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We introduce a new approach to create and detect Majorana fermions using optically trapped 1D

fermionic atoms. In our proposed setup, two internal states of the atoms couple via an optical Raman

transition—simultaneously inducing an effective spin-orbit interaction and magnetic field—while a

background molecular BEC cloud generates s-wave pairing for the atoms. The resulting cold-atom

quantum wire supports Majorana fermions at phase boundaries between topologically trivial and

nontrivial regions, as well as ‘‘Floquet Majorana fermions’’ when the system is periodically driven.

We analyze experimental parameters, detection schemes, and various imperfections.
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Majorana fermions (MFs), unlike ordinary fermions, are
their own antiparticles and are widely sought for their
exotic exchange statistics and potential for topological
quantum computation. Various promising proposals exist
for creating MFs as quasiparticles in 2D systems, such as
quantum Hall states with filling factor 5=2 [1], p-wave
superconductors [2], topological insulator-superconductor
interfaces [3,4], and semiconductor heterostructures [5]. In
addition, MFs can even emerge in 1D quantum wires, such
as the spinless p-wave superconducting chain [6] which is
effectively realized in semiconductor wire-bulk supercon-
ductor hybrid structures with spin-orbit interaction and
a strong magnetic field [7,8]. Although there are many
efforts to search for MFs, their unambiguous detection
remains an outstanding challenge.

Significant advances in cold-atom experiments have
opened up a new era of studying many-body quantum
systems. Cold atoms not only sidestep the issues of disor-
der and decoherence which often plague solid-state sys-
tems, but also benefit from tunable microwave and optical
control of the Hamiltonian. In particular, recent experi-
ments have demonstrated synthetic magnetic fields by
introducing a spatially dependent optical coupling between
different internal states of the atom [9,10], which can be
generalized to create non-Abelian gauge fields with careful
design of optical couplings [11,12]. For example, spin-
orbit interaction can be induced in an optically coupled
tripod-level system to create MFs in 2D [13–15].

In this Letter, we propose to create and detect MFs using
optically trapped 1D fermionic atoms. We show that an
optical Raman transition with photon recoil can induce
both an effective spin-orbit interaction and an effective

magnetic field. Combined with s-wave pairing induced
by the surrounding BEC of Feshbach molecules, the
cold-atom quantum wire supports MFs at the boundaries
between topologically trivial and nontrivial superconduct-
ing regions [7]. Furthermore, the unique properties of
atomic systems with their complete isolation from the
environment allow a realization of Floquet MFs when the
system is periodically driven, and we find two flavors of
Floquet MFs characterized by different topological
charges. In contrast to the earlier 2D cold-atom MF pro-
posals that require sophisticated optical control, like tilted
optical lattices [16] or multiple laser beams [13,15], our
scheme simply uses the Raman transition. Moreover, com-
pared with the solid-state proposals [3,7], the cold-atom
quantum wire offers various advantages such as tunability
of parameters and, crucially, much better control over
disorder and decoherence.
Theoretical model.—We consider a system of optically

trapped 1D fermionic atoms inside a 3D molecular BEC
(Fig. 1). The Hamiltonian for the system reads

H ¼ X
p

aypð"p þ V þ �RFÞap þ
X
p

ðBaypþk;"ap�k;#

þ �ayp;"a
y
�p;# þ H:c:Þ: (1)

The fermionic atoms with momentum p have two relevant
internal states, represented by spinor ap ¼ ðap;"; ap;#ÞT .
The kinetic energy is "p ¼ p2

2m and the optical trapping

potential is V where the 1D fermionic atoms reside. As
shown in Figs. 1(a) and 1(b), two laser beams Raman
couple the states ap�k;# and apþk;" with coupling strength

B ¼ �1�
�
2

�e
, where �e is the optical detuning,�1ð2Þ are Rabi
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frequencies, and ~k1 � ~k2 ¼ 2kx̂ is the photon recoil mo-
mentum parallel to the quantum wire. The bulk BEC
consists of Feshbach molecules (b Ð a" þ a#) [17] with
macroscopic occupation in the ground state hb0i ¼ �. The
interaction between the fermionic atoms and Feshbach
molecules can be induced by an rf field, which has detun-
ing �rf and Rabi frequency g ¼ �BArf with magnetic di-
pole moment �B and rf field amplitude Arf . In the rotating
frame associated with the rf field, the interaction between b

and a" þ a# is gba
y
" a

y
# � �ay" a

y
# , with � � g� [18].

We can recast the Hamiltonian into a more
transparent form by applying a unitary operation that

induces a spin-dependent Galilean transformation, U ¼
eik

R
xðay

x;"ax;"�ay
x;#ax;#Þdx, where x is the coordinate along the

quantum wire. Depending on the spin, the transformation
changes the momentum by �k, Uapþk;"Uy ¼ ap;" and

Uap�k;#Uy ¼ ap;#. The transformed kinetic energy be-

comes spin-dependent ðpþ k�zÞ2=2m, which consists of
spin-independent part "0p ¼ p2=2m, spin-orbit interaction

kp�z=m, and constant energy shift k2=2m. The trans-
formed Hamiltonian closely resembles the semiconducting
wire model studied in [7] and reads

H ¼ X
p

aypð"0p ��þ up�z þ B�xÞap

þ ð�ayp;"ay�p;# þ H:c:Þ; (2)

where � � �ð�rf þ V þ "kÞ is the local chemical poten-
tial and the velocity u ¼ k=m determines the strength of
the effective spin-orbit interaction.

Topological and trivial phases.—The physics of the
quantum wire is determined by four parameters: the
s-wave pairing energy �, the effective magnetic field B,
the chemical potential �, and the spin-orbit interaction
energy Eso ¼ mu2=2. For p � 0, the determinant of H0

p

is positive definite, so the quantum wire system has an
energy gap at nonzero momenta. For p ¼ 0, however, H0

p

yields an energy E0 ¼ B� ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
�2 þ�2

p
which vanishes

when the quantity C � �2 þ�2 � B2 equals zero, signal-
ing a phase transition [7] [see Fig. 2(b)]. When C> 0 the

quantum wire realizes a trivial superconducting phase. For
example, when B � �, � all energy gaps are dominated
by the pairing term, yielding an ordinary spinful 1D su-
perconductor. When C< 0 a topological superconducting
state emerges. For instance, when B � �, �, Eso the
physics is dominated by a single spin component with an
effective p-wave pairing energy �p � � up

B ; this is essen-

tially Kitaev’s spinless p-wave superconducting chain,
which is topologically nontrivial and supports MFs [6].
With spatially dependent parameters (�, B or�), we can

create boundaries between topological and trivial phases.
MFs will emerge at these boundaries [7]. Spatial depen-
dence of �ðxÞ can be generated by additional laser beams
with nonuniform optical trapping potential VðxÞ. Then
CðxÞ can take positive or negative values, which divides
the quantum wire into alternating regions of topological
and trivial phases [Figs. 2(c) and 2(d)]. Exactly one MF
mode localizes at each phase boundary. The position of the
MFs can be changed by adiabatically moving a blue-
detuned laser beam that changes �ðxÞ. Similarly, we can
also use focused Raman beams to induce spatially depen-
dent BðxÞ to control the positions of the MFs.
Floquet MFs.—It has been recently proposed that peri-

odically driven systems can host nontrivial topological
orders [19,20], which may even have unique behaviors
with no analogue in static systems [21]. Our setup indeed
allows one to turn a trivial phase topological by introduc-
ing time dependence, generating ‘‘Floquet MFs.’’ For
concreteness we consider the time-dependent chemical
potential

�ðtÞ ¼
�
�1 for t 2 ½nT; ðnþ 1=2ÞTÞ
�2 for t 2 ½ðnþ 1=2ÞT; ðnþ 1ÞTÞ ; (3)

which can be implemented by varying the optical trap
potential V or the rf frequency detuning �rf . In addition,
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FIG. 2 (color online). (a) Energy dispersion for spin-orbit-
coupled fermions in a magnetic field. There is an avoided
crossing at p ¼ 0 with energy splitting 2B (dark solid line).

The horizontal dotted line represents
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
�2 þ�2

p
, which has two

crossing points when
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
�2 þ�2

p
<B (blue [dark gray] dotted

line) and four crossing points when
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
�2 þ�2

p
>B (orange

[light gray] dotted line). (b) Phase diagram for topological and
trivial phases with respect to parameters of� and�. (c), (d) CðxÞ
can take positive or negative values, which divides the quantum
wire into alternating regions of topological and trivial phases.

FIG. 1 (color online). (a) Optically trapped fermionic atoms
form a 1D quantum wire inside a 3D molecular BEC. Two

Raman beams propagate along ~k1 and ~k2 directions, respectively.

The recoil momentum ~k1 � ~k2 ¼ 2kx̂ is parallel to the quantum
wire. (b) Raman coupling between two fermionic states a" and a#
induces a 2k momentum change from photon recoil. (c) Radio-
frequency-induced atom-molecular conversion.
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we assume the presence of a 1D optical lattice. After uni-
tary transformation U, the kinetic energy becomes spin-
dependent �2J cosðplþ �zklÞ ¼ �2J cosðklÞ cosðplÞþ
2J sinðklÞ sinðplÞ�z, where J is the tunnel matrix element
and l is the lattice spacing. Hence, in Eq. (2) the
spin-independent kinetic energy "0p is replaced by

�2J cosðklÞ cosðplÞ and the spin-orbit interaction up�z

is replaced by 2J sinðklÞ sinðplÞ�z.
Let Hj be the Hamiltonian with � ¼ �j. The time-

evolution operator after one period is then given by

UT ¼ e�iH2T=2e�iH1T=2. We define an effective
Hamiltonian from the relation UT � e�iHeffT , and study
the emergence of MFs in Heff . Eigenstates of Heff are
called Floquet states and represent stationary states of
one period of evolution. The eigenvalues of Heff are called
quasienergies because they are only defined up to an
integer multiple of 2�=T. This feature, combined with
the built-in particle-hole symmetry enjoyed by the
Bogoliubov-de Gennes Hamiltonian, allows for Floquet
MFs carrying nonzero quasienergy. That is, since states
with quasienergy E and �E are related by particle-hole
symmetry, states with E ¼ 0 or E ¼ �=T � ��=T can be
their own particle-hole conjugates.

The existence of Floquet MFs is most easily revealed by
plotting the quasienergy spectrum ofHeff in a finite system,
which in practice can be created by introducing a confine-
ment along the quantum wire. In Fig. 3, we plot the
spectrum for a 100-site system with �1 ¼ �J, �2 ¼
�3J, B ¼ J, � ¼ 2J, 2kl ¼ �=4 for varying drive period
T. Note that bothH1 andH2 correspond to the trivial phase
with C1, C2 > 0. For small T, states with quasienergy
E ¼ 0 or E ¼ �=T are clearly absent from the
spectrum—i.e., there are no Floquet MFs here.

As one increases T, the gap at �=T closes, and for larger
T a single Floquet state with E ¼ �=T remains. We have
numerically checked that the amplitude for this Floquet
state peaks near the ends of the 1D system. Thus it arises
from two localized Floquet MFs and this state is associated
with nontrivial topological chargeQ� as we will see below.
As one further increases T, another state at quasienergy
E ¼ 0 appears whose wave function again peaks near the
two ends—a second type of Floquet MF—associated with
a different, nontrivial topological charge Q0. The two
flavors of Floquet MFs at E ¼ 0 and E ¼ �=T are sepa-
rated in quasienergies, and therefore, they are stable
Floquet MFs as long as the periodicity of the drive
is preserved. The presence of two particle-hole
symmetric gaps changes the topological classification
from Z2 to Z2 � Z2.

Two topological charges Q0 and Q� are defined as
follows. For the translationally invariant quantum wire,
the evolution operator has momentum decomposition
UTð�Þ ¼

Q
pUT;pð�Þ for intermediate time � 2 ½0; T	.

After one evolution period, we have UT � UTðTÞ and
UT;p � UT;pðTÞ. The topological charge Q0 (or Q�) is

the parity of the total number of times that the eigenvalues

of UT;0ð�Þ and UT;�ð�Þ cross 1 (or �1). The topological

charges have the closed form

Q0Q� ¼ Pf½M0	Pf½M�	 Q0 ¼ Pf½N0	Pf½N�	; (4)

where Mp ¼ log½UT;p	 and Np ¼ log½ ffiffiffiffiffiffiffiffiffiffi
UT;p

p 	 are skew

symmetric matrices associated with the evolution, and

Pf½X	 is the Pfaffian of matrix X. Here
ffiffiffiffiffiffiffiffiffi
UT;k

p
is determined

by the analytic continuation from the history of UT;kð�Þ.
Note that the product of topological charges Q0Q�

is analogous to the Z2 invariant suggested for static MFs
[6]. In Fig. 3, we plot the topological charges Q0 and Q�

for various driving period T. Indeed, Floquet states at
E ¼ 0 and E ¼ �=T appear in the range of T at which
Q0 and Q� equal to �1, respectively.
Probing MFs.—Radio-frequency spectroscopy can be

used to probe MFs in cold-atom quantum wires [22,23].
In particular, we consider spatially resolved rf spectros-
copy [24] as an analog of the STM. The idea is to use
another probe rf field to induce a single particle excitation
from the fermionic state (say a�) to an unoccupied fluo-
rescent probe state f. Contrary to conventional rf spectros-
copy, a tightly confined optical lattice strongly localizes
the atomic state f, yielding a flat energy band for this state.
By imaging the population in state f, we gain new spatial
information about the local density of states.
For example, by applying a weak probe rf field with

detuning �0
rf from the a� � f transition, the population

change in state f can be computed from the linear response
theory Iðx;�Þ� d

dthfyðxÞfðxÞi/�a�½x;� ~�ðxÞ��0
rfþ"	�

½ ~�ðxÞþ�0
rf�"	. Since the MFs have zero energy in the

band gap and are spatially localized at the end of the
quantum wire, there will be an enhanced population trans-
fer to state f with frequency �0

rf ¼ "��ðx�Þ at the phase
boundary x�. If the a� � f transition has good coherence,
we can use a resonant rf� pulse to transfer the zero-energy
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FIG. 3 (color online). Floquet MFs with two distinct flavors.
Quasienergy spectrum of Heff and topological charges (Q0 and
Q�) are plotted for varying period T of the drive. Since the
quasienergy is defined up to an integer multiple of 2�=T, it can
support Floquet MFs at E ¼ �=T (thick red [medium gray] line)
as well as E ¼ 0 (thick blue [dark gray] line). The parameters
are �1 ¼ �J, �2 ¼ �3J, B ¼ J, � ¼ 2J, and 2ka ¼ �=4.
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population from a� to f, and then use ionization or in situ
imaging techniques [25,26] to reliably readout the popula-
tion in f with single particle resolution. Floquet MFs can
also be detected in a similar fashion. Since a Floquet state
at quasienergy E is the superposition of energy states with
energies Eþ 2n�=T for integer n, we should find the
Floquet MFs at energies 0 (or �) þ2n�=T for 0 (or �)
quasienergy Floquet MFs, respectively.

Parameters and imperfections.—We now estimate the
experimental parameters for cold-atom quantum wires.
(1) The spin-orbit interaction energy is Eso ¼ mu2=2 

Erec;0, with recoil energyErec � 30ð2�Þ kHz for 6Li atoms.

If we use n sequential � transitions, the spin-orbit inter-

action strength can be increased to uðnÞ ¼ nk=m and

EðnÞ
so ¼ n2Eso. (2) The effective magnetic field B ¼ �1�

�
2

�e

and the depth of the optical trap V0 � �2

� can be MHz, by

choosing large detuning �� 100ð2�Þ THz and Rabi fre-
quencies �� 50ð2�Þ GHz, while still maintaining a low

optical scattering rate � � �2

�2 �� 1ð2�Þ Hz. (3) The

transverse oscillation frequency of the 1D optical trap

can be !? �
ffiffiffiffiffiffiffi
4V0

mw2

q
� 150ð2�Þ kHz for a laser beam with

waistw ¼ 15 �m. (4) The s-wave pairing energy� ¼ g�
can be as large as 25ð2�Þ kHz according to self-consistent
calculation [27] assuming BEC density n0 ¼ 1014 cm�3

[17], molecule scattering length 1 Å, and fermion trans-

verse confinement a? ¼ ð@=m!?Þ1=2 � 0:1 �m. When
!? is much larger than Eso and j�j, it is a good approxi-
mation to consider a single transverse mode.

In practice, there are various imperfections, such as
particle losses, finite temperature of BEC, interaction
among fermions, and multiple transverse modes of the
quantum wire. (1) The lifetime associated with photon
scattering induced loss can be improved to seconds using
large detuning and strong laser intensity, and the collision-
induced loss can be suppressed by adding a 1D optical
lattice to the quantum wire. (2) The magnitude and phase
fluctuations in the BEC order parameter can be efficiently
suppressed by cooling the BEC well below the transition
temperature. (3) Although the fermionic atoms may have
positive scattering length, the tight transverse confinement
can induce an effective attractive interaction for 1D fermi-
onic atoms [28], which may further enhance the pairing
energy. (4) Recent numerical and analytical studies
[8,29,30] show that MFs can be robust even in the presence
of multiple transverse modes, as long as an odd number of
transverse channels are occupied.

In conclusion, we have proposed a scheme to create and
probe MFs in cold-atom quantum wires, and suggested the
creation of two nondegenerate flavors of Floquet MF at a
single edge. We estimated the experimental parameters to
realize such implementation, considered schemes to probe
for MFs, and analyzed imperfections from realistic con-
siderations. Recently, it has been discovered that braiding
of non-Abelian anyons can be achieved in networks of 1D

quantum wires [31], which would be very interesting to
explore in the cold-atom context.
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