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Statistical fluxes and the Curie-Weiss metal state
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We predict a new state of matter in the triangular t-J model in a high doping regime. Due to the altered
role of quantum statistics the spins are “localized” in statistical Landau orbits, while the charge carriers form
a Bose metal that feels the spins through random gauge fields. In contrast to the Fermi-liquid state, this state
naturally exhibits a Curie-Weiss susceptibility, large thermopower, and linear-temperature resistivity, explaining
the physics of NaxCoO2 at x > 0.5. A “smoking gun” prediction for neutron scattering is presented.
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Introduction. Among the great challenges in quantum
matter physics is the question whether Mottness—the dras-
tic change of Hilbert space structure due to strong local
interactions—might form the condition for non-Fermi liquid
states of fermionic matter to occur.1,2 Among others, this is
the point of departure of Anderson’s resonating valence bond
(RVB) proposal for high-Tc superconductivity.3 At the electron
densities in the proximity of the half-filled Mott insulator, the
Mott projections are most evident and it is much less evident
whether they matter at all at very high (or dilute) electron
densities. Resting on a representation2,4 that makes explicit
the altered nature of the quantum statistics due to Mottness,
we demonstrate here the existence of an internally consistent,
stable saddle point at high dopings on a triangular lattice. This
is a spin-charge separated state where the doublons (carrying
charge) and spinons (carrying spin) are coded as hard core
bosons that communicate with each other via statistical fluxes.
The surprise is in the spin sector: the statistical gauge fields act
like a uniform magnetic field causing Landau quantization of
the spinon states. The spinons are localized in Landau orbits
of the lowest Landau level (LLL) at low temperatures, with the
effect that these behave as free Curie-Weiss spins with large
entropy. The doublons get in turn scattered by the random
gauge fluxes associated with the localized spinons, similarly
as in gauge glass models.

This might sound far fetched. However, the microscopy
matches that of the highly overdoped NaxCoO2 system5–7 with
x > 0.5. A very strange metal is formed in this cobaltate,
characterized by a high density of free Curie-Weiss spins
that “appear out of the blue” while it is a rather good
hole-type thermoelectric material8 given its large thermopower
combined with a relatively low resistivity. We will show
here that the magnetic (Fig. 1), thermoelectric (Fig. 2), and
resistive (Fig. 3) properties of the cobaltate are consistent
with the state described in the previous paragraph. We notice
that earlier attempts9–14 also have potentially explained the
aforementioned Curie-Weiss metal behavior of the cobaltates
by invoking a very small bandwidth or strong disorder local-
ization, however we present a smoking gun prediction that can
be straightforwardly tested by experiment: the spin excitation
spectrum should carry the fingerprints of the “spontaneous”
Landau quantization (Fig. 4).

Similar to the layered structure in the high-Tc cuprates, the
CoO2 layer is believed to play an essential role in determining
the low-energy physics in the NaxCoO2 compound. With

electrons doping introduced by Na, the electron hopping at
the partially filled t2g orbitals of the Co+3 ions and spin
correlations between Co+4 ions in a CoO2 layer may be
minimally described by the t-J model15–17 on a triangular
lattice with hopping amplitude t < 0.18–20 Here the Hilbert
space is constrained by

∑
σ c

†
iσ ciσ � 1, that is, each lattice

site is either singly occupied by an electron (Co+4) or
doubly occupied by electrons (Co+3) without allowing the
empty site (Co+5). What we will be interested in is the
highly overdoped regime of this model, where the RVB15–17

correlations induced by the superexchange coupling disappear
and the hopping processes of both charge and spin become
dominant.

Sign structure. To identify the new saddle point, we have
to rely on a particular representation that is superficially
reminiscent of the standard slave bosons but is actually
quite different. This “phase string” representation2,4 is mak-
ing explicit the non-Fermi-Dirac nature of the quantum
statistics in doped Mott insulators. According to this for-
malism, the electron operator ciσ can be fully “bosonized”
by c

†
iσ = d

†
i bi−σ e−i�

string
iσ , where the doublon and spinon

creation operators d
†
i and b

†
iσ are both bosonic, which

satisfy an equality (Mott) constraint nd
l + ∑

σ nb
lσ = 1 with

nd
l and nb

lσ denoting the doublon and spinon occupation
numbers, respectively. Here the fermionic commutations of
the electron operators are ensured by the topological phase
�

string
iσ ≡ [�s

i + σ�d
i ]/2, with �s

i ≡ ∑
l �=i θi(l)

∑
σ σnb

lσ and
�d

i ≡ ∑
l �=i θi(l)(1 − nd

l ),where θi(l) = Im(zl − zi) (zi is the
complex coordinate of site i). In this representation,
the hopping and superexchange terms of the t-J model
become

Ht = t
∑

〈ij〉σ
D̂jiB̂

σ
ij + H.c., (1)

HJ = −J

2

∑

〈ij〉σ
B̂σ

ij B̂
−σ
ji − J

2

∑

〈ij〉σ
nb

iσ nb
j−σ , (2)

in terms of D̂ij ≡ eiAs
ij d

†
i dj and B̂σ

ij ≡ e−iσAd
ij b

†
iσ bjσ . In this

way, the remnant sign structure after Mott projection has
been made explicit while it is precisely represented by the
topological link variables As

ij and Ad
ij . Obviously there would
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FIG. 1. (Color online) The spin part of the present electron
fractionalization state exhibits a Curie T -dependent uniform suscep-
tibility χu = C/T (full squares) at x = 0.69. The Weiss term in χu

appears as an RPA correction (full circles). The Fermi liquid (dotted)
and classical limit (dashed) results are also shown for comparison.
Inset: the coefficient C (solid) and the classical limit Ccl (dashed)
vs doping x, in which the experimental data are marked by full
triangles.7,22,23

be no “sign problem” should As
ij = Ad

ij = 0 in such a fully
bosonized model with t < 0. Here As

ij and Ad
ij satisfy

∑

〈ij〉∈∂S

As
ij = π

∑

l∈S

∑

σ

σnb
lσ , (3)

∑

〈ij〉∈∂S

Ad
ij = π

∑

l∈S

(
1 − nd

l

)
, (4)

where ∂S denotes the boundary of an area S.
Electron fractionalization saddle point. The precise sign

structure identified above will be crucial in constructing the
following saddle point which respects the gauge invariance
associated with As

ij and Ad
ij , together with time reversal and

spin rotational symmetries. Since the RVB pairing is irrelevant
at high doping, the gauge-invariant D̂ij and B̂σ

ij in Eqs. (1) and
(2) will be natural order parameters, resulting in an effective
Heff = Hd + Hs :

Hd = −td
∑

〈ij〉
e−iaij

(
eiAs

ij d
†
i dj

) + H.c., (5)

Hs = −ts
∑

〈ij〉σ
e−iaij

(
e−iσAd

ij b
†
iσ bjσ

) + H.c., (6)

FIG. 2. (Color online) Thermopower Qs contributed by the
spin part at x = 0.71. Full squares: the mean-field solution; Full
circles: the effect of doublon density fluctuations is considered
(see text). The experimental result (full triangles) at the same
x as well as the Fermi liquid (dotted) and “classical limit”
(dashed) results are shown for comparison. Inset: The scaling curve
(solid) for α defined in Eq. (7) vs H/T and the spin-entropy of
free moments (dashed), which well accounts for the experiment
measurement.6

where td = −tB > 0, ts = −tD + JB/4 > 0. Here aij rep-
resents the U (1) gauge fluctuations around the saddle point:
D̂ij � Deiaij and B̂σ

ij � (B/2)eiaij which will recombine spins
and charges together to electrons and destroy the mean-field
saddle point. It can be shown21 that the saddle-point state
is stable against the transverse fluctuations of aij , implying
spin-charge separation. One simple way to see it is to note
that the longitudinal component of aij will reenforce the Mott
constraint relaxed at the saddle-point level. Under such a
constraint, the topological condition (4) may be replaced by∑

〈ij〉∈∂S Ad
ij = π

∑
l∈S

∑
σ nb

lσ , which means Hs in (6) actu-
ally describes a two-component (with spin index σ ) semionic
system. (The spin index σ before Ad

ij actually guarantees the
time reversal symmetry.) More detailed discussion will be
presented elsewhere21 and in the following we shall focus on
the saddle point at aij = 0 in (5) and (6). As the phase string
theory in the underdoped regime, this saddle point does not
break any symmetries such as the time-reversal symmetry and
spin rotation symmetry.4

Mean-field approximation. The spin dynamics is governed
by Hs , where Ad

ij given in Eq. (4) is only density dependent
and can therefore, to leading order approximation, be treated
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FIG. 3. The resistivity is contributed by doublons in the presence
of random flux tubes ±π attached to spinons in the LLLs, which
numerically treated as a random distribution of ±(1 − δ)π fluxes per
unit cell.

as a smearing flux of π (1 − x) per unit cell. The resulting
mean-field state of Hs is Landau quantized with spins being
statistically localized in the cyclotron orbits, in sharp contrast
with a degenerate Fermi liquid state or a fully localized clas-
sical state at t → 0. In particular, the characteristic bandwidth
vanishes, while t remains relatively large, when all the spinons
stay in the degenerate LLLs at low temperatures, rendering a
systematic scaling behavior as will be shown below.

Curie-Weiss uniform susceptibility. One peculiar prop-
erty is exhibited by the uniform spin susceptibility,

χu = 2μ2
Bβ

N

∑
m(nm + 1)nm where β−1 = kBT and nm =

1/[eβ(Em−μs ) − 1] is the Bose distribution for spinons at state
m with energy Em obtained by the aforementioned mean-field
solution based on Hs (μs is the chemical potential). As clearly
illustrated in Fig. 1 by 1/χu, it follows a Curie-Weiss law
χu = C

T +�
with � = 0 (full squares). A finite Weiss term

� � 3(1 − x)J/kB (full circles) is generated by including an
RPA correction from HJ (by fitting with the experimental �,6

we estimate J � 70 K). The coefficient C is x dependent, and
at T → 0 one finds C = 2(1 − x)μ2

B/kB. As shown in the inset
of Fig. 1, C is in quantitative agreement with the experimental
data7,22,23 in the Curie-Weiss regime of the cobaltates, which
is independent of other parameters in the model, like t and J .

By contrast, a Pauli-like susceptibility is expected for the
Fermi-liquid state (dotted line in Fig. 1, obtained with a bare
t = −0.1 eV24). It is particularly instructive to compare this
with the classical limit of the t-J model at t → 0 (J = 0),
where all the electrons are fully localized as (1 − x) N free
moments, contributing to a Curie’s law χ cl

u = Ccl/T (dashed
line in Fig. 1). But one finds Ccl = C/2, that is, only about
the half of the values of both the experimental and the present
theory (cf. the inset of Fig. 1). Clearly the peculiar quantum
effect of the present bosonic spinons is responsible for the
enhancement of C from Ccl at low T (only at high-T limit, the
“classical” χ cl

u can be recovered as nm → 0 in χu).
Thermopower. In Fig. 2 the thermopowers predicted by the

Fermi-liquid state as well as the classical limit of the t-J
model are shown by dotted and dashed curves, respectively. In

FIG. 4. (Color online) Dynamic spin structure factor S(q,ω)
predicted by the mean-field theory at x = 0.75. Right panel: the
Landau level structure exhibited in the local (q-integrated) dynamic
structure factor SL(ω). Left panel: the corresponding q dependence
ofS(q,ω) for the first three energy levels.

the latter case, with the bandwidth vanishing, the thermopower
reduces to the so-called Heikes formula: Qcl = (kB/e) ln 2x

(1−x)

which is proportional to the entropy per electron.25,26 Both
deviate strongly from the experimental result (full triangles in
Fig. 2) in opposite ways.

In the present saddle-point state, the thermopower will
satisfy the Ioffe-Larkin combination rule Q = Qd + Qs ac-
cording to Eqs. (5) and (6), with the spinon contribution
Qs dominant over the doublon part Qd . Here a large Qs

originates in the degeneracy of the LLLs. This leads to
a Heikes-like formula Qs = −μs/eT , associated with the
spinon entropy, which follows given that the energy-particle
current correlator S12 = 0 at low temperature in the Kubo
formula Qs = − 1

eT
S12

S11 − μs

eT
.27 Note that the above Heikes-like

formula is still valid even when S12 becomes finite, for instance
when the spinons are excited to the higher Landau levels at high
T , because the current-current correlator S11 → ∞.21,28–30

The calculated Qs is presented in Fig. 2 (solid squares).
This saturates at low T to a universal value Qs0 = kB

e
ln 2 ≈

60 μV/K due to the artifact that the bandwidth of the LLLs
remains zero. But a weak fluctuation of the gauge flux of
Ad

ij around the mean value can easily cause a broadening,
lifting the exact LLL degeneracy, resulting in a vanishing Qs

at T → 0. A typical example is indicated by the full circles in
Fig. 2, with Ad

ij simulated by a random flux of [−0.3π,0.3π ]
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around the mean flux of π (1 − x) per unit cell. One finds a
quantitative agreement with the experimental measurement by
taking ts = 100 K. Note that Qd contributed by doublons is not
included here as it is usually much weaker in magnitude with
a quite flat T dependent as calculated by the Kubo formula.21

To understand more clearly the origin of Qs from the spin
degrees of freedom, one may apply a strong in-plane magnetic
field H to polarize (freeze) the spins via Zeeman energy, as
already accomplished experimentally.6 Denote Qs(∞) as the
contribution from the remaining configurational entropy at
H → ∞ and define

α = Qs(H ) − Qs(∞)

Qs(0) − Qs(∞)
− 1. (7)

Then α is found to be a well-defined scaling curve
of H/T , as shown by the solid curve in the inset of
Fig. 2, which fits well with the pure spin entropy of
free moments: [ln[2 cosh(u)] − u tanh(u)] / ln 2, where u =
(2.2μBH ) / (2kBT ) in excellent agreement with the experi-
mental data as given in Ref. 6.

Resistivity. The resistivity satisfies the Ioffe-Larkin combi-
nation rule ρ = ρd + ρs in which ρs = 0 due to the afore-
mentioned “Meissner effect” response21,28–30 in the spinon
subsystem such that the doublon subsystem will solely
contribute to ρ. Governed by Hd , the doublons will experience
the novel scattering generated from the gauge potential As

ij ,

which describes ±π flux tubes bound to the spinons with
σ = ±. In the low-T regime where the spinons are in the
degenerate Landau orbits, the corresponding flux tubes seen
by the holons will distribute randomly in space. Based on
a numerical calculation where As

ij is treated as randomly
distributed ±(1 − x)π fluxes per unit cell, we obtain a metallic
behavior of ρd with a linear-T dependence over a large
temperature regime as shown in Fig. 3, originating in a
scattering rate similar to a case previously studied31 in a high-T
regime in the context of high-Tc cuprates.

Predictions and discussion. The fractionalized saddle-point
state governed by (5) and (6) has been shown to generically
exhibit a systematic scaling behavior: ρ ∝ T , χu ∝ 1/T ,

a large thermopower Qs ∼ kB
e

ln 2, as well as the scaling
law in α = α(H/T ), associated with the peculiar Landau
quantization effect in Hs . Our theory allows us to make one
further strong prediction: the spin sector Landau levels can be
in fact directly observed by inelastic neutron scattering! The
dynamic spin structure factor S(q,ω) can be easily computed
assuming the straightforward Landau quantization and it
should look like Fig. 4: a tower of rather narrow nondispersive
bands of spin fluctuation (right panel), with a momentum
dependence as indicated in the left panel.

Another interesting consequence of the spin-charge separa-
tion is in the figure of merit used to quantify the efficiency of
a thermoelectric device. This can be written in the following

form:

ZT ≡ Q2T

ρκ
= (Qs + Qd )2/Ld

1 + κph/κd

(8)

since the spinons do not contribute to the thermal conductivity
and resistivity (κs = 0 and ρs = 0).21 Then a large spinon
thermopower Qs (
 |Qd |) will play an important role,
independent of the Lorenz number of the doublons Łd ≡

T
κdρd

as well as the doublon (κd ) and phonon (κph) thermal

conductivities. We find21 Ld to be one order of magnitude
smaller than the Lorenz number of a Fermi liquid. This is in
fact consistent with exact diagonalization result on the t-J
model.32 The combination of these factors may therefore lead
potentially to an exceptionally large Z.

Finally, we emphasize that in principle a sharp LLL
degeneracy is an artifact of the mean-field approximation
which can be easily lifted, for instance, by density fluctuations
via Ad

ij intrinsically or extrinsically (e.g., induced by the
distribution of Na),33–35 which leads to other stable phases
at low temperature. Nonetheless, the mean-field results is
expected to remain a good approximation to the saddle-point
physics at “intermediate” temperatures higher than the LLL
broadening. Namely, the physics we have discussed here is
associated with an intermediate temperature regime, bounded
by the Landau gap scale at high temperature and the onset
of further cooperative phenomena at low temperatures. In
the latter regime the specific heat measurements have also
shown36,37 an anomalous increase, presumably due to the
afore-discussed entropy enhancement which, however, will be
sensitive to the detailed Landau level broadening. Eventually
the spin degeneracies associated with the Landau states will be
lifted, and this might be the origin of some new emergent orders
at very low temperatures. One infers from the momentum
dependence of S(q,ω) at the LLLs (Fig. 4) that the in-plane
ferromagnetic correlation length will increase with x, such that
a small interlayer superexchange J⊥ may eventually drive an
in-plane ferromagnetic order with antiferromagnetic ordering
along different layers, explaining the A-type antiferromagnetic
order observed by neutron scattering at x � 3/4.38 The
bosonic doublons may also condense at a sufficiently low T to
make the system more Fermi-liquid like, reconciling with the
Wiedemann-Franz law observed in Na0.7CoO2 at T < 1 K.39

However our unconventional “building material” also leaves
room for less conventional forms of order, including uncom-
mon charge orders that will be discussed in detail elsewhere.
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