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ABSTRACT
We consider a scenario where supermassive black holes form through direct accumulation
of gas at the centre of proto-galaxies. In the first stage, the accumulated gas forms a super-
massive star whose core collapses when the nuclear fuel is exhausted, forming a black hole of
MBH ≈ 100 M�. As the black hole starts accreting, it inflates the surrounding dense gas into an
almost hydrostatic self-gravitating envelope, with at least 10–100 times the mass of the hole.
We find that these ‘quasi-stars’ suffer extremely high rates of mass loss through winds from
their envelopes, in analogy to very massive stars such as η-Carinae. Only for envelope masses
greater than 2.8 × 105(MBH/100 M�)9/11 is the envelope evaporation time-scale longer than
the accretion time-scale of the black hole. This relation thus constitutes a ‘threshold-growth
line’ above which quasi-stars can grow their internal black holes. Accretion rates can be 10 to
100 times the Eddington rate. The quasi-stars born in this ‘growth region’ with 107−108 M�
can grow black holes with masses between 104 and 105 M�, before crossing the threshold-
growth line and dispersing their envelopes in less than 104 yr. This scenario therefore predicts
that massive black hole seeds can be found only in dark matter haloes with total masses larger
than about 109 M�, which can provide sufficiently high accretion rates to form such massive
quasi-stars.

Key words: accretion, accretion discs – black hole physics – hydrodynamics – galaxies:
nuclei.

1 IN T RO D U C T I O N

The formation of supermassive black holes (SMBHs) requires the
inflow of >106 M� of gas from galactic scales into a region much
smaller than a parsec. The presence of bright (∼1047 erg s−1) quasars
at z > 6 (Fan et al. 2001) suggests that, at least in those cases,
this inflow must have started at an earlier epoch and proceeded at
sufficiently high rate to have allowed the assemblage of black holes
(BHs) of 109 M�, in less than a Gyr. In proto-galactic dark matter
haloes with mass >109 M�, gas can be funnelled towards the centre
at a rate of >M� yr−1.

If substantial fragmentation of gas into stars can be avoided (e.g.
Wise, Turk & Abel 2008), the collection of gas at such high rates can
lead to the formation of a light (�100 M�) BH via direct collapse
of gas or through the intermediate stage a supermassive star, whose
core collapses to form a BH (Begelman 2010). The feedback from
this ‘embryo’ BH becomes important and it modifies the structure
of the pregalactic discs in its innermost ≈100 au. The BH lumi-
nosity inflates the highly opaque gas in its vicinity into a pressure
supported envelope, at least 10–100 times more massive than the
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BH itself. While the envelope is being fed by the proto-galactic
disc, the BH accretes from the envelope. This structure is dubbed
a quasi-star, since it resembles a (scaled-up) red giant in structure,
though it is powered by accretion into a central BH (Begelman,
Volonteri & Rees 2006; Begelman, Rossi & Armitage 2008, here-
after BRA08).

BRA08 found that for each BH mass MBH, there is a minimum
envelope mass M∗ below which no hydrostatic solutions for the
whole envelope can be obtained. This line corresponds to modest
M∗/MBH ratios of a few tens. Above this line, the BH accretes
at the Eddington rate for the whole mass (MT = MBH + M∗).
The BH can accrete at a super-Eddington rate (for the BH mass),
because the energy released by the accretion is transported outwards
through convection (and not by radiative transfer). After a few Myr,
the BH reaches a maximum mass of ∼104 M�, which provides
a luminosity that unbinds the surrounding envelope. This physical
picture has been confirmed by numerical simulations (Ball et al.
2011, hereafter BTZE11). Accretion will then proceed at a more
‘modest’ rate through the proto-galactic disc. Accretion and mergers
with other holes allow these ‘BH seeds’ to evolve over cosmic times
into SMBHs.

An important characteristic of quasi-stars is that they are loosely
bound, since they are radiation pressure dominated. A luminosity
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Figure 1. A heuristic description of the system we solve (see a detailed description given in Section 2).

that is close to the Eddington limit therefore has the potential to
drive strong radiation-driven outflows. The presence of an outflow,
in turn, would modify the quasi-star’s internal structure, the BH
accretion rate and the final mass of the BH seed that can be produced.
Quantitatively, however, the extent and consequences of such winds
are currently not known.

In this paper, we aim to address the above questions. We calculate
approximate solutions for a hydrostatic massive envelope powered
by accretion, allowing for mass loss from its surface. We find that the
presence of a wind allows for the existence of hydrostatic solutions
for the envelope, even if the system is super-Eddington (for the total
mass). With the wind, there is a competition between accretion
and evaporation, and the BH can be effectively fed and increase its
mass only when the envelope evaporation is sufficiently weak. This
happens for very massive envelopes >106 M�, whose wind reaches
a maximum mass loss, driven by all the available luminosity.

We find that under the above conditions, a BH seed of >103

solar masses can be assembled in less than 104 yr. In particular, to
obtain BH seeds of 104–105 M�, an envelope of mass >107 M� is
required. We will show that, as a consequence, the present scenario
predicts the presence of massive BH seeds at high redshift (z � 10)
only in haloes of at least ≈a few ×109 M�.

This paper is organized as follows. In Section 2, we describe our
model and carry out analytical estimates. In Section 3, we describe
the numerical solution for the structure of super-Eddington quasi-
stars with winds, and we present our results in Section 4. We discuss
the implications of our findings to the modelling of supermassive
BH formation in Section 5.

2 THE ‘QUA SI-STAR’ STRUCTURE

The system we consider is heuristically illustrated in Fig. 1. Crudely,
it comprises five primary regions. From the inside out they are as
follows.

(i) A core, where an embryo BH is fed through a convectively
dominated accretion disc.

(ii) A convective envelope (which contains most of the quasi-star
mass).

(iii) A porous atmosphere, where convection is inefficient.
(iv) An optically thick wind.

(v) A geometrically thin (at least on these scales) proto-galactic
disc.

The first four regions comprise the quasi-star, the structure of which
we solve here.

The last region is that of the disc which feeds the quasi-star. For
reasonable galactic accretion rates, less than a few tens of M� yr−1,
the disc is locally sub-Eddington at the radius of the quasi-star.1

Since the disc remains slim, we can assume that mass exchange
between the disc and the quasi-star happens on a narrow equato-
rial region. Moreover, the accreted mass is probably redistributed
within the quasi-star over a hydrostatic time-scale, which is, as we
will comment later, much shorter than both the accretion and the
evaporation time-scales. Thus, we can treat the disc just as a mass
source term for the quasi-star mass budget. Only in one case con-
sidered here, for the extreme rate of 300 M� yr−1, can the disc be
geometrically thick and the interaction between the accretion and
the wind from the quasi-star surface may be dynamically important.
Therefore, the results obtained in this case have to be regarded as
indicative only.

In the following sections, we describe in more detail the different
components and construct an analytical model that will allow us to
delineate the region in the M∗ − MBH parameter space, where it is
possible to grow massive BHs. These BHs can then serve as seeds
for the SMBHs observed at the centre of galaxies. First, however,
we will state and justify the primary assumptions we employ to
construct our model.

For our purposes, it is not necessary to model the hydrodynamics
of the innermost accretion flow, which by radial extension and mass
is a negligible fraction (∼10−5) of the quasistar. The theoretical
luminosity expected from this ‘hypercritical’ regime of accretion
is used as a source term in the energy equation for the envelope.
Nevertheless, we do consistently consider the accretion rate which
in turn depends on the envelope structure, as we explain in the next
section.

It has been shown that numerical modelling of quasi-stars is sen-
sitive to the choice of the inner envelope radius (BTZE11). However,

1 Using the results of Section 2.2 for the radius r∗ and mass M∗ of an n = 3
polytropic star, one can show that for Ṁ < 50 M� yr−1, the accretion will
release less than LEdd, that is, Ṁ � LEdd/(GM∗/2r∗).
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in the absence of a physically sound alternative, the most natural
choice remains the Bondi radius of the inner accretion disc. We
therefore adopt it, as it facilitates the analytical calculations and the
comparison of our results with previous numerical studies.

It is possible to show analytically and numerically that a hy-
drostatic envelope exists only if it is much more massive than
the BH (BRA08; BTZE11). Therefore, we seek solutions satis-
fying this condition. On the other hand, there is an upper limit
on the mass of quasi-stars, given by stability considerations. Such
radiation-dominated structures (with an almost null total binding en-
ergy) are in fact subject to the pulsation instability. Fowler (1966)
showed that even a small degree of rotation can stabilize stars with
mass <108 M�. Although the envelope is mainly pressure sup-
ported, quasi-stars are indeed expected to be (slowly) rotating since
they are fed by pre-galactic accretion discs. We therefore assume
M∗ ∼ 108 as an upper limit for the envelope mass.

Rotation would also slightly squash the envelope at the poles.
Nevertheless, it is not trivial to predict the exact rotational profile
expected inside the quasi-star. As we shall see, the quasi-star will be
almost entirely convective. We can therefore expect an azimuthally
dependent rotation rate, as exhibited in the Sun. However, this be-
haviour is still not fully understood. As a consequence, we will
model the quasi-star while neglecting the effects of rotation, that is,
while assuming spherically symmetry, as in the previous works.

2.1 The core

In the innermost region (hereafter ‘the core’, in analogy to stars), the
embryo BH is fed through an accretion disc which transfers mass
from the surrounding hydrostatic and much more massive envelope.
The extent of the core is the sphere of gravitational influence of the
BH, the radius of which is the Bondi radius rb = GMBH/2c2

c , where
the local adiabatic sound speed is cc ≡ cs(rb) = √

4Pc/3ρc. Here
ρc and Pc are respectively the matter density (ρ) and total pressure
(P) at that radius.

The small angular momentum in the system is such that very close
to the last stable orbit, the flow is rotationally supported and viscous
processes allow the release of a luminosity of LBH = ηṀBHc2, with
a radiation efficiency of η ≡ η0.1 × 0.1. At larger radii, the disc has
a ‘thick’ geometry (Narayan & Yi 1994; Abramowicz et al. 1995;
Blandford & Begelman 1999), which is radiatively inefficient due to
its high density (Begelman 1979; Begelman & Meier 1982; Blondin
1986). Since the radial convection can be shown to be important,
the innermost flow is therefore modelled as a convection-dominated
disc (CDAF; Stone, Pringle & Begelman 1999; Igumenshchev &
Abramowicz 1999; Quataert & Gruzinov 2000).

At steady state, all the forces in these discs scale with gravity.
Thus, cs ∝ r−1/2 and a ‘modified hydrostatic’ balance holds. More-
over, contrary to classical advection-dominated discs, CDAFs are
characterized by a net (and constant) outward flux of energy, which
is possible only if ρ ∝ r−1/2 (Stone et al. 1999; Quataert & Gruzinov
2000).

These scalings imply that the maximum luminosity that convec-
tion can transport within the flow,

Lc,max = 4πr2ρc3
s , (1)

is constant with radius. This limit for the carrying capacity of con-
vection is set by the requirement that the convective cell motion
should remain subsonic. That is, the convective velocity can be
at most the local sound speed cs, otherwise shocks will form and
dissipate the motion over distances much shorter than the pres-
sure scaleheight. Therefore, the energy released at small radii can

be transported by convection up to 
rb, if LBH ≤ Lc,max. We thus
assume

LBH = αLc,max, (2)

with α ≤ 1. The parameter α not only accounts for convective trans-
port inefficiency but also accounts for possible leakage of energy
(e.g. by jets close to the hole) which would decrease the supply of
energy into the envelope.

Since Lc,max is constant in the flow, it can be indeed evaluated
anywhere not too close to the BH. However, for reasons that will
be clear in the next section, it is convenient to express Lc,max at rb,

LBH = α

√
9

4a
π(GMBH)2ρ3/2

c T −2
c , (3)

where we took into consideration that this hot flow is radiation
pressure dominated, Pc 
 aT4

c /3, where a is the radiation constant.

2.2 The hydrostatic region

In a quasi-star, most of the mass and the radial extent are occupied by
a highly convective envelope. The convection efficiently transports
the accretion energy flux to large radii (≈100 au) where it powers a
wind, after having crossed a thin hydrostatic radiative layer. In the
following estimates, we will assume that the mass and the radius
are constant in this radiative layer and equal to those of the entire
convective envelope (M∗ and r∗, respectively).

The structure of a strongly convective hydrostatic envelope can
be described by an n = 3 polytrope (while employing the classic
Lane–Emden solution). These massive stars have a small fixed ratio
between the gas and radiation pressure of

β̄ ≈ 7 × 10−3
(
M∗/106 M�

)−1/2 � 1. (4)

Since the central density and pressure profiles are rather flat with
radius, we can use the central polytropic values to estimate the
density and temperature at the Bondi radius, and thus evaluate LBH

(as given by equation 3).
Scaling the envelope mass as M∗ = m∗ M� and the central tem-

perature as Tc = T6 106 K, the envelope radius is given by

r∗ = 5.8 × 1012m1/2
∗ T −1

6 cm, (5)

while the central density is

ρc = 1.3 × 10−4m−1/2
∗ T 3

6 g cm−3 (6)

(e.g. see Hoyle & Fowler 1963).
Furthermore, Joss, Salpeter & Ostriker (1973) have shown that

wherever the density is high enough, the local luminosity can never
exceed the local Eddington limit Ledd,r = 4πcGM(r)/κ(r), as cal-
culated with the enclosed mass M(r), and the local opacity κ(r).
This is because convection will be excited, and it will advect a large
enough flux to keep the system sub-Eddington. However, there is an
upper limit to the luminosity that can be transported by convection
at each location (equation 1). Outside the Bondi radius, the density
and temperature are nearly constant such that Lc,max ∝ r2. There-
fore, the convective carrying capacity increases with radius near
the centre. At larger radii, however, both ρ and T decrease steeply,
forcing a progressively higher fraction of the luminosity to be trans-
ported by diffusive radiative transfer. Eventually LBH = Lc,max. This
location, which we call the ‘transition radius’ (rtr), marks the base
of the radiative layer. We search for solutions for which this region
is in hydrostatic equilibrium, or in other words, solutions in which
a radiative atmosphere is present.
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As atmospheres approach Ledd,r a plethora of instabilities can
set in, whether the atmospheres are only the Thomson scattering
(Shaviv 2001a), whether they have magnetic fields (Arons 1992;
Gammie 1998; Begelman 2002), or even complex opacity laws
(Glatzel 1994; Papaloizou et al. 1997, which are probably not rel-
evant for the primordial gas in quasi-stars). Once the instabilities
grow to become non-linear, they create low-density channels for
the photons to escape, and effectively suppress the radiative force
exerted on the gas (Shaviv 1998). Such a reduction in the opacity is
the only known way to explain the super-Eddington nature of clas-
sical novae and η-Carinae (Shaviv 2000a, 2001b). Although we are
far from having a complete understanding of the non-linear state,
we can account for it with a reduced opacity κeff (e.g. Dotan &
Shaviv 2011). The functional form of this effective opacity κeff will
be further elaborated in Section 3.3. The Eddington ratio is defined
as � ≡ L/Ledd,r(κ), where L(r) is the radiative luminosity. In the
radiative atmosphere L(r) = LBH.

With a reduced opacity it becomes possible to have a static ra-
diative layer, if we further impose the approximate condition that
the luminosity at the transition radius equals the effective Eddington
limit, then

LBH = 1.4 × 1038 κ̃−1
tr m∗ erg s−1, (7)

where κ̃tr is the effective opacity at the transition radius (κ(rtr) =
κ tr), normalized to the electron scattering value, κes = 0.35 cm2 g−1.

In the radiative atmosphere, the luminosity satisfies LBH �
Ledd,r(κeff ), up to the radius where the gas clumps become optically
thin such that they cannot funnel the radiation anymore into the rar-
efied regions. As the clumps become transparent, the opacity there-
fore recovers its microscopic value (κeff → κ) and Ledd,r(κeff ) →
Ledd,r(κ), implying that above the radiative atmosphere, there is a
radius beyond which no hydrostatic solution can exist. This causes
the quasi-star to lose mass through a wind. In the whole section, we
will assume that the wind sonic point is close to r∗, i.e. rs = r∗ (see
Section 3.4 for a detailed discussion of the wind solutions).

Following BRA08, we combine equation 3 and equation 6, and
by equating the two expressions for LBH (equations 3 and 7), we
derive an expression for the central temperature:

Tc ≈ 1.7 × 104 (ακ̃tr )−2/5 m
−4/5
BH m7/10

∗ K. (8)

If we insert it into equation (5) and equation (6), we finally get

r∗ ≈ 3.5 × 1014 (ακ̃tr)
2/5 m

4/5
BH m−1/5

∗ cm, (9)

and

ρc ≈ 6.4 × 10−10 (ακ̃tr)
−6/5 m

−12/5
BH m8/5

∗ g cm−3, (10)

respectively.

2.3 The ‘no-solution line’

We now proceed to calculate the line, in the MBH − M∗ parameter
space, below which no hydrostatic envelope is possible. We term this
boundary as the the no-solution line. As we shall see, it corresponds
to low envelope masses (M∗/MBH ≈ 10).

Without mass loss, solutions with progressively smaller total en-
velope masses (for a given BH mass) have progressively lower
photospheric temperatures (BRA08). We find numerically (Sec-
tion 3) that the presence of a wind does not alter this conclusion.
As the envelope mass decreases, the photospheric temperature will
eventually reach the recombination temperature, below which the
opacity drops precipitously. Any further decrease in the envelope

mass reduces drastically the photospheric opacity, causing the pho-
tosphere to reside further inside the wind, where densities are higher.
This continues until the photosphere reaches the base of the wind,
that is, rph 
 rs. When the envelope mass is small enough to al-
low this to occur, the photospheric temperature will be given by
σT 4

ph 
 LBH/(4πr2
∗ ), which can be evaluated to be

Tph = 1.1 × 103 κ̃
−9/20
tr α−1/5 m

−2/5
BH m7/20

∗ K, (11)

where σ is the Stefan–Boltzmann constant.
When rph 
 rs, the presence of an entirely optically thin wind does

not affect the structure of the hydrostatic envelope and we should
recover the solutions derived for a purely hydrostatic quasi-star.
Under that assumption, BRA08 have shown that – in analogy to the
Hayashi track for red giants and protostars – no hydrostatic solution
can be found below a minimum photospheric temperature Tmin,
which is just a factor of 2 lower than the recombination temperature.
It was shown that Tmin varies at most by a factor of 2 around 4500 K
for BHs in the range between MBH = 1 and 104 M� (see their
fig. 3).

Assuming a constant floor temperature and solving for Tph =
Tmin, we find that the ‘no-solution line’ is given by

m∗ = 1.1 × 104 α4/7 κ̃
9/7
tr

(
Tmin

4500 K

)20/7 (mBH

100

)8/7
. (12)

We note here that, while BRA08 link the existence of this limit
to a steep drop in opacity in the radiative layer, BTZE11 argue that
it is a general feature of polytropic models and not one linked to
the adopted opacity law. Both papers, however, agree that this limit
exists and that it corresponds to M∗/MBH ≈ 10, which is what we
obtain with equation 12 (see Fig. 2).

2.4 The wind and the evaporation strip

It should be stressed that even if a hydrostatic envelope can exist, it
does not guarantee that a quasi-star can ‘live’ long enough for the
BH to grow inside it. In the presence of strong winds, we should
also require that the accretion time-scale,

tBH ≡ MBH

ṀBH
= MBH

LBH/ηc2
, (13)

is shorter than the evaporation time-scale,

tev ≡ M∗
Ṁw


 GM2
∗

ε LBHr∗
. (14)

Here, we normalized the mass-loss rate to the maximal possible rate,
obtained when all the accretion luminosity is used to drive the wind
out of the gravitational potential well, Ṁw,max = LBH/(v2

esc/2) ≈
LBH r∗/GM∗,

Ṁw,max ≈ 14.8 α2/5 κ̃
−3/5
tr

(
mBH

100

)4/5 (
m∗
106

)−1/5

M� yr−1, (15)

where vesc is the escape velocity. That is, we have written that

Ṁw
v2

esc

2

 ε LBH, (16)

with an efficiency factor ε ≡ Ṁw/Ṁw,max ≤ 1.
Using the expression for the quasi-star radius (equation 9) and

η = 0.1η0.1, we get

tev

tBH
≈ 4.2 × 10−9 m11/5

∗ m
−9/5
BH

ε (α κtr)2/5 η0.1
. (17)

The above ratio, at the no-solution line (equation 12), is smaller than
unity for MBH < 104 M�, even if we assume that only 1 per cent

C© 2011 The Authors, MNRAS 417, 3035–3046
Monthly Notices of the Royal Astronomical Society C© 2011 RAS



Growing supermassive black holes seeds 3039

Figure 2. The characteristic regions in the M∗ − MBH parameter space.
Separated by black lines are: (1) the region with no hydrostatic solution
(bottom). (2) The evaporation strip, where the envelope evaporation time-
scale is shorter than the BH growth time-scale. (3) The growth region,
where evaporation is less important. The short-dashed black line represents
the threshold quasi-star mass above which the winds are photon-tired. The
blue lines represent lines of equal Ṁw [M� yr−1]. The dotted lines are the
horizontal equi-BH accretion rates, in units of M� yr−1. The long-dashed
red lines show the analytical predictions for the threshold-growth line and
the no-solution line. The analytical threshold-growth line assumes a constant
� = 10, while the analytical no-solution line assumes constant � = 3, Tmin =
4500 K and the numerical κeff .

of the luminosity has been used to accelerate the wind (i.e. ε =
10−2).

Let us now fix MBH and explore what happens as we increase the
envelope mass. First, we note that the strongest dependence is on
the envelope mass. Therefore, as we increase M∗, tev/tBH increases
and it will eventually be greater than unity. Also, the radius of the
star r∗ decreases and the depth of the potential well from which
matter should escape increases: v2

esc ∝ M6/5
∗ /κ2/5

tr .
Since the mean density M∗/r3

∗ increases as well, it is reasonable
to assume that, as the envelope mass increases, the radial distance
between the sonic radius and the photospheric radius increases.
This implies that an increasing fraction of the luminosity is used
to pull the gas out of the potential well (i.e. ε → 1). At that point,
Ṁw 
 Ṁw,max.

We anticipate here one of our numerical result (elaborated in
Section 4) that the condition tev/tBH > 1 is found above the ε = 1
limit for all BH masses we consider (MBH < 105 M�). Therefore,
the equal evaporation/accretion line is given by

m∗ ≈ 2.8 × 105(ακ̃tr)
2/11η

2/11
0.1

(mBH

100

)9/11
. (18)

There is a relatively wide strip in the M∗ − MBH parameter space
between the no-solution line (equation 12) and the equal-time-scale
line (equation 18), that we dub the evaporation strip. Only above
this strip is it possible ‘to grow’ BHs inside quasi-stars. Therefore,
we will refer to the tev/tBH = 1 line as the threshold-growth line,
and to the region above as the growth region.

2.5 The quasi-star evolution

Let us now assume that the envelope is constantly fed at a rate
of a few M� yr−1 from the pregalactic disc. From equation (16),
we deduce that, in fact, the mass of the envelope will likely not
increase, since the mass loss will (over)compensate the feeding.
An upper limit for the BH mass that can be reached is therefore
obtained by setting the envelope mass to be constant in time. The
quasi-star will then move rightwards in the M∗ − MBH place and
it will eventually cross the threshold-growth line. Afterwards, the
envelope mass will decrease abruptly until the quasi-star will hit the
no-solution line and the envelope will disperse.

The maximum mass for the BH is therefore given by equa-
tion (18). This implies that it is necessary to have M∗ > 106 M�
in order to form a BH seed, more massive than ∼103 M�. We will
discuss the implications of our findings in Section 5, after having
verified this picture with numerical calculations.

3 N U M E R I C A L S O L U T I O N

The full modelling of a quasi-star, including the radiatively driven
wind, cannot be carried out entirely analytically. In particular, one
cannot derive the wind strength and its optical depth as a function of
M∗ and MBH. In part, this is because the stellar ‘boundary’ conditions
at the sonic point depend on the characteristics of the wind, and vice
versa.

In the previous section, this ignorance was buried in the unknown
behaviour of the parameter ε, and of �(rtr) that enters the equations
through κ tr. We simply assumed that their evolution was such that
the threshold-growth line lies in the ε = 1 region. However, in order
to determine the actual extent of the evaporation strip, it is necessary
to numerically calculate the structure of the quasi-star.

3.1 The innermost accretion region

As was the case in the analytic analysis, we do not model the accre-
tion flow. We assume that a luminosity LBH given by equation (2) is
transported through the quasi-star.

3.2 The hydrostatic convective envelope

Above the accretion zone resides the hydrostatic region of the en-
velope. It is composed of two parts. The inner part is the convective
zone, in which the energy emitted by the accretion is convected
outwards. Convection is an efficient process of energy transfer only
as long as the luminosity LBH is lower than the maximal convective
luminosity, Lc,max, given by equation (1).

The hydrostatic envelope is described by the equation of hydro-
static equilibrium,

1

ρ

dP

dr
= −GM(r)

r2
, (19)

where M(r) is the total mass contained within radius r,

M(r) = MBH +
∫ r

rb

4πr2ρ dr, (20)

the equation of state,

P = Pg + Pr = kbT ρ

μmp
+ 1

3
aT 4, (21)

where kb is the Boltzmann constant and μmp is the mean mass
per particle. Given our primordial composition and that in most
of the quasi-star T > 104 K, we adopt μ = 0.5, independently of
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radius. The last assumption does not affect our global results for
two reasons. First, quasi-stars are radiation pressure dominated.
Secondly, the pressure is important only over the hydrostatic region
and the base of the wind, where the temperature is always above
the ionization temperature. The temperature gradient is given by the
adiabatic gradient,

dT

dr
= �2 − 1

�2

T

P

dP

dr
, (22)

where �2 is the adiabatic index:

�2 = 32 − 24β − 3β2

24 − 18β − 3β2
, (23)

and β = Pg/P.

3.3 The hydrostatic radiative region

According to common wisdom, objects with a mass M∗ cannot shine
beyond their classical Eddington limit, LEdd = 4πGM∗c/κ , since
no hydrostatic solution exists. In other words, if objects do pass LEdd,
they are highly dynamic. They have no steady state, and a huge mass
loss should occur since their atmospheres are then gravitationally
unbound. Thus, persistent astrophysical objects can pass LEdd but
only for a short duration corresponding to the time it takes them to
dynamically stabilize, once super-Eddington conditions arise.

For example, this can be seen in detailed 1D numerical simula-
tions of thermonuclear runaways in classical nova eruptions, which
can achieve super-Eddington luminosities but only for several dy-
namical time-scales (e.g. Starrfield 1989). However, once they do
stabilize, they are expected and indeed do reach in the simulations,
a sub-Eddington state. Namely, we naively expect to find no steady-
state super-Eddington atmospheres. This, however, is not the case
in nature, where nova eruptions are clearly super-Eddington for du-
rations which are orders of magnitude longer than their dynamical
time-scale (Shaviv 2001b). This is exemplified with another clear
super-Eddington object – the great eruption of η-Carinae, which
was a few times above its Eddington luminosity for over 20 years
(Shaviv 2000b).

The existence of a super-Eddington state can be naturally ex-
plained, once we consider the following.

(i) Atmospheres become unstable as they approach the Edding-
ton limit. In addition to instabilities that operate under various
special conditions (e.g. photon bubbles in strong magnetic fields,
Arons 1992; Gammie 1998; Blaes & Socrates 2001; Begelman
2002, or s-mode instability under special opacity laws, Glatzel 1994;
Papaloizou et al. 1997), two instabilities operate in Thomson scat-
tering atmospheres (Shaviv 2001a). It implies that all atmospheres
will become unstable already before reaching the Eddington limit.

(ii) The effective opacity for calculating the radiative force on
an inhomogeneous atmosphere is not necessarily the microscopic
opacity. Instead, it is given by

κeff
V ≡ 〈FκV 〉V

〈F 〉V

, (24)

where 〈〉V denotes volume averaging and F is the flux (Shaviv 1998).
The situation is very similar to the Rosseland versus Force opacity
means used in non-grey atmospheres, where the inhomogeneities
are in frequency space as opposed to real space. For the special
case of the Thomson scattering relevant here, the effective opacity
is always reduced.

For � ≥ �crit, the effective opacity can be described by an empir-
ical parametrization (e.g. Dotan & Shaviv 2011)

κeff = κ

(
1 − A

�B

)
1

�
, (25)

where �crit is the critical � above which inhomogeneities are ex-
cited. From theoretical considerations, we take �crit = 0.8 (Shaviv
2001a). In our work we choose B = 1, which implies A = 0.16.

Finally, we assume that the relation between the effective Ed-
dington factor �eff ≡ L/Ledd,r(κeff ) and the classical Eddington factor
� ≡ L/Ledd,r(κ) is empirically given by

�eff = 1 − A

�B
for � > �crit,

�eff = � for � < �crit. (26)

As was found in Dotan & Shaviv (2011), the solutions we find in
Section 4 are relatively insensitive to the exact choice of A and B.

The central temperature of a quasi-star is of the order of 106 K
(see equation 8) and it decreases slowly in the convective envelope.
Therefore, the temperature in the hydrostatic part of the quasi-star
is high enough (�104 K), that the opacity is mainly due to electron
scattering, and it is approximately constant, κ ≈ κes.

Unlike the hydrostatic part, the temperature in the wind can drop
below 104 K, especially near the photosphere. This means that hy-
drogen recombines and opacities due to ‘bound–free’ transitions
become important. Since we are modelling objects that are formed
out of pristine or mildly polluted gas, we use the opacity computed
by Mayer & Duschl (2005). In particular, we use an analytical fit

κ = κes

1 + (
T /8 × 103 K

)−13 cm2 g−1 (27)

(BRA08), which captures the rapid drop in opacity for T < 104 K.
The temperature gradient is given by the radiative one with the

above effective opacity,

dT

dr
= − 3κeffρLBH

16πacr2T 3
. (28)

We note that in the atmosphere, the radiative luminosity is constant
and L = LBH, because work has not been done on the gas. In fact,
the atmospheres of super-Eddington objects effectively remain sub-
Eddington while being classically super-Eddington. This is true
only as long as the inhomogeneities comprising them are optically
thick. This condition will break at some point where the density is
low enough and the wind will ensue.

3.4 The wind

When inhomogeneities in the atmosphere become optically thin,
the opacity returns to its microscopic value, and a net outward force
acts on the gas. We will show in the following that the nature of
the outflow and the mass-loss rate ultimately depend on the ratio of
gas to radiation pressure and therefore on the quasi-star mass M∗
(equation 4).

3.4.1 Two-fluid solution

In a wind, the radiation energy can be transported by diffusion
and by advection, so that the total energy rate is L + Ṁw4Pr/ρ,
where the latter is the advected enthalpy, while L is the diffusion
luminosity,

L(r) = −dT

dr

16πacr2T 3

3κρ
. (29)

C© 2011 The Authors, MNRAS 417, 3035–3046
Monthly Notices of the Royal Astronomical Society C© 2011 RAS



Growing supermassive black holes seeds 3041

In a low-mass quasi-star – we will quantify it shortly – the mean
density is too low for advection to be efficient and the main mech-
anism for radiation energy transfer in the wind is diffusion. The
radiation can thus be described as an additional external force act-
ing on the gas, besides gravity. For this reason we refer to this
solution as a ‘two-fluid’ wind.

Using the continuity and Euler equations in steady state, it is
possible to show such trans-sonic wind solutions will be charac-
terized by having an isothermal sonic point which coincides with
the critical point. The ‘isothermal’ sonic point is the radius where
v = cw = √

Pg/ρ (with cw being the isothermal speed of sound),
while the critical point is the radius where the net forces balance
each other.

Using the above definition of the sonic point, the mass-loss rate
can we written as

Ṁw = 4πr2
s ρwcw = const., (30)

where ρw is the density at the sonic point.
In our case, the critical point will be located where the net radia-

tive force on a gas element balances gravity, namely, where �eff ≈ 1.
This will happen when the inhomogeneities comprising the porous
atmosphere become optically thin such that they cannot reduce the
opacity anymore. This point will also mark the outer extent of the
hydrostatic part of the quasi-star, rs 
 r∗.

Based on the fact that the inhomogeneities are the result of ra-
diative hydrodynamic instabilities which operate on length-scales
comparable to the density scaleheight in the atmosphere, it is possi-
ble to estimate the average density at the sonic point (Shaviv 2001b).
Using this density, the mass loss can be estimated to be

Ṁw,0 = W LBH

(
1 − �−1

s

)
cwc

, (31)

where �s = �(rs) and W is a dimensionless wind function (Shaviv
2001b). In principle, W can be calculated ab initio only after the
non-linear state of the inhomogeneities is understood. This however
is still lacking as it requires elaborate 3D numerical simulations of
the non-linear steady state. Nevertheless, one can compare the above
prediction to observed mass-loss rates in classical novae and in giant
eruptions of Luminous Blue Variables, and find that W ∼ 5−15
(Shaviv 2001b). We shall take a value of 10. By comparing equations
(16) and (31), we have an expression for the efficiency factor ε =
Wv2

esc/(2ccw)(1 − �−1
s ) ≈ 5vesc

2/(ccw).
As mentioned before, when the mass of the quasi-star increases,

the compactness of the star increases as well. As a consequence, an
increasingly high efficiency ε is necessary for the predicted mass
loss to be pushed to r → ∞ by the available luminosity. When the
required efficiency satisfies ε > 1, which means vesc �

√
cwc/W ,

a time-independent wind solution is then not possible, because the
wind would have to stagnate at a finite radius. The regime is then
that of ‘photon-tired winds’ (Owocki & Gayley 1997).

The time-dependent behaviour of photon-tired winds was numer-
ically investigated by van Marle, Owocki & Shaviv (2009). It was
found that shocks form between infalling material and the outflow-
ing wind. This forms a layer of shocks in which there is a large
kinetic flux, but without the associated mass flux. In particular, they
find that the mass loss from the top of the layer of shocks is reduced
to ε � 1: ε ≈ min [0.2 �0.6

s , 0.9].
Therefore, in general, the wind mass loss is given by

Ṁw

Ṁw,max

 min

(
0.2 �0.6

s , 0.9,
Ṁw,0

Ṁw,max

)
. (32)

Beyond the sonic point, acceleration to, say, v 
 2cw happens in
a geometrically thin layer of a few scaleheights. In the following

supersonic regime, the thermal gradient is no longer important with
respect to the external forces. From this point on the gas velocity is
described by

v
dv

dr
= −GMT [1 − �(r)]

r2
. (33)

The last equation that is needed to describe the wind is that of
energy conservation, which for r > rs reads

LBH = L(r) + Ṁw

[
1

2
v2 − GMT

rs
+ GMT

r

]
= const., (34)

where the advection term has been consistently dropped.
We are now in the position to quantify the regime in which this

‘two-fluid solution’ can apply. The requirement that the gas flows
through a sonic point, beyond which � > 1, is equivalent to the
requirement that the advective term must not reduce the luminosity
below the Eddington value by rs,

Ṁw
4Pr

ρ
< LBH − LEdd. (35)

This criterion will be slightly different depending on the mass-loss
regime, which determines Ṁw, but in both cases it can be expressed
in terms of a minimum gas to radiation pressure ratio. In non-
photon-tired winds (equation 31), it becomes

β̄ > 4W cw

c
. (36)

We remind here that cw is the isothermal sound speed calculated at
the sonic point. In the photon-tired regime, the criterion for having
an isothermal critical point is instead

β̄ >
8�

� − 1

(
cw

vesc

)2

. (37)

Because generally one has both that cw � c and cw � vesc,
the two-fluid solution with an ‘isothermal’ sonic point breaks
down only for very low gas pressure fractions, which in quasi-
stars implies a large envelope mass. Numerically, the line above
which there is no isothermal critical point is denoted in Fig. 2.
One can see that except for the least massive BHs, this line re-
sides in the photon-tired regime. This is because the non-photon-
tired criterion (equation 36) is generally more stringent than the
photon-tired criterion (equation 37). Equation (36) implies a mass
range

M∗
106 M�

< 0.3
( cw

107 cm s−1

)−1/2
. (38)

3.4.2 Adiabatic winds

At low enough gas pressures, no isothermal critical point can de-
velop since the luminosity in the fluid frame of reference is sub-
Eddington. Instead, the radiative energy is mostly advected with the
flow. One can then consider the radiation and gas to flow together
as one fluid, with an effective adiabatic index of the combined fluid
(which is very close to 4/3).

In this regime, the quasi-star will develop a slow outflow above
the porous atmosphere, enough to keep the flux sub-Eddington, but
still sub-sonic. The flow would only become supersonic further out,
where the escape velocity is similar to the local speed of sound,
resulting in an adiabatic wind (i.e. the classical wind solution for
stars; Parker 1960).

To see that such a subsonically outflowing layer must be present,
let us assume for a moment that it is not. In such a case, an adiabatic
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‘single fluid’ wind will develop with a sonic point located where the
polytropic part of the quasi-star ends (equation 9). To find the energy
required to drive a wind from that location, we need to consider that
the polytropic object has P = Kρ4/3 with K = (M/8π)2/3πG, that
its radius is given by equation (9) and that for a thermal wind, v ∼
vesc at the sonic point. The ratio between this energy and the energy
released by the BH is then

Lwind

LBH
= 2πr2

∗ρvwv2
esc

LBH
≈ 12

(
M∗
MBH

)2

� 1. (39)

Clearly, the required energy is much larger than the amount avail-
able. This implies that the thermal wind cannot be accelerated from
where the polytropic part of the star ends. Therefore, there must be
a layer with an outflow which is fast enough to keep the luminosity
sub-Eddington (relative to the gas), but slow enough to be subsonic.
Only further out, where the escape speed is significantly slower,
will the flow become supersonic.

Since the amount of energy left in the flow at the sonic point is
much smaller than the energy it had deep below, it is clear that almost
all the energy is used to pull the material out of the gravitational
potential well, and very little will be left as kinetic energy in the
thermal wind, or in the form of observable luminosity.

Thus, because the system is limited by the gravitational well, adi-
abatic winds are characterized by the similar mass-loss rate Ṁw,max

of photon-tired winds, albeit in a configuration which is remarkably
different from before.

3.5 Numerical methods

Practically, we perform the numerical calculation of a quasi-star as
follows.

(i) Choose a BH mass, MBH.
(ii) Choose an inner total pressure, Pc.
(iii) Guess the gas to total pressure ratio at the inner radius, βc =

Pg/Pc.

With the above values, one can calculate the inner temperature,
density, adiabatic speed of sound, the Bondi radius and luminosity
by respectively using

Tc =
[

3(1 − βc)Pc

a

]1/4

, (40)

ρc = βcPc
μmH

kTc
, (41)

cc =
√

4Pc/3ρc, (42)

rb = GMBH

2c2
c

. (43)

The luminosity LBH is given by equation (2) with α = 1. In fact,
LBH is evaluated at 5 × rb, to avoid the density cusp generated by
the point mass potential of the BH (see equation 19).

Using the above values, we integrate the equations of stellar
structure for a convective envelope (equations 19–22) until LBH =
Lc,max. When LBH > Lc,max, we use the same equations except that
the temperature gradient is instead given by equation (28). This in-
tegration is carried out up to κeff = 1. This location, where �eff ≈ 1,
is the wind sonic radius rs in the two-fluid regime (Section 3.4.1).
From this point outwards, we integrate the wind equations (equa-
tions 33, 32 and 34), with the following initial conditions. At r =
rs we take the value of the gas isothermal sound speed c(rs) and

temperature T(rs) given by the hydrostatic solution and we set the
initial wind sound speed, velocity and temperature to be cw = c(rs),
vw = cw and Tw = T(rs). Assuming mass continuity at rs with the
wind rate given by equation (32), we derive the initial wind density
ρw = Ṁw/4πr2

s cw. The way we connect the hydrostatic solution to
the wind uses the fact that the acceleration happens in a very narrow
radial region, and we approximate it to happen at one radius, r = rs.

Finally, the wind equations are integrated up to the photosphere
r = rph, where the optical depth is τ = 2/3. At rph, the temperature
T(rph) should be such that one recovers consistent surface conditions
for the radiation field:

T (rph) =
(

L(rph)

4πr2
phσ

)1/4

. (44)

To enforce it, the value of βc (our only free parameter) is iterated and,
for each successive guess, the quasi-star structure is recalculated
until equation (44) is satisfied.

Since the adiabatic wind conditions are satisfied above the photon
tiring limit (Fig. 2), we do not need to calculate specifically that
solution, since the mass-loss rate is going to be similar to the one
of the corresponding photon-tired solution.

4 NUMERI CAL RESULTS

In this section, we first discuss the different regions in the M∗ −
MBH parameter space for the structure of a quasi-star. Then, we
will follow its temporal evolution towards the formation of massive
BH seeds.

4.1 The ‘no-solution’ region

Using the numerical analysis, we first confirm the existence of a
region in the M∗ − MBH parameter space where no hydrostatic
self-gravitating envelopes can be found. The region corresponds to
M∗/MBH ≤ 18, as depicted in Fig 2. In this region, the hydrostatic
layer between rb, where the supersonic accretion begins, and rs,
where the supersonic wind starts, is simply too thin geometrically
to be stable (with rs/rb � 2).

The boundary of this ‘forbidden’ region in the M∗ − MBH parame-
ter space corresponds to envelopes with a photospheric temperature
of 4500 � Tmin � 6000 K, in agreement with BRA08. In particular,
we find that Tmin increases from 4500 to 6000 K between MBH =
50 M� and MBH = 104 M�; then it decreases down to 5400 K at
105 M�. For a given MBH, Tmin is the minimum photospheric tem-
perature with which a quasi-star can shine, which corresponds to
the minimum possible envelope mass, according to Tph ∝ M7/20

∗
(equation 44).

We compare our numerical results with the analytic prediction
given by equation (12) (lower long-dashed red line). It assumes a
constant �s = 3 and Tmin = 4500 K. The good agreement reinforces
the validity of our numerical model. Despite the more sophisticated
modelling of the atmosphere which allows for mass loss, we recover
the expected behaviour in the limit of low envelope masses. As the
envelope mass decreases, for a given BH mass, rph → rs and the wind
becomes completely optically thin and dynamically unimportant.

4.2 The evaporation strip

At the no-solution line, quasi-stars are already very windy despite
the relatively modest �s, with a loss of a few to 10 000 M� yr−1,
as shown by the lines of constant Ṁw in Fig. 2 (solid blue lines).
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Figure 3. Wind mass-loss and Eddington ratios as a function of the envelope
mass, for a fixed BH mass of MBH = 100 M�. The Eddington ratios are
calculated at rs (�s) and at the photosphere rph (�obs ≡ �(rph)).

There, the vigorous mass ejection causes the evaporation time-scale
to be shorter than the accretion time-scale, tev < tBH.

The mass loss intensifies as a given BH increases its envelope
mass, Ṁw ∝ M1.3

∗ (Fig. 3). It will eventually reach the pho-
ton tiring limit, after which it increases at a much slower rate
Ṁw ∝ M−1/5

∗ �3/5
s ∝ M0.1

∗ (see equation 16 and Fig. 3). This can
also be seen in Fig. 2, where above the short-dashed line, the lines
of constant Ṁw become almost vertical. Correspondingly, the evap-
oration time-scale first decreases as tev ∝ M−0.3

∗ , then, once in the
photon tiring regime, it increases as tev ∝ M0.9

∗ .
The accretion rate on to the BH, instead, always increases linearly

with the envelope mass. Therefore, the accretion time-scale goes
as tBH ∝ M−1

∗ . Because of this faster and monotonic evolution, it
eventually equals the evaporation time-scale inside the photon tiring
region.

The existence of an ‘evaporation strip’, where the envelope is
lost to the wind rather than feeding the BH, is thus confirmed by
our numerical calculations (Fig. 2). The extent of the strip, given by
the line of equal time-scales (tev = tBH), is well in agreement with
our analytical prediction (equation 16, upper red long-dashed line),
where we use a constant �s = 10. As we explained in Section 2.5,
we call this line ‘the threshold-growth line’, since it indicates the
minimal envelope mass within which a given BH can significantly
increase its mass by accretion before the envelope is lost.

4.3 The evolution of a quasi-star

So far, we focused on single equilibrium solutions. However, the
structure depicted in Fig. 1 is in constant evolution. On the one hand,
the envelope loses mass to the wind and to the BH. On the other
hand, it gains mass, accreting from the proto-galactic disc. Since
the dynamical time-scale,

√
R3∗/GM∗ ≈ 20m

6/5
BHm−4/5

∗ yr, is always
much shorter than both the accretion and the evaporation time-
scales, we can construct the quasi-star evolution as a succession of
equilibrium states.

For this description to be valid, we require that the thermal time-
scale will be shorter than the evolutionary time-scale. To estimate

it, we should note that quasi-stars are to a good approximation n =
3 polytropes, in which the internal energy almost compensates the
gravitational binding energy, leaving a small contribution from the
finite gas pressure. Namely,

Etot ≈ −β̄Egrav = β̄k2GM5/3ρ1/3
c , (45)

where k2 = 0.639. Since the thermal time-scale is roughly tth ≈
Etot/LEdd, we find using equations (4), (7) and (10) that

tth < Etot/LEdd = 2m7/10
∗ m

−4/5
BH yr. (46)

As we shall see, this time-scale is shorter or at most comparable
to the evolutionary time-scale.

Once we are allowed to consider steady states, we can envision
two scenarios. In the first scenario, we assume a large amount of
mass collapses to form the quasi-star, after which it equilibrates
and evolves while the proto-galactic disc continues to be accreted.
In the second scenario, we assume that the quasi-star forms with a
relatively low envelope mass, and it grows while the accretion rate
is larger than the wind mass-loss rate.

As study cases for the first scenario, we follow the fate of a BH
of 100 M� embedded within envelopes of initial mass of 106, 107

and 7 × 107 M� (Fig. 4). In each case, the quasi-star is born in the
accretion zone. We considered several different accretion rates on
to the envelope, Ṁacc = 1, 3, 10, 50 M� yr−1, and we found very

Figure 4. Quasi-star evolutionary tracks. The blue lines describe the evo-
lution of quasi-stars which accrete from the pre-galactic disc at a rate of
10 M� yr−1. The upper three ones have an initial BH mass of 100 M�,
and initial envelope masses of 106, 107 and 5 × 107 M�, respectively. The
quasi-star with 106 M� spends 1.5 × 103 yr in the accretion zone and a
comparable time, 6 × 103 yr, in the evaporation strip. The aforementioned
time-scales for M∗ = 107 M� (and M∗ = 6 × 107 M�) are 1.3 × 103 yr
(600 yr) and 1.5 × 103 yr (500 yr), respectively (see Fig. 5). In all cases,
the mass evolution of the envelope is governed by the wind loses. In the
BH growth zone, the quasi-stars lose only ≈25 per cent of their initial
mass, while all of it is lost in the evaporation strip. The final BH masses
are: 750 M�, 1.3 × 104 M� and 105 M�. The lower blue line is for a
quasi-star formed in the evaporation strip with MBH,i = 25 M� and M∗,i =
5.7 × 103 M�, while the red-line is for the same initial conditions but with
Ṁacc = 300 M�yr−1. In these last cases, the final BH mass is determined
by accretion rates. Their temporal evolution is shown in Fig. 5.
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Figure 5. The temporal evolution of the BH (solid lines) and envelope
(dashed lines) masses for three quasi-stars. The magenta lines describe
the case with MBH,i = 100 M� and M∗,i = 107 M�. Here the quasi-star is
formed in the growth region (see Fig. 4) and reaches MBH,f = 1.3 × 104 M�,
in 2.8 × 103 yr. The blue and black lines describe the evolution of quasi-
stars with an initial BH mass of 25 M� and M∗,i = 5.7 × 103 M�, which is
accreting at a constant rate of 10 M� yr−1 and 300 M� yr−1, respectively.
The final BH formed in this scenario heavily depends on the accretion rate.
It has a mass of 440 M� in the first case and almost 5.7 × 103 M� in
the second case. Both quasi-stars live for ≈1 Myr. Note that the thermal
time-scale in the latter case is comparable to the evolutionary time-scale,
and therefore it should be considered cautiously.

similar tracks, since the change in M∗ is mainly due to wind losses,
for the range of envelope and BH masses its track passes through.
We therefore plot one example with Ṁacc = 10 M� yr−1.

As the BH mass increases by accretion, the quasi-star moves
towards the right of the plot, until it encounters the evaporation strip
after a typical time ≈103 yr has elapsed (see the temporal evolution
in Fig. 5). This evolution in the accretion zone is so short that the
envelope loses only about 25 per cent of its initial mass. However,
as soon as the quasi-star enters the evaporation strip, the envelope
is stripped off at such a high rate that the quasi-star plunges down
vertically in the diagram, reaching the no-solution line in a further
103–104 yr.

The main result here is indeed that the presence of the evaporation
strip limits the configurations in which an embryo BH can grow
to masses >103 M�. In particular, it is necessary that a quasi-
star ‘is born’ above the line of threshold-growth limit, with an
envelope of at least 106 M�. The initial envelope mass determines
the final BH mass. Empirically, for an initial BH mass of 100 M�
and Ṁacc = 10 M� yr−1, we find

MBH,f ≈ 760

(
M∗,i

106 M�

)1.25

M�, (47)

where MBH,f is the final BH mass and M∗,i is the initial envelope
mass. This relation holds for any reasonable accretion rate, Ṁacc <

100 M� yr−1, and any initial BH mass MBH,i � 100 M�. For a
much lower BH mass, the evaporation rate may be lower than the

accretion rate and there may be a dependence on the initial BH
mass, likewise, for much higher accretion rates.

In the second scenario, we assume that the quasi-star is formed
through a more gradual accretion process. For the ‘low accretion
rates’, at least several dozen times the Eddington rate, a bare BH can
handle the accreted mass with a disc-like solution, having optically
thick winds (Dotan & Shaviv 2011). However, the BH will not be
able to handle higher accretion rates with this configuration. This
will necessarily puff up the system to form a ‘minimal’ quasi-star.
From this point, we wish to integrate its evolution. We expect the
envelope mass to increase until the wind will compensate for the
accreted matter. That is, it will evolve by increasing the mass of the
cocooned BH, until the system will reach the no-solution line.

Two such tracks are plotted in Fig. 4, and the temporal evolution
is given in Fig. 5. These quasi-stars are formed in the evaporation
strip with MBH,i = 25 M�. Here we find that the final mass of the
BH is determined by the maximal envelope mass which in turn
depends on the mass accretion rate.

For MBH,i = 25 M�, M∗,i = 1.4 × 104 M�, we calculate numer-
ically relations between the accretion rates and the final BH mass.
For accretion rates <20 M� yr−1, which do not allow the quasi-star
to leave the evaporation strip, we get the relation

MBH,f ≈ 280

(
Ṁacc

10 M� yr−1

)0.68

M�. (48)

For higher accretion rates which place the quasi-star above the
growth line, we get

MBH,f ≈ 550

(
Ṁacc

10 M� yr−1

)0.62

M�. (49)

Only in this last case, the final BH can be larger than 103 M�, but
only for Ṁacc � 30 M� yr−1. However, it is a weak function of
Ṁacc, and already extremely high accretion rates (>100 M� yr−1)
are needed to counterbalance the envelope evaporation and grow
MBH with at least a few 103 M�.

In addition, we note that the case of an initial BH with a few tens
of M� is a favourable configuration in which a quasi-star formed
in the evaporation strip can somewhat grow its BH. As we move
towards the right within the evaporation strip, the winds become
more and more vigorous (see Fig. 2) and the envelope is stripped
off progressively more rapidly, leading eventually to conditions that
will not allow any BH growth.

We thus conclude that, for plausible galactic accretion rates (∼1–
10 M� yr−1), quasi-stars should be necessarily formed above the
evaporation strip with an envelope of at least 106 M�, in order to
get MBH > 103 M�.

4.4 Observational appearance

During the growth of the BH, quasi-stars are very dim objects, since
most of the radiation energy is converted into kinetic energy for the
wind. The photons that do manage to escape from the photosphere
make up a modest luminosity which is smaller than the Eddington
(see �obs in Fig. 3).

When the quasi-star enters the evaporation strip, however, the
luminosity starts increasing fast as the envelope is being blown off.
Eventually, �obs ≥ 1 beyond the photon tiring limit, but this Super-
Eddington phase is very brief (<103 yr), where most of the time is
in fact spent at the photon tiring limit.

Another interesting point is the fact that because of the wind, the
objects never have a high effective temperature. As a consequence,
any cosmological redshift will imply that the objects can only be
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observed in the infrared band. Therefore, we can conclude that
although they were very brief transients, they can in principle be
detected by the forthcoming James Webb Space Telescope.

5 D ISCUSSION AND CONCLUSION

In the present work, we considered the state and evolution of quasi-
stars, where a massive envelope enshrouds a BH. We found that
an important characteristic of these objects is the continuum-driven
winds which they accelerate. This gives rise to an evaporation strip
in the envelope mass–BH mass parameter space, where quasi-stars
evaporate. BH growth takes place only for large enough M∗ for
which the wind mass loss is limited by photon-tired winds.

We then considered two evolutionary scenarios. In the first sce-
nario, the quasi-star is initially formed above the evaporation strip,
by first having a large gas cloud collapse, then form an internal
BH, and subsequently evolve. In the second scenario, a seed BH is
first formed, and then it accretes gas at large rates. We found that
only the first scenario can generate large seed BHs. This is because
once a BH is formed, unrealistically high mass accretion rates are
required to evolve the quasi-star out of the evaporation strip.

These results put strong constraints on the dark matter haloes in
which massive SMBH seeds can form. Our first scenario, on which
we now concentrate, follows the picture put forth by Begelman
(2010), whereby the progenitors of quasi-stars are super massive
stars that formed as the consequence of the high infall rate of
hydrogen-cooled gas at the centre of dark matter haloes. The life-
time of these stars is set by the thermonuclear time-scale for burning
their hydrogen core. At the Eddington limit, it is ∼2 Myr, indepen-
dent of mass. After that, the core may collapse into a BH. Once
the BH starts accreting from the envelope, the feedback from the
released luminosity sets up the structure we have investigated in
this paper.

Our results constrain the initial mass of the quasi-star, and thus
of the supermassive star, that can grow massive SMBH seeds. A
quasi-star with an initial mass ≈106 M� (or ≈107 M�) can form a
BH of ≈103 M� (or ≈104 M� respectively, as can be see in Fig. 4).
This initial mass should be accumulated in less than ∼2 Myr, which
requires accretion rates greater than a few M� yr−1.

Dark matter haloes accrete matter through their virial radius at a
rate of

ṀDM ≈ 4.6 (z + 1)2.5
10

(
Mh

109 M�

)1.14

M� yr−1, (50)

(Neistein, van den Bosch & Dekel 2006), where Mh is the mass of
the dark matter halo that hosts the quasi-star and (z + 1)10 = (z +
1)/10.

Since the time-scale for dark matter and gas accretion is the same
(Dekel, Sari & Ceverino 2009),

Ṁacc = fb × ṀDM, (51)

it is also an estimate for the accretion rate that feeds the quasi-star,
under the assumption that almost all gas can be funnelled towards
the halo centre. In equation (51), f b ≈ 0.17 is the cosmological
baryon fraction (Komatsu 2011).

In fact, it is not clear if such high accretion rates do not undergo
fragmentation at parsec scales and if so, how much gas turns into
stars (e.g. Shlosman & Begelman 1989; Levin 2007). This is known
as the ‘active galactic nuclei (AGN) fuelling problem’, since we
observe them shining with a luminosity that implies ∼1 M� yr−1.
However if, like it must happen in AGN, this problem is not severe

(Wise et al. 2008; Begelman & Shlosman 2009) such flows can
reach the proto-galactic centre.

Under this assumption, we can thus connect the accretion rate
needed in order to form a quasi-star of a certain mass and at a
certain redshift, with the mass of the host halo through equation (51).
However, we should also assume an efficiency factor, since not all
gas f b × Mh in the halo can be used to form a quasi-star. Therefore,
the minimum halo mass that can host a given quasi-star with mass
M∗ is

Mh

M�
≈ max

[
7 × 108

(1 + z)2.2
10

(
M∗

106 M�

)0.9

, 6 × 108 M∗
106 M�

]
, (52)

where we assumed in the second term that no more than 1 per cent
of the total amount of gas is used for the formation of the quasi-star.
The first term comes directly from equation (51).

Equation (52) implies that at z = 10, quasi-stars with M∗ >

106 M� can be found only in dark matter haloes with Mh � 109 M�.
In particular, for z � 10 ‘massive’ SMBH seeds of MBH > 104 M�
need host haloes with Mh � 6 × 109 M�.

The very bright quasars observed at z ∼ 6 have masses of typically
109 M�, estimated using the Eddington argument. Moreover, seeds
of 104–105 M� can grow by accretion at the Eddington rate in
∼0.5 Gyr. Therefore, such SMBH seeds may have formed as late
as z ∼ 10. At this redshift, the comoving number density of haloes
with Mh ≈ 1012 M� (calculated with the Sheth & Tormen 1999
formalism) matches the observed comoving number density of those
bright quasars, 10−9 Mpc−3 (Fan et al. 2001). Those haloes are
indeed above the threshold set by equation (52).

Of course, haloes formed at different redshifts can lead to the
observed high-redshift quasars and to the observed local galaxies
with SMBHs. To properly derive the consequences of equation (52),
one should thus follow a ‘merging tree’ evolution of haloes and also
of the hosted BHs. This is beyond the scope of this paper, but it will
be addressed in a forthcoming work.

Finally, our results show that, unfortunately, quasi-stars will not
be easy to observe. They are relatively rare objects which shine at
super-Eddington rates only for a short period, prior to their final
evaporation.
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