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Chapter 1

Introduction

Ever since scientists recognized computers as an invaluable support toolfor their re-
search there has been a rapidly increasing demand for technologies thatallow for
more data to be gathered, stored, and processed. Statistics in the past have suggested
that worldwide data volumes are doubling every two to three years [LV03],an esti-
mate which is still reasonnably accurate today, even more so for the scientificcom-
munity, where gathering huge amounts of data seems to be more the rule than an
exception.

The advances in computer science technologies gave rise to a paradigm shift in
the way we perform and think about research. No longer do experimentsneed to be
conducted in ahypothesis-drivenfashion only, where a scientist has an idea, formu-
lates a hypothesis, and tries to validate by experimenting. Rather, the current trend is
perform science in adata-drivenway; the scientist collects as much data as possible
on a specific problem environment, looks for emerging patterns, interpretsthese pat-
terns, and relates them to the current knowledge.

While this new paradigm certainly has its conveniences, it also has its share of
problems and difficulties, some of which are solved, some that still need (better) so-
lutions. One of those problems is referred to as thedata explosion, a dramatic growth
in the generation of data. This was especially noticeable in medical and physical
sciences, where measurement equipment emerged that had higher resolutions and
more sensitive measurement capabilities, thereby able to generate and storemassive
amounts of data.

As more and more data is being generated and gathered, the demand for programs
and algorithms that can help interpret this data also grows. Since data volumesnow
span gigabytes or even terabytes, analyzing this data becomes a task that could not
be done without the help of a computer. Moreover, traditional methods of analyzing
data such as statistics do not always suffice anymore, since statistics do not extract
hypotheses from data. The demand for such possibilities has given rise toa new field
of research in computer science calledData Mining, more formally known asKnowl-
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edge Discovery in Databases(KDD) [FPSS96].
KDD is the process of applying various methods from scientific fields such as

artificial intelligence, statistics and data processing to data, with the intention of un-
covering hidden knowledge or behavior [KS05]. In this context, the termknowledge
refers to patterns, which are bits of information that summarize a larger collection
of data. As data collections grow bigger, these patterns become more important and
form hypotheses within the data-driven paradigm.

Given that the size and variety of machine-readable datasets have increased dra-
matically, it seems likely that an equal, or at least proportional increase of processing
power is necessary to perform data mining on such gigantic collections, power that
goes beyond a single machine. As a result, new technologies have been developed to
allow parallel and remote computing, using multiple computers to work together on
a single task or problem.

In this thesis we investigate how relatively new techniques in software engineer-
ing can help improve knowledge discovery (KD) in terms of performance and ease
of design and use. We use a paradigm calledservice orientation, which is a relatively
new technique to perform distributed computing, and demonstrate how different ap-
proaches to KD can be assisted by this technique. We further demonstrate how service
orientation can speed up the creation of KD experiments as well as their execution,
and improve KD results.

The rest of this chapter is organized as follows: in Section 1, we presenta motiva-
tion for our research and our specific use cases. In Section 2, we give an overview of
this thesis, briefly describing each chapter. Finally, in Section 3. we present a list of
the author’s publications, whose combined effort forms the foundation ofthis thesis.

1.1 Motivation

When the author started his research, the project was about researchon inductive
databases, thereby finding efficient ways to store, retrieve and mine on data and pat-
terns. These inductive databases were to be used in a biological or bio-informatics
setting, meaning that the research was directed especially to the problems andde-
mands of these fields, such as dealing with huge amounts of (possibly distributed and
heterogeneous) data, as well as making these databases user-friendlyenough for bi-
ologists and bio-informaticians.

As more research was conducted on the problems and challenges of the bio-
informatics field, the research questions slightly changed. It became clearthat a sin-
gle inductive database would not suffice for research problems in the bio-informatics
field, certainly not for microarray and other genomics experiments, and topics such as
remote processing and concurrency became integral to the research. As a result, the
focus shifted from inductive database technology and research, which was already
being researched by multiple institutes at that time, to applying software engineer-
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ing technologies that supported remote and concurrent processing, which would al-
low for faster experimentation within different methods of KD, including inductive
databases.

As the search for software engineering technologies progressed, it became ap-
parent that service orientation, a relatively new paradigm within the software engi-
neering community, was best suited for the new research focus, because it potentially
fulfilled all the desired criteria, and because other upcoming technologies inthe bio-
informatics community started to make use of service orientation as well. Therefore,
it seemed more important than ever to explore service orientation in this context,op-
timizing it for fast experimentation as well as ease of use.

The explorations of service orientation needed to be approached from two sides.
On one side, the author wanted to present some guidelines and best-practices on how
to use service orientation in the design of two different KD methods that werevery
actively researched at the time, inductive database and scientific workflows. On the
other side, the author wanted to take a critical look at current technologiesthat actu-
ally used service orientation and web services, which is the standard that iscurrently
used most, and see how and where they could be improved in terms of performance
and efficiency.

A final yet vital part was to create or improve an application set in the biologyor
bio-informatics context, as well as finding suitable data to experiment on. Theauthor
came across the work of Igor Trajkovski and Nada Lavrac, who had both worked on
an application that performed subgroup discovery on genes, and who wanted to offer
it as a web service. It seemed as a good start to apply the author’s research on service
orientation. The author began by re-implementing the original application usingweb
services, and gradually modified and extended it into the Fantom service, which is
the web service that combines the author’s research on web services and data mining
in bio-informatics.

Since the author wanted Fantom to be generic, making it suitable for a range of
problems and problem domains instead of specific ones, the author wanted tosupport
a range of data sources. Therefore, one use case is a microarray experiment, and the
other one is a Single-Nucleotide Polymorphism experiment. While both are different
experiments, the Fantom service can work with both, since the outcome of the exper-
iments can be transformed into a ranking of unique entities, or identifiers, with scores
attached to them. Note that despite the fact that our research is primarily concentrated
on biology and bio-informatics, the Fantom service is generic enough to be set in any
domain, as long as a ranked list of items and ontologies are available, as well as a
mapping between the items in the list and ontological concepts.
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1.2 Thesis Outline

Analoguous to its subtitle, this thesis has been divided into three parts: foundations,
implementations and applications. The first part, foundations, covers chapters 2, 3
and 4. These chapters explain basic techniques and terminology, and present differ-
ent viewpoints on data mining that have been proposed and researched inthe past few
years. In these chapters we investigate how service orientation could fit into, or even
improve, different data mining viewpoints and techniques.

In Chapter 2, we discuss the basics of software engineering, thereby focussing on
software reuse. We present a short history and demonstrate how the need for software
reuse has driven the software engineering field to its current state. We also discuss ser-
vice orientation, the central paradigm of this thesis. Next, we discuss the concept of
data mining, providing definitions and relations to other scientific fields, and present
an overview of how a data mining process typically works. We also give an overview
of subgroup discovery, and briefly discuss distributed knowledge discovery.

In Chapter 3, we investigate inductive databases. We present a framework that
combines data mining, patternbases and databases into an inductive database, which
is a database that supports data mining in its query language. We propose design
principles for inductive querying and a framework for the fusion of databases and
patternbases to transparently form an inductive database. We also present scenarios
to demonstrate how inductive databases benefit knowledge discovery and give a con-
crete example showing an advantage of mining both the patterns and the data. Finally,
we theorize on how service orientation can fit within the suggested frameworks, and
what improvements are possible.

In Chapter 4 we investigate how the service-oriented paradigm benefits knowl-
edge discovery in scientific workflows. We compare the non-service-oriented, con-
structed process model with the service-oriented orchestrated processmodel, and
point out the benefits of service-oriented technology in scientific workflows. After
that, we propose a guidance model for the design of a service-oriented knowledge
discovery process, and provide guidelines for individual knowledgediscovery ser-
vice design based on the types of functionalities it requires. We also provide a use
case to show the application and benefits of the proposed model and guidelines in
practise.

The second part, implementations, covers chapters 5 and 6. These chapters are
technical in nature since they provide implementation details on the Fantom service,
as well as an overview of the applications using the Fantom web service thatwere
created for the optimization of rule pruning and threshold determination.

In Chapter 5 we discuss the Fantom service. We give insights into its imple-
mentation, providing algorithms used in all the phases of rule generation, as well as
algorithms that handle rule pruning and clustering, and ontology creation. We also
discuss the diverse inputs that the Fantom service expects, what kind ofscoring mea-
sures it calculates, and what kind of output it delivers. To illustrate the performance of
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the Fantom service, we also present some statistics concerning speed andrule prun-
ing, which were collected by applying the Fantom service to a well-known public
microarray study.

In Chapter 6 we continue our discussion on the Fantom algorithm by embedding
it into larger workflows. We present two applications that use multiple instances of
the Fantom service simultaneously to perform rule optimization and threshold cal-
culation of multi-class problems. We use the principle of statistical exact testing and
perform distributed computing with Fantom to further prune rules in the outputof
Fantom. To illustrate the effectiveness of the distributed application of Fantom,we
performed another experiment on the microarray study used in Chapter 5,and show
how effective exact pruning can be on top of the pruning performed in the Fantom
service.

The third and final part, applications, covers chapters 7 and 8. In thesechapters
we discuss the application of the Fantom service on several life-science data sets,
with various settings. In each chapter we discuss the biological backgrounds of the
data set, and the study that it was part of. For each of the experiments conducted, we
discuss primarily performance of rule generation, pruning, and clustering, although
we provide the experts’ opinions on the resulting rules in lesser detail as well.

In Chapter 7 we perform experiments using the Fantom service on microarray ex-
pression data obtained from samples taken from mice with cardiac overexpression of
the transcription factor TBX3. We briefly discuss the biology of genes andgenomes,
and provide information on the mouse heart study and microarray technology. We
perform multiple types of experiments, and for each of these experiments weapply
exact pruning on the results. Finally, we present performance measurements on all
experiments, as well as pruning and exact pruning statistics.

In Chapter 8 we perform experiments using the Fantom service on data thatwas
obtained from a Single-Nucleotide Polymorphism (SNP) study done on humande-
pression. We discuss what SNPs are, and why they are important. We alsodiscuss
the human depression study, and give background information on human depression
where relevant. We conduct two different experiments on the data sets available. In
one experiment we let Fantom mine the SNP rankings directly, and in another ex-
periment we let Fantom mine on gene rankings that were extracted from the SNP
ranking. We present performance measurements of the Fantom service for both sets,
as well as pruning and clustering statistics.

Apart from these eight chapters, there are also three appendices. InAppendix A,
we discuss the formats of all the mappings and data sources that the Fantom service
relies on. These include interaction mappings, key mappings, ontology mappings, and
the ontology format itself. In Appendix B, we present the mathematical backgrounds
of the Enrichment Score function. We define its mathematical properties, andpresent
an algorithm to calculate the maximum potential score for a certain subgroup size of
a rule. Finally, in Appendix C, we present a user manual of the Fantom application.
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1.3 Publications

The chapters 3, 4, and 5 of this thesis are based on the following publications:

Chapter 3

For chapter 3 we used two articles that are both concerned with inductive databases.
For the first part of the chapter we used the following paper:

Jeroen S. de Bruin and Joost N. Kok
Towards a Framework for Knowledge Discovery
In the Proceedings of IFIP PPAI 2006, pages 219–228
Santiago de Chile, Chile, August 2006

In this paper we proposed a general architecture for the implementation of induc-
tive databases through combination of existing technologies. We also gave insights
on how inductive databases could be combined with grid computing to achieve effi-
cient and fast knowledge discovery. For the second part of the chapter we used the
following paper:

Jeroen S. de Bruin
Towards a Framework for Inductive Querying
In the Proceedings of ISMIS 2006, pages 419–424
Bari, Italy, October 2006

In this paper we discussed the lower level querying and fusion component more in-
depth. We also showed how inductive databases could speed up data miningprocesses
through the use of constraint-based mining, where the constraints were derived from
existing patterns.

Chapter 4

In chapter 4 we address issues in service-oriented computing, thereby focussing on
service-oriented knowledge discovery. For the first part of the chapter we used the
following article:

Jeroen S. de Bruin, Joost N. Kok, Nada Lavrac and Igor Trajkovski
Towards Service-Oriented Knowledge Discovery: A Case Study
ECML/PKDD 2008, SoKD Workshop Proceedings, pages 1–10
Antwerpen, Belgium, September 2008

In this paper we examined the differences between knowledge discoveryprocesses
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that are constructed and orchestrated, or composed. We outlined their differences,
weaknesses and strengths. and indicated how web services could improve orches-
trated knowledge discovery processes. To illustrate these benefits, we experimented
with different web service implementations and presented a comparison in theirexe-
cution times. We also indicated weaknesses of the workflow model that needed to be
addressed to optimally accommodate data mining processes. For the second part of
the chapter we used the following paper:

Jeroen S. de Bruin, Joost N. Kok, Nada Lavrac and Igor Trajkovski
On the Design of Knowledge Discovery Services:
Design Patterns and Their Application in a Use Case Implementation
In the Proceedings of Isola 2008, pages 649–662
Porto Sani, Greece, October 2008

In the second article we took a more theoretical approach to data mining with web
services. We presented a model for the design of the data mining process as a whole
based on availability of other services as well as functional and relationalrequire-
ments. We also presented design patterns for the design of individual services. As a
use case, we used an existing solution for a gene mining problem and transformed
it into a workable web service solution using our model and design patterns,and
showed how efficiency, interactivity and performance was increased.

Chapter 5

Chapter 5 was based on a single publication that summarized the Fantom service.
This article was:

Jeroen de Bruin, Nada Lavrac, Joost N. Kok
The Fantom Service for Subgroup Discovery in Score Lists
ECML/PKDD 2009, SoKD Workshop Proceedings, pages 52–63.
Bled, Slovenia, September 2009

In this article we discussed the Fantom service, including inputs, scoring functions,
the use of ontologies, output and internal functionalities and optimizations of rule
generation and rule pruning. To show how the service performed and to give an indi-
cation of the effect of optimizations in pruning, we performed experiments onpublic
genome datasets to indicate how many rules were pruned, and what the effect of each
optimization was in both speed and rule pruning.
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Further publications

The author of this thesis was also involved in a number of other publications:

Jeroen S. de Bruin, Tim K. Cocx, Walter A. Kosters,
Jeroen F. J. Laros and Joost N. Kok
Data Mining Approaches to Criminal Career Analysis
In the Proceedings of ICDM 2006, pages 171–177
Hong Kong, China, December 2006

Yanju Zhang, Jeroen S. de Bruin and Fons J. Verbeek
miRNA Target Prediction Through Mining of miRNA Relationships
In the Proceedings of BIBE 2008, pages 1–6
Athens, Greece, October 2008

Yanju Zhang, Jeroen S. de Bruin and Fons J. Verbeek
Specificity Enhancement in microRNA Target Prediction
through Knowledge Discovery
In Machine Learning, (ISBN 978-953-7) (In Press)
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Foundations
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Chapter 2

Background

In this thesis we take a software engineering approach to knowledge discovery, ex-
ploring and applying technologies and trends in software engineering andknowledge
discovery, and combining them to improve the performance and ease of design of a
knowledge discovery experiment. We present a general overview of software engi-
neering and data mining and give an overview of the main technologies used inthis
thesis as well.

2.1 Introduction

This chapter is organized as follows. In Section 2, we briefly discuss a few basic
concepts of software engineering, thereby focussing on software reuse. We present a
short history and illustrate how the need for software reuse has influenced the soft-
ware engineering field. In Section 3, we discuss service orientation, thereby explain-
ing terminology and common techniques. We also give examples of successful web
service architectures. In Section 4, we discuss the concept of data mining, give its
definition and illustrate how various scientific fields contribute to it. We also givean
overview of how a data mining process typically works, and give an overview of the
most common classes of data mining algorithms. Next, we discuss a specific data
mining field called subgroup discovery. We discuss its qualities, and the common
theory and techniques that it is based on. Finally, in Section 5, we briefly discuss
distributed knowledge discovery.

2.2 Software Engineering

The development of software has never been a trivial task. At the beginning of soft-
ware programming, difficulties were mostly related to computer hardware limita-
tions; programming a piece of software was a challenge due to limitations in memory
size and processing power. At that time, experts held the opinion that as computers
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would grow in power, programming would no longer be a problem. As it turns out,
the opposite appeared to be true.

As predicted, rapid advances in computer hardware technology led to the realiza-
tion of increasingly powerful computers. This, in turn, led to a demand for increas-
ingly larger and more complex software systems. However, as software systems grew
in size, they also grew in complexity, and eventually became too complex for their
creators to be fully understood. As a result of this lack of understanding, software
systems became unmanageable, were frequently over budget, appearedvery late on
the market and were often of poor quality. This was deemed the software crisis:

”The major cause [of the software crisis] ... that the machines have
become several orders of magnitude more powerful! To put it quite bluntly:
as long as there were no machines, programming was no problem at all;
when we had a few weak computers, programming became a mild prob-
lem, and now we have gigantic computers, programming has become an
equally gigantic problem.”[Dij72]

In order to counter the crisis, the first NATO conference on Software Engineering
was held in 1968. The term software engineering was relatively unknownthen, and
the intention of the conference was to force a paradigm shift in software develop-
ment, from a mere craft to a full-grown engineering discipline, hence the deliberate
(perhaps even provocative) use of the term software engineering. The conference was
a success in that respect: the term software engineering became popularand widely
used.

Software engineering is defined as the application of a systematic, disciplined,
quantifiable approach to the development, operation, and maintenance of software;
that is, the application of engineering to software [ABD+04]. The goal of software
engineering is to develop and apply techniques that make it possible to createhigh
quality software with greater ease and efficiency. In short, it is the mission of the soft-
ware engineering field to provide the silver bullet1 that puts an end to the enduring
software crisis.

In the decades following this historical conference, the software engineering field
turned its attention towards the formation of the Software Lifecycle Process.It was
argued that in order to improve software, a full and thorough understanding of soft-
ware and the software lifecycle was necessary. In 1970, Royce proposed his waterfall
model [Roy70], in which the software lifecycle process is viewed as flowing steadily
and discretely through the phases of requirements analysis, design, implementation,
validation and testing, integration, and maintenance. Consequently, research in the re-
lated domains of project management, requirements engineering, and programming
and design methodologies also received an impulse.

1The term silver bullet was first used by J.R. Brooks Jr [Bro87]. He compared a software project to
a werewolf; both change from familiar, everyday things into true horrors in an eyewink. According to
ancient folklore and Hollywood movies, silver bullets are the only possible way to kill a werewolf.
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Especially research on methodologies proved to have a profound influence on the
modern day technology. It resulted in concepts that are widely applied in modern day
programming practices. Dijkstra proposed the structured programming methodology,
a programming methodology that states that programs should be split up into smaller
parts, each with a single point of entry and of exit [DDH72]. In that same period, Par-
nas proposed the Parnas Module [Par72], adopting the methodology of information
hiding. Information hiding concerns itself with hiding of design decisions in a com-
puter program, especially those that are most subjective to change, thereby shielding
other program parts from change.

Research on design methodologies also provided some well-known best practices
that are used today. Perhaps the best-known methodology in this area is thenotion of
high cohesion / loose coupling, proposed by Yordon and Constantine [YC75]. They
argued that programs should have a structured design of modules, where each mod-
ule has a clear and distinct meaning in the program, containing functions that are
strongly related to each other (high cohesion). Furthermore, modules should not be
connected too strongly to other modules, thereby containing the effect of change in a
module (loose coupling).

Driven by the research successes in programming and design methodologies,
new high-level programming languages began to appear that incorporated these best-
practices, including well-known programming languages such as Pascal and C. Pro-
gramming and design paradigms also shifted more towards object-oriented program-
ming and design.

In the decade that followed,object orientation(OO) became the predominant
paradigm in the software engineering community. The community’s great interest in
OO resulted in the creation of OO programming languages like C++ and Java, and
OO design methods [Boo93, Jac92, RBL+90], which in their turn led to the cre-
ation of the current de-facto modeling standard: UML [RJB04]. For a time,it seemed
that OO was the solution to the software crisis. Unfortunately, it was not perfect yet:
although OO proved to be an improvement in many aspects of software engineer-
ing, there were still some issues that needed to be resolved. Thus a new paradigm
emerged: component orientation (CO).

Although intended to be highly reusable, large scale reuse of classes never oc-
curred. A reason why classes are not very reusable lies in the fact that they have a
technical nature. Often, collections of classes provide a certain functionality, and the
role of an individual class within that collection is unclear to anyone other than the
class implementor, which greatly restricts its (re)use.

After having studied the problems of technical reuse, the CO paradigm wascre-
ated to overcome them. The paradigm sets guidelines for software components that
are meant to maximize their reusability. Reusability is the ability and the extend to
which a software system or parts of a software system can be reused in other software
systems. The increased reusability of software components makes them accessible
and more attractive to a large public, allowing for reuse on a much larger scale. As
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a result, rapidly expanding component markets have formed over the last few years
[BBCD+98], indicating that components succeeded where object technology failed.

Since components are meant for reusability, they have well-described interfaces
that allow for reuse and composition with other components, thus composition of
components into systems is also easier and faster than the creation of systems.It is
exactly these properties, its composability and uniform accessibility, that madecom-
ponent orientation become the basis for services and the service-oriented paradigm.

2.3 Service-Orientation

The service-oriented (SO) paradigm is a paradigm that specifies the design and imple-
mentation of software through the use ofservices, which are connected to each other
and interact together in aService-Oriented Architecture(SOA) [Gro07]. A SOA is a
distributed architecture that allows a user to build an application by means of com-
posing individual components that exist across separate (physical orlogical) domains.
These components are called services [HD06]. We will first discuss services and then
we continue to discuss the broader SOA framework.

2.3.1 Services

We define services in the SO paradigm as follows:

Definition A serviceis an encapsulated unit of clear and distinct functionality, inde-
pendent deployment, designed for orchestration, that communicates solelythrough
contractually specified interfaces, and only has explicit dependencies.

We now discuss each part of this definition individually:

A service is an encapsulated unit

To control access to a service, and to protect it from (potential malicious)outside in-
terference of its functionalities, a service is encapsulated. Encapsulationis a mecha-
nism that shields the internal properties of a software unit, so that they arenot directly
observable or accessible by outside clients. In services, two types of encapsulation are
required:

∙ Implementation encapsulation
Implementation encapsulation, also known as implementation hiding, is a good
way to protect a service from outside modifications. Functions supported by a
service are black-boxes; only their external characteristics are visibleto their
users. These external characteristics comprise of its interface and a description
of its functionality, and both should be well-described by the service’s meta-
data description standard.
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∙ State encapsulation
State encapsulation, also known as state hiding, is the protection of the service
from uncontrolled outside deregulation. To ensure this, a service seems state-
less from the outside. A service can only be identified by its name and location
and, as a result, cannot be distinguished from its copies (a similar definition
holds for software components. Szyperski called this ”nomen est omen”,which
means ”the name is the sign” [SGM02]).

A service is a unit of clear and distinct functionality

Adhering to the Parnas module principle, a service should not contain a collection of
random functionalities. Rather, each service within a broader system should have its
own unique role, providing clear and well-described functionalities. No twodifferent
services within a system should provide the same functionalities. A similar argument
can be made for data mining, where distinct services should offer similar functional-
ities in terms of process and type of knowledge discovery (e.g., no two classification
services should perform the exact same classification).

A service is a unit of independent deployment

A service’s design and implementation may depend on functionalities provided by its
context (i.e., other services), but not on the implementation of these functionalities.
For example, a service using another service which provides a queueingfunctionality
may make no assumptions about the implementation of the queueing algorithm. This
restriction ensures that a service is a separate, self-contained entity, thereby avoiding
that a service is assimilated into the system, breaking when implementations of other
services change.

A service is a unit designed for orchestration

In the SO paradigm, applications are constructed by orchestrating services together
in an application or framework, whereby orchestration is the automated arrangement,
coordination, and management of services. Although a software system can be com-
prised of a single service, typically it is a combination of diverse services orches-
trated together to provide some joined functionality. This means that a service should
always be able to be integrated into a larger system, provided that all other services in
the system use the same orchestration and communication protocols. The interfaces
of a service function as connection points for other services.

A service communicates solely through contractually specified interfaces

An interface is an access point for functionality, consisting of a set of named opera-
tions accompanied by the semantics of each operation. A service can be a client or
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an implementor of an interface, depending on the class of the interface. We identify
two classes of interfaces:

∙ Provided interface
A provided interface is an access point that allows other clients (i.e., other
services) to access functionalities provided and/or implemented by the service.

∙ Required interface
A required interface is an access point for the service itself, enabling it toaccess
external functionalities (thus functionalities not implemented by the service
itself), which it needs in order to function properly.

These provided and required interfaces are the only means through which a ser-
vice can communicate with other services, a methodology calleddesign by contract
[Mey92]. In this methodology, implementation is decoupled from a program’s inter-
face, whereby an interface is an annotation of the service’s functionalitythat serves
as a contract between the service user and the service provider.

A service only has explicit dependencies

Although services are designed to be as independent as possible, some dependencies,
both global and local, cannot be avoided in order to function correctly. For a service
to be usable by third parties, such dependencies must be explicitly mentioned inthe
service description. These dependencies comprise of other functionalities that must
be present within the application, but also standards concerning the environment of
the application itself, such as the operating system or supported hardware.

Now that we have defined what a service is, we move on to the definition of the
framework in which services function, the Service-Oriented Architecture.

2.3.2 Service-Oriented Architecture

A SOA is a framework in which services are orchestrated into applications orother
services. The framework dictates protocols and standards with which services can be
embedded and orchestrated, be it locally or at a remote location. As a consequence,
a SOA relies heavily on standards defined for communication between, and discov-
ery and execution of services, as well as meta-data that specifies these standards for
each service. A SOA can be seen as the next evolution of the CO paradigm,in the
sense that services are components that can be accessed remotely as well as locally.
In Figure 2.12 an overview of the web service framework is presented, one of the
most widely used SOA frameworks nowadays.

2Picture adapted from IBM, http://www.ibm.com
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Figure 2.1: The web service framework

There are a few key points in Figure 2.1. First, in the service provider layers, ser-
vices can consist of not only custom software, but also of existing solutions. This is
possible because of the standardized messaging and interface formats that are part of
the SOA specification.
The current standard for defining web service interfaces is theWeb Service Descrip-
tion Language(WSDL) [W3C01]. WSDL is an XML-based standard that describes
for each web service how the service handles incoming messages, what type of ser-
vice it is, what kind of parameters it supports, and how the service interface is con-
nected to the underlying implementation.

Another area of interest are the service consumer layers. Notice that applications
are no longer constructed but instead orchestrated by putting together individual web
services. This composability is partly the merit of the standardized interfaces, but
also because the web service architecture is message-oriented; communication be-
tween individual components proceeds through the use of uniformly defined mes-
sages. A standard that is often used for web service message transport is theSimple
Object Access Protocol(SOAP) [W3C07], which is an XML-based message format
and transport protocol. Using both standardized ways of accessing and messaging
makes an application decomposable into distinct, uniformly accessible units of com-
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putation and processing, which allows for remote computing.
Finally, the last point of interest is the central layer called the services broker

layer. In this layer the interfaces of the web services are offered to the consumers
who search for their underlying functionality. For a user it is impossible to know the
location of each service, and similarly for a provider it is impossible to know the
location of all its potential users. To meet both demands, theUniversal Description
Discovery and Integration(UDDI) [MER01] was designed, which is a registry for
web services offered by service providers containing all WSDL documents corre-
sponding to interfaces of those services. In Figure 2.23 the web services architecture
is shown.

Figure 2.2: The web service architecture

As can be seen in Figure 2.2, connection of services proceeds througha UDDI ser-
vice broker. The service requester sends a requester WSDL description of the service
it needs. Within the UDDI, all WSDL documents of service providers are stored,
and based on the requester WSDL document a list of matches is sought for, and if
found, the relevant provider WSDL documents are returned to the requester. In the
final stage, the service requester sends a SOAP message to the service provider based
on the provider WSDL document, and after processing has taken place, the result (if
any) is returned to the service requester, also through the SOAP protocol. The format
of the return message is again specified in the WSDL document.

3Picture taken from wikipedia, http://en.wikipedia.org/wiki/Webservice
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2.4 Data Mining

Data mining refers to the process of analyzing data in collections of data aiming to
find patterns, which are bits of knowledge that summarize parts of the data [WF99].
The primary goal of data mining is to find patterns that are novel, interesting, and
useful. Data mining has become increasingly important and popular since storage
facilities have increased, and because data collections have become so bigthat it is
impossible to analyze them without the help of a computer.

To uncover patters, data mining uses a variety of techniques that have roots in
other disciplines such as machine learning, artificial intelligence and statistics.How-
ever, equally important is the presentation of the results, hence data mining is also
influenced by computer visualization techniques.

2.4.1 Data Mining Process

In general, a data mining process can be categorized intodescriptive data miningand
predictive data mining. Descriptive data mining is used to generate rules that describe
the data set, or subgroups of that data set, in order to gain more understanding and
to formulate new theories about the data. Predictive data mining is used to generate
models on the basis of known data, to formulate a prediction or theory about new
data.

Originally, a data mining process was modeled as a process consisting of three
sequential phases: first preprocess raw data, then mine the preprocessed data, and fi-
nally interpret the results [FPSS96]. Later, this model was modified and extended by
an additional three phases in the CRoss Industry Standard Process forData Mining
(CRISPDM)4 process model, which is shown in Figure 2.3.

As can be seen, the process is no longer linear. Research in data mining and anal-
ysis of the process uncovered that moving back and forth between different phases is
inevitable, and the next phases in the process to be executed depend on the outcome
of the previous ones. Furthermore, the outer circle in the figure symbolizesthe cyclic
nature of data mining itself, which suits the new data-driven paradigm; data mining
results form new hypotheses, resulting in more business or domain understanding,
and generating new questions. Hence, subsequent data mining processes will benefit
from the experiences of previous ones. We present a brief overviewof the individual
phases below:

Business Understanding

This initial phase focuses on understanding the project objectives and requirements
from a business or scientific perspective, and then converting this knowledge into a

4http://www.crisp-dm.org/

19



Figure 2.3: The CRISPDM process model

data mining problem definition, and an initial strategy designed to achieve the objec-
tives.

Data Understanding

The data understanding phase comprises of data collection and familiarizationwith
the data, to identify data quality problems, to discover first insights into the data,or
to detect interesting subsets to form hypotheses for hidden information.

Data Preparation

Data preparation, also called data preprocessing, refers to the process of cleaning,
formattingandpartitioning the data.

Cleaning is the process of removing inaccurate or missing entries in the data.
that might interfere with the accuracy of the experiment. Techniques such as outlier
detection are commonly used in this phase.
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After the data has been cleaned, often it needs to be formatted intofeature vectors,
which are vectors of (alpha-)numerical features. Usually, each entryor observation
in the dataset corresponds to a single feature vector. Sometimes these vectors can get
very big, in which case dimensionality reduction techniques can be used to reduce
their size [LM98, GGNZ06].

Finally, the complete data set is often partitioned into atraining setand atest set.
The training set is used to train the algorithm (if needed), while the test set is used to
verify if the patterns uncovered in the training phase are valid. The accuracy of a data
mining algorithm indicates how effective it is in a certain problem domain.

Modeling

Modeling is the phase where the actual data mining takes place. Various modeling
techniques are selected and applied, and their parameters are calibrated tooptimal
values. Typically, there are several techniques for the same data mining problem type,
as we will discuss in Section 2.4.2. Some techniques have specific requirements on
the form of data, which requires stepping back to the data preparation phase.

Postprocessing and Validation

In this final step of the process, patterns generated by data mining are examined for
accuracy and validity. In case there are training and test sets, patterns acquired in the
training set are contrasted against those resulting from the test set to seeif they are
present there too. When rules are specific to the training set instead of theglobal data
set, we call thisoverfitting.

When a set of statistical inferences are simultaneously considered, errors such as
hypothesis tests that incorrectly reject the null hypothesis are more likely to occur.
Therefore, rules that are attributed with statistical significance or error-rates such as
p-values might need to have these corrected for multiple hypothesis testing. Many of
the methods [Abd07] are based on Boole’s inequality, stating that if one performsn
tests, each of them significant with probabilityp, then the probability that at least one
of them comes out significant is≤ n ∗ p.

Finally, when all rules are validated, a formatting phase is usually used to struc-
ture patterns, models and knowledge so that it is presented in a way that is easy to
understand. Often this is done by using computer visualization techniques.

2.4.2 Data Mining Algorithms

Though there have been many data mining algorithms devised over the years,most
of them fall into one or more of the following categories [FPSS96]:

∙ Classification
Classifiers attempt to label feature vectors with classes on the basis of their
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values. Classifiers are trained on the training set, and then their accuracyis
measured on the test set. Since the classes of all observations are knownbe-
forehand, we call thissupervised learning.

∙ Clustering
Clustering has a similar goal as classification, namely to group (subgroups of)
feature vectors together based on some similar entry or entries within the fea-
ture vectors. However, different from classification, classes are not known apri-
ori, hence it is calledunsupervised learning.

∙ Regression
Regression analysis is a technique that tries to find a model that fits the data,
e.g., a linear or hyperbolic function that fits all or most data points, minimizing
the total error. Regression focusses on uncovering relationships between inde-
pendent variables and dependent variables, thereby creating a modelfor the
entire feature vector space.

∙ Association learning
Association learning methods try to uncover relationships between (groupsof)
features in the feature vector. Rules uncovered usually have the form of
B ← A, where the presence of features in groupA implies the presence of
features in groupB. These rules usually have aconfidenceindication, though
other quality measurements are also used [Omi03, AY98, BMUT97].

2.4.3 Subgroup Discovery

Subgroup discovery[Wro97, LKFT04] is a data mining method that tries to find
interesting subgroups within a population of samples. It combines elements of classi-
fication and association learning [LKFT04] and regression; classification, for it tries
to match a property or conjunctions of properties to a certain (sub)class, association
learning because it tries to generate descriptive patterns that describe subgroups, and
finally regression, because it tries to identify relations between dependent variables
and independent ones.

There are also differences between subgroup discovery and classification. Clas-
sifiers usually generate rigid models for each class, that do not allow for as much
flexibility in false positives as subgroup discovery does. It is also slightly different
from association learning, since the rules imply subgroups and not other properties
(though it can).

Patterns in subgroup discovery have the form ofClass← Conditions, meaning
that the description in the conditions describe (or imply) the class or subgroup. These
conditions are made up of one or a conjunction of expressions that apply toall mem-
bers of the class or subgroup. For example, let us assume that we have two classes,
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StayInandGoOut, and three propertiesWeather, SkyandWind with diverse values.
A rule could look as follows:

GoOut←Weather=Sunny AND Sky=Clear AND Wind=None

In this rule it is stated that when the weather is sunny, the sky is clear and there is no
wind, then people go out.

In subgroup discovery all rules are annotated with a measurement of interesting-
ness. In [LKFT04] theWeighted Relative Accuracy (WRAcc)measurement is used,
which is defined as follows:

WRAcc(Class← Condition) = p(Condition)⋅(p(Class∣Condition)- p(Class))

As with most measurements in subgroup discovery there are two components that try
to establish a tradeoff between the generality of a rule and the deviation of thenormal
status or accuracy (also called ”unusualness”). In case ofWRAcc, p(Condition)is the
generality factor, since it indicates the relative size of a subgroup, andp(Class∣Cond)-
p(Class)is the unusualness measurement, indicating the difference between rule ac-
curacy and expected accuracy.

Very important in subgroup discovery is efficient searching in the search space.
If we use a brute force method to enumerate all the different subgroups overn prop-
erties, then the total number of enumerations would be:

∑n
i=1

n!
(n−i)!⋅i! = 2n − 1

This means that a search quickly becomes infeasible for larger amounts of properties.
To counter the explosion of the search space, usually heuristics like a beam search
are used. While this is usually more efficient, the drawback is that the searchis not
exhaustive, leaving the chance that the optimal solution is not found.

Another important factor for efficiency is result pruning, to counter the explosion
of results and redundant information. Pruning can be done in many ways,i.e., on
the basis of fixed thresholds [KLJ03] or by using the properties of the measurement
function [Wro97].

2.5 Distributed Knowledge Discovery

Over the last few years grid computing—the use of the memory and/or processing
resources of many computers connected with each other by a network to solve com-
putational problems—has received much attention. As more data becomes available,
conventional experimentation becomes a tedious and lengthy task, often requiring
hours or even days on computing a single task. To improve the speed of a computa-
tional task, grid computing is often used. It is a form of distributed computing where
loosely coupled computers form a cluster to perform very large computational tasks
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Figure 2.4: A graphical illustration of grid computing

on. A graphical depiction of grid computing can be seen in Figure 2.45.
Research is becoming more dependent on previous research outcomes,possi-

bly from third parties. The complexity of modern experiments, usually requiring the
combination of heterogeneous data from different fields (physics, astronomy, chem-
istry, biology, medicine), requires multidisciplinary efforts. This makes the quality of
an e-Science infrastructureimportant. The term e-Science is used to describe com-
putationally intensive science that is carried out in highly distributed networkenvi-
ronments, for example experiments that deal with very large data sets, so large that
grid computing is required. An e-Science infrastructure allows scientists to collabo-
rate with colleagues world-wide and to perform experiments by utilizing resources
of other organizations. A common infrastructure for experimentation also stimulates
community building and the dissemination of research results. These developments
apply to pure as well as applied sciences. Currently there are many efforts to con-
struct these infrastructure, such as the Dutch Virtual Laboratory for e-science (VL-e)
project6.

Due to the increased popularity of e-Science, scientific workflows also became a

5Picture taken from the DAME project website, http://voneural.na.infn.it/gridcomp.html
6http://www.vl-e.nl/
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popular topic of research. We define aworkflowas a collection of components and
relations among them, together constituting a process. Components in a workflow
are entities of processing or data. They are connected by relations, which can either
be data transport entities that coonects inputs and outputs from one component to
another, or control flow entities that impose conditions on the execution of a com-
ponent. Workflows have become increasingly popular over the last few years, since
they allow a scientist to graphically construct a process of interconnectedbuilding
blocks, allowing for easier experiment design and easier use of distributed resources.
Taverna [MyG08] is an example of a workflow designer that allows for easy creation
of workflows, possibly with remote resources. Figure 2.5 shows an example of a Tav-
erna workflow that can be used to obtain a daily comic from a web page.

Figure 2.5: A Taverna workflow that retrieves a comic from a website

Data used in knowledge discovery is often distributed over multiple resources, which
in their turn can be spread among several different logical or physicalplaces. It is
therefore important to see how current data mining algorithms can be adaptedto cope
with these distributions to make distributed data mining possible. This requires some
form of task scheduling and runtime weighing of options, and even identification of
parallelism possibilities within a process.

The problem stated above can be addressed in several ways. One wayis to adapt
current mining algorithms to cope with distributed data sources. Current datamining
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algorithms usually address problems on a single resource, and impose a somewhat
rigid structure on the input data. Relational mining algorithms, which are mining al-
gorithms specifically developed for relational databases and thus able to work with
several tables within a database, could prove to be a good basis for suchadaptation.

A second way to achieve distributed data mining is through an architecture that
supports a distributed environment, allowing the database itself to support and inter-
nalize remote connections to other databases. In this case, the client is unaware that
the requested query or process is scheduled and executed at different locations, since
to the user there appears to be only one location of data storage and processing. It
is the task of the database itself to keep track of all connections and remote access
protocols.

An important attribute of data mining on the grid is the ability to process data
mining requests on a location other than the client or the data server(s). Thisposes
some implications on the data mining application, since it must be able to evaluate
and segment operations into sub-operations that can be simultaneously processed by
multiple (distinct and/or remote) processing locations. To be able to support such par-
allel remote processing, it should be addressed and internalized in the distributed data
mining architecture itself. The architecture should support load balancing algorithms
that are efficient enough to dynamically and continuously check whether itis optimal
to handle a (sub)operations locally or at another grid node.
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Chapter 3

Inductive Databases

In this chapter we discuss how data mining, databases and patternbases can be inte-
grated into inductive databases. We propose design models for the data integration
part as well as the querying part of inductive databases, and reasonthat web services
would fit well as data mining operators within the inductive querying framework. We
also discuss a number of use cases in which we illustrate how knowledge discovery
is performed in inductive databases, and we give concrete examples on how the use
of patterns can improve data mining performance.

3.1 Introduction

The size and variety of machine-readable data sets have increased dramatically and
the problem of data explosion has become apparent. Scientific disciplines are start-
ing to assemble primary source data for use by researchers and are assembling data
grids for the management of data collections. The data are typically organized into
collections that are distributed across multiple administration domains and are stored
on heterogeneous storage systems.

Recent developments in computing have provided the basic infrastructure for fast
data access as well as many advanced computational methods for extractingknowl-
edge from large quantities of data, providing excellent opportunities for data min-
ing. Currently, data mining algorithms are separate software entities that extract data
from databases or files, operate on the data in their own program space outside the
database, and finally return results, either in a file, in a database table, or by means of
a visual tool. With inductive databases, another methodology is proposed.

Inductive databasesintegrate databases with data mining. In inductive databases,
data and patterns are handled in a similar fashion, and an inductive query language
allows the user to query and manipulate patterns of interest [Rae02]. Generally these
inductive query languages are seen as extensions of current querylanguages such
as SQL or XML that, apart from atomic data operations such as insert, deleteand

27



modify, also support data mining primitives. The challenge is to provide a persistent
and consistent environment for the discovery, storage, organization,maintenance, and
analysis of patterns, possibly across distributed environments.

This chapter is organized as follows. In Section 2, we discuss the principles of
inductive databases and refer to related work. In Section 3, we present our framework
for transparent data and pattern integration, and for inductive querying. In Section 4,
we present two examples of inductive database usage, one where an inductive query-
ing scenario will be described, another one where we will show how patterns can be
used to increase data mining performance. Finally, in Section 5, we will draw some
conclusions and focus on future research.

3.2 Inductive Databases

An interesting question is how the existing data mining algorithms can be elegantly
integrated into current DataBase Management Systems (DBMS) without affecting
performance or restricting algorithm functionality. In order to meet these require-
ments, the concept of so-called inductive databases [IM96] was proposed. In an
inductive database it is possible to reason about and extract knowledgefrom the
collected data in the database, as well as pose queries about inductively gathered
knowledge in the form of patterns derived from that data. The subject of inductive
databases has received a great deal of attention lately. A lot of research in this field
is directed towards a better understanding of inductive databases [Rae02, Meo05],
inductive querying and optimization [RJLM02, BKM98], and inductive query lan-
guages [BBMM04, MRB04].

An inductive database, as defined in [Rae02], is a database that storesdata as well
as patterns as first class objects. More formally, an inductive databaseIDB(D ,P) has
a data componentD and a pattern componentP . Storing patterns as first-class citi-
zens in a database enables the user to query them in a similar manner as data. The
extra power lies in the so-calledcrossoverqueries which contain both pattern and
data elements. In order to efficiently and effectively deal with patterns, researchers
from diverse scientific domains would greatly benefit from adopting a Pattern-Base
Management System (PBMS) in which patterns are made first-class citizens.This
provides the researcher with a meaningful abstraction of the data.

The process of pattern discovery can be formalized as follows: Given acer-
tain pattern classC and a data setD, find those patternsp ∈ C that are suffi-
ciently present, sufficiently true, and interesting [Meo05]. Data mining in an induc-
tive database becomes a querying process, and the accuracy and completeness of the
results, as well as the ease of finding them, depend on the expressive power of the
inductive query language [IV99]. To have sufficient expressiveness in the inductive
query language, it should contain primitives for data mining, data selection, pre- and
postprocessing, as well as data normalization. Furthermore, it should contain opera-
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tions for pattern definition and clustering, as well as constructs to extend thequery
language with user-made operations. A number of inductive query languages specif-
ically targeted at association-rule mining have been proposed [IV99, BKM98].

Since all required technologies are available, our idea is to modify existing data-
bases to support efficient pattern storage, and extend databases with an implementa-
tion of an inductive query language, thereby effectively transforming aDBMS into
a DataBase Knowledge Discovery System (DBKDS). Since inductive databases pro-
vide facilities for pattern discovery as well as a means to use those patterns through
the inductive query language, data mining becomes in essence an interactive query-
ing process.

The efficiency of the data mining process also depends on the way that datais
represented within the database, so a compromise must be made between efficient
storage and efficient discovery. Since computer storage is becoming cheaper every
day, we are inclined to prioritize a representation that facilitates efficient discovery
over efficient storage. Over the past few years much research has been done on effi-
cient pattern representation and pattern storage issues [Rae02, Meo05, BCF+08].

The studies in the PANDA project1 have shown that the relational way of storing
patterns proves to be too rigid to efficiently and effectively store patterns,since pat-
terns often have a more semi-structured nature. To be able to support a wide variety
of patterns and pattern classes, XML or variations have been explored and the results
were encouraging [MP02, CMM+04]. However, more recently much work has been
done on more efficient storage of patterns in relational databases [CGP06].

3.3 Inductive Database Architecture

The rationale behind a software architecture for inductive databases is clear. By cre-
ating software architectures, software becomes better, lasts longer and contains fewer
errors [BCK03]. However, although much research has been done on various aspects
of inductive databases, the implementation of an inductive database has received very
little attention, but is still vital for performance issues (which is of paramount impor-
tance not only for inductive querying, but also KD in general), and extensibility of the
database system (which has a huge impact on the data mining power of the inductive
database).

Before we discuss the software architecture, we first want to addressthat the dis-
tinction between patterns and data is not only an intuitive one: the patterns andthe
data differ in a number of aspects. Raw data usually has a rigid structure, while pat-
terns are often semi-structured. Studies in the PANDA project have shownthat storing
patterns in a relational way can be very inefficient, due to their semi-structured na-
ture [CMM+04]. Therefore, we propose that an inductive database architecturethat
has a separate database and a separate patternbase, connected by a fusion component

1http://dke.cti.gr/panda/
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as outlined in Figure 3.1. Note that this is a general architecture, and that there are
always special cases that do not benefit from or need patternbases; a nice example
are distance based methods that fit quite well with relational databases [KAH+05]).

Figure 3.1: The fusion architecture

In Figure 3.1, the blue components and arrows denote data components anddata
flows, and the red components and arrows indicate functional componentsand func-
tional flows. Let us consider a simple scenario: the user specifies a query which is
processed in the inductive querying layer. As we shall see later, from here the re-
quired sub-query calls are made to the fusion layer, whereby data mining operations
are supplied, as indicated by the red arrow from the querying layer to the fusion com-
ponent. From here on, the necessary data and patterns are loaded through the APIs,
and transformed into an internal representation. Finally, in the data operator compo-
nent, the sub-query is executed.

A crucial part of this architecture are the data and pattern representationstruc-
tures. According to [BCM04], a PBMS should contain three layers: a pattern layer
containing the patterns, a pattern type layer containing the pattern types, anda class
layer that contains pattern classes: collections of semantically related patterns. Re-
gardless of how a pattern is represented within the patternbase, a pattern has at least
the following information attached to it:

∙ The pattern sources, i.e., the table(s) or view(s) from which the pattern is
derived.

∙ The pattern functionf , which is the procedure used to acquire the pattern.
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∙ The pattern parameter collectionP , which is a (possibly empty) list of param-
eter values used byf .

The information specified above is the minimum amount of information needed to
update patterns in case their source tables change. Changes can automatically be dis-
covered and handled by database triggers supported in the DBMS querylanguage, or
by registering for them in the DBMS API. Current relational databases are unfit to
represent such an architecture and XML databases have been proposed to store and
represent patterns [MP02, CMM+04]. Therefore, we prefer to use an XML database
for the patternbase. For representation of patterns in XML, currently theleading stan-
dard is the Predictive Model Markup Language (PMML)2, a data mining standard for
representing statistical and data mining models.

Apart from query execution, the fusion component is also responsible for the syn-
chronization of patterns with their corresponding source data, and for maintaining
data structures that allow these procedures to proceed as efficiently as possible. The
fusion component should implement the following pattern and data synchronization
operations:

∙ Recalc(r), which recalculates the patterns in the patternbase affected by a
change of database relationr, according to specified functionf and param-
eter valuesP over sources. The function is located and known in the data
mining layer.

∙ Del(r), which deletes a pattern if (part of) its sources is no longer present in
the database.

Before a query is executed, first it needs to be processed in the inductive querying
layer. Currently, a few specialized inductive query languages have been proposed and
implemented, such as MINE RULE [MPC98], MSQL [IV99], DMQL [HFW+96]
and XMine [BCKL02]. What these languages all have in common is that they are
existing SQL or XML query languages extended with data mining operators. We
envision a query architecture as depicted in Figure 3.2. As can be seen in Figure 3.2,
the following components are involved in the querying process:

∙ Query Parser
All queries posed to the system first go through the query parser. Here, queries
are parsed and examined, and individual relations, data mining operationsand
standard query types are identified and passed to the query analyzer. Identifi-
cation proceeds through matching each lexical unit (e.g., a word) in the query
with both the data mining operation repository and the query language typing
components.

2http://www.dmg.org/
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Figure 3.2: The inductive query architecture

∙ Data Mining Operation Repository
All data mining operations are stored in the data mining operation repository.
Each operation should be annotated with its lexical value (for the parser) and
meta-data concerning performance and dependency indications (for theana-
lyzer) as well as required operation parameters and output type (for thesched-
uler).

∙ Query Language Typing
The query language typing component tells the parser what lexical units are
part of the underlying query language of the DBMS and PBMS, so that the
parser can forward those segments without having to check for data mining
operations.

∙ Query Analyzer and Optimizer
The query analyzer analyses (sub)queries to see if they can be optimized. These
optimizations include logical optimizations and optimizations based concur-
rent execution. To optimize data mining operations, it uses meta-data provided
by the operations repository.
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∙ Query Scheduler and Execution Handler
The query scheduler schedules the (sub)queries for execution, including con-
current scheduling for execution and choice of execution platform (local and/or
remote), whereby it uses load balancing to come to an optimal execution pro-
file. When this process is completed, the execution handler configures anydata
mining primitives according to its meta-data and send the operation and query
towards the Fusion Layer (either on a remote site and/or local), where it will be
handled. After receiving all the query answers, it them all to the Fusion Layer
again, until a final answer is received.

As shown in Figure 3.2, the data mining operation repository is heavily involvedin all
steps, thereby using its meta-data to support execution, scheduling and optimization.
Furthermore, data mining operations have to comply with a global typing system in
order to achieve typing closure, meaning that the output type is always a subset or
element of the input type. Since services are always annotated with the necessary
parameters and support rigid typing schemes, we argue that services are excellent
candidates for data mining operations in inductive databases. Moreover,if web ser-
vices are used, remote computing could be achieved fairly easy, without having to
create a custom framework.

Apart from web services as data mining operators, they can also serve as execu-
tors for other parts in the inductive querying process. For example, the query parser
can be a service taking as input the query and the grammar of the inductive query lan-
guage, and return errors or sub-queries. This service could be implemented remotely
using a parser generator such as Bison3.

3.4 Experimental Results

In this section we will present a use case scenario that illustrates how inductive
databases can be used. We also present several experiments conducted to indicate
how inductive querying can speed up a KD process through constraint-based mining
[bou05].

3.4.1 Association Rule Querying Scenario

Suppose we have a database that contains transaction information on product sales
for a supermarket and we want to perform some market-basket analysisto retrieve
some association rules. Normally we would use the APRIORI-algorithm [AIS93] to
uncover frequent item sets and association rules in the data collection. In this exam-
ple we will illustrate how this can be done in an inductive database.

First, consider a query that tries to find association rules in the transaction data

3http://www.gnu.org/software/bison/
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using a data mining operation FREQITEM. When the user poses this query to the
inductive database, the query scheduler uses the query analyzer andoptimizer to re-
ceive an optimized set of (sub)queries.

The next task of the query scheduler is to verify whether the tables addressed in
the (sub)queries are available locally at a remote site. When they are available locally,
the query scheduler uses the data mining operations to execute the (sub)queries using
the data retrieved from the tables. If some of the data is not available, the (sub)queries
involving those data are forwarded to the remote inductive database that does have
the required data, where the sub-query is sent to the query scheduler.In this example,
let the required data be available locally, so the query scheduler executesthe query
using the data mining operation FREQITEM, which results in a collectionP con-
taining frequent patterns over the transaction data set.

Let the collectionP be stored in a pattern tableT . Now that we have all patterns
over the data set, we can use those patterns to find association rules in them using a
second data mining operation ASSOCPATTERN. This example illustrates the ben-
efits of storing patterns as well as data. The reuse of patterns could sometimes prove
to be an optimization in data mining.

Now consider the case where we want to check if the same frequent item sets
hold for another transaction database. To do this, we could either formulatethe same
query again over the second dataset, or we can use pattern setP of the last query and
apply a CHECKPATTERN crossover data mining operation to it. This illustrates the
potential power of the inductive database: intuitively, the pattern setP describes a
subset of the data and thus it is more efficient to operate on those patterns instead of
on the whole data set. While it is true that you can derive all patterns from theun-
derlying data, sometimes it might be more efficient to gain patterns from the patterns
already available, as is the case in the example described above.

3.4.2 Constraint-Based Inductive Querying

An inductive query is in essence a specification of constraints on data, and the re-
sulting patterns are realizations of those constraints. Hence, by transforming patterns
back into constraints, they can help improve KD performance.

Suppose we have a data set in which each entry is labeled with a class. We want
to find all combinations of entries that correlate with, or are sufficiently associated
to, a specific class or classes. We use the�2 statistic, that is we are interested in all
patterns (combinations of entries, or item sets, in our case) that have a�2 value above
a certain threshold (the threshold is to be fixed in advance). The�2 value is computed
as follows.

Assume that there areN entries andd classes, with(n1 . . . nd) entries in each
class. Given an item setS, construct the vectoraS=(a1, . . . , ad) with fractionsai,
whereai is the fraction of examples in classi that containsS (whereby contains
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indicates that the entry contains all the elements ofS). Then:

�2(aS) =
d

∑

i=1

(

(Oi1 − Ei1)
2

Ei1
+

(Oi2 − Ei2)
2

Ei2

)

.

with

∙ Ei1 = (
∑d

i=1(aini)ni)/N : the expected number of elements in classi that
containS, if we assume thatS and the classes are not related,

∙ Ei2 = (
∑d

i=1((1 − ai)ni)ni)/N : the expected number of elements in classi
that do not containS, if we assume thatS and classes are not related,

∙ Oi1 = aini: the observed number of elements in classi that containS,

∙ Oi2 = (1−ai)ni: the observed number of elements in classi that do not contain
S.

whereni is the number of examples in classi andN=
∑d

i=1 ni the total number of
examples.

We will compare two ways of item set generation with a�2 above a threshold: a
brute-force method and a method that prunes the search space using patterns. In the
brute-force methodwe generate every possible subset of the data. Suppose we have
a table of data which containsm attributes, and for each attributei, 1 ≤ i ≤ m,
wherevi is the number of possible values that attribute can have. Then the number of
possible subsetss (excluding the empty set) is:

s = (
m
∏

i=1

(vi + 1))− 1.

Since this is the number of subsets, this is also the number of times that�2 must be
evaluated.

For thepruning methodwe use an idea presented in [NK05]. Here, it is pro-
posed to check only frequent item sets (those item sets with a support above a class-
dependent threshold) within the classes. Given a�2 threshold�, a minimum fre-
quency threshold�i for classi is derived:

�i =
�N

N2 − niN + �ni
.

For an item set to have a�2 larger than�, its thresholdaini should be larger than
than�i for at least one classi, 1 ≤ i ≤ d.

A �2 threshold is often chosen through selection of a p-value. The databaseswe
used had either 2 or 18 classes. Table 3.1 shows the� values for diverse p-values for
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the number of classesC = 2 andC = 18.
The frequency thresholds already present two opportunities for optimization. If

the frequent item sets are already present in the inductive database, then we can use
the frequency threshold to prune all patterns that fall below the calculatedfrequen-
cies, thereby lowering the number of times the�2 measure has to be calculated. If
not all frequent item sets are known, then the�i can be used as a parameter for a
frequent mining set algorithm. In our experiments we want to find out exactlyhow
many calculations of the�2 measure are saved when the patterns are already present.

p-value C = 2 C = 18

10−3 10.83 40.79
10−5 19.51 53.97
10−8 32.84 71.41
10−10 36.00 75.33

Table 3.1:� values for a diverse number of classes and p-values

The data sets used in the experiments were obtained from the UCI [AN07]. More
specific information on the data is presented in Table 3.2. For the generation of fre-
quent item sets we used the Apriori implementation of Borgelt [Bor03].

Name Size (N ) Classes (d) Distribution
Mushroom 8,124 2 Classes: e(4,208) and p(3,916)
Chess KRKP 3,196 2 Classes: win(1,669) and loss(1,527)
Chess KRK 28,056 18 Classes: max(4,553) and min(27)

Table 3.2: The UCI data set descriptions

First consider the mushroom database. The data scheme contains 22 different at-
tributes, all ranging from 2 to 12 different values per attribute. The brute-force method
checks163.5 ∗ 1015 subsets, and thus has to do that many�2 evaluations. Now con-
sider the pruning method. We first split the database into two data sets, each contain-
ing the data of one class, and then look for patterns that are significant according to
the�2 measure. We do this for both data sets and we merge the resulting pattern sets.
The resulting number of patterns is the maximum number of patterns that have to
be evaluated with the�2 statistic (there might be patterns that are in both sets). The
results of the experiments with a number of p-values, along with the reduction ratio
in the number of�2 evaluations, are shown in Table 3.3.

As can be seen, the reduction in�2 evaluations is significant. Of course the num-
ber of evaluations depends on the number of classes, the number of attributes and the
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number of values each attribute can take and especially the last two are quite large
here. So let us analyze this method’s efficiency when the number of attributes and
attribute values are lower.

p-value #patterns #subsets ratio
10−3 525,310 163.5 ∗ 1015 3.21 ∗ 10−12

10−5 466,686 163.5 ∗ 1015 2.86 ∗ 10−12

10−8 408,894 163.5 ∗ 1015 2.50 ∗ 10−12

10−10 399,870 163.5 ∗ 1015 2.45 ∗ 10−12

Table 3.3: The UCI mushroom data set results

Next, consider the King-Rook-King data set. This data scheme contains onlysix at-
tributes, each consisting of eight possible values. For the direct method thisyields a
total of531, 441 subsets. As can be seen in Table 3.4, the ratios are much higher when
less attributes and attribute values are involved, but the reduction in�2 calculations
is still a little below90%.

p-value #patterns #subsets ratio
10−3 72, 990 531, 441 0.1373
10−5 61, 996 531, 441 0.1167
10−8 58, 018 531, 441 0.1092
10−10 56, 388 531, 441 0.1061

Table 3.4: The UCI King-Rook-King data set results

Finally, we check whether many attributes with many values will result in a smaller
ratio by using the King-Rook vs. King-Pawn data set. Results are displayedin Ta-
ble 3.5. Since different�2 values yielded the same results, we also considered cover-
age values0.05 and0.1.

p-value #patterns #subsets ratio
10−3 254 1.50 ∗ 1017 1.69 ∗ 10−15

10−10 254 1.50 ∗ 1017 1.69 ∗ 10−15

0.05 190 1.50 ∗ 1017 1.27 ∗ 10−15

0.1 126 1.50 ∗ 1017 8.39 ∗ 10−16

Table 3.5: The UCI King-Rook vs. King-Pawn data set results

Note that more optimizations are possible, both in the number of evaluations as in the
evaluations themselves. In the results above the number of generated pattern were
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the sum of all generated patterns per class, but we did not check if patterns occurred
more than once. Another optimization is the evaluation of�2 itself. When generating
patterns with the Apriori algorithm, the coverage, which is also used in theOi1 and
Ei1 of the �2 measure, is stored in the pattern and thus need not to be calculated
again, speeding up the calculation of�2.

3.5 Conclusions and Future Work

We have discussed the topic of knowledge discovery in inductive databases. We pro-
vided an overview of the technology as well as definitions of the main concepts and
paradigms. We also introduced an architecture for the implementation of an inductive
database that is suited for computing and querying both locally and remotely and dis-
cussed its various components. More importantly, we argued that servicesare suited
for usage in this type of knowledge discovery. We have also described how a query
would be handled by the architecture, and what optimizations patterns could have for
the knowledge discovery process.

In the presented use case we illustrated that constraint-based data mining in in-
ductive databases can have a significant impact on performance. Usingstatistical
methods to transform patterns to constraints, the number of new patterns generated
in experiments could be reduced by 90% or more. Measured in time, this is not alot
when applied to the relatively small datasets of the UCI, but for bio-informatics and
life-sciences, where data sets usually have a size of gigabytes or more, the impact
could be significant.

We need to extensively test our architecture with various data in order to ensure it
is maximized for extensibility and efficiency, two traits that can become contradicting
in an architecture. Furthermore, much research still needs to be done on pattern repre-
sentation and inductive query languages in areas other than frequent pattern mining.

Another area that needs to be researched thoroughly is distributed data mining
within inductive databases, as well as the usage of web services within the frame-
work. Using web services allows for easy and large-scale parallelization, but there is
some overhead to be considered when executing a query on a remote site, overhead
which might prove to be a burden if the query is small. Therefore, research must be
done on how to represent query and data mining primitive metrics, which couldhelp
the query optimizer to make a choice between local and remote execution of queries.

38



Chapter 4

Service-Oriented Knowledge
Discovery

Due to advances in software engineering and architecture, as well as theincreased
popularity of scientific workflows, new ways of performing knowledge discovery ex-
periments can be devised. In this chapter we investigate how the service orientation
paradigm and scientific workflows can improve knowledge discovery. Wecompare
the non-service-oriented, constructed process model with the service oriented orches-
trated process model, and point out the benefits of service oriented technology in
workflows. After that, we propose a model for the design of a service-oriented knowl-
edge discovery process, and provide guidelines for individual knowledge discovery
service design based on the types of functionalities it requires. We also provide a use
case design to show the application and benefits of the proposed model in practise.

4.1 Introduction

Despite the fact that knowledge discovery (KD) in data has proven to be valuable in
many scientific fields over the last few decades, one of its main drawbacks isthat
setting up a KD experiment is not a simple task. Usually KD processes are very
resource-intensive, requiring lots of memory space for huge amounts ofdata. Further-
more, they usually need one or multiple processing units to transform or mine this
data. KD processes often consist of several algorithms connected together, whereby
data flows from one algorithm to another.

Commonly, a KD process is created as follows: a KD researcher either imple-
ments or obtains the required algorithms and connects the in- and outputs together,
executes the process, and eventually gets a result as an output. We perceive this situ-
ation as far from optimal, as it comes with quite a few problems and vulnerabilities;
assuming not every scientist is a superb programmer with years of programming ex-
perience and education, implementations might suffer from errors and suboptimal
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performance, and a similar argument holds for the connection of algorithms together,
which mostly is done in an ad-hoc way and usually not according to a standardized
format or protocol.

Instead we can consider the following scenario. Suppose a researcher wants to
create a certain KD experiment involving several algorithms. The researcher only has
some of these algorithms available on her own computer, knows that there area few
available at a remote location, and some that either she needs to create, or that might
be found by looking for them on the internet. The ideal situation for the researcher
would be to just use a search engine to look up the missing algorithms, use a toolto
connect the algorithms together, and then execute the experiment.

The scenario presented above is not at all unrealistic. Due to advancesin work-
flow management research [LLF+09, DGST09], experiments can now be designed
in such a way that individual parts of the experiment can be easily connected to each
other, often by using a simple graphical interface. Furthermore, the service-oriented
(SO) paradigm allows for relatively simple and secure remote computing, andeasy
lookup of publicly available services.

In this chapter we investigate how the SO paradigm and related technologies
can improve KD in scientific workflows. The SO paradigm allows users to design
applications (in this context we will see a KD process as an application) in terms
of individual components than can be connected to each other through standardized
communication. These components can be either locally or remotely available, and
can be found through public lookup facilities. We argue that combining SO withsci-
entific workflows makes KD processes easier, faster, and better understandable.

Until recently the focus and application domain of SO technology has mostly
been the commercial sector and large-scale business applications. In this part we ex-
plore the benefits and drawbacks of SO applications in KD by conducting design and
implementation case studies, whereby we focus our design interests on the design of
a KD service and a KD process.

This chapter is organized as follows. In Section 2, we briefly discuss somerecent
work related to our research. In Section 3, we examine the two scenarios inmore
detail, discussing their differences, weaknesses and strengths. In Section 4, we will
present ideas on the design of service-oriented knowledge discovery(SOKD) ser-
vices and processes, which will serve as design patterns for the implementation of
our use cases, which will be discussed in Section 5. In Section 6, we will present the
experimental results of the use cases, and in Section 7 we will draw a few conclusions
and look at future work.

4.2 Related Work

Over the last few years distributed KD has become increasingly more popular, which
generated research incentives in diverse fields of technology. In [DBG+06], dis-
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tributed data mining is proposed by using peer-to-peer networks. The authors sketch
a high-level introduction to peer-to-peer data mining and give some pointersand re-
quirements for methods, as well as a theoretical example. However, a comparison
with other techniques lacks, as does technological depth or formal models.

The authors of [AC06] focus on the area of text mining, and give criteriaand re-
quirements which need to be supported by good text mining tools. While they focus
on their tool being embedded in other applications and address issues suchas security
and statelessness, they seem to only brush the topic of SO and web services as part
of the tool, and present restrictions and not solutions.

In [CZW+06] the authors take a view quite similar to ours, but use Business Pro-
cess Execution Language for Web Services (BPEL4WS) [BPE07] to achieve stateful
long running interactions, and focus on data security through Gaussian models, while
our focus lies on the design principles of web services itself within SOKD.

Finally, [GJF06] describes a framework in which web services are usedfor KD in
databases, and outlines the framework thoroughly, as well as supportedalgorithms,
but not the web service design and construction methodology, and thus serves as a
complement to our research.

In the area of bio-informatics, workflows and service orientation have already
made their introduction as well. Currently, Taverna [MyG08] is a popular workflow
creation tool that supports a lot of bio-informatics services through web service APIs
of the European Bioinformatics Institute (EBI)1, BioMoby2, Biomart3, and the Kyoto
Encyclopedia of Genes and Genomes (KEGG)4. There is also increased support for
(distributed) algorithms in bio-informatics. The R project5 is a free software environ-
ment for statistical computing and graphics, which supports distributed computing
through a master-slave principle. Bioconductor6 is an open source and open devel-
opment software project for the analysis and comprehension of genomic data, and is
largely based on the R language. Taverna provides special facilities to run R-scripts
in a shell.

4.3 KD Design Scenarios

In this section we compare a first scenario where the researcherconstructsthe KD
process with a second scenario where the researcherorchestratesa KD process using
SO and workflows.

1http://www.ebi.ac.uk/soapalab/services/
2http://moby.ucalgary.ca/moby/MOBY-Central.pl
3http://www.biomart.org/biomart/martservice/
4http://soap.genome.jp/KEGG.wsdl
5http://www.r-project.org/
6http://www.bioconductor.org/
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4.3.1 Scenario 1: Constructed KD Process

In this scenario the researcher constructs her own KD experiment by obtaining all
required algorithms and connecting them manually. In practice, this usually means
accessing diverse resources, for example the internet, to find all required algorithms
and KD packages from diverse sources, and then run them one by one. If the algo-
rithms are contained in a KD package like WEKA [Gar95], the researcher does not
need to worry about intermediate data representation as the package doesthat for her,
but if this is not the case, the researcher has to program this representation as well.

Apart from this tedious construction process, there are also a number ofweak-
nesses that can easily break this scenario:

∙ Algorithm versioning
When a new version of an algorithm or KD package appears, the versionthat
the scientist uses is often not automatically updated. Instead, the scientist has
to keep track of modifications herself by regularly visiting the website. An-
other problem with versioning is that it sometimes breaks compatibility with
previous versions, which may corrupt the entire KD process.

∙ Algorithm connection
While standard KD packages perform well on basic KD tasks, they usuallylack
algorithms that are tailored to a specific field of research like bio-informatics.
When this is the case, the scientist has to connect all individual components
of the KD process herself. This connection is often constructed in an ad-hoc
fashion, making it less likely to cope with changes that might occur. Further-
more, the intermediate representations used in the connections are often suited
only for the process they were designed for, so if two processes wereto be
combined, it is likely that one representation would need change.

∙ Algorithm availability
It is not unlikely that some algorithms or specific algorithm implementations
are not publicly available, especially when implementations are managed by
commercial institutes. They want to keep their implementation proprietary
knowledge, and are unwilling to distribute it or only do so at a high cost. This
leaves the researcher the choice to either implement the algorithm herself, or
to revise the experiment.

∙ Performance
KD processes sometimes involve terabytes of data. When performing KD on
such high volumes of data, each performance increase is important, and ideally
the scientist uses the fastest machines with the best algorithms in their optimal
implementation. However, the optimal implementations of algorithms are not
always available or suitable for the platform that the scientist uses, making the
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KD process slower. Furthermore, some algorithms run faster on specialized
hardware, that is also not always available to the scientist.

4.3.2 Scenario 2: Orchestrated KD Process

In this scenario the scientist orchestrates her experiment through the useof a scientific
workflow. Components in the orchestrated KD process can be present either locally
or at a remote location, whereby they interact with each other in the service-oriented
architecture (SOA) chosen for the application. In this case, the workflowimplemen-
tation application can be seen as a SOA itself since it dictates communication and
orchestration standards. The combined use of SO and scientific workflows addresses
the weaknesses of the first scenario as follows:

∙ Algorithm versioning
Keeping track of newer versions of an algorithm is no longer an issue forthe
scientist, since it is automatically updated on the side of the service provider. A
scientist can be notified of an update, but updating can also proceed transpar-
ently. Compatibility with previous versions is also guaranteed, for the service
has to adhere to a certain interface, an annotation of the service’s functionality
that serves as a contract between the service user and the service provider. A
widely used standard for annotating web services at the moment is the Web
Service Definition Language (WSDL).

∙ Algorithm connection
Data transport between components in a scientific workflow proceeds in a stan-
dardized way, normally by using a structured transport protocol. For web ser-
vices, the Simple Object Access Protocol (SOAP) is the standard protocol.The
KD process will not break as long as the components adhere to the message
format, which is guaranteed by the component’s interface.

∙ Algorithm availability
Since implementations of algorithms are now managed by the service provider
and executed on the server end, it is safe for the providers to offer their services
without running the risk of losing proprietary knowledge. These services can
be polled and found by the scientist through the service provider’s Universal
Description, Discovery and Integration (UDDI) facility. As an example, Tav-
erna workflows are shared in the myExperiment community7, and are free to
use for all who register there.

∙ Performance
SOA and all related protocols discussed above are platform-independent tech-
nologies. This makes it easier for the service provider to use the programming

7http://www.myexperiment.org/
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language and platform that is best suited, which usually leads to a performance
increase. Moreover, if two services can be executed independently and are lo-
cated on different machines, they can be executed in parallel in a scientific
workflow, speeding up the entire KD process even more.

4.4 Service-Oriented KD Design

In this section we discuss the SO design model and patterns that we used to create the
case study described in Section 4.5, and examine how these SO principles influence
individual services and KD processes on a whole. First we discuss WSDL a bit more
and explain how the standard influenced the design of the web service. After that, we
discuss a design model for SOKD processes. Finally, we present guiding principles
for individual KD service design, which we also used to design the use case.

4.4.1 WSDL and Design Implications

There are many views on the design of a KD process, ranging from a global view
stating what functionalities a service in a process has, to micro-details such as what
message format to use. Since the use case was designed by using WSDL, this in-
fluences our further design of a web service and a KD process as a whole. In this
paper we focus on the different operation types that are defined in WSDL, and their
influence on the design of KD process and a KD service:

∙ Request/Response
In this case, the client sends a message to the service, and the service sends a
message to the client in response. This is the message equivalent of a function
call.

∙ Solicit/Response
This is the reverse case of the request/response type. The service sends a mes-
sage to the client, and the client sends a message to the service in response.
This is often used when a service needs to poll clients.

∙ Client messenger
The client sends a message but does not expect a message in return.

∙ Server notification
Server notification is the exact opposite of the client messenger type. In this
case, the service sends a notification to the client without expecting or waiting
for an answer.

As we shall see in the remainder of this section, operation types have an impact on
the entire KD process, so selecting the right type of operation is important in order to
obtain a process with optimal performance.
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4.4.2 Service-Oriented KD Process Design

A KD process can be seen as a workflow, whereby data flows from oneunit of pro-
cessing to another. Conceptually we try to map these units of processing to web
services. How successful this can be done depends on the understanding of the pro-
cess and the functional discreteness of individual steps. We see the design of a KD
process as a three-dimensional challenge containing the logical, functional and rela-
tional views, that al influence each other. We propose the following KD process de-
sign model for SO that incorporates all these views, which is illustrated in Figure 4.1.
By applying this model in the design of a SO KD process, a better understanding of
the process is achieved, which leads to a better design, until both understanding and
design are optimal.

Figure 4.1: The KD process design model

We will now describe each of the views individually.

∙ Logical View
In this view, the entire KD process is being examined to identify all services
and relations in the process. This logical view is not only guided by the de-
signer’s expertise, but also on the services already available, for example, ser-
vices built earlier or services publicly available through a UDDI. Ideally all
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services fit together perfectly and are all available, but this is rarely the case.
Therefore, choices have to be made if readily available services should be used,
and how the unavailable process parts should be logically partitioned. Sincea
different partitioning of a KD process yields different services and relations,
the partitioning will affect the functionalities of each service as well as the
relations among them.

∙ Functional View
For each service identified in the logical view, all functionalities are recorded.
These functionalities will serve as a guideline for interface design and oper-
ation type selection, and will determine the nature of the relations with other
functionalities. In this stage similarities between services and dissimilarities
within services can be uncovered on the basis of functionality, leading to a
possible joining or splitting of services.

∙ Relational View
In this aspect of design, relations should be identified for each service with
other functionalities in other services. These relations should be annotatedin
two dimensions: direction and usage type. The direction indicates if messages
will be flowing from a service or to a service, the usage type indicates if the
relation is used only once, or continuously until processing is done. Both di-
mensions will influence the functionality of a service, the operation type of the
functionality’s interface, and the content and format of the messages thatwill
be transported. Similarities and dissimilarities in relations amongst services
might also lead to a revision of the service partitioning.

∙ Matching
This dimension is the feedback step of the model, and matches the outcome of
all other phases to one another. It serves as a feedback phase for the design, and
indicates if service partitionings, functionalities or relations should be modified
or adapted in case of a mismatch.

4.4.3 Service-Oriented KD Service Design

In this part we focus on the functional design of a KD service, and how the design
choices are expressed in the WSDL operation types.

As stated earlier, KD processes can be time-consuming, especially when large
data volumes are involved. This means that any error may result in the loss ofa great
amount of time. Therefore, individual KD services should be designed for interaction;
a scientist should get regular feedback on the progress of the process, and should at
all time be able to interact with the process.

We also mentioned that a KD process is often perceived as a workflow, a sequence
of computational steps whereby data flows from one step to another. This does not
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mean, however, that one step should be completed in order for the next step to begin;
the results that come from these actions sometimes can already be transferred to the
next process phase without waiting for the service to finish processing all the data.
To optimize performance as well, KD services functionality should be designed for
streaming data where possible.

Having observed the facts stated above, we divided the functionalities of aKD
service into three categories: Initialization, Feedback and Enactment. This classifica-
tion forms a guideline for the design of a service’s functionality using WSDL.So we
have:

∙ Initialization
Procedures designed in this class are expected to handle a continuous stream of
messages that initialize this part of the experiment. Client messengers are usu-
ally best suited for these functions, unless initialization requires critical feed-
back, in which case Request/Response should be used.

∙ Feedback
In this category methods need to be designed that provide feedback to the ser-
vice client. Both Server notification or Solicit/Response method types can be
used here, depending on whether the feedback is used purely for informative
purposes or used to steer an interactive experiment through client intervention.
Feedback is often provided iteratively, sending messages whenever anevent
occurs.

∙ Enactment
This category combines the actual functionalities of the service with the feed-
back functionalities that report on the service’s progress. Since an experiment
usually is expected to return a result, a Request/Response type method is usu-
ally chosen. However, if one does not need to wait on this service in order to
continue with other processing steps, a combined Client messenger and Server
notification procedure could be used to let the service run asynchronously. Note
that enactment can be done both atomically or iteratively, as we will see in the
next section.

4.5 Experimental Setting

In this section we discuss the designs of our use cases. In all use cases, we used
the same KD scenario and the same experimental hardware and software to get a
fair and complete comparison between all our different implementations. The first
use case was designed to compare performance between constructed processes and
various implementations of composed processes. The second use case used the design
patterns discussed in the previous section to re-implement the whole scenario.
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4.5.1 Algorithms

For our case study we used a KD scenario described in [TZTL06]. In this scenario,
microarray data is processed to identify differentially expressed genes based on a
threshold score computed by the Student’s t-test. This set of differentially expressed
genes, together with a selection of their non-differentially expressed counterparts
(both expressed in ENTREZ identifiers [MOPT05]), are then annotated with terms
from the Gene Ontology (GO) [ABB+00]. In the final step these annotations, to-
gether with information about interaction amongst genes, are representedas facts
and supplied to the Relational Subgroup Discovery algorithm (RSD) [LZF02].

The RSD algorithm takes a set of labelled data items and a class (in this case
the classes differentially expressed and non-differentially expressed) and tries to find
descriptions of subgroups of target class examples that are as large aspossible, and
have a significantly different distribution. However, to avoid that a certainset of data
items dominates the entire rule-space, an iterative weighted covering algorithmis
used to decrease weights of those items once they are collected in a rule. Based on
the number of items in that rule belonging to each class and their individual weights,
the quality of a rule is measured.

As a postprocessing step, rules are uniformly formatted using the GO descrip-
tions, improving readability for expert reviewers. As an example, consider the rule
below:

Rule 1: Support 5, Weight: 12.0
Differential participants: [119391,1375,5287,1021]
Non-differential participants: [9950]
molecular_function(A,catalytic activity),
cellular_component(A,cytoplasmic part)

In this rule, a total of five genes were involved; four of them were differentially ex-
pressed, one was not, giving the rule a total weight of twelve (weights of individual
genes are not mentioned in the rule). The rule itself states the common factors of all
genes, whereby the genes are designated as group ’A’. The different predicates like
’molecular function’, as well as descriptors like ’catalytic activity’ are all defined in
GO. In this case, the correct interpretation of the rule would be:

”Subgroup ’A’ of the gene collection resides in the cytoplasmic part of the cell and
has as primary function catalytic activity, whereby ’A’ consists of genes with EN-
TREZ ids 119391, 1375, 5287, 1021 and 9950”

4.5.2 KD Service Design

For our first use case, we created several different implementations for the same pro-
gram. We made a web service in C# that takes as an input the parameters of the
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program or executable that needs to be executed, and simply forwards them to the
command-line interpreter. While this is the easiest implementation of a web service
and introduces the possibility of remote processing, it still shares some of theweak-
nesses of a constructed KD process, since the underlying program remains prone to
unexpected change in versioning, thereby possibly breaking the web service shell.

In our second implementation we modified the original program code as little as
possible, to show that any program can be transformed into a web servicewithin its
own implementation domain. For the Python web service implementation we used
the Python Web Service Module, and coupled the input of both services to this mod-
ule. Furthermore, we extended the algorithm to use the KEGG ontology [OGS+99]
as well, to show how updates can be performed without modifying the interface of a
web service, making users completely oblivious of the service’s implementationand
updates.

For our last implementation we re-implemented all the Python code into C++ to
show how web services can increase performance. The performancegain is in sev-
eral dimensions here. First, applications made in programming languages like C++
and C# tend to execute faster than those made in scripting languages due to rigorous
compile-time optimizations. Second, the authors are more proficient with C++ than
with Python, which also yields a performance increase.

4.5.3 KD Process Design

Through our defined design pattern we redesigned the KD process using our three
views:

Logical View
We identified two different web services that are used together to provideone com-
posite service. The first service is theGeneSelectorservice that is used to compute
a t-score for all genes in the microarray data, and place it either in the differential
or non-differential collection. The second service is theGeneRuleInducerservice
which takes the two lists and produces rules that describe subsets of theselists that
share the same terms in the GO and KEGG ontology, which are also provided in the
rule.

Functional View
For each service we identify functionalities divided in the three aforementioned func-
tional categories: Initialization, feedback and enactment. Each category of each ser-
vice has its own table stating the name and the description of the functionality. The
GeneSelectorservice design is shown in Table 4.1, and theGeneRuleInducerservice
design is displayed in Table 4.2.
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Initialization functionalities
Service name Description
Probe mapper Maps microarray probes to ENTREZ gene.
Class mapper Maps experiment labels to classes.
Cutoff initializer Initialises the t-score cutoff value for genes.

Feedback functionalities
Service name Description
Probe feedback Provides feedback on unmapped probes.
Class feedback Provides feedback on unmapped labels.

Enactment functionalities
Service name Description
t-test calculator Calculates t-scores.

Table 4.1: The GeneSelector service design.

Initialization functionalities
Service name Description
Gene loader Loads genes and their scores in the ontology structure.
Support initializer Initializes the minimum and maximum support constraints.
Ontology loader Loads the supplied or system-standard ontologies.
Gene-Ontology
mapper

Loads the data that maps gene identifiers to ontology keys.

Gene-Interaction
mapper

Loads the data that specifies interaction between genes.

Feedback functionalities
Service name Description
Gene list feedback Sends a message if (part of) the list failed to load.
Rule feedback Presents feedback on the progress of the rule miner.

Enactment functionalities
Service name Description
Rule miner Initiates the rule-mining.

Table 4.2: The GeneRuleInducer service design.
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Relational View
For all logical partitions we uncovered the messages that had to be sent back and
forth. We specify all the relations between the individual component interfaces and
the client, and whether they are iterative or not, whereby iterative relationsare de-
noted with a *. All relations are displayed in Table 4.3.

Client to GeneSelector relations
Message name Description
Probemap input Message containing probe and gene identifiers.
Classmap input Message containing classes and labels.
Cutoff input Message containing the user-defined t-score cutoff.
Data input* Message containing a probe identifier and expression score

per label.

GeneSelector to Client relations
Message name Description
Probemap output* Message that returns a problem with the probe mapping.
Classmap output* Message that returns a problem with the class mapping.

GeneSelector to GeneRuleMiner relations
Message name Description
t-score output* Message that returns genes together with their score and

class label.

Client to GeneRuleMiner relations
Message name Description
(Non-)Differential
support input

Message that supplies the rule cutoff for (non-)differential
genes.

Enactment input Message that enacts the mining process.

GeneRuleMiner to Client relations
Message name Description
Genelist output* Message specifying feedback if anything goes wrong load-

ing the specified lists.
Miner output Message that contains rules uncovered by the algorithm.

Table 4.3: The Relational View of the service design.

A complete overview of service connectivity and data flow is presented in Figure 4.2.
Note that only those functionalities that require interaction with the user or another
service are displayed.
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Figure 4.2: The SOKD use case design
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4.5.4 Scientific Workflows

A number of workflow designer tools have been developed over the last few years,
such as the orange toolkit [JMD+05] and Taverna [MyG08]. For our case study, we
chose Taverna because it has the capability to execute web services. InTaverna, com-
ponents are called processors, and apart from local services and WSDL services,
Taverna also supports BioMoby [WL02] and SoapLab [KFH+06] web service inter-
faces. Connections in Taverna are pretty straightforward; data connections are called
data links, and control connections are called control links. After a process has been
designed and composed, the user can supply the input parameters of the process and
execute it. When the process is done, Taverna will present the results to the user, or
give an error message if something went wrong.

4.5.5 Implementation

Implementation of the original algorithms was done in the Python language and run
on Python 2.5.2. The web service implementations were done in Microsoft C++.Net
2005 and Microsoft C# 2005. All experiments were performed on Microsoft Win-
dows XP using an Intel centrino duo processor 1.66GHz, and 1GB of mainmemory.

4.6 Experimental Results

4.6.1 KD Service Design

For our first use case, we compared three different implementations. To compare per-
formance, we took the microarray data used in [GST+99] and reran the experiment
that was done in [TZTL06], whereby Acute Lymphoblastic Leukemia (ALL)was
contrasted against Acute Myelogenous Leukemia (AML). The results of the bench-
mark test can be seen in Table 4.4. All measurements are in seconds and arethe
averages of 50 consecutive runs.

Selection service Mining service
Original implementation 3.08s 99s
Shell implementation 3.20s 102s
Python implementation 3.23s 100s
C++ implementation 1.53s 66s

Table 4.4: Web service implementation benchmarks

Figure 4.3 shows the workflow we constructed using Taverna. To set upthe work-
flow, the user loads the data files to the inputs created, and then runs the workflow.
When successful, the workflow will display the returned file. Because allparameters
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are combined in one SOAP message, we used input-splitters and output-splitters to
join and split them.

Workflow output ports

Workflow input ports

Results

Probes

Select_Input

Data

Select_Genes

Select_Output

Mine_Input

Mine_RSD_Rules

Figure 4.3: The Taverna ALL Vs. AML workflow

Based on the composition and execution of this workflow, we have a few observations
and remarks on this workflow:

∙ Monolithic sequential processing
Subprocesses that are in sequential order in Taverna need to finish first before
the next subprocess can start; when sending data to a remote component, all the
data is uploaded first before data mining can begin. While it is very intuitive to
separate these processes completely, it can be faster to let the processing begin
while the data transfer is still in progress. For example, our Selection service
can already calculate and return t-values of individual genes while the upload
is still in progress.

∙ Stateless services
When executing our mining service, first all ontologies have to be loaded into
memory, then annotation of the gene lists is performed, and finally the Re-
lational Subgroup Discovery algorithm starts processing. Every time the web
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service is executed, the same process is repeated. This is because this service
is stateless, meaning that the web service has no knowledge of previous execu-
tions. We argue that if the service would preserve some form of state, execution
could proceed faster. For example, if the mining service would keep the on-
tologies in memory and only change the gene assignments, the process would
speedup considerably, being freed from most startup delays after the first run.

∙ String representation
Message contents in SOAP are usually represented in text form. While this
suffices for small messages, it is a redundant representation for largevolumes
of data. We argue that compression and decompression of data segments inthe
SOAP messages could improve the performance of a KD process .

Notice that these observations may also hold for the KD construction scenario, and
that solutions to these problems require reimplementation of services and underlying
algorithms, and possibly revisions or extensions to the SOAP protocol and Taverna
messaging.

4.6.2 KD Process Design

The original process was divided into the same service partitioning as the one that
our model yielded, but processing of individual services was done one by one, and
results did not transfer before processing was completed. Furthermore, in the origi-
nal implementation feedback was not supplied upon occurrence of an event, but as a
return value after processing. A complete list of differences per service is presented
in Table 4.5.

GeneSelector Service
Category Original process Use case process
Service feedback as return values iterative on occurrence of event
Service initialization supplied as a whole iterative data supply
Service processing all per element
Service outputs at end of processing continuous outputting per element

GeneRuleMiner Service
Category Original process Use case process
Service feedback as return values iterative on occurrence of event
Service initialization supplied as a whole iterative data supply
Service processing all all
Service outputs at end of processing at end of processing

Table 4.5: Design differences in GeneSelector and GeneRuleMiner services
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Performance statistics of the original and the re-designed process are displayed in
Table 4.6. As input for the selector we took t-score cutoffs of15, 10 and8. For the
GeneRuleMiner, we took supports of at least 10% differential genes and at most 5%
non-differential genes. The measurements of each phase in the table indicate the time
(in miliseconds) since the entireprocessstarted up to the end of that phase, and are
averaged over 50 consecutive runs. Since there was no performance increase to be
gained in the GeneRuleMiner processing phase (all rules are returned at once when
processing is finished), we only show the benchmarks of the phases preceding the
GeneRuleMiner processing phase.

Original Process
Phase Cutoff 15 Cutoff 10 Cutoff 8
GeneSelector initialization 74 69 73
GeneSelector processing 1331 1291 1328
GeneRuleMiner initialization 3462 7122 13318

Re-desgined Process
Phase Cutoff 15 Cutoff 10 Cutoff 8
GeneSelector initialization 73 69 74
GeneSelector processing 1269 1228 1257
GeneRuleMiner initialization 2179 5841 11998

Table 4.6: Benchmarks of the original process and re-designed process

To make the difference between the original process and the re-designed use case
more clear, consider Figure 4.4, which illustrates the scenario for cutoff 15.

Figure 4.4: Benchmark comparison with a t-score threshold of 15
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The top part displays how the original process parts are processed consecutively,
whereas the bottom part shows how the re-designed process parts areprocessed it-
eratively, and in parallel where possible; data flows continuously from the GeneSe-
lector component to the GeneRuleMiner component, thereby gaining a considerable
performance increase.

4.7 Conclusions and Future Work

In this chapter we discussed the transition from construction of a KD process to
the orchestration of a KD process through the use of SOA and workflows. We have
contrasted two scenarios that indicate the weaknesses of process construction and ex-
ecution on a single machine, weaknesses that were addressed in the second scenario
by orchestrating processes in a SO fashion.

By using web services, versioning, connectivity, availability and performance of
individual services are improved; versioning is improved by transparent updating of
algorithms and the use of standardized WSDL interfaces, connectivity is improved
by using the standardized SOAP transport protocol, availability is improved by better
guarantees in service safety and the availability of the UDDI lookup service, and per-
formance is improved by parallel execution and platform specific implementations.

Apart from the improvements on individual services, the design and performance
of the entire KD process can be improved by using scientific workflows, which can
be designed and executed with the Taverna workbench. By using workflows, design
of KD processes is easier and more intuitive, since it splits KD processes inprocess-
ing components and connections. A KD process designer just needs to import the
components and connect them together in order to gain a valid KD process,which
can then immediately be executed to gain a result.

By designing a SOKD process workflow using a design model that combines
logical, functional and relational views, a better understanding of a KD process can
be gained iteratively due to the matching and mismatching of entities in these views,
whereby each iteration yields a better SOKD process design and a closer match of
relations, services and functionality. An important factor that influences the partition-
ing of services are the services already available, thereby promoting software reuse.

When designing individual services in KD, interaction and feedback areimpor-
tant aspects to keep in mind. Interaction and regular feedback are important for the
scientist to steer the KD process in a correct way, since KD processes are often time-
consuming and thus any process incorrectly set up could possibly resultin a consid-
erable loss of time. Another important aspect is performance through parallelization.
Since web services can be distributed across different logical or physical platforms,
their execution could possibly proceed in a parallel fashion. To supportparallelism,
streaming data is preferred over monolithic data transport where possible.By com-
bining these aspects and the functionality types in WSDL, we created guidelines for
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the design of a KD service’s functionality that is optimized for streaming data where
possible and incorporates the need for feedback.

To illustrate the merits discussed above and to show how web services can beim-
plemented, we created three different use cases. We showed how eachuse case con-
tributed to the KD process, and showed how web services can yield a performance
gain, sometimes cutting execution time by 50%. In case of redesign, processing times
for the initialization of a process were further reduced up to 37%, and with 22% on
average.

The design principles stated in this chapter are but a minor step to incorporating
SO technology in the field of KD. However, by assuring that the design of aKD pro-
cess and individual services is optimized for feedback and parallelism, a researcher
can enact a process and conclude it successfully with minimal error and maximal per-
formance. For further research we would need to study more use casesto ensure the
research principles have maximum support in the KD scientific field. Furthermore,
this design needs to be supported by graphical workflow tools that support iterative
relationships instead of just monolithic data transport. Apart from SOAP extension,
we also see future work in the combination of web services and databases.Our vi-
sion is to use web services to access databases to perform remote data miningand to
construct queries.
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Part II

Implementations
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Chapter 5

The Fantom Subgroup Discovery
Service

We propose a subgroup discovery service called Fantom that finds subgroups given a
set of scored, ranked elements. The subgroups are described by conjunctions of on-
tological concepts and are given a measure of interestingness based onan idea from
bio-informatics. For the generation of interesting subgroups we apply subgroup dis-
covery by using frequent itemset mining, which exhaustively searches for all relevant
subgroups above a minimal interestingness.

5.1 Introduction

Consider the following generic problem in data mining: as input we have a number
of data elements with a score for each element. We want to find all subgroupsthat

∙ have a high score for the subgroup (i.e., a score for a set of elements based on
the score of the individual elements in the set) indicating that this subgroup is
interesting;

∙ can be described by a conjunction of predicates which all elements of the sub-
group have in common.

Hence we need a procedure to score a set of elements. Furthermore, weneed to de-
cide which predicates can be used. A logical choice would be to use ontologies that
describe (part of) the research domain. Moreover, we want to perform some prun-
ing on the output, since predicates can imply other predicates, given the hierarchical
structure of ontologies. We strive for most specific conjunctions of predicates as well
as the highest scores.

We propose a service calledFantomthat finds all subgroups described by a con-
junction of predicates above a certain size and above a minimum score. It is built in
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a generic way so that we can apply it in a variety of fields. As input, it uses aset of
identifiers coupled to a set of scores and allowed predicates. As output, itpresents
the user with a set of rules and an appreciation of those rules in the form ofa score
measure. Fantom stands for Frequent pAtterN Tree-based Ontology Miner, a name
that is self-explanatory: Fantom mines frequent patterns on the basis of ontologies.

This chapter is organized as follows. In Section 2, we will discuss work related to
our Fantom approach, and discuss various knowledge sources that are used in Fantom
as well. In Section 3, we will discuss Fantom itself, providing a detailed overview of
inputs and outputs, pseudocode for parts of the algorithm and optimizations.In Sec-
tion 4, we will present initial performance indications of Fantom, and providestatis-
tics on our pruning strategies. Finally, in Section 5, we will make some preliminary
conclusions, and discuss research and improvements that can be done infuture work.

5.2 Related Work

In this section we present work related to the Fantom service, as well as work related
to structured knowledge sources, knowledge mappings and other sources of informa-
tion used in Fantom.

5.2.1 Ontologies

An ontology, as seen in information science, is the hierarchical structuring of knowl-
edge about things by subcategorizing them according to their essential (or at least
relevant and/or cognitive) qualities [Onl07]. Over time, many efforts havebeen made
by the computer science community together with field experts to create and rea-
son about ontologies for diverse scientific fields such as chemistry [OAM+03], web-
mining and the semantic web [Dav06] and bio-informatics [ABB+00, OGS+99].

Due to the increased attention in data mining with ontologies, related technolo-
gies such as representations of ontologies, description logic and ontologyreasoning
have been given much attention as well. Currently, there is a wide range of (ontology)
description languages available, and each of them has their own specific role. For
representation of ontology elements and data, usually a form of the XML is applied,
sometimes together with the Resource Description Framework (RDF) [W3C04a]. For
representation of relations among the data elements and extensions to allow reasoning
over these entity-relationship models, currently the Web Ontology Language(OWL)
[W3C04b] and the older F-Logic [Bal95] are commonly used. A good overview of
ontology languages is provided in [TS06].

Well-known ontologies in bio-informatics are GO and KEGG. GO, the Gene On-
tology, aims to standardize the representation of gene and gene product attributes
across species and databases. The three predicates that GO consists of are cellular
component, biological process and molecular function. A gene product might be as-
sociated with or located in one or more cellular components; it is active in one ormore
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biological processes, during which it performs one or more molecular functions. A
cellular component is a component of a cell, and part of some larger object,either
an anatomical structure or a gene product group. A biological processis a series of
events accomplished by performing one or more molecular functions in a specific
order. A molecular function describes activities that occur at the molecularlevel.

KEGG, the Kyoto Encyclopedia of Genes and Genomes, aims to uncover higher-
order systemic behaviors of the cell and the organism from genomic and molecular
information. It is a database of biological systems, consisting of genetic building
blocks of genes and proteins (KEGG GENES), chemical building blocks ofboth en-
dogenous and exogenous substances (KEGG LIGAND), molecular wiring diagrams
of interaction and reaction networks (KEGG PATHWAY), and hierarchiesand rela-
tionships of various biological objects (KEGG BRITE).

5.2.2 Annotations and Mappings

Within Fantom we use ontological terms as rule predicates. This would not be possi-
ble if a mapping that associates or correlates an element with one or more ontology
terms was not available. In the field of bio-informatics, there are many identifiers that
can be used in genomics and proteomics [MOPT05, PTM07, MCOW05, WLDP02]
and they are usually accompanied by mappings between those identifiers andontolo-
gies, or those identifiers and other identifiers. For example, for GO terms there are
several mappings (their default identifier is ENTREZ) that are updated either daily
or monthly [Con09]. KEGG maps work with KEGG orthologies (genes in different
species that are deriveed from a common ancestor), but also with HUGO gene sym-
bols [Lab09].

Fantom provides an option to generate interaction association rules. By using a
data source that states interactions between identifiers, Fantom can uncover patterns
that describe these indirect relations. These interaction patterns have theform of ”in-
teracts with(rule)”. In genomics, interactions can for example be obtained from the
GeneRIF project [Gen09] and Reactome [VDS+07].

5.2.3 Related Algorithms

The Fantom algorithm is based on the SEGS algorithm described in [TLT07] and
its predecessor [TZTL06]. While SEGS uses a similar method to Fantom, it is re-
stricted to only one entry per (sub)ontology, is tailored specifically to microarray
experiments, and does not prune rules that provide redundant information, nor does
it provide clustering of similar rules. In [LRS+08] subgroups are matched to a sub-
set of GO terms in a probabilistic way, which induces a greater portion of error and
false discoveries than an exhaustive search through the search-space. The GOEAST
[ZW08] algorithm also checks for gene enrichment in GO terms, but only checks for
a single GO term, and takes as input raw microarray data, which again restricts its
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applicability.
Another tool that mines gene lists is DAVID [HST+07], the Database for Annota-

tion, Visualization and Integrated Discovery. Its functionality is similar to Fantom:it
can classify large gene lists into functional related gene groups by relatingthem to on-
tologies (so far only the GO ontology was seen in the outputs), rank the importance of
the discovered gene groups and summarize the major biology of the discovered gene
groups. It also has capabilities to visualize genes and their functional annotations in
a group.

The main difference is that DAVID does not allow for scored lists of genes. It
solely acts on the genes that are entered in a list, and thus treats each gene as equally
important. Furthermore, the number of genes allowed to experiment on is restricted
to 3000, which is not much considering microarray experiments can easily comprise
tens of thousands of genes. Furthermore, rule mining based on interactionassocia-
tions is not available, and clusterering is done by using fuzzy heuristic partitioning
instead of a similarity measurement. Finally, DAVID is not available as a web service
but as a website, making it more complex to integrate in a workflow.

A lot of work has also been done on scoring functions. Typically, there isnot just
one scoring function that is considered the best, it all depends on what research is
being conducted and what properties are considered interesting. In thecase of Fan-
tom, the aim is to have a score for a subset of elements from a ranking of identifiers
and scores; the group score is thus dependent on the score of individual elements. In
bio-informatics, well-known algorithms that perform this kind of scoring arefound
in [GST+99, LB06].

5.3 The Fantom Service

Fantom is a service that relates subgroups of identifiers to ontological knowledge
that these subgroups have in common, or to ontological descriptions of identifier
groups that they interact with. It takes as input a set of identifiers and their scores,
background knowledge in the form of ontologies, mappings and interactiondata, a
scoring function, and thresholds for rule generation, and through rulegeneration and
pruning delivers a non-redundant set of rules that describe subgroups of the input set.
In this section we will discuss the inputs, internal mechanics and outputs of Fantom.
For an overview of all the formats we refer the reader to Appendix A.

5.3.1 Inputs

In this section we describe the inputs of the Fantom algorithm. These include context
parameters, a list of scored identifiers, user-defined ontologies, mappings between
identifiers and ontologies and interaction data between identifiers, a scoringfunction,
and functional thresholds and parameters.

64



Context Parameters

The context parameters are used to define the experimental context needed for the al-
gorithm to function correctly. Based on these context parameters the correct versions
of mappings and ontologies will be selected. For example, in our bio-informatics
case studies, it would include the class of experimental input identifiers (Genes, or
Single-Nucleotide Polymorfisms (SNP) identifiers), the type of the identifier (EN-
TREZ, SYMBOL) and the species this experiment concerns. Based on these param-
eters, translations will be made from one identifier type to another in both inputand
output, and correct mappings and ontology versions will be loaded, sinceontologies
can differ from species to species.

Set of Identifiers

The set of identifiers represents the elements in the experiment. All types of identi-
fiers are allowed, as long as they can be related to some external source of knowledge,
be it a set of uniquely identifiable car models, patients, or in our bio-informatics case
studies, gene or SNP identifiers.

Each identifier in the set has a unique name, and each name has to correspond to
an identifier in the provided mappings of the selected ontologies. If a mapping be-
tween identifier and ontology does not exist, it will be discarded. The same principle
holds when mapping between identifier types.

An identifier is also accompanied by its score, or weight. There are no limits to
these weights, but Fantom assumes that a higher weight means a higher importance,
correlation, or effect. Scores can be negative as well, which is assumedto mean a
negative correlation or effect.

Ontologies

The Fantom service aims to find groups of identifiers that relate to a conjunction of
terms within an established knowledge base. We use ontologies as that knowledge
base, since they reflect expert knowledge of a scientific (problem)domain. As defined
earlier, an ontology is a hierarchical structuring of knowledge, whereby nodes anno-
tated with broader, more general terms form the root of the ontology, and children of
those nodes are annotated with specifications and differentiations of the parent term.
We call these ontological termsconcepts.

We place a restriction on the ontologies used in Fantom, namely that they must
be organized in a directed acyclic graph, whereby each connection between concepts
has a specialization (”is a”) or aggregation (”part of”) relationship. This restriction
allows us to formalize the participation of identifiers in ontologies.
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Given identifieri and conceptsc, d, a collection of identifiers associated with a con-
ceptx namedIx, and a relationshipParent(x, y) that denotes conceptx as a parent
of concepty, the following statement holds:

∙ i ∈ Ic andParent(d, c)→ i ∈ Id.

Following from this we can also state:

∙ Parent(d, c)→ Ic ⊆ Id, ∣Ic∣ ≤ ∣Id∣.

Within Fantom, identifiers are associated with the concepts provided in the mapping,
and all parents of those concepts. As an illustration, a part of the GO ontology is
shown in Figure 5.11.

Figure 5.1: Part of the GO ontology structure

As can be seen in this example, concepts relate to each other through specific hier-
archical relationships. Here the most general concept isBiological Process, which
is the common root node for all biological processes described in GO. As we move
lower in the graph, concepts become more specific.

1Image taken from http://www.yeastgenome.org/help/GO.html
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Mappings and Interactions

Mappings and interactions are used to relate identifiers to associated concepts, or
to relate identifiers to other identifiers. In the Fantom service we strive to keep one
identifier class central, and use mappings to map the central class to other classes,
and vice versa. For example, in case of our bio-informatics experiments, we keep
mappings of ENTREZ gene identifiers to ontologies like GO and KEGG, and use
mappings from SYMBOL to ENTREZ in order to translate the input ranking and
output rules. The same is true for interaction definitions; all interacting genes are
expressed by ENTREZ identifiers.

Scoring Functions

The scoring functions are those functions that take as input a subset ofidentifiers
corresponding to a rule along with their individual scores, and have as output a single
numeric value indicating theinterestingnessof the rule, a value that lies between
0 and 1, 0 being most uninteresting and 1 being most interesting. By default, the
Enrichment Score (ES) function [GST+99] is selected, which calculates the score of
a subgroup based on the score of its individual members as well as the members not
in the subgroup:

∙ Sort the list ofN identifiers according to their score with score functions,
wherebysj = s(idj). For the resulting listL = (id1, id2, ..., idN ) it holds that
s1 ≥ s2 ≥ . . . ≥ sN .

∙ For each positioni in L, evaluate the identifiers in the rule subgroupS, and the
identifiers not inS but still present inL at a higher position thani:

Pincluded(S, i) =
∑

j=1,...,i
idj∈S

∣sj ∣ /
∑

k=1,...,N
idk∈S

∣sk∣

Pexcluded(S, i) =
∑

j=1,...,i
idj /∈S

1

N − ∣S∣

∙ The ES is the absolute maximum deviation from zero ofPincluded−Pexcluded,
wherei varies from1 toN .

Despite the fact that this measurement was devised to express the interestingness of
gene sets, we think that it is in no way restricted to that purpose. We argue that any
ranked set with a individual scores that indicate correlation or effect with respect to a
certain experiment can be used in this scoring measurement.
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Thresholds and Functional Parameters

Fantom allows the user to work with two thresholds: minimum support and mini-
mum score. Minimum support indicates how much genes a subgroup should contain
at least, and can heavily influence the duration of an experiment, depending on the
data set used. The reason for introducing the minimum support threshold was to en-
sure that the single-identifier groups with the highest score do not dominatethe list,
since the default score function does not take support into account.

The second threshold indicates the minimum score a rule should have. It is pri-
marily used for pruning rules in a postprocessing step, discarding rules that do not
meet the specified interestingness criterion, but as we shall see later, it can also be
used to optimize the rule generation process.

Apart from thresholds there are also a few functional parameters that specify the
generality of the ontologies and the rules. The ontology parameter allows the user to
influence the specificity of terms in a rule, while the rule parameter allows the user to
constrict the number of concepts used in a rule to one per ontology predicate. Both
parameters can positively influence the speed of the mining process at the expense of
a smaller rule search space.

5.3.2 Output

As output, Fantom generates a text file that contains all the rules that remain after
pruning. Furthermore, rules with the same subset of identifiers are clustered together,
improving readability. An example rule looks like this:

Rule 1
Score: 0,761302007553004
Participants: [Epha1, Epha2, Ephb2, Ephb3, Ephb4, Ptk2]

All genes in the subgroup
have the following properties:
molecular_function(protein tyrosine kinase activity),
molecular_function(ATP binding),
biological_process(protein amino acid phosphorylation),
biological_process(tyrosine kinase signaling pathway),
KEGG_pathway(Axon guidance)

The example rule describes a certain subgroup containing the genesEpha1, Epha2,
Ephb2, Ephb3, Ephb4, Ptk2and relates them to GO and KEGG terms, a process we
call Knowledge Fitting. By relating subgroups of the input to established knowledge
sources, we strive to increase the interpretability of knowledge.

The Fantom method can also generate rules that take into account gene interac-
tions. When interaction association rules are generated, the conjunctions of ontology
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terms do not describe the subgroup mentioned in the participants header, but rather
an anonymous subgroup that all the subgroup participants interact with. The next rule
would be an example of such an interaction rule:

Rule 1
Score: 0,915794797276831
Participants: [Acat1, Acat2, Cycs, Dld, Mdh2, Uqcrq]

All genes in the subgroup have interaction with genes
that have the following properties:
molecular_function(ATP binding),
biological_process(tricarboxylic acid cycle),
KEGG_pathway(Alzheimer’s disease)

5.3.3 Algorithms and Structures

The Fantom service consists of several methods, whereby three phases are repeti-
tively executed until all options are exhausted: generation, appreciationand pruning
of rule candidates. The pseudocode is shown in Algorithm 1.

Algorithm 1 Fantom Main Body
RuleCandidates C← ∅
SubsetCollection S← ∅
C← Preprocessing()
InsertCandidates(S, C)
while C ∕= ∅ do

C← GenerateCandidates(S)
C← AppreciateCandidates(C)
InsertCandidates(S, C)
PruneCandidates(S)
C← ReturnCandidates(S)

end while
C← ReturnRules(S)
print Postprocessing(C)

In the remainder of this subsection all methods will be discussed individually.

Preprocessing

In the preprocessing phase all inputs are loaded. First the ranked list of identifiers is
loaded, and translated to the default identifier if necessary. Next, the selected ontolo-
gies are loaded into the system. These ontologies are represented in a dictionary and
indexed on their unique identifier. Each ontology predicate gets its own dictionary
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to avoid the case of having equal index names between ontologies and to optimize
memory usage and search-time, which isO(log(n)) on average, andO(n) in the
worst case, wheren is the amount of items in the dictionary. In the final phase of the
loading stage, the mappings from identifiers to ontology concepts are loaded.

After all mappings and ontologies are loaded, the ontology dictionaries are anno-
tated by the identifiers. There are two ways of annotating the ontologies, depending
whether interaction rules need to be generated or not. If the experiment is set to gen-
erate interaction rules, then the interaction file will be used as an intermediate step
to annotate the ontologies. If not, then solely the map from identifiers to concepts is
used. The complete algorithm pseudocode is shown in Algorithm 2.

Algorithm 2 AnnotateOntology(o, i, m, L)
Require: An ontologyo.
Require: An identifier listi.
Require: An identifier to ontology mappingm.
Require: (optional) An interaction listL.

for all id ∈ i do
if L ∕= ∅ then

indirect set← GetInteractions(id, L)
conceptset← ∅
for all indirect id ∈ indirect setdo

conceptset← conceptset∪ GetConcepts(indirectid, o, m)
end for

else
conceptset← GetConcepts(id, o, m)

end if
for all concept∈ conceptsetdo

AnnotateConceptAndParents(concept, id)
end for

end for

Algorithm 2 works as follows. If an interaction list was supplied, the algorithm
fetches all identifiers thatid interacts with, and fetches the concepts associated with
those identifiers. Then, each of those concepts plus their parents are annotated with
identifier id. If there are no interactions specified, the concepts directly related toid
as well as their parents are annoteded withid.

After all ontologies have been annotated, the preprocessing phase moves into its
final stage: preparation for candidate generation. In this stage, all ontology concepts
that participate in this experiment are compared to the minimum support and score
thresholds, and those with sufficient support will be used for further generation of
rules. At the same time, the ontologies will also be cropped and optimized for usein
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the candidate pruning stage. The ontologies are pruned and optimized in a number of
ways:

∙ Removal of unused concepts
After annotation of the ontologies, all concepts that remain unannotated with
identifiers will not participate in any further actions taken by the Fantom ser-
vice and thus can be unloaded from the ontology.

∙ Cropping of uninformative concepts
When using all ontology concepts, chances are that some of the rules generated
are not useful because they contain concepts that are too general to be infor-
mative. To counter uninformative rules, Fantom allows the user to provide a
functional parameter that indicates the specificity of the terms to be used in an
ontology. This parameter indicates a percentage of the maximum depth of the
pruned ontology, whereby depth is the maximum number of parents a concept
has to the root of the ontology, including the root itself. For example, if the
maximum depth of an ontology in a specific experiment is7, and the user sup-
plied 0.5 as a parameter, then the minimum depth for a concept to be allowed
to be included in the experiment is4.

Candidate Generation

Candidate generation in the Fantom service is based on the Apriori algorithm,which
is frequently used in itemset mining [AIS93] and refined many times since its con-
ception [HPY00, Bod03]. Given that it is a proven technique that has been used in
many fields, it was considered generic enough to be used in Fantom. Within theFan-
tom service, the algorithm repeatedly executes three stages: candidate generation,
candidate appreciation and candidate pruning. A central structure that manages rules
in all these procedures is theSubsetCollectionstructure, which provides methods for
inserting, retrieving and discarding rules and candidates. Note that until itis reported
as output, no rule is fixed yet, and therefore we shall refer to them asrule candidates,
or merelycandidates.

A rule candidate is a data structure with two lists; one list contains the participants
in the candidate, i. e., the identifiers that are associated with all the concepts,which
are present in the second list. Candidate generation proceeds on the basis of subset
combination; two candidates that contain a conjunction ofm concepts are combined
with each other to form a candidate that has a conjunction ofm+ 1 concepts. When
combining two candidates, the resulting identifier lists will be the conjunction of
identifiers that were in the two lists of the original candidates.

The algorithm works as follows. Before each cycle, all candidates are inserted in
the SubsetCollection structure. In case of the first cycle, when all candidates contain
only one concept (these are called theatomic candidates), all candidates are gathered
in one list. However, assume now that we are in a certain cyclem, which contains
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candidates withm concepts. For those candidates to be combined into a candidate
of m + 1 elements, they have to sharem − 1 elements. Thus for every candidate of
m > 1 concepts,m subgroups are created and the candidate is insertedm times into
a hash table, each entry hashed by a different subgroup. Notice that each cycle has its
own hash table except for the first one, which has no subsets.

After all candidates of lengthm are inserted, generation of candidates of length
m+ 1 commences. If there is no hash table present, that means that there is a single
list of atomic candidates. If this list containsn candidates, then the maximum number
of new candidates isn ∗ (n − 1)/2. However, if the two concepts that are combined
are hierarchically related, then the combination is invalidated, and the candidate is
discarded.

Now consider the case where we have candidates ofm > 1 concepts. Suppose
that there arek hashes, thei-th hash containingSi candidates,1 ≤ i ≤ k. Then the
number of generated candidates would be at most:

∑k
i=1

Si∗(Si−1)
2

Combination of two candidates within a hash entry proceeds in a straightforward
fashion. The concepts that do not belong to their common subgroup ofm−1 concepts
are tested for hierarchical relatedness, and discarded if there is sucha relation. A
complete overview of this part of the algorithm is shown in Algorithm 3.
After all combinations have been generated, they are returned by the function and
passed on to the candidate appreciation phase.

Candidate Appreciation

The candidate appreciation phase is the phase where all generated candidates in the
previous phase are being assigned a score on the basis of the selected score function.
Two scores are being calculated: the score of the candidate with its current set of
participating identifiers, and the maximum score that the minimum number of ele-
ments involved in this rule could possibly have, whereby this minimum is equal to
the minimum support parameter. If this maximum score is below the score threshold,
that means that this rule can be pruned in the next phase.

In Fantom, the ES measurement is used as a default scoring mechanism. ES gives
high scores to groups that contain many identifiers at the top of the identifier ranking
(high positive correlations or effect) or at the bottom (high negative correlations or
effect). As an illustration, consider Figure 5.2, which shows the score calculation re-
sult after each sample, and was generated in one of our case studies. Ascan be seen,
the score increases fast at the beginning, indicating that a lot of genes with high pos-
itive effect were participants in the rule under consideration. If participants were less
concentrated on either side, but instead spread out over the entire ranking, a smaller
maximum score would be obtained.

The ES is an indication of the interestingness of the current candidate based on
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Algorithm 3 GenerateCandidates(S)
Require: SubsetCollection StructureS.

NewCandidates← ∅
if Subsets(S)← ∅ then

C← GetAllCandidates(S)
for i ∈ {1, . . . , ∣C∣ − 1} do

for j ∈ {i+ 1, . . . , ∣C∣} do
if not Related(Concepts(C[i]), Concepts(C[j]))then

NewCandidates← NewCandidates∪ MakeCandidate(C[i], C[j])
end if

end for
end for

else
Hashtable H← GetLatestCandidatesSubsets(S)
for all Key∈ Keys(H)do

C← H[Key]
for i ∈ {1, . . . , ∣C∣ − 1} do

for j ∈ {i+ 1, . . . , ∣C∣} do
if not Related(Concepts(C[i]), Concepts(C[j]))then

NewCandidates← NewCandidates∪ MakeCandidate(C[i], C[j])
end if

end for
end for

end for
end if
return NewCandidates
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Figure 5.2: Example of ES determination

its identifier subgroupM . We cannot, however, use this ES to prune if it is lower
than the given score thresholdt, for combination of this candidate with another one
could still yield an interesting new candidate with a score abovet. However, we can
find L ⊆ M , the subgroup ofM for which the ES is maximal, whereby∣L∣ is the
minimum support of the rule. We call this scoreESmax. The number of subgroups
to consider would be

(∣M ∣
∣L∣

)

, which is an infeasible amount to process for each candi-

date for large subgroups. However, it can be done inO(∣M ∣) by using the following
backwards induction algorithm devised by Muskulus & de Bruin, which is presented
in Algorithm 4.

A brief summary of the algorithm is: for each identifier position i in M we as-
sume thatESmax is achieved there. For a given minimum thresholdq, we delete the
∣M ∣ − q participants with the biggest absolute score after the position ofi in the
ranking. In case there are∣M ∣ − q values or more, we are done and we recalculate
the score of this set. In case there are less than∣M ∣ − q values to remove, then we
delete the remaining values that are directly beforei. Since ES is the maximum de-
viation from zero, we also need to take into account the occasion that the minimum
ES is at positioni. However, to calculate this, we invert the order of all identifiers
in their ranking as well as their scores, and again calculateESmax. The maximum
score of the candidate is the maximum over all2∣M ∣ values calculated. For a com-
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Algorithm 4 MaxEnrichmentScore(M, q)
Require: Identifier SetM .
Require: Minimum Supportq.

for i ∈ {1, . . . , ∣M ∣} do
T← {1, . . . , ∣M ∣} ∖ {i}
for j ∈ {1, . . . , (∣M ∣ − q)} do
T+ = {t ∈ T ∣ t > i}
if T+ ∕= ∅ then
t0 ← mint∈T+

t
else
T− = {t ∈ T ∣ t < i}
t0 ← maxt∈T−

t
end if
T ← T ∖ {t0}

end for
M ′ ← {M [t] ∣ t ∈ T} ∪ {M [i]}
ci ← CalcEnrichmentScore(M ′)

end for
return max1≤i≤∣M ∣ ci

plete overview of the algorithm and its correctness we refer the reader to Appendix
B.

Candidate Pruning

Candidate pruning is done to make sure only the most interesting rules are reported
back once the experiment is over, to make sure redundant information is left out,
but also to minimize the amount of candidates generated in the experiment. Within
each stage, candidate pruning is done in three phases. First, candidatesgenerated and
appreciated in the previous two phases are now compared to the input constraints;
all candidates whose number of participants do not satisfy the support constraint, or
whoseESmax is below the minimum score constraint, are pruned. The remainder
will be inserted in the subset collection structure, where further pruning will take
place.

Within the subset collection structure, pruning proceeds in a bi-dimensionalway,
hence we called itBi-Cohortal Pruning. First we prune the rules in ahorizontalco-
hort, comparing candidates of the same dimensionality (by dimensionality we mean
the number of concepts that an candidate contains). The remaining candidates are
inserted one by one. The algorithm is shown in Algorithm 5.

As discussed earlier, for every candidate ofm > 1 concepts,m subgroups are
created and the candidate is insertedm times into a hash table. Upon each insertion in
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Algorithm 5 InsertCandidates(S, C)
Require: SubsetCollection structureS.
Require: Set of candidatesC.

for all c ∈ C do
T← GenerateSubsets(c,∣Concepts(c)∣ - 1)
if T = ∅ then

C’ ← GetAllCandidates(S)
for all p ∈ C ′ do

if Descendant(Concepts(p), Concepts(c))and Score(p)≥ Score(c)then
InvalidateCandidate(c)

end if
end for
InsertCandidate(S, c)

else
for all t ∈ T do

C’ ← GetCandidatesFromSubgroup(S, t)
for all p ∈ C ′ do

if Descendant(Concepts(p), Concepts(c))and Score(p)≥ Score(c)
then

InvalidateCandidate(c)
end if

end for
end for
InsertCandidateInSubgroups(S, c,C ′)

end if
end for

a hash table entry, the candidate is compared to other candidates of the same dimen-
sionality for redundant knowledge, checking whether their differentiating concepts
(the two concepts these candidates do not have in common) are related. If this is the
case, and the score of the more specific candidate is higher than or equalto the score
of the more general one, then the more general candidate is discarded asa rule (but is
still kept for future candidate generation, and inserted in all the subgroups it belongs
to). In case there are no subgroups yet (m = 1), the candidate is compared to all the
candidates previously inserted into the Subgroup structure, and then inserted itself.
Note that since it does not belong to any subgroup, it will be inserted into a general
list of m = 1 candidates.

After pruning of the horizontal cohort has finished, pruning of thelongitudinal
cohort commences. The remainder of the still valid candidates of dimensionalitym
are compared to those of dimensionality1...m − 1, since rules of dimensionalitym
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are more specific than rules of a lesser dimensionality, and can thus renderthose rules
obsolete. To this end, all subsets of dimensionality1...m−1 are generated from each
remaining candidate of dimensionalitym, and these are subgroups are compared to
in the subset collection by comparing them to related entries in the castable of their
respective dimensionality. This algorithm is shown in Algorithm 6.

Algorithm 6 PruneCandidates(S)
Require: SubsetCollection structureS.

C ← GetMostRecentCandidates()
for all c ∈ C do

for i ∈ {1, . . . , ∣Concepts(c)∣ − 1} do
T ← GenerateSubsets(c, i)
if T = ∅ then

continue
else

for all t ∈ T do
if i = 1 then
C ′ ← GetCandidatesOfDimension(S, 1)
for all p ∈ C ′ do

if Descendant(Concepts(t),Concepts(p)) and
Score(c) ≥ Score(p) then

InvalidateCandidate(p)
end if

end for
else
T ′ ← GenerateSubsets(t,i− 1)
for all t′ ∈ T ′ do

C ′ ← GetCandidatesFromSubgroup(S,t′)
for all p ∈ C ′ do

if Descendant(Concepts(t),Concepts(p)) and
Score(c) ≥ Score(p) then

InvalidateCandidate(p)
end if

end for
end for

end if
end for

end if
end for

end for
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Postprocessing

In the postprocessing phase, all invalidated options are discarded, leaving only those
options that are now rules. These rules are then clustered together by participants,
since the same subgroups can have different rules associated with them. Furthermore,
the list of rules is sorted and formatted according to the output format discussed ear-
lier.

When clustering, the user has to specify a parameter between0 and1, the similar-
ity threshold, indicating how similar rules need to be in order to be clustered together.
Similarity scoreS for rulesR1 andR2 is calculated by dividing the conjunction of
both their identifier lists (rule participants) between the minimum of the two, as can
be seen below:

S =
∣Participants(R1)∩Participants(R2)∣

min(∣Participants(R1)∣,∣Participants(R2)∣)

The full algorithm is shown in Algorithm 7.

Algorithm 7 ClusterRules(R, q)
Require: Set of RulesR.
Require: Similarity Thresholdq.

FinalClusters← ∅
AssociationsMap← BuildAssociations(R, q)
Clusters← BuildClusters(AssociationsMap)
FinalClusters← ReduceRedundancy(Clusters)
return FinalClusters

In Algorithm 7, the rules are first divided into associations in the functionBuildAs-
sociations. In this function, a hash table is built with rules as keys, and for each key
in R, the entry is a list of all rules that have a similarity score higher than or equalto
thresholdq.

In the next step, clusters are built from these conjunctions using the function
BuildClusters, which is a function that builds clusters recursively from the associa-
tion maps. The functionBuildClustersis displayed in Algorithm 8. It is a recursive
function that builds all possible maximal cliques for each rule in the associationmap
AssocMap.

Finally, after all clusters have been built, they are pruned for redundancy in the
functionReduceRedundancy. This function makes sure that each rules only appears
in the cluster with the most members, though some redundancy is allowed if a rule
appears in multiple clusters with the same number of members.

Clustering inBuildClustersproceeds as follows. First, for each of the entries in
the AssocMaphash table it is checked if it is a clique. A clique is found when all
rules within the entry have a similarity score higher than the thresholdt, not only
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Algorithm 8 BuildClusters(AssocMap)
Require: Map of AssociationsAssocMap.

ClusterSet← ∅
for all key∈ Keys(AssocMap)do

SafeSet[key]← key
StrifeSet← ∅
UnhandledSet← AssocMap[key]
for all u∈ UnhandledSetdo

strife← false
for all r ∈ UnhandledSetdo

if u= r then
continue

else ifr /∈ AssocMap[u]then
strife← true
StrifeSet← StrifeSet∪ {u}

end if
end for
if strife= falsethen

SafeSet[key]← SafeSet[key]∪ {u}
end if

end for
if StrifeSet= ∅ then

ClusterSet← ClusterSet∪ SafeSet[key]
else

FriendSet← BuildFriendSet(StrifeSet, AssocMap)
SubSet← BuildClusters(FriendSet)
for all s ∈ Subsetdo

ClusterSet← ClusterSet∪ SafeSet[key]∪ s
end for

end if
end for
return ClusterSet
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with respect to the key rule, but also with each other. If this is the case, the cluster is
added toClusterSet.

If the set is not a clique, it means that at least two elements in the set do not
have a similarity score that is sufficiently high, and thus they are put intoStrifeSet
instead ofSafeSet. What happens next is that forStrifeSeta hash table is constructed
like AssocMap, calledFriendSet, which contains the entries ofAssocMapfor each
of the keys inStrifeSet. Next,BuildClustersis recursively invoked, and all the clus-
ters resulting from that invocation are merged with the clique represented inSafeSet.
Finally, these are added as clusters intoClusterSet.

5.4 Initial Performance Experiments

In this section we give an indication on overall performance of the Fantom service.
We apply Fantom to one of the microarray data sets used in [GST+99]. We discuss
the data set used, what transformations we applied to get a ranking of genes, and what
parameters we supplied to Fantom. We also present some performance statistics that
address both speed and pruning.

Dataset and Inputs

In this use case we used a well-known publicly available dataset that compares gene
expression profiles of AML and ALL [ASS+02]. In this data set, gene expression pro-
files were taken from 47 patients suffering from ALL and 25 patients suffering from
AML. We first normalized the raw data using Quantile normalization [BIAS03].After
that, we performed mapping of the probes to ENTREZ genes using the Hu6800 an-
notations supplied by Affymetrix. We discarded any entries that could not be mapped
successfully to a single identifier, to reduce the uncertainty error. Finally,we per-
formed a t-value calculation with the Student’s t-test between those two groups, thus
researching what all over-expressed genes have in common. If a gene had multiple
t-values, the average of those values was taken.

As ontology inputs the GO and KEGG ontologies were used, combined with the
ES score metric. Context inputs were set to homo sapiens, and the identifier was kept
default to ENTREZ.

Implementation

Implementation of the ontology and mapping generation as well as the interaction
files was done in the Python language and run on Python 2.5.2, because ofthe ef-
ficient and easy string handling of the Python scripting language. The webservice
implementations were done in Microsoft C++ .Net 2008 and Microsoft C# 2008,
both using the .Net Framework version 2.0 and 3.5. We embedded this web service
in a workflow created in the Taverna [MyG08] workbench.
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Performance

In Figure 5.3, performance measurements are shown for different minimalsupport
sizesS and different minimum score thresholdsC. In Figure 5.3(a), the horizon-
tal axis indicates the minimum support in items, while the verical axis indicates the
running time of an experiment. In Figure 5.3(b), the horizontal axis indicatesthe min-
imum score setting in an experiment. The vertical axis is once again the runningtime
of an experiment.

 0

 100

 200

 300

 400

 500

 600

 5  10  15  20  25  30  35

T
im

e(
s)

Minimum Support

Support-Based Performance Measurement

C=0.60
C=0.65
C=0.70
C=0.75

(a)

 0

 100

 200

 300

 400

 500

 600

 0.55  0.6  0.65  0.7  0.75  0.8

T
im

e(
s)

Minimum Score

Score-Based Performance Measurement

S=10
S=15
S=20
S=30

(b)

Figure 5.3: The Fantom service performance measurements
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As can be seen in Figure 5.3(a), the increase of the minimum participants has apro-
found effect on the performance of the algorithm. The same effect can be seen in
Figure 5.3(b) where the minimum score was increased, though at a lesser extend with
bigger subgroups. Still, if we extrapolate the lines in Figure 5.3(b), it is still obvious
that pruning based on the ES measurement improves performance greatly (one can
simulate the lack of ES pruning by taking a minimum score of0).

Another interesting question is how these two thresholds affect pruning. Intu-
itively, smaller subgroups and lower minimum scores result in more rules beinggen-
erated, and therefore more rules pruned, but if we examine the percentages of rules
pruned we see that with both thresholds it is fairly stable around 99.8%. These results
are shown in Figure 5.4.In Figure 5.4(a), the horizontal axis indicates the minimum
support in items, while the verical axis indicates the percentage of rules pruned. In
Figure 5.4(b), the horizontal axis indicates the minimum score setting in an experi-
ment. The vertical axis is once again the percentage of rules pruned.

As can be seen, the pruning algorithm is slightly more erratic in the support
threshold seen in Figure 5.4(a) than in the score threshold shown in Figure5.4(b),
but overall both are monotonically increasing.

5.5 Conclusions and Future Work

In this chapter we discussed a subgroup discovery service called Fantom that finds
subgroups given a set of weighed elements. We explained the technologies behind
the algorithm, its data sources, and its way of combining that data to generate com-
prehensive patterns that are tailored to the expert knowledge of the researcher.

In our experiments, we have shown several statistics on the Golub et al. data set,
which we normalized and then extracted the participating genes and their scores from
it. We have shown that pruning can be done with both a monotonic constraint such
as support, but also by adapting a non-monotonic constraint such as the ES score
measurement, thereby making use of the minimum support threshold. This resulted
in the generation of less rules and increased pruning, which rendered at least 99.85%
of all the rules generated useless, greatly diminishing redundant information.

For future work, efforts have to be made to increase rule statistics, not only with
ES scores, but also p-values for confidence. Furthermore, some other score functions
than just ES should be evaluated and supported. A wide overview is presented in
[AS09]. Of course, a qualitative re-assessment of the rules with different score mea-
sures will have to be made, as well as research into the tradeoff between performance
and quality.
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Figure 5.4: The Fantom service pruning measurements
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Chapter 6

The Fantom Service: Exact Testing

In this chapter we describe how we combine the Fantom service with the statistical
principle of permutation testing. We demonstrate that by performing several iterations
of the Fantom service on permutations of an identifier list, we can prune the rule set
for the original list even further. We also demonstrate that by combining Fantom and
permutation testing, we can determine an optimal support threshold for classes in a
multi-class experiment with respect to interestingness of rules.

6.1 Introduction

When generating rules from a ranked list of identifiers, the rules usually reflect the
ranking, and Fantom is no different in this respect. It is therefore goodpractise, where
possible, to make sure that the ranking is correct, and to make sure that rules gener-
ated and reported are specific to that ranking, and not a product of randomness or
chance, which can sometimes occur. By generating permutations of a ranked list, one
can check if these permutations generate similar rules. If so, then the rules become
less important and interesting, for they are not specific to the original ranking.

The method previously described is a variation on Fisher’s Exact Test [Fis22,
Fis67]. Fisher’s Exact Test is a statistical significance test that uses permutation gen-
eration to determine the deviation from a null hypothesis. It is called anexacttest
because it does not rely on heuristics and approximations of the deviation,but can
calculate it exactly through generation of all possible permutations. Usually,a p-
value is calculated, which is the probability of obtaining a measurement that has at
least (or at most) the same value as the value actually observed, assuming that the
null hypothesis is true. The lower the p-value, the less likely the result is obtained by
chance, assuming the null hypothesis is true, which makes the result more significant.

Consider a simple example: suppose we have a ranking of identifiers, and we cre-
ate 99 permutations of those identifiers. After rule generation, we check for each rule
if it also appears in the permutation experiments. Suppose a rule in the originalex-
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periment appeared inn out of the residual 99 experiments, then a simplified p-value
could ben+1

100 . Usually an observation (or rule) is considered interesting if its p-value
is below0.05, or even0.01. The rule is then said to bestatistically significant

In this chapter we will apply this concept to the rules generated in Fantom. We
generated permutations of the input, and then generated rules from each of those per-
mutations using multiple dedicated instances of the Fantom service. Furthermore, we
used the same principle to generate an automated score threshold for a multi-class
problems in Fantom by using maximized rule count differentials.

This chapter is organized as follows. In Section 2, we discuss exact testing with
Fantom on a single-class problem, generating a rule list with rules unique to theorigi-
nal permutation. We also discuss exact testing with Fantom for multi-class problems,
whereby different groups of identifiers are compared to each other. We explain the
difference with the normal experimental setup, and the algorithm behind automatic
thresholding of different groups participating in the rules. In Section 3, we present
experimental results on both variations using the AML versus ALL dataset again.
Finally, in Section 4 we present some conclusions and future work.

6.2 Exact Testing for Pruning and Optimization

In this section we discuss two versions of exact testing with Fantom: one for single-
class problems, which is used for pruning of the rules, and one for multi-class prob-
lems, which can be used for both rule pruning and accurate threshold determination.

6.2.1 Exact Testing: Single-Class Pruning

In this variant of Fantom, we use the Fantom algorithm repeatedly to generaterules
from multiple identifier lists. One list is the original ranking, which reflects the orig-
inal experiment data, and the other lists are derived from permutations of that data or
ranking. It is up to the experimenter to create those permutations, although wecre-
ated a permutation algorithm for microarray expression data.

Exact testing for single-class pruning is a three-stage process, as shown in Fig-
ure 6.1. In the first stage, input permutations are generated. The outputof this phase,
a set of ranked lists, will serve as input of the second stage, along with theoriginal
ranked list.

The second stage is the concurrent execution of the Fantom service on all ranked
lists generated in phase one. Depending on how many permutations have been gen-
erated, all or a portion of the permutations are processed on the Fantom services
available, until all permutations have been processed. The resulting rulesare then
forwarded to the final phase.

In the third and final phase, the output is gathered and combined. First, therules
generated on the original input, from here on called theoriginal rule set, are loaded
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Figure 6.1: Workflow for exact pruning

into the system. After that, the rules generated on the permutations are loaded and
compared to the original rule set. If there are any rules more specific than or equal to
rules in the original rule set, and with a higher or equal score, then the related rules in
the original rule set are pruned. Comparison and pruning of rules proceeds according
to the algorithms described in Algorithm 5 and Algorithm 6 from Chapter 5.

6.2.2 Exact Testing: Multi-Class Threshold Optimization

Fantom can also be used to perform multi-class comparison experiments. Thegoal
of these kinds of experiments is to investigate commonalities in subgroups of the
identifiers belonging to theinterest class. The rest of the identifiers belonging to the
control classserve as contrast information, and their involvement in rules penalize
the score of the rule. Consequentially, subgroup rules that contain many identifiers in
the interest class and few in the control class gain a higher score.

As an example, let us consider a wine comparison problem. Suppose we have a
list of wines, all with unique identifiers, and we want to investigate what the 10most
popular wines have in common according to a certain wine ontology, for example the
one described in the OWL documentation [W3C04b]. We would label the popular
wines withClassInterest, and the rest withClassControl. When running Fan-
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tom, the service will strive to find all the rules that describe subgroups of the interest
class, considering the control class purely as contrast information usedin the score
measurement of the rules. Experiments of these kind are usually shorter and faster in
Fantom, since the support threshold only applies to the interest class.

Fantom exact testing for multi-class problems has a slightly different implemen-
tation than Fantom for single-class problems. Each ontology concept now has two
lists associated to it, one list for the identifiers of the interest class, and one list for
the control class. A similar principle holds for the representation of options,which
now have two lists of participating identifiers, one for each class.

The scoring is also different, since the standard ES measurement is not suited
for multi-class problems. We therefore adapted the ES measurement to be suited for
multi-class problems. Let the interest list of an option beLInterest, and the control list
beLControl. Furthermore, if we perceive the two classes as two different rankings,
namelyInterestRank andControlRank, then for each optionESInterest would
be the ES of the identifiers of the interest class, calculated overInterestRank. How-
ever, we still have to penalize rules for their control set participation. As apenalty,
the weighed percentage of control identifiers will be subtracted fromESInterest. If
we take score functions, the modifiedESMultiClass is thus:

ESMultiClass = ESInterest -

∑

id∈LControl
s(id)

∑

id∈ControlRank s(id)

As can be seen, maximization ofESMultiClass is a matter of maximizingESInterest,
while (optimistically) assuming that there will be no identifiers inLControl.

An interesting question here is: if we set specific thresholds on the interestgroup
and control group, for what thresholds would we find the most interestingset of rules?
To this end, a so-calledPermutation Counting Matrix(PCM) was implemented.

A PCM is a structure that registers how many rules in the experiment apply to
various threshold boundaries. On both axes, threshold boundaries are represented in
percentages. How many thresholds are represented depends on the matrix resolu-
tion, which is by default set to100, meaning that each axis has100 thresholds, each
threshold representing one percent. This number can be changed by theuser, since
experiments with a large number of identifiers require a higher resolution to stillbe
able to discern smaller subgroups.

On the horizontal axis, also called themax tℎresℎold axis, the control group is
represented. Each threshold on this axes represents the percentage of identifiers in the
entire control ranking that a rule can have at maximum. Note that if a rule satisfies a
certain thresholdx on a matrix of resolutionn ≥ x, then it satisfies all subsequent
thresholdsx+ 1, . . . , n.

On the vertical axis, which is called themin tℎresℎold axis, the interest group
is represented. In this case, each threshold represents the percentage of identifiers in
the entire interest ranking that a rule can have at minimum. This implies that if a rule
satisfies a certain thresholdx on a matrix of resolutionn ≥ x, then it satisfies all
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subsequent thresholds1, . . . , x.
Consider PCMA below, which has a resolution ofm ⋅ n, wherebym is the

min tℎresℎold resolution, andn is themax tℎresℎold resolution.

A =

⎛

⎜

⎜

⎜

⎝

a1,1 a1,2 ⋅ ⋅ ⋅ a1,n
a2,1 a2,2 ⋅ ⋅ ⋅ a2,n

...
...

. . .
...

am,1 am,2 ⋅ ⋅ ⋅ am,n

⎞

⎟

⎟

⎟

⎠

According to the properties discussed above,am,n ≥ am,n−1 ≥ . . . ≥ am,1, and
a1,n ≥ a2,n ≥ . . . ≥ am,n. This implies that the rules with potentially best scores
have a highm index, while then index is low, ultimately making rules belonging
to am,1 the best rules, containing rules that describe many interest group identifiers,
while none or very little of the control group.

We can use the structure above to determine optimal threshold settings for inter-
est and control classes by using exact testing, wherebyoptimal indicates threshold
settings where the PCM value of the original input differs most from the PCMvalue
in the PCMs of the permutations. To calculate these settings, we subtract the per-
mutation PCMs from the original one. The optimal thresholds are indicated by the
matrix element with the highest value. We then select the rules of the original listand
the permutations that adhere to these thresholds, compare them, and prune rules that
are better in permutations. The result is then returned to the user.

Note that this type of experiment is more focussed on participations and thresh-
old than on interestingness. Percentiles on the axes indicate the weighed percentiles
of identifier scores, which is determined as follows: for each rankingR containing
all identifiers in the experiment, and for a list of identifiersL associated to a specific
rule, the weighed score percentile is calculated by the following formula:

∑

id∈L sid
∑

id∈R sid

Participation thresholds should also be set to a lower minimum in these kinds of
experiment, since the purpose of these experiments is to find optimal thresholds by
itself. However, some participation thresholds might be needed to avoid rulesthat
have far more control identifiers than interesting ones, or rules that havemerely one
or two interesting identifiers and thus are not very informative or substantial for the
group as a whole.

A workflow of multi-class exact testing is shown in Figure 6.2. As can be seen,
phases one and two are the same, only phase three differs. Not only pruning takes
place here, but also recombination of PCMs, and determination of the optimal class
thresholds.
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Figure 6.2: Workflow for multi-class exact optimization

6.3 Experimental results

In this section we discuss the experimental results of the two versions of exact testing
with Fantom. We applied both versions on the AML vs. ALL publicly available mi-
croarray data set that compares gene expression profiles of AML andALL [ASS+02],
and present statistics on run times, pruning and parallelism.

Before we discuss the different experiments we will first provide a basicdescrip-
tion of that data set. In the ALL vs. AML microarray data set, there are a totalof
7, 129 probes, and72 measurements per probe,25 for AML patients,47 for ALL.
Mapping from probes to ENTREZ gene identifiers was performed with the Hu6800
annotations supplied by Affymetrix, and after elimination of probes that haveno
gene association or multiple ones,5, 445 unique genes remained. To normalize the
raw data, we used Quantile normalization again [BIAS03]. Rankings are obtained by
performing t-value calculation with the Student’s t-test between groups labelled with
AML and ALL.

For the remainder of this section, all experiments were carried out on one or mul-
tiple machines all with the same configuration, namely an Intel Core Duo 2 times 2
GHz, with 4 GB of RAM.
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6.3.1 Exact Testing: Single-Class Pruning

Single-class pruning is a process of three phases: permutation generation, rule dis-
covery, and rule pruning. In the first phase of our experiments, permutations were
generated from the microarray data set by swapping labels. By generating permu-
tations in this way, instead of modifying values in the ranked list, we ensure that
dependencies between genes are preserved. Since there are72 labels to consider, the
total number of unique permutations would be:

72!
25!⋅47! = 1.53 ∗ 1019

Since this number exceeded our computational resources, which were limitedto 16
computers, we generated 15 random permutations for each experiment, and ran all 16
simultaneously. We performed two different experiments, one generating rules that
associates ontological concepts directly with genes, and another that uses the inter-
action option, indirectly associating genes with ontological terms through interaction
with other genes. For each of these types, we performed three different experiments
with low, medium, and high thresholds. To generate as many experiments as possible,
we modified Fantom so that it will only allow at most one concept for each predicate
per rule. Both the GO and KEGG ontologies were used which resulted in rulescon-
taining a maximum of four predicates.

Since interaction experiments are far more intensive in terms of computation and
data access, a normal, unbiased way of experimentation resulted in a rule explosion
that was unfeasible to be evaluated by experts. This is due to the interaction data,
which documents many interactions, and thus many genes were associated to each
ontological term. As a result, we had to insert a bias, declaring a list of genes that
had to be in the rules. In our case, we declared this list to be the top200 and bottom
200 genes, which are most differentially expressed. The participation threshold then
only applies to the biased part instead of the entire ranking. This way, we avoided
rule explosion at the cost of exhaustiveness. However, since the genes in the list were
already at the top of the ranking, rules that could be found without a bias were likely
to have a low interestingness. Note that due to the identifier association explosion,
thresholds in the interaction experiments are still high in terms of participation.

First let us consider speed results of the experiments, shown in Table 6.1.We
outlined several statistics, such as participation thresholdPT , minimum interesting-
ness scoreIS, average completion time of the original inputTO in minutes (m) and
seconds (s), lowest completion time of a permutationmin(TP ), highest completion
time of a permutationmax(TP ), average completion time of permutationsav(TP ),
and overhead of exact rule pruningTPr, which is the time of pruning the original
rules by evaluating the outcome of the permutations.

Note that for each association type, we took three different configurations reflect-
ing a low, medium and high threshold setting. These values differ between associ-
ation types, since interaction association experiments involve more identifiers,but
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their scores tend to be lower. For direct association experiments, all values are the
averages of20 runs, where in each run we generated different random permutations.
Since interaction association experiments took much longer, all values of those ex-
periments are the averages of5 runs.

Direct Association Experiment
PT IS TO min(TP ) max(TP ) av(TP ) TPr

8 0.40 2m 1m58s 2m 2m 5m41s
10 0.50 1m47s 1m41s 1m48s 1m44s 3m47s
12 0.70 1m23s 1m11s 1m26s 1m18s 18s

Interaction Association Experiment
PT IS TO min(TP ) max(TP ) av(TP ) TPr

60 0.35 233m05s 203m31s 222m18s 210m14s 17m41s
75 0.40 149m51s 134m32s 148m22s 146m12s 10m11s
80 0.50 129m50s 119m11s 131m27s 124m34s 1m27s

Table 6.1: Exact test single-class pruning benchmarks

As can be seen in Table 6.1, interaction association experiments are much moredata
and processing intensive, yet exact pruning overhead increases much less dramati-
cally. This is because options in interaction association experiments contain many
genes associated to them, which makes the calculation of the maximum ES score
very expensive. Exact pruning is only dependent on the number of rules in the origi-
nal rule set and those of the permutations, which increase less dramatically.

Another observation is that execution times tend to increase exponentially with
even a minor change in threshold setting, thus starting out with a high thresholdand
then moving to lower ones seems like the best strategy to apply.

A final observation is that rule generation times do not seem to differ much be-
tween the original input and the permutations, although experiments with permuta-
tions do seem to consistently take less time. This is because in some permutations
very few rules could be generated with the given thresholds, sometimes even none,
which reduces experiment times significantly.

Now let us consider pruning results of the experiments, shown in Table 6.2.We
again outline several measurements for each configuration, such as the number of
rules generated in the original inputRO, the minimum number of rules generated in
the permutationsmin(RP ), the maximum number of rules generated in the permuta-
tionsmax(RP ), the average number of rules generated in the permutationsav(RP ),
and the average number of rules pruned from the original setav(RPr).

We can see in Table 6.2 that permutations consistently yield less rules, which
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Direct Association Experiment
PT IS RO min(RP ) max(RP ) av(RP ) av(RPr)

8 0.40 2,964 2,625 2,815 2,762 224
10 0.50 1,252 539 775 681 95
12 0.70 27 0 6 4 3

Interaction Association Experiment
PT IS RO min(RP ) max(RP ) av(RP ) av(RPrune)

60 0.35 26,212 17,544 21,996 20,112 1,766
75 0.40 13,612 5,344 11,278 9,775 728
80 0.50 4 0 2 1 0

Table 6.2: Exact test single-class pruning results

explains the shorter experiment time. Pruning statistics do not differ much between
direct and interaction association experiments, if we consider the last measurement
an outlier. In both direct and interaction association experiments, higher settings re-
sult in relatively better pruning; at low settings around 6–7% of the originalrules get
pruned, while in higher settings this is as much as 11%.

6.3.2 Exact Testing: Multi-Class Threshold Optimization

In multi-class experiments we investigate what the interest class or classes have in
common with each other, or how they differ with respect to the rest of the identi-
fiers that do not fall in these classes. In our experiments we labelled all genes with a
t-value greater than0.5 as interesting, and compared this group with the rest of the
genes in the input. As a consequence, instead of5, 445 genes to be considered, the
interest group now contained only662 genes, while the rest was serving as contrast
information for scoring purposes.

Participation thresholds in these experiments kept very low, since we want toun-
cover the optimal thresholds for which to return rules for to the user. Settingthresh-
olds too high could interfere with this process, and yield a suboptimal result. Note that
all participation thresholds now only hold for the interest group instead of the whole
ranking. This has implications for the permutations generated, since there have to be
at least that many genes in the interest group to generate any rules at all. Therefore,
a bit of bias in the permutations cannot be avoided, and thus we cannot speak of true
randomness.

Once again we consider speed results of the experiments, which are shown in
Table 6.3. We measured the same statistics as in Table 6.1, again for three differ-
ent configurations. As can be seen, compared to the single-class experiments, these
experiments take less time for the direct associations, but more time for the interac-
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Direct Association Experiment
PT IS TO min(TP ) max(TP ) av(TP ) TPr

4 0.40 1m19s 1m12s 1m19sm 1m4s 8s
6 0.50 1m14s 1m8s 1m12s 1m11s 7s
8 0.70 1m7s 1m2s 1m10s 1m6s 5s

Interaction Association Experiment
PT IS TO min(TP ) max(TP ) av(TP ) TPr

30 0.35 610m05s 418m12s 584m12s 556m59s 44s
40 0.50 605m41s 432m32s 600m17s 541m51s 32s
50 0.60 608m33s 444m21s 567m22s 554m22s 11s

Table 6.3: Exact test multi-class pruning benchmarks

tion associations. This is due to the fact that direct association experiments are not
negatively influenced as much by a lower threshold as interaction association experi-
ments are. In interaction associations, groups in rules tend to experience an explosive
growth, and this gets worse when lower thresholds are chosen.

Another observation is that experiment times seem to be rather constant. Thisis
not surprising, since the experimental participation threshold was kept constant, and
Fantom’s pruning effect can really be seen in later stages of rule generation. Since
we modified Fantom to only allow one ontological concept per predicate, those later
stages never appear, and thus pruning on the basis of ES is minimal.

Finally, it seems that pruning takes a very short time, indicating that there were
few rules that could be used for pruning; few rules were generated, and the rules that
were generated had a lower score than the original rules generated, thus not much
pruning was done.

Now let us consider the pruning results, shown below in Table 6.4. We included
the same statistics as in Table 6.2 with an added columnROpt, which denotes the
number of rules given the optimal PCM thresholds. As can be seen, optimizedthresh-
olds yield a pruning optimization in rules of 40 to 50 percent in direct association
experiments, and between 60 to 90 percent in interaction association experiments
(discarding the last threshold, which seems to be an outlier due to its strictness).

Once more, permutations do not yield many rules, and as a result additional exact
pruning also has very little result. This is due to the design of the experiment. Weset
the threshold for over-expression to a t-value of0.5. When generation permutations
of the class labels, we influenced the t-values of the permutations, and thereby the
ranking. As a result, there were less permutations that had sufficient genes with a
t-value over0.5, hence permutations structurally yield less rules.

Another reason why pruning yields so little result is because of the low thresh-
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Direct Association Experiment
PT IS RO ROpt min(RP ) max(RP ) av(RP ) av(RPr)

4 0.40 1,182 638 0 5 3 2
6 0.50 946 524 0 3 2 0
8 0.70 436 227 0 1 1 0

Interaction Association Experiment
PT IS RO ROpt min(RP ) max(RP ) av(RP ) av(RPr)

30 0.35 171,071 21,349 1,325 1,833 1,411 21
40 0.50 11,113 4,453 0 121 32 8
50 0.60 1 1 0 1 0 0

Table 6.4: Exact test multi-class pruning results

olds. Rules with small subgroups often contain very specific rules with high scores.
In permutations, other genes are bound to be in the interest sets, yielding rules that
contain more specific concepts located in other parts of the ontology. As a result,
these rules cannot be used to prune the original ones since they are notrelated to
these rules.

6.4 Conclusions and Future Work

In this chapter we discussed two ways of exact testing with Fantom in order toprune
Fantom outputs even further, and to optimize participation thresholds in case of a
multi-class problem. We described how through a variation on Fisher’s Exact Test
we could prune more rules in addition to the pruning conducted by the Fantom prun-
ing algorithms. We also showed that with permutation testing we could find optimal
participation thresholds for multi-class problems, as well as use the exact pruning
method on it, but with less effect.

In single-class problems, both direct association and interaction association ex-
periments had benefit from exact pruning, ranging from 6% with low thresholds to
about 10% when thresholds are set high. A reason for this differenceis that at high
settings, there are not many rules, so if one does get pruned, the impact ismuch
higher than on lower settings, where the impact is less. An overall performance of
this algorithm is to prune about 6–8% of the rules.

In terms of performance, exact pruning on single-class problems is especially
worthwhile in interaction association problems. Where in direct-association prob-
lems the overhead is sometimes relatively grave, e.g., more than 200%, it is relatively
low for interaction association experiments, where the experiments themselvescan
sometimes take hours. Overall, overhead on interaction association experiments was
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between 1–7%, which was much better compared to the direct association experi-
ments.

In multi-class problems, experiment time was more or less constant if the partic-
ipation threshold was fixed, since pruning had minimal effect for rule generation for
small collections of rule concepts. Since exact pruning had little effect, those prun-
ing overheads were significantly lower for direct association experimentsas well,
between 7–10% of the experiment time. Overhead for the interaction association ex-
periments was almost negligible.

Pruning due to optimized constraints of the rules yielded good results in both
direct and interaction association experiments. For direct associations, pruning var-
ied between 45–50% of the rules generated. For interaction associations,this number
was higher, pruning from 65% to as much as 88% of the rules. Exact pruning had
almost no effect on both data sets, due to the experimental design and the fact that
low thresholds create highly specific rules with high scores, which are unlikely to
be pruned by rules generated from a permutation on the class labels, sincethat can
modify the ranking profoundly.

Finally, we would like to discuss future work. Apart from pruning with exact
tests, p-values for resulting rules could also be established with some modifications
to the algorithm, although that would require more permutations than the 15 we gen-
erated. These p-values could give an even better indication on how special a specific
rule is.

For multi-class problems, we kept the number of classes to two for now, but there
are many problems that deal with more than two classes, so one interesting question
is how to deal with those. Furthermore, we created a matrix based on participation
thresholds. It would be interesting to see if the optimized rules would differ much
when we optimize on the basis of score thresholds, or a mixture between score and
participation.
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Part III

Applications
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Chapter 7

Gene Experiments: Mouse Hearts

In this chapter we use the Fantom service to perform experiments on microarray ex-
pression concerning mice that show cardiac overexpression of the transcription factor
TBX3. We perform both direct association experiments and interaction association
experiments, and for each of these types we discuss performance, pruning and rules.
Where possible, we also compare the results of the Fantom service with the results of
the DAVID tool.

7.1 Introduction

A microarray study measures the activity of many genes in a biological entity ata
certain time. The result of a microarray study is a matrix of numbers reflecting the
expression of genes in different conditions. By comparing gene expressions for each
gene for different classes of entities, genes can be assigned an activity score for each
class. In our experiments this is the t-score, calculated by the Student’s t-test. As a
result, a ranking of genes can be produced that reflects the extent andsignificance of
each gene’s activity in the conditions under study.

The Fantom service takes as input this ranking of genes together with additional
information, such as species, gene identifier type, ontologies and thresholds, to find
subgroups in those genes that match a rule, which is a conjunction of ontological
concepts that all the genes in the subgroup are associated with. This is called adirect
association experiment, for Fantom uncovers rules that contain ontological concepts
that can be directly associated to genes.

Fantom also provides the option to search for rules that can be indirectly asso-
ciated with subgroups of genes within the gene ranking; this is called aninteraction
association experiment. By including protein-protein interaction data, Fantom can
extract subgroups that interact with other groups that have certain ontological prop-
erties. These rules can give the experimenter more insight in the influence of genes
beyond the scope of direct influence, providing a richer view on complexbiological
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processes.
In this chapter we will perform both types of experiments on data generatedby a

microarray study on two different groups of mice; one group consists ofcontrol mice
and the other group contains mice that express the TBX3 transgene. We willmea-
sure experiment performance and pruning statistics for both types, present the most
important rules and describe the predominant cluster themes. Furthermore,we will
apply exact pruning in both experiment types, thereby providing statistics on experi-
ment performance on permutations, as well as statistics on exact pruning. The goal is
to give an indication of the performance of the Fantom service in diverse areas such
as pruning and execution time, not to present a complete and thorough interpretation
of the results; for each experiment we will provide the top rules, and discuss them
briefly.

This chapter is organized as follows. In Section 2, we will present an overview of
microarray studies and the biological backgrounds of the experiment. We will discuss
what microarray studies are and what kind of processes are involved.In Section 3,
we discuss the microarray study on the mouse heart, discussing the reasons for and
goals of the study, and its goals. In Section 4, we will present the experiments we per-
formed with the Fantom service. We discuss experiment design and present statistics
on performance as well as pruning for both direct association and interaction asso-
ciation experiments. Finally, in Section 5, we will draw some conclusions from the
results presented in Section 4.

7.2 Biological Backgrounds and Microarrays

In this section we discuss the biological backgrounds of microarray studies, and the
microarray technology itself.

7.2.1 Biological Backgrounds

All information about the functioning and construction of a living organism isstored
in Deoxyribo Nucleic Acid (DNA) molecules. These molecules are said to be the
blueprint of an organism, for they contain almost all traits. These traits can be vis-
ible, such as eye color or hair color, but also invisible, such as the functions of an
organism’s immune system, or the presence of hereditary diseases.

DNA is present in each cell of an organism, where it is organized into long strings
calledchromosomes. These chromosomes can be seen as chains of DNA molecules
bonded together, also called macromolecules, orpolymers. The DNA molecules that
together form the polymer are callednucleotides. There are four kinds of nucleotides
in DNA: Adenine (A), Guanine (G), Thymine (T) and Cystosine (C). Chromosomes
are organized in pairs that bond together, thereby forming a spiral, knowas the dou-
ble helix. Each nucleotide on a polymer bonds with the opposite nucleotide on the
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other polymer, forming what is called abase-pair. However, not all bondings are
possible; Adenine can only bond with Guanine, while Thymine can only bond with
Cytosine. This is called the Watson-Crick complementary. An illustration is shown
in Figure 7.11.

Figure 7.1: A chromosome molecule

DNA contains information thousands of different biological processes.Regions of a
chromosome that contain information on the support or execution of these processes
are calledgenes. Each gene can play a role in various processes of the body. When
such a process needs to be carried out, the DNA double helix is unravelled, and
the information contained in genes on a single strand is translated into messenger
Ribo Nucleic Acid (mRNA). The main differences between DNA and RNA is that
RNA is a single strand, and all the Thymine molecules are translated into Uracil (U)
molecules. This mRNA is then translated into amino acids, which bond together to

1Image taken from the Science Creative Quarterly,
http://www.scq.ubc.ca/a-monks-flourishing-garden-the-basics-of-molecular-biology-explained/
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Figure 7.2: The mRNA translation process

form proteins. These proteins then perform the required processes.Figure 7.22 shows
this process.

7.2.2 Microarrays

Whenever a biological process needs to be performed, the genes that are responsi-
ble for that process become more active, meaning that they are translated into many
mRNA strands. Microarrays are designed to detect those mRNA strands, and to mea-
sure their intensity.

Microarrays are arrays of thousands of microscopic spots. Each of these spots
contains thousands of short mRNA sequences that match the gene of interest, or at
least part of the gene. These partial strands are calledprobes. The probes bind to the
target genes by means ofhybridization: The probe is a complementary nucleic acid

2Image taken from National Human Genome Research Institute,
http://www.genome.gov/Pages/Hyperion/DIR/VIP/Glossary/Illustration/Images/peptide.gif
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Figure 7.3: Microarray hybridization

sequence, designed to pair with the target mRNA sequence. Figure 7.33 shows this
process.

As can be seen in Figure 7.3, probes can bind to multiple mRNAs that have par-
tially the same sequence, but the target genes provide the strongest bonds. By washing
the samples after hybridization, the weak bonds can be filtered out.

Each target is labelled with a fluorescent substance. When more targets bonded
to a probe, more light is emitted. Microarrays use relative quantitation in which the
intensity of a feature is compared to the intensity of the same feature under a different
condition. By comparing the intensities of the two conditions, a number is produced
that indicates the expression of a certain probe, and thus gene.

Microarrays are used to measure expression levels or changes in expression levels
of genes. They can also be used to detect Single Nucleotide Polymorphisms,which
we will discuss in the next chapter. Another use is the Comparative Genomic Hy-
bridization (CGH), in which DNA sequences are compared for changes,such as gains
or losses. This is often applied with tumor cells.

7.3 Microarray Study on Mouse Hearts

In the TBX3 microarray study, gene expression patterns in the heart of two groups of
mice were compared. One group consists of the control group, containingmice that

3Image taken from Wikipedia,
http://en.wikipedia.org/wiki/DNAmicroarray
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did not express TBX3, the other group consisted of mice which expressed the TBX3
transgene. TBX3 is a transcription factor that is important for heart development; it
is involved in the specification of myocardiumial tissue into working myocardium, as
well as the myocardium of the conduction system.

There are important differences between these two types of myocardium. Work-
ing myocardium contracts fast, is metabolically highly active and has no autonomous
contractile activity, whereas the conduction myocardium contracts slowly, ismetabol-
ically less active and has spontaneous pacemaker activity.

TBX3 is normally only active in the conduction myocardium where it represses
the working myocardium activity and ensures its pacemaker activity. In the trans-
genic mice under study, TBX3 is also active in the working myocardium whereit is
not supposed to be expressed. This leads to a loss of synchronous contractions (ar-
rhythmias).

The study of the transgenic mice helps to identify the genes and pathways impor-
tant for the specification of the two different types of myocardium, which mayhelp
to find a way to suppress or avoid TBX3 expression in the working myocardium.

7.4 Experimental Results

In this section we will present and discuss the results of the various experiments we
performed on the TBX3 microarray study. We performed both direct association and
interaction association experiments. The microarray data contained48, 318 probes
that were used to measure gene expressions of12 samples,6 samples of the control
group and6 of the TBX3 group. After mapping probes to the SYMBOL identifier
type, a ranking of34, 327 genes remained. No losses occurred in mapping SYMBOL
identifiers to the internal ENTREZ representation. Scores of those probes were ob-
tained by using the Student’s t-test on the samples, and taking the absolute values of
the outcome.

As an extra pruning step we applied exact pruning on the outcome of the exper-
iments by performing the same experiment on permutations of the original ranking.
These permutations were generated in the same way as was done in Section 6.3.1, by
swapping labels. For the TBX3 data set, the total number of permutations is:

12!
6!⋅6! − 1 = 923

We generated 16 random permutations for each experiment, and then performed the
Student’s t-test on each probe again to obtain the new scores.

All experiments were conducted with the Fantom service implementation dis-
cussed in Chapter 5, and performed on Windows Vista with an Intel Core 2 Duo
T6400 2 GHz CPU and 4 GB RAM. The experiment setup also remained the same:
for each experiment type we examined performance and pruning by varying support
thresholdP and keeping the score thresholdS constant (support-dependent mea-
surements). For the direct association experiments, we also studied the effect of the
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score threshold by varying it, while keeping the support threshold constant (score-
dependent measurements).

For each type of experiment we spread the measurements over two tables. The
first table contains the performance measurements, which include the average time
for the experiment to complete over10 runs on the original rankingTOrigavg

in min-
utesm and secondss, the minimum time for the experiment to complete over 10 runs
on a permutationTPermmin, the maximum time for the experiment to complete over 10
runs on a permutationTPermmax and the average time for the experiment to complete
over 10 runs on all 16 permutationsTPermavg.

The second table contains pruning statistics, which include the number of rule
options generated on the original ranking#Options, the number of options pruned
on the original ranking#Pruned, the pruning ratioRatioPruned, the number of rules
pruned by exact pruning#XPrunedand the ratio of rules pruned by exact pruning
RatioXPruned.

Apart from performance and pruning statistics we also present the results for each
experiment. We present the top rules, along with an interpretation. Apart from indi-
vidual rules we also discuss themes and trends in the output by describing the clusters
that were generated on the output.

7.4.1 Direct Association Experiments

We first discuss the direct association experiments. In this section we will discuss
performance, pruning and the resulting rules, each in a separate subsection.

Performance

Table 7.1 shows support-dependent and score-dependent performance measurements
for the direct association experiments. For the upper half of the table, which measure
support-dependent measurements, the score threshold was fixed toS = 0.60, while
the support was varied. For the lower half of the table, the score-dependent measure-
ments, the support threshold was kept constant atP = 13 while the score thresholds
were varied.

For the original ranking, execution time seems to grow exponentially as the sup-
port threshold gets lower, while this is not always the case for the permutations.
This indicates such behaviour is ranking-dependent. Some rankings contain very lit-
tle rules with sufficient support, as the average execution time of the permutations
does not seem to incline as much as the average execution time of the original rank-
ing.

For the score-dependent measurements, a similar statement could be made, al-
though inclines are not as dramatic as with support-dependent measurements. Aver-
age completion times for permutations are lower, which is to be expected since scores
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Support-dependent measurements
Threshold TOrigavg

TPermmin TPermmax TPermavg

P = 11 70m41s 8m20s 74m13s 26m02s
P = 13 22m50s 7m59s 26m06s 12m22s
P = 15 14m07s 6m10s 15m06s 7m31s
P = 20 7m44s 5m58s 7m30s 6m09s

Score-dependent measurements
Threshold TOrigavg

TPermmin TPermmax TPermavg

S = 0.55 44m20s 8m25s 58m48s 18m13s
S = 0.60 22m50s 7m59s 26m06s 12m22s
S = 0.65 15m24s 7m16s 10m25s 8m30s
S = 0.70 10m51s 5m59s 7m41s 6m35s

Table 7.1: Performance measurements for the direct association experiments

in the permutation lists are lower on the whole, thus the resulting rules generally have
lower scores as well.

Figure 7.4 illustrates the performance behaviour of the direct association experi-
ments. Figure 7.4(a) shows support-dependent behaviour for the original ranking and
the permutations, while Figure 7.4(b) shows score-dependent behaviour. As can be
clearly seen, behaviour is the same across all the measurements, although incase of
Figure 7.4(b), execution time for the original ranking decreases at a slower pace, for
it keeps generating more rules than in the permutations. Intuitively this is correct; the
permutation rankings are randomized rankings and therefore should contain identi-
fiers with lower scores, resulting in rules with lower scores. Therefore,if the score
threshold approaches a boundary that is considered high, such asS = 0.70, the per-
mutations should yield little rules, in any case less than a ranking that was obtained
from a directed experiment and not random generation.

Pruning

Table 7.2 shows support-dependent and score-dependent pruningmeasurements for
the direct association experiments. Once again, the score threshold in the upper table
was fixed toS = 0.60, while the support threshold in the lower table was kept con-
stant atP = 13.

For support-dependent measurements, pruning ratio goes down as the threshold
grows. This is due to the design of the Fantom service; rules with high support usually
contain more general terms and ontological concepts, while rules with lower support
are more specific refinements of the rules with higher support. By design, those rules
are kept, and thus less pruning takes place.
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Figure 7.4: Execution time measurements for direct association experiments
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Support-dependent measurements
Threshold #Options #Pruned RatioPruned #XPruned RatioXPruned

P = 11 949,179 947,454 0.9982 159 0.0921
P = 13 470,270 469,097 0.9975 78 0.0665
P = 15 289,462 288,618 0.9971 36 0.0426
P = 20 109,209 108,847 0.9967 5 0.0148

Score-dependent measurements
Threshold #Options #Pruned RatioPruned #XPruned RatioXPruned

S = 0.55 628,586 626,543 0.9967 364 0.1782
S = 0.60 470,270 469,097 0.9975 78 0.0665
S = 0.65 375,332 374,721 0.9984 10 0.0163
S = 0.70 251,084 250,847 0.9991 0 0

Table 7.2: Pruning measurements for the direct association experiments

Exact pruning lowers as the support threshold increases. On average, permuta-
tions need less time and generate much less rules. As support thresholds increase,
even less rules will be generated. Given that rules generated by permutations gener-
ally yield lower scores, pruning decreases as support threshold increases.

For the score-dependent threshold, pruning monotonically increases,which is to
be expected from a threshold that has pruning as primary purpose, Furthermore, low-
ering the score threshold seems to have more influence on exact pruning than low-
ering support thresholds. This indicates that this technique is especially useful when
trying to discover rules with lower score thresholds but still specific to the ranking.

Results

In this part we discuss the rule output of the experiments. Since the TBX3 data set is
not publicly available yet, we will omit the genes involved in the rules, and just give
the support, the score and the rule itself.

When looking at the rules generated withP = 11 and S = 0.60, we find
rules that are reasonably diverse. The top4 rules are displayed on the next page.
As can be seen, returning concepts are mitochondrion and membrane, which is ex-
pected since those are the areas that were studied. Interesting conceptsunrelated
to cardiac problems are seen in the fourth rule, which links strongly to different
types of cancer, and in the second rule, which links to neurodegenerative diseases.
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Rule 1
Support: [15]
Score: 0,855
All genes in the subgroup

have the following properties:
cellular_component(mitochondrion),
biological_process(aerobic respiration),
biological_process(acetyl-CoA catabolic process),
KEGG_pathway(Citrate cycle (TCA cycle))

Rule 2
Support: [11]
Score: 0,849
All genes in the subgroup

have the following properties:
molecular_function(iron ion binding),
cellular_component(mitochondrial inner membrane),
KEGG_pathway(Alzheimer’s disease),
KEGG_pathway(Parkinson’s disease),
KEGG_pathway(Huntington’s disease)

Rule 3
Support: [11]
Score: 0,848
All genes in the subgroup

have the following properties:
biological_process(neuron differentiation),
cell_comp(intracellular membrane-bounded organelle),
biological_process(regulation of transcription),
KEGG_pathway(Signal Transduction)

Rule 4
Support: [11]
Score: 0,845
All genes in the subgroup

have the following properties:
cell_comp(intracellular membrane-bounded organelle),
KEGG_pathway(Signal Transduction),
KEGG_pathway(Endometrial cancer),
KEGG_pathway(Glioma),
KEGG_pathway(Prostate cancer),
KEGG_pathway(Melanoma)
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Because we do not want to present only individual rules, we also looked at global
trends by performing clustering on the rules. When clustered with a similarity score
of 0.60, thus an overlap of terms of 60%, we see three distinct themes, which agree
with the top 4 rules: the first theme is centered around the mitochondrial part and
transmembrane transporter activity, the second theme considers signal transduction,
and the third theme deals primarily with neurodegenerative diseases.

7.4.2 Interaction Association Experiments

For the interaction association experiments we faced a problem. Because ofthe in-
teractions, so many concepts were annotated that mining for rules with small enough
thresholds to be interesting took so much time and memory that it was beyond the
capabilities of the Fantom service. However, we could partially circumvent this prob-
lem by using a biased approach, which we discussed in Section 6.3.1

In the biased approach, we confine the support threshold to a fixed class, indicat-
ing that each rule should have as least that amount of identifiers of the fixed class.
In case of our experiments, we defined the fixed class as consisting of those genes
that have a score higher than 2. Any higher would limit the search space toomuch,
and any lower resulted in an explosive time increase on the experiments, whilenot
producing many significant changes in the rules.

After relabelling al the genes according to this process, of the34, 327 involved
in the experiment,1, 909 were labelled as the fixed class. Even then, if we took a
support threshold of 25 or less, the experiment time would take well over 5 hours,
without any significant result in the rules.

For the permutations in the exact pruning mechanism we labelled the same genes
as the fixed class as those in the original ranking, since we need to prune rules that
are partially made up of that fixed group. However, since these genes mostly have
lower scores in the permutation rankings, rules with higher or equal scores would
have never been reached. Therefore we allowed for a bit of score leniency, stating
that if a rule appears with a high enough score (in the experiments we took score
threshold 0.60) that is also in the original rule output, then we pruned it.

Performance

For the interaction association experiments we solely took support-dependent perfor-
mance measurements; since the results of those experiments all had scores of 0.90 or
higher, doing score-dependent measurements had little added value in such a small
spectrum of scores.

For the support-dependent measurements, the score threshold was fixed to S =
0.60 for the original list, while for the permutations it was set toS = 0.40. Results
are shown in Table 7.3.

Since the score threshold for the original ranking and the permutations differ, we
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Support-dependent measurements
Threshold TOrigavg

TPermmin TPermmax TPermavg

P = 26 44m33s 37s 45m30s 9m58s
P = 27 7m57s 32s 7m41s 2m23s
P = 28 3m27s 29s 3m39s 1m20s
P = 29 3m15s 28s 3m20s 1m09s
P = 30 2m20s 26s 2m24s 52s

Table 7.3: Performance measurements for interaction association experiments

cannot perform a direct comparisons. However, we can conclude that they follow a
similar pattern as in Table 7.1. The use of interactions did have a small effect on the
explosive nature of the curve, which si somewhat steeper now, as canbe seen in Fig-
ure 7.5. As we will explain in the next chapter, the shape and position of this curve
could be important for automatic threshold selection.
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Figure 7.5: Execution time measurements for interaction association experiments

As can be seen in Figure 7.5, the permutations can still require a significant amount
of processing in interaction association experiments, as was the case in direct asso-
ciation experiments. Overall, however, permutations in interaction associationexper-
iments yield much less rules when combined with the bias. Without bias, however,
the experiments would take a very long time.
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Pruning

When we look at the pruning data shown in Table 7.4, we notice that not a lot of rules
are generated for the amount of time it took to complete the experiment. There are a
few explanations for this. Since rules now have more participants, calculation of the
ES score and the maximum ES score takes longer. Furthermore, since genes are now
associated to many more concepts, rules in interaction experiments have more con-
junctions, which take longer to prune in the pruning stages. Therefore, experiment
time increases for the same number of rules.

Compared to direct association experiments, the pruning effect is noticeably lower,
especially when little rules are generated. This is partially caused by the introduced
bias, that restricts the number of rules that can be generated. If an unbiased experi-
ment was feasible, pruning would probably have had a similar efficiency asthat of
direct association experiments, or even slightly higher since we expect more rules to
be generated.

Support-dependent measurements
Threshold #Options #Pruned RatioPruned #XPruned RatioXPruned

P = 26 362,928 361,144 0.995 81 0.0454
P = 27 126,888 125,378 0.988 52 0.0344
P = 28 56,902 55,565 0.977 45 0.0337
P = 29 45,490 44,281 0.973 31 0.0256
P = 30 38,089 37,038 0.972 23 0.0219

Table 7.4: Pruning measurements for the interaction association experiments

When evaluating exact pruning, we see that it is monotonically decreasing,as was the
case in direct association experiments. Exact pruning with leniency with threshold
0.60 results in about 2% to 4.5% of the rules being pruned, but this is very dependent
on the permutations and the leniency threshold. For example, if forP = 26 we take
leniency threshold 0.50, the pruning ratio would already be 62%, and for leniency
threshold 0.40 it was 97%, so depending on how strict the experimenter wants the
rules to be ranking dependent, exact pruning can have a greater impact.

Results

When analyzing the rules generated withP = 26 andS = 0.60, they appear to ac-
curately reflect the themes clustered in the direct association experiments, indicating
that there is a lot of activity going on in those parts and processes. Because of high
similarity between the rules, we present the best rules of the top three clusters:
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Rule 1
Support: [69]
Score: 0,951
All genes in the subgroup have interaction with

a gene that has the following properties:
molecular_function(iron ion binding),
bio_proc(regulation of protein modification process),
cel_comp(mitochondrial membrane),
bio_proc(regulation of phosphorylation),
KEGG_pathway(Alzheimer’s disease),
KEGG_pathway(Parkinson’s disease),
KEGG_pathway(Huntington’s disease)

Rule 2
Support: [209]
Score: 0,938
All genes in the subgroup have interaction with

a gene that has the following properties:
cel_comp(microtubule cytoskeleton),
cel_comp(cytoplasmic vesicle),
cel_comp(intracellular membrane-bounded organelle),
cel_comp(cytoskeletal part),
KEGG_pathway(Signal Transduction)

Rule 3
Support: [139]
Score: 0,937
All genes in the subgroup have interaction with

a gene that has the following properties:
bio_proc(cell projection assembly),
bio_proc(neurite development),
cel_comp(intracel. membrane-bounded organelle),
bio_proc(cell morph. in neuron differentiation),
KEGG_pathway(Signal Transduction),
KEGG_pathway(Immune System),
KEGG_pathway(Focal adhesion),
KEGG_pathway(Regulation of actin cytoskeleton),

As can be seen, scores, rule support and the number of conjunctions are all larger for
interaction rules. Themes are very similar to the themes found in the direct association
rules, but with more specific terms, such as neurite development, and specifications
of mitochondrion and membrane terms.
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7.4.3 Comparison

To get an idea of how accurate and powerful the Fantom service is, we compared its
output with the output generated by the Database for Annotation, Visualization and
Integrated Discovery (DAVID) [HST+07], which is an online analytical tool that can
perform a similar function as the Fantom service for direct association experiments.
In order to use DAVID, we had to map all identifiers to their ENTREZ identifier,since
DAVID seemed to experience problems with the SYMBOL identifiers. Furthermore,
DAVID did not allow us to enter more than 3,000 genes in the list, thus we had to
restrict ourselves to the top 3,000.

DAVID presents the results in a list of ontological terms, and provides for each
term the number of genes in the list associated and not associated to it, and thep-
value of the association. Judging from the outcomes of the clusters in DAVID, there
is still quite some overlap between them, since mitochondrion appeared in all clus-
ters in the list. Overall, DAVID found terms that were quite straightforward such as
mitochondrion, cytoplasmic part, and intracellular membrane-bound organelle. More
specific terms that were found by Fantom were also found by DAVID, though lower
down the list. What is striking is that the term manganese ion binding, which was
in the best rule in Fantom, was not found in DAVID. We suspect this is due to the
fact that DAVID solely takes genes itself into account, and not scores to direct the
importance of concepts.

7.5 Conclusions and Future Work

In this chapter we discussed Fantom experiments that were performed on microarray
expression data obtained from samples taken from two different groupsof mice, one
group that has cardiac over-expression of the transcription factor TBX3, and a control
group that lacks this over-expression. To determine the difference in gene expression
between the groups, we calculated absolute t-values to create a ranking, and then per-
formed both direct association experiments and interaction association experiments.
For each of these association types we also generated 16 permutations perranking
in order to apply exact pruning. Finally, we presented performance measurements on
both experiments, as well as pruning and exact pruning statistics and a reflection on
the results.

For direct association experiments, support-dependent execution time behaviour
and score-dependent execution time behaviour were much alike. As thresholds would
go down, an explosion in execution time would become apparent, which is the result
of the scoring function and the score distribution. There are many more genes with
low scores, which form rules with lower scores. If we allow for those rules in the rule
generation process, the execution time of that process will grow exponentially.

Support-dependent pruning behaviour and score-dependent pruning behaviour
were not alike, however. While in both cases the pruning ratio was about 99.5% or
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higher, the pruning ratio went down as the support threshold grew higher, but up as
the score threshold went higher. Support-dependent pruning was monotonically de-
creasing because most rules with the top scores were all related, for all the different
support thresholds, whereby the rules in the experiments with a lower score threshold
are refinements of rules with a higher threshold. Due to the higher supportthreshold,
less rules are generated, yet relatively more rules survive due to the ones with the
high score, hence the pruning ratio is lowered a bit. Score-dependent pruning was
monotonically increasing because the threshold is in nature a pruning threshold. In-
creasing it decreases a rule’s survival chances in both generation and postprocessing
stages.

For both support-dependent measurements and score-dependent measurements,
exact pruning seemed very useful, especially at the lower thresholds, where 9–17%
of the original output rules could be pruned. Given that this was only the result of 16
permutations, the principle should have a greater impact if more permutations could
be generated on a grid of many more machines.

Rules of the direct association experiment seemed to focus on a few topics,dis-
covered by clustering the remainder of the rules. These themes include mitochondrial
parts and transmembrane transporter activity, signal transduction, and neurodegener-
ative diseases. This is more specific and diverse than the themes that DAVID found,
since the clusters found there primarily focussed on the mitochondrial partand mem-
brane activity.

For interaction association experiments, we needed to introduce a bias in order
to be able to generate experiments with any kind of interesting results, since anunbi-
ased search over all the possible groups proved beyond the capabilitiesof the Fantom
service. In the biased approach, we confined the support threshold toa fixed class,
and stated that each rule should have at least a minimum amount of support of the
fixed class. In case of our experiments, the fixed class was defined as those genes that
have a t-score higher than 2.

Even with the bias in place, rule generation took considerably longer for inter-
action association experiments, since one third of the number of rules of the direct
association approach was generated in roughly 60% of the time. However,the result-
ing rules all had a score of 0.90 or higher, and thus very characteristic for the TBX3
class.

Given these high numbers of rules with a high score, only support-dependent
measurements were taken. These measurements showed that with a little steeperin-
cline the support-dependent execution time behaviour was similar to direct associ-
ation experiments, though the permutations would cost much less time on average
than in the direct association approach, which is the result of the bias.

Conventional pruning behaved in a monotonically decreasing fashion, yet this
time with more impact since there were many more rules with higher scores, thus
the decrease numbers were in the range of percentage points, instead oftenths of a
percentage.
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Exact pruning had to be done with some leniency. This leniency stated that if
a rule surpassed a leniency score threshold, the related rule would be pruned in the
original output. This was a change from the direct association approach, where a re-
lated or similar rule would only be pruned if a rule in the permutation output was
found with a higher score. Depending on this leniency, more or less rules get pruned.
If a leniency of 0.6 was taken, about 5% of the rules was pruned at lowerthresholds,
while only about 2% would be pruned at a higher support. Decreasing theleniency
had a drastic effect; when 0.5 was chosen, 62% was pruned at the lowest threshold,
and at 0.4 it was 97%.

For the results, rule support and the number of conjunctions were largerfor inter-
action rules than direct association rules. Themes of both experiment typeswere very
similar, but the results in the interaction association rules experiments were morespe-
cific. Since DAVID does not support interaction association in the way the Fantom
service does, a direct comparison was not possible.

While the results presented above give new insights in the performance of the
Fantom service, it also raised questions. For example, what is an optimal ormini-
mum amount of permutations to be considered for exact pruning? And how can we
improve Fantom efficiency for lower thresholds? Finally, how can we make conven-
tional pruning even more rigorous, since many surviving rules are related to each
other, and must be clustered to give an overview? These are all topics for future re-
search.
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Chapter 8

SNP Experiments: Human
Depression

In this chapter we perform experiments on data that was obtained from a Single Nu-
cleotide Polymorphisms (SNP) study done on human depression. We conduct two
different experiments; in one experiment we let Fantom mine the SNP rankings di-
rectly, and in another data set we let Fantom mine on gene rankings that were ex-
tracted from the SNP ranking. We present performance measurements ofthe Fantom
service for both sets as well as pruning and clustering statistics, and a discussion on
the best rules generated for each experiment type for each of the different conditions
in human depression.

8.1 Introduction

When applying the Fantom service to a ranked list of genes, the result will be a list of
specific groups of genes with an interestingness score, and a descriptive rule consist-
ing of conjunctions of GO and KEGG concepts. A different but related experiment
would be to mine rules on SNP data instead of genes.

A SNP is a modification within a DNA sequence on a single spot, which might
have an effect on one or more genes located near that spot. Dependingon the location
of the SNP in the DNA string, it can be associated to genes near that location,thus
creating a many-to-many mapping between SNPs and genes. This mapping canthen
be used to establish a mapping between ontology concepts and SNPs.

There are two approaches that can be taken when using the Fantom service on a
SNP ranking. The first approach is to use the SNP identifiers as a naming convention,
thus mapping SNP identifiers to associated genes, and mediating the SNP scores for
each gene to obtain an aggregated gene score. The Fantom service is then executed
with the gene ranking obtained from this process. The second option is to create a
mapping from SNPs to ontological concepts by combining the SNP to gene mapping
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and the gene to ontology mapping. The Fantom service would then be executed on
the SNP ranking, using the SNP to ontology mapping.

In this chapter we will perform and analyze both experiment approaches. We will
discuss the advantages and disadvantages of each approach and present statistics on
the experiments. For each approach, we will perform experiments on different rank-
ings associated with different conditions in human depression. We will then compare
the results of those rankings by comparing experiment performance and effectiveness
in terms of pruning and clustering, as well as give a brief interpretation of the best
rules for each condition.

This chapter is organized as follows. In Section 2, we will present a biological
background on SNPs and related terms. We will discuss what SNPs are, what kinds
of SNP types there are and why SNP research can be important. In Section3, we
will discuss the SNP study on human depression. We will give an introductionto
the subject of human depression, present the studies that were done, and how the
SNP data from this study was obtained. In Section 4 we will present the experiments
we performed with the Fantom service. We discuss experiment design, andfor vari-
ous rankings we present statistics on performance as well as pruning and clustering
for diverse participation and score thresholds. We also compare the rankings with
each other to see how they influence aforementioned statistics. Finally, in Section
5, we will draw some conclusions from the experiment results. We make compar-
isons between both experiment approaches, as well as some overall conclusions on
experiment results.

8.2 Single Nucleotide Polymorphisms

A Single Nucleotide Polymorphishm (SNP), pronounced as ”snip”, is a modification
of a nucleotide on a DNA strand. These modifications include removal, insertion,
or substitution, of which Figure 8.11 is an example. The effect of a SNP can be
profound. If the information in a gene changes, this might result in the creation of
different amino acids, resulting in the formation of different proteins, leading to a
change in bodily functions. Furthermore, even if a mutation does not affect a gene
directly by modifying a nucleotide that is part of it, it can still influence the activity
and translation of genes that are located near the SNP.

SNPs that do not result in a different gene translation are calledsynonymous
SNPs, or silent mutations. A SNP that does result in a translational change iscalled
a nonsynonymousSNP. There are two kinds of translational changes: anonsense
change, which results in an abrupt stop of the gene translation prior to its completion,
or amissensechange, which results in the translation of a gene into a different amino
acid.

Human SNP studies are often used to compare one group of participants with

1Picture by David Hall, http://en.wikipedia.org/wiki/File:Dna-SNP.svg
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Figure 8.1: Single-Nucleotide Polymorphism in DNA molecules

a certain condition to a matched group of participants that lack that condition. By
comparing SNP regions, genes and gene variations can be identified that facilitate or
counter certain diseases or conditions. Similarly, SNP can be used in drug research to
investigate how certain treatments affect patients. In this case, SNP studies compare
patients that received treatment with patients that were untreated, or that were given
a placebo.

8.3 SNP Study on Human Depression

Depression is a common mental disorder that presents itself with a depressedmood,
loss of interest or pleasure, feelings of guilt or low self-worth, disturbed sleep or ap-
petite, low energy, and poor concentration. These problems can become chronic or
recurrent and lead to substantial impairments in an individual’s ability to take care of
his or her everyday responsibilities2.

According to the The Tripartite Model of Depression and Anxiety, symptoms of
depression and anxiety can be assigned to one of three dimensions, negative affect

2http://www.who.int/mentalhealth/management/depression/definition/en/
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(NA), (lack of) positive affect (PA), and somatic arousal (SA) [WvVG+09]. These
dimensions are influenced by fewer genes than the diagnosis of major depressive dis-
orders (MDD). Therefore, the effect of genetic factors will be easier to identify. To
unravel the genetic component of MDD, we analysed the effects of sets of related
genes on NA, PA and SA, as measured by the Mood en Anxiety Symptom Question-
naire (MASQ).

For this, we used data from the Netherlands Study of Depression and Anxiety
(NESDA). This is a longitudinal cohort-study meant to identify risk factors for de-
pression and anxiety. For 2,951 individuals, extensive data on symptoms of depres-
sion and anxiety, psychology, demographics, lifestyle, and biological measures are
collected at baseline, and 1, 2, 4 and 8 years thereafter [PSZ+07]. A genome-wide
association study was carried out in a subgroup of NESDA, for 1,860 patients with a
Diagnostic and Statistical Manual of Mental Disorders (DSM-IV) diagnosis of MDD
[OWS+08]. Genotypes were determined using Perlegen 600k SNP-chips. Afterqual-
ity control of the data, we had 435,276 SNPs for 1,738 patients. MASQ scores for
NA, PA and SA were available for 1,543 of these patients.

8.4 Experimental Results

In this section we will present and discuss the results of the various experiments we
performed on the human depression SNP study. There are two approaches that we
considered in our experiments. In the first approach, we mapped the SNPidentifiers
to genes, which resulted in a ranking of genes that we experimented on. Inthe sec-
ond approach, we experimented on the original ranking of SNP identifiersand their
scores, and created a mapping from SNP identifiers to ontological concepts in GO
and KEGG.

For each of the approaches, we performed experiments on rankings that were ex-
tracted for all three conditions discussed in the previous section: PositiveAffect (PA),
Negative Affect (NA) and Somatic Arousal (SA). Note that results in this section in-
clude primarily performance indications and statistics on pruning and clustering, for
interpretation and quality assessment of the rules is beyond the scope of thisthesis.

All experiments were conducted with the Fantom service implementation dis-
cussed in Chapter 5, and performed on Windows Vista with an Intel Core 2 Duo
T6400 2 GHz CPU and 4 GB RAM. The experiment setup also is similar to that
of Chapter 7: for each condition, we examined performance, pruning and clustering
for support-dependent measurements and score-dependent measurements. After the
results of all three conditions have been presented, a comparison will be made to an-
alyze whether there are any significant differences between the three conditions.

The measurements done in each experiment are: the average time for the experi-
ment to complete over 10 runsTavg in minutesm and secondss, the number of rule
options generated#Options, the number of options pruned#Pruned, the pruning ra-
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tio RatioPruned, the number of clusters derived from the rules with a setting of60%
overlap3 #C, and the rules-per-cluster ratioRatioC.

We next discuss the experiments on gene translations and the experiments with
SNP ontology mappings in two subsections.

8.4.1 Experiments on Gene Translations

In this approach we obtain gene identifier rankings by mapping SNP identifiers to
ENTREZ [MOPT05] gene identifiers. This mapping provides a translation from each
SNP identifier involved in the SNP study to one or more ENTREZ gene identifiers.
For each gene, all score values of associated SNP identifiers are stored, and in the
end the median is taken as its score. The workflow is shown in Figure 8.2.

Figure 8.2: The gene translations experiment workflow

The weakness of this method is that gene scores are not accurately measured values,
but instead are representatives of a set of SNP scores; aggregatingthe SNP scores into
a single gene score obfuscates the influence of the individual SNPs. The strength of
this method is that the experiments can be carried out faster, and at lower thresholds,
since the number of SNPs are usually far greater than the number of genesthat they
are associated with.

After mapping the SNPs to ENTREZ gene identifiers, the ranking size was re-
duced from435, 290 SNP identifiers to15, 176 ENTREZ gene identifiers, whereby
325 SNP identifiers could not be mapped. Compared to the total ranking, this loss
was not significant, nor did they have much impact; the325 identifiers had an av-
erage score of0.80, and only13 were considered statistically significant, since they
had a p-value equal to or less than0.05.

3This threshold was determined on the basis of expert feedback, after several results were presented
with various cluster outcomes from different thresholds.
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When measuring the impact of support thresholds, the score threshold was set to
a constant value, and vice-versa. For the gene translation experiments,the fixed score
threshold was set to0.60, while the fixed support threshold was kept constant at15
genes. In each of the following sections, we present the results in a combined table,
accompanied by explanations on their behaviour. A comparison between theresults
in these tables will take place in Section 8.4.1.

Negative Affect

Table 8.1 shows the support-dependent measurements and score-dependent measure-
ments for the NA condition. What becomes immediately apparent is difference in

Support-dependent measurements
Threshold Tavg #Options #Pruned RatioPruned #C RatioC

P = 10 64m51s 862,728 862,073 0.999241 229 2.8602
P = 11 17m42s 491,533 491,126 0.999172 165 2.4667
P = 15 9m33s 149,890 149,852 0.999566 40 1.625
P = 20 7m36s 69,983 69,977 0.999914 5 1.2
P = 25 7m09s 47,314 47,312 0.999958 2 1

Score-dependent measurements
Threshold Tavg #Options #Pruned RatioPruned #C RatioC

S = 0.50 18m26s 263,816 262,768 0.996028 339 3.0914
S = 0.55 13m06s 221,786 221,414 0.998323 135 2.7555
S = 0.60 9m33s 149,890 149,852 0.999566 40 1.625
S = 0.65 7m43s 104,954 104,941 0.999876 12 1.0833

Table 8.1: Performance measurements for the NA condition

running times betweenP = 10 andP = 11, which seems to be a breakpoint. Appar-
ently there are many more subgroups that are shared by10 genes or less than by11 or
more. Also, pruning experiences a local minimum around that breakpoint, indicating
an inverse relationship between those two properties, whereby the point close after
the breakpoint forms an optimal support threshold for maximized interestingness of
the rules.

For score-dependent measurements, running times degrade much more grad-
ual and linear than in the support-dependent measurements within the givenscore-
boundaries. This is expected, since there are less rules with these high scores, and
thus a sudden change like in support-dependent measurements is expected only at
lower scores. As expected of a pruning threshold, the pruning ratio is monotonically
increasing if the threshold goes up. For both score-dependent and support dependent
measurements, the rules-per-cluster ratio is monotonically decreasing.
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When analyzing the rules generated for the NA condition, there were some sur-
prises in terms mixed with terms known to be associated with depression. We present
the best three rules below. Once again, since the data set is not public, thegenes
involved in the rules are removed from the output:

Rule 1
Support: [11]
Score: 0,747
All genes in the subgroup

have the following properties:
bio_proc(cholesterol biosynthetic process),
cel_comp(intracellular membrane-bounded organelle),
KEGG_pathway(Lipid Metabolism)

Rule 2
Support: [12]
Score: 0,744
All genes in the subgroup

have the following properties:
bio_proc(pos. reg. of protein kinase cascade),
bio_proc(reg. of I-kappaB kinase/NF-kappaB cascade),
cell_comp(intracel. non-membrane-bounded organelle)

Rule 3
Support: [13]
Score: 0,722
All genes in the subgroup

have the following properties:
bio_proc(regulation of transcription),
KEGG_pathway(Pancreatic cancer),
KEGG_pathway(Chronic myeloid leukemia)

The rules shown above are concerned primarily with metabolism, which is known
to be affected by stress. The second rule contains concepts that are allrelated to
infections, since depression influences responses to infection. Finally,the last rule
concerns signalling constructs within the body, which are also affected bydepres-
sion. Leukemia is among these terms, since leukemia also is caused by signalling
deficiencies.

Positive Affect

The results for support-dependent measurements and score-dependent measurements
for the PA condition are shown in Table 8.2. As with the NA condition, the PA con-
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Support-dependent measurements
Threshold Tavg #Options #Pruned RatioPruned #C RatioC

P = 09 83m38s 1,977,442 1,975,733 0,99914 628 2.7229
P = 10 35m13s 911,444 910,375 0.99883 377 2,8355
P = 15 9m34s 157,889 157,715 0.99890 72 2.4167
P = 20 9m00s 84,841 84,816 0.99971 16 1.5625
P = 25 6m50s 40,191 40,186 0.99988 4 1.25

Score-dependent measurements
Threshold Tavg #Options #Pruned RatioPruned #C RatioC

S = 0.50 13m58s 252,727 251,251 0.99416 464 3.1810
S = 0.55 12m39 184,283 183,672 0,99668 203 3,0099
S = 0.60 9m34s 157,889 157,715 0.99890 72 2.4167
S = 0.65 9m20s 130,540 130,505 0.99973 16 2.1875

Table 8.2: Performance measurements for the PA condition

dition also shows a breakpoint, atP = 9. Furthermore, there seems to be a sort of
processing plateau betweenP = 15 andP = 20. The reason for this is because
the rules do not differ a lot between these two thresholds, both in dimensionality and
content they are closely related or even the same. That means that almost thesame
amount of time is spent on pruning, while calculation of the maximum ES score takes
more time, since now for each rule option20 maxima have to be calculated instead
of 15.

Pruning seems to converge to a local minimum again, in this instance nearP =
10, after the breakpoint. Clustering seems to be erratic, but still overall decreasing.
We will explain the reason for this erratic behaviour in Section 8.4.1.

Score-dependent measurements behave as expected. Similar to the NA condition,
we see a more linear correlation between running times and scores for the given score
thresholds, for the same reasons. Pruning and clustering also behave ina similar way.

The best 3 rules in the output of the Fantom service for the PA condition is shown
below.

Rule 1
Support: [10]
Score: 0,82835619871135
All genes in the subgroup
have the following properties:
bio_proc(protein amino acid phosphorylation),
bio_proc(peptidyl-amino acid modification),
bio_proc(pos. regulation of protein kinase activity)
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Rule 2
Support: [10]
Score: 0,820677828269983
All genes in the subgroup

have the following properties:
bio_proc(negative regulation of transcription),
bio_proc(post-translational protein modification),
cellular_component(nucleoplasm part)

Rule 3
Support: [10]
Score: 0,820
All genes in the subgroup

have the following properties:
bio_proc(neg. reg. of macromol. biosynth. process),
bio_proc(neg. reg. of gene expression),
bio_proc(neg. reg. of cellular biosynth. process),
bio_proc(post-translational protein modification),
cellular_component(nucleoplasm part),
bio_proc(regulation of transcription),
bio_proc(neg. reg. of nucl. acid metabolic process)

For the PA condition scores are very high, and the differential part largely lies in
the biological process domain. This is confirmed by the clustering; the three biggest
clusters deal with positive and negative regulation of diverse processes, specifically
in the nucleoplasm part.

Somatic Arousal

The results for support-dependent measurements and score-dependent measurements
for the PA condition are shown in Table 8.3. The first observation in Table 8.3 is that
experiments on the SA condition do not take nearly as much time as the other con-
ditions, given the same thresholds. Even when choosing a low support threshold, it
still results in a relatively low number of rules. As a result, rules-per-cluster ratios are
also rather low. Pruning is on a similar level as the other conditions, indicating that
pruning is not directly dependent on the ranking.

Apart from shorter experiment times, the score-dependent measurements for the
SA condition show the same behaviour as the score-dependent measurements in other
conditions; pruning ratio, the number of cluster and cluster ratio all show thesame
decline, although the cluster ratio is lower due to the smaller number of rules gener-
ated.

The best 3 rules in the output of the Fantom service for the PA condition is shown
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Support-dependent measurements
Threshold Tavg #Options #Pruned RatioPruned #C RatioC

P = 07 45m25s 1,255,501 1,253,358 0.99829 857 2.5006
P = 10 16m20s 443,470 442,992 0.99892 209 2.2871
P = 15 7m59s 106,517 106,468 0.99954 28 1.75
P = 20 6m48s 62,277 62,264 0.99979 8 1.625
P = 25 5m42 30,497 30,496 0,99997 1 1

Score-dependent measurements
Threshold Tavg #Options #Pruned RatioPruned #C RatioC

S = 0.50 9m01s 167,250 166,603 0.99613 301 2.1495
S = 0.55 8m21s 134,242 134,056 0,99861 91 2.044
S = 0.60 7m59s 106,517 106,468 0.99954 28 1.75
S = 0.65 7m08s 95,029 95,024 0.99995 5 1

Table 8.3: Performance measurements for the SA condition

below. When looking at the rules of the SA condition, we see that they are closely
related to the PA condition in terms of concepts.

Rule 1
Support: [11]
Score: 0,830
Participants: [
All genes in the subgroup

have the following properties:
bio_proc(reg. of trans. from RNA polym.II promoter),
bio_proc(pos. reg. of cellular biosynth. process),
cellular_component(nuclear part),
bio_proc(pos. reg. of RNA metabolic process),
cellular_component(intracellular organelle lumen)

Rule 2
Support: [10]
Score: 0,818
All genes in the subgroup

have the following properties:
bio_proc(pos. reg. of gene-specific transcription),
cellular_component(nuclear part),
bio_proc(reg. of trans. from RNA polym.II promoter),
cellular_component(intracellular organelle lumen)
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Rule 3
Support: [12]
Score: 0,788
All genes in the subgroup

have the following properties:
bio_proc(reg. of spec. from RNA polym.II promoter),
cellular_component(nuclear part)

Where in the PA condition negative regulation of processes was predominant, in the
SA condition those same processes seem to be positively regulated, yet within both
conditions they do not differ much in score. The parts where these processes occur
are confined to the nuclear part, as well as the intracellular organelle lumen.

Discussion

In this part we will discuss the measurements presented above. We will discuss three
dimensions: execution time, pruning ratio and rule-per-cluster ratios. We discuss ex-
ecution time to establish a global indication of the performance behaviour. Pruning
and rule-per-cluster ratios are discussed to get an indication of what behaviour these
algorithms show within the Fantom algorithm.

Execution Time As can be seen in Figure 8.3(a), all conditions have roughly the
same curve, growing at an explosive rate as the support threshold becomes lower. The
breakpoint varies for each condition. For the NA condition, it is atP = 10, for PA at
pointP = 9, and for SA at pointP = 7, though in this case the incline is less abrupt.

The breakpoint seems to be ranking dependent: different rankings produce rules
with different scores. For SA, most subgroups that have more than7 participants do
not seem to get a score or even maximum score higher than the fixedS = 0.6, while
for NA and PA there are. Since more rules and rule options adhere to thesebound-
aries, the experiment takes longer, for more combination, calculation and pruning
operations have to be performed.

When analyzing the relationship between score thresholds and experimenttime,
as depicted in Figure 8.3(b), we see that the influence is far less profound, though
still noticeable. The correlation seems to be somewhat linear, since points canbe
connected with a fairly straight line. This linear correlation thus indicates thatfor
scores between0.50 and0.65, subgroups with these scores and maximum scores are
evenly distributed. Differences in influences between the conditions can partially be
related to the number of rules generated; when more rules are generated,more will
be pruned whenever the threshold goes up, hence the impact in executiontime will
be longer.

The fact that the score threshold influences the experimental time to a lesserex-
tend is because it requires more effort to calculate. When two rule options are com-
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Figure 8.3: Execution time measurements for the experiments on gene translations
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bined, and the rule option support is below the threshold, it can be discarded imme-
diately, without the need for calculation of its ES and maximum ES. However, to
determine if the maximum ES of a rule option is below par, it has to be calculated
first, taking a substantial amount of extra time. Therefore, the score threshold only
saves on the pruning part of the rule generation, and not the score calculation.

From a practical point of view, analyzing lower score thresholds was not neces-
sary. The lowest score usually already generates between 500–1,000rules or more,
which is unacceptable to review from a bio-informatician’s point of view. Wedo see
a sudden rise in execution time for lower score thresholds, since most ruleshave a
lower score, as we will see in the SNP ranking experiments.

Pruning The pruning ratio is the number of pruned rule options divided by the total
number of options generated. As can be seen in Figure 8.4(a), there is a connection
between the pruning ratio and the breakpoints of the support thresholds;the break-
points appear to be local minima, or close to local minima, in the pruning ratio. This
implies that the breakpoints form some sort of optimal trade-off between specificity
of the rules and support.

Before the breakpoint, relatively more rule options are pruned becauseone rule
with very specific concepts can invalidate all related rule options with less specific
terms, which, depending on the depth of the term in the ontology as well as the up-
ward connectivity of terms (how many parents they have), can be many. After the
breakpoint, relatively more rule options are pruned because they can nolonger meet
the support threshold. By finding the lowest pruning threshold, a fairly good balance
between rule specificity and rule support can be obtained.

In contrast, the effect of the score threshold is much more profound on the prun-
ing ratio, as can be seen in Figure 8.4(b). This is because the score threshold works
both as an intermediate option prunerandas a postprocessing rule pruner. If the score
threshold is increased, more options are pruned while generating rule options, since
now the maximum ES score of more rule options does not suffice anymore. Moreover,
even if a rule option did have the required maximum ES score, it does not guarantee
its actual ES score suffices. Since the threshold has become stricter, this increases the
likelihood of the rule to be pruned in the post-processing stage.

The effect of increasing the pruning threshold is more significant for lower scores,
which is the result of the gene ranking score distribution, shown in Figure 8.5.
As can be seen, all three rankings have almost identical distributions, where most
genes have very low scores, and thus a lower impact on the ES score compared to
the higher genes. This means that compared to the total rule collection, a higher per-
centage of the rule options resides in the lower section of the ranking. Consequently,
any change made to the pruning ratio in the lower spectrum has more impact than
changes made in a higher spectrum.
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Figure 8.4: Pruning ratio measurements for the experiments on gene translations
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Clustering When analyzing the relationship between support thresholds and rules-
per-cluster ratios, shown in Figure 8.6(a), it seems almost linear. However, measure-
ments seem to get more erratic as the group size gets smaller. This is a direct effect
of a small group size and the cluster threshold, since it can cause a large discrepancy
error.

Consider the following example: When comparing two rules that both have6
genes while clustering at a threshold of0.6, these two rules need to have4 genes in
common, or 66.67%, a discrepancy of 6.67 percentage points with respectto the orig-
inal threshold of0.6. In contrast, when comparing two rules that have16 genes, they
need to have10 genes in common, or62.5%, which only has a discrepancy error of
2.5 percentage points. As a rule, the lower the discrepancy error becomes,the more
stable and accurate clusters are.

The relationship between score threshold and rules-per-cluster ratio shows sud-
den drops. These drops are the properties of the rules that come with the specific
ranking. Since clustering is based on similarity of genes, most rules clusterswill have
roughly the same ES score. When the score threshold moves past a certainthreshold,
most of the rules in a cluster will vanish, except for the few with a higher score. The
sudden removal of may rules while retaining a cluster causes the rule-per-cluster ratio
to drop suddenly.

Another explanation for the drops is that we observed that the rules with the
higher score seem to appear in small clusters, usually only one or two rulesper clus-
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Figure 8.6: Cluster ratio measurements for the experiments on gene translations
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ter, while rules with a lower score tend to form bigger clusters, since there are more
rules in that range. That means that increasing the score threshold in this range is
likely to reduce the rule-to-cluster ratio more.

Rules When comparing the rules of the three conditions, both PA and SA are
closely related in concepts, yet the opposite seems to be happening; in PA, processes
are negatively regulated, where in SA those same processes are positively regulated.
The NA condition is involved in regulation too, yet terms there are very directed and
specific, and even include associations with certain cancer types.

8.4.2 Experiments with SNP Ontology Mappings

Instead of mapping SNPs to genes and aggregating their scores, a second approach
would be to leave the ranking as is, using SNP identifiers and their individualscores,
and let the Fantom service use a mapping between SNP identifiers and the GO and
KEGG ontologies. The mapping is a combination of the SNP to ENTREZ mapping
and the ENTREZ to GO and ENTREZ to KEGG mappings discussed earlier, result-
ing in a list of SNP identifiers and the GO and KEGG concepts they are associated
with. The workflow is shown in Figure 8.7.

Figure 8.7: The ontology mappings experiment workflow
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This method has its strengths and weaknesses. When keeping the individual SNPs
and their scores, rules become more accurate, as do rule scores, sinceindividual SNPs
are now associated instead of their related gene aggregates. Consequently, rules are
tailored to SNP subsets that are differentially expressive, not gene subsets, giving an
accurate description of the SNP properties, and a more accurate score based on the
SNP scores. When mapping to genes, and then mapping back in the output, thiscan-
not be done, due to the many-to-many relationship between genes and SNPs.

A weakness of this method is the larger number of identifiers. When using gene
translation, the set of435, 290 SNP identifiers was translated to15, 176 ENTREZ
gene identifiers, which allowed Fantom to search a larger rule space. When using
435, 290 SNP identifiers, loading takes a long time. Furthermore, running the Fan-
tom service would require both support and score thresholds to be veryhigh, making
it very unlikely to obtain subgroups with a high interestingness score using the ES
measurement. When running the Fantom service on the SA ranking, for example, the
experiment took over seven hours, and produced only two rules, both very low in
score and deemed uninteresting by the expert analysis.

Despite the large amount of identifiers, we can still use the SNP ranking to do a
multi-class study. In this particular experiment, for each of the three conditions we
made a ranking of all SNPs with a p-value of less than0.05, which were all SNPs
with a t-value of higher than1.962. Next, for each of the three conditions we created
a ranking that contained only SNP identifiers that had a higher score than inthe other
two rankings and labeled these as the interest class, while labeling the residuas the
control class. We performed the multi-class experiment on the resulting ranking.

To determine thresholds for comparison, we first analyzed the data set witha
quick run of the Fantom algorithm, restricting the rules in the maximum amount of
conjunctions as we did in Chapter 6. Finally, we foundP = 15 andS = 0.48 suit-
able fixed values to test performance, clustering and pruning, since all three rankings
showed interesting results on tests with these fixed values.

Negative Affect

In this condition there were223, 554 SNPs statistically significant. Filtering with the
other two condition lists resulted in11, 746 SNP identifiers in the interest class. The
residual of the SNP identifiers from the rankings of the other two conditionswere
merged, whereby the highest score of a SNP was taken as its score in the merged lists.
This resulted in39, 793 SNPs in the control class. Results of the support-dependent
and score-dependent measurements are shown in Table 8.4.
Scores of rules are significantly lower in this kind of experimental setup. The ranking
scores are much closer together, forcing rule and rule option scores to have a lower
average. Furthermore, the control group penalty adjustment lowers scores even more,
thus the boundary had to be set fromS = 0.60 to S = 0.48. The trend is the same as
in the other experiments, though the rule space is much more compacted: the drop in
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Support-dependent measurements
Threshold Tavg #Options #Pruned RatioPruned #C RatioC

P = 10 48m01s 1,119,855 1,119,823 0.99997 14 2.29
P = 11 8m48s 65,822 65,801 0.99968 10 2.10
P = 12 8m23s 34,054 34,039 0.99956 8 1.88
P = 13 8m19s 26,909 26,895 0.99948 7 2.00
P = 15 8m09s 21,345 21,340 0.99977 2 2.50

Score-dependent measurements
Threshold Tavg #Options #Pruned RatioPruned #C RatioC

S = 0.24 51m26s 1,116,328 1,116,109 0.99980 100 2.19
S = 0.25 8m58s 64,756 64,563 0.99702 91 2.12
S = 0.35 8m32s 40,457 40,425 0.99921 16 2.00
S = 0.40 8m21s 26,301 26,289 0.99954 7 1.71
S = 0.48 8m09s 21,345 21,340 0.99977 2 2.50

Table 8.4: Contrast experiment measurements on the NA condition

execution time and amount of generated rules is very large and sudden, meaning that
for S = 0.48, P = 11 seems to be a barrier.

We also see the same trend in pruning ratio, where it starts high, moves to a local
minimum, and then moves upward again. The trend is more crude this time, since rule
generation was lower, thus creating a less accurate picture. Rule-per-cluster statistics
seem to be inconclusive. At some point, the statistic rises again. This could partially
be because some cluster themes contain rules with high scores, but also because there
are very few rules and clusters, thus a larger discrepancy error.

Since scores are now less varied, the score-dependent measurementsshow a
strong resemblance to support-dependent data. Both execution times and pruning ra-
tio show the same kind of behaviour, indicating the breakpoint forP = 15 is set
somewhere betweenS = 0.24 andS = 0.25. The pruning ratio also shows the local
minimum after the breakpoint, which is, as expected, lower than the one that shows
in the support-dependent measurement. Rule-per-cluster statistics are overall decreas-
ing, but for the last entry. The 3 best rules for the settingsP = 10 andS = 0.48 are
shown below.

Rule 1
Support: 65
Score: 0,569
All genes in the subgroup
have the following properties:
mol_func(phosphatidylinositol phosph. activ.)
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Rule 2
Support: 44
Score: 0,568
All genes in the subgroup
have the following properties:
cellular_component(nonmotile primary cilium),
biological_process(photoreceptor cell maintenance)

Rule 3
Support: 53
Score: 0,560
All genes in the subgroup
have the following properties:
molecular_function(ATP binding),
cellular_component(membrane fraction),
mol_func(P-P-bond-hydrolysis-driven transp. activ.),
cellular_component(integral to membrane),
mol_func(ATPase activ., coupled to movem. of substances)

As can be seen in these rules, the scores are noticeably lower than the scores in the
NA experiments of the gene translation method. The conjunctions, on the otherhand,
are larger, and the concepts used in the rules are much more specific. Rules of the
NA condition shown here are related to the rules in the NA condition of the gene
translation method in terms of kinase, phosphatase and energy bindings. Within the
top 10 rules, the earlier reported association with cancer was also still present with a
reasonable score.

Positive Affect

In the PA condition,21, 544 SNPs were statistically significant which, after filter-
ing, resulted in a ranking of13, 287 SNP identifiers in the interest class. The control
class consisted of38, 252 SNPs after filtering. Results of the support-dependent and
score-dependent measurements are shown in Table 8.5 Although the execution time
shows a familiar pattern, both the pruning ratio and the rules-per-cluster ratio deviate
from support-dependent behaviour we have seen so far. When inspecting the rules of
the diverse support thresholds, a moderate-sized group of related rules consistently
scored very high. As the total number of rules gets lower, this influences the pruning
statistics as well as the rules-per-cluster statistics to a great extend, increasing the
pruning ratio as the support threshold increases.

Score-dependent measurements are also showing different behaviour. Even for
very low score thresholds, a sudden increase in generated rules and execution time
does not occur. This has to do with the participation threshold. As the participation
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Support-dependent measurements
Threshold Tavg #Options #Pruned RatioPruned #C RatioC

P = 07 69m12s 1,644,519 1,643,917 0.99963 212 2.8396
P = 08 12m24s 279,366 279,212 0.99945 59 2.6012
P = 10 8m24s 67,453 67,362 0.99865 43 2.1163
P = 13 8m03s 38,396 38,350 0.99880 17 2.7059
P = 15 7m48s 23,906 23,867 0.99837 14 2.7857

Score-dependent measurements
Threshold Tavg #Options #Pruned RatioPruned #C RatioC

S = 0.10 10m23s 89,159 87,933 0.98625 451 2.7184
S = 0.25 9m15s 60,810 60,404 0.99332 178 2.2809
S = 0.35 8m47s 53,756 53,628 0.99762 61 2.0984
S = 0.40 8m32s 39,596 39,529 0.99831 33 2.0303
S = 0.48 7m48s 23,906 23,867 0.99837 14 2.7857

Table 8.5: Contrast experiment measurements on the PA condition

thresholds get higher, the sudden increase is pushed back to a lower score threshold
and eventually flattens out, since the number of rule options that support thethresh-
olds becomes smaller.

As expected, pruning ratio is monotonically increasing as the score threshold in-
creases. Rules-per-cluster ratio shows the same behaviour as in the support-dependent
measurements. The resulting best 3 rules for the settingsP = 07 andS = 0.48 are
shown below.

Rule 1
Support: [13]
Score: 0,853
All genes in the subgroup

have the following properties:
bio_proc(MAPKKK cascade),
bio_proc(protein amino acid phosphorylation),
molecular_function(zinc ion binding),
bio_proc(pos. reg. of cel. protein metabolic proc.),
bio_proc(regulation of MAP kinase activity),
bio_proc(pos. reg. of protein kinase activity)
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Rule 2
Support: [8]
Score: 0,851
All genes in the subgroup

have the following properties:
bio_proc(activation of MAPK activity),
molecular_function(zinc ion binding),
bio_proc(pos. reg. of cell. protein metabolic proc.)

Rule 3
Support: [8]
Score: 0,851
All genes in the subgroup

have the following properties:
bio_proc(transf. growth fact. beta rec. sig. path),
molecular_function(zinc ion binding),
bio_proc(regulation of cytoskeleton organization)

Similar to the gene translation method, positive regulation of protein kinase activity
has a high score again, even in these condensed contrast studies. Zincion binding also
seems to be very important to the PA condition, as opposed to other conditions.Cy-
toskeleton organization is an unexpected concept, but even in the clustering it stands
out, together with cytosol as cellular component. Clustering also promotes the pro-
tein kinase and zinc ion binding as the most important concepts, together with the
regulation of metabolic processes.

Somatic Arousal

The SA condition contained22, 071 statistically significant SNP identifiers. Through
filtering these were reduced to a ranking of14, 498 SNPs in the interest class. The
control class consisted of37, 041 SNPs. Results of the support-dependent and score-
dependent measurements are shown in Table 8.6.

For support-dependent measurements, execution time and pruning ratio show fa-
miliar patterns, although the drop in execution time is more extreme than in the other
conditions. The pattern in the rules-per-cluster ratio is also familiar, but what is sur-
prising is the large number. After inspecting the rules and clusters, the top 10rules
always appear in the top 3 largest clusters, which explains why they do not get pruned,
and the rules-per-cluster number stays high.

As a result of theP = 15 fixed support threshold, the SA condition lacks a break-
point in the score-dependent measurements. Similar to the PA condition, the pruning
ratio is monotonically increasing, but so is clustering; due to the fact that the rules
with the highest score are also in the largest clusters, these clusters remainlarge as
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Support-dependent measurements
Threshold Tavg #Options #Pruned RatioPruned #C RatioC

P = 14 83m12s 1,113,230 1,111,733 0.99866 326 4.59
P = 15 8m35s 43,277 43,190 0.99799 9 9.67
P = 16 8m25s 37,203 37,153 0.99866 8 6.25
P = 17 8m03s 23,443 23,430 0.99945 5 2.60
P = 18 7m48s 22,648 22,639 0.99960 3 3.00

Score-dependent measurements
Threshold Tavg #Options #Pruned RatioPruned #C RatioC

S = 0.10 11m29s 91,950 90,768 0.98715 403 2.93
S = 0.20 9m48s 76,200 75,509 0.99093 247 2.80
S = 0.30 9m18s 69,124 68,801 0.99533 86 3.76
S = 0.40 8m51s 48,640 48,487 0.99685 30 5.10
S = 0.48 8m35s 43,277 43,190 0.99799 9 9.67

Table 8.6: Contrast experiment measurements on the SA condition

the score threshold increases, thus increasing the rules-per-cluster ratio. The three
best rules for the settingsP = 15 andS = 0.48 are shown below.

Rule 1
Support: [51]
Score: 0,600
All genes in the subgroup

have the following properties:
bio_proc(sensory perception of sound),
cellular_component(axon),
bio_proc(mechanoreceptor differentiation),
bio_proc(inner ear development)

Rule 2
Support: [48]
Score: 0,599
All genes in the subgroup

have the following properties:
bio_proc(cellular metal ion homeostasis),
bio_proc(sensory perception of sound),
bio_proc(regulation of action potential in neuron),
bio_proc(regulation of membrane potential)
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Rule 3
Support: [48]
Score: 0,599
All genes in the subgroup

have the following properties:
bio_proc(sensory perception of sound),
bio_proc(regulation of action potential in neuron),
bio_proc(cellular cation homeostasis),
bio_proc(regulation of membrane potential),
bio_proc(metal ion homeostasis)

What is surprising about these rules is that they are not very similar to the rules in the
gene translation process. Part of that can be explained by the experiment design; many
SNPs were removed from the list because the SNPs in the PA condition had a higher
expression level. This is the reason that all concepts shared with the PA condition are
now less noticeable. What remains are rules that are specific to the SA condition. The
scores are therefore not as high, but the rules are very specific. They all still contain
involvement of the membrane, but also contain sensory perception of sound and inner
ear development as a primary concept. When clustered, these concepts appear in the
top cluster as well, together with neurotransport activity.

Discussion

Similar to Section 8.4.1, we will again discuss the measurements by comparing them
in three dimensions: Execution time, pruning ratio and rule-per-cluster ratio.

Execution time As was the case in the single-class experiments, multi-class ex-
periments also show a breakpoint in support-dependent measurements. Its location is
again dependent on the ranking, as can be seen in Figure 8.8(a). However, there is
a difference between the behaviours. The decline is much steeper in the multi-class,
and the variation in the positions of the decline is also larger. This is caused bythe
many-to-many relationship between SNPs and genes. SNP identifiers can beasso-
ciated to many genes, thus many ENTREZ and KEGG concepts. Furthermore,one
gene can be associated to multiple SNP identifiers, associating all those identifiers
with the same ontological concepts. As a result, under a specific support threshold,
all these identifiers will share a group, thus causing an explosion in the rulespace.

What is also striking is that the score-dependent measurements of the NA condi-
tion, displayed in Figure 8.8(b), also show such a breakpoint. The explanation is sim-
ilar to the one of the support-dependent measurements: using SNP identifiers instead
of genes resulted in an explosion in the rule space. Furthermore, the multi-class adap-
tation of the ES function folds the rule space instead of spreading rules moreequally,
concentrating the number of rules even more to the lower boundaries. As a result,
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Figure 8.8: Performance measurements of the ontology mappings experiment
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many rule options at support thresholdP = 15 have a maximum scoreS = 0.24.
The other two conditions lack this breakpoint because theP = 15 support threshold
is too strict; most combinations will never have that support, and therefore execution
times will only increase slightly, even for score thresholds as low asS = 0.10.

Pruning For each condition, the pruning behaviour of the support-dependent mea-
surements is similar to some extend, as can be seen in Figure 8.9(a). Before the break-
point, pruning is high, due to the fact that only the most specific rules with the highest
scores are kept, and all combinations of more general conjunctions are pruned. On,
or short after the breakpoint, a local minimum is reached, where relativelythe least
rules are pruned. After that, less rules will be generated due to stricter thresholds, and
thus increasingly more rules will be pruned.

Due to the fact that less rules are generated as well, the resolution of the measure-
ments becomes lower, and thus the measurement becomes less accurate. Differences
in the position are the result of the different rankings: some generated a lot of rules at
a higher support, while others needed a lower threshold.

Depending on whether there is a breakpoint, different behaviour is shown in the
score-dependent measurements in Figure 8.9(b). If there is a breakpoint, such as in
the NA condition, then the line has a similar shape as the ones in Figure 8.9(a), for
a similar reason: before a breakpoint there is an explosion of rules that have a maxi-
mum score higher than the breakpoint score value, for the fixed support threshold of
P = 15. However, if the support threshold is too high, a rule explosion will never
occur, and pruning shows behaviour similar to that of Figure 8.4(b), whereby the
pruning ratio is monotonically decreasing as the score threshold decreases. Again,
the score threshold shows to have a much greater impact on the pruning ration than
the support threshold.

Clustering When comparing the behaviours in Figure 8.10(a) and Figure 8.6(a)
in Section 8.4.1, they look nothing alike. In fact, they are each other’s opposites. A
clear pattern can be seen. After the breakpoint, the rules-per-cluster ratio decreases to
a local minimum, and then rises again. This local minimum coincides with the local
minima in Figure 8.9(a). That is because at that point, the pruning effect is relatively
lower, and only the best rules for each cluster are kept, and are thus spread thin over
all clusters. After that, only the very best rules survive, and these aregrouped in one
or a few clusters.

An explanation for this phenomenon lies in the experiment setup. In the new
ranking, the interest class SNPs are only those SNPs that do not occur inthe control
group, which is likely to result in less overlap in ontology association. Combined
with a modified ES score that punishes rules that have associations with many SNPs
in the control group, this promotes high scores for rules that contain SNPsonly in
the interest class. These rules usually contain a small set of SNP identifiersthat occur
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Figure 8.9: Pruning measurements of the ontology mappings experiment
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over and over. Since clustering is based on a percentage of the support shared by rules,
these rules will all be in the same cluster(s), thus keeping the rules-per-cluster ratio
high. Since these rules have the highest score, they are more likely to havea high
score even if the support threshold increases, thus increasing the rules-per-cluster
ratio.

The NA condition and PA condition in Figure 8.10(b) show similar behaviours as
in Figure 8.6(b) in Section 8.4.1, but for the rise in rules-per-cluster ratio,which has
a similar explanation as the one in the support-dependent measurements. However,
the rules-per-cluster ratio in the SA condition is monotonically increasing. Thisis
due to the ranking; the SA class was rich in rules that were similar or even the same
in participants, and thus concentrated in a few clusters. As the score threshold grew
higher, all other clusters were pruned, while the biggest clusters containing the rules
with the highest scores remained.

Rules The first observation is that rules in the current experiment setup have lower
scores, and that the scores are compacted more into a middle range, which islargely
caused by of the experimental setup as well as the modified ES score measurement.
A second observation is that rules do tend to be more specific, and yield morecon-
junctions due to the increased specificity of each identifier. For the NA and PA condi-
tions, rules were still noticeably related to their gene translation counterparts, albeit
in a representation of more specific ontological terms. Rules in the PA conditioneven
had very high scores, though that was the result of a group of SNPs that scored very
high t-scores in that specific condition. It is likely that this group also influenced the
scores of the other two conditions.

The SA condition yielded the most surprising rules of the three conditions, in-
volving concepts such as sensory perception of sound and inner ear development,
as well as neurotransport activity. Although the score of these rules was fairly low,
they are specific to the SNPs that scored highest only for the SA condition,and were
confirmed by clustering.

8.5 Conclusions and Future Work

In this chapter we discussed experiments that were performed on a SNP study done
on human depression. We provided an introduction to SNPs and related concepts,
and explained their importance. We also presented an overview of the SNP depres-
sion study and how it led to the various rankings that we used in our experiments.

In our experiments, we took two approaches to experimentation on SNP rank-
ings. In the first approach, we mapped the SNP identifiers to genes, whichresulted
in a ranking of genes that we experimented on. In the second approach,we exper-
imented on the original ranking of SNP identifiers and their scores, and created a
mapping from SNP identifiers to ontological concepts in GO and KEGG.
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Figure 8.10: Cluster ratio measurements of the ontology mappings experiment
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When comparing the two methods, both have their merits and difficulties. Gene
translation results in a smaller ranking, and can thus be mined faster with lower
thresholds. The downside is that gene scores are aggregated, and that the experi-
ment is only as accurate as the mapping of SNPs to gene identifiers. Using SNPs
in the ranking increases the accuracy of the experiment, identifying rules that over-
expressed SNPs have in common, and not their associated genes. However, associ-
ating these SNPs to ontological concepts still requires the SNP to gene mapping.
Another problem is the sheer size of the identifier space, which usually makes it
challenging to perform single-class mining on the whole data-space. Therefore, this
method is better suited for more aimed studies, to take a closer look at specific sub-
groups, as we did in the multi-class experiments.

When analyzing the behaviours of both methods, they often show similarities
across different rankings and dimensions. Of course there are differences, either
caused by the experimental setup of the method, the score function, or justby the
ranking and inherently the ontological properties of the identifiers; different concept
associations lead to a difference in the quality and amount of rules that can be mined.

When comparing execution times and the amount of rules that have been gen-
erated, the behaviours of the two methods are in principle the same. Given that the
score threshold and the support threshold is small enough, a rule explosion will take
place at some point, a point that we referred to as the breakpoint. However, if one
of the thresholds is high enough, no explosion will take place and the execution time
will only grow at a somewhat linear pace. When an explosion does occur,it seems
more sudden in the multi-class experiments, though that is also dependent on factors
such as ranking and experiment design.

Pruning behaviour is similar between the two conditions as well, for both scoring
and support constraints. Given that there is a breakpoint, pruning ratiowill be high
before that, because only the most specific and most interesting rules survive, while
all other combinations will be pruned away. After the breakpoint, when the number
of generated rules has dropped considerably, there is also a drop in pruning ratio,
since the number of rules shrank disproportionately to the number of rule options
generated. After that it will slowly rise again, due to the increasing strictness of the
score or the support threshold.

In cases where a breakpoint does not appear, behaviour is also the same for both
methods, as shown in the score-dependent measurements. Both show a logarithmic
shape since lower score thresholds have a higher effect on the pruning ratio than
higher score thresholds. Since the shape after the breakpoint is the samefor both
score and support-dependent thresholds, the same statement is likely to hold for be-
haviour in the support-dependent measurements.

The rules-per-cluster ratio is a bit off for both methods. In the gene translation
method, the ratio is monotonically decreasing as support or score thresholds get big-
ger. The reverse is true in the case of the multi-class experiments, where in the end the
ratio was steadily growing bigger. This has nothing to do with the difference between
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the two approaches, but more with the experiment setup and the Fantom implemen-
tation.

When comparing the outputs between the two experiments, they show similari-
ties for the rankings that have the highest t-scores. This is due to the experiment setup
of the multi-class experiment. The rule output shows both familiar and unexpected
concepts, which can of course be mere artifacts of ontologies, but they can also serve
as new hypotheses for further research.

As future work, there are a few questions that still need answering. More re-
search has to be done on the occurrence of the breakpoint and the exact relationship
with pruning ratio. There is a strong connection between the two, and combining re-
search on both could lead to an algorithm that automatically determines an optimal
threshold for a certain ranking, to optimize a trade-off between running time and rule
specificity.

Another point of interest is the score function in the multi-class experiments. Al-
though it performed well in most instances, it also compacted the rule space,leaving
potentially useful and interesting rules buried between many others. This might be a
combined artifact from both the experiment setup and the score function, so a proper
study on that phenomenon would help to refine the experiment setup as well as the
score function.

Finally, other forms of clustering other than one with a hard cutoff may resultin a
better and more constant result. Although behaviour could be explained and rational-
ized, perhaps clustering on the basis of individual or combined ontological concepts
within the rules itself would result in better and more similar clusters.
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Subgroup discovery with CN2-SD.J. Mach. Learn. Res., 5:153–188,
2004.

[LLF+09] Cui Lin, Shiyong Lu, Xubo Fei, Artem Chebotko, Darshan Pai, Zhao-
qiang Lai, Farshad Fotouhi, and Jing Hua. A reference architecture for
scientific workflow management systems and the view soa solution.
IEEE Transactions on Services Computing, 2:79–92, 2009.

[LM98] Huan Liu and Hiroshi Motoda.Feature Selection for Knowledge Dis-
covery and Data Mining. Kluwer Academic Publishers, 1998.

[LRS+08] Y. Lu, R. Rosenfeld, I. Simon, G. J. Nau, and Z. Bar-Joseph. A proba-
bilistic generative model for go enrichment analysis.Nucl. Acids Res.,
pages 434+, 2008.

[LV03] P. Lyman and H. R. Varian. How much information (2003).
http://www.sims.berkeley.edu/how-much-info-2003, 2003.
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Appendix A

Fantom Formats

In this appendix we discuss the formats of the different inputs for the Fantom service.
The inputs discussed in this appendix are the ranked list, mappings, ontologies, and
the interface for score functions. For each input we discuss its potentialcontents as
well as its format. We also supply an example for each of the formats.

File Formats

In this part we will discuss the file formats that Fantom takes as inputs. Included in
this section are the ranked list, mappings and ontology file formats.

Ranked List

The ranked list is the ranking of identifiers, together with their scores. It isa table
with three columns, separated by tab indents. The first column denotes the class label
of the identifier, which are ignored if a single-class experiment is conducted. The
second column contains the (unique) identifiers. If multiple identical identifiersare
found, their scores will be averaged. Finally, the third column contains the scores.
The Fantom service makes little assumptions about the scores, although the score
functions might. For example, the Enrichment Score function assumes that a score of
0 is the least interesting, while very high positive or negative scores indicatea high
interestingness of that identifier.

An example ranking is shown below. This ranking is part of the complete gene
ranking obtained from the AML vs. ALL microarray experiment.

INTEREST 945 1.93768463633657
INTEREST 6929 1.91673657142379
INTEREST 1675 1.86252699812831
INTEREST 1509 1.72544529626413
INTEREST 896 1.58730893402055
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Mappings

Fantom uses three kinds of mappings: Identifier mappings, interaction mappings and
ontology mappings. Regardless of the mapping type, they all have the same structure;
each file contains two columns, again separated by a tab indent. The first column con-
tains an identifier, which must correspond with the identifier in the ranking, and the
second column contains the identifier that is mapped to. If these are multiple iden-
tifiers, which is likely in ontology and interaction mappings, then the identifiers are
separated by comma’s.

The mapping shown below maps ENTREZ identifiers to HUGO Symbol identi-
fiers. This mapping, and its inverse mapping, were taken from the KEGG public ftp
site1.

100009601 TRNAY1
100009602 TRNAY2
100009603 TRNAA2
100009604 TRNAA3
100009605 TRNAF1

The next mapping it a part of an ontology mapping, which maps ENTREZ identi-
fiers to their most specific GO concepts. This partial mapping was obtained from the
NCBI public ftp site2 and then reformatted to the format shown below:

100128553 GO:0005575,GO:0008150
100128582 GO:0003676,GO:0005622,GO:0005634,GO:0006350,GO:0006355
100129271 GO:0003674,GO:0005575,GO:0008544
100129441 GO:0016020,GO:0016021
100129669 GO:0005886,GO:0016021

Finally, the last mapping is an interaction mapping, which maps identifiers to other
identifiers that they interact with. Shown below is a partial mapping that maps in-
teractions between ENTREZ identifiers. It was obtained from the NCBI GeneRIF
project ftp site3, and again reformatted.

10112 51560,5870
10114 355,7157,7161,7341,8772
10116 10116,317,355
10121 10121,1639,23299,4926,51164,6711,6712
10125 5495,7428,8525

1ftp://ftp.genome.jp/pub/kegg/pathway/organisms/hsa/hsasynonym
2ftp://ftp.ncbi.nlm.nih.gov/gene/DATA/gene2go.gz
3ftp://ftp.ncbi.nlm.nih.gov/gene/GeneRIF/
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Ontology

The ontology files represent the ontology concepts and the relationships among those
concepts, as well as the predicates that these concepts belong to. An ontology file can
contain multiple ontological predicates, which we perceive as the actual ontologies.
For example, GO actually consists of three separate ontologies: cellular component,
biological process and molecular function.

To be compatible with a range of ontologies, the ontology file format for the
Fantom service contains six columns, which are separated by tabs. The first column
contains the concept identifier, which must be unique for each concept, even across
ontologies. The second column contains the ontology predicate, identifying towhich
ontology the concept belongs to. The third column contains the concept description,
which is used in Fantom rules. The fourth column contains the list of alias keys, if
any are available. These keys are identifiers that the concept is also known as. When
the ontology tree is filled, these alias concepts are also annotated with an associated
identifier whenever this concept is. The fifth column contains the parent orparents of
this concept. Through these relationships, we can build the internal DAG representa-
tion of each ontology, which is used for pruning. Finally, the sixth column is a binary
indication whether the current concept is obsolete. If the concept is obsolete, there is
a 1, and the alias column should provide the new concept or concepts. If the concept
is not obsolete, is a 0 in the last column.

The partial ontology shown below is a small part of the GO ontology, which was
obtained from the GO website4. Since the ontology was originally formatted in the
Open Biomedical Ontologies (OBO) format5, we had to reformat it first.

GO:0008343 bioproc adult feeding behavior [] [GO:0007631,GO:0030534] 0
GO:0008344 bioproc adult locomotory behavior [] [GO:0007626,GO:0030534] 0
GO:0008354 bioproc germ cell migration [] [GO:0016477,GO:0007276] 0
GO:0008355 bioproc olfactory learning [] [GO:0007612,GO:0042048] 0
GO:0008356 bioproc asymmetric cell division [] [GO:0051301] 0
GO:0008409 molfunc 5–3- exonuclease activity [] [GO:0004527] 0
GO:0008410 molfunc CoA-transferase activity [] [GO:0016782] 0

Score Function Interface

The Fantom service supports the usage of custom score measurements byway of
uploading dll libraries that were programmed in the .Net framework. These score
functions do have to adhere to the following interface:

4http://www.geneontology.org/ontology/oboformat 1 2/geneontology.12.obo
5http://www.obofoundry.org/
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public interface class IFantomScorer
{

String GetScoreFunctionName();
void ScoreRule(FANTOM_Rule rule);
void MaxScoreRule(FANTOM_Rule rule);

};

The first function,GetScoreFunctionName, is used to identify the score function with.
This name must match the name supplied as a parameter in the Fantom service in-
terface. If no match is found, the default Enrichment Score function is chosen. The
second function,ScoreRule, is used to determine a score of a rule, whereby the rule
is supplied as a parameter of typeFANTOMRule, which is a publicly available class.
Finally, the functionMaxScoreRuleis used to provide the supplied rule with its max-
imum potential score.
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Appendix B

Enrichment Score Maximization

In this appendix we will provide a detailed description of the Enrichment Set score
function. We first discuss the mathematical properties of the function, and then define
the maximization problem, along with the polynomial solution.

The Enrichment Score

Consider a setX of items of size∣X∣ = n. Let them be ordered,X = (x1, . . . , xn),
such that they can be identified with the set[N ] = {1, 2, . . . , n}. Furthermore, let
there be anindividual scoreRi assigned to each itemi, 1 ≤ i ≤ n. Let the order
of X be compatible with the scores, such that theRi form a decreasing sequence.
Consider a sequenceS = {n1, . . . , nm} ⊂ N of size∣S∣ = m with m ≤ n, and let
ri = Rni

be the score of thei-th item fromS. The numberni is the position of this
item in the setX (i.e., the rank ofri in the set of allRj ’s).

Definition 1. Thei-th partial scoreassociated with the setS is

ci =

∑i
j=1 rj

∑m
l=1 rl

−
ni − i

n−m
.

The partial score consists of two parts. The first term describes the positive growth
of the score due to the relative individual scores of the elements fromS encoun-
tered up to and including positioni. The second term implements a penalty for
each position encountered which doesnot correspond to an element fromS. Writing
Phit(S, i) for the first term, andPmiss(S, i) for the second, the partial score satisfies
ci = ∣Phit(S, i)− Pmiss(S, i)∣, as defined by [STM+05].

Definec0 = 0. From the definition, clearly alsocm = 0 whenm = n, and fur-
thermore−1 ≤ ci ≤ 1 for all 1 ≤ i < m.
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Definition 2. TheEnrichment Scoreassociated with the setS is

ES = max
i
∣ci∣.

The enrichment score can obviously be calculated in linear time (with respectto
∣S∣ = m). Table B.1 shows an example for a dataset ofn = 34, 327 genes and a
subset of sizem = 26.

Maximal Subset Score

We now consider the following problem. LetT ⊆ S be a subset ofS of size∣T ∣ =
m′ < m = ∣S∣.

Question 1(k-removal subset enrichment score problem). Consider all possiblem′-
element subsetsT of a givenS ⊆ X, wherem′ = m − k for a givenk. What is the
maximum of the possible enrichment scoresET?

Although theoretically possible, it is clearly infeasible to calculate the enrichment
score for all

(

m
m′

)

such subsets. We therefore seek a more efficient algorithm, i.e., at
most polynomial inm. Intuitively, one would think that one can solve the problem
efficiently by forward induction, i.e., by finding the optimalm − 1 subsetSm−1 of
S, then its optimalm − 2 subsetSm−2 ⊂ Sm−1, etc., until arriving at the optimal
Sm′ ⊂ Sm′+1. This is not the case, however. Table B.2 shows an example where the
optimal20-element subset of the 26-element setS given in Table B.1 is not obtained
by restriction of the21-element subset. Thesubset enrichment problemis therefore
a nonlocal problem. Nevertheless, let us consider what happens in the simple case
wherem′ = m − 1, i.e., whereT = S ∖ {sk} for somek ≤ m. The new partial
scores are then

c
(k)
i =

⎧





⎨





⎩

∑i

j=1
rj

∑m

l=1
rl−rk

− ni−i
n−m+1 for i < k

∑i

j=1
rj−rk

∑m

l=1
rl−rk

− ni−i+1
n−m+1 for i > k.

(B.1)

where the superscript(k) denotes removal of thek-th element from the setS. More

generally, letc(A)
i , whereA ⊆ S such thatsi /∈ A, denote thei-th partial score after

removal of the elements ofA from S.

Lemma 1. The difference between the scores before and after removal ofsk is

c
(k)
i − ci =

⎧



⎨



⎩

∑i
j=1

rj
∑m

l=1
rl
⋅

rk/
∑

l rl
1−rk/

∑
l rl

+
1

n−m
⋅ ni−i
n−m+1

for i < k
(∑i

j=1
ri

∑m
l=1

rl
− 1

)

⋅
rk/

∑
l rl

1−rk/
∑

l rl
− 1

n−m
⋅ (n−ni)−(m−i)

n−m+1
for i > k.

(B.2)
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i Positionni Scoreri Gene name Partial scoreci ni − i

1 20 5.71685 Cs 0.1063 19
2 65 4.56335 Aco2 0.1904 63
3 129 4.03963 Idh2 0.2641 126
4 193 3.72751 Idh3a 0.3320 189
5 197 3.71779 Mdh1 0.4014 192
6 347 3.26785 Sdhb 0.4581 341
7 384 3.18568 Suclg1 0.5167 377
8 515 2.98120 Pygb 0.5686 507
9 645 2.80126 Mdh2 0.6172 636

10 879 2.52752 Fh1 0.6577 869
11 924 2.47618 Idh3g 0.7027 913
12 1,385 2.14931 Sdhc 0.7295 1,373
13 1,988 1.84017 Sdhd 0.7464 1,975
14 2,248 1.74533 Dlst 0.7715 2,234
15 3,274 1.43489 Pygm 0.7684 3,259
16 3,412 1.40278 Agl 0.7906 3,396
17 3,479 1.38664 Pygl 0.8146 3,462
18 5,296 1.09616 Gaa 0.7822 5,278
19 5,516 1.06895 Sucla2 0.7958 5,497
20 7,029 0.91375 Suclg2 0.7688 7,009
21 14,574 0.50044 Gys1 0.5582 14,553
22 18,262 0.38126 Idh1 0.4579 18,240
23 25,104 0.20227 G6pc 0.2622 25,081
24 27,062 0.15848 Aco1 0.2081 27,038
25 28,668 0.12378 Sdha 0.1636 28,643
26 31,025 0.06981 Pck1 0.0962 30,999

Table B.1: Example gene setS of lengthm = 26, subset of a gene setX of length
n = 34, 327. The enrichment scoreES ≈ 0.8146 is attained for the 17th gene
(“Pygl”).
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No. removals Removed elements (index) Max. element Enrichment score
1 18 #17 (Pygl) 0.8338
2 18,19 #17 (Pygl) 0.8533
3 18,19,20 #17 (Pygl) 0.8706
4 18,19,20,21 #17 (Pygl) 0.8803
5 18,19,20,21,22 #17 (Pygl) 0.8879
6 15,16,17,18,19,20 #14 (Dlst) 0.9038

Table B.2: Optimal subsets for the example of Table B.1. Note the non-local behavior
in the last line, when six elements are removed.

From here on, we will always make the following assumption about the relative sizes
of the elementsX andS:

Assumption 1. The number of elements inS is assumed to be smaller than the num-
ber of elements fromX after the last elementSm, i.e.,

n− nm > m. (B.3)

The following observation is the key to the solution of the problem:

Lemma 2 (Unimodality property). It holds that

c
(1)
i < . . . < c

(i−1)
i < ci < c

(i+1)
i > c

(i+2)
i > . . . > c

(m)
i > ci (B.4)

In particular,

(i) c
(k)
i < ci if k < i. Moreover, in this casec(k)i is maximal fork = i− 1.

(ii) c
(k)
i > ci if k > i. Moreover, in this casec(k)i is maximal fork = i+ 1.

Proof. The inequalities in (i) and (ii ) are clear by inspection of (B.2) and Assumption
(B.3), since the latter implies that(n− ni)− (m− i) > 0 for all i.

If k > i, then the second term in (B.2) does not depend onk. The first term is
maximal fork = i + 1, sincef(x) = x/(1 − x) is an increasing function of its ar-
gument, andxk = rk/

∑

l rl is decreasing ink by assumption, i.e.,f(rk) is maximal
for the smallestk > i. The monotonicity off(xk) also implies the inequalities to the
left of ci in (B.4).

Analogously, ifk < i, note the negative sign and thatf(rk) is minimal for the
largestk < i. The monotonicity off(rk) also implies the inequalities to the right of
ci in (B.4).

168



The following result immediately leads to an efficient algorithm by backward induc-
tion:

Proposition 1. Assumec(A)
i is the optimalk-removal subset ofS, i.e.,A ⊆ S with

∣A∣ = k, si /∈ A and such that

c
(A)
i = max

∣K∣=k,si /∈K
c
(K)
i .

Denote the indices of the elements fromA in S by a1, a2, . . . , ak and let them be
ordered such thata1 < a2 < ⋅ ⋅ ⋅ < ak. Then:

(i) If i+ k ≤ m thenaj = si+j for all j.

(ii) Otherwise, letj = m− i. Then

a1 = m− k, a2 = m− k + 1, . . . , ak−j = i− 1

and
ak−j+1 = i+ 1, ak−j+2 = i+ 2, . . . , ak = m.

Proof. This follows immediately from Lemma 2 by induction onk.

The optimalk-removal subset enrichment score can then be found in timeO(m) by

calculating the optimalk-removal subset scoresc(K)
i , ∣K∣ = k, for all i ≤ m. The

algorithm is given as Algorithm 10.
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Algorithm 10 k-removal subset enrichment score
n,m, k, {r1, . . . , rm}, {n1, . . . , nm}

for i ∈ {1, . . . ,m} do
T ← {1, . . . ,m} ∖ {i}
for j ∈ {1, . . . , k} do
T+ = {t ∈ T ∣ t > i}
if T+ ∕= ∅ then
t0 ← mint∈T+

t
else
T− = {t ∈ T ∣ t < i}
t0 ← maxt∈T−

t
end if
T ← T ∖ {t0}

end for
R← {1, . . . ,m} ∖ ({i} ∪ T )
Ri ← {1, . . . , i− 1} ∖ T

ci ←
∑i

j=1
rj−

∑
j∈Ri

rj
∑m

l=1
rl−

∑
j∈R rj

− ni−i+∣Ri∣
n−m+k

end for
return max1≤i≤m ci
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Appendix C

Fantom User Manual

Name Frequent pAtterN Tree-based Ontology Miner (FANTOM)

Description Fantom mines gene sets and combines them with ontologies,
e.g., GO and KEGG, as well as interaction data, to find interesting
combinations of ontological concepts

Inputs Ranked gene list
Score function
Minimum participation threshold
Minimum score threshold

Outputs Clustered list of rules, whereby a rule is a set of identifiers
described by a conjuction of ontological concepts accompanied by
a score that indicates its interestingness. Example:

Score: 0,552
Participants: [set of identifiers here]
All genes in the subgroup have the following properties:

biological process(positive regulation of apoptosis),
KEGG pathway(Signaling Molecules and Interaction)

Features Interaction rule generation
Rule pruning and clustering
Control over ontology specificity
Available as web service
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Manual

In this appendix we present a user manual for the Fantom application, which is a
graphical user interface (GUI) for the Fantom web service. Note that all inputs in the
GUI are the same as for the web service, and are merely collected and forwarded
to the web service. The GUI is presented in Figure C.1, and consists of seven parts,
which will be discussed below.

Figure C.1: Screenshot of the Fantom GUI for Windows

Section A

Section A contains all inputs related to global experiment settings, which consist of
the following inputs:

∙ Experiment Type
The experiment type indicates what type of experiment is being conducted.In
case of Figure C.1 it would be a Gene mining experiment. The experiment type
determines which ontologies can be selected, which key types can be used,and
which species can be selected.

∙ Species Code
The species code indicates what type of species or organism is being studied in
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the experiment. The name species is very specific for the life-sciences domain,
but its function remains the same across all domains. For different speciesthere
can be different instances of the same ontology, or different mappings toon-
tologies. The species code, or entity code to be more general, helps to select
the correct mapping or ontology instance.

∙ Snapshot
Mappings, interaction data and ontologies are subjective to change and up-
dates. To support automatic updating, a service was created to update all on-
tologies and mappings daily, while saving old versions in backup folders. If
the user needs to recreate an experiment, the date of the experiment can bese-
lected in the snapshot field, so that the correct mapping and ontology versions
are selected.

∙ Key Type
There can be multiple names associated with an identifier in a ranked list. For
example, genes can be identified by an ENTREZ identifier, a HUGO Symbol
designation or various other names. Since the Fantom service prefers to keep
one single identifier type for each domain, other identifier types can be mapped
to this domain identifier. By selecting the correct key type that is used in the
ranked list, the correct mapping to the domain identifier can be selected.

Section B

Section B contains the user-defined inputs for the ranked list location and the target
location of the output file. Upon starting the experiment, the ranked list will be loaded
and transferred to the web service.

Section C

Section C contains all experiment-specific parameters. These include:

∙ Analysis Profile and Iclass
The analysis profile indicates if the experiment is a single-class experiment or
a multi-class experiment. In case of a multi-class experiment, all class labels
are listed in the Iclass list, where the user can select the class of interest.

∙ Score Function
The score function parameter allows the user to select the score function for
scoring rules. By default the Enrichment Score function is selected. Notethat
the analysis profile influences the score functions that can be selected.

∙ Ontologies and Prune Factor
In the Ontologies list, all ontologies compatible with the experiment type are
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listed, and the user can select one or more that need to be involved in the
experiment. After that, the user can insert the prune factor, which determines
the relative minimum depth that the ontological concepts within an ontology
must have in order to be viable to participate in the experiment. This number
ranges between 0 and 1, whereby 0 allows for all concepts to be considered,
while 1 allows only the leaf concepts to be considered.

∙ Internal Combining
The internal combining option allows the user to generate rules that contain
multiple entries of the same ontological predicate. If this is option is unchecked,
each rule may only contain at most one concept of each predicate. Leaving this
option unchecked is a good way to explore the rule space first, and to tweak
thresholds before performing a more detailed experiment.

∙ Generate Interactions
This option allows the user to generate interaction association rules instead
of direct association rules. Note that checking this option considerably slows
down an experiment, and requires more memory.

∙ Participation and Score Cutoff
These thresholds allow the user to put constraints on the generated rules.The
participation threshold allows the user to set the minimum number of identifiers
per rule, while the score threshold gives the user some control over the quality
of the rules that are included in the output.

Section D

Section D provides feedback on the loading phase of the Fantom service.The first
progress bar indicates how the loading of all files that Fantom depends on(ranking,
identifier mappings, interactions, ontologies) is progressing. The secondprogress bar
indicates the progress of associating identifiers with ontological terms. Sincein Fig-
ure C.1 the experiment type is set to ”Genes”, the label indicates the progress of
associating genes to ontological concepts.

Section E

Section E contains most feedback statistics for the experiment part of the Fantom
service. A number of statistics are presented to the user:

∙ Epoch
The epoch denotes the number of iterations that have been done in the main
function of the Fantom service. It also indicates the number of conjunctionsof
terms in the rule candidates that are generated at that time.
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∙ Rules Generated
The total amount of rule candidates generated so far.

∙ Generation
A progress bar indicating the progress of rule candidate generation in thecur-
rent epoch.

∙ Analysis
A progress bar indicating the progress of scoring the rule candidates generated
in the current epoch.

∙ Pruning
A progress bar indicating the progress of pruning the rule candidates generated
in the current epoch. Note that this bar will go from 0 to 100% twice; first
for the horizontal cohort pruning stage, and then for the longitudinal cohort
pruning stage.

∙ Iteration and Total Iterations
These are numerical representations of the progress bar of the activestage,
being either generation, analysis or pruning. It is meant to be extra feedback
for the user to see exactly how many elements need to be handled in a stage,
and how many have already been dealt with.

∙ Rules Pruned and Pruning Ratio
The rules pruned field indicates how many of the generated rule candidates
have been pruned so far. Reasons why rules are pruned is that they lack suffi-
cient identifier support, that they do not have an score that is high enough, or
that a more specific rule with a higher score has been generated. The pruned
ratio is the ratio of rule candidates that have been pruned with respect to the
total amount of rule options generated.

Section F

Section F contains a field in which additional feedback is provided for the user, such
as error messages or warnings.

Section G

Section G contains the control buttons. They allow the user to start an experiment, or
cancel it when it is running.
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Part V

Miscellaneous
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Samenvatting

In dit proefschrift onderzoeken we hoe technieken en nieuwe ontwikkelingen binnen
de software engineering gecombineerd kunnen worden met data mining en knowl-
edge discovery, om prestaties van deze activiteiten te verbeteren en hetontwerp van
een experiment te vergemakkelijken. Om de lezer in te leiden in beide kennisvelden
presenteren we in Hoofdstuk 1 en Hoofdstuk 2 een algemeen overzicht van software
engineering en data mining en geven een overzicht van de belangrijkste technologien
die in dit proefschrift aan bod komen.

In Hoofdstuk 3 bespreken we hoe data mining, databases en patternbases kunnen
worden gentegreerd en gecombineerd tot inductieve databases. Daarbij presenteren
wij modellen voor data-integratie en voor het efficint zoeken in en combineren van
data binnen inductieve databases, en beargumenteren hoe en waarom web services
goed zou passen binnen het kader van inductieve databases. We bespreken enkele
experimenten die illustreren hoe een inductieve database werkt, en hoe knowledge
discovery kan worden toegepast op een efficinte en zelfs gedistribueerde wijze.

In Hoofdstuk 4 bespreken we hoe web services passen in het kader van scientific
workflows. We vergelijken het ad-hoc geconstrueerde procesmodelmet het service-
oriented georkestreerd procesmodel, en wijzen op de voordelen van laatstgenoemde.
Verder presenteren we een model voor het ontwerpen van service-oriented work-
flows, evenals voor het ontwerp van individuele services. Dit model testen we ver-
volgens in een reeks experimenten.

In Hoofdstuk 5 passen we de kennis opgedaan in de eerdere hoofdstukken toe op
de Fantom service. Deze service gebruikt subgroup discovery om subgroepen te vin-
den binnen een set van gerangschikte elementen, die elk een score hebben toebedeeld
gekregen. De subgroepen van elementen worden beschreven door conjuncties van
ontologische concepten en een score om de mate van interessantheid aan tegeven.
Vervolgens tonen wij in een aantal experimenten aan hoe de service presteert op het
gebied van snelheid en hoe nuttig en interessant de behaalde resultaten zijn.

In Hoofdstuk 6 wordt beschreven hoe de Fantom service gecombineerd kan wor-
den met statistische permutatie-technieken. We tonen aan dat door het uitvoeren van
meerdere iteraties van de Fantom service op permutaties van de invoer meer regels
achterwege gelaten kunnen worden voor de originele invoer. We tonen ook aan dat
door de combinatie van Fantom en permutatie-testen nauwkeurigere drempelwaarden
verkregen kunnen worden in het geval van multi-class problemen.

In Hoofdstuk 7 bespreken we de eerste toepassing van de Fantom service. We
bespreken experimenten die zijn uitgevoerd op microarray expressie dataverkregen
van muizen met cardiale overexpressie van de transcriptiefactor TBX3. We voeren
meerdere experimenten uit, en voor elk van deze experimenten besprekenwe de
prestaties en de resultaten. Waar mogelijk hebben we ook de resultaten vergeleken
met de uitvoer van de DAVID tool.

In Hoofdstuk 8 passen we de Fantom service toe op gegevens die afkomstig zijn
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van een single nucleotide polymorphism onderzoek gedaan op menselijke depressie.
Wij voeren twee verschillende soorten experimenten uit en presenteren prestaties van
de Fantom service voor beide, alsmede statistieken voor regels en clusteren.

Naast de voorgenoemde acht hoofdstukken kent dit proefschrift ook drie appen-
dices. In Appendix A bespreken we het formaat van de diverse inputswaar Fan-
tom van afhankelijk is. We bespreken de formaten van de inputlijsten, associatiebe-
standen (”mappings”), ontologieën en de interface van de score-functies. In Appendix
B presenteren we de wiskundige achtergron van het Enrichment Scorealgoritme. We
definïeren de wiskundige eigenschappen en presenteren een algoritme om de maxi-
maal mogelijke score voor een subset van een regel te berekenen. Afsluitend presen-
teren we in Appendix C een handleiding voor de Fantom service.
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