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CHAPTER 1

General Introduction

1.1 Something old, something new: twin studies
and metabolomics

The elucidation of the relative importance of genes and environment for varia-
tion in traits using data from twins and families has a long history.1 Metabol-
omics, or the study of small molecules that are the reactants, intermediates or
end products of cellular metabolism, on the other hand, is a relatively young
field within the “omics” sciences.2 This thesis describes the results of various
analyses that address different questions that may arise within the context of
analysis of metabolomics data from twin families.

In this General Introduction, first the concepts of metabolomics, and of
twin and family studies are introduced. Then, two approaches are discussed
that can be used for the analysis of multivariate data, such as metabolomics
data, as obtained from families. These two approaches, i.e. structural equation
modeling and hierarchical clustering analysis, are central in this thesis because
they can both be informative of the contributions of genetic and environmental
variation to variation in metabolite levels. Finally the value of our approach
in the context of the recent developments in genome-wide association studies
is discussed. A short outline of the remainder of this thesis is given at the end
of this Introduction.

1
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1.2 Metabolomics

“Omnia mutantur nihil interit” — everything changes but nothing is truly
lost. Reportedly, even more classic than these legendary words attributed to
Pythagoras by Ovid in his Metamorphoses (AD 8)3 is the notion that metabo-
lites can be informative of the status of organisms. For example, approximately
two millennia before Ovid completed his masterwork, Chinese doctors used ants
to detect high glucose levels in urine as an indicator for diabetes.4,5

Whereas Ovid’s book describes a number of cases where changes in form
or shape had been effectuated by witchcraft, i.e. metamorphoses, the term
“metabolism” also refers to a change but to one which can be studied by sci-
entific means. The “changes” that constitute metabolism are the conversions
of typically low-molecular weight molecules into other molecules due to the
actions of enzymes and in some cases also co-factors. The molecules that are
the substrates, intermediate or end products of metabolism are called metabo-
lites.2 One could argue that rather than being lost, the study of metabolism
is on the contrary of increasing interest because it is conceived that metabolic
processes are particularly directly linked to the functioning of cells, organs, and
even complete organisms.

The central dogma in molecular biology dictates that information flow
within cells goes from genes, via gene transcripts, to proteins.6,7 In this view,
genes encode the heritable information that is transmitted from parent to child;
this information is transcribed from DNA into messenger RNA, which in turn
encodes the sequence of amino acids in proteins. Enzymes are a subclass of
proteins, some of which can convert metabolites into other metabolites. The
metabolome (i.e., the complement of all metabolites) has been recognized by
several authors8,9 to be an integral part of the molecular biological central
dogma as well. Furthermore, it is increasingly recognized that there is consid-
erable cross-talk between the different information levels in the central dogma,
and that therefore the view of unidirectional flow of information as proposed
by the central dogma is probably too simplistic.2,9 This leads to a view of dif-
ferent information levels and their interrelationships within cells as depicted in
Figure 1.1.

Despite the crosstalk among the different physiological levels at which cel-
lular functioning can be studied, the metabolome is conceived to be the level
that is relatively the closest to the outward measureable characteristics, such as
physiological functioning, of the cell. Such outward measureable characteristics
are referred to as “phenotypes”, and because metabolites are physiologically
in between the genome and the phenotypic appearance of, for example, a cell,
metabolites are sometimes called “endophenotypes” or “intermediate pheno-
types”.5,10–12 Figure 1.1 also shows that next to genetic variation, the influence
of the environment is important for the resulting phenotype at all information
levels.

Whereas the recognition of metabolites as being informative of the state of
biological entities has certainly not been lost, what indeed has changed is the
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Figure 1.1: The different information levels within (human) cells and their interac-
tions. The phenotype is a function of the interactions of the components of genome,
transcriptome, proteome, and metabolome with each other and with the environment.
According to this view, the environment might exert modulating effects on all lev-
els except the genome. Reproduced from Dunn et al.2 by permission of The Royal
Society of Chemistry.

way we are able to look at metabolism and metabolites. Science has come a
long way since the earliest clinical applications of metabolite measurements.
Due to significant technological advances mainly in the second half of the 20th

century, it is now possible to comprehensively measure large numbers of differ-
ent metabolites in a given sample. Studies that employ such comprehensive, or
holistic, measurement approaches are often referred to as “metabolic profiling”,
“metabolomics”, “metabolite fingerprinting”, or “metabonomics”.2,9 Although
most definitions acknowledge differences in e.g. the application domain, num-
bers of detected metabolites, and technology among the disciplines indicated
with the different terms, the designation “metabolomics” is probably the most
widely used. The suffix “omics”, in analogy with for example “genomics”
(study of genetic variation) and “transcriptomics” (study of gene expression),
indicates the comprehensive nature of the approach.13,14 The work described in
this thesis can be described as human metabolomics studies; however, notably,
also microbial,15 plant16 and animal17 metabolomics exist. The remainder of
this discussion of metabolomics will focus on human metabolomics.

Metabolomics studies should follow the steps of a general workflow.5,18–20

Ideally, a metabolomics study starts with a biological question. This does
not mean, however, that there is always a clear hypothesis about the biolog-
ical effects that will be observed. For example, based on existing knowledge
about a particular disease, it might be suspected that lipids play an important
role; then this could warrant the choice for a targeted lipidomics platform for
measurement of samples from study participants with and without the dis-
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ease. However, it may not be hypothesized a priori which specific biological
pathways might be involved in causing the disease. Rather, on the basis of
the variation observed in the data obtained by metabolomics measurements,
such specific hypotheses with respect to the involvement of particular pathways
might be generated. Indeed, as such metabolomics is typically a “data driven”
and “hypothesis-generating” discipline.

On the basis of the biological question, an experimental design is formulated.
For a typical human metabolomics study, often samples from “biofluids” such
as blood or urine but sometimes also e.g. cerebrospinal fluid or saliva are
obtained from healthy volunteers and/or from patients. The samples are first
processed, for example to extract the most relevant classes of metabolites for
that particular study. This is a way to ‘target’ the analysis at these particular
classes, for example only at the lipids in a blood sample. On the other hand, in a
‘global’ analysis the aim is to obtain an overview of the (relative) concentrations
of metabolites from all classes present in a given sample, such as amino acids,
lipoproteins, and carbohydrates.

For detection of metabolites, nowadays ants have been replaced by for ex-
ample mass spectrometry (MS) and nuclear magnetic resonance (NMR) spec-
troscopy. A mass spectrometer detects the ratio of mass versus charge of an
ionized metabolite.2 In a frequently used type of NMR spectroscopy, i.e. pro-
ton NMR spectroscopy (1H NMR), simply stated the energy is detected as it
is emitted by metabolites depending on the chemical environment surrounding
the protons in the molecule. A ‘global’ analysis of a blood plasma sample using
NMR spectroscopy, for example, will typically require less sample processing
than a ‘targeted’ lipidomics analysis using liquid chromatography–mass spec-
trometry (LC–MS). In both global and targeted analyses, the different metabo-
lites present in the preprocessed sample can be separated before detection to
enhance the ability to detect them. For example, a chromatographic separation
step such as gas chromatography (GC) or liquid chromatography (LC) can be
used prior to detection in order to separate the different metabolites based on
their differences in physicochemical characteristics (e.g., hydrophobicity).

The advances in the development of analytical techniques allow for the mea-
surement of hundreds to thousands of different metabolites in a given sample.
The data resulting from such measurements typically require additional prepro-
cessing before they can be subjected to statistical analysis. Such preprocessing
can be for example the extraction of peaks corresponding to different metabo-
lites from an NMR spectrum. The heights or integrals of these peaks can then
be collected into data tables where for each measured sample the heights or
integrals of all peaks are listed.

Ideally, one would like to obtain quantitative measurements (concentra-
tions) of all the metabolites in a given sample; however, amongst others due to
the complexity of most samples this is often not possible.2,21 Therefore many
metabolomics studies are semiquantitative rather than quantitative, implying
that the relative concentrations of different metabolites with respect to each
other can be measured, but not the absolute concentrations. Another current
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challenge in metabolomics is identification: often the identity (structure) of the
detected compounds cannot be resolved completely.

Often the data have to be pretreated to make them comparable across
different samples using uni- or multivariate statistical techniques. An example
of such data pretreatment is sample-wise normalization; for instance, the sum
of the integrals of all peaks for each sample can be made equal to one, to
acknowledge that differences among samples with respect to this sum are not
biologically relevant.22

Subsequently, the data in these tables can be subjected to statistical anal-
ysis. Because a typical metabolomics study aims to comprehensively detect
either a large number of metabolites from different classes, or all metabolites
of a given class, there will often be multiple different metabolites that dis-
play similar changes due to a particular biological effect. For example, when
comparing the metabolite profiles of healthy volunteers with those from study
participants with a particular disease, the aim of statistical analysis of the me-
tabolomics data might be to find patterns of metabolites that display similar
differences in concentration between healthy and diseased individuals. Such
metabolites that indicate a change from healthy to diseased are often called
“biomarkers”.

Because it is often expected that in metabolomics studies a biological ef-
fect of interest will manifest as changes in multiple related metabolites, for
statistical analysis in particular multivariate techniques are used. A multi-
variate statistical technique typically acknowledges that a particular biological
effect can manifest as the linear combination of the effects observed in multiple
different individual metabolites. For example, principal component analysis
(PCA)23 is a multivariate statistical technique that can be used to uncover the
direction of the dominant variation exhibited by multiple individual metabo-
lites. An important advantage of the use of multivariate statistical techniques
in metabolomics research is that these techniques, by taking into account the
information present in all variables rather than in one variable at a time, are sta-
tistically much more powerful than univariate statistical methods. Therefore,
using multivariate techniques statistical inference is often possible in metabol-
omics on the basis of much smaller numbers of measured samples than would
be the case with univariate analysis, provided that the results are sufficiently
validated.24

1.3 Twin and family studies

The origin of family studies to elucidate the relative influences of genetic vari-
ation and environmental variation on phenotypic variation dates back to Sir
Francis Galton (1822–1911). In his 1869 book “Hereditary Genius — An In-
quiry into its Laws and Consequences”,25 Galton describes his finding that,
starting with “illustrious men” as probands, close relatives of such men dis-
played remarkable genius as well, but that these phenotypic similarities de-
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creased when comparing more distant relatives. Galton also recognized that
statistical analysis of such data obtained in family members was key to derive
what he referred to as “a decided law of distribution of genius in families”.25

Although the historical importance of Galton’s initial findings can hardly
be disputed, these findings merely showed that characteristics ‘run in families’,
i.e. that family members will be more similar than non-family members for a
given phenotype such as intelligence. However, Galton’s publication five years
later of another book26 illustrates that indeed he had become aware of the
distinction between “nature and nurture”, or, in other words, of the distinction
between genetic and environmental influences on phenotypic values.

The pioneer work of Galton in general families was later expanded and its
potential was enhanced by acknowledging that in particular using twin families,
the power to detect genetic effects is large. Therefore, studies of twins and
families have traditionally been very important within the field of quantitative
genetics.27

Quantitative genetics is the study of the genetic causes of individual dif-
ferences for measurable traits.28 Examples of such traits are height, weight,
depression, migraine, or metabolite levels as measured in body fluids of nor-
mal humans. In general, in quantitative genetics the following genetic and
environmental sources of phenotypic variance are considered: additive genetic
effects (“A”), non-additive genetic effects (“D”, for ‘dominance’), common or
shared environmental effects (“C”), and specific non-shared environmental ef-
fects (“E”). The term “additive genetic effects” is used to refer to genetic
effects where the total effect equals the sum of the effects of alleles that in-
fluence the value for a trait.29 “Non-additive” genetic effects are not simply
the sum of the effects of alleles, because of interactions within or between loci.
Well-known examples of non-additive genetic effects are dominance (within lo-
cus) and epistasis (across loci). Common or shared environmental effects are
the environmental effects shared by members of the same family; an example is
diet.30 Specific environmental effects are not shared by relatives; measurement
error is also included in this source of phenotypic variance.29

A classic method within the field of quantitative genetics is the “classical
twin study”, which relies on the comparison of phenotypic similarities between
monozygotic (MZ) and dizygotic (DZ) co-twins raised together for estimating
the relative importance of these respective sources of phenotypic variation. MZ
co-twins share 100% of their additive genetic variation (“varA”), whereas this
percentage is on average 50% between DZ co-twins; this latter percentage is
the same for biological nontwin siblings. In twin studies, it is assumed that
MZ and DZ co-twins share the same degree of common environmental variation
(“varC”).27 The basic idea behind the classical twin study is that therefore,
any excess phenotypic correlation between MZ co-twins over that between DZ
co-twins must be due to genetic effects.1 More formally, the difference in the
degrees of shared genetic variation between MZ co-twins and between DZ co-
twins can be used in statistical analysis to disentangle the genetic variation
from the environmental variation influencing the individual differences in trait
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values measured in these twin pairs.
The combination of a large difference in shared additive genetic effects be-

tween MZ and DZ co-twins, and the same degree of shared environmental
variation in MZ and DZ co-twins, causes the classical twin study to have an
importantly increased statistical power over that of nontwin family-based quan-
titative genetic analyses to detect genetic components of phenotypic variance.31

1.4 Two alternative methods to separate
“nature” from “nurture” using family data

Quantitative genetic analysis using structural equation modeling (SEM) is a
classic method to estimate genetic variation and environmental variation for
phenotypes observed in family data. However, in this thesis an alternative
method is described for quantitative genetic analysis based on hierarchical clus-
tering analysis of multivariate family data. Although both analysis of hierar-
chical clustering among family members, and multivariate quantitative genetic
analysis by SEM can be considered to be multivariate statistical techniques,
they aim to answer different questions with respect to “nature” (genes) ver-
sus “nurture” (environment). Below, a general introduction is given into SEM
and hierarchical clustering analysis in the context of the quantitative genetic
analyses described in this thesis.

1.4.1 Structural equation modeling

SEM is a generic statistical technique for testing hypotheses.27,32,33 As Bollen
(1989) states: “The purpose [of SEM] is to determine if the causal inferences
of a researcher are consistent with the data”.32

The initial step in SEM is the generation of a “structural model” that
formalizes a hypothesis of the causal relationship between variation in predictor
variables and variation in predicted variables. This “structural model” can be
represented as a set of “structural equations”, or equivalently as a so-called
“path diagram”. Path analysis was originally developed for genetic analysis by
Sewall Wright.34

The fit of this model to observed data is optimized by iteratively changing
the values of the free parameters in the structural model. Often maximum
likelihood is used to obtain parameter estimates.35 It is customary to compare
the likelihoods of different versions of the initial model that vary in complexity,
with the aim to identify the model that yields the best trade-off between model
complexity and fit to the observed data. With likelihood ratio tests one can
test whether the likelihood changes significantly when fitting a nested model.

In this thesis, SEM is used to obtain estimates for the relative contribution
of genetic and environmental factors to the phenotypic variation as observed in
twin families. Because in such analyses the structural equations often formalize
a hypothesis of the causes of the covariance observed in the measured data, this
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A1 C1 E1

P twin1

A1 C1 E1

P twin2

1.00 1.00 1.00

a11 c11 e11

1.00 1.00 1.00

a11 c11 e11

1.0 / 0.5 1.0

MZ/DZ correlation

MZ & DZ correlation

variance of latent
factor

latent

path coefficient to
be estimated

observed
(phenotype)

Figure 1.2: Path diagram for univariate quantitative genetic analysis under classi-
cal twin design. Latent (unobserved) factors and path coefficients are indicated by
uppercase (e.g., “A”) and lowercase (e.g., “a”) letters, respectively. In a path coef-
ficients model, the variances of the factors are standardized to a value of one,27 as
indicated in this figure. Note the different coefficient values for the additive genetic
covariance components in MZ and DZ co-twins of 1.0 and 0.5, respectively. A1, C1
and E1, latent additive genetic, common environmental and specific environmental
factors, respectively. “P twin1” and “P twin2”, phenotype (trait) in first and second
members of twin pairs, respectively.

type of SEM is also referred to as “analysis of covariance structures”.32

An initial question in twin and family studies is often whether genetic
(“A”, “D”) or environmental (“C”, “E”) influences are more important for
the variation observed in a single trait. The aim of univariate quantitative
genetic analysis on the basis of SEM is to answer this question. Of note, on the
basis of the classical twin design (pairs of MZ and DZ twins reared together),
the separate contributions of “C” and “D” cannot be estimated on the basis
of a model that includes both sources of variance.29

An example of a structural model for univariate analysis under the classical
twin design is given in Figures 1.2 and 1.3. As explained below, Figure 1.2 can
be considered the graphical representation of the equivalent covariance struc-
ture as depicted in Figure 1.3. The path diagram as depicted in Figure 1.2 can
be conceived as to represent a model of the relationship between unmeasured
latent factors (A1, C1, E1) and the phenotype (P ) as measured in a single
individual. For example, if we assume that the phenotypic data for all mea-
sured individuals have been reduced to “mean deviation form” (i.e., the mean
phenotypic value has been subtracted from the values of all individuals),27

the phenotypic score Pi for an individual i (i.e., the deviation of his or her
phenotypic value from the mean phenotypic value over all individuals) can be
described to be a function of this individual’s genetic and environmental factor
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ΣMZ =

[
a211varA + c211varC + e211varE a211varA + c211varC

a211varA + c211varC a211varA + c211varC + e211varE

]

=

P twin1 P twin2

P twin1 a211 + c211 + e211 a211 + c211

P twin2 a211 + c211 a211 + c211 + e211

ΣDZ =

[
a211varA + c211varC + e211varE 0.5 × a211varA + c211varC

0.5 × a211varA + c211varC a211varA + c211varC + e211varE

]

=

P twin1 P twin2

P twin1 a211 + c211 + e211 0.5 × a211 + c211

P twin2 0.5 × a211 + c211 a211 + c211 + e211

Figure 1.3: Covariance structures for univariate quantitative genetic analysis under
classical twin design. “varA”, “varC”, “varE”, additive genetic, common environ-
mental, and specific environmental variance components, respectively. “a”, “c”, “e”,
path coefficients. Path coefficients are computationally equivalent to standard devi-
ations; hence their squared values constitute the variance components as is evident
from the covariance structures as depicted schematically in this figure. Note the dif-
ferent coefficient values for the additive genetic covariance components in MZ and
DZ co-twins of 1.0 and 0.5, respectively. “P twin1” and “P twin2”, phenotype (trait)
in first and second members of twin pairs, respectively; ΣMZ and ΣDZ , expected
covariance matrices for MZ and DZ co-twins, respectively. A similar coloring as in
Figure 4 of29 is used here, i.e., cells representing within- and cross-twin (co)variances
are colored light and dark grey, respectively.
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scores and of the factor loadings as follows:

Pi = a11Ai + c11Ci + e11Ei (1.1)

where Pi is the phenotypic score, a11 is the loading of the additive genetic latent
factor, Ai is the score of this individual on the additive genetic latent factor,
and analogously for the common and specific environmental factor loadings
(c11 and e11) and scores (Ci and Ei). The values of the factor loadings a11, c11
and e11 are the same for all individuals i. Hence, these factor loadings can be
regarded to be the weights, or regression coefficients, that are assigned to the
scores on the latent factors in order to produce the phenotypic scores.

Two types of model specification are possible: one in which the values of
the factor loadings are fixed to have the same value for all latent factors, and
the variances of the latent factors are allowed to vary freely; and the other type
of specification in which the variances of the latent factors are fixed to have
the same standardized value of 1 and the values of the path coefficients are
allowed to vary freely. The model depicted in Figure 1.2 represents the latter
situation, known as the “path coefficients model”.27 In this case, the variance
of the phenotypic scores over all individuals can be represented as follows:32

varP = a211 · varA+ c211 · varC + e211 · varE
= a211 · 1 + c211 · 1 + e211 · 1 (1.2)

= a211 + c211 + e211

In general, the elements on the diagonal of a covariance matrix are variances,
and the off-diagonal elements are covariances.36,a The entries on the diagonals
of the expected covariance matrices as in Figure 1.3 represent the variances of a
vector of values observed for the trait in the first (upper left) and second (lower
right) members of a number of twin pairs. The off-diagonal elements in the
expected covariance matrices in Figure 1.3 represent the covariances between
the vectors of values observed for the trait in the first and the second members
of twin pairs.

The proportions of the respective sources of phenotypic variance shared by
individuals are specified by coefficients in the structural equation model. For
example, the additive genetic correlation between MZ co-twins is 1.0, because
MZ co-twins share (nearly) all genetic variance at the DNA sequence level.
For DZ co-twins, this correlation is equal to 0.5; hence the coefficient values
of 1.0 and 0.5 for “A1” in the elements of the expected covariance structure
representing the covariance between MZ co-twins and between DZ co-twins,
respectively.

The fit of the expected covariance matrix (computed on the basis of the
model) to the ‘observed’ covariance matrix (i.e., the covariance matrix com-
puted from the observed data) is optimized by iteratively changing the values

aNote that a covariance matrix is equivalent to an unstandardized correlation matrix;
hence it can easily be seen that covariances (the off-diagonal elements of a covariance matrix)
will often have lower values than variances (the diagonal elements of a covariance matrix)
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of the parameters “a11”, “c11” and “e11” that form the basis for the expected
covariance matrix. The parameter values that yield the best fit of the expected
covariance matrix to the observed covariance matrix are considered to be the
estimates under the specified model for the additive genetic, common envi-
ronmental and specific environmental effects that constitute the phenotypic
variance observed in the studied population sample.

The standardized (with respect to total phenotypic variance) genetic vari-
ance component as resulting from a univariate analysis is often called “heri-
tability”. If the distinction is made between additive and non-additive genetic
effects, then the proportion of phenotypic variance attributable to additive ge-
netic effects is called “narrow heritability”. If this distinction is not made,
then the proportion of phenotypic variance attributable to all genetic effects
together is called “broad heritability”.37

Next to a univariate analysis as described above, which gives estimates for
the relative influences of genetic and environmental variation for the variation
observed in a given trait, multivariate quantitative genetic analysis can be
used to elucidate the relative importances of shared (among traits) genetic
and shared (among traits) environmental variance for the observed covariance
among two or more traits. Figures 1.4 and 1.5 depict the path diagram and
the corresponding covariance structure for a relatively simple, hypothesis-free29

bivariate analysis based on the classical twin design.
In the model depicted in Figure 1.5, the variance component matrices

“varA”, “varC”, and “varE” that constitute the expected covariance matrix
are computed as the products of lower triangular matrices of path coefficients
and their transpose. Let us take the submatrix of the expected covariance ma-
trix representing the covariance between DZ co-twins as an example; we will
denote this submatrix as ΣDZsub. Analogous to the covariance between DZ
co-twins in the univariate example (see Fig. 1.3), this submatrix ΣDZsub of the
expected covariance matrix is computed as the algebraic sum of the variance
component matrices “varA” (multiplied by the DZ covariance coefficient value
of 0.5) and “varC” (cf. Fig. 1.5):

ΣDZsub

= 0.5 × varA+ varC (1.3)

=

Twin1

P1 P2

T
w

in
2

P1 0.5 × a211 + c211 0.5 × a11 × a21 + c11 × c21

P2 0.5 × a11 × a21 + c11 × c21 0.5 × a222 + 0.5 × a221 + c222 + c221

Taking “varA” as an example, the matrices representing the expected variance
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A1 C1

E1

P1 twin1

A2 C2

E2

P2 twin1

A1 C1

E1

P1 twin2

A2 C2

E2

P2 twin2

1.00 1.00

1.00

a11 c11

e11

1.00

a22

1.00

c22

1.00

e22

a21 c21

e21

1.00

a11
a21

1.00

c11
c21

1.00

e11
e21

1.00

a22

1.00

c22

1.00

e22

1.0 / 0.5 1.0 1.0 / 0.5 1.0

Figure 1.4: Path diagram for bivariate quantitative genetic analysis under classical
twin design. A1 and A2 are additive genetic factors, where A1 is possibly shared by
both traits and A2 is specific for phenotype 2, respectively; similarly for C1 and C2
(familial environment), and for E1 and E2 (specific environment). Note again the
different correlations for the additive genetic factors in MZ and DZ co-twins of 1.0
and 0.5, respectively. P1 and P2, phenotype (trait) 1 and 2, respectively; twin1 and
twin2, first and second members of twin pairs, respectively.
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ΣMZ/DZ

=

[
a211varA + c211varC + e211varE 1.0/0.5 × a211varA + c211varC
1.0/0.5 × a211varA + c211varC a211varA + c211varC + e211varE

]

=

Twin1 Twin2

P1 P2 P1 P2

T
w

in
1

P1 a211 + c211 + e211
a11 × a21 + c11 ×
c21 + e11 × e21

1.0/0.5×a211 + c211
1.0/0.5 × a11 ×
a21 + c11 × c21

P2
a11 × a21 + c11 ×
c21 + e11 × e21

a221 + a222 + c221 +

c222 + e221 + e222

1.0/0.5 × a11 ×
a21 + c11 × c21

1.0/0.5 × a222 +

1.0/0.5 × a221 +
c222 + c221

T
w

in
2

P1 1.0/0.5×a211 + c211
1.0/0.5 × a11 ×
a21 + c11 × c21

a211 + c211 + e211
a11 × a21 + c11 ×
c21 + e11 × e21

P2
1.0/0.5 × a11 ×
a21 + c11 × c21

1.0/0.5 × a222 +

1.0/0.5 × a221 +
c222 + c221

a11 × a21 + c11 ×
c21 + e11 × e21

a221 + a222 + c221 +

c222 + e221 + e222

Figure 1.5: Covariance structure for bivariate quantitative genetic analysis under clas-
sical twin design. For brevity the different coefficient values for the additive genetic
covariance between MZ (i.e., 1.0) and DZ (i.e., 0.5) co-twins are indicated in the same
covariance structure here. P1 and P2, phenotype (trait) 1 and 2, respectively; Twin1
and Twin2, first and second members of twin pairs, respectively. ΣMZ/DZ , expected
covariance structure for MZ or DZ twin pairs. A similar coloring as in Figure 4 of29

is used here, i.e., cells representing within- and cross-twin (co)variances are colored
light and dark grey, respectively.



14 Chapter 1: General introduction

components are computed by Cholesky ‘composition’b as follows:

varA = a ∗ a′ =

[
a11 0
a21 a22

]
∗
[
a11 a21
0 a22

]
=

[
a211 + 0 × 0 a11 × a21 + 0 × a22

a21 × a11 + a22 × 0 a221 + a222

]
(1.4)

In concordance with the labels for the path coefficients in the path diagram dis-
played in Figure 1.4, the element labeled “a11” in the matrix “a” in equation 1.4
represents the specific influence of the latent additive genetic factor “A1” on
the variance of the first phenotype (labeled “P1” in Figures 1.4 and 1.5). Anal-
ogously, the element “a22” in the matrix “a” in equation 1.4 represents the
specific influence of the latent additive genetic factor “A2” on the variance of
the second phenotype (labeled “P2” in Figures 1.4 and 1.5). The additional
element of information provided by this bivariate quantitative genetic analysis
with respect to univariate analysis, is provided by the element labeled “a21”
(and “c21”, “e21” etc. for any analogous matrices “c”, “e”, etc.) in the ma-
trix “a” in equation 1.4. This element namely represents the additive genetic
component of the covariance between both phenotypes that are included in
the analysis. A high estimated genetic correlation (additive genetic covariance
component standardized by the pooled additive genetic variance for both traits)
suggests the presence of one common genetic factor causing correlation between
the values for both phenotypes in different persons. It is important to note that
a high genetic correlation among traits does not necessarily mean that genetic
factors are important causes of the phenotypic covariation among traits; this
is only the case if the traits under consideration are highly heritable.38

In this thesis, maximum likelihood-based SEM analysis of cross-sectional
data obtained in twin families of the same age is considered. However, SEM
can also be used to elucidate the causes of phenotypic change over time, using
either longitudinal data obtained in the same individuals or cross-sectional data
from individuals of different ages.27,38,39 The SEM-based quantitative genetic
analyses presented in this thesis, conducted on the basis of phenotypic data
obtained in a genetically informative sample of individuals, are informative of
the relative contributions of genetic and environmental variation to phenotypic
differences in a population sample of individuals; the results of these analyses
are not informative of the causes of particular values being observed for traits
in one individual. Also, it is important to keep in mind that with SEM on the
basis of covariance structures, we aim to elucidate the relative contributions of
sources of phenotypic variance; therefore, the causes for the observation in a
population sample of particular mean values for traits can not be elucidated
with this method,27 but see reference40.

bIt is customary to refer to this type of genetic model as being specified by “Cholesky
decomposition”;29,36 however because actually a positive definite covariance component ma-
trix is composed rather than decomposed, the term “Cholesky composition” might be more
appropriate and is therefore used throughout this thesis to denote this type of genetic model.
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1.4.2 Hierarchical clustering analysis

Hierarchical clustering analysis is a method to “find groups in data”.41 In other
words, it can be used to group (cluster) objects (for example, study partici-
pants) or variables (for example, metabolites) on the basis of their relative
(dis)similarities, such that objects or variables in the same cluster are more
similar to each other than to objects or variables in other clusters.42,43 Hier-
archical clustering analysis is typically applied to multivariate data, i.e. when
two or more variables have been measured for all objects.

An example of such a multivariate data matrix is depicted schematically in
Figure 1.6A. Note that in typical metabolomics data, the number of variables
is much larger than in the example presented here. The rows of this data table
represent the objects; the columns represent the variables. Thus, in hierarchical
clustering analysis the aim may either be to find groupings in the “rows” of
the data matrix, or to find groupings in the “columns”. Methods for clustering
both rows and columns also exist (for an overview, see e.g.42), but these are
not considered in this thesis. In the following example hierarchical clustering
of objects is considered, but note that the methodology to cluster variables on
the basis of the data for all objects is similar to the methodology to cluster
objects on the basis of the data for all variables.

First, on the basis of the data presented in Figure 1.6A a matrix (Fig-
ure 1.6B) of the pairwise distances among the objects in the variable space is
computed. In this case, Euclidean distance was chosen as a distance measure
but there are other possibilities.41 For example, the Euclidean distance between
the objects labeled “1” and “2” in Figure 1.6A is computed as follows:

δ(“1”, “2”) =
√

(6.5 − 2.75)2 + (2.4 − 6.2)2 = 5.34 (1.5)

The distance matrix is a square symmetric matrix having as many rows and as
many columns as there are objects in the original data matrix.

Then, based on the distance matrix, a chosen hierarchical clustering al-
gorithm groups the objects. For this example, the “single linkage” clustering
algorithm was chosen, but depending on the problem other algorithms might be
more appropriate.41 The result of this grouping is usually depicted as a so-called
dendrogram (right hand side of Figure 1.6 C–E). However, for the purpose of
clarity, in the left hand side of Figure 1.6 C–E the grouping of objects in each
cluster is depicted in so-called “loop plots”, which are basically scatter plots
of the data with the clustering indicated.41 First, the pair of objects that have
the smallest Euclidean distance to each other are grouped (Figure 1.6C); in
this example these are the objects labeled “2” and “4”. Then, the clustering
algorithm searches for the ‘clusters’ (actual clusters or individual objects) that
are now the closest to each other (objects “5” and “8”, Figure 1.6D). This
process is continued until all clusters form one big cluster (Figure 1.6E).

In this thesis, hierarchical clustering is applied for quantitative genetic anal-
ysis in two ways. First, in Chapters 2 and 4, it is used to group study par-
ticipants (MZ and DZ twins) and their nontwin siblings on the basis of their
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Figure 1.6: Example of hierarchical clustering analysis of eight objects in a bivariate
data matrix. The “height” of the branching points in the dendrogram (C–E) equals
the distances among clusters as computed by the hierarchical clustering algorithm on
the basis of the distance matrix (B). These branching points in the dendrograms have
rotational freedom along their vertical axis. Clusters are indicated by alphabetical let-
ters (a–g) both in the scatter or “loop plots” (left hand side in Panels C–E) and in the
dendrograms (right hand side of Panels C–E). With kind courtesy of prof.dr.ir. MJT
Reinders.
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relative similarities in lipidomics profiles. Hence, in this case we are clustering
objects (study participants) on the basis of variables (metabolites), analogous
to the situation presented as the example in Figure 1.6. Because of the similar-
ities among members of the same family with respect to genetic and environ-
mental effects that might influence metabolite concentrations in body fluids, it
is expected that relatives will have relatively similar blood plasma lipidomics
profiles and therefore will tend to cluster in hierarchical clustering analysis.
On the other hand, it is expected that participants from different families will
be put into different clusters by the clustering algorithm because these partici-
pants share less genetic and environmental variables than do relatives. Also, it
is expected that MZ co-twins will have more similar lipid profiles than DZ co-
twins, because of the larger proportion of genetic variance shared by members
of MZ twin pairs than by members of DZ twin pairs. In Chapters 2 and 4 of
this thesis, it is investigated whether the data provide indications that indeed
genetic and environmental similarities among individuals give rise to relatively
similar blood plasma lipidomics profiles.

As a second application for quantitative genetic analysis, in Chapter 5 of
this thesis hierarchical clustering is used to group variables (metabolites) on the
basis of their genetic correlations (see the preceding section of this Chapter for
an explanation of the estimation of genetic correlations in multivariate quanti-
tative genetic analysis by SEM). Hence, this type of analysis aims to highlight
groups of variables in the data that share genetic causes of their phenotypic
(co)variance.

In contrast to in SEM, in hierarchical clustering analysis no explicit model
is specified relating predicted variables to predictor variables and tested against
measured data; rather, in hierarchical clustering analysis “we just want to see
what the data are trying to tell us”.41 For example, when performing cluster
analysis of metabolite profiles obtained in a group of individuals (Chapters 2
and 4 of this thesis), we do not specify a model that relates the grouping
of participants to the influence of genetic and environmental latent factors.
And when performing cluster analysis of dissimilarities computed from “genetic
correlations” among different metabolites (Chapter 5 of this thesis), we do not
specify a model that relates the grouping of metabolites to the degree to which
the concentrations of these metabolites in body fluids are influenced by the
same genes.

1.5 Quantitative genetic analysis for systems
biology

Systems biology is the study of biology as a holistic system of genetic, ge-
nomic, protein, metabolite, cellular, and pathway events that are in flux and
interdependent.44 The interdependence among the elements (such as proteins,
metabolites and gene transcripts) of biological systems in quantitative terms
can be represented as a correlation network. Such a correlation network is de-
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Figure 1.7: Correlation network of select genes, proteins and lipids in the
APOE*3 Leiden mouse. The colors of the elements of the system (transcripts, proteins
and metabolites) indicate the relative expression in the transgenic animals compared
to wild type controls (red=higher level; green=lower level) and a line connecting two
elements indicates an absolute phenotypic (Pearson) correlation with a value larger
than 0.8. Reprinted with permission from OMICS: A Journal of Integrative Biology
Volume 8, Issue 1, 2004, published by Mary Ann Liebert, Inc., New Rochelle, NY.

picted graphically in Figure 1.7, which was based on the results of integrative
(systems biology) analysis of the APOE*3 Leiden mouse.45

The APOE*3 Leiden mouse is a transgenic animal that differs from wildtype
animals because it expresses the human APOE*3 Leiden gene. The importance
of this mutation for the relative concentrations of elements in the system in the
transgenic mouse with respect to the wildtype mouse is indicated in Figure 1.7
with the color of the elements. That is, elements that are colored red or green
in Figure 1.7 are heavily influenced by the genetic difference between wildtype
and APOE*3 mice, whereas no quantitative influence was observed of this
genetic factor on the colorless elements. In quantitative genetic terminology,
one might state that the “heritability” of the elements colored red or green in
Figure 1.7 is high (under the given condition of equal environments for wildtype
and transgenic animals). Also, in Figure 1.7 elements of the system that have
a high phenotypic correlation with each other in both the wildtype and in the
transgenic animal are connected by lines.

A phenotypic correlation network such as in Figure 1.7 could be generated
for humans as well on the basis of structural equation modeling, if transcrip-
tomics, proteomics and metabolomics data have been obtained in a genetically
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informative sample. However, as SEM-based multivariate analyses are also in-
formative of the genetic and environmental structure underlying phenotypic
correlations, such analyses would in addition allow the ‘decomposition’ of the
phenotypic correlation network into a ‘genetic correlation network’ and an ‘en-
vironmental correlation network’. Also, the elements (i.e., transcripts, proteins
and metabolites) of the phenotypic correlation network would look different
from those in Figure 1.7. That is, because quantitative genetic analyses are
typically based upon a polygenic 46,47 rather than a monogenic model of genetic
variation (as could be conceived for the APOE*3 Leiden mouse), the pheno-
typic network could indicate to what extent the elements vary quantitatively in
a continuous manner rather than in a dichotomous manner due to genetic vari-
ation. Also, probably not all elements showing the same degree of heritability
could be given the same color, as in Figure 1.7, because different genes might
influence different elements. Genetic correlations as estimated with multivari-
ate quantitative genetic analyses on the basis of SEM could indicate to what
extent the latter is indeed the case.

1.6 The value of our approach in the
(post-)GWA study era

The quantitative genetic analyses as described in this thesis use phenotypic
data obtained in a genetically informative sample of individuals to partition
phenotypic variation into genetic variation and environmental variation. In
such analyses on the basis of SEM, the “genetic factors” and “environmental
factors” are modeled as latent variables (e.g., “A1” and “C1”, respectively).
However, arguably, the genome-wide association (GWA) study is currently the
most widely used technique for studying the association between DNA sequence
variation (in the form of single-nucleotide polymorphisms, SNPs) across the
genome and variation at the phenotypic level (degree of expression of qualita-
tive or quantitative traits).48 A typical GWA study provides statistical signif-
icance values of the associations between variation in each SNP or haplotype,
and variation in each phenotype of interest for a particular cohort.49,50 The re-
sults of GWA studies that consider quantitative traits can be used to model the
dependency of trait values on the allele copy number of significantly associated
SNPs/haplotypes. Thereby, such GWA studies also provide the proportion of
phenotypic variance explained by a particular SNP (47; for examples, see12,51).
Therefore, in contrast to the type of quantitative genetic studies described in
this thesis, in GWA studies the measurable or ‘manifest’ genotypic variables
(i.e., SNPs indicating quantitative trait loci) are elucidated that influence vari-
ation in a trait. Recently, GWA studies have been performed linking genomic
variation and variation in metabolomics data.12,51,52

It is argued here that the type of quantitative genetic studies as described in
this thesis are able to provide valuable information in the context of the recent
developments in GWA studies. Specifically, heritability estimates, as provided



20 Chapter 1: General introduction

for example by twin or family studies on the basis of phenotypic data, can
provide a reference point for the proportion of phenotypic variance explained
by SNPs that are significantly associated with the phenotype.53–56 In contrast
to most GWA studies, such twin or family studies acknowledge that an in the-
ory infinite number of polygenes contributes to phenotypic variation, without
making inference on the identity of these genes.47 If, for example, the total pro-
portion of phenotypic variance explained by all significantly associated SNPs
in a GWA study is notably smaller than the heritability as estimated using
e.g. twin studies, then this is often called “missing heritability”.48,57,58 Indeed,
the concept of ‘missing heritability’ has caused a ripple in the recent litera-
ture,49,58–60 notably because for common diseases (and common traits, like
height) GWA studies have not been able to explain much heritability yet57,58

although novel analysis strategies for GWA bear much promise.61,62 Common
traits/diseases, which are presumably influenced by a large number of poly-
genes and a large number of environmental factors, are becoming increasingly
important as study objects.1 Oft-mentioned potential causes for missing heri-
tability in GWA studies for common traits are, amongst others, that common
genotypes of small effect size or rare variants are important contributors to her-
itability but are missed by GWA studies.48,63,64 Recently, within the context
of diseases, this view was refuted by Clarke and Cooper,65 who stated that
‘missing heritability’, especially for diseases that are relatively severe, might be
explained by natural selection on the basis of de novo genetic variation, which
is not detected by GWA studies. However, for quantitative traits, as well as
for common diseases that might well just represent the extremes of the distri-
butions of a number of quantitative traits,47,66 this latter view might not be
applicable as such quantitative traits will not be subject to stringent natural
selection.67

Rather than to compare the proportions of phenotypic variance attributable
to ‘genetic variation’ and particular SNPs in quantitative genetic studies and
GWA studies, respectively, heritability estimates can also be used prior to em-
barking on GWA studies to estimate the likelihood that genotypes associated
with the phenotypes of interest will be detected with statistical significance.37

Furthermore, the detection of pleiotropy (shared set of genes influencing mul-
tiple traits) by multivariate quantitative genetic analyses can support observa-
tions in GWA studies of statistically significant associations of different traits
with the same SNPs. Because of similar reasoning, the type of quantitative ge-
netic analyses described in this thesis might contribute to the interpretation of
the findings from e.g. “gene-environment-wide interaction studies” as well.68

1.7 Outline of this thesis

In Chapter 2, hierarchical clustering analysis is used to cluster members of
(mainly MZ) twin families on the basis of their blood plasma lipidomics pro-
files. The results suggest an important role for genetic effects and for gender in
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determining similarities of lipidomics profiles among individuals. Also, the re-
sults suggest that lipid profiling might be useful for monitoring personal health,
because dissimilarity of blood plasma lipidomics profiles in a number of cases
corresponded both with increased levels of the acute inflammatory marker C-
reactive protein (CRP) and with self-reported recent illness.

The power of any statistical analysis will be enhanced by increasing the
number of observations, and this holds in particular for twin studies.69 There-
fore, in Chapter 3 of this thesis, a data pretreatment method is described to
make combinable metabolomics data sets obtained with the same analytical
method but on different occasions. The application of this method is demon-
strated with data sets obtained by 1H NMR spectroscopic analysis of blood
plasma and of urine, and by LC–MS analysis of blood plasma lipids.

In Chapter 4, the method to cluster family members on the basis of their
lipidomics profiles as presented in Chapter 2 is applied to the combined LC–
MS data sets obtained after application of the method presented in Chapter 3.
The combined data set contains data for MZ as well as DZ twin families.
Hierarchical clustering analysis of these data supported the finding in Chapter 2
of the relatively large contribution of shared genetic background to similarity
of lipidomics profiles among individuals. In addition, the results suggest that
shared environmental influences are also important for such similarity. In line
with the findings presented in Chapter 2, female gender correlated positively
with dissimilarity of lipid profiles in MZ twin pairs.

In Chapter 5, uni- and multivariate quantitative genetic analyses on the
basis of SEM are applied to the blood plasma 1H NMR data set and the
blood plasma lipid LC–MS data set obtained by using the data set combi-
nation method described in Chapter 3. For the multivariate analyses a “mul-
tistep multivariate” method was applied that is demonstrated in this Chapter
to be useful for the relatively hypothesis-free analysis of “omics” (such as me-
tabolomics) data sets.

Finally, general conclusions are drawn and future perspectives are discussed
in Chapter 6.
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2.1 Abstract

Differences in genetic background and/or environmental exposure among indi-
viduals are expected to give rise to differences in measurable characteristics, or
phenotypes. Consequently, genetic resemblance and similarities in environment
should manifest as similarities in phenotypes. The metabolome reflects many
of the system properties, and is therefore an important part of the phenotype.
Nevertheless, it has not yet been examined to what extent individuals sharing
part of their genome and/or environment indeed have similar metabolomes.
Here we present the results of hierarchical clustering of blood plasma lipid
profile data obtained by liquid chromatography-mass spectrometry from 23
healthy, 18-year-old twin pairs, of which 21 pairs were monozygotic, and 8 of
their siblings. For 13 monozygotic twin pairs, within-pair similarities in rela-
tive concentrations of the detected lipids were indeed larger than the similarities
with any other study participant. We demonstrate such high coclustering to
be unexpected on basis of chance. The similarities between dizygotic twins and
between nontwin siblings, as well as between nonfamilial participants, were less
pronounced. In a number of twin pairs, within-pair dissimilarity of lipid profiles
positively correlated with increased blood plasma concentrations of C-reactive
protein in one twin. In conclusion, this study demonstrates that in healthy
individuals, the individual genetic background contributes to the blood plasma
lipid profile. Furthermore, lipid profiling may prove useful in monitoring health
status, for example, in the context of personalized medicine.

2.2 Introduction

Differences in genetic makeup and in environmental exposure manifest as dif-
ferences in measurable characteristics in individuals, that is, as differences in
phenotypes.70 Metabolite profiles are regarded as being an important part of
the phenotype.9 It is currently unknown to what extent an individual’s metabo-
lite profile is a function of the genotype and of environmental conditions. If
genotype is an important determinant of metabolite profiles, it is expected that
biological relatives who share genes and possibly also share environments will
show similarities in metabolic profiles.

To explore these issues, we carried out a study in healthy, 18-year-old
monozygotic (MZ) twins and their biological siblings. The process of obtain-
ing a comprehensive view of the metabolites in an organism has been termed
“metabolomics”.9 In humans, metabolomics strategies are often used to find
differences in metabolite profiles between groups having different phenotypes,
for example, between groups of healthy and diseased individuals.71 Indeed, with
respect to other ‘omes such as the genome, the metabolome might be more in-
formative of the physiological state of an organism. For example, in a study
where similarities in gene expression profiles of twins discordant for rheumatoid
arthritis were compared to similarities in expression between healthy twins, no
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difference was found between the healthy twin pairs and the twin pairs where
one twin had the disease.72

Perhaps the most widely used techniques to measure a wide range of metabo-
lites in biological samples in metabolomics are nuclear magnetic resonance
(NMR) and gas or liquid chromatography coupled to mass spectrometry (GC–
MS and LC–MS, respectively). NMR aims at obtaining a picture of the com-
plete metabolite profile of a sample, and thus is able to provide a “global” view
of the metabolome. Its sensitivity is typically lower than that of MS-based
methods such as LC–MS, though. A “targeted” approach, on the other hand,
focuses on analysis of particular classes of metabolites, for example amino acids,
sterols, or lipids.73 An LC–MS platform can be used for both global and tar-
geted approaches,71 but it is impossible to analyze in one run metabolites that
have widely differing physicochemical properties such as different polarities
and acid dissociation constants. Disadvantages of gas chromatography when
applied in metabolomics studies are that often derivatization is necessary,74

and that even then, only particular classes of metabolites are measurable.
In this study we have applied LC–MS in a targeted manner to obtain lipid

profiles in blood plasma samples from healthy MZ and dizygotic (DZ) twin
pairs and their siblings. Previous research in our laboratory using the LC–MS
method applied in the current study suggested that family members had rel-
atively similar blood plasma lipid profiles, although strong evidence for this
was lacking (unpublished results). Furthermore, lipids are especially inter-
esting metabolites because they are involved in a wide range of physiological
processes. For example, triglycerides (TGs) serve as an energy source for the
body,75 as a precursor for cell membrane phospholipids,76 and in the form
of body fat they are important for thermal insulation.77 Among the lipids,
TGs are the most important class into which potentially toxic compounds
can be incorporated.78 Another class of lipids with entirely different functions
comprises the lysophosphatidylcholines (LPCs). These can be formed from
phosphatidylcholines (PCs) present in low-density lipoprotein, for example,
by platelet-activating factor acetylhydrolase (lipoprotein-associated phospho-
lipase A2).79 The activity of this enzyme may be increased upon proinflam-
matory stimuli;80 the formed LPCs can act as a chemoattractant for phago-
cytes.81 PCs can also act as fatty acid donor for cholesterol esterification by the
LCAT enzyme,82 and may cause platelet aggregation after their oxidation.83

Bile is partly comprised of PCs.84 Furthermore, PCs are precursors of sphin-
gomyelins (SPMs), and share some of their functions with them: lipids from
both classes are important structural components of cell membranes85 and of
lipoprotein particles.86 They are also involved in signal transduction,87 and are
constituents of lung surfactant.88 Whereas the surface of a lipoprotein partly
consists of PCs and SPMs, cholesteryl esters (ChEs) are an integral part of
its core.86 The main biological function of ChEs is that they are precursors of
steroids.89

Twins are particularly informative study populations because the members
of pairs share genetic and environmental influences. MZ co-twins share their
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complete or nearly complete DNA sequence. Thus, for any heritable trait,
they will show phenotypic resemblance. The more heritable a trait, that is, the
larger the influence of additive genetic variation on the phenotype, the larger
the resemblance in MZ twins. First-degree relatives such as DZ twins and bio-
logical siblings share on average 50% of their segregating genes. Therefore, also
for these relatives their phenotypic resemblance is expected to be considerably
dependent upon the heritability of the traits under consideration. However,
resemblance between relatives who are not MZ twins also depends on the ge-
netic architecture of a trait. For example, if non-additive genetic influences
such as dominance or epistasis are of importance, phenotypic resemblance in
siblings is expected to be relatively low. If, on the other hand, genetic influ-
ences are mainly additive, phenotypic resemblance in DZ twins and siblings will
be roughly half of the resemblance in MZ twins. If, next to heritability, the
shared family environment —in the literature also referred to as the “common
environment” or “family environment”27— also contributes to phenotypic re-
semblance of relatives, then first-degree relatives will approach the resemblance
of MZ twins more than is expected on basis of genetic segregation.

In classical twin studies, knowledge about genetic and social relationships
among co-twins and siblings reared together is used to impose certain structure
upon the measurement data.27 Uni- and multivariate data are often modeled
within the context of genetic covariance structure approaches, using estimation
techniques based on maximum likelihood. However, such other approaches
require that the number of measured variables is not (much) larger than the
number of independent clusters (e.g., twin pairs or families) that take part
in the study. Therefore, such techniques have rather limited applicability in
typical “omics” studies, where the number of measured characteristics is much
larger than the number of individual samples. Such a multi- or megavariate
approach is the consequence of the idea that when studying biological systems,
multiple rather than individual measured variables will reflect underlying, as
such unobserved, phenomena. As an alternative, in the current study we have
applied an unsupervised approach that is based upon hierarchical clustering of
metabolite profiles to identify biologically relevant subgroups of participants
(i.e., twin pairs and families) in the data. With this approach, it is possible to
get an impression of the within-family variation in metabolite profiles relative
to the between-family variation.

We expected to identify clusters of family members in the data, in those
cases where family members share relevant genes and/or environment. Coclus-
tering of twins was evaluated using a permutation test. In instances where
co-twins did not cluster closely together, we have attempted to provide expla-
nations for this. Our results suggest an important role of genetic background
in the generation of interindividual variation in blood plasma lipid profiles.
Moreover, several lipids measured in this study may prove to be appropriate
for monitoring health status, for example, in the course of personalized treat-
ment.
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2.3 Methods

2.3.1 Participants

Participants were recruited from the Netherlands Twin Register at the Vrije
Universiteit (VU) in Amsterdam, The Netherlands.90 The aim was to recruit
MZ twin pairs of approximately 18 years old from a cohort participating in a
longitudinal investigation into the heritability of mental and physical develop-
ment in late puberty.91

Near the twins’ 18th birthday, the twin pairs and their siblings were invited
to take part in the project. Ethical approval was given by the Central Com-
mittee on Research Involving Human Subjects in The Netherlands. Informed
consent and parental consent, if a sibling was under 18, were obtained. Zygos-
ity was determined for all twin pairs by DNA genotyping (N = 20 pairs) or
using blood group polymorphisms (N = 1 pair).

Between November 2004 and September 2005, all participants came to
the VU University in Amsterdam for a physical examination in the morning
and neurophysiological assessment in the afternoon. Blood was drawn after
overnight fasting during the morning session. In addition, subjects completed
a series of questionnaires regarding demographics, problem behavior, health,
lifestyle, educational attainment, and other traits. For the current study, we
used answers to questions regarding current use of any medication, subjective
health up to 1 month prior to blood sampling, current and earlier smoking
habits, and whether participants currently lived at their parents’ home.

2.3.2 Blood sampling

Female participants reported the day of their menstrual cycle at the time of
sampling. To prevent clotting, heparin was used as a coagulant and blood
collection tubes (BD Vacutainer Systems, Preanalytical Solutions, Belliver In-
dustrial Estate, Plymouth, UK) were inverted gently immediately after collec-
tion. About 20 min later, tubes were put on ice. Approximately 2 h following
withdrawal, tubes were centrifuged for 20 min at 2,100 × g using a Hettich
Rotixa 120R centrifuge (Hettich AG, Bäch, Switzerland). Plasma fractions
were then transferred to 500 µL cups and stored at −20℃ until analysis. For
each included family, samples were obtained from every participant from that
family at the same day and processed by the same person. The concentration
of C-reactive protein (CRP) was assessed in thoroughly thawed frozen heparin
samples.

2.3.3 Sample preparation

From each plasma sample, 10 µL aliquots were taken in duplicate. For quality
control purposes a pooled sample consisting of equal amounts of plasma from
all study participants was prepared and divided into 10 µL aliquots. These



28 Chapter 2: Clustering of plasma lipid profiles from MZ twins

samples (QC samples) were further treated in the same way as the study sam-
ples. The samples were divided into two batches, each batch containing one
aliquot of each study sample. After separate randomization of each batch
QC samples were inserted following each ninth study sample. Samples were
deproteinized by adding 300 µL of isopropanol containing the following inter-
nal standards: C17:0 LPC 1 µg/mL, C24:0 PC 1 µg/mL, C17:0 ChE 1 µg/mL,
and C51:0 TG 1 µg/mL. In this denomination of lipids, the number of carbon
atoms as well as the number of double bonds in the fatty acid, separated by
a colon (e.g., C17:0) are followed by the class abbreviation (e.g., LPC). After
centrifugation, the clear supernatant was collected and the samples were again
stored at −20℃ until analysis.

2.3.4 LC–MS lipid profiling

Lipid extract (10 µL) was analyzed using a TSQ Quantum Discovery Triple
Quadropule mass spectrometer (ThermoFinnigan, Breda, The Netherlands),
equipped with a Surveyor MS HPLC pump and a Surveyor auto injector.
The compounds were separated on an Alltech Prosphere C4 300Å HPLC
column (150 × 3.2 mm i.d., 5 µm) (Alltech, Lexington, KY) and a Symme-
try 300 C4 guard column (10 × 2.1mm i.d., 3.5 µm) (Waters, Milford, MA)
using a methanol/water gradient with ammonium acetate and formic acid. Af-
ter ionization in electrospray (positive mode) the compounds were detected in
full scan mode using a scan range of 300–1100 m/z.

2.3.5 Data processing/integration

For all detectable lipids a target list was composed based on retention time
and m/z ratio and the peaks were integrated using LCQuan V2.0 software.
The target table comprised lipids belonging to the following classes: LPC, PC,
SPM, ChE, and TG. To correct for differences in extract volumes, injection,
and changes in signal of the instrument during analysis, all lipid peaks were nor-
malized using the internal standard of that class. The SPMs were normalized
using C24:0 PC.

2.3.6 Assessment of the quality of the data

As a measure of the experimental error induced by variation in the sample pre-
treatment procedure and variation in the measurements over the total duration
of the experiment, for each identified lipid compound the standard deviation
of its peak areas in the appropriate reconstructed ion chromatograms of the
individual QC samples was computed relative to the averaged peak area over
all QC samples (relative standard deviation, RSD).
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2.3.7 Statistical analysis

Statistical analyses were carried out in the statistical language and environ-
ment R (version 2.2.1)92 and in MATLAB (version R2006b, The Mathworks,
Natick, MA). For each sample the replicate measurements were averaged. The
resulting data matrix was autoscaled, rendering the mean of the distribution
for each lipid compound zero and its variance around this mean one, with
the aim to assign all lipid compounds equal weight in the subsequent hierar-
chical clustering.93 Then, each row of the data matrix, corresponding to the
averaged profile of one study participant and henceforth denoted as “object”,
was subjected to standard normal variate scaling (SNV)94,95 to correct for the
interindividual differences in the total lipid signal observed by this method. Eu-
clidean distances were computed to measure the dissimilarities among objects.
According to the Young-Householder theorem, SNV (applied to the objects)
followed by squared Euclidean distance computation is mathematically equiv-
alent to computing (1−) the correlation among unscaled objects.96

To assess whether there were differences in median Euclidean distance
among (1) MZ co-twins, (2) MZ twins and their same-sex siblings, and (3) same-
sex nonfamilial study participants, we performed a multiple comparison pro-
cedure using a Tukey’s honestly significant difference criterion type of critical
value on basis of the result of a nonparametric analysis of the variance within
these groups of study participants versus the variance between groups.97 A
multiple comparison procedure is designed to be conservative when testing for
significant differences among pairs of groups.98

Subsequently, the calculated distances among all objects were subjected to
hierarchical clustering analysis. In our choice of the used clustering algorithm
we strived for maximum correlation of the distances among clusters as com-
puted by the clustering algorithm (cophenetic distances),99 with the original
Euclidean distances among objects. Of the evaluated clustering algorithms, av-
erage linkage gave the highest Pearson correlation (0.71) between the Euclidean
distances among objects and the cophenetic distances among clusters, and was
therefore considered appropriate. Average linkage minimizes the average of the
pairwise distances between objects in different clusters.100

To assess the stability of the clustering, we calculated bootstrap proba-
bility values (BP values) for each cluster using the R package pvclust101 and
performing 10,000 resamplings of the variables over all objects.

The number of nodes, or branching points, in the resulting dendrogram
along the path separating co-twins was then used as a measure of cocluster-
ing of co-twins (see Fig. 2.3A for an example). For each number of nodes
separating co-twins, we compared the number of observations in the original
clustering dendrogram with artificial situations where there is no clustering.
In a dendrogram, the “root” of the tree (for example, in Fig. 2.2, the “top”
of the dendrogram) is where all clusters ultimately merge, whereas each of
the “leaves” at the “bottom” of the dendrogram corresponds to a single ob-
ject, which is in our study a scaled average lipid profile of one individual. We
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created artificial negative control situations by 1000,000-fold Monte Carlo re-
sampling of the object labels over the leaves of the observed clustering tree. For
each of the individual permutations, the number of occasions where co-twins
were separated by a given number of nodes in the clustering dendrogram was
recorded. When the observed number of occasions where co-twins were sepa-
rated by a given number of nodes in the dendrogram was above the 95% level
of the distribution for that number of nodes as resulting from all permutation
tests, the observed number of occasions for that number of separating nodes
was considered statistically significant.

Based upon this analysis, two subgroups of twins were identified, clustering
either closely or not closely with their co-twin. For each case where co-twins
did not cluster closely, we evaluated several participant characteristics and
environmental factors that could provide an explanation for this.

2.4 Results

2.4.1 Participants

The total study cohort consisted of 54 participants from 23 families (30 males
and 24 females), where 24 participants belonged to MZ male twin pairs (MZM)
and 18 to MZ female twin pairs (MZF). One male-male and one female-female
pair who were found to be DZ after additional genotyping (DZM and DZF; en-
coded as R � and F ◦; see the legend to Fig. 2.2 for denotation of individual
participants) were also included in the study. From seven families, a twin pair
and a sibling of the same sex participated (three MZM, one DZM, two MZF,
and one DZF). In one additional MZM family a female sibling (H •) partici-
pated. The average age of the twins was 18.0 years (SD 0.2) and of the siblings
17.4 years (SD 4.3).

According to the interviews, all study participants except H • lived at
home with their parents at the time of the study. Four participants used
medication, that is, one twin pair (A ◦) used the analgesic/antipyretic Ascal,
participant S ◦ 2 used fluoxetine prescribed for depression, and participant
H • used Marcoumar after a lung embolism. Six participants (F • 3; I � 1;
I � 2; M ◦ 2; T � 1; and T � 2) smoked at the time of sampling and two
participants (E ◦ 1 and M ◦ 1) had smoked in the past. Eight twins (A ◦ 1;
A ◦ 2; I � 2; K � 2; M ◦ 2; T � 2; W � 1; and W � 2) had had something
to eat during the fasting period. In the blood samples of twins A ◦ 1 and X -
� 2, hemolysis had occurred.

2.4.2 Lipid profiling and data processing

Blood plasma samples were analyzed with LC–MS, yielding profiles of 61 in-
dividual lipids per sample, which are listed in Figure 2.3C. The RSDs of the
internal standard-corrected responses for the individual lipids in the quality
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Figure 2.1: Box-whisker plots showing distributions of Euclidean distances be-
tween MZ co-twins (N = 38, left), between MZ twins and their same-sex nontwin
siblings (N = 10, middle), and among same-sex nonfamilial participants (N =
637, right). Data from co-twins of twins in whose blood plasma samples we had
noticed hemolysis (A ◦ 1 and X � 2), as well as data from two DZ twin pairs (F ◦
and R �) were included in the computation of distances among nonfamilial subjects
only. p-Values as resulting from a multiple comparison test of the group medians are
displayed.
?p < 0.05;? ? p < 0.01.

control samples ranged from 5.2% to 25.5%. Notably, the RSDs of all LPCs,
PCs, and SPMs were below 15%.

2.4.3 Statistical analysis

After averaging of the analytical duplicates and scaling of the data table, Eu-
clidean distances between the 54 rows (objects) were computed. The median
within-pair distance for MZ twins was significantly smaller than the median dis-
tance among nonfamilial participants; the median distance between twins and
their same-sex nontwin siblings was also significantly smaller than the median
distance among same-sex nonfamilial participants (Fig. 2.1). Similar differ-
ences have been observed by Nanki and colleagues for gene expression, which,
compared to the metabolome, is of course expected to correlate more strongly
with genotype because it is less subject to environmental influences.72 For the
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Figure 2.2: Result of nonparametric bootstrap procedure. Numbers near the branch-
ing points in the dendrogram indicate BP values on basis of the data resampling
method as explained. Denotation of participants: family, alphabetical letter (A-X);
sex, squares for males and circles for females (e.g., [�] and [◦] for a male and a female
twin, respectively); 1,2, randomly allocated to individuals of a twin pair. Labels in
bold type indicate DZ twin pairs. Nontwin siblings are indicated by filled squares (�)
or filled circles (•) for males and females, respectively.

three investigated gene families, they found that the similarities in expression
in peripheral blood lymphocytes were higher between MZ co-twins than among
nonfamilial participants.

The result of hierarchical clustering can be displayed as a tree, or den-
drogram (Fig. 2.2) that denotes the relationships among clusters in a two-
dimensional form. Female and male study participants are almost perfectly
separated at the highest level. The dendrogram demonstrates considerable
coclustering of MZ twin pairs. However, both DZ twin pairs do not cluster
adjacently. Most nontwin siblings do not cluster closely with a sibling who is
member of a twin pair. There appear to be rather few clusters that are either
extremely tight or extremely loose. Figure 2.3A indicates with a color code
Euclidean distances between all pairs of objects. The strong clustering of
female (the upper left quadrant in Fig. 2.3A) and of male study participants
(the lower right quadrant in Fig. 2.3A) is evident.

In Figure 2.3C, the scaled data is shown for every participant as a separate
vertical lane of the heatmap. The order of the objects along the horizontal
axis is equal to that in Figure 2.3A. Again, panel C indicates that lipid profiles
are different for males and females. The five lipid classes each coincide with a
distinct pattern in the heatmap when viewing across all participants from top to
bottom. Furthermore, this panel suggests that in general the TGs differentiate
less than the other classes between samples from different families. LPCs and
SPMs seem to differentiate most. Interestingly, there seem to be differences
between families regarding the specific lipid compounds which are most similar
among family members.
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The stability of the clustering of participants was assessed by a nonpara-
metric bootstrap procedure. For a discussion of the result of this analysis we
revert to Figure 2.2. In the context of hierarchical clustering, a bootstrap pro-
cedure can be used to investigate to which degree the dendrogram topology
changes upon omitting or multiple occurrence of a number of variables for all
objects. The stability of the clustering tends to be highest at the lowest level
of clustering, that is, where the distance between clusters is relatively small.
For the co-twins forming close clusters, BP values were in the range between
40 and 100, and in general clusters containing female co-twins had lower BP
values than clusters of male co-twins. Therefore, especially for the female co-
twins forming close clusters there may be subsets of variables that are especially
important for the clustering. With this in mind, one way to improve the co-
clustering of twins may be to use a measure of object similarity, for example,
COSA,43,102 that acknowledges that different subsets of objects may cluster on
different subsets of variables.

As a measure of coclustering of co-twins, for each twin pair we counted the
number of branching points, or nodes, along the path separating both twins.
The colors and heights of the lines that connect twins in Figure 2.3B indicate
these numbers. For example, there were three twin pairs where the number of
nodes between the co-twins was seven. In the dendrogram of Figure 2.3A an
example is drawn of this characterization of the relative similarity of co-twins
for a case where the distance between the co-twins is five nodes. For each
possible number of nodes separating MZ or DZ twins, the observed frequency
is displayed as a black dot in Figure 2.4. Characterizing the clustering of the
nontwin siblings with their closest twin brother or sister in a similar way, we
found that five of these pairs of family members (i.e., B •; F �; H •; S •;
and T � and their closest twin siblings) were separated by more than six nodes,
and therefore did not cluster closely. We acknowledge that one difficulty with
our approach is that the numbers of branching points along the path separating
pairs of objects are not necessarily representative of the absolute magnitude of
the dissimilarity between objects, in our case defined by Euclidean distance.
For example, co-twins may be dissimilar in terms of Euclidean distance but
still be separated by a limited number of nodes. This indicates that although
they are dissimilar, they are still more similar to each other than to any other
object in their neighborhood within the multidimensional space put up by the
lipid profiles of all study participants. Thus characterizing the coclustering of
twins in this way gives insight into the similarity of co-twins to each other,
relative to the similarity of each individual twin with all other objects in the
dataset.

Subsequently, we tested whether coclustering of twins was indeed stronger
than what would have been observed by chance, given the observed dendro-
gram topology. To this end, per possible number of nodes separating twins
we created a reference distribution by permutation of the object labels over
the leaves of the dendrogram. The significance of the observed numbers of
nodes separating twins in the dendrogram was assessed by comparison with
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�

Figure 2.3: Euclidean distances among objects and corresponding dendrogram (A);
scaled data for each participant (C). In panel B, co-twins are connected by colored
lines. In the dendrogram of panel A an example is drawn of our approach to charac-
terize coclustering of twins. The keys to the colors in panels A, B, and C are given in
the upper left, upper right, and lower right corners of the figure, respectively. In panel
C, lipids are labeled by the number of carbon atoms as well as the number of double
bonds (separated by a colon) in the fatty acid, followed by their class abbreviation
(LPC, PC, . . . ).
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these reference distributions (Fig. 2.4). In this figure, from left to right, with
each separate graph the number of branching points along the path in the
dendrogram separating co-twins increases. Due to the given structure of the
dendrogram, the maximum possible number of branching points along a path
between two leaves was fourteen, and therefore, the number of graphs in Fig-
ure 2.4 is also 14. For each number of branching points, from bottom to top the
number of twin pairs separated by that particular number of branching points
after each permutation is displayed by gray bars. In addition, for each possi-
ble number of branching points separating co-twins, the number of twin pairs
separated by that number of nodes in the original dendrogram (see Fig. 2.2
and Fig. 2.3A/B) is indicated by black dots. For example, in Figure 2.3A/B,
13 twin pairs can be observed that are separated by only one node. Hence, in
Figure 2.4 there is a black dot in the most left graph corresponding with one
node separating twins, at the point corresponding with 13 twin pairs. In most
permutations, no object labels of co-twins were separated by only one node,
and therefore, the horizontal gray bar corresponding with zero observations in
the same graph is tallest. As no twin pairs can be observed in Figure 2.3A/B
where the number of nodes between twins is two, in the second graph from the
left in Figure 2.4 there is a black dot corresponding with zero pairs, and so on.

Using the results of the permutation tests, it was found that the observed
number of 13 occasions where co-twins were only separated by one node was sig-
nificantly different from what would have been observed by chance. For larger
numbers of nodes separating co-twins, the observations with the object labels
in original order fell within the distributions observed after the permutations.
Therefore, we named “close” those co-twins who were separated by one node
within the clustering tree and “distant” those co-twins who were separated
by more than one node. The notion that there were two subgroups of either
close or distant twins in the data, was supported by the observation that the
distribution of the within-pair Euclidean distances partly overlapped with the
distribution of distances among nonfamilial study participants, as was shown
in Figure 2.1.

For each “distant” twin pair, we have attempted to provide an explana-
tion for the observed separation of the co-twins by more than one node in the
dendrogram (Table 2.1). These explanations were based upon the available in-
formation on participant characteristics and environmental factors. Moreover,
in a number of cases dissimilarity of lipid profiles correlated with within-pair
differences in the levels of the inflammatory marker CRP (Fig. 2.5). In partic-
ular, female sex and recent illness correlated with dissimilarity of lipid profiles
between MZ co-twins. In turn, in a number of cases, recent illness as self-
reported by the study participants correlated with an increased level of CRP.
However, we could not establish the influence of female sex and recent illness
independently, because a relatively large number of female study participants
had self-reportedly been ill. Moreover, a number of female “distant” twin pairs
did not have synchronous menstrual cycles. Dizygosity correlated strongly
with dissimilarity of lipid profiles as well, as both DZ twin pairs included in
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the study were separated by more than one node in the dendrogram. More-
over, five out of a total of eight nontwin siblings included in the study —of
whom all except H • were of the same sex as their siblings belonging to a
pair of twins— did not cluster closely with a sibling belonging to a pair of
twins. This observation suggests that the dissimilarity of both DZ twin pairs
was caused by differences in genetic background rather than by differences in
environmental factors. That is, if shared environment would have been more
important for the similarity of lipid profiles, the similarity of nontwin siblings
with their twin siblings would have approached the similarity of MZ twin pairs.
Although the relative within-pair dissimilarity of lipid profiles correlated with
differences in genetic background or environmental exposure, some twin pairs
had relatively similar lipid profiles despite the presence of such differences. For
example, twins J � 1 and D � 1 had had a cold less than 1 week prior to blood
sampling whereas their co-twins had not. Still, both discordant pairs were not
found to be distant in the clustering. Also, none of the female “close” twin
pairs did have completely synchronous menstrual cycles.

2.5 Discussion

In this study we have shown that upon hierarchical clustering of lipid profiles
from healthy MZ twins, a significant number of co-twins forms close clusters.
This is a strong indication that similarities in genetic background and/or en-
vironmental history among individuals indeed manifest as similarities in lipid
profiles. Where the genetic resemblance of family members is expected to be
lower than in MZ twin pairs on basis of Mendelian inheritance, that is, be-
tween DZ twins and between twins and their nontwin siblings, we observed
lower similarity of lipid profiles. Moreover, in a number of cases where MZ co-
twins did not cluster closely, we have identified recent experiences that might
have decreased the within-pair similarity, suggesting an important role of envi-
ronmental influences in these pairs. Indeed, the similarities among nonfamilial
participants, who are expected to share less genetic background and environ-
mental exposure than family members, were low on average.

To our knowledge, this is one of the first reports on unsupervised data
analysis of metabolite profiles among healthy twins. Until now, in most publi-
cations gene expression data were studied. For example, Tan et al.103 applied
their correspondence analysis to project gene expression, measured using whole
blood mRNA, separately for each of the 12 elderly female MZ and DZ twins
included in their study. They observed that in two MZ and two DZ twin pairs
the within-pair correlation of gene expression was higher compared to the cor-
relation between twins from different pairs. Moreover, in these four pairs the
within-pair correlation in expression in the MZ pairs was higher than that in
the DZ pairs. Omori-Inoue et al.104 performed hierarchical clustering based on
correlations between gene expression profiles in umbilical cords from five twin
pairs, and found that in four —probably MZ— pairs the co-twins clustered ad-
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Figure 2.4: Coclustering of twins compared with the results of permutation testing.
Numbers of nodes separating co-twins increase from left to right. For each number
of branching points, from bottom to top the number of twin pairs separated by
that particular number of branching points after each permutation is displayed by
gray bars; the number of observations in the original dendrogram (see Fig. 2.2 and
Fig. 2.3A/B) is indicated by black dots. The asterisk (?) in the most left graph
indicates that the observed number of 13 occasions where co-twins were separated
by only one branching point is significantly different from what was observed in the
permutation tests.
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Table 2.1: Tentative explanations for the separation of co-twins by more than one
node in the dendrograms of Figure 2.2 and Figure 2.3A/B

Twin pair Explanation
F ◦ (Female) DZ twin pair. F ◦ 1 had self-reportedly suf-

fered from a cold less than 1 week prior to blood sampling;
this correlated with a high blood plasma CRP level in this
participant. Both twins used oral contraceptives, but did
not have synchronous menstrual cycles.

M ◦ M ◦ 2 had been smoking five cigarettes per day for 6
years and had smoked 2 h before blood sampling; M ◦ 1
had quit smoking a half year ago after having smoked 10
cigarettes per day for 5 years. Furthermore, M ◦ 2 had
had a half cup of sugared tea for breakfast on the day of
blood sampling. Both twins used oral contraceptives, but
did not have synchronous menstrual cycles.

R � (Male) DZ twin pair. Furthermore R � 1 had self-
reportedly suffered from stomach-ache with cramps less
than 1 week before blood sampling.

N ◦ N ◦ 1 had self-reportedly suffered from flu-like symp-
toms less than 1 week prior to blood sampling; this cor-
related with an increased blood plasma CRP level in this
participant. Both twins used oral contraceptives, but did
not have synchronous menstrual cycles.

X � X � 2 had suffered from infectious mononucleosis more
than 1 month prior to sampling. Moreover, during sample
handling, in the sample of this twin hemolysis had occurred.

G ◦ Both twins had self-reportedly suffered from a cold less
than 1 week prior to blood sampling. In the blood plasma
of G ◦ 2, a high CRP level was measured.

U ◦ Both twins had self-reportedly been ill less than 1 week
prior to blood sampling; U ◦ 1 had suffered from a cold,
whereas U ◦ 2 had had flu-like symptoms accompanied by
fever. U ◦ 2 used oral contraceptives while U ◦ 1 did not;
furthermore, their menstrual cycles were not synchronous.

C � C � 1 had self-reportedly been ill without having a fever
less than 1 week prior to blood sampling; this correlated
with a high blood plasma CRP level in this participant.

V ◦ V ◦ 1 had reported sickness and headache more than 1
week prior to blood sampling. Both twins used oral con-
traceptives with synchronous cycles, although V ◦ 2 ap-
peared to suffer from oligomenorrhea.

S ◦ Twin S ◦ 2 had been using the drug Fluoxetine for de-
pression. Both twins used oral contraceptives, but did not
have synchronous menstrual cycles.
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Figure 2.5: CRP levels in blood samples in twins. From bottom to top, the average
CRP level of twin pairs increases. The numbers “1” and “2” near the observations
denote the “first” and “second” twin of each pair, respectively. For an explanation of
this labeling, see the legend of Figure 2.2.
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jacently, whereas the non-adjacently clustering co-twins (the fifth pair) might
have been DZ. In the result of hierarchical clustering on basis of 102 genes dif-
ferentially expressed in skin fibroblasts from study participants with systemic
sclerosis compared to controls, two MZ twin pairs were observed of which the
co-twins —who were discordant for the disease— clustered adjacently.105 Mati-
gian et al.106 used Pearson correlation as the similarity measure for hierarchical
clustering of gene expression profiles in lymphoblastoid cell lines from three MZ
twin pairs that were discordant for bipolar disorder, and found that the co-twins
of all pairs clustered adjacently. Such high within-pair similarity in MZ pairs
was not observed by Teuffel et al.,107 who subjected the bone marrow gene
expression profiles of 33 children with acute lymphoblastic leukemia, including
one pair of MZ twins concordant for the disease, to hierarchical clustering us-
ing Euclidean distances and applying the average linkage clustering algorithm.
The authors noticed that the co-twins did not cluster adjacently and ascribed
this effect to disease-related changes in gene expression.

Two recent articles employ supervised methods to analyze metabolomics
data from twins. In one publication a link was established between schizophre-
nia and alterations in blood plasma lipid levels as assessed by 1H NMR spec-
troscopy.108 Such changes were observed in both male and female affected twins
of pairs discordant for schizophrenia when compared to age-matched control
twin pairs. However, in females, the differences between the affected twins and
their control twins were more pronounced than in males; as opposed to in males,
in females the authors also observed a significant difference between the unaf-
fected twins of discordant pairs and control twins. The larger effects in females
were attributed to greater genetic predisposition to the disease-related changes
in discordant female pairs than in male pairs. A recent study by Pietiläinen
and colleagues109 found within-pair differences in lipid profiles, as assessed in
blood serum using LC–MS, in MZ pairs discordant for obesity. Interestingly,
the authors report that compared with five normal-weight concordant pairs as
well as with five pairs concordant for overweight, the discordant pairs did not
have larger intrapair differences in total cholesterol, high-density lipoprotein,
low-density lipoprotein or TGs.

Our results suggest that an unsupervised data analysis approach110 can
yield information that can not be derived from other, pseudosupervised analy-
ses. In explorative studies like this one, any constraints in supervised analysis
may preclude novel findings. Using hierarchical cluster analysis, we were able
to link within-pair dissimilarity of lipid profiles to within twin pair-specific
factors.

Studies estimating the relative influence of genetic variation on the within-
twin pair variation in lipid levels, have been reviewed by Iselius,111 and by
Snieder et al.112 To our knowledge, with respect to the lipid classes evaluated
in this study, only heritability estimates for the TGs have been described previ-
ously. A study based upon a population sample having a mean age of 16.7 years,
which is close to the mean age of our study cohort, found that genetic factors
accounted for 60% of the variation in total TG levels among individuals.113 In
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general, the relative influence of genetic variation on the phenotypic variation
in lipid and apolipoprotein levels has been found to be high. Such high es-
timates are consistent with our findings, of successful clustering of individual
twin pairs based upon unsupervised analysis of phenotypic data.

In addition to genetic background and environmental factors, experimental
factors such as sample handling and storage, as well as the used analytical
methods may introduce further similarities and differences between lipid pro-
files from different individuals. In our study, lipid profiles were assessed in
blood plasma samples from fasting individuals, because during fasting lipid
profiles are thought to be relatively stable,114 and therefore expected to be
more similar among individuals sharing genetic makeup and/or environmental
exposure. Although we can not completely exclude the possibility that the
similarities among samples from MZ twin pairs are partly due to other shared
factors induced by the study setup, the larger dissimilarities between twins and
their nontwin siblings argue against a strong influence of such factors. Samples
from members of the same family (i.e., twins and additional siblings) were col-
lected on the same day. If the workup of samples from a given family would
have introduced similarities among the samples from that family relative to
samples from other families, a larger resemblance of twin-sibling pairs would
have been observed. With respect to sample handling and storage, we suspect
that hemolysis of blood samples may augment differences in lipid profiles. In
one out of two cases where noticeable hemolysis of the blood sample had oc-
curred, the corresponding twin pair was found to be separated by more than
one node in the dendrogram.

We found that healthy individuals who share genetic background and/or
environmental exposure, have blood plasma lipid profiles that are more similar
than profiles of persons who do not share these influences. When extending
this observation in twins to a general healthy population, this probably implies
that the lipid profile corresponding with a healthy state is characteristic for
each individual due to the individual-specific genetic background and environ-
mental exposure.73 We therefore suspect that changes in the lipid profile might
denote deviations from the healthy phenotype, and therefore could be used, for
example, to diagnose the onset of disease. The correlation of an increased blood
concentration of the inflammatory marker CRP with dissimilarity of lipid pro-
files in a number of MZ twins in the current study supports this hypothesis.
Actually, it can be assumed that for each individual there is a lipid profile de-
scribing the “healthy phenotype”, and in the context of personalized medicine
the aim could be to maintain this, or to take measures to restore it.

In conclusion, in our study, healthy MZ twins have relatively similar blood
plasma lipid profiles. Between individuals with less shared genetic backgrounds
and environmental exposure, we indeed observed smaller similarity. Discor-
dance of MZ twins for recent disease, that can be regarded a particularly rel-
evant difference in environmental exposure, correlated well with within-pair
dissimilarity of lipid profiles. Therefore, lipid profiling might prove useful in
monitoring personal health.
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3.1 Abstract

Combination of data sets from different objects (for example, from two groups
of healthy volunteers from the same population) that were measured on a com-
mon set of variables (for example, metabolites or peptides) is desirable for
statistical analysis in “omics” studies because it increases power. However,
this type of combination is not directly possible if nonbiological systematic dif-
ferences exist among the individual data sets, or “blocks”. Such differences
can, for example, be due to small analytical changes that are likely to accumu-
late over large time intervals between blocks of measurements. In this article
we present a data transformation method, that we will refer to as “quantile
equating”, which per variable corrects for linear and nonlinear differences in
distribution among blocks of semiquantitative data obtained with the same
analytical method. We demonstrate the successful application of the quan-
tile equating method to data obtained on two typical metabolomics platforms,
i.e., liquid chromatography–mass spectrometry and nuclear magnetic resonance
spectroscopy. We suggest uni- and multivariate methods to evaluate similari-
ties and differences among data blocks before and after quantile equating. In
conclusion, we have developed a method to correct for nonbiological system-
atic differences among semiquantitative data blocks and have demonstrated its
successful application to metabolomics data sets.

3.2 Introduction

Combining data from different sources is an important topic in systems biol-
ogy. At least two types of data combination can be envisaged. The first type
of combination is often referred to as data integration or data fusion, and here
combination is considered of data sets all representing the same set of objects
(for example, a group of healthy volunteers) but different sets of measured
variables (for example, metabolites, peptides, etc.).115,116 Data fusion com-
bines the strengths of different analytical techniques to enhance the biological
interpretation of the variability present in the study population. In the second
type of combination, which is the scope of this article, data sets are combined
representing different groups of objects (for example, two groups of healthy
volunteers) that were measured on a common set of attributes (for example,
the same set of metabolites). Combination of data sets in such a way is desired
because it increases the power of statistical analyses. In other words, one may
want to combine different data “blocks”.

In this article, we use the term “blocks” to refer to measurements obtained
on the same analytical method but on different sets of objects and in particular
with a considerable time span in between these sets of measurements. A block
can consist of data from one or more measurement batches. A similar definition
of blocks is given by Zelena et al.117 Different measurement blocks can arise
within a study, for example, because (1) the number of study samples is too
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large to measure all samples in one measurement block or in one laboratory, (2)
additional samples become available in the course of the study while previously
collected samples have already been measured, or (3) following a successful
pilot experiment, additional samples are measured for validation. It is also
conceivable that it is desired to combine data blocks from different studies.

Nonbiological differences between the data from different measurement blocks
can exist due to small analytical differences that are often unavoidable and that
are typically not addressed during method robustness tests. Such analytical dif-
ferences are, for example, likely to accumulate over large time spans between
blocks of measurements.117–119

In data fusion, often three types of combination of data from a common set
of objects are considered: high-level fusion, which is the combination of results
of data analyses obtained on sets of different variables, low-level fusion, or the
concatenation and possibly subsequent weighting of data matrices in such a
way that the objects are the shared mode, and mid-level fusion, a term used to
describe the combination of variables selected from different data sets.115,116 A
similar classification can be envisioned when considering combination of data
on sets of different objects where the attributes are identical. In this article, we
present a method that enables such combination of data blocks at a “low level”
and illustrate its use with metabolomics data sets. Combination at low level
allows maximal flexibility in the choice of subsequently applied (multivariate)
data analysis methods yielding results for the combined data sets and therefore
is particularly suited to increase the power of such subsequent data analyses.
Moreover, combination of data at a low level allows to account for differences in
distribution shapes of the same variable(s) among the data sets to be combined,
if it is known that such differences have a nonbiological cause. The necessity and
possibility of applying data correction methods in order to obtain combinable
“omics” data blocks will vary from situation to situation.

In the discussion below, we have intended to provide a guideline where we
start with a description of situations where combination should be possible
without additional data correction and end with a description of situations
where the data transformation method we propose in this article could be
useful.

1. If the between-block reproducibility of the used analytical method is good
(e.g., semiquantitative nuclear magnetic resonance (NMR) spectroscopy
under similar conditions for all measurement blocks of which data sets
are to be combined),120,121 or the data sets to be combined all contain
quantitative data (either through separate calibration per measurement
block or through transfer of calibration models),118,119 then the combi-
nation of data sets from different measurement blocks should be possible
without additional correction. However, currently obtaining quantitative
data from metabolomics experiments is still rather difficult, because often
due to the absence of reference standards for all detected compounds it is
impossible to create a complete calibration model per variable.122 Both
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techniques that are the most frequently used in metabolomics, i.e., liquid
chromatography–mass spectrometry (LC–MS) and NMR, suffer from this
problem.

2. If the measurements performed within particular blocks are not reliable,
then the data from these measurements should be discarded. The reliabil-
ity of measurements can be monitored using, for example, a quality con-
trol (QC) sample consisting of pooled individual study samples, of which
aliquots are measured during all analytical measurement blocks.122–127

3. Recently, a method has been presented to correct for between-batch ef-
fects using these repeated measurements of QC samples as well.128 Like
the other methods to be discussed below, it can be used for the cor-
rection of semiquantitative data, i.e., in cases where no full calibration
models can be made. We will refer to techniques that make combinable
sets of semiquantitative data as “equating” methods, because the term
“equating” is used in psychometrics to denote techniques that solve sim-
ilar problems.129,130 In the method of van der Kloet et al., the data are
corrected for within-batch and between-batch effects per metabolite us-
ing the responses of pooled QC samples (for that metabolite).128 This
method can be of use if a single-point calibration is appropriate for cor-
recting differences in data distributions among measurement batches or
even among measurement blocks. Of course, it can be used only if the
same QC samples are measured in all batches or blocks of which data
need to be combined.

4. There are situations where repeated QC sample measurements cannot
be used for between-batch effect correction or for between-block effect
correction. An obvious example is if such measurements have not been
done during all measurement batches or blocks of which data sets need
to be combined. Another example is when the QC samples are not rep-
resentative for the measurements in all data sets to be combined. This
can happen for instance if there is differential degradation in the QC
samples with respect to the individual study samples. Such situations
are analogous to the situations where in the context of multivariate cali-
bration transfer one would typically use “nonstandardization methods”,
i.e., data preprocessing methods that are independent of transfer stan-
dards.118 An example of an equating method that is independent of re-
peated QC sample measurements is local autoscaling: autoscaling per
data set separately.131 Like the method described in ref128, this local
autoscaling method could be regarded as a linear equating method.

5. Finally, the data distribution shapes of the same variable in all data sets
to be combined can be different mainly due to nonbiological differences
among the blocks. Such nonlinear differences among the data distribu-
tion shapes in different blocks can arise even if within each block the
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measurements for each variable are within the dynamic range of the de-
tector. For example, in case of LC–MS, in a typical metabolomics study,
measurement values can be outside the linear range for various reasons:
saturation of the detector, peak integration effects (e.g., caused by peak
tailing, depending on the concentrations of a particular compound in the
samples measured in a particular block), or nonlinear losses during sam-
ple preparation. These effects can be different for different measurement
blocks. In this article, we propose an equating method that corrects for
nonlinear differences between distributions under the assumption that
there is an underlying common distribution. Therefore, the beneficial
effects of our method will be largest when the compositions of the object
groups are balanced among the measurement blocks of which data are
to be combined. Our method is independent of repeatedly measured QC
samples as well.

In case it has been decided that equating methods need to be considered
to correct the data for between-block effects, the choice of a particular equat-
ing method might not be trivial. It can be generally stated that the equating
method should be used that removes most analytical between-block variation
with respect to the biological variation present in all blocks. In practice, how-
ever, it is not always possible to determine exactly which part of the total
between-block variation is attributable to biological variation and which part
is attributable to analytical variation, because the objects measured in different
blocks are different. In this respect, an objective evaluation of the results of
equating is necessary, because the best equating method in a given situation is
not necessarily the one that gives the most desirable results in view of the bi-
ological question. Therefore, as with any data preprocessing, using the results
of subsequent data analyses alone as a reference to “optimize” the choice for a
particular method could lead to bias.

The structure of the remainder of this article is as follows. In the Materials
and Methods section, we first introduce the metabolomics data that we will use
to illustrate the use of our equating method. Then, we describe our equating
method. Univariate as well as multivariate parameters are described that can
be used to evaluate the comparability of data sets before and after equating.
The Results and Discussion section describes the results of application of our
equating method to the data sets originating from the different measurement
blocks. Several possible sources of nonbiological systematic variation between
data obtained in the different blocks are pointed out. The results of applica-
tion of our equating procedure to metabolomics data sets, as described in this
article, will be used to reproduce and extend our observations that were done
in a cohort of twins (see Chapter 2). The results of these subsequent analyses
on the combined equated data sets described in the current article will be pre-
sented in a separate paper, because the biological interpretation of the results
is out of the scope of this paper.
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3.3 Materials and methods

Participant recruitment and characterization, blood sampling, and blood plasma
sample preparation were performed as described in Chapter 2. In brief, blood
was drawn and urine collected from all participants (twins and biological non-
twin siblings) after overnight fasting. Plasma samples were stored at −80℃
until analysis.

The LC–MS and 1H NMR measurements were performed in two blocks; the
measurements of “block 2” (B2) were performed almost 1 year (48 weeks) after
those of “block 1” (B1). In B2, for the purpose of QC of the LC–MS and NMR
analyses, QC samples were prepared prior to sample preparation by pooling
equal amounts of plasma sample from all participants who were measured in
that block. In B1, such QC samples were prepared for the LC–MS analyses
only. For both LC–MS and NMR analyses, these QC samples were inserted
uniformly distributed after separate randomization of the measurement order
of the individual study samples in each batch.

3.3.1 LC–MS plasma lipid profiling

Plasma lipid extraction and profiling by LC–MS were performed as described
in Chapter 2. After lipid extraction, all extracts were stored at −20℃ and
measured within 2 weeks. Each peak area obtained for a lipid was corrected
using an appropriate internal standard (IS), which had been added prior to
sample preparation; no further normalization of the data was applied.

3.3.2 1H NMR analysis of plasma

Prior to 1H NMR spectroscopic analysis, 300 µL of each plasma sample was
centrifuged to remove proteins that had come out of the solution after freezing
and transferred to a 5 mm o.d. NMR tube. To each sample 300 µL of deuter-
ated sodium phosphate buffer (0.1 mmol/L, pH 7.4, made up with D2O) was
added.

1H NMR spectra were acquired in triplicate on a fully automated Bruker
Avance 600 MHz spectrometer (Bruker Analytik GmbH, Karlsruhe, Germany)
using a “Carr-Purcell-Meiboom-Gill” (CPMG) spin-echo pulse sequence and
operating at an internal probe temperature of 300 K. The water signal was
removed by a presaturation technique in which the water peak was irradiated
with a constant frequency during the relaxation delay. A total of 128 transients
were acquired into 32 × 103 data points for B1 and 64 × 103 data points for
B2. A spectral width of 6 kHz for B1 and 12 kHz for B2 was used with a spin
relaxation delay of 88 ms and τ3.4 × 10−4 s for both blocks.

The spectra were processed using XWIN-NMR software (v.3.1, Bruker An-
alytik GmbH). An exponential linebroadening function of 0.5 Hz was applied
to the free induction decays (FIDs) prior to Fourier transformation. All spectra
were manually phased, baseline-corrected, and referenced to the lactate signal
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(CH3 δ 1.33).
After peak picking of the NMR data using the XWIN-NMR software, peak

lists were imported into Winlin (V1.10, TNO, The Netherlands). Small vari-
ations in chemical shifts in the NMR spectra were adjusted manually based
on the partial linear fit algorithm.132 The peak-picked data from B1 and B2
were aligned together, with the aim to make the alignment for data from both
blocks as comparable as possible.

Peaks detected in at least 80% of the spectra recorded in each block were
kept for further analysis.116,127 Then, the data were median-normalized.133

3.3.3 Differences between B1 and B2

The 54 healthy participants (30 males and 24 females) who contributed the sam-
ples measured in B1 have already been described in Chapter 2. In B2, plasma
samples from 128 additional healthy participants (49 males and 79 females)
from 42 families were measured. In this cohort, there were 16 monozygotic
twin pairs, 26 dizygotic twin pairs, and 44 nontwin siblings. The average age
of the twins in the cohort of whom samples were measured in B2 was 18.2 years
(standard deviation (SD), 0.2); the average age of the siblings was 19.5 years
(SD, 4.8).

In B1, for LC–MS analysis two aliquots were taken of the plasma sample
from each individual participant, which were then divided into two measure-
ment batches where each batch contained one aliquot of each study sample. In
B2, on the other hand, only one aliquot of each study sample was processed
and analyzed in one measurement batch.

Furthermore, following every other of the QC sample aliquots consisting
of B2 study samples, aliquots were inserted of the QC sample that had been
measured in B1 as well and that thus consisted of B1 individual study sample
aliquots (sample pretreatment was performed for this B1 QC sample in B1 and
in B2 separately). This B1 QC sample thus underwent an additional freeze-
thaw cycle between B1 and B2.

As a measure of experimental error, for each detected lipid compound rel-
ative standard deviations (RSDs) were computed for B1 of the IS-corrected
measurements in B1 of the pooled QC sample prepared from individual study
samples measured in B1, and for B2 of the IS-corrected measurements of the
pooled QC sample prepared from samples measured in B2.

In B2, for NMR analysis following each of the QC sample aliquots consisting
of B2 study samples, samples were inserted of in total 12 participants that had
already been analyzed in B1. These samples thus underwent an additional
freeze-thaw cycle between B1 and B2.

3.3.4 Equating data from B1 and B2

Our equating method lets the data for each variable assume the same distribu-
tion in all blocks, by averaging the distributions for that variable in all blocks.
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An algorithm to achieve this has been presented by Bolstad et al.134,135 This
algorithm was based on the principle of the quantile–quantile plot (Q–Q plot).
Generally stated, quantiles are the values marking the boundaries between reg-
ular intervals of the cumulative distribution of a data sample. That is, when
dividing ranked data into a number of subsets, then the quantiles are the values
at the boundaries between consecutive subsets. In a Q–Q plot, the quantile val-
ues of two distributions are plotted against each other; the number of quantiles
plotted equals the number of data points in the smaller data sample (the quan-
tile values in the larger data sample are found by linear interpolation).136,137

If in the Q–Q plot the points defined by the values of corresponding quantiles
in both data samples all lie on a straight diagonal line, then the distributions
of both samples are highly similar; if they do not, then the distributions are
dissimilar.

In the algorithm as presented by Bolstad et al., the averaging of data dis-
tributions is achieved by projecting the corresponding quantile values of all
distributions onto a scalar multiple of the unit vector (a, possibly multidimen-
sional, analogue of the diagonal in the Q–Q plot) (Figure 3.1).134,135 Then,
the averaged quantile values are substituted for the original values that are in
the subsets belonging to the corresponding quantiles in the data samples under
consideration. Thus, the original ranking of the data points in the data sam-
ples to be combined is retained. The result is that the distributions of all data
samples become equal, or —in the case of different numbers of observations per
data sample— almost equal.

This algorithm is usually applied in an “omics” context to make the dis-
tributions of different objects equal over all measured variables, that is, for
“normalization”. Examples of this application are found, e.g., in the fields of
genomics (normalization of gene probe intensity distributions between oligomi-
croarrays, over all gene probes)135,138–140 and of peptidomics (normalization
of peptide intensity distributions between analytical samples, over all detected
peptides).141 However, we introduce the use of this algorithm for equating,
that is, for making the distributions of the same variable (NMR feature or
lipid) equal over all sets of objects (sets of study samples in all blocks). Be-
cause our method is conceptually akin to what is known in psychometrics as
“quantile equating” or “equipercentile equating”,130,142 we will refer to it as
“quantile equating” as well. Of note, in quantile equating in a psychometrical
context the aim is not to make the distributions of the same variable equal for
all sets of objects but to provide transformations by which equivalent scores
can be found on different versions of the same test.

We used the “normalize.quantiles” function, which was written by the first
author of the original publications,134,135 to perform quantile equating. This
function is part of the “preprocessCore” package, which is a component of
the Bioconductor software suite (version 2.1)143 running in the statistical en-
vironment R (version 2.6.2).144 For its originally intended purpose, i.e., for
normalization, the “normalize.quantiles” function is applied simultaneously to
all objects (study samples). To perform equating, however, we applied this
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function to the variables. Moreover, we applied the function to the B1 and B2
data for each variable separately.

In case of the LC–MS data, replicate measurements of the individual study
samples in B1 were first averaged before equating, whereas in case of the NMR
data unaveraged replicates were equated.

Data for samples measured in B1 as well as in B2 (for example, QC samples
prepared on basis of pooled aliquots of B1 individual study samples) were
omitted from all B2 data sets before equating for the following reason. If the
composition of QC samples changes differently between measurement blocks
with respect to the composition of individual study samples, then QC samples
are not representative for the samples measured in all blocks. In this paper, we
show an example of this in case of plasma NMR spectroscopy, where repeatedly
measured samples underwent an additional freeze-thaw cycle between B1 and
B2 with respect to the individual samples measured in B2. If we would have
left the data for these repeatedly measured samples in the B2 block, these
data would have influenced the B2 data distributions and thereby would have
distorted the result of quantile equating. We did not remove the B1 and B2
measurement data for the QC samples prepared on basis of samples measured
in each block, because these helped to visualize the beneficial effects of quantile
equating in making combinable B1 and B2 data sets.

3.3.5 Evaluation of comparability of data sets

The comparability of data sets obtained with the same analytical method but
in different measurement blocks was evaluated using various methods. At the
univariate level, before quantile equating we assessed to which extent the rela-
tionship between data distributions of both measurement blocks was nonlinear
using the Pearson correlations between the ranked quantile values of both mea-
surement blocks. Due to the nature of quantile equating, after equating the
correlations between the B1 and B2 quantile values are always equal to 1.

We characterized the extent to which nonlinear relationships between the
distributions as well as other differences between the data from both measure-
ment blocks before equating gave rise to differences at the multivariate level,
using a strategy proposed by Jouan-Rimbaud et al.145 In this strategy, data
sets are compared in the principal component (PC) space using three continu-
ous parameters that each can take a value between 0 and 1, where a zero value
indicates low similarity of the evaluated data sets and a value of 1 suggests
perfect similarity. The first parameter (“P”) is based upon the comparison of
principal components analysis (PCA) loadings patterns, the second parame-
ter (“C ”) is based upon the comparison of variance-covariance matrices, and
the third parameter (“R”) characterizes the similarity in location of the cen-
troids of the data sets. The degree of success of quantile equating in making
data from both measurement blocks comparable, was characterized using these
multivariate parameters as well. We used a 2% increase in total variance ex-
plained by the model as a criterion to estimate the number of PCs for which
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these parameters were to be computed (PLS Toolbox version 3.5, Eigenvector
Research, Wenatchee, WA).

Furthermore, the success of the equating procedure was visualized by the
results of PCA on the combined (concatenated with the variables as the shared
mode) data sets originating from different measurement blocks. For this PCA,
replicate measurements were averaged. LC–MS data were then mean-centered,
whereas NMR data were autoscaled. These different types of scaling were
applied to the respective types of data because this enhanced the visibility of
the between-block effects prior to equating. All PCA were carried out using the
PLS Toolbox for MATLAB (version R2006b, The Mathworks, Natick, MA).

3.4 Results and discussion

3.4.1 Analytical data

In Chapter 2, the data denoted in the current paper as the B1 LC–MS data have
already been presented. The 61 different lipids that were detected in the chro-
matograms in B1 (see Chapter 2) were detected in B2 as well. Lipids from the
following classes were detected: lysophosphatidylcholines (LPC), phosphatidyl-
cholines (PhC), sphingomyelins (SPM), cholesterol esters, and triglycerides
(TG). Throughout the manuscript, lipids are denoted as follows: the num-
ber of carbon atoms as well as the number of double bonds in the fatty acid,
separated by a colon (e.g., C36:5) is followed by the class abbreviation (e.g.,
PhC).127 The data for C16:0 LPC and C52:2 TG were excluded from further
analysis because their responses displayed a systematic trend in the QC sam-
ple measurements in B2, resulting in high RSDs. In B1, the mean RSDs for
the remaining 59 lipids as computed on basis of the measurements of the QC
sample prepared in B1 were 13.3% (SD, 5.6; range, 5.2–25.5%). Notably, the
RSDs of all LPCs, PhCs, and SPMs were below 15%. In B2, the mean RSDs of
these same 59 lipids, computed on basis of the measurements of the QC sample
prepared in B2, were 7.5% (SD, 1.4; range, 4.9–10.9%). In the plasma NMR
data, after application of the “80% rule”, 75 features (variables) were kept for
analysis.

3.4.2 B1–B2 comparison before equating

PCA scores plots

Panels A and C of Figure 3.2 display the PCA scores plots for the LC–MS and
the NMR plasma data, respectively, before equating. As expected, the scores of
almost all pooled B1 and B2 QC sample aliquots are in the centers of the clus-
ters corresponding to B1 and B2, respectively. However, in particular in case
of the LC–MS data, the scores of the measurements from both blocks display
notable separation along the PC1 axis (Figure 3.2A). This phenomenon might
have been caused, for example, by slightly different IS concentrations. Another
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Figure 3.1: Action of quantile equating algorithm schematically illustrated: Data
samples B1 and B2 have different distribution shapes (panel A). The cumulative
distributions (CD) corresponding to these distributions are plotted against each other
in the quantile–quantile plot (Q–Q plot) in panel B. Quantile equating is attained
by projecting the values of corresponding quantiles onto a scalar multiple of the unit
vector (the diagonal line in the Q–Q plot) in panel C. Then, the projected (averaged)
quantile values are substituted for the original values in the subsets belonging to each
quantile. Thereby, the distributions of B1 and B2 become equal, as is illustrated with
equal cumulative distributions (panel D) and equal kernel densities (panel E). Data
from ref146. CD, cumulative distribution; Q–Q plot, quantile–quantile plot; Cum. fx,
cumulative fraction. The axis labels as in panel B apply to panels C and D as well.
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possible cause is that for each block a separate target table was constructed on
basis of the QC sample measurements in that block. This might have led to
different detection thresholds for the same peaks in both blocks and thereby
to systematic differences in peak integrals. The scores based on the B1 and on
the B2 plasma NMR measurements overlapped only partially (Figure 3.2C).
This may have been caused, at least in part, by different CPMG parameter
sets in both blocks. Furthermore, in Figure 3.2C, it can be observed that the
NMR measurements in B2 of the 12 individual samples that were measured
in B1 as well are not representative for the measurements in B2. We suspect
that this is among others due to the additional freeze-thaw cycle that these
repeatedly measured samples underwent and that is known to affect plasma
NMR spectra.147 Therefore, Figure 3.2C gives a visual illustration of a case
where methods that employ such repeatedly measured samples for equating,
e.g., the method described in ref128, cannot be used.

B1–B2 correlation of quantile values

The average Pearson correlation for all variables between the B1 and the B2
quantile values before equating was 0.97 (SD, 0.03) for the LC–MS data and
0.92 (SD, 0.09) for the plasma NMR data. In case of the LC–MS data, notably
a group of TGs displayed nonlinear relationships between the quantile values
of both blocks (Supporting Information Table 3.4). Among the lipids, TGs are
particularly likely to display nonlinear differences in data distribution shapes
among data blocks because they can form dimers during ionization and MS
detection. This effect is dependent on concentration and on ion source tuning.

Unlike LC–MS systems, NMR spectrometers are regarded to be linear detec-
tors,148 implying that signal intensity should be linearly related to compound
concentration over the complete dynamic range. Therefore, in case of the NMR
data, nonlinear relationships between the distributions of the B1 and the B2
data at lower intensities (Supporting Information Table 3.5) might have been
caused by differences in the sensitivity of the NMR probe heads used for the
acquisitions of the NMR data between both blocks, as well as by differences in
peak detection thresholds between both blocks.

Multivariate parameters

The values of parameters that characterize the similarity of the B1 and B2
data sets in the PC space before and after quantile equating are given in Ta-
ble 3.1. For both the LC–MS data and the plasma NMR data, the values for
the P parameter as well as the values for the C parameter with inclusion of two
PCs suggest that the structures of the B1 and B2 data are already comparable
before equating (Table 3.1, sections A and C). This is important because it sug-
gests that the compositions of the object groups are indeed balanced between
both measurement blocks. Therefore it might be reasonable to assume that
with application of the quantile equating method, relatively much analytical
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between-block variation will be removed with respect to biological variation.
However, the zero values for the R parameter in case of both the LC–MS as

well as the NMR data suggest that there is a multiplicative difference between
the B1 and B2 data, which is in concordance with what can be observed in
the PCA scores plots on the combined data sets (Figure 3.2, panels A and
C). Moreover, in Table 3.1, sections A and C, the values for the C parameter
decrease considerably with inclusion of more than two PCs, suggesting that the
higher PCs are influenced by differences in data distribution shapes between
B1 and B2.

3.4.3 B1–B2 comparison after equating

PCA scores plots

After quantile equating of the data, the systematic nonbiological differences
between the B1 and B2 data are not manifest anymore in the PCA scores
plots (Figure 3.2, panels B and D). In these plots, the scores based on the
individual study samples measured in B1 and B2 are dispersed among each
other. Also, the scores based on the measurements of the pooled QC samples
in both B1 and B2 are located in the centers of the plots. This is consistent with
the expectation that the B1 and B2 pooled QC samples should represent the
average sample measured in each of the blocks. Given that this expectation is
correct, the location in the centers of the plots of the QC sample measurement
scores from both B1 and B2 in turn is a direct consequence of making the data
distributions of each variable equal for both blocks by quantile equating.

Multivariate parameters

For both LC–MS and NMR, the increase in the values of the R parameter after
equating (Table 3.1 sections B and D) suggests that in particular the distance
between the centroids of the B1 and B2 data sets has decreased. The values for
the P and C parameters have increased as well. The values for all parameters
are not equal to 1 after equating, which is consistent with the notion that
although our univariate equating method causes equal or nearly equal data
distributions among data blocks at the univariate level, the ranking of objects
at this univariate level is retained. Therefore, differences among data blocks
at the multivariate level are not necessarily removed by univariate quantile
equating as well.

3.5 Conclusions

Combination of semiquantitative metabolomics data sets originating from dif-
ferent measurement blocks where the same metabolites have been measured can
be challenging due to nonbiological systematic differences among the blocks.
These differences are caused by unwanted, though sometimes practically un-
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Table 3.1: B1–B2 similarity of data sets in PC space before and after quantile equat-
inga

A (LC–MS data, before equating)
1 PC 2 PCs 3 PCs 4 PCs 5 PCs 6 PCs

P 0.9615 0.9423 0.9339 0.9315 0.9463 0.9513
C 0.9829 0.9504 0.6682 0.6527 0.6181 0.4553
R 0 0 0 0 0 0

B (LC–MS data, after equating)
1 PC 2 PCs 3 PCs 4 PCs 5 PCs 6 PCs

P 0.9958 0.9952 0.9897 0.9926 0.9954 0.9941
C 0.9984 0.9935 0.9902 0.9844 0.9645 0.9392
R 0.9997 0.9985 0.9988 0.9988 0.999 0.9988

C (1H NMR data, before equating)
1 PC 2 PCs 3 PCs 4 PCs 5 PCs 6 PCs 7 PCs

P 0.949 0.9143 0.9125 0.9057 0.8919 0.8962 0.8936
C 0.9964 0.9947 0.713 0.6732 0.5372 0.3266 0.2944
R 0 0 0 0 0 0 0

D (1H NMR data, after equating)
1 PC 2 PCs 3 PCs 4 PCs 5 PCs 6 PCs 7 PCs

P 0.9892 0.951 0.975 0.97 0.9684 0.9684 0.9679
C 0.999 0.9716 0.805 0.721 0.6402 0.5964 0.5572
R 0.9996 0.9985 0.9866 0.9857 0.9874 0.9879 0.9881

aSections A and B, similarity of B1 and B2 plasma LC–MS data sets before (section A)
and after (section B) quantile equating. Sections C and D, similarity of B1 and B2 plasma
1H NMR data sets before (section C) and after (section D) quantile equating. P, B1–B2
similarity of PCA loadings patterns; C, B1–B2 similarity of variance-covariance matrices; R,
B1–B2 similarity of data set centroid locations.
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avoidable, between-block differences in experimental conditions. We have pre-
sented a solution for such data combination problems in the form of the quan-
tile equating method. We have demonstrated the successful application of
the quantile equating method to LC–MS and 1H NMR metabolomics data ob-
tained in human plasma samples. We successfully applied our equating method
to urine 1H NMR metabolomics data as well (see the Supporting Information
for methods and results).

It is conceivable that the quantile equating method is equally applicable for
other types of semiquantitative metabolomics data, e.g., GC–MS data. Due to
its univariate nature, this equating method will remain to provide satisfactory
results even when the data sets to be combined contain data for (much) larger
numbers of variables than the examples considered in this article. Moreover,
the applicability of the equating method presented in this article may not be
limited to data from metabolomics studies. For example, in DNA methylation
measurements in the context of epigenetics studies the data distributions may
vary between arrays and equating methods have the potential to correct the
data obtained in such experiments.

Of course, the possibility to apply equating methods in an “omics” context
leaves unimpeded the importance of good analytical practice. This includes
that, if possible, all study samples should be measured in one block to minimize
process variability. However, in a typical large metabolomics study, where in
total hundreds or thousands of samples are measured, it is often not feasible
both from a practical and cost perspective to measure new and previously
measured samples together in one block. Because of such practical limitations,
and because not all systematic differences between measurements in different
analytical blocks can be prevented by good analytical practice alone, we believe
that equating methods have the potential to enable joint analysis of valuable
data sets, which would not be possible without using such methods.
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3.7 Supporting information

3.7.1 Materials and methods (urine 1H NMR)

Participant recruitment and characterization as well as urine sampling were
performed according to the methods described in Chapter 2. In B1 and B2,
urine 1H NMR spectra were obtained of nearly all participants of whom blood
plasma samples were analyzed as well with LC–MS and 1H NMR (see Sec-
tions 3.3–3.4). However, in B1 analysis of the urine sample of one participant
was unsuccessful. In B2 the urine sample of one other participant was not
analyzed. Without these two participants, the total number of participants of
whom urine samples were analyzed in B1 and B2 together was equal to 180.
The average ages of the twins of whom urine samples were analyzed in B1 and
in B2, and of the siblings, were not different from those of the twins and siblings
of whom blood plasma samples were analyzed with LC–MS and 1H NMR. Of
four participants only two out of three replicate NMR analyses were successful.
In B2, for the purpose of quality control of the NMR analyses QC samples
were prepared prior to sample preparation by pooling equal amounts of urine
sample from the study participants who were measured in that block.

Before NMR spectroscopic analysis, 1 mL urine samples from all subjects
were lyophilized and reconstituted in 700 µL deuterated sodium phosphate
buffer (0.1 mmol/L, pH 7.4 made up with D2O), to minimize spectral variance
arising from differences in urinary pH. Sodium trimethylsilyl-[2,2,3,3,-2H4]-1-
propionate (TMSP; 0.025 mmol/L) was added as an internal standard for chem-
ical shift. 600 µL of the samples was transferred to 5 mm outer diameter NMR
tubes.

Then, the measurement order of the urine samples of the individual study
participants was randomized. In B2, after this randomization, uniformly dis-
tributed pooled QC sample aliquots were inserted. Furthermore, in B2 fol-
lowing each of these QC sample aliquots, samples were inserted of in total
eleven participants that had already been analyzed in B1. These samples thus
underwent an additional freeze-thaw cycle between B1 and B2.

NMR spectra were acquired in triplicate on a fully automated Bruker Avance
600 MHz spectrometer (Bruker Analytik GmbH, Karlsruhe, Germany) using a
standard 1D 1H NMR pulse sequence with water suppression (zgpr) and oper-
ating at an internal probe temperature of 300K. Typically 128 transients were
acquired into 64×103 data points using a spectral width of 12 kHz; 45 ◦ pulses
were used with an acquisition time of 2.7 s and a relaxation delay of 2 s. The
signal of the residual water was removed by a presaturation technique in which
the water peak was irradiated with a constant frequency during the relaxation
delay.

The spectra were processed using XWIN-NMR software (v.3.1, Bruker An-
alytik GmbH). The FIDs were multiplied by an exponential weighing function
corresponding to a line broadening of 0.3 Hz prior to Fourier transform. The ac-
quired NMR spectra were manually phased, baseline-corrected and referenced
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to the TMSP resonance at 0.0 ppm.
The urine NMR data were processed further in the way as described for

the plasma NMR data in Section 3.3. Where applicable, names of chemical
compounds were assigned to chemical shifts (ppm values) on basis of an in-
house reference database.

3.7.2 Results and discussion (urine 1H NMR)

After application of the “80%-rule”, 199 features (variables) were kept for fur-
ther analysis. Typical examples of 1H NMR spectra of urine samples from B1
and from B2 are presented in Figure 3.3.

The consecutive replicate analyses of each sample displayed a decrease of
the signal at 4.06 ppm, particularly in B1. Presumably this is a result of
progressive exchange over time of methylene protons with deuterium in the
creatinine molecule.149,150 Because this exchange occurred exclusively at the
methylene group of the creatinine molecule its effect was observed only in the
signal at 4.06 ppm and not in the other creatinine signals in the spectrum. The
replicate measurements of the eleven prepared samples that were measured in
both B1 and B2 displayed a notable decrease of the signal at this position in B1
but not in B2, presumably because in B2 the exchange had attained a chemical
balance situation.

After exclusion of the variable corresponding to this signal from the data,
specifically the variables corresponding to the signals at 3.28 ppm and at 3.05
ppm caused separation of the measurements of both years along the first two
PCs in PCA (not shown). Presumably this was due to the signals at these
chemical shift values to exceed plateau values in the peak detection software in
a number of measurements. Prior to median normalization of the data, these
two variables were excluded for further analysis as well.

Figure 3.4 shows the results of PCA on the urine 1H NMR data from B1
and B2 prior to between-block effect correction. The scores plot (Figure 3.4A)
suggests that there is a multiplicative difference between the B1 and the B2
data, although this between-block effect is not as profound as was seen in case
of the plasma LC–MS and NMR data (Section 3.4 Figure 3.2 panel A and panel
C, respectively). Compared to these other types of data, in the urine NMR data
the within-block variance is relatively larger with respect to the between-block
variance. This is probably due to the large biological interindividual variation
that is typically observed in urine 1H NMR spectra.

The correlation between the B1 and the B2 quantiles was on average 0.92
(SD 0.08). The variables in the urine NMR data that displayed the lowest Pear-
son correlations between the B1 and the B2 quantiles are listed in Table 3.2.
The values of the parameters that evaluate similarity of datasets in the mul-
tivariate space before and after equating are given for the urine NMR data in
Table 3.3. The values in Table 3.3A for the P and C parameters suggest that
the PCA loadings patterns and variance-covariance matrices are rather similar
for the B1 and B2 data even without equating. However, the R parameter val-
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Figure 3.3: Typical 1H NMR spectra of urine from B1 (panel A) and B2 (panel B).
Spectra in panel A, and in Figure 3.8A are from the same participant. Similarly,
spectra in panel B, and in Figure 3.8B are from the same participant. The signal at
0 ppm originates from the reference standard TMSP.
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Figure 3.4: PCA scores (panel A) and loadings (panel B) on PC1 and PC2 for the
combined (concatenated) B1–B2 urine NMR datasets before correction for between-
block effects. Scores based on measurements in B1 and in B2 of individual samples
that were measured in both years, are connected by lines in panel A. The percentages
of variance explained by the respective PCs are given between brackets in the axes
labels. Denotation of markers in panel A: •, B1 individual study sample; ◦, B2
individual study sample; N, B2 QC sample aliquot measured in B2; ×, B1 individual
study sample measured again in B2. In panel B, loadings are labeled by chemical
shift (ppm value).
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Table 3.2: Urine 1H NMR features with lowest B1–B2 correlation of quantile values
before equating

Chemical shift (ppm) Pearson’s R
1.3343 0.4698
1.3460 0.5386
1.9172 0.6211
4.5407 0.6851
2.1910 0.6883
2.8306 0.7223
8.3517 0.7231
1.2275 0.7302
7.2996 0.7419
3.7926 0.7522

Table 3.3: Similarity of B1 and B2 urine NMR datasets in the PC space before (panel
A) and after (panel B) quantile equating a

A
1
PC

2
PCs

3
PCs

4
PCs

5
PCs

6
PCs

7
PCs

8
PCs

9
PCs

10
PCs

11
PCs

P 0.9421 0.7716 0.7009 0.7054 0.6991 0.7083 0.6896 0.6773 0.6832 0.6794 0.6794

C 0.9979 0.9538 0.9177 0.8713 0.7964 0.7324 0.6216 0.5367 0.5129 0.4791 0.4302

R 0.9776 0.0566 0.2497 0 0 0 0 0 0 0 0

B
1
PC

2
PCs

3
PCs

4
PCs

5
PCs

6
PCs

7
PCs

8
PCs

9
PCs

10
PCs

11
PCs

P 0.9562 0.8943 0.8821 0.8836 0.876 0.8434 0.8686 0.8759 0.8758 0.874 0.8713

C 0.9947 0.9832 0.9541 0.8945 0.868 0.8158 0.6944 0.5836 0.519 0.4828 0.4312

R 0.9997 0.9969 0.9937 0.9948 0.9956 0.993 0.9931 0.9936 0.9941 0.9944 0.9948

aSimilarity of B1 and B2 urine 1H NMR datasets before (section A) and after (section
B) quantile equating. P, B1–B2 similarity of PCA loadings patterns; C, B1–B2 similarity of
variance-covariance matrices; R, B1–B2 similarity of dataset centroid locations.
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ues when computed for more than one PC suggest that the centroid locations
of both datasets are different prior to equating. This can be seen in Figure 3.4A
as well, where the scores of the B1 and of the B2 data are separated mainly
along PC2.

Figure 3.5 shows the PCA scores and loadings plots of the B1 and B2 data
together after equating. As expected on basis of the relatively small between-
block effect as suggested by the PCA scores plot before equating (Figure 3.4A),
the scores and loadings plots before (Figure 3.4) and after (Figure 3.5) equating
are rather similar as well. Similarly as in case of the plasma LC–MS and NMR
data (see Section 3.4 Figure 3.2 panels C and D), the scores based on the
measurements of individual samples in B1 and B2 are dispersed among each
other after equating (Figure 3.5A). Also, the scores based on measurements
of pooled QC sample in B2 are again located in the center of the PCA scores
plot. After equating, the patterns of PCA scores of replicate measurements with
respect to each other within each block were similar to those before equating
(not shown).

The values after equating of the parameters that evaluate similarity of
datasets in the multivariate space are given in Table 3.3B. The values in Ta-
ble 3.3B for the R parameter suggest that the centroid locations of the B1 and
B2 urine NMR data with inclusion of more than 1 PC have become much more
similar. This is as expected on basis of the nature of the quantile equating
method, and can also be observed in Figure 3.5A. The values for the P and for
the C parameters have increased slightly as well.

3.7.3 PCA loadings plots for plasma LC-MS and for plasma
NMR datasets

Plasma LC-MS

PC1–PC2 loadings plots for the combined (concatenated) B1 and B2 plasma
LC–MS datasets before and after equating are given in Figure 3.6.

Plasma NMR

PC1–PC2 loadings plots for the combined (concatenated) B1 and B2 plasma
NMR datasets before and after equating are given in Figure 3.7.

3.7.4 Examples of plasma NMR spectra

Typical examples of NMR spectra of plasma samples from B1 and B2 are
presented in Figure 3.8.
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Figure 3.5: PCA scores (panel A) and loadings (panel B) on PC1 and PC2 for the
combined (concatenated) B1–B2 urine NMR datasets after quantile equating. The
percentages of variance explained by the respective PCs are given between brackets
in the axes labels. Denotation of markers in panel A: •, B1 individual study sample;

◦, B2 individual study sample; N, B2 QC sample aliquot measured in B2. In panel
B, loadings are labeled by chemical shift (ppm value).
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Figure 3.6: PC1–PC2 loadings plots for the combined (concatenated) B1–B2 plasma
LC–MS data before (panel A) and after (panel B) quantile equating. The percentages
of variance explained by the respective PCs are given between brackets in the axes
labels. See Section 3.4 Figure 3.2 panels A and B for the corresponding scores plots.
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Figure 3.7: PC1–PC2 loadings plots for the combined (concatenated) B1–B2 plasma
NMR datasets before (panel A) and after (panel B) quantile equating. The percent-
ages of variance explained by the respective PCs are given between brackets in the
axes labels. Loadings are labeled by chemical shift (ppm value). See Figure 3.2 panels
C and D in Section 3.4 for the corresponding scores plots.
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Figure 3.8: Typical 1H NMR spectra of plasma from B1 (panel A) and B2 (panel
B). Spectra in panel A, and in Figure 3.3A are from the same participant. Similarly,
spectra in panel B, and in Figure 3.3B are from the same participant. Differences
between 4.8 and 5.0 ppm in panel A and B are due to the differences in the effectiveness
of the water suppression during acquisition of the spectra.
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Lipid Pearson’s R

C36:5 PC 0.8254

C48:2 TG 0.8946

C50:4 TG 0.9037

C54:2 TG 0.9106

C48:3 TG 0.9209

C48:1 TG 0.9220

C50:2 TG 0.9283

C50:3 TG 0.9372

C50:1 TG 0.9501

C46:0 TG 0.9521

Table 3.4: Plasma lipids with lowest
B1–B2 correlation of quantile values
before correction for between–block ef-
fects

Chemical shift (ppm) Pearson’s R

1.9238 0.5996

2.0825 0.6546

3.8660 0.7045

0.9753 0.7095

3.7258 0.7409

3.6189 0.7529

1.0087 0.7726

3.9011 0.7737

3.5504 0.7955

3.6256 0.7962

Table 3.5: Plasma NMR features with low-
est B1–B2 correlation of quantile values
before correction for between–block effects

3.7.5 Variables in plasma LC–MS and NMR data with
lowest B1–B2 correlation of quantile values

Plasma LC–MS

The variables in the plasma LC–MS and NMR data having the lowest B1–B2
correlation of quantile values before quantile equating are listed in Tables 3.4
and 3.5.
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4.1 Abstract

Twin and family studies are typically used for the elucidation of the rela-
tive contributions of genetic variation and environmental variation to pheno-
typic variation among individuals. Hierarchical clustering analysis generates
an overview of the relative similarities and differences among participants from
different families on the basis of multivariate data obtained from these partici-
pants. In this study we performed hierarchical clustering analysis on the basis
of blood plasma lipidomics data obtained in a healthy cohort consisting of 37
monozygotic twin pairs, 28 dizygotic twin pairs, and 52 of their biological non-
twin siblings. These data originated from two separate data sets obtained in
different measurement “blocks”. In hierarchical clustering analysis of the com-
bined data from both blocks, clustering of the participants in both blocks was
dependent on measurement block rather than on family structure. However,
after correction of the data for “between-block effects”, such clustering of par-
ticipants according to measurement block was not apparent anymore whereas
clustering of family members was still observed. The results of further analyses
on the combined, corrected data sets suggested that relative similarities were
largest between monozygotic co-twins. The relative similarities between dizy-
gotic co-twins, among sex-matched nontwin siblings and among sex-matched
nonfamilial participants were progressively smaller. Dissimilarity of lipid pro-
files between monozygotic co-twins correlated both with increased levels of the
inflammatory marker C-reactive protein and with female gender and, when
interpreting the results for males and females separately, with recent illness.
Therefore, our results support the hypothesis that shared genetic background
and shared environment contribute to similarities in lipidomics profiles. Also,
blood plasma lipid profiling appears to be useful for detection and monitoring
of disease in individuals. The enhancement of the biological interpretation of
data analysis results after correction for “between-block effects” illustrates the
beneficial effect of this procedure.

4.2 Introduction

Genetic variation and variation in environmental influences among individu-
als contribute to individual differences in measurable characteristics, i.e. to
phenotypic variation. The estimation of the relative contribution of genetic
and environmental variation to phenotypic variation is often a first step in the
elucidation of the specific causes of individual differences. For such analyses
of the heritability37,151 of traits, often (twin) family studies are used because
they are genetically informative and participants within families are relatively
well-matched for environmental noise. With respect to heritability analyses
using regular families, studies on the basis of twin families152 have an even
enhanced power to detect genetic influences on phenotypic variation.31 One
cause for this is that the members of twin pairs are particularly well-matched
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for environmental variation. A second cause is that two types of twin pairs
exist, i.e. monozygotic (MZ) twin pairs and dizygotic (DZ) twin pairs. MZ
twins share all their additive genetic variance whereas DZ twins share only
approximately half of their variance at the DNA sequence level; the same de-
gree of additive genetic variance is shared among nontwin siblings.38 Because
of the large difference in shared genetic variance between MZ and DZ twins
and the matching for environmental variation between co-twins of both types
of twin pairs, comparison of the phenotypic correlations between MZ and DZ
twin pairs provides a means to estimate heritability. Such quantitative genetic
analyses are often carried out by structural equation modeling (SEM),38 which
provides a univariate estimate for the heritability of a trait.

Quantitative genetic analysis can be performed either for directly outward
measurable phenotypes such as height or body weight, or on the basis of mea-
surements of so-called endophenotypes or intermediate phenotypes10–12 that
are physiologically in between the genome and the phenotype. Examples of en-
dophenotypes are gene expression in cells, or levels of proteins or metabolites
as measured in body fluids such as blood or urine. Studies of endopheno-
types are potentially more informative of the biological pathways leading to
the observed phenotypic variation among individuals than the analysis of such
phenotypes themselves. Among the endophenotypes, metabolite levels are par-
ticularly interesting because metabolites are relatively close to the phenotype
and therefore potentially directly relevant for phenotypic variation. Because
of their relatively unbiased, comprehensive nature, metabolomics studies cap-
italize on this because such studies allow for the discovery of novel biological
pathways.

When multivariate phenotypic data such as metabolomics data have been
obtained in (twin) families, hierarchical clustering analysis (HCA) can be used
as an alternative to quantitative genetic analysis on the basis of SEM to obtain
an impression of the importance of genetic variation for phenotypic variation.
The aim of HCA is to group (i.e., to cluster) objects (for example, family mem-
bers) such that objects that are relatively similar will be in the same cluster
and objects that are relatively dissimilar will be in different clusters.42 Infor-
mation regarding group membership is not used during the clustering process;
rather, objects that have similar scores on corresponding variables will cluster.
The input for HCA is a distance or dissimilarity matrix that represents the
dissimilarities among objects on the basis of the multivariate data obtained
for each object; the result is a dendrogram (a tree) that represents the rela-
tive similarities and differences among objects as a twodimensional structure.
When performing HCA of multivariate data obtained in different families, be-
cause of the genetic and environmental variance shared by family members it
is expected that members of the same family will cluster together and that
members of different families will be in different clusters.

A useful property of HCA in general is that it is not hampered by non-
positive definiteness of the input data matrix, and that therefore it is suitable
for the analysis of typical “omics” data such as metabolomics data. In the con-
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text of (twin) family studies, an advantage of HCA is that it acknowledges the
pleiotropic effects of genes influencing the variance of different traits belonging
to the same biological pathway. Furthermore, because HCA is an exploratory
data analysis technique, in contrast to SEM it allows for the discovery of novel
biological effects causing heterogeneity among study participants. As an exam-
ple of the latter, in Chapter 2 we demonstrated that in HCA of blood plasma
lipidomics data obtained in 21 MZ twin pairs, two DZ twin pairs and eight
biological nontwin siblings, male and female study participants were separated
at the highest level in the clustering dendrogram. This suggested that variance
in lipidomics profiles is relatively small among individuals of the same gender.

In this chapter, we report the results of HCA of blood plasma lipidomics
data from a healthy cohort of 37 MZ twin pairs, 28 DZ twin pairs, and in total
52 of their biological nontwin siblings. Lipidomics, or the analysis of lipids with
metabolomics techniques, is an important part of metabolomics research be-
cause lipids are involved in a plethora of (patho)physiological processes.153 For
the current study we combined the data that provided the basis for Chapter 2
with additional data mainly from DZ twin pairs and from biological nontwin
siblings. Because these data were measured in different measurement “blocks”,
we applied the method of “quantile equating” to make the data combinable
(see Chapter 3).

The inclusion in the current study of more DZ twin pairs and more nontwin
siblings, allowed us to validate and extend our previous observations that have
been described in Chapter 2. Also, in this chapter we show that application of
quantile equating to make combinable data sets indeed causes biological effects
to be visible in the combined data set, rather than non-biological differences
between the data from different measurement blocks.

4.3 Materials and methods

4.3.1 Participants

Twins and biological nontwin siblings were recruited from the Netherlands
Twin Register.154 Characterization of participants, collection of fasting blood
and urine samples, and sample preparation were performed as described previ-
ously.155–157 Participants completed a number of questionnaires; for the current
study, we used answers to questions regarding current use of any medication,
recent subjective health, current and earlier smoking habits, and whether par-
ticipants currently lived at their parents’ home. Female participants reported
the day of their menstrual cycle at the time of sampling. Zygosity was deter-
mined for all twin pairs by DNA genotyping.

4.3.2 Measures

Measurement of C-reactive protein (CRP) concentration and lipidomics profil-
ing in blood plasma samples were performed as described in Chapters 2 and 3.



4.3. Materials and methods 77

In brief, lipidomics profiling was performed using an LC–MS method targeted
at the analysis of lipids. These measurements were carried out in two “blocks”,
denoted as B1 and B2, respectively. The measurements of B2 were performed
almost one year after those of B1 (see Chapter 3); samples from members of the
same family were always measured in the same block. In B1 and B2, one and
two replicate measurements were performed per study sample, respectively.

The nonbiological systematic differences between the normalized data from
the two measurement blocks were removed by “quantile equating” as described
in Chapter 3; the B1 replicate measurements were averaged per study sample
prior to equating.

4.3.3 Hierarchical clustering analysis

Clustering analysis of lipidomics profiles was performed using the combined
(concatenated with the variables as the shared mode) B1–B2 data sets both
before and after application of the quantile equating method, using the methods
as described in Chapter 2. That is, first autoscaling was applied to the columns
(variables) of the data matrix consisting of the internal standard-corrected re-
sponses for all detected lipids in all study participants, with the aim to give all
variables equal weight for the subsequent HCA. Subsequently the lipidomics
profiles were normalized among individuals (rows) by standard normal vari-
ate (SNV) normalization.94 Then, Euclidean distances among the scaled lipid
profiles were computed. SNV normalization followed by computation of the
squared Euclidean distances among objects is mathematically equivalent to
computing (1–) the correlations among unscaled objects (rows).96 Euclidean
distance matrices were subjected to HCA using the average linkage cluster-
ing algorithm, which was chosen on basis of the highest Pearson correlation
between the original distance matrices and the cophenetic distance matrices.
Heatmaps and associated hierarchical clustering dendrograms were generated
using the ‘heatmap.2’ function in the ‘gplots’ package in the statistical com-
puting environment R.158

The remaining analyses, as described below, were performed using the com-
bined B1–B2 data set after quantile equating only. The distributions of the
Euclidean distances between MZ co-twins, between DZ co-twins, among non-
twin siblings, and among nonfamilial participants were characterized using box
plots. To assess whether there were statistically significant differences in me-
dian Euclidean distance among MZ co-twins, DZ co-twins, sex-matched non-
twin siblings, and nonfamilial participants in the combined equated data set, we
performed a multiple comparison procedure using Tukey’s honestly significant
difference criterion on the basis of the result of a nonparametric analysis of the
variance within these groups of study participants versus the variance of the
group means.97 A multiple comparison procedure is designed to be conservative
when testing for significant differences for more than one pair of groups.98

The stability of the hierarchical clustering based on these distances was
assessed by a bootstrap analysis (10,000 resamplings) using the ‘pvclust’ pack-
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Table 4.1: Basic description of participants.a

MZM MZF DZM DZF Nontwin
siblings

Total

Number of participants 34 40 20 36 52 182

Average age in years
(standard deviation)

18.1
(0.2)

18.1
(0.2)

18.2
(0.2)

18.2
(0.2)

19.3
(4.7)

18.5
(2.5)

aMZM, monozygotic male; MZF, monozygotic female; DZM, dizygotic male; DZF, dizy-
gotic female.

age101 in R. In a bootstrap analysis, the stability of the clustering is assessed
upon randomization of the number of occurrences of each variable in the data
set, while keeping the size of the data set equal.

Clustering of family members was assessed by ‘node analysis’ as described
in Chapter 2; that is, the distance between MZ co-twins, DZ co-twins, or a pair
of nontwin siblings was assessed as the number of nodes or branching points in
the dendrogram separating the members of the pair. For each possible number
of nodes separating MZ or DZ co-twins or nontwin siblings in the dendrogram,
we compared the observed number of co-twin or sibling pairs separated by that
number of nodes, with the number of observations that was expected on basis of
chance. Chance distributions were created by permutation of the object labels
over the leaves of the clustering dendrogram. Such p-values were computed for
each of in total 100 sets of permutations, where each set consisted of 10,000
permutations. On the basis of these 100 permutation tests we computed the
average p-values as well as the standard deviations of these average p-values.
For these comparisons, we used a critical value of 5% to denote statistical
significance.

4.4 Results and discussion

4.4.1 Participants

The combined data sets based on the measurements obtained in the two mea-
surement blocks comprised data on 59 lipids detected in the sample from each
participant. The participants originated from in total 65 families; 79 partic-
ipants were male and 103 were female (see Table 4.1). In one monozygotic
female (MZF) family and one dizyotic male (DZM) family, a twin pair and two
nontwin siblings (in both families, one male and one female nontwin sibling)
participated; in all other families, only one nontwin sibling participated. All
DZ twin pairs included in the study were same-sex pairs; 33 of the total 52
nontwin siblings were of the same sex as their twin siblings.
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4.4.2 Hierarchical clustering analysis

The results of HCA are displayed as dendrograms with an associated heatmap
indicating the Euclidean distances between pairs of objects (Figures 4.1 and
4.2).

The Pearson correlations between the original Euclidean distance matrix,
and the cophenetic distance matrix based on HCA of the combined B1–B2 data
sets were 0.75 and 0.60 before and after equating, respectively.

Before correction for nonbiological differences between the B1 and B2 data,
the objects in the combined (concatenated with the variables as the shared
mode) B1–B2 data set clustered very strongly according to the block (B1 or B2)
in which they had been measured (Figure 4.1). However, after quantile equat-
ing, in the clustering based on the combined B1–B2 data sets, objects measured
in the two respective blocks were dispersed among each other (Figure 4.2). This
was already expected on basis of the principal component analysis scores plots
based on the combined equated B1–B2 data sets (see Figure 3.2B in Chapter 3).

In Chapter 2, in HCA on the basis of the single B1 data set, we had observed
that objects segregated almost perfectly according to gender at the highest level
in the dendrogram. However, in the dendrograms based on the separate B2
data set (not shown) as well as in the combined B1–B2 data sets both before
(Figure 4.1) and after (Figure 4.2) equating, we did not observe such strong
clustering of male and female participants. Upon comparison of the structures
of the B1 and B2 data sets in the principal component (PC) space using multi-
variate methods, we had already found slight differences both before and after
application of the quantile equating method (Table 3.1 in Chapter 3). That is,
both before and after equating we found that the similarity of the B1 and B2
covariance matrices decreased from 3 PCs onwards. Perhaps remarkably, this
apparently contradicts the lower average relative standard deviations over all
lipids (as computed on the basis of measurements of a quality control sample
consisting of pooled individual study samples) in B2 with respect to B1 that
we reported in that same publication. A cause for this difference in structure
between the B1 and B2 data sets could be that in B1, for each sample two
replicate measurements were performed, whereas in B2 each sample was mea-
sured only once. Therefore, the averaged replicate measurements in B1 might
provide higher precision to estimate the true biological effects, than the single
replicate measurements as in B2.

The stability of the clustering on the basis of the combined equated B1–B2
data sets, as assessed by a nonparametric bootstrap procedure, was similar
to that observed in the separate B1 data before equating (see Figure 4.5 in
Section 4.7; cf. Figure 2.2 in Chapter 2).

In accordance with our previous results using the separate B1 data be-
fore equating (Figure 2.1 in Chapter 2), in the combined equated B1–B2 data
sets the average Euclidean distance appeared to increase when considering MZ
co-twins, nontwin siblings, and nonfamilial participants, respectively (see Fig-
ure 4.3). Indeed, the differences in median Euclidean distance between several



80 Chapter 4: Clustering of plasma lipid profiles from MZ and DZ twins

0 5 10
Euclidean distance

Color Key

2
2
_

_
1

3
9
_

_
1

9
_

_
2

3
1
_

_
1

5
1
_

_
2

1
7
_

_
2

5
3
_

_
_

3
3
_

_
2

5
3
_

_
1

5
3
_

_
2

5
2
_

_
_

4
0
_

_
2

4
4
_

_
2

5
6
_

_
_

3
8
_

_
_

8
_

_
_

1
7
_

_
1

6
5
_

_
1

6
5
_

_
2

3
1
_

_
_

5
6
_

_
1

4
0
_

_
_

2
7
_

_
_

3
5
_

_
1

3
5
_

_
2

5
7
_

_
2

2
7
_

_
1

5
1
_

_
_

2
7
_

_
2

3
3
_

_
_

4
7
_

_
1

4
7
_

_
2

4
9
_

_
2

9
_

_
1

4
8
_

_
_

5
5
_

_
_

5
0
_

_
1

2
4
_

_
2

5
6
_

_
2

2
4
_

_
1

5
8
_

_
1

5
8
_

_
2

3
2
_

_
1

3
2
_

_
2

4
8
_

_
1

2
3
_

_
_

5
5
_

_
1

5
9
_

_
2

4
5
_

_
1

4
5
_

_
2

5
1
_

_
1

2
5
_

_
2

4
8
_

_
2

2
6
_

_
_

2
6
_

_
2

6
1
_

_
2

2
9
_

_
1

6
4
_

_
1

6
4
_

_
2

3
4
_

_
2

3
7
_

_
1

3
7
_

_
2

3
4
_

_
_

6
3
_

_
1

3
7
_

_
_

4
2
_

_
_

4
2
_

_
1

4
2
_

_
2

2
2
_

_
2

7
_

_
2

3
1
_

_
2

3
3
_

_
1

4
0
_

_
1

3
2
_

_
_

4
3
_

_
_

3
9
_

_
_

4
3
_

_
1

5
0
_

_
_

5
7
_

_
_

2
4
_

_
_

5
2
_

_
2

6
1
_

_
_

3
9
_

_
2

3
6
_

_
2

3
8
_

_
1

6
5
_

_
_

4
3
_

_
2

4
7
_

_
_

3
5
_

_
_

4
5
_

_
_

4
9
_

_
_

5
9
_

_
1

3
8
_

_
2

5
8
_

_
_

6
4
_

_
_

7
_

_
1

8
_

_
1

9
_

_
_

4
4
_

_
1

2
9
_

_
2

2
3
_

_
1

3
4
_

_
1

6
1
_

_
1

3
6
_

_
_

5
0
_

_
_

8
_

_
2

2
9
_

_
_

4
9
_

_
1

2
5
_

_
_

3
_

_
2

5
0
_

_
2

4
4
_

_
_

3
_

_
1

1
2
_

_
1

1
2
_

_
2

1
3
_

_
1

2
0
_

_
1

2
0
_

_
2

3
_

_
_

2
0
_

_
_

1
4
_

_
1

1
4
_

_
2

4
_

_
1

4
_

_
2

1
9
_

_
2

1
9
_

_
1

2
1
_

_
1

2
1
_

_
2

1
3
_

_
2

2
1
_

_
_

1
1
_

_
1

1
1
_

_
2

1
5
_

_
1

1
5
_

_
2

3
0
_

_
1

3
0
_

_
2

4
6
_

_
2

6
0
_

_
1

6
0
_

_
2

6
_

_
1

5
_

_
1

5
_

_
2

4
1
_

_
1

2
_

_
1

2
_

_
2

3
0
_

_
_

4
6
_

_
1

2
8
_

_
_

1
6
_

_
1

1
8
_

_
1

1
0
_

_
1

4
1
_

_
2

6
2
_

_
1

1
0
_

_
2

2
_

_
_

1
8
_

_
2

1
6
_

_
2

2
8
_

_
1

2
8
_

_
2

6
_

_
_

1
1
_

_
_

6
2
_

_
2

6
_

_
2

1
_

_
1

1
_

_
2

1
7
_

_
_

7
_

_
_

2
3
_

_
2

5
5
_

_
2

6
3
_

_
_

2
5
_

_
1

2
6
_

_
1

5
2
_

_
1

6
3
_

_
2

2
2
_

_
_

3
6
_

_
1

5
9
_

_
_

5
4
_

_
_

3
1
_

_
_

5
7
_

_
1

5
4
_

_
1

5
4
_

_
2

22_ _1
39_ _1
9_ _2
31_ _1
51_ _2
17_ _2
53_ __
33_ _2
53_ _1
53_ _2
52_ __
40_ _2
44_ _2
56_ __
38_ __
8_ __

17_ _1
65_ _1
65_ _2
31_ __
56_ _1
40_ __
27_ __
35_ _1
35_ _2
57_ _2
27_ _1
51_ __
27_ _2
33_ __
47_ _1
47_ _2
49_ _2
9_ _1
48_ __
55_ __
50_ _1
24_ _2
56_ _2
24_ _1
58_ _1
58_ _2
32_ _1
32_ _2
48_ _1
23_ __
55_ _1
59_ _2
45_ _1
45_ _2
51_ _1
25_ _2
48_ _2
26_ __
26_ _2
61_ _2
29_ _1
64_ _1
64_ _2
34_ _2
37_ _1
37_ _2
34_ __
63_ _1
37_ __
42_ __
42_ _1
42_ _2
22_ _2
7_ _2
31_ _2
33_ _1
40_ _1
32_ __
43_ __
39_ __
43_ _1
50_ __
57_ __
24_ __
52_ _2
61_ __
39_ _2
36_ _2
38_ _1
65_ __
43_ _2
47_ __
35_ __
45_ __
49_ __
59_ _1
38_ _2
58_ __
64_ __
7_ _1
8_ _1
9_ __

44_ _1
29_ _2
23_ _1
34_ _1
61_ _1
36_ __
50_ __
8_ _2
29_ __
49_ _1
25_ __
3_ _2
50_ _2
44_ __
3_ _1
12_ _1
12_ _2
13_ _1
20_ _1
20_ _2
3_ __
20_ __
14_ _1
14_ _2
4_ _1
4_ _2
19_ _2
19_ _1
21_ _1
21_ _2
13_ _2
21_ __
11_ _1
11_ _2
15_ _1
15_ _2
30_ _1
30_ _2
46_ _2
60_ _1
60_ _2
6_ _1
5_ _1
5_ _2
41_ _1
2_ _1
2_ _2
30_ __
46_ _1
28_ __
16_ _1
18_ _1
10_ _1
41_ _2
62_ _1
10_ _2
2_ __
18_ _2
16_ _2
28_ _1
28_ _2
6_ __
11_ __
62_ _2
6_ _2
1_ _1
1_ _2
17_ __
7_ __

23_ _2
55_ _2
63_ __
25_ _1
26_ _1
52_ _1
63_ _2
22_ __
36_ _1
59_ __
54_ __
31_ __
57_ _1
54_ _1
54_ _2

Figure 4.1: Heatmap of Euclidean distances between objects, and associated hierar-
chical clustering dendrograms for the combined (concatenated with variables as shared
mode) B1–B2 data set before quantile equating. In this figure, individual objects are
labeled by two color codes: the first color encodes the gender of the participant of
whom the sample was obtained (red for females and blue for males). Dizygotic female
and dizygotic male twins are indicated with pink and light blue, respectively. The
second color encodes the block in which the sample of this participant was measured
(white for B1 and black for B2). Participants are denoted as follows: the family
identifier (1–65) is followed by a square (�, for males) or a circle (◦, for females) to
indicate the sex of the participant, and, in case of twins, a “1” or a “2” to indicate
the first and second members of the twin pair, respectively. Nontwin siblings are in-
dicated by filled squares (�) or filled circles (•) for males and females, respectively.
For the participants from B1, see Table 4.6 in Section 4.7 for a comparison between
the labeling as used in Chapter 2 and the labeling used in this chapter.
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Figure 4.2: Heatmap of Euclidean distances between objects, and associated hier-
archical clustering dendrograms for the combined (concatenated with variables as
shared mode) B1–B2 data set after quantile equating. For legend, see Figure 4.1.
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Figure 4.3: Box-whisker plots showing distributions of Euclidean distances between
MZ co-twins (N=37), between DZ co-twins (N=28), among sex-matched nontwin
siblings (N=66), and among sex-matched nonfamilial participants (N=8,203) in the
combined equated B1–B2 data set. The observations indicated with a plus sign in
case of the nonfamilial participants illustrate the slight skewness of the distribution
of the Euclidean distances among all participants.
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Table 4.2: p-values as resulting from multiple comparison test for differences in me-
dian Euclidean distances between MZ co-twins, DZ co-twins, sex-matched nontwin
siblings, and sex-matched nonfamilial participants a

MZ
co-twins

DZ
co-twins

Nontwin
siblings

Nonfamilial
participants

MZ co-twins - - - -
DZ co-twins >0.05 - - -
Nontwin siblings <0.01** >0.05 - -
Nonfamilial participants <0.01** <0.01** <0.01** -

a∗∗:p<0.01

subgroups of participants were statistically significant on the basis of a multiple
comparison procedure (see Table 4.2).

Figure 4.3 shows that the average Euclidean distance among biological non-
twin siblings assumes a middle ground between the average distance between
DZ co-twins and the average distance among nonfamilial participants. This is
as expected because, while biological nontwin siblings share on average the
same degree of additive genetic variance as do DZ co-twins, the degree of
shared environmental variance is less among nontwin siblings than between
DZ co-twins.69

Clustering of MZ co-twins, of DZ co-twins, and of nontwin siblings in the
combined equated B1–B2 data set were characterized using ‘node analysis’.
The statistical significance of the clustering of family members was assessed by
comparison of the observed numbers of occasions where a particular number of
nodes separated co-twins or nontwin siblings, with a reference distribution as
provided by permutation testing. The results of these comparisons are visual-
ized and summarized in Figure 4.4, and in Table 4.3 in Section 4.7, respectively.
In line with our previous results on the basis of the separate B1 data before
equating (see Chapter 2), for the MZ twin pairs only the number of occasions
(in the current study fifteen) where co-twins were separated by one node in the
dendrogram, was significantly larger than the number of occasions that was to
be expected on the basis of chance (Figure 4.4A, and Table 4.3A in Section 4.7).
However, for the DZ twin pairs, the number of twin pairs separated by one node
(four pairs) as well as the numbers of twin pairs separated by five (two pairs),
six (three pairs) or nine nodes (three pairs) in the dendrogram were signifi-
cantly larger than was expected on the basis of the permutation test results
(Figure 4.4B, and Table 4.3B in Section 4.7). The relatively small number of
DZ twin pairs separated by only one node with respect to the number of MZ
pairs separated by one node, as well as the observation that there were also
more DZ twin pairs separated by more than one node than was expected on
the basis of chance, suggest that the smaller degree of genetic variance shared
by DZ co-twins with respect to MZ co-twins contributes to lower relative sim-
ilarities of DZ twin pairs. This is in concordance with the larger intrapair
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Figure 4.4: Results of node analyses for MZ co-twins (A), DZ co-twins (B), and sex-
matched nontwin siblings (C) with respect to permutation-based chance distributions.
Numbers of nodes separating co-twins or nontwin siblings increase from left to right
in each panel. For each number of branching points, from bottom to top the number
of twin or nontwin sibling pairs separated by that particular number of branching
points in the permutation tests is displayed by gray bars. Black dots indicate the
number of observations given the original ordering of labels along the leaves of the
dendrogram as in Figure 4.2, and in Figure 4.5 in Section 4.7. The depicted chance
distributions were created by combination of the results from all (i.e., 100) sets of
10,000 permutations. Asterisks indicate average p-values <0.05 (see Table 4.3 in
Section 4.7).
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Euclidean distances for DZ twins relative to MZ twins.
In the case of the nontwin siblings, we observed no sibling pairs that were

separated by one node in the dendrogram, but we did observe significantly
larger numbers of pairs than was expected on the basis of the permutation
tests that were connected by two nodes (two pairs), or by three (two pairs),
five (three pairs), eight (six pairs) or nineteen nodes (seven pairs) (Figure 4.4C,
and Table 4.3C in Section 4.7). This might have been due to the fact that the
twin pairs included in this study were all approximately 18 years old, whereas
the variance in the age of the nontwin siblings was naturally slightly larger (see
Table 4.1).

For the nontwin siblings, we used permutation distributions incorporating
the fact that in our study based on twin families, each nontwin sibling is always
separated from two sex-matched twin siblings. Therefore, in Figure 4.4C, and
in Table 4.3C in Section 4.7, the total number of observed frequencies (i.e., 66)
is twice as large as the number of sex-matched nontwin siblings in the combined
B1–B2 data set (i.e., 33). This is in contrast to the situation for MZ and DZ
co-twins, where each twin is separated from only one co-twin.

Nine MZ twin pairs in the combined B1–B2 data of which the co-twins were
only separated by one node, came from B1 (these pairs were separated by only
one node in the analysis of the separate B1 data as well, see Chapter 2); in
this analysis the total number of MZ twin pairs separated by one node was
13. The remaining six pairs of MZ co-twins separated by only one node came
from the B2 data. Five of these six pairs were separated by one node in the
separate B2 data as well (not shown); in the analysis of the B2 data separately
there was one additional pair of MZ co-twins separated by one node. Another
pair of MZ twins (belonging to the family with identifier ‘43’, see the legend to
Figure 4.1) who were separated by more than one node in the separate B2 data,
were separated by only one node in the combined equated B1–B2 data set. This
suggests that due to quantile equating, the lipid profiles of the members of this
particular MZ pair have been made more similar. This was suggested as well
by comparing the dendrograms for the B2 data before and after equating (not
shown).

In analysis of both the separate B1 data as well as of the combined equated
B1–B2 data set, separation of MZ co-twins by more than one node appeared to
correlate with a relatively high average CRP level (see Figure 4.6 in Section 4.7).
In this respect, the pair with family identifier “1” (pair “A” in Chapter 2; see
also Table 4.6 in Section 4.7) is a remarkable exception: both co-twins have a
similar, relatively high CRP level, yet are separated by only one node. This
might be explained by the fact that both co-twins had reported recent flu-
like symptoms (see Table 4.4 in Section 4.7), perhaps associated with similar
changes in lipid profiles.

In Tables 4.4 and 4.5 in Section 4.7, descriptions are given for MZ co-twins
separated by only one and by more than one node in the combined equated
B1–B2 data sets, respectively. Next to high average CRP, like in analysis
of the separate B1 data (see Chapter 2), female gender appeared to correlate
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positively with relative dissimilarity of lipid profiles between MZ co-twins. That
is, of the 15 MZ twin pairs separated by only one node, only 4 pairs (27%) were
female; in contrast, of the 22 MZ pairs separated by more than one node, 14
pairs (64%) were female. Such dissimilarities of lipid profiles between female
MZ co-twins might be associated with asynchronous menstrual cycles. Also in
accordance with our previous results, when interpreting the results for male
and female MZ twin pairs separately it appeared that in general, recent illness
correlated positively with separation of co-twins by more than one node.

4.5 Conclusions

In this study, we have extended our previous analyses of the relative similari-
ties of lipidomics profiles between MZ co-twins, DZ co-twins, among biological
nontwin siblings, and among nonfamilial participants based on HCA. The sta-
tistical power of these analyses was enhanced due to the successful combination
of two different metabolomics data sets. In general, the similarities were largest
between MZ co-twins; relative similarities between DZ co-twins, among non-
twin siblings and among nonfamilial participants were progressively smaller.
In concordance with our previous findings on the basis of a cohort consisting
mainly of MZ twin pairs, dissimilarity of lipid profiles in MZ twin pairs as
assessed by node analysis and permutation testing appeared to correlate pos-
itively with relatively high average blood CRP levels and with female gender.
The latter correlation might be associated with asynchronous menstrual cycles.
Also, within the groups of female and male MZ twin pairs separately, we ob-
served that in general recent illness correlated positively with dissimilarity of
lipid profiles between co-twins.

However, in the current study we were unable to replicate our previous
finding that in HCA based on the lipidomics profiles of healthy individuals,
male and female participants are separated at the highest level in the resulting
clustering dendrogram. This might be due to the fact that our previous findings
were based on two replicate lipidomics analyses per study sample, whereas of
the samples comprising the second data set used in this study only one replicate
measurement had been performed.

Taken together, our findings support the notion that shared genetic back-
ground and/or shared environmental exposure contribute to similarities in
blood plasma lipidomics profiles among individuals. Strong ‘environmental’
influences such as recent illness appear to accentuate dissimilarities of blood
plasma lipids among individuals, suggesting a role for lipid profiling in detec-
tion and/or monitoring of disease. Furthermore, the results obtained in this
study suggest that the quantile equating technique is useful to make combinable
metabolomics data sets, which increases the power of statistical analyses.
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Table 4.4: Description of MZ twin pairs separated by only one node in the dendro-
grams of Figure 4.2 and Figure 4.5d

Twin pair Description
1 ◦ Both co-twins had eaten rolls with jam and had drunk soft

drink for breakfast at the day of sampling; furthermore, in the
sample of 1 ◦ 1 some hemolysis had occurred. Both co-twins
had reported recent flu-like symptoms more than one week
prior to sampling. This correlated with a rather high average
CRP level in this twin pair. Also, the menstrual cycles of both
co-twins were not completely synchronous.

54 ◦ 54 ◦ 2 smoked 4 cigarettes per day at the time of sampling
while 54 ◦ 1 did not smoke. 54 ◦ 1 and 54 ◦ 2 had had a
cold more than one week and more than one month prior to
sampling, respectively. This correlated with a relatively high
average CRP level in this twin pair.

58 � Both co-twins used antihistamine as medication for chronic
hay fever; 58 � 1 had suffered from hay fever in the week prior
to sampling.

47 � Both co-twins had had a cold more than one month prior to
sampling.

11 � Both co-twins had had a cold more than one month prior to
sampling.

43 � 43 � 1 and 43 � 2 had had a cold more than one month
and less than one week prior to sampling, respectively. Also,
both co-twins had left their parents’ home approximately half
a year prior to sampling.

20 � Both co-twins had had a cold more than one month prior to
sampling.

2 ◦ 2 ◦ 1 and 2 ◦ 2 had had a cold more than one month and
more than one week prior to sampling, respectively. Further-
more, 2 ◦ 2 suffered from allergy.

12 � 12 � 2 had eaten something during the fasting period. Both
co-twins smoked at the time of sampling; 12 � 1 had been
smoking 15 cigarettes/day for 3.5 years, whereas 12 � 2 had
been smoking 8 cigarettes/day for 5 years. Furthermore,
12 � 1 had suffered from fatigue and headache more than one
week prior to sampling, whereas 12 � 2 had suffered from flu
accompanied by fever more than one month prior to sampling.

65 � 65 � 1 and 65 � 2 smoked 30 and 20 cigarettes/day at the
time of sampling, respectively. Both co-twins had smoked less
than one hour prior to sampling, and had had a cold less than
one week prior to sampling.

dFor an explanation of the labeling of families and participants, see the legend to Figure 4.1
in Section 4.4.
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Table 4.4: Description of MZ twin pairs separated by one node (continued)

Twin pair Description
15 � Both co-twins had suffered from flu accompanied by fever

more than one month prior to sampling.
60 � Both co-twins had had muesli with diary products for break-

fast at the day of sampling. 60 � 1 suffered from chronic back
pain and had suffered from stomach flu accompanied by fever
more than one month prior to sampling; 60 � 2 had had a cold
more than one month prior to sampling.

53 ◦ 53 ◦ 1 and 53 ◦ 2 had suffered from a cold and from stom-
ach ache more than one month prior to sampling, respectively.

14 � 14 � 2 had eaten a roll for breakfast at the day of sam-
pling whereas 14 � 1 had not. 14 � 1 had had a cold more
than one week prior to sampling; 14 � 2 had suffered from flu
accompanied by fever more than one month prior to sampling.

4 � 4 � 1 and 4 � 2 had had a cold less than one week and more
than one month prior to sampling, respectively; furthermore,
4 � 1 suffered from allergy.
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Table 4.5: Description of MZ twin pairs separated by more than one node in the
dendrograms of Figure 4.2 and Figure 4.5e

Twin pair Description
46 ◦ 46 ◦ 1 had reported sickness and headache more than 1

week prior to blood sampling. However, this did not correlate
with a high average CRP level for this twin pair. Both twins
had synchronous menstrual cycles, although 46 ◦ 2 appeared
to suffer from oligomenorrhea.

3 � 3 � 1 had self-reportedly been ill without having a fever
less than 1 week prior to blood sampling; this correlated with
a high blood plasma CRP level in this participant.

5 ◦ 5 ◦ 1 had smoked in the past (2 cigarettes/day) for half a
year 1.5 years prior to blood sampling. Furthermore, 5 ◦ 2
had had a cold less than one week prior to sampling. Also,
the co-twins did not have completely synchronous menstrual
cycles.

10 ◦ Both twins had self-reportedly suffered from a cold less than
1 week prior to blood sampling. In the blood plasma of 10 ◦ 2,
a high CRP level was measured.

13 � 13 � 1 had had a cold less than 1 week prior to blood sam-
pling; this correlated with a higher CRP level than his co-twin.

62 � 62 � 2 had suffered from infectious mononucleosis more
than 1 month prior to sampling; this did not, however, cor-
relate with a relatively high CRP concentration in this twin.
Moreover, during sample handling, in the sample of this twin
hemolysis had occurred.

16 ◦ 16 ◦ 2 had been smoking five cigarettes per day for 6 years
and had smoked 2 h before blood sampling; 16 ◦ 1 had quit
smoking a half year prior to sampling, after having smoked 10
cigarettes per day for 5 years. Furthermore, 16 ◦ 2 had had
a half cup of sugared tea for breakfast on the day of blood
sampling. Both twins did not have synchronous menstrual
cycles.

18 ◦ 18 ◦ 1 had self-reportedly suffered from flu-like symptoms
less than 1 week prior to blood sampling; this correlated with
an increased blood plasma CRP level in this participant. Both
twins did not have synchronous menstrual cycles.

28 ◦ Twin 28 ◦ 2 had been using the drug Fluoxetine for depres-
sion. Both twins did not have synchronous menstrual cycles.

30 � 30 � 2 had had a sip of cola during the fasting period prior
to sampling. Both co-twins smoked at the time of sampling.
30 � 2 suffered from hay fever.

eFor an explanation of the labeling of families and participants, see the legend to Figure 4.1
in Section 4.4.
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Table 4.5: Description of MZ twin pairs separated by more than one node (continued)

Twin pair Description
41 ◦ Both twins had self-reportedly been ill less than 1 week

prior to blood sampling: 41 ◦ 1 had suffered from a cold,
whereas 41 ◦ 2 had had flu-like symptoms accompanied by
fever. 41 ◦ 2 used oral contraceptives while 41 ◦ 1 did not;
furthermore, their menstrual cycles were not synchronous.

45 ◦ More than one week prior to sampling 45 ◦ 1 had had a
cold. 45 ◦ 2 had suffered from stomach flu more than one
week prior to sampling, which correlated with a rather high
CRP level.

50 ◦ In the week prior to sampling, 50 ◦ 2 had suffered from
nausea and fatigue whereas 50 ◦ 1 had not. 50 ◦ 1 used
terbinafine hydrochloride while 50 ◦ 2 did not.

51 � More than one month prior to sampling, 51 � 1 had had a
cold and 51 � 2 had suffered from flu with fever, respectively.

55 ◦ Both co-twins did not have synchronous menstrual cycles.
Furthermore, both co-twins had had a cold in the week prior
to sampling.

57 ◦ 57 ◦ 1 suffered from chronic hay fever; 57 ◦ 2 suf-
fered from chronic asthma, for which she used budes-
onide/formoterol as medication.

63 � 63 � 1 had suffered from flu with fever and laryngitis in the
week prior to sampling, for which she used feneticilline. This
correlated with a high CRP level in this participant. Also, in
the blood sample from 63 � 1 some hemolysis had occurred.
63 � 2 suffered from irritable bowel syndrome. Furthermore,
63 � 2 had smoked in the past (15 cigarettes/day), and had
quit smoking two years prior to blood sampling after having
smoked for two years.

26 ◦ 26 ◦ 1 had had a cold more than one week prior to sam-
pling; 26 ◦ 2 suffered from severe eczema for which she used
a corticosteroid cream as a medication, from lymphedema in a
leg, and from chronic respiratory disease.

29 ◦ In the blood sample of 29 ◦ 2, hemolysis had occurred; fur-
thermore, 29 ◦ 2 had left her parents home about 4 months
prior to sampling, while 29 ◦ 1 had not. Both co-twins had
had a cold in the week prior to sampling, and their menstrual
cycles were not completely synchronous.

33 � Both co-twins used fluticasone propionate as medication for
slight asthma.

36 ◦ No tentative explanation for non-coclustering on basis of
available information
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Table 4.5: Description of MZ twin pairs separated by more than one node (continued)

Twin pair Description
19 � 19 � 1 had been ill and 19 � 2 had had a cold more than

one month prior to sampling, respectively
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Table 4.6: Conversion table between labeling in this chapter and labeling in Chapter 2
for families from B1a

Family label in this chapter Family label in Chapter 2
1 ◦ A ◦
2 ◦ B ◦
3 � C �
4 � D �
5 ◦ E ◦
6 ◦ F ◦
10 ◦ G ◦
11 � H �
12 � I �
13 � J �
14 � K �
15 � L �
16 ◦ M ◦
18 ◦ N ◦
19 � P �
20 � Q �
21 � R �
28 ◦ S ◦
30 � T �
41 ◦ U ◦
46 ◦ V ◦
60 � W �
62 � X �

aFor an explanation of the labeling of families and participants, see the legend to Figure 4.1
in Section 4.4.
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5.1 Abstract

Phenotypic data obtained in a genetically informative population sample of
individuals can be used for quantitative genetic analyses to elucidate the rel-
ative contributions of genetic and environmental variance components to the
observed phenotypic variation. Metabolomics aims at the comprehensive mea-
surement in a given sample of all small molecules that are intermediate or
end-products of cellular metabolism. Therefore, data as provided by meta-
bolomics experiments represent a snapshot of the physiological state of an or-
ganism and are particularly informative of actual phenotypic traits such as
disease. By structural equation modeling, we analyzed data obtained with two
metabolomics methods in blood plasma samples from in total 163 participants
(healthy mono- and dizygotic twins and their sex-matched nontwin siblings).
Relative concentrations were obtained of 59 individual lipid metabolites by ‘tar-
geted’ liquid chromatography–mass spectrometry (LC–MS); a ‘global’ overview
of the relative concentrations of metabolites from different metabolite classes
was provided by proton nuclear magnetic resonance (1H NMR) spectroscopy.
Univariate quantitative genetic analyses of the LC–MS data revealed poten-
tially biologically relevant differences in heritability for different lipids. In mul-
tivariate analysis, we observed that in particular lipids of the same lipid class
shared genetic causes of phenotypic variance. In contrast, the heterogeneity
of genetic causes of phenotypic variation among different metabolites was rel-
atively large in the 1H NMR data. In conclusion, in this study we have shown
the potential of uni- and multivariate quantitative genetic analyses to generate
biological insight into the importance of genetic variation for variation observed
in human metabolomics data.

5.2 Introduction

Recently, the results of the first genome-wide association (GWA) studies have
been reported linking genomic variation and variation in human metabolomics
data.12,51,52 Metabolomics is the comprehensive study of the reagents, inter-
mediate products, or end products of cellular metabolism.2 Being interme-
diate phenotypes, with respect to studies on the level of actual phenotypes
metabolites provide more insight into biological pathways underlying pheno-
typic variation.10–12 The study of (endo)phenotypic variation in quantitative
traits, such as metabolite levels measured in body fluids might be of relevance
for our understanding of the causes of common diseases.47,66 Among the var-
ious endophenotypes that are measured at “omics” scale (e.g., proteins, gene
transcripts), metabolites have the most direct link to cellular physiology and
functioning.8,9,160 The measurement at “omics” scale using the currently avail-
able analytical techniques provide an unprecedented scale of resolution, which
can be even more directly linked to cellular physiology than is possible on the
basis of measurements of ‘conventional metabolites’.161 Metabolomics studies
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aim to obtain a comprehensive view of all metabolites from particular metabo-
lite classes (in a so-called “targeted” approach), or of the metabolites from all
classes (in a “global” approach). Both approaches allow for the discovery of
previously unknown biological pathways on the basis of patterns of relation-
ships among different metabolites, which would be much harder to achieve in
a classical reductionist approach that focuses only at select compounds.162,163

Here we report the results of quantitative genetic analyses of metabolom-
ics data obtained in a genetically informative sample of individuals, i.e. in
mono- and dizygotic twin pairs and their nontwin siblings. Instead of eluci-
dating the measureable or ‘manifest’ genotypic variables (i.e., single-nucleotide
polymorphisms indicating quantitative trait loci), as is done in e.g. GWA stud-
ies,49,50 in such analyses the causes of phenotypic variation are often modeled
as latent variables in a structural equation model.1,38 Analysis of the covari-
ance structure in phenotypic data by structural equation modeling (SEM)32

allows for the decomposition of phenotypic (co)variance into variance compo-
nents attributable to genetic variation and to environmental variation. Using
select study designs it is also possible to elucidate the relative contribution of
gene-environment interaction to phenotypic (co)variation of traits.29,38,68

However, this is not possible on the basis of the classical twin design, which
is based upon the comparison of the phenotypic covariances of mono- and dizy-
gotic twins raised together. Monozygotic (MZ) twins, who are fertilized from
the same egg, share 100% of their additive genetic variance.29 Dizygotic (DZ)
twins, who are fertilized from two separate egg cells, share only on average 50%
of their segregating genes; this percentage is the same for biological nontwin
siblings. Therefore, any excess phenotypic correlation between MZ co-twins
over that between DZ co-twins is an indication that genetic effects contribute
to the variance of a trait.1

In SEM, such reasoning is formalized in the structural model and its consis-
tency with the observed data is statistically tested.32 Analysis of the phenotypic
covariances for a single trait of mono- and dizygotic twin pairs raised together
allows for the estimation of the heritability of this trait, i.e. of the proportion
of phenotypic variation attributable to genetic variation among individuals.37

Next to such a univariate analysis, multivariate analysis is used to elucidate
the contribution of genetic and environmental effects to the phenotypic covari-
ance among multiple traits, and it increases statistical power to detect genetic
effects.164,165

In addition to MZ and DZ twins, sex-matched nontwin siblings of these
twins were included in this study because this is known to enhance the power
to detect genetic as well as shared environmental effects.166 In this study we
performed both uni- and multivariate quantitative genetic analyses using two
types of metabolomics data obtained in blood plasma samples from the same
participants. That is, we analyzed data from liquid chromatography–mass
spectrometry (LC–MS) of plasma lipids, and from one-dimensional proton nu-
clear magnetic resonance (1H NMR) spectroscopy. The LC–MS data provide
a ‘targeted’ view of the lipid metabolites present in the samples; lipids are
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involved in a number of important (patho-)physiological processes.153 Proton
NMR spectroscopy, on the other hand, aims at a more ‘global’ view of metabo-
lites from different classes, for example amino acids, lipoproteins and carbohy-
drates.2 However, with this latter method one can not discriminate among for
example the individual lipid metabolites that are detected by the targeted LC–
MS method used in this study. Also, with NMR spectroscopy typically only
metabolites present in higher concentrations in a sample can be detected.2

In our analyses of the LC–MS data, we observed marked heritability for
a number of lipids, but also different degrees of heritability among lipids be-
longing to different classes. In particular, we found a potentially biologically
relevant pattern of heritabilities among the lipids of the triglyceride class. In
multivariate analysis, in general lipids of the same class tended to cluster to-
gether. This suggests that positive phenotypic correlation among blood plasma
lipids from the same lipid class is caused by pleiotropic genes.

Probably due to the “global” nature of the used 1H NMR method, the
results of the multivariate analyses of the 1H NMR data suggested a much
larger diversity in genetic causes of variance for different metabolites than in
case of the LC–MS data.

5.3 Materials and methods

5.3.1 Participants

Twins and biological nontwin siblings were recruited from the Netherlands
Twin Register.154 Collection of fasting blood samples from all participants, and
sample preparation were performed as described previously.155–157 Zygosity was
determined for all twin pairs by DNA genotyping.

5.3.2 Measures

Semiquantitative metabolomics analyses of the samples obtained from all study
participants were performed in two “blocks”, where in the first block samples
from different participants were analyzed than in the second block (see Chap-
ter 3). Blood plasma was analyzed both with an LC–MS method targeted at
the analysis of lipids, and with 1H NMR spectroscopy, as described in Chap-
ter 3 as well. In a metabolomics context, the term “semiquantitative” indicates
that no absolute concentrations were measured for the individual metabolites.
Rather, we measured either the concentrations of lipids with respect to those
of a limited number of so-called “internal standards” (in case of the LC–MS
analyses), or the relative concentrations of metabolites with respect to each
other (in case of the 1H NMR analyses).

The measurements of the second ‘block’ were performed almost one year
after those of the first ‘block’; samples from members of the same family were
always measured in the same block. For the data obtained with both methods,
the nonbiological systematic differences between the normalized data from the
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two measurement blocks were removed by quantile equating (see Chapter 3).
This allowed the combination of data from the same variables measured in
both blocks into one common data set that can be analyzed with methods like
those used in this chapter. After equating, replicate measurement data were
averaged per study sample before entering them into SEM as described below.

In this chapter, individual lipid compounds (e.g., C16:1 LPC) as measured
with LC–MS are denoted as follows: the number of carbon atoms (e.g., C16)
as well as the number of double bonds (e.g., 1) in the lipid, separated by a
colon are followed by the class abbreviation (e.g., “LPC” for lysophosphatidyl-
cholines).127 Proton NMR variables are denoted by the chemical shift values
that correspond to the detected features (see Chapter 3).

5.3.3 Genetic analysis

With respect to the quantitative genetic analyses, in this study we followed a
similar strategy as was pursued by Schmitt et al. in the analysis of voxel-based
magnetic resonance imaging data.167 That is, first we performed univariate
genetic analyses to estimate the proportions of phenotypic variance of each
variable separately attributable to genetic and specific environmental variance.

Then, we performed all possible bivariate analyses to estimate the genetic
and non-genetic components of covariance between all pairs of variables within
each data set. The results of these multiple bivariate analyses populated for
each data set a genetic correlation matrix, which was subsequently subjected
to hierarchical clustering analysis. Schmitt et al., in their 2008-paper, refer to
this methodology as “multistep multivariate analysis”. A “multistep multivari-
ate” analysis strategy is actually a workaround that provides “semimultivari-
ate” results in cases where existing covariance-based multivariate data analysis
methods can not directly be applied to analyze the data for all variables within
a data set simultaneously.168 Typically, as is the case in maximum likelihood-
based SEM, data that consist of a relatively small number of objects (partic-
ipants) and a very large number of (correlated) measured variables prohibit
the straightforward use of such existing methods because variance-covariance
matrices computed on the basis of such data are non-positive definite.

Variance components were estimated by SEM approach using full informa-
tion maximum likelihood (FIML) under normal theory using the raw data as
input. FIML allows structural equation models to be fitted in the presence
of missing values in the data (e.g. on twin pairs without nontwin sibling).
For SEM we used the novel package OpenMx (version 0.4.1-1320),169 which is
implemented in the statistical computing environment R158 (version 2.10.1).

Univariate analyses

Before fitting variance component models to the data, we established the like-
lihood resulting from fitting saturated models, where as many characteristics
of the observed data (means, variances, covariances) as possible are freely esti-



102 Chapter 5: Multivariate twin-sibling study of plasma metabolome

mated. Then, we equated means and variances within families, and compared
the resulting likelihood with that of fitting the saturated model to the data
using a likelihood ratio chi-square test. The significance of variance compo-
nents was tested in a similar way, i.e. by comparing the likelihood of the more
complex model with that of a more parsimonious model.

We based our choice for a particular genetic variance components model on
the customary rules of fit and parsimony, i.e., overall for most variables the fit of
the genetic model had to be non-significantly different from that of a saturated
model, and overall for most variables the fit of a more parsimonious model (e.g.,
“E”) had to be significantly different from that of the more complex model
(e.g., “AE”). Here, the capitals “A” and “E” denote the latent additive genetic
and non-shared environmental sources of phenotypic variance, respectively.38

p-values lower than 0.05 were considered statistically significant. We chose one
variance components model (i.e., the “AE” model) to be used for the analysis
of all variables, as the sample size was relatively small in the current study. One
consideration for doing so was that the estimated values of variance components
are always (slightly) dependent on the particular model used, and therefore to
be able to compare variance component estimates among different variables it
is important that they all have been estimated under the same model.

The homogeneity of means, variances, and variance components across sexes
was assessed by comparing the fit of variance components models fitted to
the data for males and females separately, with the fit of models where these
parameters had been equated across the sexes. For the analysis of all data
sets we used data for nontwin siblings only if they were of the same sex as
their twin siblings, because the statistical significance of the estimated variance
components was higher than when we included opposite-sex nontwin siblings
as well (not shown).

Standardized variance components estimates were obtained by dividing the
squared values by total variance.170 Confidence intervals (CIs) for the stan-
dardized genetic variance components were likelihood-based.171

Bivariate analyses

The components of covariance for each pair of variables within each data set
were estimated by fitting a bivariate model based upon a so-called Cholesky
composition of the expected covariance matrix (see Fig. 1.4). For initial analy-
sis a multivariate model based upon Cholesky composition is attractive because
it is relatively hypothesis-free.172 For the bivariate analyses, the relative con-
tributions of the same latent sources of phenotypic variance (i.e., “A” and “E”)
were estimated as in the univariate analyses.173

Genetic correlations were computed from the results of the bivariate anal-
yses as follows:38

rx,y =
varAxy√

(varAx × varAy)
(5.1)
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where rx,y is the genetic correlation between a pair of variables, varAxy is the
unstandardized genetic component of the covariance between the two variables,
and varAx and varAy are the unstandardized genetic components of variance
for the respective variables. For each data set, the genetic correlations for each
pair of variables were aggregated into a square genetic ‘correlation matrix’, of
which the dimensions equal the number of variables in the data set.167

5.3.4 Hierarchical clustering analysis

We used hierarchical clustering analysis to discover patterns of relationships
among different variables in the genetic correlation matrices.174,175 The aim of
hierarchical clustering analysis is to group (cluster) variables on the basis of
their relative similarities and differences, such that variables that are relatively
similar will be grouped together, and variables that are relatively dissimilar will
be in different clusters. For hierarchical clustering, we computed the dissimilar-
ities among variables as (1−correlation).41,176 Then, we subjected the resulting
‘dissimilarity matrix’ to hierarchical clustering, using the average linkage clus-
tering algorithm. It has been noted41 that average linkage in practice often
performs satisfactorily. The results of hierarchical clustering were visualized
using the “heatmap.2” function from the “gplots” package in R.

Of note, as an alternative to hierarchical clustering analysis, eigenvalue de-
composition (spectral decomposition, EVD) of the genetic correlation matrix
could be used to visualize the patterns of genetic relationships among different
metabolites. The eigenvectors as resulting from EVD of a correlation matrix
are equivalent to the “loadings” that would result from a principal component
analysis on the autoscaled original two-mode (i.e., objects × variables) data
matrix on which the correlation matrix was based.23 By EVD of the genetic
correlation matrix, the genetic covariance among variables (metabolites) can be
summarized by projecting the original variables onto new orthogonal variables,
the so-called principal components (PCs), on the basis of the dominant direc-
tion of the genetic covariance among all metabolites. However, we do not show
the results of EVD of the genetic correlation matrix here, because hierarchical
clustering analysis was used in the remainder of this thesis to summarize the
relationships among either objects or variables.

5.4 Results and discussion

5.4.1 Participants

The combined data sets, based on the measurements obtained in the two mea-
surement blocks, comprised data for in total 130 twins and 33 sex-matched
nontwin siblings for both LC–MS and 1H NMR. The LC–MS data set con-
tained data on 59 lipids detected in the sample from each participant. Lipids
from the following five classes were detected: lysophosphatidylcholines (LPCs);
phosphatidylcholines (PCs); sphingomyelins (SPMs); cholesterol esters (ChEs);
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Table 5.1: Basic description of participants a

MZM MZF DZM DZF Nontwin
siblings

Total

Number of participants 34 40 20 36 33 163

Average age in years
(standard deviation)

18.1
(0.2)

18.1
(0.2)

18.2
(0.2)

18.2
(0.2)

19.0
(4.7)

18.3
(2.1)

aMZM, monozygotic male; MZF, monozygotic female; DZM, dizygotic male; DZF, dizy-
gotic female.

and triglycerides (TGs). The 1H NMR data set contained data on 74 features
(peaks) detected in each spectrum.

In total 67 participants were male and 96 were female; participants origi-
nated from in total 65 families (see Table 5.1). All DZ twin pairs included in
the study were same-sex pairs.

5.4.2 Univariate variance components analyses

Genetic models that incorporated heterogeneity of means, variances and co-
variances across sexes did not fit differently to the data than models where the
values for these parameters had been equated across males and females. There-
fore, we estimated covariance components for males and females together.

For all data sets, the likelihood-based CIs were rather large, due to sampling
error because of the relatively small number of participants in this study. The
univariate results specific for each data set are given below.

LC–MS lipids

The heritability estimates per lipid, as well as the 95%-CI, are shown in Fig-
ure 5.1. For all measured lysophosphatidylcholines (LPCs), the estimates for
the standardized genetic variance components were rather high (range, [0.64–
0.75]). The phosphatidylcholines (PCs), on the other hand, displayed relatively
much heterogeneity with respect to their heritability: whereas for some lipids
(notably C36:2 PC) the estimated heritability was very low, for others (e.g.,
C36:4 PC) it was rather high. The total range of the estimated heritabilities
for the lipids in this class was [0.25–0.77]. The heritability estimates for the
sphingomyelins (SPMs) displayed a similar pattern as those for the LPCs: the
estimated values for all lipids in this class were rather high (range, [0.47–0.71]).
The cholesterol esters (ChEs) displayed a remarkable heterogeneity in their
estimated heritabilities when considering the number of C-atoms in the fatty
acid: whereas for the measured ChEs with 16 or 18 C-atoms in the fatty acid
the estimates were moderate and in the range [0.42–0.48], for the lipids in this
class with 20 or 22 C-atoms in the fatty acid the estimates were notably higher
and in the range [0.71–0.74].
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In the triglycerides (TGs), the pattern was even more striking when con-
sidering the combination of the number of C-atoms as well as the number of
double bonds in the fatty acids. For 44 up to 50 carbon atoms in the triglyc-
eride, on average the heritabilities increased with additional carbon atoms in
the fatty acid. From 50 up to 56 carbon atoms, on average the heritabilities did
not change much. However, for each group of TGs with the same number of
carbon atoms, with exception of C44, we observed a consistent upward trend in
the heritability with increasing numbers of double bonds in the fatty acids. For
example, for the TGs with 54 carbon atoms, the estimate for the heritability
was always larger for lipids with larger numbers of double bonds in the fatty
acids. These remarkable differences in heritability among TGs with different
numbers of carbon atoms as well as different numbers of double bounds in the
fatty acids might be due to different numbers of conversions by enzymes in-
volved in both catabolism and anabolism of fatty acids. The apparently lower
average heritabilities of TGs with numbers of carbon atoms decreasing from
50 up to 44, are perhaps due to increasing numbers of C2-fragment cleavages
from the fatty acid backbone (during anabolism) by β-ketoacyl-CoA thiolase,
and/or smaller numbers of C2-fragment attachments to the fatty acid back-
bone (during catabolism) by fatty acid synthase.177 Similarly, the increases
in heritability of TGs with the same number of carbon atoms but increasing
numbers of double bonds in the fatty acid backbones, are perhaps due to in-
creasing numbers of actions by enoyl-CoA isomerase and/or 2,4-dienyol-CoA
reductase and 3,2-enoyl-CoA isomerase (during fatty acid catabolism), and/or
smaller numbers of conversions by fatty acyl-CoA desaturases during fatty acid
anabolism. Overall, for the TGs the heritability estimates were in the range
[0.11–0.72].

Plasma 1H NMR

The heritability estimates per variable, as well as the 95%-CI, are shown in
Figure 5.2. Within the plasma 1H NMR data there was much heterogeneity in
the estimated heritabilities among different variables; this is as expected be-
cause in contrast to for instance the targeted LC–MS method used to generate
the lipid data described in this chapter, NMR is considered a ‘global’ meta-
bolomics method that should be able to detect metabolites of a much larger
number of different classes (e.g., amino acids, carbohydrates). It is conceivable
that different classes of metabolites are subject to different (genetic and/or en-
vironmental) mechanisms that influence their phenotypic variance. Therefore,
in data from a global method like NMR, it is expected that (widely) differ-
ent relative contributions of genetic and environmental causes of variance are
estimated for different metabolites.

Assignment of compound names on basis of the estimated heritabilities of
the features detected in the 1H NMR spectra alone is difficult, amongst oth-
ers because the same compound may have a signal at multiple positions in
the spectrum. Also, it is often difficult to elucidate which metabolites corre-
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spond to the measured ppm values because peaks of multiple metabolites may
overlap.178 In our case, most compounds that we putatively linked to a par-
ticular combination of features (ppm values) on basis of an in-house reference
database, did not display a consistent pattern of heritability for all features
within such a combination.

5.4.3 Multivariate analyses

The heritabilities as computed on basis of the bivariate analyses resembled
those as resulting from the univariate analyses; this is in line with previous
findings.173 The results of the multivariate analyses specific for each of the two
data sets are given below.

LC–MS lipids

Figure 5.3 displays a heatmap of the dissimilarities that result from rescaling
the genetic correlations, as well as the associated dendrogram resulting from
hierarchical clustering based on these dissimilarities. For most pairs of lipids,
the genetic correlations were larger than zero: the median correlation was
0.49 (range, [-0.41; 1]). This suggests that most of the lipids detected in this
study have at least some common genetic causes of phenotypic variance. All
LPCs clustered together perfectly; the TGs also clustered together very well
although one PC (C36:2 PC) clustered together with the TGs because of a
very high genetic correlation. For the clustering among the TGs, the number
of double bonds in the fatty acid appears to be important: in Figure 5.3,
two main clusters of TGs can be observed where one cluster consists of TGs
with up to two double bonds in the fatty acid, whereas the TGs in the other
cluster have two or more double bonds in their fatty acid chains. This may
indicate the action of different enzymes in the metabolism of the TGs in the
two different clusters. The SPMs also clustered together rather well, although
the results suggest that they share genetic causes of variance with three ChEs
(i.e., C16:0 ChE, C18:1 ChE, and C18:2 ChE) as well. The PCs also have
a tendency to cluster, although the clustering pattern suggests that also the
lipids in this class share some genetic causes of variance with notably the ChEs.

Plasma 1H NMR

Figure 5.4 shows the heatmap of the dissimilarities that result from rescaling
the genetic correlations, as well as the associated dendrogram resulting from
hierarchical clustering based on these dissimilarities. The median genetic cor-
relation among the 1H NMR variables was 0.08; range [-1; 1]. Note that this
is in contrast with the situation for the LC–MS data, where almost all genetic
correlations were larger than zero. This contrast might indeed be due to the
fact that the LC–MS method used to generate the data analyzed in this study
is a ‘targeted’ method that detects metabolites of the same class (in this case
lipids) that indeed may share an important part of their biological pathways
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Figure 5.3: LC–MS lipid data: analysis of genetic correlation matrix through dissim-
ilarities. The heatmap indicates with a color code for each pair of lipids the dissimi-
larity that results from rescaling of the genetic correlation as explained in Section 5.3.
For example, a dissimilarity equal to zero as displayed in this figure corresponds to a
genetic correlation of 1; a dissimilarity of 1 corresponds to a genetic correlation equal
to zero. The average linkage algorithm was used for hierarchical clustering based on
these dissimilarities; the resulting dendrogram is shown both along the horizontal and
the vertical axes of the ordered heatmap. The Pearson correlation between the cophe-
netic distance matrix estimated from the dendrogram, and the original dissimilarity
matrix based on genetic correlations, was equal to 0.77. The dissimilarity matrix was
treated as being symmetric for producing this figure. Therefore, this figure is sym-
metric with the diagonal of the heatmap as the axis of symmetry; the dendrograms
along the horizontal and vertical axes of the heatmap are mirrors of each other. For
explanation of lipid labeling, see Section 5.3.2.
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Figure 5.4: 1H NMR data: analysis of genetic correlation matrix through dissimilar-
ities. For explanation, see the legend to Figure 5.3. The Pearson correlation between
the cophenetic distance matrix estimated from the dendrogram, and the original dis-
similarity matrix based on genetic correlations, was equal to 0.79. Variables are
denoted by the chemical shift values that correspond to the detected features.
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to phenotypic variation. The 1H NMR data, however, were generated using a
‘global’ method where indeed metabolites of a much larger number of classes
may be detected that will share less biological pathways leading to phenotypic
variation.

As already noted in the discussion of the results of our univariate analyses,
interpretation of the results for the 1H NMR data was often difficult due to the
inherent properties of this metabolomics method. Nevertheless, we suspect that
in future studies, hierarchical clustering on the basis of the genetic correlations
among different peaks might be useful to reveal genetic relationships among
different metabolites.

5.4.4 Quantitative genetic analyses of metabolomics data
as reported in the literature

Other authors have given heritability estimates for metabolites as well. How-
ever, with the exception of a study by Shah and colleagues,161 in all publications
that we are aware of, the number of metabolites studied was too small and/or
the resolution was too low (e.g., all triglycerides lumped into one summary mea-
sure denoted “total triglyceride concentration”) to denote the phenotypic data
as “metabolomics data”.179–184 Furthermore, of note, a graphical example of
variance components analysis of twin metabolomics data is given in Rahmioğlu
et al. (their Figure 4).185

The reported study that is probably the closest to our current study is the
one by Shah and co-workers.161 In that study, quantitative measurements of
66 metabolites were performed belonging to acylcarnitine species, amino acids
and free fatty acids, in blood plasma from eight (nontwin) families (total 117
individuals) heavily burdened with premature coronary artery disease. Uni-
variate heritabilities were computed with methods that are equivalent to those
employed in this chapter; however, the authors did not perform multivariate
quantitative genetic analyses. Consistent with our findings, the authors re-
port heritabilities within a large range over all investigated metabolites: for
the metabolites for which the heritability estimate was statistically significant,
they found heritabilities within the range [0.23–0.82].

In another interesting study, Pilia et al.176 analyzed data on 98 quantitative
traits relevant for cardiovascular function and personality, measured in a large
cohort of Sardinians. These traits included levels of ‘conventional metabolites’
on the basis of clinical chemical measurements. In accordance with the current
study, the authors used quantitative genetic methods in a “multistep multi-
variate” fashion to assess the genetic and environmental components of the
phenotypic variances and covariances.
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5.5 Conclusions

We have presented the results of a pilot investigation into the relative contri-
bution of genetic variation to the variation observed in human blood plasma
metabolite levels. Our analyses were based on the data obtained with two fre-
quently used metabolomics platforms, i.e. LC–MS and 1H NMR spectroscopy.

Notably, univariate quantitative genetic analysis of the lipid LC–MS data
revealed a remarkable pattern in the heritabilities of TGs with different num-
bers of C-atoms and/or different numbers of double bonds in the fatty acids
that may warrant further biochemical investigation. In multivariate analysis
we found genetic covariance among lipids from the same lipid class (LC–MS).
Therefore, we envision that the methods employed in this study can be used to
discover novel biological pathways on the basis of “omics” type data obtained
in families.

Due to the inherent properties of 1H NMR, interpretation of the results
based on these data was difficult. However, in general we found higher ge-
netic covariance observed among variables observed with the ‘targeted’ lipid
LC–MS platform with respect to those observed with the ‘global’ 1H NMR
metabolomics platform.

In conclusion, our study has demonstrated the use of uni- and multivariate
quantitative genetic analysis to elucidate the importance of genetic variation
to quantitative variation observed in human blood plasma metabolites. The
statistical significance of our findings should be enhanced by replication in a
larger cohort of families.
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CHAPTER 6

Conclusions and Perspectives

In Chapter 2 of this thesis, similarities and differences among members of
(mainly MZ) twin families in their blood plasma lipidomics profiles were inves-
tigated. The results of these analyses suggested that shared genetic background
and shared environmental experiences contribute to similarities in blood plasma
lipidomics profiles among individuals. Male and female participants segregated
almost perfectly at the highest level in the dendrogram resulting from hierar-
chical clustering analysis. Clustering of MZ co-twins was assessed by counting
the number of branching points in the dendrogram separating both twins, and
comparing the observations with reference distributions based on permutation
testing. Indeed, based on these comparisons it could be concluded that in gen-
eral more MZ twins belonging to the same twin pair clustered together than was
expected on the basis of chance. However, for some MZ twin pairs the distances
between co-twins were larger than was expected on the basis of their genetic
similarity. Such dissimilarity of lipid profiles between MZ co-twins appeared
to correlate positively with female gender, relatively high CRP concentration
and, in a number of cases, with recent illness.

In Chapter 3, a data transformation method was presented to make com-
binable (with the variables as the shared mode) data sets obtained with the
same semiquantitative analytical chemical method but in different measure-
ment “blocks”. Such “blocks” can arise, for example, when the measurements
of all samples for a particular study can not be performed at the same time.
The application of the data transformation method, referred to as “quantile
equating”, was demonstrated with data sets obtained by LC–MS analysis of
blood plasma lipids, and by 1H NMR spectroscopy of blood plasma and urine
samples from twin families.

113
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The combined LC–MS data sets obtained after application of the “quantile
equating” method described in Chapter 3, were used for the analyses described
in Chapter 4. In this Chapter it was demonstrated in hierarchical cluster-
ing analysis that quantile equating had indeed been beneficial for making the
LC–MS data sets combinable. Furthermore, on the basis of this larger data
set including notably more DZ twin families, the general findings described in
Chapter 2 could be replicated. That is, the results described in Chapter 4
also supported the hypothesis that shared genetic background and shared en-
vironmental exposure contribute to similarities in lipidomics profiles among
individuals. Also, in general dissimilarities in lipidomics profiles between fe-
male MZ co-twins were larger than between male MZ co-twins. However, the
positive correlation between dissimilarity of lipid profiles between MZ co-twins,
recent illness and relatively high CRP concentration was not as apparent as on
the basis of the analyses described in Chapter 2.

Finally, Chapter 5 describes the results of uni- and multivariate quantita-
tive genetic analyses of blood plasma LC–MS and 1H NMR data on the basis of
structural equation modeling. Univariate analyses of the LC–MS data, which
were generated using a “targeted” method for the analysis of lipids, suggested
different patterns of heritability for lipids belonging to different lipid classes.
Interestingly, within the triglyceride class we observed different heritabilities for
lipids with different numbers of C-atoms and/or different numbers of double
bonds in the fatty acid backbone. The dendrogram resulting from hierarchi-
cal clustering analysis of the genetic correlations among all lipids suggested
shared genetic factors contributing to the phenotypic covariance of lipids from
the same lipid class. The heritabilities of the features detected in the 1H NMR
data, which were generated using a “global” method to obtain an overview
of metabolites from different classes, displayed much larger heterogeneity with
respect to those of the lipids detected with LC–MS. Also, considerable hetero-
geneity was observed in the genetic correlations among all features, which was
again as expected on the basis of the “global” nature of NMR spectroscopy.

6.1 Between-block effect correction methods in
metabolomics

The method described in Chapter 3 of this thesis appears to be one of the
first to address the issue of “between-block” effect correction with application
to semi-quantitative analytical chemical data. It is argued in Chapter 3 that
systematic nonbiological differences between semi-quantitative data obtained in
different measurement “blocks” can exist, for example due to small analytical
changes between the blocks that are not avoidable by good analytical practice
alone. The method of univariate “quantile equating” is introduced to address
this issue when there are nonlinear differences between the distributions of the
data obtained on the same variables in different measurement blocks.

That “between-block” effect correction at “low” level (i.e., at data level)
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appears to be a relatively unexplored area of research in the context of semi-
quantitative metabolomics measurements, is somewhat surprising in view of
the large number of publications on similar topics within the transcriptomics
field. In transcriptomics, the analogue of what we in Chapter 3 of this thesis
refer to as “between-block” effects is often referred to as “batch effects”. Sev-
eral authors186–192 give similar considerations to correct for “batch effects” in
microarray studies, as we do for correcting for what is called “between-block ef-
fects” in Chapter 3. Demetrashvili et al.186 applied the empirical Bayes method
of Johnson et al.191 to correct for “batch effects” after application of the loess
normalization within arrays, which implies that normalization alone was not
sufficient in their case for between-batch effect correction. Other authors have
described similar findings.189,191 This reported insufficiency of normalization to
correct for between-batch effects in microarray studies is in concordance with
our finding that it is not sufficient for correction for between-block effects in
metabolomics data. Jiang and colleagues189 developed the “disTran” method
for between-batch effect correction of microarrays, which is probably equiva-
lent to our “quantile equating” method that we used for between-block effect
correction in the context of a metabolomics study. Several authors (e.g.,193)
have even presented methods to make combinable (with the variables as the
shared mode) data sets obtained with different gene expression measurement
techniques.

The difference in nomenclature employed in the context of microarray stud-
ies (i.e., “batch effect correction”) and in the context of semiquantitative me-
tabolomics studies (i.e., “between-block effect correction”) might reflect a dif-
ference in application domain of highly similar data pretreatment methods.
Indeed, the severity of “batch effects” as generally described within the con-
text of metabolomics studies, appears to be relatively limited with respect
to that of the “batch effects” described for microarray studies. Therefore, in
metabolomics studies, data obtained in different batches but within the same
“block” are often reported to be combinable either without correction, or with
batch effect correction using for example repeatedly measured quality control
samples.2,117,128,194 However, apparently in contrast to the situation within
gene expression studies, the possibility and even necessity to consider data pre-
treatment techniques for between-block effect correction does not appear to be
accepted yet by the metabolomics community. Rather, currently there seems
to be a preference for perfection of the stability and robustness of the used
analytical chemical platforms, such that data obtained with the same analyti-
cal chemical method in different measurement blocks can be combined without
additional correction. For example, efforts are being undertaken to standard-
ize working protocols.2,21,195–197 However, among transcriptomics researchers
a keen interest in methods that correct for “batch effects” still exists, despite
similar efforts in that field.187 With the demand to discover biological effects
of ever smaller effect size on the basis of metabolomics data,117 it is foreseeable
that the application domain of methods to correct for “between-block” effects
increases in response to this demand as well.198
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Finally, a caveat for the application of methods for block effect correction to
semiquantitative metabolomics data sets might be in place. Currently complete
identification of all detected compounds in metabolomics studies is often not
possible.21 The LC–MS data discussed in this thesis, for example, were based
on an analytical method that cannot distinguish among different isomers of
a detected lipid.127 Therefore, it could not be verified whether for example
the ratios of different isomers of the ‘same’ lipid in data sets originating from
different measurement blocks were equal. However, an important assumption
when applying “equating” methods to make combinable data sets, is that data
from the same variables (e.g., the same isomers of a particular lipid) are equated
in different data sets. Any indications that this assumption might be violated
in a given study might preclude the application of equating methods in order
to avoid bias. Nevertheless, it is concluded that useful methodology to correct
for batch and/or block effects in semi-quantitative metabolomics studies might
be adopted from microarray research. A similar case was made by Redestig et
al.199

6.2 Multivariate quantitative genetic analysis

In Chapters 2 and 4 of this thesis, multivariate quantitative genetic analysis
was performed based on the distances among objects, computed on the basis
of blood plasma lipidomics profiles. In Chapter 5, multivariate quantitative
genetic analysis was performed on the basis of structural equation modeling.
In Chapters 2 and 4, we have used the ‘unsupervised’, hypothesis-free data
analysis method of hierarchical clustering. As has been explained in the Gen-
eral Introduction, the aim of hierarchical clustering analysis is to “see what the
data are trying to tell us”.41 Nevertheless, the results in Chapters 2 and 4 were
consistent with our hypothesis that shared genetic background and shared en-
vironment contribute to similarities in blood plasma lipidomics profiles among
individuals.

Structural equation modeling, which was used in Chapter 5, is initiated by
the specification of a model that formalizes a hypothesis about the causal rela-
tionship between predictors and predicted variables. Hence, structural equation
modeling could be regarded a ‘hypothesis-driven’ method. However, in Chap-
ter 5 we have used structural equation modeling in a relatively hypothesis-free
way. That is, a structural model based on Cholesky composition of the variance
component matrices was used, which is a relatively hypothesis-free model.29

Also, the genetic correlations for all pairs of variables, estimated using this
hypothesis-free model, were analyzed using the ‘unsupervised’, hypothesis-free
method of hierarchical clustering. Nevertheless, the patterns of clustering of
lipids on the basis of their genetic correlations were consistent with the hy-
pothesis that metabolites from the same metabolite class correlate positively
because of shared genetic factors of phenotypic variation.

This methodology for multivariate quantitative genetic analysis on the basis
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of SEM might be further enhanced by the development or application of meth-
ods that allow the joint analysis of all variables in one multivariate analysis,
rather than the ‘multistep multivariate’ approach. That is, from a purely math-
ematical point of view, the results from “multiple bivariate” analyses cannot
be jointly analyzed because they are not in the same multivariate space.

Furthermore, as explained below, the results of the analyses based on the
distances among objects could provide indications which ‘moderators’ might
be placed where in a structural equation model to be used for quantitative
genetic analysis. In structural equation modeling, moderators are covariates
that influence for example the weight of predictor variables.200 It can be hy-
pothesized, for example, that gender ‘moderates’ the relative contribution of
genetic variance to phenotypic variance and such a hypothesis can be formal-
ized as a moderator on the path coefficients in a structural equation model.
The analyses based on the distances among objects, as in Chapters 2 and 4 of
this thesis, might be used to explore the heterogeneity among the individuals
in the study sample, to find indications whether there are potential covariates
that might be included as moderators in a structural equation model. For
example, in Chapter 2 in hierarchical clustering analysis we observed almost
perfect segregation of male and female participants at the highest level in the
dendrogram. This suggests that gender might be included as a covariate on
the means in structural equation models.

6.3 Medical relevance of our findings

In Chapters 2 and 4, individual differences were studied on the basis of dis-
tances among objects (lipidomics profiles) in multivariate space. The results of
these analyses suggested that for example disease might increase such individ-
ual differences in blood plasma lipid concentrations. Indeed, our results on the
basis of blood plasma lipid profiling support the hypothesis that “because of
biological individuality, each individual will have a particular location within
the larger distribution of quantitative values that describe the parameter in
the population; the private homeostatic value may then be seen to be dis-
placed because the individual’s system is [. . . ] overwhelmed by experience”.201

The power to detect the effects on individual differences of particular impor-
tant factors, such as disease, might be enhanced in analyses on the basis of
distances among objects with respect to univariate analysis. This increase in
statistical power should be due to the fact that in the multivariate distances
among objects, the effects of factors that influence phenotypic variation in the
individual variables (as can be assessed for example in univariate analysis on
the basis of structural equation modeling, as was performed in Chapter 5) are
“pooled”. This “pooling” occurs during the summation of the dissimilarities
among the objects for the individual variables (see for example equation 1.5
in the General Introduction). Further studies are necessary to determine the
magnitude of this gain in statistical power due to studying distances among
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objects rather than studying the variation in individual variables.
The results of the univariate analyses based on structural equation mod-

eling as described in Chapter 5 of this thesis are informative of the relative
contribution of genetic variation and environmental variation to the quantita-
tive variation in individual metabolites.

The genetic correlations as estimated in the multivariate quantitative ge-
netic analyses described in Chapter 5 are informative of the genetic structure
that underlies the phenotypically observable quantitative relationships among
different metabolites. These results might be relevant for the study of common
diseases,47,66 and might enhance the interpretation of the findings from e.g.
GWA studies.
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Samenvatting

Dit proefschrift beschrijft de resultaten van verschillende analyses die uitge-
voerd kunnen worden in het kader van tweelingenstudies op basis van meta-
bolomics data. De tweelingenstudie is een gevestigde methode om te schatten
of verschillen tussen personen in meetbare eigenschappen hoofdzakelijk toe te
schrijven zijn aan genetische invloeden, danwel aan verschillen in omgeving.
Metabolomics is een betrekkelijk jonge tak binnen de “omics” wetenschappen,
die tot doel heeft een uitputtend overzicht te geven van de stoffen (metabo-
lieten) die betrokken zijn bij biochemische processen in biologische systemen.
Een onderdeel van metabolomics is het meten van de concentraties of onder-
linge verhoudingen in concentraties van deze metabolieten in lichaamsvloei-
stoffen zoals bloed en urine. Centraal in dit proefschrift staan de ontwikke-
ling en de toepassing van methodes voor analyse van de data die voortkomen
uit dergelijke metingen in het kader van (tweelingen)familiestudies. Zodoende
draagt dit proefschrift bij aan het ophelderen van de bijdrage van genetische
en omgevingsinvloeden aan individuele verschillen in metabolietconcentraties
in lichaamsvloeistoffen.

In Hoofdstuk 1 van dit proefschrift wordt een algemene inleiding gegeven
in metabolomics en tweelingen- en familiestudies. Uiteengezet wordt welke rol
familiestudies, en in het bijzonder studies van tweelingen en hun naaste fami-
lieleden, hebben voor het bestuderen van de factoren die ten grondslag liggen
aan de individuele verschillen voor meetbare eigenschappen die in hun waarde
geleidelijk variëren tussen personen. Vanwege hun belangrijke rol in dit proef-
schrift worden twee methodes gëıntroduceerd die kunnen worden gebruikt voor
statistische analyse binnen dergelijke studies. De eerste van deze technieken,
structural equation modeling (SEM), gaat uit van een model dat gebaseerd is
op een hypothese met betrekking tot de oorzaken van variatie binnen en tussen
verschillende meetbare eigenschappen. In een dergelijk model zijn de bijdragen
van de verschillende oorzaken van meetbare variatie opgenomen als parameters
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die vrij in waarde kunnen variëren. De parameterwaarden die het beste bij de
meetgegevens aansluiten, kunnen worden aangenomen als schattingen voor de
waarden van de betreffende parameters in de onderzochte populatiesteekproef.

De tweede techniek voor het bestuderen van de onderlinge verschillen in
meetbare eigenschappen die besproken wordt in Hoofdstuk 1 is hiërarchische
clusteranalyse. Met behulp van deze techniek kan een overzicht worden verkre-
gen van de onderlinge overeenkomsten tussen variabelen (bijvoorbeeld, meta-
bolieten) of tussen objecten (bijvoorbeeld, proefpersonen) op basis van meetge-
gevens voor meerdere eigenschappen gemeten in een steekproef. In Hoofdstuk
1 wordt uiteengezet dat in dit proefschrift deze techniek op twee verschillende
manieren gebruikt wordt om inzicht te geven in de genetische factoren die ten
grondslag liggen aan onderlinge verschillen in meetbare eigenschappen. Voorts
wordt in Hoofdstuk 1 een perspectief geschetst hoe studies zoals beschreven in
dit proefschrift een overzicht kunnen geven van de genetische en omgevingsin-
vloeden op de concentraties van verschillende elementen van biologische syste-
men (bijvoorbeeld, gentranscripten, enzymen en metabolieten) afzonderlijk en
in hun samenhang. Tot slot wordt in Hoofdstuk 1 betoogd dat studies op basis
van meetgegevens verkregen in bijvoorbeeld tweelingenfamilies, de interpretatie
van genoom-brede associatiestudies kunnen verbeteren en onder andere daar-
mee een bijdrage kunnen leveren aan de opheldering van zogenaamde complexe
aandoeningen.

Hoofdstuk 2 beschrijft de onderlinge verschillen en overeenkomsten in li-
pidenprofielen zoals gemeten in bloedplasma tussen (voornamelijk ééneiige)
tweelingen en hun niet-tweelingbroers en -zussen. Deze lipidenprofielen werden
verkregen met één van de meest gebruikte meetmethodes binnen metabolomics,
te weten vloeistofchromatografie gekoppeld aan massaspectrometrie (LC–MS).
Bij deze techniek worden de componenten in het onderzochte monster eerst
gescheiden op een chromatografische kolom op basis van hun verschillen in
fysisch-chemische eigenschappen, en vervolgens gedetecteerd met een massa-
spectrometer. In de studie zoals beschreven in Hoofdstuk 2 werden in het
bloedplasmamonster van iedere proefpersoon met LC–MS relatieve concentra-
ties gemeten van in totaal 61 verschillende lipiden uit vijf verschillende lipiden-
klassen. De gemeten lipiden zijn betrokken bij een breed scala van fysiologische
en pathofysiologische processen, waaronder signaaltransductie, ontstekingsre-
acties en energiehuishouding.

Hiërarchische clusteranalyse werd in Hoofdstuk 2 gebruikt om de proefper-
sonen te groeperen op basis van hun onderlinge verschillen en overeenkomsten
in plasmalipidenprofiel. Het resultaat van deze groepering suggereerde dat
mannelijke en vrouwelijke proefpersonen verschillende lipidenprofielen hadden.
Verdere analyses van de resultaten van de hiërarchische clusteranalyse onder-
bouwden de hypothese dat in het algemeen, overeenkomsten in genetische en
omgevingsinvloeden bijdragen aan overeenkomsten in lipidenprofielen tussen
personen. Echter, in het onderzoek zoals beschreven in Hoofdstuk 2 werden
ook aanwijzingen gevonden dat bepaalde omstandigheden, waaronder recente
ziekte, samengaan met veranderingen in het lipidenprofiel zoals gemeten in
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bloedplasma.
Het onderscheidend vermogen van statistische toetsen wordt vergroot door

het aantal waarnemingen te vergroten op basis waarvan getoetst wordt. In
dit verband beschrijft Hoofdstuk 3, een techniek genaamd “quantile equating”,
die het mogelijk maakt meetgegevens te combineren die verkregen zijn met
dezelfde semi-kwantitatieve analytisch-chemische methode, maar bijvoorbeeld
op verschillende tijdstippen binnen een grote studie. In dit hoofdstuk wordt
beargumenteerd dat het gebruik van dergelijke datavoorbewerkingstechnieken
noodzakelijk kan zijn vanwege praktisch onvermijdbare kleine verschillen in
analytische methodologie tussen ‘blokken’ van metingen. De succesvolle toe-
passing van de in dit hoofdstuk gentroduceerde methode wordt gedemonstreerd
aan de hand van meetgegevens verkregen met LC–MS metingen van relatieve
concentraties van lipiden in bloedplasma, en met metingen van protonenkern-
spinresonantie (1H NMR) in bloedplasma en in urinemonsters. Alle water-
stofhoudende moleculen in een monster dragen bij aan het met 1H NMR ge-
detecteerde signaal, en daarmee bevatten 1H NMR data informatie over de
concentraties van metabolieten behorend tot verschillende klassen.

De met behulp van de in Hoofdstuk 3 beschreven methode gecombineerde
LC–MS data, werden vervolgens gebruikt voor de studie zoals beschreven in
Hoofdstuk 4. Deze samengestelde dataset bevatte meetgegevens voor ééneiige
tweelingen en hun niet tweelingbroers en -zussen zoals beschreven in Hoofdstuk
2, en gegevens voor twee-eiige tweelingen en hun niet tweelingbroers en -zussen.
Evenals in Hoofdstuk 2 werd hiërarchische clusteranalyse toegepast om de on-
derlinge variatie in lipidenprofielen tussen personen in kaart te brengen. De
aanwezigheid van twee-eiige tweelingen in deze studie, maakte het mogelijk
om de invloed van gedeelde omgevingsinvloeden op overeenkomsten in deze
profielen beter vast te kunnen stellen. Tevens werden, evenals in Hoofdstuk
2, aanwijzingen gevonden dat bijvoorbeeld ziekte in het recente verleden sa-
men zou kunnen gaan met veranderingen in het lipidenprofiel in bloedplasma.
Daarnaast bevestigden de resultaten van de hiërarchische clusteranalyse dat
toepassing van een methode zoals beschreven in Hoofdstuk 3 noodzakelijk was
geweest om de meetgegevens verkregen in verschillende blokken samen te kun-
nen voegen.

Deze zelfde gecombineerde meetgegevens op basis van LC–MS analyse van
lipiden in bloedplasma, evenals de samengevoegde gegevens verkregen met
1H NMR metingen in bloedplasma, werden gebruikt voor de analyses zoals
beschreven in Hoofdstuk 5. Allereerst werden in dit onderzoek met SEM de
relatieve bijdragen geschat van genetische invloeden en van omgevingsinvloe-
den aan de verschillen tussen personen in de concentraties gemeten voor elke
afzonderlijke variabele. Dergelijke analyses van de triglyceriden gemeten met
LC–MS lieten een consistent patroon zien, waarbij zowel het aantal koolstof-
atomen als het aantal dubbele bindingen in de vetzuurstaarten van belang leek
voor de erfelijkheid van de gemeten concentraties.

Vervolgens werden in een bivariate SEM-analyse, voor elke paarsgewijze
combinatie van variabelen gemeten met elk van beide analytische methoden,
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de genetische correlaties tussen variabelen berekend. Hiërarchische clusterana-
lyse werd gebruikt om de patronen in deze genetische correlaties voor zowel de
LC–MS gegevens als de 1H NMR gegevens te onderzoeken. Hierbij viel op dat
de positieve correlatie tussen verschillende lipiden in bloedplasma behorend tot
dezelfde lipidenklasse, samen leek te hangen met gedeelde erfelijke invloeden
tussen deze lipiden. Binnen de variabelen gemeten met 1H NMR werden grote
verschillen in de genetische correlaties waargenomen, die te maken zouden kun-
nen hebben met het feit dat met de gebruikte 1H NMR methode metabolieten
van verschillende metabolietklassen waargenomen kunnen worden.

Enkele conclusies en aanbevelingen voor verder onderzoek naar aanleiding
van dit proefschrift worden beschreven in Hoofdstuk 6. Één van de conclusies
is dat methodes toegepast binnen microarray onderzoek voor het combineren
van data gemeten voor dezelfde gentranscripten maar in verschillende personen,
mogelijk toepasbaar zijn binnen metabolomics voor het combineren van data
gemeten voor dezelfde metabolieten maar in verschillende personen. Deze me-
thodes kunnen daarmee een aanvulling vormen op de methode zoals beschreven
in Hoofdstuk 3 van dit proefschrift. Ook wordt in Hoofdstuk 6 betoogd dat
toepassing van de relatief ‘hypothese-vrije’ methode voor clustering van proef-
personen zoals beschreven in Hoofdstukken 2 en 4 resultaten gaf die consistent
waren met een vooraf opgestelde hypothese. Anderzijds werd de ‘hypothese-
gedreven’ methode SEM in Hoofdstuk 5 op een relatief hypothese-vrije manier
toegepast, wat evenwel eveneens resultaten gaf die consistent waren met de bi-
ologische achtergrond van de data. Een mogelijke toepassing van de resultaten
van hiërarchische clusteranalyse van proefpersonen voor het vinden van voor
SEM relevante covariaten wordt beschreven.

Tot slot wordt aangegeven dat methodes om ziekte op te sporen door de
analyse van afstanden tussen personen, zoals bijvoorbeeld beschreven in Hoofd-
stukken 2 en 4 van dit proefschrift, verder onderzoek verdienen vanwege het
mogelijk hogere onderscheidend vermogen ten opzichte van methodes gebaseerd
op analyse van afzonderlijke variabelen.
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Nawoord

Alles verandert. Dit nawoord biedt de gelegenheid om een aantal mensen te
bedanken die hebben bijgedragen aan veranderingen waarvan het wetenschap-
pelijke resultaat beschreven staat in de rest van dit proefschrift. Op deze plaats
betuig ik dan ook mijn dank aan degenen die mij de mogelijkheid hebben gege-
ven mijzelf te ontwikkelen, wetenschappelijk of anderszins. Deze groep mensen
is te groot en hun bijdragen te divers om iedereen hier persoonlijk te noe-
men; dit betekent echter niet dat ik hen die hier niet vermeld zijn geen dank
verschuldigd ben.

De afdeling Analytische Biowetenschappen in Leiden is zeker in de afgelopen
jaren te groot geworden om iedereen te bedanken, maar een aantal mensen met
wie ik bijzonder veel lief en leed gedeeld heb noem ik hier in het bijzonder.
Jurre, sinds we op dezelfde kamer zaten heb ik je aanstekelijke discipline van
dichtbij mogen meemaken. Peter en Jan-Willem, jullie waren misschien wel de
AIOs die voor het meeste leven in de brouwerij zorgden; we kunnen in ieder
geval trots zijn op ons cinematografische hoogstandje. . . Loes, ik ben blij dat
je ondanks mijn grillen altijd bereid was om iets te regelen of uit te zoeken als
dat nodig was. Shanna bedankt voor alle vrolijkheid en gezelligheid die jou
omringt. Kjeld, de situaties waarin we elkaar de afgelopen jaren tegenkwamen
kunnen in ieder geval als bijzonder bestempeld worden. . . (“ga je nog iets doen
vanavond?”). Ubbo, ondanks alle veranderingen bedank ik ook jou voor je
bijdrage aan mijn ontwikkeling. Robert, dank voor je praktische tips in de
eindfase van mijn promotie.

Ook de medewerkers van de Gorlaeus helpdesk wil ik bedanken voor al hun
hulp.

Beste Theo, bedankt voor je feedback, je praktische benadering, en voor alle
goede gesprekken die mij zeker nieuwe moed hebben gegeven als het allemaal
wat minder ging. Ik prijs me gelukkig je als stabiele factor aan mijn zijde te
hebben gehad. Dorret, ik ben je zeer erkentelijk voor je duidelijk zichtbare

143



144 Nawoord

bijdrage aan de wetenschappelijke inhoud van dit proefschrift. Tevens ben ik
je dankbaar dat ik de afdeling Biologische Psychologie steeds beter kan leren
kennen.

Steven, het leven is weliswaar te kort voor vrienden, maar je vormt wat
mij betreft zelf een grote uitzondering op die regel. Bram, Mark en Erik, ik
ben benieuwd in welk oord het volgende clanweekend gaat plaatsvinden. CIA,
bedankt dat jullie me over mijn angst voor Laven hebben geholpen. Janneke,
dank dat je me daarnaast ook nog hebt bijgestaan met nuttige adviezen. Kun
en Guido, laten we binnenkort weer eens een leuk restaurantje uitzoeken! Inge,
dank voor je geduld tijdens de vele lessen waarin je al geprobeerd hebt van
mij een beter musicus te maken. Yvonne, bedankt voor alle tijd die ik met je
heb mogen doorbrengen. En Gulle Herbergiers, na meer dan vijf jaar heb ik
eindelijk de kans om de rekening te vereffenen: bedankt voor alle morele en
andere ondersteuning die jullie me altijd hebben gegeven. Ik hoop dat jullie
nog lang mijn veilige haven kunnen zijn.


