site transition between t2g levels.

Two-site processes Ôij may involve modulation of the superexchange bonds,
analogous to two-magnon RIXS, where the superexchange constant J is effec-
tively modified at the core hole site [10,51,52,54]. The core hole potential locally
changes the Hubbard U , which in effect changes JSE = 4t2/U on the Ti-Ti bonds
coupled to the core hole site. Alternatively, the two-site processes can describe
the lattice-mediated interaction that is altered by the presence of a core hole.
The equilibrium positions and vibration frequencies of the oxygens surrounding
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the core hole site may change, affecting the intersite interactions. As said above,
the A1g component of the core hole potential is most relevant in the two-site

coupling channel Ôij .
This section is divided into three subsections. Subsection 5.4.4 deals with

the single site shakeup mechanism and contains the evaluation in the superex-
change model. The next subsection, 5.4.4, is devoted to the calculation of the
same processes in the local model of the orbital excitations in YTiO3. The final
subsection 5.4.4 covers two-site processes, evaluated within the superexchange
model. A detailed comparison is made of the RIXS spectra arising from the
different models.

Single site processes – Superexchange model. We start out with an anal-
ysis of the single site processes. RIXS processes that involve orbital excitations
on a single site are dominated by direct transitions between the t2g orbitals when
the core hole potential is not of A1g symmetry. In a superexchange dominated
system, a local flipped orbital strongly interacts with the neighboring sites and
becomes a superposition of extended orbitons.

We start from the Kramers-Heisenberg equation (2.31), where we insert the
polarization-dependent dipole operator D̂ which we take to be local: D̂ =

∑
i D̂i

with

D̂i =
∑
d,m

(
eik·Ri |m〉 〈m| r̂ · ε |d〉 〈d|

+e−ik
′·Ri |d〉 〈d| r̂ · ε′ |m〉 〈m|

)
+ h.c., (5.38)

where |d〉 denotes the state of atom i when it is not photo-excited and |m〉 denotes
the system’s intermediate eigenstates:

Ĥ =
∑
m

Em |m〉 〈m| . (5.39)

Now we consider only the single site part of the effective scattering operator in
Eq. (5.1):

Ôi =
∑
d,d′,m

|d′〉 〈d′| r̂′ · ε′ |m〉 1

Ei − Em − iΓ
〈m| ε · r̂ |d〉 〈d| (5.40)

Next we decompose the operator part into terms transforming according to the
rows of the irreducible representations of the octahedral group (labeled by Γ, not
to be confused with the core hole lifetime broadening):

|d′〉 〈d| =
∑

Γ

Γd′dΓ̂. (5.41)

In the second quantized picture, we need only terms that are quadratic in
the creation and annihilation operators. With the irreducible representations
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A1g, T1u, Eg and T2g all possible |d′〉 〈d| can be constructed. Therefore Γ̂ assumes
only the following forms:

A1g : Γ̂ = 1 (5.42)

T1u : Γ̂ ∈ {l̂x, l̂y, l̂z, } (5.43)

Eg : Γ̂ ∈ {Q̂x, Q̂z} (5.44)

T2g : Γ̂ ∈ {T̂x, T̂y, T̂z}. (5.45)

The operators Γ̂ and the corresponding 3 × 3 matrices Γd′d are defined in Ap-
pendix B.1. Because A1g only contributes to elastic scattering, we drop it from
hereon.

Further, we also decompose the dipole matrix elements into

〈d′| β̂ |m〉 〈m| α̂ |d〉 =
∑

Γ

ΓβαM
Γ
d′d (5.46)

with α̂, β̂ ∈ {x̂, ŷ, ẑ} and the MΓ
d′d listed in Appendix B.2: Eqs. (B.10) through

(B.18). Plugging Eqs. (5.41) and (5.46) into Eq. (5.40), we obtain

Ôi =
∑
d,d′,m

∑
Γ′

∑
α,β

ε′βεαΓ′βαM
Γ′

d′d

Ei − Em − iΓ
∑

Γ

Γd′dΓ̂i (5.47)

which can be simplified using∑
d,d′

MΓ′

d′dΓd′d = δΓ,Γ′
∑
d,d′

MΓ
d′dΓd′d. (5.48)

This identity can be proven by interpreting MΓ and Γ as matrices indexed by d
and d′. Then it can be seen that MΓ ∝ Γ. We thus obtain∑

d,d′

MΓ′

d′dΓd′d = Tr
(
MΓ′ΓT

)
∝ Tr

(
Γ′ΓT

)
(5.49)

which is zero for Γ 6= Γ′, proving the above identity. We find then

Ôi =
∑

Γ

PΓMΓΓ̂i (5.50)

with a polarization factor

PΓ =
∑
α,β

ε′βΓβαεα (5.51)

and the matrix elements MΓ depending on the multiplet effects in the interme-
diate state

MΓ =
∑
d,d′,m

MΓ
d′dΓd′d

Ei − Em − iΓ
. (5.52)
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One can perform the sum over m, which yields

∑
m

MQx
d′d

Ei − Em − iΓ
= 〈d′|

(
ŷ

1

Ei −H − iΓ
ŷ − x̂ 1

Ei −H − iΓ
x̂

)
|d〉 (5.53)

and similar expressions for the other representations. As discussed above, we
will assume that the intermediate state dynamics is much faster than that of t2g
orbitals we are interested in, and thus regard the matrix elements as phenomeno-
logical constants. Further, using that MΓ does not depend on any coordinate
and therefore must be invariant under the octahedral group, we obtain

MQ ≡MQx =MQz (5.54)

MT ≡MTx =MTy =MTz (5.55)

Ml ≡Mlx =Mly =Mlz . (5.56)

The MΓ are hard to calculate explicitly since they involve inverting H, which
contains the multiplet structure. In the following, we assume MΓ = M for
all Γ. This is a reasonable assumption: the core hole generates a multitude of
many-body states that evolves very rapidly due to the large spin-orbit coupling
and intra-ionic Coulomb interactions, and therefore its potential is averaged.
Any particular symmetry is washed away; all become equal, except for the A1g

component, which is enhanced at the cost of the others. This is also the reason
why the experiments at the t2g and eg edges are similar [202]: the different edges
create different multiplet structures initially, but these differences are averaged
out by the intermediate state dynamics, as far as we are concerned with t2g
orbital transitions at relatively low energies 0.2-0.3 eV.

Note that PΓ and MΓ are independent of the site i. Only Γ̂ depends on i,
giving

Ôq =
∑

Γ

PΓMΓ

∑
i

eiq·Ri Γ̂i. (5.57)

Most interference terms between different Γ’s are zero. This comes about
because of the specific ground state ordering. Transforming to the local axes
(Eq. (15) in Ref. [185]), the ground state and Ĥ0 are invariant under transla-

tions, while the operators T̂α,i and l̂α,i (with α ∈ {x, y, z}) acquire a phase upon
translation to a different sublattice, which is equivalent to a momentum shift (by
orbital ordering vectors) for the corresponding Γ̂q. Therefore, many interference
terms are zero, which can be seen from Eqs. (5.36) and (5.37): two operators
with different momenta cannot bring the ground state (zero momentum) back to
itself. The only non-vanishing interference terms are 〈0| Q̂†x,q(t)Q̂z,q(0) |0〉 which

do not acquire momentum shifts and 〈0| T̂ †α,q(t)l̂α,q(0) |0〉 where the momentum
shifts cancel.

To compare with experiment, we calculate the polarization factors PΓ for
the experimental setup of Ref. [202], where q is along the [001]-direction. Only
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the incoming polarization is fixed, the outgoing polarization is not detected and
should be averaged over. We have

ε = (
1√
2

sin θ,
1√
2

sin θ, cos θ) (5.58)

ε′H = (− 1√
2

sin θ,− 1√
2

sin θ, cos θ) (5.59)

ε′V = (
1√
2
,

1√
2
, 0) (5.60)

with 2θ the scattering angle. Then, we find for the horizontal outgoing polariza-
tion ε′H (i.e. the electric field vector is in the scattering plane):

PQx,H = PTx,H = PTy,H = Plz,H = 0 (5.61)

PA1g,H =
1

3
cos 2θ (5.62)

PQz,H =
1

2
√

3
(1 + cos2 θ) (5.63)

PTz,H =
1

2
sin2 θ (5.64)

Plx,H = −Ply,H = − i√
2

sin θ cos θ (5.65)

and for vertical outgoing polarization ε′V (electric field vector perpendicular to
the scattering plane):

PA1g,V = PQz,V = PTz,V = 0 (5.66)

PQx,V = −1

2
sin θ (5.67)

PTx,V = −PTy,V =
1

2
√

2
cos θ (5.68)

Plx,V = Ply,V = − i

2
√

2
cos θ (5.69)

Plz,V =
i

2
sin θ. (5.70)

For horizontal polarization, the polarization factors make all remaining interfer-
ence terms zero.

In Appendix B.3, the one- and two-orbiton parts of the Γ̂q =
∑
i e
iq·Ri Γ̂i

are listed. They are obtained by performing the transformations on the orbital
operators mentioned in Ref. [185]. Then, the ψc orbital (with corresponding
annihilation operator c̃) is condensed:

nc̃ = |c0|2 + δnc̃ (5.71)
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where δnc̃ is the fluctuating part. In the completely ordered state, 〈δnc̃〉 = 〈nã〉 =〈
nb̃
〉

= 0 and |c0|2 = 1, while in the completely disordered state 〈δnc̃〉 = 〈nã〉 =〈
nb̃
〉

= 1/3 and |c0|2 = 0. Ref. [185] obtains a finite value for the quadrupole
orbital order parameter:

Q̂ = nc̃ − (nã + nb̃)/2 ≡
〈
Q̂
〉

+ δQ̂ ' 0.19 + δQ̂ (5.72)

with the fluctuating part averaging to zero. This fixes |c0|2 ' 0.19. Taking the
square root of Eq. (5.71), one arrives at

c̃ = c̃† =

√
|c0|2 + δnc̃ ≈ |c0|+

1

2 |c0|
δnc̃ (5.73)

to first order in the fluctuations δnc̃.
In the process of writing the Γ̂q in terms of orbiton operators, unphysical con-

tributions to the intensity may appear as a result of neglecting cubic and higher
order terms in the orbiton operators. When restoring all terms, these unphysical
contributions should cancel by symmetry. For q along the [001] direction for
instance, [Ĥ, Q̂z,q] = 0 if we use the untransformed forms Eqs. (5.7) and (B.5),
and it is clear that there should only be an elastic contribution to the intensity.
However, in terms of orbitons, this selection rule is violated if we go only up
to quadratic orbiton terms. To make sure these unphysical contributions are
dropped, we first calculate the commutator in the untransformed picture. If this
yields zero, the commuting part of the scattering operator is dropped. Applying
this procedure to the case where q is along the [001] direction, we find that only
Q̂z,q among the operators (5.43) to (5.45) is zero while all the other channels
give finite contributions.

Since we did not include explicitly the orbiton-orbiton interactions, damping
of the orbitons should still be taken care of, at least on a phenomenological
level. As in the case of Raman scattering calculations, we introduce by hand an
energy broadening γ of the orbiton states (half-width at half maximum, HWHM)
of γ = 0.4 Jorb. This broadening can also be used to take orbiton damping by
phonons, magnons etc. into account. In addition to this, there is an experimental
broadening added of 27.5 meV (HWHM) [202].

The resulting spectra are shown in Fig. 5.7. The intensity is strongly
momentum-dependent (especially for q along the z direction), which is also seen
in the experiments [202]. This dependence is mainly due to the coherent re-
sponse of the exchange-coupled orbitals which enhances at large momenta, re-
flecting staggered orbital order in the ground state – Eq. (5.9). In Fig. 5.8, the
theoretical cross section (with q along the z direction and horizontal incoming
polarization, i.e. the electric field is in the scattering plane) is compared to the
experimental data. The main features of the data [202] are reproduced: the spec-
tral weight increases with increasing qz and there is virtually no dispersion of the
maximum of the theoretical curve (because it is determined by the two-orbiton
continuum, containing an integration over the Brillouin zone).
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Especially in plots (b) and (c), the one-orbiton shoulder seems a bit too large.
We note here again that the weight of this shoulder is controlled by the orbital
order parameter: if the orbital order melts, |c0|2 decreases and the one-orbiton

peak becomes less intense. The value we used (|c0|2 = 0.19) is obtained at zero
temperature, assuming that YTiO3 is a fully saturated ferromagnet [184, 185].

Under realistic conditions, |c0|2 is expected to be smaller than 0.19. Indeed, the
saturated ordered moment in YTiO3 is actually 0.84µB , which is reduced further
to approximately 0.80µB at T = 15 K [203, 210]. Correspondingly, the orbital
order is decreased by joint spin-orbital quantum fluctuations, suppressing the
one-orbiton peak.

The best chance to see a one-orbiton contribution to the spectrum is with
momentum transfer directed maximally in the [110] direction. Fig. 5.9 shows the

prediction for the shakeup mechanism with |c0|2 = 0.19: the one-orbiton peak is
about as strong as the two-orbiton peak.

Single site processes – Local model. Although the response functions of
the local model of YTiO3 are entirely different from the superexchange model,
the phenomenological scattering operator Eq. (5.1) is still valid. Focusing on
single site processes, Eq. (5.57) can be evaluated using the wave functions found
by Pavarini et al.: Eqs. (5.11) through (5.13). Since the eigenstates of the local
model have a very simple form, we can straightforwardly use Eqs. (B.1) through
(B.8) to evaluate the RIXS spectrum. The PΓ and MΓ remain the same as in
the collective orbiton case. The spectrum now consists of two sharp peaks at ω1

and ω2. These peaks can be broadened by coupling to the lattice as well as due
to the SE coupling.

Because there are four sublattices which all support their own, local eigen-
states, the RIXS intensity can be decomposed into four signals. From the ex-
pressions Eqs. (5.18) through (5.21), it is easily derived how the Γ̂i transform.

So far, the analysis is similar to Sec. 5.4.4. However, in the local model, the
eigenstates are local and this changes the analysis of Sec. 5.4.4 at two impor-
tant points. The first one is that the momentum shifts of Γ̂q do not destroy
interference terms: any final state |f〉 can be reached with any shift of q. All
interference terms can in principle be present. The second point to be noted is
that, because the eigenstates are local, the only momentum dependence of the
cross section comes in through the experimental geometry, which is reflected in
the polarization factors PΓ.

When we compare the theoretical RIXS spectrum of this model to experiment,
we again have to take into account the average over the two outgoing polariza-
tions. Assuming again MΓ are the same for all Γ, and introducing the same
broadening as before (HWHM γ ≈ 30 meV phenomenological intrinsic broad-
ening plus 27.5 meV HWHM experimental broadening), we obtain the spectra
shown by the solid lines in Fig. 5.10.

It is evident that the local model yields a RIXS spectrum that does not agree
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Figure 5.7: RIXS spectra for a model of superexchange-driven orbital order
with RIXS coupling to orbitons only via the single site mechanism. Spectra (a)
and (b) are for q directed along the [001] direction, and (c) and (d) for q along
the [110] direction. Spectra (a) and (c) are for horizontal incoming polarization
(electric field in the scattering plane), and (b) and (d) are for vertical incoming
polarization (electric field perpendicular to the scattering plane). Note that the
q = 0 points are different in each spectrum because of the different experimental
geometries, leading to different PΓ. We only plotted the experimentally accessible
part of the Brillouin Zone.

well with experiment. Firstly, there is no two-peak structure visible in the data.
The presence of a two-peak structure in the theoretical curves does not depend
on the assumption that all the MΓ are equal. We may finetune the model to
produce a better fit by changing the energy levels found in Ref. [191] so that
both crystal field transitions have an energy of 240 meV, and introducing a very
large intrinsic broadening of 100 meV (see the dashed lines in Fig. 5.10). But
even in the artificially optimized case of degenerate levels to produce a single
peak, the intensity trend remains in contradiction with experiment. Further,
it is impossible to tune the energy levels to optimize simultaneously the RIXS
and Raman data. Both experiments show a peak at the same energy, while
the local model theory predicts the Raman spectra (with its double crystal field
excitations) to peak at approximately double the RIXS peak energy.
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Figure 5.8: RIXS spectra for a SE-driven orbital order with RIXS coupling to
orbitons only via the single site mechanism (solid line), compared to the experi-
mental data [202]. The vector q is directed along the [001] direction, with qz as
indicated in the figures. We took Jorb = 80 meV, and introduced a phenomeno-
logical HWHM broadening of γ = 0.4 Jorb ≈ 30 meV for the orbitons, as well as
the HWHM experimental resolution of 27.5 meV. The elastic peak is fitted with
a Gaussian (dash-dotted line).

Even though we could improve the line shape by increasing γ, the intensity
gain with increasing qz cannot be reproduced in any way. In fact, the trend
is the opposite: as qz increases, the spectral weight of the theoretical spectrum
decreases (see Fig. 5.10). We recall that the q-dependence in this case is merely
due to polarization factors Eqs. (5.61−5.70), since in a local picture, each Ti ion
contributes independently to the cross section. This is in sharp contrast with the
superexchange picture, where the intensity has an intrinsic q-dependence because
of the collective response of all the Ti ions.

Two-site processes. The second term in the expansion of the effective scat-
tering operator, Eq. (5.1), involves two-site processes. Due to the strong multiplet
effects, the core hole potential is averaged out and becomes mainly of A1g sym-
metry. While such a potential cannot directly flip the orbitals at the core hole
site, it does affect multi-site processes. In the case of the superexchange model,
the core hole potential effectively changes the superexchange constant JSE lo-
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Figure 5.9: Spectra, obtained with the single site mechanism, for the largest
experimentally accessible momentum transfer directed along the [110] direction.
The solid line indicates the case where the incoming polarization is horizontal,
the dashed line is for vertical incoming polarization. The elastic peak has been
removed. In the horizontally polarized case, the single orbiton peak is quite strong
and should be visible in experiments if the system is superexchange-driven and
the RIXS signal is dominated by the single site mechanism.

cally as discussed earlier in the context of RIXS on magnons [10, 51, 52]. This
process is illustrated in Fig. 5.11. (In principle, it is also possible that the core
hole potential modifies the orbital interactions via the lattice vibrations.) In
this section, we consider the superexchange modulation mechanism to illustrate
two-site process in RIXS on orbital fluctuations.

The SE modification can be derived explicitly by starting from a Hubbard
model

H̃ =− t
∑
i

(
b†i±x̂bi + c†i±x̂ci + a†i±ŷai + c†i±ŷci + a†i±ẑai + b†i±ẑbi

)
+ U

∑
i

(nb,inc,i + na,inc,i + na,inb,i)

− Uc
∑
i

pip
†
i (na,i + nb,i + nc,i − 1) (5.74)

where the last term includes the Coulomb energy Uc of the core hole attracting
the t2g electrons. pi is the annihilation operator for 2p core electrons at site i.
We have taken the core hole potential to be of A1g symmetry. Doing pertur-
bation theory to second order in t/U(c) (U and Uc are about the same order of
magnitude), we obtain the superexchange Hamiltonian

H = H0 +
∑
i,δ

pip
†
i

(
J2Â

(γ)
i,i+δ − J1n̂

(γ)
i+δ + const.

)
(5.75)

with δ pointing to nearest neighbors, n
(c)
i = na,i + nb,i (the other n(γ) can be
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Figure 5.10: RIXS spectra for the local model (solid and dashed lines) compared
to experimental data [202]. The vector q is directed along the [001] direction,
where qz is indicated in the figures. The dashed curve shows the artificially op-
timized model with degenerate crystal field levels. We introduced a phenomeno-
logical intrinsic HWHM broadening (γ ≈ 30 meV [solid line] and γ = 100 meV
[dashed line]) for the final states and added experimental broadening.

obtained by permuting the indices a, b, c) and

J1 =
t2

U − Uc
− t2

U
and J2 =

t2

U + Uc
+

t2

U − Uc
− 2t2

U
(5.76)

so that J1/J2 = (1 + U/Uc)/2. Eq. (5.75) shows we get the unperturbed Hamil-
tonian plus a contribution which is active only if there is a core hole (in which

case pip
†
i → 1). The J1 term involves single site processes only, and is therefore

included in the general description in Sec. 5.4.4. In the following, the J1 term
will be dropped.

For simplicity, polarization effects are neglected and we assume Uc to be
independent of the specific dipole transition. We take

D̂ =
∑
i

(
e−iqin·Ripid

†
i + eiqout·Rip†idi

)
+ h.c. (5.77)

with pi the 2p electron annihilation operator and di the 3d eg electron annihilation
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Figure 5.11: In the SE model, two-site RIXS processes locally modify the SE
interaction, coupling the RIXS core hole to the t2g orbitals. Shown is an orbital
SE process between two neighboring Ti ions in the presence of a core hole. On the
left, one of the ions is excited by an incoming x-ray photon. After that, the t2g
electrons undergo a SE process. On the right, the virtual state of the SE process
is depicted. The presence of the core hole frustrates the SE process. Instead of
the usual Hubbard U , the energy of the virtual state is lowered by the presence
of the positively charged core hole. This modifies the SE constant JSE = 4t2/U
at the core hole site.

operator. The position of the ith site is Ri. The transfered momentum is q =
qout−qin. The neglected polarization dependence could give rise to a q-dependent
factor in the cross section, but will not affect the line shape for a specific q.

The relevant energy scale for the excitation of orbitons in the intermediate
states via superexchange bond modulation is J2, as established above, as long as
the core hole potential is of A1g symmetry. This is the case when core level spin-
orbit coupling and Hund’s rule coupling are large compared to J2: the core hole
evolves rapidly with time and its potential’s symmetry averages out to A1g before
any orbitons can be excited. Because the symmetry is effectively cubic, bonds
in all directions are affected in the same way. The effective scattering operator

must therefore be a function of
∑
δ Â

(γ)
i,i+δ which is of A1g symmetry. Non-linear

operators like Â
(γ)
i,i+δÂ

(γ)
i,i+δ′ are excluded, they are expected to yield smaller con-

tributions because more and more distant sites are involved. In the expansion
Eq. (5.1), these come in at different orders. The only remaining candidate for
the two-site effective scattering operator is therefore

Ôq =M2

∑
i,δ

eiq·RiÂ
(γ)
i,i+δ (5.78)

where M2 is an unknown phenomenological matrix element, in the same way as
in Sec. 5.4.4. By construction, the two-site process matrix element M2 should
be proportional to J2 with a constant determined by the intermediate state dy-
namical susceptibilities. At this stage, without microscopical calculations of the
single-site MΓ (5.52) and two-site M2 matrix elements, we cannot judge which
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coupling process dominates the observed RIXS on orbital excitations. Instead, we
calculate two-site process independently and compare it with both experimental
data and the results obtained above for single-site coupling mechanism.

As it turns out, the two-site effective scattering operator (5.78) contains only
two-orbiton creation terms; it does not create single orbitons because the orbitons
are constructed in the first place to diagonalize the Hamiltonian: all linear con-

tributions to Â
(γ)
ij in Eq. (5.8) are canceled (similar to the Raman scattering

calculations above).
Using again the transformations on the orbital operators mentioned in

Ref. [185], condensing the ψc orbital and transforming to orbiton operators, we
obtain for the two-orbiton creation part

Ô(2)
q =M2

∑
k

[
f11(k,q)α†1,kα

†
1,−k−q

+f22(k,q)α†2,kα
†
2,−k−q + f12(k,q)α†1,kα

†
2,−k−q

]
(5.79)

where the fij(k,q) are lengthy functions listed in Appendix B.4. The cross
section then is

d2σ(2)

dωdΩ
∝
∑
f

∣∣∣〈f | Ô(2)
q |0〉

∣∣∣2 δ(ω − ω1/2,k − ω1/2,k+q)

=
1

2

∑
k

[
|f11(k,q) + f11(−k− q,q)|2 δ(ω − ω1,k − ω1,k+q)

+ |f22(k,q) + f22(−k− q,q)|2 δ(ω − ω2,k − ω2,k+q)

+2 |f12(k,q)|2 δ(ω − ω1,k − ω2,k+q)
]
. (5.80)

The resulting cross section for transfered momenta along the [001] direction is
shown in Fig. 5.12. As in the above sections, we introduced here by hand an
energy broadening γ of the orbiton states of γ = 0.4 Jorb.

A few things should be noted. Firstly, the spectrum disappears at q = 0.
This is clear from Eq. (5.78): the scattering operator becomes proportional to
the Hamiltonian Eq. (5.7), giving elastic scattering only.

Secondly, the spectrum shown in Fig. 5.12 is calculated without taking polar-
ization dependence into account. That could change the relative spectral weight
for different q’s, but does not affect the line shapes.

In Fig. 5.13 we compare the calculated superexchange spectra for the specific
q values of the experiments reported in Ref. [202]. The only free parameter (Jorb)
gives a best fit for Jorb = 75 meV. As is evident, the increase in spectral weight
is qualitatively accounted for by the theory, although the theoretical curves show
a much stronger increase with increasing qz. We note that one factor that could
diminish this discrepancy is, as stated above, the polarization factor we omitted:
it could change the relative weight (but not the line shape).
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Figure 5.12: RIXS spectrum for two-site processes within the superexchange
model. The color scale denotes the intensity. The figure shows q running from
(0, 0, 0) to (0, 0, π). One-orbiton creation is not allowed for the superexchange
modulation mechanism. The intrinsic energy broadening γ of the orbiton states is
γ = 0.4 Jorb ≈ 30 meV, and the added experimental resolution of 27.5 meV [202]
is approximately 0.34 Jorb.

Summarizing, two-site processes can capture some of the features seen in the
RIXS data (the intensity trend with increasing momentum transfer, and a single
peak without dispersion), but the overall fit is less satisfactory compared to the
results of the single-site process shown in Fig. 5.8.

5.4.5 Conclusions

We have considered two different models, widely discussed in literature to de-
scribe orbital physics in titanites, in the context of Raman and X-ray scattering
experiments. These models correspond to two limiting cases where the orbital
ground state is dominated either by collective superexchange interactions among
orbitals or by their coupling to lattice distortions. The models predictions, ob-
tained within the same level of approximations, are compared to the experimental
data on Raman (Fig. 5.6) and on X-ray (Figs. 5.8 and 5.10) scattering in titan-
ites. What is evident from this comparison and our detailed analysis is that the
local crystal field model of YTiO3 fails to give a coherent explanation of both
Raman and RIXS data taken together. There is no way one can get rid of the
two-peak structure predicted for RIXS by this model without artificially finetun-
ing its parameters. Further, once tuned to the RIXS spectra, the Raman spectra
will be impossible to fit with the local model anyway, since it yields double dd
excitations, different from the single crystal field excitations in RIXS. Experi-
mentally, however, both techniques show a peak at the same energy. Also, a
huge anisotropy between out-of-plane and in-plane polarizations is predicted by
the local model, which is not observed in Raman data. Further, the temperature
dependence of the experimental data is hard to explain from a local model: the
intensity of crystal field transitions is expected to remain unchanged. Finally,
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Figure 5.13: Theoretical RIXS spectra for two-site processes, calculated within
the superexchange model (solid line), compared to experiment [202]. q is directed
along the [001] direction, with qz as indicated. We obtain a best fit for Jorb = 75
meV. The solid lines are cuts from the plot of Fig. 5.12, where we added a
Gaussian fit to the elastic peak (dash-dotted line). A phenomenological intrinsic
orbiton broadening of 0.4 r1JSE ≈ 30 meV is added, as well as the experimental
resolution of 27.5 meV (both HWHM) [202].

the q dependence of the RIXS intensity is not reproduced by the local model; in
fact, the trend is opposite. We believe especially the last four points are robust
evidence that the 250 meV peak seen in Raman and RIXS is not due to local dd
excitations.

On the other side, the picture of collective excitations offers much better and
broad agreement with the experimental data. The general features of both the
Raman and RIXS data are reproduced by the SE model. For RIXS we presented
a phenomenological scattering operator for single and two-site processes, evalu-
ated within the SE model. Although both single and two-site processes get the
general trends of the RIXS data right, the two-site processes clearly have a too
strong q-dependence of the intensity. The RIXS spectra obtained with the single
site operator fit the data very well, suggesting that this process of generating
orbitons might be the predominant one in the transition metal oxides. The only
slight deviation from the experiments is the one-orbiton peak, which our theory
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overestimates. However, we note that the theoretical one-orbiton peak is de-
creased if we consider realistic conditions such as finite temperature and residual
spin-orbital quantum fluctuations, which obstruct the orbital order and reduce
|c0|2, which in its turn controls the one-orbiton spectral weight.

Ref. [202] reported that the RIXS-intensities in LaTiO3 and YTiO3 show dif-
ferent q dependences: While the intensity in YTiO3 increases with q, it decreases
in LaTiO3. On a qualitative level, this contrasting behavior can be understood
from the SE picture as a manifestation of the (dynamical) Goodenough-Kanamori
rules, according to which the spin and orbital correlations are complementary to
each other. This implies that the spin and orbital susceptibilities are expected to
behave in an opposite fashion. Since magnetic orderings in YTiO3 and LaTiO3

are different (ferro- and antiferromagnetic, respectively), collective response of
orbitals in these coupounds are expected to be enhanced also at different por-
tions of the Brillouin zone: at large q in YTiO3 and, in contrast, at small q in
LaTiO3, which are complementary to the respective locations of their magnetic
Bragg peaks. The SE picture suggests also that the q-dependence of the orbiton
RIXS-intensity should have cubic symmetry in both LaTiO3 and YTiO3, as fol-
lows from their isotropic spin-wave [186, 209] and Raman spectra [200]. Future
RIXS experiments in titanites would be useful to verify these expectations.

A previous estimate [185] from neutron spin wave data [209] puts the orbital
exchange constant Jorb at 60 meV. In close agreement with this estimate, the
theoretical Raman spectrum fits best to experiment when Jorb = 65 meV (vertex
corrections may change this number, though). Matching to a lesser degree to the
estimate, we find for the RIXS spectra Jorb = 75 and 80 meV for the two-site
and single site processes, respectively.

To establish the nature of the 250 meV peak, it is of great importance to search
for the one-orbiton peak. In Raman scattering one-orbiton creation seems to be
strongly suppressed, but in RIXS it would be possible to see a one-orbiton peak
when q is directed maximally along the [110] direction. There the one-orbiton
peak (around ω ≈ 1.8 Jorb ≈ 140 meV) is about as strong as the two-orbiton
continuum, assuming single site processes are the dominant RIXS channel, and
provided |c0|2 is not too small.

To summarize, we may conclude that the existing Raman and RIXS data in
titanites are better described by the SE model. This implies that while some
polarization of orbitals by static lattice distortions must be a part of a realistic,
“ultimate” model for titanites, the orbital fluctuations which are intrinsic to the
t2g orbital SE process [187] are not yet suppressed and strong enough to stabilize
nearly isotropic charge distributions around the Ti-ions.

On the technical side, we believe that our semi-phenomenological approach
to the RIXS problem which disentangles the high energy intermediate state dy-
namics from low energy collective excitations of orbitals and spins may serve as a
simple and efficient tool in the theoretical description of Resonant Inelastic X-ray
Scattering in oxides in general.
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RIXS in systems with strong
spin-orbit coupling

Published as ‘Resonant Inelastic X-ray Scattering on Spin-Orbit Coupled Insu-
lating Iridates’, arXiv:1008.4862, with Giniyat Khaliullin and Jeroen van den
Brink

6.1 Introduction

In the introduction of chapter 5, it was noted that one way to lift the ground
state orbital degeneracy is by relativistic spin-orbit coupling. Relativistic spin-
orbit coupling is strong in the heavier elements such as iridium – the subject of
this chapter.

More specifically, we focus on compounds where the Ir ion has a charge of
4+, i.e., it is in a 5d5 configuration. The Kramers degeneracy theorem states
that the energy levels of a system with an odd number of electrons remain at
least doubly degenerate in the absence of magnetic fields [211]. This implies that
spin-orbit coupling cannot remove all degeneracy of the Ir4+ ion. As a matter
of fact, as shown in Sec. 6.2, the ground state is a Kramers doublet: its two
degenerate states are each other’s time reversed states, and it can be represented
by a pseudo-spin-1/2.

Because the two states in the Kramers doublet have exactly the same charge
distribution, Jahn-Teller couplings cannot lift their degeneracy. Superexchange
coupling, however, is present in the Mott insulating Ir compounds.
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The strong spin-orbit interaction can cause entirely new kinds of ordering in
the combined orbital-spin sector which are of a topological nature. This was
recently proposed for certain iridium-oxides [212,213], members of a large family
of iridium-based materials. Na2IrO3, for instance, is predicted to be a topological
insulator exhibiting the quantum spin Hall effect at room temperature [212].
The topologically non-trivial state arises from the presence of complex hopping
integrals, resulting from the unquenched iridium orbital moment. This system
can also be described in terms of a Mott insulator, with interactions between the
effective iridium spin-orbital degrees of freedom that are given by the Kitaev-
Heisenberg model [214, 215]. In the pyrochlore iridates A2Ir2O7 (where A is
a 3+ ion), a quantum phase transition from a topological band insulator to
a topological Mott insulator has been proposed as a function of the electron-
electron interaction strength [213].

To establish whether and how such novel phases are realized in iridium ox-
ides it is essential to probe and understand their spin-orbital ordering and re-
lated elementary excitations. In this context it is advantageous to consider the
structurally less complicated, single-layer iridium perovskite Sr2IrO4. This ma-
terial is in many respects the analog of the high-Tc cuprate parent compound
La2CuO4 [214]. Structurally it is identical, with the obvious difference that the
Ir 5d valence electrons are, as opposed to the Cu 3d electrons, very strongly
spin-orbit coupled. The similarity cuts deeper, however, as the low energy sector
of the iridates is spanned by local spin-orbit doublets with an effective spin of
1/2, which reside on a square lattice and interact via superexchange – a close
analogy with the undoped cuprates. This observation motivates doping studies of
Sr2IrO4 searching for superconductivity [216, 217]. Experimentally, however, far
less is known about the microscopic ordering and excitations in iridates than in
cuprates. Inelastic neutron scattering, which can in principle reveal such prop-
erties, is not possible because Ir is a strong neutron absorber and, moreover,
crystals presently available tend to be tiny. As a consequence not even the in-
teraction strength between the effective spins in the simplest iridium-oxides is
established: estimates for Sr2IrO4, for instance, range from ∼50 meV [214] to
∼110 meV [218].

In this chapter we show that while for iridates neutron scattering falls short,
RIXS fills the void: RIXS at the iridium L edge offers direct access to the excita-
tion spectrum across the Brillouin zone, enabling one to measure the dispersion
of elementary magnetic excitations. Besides the low energy magnons related to
long-range order of the doublets, RIXS will also reveal the dynamics of higher
energy, doublet to quartet, spin-orbit excitations. This allows to directly test
theoretical models for the excitation spectra and extract accurate values of the
superexchange and spin-orbit coupling constants J and λ, respectively. This
chapter deals with the RIXS spectrum of insulating iridates in general, and of
Sr2IrO4 in particular. Sec. 6.2 reviews the different models for Sr2IrO4 (the strong
spin-orbit coupling model outlined above and the crystal field model for Ir ions in
a D4h crystal field). Sec. 6.3 describes the dipole operators that appear in RIXS
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at the Ir4+ L edge. In the remainder of that section, the local effective scattering
operators are derived, neglecting intermediate state dynamics. The results of this
section apply to all Ir4+ compounds with octahedral crystal fields (provided spin-
orbit coupling also dominates). Then, Sec. 6.3.3 calculates the RIXS spectrum of
Sr2IrO4 within the strong spin-orbit coupling limit. The Kramers doublet gives
single- and two-pseudo-magnon excitations, while excitations from the Kramers
doublet to the higher energy quartet are assumed to be local excitations.

6.2 Theory of Sr2IrO4

As noted in Sec. 2.2.2, the relativistic spin-orbit coupling in atoms is proportional
to Z4, where Z is the atomic number: in the heavier elements, spin-orbit coupling
becomes more and more important. In iridium, the element that is studied in
this chapter, the spin-orbit coupling λ is estimated to be as large as 380 meV
in Ir4+ ions [219]. When the crystal field and superexchange interactions are
small, the relativistic spin-orbit coupling can dominate the physics of materials
containing Ir. Examples of such materials are Sr2IrO4, which will be studied in
this chapter, Na2IrO3 [212, 214], and pyrochlore iridates A2Ir2O7 (where A is a
3+ ion) [213].

Sr2IrO4 is a Mott insulator, although not a very good one: the optical gap
is only ∼ 0.4 eV [220]. It is a layered perovskite compound: each layer consists
of a square lattice of Ir ions in a 5d5 configuration. The Ir ions are located
in octahedra of oxygen ions, who split the d levels by ∼ 3 eV into eg and t2g
states [221]. This 10Dq splitting is strong enough to enforce that the lowest
energy configuration is t52g [222, 223]. Thus, Sr2IrO4 can be regarded as the t2g
analog of La2CuO4 [214]. The local ground state of the hole in the t2g shell could
be dictated by the remaining crystal field (the octahedra are elongated along
the z direction, favoring |xy〉), by superexchange interactions (as in the titanates
described in chapter 5), or by the relativistic spin-orbit coupling.

The spin-orbit coupling λ ≈ 380 meV [219] is much larger than intersite
exchange interactions could generate. Jackeli and Khaliullin [214] derive a su-
perexchange constant of 45 meV from the magnetic ordering temperature: an
order of magnitude smaller than λ. Further, resonant X-ray scattering (RXS)
data contradicts the crystal field scenario, and is in agreement with dominant
spin-orbit coupling [223].

We first investigate the case that spin-orbit coupling dominates the low en-
ergy physics of the t5

2g configuration. The 10Dq splitting is larger by an or-
der of magnitude than λ, and therefore we assume that the t2g hole does not
hybridize with the eg orbitals through the spin-orbit coupling. The orbital de-
gree of freedom of the hole is then described by an effective angular momentum
l = 1 [25]. The true orbital angular momentum L = −l, and when the spin-
orbit coupling term is projected to the t2g subspace, it becomes −λl · S with
λ > 0. Note that electron states are considered here, instead of hole state
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as in Ref. [214]. The eigenstates of the spin-orbit coupling single ion Hamil-
tonian H0 = −λl · S are characterized by the total effective angular momen-
tum Jeff = S + l: H0 = −λ

[
J2

eff − l2 − S2
]
/2 = −λ [Jeff(Jeff + 1)/2− 11/8].

The eigenstates form a doublet with Jeff = 1/2 at energy λ and a quartet with
Jeff = 3/2 at energy −λ/2. In the t52g ground state, the quartet is completely
filled while the doublet contains a single electron.

Next, we incorporate lattice distortions in the model. They add a term −∆l2z
to H0, with ∆ > 0 for elongation of the octahedra along the z axis. This lowers
the zx and yz states in energy, relative to the xy orbital. The Jeff = 1/2 Kramers
doublet remains unsplit and becomes [214]∣∣∣↑̃〉 = sin θ |0 ↑〉 − cos θ |+1 ↓〉 and

∣∣∣↓̃〉 = sin θ |0 ↓〉 − cos θ |−1 ↑〉 (6.1)

with tan 2θ = 2
√

2λ/(λ − 2∆), and where the orbital states are indexed by
lz = −1, 0,+1. The corresponding orbital annihilation operators d−1,0,1 are
defined by the relations

dyz = − 1√
2
(d1 − d−1),

dzx = i√
2
(d1 + d−1), (6.2)

dxy = d0.

The energy of the doublet is Ef = λ/(
√

2 tan θ). The Jeff = 3/2 quartet splits
into two doublets: {|1 ↑〉 , |−1 ↓〉} at energy Eg = −∆ − λ/2 and {cos θ |0 ↑〉 +
sin θ |1 ↓〉 , cos θ |0 ↓〉+ sin θ |−1 ↑〉} at energy Eh = −(λ tan θ)/

√
2.

The three doublets are conveniently denoted by the three fermions f, g, h,
where the pseudo-spin labels the two states within the doublets. We introduce
their annihilation operators

f↑ = sin θ d0↑ − cos θ d1↓,
f↓ = sin θ d0↓ − cos θ d−1↑,

g↑ = d1↑,
g↓ = d−1↓,

h↑ = cos θ d0↑ + sin θ d1↓,
h↓ = cos θ d0↓ + sin θ d−1↑.

(6.3)

Their energies were already denoted as Ef,g,h above.
Now, we take two limits: the one suggested by Ref. [214] and supported by the

RXS experiment of Ref. [223] which supposes that spin-orbit coupling dominates
(∆/λ � 1), and the other limit where lattice distortions dominate (∆/λ � 1).
For these limits, we find

lim
∆/λ→0

tan θ =
1√
2

and lim
∆/λ→±∞

tan θ = − λ√
2∆

. (6.4)

The ground state of the Ir ion is doubly degenerate in both cases. When lattice
distortions are absent, Jeff is a good quantum number and the g and h doublets
together form the Jeff = 3/2 quartet, while the hole occupies the f doublet with
Jeff = 1/2 [Eq. (6.1) has sin θ =

√
1/3 and cos θ =

√
2/3 in this limit]. The
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energies become Ef = λ and Eg = Eh = −λ/2, as noted above. When lattice
distortions dominate, θ → 0. The hole occupies the h doublet, which becomes
{|xy ↑〉 , |xy ↓〉}. The energies of the doublets in this limit are Ef = Eg = −∆
and Eh = 0.

The RIXS experiments proposed in this chapter enable one to distinguish
between the two scenario’s, and so can provide complimentary evidence to exist-
ing data. But from RIXS data, one could draw more conclusions since one can
probe the excitation spectrum. In the remainder of this section, the excitation
spectrum of Sr2IrO4 is discussed.

Collective behavior of the f doublet. When spin-orbit coupling dominates,
Sr2IrO4’s excitation spectrum of the f doublet is quite remarkable: the Jeff = 1/2
levels interact via superexchange and the low energy effective Hamiltonian is of
Heisenberg form, as described in, for instance, Ref. [214]. We briefly review this
Hamiltonian here. Starting from the spin-orbital superexchange Hamiltonian for
1 electron in the triply degenerate t2g orbitals (Eq. (3.11) from Ref. [160]), one
projects on the low energy Kramers doublet and obtains a low energy effective
superexchange Hamiltonian for these pseudo-spin-1/2 states:

Heff = J1S̃i · S̃j + J2(S̃i · rij)(rij · S̃j) (6.5)

where S̃ is the pseudo-spin-1/2 operator, rij is the unit vector directed along
the ij bond, and J1,2 are energies determined by Hund’s rule coupling JH . For
JH � U , we get J1 ≈ 4/9 and J2 ≈ 2JH/9U in units of 4t2/U , with t the Ir-Ir
hopping integral and U the same-orbital Coulomb repulsion. In this limit, the
result is a Heisenberg coupling with weak dipolar anisotropy [214].

Next, the rotation of the octahedra (by an angle α ≈ 11◦) are taken into
account, resulting in a Dzyaloshinsky-Moriya (DM) interaction. The DM inter-
action rotates the spins by an angle φ ≈ 8◦. The difference between α and φ is
controlled by the distortion along the z axis. In the limit of no distortion along
the z axis, α = φ. The Hamiltonian on the bond ij with JH = 0 but non-zero
DM interaction is

Hij = J S̃i · S̃j + JzS̃
z
i S̃

z
j + D · S̃i × S̃j (6.6)

where D = (0, 0,−D) (which flips sign on alternating bonds) and the energies
J, Jz and D are defined in terms of the octahedron rotation angle α and the dis-
tortion parameter θ as in Ref. [214]. The DM interaction term can be transformed
away by rotating the spin operators around the z axis over the spin canting angle
±φ (alternating with sublattice) with tan 2φ = −D/J . We define the unitary
transformation U(φ) = ⊗i exp{−i(±1)iφSzi } where (±)i = 1 on the sublattice A,
where the octahedron are rotated over +α, and −1 on sublattice B (−α). The
transformed Hamiltonian is

H̃ = U(φ)HU−1(φ) = J̃ S̃i · S̃j , (6.7)
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where J̃ = J + Jz. Note that the isotropic form is only retreived when there
is a special relation between J, Jz and D. When JH/U = 0, the degeneracy of
the ground state is not lifted by the DM interaction1. A more extended version
including Hund’s rule exchange is given in Ref. [214].

It is remarkable that Sr2IrO4 is not only structurally identical to La2CuO4,
it also has the same low energy excitation spectrum. However, the physical form
and origin of these excitations are are not at all similar.

Local behavior of the g and h doublets. Excitations to the g and h doublets
are very interesting because it is conjectured that Sr2IrO4 is a Mott insulator only
because of the large spin-orbit coupling [222,224]. The Jeff = 1/2 doublet consists
of small orbitals, which have small hopping amplitudes, therefore confining the
charges and making the system Mott insulating. The Jeff=3/2 quartet consists of
larger orbitals with larger hopping amplitudes, which would perhaps be enough
to form metallic bands. If that picture is correct, then the g and h excitations
should be very broad in RIXS: the excited electrons come from all the occupied
g and h bands, and the spectrum is a convolution over all these widely dispersing
states. In contrast, if Sr2IrO4 is a conventional Mott insulator, the g and h
excitations will be localized and have more sharply defined energies. Since J
is small compared to λ, these excitations will disperse very little. They have
an energy slightly larger than the Mott gap, and decay via electron-hole pairs
reduces their lifetime. Also, superexchange processes will often result in decay to
Jeff = 1/2 states. In practice, this will make it very hard to distinguish between
the two theories for the insulating behavior. On the other hand, the coupling of
the inter-spin-orbit multiplet excitations to charge modes enables RIXS to also
probe the latter.

6.3 Iridium L edge cross section

The spin-orbital degrees of freedom can be probed with direct RIXS at the Ir L
edge. This process involves two (dipole) transitions connecting the 2p core states
to the 5d valence ones. Here, we consider the case that the incident photons are
tuned to excite a core electron into the empty t2g state.

The intermediate state (5d t62g) has a filled shell. The dominant multiplet
effect comes from the core orbital’s spin-orbit coupling Λ: the 2p core states split
into J = 1/2 (the L2 edge) and J = 3/2 states (the L3 edge), like at the Cu L
edge. Since the L2 and L3 edge are separated by 1.6 keV [223], their interfere is
negligible, given the much smaller lifetime broadening (a few eV [100]).

1This can be understood as follows: the Jeff = 1/2 Kramers doublet states are each others’
time-reversed states. This implies that their charge distributions are the same, and therefore
also the hopping amplitudes to the neighboring oxygens (possibly up to a sign, although this
sign cannot be affected by a continous rotation of the octahedra). By symmetry, rotation of the
octahedra does not change the equality of the hopping amplitudes. This means there cannot
be a preferential state and preferential direction, and thus no anisotropy.
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The lifetime broadening at the Ir L edge is still quite large compared to the
dynamics of the 5d electrons. Therefore, the UCL expansion should work quite
well. We employ the UCL expansion to zeroth order. To obtain the cross section,
one only needs the dipole operators.

6.3.1 Dipole operators

We introduce the electron annihilation operators for the 2p orbital angular mo-
mentum eigenstates

px = − 1√
2
(p1 − p−1)

py = i√
2
(p1 + p−1) (6.8)

pz = p0,

analogous to Eqs. (6.2). The core electron eigenstates are easily obtained from
Sec. 6.2, because both the valence and the core electrons are spin-orbit coupled
and have orbital angular momentum 1. The J = 1/2 states are lowest in energy,
which means that the L2 edge is higher in energy than the L3 edge. In analogy to
the valence electrons, we introduce the 2p electron annihilation operators F↑,↓ for
the L2 wave functions and G↑,↓, H↑,↓ for the L3 ones. For symmetry of notation,
we introduce a tetragonal distortion δ for the core levels too, which splits the
J = 3/2 quartet into two doublets G and H. We find, in analogy to Eqs. (6.3),

F↑ = sin Θ p0↑ − cos Θ p1↓,
F↓ = sin Θ p0↓ − cos Θ p−1↑,

G↑ = p1↑,
G↓ = p−1↓,

H↑ = cos Θ p0↑ + sin Θ p1↓,
H↓ = cos Θ p0↓ + sin Θ p−1↑,

(6.9)
where tan 2Θ = 2

√
2Λ/(Λ− 2δ).

Now, we calculate the dipole matrix elements for the Ir L edge. We write the
dipole operator in second quantization (p†x creates a 2px electron, d†xy creates a
5dxy electron, etc.), and use the octahedral symmetry of Sr2IrO4 to simplify the
expression:

x · ε =
∑
i,j,k,σ

d†kσ 〈5dk|xi |2pj〉 εipjσ + h.c.

=
∑
σ

d†yzσ 〈5dyz|
(
y |2pz〉 εypzσ + z |2py〉 εzpyσ

)
+ ..zx..+ ..xy..+ h.c.

= −i 〈5dyz| y |2pz〉
∑
σ

[
ε+(d†−1p0 − d

†
0p1) + ε−(d†1p0 − d

†
0p−1)

+εz(d
†
1p−1 − d

†
−1p1)

]
+ h.c. = (D2 +D3) + h.c. (6.10)

where ε± = (εx ± iεy)/
√

2, and the spin label σ is suppressed in the last lines
but implied for every electron operator. The dipole operators for the L2 and L3
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edge, respectively, are

D2 = −i 〈5dyz| y |2pz〉
[
ε+

({
(ss′ + cc′)h†↓ + (sc′ − cs′)f†↓

}
F↑ + s′g†↓F↓

)
+ ε−

({
(ss′ + cc′)h†↑ + (sc′ − cs′)f†↑

}
F↓ + s′g†↑F↑

)
+εzc

′
(
g†↓F↑ − g

†
↑F↓

)]
, (6.11)

D3 = −i 〈5dyz| y |2pz〉
[
ε+

(
c′g†↓H↓ +

{
(sc′ − cs′)h†↓ − (ss′ + cc′)f†↓

}
H↑

−
{
sf†↑ + ch†↑

}
G↑

)
+ ε−

(
c′g†↑H↑ +

{
(sc′ − cs′)h†↑ − (ss′ + cc′)f†↑

}
H↓

−
{
sf†↓ + ch†↓

}
G↓

)
+ εz

(
s′g†↑H↓ +

{
sh†↑ − cf

†
↑

}
G↓ −

{
sh†↓ − cf

†
↓

}
G↑

−s′g†↓H↑
)]

(6.12)

where we abbreviated sin Θ = s′ and sin θ = s (and similar for the cosines).

6.3.2 Local RIXS scattering operator

The expressions for the dipole operators at the L2,3 edges [Eqs. (6.11) and (6.12)]
can be inserted in Eq. (2.41), and give, to zeroth order in the UCL expansion,

Ffi =
1

iΓ

∑
i

eiq·Ri 〈f | (D†2,3)i(D2,3)i |i〉 (6.13)

We define the single site RIXS scattering operators O2,3 = D†2,3D2,3 (the site
index is suppressed in the following). Projecting out the core hole degrees of
freedom, these become

O2 = sin(θ −Θ)
∑

σ∈{↑,↓}

[
ε′∗σ̄ εσ̄ sin(θ −Θ)fσf

†
σ + ε′∗σ εσ̄s

′gσ̄f
†
σ

−(−1)σε′∗z εσ̄c
′gσf

†
σ + ε′∗σ̄ εσ̄ cos(θ −Θ)hσf

†
σ

]
(6.14)

at the L2 edge. The factor |〈5dyz| y |2pz〉|2, which is just a positive number, is
dropped. We define (−1)σ to be 1 for σ = ↑ and −1 for σ = ↓. Further, ε↑ = ε+
and ε↓ = ε−. Note that ε′∗+ = (ε′x + iε′y)∗/

√
2. For the L3 edge,

O3 =
∑

σ∈{↑,↓}

[{
ε′∗σ εσs

2 + ε′∗σ̄ εσ̄ cos2(θ −Θ) + ε′∗z εzc
2
}
fσf

†
σ+
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+
{

(−1)σ(ε′∗σ̄ εz − ε′∗z εσ)sc
}
fσ̄f

†
σ

−
{

(−1)σε′∗z εσ̄s
′ cos(θ −Θ)

}
gσf

†
σ − ε′∗σ εσ̄c′ cos(θ −Θ)gσ̄f

†
σ

+

{
(ε′∗σ εσ − ε′∗z εz)

1

2
sin 2θ − ε′∗σ̄ εσ̄

1

2
sin 2(θ −Θ)

}
hσf

†
σ

+
{

(−1)σ(ε′∗z εσs
2 + ε′∗σ̄ εzc

2)
}
hσ̄f

†
σ

]
. (6.15)

When spin-orbit coupling dominates, θ = Θ and the inelastic scattering intensity
at the L2 edge completely vanishes, in addition to the vanishing elastic inten-
sity [223]. In the presence of a large crystal field, this no longer holds: the
core electrons are much less affected by the crystal field than the 5d ones. In
the following, we split the local scattering operator into three parts that create
excitations in the f , g and h doublets.

Excitations within the f doublet. When λ � ∆, excitations within the
Jeff = 1/2 doublet are lowest in energy. The single site RIXS scattering operator
for intra-f doublet excitations can be written in terms of Pauli matrices that act
on the pseudo-spin of the f fermion. At the L2 edge,

O
(f)
2 =

1

2
sin2(θ −Θ)

[(
PA1g

+
1√
3
Q3

)
112 − Pzσz

]
, (6.16)

and at the L3 edge

O
(f)
3 =

[
1

6
cos2(θ −Θ)

(
3PA1g

+
√

3Q3

)
+

3

2
PA1g

−
√

3

6
(2c2 − s2)Q3

]
112

− 1

2

(
cos2(θ −Θ)− s2

)
Pzσz +

sin 2θ

2
√

2
(Pxσx + Pyσy), (6.17)

where we introduced polarization factors

Px = i
(
ε′∗y εz − ε′∗z εy

)
, Tx = ε′∗y εz + ε′∗z εy, PA1g

= 2
3

(
ε′∗x εx + ε′∗y εy + ε′∗z εz

)
,

Py = i
(
ε′∗z εx − ε′∗x εz

)
, Ty = ε′∗x εz + ε′∗z εx, Q2 = ε′∗y εy − ε′∗x εx, (6.18)

Pz = i
(
ε′∗x εy − ε′∗y εx

)
, Tz = ε′∗x εy + ε′∗y εx, Q3 = 1√

3

(
ε′∗x εx + ε′∗y εy − 2ε′∗z εz

)
.

The polarization factors are chosen such that they are normalized as Tr(Γ2) = 2,

where the matrices Γ are defined by the polarization factors P as P = ε′∗i Γijεj .
In the cubic limit, O2 vanishes, while at the L3 edge one finds

O
(f)
3 = PA1g

112 +
1

3
(Pxσx + Pyσy − Pzσz). (6.19)

This is not a scalar product, which might be surprising because of the octahedral
symmetry. However, the 5d t2g orbitals do not transform as a vector: they have
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effective angular momentum l = −L. The Zeeman energy B ·S, projected on the
f doublet, transforms in a similar way:

B ·S = cos 2θ Bzσz−s2(Bxσx+Byσy)
∆→0−−−→ −1

3
(Bxσx +Byσy −Bzσz) (6.20)

These combinations become scalar products when we flip the sign of either f↑ or
f↓ in Eq. (6.3). Note that the Hamiltonians (6.5) and (6.6) are invariant under
such a sign change. In the following, we will flip the sign of f↓. The inelastic
parts of the scattering operators become

O
(f)
2

∆→0−−−→ 0, (6.21)

O
(f)
3

∆→0−−−→ −1

3
(Pxσx + Pyσy + Pzσz) . (6.22)

Excitation of g and h doublets. For the L2 edge,

O
(g)
2 = sin(θ −Θ)

[
is′

2

(
Q2σ

(g)
y + Tz σ

(g)
x

)
− c′

2
√

2
(Ty − iPy )11

(g)
2

+
ic′

2
√

2
(Tx + iPx)σ(g)

z

]
, (6.23)

O
(h)
2 =

1

4
sin 2(θ −Θ)

[(
PA1g

+ 1√
3
Q3

)
σ(h)
z − Pz 11

(h)
2

]
, (6.24)

where, for instance, σ
(h)
z = h↑f

†
↑ − h↓f

†
↓ , and where the sign flip on f↓ discussed

above is incorporated.

At the L3 edge,

O
(g)
3 = cos(θ −Θ)

[
− s′

2
√

2
(Ty − iPy )11

(g)
2 +

is′

2
√

2
(Tx + iPx)σ(g)

z

− ic
′

2
Q2σ

(g)
y +

ic′

2
Tz σ

(g)
x

]
, (6.25)

O
(h)
3 =

1

4

[√
3 sin 2θ Q3 − sin 2(θ −Θ)

(
PA1g

+ 1√
3
Q3

)]
σ(h)
z

+
i

4
[sin 2θ + sin 2(θ −Θ)]Pz11

(h)
2 +

1

2
√

2
[Ty + i cos 2θ Py]σ(h)

x

+
1

2
√

2
[Tx − i cos 2θ Px]σ(h)

y . (6.26)

In the cubic limit, one obtains

O
(g)
2 = O

(h)
2 = 0 (6.27)
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O
(g)
3 =

1√
6

[
−1

2
(Ty − iPy)11

(g)
2 +

i

2
(Tx + iPx)σ(g)

z − iQ2σ
(g)
y + iTzσ

(g)
x

]
(6.28)

O
(h)
3 =

1

3
√

2

[
iPz11

(h)
2 +

√
3Q3σ

(h)
z +

3

2

(
Tyσ

(h)
x + Txσ

(h)
y

)
+
i

2

(
Pyσ

(h)
x − Pxσ(h)

y

)]
. (6.29)

6.3.3 Iridium L edge RIXS cross section

Up to this point, the discussion is general and applies to all materials with an Ir4+

ion in an octahedral crystal field, including Kitaev-Heisenberg model compounds.
To obtain the RIXS cross sections for a certain material from the scattering
operators O2,3 is straightforward once the Hamilonian governing the interactions
between the Ir ions in that material is given.

In the remainder of this chapter, we specify to the case of Sr2IrO4. As laid
out in Sec. 6.2, we distinguish between the low energy Kramers doublet, which
shows collective behavior in the limit of strong spin-orbit coupling, and the high
energy quartet, which does not.

Cross section of intra- f doublet excitations. It should be noted that
the local scattering operators O2,3 are derived in the local axes of a rotated
octahedron. The Hamiltonian (6.6), however, is written in global coordinates.
Therefore, the polarization and spin vectors should be rotated back over an angle
α to obtain the scattering operator in global coordinates too. Reserving primes
for the local axes, one gets

P ′x = cosα Px + sinα Py, T ′x = cosα Tx − sinα Ty,

P ′y = cosα Py − sinα Px, T ′y = cosα Ty + sinα Tx,

P ′z = Pz, T ′z = sin 2α Q2 + cos 2α Tz,

Q′2 = cos 2α Q2 − sin 2α Tz, Q′3 = Q3, P ′A1g
= PA1g , (6.30)

for the polarization factors. α flips sign on sublattice B, which is rotated in the
opposite direction. The rotated spin operators are

S′xi = U(−α)SxU−1(−α) = cosα Sx − (±1)i sinα Sy,

S′yi = U(−α)SyU−1(−α) = cosα Sy + (±1)i sinα Sx, (6.31)

S′zi = U(−α)SzU−1(−α) = Szi ,

where (±1)i is 1 on sublattice A and −1 on sublattice B. After this rotation,
the spins are transformed by U(φ) to the basis in which the Hamiltonian is of
Heisenberg type. Since α ≈ φ, the unitary transformation nearly cancels the
rotation over α. For α = φ, the cancellation is complete. In the following, we
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work in the cubic limit, so α = φ, and obtain for the complete, multi-site, inelastic
scattering operator:

Oq =
∑
i

eiq·Ri(O
(f)
3 )i = −1

3

∑
i

[
sinα ei(q+Q)·Ri (Pyσx − Pxσy)

+ eiq·Ri (cosα {Pxσx + Pyσy}+ Pzσz)
]

(6.32)

where Q = (π, π). Following Eq. (6.13), the RIXS cross section is then

d2σ

dΩdω
∝
∑
f

|〈f |Oq |g〉|2 δ(~ω − ~ωf ), (6.33)

where ~ωf is the energy of the final state |f〉.
To describe the pseudo-spin flip excitation spectrum of the pseudo-spin

Heisenberg model, Holstein-Primakoff bosons are introduced, in analogy to the
magnetic Heisenberg model in Sec. 4.2. The reference state is taken to be
the Néel state with ordering direction [110] [223], and accordingly, the vectors
n̂1 = (−1, 1, 0)/

√
2, n̂2 = (0, 0, 1), n̂3 = (1, 1, 0)/

√
2 are introduced. The scat-

tering operator becomes

Oq = −1

3

∑
i

[
sinα√

2
ei(q+Q)·Ri {(Py − Px)n̂3 · σi − (Px + Py)n̂1 · σi}

+ eiq·Ri

(
cosα√

2
{(Px + Py)n̂3 · σi + (Py − Px)n̂1 · σi}+ Pzn̂2 · σi

)]
.

(6.34)

The Holstein-Primakoff bosons are naturally introduced in the new coordinate
frame spanned by n̂1, n̂2 and n̂3:∑

i

eiq·Ri n̂1 · σi =
√
N(uq − vq)(α†q + α−q) (6.35)∑

i

eiq·Ri n̂2 · σi = i
√
N(uq − vq)(α†q+Q − α−q−Q) (6.36)

∑
i

eiq·Ri n̂3 · σi = δq,Q

(
N − 2

∑
k

v2
k

)
+ 2

∑
k

[
uk+qvk

(
α†k+q+Qα

†
−k

+αkα−k−q−Q

)
+ (vkvk+q − ukuk+q)α†k+q+Qαk

]
(6.37)

with uk and vk defined as in Eq. (4.10). The ground state is approximated by
the (pseudo-)magnon vacuum |0〉. The scattering operator consists of a single-
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magnon part

O(1)
q =

√
N

3

[
sinα√

2
(Px + Py )(uq + vq)

(
α†q+Q + α−q−Q

)
+

cosα√
2

(Px − Py )(uq − vq)
(
α†q + α−q

)
−iPz (uq − vq)

(
α†q+Q − α−q−Q

)]
(6.38)

and a double-magnon part

O(2)
q = −

√
2

3

∑
k

uk+qvk

[
sinα (Py − Px)

(
α†k+qα

†
−k + αkα−k−q

)
+ cosα (Px + Py )

(
α†k+q+Qα

†
−k + αkα−k−q−Q

)]
. (6.39)

The part of the scattering operator that does not change the number of magnons
is not considered here.

The single-magnon intensity then becomes

I(1) ∝ N

9

[∣∣∣∣ sinα√2
(Px + Py)(uq + vq)− iPz(uq − vq)

∣∣∣∣2
+

1

2
cos2 α |Px − Py|2 (uq − vq)2

]
δ(ω − ωq), (6.40)

and the two-magnon intensity

I(2) ∝ 2

9

∑
k

[
sin2 α |Px − Py|2 (uk+qvk + ukvk+q)

2

+ cos2 α |Px + Py|2 (uk+qvk − ukvk+q)
2
]
δ(ω − ωk+q − ωk). (6.41)

Note that for non-zero α there will be single-magnon weight at q = 0, in contrast
to our calculations for the cuprates, where the rotation of the octahedra was not
included.

Cross section of g and h excitations. For the g and h excitations, one
only has to consider the polarization dependence, because in a Mott insulating
state there is no collective behavior expected. The excitations decay rapidly via
particle-hole excitations and through superexchange coupling to, amongst others,
the f doublet on neighboring sites. Rapid decay eliminates collective behavior,
and therefore all q dependence. In a metallic state, the g and h excitations will
be broad convolutions over the bands they form, and are thus also q-independent.
Both excitations will be broadened quite strongly.
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For local excitations, it is convenient to express the RIXS intensity in terms
of Green’s functions:

I ∝
∑
f

|〈f |Oq |g〉|2 δ(ω − ωfi) = − 1

π
Im {Gq(ω)} (6.42)

with

Gq(ω) = −i
∫ ∞

0

dteiωt 〈g|O†q(t)Oq(0) |g〉 , (6.43)

where |g〉 is the ground state. In the case of local excitations, G(ω) is a quite
simple quantity. For instance, for g excitations one gets

G(g)
q (ω) = −i

∫ ∞
0

dtei(ω−ωg)t 〈g|
∑
j

e−iq·RjO†j
∑
i

eiq·RiOi |g〉 (6.44)

= lim
η→0

1

ω − ωg + iη

∑
i

〈g|O†iOi |g〉 (6.45)

where ~ωg = λ/
√

2 tan θ − (−∆ − λ/2) (the energy splitting between the local
ground state and a hole in the g states). We also define ~ωh = λ/

√
2 tan θ −

(−λ tan θ)/
√

2 for the h excitations. For simplicity, we have neglected the su-
perexchange coupling for the f states so that the energy of the g and h excita-
tions are given by the local considerations of Sec. 6.2, i.e., without corrections
for the broken superexchange bonds between neighboring f holes, etc. Also, we
neglect the rotation of the octahedra.

We note that

〈g| 11(g,h)†
2 11

(g,h)
2 |g〉 = 〈g|σ(g,h)†

a σ(g,h)
a |g〉 = 〈g| 11(f)

2 |g〉 ,

〈g|σ(g,h)†
a σ

(g,h)
b |g〉 = iεabc 〈g|σ(f)

c |g〉 = 0, (6.46)

〈g| 11(g,h)†
2 σ(g,h)

a |g〉 = 〈g|σ(f)
a |g〉 = 0,

where {a, b, c} = {x, y, z} and σ
(f)
z = f↑f

†
↑ − f↓f

†
↓ etc. Writing the scatter-

ing operator as the inner product (A0, A1, A2, A3) · (11(g,h)
2 , σ

(g,h)
x , σ

(g,h)
y , σ

(g,h)
z )

with appropriate complex numbers A, and using Eqs. (6.46), one obtains for the
correlation function:

O†O =

(
|A0|2 +

∑
i

|Ai|2
)

11
(f)
2

+
∑
i

{A∗0Ai +A0A
∗
i }+ i

∑
j,k

εijkA
∗
jAk

σ
(f)
i . (6.47)
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Since the σx,y,z are summed over all sites and the order is alternating, the
only contribution that is left is from the 112 term. What remains is

G
(g)
L2

= N
sin2(θ −Θ)

ω − ωg + iη

[
c′2

8
(|Ty − iPy|2 + |Tx + iPx|2) +

s′2

2
(|Tz|2 + |Q2|2)

]
,

G
(h)
L2

=
N

16

sin2 2(θ −Θ)

ω − ωh + iη

(
|Pz|2 +

1

3

∣∣∣√3PA1g
+Q3

∣∣∣2) ,
G

(g)
L3

= N
cos2(θ −Θ)

ω − ωg + iη

[
s′2

8
(|Ty − iPy|2 + |Tx + iPx|2) +

c′2

4
(|Q2|2 + |Tz|2)

]
,

G
(h)
L3

=
N

8

1

ω − ωh + iη

[
1

2
(sin 2θ + sin 2(θ −Θ))2 |Pz|2

+ |Ty + i cos 2θ Py|2 + |Tx − i cos 2θ Px|2

+
1

2

∣∣∣√3 sin 2θ Q3 − sin 2(θ −Θ)
(
PA1g + 1√

3
Q3

)∣∣∣2] . (6.48)

In the cubic limit, this reduces to

G
(g)
L2

= G
(h)
L2

= 0,

G
(g)
L3

=
N

6

1

ω − ωg + iη

[
1

4
(|Ty − iPy|2 + |Tx + iPx|2) + (|Q2|2 + |Tz|2)

]
, (6.49)

G
(h)
L3

= N
1

ω − ωh + iη

[
1

6

(
1

3
|Pz|2 + |Q3|2

)
+

1

8

∣∣∣∣Ty +
i

3
Py

∣∣∣∣2 +
1

8

∣∣∣∣Tx − i

3
Px

∣∣∣∣2
]
.

In the limit of strong spin-orbit coupling, the g and h doublets have the
same energy. Because quite some broadening is expected for these high energy
excitations even in the Mott insulating state (as discussed in Sec. 6.2), the two
peaks are probably not resolvable and merge into one big peak. In that case, it
is more interesting to study the total spectral weight of the g and h excitations.

The total spectral weight is obtained by integrating the cross sections of the
g and h excitations over energy loss, and adding them up. In the formula for the
cross section, the imaginary part of the Green’s function yields

− 1

π
lim
η→0

Im{ 1

ω − ωg + iη
} = − 1

π
lim
η→0

−η
(ω − ωg)2 + η2

= δ(ω − ωg). (6.50)

In the cubic limit with unrotated octahedra, one finds

I
(g+h)
L3

=
N

6

 ∑
i∈{x,y,z}

(
|Ti|2 +

1

3
|Pi|2

)
+ |Q2|2 + |Q3|2

 . (6.51)
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The polarization factors nicely group together, yielding the Oh invariants∑
i

|Ti|2 = 1− 2
∑
j

ε∗j εjε
′∗
j ε
′
j + |ε · ε′|2 , (6.52)

∑
i

|Pi|2 = 1− |ε · ε′|2 , (6.53)

∑
i

|Qi|2 = 2
∑
j

ε∗j εjε
′∗
j ε
′
j −

2

3
|ε′∗ · ε|2 , (6.54)

which add up to

I(g+h)(ε′, ε) =
N

9

[
2 + |ε′ · ε|2 − |ε′∗ · ε|2

]
. (6.55)

In case of linear incoming or outgoing polarization, the intensity is indepen-
dent of the polarization vectors. This entails that when the outgoing polarization
is not measured, as is the case in all RIXS experiments done so far, the intensity is
independent of the polarization vectors2. A non-trivial polarization dependence
can only arise when both incoming and outgoing X-rays are circularly polarized.

6.3.4 Iridium L edge cross section – Special cases

We now specialize the cross sections obtained above to some geometries often
used in experiments. We consider transferred momenta along the Γ −M and
Γ−X directions [Γ = (0, 0), X = (π, 0) and M = (π, π)], and take the scattering
angle to be 90◦. The incoming polarization is chosen to be linear, while the
outgoing polarization is not detected. Along the Γ−X path through the BZ, the
polarization vectors are

επ =

cosϕ
0

sinϕ

 , εσ =

0
1
0

 , ε′π =

− sinϕ
0

cosϕ

 , ε′σ = εσ. (6.56)

π and σ mean, respectively, polarization parallel and perpendicular to the scat-
tering plane. ϕ is the angle of the incoming X-rays with the normal to the IrO2

planes. Along the Γ−M path,

επ =

 1√
2

cosϕ
1√
2

cosϕ

sinϕ

 , εσ =
1√
2

−1
1
0

 , ε′π =

− 1√
2

sinϕ

− 1√
2

sinϕ

cosϕ

 , ε′σ = εσ. (6.57)

The angle ϕ is related to q. In 90◦ scattering geometry, the total transferred
momentum (at an incident energy of 11.2 keV at the L3 edge [223]) is ≈ 8.05 Å−1

2This can be seen as follows: when the outgoing photon’s polarization is not measured, it
is summed over. One can choose to sum over two orthogonal linear polarization vectors, which
makes ε′∗ = ε′, and the polarization vectors cancel in Eq. (6.55).
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while the X-point is at≈ 0.808 Å−1 [223]. The X-rays carry an order of magnitude
more momentum than needed to probe the BZ. It is therefore reasonable to
approximate ϕ ≈ 45◦ as constant: it varries 5.7◦ around 45◦ (assuming one stays
in the first 2D Brillouin zone). This fact greatly diminishes the asymmetry effects
between +q and −q that are so important in the cuprates (see Secs. 4.5.2 and
4.6.2).

Note that the integrated weight of the Jeff = 3/2 excitations are polarization-
independent for linearly polarized light: I(g+h) = 2N/9. For the Jeff = 1/2
excitations, we calculate 4 different cases: q towards X and M , and incoming
π and σ polarization. Abbreviating cosα = cα etc, the single- and two-magnon
intensity in each case is

I
(1)
Xπ ∝

N

18

[
s2
α

2
(1 + s2

ϕ)(uq + vq)2 +
c2α
2

(1 + s2
ϕ)(uq − vq)2 + c2ϕ(uq − vq)2

]
× δ(ω − ωq), (6.58)

I
(2)
Xπ ∝

1

9
(1 + s2

ϕ)
∑
k

[
s2
α

(
uk+qvk + ukvk+q

)2

+ c2α

(
uk+qvk − ukvk+q

)2
]

× δ(ω − ωk+q − ωk), (6.59)

I
(1)
Xσ ∝

N

18

[
s2
α

2
c2ϕ(uq + vq)2 +

c2α
2
c2ϕ(uq − vq)2 + s2

ϕ(uq − vq)2

]
δ(ω − ωq),

(6.60)

I
(2)
Xσ ∝

1

9
c2ϕ
∑
k

[
s2
α

(
uk+qvk + ukvk+q

)2

+ c2α

(
uk+qvk − ukvk+q

)2
]

× δ(ω − ωk+q − ωk), (6.61)

I
(1)
Mπ ∝

N

18

[
s2
αs

2
ϕ(uq + vq)2 + c2ϕ(uq − vq)2 + c2α(uq − vq)2

]
δ(ω − ωq), (6.62)

I
(2)
Mπ ∝

2

9

∑
k

[
s2
α

(
uk+qvk + ukvk+q

)2

+ c2αs
2
ϕ

(
uk+qvk − ukvk+q

)2
]

× δ(ω − ωk+q − ωk), (6.63)

I
(1)
Mσ ∝

N

18

[
s2
αc

2
ϕ(uq + vq)2 + s2

ϕ(uq − vq)2
]
δ(ω − ωq), (6.64)

I
(2)
Mσ ∝

2

9
c2αc

2
ϕ

∑
k

(
uk+qvk − ukvk+q

)2

δ(ω − ωk+q − ωk). (6.65)

The resulting spectra are displayed in Fig. 6.1, assuming ϕ ≈ 45◦ and α = 8◦.
The (pseudo-)magnon results are very similar to the cuprates: the single-magnon
intensity peaks strongly at the antiferromagnetic ordering vector (π, π). Also,
the two-magnon intensity at (0, 0) is suppressed while the two-magnon DOS is
highest there [see Fig. 4.5(b)]. The doublet to quartet excitations have an energy
of (3/2)λ. Although λ is measured to be around 380 meV, the exact ratio of λ
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to J is not known. The rough theoretical estimate J ≈ 45 meV [214] would put
(3/2)λ/J at 12.7, but that could well be off by 50% or more. High resolution
RIXS experiments would be a much better way to precisely determine this ratio.
We therefore regard the ratio as a free parameter in our theory, and put it at 8
for the moment. In Fig. 6.2, spectra at several transferred momenta are shown.
These figures are vertical cuts through Fig. 6.1. The spectral weight of the
different types of excitations is compared in Fig. 6.3.
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Figure 6.1: RIXS spectra of Sr2IrO4 at the Ir L3 t2g edge, including single-
and two-magnon Jeff = 1/2 excitations and Jeff = 3/2 excitations. The latter
are put at an energy of 8J with a phenomenological broadening of J (half-width
at half-max). We have assumed that the system is dominated by 5d spin-orbit
coupling, ϕ = 45◦ and α = 8◦. The left panel shows the spectrum for incoming
π polarization, and the right one for incoming σ polarization.
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Figure 6.2: RIXS spectra of Sr2IrO4 at the Ir L3 t2g edge, including single- and
two-magnon Jeff = 1/2 excitations and Jeff = 3/2 excitations. These spectra are
vertical cuts through Fig. 6.1. The left panel shows several spectra for incoming
π polarization, and the right one for incoming σ polarization.

A very striking feature of dominating spin-orbit coupling is the absence of
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Sr2IrO4 at the Ir L3 t2g edge, obtained
by integrating the different features of
the spectra of Fig. 6.1 over energy loss.
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such that the Jeff = 1/2 to Jeff = 3/2
excitations have spectral weight 1.

excitations in L2 edge spectra. Looking at the L3 edge with low energy resolution
(∼ 0.6 eV), it is impossible to see any details of the L3 excitation spectra of
Figs. 6.1 and 6.2 except for the total spectral weight. As is clear from Fig. 6.3,
the total spectral weight strongly peaks at q = (π, π) and is lowest (but non-
zero) at q = (0, 0). With a better energy resolution, one might be able to see the
dispersion of the magnon excitations: at q = (π, π), the intense single-magnon
peak disperses down to zero energy loss, from about 2J ≈ 90 meV at q = (π, 0)
and (π/2, π/2). RIXS can determine the values of λ and J up to the energy
resolution of the experiment.

The results obtained in this chapter can easily be applied to other Ir com-
pounds with octahedral crystal fields, such as the hexagonal Kitaev-Heisenberg
model compounds A2IrO3 (A = Li, Na) [214, 215]. The collective response will
be different, but the local scattering operators derived in Sec. 6.3.2 still apply.
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Cha p t e r 7

Phonon RIXS

Unpublished work. Determining the Electron-Phonon Coupling Strength in Cor-
related Electron Systems from Resonant Inelastic X-ray Scattering, with Michel
van Veenendaal and Jeroen van den Brink.

7.1 Introduction

Often novel electronic properties of materials can be understood by systemat-
ically unravelling the interaction between its electrons and phonons. Tunable
electric transport properties in molecular crystals, for instance, are explained by
the presence of a strong electron-phonon (e-p) coupling [225]. The dressing of
electrons by phonons is also responsible for the colossal magnetoresistance ef-
fect in manganites [226]. More delicate is the role that the e-p interaction plays
in high-Tc superconducting cuprates, which is the topic of a hot, persisting de-
bate [227–229]. The lack of a technique to measure the e-p coupling strength
perpetuates this controversy. Here we show that high resolution RIXS fills this
void and can provide direct, element-specific and momentum-resolved informa-
tion on the coupling between electrons and phonons. We provide the theoretical
framework required to distill e-p interaction strengths from RIXS, particularly
in strongly correlated transition metal oxides such as the high-Tc cuprates.

The state-of-the-art resolution of RIXS experiments is such that photon en-
ergy loss features on an energy scale of 25 meV can be distinguished at a copper
or nickel L3 edge [11,112]. This resolution has brought phonons within the energy
window of observation and indeed this year the first glimpses of phonons were
resolved in RIXS [11, 230]. To put this achievement in perspective, one should
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realize that the incident photons at the Cu L edge have an energy of around 930
eV, implying experiments have a resolving power of about 4 · 104. Developments
in instrumentation are driving this already impressive figure further up [3]. Here
we show how the progress in accuracy will allow the extraction of a number of
characteristics of the e-p interaction directly from RIXS, including spatial infor-
mation on the e-p coupling strength. No other experimental technique has access
to such e-p characteristics, particularly in strongly correlated 3d transition metal
oxides.

RIXS couples to phonons because the intermediate state in the RIXS process
has an altered charge distribution, which influences the lattice. Most core holes
decay very rapidly, and there is not enough time for the lattice to fully adjust to
the transient charge distribution. Therefore, the final states of the RIXS process
contain only few phonons; multi-phonon excitations are suppressed by the large
lifetime broadening Γ.

The advantage of RIXS is that X-ray photons carry an appreciable momen-
tum. This allows RIXS to sample the Brillouin zone and hence the phonon
dispersion. In contrast, Raman scattering in the optical range is restricted to
zero momentum transfer. Using Raman or neutron scattering, one can measure
the broadening of phonon peaks. Because of e-p coupling, the phonon decays
for instance in an electron-hole pair and consequently the lifetime of the phonon
is decreased. This adds to the broadening of the phonon peaks. Allen’s for-
mula [231] gives the connection between this broadening and the e-p coupling
constant. However, in the absence of low energy electron-hole excitations, like in
Mott insulators, this decay channel does not exist. Other methods to measure
the e-p interaction also do not have access to momentum-dependent informa-
tion. Electron tunneling for instance, has no momentum-dependence and thus
cannot probe how strong an electron couples to a particular phonon at a partic-
ular wavevector. Moreover, it is intrinsically surface sensitive and suffers from
the practical difficulty to make good yet partially transparent barriers [232–234].
Another asset of RIXS is its element-specificity: in a cuprate not only the copper-
related phonons can in principle be accessed at the Cu L edge, but also the
oxygen-related ones at the O K edge – resolution permitting.

Measuring phonon dispersions is a promising new utilization of RIXS but
as a technique it is up against inelastic neutron scattering and (non-resonant)
inelastic X-ray scattering, well-established experimental methods with the same
capacity. Here we make the case that what really sets RIXS apart is the way
phonons are excited, leading to the capability to measure momentum dependent
e-p couplings.

This chapter is organized as follows: Sec. 7.2 reviews the general e-p cou-
pling Hamiltonian and how it relates to RIXS. In Sec. 7.3, the cross sections for
Einstein phonons and dispersive phonons are derived. These yield complicated
expressions, which simplify tremendously in the UCL expansion, as explained in
Sec. 7.3.1.
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7.2 Electron-phonon coupling

As an introduction to phonon scattering in RIXS, we start with a summary of
e-p coupling, closely following chapter 1.3.2 in Ref. [62]. Then we discuss how
the e-p Hamiltonian relates to the RIXS process, where the core hole and the
photo-excited electron form a potential that perturbs the lattice.

7.2.1 Theory of electron-phonon coupling

We will assume that the core hole binds the photo-excited electron (which is a
very good approximation at the Cu L edge [157]). The electron-phonon Hamil-
tonian for electrons localized at positions Ri is [62]

H =
∑
k,λ

[
ωkλb

†
k,λbk,λ +

∑
i

(
bk,λ + b†−k,λ

)
eik·Ri

∑
G

Mk+G,λη(k + G)eiG·Ri

]
(7.1)

The free phonon dynamics is governed by the first term. The second term of the
Hamiltonian couples the electrons to phonons with momentum ~k and branch
index λ, which are created by the operator b†kλ. Note that we have chosen units
such that ~ = 1. Further, we have

Mk+G,λ = −(k + G) · ξkλ

√
~

2ρVωkλ
Vei(k + G) (7.2)

η(k + G) =

∫
drei(k+G)·r∆ρ(r) (7.3)

with ∆ρ(r) the change in the charge distribution due to the electron (centered
at r = 0), V the volume of the crystal and ρ its density. ξkλ is the phonon
polarization. Vei(k) is the Fourier transform of the potential of an ion placed at
the origin. For an ion with a point-potential, Vei(k) ∝ 1/k2.

We assume that the crystal has inversion symmetry: ωkλ = ω−k,λ and ξkλ =
−ξ∗−k,λ. Since the Hamiltonian should be Hermitian, we obtain the condition
M∗−k−G,λη

∗(−k−G) =Mk+G,λη(k + G), which is indeed satisfied if V ∗ei(−k−
G) = Vei(k + G): Vei is invariant under inversion too.

Next, we assume that there is only one electronic excitation during the RIXS
process, as is the case in RIXS if we neglect the electronic intermediate state
dynamics. The unit cell is chosen such that the core hole is located at its center
(R ·G = 0).

The electronic degree of freedom can be written in second quantization, using
eik·R =

∑
i d
†
idie

ik·Ri where di annihilates the photo-excited electron at site i.
In momentum space, the Hamiltonian is

H =
∑
k,λ

[
ωkλb

†
kλbkλ +Mkλ

∑
p

d†pdp−k

(
bkλ + b†−k,λ

)]
(7.4)
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with

Mkλ =
∑
G

Mk+G,λη(k + G). (7.5)

Because of inversion symmetry M∗k,λ = M−k,λ.

7.2.2 Electron-phonon coupling in RIXS

To understand the capacity of RIXS to measure the momentum dependence of the
e-p interaction, we start with the e-p coupling Hamiltonian (7.4). For definiteness
we focus on the high-Tc cuprates which have all their Cu 3d orbitals filled apart
from a single hole in the x2-y2 orbitals, but our analysis is general. In the Cu
L edge RIXS process, the x2-y2 state is transiently occupied as an electron from
the core is launched into it. The change in the charge density ∆ρ(r) is given by
the shape of the x2-y2 orbital and the core hole. As mentioned before, the filled
x2-y2 state is very short-lived. There is then a certain probability that during
the lifetime of the core hole a phonon is excited and left behind in the final
state. Obviously this probability is related to the coupling of the x2-y2 electron
to this particular phonon. Note that the presence of the core hole ensures that
the intermediate state is locally charge neutral. Thus the phonons that couple
to the 3d x2-y2 state with its characteristic quadrupolar charge distribution light
up in L edge RIXS.

One might object that the phonons react to the core hole as well as to the
photo-excited electron. The contribution of the core hole to the electric poten-
tial outside the Cu ion is very small, however, as can be seen from a multipole
expansion of the potential of the core hole plus photo-excited electron (see, for
instance, Ref. [235], page 148):

V (r) =
1

4πε0

[
1

r

∫
dr′ ρ(r′) +

1

r2

∫
(r̂ · r′)ρ(r′)

+
1

2r3

∫
dr′[3(r̂ · r′)2 − r′2]ρ(r′) + . . .

]
(7.6)

where r = |r|r̂ = rr̂ and ρ(r) = e |〈r|2p〉|2 − e |〈r|3d〉|2, with |2p〉 and |3d〉 the
states of the core hole and the photo-excited electron, respectively. Since the core
orbitals have a very small radius compared to the valence orbitals, a first order
approximation would be |〈r|2p〉|2 ≈ δ(r), and the core hole only contributes to
the monopole of the potential. Outside the Cu ion, the total monopole contribu-
tion vanishes. Within this approximation, the only contributions to the electric
potential outside the Cu ion come from the 3d valence orbitals. Further, the
dipole contributions are zero by symmetry. We conclude that the lattice couples
mainly to the quadrupole potential of the photo-excited electron, and not to the
core hole. At the Cu K-edge, in contrast, the main contribution to the potential
comes from the core hole.
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7.3 RIXS cross section for phonons

To understand how the electron-phonon coupling is precisely reflected in the
RIXS intensity, we evaluate the RIXS amplitude for phonon scattering F in the
Kramers-Heisenberg equation (2.30). The polarization factor (2.42) describing
processes where only phonons are excited, is well approximated by the elastic
process, as the phonons modify the electronic states of the system only slightly.
Consequently, the dipole transition amplitudes are also marginally affected. In
the case of Cu L edge RIXS at the cuprates, the photo-excited electron fills the
only available hole, i.e., the hole in the 3dx2−y2 orbital. The polarization factor
for elastic processes and phonon scattering is given by

Tψ(ε′, ε) = 〈ψ| ε′∗ · r
∣∣3dx2−y2

〉 〈
3dx2−y2

∣∣ ε · r |ψ〉 (7.7)

where ψ is one of the resonant core states, see, e.g., Sec. 4.3.1. Since the lattice
(approximately) does not react to the core hole, the latter can be integrated out
from the scattering amplitude:

Ffi =
∑
ψ

Tψ(ε′, ε)
∑
i

eiq·Ri

∑
n

〈f | di |n〉 〈n| d
†
i |i〉

Ei + ~ωk − En + iΓ
. (7.8)

The sum over ψ can be performed and gives the atomic scattering factor for
elastic scattering Tel(ε

′, ε) =
∑
ψ Tψ(ε′, ε).

Due to the presence of the intermediate states, it is in general impossible to
evaluate RIXS scattering intensities exactly, even in model systems. One there-
fore often resorts to finite size cluster calculations to compute RIXS spectra [2,73].
The e-p problem at hand, however, is an exception. We have solved the RIXS
phonon spectrum exactly by means of a canonical transformation. The fact that
one is dealing with harmonic bosons allows for this solution.

Einstein phonons. In analyzing the general solution, it is instructive to con-
sider the Einstein model, which comprises a single non-dispersive phonon per site
of frequency ω0 with a coupling strength M . The e-p Hamiltonian reduces to

H =
∑
i

ω0b
†
i bi +Md†idi (b

†
i + bi ). (7.9)

This Hamiltonian can be diagonalized by a canonical transformation H̄ =
eSHe−S [62], with S =

∑
i d
†
idiSi where

Si =
M

ω0
(b†i − bi ). (7.10)

As there is a single core hole present, this results in

H̄ =
∑
i

ω0b
†
i bi −

M2

ω0
, (7.11)
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where the last term merely shifts the energy at which the resonance occurs.
The eigenstates of H̄ are all the possible occupations {ni} of the phonon states,
indexed by m, with energies Em =

∑
i ni(m)ω0 −M2/ω0. The transformation

can be thought of as shifting the origin of the lattice coordinate to the new
equilibrium position of the lattice: zero phonons in a transformed state describes
the lattice at rest in the new equilibrium position. The eigenstates

∣∣ψ̄m〉 of H̄

are related to the eigenstates |ψm〉 of H by |ψm〉 = e−S
∣∣ψ̄m〉. Inserting this

transformation in the scattering amplitude (7.8) gives

Ffi = Tel(ε
′, ε)

∑
i

eiq·Ri

∑
m

〈f | die−S
∣∣ψ̄m〉 〈ψ̄m∣∣ eSd†i |i〉

Ei + ~ωk − Em + iΓ

= Tel(ε
′, ε)

∑
i

eiq·Ri

∞∑
ni=0

〈n′i| e−Si |ni〉 〈ni| eSi
∣∣n0
i

〉
z +M2/ω0 − niω0

, (7.12)

where in the last step the photo-excited electron degree of freedom is integrated
out. We defined z = ~ωk − Eres + iΓ, where Eres is the peak energy of the
phonon-broadened XAS spectrum (see page 226 of Ref. [62]). n0

i , ni , and n′i are
the occupations in the initial, intermediate, and final states, respectively. In the
local model, the final states are indexed by the local phonon numbers {n′i}. Note
that final states where the phonon number has been changed at multiple sites
cannot be reached: phonons can only be created and annihilated at the core hole
site, and only contributions from this site remain in the numerator of Eq. (7.12).

The evaluation of the scattering amplitude is given in appendix C; the zero
temperature result is

Ffg = Tel(ε
′, ε)

∑
i

eiq·Ri

 n′i∑
n=0

Bn′in(g)Bn0(g)

z + (g − n)ω0
+

∞∑
n=n′i+1

Bnn′i(g)Bn0(g)

z + (g − n)ω0

 , (7.13)

with g = M2/ω2
0 . The Franck-Condon (FC) factors in the numerator are

Bab(g) =
√
e−ga!b!

b∑
l=0

(−1)a(−g)l
√
ga−b

(b− l)!l!(a− b+ l)!
. (7.14)

The zero temperature RIXS cross section is obtained by squaring the ampli-
tude. As argued above, final states where the phonon number has changed at
multiple sites cannot be reached with local phonons, so the sum over final states
in the Kramers-Heisenberg equation is

∑
i

∑∞
n′i=0. We get for the cross section

d2σ

dΩdω
∝
∑
f

|Ffg|2 δ(ω − n′ω0) = N |Tel(ε
′, ε)|2

∞∑
n′=0

∣∣∣∣∣∣
n′∑
n=0

Bn′n(g)Bn0(g)

z + (g − n)ω0

+

∞∑
n=n′+1

Bnn′(g)Bn0(g)

z + (g − n)ω0

∣∣∣∣∣
2

δ(ω − n′ω0) (7.15)
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Figure 7.1: RIXS phonon cross
section for Einstein phonons with
energy ω0, for different electron-
phonon couplings M . We take
Γ/ω0 = 5 (a typical value at the
copper L edge), and an incident
energy corresponding to the max-
imum in the XAS signal. The po-
larization dependence is omitted in
this plot, as well as the zero loss
peak, which shifts to the Bragg
peaks in an ideal crystal.

Note that the q dependence is lost, because of the local nature of the Einstein
phonons.

The resulting RIXS spectra for a typical weak, intermediate and strong cou-
pling case are shown in Fig. 7.1. It is clear that for stronger e-p interactions, a
larger number of multi-phonon satellites carry appreciable weight.

However, the first important observation is that the intensity of the zero loss
peak is dominant even in the strong e-p coupling regime, as is clear from Figs. 7.2
and 7.3. Its spectral weight is larger than the weight of all phonon loss peaks
combined when M/Γ . 1.5. As at the Cu L3 edge Γ = 280 meV [100], this
corresponds to the physical situation. This observation is empirically supported
by the fact that a dispersion of magnon [11, 19, 21] and bimagnon [14, 51–53]
excitations has been observed in L and K edge RIXS. Such dispersion would
be absent if these magnetic excitations were always accompanied by (multiple)
phonons, see Sec. 7.4.

It is interesting to note that in the case of an infinitely fast scattering process
(Γ → ∞), the lattice has no time to react to the transient electronic excitation,
and no phonons are excited in the final state.

The exact intensity for exciting a single phonon in the RIXS process is

I(1) = N |Tel(ε
′, ε)|2 e

−2g

g

∣∣∣∣∣
∞∑
n=0

gn(n− g)

n!(z + (g − n)ω0)

∣∣∣∣∣
2

, (7.16)

In leading order in the e-p coupling g this is I(1) ≈ N |Tel(ε
′, ε)|2M2/|z|4 so that

in this limit the single-phonon RIXS scattering intensity is directly proportional
to the dimensionless e-p coupling constant g, see Fig. 7.3. Increasing z by tuning
away from the absorption edge reduces the single-phonon scattering intensity.

Even when the e-p coupling g is not small, we can obtain the RIXS amplitude
in approximate form by using the fact that the timescale of a typical phonon (80
meV ∼ 52 fs) is much slower than the ultrashort RIXS timescale (1.6 eV ∼ 2.6
fs at the Cu K edge). This separation of timescales suggests that the scattering
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Figure 7.2: Calculated RIXS intensities for phonon loss as a function of loss
energy ω and detuning from the maximum of the absorption spectrum ωdet =
Re{z} in the case of (a) strong coupling and very long core-hole lifetime, (b)
strong e-p coupling and (c) intermediate/weak e-p coupling.
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Figure 7.3: Relation of the multiple phonon RIXS cross section to the electron-
phonon coupling strength M on an absolute energy scale. The ratio of the single-
phonon I(1) to zero-phonon I(0) cross section is shown in the left panel. The right
panel shows the two-phonon to single-phonon cross section ratio. The curves are
universal in the sense that they do not depend on the phonon frequency ω0 as
long as Γ � ω0 (for instance, Γ/ω0 = 5). The UCL expansion (straight line)
gives accurate results for M/Γ . 0.2 and Γ/ω0 � 1, i.e., when Γ is the dominant
energy scale. This corresponds to the physical regime of the e-p interaction at the
Cu K edge (Γ ≈ 1.5 eV) and to the intermediate and weak e-p coupling regime
at the Cu L edge (Γ ≈ 280) meV.
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process contains a viable expansion parameter, which is small even for a fast
phonon. The UCL expansion (see Sec. 2.5) formalizes this observation, and the

result, obtained in Sec. 7.3.1, is F (1)
UCL = Tel(ε

′, ε)Mz2 〈f |
∑
i e
iq·Ri(b†i + bi ) |i〉. So,

also in this limit, the single-phonon intensity is proportional to g.

Dispersive phonons. The exact solution of the cross section for Einstein
phonons can be generalized to the case of several dispersive phonon branches
λ. The e-p coupling is given by Eq. (7.4). Again we use the canonical transfor-
mation [62] H̄ = eSHe−S with S =

∑
i,k,λ Sikλ, where

Sikλ = d†idi
Mkλe

ik·Ri

ωkλ
(b†−k,λ − bkλ). (7.17)

so that now
H̄ =

∑
k,λ

ωkλ

(
b†kλbkλ − gkλ

)
, (7.18)

with gkλ = |Mkλ/ωkλ|2, and where we assumed that there is a single core hole
present. Note that this transformation does not diagonalize the kinetic term for
the electrons. However, this is no problem at excitonic edges, where the photo-
excited electron is not itinerant, and at the Cu K-edge, where the coupling is
mediated by the core hole. In close analogy with Eq. (7.12) for the Einstein
phonon, this transformation can be inserted in the scattering amplitude:

Ffi = Tel(ε
′, ε)

∑
i

eiq·Ri

∑
m

∏
k,λ 〈n′kλ| e−Sikλ |nkλ(m)〉 〈nkλ(m)| eSikλ

∣∣n0
kλ

〉
z +

∑
k,λ[gkλ − nkλ(m)]ωkλ

,

(7.19)

where n0
kλ, nkλ, and n′kλ are the occupation numbers of the modes indexed by k

and λ in the ground, intermediate, and final states, respectively. Together with
the FC factors this is an exact, closed expression for the RIXS response.

We can simplify this expression by assuming that the initial state is close
to the ground state, which is a good approximation up to temperatures of the
order of 80 meV ≈ 930 K for optical phonons in cuprates. Since the FC overlap
between the ground and intermediate states follows a Poisson distribution with
mean gkλ, the scattering channels with largest overlap have small nkλ(m)− gkλ.
Effectively, we replace

z +
∑
k,λ

[gkλ − nkλ(m)]ωkλ ≈ z
∏
k,λ

(1− [nkλ(m)− gkλ]ωkλ/z) (7.20)

and obtain

Ffg ≈
Tel(ε

′, ε)

z

∑
i

eiq·Ri

∏
k,λ

∞∑
nkλ=0

〈n′kλ| e−Sikλ |nkλ〉 〈nkλ| eSikλ
∣∣n0

kλ

〉
1− (nkλ − gkλ)ωkλ/z

. (7.21)
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The matrix elements can be evaluated analytically using the displaced harmonic
oscillator transformation, resulting in (we suppress the branch index λ)

Ffg ≈ Tel(ε
′, ε)

δq,
∑

k n
′
kk

z

∏
k

 n′k∑
n=0

Bn′kn(gk)Bn0(gk)

1− (n− gk)ωk/z
+

∞∑
n=n′k+1

Bnn′k(gk)Bn0(gk)

1− (n− gk)ωk/z

 .

(7.22)

7.3.1 UCL expansion of the phonon scattering amplitude

The UCL expansion can be employed to obtain a very compact, approximate
expression that is also valid at finite (but low) temperatures. We start from
the general case of a dispersive phonon, whose approximate low temperature
scattering amplitude (7.21) is expanded as

Ffi ≈
Tel(ε

′, ε)

z

∑
i

eiq·Ri

∏
k

∞∑
nk=0

〈n′k| e−Sik |nk〉 〈nk| eSik
∣∣n0

k

〉
×
∞∑
l=0

[(nk − gk)ωk/z]
l
, (7.23)

which is only valid for nkωk < |z|. For nkωk > |z|, the sum over l diverges
independently of the Franck-Condon quenching of the amplitude. Clearly, such
a divergence is unphysical: for nk large, the amplitude should vanish. To avoid
this problem, we only retain terms up to the first order in l. For high nk, the
vanishing Franck-Condon overlap removes any contribution, while for low nk

cutting the expansion is a natural approximation. We get

Ffi ≈
Tel(ε

′, ε)

z

∑
i

eiq·Ri

∏
k

〈n′k| e−Sik
[
1 +

ωk

z

(
b†kbk − gk

)]
eSik

∣∣n0
k

〉
≈ Tel(ε

′, ε)
Mqλ

z2
〈f |
(
b†qλ + b−q,λ

)
|i〉 (7.24)

to first order in Mkλ/z, where we neglected terms giving rise to elastic scattering.
Again, multi-phonon contributions to Ffi are suppressed as Mkλ/Γ.

This result implies that momentum dependent RIXS harbors the potential
to directly map out the q dependence of the e-p coupling strength Mqλ. With
this information one can determine, for instance, the spatial range of the e-p
interaction Mrλ: it is simply the Fourier transform of Mqλ.

Although we showed that the single Einstein phonon cross section is propor-
tional to g in the limit of small g and in the limit of large Γ, it is in practice
near-impossible to measure the absolute RIXS intensity. However, RIXS pro-
vides the means to determine the e-p coupling strength M on an absolute energy
scale in another way. From the UCL expansion one finds that the ratio of the
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one and two-phonon loss amplitude directly reflects the e-p coupling constant:
F (2)/F (1) =

√
2M/z in the Einstein phonon case, where we assumed Γ� ω0,M .

This result is confirmed by the exact solution, see Fig. 7.3. The figure shows the
exact curves that relate the (multi-)phonon scattering intensities I(2)/I(1) to the
e-p interaction strength M/Γ for arbitrary M . This method to determine the
e-p coupling on an absolute energy scale is particularly powerful in the case of
weakly dispersive optical phonons, for instance the much debated phonon modes
around 80 meV in the high-Tc cuprates [236–238].

7.4 dd excitations dressed by phonons

Hancock et al. [239] find that the charge transfer excitation in the zero-
dimensional cuprate CuB2O4 (which is at 6.8 eV) is screened by phonons, ex-
plaining the Gaussian line shape of the spectra and yielding a dependence of the
charge transfer peak position on the incident energy. In close analogy to their
approach, we calculate here the RIXS spectrum of dd excitations that couple to
phonons.

Because the scattering process itself is very fast, the lattice has little time to
adjust in the intermediate state (as shown in Sec. 7.3) and will approximately be
in the same state before and after the scattering process. This is certainly true for
small e-p couplings or large core hole lifetime broadenings. The main difference
with the preceding sections of this chapter is that the final state has a different
charge distribution than the initial state. Therefore, the RIXS process has a
lasting influence on the lattice, instead of the transient force when the system
returns to its electronic ground state after scattering the photon. The final state
corresponds to a displaced oscillator, and the overlap of the initial lattice state
with the displaced final states is given by the Franck-Condon factors.

Our starting point is the simple Hamiltonian for a single phonon coupled to
a dd excitation (from orbital ν′ to ν1):

H =
∑
k

[
ωkb
†
kbk +

∑
i

d†iνdiνdiν′d
†
iν′e

ik·RiMk

(
bk + b†−k

)]
(7.25)

We consider RIXS processes where the final state has a single dd excitation,
which gets dressed by phonons. The Hamiltonian can be diagonalized as done
for dispersive phonons in Sec. 7.3: using Sik = d†iνdiνdiν′d

†
iν′

Mk

ωk
eik·Ri(b†−k − bk),

we obtain H̄ =
∑

k ωk(b†kbk − gk).

The RIXS cross section is given by the finite temperature Kramers-Heisenberg
equation (2.41). In accordance with the idea that the lattice has no time to
respond to the transient charge distribution in the intermediate state, we use the

1Each dd excitation has its own e-p coupling Mk →Mν′ν,k. For simplicity, we only consider
a single dd excitation here.
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UCL expansion to zeroth order:

d2σ

dωdΩ
≈ |Tdd(ε′, ε)|2

Γ2

∑
f,i

e−βEi

∣∣∣∣∣∣〈f |
∑
j

eiq·Rjdjν′d
†
jν |i〉

∣∣∣∣∣∣
2

δ(ω −Ef +Ei) (7.26)

where Tdd(ε′, ε) is the polarization factor (2.42) corresponding to exciting the
specific dd excitation (ν′ → ν) by two consecutive dipole transitions. The core
hole is integrated out. By retaining only the zeroth order of the UCL expansion,
the incident energy dependence is lost, and this is different from the work of
Hancock et al. [239]. In the case of copper 3d9, ν can only assume one value:
the photo-excited electron fills the 3dx2−y2 hole and creates a 3d10 intermediate
state. The similarity to the non-resonant inelastic X-ray scattering cross section
is striking.

Based on the findings of Ref. [239], we expect the dd excitation to excite many
phonons, and consequently we do not care if the initial state has a few phonons
already present. For simplicity, we therefore set T = 0. For optical phonons, this
is in any case a good approximation. Then, we find

〈f | djν′d
†
jν |i〉 =

(∏
k

〈n′k,dd|

)
eSdjν′d

†
jν |0〉 =

∏
k

e−gk/2

(
Mke

−ik·Rj

ωk

)n′k√
n′k!

,

(7.27)
where n′k is the number of phonons in the final state with wave vector k, and
dd indicates that a dd excitation is present at site j in the final state. Because
the final state dd excitation is local, the sum over j in Eq. (7.26) has only one
non-zero term, and the q dependence is lost.

Now we obtain the zero temperature cross section,

d2σ

dωdΩ
≈ |Tdd(ε′, ε)|2

Γ2

∑
f=j,{n′k}

∣∣∣∣∣eiq·Rj

∏
k

e−gk/2√
n′k!

(
Mke

−ik·Rj

ωk

)n′k∣∣∣∣∣
2

δ(ω − Ef )

≈ N |Tdd(ε′, ε)|2

Γ2

∏
k

∞∑
n′k=0

(
e−gk

g
n′k
k

n′k!

)
δ(ω − Ef ) (7.28)

where the final state energy Ef is the dd excitation energy Edd plus the phonon

contribution
∑

k n
′
kωk.

The calculation is easily repeated for local phonons. The result is

d2σ

dωdΩ
≈ N |Tdd(ε′, ε)|2

Γ2
e−g

∞∑
n′=0

gn
′

n′!
δ(ω − Edd − n′ω0), (7.29)

which is a Poisson distribution with phonon number average g = (Mdd/ω0)2 and
variance σ2 = g. Mdd is the coupling of the dd excitation to phonons. In the limit



7.5 Conclusions 183

of large g, it is approximated by a Gaussian distribution. We conclude that the
width of the RIXS spectra of dd excitations yields Mdd once the phonon energy
is known (with an extremely high energy resolution, ω0 can be measured with
RIXS).

In the cuprates, one could study, for instance, the 3z2-r2 to x2-y2 dd ex-
citation, which is an intra-eg transition. The splitting of these levels is partly
due to the crystal field of the layered structure, and partly to Jahn-Teller (JT)
distortions. Above, we found that the JT contribution is EJT = 2Mdd. If we
assume that the dd peak broadening is only due to phonons, then the full width
at half maximum of the peak directly gives EJT. This way, we can determine
what part of the dd excitation energy can be attributed to the JT effect and
what part cannot. In practice, other factors also might contribute to the peak
width, such as superexchange interactions, and the peak width thus gives only
an upper bound to EJT and Mdd.

7.5 Conclusions

In the analysis above we concentrated on transition metal L edge RIXS, which
has the advantage of a photo-electron launched directly into the 3d state. A
certain 3d orbital can be selected by choosing the polarization of incident and
outgoing X-rays [110], so that the e-p characteristics related to this particular
3d orbital can be measured, as long as the 3d orbital is not fully occupied in
the ground state. We extended the theory to include final state dd excitations
coupling to the lattice [169], which is of great importance in the study of Jahn-
Teller polarons. Also oxygen related phonons can be probed at the O K edge, but
as this edge is at lower energy, the photons have less momentum and a smaller
part of the BZ can be probed, which is also true for the Cu M edges. As hard
X-ray transition metal K edges do not suffer this disadvantage, they provide an
even more potent method to measure e-p interactions [230].

The theoretical analysis that we advance here bestows on RIXS the unique
potential to provide direct, element-specific and momentum-resolved information
on the interaction between electrons and phonons on an absolute scale. In weakly
correlated electron systems these properties can be computed with modern ab
initio electronic structure methods, for instance in the newly discovered iron
pnictide superconductors [240], and our framework to distill them from RIXS
allows a direct comparison. In strongly correlated materials, particularly the
high-Tc cuprates, these assets make high resolution RIXS a unique tool to unravel
the interaction between its electrons and phonons.
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Outlook – X-ray Free Electron
Lasers

RIXS is now beginning to become a mainstream technique of condensed matter
physics. Due to the tremendous progress in energy resolution and intensity, the
energy scale of excitations accessible to RIXS has moved down from several eV in
the late 1990’s to several tens of eV now. If this progress continues at the same
pace, it will soon be possible to probe excitations at even lower energy scales.
This will not only bring more of the same materials within the range of RIXS
experiments (for instance, materials with a lower superexchange constant), but it
will also enable experimentalists to access excitations not seen before with RIXS.
A very interesting prospect would be to map out the dispersion of excitations
across the superconducting gap.

Not only the energy resolution is improving. The very recent availability of
ultra-short and ultra-bright X-ray pulses generated by free electron lasers such
as FLASH at DESY and the Linac Coherent Light Source (LCLS) at SLAC
National Accelerator Laboratory offers unique opportunities for X-ray science,
in particular time-resolved experiments, see, e.g., Ref. [241]. In the remainder of
this chapter, we discuss some implications of these X-ray Free Electron Lasers
(XFEL’s) for regular X-ray scattering, focussing on the bosonic enhancement of
absorption and emission due to the enormous occupation number of the incident
mode.
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8.1 Bosonic enhancement in an XFEL

A Free Electron Laser populates a certain mode with a huge number of photons.
This mode will be in a superposition of states with different, large occupation
numbers n. Typically, when the mode is populated with a linear Hamiltonian,
meaning H ∝ (a + a†) with a the photon annihilation operator, the result is

a coherent state |z〉 = e−
|z|2
2

∑∞
n=0

zn√
n!
|n〉 with z a complex number with huge

modulus. The number of photons in the mode follows a Poisson distribution with
mean |z|2. The other modes of the electromagnetic field are, ideally, empty.

In deriving the RIXS cross section in chapter 2, we assumed that there is a
single photon in the incident mode, which is reasonable for synchrotrons. The
outlandish XFEL field state however, has enormous occupation numbers. When
the field operator A acts on this state, it generates large boson factors

√
n.

Processes involving multiple A’s are therefore enhanced in an XFEL, in contrast
to synchrotrons. Note that these multiple A’s should pick up the incident mode to
get the Boson enhancement factor: that does not happen for the empty outgoing
modes.

As an example of this enhancement, we consider the absorption of two photons
from the heavily populated incident mode of momentum k and polarization ε
through the A2 term of Eq. (2.22). From Eq. (2.24), we retain only the two-
photon absorption and emission for the beam mode, and get

A(r)2 ∼ ~
2Vε0ωk

(
ε · ε a2

k,εe
i2k·r + h.c.

)
. (8.1)

For a highly populated incident mode, a2
k,ε produces the average occupation

number, which is projected to be of the order of 109 for the LCLS [31]. Two
things can be concluded here. First, for linear polarization, the A2 term is
independent of polarization because ε · ε = 1. For circular polarization, ε · ε = 0,
and the process is forbidden: these two-photon processes cannot transfer more
than one unit of angular momentum to the solid. Second, these two-photon
processes are (mainly) dipole transitions. This can be seen by expanding the
exponential ei2k·r for small k · r. To zeroth order, no transitions can be made.
To first order, dipole transitions appear.

Before discussing specific scattering processes, we make an estimate of the
size of (the matrix elements of) A. The coherent volume V is projected to be
∼ 3 · 10−13 m3 for the LCLS [31]. We thus get

〈A〉 ∼
√

~
2Vε0c

〈√
nr
〉
∼ (3 · 10−10 Js/Cm

2
)
〈√

nr
〉
. (8.2)

8.2 X-ray scattering with an XFEL

There are several interesting aspects of the bosonic enhancement for X-ray scat-
tering. Multi-photon processes are enhanced, and one could either stimulate the
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k, !k
k’, !k’ = 2!k

k’, !k’ = !k

Figure 8.1: If X-rays at half the resonance energy are
incident perpendicular to the sample surface (taking a
simple cubic lattice, cut perpendicular to one of the
cubic axes), the truely elastic Bragg peaks (light gray,
ωk′ = ωk) are pushed away from the surface normal.
The ‘elastic’ line emitted at twice the incident X-ray
energy has different Bragg conditions (dark gray): the
first Bragg peak is closer to the surface normal.

absorption or the emission process. Enhancing both would require two XFEL
beams.

Enhanced absorption. An interesting way to lose the non-resonant contribu-
tions to the spectrum is to excite the system with X-rays of half the resonance
energy via the A2 term. Non-resonant X-ray scattering with matrix elements
〈f |A2 |i〉 produces outgoing X-rays with an energy of about half the resonance
energy. Resonant scattering, however, mainly comes from the A·p term, creating
X-ray photons with double that energy, i.e., close to the resonance energy. The
Kramers-Heisenberg equation becomes

Ffi ∝
∑
n

〈f |A · p |n〉 〈n|A2 |i〉
Ei + 2~ωk − En + iΓ

. (8.3)

This could be of use for resonant X-ray scattering: one can completely eliminate
the non-resonant contributions. They remain at half the energy.

The theoretical treatment of RIXS also simplifies, because the polarization
dependence of the absorption is trivial, as shown in Sec. 8.1.

Further, the Bragg conditions are interesting because the wavelength of the
outgoing X-rays is halved with respect to the incident ones. Thus, there will be
two sets of Bragg peaks: one set of truely elastic peaks at the regular angles,
and one set at double the incident energy, arising through the resonant process
of Eq. (8.3). The latter peaks are closer together: there are more Bragg peaks,
as shown in Fig. 8.1. In resonant X-ray scattering, the elastic peaks arising
from some ordering of the solid also appears at twice the incident energy and at
outgoing wave vectors where no truely elastic ordering peaks appear.

Enhanced emission. Another interesting effect is stimulated emission. Not
only the absorption can be enhanced by the boson factor, but also the consequent
emission into the XFEL mode is boosted. This enhances forward scattering
(k′ = k): during the core hole’s lifetime, which is much shorter than the pulse
duration1, elastic decay into the beam mode is stimulated. Forward scattering is

1At the LCLS, the X-ray pulses are projected to be 230 fs long [31], compared to ~/Γ ∼ 1
fs.
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enhanced by a factor 〈n〉. Note that this is not a shift of spectral weight away
from other Bragg peaks or inelastic features: extra spectral weight is generated
because one stimulates extra scattering events.

This effect is interesting because it allows for experimental control of the
lifetime of the core hole: it is decreased by stimulated emission. To determine
how much this is, we have to know the resonant contribution to the spectral
weight of a Bragg peak, multiply it by 〈n〉 and see if this number is a sizeable
fraction of the total number of decay processes (including Auger decay etc.). The
resonant contribution to the spectral weight of a Bragg peak can in principle be
determined by the resonant X-ray scattering method dicussed above, where the
non-resonant contribution is quenched.
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App e n d i x A

QED

This appendix contains some details of the derivation of the higher-order electron-
photon coupling Hamiltonian.

A.1 HΨ to second order

Below the components of HΨ = ΩHαΩ−1 + i~(∂tΩ)Ω−1 are calculated. First,

ΩHαΩ−1 = Hα +
1

2

[
D̃2, Hα

]
= Hα +

1

2

[
D̃2,−eφ

]
. (A.1)

where in the last step only terms up to O(m−2) are kept, and where

(2mc)2
[
D̃2, φ

]
= σiσj (DiDjφ− φDiDj) = σiσj (Di(∂jφ) +DiφDj − φDiDj)

= σiσj (∂i(∂jφ) + (∂jφ)Di + (∂iφ)Dj) = ∂2
i φ+ 2(∂iφ)Di

= −ρ/ε0 +
2i

~
(∇φ) · (p + eA). (A.2)

Second,

i~∂tΩ =
i~

2(2mc)2
∂t
[
(p + eA)2 + e~σ ·B

]
=

ie~
2(2mc)2

[(∂tA) · (p + eA) + (p + eA) · (∂tA) + ~σ · (∂tB)]

=
ie~

2(2mc)2
[2(∂tA) · (p + eA) + ~σ · (∂tB)] (A.3)
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Putting things together, one finds

HΨ = Hα −
1

2

e~2ρ

(2mc)2ε0
− ie~

(2mc)2
E · (p + eA) +

ie~2

2(2mc)2
σ · (∂tB)

=
(p + eA)2

2m
+

e~
2m
σ ·B− eφ+

e~
(2mc)2

σ ·E× (p + eA) +
1

2

e~2ρ

(2mc)2ε0

− ie~
2(2mc)2

~σ · (∂tB). (A.4)

Note that the E× p term is not Hermitian for dynamic fields, because E and p
do not commute in that case. The ‘imaginary term’ in HΨ solves this issue: it
can be rewritten as

− ie~
2(2mc)2

~σk(∂tB
k) =

ie~2

2(2mc)2
εijkσk(∂iE

j) =
ie~2

2(2mc)2
εijkσk(∂iE

j − Ej∂i)

= − e~
2(2mc)2

εijkσk(−i~∂iEj + Ei(−i~)∂j)

= − e~
2(2mc)2

σ · (p×E + E× p) (A.5)

With this substitution, HΨ assumes the form of Eq. (2.22).

A.2 HΨ to third order

This section contains the derivation of HΨ to order O(m−3).
Starting point is Eq. (2.7):

β(x) = D̃α(x) + D̃0D̃α(x) + D̃2
0D̃α(x). (A.6)

Substitution in Eq. (2.5) gives the equation for α(x):

D̃0α(x) + D̃
(

1 + D̃0 + D̃2
0

)
D̃α(x) = 0. (A.7)

Every D̃0 is commuted to the right:

0 =

[
D̃0 + D̃2 + D̃

(
1 + D̃0

)(
D̃D̃0 +

ie~
(2mc)2c

σiEi
)]

α(x)

=

[
D̃0 + D̃2 + D̃

(
D̃D̃0 +

ie~
(2mc)2c

σiEi
)

+D̃

((
D̃D̃0 +

ie~
(2mc)2c

σiEi
)
D̃0 + D̃0

ie~
(2mc)2c

σiEi
)]

α(x) (A.8)

Using [
D̃0, E

i
]

=
−i~
2mc

(∂0E
i), (A.9)
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one obtains

−D̃0α(x) =

[
D̃2
(

1 + D̃0 + D̃2
0

)
+ D̃

ie~
(2mc)2c

σiEi
(

1 + 2D̃0

)
+D̃

e~2σi(∂0E
i)

(2mc)3c

]
α(x). (A.10)

D̃0α(x) is replaced by the second order Schrödinger equation, and only terms
that contribute to the Schrödinger equation at order O(m−3) are considered:

− D̃0α(x) =

[
D̃2
(

1− D̃2
)

+ D̃
ie~

(2mc)2c
σiEi + D̃

e~2σi(∂0E
i)

(2mc)3c

]
α(x). (A.11)

The normalization condition becomes∫
d3x

[
α(x)†α(x) +

{(
1 + D̃0 + D̃2

0

)
D̃α(x)

}† {(
1 + D̃0 + D̃2

0

)
D̃α(x)

}]
= 1.

(A.12)
Up to order O(m−3), this is

1 =

∫
d3x

[
α(x)† + α(x)†D̃2 +

{
D̃0D̃α(x)

}†
D̃ + α(x)†D̃D̃0D̃

]
α(x)

=

∫
d3x

[
α(x)† + α(x)†D̃2 +

{(
D̃D̃0 +

ie~
(2mc)2c

σiEi
)
α(x)

}†
D̃

+α(x)†D̃

(
D̃D̃0 +

ie~
(2mc)2c

σiEi
)]

α(x)

=

∫
d3x α(x)†

[
1 + D̃2 +

(
ie~

(2mc)2c
σiEi

)†
D̃ + D̃

ie~
(2mc)2c

σiEi

]
α(x)

=

∫
d3x α(x)†

[
1 + D̃2 +

e~
(2mc)2c

[
D̃, iσiEi

]]
α(x), (A.13)

where the commutator[
D̃, iσiEi

]
=

~
2mc

(
σiσj(∂iE

j)− 2iεijkσkEiDj

)
(A.14)

is hermitian. The renormalization operator becomes

Ω(x) = 1 +
1

2

(
D̃2 +

e~
(2mc)2c

[
D̃, iσiEi

])
= Ω(x)†, (A.15)

so that to order O(m−3)

Ω(x)−1 = 1− 1

2

(
D̃2 +

e~
(2mc)2c

[
D̃, iσiEi

])
. (A.16)
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With this renormalization operator, one can obtain the Schrödinger equation for
the normalized wave function Ψ(x). Its Hamiltonian HΨ consists of the parts

i~(∂tΩ)Ω−1 =
ie~

2(2mc)2
{2(∂tA) · (p + eA) + ~σ · (∂tB)}

+
e

2c

(
−i~
2mc

)3 (
σiσj(∂t∂iE

j)− 2iεijkσk(∂tE
iDj)

)
(A.17)

and

ΩHαΩ−1 = 2mc2
(
− eφ

2mc2
+ D̃2 − D̃4 + D̃

ie~
(2mc)2c

σiEi + D̃
e~2σi(∂0E

i)

(2mc)3c

)
+

[
1

2

(
D̃2 +

e~
(2mc)2c

[
D̃, iσiEi

])
,−eφ+ 2mc2D̃2

]
= −eφ+

(p + eA)2

2m
+

e~
2m
σ ·B− 1

2mc2

(
(p + eA)2

2m
+

e~
2m
σ ·B

)2

− e
(
−i~
2mc

)2

σjσiDjE
i − e

(
−i~
2mc

)3

σjσiDj(∂0E
i)

−
(
−i~
2mc

)2
e

2

(
∂2
i φ+ 2(∂iφ)Di

)
− e2~

2(2mc)2c

[[
D̃, iσiEi

]
, φ
]
, (A.18)

where the commutator is[[
D̃, iσiEi

]
, φ
]

= −
[
φ, D̃iσiEi

]
+
[
φ, iσiEiD̃

]
= −

[
φ, D̃

]
iσiEi − D̃

[
φ, iσiEi

]
+
[
φ, iσiEi

]
D̃ + iσiEi

[
φ, D̃

]
= −

[
φ, D̃

]
iσiEi + iσiEi

[
φ, D̃

]
=

~
2mc

(
σjσi − σiσj

)
Ei(∂jφ)

=
~

2mc
i2εjikσkEi(∂jφ) =

−i~
2mc

2 σ ·E× (∇φ), (A.19)

so that

ΩHαΩ−1 = −eφ+
(p + eA)2

2m
+

e~
2m
σ ·B− 1

2mc2

(
(p + eA)2

2m
+

e~
2m
σ ·B

)2

− e
(
−i~
2mc

)2

σjσiDjE
i − e

(
−i~
2mc

)3

σjσiDj(∂0E
i)

−
(
−i~
2mc

)2
e

2

(
∂2
i φ+ 2(∂iφ)Di

)
+

ie2~2

(2mc)3c
σ ·E× (∇φ). (A.20)

Putting the O(m−3) term of HΨ together, one obtains

− 1

2mc2

(
(p + eA)2

2m
+

e~
2m
σ ·B

)2

− e
(
−i~
2mc

)3

σjσiDj(∂0E
i) +
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+
ie2~2

(2mc)3c
σ ·E× (∇φ) +

e

2c

(
−i~
2mc

)3 (
σiσj(∂t∂iE

j)− 2iεijkσk(∂tE
iDj)

)
=

1

(2mc)3

[
−c
(
(p + eA)2 + e~σ ·B

)2
+
ie2~2

c
σ ·E× (∇φ)

− e

2c
(−i~)

3
σjσi

{
(∂j∂tE

i) + (∂tE
i)Dj +Dj(∂tE

i)
}

+
e(−i~)3

2c

(
σiσj(∂t∂iE

j)− 2iεijkσk
{

(∂tE
i)Dj +

ie

~
Ei(∂tA

j)

})]
=

1

(2mc)3

[
−c
(
(p + eA)2 + e~σ ·B

)2
+
e(−i~)3

2c

(
−2iεijkσk(∂tE

i)Dj

)
− e

2c
(−i~)

3
σjσi

{
(∂tE

i)Dj +Dj(∂tE
i)
}
− ie2~2

c
σ ·E×E

]
=

1

(2mc)3

[
−c
(
(p + eA)2 + e~σ ·B

)2
−e (−i~)

3

2c

{
(∂tE

i)Di +Di(∂tE
i)− iεijkσk(∂t∂jE

i)
}]

, (A.21)

giving Eq. (2.23).
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App e n d i x B

YTiO3

This appendix contains some of the lengthy expressions involved in calculating
the RIXS spectra of YTiO3 (section 5.4).

B.1 RIXS – Single site processes

The angular momentum l̂ and quadrupole operators Q̂, T̂ in Eqs. (5.43−5.45) are
defined as follows:

l̂x = i(c†b− b†c) (B.1)

l̂y = i(a†c− c†a) (B.2)

l̂z = i(b†a− a†b) (B.3)

Q̂x = l̂2x − l̂2y = nb − na (B.4)

Q̂z =
1√
3

(l̂2x + l̂2y − 2l̂2z) =
1√
3

(2nc − na − nb) (B.5)

T̂x = l̂y l̂z + l̂z l̂y = −(b†c+ c†b) (B.6)

T̂y = l̂x l̂z + l̂z l̂x = −(c†a+ a†c) (B.7)

T̂z = l̂x l̂y + l̂y l̂x = −(a†b+ b†a) (B.8)
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which are normalized by Tr
(

Γ̂2
)

= 2. The corresponding matrices Γd′d in

Eq. (5.41) are

ΓQx =
1

2

−1 0 0
0 1 0
0 0 0

 , ΓQz = 1
2
√

3

−1 0 0
0 −1 0
0 0 2

 ,

ΓTx = −1

2

0 0 0
0 0 1
0 1 0

 , ΓTy = − 1
2

0 0 1
0 0 0
1 0 0

 ,

ΓTz = −1

2

0 1 0
1 0 0
0 0 0

 , Γlx = 1
2

0 0 0
0 0 i
0 −i 0

 ,

Γly =
1

2

0 0 −i
0 0 0
i 0 0

 , Γlz = 1
2

 0 i 0
−i 0 0
0 0 0

 (B.9)

with the indices d, d′ = (yz, zx, xy) (or for polarization dependence: α, β =
(x, y, z)).

B.2 Multiplet factors

For the multiplet effect factors in Eq. (5.46), we have

M
A1g

d′d =

√
2

3
(〈d′| x̂ |m〉 〈m| x̂ |d〉+ 〈d′| ŷ |m〉 〈m| ŷ |d〉+ 〈d′| ẑ |m〉 〈m| ẑ |d〉)

(B.10)

MQx
d′d = (〈d′| ŷ |m〉 〈m| ŷ |d〉 − 〈d′| x̂ |m〉 〈m| x̂ |d〉) (B.11)

MQz
d′d =

1√
3

(2 〈d′| ẑ |m〉 〈m| ẑ |d〉 − 〈d′| x̂ |m〉 〈m| x̂ |d〉 − 〈d′| ŷ |m〉 〈m| ŷ |d〉)

(B.12)

MTx
d′d = − (〈d′| ŷ |m〉 〈m| ẑ |d〉+ 〈d′| ẑ |m〉 〈m| ŷ |d〉) (B.13)

M
Ty
d′d = − (〈d′| ẑ |m〉 〈m| x̂ |d〉+ 〈d′| x̂ |m〉 〈m| ẑ |d〉) (B.14)

MTz
d′d = − (〈d′| x̂ |m〉 〈m| ŷ |d〉+ 〈d′| ŷ |m〉 〈m| x̂ |d〉) (B.15)

M lx
d′d = −i (〈d′| ŷ |m〉 〈m| ẑ |d〉 − 〈d′| ẑ |m〉 〈m| ŷ |d〉) (B.16)

M
ly
d′d = −i (〈d′| ẑ |m〉 〈m| x̂ |d〉 − 〈d′| x̂ |m〉 〈m| ẑ |d〉) (B.17)

M lz
d′d = −i (〈d′| x̂ |m〉 〈m| ŷ |d〉 − 〈d′| ŷ |m〉 〈m| x̂ |d〉) (B.18)

Note that the position operators act on the core electrons, not the t2g ones. Both
the core and t2g electrons are implied in the states |d〉 , |d′〉.
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B.3 The operators Γ̂ in terms of orbitons

In terms of the orbiton operators, we obtain the one-orbiton creation part of
Γ̂q =

∑
i e
iq·ri Γ̂i to be

l̂
(1)
x,q−q1

=
i |c0|

2

√
N

3

[{
(1−

√
3)uq + (1 +

√
3)vq

}
(sh θ1,q + ch θ1,q)α†1,−q

+
{

(−1−
√

3)uq + (1−
√

3)vq

}
(sh θ2,q + ch θ2,q)α†2,−q

]
(B.19)

l̂
(1)
y,q−q2

=
i |c0|

2

√
N

3

[{
(1 +

√
3)uq + (1−

√
3)vq

}
(sh θ1,q + ch θ1,q)α†1,−q

+
{

(−1 +
√

3)uq + (1 +
√

3)vq

}
(sh θ2,q + ch θ2,q)α†2,−q

]
(B.20)

l̂
(1)
z,q−q3

= −i |c0|
√
N

3

[
(uq + vq)(sh θ1,q + ch θ1,q)α†1,−q

+ (vq − uq)(sh θ2,q + ch θ2,q)α†2,−q

]
(B.21)

T̂
(1)
x,q−q1

=
|c0|
6

√
N
[{

(1 +
√

3)uq + (−1 +
√

3)vq

}
(ch θ1,q − sh θ1,q)α†1,−q

+
{

(1−
√

3)uq + (1 +
√

3)vq

}
(ch θ2,q − sh θ2,q)α†2,−q

]
(B.22)

T̂
(1)
y,q−q2

=
|c0|
6

√
N
[{

(1−
√

3)uq + (−1−
√

3)vq

}
(ch θ1,q − sh θ1,q)α†1,−q

+
{

(1 +
√

3)uq + (1−
√

3)vq

}
(ch θ2,q − sh θ2,q)α†2,−q

]
(B.23)

T̂
(1)
z,q−q3

= −|c0|
3

√
N
[
(uq − vq)(ch θ1,q − sh θ1,q)α†1,−q

+ (uq + vq)(ch θ2,q − sh θ2,q)α†2,−q

]
(B.24)

Q̂(1)
x,q = |c0|

√
N

3

[
−(uq + vq)(ch θ1,q − sh θ1,q)α†1,−q

+ (uq − vq)(ch θ2,q − sh θ2,q)α†2,−q

]
(B.25)

Q̂(1)
z,q = − |c0|

√
N

3

[
(uq − vq)(ch θ1,q − sh θ1,q)α†1,−q

+ (uq + vq)(ch θ2,q − sh θ2,q)α†2,−q

]
(B.26)

with q1 = (π, 0, π), q2 = (π, π, 0), q3 = (0, π, π). The expressions for the
two-orbiton creation part of Γ̂q =

∑
i e
iq·ri Γ̂i are

l̂(2)
x,q =

i√
3

∑
k

[
(vu′ − uv′)ch θ1 sh θ′1 α

†
1,kα

†
1,−k−q1−q +



200 YTiO3

+ (vu′ − uv′)ch θ2 sh θ′2 α
†
2,kα

†
2,−k−q1−q

+ (uu′ + vv′)(ch θ1 sh θ′2 − sh θ1 ch θ′2)α†1,kα
†
2,−k−q1−q

]
(B.27)

with u, v, θ1, θ2 = uk, vk, θ1,k, θ2,k and primed quantities u′, v′, θ′1, θ
′
2 = uk+q1+q,

vk+q1+q, θ1,k+q1+q, θ2,k+q1+q. Further, l̂
(2)
y,q and l̂

(2)
z,q have the same form as l̂

(2)
x,q

but with q1 replaced by q2 and q3 respectively. Next,

T̂ (2)
x,q =

∑
k

[{
−(uu′ + vv′) +

uu′ − vv′√
3

+
uv′ + vu′

3

}
ch θ1 sh θ′1 α

†
1,kα

†
1,−k−q1−q

+

{
−(uu′ + vv′)− uu′ − vv′√

3
− uv′ + vu′

3

}
ch θ2 sh θ′2 α

†
2,kα

†
2,−k−q1−q

+

{
−(uv′ − vu′)− uv′ + vu′√

3
− uu′ − vv′

3

}
(ch θ1 sh θ′2 + sh θ1 ch θ′2)×

α†1,kα
†
2,−k−q1−q

]
(B.28)

T̂ (2)
y,q =

∑
k

[{
−(uu′ + vv′)− uu′ − vv′√

3
+
uv′ + vu′

3

}
ch θ1 sh θ′1 α

†
1,kα

†
1,−k−q2−q

+

{
−(uu′ + vv′) +

uu′ − vv′√
3

− uv′ + vu′

3

}
ch θ2 sh θ′2 α

†
2,kα

†
2,−k−q2−q

+

{
−(uv′ − vu′) +

uv′ + vu′√
3

− uu′ − vv′

3

}
(ch θ1 sh θ′2 + sh θ1 ch θ′2)×

α†1,kα
†
2,−k−q2−q

]
(B.29)

where in the expression for T̂
(2)
y,q we replaced q1 by q2: u′, v′, θ′1, θ

′
2 = uk+q2+q,

vk+q2+q, θ1,k+q2+q, θ2,k+q2+q.

T̂ (2)
z,q =

∑
k

[{
−2

3
(uv′ + vu′)− (uu′ + vv′)

}
ch θ1 sh θ′1 α

†
1,kα

†
1,−k−q3−q

+

{
2

3
(uv′ + vu′)− (uu′ + vv′)

}
ch θ2 sh θ′2 α

†
2,kα

†
2,−k−q3−q

+

{
2

3
(uu′ − vv′)− (uv′ − vu′)

}
(ch θ1 sh θ′2 + sh θ1 ch θ′2)α†1,kα

†
2,−k−q3−q

]
(B.30)

where we replaced q1 by q3: u′, v′, θ′1, θ
′
2 = uk+q3+q, vk+q3+q, θ1,k+q3+q,

θ2,k+q3+q. Finally,

Q̂(2)
x,q = − 1√

3

∑
k

[
−(uu′ − vv′)ch θ1 sh θ′1 α

†
1,kα

†
1,−k−q

+ (uu′ − vv′)ch θ2 sh θ′2 α
†
2,kα

†
2,−k−q+
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+ (uv′ + vu′)(ch θ1 sh θ′2 + sh θ1 ch θ′2)α†1,kα
†
2,−k−q

]
(B.31)

Q̂(2)
z,q =

1√
3

∑
k

[
(uv′ + vu′)ch θ1 sh θ′1 α

†
1,kα

†
1,−k−q

− (uv′ + vu′)ch θ2 sh θ′2 α
†
2,kα

†
2,−k−q

− (uu′ − vv′)(ch θ1 sh θ′2 + sh θ1 ch θ′2)α†1,kα
†
2,−k−q

]
(B.32)

where in both equations we replaced q1 by 0: u′, v′, θ′1, θ
′
2 = uk+q, vk+q, θ1,k+q,

θ2,k+q.

B.4 RIXS – two-site processes with superex-
change model

Functions f11, f22 and f12 in Eqs. (5.79−5.80) are:

f11(k,q) = [−γ3,q(uv′ + u′v)− γ2,q(uu′ − vv′)− (1 + γ1,q)(uu′ + vv′)]×
(ch θ1 sh θ′1 + sh θ1 ch θ′1)

+ 2 [γ′1(uu′ + vv′) + γ′2(uu′ − vv′) + γ′3(uv′ + u′v)]×
(sh θ1 sh θ′1 + ch θ1 ch θ′1) (B.33)

f22(k,q) = [γ3,q(uv′ + u′v) + γ2,q(uu′ − vv′)− (1 + γ1,q)(uu′ + vv′)]×
(ch θ2 sh θ′2 + sh θ2 ch θ′2)

+ 2 [γ′1(uu′ + vv′)− γ′2(uu′ − vv′)− γ′3(uv′ + u′v)]×
(sh θ2 sh θ′2 + ch θ2 ch θ′2) (B.34)

f12(k,q) = 2 [γ3,q(uu′ − vv′) + γ2,q(uv′ + u′v)− (1 + γ1,q)(uv′ − u′v)]×
(ch θ1 sh θ′2 + sh θ1 ch θ′2)

+ 4 [γ′1(uv′ − u′v) + γ′2(uv′ + u′v)− γ′3(uu′ − vv′)]×
(sh θ1 sh θ′2 + ch θ1 ch θ′2) (B.35)

where we shortened notation by writing θ1/2 = θ1/2,k, θ
′
1/2 = θ1/2,k+q, u(′) =

uk(+q), v(′) = vk(+q) and γ′i = γi,k+q.
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App e n d i x C

Phonon RIXS

This appendix contains the lengthy derivations involved in calculating the Ein-
stein phonon RIXS spectra of chapter 7. In the following, we evaluate the scat-
tering amplitude (7.8). We use (see Mahan [62], section 4.3.2)

〈n|e
M
ω0

(b†−b) ∣∣n0
〉

= e−g/2 〈n| e
M
ω0
b†e−

M
ω0
b
∣∣n0
〉

= e−g/2
n∑
k=0

n0∑
l=0

〈n−k| (M/ω0)
k

k!

[
n!

(n− k)!

]1
2 (−M/ω0)

l

l!

[
n0!

(n0 − l)!

]1
2 ∣∣n0−l

〉
= e−g/2

n∑
k=0

n0∑
l=0

(M/ω0)
k

k!

[
n!n0!

(n− k)!(n0 − l)!

] 1
2 (−M/ω0)

l

l!
δn0−l,n−k

=

 e−g/2
∑n0

l=0
(M/ω0)l−n

0+n

(l−n0+n)!

[
n!n0!

(n−(l−n0+n))!(n0−l)!

] 1
2 (−M/ω0)l

l! for n > n0

e−g/2
∑n
k=0

(M/ω0)k

k!

[
n!n0!

(n−k)!(n0−(n0−n+k))!

] 1
2 (−M/ω0)n

0−n+k

(n0−n+k)! for n ≤ n0

=

 e−g/2
∑n0

l=0
(−1)l(M/ω0)2l−n

0+n

l!(l−n0+n)!

√
n!n0!

(n0−l)! for n > n0

e−g/2
∑n
l=0

(−1)l+n
0−n(M/ω0)2l+n

0−n

l!(l+n0−n)!

√
n!n0!

(n−l)! for n ≤ n0
(C.1)

with g = m2/ω2
0 . For simplicity, we assume the system is initially in its ground

state: n0 = 0. In that case, the above expression simplifies to

〈n| e
M
ω0

(b†−b) |0〉 = e−g/2
(M/ω0)

n

√
n!

. (C.2)
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These expressions are inserted in the Kramers-Heisenberg equation (7.12):

Ffg = Tel(ε
′, ε)

∑
i

eiq·RiFi (C.3)

with

Fi = e−g
n′i∑
n=0

n∑
l=0

(−1)l+n
′
i−n (M/ω0)

2l+n′i

l!(l + n′i − n)!

√
n′i!

(n− l)!
1

z + (g − n)ω0

+ e−g
∞∑

n=n′i+1

n′i∑
l=0

(−1)
l
(M/ω0)

2l−n′i+2n

l!(l − n′i + n)!

√
n′i!

(n′i − l)!
1

z + (g − n)ω0
. (C.4)



App e n d i x D

Magnetic spectral weight at
the Γ point in 2D cuprates

This appendix contains the calculational details from Sec. 4.5.5, where the leading
magnetic contribution to the q = 0 RIXS spectra at the Cu L edge is established.

D.1 H̄
(4)
eff to fourth order in t/U

In this section we evaluate Eq. (4.74) in the presence of a core hole.
The first term of Eq. (4.74) changes the Hamiltonian to

H̄
(4)
eff = H0 −

4t2

U

∑
i

pip
†
i

∑
δ

Si · Si+δ + . . . (D.1)

where p†i creates a core electron, δ points to nearest neighbors, and the dots
indicate the corrections to H0 due to the four hop terms.

To handle the four hop terms systematically, we categorize all terms according
to the ‘connections’ between sites. With a ‘connection’ is meant that one or more
hops occur between the sites in question. For example, only the sites i and j,
and j and k are connected if we select the following four hoppings from the V ’s:

tij
∑
σ

(c†iσcjσ+c†jσciσ)× ...×tjk
∑
σ′

(c†jσ′ckσ′+c
†
jσ′ckσ′)× ...×tij(...)× ...×tjk(...),

(D.2)
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but also processes with a different hopping order like tijtijtjktjk and tjktijtijtjk,
etc., have the same connections and are thus categorized together. We will there-
fore represent the category comprising all these processes by t2ijt

2
jk. The order

of the t’s is not important, only the number of times a certain hop occurs is
important for indicating the category.

We now establish the different categories. The most general string of t’s is
tijtkltmntpq. A lot of these processes change the occupancy of one of the sites.
These terms vanish because of the P0’s at the beginning and end of every four
hop term. This imposes a restriction on the indices i, j, k, l,m, n, p, q: if an index
appears an odd number of times, the occupancy is changed and the process does

not contribute to H
(4)
eff . We are left with the following categories: (a) t4ij , (b)

t2ijt
2
kl(i, j 6= k, l), (c) t2ijt

2
jk(i 6= k), and (d) tijtjktkltli (i, j, k, l form a square). If

there is no core hole present at any of the sites involved, we can just copy-paste
the results from Ref. [82]. Below we analyze the processes where there is a core
hole present.

Processes in category (a) do not flip any spins. The doublon (the doubly
occupied site) hops 4 times between site i and j, where i is the core hole site.
We obtain the (a) contribution:

H
(4)
eff = · · ·+ pip

†
i

t4

U3
c

P0

∑
σ

c†iσcjσc
†
jσciσP0 c

†
iσcjσc

†
jσciσP0 , (D.3)

where the dots indicate other fourth order terms. At the core hole site, c†iσciσ = 1,
and we use the projected spins as defined in Eq. (2.14) of Ref. [82] to get

H
(4)
eff = · · ·+ pip

†
i

t4

U3
c

(
{1

2
(1− σzj )}2 + {1

2
(1 + σzj )}2

)
= · · ·+ pip

†
i

t4

U3
c

11. (D.4)

The corresponding part of H0 is

H0 = · · · − 16t4

U3
Si · Sj (D.5)

which should be replaced by Eq. (D.4). Dropping the constant term, this gives

H̄
(4)
eff = H0 +

∑
i

pip
†
i

∑
δ

16t4

U3
Si · Si+δ + . . . (D.6)

Processes in category (b) do not appear in the fourth order expansion of the
half-filled Hubbard model. If we add one doubly occupied site (namely, the core

hole site i), there still is no contribution to H̄
(4)
eff . The only matrix elements for

which this is not a priori clear, involve configurations pictured in Fig. D.1.
If the spins at k and l are parallel, the corresponding matrix element is obvi-

ously zero. Working out the other matrix elements (12 pathways for interchanging
anti-parallel k and l, and 12 pathways for leaving anti-parallel k and l invariant),
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i j

k l

Figure D.1: The processes of category
(b) involve t2ijt

2
kl, connecting i to j and

k to l.

i j k ij k

Figure D.2: The processes of category
(c) are subdivided into two cases: the core
hole site is connected to one other site
(left), or the core hole site is connected to
two other sites (right).

it turns out that all pathways interfere to give 0, just as in the half-filled case.
Therefore, H0 is not modified by category (b) processes.

Processes in category (c) connect three sites i, j and k. They can be sub-
divided into two cases: in the first one, the core hole site i is connected to one
other site, and the second one, the core hole site i is connected to two other sites.
Starting with the first case, we have for the following matrix elements:

↑j↑k→↑j↑k and ↓j↓k→↓j↓k : H̄
(4)
eff = · · · − pip

†
i

t4

U3
c

(
1

2
11 + 2Szj S

z
k

)
, (D.7)

↑j↓k→↑j↓k and ↓j↑k→↓j↑k : H̄
(4)
eff = · · · − pip

†
i

t4

U3
c

(
1

2
11− 2Szj S

z
k

)
, (D.8)

↑j↓k→↓j↑k and ↓j↑k→↑j↓k : H̄
(4)
eff = · · ·+ 0. (D.9)

Adding these contributions and dropping the constants yields

H̄
(4)
eff = · · ·+ 0. (D.10)

The second case gives

↑j↑k→↑j↑k and ↓j↓k→↓j↓k : H̄
(4)
eff = · · ·+ pip

†
i

2t4

U3
c

(
1

2
11 + 2Szj S

z
k

)
, (D.11)

↑j↓k→↑j↓k and ↓j↑k→↓j↑k : H̄
(4)
eff = · · · − pip

†
i

(
2t4

UU2
c

+
4t4

U2
c (2Uc + U)

−2t4

U3
c

)(
1

2
11− 2Szj S

z
k

)
, (D.12)

↑j↓k→↓j↑k and ↓j↑k→↑j↓k : H̄
(4)
eff = · · ·+ pip

†
i

(
2t4

UU2
c

+
4t4

U2
c (2Uc + U)

)
×
(
S+
j S
−
k + S−j S

+
k

)
. (D.13)

Adding the contributions and dropping the constants yields

H̄
(4)
eff = · · ·+ pip

†
i

(
4t4

UU2
c

+
8t4

U2
c (2Uc + U)

)
Sj · Sk. (D.14)
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The corresponding part of H0 (including the second neighbor terms from category
(d))1 is

H0 = · · ·+
∑
j 6=k

4t2ijt
2
ik

U3
Sj · Sk (D.15)

and it is replaced by

H̄
(4)
eff = H0 +

∑
i

pip
†
i

∑
j 6=k

(
4t4

UU2
c

+
8t4

U2
c (2Uc + U)

− 4t4

U3

)
Sj · Sk + . . . (D.16)

where the sum over j 6= k is over all pairs of neighbors j, k of i.

Finally, the processes of category (d) are

↑j di
↑k ↑l

→ ↑j di
↑k ↑l

+ flipped :

H̄
(4)
eff = · · · − pip

†
i

2t4

U3
c

(
1

4
11 + Szj S

z
k + SzkS

z
l + Szj S

z
l

)
, (D.17)

↑j di
↓k ↑l

→ ↑j di
↓k ↑l

+ flipped :

H̄
(4)
eff = · · ·+ pip

†
i

2t4

UU2
c

(
1

4
11− Szj Szk − SzkSzl + Szj S

z
l

)
, (D.18)

↓j di
↑k ↑l

→ ↓j di
↑k ↑l

+ flip + j ↔ l :

H̄
(4)
eff = · · ·+ pip

†
i

2t4

UU2
c

(
1

2
11− 2Szj S

z
l

)
, (D.19)

↓j di
↑k ↑l

→ ↑j di
↓k ↑l

+ flip + j ↔ l :

H̄
(4)
eff = · · · − pip

†
i

(
t4

U3
c

+
t4

UU2
c

)(
S+
j S
−
k + S−j S

+
k

+S+
k S
−
l + S−k S

+
l

)
, (D.20)

↓j di
↑k ↑l

→ ↑j di
↑k ↓l

+ flip + j ↔ l :

H̄
(4)
eff = · · · − pip

†
i

(
t4

U3
c

+
t4

UU2
c

)(
S+
j S
−
l + S−j S

+
l

)
. (D.21)

where we have labeled the sites as shown in Fig. D.3, with di the doubly occupied
core hole site.

1We do this because, first, it simplifies notation: the second and third neighbor terms in the
sum get the same prefactor. Second, Coldea also does this, and following him makes it easy to
compare to his mean field result for the ring exchange terms.
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ij

k l

Figure D.3: The processes of cat-
egory (d) (tijtjktkltli) describe ring
exchange.

Dropping constants, the final result for processes of category (d) is

H
(4)
eff = · · · −

∑
i,squares at i

pip
†
i

(
2t4

UU2
c

+
2t4

U3
c

)
(Sj · Sk + Sk · Sl + Sj · Sl) . (D.22)

The corresponding terms in H0 (minus the second neighbor terms, which were
absorbed in the correction to H0 due to category (c)) are

H0 = · · · − 8t4

U3

∑
〈i,j〉

Si · Sj +
80t4

U3

∑
squares

[(Si · Sj)(Sk · Sl) + (Si · Sl)(Sj · Sk)

−(Si · Sk)(Sj · Sl)] . (D.23)

The mean field result is easily obtained [82,83]:

H0 = · · · − 48t4

U3

∑
〈i,j〉

Si · Sj −
20t4

U3

∑
i,k

Si · Sk, (D.24)

where the sum over i, k is over all pairs of next nearest neighbors. Then, at
the mean field, the intermediate state Hamiltonian for processes of category (d)
becomes

H̄
(4)
eff = H0+

∑
i

pip
†
i

∑
squares at i

[
24t4

U3
(Si · Sj + Sj · Sk + Sk · Sl + Sl · Si)

+
20t4

U3
(Si · Sk + Sj · Sl)

−
(

2t4

UU2
c

+
2t4

U3
c

)
(Sj · Sk + Sk · Sl + Sj · Sl)

]
+ . . . (D.25)

Adding all contributions from all categories, we obtain

H̄
(4)
eff = H0 +

∑
i

pip
†
i

{∑
j

(
16t4

U3
− 4t2

U

)
Si · Sj +

∑
j 6=k

(
4t4

UU2
c

+
8t4

U2
c (2Uc + U)

−4t4

U3

)
Sj · Sk +

∑
squares

[
24t4

U3
(Si · Sj + Sj · Sk + Sk · Sl + Sl · Si)

+
20t4

U3
(Si · Sk + Sj · Sl)−

(
2t4

UU2
c

+
2t4

U3
c

)
(Sj · Sk + Sk · Sl

+Sj · Sl)
]}
. (D.26)
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The sums between the curly brackets are, respectively, over all nearest neighbors
j of i, over all pairs of nearest neighbors j, k of i, and over all squares of 2 × 2
sites containing i. Grouping the different neighbor interactions, we finally get
Eq. (4.75).

D.2 Scattering amplitude to fourth order in t/U

Once the intermediate state Hamiltonian is obtained to fourth order in t/U , it
is straightforward and tedious to derive the RIXS scattering amplitude to this
order. Below, we go through this expression term by term, where each term
groups the interactions between certain neighbors.

The nearest neighbors term gives∑
i

eiq·Ri

nn∑
j

Si · Sj |0〉 =
∑
k

[− (1 + γq) (Uk−qVk + UkVk−q)

+ (γk−q + γk) (Uk−qUk + Vk−qVk)]α†kα
†
−k+q |0〉 (D.27)

as before.
For the next nearest neighbor term, we find∑
i

eiq·Ri

nnn∑
j

Si · Sj |0〉 = −
∑
k

fnnn(k,q) (Uk−qVk + UkVk−q)α†kα
†
−k+q |0〉 .

(D.28)

where

fnnn(k,q) = cos(kx − qx) cos(ky − qy) + cos kx cos ky − 1− cos qx cos qy. (D.29)

The next term (with j 6= k nearest neighbors of i) is∑
i

eiq·Ri

∑
j 6=k

Sj · Sk |0〉 = −
∑
k

fa(k,q)(UkVk−q + Uk−qVk)α†kα
†
−k+q |0〉 ,

(D.30)

with

fa(k,q) = fa(−k− q,q) = 2γ2k−q − 6γq + 2 cos kx cos(ky − qy)

+ 2 cos ky cos(kx − qx). (D.31)

In the sum over squares, we have for the Sj · Sl term in the square sum:∑
i

eiq·Ri

∑
δ,δ′

Si+δ · Si+δ′ |0〉 = −
∑
k

(UkVk−q + Uk−qVk)fb(k,q)α†kα
†
−k+q |0〉

(D.32)
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where the sum over δ, δ′ is over the 4 pairs of orthogonal vectors that point to
nearest neighbors of site i (they indicate Sj and Sl), and

fb(k,q) = 2 [−2γq + cos kx cos(ky − qy) + cos ky cos(kx − qx)] . (D.33)

For the square terms Sj · Sk + Sk · Sl we find

∑
i,j,k

eiq·RiSj · Sk |0〉 =
∑
k

(
−(Uk−qVk + UkVk−q)fc1(q)

+ (UkUk−q + VkVk−q)fc2(k,q)

)
α†kα

†
−k+q |0〉 (D.34)

with j pointing to nearest neighbors of i, k to next nearest neighbors of i that
are also nearest neighbors of j, and

fc1(q) = 2γq + 2 cos qx cos qy, (D.35)

fc2(k,q) = cos kx cos qy + cos ky cos qx

+ cos(kx − qx) cos qy + cos(ky − qy) cos qx. (D.36)

Putting all parts together, we obtain the total scattering amplitude (4.77).
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W. Schülke, Phys. Rev. B 70, 085115 (2004).

[44] P. Abbamonte, C. A. Burns, E. D. Isaacs, P. M. Platzman, L. L. Miller,
S. W. Cheong, and M. V. Klein, Phys. Rev. Lett. 83, 860 (1999).

[45] T. Nomura and J. Igarashi, J. Phys. Soc. Jpn. 73, 1677 (2004).

[46] T. Nomura and J.-I. Igarashi, Phys. Rev. B 71, 035110 (2005).

[47] R. S. Markiewicz and A. Bansil, Phys. Rev. Lett. 96, 107005 (2006).

[48] J. van den Brink and M. van Veenendaal, J. Phys. Chem. Solids 66, 2145
(2005).

[49] J. Van den Brink and M. van Veenendaal, Europhys. Lett. 73, 121 (2006).

[50] L. J. P. Ament, F. Forte, and J. van den Brink, Phys. Rev. B 75, 115118
(2007).



216 BIBLIOGRAPHY

[51] J. van den Brink, Europhys. Lett. 80, 47003 (2007).

[52] F. Forte, L. J. P. Ament, and J. van den Brink, Phys. Rev. B 77, 134428
(2008).

[53] D. S. Ellis, J. Kim, J. P. Hill, S. Wakimoto, R. J. Birgeneau, Y. Shvyd’ko,
D. Casa, T. Gog, K. Ishii, K. Ikeuchi, A. Paramekanti, and Y.-J. Kim,
Phys. Rev. B 81, 085124 (2010).

[54] F. Forte, L. J. P. Ament, and J. van den Brink, Phys. Rev. Lett. 101,
106406 (2008).

[55] P. M. Platzman and N. Tzoar, Phys. Rev. 182, 510 (1969).

[56] T. Tohyama, H. Onodera, K. Tsutsui, and S. Maekawa, Phys. Rev. Lett.
89, 257405 (2002).

[57] K. Tsutsui, T. Tohyama, and S. Maekawa, Phys. Rev. Lett. 91, 117001
(2003).

[58] M. van Veenendaal, P. Carra, and B. T. Thole, Phys. Rev. B 54, 16010
(1996).

[59] O. Gunnarsson and K. Schönhammer, Phys. Rev. B 28, 4315 (1983).

[60] A. Kotani, H. Mizuta, T. Jo, and J. C. Parlebas, Solid State Comm. 53,
805 (1985).

[61] J. Zaanen, C. Westra, and G. A. Sawatzky, Phys. Rev. B 33, 8060 (1986).

[62] G. D. Mahan, Many-particle physics, 3rd ed. (Kluwer Academic/Plenum
Publishers, 2000).

[63] T. P. Devereaux, G. E. D. McCormack, and J. K. Freericks, Phys. Rev.
Lett. 90, 067402 (2003).

[64] T. P. Devereaux, G. E. D. McCormack, and J. K. Freericks, Phys. Rev. B
68, 075105 (2003).

[65] H. Kondo, S. Ishihara, and S. Maekawa, Phys. Rev. B 64, 014414 (2001).

[66] S. Ishihara and S. Maekawa, Phys. Rev. B 62, 2338 (2000).

[67] J. Kim, D. S. Ellis, H. Zhang, Y.-J. Kim, J. P. Hill, F. C. Chou, T. Gog,
and D. Casa, Phys. Rev. B 79, 094525 (2009).

[68] G. Shirane, S. M. Shapiro, and J. M. Tranquada, Neutron scattering with a
Triple-axis spectrometer (Cambridge University Press, Cambridge, 2002).



BIBLIOGRAPHY 217

[69] M. Guarise, B. Dalla Piazza, M. Moretti Sala, G. Ghiringhelli, L.
Braicovich, H. Berger, J. N. Hancock, D. van der Marel, T. Schmitt, V. N.
Strocov, L. J. P. Ament, J. van den Brink, P.-H. Lin, P. Xu, H. M. Rønnow,
and M. Grioni, arXiv:1004.2441, Phys. Rev. Lett., in press (2010).

[70] V. Bisogni, Ph.D. thesis, Politecnico di Milano, 2010.

[71] Y. Harada, K. Okada, R. Eguchi, A. Kotani, H. Takagi, T. Takeuchi, and
S. Shin, Phys. Rev. B 66, 165104 (2002).

[72] F. M. F. De Groot, P. Kuiper, and G. A. Sawatzky, Phys. Rev. B 57, 14584
(1998).

[73] M. Van Veenendaal, Phys. Rev. Lett. 96, 117404 (2006).

[74] M. W. Haverkort, arXiv:0911.0706 (2009).

[75] P. W. Anderson, Phys. Rev. 86, 694 (1952).

[76] P. W. Anderson, Phys. Rev. 115, 2 (1959).

[77] T. Thio, T. R. Thurston, N. W. Preyer, P. J. Picone, M. A. Kastner, H. P.
Jenssen, D. R. Gabbe, C. Y. Chen, R. J. Birgeneau, and A. Aharony, Phys.
Rev. B 38, 905 (1988).

[78] M. A. Kastner, R. J. Birgeneau, G. Shirane, and Y. Endoh, Rev. Mod.
Phys. 70, 897 (1998).

[79] T. Holstein and H. Primakoff, Phys. Rev. 58, 1098 (1940).

[80] A. Klein and E. R. Marshalek, Rev. Mod. Phys. 63, 375 (1991).

[81] E. R. Marshalek, Nucl. Phys. A 161, 401 (1971).

[82] M. Takahashi, J. Phys. C 10, 1289 (1977).

[83] R. Coldea, S. M. Hayden, G. Aeppli, T. G. Perring, C. D. Frost, T. E.
Mason, S.-W. Cheong, and Z. Fisk, Phys. Rev. Lett. 86, 5377 (2001).

[84] C. T. Chen, L. H. Tjeng, J. Kwo, H. L. Kao, P. Rudolf, F. Sette, and R. M.
Fleming, Phys. Rev. Lett. 68, 2543 (1992).

[85] M. Z. Hasan, E. D. Isaacs, Z.-X. Shen, L. L. Miller, K. Tsutsui, T. Tohyama,
and S. Maekawa, Science 288, 1811 (2000).

[86] Y.-J. Kim, J. P. Hill, C. A. Burns, S. Wakimoto, R. J. Birgeneau, D. Casa,
T. Gog, and C. T. Venkataraman, Phys. Rev. Lett. 89, 177003 (2002).

[87] J. P. Hill, C.-C. Kao, W. A. L. Caliebe, M. Matsubara, A. Kotani, J. L.
Peng, and R. L. Greene, Phys. Rev. Lett. 80, 4967 (1998).



218 BIBLIOGRAPHY

[88] E. D. Isaacs, P. M. Platzman, P. Metcalf, and J. M. Honig, Phys. Rev.
Lett. 76, 4211 (1996).

[89] C.-C. Kao, W. A. L. Caliebe, J. B. Hastings, and J.-M. Gillet, Phys. Rev.
B 54, 16361 (1996).

[90] T. Inami, T. Fukuda, J. Mizuki, S. Ishihara, H. Kondo, H. Nakao, T.
Matsumura, K. Hirota, Y. Murakami, S. Maekawa, and E. Y., Phys. Rev.
B 67, 045108 (2003).
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[170] K. P. Schmidt, M. Grüninger, and G. S. Uhrig, Phys. Rev. B 76, 075108
(2007).
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[230] H. Yavaş, M. van Veenendaal, J. van den Brink, L. J. P. Ament, A. Alatas,
B. M. Leu, M.-O. Apostu, N. Wizent, G. Behr, W. Sturhahn, E. E. Alp,
and H. Sinn, arXiv:1009.4356 (2010).

[231] P. B. Allen, Phys. Rev. B 6, 2577 (1972).

[232] J. R. Kirtley and F. Tafuri, in Handbook of High-Temperature Supercon-
ductivity, edited by J. R. Schrieffer (Springer, New York, 2007), p. 19.



226 BIBLIOGRAPHY

[233] P. B. Allen, in Handbook of Superconductivity, edited by C. P. Poole Jr.
(Academic Press, San Diego, 2000).

[234] J. P. Carbotte, Rev. Mod. Phys. 62, 1027 (1990).

[235] D. J. Griffiths, Introduction to Electrodynamics, 3rd ed. (Prentice Hall,
1999).

[236] M. d’Astuto, P. K. Mang, P. Giura, A. Shukla, P. Ghigna, A. Mirone, M.
Braden, M. Greven, M. Krisch, and F. Sette, Phys. Rev. Lett. 88, 167002
(2002).

[237] W. J. Padilla, M. Dumm, and D. N. Basov, Phys. Rev. B 72, 205101 (2002).

[238] L. Pintschovius, Physica Status Solidi (B) 242, 30 (2005).

[239] J. N. Hancock, G. Chabot-Couture, and M. Greven, New J. Phys. 12,
033001 (2010).

[240] L. Boeri, O. V. Dolgov, and A. A. Golubov, Phys. Rev. Lett. 101, 026403
(2008).

[241] U. Harbola and S. Mukamel, Phys. Rev. B 79, 085108 (2009).



Samenvatting

Dit proefschrift gaat over resonante inelastische Röntgenverstrooiing (‘RIXS’,
voor het Engelse Resonant Inelastic X-ray Scattering). RIXS is een techniek
waarmee men, onder andere, de eigenschappen van materialen kan onderzoeken.
Dit gebeurt door een soort Röntgenfoto te maken in een synchrotron. Dat is
een gigantische, ringvormige deeltjesversneller met een omtrek van honderden
meters die zeer intense Röntgenstraling produceert. Deze Röntgenfoto wordt
vervolgens vergeleken met berekeningen op basis van verschillende modellen van
het materiaal. Zo kan men modellen voor een materiaal falsificeren.

Een belangrijke categorie materialen die vaak onderzocht wordt met RIXS is
die van de sterk gecorreleerde elektronmaterialen. Een voorbeeld hiervan zijn de
supergeleiders met een hoge kritische temperatuur, zoals La2−xSrxCuO4, die een
stroom geleiden zonder weerstand als ze worden gekoeld beneden de zogenaamde
kritische temperatuur, ver onder nul graden Celsius. In dit proefschrift komen
een aantal sterk gecorreleerde elektronmaterialen aan bod, elk met zijn eigen
bijzondere eigenschappen.

RIXS

RIXS is een ‘foton in - foton uit’ techniek, wat betekent dat men het materiaal
bestookt met Röntgenstralingsfotonen, die vervolgens verstrooien en gemeten
worden. Meer specifiek meet men de energie en impuls van de fotonen. De energie
en impuls die het foton verloren heeft, zijn overgedragen aan het materiaal. Met
RIXS kan men dus excitaties maken in het materiaal met een bepaalde energie
en impuls. Daarom heet RIXS inelastisch.

Wat RIXS onderscheid van gewone inelastische Röntgenverstrooiing is het
verstrooiingsproces. In RIXS wordt het inkomende foton geabsorbeerd door een
elektron in een van de binnenste schillen van een atoom. Het elektron wordt
daardoor in een lege baan (a) boven het Ferminiveau geschoten, een gat in een
kernschil (kerngat) achterlatend. Daarom heet RIXS ‘resonant’: de energie van
het inkomende foton moet precies genoeg zijn om een elektron uit de kernschil in
baan a te schieten. Nu kunnen er twee dingen gebeuren. Bij directe RIXS valt
een ander elektron uit de valentieband (baan b) terug naar het kerngat. Deze
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transitie produceert een nieuw, uitgaand Röntgenfoton. Er blijft in de valentie-
band een excitatie achter: effectief gaat er een elektron van baan b naar baan
a. Bij indirecte RIXS valt hetzelfde elektron (uit baan a) terug in het kerngat.
Er kunnen echter op een indirecte manier excitaties ontstaan omdat het kerngat
(eventueel in samenwerking met het elektron in baan a) de valentieelektronen op-
schudt. Deze interactie is meestal het resultaat van de Coulombkracht, maar kan
ook ontstaan doordat het elektron in baan a de beweging van de valentieelektro-
nen blokkeert. De resonantie zorgt ervoor dat RIXS zeer efficient is: er worden
veel meer fotonen geabsorbeerd (en vervolgens verstrooid) dan in niet-resonante
inelastische Röntgenverstrooiing.

Een voorbeeld van directe RIXS op La2CuO4 is als men de inkomende foto-
nen een energie van 931 eV geeft. Dit correspondeert met de overgang van een
2p elektron van het koper ion naar de 3d schil. Het Cu2+ ion heeft maar één vrij
3d orbitaal: 3dx2−y2 . Dit orbitaal wordt gevuld door het elektron. Nu kan een
ander 3d elektron, bijvoorbeeld 3d3z2−r2 terugvallen naar het 2p kerngat. Als
men de energie van de inkomende fotonen verhoogt tot 8993 eV, wordt een 1s
elektron naar een 4p orbitaal geschoten, ver boven het Ferminiveau. Dit is indi-
recte RIXS: het 1s kerngat schudt de valentieelektronen op en wordt vervolgens
gevuld door het 4p elektron. Natuurlijk kan er ook een ander elektron terugvallen
(bijvoorbeeld een 3p elektron), maar deze transitie heeft een veel lagere energie.
Door alleen te kijken naar energieën rond de 8993 eV kijkt men alleen naar 4p
→ 1s transities.

Het kerngat speelt een belangrijke rol in RIXS: het bepaalt het welke transities
toegestaan zijn en dus welke excitaties gemaakt kunnen worden. Door het kerngat
is de theorie van RIXS bijzonder ingewikkeld. Het kerngat heeft een ingewikkeld
effect op de valentieelektronen en de eigentoestanden van dit systeem zijn niet
exact te berekenen. In dit proefschrift wordt vaak gebruik gemaakt van een
benadering van de dwarsdoorsnede van RIXS die gebruik maakt van de zeer
korte levensduur van het kerngat. Het kerngat bestaat maar voor een heel korte
tijd omdat het door vele elektronen gevuld kan worden. Omdat het kerngat
maar een korte tijd bestaat, hebben de valentieelektronen niet veel tijd om te
reageren op de aanwezigheid ervan. De reeksontwikkeling in de levensduur van
het kerngat (de zogenaamde UCL reeksontwikkeling) versimpelt de formule voor
de dwarsdoorsnede (de Kramers-Heisenbergvergelijking) aanzienlijk.

Excitaties

De meeste materialen die in dit proefschrift worden bestudeerd zijn Mott-
isolatoren. Dit zijn materialen waar de elektronen elkaar zeer sterk afstoten via
de Coulombkracht. Daardoor ontstaat er de zogenaamde Mott-isolatortoestand
waarin elk elektron zijn eigen plaats heeft: een elektron kan niet naar een na-
burige plaats bewegen omdat daar al een ander elektron is. De gelokaliseerde
elektronen zorgen in deze toestand voor lokale vrijheidsgraden: de spin van het
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elektron en de orbitaal die het bezet.
Hoofdstuk 3 gaat over ladingsexcitaties: het verplaatsen van een elektron van

een ion naar een andere. In Mott-isolatoren moet het elektron in kwestie de
Coulombafstoting overwinnen van een naburig elektron. Dit kost veel energie:
typisch een paar eV. Wanneer een Mott-isolator gedoteerd wordt, ontstaat een
situatie waarin niet alle ionen bezet zijn. De elektronen kunnen dus beperkt
bewegen. Het resultaat van hoofdstuk 3 voor een Hubbard model met fermio-
nen zonder spin in één band is dat RIXS de dynamische structuurfactor S(q, ω)
meet van de ladingsdragers. Dit is met name interessant voor de hoge kritische
temperatuur supergeleider La2−xSrxCuO4 omdat zijn ladingsdragers maar één
orbitaal bezetten (de x2-y2 orbitaal van koper, gehybridiseerd met de zuurstof-
ionen). De spin van de elektronen is irrelevant als dubbele bezetting van ionen
niet voorkomt.

In ongedoteerde Mott-isolatoren kost een ladingsexcitatie een energie U voor
het dubbel bezetten van een orbitaal. Onder deze energie U zijn er meestal ook
excitaties mogelijk. Een elektron kan bijvoorbeeld zijn spin draaien, zonder bij
een ander elektron in de buurt te komen. In hoofdstuk 4 worden de magneti-
sche excitaties beschouwd van La2CuO4. Dit materiaal is een tweedimensionale
Heisenberg antiferromagneet. Met directe RIXS kan men een elektronspin om-
draaien, wat in de antiferromagnetische achtergrond een excitatie met een energie
tot 350 meV is. De omgedraaide spin bëınvloedt de naburige spins via de super-
exchange interactie, en hierdoor verspreidt de excitatie zich als een golf door het
materiaal. Het kwantum van een spingolf wordt een magnon genoemd. Directe
RIXS kan de dispersie van magnonen in kaart brengen. Bij indirecte RIXS is
het omdraaien van een enkele spin verboden. Wel kunnen twee elektronen met
tegengestelde spin van plaats wisselen, wat voor een dubbele magnonexcitatie
zorgt.

Naast magnetische excitaties kan RIXS ook orbitaalexcitaties creëren met een
energie kleiner dan U : een elektron gaat naar een andere orbitaal op hetzelfde
ion. De energie die hiermee gemoeid is, wordt bepaald door het kristalveld of
door superexchange processen. Zowel directe als indirecte RIXS kan een elektron
(effectief) van baan doen veranderen. In hoofdstuk 5 wordt het RIXS-spectrum
van YTiO3 bestudeerd. Dit materiaal heeft 1 elektron in de Ti 3d schil. RIXS kan
dit elektron naar een andere orbitaal exciteren. In hoofdstuk 5 rekenen we twee
verschillende modellen door die de wisselwerking van de orbitalen van naburige io-
nen beschrijven. We concluderen dat experimentele data van Ramanverstrooiing
en RIXS aan YTiO3 het best beschreven worden door een superexchangemodel.

In hoofdstukken 4 en 5 keken we naar materialen waar de spin- en orbitaal-
vrijheidsgraden gescheiden zijn – ze wisselwerken niet met elkaar. Zwaardere
ionen zoals iridium hebben wel een sterke spin-orbitaalkoppeling. We bestude-
ren dit soort materialen (Sr2IrO4 in het bijzonder) in hoofdstuk 6. In dit geval
maakt RIXS gecombineerde spin-orbitaalexcitaties. Deze aangeslagen toestan-
den kunnen door superexchange-interacties collectief gedrag ontwikkelen, net als
de spingolven en orbitaalgolven van de voorgaande hoofdstukken.
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Naast spin- en orbitaalvrijheidsgraden zijn er nog meer excitaties mogelijk bij
energiën onder U . Het rooster kan bijvoorbeeld gaan trillen. De kwanta van een
dergelijke trilling zijn fononen. RIXS kan fononen creëren door de verandering
in de ladingsstructuur in de korte tijd tussen de absorptie en emissie van het
Röntgenfoton. De ionen van het rooster reageren op deze ladingsverandering door
te gaan trillen. Hoofdstuk 7 onderzoekt hoe het RIXS-spectrum van verschillende
typen fononen eruitziet. Niet alleen kan RIXS de dispersie van fononen meten,
het is ook mogelijk om de elektron-fononkoppeling te meten door de intensiteit
te vergelijken van de 1- en 2-fononpieken. Ook is de impulsafhankelijkheid van
de elektron-fononkoppeling uit RIXS-spectra af te leiden.

Als de snelle vooruitgang die RIXS de laatste paar jaar geboekt heeft, door-
zet, zal het in de nabije toekomst mogelijk worden om excitaties bij zeer lage
energie waar te nemen, zoals excitaties op de schaal van de gap in supergeleiders.
Ook komen er nu nieuwe Röntgenstralingsbronnen in werking: de zogenaamde
X-ray Free Electron Lasers die Röntgenstraling met een extreem hoge intensi-
teit produceren. XFEL’s maken nieuwe processen mogelijk die met de huidige
synchrotrons ondenkbaar zijn, zoals 2-fotonabsorptie.
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