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Prediction of quantization of magnetic flux in double-layer exciton superfluids
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Currently, there is no way to detect unambiguously the possible phase coherence of an exciton condensate in an
electron-hole double layer. Here, we show that, despite the fact that excitons are charge neutral, the double-layer
exciton superfluid exhibits a diamagnetic response. In devices with specific circular geometry, the magnetic-flux
threading between the layers must be quantized in units of h

e
χm, where χm is the diamagnetic susceptibility of

the device. We discuss possible experimental realizations of the predicted unconventional flux quantization.
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I. INTRODUCTION

It is well known that a quantization condition applies to the
magnetic flux enclosed by a superconducting cylinder.1,2 This
effect is due to the coherence inherent to the superfluid phase,
causing quantum-mechanical principles to become manifest in
macroscopic objects.3 Such a superfluid phase is also predicted
for excitons in spatially separated electron and hole layers.4–6

Excitons are bound pairs of electrons and holes, and they
have a long history as optical excitations in semiconductors
and insulators. Recent technological developments allowed
for the realization of devices7,8 that consist of a pair of
two-dimensional layers, where the electrons are confined
to one layer and the holes to the other layer as shown in
Fig. 1. When the interlayer distance is small enough (typically
of the order of 10 nm), the interlayer Coulomb interaction
becomes strong enough to bind the electrons and the holes
in interlayer excitons. An insulating barrier separates the
layers to prevent annihilation of the excitons by tunneling.
The layers themselves can be composed of semiconductor
quantum wells,7 graphene sheets,9–13 complex oxides,14,15 or
even topological insulators.16

Excitons are bosons and at finite densities, they should
eventually form a Bose-Einstein condensate at sufficiently low
temperatures. There are indications in several experiments7,8

that exciton condensates were formed, but there is no way
to detect unambiguously the onset of macroscopic superfluid
coherence in these double-layer exciton systems.17,18 Here, we
predict an unconventional magnetic-flux quantization effect
to occur in double-layer exciton superfluids, as shown in
Fig. 2, and discuss designs for a device to measure this
universal electromagnetic signature of the exciton Bose-
Einstein condensate.

II. GINZBURG-LANDAU THEORY

Let us consider the Ginzburg-Landau order-parameter the-
ory for a double-layer system. Since the direction of the electric
dipole is fixed in the double-layer geometry, the exciton
superfluid is characterized by just a complex scalar order-
parameter field �(�x) ≡ |�(�x)|eiφ(�x) along a two-dimensional
(2D) surface, the square of which gives the superfluid density
ρ(�x) = |�(�x)|2. For a charged superfluid (superconductor)

with boson charge q, electromagnetism is incorporated by
replacing ordinary derivatives with covariant derivatives �D,

h̄ �D = h̄ �∇ + iq �A(�x), (1)

where �A(�x) is the vector potential. In the charge-neutral
exciton superfluid, the electron and hole constituents of
an exciton form an electric dipole e �d and, consequently,
the covariant derivative associated with exciton matter must
equal19

h̄ �D = h̄ �∇ + ie[ �A(�x + �d/2) − �A�x − �d/2)], (2)

where the electron is positioned at �x − �d/2 and the hole at
�x + �d/2. For small interlayer distance �d , the vector potential
can be expanded in a Taylor series. In addition, since the
vector potential �A along the 2D superfluid surface is only
sourced by in-plane currents, we can impose that the gradient
of the vector-potential component perpendicular to the surface
is zero, i.e.,

�∇′( �d · �A(�x ′))| �x ′=�x = 0. (3)

This implies that the above vector-potential difference can be
written completely in terms of the real magnetic field

�A(�x + �d/2) − �A(�x − �d/2)

= −�d ×
∞∑

k=0

1

(2k + 1)!

( �d
2

· �∇′
)2k

�B(�x ′)
∣∣∣∣
�x ′=�x

. (4)

Up to first order, the exciton covariant derivative turns into

h̄ �D = h̄ �∇ − ie �d × �B. (5)

This is an interesting structure viewed from a theoretical
perspective. Equation (5) corresponds to the covariant deriva-
tives of a SU(2) gauge theory with gauge fields Aa

i = εiakBk .
Here, the SU(2) gauge fields are actually physical fields fixed
by Maxwell’s equations. Using these considerations, we can
write down a general Ginzburg-Landau free energy as

F [�] =
∫

d2x

[
α|�|2 + 1

2
β|�|4 + h̄2

2m∗ (∇|�|)2

+ 1

2m∗ (h̄ �∇φ − e �d × �B)2|�|2 + d
B2

2μ0

]
. (6)
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FIG. 1. (Color online) Excitons in double-layer devices. Double-
layer devices consist of an electron layer (in green) parallel to a
hole layer (blue), separated by an insulating barrier (gray). Electron-
hole attraction leads to the formation of excitons. At sufficiently low
temperatures, the excitons can form a Bose-Einstein condensate.

The parameters α and β can be written formally as a function
of the superfluid density and the critical magnetic field Bc.
Minimization of the free energy, assuming a constant order
parameter, yields

α = −d
B2

c

μρ
, (7)

β = −α

ρ
. (8)

III. ELECTROMAGNETIC RESPONSE

The direct coupling to physical fields changes the rules
drastically as compared to normal superconductors. We define
the exciton supercurrent as the standard Noether current3 �j ≡
h̄ρ

m∗ �∇φ. Consequently, minimizing the free energy for a fixed

applied magnetic field �B perpendicular to the dipole moment
yields the exciton supercurrent response

�j ≡ h̄ρ

m∗
�∇φ = ρe

m∗
�d × �B. (9)
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FIG. 2. (Color online) Flux trapping in a cylindrical exciton
superfluid. The proposed device consists of a concentric ring structure
of radius r , composed of an electron layer (green) and hole layer
(blue). Due to the macroscopic coherence of the exciton superfluid,
the angular current must be quantized. By application of an external
axial magnetic field, one can induce some number of current quanta.
In the absence of the external field, the current quanta remain,
which induces a magnetic field as shown (red lines). The trapped
magnetic flux in-between the layers must be quantized according to
	 = h

e
χm n, where χm is defined in Eq. (11).

This result is closely related to spin superfluids,20 where
a physical field SU(2) structure arises through spin-orbit
coupling.21 The analog of Eq. (9) is the spin Hall equation22

j i
j = σsε

ijkEk → �j = −σ �dm × �E. We conclude that the spin
superfluid formed from magnetic dipoles is the electromag-
netic dual of the exciton (electric dipole) superfluid.

In the double-layer system, the electric charges forming
the exciton dipoles are confined in the separate layers. Hence,
the exciton supercurrent can be decomposed into the separated
electron and hole surface currents. According to Ampère’s law,
a surface current induces a discontinuity in the magnetic-field
components parallel to the surface,

� �B(�x) = μ0 �K(�x) × n̂, (10)

where n̂ is the normal vector to the surface and �K(�x) is
an electric surface current density. Consequently, an exciton
supercurrent reduces the magnetic field in-between the elec-
tron and hole layers. The double layer therefore acts as a
(nonperfect) diamagnet with magnetic susceptibility

χm = −e2ρdμ0

m∗ . (11)

For typical parameters, ρ = 0.4 nm−2, d = 20 nm, and
m∗ = 2me; the magnetic susceptibility equals χm = −10−4,
comparable to what is found in diamagnets such as gold or
diamond. In semiconductor quantum wells, the exciton mass
is smaller than the free electron mass me, which enhances the
diamagnetic susceptibility even further.7

IV. FLUX QUANTIZATION EFFECTS

Imposing single valuedness on the order parameter implies
that, for any given contour C inside a superfluid,

∮
C

�∇φ · �dl =∮
C

�j · �dl = 2πn, where n is an integer. Therefore, circular
supercurrents must be quantized, which can be seen by
topological defects in the dipolar superfluid.20,23,24 In general,
metastability of superflows requires a nontrivial topology
of the superfluid.3 Unlike in other superfluids, the SU(2)
structure of dipolar superfluids implies the possibility of more
complicated topologies, which can not be obtained by creating
defects in the superfluid.

Consider a cylindrical device of radius r consisting of two
concentric layers, as shown in Fig. 2, with the electric dipole
moment �d of the excitons pointing in the radial direction. For
this geometry, the current-dependent term in the free energy
can be written as

F [�] ∼
∮

dθ

(
h

e
∂θφ − Bz2πrd

)2

, (12)

where
∮
C

dθ ∂θφ = 2πn with n integer valued and Bz the
external magnetic field. Note that the flux going in-between the
two layers equals, up to first order, 	 = Bz2πrd. Minimiza-
tion of Eq. (12) shows that current quanta can be induced by
an axial magnetic field. In the absence of the external field, the
current �j ∼ n induces a magnetic flux in-between the layers,
according to Ampère’s law (10), with a magnitude

	 = h

e
χm n ≡ 	0 χm n. (13)
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This is our central result: In the cylindrical double-layer
geometry, the magnetic flux going in-between the sample
layers must be quantized in units of χm times the fundamental
flux quantum 	0 = h

e
. Notice that this flux quantization effect

is quite different from the one realized in superconductors.
In the double-layer exciton condensate, the supercurrent is
induced by the magnetic field �B rather than the gauge
field �A as in the London equation, while the quantized
amount of flux equals d

∮ �B · �dl instead of
∮ �A · �dl = ∫∫

�
�B ·

�d� for superconductors. In combination, these two basic
differences add up to a universal expression for the flux
quantization 	 = h

e∗ χm n that applies to both superconductors
and exciton condensates, where e∗ = −2e and χm = −1 for
superconductors.

V. PHASE SLIP AND PHASE PINNING

Is the strength of the condensate sufficient to trap the flux?
When the external field is switched off, the flux carrying state
is metastable and the system can return to the ground state by
locally destroying the condensate. The condensate can only
be destroyed over lengths greater than the Ginzburg-Landau
coherence length

ξ = h̄√|2m∗α| (14)

and, consequently, the energy required to break the condensate
over a region ξ wide along a cylinder of length z is

δFb = 1

2
h̄z

(
d ρ

2m∗μ

)1/2

Bc. (15)

Locally destroying the condensate is only favorable if this
energy is lower than the energy stored in the magnetic field,
which is δFm = B2

2μ
2πrd. We conclude that a phase slip will

not occur as long as the trapped magnetic flux 	 = 	0χmn

stays below a threshold value

	2 <

( |χm|
2

)1/2

	0Bc rd, (16)

where Bc is the critical magnetic field. With the typical
parameters stated above and r = 100 μm, the critical field
must exceed 5 nT to trap one flux quantum. Since the critical
magnetic field of bilayer superfluids is proposed to lie in the
orders of tens of Tesla,19 a phase slip is improbable.

Another possible complication is that annihilation of
excitons by tunneling causes the phase to be pinned, which
introduces a threshold for the formation of stable currents.
Microscopic tunneling can be incorporated via an extra term
in the Ginzburg-Landau free energy

Ft = −2t

∫
d2x

|�|
L

cos φ, (17)

where L is the in-plane lattice constant and t is a microscopic
tunneling energy. This phase pinning lowers the energy of the
state where no flux is trapped, which introduces a threshold for
the trapping of magnetic-flux quanta. It is only possible to trap
n magnetic-flux quanta if the microscopic tunneling energy t

satisfies

2t < n2 h̄2

2m∗r2

√
ρL. (18)

This corresponds, given the typical parameters mentioned
above, to t < 0.3 peV (picoelectronvolt) for the first flux
quantum.

In order to estimate a value for t , let us imagine that the
device is fabricated from copper-oxide layers. The hopping
energy in cuprates between two adjacent CuO2 layers ranges
from approximately 10−1 eV for LSCO compounds to 10−3 eV
for Bi-based compounds.25,26 Let us now assume that the
hopping energy between more distant CuO2 layers falls off
exponentially. A distance d = 20 nm between the hole and
electron layers corresponds roughly to 30 CuO2 layers, so
that the tunneling energy equals t ≈ e−3010−3 = 10−16 eV.
This estimate lies well below the maximum value of t

obtained in Eq. (18). However, the precise value of t is
highly sample specific and needs to be checked for each
separate sample.

VI. EXPERIMENTAL REALIZATION

The experimental protocol to test the flux quantization
is as follows: Apply an axial magnetic field of magnitude
Bext above the critical temperature Tc, and cool the device
below Tc such that a circular current quantum is frozen in.
The magnitude of the current is determined by the strength
of the applied flux: if 	ext < 1

2	0, no current is induced;
for 1

2	0 < 	ext < 3
2	0, one current quantum is induced,

etc. The magnetic field corresponding to 1
2	0 is typically

Bext = 0.2 mT. Upon removing the external magnetic field,
a trapped flux equal to 	0χmn remains, corresponding to a
field strength of 50 nT. These numbers do not pose a problem
of principle for the experimental realization of such a flux
trapping device.

Based on existing technology, one can envision vari-
ous practical realizations of the concentric p-n doped ring
geometry, while it is anticipated that further technology
developments will create additional opportunities. Using
p- and n-doped complex oxide compounds, such as cuprate
perovskites, multilayer thin film structures can be fabricated
in the desired ring geometry. Using the proven edge-junction
technology,27,28 the structure sketched in Fig. 3 can readily
be fabricated by, e.g., pulsed laser deposition and Ar-ion
beam etching. As a barrier layer, SrTiO3 can be used, with
a typical thickness of 10–100 nm, or another insulating oxide
that grows epitaxially on top of the etched base electrode. To

hole layer
electron layer

exciton

hole layer
electron layer

FIG. 3. (Color online) Schematic representations of possible
practical realizations of the concentric ring geometry comprised of
p- and n-doped layers. Left: Using epitaxially grown complex oxide
thin films. Right: Using doubly gated graphene double layers.

012504-3



BRIEF REPORTS PHYSICAL REVIEW B 83, 012504 (2011)

guarantee an epitaxial growth of all the layers, the angle α is
best kept below about 25◦, but this does not fundamentally
alter the physics of the flux quantization as presented in this
brief report.

A second possible practical realization is based on double-
side gated, double-layer graphene. Recently, the growth of
large-area graphene films has been demonstrated on Cu foils,
using a high-temperature chemical vapor deposition process.29

Interestingly, a continuous growth was achieved over grain
boundaries and surface steps. From this, it feasible to expect
that one can also grow a closed graphene tube around a
copper cylinder, which would basically be a carbon nanotube
with predetermined radius. Covering this with an appropriate
epitaxial barrier layer, e.g., 10 nm of Al2O3 and a second
graphene sheet, which may also be grown by physical or
chemical vapor deposition techniques, would then result in
the wanted concentric cylinder configuration. Subsequently,
the copper can be etched away and the concentric cylinder
can be transferred to an appropriate carrier, which can even
be made out of plastic.30 This would straightforwardly allow

the realization of a doubly gated configuration, as depicted in
Fig. 3.

VII. CONCLUSION

We have shown that dipolar exciton condensates exhibit
a different form of magnetic flux quantization. Whereas the
values for the magnetic flux quanta are reduced by a factor
2χm ≈ 10−4 − 10−3 compared to the standard flux quanta in
superconducting rings, it is anticipated that the flux quan-
tization is measurable using scanning SQUID microscopy.
This would provide an unambiguous test for the macroscopic
phase coherence associated with an exciton Bose-Einstein
condensate.
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