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Weak gravitational lensing with DEIMOS
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ABSTRACT
We introduce a novel method for weak-lensing measurements, which is based on a mathemat-
ically exact deconvolution of the moments of the apparent brightness distribution of galaxies
from the telescope’s point spread function (PSF). No assumptions on the shape of the galaxy
or the PSF are made. The (de)convolution equations are exact for unweighted moments only,
while in practice a compact weight function needs to be applied to the noisy images to en-
sure that the moment measurement yields significant results. We employ a Gaussian weight
function, whose centroid and ellipticity are iteratively adjusted to match the corresponding
quantities of the source. The change of the moments caused by the application of the weight
function can then be corrected by considering higher order weighted moments of the same
source. Because of the form of the deconvolution equations, even an incomplete weighting
correction leads to an excellent shear estimation if galaxies and PSF are measured with a
weight function of identical size.

We demonstrate the accuracy and capabilities of this new method in the context of weak
gravitational lensing measurements with a set of specialized tests and show its competitive
performance on the GREAT08 Challenge data. A complete C++ implementation of the method
can be requested from the authors.
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1 IN T RO D U C T I O N

Shear estimation from noisy galaxy images is a challenging task,
even more so for the stringent accuracy requirements of upcoming
cosmic shear surveys. Existing methods can achieve multiplicative
errors in the percent range (Bridle et al. 2010), but to exploit the
statistical power of the next-generation surveys errors in the permille
range or even below are requested (Amara & Réfrégier 2008).

Shear estimates can be achieved in a model-based fashion or in
a model-independent fashion. For instance, LENSFIT (Miller et al.
2007) compares sheared and convolved bulge-disc profiles to the
given galaxies. Model-based approaches often perform excellently
for strongly degraded data because certain implicit or explicit priors
keep the results within reasonable bounds, e.g. the source ellipticity
smaller than unity. On the other hand, when imposing these priors
to data, whose characteristics differ from the expectation, these
approaches may also bias the outcome.

Model-independent approaches do not – or at least not as strongly
– assume particular knowledge of the data to be analysed. They
should therefore generalize better in applications, where priors are
not obvious, e.g. on the intrinsic shape of lensed galaxies. The tra-
ditional KSB method (Kaiser, Squires & Broadhurst 1995) forms
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a shear estimator from the second-order moments of lensed galaxy
images. When doing so, it is not guaranteed that reasonable shear
estimates can be achieved for each galaxy. Consequently, KSB re-
quires a careful set-up, which is adjusted to the characteristics of the
data to be analysed. KSB furthermore employs strong assumptions
on the point spread function (PSF) shape, which are not necessarily
fulfilled for a given telescope or observation (Kuijken 1999). As
we have shown recently, KSB relies on several other assumptions
concerning the relation between convolved and unconvolved ellip-
ticity as well as the relation between ellipticity and shear, neither of
which hold in practice (Viola, Melchior & Bartelmann 2011).

In this work we present a novel method for shear estimation,
which maintains the strengths of model-independent approaches by
working with multipole moments, but does not suffer from the KSB
shortcomings mentioned above.

2 TH E D E I M O S M E T H O D

The effect of gravitational lensing on the surface brightness distribu-
tion G(x) of distant background galaxies is most naturally described
in terms of the moments of the brightness distribution,

{G}i,j ≡
∫

d2x G(x) xi
1x

j
2 , (1)
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for which we introduce a tensor-like notation. The effect of the
reduced shear g is contained in the change of the complex ellipticity,

χ ≡ {G}2,0 − {G}0,2 + 2i{G}1,1

{G}2,0 + {G}0,2
, (2)

with respect to its value before lensing,

χ s = χ − 2g + g2χ �

1 + |g|2 − 2�(gχ �)
(3)

(e.g. Bartelmann & Schneider 2001). Unfortunately, we do not know
χ s , which would allow solving directly for g given χ . Further-
more, (at least) two observational complications alter the source’s
moments, typically much more drastically than lensing: convolu-
tion with the PSF and any means of noise reduction – normally
weighting with a compact function – to yield significant moment
measurements. Hence, χ is not directly accessible and needs to be
estimated by properly accounting for the observation effects. We
leave the treatment of weighting for Section 3 and start with the
derivation of the change of the moments under convolution.

Any square-integrable one-dimensional function G(x), has an
exact representation in Fourier space,

G(x) → φG(k) =
∫

dx G(x) eikx . (4)

In the field of statistics, φG is often called the characteristic function
of G and has a notable alternative form,1

φG(k) =
∞∑
n

{G}n

(ik)n

n!
, (5)

which provides a link between the Fourier transform of G and its
moments {G}n, the one-dimensional pendants to equation (1). We
can now employ the convolution theorem, which allows us to replace
the convolution by a product in Fourier space, i.e. by a product of
characteristic functions of G and of the PSF kernel P,

G�(x) ≡
∫

dx ′ G(x) P (x − x ′) → φG� = φGφP . (6)

For convenience, we assume throughout this work the PSF to be
flux normalized, {P }0 = 1. Considering equation (5), we get

φG� (k) =
[ ∞∑

n

{G}n

(ik)n

n!

] [ ∞∑
n

{P }n

(ik)n

n!

]

=
∞∑
n

n∑
m

{G}m

(ik)m

m!
{P }n−m

(ik)n−m

(n − m)!

=
∞∑
n

[
n∑
m

(
n
m

)
{G}m{P }n−m

]
(ik)n

n!
, (7)

where we applied the Cauchy product in the second step. The ex-
pression in square brackets on the last line is by definition the desired
moment,

{G�}n =
n∑
m

(
n
m

)
{G}m{P }n−m. (8)

Hence, we can now express a convolution of the function G with the
kernel P entirely in moment space. Moreover, even though the series
in equation (5) is infinite, the order of the moments occurring in the
computation of {G�}n is bound by n. This means, for calculating
all moments of G� up to order n, the knowledge of the same set

1 The summation indices in this work all start with zero unless explicitly
noted otherwise.

Table 1. Equations for deconvolving all moments up to order n = 2. The
shown equations are specializations of equation (9).

{G}0,0 {P }0,0 = {G�}0,0

{G}0,1 {P }0,0 = {G�}0,1 − {G}0,0 {P }0,1

{G}1,0 {P }0,0 = {G�}1,0 − {G}0,0 {P }1,0

{G}0,2 {P }0,0 = {G�}0,2 − {G}0,0 {P }0,2 − 2{G}0,1 {P }0,1

{G}1,1 {P }0,0 = {G�}1,1 − {G}0,0 {P }1,1 − {G}0,1 {P }1,0 − {G}1,0 {P }0,1

{G}2,0 {P }0,0 = {G�}2,0 − {G}0,0 {P }2,0 − 2{G}1,0 {P }1,0

of moments of P and G is completely sufficient. These results hold
for any shape of G and P as long as their moments do not diverge.
For non-pathological distributions, this requirement does not pose
a significant limitation.

An identical derivation can be performed for two-dimensional
moments, which yields the change of moments of G(x) under con-
volution with the kernel P(x) (Flusser & Suk 1998):

{G�}i,j =
i∑
k

j∑
l

(
i

k

) (
j

l

)
{G}k,l{P }i−k,j−l . (9)

Deconvolution

To obtain the deconvolved moments required for the shear estima-
tion via the ellipticity χ , we need to measure the moments up to
second order of the convolved galaxy shape and of the PSF kernel
shape. Then we can make use of a remarkable feature of equa-
tion (9), which is already apparent from its form: the impact of
convolution on a moment of order i + j = n is only a function
of unconvolved moments of lower order and PSF moments of at
most the same order. We can therefore start in zeroth order, the flux,
which only needs to be corrected if the PSF is not flux normalized.
With the accurate value of the zeroth order and the first moments of
the PSF, we can correct the first-order moments of the galaxy, and
so on (cf. Table 1). The hierarchical build-up of the deconvolved
moments is the heart of the DEIMOS method (short for deconvolution
in moment space).

It is important to note and will turn out to be crucial for weak-
lensing applications that with this deconvolution scheme we do
not need to explicitly address the pixel noise, which hampers most
other deconvolution approaches in the frequency domain, simply
because we restrict ourselves to inferring the most robust low-order
moments only.

3 N OI SE AND WEI GHTI NG

In practice, the moments are measured from noisy image data,

I (x) = G(x) + N (x), (10)

where the noise N can be considered to be independently drawn from
a Gaussian distribution with variance σ 2

n , i.e. 〈N (xi)N (xj )〉 = σ 2
n δij

for any two positions xi and xj. According to equation (1), the image
values at large distances from the galactic centre have the largest
impact on the 〈I 〉n if n > 0. For finite and compact brightness distri-
butions G, these values are dominated by the noise process instead
of the galaxy, whose moments we seek to measure. Consequently,
centred weight functions W of finite width are typically introduced
to limit the integration range in equation (1) to regions in which I
is mostly determined by G,

Iw(x) ≡ W (x) I (x). (11)
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Table 2. Correction terms for deweighting moments of order n = i + j. The deweighted
moments {Idw}i,j are given by the sum of the correction terms up to the limiting order nw.

nw Correction terms

0 {Iw}i,j
2 1

2s2 [c1{Iw}i+2,j − 4 ε2{Iw}i+1,j+1 + c2{Iw}i.j+2]

4 1
8s4 [c2

1{Iw}i+4,j − 8 c1ε2{Iw}i+3,j+1 + [2 c1c2 + 16 ε2
2 ], {Iw}i+2,j+2

−8 c2ε2{Iw}i+1,j+3 + c2
2{Iw}i,j+4]

6 1
48s6 [c3

1{Iw}i+6,j − 12 c2
1ε2{Iw}i+5,j+1 + [3 c2

1c2 + 48 c1ε
2
2 ] {Iw}i+4,j+2

−[24 c1c2ε2 + 64 ε3
2 ] {Iw}i+3,j+3 + [3 c1c

2
2 + 48 c2ε

2
2 ] {Iw}i+2,j+4

−12 c2
2ε2{Iw}i+1,j+5 + c3

2{Iw}i,j+6]

A typical choice for W is a circular Gaussian centred at the galactic
centroid,

W (x) ≡ exp

(
− x2

2s2

)
. (12)

Alternatively, one can choose to optimize the weight function to
the shape of the source to be measured. Bernstein & Jarvis (2002;
see their section 3.1.2) proposed the usage of a Gaussian, whose
centroid xc, size s, and ellipticity ε are matched to the source, such
that the argument of the exponential in equation (12) is modified
according to

x → x ′ =
(

1 − ε1 −ε2

−ε2 1 + ε1

)
(x − xc). (13)

As such a weight function represents a matched spatial filter, it
optimizes the significance and accuracy of the measurement if its
parameters are close to their true values. This cannot, however, be
guaranteed in presence of pixel noise, but we found the iterative
algorithm proposed by Bernstein & Jarvis (2002) to converge well
in practice and therefore employ it to set the weight function within
the DEIMOS method.

Unfortunately, a product in real space like the one in equation (11)
translates into a convolution in Fourier space. We therefore have to
expect some amount of mixing of the moments of Iw. Even worse, an
attempt to relate the moments of Iw to those of I leads to diverging
integrals. Hence, there is no exact way of incorporating spatial
weighting to the moment approach outlined above. On the other
hand, we can invert equation (11) for I = Iw/W and expand 1/W in
a Taylor series around the centre at x = 0,

W−1(x) ≈ W−1(0) − W ′(0)

[
2∑

k=1

ckx
2
k + 4ε2x1x2

]

+ 1

2
W ′′(0)

[
2∑

k,l=1

ckclx
2
k x

2
l − 8ε2

∑
k=1

ckx
2
k x1x2 + (4ε2x1x2)2

]
,

(14)

where we employed W ′(x) ≡ dW (x)/dx2 and c1,2 ≡ (1∓ε1)2 +ε2
2 .

We introduce the parameter nw as the maximum order of the Taylor
expansion, here nw = 4. Inserting this expansion in equation (1),
we are able to approximate the moments of I by their deweighted
counterparts {Idw}. For convenience we give the correction terms for
orders nw ≤ 6 in Table 2. This linear expansion allows us to correct
for the weighting-induced change in the moments of a certain order
n by considering the impact of the weight function on weighted
moments up to order n + nw.

3.1 Deweighting bias

The truncation of the Taylor expansion constitutes the first and
only source of bias in the DEIMOS method. The direction of the bias
is evident: as the weight function suppresses contributions to the
moments from pixel far away from the centroid, its employment
reduces the power in any moment by an amount, which depends
on the shape – particularly on the radial profile – of the source
and the width s. Additionally, if the ellipticity ε was misestimated
during the matching of W, the measured ellipticity of the source
χ before and after deweighting will be biased towards ε. In the
realistic case of noisy images, which we address in more detail in
Section 3.2, ε can be wrong in two ways: statistically and system-
atically. The centred Gaussian distribution of the pixel noise leads
to a centred Cauchy-type error distribution of both components of
ε, i.e. the statistical errors of ε and therefore also χ have vanishing
mean. The systematic errors stem from the application of a compact
weight function to measure ε, which for any finite s constitutes a
removal of information. This leads to deviations of the measured
ε from the true ε if e.g. the centroid is not determined accurately
or the ellipticity changes with radius. For individual objects, these
deviations are impossible to quantify precisely – as this would re-
quire knowledge of the true observed morphology – and hamper
all weak-lensing measurements unless an appropriate treatment is
devised (e.g. Hosseini & Bethge 2009; Bernstein 2010). For large
ensembles of galaxies, effective levels of systematic errors can be
assessed by analysing dedicated simulations (cf. Section 4).

We investigate now the DEIMOS-specific systematic impact of a
finite nw on the recovery of the deweighted moments. For the exper-
iments in this section we simulated simple galaxy models following
the Sérsic profile,

ps(r) ∝ exp

{
−bns

[(
r

Re

)1/ns

− 1

]}
, (15)

where ns denotes the Sérsic index, and Re the effective radius, while
the PSFs are modelled from the Moffat profile,

pm(r) ∝ (1 + αr2)−β, (16)

where α = (21/β −1)/(FWHM/2)2 sets the width of the profile and
β its slope. Both model types acquire their ellipticity according to
equation (13)

In the top panel of Fig. 1 we show the error after deweighting a
convolved galaxy image from a matched elliptical weight function
as a function of its size s. As noted above, the bias is always negative
and is clearly more prominent for the larger disc-type galaxy (circle
markers). As the Taylor expansion becomes more accurate for nw →
∞ or s → ∞, the bias of any moment decreases accordingly.
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Figure 1. Weighting-induced bias. Relative error of the PSF-convolved
and deweighted moment {Idw}1,1 (top panel) and of the estimated ellip-
ticity after deconvolution (bottom panel) as a function of weight-function
size s. Colours indicate the correction order nw, while markers denote the
galaxy model (circles for model 1, diamonds for model 2). The galaxy
models are simulated as Sérsic profiles with the following parameters:
εs = (0.1, 0.4), ns = 1 (4), Re = 3 (1.5) for model 1 (2). The PSF
was of Moffat type with ε = (0.05, 0.05), β = 3, FWHM = 3. The weight
functions of galaxy and PSF had the same size s, but individually matched
ellipticities.

An important consequence of the employment of a weight func-
tion with matched ellipticity is that the bias after deweighting does
only very weakly depend on the apparent ellipticity, i.e. all moments
of the same order are biased by the same relative factor 
(n, s). This
means any ratio of such moments remains unbiased. This does not
guarantee that the ellipticity is still unbiased after the moments have
passed the deconvolution step, which is exact only for unweighted
moments. On the other hand, the particular form of the equations
in Table 1 becomes important here: if we assume well-centred im-
ages of the galaxy and the PSF and a negligible error of the source
flux {G}0,0, none of which is guaranteed for faint objects, the de-
convolution equations for the relevant second-order moments only
mix second-order moments. If furthermore 
G(2, s) = 
P (2, s),
the ellipticity χ (cf. equation 2) will remain unbiased after decon-
volution even though the moments themselves were biased. The
aforementioned condition holds if the radial profiles of PSF and
galaxy are similar within the weight function, in other words, if the
galaxy is small. This behaviour can clearly be seen in the bottom
panel of Fig. 1, where the ellipticity estimate of the smaller ellip-
tical galaxy (diamond markers) has sub-per cent bias for nw ≥ 2
and s ≥ 3. The estimates for the larger galaxy are slightly higher
because |
G(2, s)| > |
P (2, s)|, i.e. the deconvolution procedure
overcompensates the PSF-induced change of the moments. How-
ever, sub-per cent bias is achieved for nw ≥ 4 and s ≥ 5.

For large galaxies, it might be advantageous to adjust the sizes
of galaxy and PSF independently as this would render 
G(2, sG)
more comparable to 
P (2, sP ). However, we found employing a
common size s for both objects to be more stable for the small

and noisy galaxy images typically encountered in weak-lensing
applications. We therefore adjust the size s such as to allow an
optimal measurement of the deweighted PSF moments. Since the
main purpose of the weighting is the reduction of noise in the
measured moments, one could improve the presented scheme by
increasing s for galaxies with larger surface brightness such as to
reduce the bias when the data quality permits.

3.2 Deweighting variance

Being unbiased in a noise-free situation does not suffice for a prac-
tical weak-lensing application as the image quality is strongly de-
graded by pixel noise. We therefore investigate now the noise prop-
erties of the deweighted and deconvolved moments.

The variance of the weighted moments is given by

σ 2({Iw}i,j ) = σ 2
n

∫
dx W 2(x) x2

i x
2
j , (17)

since the noise is uncorrelated and has a vanishing mean. It is evident
from Table 2 that the variance of the deweighted moments increases
with the number of contributing terms, i.e. with nw. Less obvious is
the response under changes of s. While each moment accumulates
more noise with a wider weight function, the pre-factors of the
deweighting correction terms are proportional to s−nw , such that
their impact is reduced for larger s.

To quantitatively understand the impact of nw and s in a fairly
realistic scenario, we simulated 10 000 images of the galaxy models
1 and 2 from the last section. We drew their intrinsic ellipticities
from a Rayleigh distribution with σ|εs | = 0.3. Their flux was fixed
at unity, and the images were degraded by Gaussian pixel noise
with variance σ 2

n . We ran DEIMOS on each of these image sets with
a fixed scale s. The results are presented in Fig. 2, where we show
the dispersion of the measured χ in units of the dispersion of χ s .
From the left-hand panel, it becomes evident that the attempt of
measuring unbiased ellipticities (large nw or s) comes at the price of
increased noise in the estimates. Considering also Fig. 1, we infer
that in this bias-variance trade-off small values of s and large values
of nw should be favoured since this provides estimates with high
accuracy and a moderate amount of noise.
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Figure 2. Noise of the deweighted and deconvolved ellipticity estimate as
a function of the weight-function size s (left-hand panel) and of the standard
deviation of the pixel noise σn (right-hand panel). The colour and marker
code is explained in Fig. 1. The pixel noise is given in units of 10−3 for
flux-normalized sources. σn = 8 is close to the detection limit for this source
model.
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In the right-hand panel of Fig. 2, we show the estimator noise
as function of the pixel noise. Equation (17) suggests that there
should be a linear relation between these two quantities, which
is roughly confirmed by the plot. Additional uncertainties in the
moment measurement – caused by e.g. improper centroiding – and
the non-linear combinations of second-order moments to form χ

lift the actual estimator uncertainty beyond the linear prediction.
Even though the true errors of χ may not exactly follow the linear

theory, we will now exploit the fairly linear behaviour to form error
estimates. We can express the deweighting procedure as a matrix
mapping,

{Idw} = D · {Iw}, (18)

where {Iw} and {Idw} denote the vectors of all weighted and
deweighted moments and D encodes the correction terms of Ta-
ble 2. The diagonal covariance matrix Sw of the weighted moment
variances given by equation (17) is related to the covariance matrix
of the deweighted moments by

Sd = D · Sw · DT , (19)

from which we can obtain the marginalized errors by(
σ 2({Idw}i,j )

)−1 = (
S−1

d

)
k,k

, (20)

where k denotes the position of the moment {Id}i,j in the vector
{Idw}. Under the assumptions mentioned above, also the deconvo-
lution can be considered a linear operation, at least up to order 2, so
that we can extend the error propagation even beyond this step: if
we neglect errors in the PSF moments, the errors of the deconvolved
moments (up to order 2) are identical to those of the deweighted
ones. We can therefore estimate the errors of all quantities based on
deconvolved moments directly from equation (20).

4 SH E A R AC C U R AC Y T E S T S

So far, we were concerned with the estimation of ellipticity. To
test the ability of our new method to estimate the shear, we make
use of the reference simulations with realistic noise levels from
the GREAT08 Challenge (Bridle 2010). As the shear values in
these simulations are fairly low, we employ the linearized version
of equation (3), corrected by the shear responsivity of the source
ensemble,

g̃ = 〈χ〉
2 − σ 2

χ

(21)

(e.g. Massey et al. 2007), without any further weighting of indi-
vidual galaxies, to translate DEIMOS ellipticity measures into shear
estimates. The dispersion σ 2

χ is measured from the lensed and noisy
galaxy images and hence only coarsely describes the intrinsic shape
dispersion (cf. Fig. 2). We are aware of this limitation and verified
with additional simulations that it introduces sub-per cent biases
for the range of shears and pixel noise levels we expect from the
GREAT08 images.

We inferred the weight-function size s = 4 and the correction
order nw = 4 from the optimal outcome for a set with known shears.
The actual GREAT08 Challenge data comprises nine different im-
age sets, which differ in the shape of the PSF, the signal-to-noise
ratio (S/N), the size and the model-type of galaxies. For each of
these branches, there are 300 images with different values of shear.
We performed the DEIMOS analysis of all images keeping the weight-
ing parameters fixed to the values inferred before. The results are
shown in Fig. 3 in terms of the GREAT08 quality metric Q (see
equations 1 and 2 in Bridle 2010) and of the multiplicative shear
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Figure 3. GREAT08 Q metric and multiplicative shear accuracy mi for the
nine different branches of the GREAT08 Challenge data with realistic noise
levels. In each panel, the scale on the left describes the values of Q and
the scale on the right the values of mi. The dotted line denotes mi = 0.
The dashed lines show the Q-value before we adjusted the weight-function
matching and deweighting parameters to the source characteristics of the
branch.

accuracy parameters mi obtained from a linear fit of the shear esti-
mates g̃i to the true shear values gi (Heymans et al. 2006; Massey
et al. 2007),

g̃i − gi = migi + ci . (22)

From Fig. 3 we clearly see the highly competitive performance
of DEIMOS with a typical Q > 200 in all but two branches. Single-
component galaxy models yield a particularly large Q-value, prob-
ably because the bulge-only models are the most compact ones and
thus favour the setting of a constant s for PSF and galaxies. In terms
of Q, there is no change between the centred and the off-centred
double-component galaxy models, but both mi drop for the off-
centred ones. As such galaxy shapes have variable ellipticity with
radius and DEIMOS measures them with a fixed weight-function size,
we interpret this as a small but noticeable ellipticity-gradient bias
(Bernstein 2010).

The response to changes in the PSF shape is a bit more worrisome
and requires explanation. The fiducial PSF had ε1 > ε2, and the
opposite is true for the rotated one. From all panels of Fig. 3 we can
see that typically |m1| < |m2|. Such a behaviour has already been
noted by Massey et al. (2007): because a square pixel appears larger
in diagonal direction than along the pixel edges, the moment {I }11

and hence ε2 suffer more strongly from the finite size of pixels.
From the discussion in Section 3.1, we expect a certain amount of
PSF overcompensation for small weight-function sizes. As the PSF
shape is most strongly affected by pixellation, the overcompensation
boosts preferentially those galaxy moments, which align with the
semiminor axis of the PSF. In general, a larger PSF – or a larger
PSF ellipticity – improves the shear estimates. It is important to
note, that, as in all other panels, the residual additive term ci was
negligible for all PSF models.
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The response to changes in S/N or galaxy size is more dramatic:
particularly the branches 7 (low S/N) and 9 (small galaxies) suffer
from a considerable shear underestimation. This is not surprising
as also most methods from Bridle (2010) showed their poorest
performance in these two sets. Since the Q metric strongly penalizes
poor performance in single GREAT08 branches, the overall Q =
7.7 for this initial analysis.

As this is the first application of DEIMOS to a weak-lensing test
case, we allowed ourselves to continue in a non-blind fashion in
order to work out how the DEIMOS estimates could be improved.
Apparently, problems arise when the galaxies are small or faint.
The obvious solution is to shrink the weight-function size. As dis-
cussed in Section 3.2, improper centroiding plays an increasing role
in deteriorating shear estimates for fainter galaxies. We therefore
split the weight-function matching into two parts: centroid deter-
minations with a small weight function of size sc, and ellipticity
determination with s > sc. By choosing sc = 1.5 and s = 2.5, we
could strongly improve the performance for branches 7 and 9. Given
the high S/N of branch 6, we decided to rerun these images with
nw = 6, which yielded another considerable improvement. With
these modifications to the weight-function matching and the
deweighting parameters, DEIMOS estimates achieve Q = 112, simi-
larly to LENSFIT with Q = 119, at a fraction of the runtime (0.015 s per
GREAT08 galaxy). We emphasize that this is a somewhat skewed
comparison as we had full knowledge of the simulation charac-
teristics. However, the changes to the initial analysis are modest
and straightforward. In particular, they depend on galactic size and
magnitude only, and not on the true shears.

Given the bias-variance trade-off from the deweighting proce-
dure, the outcome of this section also clearly indicates that a simple
one size fits all approach is not sufficient to obtain highly accurate
shear estimates from DEIMOS. For a practical application, a scheme
to decide on nw, sc, and s for each galaxy needs to be incorporated.
Such a scheme can easily be learned from a small set of dedi-
cated simulations, foremost because the DEIMOS results depend only
weakly on PSF and intrinsic galaxy shape.

5 C O M PA R I S O N TO OT H E R M E T H O D S

Because of the measurement of image moments subject to a weight
function, DEIMOS shares basic ideas and the computational perfor-
mance with the traditional KSB approach (Kaiser et al. 1995). In
contrast to it, DEIMOS does not attempt to estimate the shear based on
the ellipticity of single galaxies,2 nor does it need to assume that the
PSF can be decomposed into an isotropic and an anisotropic part,
which introduces residual systematics into the shear estimation if
the anisotropic part is not small (Kuijken 1999). DEIMOS rather offers
a mathematically exact way of deconvolving the galaxy moments
from any PSF, thereby circumventing the problems known to af-
fect KSB (see Viola et al. 2011 for a recent discussion of the KSB
shortcomings). Its only source of bias stems from the inevitably
approximate treatment of the weight function, which requires the
measurement of higher order image moments. Since DEIMOS mea-
sures all moments with the same weight function (instead of with
increasingly narrower higher derivatives of the weight function),
these higher order correction terms suffer less from pixellation than
those applied in KSB. However, as we could see in Section 4, pixel-

2 This demands setting χ s = 0 in the non-linear equation (3), which is only
true on average but not individually.

lation affects the DEIMOS measurements, and an analytic treatment
of it is not obvious.

The treatment of the convolution with the PSF on the basis of
moments is very close to the one known from shapelets (Refregier
& Bacon 2003; Melchior et al. 2009). However, DEIMOS does not
require the time-consuming modelling process of galaxy and PSF,
and hence is not subject to problems related with insufficient mod-
elling of sources, whose apparent shape is not well matched by a
shapelet model of finite complexity (Melchior et al. 2010).

In the RRG method (Rhodes, Refregier & Groth 2000), the effect
of the PSF convolution is also treated in moment space. Further-
more, an approximate relation between weighted and unweighted
moments is employed, which renders this approach very similar
to the one of DEIMOS. The former differs in the employment of the
KSB-like anisotropy decomposition of the PSF shape.

As mentioned in Section 3, DEIMOS makes use of the same itera-
tive algorithm as ELLIPTO (Bernstein & Jarvis 2002) to define the
centroid and ellipticity of the weight function. The latter addition-
ally removes any PSF anisotropy by applying another convolution
to render the stellar shapes circular, which is not necessary for
DEIMOS.

The recently proposed FDNT method (Bernstein 2010) decon-
volves the galaxy shape from the PSF in the Fourier domain, and
then adjusts centroid and ellipticity of the coordinate frame such
that the first-order moments and the components of the ellipticity
– formed from second-order moments – vanish in the new frame.
FDNT restricts the frequencies considered during the moment mea-
surement to the regime, which is not suppressed by PSF convolu-
tion. Because of the shearing of the coordinate frame, additional
frequencies need to be excluded, whereby the allowed frequency
regime further shrinks. This leads to reduced significance of the
shear estimates for galaxies with larger ellipticities. Furthermore,
FDNT requires complete knowledge of the PSF shape. In contrast,
DEIMOS does not need to filter the data, it extracts the lensing-relevant
information from the low-order moments of the galaxy and PSF in-
stead. These differing aspects indicate that DEIMOS should be more
robust against pixel noise. It should also be possible to incorporate
the correction for ellipticity-gradient bias suggested by Bernstein
(2010) in the DEIMOS method.

6 C O N C L U S I O N S

For the presented work, we considered the most natural way of
describing the effects of gravitational lensing to be given by the
change of the multipole moments of background galaxies. We di-
rectly estimate the lensed moments from the measured moments,
which are affected by PSF convolution and the application of a
weight function. For the PSF convolution we derive an analytic re-
lation between the convolved and the unconvolved moments, which
allows an exact deconvolution and requires only the knowledge
of PSF moments of the same order as the galaxy moments to be
corrected. The weighting-induced changes of moments cannot be
described analytically, but for smooth weight functions a Taylor ex-
pansion yields approximate correction terms involving higher order
moments.

We showed that the residual bias of the deweighted moments
stemming from an incomplete weighting correction is modest.
Moreover, choosing a weight function with matched ellipticities but
same size for measuring stellar and galactic moments yields ellip-
ticity estimates with very small bias even for rather small weight-
function sizes, which are required to reduce the impact of pixel
noise to a tolerable level. In this bias-variance trade-off, DEIMOS
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normally performs best with high correction orders nw at small
sizes s, but data with high significance may need a different set-up.
The choice of these two parameters is the trickiest task for a DEIMOS

application, but can be easily addressed with a dedicated simula-
tion, which should resemble the size and brightness distribution of
sources to be expected in the actual data. Other properties of the
sources, like their ellipticity distribution or, more generally, their
intrinsic morphology, do not need to be considered as the measure-
ment of moments does neither imply nor require the knowledge of
the true source model.

There are certain restrictions of the method to bear in mind.

(i) Setting s to be the same for galaxies and the PSF works best
for small galaxies, whose shape is dominated by the PSF shape.

(ii) Changes of the shape at large radii would fall outside of the
weight function and hence be ignored. When present in the PSF
shape, this could lead to a residual PSF contamination, but can be
cured by increasing the scale of the weight function at the expense
of larger noise in the galaxy moments. When present in galac-
tic shapes, the results become susceptible to ellipticity-gradient
bias.

(iii) Direct measurement of the moments from the pixel values is
inevitably affected by pixellation. For small, potentially undersam-
pled shapes this leads to biased moment and ellipticity measures
and acts more strongly in diagonal direction, i.e. on ε2.

(iv) The noise on the ellipticity estimates based on image mo-
ments is not Gaussian, nor does it propagate easily into the shear
estimate. When dominant, it can create substantial biases of its own.

Only the first of these restrictions exclusively applies to DEIMOS,
the others are present in all non-parametric methods, which work
directly on the pixellated image. Model-based approaches could re-
place the coarsely sampled moment measurements by ones obtained
from the smooth models.

Further work is required to choose the deweighting parameters,
to account for pixellation effects, and to address ellipticity-gradient

bias within the DEIMOS method. A C++ implementation of the
method described here can be requested from the authors.
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