
THE REVIEW OF SYMBOLIC LOGIC

Volume 4, Number 4, December 2011

DEDEKIND AND HILBERT ON THE FOUNDATIONS OF THE
DEDUCTIVE SCIENCES

ANSTEN KLEV

Institute for Philosophy, Leiden University

Abstract. We offer an interpretation of the words and works of Richard Dedekind and the David
Hilbert of around 1900 on which they are held to entertain diverging views on the structure of a
deductive science. Firstly, it is argued that Dedekind sees the beginnings of a science in concepts,
whereas Hilbert sees such beginnings in axioms. Secondly, it is argued that for Dedekind, the primi-
tive terms of a science are substantive terms whose sense is to be conveyed by elucidation, whereas
Hilbert dismisses elucidation and consequently treats the primitives as schematic.

si on n’assure le fondement on ne peut
assurer l’édifice

De l’art de persuader
Blaise Pascal

§1. Introduction. One distinguishes the concepts of a science from its judgments.
New concepts are obtained from already established concepts through definition; new
judgments are obtained from already established judgments through demonstration. There
needs, however, to be a foundation for the construction of concepts and a foundation
for the construction of judgments. I will be concerned here with how Richard Dedekind
and the David Hilbert of around 1900 viewed these foundations. Firstly it will be argued
that Dedekind operates with a conception on which the foundation of the judgments of a
science—that is, the foundation of the science seen as an ordered totality of judgments—
lies in certain concepts and their description. Hilbert, on the other hand, it will be argued,
sees the foundation of a science in certain basic judgments, what he calls the axioms of
the science. I will not argue for the stronger claim that Dedekind possessed an explicit
and reflective view of sciences as grounded in concepts, but only that one finds this view
operative in his words and works; this contrasts with Hilbert, who was quite explicit that
sciences ground in axioms. Secondly it will be argued that while both Dedekind and Hilbert
operate with primitive terms of whatever science is in question, they treat such terms very
differently: for Dedekind they are terms with a substantive sense fixed by description; for
Hilbert, on the other hand, the primitive terms are variables, schematic terms with a merely
formal sense that allow for a variety of materializations, a variety of ways of being filled
with material content. In this case as well, Dedekind is not explicit on the matter, whereas
Hilbert is.
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As has been emphasized in the literature1 on Dedekind and Hilbert, there are several
points of agreement in the methodology of these two mathematicians. It seems to me,
however, that the literature has gone too far in seeking similarities only. Upon reading the
two in tandem, this reader, at least, feels that significant differences can be traced. The
following is an attempt to transform this mere feeling into interpretative theses. As just
outlined, I have done that by locating presuppositions regarding the structure of sciences
with which I find the two authors operating. These presuppositions show themselves more
in how the mathematics is presented than in the kind of mathematics the two pursue.2 Pre-
suppositions influencing the latter would rather be methodological principles such as that
of arithmetization,3of freedom in concept formation,4 or that expressed in the “decision
for the inner against the outer.”5

Above I spoke of the description of a concept; this term is meant to comprehend both
nominal definition and what I will call elucidation. In a nominal definition—or, more
simply, in a definition—one introduces a new term as the abbreviation of a combination of
terms already understood.6 As stated in the opening paragraph above, not every concept
belonging to a particular science can be described by definition in that science—namely,
its fundamental concepts will either have to be taken from another science in which they
receive their definition, or else they will be fundamental in a more absolute sense, namely
in the hierarchy of concepts;7 in the latter case the concept is described by what I shall
call—following Frege—elucidation (cf. Section 6.2 below). An axiom is an immediately
evident general judgment: it is a general judgment which can be known from a grasp of
the meanings of its terms alone. I take this to be in line with a traditional conception of
the notion of an axiom, arguably going back to Aristotle’s Posterior Analytics.8 That this
traditional notion is not chimerical, a philosopher’s dream without root in the ink of modern
mathematical literature, is witnessed by Constructive Type Theory (cf. Martin-Löf, 1984),
in which the various rules laid down are made evident on the basis of meaning explanations;
likewise, the project of Boolos (1971) and Shoenfield (1977), as I see it, is to make various
axioms of set theory evident on the basis of meaning explanations of the notion of set.

The notions of definition and axiom which I assume here form part of a general concep-
tion of science, codified by Scholz (1930) as the ancient axiomatic theory, and by Betti &

1 In particular by Sieg (1990) and Ferreirós (2009).
2 Indeed, Hilbert (1897) deals with many of the same topics as Dedekind (1894).
3 Arithmetization is in fact the name of several quite different methodological principles; cf. Petri

& Schappacher (2007).
4 A classical statement is Cantor (1883, §8).
5 Cf. Dedekind (1932a, pp. 54–55): “In diesem letzten Worten liegt, wenn sie im allgemeinsten

Sinne genommen werden, der Ausspruch eines großen wissenschaftlichen Gedankens, die
Entscheidung für das Innerliche im Gegensatz zu dem Äußerlichen.” The words in question
are from Gauss (1966, article 76): “But in our opinion truths of this kind should be drawn from
the ideas involved rather than from notations.”

6 As Tappenden (2008a) makes clear, there is definition and definition: some definientia are more
“joint-carving” (cf. Tappenden, 2008b) than others—Tappenden discusses the Legendre symbol;
and some definienda are especially felicitous with respect to already established terminology—
Tappenden discusses ‘prime number’.

7 No assumptions are made here to the effect that this order and connection of ideas corresponds
to an order and connection of things. For current ends one might as well hold that a concept’s
being fundamental is always relative to a given system of knowledge.

8 Cf. Scholz (1930) and Oeing-Hanhoff (1971).
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de Jong (2010) as the classical model of science.9 Betti & de Jong suggest the use of that
model as a tool for historical–philosophical research, and it might be helpful already at
the outset to see how, according to the following discussion, Dedekind and Hilbert fit into
its grid. Dedekind’s methodology seems to be the more traditional of the two due to his
employment of elucidation of the primitive terms; what makes Dedekind’s presupposed
methodology slightly idiosyncratic is the fact that definitions take the role traditionally
conceded to axioms, namely as that from which theorems are derived.10 With his emphasis
on what he calls axioms, Hilbert’s methodology would apparently seem to agree with the
tradition; but with Hilbert’s dismissal of elucidation and the consequent treatment of the
primitives as schematic, the bond with the tradition would seem to have been cut. It does
no longer make sense to speak of the evidence11 of the axioms, and the science in question
can no longer be said to be concerned with some homogeneous domain of being, but its
objects are what Hilbert at times calls thought objects (Gedankendinge), what I will call
mere entities.12

§2. The primacy of definition. As far as I know, Dedekind never refers to a hi-
erarchy of concepts upon which his mathematics is based. The systematic character of
his work suggests, however, that he at some level operated with such a hierarchy. Given
Dedekind’s view that mathematical theories begin in concepts (see the following pages),
one can accordingly distinguish between theories based on fundamental concepts and
theories based on defined, or derived, concepts. If anything is a theory of the first kind
in Dedekind’s work it must be the theory (if one may so call it) of sets and mappings
developed in Was sind und was sollen die Zahlen? (Dedekind, 1888). The rest of his
theories—arithmetic, the theory of real numbers, of ideals, and so on—seem to be based
in concepts derived from the fundamental concepts of that booklet. In fact this may be
only partly true, for Dedekind seems to have operated with several notions of function,
only one of which is fundamental in Was sind.13 The details of this does, however, not
matter for current ends, and they do not detract from the impression that Dedekind at
some level operated with a hierarchy of concepts. In the following it will be assumed

9 On the latter model, axioms are not required to be self-evident.
10 This point has already been made by Ferreirós (1996, 1999).
11 Throughout, ‘evidence’ is used in the sense of “evidentness,” that is clearness or vividness, so

that the correlation holds: judgment J is evident—J has evidence. This use of ‘evidence’ is not
in line with its use in current epistemology, where evidence is generally taken to be that which
justifies belief, or gives reason to believe (cf. Kelly, 2008); but it is in line with the first definition
given of ‘evidence’ in the OED and also with the German Evidenz (although this word also has
other uses). The latter justifies its use in the current setting. See Sundholm (2009, footnote 48)
for the distinction drawn here, and Halbfass (1971) for a very helpful brief history of evidence
in the current sense.

12 On thought objects, see Hilbert (1905), as well as the discussion of Hallett (1994, p. 167)
and the citations given there. In connection with his idea of a Mannigfaltigkeitslehre, Husserl
sometimes speaks of Denkobjekte, objects which are determined only as to their form; see §70
of the Prolegomena (Husserl, 1900), where ‘Denkobjekt’ is said to be a favorite term of the
mathematician, as well as §§28–35 in Formal and Transcendental Logic (Husserl, 1929).

13 Thus in addition to Abbildung, there is also Operation, as well as Funktion. Göran Sundholm has
on various occasions (though not yet in print) distinguished three notions of function: analytic
expressions/dependent objects of lowest type (Euler), mappings/independent objects of higher
type (Riemann, Dedekind), graphs/independent objects of lowest type (e.g., Hausdorff). I hope
to discuss Dedekind’s different notions of function on some other occasion.
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that this impression accords with the truth. Now given this assumption, it will become
clear that most of Dedekind’s mathematical theories begin not in fundamental concepts
and their elucidation, but rather in derived concepts and their definition. In the following
I will therefore mostly speak of Dedekind’s view that sciences begin in definitions, that
is, nominal definitions. It is in fact an interesting question—which we will not pursue
here—whether Dedekind would view something as a science at all which was based in
fundamental, thus undefined, concepts. This question is obviously closely related to the
question of Dedekind’s view of logic.14 But again, that is not a question which will be
pursued here; rather we will now argue on the basis of textual and systematic considerations
that Dedekind took the basis of a science to lie in concepts, and in this section these are
always derived concepts (primitive concepts will be discussed in Section 6 below). Unless
otherwise noted, all translations in what follows are mine. The original will in most cases
be reproduced in a footnote.

2.1. Textual support. That Dedekind took the basis of a science to be concepts and
their definitions can be seen from a large range of passages. In Stetigkeit und irrationale
Zahlen (Dedekind, 1872), Dedekind says that he sought “a precise characteristic of conti-
nuity that can serve as the basis for actual deductions”;15 this precise characteristic is given
in the definition of cuts. In what was intended as an official reply to Keferstein’s criticism
(Keferstein, 1890), Dedekind discusses a second definition of the notion of infinite system,
and says that “everything that may be derived from the one definition follows at once also
from the other.”16 Earlier, in the first draft of Was sind, Dedekind speaks of “inferences
from the concept of a simply infinite system.”17 In §5 of Stetigkeit, establishing ordering
properties of the domain of cuts, Dedekind notes that he “suppresses the demonstrations of
these theorems, which follow immediately from the definitions of the preceding section.”18

Finally, as demonstration for some of the theorems of Was sind—for example, those in
articles 4, 5, 7, 9, 10—Dedekind presents nothing apart from a reference to preceding
definitions; this will be discussed further in Section 2.4 below.

These passages indicate a view on which demonstrations are based in definitions; to-
gether with a view of a science as an ordered totality of demonstrated judgments, this leads
to a view of sciences as based in definitions, or in the concepts thereby defined. Thus, in
the introduction of an 1878 paper on ideal theory, Dedekind says “my new theory, on the
other hand, bases itself exclusively on such concepts as that of a field, of whole number,
of ideal”;19 and likewise in a letter to Lipschitz: “My efforts in the theory of numbers are

14 Cf. Ferreirós (1996, forthcoming) on Dedekind and logic.
15 Dedekind (1932c, p. 322, Stetigkeit §3): “. . . es kommt darauf an, ein präcises Merkmal der

Stetigkeit anzugeben, welches als Basis für wirkliche Deduktionen gebraucht werden kann.”
16 Dedekind (1890b, p. 264): “. . . dass Alles, was aus der einen Definition abgeleitet werden kann,

sofort auch aus der anderen folgt.”
17 Dugac (1976, p. 297): “Folgerungen aus dem Begriff eines unendlichen Systems.” See Sieg &

Schlimm (2005) for a discussion of this and other drafts of Was sind.
18 Dedekind (1932c, p. 328): “Der Kürze halber, und um den Leser nicht zu ermüden, unterdrücke

ich die Beweise dieser Sätze, welche unmittelbar aus den Definitionen des vorhergehenden
Paragraphen folgen.”

19 Dedekind (1932a, pp. 202–203): “Meine neuere Theorie dagegen gründet sich ausschließlich auf
solche Begriffe, wie die des K ö r p e r s, der g a n z e n Z a h l, des I d e a l s. . . ”
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directed towards basing the research not on arbitrary forms of presentation and expressions,
but rather on simple fundamental concepts.”20

A passage from the 1894 XIth Supplement (Dedekind, 1894) makes quite vivid this im-
age of sciences, or theories, as based in definition; directly upon having given his definition
of an ideal, Dedekind remarks:

Our task now consists in deriving from this definition [sc. of ideal] all
properties of the ideals contained in o and all their relations to each other.
In this theory of ideals all the laws of divisibility of numbers within o are
completely contained.21

Thus Dedekind presents what he calls the theory of ideals as consisting of the properties
of, and relations among, ideals derived from the definition of an ideal.22 Readers of Was
sind may recognize in Dedekind’s description of the theory of ideals his remarks on “the
science of numbers, or arithmetic” from article 73 of that work:

The relations or laws which may be derived solely from the conditions
α, β, γ , δ in 71, and which therefore are always the same in all ordered
simply infinite systems, no matter how the individual elements happen
to be named, constitute the primary object of the science of numbers, or
of arithmetic.23

Here Dedekind describes arithmetic as those “relations and laws” that may be derived
from the (conditions occurring in the definiens of the) definition of a simply infinite system.
Thus in both of these in many ways parallel passages Dedekind seems to be presupposing
a view on which the beginnings of a science, or a theory, lie in definitions as that from
which the theorems of the science are derived.

The only passage I know of which appears to tend in another direction is found in
Über Zerlegungen von Zahlen durch ihre größten gemeinsamen Teiler (1897), the first of
Dedekind’s two papers on what he called dual groups, what one today would call lattices;24

there Dedekind speaks of his “endeavours to trace” the theory of modules “back to the
smallest number of basic laws.”25 Scholars have noted that Dedekind’s dual group theory
is even more “modern” or “abstract” than his algebra. I share this sentiment, but there
is no need to appeal to whatever development in Dedekind’s conception of mathematics

20 Dedekind (1932c, p. 468, letter dated October 6, 1876): “Mein Streben in der Zahlentheorie
geht dahin, die Forschung nicht auf zufällige Darstellungsformen oder Ausdrücke sondern auf
einfache Grundbegriffe zu stützen.”

21 Dedekind (1932c, pp. 117–18): “Unsere Aufgabe besteht nun darin, aus dieser Erklärung alle
Eigenschaften der in o enthaltenen Ideale und alle ihre Beziehungen zueinander abzuleiten. In
dieser T h e o r i e d e r I d e a l e sind jedenfalls die G e s e t z e d e r T e i l b a r k e i t d e r Z a h l e n
innerhalb o vollständig enthalten.”

22 Recent philosophical work on Dedekind’s ideal theory includes Tappenden (2005) and Avigad
(2006).

23 Dedekind (1932c, p. 360, Was sind article 73): “Die Beziehungen oder Gezetze, welche ganz
allein aus den Bedingungen α, β, γ , δ in 71 abgeleitet werden und deshalb in allen geordneten
einfach unendlichen Systemen immer dieselben sind, wie auch die den einzelnen Elementen
zufällig gegebenen Namen lauten mögen, bilden der nächsten Gegenstand der W i s s e n s c h a f t
d e r Z a h l e n oder der A r i t h m e t i k.”

24 See Schlimm (2011) for a recent philosophical discussion.
25 Dedekind (1932c, p. 113): “Bei dem Bestreben, diese Theorie [sc. der Moduln] auf die kleinste

Anzahl von Grundgesetzen zurückzuführen. . . ”
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might underlie this more abstract flavor of the dual group theory to explain the occurrences
in Dedekind (1897) of the word ‘law’. By going through these occurrences one can see
that Dedekind uses ‘law’ only for certain equations, such as α + β = β + α. Thus, I
think Dedekind applied this word here on the model of ‘commutative’ or ‘distributive
law’ (kommutatives, distributives Gesetz), epithets that were in frequent use also in the
nineteenth century. Dedekind’s aim alluded to in the cited passage will therefore have been
to base module theory, not as he had done previously, on the internal property of being a
set closed under subtraction, but rather on the external operations of module addition and
module intersection together with a small number of equations, or “fundamental laws,”
that these operations must satisfy. ‘Law’ thus means nothing more than condition, and
‘condition’ (Bedingung) is in fact also the word Dedekind uses for the relevant equations
in his definition of dual groups:

A system A of whatever things α, β, γ ,. . . will be called a dual group
whenever there are two operations ±, which from two things α, β pro-
duce two things α ± β likewise contained in A, and which at the same
time satisfy the conditions A.26

Thus a dual group is any system of things closed under two operations + and − satisfying
the following equations A:

α + β = β + α

α − β = β − α

(α + β) + γ = α + (β + γ )

(α − β) − γ = α − (β − γ )

α + (α − β) = α

α − (α + β) = α

In prose, the operations + and − in a dual group are to satisfy the commutative and the
associative laws, as well as the so-called absorption laws. The reader may want to verify
that the idempotent laws α ± α = α follow from absorption.

2.2. Two points of view on structural mathematics. Contrary to what we took to be
Dedekind’s description of arithmetic in article 73 of Was sind—namely as a science based
in a certain definition, to wit the definition of a simply infinite system—it is common to
view the conditions α)–δ) in article 71 of Was sind as axioms, and not as conditions in a
definition; indeed when phrased as axioms, they are often called the second-order Peano–
Dedekind axioms for arithmetic. Similarly one could say of the conditions A above that
they form the axioms of dual group theory, in line with how one today may speak of the
axioms of lattice theory. What occasions this disagreement seems to me to be different
views on what may loosely be termed structural mathematics. The disagreement should
therefore be settled by clarifying these views and finding which one seems most in line
with Dedekind’s writings. Thus, consider the following well-known

26 Dedekind (1932b, p. 113): “Ein System A von irgendwelchen Dingen α, β, γ . . . soll eine
D u a l g r u p p e heißen, wenn es zwei Operationen ± gibt, welche aus je zwei Dingen α, β zwei
ebenfalls in A enthaltene Dinge α ± β erzeugen und zugleich den Bedingungen A genügen.”
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DEFINITION 2.1 A group is a set G equipped with a binary operation ◦ and a distinguished
element e, such that the following holds:

1. for all x, y, z ∈ G, (x ◦ y) ◦ z = x ◦ (y ◦ z);

2. for all x ∈ G, x ◦ e = x ;

3. for all x ∈ G there is an y ∈ G such that x ◦ y = e.

According to one point of view, the conditions 1.–3. of this definition are to be seen as
axioms in the modern sense; they are schematic, or formal, judgments, and from these one
obtains through formal inference the theorems of group theory, which consequently are
themselves seen as formal judgments. It is not straightforward how to understand the ‘for-
mal’ here; it cannot be understood as the ‘formal’ of ‘formal system’, for a formal system
is an inductively generated set of objects, whereas group theory as practiced according to
the current, or indeed any, conception does not issue in objects, but rather in theorems,
and these are judgments made, judgment noemata in the sense of Husserl (1913, §94).
Further discussion of this topic is left for another occasion; for current purposes it suffices
to see the similarity between this point of view on group theory and that quite clearly taken
by Hilbert in the Grundlagen der Geometrie and Über den Zahlbegriff (these works will
be discussed below): axioms employing schematic letters are set out, and from these one
obtains by formal inference schematic theorems. We need to give this point of view a name,
so let us choose ‘schematic’.

According to the other point of view, Definition 2.1 is on a par, for example, with
Definition VII.11 of the Elements:

A prime number is that which is measured by a unit alone.

Certain conditions are laid down such that something of the appropriate type—there a set
equipped with a binary operation and a distinguished element, here a number—is a group,
respectively a prime number, if and only if it satisfies these conditions. The difference
between the two cases lies in the definition of a group’s being a definition of a higher-level
concept, that is a concept under which fall structures or domains, sets with some structure
on them, while the definition of prime number is the definition of a first-level concept under
which fall, in this case, numbers. Theorems of group theory on this view have the form: in a
group G with binary operation ◦ and distinguished element e, the following holds. . . That
is, a theorem is prefaced with variable-binding operators such that ‘G’, ‘◦’, ‘e’ do not occur
as free but as bound variables, and thus the theorems are not schematic, or formal, but fully
substantive. What is characteristic of structural mathematics according to this second view
is not its schematic character, but rather the fact that it deals with higher-level notions such
as that of a group and other algebraic structures. I will call this the ‘higher-level’ point of
view.27

As with many other remarks on Dedekind in this paper, what we have just said is already
present in some form in the writings of Ferreirós; in particular, the distinction between the
schematic and the higher-level point of view is in essence the one Ferreirós (2009, p. 49)
draws between “Peano-style axioms affecting the elements and Dedekind-style conditions
affecting sets or subsets.” Ferreirós argues that, as long as set theory is assumed in the
logical background, there is no essential difference between these two points of view; for
when set theory is thus assumed, sets are treated as objects, and so reasoning about sets

27 The position discussed by Reck & Price (2000, §8) seems closely related to this higher-level
point of view.
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is no different from reasoning about other objects. As we will see in Section 7.2 below,
set theory is indeed applied, at least implicitly, in Hilbert’s geometry for the definition of
various terms such as ‘segment’ and ‘angle’. That set constructions are thus part of the
theory is, however, not to say that the axioms (in Hilbert’s sense) of the theory are thought
of as themselves defining structured sets. For instance, set theory itself may be pursued in a
formal manner, such that the variables are thought of as ranging over mere entities, and the
epsilon relation is a merely schematic relation on those objects governed by the axioms.
In set theory, of course, sets are treated as objects; but this is not to say that the axioms of
set theory need to be thought of as defining structured sets, in today’s terminology pairs
(V, ∈); indeed, in general, this point of view would seem to be excluded on logical grounds,
since a structure of the appropriate kind would have to be “class-sized” and hence not a
set. In other words, set theory is an example of a mathematical theory in which sets are
treated as objects, but which would seem to allow only for the schematic, and not for the
higher-level point of view.28 Thus I will insist on the difference, even in the presence of set
theory, between these two points of view of structural mathematics.

It seems to me that the higher-level point of view is operative throughout Dedekind’s
work. He viewed the beginnings of mathematical theories (arithmetic, ideal theory, dual
group theory, etc.) in the definitions of higher-level notions. Thus, the definition of the
notion of a field simply lays down in its definiens conditions on a set of complex numbers;29

as does the definition of a module,30 and an ideal is a special kind of module. And we
saw that the theory of ideals is thought in effect to be the totality of judgments derivable
from the definition of an ideal. Directly following his definition of dual groups, Dedekind
remarks:

In order to show how varied are the domains to which this concept may
be applied, I mention the following examples.31

This remark seems to presuppose the higher-level point of view. For the definition of dual
groups is said to be the definition of a certain concept, namely the concept of a dual group,
and under this concept is said to fall domains; thus we have the definition of a higher-
level concept, higher-level inasmuch as what falls under it are domains; as examples of
such domains Dedekind lists, among others, sets equipped with union and intersection,
and Rn equipped with coordinate-wise maximum and minimum. In line with Dedekind’s
remark on ideal theory, one could add that the theory of dual groups consists of those
judgments derivable from the definition of a dual group. What now of the conditions α)–δ)

28 Assuming, of course, that the set theory in question is not “fragmentary” in the way of Kripke–
Platek set theory—this set theory does have set models—but that it has the pretense of being
a universal mathematical theory. Working set theorists might not take the schematic point of
view, but rather a point of view in line with that described in the introduction to this paper,
that is a contensive (to use a neologism that Curry, 1941, p. 222, convincingly argues is the best
translation into English of the German inhaltlich—think of intent, extent, content) view on which
the axioms are taken to be evident from the meaning of the terms ‘set’ and ‘element of’.

29 Dedekind (1932c, p. 20): “Ein System A von reellen oder komplexen Zahlen a soll ein K ö r p e r
heißen, wenn die Summen, Differenzen, Produkte und Quotienten von je zwei dieser Zahlen a
demselben System A angehören.”

30 Dedekind (1932c, p. 60): “Ein System a von beliebigen reellen oder komplexen Zahlen soll ein
M o d u l heißen, wenn dieselben sich durch Subtraktion reproduzieren, d.h. wenn die Differenzen
von je zwei solchen Zahlen demselben System a angehören.”

31 Dedekind (1932b, p. 113): “Um zu zeigen, wie verschiedenartig die Gebiete sind, auf welche
dieser Begriff angewendet werden kann, erwähne ich folgende Beispiele.”
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of article 71 in Was sind? Given that these are called conditions by Dedekind; given that
these conditions occur within an article headed by ‘Erklärung’, which throughout Was sind
indicates definition;32 given the parallel between this article and Dedekind’s remark on the
theory of ideals; finally, given that Dedekind everywhere else seems to take the higher-level
point of view: then it seems reasoned to maintain that also the conditions α)–δ) are seen
by Dedekind as part of the definition of a higher-level concept, namely that of a simply
infinite system, in which arithmetic finds its base. If this is correct, then it is somewhat
misleading to call these conditions α)–δ) axioms: they are neither axioms in the traditional
sense of immediately evident general judgments, nor axioms in the Hilbertian sense of
schematic postulates, but rather conditions in the definition of a simply infinite system on
a par with the condition of being measured by a unit alone in Euclid’s definition of prime
number.

2.3. Dedekind’s conceptualism. What may be called Dedekind’s conceptualism —the
view that sciences ground in concepts and their description—can in fact be traced already
in his 1854 Habilitationsrede. After a prefatory remark, Dedekind there briefly outlines
what he takes to be the task of any science, and what the limitations of man imply for the
sciences as we find them historically given; such limitations have as their consequence
that two theories may compete in describing the phenomena. Dedekind considers the
example of mineralogy, in which the theory based on the chemical constitution of mineral
bodies competes with that based on the crystallographic, morphological, constitution. The
significant point for us is that Dedekind sees the difference between the two theories
as originating in different sets of concepts taken to be fundamental: one theory is dis-
tinguished from the other through its choice of fundamental concepts. More generally,
Dedekind says that each science employs a different characteristic (Merkmal, which is
here used interchangeably with Begriff ) as its principal means of classification (Hauptein-
teilungsgrund); further he speaks of such a characteristic as a motive for the design of
the system, and which is introduced as a hypothesis into the science.33 In the ensuing
discussion, Dedekind employs another example, namely legal science; the “systematizer”
of this field

constructs certain concepts, e.g., that of legal institution, which enter
as definitions in the science, and with the help of which he is able to

32 Dedekind seems to prefer the term Erkläurng to Definition, although the latter also occurs
in his writing; I will treat the two as on a par, as I see no clear way of distinguishing in
Dedekind’s writing an Erklärung from a Definition. As the translation of Erklärung in this
context I suggest ‘declaration’; this accords with the use of these terms in contexts such as
‘declaration of independence’, or ‘of human rights’, and seems to harmonize well with the use
of ‘declaration’ in computer science. Hallett & Majer (2004, p. 421) discuss Hilbert’s use of these
terms in the Grundlagen der Geometrie, and suggest other translations. On this topic, it may be
added that for Bolzano, an Erklärung is a special kind of Verständigung, namely one which
lists in the appropriate order and manner the representations (Vorstellungen) that compose the
representation to be defined (cf. Bolzano, 1975, §9); further, that Kant lamented in the Critique
of Pure Reason (A730/B758) that the German language has but one term, namely Erklärung, for
all the four latinate terms Exposition, Explikation, Deklaration, and Definition.

33 Dedekind (1932c, p. 429): “Die Einführung eines solchen Begriffs, als eines Motivs für die
Gestaltung des Systems, ist gewissermaßen eine Hypothese, welche man an die innere Natur der
Wissenschaft stellt.”
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state the general truths recognizable from the infinite manifold of the
singular.34

Thus general truths are enunciated on the basis of definitions; this must mean that
definitions are seen as lying at the foundation of the science in question, for a science
consists precisely of such general truths. The discussion of legal science ends with the
famous remark on the greatest art of the systematizer, that it consists in the constant
twisting and turning of definitions. This remark underlines the basic role Dedekind en-
visioned for definitions in the habilitation lecture: they are organizing principles for bodies
of knowledge.35

2.4. Logical considerations. One may question the very idea of definitions being the
beginning of a theory. How does one obtain a theorem from definitions alone; for what
would then be the starting point of its demonstration? Consideration of the first section
of Was sind suggests one answer to this question: to follow from definition alone means
to follow from immediately evident judgments of a logical character together with those
very simple rules of inference that allow substituting a definiens for the corresponding
definiendum and vice versa. In line with the systematic organization of Was sind, each of
its demonstrations makes explicit the earlier articles upon which it depends. Given that the
booklet opens with definitions and states no postulates or axioms, the demonstration of
the first theorem, indeed those of the first five theorems, make reference only to articles
containing definitions. As already noted in Section 2.1, this is in line with what we take to
be Dedekind’s presupposed view of science, but one should try to spell out how an appeal
to definition alone can be sufficient justification for a theorem. Thus consider article 4:

4. Theorem. According to 3, A ⊆ A.36

In article 3 we find the definition of the expression ‘A ⊆ S’.

3. Declaration. A system A is said to be part of a system S when each
element of A is an element of S as well. As this relation between a system
A and a system S will continually come to the fore in the following, we
will express it briefly by the sign A ⊆ S.37

Inclusion is indeed defined here, and not introduced through elucidation, for the notions
of system and elementhood have been described in article 2. Since ‘A ⊆ S’ is there-
fore a defined expression we may in any demonstration substitute for it its definiens, and

34 Dedekind (1932c, p. 430): “. . . bildet der Systematiker gewisse Begriffe, z.B. die der
Rechtsinstitute, welche als Definitionen in die Wissenschaft eintreten, und mit deren Hilfe er
imstande ist, die aus der unendlichen Mannigfaltigkeit des Einzlenen erkennbaren allgemeinen
Wahrheiten auszusprechen.”

35 This conceptualism of Dedekind, or Dedekind’s definitional method, was emphasized already
by Ferreirós (1996, §4.3.3) and Ferreirós (1999, chap. VII.5.3); Ferreirós (2009) seems to have
revised his reading of Dedekind at this point, and that in light of criticism launched by Sieg &
Schlimm (2005); see the postscript to Ferreirós (2007). One can regard parts of the current paper
as developing the view initially defended by Ferreirós.

36 Dedekind (1932c, p. 345, Was sind): “4. S a t z. Zufolge 3 ist A ⊆ A.”
37 Dedekind (1932c, p. 345, Was sind): “3. E r k l ä r u n g. Ein System A heißt T e i l eines

Systems S, wenn jedes Element von A auch Element von S ist. Da diese Beziehung zwischen
einem System A und einem System S im folgenden immer wieder zur Sprache kommen wird,
so wollen wir dieselbe zur Abkürzung durch das Zeichen A ⊆ S ausdrücken.”
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vice versa, its definiens for itself. This is indeed the rule one has to appeal to when writing
out the demonstration of article 4 in full:

each element of A is an element of A (immediately evident, “logic”)

A ⊆ A (substitution of definiendum for definiens).

Thus we have a two-line demonstration of article 4, and it is relatively clear in what sense
this theorem follows from a definition: it follows from what one today could call a logical
truth together with rules for substituting definiens and definiendum. The reader may check
that the same holds for the theorems in articles 5, 7, 9, 10, 13, 18, 19, 20, and 22: they all
follow from logic and substitution.

A precise logical analysis of Was sind is not my business here, but I do not want to leave
the impression that Dedekind’s mathematics is as innocent as the foregoing might suggest,
constructed, as it were, out of “simple logic” and nominal definition alone; so to coun-
teract such an impression I note that Dedekind’s definitions and demonstrations typically
make existence assumptions which are not made explicit, and hence neither supplied with
justification. Thus the definitions of union and intersection assume the existence of these
sets; the definition of the image of a set, ϕ(A), assumes the existence of this set (cf. the
axiom of replacement);38 the definition of the chain of a system takes the intersection over
a set of sets, and would therefore seem to assume the existence of the “full” power set; the
demonstration in article 159 assumes the existence of the set of functions from one set to
another; the latter assumes as well the existence of a countable choice set. Interestingly,
all of this contrasts with the case of an infinite set, the existence of which Dedekind does
not assume, but seeks to demonstrate in article 66. Dedekind would presumably say that
the existence of the kinds of set he merely assumes is evident from the explanation of the
notion of set. At this point it seems in any case that Frege’s criticism was fair when he
noted of Was sind in the Grundgesetze that “nowhere can one find there an inventory of
the logical or other laws that are there taken for granted.”39 Finally, note that we have here
another at least partial explanation of why Dedekind could take theorems to follow from
definitions alone: when the existence assumptions are built into the definitions, one does
not need to appeal to axioms in which these assumptions are asserted.40

§3. The primacy of axiom. Dedekind’s conception of a science’s being based on def-
initions contrasts with Hilbert’s conception, according to which what Hilbert calls axioms
are at the base of a science; here and in the following I rely on the context’s making
it clear whether I mean axiom in Hilbert’s or in the traditional sense. A programmatic
statement of Hilbert’s on the primacy of axiom is given in his 1899 address Über den
Zahlbegriff (Hilbert, 1900b). As is well-known, this lecture introduces the idea of the
axiomatic method, a method for which Hilbert claims preference over what he terms the
genetic method; in particular, Hilbert says that “for the ultimate presentation and complete

38 The existence of ϕ(A) is not trivial within Dedekind’s scheme, since for him it is the notion
‘ϕ is a mapping of A’ and not the notion ‘ϕ is a mapping of A into B’, which is primitive
(cf. Section 6 below); the latter notion is defined in article 36 of Was sind.

39 Frege (1893, p. VIII): “Nirgends ist bei ihm eine Zusammenstellung der von ihm zu Grunde
gelegten logischen oder andern Gesetze zu finden. . . ”

40 Cf. the somewhat different analysis of these matters in Ferreirós (forthcoming).
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logical conservation of the content of our knowledge, the axiomatic method deserves pref-
erence.”41 The genetic method is genetic in the sense that, in its way the number concept—
which here seems to mean the concept of real number—is generated in a stepwise fashion
starting from the concept of the number one. Hilbert’s language does not decide whether
the ‘generation’ here should be read dynamically or statically: for he speaks of the natural
numbers as arising through the process of counting, implying something dynamic, while
the rational as well as the real numbers are said to be defined, implying something static.
Perhaps a more neutral term would be ‘description’. Accordingly one could say that a
genetic description of the concept of a real number is one which proceeds by means of
successive “subdescriptions” of more and more general number concepts. In contrast to
such stepwise description, on the axiomatic method one rather assumes from the outset the
existence of a domain of mere entities, and “one then places these elements in relations
through certain axioms” (cf. Hilbert, 1900b, p. 181).

For Hilbert the ideal would thus seem to be that the numbers be introduced all at once.
Dedekind, in fact, gave expression to a similar ideal with his requirements on the “introduc-
tion or creation of new arithmetic elements.” One of these requirements was namely that
“all real irrational numbers be engendered simultaneously by a common definition, and not
successively as roots of equations, as logarithms, etc.”42 Indeed, Dedekind’s terminology
here is strikingly similar to that of Hilbert: where Dedekind spoke of an engendrer á la
fois, et non successivement, Hilbert speaks of a successives Erzeugen. In spite of these
similarities, however, it seems clear that Hilbert does not equate, but rather contrasts, his
own axiomatic method with whatever he takes to be Dedekind’s method;43 for Hilbert
refers to Dedekind cuts as one way of describing the real numbers genetically, hence he
would seem to class Dedekind’s method as genetic. Moreover, one might recognize in that
part of Hilbert’s delimitation of the genetic method that concerns natural numbers—how
natural number arithmetic arises through the process of counting—what Dedekind said
in Stetigkeit §1 on the same matter. By 1899, of course, Dedekind’s view of arithmetic
was quite different,44 but on the basis of this resemblance one might suspect that for
Hilbert at the time, the paradigmatic “geneticist” was the Dedekind of Stetigkeit.45 Since
the genetic aspect of the latter’s methodology, namely that the notion of real number is
reached through successive subdescriptions, would presumably not have disappeared with
Dedekind’s new account of arithmetic in Was sind—for that merely changed the initial

41 Hilbert (1900b, p. 181): “Meine Meinung ist diese: T r o t z d e s h o h e n p ä d a g o g i s c h e n
u n d h e u r i s t i s c h e n W e r t e s d e r g e n e t i s c h e n M e t h o d e v e r d i e n t d o c h z u r
e n d g ü l t i g e n D a r s t e l l u n g u n d v ö l l i g e n l o g i s c h e n S i c h e r u n g d e s I n h a l t e s
u n s e r e r E r k e n n t n i s d i e a x i o m a t i s c h e M e t h o d e d e n V o r z u g.”

42 Dedekind (1877, p. 269, footnote): “. . . on devra exiger que tous les nombres réels irrationels
être engendrés à la fois par une commune définition, et non successivement comme racines des
équations, comme logarithms, etc.” This footnote is discussed in detail by Ferreirós (1999, chap.
III.4.1).

43 Thus at this point I am in agreement with Ferreirós (1996), but in disagreement with the later
Ferreirós (2009, p. 41) who maintains that Hilbert does not associate the genetic method with
Dedekind.

44 Sieg & Schlimm (2005) trace the development.
45 Though it should be noted that Hilbert himself seems to have held a similar view of arithmetic

in his 1891 lecture on projective geometry (Hallett & Majer, 2004, p. 22): “Zum Begriff der
ganzen Zahl können wir auch durch reines Denken gelangen, etwa indem ich die Gedanken
selber zähle.” Here one might be reminded of Kant’s description of number as the pure schema
of quantity at KrV A142–143/B182.
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stage of the genesis—one would think that, in Hilbert’s eyes, Dedekind’s method remained
genetic.

The contrast of the axiomatic method to Dedekind is explicit in Hilbert’s 1904 address
Über die Grundlagen der Logik und der Arithmetik (Hilbert, 1905). Here Dedekind’s
name occurs within a longer list of approaches to the grounding of arithmetic with each
of which Hilbert sees difficulties that he meant the axiomatic method could handle. It
must be admitted that Hilbert is not here criticizing Dedekind for making use of the
genetic method, but rather for his relying in article 66 of Was sind on “the totality S of
all things that can be the object of my thought.”46 By 1904 Hilbert (as well as Dedekind)
had become convinced that this totality of all things is, in Cantor’s language, an incon-
sistent multiplicity.47 But Hilbert would seem to imply by his criticism that with the
axiomatic method one would not have to invoke this totality, hence this method was to
be preferred to Dedekind’s method of grounding arithmetic. Whence the point I wished
to make by mentioning this address: that Hilbert (again) contrasts his own method with
Dedekind’s.

In accordance with his preference for the axiomatic method, Hilbert (1900b) gives an
axiomatic presentation of real number arithmetic. Along the same lines, he gives in the
Grundlagen der Geometrie (Hilbert, 1899) an axiomatic presentation of Euclidean geome-
try. But not only of these two basic mathematical disciplines did Hilbert give axiomatic pre-
sentations; in a lecture course entitled Logische Prinzipien des mathematischen Denkens
held at Göttingen in 1905, Hilbert suggested axiomatizations of various branches of physics
and even an axiomatization of psychophysics.48 Indeed, the sixth Hilbert problem (Hilbert,
1900a), asks for the “Mathematical Treatment of the Axioms of Physics,” a problem with
which Hilbert himself would be occupied in ensuing years.49 It is only somewhat later,
in the 1917 address Axiomatisches Denken (Hilbert, 1918), that Hilbert devotes a whole
paper to the axiomatic method; in this address a large range of theories, and often ones that
do not immediately spring to mind as axiomatic, such as the theory of surfaces, the theory
of equations, and the theory of prime numbers, are spoken of as axiomatic. The length to
which Hilbert goes in this address in locating axioms for various theories—viewing, for
instance, the fundamental theorem of algebra as an axiom for the theory of equations—
indicates how strongly he at this point, namely in 1917, was committed to the ideal of
axiomatic organization. In light of the foregoing discussion, however, and in light of the
fact that the ideal of axiomatic organization was stressed by Hilbert already in his first
lecture course on foundational matters, that is, in the 1894 course on the foundations of
geometry—the notes for that course ends with a call for the axiomatization of “all other
sciences, after the pattern of geometry” (Hallett & Majer, 2004, p. 121)—, it seems correct

46 It is worth noting that neither Hilbert (1905) nor Zermelo (1908, p. 266, footnote 2) raise
any criticism against Dedekind’s invocation of meine Gedankenwelt; rather they restrict their
criticism to the assumption of a universal set.

47 Cf. Ferreirós (1999, chap. VIII.8).
48 The relevant part of these lectures are discussed by Corry (1997). The lectures will be published

in volume 2 of the series David Hilbert’s Lectures on the Foundations of Mathematics and
Physics, 1891-1933, and will probably shed much light on Hilbert’s conception of the axiomatic
method.

49 Thus, for instance, in the papers (Hilbert, 1914, 1924) the physical theories under consideration
are given an axiomatic presentation, and the former even contains consistency proofs. Corry
(2004) discusses in detail Hilbert’s involvement with physics and the role of the axiomatic
method therein.
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to say that already by 1900, the axiomatic method was of major concern to Hilbert. Indeed,
one could say that Hilbert’s work on foundational matters prior to the conception of proof
theory to a large extent coincides with the investigation of mathematical and physical
theories by means of the axiomatic method.

§4. Two case studies. Thus, by looking separately at the words and works of Dedekind
and Hilbert, I have argued for the conceptualism of the former and the “axiomatism” of the
latter. Two smaller case studies will help to bring out the contrast even more markedly.

4.1. Completeness. In his codification of the classical conception of axiomatic sci-
ence, Scholz (1930) states two criteria which this conception requires of the Grundsätze (in
Aristotle’s Greek: axiōmata, arkhai, prōta): that they be “immediately evident and there-
fore indemonstrable,” and that they be “sufficient, in the sense that, for the demonstration
of the theorems, the rules of logic are the only other things needed” (ibid. p. 29); in short,
according to the classical conception, axioms should be immediately evident and complete,
that is, sufficient for the construction of the theory in question. Hilbert did not adhere to the
classical conception and seems to have operated instead mainly with the following three
criteria of axiomhood: that the axioms be consistent (widerspruchslos, verträglich), that
they be independent, and that they be complete.50

Following Scholz, one can view Hilbert’s criterion of consistency as replacing the Aris-
totelian criterion of evidence.51 Of course, from a traditional point of view consistency
is a weaker requirement than evidence, as Frege noted;52 for if the axioms are evident,
then they cannot contradict each other—in Husserlian terminology, the discovery of an
inconsistency would “explode” the evidence. From Hilbert’s point of view, however, given
that the primitives are variables (see Section 7.1 below), it would seem not even to make
sense to speak of the evidence of the axioms. Whence consistency, in the sense of satisfi-
ability, is a natural substitute. We will not have much more to say about consistency here;
rather, this section will focus on the criterion of axiomhood that Hilbert shares with “the
tradition,” namely completeness. The following section will then discuss the criterion of
independence.

Completeness is in fact the central criterion in Hilbert’s discussions of the process of
axiomatization; that is to say, when Hilbert describes how we first come to organize a
body of judgments into an axiomatic science, completeness of the axiom system is the key
criterion; the task of showing independence and consistency enters only after the fact of
axiomatization. Thus in his 1894 lectures, the notion of an axiom of geometry is introduced
as follows:

Since, however, not not all concepts are derivable through pure logic, but
rather stem from experience, the important question which will be treated
in these lectures, is that concerning the fundamental facts which suffice

50 Hilbert also operates with some more minor requirements: that the axioms be few in number
(merely finite is presumably not enough here), and that they be simple (einfach). Cf. the
discussion of Hallett (1994, p. 169 and footnote 24).

51 Scholz himself was supportive of this substitution of consistency for evidence (cf. Scholz, 1930,
pp. 35–37); in fact, he seems to have embraced Hilbert’s ideas on logic and methodology more
generally (cf. Scholz, 1942).

52 Frege (1976, p. 63, Letter XV/3, dated December 27, 1899): “Aus der Wahrheit der Axiome
folgt, dass sie einander nicht widersprechen.”
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for the construction of the whole of geometry. These indemonstrable
facts we have to lay down on beforehand, and we call them axioms.53

Certain fundamental facts suffice for the construction of the whole of geometry; and,
given that evidence is not in question, it is this sufficiency that licences calling these
facts fundamental and indemonstrable. Thus here, completeness would seem to be the
only criterion of axiomhood brought to bear. In the Axiomatisches Denken lecture, held
more than 20 years later, Hilbert’s view of axioms has crystalized and is presented in one
of its opening passages, a passage that arguably employs only such concepts as Hilbert
possessed already by 1900:

If we consider a particular theory more closely, we always see that a
few distinguished propositions of the field of knowledge underlie the
construction of the framework of concepts, and these propositions then
suffice by themselves for the construction, in accordance with logical
principles, of the entire framework.
[. . . ]
These underlying propositions may from an initial point of view be re-
garded as the axioms of the respective field of knowledge. . . 54

We inspect a certain ordered body of theorems and find that a few of these theorems
suffice for the construction of the whole body; these theorems may then be viewed as
the axioms of the theory—that they are said to be so “from an initial point of view” is
perhaps to accommodate the fact that later investigations into independence, or indeed
consistency, may force revisions in the set of axioms. In any case, completeness is again
seen as the central criterion of axiomhood: if a theorem (or a set of theorems) suffices
for the construction of the theory, then it may be regarded as the axiom, and hence as the
beginning, of that theory.

If we then look at the preface to Stetigkeit, the contrast we have developed in Sections 2
and 3 above becomes apparent. In that preface, Dedekind considers the theorem stating
that “every magnitude which grows continually, but not beyond all limits, must approach
a limit value.” For the purposes of this section let us call this the Monotone Convergence
Theorem.55 A careful investigation, says Dedekind, had convinced him that this theorem
“may in some ways be regarded as a sufficient fundament for the infinitesimal analysis”
(Dedekind, 1932c, p. 316). On the view that we have just attributed to Hilbert, this fact
would by itself licence taking the Monotone Convergence Theorem as an axiom for the
calculus—one could construct the calculus on its basis, hence it could be taken as an axiom.

53 Hallett & Majer (2004, p. 72): “Da nun nicht alle Begriffe durch reine Logik abzuleiten
sind, sondern vielmehr aus der Erfahrung stammen, so ist die wichtige Frage, die wir in
dieser Vorlesung behandeln werden, die nach den Grundthatsachen, welche zum Aufbau der
ganzen Geometrie hinreichen. Diese nicht beweisbaren Thatsachen müssen wir von vornherein
festsetzen und nennen sie Axiome.”

54 Hilbert (1918, p. 406): “Wenn wir eine bestimmte Theorie näher betrachten, so erkennen wir
allemal, daß der Konstruktion des Fachwerkes von Begriffen einige wenige ausgezeichnete
Sätze des Wissengebietes zugrunde liegen und diese dann allein ausreichen, um aus ihnen nach
logischen Prinzipien das ganze Fachwerk aufzubauen. [. . . ]
Diese grundlegenden Sätze können von einem ersten Standpunkte aus als die Axiome der
einzelnen Wissensgebiete angesehen werden. . . ”

55 As Dedekind (1932c, p. 332, Stetigkeit §7) remarks, it is equivalent to the least upper bound
principle.
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But instead of taking the Monotone Convergence Theorem thus as an axiom, Dedekind
states that he wished to find its origin in a definition of the continuous number line:

It only remained to discover its proper origin in the elements of arith-
metic, and thereby to reach a true definition of the nature of continuity.56

It was not enough merely to have a theorem over which the calculus might be built;
what was required was an arithmetical definition of a continuous domain in which that
theorem would have its true origin. There may of course be several factors that motivated
Dedekind’s search for the “proper origin” of the Monotone Convergence Theorem—the
ideal of arithmetization certainly played its role—but no matter which other motivations
he had, I think we see here a clear manifestation of Dedekind’s conceptualism, the view
that sciences find their beginning in certain concepts and their description.

4.2. Independence. Independence was a major concern in Hilbert’s axiomatic inves-
tigations into geometry, both as a requirement on axioms, and in the investigation, for
instance, of Desargues’s and Pascal’s theorems.57 In the Grundlagen, independence is
established only for the parallel and the congruence axioms, but it is remarked in a footnote
that more independence proofs are found in the Von Schaper Ausarbeitung of Hilbert’s
1898–1899 lectures on the foundations of geometry.58 Already in the 1894 lectures did
Hilbert claim (“cum grano salis”) the mutual independence of the axioms (cf. Hallett &
Majer, 2004, p. 79), but the clearest explanation of the notion itself is found in this Von
Schaper Ausarbeitung:

In order to show that an axiom A does not follow logically from the
axiomsB, C, D,. . . , we supply a system of things in which B, C, D,. . .
are valid, but A is not.59

A similar explanation of how to demonstrate independence had been given by Schröder
(1890), indeed Schröder states that this method of exemplification is the only method of
demonstrating independence.60 For an example, recall that Hilbert’s axiom I.1 says that
two points always determine a line; axiom I.2 says that any two points on a line determine
that line. Hilbert shows that I.2 is independent of I.1 by taking points to be the positive
integers, lines to be the negative integers, and saying that points A and B determine the line
−� A·B

2 �. Then the points 1 and 2 determine the same line as the points 1 and 3, namely −1,

56 Dedekind (1932c, p. 316): “Es kam nur noch darauf an, seinen eigentlichen Ursprung in den
Elementen der Arithmetik zu entdecken und hiermit zugleich eine wirkliche Definition von dem
Wesen der Stetigkeit zu gewinnen.”

57 Hilbert’s work on independence in geometry is discussed by Hallett (2008, §8.4).
58 This Ausarbeitung as well as Hilbert’s own lecture notes for the same course have been published

in Hallett & Majer (2004).
59 Hallett & Majer (2004, p. 306): “Um zu zeigen, daß ein Axiom A keine logische Folge der

AxiomeB, C,D,. . . ist, geben wir ein System von Dingen an, bei welchemB, C,D,. . . gelten,
A aber nicht.”

60 Schröder (1890, pp. 286–287): “Ein solcher ‘negativer’ Beweis [i.e. of independence] kann nur
durch Exemplifikation geleistet worden. [. . . ]
Dass ein Satz A aus einer Gruppe von Definitionen, Axiomen und Sätzen B nicht mit
Notwendigkeit folgt, wird jedenfalls dann unzweifelhaft erwiesen sein, wenn es gelingt, ein
Gebilde als wirklich oder denkmöglich nachzuweisen, welches die Definitionen, Axiome (und
Sätze) der Gruppe B sämtlich bewahrheitet und gleichwohl den Satz A nachweislich nicht
erfüllt—kurz: wenn man zeigt, dass irgendwo die Sätze B ohne A geltend vorkommen.”
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but not the same line as the points 2 and 3. Thus in this “system of things” axiom I.1 is
valid (by definition), whereas axiom I.2 is not valid (cf. Hallett & Majer, 2004, p. 306).

In the Zerlegungen paper on dual group theory introduced in Section 2.1 above, Dedekind
considers independence questions in the sense of Hilbert.61 Dedekind’s phrasing of inde-
pendence questions is, however, different from Hilbert’s. I wish to highlight this difference
as another manifestation of their contrasting views of science. Before proceeding, however,
it might be helpful for the reader to look back at the end of Section 2.1 above where we cited
Dedekind’s definition of the notion of a dual group and listed the defining equations A; in
particular, recall that these equations require the operations ± in a dual group to satisfy
commutativity, associativity, as well as the so-called laws of absorption α ± (α ∓ β) = α.

Dedekind’s study of dual group theory had been occasioned by his study of the concept
of a module (Dedekind, 1897, p. 113); in a rough-and-ready description, one could say that
as the theory of modules serves as a foundation for Dedekind’s ideal theory, dual group
theory was intended as a foundation for module theory, a more general theory of which
module theory would be a special case.62 For this reason, two sets of equations were of
special interest to him. The first set consists of the equations asserting the distributivity of
+ over −, and of − over +:

α + (β − γ ) = (α + β) − (α − γ )

α − (β + γ ) = (α − β) + (α − γ )

The significance of these laws for Dedekind lay in their being satisfied by the lattice of ide-
als in any ring of algebraic integers, where ideal addition interprets ‘+’ and set-theoretical
intersection interprets ‘−’. The other set consists of three equations that Dedekind proves
equivalent over A, and one of which is the following so-called modular law:

(α + β) − (α + γ ) = α + (β − (α + γ ))

This law is satisfied by any lattice of modules. Dedekind shows that if one adds the
distributive laws to A, then the modular law follows. His interest in these sets of equations
therefore centered on the questions, firstly of whether the modular law follows from A
alone, and secondly of whether the distributive laws follow from A plus the modular law.
It is here that the contrast with Hilbert shows, for Dedekind does not state these questions
of independence in Hilbertian terms: does this equation follow from those equations?
Rather, the question is rephrased in terms of the having and not-having of certain prop-
erties. Dedekind calls dual groups satisfying the modular law ‘groups of modular type’
(Modultypus), and those satisfying the distributive law ‘groups of ideal type’ (Idealtypus).
His questions of independence are then literally these (Dedekind, 1897, p. 116):

Are there dual groups that do not possess modular type?
Are there dual groups of modular type that do not possess ideal type?

In Hilbertian terms, on the other hand, the questions would presumably take something
like the following form: is it possible through logical inferences to derive the modular law
from the axioms A; is it possible through logical inferences to derive the distributive law

61 With meticulous page references characteristic of his style, Dedekind remarks that he had been
anticipated by Schröder (1890); in this work, Schröder had in effect established the independence
of the distributive law from the lattice axioms. Cf. the previous Footnote 60.

62 For a more detailed account of the relation of module theory to dual group theory, see Mehrtens
(1979, chap. 2.1) and Corry (1996, chap. 2.3).
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from the axioms A with the modular law added?63 Thus in this case we have the question
of whether a certain formal judgment follows from certain other formal judgments; in
Dedekind’s case, on the other hand, we have the question of whether things with certain
properties of necessity also possess certain other properties. Dedekind’s
answer to that question upholds the perspective of property possession (Dedekind, 1897,
p. 116):

I have discovered—not without effort—that both these questions are to
be answered affirmatively, in each case by seeking the smallest dual
group which possesses the relevant property.

Thus he describes by means of group tables the dual groups known as the pentagon
and the diamond, and shows that the first is not modular, while the second is modular
but nonideal. The technique is surely the same as that which an axiomatist would make
use of: as Schröder noted, the only way to demonstrate independence is through exem-
plification. But the example put forth thereby is by Dedekind not thought to satisfy such
and such axioms while not satisfying certain other formal judgments, rather it is thought
to be an object possessing such and such properties while not possessing certain other
properties.

§5. Axiom and implicit definition. Structuralism. In his Grundlagen, Hilbert
famously claims that a certain group of his axioms for geometry defines the notion of
betweenness;64 in a letter to Frege, Hilbert says that he regards the whole set of axioms
together with the declaration introducing the notions of point, line, and plane as defining
those notions.65 As Frege’s correspondence with Hilbert and Liebmann bears witness to,
it is not straightforward how to understand this. I follow Gabriel (1978, p. 420) in holding
that if one is to regard Hilbert’s axioms as defining anything at all, then one has to regard
them as defining a higher-level concept, namely a concept under which fall structures or
domains, in modern terminology n-tuples for suitable n;66 in other words, in that case
one must take the higher-level point of view on Hilbert’s axioms (cf. Section 2.2 above).
Against this it could be suggested that with Hilbert’s axioms the concepts of point, line,
plane, betweenness, and so on receive, as it were, a holistic definition: points, lines, planes,
and so on are whatever satisfy the axioms, and a point is a point only relative to the
things, whatever they may be, that serve as lines and planes. The problem with this kind of
view—defended, for instance, by Schlick (1918, §7)—is that it would seem to depend
on a novel notion of concept which has not been clarified. Carnap (1927) called such
an “implicitly defined” concept improper, for the question of whether something falls
under it is in effect meaningless (ibid. p. 367); as Frege famously notes, with Hilbert’s
definitions—that is, the axioms when viewed as definitional in this holistic sense—one

63 Cf. Hilbert’s gloss on the independence of the axioms in Grundlagen §10 (Hilbert, 1899, p. 22):
“In der That zeigt es sich, dass keines der Axiome durch logische Schlüsse aus den übrigen
abgeleitet werden kann.”

64 Hilbert (1899, p. 6): “Die Axiome dieser Gruppe definiren den Begriff ‘zwischen’. . . ”
65 Frege (1976, p. 66, Letter XV/4, dated December 29, 1899): “Ich sehe in meiner Erklärung in §1

die Definition der Begriffe Punkte, Gerade, Ebenen, wenn man wieder die sämtlichen Axiome
der Axiomgruppen I–V als die Merkmale hinzunimmt.”

66 On my count, n = 8 in the case of Hilbert’s geometry; cf. Section 7.2 below.



DEDEKIND AND HILBERT ON SCIENCE 663

cannot settle whether someone’s pocket watch is a point or not.67 On that background I
think the onus is on he who wants to defend this holistic reading: he must explain what
is thereby understood by a concept, and hence also what is thereby understood by the
definition of a concept—for on a traditional way of understanding the notions of concept
and definition, the view that the axioms holistically define the terms occurring in them is
simply confused.

It seems that Carnap (1927) is written as a reaction to the very idea of implicit defini-
tion.68 Thus Carnap explains how any implicit definition can be regarded as the definition
of a proper concept, that is, of a concept for which the question of whether something falls
under it has a determinate answer. In particular, he explains how Hilbert’s axioms can be
viewed as properly defining an n-ary higher-level relation:

Also through the Hilbertian axiom system, as through any axiom system,
a determinate proper concept is explicitly defined. If we designate the
three basic classes of the axiom system by p, g, and e, the three basic
relations by I , Z , K , then the proper concept is the six-place relation H ,
whose arguments are to be designated by the six basic variables:

H = p̂ĝê Î Ẑ K̂ [. . . (logical product of the axioms) . . .]Df.69

This is precisely how one would regard Hilbert’s axioms from the higher-level point of
view. Now it is widely held, I think, that already Frege interpreted Hilbert’s axioms along
such higher-level lines. However, although Frege with his interpretation of the primitive
terms as variables and his appeal to concepts of the second level made several crucial steps
towards this point of view, there is, as far as I have seen, no statement in Frege’s work
to the effect that Hilbertian axioms define a kind of structure. In fact, it seems that Frege
lacked a sufficiently clear notion of domain or structure. A passage which seems to reveal
this is the following comment upon Hilbert’s geometry:

Thus if a concept is defined by [the Hilbertian axioms], then it has to be a
concept of second order. It must, however, be doubted whether a concept
is defined, for not only the word ‘point’, but also the words ‘line’ and
‘plane’ occur.70

67 Frege (1976, p. 73, Letter XV/5, dated January 6, 1900): “Ich weiss nicht, wie ich mit Ihren
Definitionen die Frage entscheiden soll, ob meine Taschenuhr ein Punkt sei.”

68 It is worth noting that the term ‘implicit definition’ itself is ambiguous: Gabriel (1978)
distinguishes three quite different ideas connected to it.

69 Carnap (1927, p. 369): “Auch durch das Hilbertsche Axiomensystem wird, wie durch jedes
Axiomensystem, ein bestimmter, eigentlicher Begriff explicit definiert. Bezeichnen wir die drei
Grundklassen des Axiomensystem mit p, g, e, die drei Grundrelationen mit I n, Z , K , so ist
dieser eigentlicher Begriff die sechsstelllige Relation H , deren Argumente durch die sechs
Grundbegriffsvariabeln zu bezeichnen sind:

H = p̂ĝê Î Ẑ K̂ [. . . (logisches Produkt der Axiome) . . .]Df.”

The symbolˆhere is an abstraction operator.
70 Frege (1903, p. 374): “Wenn also durch sie ein Begriff definirt wird, so kann es nur ein Begriff

zweiter Stufe sein. Ob ein Begriff definirt werde, muß freilich bezweifelt werden, weil nicht nur
das Wort “Punkt”, sondern auch die Wörter “Gerade” unde “Ebene” vorkommen.” In a letter
to Liebmann, Frege described this state of affairs as a Monstrum (Frege, 1976, p. 148, Letter
XXVII/1, dated July 29, 1900).
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That is, Frege did not see how one should account for the intertwinement of primitive
terms within Hilbert’s axioms; but given a notion of structure this is quite easy: the axioms
do not define a second-level concept of point, but a second-level concept of Euclidean
geometry, in the Fregean scheme, a many-termed relation.71

I would like to suggest that Dedekind, on the other hand, did possess a clear notion
of structure, and hence that he at least had the resources to read Hilbert in a higher-
level manner. Dedekind’s definition of a dual group is nothing but the definition of a
kind of structure, and the examples he gives of dual groups are structures, or domains
as he calls them (cf. Section 2.1 above). Indeed our arguments in Section 2.2 above that
Dedekind took the higher-level point of view are also arguments that he possessed a notion
of structure. What one might call Dedekind’s mathematical structuralism is in fact to a
large extent coincidental with his higher-level point of view. It is a conception of the
domains of mathematics as consisting not mainly of first-level objects such as numbers
and triangles, but rather of higher-level objects such as fields, modules, and dual groups.
As Corry (1996) has argued, mathematical structuralism in this sense is less developed in
Dedekind than what it is for instance in the textbook of van der Waerden (1930); at least
that is the case with regards to the theory of fields and modules. The difference between
Dedekind and van der Waerden in this regard can be summarized in two points. Firstly,
most of Dedekind’s mathematical theories “live” in a restricted universe, namely that of
the complex numbers; in van der Waerden, on the other hand, the universe is the universe
of sets. Secondly, in Dedekind’s theory of fields and modules, the underlying algebraic
operations are fixed, namely as ordinary addition, multiplication, and so on, whereas in
van der Waerden they are schematic. As we have seen, Dedekind’s dual group theory has
both a universal background domain as well as schematic operations + and −, so this
theory would seem to manifest mathematical structuralism in its fully developed form;
but, to repeat, that is not the case with the field and module theory, even that in its most
developed form of Dedekind (1894).

One should be careful now to distinguish such mathematical structuralism from philo-
sophical ones.72 Dedekind’s philosophical structuralism, by which I merely mean his con-
strual of the notion of natural number as the abstract type of simply infinite systems,73

enters, as I see it, at the level of explication in the sense of Carnap (1947, §2): on the one
hand we have a concept of number that we apply in “everyday life,” and on the other the
mathematical concept of a simply infinite system—Dedekind’s philosophical structuralism
is the construal of the one in terms of the other, thus the construction of a bridge between
a scientific and an everyday concept. The considerations in article 134 of Was sind can

71 Heck (1995) calls attention to Grundgesetze §144, where Frege speaks of “whenever the objects
falling under [a] concept can be ordered in a series which begins with a certain object and
continues endlessly. . . ” From a current point of view, the following theorem 263 demonstrates
that such a “structure” is isomorphic to the natural number structure. The question is whether
this current point of view was also Frege’s.

72 Thus Reck & Price (2000) distinguish structural methodology in mathematics from structuralist
philosophies of mathematics.

73 Dedekind (1890a, p. 275): “7) Nachdem in meiner Analyse der wesentliche Charakter des
einfach unendlichen Systems, dessen abstrakter Typus die Zahlenreihe N ist. . . ” Cf. Was sind
article 73. On the abstraction in question, see Tait (1997) and Reck (2003), as well as the
illuminating citation from the antepenultimate draft of Was sind given by Sieg & Schlimm (2005,
p. 152).
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then be seen as a soundness argument, namely to the effect that no theorem belongs to
the science of numbers, or arithmetic, which is not also a truth about the numbers of
everyday life when explicated as the abstract type of simply infinite systems, and vice
versa, nothing is a truth about these explicated everyday life numbers which is not also a
theorem of arithmetic. Returning finally to implicit definitions, can we say that Hilbert had
the resources to view his geometry in higher-level terms, as defining a kind of structure?
It seems reasonable to claim that if he did have such resources, then he would not have
said that the primitives of an axiom system are defined by that system, since putting
it this way only obscures the matter. Thus I am inclined to hold that the Hilbert who
wrote Grundlagen, unlike Dedekind (the author of Zerlegungen, say), did not possess such
resources.74 To the extent that this is the case, we have here a difference between Hilbert
and Dedekind which I think again may be seen as stemming from their differing views on
the structure of mathematical science.

§6. Dedekind’s substantive primitive terms. Regardless of whether Dedekind con-
ceived of a hierarchy of concepts around which his mathematics is built, it will be evident
to any reader of Was sind that Dedekind there assumes certain fundaments upon which
the edifice is erected.75 On my reckoning, this fundament is made up of the following
notions:

• a is a thing
• a = b (a is the same thing as b)
• A is a system
• a ∈ A (a is an element of A)
• ϕ is a mapping of the system A
• ϕ(s) (the ϕ-image of s)

In prose, the primitives of Was sind are the notions of thing, thing identity, system, element-
hood, mapping, and image. It is remarkable that Dedekind does not take these primitive
terms for granted, but, as I will presently argue, introduces them through elucidation.
Elucidation presupposes a substantive sense of that which is elucidated. The claim of
the present part of the paper is that Dedekind differs from Hilbert in maintaining this
presupposition, since for Hilbert the primitive terms do not have a substantive sense, but
are merely schematic, and without substantive sense.

6.1. Reinterpretation, relabeling, temporarily disregarding sense. Some distinctions
should be drawn here to clarify what is involved in this claim. Firstly, one must dis-
tinguish between, on the one hand, the recognition that the terms of a theory may be
reinterpreted, and on the other, the terms’s being schematic. In the first case the terms
are substantive and a reinterpretation merely “swaps” one sense for another, leaving the
sign (inscription, acoustic image, etc.) intact; in the second case the terms are through
and through nonsubstantive, with a formal sense only, and hence in need of interpretation
for attaining substantive sense. The distinction is illustrated by comparing Bolzano’s and
Quine’s notions of what Bolzano (1837, §148) called logical analyticity of a proposition

74 Resnik (1974, p. 394) reports that he has “been unable to locate a statement by Hilbert that his
axioms define structures.”

75 In his official reply to Keferstein, this edifice is described as his “kunstvoll gefügte, in allen
seinem Teilen fest geschlossenene, unerschütterliche Gebäude. . . ” (cf. Dedekind, 1890b, p. 259).
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and Quine (1982, chap. 6) called validity of schema. A proposition is logically analytic
if all reinterpretations—or properly speaking, variations, since for Bolzano a proposition
(Satz an sich) is not an expression—of its nonlogical terms leave unaltered the truth or
falsity of the proposition. A schema is valid if all of its interpretations are true. In the first
case, we set out with a proposition and through varying its nonlogical terms we obtain
new propositions, but we never, as it were, leave the realm of propositions to enter that
of “schematic propositions” or “propositional forms”; in the second case, however, we set
out precisely with such a form, a schema, and this needs to be “filled,” that is interpreted,
before one obtains any proposition at all.

Dedekind grasped the idea of reinterpretation very well, indeed he grasped its sig-
nificance for the investigation of logical dependencies. This is shown in the preface to
Was sind, where, developing thoughts present already 12 years earlier in his exchange
with Lipschitz, Dedekind reinterprets the notion of point so that an “everywhere non-
continuous” space results in which,

as far as I can see, all constructions that appear in Euclid’s Elements may
be carried out just as they can in the completely continuous space; the
discontinuity of this space would thus not at all be noticed, not at all be
perceived, in Euclid’s science.76

Dedekind here conceives of a reinterpretation of the terms of Euclid’s geometry: instead
of their ordinary, or intuitive meaning, on which space is completely continuous, they are
given a new meaning explained in terms of the intuitive notion, namely by assuming only
enough intuitive points to be present for the geometrical constructions to go through. Thus
Dedekind does not here treat the terms of geometry as schematic, for he never leaves the
sphere of the substantive, but rather gives a new meaning to ‘point’ (the meaning of ‘line’
and ‘plane’ being naturally induced by the meaning of ‘point’). Hence our claim is not that
Dedekind does not recognize that the terms of a science may be reinterpreted, for instance
towards the investigation of logical dependencies; the claim is rather that he never treats
the terms of a theory as schematic.

Reinterpretation of the primitive terms must be distinguished from the dual operation of
relabeling. Roughly, in a reinterpretation one changes the sense and keeps the sign; in a
relabeling one changes the sign and keeps the sense. Relabeling is of help in the rigorous
development of a science, since giving the terms foreign names is a way of hindering
associations from motivating inferences not justified by the axioms and rules of inference.
Dedekind was well-aware of this, as is witnessed by the following famous passage from a
letter to Lipschitz:

an infallible method for such an analysis consists to my mind in this,
that one replaces all technical terms by arbitrary and newly invented
(hitherto meaningless) words; the edifice, if correctly constructed, shall

76 Dedekind (1932c, pp. 339–340, Was sind Preface): “. . . aber trotz der Unstetigkeit,
Lückenhaftigkeit dieses Raumes sind in ihm, so viel ich sehe, alle Konstruktionen, welche
in E u k l i d s Elementen auftreten, genau ebenso ausführbar wie in dem vollkommen stetigen
Raume; die Unstetigkeit deises Raumes würde daher in E u k l i d s Wissenschaft gar nicht
bemerkt, gar nicht empfunden werden.”
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not thereby collapse, and I claim, e.g., that my theory of real numbers
passes this test.77

The literature has frequently compared this remark of Dedekind’s with Hilbert’s famous
remark on “tables, chairs, and beer mugs.”78 To my mind, it seems that these two remarks
should be kept apart, for in the first, relabeling is at issue, whereas reinterpretation would
seem to be at issue in the second. However that may be, for current purposes the main point
is that seeing the possibility of relabeling the terms of a theory does not amount to treating
them as schematic.

Finally, one must distinguish treating terms as schematic from how one treats terms
when “thinking in symbols.” In the latter case the terms are substantive at the outset, but
one temporarily disregards their sense and operates on the signs as such, letting the symbols
do the thinking, as it were. Already Leibniz, Lambert, and others realized the potential of
symbolic thinking; thus Lambert speaks warmly of “reducing the theory of things to the
theory of signs.”79 With reference to a symbol system for numbers in base X (e.g., 10),
Husserl describes the procedure as follows:

. . . in practical tasks of counting given sets, as well as in tasks of compu-
tationally deriving numbers from numbers, one can obtain the solution
purely mechanically, provided that one substitutes the names for the
concepts and then, by means of the system of names, derives names from
names in a purely superficial procedure, whereby names at last result
whose conceptual construal necessarily yields the result sought for.80

Thus, one starts out with substantive terms, but rather than thinking through the concepts
signified by these terms one thinks through the signs according to some preestablished
system; it is, however, not the outcome of this “superficial procedure” which is regarded as
the result sought for, rather the result sought for is this outcome in its conceptual construal.
Characteristic of this method is it thus that one leaves the substantive only temporarily, in
general thereby facilitating the attainment of the result; in particular, the terms are still at
root substantive, for the beginning as well as the end of the procedure consist in substantive
terms and substantive judgments.

77 Dedekind (1932c, p. 479, letter dated July 27, 1876): “Eine untrügliche Methode einer solchen
Analyse besteht für mich darin, alle Kunstausdrücke durch beliebige neu erfundene (bisher
sinnlose) Worte zu ersetzen, das Gebäude darf, wenn es richtig construirt ist, dadurch nicht
einstürzen, und ich behaupte z.B., daß meine Theorie der reellen Zahlen diese Probe aushält.”

78 The comparison is made, for example, by Stein (1988, p. 253), Ferreirós (1999, p. 132), Schlimm
(2000, p. 16), and Sieg & Schlimm (2005, p. 155). Hilbert’s remark is reported by Blumenthal
(1935, pp. 402–403).

79 Lambert (1764, §24): “Die Theorie der Sache auf die Theorie der Zeichen reduciren, will sagen,
das dunkle Bewußtseyn der Begriffe mit der anschauenden Erkenntniß, mit der Empfindung und
klaren Vorstellung der Zeichen verwechseln.”

80 Husserl (1891, p. 239): “ . . . daß man sowohl bei Aufgaben praktischer Zählung gegebener
Mengen als auch bei solchen der rechnenden Herleitung von Zahlen aus Zahlen die Lösung
rein mechanisch gewinnen kann, indem man die Namen den Begriffen substituiert und dann an
Hand der Systematik der Namen in rein äußerlicher Prozedur Namen aus Namen herleitet, wobei
schließlich Namen resultieren, deren begriffliche Deutung das gesuchte Resultat notwendig
ergibt.”
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As is perhaps to be expected of an algebraist, Dedekind was familiar with the idea of
thinking in symbols. This is especially clear from his Zerlegungen paper. There Dedekind
makes a discrimination between what it is for an equation E to follow from the equations
A and what it is for E to be true in virtue of the sense that has been given to its terms. Thus
Dedekind says of the demonstration of a certain theorem that it:

results immediately from the theorems above without its being necessary
to have recourse to the signification of our signs.81

Dedekind does not state explicitly what it is for an equation E to follow from other
equations, but whenever he derives an equation from the initial system A, it is by means
of substitutions, assuming reflexivity, transitivity, and symmetry of the identity sign. In
the case at hand, however, Dedekind is not operating with terms that are schematic from
the outset; he is working within the theory of finite sets, and he claims in effect that
the theorem in question would follow from the equations A even by calculation on the
signs themselves, by temporarily disregarding the sense of the terms involved. A few
pages later Dedekind gives his definition of dual groups; as was argued in Section 2.2,
in that definition the higher-level point of view is in full force, whence a dual group is
accordingly regarded as a certain kind of structure or domain, and dual group theory as a
theory built around substantive primitives. This fact, therefore, that Dedekind sometimes
alludes to thinking in symbols does not show that the primitive terms of his theories were
not substantive.

6.2. Elucidation. Most definitions in Was sind have the form of a nominal definition;
the definition of an infinite system in article 64 may serve as an example:

A system S is said to be infinite when it is similar to a proper part of
itself.82

The word marking definitional equivalence here is ‘is said to be’ (‘heißen’), but one
also finds ‘designate’ (‘bezeichnen’), ‘then we say that’ (‘so sagen wir’) and like phrases
indicating abbreviation; moreover, these definitions have a grammatical form that will
allow for the substitution of the definiens for the definiendum. The descriptions of the
primitive notions, however, are not accompanied by indicators of nominal equivalence, or
at least they have a grammatical form that will not license substitution:

• In the following I understand by a thing any object of our thought.83

• A thing a is the same as b (identical to b), and b the same as a, when everything
that can be thought of a can also be thought of b, when everything that holds of b
also can be thought of a.84

81 Dedekind (1932b, p. 111): “Der B e w e i s ergibt sich unmittelbar aus den obigen Sätzen, ohne
daß es nötig wäre, auf die Bedeutung unsererer Zeichen zurückzukommen.”

82 Dedekind (1932c, p. 356, Was sind article 64): “Ein System S heißt u n e n d l i c h, wenn es einem
echten Teile seiner selbst ähnlich ist.”

83 Dedekind (1932c, p. 344,Was sind article 1): “Im folgenden verstehe ich unter einem D i n g
jeden Gegenstand unseres Denkens.”

84 Dedekind (1932c, p. 344,Was sind article 1): “Ein Ding a ist dasselbe wie b (identisch mit b),
und b dasselbe wie a, wenn alles, was von a gedacht weden kann, auch von b, und wenn alles,
was von b gilt, auch von a gedacht werden kann.”
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• It very frequently happens that, for some reason or other, different things a, b, c. . .
are comprehended under a common point of view, or composed in the mind, and
one says then, that they form a system; the things a, b, c. . . are called the elements
of the system S, they are contained in S; conversely, S consists of these elements.
Such a system S (or aggregate, manifold, totality), as an object of our thought, is
likewise a thing.85

• By a mapping ϕ of a system S I understand a law according to which there belongs
to every element s of S a determined thing, which is called the image of s and
designated by ϕ(s).86

One sees clearly that the descriptions given here of system, of elementhood, of mapping,
and of image are all nonnominal: they do not declare a certain term to be the abbreviation
of a combination of certain other terms already understood. The descriptions of the notions
of thing and thing identity are perhaps less clearly nonnominal. ‘Thing’ can in principle
be seen as the definiendum in a nominal definition whose definiens is ‘object of thought’,
and thing identity can be seen as defined through Leibniz’s principle. In the following I
will treat the notion of thing and identity among things as primitive to Dedekind’s theory,
but nothing essential will hinge upon them being so taken; note, however, that identity
for systems is not primitive, but is defined in terms of the notion ‘a ∈ A’ and the prin-
ciple of extensionality. Setting aside these somewhat problematic, yet for our purposes
inconsequential, cases of thing and thing identity, I suggest, as already indicated, to read
Dedekind’s descriptions of his primitive terms as elucidations in the sense of Frege’s
Erläuterungen.87 In the second installment of Über die Grundlagen der Geometrie (1906),
Frege introduced this notion as follows:

As soon as the researchers have made the primitive elements and their
significations understood, then the understanding of the logically com-
posite through definition is easy to achieve. However, since the latter is
not possible with regards to the primitive elements, something else has
to enter here; I call that elucidation.88

Applying to the construction of concepts the arguments that Aristotle made in Posterior
Analytics I.3 with respect to the justificational structure of judgments, one reaches the

85 Dedekind (1932c, pp. 344–345, Was sind article 2): “Es kommt sehr häufig vor, daß verschiedene
Dinge a, b, c. . . aus irgendeiner Veranlassung unter einem gemeinsamen Gesichtspunkte
aufgefaßt, im Geiste zusammengestellt werden, und man sagt dann, daß sie ein S y s t e m S
bilden; man nennt die Dinge a, b, c. . . die E l e m e n t e des Systems S, sie sind e n t h a l t e n
in S; umgekehrt b e s t e h t S aus diesen Elementen. Ein solches System S (oder ein Inbegriff,
eine Mannigfaltigkeit, eine Gesamtheit) ist als Gegenstand unseres Denkens ebenfalls ein
Ding.”

86 Dedekind (1932c, p. 348, Was sind article 21): “Unter einer A b b i l d u n g ϕ eines Systems S
wird ein Gesetz verstanden, nach welchem zu jedem bestimmten Element s von S ein bestimmtes
Ding g e h ö r t, welches das B i l d von s heißt und mit ϕ(s) bezeichnet wird.”

87 For a recent discussion of elucidation and primitive notions in Frege, see Tolley (2011).
88 Frege (1906, p. 301): “Wenn sich die Forscher über diese Urelemente und ihre Bezeichnungen

verständigt haben, ist das Einverständnis über das logisch Zusammengesetze durch Definition
leicht erreichbar. Da bei den Urelementen diese nicht möglich sind, muß hier etwas anderes
eintreten; ich nenne es Erläuterung.”
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conclusion that (nominal) definition cannot go on forever.89 As stated in the Introduction
above, there has to be a foundation for the construction of concepts, that is one has to
accept primitive terms, and if these primitives are also primitive in the hierarchy of con-
cepts, then one cannot convey their meaning through nominal definition, but “something
else has to enter.” What this something else is need not be laid down beforehand; any
means necessary to get the learner to grasp the sense of the primitive terms are permitted.
Frege’s use of metaphorical language in explaining the primitive notion of function is one
example; another example is description of how one should go about generating that which
is signified by the term thereby elucidated, along the lines of Dedekind’s explanation of the
notion of system. A third mode of elucidation is definition by ostension, as Pasch (1882,
p. 16) recommends for the primitive concepts of geometry,90 and Locke sees as necessary
for coming to understand the name of a simple idea (Essay III.iv.11);91 finally, using the
primitive in a context, along the lines that Wittgenstein seems to envision at Tractatus
3.263, is a fourth.92 This openness of method is one point at which elucidation contrasts
with nominal definition—for the latter, stringent rules may be laid down.93 Another point
of contrast is that elucidation, unlike nominal definition, does not allow for substitution
of the definiens for the definiendum. Indeed, in many cases such substitution is prohibited
already on grounds of grammar: for instance, an ostension does not have the “grammar” of
a term.

Lack of substitutability would seem to be what underlies Frege’s insistence that elu-
cidation belongs to the “courtyard of science,” is dispensable, and is not proper to the

89 Such an argument can be found, for example, in Locke’s Essay III.iv.5. According to Scholz
(1945, p. 121) it was Pascal (1657) in De l’esprit géométrique who first clearly realized the
parallel between the structure of judgments and the structure of concepts. As Scholz argued
elsewhere, however, there are passages in Posterior Analytics (in particular in I.10 and II.9)
which suggest that already Aristotle had seen the parallel and had recognized along with the
notion of axiom also the notion of primitive term (Scholz, 1930, pp. 38–39). In fact, there is a
striking similarity between the passage from Über die Grundlagen der Geometrie recently cited

and Posterior Analytics II.9, 93b22–24:

Of some things there is something else which is their explanation [aition], of
others there is not. Hence it is plain that in some cases what something is is
immediate and a principle; and here you must suppose, or make clear in some
other way [allon tropon fanera poiēsai], both that the thing exists and what it is.
[Translation from Barnes, 1993]

It may be noted that Pascal in the mentioned fragment does not appeal to any notion of
elucidation, but holds that primitive terms are claires et constantes par la lumière naturelle
(Lafuma, 1963, p. 350).

90 See Schlimm (2010) for an account of this and other aspects of Pasch’s philosophy of
mathematics; ostension is discussed there, in connection with Pasch’s empiricism, at page 100.

91 Locke (1975, p. 425): “And therefore he that has not before received into his Mind, by the proper
Inlet, the simple Idea which any Word stands for, can never come to know the signification of
that Word, by any other Words, or Sounds, whatsoever put together, according to any Rules of
Definition. The only way is, by applying to his Senses the proper Object; and so producing that
Idea in him, for which he has learn’d the name already.”

92 It would seem to be this fourth method of elucidation which Frege mocks in his musings on
“Jedes Anej bazet wenigstens zwei Ellah” (Frege, 1906, p. 397). On the notion of elucidation
presupposed at TLP 3.263, see Hacker (1986, pp. 75–78).

93 See, for example, Frege (1893, pp. 51–52) and Leśniewski (1931).
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science itself: the science itself begins with the primitive terms, and nothing is there with
which they could be substituted. Elucidation is dispensable, that is to say, elucidation, like
Wittgenstein’s ladder, may be thrown away once climbed.94 Now, in climbing the ladder,
in coming to comprehend the primitives through elucidation, one will naturally have to
make use of knowledge and skills obtained in contexts outside the science in question; but
this is not to say that the science depends logically on this knowledge and these skills. This
is important to appreciate in considering, for instance, Frege’s use of elucidation: does that
put the logicist project in danger, in that the primitive notion of function, for instance, in
some sense comes to depend on extra-logical knowledge? The answer is no, I think, for the
knowledge one makes use of in carrying out elucidation need not be logically prior to the
notions elucidated.95

§7. Hilbert’s schematic primitive terms.

7.1. Hilbert’s conception of the primitive terms. It seems to be against the very idea
of elucidation that Hilbert is inveighing in the following passage from his most extended
letter to Frege:

If one seeks other definitions of ‘point’, say through a rephrasing such
as ‘without extension’, then I have to disapprove in a most determined
way of any such attempt; one is then in search of something that one shall
never find, as there is nothing there, and everything gets lost in confusion
and obscurity, and evolves into a game of hide-and-seek.96

The aim of elucidation is to convey the sense of the primitive terms to the learner. There
is no guarantee that this will succeed, that the learner will indeed grasp the sense one
intends in the primitive terms; one has to “count on a certain amount of good will, on a re-
ceptive understanding, on guessing.”97 This may seem to leave an element of imprecision at
the very beginning of a science. Such apparent imprecision might be the reason why Hilbert
did not accept the idea that the sense of the primitive terms is to be fixed by elucidation.
In fact, Hilbert (1905), in his discussion of Cantor, can be seen as criticizing the latter for
admitting imprecision into the foundations of logic and arithmetic; paraphrasing Hilbert,
although Cantor had realized the contradiction implicit in the notion of the totality of all
things, and had consequently distinguished consistent from inconsistent multiplicities, he
had given no precise criterion for applying this distinction; that is to say, Cantor’s “con-
ception regarding this matter [. . . ] gives leeway for subjective considerations and warrants

94 Cf. TLP 6.54, which besides employing the ladder metaphor also employs the verb erlaütern; this
may have occasioned Neurath (1932, p. 214) to speak of Wittgenstein’s conception of philosophy
in the Tractatus as an “elucidatory ladder” (Erläuterlungsleiter).

95 Cf. Hallett (2010, p. 436).
96 Frege (1976, p. 66, Letter XV/4, dated December 29, 1899): “Wenn man nach andern

Definitionen für “Punkt”, etwa durch Umschreibungen wie ausdehnungslos etc. sucht, so muss
ich solchem Beginnen allerdings aufs entschiedenste widersprechen; man sucht da etwas, was
man nie finden kann, weil nichts da ist, und alles verliert sich und wird wirr und vage und artet
in Versteckspiel aus.”

97 Frege (1906, p. 301): “Dabei muß auf etwas guten Willen, auf entgegenkommendes Veständnis,
auf Erraten gerechnet werden können.”
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therefore no objective certainty.”98 I think Hilbert could have raised similar objections
against the notion that the primitive terms are to be understood through elucidation.

If the sense of the primitives is not to be fixed by elucidation, however, then there would
seem to be nothing at all prior to the system of the science that could fix their sense; indeed,
one can read Hilbert as saying that nothing should fix the sense of the primitives, when he
writes to Frege that “I do not want to assume anything as known”99—not even knowledge
of the meaning of the primitive terms is to be assumed. Hilbert’s way of achieving this is
to let the primitive terms have only a formal sense, to let them be variables, or schematic
letters. I would like to suggest that this be viewed as a consequence of Hilbert’s apparent
dismissal of elucidation as a signpost to the sense of the primitive terms. For if someone
is to construct a science on the foundation of certain substantive terms, then he shall
presumably be in a position to elucidate those terms; the terms need to be sufficiently clear
to him, for otherwise he would presumably not be able to construct the science in question.
Hence, if asked what he means by a certain primitive, if asked to give elucidations, he
should be able to give an answer. That this answer may be more or less felicitous is just
a reflection of the fact that elucidation itself may be more or less felicitous. But since
Hilbert apparently denies that the primitives should or indeed could be elucidated, he would
therefore seem to be denying any substantive sense at all to the primitives. In this way, then,
Hilbert’s treatment of the primitives as schematic may be regarded as a consequence of his
view of elucidation of the primitives as futile.

Thus Hilbert’s primitives are of a schematic character, and this character spreads through
the whole theory. What results is, as Hilbert says, a schema, or scaffolding, open for various
ways of being filled with material. Hilbert held this conception of mathematical theories
already by 1894:

Our theory yields only the schema of concepts, which are connected with
each other through the immutable laws of logic. It is left to the human
intellect how it applies this schema on the phenomena, how it fills it with
material.100

Similar ideas were entertained by other thinkers at the time. Thus, in a remarkable paper,
Weber (1893) speaks of his presentation of Galois theory as a “pure formalism which
attains content and life,” only through furnishing the terms with “number values.”101 And
Husserl remarks in the Philosophie der Arithmetik that

98 Hilbert (1905, p. 176): “Indem er aber meiner Meinung nach für diese Unterscheidung kein
scharfes Kriterium aufstellt, muß ich seine Auffassung über diesen Punkt als eine solche
bezeichnen, die dem subjektiven Ermessen noch Spielraum läßt und daher keine objektive
Sicherheit gewährt.”

99 Frege (1976, p. 66, Letter XV/4, dated December 29, 1899): “Ich will nichts als bekannt
voraussetzen.”

100 Hallett & Majer (2004, p. 104): “Unsere Theorie liefert nur das Schema der Begriffe, die durch
die unabänderlichen Gesetze der Logik mit einander Verknüpft sind. Es bleibt dem menschlichen
Verstande überlassen, wie er dieses Schema auf die Erscheinung anwendet, wie er es mit Stoff
anfüllt.” Earlier in the same lectures (ibid. p. 72) Hilbert uses the metaphor of scaffolding of
concepts (Fachwerk der Begriffe).

101 Weber (1893, p. 521): “Die Theorie erscheint bei dieser Auffassung freilich als ein reiner
Formalismus, der durch Belegung der einzelnen Elemente mit Zahlwerthen erst Inhalt und Leben
gewinnt.”
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It is a fact of the utmost significance for the deeper understanding of
mathematics, that one and the same system of symbolism can serve
several systems of concepts, which, being different in content, show
analogies in their form of construction only.102

Hilbert would concur with the view expressed here, that in mathematics several theories
might be “isomorphic,” as one could say—they share the same theory form.103 Hilbert’s
conception of a science as schematic would, however, seem to go deeper. It seems that for
Hilbert, the ultimate presentation of a science is an axiomatic and schematic presentation
(cf. Footnote 41 above). Indeed, a preliminary study of what Hilbert says of axioms and
axiomatic science in the lecture notes on geometry published in Hallett & Majer (2004)
suggests that he saw the process of axiomatization as taking place in two steps: first one
singles out according to criteria mentioned in Section 4.1 above a set of judgments which
suffices for the construction of the theory at hand; in a second step one then “formalizes,”
or “de-materializes” the primitive terms of the theory so as to be left with a schema.104

Only upon completing these two steps will one have reached the ultimate presentation
of the theory; hence, Hilbert’s call to “axiomatize all other sciences after the pattern of
geometry” is a call to present all sciences axiomatically and schematically. One could ask
in turn why a schematic presentation was seen as ideal. In response one could, firstly, refer
to Hilbert’s rejection of elucidation and the consequent conception of the primitive terms
as schematic—when the primitives are schematic, then so must be the theory built around
those terms. But secondly, although this is mere speculation, it could also be suggested
that what underlies this schematic ideal is a view of sciences as mirroring the intellect
as an organizing frame for the material of experience;105 here we would be taking initial
steps in a reading of Hilbert through Kant, the further development of which lies outside
the scope of this paper.

7.2. The primitives of the Grundlagen der Geometrie. In the famous opening of §1 of
the Grundlagen, Hilbert introduces the three primitives ‘point’, ‘line’, and ‘plane’ (Hilbert,
1899, p. 4):

Declaration. We conceive three systems of things; we call the things
of the first system points, and signify them by A, B, C ,. . . ; we call the
things of the second system lines, and denote them by a, b, c,. . . ; we call
the things of the third system planes, and denote them by α, β, γ ,. . . 106

These are the most basic of Hilbert’s primitives, as they are thought to give domains of
objects which form the basis over which the other primitives are to range; if one views
Hilbert’s primitives as variables, then these three basic primitives may be termed sortal

102 Husserl (1891, p. 258): “Es ist eine für das tiefere Verständnis der Mathematik höchst
bedeutsame Tatsache, daß ein und dasselbe System der Symbolik m e h r e r e n Begriffssystemen
dienen kann, welche, ihrem Inhalte nach verschieden, nur in der Bildungsform Analogien
aufweisen.”

103 Cf. Husserl (1900, §69).
104 On this use of ‘formalize’ cf. Husserl (1913, §13).
105 Hallett (2008, p. 217) makes a similar suggestion.
106 Hilbert (1899, p. 4): “E r k l ä r u n g. Wir denken uns drei verschiedene Systeme von Dingen: die

Dinge des e r s t e n Systems nennen wir Punkte und bezeichnen sie mit A, B, C ,. . . ; die Dinge
des z w e i t e n Systems nennen wir Gerade und bezeichnen sie mit a, b, c,. . . ; die dinge des
d r i t t e n Systems nennen wir Ebenen und bezeichnen sie mit α, β, γ . . . ”
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variables. In the sections that follow, and where Hilbert lays down the axioms of geometry,
it is not always made explicit what is primitive and what is or can be defined, but it seems
that five more primitives are needed for a faithful representation of Hilbert’s theory:107

• A and B lie on a (or, A and B are incident1 on a)
• A, B, and C lie in α (or, A, B, and C are incident2 on α)
• A lies between B and C
• AB is congruent1 to C D
• 	 (h, k) is congruent2 to 	 (h′, k′)

In addition, and as has been emphasized by Ferreirós (2009), naive set theory is assumed.
Thus the segment AB is defined as “the system of the two points A and B that lie on a line”
(Hilbert, 1899, pp. 6–7).108 The variables ‘h’ and ‘k’ range over what Hilbert calls half-
rays, which notion is defined as “all the points that lie on one and the same side of a point
on the line”;109 although Hilbert does not use set terminology in this definition, it would
seem natural to assume, in view of the definition of the notion of segment, that Hilbert does
think of a ray as a set of points. The angle 	 (h, k) is defined as the system of two half-rays
starting in the same point O , thus an angle is a set of sets of points. As one sees, the use of
set theory is therefore both natural and, unless one uses higher-order logic, necessary for a
faithful representation of Hilbert’s geometry. On the other hand, the notions of system and
thing are not themselves part of Hilbert’s geometry, there are no primitives ‘a is a thing’
or ‘A is a system’, as there are in Dedekind. Hilbert’s geometry is built around the eight
primitives just listed, these are the primitives involved in Hilbert’s axioms, they define the
“subject matter” of the theory.

7.3. The semantics of Hilbert’s primitive terms. Thus, in the Grundlagen der Geome-
trie Hilbert does not give elucidations of the primitives, rather he treats them as schematic,
namely as variables. This is, however, not to say that he treats the terms as meaningless,
that is with no sense at all, on a par with letters arbitrarily jumbled together: xkrqkaaa!
We read Hilbert’s text and feel certain that we understand it, we can follow its reasonings
and accept its theorems. Hence the question naturally arises, what might be the semantic
status of the primitive terms of Hilbert’s geometry, as that around which this geometry is
constructed? Given our claim that these terms are to be viewed as variables, the question
in effect reduces to giving a semantics for variables, a task which lies outside the scope of
this paper.110 But I wish to end by discussing briefly one prominent reading of Hilbert’s
primitive terms, namely as nonlogical constants.111 The problem with this reading, as I
see it, is that the notion of a nonlogical constant allows for at least three very different

107 Carnap (1927, p. 369) as well as Bernays (1942) recognize only one relation of incidence and
only one relation of congruence, and hence they have six primitives in total. From considering
the arity of these relations it seems that one would need two relations of incidence. One could
presumably introduce a disjunctive congruence relation, although I would claim that it is more
faithful to Hilbert to have two separate such relations.

108 In the 1898–1899 lectures, the segment AB was defined as the aggregate [Inbegriff ] of all points
between A and B (cf. Hallett & Majer, 2004, p. 308).

109 Hilbert (1899, p. 8): “Die sämtlichen auf ein und derselben Seite von O gelegenen Punkte der
Gerade heissen auch ein von O ausgehender Halbstrahl.”

110 Semantics of variables have been given by Fine (1985), Tichý (1988), and Breckenridge &
Magidor (forthcoming).

111 This reading was first put forth by Demopoulos (1994), who has been followed by Hallett (1994,
p. 163). My disagreement is more a matter of terminology than substance, I think.
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interpretations. Only one of these interpretations can be applied in reading the primitive
terms of the Grundlagen, but that is the interpretation of nonlogical constants as variables;
indeed, there is a very natural interpretation of the notion of nonlogical constant that will
not fit Hilbert’s primitive terms.

To start with the most natural interpretation of the notion of a nonlogical constant,
consider what Frege says towards the end of the preface to Begriffsschrift on the prospects
of applying his ideography to fields of science other than logic:

It seems to me easier still to extend the domain of this formula language
to geometry. One would only have to add some signs for the intuitive
relations that are found here.112

Thus Frege thinks of his ideography as extended by terms that, firstly, have a fixed
sense, namely as standing for the primitive “relations” of geometry, and secondly, are
nonlogical, inasmuch as they are neither part of, nor definable from, the primitive symbols
of the ideography; hence these terms are naturally called nonlogical constants. It is clear,
however, that they are not of a kind with Hilbert’s primitive terms, for it is precisely the
mark of these primitives that their sense is not fixed.

On the second interpretation of the notion of a nonlogical constant they are the elements
of the signature of a formal language; here, a formal language is that kind of inductively
generated set which is called language in metamathematics, and which is not really a
language at all, but rather a set of mathematical objects. For that reason, neither can the
notion of nonlogical constant on this interpretation be used in reading Hilbert’s Grundla-
gen. Hilbert intended to express thoughts, but the “symbols” of a formal language in the
current sense are not apt for that purpose; such so-called symbols and their concatenations
are not expressions but rather a kind of mathematical object; what are called symbols in
the technical terminology of metamathematics are not used for the expressing of thoughts,
but fall in the domain of objects of metamathematics.113 This is not to say that we cannot
“model” or “formalize” Hilbert’s geometry in a formal system—we can very well do that;
but that does not mean that the geometry itself is materialized in such a system.

With the third interpretation we reach what I think is the correct description of Hilbert’s
primitive terms. On this interpretation, a typical example of a nonlogical constant is the
‘◦’ as it would appear in a book on group theory. What kind of symbol is this group-
operation symbol? To my mind, it is simply a variable. Since our interest is in Hilbert,
I am here assuming that group theory is read schematically in the sense of Section 2.2
above; hence the ‘◦’ is not a bound, but rather a free variable. Now there are at least two
possible interpretations of a free variable: the universal interpretation and what I will call

112 Frege (1879, p. VI): “Noch leichter scheint es mir zu sein, das Gebiet dieser Formelsprache auf
Geometrie auszudehnen. Es müssten nur für die hier vorkommenden anschaulichen Verhältnisse
noch einige Zeichen hinzugefügt werden.”

113 This state of affairs has been beautifully described by Kleene (1952, p. 64):

Metamathematics must study the formal system as a system of symbols, etc. which are
considered wholly objectively. This means simply that those symbols, etc. are themselves the
ultimate objects, and are not being used to refer to something other than themselves. The
metamathematician looks at them, not through and beyond them; thus they are objects without
interpretation or meaning.

The nonsymbolic nature of metamathematical “symbols” has been stressed on many occasions
by Sundholm (2002).
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the as-if interpretation. In the equation a + b = b + a, for instance when taken to express
the commutative law for the integers, the letters receive the universal interpretation: the
equation is taken to hold for all integers. In a book on group theory, however, I think the
group operation symbol typically receives the as-if interpretation; it is “as if” ◦ were some
specific group operation. Thus the ‘◦’ on a schematic reading of group theory plays the
same role as do the capital Greek letters in Frege’s presentation of his ideography in the
Grundgesetze:

I here use the capital Greek letters as names as if they signified some-
thing, though I do not specify the signification.114

Or consider the demonstration of a general judgment, that is of a judgment of the form

(∀a ∈ A) B(a) true.

In such a demonstration one typically sets out by declaring “let a ∈ A!” Until this ‘a’ gets
bound, it is “as if” a is some specific element of A. At the stage where ‘a’ does get bound,
one has, as it were, taken a step back from the as-if reading and passed on to the universal
interpretation of the variable; this would seem to be what we do after declaring “but a
was arbitrary” and before applying universal introduction. Thus Frege used three kinds of
variables in the Grundgesetze: capital Greek letters, requiring an as-if reading; latin letters,
requiring a universal reading; and fraktur letters for bound variables.

Frege in his interpretation of Hilbert’s geometry as an allgemeiner Lehrsatz (Frege,
1906, p. 380) treats the primitives as latin letters. I would be inclined to treat them as
variables with an as-if interpretation. But it may not matter much which interpretation
one chooses, for one can easily pass back and forth between the two; indeed, as the
consideration in the previous paragraph of the demonstration of a universal judgment
suggests, it might even be necessary to make use of both interpretations. When we are
working through Hilbert’s Grundlagen, when we live (as Husserl might have said) in
its definitions, theorems, and demonstrations, the primitives have an as-if character. In
a reflective attitude we then pass to their universal interpretation, and what results is an
allgemeiner Lehrsatz: it is a conditional whose antecedent is the conjunction of the axioms,
whose consequent is the conjunction of the theorems, and in which all the primitive terms
are substituted by latin letters, that is by free variables requiring the universal interpretation.
If we are to continue the development of the geometry, however, we have to go back to the
as-if interpretation, we have to think of the primitives “as if” they signified something
specific.

However that may be, as variables, on the as-if as well as on the universal reading, the
primitive terms are indeed seen as having a merely formal sense. Grasping the signification
of such a variable requires grasping its grammatical category—is it a unary predicate
variable, a binary relation variable?—as well as its range of significance—of what kind can
the property, relation, object be that is signified by a possible substituent for the variable?—
but this would seem to be all one needs to grasp in order to grasp the primitive terms.
As such the primitive terms may be viewed as grids open for various materializations,
for various ways of filling with material content, and their meaning itself may be termed
formal.

114 Frege (1893, p. 9, footnote): “Ich gebrauche hier die g r o s s e n g r i e c h i s c h e n
B u c h s t a b e n als Namen so, als ob sie etwas bedeuteten, ohne dass ich die Bedeutung angebe.”
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Dedekind, R. (1894). Über die Theorie der ganzen algebraischen Zahlen. Supplement XI
in Dirichlet (1894). Cited from Dedekind (1932b).
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Tichý, P. (1988). The Foundations of Frege’s Logic. Foundations of Communication.
Berlin: Walter de Gruyter.

Tolley, C. (2011). Frege’s elucidatory holism. Inquiry, 54, 226–251.
van der Waerden, B. L. (1930). Moderne Algebra. Berlin: Springer.
Weber, H. (1893). Die allgemeinen Grundlagen der Galois’schen Gleichungstheorie.

Mathematische Annalen, 43, 521–549.
Wittgenstein, L. (1922). Tractatus Logicco-philosophicus. International Library of

Psychology, Philosophy, and Scientific Method. London: Routledge & Kegan Paul.
Zermelo, E. (1908). Untersuchungen über die Grundlagen der Mengenlehre I. Mathema-

tische Annalen, 65, 261–281.

INSTITUTE FOR PHILOSOPHY
LEIDEN UNIVERSITY

POSTBUS 9515
2300 RA LEIDEN, THE NETHERLANDS

E-mail: anstenklev@gmail.com


