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1.1 BACKGROUND 

Assessment of quantitative parameters describing the status of the cardiac 
system is of eminent importance for the diagnosis and follow-up of patients 
with cardiac disease. Cardiac Magnetic Resonance Imaging (CMR) is one of 
the many imaging modalities used in clinical practice. CMR can be used to 
study multiple aspects of the cardiac system in a single examination, such 
as information on the cardiac anatomy, function, perfusion, flow and tissue 
characteristics. This would otherwise require multiple studies with different 
imaging modalities, and the subsequent difficulty in combining these data 
from the different unregistered modalities each with their spatial and 
temporal scales. As a three-dimensional (3D) technique, highly accurate 
volumetric measurements can be obtained without relying on the use of 
geometrical assumptions, making CMR a powerful technique to study 
complex structures such as the left and right ventricle. Repeat CMR 
examinations can be obtained without exposing the patient to harmful 
radiation or contrast agents. This makes CMR an ideal technique to perform 
repeat examinations on a patient for quantitative evaluation of the effects 
of medical treatment.  
 Visual and quantitative interpretation of a typical MR study requires 
review and processing of a huge number of images. For quantitative 
analysis image segmentation is required. The process of image 
segmentation involves the definition of the myocardial boundaries and 
other structures in the images. For the assessment of left ventricular 
function, imaging is usually preformed using a cine-MR acquisition in the 
short-axis view, in which the heart is imaged in eight to ten imaging 
sections from apex to base at 20 to 30 time points within the cardiac cycle. 
As a result, quantitative assessment of the ventricular volume over the 
cardiac cycle requires the definition of the endocardial (inner) contour of 
the myocardium in 160 to 300 images. For the assessment of left 
ventricular mass and regional assessment of the ventricular wall thickness 
over the cardiac cycle an additional set of epicardial (outer) contours is 
required. Furthermore, for more extensive quantitative analysis, such as 
the assessment of right ventricular function, myocardial perfusion, flow and 
myocardial scar tissue, additional image segmentation is needed. Clearly, 
manual contour tracing for all these CMR acquisitions is too demanding for 
routine clinical use. Consequently, the availability of automated or semi-
automated contour detection techniques is demanded to fully exploit the 
information provided by a CMR examination. 
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 1 1.2 SCOPE OF THIS THESIS 

The work described in this thesis is inspired by the clinical needs as 
described above. Quantitative image analysis has advantages over visual 
image interpretation as it provides objective numbers which can be used to 
decide upon the appropriate treatment. The use of automated contour 
detection potentially has several benefits as it may result in a considerable 
decrease in the image analysis time and produces objective and 
reproducible results. Moreover, since automated contour detection is much 
faster, it also enables assessment of additional quantitative parameters 
which are derived by taking into account all the available image data. An 
example of such parameter is the regional rate of wall thickening and wall 
thinning from short-axis Cine MR. This parameter requires endocardial and 
epicardial contours in all time frames, which is only practical when 
automated contour detection is available.  
 
The goal of the research described in this thesis is therefore: 
 To investigate automated and semi-automated contour detection 

techniques for the assessment of quantitative indices of cardiac function 
 To develop and evaluate techniques for the assessment of cardiac 

parameters from CMR image data 
 To validate the developed algorithms on clinical CMR studies 7by 

comparing automated results to results obtained by expert observers. 
 To investigate the feasibility of applying an automated contour detection 

algorithm on images acquired on MR scanners from different vendors 
using different MR pulse sequences. 

1.3 THESIS OUTLINE 

The remainder of this thesis is structured as follows. 
 Chapter 2 provides an overview of image processing techniques 
developed for quantitative analysis of cardiac MR image data. While the 
other chapters are mainly focusing on assessment of left ventricular 
function, this chapter also provides a summary of CMR image analysis 
techniques for other cardiac parameters, such as perfusion and viability.  
 Chapter 3 describes a method for semi-automated detection of the 
myocardial boundaries in multi-slice short-axis cine-MR imaging studies. 
The method described in this chapter uses low-level image processing 
techniques such as adaptive thresholding and edge-detection combined 
with usage of a priori information in order to optimize the robustness of the 
algorithm.  
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 Chapter 4 describes an automated contour detection method for 
assessment of aortic flow throughout the cardiac cycle from velocity-
encoded MR imaging studies. By exploiting the temporal coherence of the 
image data, the described algorithm provides accurate results, also in the 
presence of image frames with poor image quality.  
 In Chapter 5 a new approach for quantitative assessment of 
myocardial wall thickness is presented. In contrast to pre-existing methods, 
the new method explores the three-dimensional nature of multi-slice short-
axis studies to obtain improved accuracy of the wall thickness 
measurements.  
 Chapter 6 describes a contour detection method for short-axis cine 
MR studies based on Active Appearance Models.  In this chapter the 
concept of Active Appearance Models was used to develop a 2D+time 
model. Based on a training set of pre-segmented short-axis MR image 
series, the left ventricular shape and image appearance is modeled, 
including the temporal variation from the end-diastolic phase to the end-
systolic phase. This information is described in a statistical frame work and 
used as a priori information during the segmentation of new image series. 
The main advantage of this approach is that the complete time-sequence of 
images is used to obtain a consistent time-continuous segmentation result. 
 This improves the robustness compared to a single-image (2D) Active 
Appearance Models implementation.  
 Chapter 7 describes an alternative contour detection approach for the 
detection of left ventricular endo- and epicardial contours, which exploits 
the temporal continuity of cardiac contraction and relaxation. The 
presented algorithm is an extension to the minimum cost contour detection 
algorithm which is frequently used in various medical image segmentation 
problems in 2D images. The method requires an accurate segmentation of 
a single frame and temporally propagates this segmentation based on local 
similarity properties and enforcing temporal continuity.  
 As segmentation algorithms get more complex, it becomes nearly 
impossible to guarantee that the various parameters controlling the 
behavior of the algorithm are defined optimally. In addition, it can be 
observed that images acquired with different pulse-sequences or obtained 
with different MR scanners do have varying image characteristics. The 
existence of these image characteristics variations were the motivation for 
developing an automated parameter optimization procedure, which is 
described in Chapter 8.  
Finally, general conclusions of the thesis are presented in Chapter 9.
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2.1 INTRODUCTION 

Magnetic resonance imaging (MRI) has become an indispensable imaging 
modality for the evaluation of the cardiac system. MRI stand outs as is 
provides unique capabilities for studying many aspects of cardiac anatomy, 
function, perfusion and viability in a single imaging session. Volumetric 
measurement of the ventricular cavities and myocardium can be performed 
at high accuracy and precision as have been demonstrated in many 
experimental and clinical research studies. The 3D-nature of cardiovascular 
MRI also provides detailed information of the cardiac system at a regional 
level. Among others, regional end-diastolic wall thickness and systolic wall 
thickening provide useful information for the assessment of the location, 
extent and severity of ventricular abnormalities in ischemic heart disease. 
MRI can also be used to study blood flow and myocardial perfusion. 
Velocity-encoded cine MRI (VEC-MRI) is often utilized for the quantification 
of blood flow through the aortic and pulmonary valves and atrio-ventricular 
valve planes, which has shown to be clinically valuable in the evaluation of 
patients with complex congenital heart disease. 
 Typical cardiac MRI examinations generate large data sets of images. 
To optimally and efficiently extract the relevant clinical information from 
these data sets dedicated software solutions featuring automated image 
segmentation and optimal quantification and visualization methods are 
needed. Quantitative image analysis requires the definition of contours 
describing the inner and outer boundaries of the ventricles, which is a 
laborious and tedious task when based on manual contour tracing. Reliable 
automated or semi-automated image analysis software would be required 
to overcome these limitations. This paper focuses on the state-of-the-art 
post-processing techniques for the quantitative assessment of global and 
regional ventricular function from cardiac MRI. 

2.2 QUANTIFICATION OF VENTRICULAR DIMENSIONS AND GLOBAL FUNCTION 

2.2.1 Accuracy and reproducibility of volumetric measurements from multi-
slice short-axis acquisitions 

MRI allows imaging of anatomical objects in multiple parallel sections, 
enabling volumetric measurements using the Simpson’s rule. According to 
this Simpson’s rule the volume of an object can be estimated by 
summation of the cross-sectional area’s in each section multiplied by the 
section thickness. When there is a gap in between slices this must be 
corrected for and the formula for volume becomes:  
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V =  {Areai * (Thickness + Gap)},  
 
where V is the volume of the 3D object and Areai the area of the cross-
section in section number i. 
 

 

Figure 2-1 Schematic representation of a left ventricular geometry intersected by 
multiple parallel short-axis sections. Given the same section thickness and 
intersection gap both over- and underestimation of left ventricular volume may occur 
dependent on the position of the left ventricle with respect to the imaging slices. In 
situation a) the most basal slice will be included in the volumetric assessment, while 
in b), the most basal slice will not be taken into account since it intersect by less than 
50% with the left ventricular myocardium.  

 
While MRI is capable of directly acquiring images in any orientation, the 
short-axis orientation is the most commonly applied image orientation for 
the assessment of left ventricular chamber size and mass. The short-axis 
orientation has advantages over other slice orientations since it yields 
cross-sectional slices almost perpendicular to the myocardium for the 
largest part of the left ventricle1. This results in minimal partial volume 
effect at the myocardial boundaries and subsequently provides optimal 
depiction of the myocardial boundaries. However, the curvature of the left 
ventricle at the apical level leads to significant partial volume averaging. 
The image voxels in this area simultaneously intersect with blood and 
myocardium yielding indistinct myocardial boundaries. By minimizing the 
slice thickness - while keeping sufficient signal to noise - this partial volume 
effect at the apex can be reduced. Given the relatively small cross-sectional 
area of the left ventricle in the apical section, the error introduced due to 
the partial volume effect will be minimal. However, partial volume 
averaging at the basal level of the heart has a much greater impact since at 
this level the cross-sectional area of the LV is largest. The base of the LV 

 a) Overestimation                                b) Underestimation 
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exhibits a through-plane motion in the apical direction during systole in the 
order of 1.3 cm2,3.  Therefore, the significance of partial volume varies over 
the cardiac cycle. Additional long-axis views may prove helpful in 
determining more accurately how a basal short-axis slice intersects with 
the various anatomical regions. 

2.2.2 Impact of slice thickness and slice gap 

It is a prerequisite for the accurate assessment of the ventricular volumes 
that the stack of short-axis slices covers the complete ventricle from base 
to apex. Typically, a section thickness between 6 and 10 mm is used while 
the gap between slices varies from no gap (consecutive slices) to 4 mm. 
Quantification of volumes and mass requires the definition of contours in 
the images describing the endocardial and epicardial boundaries of the 
myocardium in several phases of the cardiac cycle. Though an image voxel 
may contain several tissues – due to the partial volume effect – it is 
assumed that the traced contours represent the geometry of the ventricle 
at the center of the imaged section. As shown in Figure 2-1, the partial 
volume effect may lead to both over- and underestimation in the 
assessment of ventricular volume.  
 

 
Figure 2-2. Schematic representation of the left ventricular geometry used for the 
simulation experiments. The phantom consists of a half ellipsoid with a length of 70 
mm and an outer diameter at the base of 60 mm; at the base the shape is extended 
with a cylinder with a diameter of 60 mm and a length of 30 mm. The thickness of 
the phantom was set to 5 mm. In the experiments the size of the object was varied 
between the dimensions shown and 80% of this size.  
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With a simple experiment using synthetically created left ventricular shapes 
and short-axis cross-sections it can be shown how the partial volume 
problem may affect measurement accuracy and reproducibility. For this 
purpose a computer-generated average left ventricular geometry with a 
fixed size was constructed and short-axis cross-sections were automatically 
derived, while varying the position of the ventricular geometry along the 
long-axis direction. The shape used and its dimensions are presented in 
Figure 2-2. In this experiment it is assumed that the contours in a short-
axis slice will only be drawn in case more than 50% of the slice thickness 
intersects with myocardium. The results of the simulations as depicted in 
Figure 2-3 demonstrate that the measurement precision (or measurement 
variability) degrades with increasing distance between the slices. For typical 
imaging parameters (section thickness 6 mm, gap 4 mm) the measurement 
variability is between 4 and 5%. The measurement accuracy is not 
dependent on the slice thickness or slice gap used: a section thickness of 
10 mm with no gap results in the same variability as a section thickness of 
6 mm with a gap of 4 mm.  
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Figure 2-3. Results of volume calculation experiments using synthetically 
constructed left ventricular geometries. The variability of left ventricular volume 
estimates increases with increasing slice thickness and slice gap. For a setting of the 
imaging parameters, such as a thickness of 6 mm and a gap of 4 mm, the 
measurement variability is ~5%. 

The result of this experiment has two important implications. First, 
variations between successive scans of the same patient may result in 
volumetric differences of up to 5%, which are inherent to the imaging 
technique used. Second, since the base of the heart has a significant 
through-plane motion component, the measurement variability of up to 5% 
will also be present over the cardiac cycle. Therefore, ejection fraction 
measurements will also be affected. By reducing the section thickness and 
the inter-section gap the variability in volumetric measurements can be 
reduced. 
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Figure 2-4. ED (top) and ES (middle) MR images acquired in radial long-axis views 
using SSFP MRI. Note the excellent conspicuity of the LV myocardial wall from base 
to apex. For reference, the white lines in the short-axis images (bottom) show the 
orientation of the radial long-axis views. (MR image data courtesy of M. Friedrich) 

2.2.3 Global function assessment using radial long-axis views 

The accuracy of volumetric measurements from multi-slice short-axis 
acquisitions is mainly determined by the accurate identification of the most 
basal slice level and the accurate definition of the endocardial and 
epicardial contours in this slice level. However due to the relatively large 
section thickness used, this is often difficult. The origin of the problem is 
the highly anisotropic nature of a typical short-axis examination in which 
the resolution in the Z-direction is much worse than the in-plane resolution. 
In order to overcome this limitation, Bloomer et al. investigated the use of 
multiple radial long-axis views for quantification of left ventricular volumes 
and mass using an SSFP MRI sequence3. With a radial long-axis acquisition 
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multiple long-axis views are acquired sharing a common axis of rotation 
(the LV long-axis) at equiangular intervals. This orientation has intrinsic 
advantages over short axis imaging as it allows clear visualization of the 
mitral and aortic valve planes. Additionally, long axis views suffer less from 
partial volume effect near the apex. After definition of the ventricular 
contours, calculation of LV volume is performed by adding pie-shaped 
volume elements defined by the location of the axis of rotation, the position 
of the contour and the angular interval between the image sections. 
Bloomer et al. demonstrated a good agreement between multi-slice short-
axis and radial long-axis acquisitions. Importantly, as a result of the 
improved visualization of the myocardial boundaries and definition of the 
base, inter-observer agreement was better using the radial long-axis 
method. Clay at al. presented gender specific normal values for left 
ventricular volume and function parameters assessed using the radial long-
axis approach5. Figure 2-4 illustrates examples of MR images acquired 
using a radial long-axis orientation. It clearly shows that the definition of 
the base and the contrast between blood and myocardium is excellent. 
Further research is needed to evaluate whether radial long-axis acquisitions 
also prove to be valuable for the assessment of regional function. 

2.3 MYOCARDIAL MASS 

The measurement of heart muscle weight is of clinical importance to 
properly diagnose and understand a patient’s illness and condition, and to 
estimate the effects of treatment. To detect small changes in mass, it is of 
paramount importance to utilize an accurate and reproducible 
measurement technique. Several validation studies have been performed 
comparing mass estimates as derived from MR with postmortem mass 
measurements. In a study by Florentine et al. a stack of axial slices was 
used to quantify left ventricular mass using the Simpson rule6. In this early 
study, they found good agreement (r = 0.95, SEE = 13 g). Maddahi et al. 
carried out extensive studies in a dog model comparing several slice 
orientations and measurement techniques for quantifying left ventricular 
mass7. It was shown that in vivo estimates of left ventricular myocardial 
mass are most accurate when the images are obtained in the short-axis 
plane (r=0.98, SEE = 4.9 g). 

2.3.1 Left ventricular mass 

For the left ventricle it is generally believed and also supported by literature 
that the short-axis orientation is the most appropriate imaging plane. To 
obtain optimal accuracy and reproducibility it is important to cover the 
complete ventricle from apex to base with a sufficient number of slices. 
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Quantification of mass requires the definition of contours in the images 
describing the endocardial and epicardial boundaries in the stack of images. 
The muscle volume is assessed from these contours by applying Simpson’s 
rule. The myocardial mass is derived by multiplying the muscle volume with 
the specific density of myocardium (1.05 g/cm3).  
 Typically, a section thickness between 6 and 10 mm is used with an 
inter-section gap between 0 and 4 mm. At the apex and basal sections 
significant partial volume averaging will occur due to the section thickness 
used and tracing of the myocardial boundaries may not be trivial. Similarly 
partial volume averaging will cause significant difficulties in interpreting 
sections with a highly trabeculated myocardial wall and papillary muscles8. 
There is no general consensus on whether to include or exclude papillary 
muscles and trabeculae in the left ventricular mass9-13. While it evident that 
inclusion of these structures would result in more accurate myocardial mass 
measurements, for regional wall thickening analysis, it is important to 
exclude these structures to avoid artifacts in the quantification. Whether to 
use an end-diastolic or end-systolic time frame for the measurement of the 
myocardial mass is also a subject of ongoing debate. Most likely, optimal 
accuracy and reproducibility is obtained by averaging multiple time frames, 
but this will have practical objections in case contours are derived by 
manual tracing. 

2.3.2 Right ventricular mass 

For the right ventricle and also for geometrically abnormal shaped left 
ventricles multiple sections are required for an accurate volume 
assessment14. MRI experiments with different slice orientations in 
phantoms and ventricular casts have shown that no significant difference 
can be observed in accuracy and reproducibility between slice 
orientations15. However, in a clinical situation the choice of slice orientation 
also depends on the availability of a clear depiction of anatomical features 
that are needed to define the myocardial boundaries. Volumetric 
quantification of the right ventricle may be better performed on the basis of 
axial views16. This view shows improved anatomical detail and allows better 
differentiation between the right ventricular and atrial lumen. Nevertheless, 
for practical reasons, the right ventricular mass is often measured using a 
stack of short-axis slices which is also used for measuring the left 
ventricular dimensions. 
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2.4 QUANTIFICATION OF VENTRICULAR VOLUMES AND GLOBAL FUNCTION 

Assessment of global ventricular function requires volumetric measurement 
of the ventricular cavities in at least two points in the cardiac cycle, being 
the end-diastolic (ED) and end-systolic (ES) phases. A vast amount of 
reports describe the applicability of MRI for accurate and reproducible 
quantification of left and right ventricular volumes using various MR 
imaging strategies4,17. Sufficient temporal resolution is required to properly 
capture the end-systolic phase. Generally a temporal resolution, or phase 
interval, in the order of 40-50 ms is assumed to be sufficient18. 
 For geometrically normal left ventricles one could rely on geometrical 
models to derive the volumes from one or two long-axis imaging sections. 
In a group of ten patients with LV hypertrophy and 10 healthy subjects, 
Dulce et al. demonstrated a good agreement between biplane volumetric 
measurements using either the modified Simpson’s rule of an ellipsoid 
model and true 3D volumetric measurements using a multi-slice MRI 
approach19. In another study by Chuang et al. 25 patients with dilated 
cardiomyopathies were evaluated using both a biplane and a 3D multi-slice 
approach20. They reported a poor correlation between the two 
measurement methods.  
 For quantitative volume assessment, using multi-slice short-axis 
acquisitions is the most commonly applied approach. At the present state, a 
single section with sufficient temporal resolution can be acquired within a 
single breath hold, on most available MR systems. The total duration of 
acquiring the 8 to 12 sections required to image the entire ventricular 
cavity is in the order of 5 minutes21,22. All sections should be acquired at 
the same end-expiration or end-inspiration phase; otherwise reliable 3D-
quantification of volumes from the obtained images is not possible. 
 

Quantitative analysis starts with manual or (semi-) automated 
segmentation of the myocardium and blood pool in the images. Once 
contours have been defined in the stack of images describing the 
endocardial and epicardial boundaries of the myocardium, volumetric 
measurements including stroke volume and ejection fraction can be 
obtained by applying the Simpson’s rule. Normal values for global 
ventricular function and mass have been reported by several investigators 
for different populations and pulse-sequences23-25. It is important to note 
that normal values obtained using the newer Steady State Free Precession 
(SSFP) type sequences differ significantly from values obtained with 
previous techniques. The improved contrast between blood and 
myocardium in SSFP is associated with larger ED and ES cavity volumes, 
smaller wall thickness values and lower LV mass25-27. In direct comparisons 
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of SSFP with conventional fast GRE techniques within the same individuals, 
differences in LV mass of up to 16.5% were reported (see Figure 2-5). In 
contrast, LV measurements have been shown to be relatively independent 
of the MR field strength used28. 
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Figure 2-5. Comparison of LV dimensions measured with either a Steady State Free 
Precession (SSFP) sequence or a segmented GRE technique. Data derived from 
Alfakih et al25, Lee et al26 and Wei et al27. 

 
At the basal imaging sections, often no clear visual separation between left 
ventricle and left atrium is present since the imaging section may contain 
both ventricular and atrial cavity and muscle. It is important to realize that 
while the imaging sections are fixed in space, the left ventricular annulus 
exhibits a motion in the apical direction on the order of 1.3 cm in normal 
hearts2. Consequently, myocardium that is readily visible in an end-
diastolic time frame may be replaced by left ventricular atrium in the end-
systolic time frame. Additional long-axis views may be helpful to more 
reliably analyze the most basal and apical slice levels of a multi-slice short 
axis study3. Figure 2-6 displays end-diastolic and end-systolic time frames 
in a long-axis view and three basal short-axis sections obtained during a 
single MR examination. The white lines, indicating the intersection lines of 
the imaging planes, provide helpful additional information for interpreting 
the structures seen in the short-axis images.  
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Figure 2-6. Four-chamber long-axis view and three basal level short-axis views 
acquired within the same examination (left: end-diastole, right: end-systole). The 
colored lines indicate how the short-axis and long-axis imaging planes intersect with 
each other. The movement of the base towards the apex in systole can easily be 
appreciated. The use of displays showing how long-axis and short-axis planes 
intersect may facilitate the interpretation of basal level short-axis images and may be 
valuable during tracing of the contours.  

2.5 QUANTIFICATION OF REGIONAL WALL MOTION AND WALL THICKENING USING 

THE CENTERLINE METHOD FROM DYNAMIC SHORT-AXIS IMAGES 

The excellent depiction of the endocardial and epicardial boundaries of the 
left ventricular myocardium forms the basis of quantitative analysis of 
regional myocardial function. Quantitative analysis methods for endocardial 
wall motion are hampered by the presence of rigid body motion of the 
heart. A floating centroid, based on the center of gravity of the endocardial 
or epicardial contours, can be used to isolate the rigid body motion from 
the actual endocardial deformation. On the other hand, quantification of 
wall thickness and thickening does not have this disadvantage. It has been 
demonstrated that wall thickening analysis is more sensitive in the 
detection of dysfunctional myocardium than wall motion analysis29,30. The 
optimal slice orientation for wall thickness analysis of the left ventricle is 
the short-axis plane since in this orientation the major part of the 
myocardial wall is perpendicular to the imaging section29-33. Local wall 
thickness can be derived in these acquisitions from manually or 
automatically defined endocardial and epicardial boundaries in each short-
axis image. Radial wall thickness quantification methods use an 
approximate center point in the left ventricle to measure the distance 
between the endocardial and epicardial contours along radial lines starting 
from this center point. This approach may result in significant 
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overestimation of wall thickness in case the ventricular cross-section 
deviates much from a circular shape. The Centerline method has 
advantages over the radial methods since it can be applied for a wide 
variety of shapes. In fact, it was originally developed for wall motion 
analysis in X-ray angiograms and later modified for wall motion and wall 
thickness analysis of left ventricular short-axis views35,36.  
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Figure 2-7. Mid-ventricular end-diastolic (top left) and end-systolic (top right) short-
axis images of the left ventricle with endocardial and epicardial contours defined. 
Wall thickness chords are constructed for measurement of wall thickness in six 
myocardial segments. The segments are defined starting at the posterior junction of 
the right ventricular wall with the left ventricle. Segments are numbered from 1 
through 6 in clockwise order. The graph in the bottom panel presents the wall 
thickening in each of the six defined myocardial segments. 
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As depicted in Figure 2-7, the centerline method uses a path in between 
the endo- and epicardial contours (the “centerline”) and perpendicular to 
that path at evenly spaced intervals, starting at a clearly visible anatomical 
reference point chords are constructed from endocardium to epicardium. 
The length of such a chord represents the local wall thickness and the ratio 
between the end-systolic and end-diastolic chord length equals the local 
end-systolic wall thickening. A sufficient number of chords should be 
chosen such as not to miss small anatomical abnormalities. Normal values 
for end-systolic wall thickening can be used for comparison to determine 
which myocardial regions are abnormal; subsequently the size, extent and 
severity of a wall thickening abnormality can be quantified36. In case the 
MRI slice is not exactly perpendicular to the local myocardial orientation, 
the normal two-dimensional centerline method may lead to a wall thickness 
overestimation. Buller et al. describe a method to correct for this error by 
estimating the local angle between the imaging plane and the myocardial 
wall for each centerline chord37. They demonstrated the improved accuracy 
of this method in phantom studies and also showed that the overestimation 
of wall thickness near the apex of the heart in short-axis studies can be 
minimized.  

 
To facilitate the interpretation of the large amount of quantitative data of 
regional ventricular function, optimized visualization methods need to be 
implemented. When standardized imaging protocols are applied, normal 
value databases can be established for the various parameters providing 
more objective assessment of the observed regional function abnormalities. 
Bull’s eye plots, as known from nuclear medicine, can be used as a visual 
tool to present all the relevant information in just one single graphical 
display. A further step is to employ three-dimensional reconstruction 
techniques to generate displays showing regional function data in relation 
to the anatomy of the patient. Figure 2-8 shows an example of such a 
display, providing views of the left ventricular anatomy of a patient with an 
antero-septal infarction.  
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Figure 2-8. Three-dimensional reconstruction of the left ventricle from a multi-slice 
short-axis study of a patient ten days after acute antero-lateral infarction. The top 
two rows show the ventricular geometry at the ED and ES phases. The bottom three 
rows show the ED wall thickness, the ES wall thickness and ES wall thickening using 
a color-coding.   

2.6 REGIONAL FUNCTION ANALYSIS USING MRI TAGGING AND VELOCITY-ENCODED 

MRI 

Wall thickening and wall motion analysis from conventional cine MR 
imaging suffers from the through-plane motion of the heart. Furthermore, 
conventional cine MRI only allows quantification of radial myocardial 
deformation. Three-dimensional myocardial tagging is a powerful MRI 
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technique that allows quantification of myocardial strain in all three 
dimensions. With the use of MRI tagging, cine MR images are acquired with 
a superimposed parallel, rectangular or radial grid of dark saturation lines. 
These tagging lines are induced by a special pre-pulse sequence 
immediately following the R-wave of the ECG and can subsequently be 
followed over the cardiac cycle. Dedicated computer algorithms have been 
developed to automatically track the intersection points of the tagging lines 
over the cardiac cycle to be able to quantify intramural myocardial 
deformations38. By applying this technique in multiple slices in both short-
axis and long-axis directions, 3D-strain measurements can be performed39. 
Alternatively, these measurements can be derived directly by processing of 
the Fourier spectrum of the tagged MR data, a technique currently known 
as HARmonic Phase (HARP) imaging40,41. 
 

 
Figure 2-9. Short-axis images obtained by phase-contrast cine MRI at early diastole. 
The images are obtained from a pig after acute myocardial infarction. The velocity 
images (x, y, z) depict the myocardial velocities in x, y and z direction using a gray-
scale encoding. The in-plane velocity vectors (v) are reconstructed from the x- and y-
velocity maps and show both the direction and magnitude of myocardial velocity. The 
relatively low velocities in the anterio-lateral region illustrate the diastolic function 
abnormality in this region. 
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Velocity-encoded cine MRI may be used to quantitatively assess the three-
dimensional velocity of the myocardium over the cardiac cycle. With this 
acquisition technique the myocardial velocities can be measured in three 
orthogonal directions for each pixel within the imaging plane42-44. In 
contrast to MR tagging methods, this technique can be used in combination 
with retrospective gating such that data over the complete cardiac cycle is 
obtained. For quantitative analysis two different approaches can be 
followed. Motion tracking techniques, which are based on velocity 
integration, can be applied to obtain two- or three-dimensional trajectories 
of myocardial sample points45. An alternative approach is the direct 
quantification of myocardial strain-rate by calculating the spatial velocity 
gradient along different directions46. Both approaches are sensitive to 
imperfections of the images such as insufficient temporal or spatial 
resolution, blood-related artifacts and beat-to-beat variations. These 
problems may well be resolved by future improvements in image 
acquisition techniques.  

2.7 AUTOMATED CONTOUR DETECTION IN SHORT-AXIS MULTI-SLICE CINE MRI  

Despite the fact that the time required for image acquisition has been 
reduced tremendously over the last few years, a cardiac evaluation based 
on CMR including quantitative analysis remains time consuming due to the 
required post processing of the large amount of images. Assuming a 
ventricle which is imaged in ten imaging sections, twenty endocardial 
contours need to be defined for the assessment of basic global function 
parameters such as the ejection fraction and stroke volume. Ten addition 
epicardial contours are needed for quantification of left ventricular mass. 
Manual image analysis requires tracing of these myocardial outlines which 
is a time-consuming procedure that takes between 10 minutes and one 
hour depending on the software used. It also may introduce undesirable 
inter- and intraobserver variabilities. 
 A considerable number of groups, including ours, have contributed to 
the development of algorithms for the automated extraction of the left 
ventricular myocardial outlines from short-axis cine MR imaging studies47-

61. The development of automated contour detection algorithms is a 
challenging problem because variations in gray value in MRI depend on 
many factors such as the imaging parameters used, spatial dependency in 
case surface coils are used and flow dependency. Additionally, the 
geometry of the cardiac chambers and its contraction pattern may be 
abnormal in pathological situations, causing automated segmentation 
methods that rely too much on an expected shape or contraction pattern to 
fail in such circumstances. Ideally, an automated algorithm should be 
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insensitive to variations in image characteristics and be applicable to MR 
images obtained from different MR scanners. In case the algorithm can 
operate without any user-interaction, the actual computation time is not of 
major importance. If user interaction is required to control the algorithm, 
such as providing seed points or initial contours for each of the imaging 
slices, the actual algorithm should be must faster to increase the time 
efficiency of the operator.  
 

 
Figure 2-10. Automated detection of the endocardial contour. A) Original image with 
epicardial contour; B) Search region for the endocardial contour. The region outside 
the epicardial contour and a small region at the inside of the epicardial contour is 
masked out from the original image; C) Result after determination of the optimal 
threshold; D) Contour around the thresholded region serves as a starting contour for 
the subsequent edge-based contour detection; E) When papillary muscles needs to 
be excluded from the myocardium, a smooth convex hull contour around the initial 
contour is determined; F) Final result after minimum cost contour detection. 

 

In the next section a short description is given of the underlying methods 
and validation results from the algorithms developed at our laboratory 
which have been integrated in a software package, MASS51. Our contour 
detection method follows a model-based approach and is directed to the 
definition of the endocardial and epicardial contours in all the phases and 
slices of an imaging study. The amount of user-interaction required to 
obtain reliable contours is limited, and is minimal in case the images are of 
good quality.  The algorithm accommodates for anatomical and MRI related 
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variations in image appearance by providing a certain learning behavior. 
Manually traced or edited contours are assumed to be correct and the 
contour detection algorithm was designed to generate a consistent set of 
contours for the total image dataset using the manually defined contours as 
models. The contour detection starts by searching for circular objects in the 
imaging slices to find the approximate long axis of the left ventricle, which 
result in an approximate left ventricular center point in each image. Using 
this center point, epicardial contours are found in the first phase and 
subsequently in the remaining phases using a frame-to-frame contour 
detection procedure. This frame-to-frame epicardial contour detection 
procedure is based on matching of line profiles that are positioned 
perpendicularly to the model contour (derived from the first phase) and 
then automatically positioned at the corresponding tissue transitions in 
other phases within the same slice level. By this approach the algorithm is 
able to deal with the fact that the epicardial boundary of the myocardium is 
adjacent to regions having different gray value characteristics. A first 
estimate of the endocardial contour is found using an optimal thresholding 
technique within the region described by the epicardial contour. The final 
endocardial contour is found by using a model-based edge-detection 
technique, known as the Minimum Cost Algorithm62. Figure 2-10 illustrates 
the algorithmic steps that are carried out to detect an endocardial contour 
given an image with an available epicardial contour. 

2.7.1 Automated contour detection optimization for different MR pulse 
sequences 

A major challenge when designing and implementing a reliable automated 
contour detection algorithm is to deal with the large variations in image 
characteristics due to differences in MR pulse sequences used, the usage of 
different receiver coils and differences between MR scanners from different 
vendors. Consequently, for optimal performance, an automated 
segmentation method needs to be optimized for a specific type of 
acquisition procedure. We have recently developed a contour detection 
optimization procedure, which enables tuning the different parameters that 
control the automated contour detection63. Figure 2-11 illustrates the 
mechanism of the contour detection tuning method. Based on a set of 
short-axis exams with expert drawn reference contours available, 
automated contour detection is performed using different settings of the 
contour detection procedure. Contour detection settings that are varied are 
the convolution kernels that are used for edge detection in the images, 
parameters that control the smoothness of the detected contours and many 
others. The automatically detected contours generated using a specific 
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parameter setting are compared to the reference contours by computing 
the degree of similarity between both contour sets. A Genetic Algorithm is 
used to generate new sets of parameter settings based on the results of the 
previously evaluated sets. By iterating this procedure numerous times, an 
optimal set of parameters can be found for a specific set of images. The 
degree of similarity, which is used to evaluate the quality of the detected 
contours, is defined as the percentage of contour points that lie within a 2 
mm distance of the corresponding reference contour. It was shown that for 
SSFP type acquisitions, the degree of similarity for manually traced 
endocardial contours obtained by repeated analysis of the same observer 
was 77%. Therefore, since the reference contours are generated manually, 
the similarity between automatically detected contours and the reference 
contours has a theoretical upper bound of 77%. The described optimization 
approach was evaluated on a set of 30 SSFP examinations from the three 
main MR scanner vendors to assess the improvement in the performance of 
automated contour detection. In all 30 studies endocardial contours were 
carefully traced in the end-diastolic and end-systolic phases which were 
used as reference. Automated contour detection was performed in all 
studies with and without optimized settings.  When using the unoptimized 
settings the average degree of similarity was 49.5%, which increased to 
63.3 percent when using the optimized settings. 
 

 
Figure 2-11. Diagram of the automated optimization procedure to find the optimal 
contour detection settings for a specific pulse sequence. In an iterative procedure, 
MASS performs automated contour detection in a set of MR studies using a number 
of different parameter settings. The detected contours are compared to manually 
defined reference contours and the average degree of similarity is computed for each 
parameter setting. A Genetic Algorithm is used to generate new parameter settings 
based on the results of the parameter settings from the previous iteration. 
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2.7.2 New model-based automated segmentation methods 

Reliable fully automated contour detection, not requiring any user 
interaction, would clearly be an important step to further improve the 
clinical utility of CMR. Despite a lot of research in this area, two major 
problems limit the success rate of many of the previously described contour 
detection strategies for cardiovascular structures. First, due to the presence 
of noise and image acquisition artifacts, image information can be ill 
defined, unreliable or missing. In these cases a human observer is still 
capable of tracing the myocardial contours in the image data based on 
experience and prior knowledge, while many automated techniques fail. 
Second, a contour as drawn by an expert human observer may not always 
correspond to the location of the strongest local image evidence. In 
particular, in short-axis images the papillary muscles and trabeculae pose a 
problem. For example, many experts prefer to draw the left ventricular 
endocardial border as a convex hull around the blood pool, at a location 
somewhat ‘outside’ of the strongest edge64,65. A second example is the 
epicardial boundary, which may be embedded in fatty tissue, as a result of 
which the edge is strongest at the fat-air transitions. However, often the 
contour should be drawn on the inside of this fatty layer, an intensity 
transition that is marked by only a faint edge. Therefore, a decision about 
the exact location of the contour cannot always be made based on the 
strongest image evidence, but should be learned from the examples and 
preferences provided by expert observers. 
 To overcome these problems, prior knowledge about the image 
appearance, spatial organ embedding, characteristic organ shape and its 
anatomical and pathological shape variations should form an integral part 
of a contour detection approach. Moreover, it should be adaptive to 
accommodate for the preferences of an observer and to be easily 
adjustable to image characteristics of various pulse sequences and MR 
systems. Recently, Cootes et al. introduced the concept of Active 
Appearance Models (AAM’s), which are trainable mathematical models that 
can learn the shape and appearance of an imaged object from a set of 
example images66. This method was originally developed for facial 
recognition and later optimized for the detection of the left ventricle in 
CMR67. An AAM consists of two components: a statistical model of the 
shape of an object, which is combined with a statistical model of the image 
appearance of the object in a set of example images. The combined model 
is trained to learn the shape and image structure of an organ from a 
representative set of example images from different subjects. The AAM can 
be automatically matched to a new study image by minimizing an error 
function expressing the difference between the model and the underlying 
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image evidence. During this matching process, the model is constrained to 
only resemble statistically plausible shapes and appearances. 
Consequently, AAM’s are able to capture the association between observer 
preference and the underlying image evidence, making the AAM's highly 
suitable to model the expert observer’s analysis behavior. Moreover, AAM’s 
can model multiple objects (in our case the left- and right cardiac 
ventricles) in their spatial embedding. In a study by Mitchell et al. this AAM 
technique showed excellent agreement with manually defined contours, 
both for the left- and right ventricle simultaneously68. Figure 2-12 shows 
examples of automatically detected contours for the left and right ventricle 
obtained using this approach. Van der Geest et al. investigated the value of 
incorporating image information of complete time-series in an AAM based 
contour detection method69. The advantage of this approach lies in the fact 
that information from a complete time-series is used during training and 
detection, which results in consistent time-continuous segmentation 
results, even in the presence of image frames with poor image quality.  
 Another interesting recent development is the use of three-
dimensional statistical shape models for ventricular image segmentation. 
For example van Assen et al have successfully applied 3D Active Shape 
Models (ASM) for myocardial boundary detection in multi-slice short axis 
MR studies70. 
 

 
Figure 2-12. Examples of detection results of left and right ventricular contours 
using the Active Appearance Model contour detection method.  
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2.8 MRI FLOW QUANTIFICATION 

Velocity-encoded cine MRI (VEC-MRI) also plays an important role in the 
evaluation of global ventricular function. The accuracy of this imaging 
technique has been demonstrated in in-vitro experiments using flow 
phantoms and comparison against other imaging techniques such as 
Doppler echocardiography and invasive oximetry71,72. Since flow 
measurements are obtained at high temporal resolution over the complete 
cardiac cycle, VEC-MRI is especially useful in the evaluation of left and right 
ventricular diastolic function parameters by measuring flow over the atrio-
ventricular valves. Application of this technique to the proximal portion of 
the ascending aorta or pulmonary artery allows the assessment of left and 
right ventricular systolic function. After the cross section of a vessel is 
identified in the image by manual or automated contour detection, the 
instantaneous flow rate within the vessel cross section is obtained by 
multiplying the average velocity within the contour by its area. Ventricular 
stroke volume measurements are derived by integrating the flow over a 
complete cardiac cycle73.  The presence of aortic or pulmonary 
regurgitation can be easily identified and quantified from the derived flow 
curve. VEC-MRI has an established role in the evaluation of patients with 
congenital heart disease74-77. Figure 2-13 illustrates how MR flow 
measurement can be used for quantification of shunt size in a patient with 
a ventricular septal defect. 

2.8.1 Automated quantification of aortic flow 

Application of VEC-MRI to the proximal portion of the ascending aorta 
allows the assessment of left ventricular systolic function by evaluating the 
flow over a complete cardiac cycle. Such a study requires a VEC-MRI 
acquisition in the transversal plane crossing the ascending aorta. The left 
ventricular stroke volume can be measured by integrating the flow over a 
complete cardiac cycle. For an accurate assessment of volume flow, 
contours describing the lumen of the vessels have to be obtained in the 
images. The in-plane motion of the greater vessels and changes in shape of 
the vessel cross section over the cardiac cycle would require the user to 
trace the luminal border of the vessel in each individual phase of the MR 
examination. To overcome these practical limitations, an automated 
analysis method was developed in our department to automatically detect 
the required contours in each of the cardiac phases78. This contour 
detection algorithm was integrated in the FLOW software package. 
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Figure 2-13. Flow velocity maps of the ascending aorta (top left) and pulmonary 
artery (top right) with contours defined of a patient with a ventricular septal defect. 
From the derived flow curves (bottom) of the respective arteries the shunt size can 
be accurately quantified. In this patient the aortic flow was quantified as 87 ml/heart 
beat (5.6 L/min) and the pulmonary flow 149 ml/heart beat (9.4 L/min). 

The only user-interaction required, is the manual definition of an 
approximate center in one of the available images. In this first image an 
initial model contour is detected using gray value and edge information. 
The position of the same vessel at another time frame can be estimated by 
shifting the model contour in a limited region around the initial location and 
examining the edge values measured in the modulus image along the 
contour points. An algorithm was developed which finds the most likely 
contour position for each time frame, with the restriction that a contour is 
only allowed to displace 2 pixels (1.6 mm) from phase to phase, thereby 
imposing a temporal continuity of the motion. After having found the 
correct contour location, a final optimized contour was detected by allowing 
small deformations of the model contour such that it would follow the 
edges in the modulus image. For this purpose a two-dimensional graph 
searching technique was used. The resulting contour was dilated by one 
pixel to be sure to encompass the complete region with flowing blood. The 
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total contour detection process takes less than ten seconds for a study with 
30 cardiac phases. 
 Validation was performed on flow velocity maps from a study 
population of 12 healthy volunteers. Two independent observers performed 
manual and automated image analyses. The first observer repeated the 
automated and manual analyses after a two-week interval to avoid learning 
effects. The time required for manual analysis was 5-10 minutes. During 
automated analysis the user had to identify the approximate location of the 
center of the aorta in one of the available images. The total analysis time 
for automated analysis was less than 10 seconds. Stroke volume 
measurements were obtained by integrating the flow over the complete 
cardiac cycle. The mean left ventricular stroke volume obtained by VEC-MRI 
in the group of 12 volunteers was 86.4 ml (SD: 13.6 ml). No statistically 
significant differences were found between the results of manual and 
automated analyses. The mean difference between automated and 
manually assessed stroke volume was 0.78 ml (SD: 1.99 ml). The intra-
observer variability was 0.65 ml for manual analysis and 0.58 ml for 
automated analysis; the intra-observer variability was 0.99 ml for manual 
analysis and 0.90 ml for automated analysis. From this study, it can be 
concluded that the automated contour detection algorithm performs equally 
well as the manual method in the determination of left ventricular stroke 
volume derived from VEC-MRI studies of the ascending aorta. 

2.9 IMAGE PROCESSING OF PERFUSION IMAGING STUDIES 

First-pass contrast-enhanced MR perfusion imaging is used to detect 
abnormalities in myocardial blood flow, related to coronary artery disease. 
Typically, three to five short axis slices of the heart are acquired over 5 to 
10 seconds prior to the injection of the intravenous contrast bolus, and 
about 60 seconds after the injection of contrast. A combination of stress 
and rest acquisitions can be performed to improve the differentiation of 
normal from abnormally perfused myocardial territories79.  
 Various approaches have been described to obtain quantitative indices 
of myocardial perfusion from first-pass MR perfusion studies80-82. Jerosch-
Herold et al. have performed extensive studies to demonstrate the 
feasibility of absolute perfusion quantification in ml/gram tissue/minute and 
have validated these methods in animal experimental studies80. However, 
more commonly, semi-quantitative analysis methods are being used. An 
example of a semi-quantitative approach is to use the maximal upslope of 
the myocardial time-intensity curve as index of myocardial perfusion. 
Although less-advanced, the diagnostic accuracy of the technique has been 
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validated against competing non-invasive and invasive modalities in single 
center and multicenter studies83-85. 
To derive quantitative indices related to the presence or absence of 
myocardial perfusion deficits, time-intensity curves need to be evaluated 
for regions in the myocardium. Due to the significant patient motion over 
the acquisition duration, time-intensity curves which are derived from a 
static region in the image are severely distorted. Automated image co-
registration techniques have been developed to correct for this motion86-89. 
Once the images are registered, endocardial and epicardial contours can be 
traced in one image frame and copied to the other frames. Subsequently, 
time-intensity curves can be easily generated for multiple regions in the 
myocardium. Although these curves can be determined at a pixel level, the 
noise level in the images is often not sufficient to derive reliable perfusion 
indices at this level of detail. More typically 4 to 8 segments are defined for 
each imaging section, which can be further sub-divided into an endocardial 
and an epicardial layer85. 
 

 
 

   
Figure 2-14. Signal-intensity versus time curves for 6 segments of the left 
ventricular myocardium at a mid ventricular slice level. Without motion correction 
(lower left) the curves are not suitable for quantitative analysis. After motion 
correction (lower right), perfusion indices such as maximum upslope can be derived 
reliably. 
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Figure 2-15. Example multi-slice short-axis LGE acquisition (left). After defining an 
appropriate intensity threshold, the regional transmurality of scar can be computed 
and visualized using a bull’s-eye plot (right). This patient has a large infarction with 
complete transmural enhancement in the lateral region and sub-endocardial 
enhancement in the posterior region.  

2.10 LATE GADOLINIUM ENHANCED MRI 

Late gadolinium enhanced (LGE) MRI has become part of a standard MRI 
examination as it is extremely valuable for the assessment of viable and 
non-viable myocardium in infarcted and poor contractile areas90,91. The 
excellent resolution of MRI enables the depiction of both transmural and 
non-transmural regions of infarction. It was shown that the transmural 
extent of enhancement is inversely related to the likelihood of recovery of 
function after revascularization. Therefore, large non-transmural infarcts 
may have a better prognosis than relatively small transmural infarcts. 
Quantification of the size and distribution of the infarction involves defining 
a signal intensity threshold that separates normal myocardium from 
enhanced tissue. Various approaches have been suggested for determining 
the optimal intensity threshold. In the pioneering work of Kim et al. hyper-
enhanced regions were defined as those regions having an intensity value 
>2D above the mean of the remote normal myocardium90. Other authors 
have suggested slight modifications to this approach by proposing adding 
2-5 times the standard deviation93,94. These observations demonstrate the 
sensitivity of the SD-method to differences in image acquisition protocol.  
Schuijf et al. and Amado et al. proposes to use a Full Width Half Maximum 
(FWHM) criterion to objectively obtain a threshold value95,96. Amado et al. 
demonstrated in an animal experimental study that myocardial infarct size 
measurements using a FWHM criterion agreed very well with pathology96. 
The inherent properties of the Full-Width-Half-Max method makes it much 
less sensitive to variations in image acquisition parameters. Based on this 
criterion Hsu et al. developed a fully automated technique to obtain 
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accurate assessment of the size of myocardial infarction and validated this 
approach in an animal experimental setting97. Using the defined threshold, 
the enhanced regions within the myocardium are objectively defined and 
the regional degree of transmurality can be defined as illustrated in Figure 
2-15.  

2.11 INTEGRATED IMAGE ANALYSIS 

The increasing routine clinical use of CMR and the overwhelming size of the 
typical CMR image data sets pose a significant challenge for time-efficient 
image quantification and interpretation. Multiple software packages with 
automated image segmentation and quantification methods have been 
introduced in the last decade to support the work of the clinician. However, 
these solutions primarily focus on particular elements within a CMR exam, 
such as the assessment of global function or myocardial perfusion. An 
integration of the available techniques for CMR image analysis into an 
integrated solution for the analysis of all the data acquired in a 
comprehensive CMR exam would be a major step forward. The work by 
Hennemuth et al. demonstrates the feasibility of such integrated image 
analysis solutions98. 
 An example of an integrated analysis approach is provided in Figure 
2-16. It illustrates how quantitative information obtained form two different 
MR acquisitions can be combined. In this example LGE MRI is combined 
with cine MRI information to relate infarct transmurality to the regions with 
poor contractility. This enables classification of regions of poor contractility 
into viable and non-viable regions. 
 

2.12 CONCLUSION 

Cardiovascular MRI is a valuable technique for non-invasive quantitative 
assessment of global and regional ventricular function. Computerized image 
analysis techniques can help reducing the time required for quantification 
and interpretation of the many images. In this chapter, analytical methods 
for left ventricular function and vascular flow measurements based on 
automated contour detection approaches have been described. Validation 
studies of these methods have confirmed their accuracy, precision, 
robustness and usefulness for clinical research studies. Fully automated 
contour detection methods that operate reliably in a routine clinical 
environment are needed and may become available in the near future. 
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Figure 2-16. Data fusion between wall thickening information derived from cine MR 
and a scar transmurality derived from LGE MRI visualized using a bulls-eye displays. 
The red area in the bottom bull’s-eye represents the non-viable myocardium where 
the wall thickening is less than 2 mm while scar transmurality is >50%. 
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ABSTRACT 

Objective: Goal of this study was to evaluate a newly developed semi-
automated contour detection algorithm for the quantitative analysis 
cardiovascular magnetic resonance imaging. 
Methods: Left ventricular function parameters derived from automatically 
detected endocardial and epicardial contours were compared to results 
derived from manually traced contours in short-axis multi-slice gradient 
echo MR imaging studies of ten normal volunteers and ten infarct patients. 
Results: Compared to manual image analysis the semi-automated method 
resulted in the following systematic and random differences (auto-manual; 
mean ±standard deviation): end-diastolic volume: -5.5 ± 9.7 ml; 
end-systolic volume: -3.6 ± 6.5 ml, ejection fraction: 1.7 ± 4.1%; left 
ventricular mass: 7.3 ± 20.6 g. Total analysis time for a complete study 
was reduced from 3-4 hours for the manual analysis to less than 
20 minutes using semi-automated contour detection.  
Conclusion: Global left ventricular function parameters can be obtained 
with a high degree of accuracy and precision using the present semi-
automated contour detection algorithm. 
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3.1 INTRODUCTION 

Cardiac magnetic resonance (MR) imaging has proven to be an accurate 
and reproducible imaging modality for the quantitative evaluation of left 
ventricular function1-8. Gradient echo acquisitions in the short-axis 
orientation are particularly suitable for the assessment of left ventricular 
volumes and mass, as well as regional function parameters such as wall 
motion and wall thickening9-11. The assessment of these left ventricular size 
and function parameters, however, currently requires manual tracing of 
endocardial and epicardial contours in all the images to be analyzed. A 
typical cardiac MRI study contains 10 slices and 20 phases per cardiac 
cycle, i.e. 200 images in total. For most clinical applications of cardiac MRI, 
image analysis is limited to the end-diastolic and end-systolic time frames. 
However, the temporal resolution of a gradient echo MR acquisition allows 
the assessment of clinically valuable parameters describing the dynamics of 
left ventricular systolic ejection and diastolic filling, such as the peak 
ejection rate and filling rate12-14. To study these dynamic parameters, a 
frame-to-frame analysis needs to be carried out. While technological 
developments have resulted in decreased acquisition times and further 
improvements of image quality, the time consuming and tedious manual 
analysis procedure which is required to obtain the quantitative results, 
remains a limiting factor in the clinical use of cardiovascular MR imaging. 
The development of reliable automated contour detection software would 
be a major stimulus for the routine application of MR imaging in the 
evaluation of left ventricular function. To facilitate such quantitative left 
ventricular function analysis, we have developed the MR Analytical 
Software System (MASS)15. This software package provides manual tracing 
features as well as automated detection of left ventricular endocardial and 
epicardial contours in short-axis MR imaging studies. The use of the 
automated contour detection software facilitates the quantitative analysis 
of all phases of a multi-slice MR imaging study, thus providing assessment 
of left ventricular size in the end-diastolic and end-systolic phases as well 
as parameters describing the dynamics of left ventricular systolic ejection 
and diastolic filling. 
 The purpose of the current study was to evaluate the level of 
agreement between the semi-automated contour detection and manual 
image analysis for the assessment of global left ventricular volume 
parameters in gradient echo short-axis MR imaging studies using the MASS 
analytical software package. 
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3.2 METHODS  

3.2.1 Study subjects 

The study population consisted of 10 patients (8 men, 2 women) who had 
experienced myocardial infarction 3-50 weeks prior to the MR examination 
(average 27 weeks). The mean age of the patients was 49.6 years (range 
29 - 65 years). In addition, 10 healthy volunteers (8 men, 2 women) with 
normal ECG and no history of cardiac malfunction were studied; mean age 
for this group was 30.5 years (range 21-39 years). The patient and normal 
studies were randomly selected from a larger database. For both sets of 
study subjects, the image quality was found to be acceptable for 
unambiguous identification of the endocardial and epicardial borders by 
visual inspection in the large majority (> 80%) of the images within a 
study. 
 

 
Figure 3-1. Screen layout of the MR Analytical Software System (MASS). In the 
upper left panel the colored bars represent all available images. The lower panel 
shows the time sequence of images to which the selected image belongs. The upper 
right panel shows the currently selected image in which contours can be edited. In a 
separate window a movie loop can be displayed for review of the images with the 
automatically detected contours.  
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3.2.2 Image acquisition procedure 

The infarct patients were examined on a 1.5 T MR scanner (Philips 
Gyroscan S15, Philips Medical Systems, Best, the Netherlands) using the 
body coil. Spin echo scout images were obtained in the coronal and sagittal 
imaging planes after which the short-axis plane was determined. The short-
axis plane was defined perpendicular to the left ventricular long axis from 
the center of the mitral annulus to the apex. In the short-axis plane 
10 contiguous slices of 10 mm were obtained using standard cine-MR 
imaging. The echo time was 13 ms, the flip angle 50°, the repetition time 
equal to the average R-R interval and the field of view was 400 mm2. The 
temporal resolution was 54.63 ± 1.69 ms. 
 The MR examinations of the normal volunteers were performed on a 
1.5 T MR scanner (Philips Gyroscan ACS). Multi-slice Spin echo localizing 
images orientated in transversal plane were obtained. From this scan a 
vertical long-axis and subsequently a horizontal long-axis plane were 
obtained using gradient echo MR imaging. The short axis was defined from 
both long-axis planes. In this plane 10 slices of 8 mm with a gap of 1-2 mm 
were obtained using standard cine-MR imaging. The echo time was 6 ms, 
the flip angle 50°, the repetition time equal to the average R-R interval and 
the field of view was 400 mm2. The temporal resolution was 
29.16 ± 1.75 ms. 

3.2.3 Analysis software 

Manual and semi-automated image analysis procedures were performed 
using the MR Analytical Software System (MASS version 2.0) developed at 
our laboratory (Figure 3.1). This software package incorporates a mouse 
controlled graphical user-interface and runs on a SUN Sparc workstation 
(Mountain View, California, USA). The automated contour detection 
algorithm follows a model-based approach which means that existing 
contours are used as guiding examples for the detection of contours in 
neighboring phases and slices15. The user-interface allows manual 
interaction with the contour detection procedure by editing or removing 
incorrectly detected contours. In each contour detection iteration 
endocardial and epicardial contours are detected in the selected images 
using the manually traced or automatically detected contours as models. 
Manual correction can be applied at any stage of the analysis. The contour 
detection procedure starts with the detection of epicardial contours in the 
first (end-diastolic) phase of a study, followed by a frame-to-frame contour 
detection procedure. In the following sections the developed algorithms are 
described in more detail. 
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3.2.4 Automated detection of epicardial contours in the end-diastolic phase 

To identify the location and orientation of the left ventricle in the three-
dimensional data set, the Hough Transform16 for approximately circular 
objects was applied to the set of images belonging to the first cardiac 
phase. For each of the images, the Hough Transform resulted in an image 
with identical dimensions as the input image, with high values near center 
points of objects having a radius within the specified range (7.8-39 mm). 
The range of radii was determined such that both endocardial and 
epicardial edge points would contribute to the automated determination of 
the ventricular center. A straight line was fit through all available Hough 
images to estimate the long axis of the left ventricle. This procedure 
resulted in an estimation of the center of the left ventricle for each slice of 
the imaging study. 
 For the detection of epicardial contours, each image was transformed 
to polar coordinates using the available center point. A polar edge image 
was computed, highlighting locations of large intensity transitions in the 
polar image. For each radius the edge intensity in the polar edge image 
was summed. Using likelihood criteria for endocardial radius and 
myocardial wall thickness, two out of three radii with maximum edge 
intensity were selected, corresponding to an endocardial and epicardial 
circle estimation in the original image. Next, for each radial scan line the 
most likely epicardial radius was derived from the five edge intensity 
maxima for that scan line using criteria based on the distance of that point 
to the circular models. If no edge point satisfied the criteria, the epicardial 
radius for that scan line was derived afterwards by linear interpolation. The 
epicardial contour detected in the polar image was transformed to image 
coordinates. 

3.2.5 Frame-to-frame detection of epicardial contours 

For the detection of epicardial contours in other phases within the cardiac 
cycle a frame-to-frame contour detection algorithm was developed based 
on matching of line profiles combined with dynamic programming17. A 
similar strategy for echocardiographic images has been described before18. 
This matching approach was developed to follow each of the different gray 
value transitions existing between the myocardium and anatomical regions 
outside the myocardium. These regions have gray values which are 
brighter, darker or have a gray value equal to that of the left ventricular 
myocardium. The gray value transition to be expected at a specific position 
along the circumference of the myocardium can be derived from a temporal 
neighboring (model) image with a known epicardial contour. The algorithm 
is illustrated in Figure 3-2. Given a model image (A) with known epicardial 
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contour, a rectangular scan matrix (mask matrix) was generated by 
resampling the image at equidistant points along scan lines perpendicular 
to the local direction of the model contour. The model scan width was 
optimized to be large enough to include the typical shape of the gray value 
profile. The actual image (B) was resampled similarly using the same model 
contour, but with a larger scan width. The motion of an epicardial point, 
assumed to be perpendicular to the local contour direction, can be 
estimated by matching a one-dimensional scan line of the mask image at 
permissible locations along the corresponding scan line of the search 
matrix. Using this approach a third matrix was constructed by computing 
the match value of mask lines at every permissible location along the 
corresponding search line. For this purpose the correlation coefficient was 
used as match value and negated such that a good match resulted in a low 
value in the cost matrix. In this cost matrix an optimal (minimum cost) 
path was generated using dynamic programming techniques. The epicardial 
contour for image B resulted after transformation of this path to image 
coordinates. 
 

 
Figure 3-2. Diagram of the frame-to-frame epicardial contour detection. To detect 
the epicardial contour in the search image a known epicardial contour from a 
temporal neighboring image is used as a model. The model image is resampled 
perpendicularly to this epicardial contour resulting in a scan matrix. A similar scan 
matrix with a larger width is constructed from the search image. From both scan 
matrices a cost matrix is computed. The optimal path in this matrix results after 
transformation to the desired epicardial contour for the search image. 
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3.2.6 Detection of endocardial contours 

The algorithm used for the detection of endocardial contours is illustrated in 
Figure 3-3. As a first step, an initial segmentation of the blood pool area 
was found using thresholding of the image within the region enclosed by 
the known epicardial contour. The optimal threshold was determined by 
generating radial scan lines emanating from the epicardial center and 
collecting for each scan line the gray value of the pixel with highest edge 
value within the epicardial contour. The mean gray value of these maximal 
edge pixels was designated as the optimal threshold. In a second step a 
smooth convex hull surrounding the blood pool area was determined 
resulting in an endocardial model contour. By following this approach, 
papillary muscles and regions caused by flow artifacts having relatively low 
intensity are enclosed by the contour. From this model contour a final 
contour was computed using minimal cost contour detection.  
 

A B

C D  
Figure 3-3. Diagram of the endocardial contour detection. The endocardial contour 
in an image (A) with known epicardial contour is detected by determining an optimal 
threshold resulting in an initial blood pool segmentation (B). A convexly shaped 
contour surrounding this contour is determined (C). This contour is used as a model 
for subsequent minimum cost contour detection resulting in the final endocardial 
contour (D). 
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3.2.7 Semi-automated analysis procedure 

In this study, the following procedure was carried out. The user had to 
identify in which slices contours needed to be detected. In the first iteration 
the ventricular center was automatically detected and endocardial and 
epicardial contours were detected in all the selected images. After this first 
iteration the user was allowed to manually delete incorrect contours. In a 
second iteration the missing epicardial and endocardial contours were 
recomputed using the nearest temporal neighboring contour as the model. 
In case an endocardial contour was available, the region surrounding this 
contour was excluded from the search area of the corresponding epicardial 
contour. This resulted in more accurate epicardial contours in the second 
iteration. In case the contour detection was not entirely successful after 
this second iteration, the user was allowed to delete incorrect contours and 
manually correct at the most one single epicardial contour per slice. In the 
next iteration of the contour detection, the missing contours were 
automatically detected. In this last iteration the manually edited epicardial 
contour was used as the model for the detection of the missing epicardial 
contours in that slice. The number of manually edited epicardial contours 
was recorded. Manual correction to endocardial contours was not allowed at 
all. In the most basal slices where no complete circumference of left 
ventricular myocardium could be identified, the contours were traced 
manually. 

3.2.8 Manual contour tracing 

Endocardial and epicardial contours were also traced manually by an 
experienced observer in all the acquired phases for the slices encompassing 
the left ventricle. Window and level settings were standardized and kept 
unchanged for all studies. Papillary muscles and trabeculations were 
treated as being part of the blood pool7. In order to assess the relative 
overestimation of the volume of the ventricular blood pool, contours have 
also been traced at another occasion in the end-diastolic phase excluding 
the papillary muscles and trabeculations from the blood pool.  
 The upper slice showing at least 50% of the circumference of left 
ventricular myocardium was defined as the most basal slice to be included 
in the analysis. In this slice, the blood pool area enclosed by the 
myocardium and the aortic valve was included in the left ventricular volume 
calculations. To examine whether the contours describing the myocardial 
volume were traced consistently over the cardiac cycle within a single 
subject, the within-subject standard deviation of myocardial volume was 
determined for each study. A small value for this standard deviation would 
indicate a correct interpretation of the images over a complete cardiac 
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cycle. A second observer manually traced the endocardial and epicardial 
contours for only the end-diastolic and end-systolic phases to assess the 
inter-observer variabilities for this study. 

3.2.9 Quantification of left ventricular mass and volume 

Left ventricular volumes were measured in each phase by multiplying the 
contour areas by the sum of the slice thickness and slice gap. The end-
diastolic volume (EDV) was obtained from the first phase after the R-wave 
(phase 1). End-systolic volume (ESV) was measured in the phase showing 
the smallest endocardial volume. Stroke volume (SV) was defined as the 
difference between EDV and ESV. Ejection fraction (EF) was calculated as 
SV divided by EDV. The left ventricular mass was determined in each phase 
by computing the volume of the left ventricular wall multiplied by the 
specific density of myocardium (1.05 g/cm3). The peak ejection rate (PER) 
was defined as the maximum decrease in left ventricular volume per unit of 
time. The time to peak ejection rate (TPER) was defined as the time offset 
of the moment of PER to the R-wave. Similarly, peak filling rate (PFR) was 
defined as the maximum increase in left ventricular volume per unit of 
time. The time to peak filling rate (TPFR) was defined as the time offset of 
the moment of PFR from the moment of end-systole. Both PER and PFR 
were expressed in EDV/s. 

3.3 STATISTICAL ANALYSIS 

Inter-observer variabilities expressed as mean difference ± standard 
deviation of paired differences were determined for left ventricular mass 
and volumetric function parameters. Single factor analysis of variance was 
used to determine the statistical significance of differences between 
normals and patients for each left ventricular function parameter. Linear 
regression analysis was used to quantify the correlation between results 
from semi-automated and manual image analysis. In addition, the level of 
agreement between manual and semi-automated image analysis was 
determined by computing the systematic and random differences in the 
calculated left ventricular volume parameters. A Student t-test was 
performed to determine the statistical significance of observed differences 
between the two measurement methods. A p-value of 0.05 was considered 
to indicate statistical significance. 
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3.4 RESULTS 

3.4.1 Manual analysis 

Endocardial and epicardial contours were traced manually in 2504 short-
axis MR images. The total analysis time per study was 3 to 4 hours. Inter-
observer variabilities for manual analysis were: EDV: 6.5 ± 16.7 ml, ESV: 
4.4 ± 9.3 ml, SV: 2.0 ± 12.7 ml, EF: 0.2 ± 4.8% and left ventricular mass: 
12.8 ± 23.5 g. The variation in myocardial volume over the different 
cardiac phases of a study resulted in a mean within-subject standard 
deviation of myocardial volume of 4.4%.  
 Table 3-1 lists the mean values and standard deviations of the 
quantified volumetric left ventricular function parameters for the two study 
groups separately. As expected the ventricular performance in the group of 
infarct patients was significantly reduced compared to the healthy 
volunteers. No difference was found in EDV (143.6 ml for patients versus 
150.2 ml for normals; p=NS). ESV was significantly larger in patients (75.2 
ml versus 46.3 ml; p<0.05) and consequently the SV (68.4 ml versus 96.4 
ml; p<0.05) and EF (49.0% versus 69.1%; p<0.05) were smaller. The left 
ventricular mass was markedly higher in patients (177.4 versus 114.4 g; 
p<0.05). All of these measurements are based on endocardial contours 
which include papillary muscles and trabeculations. By manual analysis, it 
was found that these structures represent 6.5 ± 1.3% of the EDV. An 
estimation of the true EF can be made by adding this value to the 
measured EF. 
 

Table 3-1. Mean values and standard deviations of ventricular dimensions and 
volumetric functional parameters assessed in normals and patients using manual 
tracing of endocardial and epicardial contours. 

 Normals (n=10) Patients (n=10) 
 Mean SD Mean SD 

EDV (ml) 150.2 20.3 143.6 32.0 
ESV (ml) 46.3 8.4 75.2* 28.2 
SV (ml) 103.9 15.6 68.4* 11.7 
EF (%) 69.1 4.4 49.0* 9.2 
Mass (g) 114.4 21.6 177.4* 26.1 
PER (EDV/s) 4.07 0.64 2.41* 0.61 
TPER (ms) 118 41 96 38 
PFR (EDV/s) 4.32 0.97 2.09* 0.55 
TPFR (ms) 138 22 181* 55 

*: indicates statistical significant difference of values for patients compared to 
normals (p<0.05). 
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The parameters describing the dynamics of left ventricular ejection and 
filling showed a reduced PER and PFR in patients (2.41 and 2.09 EDV/s 
versus 4.07 and 4.32 EDV/s respectively; p<0.05). The timings of these 
events were not significantly different for TPER (96 ms versus 118 ms; 
p=NS) but TPFR was significantly prolonged for patients (181 ms versus 
138 ms; p<0.05). 

3.4.2 Semi-automated analysis 

The semi-automated contour detection software was used to detect 
endocardial and epicardial contours in 2504 short-axis MR images. In the 
most basal slices, representing 12% of the images, the contours were 
traced manually. For the remaining 88% of the images the contours were 
detected automatically. The automated analysis time per image was in the 
order of 1 s per image or two minutes per study. In addition, manual 
correction of epicardial contours was necessary in 1.4% of the total number 
of epicardial contours (average: 2 epicardial contours per study). In 5 out 
of the 20 studies, the automatically detected contours did not require any 
manual editing. Manual editing of the automatically detected endocardial 
contours was not allowed in this study. The total analysis time per study for 
the semi-automated procedure, including careful review of the results and 
manual corrections, was less than 20 minutes. 
 

Table 3-2. Systematic and random differences (auto - manual) in the assessment 
of left ventricular dimensions and function parameters using either semi-automated 
or manual image analysis. 

Normals (n=10) Patients (n=10) Overall (n = 20)  

Mean SD Mean SD Mean SD r   

EDV (ml) -13.4* 5.7 2.4 5.7 -5.5 9.7 0.94 

ESV (ml) -5.9* 4.9 -1.4 7.1 -3.6* 6.5 0.97 

SV (ml) -7.5* 4.4 3.8 7.6 -1.9* 8.4 0.94 

EF (%) 1.4 3.0 2.1 4.9 1.7* 4.1 0.95 

Mass (g) 22.8* 10.2 -8.2 16.2 7.3* 20.6 0.87 

EDV=end-diastolic volume; ESV=end-systolic volume; SV=stroke volume; 
EF=ejection fraction. 

*: indicates statistical significant difference of values for patients compared to 
normals (p<0.05). 
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3.4.3 Comparison of left ventricular volume parameters and mass derived 
from manually and automatically detected contours 

The agreement between semi-automated and manual analysis for the 
assessment of volumetric parameters is presented in Table 3-2 and further 
illustrated in Figure 3-4 using Bland and Altman graphs19. From Table 3-2 it 
is apparent that in the group of normal individuals the semi-automated 
contour detection produced slightly smaller endocardial contours which 
resulted in an underestimation of EDV (-13.4 ± 5.7 ml; p<0.05), ESV (-
5.9 ± 4.9 ml; p<0.05) and SV (-7.5 ± 4.4 ml; p<0.05). This 
underestimation was not present in the group of patients: all differences 
were small and statistically not significant. An excellent agreement in EF 
measurement was found in both study groups; in normals a difference of 
1.4 ± 3.0% (p=NS) and in patients a mean difference of 2.1 ± 4.9% 
(p=NS) was found. A statistically significant overestimation in myocardial 
mass was found in the group of healthy volunteers (22.8 ± 10.2 g; 
p<0.05). This difference is partly the result of the smaller automatically 
detected endocardial contours in this group. In patients the semi-
automated contour detection resulted in smaller myocardial mass 
measurements, but this difference was found to be statistically not 
significant (-8.2 ± 16.2 g; p=NS). 
 

Table 3-3. Systematic and random differences (auto - manual) of the semi-
automated contour detection algorithm as compared to manually obtained results.  

 
Normals (n=10) Patients (n=10) Overall (n=20)  

Mean SD Mean SD Mean SD r  r 

PER (EDV/s) 0.57* 0.49 0.35* 0.29 0.46* 0.42 0.93 

TPER (ms) 6.4 25.6 10.6 33.5 8.5 29.9 0.70 

PFR (EDV/s) -0.27 0.75 0.17 0.45 -0.05 0.66 0.86 

TPFR (ms) -3.7 43.7 27.4 61.8 11.9 55.7 0.63 

*: indicates statistical significant difference (p<0.05).  

 

3.4.4 Comparison of manually and automatically obtained left ventricular 
systolic ejection and diastolic filling parameters 

The systematic and random differences for the measurements using semi-
automated and manual image analysis are reported in Table 3-3. The semi-
automated contour detection resulted in larger values for PER 
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(0.57 ± 0.49 EDV/s for normals and 0.35 ± 0.29 EDV/s for patients; 
p<0.05). No statistically significant differences were found in the 
determination of PFR (-0.27 ± 0.75 EDV/s for normals and 0.17 ± 0.45 
EDV/s for patients). Manually and automatically determined values for TPER 
and TPFR were in excellent agreement in both study groups: the mean 
differences for TPER and TPFR ranged from -3.7 to + 27.4 ms (p=NS). The 
standard deviations of the differences ranged from 25.6 to 61.8 ms and 
were in the same order of magnitude as the temporal resolution 

 

 
Figure 3-4. Agreement between left ventricular function parameters derived from 
manually traced and automatically detected contours depicted in Bland and Altman 
graphs. The mean value of the measurement values for automated and manual 
analysis is plotted along the horizontal axis; the difference between these two 
measurement methods is plotted along the vertical axis. Mean values of the 
differences and standard deviations are listed in Table 3-2. Patients are identified 
with a closed dot (); volunteers are indicated by open circles (). 
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3.5 DISCUSSION 

Several validation studies have been performed demonstrating the 
accuracy and precision of left ventricular volume measurements from MR 
imaging acquisitions in different orientations 10-11. The clinical value of 
cardiovascular MR imaging would significantly improve if the time 
consuming and tedious process of manual contour tracing and subsequent 
quantitative analysis could be automated and integrated in a dedicated 
software package. Towards these goals, contour detection software was 
developed and integrated in an analytical software package as a tool for the 
off-line analysis of multi-slice short-axis left ventricular MR images. As an 
important step towards the clinical acceptance of automated contour 
detection software, extensive validation is required on imaging data from 
normals and patients acquired on different scanners and through various 
imaging protocols. In the current validation study the software was utilized 
on MR imaging studies of normal volunteers and infarct patients acquired 
on two different 1.5 T MR scanners using a gradient echo pulse sequence. 

3.5.1 Guidelines for tracing of endocardial contours 

In the manual analysis procedure and the automated contour detection 
algorithm, endocardial contours were defined to describe the inner 
boundary of the myocardial wall20. With this approach the papillary 
muscles, either floating in the blood pool area or being connected to the 
myocardial wall, are considered to be no part of the myocardial muscle. 
This approach has two distinct advantages. First, papillary muscles and flow 
voids both result in dark areas within the blood pool and therefore are 
difficult to differentiate for an automated algorithm or a human operator. A 
second advantage is that the actual size of the papillary muscle is easily 
overestimated due to motion artifacts and partial volume effects. To be 
able to detect the inner wall of the myocardium according to our definition, 
the contours are restricted to be more or less convexly shaped. If the 
papillary muscles are attached to the myocardial wall or if trabeculations 
exist, the contour detection produces contours which cut through the 
attachments. A consequence of this approach is that the left ventricular 
blood volumes are slightly overestimated, resulting in an accurate 
assessment of stroke volumes, but slightly lower ejection fractions 
measurements. It is assumed that this disadvantage is balanced by the 
reduction in observer variabilities.  By manual analysis it was found that 
the volume of the papillary muscles represents 6.5 ± 1.3% (mean ± SD) of 
the EDV. Consequently the true EF is 6.5% higher than the EF assessed 
from the endocardial contours according to our definition. 
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3.5.2 Guidelines for analyzing basal slices 

It has been advocated that the multi-slice short-axis acquisition is ideal for 
left ventricular volume measurements since no geometrical assumptions 
are required for the analysis21. One of the drawbacks of this type of 
acquisition is that due to the relative large slice thickness that is commonly 
used, the most basal slices are inadequately visualized. As a result, the 
partial volume effect which occurs in these slices makes a correct 
delineation of the left ventricular myocardium often not possible 
unambiguously. Different observers may incorporate different guidelines to 
define the region belonging to the left ventricular blood pool volume and 
the region to be included as being left ventricular myocardium. Another 
factor which complicates the analysis of these basal slices in a short-axis 
acquisition is the fact that it is well known that the left ventricle performs 
not only motion in the in-plane direction, but is also characterized by a 
through-plane motion which is in the order of 13 mm for the normal 
heart22. This through-plane motion which extends over more than one slice 
makes that the shape and size of the left ventricular contours may change 
abruptly in the upper slices from phase to phase. Given these 
complications, it was decided to manually trace the contours in the 
endocardial and epicardial contours in the most basal slice. The 
circumference of the left ventricular myocardium had to extend over at 
least 50 percent of the circumference to be included. By comparing the 
variation in myocardial volume over the cardiac phases it was examined 
whether the contours were traced consistently. In our study the within-
subject standard deviation of left ventricular myocardial volume was 4.4%, 
which confirms that both endocardial and epicardial contours were 
accurately traced in this study. 

3.5.3 Automated contour detection results 

The results listed in Table 3-2 should be compared to the inter-observer 
variabilities which were assessed in this study. The mean differences reflect 
a systematic over- or underestimation of one measurement technique 
compared to the other. Since no true gold standard is available it remains 
unclear which of the two techniques is more accurate. The automated 
contour detection algorithm resulted in smaller endocardial contours and 
larger epicardial contours in the group of healthy volunteers, resulting in 
relatively large systematic differences. Since these differences were much 
smaller in the studies of the infarct patients, this may have been the result 
of the differences in image characteristics between the two acquisitions 
protocols. Although two different MRI scanners were used for the patients 
and the normal volunteers, the main reason for the differences in image 
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characteristics, probably is the fact that in patient studies problems related 
to ECG registration and motion result in more blurring of the images. In 
general, systematic differences of an automated contour detection 
algorithm are relatively easy to solve by adjusting specific parameters in 
the algorithm. The standard deviations in the inter-observer analyses are 
relatively high when compared to the standard deviations listed in the last 
column of Table 3-2. This leads to the assumption that the semi-automated 
analysis is less hampered by random variabilities, which is especially 
important in follow-up studies. 
 No reports are known on the assessment of inter-observer variabilities 
for the quantification of dynamic parameters derived from multi-slice multi-
phase short-axis MR studies. Table 3-3 demonstrates that the timings of 
the peak ejection rate and peak filling rate were determined with high 
accuracy and precision by the automated contour detection software. The 
mean differences were close to zero, while the random errors were in the 
same order of magnitude as the temporal resolution. The values of the 
dynamic parameters are in correspondence to those reported in 
literature12-14.  

3.5.4 Analysis time 

In our experience, the manual tracing of endocardial and epicardial 
contours in all the phases of a multi-slice multi-phase MR study with high 
temporal resolution takes approximately 3 to 4 hours depending on the 
heart size and image quality. Using the present cardiac MR analysis 
software, the analysis time was reduced to less than 20 minutes on 
average. The actual time required for the automated contour detection for 
200 images is less than 3 minutes. Manual correction to contours was 
performed for only two epicardial contours per study on average. The time 
required for reviewing the automatically detected contours and deciding 
whether unsatisfactory contours should be redetected in a next iteration, 
contributes to most of the actual analysis time. In addition, the manual 
tracing of contours in the most basal slice, which is still required, takes a 
considerable amount of time. 

3.5.5 Advantages of the present contour detection algorithm 

Several other studies have reported on the development and clinical 
evaluation of software algorithms for the semi-automated detection of left 
ventricular endo and/or epicardial contours in MR image data23-25. All these 
algorithms require some sort of user interaction such as manually 
indicating a region of interest or indication of a left ventricular center point. 
Although the actual computation time can be quite low in such an 
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approach, the required user-interactions will result in a much longer total 
analysis time. In our approach the required user-interaction is very much 
limited leading to time efficient analysis procedures. Another advantage of 
the present contour detection algorithm is that the epicardial contour 
detection is designed to be adaptive to the image characteristics and is 
therefore relatively insensitive to changing scan parameter settings. 

3.5.6 Limitations 

In this study the automated results were compared to those of one single 
observer. The MR examinations were performed on two different scanners 
using slightly different imaging protocols. Systematic differences which 
were found in this study may have been introduced by observer bias or by 
differences in the MR examination protocols. In order to further investigate 
the value of the present contour detection software, additional future 
validation studies should be performed. Repeat measurements by the same 
observer on separate occasions or by different observers will reveal 
whether the use of automated contour detection will indeed lead to a 
reduction in the inter- and intraobserver variabilities as compared to the 
manual tracing procedures. Comparison of automated contour detection 
results with other imaging modalities, such as stroke volume measurement 
by MR flow velocity mapping, may be useful to test whether systematic 
errors exist in the automated contour detection requiring further 
optimization of certain parameters in the algorithm. 

3.6 CONCLUSION 

A new analytical software package (MASS) with semi-automated contour 
detection has been validated on cardiovascular MR image data from 
patients and healthy volunteers. Quantitative left ventricular function 
parameters derived from the automatically detected contours were 
compared with results derived from manual contour tracings. This study 
demonstrates that volumetric left ventricular function parameters and 
myocardial mass can be assessed accurately in a multi-slice short-axis 
acquisition protocol in a time-efficient manner using the present contour 
detection software. 
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ABSTRACT 

Objective: An automated contour detection algorithm was developed for the 
objective and reproducible quantitative analysis of velocity encoded MR 
imaging studies of the ascending aorta. 
Methods: The only user-interaction required is the manual definition of a 
center point inside the cross-section of the aorta in one of the available 
images. The automated contour detection algorithm detects an initial model 
contour in this image and subsequently corrects for motion and 
deformation of the aortic cross-section in each of the acquired images over 
the complete cardiac cycle using dynamic programming techniques. 
Integrating the flow velocity values for each pixel within the detected 
contour results in an instantaneous flow value. Next, by integrating the 
instantaneous flow values for each acquired phase over the complete 
cardiac cycle, left ventricular (LV) stroke volume (SV) measurement could 
be obtained. The results of the automated method were compared to 
results derived from manually traced contours in MR imaging studies from 
11 healthy volunteers. 
Results: An excellent agreement in SV measurements was observed: 
signed difference 0.61  1.51%. Inter- and intraobserver variabilities were 
less than 2% for both manual and automated image analysis methods. 
Manual tracing of contours required in the order of ten minutes; the 
analysis time for automated contour detection was less than 6 seconds per 
study. 
Conclusion: The present contour detection allows fast and reliable LV stroke 
volume measurements from velocity encoded MR imaging studies. 
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4.1 INTRODUCTION 

Cine phase-contrast magnetic resonance (MR) flow velocity mapping has a 
proven clinical value in the evaluation of flow in the greater arteries1-5. This 
non-invasive imaging technique allows blood velocity measurements in 
vessel cross-sections at different points in the cardiac cycle at high 
temporal and spatial resolution. Application of this technique to the 
proximal portion of the ascending aorta allows the assessment of left 
ventricular (LV) systolic function. In the absence of mitral valve 
insufficiency, the LV stroke volume can be measured by integrating the 
instantaneous flow values over a complete cardiac cycle4,6. In addition, the 
presence and severity of aortic regurgitation may be quantified by 
comparing the antegrade and retrograde flow within a cardiac cycle7,8. 
 For an accurate assessment of volume flow, contours describing the 
lumen of the vessel have to be traced in the images. Since the ascending 
aorta exhibits a significant in-plane and through-plane motion as well as 
changes in cross-sectional shape over the cardiac cycle, the user is required 
to trace the vessel border in each individual image of the multi-phase MR 
examination, thereby carefully avoiding the inclusion of flow in adjacent 
regions from other vessels. Since this is a time consuming and tedious 
procedure which introduces observer variabilities, the automation of this 
process would clearly enhance the clinical applicability of MR flow velocity 
mapping. 
 In this study an automated analysis algorithm is presented to be used 
for the automated detection of vessel boundaries in temporal series of MR 
flow velocity images of the ascending aorta. The required user-interaction 
is limited to the manual definition of an approximate center in one of the 
available images. The algorithm performs an automated detection of the 
vessel contours and corrects for motion and shape changes of the vessel 
cross section over the cardiac cycle. The contour detection algorithm was 
compared to manual tracings of the aortic contours by evaluating the 
derived stroke volume measurements in MR imaging studies of eleven 
healthy volunteers. Inter- and intraobserver analysis was performed for 
both manual and automated image analysis. 
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4.2 METHODS 

4.2.1 Study subjects 

The study population consisted of 11 healthy volunteers (4 men) with no 
history of cardiac disease. Mean age for this group was 37 years (range 
25-63). All volunteers were in sinus rhythm during image acquisition and 
the mean heart rate was 66.6  8.8 beats per minute. 

4.2.2 MR examination procedure 

MR examinations were performed on a 0.5 T MR scanner (Philips Medical 
Systems, Best, the Netherlands) using the body coil. Multi-slice spin-echo 
images orientated in the coronal plane were obtained to identify the 
orientation and course of the aortic arch. At a position 2-5 cm above the 
aortic valve, where the aorta was nearly parallel to the caudal cranial axis 
of the patient, a velocity map was acquired in the axial orientation using 
velocity encoded cine MR imaging. Imaging parameters for this MR scan 
were: echo time 8.7 ms, flip angle 45º, repetition time 25 ms, slice 
thickness 5 mm, field of view 200 x 140 mm, scan matrix 103 x 128, 
number of averages two, and the velocity sensitivity was set to 150 cm/s. 
Retrospective gating was applied to acquire images evenly spaced over a 
complete cardiac cycle resulting in twenty cardiac phases. The acquisition 
time was 2-3 minutes for the initial spin-echo scan and 2-3 minutes for the 
velocity-encoded scan depending on the heart rate of the study subject. 

4.2.3 Contour detection software 

During a velocity encoded MR imaging study, phase difference and standard 
gradient echo images are acquired at multiple points in the cardiac cycle. 
Since the gradient echo images show good contrast even in the absence of 
flow, the automated contour detection algorithm was developed to operate 
on these images (see Figure 4-1). The actual flow velocity calculations are 
based on the pixel data in the corresponding phase difference images.  
 Over a cardiac cycle the position and shape of a vessel cross section 
may change due to motion of the heart and pressure changes in the artery. 
In general, for the ascending aorta, the change in shape is relatively little 
compared to the in-plane motion of the cross-section. The present contour 
detection algorithm deals with these two types of motion in two separate 
processing steps. The motion component describes the in-plane motion of 
the vessel's cross section; the deformation component describes the 
change in shape or size of the vessel's cross section. To obtain a more 
general applicability of the detection software, the user may adjust the 
parameters describing the maximum motion and deformation to be 



72 │ Chapter 4 

 

expected for a certain type of application. In the experiments described in 
this study the parameters which determine the maximum allowed motion 
and deformation were kept fixed. 
 The analysis procedure starts with the detection of a model contour in 
one of the available images. To this end the user has to indicate an 
approximate center point of the vessel. This is the only manual interaction 
required in the total analysis procedure. To detect the contours in the other 
images within the temporal series, first a correction for vessel motion is 
performed, followed by a correction for changes in contour shape. The 
three steps of the automated contour detection algorithm are explained in 
more detail in the following sections. 
 

 
Figure 4-1. Screen lay-out of the software package FLOW. The upper panels display 
the phase and modulus images of one of the available cardiac phases. A volume 
graph is shown for the ascending and descending aorta derived from the 
automatically detected contours. 

4.2.4 Detection of a model contour 

To detect the vessel contours in a series of images, an initial model contour 
providing a rough approximation of the vessel boundary needs to be 
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detected in one of the available images. For this purpose the user has to 
select the phase in the cardiac cycle where the ascending aorta is shown 
with maximum contrast in the modulus images. In this image, the 
approximate center has to be indicated by the user. Following this step, 
radial scan lines are constructed at evenly spaced angular intervals starting 
at the center point. For each scan line the pixel with maximum edge 
strength is recorded. The search for edge pixels is limited to a distance of 
less than 20 mm from the indicated center point, representing a sufficiently 
large margin for most of the clinical cases. The size of this search distance 
can be adjusted manually in case the aorta appears to be enlarged. The 
mean gray value of these pixels is used as a threshold to obtain a rough 
estimation of the vessel's cross section. The contour surrounding this 
segmented area is used as a model contour for the vessel boundary in this 
image. This contour was deformed to fit on the edges in the image by 
applying a minimal cost contour detection algorithm, which is based on 
dynamic programming techniques9,10. The resulting contour was then used 
as a model contour for the next step in the automated contour detection 
procedure for the other phases of the study. 

4.2.5 Motion detection 

Given the model contour describing the cross-sectional shape of a vessel in 
a particular time frame within the cardiac cycle, the position of the same 
vessel at the other time frames was estimated by shifting the model 
contour in a limited circular region around the initial location and examining 
the median edge strength measured in the modulus image along the 
contour points. The edge strength at a contour point was measured by 
taking the first derivative in a direction perpendicular to the local contour 
direction. The computed edge strength values were stored in a motion 
matrix for each of the locations (dx, dy) evaluated. Entries in the motion 
matrix with relatively high edge strength values, suggest a probable 
contour translation.  If however, for each time frame the contour would be 
translated according to the entry in the motion matrix with the maximum 
edge value, the resulting temporal series of contours would often show 
unrealistic position changes. The algorithm as depicted in Figure 4-2 was 
devised to detect a series of contours that move smoothly from phase to 
phase. For each time frame a two-dimensional cost array was created; each 
element in this matrix was assigned the inverse of the median edge 
strength for the corresponding contour location. For the time frame from 
which the model contour originated, the center element of the cost array 
was set at cost zero and the other elements at infinity. A closed path with 
minimal cumulative cost through the series of cost arrays was computed 
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using dynamic programming strategies9. This path represents the 
displacement of the vessel of all available time frames relative to the 
position of the model contour. The position of the contour was allowed to 
move two pixels from frame to frame and 10 pixels from the original model 
contour position at maximum. 

4.2.6 Deformation detection  

Given a contour which is an approximation of the vessel boundary resulting 
from the algorithm which was used for motion correction, a final optimized 
contour was detected by allowing small deformation of the model contour 
such that it would follow the edges in the modulus image. For this purpose 
a two-dimensional graph searching technique was used, often denoted as 
minimum cost contour detection10. In short, for each time frame a 
rectangular scan matrix is constructed by resampling the modulus image 
perpendicular to the model contour. From this matrix a cost matrix is 
constructed by taking for each line at each position the first derivative 
value at the corresponding position and line in the scan matrix. An 
optimum closed path with minimum cost through the cost matrix is found 
resulting in the final contour for the image. Since this contour connects the 
pixel positions with maximum edge strengths, the resulting contour was 
dilated by one pixel to account for partial volume effects and to be sure to 
encompass the complete region with flowing blood. 

4.2.7 Analysis procedure 

Manual and automated image analyses were performed by two independent 
observers (RvdG, AN). To assess intraobserver variabilities, the first 
observer repeated the automated and manual analyses after a two week 
interval. The flow quantification package ran on a commercially available 
SUN Ultra Sparc 1 workstation (Sun Microsystems, Mountainview, Ca). 

4.2.8 Manual analysis  

During manual tracing of contours the observer was allowed to use the 
phase and modulus image simultaneously. A movie loop showing both 
phase and modulus images, with superimposed contours was used to 
facilitate the interpretation of the images. Great care was taken to include 
all visible flow in the phase images and to avoid regions of flow belonging 
to the inferior vena cava often lying adjacent to the aorta. 
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Motion matrices for phase 1 to 20 with optimal contour displacement indicated (+).
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Result after motion detection

Result after deformation detection

Modulus images for a complete cardiac cycle

 
Figure 4-2. Graphical representation of the individual steps of the automated 
contour detection algorithm for a time-series of images of the ascending aorta. 



76 │ Chapter 4 

 

4.2.9 Automated analysis procedure 

The image analysis using the automated contour detection algorithm 
started with loading of all the phase and modulus images of a study into 
the flow quantification package. The time frame with optimal vessel 
depiction in the magnitude image was selected for display. In most cases 
this time frame corresponded to a cardiac phase in early diastole. In case 
the magnitude image showed overlap of the ascending aorta with the 
pulmonary artery, another time frame was selected. In the selected image 
an approximate center was manually indicated. From this center a contour 
was detected automatically. In case of a failure of the contour detection for 
this image, the next or previous time frame was selected to initiate the 
contour detection procedure. Subsequently, the motion detection algorithm 
was applied to estimate the translation of the vessel cross section for each 
time frame. The resulting contours were used as models for the 
deformation detection algorithm, resulting in optimally adjusted contours 
for each image. In no case were manual corrections allowed.  

In the experiments described in this study, the model contour was 
allowed to deform ± 4 pixels (3.1 mm) in the radial direction. The 
maximum motion allowed was set to ± 10 pixels (7.8 mm). In one subject 
the amount of motion of the ascending aorta was much larger than this 
value and the maximum allowed motion for this case was set to  15 pixels. 
The total analysis time for automated analysis was approximately 
6 seconds. The resulting contours and the location of the manually 
indicated center point of an analysis session were saved on disk. 

4.2.10 Data analysis 

From the vessel boundary contours which were manually traced by the first 
observer the actual in-plane motion and deformation of the vessel 
boundary over the cardiac cycle was evaluated within the study population. 
The center of gravity of each contour was computed and the maximum 
displacement of this point with respect to the end-diastolic time frame was 
computed. To study the shape changes of the vessel boundary of the aorta 
over the cardiac cycle, the relative increase of the contour area from the 
end-diastolic phase (time frame 1) to the time frame with maximum area 
was computed for each study. 
 From the automatically and manually determined contours, flow 
curves were constructed by computing instantaneous flow (i.e. the product 
of the contour area and mean flow velocity within the contour) at each time 
frame. From these curves, stroke volume measurements were obtained by 
integrating the flow over the complete cardiac cycle. Results derived from 
manual contour tracing were compared to results from automated contour 
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detection by computing the mean and standard deviation of the paired 
signed differences. The same measurements were performed to compare 
repeat measurements of the same observer and between the two observers 
for both manual and automated analysis. The mean and standard deviation 
of the paired differences of repeat measurements were expressed as a 
percentage of the mean. A Student t test was used to test the statistical 
significance of the differences observed between and within observers. 
Statistical significance was defined as p<0.05. 
 

Table 4-1. Mean values and inter- and intraobserver variabilities for the 
assessment of stroke volume using either manual contour tracing or automated 
contour detection. The mean and standard deviations of paired differences of 
repeat measurements are presented 

 Manual Auto 

Mean [cm2] 7.26 ± 1.56 6.98 ± 1.40* 
Intraobserver difference [%] -2.08 ± 6.28* 0.34 ± 2.15* 

Luminal  
area 

Interobserver difference [%] 0.73 ± 5.43* 0.75 ± 2.56* 

Mean [ml] 88.14 ± 14.48 87.73 ± 14.49 
Intraobserver difference [%] -0.23 ± 0.85 0.72 ± 1.25* 

Stroke  
volume 

Interobserver difference [%] 0.83 ± 1.59 0.55 ± 1.20 

*: indicates statistical significant difference (p<0.05).  

4.3 RESULTS 

On an average the maximum displacement of the contour center relative to 
the end-diastolic phase was 7.1  2.1 mm (9.0  2.6 pixels); range 5.1-
12.0 mm (6.5-15.4 pixels). The average increase in cross-sectional area of 
the aorta relative to the end-diastolic phase was 24.0 ± 10.9%. 
Figure 4-2 shows an example of flow curves of one of the study subjects, 
obtained by manual and automated contour detection. The mean stroke 
volume within the study population obtained by manual contour tracing was 
88.1  14.5 ml. Figure 4-3 demonstrates that the results of automated 
contour detection were in excellent agreement with the results from 
manual image analysis. The mean signed difference between the two 
methods of contour definition was found to be 0.41  0.77 ml 
(0.61  1.15%, p=NS), representing a small but non-significant 
underestimation in stroke volume by the automated contour detection 
method. In Table 4-1, the results of intra- and interobserver analysis are 
presented. For both manual and automated image analysis, the 
reproducibility of stroke volume measurement proves to be excellent. The 
signed differences and the standard deviations of the differences are always 
less than 2% of the mean values. 
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Figure 4-3. Example of flow curves obtained from manually (●) and automatically 
() determined contours. Along the horizontal axis the cardiac phase number is 
displayed; the vertical axis depicts the instantaneous flow rate. 

4.4 DISCUSSION 

Velocity-encoded MRI of the ascending aorta provides a non-invasive 
means of assessing left ventricular stroke volume. The accuracy and 
reproducibility of this technique has been proven in various studies 6,7. In 
the current study a conventional phase-contrast MRI technique was used, 
requiring 2-3 minutes of acquisition time. Faster imaging techniques which 
are based on echo-planar, or segmented k-space (multi-shot) techniques 
make it possible to reduce the imaging time to a single breath hold, and 
are becoming widely available on most modern MR scanners11,12. 
Quantification of stroke volumes from the acquired MR images requires an 
accurate delineation of the boundaries of the aortic lumen in each of the 
images, which is a time-consuming and tedious procedure when performed 
manually. From the measured maximum in-plane displacement of 7.1  2.1 
mm ( 25  7.3% of the average ED diameter) and the maximum observed 
change in cross-sectional area of 24  11%, corresponding to a change in 
diameter of about 3.19 mm or 4.1 pixels, it is evident that the contours to 
be drawn need to be repositioned and adjusted for each individual phase. 
In the current study the number of acquired phases was only twenty, but 
still the time required for manual contour tracing was in the order of ten 
minutes. If this technique is to be used for clinical purposes, it would be 
beneficial to reduce the analysis time. The present contour detection 
algorithm performs the automated detection in less than 6 seconds and is 
in excellent agreement with manually defined contours. Also, both the 
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inter- and intraobserver variabilities of the automated contour detection of 
less than 2% of the mean stroke volume demonstrate the robustness of 
this new approach. The variability of the measurements is explained by the 
required operator interaction, which is the manual definition of the aortic 
center in one of the available images. The contour automatically derived 
from this center, serves as a model (example) for the automated detection 
in the other phases within the study. Since in this study the operator was 
free in choosing in which image the center was indicated, some variability 
will be introduced in both the motion estimation step and the final 
deformation detection due to differences in the model contour. 
 

 
Figure 4-4. Differences in stroke volume measurements obtained by manual contour 
tracing and by automated contour detection as a function of the mean stroke volume. 

4.4.1 Limitations 

Since the automated contour detection algorithm exclusively uses the 
information from the gradient echo modulus images for the determination 
of the vessel boundaries, the detected contour may in some cases deviate 
from the visible flow in the corresponding phase image. Since the blood 
velocity near the vessel border normally is much lower than in the central 
region of the vessel, this resulted in no significant error in stroke volumes. 
Further improvement in the contour detection may be obtained by 
combining the information from the phase and modulus images 
simultaneously. However, in many clinical situations the information in the 
phase image may be misleading since the flow may be zero during most of 
diastole, and forward and backward flow may exist simultaneously.  
 In the present study, the new automated contour detection technique 
was compared to manual contour tracing by comparing just one 
quantitative parameter (SV). Additionally, no imaging studies from cardiac 
patients were included in the study subjects, and therefore the image 
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quality may have been relatively good. It is suggested that a more 
extensive validation study be performed on a wider variety of patients, 
including those with aortic regurgitation and aortic valve stenosis, to fully 
assess the clinical value of the presented automated contour detection 
algorithm. 
 The simple fact that a good agreement in SV was found does not 
necessarily mean that the manual and automated derived contours were 
nearly identical since the inclusion of regions of stationary tissue or blood in 
a contour does not affect the stroke volume measurements. However, in 
the case of the ascending aorta, many regions of flow in different directions 
are present in the neighborhood of the ascending aorta which definitely 
would have affected the results. By visual inspection of the manual and 
automatically detected contours in a cine mode, it could be noted that the 
automatically detected contours were somewhat more irregular in shape in 
those phases with little or no flow in the ascending aorta. Since in these 
phases the velocities in the neighboring regions are also close to zero, this 
introduced no significant errors in the stroke volume measurements. 

4.5 CONCLUSION 

In conclusion, an automated contour detection algorithm for the automated 
assessment of stroke volume from velocity-encoded MR of the ascending 
aorta has been presented and was validated on MR studies of 11 
volunteers. When compared with results by manual analysis, the algorithm 
has proven to be 50 times faster, while the agreement was excellent and 
the inter- and intraobserver variabilities were less than 2%. Therefore, the 
described automated contour detection algorithm will contribute to the 
clinical applicability of MR velocity mapping in the evaluation of flow in the 
ascending aorta. 
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ABSTRACT 

Rationale and objectives: Short-axis magnetic resonance images of the 
cardiac left ventricle, acquired in multiple slices and phases, may be used 
for the quantitative assessment of regional wall parameters. Conventional 
two-dimensional (2D) methods for wall thickness measurement rely on 
information within one imaging plane which may result in overestimation of 
the true thickness depending on the local direction of myocardial wall with 
respect to the imaging plane. 
Methods: In order to perform wall thickness measurements truly 
perpendicular to the myocardial wall, a three-dimensional (3D) wall 
thickness calculation algorithm has been developed based on the 2D 
improved centerline method. An evaluation was performed on left 
ventricular-shaped software phantoms, and on the MRI data obtained from 
20 healthy individuals.  
Results: The 3D method applied to software phantoms with an angulation 
within 20º of the true short-axis orientation demonstrated only a 1.6% 

overestimation of wall thickness at the mid to low slices, and a 10.6% error 
at the apex (2D measurements: 8.1% and 28.6%, respectively). Three-
dimensionally calculated wall thickness in the healthy individuals was 
systematically and significantly smaller than corresponding 2D wall 
thickness (by 11.2%, 8.7% and 2.6% at the apical, low and mid slices, 
respectively).  
Conclusions: Cardiac wall thickness measurements from short-axis MR 
studies can be obtained with a higher accuracy by the newly developed 3D 
approach than with the conventional 2D approach. 
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5.1 INTRODUCTION 

Cardiac magnetic resonance (MR) has been generally accepted as an 
accurate and reproducible modality for the quantitative evaluation of left 
ventricular (LV) function. Multi-slice, multi-phase (MSMP) MR acquisitions 
have been found suitable for the accurate assessment of left ventricular 
volumes1-3 and mass4,5, as well as for the assessment of local functional 
parameters such as wall thickness and wall thickening or thinning6.  
 Magnetic resonance imaging acquisitions, in particular in the short-
axis orientation, have proven their usefulness for the determination of 
regional wall parameters7-10. Local wall thickness can be derived from these 
acquisitions by manual or automatic outlining of the endocardial and 
epicardial boundaries in each short-axis image9,11,12. Because true wall 
thickness is only acquired when measurements are performed 
perpendicular to the myocardium, achieving this within-image 
perpendicularity is the goal of advanced two-dimensional (2D) algorithms 
such as the improved centerline method (Figure 5-1)13,14. 

 

     
Figure 5-1. A typical short-axis image of a normal individual in the end-diastolic (left) 
and end-systolic (right) phases of the cardiac cycle with manually drawn contours 
and centerline chords for planar wall thickness measurement.+ indicates the 
posterior junction of the right ventricle with the left ventricular wall, where the 
clockwise numbering of the 100 centerline chords was started 

 

Because such methods are confined to measurements within individual 2D 
images, the implicit assumption is made that the myocardial wall itself is 
always perpendicular to the acquisition plane. However, because of the 
ellipsoidal cardiac geometry this assumption is rarely true, even when true 
short-axis images are obtained. In particular near the apex, the 
myocardium exhibits a through-plane curvature which causes the 
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myocardium and imaging plane to intersect at an oblique angle. Planar, 2D 
wall thickness methods will therefore inevitably overestimate true wall 
thickness in a systematic manner (Figure 5-2A). In addition, a randomly 
distributed error may be introduced in 2D wall thickness measurements in 
every individual slice if different myocardial regions are inclined differently 
to the imaging plane. This effect may either occur due to cardiac geometry 
or be caused by an inaccurate determination of the short-axis orientation 
(Figure 5-2B).  

 

 

Figure 5-2. (A) Planar wall thickness measurements will overestimate true wall 
thickness in the lower slices of the left ventricle. The degree of overestimation 
depends on the angle [alpha], which should be 90° in the ideal situation. (B) Planar 
wall thickness accuracy will vary along the circumference of the myocardial wall if 
different segments of the wall have a different inclination with the imaging plane-for 
example, because of an imprecisely determined short-axis orientation. 
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However, the myocardial boundaries of a multi-slice, multi-phase MRI 
acquisition contain three-dimensional (3D) shape information which may be 
used to prevent both these systematic and random overestimations (Figure 
5-3). Therefore, a new 3D wall thickness calculation algorithm has been 
developed to measure wall thickness always perpendicular to the 
myocardium, and thus to effectively estimate true wall thickness. In 
comparison to the existing planar methods, this method was expected to 
demonstrate a decreased wall thickness in the apical slices, and an 
increased wall thickness homogeneity within individual images. 
 In normal patient studies, the new 3D algorithm was expected to 
decrease wall thickness inter-subject variation because its results would be 
independent of the cardiac geometry and the orientation of the MR 
acquisitions. Consequently, 3D calculated wall thickness would result in 
smaller normal value ranges. The comparison of wall thickness in patients 
to these smaller normal value ranges may lead to higher sensitivities and 
specificities in the assessment of the extent and severity of dysfunctional 
myocardium in patients. 
 The purpose of this study was an evaluation of the newly developed 
3D wall thickness method based on software phantoms as well as on multi-
slice, multi-phase short-axis MR acquisitions obtained from 20 healthy 
individuals. 

 

 
Figure 5-3. A short-axis, multi-slice magnetic resonance imaging acquisition 
comprises a detailed three-dimensional description of the cardiac left ventricle. 
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5.2 MATERIALS 

5.2.1 The software phantoms 

In order to compare the accuracy and precision of the 3D wall thickness 
method with the conventional 2D method and the true wall thickness 
values, a software phantom with an overall true wall thickness of 10 mm 
was constructed. The phantom was given an approximate end-diastolic left 
ventricular shape and size to ensure a natural occurrence of systematic and 
random errors in the two-dimensional measurements. To this purpose, the 
lower portion of the phantom was modeled as an ellipsoid of 70 mm 
epicardial height, extended at the base by a cylinder with an epicardial 
diameter of 70 mm (Figure 5-4). The phantom was given a vertical, true 
short-axis orientation. Twelve similar phantoms were each created at a 
different, unique tilt angle from the short-axis orientation (from 5º to 60º, 

in 5º increments). 

 All phantom study imaging parameters were chosen similar to the in-
vivo normal acquisitions used in this study. The image resolution was 
256×256 pixels at a field of view of 400×400 mm², resulting in an average 
wall thickness of 6.4 pixels. Slice thickness was 10 mm with no inter-slice 
distance. Slice number 1, the lowest slice, was acquired at the epicardial 
point of the apex. The slices at levels 2, 3, 5 and 7, representing the apical, 
low, mid and basal slices of a normal left ventricle, were selected for 
analysis. 
 

 
Figure 5-4. The 13 software phantoms were created for the in vitro study. The 
dimensions of all software phantoms were identical, but only the angle of acquisition 
was different for each. 

5.2.2 In-vivo study data 

Twenty normal individuals were selected based on the criteria defined in 
the Framingham trial7. Each included individual had a normal ECG and no 
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clinical signs or history of cardiac disorder. The mean age for the group was 
37.4 years (range 21-78). The gradient-echo MRI studies were acquired on 
0.5T (10 cases) and 1.5T (10 cases) MR scanners using the body coil 
(Philips Medical Systems, Best, The Netherlands). The short-axis 
orientation was determined by visual inspection of end-diastolic (ED) and 
end-systolic (ES) phases in a four chamber scout view, such that the short-
axis imaging slices were selected perpendicular to the left ventricular long 
axis. The images were acquired at a field of view of 400x400 mm² and an 
image resolution of 256×256 pixels. Ten slices of thickness 10 mm (10 
cases) or 8 mm (10 cases) were acquired with either a slice gap of 1 mm 
(15 cases) or 2 mm (5 cases). From these slices basal, mid, low and apical 
slices were selected independently in both ED and ES phases based on the 
following criteria: The basal slice was the second slice from the ventricular 
base to encompass the complete myocardium; the mid slice was the lowest 
slice in which papillary muscles were still clearly distinguishable from the 
myocardium, and the low and apical slices were the second and first slice 
up from the apex with complete endocardial and epicardial outlines. 

5.3 METHODS 

5.3.1 Software description 

5.3.2 The two-dimensional improved centerline method 

Two-dimensional wall thickness was calculated with the improved centerline 
method13,14. This planar method allows the assessment of wall thickness at 
a high resolution, and is independent of generally disregarded geometrical 
model assumptions such as an approximately circular myocardial shape or 
a predefined cardiac center point15. Instead, the improved centerline 
method begins by defining a ‘centerline’ midway between the endo- and 
epicardial boundaries in each individual image. One hundred measurement 
chords are then placed at equal distances perpendicular to this centerline. 
The length of each chord within the myocardium is then a measure of local 
wall thickness. In a subsequent iterative procedure, crossing chords and 
other possible anomalies are solved by redistribution and reorientation of 
the chords in problem areas (Figure 5-1b). The chords were then numbered 
in clockwise order, starting at the posterior junction of the right ventricle 
with the LV wall. The independent definition of this starting location in all 
images at the ED and ES phases compensated for the rotational motion of 
the left ventricle. Due to the large number of 100 chords per image, a 
sufficiently high measurement resolution was guaranteed in all images.  
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5.3.3 The three-dimensional wall thickness calculation 

The 3D method extends the planar improved centerline method by 
incorporating 3D ventricular shape information, and performing wall 
thickness measurements perpendicular to the ventricular wall. 
 
The 3D method constructs a 3D mid-myocardial surface S, describing the 
shape of the ventricular wall, through all the centerlines calculated by the 
planar centerline method (Fig 5-5a). By definition, all midpoints of the 2D 
centerline chords are on this surface S. At each of these midpoints a 
tangent plane P is constructed to the surface S from an in-plane or 

horizontal (

h ) and a vertical (


v ) vector component (Figure 5-5d). The 

horizontal vector 

h  at a particular position is calculated by vector-

averaging the centerline chord at hand with its two neighbors and rotating 
the resulting vector through 90º within the horizontal plane (Figure 5-5b). 

The vertical vector 

v  is derived by averaging the two upward pointing 

vectors between the midpoint and its closest neighboring points in the two 
adjacent slices (Figure 5-5c). 
 Next, the angle α (see Figure 5-2b) between the normal vector of the 

imaging plane and the normal vector of the constructed plane P is 
calculated. The three-dimensional wall thickness WT3D may then be derived 
from the 2D wall thickness measurement WT2D using equation 5-1: 
 
 WT3D = WT2D × sin(α)     (5-1) 

 
The basic 3D algorithm described above uses planar measurements from 
the current slice and its two adjacent slices. A variant algorithm was 
conceived for the uppermost and lowest slices where only one neighboring 

imaging slice is present. In these cases the vertical vector 

v  is defined to 

be equal to the vector between the current centerline midpoint and its 
closest neighboring midpoint in the adjacent slice. 

5.3.4 Evaluation methods 

Phantom study data 
A quantitative evaluation concerning the accuracy and precision of the 
planar and 3D methods was performed on the software phantom data. To 
assess the presence and extent of random errors introduced by deviations 
in short-axis orientation, wall thickness was measured in software 
phantoms at all given acquisition angles. The 100 chord measurements per 
slice were averaged, and minimum, maximum and standard deviations 
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were calculated. In order to also establish the presence and extent of the 
systematic error due to the curvature of the cardiac wall near the apex, 
results at 4 different slice levels were determined. 
 

 
 

Figure 5-5. (A) A surface can be constructed from a stack of centerlines running 
midway between the endocardium and epicardium. At each center point on this 
surface (B) horizontal and (C) vertical direction vectors can be constructed from 
adjacent centerline chords. (D) These vectors define a plane tangent to the mid-
myocardial surface. The angle between the normal vector of this plane and a normal 
vector of the imaging plane then defines the local inclination between myocardium 
and imaging plane. 

In-vivo study data 
In order to determine the effectiveness of the 3D method on clinical data 
and in the establishment of accurate normal value ranges, a quantitative 
evaluation was carried out on the in-vivo studies of 20 healthy volunteers.  
 In each in-vivo study the endocardial and epicardial contours were 
manually traced by an experienced observer in all images with a completely 
visible myocardium (distinguishable endocardial and epicardial boundaries, 
slices only below aortic valve level). These contours were traced to 
encompass only the myocardial wall, and to exclude papillary muscles and 
trabeculae. In case the myocardial boundary was imaged with some 
blurring due to the partial volume effect, the contour location was chosen 
to be on the center of the visible boundary. All manual analyses were 
performed under identical lighting conditions and fixed display window and 
level settings.  
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 In each study ED and ES phases were selected as the first imaged 
cardiac phase and the phase with the smallest calculated blood pool 
volume, respectively. Wall thickness was measured with both methods at 
100 chord positions in all slices of both phases. The 100 chord 
measurements per slice were averaged, and minimum, maximum and 
standard deviations were calculated.  
 The wall thickness measurements were further grouped into three 
anatomical regions using the clockwise order of the centerline chords. 
Starting at the posterior junction of the right ventricle with the left 
ventricular wall, the first 20% of the chords was considered septal and the 
next 30% anterior. The remaining 50% was defined a lateral/posterior 
region. Wall thickness calculated by both planar and 3D methods in these 
three regions were compared in slices from base to apex. 

5.4 STATISTICAL ANALYSIS 

Student’s paired t-tests were used to compare planar and 3D wall thickness 
measurements at each of the defined slice levels. Wall thickness normal 
bands were computed based on the 20 normal individuals with both the 
planar and 3D methods. Normal ranges were defined by the mean 
plus/minus twice the standard deviation (SD) to approximate the 95% 
probability interval. 

5.5 RESULTS 

5.5.1 Phantom study 

Figure 5-6 shows a comparison between the wall thickness results 
computed by the 3D and 2D methods for the slices 2, 3, 5 and 7 of the 
software phantoms. The planar (2D) measurements (left column) 
demonstrate an obvious overestimation of true wall thickness in those 
phantoms which have been positioned at an oblique angle with the imaging 
plane. In slice 7 one can see that wall thickness is rather accurately 
calculated in the true short-axis phantom (at zero degrees in each graph), 
but that both average and maximum measured wall thickness values 
rapidly increase when the phantoms become more angulated with respect 
to the short-axis orientation. The wall thickness results acquired with the 
3D method do not display such overestimation, not even in the phantom 
with the largest angulation of 60º to the true short-axis orientation. The 

precision of the individual 2D centerline measurements is expressed in 
terms of the standard deviation calculated over the one hundred 
measurement chords in each phantom image. At all four slice levels, this 
standard deviation increases when examining phantoms at increasing 



94 │ Chapter 5 

 

acquisition angles. In contrast, results assessed with the 3D method 
demonstrate a standard deviation which is insensitive to acquisition angle, 
and is therefore generally much lower than comparable planar 
measurements. 
 

Table 5-1. Wall thickness (in mm) in five software phantoms at an approximately 
short-axis orientation 

Angle Dimension Slice 2 (Apical) 
Mean (±SD) 

Slice 3 (Low) 
Mean (±SD) 

Slice 5 (Mid) 
Mean (±SD) 

Slice 7 (Basal) 
Mean (±SD) 

0 º 2D 12.8 (0.41) 11.2 (0.28) 10.5 (0.35) 10.0 (0.24) 

 3D 11.0 (0.34) 10.1 (0.26) 10.3 (0.33) 10.0 (0.24) 

5º 2D 12.9 (0.56) 11.2 (0.42) 10.4 (0.30) 9.9 (0.33) 

 3D 11.1 (0.33) 10.1 (0.35) 10.3 (0.28) 9.9 (0.33) 

10 º 2D 13.0 (0.66) 11.1 (0.59) 10.4 (0.30) 10.1 (0.30) 

 3D 11.2 (0.34) 10.1 (0.30) 10.2 (0.26) 10.0 (0.31) 

15 º 2D 12.7 (1.02) 11.2 (0.71) 10.4 (0.33) 10.2 (0.33) 

 3D 11.0 (0.38) 10.1 (0.36) 10.2 (0.30) 10.1 (0.30) 

20 º 2D 12.8 (1.11) 11.0 (0.73) 10.5 (0.40) 10.2 (0.31) 

 3D 11.1 (0.39) 9.9 (0.36) 10.2 (0.24) 9.9 (0.26) 

Planar and three-dimensional wall thickness figures in mm from five near short-axis 
software phantoms at different inclinations with the imaging plane, as mean (± SD). 
The angles denote the deviation from the short-axis orientation. Overall true 
phantom wall thickness was 10.0 mm. 

 
 The effect of the curvature of the myocardium towards the apex, the 
second possible cause of overestimation in 2D assessed wall thickness, may 
be isolated from the aforementioned effects by only examining the true 
short-axis phantom at different slice levels. Figure 5-6 demonstrates that 
2D acquired average wall thickness in this phantom displays the largest 
overestimation of true wall thickness in slices close to the apex (shown for 
slice 2). Table 5-1 lists the wall thickness results in phantoms up to 20º 

from the short-axis orientation in tabular form. It shows that at a 10º 

deviation from the true short-axis orientation for example, which may be 
considered comparable to clinical practice, measured wall thickness varied 
from 10.1 mm to 12.5 mm (mean 11.1 mm) at slice 3, and from 11.8 to 
14.3 mm (mean 13.0 mm) for the apical slice 2. In comparison to the 
phantom true wall thickness of 10.0 mm, maximum errors of up to 43% at 
the apex (mean error 30%) occur. The 3D measurements significantly 
reduced this error to mean values of 12% and 1% for slices 2 and 3, 
respectively. 



Assessment of regional LV wall parameters from short axis MRI │ 95 

 

Chapter 

 5 

 

 

 

 
Figure 5-6. Two-dimensional (2D) and three-dimensional (3D) measurements from 
software phantoms at angulations between 0° and 60° from the short-axis 
orientation. The graphs on the left (A, C, E, G) display the results for the 2D 
measurements for slice 7, 5, 3, and 2 respectively; on the right (B, D, F, H) the 
corresponding results for the 3D measurements are shown. 

5.5.2 In-vivo study 

Table 5-2 lists the wall thickness measurements from 20 normal individuals 
by both the 2D and 3D methods, performed at each slice level (Apical / Low 
/ Mid / Basal) in the two cardiac phases (ED/ES). The difference between 
both methods is also expressed as a percentage decrease in measured wall 
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thickness implied by the 3D method’s correction. All these differences 
including those at the highest slice level were statistically significant 
(p<0.05). Table 5-2 also lists the standard deviation (SD) of the 100 
measurement chords within each single image, averaged over the 20 
individuals. The 3D method also results in a smaller standard deviation 
compared to the 2D measurements, as is shown by the percent difference 
between the methods.  
 

Table 5-2. Wall thickness at four levels in 20 healthy volunteers  

 
ED 

Apical 
Mean (SD) 

Low 
Mean (SD) 

Mid 
Mean (SD) 

High 
Mean (SD) 

2D [mm] 6.52 (1.00) 6.92 (0.93) 7.09 (0.87) 7.62 (0.92) 
3D [mm] 5.79 (0.77) 6.32 (0.84) 6.90 (0.87) 7.56 (0.91) 
Diff. [%] 11.24* (22.90) 8.67* (10.13) 2.57* (0.31) 0.73* (0.90) 

ES     

2D [mm] 11.43 (2.18) 12.90 (1.96) 13.30 (2.07) 12.84 (1.81) 
3D [mm] 10.63 (1.90) 12.22 (1.73) 12.97 (1.92) 12.73 (1.79) 
Diff. [%] 6.96* (12.89) 5.28* (11.64) 2.51* (7.44) 0.92* (1.47) 

Mean (in-slice SD) wall thickness in 20 healthy volunteers, and the percent 
difference in mean between the 2D and 3D methods. Both mean and SD were 
lower when calculated in 3D (* p<0.05). 

 

The differences between both methods in average wall thickness are also 
reflected in the normal value graphs for the low and apical slice levels 
(Figure 5-7). In these graphs the normal values have both smaller ranges 
as well as a lower average value when assessed in 3D compared to the 
planar method. It is also shown however, that this observed global 
difference between the 3D and 2D thickness methods is not equally large in 
different regions along the myocardial circumference. As a result, the 3D 
graphs show a much more homogeneous wall thickness pattern along the 
myocardial circumference compared to the planar measurements. 
 When the myocardial circumference is divided into three distinct 
anatomical regions, it is apparent that regional planar wall thickness results 
are increasingly different in slice levels close to the apex, whereas the 3D 
results are not (Figure 5-8). In all slices, the septal region displays almost 
identical planar and 3D results, while the anterior region shows very 
different results computed by the planar and 3D methods.  
 Overall it can be observed that the large wall thickness inhomogeneity 
associated with the planar measurements is decreased by applying the 
WT3D method. There is, however, a difference between ED and ES in 
percentage wall thickness decrease imposed by the 3D method, which 
makes this decrease in inhomogeneity much less obvious at ES. 
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Figure 5-7. The normal wall thickness values in the end-diastolic (ED) and end-
systolic (ES) phases determined from the 20 healthy volunteers plotted for two-
dimensional (A, C, E, G) and three-dimensional (B, D, F, H) measurements in the 
lower slice and the apical slice. 
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Figure 5-8. Wall thickness values for the individual anatomical regions (septal= 
chord 1-20; anterior = 21-50; lateral/posterior = 51-100). Results are shown for 
two-dimensional (top row) and three-dimensional (bottom row) measurements in the 
end-diastolic and end-systolic phases. 

5.6 DISCUSSION 

The three-dimensional nature of a multi-slice, multi-phase short-axis MR 
acquisition of the left ventricle makes it an excellent choice for assessing 
regional functional parameters, such as wall thickness and thickening or 
thinning. Straightforward 2D wall thickness measurements within the 
imaging plane however, overestimate true thickness depending on the 
location of the measurement along the myocardial wall. 

5.6.1 Accuracy of 3D wall thickness assessment 

In order to accurately estimate true myocardial wall thickness, a 3D wall 
thickness calculation algorithm was developed and evaluated. Since the 
algorithm was based on a correction of the planar measurements by the 
known improved centerline method, a high planar resolution was achieved. 
In addition, 2D and 3D measurements could be performed at identical 
positions along the myocardium enabling a one-to-one comparison of 2D 
and 3D measurements. Planar wall thickness measurements with the 
Improved Centerline method on the ventricular shaped phantoms 
confirmed the expected inaccuracies of the planar method. At the apical 
slice wall thickness was systematically overestimated, and in the phantoms 
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with a tilt relative to the imaging plane an increase in random error was 
observed. In contrast, the developed 3D method did accurately estimate 
true wall thickness, independent of slice location and long-axis orientation. 
At places where the imaging plane was indeed perpendicular to the 
phantom’s myocardium, and the 2D centerline method was thus a good 
measure of the true wall thickness, the correction by the 3D method was 
minimal and results similar to the 2D measurements were obtained. At the 
level of the most apical slice, the 3D method was only able to compensate 
for approximately half the planar error. This is caused by the myocardial 
surface model used in the calculations, which only extends as far as the 
acquired basal and apical slices. Local, vertical myocardial curvature at 
these outer slices could therefore not accurately be estimated. 
Extrapolation of the surface model towards the apex based only on the 
visible epicardium might solve this problem. However, special care should 
be taken not to introduce new errors into the results. 

5.6.2 Alternative solutions to 3D wall thickness assessment 

The need to use 3D techniques to accurately estimate true wall thickness 
from multi-slice short-axis acquisitions has been reported earlier16-18. 
Specific implementations of such techniques have been suggested, all of 
which based on volume element algorithms. These volume element 
algorithms partition the myocardium into relatively large myocardial 
volumetric segments, often in-between the image slices, and derive 
average wall thickness for each element from its volume and geometric 
assumptions about its shape. Volumetric methods further define myocardial 
segments in each myocardial volume ring by either an MR radial tagging 
acquisition protocol18,19 or software generated radii from a given ventricular 
center point16. The number of segments thus defined along the 
circumference of the myocardium is limited, for example to 8, 12 or 16 
segments17,18,20. Applied to image material from this study only the latter 
method would achieve an in-slice measurement sampling rate that is 
comparable to the 10 mm distance between the imaging slices. 
 A minimum requirement for any wall thickness assessment method 
must be a correct mapping of myocardial segments to a distribution map of 
the coronary arteries in order to enable a correlation between impaired 
myocardial function and reduced coronary arterial supply. In practice, this 
mapping is very difficult to obtain in a straightforward fashion, and is 
therefore substituted by a mapping based on anatomical features obtained 
from the image21. To facilitate an accurate mapping of myocardial 
segments, and to prevent obscuring of small details in the regional 
functional analysis due to the averaging process, a sufficiently high planar 
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sampling resolution is required. The presented 3D method makes use of the 
high image resolution present by performing 100 measurements per image, 
and thereby facilitates a more than accurate mapping to anatomical 
features in the image. 

5.6.3 Effects of 3D assessment on the normal population results 

The greater 3D circumferential wall thickness homogeneity within imaging 
slices of the normal population was in accordance with the expectations 
dictated by theory and the phantom experiments. This phenomenon is also 
in accordance with reports from Beyar16,17, whose experiments on normal 
canine hearts also demonstrated a lower standard deviation per slice when 
thickness was measured in three dimensions. 
 Figure 5-8 demonstrated that the difference between planar and 3D 
methods is largest at the anterior region, most likely due to a larger 
myocardium-to-imaging plane inclination compared to other myocardial 
regions. In contrast, almost no difference between both wall thickness 
methods exists in the septal region, where myocardial wall and imaging 
plane can be expected to be almost perpendicular. It is thus shown that 
planar wall thickness measurements are likely to randomly overestimate 
regional thickness even in optimally acquired, true short axis acquisitions. 
 Although the 3D method decreased differences in normal wall 
thickness between different myocardial segments, it could not be attributed 
to significantly smaller normal bands. Differences in myocardial wall 
inclination therefore can not be a main cause for planar thickness variation 
between normal subjects. The wide range in normal thickness results is 
thus more likely attributed to differences in each normal individual’s 
anatomy associated with age and physical condition which were not 
explicitly defined in this study. 

5.6.4 3D assessed wall thickening  

Wall thickening is a well known measure for local myocardial function, and 
is superior to other methods such as wall motion in discriminating between 
normal and dysfunctional myocardium when calculated in-plane9 as well as 
in three dimensions20. It is, however, very sensitive to the accuracy of wall 
thickness measurements, especially in the end-diastolic phase11. 
Application of more accurate 3D wall thickness assessment may thus be 
advantageous in achieving a more accurate description of cardiac function. 
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5.7 CONCLUSION 

A new 3D wall thickness method has been developed which demonstrated 
the ability to estimate true wall thickness in phantom studies with a higher 
accuracy and precision than current planar methods. The method makes 
use of the well-established, accurate 2D improved centerline method and 
therefore performs measurements at a high planar resolution. It exploits 
the 3D information present in multi-slice, multi-phase short-axis MR images 
of the left ventricle, providing a detailed insight into local left ventricular 
functioning. Application of the 3D method to short-axis MR studies of 20 
healthy volunteers has shown an increase in wall thickness homogeneity 
along the circumference of the LV wall, leading to more homogeneous wall 
thickness normal values at each individual slice level. The use of a 3D 
method is an essential prerequisite for the derivation of accurate wall 
thickness normal data from a population of normal individuals, and may 
also be important in the assessment of regional wall thickening. 
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ABSTRACT 

The purpose of this study was the evaluation of a computer algorithm for 
the automated detection of endocardial and epicardial boundaries of the left 
ventricle in time series of short-axis MR images based on an Active 
Appearance Motion Model (AAMM). In twenty short-axis MR exams, manual 
contours were defined in multiple temporal frames (from end-diastole to 
end-systole) in multiple slices from base to apex. Using a leave-one-out 
procedure, the image data and contours were used to build twenty different 
AAMM’s giving a statistical description of the ventricular shape, gray value 
appearance and cardiac motion patterns in the training set. Automated 
contour detection was performed by iteratively deforming the AAMM within 
statistically allowed limits until an optimal match was found between the 
deformed AAMM and the underlying image data of the left-out subject. 
Global ventricular function results derived from automatically detected 
contours were compared to results obtained from manually traced 
boundaries. The AAMM contour detection method was successful in 17 out 
of 20 studies. The three failures were excluded from further statistical 
analysis. Automated contour detection resulted in small, but statistically 
non-significant, underestimations of ventricular volumes and mass: 
differences for end-diastolic volume were 0.3±12.0%, for end-systolic 
volume 2.0±23.4% and for left ventricular myocardial mass 0.73±14.9% 
(mean±SD). An excellent agreement was observed in the ejection fraction: 
difference of 0.1±6.7%. In conclusion, the presented fully automated 
contour detection method provides assessment of quantitative global 
function that is comparable to manual analysis. 
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6.1 INTRODUCTION 

Accurate quantification of left ventricular (LV) dimensions is important in 
the diagnosis of cardiac pathologies and the monitoring of the effect of 
treatment in various cardiac diseases. Cardiac magnetic resonance imaging 
allows accurate and reproducible measurements of global LV dimensions 
such as the end-diastolic (ED) and end-systolic (ES) chamber volumes, the 
ejection fraction and LV mass1,2. The introduction of Steady State Free 
Precession (SSFP) imaging techniques has resulted in significantly improved 
endocardial boundary definition, especially in regions of low flow, which 
were often poorly visualized by the older MRI techniques3-5. It has been 
shown that the SSFP yields an improvement of intra- and interobserver 
agreement in the assessment of global ventricular parameters when using 
manually traced myocardial boundaries6. Additionally, it was shown that 
SSFP yields better performance of automated contour detection software6. 
 Despite these technical advances in MR pulse sequence development, 
quantification of the ventricular function parameters is still very much 
reliant on manual tracing of endocardial and epicardial contours in a large 
number of images. This post processing procedure adds a significant 
amount of time to the MR examination and leads to intra- and 
interobserver variabilities. Recently the concept of Active Appearance 
Models was introduced as a new framework for automated detection of 
object boundaries in images7. In previous studies we have adapted this 
AAM technique for the detection of LV and RV contours in 2D images. In the 
current work we extended the AAM method to operate on temporal 
sequences of short-axis images acquired using SSFP MRI. 
 The purpose of the present study was to develop and validate a new 
automated method for the detection of endocardial and epicardial contours 
in temporal sequences of short-axis MR images. The proposed method is 
training-based: it uses available time-series of images with expert drawn 
contours to build a statistical model of the shape, motion pattern and 
appearance (gray value in the images) of the left ventricle in time-
sequences as seen in short-axis MR images. Once trained on a sufficiently 
large set of patient data, the statistical model is used to automatically find 
the cardiac boundaries in new image series. During this step the gray value 
information in a complete temporal sequence of images from end-diastole 
to end-systole is used, which guarantees that the method finds a consistent 
time-continuous segmentation result over the time-sequence. The results 
of automated contour detection were compared to results derived from 
manual contour tracings. 
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6.2 METHODS 

6.2.1 Study Population 

Eighteen cardiac patients (14 male, 4 female) and two healthy volunteers 
(all male) without history of cardiac disease were recruited for the study. 
The mean age of the subjects was 56 years (range 16–76) and mean 
weight 97 kg (range 54–150). The patients suffered from several 
pathologies including heart failure (n=8), hypertrophic cardiomyopathy 
(n=4), transplant follow-up (n=3), chest pain or angina (n=3). All study 
subjects gave written informed consent to participate in this study. 

6.2.2 Magnetic Resonance Imaging 

Patients and volunteers underwent MR imaging using a 1.5 T MR system 
(Sonata; Siemens Medical Systems, Erlangen, Germany). After localizing 
planes were obtained, a stack of short-axis images was acquired covering 
the complete left ventricle from apex to base using imaging sections of 6 
mm thickness and an inter-section gap of 4 mm. MRI scanning parameters 
were as follows: TR=3.1 ms, TE=1.6 ms, flip angle=55°, receiver 
bandwidth=930 Hz/pixel, matrix size=192×256 and FOV=262×350 mm2.  

6.2.3 Automated Contour Detection Algorithm 

Introduction to Active Appearance Models 
The newly developed automated contour detection algorithm presented in 
this paper is based on Active Appearance Models (AAM)8. An AAM is a 
statistical model that can be used to describe the appearance of short-axis 
MR images, including its typical variations, derived from a training set of 
example images. In the training set of images, the definition of the cardiac 
boundaries needs to be available via manually defined contours. An AAM 
consists of the mean appearance and a number of eigenvariations, which 
describe the variation in image appearance in the training set. Appearance 
in this context is a combination of the shape of the ventricle as seen in 
short-axis images and the gray value information contained in an MR 
image. For application of an AAM for detection of the LV contours only an 
image patch containing the LV plus its close surroundings is included in the 
AAM. By deforming the mean appearance along the eigenvariations, new 
‘realistic’ cardiac MR images can be generated which were not included in 
the training set, but which are plausible in a statistical sense. To use an 
AAM for contour detection in cardiac MR images, this deforming procedure 
is applied to find an optimal match between the deformed AAM and the 
underlying image. The matching criterion used in our application was the 
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root-mean-square difference between the image pixels of the MR image 
and the model synthesized image. 
 

Extension of AAM with Motion Information: AAMM  
In previous work we have demonstrated the usefulness of AAM contour 
detection for the segmentation of the left and right ventricular boundaries 
in short-axis MR images7. This particular algorithm was limited to single 
two-dimensional images and the validity of the method was demonstrated 
on mid-ventricular end-diastolic images only. In this work an extension of 
the AAM contour detection was developed which performs modeling and 
contour detection for complete time-series of short-axis MR images. Since 
the method also includes information about the cardiac motion of the left 
ventricle, the method is called an Active Appearance Motion Model (AAMM). 
The rationale for this new approach is that we hypothesize that by 
modeling the image information contained in a time-series of images, the 
automated segmentation procedure will be more robust since all image 
data are employed during the detection procedure. By its nature, the 
segmentation result using AAMM contour detection will represent a time-
continuous deformation of the endocardial and epicardial boundaries.  
 
To apply AAMM contour detection for the detection of endocardial and 
epicardial contours in short-axis MR image series two steps need to be 
carried out:  
1. Building an AAMM using available image data with manually defined 

expert contours; 
2. Matching an AAMM to a new time-series of images by deforming the 

AAMM until it fits on the image data. 
These two procedures are explained in more detail in the following sections.  
 

Building an Active Appearance Motion Model 
In the AAMM, the appearance of the left ventricle is modeled for the 
systolic phase of the cardiac cycle by considering the image frames from 
ED to ES. An image sequence is normalized to a fixed number of frames 
T (6) using a nearest neighbor interpolation, so that the ED and ES frames 
map to the same frame number (1 and 6, respectively). In the training set 
the endocardial and epicardial contours are defined manually by an 
independent expert. In each time frame, the image appearance of the left 
ventricle is modeled as an appearance vector describing the pixel intensity 
values in an image patch spanned by the manual contour. The vectors for 
shape points and image patch intensities for each time frame are 
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concatenated and ordered according to their phase number (1-6). Only 
imaging sections in which the left ventricular myocardium was visualized 
for the full circumference in all image frames, were included in the model. 
Therefore, often one basal and in a few cases an apical section needed to 
be excluded from the training set of image series. By applying a Principal 
Component Analysis on the training samples the mean and the most 
characteristic eigenvariations (modes of variation) of appearance vectors 
are derived. The resulting AAM describes the average motion pattern that is 
associated with the cardiac contraction as seen in short-axis cardiac MR 
images, including the most characteristic anatomical and functional 
variations in the cardiac cycle (Figure 6-1). In the current implementation 
no distinction was made between slice levels: apical, mid and basal slices 
were combined in a single model.  

 
Figure 6-1. Illustration of a trained AAMM with the most important modes of 
variation. The top row shows the average appearance of the systolic contraction from 
ED to ES as seen in the short-axis MR images used to construct the AAMM. The 
middle and bottom rows illustrate the most significant mode of variation represented 
by the average AAMM plus or minus three times the standard deviation, respectively. 

Matching an Active Appearance Motion Model 
For each study the only manual interaction required is the definition of the 
ES time frame; the first time frame is assumed to represent ED.  The AAMM 
is then positioned at the center of the LV using an automatically detected 
LV center point9. For each slice location, six evenly spaced frames from ED 
to ES are processed simultaneously. Contour detection is performed by 
automatically adjusting the AAMM parameters until the best fit is found 
between the deformed AAMM and the underlying image data using an 
iterative procedure. In the first few iterations the pose of the average 
appearance is modified using translation, rotation and scaling. In the 
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following iterations the appearance is modified by changing the AAMM 
parameters within ±3 standard deviations. This iterative process continues 
until a minimum gray value difference (expressed as the root mean square 
error) is obtained between the model and the six time frames. The 
matching process results in the endocardial and epicardial contours for all 
six time frames. 
 

 
 

 
Figure 6-2. (A) Example of a time series of images from ED to ES with manually 
defined endocardial and epicardial contours (top rows). The endocardial contours are 
traced around the trabeculations and papillary muscles, which results in a time-
continuous motion pattern of the endocardial boundary. (B) Automatically detected 
contours generated by the AAMM contour detection method. The contours are 
comparable to the manually traced boundaries illustrated in (A). 
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6.2.4 Manual analysis 

Experienced observers manually traced endocardial and epicardial contours 
in all cardiac phases and all slice levels in which the myocardium was 
visualized. Four observers performed the contour tracing, each of them 
analyzing five exams. The endocardial boundaries were traced around the 
trabeculations and papillary muscles such that a smooth convex-shaped 
endocardial contour resulted that exhibits a time-continuous deformation 
over the cardiac cycle (Figure 6-2A). Epicardial contours were traced at the 
outer boundary of the myocardium inside epicardial fat when present. 
Images at the base of the heart showing myocardium for less than 50 
percent along its circumference were excluded from analysis. To avoid 
inconsistencies in image interpretation between observers, one of the 
observers reviewed all segmentation results and made adjustments to the 
contours if deemed necessary. In ten randomly chosen subjects manual 
tracing was carried out by a second observer to assess inter-observer 
variability. The quantitative ventricular function results derived from the 
manual tracings served as gold standard. 

6.2.5 Comparison between Automatically and Manually Defined Contours 

For evaluation of the performance of the AAMM contour detection methods 
a leave-one-subject-out approach was used. For each study subject 
automated detection was carried out using an AAMM that was trained on 
the remaining nineteen subjects. LV volumes were assessed from the 
available contours using Simpson’s rule. The quantitative global ventricular 
function results derived from the automatically detected contours were 
compared to the results derived from manual contour tracings. The 
following parameters were included in this comparison: EDV, ESV, EF and 
LV mass. EDV was defined as the volume of the LV in the first time frame; 
ESV was defined as the smallest volume of the LV; EF was defined as 
100% × (EDV-ESV)/EDV and LV mass was assessed as the average volume 
of the myocardium in the ED and ES phases multiplied by the specific 
density of myocardial tissue (1.05 g/ml). For each parameter the 
agreement between manual and AAM results was analyzed by computing 
the mean and standard deviation of the paired differences. 

6.3 STATISTICAL ANALYSIS 

Values are expressed as mean  SD. The paired Student t-test was used to 
assess statistical significance of the differences for each parameter between 
manual and automated analysis. A p-value<0.05 was considered 
statistically significant. Parameters obtained by manual and automated 
analysis were compared using linear regression analysis and by calculating 
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absolute and relative differences between methods according to the 
methods of Bland and Altman10. 
 

Table 6.1. Global ventricular function parameters derived from 
manually defined contours. 

Parameter Mean SD 

EDV (ml) 161 86 
ESV (ml) 104 95 
EF (%) 46 19 
LVM (g) 126 52 

EDV: End-diastolic volume; ESV: End-systolic volume; EF: Ejection 
fraction; LVM: Left ventricular mass (average of ED and ES values) 

 

6.4 RESULTS 

6.4.1 Manual Analysis Results 

The number of slices included per study varied between 4 and 9 (average 
6.7; SD 1.2). The phase number of ES varied between 6 and 10 (average 
7.7; SD 1.3). Endocardial and epicardial contours were manually traced in 
the slices covering the left ventricle in the phases from ED to ES, resulting 
in contour tracings in 1010 images. Global function results derived from the 
manual tracings are summarized in Table 6-1. The interobserver 
variabilities for EDV were 3.1 ± 4.8% for ESV 2.4 ± 14.8%, for EF 
2.9 ± 7.2% and for LVM 2.1±8.7% (Table 6-2). Limits of agreement 
between two observers using manual analysis for EDV were between –
6.5% and +12.7%; for ESV between 27.2% and +32%; for EF between 
11.5% and +17.3% and for LVM between 15.3% and +19.5%. 
 

Table 6.2. Interobserver variability for quantification of global LV 
parameters using manual contour tracing. 

Parameter Obs1-Obs2 (abs) Obs1-Obs2 (%) 

EDV 4.2  7.7 ml 3.  4.8% 
ESV 0.5  6.7 ml 2.4  14.8% 
EF  2.9  7.2% 
LVM 2.2  9.0 g 2.1  8.7% 

EDV: End-diastolic volume; ESV: End-systolic volume; EF: Ejection 
fraction; LVM: Left ventricular mass (average of ED and ES values) 
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6.4.2 AAM contour detection 

The twenty available studies were used to generate 20 different AAMM 
models, in each model the image data of one subject was left out and the 
corresponding AAM model was used for the automated detection of the left-
out subject. Figure 6-1 gives an example of an AAMM model. It shows the 
average appearance of the systolic contraction in a short-axis MR image, 
including the first two most significant modes of variation. Figure 6-2B 
shows an example of automated contour detection results for a mid-
ventricular time series of images. The contours detected are very similar to 
the manually drawn contours for this series shown in Figure 6-2A. 
Automated AAMM contour detection was performed successfully in 17 out 
of twenty exams. In three studies the automated contour detection 
procedure failed to converge to a correct segmentation result. Visual 
inspection of these three studies revealed distinct features not seen in any 
of the other exams: 
 
1. In one exam a bright rim of pericardial fluid (thickness 4-6 mm) was 

seen at the lateral wall;  
2. The second study was a patient with a severely dilated ventricle with a 

thin ventricular wall and low ejection fraction (EDV 290 ml, average ED 
wall thickness 5.9 mm, EF 11%) 

3. The third study was a patient with severe hypertrophic cardiomyopathy. 
(LV mass 252 g, local ED septal wall thickness of 26 mm; EF 79%). 

 
The results of these three studies were excluded from the statistical 
analysis. For the remaining 17 studies the comparative results between 
global functions measurements obtained by either manual contour tracing 
and automated contour detection are listed in Table 6-3. For all the 
parameters, the differences were found to be statistically non-significant. 
Linear regression analysis demonstrated an excellent linear correlation 
between methods with r-values ranging from 0.96–0.99 (p<0.01). Bland-
Altman plots comparing the manually obtained and automatically obtained 
global function parameters are presented in Figure 6-4. In these plots the 
differences between the methods are displayed as relative errors.  There 
was a very small statistically non-significant bias of the automatically 
determined parameters. The bias for the global function parameters was 
never higher than 2%. The 95% limits of agreement for the assessment of 
global function parameters using AAM contour detection compared to 
manual analysis were for EDV between –23.8 and +23.3%; for ESV 
between -43.8% and +47.8%; for EF between  13.0 and +13.3%; and for 
LVM between -28.5 and +29.9%. In Figure 6-4 a graphical presentation is 
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given of the differences between automated and manual analysis and 
observer variabilities using manual analysis. 
 Computation time for the detection of contours in a complete time 
sequence of images from ED to ES was less than 3 seconds using a 1GHz 
PC operating under the Linux operating system. The total computation time 
for all slices from apex to base was less than 20 seconds per examination.  

 

 
Figure 6-3. Graphical presentation of error of automated contour detection (using 
manual traced contours as the reference) compared with interobserver variability for 
manual contour tracing. The error bar shows the standard deviation of the paired 
differences between measurements for the given global function parameters. 
Abbreviations: EDV: end-diastolic volume; ESV: end-systolic volume; EF: ejection 
fraction; LVM: left ventricular mass (average of ED and ES values). 

6.5 DISCUSSION 

Automated contour detection is a prerequisite for time-efficient 
quantification of left ventricular function from multi-slice short-axis cine MR 
imaging studies. Developing of an accurate and robust detection algorithm 
is a challenging problem due to large variations in patient characteristics 
and features present in the images. It requires knowledge about the MR 
image sequence used and knowledge about the anatomy of the heart and 
neighboring structures. Only trained observers are capable to reliably and 
reproducibly trace the myocardial contours.  It is often helpful to visualize 
the images in a cine mode to correctly interpret the structures seen in the 
images. When image information is unreliable or inconclusive, the final 
judgment is based on a model derived from previous experience. 
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Table 6-3. Global function results obtained by either manual or automated 
contour detection. Only those exams are included in which the AAMM contour 
detection converged to a valid match. 

 EDV ESV EF LV mass 

 Manual Auto Manual Auto Manual Auto Manual Auto 

1 63 71 24 31 63 57 57 43 

2 171 183 121 118 29 36 147 139 

3 142 135 91 82 36 39 102 104 

4 81 60 39 23 52 62 90 109 

5 109 125 33 43 70 66 142 169 

6 209 207 140 154 33 26 145 125 

7 77 77 34 34 56 56 62 49 

8 72 63 38 30 47 52 47 56 

9 112 114 52 43 54 62 105 131 

10 173 157 94 85 46 46 123 134 

11 143 143 54 62 62 57 136 121 

12 300 329 217 281 28 15 217 210 

13 160 175 104 115 35 34 98 105 

14 146 148 81 69 44 53 121 114 

15 127 138 54 53 58 61 120 126 

16 127 145 64 80 50 45 96 96 

17 418 408 336 361 20 11 225 221 

Mean 155 157 93 98 46 46 120 121 

SD 89 91 80 92 14 17 49 49 

EDV: End-diastolic volume; ESV: End-systolic volume; EF: Ejection fraction; LVM: 
Left ventricular mass (average of ED and ES values) 

 
The presented AAMM contour detection technique is trained using 
previously obtained MR imaging studies with expert drawn contours. The 
generated AAMM contains information about the shape of the left ventricle, 
the motion and deformation pattern of the left ventricle and the gray value 
distribution in MR images. By restricting the deformation of the AAMM to 
statistically defined limits, each deformed AAMM represents a plausible 
segmentation result. Therefore, the detection algorithm uses similar a-
priori knowledge as a human observer. Since the contour detection is based 
on the minimization of the gray value difference between the actual image 
data of a whole time-series of images and the deformed representation of 
the AAMM, the method is relatively insensitive to false edges present in the 
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images. This is in contrast to other contour detection approaches which rely 
on local image features such as gray value edges9,11,12. An additional 
advantage of the presented automated method is that it exploits all image 
information contained in a time-series of images during detection of the 
contours. This is in accordance with how manual tracing is carried out, 
since often images are displayed in a cine-mode in order to correctly and 
consistently interpret the structures seen in the images. Basic physiology 
dictates that myocardial motion and deformation of the ventricular wall 
should constitute a time-continuous pattern. The presented algorithm 
fulfills this constraint since the detected myocardial boundaries are smooth 
and represent a time-continuous pattern. 
 The contour detection method was evaluated on clinical cases from 
various cardiac pathologies. Within the study population the ejection 
fraction ranged from 11% - 66%; the LV mass ranged from 43 g - 221 g. 
Nevertheless, automated contour detection provided global ventricular 
function results comparable to results obtained by manual analysis. No 
statistically significant differences were found between results obtained by 
manual and automated analysis. With a processing time of less than 20 
seconds for an examination, the contour detection method was proven to 
be time efficient. Since user interaction was limited to manually defining 
the ES time frame, observer bias is expected to be very much limited.  

 

 
Figure 6-4. Bland-Altman plots for EDV, ESV, EF and left ventricular mass. 
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6.5.1 Limitations 

This study has a number of limitations. In three MR examinations the 
automated contour detection was unable to detect reliable contours. 
Inspection of these examinations revealed that in each of these studies 
distinct features were present not seen in the other studies. Therefore, the 
correct segmentation for those studies could not be obtained by deforming 
the AAMM. The occurrence of these failures stresses the importance of 
using a sufficient number of representative MR studies for training the 
AAMM. It is assumed that by increasing the number of studies to train the 
AAMM, the descriptive power of the model increases and the failure rate 
will be reduced considerably. Currently we have not yet studied the optimal 
size of the training set and the optimal distribution of various pathologies 
within the training set. 
 The current implementation of the method can only be applied to 
imaging slices where a complete circumference of myocardium is present in 
all time-frames. In most patients, this condition is not fulfilled for the most 
basal slice location of the ED frame, since due to through-plane motion 
during the systolic phase, the myocardial tissue seen in the ED phase may 
move out of the imaging plane during contraction. Therefore, some imaging 
sections could not be evaluated using the proposed contour detection 
method. A possible solution for this problem could be to use a single-phase 
AAM for the most basal imaging section of the ED phase, as presented by 
Mitchell at al7. 

6.5.2 Future studies 

To further investigate the strengths and limitations of the presented AAMM 
contour detection technique and to explore possibilities to improve the 
method, further studies are required. As already mentioned, it is needed to 
collect additional clinical MR exams with manually drawn contours to 
investigate the optimal size for the AAMM training set. Additionally, it is 
relevant to study whether clinical data of patients with different pathologies 
should be incorporated in a single model, or whether it proves more 
successful to have separate models for specific pathologies. A similar 
question arises when it comes to inclusion of image data acquired with 
slightly different imaging protocols, or even images obtained from different 
MR systems in a single model or separate models. In the three cases that 
were excluded from statistical analysis, distinct features were present 
explaining why the AAMM contour detection did not perform successfully. 
However, to understand the sources of the differences between AAMM and 
manual contour detection in the remaining 17 subjects, further 
investigation into the sources of these differences are warranted.  
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Table 6.4. Comparison between manual and automated global function results for 
those examinations in which the AAMM contour detection converged to a valid 
match (n=17). 

 Auto – Man (abs) Auto - Man (%) 

EDV -2.9  13.2 ml -0.3  12.0% 

ESV -5.1  18.9 ml -2.0  23.4% 

EF  0.1  6.7% 

LVM -1.2  14.1 g -0.7  14.9% 

EDV: End-diastolic volume; ESV: End-systolic volume; EF: Ejection fraction; LVM: 
Left ventricular mass (average of ED and ES values) 

6.6 CONCLUSION 

A fully automated contour detection method is presented which provides 
quantitative indices of global function that are comparable to manual 
analysis. The method can be applied to images acquired with different MR 
systems and pulse sequences by retraining the AAMM using MR images 
with expert drawn contours available. Further studies are needed to 
establish the optimal size and distribution of patients with varying cardiac 
pathologies in the training set used to build the AAMM. 
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ABSTRACT 

In this article, we propose a semiautomatic method for time-continuous 
contour detection in all phases of the cardiac cycle in magnetic resonance 
sequences. The method is based on multidimensional dynamic 
programming. After shape parameterization, cost hypercubes are filled with 
image-feature derived cost function values. Using multidimensional 
dynamic programming, an optimal path is sought through the sequence of 
hypercubes. Constraints can be imposed by setting limits to the parameter 
changes between subsequent hypercubes. Quantitative evaluation was 
performed on 20 subjects. Average border positioning error over all slices, 
all phases and all studies, was 1.77 ± 0.57 mm for epicardial and 1.86 ± 
0.59 mm for endocardial contours. The average error in end-diastolic and 
end-systolic volumes over all studies was small: 4.24 ± 4.62 ml and -4.36 
± 4.26 ml, respectively. The average error in ejection fraction was 4.82 ± 
3.01%. The reported results compare favorable to the best reported results 
in recent literature, underlining the potential of this method for application 
in daily clinical practice. 
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7.1 INTRODUCTION 

For quantitative analysis of cardiac function, clinical parameters such as 
end-diastolic (ED) and end-systolic (ES) volume, ejection fraction (EF), and 
ventricular wall motion are relevant. These parameters are usually 
estimated from short axis acquisitions consisting of 200 to 300 images. To 
quantitatively analyze global and regional cardiac function, endo- and 
epicardial contours of the cardiac left ventricle are required. Recently, 
several (semi-)automatic methods were developed for detecting the 
contours of the myocardium. Van Assen et al.1 and Lötjönen et al.2 have 
proposed 3-dimensional (3D) active shape models for automatic 
segmentation of the human cardiac left ventricle. Kaus et al.3 have 
developed deformable models constrained by prior knowledge for automatic 
segmentation of the left ventricle. Sanchez-Ortiz et al.4 propose a multi-
scale fuzzy clustering-based segmentation algorithm for contour detection 
in 3D cardiac echocardiographic images. However, many of the proposed 
methods are suitable for segmentation in end-diastolic and end-systolic 
phases only, eg, 5-7 Lorenzo-Valdés et al. 8 have developed a 4D 
probabilistic atlas for the 4D (3D + time) segmentation of the left ventricle 
based on an expectation maximization method. This method yields 
segmentations over the full cardiac cycle. However, many manually 
segmented images are needed for building the atlas, and the structures are 
segmented independently in each timeframe. Bosch et al.9 and van der 
Geest et al.10 have demonstrated that active appearance motion models are 
able to yield time-continuous segmentation results for 2D 
echocardiographic and cardiac magnetic resonance (MR) image sequences, 
respectively. This method, however, needs to be trained on a training set 
consisting of several cardiac MR scans with manually annotated contours in 
all slices and all frames. For a complete overview of recent developments in 
cardiac segmentation techniques, see the study by Frangi et al.11. 
 The mentioned methods here either do not yield time continuous 
segmentation results over the full cardiac cycle or require extensive 
manually annotated datasets for training. The goal of this work is to 
develop a method for time-continuous segmentation of the full cardiac 
cycle that does not require an extensive training set. To accomplish this, 
we propose an extension of the well-known 2D dynamic programming to 
higher dimensions. By expressing a shape with a limited number of 
parameters, cost hypercubes are constructed, in which each axis represents 
a parameter range. Each node in a hypercube represents a shape 
instantiation, and a connective path through a sequence of hypercubes 
represents a changing shape in a time sequence of images. Constraints 
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such as temporal or spatial continuity are imposed by setting limits to the 
parameter changes for each axis between subsequent hypercubes. This 
makes the method robust in the presence of artifacts or missing image 
information in individual frames. By including information from all frames in 
the segmentation, we expect the method to yield more robust and 
consistent contours in ED and ES frames, which are generally used for 
deriving the parameters that are needed for quantitative analysis of the 
cardiac left ventricle. Furthermore, other clinically relevant time-dependent 
parameters can be derived from the segmented full cycle such as regional 
wall motion, rate of wall thickening, and peak ejection/filling rate. The 
proposed method does not require training on large datasets, and prior 
knowledge on global shape or position dynamics is not needed.  

7.2 MATERIALS AND METHODS 

7.2.1 Background 

Dynamic programming13 is a method for solving variational problems by 
successively selecting the locally optimal solutions. The Dijkstra algorithm13 
is one of the best known dynamic programming algorithms and is used for 
solving shortest path problems, i.e., finding the optimal path from one node 
to another node in a weighted and directed graph. Each node has an 
associated weight or cost and the optimal path is the path for which the 
sum of the costs is minimal. An example is shown in Figure 7-1.  
 

9 5 0 9 12 8  9 5 0 9 12 8 

8 7 9 2 4 4  13 7 9 2 12 12 

5 2 5 8 2 2  12 9 7 10 4 14 

7 8 4 3 7 5  16 15 11 7 11 9 

3 5 8 6 3 3  18 16 g 13 10 12 

8 3 2 6 3 8  24 18 15 16 13 18 

9 6 8 7 8 4  27 21 23 20 19 17 

 

Figure 7-1. Example of dynamic programming. In the cost matrix on the left, each 
element represents a node with a given cost, which is derived from an image-related 
cost function. Using back-propagation, an optimal path is sought from the bottom 
row to the top row. In the matrix on the right side, the minimal cumulative costs are 
shown and the optimal path (elements in gray) connects minimal cumulative costs 
per row, resulting in a globally optimal path. 
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Dynamic programming (DP) has been used widely in medical image 
segmentation, but mainly to enforce spatial continuity. For instance, DP has 
been widely applied in x-ray left ventricular angiography and coronary 
angiography14 Xu et al.15 have used DP for automated lung nodule 
segmentation in computed tomography images. Optimal 2D contours are 
extracted from all slices using dynamic programming with shape-based 
constraints. These 2D contours are stacked to obtain 3D surfaces of the 
nodules. Yamada et al.16 have presented a 2D dynamic programming-based 
matching method for kidney glomerulus recognition. In this approach, a 
parameterization of the shape of the glomerulus is made and constraints on 
the range of parameters are imposed using dynamic programming. Amini 
et al.17 and Geiger et al.18 have used dynamic programming to find globally 
optimal solutions to variational problems in energy minimization and to 
allow direct and natural enforcement of constraints on deformable models.  
 The approaches described here were all used in static images and 
typically search for a one-dimensional path through a 2D graph. Little work 
has been described toward extending DP to higher dimensions. Sonka et 
al.19 have proposed an extension of 2D dynamic programming by 
constructing a cost cube from 2 perpendicular edge images, one for each 
coronary edge. In this graph, each node corresponds to a combination of 
possible positions of the left and right coronary borders simultaneously. The 
optimal path through this graph results in a segmentation, in which shape 
changes in both coronary edges are coupled.  
Thedens et al.20 have developed a graph-searching method for finding the 
optimal surface through a 3D cost cube. Their approach is based on a data 
transformation of a 3D lattice into an intermediate 2D graph enabling 
application of traditional graph-searching techniques. To make this 
approach computationally feasible, they introduce a heuristic search 
approach potentially yielding suboptimal solutions. Li et al.21 propose a 
computationally feasible solution for finding a surface through a 3D graph 
lattice by computing a minimum s-t cut through a 3D-directed graph.  

7.2.2 Multidimensional Parametric Dynamic Programming  

As mentioned before, higher dimensional extensions of dynamic 
programming have been described for finding either a surface through a 3D 
volume or finding a path through a 3D volume. In this work, we extend the 
classic dynamic programming method to higher dimensions, similar to 
Sonka’s approach19. An overview of the general method is represented in 
Figure 7-2, whereas details on the concrete implementation of two tracking 
problems are described in the next section. Instead of applying dynamic 
programming directly to image data, we first define a parametric shape 
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model, expressing the shape with N parameters. An N-dimensional space 
can be constructed, in which the axes are spanned by the N parameters. A 
given shape is represented by a point in this parameter space. Thus, a 
given combination of the N parameters represents a shape instantiation. By 
discretizing each parameter axis in a limited parameter range, an N-
dimensional hypercube is constructed, which is the N-dimensional 
equivalent of a cost matrix such as shown in Figure 7-1. For each frame in 
a time sequence of images, such a cost hypercube is calculated.  
 
 

 
 

Figure 7-2. General outline of the N-dimensional dynamic programming. 

 

8 7 9 2 4 4 

5 2 5 8 2 2 

7 8 4 3 7 5 
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For all possible combinations of the model parameters, i.e., all voxels in the 
hypercubes, cost values are calculated using a cost function based on 
image features that express the “goodness of fit” of the model instantiation 
to the image data. This can be, for instance, the cumulative image gradient 
along a contour or cross-correlation values between two regions of interest: 
the choice of the most suitable cost function depends on the application 
and the selected parameterization. Constraints on temporal or spatial 
continuity are imposed by setting limits to the allowed parameter changes 
between subsequent hypercubes for each axis. Subsequently, the optimal 
path is sought using dynamic programming by connecting the nodes with 
minimal cost from all hypercubes with each other within these connectivity 
constraints. This path is a curve in N-dimensional space. The nodes with 
minimal cost from cost cubes corresponding to different timeframes are 
connected, in which a connective path through a sequence of hypercubes 
represents a changing shape in a time sequence (see Figure 7-2). This way, 
depending on the type of parameterization, spatial and/or temporal 
continuity can be enforced to ensure smooth motion between frames.  
The concrete implementation of the shape parameterization depends on the 
intended application. In the next section, 2 types of applications with 
corresponding parameterizations are elaborated.  

7.2.3 Validation Studies  

To investigate the performance and accuracy of the proposed method, 
2 studies were conducted. The first experiment was performed to 
investigate the accuracy of the DP method in segmentation of short-axis 
MR images of the cardiac left ventricle and the effect of imposing time-
continuity constraints on the robustness of the segmentation results. The 
second experiment involves a case study to demonstrate the method’s 
efficacy in a higher dimensional case: tracking of the aorta in full-cycle MR 
images using a 6-dimensional parametric representation.  

7.2.4 Data Material  

Cardiac MR imaging examinations were performed in 18 cardiac patients 
and 2 healthy volunteers. The patients experienced several pathologies, 
including heart failure (n=8), hypertrophic cardiomyopathy (n=4), 
transplant follow up (n=3), chest pain or angina (n=3).  
 Short-axis images of the cardiac left ventricle were scanned using the 
TrueFISP protocol on a 1.5 T Siemens MR system (Sonata; Siemens Medical 
Systems, Erlangen, Germany) with a resolution of 256 pixels and a field of 
view ranging from 340 to 420 mm, which resulted in a pixel size varying 
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between 1.33 and 1.64 mm. The inter-slice gap was 2 mm, the slice 
thickness was 8 mm, and the following acquisition parameters were used: 
TR=3.1 ms, TE=1.6 ms, flip angle 55°, and receiver bandwidth 930 
Hz/pixel. In these short-axis MR acquisitions, epi-and endocardial contours 
were drawn by experts in all slices and all phases following the conventions 
put forward in the study by Danilouchkine et al.23. 
 To investigate the applicability of the method to higher dimensional 
tracking problems, an additional velocity-encoded aorta flow scan was 
acquired in a patient with congenital cardiac abnormalities. Images were 
acquired in an image plane perpendicular to the ascending aorta on a 
Philips Gyroscan 1.5 T MR system using a phase-contrast sequence with a 
VENC of 3 m/s, field of view 300×253 mm, scan matrix 128×108 
reconstructed to 256×256 pixels, pixel size 1.17×1.17 mm (reconstructed), 
and a slice thickness of 8 mm. The full cardiac cycle was imaged in 30 
phases, with TR 14 ms, TE 5.2 ms, and flip angle 20° with 2 signal 
averages.  

7.2.5 Short-Axis Cardiac Magnetic Resonance Segmentation  

An elaborate quantitative evaluation was performed in a study on full-cycle 
contour detection in short-axis cardiac MR images. During the cardiac cycle, 
the endo-and epicardial borders undergo small deformations from frame to 
frame; this makes the proposed dynamic programming very suitable for 
imposing constraints on the maximally allowed deformations between 
frames of the border positions, possibly yielding better segmentation 
results.  
 Using the proposed dynamic programming approach, the optimal 
contour set for the cardiac cycle can be found as follows (see the flow chart 
in Figure 7-3 for an overview). After initializing manually by drawing a 
contour in one phase, the contour is resampled to 32 equiangularly 
sampled landmarks. Each landmark is parameterized by its coordinates 
(x,y). (Because the papillary muscles were not included in the manual 
drawing conform clinical standards, 32 landmarks provided sufficient detail 
to accurately describe the approximately circular contour shapes.). Each 
landmark is tracked separately over time by defining a mask in each 
landmark and a search space around each landmark by setting limits to the 
displacement parameters dx and dy, which are the allowed shifts for the 
center of the mask in x and y directions. The mask is positioned onto all 
allowed positions in the defined search space, and a cross correlation 
coefficient is calculated for each position with the mask in the reference 
frame.  
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Figure 7-3. Overview of cardiac left ventricle segmentation using multidimensional 
dynamic programming. 

Subsequently, for each landmark, the cost hypercubes are filled with the 
cost values associated with all shifts of the center of the mask. A 3D search 
space is created by combining these cost matrices, obtaining a 3D graph. 
The first and last frames of the graph are the matrices corresponding to the 
frame with the manually annotated landmarks, ie, the initialization frame. 
For the cost matrix corresponding to the landmarks in the initialization 
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frame, the center value is set to zero and all other values are set to high 
values, as to leave this landmark position unchanged. To find the optimal 
solution, a connective path is sought through the 3D graph, starting at the 
zero element in the first slice and crossing each layer of the graph in only 
one point. Each path through the graph is a possible solution. The total cost 
of a path is the sum of the costs of all the nodes constituting the path. The 
optimal solution is the path with minimal total cost. This optimal path yields 
translation vectors for each landmark with respect to the manually 
annotated landmark in the reference frame, thus giving the optimal 
positions for all landmarks over the full cycle.  
 While searching the optimal path through the graph, hard constraints 
can be imposed, e.g. a continuity constraint allowing a maximum side step. 
Because the sampling rate of the full cycle images is sufficiently high, the 
inter-frame movement of the borders does not exceed 2 pixels. Therefore, 
a maximal side step of 2 pixels was allowed to obtain time continuity 
between frames. To assess the effect of the constraints on the side-step 
parameter, experiments were repeated without side-step constraints. 
Initialization was performed manually in a mid-systolic phase to enable 
automatic detection of both end-diastolic and end-systolic frames. This 
way, an automatic calculation of ejection fraction was possible without 
introducing a bias toward either the ED or ES frame. In all slices between 
apex and base, endo-and epicardial contours were available for the 
initialization frame.  
 

 
Figure 7-4. Possible settings for the shape of the mask: ellipsoid perpendicular to 
contour (–½), circular mask (0), and ellipsoid tangent to contour (+½). 

7.2.6 Parameter Selection  

Several parameters influence the performance of the method, and a brute-
force search was performed to systematically select a parameter 
combination yielding good segmentation results. The parameters involved 
in the brute force search were:  
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 Type of cost function: 2 types of cost functions were considered. First, 
cross correlation of the mask in the current frame with the mask in the 
reference frame was considered. The cross correlation coefficients were 
considered as costs, i.e. the higher the correlations, the lower the cost. 
Second, the sum of absolute gray value differences between the masks 
was used. Here, a smaller difference corresponds to a lower cost value.  

 Mask size: The mask size and shape define the region of interest around 
each landmark and the amount of information involved in the calculation 
of the costs. The mask must contain sufficient structure for the cost 
values to be accurate. However, a too-large mask may include papillary 
muscles or other structures, which are not present in every frame, 
potentially resulting in wrong landmark positions in some frames. In the 
detection of endocardial contours, mask clipping was applied. Because in 
apical slices the endocardial contours may become very small, the mask 
size is adapted to half of the radius of the endocardial contour in the 
initialization frame.  

 Mask shape: The shape of the mask is varied from an ellipse tangent to 
the contour to a circular shape to an ellipse perpendicular to the contour 
by changing the parameter value between –½ and +½ (see Figure 7-4).  

 Physical dimensions of the search space: The parameter limits of the 
search space were defined by the maximally allowed displacements in x-
and y-directions. The size of the search space should be large enough to 
follow the movement of the myocardium between end-diastolic and end-
systolic phases.  

 
The first parameter involves the selection of cost function and is the only 
intensity feature-dependent choice. The other parameters describe 
geometric and kinematic properties of the contracting heart. Therefore, we 
expect the parameter selection to be largely independent of the scanning 
protocol, therefore generalizing well toward other cardiac MR acquisition 
protocols not tested here. 

7.2.7 Evaluation Indices  

To quantify the matching accuracy of the model, the automatically detected 
contours were compared with the manually defined expert contours on the 
basis of the point-to-curve border positioning errors, the ED and ES 
volumes and the EF. The point-to-curve errors were defined as the shortest 
distance between an automatically detected landmark and the manually 
drawn contour, i.e. the distance along the normal to the manually drawn 
curve. Average and maximum border positioning errors were measured. 
The ED and ES volumes were calculated as follows. In each slice, the 
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surface of the endocardial border, i.e. the blood pool was calculated and 
multiplied with the slice thickness. The sum of all slice volumes was 
calculated to determine the 3D volume of the cardiac left ventricle. Using 
the volumes in ED and ES phases of the cardiac cycle, the EF was 
calculated as follows:  
 

 
ED

ESED

V

VV
EF


     (7.1) 

  
where EF is the ejection fraction, VED the cardiac left ventricular volume in 
end-diastolic phase, and VES the volume in end-systolic phase.  
Paired-sample t-tests were performed to determine if the errors in border 
positioning, volumes, and ejection fractions were significant. P values 
smaller than 0.05 were considered significant. 

 

 
 

Figure 7-5. Six-dimensional parameterization of a region around the aorta with 
center coordinates (x,y) and 4 radii r1,r2, r3, r4. 

7.2.8 Aorta Tracking  

An additional experiment was performed to investigate the potential of 
multidimensional dynamic programming applied to higher dimensional 
cases. The area of the aorta was tracked over time to measure the flow22 in 
images of a specific slice of the aorta, which are used to measure flow 
volume. In a time sequence of images, translation and deformation of the 
aorta occurs.  To this end, the shape of the aorta was parameterized with 6 
parameters (center coordinates [x,y] and 4 radii r1–r4) as shown in Figure 
7-5. In sequential images, the center coordinates were varied as well as 
the 4 radii. A spline was fitted to the end points of the radii to obtain an 
ellipse. With this parameterization, a 6-dimensional cost hypercube was 
constructed. The costs associated with each instantiation of the aorta shape 
were defined as the cumulative image gradient along the model contour. 
Ranges were defined for all combinations of the mentioned parameters, ie, 

r

(x, r

r
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all shape instantiations. The associated costs were calculated and stored in 
the corresponding positions in the hypercube. Next, using conventional 
backtracking, an optimal path with minimal total cost within time-continuity 
constraints was sought through the hypercubes. The optimal path yielded 
translation vectors for the center coordinates and deformation vectors for 
the radii with respect to the reference frame. The results of the 
experiments were evaluated visually.  
 

Table 7-1. Optimal settings for parameters obtained with a brute-force search * 

Contour dx (pixels) dy (pixels) Mask size 
(pixels) 

Mask shape 

Endocardial 7 7 19 -½ 

Epicardial 4 4 15 0 

* Mask shape 0 corresponds to a circular mask (see Figure 7-3) and -½ 
corresponds to ellipsoid. Results for endocardial and epicardial contour are shown. 

7.3 RESULTS 

7.3.1 Parameter Settings  

The parameters computed in the parameter selection process are given in 
Table 7-1. For detection of both endocardial and epicardial contours, the 
cross correlation-based cost function was found to give more accurate 
results than the cost function based on the sum of absolute differences.  

7.3.2 Segmentation Results  

Epicardial and endocardial contours were detected separately. With 
parameter settings as shown in Table 7-1, the average border positioning 
error (BPE) over all slices, all phases, and all studies was 1.77±0.57 mm 
(average maximum BPE was 5.21 mm) for epicardial contours and 
1.86±0.59 mm (average maximum BPE was 4.51 mm) for endocardial 
contours. In Table 7-2, the errors in volumes and ejection fractions are 
shown. Figures 7-6 shows Bland-Altman plots for ED and ES volumes and 
ejection fractions. Parameters of the regression fits are given in Table 7-3.  
 Figure 7-7 shows that if no time-continuity constraints are imposed, 
the segmentations deteriorate and large inter-frame discontinuities and 
border positioning errors are introduced. As can be seen from the bottom 
row of Figure 7-7, single landmarks can make large excursions and lock 
onto false positions, resulting in bad segmentation results.  
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Table 7-2. Average manual ED and ES volumes and ejection fractions, with 
average errors made by an automatic dynamic programming-based method 

 Average manual Average error P 

ED volume (ml) 171.68 ± 91.10 4.24 ± 4.62 6.14 E-4 

ES volume (ml) 103.96 ± 95.96 -4.36 ± 4.26 2.05 E-4 

Ejection fraction (%) 47.73 ± 19.20 4.82 ± 3.01 8.48 E-7 

 
  
Typical computation times for full-cycle segmentation of a 3D short-axis 
cardiac MR scan (8-12 slices, 20-25 frames) amounted to approximately 4 
minutes on a desktop PC with an AMD Athlon 1.8 GHz processor. 

 

 
 

Figure 7-6. Bland-Altman plot for end-diastolic volumes (top left), end-systolic 
volumes (top right) and ejection fraction (bottom).  
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7.3.3 Tracking Results  

Figure 7-8 shows the result of tracking the aorta in 30 sequential 
timeframes using a shape parameterization with 4 radii and 2 center 
coordinates.  
 

Table 7-3. Equations of regression fits for ED and ES volumes and ejection 
fractions 

 Regression fit R2 

ED volumes y = 0.99x – 2.21 0.998 
ES volumes y = 0.98x – 6.55 0.998 
Ejection fractions y = 0.89x – 0.34 0.984 

7.4 DISCUSSION 

A dynamic programming-based method for time-continuous segmentation 
of endo-and epicardial contours was presented. Conventional 2D dynamic 
programming was extended to higher dimensions and applied to 
2 substantially different tracking and segmentation problems to illustrate 
the method’s performance in multiple dimensions.  
 In the quantitative evaluation, segmentations were performed in 20 
studies in all phases and all slices. Contour detection was successful in all 
included imaging slices and the average BPE was very good (1.86 mm and 
1.77 mm for endo-and epicardial BPE, which corresponds to approximately 
1 pixel), although slightly less accurate as interobserver BPE reported in 
the study by van Assen et al.1 (1.27 mm and 1.14 mm for endo-and 
epicardial BPE, respectively). Lötjönen et al.2 report an average 
segmentation error of 2.57 mm using the probabilistic atlas based method. 
The method presented by Kaus et al.3 has a mean deviation from manual 
segmentations of 2.45 mm in end-diastolic phase and 2.84 mm in end-
systolic phase, whereas van Assen et al. report 2.24 mm and 2.84 mm 
errors for endo-and epicardium, respectively. Lorenzo-Valdés et al.8 report 
an average segmentation error of 2.21 mm for the 3 middle slices of the 
left ventricle over all timeframes. Also, the maximum BPE for endo-and 
epicardial contours (4.51 mm and 5.21 mm, respectively) compares highly 
favorably to the other automated methods (11–15 pixels as reported in the 
studies by van Assen et al.1 and Kaus et al.3) and compares well to 
interobserver maximum errors reported in the study by van Assen et al.1 
(4.34 and 3.93 maximum BPE for endo-and epicardial contours, 
respectively). Therefore, we can conclude that border positioning errors 
presented in this article compare favorable to these other results reported 
in recent literature and approach interobserver variabilities resulting from 
manual contour drawing. Of these methods, only Lorenzo-Valdes reports 
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full-cycle contour detection. The other approaches report results in ED and 
ES phases only. An important criterion for any automated border detection 
method for cardiac MR images is that if morphology is important, accurate 
regional measurements require the border detection to yield errors at least 
as good as the interobserver variability resulting from manual contour 
drawing, because a small error can already have a significant impact on 
regional measurements such as wall thickness and wall thickening. Of the 
algorithms compared here, the proposed method best approaches this 
interobserver BPE.  
 

 
Figure 7-7. The top row shows segmentations obtained with temporal continuity 
constraint in 5 successive frames. The first frame is the mid-systolic phase which was 
used for manual initialization. In the bottom row, the same frames segmented 
without imposing temporal continuity constraints are shown.  

 
The automatically determined end-diastolic and end-systolic volumes 
showed near-perfect correlations with the volumes derived from manual 
contours. Also, the ejection fractions of automatically segmented and 
manually drawn studies correlated very well (see Table 7-3). This is a direct 
consequence of the small border-positioning errors, but although the 
volume errors are small, they are statistically significant (P<0.05). Bland-
Altman plots reveal a slight systematic underestimation of the ED volumes 
and a slight systematic overestimation of the ES volumes. This, of course, 
has a negative influence on the ejection fraction estimates. The systematic 
over-and underestimations are most probably caused by a bias toward the 
reference frame. Currently, a rectangular search space around the 
landmarks is used (dx, dy). Defining a different search space shape, eg, 
allowing more radial movement, might resolve the systematic bias. The 
errors, however, are small and not clinically relevant; they are in the same 
range as interobserver variations in ventricular volumes and ejection 
fractions23, comparing measurements from manually drawn contours from 
different observers.  
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 As can be seen in Table 7-1, a larger search space and mask need to 
be defined for endocardial contour detection than for epicardial contour 
detection. Also, the border positioning errors are slightly larger for 
endocardial contours. This is caused by the fact that during the cardiac 
cycle, the movement of the endocardial border has larger amplitude than 
the epicardial border. Therefore, the texture in the masks used for tracking 
the endocardial borders demonstrates relatively more changes between 
end-diastolic and end-systolic phases. Also, the fusion of the papillary 
muscles with the myocardium in end-systolic phases substantially changes 
the mask texture. These effects deteriorate the cross correlation values, i.e. 
the cost function outcomes.  

 

 
Figure 7-8. Sequential timeframes in an aortic flow scan, in which the motion and 
deformation aorta is tracked over the cardiac cycle. Note the smooth transitions 
between frames, which is a result of the imposed time continuity. 

 
 The proposed method may possibly be further improved, eg, by 
blurring the images before contour detection. Blurring the images reduces 
noise and better cross correlation values can be obtained. Another 
improvement might be smoothing of the contours after detection. 
Currently, all landmarks are detected independently and are connected with 
each other by straight lines. This in general gives a slight underestimation 
of the volumes. The underestimation is larger in basal slices and also in 
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end-diastolic images, because the sampling of the contours is less dense in 
these images. Smoothing the contours after connecting the landmarks 
might give a better estimate of the volumes, although landmark positions 
remain unchanged.  
 Experiments have shown that adding a time constraint to the 
conventional dynamic programming approach substantially improved the 
segmentation results. Without this constraint, single landmarks showed 
large inter-frame displacements, which led to locking on false edges. 
Imposing a maximal inter-frame displacement by means of a time 
constraint resolved these errors. In the current approach, endo-and 
epicardial contours are detected separately. However, the locations of both 
contours are strongly correlated. Therefore, combining both contours and 
detecting them simultaneously might yield still more robust results.  
 For each landmark, separate cost matrices are calculated for each 
timeframe, and the optimal positions of the landmarks are determined 
independently from its neighboring landmarks. In some cases, this leads to 
crossing landmarks and spatial discontinuities in the segmentations (see 
Figure 7-9). These artifacts may be resolved by following the approach in 
the study by Thedens et al.20 and coupling neighboring landmarks to each 
other, preventing landmarks from crossing each other. This way, not only 
time-continuous, but also spatially continuous segmentations can be 
obtained, which may also lead to a further improvement of the border 
positioning errors, the volume estimations, and ejection fraction 
calculations.  

 

 
Figure 7-9. Spatial discontinuity caused by crossing landmarks in endocardial 
contour. 
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In our current approach, segmentations were performed on a slice-per-slice 
basis. Time-continuous segmentation results can be obtained for each slice 
in this manner. However, inter-slice continuity is not guaranteed. By 
coupling landmarks from neighboring slices with the proposed approach, 
inter-slice continuity may be obtained as well.  
 The parameter selection procedure involved systematically deriving a 
good parameter combination, in which most of the parameters were related 
to geometry and cardiac kinematics, which are independent of the applied 
scanning protocol. Highest accuracy was obtained with the presented 
values for the parameters in the tested image sets. However, we expect 
similar performance in other MR datasets and protocols as a result of the 
protocol independence of the tuned parameters.  
 The aorta tracking experiments have demonstrated the power of the 
proposed method in a 6-dimensional case study. The proposed approach 
was used for automatic tracking of the aorta in a time sequence of images, 
and visual inspection showed that a time-continuous result was obtained. 
This example showed that there are no theoretical obstacles for the 
expansion of the proposed method to high dimensions; however, further 
evaluation is required to quantify the performance of dynamic programming 
in such higher-dimensional cases.  
 The main limitation of the proposed method is its computational 
complexity, which increases exponentially with the number of parameter 
dimensions. Finding the optimal path through cost hypercubes is fast; 
however, filling the cost hypercubes may become time-consuming. This 
obviously depends on the dimension of the hypercubes and the type of cost 
function, e.g. sum of absolute differences, cross-correlation values, and so 
on. In the experiments that were performed, typical computing times in the 
order of 3 to 5 minutes per study (on average, 20 phases and 10 slices) 
were found. Because the analysis is performed offline and with increasing 
computer power, this does not impose a major limitation on clinical 
applicability. In addition, by pruning the search space, substantial 
additional performance gains can be achieved.  

7.5 CONCLUSION 

In conclusion, the proposed method has shown great potential in tracking 
and segmentation of cardiac MR time sequences. The multidimensional 
dynamic programming allows for direct and natural enforcement of 
constraints, e.g, shape-based constraints or time-continuity constraints. It 
is not iterative and therefore it is exact and stable. With dynamic 
programming, global optimality of the solution is ensured and 
multidimensional dynamic programming enables detection of time evolution 
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and full-cycle time-continuous segmentation in a series of images. The 
reported results compare favorably to the best-reported results in recent 
literature, underlining the potential of this method for application in daily 
clinical practice. 
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ABSTRACT 

Automatic segmentation of the left ventricular (LV) myocardial borders in 
cardiovascular MR (CMR) images allows a significant speed-up of the 
procedure of quantifying LV function, and improves its reproducibility. The 
automated boundary delineation is usually based on a set of parameters 
that define the algorithms. Since the automatic segmentation algorithms 
are usually sensitive to the image quality and frequently depend heavily on 
the acquisition protocol, optimizing the parameters of the algorithm for 
such different protocols may be necessary to obtain optimal results. In 
other words, using a default set of parameters may be far from optimal for 
different scanners or protocols. For the MASS-software, for example, this 
means that a total of 14 parameters need to be optimized. This 
optimization is a difficult and labor-intensive process. To be able to more 
consistently and rapidly tune the parameters, an automated optimization 
system would be extremely desirable. In this paper we propose such an 
approach, which is based on genetic algorithms (Gas). The GA is an 
unsupervised iterative tool that generates new sets of parameters and 
converges toward an optimal set. We implemented and compared two 
different types of the genetic algorithms: a simple GA (SGA) and a steady 
state GA (2SGA). The difference between these two algorithms lies in the 
characteristics of the generated populations: “non-overlapping populations” 
and “overlapping populations,” respectively “non-overlapping” population 
means that the two populations are disjoint, and “overlapping” means that 
the best parameters found in the previous generation are included in the 
present population. The performance of both algorithms was evaluated on 
twenty routinely obtained short-axis examinations: eleven examinations 
acquired with a steady-state free precession pulse sequence, and nine 
examinations with a gradient echo pulse sequenced. The optimal 
parameters obtained with the GAs were used for the LV myocardial border 
delineation. Finally, the automatically outlined contours were compared to 
the gold standard—manually drawn contours by experts. The result of the 
comparison was expressed as a degree of similarity after a processing time 
of less than 72 h to a 59.5% of degree of similarity for SGA and a 66.7% of 
degree of similarity for 2SGA. In conclusion, genetic algorithms are very 
suitable to automatically tune the parameters of a border detection 
algorithm. Based on our data, the 2SGA was more suitable than the SGA 
method. This approach can be generalized to other optimization problems 
in medical image processing. 
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8.1 INTRODUCTION 

Cardiac magnetic resonance (MR) imaging is playing an increasingly 
important role for anatomical and functional assessment of the 
cardiovascular system. An accurate delineation of the endocardial and 
epicardial boundaries is important to quantify the left ventricular (LV) 
dimensions. Manual segmentation requires expert knowledge and is a time 
consuming procedure, which limits the routine clinical use of cardiovascular 
MR. Moreover, the manual segmentation is observer dependent and 
therefore is associated with considerable inter- and intra-observer 
variability. Automated and semi-automated contour detection techniques 
have been developed in order to overcome the disadvantages of manual 
contour drawing, but the robustness of the currently available contour 
detection algorithms is still not optimal for routine use. At our laboratory, 
we have developed a cardiac MRI analysis software package, MASS, which 
includes automated contour detection1. A major challenge when designing 
and implementing a reliable automated contour detection algorithm is to 
deal with the large variations in image characteristics due to differences in 
MR pulse sequences used, the usage of different receiver coils and 
differences between MR scanners from different vendors. Consequently, for 
optimal performance, the automated segmentation method needs to be 
optimized for a specific type of acquisition procedure. 
 To date, the commonly used method of optimizing an automatic 
segmentation algorithm is to manually tune the parameters of the 
segmentation algorithm until accurate results are reached. Generally, 
numerous iterations are required to obtain the optimal segmentation result, 
and there is no guarantee that the optimal result will be achieved. To 
deduce the optimal value for a specific parameter, the underlying physical 
or geometrical constraints must be taken into consideration. But some 
parameters are less intuitive and therefore hard to find by means of ad-hoc 
search. Moreover, segmentation algorithms are often complex and the 
segmentation parameters are dependent upon each other (all the 
parameters have to be optimized together and not by means of a step-by-
step analysis) and as a consequence hard to optimize manually on a trial 
and error basis2. 
 To automate the optimization, a brute-force approach could be 
utilized. By such approach, all possible permutations of parameters would 
be taken into consideration. Taking the complexity of segmentation 
algorithms and the number of parameters to be optimized into 
consideration, this approach appears to be computationally expensive and 
infeasible.  
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 The aim of this work was to design an automated optimization system 
based on unsupervised tools that can generate new parameter sets in order 
to automatically tune an automated contour detection algorithm. Previous 
papers presented an adaptation of the Genetic Algorithm (GA), the Parallel 
Genetic Algorithm (PGA), as an intelligent parameter optimization tool. The 
PGA has already proved to be an effective method to optimize dynamic 
model-based contours5 and to improve marker placement6. Consequently, 
the main question raised in this work was to study the ability of the GA to 
solve the optimization problem faced in our border detection algorithms. A 
number of optimization techniques exist already and differ in their 
capability to find a global optimum, which is often hidden among local 
optima, and by their speed of convergence towards the global optimum,8,9. 
These algorithms are employed for finding a global optimal solution in a 
high-dimensional search space. Finding a global optimal solution is often 
difficult due to noise or perturbations, and GA-based methods have shown 
to be capable of finding a robust solution8. Therefore, GAs appear to be 
valuable candidates for the implementation of an optimization method. 
 Because the segmentation performance varies according to the pulse 
sequence used, we assumed that the optimized parameter setting for the 
segmentation of images acquired with different pulse sequences should be 
different too. In order to test the ability of a GA to solve the optimization 
problem faced, we compared the optimized parameter settings found using 
a GA on different images acquired with different pulse sequences. 
 The number of GAs existing in the literature makes the choice of the 
best optimization algorithm difficult. Thus, the second question raised in 
this paper was therefore which GA should be used in the optimization 
faced. Since most of the GAs can be divided into two different classes, two 
GAs were tested. The one using overlapping populations, the steady state 
GA (2SGA)11, and the other one using non-overlapping populations, the so-
called simple GA (SGA).  

8.2 MATERIALS 

8.2.1 Material 

For the reason of limiting the computation time required, and because this 
work aimed at examining the ability of the GA to solve our optimization 
problem, the study population was limited to 20 patients with a history of 
cardiovascular disease with a wide range of ejection fraction (4-78%). The 
study material consisted of eleven MR Steady-State Free Processing (SSFP, 
TR=3.2 ms, TE=1.6 ms, flip angle=60°) and nine MR Gradient Echo (GRE, 
TR=50 ms TE=4.8 ms, flip angle=20°) (three females and 17 males with a 
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mean age of 63 years) short axis examinations of the cardiac LV. MR 
images were acquired on a 1.5T MR system (Siemens Sonata). A temporal 
resolution or phase interval varying between 46 and 50 ms was chosen to 
ensure that the end-systolic phase was properly defined. The images were 
acquired with a FOV of 400 mm and reconstructed to a 256×256 image 
matrix. Slice thickness varied between 8 and 10 mm and the number of 
slices varied between 10 and 19; the number of cardiac phases between 13 
and 26 depending on the heart rate. Image analysis was limited to the end-
diastolic (ED) and end-systolic (ES) phases. Endocardial contours were 
drawn by an expert using MASS version 5.1 following a predefined protocol 
as described previously: 
 
1. Window and level settings were standardized and kept unchanged for 

the entire study;  
2. ED and ES phases were chosen after viewing the images in the movie 

mode 
3. The uppermost slice showing more than 50% of the circumference of 

the ventricular myocardium was defined as the basal slice; 
4. Papillary muscle and trabeculations were treated as being a part of the 

blood pool to be able to assess the wall thickness and wall thickening of 
the cardiovascular system. 

8.3 METHODS 

In this paper we tested whether the GA was suitable to find the optimal 
setting of the segmentation parameters used in MASS software package. 
We focused only on the optimization of the algorithm for automated 
detection of the endocardial contours of the cardiac LV.  

The GA is an unsupervised tool that can generate new settings of 
segmentation parameters based on a sample of initial parameters sets. 
Each parameter set is called an individual. The GA starts with randomly 
chosen individuals, called population, including a fixed number of 
individuals. Next, the GA creates a new population of individuals by 
mutating and mating the best individuals from the previous population and 
producing new offspring. The value of each parameter is encoded in a 
binary string and the mutation operator flips the bits with a given 
probability (pmut)

11. For instance, for a probability of twenty percent, 20% 
of the zeroes and ones in the binary string will be mutated in ones and 
zeroes, respectively. Then the crossover operator (with probability pcross) is 
applied to the string population for generating new individual from two 
binary strings11,12. 
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The first step of this study was to evaluate whether or not this tool 
could solve the optimization of the segmentation algorithm used in MASS. 
Next, we compared the optimization result of two different GAs in order to 
define the optimization tool to use in the scope of our study. 

 

 
Figure 8-1. Flow chart illustrating the contour detection process and the inter-
dependency of different steps and thus the segmentation parameters to optimize (A: 
original short-axis SSFP image; B center point and detected endocardial model 
contour; C: final contour). 

8.3.1 GA’s capability to solve the MASS optimization problem 

Segmentation parameters 
The automated contour detection algorithm implemented in MASS was 
described previously. It follows a three-step procedure as illustrated in 
Figure 8-1. To determine the middle point of the left ventricle, a Hough 
transform is applied to the images, resulting in an identically sized 
parameter image, with high values near the center point of the LV having a 
radius within a certain range defined by two parameters: minimum and 
maximum endocardial radius. Then, the model determination step consists 
of a first segmentation of the blood pool area using an adaptive 
thresholding technique. Two different thresholding techniques can be used. 
The first one consists by generating radial scan lines emanating from the 
detected center and collecting for each scan the gray value of the pixel with 
the highest edge value within the minimum and maximum radii. The 
second one is based on generating iso-intensity contours surrounding the 
center point of the LV and considering the one with the highest edge 
strength. The choice of which thresholding method to use is made by one 
parameter. The mean gray value of these edge pixels weighted by a 
percentage parameter is then defined as the threshold value. Next, a 
smooth convex hull surrounding the blood pool area is determined. A total 
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of four parameters (the knowledge about the LV geometry, the choice of 
the thresholding technique to use and a weighting percentage) are required 
during the model determination. 
 In a third step, the final contour is obtained by refining the model 
contour using two successive minimal cost edge detection techniques13. 
Given the previous model contour, the image data in a certain 
neighborhood around the model is spatially transformed into a rectangular 
array (so-called scan array), the width of which can vary. Then all the 
points in this array are transformed into a cost matrix. The cost matrix is 
obtained using a derivative operation equivalent in a computational point of 
view to a convolution with a kernel that has to be optimized. The cost 
values included in the matrix reflect the probability that the corresponding 
point in the image is part of the desired contour. All possible paths through 
the matrix are evaluated for their total accumulated cost. Some 
constraints, such as the distance to look for a neighbor, or the distance 
towards the center of the matrix, or the orientation of the path are added 
to weigh the calculation of the minimal cost path. Five parameters had to 
be optimized for each minimal cost algorithm, resulting in a total of ten 
parameters optimizing in this latest step.  
 Since the output of each step is input for the following step in the 
algorithm, the optimal parameter settings for an individual step are 
dependent upon the parameter setting of the preceding steps. All the 
segmentation parameters are dependent upon the image characteristics. 
The differences in the pulse sequences cause discrepancies in, e.g., the 
brightness of the blood pool and the sharpness of the contours, which are 
crucial for the segmentation. Therefore, it is necessary to optimize these 
segmentation parameters for each specific MR pulse-sequence. 

Criterion to be optimized 
Optimizing the automated contour detection algorithm requires a criterion 
to be optimized. The criterion considered in the optimization is called the 
fitness value and is an indicator of the match between the automatically 
detected contour and a manually drawn contour (accepted as a gold 
standard). The aim of the fitness function is to quantitatively represent the 
performance of the algorithm, when using a set of segmentation 
parameters, called individual. We defined the fitness value as the degree of 

similarity S  between the automatically detected contour and the manually 

drawn contour. The degree of similarity is defined as the percentage of 
points that is similar between two contours14,15 in Eq 8-1: 
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where d is the distance between each pair of corresponding points on the 
manually drawn contour and the automatically detected contour, N is the 
number of point per contour (N=100), and T is a distance threshold; 
distances are calculated along the entire contour16. Pairs of corresponding 
points are assumed to be similar if the distance does not exceed a certain 
threshold value T (T=2 mm), which approximately corresponds to the 

average distance observerintrad   between two contours drawn by the same 

observer. 

Optimization procedure using the GA 
The GA library used in the optimization was previously described by Wall11. 
The optimization of the detection algorithm involves fourteen dependent 
parameters that constitute an individual. The optimization procedure was 
executed as a series of iterations, called generations. Each generation 
includes several individuals (called population) and can be described as 
follows: 
Step 1: automatic run of MASS package software with one individual at 

a time on a set of MR examinations,  

Step 2:  calculate the average degree of similarity S  between manual 

and automatically detected contours corresponding to the 
particular individual.  

Step 3: repeat steps 1 and 2 with all individuals included in the first 
population, thus creating the first generation. 

Step 4: The GA creates a new population of individuals by mating the 
best individuals from the current population producing new 
offspring (Figure 2). In each generation, the individuals are 

evaluated by calculatingS . 

Step 5: Determine whether the number of generations exceeds the 
preset maximum Gmax (Gmax=100 generations). If so, stop the 
iteration; otherwise go to Step 3. 

As this process continues, the population converges towards better 

individuals defined by a higherS .  

Performance analysis: Optimization procedure for different MR 
pulse sequences 
The GA family includes two different types of algorithm: GAs using “non-
overlapping populations” and GAs using “overlapping populations”. To study 
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the ability of GAs to solve the optimization problem faced, only one GA 
needs to be tested. Only if this first step is fulfilled, we can go further in 
this work and test which GA is more appropriate to our optimization 
process. We considered the 2SGA belonging to the “overlapping population” 
GA family. We expected that using this process the optimization would 
converge faster than using a “non-overlapping populations” type of GA. The 

output of MASS was used to assess the average degree of similarity S  

between automatically detected contours corresponding to one individual 

and manually drawn contour. The best S  defined the best individual per 

generation. Each individual is tested on the entire set of exams. 20 
individuals were tested per generation on two different collections of 
cardiac MR images, one consisting of eleven sets acquired with a SSFP 
sequence and the other consisting of nine sets acquired with a GRE 
sequence. Ten optimization runs were performed on the two collections of 
examinations using Gmax=100. The average and standard deviation of the 

optimal parameter sets and the best fitness value (S ) found before and 

after the optimization were compared for the two collections of images.  
 

 
Figure 8-2. Flow chart illustrating the optimization process (the GA part is displayed 
in dotted lines; the solid Lines indicate the segmentation part). 

8.3.2 Choice of the GA to use in the MASS optimization process 

Fitness study 
In this work, we tested two GA implementations (SGA and 2SGA 11) to 
determine which of them is more appropriate for optimizing the 
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segmentation algorithm used. The SGA uses non-overlapping populations of 
individuals. At each generation the algorithm creates an entirely new 
population as it was described before. Contrarily to SGA, 2SGA uses 
overlapping populations. In each generation the algorithm creates a 
temporary population of individuals, adds these to the previous population, 
then removes the worst individuals in order to reduce the population to its 
original size. The amount of overlap between generations can be specified 
by a replacement probability (preplace). It corresponds to the percentage of 
the population that will be replaced at each new generation. The probability 
of mutation pmut=0.6, combined with a crossover probability pcross=0.05 
was used with the SGA. For the 2SGA, a probability of mutation pmut=0.6, a 
crossover probability pcross=0.05, combined with a replacement probability 
preplace=0.9 was fixed11. To test which of the two algorithms is more suitable 
to our optimization process, we analyzed the convergence of the fitness 

value S  for both optimization processes on a set of 11 SSFP MR 

examinations using an arbitrarily chosen stop criterion (Gmax=100) for 50 
segmentation parameter sets or individuals. The optimal fitness values 
found with the SGA and the 2SGA algorithms, respectively, were compared 
and the algorithm with the highest fitness value was concluded to be the 
most suitable to solve the optimization problem under consideration.  
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Figure 8-3. An optimization average and standard deviation of the 10 optimal values 
found for each parameter; these values were found after 10 optimization runs on 
examinations acquired with GRE and SSFP pulse sequence. 
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Convergence speed 
The most difficult part of a probabilistic search method is to predict when 
the process is completed. Each individual run is different because of the 
probabilistic nature of the algorithm. In Bevilacqua et al.12 the evolution 
process stopped when the average of the six highest fitness values in a 
generation reached a plateau. In other words, the optimization process 
ends, when the fitness values and the standard deviation (SD) of the 
fitness values in a generation converge towards an asymptotic value. To 
compare the convergence speed of the two GAs (SGA and 2SGA), we 
analyzed the variation of the standard deviation between six highest fitness 
values per generation over the optimization processes.  
 

20

30

40

50

60

70

0 10 20 30 40 50 60 70 80 90 100

Generation

B
e

st
 f

it
n

es
s 

p
er

 g
e

n
er

at
io

n

2SGA
SGA

 
Figure 8-4. Optimization process using both 2SGA and SGA. 

8.4 RESULTS 

8.4.1 GA’s capability to solve the MASS optimization problem 

The optimization of the automatic segmentation on different pulse 
sequence (SSFP and GRE, respectively) resulted in different segmentation 
parameter sets (Figure 8-3). The average degree of similarity between 

automatically detected and manually drawn contours (S ) found with the 

segmentation algorithm before and after the optimization increased from 

%8.44S   in an earlier study on MASS15 to %3.59S  in the set of images 

acquired with GRE pulse sequence and from %5.58S  to %7.66S  in the set 

of images acquired with SSFP pulse sequence. 
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8.4.2 Choice of the GA to use in MASS optimization process 

Fitness study 
To test the performance of the algorithm we focused first on the optimal 
fitness value found after 100 generations on the set of SSFP examinations. 
With 2SGA (pmut=0.6, pcross=0.05, preplace=0.9) the optimal fitness function 

reached a value of %7.66S  , whereas with the SGA (pmut=0.6, pcross=0.05) 

the optimal fitness value found was  %5.59S   (Figure 8-3). 

Test regarding the stop criteria 
The performance of GAs is crucially dependent upon the loop termination 
criteria. We analyzed the evolution of the distribution of the six highest 
fitness values within a generation with the two different algorithms. Figure 
8-4 clearly shows that the SD of the six highest fitness values increases 
when using the SGA method while no general trend of the SD is noticed 
when using the 2SGA. 
 

Table 8-1. Average degree of similarity found per examination in the End-Systolic 
and End-diastolic phases found after the optimization of the segmentation 
algorithm. 

Examination Image  
type 

Deg of similarity 
ED phase (%) 

Deg of similarity 
ES phase (%) 

CNR 
(ED phase) 

1 SSFP 65.2 59.2 4.67 
2 SSFP 47.6 47.4 2.86 
3 SSFP 52.9 72.6 3.60 
4 SSFP 64.7 85.7 5.00 
5 SSFP 100.0 72.4 6.75 
6 SSFP 76.3 46.3 4.64 
7 SSFP 59.3 79.1 3.86 
8 SSFP 92.2 92.1 5.43 
9 SSFP 64.1 50.2 3.67 
10 SSFP 58.6 48.8 3.00 
11 GRE 78.3 54.2 3.00 
12 GRE 43.9 45.9 1.40 
13 GRE 54.2 42.1 1.67 
14 GRE 47.9 56.9 1.61 
15 GRE 59.7 61.2 3.00 
16 GRE 58.6 51.2 1.75 
17 GRE 53.2 67.9 2.08 
18 GRE 54.4 76.6 1.92 
19 GRE 47.4 68.6 2.00 
20 GRE 68.2 78.6 2.80 
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8.5 DISCUSSION 

The goal of this work was to find a procedure to automatically optimize the 
segmentation parameters for the contour detection procedure in the MASS 
analytical software package.  
The optimization requires a total of 14 dependent segmentation parameters 
to be adjusted simultaneously. The evaluation of one parameter takes 
approximately 36 s. With the assumption that these parameters are 
allowed to take only five different values, a brute-force method would 
require testing 514 sets of segmentation parameters (or individuals). Due 
to time limitations, a brute-force method for tuning the segmentation 
algorithm used in MASS would be entirely impractical (as a matter of fact, a 
brute-force method would take approximately 36.514 s, meaning years of 
calculation). On the other hand, the optimization of the segmentation 
algorithm needs to be done only once for a particular MR pulse sequence. 
Using the SGA and 2SGA approaches as optimization methods, a set of 
presumed optimal segmentation parameters can be found in 72 hours, with 
a maximum degree of similarity between the automatically detected 
contour and a gold standard, being manually drawn contours, of 59.3% 
(SGA) and 66.7% (2SGA). GAs appear to be a promising method to 
automatically tune the segmentation algorithm used in the MASS software 
package. 
 The average degree of similarity between automatically detected and 
manually drawn contours found with the segmentation algorithm increased 
with the optimization from 44.8% to 59.3% in the set of images acquired 
with a GRE pulse sequence, and from 58.5% up to 66.7% on the set of 
images acquired with SSFP pulse sequence. The different average degree of 
similarity found after the optimization in the two different set of images 
(GRE and SSFP, respectively) stressed the importance of optimizing the 
segmentation algorithm beforehand; the difference in the performance of 
the segmentation is directly linked to the different contrast to noise ratio 
(Table 8-1). This result illustrates the gain of optimizing the automatic 
segmentation algorithm (Figure 8-6 and Table 8-1). Moreover, at the end of 
the optimization process using 2SGA, the optimal set of segmentation 
parameters differed for different image characteristics. Hence, the increase 
in segmentation accuracy for images with different characteristics requires 
the use of automatic optimization procedures.  
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Figure 8-5. Graph displaying the variations of the standard deviation (SD) of the six 
highest fitness values found per generation using the SGA (simple GA) and the 2SGA 
(steady state GA), respectively. Each generation includes 50 individuals 
corresponding to 50 fitness values. The average and SD of the 6 best fitness values 
found per generation was calculated and displayed on the above-mentioned graph. 
The variation of the SD was assessed for the two GAs using two logarithm curves. 

 
In this study, we analyzed two different GA methods presented in the 
literature: the SGA and 2SGA. In order to define which one was the more 
suitable to our optimization process, we focused on two different criteria: 
the segmentation accuracy reached at the end of the process (the optimal 
fitness value) and the convergence speed (the stop criteria). Using an a-
priori defined stop criterion of 100 generations (Gmax=100), we found that 
the optimized performance of the segmentation algorithm is higher for the 

2SGA as compared to the SGA, %7.66S  vs. %5.59S  respectively. With 

respect to the convergence speed, the evolution of the SD of the fitness 
values within over generations was used as the criterion that determines 
which optimization-algorithm demonstrated the faster convergence. The SD 
of the fitness value is expected to decrease during the optimization 
process. Whereas no general trend in the SD of the fitness values could be 
detected using the 2SGA, the SD of the SGA fitness values diverges. 
Because convergence was defined as a decrease of the SD, none of the two 
algorithms was concluded to be the most suitable when using the stop 
criterion of 100 generations. Discrimination between the two algorithms will 
require some more experiments with higher generation numbers. 
Nevertheless, at this point of the study the 2SGA was more suitable to 
solve our optimization problem than the SGA that shows a SD increasing so 
a divergence of the algorithm.  
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 The intra-observer study is considered as a gold standard for 
assessment of variability according to clinical analysis. In this study, the 
intra-observer degree of similarity between manual endocardial contours 
was found to be 71% on GRE image data sets and 77% for SSFP image 
data sets. After application of the 2SGA-based algorithm, the degree of 
similarity of the automatic segmentation algorithm is comparable to the 
intra-observer degree of similarity. Thus, the accuracy of the optimized 
segmentation algorithm is now comparable to the accuracy of manual 
segmentation. Therefore, we conclude that the optimization method 
developed using 2SGA is a promising method to automate the procedure of 
finding the optimal parameter setting for LV endocardial segmentation of 
MR images acquired with SSFP and GRE pulse sequences in MASS. 
 

      
Figure 8-6. Illustration of the benefit of running the parameter optimization 
procedure. The manual contour (in white), the automatically detected prior to 
optimization (in black) and after optimization (in grey) are displayed on an MR image 
acquired using a GRE (Left) and SSFP (Right) acquisition sequence, respectively. 

8.6 CONCLUSION  

In this study, the need for automatic optimization of the segmentation 
algorithm used in the MASS software package has been demonstrated. The 
GA methods appeared to be suitable to fulfill the optimization task. This 
work demonstrated that the use of the 2SGA as an optimization method 
drastically increased the accuracy of the endocardial segmentation 
algorithm used in MASS. The MASS software package includes endocardial 
and epicardial contour detection algorithms. Since both of them need an 
initial set of parameters to run, the 2SGA is also an interesting tool to 
optimize the epicardial contour detection.  
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Summary and conclusions 

Over the period, in which the work described in this thesis was carried out, 
cardiovascular magnetic resonance (CMR) imaging has developed from an 
imaging modality primarily used for research into a routinely used clinical 
imaging modality which is applied every day in many hospitals worldwide. 
CMR has become the accepted gold standard for quantification of 
ventricular volumes. However, an MR scanner does not automatically 
generate quantitative results. It requires image segmentation, i.e. 
definition of object boundaries in the images, which is a time-consuming 
and tedious procedure when done manually. The availability of automated 
contour detection techniques that can accurately detect the myocardial 
boundaries in clinical CMR imaging studies would be of enormous value for 
routine clinical use of CMR.  
 
The aim of this thesis was to investigate image processing techniques for 
automated and semi-automated assessment of quantitative parameters 
from cardiovascular magnetic resonance imaging studies.  
 
Chapter 1 presents a general introduction to this thesis and defines the 
scope of the work.  
 
In Chapter 2 an overview is presented of image processing techniques 
which are used for quantitative analysis of various CMR acquisition 
protocols. 
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Chapter 3 describes an image segmentation method that was developed 
for the semi-automated detection of endocardial and epicardial contours for 
all slices and phases in short-axis cine MR imaging studies. Goal of this 
study was to evaluate the newly developed semi-automated contour 
detection algorithm. 
 The segmentation procedure presented in this chapter is based on 
multiple image processing steps including low-level techniques such as 
thresholding and edge detection using dynamic programming. Several 
constraints are incorporated in the various processing steps in order to 
increase the accuracy and robustness of the method. The segmentation 
algorithm is performed slice by slice, starting with the detection of the 
epicardial contour in the end-diastolic time-frame. A frame-by-frame 
detection of the epicardial contours in the remaining time-frames is 
performed by using the available epicardial contour of the ED frame as a 
model and deforming it such that the local image characteristics near the 
contour are similar to the corresponding location in the ED phase. Only a 
small deviation from the model contour is allowed, as it is known that the 
shape of the epicardial contour only shows little movement over the cardiac 
cycle. 
 Once the epicardial contours are available, the search for endocardial 
contours can be restricted to the region within the epicardial contour. The 
first step performed is finding an optimal threshold value separating the LV 
blood pool from the surrounding myocardium. The contour around the 
extracted blood pool serves as a first approximation of the endocardial 
contour. Concave sections in this contour are often caused by papillary 
muscles or trabecularization of the LV endocardial wall. Therefore a smooth 
convex hull around the extracted region is used as a better approximation 
of the endocardial contour. This contour is then used as input for dynamic 
programming, resulting in a locally more accurate contour. 
 A main ingredient of the developed contour detection procedure is the 
incorporation of available contours as a priori information when detecting 
other contours in the MR study. Since any automatically detected contour 
may be inaccurate, the use of such information may also lead to error 
propagation. Therefore, for each contour also the status was recorded and 
only those contours which are known to be valid are used as model 
information. A valid contour can either be a contour that was edited 
manually, or a contour that was initially detected automatically and then 
accepted by the operator. Using this concept, it was shown that the 
presented contour detection approach could be used to obtain accurate 
contours in all slices and phases of a study with minimal amount of contour 
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editing. For endocardial contours no manual editing was used at all. For 
epicardial contours, only in 1.4% of the images manual editing was 
performed. However, in this study, in the most basal slice level where no 
complete circumference of myocardium is present, both endo- and 
epicardial contours were traced manually. 
 
Chapter 4 describes an automated contour detection method for the 
assessment of aortic flow from velocity-encoded cine MR imaging studies of 
the ascending aorta. Quantification of flow in the aorta can be used to 
derive the left ventricular stroke volume. In addition, by comparing aortic 
flow with pulmonary flow, the severity of shunts between the left and right 
heart chambers can be quantified. 
 Instantaneous aortic flow can be obtained by tracing a contour around 
the aortic cross-section and multiplying the cross-sectional area with the 
average blood flow velocity.  To correct for the significant in-plane and 
through-plane motion as well as changes in cross-sectional shape over the 
cardiac cycle of the aorta, during manual image analysis the user is 
required to trace the vessel border in each individual image of the multi-
phase MR examination, thereby carefully avoiding the inclusion of flow in 
adjacent regions from other vessels. Since this is a time consuming and 
tedious procedure which introduces observer variabilities, the automation of 
this process is desirable. The developed automated contour detection 
algorithm performs the segmentation in three separate steps. In the first 
step the user is required to identify an approximate center point of the 
aorta in one of the time frames. A contour around the aorta is detected and 
used as first approximation for the remaining time frames. To correct for 
in-plane motion of the aorta, the contour location is adjusted for each 
individual time frame, thereby enforcing a time-continuous motion pattern. 
Finally for each contour an edge based contour detection is performed to 
account for shape changes of the aortic cross-section. 
 The presented automated contour detection method fulfills the clinical 
requirements, as it requires minimal user interaction, it provides results 
which are in close agreement with results derived from manual contour 
tracing and has low inter- and intra-observer variability. 
 
In Chapter 5 a new method is presented to obtain more accurate 
measurements of left ventricular wall thickness using a 3D extension of the 
Centerline method. The method takes advantage of the available 3D 
geometrical information of the acquired imaging planes. Conventional 2D 
approaches may result in overestimation of the true wall thickness in 
regions where the ventricular wall does not intersect at an exact 90° angle 
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with the imaging plane. This situation commonly occurs near the apex of 
the left ventricle. However, such overestimation may also be the result of 
inaccurate planning of the short-axis stack of images. Additionally, the 
extent of overestimation may vary over the cardiac cycle in case the left 
ventricle exhibits a significant change in orientation during contraction and 
relaxation.  

Evaluation of the method using a data set of synthetic phantoms 
mimicking the geometry of the left ventricle, demonstrates the validity of 
the new approach. It is shown that over-estimation in wall thickness that 
typically occurs near the ventricular apex using the standard 2D Centerline 
method, is strongly reduced by applying the new 3D method. In addition, 
the 3D method is able to correct errors in wall thickness measurements 
that occur in case of inaccurate planning of the orientation of the stack of 
short-axis images. Using MR studies of normal volunteers, it is also shown 
that the 3D method results in less variability in wall thickness from base to 
apex and between different regions of the left ventricle. It should be noted 
that application of the 3D wall thickness calculation method requires multi-
slice short-axis acquisitions with correct 3D alignment. In case the short-
axis slices are acquired during separate breath-holds, image co-registration 
may be needed as a preprocessing procedure. 
 
Chapter 6 describes a study evaluating an image processing algorithm for 
the automated detection of endocardial and epicardial boundaries of the left 
ventricle in time series of short-axis MR images based on an Active 
Appearance Motion Model (AAMM). In previous work the usefulness of AAM 
contour detection for the segmentation of the left and right ventricular 
boundaries in individual short-axis MR images had already been 
demonstrated. In this work an extension of the AAM contour detection was 
developed which performs modeling and contour detection for complete 
time-series of short-axis MR images. The rationale for this new approach is 
that by modeling the image information contained in a time-series of 
images, the automated segmentation procedure is expected to be more 
robust since all image data are used during the detection of a globally 
optimal time-continuous segmentation result. Poor image quality in 
particular time-frames will therefore not result in outlier contours.  
 In the AAMM, the appearance of the left ventricle is modeled for the 
systolic phase of the cardiac cycle by considering the image frames from 
ED to ES. For application of the AAMM contour detection method, for each 
study the ES time frame needs to be identified manually; the first time 
frame is assumed to represent ED. Using an iterative procedure the gray 
value difference between the synthetic AAMM image and the actual pixel 
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data  is minimized by adjusting the pose parameters and the AAMM model 
parameters. This matching process results in the endocardial and epicardial 
contours for the complete time-series. 
 For the evaluation of the performance of the AAMM contour detection 
method a leave-one-subject-out approach is used. In three out of twenty 
studies the contour detection was not successful. For the remaining 17 
studies a good agreement was found between manually derived and 
automatically derived global LV function parameters. Differences between 
manually and automatically derived results were 0.3±12% for the end-
diastolic volume; 2±23% for the end-systolic volume; 0.1±6.7% for 
ejection fraction and for 0.7±15% for LV mass. These results compare 
favorably with the computed inter-observer variability for manual contour 
tracing.  
 Despite the good results, the study also shows a shortcoming of the 
AAMM contour detection method. In three studies the obtained contours do 
not fit to the actual endocardial and epicardial boundaries. Further 
inspection of these three studies reveals the presence of particular features 
in these studies that could explain the poor performance. Using a more 
extended training set of CMR exams including more pathological cases may 
alleviate this problem. 
 
In Chapter 7 an automated contour detection technique is described which 
is based on tracking of landmark points over the cardiac cycle. The 
landmarks are positioned at the myocardial boundary and are tracked over 
the cardiac cycle using a multi-dimensional dynamic programming (ND-DP) 
technique. As input, the method requires an existing contour in one of the 
time frames. In this study, the method is initialized using a manually traced 
contour in the mid-systolic time frame and 32 landmarks are defined at 
evenly spaced intervals along the contour. Image information around the 
defined landmarks is used to find likely locations for the landmark in other 
time frames. Within the ND-DP framework constraints are imposed on the 
allowed motion of a landmark, i.e. 1) the maximal excursion should be less 
than a certain threshold; 2) the maximal displacement from frame to frame 
is limited; and 3) since the image sequence describes a complete cardiac 
cycle, the path described by a landmark must be cyclic.  
 The proposed method has a number of important advantages. First, 
the contour detection result is relatively insensitive to individual image 
frames with poor image quality. Second, since an image matching strategy 
is used to find the likely locations of a landmark, the tracking results are 
also reliable in case part of the contour is defined in an area without clear 
edges. This advantage is especially of importance near the papillary 
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muscles for the endocardial boundaries and regions of poor contrast or 
epicardial fat during the detection of epicardial contours. 
 Quantitative evaluation of the method was performed on 20 CMR data 
sets of 18 patients with several pathologies and 2 normal volunteers. 
Compared to results derived by manual tracing, errors in end-diastolic 
volume, end-systolic volume and ejection fraction were smaller than 5%. 
Border position errors were in the order of one pixel. 
 The general applicability of the ND-DP method is further demonstrated 
in another segmentation problem. ND-DP is applied to a temporal series of 
MR phase-contrast images of the ascending aorta. A six-dimensional 
implementation was tested using four radii and the x,y position of the aorta 
center. By imposing a temporal continuity constraint on all six parameters, 
temporal tracking of the contour describing the aortic cross-section was 
performed successfully. 
 
The motivation for the work described in Chapter 8 is that image 
characteristics are highly dependent on the MRI scanner used and the 
applied scanning protocol. Therefore for optimal performance, the 
parameter settings of an automated contour detection method, such as the 
one described in Chapter 3, needs to be fine-tuned for a specific MR 
acquisition protocol. Since the optimal value of a parameter can be 
dependent on the values of other parameters, finding the optimal values for 
all parameters is a non-trivial task. Searching for the optimal settings can 
be seen as a high-dimensional optimization problem. In this study the 
value of genetic algorithm based parameter optimization is studied for this 
particular problem. To this end the automated endocardial contour 
detection algorithm as described in Chapter 3 is tested on MR image data 
acquired with either a gradient-echo (GRE), or a Steady State Free 
Procession (SSFP) protocol. Based on earlier experience, 15 parameters are 
selected for the optimization. It is demonstrated that compared to the 
default setting of the parameters a significant improvement in detection 
performance is obtained after parameter optimization. This study also 
reveals that the contour detection algorithm, although originally developed 
for GRE MR image data, is also applicable for images acquired using a SSFP 
protocol. It can be concluded that parameter optimization using genetic 
algorithms is a practical technique for optimization of the performance of a 
contour detection method for a particular type of image data. 

9.1 GENERAL CONCLUSIONS 

Cardiac Magnetic Resonance Imaging (CMR) has become an important 
clinical imaging modality for cardiac evaluation. Reliable computer 
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algorithms for quantitative image analysis, including automated contour 
detection, are therefore of enormous clinical importance. The purpose of 
this thesis, as described in the first chapter, was to develop and validate 
automated contour detection techniques for quantitative evaluation of 
cardiac MR examinations that can be used in a routine clinical setting. 
 The automated contour detection techniques described in the thesis 
were all applied to clinical CMR data and the results of automated contour 
detection were compared to manually traced contours as gold standard. A 
high agreement with manual image analysis was demonstrated for the 
presented contour detection techniques. For all algorithms developed it was 
attempted to make effective use of available a priori information. The 
algorithms described in chapter 2 and 7 use information from manually 
traced or edited contours as a priori information to guide the contour 
detection in other frames. This however implies that these algorithms are 
dependent on manual interaction. The AAMM contour detection technique 
described in Chapter 6 only requires the manual definition of the end-
systolic phase, while the contour detection itself runs fully automatically. 
The a priori information used in this algorithm is derived from a training set 
of CMR exams with available contours.  
 A possible direction in realizing the ultimate goal of accurate and 
robust fully automated contour detection in clinically acquired CMR imaging 
studies is by combining several components of the algorithms described in 
this thesis. The large variability in image characteristics and inter-patient 
differences requires the use of a priori information. The segmentation of 
the apical and basal short-axis slices, which are more difficult to process 
automatically, can be supported by taking advantage of available images 
acquired in the long-axis orientation. While fully automated contour 
detection seems attractive, also the use of more efficient methods of user-
interaction is worth investigating. The combination of advanced automated 
contour detection techniques, optimal visualization and advanced user 
interaction may result in the most viable solution. 
 In conclusion, in this thesis we have developed and validated various 
automated contour detection techniques and image analysis approaches for 
quantitative analysis of cardiac MR imaging studies. The developed 
methods have also been integrated into analytical software packages that 
are being used in many clinical centers worldwide. Based on the work 
described in the thesis and the large quantity of clinical journal papers in 
which the developed approaches have been applied for clinical research, we 
may conclude that we have realized the goals that were set at the start of 
the thesis.  
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CHAPTER 

 

Samenvatting en conclusies 

Over de periode waarin het werk van dit proefschrift is verricht heeft 
cardiovasculaire Magnetische Resonantie (CMR) Imaging zich ontwikkeld 
van een beeldmodaliteit primair voor onderzoekstoepassing, tot een 
routinematig gebruikte klinische beeldmodaliteit welke wereldwijd iedere 
dag toegepast wordt. CMR wordt nu gezien als de geaccepteerde gouden 
standaard voor de kwantificatie van ventrikelvolumina. Echter, 
kwantitatieve meetgegevens worden niet automatisch gegenereerd door de 
MRI scanner. Het vereist beeldsegmentatie, i.e. de definitie van de 
begrenzingen van objecten in de beelden, hetgeen een tijdrovende en 
belastende procedure is indien uitgevoerd middels het handmatig tekenen 
van contouren. De beschikbaarheid van automatisch contourdetectie 
technieken welke nauwkeurig de contouren van de hartspier kunnen 
detecteren in klinische CMR onderzoeken zou van enorm klinisch belang 
zijn voor de routinematige toepassing van CMR. 
 
Het doel van dit proefschrift was om beeldverwerkingstechnieken te 
onderzoeken voor de automatische en semi-automatische bepaling van 
kwantitatieve parameters voor cardiovasculaire magnetische kernspin-
resonantie technieken. 
 
Hoofdstuk 1 geeft een algemene inleiding tot dit proefschrift en definieert 
het kader van het werk. 
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In hoofdstuk 2 wordt een overzicht gepresenteerd van de 
beeldverwerkingstechnieken die toegepast worden voor de kwantitatieve 
analyse van verschillende CMR beeldacquisitieprotocollen. 
 
Hoofdstuk 3 beschrijft een beeldsegmentatiemethode die werd ontwikkeld 
voor de semi-automatische detectie van endocardiale en epicardiale 
contouren voor alle beeldvlakken en fasen in korte-as MR onderzoeken. Het 
doel van deze studie was de evaluatie van het nieuw ontwikkelde semi-
automatische contourdetectie algoritme. 
  De in dit hoofdstuk gepresenteerde segmentatieprocedure is 
gebaseerd op meerdere beeldverwerkingsstappen, inclusief ‘low-level’ 
technieken zoals drempeling en rand-detectie gebruik makend van 
dynamisch programmeren. Om de nauwkeurigheid en de robuustheid van 
de methode te verbeteren zijn meerdere randvoorwaarden geïncorporeerd 
in de verschillende verwerkingsstappen. De beeldvlakken worden door het 
segmentatiealgoritme één voor één verwerkt, beginnende met de detectie 
van de epicardiale contour in het einddiastolische (ED) tijdsmoment. De 
detectie van de epicardiale contouren in de overige fasen wordt uitgevoerd 
middels een fase-na-fase detectie, waarbij de epicardiale contour in het ED 
beeld als model wordt gebruikt, welke zodanig wordt vervormd dat de 
lokale beeldkarakteristieken in de naburigheid van de contour 
overeenkomen met de corresponderende locaties in het ED beeld. Hierbij 
wordt slechts een kleine deviatie van de model-contour toegestaan, 
gegeven de kennis dat een epicardiale contour slechts een kleine beweging 
laat zien over een hartcyclus. 
 Zodra de epicardiale contouren beschikbaar zijn, kan het zoekgebied 
voor endocardiale contouren worden beperkt tot het gebied binnen de 
epicardiale contour. Als eerste stap wordt hierbij een optimale 
drempelwaarde bepaald welke het bloedgebied isoleert van de omliggende 
hartspier. De contour rondom het geïsoleerde bloedgebied dient als eerste 
benadering van de endocardiale contour. Concave delen in deze contouren 
zijn vaak het gevolg van papillairspieren of trabecularisatie van de 
endocardiale hartwand. Een gladde convexe omhullende rondom het 
gevonden gebied wordt daarom gebruik om tot een betere benadering van 
de endocardiale contour te komen. 
 Een belangrijk element van de ontwikkelde contourdetectie procedure 
is het gebruik maken van reeds beschikbare contouren als a priori 
informatie bij het detecteren van andere contouren binnen de MR studie. 
Aangezien automatisch gedetecteerde contouren onnauwkeurig kunnen 
zijn, kan het gebruik maken van deze informatie ook leiden tot fout 
propagatie. Daarom wordt van iedere contour ook de status bijgehouden en 
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alleen die contouren waarvan de juistheid bekend is, worden gebruikt als 
modelinformatie. Geldige contouren zijn, ofwel contouren die handmatig 
zijn aangepast, dan wel contouren die initieel automatisch werden 
gedetecteerd en daarna handmatig geaccepteerd door de gebruiker. 
Gebruik makend van dit concept kon worden aangetoond dat de 
gepresenteerde contourdetectie aanpak gebruikt kon worden om 
nauwkeurige contouren te bepalen in alle beeldvlakken en fasen van een 
studie met minimaal gebruik van handmatige correcties. Het was niet 
toegestaan om endocardiale contouren aan te passen. Handmatige 
aanpassing van epicardiale contouren werd in slechts 1.4% van de beelden 
toegepast. Echter, in deze studie werden de contouren van het meest 
basale beeldvlak handmatig getekend. 
 
Hoofdstuk 4 beschrijft een automatische contourdetectiemethode voor het 
bepalen van de bloedstroming in de aorta op basis van 
snelheidsgecodeerde MRI studies van de ascenderende aorta. Kwantificatie 
van de bloedstroming in de aorta kan gebruikt worden om het 
linkerventrikel slagvolume af te leiden. Tevens kan, door de bloed stroming 
in de aorta met die van de pulmonaalarterie te vergelijken, de ernst van 
een pathologische verbinding tussen de linker en rechter harthelft worden 
gekwantificeerd. 
 De instantane aorta bloedstroming kan worden bepaald door een 
contour te tekenen rondom de doorsnede van de aorta en het oppervlakte 
van de doorsnede te vermenigvuldiging met de gemiddelde 
bloedstroomsnelheid. Tijdens de manuele beeldanalyse is het noodzakelijk 
om te corrigeren voor de aanzienlijke beweging van de aorta in het 
beeldvlak en door het beeldvlak heen, evenals voor de vormveranderingen 
van de doorsnede van de aorta in elk individueel beeld van de multi-fase 
MR opname. De inclusie van naburige delen in het beeld met een snelheid 
behorende bij een ander vat dient voorkomen te worden. Aangezien dit een 
tijdrovende en belastende procedure is welke gepaard gaat met gebruikers 
variaties, is het automatiseren van dit proces zeer gewenst. Het 
ontwikkelde automatische contourdetectie algoritme voert de segmentatie 
uit in drie afzonderlijke stappen. In de eerste stap dient de gebruiker een 
middelpunt aan te geven in het midden van de aorta in één van de fasen. 
In dit beeld wordt vervolgens een contour rondom de aorta gedetecteerd, 
welke gebruikt zal worden als eerste benadering voor de overige fasen. Om 
te corrigeren voor de verplaatsing van de aorta in het beeldvlak wordt de 
contourpositie aangepast voor elk individueel tijdsmoment. Hierbij wordt 
een tijdcontinue beweging afgedwongen. In de laatste stap wordt voor elke 
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contour een beeldrand gebaseerde contourdetectie uitgevoerd om te 
corrigeren voor vormveranderingen van de aorta doorsnede in het beeld 
 Het gepresenteerde automatische contourdetectie algoritme voldoet 
aan de klinische eisen, aangezien de benodigde gebruikers-interactie 
minimaal is, de resultaten goed overeen komen met die van handmatige 
analyse en de methode een zeer geringe inter- en intra-gebruikers 
variabiliteit kent.  
 
In Hoofdstuk 5 wordt een nieuwe methode gepresenteerd voor een 
nauwkeuriger bepaling van linkerventrikel wanddikte metingen, gebruik 
makend van een extensie van de ‘Centerline’ methode. De methode maakt 
gebruik van de 3D geometrische informatie van de opgenomen 
beeldvlakken. De conventionele 2D methode kan leiden tot overschatting 
van de werkelijke wanddikte in gebieden waar de hoek van de 
ventrikelwand met het beeldvlak niet exact gelijk is aan 90°. Deze situatie 
komt veelvuldig voor rondom de apex van het linkerventrikel. Een 
dergelijke overschatting kan echter ook het gevolg zijn van het 
onnauwkeurig plannen van de stapel van korte-as beelden. Daarnaast kan 
de mate van overschatting variëren over de hartcyclus in geval het 
linkerventrikel een significante oriëntatie verandering ondergaat gedurende 
contractie en relaxatie. 
 Evaluatie van de methode gebruik makend van een data set van 
synthetische fantomen met een geometrie gelijkend aan het linkerventrikel, 
toont de validiteit aan van de methode. Het wordt aangetoond dat 
wanddikte overschatting in het apicale gebied, die optreden bij het gebruik 
van de standaard 2D Centerline methode, met de nieuwe 3D methode sterk 
wordt gereduceerd. Daarnaast is de 3D methode in staat om fouten te 
corrigeren in de wanddikte metingen ten gevolge van onnauwkeurige 
planning van de oriëntatie van de korte-as beeldvlakken. Gebruik makend 
van MR studies van normale vrijwilligers wordt ook aangetoond dat de 3D 
methode leidt tot vermindering van de variabiliteit in wanddikte van basis 
tot apex en tussen verschillende regio’s van het linkerventrikel. Het is 
belangrijk op te merken dat toepassing van de 3D wanddikte methode een 
juiste 3D uitlijning vereist van de multi-fase korte-as beeldvlakken. Indien 
de korte-as beelden worden opgenomen in afzonderlijke periodes van 
ademstilstand, kan een beeld co-registratie nodig zijn als een 
voorbewerkingstap. 
 
Hoofdstuk 6 beschrijft een evaluatiestudie van een 
beeldverwerkingalgoritme voor de automatische detectie van endocardiale 
en epicardiale begrenzingen van het linkerventrikel in tijdseries van korte-
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as MRI beelden gebaseerd op een ‘Active Appearance Motion Model’ 
(AAMM). In eerder werk werd het nut van AAM contourdetectie voor de 
segmentatie van het linker- en rechterventrikel in individuele korte-as MR 
beelden al aangetoond. In dit werk wordt een extensie van AAM 
contourdetectie geïntroduceerd, waarbij het modelleren en het detecteren 
in complete tijdseries van korte-as MR beelden geschiedt. De 
achterliggende gedachte achter deze nieuwe aanpak is dat het modelleren 
van beeldinformatie over een gehele tijdserie van beelden de automatische 
segmentatie procedure robuuster zal maken, omdat alle beelddata gebruikt 
wordt tijdens de detectie van een globaal optimaal tijdcontinu 
segmentatieresultaat. Slechte beeldkwaliteit in individuele beelden zal 
daarom niet leiden tot uitbijtercontouren. 
 In de AAMM wordt de ‘appearance’ van het linkerventrikel 
gemodelleerd voor de systolische fase van de hartcyclus gebruik makend 
van de fasen van ED tot en met ES. Om AAMM contourdetectie te kunnen 
toepassen dient de gebruiker voor elke studie de ES fase aan te duiden; de 
eerste fase wordt als ED moment verondersteld. Met behulp van een 
iteratieve procedure wordt het grijswaarde verschil geminimaliseerd tussen 
het synthetische AAMM beeld en de werkelijke pixel data door de pose en 
de AAMM model parameters aan te passen. Dit matchingsproces resulteert 
uiteindelijk in de endocardiale en epicardiale contouren voor de gehele tijd-
serie. 
 Bij de evaluatie van de prestaties van de AAMM 
contourdetectiemethode is gebruik gemaakt van een ‘leave-one-subject-
out’ aanpak. De contourdetectie was niet succesvol in drie van de twintig 
studies. In de overige 17 studies wordt een goede overeenkomst gevonden 
tussen manueel en automatisch afgeleide globale LV functie parameters. De 
verschillen tussen manueel en automatisch bepaalde resultaten waren voor 
het einddiastolisch volume 0.3±12%; voor het eindsystolisch volume 
2±23%; voor de ejectiefractie 0.1±6.7% en voor LV massa 0.7±15%. 
Deze resultaten komen goed overeen met berekende inter-operator en 
intra-operator variabiliteit voor het manueel contouren tekenen. 
 Ondanks de goede resultaten laat de studie ook een tekortkoming van 
de AAMM contourdetectie methode zien. In drie studies passen de 
gedetecteerde contouren niet goed op de werkelijke endocardiale en 
epicardiale contouren. Verdere inspectie van deze drie studies brengt aan 
het licht dat, bepaalde in deze studies aanwezige features, mogelijk de 
oorzaak zijn van de slechte prestaties. Toepassing van een uitgebreidere 
trainingset van CMR studies, inclusief een groter aantal pathologische 
gevallen, kan mogelijk een oplossing bieden voor dit probleem. 
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In Hoofdstuk 7 wordt een automatische contourdetectietechniek 
beschreven die gebaseerd is op het vervolgen van markeringspunten over 
een hartcyclus. De markeringspunten worden gepositioneerd op de grens 
van de hartspier en vervolgd over de hartcyclus gebruik makend van een 
multi-dimensionale dynamisch programmeer techniek (ND-DP). De 
methode vereist als invoer een bestaande contour in één van de 
tijdsmomenten. In deze studie wordt de methode geïnitialiseerd met een 
manueel getekende contour in de mid-systolische fase met 32 
markeringspunten verdeeld rondom de contour. Gebruik makend van de 
beeldinformatie rondom een markeringspunt worden aannemelijke locaties 
voor het markeringspunt in andere tijdmomenten gevonden. Binnen het 
ND-DP raamwerk worden beperkingen opgelegd ten aanzien van de 
toegestane verplaatsing van een markeringspunt: 1) de maximale 
verplaatsing dient kleiner te zijn dan een bepaalde drempelwaarde; 2) de 
maximale verplaatsing tussen twee opeenvolgende tijdsmomenten is 
beperkt; en 3) aangezien de tijdserie van beelden een complete hartcyclus 
beschrijft, dient het door de markeringspunten beschreven pad cyclisch te 
zijn. 
 De voorgestelde methode heeft een aantal belangrijke voordelen. Ten 
eerste, het resultaat van contourdetectie is relatief ongevoelig voor 
individuele tijdsmomenten met slechte beeldkwaliteit. Ten tweede, doordat 
een beeld-matchingsstrategie wordt gebruikt om de waarschijnlijke 
markeringspuntlocaties te vinden, is het resultaat van vervolgen ook 
betrouwbaar indien een deel van de contour gedefinieerd is in een gebied 
zonder duidelijke beeldranden. Dit voordeel is in het bijzonder van belang 
rondom de papillairspieren bij de detectie van de endocardiale 
begrenzingen en in gebieden met een slecht contrast of epicardiaal vet bij 
de detectie van epicardiale contouren. 
 Kwantitatieve evaluatie van de methode wordt uitgevoerd op 20 CMR 
data sets van 18 patiënten met verschillende pathologiën en 2 gezonde 
vrijwilligers. Vergeleken met manueel behaalde resultaten, zijn de fouten in 
einddiastolisch volume, eindsystolisch volume en ejectiefractie kleiner dan 
5%. De contour positie fouten zijn in de orde van een pixel. 
 De generieke toepasbaarheid van de ND-DP methode wordt 
vervolgens aangetoond middels een ander segmentatieprobleem. ND-DP 
wordt toegepast op een temporele serie van MR fase-contrast beelden van 
de ascenderende aorta. Een zes-dimensionale implementatie wordt getest 
gebruik makend van vier stralen en de x,y positie van de aorta. Gebruik 
makend van een randvoorwaarde ten aanzien van de temporele continuïteit 
voor alle zes parameters, wordt op succesvolle wijze de contour rondom de 
aorta doorsnede vervolgd over de tijd. 
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De motivatie voor het werk beschreven in hoofdstuk 8 is dat 
beeldkarakteristieken in hoge mate afhankelijk zijn van de gebruikte MRI 
scanner en het toegepaste scan protocol. Voor optimale prestaties van een 
automatisch contourdetectie methode, zoals die beschreven in Hoofdstuk 3, 
dienen de parameter instellingen optimaal te worden afgestemd voor een 
specifiek MR opname protocol. Aangezien de optimale waarde van een 
parameter afhankelijk kan zijn van de waarde van andere parameters, is 
het vinden van de optimale waarde voor alle parameters geen triviale taak. 
Het zoeken naar de optimale instellingen kan worden gezien als een 
hoogdimensionaal optimalisatie probleem. In deze studie wordt voor dit 
specifieke probleem de waarde onderzocht van parameter optimalisatie met 
behulp van genetisch algoritmen. Hiertoe wordt het in hoofdstuk 3 
beschreven automatische contourdetectiealgoritme getest op MR beelden 
die opgenomen zijn met een Gradient-Echo (GRE) of Steady State Free 
Precession (SSFP) protocol. Op basis van eerdere ervaringen worden 15 
parameters geselecteerd voor de optimalisatie. Aangetoond wordt dat, in 
vergelijking met de initiële instelling van de parameters, de prestaties van 
het contour detectie algoritme aanzienlijk verbeteren na toepassing van 
parameter optimalisatie. De studie laat ook zien dat het 
contourdetectiealgoritme, hoewel oorspronkelijk ontwikkeld voor GRE MR 
beelden, ook toegepast kan worden op beelden die opgenomen zijn met 
een SSFP protocol. Er kan geconcludeerd worden dat parameter 
optimalisatie met behulp van genetische algoritmen een praktische 
techniek is om de prestaties van een contourdetectie methode te 
optimaliseren voor beelden die opgenomen zijn met een bepaald 
opnameprotocol. 

10.1 ALGEMENE CONCLUSIES 

Cardiale Magnetische Resonantie Imaging (CMR) is een belangrijke 
klinische beeldmodaliteit geworden voor de evaluatie van het hart. 
Betrouwbare computer algoritmen voor kwantitatieve beeldanalyse, 
inclusief automatische contour detectie, zijn daarom van enorm klinisch 
belang. Het doel van dit proefschrift, zoals beschreven in het eerste 
hoofdstuk, was de ontwikkeling en validatie van automatische contour-
detectietechnieken voor de kwantitatieve analyse van cardiale MRI 
onderzoeken die geschikt zijn voor routinematige klinisch gebruik.  
 Alle in dit proefschrift beschreven contourdetectietechnieken werden 
toegepast op klinische CMR data en de resultaten van automatische 
contourdetectie werden vergeleken met manueel getekende contouren als 
gouden standaard. De gepresenteerde contourdetectietechnieken lieten een 



176 │ Chapter 10 

 

goede overeenkomst zien met manueel getekende contouren. Bij alle 
algoritmen werd getracht om effectief gebruik te maken van beschikbare a 
priori informatie. De in Hoofdstuk 2 en 7 beschreven algoritmen gebruiken 
manueel getekende of aangepaste contouren als a priori informatie om de 
detectie in andere tijdsmomenten aan te sturen. Dit betekent dat deze 
algoritmen wel afhankelijk zijn van manuele interactie. De AAMM contour 
detectie techniek, beschreven in Hoofdstuk 6, is slechts afhankelijk van het 
manueel aangeven van de eindsystolische fase, terwijl het algoritme zelf 
volledig automatisch verloopt. De door dit algoritme gebruikte a priori 
informatie is afgeleid van een leerset van CMR studies met beschikbare 
contouren. 
 Een mogelijke richting om het ultieme doel te bereiken van een 
nauwkeurige en robuuste volledig automatische contourdetectie voor 
klinisch opgenomen cardiale MRI studies is door het combineren van 
verschillende componenten van de in het proefschrift beschreven 
algoritmen. De grote mate van variatie in beeld karakteristieken en inter-
patiënt verschillen, maken het gebruik van a priori informatie noodzakelijk. 
De segmentatie van de apicale en basale korte-as beelden, welke moeilijker 
te verwerken zijn, kan worden ondersteund door gebruik te maken van 
beschikbare beelden die opgenomen zijn in de lange-as oriëntatie. Hoewel 
volledig automatische detectie aantrekkelijk lijkt, is ook het benutten van 
efficiëntere gebruikersinteractie de moeite waard om nader te onderzoeken. 
De meest praktische oplossing ligt mogelijk in de combinatie van 
geavanceerde contourdetectie technieken, optimale visualisatie en 
geavanceerde gebruikersinteractie. 
 Concluderend hebben we in dit proefschrift verschillende automatische 
contourdetectie en beeld analyse technieken ontwikkeld en gevalideerd 
voor de kwantitatieve analyse van cardiale MRI studies. De ontwikkelde 
methoden zijn ook geïntegreerd in analytische software pakketten welke 
wereldwijd door vele klinische centra worden toegepast. Op basis van het in 
dit proefschrift beschreven werk en de grote hoeveelheid artikelen in 
wetenschappelijke klinische tijdschriften waarin de ontwikkelde methoden 
zijn toegepast voor klinisch onderzoek, mogen we concluderen dat de 
gestelde doelen voor het proefschrift zijn gerealiseerd. 
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