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Chapter 1

Introduction

Ever since scientists recognized computers as an invaluable suppddrttair re-
search there has been a rapidly increasing demand for technologiesl|oator
more data to be gathered, stored, and processed. Statistics in the pastgested
that worldwide data volumes are doubling every two to three years [L\&OBgsti-
mate which is still reasonnably accurate today, even more so for the scientific
munity, where gathering huge amounts of data seems to be more the rule than an
exception.

The advances in computer science technologies gave rise to a paradfigim sh
the way we perform and think about research. No longer do experimentsto be
conducted in dypothesis-drivefashion only, where a scientist has an idea, formu-
lates a hypothesis, and tries to validate by experimenting. Rather, thetdverehis
perform science in data-drivenway; the scientist collects as much data as possible
on a specific problem environment, looks for emerging patterns, intetpexts pat-
terns, and relates them to the current knowledge.

While this new paradigm certainly has its conveniences, it also has its share o
problems and difficulties, some of which are solved, some that still needrjbstite
lutions. One of those problems is referred to asdi explosiona dramatic growth
in the generation of data. This was especially noticeable in medical and ahysic
sciences, where measurement equipment emerged that had highetiorsand
more sensitive measurement capabilities, thereby able to generate antiatsiee
amounts of data.

As more and more data is being generated and gathered, the demandjfanpso
and algorithms that can help interpret this data also grows. Since data vahomes
span gigabytes or even terabytes, analyzing this data becomes a tasbutdatat
be done without the help of a computer. Moreover, traditional methodsatyzng
data such as statistics do not always suffice anymore, since statistic$ extnact
hypotheses from data. The demand for such possibilities has given &sete field
of research in computer science call2ata Mining, more formally known a&nowl-
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edge Discovery in Databasé<DD) [FPSS96].

KDD is the process of applying various methods from scientific fields sach a
artificial intelligence, statistics and data processing to data, with the intentiam of u
covering hidden knowledge or behavior [KS05]. In this context, the tarawledge
refers to patterns, which are bits of information that summarize a larger totiec
of data. As data collections grow bigger, these patterns become more im@ortan
form hypotheses within the data-driven paradigm.

Given that the size and variety of machine-readable datasets havesedcdra-
matically, it seems likely that an equal, or at least proportional increas@oégsing
power is necessary to perform data mining on such gigantic collectiongrpgbat
goes beyond a single machine. As a result, new technologies have hedrpaé to
allow parallel and remote computing, using multiple computers to work together on
a single task or problem.

In this thesis we investigate how relatively new techniques in software esrgine
ing can help improve knowledge discovery (KD) in terms of performanckease
of design and use. We use a paradigm calevice orientationwhich is a relatively
new technique to perform distributed computing, and demonstrate howediffap-
proaches to KD can be assisted by this technique. We further demonstresetvice
orientation can speed up the creation of KD experiments as well as theirtexec
and improve KD results.

The rest of this chapter is organized as follows: in Section 1, we prasentiva-
tion for our research and our specific use cases. In Section 2, wegigverview of
this thesis, briefly describing each chapter. Finally, in Section 3. we radést of
the author’s publications, whose combined effort forms the foundatitmothesis.

1.1 Motivation

When the author started his research, the project was about resganctuctive
databases, thereby finding efficient ways to store, retrieve and minataradd pat-
terns. These inductive databases were to be used in a biological orfdiovatics
setting, meaning that the research was directed especially to the problerde-and
mands of these fields, such as dealing with huge amounts of (possibly desdréond
heterogeneous) data, as well as making these databases user-fiemaiy for bi-
ologists and bio-informaticians.

As more research was conducted on the problems and challenges of the bio
informatics field, the research questions slightly changed. It becametloégar sin-
gle inductive database would not suffice for research problems in thiefoionatics
field, certainly not for microarray and other genomics experiments, amncktepch as
remote processing and concurrency became integral to the researalreéult, the
focus shifted from inductive database technology and researchhwizs already
being researched by multiple institutes at that time, to applying software enginee
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ing technologies that supported remote and concurrent processiitdy wbuld al-
low for faster experimentation within different methods of KD, including irtékec
databases.

As the search for software engineering technologies progresseekatie ap-
parent that service orientation, a relatively new paradigm within the sadtesmagi-
neering community, was best suited for the new research focus, lestpogentially
fulfilled all the desired criteria, and because other upcoming technologiks Ino-
informatics community started to make use of service orientation as well. Therefo
it seemed more important than ever to explore service orientation in this caspext,
timizing it for fast experimentation as well as ease of use.

The explorations of service orientation needed to be approached frosides.
On one side, the author wanted to present some guidelines and bestgsraatitow
to use service orientation in the design of two different KD methods that vesge
actively researched at the time, inductive database and scientific waski@n the
other side, the author wanted to take a critical look at current technolthgieactu-
ally used service orientation and web services, which is the standard thatestly
used most, and see how and where they could be improved in terms ofnpainice
and efficiency.

A final yet vital part was to create or improve an application set in the biotogy
bio-informatics context, as well as finding suitable data to experiment oradther
came across the work of Igor Trajkovski and Nada Lavrac, who lo#dworked on
an application that performed subgroup discovery on genes, and afieevto offer
it as a web service. It seemed as a good start to apply the author’scteseaservice
orientation. The author began by re-implementing the original application ushg
services, and gradually modified and extended it into the Fantom sentideh V8
the web service that combines the author’s research on web servitdatanmining
in bio-informatics.

Since the author wanted Fantom to be generic, making it suitable for a rénge o
problems and problem domains instead of specific ones, the author wastgapturt
a range of data sources. Therefore, one use case is a microgoerymant, and the
other one is a Single-Nucleotide Polymorphism experiment. While both areedfiffe
experiments, the Fantom service can work with both, since the outcome oftbe e
iments can be transformed into a ranking of unique entities, or identifiers, eates
attached to them. Note that despite the fact that our research is primarigntoated
on biology and bio-informatics, the Fantom service is generic enough &t reany
domain, as long as a ranked list of items and ontologies are available, assveell a
mapping between the items in the list and ontological concepts.



1.2 Thesis Outline

Analoguous to its subtitle, this thesis has been divided into three parts:gtomns|,
implementations and applications. The first part, foundations, coversechdh 3
and 4. These chapters explain basic techniques and terminology, aeehipdéfer-
ent viewpoints on data mining that have been proposed and researchegast few
years. In these chapters we investigate how service orientation coulfibmeven
improve, different data mining viewpoints and techniques.

In Chapter 2, we discuss the basics of software engineering, theyelssing on
software reuse. We present a short history and demonstrate howeithéonsoftware
reuse has driven the software engineering field to its current statdstdvgiscuss ser-
vice orientation, the central paradigm of this thesis. Next, we discuss tteepbof
data mining, providing definitions and relations to other scientific fields, agsepit
an overview of how a data mining process typically works. We also giverarview
of subgroup discovery, and briefly discuss distributed knowledgewdisy.

In Chapter 3, we investigate inductive databases. We present a frakntdwab
combines data mining, patternbases and databases into an inductive elaidbels
is a database that supports data mining in its query language. We promige de
principles for inductive querying and a framework for the fusion of bases and
patternbases to transparently form an inductive database. We alsentpsesnarios
to demonstrate how inductive databases benefit knowledge discovkgivera con-
crete example showing an advantage of mining both the patterns and theiallg, F
we theorize on how service orientation can fit within the suggested frarkeyamd
what improvements are possible.

In Chapter 4 we investigate how the service-oriented paradigm beneditd-kn
edge discovery in scientific workflows. We compare the non-serviested, con-
structed process model with the service-oriented orchestrated pnoweksd, and
point out the benefits of service-oriented technology in scientific wonlsflAfter
that, we propose a guidance model for the design of a service-orientedddge
discovery process, and provide guidelines for individual knowledigeovery ser-
vice design based on the types of functionalities it requires. We also pravicge
case to show the application and benefits of the proposed model and gegdialin
practise.

The second part, implementations, covers chapters 5 and 6. Theserslzapte
technical in nature since they provide implementation details on the Fantomeservic
as well as an overview of the applications using the Fantom web servicev¢nat
created for the optimization of rule pruning and threshold determination.

In Chapter 5 we discuss the Fantom service. We give insights into its imple-
mentation, providing algorithms used in all the phases of rule generatiorelhasv
algorithms that handle rule pruning and clustering, and ontology creatieral¥d
discuss the diverse inputs that the Fantom service expects, what lsndraig mea-
sures it calculates, and what kind of output it delivers. To illustrate tHeqmeance of
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the Fantom service, we also present some statistics concerning speriiegmain-
ing, which were collected by applying the Fantom service to a well-knowtigpub
microarray study.

In Chapter 6 we continue our discussion on the Fantom algorithm by emigeddin
it into larger workflows. We present two applications that use multiple instaote
the Fantom service simultaneously to perform rule optimization and thresheld ca
culation of multi-class problems. We use the principle of statistical exact tesithg a
perform distributed computing with Fantom to further prune rules in the owput
Fantom. To illustrate the effectiveness of the distributed application of Fantem,
performed another experiment on the microarray study used in Chagted Show
how effective exact pruning can be on top of the pruning performedarFgntom
service.

The third and final part, applications, covers chapters 7 and 8. In thegeers
we discuss the application of the Fantom service on several life-sciextaesdlts,
with various settings. In each chapter we discuss the biological backdsaf the
data set, and the study that it was part of. For each of the experimentsated, we
discuss primarily performance of rule generation, pruning, and clugtealthough
we provide the experts’ opinions on the resulting rules in lesser detaillas we

In Chapter 7 we perform experiments using the Fantom service on miaycea
pression data obtained from samples taken from mice with cardiac ovessigun of
the transcription factor TBX3. We briefly discuss the biology of genesg@mbmes,
and provide information on the mouse heart study and microarray teclynahésy
perform multiple types of experiments, and for each of these experimerapphe
exact pruning on the results. Finally, we present performance measote on all
experiments, as well as pruning and exact pruning statistics.

In Chapter 8 we perform experiments using the Fantom service on dataehat
obtained from a Single-Nucleotide Polymorphism (SNP) study done on hdetan
pression. We discuss what SNPs are, and why they are important. Wdisdsgs
the human depression study, and give background information on huepagsgion
where relevant. We conduct two different experiments on the data sstalde. In
one experiment we let Fantom mine the SNP rankings directly, and in another e
periment we let Fantom mine on gene rankings that were extracted fronrNiRe S
ranking. We present performance measurements of the Fantom senvimaH sets,
as well as pruning and clustering statistics.

Apart from these eight chapters, there are also three appendidgspémdix A,
we discuss the formats of all the mappings and data sources that the Fantice s
relies on. These include interaction mappings, key mappings, ontology ngapaid
the ontology format itself. In Appendix B, we present the mathematical vaakds
of the Enrichment Score function. We define its mathematical propertieprasent
an algorithm to calculate the maximum potential score for a certain subgraupfsiz
arule. Finally, in Appendix C, we present a user manual of the Fantoiicappn.



1.3 Publications

The chapters 3, 4, and 5 of this thesis are based on the following publigation

Chapter 3

For chapter 3 we used two articles that are both concerned with induetisbakes.
For the first part of the chapter we used the following paper:

Jeroen S. de Bruin and Joost N. Kok

Towards a Framework for Knowledge Discovery

In the Proceedings of IFIP PPAI 2006, pages 219-228
Santiago de Chile, Chile, August 2006

In this paper we proposed a general architecture for the implementationlut-in
tive databases through combination of existing technologies. We also gaghtm
on how inductive databases could be combined with grid computing to actfeve e
cient and fast knowledge discovery. For the second part of theahae used the
following paper:

Jeroen S. de Bruin

Towards a Framework for Inductive Querying

In the Proceedings of ISMIS 2006, pages 419-424
Bari, Italy, October 2006

In this paper we discussed the lower level querying and fusion compaorae in-
depth. We also showed how inductive databases could speed up datapnatagses
through the use of constraint-based mining, where the constraints wareddieom
existing patterns.

Chapter 4

In chapter 4 we address issues in service-oriented computing, theralgsing on
service-oriented knowledge discovery. For the first part of the tehape used the
following article:

Jeroen S. de Bruin, Joost N. Kok, Nada Lavrac and Igor Trajkovsk
Towards Service-Oriented Knowledge Discovery: A Case Study
ECML/PKDD 2008, SoKD Workshop Proceedings, pages 1-10
Antwerpen, Belgium, September 2008

In this paper we examined the differences between knowledge discprargsses
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that are constructed and orchestrated, or composed. We outlined tlieiemniies,
weaknesses and strengths. and indicated how web services could énguohes-
trated knowledge discovery processes. To illustrate these benefitspargrneented
with different web service implementations and presented a comparison iexeeir
cution times. We also indicated weaknesses of the workflow model thatchezte
addressed to optimally accommodate data mining processes. For the sedasfd pa
the chapter we used the following paper:

Jeroen S. de Bruin, Joost N. Kok, Nada Lavrac and Igor Trajkovsk
On the Design of Knowledge Discovery Services:

Design Patterns and Their Application in a Use Case Implementation
In the Proceedings of Isola 2008, pages 649—-662

Porto Sani, Greece, October 2008

In the second article we took a more theoretical approach to data mining with web
services. We presented a model for the design of the data mining pracasshmle
based on availability of other services as well as functional and relatienaire-
ments. We also presented design patterns for the design of individuadeserAs a

use case, we used an existing solution for a gene mining problem andtraasdf

it into a workable web service solution using our model and design pattanas,
showed how efficiency, interactivity and performance was increased.

Chapter 5

Chapter 5 was based on a single publication that summarized the Fantone servic
This article was:

Jeroen de Bruin, Nada Lavrac, Joost N. Kok

The Fantom Service for Subgroup Discovery in Score Lists
ECML/PKDD 2009, SoKD Workshop Proceedings, pages 52—63.
Bled, Slovenia, September 2009

In this article we discussed the Fantom service, including inputs, sconugidns,
the use of ontologies, output and internal functionalities and optimizationglef r
generation and rule pruning. To show how the service performed andeteug indi-
cation of the effect of optimizations in pruning, we performed experimentsibfic
genome datasets to indicate how many rules were pruned, and what tti@e#ach
optimization was in both speed and rule pruning.



Further publications

The author of this thesis was also involved in a number of other publications:

Jeroen S. de Bruin, Tim K. Cocx, Walter A. Kosters,
Jeroen F. J. Laros and Joost N. Kok

Data Mining Approaches to Criminal Career Analysis
In the Proceedings of ICDM 2006, pages 171-177
Hong Kong, China, December 2006

Yanju Zhang, Jeroen S. de Bruin and Fons J. Verbeek

mMiRNA Target Prediction Through Mining of miRNA Relationships
In the Proceedings of BIBE 2008, pages 1-6

Athens, Greece, October 2008

Yanju Zhang, Jeroen S. de Bruin and Fons J. Verbeek
Specificity Enhancement in microRNA Target Prediction
through Knowledge Discovery

In Machine Learning, (ISBN 978-953-7) (In Press)
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Chapter 2

Background

In this thesis we take a software engineering approach to knowledgeseligcex-
ploring and applying technologies and trends in software engineeringrawdedge
discovery, and combining them to improve the performance and easeigh dés
knowledge discovery experiment. We present a general overviewfoiae engi-
neering and data mining and give an overview of the main technologies utfed in
thesis as well.

2.1 Introduction

This chapter is organized as follows. In Section 2, we briefly discussvabésic
concepts of software engineering, thereby focussing on softwase réve present a
short history and illustrate how the need for software reuse has infdehe soft-
ware engineering field. In Section 3, we discuss service orientatiogpyexplain-

ing terminology and common techniques. We also give examples of sudogssfu
service architectures. In Section 4, we discuss the concept of data ngniegts
definition and illustrate how various scientific fields contribute to it. We also @ive
overview of how a data mining process typically works, and give an éserof the

most common classes of data mining algorithms. Next, we discuss a specific data
mining field called subgroup discovery. We discuss its qualities, and the common
theory and techniques that it is based on. Finally, in Section 5, we brieftystis
distributed knowledge discovery.

2.2 Software Engineering

The development of software has never been a trivial task. At the miegiof soft-

ware programming, difficulties were mostly related to computer hardware limita-
tions; programming a piece of software was a challenge due to limitations in memory
size and processing power. At that time, experts held the opinion thangsuters
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would grow in power, programming would no longer be a problem. As it tutris o
the opposite appeared to be true.

As predicted, rapid advances in computer hardware technology led tealizar
tion of increasingly powerful computers. This, in turn, led to a demand feas-
ingly larger and more complex software systems. However, as softwstensy grew
in size, they also grew in complexity, and eventually became too complex for their
creators to be fully understood. As a result of this lack of understandoftyvare
systems became unmanageable, were frequently over budget, appegréde on
the market and were often of poor quality. This was deemed the softwsis cr

"The major cause [of the software crisis] ... that the machines have
become several orders of magnitude more powerful! To put it quitelipiun
as long as there were no machines, programming was no problem at all;
when we had a few weak computers, programming became a mild prob-
lem, and now we have gigantic computers, programming has become an
equally gigantic problem.[Dij72]

In order to counter the crisis, the first NATO conference on Softwangirieering
was held in 1968. The term software engineering was relatively unkilogm and
the intention of the conference was to force a paradigm shift in softwarelajp-
ment, from a mere craft to a full-grown engineering discipline, hence thieetdate
(perhaps even provocative) use of the term software engineetiegzdnference was
a success in that respect: the term software engineering became pplihaidely
used.

Software engineering is defined as the application of a systematic, disciplined
guantifiable approach to the development, operation, and maintenanciwdreo
that is, the application of engineering to software [ABI#]. The goal of software
engineering is to develop and apply techniques that make it possible to bighate
quality software with greater ease and efficiency. In short, it is the missithe goft-
ware engineering field to provide the silver bulléat puts an end to the enduring
software crisis.

In the decades following this historical conference, the software eagiefield
turned its attention towards the formation of the Software Lifecycle Prottesas
argued that in order to improve software, a full and thorough undetistquof soft-
ware and the software lifecycle was necessary. In 1970, Roycegedphis waterfall
model [Roy70], in which the software lifecycle process is viewed as flgwteadily
and discretely through the phases of requirements analysis, design, im¢omg
validation and testing, integration, and maintenance. Consequently,alegetre re-
lated domains of project management, requirements engineering, andrpromy
and design methodologies also received an impulse.

The term silver bullet was first used by J.R. Brooks Jr [Bro87]. Hagared a software project to
a werewolf; both change from familiar, everyday things into true heriman eyewink. According to
ancient folklore and Hollywood movies, silver bullets are the only possiblete kill a werewolf.
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Especially research on methodologies proved to have a profound iodwerthe
modern day technology. It resulted in concepts that are widely applied iemaoldy
programming practices. Dijkstra proposed the structured programming nodthgd
a programming methodology that states that programs should be split up intorsmalle
parts, each with a single point of entry and of exit [DDH72]. In that saered, Par-
nas proposed the Parnas Module [Par72], adopting the methodologipwhation
hiding. Information hiding concerns itself with hiding of design decisions inra
puter program, especially those that are most subjective to changéytishiielding
other program parts from change.

Research on design methodologies also provided some well-known heitps
that are used today. Perhaps the best-known methodology in this areaditreof
high cohesion / loose coupling, proposed by Yordon and ConstantiG&g) They
argued that programs should have a structured design of moduleg adr mod-
ule has a clear and distinct meaning in the program, containing functionsréhat a
strongly related to each other (high cohesion). Furthermore, moduletdshat be
connected too strongly to other modules, thereby containing the effebtofje in a
module (loose coupling).

Driven by the research successes in programming and design methedplog
new high-level programming languages began to appear that inconptinate best-
practices, including well-known programming languages such as Pasté.&ro-
gramming and design paradigms also shifted more towards object-orientgdpro
ming and design.

In the decade that followedhbject orientation(OO) became the predominant
paradigm in the software engineering community. The community’s great$hiare
OO resulted in the creation of OO programming languages like C++ and Jala, a
OO design methods [Bo093, Jac92, RE0], which in their turn led to the cre-
ation of the current de-facto modeling standard: UML [RJB04]. For a tinsegemed
that OO was the solution to the software crisis. Unfortunately, it was nétqieret:
although OO proved to be an improvement in many aspects of software engine
ing, there were still some issues that needed to be resolved. Thus a resigpa
emerged: component orientation (CO).

Although intended to be highly reusable, large scale reuse of classesaoweyv
curred. A reason why classes are not very reusable lies in the fadh#éhyahave a
technical nature. Often, collections of classes provide a certain fuaditigrand the
role of an individual class within that collection is unclear to anyone other the
class implementor, which greatly restricts its (re)use.

After having studied the problems of technical reuse, the CO paradignoneas
ated to overcome them. The paradigm sets guidelines for software contpdiman
are meant to maximize their reusability. Reusability is the ability and the extend to
which a software system or parts of a software system can be reusibeirsoftware
systems. The increased reusability of software components makes thegsibte
and more attractive to a large public, allowing for reuse on a much largkr. gea
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a result, rapidly expanding component markets have formed over theVastears
[BBCD™'98], indicating that components succeeded where object technology. faile
Since components are meant for reusability, they have well-describethagsr
that allow for reuse and composition with other components, thus composition of
components into systems is also easier and faster than the creation of systems.
exactly these properties, its composability and uniform accessibility, that ccexle
ponent orientation become the basis for services and the service-dnmmligm.

2.3 Service-Orientation

The service-oriented (SO) paradigm is a paradigm that specifies tige desl imple-
mentation of software through the usesefrviceswhich are connected to each other
and interact together in @ervice-Oriented ArchitectuSOA) [Gro07]. A SOAis a
distributed architecture that allows a user to build an application by meansmf co
posing individual components that exist across separate (physiogical) domains.
These components are called services [HD06]. We will first discusgssrand then
we continue to discuss the broader SOA framework.

2.3.1 Services

We define services in the SO paradigm as follows:

Definition A serviceis an encapsulated unit of clear and distinct functionality, inde-
pendent deployment, designed for orchestration, that communicates totaigh
contractually specified interfaces, and only has explicit dependencies.

We now discuss each part of this definition individually:

A service is an encapsulated unit

To control access to a service, and to protect it from (potential malicmus)de in-
terference of its functionalities, a service is encapsulated. Encapsukfanecha-
nism that shields the internal properties of a software unit, so that theyaderectly
observable or accessible by outside clients. In services, two typesajisulation are
required:

e Implementation encapsulation
Implementation encapsulation, also known as implementation hiding, is a good
way to protect a service from outside modifications. Functions suppoytad b
service are black-boxes; only their external characteristics are visitiheir
users. These external characteristics comprise of its interface asdriptien
of its functionality, and both should be well-described by the service’s meta-
data description standard.
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e State encapsulation
State encapsulation, also known as state hiding, is the protection of theeservic
from uncontrolled outside deregulation. To ensure this, a service s¢atas s
less from the outside. A service can only be identified by its name and location
and, as a result, cannot be distinguished from its copies (a similar definition
holds for software components. Szyperski called this "nomen est omvaith
means "the name is the sign” [SGMO02]).

A service is a unit of clear and distinct functionality

Adhering to the Parnas module principle, a service should not contain atamilef
random functionalities. Rather, each service within a broader systemdshave its
own unique role, providing clear and well-described functionalities. Nodifferent
services within a system should provide the same functionalities. A similar argume
can be made for data mining, where distinct services should offer similetidmal-
ities in terms of process and type of knowledge discovery (e.g., no twdftdatien
services should perform the exact same classification).

A service is a unit of independent deployment

A service’s design and implementation may depend on functionalities provydési b
context (i.e., other services), but not on the implementation of these fualties.

For example, a service using another service which provides a quduattmnality

may make no assumptions about the implementation of the queueing algorithm. This
restriction ensures that a service is a separate, self-contained entiggytlaeoiding

that a service is assimilated into the system, breaking when implementations of other
services change.

A service is a unit designed for orchestration

In the SO paradigm, applications are constructed by orchestrating setogether
in an application or framework, whereby orchestration is the automatetyameent,
coordination, and management of services. Although a software systelreccom-
prised of a single service, typically it is a combination of diverse servicelses-
trated together to provide some joined functionality. This means that a seinadokils
always be able to be integrated into a larger system, provided that all etlvéres in
the system use the same orchestration and communication protocols. Thecegerf
of a service function as connection points for other services.

A service communicates solely through contractually specified intéaces

An interface is an access point for functionality, consisting of a set wietkopera-
tions accompanied by the semantics of each operation. A service can bataclie

15



an implementor of an interface, depending on the class of the interface .anfyd
two classes of interfaces:

e Provided interface
A provided interface is an access point that allows other clients (i.e., other
services) to access functionalities provided and/or implemented by theeservic

e Required interface
Arequired interface is an access point for the service itself, enablingéiess
external functionalities (thus functionalities not implemented by the service
itself), which it needs in order to function properly.

These provided and required interfaces are the only means through wihser-

vice can communicate with other services, a methodology cdistyn by contract
[Mey92]. In this methodology, implementation is decoupled from a progrartes-in
face, whereby an interface is an annotation of the service’s functiorladtyserves
as a contract between the service user and the service provider.

A service only has explicit dependencies

Although services are designed to be as independent as possible, eqpenelencies,
both global and local, cannot be avoided in order to function correatlyafservice
to be usable by third parties, such dependencies must be explicitly mentiotied in
service description. These dependencies comprise of other functia#idiemust
be present within the application, but also standards concerning th@m®mént of
the application itself, such as the operating system or supported hardware

Now that we have defined what a service is, we move on to the definition of the
framework in which services function, the Service-Oriented Architecture

2.3.2 Service-Oriented Architecture

A SOA is a framework in which services are orchestrated into applicationther
services. The framework dictates protocols and standards with whiglsegcan be
embedded and orchestrated, be it locally or at a remote location. As agoemnse,

a SOA relies heavily on standards defined for communication betweenjsoayd

ery and execution of services, as well as meta-data that specifies thedards for
each service. A SOA can be seen as the next evolution of the CO paradigme,
sense that services are components that can be accessed remotdlyaadorally.

In Figure 2.2 an overview of the web service framework is presented, one of the
most widely used SOA frameworks nowadays.

2Picture adapted from IBM, http://www.ibm.com
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Figure 2.1: The web service framework

There are a few key points in Figure 2.1. First, in the service providerdager-
vices can consist of not only custom software, but also of existing sokitibhis is
possible because of the standardized messaging and interface formate {hart of
the SOA specification.

The current standard for defining web service interfaces iS\tble Service Descrip-
tion LanguaggWSDL) [W3CO01]. WSDL is an XML-based standard that describes
for each web service how the service handles incoming messages, woaf tyer-
vice it is, what kind of parameters it supports, and how the service ioteréacon-
nected to the underlying implementation.

Another area of interest are the service consumer layers. Notice {hlatadipns
are no longer constructed but instead orchestrated by putting togethedirad web
services. This composability is partly the merit of the standardized interfaoes
also because the web service architecture is message-oriented; contionribea
tween individual components proceeds through the use of uniformlyedkefires-
sages. A standard that is often used for web service message ttangpeSimple
Object Access ProtocdBOAP) [W3CO07], which is an XML-based message format
and transport protocol. Using both standardized ways of accessthghassaging
makes an application decomposable into distinct, uniformly accessible unitmef co
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putation and processing, which allows for remote computing.

Finally, the last point of interest is the central layer called the servicdsebro
layer. In this layer the interfaces of the web services are offered toahsumers
who search for their underlying functionality. For a user it is impossible tmkiine
location of each service, and similarly for a provider it is impossible to know the
location of all its potential users. To meet both demands|higersal Description
Discovery and IntegratiofUDDI) [MERO1] was designed, which is a registry for
web services offered by service providers containing all WSDL dooisneorre-
sponding to interfaces of those services. In Figuré th& web services architecture
is shown.

Service
Broker
P ! uDDY|
.'?r s
wsboL ) ‘wsbpL
SOAP *
- _

Service Service
Reguester Provider

Figure 2.2: The web service architecture

As can be seen in Figure 2.2, connection of services proceeds thaougibl ser-
vice broker. The service requester sends a requester WSDL d&stdpthe service
it needs. Within the UDDI, all WSDL documents of service providers aresdto
and based on the requester WSDL document a list of matches is sougudoif
found, the relevant provider WSDL documents are returned to the sexjuén the
final stage, the service requester sends a SOAP message to the seniderpased
on the provider WSDL document, and after processing has taken plaacestht (if
any) is returned to the service requester, also through the SOAP prdibedormat
of the return message is again specified in the WSDL document.

SPicture taken from wikipedia, http://en.wikipedia.org/wiki/Wsérvice
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2.4 Data Mining

Data mining refers to the process of analyzing data in collections of data aiming to
find patterns which are bits of knowledge that summarize parts of the data [WF99].
The primary goal of data mining is to find patterns that are novel, interestimp, a
useful. Data mining has become increasingly important and popular sinegetor
facilities have increased, and because data collections have becometisathids
impossible to analyze them without the help of a computer.

To uncover patters, data mining uses a variety of techniques that hageimoo
other disciplines such as machine learning, artificial intelligence and stattdtes.
ever, equally important is the presentation of the results, hence data minitsg is a
influenced by computer visualization techniques.

2.4.1 Data Mining Process

In general, a data mining process can be categorizedlegoriptive data miningnd
predictive data miningDescriptive data mining is used to generate rules that describe
the data set, or subgroups of that data set, in order to gain more undargtand

to formulate new theories about the data. Predictive data mining is used tagene
models on the basis of known data, to formulate a prediction or theory abaut n
data.

Originally, a data mining process was modeled as a process consisting ef thre
sequential phases: first preprocess raw data, then mine the preggdaata, and fi-
nally interpret the results [FPSS96]. Later, this model was modified anddedey
an additional three phases in the CRoss Industry Standard Procé&3astéoMining
(CRISPDM}Y process model, which is shown in Figure 2.3.

As can be seen, the process is no longer linear. Research in data midiagain
ysis of the process uncovered that moving back and forth betweerediffghases is
inevitable, and the next phases in the process to be executed deperdoniicthme
of the previous ones. Furthermore, the outer circle in the figure symbdtieeyclic
nature of data mining itself, which suits the new data-driven paradigm; datagnminin
results form new hypotheses, resulting in more business or domain taréng,
and generating new questions. Hence, subsequent data mining psosésbenefit
from the experiences of previous ones. We present a brief oveofithve individual
phases below:

Business Understanding

This initial phase focuses on understanding the project objectiveseguitements
from a business or scientific perspective, and then converting thisl&dgerinto a

“http://www.crisp-dm.org/
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Figure 2.3: The CRISPDM process model

data mining problem definition, and an initial strategy designed to achieve jibe ob
tives.

Data Understanding

The data understanding phase comprises of data collection and familiarizattion
the data, to identify data quality problems, to discover first insights into the alata,
to detect interesting subsets to form hypotheses for hidden information.

Data Preparation

Data preparation, also called data preprocessing, refers to the prafodsaning
formattingandpartitioning the data.

Cleaning is the process of removing inaccurate or missing entries in the data.
that might interfere with the accuracy of the experiment. Techniques sucttker
detection are commonly used in this phase.
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After the data has been cleaned, often it needs to be formatte@aitoe vectors
which are vectors of (alpha-)numerical features. Usually, each entopservation
in the dataset corresponds to a single feature vector. Sometimes thess vantget
very big, in which case dimensionality reduction techniques can be useduoere
their size [LM98, GGNZ06].

Finally, the complete data set is often partitioned intma#ning setand atest set
The training set is used to train the algorithm (if needed), while the test sstdsta
verify if the patterns uncovered in the training phase are valid. The acgof a data
mining algorithm indicates how effective it is in a certain problem domain.

Modeling

Modeling is the phase where the actual data mining takes place. Various ngodelin
techniques are selected and applied, and their parameters are calibrafsntzl
values. Typically, there are several techniques for the same data mioinlgprtype,

as we will discuss in Section 2.4.2. Some techniques have specific requiseomen
the form of data, which requires stepping back to the data preparatiee pha

Postprocessing and Validation

In this final step of the process, patterns generated by data mining aménexifor
accuracy and validity. In case there are training and test sets, patbepurisea in the
training set are contrasted against those resulting from the test setifdalseare
present there too. When rules are specific to the training set insteadgibtiz data
set, we call thioverfitting

When a set of statistical inferences are simultaneously considered; suich as
hypothesis tests that incorrectly reject the null hypothesis are more likelyciar.o
Therefore, rules that are attributed with statistical significance or esites such as
p-values might need to have these corrected for multiple hypothesis testimy. dfl
the methods [Abd07] are based on Boole’s inequality, stating that if orfferpemn
tests, each of them significant with probabilitythen the probability that at least one
of them comes out significant is n x p.

Finally, when all rules are validated, a formatting phase is usually used to stru
ture patterns, models and knowledge so that it is presented in a way thayitoea
understand. Often this is done by using computer visualization techniques.

2.4.2 Data Mining Algorithms

Though there have been many data mining algorithms devised over the tyeats,
of them fall into one or more of the following categories [FPSS96]:

e Classification
Classifiers attempt to label feature vectors with classes on the basis of their
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values. Classifiers are trained on the training set, and then their acdsracy

measured on the test set. Since the classes of all observations are k@&own
forehand, we call thisupervised learning

e Clustering

Clustering has a similar goal as classification, namely to group (subgrdups o
feature vectors together based on some similar entry or entries within the fea-

ture vectors. However, different from classification, classes drkenoavn apri-
ori, hence it is calledinsupervised learning

e Regression

Regression analysis is a technique that tries to find a model that fits the data,
e.g., a linear or hyperbolic function that fits all or most data points, minimizing

the total error. Regression focusses on uncovering relationshipsdeinde-
pendent variables and dependent variables, thereby creating a foodlet
entire feature vector space.

e Association learning
Association learning methods try to uncover relationships between (gofups
features in the feature vector. Rules uncovered usually have the form o
B + A, where the presence of features in graipmplies the presence of
features in grouB. These rules usually havecanfidencendication, though
other quality measurements are also used [Omi03, AY98, BMUT97].

2.4.3 Subgroup Discovery

Subgroup discoverjWro97, LKFTO04] is a data mining method that tries to find
interesting subgroups within a population of samples. It combines elemenéssitc
fication and association learning [LKFTO04] and regression; classificdio it tries
to match a property or conjunctions of properties to a certain (sub)ckssgiation
learning because it tries to generate descriptive patterns that desdripesps, and
finally regression, because it tries to identify relations between depeudeables
and independent ones.

There are also differences between subgroup discovery and dassiii Clas-
sifiers usually generate rigid models for each class, that do not allowsfarueh
flexibility in false positives as subgroup discovery does. It is also slightfgrdnt
from association learning, since the rules imply subgroups and not atbgenties
(though it can).

Patterns in subgroup discovery have the fornCtdss<+ Conditions meaning
that the description in the conditions describe (or imply) the class or subgrbese
conditions are made up of one or a conjunction of expressions that apglynem-
bers of the class or subgroup. For example, let us assume that we laeasses,
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Staylnand GoOut and three propertiéd/eather SkyandWind with diverse values.
A rule could look as follows:

GoOut«+— Weather=Sunny AND Sky=Clear AND Wind=None

In this rule it is stated that when the weather is sunny, the sky is clear aredishes
wind, then people go out.

In subgroup discovery all rules are annotated with a measurement @fstitey-
ness. In [LKFT04] theMeighted Relative Accuracy (WRAcogasurement is used,
which is defined as follows:

WRAcc(Class— Condition) = p(Condition)p(Clas$Condition)- p(Class))

As with most measurements in subgroup discovery there are two comporedrity th
to establish a tradeoff between the generality of a rule and the deviationrodtimeal
status or accuracy (also called "unusualness”). In ca¥eRAcc p(Condition)is the
generality factor, since it indicates the relative size of a subgroump@ldssCond)-
p(Class)is the unusualness measurement, indicating the difference between rule ac-
curacy and expected accuracy.

Very important in subgroup discovery is efficient searching in the sespace.
If we use a brute force method to enumerate all the different subgroaps @rop-
erties, then the total number of enumerations would be:

n n! —
Zizl (n—a)ldl — 2" -1

This means that a search quickly becomes infeasible for larger amoumtpefiies.
To counter the explosion of the search space, usually heuristics likena d®srch
are used. While this is usually more efficient, the drawback is that the sesanch
exhaustive, leaving the chance that the optimal solution is not found.

Another important factor for efficiency is result pruning, to counter ttpasion
of results and redundant information. Pruning can be done in many wayspn
the basis of fixed thresholds [KLJO3] or by using the properties of thesamement
function [Wro97].

2.5 Distributed Knowledge Discovery

Over the last few years grid computing—the use of the memory and/or ginges
resources of many computers connected with each other by a netwoikecsm-
putational problems—has received much attention. As more data beconiablaya
conventional experimentation becomes a tedious and lengthy task, ofigirimgq
hours or even days on computing a single task. To improve the speed offute
tional task, grid computing is often used. It is a form of distributed computingres
loosely coupled computers form a cluster to perform very large compushtiasks
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Figure 2.4: A graphical illustration of grid computing

on. A graphical depiction of grid computing can be seen in Figurg 2.4

Research is becoming more dependent on previous research outqmsss,
bly from third parties. The complexity of modern experiments, usually requthie
combination of heterogeneous data from different fields (physicgrestry, chem-
istry, biology, medicine), requires multidisciplinary efforts. This makes tradityuof
ane-Science infrastructurenportant. The term e-Science is used to describe com-
putationally intensive science that is carried out in highly distributed netenvi
ronments, for example experiments that deal with very large data setsgedhat
grid computing is required. An e-Science infrastructure allows scientistsliaho-
rate with colleagues world-wide and to perform experiments by utilizing ressu
of other organizations. A common infrastructure for experimentation also Istiesu
community building and the dissemination of research results. These develispme
apply to pure as well as applied sciences. Currently there are manysdfforton-
struct these infrastructure, such as the Dutch Virtual Laboratory-$oience (VL-e)
projece.

Due to the increased popularity of e-Science, scientific workflows alsarbe a

SPicture taken from the DAME project website, http://voneural.na.infn.it/gdghp.html
Shttp://www.vl-e.nl/

24



popular topic of research. We definevarkflowas a collection of components and
relations among them, together constituting a process. Components in a workflo
are entities of processing or data. They are connected by relations) edriceither
be data transport entities that coonects inputs and outputs from one cembpgon
another, or control flow entities that impose conditions on the execution ofra c
ponent. Workflows have become increasingly popular over the last éansysince
they allow a scientist to graphically construct a process of interconnéciitating
blocks, allowing for easier experiment design and easier use of distfibegeurces.
Taverna [MyGO08] is an example of a workflow designer that allows fey €aeation
of workflows, possibly with remote resources. Figure 2.5 shows an drarhia Tav-
erna workflow that can be used to obtain a daily comic from a web page.

DailyDilbertlmagePath

'-:.:'L,-I’[F:-Iut-ﬁ- :

image v

Figure 2.5: A Taverna workflow that retrieves a comic from a website

Data used in knowledge discovery is often distributed over multiple resgustech
in their turn can be spread among several different logical or phyglaaks. It is
therefore important to see how current data mining algorithms can be adaotok
with these distributions to make distributed data mining possible. This requires some
form of task scheduling and runtime weighing of options, and even idetitdficaf
parallelism possibilities within a process.

The problem stated above can be addressed in several ways. Oietwvagapt
current mining algorithms to cope with distributed data sources. Currentrdaitag
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algorithms usually address problems on a single resource, and impose \arsime
rigid structure on the input data. Relational mining algorithms, which are mining al-
gorithms specifically developed for relational databases and thus ablerktonith
several tables within a database, could prove to be a good basis foadajetation.

A second way to achieve distributed data mining is through an architecture that
supports a distributed environment, allowing the database itself to supjbiritan
nalize remote connections to other databases. In this case, the client srarihat
the requested query or process is scheduled and executed atdiffeagions, since
to the user there appears to be only one location of data storage andsgimgcét
is the task of the database itself to keep track of all connections and rencetgsac
protocols.

An important attribute of data mining on the grid is the ability to process data
mining requests on a location other than the client or the data server(sddes
some implications on the data mining application, since it must be able to evaluate
and segment operations into sub-operations that can be simultaneousgged by
multiple (distinct and/or remote) processing locations. To be able to supmbrpar-
allel remote processing, it should be addressed and internalized in thieudesirdata
mining architecture itself. The architecture should support load balankgogtams
that are efficient enough to dynamically and continuously check whetisaygtimal
to handle a (sub)operations locally or at another grid node.
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Chapter 3

Inductive Databases

In this chapter we discuss how data mining, databases and patternbadesicse-
grated into inductive databases. We propose design models for the dagtatiote
part as well as the querying part of inductive databases, and rédzstomeb services
would fit well as data mining operators within the inductive querying framkwaie
also discuss a number of use cases in which we illustrate how knowledgseligc
is performed in inductive databases, and we give concrete examplesoihé use
of patterns can improve data mining performance.

3.1 Introduction

The size and variety of machine-readable data sets have increasedickfiynand

the problem of data explosion has become apparent. Scientific discipleataat-

ing to assemble primary source data for use by researchers and emgbsg data
grids for the management of data collections. The data are typically orgainize
collections that are distributed across multiple administration domains and a&é stor
on heterogeneous storage systems.

Recent developments in computing have provided the basic infrastructdeest
data access as well as many advanced computational methods for extkactivig
edge from large quantities of data, providing excellent opportunities dta chin-
ing. Currently, data mining algorithms are separate software entities thatteddta
from databases or files, operate on the data in their own program spisigéecthe
database, and finally return results, either in afile, in a database tabjeqmdns of
a visual tool. With inductive databases, another methodology is proposed.

Inductive databasestegrate databases with data mining. In inductive databases,
data and patterns are handled in a similar fashion, and an inductive qngoatze
allows the user to query and manipulate patterns of interest [Rae02]rdlgrieese
inductive query languages are seen as extensions of current lamenyages such
as SQL or XML that, apart from atomic data operations such as insert, @daldte
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modify, also support data mining primitives. The challenge is to provide aspems
and consistent environment for the discovery, storage, organizatantenance, and
analysis of patterns, possibly across distributed environments.

This chapter is organized as follows. In Section 2, we discuss the priaaple
inductive databases and refer to related work. In Section 3, we praseinamework
for transparent data and pattern integration, and for inductive queryirSection 4,
we present two examples of inductive database usage, one wheraiativedjuery-
ing scenario will be described, another one where we will show how pattan be
used to increase data mining performance. Finally, in Section 5, we will drave s
conclusions and focus on future research.

3.2 Inductive Databases

An interesting question is how the existing data mining algorithms can be elegantly
integrated into current DataBase Management Systems (DBMS) withadtiaff
performance or restricting algorithm functionality. In order to meet thegaime-
ments, the concept of so-called inductive databases [IM96] was gedpdn an
inductive database it is possible to reason about and extract knowlexigethe
collected data in the database, as well as pose queries about inducttietyegl
knowledge in the form of patterns derived from that data. The subjecdactive
databases has received a great deal of attention lately. A lot of ceseathis field
is directed towards a better understanding of inductive databasesZRde005],
inductive querying and optimization [RJILM02, BKM98], and inductive iqukan-
guages [BBMMO04, MRBO04].

An inductive database, as defined in [Rae02], is a database thatddtaes well
as patterns as first class objects. More formally, an inductive datébaxeD, P) has
a data componen and a pattern componeit. Storing patterns as first-class citi-
zens in a database enables the user to query them in a similar manner ashdata. T
extra power lies in the so-calletfossoverqueries which contain both pattern and
data elements. In order to efficiently and effectively deal with patterssarehers
from diverse scientific domains would greatly benefit from adopting a fPaBase
Management System (PBMS) in which patterns are made first-class citizeiss.
provides the researcher with a meaningful abstraction of the data.

The process of pattern discovery can be formalized as follows: Giveer-a
tain pattern clasg’ and a data seD, find those patterng € C that are suffi-
ciently present, sufficiently true, and interesting [Meo05]. Data mining in dadn
tive database becomes a querying process, and the accuracy aridteoess of the
results, as well as the ease of finding them, depend on the expressige q@iothe
inductive query language [IV99]. To have sufficient expressgsnn the inductive
guery language, it should contain primitives for data mining, data selectienapd
postprocessing, as well as data normalization. Furthermore, it shoulircopera-
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tions for pattern definition and clustering, as well as constructs to extermglutry
language with user-made operations. A number of inductive query lgegispecif-
ically targeted at association-rule mining have been proposed [IV99, B{M

Since all required technologies are available, our idea is to modify existiag da
bases to support efficient pattern storage, and extend databases withlanenta-
tion of an inductive query language, thereby effectively transformiBiB#S into
a DataBase Knowledge Discovery System (DBKDS). Since inductivédsés pro-
vide facilities for pattern discovery as well as a means to use those pattesnghh
the inductive query language, data mining becomes in essence an inteaeiy-
ing process.

The efficiency of the data mining process also depends on the way thasdata
represented within the database, so a compromise must be made betweent effic
storage and efficient discovery. Since computer storage is becomiagerhevery
day, we are inclined to prioritize a representation that facilitates efficienbaisy
over efficient storage. Over the past few years much researchekasdone on effi-
cient pattern representation and pattern storage issues [Rae02, NB&OH8].

The studies in the PANDA projethave shown that the relational way of storing
patterns proves to be too rigid to efficiently and effectively store pattemese pat-
terns often have a more semi-structured nature. To be able to support aviety
of patterns and pattern classes, XML or variations have been exploddtiaresults
were encouraging [MP02, CMND4]. However, more recently much work has been
done on more efficient storage of patterns in relational databases EJGPO

3.3 Inductive Database Architecture

The rationale behind a software architecture for inductive databaskesisBy cre-
ating software architectures, software becomes better, lasts longevraadhs fewer
errors [BCKO03]. However, although much research has been dowarmus aspects
of inductive databases, the implementation of an inductive database bagdery
little attention, but is still vital for performance issues (which is of paramounbimp
tance not only for inductive querying, but also KD in general), andrestbdlity of the
database system (which has a huge impact on the data mining power of thviedu
database).

Before we discuss the software architecture, we first want to adtfraisthe dis-
tinction between patterns and data is not only an intuitive one: the patterrtheand
data differ in a number of aspects. Raw data usually has a rigid structhile, pat-
terns are often semi-structured. Studies in the PANDA project have dhatvstoring
patterns in a relational way can be very inefficient, due to their semi-steatha-
ture [CMM™04]. Therefore, we propose that an inductive database architebatre
has a separate database and a separate patternbase, connectsidoycaimponent

http://dke.cti.gr/panda/
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as outlined in Figure 3.1. Note that this is a general architecture, and thataies
always special cases that do not benefit from or need patterntzasee example
are distance based methods that fit quite well with relational databases'[83|H

Inductive Querying Layer

ol

PBMS Data Operator DBMS
API API
Pattern and Data

S0 Representation ol

Structures

Fusion Component

Figure 3.1: The fusion architecture

In Figure 3.1, the blue components and arrows denote data componentatand
flows, and the red components and arrows indicate functional comparahtsinc-
tional flows. Let us consider a simple scenario: the user specifies g wineh is
processed in the inductive querying layer. As we shall see later, fena the re-
quired sub-query calls are made to the fusion layer, whereby data minangtmms
are supplied, as indicated by the red arrow from the querying layer togiefcom-
ponent. From here on, the necessary data and patterns are loadeghttive APIs,
and transformed into an internal representation. Finally, in the data opecaitgpo-
nent, the sub-query is executed.

A crucial part of this architecture are the data and pattern represensatian
tures. According to [BCMO04], a PBMS should contain three layers: a npaliger
containing the patterns, a pattern type layer containing the pattern types clenss
layer that contains pattern classes: collections of semantically related patan
gardless of how a pattern is represented within the patternbase, a paeahleast
the following information attached to it:

e The pattern source, i.e., the table(s) or view(s) from which the pattern is
derived.

e The pattern functiorf, which is the procedure used to acquire the pattern.
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e The pattern parameter collectidty which is a (possibly empty) list of param-
eter values used by.

The information specified above is the minimum amount of information needed to
update patterns in case their source tables change. Changes can aathynb&tidis-
covered and handled by database triggers supported in the DBMSIgnguage, or
by registering for them in the DBMS API. Current relational databasesafit to
represent such an architecture and XML databases have beersg@udpostore and
represent patterns [MP02, CM\04]. Therefore, we prefer to use an XML database
for the patternbase. For representation of patterns in XML, currenthgdiieng stan-
dard is the Predictive Model Markup Language (PMWNIL3 data mining standard for
representing statistical and data mining models.

Apart from query execution, the fusion component is also responsibted syn-
chronization of patterns with their corresponding source data, and fimtairang
data structures that allow these procedures to proceed as efficientgsiblp. The
fusion component should implement the following pattern and data synchtimmz
operations:

e Recale(r), which recalculates the patterns in the patternbase affected by a
change of database relationaccording to specified functiofi and param-
eter valuesP over sources. The function is located and known in the data
mining layer.

e Del(r), which deletes a pattern if (part of) its sources no longer present in
the database.

Before a query is executed, first it needs to be processed in the velgeterying
layer. Currently, a few specialized inductive query languages hamefr®posed and
implemented, such as MINE RULE [MPC98], MSQL [IV99], DMQL [HF96]

and XMine [BCKLO02]. What these languages all have in common is that they a
existing SQL or XML query languages extended with data mining operatoes. W
envision a query architecture as depicted in Figure 3.2. As can be seguie B.2,

the following components are involved in the querying process:

e Query Parser
All queries posed to the system first go through the query parser, Hlezees
are parsed and examined, and individual relations, data mining operatidns
standard query types are identified and passed to the query anatiersifii
cation proceeds through matching each lexical unit (e.g., a word) in thg que
with both the data mining operation repository and the query language typing
components.

2http://www.dmg.org/
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Inductive Query Architecture

Query Language
@ s Typing

N N
Data Mining
Operation Query Analyzerand Optimizer
Repository

% Query Scheduler and Execution Handler

&l

Fusion Layer

Figure 3.2: The inductive query architecture

e Data Mining Operation Repository
All data mining operations are stored in the data mining operation repository.
Each operation should be annotated with its lexical value (for the panser) a
meta-data concerning performance and dependency indications (fanghe
lyzer) as well as required operation parameters and output type (fecliesl-
uler).

e Query Language Typing
The query language typing component tells the parser what lexical upits ar
part of the underlying query language of the DBMS and PBMS, so that the
parser can forward those segments without having to check for data mining
operations.

e Query Analyzer and Optimizer
The query analyzer analyses (sub)queries to see if they can be optifiiesg
optimizations include logical optimizations and optimizations based concur-
rent execution. To optimize data mining operations, it uses meta-data provided
by the operations repository.
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e Query Scheduler and Execution Handler
The query scheduler schedules the (sub)queries for executiondimglaon-
current scheduling for execution and choice of execution platfornalbxed/or
remote), whereby it uses load balancing to come to an optimal execution pro-
file. When this process is completed, the execution handler configuremtany
mining primitives according to its meta-data and send the operation and query
towards the Fusion Layer (either on a remote site and/or local), where itewill b
handled. After receiving all the query answers, it them all to the FusayreL
again, until a final answer is received.

As shown in Figure 3.2, the data mining operation repository is heavily invaivaiti
steps, thereby using its meta-data to support execution, scheduling @mdapon.
Furthermore, data mining operations have to comply with a global typing system in
order to achieve typing closure, meaning that the output type is alwaylssatsor
element of the input type. Since services are always annotated with teesaeg
parameters and support rigid typing schemes, we argue that servicegcailent
candidates for data mining operations in inductive databases. Mordoweh ser-
vices are used, remote computing could be achieved fairly easy, witheugha
create a custom framework.

Apart from web services as data mining operators, they can also seexeeu-
tors for other parts in the inductive querying process. For example Utk gparser
can be a service taking as input the query and the grammar of the induséinelgn-
guage, and return errors or sub-queries. This service could be impiednemotely
using a parser generator such as Bfson

3.4 Experimental Results

In this section we will present a use case scenario that illustrates howtiireluc
databases can be used. We also present several experimentstedrtduadicate
how inductive querying can speed up a KD process through conshased mining
[bou05].

3.4.1 Association Rule Querying Scenario

Suppose we have a database that contains transaction information octpsakks
for a supermarket and we want to perform some market-basket analysgieve
some association rules. Normally we would use tirrPORFalgorithm [AIS93] to
uncover frequent item sets and association rules in the data collectioms kxt#m-
ple we will illustrate how this can be done in an inductive database.

First, consider a query that tries to find association rules in the transactian d

Shttp://www.gnu.org/software/bison/
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using a data mining operation FREHDEM. When the user poses this query to the
inductive database, the query scheduler uses the query analyzeptamder to re-
ceive an optimized set of (sub)queries.

The next task of the query scheduler is to verify whether the tables ssittén
the (sub)queries are available locally at a remote site. When they are &véilzly,
the query scheduler uses the data mining operations to execute the ésidgasing
the data retrieved from the tables. If some of the data is not available, the(suies
involving those data are forwarded to the remote inductive database tmhdoe
the required data, where the sub-query is sent to the query schédtles.example,
let the required data be available locally, so the query scheduler ex¢latgaery
using the data mining operation FREDEM, which results in a collectior con-
taining frequent patterns over the transaction data set.

Let the collectionP be stored in a pattern tablé Now that we have all patterns
over the data set, we can use those patterns to find association rules insihgra u
second data mining operation ASS@BTTERN. This example illustrates the ben-
efits of storing patterns as well as data. The reuse of patterns could sosptione
to be an optimization in data mining.

Now consider the case where we want to check if the same frequent itsm se
hold for another transaction database. To do this, we could either forntiiéasame
query again over the second dataset, or we can use pattdPro$éhe last query and
apply a CHECKPATTERN crossover data mining operation to it. This illustrates the
potential power of the inductive database: intuitively, the patternPsdéscribes a
subset of the data and thus it is more efficient to operate on those patteeediof
on the whole data set. While it is true that you can derive all patterns frorarthe
derlying data, sometimes it might be more efficient to gain patterns from thenmatter
already available, as is the case in the example described above.

3.4.2 Constraint-Based Inductive Querying

An inductive query is in essence a specification of constraints on dataharre-
sulting patterns are realizations of those constraints. Hence, by traris¢ppatterns
back into constraints, they can help improve KD performance.

Suppose we have a data set in which each entry is labeled with a class.ritve wa
to find all combinations of entries that correlate with, or are sufficiently Gata
to, a specific class or classes. We usethetatistic, that is we are interested in all
patterns (combinations of entries, or item sets, in our case) that h@vesdue above
a certain threshold (the threshold is to be fixed in advance)y¥ialue is computed
as follows.

Assume that there ar® entries andi classes, with(n; ...n4) entries in each
class. Given an item set, construct the vectotis=(a1, ..., aq) wWith fractionsa;,
whereaq; is the fraction of examples in clagsthat containsS (whereby contains
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indicates that the entry contains all the elementS)ofThen:

d 2 2
2 N _ (Oir — En)® | (Oi2 — Ej)
X*(as) = ; ( ot .

with

Ein = (3L, (aini)n;)/N: the expected number of elements in claghat
containS, if we assume tha$ and the classes are not related,

Eis = (Zle((l — a;)ni)n;)/N: the expected number of elements in class
that do not contaird, if we assume tha$ and classes are not related,

e 0;1 =a;n;: the observed number of elements in cladsat contains,

O;2 = (1—a;)n;: the observed number of elements in clagsat do not contain
S.

wheren; is the number of examples in clasand N=3"%_| n, the total number of
examples.

We will compare two ways of item set generation witlyaabove a threshold: a
brute-force method and a method that prunes the search space usingspattéhe
brute-force methodve generate every possible subset of the data. Suppose we have
a table of data which containg attributes, and for each attributel < i < m,
wherew; is the number of possible values that attribute can have. Then the number of
possible subsets(excluding the empty set) is:

m

s=(JJwi+1) -1

i=1

Since this is the number of subsets, this is also the number of timegtmatist be
evaluated.

For thepruning methodve use an idea presented in [NKO5]. Here, it is pro-
posed to check only frequent item sets (those item sets with a suppo# alotess-
dependent threshold) within the classes. Givep?ahresholdd, a minimum fre-
qguency threshold; for classi is derived:

ON
]\72 —n¢N+0ni'

0; =

For an item set to have g larger thar¥, its thresholdz;n; should be larger than
thang; for at least one class 1 < ¢ < d.

A x? threshold is often chosen through selection of a p-value. The databases
used had either 2 or 18 classes. Table 3.1 show8 tladues for diverse p-values for

35



the number of classes = 2 andC = 18.

The frequency thresholds already present two opportunities for optionizaf
the frequent item sets are already present in the inductive databasevelwmn use
the frequency threshold to prune all patterns that fall below the calculigden-
cies, thereby lowering the number of times tiemeasure has to be calculated. If
not all frequent item sets are known, then thecan be used as a parameter for a
frequent mining set algorithm. In our experiments we want to find out exactly
many calculations of thg? measure are saved when the patterns are already present.

p-value| C =2 | C =18
1073 10.83| 40.79
107° 19.51| 53.97
10~8 3284 71.41
10-10 36.00| 75.33

Table 3.1:0 values for a diverse number of classes and p-values

The data sets used in the experiments were obtained from the UCI [AN@fg M
specific information on the data is presented in Table 3.2. For the generéfien o
guent item sets we used the Apriori implementation of Borgelt [Bor03].

Name Size (V) | Classesd) | Distribution

Mushroom 8,124 2| Classes: e(4,208) and p(3,916)
Chess KRKP 3,196 2| Classes: win(1,669) and loss(1,527)
Chess KRK 28,056 18 | Classes: max(4,553) and min(27)

Table 3.2: The UCI data set descriptions

First consider the mushroom database. The data scheme contains 22ntiéfe
tributes, all ranging from 2 to 12 different values per attribute. The biaree method
checksl63.5 = 10'° subsets, and thus has to do that mgAyevaluations. Now con-
sider the pruning method. We first split the database into two data sets,@#aine
ing the data of one class, and then look for patterns that are significzordéng to
the x? measure. We do this for both data sets and we merge the resulting pattern sets.
The resulting number of patterns is the maximum number of patterns that have to
be evaluated with thg? statistic (there might be patterns that are in both sets). The
results of the experiments with a number of p-values, along with the reduetiion r
in the number of? evaluations, are shown in Table 3.3.

As can be seen, the reductionyif evaluations is significant. Of course the num-
ber of evaluations depends on the number of classes, the number oftastiding the
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number of values each attribute can take and especially the last two are ggste la
here. So let us analyze this method’s efficiency when the number of atfibote
attribute values are lower.

p-value #patterns #subsets ratio
1073 525,310 163.5 * 101° 3.21 % 1012
107° 466,686 163.5 % 1015 2.86 % 10712
1078 408,894 163.5 % 1015 2.50 * 1012
1010 399,870 163.5 % 1015 2.45 % 10712

Table 3.3: The UCI mushroom data set results

Next, consider the King-Rook-King data set. This data scheme containsiardy-
tributes, each consisting of eight possible values. For the direct methogedlus a

total of 531, 441 subsets. As can be seen in Table 3.4, the ratios are much higher when
less attributes and attribute values are involved, but the reductigh d@alculations

is still a little below90%.

p-value #patterns #subsets ratio
1073 72,990 531,441 0.1373
107° 61,996 531,441 0.1167
10-8 58,018 531,441 0.1092
10-10 56, 388 531,441 0.1061

Table 3.4: The UCI King-Rook-King data set results

Finally, we check whether many attributes with many values will result in a smaller
ratio by using the King-Rook vs. King-Pawn data set. Results are dispiay&al

ble 3.5. Since different? values yielded the same results, we also considered cover-
age value$.05 and0.1.

p-value #patterns #subsets ratio
1073 254 1.50 % 1017 1.69 % 1015
1010 254 1.50 % 1017 1.69 x 10715
0.05 190 1.50 x 1017 1.27 % 10715
0.1 126 1.50 % 1017 8.39 x 1016

Table 3.5: The UCI King-Rook vs. King-Pawn data set results

Note that more optimizations are possible, both in the number of evaluations as in th
evaluations themselves. In the results above the number of generated padter
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the sum of all generated patterns per class, but we did not check ifnsattecurred
more than once. Another optimization is the evaluatiog®itself. When generating
patterns with the Apriori algorithm, the coverage, which is also used iWthand

E;; of the x?> measure, is stored in the pattern and thus need not to be calculated
again, speeding up the calculatiomgt.

3.5 Conclusions and Future Work

We have discussed the topic of knowledge discovery in inductive dasbé&e pro-
vided an overview of the technology as well as definitions of the main ciseepl
paradigms. We also introduced an architecture for the implementation of aztiiredu
database that is suited for computing and querying both locally and remotktisan
cussed its various components. More importantly, we argued that seavicesited
for usage in this type of knowledge discovery. We have also describsdalquery
would be handled by the architecture, and what optimizations patterns cdddr
the knowledge discovery process.

In the presented use case we illustrated that constraint-based data mining in in
ductive databases can have a significant impact on performance. &tatiggical
methods to transform patterns to constraints, the number of new pattemrsigeh
in experiments could be reduced by 90% or more. Measured in time, this idotot a
when applied to the relatively small datasets of the UCI, but for bio-informaticl
life-sciences, where data sets usually have a size of gigabytes or moieyghct
could be significant.

We need to extensively test our architecture with various data in ordestoeit
is maximized for extensibility and efficiency, two traits that can become contiraglic
in an architecture. Furthermore, much research still needs to be doa¢termpepre-
sentation and inductive query languages in areas other than freqat@rhpmining.

Another area that needs to be researched thoroughly is distributed datg min
within inductive databases, as well as the usage of web services withinathe-f
work. Using web services allows for easy and large-scale parallelizdtinthere is
some overhead to be considered when executing a query on a remoteeaiteaal
which might prove to be a burden if the query is small. Therefore, relseaust be
done on how to represent query and data mining primitive metrics, which beljd
the query optimizer to make a choice between local and remote executionrefque
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Chapter 4

Service-Oriented Knowledge
Discovery

Due to advances in software engineering and architecture, as well astbased
popularity of scientific workflows, new ways of performing knowledgedigry ex-
periments can be devised. In this chapter we investigate how the servintatice
paradigm and scientific workflows can improve knowledge discoveryctvepare
the non-service-oriented, constructed process model with the serieoéeal orches-
trated process model, and point out the benefits of service orientedotegirin
workflows. After that, we propose a model for the design of a serviimay®d knowl-
edge discovery process, and provide guidelines for individual ledye discovery
service design based on the types of functionalities it requires. We algmpra use
case design to show the application and benefits of the proposed modatiiser

4.1 Introduction

Despite the fact that knowledge discovery (KD) in data has proven taloalbie in
many scientific fields over the last few decades, one of its main drawbadthkatis
setting up a KD experiment is not a simple task. Usually KD processes aye ver
resource-intensive, requiring lots of memory space for huge amoudédafFurther-
more, they usually need one or multiple processing units to transform or mine this
data. KD processes often consist of several algorithms connecteti¢ogehereby
data flows from one algorithm to another.

Commonly, a KD process is created as follows: a KD researcher either imple-
ments or obtains the required algorithms and connects the in- and outputs tpgethe
executes the process, and eventually gets a result as an output. \&leg#ris situ-
ation as far from optimal, as it comes with quite a few problems and vulnerabilities;
assuming not every scientist is a superb programmer with years of proung ex-
perience and education, implementations might suffer from errors araptoial
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performance, and a similar argument holds for the connection of algorittgathter,
which mostly is done in an ad-hoc way and usually not according to a stiinedr
format or protocol.

Instead we can consider the following scenario. Suppose a researghts to
create a certain KD experiment involving several algorithms. The rdseanaly has
some of these algorithms available on her own computer, knows that theadeave
available at a remote location, and some that either she needs to creatéuptiia
be found by looking for them on the internet. The ideal situation for theareber
would be to just use a search engine to look up the missing algorithms, useta tool
connect the algorithms together, and then execute the experiment.

The scenario presented above is not at all unrealistic. Due to advianwesk-
flow management research [LIEB9, DGST09], experiments can now be designed
in such a way that individual parts of the experiment can be easily ctetheceach
other, often by using a simple graphical interface. Furthermore, th&seanviented
(SO) paradigm allows for relatively simple and secure remote computingeas\d
lookup of publicly available services.

In this chapter we investigate how the SO paradigm and related technologies
can improve KD in scientific workflows. The SO paradigm allows users t@des
applications (in this context we will see a KD process as an application) in terms
of individual components than can be connected to each other througtasi&zed
communication. These components can be either locally or remotely availatle, an
can be found through public lookup facilities. We argue that combining SOswith
entific workflows makes KD processes easier, faster, and betteratadéable.

Until recently the focus and application domain of SO technology has mostly
been the commercial sector and large-scale business applications. larthigepex-
plore the benefits and drawbacks of SO applications in KD by conductsigrdand
implementation case studies, whereby we focus our design interests orsitpe cle
a KD service and a KD process.

This chapter is organized as follows. In Section 2, we briefly discuss sereat
work related to our research. In Section 3, we examine the two scenanosri
detail, discussing their differences, weaknesses and strengthsctlarS4, we will
present ideas on the design of service-oriented knowledge discv@iyD) ser-
vices and processes, which will serve as design patterns for the impldinerit
our use cases, which will be discussed in Section 5. In Section 6, we edéept the
experimental results of the use cases, and in Section 7 we will draw a fesus®ns
and look at future work.

4.2 Related Work

Over the last few years distributed KD has become increasingly more ppowhiah
generated research incentives in diverse fields of technology. RGJ6], dis-
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tributed data mining is proposed by using peer-to-peer networks. Therawketch
a high-level introduction to peer-to-peer data mining and give some poantelrse-
quirements for methods, as well as a theoretical example. However, a isompa
with other techniques lacks, as does technological depth or formal models.

The authors of [AC06] focus on the area of text mining, and give criarére-
guirements which need to be supported by good text mining tools. While thag foc
on their tool being embedded in other applications and address issuessssasturity
and statelessness, they seem to only brush the topic of SO and web ses/juart
of the tool, and present restrictions and not solutions.

In [CZWT06] the authors take a view quite similar to ours, but use Business Pro-
cess Execution Language for Web Services (BPEL4WS) [BPEO7Hiewee stateful
long running interactions, and focus on data security through Gaussidelsnevhile
our focus lies on the design principles of web services itself within SOKD.

Finally, [GJFO06] describes a framework in which web services arefasdD in
databases, and outlines the framework thoroughly, as well as suppdgtedhms,
but not the web service design and construction methodology, and thues s a
complement to our research.

In the area of bio-informatics, workflows and service orientation hawadir
made their introduction as well. Currently, Taverna [MyGO08] is a populakfiaw
creation tool that supports a lot of bio-informatics services through welice APIs
of the European Bioinformatics Institute (EBIBioMoby?, Biomar€, and the Kyoto
Encyclopedia of Genes and Genomes (KEGGhere is also increased support for
(distributed) algorithms in bio-informatics. The R projeista free software environ-
ment for statistical computing and graphics, which supports distributed dorgpu
through a master-slave principle. Biocondu€tisran open source and open devel-
opment software project for the analysis and comprehension of genaaicathd is
largely based on the R language. Taverna provides special facilities R-seripts
in a shell.

4.3 KD Design Scenarios

In this section we compare a first scenario where the reseacohstructsthe KD
process with a second scenario where the reseaoctieestrates KD process using
SO and workflows.

*http://www.ebi.ac.uk/soapalab/services/
2http://moby.ucalgary.ca/moby/MOBY-Central.pl
Shttp://www.biomart.org/biomart/martservice/
“http://soap.genome.jp/KEGG.wsdl
Shttp://www.r-project.org/
Shttp://www.bioconductor.org/
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4.3.1 Scenario 1: Constructed KD Process

In this scenario the researcher constructs her own KD experimenttajnivty all
required algorithms and connecting them manually. In practice, this usuallgsmea
accessing diverse resources, for example the internet, to find aitedagugorithms
and KD packages from diverse sources, and then run them oneebyfdhe algo-
rithms are contained in a KD package like WEKA [Gar95], the researobes dot
need to worry about intermediate data representation as the packadgbatdesher,
but if this is not the case, the researcher has to program this reprseaswell.
Apart from this tedious construction process, there are also a numbezaid-
nesses that can easily break this scenario:

e Algorithm versioning
When a new version of an algorithm or KD package appears, the vetson
the scientist uses is often not automatically updated. Instead, the sciestist ha
to keep track of modifications herself by regularly visiting the website. An-
other problem with versioning is that it sometimes breaks compatibility with
previous versions, which may corrupt the entire KD process.

e Algorithm connection
While standard KD packages perform well on basic KD tasks, they udaaky
algorithms that are tailored to a specific field of research like bio-informatics.
When this is the case, the scientist has to connect all individual components
of the KD process herself. This connection is often constructed in drad-
fashion, making it less likely to cope with changes that might occur. Further-
more, the intermediate representations used in the connections are oftdn suite
only for the process they were designed for, so if two processes todre
combined, it is likely that one representation would need change.

e Algorithm availability
It is not unlikely that some algorithms or specific algorithm implementations
are not publicly available, especially when implementations are managed by
commercial institutes. They want to keep their implementation proprietary
knowledge, and are unwilling to distribute it or only do so at a high cost. This
leaves the researcher the choice to either implement the algorithm herself, or
to revise the experiment.

e Performance
KD processes sometimes involve terabytes of data. When performing KD on
such high volumes of data, each performance increase is important, afig ide
the scientist uses the fastest machines with the best algorithms in their optimal
implementation. However, the optimal implementations of algorithms are not
always available or suitable for the platform that the scientist uses, makdng th
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KD process slower. Furthermore, some algorithms run faster on spedialize
hardware, that is also not always available to the scientist.

4.3.2 Scenario 2: Orchestrated KD Process

In this scenario the scientist orchestrates her experiment through tbtaiseientific
workflow. Components in the orchestrated KD process can be pratwest lecally

or at a remote location, whereby they interact with each other in the sasimsted
architecture (SOA) chosen for the application. In this case, the worldfigplemen-

tation application can be seen as a SOA itself since it dictates communication and
orchestration standards. The combined use of SO and scientific wosldidgvesses

the weaknesses of the first scenario as follows:

e Algorithm versioning

Keeping track of newer versions of an algorithm is no longer an issuthéor
scientist, since it is automatically updated on the side of the service provider. A
scientist can be notified of an update, but updating can also procesgdran
ently. Compatibility with previous versions is also guaranteed, for the service
has to adhere to a certain interface, an annotation of the service’s fuadio

that serves as a contract between the service user and the servickepra
widely used standard for annotating web services at the moment is the Web
Service Definition Language (WSDL).

Algorithm connection

Data transport between components in a scientific workflow proceedsdan-a s
dardized way, normally by using a structured transport protocol. Fbrsge

vices, the Simple Object Access Protocol (SOAP) is the standard proidel.

KD process will not break as long as the components adhere to the message
format, which is guaranteed by the component’s interface.

Algorithm availability

Since implementations of algorithms are now managed by the service provider
and executed on the server end, it is safe for the providers to ofiestheices
without running the risk of losing proprietary knowledge. These sesvies

be polled and found by the scientist through the service provider'sdusay
Description, Discovery and Integration (UDDI) facility. As an exampley-Ta
erna workflows are shared in the myExperiment commuinipnd are free to

use for all who register there.

Performance
SOA and all related protocols discussed above are platform-indepeiedbn
nologies. This makes it easier for the service provider to use the progrgmmin

"http://www.myexperiment.org/
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language and platform that is best suited, which usually leads to a perfoema
increase. Moreover, if two services can be executed independentigraro-
cated on different machines, they can be executed in parallel in a scientific
workflow, speeding up the entire KD process even more.

4.4 Service-Oriented KD Design

In this section we discuss the SO design model and patterns that we usedttothe
case study described in Section 4.5, and examine how these SO principlesdef|
individual services and KD processes on a whole. First we discu3lVe®it more

and explain how the standard influenced the design of the web serviee thdt, we

discuss a design model for SOKD processes. Finally, we present gyidimciples

for individual KD service design, which we also used to design the usa ca

4.4.1 WSDL and Design Implications

There are many views on the design of a KD process, ranging from alglaw
stating what functionalities a service in a process has, to micro-details swehead
message format to use. Since the use case was designed by using WiSDi, th
fluences our further design of a web service and a KD process a®le.wh this
paper we focus on the different operation types that are defined in\V&1al their
influence on the design of KD process and a KD service:

e Request/Response
In this case, the client sends a message to the service, and the serdie@asen
message to the client in response. This is the message equivalent ofiarfunc
call.

e Solicit/Response
This is the reverse case of the request/response type. The serndecasaes-
sage to the client, and the client sends a message to the service in response.
This is often used when a service needs to poll clients.

e Client messenger
The client sends a message but does not expect a message in return.

e Server notification
Server notification is the exact opposite of the client messenger type. In this
case, the service sends a notification to the client without expecting or waiting
for an answer.

As we shall see in the remainder of this section, operation types have art iompac
the entire KD process, so selecting the right type of operation is importardén
obtain a process with optimal performance.
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4.4.2 Service-Oriented KD Process Design

A KD process can be seen as a workflow, whereby data flows fronuoihef pro-
cessing to another. Conceptually we try to map these units of processingbto we
services. How successful this can be done depends on the undargtahthe pro-
cess and the functional discreteness of individual steps. We seediga @¢ a KD
process as a three-dimensional challenge containing the logical, funcimheela-
tional views, that al influence each other. We propose the following Ki2gss de-
sign model for SO that incorporates all these views, which is illustrated irr&gd.

By applying this model in the design of a SO KD process, a better undensgaoi

the process is achieved, which leads to a better design, until both umdkngtand
design are optimal.

Functional Relational
Partitioning il Partitioning
Logical View

Logical
Modification

Relational
Specification

Functional
Specification

)

Ck&t\;\-

Matching

Functional Relational
Modification Modification

Functional View Relational View

Figure 4.1: The KD process design model

We will now describe each of the views individually.

e Logical View
In this view, the entire KD process is being examined to identify all services
and relations in the process. This logical view is not only guided by the de-
signer’s expertise, but also on the services already available, for@aaser-
vices built earlier or services publicly available through a UDDI. Ideally all
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services fit together perfectly and are all available, but this is rarelydabke.c
Therefore, choices have to be made if readily available services sheukkhl,
and how the unavailable process parts should be logically partitioned. &ince
different partitioning of a KD process yields different services anati@ns,

the partitioning will affect the functionalities of each service as well as the
relations among them.

e Functional View
For each service identified in the logical view, all functionalities are resmhrd
These functionalities will serve as a guideline for interface design and ope
ation type selection, and will determine the nature of the relations with other
functionalities. In this stage similarities between services and dissimilarities
within services can be uncovered on the basis of functionality, leading to a
possible joining or splitting of services.

¢ Relational View
In this aspect of design, relations should be identified for each senitbe w
other functionalities in other services. These relations should be annatated
two dimensions: direction and usage type. The direction indicates if messages
will be flowing from a service or to a service, the usage type indicates if the
relation is used only once, or continuously until processing is done. Beth d
mensions will influence the functionality of a service, the operation type of the
functionality’s interface, and the content and format of the messagewilhat
be transported. Similarities and dissimilarities in relations amongst services
might also lead to a revision of the service partitioning.

e Matching
This dimension is the feedback step of the model, and matches the outcome of
all other phases to one another. It serves as a feedback phasedestgn, and
indicates if service partitionings, functionalities or relations should be modified
or adapted in case of a mismatch.

4.4.3 Service-Oriented KD Service Design

In this part we focus on the functional design of a KD service, and hend#dsign
choices are expressed in the WSDL operation types.

As stated earlier, KD processes can be time-consuming, especially wigen lar
data volumes are involved. This means that any error may result in the lasg et
amount of time. Therefore, individual KD services should be desigmedteraction;

a scientist should get regular feedback on the progress of the pre@sesshould at
all time be able to interact with the process.

We also mentioned that a KD process is often perceived as a workfleguaisce
of computational steps whereby data flows from one step to another. déssrbt
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mean, however, that one step should be completed in order for the nexb &tegin;
the results that come from these actions sometimes can already be trahsfdhe
next process phase without waiting for the service to finish procesHitigeadata.
To optimize performance as well, KD services functionality should be desifpre
streaming data where possible.

Having observed the facts stated above, we divided the functionalitie&bf a
service into three categories: Initialization, Feedback and Enactment.|@sssfica-
tion forms a guideline for the design of a service’s functionality using WSkxd we
have:

e Initialization
Procedures designed in this class are expected to handle a contineans atr
messages that initialize this part of the experiment. Client messengers are usu
ally best suited for these functions, unless initialization requires criticdlfee
back, in which case Request/Response should be used.

e Feedback
In this category methods need to be designed that provide feedback &rthe s
vice client. Both Server notification or Solicit/Response method types can be
used here, depending on whether the feedback is used purely fomatfee
purposes or used to steer an interactive experiment through clientantienv.
Feedback is often provided iteratively, sending messages wheneeseah
occurs.

e Enactment
This category combines the actual functionalities of the service with the feed-
back functionalities that report on the service’s progress. Since @ariexent
usually is expected to return a result, a Request/Response type method is usu
ally chosen. However, if one does not need to wait on this service i twde
continue with other processing steps, a combined Client messenger aed Ser
notification procedure could be used to let the service run asynchstynbiote
that enactment can be done both atomically or iteratively, as we will see in the
next section.

4.5 Experimental Setting

In this section we discuss the designs of our use cases. In all use wa&sased
the same KD scenario and the same experimental hardware and softwaateao g
fair and complete comparison between all our different implementations. ite fi
use case was designed to compare performance between constroctessps and
various implementations of composed processes. The second useszhdeudesign
patterns discussed in the previous section to re-implement the whole scenario
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4.5.1 Algorithms

For our case study we used a KD scenario described in [TZTLO6].isrstenario,
microarray data is processed to identify differentially expressed gemsdlon a
threshold score computed by the Student'’s t-test. This set of differentigdhgssed
genes, together with a selection of their non-differentially expressedteqarts
(both expressed in ENTREZ identifiers [MOPTO05]), are then annotatddtarms
from the Gene Ontology (GO) [ABB00]. In the final step these annotations, to-
gether with information about interaction amongst genes, are represastiedts
and supplied to the Relational Subgroup Discovery algorithm (RSD) [RZFO

The RSD algorithm takes a set of labelled data items and a class (in this case
the classes differentially expressed and non-differentially expreaseldries to find
descriptions of subgroups of target class examples that are as lgogesilsle, and
have a significantly different distribution. However, to avoid that a cedatrof data
items dominates the entire rule-space, an iterative weighted covering algasithm
used to decrease weights of those items once they are collected in a rdd. @as
the number of items in that rule belonging to each class and their individuahtseig
the quality of a rule is measured.

As a postprocessing step, rules are uniformly formatted using the GQOilescr
tions, improving readability for expert reviewers. As an example, consigerule
below:

Rule 1. Support 5, Wight: 12.0

Differential participants: [119391, 1375, 5287, 1021]
Non-di fferential participants: [9950]

nmol ecul ar _function(A catalytic activity),

cel l ul ar _component (A, cytopl asm c part)

In this rule, a total of five genes were involved; four of them were dsfigially ex-
pressed, one was not, giving the rule a total weight of twelve (weightdofittual
genes are not mentioned in the rule). The rule itself states the common fafcadirs o
genes, whereby the genes are designated as group 'A. The diffgredicates like
'molecularfunction’, as well as descriptors like 'catalytic activity’ are all defined in
GO. In this case, the correct interpretation of the rule would be:

"Subgroup 'A’ of the gene collection resides in the cytoplasmic part of gileand
has as primary function catalytic activity, whereby 'A’ consists of genéhl #N-
TREZ ids 119391, 1375, 5287, 1021 and 9950”

4.5.2 KD Service Design

For our first use case, we created several different implementatiotieefsame pro-
gram. We made a web service in C# that takes as an input the parameters of the
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program or executable that needs to be executed, and simply forwarmstdhthe
command-line interpreter. While this is the easiest implementation of a web service
and introduces the possibility of remote processing, it still shares some withle
nesses of a constructed KD process, since the underlying prognaaineprone to
unexpected change in versioning, thereby possibly breaking the \mgbesshell.

In our second implementation we modified the original program code as little as
possible, to show that any program can be transformed into a web sesithde its
own implementation domain. For the Python web service implementation we used
the Python Web Service Module, and coupled the input of both services tmtu-
ule. Furthermore, we extended the algorithm to use the KEGG ontology {@gS
as well, to show how updates can be performed without modifying the intedica
web service, making users completely oblivious of the service’s implementatibn
updates.

For our last implementation we re-implemented all the Python code into C++ to
show how web services can increase performance. The perforrgaintes in sev-
eral dimensions here. First, applications made in programming languagestike C
and C# tend to execute faster than those made in scripting languages dwedasig
compile-time optimizations. Second, the authors are more proficient with C++ than
with Python, which also yields a performance increase.

4.5.3 KD Process Design

Through our defined design pattern we redesigned the KD process asirthree
views:

Logical View

We identified two different web services that are used together to provideeom-
posite service. The first service is teneSelectorservice that is used to compute

a t-score for all genes in the microarray data, and place it either in thedtfiffal

or non-differential collection. The second service is GeneRulelnducerservice
which takes the two lists and produces rules that describe subsets ofisteteat
share the same terms in the GO and KEGG ontology, which are also providez in th
rule.

Functional View

For each service we identify functionalities divided in the three aforemeadiumc-
tional categories: Initialization, feedback and enactment. Each catefeach ser-

vice has its own table stating the name and the description of the functionality. The
GeneSelectoservice design is shown in Table 4.1, and @eneRulelnduceservice
design is displayed in Table 4.2.
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Initialization functionalities

Service name

Description

Probe mapper

Maps microarray probes to ENTREZ gene.

Class mapper

Maps experiment labels to classes.

Cutoff initializer

Initialises the t-score cutoff value for genes.

Feedback functionalities

Service name

Description

Probe feedback

Provides feedback on unmapped probes.

Class feedback

Provides feedback on unmapped labels.

Enactment functionalities

Service name

Description

t-test calculator

Calculates t-scores.

Table 4.1: The GeneSelector service design.

Initialization functionalities

Service name

Description

Gene loader

Loads genes and their scores in the ontology structure

Support initializer

Initializes the minimum and maximum support constrair

Ontology loader

Loads the supplied or system-standard ontologies.

Gene-Ontology
mapper

nts.

Loads the data that maps gene identifiers to ontology keys.

Gene-Interaction
mapper

Loads the data that specifies interaction between genes.

Feedback functionalities

Service name

Description

Gene list feedback

Sends a message if (part of) the list failed to load.

Rule feedback

Presents feedback on the progress of the rule miner.

Enactment functionalities

Service name

Description

Rule miner

Initiates the rule-mining.

Table 4.2: The GeneRulelnducer service design.
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Relational View

For all logical partitions we uncovered the messages that had to be sgnabha
forth. We specify all the relations between the individual component axted and
the client, and whether they are iterative or not, whereby iterative relatiende-
noted with a *. All relations are displayed in Table 4.3.

Client to GeneSelector relations

Message name

Description

Probemap input

Message containing probe and gene identifiers.

Classmap input

Message containing classes and labels.

Cutoff input

Message containing the user-defined t-score cutoff.

Data input*

Message containing a probe identifier and expression g
per label.

GeneSelector to Client relations

Message name

Description

Probemap output*

Message that returns a problem with the probe mapping.

Classmap output*

Message that returns a problem with the class mapping.

GeneSelector to GeneRuleMiner relations

Message name

Description

t-score output*

Message that returns genes together with their score
class label.

Client to GeneRuleMiner relations

Message name

Description

(Non-)Differential
support input

core

and

Message that supplies the rule cutoff for (non-)differential

genes.

Enactment input

Message that enacts the mining process.

GeneRuleMiner to Client relations

Message name

Description

Genelist output*

Message specifying feedback if anything goes wrong Ig
ing the specified lists.

Miner output

Message that contains rules uncovered by the algorith

Table 4.3: The Relational View of the service design.

ad-

A complete overview of service connectivity and data flow is presented uré&iy 2.
Note that only those functionalities that require interaction with the user dhano
service are displayed.
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45.4 Scientific Workflows

A number of workflow designer tools have been developed over thedasydars,
such as the orange toolkit [JMD5] and Taverna [MyGO08]. For our case study, we
chose Taverna because it has the capability to execute web servitagetna, com-
ponents are called processors, and apart from local services &l \Wervices,
Taverna also supports BioMoby [WL02] and SoapLab [KF8] web service inter-
faces. Connections in Taverna are pretty straightforward; data cbong are called
data links, and control connections are called control links. After age®bas been
designed and composed, the user can supply the input parameters afdbespand
execute it. When the process is done, Taverna will present the results tiseh or
give an error message if something went wrong.

4.5.5 Implementation

Implementation of the original algorithms was done in the Python language and ru
on Python 2.5.2. The web service implementations were done in MicrosoftNit+
2005 and Microsoft C# 2005. All experiments were performed on Maftod/in-
dows XP using an Intel centrino duo processor 1.66GHz, and 1GB of mnainory.

4.6 Experimental Results

4.6.1 KD Service Design

For our first use case, we compared three different implementationsnijpece per-
formance, we took the microarray data used in [&89] and reran the experiment
that was done in [TZTLO6], whereby Acute Lymphoblastic Leukemia (Allgs
contrasted against Acute Myelogenous Leukemia (AML). The resultseabéimch-
mark test can be seen in Table 4.4. All measurements are in seconds ahé are
averages of 50 consecutive runs.

Selection service Mining service
Original implementation 3.08s 99s
Shell implementation 3.20s 102s
Python implementation 3.23s 100s
C++ implementation 1.53s 66s

Table 4.4: Web service implementation benchmarks
Figure 4.3 shows the workflow we constructed using Taverna. To stieupork-

flow, the user loads the data files to the inputs created, and then runs tkifowor
When successful, the workflow will display the returned file. Becaugeaatimeters
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are combined in one SOAP message, we used input-splitters and outputsspditter
join and split them.

. Workflow input ports

Data || Probes |A

Select_Genes

v

Select_Output

Mine_RSD_Rules

Figure 4.3: The Taverna ALL Vs. AML workflow

Based on the composition and execution of this workflow, we have a fegnadions
and remarks on this workflow:

e Monolithic sequential processing
Subprocesses that are in sequential order in Taverna need to fistdtefiore
the next subprocess can start; when sending data to a remote compbiieat, a
data is uploaded first before data mining can begin. While it is very intuitive to
separate these processes completely, it can be faster to let the proteggm
while the data transfer is still in progress. For example, our Selection servic
can already calculate and return t-values of individual genes while tloadip
is still in progress.

e Stateless services
When executing our mining service, first all ontologies have to be loaded into
memory, then annotation of the gene lists is performed, and finally the Re-
lational Subgroup Discovery algorithm starts processing. Every time the we
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service is executed, the same process is repeated. This is becausevibés se

is stateless, meaning that the web service has no knowledge of prevemus ex
tions. We argue that if the service would preserve some form of state)texe

could proceed faster. For example, if the mining service would keep the on-
tologies in memory and only change the gene assignments, the process would

speedup considerably, being freed from most startup delays afterghweufi.

e String representation

Message contents in SOAP are usually represented in text form. While this

suffices for small messages, it is a redundant representation fonaligaes

of data. We argue that compression and decompression of data segmnikats in

SOAP messages could improve the performance of a KD process .

Notice that these observations may also hold for the KD construction sceaad

that solutions to these problems require reimplementation of services andyingle
algorithms, and possibly revisions or extensions to the SOAP protocol aretrnia
messaging.

4.6.2 KD Process Design

The original process was divided into the same service partitioning as théhah
our model yielded, but processing of individual services was doeebgrone, and
results did not transfer before processing was completed. Furthermahe origi-
nal implementation feedback was not supplied upon occurrence of ah bu¢as a
return value after processing. A complete list of differences per seivipresented
in Table 4.5.

GeneSelector Service

Category Original process Use case process
Service feedback as return values iterative on occurrence of event
Service initialization| supplied as a whole iterative data supply
Service processing all per element

Service outputs at end of processing continuous outputting per element

GeneRuleMiner Service

Category Original process Use case process
Service feedback as return values iterative on occurrence of event
Service initialization| supplied as a whole iterative data supply
Service processing all all

Service outputs at end of processing at end of processing

Table 4.5: Design differences in GeneSelector and GeneRuleMinécegrv
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Performance statistics of the original and the re-designed processsplaydd in
Table 4.6. As input for the selector we took t-score cutoff§ Hf10 and8. For the
GeneRuleMiner, we took supports of at least 10% differential geng:stamost 5%
non-differential genes. The measurements of each phase in the tabseérttie time

(in miliseconds) since the entipgrocessstarted up to the end of that phase, and are
averaged over 50 consecutive runs. Since there was no perfanramease to be
gained in the GeneRuleMiner processing phase (all rules are returnedeawhen
processing is finished), we only show the benchmarks of the phasesdprg the
GeneRuleMiner processing phase.

Original Process

Phase Cutoff 15 Cutoff 10 Cutoff 8
GeneSelector initialization 74 69 73
GeneSelector processing 1331 1291 1328
GeneRuleMiner initialization 3462 7122 13318

Re-desgined Process

Phase Cutoff 15 Cutoff 10 Cutoff 8
GeneSelector initialization 73 69 74
GeneSelector processing 1269 1228 1257
GeneRuleMiner initialization 2179 5841 11998

Table 4.6: Benchmarks of the original process and re-designedgsroce

To make the difference between the original process and the re-désigeecase
more clear, consider Figure 4.4, which illustrates the scenario for cuioff 1

>

Time (ms)

1265

[] GeneSelect Initialization
73 |:| GeneSelect Processing
- GeneRuleMine Initialization

Figure 4.4: Benchmark comparison with a t-score threshold of 15
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The top part displays how the original process parts are processseéadively,
whereas the bottom part shows how the re-designed process papt®eessed it-
eratively, and in parallel where possible; data flows continuously frar@eneSe-
lector component to the GeneRuleMiner component, thereby gaining a ecatdiel
performance increase.

4.7 Conclusions and Future Work

In this chapter we discussed the transition from construction of a KD psote
the orchestration of a KD process through the use of SOA and workfiWehave
contrasted two scenarios that indicate the weaknesses of processctos and ex-
ecution on a single machine, weaknesses that were addressed in theé sesoario
by orchestrating processes in a SO fashion.

By using web services, versioning, connectivity, availability and pevéorce of
individual services are improved; versioning is improved by transpanghating of
algorithms and the use of standardized WSDL interfaces, connectivity ioweqgr
by using the standardized SOAP transport protocol, availability is improyéeter
guarantees in service safety and the availability of the UDDI lookup sezkper-
formance is improved by parallel execution and platform specific implemensation

Apart from the improvements on individual services, the design andipeaihce
of the entire KD process can be improved by using scientific workflows;wtan
be designed and executed with the Taverna workbench. By using awskftlesign
of KD processes is easier and more intuitive, since it splits KD procesgeedrss-
ing components and connections. A KD process designer just needs td itmgo
components and connect them together in order to gain a valid KD progkiss
can then immediately be executed to gain a result.

By designing a SOKD process workflow using a design model that combines
logical, functional and relational views, a better understanding of a Kiggss can
be gained iteratively due to the matching and mismatching of entities in these views,
whereby each iteration yields a better SOKD process design and a closdr afia
relations, services and functionality. An important factor that influenaepaitition-
ing of services are the services already available, thereby promotitvgasefreuse.

When designing individual services in KD, interaction and feedbacknaper-
tant aspects to keep in mind. Interaction and regular feedback are imipfontaine
scientist to steer the KD process in a correct way, since KD processeften time-
consuming and thus any process incorrectly set up could possibly iresutonsid-
erable loss of time. Another important aspect is performance throughegtiaedion.
Since web services can be distributed across different logical oigathysgatforms,
their execution could possibly proceed in a parallel fashion. To sujpaoatlelism,
streaming data is preferred over monolithic data transport where po$Bjbtam-
bining these aspects and the functionality types in WSDL, we created guslédine
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the design of a KD service’s functionality that is optimized for streaming datxevh
possible and incorporates the need for feedback.

To illustrate the merits discussed above and to show how web services itan be
plemented, we created three different use cases. We showed howssachse con-
tributed to the KD process, and showed how web services can yield aripearice
gain, sometimes cutting execution time by 50%. In case of redesign, pragtssas
for the initialization of a process were further reduced up to 37%, and \2fh @n
average.

The design principles stated in this chapter are but a minor step to incorgoratin
SO technology in the field of KD. However, by assuring that the desigrikdd aro-
cess and individual services is optimized for feedback and paralleliseseancher
can enact a process and conclude it successfully with minimal error axichalger-
formance. For further research we would need to study more usetoasesure the
research principles have maximum support in the KD scientific field. Fumibre,
this design needs to be supported by graphical workflow tools that duipgrative
relationships instead of just monolithic data transport. Apart from SOAmMsixte,
we also see future work in the combination of web services and dataliasesi-
sion is to use web services to access databases to perform remote dataaméhiog
construct queries.
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Chapter 5

The Fantom Subgroup Discovery
Service

We propose a subgroup discovery service called Fantom that fingeosyds given a
set of scored, ranked elements. The subgroups are describedjopaoons of on-
tological concepts and are given a measure of interestingness baaadd®a from
bio-informatics. For the generation of interesting subgroups we applyrsup dis-
covery by using frequent itemset mining, which exhaustively searchedl frelevant
subgroups above a minimal interestingness.

5.1 Introduction

Consider the following generic problem in data mining: as input we have a @umb
of data elements with a score for each element. We want to find all subgimatps

e have a high score for the subgroup (i.e., a score for a set of elemead ba
the score of the individual elements in the set) indicating that this subgroup is
interesting;

e can be described by a conjunction of predicates which all elements oftthe su
group have in common.

Hence we need a procedure to score a set of elements. Furthermoreewéo de-
cide which predicates can be used. A logical choice would be to use o®libgt
describe (part of) the research domain. Moreover, we want to nperiome prun-
ing on the output, since predicates can imply other predicates, given tlaedhieal
structure of ontologies. We strive for most specific conjunctions ofipagels as well
as the highest scores.
We propose a service call&@ntomthat finds all subgroups described by a con-

junction of predicates above a certain size and above a minimum scoreuiltisb
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a generic way so that we can apply it in a variety of fields. As input, it uses af
identifiers coupled to a set of scores and allowed predicates. As outpugsints
the user with a set of rules and an appreciation of those rules in the foansadre
measure. Fantom stands for Frequent pAtterN Tree-based Ontology, Mimame
that is self-explanatory: Fantom mines frequent patterns on the basisoddgies.
This chapter is organized as follows. In Section 2, we will discuss wogkae to
our Fantom approach, and discuss various knowledge sourcesdhseal in Fantom
as well. In Section 3, we will discuss Fantom itself, providing a detailed éaerof
inputs and outputs, pseudocode for parts of the algorithm and optimizaticBsc-
tion 4, we will present initial performance indications of Fantom, and prosides-
tics on our pruning strategies. Finally, in Section 5, we will make some preliminary
conclusions, and discuss research and improvements that can be tidnesinvork.

5.2 Related Work

In this section we present work related to the Fantom service, as wellragslated
to structured knowledge sources, knowledge mappings and otheesaifiaforma-
tion used in Fantom.

5.2.1 Ontologies

An ontology as seen in information science, is the hierarchical structuring of knowl-
edge about things by subcategorizing them according to their essemt&l lgast
relevant and/or cognitive) qualities [Onl07]. Over time, many efforts leen made

by the computer science community together with field experts to create and rea-
son about ontologies for diverse scientific fields such as chemistry [C#8Y] web-
mining and the semantic web [Dav06] and bio-informatics [ABB, OGS 99].

Due to the increased attention in data mining with ontologies, related technolo-
gies such as representations of ontologies, description logic and ontelaggning
have been given much attention as well. Currently, there is a wide rangetofdgy)
description languages available, and each of them has their own spetgfid-or
representation of ontology elements and data, usually a form of the XMlLpigedp
sometimes together with the Resource Description Framework (RDF) [W3G@ta
representation of relations among the data elements and extensions to aflomimga
over these entity-relationship models, currently the Web Ontology Lang@Ayé)
[W3CO04b] and the older F-Logic [Bal95] are commonly used. A good\deer of
ontology languages is provided in [TS06].

Well-known ontologies in bio-informatics are GO and KEGG. GO, the Gene On-
tology, aims to standardize the representation of gene and gene praulibcttes
across species and databases. The three predicates that GO cdresistsadlular
component, biological process and molecular function. A gene produdit ivégas-
sociated with or located in one or more cellular components; it is active in anerar
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biological processes, during which it performs one or more moleculatiturs. A
cellular component is a component of a cell, and part of some larger objewr
an anatomical structure or a gene product group. A biological prasesseries of
events accomplished by performing one or more molecular functions in &ispec
order. A molecular function describes activities that occur at the molelavelr

KEGG, the Kyoto Encyclopedia of Genes and Genomes, aims to uncover-highe
order systemic behaviors of the cell and the organism from genomic anduteie
information. It is a database of biological systems, consisting of genetic bgildin
blocks of genes and proteins (KEGG GENES), chemical building blockstbf en-
dogenous and exogenous substances (KEGG LIGAND), moleculamgvdiggrams
of interaction and reaction networks (KEGG PATHWAY), and hierarchied rela-
tionships of various biological objects (KEGG BRITE).

5.2.2 Annotations and Mappings

Within Fantom we use ontological terms as rule predicates. This would natdse p
ble if a mapping that associates or correlates an element with one or moreggntolo
terms was not available. In the field of bio-informatics, there are many idestifiat
can be used in genomics and proteomics [MOPTO05, PTM07, MCOWO5, VURDP
and they are usually accompanied by mappings between those identifienstatwd
gies, or those identifiers and other identifiers. For example, for GO termes déne
several mappings (their default identifier is ENTREZ) that are updatedretdtily

or monthly [Con09]. KEGG maps work with KEGG orthologies (genes in diffier
species that are deriveed from a common ancestor), but also with H@B&©sym-
bols [Lab09].

Fantom provides an option to generate interaction association rules. Byaisin
data source that states interactions between identifiers, Fantom careupatierns
that describe these indirect relations. These interaction patterns hdweenthef "in-
teracts with(rule)”. In genomics, interactions can for example be obtanoed the
GeneRIF project [Gen09] and Reactome [VIF].

5.2.3 Related Algorithms

The Fantom algorithm is based on the SEGS algorithm described in [TLT@/] a
its predecessor [TZTLO6]. While SEGS uses a similar method to Fantom, it is re-
stricted to only one entry per (sub)ontology, is tailored specifically to micagar
experiments, and does not prune rules that provide redundant irtfornniaor does

it provide clustering of similar rules. In [LRS8] subgroups are matched to a sub-
set of GO terms in a probabilistic way, which induces a greater portion of and

false discoveries than an exhaustive search through the seah-spa GOEAST
[ZW08] algorithm also checks for gene enrichment in GO terms, but ordglchfor

a single GO term, and takes as input raw microarray data, which again tegsic
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applicability.

Another tool that mines gene lists is DAVID [HS07], the Database for Annota-
tion, Visualization and Integrated Discovery. Its functionality is similar to Fanfom:
can classify large gene lists into functional related gene groups by retaéngto on-
tologies (so far only the GO ontology was seen in the outputs), rank the imperté
the discovered gene groups and summarize the major biology of the disdaeme
groups. It also has capabilities to visualize genes and their functionataioms in
a group.

The main difference is that DAVID does not allow for scored lists of geftes
solely acts on the genes that are entered in a list, and thus treats eacls ggnally
important. Furthermore, the number of genes allowed to experiment on istexbtr
to 3000, which is not much considering microarray experiments can easilprse
tens of thousands of genes. Furthermore, rule mining based on interasfooia-
tions is not available, and clusterering is done by using fuzzy heuristitipaing
instead of a similarity measurement. Finally, DAVID is not available as a welicgerv
but as a website, making it more complex to integrate in a workflow.

A lot of work has also been done on scoring functions. Typically, themetigust
one scoring function that is considered the best, it all depends on ebednch is
being conducted and what properties are considered interesting. taskeof Fan-
tom, the aim is to have a score for a subset of elements from a ranking d¢ifietsn
and scores; the group score is thus dependent on the score of uadigldments. In
bio-informatics, well-known algorithms that perform this kind of scoring farend
in [GST99, LBOS].

5.3 The Fantom Service

Fantom is a service that relates subgroups of identifiers to ontologicallé&dge
that these subgroups have in common, or to ontological descriptions dffiglen
groups that they interact with. It takes as input a set of identifiers andsteres,
background knowledge in the form of ontologies, mappings and interagéits) a
scoring function, and thresholds for rule generation, and througtgareration and
pruning delivers a non-redundant set of rules that describe supgof the input set.
In this section we will discuss the inputs, internal mechanics and outputstdrira
For an overview of all the formats we refer the reader to Appendix A.

5.3.1 Inputs

In this section we describe the inputs of the Fantom algorithm. These inclatexto
parameters, a list of scored identifiers, user-defined ontologies, nyzppéiween
identifiers and ontologies and interaction data between identifiers, a séamictgpn,
and functional thresholds and parameters.
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Context Parameters

The context parameters are used to define the experimental contegtirfeethe al-
gorithm to function correctly. Based on these context parameters thectuersions

of mappings and ontologies will be selected. For example, in our bio-inforsnatic
case studies, it would include the class of experimental input identifiense&Ger
Single-Nucleotide Polymorfisms (SNP) identifiers), the type of the identifibk (E
TREZ, SYMBOL) and the species this experiment concerns. Based se pa@am-
eters, translations will be made from one identifier type to another in both amalt
output, and correct mappings and ontology versions will be loaded, simotogies
can differ from species to species.

Set of Identifiers

The set of identifiers represents the elements in the experiment. All typesrti-id
fiers are allowed, as long as they can be related to some external sbkimostedge,
be it a set of uniquely identifiable car models, patients, or in our bio-inforseatise
studies, gene or SNP identifiers.

Each identifier in the set has a unique name, and each name has to cudrespo
an identifier in the provided mappings of the selected ontologies. If a mapping b
tween identifier and ontology does not exist, it will be discarded. The saimaie
holds when mapping between identifier types.

An identifier is also accompanied by its score, or weight. There are no limits to
these weights, but Fantom assumes that a higher weight means a highegamepr
correlation, or effect. Scores can be negative as well, which is asstommadan a
negative correlation or effect.

Ontologies

The Fantom service aims to find groups of identifiers that relate to a conjoruaftio
terms within an established knowledge base. We use ontologies as that #gewle
base, since they reflect expert knowledge of a scientific (problem)doAmdefined
earlier, an ontology is a hierarchical structuring of knowledge, wheneldes anno-
tated with broader, more general terms form the root of the ontology, laftten of
those nodes are annotated with specifications and differentiations ofrére parm.
We call these ontological ternt®ncepts

We place a restriction on the ontologies used in Fantom, namely that they must
be organized in a directed acyclic graph, whereby each connectioedetoncepts
has a specialization ("is a") or aggregation ("part of”) relationshipisTstriction
allows us to formalize the participation of identifiers in ontologies.
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Given identifieri and concepts, d, a collection of identifiers associated with a con-
ceptz namedl,, and a relationshif’arent(x, y) that denotes conceptas a parent
of concepty, the following statement holds:

e i c I.andParent(d,c) — i € I.
Following from this we can also state:
e Parent(d,c) — I. C Iy, |I.| < |I4].

Within Fantom, identifiers are associated with the concepts provided in the ngappin
and all parents of those concepts. As an illustration, a part of the GO ggtio
shown in Figure 5.1

biological process

is_a is_a
physiological process cellular process

s

cellular physiological process

is_a is a

cell cycle cell division

part_y &_a
M phase meiotic cell cycle 8 A

part_of cytokinesis
is_a -

M phase of meiotic cell cycle

pes& '

s _a
cytokinesis after meiosis |

Figure 5.1: Part of the GO ontology structure

As can be seen in this example, concepts relate to each other throughcdpiecifi
archical relationships. Here the most general conceBia®gical Processwhich

is the common root node for all biological processes described in GO.eAmeove
lower in the graph, concepts become more specific.

limage taken from http://www.yeastgenome.org/help/GO.html
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Mappings and Interactions

Mappings and interactions are used to relate identifiers to associatedotynme

to relate identifiers to other identifiers. In the Fantom service we strive o dee
identifier class central, and use mappings to map the central class to otlsesclas
and vice versa. For example, in case of our bio-informatics experimert&eep
mappings of ENTREZ gene identifiers to ontologies like GO and KEGG, and use
mappings from SYMBOL to ENTREZ in order to translate the input ranking and
output rules. The same is true for interaction definitions; all interactingsgare
expressed by ENTREZ identifiers.

Scoring Functions

The scoring functions are those functions that take as input a subgdraifiers
corresponding to a rule along with their individual scores, and havatasita single
numeric value indicating thenterestingnes®f the rule, a value that lies between

0 and 1, 0 being most uninteresting and 1 being most interesting. By default, th
Enrichment Score (ES) function [GS89] is selected, which calculates the score of
a subgroup based on the score of its individual members as well as the rsambe

in the subgroup:

e Sort the list of NV identifiers according to their score with score functign
wherebys; = s(id;). For the resulting lisL = (idy,ids, ..., id ) it holds that
812822...28]\[.

e For each positionin L, evaluate the identifiers in the rule subgradii@and the
identifiers not inS but still present inl. at a higher position than

j:17 )2 k:l7 7N
id;e8 idyes
. 1
Pexcluded(572) = Z N — ’S’
Jj=1,...2
id; ¢S

e The ES is the absolute maximum deviation from zer®@Qf .ded — Przciuded:
where: varies froml to N.

Despite the fact that this measurement was devised to express the interesdiog
gene sets, we think that it is in no way restricted to that purpose. We arguarij
ranked set with a individual scores that indicate correlation or effébtrespect to a
certain experiment can be used in this scoring measurement.
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Thresholds and Functional Parameters

Fantom allows the user to work with two thresholds: minimum support and mini-
mum score. Minimum support indicates how much genes a subgroup stomtédre

at least, and can heavily influence the duration of an experiment, degeowlithe
data set used. The reason for introducing the minimum support threshsltbven-
sure that the single-identifier groups with the highest score do not donthveatist,
since the default score function does not take support into account.

The second threshold indicates the minimum score a rule should have. ik is pr
marily used for pruning rules in a postprocessing step, discarding rudéeslohnot
meet the specified interestingness criterion, but as we shall see later,dtstabe
used to optimize the rule generation process.

Apart from thresholds there are also a few functional parameterspaifys the
generality of the ontologies and the rules. The ontology parameter allowseinéou
influence the specificity of terms in a rule, while the rule parameter allows theaise
constrict the number of concepts used in a rule to one per ontology pieedgath
parameters can positively influence the speed of the mining process aptrese of
a smaller rule search space.

5.3.2 Output

As output, Fantom generates a text file that contains all the rules that reftexin a
pruning. Furthermore, rules with the same subset of identifiers are ddstagether,
improving readability. An example rule looks like this:

Rule 1
Score: 0, 761302007553004
Partici pants: [Ephal, Epha2, Ephb2, Ephb3, Ephb4, Ptk2]

Al'l genes in the subgroup
have the foll owi ng properties:
nol ecul ar_function(protein tyrosine kinase activity),
nol ecul ar _functi on( ATP bi ndi ng),
bi ol ogi cal _process(protein am no acid phosphoryl ati on),
bi ol ogi cal _process(tyrosine kinase signaling pathway),
KEGG pat hway( Axon gui dance)

The example rule describes a certain subgroup containing the gphed, Epha2,
Ephb2, Ephb3, Ephb4, Ptkéhd relates them to GO and KEGG terms, a process we
call Knowledge Fitting. By relating subgroups of the input to establishewlauye
sources, we strive to increase the interpretability of knowledge.

The Fantom method can also generate rules that take into account geae-inter
tions. When interaction association rules are generated, the conjundtiom®mgy
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terms do not describe the subgroup mentioned in the participants heatdexthau
an anonymous subgroup that all the subgroup participants interact \Wameékxt rule
would be an example of such an interaction rule:

Rule 1
Score: 0,915794797276831
Partici pants: [Acatl, Acat2, Cycs, D d, Mlh2, Uqcrq]

Al'l genes in the subgroup have interaction with genes
that have the follow ng properties:
nol ecul ar _functi on( ATP bi ndi ng),
bi ol ogi cal _process(tricarboxylic acid cycle),
KEGG pat hway (Al zhei nmer’ s di sease)

5.3.3 Algorithms and Structures

The Fantom service consists of several methods, whereby threesplrasespeti-
tively executed until all options are exhausted: generation, apprecetidpruning
of rule candidates. The pseudocode is shown in Algorithm 1.

Algorithm 1 Fantom Main Body
RuleCandidates G- ()
SubsetCollection 8-

C «+ Preprocessing()
InsertCandidates(S, C)
while C # () do
C + GenerateCandidates(S)
C « AppreciateCandidates(C)
InsertCandidates(S, C)
PruneCandidates(S)
C « ReturnCandidates(S)
end while
C + ReturnRules(S)
print Postprocessing(C)

In the remainder of this subsection all methods will be discussed individually.

Preprocessing

In the preprocessing phase all inputs are loaded. First the rankeditigntifiers is
loaded, and translated to the default identifier if necessary. Next, thetesblentolo-
gies are loaded into the system. These ontologies are represented in aadyciod
indexed on their unique identifier. Each ontology predicate gets its own dacyion
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to avoid the case of having equal index names between ontologies and to eptimiz
memory usage and search-time, whichOiflog(n)) on average, and(n) in the
worst case, where is the amount of items in the dictionary. In the final phase of the
loading stage, the mappings from identifiers to ontology concepts are loaded

After all mappings and ontologies are loaded, the ontology dictionariesame a
tated by the identifiers. There are two ways of annotating the ontologiesndiey
whether interaction rules need to be generated or not. If the experimentosgen-
erate interaction rules, then the interaction file will be used as an intermedipte ste
to annotate the ontologies. If not, then solely the map from identifiers to ctanicep
used. The complete algorithm pseudocode is shown in Algorithm 2.

Algorithm 2 AnnotateOntology(o, i, m, L)
Require: An ontologyo.

Require: An identifier listi.

Require: An identifier to ontology mappingx.
Require: (optional) An interaction list.

forall id €ido
if L # () then
indirect set< GetInteractions(id, L)
conceptset« ()
for all indirect.id € indirect setdo
concepiset«— conceptsetU GetConcepts(indiread, o, m)
end for
else
concepiset«+ GetConcepts(id, o, m)
end if
for all concepte conceptsetdo
AnnotateConceptAndParents(concept, id)
end for
end for

Algorithm 2 works as follows. If an interaction list was supplied, the algorithm
fetches all identifiers thad interacts with, and fetches the concepts associated with
those identifiers. Then, each of those concepts plus their parentsrertateal with
identifierid. If there are no interactions specified, the concepts directly related to
as well as their parents are annoteded \idth

After all ontologies have been annotated, the preprocessing phass mtuvés
final stage: preparation for candidate generation. In this stage, albggtooncepts
that participate in this experiment are compared to the minimum support arel scor
thresholds, and those with sufficient support will be used for furtle@egation of
rules. At the same time, the ontologies will also be cropped and optimized fam use
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the candidate pruning stage. The ontologies are pruned and optimizedrimbanof
ways:

e Removal of unused concepts
After annotation of the ontologies, all concepts that remain unannotated with
identifiers will not participate in any further actions taken by the Fantom ser-
vice and thus can be unloaded from the ontology.

e Cropping of uninformative concepts
When using all ontology concepts, chances are that some of the ruksgsh
are not useful because they contain concepts that are too genegalirtfmib
mative. To counter uninformative rules, Fantom allows the user to provide a
functional parameter that indicates the specificity of the terms to be used in an
ontology. This parameter indicates a percentage of the maximum depth of the
pruned ontology, whereby depth is the maximum number of parents a ¢oncep
has to the root of the ontology, including the root itself. For example, if the
maximum depth of an ontology in a specific experimert iand the user sup-
plied 0.5 as a parameter, then the minimum depth for a concept to be allowed
to be included in the experimentds

Candidate Generation

Candidate generation in the Fantom service is based on the Apriori algowithioh
is frequently used in itemset mining [AIS93] and refined many times since its con-
ception [HPYO0O0, Bod03]. Given that it is a proven technique that has lsed in
many fields, it was considered generic enough to be used in Fantom. Withtarhe
tom service, the algorithm repeatedly executes three stages: candidatatgm,
candidate appreciation and candidate pruning. A central structure thagesrules
in all these procedures is tiBbsetCollectiostructure, which provides methods for
inserting, retrieving and discarding rules and candidates. Note that ustieported
as output, no rule is fixed yet, and therefore we shall refer to theml@sandidates
or merelycandidates

Arule candidate is a data structure with two lists; one list contains the participants
in the candidate, i. e., the identifiers that are associated with all the conaéjith,
are present in the second list. Candidate generation proceeds on itheftmgset
combination; two candidates that contain a conjunctiomafoncepts are combined
with each other to form a candidate that has a conjunction af 1 concepts. When
combining two candidates, the resulting identifier lists will be the conjunction of
identifiers that were in the two lists of the original candidates.

The algorithm works as follows. Before each cycle, all candidates aested in
the SubsetCollection structure. In case of the first cycle, when all catedidontain
only one concept (these are called #temic candidatés all candidates are gathered
in one list. However, assume now that we are in a certain eyglavhich contains
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candidates withn concepts. For those candidates to be combined into a candidate
of m + 1 elements, they have to share— 1 elements. Thus for every candidate of

m > 1 conceptsm subgroups are created and the candidate is insettihes into

a hash table, each entry hashed by a different subgroup. Noticeatfatycle has its

own hash table except for the first one, which has no subsets.

After all candidates of lengthn are inserted, generation of candidates of length
m + 1 commences. If there is no hash table present, that means that there is a single
list of atomic candidates. If this list containcandidates, then the maximum number
of new candidates is * (n — 1)/2. However, if the two concepts that are combined
are hierarchically related, then the combination is invalidated, and the cémdsda
discarded.

Now consider the case where we have candidates of 1 concepts. Suppose
that there aré hashes, thé-th hash containing; candidates] < i < k. Then the
number of generated candidates would be at most:

Zk Six(8;—1)

1=1 2

Combination of two candidates within a hash entry proceeds in a straighttbrwa
fashion. The concepts that do not belong to their common subgroup-dfconcepts
are tested for hierarchical relatedness, and discarded if there isastgtation. A
complete overview of this part of the algorithm is shown in Algorithm 3.
After all combinations have been generated, they are returned by theofurand
passed on to the candidate appreciation phase.

Candidate Appreciation

The candidate appreciation phase is the phase where all generaté@htesh the
previous phase are being assigned a score on the basis of the setectefdisction.

Two scores are being calculated: the score of the candidate with its teaeaf
participating identifiers, and the maximum score that the minimum number of ele-
ments involved in this rule could possibly have, whereby this minimum is equal to
the minimum support parameter. If this maximum score is below the score thdgsho
that means that this rule can be pruned in the next phase.

In Fantom, the ES measurement is used as a default scoring mechanisve&sS gi
high scores to groups that contain many identifiers at the top of the iderdifiking
(high positive correlations or effect) or at the bottom (high negativeetations or
effect). As an illustration, consider Figure 5.2, which shows the scdceletion re-
sult after each sample, and was generated in one of our case studizs) Bs seen,
the score increases fast at the beginning, indicating that a lot of getielsigh pos-
itive effect were participants in the rule under consideration. If partitgwere less
concentrated on either side, but instead spread out over the entiregaalsmaller
maximum score would be obtained.

The ES is an indication of the interestingness of the current candidaté base
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Algorithm 3 GenerateCandidates(S)

Require: SubsetCollection Structurg.

NewCandidates— ()
if Subsets(S)- 0 then
C + GetAllCandidates(S)
forie{l,...,|C|—1}do
forje{i+1,...,|C|} do
if not Related(Concepts(C[i]), Concepts(C[jl)hen
NewCandidates— NewCandidates) MakeCandidate(C[i], C[j])
end if
end for
end for
else
Hashtable H«+ GetLatestCandidatesSubsets(S)
for all Keye Keys(H)do
C <+ H[Key]
forie{l,...,|C|—1}do
forje{i+1,...,|C|} do
if not Related(Concepts(C[i]), Concepts(C[jlihen
NewCandidates— NewCandidates) MakeCandidate(CJ[i], C[j])
end if
end for
end for
end for
end if
return NewCandidates
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Figure 5.2: Example of ES determination

its identifier subgroupl/. We cannot, however, use this ES to prune if it is lower
than the given score threshaldfor combination of this candidate with another one
could still yield an interesting new candidate with a score alioowever, we can
find L C M, the subgroup of\/ for which the ES is maximal, wherehy.| is the
minimum support of the rule. We call this scak&s,,,.,.. The number of subgroups
to consider would bé%‘), which is an infeasible amount to process for each candi-
date for large subgroups. However, it can be don@(iV/|) by using the following
backwards induction algorithm devised by Muskulus & de Bruin, whichésgnted

in Algorithm 4.

A brief summary of the algorithm is: for each identifier position i in M we as-
sume thatt's,,,.. is achieved there. For a given minimum threshgldve delete the
|M| — ¢ participants with the biggest absolute score after the positionhimfthe
ranking. In case there at@/| — ¢ values or more, we are done and we recalculate
the score of this set. In case there are less th&h— ¢ values to remove, then we
delete the remaining values that are directly befoi®ince ES is the maximum de-
viation from zero, we also need to take into account the occasion that the minimu
ES is at position. However, to calculate this, we invert the order of all identifiers
in their ranking as well as their scores, and again calcut&ig, ... The maximum
score of the candidate is the maximum over2al\/| values calculated. For a com-
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Algorithm 4 MaxEnrichmentScore(M, q)
Require: ldentifier Set)M .
Require: Minimum Supporig.

forie {1,...,|M|} do
T+ {1,...,|M|}\ {i}
forje{l,...,(|M|—¢q)} do
T, ={teT|t>i}
if T4 # () then
to < minger, t
else
T_-={teT|t<1i}
to < maxyer t
end if
T+ T\ {to}
end for
M+ {M][t] |t € T} U{M]i]}
c; + CalcEnrichmentScord(’)
end for
return maxi<;<|y| i

plete overview of the algorithm and its correctness we refer the readgupgenilix
B.

Candidate Pruning

Candidate pruning is done to make sure only the most interesting rules areertep
back once the experiment is over, to make sure redundant informatior isutef
but also to minimize the amount of candidates generated in the experiment. Within
each stage, candidate pruning is done in three phases. First, candefatested and
appreciated in the previous two phases are now compared to the inptitaguss
all candidates whose number of participants do not satisfy the suppwtramt, or
whoseFE S, is below the minimum score constraint, are pruned. The remainder
will be inserted in the subset collection structure, where further pruniiigake
place.

Within the subset collection structure, pruning proceeds in a bi-dimensi@yal
hence we called iBi-Cohortal Pruning First we prune the rules infgorizontalco-
hort, comparing candidates of the same dimensionality (by dimensionality we mean
the number of concepts that an candidate contains). The remaining dasdida
inserted one by one. The algorithm is shown in Algorithm 5.

As discussed earlier, for every candidatenof> 1 conceptsyn subgroups are
created and the candidate is insentetimes into a hash table. Upon each insertion in
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Algorithm 5 InsertCandidates(S, C)
Require: SubsetCollection structure.
Require: Set of candidate§'.

forall c € C do
T + GenerateSubsets(oncepts(d)- 1)
if "= 0 then
C’ + GetAllCandidates(S)
forall p € C' do
if Descendant(Concepts(p), Conceptsér))l Score(p)> Score(c)then
InvalidateCandidate(c)
end if
end for
InsertCandidate(S, c)
else
forall t € T do
C’ + GetCandidatesFromSubgroup(S, t)
forall p € C' do
if Descendant(Concepts(p), Concepts(@hd Score(p)> Score(c)
then
InvalidateCandidate(c)
end if
end for
end for
InsertCandidatelnSubgroups(S(&)
end if
end for

a hash table entry, the candidate is compared to other candidates of theisemne d
sionality for redundant knowledge, checking whether their differengationcepts
(the two concepts these candidates do not have in common) are relatéslidfttie
case, and the score of the more specific candidate is higher than ot@thmakcore
of the more general one, then the more general candidate is discaraedagbut is
still kept for future candidate generation, and inserted in all the supgribtbelongs
to). In case there are no subgroups yet£ 1), the candidate is compared to all the
candidates previously inserted into the Subgroup structure, and thetedhgself.
Note that since it does not belong to any subgroup, it will be inserted inemargl
list of m = 1 candidates.

After pruning of the horizontal cohort has finished, pruning of ltragitudinal
cohort commences. The remainder of the still valid candidates of dimensionality
are compared to those of dimensionality./n — 1, since rules of dimensionality
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are more specific than rules of a lesser dimensionality, and can thus teaserules
obsolete. To this end, all subsets of dimensiondlityn — 1 are generated from each
remaining candidate of dimensionality, and these are subgroups are compared to
in the subset collection by comparing them to related entries in the castablérof the
respective dimensionality. This algorithm is shown in Algorithm 6.

Algorithm 6 PruneCandidates(S)
Require: SubsetCollection structure.

C «+ GetMostRecentCandidates()
forall ¢ € C' do
for i € {1,...,|Concepts(d)— 1} do
T < GenerateSubsets(c, i)
if "= () then
continue
else
forall t € T do
if i = 1then
C’ + GetCandidatesOfDimension(S, 1)
forall p € C' do
if Descendant(Concept3(Conceptsf)) and
Score¢) > Scorep) then
InvalidateCandidate)
end if
end for
else
T" + GenerateSubsets(t 1)
forall ' € T" do
C' + GetCandidatesFromSubgroup(9,
forall p € C' do
if Descendant(Concept${Concepts()) and
Score¢) > Scorep) then
InvalidateCandidatex)
end if
end for
end for
end if
end for
end if
end for
end for
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Postprocessing

In the postprocessing phase, all invalidated options are discardemdemly those
options that are now rules. These rules are then clustered togethertioyppats,
since the same subgroups can have different rules associated with tirémerfore,
the list of rules is sorted and formatted according to the output format disdusar-
lier.

When clustering, the user has to specify a parameter betivaed , the similar-
ity threshold, indicating how similar rules need to be in order to be clusteretherge
Similarity scoreS for rules Ry and Rs is calculated by dividing the conjunction of
both their identifier lists (rule participants) between the minimum of the two, as can
be seen below:

_|Participants(Ry)NParticipants(Rs)|
~ min(|Participants(Ry)|,| Participants(Rs)|)

The full algorithm is shown in Algorithm 7.

Algorithm 7 ClusterRules(R, q)
Require: Set of Rulesk.
Require: Similarity Threshold;.

FinalClusters« ()

AssociationsMap— BuildAssociations(R, q)
Clusters«+ BuildClusters(AssociationsMap)
FinalClusters« ReduceRedundancy(Clusters)
return FinalClusters

In Algorithm 7, the rules are first divided into associations in the funcBaidAs-
sociations In this function, a hash table is built with rules as keys, and for each key
in R, the entry is a list of all rules that have a similarity score higher than or équal
thresholdy.

In the next step, clusters are built from these conjunctions using theéidanc
BuildClusters which is a function that builds clusters recursively from the associa-
tion maps. The functioBuildClustersis displayed in Algorithm 8. It is a recursive
function that builds all possible maximal cliques for each rule in the associam
AssocMap

Finally, after all clusters have been built, they are pruned for redwydanthe
function ReduceRedundancyhis function makes sure that each rules only appears
in the cluster with the most members, though some redundancy is allowed if a rule
appears in multiple clusters with the same number of members.

Clustering inBuildClustersproceeds as follows. First, for each of the entries in
the AssocMaphash table it is checked if it is a clique. A clique is found when all
rules within the entry have a similarity score higher than the threshatdt only
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Algorithm 8 BuildClusters(AssocMap)

Require: Map of Association®\ssocMap

ClusterSet— ()
for all keye Keys(AssocMapjo
SafeSet[key} key
StrifeSet— ()
UnhandledSet— AssocMap[key]
for all u € UnhandledSedo
strife + false
for all r € UnhandledSetlo
if u=r then
continue
else ifr ¢ AssocMap[ujthen
strife « true
StrifeSek— StrifeSetJ {u}
end if
end for
if strife = falsethen
SafeSet[key}- SafeSet[keyl {u}
end if
end for
if StrifeSet= () then
ClusterSet— ClusterSetJ SafeSet[key]
else
FriendSet— BuildFriendSet(StrifeSet, AssocMap)
SubSet— BuildClusters(FriendSet)
for all s € Subseto
ClusterSet— ClusterSet SafeSet[key] s
end for
end if
end for
return ClusterSet
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with respect to the key rule, but also with each other. If this is the caselusiecis
added tcClusterSet

If the set is not a clique, it means that at least two elements in the set do not
have a similarity score that is sufficiently high, and thus they are putSihifeSet
instead ofSafeSetWhat happens next is that fStrifeSef hash table is constructed
like AssocMap calledFriendSet which contains the entries éfssocMapfor each
of the keys inStrifeSet Next, BuildClustersis recursively invoked, and all the clus-
ters resulting from that invocation are merged with the clique representgaf@set
Finally, these are added as clusters iGtasterSet

5.4 Initial Performance Experiments

In this section we give an indication on overall performance of the Fan&wice.
We apply Fantom to one of the microarray data sets used in {O9]T We discuss
the data set used, what transformations we applied to get a rankingesf,gerd what
parameters we supplied to Fantom. We also present some performance Statistic
address both speed and pruning.

Dataset and Inputs

In this use case we used a well-known publicly available dataset that cesngpamne
expression profiles of AML and ALL [ASS02]. In this data set, gene expression pro-
files were taken from 47 patients suffering from ALL and 25 patientsesiuff) from
AML. We first normalized the raw data using Quantile normalization [BIASA&kr
that, we performed mapping of the probes to ENTREZ genes using the Bla6B80
notations supplied by Affymetrix. We discarded any entries that couldenatdpped
successfully to a single identifier, to reduce the uncertainty error. Firvedlyper-
formed a t-value calculation with the Student’s t-test between those two gribwiss
researching what all over-expressed genes have in common. Ifeahgehmultiple
t-values, the average of those values was taken.

As ontology inputs the GO and KEGG ontologies were used, combined with the
ES score metric. Context inputs were set to homo sapiens, and the iderdi$i&ept
default to ENTREZ.

Implementation

Implementation of the ontology and mapping generation as well as the interaction
files was done in the Python language and run on Python 2.5.2, becatlse aff
ficient and easy string handling of the Python scripting language. Thesesmfice
implementations were done in Microsoft C++ .Net 2008 and Microsoft C#8200
both using the .Net Framework version 2.0 and 3.5. We embedded this wédeser

in a workflow created in the Taverna [MyGO08] workbench.
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Performance

In Figure 5.3, performance measurements are shown for different misiumpalort
sizesS and different minimum score thresholds In Figure 5.3(a), the horizon-

tal axis indicates the minimum support in items, while the verical axis indicates the
running time of an experiment. In Figure 5.3(b), the horizontal axis inditaésin-
imum score setting in an experiment. The vertical axis is once again the rummang

of an experiment.
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Figure 5.3: The Fantom service performance measurements
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As can be seen in Figure 5.3(a), the increase of the minimum participantphas a
found effect on the performance of the algorithm. The same effect eageén in
Figure 5.3(b) where the minimum score was increased, though at a |gs=sd ith
bigger subgroups. Still, if we extrapolate the lines in Figure 5.3(b), it is stiicas
that pruning based on the ES measurement improves performance goeatlgah
simulate the lack of ES pruning by taking a minimum scoré)of

Another interesting question is how these two thresholds affect prunig. |
itively, smaller subgroups and lower minimum scores result in more rules geimg
erated, and therefore more rules pruned, but if we examine the pegesrdarules
pruned we see that with both thresholds it is fairly stable around 99.8%eThksults
are shown in Figure 5.4.In Figure 5.4(a), the horizontal axis indicates thenomim
support in items, while the verical axis indicates the percentage of ruleggrin
Figure 5.4(b), the horizontal axis indicates the minimum score setting in ami-expe
ment. The vertical axis is once again the percentage of rules pruned.

As can be seen, the pruning algorithm is slightly more erratic in the support
threshold seen in Figure 5.4(a) than in the score threshold shown in FEgl(ts,
but overall both are monotonically increasing.

5.5 Conclusions and Future Work

In this chapter we discussed a subgroup discovery service callednframad finds
subgroups given a set of weighed elements. We explained the techsobmdiand
the algorithm, its data sources, and its way of combining that data to genenate co
prehensive patterns that are tailored to the expert knowledge of tharcber.

In our experiments, we have shown several statistics on the Golub etakata
which we normalized and then extracted the participating genes and theis $icon
it. We have shown that pruning can be done with both a monotonic constuaimt s
as support, but also by adapting a non-monotonic constraint such asSteeoke
measurement, thereby making use of the minimum support threshold. THiedesu
in the generation of less rules and increased pruning, which renddesb899.85%
of all the rules generated useless, greatly diminishing redundant informatio

For future work, efforts have to be made to increase rule statistics, howith
ES scores, but also p-values for confidence. Furthermore, somesotre functions
than just ES should be evaluated and supported. A wide overview isnpeesi
[AS0Q9]. Of course, a qualitative re-assessment of the rules with @iffexcore mea-
sures will have to be made, as well as research into the tradeoff betedempance
and quality.
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Percentage of Rules Pruned
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Figure 5.4: The Fantom service pruning measurements
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Chapter 6

The Fantom Service: Exact Testing

In this chapter we describe how we combine the Fantom service with the sthtistica
principle of permutation testing. We demonstrate that by performing seveedldates

of the Fantom service on permutations of an identifier list, we can prune ldheeu

for the original list even further. We also demonstrate that by combinintgpFraand
permutation testing, we can determine an optimal support threshold forsiasae
multi-class experiment with respect to interestingness of rules.

6.1 Introduction

When generating rules from a ranked list of identifiers, the rules usuglisct the
ranking, and Fantom is no different in this respect. It is therefore goactise, where
possible, to make sure that the ranking is correct, and to make sure trsageuler-
ated and reported are specific to that ranking, and not a produchdémaness or
chance, which can sometimes occur. By generating permutations of aéstkene
can check if these permutations generate similar rules. If so, then the adesb
less important and interesting, for they are not specific to the originalmgnk

The method previously described is a variation on Fisher's Exact Tes2F
Fis67]. Fisher's Exact Test is a statistical significance test that usesifstion gen-
eration to determine the deviation from a null hypothesis. It is calledxatttest
because it does not rely on heuristics and approximations of the deviatibnan
calculate it exactly through generation of all possible permutations. Usagtly,
valueis calculated, which is the probability of obtaining a measurement that has at
least (or at most) the same value as the value actually observed, assunbitige tha
null hypothesis is true. The lower the p-value, the less likely the result isnelotéy
chance, assuming the null hypothesis is true, which makes the result mufieaid.

Consider a simple example: suppose we have a ranking of identifiers eacréw
ate 99 permutations of those identifiers. After rule generation, we cheelabih rule
if it also appears in the permutation experiments. Suppose a rule in the ogginal
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periment appeared im out of the residual 99 experiments, then a simplified p-value
could be%rol. Usually an observation (or rule) is considered interesting if its p-value
is below0.05, or even0.01. The rule is then said to kstatistically significant

In this chapter we will apply this concept to the rules generated in Fantom. We
generated permutations of the input, and then generated rules fromfehokeper-
mutations using multiple dedicated instances of the Fantom service. Furtheweore
used the same principle to generate an automated score threshold for a rsalti-cla
problems in Fantom by using maximized rule count differentials.

This chapter is organized as follows. In Section 2, we discuss exactyegtim
Fantom on a single-class problem, generating a rule list with rules uniqueddgie
nal permutation. We also discuss exact testing with Fantom for multi-claskeprep
whereby different groups of identifiers are compared to each otheexXplain the
difference with the normal experimental setup, and the algorithm behindhatito
thresholding of different groups participating in the rules. In Sectione pvesent
experimental results on both variations using the AML versus ALL dataggha
Finally, in Section 4 we present some conclusions and future work.

6.2 Exact Testing for Pruning and Optimization

In this section we discuss two versions of exact testing with Fantom: onanfgies
class problems, which is used for pruning of the rules, and one for muéts-glab-
lems, which can be used for both rule pruning and accurate threshotddsé&on.

6.2.1 Exact Testing: Single-Class Pruning

In this variant of Fantom, we use the Fantom algorithm repeatedly to gemelede
from multiple identifier lists. One list is the original ranking, which reflects thg-or
inal experiment data, and the other lists are derived from permutationatafata or
ranking. It is up to the experimenter to create those permutations, althougrewe
ated a permutation algorithm for microarray expression data.

Exact testing for single-class pruning is a three-stage process, &8s ghéig-
ure 6.1. In the first stage, input permutations are generated. The ofithig phase,
a set of ranked lists, will serve as input of the second stage, along withritiieal
ranked list.

The second stage is the concurrent execution of the Fantom servitgamkad
lists generated in phase one. Depending on how many permutations havgdree
erated, all or a portion of the permutations are processed on the Fanteicese
available, until all permutations have been processed. The resultingangesen
forwarded to the final phase.

In the third and final phase, the output is gathered and combined. Firstlése
generated on the original input, from here on calleddtiginal rule set are loaded

86



N
Phase 1: Ranking - Permutation » ) |
Permutation Generator Rankings

J
I 1

] T 1

Phase 2: Fantom -

Execution Service ant9m
Service

. Original
Phas.e 3: Output - Exact Pruning « Perm. ||
Pruning Outputs

Final
Output
L

Figure 6.1: Workflow for exact pruning

into the system. After that, the rules generated on the permutations are loatled a
compared to the original rule set. If there are any rules more specific trejual to
rules in the original rule set, and with a higher or equal score, then thedelaes in

the original rule set are pruned. Comparison and pruning of ruleggdscaccording

to the algorithms described in Algorithm 5 and Algorithm 6 from Chapter 5.

6.2.2 Exact Testing: Multi-Class Threshold Optimization

Fantom can also be used to perform multi-class comparison experimentgod@he

of these kinds of experiments is to investigate commonalities in subgroups of the
identifiers belonging to thimterest classThe rest of the identifiers belonging to the
control classserve as contrast information, and their involvement in rules penalize
the score of the rule. Consequentially, subgroup rules that contain memtyfiers in

the interest class and few in the control class gain a higher score.

As an example, let us consider a wine comparison problem. Suppose wa& hav
list of wines, all with unique identifiers, and we want to investigate what thedst
popular wines have in common according to a certain wine ontology, for drahe
one described in the OWL documentation [W3C04b]. We would label the popula
wines with ClassInterest, and the rest wittClassControl. When running Fan-
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tom, the service will strive to find all the rules that describe subgroupsedghterest
class, considering the control class purely as contrast informationinised score
measurement of the rules. Experiments of these kind are usually shattisher in
Fantom, since the support threshold only applies to the interest class.

Fantom exact testing for multi-class problems has a slightly different implemen-
tation than Fantom for single-class problems. Each ontology concept aswno
lists associated to it, one list for the identifiers of the interest class, and orerlis
the control class. A similar principle holds for the representation of optiwhgh
now have two lists of participating identifiers, one for each class.

The scoring is also different, since the standard ES measurement isiteot su
for multi-class problems. We therefore adapted the ES measurement to loefeuite
multi-class problems. Let the interest list of an optionbg;....s:, and the control list
be Loontror. Furthermore, if we perceive the two classes as two different rankings
namely Interest Rank and Control Rank, then for each optio Sy,ierese Would
be the ES of the identifiers of the interest class, calculatediomer-est Rank. How-
ever, we still have to penalize rules for their control set participation. peralty,
the weighed percentage of control identifiers will be subtracted 80, crest. I
we take score function, the modifiedE S uiticiass 1S thus:

z:idel’Cont'f‘ol S(Zd)

ZideCont'rolRank ‘S(Zd)

ESMultiClass = ESInterest -

As can be seen, maximization BfS ;.itic1ass 1S @ matter of maximizind” Srterest,
while (optimistically) assuming that there will be no identifierdiponiroi-

An interesting question here is: if we set specific thresholds on the intgoasgh
and control group, for what thresholds would we find the most intereséngf rules?
To this end, a so-calleBermutation Counting MatriXPCM) was implemented.

A PCM is a structure that registers how many rules in the experiment apply to
various threshold boundaries. On both axes, threshold boundagiespresented in
percentages. How many thresholds are represented depends on tixeresalu-
tion, which is by default set td00, meaning that each axis h&g80 thresholds, each
threshold representing one percent. This number can be changed bsethaince
experiments with a large number of identifiers require a higher resolution toestill
able to discern smaller subgroups.

On the horizontal axis, also called thexx_threshold axis, the control group is
represented. Each threshold on this axes represents the percdritgeiers in the
entire control ranking that a rule can have at maximum. Note that if a rule eatfi
certain threshold: on a matrix of resolutiom > z, then it satisfies all subsequent
thresholdst + 1,...,n.

On the vertical axis, which is called thein_threshold axis, the interest group
is represented. In this case, each threshold represents the peecantdentifiers in
the entire interest ranking that a rule can have at minimum. This implies that if a rule
satisfies a certain threshaldon a matrix of resolutiom > x, then it satisfies all
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subsequent thresholds. . ., z.
Consider PCMA below, which has a resolution ofi - n, wherebym is the
min_threshold resolution, and is themaxz_threshold resolution.

a1 a2 v Gig

as1 age - Gap
A=| | .

Gm,1 Gm2 - QGmn

According to the properties discussed abavg,, > amnp—1 > ... > am1, and
a1p > Q25 > ... > amp. This implies that the rules with potentially best scores
have a highm index, while then index is low, ultimately making rules belonging
to a,,,1 the best rules, containing rules that describe many interest group identifie
while none or very little of the control group.

We can use the structure above to determine optimal threshold settings fer inter
est and control classes by using exact testing, wheogliynal indicates threshold
settings where the PCM value of the original input differs most from the R@lMe
in the PCMs of the permutations. To calculate these settings, we subtractrthe pe
mutation PCMs from the original one. The optimal thresholds are indicatedeby th
matrix element with the highest value. We then select the rules of the originahtist
the permutations that adhere to these thresholds, compare them, andypesribat
are better in permutations. The result is then returned to the user.

Note that this type of experiment is more focussed on participations andhthres
old than on interestingness. Percentiles on the axes indicate the weighedtpes
of identifier scores, which is determined as follows: for each rankingpntaining
all identifiers in the experiment, and for a list of identifidrassociated to a specific
rule, the weighed score percentile is calculated by the following formula:

2 ider Sid
ZideR Sid

Participation thresholds should also be set to a lower minimum in these kinds of
experiment, since the purpose of these experiments is to find optimal thresiyold
itself. However, some participation thresholds might be needed to avoidthades
have far more control identifiers than interesting ones, or rules thatrhaxely one

or two interesting identifiers and thus are not very informative or subskdotithe
group as a whole.

A workflow of multi-class exact testing is shown in Figure 6.2. As can be,seen
phases one and two are the same, only phase three differs. Not oningtakes
place here, but also recombination of PCMs, and determination of the optasal c
thresholds.
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Figure 6.2: Workflow for multi-class exact optimization

6.3 Experimental results

In this section we discuss the experimental results of the two versionsaiftegting
with Fantom. We applied both versions on the AML vs. ALL publicly available mi-
croarray data set that compares gene expression profiles of AMAIANEASS +02],
and present statistics on run times, pruning and parallelism.

Before we discuss the different experiments we will first provide a liescrip-
tion of that data set. In the ALL vs. AML microarray data set, there are a tdtal
7,129 probes, and2 measurements per proki#; for AML patients, 47 for ALL.
Mapping from probes to ENTREZ gene identifiers was performed with tH&8bQ
annotations supplied by Affymetrix, and after elimination of probes that mave
gene association or multiple onés445 unique genes remained. To normalize the
raw data, we used Quantile normalization again [BIAS03]. Rankings daénaidl by
performing t-value calculation with the Student’s t-test between groups ldbeile
AML and ALL.

For the remainder of this section, all experiments were carried out onrgnelo
tiple machines all with the same configuration, namely an Intel Core Duo 2 times 2
GHz, with 4 GB of RAM.
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6.3.1 Exact Testing: Single-Class Pruning

Single-class pruning is a process of three phases: permutation gemerakéodis-
covery, and rule pruning. In the first phase of our experiments, gations were
generated from the microarray data set by swapping labels. By gemgepsimu-
tations in this way, instead of modifying values in the ranked list, we ensure that
dependencies between genes are preserved. Since th&pelabels to consider, the
total number of unique permutations would be:

72!

25!-47!
Since this number exceeded our computational resources, which were ltmitéd
computers, we generated 15 random permutations for each experincbranaail 16
simultaneously. We performed two different experiments, one generatieg that
associates ontological concepts directly with genes, and another tisathesater-
action option, indirectly associating genes with ontological terms through atitena
with other genes. For each of these types, we performed three difeeqeariments
with low, medium, and high thresholds. To generate as many experimentss#sgos
we modified Fantom so that it will only allow at most one concept for eacthiqaiee
per rule. Both the GO and KEGG ontologies were used which resulted inaoires
taining a maximum of four predicates.

Since interaction experiments are far more intensive in terms of computation and
data access, a normal, unbiased way of experimentation resulted in apldsiex
that was unfeasible to be evaluated by experts. This is due to the interaatmn d
which documents many interactions, and thus many genes were associaseth to e
ontological term. As a result, we had to insert a bias, declaring a list ofsgbia¢
had to be in the rules. In our case, we declared this list to be the0tbpnd bottom
200 genes, which are most differentially expressed. The participation thick8ten
only applies to the biased part instead of the entire ranking. This way, oideal/
rule explosion at the cost of exhaustiveness. However, since tles gethe list were
already at the top of the ranking, rules that could be found without a l@as likely
to have a low interestingness. Note that due to the identifier association iexplos
thresholds in the interaction experiments are still high in terms of participation.

First let us consider speed results of the experiments, shown in Tablgv/é.1.
outlined several statistics, such as participation thresRa@lgdminimum interesting-
ness scord S, average completion time of the original ingliy in minutes (m) and
seconds (s), lowest completion time of a permutatiom(7'»), highest completion
time of a permutatiomnax(Tp), average completion time of permutations(7p),
and overhead of exact rule prunifi¢p,., which is the time of pruning the original
rules by evaluating the outcome of the permutations.

Note that for each association type, we took three different configusatedlect-
ing a low, medium and high threshold setting. These values differ betwesecias
ation types, since interaction association experiments involve more identifigrs,

=1.53 % 101
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their scores tend to be lower. For direct association experiments, allsvateehe
averages o020 runs, where in each run we generated different random permutations.
Since interaction association experiments took much longer, all values &f &xes
periments are the averagesxafuns.

Direct Association Experiment

PT IS To | min(Tp) | max(Tp) av(Tp) Tpy,
8 0.40 2m 1m58s 2m 2m 5m4ls
10 0.50 1m47s 1m41ls 1m48s 1m44s 3m47s
12 0.70 1m23s 1mlls 1m26s 1m18s 18s

Interaction Association Experiment

PT IS To | min(Tp) | max(Tp) av(Tp) Tp,
60| 0.35| 233m05s| 203m31s| 222ml18s| 210ml4ds| 17m4ls
75| 0.40| 149m51s| 134m32s 148m22s| 146mi12s| 10mlls
80| 0.50| 129m50s| 119mlils 131m27s| 124m34s 1m27s

Table 6.1: Exact test single-class pruning benchmarks

As can be seen in Table 6.1, interaction association experiments are muctateore
and processing intensive, yet exact pruning overhead increasds less dramati-

cally. This is because options in interaction association experiments contayn man
genes associated to them, which makes the calculation of the maximum ES score
very expensive. Exact pruning is only dependent on the numbetes iuthe origi-

nal rule set and those of the permutations, which increase less dramatically.

Another observation is that execution times tend to increase exponentially with
even a minor change in threshold setting, thus starting out with a high thresfebld
then moving to lower ones seems like the best strategy to apply.

A final observation is that rule generation times do not seem to differ much be
tween the original input and the permutations, although experiments with permuta
tions do seem to consistently take less time. This is because in some permutations
very few rules could be generated with the given thresholds, sometimesene,
which reduces experiment times significantly.

Now let us consider pruning results of the experiments, shown in Tabl&\&2.
again outline several measurements for each configuration, such asrttiemof
rules generated in the original inp&b, the minimum number of rules generated in
the permutationswin(Rp), the maximum number of rules generated in the permuta-
tionsmaz(Rp), the average number of rules generated in the permutatigiisp ),
and the average number of rules pruned from the originalsgtp, ).

We can see in Table 6.2 that permutations consistently yield less rules, which
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Direct Association Experiment
PT IS Ro | min(Rp) | max(Rp) | av(Rp) av(Rpy)
8| 0.40 2,964 2,625 2,815 2,762 224
10| 0.50 1,252 539 775 681 95
12| 0.70 27 0 6 4 3
Interaction Association Experiment

PT 18 Ro | min(Rp) | max(Rp) | av(Rp)| av(Rprune)
60| 0.35] 26,212 17,544 21,996 20,112 1,766
75| 0.40| 13,612 5,344 11,278 9,775 728
80| 0.50 4 0 2 1 0

Table 6.2: Exact test single-class pruning results

explains the shorter experiment time. Pruning statistics do not differ muclebetw
direct and interaction association experiments, if we consider the last reeaut
an outlier. In both direct and interaction association experiments, higtigmgsere-
sult in relatively better pruning; at low settings around 6—7% of the origirak get
pruned, while in higher settings this is as much as 11%.

6.3.2 Exact Testing: Multi-Class Threshold Optimization

In multi-class experiments we investigate what the interest class or classesmha
common with each other, or how they differ with respect to the rest of thdiiden
fiers that do not fall in these classes. In our experiments we labelledredbgeith a
t-value greater thaf.5 as interesting, and compared this group with the rest of the
genes in the input. As a consequence, insteddl 15 genes to be considered, the
interest group now contained onkg2 genes, while the rest was serving as contrast
information for scoring purposes.

Participation thresholds in these experiments kept very low, since we want to
cover the optimal thresholds for which to return rules for to the user. Sdttiagh-
olds too high could interfere with this process, and yield a suboptimal resatk.tNat
all participation thresholds now only hold for the interest group insteadeofvtiole
ranking. This has implications for the permutations generated, since therédlae
at least that many genes in the interest group to generate any rules dteaifdre,

a bit of bias in the permutations cannot be avoided, and thus we canat cteue
randomness.

Once again we consider speed results of the experiments, which ara show
Table 6.3. We measured the same statistics as in Table 6.1, again for three diffe
ent configurations. As can be seen, compared to the single-classnespts; these
experiments take less time for the direct associations, but more time for thecintera
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Direct Association Experiment

PT IS To min(Tp) max(Tp) av(Tp) Tp,
4 0.40 1m19s 1ml2s 1m19sm 1m4s 8s
6 0.50 1ml4s 1m8s 1ml2s 1mlls 7s
8 0.70 1m7s 1m2s 1m10s 1m6s 5s

Interaction Association Experiment
PT IS To min(Tp) maz(Tp) av(Tp) Tp,
30 0.35 610m05s| 418ml2s 584m12s| 556m59s| 44s
40 0.50 605m41ls| 432m32s 600m17s| 541m51s|  32s
50 0.60 608m33s|  444m21s 567m22s| 554m22s| 11s

Table 6.3: Exact test multi-class pruning benchmarks

tion associations. This is due to the fact that direct association experinrermsta
negatively influenced as much by a lower threshold as interaction assn@aperi-

ments are. In interaction associations, groups in rules tend to experieazplasive

growth, and this gets worse when lower thresholds are chosen.

Another observation is that experiment times seem to be rather constanis This
not surprising, since the experimental participation threshold was keptaat, and
Fantom’s pruning effect can really be seen in later stages of rule diemer8ince
we modified Fantom to only allow one ontological concept per predicates thter
stages never appear, and thus pruning on the basis of ES is minimal.

Finally, it seems that pruning takes a very short time, indicating that there wer
few rules that could be used for pruning; few rules were generateldthe rules that
were generated had a lower score than the original rules generatedyadhmuch
pruning was done.

Now let us consider the pruning results, shown below in Table 6.4. We irttlude
the same statistics as in Table 6.2 with an added colé@pp, which denotes the
number of rules given the optimal PCM thresholds. As can be seen, optithizssth-
olds yield a pruning optimization in rules of 40 to 50 percent in direct assogiatio
experiments, and between 60 to 90 percent in interaction associatiorinespesr
(discarding the last threshold, which seems to be an outlier due to its strijctness

Once more, permutations do not yield many rules, and as a result additiaical e
pruning also has very little result. This is due to the design of the experimergeiVe
the threshold for over-expression to a t-valu@)df. When generation permutations
of the class labels, we influenced the t-values of the permutations, antythbee
ranking. As a result, there were less permutations that had sufficieas geth a
t-value over0.5, hence permutations structurally yield less rules.

Another reason why pruning yields so little result is because of the lowtthres
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Direct Association Experiment

PT | IS Ro Rop: | min(Rp) | max(Rp) | av(Rp) | av(Rp;)
4| 0.40 1,182 638 0 5 3 2

6| 0.50 946 524 0 3 2 0

8| 0.70 436 227 0 1 1 0

Interaction Association Experiment

PT | IS Ro Ropt | min(Rp) | max(Rp) | av(Rp) | av(Rp,)
30| 0.35] 171,071| 21,349 1,325 1,833 1,411 21
40| 0.50| 11,113| 4,453 0 121 32 8
50| 0.60 1 1 0 1 0 0

Table 6.4: Exact test multi-class pruning results

olds. Rules with small subgroups often contain very specific rules with figtes.
In permutations, other genes are bound to be in the interest sets, yieltisghat
contain more specific concepts located in other parts of the ontology. Asuli, re
these rules cannot be used to prune the original ones since they amdatet to
these rules.

6.4 Conclusions and Future Work

In this chapter we discussed two ways of exact testing with Fantom in orgeune
Fantom outputs even further, and to optimize participation thresholds in ¢ase o
multi-class problem. We described how through a variation on Fisher'st Best
we could prune more rules in addition to the pruning conducted by the Famtom p
ing algorithms. We also showed that with permutation testing we could find optimal
participation thresholds for multi-class problems, as well as use the exaungr
method on it, but with less effect.

In single-class problems, both direct association and interaction assp@atio
periments had benefit from exact pruning, ranging from 6% with low tioles to
about 10% when thresholds are set high. A reason for this differisrtbat at high
settings, there are not many rules, so if one does get pruned, the impaacis
higher than on lower settings, where the impact is less. An overall perfmenaf
this algorithm is to prune about 6-8% of the rules.

In terms of performance, exact pruning on single-class problems icialpe
worthwhile in interaction association problems. Where in direct-associatio- pr
lems the overhead is sometimes relatively grave, e.g., more than 200%, it igetglati
low for interaction association experiments, where the experiments themsalves
sometimes take hours. Overall, overhead on interaction association expsrinaes

95



between 1-7%, which was much better compared to the direct associatien-exp
ments.

In multi-class problems, experiment time was more or less constant if the partic-
ipation threshold was fixed, since pruning had minimal effect for rule igetioa for
small collections of rule concepts. Since exact pruning had little effecte tham-
ing overheads were significantly lower for direct association experimanisell,
between 7-10% of the experiment time. Overhead for the interaction aszo&g-
periments was almost negligible.

Pruning due to optimized constraints of the rules yielded good results in both
direct and interaction association experiments. For direct associatiumsng var-
ied between 45-50% of the rules generated. For interaction associgtismyymber
was higher, pruning from 65% to as much as 88% of the rules. Exacingrinad
almost no effect on both data sets, due to the experimental design andtttieata
low thresholds create highly specific rules with high scores, which arealylik
be pruned by rules generated from a permutation on the class labelstlsahcan
modify the ranking profoundly.

Finally, we would like to discuss future work. Apart from pruning with exac
tests, p-values for resulting rules could also be established with some miaiifica
to the algorithm, although that would require more permutations than the 15 we gen
erated. These p-values could give an even better indication on hovelspspecific
rule is.

For multi-class problems, we kept the number of classes to two for now, dmet th
are many problems that deal with more than two classes, so one interestgiigiue
is how to deal with those. Furthermore, we created a matrix based on pditicipa
thresholds. It would be interesting to see if the optimized rules would differ much
when we optimize on the basis of score thresholds, or a mixture betweenaswibr
participation.
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Chapter 7

Gene Experiments: Mouse Hearts

In this chapter we use the Fantom service to perform experiments on nnérexr
pression concerning mice that show cardiac overexpression of tisetition factor
TBX3. We perform both direct association experiments and interacti@tiasi®n
experiments, and for each of these types we discuss performano&gand rules.
Where possible, we also compare the results of the Fantom service witlstiis i
the DAVID tool.

7.1 Introduction

A microarray study measures the activity of many genes in a biological entity at
certain time. The result of a microarray study is a matrix of numbers reflecteng th
expression of genes in different conditions. By comparing gene ssiores for each
gene for different classes of entities, genes can be assigned dtyaciore for each
class. In our experiments this is the t-score, calculated by the Studentis A$es
result, a ranking of genes can be produced that reflects the extesigaificance of
each gene'’s activity in the conditions under study.

The Fantom service takes as input this ranking of genes together with addlitio
information, such as species, gene identifier type, ontologies and thigstwfind
subgroups in those genes that match a rule, which is a conjunction of dntdlog
concepts that all the genes in the subgroup are associated with. This dsaxdiliect
association experimentor Fantom uncovers rules that contain ontological concepts
that can be directly associated to genes.

Fantom also provides the option to search for rules that can be indirestly as
ciated with subgroups of genes within the gene ranking; this is call@dt@raction
association experimenBy including protein-protein interaction data, Fantom can
extract subgroups that interact with other groups that have certaifogital prop-
erties. These rules can give the experimenter more insight in the influégemes
beyond the scope of direct influence, providing a richer view on contptErgical
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processes.

In this chapter we will perform both types of experiments on data genebgtad
microarray study on two different groups of mice; one group consistemtiol mice
and the other group contains mice that express the TBX3 transgene. WaesHl
sure experiment performance and pruning statistics for both typegnpré® most
important rules and describe the predominant cluster themes. Furthesovéll
apply exact pruning in both experiment types, thereby providing statistiexjoeri-
ment performance on permutations, as well as statistics on exact pruhmgoal is
to give an indication of the performance of the Fantom service in diveess guch
as pruning and execution time, not to present a complete and thoroughatadiom
of the results; for each experiment we will provide the top rules, and skisthem
briefly.

This chapter is organized as follows. In Section 2, we will present arvieve of
microarray studies and the biological backgrounds of the experiment.iNdisguss
what microarray studies are and what kind of processes are invdlv&ection 3,
we discuss the microarray study on the mouse heart, discussing theséaisand
goals of the study, and its goals. In Section 4, we will present the expdsmwemer-
formed with the Fantom service. We discuss experiment design and pséstEstics
on performance as well as pruning for both direct association and étitaraasso-
ciation experiments. Finally, in Section 5, we will draw some conclusions fram th
results presented in Section 4.

7.2 Biological Backgrounds and Microarrays

In this section we discuss the biological backgrounds of microarray stuale the
microarray technology itself.

7.2.1 Biological Backgrounds

All information about the functioning and construction of a living organisistised

in Deoxyribo Nucleic Acid (DNA) molecules. These molecules are said to be the
blueprint of an organism, for they contain almost all traits. These traits earnsb

ible, such as eye color or hair color, but also invisible, such as the fursctiban
organism’s immune system, or the presence of hereditary diseases.

DNA is present in each cell of an organism, where it is organized into lwimgs
calledchromosomesThese chromosomes can be seen as chains of DNA molecules
bonded together, also called macromoleculepabymers The DNA molecules that
together form the polymer are calledcleotidesThere are four kinds of nucleotides
in DNA: Adenine (A), Guanine (G), Thymine (T) and Cystosine (C). Ghosomes
are organized in pairs that bond together, thereby forming a spiral, kadine dou-
ble helix. Each nucleotide on a polymer bonds with the opposite nucleotide on the
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other polymer, forming what is called lzase-pair However, not all bondings are
possible; Adenine can only bond with Guanine, while Thymine can only batid w

Cytosine. This is called the Watson-Crick complementary. An illustration is shown
in Figure 7.1.

Base: A-T
Pair  T-A

: : C-G
Mitrogeous G0
Base

FPhosphate
Backbone

Figure 7.1: A chromosome molecule

DNA contains information thousands of different biological procesRegions of a
chromosome that contain information on the support or execution of thesegses

are calledgenes Each gene can play a role in various processes of the body. When
such a process needs to be carried out, the DNA double helix is unrgvaiidd

the information contained in genes on a single strand is translated into massenge
Ribo Nucleic Acid (mMRNA). The main differences between DNA and RNA is that
RNA is a single strand, and all the Thymine molecules are translated into Udicil (
molecules. This mMRNA is then translated into amino acids, which bond together to

'Image taken from the Science Creative Quarterly,
http://www.scq.ubc.ca/a-monks-flourishing-garden-the-basicaadecular-biology-explained/
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Codon

mANA

Ribosome
Figure 7.2: The mRNA translation process

form proteins. These proteins then perform the required procdsgese 7.2 shows
this process.

7.2.2 Microarrays

Whenever a biological process needs to be performed, the genesdhlrasponsi-
ble for that process become more active, meaning that they are translateaainy
MRNA strands. Microarrays are designed to detect those mRNA strardisy enea-
sure their intensity.

Microarrays are arrays of thousands of microscopic spots. Eaclesé thpots
contains thousands of short mRNA sequences that match the gene oftinberat
least part of the gene. These partial strands are cpitgaes The probes bind to the
target genes by means bybridization The probe is a complementary nucleic acid

2Image taken from National Human Genome Research Institute,
http://www.genome.gov/Pages/Hyperion/DIR/VIP/Glossary/lllustratiorgesépeptide. gif

102



labelled target (sample)
fixed probes
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(e.g. bind different genes)

Fully complementary Partially complementary
strands bind strongly strands bind weakly

Figure 7.3: Microarray hybridization

sequence, designed to pair with the target mRNA sequence. Figdreht®s this
process.

As can be seen in Figure 7.3, probes can bind to multiple mRNAs that have par-
tially the same sequence, but the target genes provide the strongestBgmeashing
the samples after hybridization, the weak bonds can be filtered out.

Each target is labelled with a fluorescent substance. When more targelsdoo
to a probe, more light is emitted. Microarrays use relative quantitation in whih th
intensity of a feature is compared to the intensity of the same feature undéaramlif
condition. By comparing the intensities of the two conditions, a number is peaduc
that indicates the expression of a certain probe, and thus gene.

Microarrays are used to measure expression levels or changes@ssixyrievels
of genes. They can also be used to detect Single Nucleotide Polymorphikiok,
we will discuss in the next chapter. Another use is the Comparative Genoynic H
bridization (CGH), in which DNA sequences are compared for chalsgeb,as gains
or losses. This is often applied with tumor cells.

7.3 Microarray Study on Mouse Hearts

In the TBX3 microarray study, gene expression patterns in the hearbajrioups of
mice were compared. One group consists of the control group, contammasgthat

3Image taken from Wikipedia,
http://en.wikipedia.org/wiki/DNAmicroarray
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did not express TBX3, the other group consisted of mice which expid¢seel BX3
transgene. TBX3 is a transcription factor that is important for heartlderent; it

is involved in the specification of myocardiumial tissue into working myocardism, a
well as the myocardium of the conduction system.

There are important differences between these two types of myocardiark:- W
ing myocardium contracts fast, is metabolically highly active and has no autmurs
contractile activity, whereas the conduction myocardium contracts slowhgtabol-
ically less active and has spontaneous pacemaker activity.

TBX3 is normally only active in the conduction myocardium where it repiesse
the working myocardium activity and ensures its pacemaker activity. In émes-tr
genic mice under study, TBX3 is also active in the working myocardium wibhése
not supposed to be expressed. This leads to a loss of synchronuusctions (ar-
rhythmias).

The study of the transgenic mice helps to identify the genes and pathways impor
tant for the specification of the two different types of myocardium, which ey
to find a way to suppress or avoid TBX3 expression in the working myaoard

7.4 Experimental Results

In this section we will present and discuss the results of the variousimergs we
performed on the TBX3 microarray study. We performed both directcéestion and
interaction association experiments. The microarray data contdth&d8 probes
that were used to measure gene expressiong samplesf samples of the control
group and6 of the TBX3 group. After mapping probes to the SYMBOL identifier
type, a ranking 084, 327 genes remained. No losses occurred in mapping SYMBOL
identifiers to the internal ENTREZ representation. Scores of those probee ob-
tained by using the Student’s t-test on the samples, and taking the absolets eglu
the outcome.

As an extra pruning step we applied exact pruning on the outcome of tiee-exp
iments by performing the same experiment on permutations of the original gankin
These permutations were generated in the same way as was done in SectionyG.3
swapping labels. For the TBX3 data set, the total number of permutations is:

& —1=923
We generated 16 random permutations for each experiment, and thempetfthe
Student’s t-test on each probe again to obtain the new scores.

All experiments were conducted with the Fantom service implementation dis-
cussed in Chapter 5, and performed on Windows Vista with an Intel Corad®2 D
T6400 2 GHz CPU and 4 GB RAM. The experiment setup also remained the same
for each experiment type we examined performance and pruning bygasypport
threshold P and keeping the score threshdfdconstant (support-dependent mea-
surements). For the direct association experiments, we also studiedabedafthe
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score threshold by varying it, while keeping the support threshold auni&eore-
dependent measurements).

For each type of experiment we spread the measurements over two tdides. T
first table contains the performance measurements, which include thgeavsme
for the experiment to complete ovéd runs on the original rankinqongavg in min-
utesm and seconds, the minimum time for the experiment to complete over 10 runs
on a permutatiofperm,;,, the maximum time for the experiment to complete over 10
runs on a permutatiofperm,,, and the average time for the experiment to complete
over 10 runs on all 16 permutatiom'semhvg.

The second table contains pruning statistics, which include the number of rule
options generated on the original ranki#i@ptions the number of options pruned
on the original rankingtPruned the pruning ratidRatiosryneg the number of rules
pruned by exact pruningXPrunedand the ratio of rules pruned by exact pruning
Ratioxpruned

Apart from performance and pruning statistics we also present thiesr&sueach
experiment. We present the top rules, along with an interpretation. Apantifrdi-
vidual rules we also discuss themes and trends in the output by describicigsters
that were generated on the output.

7.4.1 Direct Association Experiments

We first discuss the direct association experiments. In this section we wilisdis
performance, pruning and the resulting rules, each in a separatesobse

Performance

Table 7.1 shows support-dependent and score-dependentpanice measurements
for the direct association experiments. For the upper half of the tablehwieasure
support-dependent measurements, the score threshold was fi¥ed @60, while
the support was varied. For the lower half of the table, the score-depemeasure-
ments, the support threshold was kept constaiit at 13 while the score thresholds
were varied.

For the original ranking, execution time seems to grow exponentially as the sup
port threshold gets lower, while this is not always the case for the permwgation
This indicates such behaviour is ranking-dependent. Some rankingsrceary lit-
tle rules with sufficient support, as the average execution time of the pernmstatio
does not seem to incline as much as the average execution time of the orgikal r
ing.

For the score-dependent measurements, a similar statement could be imade, a
though inclines are not as dramatic as with support-dependent meastseAven-
age completion times for permutations are lower, which is to be expected sores sc
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Support-dependent measurements
Threshold Torigavg Tpermnin -|-|:’ermm>< TPerm,vg
P=11 70m41ls 8m20s 74m13s 26m02s
P=13 22m50s 7m59s 26mO06s 12m22s
P=15 14mO07s 6m10s 15mO06s 7m31s
P =20 7m44s 5m58s 7m30s 6mO09s
Score-dependent measurements
Threshold Torigavg TPermnin TPermnax Tpem«bvg
S =0.55 44m20s 8m25s 58m48s 18m13s
S =0.60 22m50s 7m59s 26mO06s 12m22s
S =0.65 15m24s 7m16s 10m25s 8m30s
S =0.70 10mb51s 5m59s 7m4ls 6m35s

Table 7.1: Performance measurements for the direct association expisrimen

in the permutation lists are lower on the whole, thus the resulting rules geneaaély h
lower scores as well.

Figure 7.4 illustrates the performance behaviour of the direct associienie
ments. Figure 7.4(a) shows support-dependent behaviour for thieadrignking and
the permutations, while Figure 7.4(b) shows score-dependent beha&goan be
clearly seen, behaviour is the same across all the measurements, althcaga of
Figure 7.4(b), execution time for the original ranking decreases at &sloace, for
it keeps generating more rules than in the permutations. Intuitively this isctoitie
permutation rankings are randomized rankings and therefore shoulaircagenti-
fiers with lower scores, resulting in rules with lower scores. Therefbtke score
threshold approaches a boundary that is considered high, suth-g%70, the per-
mutations should yield little rules, in any case less than a ranking that was obtained
from a directed experiment and not random generation.

Pruning

Table 7.2 shows support-dependent and score-dependent proaasyrements for
the direct association experiments. Once again, the score threshold ppietable
was fixed toS = 0.60, while the support threshold in the lower table was kept con-
stant atP = 13.

For support-dependent measurements, pruning ratio goes down asetieott
grows. This is due to the design of the Fantom service; rules with high suppally
contain more general terms and ontological concepts, while rules with laywpost
are more specific refinements of the rules with higher support. By desige thles
are kept, and thus less pruning takes place.
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Support-Dependent Execution Time Measurements
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Figure 7.4: Execution time measurements for direct association experiments
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Support-dependent measurements
Threshold| #Options| #Pruned| Ratiopyneq| #XPruned| Ratiokpruned
P=11 949,179 947,454 0.9982 159 0.0921
P=13 470,270| 469,097 0.9975 78 0.0665
P=15 289,462 288,618 0.9971 36 0.0426
P =20 109,209| 108,847 0.9967 5 0.0148
Score-dependent measurements
Threshold| #Options| #Pruned| Raticpryneq| #XPruned| Ratioxpruned
S =0.55 628,586, 626,543 0.9967 364 0.1782
S =0.60 470,270| 469,097 0.9975 78 0.0665
S =0.65 375,332 374,721 0.9984 10 0.0163
S =0.70 251,084, 250,847 0.9991 0 0

Table 7.2: Pruning measurements for the direct association experiments

Exact pruning lowers as the support threshold increases. On aygragnuta-
tions need less time and generate much less rules. As support threshoddsénc
even less rules will be generated. Given that rules generated by p&onsitgener-
ally yield lower scores, pruning decreases as support thresholdsege

For the score-dependent threshold, pruning monotonically increabid) is to
be expected from a threshold that has pruning as primary purposgkeFRuore, low-
ering the score threshold seems to have more influence on exact pruamiptir
ering support thresholds. This indicates that this technique is especieflyl wsen
trying to discover rules with lower score thresholds but still specific to thking.

Results

In this part we discuss the rule output of the experiments. Since the TBdZdhis
not publicly available yet, we will omit the genes involved in the rules, and just g
the support, the score and the rule itself.

When looking at the rules generated with = 11 and S = 0.60, we find
rules that are reasonably diverse. The fopules are displayed on the next page.
As can be seen, returning concepts are mitochondrion and membranh,isveic
pected since those are the areas that were studied. Interesting comuegiéied
to cardiac problems are seen in the fourth rule, which links strongly to differ
types of cancer, and in the second rule, which links to neurodegearmeditieases.
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Rule 1
Support: [15]
Score: 0, 855
Al'l genes in the subgroup
have the followi ng properties:
cel l ul ar_conponent (i t ochondri on),
bi ol ogi cal _process(aerobic respiration),
bi ol ogi cal _process(acetyl - CoA catabolic process),
KEGG pat hway(Citrate cycle (TCA cycle))

Rule 2
Support: [11]
Score: 0, 849
All genes in the subgroup
have the follow ng properties:
nmol ecul ar_function(iron ion binding),
cel l ul ar_conponent (it ochondri al inner nenbrane),
KEGG pat hway( Al zhei nmer’ s di sease),
KEGG pat hway( Par ki nson’ s di sease),
KEGG pat hway(Hunti ngton’ s di sease)

Rule 3
Support: [11]
Score: 0, 848
All genes in the subgroup
have the follow ng properties:
bi ol ogi cal _process(neuron differentiation),
cell _comp(intracellular menbrane-bounded organell e),
bi ol ogi cal _process(regul ati on of transcription),
KEGG pat hway( Si gnal Transducti on)

Rule 4

Support: [11]

Score: 0, 845

Al'l genes in the subgroup

have the followi ng properties:

cell _comp(intracellular menbrane-bounded organell e),
KEGG pat hway( Si gnal Transduction),
KEGG pat hway( Endonetrial cancer),
KEGG pat hway(d i omm),
KEGG pat hway( Prost at e cancer),
KEGG pat hway( Mel anomnmg)
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Because we do not want to present only individual rules, we also tbekglobal
trends by performing clustering on the rules. When clustered with a similaotg sc

of 0.60, thus an overlap of terms of 60%, we see three distinct themes, which agree
with the top 4 rules: the first theme is centered around the mitochondrial ért a
transmembrane transporter activity, the second theme considers sigisalicrdon,

and the third theme deals primarily with neurodegenerative diseases.

7.4.2 Interaction Association Experiments

For the interaction association experiments we faced a problem. Becatiseinf
teractions, so many concepts were annotated that mining for rules with sradjlen
thresholds to be interesting took so much time and memory that it was beyond the
capabilities of the Fantom service. However, we could partially circumvénptbb-

lem by using a biased approach, which we discussed in Section 6.3.1

In the biased approach, we confine the support threshold to a fixes] icld&at-
ing that each rule should have as least that amount of identifiers of tliediass.

In case of our experiments, we defined the fixed class as consistingsef ¢glemes
that have a score higher than 2. Any higher would limit the search spacauob,
and any lower resulted in an explosive time increase on the experiments,nghile
producing many significant changes in the rules.

After relabelling al the genes according to this process, oBth827 involved
in the experiment], 909 were labelled as the fixed class. Even then, if we took a
support threshold of 25 or less, the experiment time would take well oveugsh
without any significant result in the rules.

For the permutations in the exact pruning mechanism we labelled the same genes
as the fixed class as those in the original ranking, since we need to plesehat
are partially made up of that fixed group. However, since these gendly/rase
lower scores in the permutation rankings, rules with higher or equal seovald
have never been reached. Therefore we allowed for a bit of scoentsy, stating
that if a rule appears with a high enough score (in the experiments we took sc
threshold 0.60) that is also in the original rule output, then we pruned it.

Performance

For the interaction association experiments we solely took support-depqretéor-
mance measurements; since the results of those experiments all had $002600
higher, doing score-dependent measurements had little added valuéia soa@ll
spectrum of scores.

For the support-dependent measurements, the score threshold wia® fike=
0.60 for the original list, while for the permutations it was set§o= 0.40. Results
are shown in Table 7.3.

Since the score threshold for the original ranking and the permutatiols, a
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Support-dependent measurements
Threshold Torigavg Tpermnin Tpermnax TPerm,vg
P =26 44m33s 37s 45m30s 9m58s
P =27 7m57s 32s 7m4ls 2m23s
P =28 3m27s 29s 3m39s 1m20s
P =29 3ml5s 28s 3m20s 1mQ09s
P =30 2m20s 26s 2m24s 52s

Table 7.3: Performance measurements for interaction association expisrimen

cannot perform a direct comparisons. However, we can concludéhiafollow a

similar pattern as in Table 7.1. The use of interactions did have a small effélseo
explosive nature of the curve, which si somewhat steeper now, dsecagen in Fig-
ure 7.5. As we will explain in the next chapter, the shape and position of tinie ¢
could be important for automatic threshold selection.

Support-Dependent Execution Time Measurements
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Figure 7.5: Execution time measurements for interaction association experiments

As can be seen in Figure 7.5, the permutations can still require a signifieoind
of processing in interaction association experiments, as was the casecinedise-
ciation experiments. Overall, however, permutations in interaction assocaxiien-

iments yield much less rules when combined with the bias. Without bias, however,
the experiments would take a very long time.
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Pruning

When we look at the pruning data shown in Table 7.4, we notice that not &rides

are generated for the amount of time it took to complete the experiment. Tleeae ar
few explanations for this. Since rules now have more participants, calqulatite

ES score and the maximum ES score takes longer. Furthermore, sinceage mew
associated to many more concepts, rules in interaction experiments haveanere ¢
junctions, which take longer to prune in the pruning stages. Therefoperienent
time increases for the same number of rules.

Compared to direct association experiments, the pruning effect is ndgideatr,
especially when little rules are generated. This is partially caused by theuntdd
bias, that restricts the number of rules that can be generated. If arsadl®aperi-
ment was feasible, pruning would probably have had a similar efficientlyaaof
direct association experiments, or even slightly higher since we expeetnuies to
be generated.

Support-dependent measurements
Threshold| #Options| #Pruned| Raticpryneq| #XPruned| Ratioxpryned
P =26 362,928 361,144 0.995 81 0.0454
P =27 126,888 125,378 0.988 52 0.0344
P =28 56,902 55,565 0.977 45 0.0337
P =29 45,490 44,281 0.973 31 0.0256
P =30 38,089 37,038 0.972 23 0.0219

Table 7.4: Pruning measurements for the interaction association experiments

When evaluating exact pruning, we see that it is monotonically decreasimgs the
case in direct association experiments. Exact pruning with leniency witshbick
0.60 results in about 2% to 4.5% of the rules being pruned, but this is vpgndent
on the permutations and the leniency threshold. For example, i fer 26 we take
leniency threshold 0.50, the pruning ratio would already be 62%, and ricariey
threshold 0.40 it was 97%, so depending on how strict the experimentes themn
rules to be ranking dependent, exact pruning can have a greater impact.

Results

When analyzing the rules generated with= 26 and.S = 0.60, they appear to ac-
curately reflect the themes clustered in the direct association experimelitatimg
that there is a lot of activity going on in those parts and processes. 8acdiigh
similarity between the rules, we present the best rules of the top three sluster
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Rule 1
Support: [69]
Score: 0, 951
Al'l genes in the subgroup have interaction with
a gene that has the follow ng properties:
nol ecul ar _function(iron ion binding),
bi o_proc(regul ation of protein nodification process),
cel _conp(m tochondri al nenbrane),
bi o_proc(regul ati on of phosphoryl ation),
KEGG pat hway( Al zhei ner’ s di sease),
KEGG pat hway( Par ki nson’ s di sease),
KEGG pat hway(Hunti ngton’ s di sease)

Rule 2

Support: [209]

Score: 0, 938

Al'l genes in the subgroup have interaction with

a gene that has the follow ng properties:

cel _conp(m crotubul e cytoskel eton),
cel _conp(cytoplasm c vesicle),
cel _conp(intracel lul ar nmenbrane-bounded organell e),
cel _conp(cytoskel etal part),
KEGG pat hway( Si gnal Transducti on)

Rule 3

Support: [139]

Score: 0, 937

Al'l genes in the subgroup have interaction with

a gene that has the follow ng properties:

bi o_proc(cell projection assenbly),
bi o_proc(neurite devel opnent),
cel _conp(intracel. menbrane-bounded organelle),
bio_proc(cell norph. in neuron differentiation),
KEGG pat hway( Si gnal Transduction),
KEGG pat hway( | mmune Systemn),
KEGG pat hway( Focal adhesi on),
KEGG pat hway( Regul ati on of actin cytoskel eton),

As can be seen, scores, rule support and the number of conjunatéoal larger for
interaction rules. Themes are very similar to the themes found in the directasso
rules, but with more specific terms, such as neurite development, and cpEmifs
of mitochondrion and membrane terms.
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7.4.3 Comparison

To get an idea of how accurate and powerful the Fantom service ispmpared its
output with the output generated by the Database for Annotation, Visualizatio
Integrated Discovery (DAVID) [HST07], which is an online analytical tool that can
perform a similar function as the Fantom service for direct associatioeriexents.

In order to use DAVID, we had to map all identifiers to their ENTREZ identifigce
DAVID seemed to experience problems with the SYMBOL identifiers. Furthezmo
DAVID did not allow us to enter more than 3,000 genes in the list, thus we had to
restrict ourselves to the top 3,000.

DAVID presents the results in a list of ontological terms, and providesdohe
term the number of genes in the list associated and not associated to it, gnd the
value of the association. Judging from the outcomes of the clusters in DAWEDe
is still quite some overlap between them, since mitochondrion appeared in all clus
ters in the list. Overall, DAVID found terms that were quite straightforwarchsas
mitochondrion, cytoplasmic part, and intracellular membrane-bound orgakielte
specific terms that were found by Fantom were also found by DAVID,ghdawer
down the list. What is striking is that the term manganese ion binding, which was
in the best rule in Fantom, was not found in DAVID. We suspect this is dueeto th
fact that DAVID solely takes genes itself into account, and not scoregaotdhe
importance of concepts.

7.5 Conclusions and Future Work

In this chapter we discussed Fantom experiments that were performed rmamay
expression data obtained from samples taken from two different gadupice, one
group that has cardiac over-expression of the transcription fact&8T@&nd a control
group that lacks this over-expression. To determine the differencenmeeression
between the groups, we calculated absolute t-values to create a ramdribea per-
formed both direct association experiments and interaction associationnegpts.
For each of these association types we also generated 16 permutatioaskieg
in order to apply exact pruning. Finally, we presented performanceurezasnts on
both experiments, as well as pruning and exact pruning statistics an@eticeflon
the results.

For direct association experiments, support-dependent execution tiraeider
and score-dependent execution time behaviour were much alike. Asdfdssvould
go down, an explosion in execution time would become apparent, which issilé re
of the scoring function and the score distribution. There are many moes geith
low scores, which form rules with lower scores. If we allow for thosegiriehe rule
generation process, the execution time of that process will grow expalien

Support-dependent pruning behaviour and score-dependemingrbehaviour
were not alike, however. While in both cases the pruning ratio was al@ob¥®or
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higher, the pruning ratio went down as the support threshold grew higheup as
the score threshold went higher. Support-dependent pruning wastomically de-
creasing because most rules with the top scores were all related, foe diffgrent
support thresholds, whereby the rules in the experiments with a lowes sgeshold
are refinements of rules with a higher threshold. Due to the higher subpeshold,
less rules are generated, yet relatively more rules survive due to #sevdth the
high score, hence the pruning ratio is lowered a bit. Score-dependarhg was
monotonically increasing because the threshold is in nature a pruningdldebi
creasing it decreases a rule’s survival chances in both generatigmostprocessing
stages.

For both support-dependent measurements and score-dependsntanents,
exact pruning seemed very useful, especially at the lower threshdhdsevd—17%
of the original output rules could be pruned. Given that this was onlyebeltrof 16
permutations, the principle should have a greater impact if more permutatiolads co
be generated on a grid of many more machines.

Rules of the direct association experiment seemed to focus on a few toigics,
covered by clustering the remainder of the rules. These themes include omtbii
parts and transmembrane transporter activity, signal transductionganadegener-
ative diseases. This is more specific and diverse than the themes thad B&vAd,
since the clusters found there primarily focussed on the mitochondrigparnem-
brane activity.

For interaction association experiments, we needed to introduce a biasin ord
to be able to generate experiments with any kind of interesting results, sincdan
ased search over all the possible groups proved beyond the capabfltties=antom
service. In the biased approach, we confined the support threshalfixed class,
and stated that each rule should have at least a minimum amount of supp@t o
fixed class. In case of our experiments, the fixed class was definetsasgbnes that
have a t-score higher than 2.

Even with the bias in place, rule generation took considerably longer far inte
action association experiments, since one third of the number of rules oiréut d
association approach was generated in roughly 60% of the time. Howexeesult-
ing rules all had a score of 0.90 or higher, and thus very characteostibd TBX3
class.

Given these high numbers of rules with a high score, only support-depéen
measurements were taken. These measurements showed that with a littleisteeper
cline the support-dependent execution time behaviour was similar to dismtias
ation experiments, though the permutations would cost much less time on average
than in the direct association approach, which is the result of the bias.

Conventional pruning behaved in a monotonically decreasing fashiorhige
time with more impact since there were many more rules with higher scores, thus
the decrease numbers were in the range of percentage points, insteathefof a
percentage.
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Exact pruning had to be done with some leniency. This leniency stated that if

a rule surpassed a leniency score threshold, the related rule woulditedpn the
original output. This was a change from the direct association approde a re-
lated or similar rule would only be pruned if a rule in the permutation output was
found with a higher score. Depending on this leniency, more or less retgggned.
If a leniency of 0.6 was taken, about 5% of the rules was pruned at kibwesholds,
while only about 2% would be pruned at a higher support. Decreasinigniency
had a drastic effect; when 0.5 was chosen, 62% was pruned at the tbweshold,
and at 0.4 it was 97%.

For the results, rule support and the number of conjunctions were fargater-
action rules than direct association rules. Themes of both experimentigpesery
similar, but the results in the interaction association rules experiments werepre
cific. Since DAVID does not support interaction association in the way #rdim
service does, a direct comparison was not possible.

While the results presented above give new insights in the performance of th
Fantom service, it also raised questions. For example, what is an optima@hor
mum amount of permutations to be considered for exact pruning? And aowe
improve Fantom efficiency for lower thresholds? Finally, how can we makeen-
tional pruning even more rigorous, since many surviving rules are detateach
other, and must be clustered to give an overview? These are all topitgiice re-
search.
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Chapter 8

SNP Experiments: Human
Depression

In this chapter we perform experiments on data that was obtained frongke Slo-
cleotide Polymorphisms (SNP) study done on human depression. We ¢dwduc
different experiments; in one experiment we let Fantom mine the SNP ran#ing
rectly, and in another data set we let Fantom mine on gene rankings thaewer
tracted from the SNP ranking. We present performance measuremenéskzntom
service for both sets as well as pruning and clustering statistics, andusslmt on
the best rules generated for each experiment type for each of theediffeonditions
in human depression.

8.1 Introduction

When applying the Fantom service to a ranked list of genes, the resulievéllibt of
specific groups of genes with an interestingness score, and a descripé consist-
ing of conjunctions of GO and KEGG concepts. A different but relatgubgment
would be to mine rules on SNP data instead of genes.

A SNP is a modification within a DNA sequence on a single spot, which might
have an effect on one or more genes located near that spot. Dependtmgglocation
of the SNP in the DNA string, it can be associated to genes near that lodtirsn,
creating a many-to-many mapping between SNPs and genes. This mappthgman
be used to establish a mapping between ontology concepts and SNPs.

There are two approaches that can be taken when using the Fantdoe sera
SNP ranking. The first approach is to use the SNP identifiers as a nanmvgntion,
thus mapping SNP identifiers to associated genes, and mediating the SN&fecore
each gene to obtain an aggregated gene score. The Fantom serviceageabeted
with the gene ranking obtained from this process. The second option isdteca
mapping from SNPs to ontological concepts by combining the SNP to gene rgappin
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and the gene to ontology mapping. The Fantom service would then be execute
the SNP ranking, using the SNP to ontology mapping.

In this chapter we will perform and analyze both experiment approadtesyill
discuss the advantages and disadvantages of each approachsamd pratistics on
the experiments. For each approach, we will perform experiments @anatiffrank-
ings associated with different conditions in human depression. We will thepare
the results of those rankings by comparing experiment performancdfantiMeness
in terms of pruning and clustering, as well as give a brief interpretationeobést
rules for each condition.

This chapter is organized as follows. In Section 2, we will present a bizzbg
background on SNPs and related terms. We will discuss what SNPslatkinds
of SNP types there are and why SNP research can be important. In S&ctian
will discuss the SNP study on human depression. We will give an introdutttion
the subject of human depression, present the studies that were donkow the
SNP data from this study was obtained. In Section 4 we will present theiegres
we performed with the Fantom service. We discuss experiment desigifpraveti-
ous rankings we present statistics on performance as well as prurdngustering
for diverse participation and score thresholds. We also compare thimganwith
each other to see how they influence aforementioned statistics. Finally, tiorSec
5, we will draw some conclusions from the experiment results. We make coempa
isons between both experiment approaches, as well as some oveglisions on
experiment results.

8.2 Single Nucleotide Polymorphisms

A Single Nucleotide Polymorphishm (SNP), pronounced as "snip”, is a neatiidin
of a nucleotide on a DNA strand. These modifications include removal, ingertio
or substitution, of which Figure 8'1is an example. The effect of a SNP can be
profound. If the information in a gene changes, this might result in theioreaf
different amino acids, resulting in the formation of different proteins, ilgadtb a
change in bodily functions. Furthermore, even if a mutation does nottaffgene
directly by modifying a nucleotide that is part of it, it can still influence the dgtiv
and translation of genes that are located near the SNP.

SNPs that do not result in a different gene translation are cajj@dnymous
SNPs, or silent mutations. A SNP that does result in a translational chaogkeid
a nonsynonymouSNP. There are two kinds of translational changespasense
change, which results in an abrupt stop of the gene translation prior tanisleton,
or amissensehange, which results in the translation of a gene into a different amino
acid.

Human SNP studies are often used to compare one group of participants with

picture by David Hall, http://en.wikipedia.org/wiki/File:Dna-SNP.svg
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Figure 8.1: Single-Nucleotide Polymorphism in DNA molecules

a certain condition to a matched group of participants that lack that condition. B

comparing SNP regions, genes and gene variations can be identifieddititdte or

counter certain diseases or conditions. Similarly, SNP can be used inedhesych to
investigate how certain treatments affect patients. In this case, SNP stathpare
patients that received treatment with patients that were untreated, or tteagiven

a placebo.

8.3 SNP Study on Human Depression

Depression is a common mental disorder that presents itself with a depnesedd
loss of interest or pleasure, feelings of guilt or low self-worth, distdréleep or ap-
petite, low energy, and poor concentration. These problems can be¢woreccor
recurrent and lead to substantial impairments in an individual's ability to takeofa
his or her everyday responsibilities

According to the The Tripartite Model of Depression and Anxiety, symptoims o

depression and anxiety can be assigned to one of three dimensionsyenaffact

2http://www.who.int/mentahealth/management/depression/definition/en/
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(NA), (lack of) positive affect (PA), and somatic arousal (SA) [W&V09]. These
dimensions are influenced by fewer genes than the diagnosis of majesdaerdis-
orders (MDD). Therefore, the effect of genetic factors will be aasiedentify. To
unravel the genetic component of MDD, we analysed the effects of Settated
genes on NA, PA and SA, as measured by the Mood en Anxiety SymptontiQues
naire (MASQ).

For this, we used data from the Netherlands Study of Depression anétinx
(NESDA). This is a longitudinal cohort-study meant to identify risk factansde-
pression and anxiety. For 2,951 individuals, extensive data on symptodepies-
sion and anxiety, psychology, demographics, lifestyle, and biologicatunes are
collected at baseline, and 1, 2, 4 and 8 years thereafter{PBZA genome-wide
association study was carried out in a subgroup of NESDA, for 1,8668mawith a
Diagnostic and Statistical Manual of Mental Disorders (DSM-1V) diag;mosMDD
[OWST08]. Genotypes were determined using Perlegen 600k SNP-chips ofxfibr
ity control of the data, we had 435,276 SNPs for 1,738 patients. MAS@sdor
NA, PA and SA were available for 1,543 of these patients.

8.4 Experimental Results

In this section we will present and discuss the results of the variousimergs we
performed on the human depression SNP study. There are two apgsdaett we
considered in our experiments. In the first approach, we mapped thed8NtHiers
to genes, which resulted in a ranking of genes that we experimented thre sec-
ond approach, we experimented on the original ranking of SNP identé#ietsheir
scores, and created a mapping from SNP identifiers to ontological dsriceO
and KEGG.

For each of the approaches, we performed experiments on rankingestiieeex-
tracted for all three conditions discussed in the previous section: Posftae (PA),
Negative Affect (NA) and Somatic Arousal (SA). Note that results in taidisn in-
clude primarily performance indications and statistics on pruning and clugtéoin
interpretation and quality assessment of the rules is beyond the scopetbEsiss

All experiments were conducted with the Fantom service implementation dis-
cussed in Chapter 5, and performed on Windows Vista with an Intel Corad®2 D
T6400 2 GHz CPU and 4 GB RAM. The experiment setup also is similar to that
of Chapter 7: for each condition, we examined performance, prunidglastering
for support-dependent measurements and score-dependent emeaists. After the
results of all three conditions have been presented, a comparison willdetman-
alyze whether there are any significant differences between the thmeéions.

The measurements done in each experiment are: the average time forehe exp
ment to complete over 10 rudg,q in minutesm and seconds, the number of rule
options generateOptions the number of options prunétPruned the pruning ra-
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tio Ratiopryneg the number of clusters derived from the rules with a setting08%
overlag #C, and the rules-per-cluster rafiaticc.

We next discuss the experiments on gene translations and the experiments with
SNP ontology mappings in two subsections.

8.4.1 Experiments on Gene Translations

In this approach we obtain gene identifier rankings by mapping SNP identifier
ENTREZ [MOPTO05] gene identifiers. This mapping provides a translatmm &ach
SNP identifier involved in the SNP study to one or more ENTREZ gene identifiers
For each gene, all score values of associated SNP identifiers ard, siotkin the
end the median is taken as its score. The workflow is shown in Figure 8.2.

SNP to

Gene ’

Mappin . ENTREZ
\—/g— E:nklng » Gene Parameters
apper Ranking
SNP ‘
Ranking
| — J 2

Rule Fantom
Output . Service

Figure 8.2: The gene translations experiment workflow

The weakness of this method is that gene scores are not accuratelyredezsues,

but instead are representatives of a set of SNP scores; aggrebatiBiyP scores into
a single gene score obfuscates the influence of the individual SNEstingth of

this method is that the experiments can be carried out faster, and at loeshdlds,

since the number of SNPs are usually far greater than the number ofthahésey

are associated with.

After mapping the SNPs to ENTREZ gene identifiers, the ranking size was re-
duced from435,290 SNP identifiers tal5, 176 ENTREZ gene identifiers, whereby
325 SNP identifiers could not be mapped. Compared to the total ranking, this loss
was not significant, nor did they have much impact; 328 identifiers had an av-
erage score 09.80, and only13 were considered statistically significant, since they
had a p-value equal to or less th&ns.

3This threshold was determined on the basis of expert feedback, efesaresults were presented
with various cluster outcomes from different thresholds.

121



When measuring the impact of support thresholds, the score threshekkivia
a constant value, and vice-versa. For the gene translation experitherfised score
threshold was set 10.60, while the fixed support threshold was kept constaritsat
genes. In each of the following sections, we present the results in a cedntaible,
accompanied by explanations on their behaviour. A comparison betweessthles
in these tables will take place in Section 8.4.1.

Negative Affect

Table 8.1 shows the support-dependent measurements and scandatgpeeasure-
ments for the NA condition. What becomes immediately apparent is difference in

Support-dependent measurements
Threshold Tavg | #Options| #Pruned| RatiOpryned #C | Ratiac
P=10 64m51s| 862,728 862,073 0.999241| 229 | 2.8602
P=11 17m42s| 491,533| 491,126 0.999172| 165| 2.4667

P=15 9m33s| 149,890| 149,852 0.999566| 40 1.625
P =20 7m36s 69,983 69,977 0.999914 5 1.2
P =25 7m09s 47,314 47,312 0.999958 2 1

Score-dependent measurements
Threshold Tavg | #Options| #Pruned| RatiOpryned #C | Ratiac
S =10.50 18m26s| 263,816| 262,768 0.996028| 339 | 3.0914
S =10.55 13m06s| 221,786 221,414 0.998323| 135| 2.7555
S =10.60 9m33s| 149,890| 149,852 0.999566| 40 1.625
S =10.65 7m43s| 104,954 104,941 0.999876| 12| 1.0833

Table 8.1: Performance measurements for the NA condition

running times betweeff = 10 andP = 11, which seems to be a breakpoint. Appar-
ently there are many more subgroups that are shared ggnes or less than kiyt or
more. Also, pruning experiences a local minimum around that breakpailitating
an inverse relationship between those two properties, whereby the jasetafter
the breakpoint forms an optimal support threshold for maximized interestasgof
the rules.

For score-dependent measurements, running times degrade much @mdre gr
ual and linear than in the support-dependent measurements within thesgiven
boundaries. This is expected, since there are less rules with these brgls,send
thus a sudden change like in support-dependent measurements is eéxq@dygtat
lower scores. As expected of a pruning threshold, the pruning ratio istoiically
increasing if the threshold goes up. For both score-dependent ppdrsdependent
measurements, the rules-per-cluster ratio is monotonically decreasing.
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When analyzing the rules generated for the NA condition, there were same s
prises in terms mixed with terms known to be associated with depression. Véapres
the best three rules below. Once again, since the data set is not publgeribe
involved in the rules are removed from the output:

Rule 1
Support: [11]
Score: 0, 747
Al'l genes in the subgroup
have the followi ng properties:
bi o_proc(chol esterol biosynthetic process),
cel _conp(intracellul ar nenbrane-bounded organell e),
KEGG pat hway( Li pi d Met abolism

Rule 2
Support: [12]
Score: 0, 744
Al'l genes in the subgroup
have the followi ng properties:
bi o_proc(pos. reg. of protein kinase cascade),
bi o_proc(reg. of |-kappaB ki nase/ NF- kappaB cascade),
cell _comp(intracel. non-nenbrane-bounded organelle)

Rule 3
Support: [13]
Score: 0,722

Al'l genes in the subgroup
have the followi ng properties:
bi o_proc(regul ation of transcription),
KEGG pat hway( Pancreati c cancer),
KEGG_pat hway( Chroni ¢ nyel oi d | eukemi a)

The rules shown above are concerned primarily with metabolism, which isrknow
to be affected by stress. The second rule contains concepts that aeéatdt to
infections, since depression influences responses to infection. Fitmeljast rule
concerns signalling constructs within the body, which are also affectatkpyes-

sion. Leukemia is among these terms, since leukemia also is caused by signalling
deficiencies.

Positive Affect

The results for support-dependent measurements and score-deperehsurements
for the PA condition are shown in Table 8.2. As with the NA condition, the PA con
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Support-dependent measurements
Threshold Tavg #0ptions| #Pruned| Ratiopyneq| #C | Ratiac
P =09 83m38s| 1,977,442 1,975,733 0,99914| 628 | 2.7229
P=10 35m13s| 911,444 910,375 0.99883| 377 | 2,8355

P=15 9m34s 157,889 157,715 0.99890| 72| 2.4167
P =20 9mO0s 84,841 84,816 0.99971| 16| 1.5625
P =25 6m50s 40,191 40,186 0.99988 4 1.25

Score-dependent measurements
Threshold Tavg #0ptions| #Pruned| Ratiopyneq| #C | Ratias
S =0.50 | 13m58s 252,727 251,251 0.99416| 464 | 3.1810
S =0.55 12m39 184,283 183,672 0,99668| 203| 3,0099
S =10.60 9m34s 157,889 157,715 0.99890| 72| 2.4167
S =10.65 9m20s 130,540 130,505 0.99973| 16| 2.1875

Table 8.2: Performance measurements for the PA condition

dition also shows a breakpoint, &t = 9. Furthermore, there seems to be a sort of
processing plateau betweéh = 15 and P = 20. The reason for this is because
the rules do not differ a lot between these two thresholds, both in dimeltisiarad
content they are closely related or even the same. That means that almssinie
amount of time is spent on pruning, while calculation of the maximum ES scorg take
more time, since now for each rule opti@h maxima have to be calculated instead
of 15.

Pruning seems to converge to a local minimum again, in this instancehear
10, after the breakpoint. Clustering seems to be erratic, but still overaledsitig.
We will explain the reason for this erratic behaviour in Section 8.4.1.

Score-dependent measurements behave as expected. Similar to thedithonpn
we see a more linear correlation between running times and scores fovehnesgore
thresholds, for the same reasons. Pruning and clustering also belzesienitar way.

The best 3 rules in the output of the Fantom service for the PA conditiomversh
below.

Rule 1

Support: [10]

Score: 0, 82835619871135

Al'l genes in the subgroup

have the follow ng properties:

bi o_proc(protein am no acid phosphoryl ation),

bi o_proc(peptidyl-amno acid nodification),

bi o_proc(pos. regulation of protein kinase activity)
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Rule 2
Support: [10]
Score: 0,820677828269983
Al'l genes in the subgroup
have the followi ng properties:
bi o_proc(negative regul ation of transcription),
bi o_proc(post-translational protein nodification),
cel I ul ar _conponent (nucl eopl asm part)

Rule 3
Support: [10]
Score: 0,820
Al'l genes in the subgroup
have the followi ng properties:
bi o_proc(neg. reg. of macronol. biosynth. process),
bi o_proc(neg. reg. of gene expression),
bi o_proc(neg. reg. of cellular biosynth. process),
bi o_proc(post-translational protein nodification),
cel I ul ar _conponent ( nucl eopl asm part),
bi o_proc(regul ation of transcription),
bi o_proc(neg. reg. of nucl. acid netabolic process)

For the PA condition scores are very high, and the differential parelaiges in

the biological process domain. This is confirmed by the clustering; the thggedt
clusters deal with positive and negative regulation of diverse presespecifically
in the nucleoplasm part.

Somatic Arousal

The results for support-dependent measurements and score-deperehsurements
for the PA condition are shown in Table 8.3. The first observation in TaBlées8hat
experiments on the SA condition do not take nearly as much time as the other con-
ditions, given the same thresholds. Even when choosing a low suppeshtid, it
still results in a relatively low number of rules. As a result, rules-per-cluates are
also rather low. Pruning is on a similar level as the other conditions, indicatatg th
pruning is not directly dependent on the ranking.

Apart from shorter experiment times, the score-dependent measussioethe
SA condition show the same behaviour as the score-dependent measisrenother
conditions; pruning ratio, the number of cluster and cluster ratio all showahe
decline, although the cluster ratio is lower due to the smaller number of rules-gen
ated.

The best 3 rules in the output of the Fantom service for the PA conditiommversh
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Support-dependent measurements
Threshold Tavg #0ptions| #Pruned| Ratiopyneq| #C | Ratiac
P =07 45m25s| 1,255,501 1,253,358 0.99829| 857 | 2.5006
P=10 16m20s| 443,470 442,992 0.99892| 209 | 2.2871

P=15 7m59s 106,517 106,468 0.99954| 28 1.75
P =20 6mA48s 62,277 62,264 0.99979 8 1.625
P =25 5m42 30,497 30,496 0,99997 1 1

Score-dependent measurements
Threshold Tavg #0ptions| #Pruned| Ratiopyneq| #C | Ratias
S =10.50 9ImO01s 167,250 166,603 0.99613| 301 | 2.1495
S =0.55 8m21s 134,242 134,056 0,99861| 091 2.044
S =10.60 7m59s 106,517 106,468 0.99954| 28 1.75
S =10.65 7m08s 95,029 95,024 0.99995 5 1

Table 8.3: Performance measurements for the SA condition

below. When looking at the rules of the SA condition, we see that they aselglo
related to the PA condition in terms of concepts.

Rule 1
Support: [11]
Score: 0, 830

Participants: |
Al'l genes in the subgroup
have the follow ng properties:
bi o _proc(reg. of trans. from RNA polym|| pronoter),
bi o_proc(pos. reg. of cellular biosynth. process),
cel lul ar _component (nucl ear part),
bi o_proc(pos. reg. of RNA netabolic process),
cel lul ar _comnponent (i ntracel l ul ar organell e | unen)

Rule 2
Support: [10]
Score: 0, 818
Al'l genes in the subgroup
have the follow ng properties:
bi o_proc(pos. reg. of gene-specific transcription),
cel l ul ar _conponent (nucl ear part),
bi o _proc(reg. of trans. from RNA polymI|| pronoter),
cel lul ar_conponent (i ntracel  ul ar organel | e | umen)
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Rule 3
Support: [12]
Score: 0, 788
Al'l genes in the subgroup
have the followi ng properties:
bi o_proc(reg. of spec. fromRNA polym Il pronoter),
cel lul ar _conponent (nucl ear part)

Where in the PA condition negative regulation of processes was predatniméhe
SA condition those same processes seem to be positively regulated, yiathvith
conditions they do not differ much in score. The parts where these gges@ccur
are confined to the nuclear part, as well as the intracellular organelle lumen.

Discussion

In this part we will discuss the measurements presented above. We wilssiguee

dimensions: execution time, pruning ratio and rule-per-cluster ratios. \Wasi€x-

ecution time to establish a global indication of the performance behaviouringru
and rule-per-cluster ratios are discussed to get an indication of whavioarr these
algorithms show within the Fantom algorithm.

Execution Time As can be seen in Figure 8.3(a), all conditions have roughly the
same curve, growing at an explosive rate as the support threshalchbsdower. The
breakpoint varies for each condition. For the NA condition, it i®at 10, for PA at
point P = 9, and for SA at point”? = 7, though in this case the incline is less abrupt.

The breakpoint seems to be ranking dependent: different rankiogsige rules
with different scores. For SA, most subgroups that have more‘thpanticipants do
not seem to get a score or even maximum score higher than theSfixed.6, while
for NA and PA there are. Since more rules and rule options adhere tolibese-
aries, the experiment takes longer, for more combination, calculation amihgr
operations have to be performed.

When analyzing the relationship between score thresholds and expetiment
as depicted in Figure 8.3(b), we see that the influence is far less pdhfthough
still noticeable. The correlation seems to be somewhat linear, since pointsecan
connected with a fairly straight line. This linear correlation thus indicatesftimat
scores betweed.50 and0.65, subgroups with these scores and maximum scores are
evenly distributed. Differences in influences between the conditionsaialfy be
related to the number of rules generated; when more rules are genenatedwill
be pruned whenever the threshold goes up, hence the impact in exeaugowill
be longer.

The fact that the score threshold influences the experimental time to adssser
tend is because it requires more effort to calculate. When two rule optiersom-
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Support-Dependent Execution Time Measurements
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Figure 8.3: Execution time measurements for the experiments on gene trarsslation
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bined, and the rule option support is below the threshold, it can be destardne-
diately, without the need for calculation of its ES and maximum ES. However, to
determine if the maximum ES of a rule option is below par, it has to be calculated
first, taking a substantial amount of extra time. Therefore, the scorentidesnly
saves on the pruning part of the rule generation, and not the scotdat&ia.

From a practical point of view, analyzing lower score thresholds waseces-
sary. The lowest score usually already generates between 500+M|68@r more,
which is unacceptable to review from a bio-informatician’s point of view.dblesee
a sudden rise in execution time for lower score thresholds, since mostaitesa
lower score, as we will see in the SNP ranking experiments.

Pruning The pruning ratio is the number of pruned rule options divided by the total
number of options generated. As can be seen in Figure 8.4(a), theremmaction
between the pruning ratio and the breakpoints of the support thresktioddisreak-
points appear to be local minima, or close to local minima, in the pruning ratio. This
implies that the breakpoints form some sort of optimal trade-off betweeasifigjiy

of the rules and support.

Before the breakpoint, relatively more rule options are pruned becmeseule
with very specific concepts can invalidate all related rule options with lessfigpe
terms, which, depending on the depth of the term in the ontology as well apthe u
ward connectivity of terms (how many parents they have), can be matsr. thie
breakpoint, relatively more rule options are pruned because they danger meet
the support threshold. By finding the lowest pruning threshold, a fagtddbalance
between rule specificity and rule support can be obtained.

In contrast, the effect of the score threshold is much more profoundeoprtim-
ing ratio, as can be seen in Figure 8.4(b). This is because the scoredldresmrks
both as an intermediate option prugdas a postprocessing rule pruner. If the score
threshold is increased, more options are pruned while generating rulesioce
now the maximum ES score of more rule options does not suffice anymoreoivir,
even if a rule option did have the required maximum ES score, it does nargaa
its actual ES score suffices. Since the threshold has become strictercthases the
likelihood of the rule to be pruned in the post-processing stage.

The effect of increasing the pruning threshold is more significant foet@eores,
which is the result of the gene ranking score distribution, shown in Figbre 8
As can be seen, all three rankings have almost identical distributionse winest
genes have very low scores, and thus a lower impact on the ES scorareahtp
the higher genes. This means that compared to the total rule collection, a peghe
centage of the rule options resides in the lower section of the rankingeGoaistly,
any change made to the pruning ratio in the lower spectrum has more impact than
changes made in a higher spectrum.
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Support-Dependent Pruning Ratio Measurements
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Figure 8.4: Pruning ratio measurements for the experiments on gene trarslatio
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Ranking Score Distributions
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Figure 8.5: Ranking score distributions of all conditions

Clustering When analyzing the relationship between support thresholds and rules-
per-cluster ratios, shown in Figure 8.6(a), it seems almost linear. Howaeasure-
ments seem to get more erratic as the group size gets smaller. This is a deetct ef
of a small group size and the cluster threshold, since it can cause a iscgepancy
error.

Consider the following example: When comparing two rules that both Bave
genes while clustering at a thresholdo§, these two rules need to ha¥egenes in
common, or 66.67%, a discrepancy of 6.67 percentage points with reéspleetorig-
inal threshold of).6. In contrast, when comparing two rules that hageyenes, they
need to hava0 genes in common, d?2.5%, which only has a discrepancy error of
2.5 percentage points. As a rule, the lower the discrepancy error bectireanpre
stable and accurate clusters are.

The relationship between score threshold and rules-per-cluster ratics Stud-
den drops. These drops are the properties of the rules that come withetifics
ranking. Since clustering is based on similarity of genes, most rules clustidnave
roughly the same ES score. When the score threshold moves past a tteesiold,
most of the rules in a cluster will vanish, except for the few with a higherescithe
sudden removal of may rules while retaining a cluster causes the ruldyster ratio
to drop suddenly.

Another explanation for the drops is that we observed that the rules with the
higher score seem to appear in small clusters, usually only one or twqerdetus-
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Support-Dependent Rule-per-Cluster Ratio Measurements
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Figure 8.6: Cluster ratio measurements for the experiments on gene trarsslation
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ter, while rules with a lower score tend to form bigger clusters, since thiemnmare
rules in that range. That means that increasing the score threshold imnhis is
likely to reduce the rule-to-cluster ratio more.

Rules When comparing the rules of the three conditions, both PA and SA are
closely related in concepts, yet the opposite seems to be happening; iroBasges

are negatively regulated, where in SA those same processes areghpségulated.
The NA condition is involved in regulation too, yet terms there are very didesel
specific, and even include associations with certain cancer types.

8.4.2 Experiments with SNP Ontology Mappings

Instead of mapping SNPs to genes and aggregating their scores, d seqvoach
would be to leave the ranking as is, using SNP identifiers and their indivédoats,

and let the Fantom service use a mapping between SNP identifiers and thedGO a
KEGG ontologies. The mapping is a combination of the SNP to ENTREZ mapping
and the ENTREZ to GO and ENTREZ to KEGG mappings discussed earlialt-res
ing in a list of SNP identifiers and the GO and KEGG concepts they are aksibcia
with. The workflow is shown in Figure 8.7.

SNP to
Gene

Gene to
GO/KEGG

Concept

’ Mapper

SNP to
GO/KEGG

Mapping

Parameters
’ Fantom » Rule
Service Output
SNP \ P |
Ranking

Figure 8.7: The ontology mappings experiment workflow
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This method has its strengths and weaknesses. When keeping the indBhiRsa
and their scores, rules become more accurate, as do rule scorem@ivideal SNPs
are now associated instead of their related gene aggregates. Conbgqukes are
tailored to SNP subsets that are differentially expressive, not gesetsylgiving an
accurate description of the SNP properties, and a more accurate ssee ¢n the
SNP scores. When mapping to genes, and then mapping back in the outpeanthis
not be done, due to the many-to-many relationship between genes and SNPs

A weakness of this method is the larger number of identifiers. When usirgy gen
translation, the set of35,290 SNP identifiers was translated 16,176 ENTREZ
gene identifiers, which allowed Fantom to search a larger rule spacen ey
435,290 SNP identifiers, loading takes a long time. Furthermore, running the Fan-
tom service would require both support and score thresholds to béiggrymaking
it very unlikely to obtain subgroups with a high interestingness score ussg$h
measurement. When running the Fantom service on the SA ranking, fopéxahe
experiment took over seven hours, and produced only two rules, eojhlew in
score and deemed uninteresting by the expert analysis.

Despite the large amount of identifiers, we can still use the SNP ranking to do a
multi-class study. In this particular experiment, for each of the three consliti@n
made a ranking of all SNPs with a p-value of less thai®, which were all SNPs
with a t-value of higher thaih.962. Next, for each of the three conditions we created
a ranking that contained only SNP identifiers that had a higher score ttiza ather
two rankings and labeled these as the interest class, while labeling the asdiael
control class. We performed the multi-class experiment on the resultingngank

To determine thresholds for comparison, we first analyzed the data seawith
quick run of the Fantom algorithm, restricting the rules in the maximum amount of
conjunctions as we did in Chapter 6. Finally, we fouAd= 15 andS = 0.48 suit-
able fixed values to test performance, clustering and pruning, sinceeslthnkings
showed interesting results on tests with these fixed values.

Negative Affect

In this condition there wer223, 554 SNPs statistically significant. Filtering with the
other two condition lists resulted inl, 746 SNP identifiers in the interest class. The
residual of the SNP identifiers from the rankings of the other two conditizere
merged, whereby the highest score of a SNP was taken as its score irrtfes hiss.
This resulted ir89, 793 SNPs in the control class. Results of the support-dependent
and score-dependent measurements are shown in Table 8.4.

Scores of rules are significantly lower in this kind of experimental setup raiking
scores are much closer together, forcing rule and rule option scores¢oahower
average. Furthermore, the control group penalty adjustment loweaessexen more,
thus the boundary had to be set fréi= 0.60 to S = 0.48. The trend is the same as
in the other experiments, though the rule space is much more compacted:he dro
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Support-dependent measurements
Threshold Tavg #Options| #Pruned| Ratiopryneq| #C | Ratioc
P=10 48m01s| 1,119,855 1,119,823 0.99997| 14 2.29

P=11 8m48s 65,822 65,801 0.99968| 10 2.10
P =12 8m23s 34,054 34,039 0.99956 8 1.88
P =13 8m19s 26,909 26,895 0.99948 7 2.00
P=15 8m09s 21,345 21,340 0.99977 2 2.50

Score-dependent measurements
Threshold Tavg #0Options| #Pruned| Ratiopyneq| #C | Ratioc
S=0.24 | 51m26s| 1,116,328 1,116,109 0.99980| 100 2.19
S =0.25 8m58s 64,756 64,563 0.99702| 91 2.12
S =0.35 8m32s 40,457 40,425 0.99921| 16 2.00
S =0.40 8m21s 26,301 26,289 0.99954 7 1.71
S =0.48 8m09s 21,345 21,340 0.99977 2 2.50

Table 8.4: Contrast experiment measurements on the NA condition

execution time and amount of generated rules is very large and sudderinmtat
for S = 0.48, P = 11 seems to be a barrier.

We also see the same trend in pruning ratio, where it starts high, moves td a loca
minimum, and then moves upward again. The trend is more crude this time, since rule
generation was lower, thus creating a less accurate picture. Rulduptratatistics
seem to be inconclusive. At some point, the statistic rises again. This catilallpa
be because some cluster themes contain rules with high scores, but alaedtere
are very few rules and clusters, thus a larger discrepancy error.

Since scores are now less varied, the score-dependent measurshmmta
strong resemblance to support-dependent data. Both execution timesiaimdpa-
tio show the same kind of behaviour, indicating the breakpointoe 15 is set
somewhere betweet = 0.24 and.S = 0.25. The pruning ratio also shows the local
minimum after the breakpoint, which is, as expected, lower than the one thas sh
in the support-dependent measurement. Rule-per-cluster statisticeeat decreas-
ing, but for the last entry. The 3 best rules for the settifgs 10 andS = 0.48 are
shown below.

Rule 1

Support: 65

Score: 0, 569

Al'l genes in the subgroup

have the follow ng properties:

nmol _func(phosphati dylinositol phosph. activ.)
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Rule 2

Support: 44

Score: 0, 568

Al'l genes in the subgroup

have the follow ng properties:

cel l ul ar_conponent (nonnotile primary ciliun),

bi ol ogi cal _process(phot oreceptor cell naintenance)

Rule 3

Support: 53

Score: 0, 560

Al'l genes in the subgroup

have the foll owi ng properties:

mol ecul ar _functi on( ATP bi ndi ng),

cel l ul ar _conponent (menbr ane fraction),

mol _func(P-P-bond-hydrol ysis-driven transp. activ.),
cel lul ar_conponent (i ntegral to menbrane),

mol _func(ATPase activ., coupled to novem of substances)

As can be seen in these rules, the scores are noticeably lower than itbg iscthe

NA experiments of the gene translation method. The conjunctions, on thehatiey

are larger, and the concepts used in the rules are much more specifis.drthe

NA condition shown here are related to the rules in the NA condition of the gene
translation method in terms of kinase, phosphatase and energy bindings ihéh

top 10 rules, the earlier reported association with cancer was also steépregh a
reasonable score.

Positive Affect

In the PA condition21,544 SNPs were statistically significant which, after filter-
ing, resulted in a ranking df3, 287 SNP identifiers in the interest class. The control
class consisted A8, 252 SNPs after filtering. Results of the support-dependent and
score-dependent measurements are shown in Table 8.5 Although théi@xdione
shows a familiar pattern, both the pruning ratio and the rules-per-clustedeviate
from support-dependent behaviour we have seen so far. Wheeciirggp the rules of
the diverse support thresholds, a moderate-sized group of reldesdcansistently
scored very high. As the total number of rules gets lower, this influenegsrtining
statistics as well as the rules-per-cluster statistics to a great extend,singréiae
pruning ratio as the support threshold increases.

Score-dependent measurements are also showing different bahd&xen for
very low score thresholds, a sudden increase in generated rulexendien time
does not occur. This has to do with the participation threshold. As the pattaip
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Support-dependent measurements
Threshold Tavg #0ptions| #Pruned| Ratiopyneq| #C | Ratiac
P =07 69mi12s| 1,644,519| 1,643,917 0.99963| 212 | 2.8396
P =08 12m24s| 279,366 279,212 0.99945| 59| 2.6012

P =10 8m24s 67,453 67,362 0.99865| 43| 2.1163
P=13 8mO03s 38,396 38,350 0.99880| 17| 2.7059
P =15 7m48s 23,906 23,867 0.99837| 14| 2.7857

Score-dependent measurements
Threshold Tavg #0ptions| #Pruned| Ratiopyneq| #C | Ratias
S =0.10 | 10m23s 89,159 87,933 0.98625| 451 | 2.7184
S =0.25 9m15s 60,810 60,404 0.99332| 178| 2.2809
S =0.35 8m47s 53,756 53,628 0.99762| 61| 2.0984
S =0.40 8m32s 39,596 39,529 0.99831| 33| 2.0303
S =0.48 7m48s 23,906 23,867 0.99837| 14| 2.7857

Table 8.5: Contrast experiment measurements on the PA condition

thresholds get higher, the sudden increase is pushed back to a lexetts@shold
and eventually flattens out, since the number of rule options that suppdhrésh-
olds becomes smaller.

As expected, pruning ratio is monotonically increasing as the score thiéaho
creases. Rules-per-cluster ratio shows the same behaviour as inploetsigpendent
measurements. The resulting best 3 rules for the setfthgs07 andS = 0.48 are
shown below.

Rule 1
Support: [13]
Score: 0, 853

Al'l genes in the subgroup
have the follow ng properties:
bi o_proc( MAPKKK cascade),
bi o_proc(protein am no aci d phosphoryl ation),
nmol ecul ar_function(zinc ion binding),
bi o_proc(pos. reg. of cel. protein netabolic proc.),
bi o_proc(regul ation of MAP ki nase activity),
bi o_proc(pos. reg. of protein kinase activity)
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Rule 2
Support: [8]
Score: 0, 851
Al'l genes in the subgroup
have the followi ng properties:

bi o_proc(activation of MAPK activity),

nmol ecul ar_function(zinc ion binding),

bi o_proc(pos. reg. of cell. protein metabolic proc.)

Rule 3
Support: [8]
Score: 0, 851
Al'l genes in the subgroup
have the followi ng properties:
bi o_proc(transf. growth fact. beta rec. sig. path),
nmol ecul ar_function(zinc ion binding),
bi o_proc(regul ati on of cytoskel eton organi zati on)

Similar to the gene translation method, positive regulation of protein kinasétactiv
has a high score again, even in these condensed contrast studiésnZiimding also
seems to be very important to the PA condition, as opposed to other cond@ipns.
toskeleton organization is an unexpected concept, but even in the clgstestands

out, together with cytosol as cellular component. Clustering also promotesdhe p
tein kinase and zinc ion binding as the most important concepts, together with the
regulation of metabolic processes.

Somatic Arousal

The SA condition containe2R, 071 statistically significant SNP identifiers. Through
filtering these were reduced to a rankingldf 498 SNPs in the interest class. The
control class consisted 6f7, 041 SNPs. Results of the support-dependent and score-
dependent measurements are shown in Table 8.6.

For support-dependent measurements, execution time and pruning mtidesh
miliar patterns, although the drop in execution time is more extreme than in the other
conditions. The pattern in the rules-per-cluster ratio is also familiar, but istsar-
prising is the large number. After inspecting the rules and clusters, the topekd
always appear in the top 3 largest clusters, which explains why theytd@tpruned,
and the rules-per-cluster number stays high.

As aresult of the? = 15 fixed support threshold, the SA condition lacks a break-
point in the score-dependent measurements. Similar to the PA conditionutiagr
ratio is monotonically increasing, but so is clustering; due to the fact thauthe r
with the highest score are also in the largest clusters, these clusters targaias
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Support-dependent measurements
Threshold Tavg #Options| #Pruned| Ratiopryneq| #C | Ratioc
P=14 83mi12s| 1,113,230| 1,111,733 0.99866| 326 4.59

P =15 8m35s 43,277 43,190 0.99799 9 9.67
P =16 8m25s 37,203 37,153 0.99866 8 6.25
P =17 8mO03s 23,443 23,430 0.99945 5 2.60
P =18 7m48s 22,648 22,639 0.99960 3 3.00

Score-dependent measurements
Threshold Tavg #0Options| #Pruned| Ratiopyneq| #C | Ratioc
S =0.10 | 11m29s 91,950 90,768 0.98715| 403 2.93
S =0.20 9m48s 76,200 75,509 0.99093| 247 2.80
S =0.30 9m18s 69,124 68,801 0.99533| 86 3.76
S =0.40 8mb51s 48,640 48,487 0.99685| 30 5.10
S =0.48 8m35s 43,277 43,190 0.99799 9 9.67

Table 8.6: Contrast experiment measurements on the SA condition

the score threshold increases, thus increasing the rules-per-clatsterTihe three
best rules for the settingd = 15 and.S = 0.48 are shown below.

Rule 1
Support: [51]
Score: 0,600
Al'l genes in the subgroup
have the follow ng properties:
bi o_proc(sensory perception of sound),
cel I ul ar _conponent (axon),
bi o_proc(nechanoreceptor differentiation),
bi o_proc(inner ear devel opnent)

Rule 2
Support: [48]
Score: 0,599

Al'l genes in the subgroup
have the follow ng properties:
bi o_proc(cellular netal ion honeostasis),
bi o_proc(sensory perception of sound),
bi o_proc(regul ation of action potential in neuron),
bi o_proc(regul ati on of nenbrane potential)
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Rule 3
Support: [48]
Score: 0, 599
Al'l genes in the subgroup
have the followi ng properties:
bi o_proc(sensory perception of sound),
bi o_proc(regul ation of action potential in neuron),
bi o_proc(cellular cation honeostasis),
bi o_proc(regul ati on of nenbrane potential),
bi o_proc(netal ion honeostasis)

What is surprising about these rules is that they are not very similar toldsinthe
gene translation process. Part of that can be explained by the expediesegn; many
SNPs were removed from the list because the SNPs in the PA condition ligiaea h
expression level. This is the reason that all concepts shared with thenéikion are
now less noticeable. What remains are rules that are specific to the Ski@onthe
scores are therefore not as high, but the rules are very speciéy.alhstill contain
involvement of the membrane, but also contain sensory perception al sodninner
ear development as a primary concept. When clustered, these cornuegas i the
top cluster as well, together with neurotransport activity.

Discussion

Similar to Section 8.4.1, we will again discuss the measurements by comparing them
in three dimensions: Execution time, pruning ratio and rule-per-cluster ratio.

Execution time As was the case in the single-class experiments, multi-class ex-
periments also show a breakpoint in support-dependent measurertelotsation is
again dependent on the ranking, as can be seen in Figure 8.8(a)vétpihere is
a difference between the behaviours. The decline is much steeper in theclassj-
and the variation in the positions of the decline is also larger. This is caustg: by
many-to-many relationship between SNPs and genes. SNP identifiers emsdse
ciated to many genes, thus many ENTREZ and KEGG concepts. Furthemmnere,
gene can be associated to multiple SNP identifiers, associating all those identifie
with the same ontological concepts. As a result, under a specific suppeshiid,
all these identifiers will share a group, thus causing an explosion in thepate.

What is also striking is that the score-dependent measurements of thendA co
tion, displayed in Figure 8.8(b), also show such a breakpoint. The exqdaris sim-
ilar to the one of the support-dependent measurements: using SNP identsiead
of genes resulted in an explosion in the rule space. Furthermore, the msétiaclap-
tation of the ES function folds the rule space instead of spreading rulesagoadly,
concentrating the number of rules even more to the lower boundaries. ésub, r
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Support-Dependent Execution Time Measurements
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Figure 8.8: Performance measurements of the ontology mappings experiment
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many rule options at support threshdltd= 15 have a maximum scorg = 0.24.
The other two conditions lack this breakpoint becausefthe 15 support threshold
is too strict; most combinations will never have that support, and theretemigon
times will only increase slightly, even for score thresholds as loWw as0.10.

Pruning For each condition, the pruning behaviour of the support-dependext me
surements is similar to some extend, as can be seen in Figure 8.9(a). Beforeak-
point, pruning is high, due to the fact that only the most specific rules withitfnest
scores are kept, and all combinations of more general conjunctionsuarech On,

or short after the breakpoint, a local minimum is reached, where relativelieast
rules are pruned. After that, less rules will be generated due to strictshiblds, and
thus increasingly more rules will be pruned.

Due to the fact that less rules are generated as well, the resolution of tkaneea
ments becomes lower, and thus the measurement becomes less accuetndziff
in the position are the result of the different rankings: some generat¢ofrides at
a higher support, while others needed a lower threshold.

Depending on whether there is a breakpoint, different behaviour grshothe
score-dependent measurements in Figure 8.9(b). If there is a biealqaeh as in
the NA condition, then the line has a similar shape as the ones in Figure 8d(a), f
a similar reason: before a breakpoint there is an explosion of rulesdkatehmaxi-
mum score higher than the breakpoint score value, for the fixed supppeshold of
P = 15. However, if the support threshold is too high, a rule explosion will never
occur, and pruning shows behaviour similar to that of Figure 8.4(b) etdyethe
pruning ratio is monotonically decreasing as the score threshold desréassn,
the score threshold shows to have a much greater impact on the prunimgthaiio
the support threshold.

Clustering When comparing the behaviours in Figure 8.10(a) and Figure 8.6(a)
in Section 8.4.1, they look nothing alike. In fact, they are each other'ssjgso A
clear pattern can be seen. After the breakpoint, the rules-per-clattedecreases to

a local minimum, and then rises again. This local minimum coincides with the local
minima in Figure 8.9(a). That is because at that point, the pruning effestaigvely
lower, and only the best rules for each cluster are kept, and are treedsihin over

all clusters. After that, only the very best rules survive, and thesgratged in one

or a few clusters.

An explanation for this phenomenon lies in the experiment setup. In the new
ranking, the interest class SNPs are only those SNPs that do not o¢berdantrol
group, which is likely to result in less overlap in ontology association. Condbine
with a modified ES score that punishes rules that have associations with i&sy S
in the control group, this promotes high scores for rules that contain $NIysn
the interest class. These rules usually contain a small set of SNP identifieoscur
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Support-Dependent Pruning Ratio Measurements
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Figure 8.9: Pruning measurements of the ontology mappings experiment
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over and over. Since clustering is based on a percentage of the ssippad by rules,
these rules will all be in the same cluster(s), thus keeping the rules-steichatio
high. Since these rules have the highest score, they are more likely tahaga
score even if the support threshold increases, thus increasing tiseperieluster
ratio.

The NA condition and PA condition in Figure 8.10(b) show similar behaviosirs a
in Figure 8.6(b) in Section 8.4.1, but for the rise in rules-per-cluster natiich has
a similar explanation as the one in the support-dependent measuremene&vefow
the rules-per-cluster ratio in the SA condition is monotonically increasing. ihis
due to the ranking; the SA class was rich in rules that were similar or eveuhe s
in participants, and thus concentrated in a few clusters. As the scorbditdegew
higher, all other clusters were pruned, while the biggest clusters corgdhe rules
with the highest scores remained.

Rules The first observation is that rules in the current experiment setup haee lo
scores, and that the scores are compacted more into a middle range, wargels
caused by of the experimental setup as well as the modified ES score ereantir
A second observation is that rules do tend to be more specific, and yieldooiore
junctions due to the increased specificity of each identifier. For the NA Arcairdi-
tions, rules were still noticeably related to their gene translation counterpHyést
in a representation of more specific ontological terms. Rules in the PA conditéan
had very high scores, though that was the result of a group of SNPscihred very
high t-scores in that specific condition. It is likely that this group also inftedrthe
scores of the other two conditions.

The SA condition yielded the most surprising rules of the three conditions, in-
volving concepts such as sensory perception of sound and inneeealodment,
as well as neurotransport activity. Although the score of these ruledairy low,
they are specific to the SNPs that scored highest only for the SA conditidnyere
confirmed by clustering.

8.5 Conclusions and Future Work

In this chapter we discussed experiments that were performed on a SiNRiste

on human depression. We provided an introduction to SNPs and relatedpten
and explained their importance. We also presented an overview of the §hesd
sion study and how it led to the various rankings that we used in our expgeme

In our experiments, we took two approaches to experimentation on SNP rank

ings. In the first approach, we mapped the SNP identifiers to genes, vdsctied

in a ranking of genes that we experimented on. In the second appradctxper-
imented on the original ranking of SNP identifiers and their scores, aradecre
mapping from SNP identifiers to ontological concepts in GO and KEGG.
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Support-Dependent Rule-per-Cluster Ratio Measurements
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Figure 8.10: Cluster ratio measurements of the ontology mappings experiment
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When comparing the two methods, both have their merits and difficulties. Gene
translation results in a smaller ranking, and can thus be mined faster with lower
thresholds. The downside is that gene scores are aggregated, atidetlexperi-
ment is only as accurate as the mapping of SNPs to gene identifiers. Usirgy SNP
in the ranking increases the accuracy of the experiment, identifying rudésver-
expressed SNPs have in common, and not their associated genes.efagsoci-
ating these SNPs to ontological concepts still requires the SNP to gene mapping
Another problem is the sheer size of the identifier space, which usuallysmtke
challenging to perform single-class mining on the whole data-space.foherthis
method is better suited for more aimed studies, to take a closer look at spelific su
groups, as we did in the multi-class experiments.

When analyzing the behaviours of both methods, they often show similarities
across different rankings and dimensions. Of course there areediffes, either
caused by the experimental setup of the method, the score function, duyjtise
ranking and inherently the ontological properties of the identifiers; diffeconcept
associations lead to a difference in the quality and amount of rules thatcambd.

When comparing execution times and the amount of rules that have been gen-
erated, the behaviours of the two methods are in principle the same. Gitgheha
score threshold and the support threshold is small enough, a rule iexplai take
place at some point, a point that we referred to as the breakpoint. Hpvifeoae
of the thresholds is high enough, no explosion will take place and the &xetime
will only grow at a somewhat linear pace. When an explosion does dt@gems
more sudden in the multi-class experiments, though that is also dependawctans f
such as ranking and experiment design.

Pruning behaviour is similar between the two conditions as well, for both grorin
and support constraints. Given that there is a breakpoint, pruningwatioe high
before that, because only the most specific and most interesting rulégesuvkile
all other combinations will be pruned away. After the breakpoint, when timeber
of generated rules has dropped considerably, there is also a droprimgpiratio,
since the number of rules shrank disproportionately to the number of rtilensp
generated. After that it will slowly rise again, due to the increasing stristoéthe
score or the support threshold.

In cases where a breakpoint does not appear, behaviour is alsantlegar both
methods, as shown in the score-dependent measurements. Both shasitarag
shape since lower score thresholds have a higher effect on the gmatia than
higher score thresholds. Since the shape after the breakpoint is thef@abwth
score and support-dependent thresholds, the same statement is likelg forHue-
haviour in the support-dependent measurements.

The rules-per-cluster ratio is a bit off for both methods. In the genelatos
method, the ratio is monotonically decreasing as support or score thregfatldig-
ger. The reverse is true in the case of the multi-class experiments, wheeesindlthe
ratio was steadily growing bigger. This has nothing to do with the differeat@den
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the two approaches, but more with the experiment setup and the Fantom implemen
tation.

When comparing the outputs between the two experiments, they show similari-
ties for the rankings that have the highest t-scores. This is due to theregpésetup
of the multi-class experiment. The rule output shows both familiar and untdgec
concepts, which can of course be mere artifacts of ontologies, but éimegiso serve
as new hypotheses for further research.

As future work, there are a few questions that still need answeringe visr
search has to be done on the occurrence of the breakpoint and theeatonship
with pruning ratio. There is a strong connection between the two, and corglyain
search on both could lead to an algorithm that automatically determines an optimal
threshold for a certain ranking, to optimize a trade-off between running tiielde
specificity.

Another point of interest is the score function in the multi-class experimehts. A
though it performed well in most instances, it also compacted the rule dpaig
potentially useful and interesting rules buried between many others. This$ bagh
combined artifact from both the experiment setup and the score funabi@poper
study on that phenomenon would help to refine the experiment setup assviied a
score function.

Finally, other forms of clustering other than one with a hard cutoff may resalt
better and more constant result. Although behaviour could be explaidadtonal-
ized, perhaps clustering on the basis of individual or combined ontolatpoaepts
within the rules itself would result in better and more similar clusters.
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Appendix A

Fantom Formats

In this appendix we discuss the formats of the different inputs for the Faseovice.
The inputs discussed in this appendix are the ranked list, mappings, onsplagd
the interface for score functions. For each input we discuss its potentignts as
well as its format. We also supply an example for each of the formats.

File Formats

In this part we will discuss the file formats that Fantom takes as inputs. kedlud
this section are the ranked list, mappings and ontology file formats.

Ranked List

The ranked list is the ranking of identifiers, together with their scores.dttable
with three columns, separated by tab indents. The first column denotesshéatial
of the identifier, which are ignored if a single-class experiment is condudiee
second column contains the (unique) identifiers. If multiple identical identifiexs
found, their scores will be averaged. Finally, the third column containsdbees.
The Fantom service makes little assumptions about the scores, althouglotee sc
functions might. For example, the Enrichment Score function assumes ttaesod
0 is the least interesting, while very high positive or negative scores indichigh
interestingness of that identifier.

An example ranking is shown below. This ranking is part of the complete gene
ranking obtained from the AML vs. ALL microarray experiment.

INTEREST 945 1.93768463633657
INTEREST 6929 1.91673657142379
INTEREST 1675 1.86252699812831
INTEREST 1509 1.72544529626413
INTEREST 896 1.58730893402055
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Mappings

Fantom uses three kinds of mappings: Identifier mappings, interaction ngapgoiad
ontology mappings. Regardless of the mapping type, they all have the sactarsy
each file contains two columns, again separated by a tab indent. The fiirsircoon-
tains an identifier, which must correspond with the identifier in the ranking) tlze
second column contains the identifier that is mapped to. If these are multiple iden-
tifiers, which is likely in ontology and interaction mappings, then the identifiegs ar
separated by comma’s.

The mapping shown below maps ENTREZ identifiers to HUGO Symbol identi-
fiers. This mapping, and its inverse mapping, were taken from the KEG & it

sitet.

100009601 TRNAY1
100009602 TRNAY2
100009603 TRNAAZ2
100009604 TRNAA3
100009605 TRNAF1

The next mapping it a part of an ontology mapping, which maps ENTREZ identi-
fiers to their most specific GO concepts. This partial mapping was obtaioectiie
NCBI public ftp sit¢ and then reformatted to the format shown below:

100128553 GO0:0005575,G0:0008150

100128582 G0O:0003676,G0:0005622,G0:0005634,G0:0@N6E30006355
100129271 GO:0003674,G0:0005575,G0:0008544

100129441 G0:0016020,G0:0016021

100129669 G0O:0005886,G0:0016021

Finally, the last mapping is an interaction mapping, which maps identifiers to other
identifiers that they interact with. Shown below is a partial mapping that maps in-
teractions between ENTREZ identifiers. It was obtained from the NCBleQ#n
project ftp sité, and again reformatted.

10112 51560,5870

10114 355,7157,7161,7341,8772

10116 10116,317,355

10121 10121,1639,23299,4926,51164,6711,6712
10125 5495,7428,8525

Ltp://ftp.genome.jp/publ/kegg/pathway/organisms/hsasysenym
2ftp://ftp.ncbi.nim.nih.gov/gene/DATA/gene2go.gz
3ftp://ftp.ncbi.nlm.nih.gov/gene/GeneRIF/
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Ontology

The ontology files represent the ontology concepts and the relationshgggyahose
concepts, as well as the predicates that these concepts belong to. kgpfite can
contain multiple ontological predicates, which we perceive as the actudbgigs.
For example, GO actually consists of three separate ontologies: cellulaooentp
biological process and molecular function.

To be compatible with a range of ontologies, the ontology file format for the
Fantom service contains six columns, which are separated by tabs. Strefirmn
contains the concept identifier, which must be unique for each conceyt,aeross
ontologies. The second column contains the ontology predicate, identifyimigith
ontology the concept belongs to. The third column contains the concepifptas,
which is used in Fantom rules. The fourth column contains the list of alias Keys
any are available. These keys are identifiers that the concept is alam laso When
the ontology tree is filled, these alias concepts are also annotated with arages$o
identifier whenever this concept is. The fifth column contains the parguarents of
this concept. Through these relationships, we can build the internal Dg@senta-
tion of each ontology, which is used for pruning. Finally, the sixth column inarip
indication whether the current concept is obsolete. If the concept @aibsthere is
a 1, and the alias column should provide the new concept or concepts.dbtitept
is not obsolete, is a 0 in the last column.

The partial ontology shown below is a small part of the GO ontology, which wa
obtained from the GO websfteSince the ontology was originally formatted in the
Open Biomedical Ontologies (OBO) formatve had to reformat it first.

G0:0008343 bigoroc  adult feeding behavior [ [GO:0007631,G0O:0030534] O
G0:0008344 bigoroc  adult locomotory behavior [] [G0:0007626,G0:0030534] O
G0:0008354 bigoroc  germ cell migration [ [GO:0016477,G0O:0007276] O
G0:0008355 bigroc  olfactory learning [ [GO:0007612,G0:0042048] O
G0:0008356 bigoroc  asymmetric cell division [ [GO:0051301] 0
GO0:0008409 mafunc 5-3- exonuclease activity [] [G0:0004527] 0
G0:0008410 mafunc CoA-transferase activity [ [GO:0016782] 0

Score Function Interface

The Fantom service supports the usage of custom score measuremevag by
uploading dll libraries that were programmed in the .Net framework. Theses s
functions do have to adhere to the following interface:

“http://www.geneontology.org/ontology/oliormat 1_2/geneontology.12.0bo
Shttp://www.obofoundry.org/
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public interface class | FantonScorer

{
String Get ScoreFuncti onNane();
voi d ScoreRul e( FANTOM Rul e rul e);
voi d MaxScor eRul e( FANTOM Rul e rul e);
1

The first functionGetScoreFunctionNamis used to identify the score function with.

This name must match the name supplied as a parameter in the Fantom service in-
terface. If no match is found, the default Enrichment Score functiondser The
second functionScoreRulgis used to determine a score of a rule, whereby the rule

is supplied as a parameter of tyig@NTOM Rule which is a publicly available class.
Finally, the functiorMaxScoreRulés used to provide the supplied rule with its max-
imum potential score.
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Appendix B

Enrichment Score Maximization

In this appendix we will provide a detailed description of the Enrichment Swes
function. We first discuss the mathematical properties of the function, andifine
the maximization problem, along with the polynomial solution.

The Enrichment Score

Consider a seX of items of siz¢ X| = n. Let them be ordered = (z1,...,z,),
such that they can be identified with the §8t = {1,2,...,n}. Furthermore, let
there be anndividual scoreR; assigned to each item 1 < i < n. Let the order
of X be compatible with the scores, such that fieform a decreasing sequence.
Consider a sequence= {ni,...,n,,} C N of size|S| = m with m < n, and let
ri = Ry, be the score of théth item from.S. The numbernr; is the position of this
item in the sefX (i.e., the rank of-; in the set of allR;’s).

Definition 1. Thei-th partial scoreassociated with the sétis

Y _ni—
Syt o n—m

Ci

The partial score consists of two parts. The first term describes thigvpagowth
of the score due to the relative individual scores of the elements fancoun-
tered up to and including position The second term implements a penalty for
each position encountered which doedt correspond to an element frogh Writing
Ppit (S, 7) for the first term, andPiss(.S, 7) for the second, the partial score satisfies
¢i = |Puit(S,1) — Pmiss(S, )|, as defined by [STMO05].

Definecy = 0. From the definition, clearly als@,, = 0 whenm = n, and fur-
thermore—1 < ¢; < 1foralll <: < m.
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Definition 2. TheEnrichment Scorassociated with the s&tis
Eg = max|¢]|.
¥

The enrichment score can obviously be calculated in linear time (with regpect
|S| = m). Table B.1 shows an example for a dataset.of 34,327 genes and a
subset of sizen = 26.

Maximal Subset Score

We now consider the following problem. L&t C S be a subset of of size|T'| =
m' <m=1S]|.

Question 1(k-removal subset enrichment score proble@pnsider all possiblen’-
element subseft of a givenS C X, wherem’ = m — k for a givenk. What is the
maximum of the possible enrichment scaie®

Although theoretically possible, it is clearly infeasible to calculate the enrichmen
score for all('",) such subsets. We therefore seek a more efficient algorithm, i.e., at
most polynomial inm. Intuitively, one would think that one can solve the problem
efficiently by forward induction, i.e., by finding the optimal — 1 subsetS,,, _; of

S, then its optimaln — 2 subsetS,,—o C S,,—1, etc., until arriving at the optimal

Smy C Spya1- This is not the case, however. Table B.2 shows an example where the
optimal20-element subset of the 26-element Sagiven in Table B.1 is not obtained

by restriction of the21-element subset. Thaubset enrichment probleis therefore

a nonlocal problem. Nevertheless, let us consider what happens iimpke £ase
wherem’ = m — 1, i.e., wherel' = S\ {s;} for somek < m. The new partial
scores are then

L ni—i .
= e fori < k
(k) _ ) 2gmami—re noml B.1
Ci B Zl i =Tk i1 ( ' )
j=1"J i .
Do Tk n—m4+1 fori > k.

where the superscrigt) denotes removal of the-th element from the sef. More
generally, Ie‘cm(A), whereA C S such thats; ¢ A, denote the-th partial score after

removal of the elements of from S.

Lemma 1. The difference between the scores before and after remoyalisf

i L TR/ DT 1. _ni—i ;
P o= Z%’.l no dere/ 2 neme nemAl fori <k
7 v ST . e/ 1 (n=ny)—(m—i) .
( Jl";l T l) 1-re/ > ™ n—m n—m+1 fori > k.
(B.2)
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1 Positionn; Scorer; Gene name Partial scorg n; — i@
1 20 5.71685 Cs 0.1063 19
2 65 4,56335 Aco2 0.1904 63
3 129 4.03963 Idh2 0.2641 126
4 193 3.72751 Idh3a 0.3320 189
5 197 3.71779 Mdh1l 0.4014 192
6 347 3.26785 Sdhb 0.4581 341
7 384 3.18568 Suclgl 0.5167 377
8 515 2.98120 Pygb 0.5686 507
9 645 2.80126 Mdh2 0.6172 636
10 879 2.52752 Fhi 0.6577 869
11 924 2.47618 Idh3g 0.7027 913
12 1,385 2.14931 Sdhc 0.7295 1,373
13 1,988 1.84017 Sdhd 0.7464 1,975
14 2,248 1.74533 Dist 0.7715 2,234
15 3,274 1.43489 Pygm 0.7684 3,259
16 3,412 1.40278 Adgl 0.7906 3,396
17 3,479 1.38664 Pygl 0.8146 3,462
18 5,296 1.09616 Gaa 0.7822 5,278
19 5,516 1.06895 Sucla2 0.7958 5,497
20 7,029 0.91375 Suclg2 0.7688 7,009
21 14,574 0.50044 Gysl 0.5582 14,553
22 18,262 0.38126 Idh1 0.4579 18,240
23 25,104 0.20227 G6pc 0.2622 25,081
24 27,062 0.15848 Acol 0.2081 27,038
25 28,668 0.12378 Sdha 0.1636 28,643
26 31,025 0.06981 Pck1l 0.0962 30,999

Table B.1: Example gene s8tof lengthm = 26, subset of a gene s&f of length
n = 34,327. The enrichment scor&s =~ 0.8146 is attained for the 17th gene
(“PygP).
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No. removals Removed elements (index) Max. element Enrichment score

1 18 #17 (Pygl) 0.8338
2 18,19 #17 (Pygl) 0.8533
3 18,19,20 #17 (Pygl) 0.8706
4 18,19,20,21 #17 (Pyg|) 0.8803
5 18,19,20,21,22 #17 (Pygl) 0.8879
6 15,16,17,18,19,20 #14 (Dlst) 0.9038

Table B.2: Optimal subsets for the example of Table B.1. Note the non-locaV e
in the last line, when six elements are removed.

From here on, we will always make the following assumption about the relsites
of the elementsy and.S:

Assumption 1. The number of elements this assumed to be smaller than the num-
ber of elements fronX after the last elemertt,,,, i.e.,

N — Ny > M. (B.3)
The following observation is the key to the solution of the problem:

Lemma 2 (Unimodality property) It holds that
(m)

7

(i+1)

e <d™V << (i+2)

> ¢ >...>c > (B.4)

In particular,

(i) cgk) < ¢; if k < i. Moreover, in this casegk) is maximal fork =7 — 1.

(k)

(i) c§k> > ¢; if k > 4. Moreover, in this casel.k is maximal fork =i + 1.

Proof. The inequalities inif and i) are clear by inspection of (B.2) and Assumption
(B.3), since the latter implies thét — n;) — (m — ¢) > 0 for all 4.

If & > i, then the second term in (B.2) does not depend ofhe first term is
maximal fork = i + 1, sincef(z) = x/(1 — z) is an increasing function of its ar-
gument, and, = r/ >, r; is decreasing itk by assumption, i.e f(r) is maximal
for the smalleskt > i. The monotonicity off (x;) also implies the inequalities to the
left of ¢; in (B.4).

Analogously, ifk < 7, note the negative sign and thatry) is minimal for the
largestk < i. The monotonicity off () also implies the inequalities to the right of
¢ in (B.4). O
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The following result immediately leads to an efficient algorithm by backwarddnd
tion:

Proposition 1. Assume:Z(A) is the optimalk-removal subset aof, i.e., A C S with
|A| = k, s; ¢ A and such that

C(A) = max CZ(K)
|K|=k,s; ¢ K
Denote the indices of the elements frelmin S by a1, a9, ..., ar and let them be

ordered such thaty < as < -+ < ai. Then:
(i) If i + k < mthena; = s;4; forall j.

(i) Otherwise, letj = m —i. Then

ag=m-—kyaa=m-—-k+1,... a,_;=1—1
and
Ak—j+1 =i+ l,ak_j+2 =14+2,...,a =m.
Proof. This follows immediately from Lemma 2 by induction én O

The optimalk-removal subset enrichment score can then be found in@ime) by

calculating the optimak-removal subset scoreéK), |K| = k, foralli < m. The
algorithm is given as Algorithm 10.
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Algorithm 10 k-removal subset enrichment score

nym, k,{r1, ..., rm b {n1, .. nm}
forie {1,...,m}do
T+ {1,...,m}\ {i}
for je{1,...,k} do
Ty ={teT|t>1}
if Ty # () then
to < mint€T+t
else
T_={teT|t<i}
to < maxger U
end if
T« T\ {to}
end for
R+ {1,....m}\ ({i}UT)
Ry« {l,...,i—1}\T
R
end for
return maxi<;<m C;

170



Appendix C

Fantom User Manual

Name

Description

Inputs

Outputs

Features

Frequent pAtterN Tree-based Ontology Miner (FANTOM)

Fantom mines gene sets and combines them with ontologies,
e.g., GO and KEGG, as well as interaction data, to find interesting
combinations of ontological concepts

Ranked gene list

Score function

Minimum participation threshold
Minimum score threshold

Clustered list of rules, whereby a rule is a set of identifiers
described by a conjuction of ontological concepts accompanied by
a score that indicates its interestingness. Example:

Score: 0,552
Participants: [set of identifiers here]
All genes in the subgroup have the following properties:

biological process(positive regulation of apoptosis),
KEGG_pathway(Signaling Molecules and Interaction)

Interaction rule generation

Rule pruning and clustering
Control over ontology specificity
Available as web service
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Manual

In this appendix we present a user manual for the Fantom applicationh whe

graphical user interface (GUI) for the Fantom web service. Note thaipaits in the

GUI are the same as for the web service, and are merely collected anardeiv
to the web service. The GUI is presented in Figure C.1, and consistsai pavts,
which will be discussed below.

o' Fantom Client =n|<[5}
Experiment Settings Setup Progress
Experiment Type | Genes v‘ Snapshot I vJ Loading Files |
A Species Code hsa Key Type |entrez b ‘ Loading Genes |
In-&nd Dutputs Rule Generstion Statistics
Selection List Location Epoch: f] Rilles Cenaratod:
<ranking location> QOpen...
B Rule Output Location Generation |
<output file> Open... Analysis
Rule Generation Settings Pruning | | E
Analysis Profile »  Iclass -
Seam Fanction = leration: 0 Rules Pruned a
Total herations: 0 Pruning Ratio (i}
briviages :;gg Prune Factar |1
c Intemal Combining [7] |
Generate Interactons [

Participation Cutoff 1 I

Awvg Score Cutoff ]

G

Figure C.1: Screenshot of the Fantom GUI for Windows

Section A

Section A contains all inputs related to global experiment settings, whichstafs
the following inputs:

e Experiment Type
The experiment type indicates what type of experiment is being conduoted.
case of Figure C.1 it would be a Gene mining experiment. The experiment type
determines which ontologies can be selected, which key types can bended,
which species can be selected.

e Species Code
The species code indicates what type of species or organism is beirgpstud
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the experiment. The name species is very specific for the life-sciencesrjoma
but its function remains the same across all domains. For different spleeies

can be different instances of the same ontology, or different mappings-to
tologies. The species code, or entity code to be more general, helps to selec
the correct mapping or ontology instance.

e Snapshot
Mappings, interaction data and ontologies are subjective to change and up
dates. To support automatic updating, a service was created to update all o
tologies and mappings daily, while saving old versions in backup folders. If
the user needs to recreate an experiment, the date of the experimentsgan be
lected in the snapshot field, so that the correct mapping and ontologgners
are selected.

e Key Type
There can be multiple names associated with an identifier in a ranked list. For
example, genes can be identified by an ENTREZ identifier, a HUGO Symbol
designation or various other names. Since the Fantom service prefe¥spo k
one single identifier type for each domain, other identifier types can be mhappe
to this domain identifier. By selecting the correct key type that is used in the
ranked list, the correct mapping to the domain identifier can be selected.

Section B

Section B contains the user-defined inputs for the ranked list location artdriet
location of the output file. Upon starting the experiment, the ranked list will dedd
and transferred to the web service.

Section C

Section C contains all experiment-specific parameters. These include:

e Analysis Profile and Iclass
The analysis profile indicates if the experiment is a single-class experiment o
a multi-class experiment. In case of a multi-class experiment, all class labels
are listed in the Iclass list, where the user can select the class of interest.

e Score Function
The score function parameter allows the user to select the score funation f
scoring rules. By default the Enrichment Score function is selected. tNate
the analysis profile influences the score functions that can be selected.

e Ontologies and Prune Factor
In the Ontologies list, all ontologies compatible with the experiment type are
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listed, and the user can select one or more that need to be involved in the
experiment. After that, the user can insert the prune factor, which detsmin
the relative minimum depth that the ontological concepts within an ontology
must have in order to be viable to participate in the experiment. This number
ranges between 0 and 1, whereby 0 allows for all concepts to be coetbide
while 1 allows only the leaf concepts to be considered.

Internal Combining

The internal combining option allows the user to generate rules that contain
multiple entries of the same ontological predicate. If this is option is unchecked,
each rule may only contain at most one concept of each predicate. gehisn
option unchecked is a good way to explore the rule space first, and to tweak
thresholds before performing a more detailed experiment.

Generate Interactions

This option allows the user to generate interaction association rules instead
of direct association rules. Note that checking this option considerabhsslo
down an experiment, and requires more memory.

Participation and Score Cutoff

These thresholds allow the user to put constraints on the generatedTiges.
participation threshold allows the user to set the minimum number of identifiers
per rule, while the score threshold gives the user some control oveu#igyq

of the rules that are included in the output.

Section D

Section D provides feedback on the loading phase of the Fantom sefiedirst
progress bar indicates how the loading of all files that Fantom depeng@ardng,
identifier mappings, interactions, ontologies) is progressing. The sgrogdess bar
indicates the progress of associating identifiers with ontological terms. Birfdig-
ure C.1 the experiment type is set to "Genes”, the label indicates the psogfe
associating genes to ontological concepts.

Section E

Section E contains most feedback statistics for the experiment part of ttenfra
service. A number of statistics are presented to the user:

e Epoch

The epoch denotes the number of iterations that have been done in the main
function of the Fantom service. It also indicates the number of conjunations
terms in the rule candidates that are generated at that time.
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Rules Generated
The total amount of rule candidates generated so far.

Generation
A progress bar indicating the progress of rule candidate generation authe
rent epoch.

Analysis
A progress bar indicating the progress of scoring the rule candidatesajed
in the current epoch.

Pruning

A progress bar indicating the progress of pruning the rule candidatesajed

in the current epoch. Note that this bar will go from 0 to 100% twice; first
for the horizontal cohort pruning stage, and then for the longitudinhbito
pruning stage.

Iteration and Total Iterations

These are numerical representations of the progress bar of the siztge

being either generation, analysis or pruning. It is meant to be extradekdb

for the user to see exactly how many elements need to be handled in a stage,
and how many have already been dealt with.

Rules Pruned and Pruning Ratio

The rules pruned field indicates how many of the generated rule candidates
have been pruned so far. Reasons why rules are pruned is that tkesuféi-

cient identifier support, that they do not have an score that is high énoug

that a more specific rule with a higher score has been generated. Tredpru
ratio is the ratio of rule candidates that have been pruned with respect to the
total amount of rule options generated.

Section F

Section F contains a field in which additional feedback is provided for te ssch
as error messages or warnings.

Section G

Section G contains the control buttons. They allow the user to start aniregoey or
cancel it when it is running.
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Part V

Miscellaneous
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Samenvatting

In dit proefschrift onderzoeken we hoe technieken en nieuwe onéhilgen binnen
de software engineering gecombineerd kunnen worden met data miningoes k
edge discovery, om prestaties van deze activiteiten te verbeteren entWvetp van
een experiment te vergemakkelijken. Om de lezer in te leiden in beide kelugisve
presenteren we in Hoofdstuk 1 en Hoofdstuk 2 een algemeen overaitisbitware
engineering en data mining en geven een overzicht van de belangrijkstekegien
die in dit proefschrift aan bod komen.

In Hoofdstuk 3 bespreken we hoe data mining, databases en patterkbasen
worden gentegreerd en gecombineerd tot inductieve databasesijPaasbnteren
wij modellen voor data-integratie en voor het efficint zoeken in en combinean
data binnen inductieve databases, en beargumenteren hoe en wadr@arwees
goed zou passen binnen het kader van inductieve databases. Wekbaspnkele
experimenten die illustreren hoe een inductieve database werkt, en hoteége
discovery kan worden toegepast op een efficinte en zelfs gedistrimiegze.

In Hoofdstuk 4 bespreken we hoe web services passen in het kaascientific
workflows. We vergelijken het ad-hoc geconstrueerde procesmoelehet service-
oriented georkestreerd procesmodel, en wijzen op de voordelen vatg&memde.
Verder presenteren we een model voor het ontwerpen van semgcgenl work-
flows, evenals voor het ontwerp van individuele services. Dit mod&driese ver-
volgens in een reeks experimenten.

In Hoofdstuk 5 passen we de kennis opgedaan in de eerdere hddielstoe op
de Fantom service. Deze service gebruikt subgroup discovery bgnapen te vin-
den binnen een set van gerangschikte elementen, die elk een scoee hwdtiedeeld
gekregen. De subgroepen van elementen worden beschrevenahpanaties van
ontologische concepten en een score om de mate van interessantheidyaeente
Vervolgens tonen wij in een aantal experimenten aan hoe de servicequteyp het
gebied van snelheid en hoe nuttig en interessant de behaalde resultaten zijn

In Hoofdstuk 6 wordt beschreven hoe de Fantom service gecombikaemvor-
den met statistische permutatie-technieken. We tonen aan dat door hetaritvaa
meerdere iteraties van de Fantom service op permutaties van de invoeregesr r
achterwege gelaten kunnen worden voor de originele invoer. We tarleaan dat
door de combinatie van Fantom en permutatie-testen nauwkeurigere dnerapn
verkregen kunnen worden in het geval van multi-class problemen.

In Hoofdstuk 7 bespreken we de eerste toepassing van de Fantoices&ve
bespreken experimenten die zijn uitgevoerd op microarray expressigatitagen
van muizen met cardiale overexpressie van de transcriptiefactor TBX3i0éfen
meerdere experimenten uit, en voor elk van deze experimenten bespvekda
prestaties en de resultaten. Waar mogelijk hebben we ook de resultatetekerg
met de uitvoer van de DAVID tool.

In Hoofdstuk 8 passen we de Fantom service toe op gegevens die &tkaijms
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van een single nucleotide polymorphism onderzoek gedaan op mensefijlessie.
Wij voeren twee verschillende soorten experimenten uit en presentersages van
de Fantom service voor beide, alsmede statistieken voor regels en alustere

Naast de voorgenoemde acht hoofdstukken kent dit proefscbkftine appen-
dices. In Appendix A bespreken we het formaat van de diverse inpaés Fan-
tom van afhankelijk is. We bespreken de formaten van de inputlijsten,iagsbe-
standen ("mappings”), ontologia en de interface van de score-functies. In Appendix
B presenteren we de wiskundige achtergron van het Enrichment 8goréme. We
definieren de wiskundige eigenschappen en presenteren een algoritme omide ma
maal mogelijke score voor een subset van een regel te berekentritehis presen-
teren we in Appendix C een handleiding voor de Fantom service.
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