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Abstract – We experimentally probe the vicinity of the jamming point J, located at a density
φ corresponding to random close packing (φrcp = 0.842), in two dimensional, bidisperse packings
of foam bubbles. We vary the density of the foam layer and extract geometrical measures by
image analysis. We confirm the predicted scaling of the average contact number Z with φ and
compare the distribution of local contact numbers to a simple model. We further establish that the
distribution of areas p(A) strongly depends on φ. Finally, we find that the distribution of contact
forces p(f) systematically varies with density.

Copyright c© EPLA, 2010

Since the seminal work by Bolton and Weaire [1] soft
frictionless discs or spheres have become the Ising model
for the Jamming transition [2–4]. Jamming is believed
to capture the transition between flow and arrest in a
wide variety of disordered media such as foams, emulsions,
granular media and (colloidal) suspensions, and this idea
has lead to an upsurge of simulations revealing critical
behaviour as a function of the distance to the critical point
J, which is reached precisely when the applied pressure
vanishes [3,5,6]. While some of these predictions have
been tested experimentally [7–10], many others still await
experimental verification.
While the original incarnation of the soft sphere model

explicitly makes the link to foams [2], this connection
has not been explored in recent times. Nevertheless,
foam bubbles, as well as emulsion droplets are the clos-
est physical analogue of frictionless spheres. Their elas-
tic interaction is close to that of a linear spring [11,12]
and solid friction is absent. Under flow, only a velocity
dependent viscous friction, that is now fairly well under-
stood [5,6,13,14] acts on the bubbles.
In this letter we experimentally probe the behaviour of

jammed packings near point J. We do this by generat-
ing two-dimensional packings of foam bubbles. We vary
the packing fraction, φ, and for each density gener-
ate many distinct static packings of foam bubbles. We
then extract various statistical and topological quanti-
ties through image analysis and investigate whether these

(a)E-mail: g.katgert@ed.ac.uk

measures signal an approach of the jamming transition at
φc as the density is varied.
First, we investigate the scaling of the average contact

number per bubble Z with the distance to φc. Our central
result is that the contact number scales like Z −Zc ∼
(φ−φc)0.5. To this end, we first resolve the apparent
discrepancy between our findings and simulations by
pointing out the differing ways of measuring φ between
simulation and experiment. We find φc to be located
around φc = 0.84, in excellent agreement with previous
predictions [1,3,5,15], and obtain, for the first time, a
quantitative experimental confirmation of critical scaling
at point J in an appropriate experimental system.
Besides this global measure, we also investigate the

distribution of contact numbers at the bubble scale as a
function of global Z. We compare to a recent model [16]
and find excellent agreement with no adjustable parame-
ters, which is remarkable given that this theory was devel-
oped for frictional packings.
The distribution of free available area per bubble,
p(A) plays an important role in statistical mechanics
descriptions of jammed matter [17–19]. We show that
the correct way of extracting p(A) is by tesselating the
foam packing with the navigation map [20,21]. We fit
the obtained distributions of free area per bubble to
gamma distributions [18,22], and show that, in contrast
to granular packs, this distribution is far from universal:
as we decrease the packing fraction φ towards point J, we
find an excess of large available areas, and in conjunction
with this an increase of the compactivity.
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Fig. 1: (Color online) Top (a) and side (b) view of the setup.
(a) Bubbles are contained in a circular reservoir and covered by
a glass plate. Images are taken in the highlighted area. (b) A
stepper motor drives a rod that stirs the bulk solution, thereby
rearranging the packing. (c) From left to right: raw image, raw
image with reconstructed bubble areas, reconstructed bubble
areas, from which φ is calculated, and contact network, from
which Z is found. The scale bar denotes 5mm.

Finally, our navigation map tiling allows us to extract
the deformed interfaces between adjacent bubbles. These
facets are proportional to the contact forces, and we thus
extract the distribution of the contact forces p(f). We find
that its tail is close to exponential for φ close to φc, and
becomes steeper for large φ [23].

Setup. – We prepare a surfactant solution consist-
ing of 0.5% volume fraction Dawn dishwashing liquid
and 15% glycerol in demineralized water (viscosity η=
1.8± 0.1mPa · s and surface tension σ= 28± 1mN/m) in
a large circular reservoir (r= 190mm) of depth 30mm, see
fig. 1(a). A bidisperse (50 : 50 number ratio) bubble mono-
layer is produced by flowing nitrogen through two syringe
needles immersed at fixed depth in the soapy solution.
The resulting bubbles of 1.8± 0.1 and 2.7± 0.1mm diam-
eter (as determined from experimental images) are gently
mixed to produce a disordered bidisperse monolayer and
are covered with a 10mm thick glass plate, see fig. 1(a).
The weighted average bubble diameter 〈d〉 is 2.25mm. We
light the bubbles slanted from below and cover the bottom
of the reservoir with a black plate, to enhance contrast.
The bubbles contact the top plate, see fig. 1(b), which

is completely wetted by the soap solution, and the liquid
fraction of the foam can be varied by varying the distance
between glass plate and liquid surface between 3 and
0.2mm. This in itself is not a proper measure of φ since the
relation between φ and the gap is strongly hysteretic —φ
depends not only on the gap, but also on an uncontrolled
confining pressure. Therefore, we will determine φ from
experimental images, in a procedure outlined below, see
fig. 1(c). We check that coalescence, segregation and
coarsening are negligible.

Experimental protocol. – A stepper motor is glued
to the glass plate and is connected to an aluminum rod
through a hole in the glass plate, see fig. 1(b). We agitate
the surfactant solution underneath the bubbles by driving
the rod back and forth with an amplitude of 1 radian,

its angular velocity alternating between +0.6 and −0.6
radians per second. We emphasize that while agitating
the bulk solution leads to strong mixing of the packing,
we inject little enough energy to avoid bubble break-off, as
evidenced by the absence of satellites. After 4 oscillations
we stop the motor, after which the packings slowly relax
to a mechanically stable state. We probe the relaxation
of packings at varying φ to determine the waiting time
between agitation and image acquisition. To this end,
we record sequences of images with a CCD camera and
measure the variance of the intensity fluctuations of all
pixels in difference images.
After waiting for this time, which is of the order of

minutes, we record one image in the previously agitated
region with a 6 megapixel photocamera (Canon 20D). The
image contains between 350 and 700 bubbles, depending
on the packing fraction φ. For various fixed gaps between
liquid surface and glass plate we repeat this procedure 100
times and thus obtain 100 packings at roughly equal pack-
ing fraction. We visually inspect the resulting packings to
be distinct in appearance, and it is these images that we
analyse in the following.

Determining φ. – We extract our crucial control para-
meter φ from the experimental images by advanced image
analysis, see fig. 1(c): we first binarize the image, after
which both the bubble centers and the interstices appear
bright. We then remove the interstices by morphological
operations and dilate the remaining bubble centers. We
then add up a negative of the original binary image to
arrive at the final image, in which the bubbles are repre-
sented by bright discs against a black background. From
this image we can readily calculate the area fraction φ.
Note that, in principle, the concept of packing fraction is
problematic for a monolayer of three-dimensional bubbles.
We choose our lighting of the bubbles such that the
contacts between adjacent bubbles are optimally resolved.
In other words, we image a slice from the packing where
the bubbles are the broadest and calculate a 2D packing
fraction from this slice.

Scaling of Z with ∆φ. – We first determine the
scaling of the average contact number Z with φ. To
determine Z, we locate the center of mass of each bubble
in the image, and after Delaunay triangulation and a
subsequent removal of bond vectors for non-touching
bubbles, we obtain the contact network of the bubbles in
the image, from which we calculate Z, see fig. 1(c).
Our results are presented fig. 2, where we plot the

values for each distinct packing (grey dots), the average
over all 100 images for each packing fraction (black
circles) as well as a power law fit of the form Z =
4+Z0(φ−φc)β (red solid line), where 4 is the contact
number at isostaticity. The best fit gives us Z0 = 4.02±
0.20, φc = 0.842± 0.002 and β = 0.50± 0.02, in remarkable
agreement with theoretical predictions by O’Hern et al.
and Durian [2,3] who found Z0 = 3.6± 0.5, φc = 0.841±
0.002 and β = 0.49± 0.03.
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Fig. 2: (Color online) Contact number Z of packings vs. their
packing fraction φ. Grey scatter: data for every individual
image. Circles: data averaged over experimental run at approx-
imately constant packing fraction. The solid line is fit to
Z = 4+Z0(φ−φc)β , with Z0 = 4.02± 0.20, φc = 0.842± 0.002
and β = 0.50± 0.02. Upper inset: same data on log-log scale.
Lower inset: Z vs. experimentally determined packing fraction
φexp. The fit has a power law exponent of 0.70.

Note, however, that the range of packing fractions we
can scan over, extends to a surprisingly large value of
φ= 1.06. This is due to a striking discrepancy between
the manner in which φ is calculated in simulations and in
experiments. In simulations, the area or volume of spheres
is fixed, and if one knows the number of particles in
the periodic box, φ is readily calculated. In experiments,
however, φ can only be inferred from experimental images.
This difference results in the following: if particles overlap,
the overlapping area of the two particles is counted twice
in simulations, while it is only counted once in our
experiment. This doubly counted area scales with the
overlap ξ as Aov ∼ ξ3/2, which stems from the fact that
the deformed area scales as rc× ξ =

√
ξ× ξ [11]. Since

ξ ∼ (φ−φc) [4], the conversion between a packing fraction
extracted from a simulation φth and its experimentally
accessible counterpart φexp should read:

φexp = φth−C(φth−φc)3/2. (1)

We calculate both φexp and φth from numerically gener-
ated packings, and determine the pre-factor C = 0.95. We
then invert eq. (1) and calculate the φth corresponding to
our φexp.
When plotting our data against φth as in fig. 2, we excel-

lently match simulations, while we find an apparent scaling
exponent β = 0.70 if we plot Z as a function of the exper-
imentally determined φexp, see lower inset of fig. 2, owing
to the non-trivial relation in ∆φ between φth and φexp.
We are not the the first to experimentally inves-

tigate the scaling of Z with φ. Majmudar et al. [9]
have extracted the same quantities from images of two-
dimensional, frictional, photoelastic discs and compared

Fig. 3: (Color online) Fractions of bubbles in the foam with n
contacts as a function of Z. Solid lines: solutions to eqs. (2)–(5)
for the species listed at the top of the graph.

these to predictions from simulations. From their data it
appears the prefactor Z0 ≈ 16, inconsistent with simula-
tions. Our results do allow for a direct comparison with
frictionless jamming predictions, which can be seen from
the excellent agreement between parameters.

Local contact fractions. – Besides the average
contact number per packing Z we can also extract the
fraction xz of bubbles in each image that has z contacts.
We average these fractions over all images that correspond
to a global packing fraction (and contact number Z )
cf. the black circles in fig. 2. We plot these fractions
versus the average Z in fig. 3: we see clear trends in the
abundance of contacts at the particle level, to which we
apply a very recent model [16].
This model predicts the fractions of 4 species
{xn, . . . , xn+3} in a packing, given the global Z and the
variance σ2 =

∑n+3
i=n xi(Z − i)2. This constraint, together

with the trivial normalization constraints
∑n+3
i=n xi = 1,∑n+3

i=n ixi =Z and the ill-understood, but empirically
observed1 constraint that the number of particles with
odd and even contacts is equal, leads to a set of of
equations, the solution of which is:

xn =
(
(Z − (n+2))2+σ2− 1/2) /4, (2)

xn+1 =
(−(Z − (n+1))2−σ2+5/2) /4, (3)

xn+2 =
(−(Z − (n+2))2−σ2+5/2) /4, (4)

xn+3 =
(
(Z − (n+1))2+σ2− 1/2) /4. (5)

Since we know Z and σ2(= 0.75) from the data we
can obtain the fractions xi without any free parameters.
However, we measure non-negligible fractions of not 4,
but 5 species. We therefore apply the model for n= 3 to
4<Z < 4.75, where x7 ≈ 0 and for n= 4 to 4.97<Z < 6
1Both in [16] and this work.
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Fig. 4: (Color online) (a) Experimental image with Voronoi tesselation of the centers of mass of the bubbles. Note the intersection
of bubbles by the Voronoi cell edges. (b) Navigation map tesselation of same image: the cell edges do not intersect the bubbles.
(c) Area distributions from Voronoi tesselation for 4 different packing fractions, as stated in legend. Solid lines are fits to the
Gamma distribution, eq. (6). Little trend with φ is seen. (d) Area distributions from navigation map tesselation for the same
packing fractions. Solid lines are fits to the Gamma distribution, eq. (6). Near φJ , broad tails develop. (e) k extracted from fits
to Voronoi cell distributions. No trend with φ can be seen. (f) k extracted from fits to navigation map distributions. A strong
variation of k with φ is visible. The inset shows the compactivity χ= (〈A〉−Amin)/k, which increases towards point J as k
decreases.

where x3 ≈ 0. We obtain good agreement between data
and theory, see fig. 3, for both ranges of validity. At high Z,
the bidisperse nature of our packing is visible: we observe
an excess of both particles with 5 contacts and with 7,
while particles with 6 contacs are underrepresented. We
have observed that large bubbles carry the majority of
7’s, while small bubbles mostly have 5 contacts at these
values of Z (data not shown). This is natural in bidisperse
packings, as this occurs whenever a large and a small
bubble contact. It thus indicates an absence of crystalline
order, which would lead to an increase of 6’s.

Area distributions. – We now turn to tesselations of
our foam packings. These tesselations yield two important
“connectors” between local geometry and global response.
Firstly one can readily extract the distribution of available
area per bubble p(A) [19,24–27], which serves as the multi-
plicity in a thermodynamical description of granular mate-
rials. Secondly, we measure the size of the contact areas
between bubbles, from which the distribution of forces
p(f) can be extracted. In particular, we wish to establish
whether the tail of p(f) is exponential or Gaussian as does
a large and conflicting body of simulations and experimen-
tal work (see ref. [23] for a nice overview). The aim here is
to decide between competing theoretical descriptions that
predict either one or the other.

The thermodynamical description of granular materials,
as introduced by Edwards and Oakeshott [28] translates
the concepts underpinning equilibrium thermodynamics
to conglomerates of a-thermal particles such as bubbles.
The volume V (in 2D the area A) takes on the role of
energy, while a compactivity χ replaces temperature.
Aste and Di Matteo have derived the form of the

distribution function p(A, k) with such an approach [18]:

p(A, k) =
kk

Γ(k− 1)
(A−Amin)k−1
(〈A〉−Amin)k exp

(
−k A−Amin〈A〉−Amin

)
,

(6)

with k a shape parameter —which has been found to take
on one universal value in granular packings, namely k=
12 [24], Amin the minimum available area per bubble and
〈A〉 the mean. The compactivity is defined as χ= (〈A〉−
Amin)/k [18]. Note that when a≡ k, b≡ 1/χ, eq. (6)
reduces to a simple two-parameter Gamma distribution
in Ã≡A−Amin: p(Ã) = ba

Γ(a) (Ã)
a−1 exp(−bÃ).

Here we extract p(A) from our experimental images
for each packing fraction both from a Voronoi and a
navigation map tesselation. We calculate the Voronoi area
distribution of the grid of points that represent the centers
of mass of the bubbles. Note that Voronoi cell edges do in
general not respect the bubble perimeter, see fig. 4(a) and

34002-p4
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Fig. 5: (Color online) For the same φ as in fig. 4 we calculate (a) the probability distribution of relative error in force balance
on each bubble: for packings closer to point J , the error increases. Inset: experimental image with force network overplotted:
flattened contacts in white, and magnitude of the forces indicated by the thickness of vector and darkness. (b) Force distributions,
rescaled by the mean f of all configurations: the peak shifts to smaller forces as one approaches point J (see inset). (c) Force
distributions, for each configuration we rescale its p(f) by the mean. The average now exhibits steeper than exponential decay.

that thus, the Voronoi cells do not represent the free area
per bubble. For hard spherical objects one can get around
this problem [19], however, in our experiment, the bubbles
are not only bidisperse, but in general also deformed and
the flattened contacts can be curved.
To fully take the effects of both deformations and

bidispersity into account, we calculate what is called the
navigation map [20,21]. In this method, we assign pixels
in the voids between bubbles to those bubbles whose
perimeter is closest. The result is shown in fig. 4(b): we
obtain free areas per bubble that respect the bubble edges
and follow the curvature of the contacts.
With both methods we obtain bimodal distributions for
A, which we split according to the size of the bubbles.
Distributions for the larger bubbles are shown in figs. 4(c),
(d) for Voronoi and navigation map tesselations respec-
tively. Distributions for the smaller bubbles behave the
same. For the Voronoi tesselation we find that the shape
of the distributions is roughly independent of the packing
fraction, with all distributions being slightly skewed (see
inset of fig. 4(c)), while for the navigation map tesselation
we find that an excess of large available area develops near
jamming, leading to strongly asymmetric distributions.
We quantify these observations by fitting eq. (6) to our

experimental distributions. We treat k as a fit parameter
and extract Amin from the data: it is the minimal hexagon
that can enclose a bubble at a given packing fraction.
Results are plotted in figs. 4(e), (f): the nearly constant
shape of the Voronoi distribution is reflected by the near
constant value of k we extract, with 〈k〉= 13.1 for large
bubbles and 〈k〉= 11.4 for small bubbles when averaged
over all values of φ.
However, for the navigation map distributions we

observe a systematic trend in k with φ. The nearly
Gaussian distributions at high φ can be fit when k∼ 50,
but k systematically decreases with decreasing packing
fraction φ to a value of 6 near jamming. This strong
variation reflects the increasing amount of excess available
area per bubble with decreasing packing fraction, which

is also reflected by an increasing compactivity χ, see
inset of fig. 4(f). Since the navigation map tesselation
respects bubble edges, we believe this tesselation to be
more physically appropriate, and we see the decrease of
k and the associated broadening of the tail of p(A) as
a signature of the approach of point J , or, equivalently,
the recovery of hard-sphere behaviour as the value of k
approaches that of two-dimensional hard disc packings,
where k∼ 3.7 [19,26].
The force distribution p(f). – By construction, the

navigation map bisects touching bubbles at their contact
area. As a result, we can extract the radius rc of the
deformed contacts between bubbles. Since the contact
force f12 between two bubbles is linear in the deformation,
it is related to rc as [29]

f12 = πr
2
c

(
R1+R2
R1R2

)
(7)

with Ri the radius of bubble i. We can thus extract the
force distribution p(f) of interbubble contact forces. An
experimental image with the contacting facets in white
and the extracted contact forces in blue is shown in
fig. 5(a).
The forces are oriented along the bond vector between

bubbles and thus we can check if the forces balance on
each bubble. To check this, we plot the relative error
‖∑ f ‖ /∑ ‖ f ‖ in fig. 5(a). We see that the error is about
10% for the densest packings, and increases for packings
that are closer to jamming.
In fig. 5(b) we plot, for various φ, the p(f) of all forces

from all images at that packing fraction. We convert
rc to forces using the blob radii Ri we obtain after
binarizing and removing the interstices. These radii are
proportional to, but smaller than the actual bubble radii.
We therefore plot the force distributions in arbitrary units.
The distributions are peaked and exhibit broad tails,
reflecting the heterogeneity in the forces. Their shapes
are similar to those found in grains and emulsions [29,30],
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In the inset of fig. 5(b) that the peak of the distribution
shifts towards lower forces as we approach point J , in
accordance with [31].
To obtain more information on the shape of the tail of
p(f), we now rescale each p(f) from an individual image by
its mean and average these distributions for each φ. Just
adding up the force distributions for each frame, as was
done for fig. 5(b), washes out any signature of Gaussian
tails [31]. The result is shown in fig. 5(c): we now observe
changes in the shape of the tail away from jamming —with
increasing compression the decay of the tail seems to
become steeper than exponential. This is illustrated by
the inset of fig. 5(c), where we plot ln(p(f))/f which
tends to a constant for exponential tails and decreases
for faster than exponential decay. We thus provide further
evidence that one can find steeper than exponential decay
in p(f), although we do not have sufficient statistics to
conclude that the tails cross over to Gaussian tails away
from jamming. Note that a similar behaviour is seen in
simulation and experiments on emulsions [29].

Conclusion. – We have experimentally investigated
the behavior of soft frictionless discs near the jamming
point at zero stress and temperature, by sampling distinct
packings of foam bubbles at varying packing fraction φ. We
have, for the first time, quantitatively confirmed critical
scaling in the contact number Z and we have extracted
local contact numbers and compared these to a simple
model. We have found a strong variation in the shape of
the area distribution p(A) as we approached the jamming
point, signalling an increase in compactivity, as well as as
a crossover from steeper-than-exponential to exponential
tails in the force distribution p(f), as was earlier observed
in emulsions. These results should help to discern between
competing theories for jammed matter.
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