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Abstract: We consider the models Yi,n =
∫ i/n
0 σ(s)dWs+τ(i/n)ǫi,n, and

Ỹi,n = σ(i/n)Wi/n + τ(i/n)ǫi,n, i = 1, . . . , n, where (Wt)t∈[0,1] denotes
a standard Brownian motion and ǫi,n are centered i.i.d. random variables
with E(ǫ2i,n) = 1 and finite fourth moment. Furthermore, σ and τ are

unknown deterministic functions and (Wt)t∈[0,1] and (ǫ1,n, . . . , ǫn,n) are
assumed to be independent processes. Based on a spectral decomposition
of the covariance structures we derive series estimators for σ2 and τ2 and
investigate their rate of convergence of the MISE in dependence of their
smoothness. To this end specific basis functions and their corresponding
Sobolev ellipsoids are introduced and we show that our estimators are op-
timal in minimax sense. Our work is motivated by microstructure noise
models. A major finding is that the microstructure noise ǫi,n introduces
an additionally degree of ill-posedness of 1/2; irrespectively of the tail be-
havior of ǫi,n. The performance of the estimates is illustrated by a small
numerical study.
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1. Introduction

Consider the models

Yi,n =

∫ i/n

0

σ (s) dWs + τ

(

i

n

)

ǫi,n i = 1, . . . , n, (1.1)

and

Ỹi,n = σ

(

i

n

)

Wi/n + τ

(

i

n

)

ǫi,n i = 1, . . . , n (1.2)
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respectively, where (Wt)t∈[0,1] denotes a Brownian motion and ǫi,n is so called

microstructure noise, i.e. we assume ǫi,n i.i.d., E(ǫ2i,n) = 1 and E(ǫ4i,n) < ∞.
(Wt)t∈[0,1] and (ǫ1,n, . . . , ǫn,n) are assumed to be independent, and σ and τ are
unknown, positive and deterministic functions.

Our models (1.1) and (1.2) are natural extensions of the situation when σ
and τ are constant, which has been, in a slightly broader setting, previously
considered by [9], [14], [15] and [27] among others. In the latter papers sharp
minimax estimators were derived for σ2 and τ2. The minimax rate for σ2 is n−1/4

and for τ2 it is n−1/2, and the corresponding constants for quadratic loss (MSE)
being 8τσ3 and 2τ4, respectively. To estimate σ and τ, maximum likelihood is
feasible (see [27]) and achieves these bounds. Other efficient estimators where
given by [9], [14] or [15]. In our case, i.e. when σ and τ are functions these
methods fail and techniques from nonparametric regression become necessary.
We will postpone a more careful dicussion of models (1.1) and (1.2) to Section 2.

Both models incorporate, as usually in high-frequency financial models, an
additional noise term, denoted as microstructure noise (cf. [2] and [19] ) in
order to model market frictions such as bid-ask spreads and rounding errors.
In general, microstructure noise is often assumed as white noise process with
bounded fourth moment. Therefore, we may interpret both models as obtaining
data from transformed Brownian motions under additional measurement errors.
Particularly, our assumptions cover the important case when ǫi,n

i.i.d.∼ N (0, 1) .
In this paper we try to understand how estimation of the functions σ2 and τ2

in (1.1) and (1.2) itself can be performed in an optimal way. To our knowledge,
this issue has never been addressed before whereas the problem of estimating
consistently the spot volatility, i.e. the time derivative of the integrated volatil-
ity has been discussed in other works, too (cf. [1, 18]). A remarkable work in
this direction is [4] where a harmonic analysis technique is introduced in order
to recover σ2. A naive estimator of σ2 would be the derivative of an estimator of
∫ s

0 σ
2(x)dx with respect to s. However, (numerical) differentiation of

∫ s

0 σ
2(x)dx

with respect to s yields an additional degree of ill-posedness. Instead, we propose
a regularized estimator for σ and τ that attains the minimax rate of convergence.
Our estimator is a Fourier series estimator where we estimate the single cosine

Fourier coefficients,
∫ 1

0
σ2(x) cos(kπx)dx, k = 0, 1, . . . by a particular spectral

estimator which is specifically tailor suited to this problem. The difficulty to
estimate σ2 can be explained generically from the point of view of statistical in-
verse problem: Microstructure noise induces an additional degree of ill posedness
-similar as in a deconvolution problem- which in our case leads to a reduction of
the rate of convergence by a factor 1/2. Surprisingly, and in contrast to deconvo-
lution, this is only reflected in the behavior of the eigenvalues of the covariance
operator of the process in (1.1) and (1.2) and not in the tail behavior of the
Fourier transform of the error ǫi,n.

We stress again that we are aware of the fact that our model assumes a
deterministic function σ and τ , which only depends on time t and generalization
to σ (t,Xt) is not obvious and a challenge for further research. However, the
purely deterministic case already helps us to reveal the daily pattern of the
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volatility and finally we believe that our analysis is an important step into
the understanding of these models from the view point of a statistical inverse
problems.
Results: All results are obtained with respect to MISE-risk. Let α and β denote a
certain smoothness of σ2 and τ2, respectively. Roughly speaking, these numbers
correspond to the usual Sobolev indices, although in our situation, a particular
choice of basis is required, leading us to the definition of Sobolev s-ellipsoids (see
Definition 1). Then we show that τ2 can be estimated at rate n−β/(2β+1) for β >
1, α > 1/2 in model (1.1) and β > 1, α > 3/4 in model (1.2). This corresponds to
the classical minimax rates for the usual Sobolev ellipsoids without the Brownian
motion term in (1.1) and (1.2). More interesting, we obtain for estimation of
σ2 the n−α/(4α+2) rate of convergence for α > 3/4, β > 5/4 in model (1.1) and
α > 3/2, β > 5/4 in model (1.2). We will show that these rates are uniform for
Sobolev s-ellipsoids. Lower bounds with respect to Hölder classes for estimation
of σ2 have been obtained in [20]. Here we will extend this result to Sobolev
s-ellipsoids. It follows that the obtained rates are minimax, indeed.

To summarize, our major finding is that in contrast to ordinary deconvolution
the difficulty of estimation σ2 when corrupted by additional (microstructure)
noise ǫ, is generically increased by a factor of 1/2 within the s-ellipsoids. This
is quite surprising because one might have expected that for instance Gaussian
error leads to logarithmic convergence rates due to its exponential decay of the
Fourier transform (see e.g. [5], [7], [8] and [12] for some results in this direction).
We stress that for our method a minimal smoothness of σ in (1.1) of α > 1/2 and
in (1.2) of α > 3/2 is required. Although convergence rates are half compared
with usual nonparametric regression, it turns out that for large sample sizes we
get reasonable estimates for smooth functions σ2. Roughly speaking, the results
imply that n data points for estimation of σ2 can be compared to the situation,
when we have

√
n observation in usual nonparamteric regression.

The work is organized as follows. In Sections 2 and 3 we will discuss mod-
els (1.1) and (1.2) in more detail, introduce notation and define the required
smoothness classes, Sobolev s-ellipsoids (details can be found in Appendix B).
Section 4.1 and Section 4.2 are devoted to estimate σ2 and τ2, respectively, and
to present the rates of convergence of the estimators (for a proof see Appendix
A). Section 5 provides the minimax result. In Section 6 we briefly discuss some
numerical results and illustrate the robustness of the estimator against non-
normality and violations of the required smoothness assumptions for σ2 and
τ2. Some further results and technicalities of Sections 4.1 and 4.2 are given in
Appendices C and D.

2. Discussion of models (1.1) and (1.2)

In this subsection we briefly discuss the background from financial economics of
model (1.1) and explore the differences between models (1.1) and (1.2). We may

consider the processes (σ(t)Wt)t∈[0,1] and
(∫ t

0 σ(s)dWs

)

t∈[0,1]

D
= (W (H(t)))t∈[0,1],

H (t) :=
∫ t

0 σ
2 (s) ds as (inhomogeneously) scaled Brownian motions, where
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scaling takes place in space and in time, respectively. Hence we will refer to
(σ (t)Wt)t∈[0,1] and

(∫ t

0
σ(s)dWs

)

t∈[0,1]
in the future as space-transformed (sBM)

and time-transformed (tBM) Brownian motion.

Model (1.1): In the financial econometrics literature variations of model
(1.1) are often denoted as high-frequency models, since (Wt)t∈[0,1] is sampled

on time points t = i/n and nowadays there is a vast amount of literature on
volatility estimation in high-frequency models with additional microstructure
noise term (see [3], [16], [17], [30] and [31]). These kinds of models have attained
a lot of attention recently, since the usual quadratic variation techniques for

estimation of
∫ 1

0
σ2(x)dx lead to inconsistent estimators (cf. [30]).

We are aware of the fact, that in contrast to our model, volatility is modelled
generally not only as time dependent but also depending on the process itself,
i.e. Yi,n = Xi/n + τ (i/n) ǫi,n, i = 1, . . . , n, dXt = σ (t,Xt) dWt. An overview
over commonly used parametric forms of σ (t,Xt) and a non-parametric treat-
ment in the absence of microstructure noise, can be found in [13]. It is known
that the same rates as for the case σ and τ constant hold true if we consider the
model (1.1) and estimate the so called integrated volatility or realized volatility
∫ s

0
σ2(x)dx (s ∈ [0, 1]) and

∫ s

0
τ2(x)dx instead of σ2 and τ2, respectively (see [23]

and [25] for a discussion on estimation of integrated volatility and related quan-
tities). Recently, model (1.1) has been proven to be asymptotically equivalent
to a Gaussian shift experiment (see [24]). σ2 as a function of time corresponds
in model (1.1) to the instantaneous volatility or spot volatility.

Model (1.2): Model (1.2) can be regarded as a nonparametric extension
of the model with constant σ, τ as discussed for variogram estimation by [27].
In order to show how sBM generalizes Brownian motion, we give the following
Lemma.

Lemma 1. (i) Assume that σ, 0 < c ≤ σ, is continuously differentiable. Then
the corresponding sBM, (σ (t)Wt)t∈[0,1] is the unique solution of the SDE

dXt = Xt d (log (σ (t))) + σ (t) dWt, X0 = 0, 0 ≤ t ≤ T.

(ii) The variogram of sBM is given by

γ (s, t) := E (Xt −Xs)
2

=
(

σ (t) t1/2 − σ (s) s1/2
)2

+ σ (t)σ (s)

[

|s− t| −
(

s1/2 − t1/2
)2
]

.

Proof. (i) It is easy to check that sBM indeed is a solution. To establish unique-
ness, we apply Theorem 9.1 in [26]. (ii) This follows by straightforward calcu-
lations.

Comparison of the models: We remark that tBM can be related to sBM
by partial integration

∫ t

0 σ (s) dWs = σ (t)Wt −
∫ t

0 σ
′ (s)Wsds. Thus, sBM can
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Fig 1. Plots 1 and 2 display paths of sBM and tBM corresponding to σ(t) = (1/2 − t)+
(Plot 3). Analogously, Plots 4 and 5 show paths of sBM and tBM with σ (t) = 1+ I( 1/2,1 ] (t)
(Plot 6). For Plots 1 and 2 as well as Plots 4 and 5 we took the same realization (Wt)t∈[0,1]

of the underlying Brownian motion. The first two plots show the different scaling behavior:

sBM= 0 and tBM=
∫ 1/2
0

σ (s) dWs for t > 1/2. On the other hand we see by Plots 4 and 5
that a jump induces a random shift, i.e. sBM=tBM for t ≤ 1/2 and tBM+W1/2 =sBM for
t > 1/2.

be also interpreted as tBM plus a stochastic drift term. To see the differences
between the processes, we compared in Figure 1 sBM and tBM in two typical
situations: The case where σ (t) = 0 for t > T and the case, where σ is non-
continuous. If σ (t) = 0 for t > T, sBM tends to zero, whereas tBM tends to

a constant, i.e. the random variable
∫ T

0
σ (s) dWs. Furthermore, if σ is a jump

function, sBM has a jump too, whereas tBM does not.
Unlike Model (1.1), which can be viewed as a price process, Model (1.2) has

no direct application in financial mathematics. However, from the view point
of nonparametric statistics it seems to be a natural extension of the situation
when σ and τ are constant.

3. Introduction to Sobolev s-ellipsoids and technical preliminaries

In this section we shortly introduce the setup needed in order to define the
estimators. First we define suitable smoothness classes, which are different, but
related to well known Sobolev ellipsoids (see Definition B.1).
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Definition 1. For α > 0, C > 0, we call the function space

Θs := Θs(α,C) :=
{

f ∈ L2[0, 1] : ∃ (θn)n∈N
, s. t. f(x) = θ0 + 2

∞
∑

i=1

θi cos (iπx) ,

∞
∑

i=1

i2αθ2i ≤ C

}

a Sobolev s-ellipsoid. If there is a C <∞ such that f ∈ Θs (α,C), we say f has
smoothness α. For 0 < l < u < ∞, we further introduce the uniformly bounded
Sobolev s-ellipsoid

Θb
s(α,C) := Θb

s(α,C, [l, u]) := {f ∈ Θs(α,C) : l ≤ f ≤ u} .

Here the “s” refers to “symmetry” since the L2[0, 1] basis

{ψk, k = 0, . . .} :=
{

1,
√
2 cos (kπt) , k = 1, . . .

}

, (3.1)

can also be viewed as a basis of the symmetric L2[−1, 1] functions

{

f : f ∈ L2 [−1, 1] , f(x) = f(−x) ∀x ∈ [0, 1]
}

.

Usually, Sobolev ellipsoids are introduced with respect to the Fourier basis

{

1,
√
2 sin (2kπt) ,

√
2 cos (2kπt) , k = 1, . . .

}

on L2 [0, 1] (see Definition (B.1)). As will turn out later on, Sobolev s-ellipsoids
appear naturally in our approach. If a function has a certain smoothness in one
space, it might have a completely different smoothness with respect to the other
basis. For instance the function cos ((2l+ 1)πx), l ∈ N has smoothness α for
all α <∞ with respect to basis (3.1), and as can be seen by direct calculations
only smoothness α < 1/2 for the Fourier basis. A more precise discussion can
be found in Part B of the Appendix.

Instead of (3.1) it is convenient to introduce the functions fk : [0, 1] → R,
k ∈ N

fk(x) := ψk

(x

2

)

.

Note that for k ≥ 1, f2
k can be expanded in basis (3.1) by f2

k = ψ0+2−1/2ψk. For
any function g we introduce the forward difference operator ∆ig := g((i+1)/n)−
g(i/n) and further the transformed variables ∆Y k,1

i,n := (Yi+1,n − Yi,n)fk(i/n)

and ∆Y k,2
i,n :=

(

Ỹi+1,n− Ỹi,n
)

fk(i/n), i = 1, . . . , n−1 for models (1.1) and (1.2),

respectively. In order to discuss the models simultaneously, we will write ∆Y k
i,n =

∆Y k,l
i,n , l = 1, 2. Throughout the paper we abbreviate first order differences of

observations by

∆Y k :=
(

∆Y k
1,n, . . . ,∆Y

k
n−1,n

)t
.
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We write Mp,q, Mp and Dp for the space of p× q matrices, p×p matrices and
p× p diagonal matrices over R, respectively. Further let Dn−1 ∈Mn−1 given by
(Dn−1)i,j =

√

2/n sin (ijπ/n) and define

λi,n−1 := 4 sin2 (iπ/ (2n)) i = 1, . . . , n− 1 , (3.2)

the eigenvalues of the covariance matrix Kn−1 ∈ Mn−1 of the MA(1) process
∆iǫi,n := ǫi+1,n − ǫi,n, i = 1, . . . , n− 1. More explicitly Kn−1 is tridiagonal and

(Kn−1)i,j =











2 for i = j

−1 for |i− j| = 1

0 else

. (3.3)

Note that we can diagonalize Kn−1 explicitly by Kn−1 = Dn−1Λn−1Dn−1,
where Λn−1 is diagonal with diagonal entries given by (3.2).

We will suppress the index n − 1 and write K, D, Λ, λi instead of Kn−1,
Dn−1, Λn−1, and λi,n, respectively. We write [x] := maxz∈Z {z ≤ x}, x ∈ R, the
integer part of x. log() is defined to be the binary logarithm and in order to
define estimators properly, we assume throughout the paper additionally n > 16.

4. Estimators and rates of convergence

4.1. Estimation of τ
2

Before we will turn to the estimation of the volatility σ2, we will first discuss
estimation of the noise variance, i.e. τ2. Let Jτ

n ∈ Dn−1 given by

(Jτ
n)i,j :=

{

(n− n/ logn)
−1
λ−1
i δi,j , for [n/ logn] ≤ i, j ≤ n− 1

0 otherwise
,

where λi is defined by (3.2) and δi,j denotes the Kronecker delta. We consider
models (1.1) and (1.2), simultaneously. Let

t̂k,0 :=
(

∆Y k
)t
DJτ

nD
t
(

∆Y k
)

. (4.1)

In Lemma C.1 it will be shown that t̂k,0 is a
√
n−consistent estimator of

tk,0 :=

∫ 1

0

τ2(x)f2
k (x) dx.

Note that for k ≥ 1 this means tk,0 =
∫ 1

0 τ
2(x)ψ0(x)dx+2−1/2

∫ 1

0 τ
2(x)ψk(x)dx.

Define Z := D
(

∆Y k
)

and denote by Zi the i-th component of Z. Then

t̂k,0 = (n− n/ logn)−1
n−1
∑

i=[n/ logn]

λ−1
i Z2

i . (4.2)
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Hence this also can be seen as a spectral filter in Fourier domain, where we
cut off the first n/ logn frequencies. Note that for i ≥ 1, 21/2 (ti,0 − t0,0) =
∫ 1

0
τ2(x)ψi(x)dx is the i-th series coefficient with respect to basis (3.1). This

observation suggests to construct the cosine series estimator

τ̂2N (t) := t̂0,0 + 2

N
∑

i=1

(

t̂i,0 − t̂0,0
)

cos (iπt) . (4.3)

The next result provides the rate of convergence of τ̂2N uniformly within
Sobolev s-ellipsoids. To this end a version of the continuous Sobolev embedding
theorem is required for non-integer indices α, β (see Lemma D.8). A proof of
the following Theorem can be found in Appendix C.

Theorem 1 (MISE of τ̂2N (t)). Let τ̂2N (t) as defined in (4.3). Assume β > 1,
and Q, Q̄ > 0. Further suppose that N = Nn = o

(

n1/2/ logn
)

. Assume either
model (1.1) and α > 1/2 or model (1.2) and α > 3/4. Then it holds

sup
σ2∈Θb

s(α,Q),τ2∈Θb
s(β,Q̄)

MISE
(

τ̂2N
)

= O
(

N−2β +Nn−1
)

.

Minimizing the r.h.s. yields N∗ = O
(

n1/(2β+1)
)

and consequently

sup
σ2∈Θb

s(α,Q),τ2∈Θb
s(β,Q̄)

MISE
(

τ̂2N∗

)

= O
(

n−2β/(2β+1)
)

.

Remark 1. Note that for model (1.1) Theorem 1 holds, whenever α > 1/2.
Hence the Brownian motion part of the model can be viewed as a nuisance
parameter, not affecting rates for estimation of τ2. However, for model (1.2)
α > 3/4 is required here. This more restrictive assumption is essentially a con-
sequence of the fact that the process σ (i/n)Wi/n is in general no martingale.

Remark 2. The result from Theorem 1 can be extended to 1/2 < β ≤ 1 in
model (1.1) and to 1/2 < α ≤ 3/4, 1/2 < β ≤ 1 in model (1.2). Let t̃k,0 be

defined as t̂k,0 in (4.1) but Jτ
n is now replaced by J̃τ

n ∈ Dn−1,

(

J̃τ
n

)

i,j
=

{

2n−1λ−1
i δi,j , for [n/2] ≤ i, j ≤ n− 1

0 otherwise
.

Introduce further the estimator τ̃2N (t) = t̃0,0+2
∑N

i=1

(

t̃i,0 − t̃0,0
)

cos (iπt) . Fur-

ther suppose that N = O
(

n1/(2β+1)
)

. Then we obtain by slight modifications of
the proof of Theorem 1 for β > 1/2, α > 1/2 and Q, Q̄ > 0

(i) Assume model (1.1). Then it holds

sup
σ2∈Θb

s(α,Q),τ2∈Θb
s(β,Q̄)

MISE
(

τ̃2N
)

= O
(

N−2β +Nn−1 +Nn1−2β
)

and N∗ = O
(

n(2β−1)/(2β+1)
)

yields

sup
σ2∈Θb

s(α,Q),τ2∈Θb
s(β,Q̄)

MISE
(

τ̃2N∗

)

= O
(

n−(4β2−2β)/(2β+1)
)

.
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(ii) Assume model (1.2). Then we have the expansion

sup
σ2∈Θb

s(α,Q),τ2∈Θb
s(β,Q̄)

MISE
(

τ̃2N
)

= O
(

N−2β+Nn−1+Nn1−2β+Nn2−4α
)

,

and the choice

N∗ =

{

O
(

n(2β−1)/(2β+1)
)

for β ≤ 1 ∧ (2α− 1/2) ,

O
(

n(4α−2)/(2β+1)
)

for α ≤ 3/4 ∧ (β/2 + 1/4)

yields

sup
σ2∈Θb

s(α,Q),τ2∈Θb
s(β,Q̄)

MISE
(

τ̃2N∗

)

=

{

O
(

n−(4β2−2β)/(2β+1)
)

for β ≤ 1 ∧ (2α− 1/2) ,

O
(

n−(2−2α)/(2β+1)
)

for α ≤ 3/4 ∧ (β/2 + 1/4) .

Remark 3. It is also possible, although more technical, to compute the asymp-
totic constant of the estimator τ̂2N∗ . Suppose that the microstructure noise is
Gaussian and assume model (1.1) and β > 1 or (1.2) and β > 1, α > 3/4, then
we have more explicitly

MISE
(

τ̂2N∗

)

=
2N∗

n

∫ 1

0

τ4(x)dx +

∞
∑

k=N∗+1

(∫ 1

0

τ2(x)ψk(x)dx

)2

+ o
(

N∗n−1
)

.

Remark 4. There are of course simpler estimators for tk,0. For instance if

we replace Jτ
n in (4.1) by (2n)

−1
In−1, where In−1 ∈ Dn−1 denotes the identity

matrix, we obtain the quadratic variation estimator for tk,0 (cf. [2]) and it is
not difficult to show that this estimator attains the optimal rate of convergence.
This approach could even be extended to a nonparametric estimator of the form
(4.3). However, the single Fourier coefficients are not estimated efficiently, since
in the case when the microstructure noise is Gaussian the asymptotic constant
is 3n−1

∫

τ4k (x)dx (this is a straightforward extension of Theorem A.1 in [31])
whereas for our estimator we have 2n−1

∫

τ4k (x)dx (see Lemma C.1). If τ is
constant it can be easily seen that estimators in (4.1) are efficient for k = 0
whereas quadratic variation is not.

Remark 5. In practical application it would be more natural to use instead of
n/ logn in (4.2) other cut-off frequencies e.g. nγ/ logn or qn, where 1/2 < γ ≤
1, 0 < q < 1. Smaller γ decreases the variance while on the other hand increases
the bias of the estimator.

4.2. Estimation of σ
2

Define Jn ∈ Dn−1 by

(Jn)i,j =

{√
nδi,j , for

[

n1/2
]

+ 1 ≤ i, j ≤ 2
[

n1/2
]

0 otherwise
. (4.4)
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Similar, as for the estimation of τ2 we first introduce an estimator of appropriate
Fourier coefficients by

ŝk,0 =
(

∆Y k
)t
DJnD

t
(

∆Y k
)

− 7π2t̂k,0/3. (4.5)

The second part, i.e. −7π2t̂k,0/3 is a bias correcting term, where the constant
7π2/3 is due to the choice of cut-off points

[

n1/2
]

+ 1 and 2
[

n1/2
]

in (4.4). As

we will see, the estimator of t̂k,0 has better convergence properties than the first
term in ŝk,0, and hence does not affect the asymptotic variance. Similar to (4.3),
we put

σ̂2
N (t) = ŝ0,0 + 2

N
∑

i=1

(ŝi,0 − ŝ0,0) cos (iπt) . (4.6)

Theorem 2 (MISE of σ̂2
N ). Let σ̂2

N as defined in (4.6). Suppose that N = Nn =
o
(

n1/4
)

, β > 5/4 and Q, Q̄ > 0. Assume model (1.1) and α > 3/4 or model
(1.2) and α > 3/2. Then it holds

sup
σ2∈Θb

s(α,Q),τ2∈Θb
s(β,Q̄)

MISE
(

σ̂2
N

)

= O
(

N−2α +Nn−1/2
)

and minimizing the r.h.s. yields

sup
σ2∈Θb

s(α,Q),τ2∈Θb
s(β,Q̄)

MISE
(

σ̂2
N∗

)

= O
(

n−α/(2α+1)
)

for N∗ = O
(

n1/(4α+2)
)

.

The proof of Theorem 2 is given in Section A.2.

Remark 6. It is also possible to extend this result for less smooth functions σ2

and τ2.

(i) Assume model (1.1) and α > 1/2, β > 1. Then it holds

sup
σ2∈Θb

s(α,Q),τ2∈Θb
s(β,Q̄)

MISE
(

σ̂2
N

)

= O
(

N−2α +Nn−1/2 +Nn2−2β +Nn1−2α
)

,

and

N∗ =

{

O
(

n(2α−1)/(2α+1)
)

for α ≤ 3/4 ∧ (β − 1/2) ,

O
(

n(2β−2)/(2α+1)
)

for β ≤ 5/4 ∧ (α+ 1/2)

yields

sup
σ2∈Θb

s(α,Q),τ2∈Θb
s(β,Q̄)

MISE
(

σ̂2
N∗

)

=

{

O
(

n−2α(2α−1)/(2α+1)
)

for α ≤ 3/4 ∧ (β − 1/2) ,

O
(

n−2α(2β−2)/(2α+1)
)

for β ≤ 5/4 ∧ (α+ 1/2) .
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(ii) Assume model (1.2) and α > 3/2, β > 1. Then it holds

sup
σ2∈Θb

s(α,Q),τ2∈Θb
s(β,Q̄)

MISE
(

σ̂2
N

)

= O
(

N−2α +Nn−1/2 +Nn2−2β
)

,

and N∗ = O
(

n(2β−2)/(2α+1)
)

yields

sup
σ2∈Θb

s(α,Q),τ2∈Θb
s(β,Q̄)

MISE
(

σ̂2
N∗

)

= O
(

n−2α(2β−2)/(2α+1)
)

.

Remark 7. In analogy to (4.2), the estimator ŝk,0 can also be viewed as a spec-
tral filter in Fourier domain, where essentially only the frequencies n1/2, . . . , 2n1/2

play a role. For practical purposes one can generalize this to estimators where
the frequencies k, . . . ,

[

cn1/2
]

, c > 0 are used. If σ is assumed to be very smooth,
one even may set k = 1. In this more general setting, the constant −7π2/3 in the

definition of the estimator has to be replaced by −n/
([

cn1/2
]

− k
)
∑[cn1/2]

i=k λi.

Remark 8. Since the matrix D in the definition of ŝk,0 is a discrete sine trans-
form (for a definition see [6]) the estimator σ̂2

N can be calculated explicitly taking
O (Nn logn) steps.

5. Minimax

In this section we will discuss the optimality of the proposed estimators. To this
end we establish lower bounds with respect to Sobolev s-ellipsoids and Gaussian
microstructure noise.

Theorem 3. Assume model (1.1) or model (1.2), α ∈ N \ {0}. Further assume
τ constant. Then there exists a C > 0 (depending only on α,Q, l, u), such that

lim
n→∞

inf
σ̂2
n

sup
σ2∈Θb

s(α,Q)

E
(

n
α

2α+1

∥

∥σ̂2
n − σ2

∥

∥

2

2

)

≥ C.

Proof. The proof relies on a multiple hypothesis testing argument and is almost
the same as the proof given in [20], Theorem 2.1. However, the lower bounds
there are established with respect to the space of Hölder continuous functions
of index α on the interval [0, 1] , i.e. for l < u

Cb (α,L) := Cb (α,L, [l, u]) :=
{

f : f (p) exists for p = [α] ,
∣

∣

∣f (p)(x)− f (p)(y)
∣

∣

∣ ≤ L |x− y|α−p
, ∀x, y ∈ I, 0 < l ≤ f ≤ u <∞

}

.

Due to boundary effects Cb (α,L)  Θb
s (α,Q) and therefore the statement above

does not follow immediately from [20], Theorem 2.1. In fact, the only difference
to the proof of [20] is to show that the constructed functions σ2

i,n are also el-

ements of Θb
s (α,Q) . To be more precise, write σmin, σmax for the lower and

upper bound of σ2, respectively, i.e. σ2 ∈ Θb
s (α,Q, [σmin, σmax]). Without loss
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of generality, we may assume that σmin = 1. For the multiple hypothesis testing
argument (cf. [29]) a specific choice of functions σ2

i,n is required. For a con-

struction see [20], proof of Theorem 2.1 where L := (2π2αQ)1/2/‖K(α)‖∞. As
mentioned above, it remains to show

σ2
i,n ∈ Θb

s (α,Q) , i = 0, 1, . . . ,M.

Due to the construction of σ2
i,n, we have σ

2
i,n(t) = 1 for t ∈ [0, 1/4]∪ [3/4, 1] and

σ
2 (l)
i,n (0) = σ

2 (l)
i,n (1) = 0 for l ∈ {0, 1, . . . , α}. Thus, σ2

i,n ∈ W(α,L2‖K(α)‖2∞)
(for a definition see Equation (B.1)), α ∈ {1, 2, 3, . . .}, j = 0, . . . ,M . Hence by
Theorem B.1 it follows σ2

i,n ∈ Θs (α,Q) for i = 0, . . . ,M .

6. Simulations

In this section we briefly illustrate the performance of our estimators. Our aim
is not to give a comprehensive simulation study, rather we would like to illus-
trate the behaviour of the estimator when assumptions of Theorems 1 and 2
are violated. In the following we plotted our estimator to simulated data, where
we always set n = 25.000. From the point of view of financial statistics this is
approximately the sample size obtained over a trading day (6.5 hours) if log-
returns are sampled at every second. For simplicity, we will choose N in (4.3)
and (4.6) as the minimizer of ‖τ̂2 − τ2‖2n and ‖σ̂2 − σ2‖2n, respectively, which is
in practice unknown. Of course, proper selection of the threshold N∗ is of major
importance for the performance of the estimator. To this end various methods
are available, among others, cross validation techniques, balancing principles,
and variants thereof could be employed (see e.g. [10], [11], [21] and [22]). A
thorough investigation is postponed to a separate paper. Throughout our sim-
ulations we assumed τ = 0.01 and concentrated mainly on estimation of σ2, as
it is the more challenging task.

In Figure 2 we have displayed the estimator for σ(t) = (2 + cos (2πt))
1/2

.
Note that by Definition 1, σ2 has ”infinite” smoothness, i.e. for any α > 0, we
can find a Q < ∞, such that σ2 ∈ Θs (α,Q) . The reconstruction shows that
estimation of τ2 can be done much easier than estimation of σ2 although it
is of smaller magnitude. In Figure 3, we are interested in the behavior of the
estimators if heavy-tailed microstructure noise is present. This was simulated
by generating ǫi,n ∼ 3−1/2t (3), i = 1, . . . , n, i.i.d., where t (3) denotes a t-
distribution with 3 degrees of freedom. We can see from Plot 1 in Figure 3 that
the resulting microstructure noise has some severe outliers according to the tail
x−4 of the density of t(3). Nevertheless, estimation of τ2 and σ2 is not visibly
affected by the distribution of the noise.

In the subsequent figures we illustrate the behaviour of the estimator when
the required smoothness assumptions on σ2 and τ2 are violated. To this end, we
investigate in Figure 4 the situation when σ is random itself, i.e. a realization
from a Brownian motion, σ(t) = 3|W̃t|. The Brownian motion (W̃t)t∈[0,1] was
modelled as independent from the Brownian motion in (1.1) and the microstruc-
ture noise process. It is of course not possible to reconstruct the complete path
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Fig 2. n = 25000 data points from model (1.1), ǫi,n ∼ N (0, 1), i.i.d., τ = 0.1, σ(t) =

(2 + cos (2πt))1/2 . Plot 1 shows the data. Additionally to the data, we plotted the path of the
tBM in Plot 2. The reconstruction of τ2 and σ2 (dashed lines) as well as the true function
(solid lines) are given in Plot 3 and 4, respectively. The threshold parameters were selected
as N∗ = 1 for estimation of τ2 and N∗ = 3 for estimation of σ2.
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Fig 3. (Heavy-tailed microstructure noise) As Figure 2 but instead of Gaussian errors we
assumed that the noise follows a normalized Student’s t-distribution with 3 degrees of freedom.
We observe that performance of τ̂2 and σ̂2 is quite robust to heavy-tailed noise. The threshold
parameters N∗ were selected as 1 and 3 for estimation of τ2 and σ2, respectively.
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Fig 4. (Low-smoothness) As Figure 2 but we chose σ(t) = 3|W̃t|, where (W̃t)t∈[0,1] denotes a
Brownian motion independent of the noise and the Brownian motion in (1.1). The estimator
returns a smoothed version of the path. The threshold parameters N∗ were selected as 1 and
17 for estimation of τ2 and σ2, respectively.

of σ2, but as Figure 4 indicates, the estimators at least detects the smoothed
shape of the path and so our estimator might already reveal some parts of the
pattern of volatility also in case σ is non-deterministic, which is certainly more
realistic in most applications.

Finally, in Figure 5 we investigated the case of σ being a jump-function. We
put σ (t) = 1+I( 1/2,1 ] (t) , a function with jump at t = 1/2. Fourier series usually
show a Gibbs phenomenon, i.e. an oscillating behavior at discontinuities. This
behavior is also clearly visible in the graph of σ̂2. In order to reconstruct jumps
in volatility other methods certainly will be more suitable and are postponed to
a separate paper.

Computational tasks: We implemented the estimators in Matlab using
the routine fft() for the discrete sine transform (see Remark 8). Calculation
of the estimators for a sample size of n = 25.000 took around 2-3 seconds on
a Intel Celeron 1.7 GHz processor. As mentioned in Remark 8, the estimator
can be calculated in O (Nn logn) steps. If we choose N with the optimal scale,
i.e. N ∼ n1/(4α+2), we have for the complexity O(Nn logn) = o(n5/4 logn),
whenever α > 1/2.
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Fig 5. (Jump function) As Figure 2 but we chose σ(t) = 1 + I( 1/2,1 ] (t) . The Gibbs phe-
nomenon is clearly visible. The threshold parameters N∗ were selected as 1 and 10 for esti-
mation of τ2 and σ2, respectively.

Appendix A Convergence rate of σ̂2

In this section we will give a proof of Theorem 2. To this end we first introduce
some notation and then prove a Lemma in order to get uniform estimates of
bias and variance of the single estimators ŝk,0.

A.1 Preliminary results and notation

Proofs of the upper bounds are based on a decomposition of ∆Y k. In this
subsection we present some further notation. Let σk(t) := σ(t)fk(t) and τk(t) :=
τ(t)fk(t), t ∈ [0, 1]. Let throughout the following for the Sobolev s-ellipsoids in
Definition 1 for σ2 the constants being l = σmin and u = σmax and for τ2,
l = τmin, u = τmax. We define

φn := sup
σ2∈Θb

s(α,Q)

max
i=1,...,n−1

sup
ξ∈[i/n,(i+1)/n]

∣

∣

∣

∣

σ (ξ)− σ

(

i

n

)∣

∣

∣

∣

,

φ̄n := sup
τ2∈Θb

s(β,Q̄)
max

k≤n1/4
max

i=1,...,n
|∆iτk| . (A.1)
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In order to do the proofs for model (1.1) and model (1.2) simultaneously, we
first define the more general process

Vk,l := X1,k +X2,k + Z1,k,l + Z2,k, l = 1, 2, (A.2)

where X1,k, X2,k, Z1,k,l and Z2,k are n − 1 dimensional random vectors with
components

(X1,k)i := σk (i/n)∆iWi/n,

(X2,k)i := τk (i/n)∆iǫi,n,

(Z1,k,1)i := fk (i/n)

∫ (i+1)/n

i/n

(

σ (s)− σ

(

i

n

))

dWs,

(Z1,k,2)i := fk (i/n) (∆iσ)W(i+1)/n,

(Z2,k)i := fk (i/n) (∆iτ) ǫi+1,n, i = 1, . . . , n− 1.

Obviously, ∆Y k = Vk,1 and ∆Y k = Vk,2 if model (1.1) and (1.2) holds, respec-
tively. Define the generalized estimators t̂k,0,l := V t

k,lDJ
τ
nD

tVk,l and ŝk,0,l :=

V t
k,lDJnD

tVk,l−7π2t̂k,0,l/3. Further there exists a decomposition with C1,k,l, C2,k ∈
Mn−1,n such that

Vk,l = C1,k,lξ + C2,kǫ, (A.3)

where ǫ = (ǫ1,n, . . . , ǫn,n)
t
and ξ = ξn is standard n-variate normal, ǫ, ξ inde-

pendent and C1,k,lξ = X1,k + Z1,k,l, C2,kǫ = X2,k + Z2,k. Now, let

sk,p :=

∫ 1

0

σ2
k(x) cos(pπx)dx, tk,p :=

∫ 1

0

τ2k (x) cos(pπx)dx (A.4)

be the scaled p-th Fourier coefficients of the cosine series of σ2
k and τ2k , respec-

tively. Define the sums A(σ2
k, r) by

A
(

σ2
k, r
)

=











sk,0 + 2
∑∞

m=1 sk,2nm for r ≡ 0 mod 2n,
∑∞

m=0 sk,2nm+n for r ≡ n mod 2n,
∑

q≡±r mod 2n, q≥0 sk,q for r 6≡ 0 mod n,

and analogously A(τ2k , r) with sk,p replaced by tk,p. Some properties of these
variables are given in Lemma D.1 and Lemma D.2.

Further define

Σk :=







σk(1/n)
. . .

σk(1− 1/n)






. (A.5)

We put Cum4 (ǫ) := Cum4 (ǫ1,n) for the fourth cumulant of ǫ1,n. If X,Y are
independent random vectors, we write X ⊥ Y .
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A.2 Proofs for estimation of σ
2

Lemma A.1. Let ŝk,0 be defined as in (4.5). Further assume β > 1, Q, Q̄ > 0,
0 < σmin ≤ σmax <∞, 0 < τmin ≤ τmax <∞ and k = kn ∈ N.
(i) Assume model (1.1), α > 1/2. Then it holds

sup
σ2∈Θb

s(α,Q), τ2∈Θb
s(β,Q̄)

max
k≤n1/4

|E (ŝk,0)−sk,0| = O
(

n−1/4+n1−β+n1/2−α
)

,

(A.6)

sup
σ2∈Θb

s(α,Q), τ2∈Θb
s(β,Q̄)

max
k≤n1/4

Var (ŝk,0) = O
(

n−1/2 + n4−4β
)

. (A.7)

(ii) Assume model (1.2), α > 5/4. Then it holds

sup
σ2∈Θb

s(α,Q), τ2∈Θb
s(β,Q̄)

max
k≤n1/4

|E (ŝk,0)−sk,0| = O
(

n1−β+n5/2−2α+n−1/4
)

,

(A.8)

sup
σ2∈Θb

s(α,Q), τ2∈Θb
s(β,Q̄)

max
k≤n1/4

Var (ŝk,0) = O
(

n−1/2 + n4−4β
)

. (A.9)

Proof. The proof mainly uses the generalized estimators as introduced in Sec-
tion A.1. It is clear that for two centered random vectors P and Q

〈P,Q〉σ := E
(

P tDJnDQ
)

defines a semi-inner product and by Lemma D.5, P ⊥ Q⇒ 〈P,Q〉σ = 0. Hence

E ŝk,0,l = 〈X1,k, X1,k〉σ + 〈X2,k, X2,k〉σ + 〈Z1,k,l, Z1,k,l〉σ + 〈Z2,k, Z2,k〉σ
+2 〈X1,k, Z1,k,l〉σ + 2 〈X2,k, Z2,k〉σ − 7π2

3
E
(

t̂k,0,l
)

. (A.10)

Clearly with (iii) in Lemma D.1 and rn := n−1/2
[

n1/2
]

,

〈X1,k, X1,k〉σ =
1

n
tr (ΣkDJnDΣk) =

1

n
tr
(

JnDΣ2
kD
)

= n−1/2

2[n1/2]
∑

i=[n1/2]+1

(

A
(

σ2
k, 0
)

−A
(

σ2
k, 2i

))

= rnA
(

σ2
k, 0
)

− n−1/2

2[n1/2]
∑

i=[n1/2]+1

A
(

σ2
k, 2i

)

.

Hence due to rn ≤ 1 and |rn − 1| ≤ n−1/2

∣

∣〈X1,k, X1,k〉σ − sk,0
∣

∣ ≤ 2

∞
∑

m=n

|sk,m|+ 2√
n

∞
∑

i=0

|sk,i| ,
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and with Lemma D.2

sup
σ2∈Θb

s(α,Q)

max
k≤n1/4

∣

∣〈X1,k, X1,k〉σ − sk,0
∣

∣ = O
(

n1/2−α
)

.

Next we will bound 〈X2,k, X2,k〉σ . In order to do this let Tk ∈ Dn−1 with entries

(Tk)i,j = τk (i/n) δi,j . Further we define T̃k ∈Mn−1

(

T̃k

)

i,j
=











(∆iτk)
2

for i = j − 1,

(∆jτk)
2

for i = j + 1,

0 otherwise.

(A.11)

Note the relation

Cov (X2,k) = TkKTk = 1/2T 2
kK + 1/2KT 2

k + 1/2T̃k. (A.12)

Using Lemma D.5 yields

〈X2,k, X2,k〉σ = E
(

Xt
2,kDJnDX2,k

)

= tr (DJnDTkKTk)

=
1

2
tr
(

JnDT
2
kKD

)

+
1

2
tr
(

JnDKT
2
kD
)

+
1

2
tr
(

JnDT̃kD
)

= tr
(

ΛJnDT
2
kD
)

+
1

2
tr
(

JnDT̃kD
)

, (A.13)

and further

tr
(

ΛJnDT
2
kD
)

= n1/2

2[n1/2]
∑

i=[n1/2]+1

λi
(

A
(

τ2k , 0
)

−A
(

τ2k , 2i
))

= A
(

τ2k , 0
)

n1/2

2[n1/2]
∑

i=[n1/2]+1

λi − n1/2

2[n1/2]
∑

i=[n1/2]+1

λiA
(

τ2k , 2i
)

.

(A.14)

Because maxi=[n1/2]+1,...,2[n1/2] λi = λ2[n1/2] ≤ 4π2n−1, it holds

∣

∣

∣

∣

∣

∣

∣

√
n

2[n1/2]
∑

i=[n1/2]+1

λiA
(

τ2k , 2i
)

∣

∣

∣

∣

∣

∣

∣

≤ n1/2

2[n1/2]
∑

i=[n1/2]+1

λi
∑

q≡±2i mod 2n, q≥0

|tk,q|

≤ 4π2n−1/2
∞
∑

i=0

|tk,i| ≤ 8π2n−1/2
∞
∑

i=0

|t0,i| .

Therefore, (A.14) can be written as
∣

∣

∣

∣

∣

∣

∣

tr
(

ΛJnDT
2
kD
)

− tk,0n
1/2

2[n1/2]
∑

i=[n1/2]+1

λi

∣

∣

∣

∣

∣

∣

∣

≤ 8π2
∞
∑

m=n

|tk,m|+ 8π2n−1/2
∞
∑

i=0

|t0,i| .
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This gives by Lemma D.7 and Lemma D.2

sup
τ2∈Θb

s(β,Q̄)
max

k≤n1/4

∣

∣

∣

∣

tr
(

ΛJnDT
2
kD
)

− 7π2

3
tk,0

∣

∣

∣

∣

= O
(

n−1/2
)

.

Recall that tr (Jn) = O (n). It follows

∣

∣

∣tr
(

JnDT̃kD
)∣

∣

∣ ≤ tr (Jn)max
i,j

∣

∣

∣

∣

(

DT̃kD
)

i,j

∣

∣

∣

∣

≤ 4 tr (Jn)max
i

(∆iτk)
2
.

So,

sup
τ2∈Θb

s(β,Q̄)
max

k≤n1/4
tr
(

JnDT̃kD
)

= O
(

nφ̄2n
)

(A.15)

and therefore

sup
τ2∈Θb

s(β,Q̄)
max

k≤n1/4

∣

∣

∣

∣

〈X2,k, X2,k〉σ − 7π2

3
tk,0

∣

∣

∣

∣

= O
(

n−1/2 + nφ̄2n

)

.

We bound the remaining terms of (A.10). Note

〈Z1,k,1, Z1,k,1〉σ = tr (DJnDCov (Z1,k,1)) ≤ λ1 (Cov (Z1,k,1)) tr (Jn) ≤ 2φ2n

implying

sup
σ2∈Θb

s(α,Q)

max
k≤n1/4

〈Z1,k,1, Z1,k,1〉σ = O
(

φ2n
)

.

In order to bound 〈Z1,k,2, Z1,k,2〉σ define

L :=

(

(i ∧ j) + 1

n

)

i,j=1,...,n−1

(A.16)

and ∆Σk ∈ Dn−1 by

(∆Σk)i,j := fk

(

i

n

)

(∆iσ) δi,j .

We obtain

〈Z1,k,2, Z1,k,2〉σ = tr (DJnD (∆Σk)L (∆Σk)) ≤ 2n3/2φ2n (A.17)

and hence

sup
σ2∈Θb

s(α,Q)

max
k≤n1/4

〈Z1,k,2, Z1,k,2〉σ = O
(

n3/2φ2n

)

. (A.18)

Similarly to (A.16), 〈Z2,k, Z2,k〉σ ≤ φ̄2nn and thus

sup
τ2∈Θb

s(β,Q̄)
max

k≤n1/4
〈Z2,k, Z2,k〉σ = O

(

φ̄2nn
)

. (A.19)
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Note that

Cov (X1,k, Z1,k,2)i,j =

{

0 for j < i

n−1fk (i/n) fk (j/n)σ (i/n) (∆jσ) for j ≥ i
.

Hence by Proposition D.1, we obtain

sup
σ2∈Θb

s(α,Q)

max
k≤n1/4

∣

∣〈X1,k, Z1,k,2〉σ
∣

∣ = O
(

n1/2 logn φn

)

Applying the CS-inequality gives

sup
σ2∈Θb

s(α,Q)

max
k≤n1/4

∣

∣〈X1,k, Z1,k,1〉σ
∣

∣ = O (φn) ,

∣

∣〈X2,k, Z2,k〉σ
∣

∣ ≤ 〈X2,k, X2,k〉1/2σ 〈Z2,k, Z2,k〉1/2σ .

Using Proposition C.1 this yields (A.6) and (A.8). In order to give an upper
bound for the variance of ŝk,0,l note

Var (ŝk,0,l) ≤ 2Var
(

V t
k,lDJnDVk,l

)

+ 2
72π4

9
Var

(

t̂k,0,l
)

.

Furthermore we have using (A.3) and Lemma D.3 (vi)

V t
k,lDJnDVk,l = ξtCt

1,k,lDJnDC
t
1,k,lξ + 2ξtCt

1,k,lDJnDC2,kǫ+ ǫtCt
2,kDJnDC2,kǫ

≤ 2ξtCt
1,k,lDJnDC

t
1,k,lξ + 2ǫtCt

2,kDJnDC2,kǫ.

Hence

Var
(

V t
k,lDJnDVk,l

)

≤ 8Var
(

ξtCt
1,k,lDJnDC1,k,lξ

)

+ 8Var
(

ǫtCt
2,kDJnDC2,kǫ

)

.

Finally, we bound Var(ξtCt
1,k,lDJnDC1,k,lξ) and Var(ǫtCt

2,kDJnDC2,kǫ) in two
steps, which will be denoted by (a) and (b).

(a) By Lemma D.4 (iii), we have

Var
(

ξtCt
1,k,lDJnDC1,k,lξ

)

= 2
∥

∥

∥J1/2
n DCov (X1,k + Z1,k,l)DJ

1/2
n

∥

∥

∥

2

F

≤ 8
∥

∥

∥J1/2
n D (Cov (X1,k) + Cov (Z1,k,l))DJ

1/2
n

∥

∥

∥

2

F

≤ 16
∥

∥

∥J1/2
n DCov (X1,k)DJ

1/2
n

∥

∥

∥

2

F
+ 16

∥

∥

∥J1/2
n DCov (Z1,k,l)DJ

1/2
n

∥

∥

∥

2

F
.

(A.20)

Firstly,
∥

∥

∥J1/2
n DCov (Z1,k,1)DJ

1/2
n

∥

∥

∥

2

F
≤ λ21 (Cov (Z1,k,1)) tr

(

J2
n

)

≤ 4n−1/2φ4n,

∥

∥

∥
J1/2
n DCov (Z1,k,2)DJ

1/2
n

∥

∥

∥

2

F
≤ λ21 (DJnD) tr

(

Cov (Z1,k,2)
2
)

≤ 4nφ4n ‖L‖2F ≤ 4n3φ4n,
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and also
∥

∥

∥J1/2
n DCov (X1,k)DJ

1/2
n

∥

∥

∥

2

F
≤ λ21 (Cov (X1,k)) tr

(

J2
n

)

≤ σmaxn
−1/2.

Therefore,

sup
σ2∈Θb

s(α,Q)

max
k≤n1/4

Var
(

ξtCt
1,k,lDJnDC1,k,lξ

)

= O
(

n−1/2
)

.

(b) Next, we see with the same arguments as in (A.20)

Var
(

ǫtCt
2,kDJnDC2,kǫ

)

≤ (2 + Cum4 (ǫ))
∥

∥

∥J1/2
n DCov (X2,k + Z2,k)DJ

1/2
n

∥

∥

∥

2

F

≤ 8 (2 + Cum4 (ǫ))
∥

∥

∥J1/2
n DCov (X2,k)DJ

1/2
n

∥

∥

∥

2

F

+ 8 (2 + Cum4 (ǫ))
∥

∥

∥J1/2
n DCov (Z2,k)DJ

1/2
n

∥

∥

∥

2

F
.

We obtain
∥

∥

∥J1/2
n DCov (Z2,k)DJ

1/2
n

∥

∥

∥

2

F
≤ 4φ̄4n tr

(

J2
n

)

= 4φ̄4nn
3/2.

From (A.11) follows now
∥

∥

∥J1/2
n DCov (X2,k)DJ

1/2
n

∥

∥

∥

2

F
≤ 3

2

∥

∥

∥J1/2
n DT 2

kKDJ
1/2
n

∥

∥

∥

2

F
+

3

4

∥

∥

∥J1/2
n DT̃kDJ

1/2
n

∥

∥

∥

2

F
.

Let In−1 be the n− 1×n− 1 identity matrix. Due to ΛJnΛ ≤ Inλ
2
2[n1/2]

n1/2 we

have
∥

∥

∥
J1/2
n DT 2

kKDJ
1/2
n

∥

∥

∥

2

F
= tr

(

J1/2
n DT 2

kΛJnΛT
2
kDJ

1/2
n

)

≤ λ2
2[n1/2]n

1/2 tr
(

J1/2
n DT 4

kDJ
1/2
n

)

≤ λ2
2[n1/2]n

1/2τ2max tr (Jn) .

Also
∥

∥

∥J1/2
n DT̃kDJ

1/2
n

∥

∥

∥

2

F
≤ λ21 (Jn)

∥

∥

∥T̃k

∥

∥

∥

2

F
≤ 2n2φ̄4n

and therefore

sup
τ2∈Θb

s(β,Q̄)
max

k≤n1/4
Var

(

ǫtCt
2,kDJnDC2,kǫ

)

= O
(

n−1/2 + n2φ̄4n

)

.

Combining (a) and (b) gives

sup
σ2∈Θb

s(α,Q), τ2∈Θb
s(β,Q̄)

max
k≤n1/4

Var
(

V t
k,lDJnDVk,l

)

= O
(

n−1/2 + n2φ̄4n

)

,

so (A.7) and (A.9) follow with Lemma C.1 and Propositon C.1.
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Proof of Theorem 2. We decompose

MISE
(

σ̂2
N

)

=

∫ 1

0

Bias2
(

σ̂2
N (t)

)

dt+

∫ 1

0

Var
(

σ̂2
N (t)

)

dt.

We have that σ2(t) =
∑∞

i=0

〈

ψk, σ
2
〉

ψk (t) , where 〈 . , . 〉 denotes the stan-
dard scalar product on L2[0, 1]. Let ηk,n,l := E (ŝk,0,l) − sk,0. Then for i ≥ 1,
E (2ŝi,0,l − 2ŝ0,0,l) = 21/2

〈

ψi, σ
2
〉

+ 2ηi,n,l − 2η0,n,l. Hence

∫ 1

0

Bias2
(

σ̂2(t)
)

dt = η20,n,l + 2

N
∑

i=1

(ηi,n,l − η0,n,l)
2
+

∞
∑

i=N+1

〈

ψi, σ
2
〉2

and we obtain

η20,n,l + 2

N
∑

i=1

(ηi,n,l − η0,n,l)
2 ≤ (8N + 1) max

i=0,...,N
η2i,n,l.

Because σ2 ∈ Θs (α,Q) it holds

∞
∑

i=N+1

〈

ψi, σ
2
〉2 ≤ 1

(N + 1)
2α

∞
∑

i=1

i2α
〈

ψi, σ
2
〉2 ≤ 2Q (N + 1)

−2α
. (A.21)

Therefore,

sup
σ2∈Θb

s(α,Q), τ2∈Θb
s(β,Q̄)

∫ 1

0

Bias2
(

σ̂2(t)
)

dt

= O



N sup
σ2∈Θb

s(α,Q), τ2∈Θb
s(β,Q̄)

max
i=0,...,N

η2i,n,l +N−2α



 .

Assume model (1.1), then by Lemma A.1

sup
σ2∈Θb

s(α,Q),τ2∈Θb
s(β,Q̄)

∫ 1

0

Bias2
(

σ̂2(t)
)

dt

= O
(

Nn−1/2 +Nn2−2β +Nn1−2α +N−2α
)

.

and for model (1.2),

sup
σ2∈Θb

s(α,Q), τ2∈Θb
s(β,Q̄)

∫ 1

0

Bias2
(

σ̂2(t)
)

dt

= O
(

Nn2−2β +Nn5−4α +Nn−1/2 +N−2α
)

.
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For the variance note

∫ 1

0

Var
(

σ̂2 (t)
)

dt = Var (ŝ0,0,l) +
1

2

N
∑

i=1

Var (2ŝi,0,l − 2ŝ0,0,l)

≤ (4N + 1)Var (ŝ0,0,l) + 4

N
∑

i=1

Var (ŝi,0,l) .

Hence

sup
σ2∈Θb

s(α,Q), τ2∈Θb
s(β,Q̄)

∫ 1

0

Var
(

σ̂2 (t)
)

dt

= O



N sup
σ2∈Θb

s(α,Q),τ2∈Θb
s(β,Q̄)

max
0≤k≤N

Var (ŝk,0,l)



 .

Using Lemma A.1 yields the result.

Appendix B Sobolev s-ellipsoids

In this chapter we will shortly discuss the function space introduced in Section 3
and provide a theorem needed for the lower bound. First recall the classical
definition of Sobolev ellipsoids (cf. Proposition 1.14 in [29]).

Definition B.1. Define

aj,α =

{

jα, for even j,

(j − 1)
α
, for odd j

.

Let {ϕj}∞j=1, ϕ1(x) := 1, ϕ2j(x) :=
√
2 cos (2πjx) , ϕ2j+1(x) :=

√
2 sin (2πjx)

denote the trigonometric basis on [0, 1]. Then we call the function space

Θ(α,C) :=

{

f ∈ L2[0, 1] : ∃ (θn)∞n=1 , s. t. f(x) =

∞
∑

i=1

θiϕi (x) ,

∞
∑

i=1

a2i,αθ
2
i ≤ C

}

a Sobolev ellipsoid.

Interesting characterizations arise if we put Sobolev s-ellipsoids into relation
with Sobolev ellipsoids:

Remark B.1. Let S be the class of all functions f ∈ L2[0, 1] such that f(x) =
f(1− x), ∀x ∈ [0, 1]. Further let Θ(α,C) be a Sobolev ellipsoid as in Definition
B.1. Then careful calculations show that a function belongs to Θs(α,C) ∩ S if
and only if it belongs to Θ(α,C21−2α) ∩ S.
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Let

W(α, C̄) :=W(α, C̄, [0, 1]) :=
{

f ∈ L2[0, 1] : f (l)(0) = f (l)(1) = 0

for l odd, l < α,

∫ 1

0

(

f (α)(x)
)2

dx ≤ C̄

}

. (B.1)

For positive integer values of α, we have the following equivalence.

Theorem B.1. Assume α ∈ {1, 2, . . .}, C > 0. Let C̄ = 2π2αC. Then a function
is in W(α, C̄) if and only if it is in Θs(α,C).

Proof. First we show that if a function f ∈ W(α, C̄) then also f ∈ Θs(α,C).
Let f̃ be defined on [−1, 1] by

f̃(x) :=

{

f(x) for x ∈ [0, 1]

f(−x) for x ∈ [−1, 0]
.

Note that f̃ is an α-times differentiable function, f̃ (l) is even if l is even and f̃ (l)

is odd if l is odd. Let

sk(j) =











∫ 1

−1
f̃ (j)(x)dx for k = 0

∫ 1

−1
f̃ (j)(x) cos(kπx)dx for k ≥ 1, j even

∫ 1

−1 f̃
(j)(x) sin(kπx)dx for k ≥ 1, j odd

.

It holds for j ≥ 1

s0(j) =

∫ 1

−1

f̃ (j)(x)dx = f̃ (j−1)(1)− f̃ (j−1)(−1) = 0.

Hence we have the Parseval type equality

∫ 1

0

(

f (α)(x)
)2

dx =
1

2

∞
∑

k=1

s2k(α). (B.2)

Further for k ≥ 1, j even, it follows by partial integration

sk(j) =

∫ 1

−1

f̃ (j)(x) cos(kπx)dx

= f̃ (j−1)(x) cos(kπx)
∣

∣

∣

1

−1
+ kπ

∫ 1

−1

f̃ (j−1)(x) sin(kπx)dx = kπsk(j − 1)

and for k ≥ 1 and j odd

sk(j) =

∫ 1

−1

f̃ (j)(x) sin(kπx)dx

= f̃ (j−1)(x) sin(kπx)
∣

∣

∣

1

−1
− kπ

∫ 1

−1

f̃ (j−1)(x) cos(kπx)dx = −kπsk(j − 1).
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With θk =
∫ 1

0
f(x) cos(kπx)dx it follows for k ≥ 1 s2k(α) = k2απ2αs2k =

4k2απ2αθ2k. Combining this result with (B.2) yields

∫ 1

0

(

f (α)(x)
)2

dx = 2π2α
∞
∑

k=1

k2αθ2k

and hence proves the first part of the theorem. The other direction follows in a
straightforward way by differentiation and is thus omitted.

Appendix C Convergence rate of τ̂2

C.1 Preliminary results and notation

First we recall some notation. Let σk(i/n) := σ(i/n)fk(i/n) and τk(i/n) :=
τ(i/n)fk(i/n). Let throughout the following for the Sobolev s-ellipsoids in Def-
inition 1 for σ2 the constants being l = σmin and u = σmax and for τ2, l = τmin,
u = τmax. We define Kn := n1/2/ logn and

φn := sup
σ2∈Θb

s(α,Q)

max
i=1,...,n−1

sup
ξ∈[i/n,i+1/n]

∣

∣

∣

∣

σ (ξ)− σ

(

i

n

)∣

∣

∣

∣

,

φ̄n,1/2 := sup
τ2∈Θb

s(β,Q̄)
max
k≤Kn

max
i=1,...,n

sup
ξi∈[(i−1)/n,i/n]

∣

∣

∣

∣

τk (ξi)− τk

(

i

n

)∣

∣

∣

∣

.

Proposition C.1. Assume α, β > 1/2. It holds for any δ > 0,

φn = O
(

n1/2−α + nδ−1
)

φ̄n = O
(

n1/2−β + n−3/4
)

φ̄n,1/2 = O
(

n1/2−β + n−1/2 log−1 n
)

.

Proof. We only prove the third equality the other two can be deduced similarly.
Note that for τ2 ∈ Θb (β,Q),

∣

∣

∣

∣

τk (ξi)− τk

(

i

n

)∣

∣

∣

∣

≤
√
2

∣

∣

∣

∣

τ (ξi)− τ

(

i

n

)∣

∣

∣

∣

+ τ1/2maxkπ/ (2n)

≤ 1√
2τmin

∣

∣

∣

∣

τ2 (ξi)− τ2
(

i

n

)∣

∣

∣

∣

+ τ1/2maxkπ/ (2n) .

Taking supremum and applying Lemma D.8 gives the result.

C.2 Proofs for estimation of τ
2

Lemma C.1. Let t̂k,0 be defined as in (4.1). Further assume α, β > 1/2, Q, Q̄ >
0, 0 < σmin ≤ σmax <∞, 0 < τmin ≤ τmax <∞ and k = kn ∈ N. Assume model
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(1.1). Then

sup
σ2∈Θb

s(α,Q),τ2∈Θb
s(β,Q̄)

max
k≤Kn

∣

∣E t̂k,0 − tk,0
∣

∣ = O
(

n1/2−β log1/2 n
)

+ o
(

n−1/2
)

,

(C.1)

sup
σ2∈Θb

s(α,Q), τ2∈Θb
s(β,Q̄)

max
k≤Kn

Var
(

t̂k,0
)

= O
(

n−1
)

. (C.2)

If further ǫ is n-variate standard normal, then

sup
σ2∈Θb

s(α,Q), τ2∈Θb
s(β,Q̄)

max
k≤Kn

∣

∣

∣

∣

Var
(

t̂k,0
)

− 2

n

∫ 1

0

τ4k (x)dx

∣

∣

∣

∣

= O
(

n−1 log−1 n
)

, (C.3)

n1/2
(

t̂k,0 − tk,0
) L→ N

(

0, 2

∫ 1

0

τ4k (x)dx

)

for β > 1, k ≤ Kn. (C.4)

Assume model (1.2). Then it holds

sup
σ2∈Θb

s(α,Q), τ2∈Θb
s(β,Q̄)

max
k≤Kn

∣

∣E t̂k,0 − tk,0
∣

∣

= O
(

n1/2−β log1/2 n+ n1−2α log2 n
)

+ o
(

n−1/2
)

, (C.5)

sup
σ2∈Θb

s(α,Q), τ2∈Θb
s(β,Q̄)

max
k≤Kn

Var
(

t̂k,0
)

= O
(

n2−4α log4 n+ n−1
)

. (C.6)

If further ǫ is n-variate standard normal, then

sup
σ2∈Θb

s(α,Q),τ2∈Θb
s(β,Q̄)

max
k≤Kn

∣

∣

∣

∣

Var
(

t̂k,0
)

− 2

n

∫ 1

0

τ4k (x)dx

∣

∣

∣

∣

= O
(

n2−4α log4 n+ n−1 log−1 n
)

, (C.7)

n1/2
(

t̂k,0 − tk,0
) L→ N

(

0, 2

∫ 1

0

τ4k (x)dx

)

for α > 3/4, β > 1, k ≤ Kn.

(C.8)

Proof. Again we work with the generalized estimators as introduced in Sec-
tion A.1. As in the proof of Lemma A.1 we introduce for two centered random
vectors P and Q a semi-inner product defined by 〈P,Q〉τ := E (P tDJτ

nD
tQ)

and obtain

E t̂k,0,l = 〈X1,k, X1,k〉τ + 〈X2,k, X2,k〉τ + 〈Z1,k,l, Z1,k,l〉τ + 〈Z2,k, Z2,k〉τ
+ 2 〈X1,k, Z1,k,l〉τ + 2 〈X2,k, Z2,k〉τ . (C.9)

First we bound 〈X2,k, X2,k〉τ , which will turn out to be the leading term. Similar
to (A.13) we have

〈X2,k, X2,k〉τ = tr
(

ΛJτ
nD

tT 2
kD
)

+
1

2
tr
(

Jτ
nD

tT̃kD
)

,
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and due to

tr (Jτ
n) = O (logn) (C.10)

the same argument as for (A.15) gives

sup
τ2∈Θb

s(β,Q̄)
max
k≤Kn

tr
(

Jτ
nDT̃kD

)

= O
(

φ̄2n,1/2 logn
)

.

Hence this is a negligible term. Using Lemma D.1 (iii)

tr
(

ΛJτ
nD

tT 2
kD
)

= (n− n/ logn)−1
n−1
∑

i=[n/ logn]

(

A
(

τ2k , 0
)

−A
(

τ2k , 2i
))

= r̄nA
(

τ2k , 0
)

− (n− n/ logn)
−1

n−1
∑

i=[n/ logn]

A
(

τ2k , 2i
)

,

where r̄n = (n− [n/ logn]) / (n− n/ logn) . Note 1− r̄n ≤ 1/ (n− n/ logn) . By
Lemma D.2

sup
τ2∈Θb

s(β,Q̄)
max
k≤Kn

∣

∣tr
(

ΛJτ
nD

tT 2
kD
)

− tk,0
∣

∣

≤ sup
τ2∈Θb

s(β,Q̄)
max
k≤Kn

(

(1− r̄n) |tk,0|+
∞
∑

m=n

|tk,m|+ 2 (n− n/ logn)−1
∞
∑

i=0

|tk,i|
)

≤ 2Cβ,Qn
1/2−β + 6 (n− n/ logn)

−1
sup

τ2∈Θb
s(β,Q̄)

∞
∑

i=0

|t0,i| = O
(

n−1 + n1/2−β
)

.

This shows that

sup
τ2∈Θb

s(β,Q̄)
max
k≤Kn

∣

∣〈X2,k, X2,k〉τ − t0,k
∣

∣ = O
(

n−1 + φ̄2n,1/2 logn+ n1/2−β
)

.

The remaining part of the proofs of (C.5) and (C.1) is concerned with bounding
the other expressions in (C.9). Applying Lemma D.3, we obtain

〈X1,k, X1,k〉τ =
1

n
tr
(

DJτ
nD

tΣ2
k

)

≤ 2σmax
1

n
tr (Jτ

n)

implying

sup
σ2∈Θb

s(α,Q)

max
k≤Kn

〈X1,k, X1,k〉τ = O
(

n−1 logn
)

.

We obtain with Lemma D.6 in the same way as in (A.16), (A.18) and (A.19)

sup
σ2∈Θb

s(α,Q)

max
k≤Kn

〈Z1,k,1, Z1,k,1〉τ = O
(

n−1 logn φ2n
)

,

sup
σ2∈Θb

s(α,Q)

max
k≤Kn

〈Z1,k,2, Z1,k,2〉τ = O
(

log2 n φ2n
)

,

sup
τ2∈Θb

s(β,Q̄)
max
k≤Kn

〈Z2,k, Z2,k〉τ = O
(

φ̄2n,1/2 logn
)

.
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From the Cauchy-Schwarz inequality follows that

∣

∣〈X1,k, Z1,k,l〉τ
∣

∣ ≤ 〈X1,k, X1,k〉1/2τ 〈Z1,k,l, Z1,k,l〉1/2τ

≤ 〈X1,k, X1,k〉τ + 〈Z1,k,l, Z1,k,l〉τ ,

∣

∣〈X2,k, Z2,k〉τ
∣

∣ ≤ 〈X2,k, X2,k〉1/2τ 〈Z2,k, Z2,k〉1/2τ .

This yields

sup
σ2∈Θb

s(α,Q), τ2∈Θb
s(β,Q̄)

max
k≤Kn

∣

∣Et̂k,0 − tk,0
∣

∣

=







O
(

n−1 logn+ n1/2−β + φ̄n,1/2 log
1/2 n

)

for l = 1,

O
(

n−1 logn+ n1/2−β + φ̄n,1/2 log
1/2 n+ φ2n log2 n

)

for l = 2,

and therefore (C.5) and (C.1) holds by Proposition C.1. In order to calculate
the covariance we use the decomposition (A.3). We have

t̂k,0,l = ξtCt
1,k,lDJ

τ
nDC1,k,lξ + 2ξtCt

1,k,lDJ
τ
nDC2,kǫ + ǫtCt

2,kDJ
τ
nDC2,kǫ.

Using the CS-inequality repeatedly, we can write

∣

∣Var
(

t̂k,0,l
)

−Var
(

ǫtCt
2,kDJ

τ
nDC2,kǫ

)∣

∣ (C.11)

≤
(

Var1/2
(

ξtCt
1,k,lDJ

τ
nDC1,k,lξ

)

+ 2Var1/2
(

ξtCt
1,k,lDJ

τ
nDC2,kǫ

)

)2

+
(

Var1/2
(

ξtCt
1,k,lDJ

τ
nDC1,k,lξ

)

+ 2Var1/2
(

ξtCt
1,k,lDJ

τ
nDC2,kǫ

)

)

· 2Var1/2
(

ǫtCt
2,kDJ

τ
nDC2,kǫ

)

We subdivide the remaining part of the proofs of (C.6) and (C.2) into three steps
(a), (b) and (c), where we calculate Var(ǫtCt

2,kDJ
τ
nDC2,kǫ),

Var(ξtCt
1,k,lDJ

τ
nDC1,k,lξ) and Var(ξtCt

1,k,lDJ
τ
nDC2,kǫ), respectively.

(a) Let TrSq(A) :=
∑n

i=1 A
2
i,i for A ∈Mn. Then by Lemma D.5 it follows

Var
(

ǫtCt
2,kDJ

τ
nDC2,kǫ

)

= 2
∥

∥Ct
2,kDJ

τ
nDC2,k

∥

∥

2

F
+Cum4 (ǫ)TrSq

(

Ct
2,kDJ

τ
nDC2,k

)

≤ (2 + Cum4 (ǫ))
∥

∥

∥(Jτ
n)

1/2
DCov (X2,k + Z2,k)D (Jτ

n)
1/2
∥

∥

∥

2

F
,

where equality holds if Cum4 (ǫ) = 0. By Proposition D.2 we see that

sup
τ2∈Θb

s(β,Q̄)
max
k≤Kn

∣

∣

∣

∣

Var
(

ǫtCt
2,kDJ

τ
nDC2,kǫ

)

− 2

n

∫ 1

0

τ4k (x)dx

∣

∣

∣

∣

= O
(

Cum4 (ǫ)n
−1 + n−1 log−1 n

)

.
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(b) In this part of the proof we will bound Var
(

ξtCt
1,k,lDJ

τ
nDC1,k,lξ

)

. Similar

to part (a) in the proof of Lemma A.1 it holds

Var
(

ξtCt
1,k,lDJ

τ
nDC1,k,lξ

)

≤ 16λ21 (J
τ
n)
(

‖Cov (X1,k)‖2F + ‖Cov (Z1,k,l)‖2F
)

≤
{

28n−2 log4 n
(

n−1σ2
max + 4n−1φ4n

)

, l = 1,

28n−2 log4 n
(

n−1σ2
max + 4n2φ4n

)

, l = 2,

where we used Lemma D.6 in the second inequality. Hence we get

sup
σ2∈Θb

s(α,Q)

max
k≤Kn

Var
(

ξtCt
1,k,lDJ

τ
nDC1,k,lξ

)

=

{

O
(

n−3 log4 n
)

, l = 1,

O
(

log4 n
(

φ4n + n−3
))

, l = 2.

(C.12)

(c) Using Lemma D.5 (ii)

Var
(

ξtCt
1,k,lDJ

τ
nDC2,kǫ

)

≤ 1√
2
Var1/2

(

ξtCt
1,k,lDJ

τ
nDC1,k,lξ

) ∥

∥Ct
2,kDJ

τ
nDC2,k

∥

∥

F

and hence

sup
σ2∈Θb

s(α,Q), τ2∈Θb
s(β,Q̄)

max
k≤Kn

Var
(

ξtCt
1,k,lDJ

τ
nDC2,kǫ

)

=

{

O
(

n−2 log2 n
)

, l = 1,

O
(

log2 n
(

φ2n + n−3/2
))

O
(

n−1/2
)

, l = 2.

Combining (a), (b) and (c) in (C.11) yields

sup
σ2∈Θb

s(α,Q), τ2∈Θb
s(β,Q̄)

max
k≤Kn

∣

∣

∣

∣

Var
(

t̂k,0
)

− 2

n

∫ 1

0

τ4k (x)

∣

∣

∣

∣

= O

(

Cum4 (ǫ)

n
+

1

n logn

)

+

{

O
(

φ4n log4 n+ φnn
−3/4 logn

)

, l = 1,

0, l = 2,

(C.13)

and hence (C.2), (C.3), (C.6) and (C.7) follow using Proposition C.1.

Finally we will show the asymptotic normality (C.8) and (C.4). Because of
the decomposition (A.3), we have

t̂k,0,l = ξtCt
1,k,lDJ

τ
nDC1,k,lξ + 2ξtCt

1,k,lDJ
τ
nDC2,kǫ+ ǫtCt

2,kDJ
τ
nC2,kǫ.

As proved above n1/2(ξtCt
1,k,lDJ

τ
nDC1,k,lξ +2ξtCt

1,k,lDJ
τ
nDC2,kǫ)

P→ 0 for β >
1, α > 3/4 if l = 1 and β > 1 if l = 2. Hence by Slutzky’s Lemma it suffices to
show that

n1/2
(

ǫtCt
2,kDJ

τ
nDC2,kǫ− E

(

ǫtCt
2,kDJ

τ
nDC2,kǫ

)) L→ N
(

0, 2

∫ 1

0

τ4k (x)dx

)

.
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In order to apply Theorem D.1, it remains to show

n1/2λ1
(

Ct
2,kDJ

τ
nDC2,k

)

→ 0.

Using Corollary D.1, we see that

n1/2λ1
(

Ct
2,kDJ

τ
nDC2,k

)

≤ 4n−1/2 log2 nλ1 (Cov (X2,k + Z2,k))

≤ 8n−1/2 log2 n λ1 (Cov (X2,k)) + 8n−1/2 log2 nλ1 (Cov (Z2,k))

≤ 8n−1/2 log2 n sup
t∈[0,1]

τ2k (t)max
i
λi + 8n−1/2 log2 nφ2n,1/2 = o (1) ,

which yields the last statement of the lemma.

Proof of Theorem 1. The proof is close to the one of Theorem 2. We obtain

sup
σ2∈Θb

s(α,Q), τ2∈Θb
s(β,Q̄)

∫ 1

0

Bias
(

τ̂2N (t)
)

dt

= O



N sup
σ2∈Θb

s(α,Q), τ2∈Θb
s(β,Q̄)

max
0≤k≤N

∣

∣E
(

t̂k,0,l
)

− tk,0
∣

∣

2
+N−2β



 ,

sup
σ2∈Θb

s(α,Q), τ2∈Θb
s(β,Q̄)

∫ 1

0

Var
(

τ̂2N (t)
)

dt

= O



N sup
σ2∈Θb

s(α,Q), τ2∈Θb
s(β,Q̄)

max
0≤k≤N

Var
(

t̂k,0,l
)



 .

Appendix D Technical results

Proposition D.1. Let A ∈Mn−1. Then

tr (JnDAD) ≤
(

n+ 5n3/2 + 8n3/2 (1 + logn)
)

max
i,j

∣

∣

∣(A)i,j

∣

∣

∣ .

Proof. Write A = (ai,j)i,j=1,...,n−1 . Note that

(DAD)i,j =
2

n

n−1
∑

p,q=1

sin

(

ipπ

n

)

sin

(

qjπ

n

)

ap,q.

For i = j we have further

(DAD)i,i =
1

n

n−1
∑

p,q=1

ap,q cos

(

(p− q)
iπ

n

)

− 1

n

n−1
∑

p,q=1

ap,q cos

(

(p+ q)
iπ

n

)

.

(D.1)
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In order to bound the r.h.s. we need bounds for
∣

∣

∣

∣

∣

∣

∣

2[n1/2]
∑

i=[n1/2]+1

cos

(

r
iπ

n

)

∣

∣

∣

∣

∣

∣

∣

≤
∣

∣

∣
Dir2[n1/2] (rπ/n)−Dir[n1/2] (rπ/n)

∣

∣

∣

≤
∣

∣

∣

∣

∣

sin
((

2
[

n1/2
]

+ 1/2
)

rπ/n
)

2 sin (rπ/ (2n))

∣

∣

∣

∣

∣

+

∣

∣

∣

∣

∣

sin
(([

n1/2
]

+ 1/2
)

rπ/n
)

2 sin (rπ/ (2n))

∣

∣

∣

∣

∣

≤
∣

∣

∣

∣

1

sin (rπ/ (2n))

∣

∣

∣

∣

.

Let B1 := {1, . . . , n} and B2 := {n+ 1, . . . , 2n− 2}. Then
∣

∣

∣

∣

∣

∣

∣

2[n1/2]
∑

i=[n1/2]+1

cos

(

r
iπ

n

)

∣

∣

∣

∣

∣

∣

∣

≤











n1/2 for r = 0,

4n/r for r ∈ B1,

n/ (2n− r) for r ∈ B2.

Therefore, we can bound the first term of the r.h.s. of (D.1) by
∣

∣

∣

∣

∣

∣

∣

2[n1/2]
∑

i=[n1/2]+1

1

n

n−1
∑

p,q=1

ap,q cos

(

(p− q)
iπ

n

)

∣

∣

∣

∣

∣

∣

∣

≤ 1

n

n−1
∑

p,q=1

|ap,q|

∣

∣

∣

∣

∣

∣

∣

2[n1/2]
∑

i=[n1/2]+1

cos

(

(p− q)
iπ

n

)

∣

∣

∣

∣

∣

∣

∣

≤ n−1 max
p,q=1,...,n−1

|ap,q|









n3/2 + 2
n−1
∑

p,q=1
q−p∈B1

4n

q − p









and the second term by
∣

∣

∣

∣

∣

∣

∣

2[n1/2]
∑

i=[n1/2]+1

1

n

n−1
∑

p,q=1

ap,q cos

(

(p+ q)
iπ

n

)

∣

∣

∣

∣

∣

∣

∣

≤ n−1 max
p,q=1,...,n−1

|ap,q|









n−1
∑

p,q=1
p+q∈B1

4n

p+ q
+

n−1
∑

p,q=1
p+q∈B2

n

2n− (p+ q)









≤ 5n max
p,q=1,...,n−1

|ap,q| .

Due to

n−1
∑

p,q=1
q−p∈B1

1

q − p
≤ n

n
∑

r=1

1

r
≤ n (1 + logn)
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and

tr (JnDAD) =
√
n

2[n1/2]
∑

i=[n1/2]+1

(DAD)i,i

≤
(

n+ 5n3/2 + 8n3/2 (1 + logn)
)

max
p,q=1,...,n−1

|ap,q|

we obtain the result.

Proposition D.2. It holds

sup
τ2∈Θs(β,Q)

max
k≤n1/2

∣

∣

∣

∣

∥

∥

∥(Jτ
n)

1/2
DCov (X2,k + Z2,k)D (Jτ

n)
1/2
∥

∥

∥

2

F
− 2

n

∫ 1

0

τ4k (x)dx

∣

∣

∣

∣

= O
(

n−1 log−1 n
)

.

Proof. We obtain with (A.12) Cov (X2,k + Z2,k) = 1/2T 2
kK + 1/2KT 2

k + Sk,

where Sk := 1/2T̃k+Cov (X2,k, Z2,k)+Cov (Z2,k, X2,k)+Cov (Z2,k) . Application
of the triangle inequality gives

1

2

∥

∥

∥(Jτ
n)

1/2
D
(

T 2
kK +KT 2

k

)

D (Jτ
n)

1/2
∥

∥

∥

F
−
∥

∥

∥(Jτ
n)

1/2
DSkD (Jτ

n)
1/2
∥

∥

∥

F

≤
∥

∥

∥(Jτ
n)

1/2
DCov (X2,k + Z2,k)D (Jτ

n)
1/2
∥

∥

∥

F

≤ 1

2

∥

∥

∥(Jτ
n)

1/2
D
(

T 2
kK +KT 2

k

)

D (Jτ
n)

1/2
∥

∥

∥

F
+
∥

∥

∥(Jτ
n)

1/2
DSkD (Jτ

n)
1/2
∥

∥

∥

F
.

(D.2)

Note that because of Lemma D.4 (iii) it holds

tr

(

(

(Jτ
n)

1/2
DT 2

kKD (Jτ
n)

1/2
)2
)

≤ 1

4

∥

∥

∥(Jτ
n)

1/2
D
(

T 2
kK +KT 2

k

)

D (Jτ
n)

1/2
∥

∥

∥

2

F

≤
∥

∥

∥(Jτ
n)

1/2
DT 2

kKD (Jτ
n)

1/2
∥

∥

∥

2

F
. (D.3)

Now we will bound

tr

(

(

(Jτ
n)

1/2DT 2
kKD (Jτ

n)
1/2
)2
)

= tr

(

[

(Jτ
nΛ)

1/2DT 2
kD (ΛJτ

n)
1/2
]2
)

=

n−1
∑

i=1

λ2i
(

DT 2
kDΛJτ

n

)

from below. We obtain with Lemma D.3

λi
(

DT 2
kDΛJτ

n

)

≥
{

λn−[n/ logn] (ΛJ
τ
n)λ[n/ logn]−1+i

(

DT 2
kD
)

, i ≤ n− [n/ logn] ,

0, i > n− [n/ logn] .
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Denote by τk,(i) the i-th largest component of the vector

(τk (1/n) , . . . , τk (1− 1/n)) .

Then

tr
((

(Jτ
n)

1/2
DT 2

kKD (Jτ
n)

1/2
)2
)

=

n−1
∑

i=1

λ2i
(

DT 2
kDΛJτ

n

)

≥
n−[n/ logn]
∑

i=1

(n− n/ logn)
−2
τ4k,([n/ logn]−1+i)

≥ (n− n/ logn)
−2

n−1
∑

i=1

τ4k

(

i

n

)

− τ2max

n

logn
(n− n/ logn)

−2
.

(D.4)

Next we will derive an upper bound for the r.h.s. of (D.3). Let analogously to
the Definition (A.11) T̄k be a tridiagonal matrix with entries

(

T̄k
)

i,j
:=











(

∆iτ
2
k

)2
for i = j − 1,

(

∆jτ
2
k

)2
for i = j + 1,

0 otherwise.

Note that maxi
∣

∣∆iτ
2
k

∣

∣ ≤ 2τ
1/2
maxφ̄n,1/2. It is easy to check that T

2
kKT

2
k = 1/2T 4

kK+

1/2KT 4
k + 1/2T̄k holds. Clearly, Jτ

n ≤ (n− n/ logn)
−1

Λ−1, and therefore we
have for the upper bound in (D.3)

∥

∥

∥(Jτ
n)

1/2
DT 2

kKD (Jτ
n)

1/2
∥

∥

∥

2

F
≤ (n− n/ logn)

−1
∥

∥

∥(Jτ
n)

1/2
DT 2

kKDΛ−1/2
∥

∥

∥

2

F

≤ (n− n/ logn)
−1

tr
(

(Jτ
n)

1/2
DT 2

kKT
2
kD (Jτ

n)
1/2
)

≤ (n− n/ logn)
−1

tr
(

T 4
kKDJ

τ
nD
)

+
1

2
(n− n/ logn)

−1
tr
(

DT̄kDJ
τ
n

)

≤ (n− n/ logn)
−2

tr
(

T 4
k

)

+ 2 (n− n/ logn)
−1

max
i,j=1,...,n−1

∣

∣T̄k
∣

∣

i,j
tr (Jτ

n) ,

where we used in the last inequality an argument as for (A.15). Combining this
with (D.4) and Proposition C.1 yields

sup
τ2∈Θb

s(β,Q̄)
max

k≤n1/2

∣

∣

∣

∣

∥

∥

∥(Jτ
n)

1/2
D
(

T 2
kK +KT 2

k

)

D (Jτ
n)

1/2
∥

∥

∥

2

F
− 2

n

∫ 1

0

τ4k (x)dx

∣

∣

∣

∣

= O
(

n−1φ̄n,1/2 + n−1 lognφ̄2n,1/2 + n−1 log−1 n
)

. (D.5)
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Now we will bound the remainder term in (D.2). Using Lemma D.6 gives

∥

∥

∥(Jτ
n)

1/2
DSkD (Jτ

n)
1/2
∥

∥

∥

2

F
≤ λ21 (J

τ
n) ‖Sk‖2F

≤ 16n−2 log4 n

(

∥

∥

∥
T̃k

∥

∥

∥

2

F
+ 4 ‖Cov (Z2,k)‖2F

+8 ‖Cov (X2,k, Z2,k)‖2F
)

.

Because Cov (X2,k, Z2,k) is tridiagonal it holds with Lemma D.4 (i)

‖Cov (X2,k, Z2,k)‖2F =

n−1
∑

i,j=1

(

Cov (X2,k, Z2,k)i,j

)2

≤ 8nτmaxφ
2
n,1/2

and therefore
∥

∥

∥
(Jτ

n)
1/2DSkD (Jτ

n)
1/2
∥

∥

∥

2

F

≤ 16n−2 log4 n
(

2nφ̄4n,1/2 + 16nφ̄4n,1/2 + 64nφ̄2n,1/2τmax

)

This leads to

sup
τ2∈Θb

s(β,Q̄)
max

k≤n1/2

∥

∥

∥(Jτ
n)

1/2
DSkD (Jτ

n)
1/2
∥

∥

∥

2

F
= O

(

n−1 log4 nφ̄2n,1/2

)

and with (D.2) and (D.5) completes the proof.

Lemma D.1. Let sk,p and tk,p as defined in (A.4). Then it holds

(i)

sk,p =
1

2
s0,p +

1

4
s0,p−k +

1

4
s0,p+k, tk,p =

1

2
t0,p +

1

4
t0,p−k +

1

4
t0,p+k.

(ii)

1

n

n−1
∑

r=1

σ2
k

( r

n

)

cos
(prπ

n

)

= A
(

σ2
k, p
)

− 1

2n

(

(−1)p σ2
k(1) + σ2

k(0)
)

.

(iii) Let Σk as defined in (A.5). Then

(

DΣ2
kD
)

i,j
= A

(

σ2
k, i− j

)

−A
(

σ2
k, i+ j

)

.

Remark D.1. In (iii), for |i− j| ≪ i+ j, the r.h.s. behaves like sk,i−j . In the
same way we obtain the equivalent result if we replace σ2 by τ2.

Proof. (ii) Note that we can write

σ2
k

( r

n

)

= sk,0 + 2

∞
∑

q=1

sk,q cos (qπr/n)
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and hence it holds

1

n

n−1
∑

r=1

σ2
k

( r

n

)

cos
(prπ

n

)

=
1

n
sk,0

n−1
∑

r=1

cos
(prπ

n

)

+
2

n

∞
∑

q=1

sk,q

n−1
∑

r=1

cos
(qπr

n

)

cos
(prπ

n

)

.

Let I{A} denote the indicator function on the set A. We have the identities

n−1
∑

r=1

cos
(prπ

n

)

= nI{p≡0 mod 2n} −
1

2
(1 + (−1)

p
)

and

2
n−1
∑

r=1

cos
(qπr

n

)

cos
(prπ

n

)

=
n−1
∑

r=1

cos

(

(q − p)πr

n

)

+
n−1
∑

r=1

cos

(

(q + p)πr

n

)

.

From this it follows

1

n

n−1
∑

r=1

σ2
k

( r

n

)

cos
(prπ

n

)

=
1

n

[

−1

2
(1 + (−1)

p
) sk,0 −

∞
∑

q=1

sk,q

(

1 + (−1)
q−p
)

]

+A
(

σ2
k, p
)

,

which yields the result.
(iii) This follows by applying (ii) to

(

DΣ2
kD
)

i,j
=

2

n

n−1
∑

r=1

σ2
k

( r

n

)

sin

(

irπ

n

)

sin

(

rjπ

n

)

=
1

n

n−1
∑

r=1

σ2
k

( r

n

)

cos

(

(i− j) rπ

n

)

− 1

n

n−1
∑

r=1

σ2
k

( r

n

)

cos

(

(i+ j) rπ

n

)

.

The next Lemma gives a bound of the absolute values of Fourier coefficients
of σ2

k in Sobolev s-ellipsoids. In particular the result shows that the Fourier
series is absolute summable.

Lemma D.2. Let sk,p be as defined in (A.4). Assume k ≤ cnγ, where 0 < c < 1
is a constant and either γ > 0, α > 1/2 or k = 0, γ = 0 and α > 1/2. Then it
holds for n large enough

sup
σ2∈Θs(α,Q)

∞
∑

m=[nγ ]

|sk,m| ≤ Cγ,α,Q,cn
γ(1/2−α),

where Cγ,α,Q,c is independent of n.
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Proof. Consider the case γ > 0, α > 1/2. Using Lemma D.1 (i), we see that for
n large enough

∞
∑

m=[nγ ]

|sk,m| ≤
∞
∑

m=[(1−c)nγ ]

|s0,m| =
∞
∑

m=1

|s0,m| I{m≥[(1−c)nγ ]}

≤ 2

(

∞
∑

i=1

i2α
s20,i
4

)1/2




∞
∑

i=[(1−c)nγ ]

i−2α





1/2

≤ Cγ,α,Q,cn
γ(1/2−α),

where we used the definition of a Sobolev s-ellipsoid in the last step. If k = 0,
γ = 0 and α > 1/2 we can argue similarly.

In the next lemma we collect some important facts about positive semidefinite
matrices and trace calculation.

Lemma D.3. (i) Let A ∈ Mn be symmetric. A is positive semidefinite iff
A = BtB for some B ∈ Mn.

(ii) If A,B are positive semidefinite matrices. Denote by λ1(A) the largest
eigenvalue of A. Then tr(AB) ≤ λ1(A) tr(B).

(iii) Let A,B ∈Mn−1 be positive semidefinite. Then

λr+s+1 (AB) ≤ λr+1 (A)λs+1 (B) 0 ≤ r + s ≤ n− 2

λn−r−s+1 (AB) ≥ λn−r (A)λn−s (B) 2 ≤ r + s ≤ n.

(iv) Let A and B symmetric matrices. Then

λr+s+1 (A+B) ≤ λr+1 (A) + λs+1 (B) 0 ≤ r + s ≤ n− 2.

(v) (CS inequality for trace operator) Let A and B matrices of the same size.
Then

∣

∣tr
(

ABt
)∣

∣ ≤ tr1/2
(

AAt
)

tr1/2
(

BBt
)

.

(vi) Let A,B matrices of the same size. Then

AtB +BtA ≤ AtA+BtB.

Corollary D.1. Let A and B matrices of the same size. Then

λ1
(

ABt +BAt
)

≤ λ1
(

AAt
)

+ λ1
(

BBt
)

.

Proof. By Lemma D.3 (vi) AtB + ABt ≤ AtA + BtB. Applying Lemma D.3
(iv) for r = s = 0 yields the result.

In the following Lemma, we summarize some facts on Frobenius norms.

Lemma D.4. Let A ∈Mn−1. Then
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(i)

‖A‖2F := tr
(

AAt
)

=

n−1
∑

i=1

λi
(

AAt
)

=

n−1
∑

i,j=1

a2i,j

and whenever A = At also ‖A‖2F =
∑n−1

i=1 λ
2
i (A).

(ii) It holds

4 tr
(

A2
)

≤
∥

∥A+At
∥

∥

2

F
≤ 4 ‖A‖2F .

(iii) Let A, B be positive semidefinite matrices of the same size and 0 ≤ A ≤ B.
Further let X be another matrix of the same size. Then

∥

∥XtAX
∥

∥

F
≤
∥

∥XtBX
∥

∥

F
.

Proof. (i) and (ii) are well known and omitted. (iii) By assumptions it holds 0 ≤
XtAX ≤ XtBX . Hence λ2i (X

tAX) ≤ λ2i (X
tBX) and the result follows.

Lemma D.5. Let V = (V1, . . . , Vn) ,W = (W1, . . . ,Wm) be two independent,
centered random vectors. Let A = (ai,j)i,j=1,...,n ∈Mn and B ∈Mn,m.

(i) Then E (V tAV ) = tr (ACov (V )) and E (V tBW ) = 0.
(ii) Assume further that Vi ⊥ Vj for all i, j = 1, . . . , n, i 6= j and Wk ⊥ Wl

for all k, l = 1, . . . ,m, k 6= l and Var (Vi) = Var (Wk) = 1 for i = 1, . . . , n
and j = 1, . . . ,m. We set TrSq(A) :=

∑n
i=1 a

2
i,i. Then

Var
(

V tAV
)

= Cum4 (V )

n
∑

i=1

a2ii + tr
(

A2 +AAt
)

≤ Cum4 (V )

n
∑

i=1

a2ii + 2 ‖A‖2F

≤ (2 + Cum4 (V )) ‖A‖2F , (D.6)

Var
(

V tBW
)

= ‖B‖2F ,
Var

(

V tABW
)

≤
∥

∥AAt
∥

∥

F

∥

∥BBt
∥

∥

F
. (D.7)

Proof. We only proof the first and the last statement in (ii). Note that

Var
(

V tAV
)

=

n
∑

i,j,k,l=1

aijakl Cov (ViVj , VkVl) .

If i = j = k = l then Cov (ViVj , VkVl) = 2 + Cum4 (V ); if i = k, j = l, i 6= j or
i = l, j = k, i 6= j then Cov (ViVj , VkVl) = 1. Otherwise Cov (ViVj , VkVl) = 0
and this gives (D.6).

In order to see (D.7) note that by Lemma D.3 (v)

Var
(

V tABW
)

=
∥

∥BtA
∥

∥

2

F
= tr

((

BBt
) (

AAt
))

≤ tr1/2
(

(

BBt
)2
)

tr1/2
(

(

AAt
)2
)

=
∥

∥BBt
∥

∥

F

∥

∥AAt
∥

∥

F
.
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Theorem D.1. Let ξ ∼ N (0, In) and A be a positive semidefinite matrix. Then

Var−1/2
(

ξtAξ
) (

ξtAξ − E ξtAξ
)

→ N (0, 1)

if and only if Var−1/2 (ξtAξ)λ1 (A) → 0.

Lemma D.6. Let n ≥ 4. Then

λ1 (J
τ
n) ≤ 4n−1 log2 n.

Proof. Let r = [n/ logn] and note that sin(x)−1 ≤ 2/x for x ∈ (0, π/2]. Then

λ−1
r ≤

(

2n

rπ

)2

≤ 4

π2
n2

(

1

2

n

logn

)−2

≤ 2 log2 n

and

λ1 (J
τ
n) = (n− n/ logn)

−1
λ−1
r ≤ 4

n
log2 n

Lemma D.7. Let λi be as defined in (3.2). Then it holds

√
n

2[n1/2]
∑

i=[n1/2]+1

λi =
7π2

3
+O

(

n−1/2
)

.

Proof. Let xi = iπ/ (2n). Note that sin2 (xi) = x2i − ξ4i /3, where ξi ∈ (0, xi).
Further maxi=[n1/2]+1,...,2[n1/2] xi ≤ n−1/2π. Hence

n1/2

2[n1/2]
∑

i=[n1/2]+1

ξ4i ≤ n max
i=[n1/2]+1,...,2[n1/2]

x4i = O
(

n−1
)

and thus

n1/2

2[n1/2]
∑

i=[n1/2]+1

λi = 4n1/2

2[n1/2]
∑

i=[n1/2]+1

i2π2

4n2
+

1

3
ξ4i

= π2n−3/2

2[n1/2]
∑

i=[n1/2]+1

i2 +O
(

n−1
)

=
7π2

3
+O

(

n−1/2
)

.
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Lemma D.8 (Continuous Sobolev Embedding). Let C (q), q > 0 denote the
space of Hölder continuous functions on [0, 1] equipped with the canonical norm
‖.‖C(q) and define

η : (1/2,∞)× [0,∞) → R, η (α, δ) :=











α− 1/2 α ∈ (1/2, 3/2) ,

1− δ α = 3/2,

1 α > 3/2.

Suppose α > 1/2. Then for any δ > 0 the embedding

ι : Θb
s (α,Q) →֒ C (η (α, δ))

is continuous and in particular

sup
f∈Θb

s(α,Q)

‖f‖C(η(α,δ)) <∞.

Proof. For a given function f : [0, 1] → R define f̃ : [−1, 1] → R,

f̃(x) :=

{

f(x) x ∈ [0, 1] ,

f(−x) x ∈ [−1, 0] .

Let for s > 0, W s,2 [−1, 1]
∣

∣

[0,1]
denote the (fractional) Sobolev space on [−1, 1] ,

where the domain of functions is restricted to [0, 1] equipped with the norm

‖f‖W s,2[−1,1]|[0,1]
:=
∥

∥

∥f̃
∥

∥

∥

W s,2[−1,1]
.

Note this is a function space on [0, 1] and W s,2 [−1, 1]
∣

∣

[0,1]
6=W s,2 [0, 1]. By the

Sobolev embedding theorem (see [28], Proposition 8.5) we have for α > 1/2 that

ι : Θb
s (α,Q) ⊆ Wα,2 [−1, 1]

∣

∣

[0,1]
→֒ C (η (α, δ))

is continuous and since it is linear also bounded. This yields

sup
f∈Θb

s(α,Q)

‖f‖C(η(α,δ)) ≤ ‖ι‖ sup
f∈Θb

s(α,Q)

‖f‖Wα,2[−1,1]|[0,1]
<∞.
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