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We study the high speed collision and reconnection of Abrikosov–Nielsen–Olesen cosmic strings in the

type-II regime of the Abelian Higgs model, that is, scalar-to-gauge mass ratios larger than 1. Qualitatively,

new phenomena such as multiple reconnections and clustering of small-scale structure have been observed

in the deep type-II regime and reported in a previous paper, as well as the fact that the previously observed

‘‘loop’’ that mediates the second intercommutation is only a loop for sufficiently large mass ratios. Here

we give a more detailed account of our study, which involves 3D numerical simulations with the

parameter � ¼ m2
scalar=m

2
gauge in the range 1 � � � 64, the largest value simulated to date, as well as

2D simulations of vortex-antivortex head-on collisions to understand their possible relation to the new

3D phenomena. Our simulations give further support to the ideas that Abelian Higgs strings never pass

through each other, even at ultrarelativistic speeds, unless this is the result of a double reconnection; and

that the critical velocity for double reconnection goes down with increasing mass ratio, but energy

conservation suggests a lower bound around 0.77 c. We discuss the qualitative change in the intermediate

state observed for large mass ratios. We relate it to a similar change in the outcome of 2D vortex-

antivortex collisions in the form of radiating bound states, whereas we find no evidence of the back-to-

back reemergence reported in previous studies. In the deep type-II regime the angular dependence of the

critical speed for double reconnection does not seem to conform to the semianalytic predictions based on

the Nambu-Goto approximation. We can model the high angle collisions reasonably well by incorporating

the effect of core interactions, and the torque they produce on the approaching strings, into the Nambu-

Goto description of the collision. An interesting, counterintuitive aspect is that the effective collision angle

is smaller (not larger) as a result of the torque. Our results suggest differences in network evolution and

radiation output with respect to the predictions based on Nambu-Goto or � ¼ 1 Abelian Higgs dynamics.

DOI: 10.1103/PhysRevD.84.105036 PACS numbers: 11.27.+d, 98.80.Cq

I. INTRODUCTION

The discovery of cosmic strings would revolutionize our
understanding of particle physics at the extremely high
energies present in the very early Universe. Cosmic strings,
first proposed by Kibble [1], could signal a ‘‘superconduct-
ing’’ phase transition and give information on the particle
interactions before the transition, or they might provide the
first evidence of superstring theory. So far there is no
evidence of their existence, but strings can lead to a wealth
of detectable astrophysical phenomena and there is an
increasing number of surveys and searches looking for
observable signatures. These include cosmic microwave
background anisotropies, gravitational lensing, wakes,
gravitational radiation, cosmic rays and gamma ray bursts,
among others. Gravitational effects are determined by the
adimensional parameter G� which for most models of
cosmological interest falls in the range 10�13–10�6. (We

use units with ℏ ¼ c ¼ 1 throughout; G is Newton’s con-

stant and � the mass per unit length of the strings.) Strings

with higher mass per unit length are already ruled out by

these observations (see the classic reviews [2–5] and the

more recent updates [6–11], and references therein).
The formation of cosmic strings and superstrings is a

generic outcome of cosmological phase transitions [1] and
of some inflationary models, in particular, those based on
grand unified theories [12,13]. More recently, it has been
appreciated that some models of brane inflation could also
lead to cosmic superstrings [14,15]. Once formed, a string
network is expected to reach a scaling solution in which
statistical properties such as the distance between strings or
the persistence length become a fixed fraction of the hori-
zon size (the age of the Universe). The energy density in
strings decreases with time, but the expansion of the
Universe pumps energy into the string network—by in-
creasing the contribution of long strings—and this is bal-
anced by energy losses to radiation. If these are efficient
enough, the contribution from the strings to the energy
density of the Universe remains a small, constant fraction
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of the dominant form of energy (matter or radiation) and is
potentially observable. Radiation is emitted by oscillating
loops, formed when a string self-intersects, and in bursts.
The latter are produced by cusps (sections of the string
which acquire near-luminal speeds), by the final stages of
collapsing loops and, to a lesser extent, by kinks created
when strings reconnect. The reconnection, or intercommu-
tation of strings is therefore an essential process that
determines and maintains the long-term scaling behavior
of the string network.

In this paper, which is a companion to [16], we focus on
the high speed intercommutation of Abelian Higgs strings
in the deep type-II regime. The terminology is borrowed
from superconductors, where type-I (type-II) indicates a
critical parameter �< 1 (�> 1); � is the ratio of scalar-
to-gauge excitation masses, squared (see below). An
important difference between type-I and type-II is the
interaction energy between parallel vortices, which is at-
tractive for type-I and repulsive for type-II [17]. Cosmic
string intercommutation was first investigated numerically
by Shellard for global strings [18] and later by Matzner for
type-II� ¼ 2Abelian Higgs strings [19]. They pointed out
that in ultrarelativistic collisions there is a critical center-
of-mass velocity vc (depending on the collision angle)
beyond which strings pass through: a loop forms, expand-
ing rapidly from the collision point, that catches up with
the reconnected strings and produces a second intercom-
mutation. A more recent study [20] focused on double
reconnection and showed that it proceeds differently in
type-I and type-II strings, with the loop forming only in
type-II collisions. In fact, one of the main results in [16]
that we elaborate on here is that the loop forms only in deep
type-II (� � 1) collisions. Although we do not determine
the precise value of � for which the transition occurs, it is
somewhere between � ¼ 8 and � ¼ 16. For � � 16, we
see the loop forming, while type-II collisions with � � 8
produce instead a ‘‘blob’’ of radiation that can look like a
loop but is not (see later sections and [16]). Another
important point is the angular dependence of vc as a
function of the collision angle. In Ref. [20], it was shown
that it is dictated by the geometry and speeds of the strings
after the first reconnection, which can be calculated in the
Nambu-Goto approximation. In the deep type-II regime,
we expect core interactions to play an increasingly impor-
tant role, even before the collision, and this is indeed what
we will report here.

The simulations in [20] had decreasing resolution with
increasing �, and explored only two values of � in the
type-II regime (� ¼ 8, 32), but the results suggested that
the critical velocity for the second reconnection would go
down as a function of �. This is interesting because one of
the distinguishing features of cosmic superstrings, as op-
posed to the Abrikosov–Nielsen–Olesen (ANO) strings
[21,22] considered here, is their low intercommutation
probability P� 10�3–10�1 [23], which leads to different

scaling properties, in particular, to denser networks (al-
though in an expanding background the effect is weaker
than the �t2 � 1=P dependence one might expect for the
density � at cosmic time t [24]). However, if the critical
velocity of strongly type-II Abelian Higgs strings de-
creases to the extent that it becomes comparable to the
average velocity of the network, the effective intercommu-
tation probability could be much less than 1. This was one
of the motivations behind the present study.
Our results confirm the claim of [20] that the critical

velocity for the second reconnection goes down as a func-
tion of �, although energy conservation suggests this de-
crease cannot go on indefinitely. We will return to this
point later. Furthermore, while studying the critical veloc-
ity, we found multiple intercommutations. That is, pro-
cesses where the strings exchange ends 3 times or more.
We found multiple reconnections only for � � 16. We will
show that this is related to a qualitative change in the nature
of the intermediate state, from localized radiation to a
string loop, which determines the process leading to the
second intercommutation. For 1<� � 8, we found that
the previously reported loop is just an expanding blob of
radiation, while for � � 16 we find a topological loop
rapidly expanding from the collision point.
An interesting question that was not addressed in [16] is

whether these multiple reconnections and the blob-to-loop
transition could be related to, for instance, two-dimensional
bound states of the vortex-antivortex system or whether
they are a purely three-dimensional effect. In order to
shed light on this connection, we also simulated the high
speed head-on collision of a vortex and an antivortex in 2D.
Abelian Higgs vortex-antivortex scattering in two dimen-
sions was studied years ago by Myers, Rebbi and Strilka
[25] (see also [26]). They reported that, beyond a certain
critical speed, the vortices reemerge, and the way in which
they reemerge depends on �: for � � 4, they bounce back,
and for � � 8, they pass through (and for velocities
below the critical speed the pair annihilates into radiation).
For large �, we agree with their results: we found that, for
� � 6:4, the vortices reemerge as if they have passed
through. However, for � � 6:2, we find no evidence of
backscatter; instead, we always find a bound radiating state.
The energy profile looks as if the vortex-antivortex have
passed through, but a closer look at themagnetic field shows
they are just fluctuations. They cannot escape each other’s
influence, and radiation keeps being emitted from the area
around the collision point until all the energy has been
radiated away. As we will discuss, these two behaviors are
consistent with the change we observe in the intermediate
state in 3D collisions. The ‘‘pass through’’ behavior at high
� corresponds to a 3D loop, while the 2D radiating bound
states at low� correspond to the 3Dblob.On the other hand,
the relation with multiple reconnections is more subtle, and
it appears that the number of reconnections is mainly a
three-dimensional effect.
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II. A FEW COMMENTS ON COSMIC STRING
INTERCOMMUTATION

String intercommutation poses some interesting puzzles
from a theoretical point of view. ANO strings are topologi-
cal; they cannot break. When two string segments collide,
there are, in principle, three possible outcomes:

(a) They can exchange partners and reconnect (inter-
commute). The reconnected strings have a slightly
shorter length. This is the default outcome and, as
we shall discuss, seems to occur always when
Abelian Higgs strings meet.

(b) In near-parallel collisions of type-I strings at low
velocity, the attractive interaction makes them stick
together, e.g. type-I Abelian Higgs strings [27,28].
The network then has junctions between strings
with different winding numbers (and different en-
ergy per unit length). String networks with junctions
have been extensively studied analytically in the
Nambu-Goto approximation [29,30], and in this
regime they give an extremely good fit to numerical
simulations [31].

(c) The strings can simply pass through each other.
The relative probability of outcomes (a) and (c) is
an important distinguishing feature of ANO strings
versus cosmic (super)strings. The intercommutation
of fundamental superstrings, and of D-strings, is a
quantum process and, as such, has some probabi-
lity of not happening [32]. This is also an expected
feature of higher-dimensional models—in which the
apparent collision of the strings can be a four-
dimensional illusion; the strings are actually not
intersecting in the higher-dimensional space—or
models with extra internal degrees of freedom
[4,33]. Cosmic superstrings have been shown to
give reconnection probabilities ðPÞ as low as P�
10�3–10�1 [23].

An interesting observation is that one would naı̈vely
expect outcome (c) to be the result of any sufficiently
fast collision of ANO strings, since the natural time scales
of the microscopic fields can be much slower than the
string crossing time [34]. In the case of domain walls, for
instance, the scalar field profiles pass through each other
undistorted in ultrarelativistic collisions [35]. The head-on
collision of a vortex and an antivortex in 2D at ultrarela-
tivistic speeds is also known to result in the two passing
through each other [25]. However, this ‘‘free passage’’ is
not observed in 3D string collisions. In the Abelian Higgs
model, all (numerical) evidence to date [16,19,20] points to
the conclusion that P ¼ 1: ANO strings with unit winding
always reconnect at least once, even at ultrarelativistic
speeds. (Even in case (b), there is some evidence that the
strings will first reconnect and then settle into a junction
[31]). What is observed, instead, is that, beyond a certain
critical collision velocity vc, the strings may reconnect
a second time and effectively pass through with some

distortion. In terms of network evolution, this is as if the
strings have not reconnected, and one can talk of an
effective intercommutation probability Peff being less
than 1. An important question is to model the dependence
of the critical velocity for nonreconnection as a function of
collision speed and angle, and to understand its depen-
dence with �.
At lower speeds, an interesting class of analytic results

on intercommutation is based on the moduli space approxi-
mation [36]. In the Bogomol’nyi limit (� ¼ 1) [37], the
moduli space or geodesic approximation gives a very good
description of slow vortex-vortex collisions in two dimen-
sions and predicts the observed right-angle scattering[38].
Although these arguments are valid only at low speeds and
in the absence of core interactions, they lead to the expec-
tation that, in three-dimensional collisions, reconnection is
inevitable. Consider the configuration in Fig. 1(a), two
strings colliding with angle � and velocity v. If the incom-
ing strings lie in the yz plane and move in the x-direction,
the collision looks in the xz plane like two vortices that
will scatter at 90� [26,38,39], while in the xy plane it is a
vortex-antivortex collision, which we expect will annihi-
late. In 3D the energy from this annihilation goes into
creating the connecting segments, and the rest is emitted
as radiation.
This idea has been extended to other models such as

D-strings [40] and non-Abelian strings [33,41]. In many
cases, intercommutation is expected with probability 1 in
the regime of validity of the moduli space approximation,
which—as we just emphasized—requires two conditions:
low speed, so that higher order frequency modes are not
excited, and negligible core interactions (such as in near-
parallel collisions not far from the Bogomol’nyi limit).
It is worth stressing that, even if these conditions are

satisfied before the collision, they will not hold after inter-
commutation because the ‘‘new’’ portions of string that
are generated between the receding strings are necessarily

FIG. 1 (color online). From Ref. [20] (a) Initial positions and
orientations of the strings in the center-of-mass frame. The
strings lie in the x ¼ const planes and approach each other
with speed v. The arrows indicate the orientations of the strings,
which form an angle �. (b) The configurations after one inter-
commutation. If v� c, the kinks’ motion along the strings is
negligible and the connecting horizontal segments are practically
antiparallel and immobile, making a second interaction possible.
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almost antiparallel around the point of collision, and their
core interactions are crucial in understanding what happens
next. This is probably the reason why a prediction for the
angular dependence of the critical speed in [40] fails to
agree with the data from numerical simulation. This pre-
diction is based on an energy argument which does not take
into account the interaction between the string cores, and
this approximation fails immediately after the collision.

By using the thin string approximation and taking into
account the effect of core interactions after the collision,
Ref. [20] obtained a semianalytic expression for the critical
velocity for double reconnection vc as a function of the
collision velocity v and angle �. This works quite well for
type-I and moderately type-II ANO strings. Consider the
situation in Fig. 1(b) after the first intercommutation.
Within the Nambu-Goto approximation—thus ignoring
core interactions– we can express the angle � between
the horizontal segments and the speed w at which the
horizontal segments move apart in terms of v and �:

w ¼ sinð�=2Þ=�ðvÞ; (1)

cosð�=2Þ ¼ cosð�=2Þ=ðv�ðvÞÞ
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ ðcosð�=2Þ=ðv�ðvÞÞÞ2p : (2)

Notice that for high collision speeds the horizontal seg-
ments are almost antiparallel, �� �, and they move
slowly, w� 0. If they are not receding very fast, the
antialigned segments will be attracted to each other and
will annihilate, causing the strings to reconnect a second
time. In the unphysical limit of a collision at the speed of
light, the bridging segments would not move at all and
would be antiparallel, so the second reconnection is ex-
pected with probability 1. The angular dependence of the
threshold speed vc is then found with Eqs. (1) and (2) if one
assumes that reconnection will happen below a threshold
‘‘escape’’ speed wt and above a threshold angle �t, close to
antiparallel. The threshold values wt and �t are left as free
parameters and determined by the best fit to the numerical
data. While this model works well near the Bogomol’nyi
limit �� 1, we will show that it does not work so well in
the deep type-II regime studied here, indicating that core
interactions before the collision are also important. Wewill
return to this point in the discussion.

Equation (1) shows that fast collisions will produce very
slowly moving connecting segments. Conversely, a slow
collision usually creates a highly curved region after inter-
commutation, which will accelerate under its own tension
and acquire large speeds. This is one of the mechanisms
that helps the string network maintain a typical speed
hv2i � 0:5, even in an expanding Universe.

III. SIMULATIONS

The Abelian Higgs model is the relativistic version of
the Ginzburg-Landau model of superconductivity. It is
described by the Lagrangian

L ¼ ð@� þ ieA�Þ�ð@� � ieA�Þ�y � 1

4
F�	F�	

� 


4
ðj�j2 � �2Þ2; (3)

where � is a complex scalar field and A� is a U(1) gauge

field with field strength F�	 ¼ @�A	 � @	A� (�, 	 ¼ 0,

1, 2, 3).
The ground state has j�j ¼ � and zero electric and

magnetic field. The fluctuations about this vacuum define

two mass scales: the scalar excitations have mscalar ¼
ffiffiffiffi



p
�

and the gauge field excitations, mgauge ¼
ffiffiffi
2

p
e�. Clas-

sically, the only relevant parameter in the dynamics is their
ratio, � ¼ ðmscalar=mgaugeÞ2 ¼ 
=2e2, which also charac-

terizes the internal structure of the ANO vortices.
Magnetic cores repel and scalar cores attract, so the

interaction between vortices is determined by which of
these cores is the larger: parallel ANO vortices repel for
�> 1 and attract for�< 1. The Bogomol’nyi limit � ¼ 1
is a critical value where both effects cancel and parallel
vortices do not interact. In this paper we are interested in
the �> 1 regime, analogous to a type-II superconductor,
and in this case the vortices have an inner ‘‘scalar’’ core of
radius �m�1

scalar in which the scalar field departs from its

vacuum value and vanishes at the center. This is sur-
rounded by a larger, ‘‘gauge’’ core of radius�m�1

gauge where

the magnetic field is nonzero. The repulsive interaction
produces a torque that tends to antialign two colliding
strings. This will play an important role later.
Here, as in [16], we follow the numerical strategy of

[19,20]: we use a lattice discretization and place a super-
position of two oppositely moving ANO strings on a three-
dimensional lattice. This configuration is evolved using a
leapfrog algorithm. The initial configuration is determined
by two parameters: the center-of-mass speed v of the
strings when they are far apart and the angle � between
them. (Every collision can be brought to this form by an
appropriate Lorentz transformation [18].)
We also impose ‘‘freely moving’’ boundary conditions:

after each round, the fields inside the box are updated using
the equations of motion, and the fields on the boundaries
are calculated assuming the strings move unperturbed and
at constant speeds at the boundaries.
All 3D simulations were done on a 200� 200� 400

grid. Unless otherwise stated, we use a lattice spacing
a ¼ 0:2 and time steps �t ¼ 0:02, so the Courant condi-

tion (here, �t � a=
ffiffiffi
3

p
) holds. Some simulations were

repeated with a ¼ 0:1, in particular, those with � ¼ 4, to
confirm the results.
Our simulations are optimized for the deep type-II re-

gime. By solving the two-dimensional, static vortex equa-
tions, one finds that in a static straight cosmic string about
half of the potential energy in the scalar core is contained

within a radius
ffiffiffi
2

p
m�1

scalarfð�Þ, where f is a slowly varying

function with fð1Þ ¼ 1, fð64Þ ¼ 1:4. Lorentz contraction
gives an extra factor �ðvÞ�1 in the direction of approach,
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FIG. 2. The number of intercommutations for a range of collision velocities and angles for � ¼ 4, 8, 16, 32, 49 and 64. The symbols
4, þ, � and ? stand for 1, 2, 3 or 4 intercommutations, respectively. The dotted lines show a two-parameter fit to simulations with
collision angles below 150�, based on the Nambu-Goto approximation [20] The dashed line is a one-parameter fit adapted to the deep
type-II regime at high collision angle. (See text for explanation and fit parameters.) Simulations above the horizontal line resolve the
scalar core size by less than three lattice points and are therefore less reliable. The point at (� ¼ 32, � ¼ 137:6, v ¼ 0:92), indicated
by a square h, is inconclusive because the intercommutation happens just beyond the dynamical range. The � ¼ 4 simulation has
lattice spacing a ¼ 0:1; all others have a ¼ 0:2.
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with �ðvÞ ¼ 1=
ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1� v2

p
. This is the smallest length scale

that has to be resolved. Without loss of generality we take

 ¼ 2, � ¼ 1, which ties the unit of length (and time) to

m�1
scalar ¼ 1=

ffiffiffi
2

p
. The scalar core is resolved by at least three

lattice points up to a center-of-mass speed of v 	
0:94–0:96, which is indicated explicitly in the diagrams
in Fig. 2. (It is higher in the � ¼ 4 simulations because
those have a ¼ 0:1.) The initial string separation is fixed
to 5

ffiffiffiffiffiffiffi
2�

p
�ðvÞm�1

scalar ¼ 5
ffiffiffiffi
�

p
�ðvÞ. This would be about

5 times the actual core radii for � ¼ 1 but as � increases,
the core sizes increase, and for large � one has to check
that the gauge cores do not overlap in the initial configu-
ration. For� ¼ 64 the overlap in total energy from the tails
of the gauge cores is less than 1% when �ðvÞ ¼ 1, that is,
when calculated on static vortices. Finally, the two-
dimensional simulations of vortex-antivortex head-on col-
lision and reemergence were done on an 800� 800 grid
with a lattice spacing of 0.1 and �t ¼ 0:02. In this way we
resolve the vortex cores with at least 3 points up to a speed
of v 	 0:985. The initial separation is the same as in the
3D simulations. We used absorbing boundary conditions.
In all simulations (2D and 3D), energy is conserved to
better than 5% until the radiation hits the boundary (which
determines the dynamical range).

IV. RESULTS

We simulated the collision of cosmic strings at � ¼ 1,
3.9, 4.0, 4.1, 8, 16, 31, 32, 33, 49 and 64 for various speeds
v and angles � to find the threshold velocity above which
the strings effectively pass through each other. The results
for selected values of � are shown in Fig. 2. Results for
� ¼ 3:9 and 4.1 were qualitatively similar to � ¼ 4; also,
results for � ¼ 31, 32 and 33 were qualitatively similar.
Some salient features have already been reported in
Ref. [16].

The first thing that is apparent in Fig. 2 is that the
minimum critical velocity for a second reconnection goes
down as a function of �, in agreement with what was
observed in [20]. The dependence of this lowest critical
velocity vc;min with � and the range of collision angles for

which it is observed is seen in Table I.

Second, there is a new phenomenon of multiple inter-
commutations, which appears to be related to a change in
the nature of the intermediate state from a nontopological
blob of radiation to a loop.
The images of the intercommutation process in Figs. 3

and 4 show isosurfaces of the scalar field with j�j ¼ 0:4.
At this value, only about 20% of the potential energy is
contained within them, but it allows us to visualize the
evolution of the Higgs field most effectively. A tube twice
the radius would contain about 60% of the energy. (To be
precise, a threshold of j�j ¼ 0:8, which has twice the
thickness of the tubes shown, contains 62% of the scalar
potential energy for � ¼ 16, 57% for � ¼ 32 and 52% for
� ¼ 64.)
It is clear from these images that the strings do not

always intercommute once or twice, as previously ob-
served, but also three and four times for particular values
of the initial speed v and angle �. An odd number of
reconnections results in overall intercommutation of the
strings, and an even number in the strings effectively
passing through, so we can still speak of a threshold velo-
city for the strings passing through. However, each recon-
nection creates small structure on the strings in the form of
a left- and a right-moving kink. In some cases it is not easy
to distinguish between one and three reconnections, or
between two and four reconnections, just by looking at
the energy isosurfaces in the intermediate state. But the
resulting kinks are clearly visible in the final state and can
be counted; in case of doubt, we use this criterion.
Successive reconnections therefore lead to left- or right-

moving ‘‘kink trains,’’ groups of up to four closely spaced
kinks (one for each intercommutation). The interkink dis-
tance within these trains is a few core widths, at the time of
formation (see Fig. 3).
A multiple intercommutation process for type-II strings

unfolds as follows. After the collision in which the strings
exchange ends for the first time, two things can happen:
(a) For � � 16, an expanding loop forms after a short

delay. If v > vc, the loop catches up with the two
receding strings, and these reconnect again through
the loop. This creates a highly curved central region
in each string. (Sometimes, for the lower collision
angles, the loop is not as sharp as in Fig. 3 and the
bridge is very pronounced, making the intermediate
state look more like a junction.) The central regions
will move toward each other and in some situations
mediate a third reconnection (see Fig. 3). After the
third reconnection, there are two almost antialigned
string segments, and if they are receding sufficiently
slowly a fourth reconnection is possible. This is the
largest number of intercommutations we have seen,
and only for � ¼ 16. On the other hand, if v < vc,
the second reconnection does not take place because
the string loop does not catch up with the strings. In
this case it will contract again and eventually decay

TABLE I. The lowest value of the critical velocity for double
reconnection as a function of �, and the collision angles at which
it is observed. The ranges in � indicate the possible existence of
a plateau in the critical velocity.

� vc;min �

4 0.92 42�
8 0.92 62�
16 0.90 90�–110�
32 0.88 80�–120�
49 0.88 85�–125�
64 0.86 105�–120�
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into radiation, sometimes after one or a few
oscillations.
Triple intercommutations are quite generic for col-
lision speeds and angles on the boundary between
the regions in parameter space where we observe
one and two reconnections. For � ¼ 64 we see a
few triple intercommutations in a window around
v� 0:87, �� 94�. The box is already somewhat
small, and we expect a larger box with increased
dynamical range would show more multiple inter-
commutations, but this remains to be confirmed.

(b) For 1<� � 8 the energy isosurfaces look some-
what similar, but they reveal a very different inter-
mediate state. The loop in Fig. 4 is just a blob of
radiation with no topological features: the (cova-
riant) phase of the Higgs field around the ‘‘vortex’’
that makes the loop shows no net winding around
the loop,

R
2�
0 ð@�Argð�ÞÞd� ¼ 0. This is clearly vis-

ible in the third time step, where the loop meets the
string bridges, breaks and is absorbed—a real loop
of string would not be able to break if it carried a
net winding. In this case the maximum number of

FIG. 3. Isosurfaces of the scalar field with j�j=� � 0:4 for a
collision with (� ¼ 32, � ¼ 122:7, v ¼ 0:88) showing a triple
intercommutation. From left to right, top to bottom: snapshots at
t ¼ 3, 4.7, 5, 6.9, 10, 17, 20, 22. Time is measured in inverse
scalar masses (see text). At t ¼ 4:7 (top right), the strings
collide. Notice the distortion around the point of collision (see
also Fig. 6). After the first intercommutation, a loop emerges at
t ¼ 6:9 (second row right). The loop catches up with the reced-
ing strings and intercommutes at the connection points (t ¼ 10,
second intercommutation, third row left), creating a highly
curved central region in each string (t ¼ 17, third row right).
These move towards each other and produce a third intercom-
mutation at t ¼ 20 (fourth row left). Two sets of three closely
spaced, left- and right-moving kinks (indicated by arrows on the
upper string) are visible on each of the strings in the last
panel.

FIG. 4. After the first intercommutation, a radiation blob
emerges. The blob catches up with the bridge and is absorbed.
However, before it is absorbed, a loop seems to be formed
(bottom right panel). This loop is not topological; it breaks
resulting in ‘‘Dracula’s teeth.’’ (� ¼ 4, � ¼ 122:7, v ¼ 0:98).
The interaction between the blob and the strings slows
them down, facilitating a second reconnection, but—unlike in
Fig. 3—the blob by itself cannot mediate this second reconnec-
tion. From left to right,top to bottom: snapshots at t ¼ 2, 4.5, 6.5,
8. Note the antialignment of the bridging segments between the
strings, as in Fig. 1.
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reconnections is two. The blob slows down the
receding strings (thereby lowering the critical ve-
locity) and facilitates the second reconnection.
However, whether or not the second intercommuta-
tion takes place is still determined by the string
bridge (see Fig. 1). We therefore see, as expected,
a good agreement between the data and Eqs. (1) and
(2) in Fig. 2 for � ¼ 4 and 8.

We now turn to the simulations of the 2D head-on
collision of a vortex and an antivortex at ultrarelativistic
speeds. The parameters ð�; vÞ of the simulations we per-
formed are listed in Table II. While we confirm the general
picture of Ref. [25], we have slightly different results for
the state after the collision:

(a) For � � 6:2, the emerging vortex and antivortex
settle in a bound, oscillating state, which completely
decays into radiation for all speeds between 0:9 �
v � 0:98. This behavior extends to the �< 4 re-
gime studied by Myers et al. [25], who interpreted
the outcome as the reemergence, back-to-back,
of the original pair. We see no evidence of this

FIG. 5. A typical 2D head-on collision of a vortex and anti-
vortex in the regime where the outcome is a radiating bound state
(� below 6.2). The figure shows the magnetic field of a vortex
and antivortex collision with � ¼ 4 and v ¼ 0:95. All other
parameters and time scales are as in the previous 3D simulations.
Only points with j�j=� � 0:9 are shown. Black to intermediate
grey indicates the magnetic field pointing into the page (�),
while intermediate to light grey indicates the magnetic field
pointing out of the page (þ). Black (light grey) indicate points
whose magnetic field is � 20% of the maximum magnetic-field
value, which is attained at the core of the incoming vortex
(antivortex). The intermediate shades of grey are in decreasing
steps of 5% (seen in the first panel). From left to right and top to
bottom: The panels show snapshots at t ¼ 0, 7, 9, 10, 12, 14, 17
and 18. First, we see the vortex and antivortex at t ¼ 0. Second,
we see a ‘‘pair’’ reform (t ¼ 7), but they are actually two blobs
of radiation. In the third figure (t ¼ 9), we see a configuration
which could be mistaken for a back-to-back reemergence.
However, we then see a second blob forming (t ¼ 10), and the
first pair fizzling out. The magnetic field oscillates around zero.
At t ¼ 12 the second pair (blob) forms and some radiation is
exchanged. By this time, the magnetic field of the first pair has
already switched sign. This proves that the first pair had no
topology. In the sixth panel (t ¼ 14), polarity is opposite to that
in the second panel, but there is also radiation in the perpen-
dicular direction. At t ¼ 17 a third blob forms and decays into
radiation (t ¼ 18). This process continues for the dynamical
range of the simulation or until all energy is radiated away.

TABLE II. The parameters ð�; vÞ of the 2D simulations of
vortex-antivortex collisions described in the text. The simula-
tions in boldface are those where the vortex-antivortex pair
reemerges as if they had passed through. In all other cases the
pair annihilates into radiation, sometimes after forming a short-
lived pulsating bound state. In the simulations in parentheses, the
vortex-antivortex pair annihilate directly into radiation. The case
� ¼ 4, v ¼ 0:95, indicated by an asterisk (*), is shown in Fig. 5.

� v

1 0.8, 0.85, 0.9, 0.95

1.01 0.8, 0.85, 0.9, 0.95

2 0.9

3 0.9

4 (0.5), (0.6), (0.7), 0.8, 0.85, 0.9, 0.95*, 0.98

4.1 0.85, 0.9, 0.95, 0.98

4.2 0.9, 0.95, 0.98

4.3 0.9, 0.95, 0.98

4.4 0.9, 0.95, 0.98

4.5 0.9

4.6 0.9

4.7 0.9

4.8 0.9, 0.95, 0.98

4.9 0.9

5 0.9, 0.95, 0.98

6 0.9, 0.95, 0.98

6.2 0.85, 0.9, 0.95, 0.98

6.4 0.85, 0.9, 0.95, 0:98
6.6 0.85, 0.9, 0.95, 0:98
6.8 0.85, 0.9, 0.95, 0:98
7 0.85, 0.9, 0:95, 0:98
8 0.85, 0.9, 0:95, 0:98
32 0:7, 0:8, 0:85, 0:875 0:9, 0:925, 0:95, 0:98
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reemergence. A typical configuration after the col-
lision is shown in Fig. 5. Although some time steps
could be mistaken for back-to-back reemergence of
the vortex-antivortex pair, subsequent evolution
makes it clear it is only localized radiation.
Note also that, since the vortex-antivortex pair never
reforms after the collision, the expectation of
back-to-back reemergence, suggested in [42] by
analogy with the global vortex case, also does not
apply.

(b) For � � 6:4 and high collision speeds, the pair
reemerges as if they passed through, and the critical
velocity above which the vortex-antivortex pair
passes through each other goes down with increas-
ing �, from around v ¼ 0:98 for � ¼ 6:4 to ð�; vÞ:
(6.6, 0.98), (6.8, 0.98), (7, 0.95), (8, 0.95) and (32,
<0:7). This agrees with Ref. [25].

V. DISCUSSION

Our results suggest some interesting differences be-
tween the � � 1 regime and the much more studied
� ¼ 1 regime when it comes to the intercommutation be-
havior and the resulting small scale structure. Some of
these differences can be traced back to the core interac-
tions, in particular, the repulsion between parallel, deep
type-II strings, which in a 3D setting can distort the impact
angles and velocities of the strings. The angular distortions
can be parametrized and could in principle be incorporated
into numerical simulations of cosmic string networks and
analytic studies of small scale structure.

A. Multiple reconnections and the nature
of the intermediate state

As reported in [16], we have observed a qualitative
change in the process determining the second intercommu-
tation. For 1 � � � 8 we see the emergence of a blob of
radiation after the first intercommutation. A blob cannot
cause a second intercommutation by itself; it is absorbed
when it reaches the strings. In this case, whether or not the
second intercommutation takes place is determined by the
geometry after the first intercommutation. This situation is
well described by Eqs. (1) and (2), as found in [20]. On the
other hand, for � � 16 we see the emergence of an ex-
panding topological loop that mediates the second inter-
commutation. We compare this transition with the
reemergence of the vortex-antivortex pair in highly rela-
tivistic two-dimensional collisions: as � increases, the
critical speed for 2D vortex-antivortex reemergence goes
down below the critical speed for double reconnection in
3D (and even below the 3D universal bound on the critical
speed v� 0:77 [16]; see the next subsection). Therefore,
for sufficiently large �, reemergence of the vortex-
antivortex pair is unavoidable. In 3D the re-emergent
vortex-antivortex pair leads to a loop. Thus, for � � 16,
the outcome is always the same: the loop always forms.

However, whether or not this loop leads to a second re-
connection depends on whether the loop catches up with
the receding strings, which is, in turn, determined by the
velocity and angle of the strings before the collision: for
high v there is a second reconnection, for lower v there is
only one reconnection. It is also in this loop-mediated
regime, of which the lower bound is between � ¼ 8 and
� ¼ 16 according to our simulations, where the multiple
or higher order intercommutations take place. By contrast,
for low �, the critical speed in 2D for the reemergence of
the vortex-antivortex pair is so high that we do not see the
emergence of a string loop in 3D. Instead, we see what we
describe as a radiation blob, the 3D equivalent of the
bound, oscillating state in 2D. An interesting open question
is to identify more precisely the value of � (between 8 and
16) at which the transition between these two regimes
occurs in 3D.

B. The critical velocity for double reconnection:
� dependence, angular dependence

and a universal lower bound

The dependence of vc with the collision angle shows
that, as we go deeper into the type-II regime, core inter-
actions are playing an important role, especially at high
collision angles. With better resolution and more data
points than in [20] we actually see a difference with the
� 	 1 behavior. The best fits with Eqs. (1) and (2) do not
quite agree with the data for large � (e.g. �> 16). These
fits underestimate the critical velocity for impact angles
close to antiparallel (or else do not properly account for
impact angles below 90�). Discarding data points with
impact angles larger than 150� leads to the fits shown in
Fig. 2 with the dotted line. We found for � ¼ 4, 8 follow-
ing parameters: wt ¼ 0:202, 0.238 and �t ¼ 136:4�,
139.3�. For � ¼ 16, 32, 49 and 64 we found wt ¼ 0:328,
0.357, 0.261, 0.408, �t ¼ 144:0�, 136.1�, 139.0�, 135.7�,
respectively. (We note that for � ¼ 49 the fit has fewer
relevant data points.)
The deviation between the fits and the data at high col-

lision angle is, by itself, not so surprising since in the deep
type-II regime two things change: First, the appearance of
the loop means the angle between the string segments is
not expected to be relevant. The second intercommutation
will occur if the loop touches the receding segments,
irrespective of their mutual angle. Second, the core inter-
action affects the state before the collision; it produces a
torque that deforms the strings and tends to antialign the
colliding segments. This means the true collision angle is
actually larger than the initial value. The torque results
from the attraction between vortex and antivortex and
vortex-vortex repulsion in the orthogonal plane, which
compete in the type-I regime but add up in type-II.
One might expect that a modification of the Nambu-

Goto fit of [20] to account for this offset in collision angle
should give a better fit in the deep type-II regime:
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w ¼ sin½ð�� �0Þ=2
 1

�ðvÞ ; (4)

cosð�=2Þ ¼ cos½ð�� �0Þ=2
=ðv�ðvÞÞffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ ðcos½ð�� �0Þ=2
=ðv�ðvÞÞÞ2

p ; (5)

with �0 negative. This expectation is not borne out by the
data. In fact, if anything, the data prefer a modification with
a smaller angle (positive �0—see Table III). And this can
be understood by looking at Fig. 6. Although the actual
collision angle (the angle at the point of collision) is larger
than �, the motion of the strings after the collision is
determined by an effective collision angle  that is smaller
than �. This is because the antialignment causes a larger
portion of string to be annihilated so, after a quick tran-
sient, the strings look as if they had collided with angle
 < � and the bridge segments (see Fig. 1) are further apart
than they would have been in the absence of a torque.

If the collision is sufficiently close to antiparallel, the
relation between the angle of approach, �, and the effec-
tive collision angle  is universal (see Fig. 6): tan�=2¼
ð1þsin=2Þ=cos=2, that is, ¼2���, or �0 ¼ �� �,
expected to be valid for large �. This one-parameter fit is
shown with a dashed line in Fig. 2. The fit parameter iswcrit

and it has values (�, wcrit): (16, 0.233), (32, 0.243),
(49, 0.251) and (64, 0.275).

The offset in collision angle (see Table III) for � � 16
indicates that the torque is strong even at very high colli-
sion speeds and suggests strong distortions for low speed
collisions. This is potentially very interesting from the
point of view of the radiation coming from cosmic strings.
Usually, the radiation bursts from reconnection are subdo-
minant to those from cusps and kinks [43,44]. But here
reconnection bursts are enhanced because longer segments
of string are annihilated. The amount of radiation produced
by cosmic string reconnection might therefore be some-
what larger in deep type-II collisions than would be ex-
pected from analytic, Nambu-Goto arguments.

Finally, our results appear to confirm the claim [20]
that the critical speed goes down with increasing �, from
vc � 0:96 at � ¼ 1 to vc � 0:86 at � ¼ 64, although this

reduction cannot go on indefinitely. A crude (universal)
lower bound for vc follows from energy conservation [16]:
if the strings antialign locally and a portion L of each string
is annihilated, the maximum energy available to the loop
is 2L� ¼ 2�R, with R the maximum loop radius. If R<
L=2, the second intercommutation cannot take place,

which happens for v <
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1� 4=�2

p � 0:77. These values
of vc are to be contrasted with the average root mean
square velocity of the network, which has not yet been
investigated for type-II strings. (Known values range from

vrms ¼ 1=
ffiffiffi
2

p � 0:71 for Nambu-Goto strings in flat space
to 0:63� 0:51 in field theory simulations with � ¼ 1 with
cosmic expansion [45,46].) So, double intercommutations
may be less rare than in type-I collisions, but they are still
rare events.

VI. SUMMARYAND OUTLOOK

We have investigated numerically the intercommutation
of Abelian Higgs strings in the deep type-II regime for
selected values of � � m2

scalar=m
2
gauge � 1 up to � ¼ 64,

the highest value studied to date. Our study shows interest-
ing differences with the � ¼ 1 behavior and raises some
puzzling questions. New effects arise due to the strong
interactions of the string cores. Multiple reconnections
were already reported in [16], and also a qualitative change
in the intermediate state after the first reconnection, with
truly topological loops appearing only for � � 16. It is
also in this regime (� � 16) where we find the higher order
(three or more) intercommutations. Further work is needed
to understand if the window closes for �> 64. We see
fewer multiple intercommutations, but this could be simply
due to the limitations of the dynamical range.
As � increases, we find a lower critical velocity for

double (or multiple) reconnections, in agreement with

FIG. 6 (color online). The bending of the strings at the point of
collision due to the intervortex potential, modeled in the figure as
a sinusoidal perturbation. � is the initial collision angle when the
strings are approaching but still far apart. The torque tends to
antialign the segments around the collision point. (See the top
right panel of Fig. 3.) Subsequently, a vertical segment of length
�2L will annihilate from each string, leaving the receding
strings as if they had collided with angle . Note that, although
the torque tends to increase the collision angle, the effective
reconnection angle  is actually smaller than the initial collision
angle �.

TABLE III. The best fit parameters of Eqs. (4) and (5). A
positive (negative) offset �0 indicates the actual collision angle
is smaller (larger) than in the initial configuration. We see that �0

becomes positive for � � 16 and remains positive and relatively
large.

� wt �t �0

4 0.227 137.2 �20:7
8 0.249 141.5 �6:8
16 0.238 223.9 50.6

32 0.282 229.7 32.8

49 0.266 233.3 48.1

64 0.257 234.7 58.7
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[20], but for very large � we are unable to describe the
angular dependence in detail. The fit derived in [20] works
well for � � 8 and maybe even for � ¼ 16 but not in the
deep type-II regime � � 32. The interaction between the
magnetic cores produces a torque that tends to antialign
the string segments, so the actual collision angle is higher
than in the initial configuration, but this is true only around
the collision point, and this portion of string quickly dis-
appears. In fact, due to this antialignment, the collision
results in the annihilation of a larger segment of string, so
in fact the strings behave as if they that had collided with a
smaller angle. The simplest way to model the bending of
the string, as a sinusoidal excitation, is shown in Fig. 6 and
gives the angle  in terms of �: =2 ¼ �� �=2. Using
=2 instead of �=2 in Eq. (1), we find a one-parameter fit
to our data with initial collision angles higher than 120�.
The fit is shown with a dashed line in Fig. 2.

Even for lower collision angles, the fit derived in [20],
with or without an adjustment to include the torque be-
tween the colliding strings, does not fully describe the
angle dependence of the critical velocity. Our data (see
Fig. 2) is possibly better described in the deep type-II
regime by a curve of opposite concavity with a plateau
between collision angles of 80� and 120�. A more detailed
study is necessary to understand the angle dependence of
the critical velocity.

We also simulated two-dimensional vortex-antivortex
head-on collisions in an attempt to understand the new
3D effects. We confirmed the result of Myers et al. [25]
that for high enough collision speed the vortex-antivortex
pair reemerges some time after the collision. The critical
speed for reemergence goes down with increasing �, and
for � ¼ 32 is already lower than v� 0:7. On the other
hand, for �< 8 the velocity needed for the vortex-
antivortex pair to reemerge is so high (v � 0:98) that we
see only a (bound) radiating state. In particular, for � � 4
Myers et al. report the backscatter of the vortex-antivortex
pair whereas we always see a radiating bound state. This is
however not inconsistent with [25] given their much
smaller dynamical range (see Fig. 5). So we see a transition
between reemergence in forward direction vs a bound
radiating state; we never see backscatter.

Further work is needed to determine the critical �, in 2D
head-on vortex-antivortex collisions, that distinguishes the
regime where a bound radiating state forms from the
regime where the vortex-antivortex pair reemerge as if
they had passed through. We can locate this transition
somewhere around 6:2 � � � 6:4, but the main problem
in determining this critical � is the high collision speed
(v > 0:98) needed for reemergence, which leads to very
bad resolution.

Our expectation is that the 2D radiating bound states at
low � should roughly correspond to the 3D blob, and that
2D forward reemergence should correspond to the 3D loop.
For not too large � (in particular below 6.2), the critical

velocity for passing through in 2D is so high (> 0:98c) that
we do not probe it in either the 2D or 3D simulations; we
always see a radiation blob. As � increases, the critical
velocity for passing through in 2D goes down, and at high
� (in particular � 32) the critical velocity for forward
reemergence is so low (< 0:7c) that all the 3D simulations
are in this regime, and all show loop formation.
Although suggestive, our interpretation of the results is

not conclusive. To confirm this picture one should study
the transition region 8 � � � 32, 0:7 � v � 0:95 both in
2D and 3D and verify the extent of this correlation. (It is
important to note that we have no data between � ¼ 8
and � ¼ 16.) Also, we do not necessarily expect a precise,
one-to-one correspondence in the critical values of �
and v because the energy requirements to reform a
vortex-antivortex pair in 2D are different from those
needed to form a loop in 3D.
The effect on the cosmological signatures of strings is

hard to predict, as the stronger core interactions in the deep
type-II regime affect energy loss mechanisms in several,
competing, ways [16]. In general, we expect a relative en-
hancement of the radiation contribution from kinks and
reconnections at the expense of cusps (suppressed by the
kinks [47,48]) and loops (suppressed by the lower critical
velocity for double reconnection).
Regarding kinks, a new feature is the presence of kink

trains resulting from multiple reconnections. These are
rare, but once a kink train is formed, its decay time is
comparable to that of a single kink, and because of its
microscopic size (only a few core widths in length), it is
very unlikely to be disrupted by intercommutation with
another string segment. We conclude that the small scale
structure of strongly type-II Abelian Higgs string networks
could be somewhat more clustered than the predictions
based on the Nambu-Goto approximation with P ¼ 1
[49–51], although nowhere near the proliferation of kinks
expected in a network with junctions [52].
Regarding reconnections, they are enhanced in two

ways. First, while we confirm that strongly type-II ANO
strings always reconnect (P ¼ 1), an effective intercom-
mutation probability Peff � 1 due to multiple reconnec-
tions will still lead to denser networks and therefore more
reconnections. Second, most of these will be at low veloc-
ity, and we have argued that antialignment plays a role even
in relativistic speed collisions, so we expect a strong effect
in low velocity collisions. Sowe would expect stronger and
more frequent bursts of radiation and cosmic rays than for
other string types (lower � and also superstrings) where
reconnection bursts are always negligible or subdominant
[43,44].
Further work is needed to understand these effects quan-

titatively, and how they affect the cosmological bounds.
But the upshot of the work presented here is that core
interactions are expected to cause significant differences
with respect to the predictions from both Nambu-Goto
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strings and field theory Abelian Higgs strings in the
Bogomol’nyi limit.

Finally, our results confirm once again that Abelian
Higgs strings always reconnect, even at ultrarelativistic
speeds (P ¼ 1); unlike for other types of defects [25,35],
and against naı̈ve expectations, the only way in which
strings can pass through each other appears to be by an
even number of reconnections.
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[16] A. Achúcarro and G. Verbiest, Phys. Rev. Lett. 105,

021601 (2010).
[17] L. Jacobs and C. Rebbi, Phys. Rev. B 19, 4486 (1979).
[18] E. Shellard, Nucl. Phys. B283, 624 (1987).
[19] R. Matzner, Comput. Phys. 2, 51 (1988).
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