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Chapter 1

Introduction

1.1 Photonic structures

Photonic structures that show features on a wavelength or even subwavelength
scale are widespread in nature. For example, the wings of Morpho butterflies,
the scales of the Brazilian beetle Lamprocyphus augustus, and opal gemstones
all derive their iridescent colors from variations in the refractive index on a
microscopic scale, comparable to the wavelength of visible light. The shim-
mering blue color of the Morpho butterfly, the sparkling green color of the
Brazilian beetle, and attractive iridescent colors of an opal gemstone are to
a large extent produced by their internal structure, not by pigments [1–3].
Over the course of millions of years, life has evolved to make nanostructures of
astonishing complexity that exhibit striking optical properties [4]. Slowly, but
with great determination, human beings are catching up with Nature by ar-
tificially creating nanostructures with wavelength and subwavelength feature
sizes in materials with a high refractive index.

1.1.1 Photonic crystals

In 1987, Eli Yablonovitch [5] and Sajeev John [6], independent from each other,
proposed a novel type of periodic photonic structures called photonic crystals
to control the propagation of light. Yablonovitch proposed to inhibit sponta-
neous emission of an atom placed inside these structures, while John predicted
that photonic crystals can be used to localize light in three dimensions.

The first photonic crystals were made on centimeter length scales [7] for
experimental investigation in the microwave region. Later on, using semi-
conductor fabrication techniques to structure material on a scale of hun-
dreds of nanometers, photonic crystals operating at near-infrared wavelengths
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1. Introduction

(800–900 nm) were realized [8]. Today, photonic crystals are recognized as
structures that can tailor the propagation of light in a unique way and provide
enhanced light-matter interaction. As such, photonic crystals find application
in lasers, single photon emitters, waveguides, filters, frequency convertors,
nonlinear switches, sensors, and slow-light media [9–11].

Propagation of light in a photonic crystal is analogous to the propagation
of electrons in a semiconductor crystal. Figure 1.1(a) shows constructive inter-
ference of light waves reflected from a one-dimensional periodic structure with
a spatial period a. For an appropriate frequency of light ω, the reflected waves
from all the interfaces are in phase and the interference is constructive, similar
to Bragg reflection of X-rays from a crystalline solid [12]. When this Bragg
condition is met, light is totally reflected, and it cannot propagate through the
structure. For a realistic photonic structure with a finite index contrast the
Bragg peaks are significantly broadened and form frequency ranges for which
the propagation of light in the periodic structure is forbidden in a particular
direction. These forbidden gaps, called photonic stop gaps or photonic band
gaps, can be described by a photonic band structure.

Figure 1.1(b) shows the photonic band structure (frequency ω as a function
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Figure 1.1. (a) Constructive interference of light waves reflected from
a one-dimensional periodic structure, with a spatial period a. For an
appropriate choice of frequency ω and periodicity a, the reflected waves
from each interface are in phase and the total reflection adds up to
unity. (b) Photonic band structure (solid lines) for light propagating
along the direction of periodicity in a one-dimensional photonic crystal,
a multilayer structure. The dashed lines indicate dispersion relation for
a homogenous dielectric with a refractive index equal to the effective
refractive index of the photonic crystal (ω = ck/neff ).
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1.1 Photonic structures

of the wave vector k) for light waves propagating through a one-dimensional
photonic crystal along the direction of periodicity. The structure has a spatial
period a and consists of alternating layers of materials with refractive indices
of n1 = 1 (air) and n2 = 3.5, and equal thicknesses d1 = d2 = a/2. The fre-
quency ω and the wave vector k are plotted in dimensionless units ωa/(2πc)
and ka/(2π), respectively. As can be seen, the photonic band structure re-
peats every reciprocal lattice vector G = 2π/a due to periodicity of the struc-
ture. The discrete translational symmetry of the structure conserves the wave
vector k modulo the addition of reciprocal lattice vectors, i.e., k = k ±mG,
where m is an integer. The region of non-redundant values of wave vector k,
−π/a < k ≤ π/a, is called the first Brillouin zone.

For comparison, the dispersion relation of a homogeneous dielectric mate-
rial with a refractive index equal to the effective refractive index of the photonic
crystal (ω = ck/neff ) is also shown in the figure with dashed lines. Here, neff
is equal to the volume average of the dielectric constants of the constituent
materials of the multilayer structure. For the periodic structure discussed here
neff = 2.6. The dispersion relation of the homogeneous dielectric is repeated
every reciprocal lattice vector G. As can be seen, the propagation of light in
a photonic crystal is very different from the propagation of light in a homoge-
neous dielectric material. In a photonic crystal, light can be slowed down close
to the edges of the first Brillouin zone (k = ±π/a) or forbidden to propagate
through the structure. By tuning the period (a), thicknesses of the layers (d1
and d2), and refractive indices of the layers (n1 and n2), it is possible to tune
the dispersion of light in a photonic crystal.

Two-dimensional photonic crystals are periodic in two directions and can
have a photonic band gap for light waves propagating in the plane of peri-
odicity. Only three-dimensional photonic crystals, periodic in all three spa-
tial directions, can have a complete photonic band gap, which prohibits light
propagation in any direction in the structure. However, three-dimensional
structures are difficult to make. Since they are compatible with planar semi-
conductor nanofabrication techniques, two-dimensional photonic crystal slabs
are easier to make while offering some aspects of three-dimensional control
of light propagation. These structures are usually semiconductor waveguide
slabs perforated by a two-dimensional periodic arrays of holes. A photonic
band gap may exist for the guided modes of the slab that are confined by
total internal reflection. These structures have additional waveguide disper-
sion compared to infinitely long two-dimensional photonic crystals due to the
vertical confinement of the modes.

3
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1. Introduction

1.1.2 Nanowires

Semiconductor nanowires are one-dimensional nanostructures that can be epi-
taxially grown using small, typically subwavelength, gold particles as a cat-
alyst [13]. The actual nanowire grows under the gold particle and typical,
as-grown wires, have a diameter of a few tens of nanometers and can be sev-
eral micrometers long. The optical and electrical properties of the wires may
be tuned by controlling their growth. Both regular and random arrays of
nanowires as well as single nanowires can be grown for nanowire-based opto-
electronic devices that include lasers [14–16], waveguides [17,18], photodetec-
tors [19–21], solar cells [22,23], nonlinear optical converters [24,25], biological
and chemical sensors [26].

Nanowires made in a high refractive index semiconductor material (e.g.,
gallium phosphide) interact strongly with light. One of the examples of
this strong light-matter interaction is the record high optical birefringence of
∆n = 0.8 observed in random arrays of aligned gallium phosphide nanowires
with a wire volume fraction of 40% [27]. The physical origin of this large
birefringence is the anisotropic nature of the individual nanowires. This bire-
fringence is common to all two-dimensional and one-dimensional photonic
structures and is present in both periodic and non-periodic structures. This
form birefringence, as introduced by van der Ziel in 1975 [28], is most eas-
ily explained for a multilayer structure consisting of alternating layers of two
materials with different refractive indices (one-dimensional photonic crystal).
For light propagating parallel to layers, the light-matter interaction depends
strongly on the polarization state of the light and two cases can be distin-
guished: the electric field vector is either parallel or perpendicular to the
layers. In both cases an effective dielectric constant can be defined that is
analogous to either a set of resistors in series or a set of capacitors connected
in series [28]. The effective dielectric constant is equal to the volume average of
the dielectric constants of the constituent materials for the electric field paral-
lel to the layers. The inverse of the effective dielectric constant is equal to the
volume average of the inverse of the dielectric constants of the constituent ma-
terials for the electric field perpendicular to the layers. Similarly, for random
arrays of nanowires the effective dielectric constant is strongly polarization
dependent and is given by an appropriate average over the polarizability of
each of the nanowires that form the array.

4
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1.2 Frequency conversion

Frequency conversion refers to a process in which the incoming radiation
generates radiation at a different frequency by interacting with a nonlinear
medium [29]. This nonlinear process can be used to generate coherent radia-
tion in the spectral regions where there are no convenient laser sources [30].
For instance, sum frequency generation can be used to produce tunable ra-
diation at ultraviolet wavelengths by mixing the output of a fixed-frequency
visible laser and the output of a frequency-tunable visible laser. The gener-
ated radiation can be used in biomedical applications because most organic
materials absorb in the ultraviolet region. Difference frequency generation can
be used to obtain tunable mid-infrared coherent radiation in the wavelength
range of 3–12 µm. Since most molecules in the atmosphere have their strong
absorption lines in this wavelength region, the mid-infrared radiation can be
used for remote sensing of the atmosphere.

Besides practical applications, the process of frequency conversion is of
great interest for fundamental science as well. A pump photon from an in-
tense blue laser can spontaneously produce two photons at a red wavelength
via a process called spontaneous parametric down-conversion. Since these
twin photons are generated in pairs, strong correlations exist between the
photons. Under appropriately chosen conditions this may lead to the gener-
ation of entangled photon pairs, which can be used to test the fundamental
laws of quantum mechanics.

In this thesis we will constrain ourselves to the particular case of second
harmonic generation (SHG), also known as frequency doubling. This is a
relatively strong second-order nonlinear process that exists only in materials
where the inversion symmetry is broken. These materials show a nonzero
second-order nonlinear coefficient d.

In order to achieve efficient frequency conversion a phase-matching condi-
tion has to be satisfied [29]. Phase matching ensures that all the generated
waves in the nonlinear medium are in phase and interfere constructively. For
collinear second harmonic generation, the phase-matching condition is given
by ∆k = 2k(ω)− k(2ω) = 0, where k(ω) is the wave vector of the fundamental
beam, and k(2ω) is the wave vector of the second harmonic beam. In opti-
cally isotropic materials, such as III-V semiconductors, the phase-matching
condition can be reduced to n(ω) = n(2ω), where n(ω) and n(2ω) are the
refractive indices of the material at the fundamental and the second harmonic
frequency respectively. In general, due to material dispersion, n(ω) < n(2ω),
and the phase-matching condition is not satisfied. Common ways to achieve a
phase-matched interaction are via angle or temperature tuning of birefringent
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1. Introduction

materials such as beta-barium borate (BBO), potassium titanyl phosphate
(KTP), or lithium niobate (LiNbO3) [29]. However, this solution excludes op-
tically isotropic materials with a much larger second-order nonlinearity. For
example, the nonlinear coefficients d of gallium arsenide (GaAs) and gallium
phosphide (GaP) are respectively about 70 and 30 times larger than the coef-
ficient d of a BBO crystal [31,32].

Bloembergen et al. [33] were the first to propose a periodic photonic struc-
ture with alternating layers of GaP and GaAs as a way to satisfy the phase-
matching condition in III-V materials. By a proper choice of the parameters of
the multilayer structure the dispersion of light can be tuned in such a way that
the waves at the fundamental and the second harmonic frequency are phase-
matched (∆k = 2k(ω)− k(2ω) = 0). Furthermore, an existing phase mis-
match in a periodic structure can be compensated by adding an appropriate re-
ciprocal lattice vector of the photonic lattice (∆k = 2k(ω)− k(2ω) +mG = 0).
This latter mechanism is called quasi-phase-matching.

To summarize, we identify three different mechanisms by which a photonic
structure can reduce a phase mismatch in a nonlinear optical process:

(i) Form birefringence, related to the anisotropy of the fundamental build-
ing blocks of the structure, can reduce a phase mismatch if different
polarization states are used.

(ii) The strong light-matter interaction for materials with a large index con-
trast gives additional dispersion. This additional dispersion is due to a
combination of Bragg diffraction leading to standing wave patterns and
waveguide dispersion [34] that originates from the vertical confinement.
Both contributions may be tuned via design of the structure.

(iii) In periodic structures discrete translational symmetry conserves the wave
vector modulo the addition of a reciprocal lattice vector. This leads to
quasi-phase-matching and allows to add a reciprocal lattice vector to the
phase mismatch.

1.3 Thesis outline

This thesis describes an experimental investigation of second harmonic genera-
tion in III-V semiconductor photonic structures with wavelength and subwave-
length feature sizes exploring possibilities (i)–(iii). The extra dispersion due
to the special arrangement of dielectric material may be used to compensate a
phase mismatch in a nonlinear process. To this end, we study two-dimensional

6
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1.3 Thesis outline

aluminum gallium arsenide (AlxGa1−xAs) photonic crystal slabs in Chapters
3–6 and ensembles of aligned gallium phosphide (GaP) nanowires randomly
grown in two dimensions in Chapter 2. All the chapters can be read indepen-
dently of each other. A short description of each chapter is given below.

• Chapter 2: Ensembles of aligned gallium phosphide nanowires ran-
domly grown on a gallium phosphide substrate show strong birefringence
originating from the optical anisotropy of the wires. In this chapter we
investigate if this birefringence can be used to reduce the phase mismatch
in the nonlinear process of second harmonic generation. We describe a
number of experiments that aim at separating the second harmonic light
generated by the wires from the second harmonic light generated by the
substrate. However, we were not successful in separating the nanowire
contribution and showing the effect of the reduced phase mismatch for
nanowires that are shorter than the coherence length.

• Chapter 3: This chapter describes the fabrication of freestanding, two-
dimensional photonic crystal slabs made in Al0.35Ga0.65As. Light can
resonantly couple to leaky modes of these structures, and the dispersion
relations of these resonances can be extracted from the measured linear
reflection spectra. The nonlinear reflection spectra show that resonant
coupling of a pulsed laser at a wavelength of 1.535 µm can significantly
enhance the second harmonic signal. By tuning the angle of incidence
the pulsed laser beam is tuned into resonance with one of the leaky
modes of the structure, and a second harmonic enhancement of more
than 4500 × the non-resonant contribution is measured.

• Chapter 4: A novel method to transfer freestanding photonic crystal
slabs to a transparent gel substrate is presented in this chapter. Com-
pared to the freestanding structures of Chapter 3, transferred structures
allow for both reflection and transmission measurements. The resonant
features in measured reflection spectra of a structure on the gel are much
more prominent than those in reflection spectra of a freestanding struc-
ture. We show that the measured quality factor of one of the leaky
modes, Q = 300, is limited by the finite size of the ∼ 300× 300 µm2

photonic crystal slab.

• Chapter 5: Resonant coupling of light to leaky modes of a photonic
crystal slab leads to asymmetric Fano lineshapes in the reflection and
transmission spectra. These lineshapes can be explained in terms of

7
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1. Introduction

the Fano model. Within this model, the interference between the non-
resonant and the resonant contribution leads to the asymmetric line-
shape in the spectra. For lossless and symmetric structures, the sign of
the real-valued parameter q of the Fano model, which can be interpreted
as the ratio between the resonant and the non-resonant contribution,
controls the asymmetry of the resonance. For a symmetric air-slab-air
structure parameter q changes its sign if the amplitude reflection coef-
ficient of the slab goes through zero. We show that for an asymmetric
air-slab-gel structure it is also possible to change the asymmetry of a res-
onance by angle tuning without reaching the condition of zero amplitude.
This behavior requires a complex-valued q parameter and demonstrates
that a complex q is not necessarily a sign of the microscopic processes
of decoherence and/or dephasing.

• Chapter 6: In this chapter we investigate second harmonic generation
from photonic crystal slabs transferred to a transparent gel substrate.
The second harmonic is measured in transmission as a function of the
angle of incidence of the fundamental beam. Compared to Chapter 3
we go a step further in understanding the influence of the resonant cou-
pling of both the fundamental and the second harmonic field to the
second harmonic generation. A relatively simple coupled mode theory
rather than full numerical calculations is used to explain the measured
second harmonic. This model does not assume parameters of an ideal
two-dimensional photonic crystal slab. Instead, it uses experimental dis-
persion relations and quality factors of relevant modes as well as the ex-
perimental non-resonant second harmonic signal, obtained by measuring
the linear and nonlinear optical properties of our structure. At normal
incidence, both the fundamental and the second harmonic wave are reso-
nant with leaky modes of the structure, and we measure an enhancement
of more than 10000 × compared to the non-resonant contribution. The
measurements convincingly show the effect of resonant coupling to a
leaky mode at the second harmonic frequency. The angular width of the
measured second harmonic signal is significantly smaller than the width
predicted from the linear optical properties of the leaky mode at the fun-
damental frequency. Furthermore, two additional satellite peaks appear
at angles of incidence of ± 9.1◦. Using the coupled mode theory we show
that also the resonant coupling to a leaky mode at the second harmonic
frequency has to be taken into account in order to explain the reduced
width of the measured second harmonic signal at normal incidence and
the two satellite peaks. This shows the importance of a double resonant

8
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condition for efficient second harmonic generation from photonic crystal
slabs.
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Chapter 2

Second harmonic generation in
gallium phosphide nanowires

2.1 Introduction

Semiconductor nanowires are essentially one-dimensional (1D) nanostructures
that have subwavelength lateral dimensions and typical lengths of several mi-
crometers. Since the introduction of nanowires by Yazawa et al. [35], many
advances have been made in tuning their electrical and optical properties by
controlling their growth. Today, nanowires represent a class of metamate-
rials that shows promise for many device applications compatible with on-
chip technologies. The list of nanowire-based optoelectronic devices includes
lasers [14–16], waveguides [17, 18], photodetectors [19–21], solar cells [22, 23],
nonlinear optical converters [24,25], biological and chemical sensors [26].

The high length-to-width aspect ratios of the nanowires combined with
the high refractive index of semiconductors can lead to strong polarization
anisotropy that facilitates some of their applications. Wang et al. [19] were the
first to experimentally demonstrate the optical anisotropy of a single indium
phosphide (InP) nanowire by measuring its photoluminescence (PL) proper-
ties. The authors point out the possibility of using InP nanowires as polariza-
tion sensitive photodetectors incorporated into photonic-based circuits.

Recent advances in the bottom-up fabrication method of metal-organic va-
por phase epitaxy (MOVPE) [13], made it possible to grow a high density of
aligned gallium phosphide (GaP) nanowires. These nanowire metamaterials,
made out of an optically isotropic material, exhibit extremely large birefrin-
gence solely due to the anisotropy of the nanowire building blocks [27,36].
The resulting birefringence is determined by the volume fraction, length and
the orientation of the nanowires. Inducing form birefringence by nanostruc-
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turing bulk materials represents an important approach in making III-V ma-
terials, like gallium arsenide (GaAs) and GaP, more attractive for nonlinear
optics [28,37].

A large optical nonlinearity as well as perfect phase-matching conditions
are necessary in order to achieve large nonlinear yields [29]. Phase matching
ensures that all the waves generated inside the nonlinear medium interfere con-
structively. In most materials, this phase-matching condition is not met due
to material dispersion. Therefore, birefringent materials are commonly used
to compensate material dispersion and phase-match the nonlinear interaction.
Although bulk GaP has about 30 times larger effective second-order nonlinear
susceptibility, χ(2)

eff , than that of a BBO crystal, it doesn’t possess birefrin-
gence. The second harmonic (SH) signal, generated in bulk GaP, is much
smaller than that of bulk BBO. The large geometrical anisotropy of aligned
GaP nanowires, combined with a high refractive index contrast between the
GaP and the surrounding air, gives rise to strong form birefringence and has
been extensively studied by Muskens et al. [27, 36]. However, little is known
about using the birefringence of these photonic metamaterials to achieve phase
matching in nonlinear optical processes.

In this chapter we study second harmonic generation (SHG) in samples
containing ensembles of aligned GaP nanowires randomly grown on a GaP
substrate. We investigate the influence of the birefringence of the nanowire
layer on second harmonic generation. We consider the symmetry of the second-
order nonlinear tensor χ(2) of the nanowire metamaterials as well. The sym-
metry of the nonlinear tensor χ(2) of the nanowires maybe differs from that
of bulk GaP due to the numerous stacking faults in the nanowires [13].

2.2 Sample description

Figures 2.1(a), (b) and (c) show cross-sectional SEM images of aligned GaP
nanowires, randomly grown on a (111)B (phosphorous terminated) GaP facet.
The nanowires were grown in the facilities of Philips Research. The nanowires
grow preferentially along the <111>B directions and are therefore perpendic-
ular to the surface of the substrate. The existence of a preferential growth
direction can be exploited to make samples with a non-vertical orientation
of the nanowires by choosing a substrate with different crystallographic ori-
entation. For example, a (100) oriented GaP substrate can be used to grow
nanowires, as shown schematically in Figure 2.2. A brief summary of the fab-
rication process and birefringent properties of these structures is given in this
section. Additional details can be found in References [13,27,36].
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2.2 Sample description

(b)(a)

1µm

(c)

1µm1µm

Figure 2.1. Cross-sectional SEM images of aligned GaP nanowires
epitaxially grown on a (111)B GaP substrate, with a length of
≈ 1.3 µm and lateral shell growth times of 100 sec. (a), 350 sec. (b)
and 1100 sec. (c) [38].

GaP (100)

35

<111>

Figure 2.2. A schematic presentation of the nanowire growth on a
(100) GaP substrate. Nanowires grow preferentially along the <111>B
directions.

GaP nanowires are epitaxially grown using a bottom-up process of metal-
organic vapor phase epitaxy (MOVPE) [13]. After depositing a 0.3 nm thick
gold film on the substrate, the wafer is inserted into a MOVPE chamber
and heated to a temperature of 420◦C. At this temperature, the gold film
breaks into ∼ 20 nm droplets that serve as a catalyst. Immediately after
that, the precursors, tri-methyl-gallium (GaC3H9) and phosphine (PH3), are
introduced into the chamber and the nanowires start growing underneath the
gold droplets. The length of the wires is determined by the growth time and
the initial wire diameter is determined by the size of the gold droplets. The
thickness of the wires can be increased by a lateral growth mechanism at an
elevated temperature of 630◦C. Figures 2.1(a), (b) and (c) show different wires
obtained by lateral growth times of 100, 350 and 1100 seconds, resulting in
volume filling fractions of nanowires f of 0.07, 0.15 and 0.4, respectively [38].

Figure 2.3 shows the experimentally determined birefringence at a wave-
length of 632.8 nm (points) as a function of the nanowire volume fraction for
GaP nanowires grown on a (111)B GaP substrate [27]. The birefringence in-

13



i
i

i
i

i
i

i
i

2. Second harmonic generation in gallium phosphide nanowires

Figure 2.3. Birefringence (∆n) at a wavelength of 632.8 nm, as a
function of the nanowire volume fraction (f), for GaP nanowires grown
on a (111)B oriented GaP substrate. The theoretical curve (red line),
calculated using Maxwell-Garnet effective medium theory, is plotted on
top of the experimental data (points) taken from Ref. [27].

creases strongly with volume fraction reaching values as large as 0.79± 0.07
for a volume fraction of 0.4± 0.05.

The layer of subwavelength GaP nanowires grown on a (111)B gallium
phosphide substrate can be treated as a positive uniaxial crystal. The bire-
fringence ∆n = ne − no, with the ordinary (no) and the extraordinary (ne)
index of refraction, is positive, reflecting the stronger interaction with light
when the E-field vector is parallel to the long axis of the wires. We approxi-
mate the nanowires by infinitely long cylindrical pillars, and assume that the
nanowire volume fraction f is low, and use Maxwell-Garnett effective medium
theory [39,40] to calculate the refractive indices no and ne using the following
expressions:

n2
o =

(
1 + 2fα

1− fα

)
, (2.1)

n2
e = fn2 + (1− f), (2.2)

where α = (n2−1)/(n2 + 1) is the polarizability of cylindrical pillars, and n is
the index of refraction of bulk GaP. The calculated birefringence is indicated
by the red line in Fig. 2.3, and agrees very well with the experimental data.
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2.3 Setup

The nanowires that we studied all have a similar length of ≈ 1.3 µm, but
different samples have different volume fractions f . The wires are grown on
∼ 500 µm thick (111)B oriented substrates. The relevant parameters of sam-
ples B9138 (Fig. 2.1(b)) and B9165 (Fig. 2.1(c)) are summarized in Table 2.1.

Table 2.1. Parameters of the nanowire metamaterials used in our ex-
periments.

Sample GaP substrate Length Volume fraction f Birefringence
label orientation (µm) (%) ∆n
B9138 (111)B 1.26 15 0.34
B9165 (111)B ≈ 1.3 40 0.79

2.3 Setup

2.3.1 Description of the setup

Figure 2.4(a) shows a schematic of the setup used to study second harmonic
generation in transmission from ensembles of aligned GaP nanowires. A Q-
switched diode-pumped solid state laser (Cobolt Tango) is employed as the
source of radiation at the fundamental wavelength. The laser uses an Er:Yb-
doped glass as the gain medium to produce a laser beam operating in the
TEM00 mode (M2<1.2). The fundamental beam has a specified center wave-
length of 1535±1 nm and a narrow linewidth (< 0.04 nm). Short pulses, with
a duration of ≈ 3.8 ns (full width at half maximum) and a ∼ 1.3 kW peak
power, are generated at a repetition rate of 5 kHz.

The divergent laser beam is collimated by lens L1 with a focal length
of 60 mm and sent through an optical isolator (OFR IO-4-1535-HP-Z) to
eliminate instability of the laser power output due to the optical feedback.
During the measurements, we check for laser power fluctuations by monitoring
the output of the internal laser photodiode using a Lab View program.

The combination of a half-wave (λ/2) plate and a Glan-Thompson polar-
izing beamsplitter cube (POLARIZER) is used to define the polarization and
can be used to attenuate the power of the incident fundamental beam if de-
sired. The fundamental beam is focused onto the sample by lens L2 with a
focal length of 175 mm, and the generated second harmonic is collected and
collimated in transmission by lens L3 (focal length of 175 mm). We can set
the angle of incidence θ, the azimuthal angle ϕ, and the position of the sample
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2. Second harmonic generation in gallium phosphide nanowires

SPECTROMETER

LASER BEAM
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POLARIZER SAMPLE ANALYZER
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/2 PLATE
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Figure 2.4. (a) Setup used for investigating the second harmonic gen-
eration in transmission from nanowire metamaterials. The fundamental
beam is focused on the sample and the generated second harmonic is
collected in transmission and forwarded to a fiber-coupled spectrometer.
Lenses L1–L4 serve to focus and collimate the light. The polarization of
the incident fundamental is defined using a combination of a λ/2 plate
and a polarizer. The polarization state of the second harmonic is stud-
ied with a second polarizer (analyzer). An optical isolator is employed
to prevent optical feedback caused by the light reflecting back into the
laser cavity. (b) Details of the sample stage. The angle of incidence
θ, the azimuthal angle ϕ, and the position of the sample d, can be set
individually using motorized stages.

d, individually, using motorized stages, as sketched in Figure 2.4(b). A second
Glan-Thompson polarizing beamsplitter cube (ANALYZER) is used to study
the polarization properties of the SH light. In the end, the second harmonic
is focused by lens L4 (focal length of 15.3 mm) onto a 600 µm multimode
fiber and sent to a fiber-coupled grating spectrometer USB4000 (resolution
≈ 1.3 nm).
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2.3 Setup

2.3.2 Second harmonic generation from BBO

In order to test the setup and our 1535 nm laser we generated second harmonic
using a 1 mm BBO crystal. Figure 2.5 shows the measured second harmonic
signal as a function of angle of incidence (black dots). The phase matching in
this standard crystal is well-known. For a collinear second harmonic generation
the power at the SH frequency P (2ν) is proportional to the square of the power
at the fundamental frequency P (ν), and can be expressed as [29]:

P (2ν) ∝ L2sinc2 (∆kL/2)P (ν)2, (2.3)

where
sinc2 (∆kL/2) = sin2 (∆kL/2)

(∆kL/2)2 , (2.4)

and
∆k = 2k(ν)− k(2ν) = 4πν

c
(n(ν)− n(2ν)) . (2.5)
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Figure 2.5. Second harmonic power as a function of angle of inci-
dence (black dots), generated in a 1 mm BBO crystal, and measured in
transmission. The red line is a fit obtained by considering the phase-
matching condition in a negative uniaxial crystal (see text). The SH
signal reaches maximum when the phase-matching condition is satisfied.
The inset zooms in on lower values of SH power emphasizing the good
agreement of higher order maxima.
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2. Second harmonic generation in gallium phosphide nanowires

Here k(ν) and k(2ν) are the wave vectors at the fundamental and the second
harmonic frequency, respectively. Thickness of the crystal is denoted by L.
When the refractive index at the fundamental frequency (n(ν)) is equal to the
refractive index at the SH frequency (n(2ν)), ∆k = 0 and the phase-matching
condition is satisfied resulting in maximum SH yield. For a BBO crystal, phase
matching can be achieved by choosing the polarization of the SH wave to be
extraordinary so that it experiences the lower of the two refractive indices.
We employ type II phase matching where one of the waves at the fundamental
frequency is an extraordinary wave while the other wave is an ordinary wave.
The phase-matching condition ∆k = 0 can then be expressed as:

no(ν) + ne(ν, ψ)− 2ne(2ν, ψ) = 0, (2.6)

where ψ is the angle between the wave vector k and the optic axis of the BBO
crystal. The refractive index ne(ν, ψ) is given by

1
ne(ν, ψ)2 = sin2 ψ

ne(ν, 90◦)2 + cos2 ψ

no(ν)2 . (2.7)

In the experiment, the fundamental beam is polarized under an angle of
45◦ with respect to the plane containing the wave vector k of the incident
light and the optic axis. The crystal is cut so that the type II phase-matching
condition is satisfied close to normal incidence. The fundamental beam is
focused to a spot of ≈ 120 µm with a numerical aperture (NA) ≈ 0.01, and
the angle of incidence θ is varied from -7◦ to 4◦ in steps of 0.1◦. By varying
the angle of incidence θ we vary the angle ψ between the wave vector k and
the optic axis.

To fit the experimental data, we use Equation 2.3 with A = L2P (ν)2 as a
fitting parameter. The phase mismatch ∆k is given by the known refractive
indices of BBO:

∆k = 2πν
c

(no(ν) + ne(ν, ψ)− 2ne(2ν, ψ)) . (2.8)

Here ψ is the angle between the wave vector k and the optic axis inside the
material. We use an additional fitting parameter which describes the angle
between the optic axis and the surface normal. As can be seen from Figure 2.5,
the obtained fit (red solid line), agrees well with the experimental data. The
inset shows that even the secondary maxima of the sinc2 function are nicely
reproduced.
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2.4 SHG in samples with GaP nanowires

2.4 SHG in samples with GaP nanowires

Figure 2.6 shows the measured power of the signal at a frequency of 390.9 THz
(wavelength of 767.5 nm) as a function of the power of the incident fundamen-
tal beam (black dots), generated in transmission from sample B9165. The
inset shows a typical spectrum of the signal detected by a fiber-coupled spec-
trometer USB4000. We focus the fundamental beam to a spot of ≈ 120 µm
with a numerical aperture ≈ 0.01, and keep the angle of incidence as well as
the polarization of the incident fundamental constant throughout the measure-
ment. The power at the second harmonic frequency grows with the square of
the fundamental power, as indicated in Fig. 2.6 with a linear fit (red line) of
a slope of 1.975±0.008.

The crucial question is whether this second harmonic signal is generated in
the nanowire layer or in the underlying substrate. One possibility is to use the
birefringence of the nanowires to achieve phase matching via angle tuning of

10-1 100 101 102

log P (ν)

102

103

104

lo
g

P
(2
ν)

360 380 400 420
Frequency

0

2000

4000

SH
 p

ow
er

 (c
ou

nt
s)

(THz)ν

Figure 2.6. Measured power of the signal at a frequency of 390.9 THz
(wavelength of 767.5 nm) as a function of the fundamental power (black
dots), generated in transmission from sample B9165. The red line repre-
sents a linear fit confirming the quadratic power dependence. A typical
spectrum of the SH signal is shown in the inset.
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2. Second harmonic generation in gallium phosphide nanowires

the sample. When successful, a much more efficient SHG would be obtained
from the nanowire layer than from the substrate. Unfortunately, it is not
possible to demonstrate this with short nanowires with a length of ≈ 1.3 µm,
which is smaller than the coherence length Lc. This coherence length is defined
as Lc = 2/∆k [29], where ∆k is given by Equation 2.5, and defines a length
over which the fundamental and second harmonic waves are in phase. For a
bulk GaP crystal used for frequency doubling of 1535 nm light, the coherence
length Lc is about 3 µm. The large value of ∆k for bulk GaP is due to the
strong dispersion of the material. For a nanowire layer that contains mostly
air, the effective refractive index and consequently also the dispersion are lower
than that of the bulk. Therefore, we expect a smaller ∆k and thus a longer
coherence length. Phase matching which reduces ∆k and increases Lc is only
effective if the crystal thickness L is much larger than Lc (L >> Lc). To
enhance the second harmonic signal due to the nanowires by phase matching,
we could make the nanowires much longer than the coherence length. However,
long nanowires (> 10 µm) have a significantly reduced birefringence due to
the bending of the wires [27]. Therefore, a sample with these long nanowires
is not a good candidate for efficient second harmonic generation.

In the remainder of the chapter we will discuss two possibilities to find out
whether the measured second harmonic signal in Figure 2.6 is generated in the
nanowire layer or in the underlying substrate. In Section 2.4.1 we discuss a
possible difference in tensor properties of χ(2) between the bulk material and
the nanowires. In Section 2.4.2 we discuss an experiment where we use the
strong absorption of blue light in GaP to get rid of the substrate contribution.

2.4.1 Tensor properties of nanowires

Figures 2.7(a) and (b) show polar plots of the measured SH signal in trans-
mission as a function of the azimuthal angle ϕ for sample B9165 and a (111)
oriented GaP reference substrate, respectively. The experimental data are off-
set by 500 counts for clarity. The fundamental beam is at normal incidence,
and is focused to a spot of ≈ 120 µm with a numerical aperture ≈ 0.01. The
azimuthal angle ϕ (Fig. 2.4(b)) is varied from 0◦ to 360◦ in steps of 3◦. The
black dots and red triangles in Figure 2.7 correspond to the experimental data
points for the parallel and the orthogonal orientation of the polarizer and
the analyzer. In this way we probe some of the symmetry properties of the
nonlinear susceptibility tensor χ(2).

Bulk gallium phosphide crystalizes in zincblende structure, which has point
group 4̄3m symmetry. The crystal structure of the nanowires is also predom-
inantly zincblende, as determined by high resolution transmission electron
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Figure 2.7. Measured SH power as a function of the azimuthal angle ϕ
for (a) sample B9165 and (b) a (111) oriented GaP reference substrate,
offset by 500 counts for clarity. The SH signal is measured in trans-
mission at normal incidence. Black dots (red triangles) correspond to
experimental data points for the parallel (orthogonal) orientation of the
polarizer and the analyzer (Fig. 2.4(a)). Solid lines serve only as a guide
to the eye. As expected, the power at the SH frequency is proportional
to sin2(3ϕ) (cos2(3ϕ)).

microscopy (HRTEM) [36]. At the same time, the crystal structure of the
nanowires contains many stacking faults [13]. To understand the nature of
these defects let us consider the stacking sequence of atomic layers in a cu-
bic zincblende structure [12]. In a perfect zincblende structure the atomic
layers are stacked in an ...ABCABC... (fcc) sequence along the [111] direc-
tion. A stacking fault of the hexagonal layers locally changes the stacking
sequence to ...ABAB... (hcp), and as a result a hexagonal wurtzite crystal
structure is formed. For GaP nanowires that grow along a [111] direction of
the cubic lattice, the wurtzite domains are oriented along a [0001] direction
of the hexagonal lattice [12]. The wurtzite structure belongs to a 6mm point
group symmetry, and has a different second-order nonlinear susceptibility ten-
sor compared to a zincblende structure. To appreciate the difference we use
a contracted notation for the nonlinear susceptibility tensor. Instead of the
rank 3 tensor χ(2) we use a 6 × 3 rank 2 tensor d with elements dij [29].
For zincblende (group 4̄3m) the elements d14, d25, and d36 are all equal and
nonzero. For wurtzite (group 6mm) the nonzero elements are d15 = d24,
d31 = d32, and d33.

Let’s calculate the SH power as a function of the azimuthal angle ϕ, gen-
erated in transmission from a (111) oriented GaP slab, at normal incidence of
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2. Second harmonic generation in gallium phosphide nanowires

the fundamental beam. Instead investigating a system in which the sample is
rotated, we study an equivalent problem where both the incident polarization
of the fundamental and the analyzer are rotated by the same angle ϕ while
the sample is fixed.

The nonlinear polarization PNL(2ν) generated by the electric field E(ν)
in the medium is given by [29]

PNL(2ν) = 4d14

 Ey(ν)Ez(ν)
Ex(ν)Ez(ν)
Ex(ν)Ey(ν)

 , (2.9)

where Ex(ν), Ey(ν), and Ez(ν) are the electric field components along the x,
y, and z-axis of the Cartesian coordinate system, respectively. Here, we define
x, y, and z-axis to coincide with the crystallographic axes [100], [010], and
[001].

We chose unit vectors 1√
2(1,−1, 0), 1√

6(1, 1,−2), and 1√
3(1, 1, 1), denoted

by e1, e2, and e3, respectively, to form an orthonormal basis of R3. At normal
incidence, the wave vector k of the incident fundamental is parallel to e3 with
the E-field in the plane spanned by e1 and e2. Consequently, the incident
electric field E(r, t) as a function of the azimuthal angle ϕ is given by

E(r, t) = E(ν, ϕ)e−i2πνt + E(−ν, ϕ)e+i2πνt, (2.10)

where

E(ν, ϕ) = 1
2E0e

ikr (cos(ϕ)e1 + sin(ϕ)e2)

= 1
2E0e

ikr


cos(ϕ)√

2 + sin(ϕ)√
6

sin(ϕ)√
6 −

cos(ϕ)√
2

−
√

2
3 sin(ϕ)

 . (2.11)

Here, E(−ν, ϕ) is the complex conjugate of E(ν, ϕ), and E0 is the amplitude of
the electric field. Combining Equations 2.9 and 2.11, we arrive to the following
expression for the Cartesian components of the nonlinear polarization PNL(2ν)
as a function of the azimuthal angle ϕ:

PNLx (2ν, ϕ) = 2
3E

2
0d14 sin(ϕ)

(√
3 cos(ϕ)− sin(ϕ)

)
,

PNLy (2ν, ϕ) = −2
3E

2
0d14 sin(ϕ)

(√
3 cos(ϕ) + sin(ϕ)

)
,

PNLz (2ν, ϕ) = −1
3E

2
0d14 (1 + 2 cos(2ϕ)) .

(2.12)
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2.4 SHG in samples with GaP nanowires

The measurement scheme with the parallel (orthogonal) orientation of the
polarization of the incident fundamental and the analyzer, filters through the
nonlinear polarization PNL‖ (2ν, ϕ) (PNL⊥ (2ν, ϕ)), given by

PNL‖ (2ν, ϕ) = PNL(2ν) (cos(ϕ)e1 + sin(ϕ)e2)

= −
√

2
3E

2
0d14 cos(3ϕ), (2.13)

PNL⊥ (2ν, ϕ) = PNL(2ν) (sin(ϕ)e1 − cos(ϕ)e2)

=
√

2
3E

2
0d14 sin(3ϕ). (2.14)

The corresponding expressions for the SH power as a function of the azimuthal
angle ϕ, P‖(2ν, ϕ) and P⊥(2ν, ϕ), are proportional to the square of the non-
linear polarizations PNL‖ (2ν, ϕ) and PNL⊥ (2ν, ϕ), respectively:

P‖(2ν, ϕ) ∝ cos2(3ϕ), (2.15)

P⊥(2ν, ϕ) ∝ sin2(3ϕ). (2.16)

As can be seen from Fig. 2.7, the experimentally obtained SH signal qual-
itatively exhibits the sin2(3ϕ) (cos2(3ϕ)) dependence, for both the reference
(111) GaP substrate and sample B9165. We observe six lobes in the polar
plots and the fact that all the minima really go to zero, once the offset of
500 counts is subtracted. However, the amplitudes of the lobes vary, probably
due to a non-perfect alignment. Namely, the wave vector k of the incident
fundamental does not exactly coincide with the rotation axis of the sample.
As a result, the fundamental beam describes a circle on the sample during the
measurement. Most probably, the SH signal fluctuates from spot to spot on
the sample due to the variation in the sample thickness. These fluctuations of
the second harmonic signal are essentially Maker fringes [41].

With currently available samples, one might be tempted to employ an
experimental scheme where the wave vector k of the fundamental beam is
perpendicular to a (100) substrate from which the nanowires grow preferen-
tially in the <111>B directions (Fig. 2.2). If a Cartesian coordinate system
with a z-axis parallel to the vector k is adopted, the only component of the
nonlinear polarization that can be generated in the substrate is PNLz (2ν), and
this cannot give rise to a SH signal in transmission. Let’s consider now a
single pair of nanowires that form a V -shaped structure in the <111>B di-
rections (Fig. 2.2) on top of the substrate. In principle, the symmetry of the
χ(2) tensor is such that a SH signal can be generated in transmission from the
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2. Second harmonic generation in gallium phosphide nanowires

wurtzite domains in a single nanowire. However, due to a geometric symmetry
of the V shape, the components of the nonlinear polarization perpendicular to
the wave vector k of the fundamental, generated in the two nanowires, cancel
each other. Thus, there is no SH signal generated in transmission from the
nanowires either.

2.4.2 Second harmonic generation at 425 nm

Figure 2.8 shows the SH signal at a wavelength of 425 nm as a function of the
position of the fundamental beam on the sample (black dots), measured in
transmission for sample B9138 with a 15% volume fraction of nanowires. The
fundamental beam at a wavelength of 850 nm enters the sample at normal
incidence from the substrate side (see inset) generating second harmonic as
it propagates. Since the absorption length at a wavelength of 425 nm is only
∼ 200 nm for bulk GaP, we can assume that the SH signal in transmission
is due to a thin layer (< 1 µm) of the side of the sample facing the detector.
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Figure 2.8. Measured SH signal in transmission as a function of the
position of the fundamental beam on sample B9138. A scheme of the
experimental geometry is presented in the inset. The dashed (solid) bars
indicate the signal generated from a region without (with) the nanowires.
The horizontal dashed (solid) line indicates the average SH signal.
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2.5 Conclusion

Therefore, for the fundamental beam exiting the sample through the nanowire
layer, the SH signal should have a large component due to the nanowires.
By translating the sample relative to the fundamental beam we probe regions
with and without the nanowires, without changing the angle of incidence on
the sample.

In the experiment, the setup from Fig. 2.4(a) is slightly modified. A
Ti:Sapphire laser is used to generate pulses at 850 nm with a duration of
∼ 2 ps full width at half maximum at a repetition rate of 80 MHz. The fun-
damental is focused to a spot of ∼ 30 µm by a lens with a focal length of
100 mm. Since the nanowire layer acts as a highly scattering medium for radi-
ation at 425 nm [36], a lens with a high NA of 0.5 and a focal length of 8 mm is
used to collect the SH signal in transmission. The collimated second harmonic
is focused onto a Peltier cooled CCD. A combination of the Newport band-
pass filter FSR-BG39, with a transmission region of ≈ 350–600 nm, and the
Thorlabs shortpass filter FES0550, with a cut-on wavelength of about 550 nm,
is inserted before the CCD to filter out the fundamental beam, and ensure the
detection of the second harmonic signal only.

The dashed and solid bars in Figure 2.8 correspond to the SH signal origi-
nating from the region without and with nanowires, respectively. The average
second harmonic signal generated in the region without nanowires (horizontal
dashed line) is ≈ 17 times larger than the average second harmonic signal
generated in the region with nanowires (horizontal solid line). Apparently,
nanowires on the sample do not lead to enhanced second harmonic genera-
tion in the forward direction. We speculate that the main contribution of the
nanowires is to scatter the second harmonic generated in bulk GaP to angles
inside the high refractive index substrate. This scattered second harmonic
signal is not collected by our setup. Unfortunately, the current experimental
data do not distinguish between scattered light and light generated by the
nanowires, preventing a more detailed quantitative analysis.

2.5 Conclusion

The coherence length for second harmonic generation in bulk GaP at a wave-
length of 1535 nm is more than two times larger then the wire length of short
GaP nanowires with a length of ≈ 1.3 µm. As a result, the contribution to
the SH signal originating from the substrate is likely to be larger than the
contribution originating from the nanowire layer.

In order to separate and identify the second harmonic due to the nanowires,
we tried to eliminate the substrate contribution to the SH signal by exploring
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2. Second harmonic generation in gallium phosphide nanowires

the symmetry of the nonlinear tensor χ(2), and by an experiment at a second
harmonic wavelength of 425 nm at which GaP is highly absorbing. Stacking
faults in the nanowires lead to a locally different crystal structure (wurtzite)
compared to bulk GaP (zincblende). With currently available samples, we
were unable to define an appropriate experimental geometry to exploit this
symmetry and generate signal from nanowires only. For second harmonic
generation at an absorbing wavelength, the obtained experimental data can
be explained by SH generated in the substrate and scattered by the nanowires.

Replacing the GaP substrate with another substrate that has a very low, if
not zero, second-order nonlinear susceptibility, while maintaining the original
orientation of the nanowires, is probably the best way to study the second
harmonic generation in ensembles of aligned nanowires [42].
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Chapter 3

Second harmonic generation in
freestanding AlGaAs photonic
crystal slabs

3.1 Introduction

Ever since the introduction as materials that can inhibit spontaneous emis-
sion [5] or localize light [6], photonic crystals have been recognized as struc-
tures that are able to tailor the propagation of light [9, 10]. These photonic
crystals consist of a dielectric material arranged on a periodic lattice with a
lattice constant comparable to the wavelength of light. Nowadays, photonic
crystals find application in high Q, small mode volume cavities, in slow-light
waveguides and numerous other applications that make use of the intriguing
linear optical properties of photonic crystals. The nonlinear optics of photonic
crystals, in particular second harmonic generation (SHG) is less intensively re-
searched. Nevertheless, photonic crystals are interesting for nonlinear optics
since they may combine high field intensities with optical properties that can
be tuned by structure design.

In order to achieve highly efficient second harmonic generation in a small
volume, a material with a large effective nonlinear susceptibility χ(2)

eff must be
used and the phase-matching condition must be met [29]. The phase-matching
condition ensures that all waves generated inside the material interfere con-
structively. In most materials this condition is not fulfilled due to the material
dispersion, but phase matching can be achieved using birefringent materials.
The main obstacle in using III-V materials such as GaAs and GaP, that re-
spectively have a more than 70 and 30 times larger χ(2)

eff than that of a BBO
crystal [31,32], is the fact that GaAs and GaP are not birefringent and phase-

27



i
i

i
i

i
i

i
i

3. Second harmonic generation in freestanding AlGaAs photonic crystal slabs

matching is not easily satisfied. Phase matching can be satisfied in a device
with periodically alternating layers of low and high index of refraction or by
periodically poling the orientation of the χ(2) material. An existing phase
mismatch can be compensated by adding or subtracting a suitable reciprocal
lattice vector G resulting in what is called quasi-phase-matching [33, 43–45].
Second harmonic generation can be further enhanced significantly by a strong
spatial confinement of both the fundamental and the SH optical fields [46],
that enhances the field intensities. Two-dimensional (2D) photonic crystal
slabs, i.e., slabs of dielectric GaAs material perforated with a lattice of holes,
are interesting in this respect.

Cowan et al. [47] show theoretically how to exploit the leaky modes of a
freestanding 2D photonic crystal slab to achieve both quasi-phase-matching
and strong spatial confinement. The authors predict an enhancement of SH
signal in reflection of more than 6 orders of magnitude.

Mondia et al. [48] investigate experimentally SHG in reflection from a 2D
square lattice of holes in GaAs supported on an Al2O3 cladding layer. The
authors use very short (150 fs) pulses and vary the angle of incidence and
the frequency of the fundamental beam. This enables them to make both the
fundamental and the SH wave resonant with the leaky modes of the structure.
In this quasi-phase-matched configuration they achieve a SH enhancement of
more than 1200 times compared to the noise level in the experiment. Torres et
al. [49] present a theoretical and experimental study of SHG in reflection from
a 1D GaN photonic crystal. They report a SH enhancement of more than 5000
times, compared to an unpatterned GaN slab, when the quasi-phase-matching
condition is satisfied.

We study in this chapter the influence of leaky modes at both the funda-
mental and SH frequency on SHG in reflection from a freestanding 2D photonic
crystal slab, i.e., a slab that is surrounded by air on both sides. In principle,
this would lead to a stronger confinement of the field and may therefore lead
to more efficient SHG compared to earlier experiments. The photonic crystal
consists of a regular 2D square array of holes drilled in ∼ 150 nm thick slab
of Al0.35Ga0.65As material. Compared to earlier experiments in literature we
use a narrow linewidth pulsed laser at 1.535 µm and tune the angle to probe
the resonant coupling of both the fundamental and SH wave to the modes
of the structure and how this affects the SH signal. We measure a SH en-
hancement of more than 4500 × compared to the signal from the photonic
crystal away from resonance, and a SH enhancement of 35000 × relative to
the second harmonic signal from the unpatterned Al0.35Ga0.65As region on the
wafer. These enhancements are significantly larger compared to enhancements
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3.2 Fabrication of photonic crystals

reported in References [48,49]. We measure our largest enhancement when the
fundamental beam is slightly off-resonance. This shows the importance of the
resonant coupling occurring at the SH frequency (quasi-phase-matching) and
hints at the fact that the enhancement may be much larger in a structure that
is doubly resonant.

3.2 Fabrication of photonic crystals

The photonic crystal samples, investigated in this chapter, consist of a free-
standing slab perforated with a two-dimensional square lattice of holes. The
starting point of the fabrication process, similar to that of Ref. [50], is the
heterostructure shown in Fig. 3.1(a), grown along the <100> lattice direction
of the GaAs crystal [51]. The purpose of the fabrication procedure is to create
a large, freestanding slab made out of Al0.35Ga0.65As perforated by a regular
array of holes. A cross-section of this structure is shown in Fig. 3.1(b). The
composition of the slab layer is chosen to render the structure optically trans-
parent at both the fundamental (1535 nm) and second harmonic wavelength
(767.5 nm).

The fabrication procedure starts with spin coating a ∼ 500 nm thick layer
of a positive-tone e-beam resist, ZEP 520A [52], on top of the heterostructure.
The two-dimensional square lattice of holes is defined in the resist using e-beam
lithography. To ensure a nonzero efficiency for second harmonic generation,
the ΓX direction of the photonic lattice is rotated relative to the crystallo-
graphic <100> direction of the underlying GaAs by an angle of ∼ 22.5◦. In
this case, the incident electric field of the fundamental is never along a crys-
tallographic axis of the GaAs wafer and the effective nonlinearity is nonzero.
Collinear second harmonic generation along one of the crystallographic direc-
tions is forbidden due to the 43̄m symmetry of the GaAs lattice.

After e-beam exposure, the exposed resist is removed by developing for
80 sec. in n-amyl acetate and rinsing for 30 sec. in 9:1 methyl isobutyl ke-
tone:isopropyl alcohol solution. The developed resist then serves as an etch
mask for transferring the pattern to the silicon nitride (SiNx) layer using
anisotropic reactive ion etching (RIE) in a CHF3/Ar plasma. In this pro-
cess a RF power of 50 W, a pressure of ∼ 6 µbar and CHF3 and Ar flow rates
of 25 sccm are used. The etch rate of the SiNx layer is ∼ 15 nm/min and the
selectivity of the process is better then 10:1. After the pattern transfer, a low
pressure RIE with an oxygen plasma is used to remove the residual e-beam
resist.

Using the silicon nitride as a mask, the hole pattern is then etched deep
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3. Second harmonic generation in freestanding AlGaAs photonic crystal slabs

Figure 3.1. (a) Heterostructure used for fabrication of photonic
crystal slabs. Photonic crystal slabs are made in the 150 nm thick
Al0.35Ga0.65As layer. The silicon nitride layer provides the mask for
etching the hole pattern (defined by e-beam lithography) deep into the
GaAs/AlxGa1−xAs layers. After removing the sacrificial layer a free-
standing structure is achieved. (b) Schematic cross-section of a free-
standing photonic crystal slab with lattice constant a, radius of the holes
r and thickness d.

into the GaAs/AlxGa1−xAs layers in a chlorine-based RIE etch [53]. The
flow rates of BCl3, Cl2, and N2 are set to 15, 7.5, and 10 sccm, respectively.
A pure chlorine plasma leads to isotropic etching of the GaAs. This can
be compensated by adding a sufficient amount of nitrogen to the plasma to
passivate the sidewalls during the etching process. This way, near vertical etch
profiles can be realized, ensuring straight holes in photonic crystal layer [54].
The RF power and pressure are 100W and ∼ 4.5 µbar respectively and the
selectivity of the process is better than 10:1. Afterwards, the remaining silicon
nitride mask is removed using the CHF3/Ar RIE as described earlier.

The 100 nm thick GaAs capping layer, on top of the structure, that protects
the AlGaAs layers from oxidizing, is removed in a 3:1 citric acid:H2O2 solution∗
etch for 2 minutes [55]. The GaAs layer is etched ∼ 100 times faster then the
underlying Al0.35Ga0.65As layer. In order to obtain reproducible results, any
oxide layer residing on top of the capping layer should be removed prior to the
etching process by dipping the structure in 15:1 deionized H2O:buffered oxide
etch (BHF) solution for 15 seconds. Figure 3.2 shows a structure for which
the removal of the GaAs is incomplete. The etching process is faster along
the {100} crystallographic planes resulting in a square feature around every
hole. From this image, the intentional ∼ 22.5◦ misalignment of the photonic
and the crystal lattice of GaAs is clearly visible.

After removing the sacrificial Al0.7Ga0.3As layer in a 1:4 HF (40%):H2O

∗The citric acid solution is made by mixing citric acid monohydrate with deionized water
1:1 by mass. The obtained solution is then mixed with a 31% H2O2 solution.
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3.2 Fabrication of photonic crystals

solution for 1 minute [50], critical point drying is used to remove the sample
from the liquid, resulting in a freestanding photonic crystal slab. The samples
for this chapter were fabricated using the facilities of the Kavli Nanolab Delft.

In this chapter, we investigate four freestanding photonic crystal slabs with
the same lattice constant, but with a slightly different radius-to-pitch ratio r/a
of the holes. These samples were created by writing the same pattern with e-
beam using different exposures. Figure 3.3 shows an SEM image of sample D4
that was exposed with an electron dose of 250 µC/cm2. From this image we
find that the lattice constant a = 890±2 nm. An analysis of ∼ 1000 holes shows

2 s 21(a) (b) mm

Figure 3.2. (a) and (b) SEM images of a photonic crystal sample with
partially removed GaAs capping layer. Square feature around every
hole arises from the fact that GaAs etches preferentially along the {100}
crystallographic planes. The photonic lattice is rotated with respect to
the crystal lattice of GaAs.

Figure 3.3. (a) and (b) Scanning electron micrographs showing the
top view of freestanding photonic crystal slab D4. The entire structure
covers an area of ∼ 300× 300 µm2. The radius of the holes is 160.9 nm,
and the lattice constant is 890 nm.
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3. Second harmonic generation in freestanding AlGaAs photonic crystal slabs

that the radius of the holes is a normal distribution with an average radius of
160.9 nm and a standard deviation σ = 1.6 nm. The relevant parameters of
photonic crystals D1–D4 are summarized in Table 3.1. As can be seen from
the table, the hole size increases with electron dose. Varying the e-beam dose
is a good way to fine tune the r/a ratio of a photonic crystal [56]. Samples
D2, D3, and D4 have a similar distribution of hole sizes (equal σ) while D1
shows significantly more variation in hole size.

Table 3.1. Parameters of the photonic crystal slabs used in our exper-
iments.

Sample label dose [µC/cm2] a [nm] r [nm] Area [µm2]
D1 220 890±2 144.1±3.2 ∼ 300× 300
D2 230 -‖- 148.1±1.9 -‖-
D3 240 -‖- 154.6±2.0 -‖-
D4 250 -‖- 160.9±1.6 -‖-

3.3 Setup
The experimental setup used for both linear reflectivity and second harmonic
generation is shown schematically in Fig. 3.4(a). All the measurements are
done in a specular geometry where the angle of incidence θi is set by using a
motorized stage.

3.3.1 Linear reflectivity

Two different white light sources are used to measure the linear reflectivity.
A high power, fiber-coupled, Xenon lamp (Ocean Optics HPX-2000) is used
in the infrared part of the spectrum (λ ∼ 900–1700 nm) while a fiber-coupled
Tungsten halogen lamp (Ocean Optics HL-2000-FHSA) is used at visible and
near infrared wavelengths (λ ∼ 680–900 nm). The advantage of the Tungsten
over the Xenon lamp is that it has a flatter and more stable spectral output.
The disadvantage of the Tungsten lamp is that it has less power in the infrared
part of the spectrum. The white light coupled into a 50 µm multimode fiber
(FIB.1) is collimated by lens L1 with a focal length of 50 mm. The collimated
beam is then polarized by a Glan-Thompson polarizing beamsplitter cube
(POL.) and focused on the sample by lens L2 with a focal length of 75 mm.
Apertures AP.1 and AP.2 serve to modify the numerical apertures of both
incident and collected beams. The reflected beam is collected and collimated
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FIB.1

LIGHT
SOURCE

DETECTOR

L2POL.

SAMPLE
AP.1

AP.2

L3

L4

FIB.2

(a)

L1

X

M

(b)

k||

i

Figure 3.4. (a) Setup used for both linear reflectivity and second har-
monic generation. Light from an illumination source is coupled into a
fiber (FIB.1) and focused on the photonic crystal sample at an angle of
incidence θi. The reflected light is collected into a second fiber (FIB.2)
and sent to a detector. The lenses L1–L4 serve to collimate and focus the
light onto the sample. A polarizer (POL.) adjusts the polarization of the
incident light. The apertures AP.1 and AP.2 can be used to reduce the
numerical aperture of the incident and collected beams. (b) Schematic
top view of a square lattice photonic crystal slab. Relevant symmetry
directions are indicated as well as the parallel component of the wave
vector k||.

by lens L3 (focal length of 75 mm), and focused by lens L4 (focal length of
50 mm) onto a 400 µm multimode fiber (FIB.2) and then sent to a fiber-
coupled grating spectrometer.

More than one spectrometer is employed in order to cover both visible and
infrared part of the spectrum (λ ∼ 680–1700 nm). Ocean Optics USB2000
spectrometer (resolution ≈ 1.5 nm) is used for detection in the visible and
near infrared part of the spectrum (λ ∼ 680–900 nm) while Ocean Optics
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3. Second harmonic generation in freestanding AlGaAs photonic crystal slabs

NIR-512 spectrometer (resolution ≈ 3nm) is used for the infrared part of the
spectrum (λ ∼ 900–1700 nm).

3.3.2 Second harmonic generation

For SHG we slightly modify the setup shown in Figure 3.4(a). A Q-switched
diode-pumped solid state laser (Cobolt Tango), with Er:Yb-doped glass as gain
medium, is now used as the source of illumination. This laser has a specified
center wavelength of 1535 ± 1 nm and a narrow linewidth, < 0.04 nm. The
laser has a 5 kHz repetition rate with a typical pulse duration of ≈ 3.8 ns (full
width at half maximum). The average power of the laser is ∼ 25 mW and high
peak power pulses (∼ 1.3 kW) are generated. Light from the laser is coupled
into a 9.5 µm single-mode fiber instead of the 50 µm multimode fiber used for
linear reflectivity measurements.

The second harmonic generated in reflection is detected with either Ocean
Optics USB4000 spectrometer (resolution ≈ 1.3 nm) or an Apogee Alta U1
Peltier cooled CCD camera. The CCD camera is used to detect very low
second harmonic signals since it has much higher sensitivity compared to the
fiber-coupled spectrometers.

3.4 Linear optical characteristics
The optical modes of a two-dimensional photonic crystal slab can be classified
as truly guided modes and leaky modes (or guided resonances) [57]. Truly
guided modes are the modes guided in the slab by total internal reflection.
For these modes, all diffraction orders from the photonic crystal lattice are
confined to the guiding layer as well. As a result, these modes remain confined
to the slab and decay exponentially outside the slab. Leaky modes are the
modes guided in the slab by total internal reflection that can couple to the
environment via diffraction. In this case, at least one diffraction order from the
photonic crystal lattice can propagate in the surrounding medium. Therefore,
leaky modes can escape the slab and couple to the external radiation.

An effective way to investigate the leaky modes and their dispersion re-
lation is to measure specular reflection spectra as a function of angle of inci-
dence [58,59]. Each guided resonance will appear as a resonant feature in the
reflection spectrum on top of a slowly oscillating background [60]. Figure 3.5
shows a plot of the measured reflection for sample D4 as a function of fre-
quency on the vertical axis and the in-plane wave vector k|| on the horizontal
axis. Data are shown for s-polarized (Fig. 3.5(a)) and p-polarized (Fig. 3.5(b))
light. In the experiment the angle of incidence θi is varied from 30◦ to 70◦ in
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3.4 Linear optical characteristics

(a)

(b)

Figure 3.5. Gray scale plot of the measured reflection as a function of
frequency (vertical axis) and wave vector k|| (horizontal axis) for sample
D4. Measurements are shown for s- (a) and p-polarized (b) incident
light, and reveal the presence of several leaky modes. The gray shaded
area below the light line (solid line) is where the truly guided modes
exist.
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3. Second harmonic generation in freestanding AlGaAs photonic crystal slabs

steps of 1◦. In order to facilitate a comparison with a dispersion relation ν(k||),
the angles of incidence are converted to the in-plane wave vectors using the
expression k|| = (2πν/c) sin θi, where θi are the angles of incidence, as shown
in Figure 3.4(a). The sample is oriented in such a way that the in-plane wave
vector, k||, is along the ΓX symmetry direction of the photonic crystal lattice.
The incident light beam is focused to a spot of ∼ 75 µm with a numerical
aperture ∼ 0.025. Several sharp resonant features can be observed in the fig-
ure indicating the dispersion of leaky modes. The gray shaded area below the
light line (ν = ck||/(2π)) is the region of the truly guided modes.

In order to understand the position of the leaky modes, we calculated the
band structure of the leaky modes using a freely available finite difference time
domain (FDTD) package∗. In the calculation, the slab has a radius of the holes
r/a = 0.18, a thickness d/a = 0.13, and a relative permittivity ε = 10. These
parameters correspond to those of sample D4. For simplicity, we assume that
the photonic crystal material is lossless and dispersionless and use a literature
value [62] of the permittivity of Al0.35Ga0.65As at a wavelength of 1500 nm. It
is well-known that below the electronic band gap, the permittivity increases
with frequency. Therefore, we expect that the calculated modes are slightly
blue-shifted for larger frequencies compared to a calculation that takes into
account dispersion. This is a relatively small effect in the frequency range
where we compare the calculated band structure with measured data.

Figure 3.6 shows the calculated band structure of leaky modes plotted on
top of the experimental reflectivity data for sample D4. We restrict ourselves
to frequencies ν below 300 THz for clarity. Calculations are shown for both
H-even (TE-like) and E-odd (TM-like) modes.

In the calculation, the 2D square lattice is positioned in the xy-plane and a
point dipole source is placed in the middle of the photonic crystal slab at z = 0.
The modes of a photonic crystal slab can be classified by their E-field, which
is either even or odd with respect to the mirror-symmetry plane at z = 0.
Even modes have the H-field in the z-direction, while odd modes have the
E-field in the z-direction. In the case of an unpatterned waveguide slab, these
modes correspond to the fundamental transverse electric (TE) and transverse
magnetic (TM) modes. Note however, that this definition of TE and TM is
relative to a plane of continuous translational symmetry, perpendicular to the
slab; e.g., the x = 0 plane. This continuous translational symmetry is broken
in a 2D photonic crystal slab and the optical modes cannot be labeled as TE
and TM modes [63]. We will refer to these modes as a TE- and TM-like mode

∗We use finite difference time domain package MEEP (MIT Electromagnetic Equation
Propagation) [61], that can be found at http://ab-initio.mit.edu/wiki/index.php/.
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3.4 Linear optical characteristics

(a)

(b)

Figure 3.6. Calculated dispersion of leaky modes plotted on top of
the experimental reflectivity data of Fig. 3.5 for s- (a) and p-polarized
(b) light. The red and blue circles correspond to H-even (TE-like) and
E-odd (TM-like) leaky modes, respectively.
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3. Second harmonic generation in freestanding AlGaAs photonic crystal slabs

to emphasize the resemblance of these modes to those of an unpatterned slab.
As can be seen, the calculated and the experimental data are in good

agreement. From the figure we conclude that there is no coupling to TM-like
leaky modes in this frequency range while a number of TE-like leaky modes
are visible in the experimental data for both s- and p-polarized incoming light.

External radiation couples to the guided resonances of the photonic crystal
via diffraction by adding a reciprocal lattice vector G to the in-plane wave
vector k||. We define the wave vector of the incident light in the xz-plane,
with the x-axis parallel to the ΓX direction of the photonic lattice. Each
leaky mode can be labeled by the reciprocal lattice vector (Gx, Gy) involved
in the coupling of the incoming light to the leaky mode.

In order to understand the coupling of the incident light to a leaky mode
one needs to understand the symmetry of these modes in the plane of incidence.
In our case, the plane of incidence is the x = 0 plane of mirror symmetry of
the photonic crystal. The E-field of the leaky modes is either odd or even
relative to this plane. Note that this definition of odd or even is an additional
symmetry in addition to the mirror symmetry of the z = 0 plane discussed
before. The E-field of the incoming s- or p-polarized light is either odd or even
relative to the x = 0 plane. This determines the coupling of light to the slab
modes.

Let us first consider the coupling to (±1, 0) and (0, ±1) modes. At non-
normal incidence all degeneracy of these modes is lifted. The (-1, 0) and
(+1, 0) modes show strong dispersion and propagate in the direction of the
incoming wave vector. These TE-like modes are odd with respect to the x = 0
plane and couple to s-polarized light. The (0, ±1) modes propagate in and out
of plane direction, and as a consequence have a weaker dispersion. The lower
energy (0, ±1) mode is a superposition of a (0, +1) and (0, -1) mode with
odd symmetry relative to the x = 0 plane and couples to s-polarization. The
high energy (0, ±1) mode is even and couples to p-polarization [64]. This is
indeed what is observed in Fig. 3.6. In the experimental data for s-polarization
(Fig. 3.6(a)), going from low to high frequencies, we see a lower energy (0, ±1)
mode, a (-1, ±1) mode, a crossing of (1, 0) and (-2, 0) modes, and a crossing
of (1, ±1) and (-2, ±1) modes. The (-1, 0) mode is too low in frequency to be
observed in the experiment. In p-polarization (Fig. 3.6(b)), we see a higher
energy (0, ±1) mode, a (-1, ±1) mode with low Q (not resolved with MEEP
calculation∗), and a crossing of (1, ±1) and (-2, ±1) modes.

Sample D4 was designed in such a way to enable the coupling of a s-

∗To eliminate the non-resonant contribution MEEP analyzes the field after a number of
optical cycles. This excludes the contribution from modes with a low Q factor.
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polarized fundamental beam at frequency νF = 195.44 THz to one of the
first leaky modes. From Figure 3.6(a), it is evident that the fundamental
can resonantly couple to the structure by exciting the lower energy (0, ±1)
mode. In order to determine for which value of the in-plane wave vector k||
this is achieved we have to extract the dispersion of this leaky mode from the
experimental reflectivity data.

Figure 3.7 shows reflection spectra of sample D4 for s-polarized incident
light and various values of k||. Each reflection spectrum contains sharp res-
onant features superimposed on top of a smooth background. The asym-
metry of the (Fano) resonances is a result of an interference between a di-
rect (non-resonant) and indirect (resonant) channel, as was first described by
Fano [65, 66]. Light in the non-resonant channel is Fresnel reflected from the
slab, while light in the resonant channel couples to a leaky mode of the struc-
ture and after some time “leaks” back into the environment. Fan et al. [60]

190 195 200 205 210

30

60

90

120

R
ef

le
ct

an
ce

 (
%

)

Frequency ν (THz)

k
||
= 2.632 µm−1

ν
laser s−polarization

k
||
= 2.896 µm−1

ν
laser s−polarization

k
||
= 3.137 µm−1

ν
laser s−polarization

k
||
= 3.355 µm−1

ν
laser s−polarization

k
||
= 3.547 µm−1

ν
laser s−polarization

k
||
= 3.712 µm−1

ν
laser s−polarization

Figure 3.7. Experimental reflection spectra of sample D4 (blue curves)
for s-polarized incident light and different values of k||. Measured reso-
nant features corresponding to the lower energy (0, ±1) leaky mode are
well fitted with asymmetric Fano lineshapes (red curves). Black dashed
line indicates the fundamental frequency.
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3. Second harmonic generation in freestanding AlGaAs photonic crystal slabs

have developed a general temporal coupled-mode theory of the Fano resonance
for a single-mode optical resonator coupled with multiple input/output ports.
A photonic crystal slab can be treated as a single-mode optical resonator with
two ports, one at each side of the structure. Light, can be transported from
one port to the other using both a non-resonant and a resonant channel. The
resonant channel is characterized by a frequency ν0 and a time τ . We define
the escape rate of a resonance as Γ = 1/(2πτ) and the quality factor of a reso-
nance as Q = ν0/(2Γ). For a symmetric two port system, e.g., a freestanding
photonic crystal slab in air, the reflectance R as a function of frequency ν is
given by

R =
∣∣∣∣rD + Γ −rD ∓ itD

i(ν − ν0) + Γ

∣∣∣∣2 , (3.1)

where rD and tD are the Fresnel reflection and transmission coefficients of the
slab. The subscript “D” is used to denote the direct channel. The ∓ sign is
due to exciting either even (-) or odd (+) leaky mode with respect to the plane
of mirror-symmetry going through the middle of the slab (z = 0).

For a lossless system, the asymmetric Fano lineshape given by equation (3.1)
reaches both 0% and 100%. In realistic systems, losses are present. These
losses are either due to the absorption of the slab material or scattering from
imperfections of the structure. Driessen et al. [67] have extended the coupled-
mode theory of the Fano resonance by adding an extra port to include losses
in the system. It is assumed that energy in the photonic crystal resonator
is transferred irreversibly to the loss port and is characterized by a loss rate
γ. The resonant Fano features in the experimental data, for a freestanding
photonic crystal slab in air, can be described using the following expression
for the reflectance R:

R =
∣∣∣∣rD + Γ −rD ∓ itD

i(ν − ν0) + Γ + γ

∣∣∣∣2 . (3.2)

In order to fit the measured Fano resonances corresponding to the lower
energy (0, ±1) leaky mode (Fig. 3.7), the expression (3.2) is rewritten in the
following form:

R =
∣∣∣∣c1 + c2ν −

c3 + ic4
i(ν − ν0) + γ + Γ

∣∣∣∣2 , (3.3)

where c1, c2, c3, c4, ν0 and γ+ Γ are fit parameters. Here, we assume that the
direct channel contribution to the total reflection, in the vicinity of a resonance,
can be approximated with a linear function of the frequency ν. As can be seen
from Fig. 3.7, the obtained fits show a good agreement with the experimental
data. The importance of this approach is that we can extract the dispersion
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(ν0 as a function of k||) and the quality factor (Q = ν0/(2(Γ + γ)) as a function
of k||) of a leaky mode directly from the experimental data. Figure 3.8 shows
the dispersion of the lower energy (0, ±1) leaky mode of sample D4 (blue dots).
The frequency of the fundamental is indicated by the red dashed line in the
figure. The green dash-dot line defines a constant angle of incidence θi = 46◦.
From this figure it is clear that the s-polarized fundamental beam couples
resonantly to a leaky mode at an angle of incidence θi = 46◦, corresponding
to k|| = 0.417×2π/a. A typical quality factor Q = ν0/(2(Γ + γ)) of this leaky
mode, as determined by the Fano model, is ∼ 175.
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Figure 3.8. Measured dispersion of the lower energy (0, ±1) leaky mode
of sample D4 (blue dots). The red dashed line indicates the position
of the fundamental frequency, and the green dash-dot line corresponds
to a constant angle of incidence θi = 46◦. Resonant coupling of the
s-polarized fundamental beam to the (0, ±1) leaky mode occurs at an
angle of incidence θi = 46◦. A simple analytical model, based on a nearly
free photon picture (see text), is used to calculate the dispersion of both
the lower and the higher energy (0, ±1) leaky mode (black curves).
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3. Second harmonic generation in freestanding AlGaAs photonic crystal slabs

A simple analytical model, that describes the dispersion (ν0 as a function
of k||) of the (0, ±1) leaky modes, can be derived. In a nearly free photon pic-
ture, the light line of a uniform dielectric medium with an effective refractive
index neff is folded back to the first Brillouin zone by adding an appropriate
reciprocal lattice vector. For the hypothetical case of a slab with infinitely
small holes, the (0, ±1) modes are degenerate. However, in a real photonic
crystal slab, these modes split due to a standing wave pattern generated by
the two counter-propagating (0, ±1) modes. The lower energy (0, ±1) mode
has the maximum of the electric field in a high refractive index region, while
the higher energy (0, ±1) mode has the maximum of the electric field in a
low refractive index region. The dispersion of the (0, ±1) modes can be suc-
cessfully approximated by only considering the interaction between the two
(0, ±1) modes. The frequencies ν0± of the modes are given by

ν0±(kx) = νc(kx)±∆ν(kx)/2, (3.4)

where νc is the center frequency, ∆ν is the splitting between the modes, and
kx is the component of the incoming wave vector parallel to the interface in
the ΓX direction. The center frequency νc(kx) is given by

νc = c

2πneff
·
((2π

a

)2
+ 1

2k
2
x

)1/2

, (3.5)

and the splitting ∆ν(kx) between the two modes is given by:

∆ν = ∆ν (kx = 0) ·
(
a

π

)2
·
((

π

a

)2
− k2

x

)
. (3.6)

Here ∆ν(kx = 0) is the splitting at normal incidence that we obtain from the
FDTD calculation. We find values of neff = 2.52 and ∆ν(kx = 0) = 0.029×c/a.

3.5 Nonlinear optical properties
Figure 3.9 shows the measured power of the signal at a frequency of 390.88 THz
(twice the fundamental frequency) as a function of the fundamental power
(blue dots), generated in sample D4 and measured in reflection. A typical
spectrum of the SH signal, measured with a fiber-coupled spectrometer, is
shown in the inset. In order to achieve a dynamic range of ≈ 5 orders of
magnitude, the detection scheme is changed by replacing the spectrometer
with a silicon CCD camera. To make sure that we detect only the light at
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Figure 3.9. Measured power of the signal at a frequency of 390.88 THz
as a function of the fundamental power (blue dots), generated in sample
D4, and measured in reflection. The linear fit (red line) has a slope of
2.025 and confirms the quadratic power dependence. The inset shows a
typical spectrum of the SH signal.

390.88 THz a bandpass filter with a center frequency of 391.17 THz and a full
width at half maximum of 5.41 THz is placed in front of the CCD camera.
The incident fundamental beam is clipped by an aperture and focused to a
spot of ∼ 35 µm with a numerical aperture of ∼ 0.05. The power dependence
measurement is done at a constant angle of incidence and polarization of the
incident beam. As can be seen in the figure, the generated power at twice
the fundamental frequency is proportional to the square of the fundamental
power.

Figure 3.10 shows the second harmonic power (blue dots) generated by the
s-polarized fundamental beam inside sample D4, as a function of the in-plane
wave vector k||. The in-plane wave vector k|| is parallel to the ΓX symmetry
direction of the photonic crystal lattice. The fundamental beam is clipped
by an aperture and focused to a spot of ∼ 75 µm with a numerical aperture
∼ 0.025, and the second harmonic signal is detected using a fiber-coupled
grating spectrometer. We varied the angle of incidence θi from 39◦ to 52◦
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3. Second harmonic generation in freestanding AlGaAs photonic crystal slabs
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Figure 3.10. Second harmonic power (blue dots) generated by the
s-polarized fundamental beam inside sample D4, and measured in reflec-
tion as a function of the in-plane wave vector k||. Two distinct peaks in
the SH power imply that two different resonant effects occur in the SHG.
The measured SH power can be fitted with two Lorentzian-squared func-
tions (black line). The red dashed line indicates the contribution to the
SH due to a resonant coupling of the fundamental to the lower energy
(0, ±1) leaky mode. The remaining contribution is due to a resonant
coupling of the generated SH to a leaky mode of the structure.

in steps of 1◦ and converted this to the in-plane wave vectors k|| using the
expression k|| = (2πν/c) sin θi.

The measured second harmonic power for sample D4 shows two distinct
peaks, implying that there are two different resonant effects that give rise
to SH. The lower peak, occurring at k|| = k||F = 0.417×2π/a, is due to the
resonant coupling of the fundamental to the lower energy (0, ±1) leaky mode,
as can be seen in Fig. 3.8. On resonance, we expect that the largest part of the
fundamental power couples to the photonic crystal slab yielding the largest
SH power. The power at the fundamental frequency νF inside the slab is given
by

Pin slab(νF , k||) ∝
Γ(k||)2

(νF − ν0(k||))2 + (Γ(k||) + γ(k||))2 , (3.7)
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3.5 Nonlinear optical properties

where ν0, Γ and γ are the center frequency, escape and loss rates of the lower
energy (0, ±1) leaky mode respectively. Assuming that the parameters Γ and
γ are slowly varying functions of k|| for the range of in-plane wave vectors used
in the SHG experiment, expression (3.7) becomes:

Pin slab(νF , k||) ∝
1

(νF − ν0(k||))2 + (Γ + γ)2 . (3.8)

Since the center frequency ν0 can be approximated well with a linear function
of k|| for the range of in-plane wave vectors used in the SHG experiment
(Fig. 3.8), we rewrite expression (3.8) as:

Pin slab(νF , k||) ∝
1

(k||F − k||)2 +
(

∆F
2

)2 . (3.9)

Thus, the fundamental power inside the photonic crystal slab as a function of
k||, can be described with a Lorentzian function peaked at k||F with a full width
at half maximum (FWHM) ∆F . The position of the peak, k||F , is determined
by the dispersion of the leaky mode, and the width of the Lorentzian, ∆F , is
determined by the quality factor of the mode. For the second harmonic power
generated in the photonic crystal we write:

Pin slab(2νF , k||) ∝

 1

(k||F − k||)2 +
(

∆F
2

)2


2

. (3.10)

The measured SH power can be fitted with two Lorentzian-squared func-
tions of the form (3.10), as shown by the black line in Fig. 3.10. The peaks
are positioned at k||SH = 0.390×2π/a and k||F = 0.417×2π/a, and have a
width ∆SH = 0.011×2π/a and ∆F = 0.022×2π/a. The dashed red line in
Figure 3.10 shows the contribution to the SH due to the resonant coupling of
the fundamental to the lower energy (0, ±1) leaky mode at k|| = 0.417×2π/a.

The remaining contribution to the SH cannot be explained by considering
only the resonance at the fundamental frequency. The fundamental beam is
off-resonance at k|| = 0.390×2π/a (Fig. 3.8), where we measure the highest
SH signal. We suggest that there is a contribution to the SH signal due to the
resonant coupling of the generated wave at the second harmonic frequency to
one of the leaky modes of the photonic crystal slab. Unfortunately, we are
not able to identify a specific leaky mode in either the reflectivity measure-
ments or in the MEEP calculation. At higher frequencies, the band structure
becomes very complex due to the large number of bands involved and strong
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3. Second harmonic generation in freestanding AlGaAs photonic crystal slabs

interaction between them. In fact, a measurement of second harmonic using a
tunable laser might be a better way to characterize the leaky modes at higher
frequencies.

Figure 3.11 shows a comparison of the nonlinear optical response of samples
with slightly different radius-to-pitch ratio r/a of the holes. The SH signal is
measured in reflection as a function of the in-plane wave vector k|| for samples
D1 (pink), D2 (green), and D3 (blue dots). The curves are offset vertically by
a constant value for clarity. The experimental data for sample D4 (red dots),
as discussed earlier, are shown in the figure as well.

We observe that the second harmonic signal shifts to larger values of k||
as the ratio r/a decreases. This effect can be understood by considering a
nearly free photon picture. In this picture, a decrease in the ratio r/a results
in an increase of the effective refractive index of the slab (nslab) and shifts
the dispersion of the leaky mode (ν ∝ k||/nslab) towards lower frequencies.
As a consequence, the fundamental beam becomes resonant with the photonic
crystal at a larger value of the in-plane wave vector k||. The black arrows in the
figure indicate the values of k||, estimated from experimental linear reflectivity
data, for which the fundamental beam is exactly on resonance.

As can be seen from the figure, the signals from samples D1 and D2 are
very comparable. This is due to the fact that these samples have the same
pitch and almost equal hole size. The main difference between the samples
is that sample D1 has a larger variation in the hole size compared to other
samples (Table 3.1).

For all samples, the SH is generated over a relatively large range of k|| and
cannot be explained by considering only the coupling of the fundamental beam
to the structure. It is clear from the dispersion of the lower energy (0, ±1)
leaky mode that the fundamental beam is “far away” from being exactly on
resonance with either sample D1 or D2 in the region around k|| = 0.5×2π/a.
We believe, that resonant effects at second harmonic frequency provide an
answer. Note that for these values of k|| the leaky mode at the SH frequency
is close to the edge of the first Brillouin zone, as indicated by the black vertical
dash-dotted line in Fig. 3.11. Since the group velocity vanishes at the edge of
the Brillouin zone, coupling to such a mode could lead to a very broad feature
in the measured SH.

As a final note, we emphasize the presence of a peak in the SH signal
occurring in the second Brillouin zone. To visualize this peak, we multiply the
SH power generated in sample D4 for larger values of k||, by a factor of 10. A
weak peak occurs at k|| ≈ 0.57×2π/a due to a higher order diffraction of the
periodic lattice at the fundamental frequency. The magnitude of this peak is
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3.5 Nonlinear optical properties

much lower since the higher order diffraction event is less efficient.
The calculated enhancement of the SH signal for a similar geometry was

found to be more than 6 orders of magnitude [47]. In order to estimate the
SH enhancement for sample D4, we measured both the resonant and the non-
resonant contribution to the SH signal generated in the sample, and calculated
the ratio. The non-resonant contribution can be measured by tuning the k|| in
such a way that the waves at both the fundamental and the second harmonic
frequency cannot resonantly couple to the structure. We are limited by the
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Figure 3.11. Second harmonic power measured in reflection as a func-
tion of the in-plane wave vector k|| for samples D1 (pink), D2 (green),
D3 (blue), and D4 (red dots). The curves are offset by a constant value
for clarity. The black arrows indicate the values of k|| for which the fun-
damental beam is exactly on resonance with the given structure. The
vertical dash-dotted black line indicates the position of the edge of the
first Brillouin zone. As the ratio r/a decreases, the SH signal shifts to
the larger k||.
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3. Second harmonic generation in freestanding AlGaAs photonic crystal slabs

noise floor of the spectrometer in measuring this contribution, and estimate a
lower limit of the SH enhancement for sample D4 of 4500, which is almost 4
times larger than the maximal enhancement reported in Reference [48]. The
maximal SH signal generated in reflection from sample D4 occurs at k|| for
which the fundamental is slightly off-resonance, as can be seen in Figure 3.10.
This implies that even larger enhancements can be achieved for a structure
that enables the resonant coupling at both the fundamental and SH frequency
at the same time. Based on the fit with two Lorentzian-squared functions in
Fig. 3.10, we estimate that the signal may be further enhanced by a factor
of 10. We also compared the resonant SH generated in reflection from the
sample to the SH generated in reflection from the unpatterned Al0.35Ga0.65As
region on the wafer. A detection scheme with a very sensitive silicon CCD
camera, described earlier, is used to detect low SH signal generated from the
unpatterned region. The highest measured second harmonic signal from the
photonic crystal slab is 9225± 3× 103 cts/s. The measured second harmonic
signal from the unpatterned region is 0.26± 0.03× 103 cts/s. Therefore, the
experimental SH enhancement is 35± 4× 103 times, which is 7 times larger
than the enhancement reported in Reference [49] for 1D GaN structures.

3.6 Conclusion

Leaky modes at both the fundamental and the SH frequency play a promi-
nent role in increasing the nonlinear optical response of a photonic crystal
slab. By tuning the in-plane wave vector k|| of the incident fundamental beam
the structure can be resonantly excited, leading to large enhancements of sec-
ond harmonic. We measure an enhancement > 4500 when compared to the
photonic crystal slab off-resonance, and a factor 35000 compared to an unpat-
terned substrate.

The observation of two distinct peaks in the SH signal generated in sample
D4 can be explained with the resonant coupling at both the fundamental and
the SH frequency. In fact, the largest SH enhancement for sample D4 occurs
when the fundamental beam is slightly off-resonance, and we estimate that the
SH can be enhanced by another factor 10. To investigate the enhancement in
more detail, a better understanding of the leaky modes at the SH frequency
is needed. An interesting new route to investigate the influence of the modes
at the SH frequency on the SHG would be to design and make a photonic
crystal slab that has one of the first leaky modes at the SH frequency. In this
way, the coupling of the fundamental to the structure can be neglected and
all the features in the SH signal can be attributed to resonant effects at SH
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frequency.
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Chapter 4

Method to transfer photonic
crystals to a transparent gel
substrate

4.1 Introduction

Over the last two decades, the continuous expansion of the field of photonic
crystals went hand in hand with developments in semiconductor nanofabrica-
tion techniques. Since the introduction of photonic crystals as structures that
can form a complete band gap to inhibit spontaneous emission [5], or local-
ize light [6], many novel properties of these fascinating materials have been
found and experimentally realized. Today, photonic crystals are recognized
as structures that offer remarkable control of light propagation and enhanced
light-matter interaction. As such, they find applications in lasers, single pho-
ton emitters, waveguides, filters, optical nonlinear devices, sensors, and slow
light media [9–11]. So far, combining various devices into a single chip has
proven to be a very difficult task, since it requires different materials and
fabrication techniques.

In this chapter we propose a novel technique to transfer a semiconductor
based photonic crystal device to any substrate. The main idea is to stick the
structure to a transparent gel film. This gel can then be glued to the desired
substrate. If needed, the substrate can have additional patterning in order to
add functionality to the system. In contrast to wafer bonding techniques, a
dedicated machine is not needed and the interfaces do not have to be polished
to an optical quality. This may significantly reduce the time and resources
needed to fabricate the desired structure, which is extremely important in the
early stage of prototype development where trial and error are often used as
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4. Method to transfer photonic crystals to a transparent gel substrate

an approach to solve the fabrication issues.
The proposed technique can be used for optical frequency converters based

on photonic crystal slabs in III-V semiconductor materials that possess high
second-order nonlinearity such as GaN, GaP, or AlxGa1−xAs. Current III-V
technology allows epitaxial growth of nearly lattice matched AlGaAs layers
on GaAs. For a freestanding membrane with a large surface area, the lattice
mismatch between the membrane layer and the substrate causes buckling of
the membrane. The buckling leads to lower optical quality of the structure.
This issue can be overcome by transferring the freestanding membrane to a
transparent gel substrate to release the strain.

We have successfully transferred large freestanding Al0.35Ga0.65As photonic
crystal membranes (∼ 300× 300 µm2) to a transparent gel substrate with a
low refractive index of ngel = 1.4. In contrast to the freestanding structure, the
membrane on gel is almost flat and the transparent substrate enables trans-
mission measurements. The introduction of the low index substrate results in
a red shift of the frequencies of the leaky modes. A simplified coupled mode
theory based on a truncated plane wave method [68] in two-dimensions is used
to describe an avoided crossing between three modes in our system. Due to
the interaction, one of the modes becomes subradiant and reaches Q values
of 300, limited by the finite size of our membrane, which demonstrates the
excellent optical quality of our structures.

Compared to a similar system patterned in silicon nitride [69], our struc-
tures are mechanically more robust and they have a larger index contrast.
Therefore, ultrahigh-Q nanocavities in Al0.35Ga0.65As that are transferred to
the gel might provide a more promising platform for biochemical sensing in
liquid phase [70] than those in silicon nitride membranes. For comparison,
a silicon nitride device immersed in water has an index contrast of 1.71 at
a wavelength of 780 nm [69], while an index contrast of ≥ 2 is needed to
create a band gap for the guided modes [71–73]. The index contrast for the
Al0.35Ga0.65As membrane in water is 2.56, and for the Al0.35Ga0.65As mem-
brane on the gel substrate is 2.44, at a wavelength of 780 nm [62]. Both of
them exceed what is possible with silicon nitride and the contrast is large
enough to create a complete band gap. This enables defect cavities with a
high quality factor and a small modal volume for sensing applications.

Another possible application of our technique would be to provide high ex-
traction efficiency for light-emitting diodes (LEDs). In this application a pho-
tonic crystal layer with a large index contrast is placed on top of an LED [74]
using our transfer technique. Without a photonic crystal layer, the light that
is not emitted in the extraction cone is guided in the cladding material. If
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4.2 Sample preparation

not collected from the edges of the structure, the guided modes are lost. By
adding a photonic crystal layer with properly chosen parameters, it becomes
possible to diffract large part of guided light into the extraction cone. The
advantage of our method is that this layer can be made independently in a sep-
arate fabrication stage using a completely different technology. By using the
large index contrast of the photonic crystal, a much more strongly diffracting
layer is created when compared to existing structures with a small periodic
surface corrugations [74].

Our technique could be used to position a gallium phosphide (GaP) mem-
brane with a cavity on a flat diamond substrate with nitrogen-vacancy centers
(N-V centers) as an alternative to using a nanodiamond with a single N-V
center [75]. These N-V centers in bulk diamond can be isotropically pure and
can be positioned using ion implantation [76]. Moreover, such N-V centers
have low decoherence [77,78] which may be important for future applications
in quantum information.

4.2 Sample preparation

We fabricated two-dimensional photonic crystal slabs with a square lattice of
holes with a hole radius of ∼ 150 nm and a lattice constant a = 820 nm using
a combination of e-beam lithography and reactive ion etching techniques in a
commercially grown AlGaAs layer structure [51]. The samples were fabricated
using the facilities of the Kavli Nanolab Delft. An overview of the fabrication
process is shown in Figure 4.1. The layers in this study are deposited using a
MOCVD (metalorganic chemical vapor deposition) process on a< 100 >GaAs
substrate and consist of a 1 µm thick Al rich Al0.7Ga0.3As layer, a 150 nm
thick Ga rich Al0.35Ga0.65As layer, and a 100 nm thick GaAs capping layer.
To create the hole pattern, a 150 nm silicon nitride layer is deposited on top of
the structure and serves as a mask during the final reactive ion etching step.
The lattice of holes is created by e-beam lithography in a ∼ 500 nm thick
layer of positive tone e-beam resist, ZEP 520A [52], as shown in Figure 4.1(a).
A low pressure reactive ion etching step in a CHF3/Ar plasma is used to
transfer the hole pattern into the nitride mask. After removal of the e-beam
resist in a low pressure O2 plasma, the hole pattern is etched deep into the
AlGaAs heterostructure in a BCl2/Cl2/N2 reactive ion etch process at 100 W
RF power, a pressure of ∼ 4.5 µbar and flow rates of 15, 7.5, and 10 sccm
respectively. The nitrogen flow in this process was optimized to create near
vertical side walls of the holes. After etching the holes, the nitride mask is
removed using the CHF3/Ar etching procedure described above.
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Figure 4.1. Overview of the fabrication process of a photonic crystal
slab: (a)-(c) A regular two-dimensional square lattice of holes is created
in the AlGaAs/GaAs heterostructure by using e-beam lithography and
reactive ion etching. (d) Wet etching techniques are employed to remove
both the capping and the sacrificial layer, creating a freestanding pho-
tonic crystal slab in air. Due to a small lattice mismatch between the
GaAs substrate and the Al0.35Ga0.65As layer, the slab buckles. (e) The
photonic crystal slab is then transferred to a gel substrate fixed onto
a microscope glass slide. (f) The resulting structure is an almost flat
membrane on a transparent substrate (gel) with a low refractive index
ngel = 1.4.
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To create a freestanding membrane we first remove any residual oxide
layer by dipping the sample in 15:1 deionized H2O:buffered hydrofluoric acid
(BHF) solution for 15 sec. The sample is then placed in a 3:1 citric acid:H2O2
solution for 120 sec to selectively remove the GaAs capping layer. Finally,
the freestanding membrane is created by etching the sacrificial Al0.7Ga0.3As
layer in a concentrated 1:4 HF (40%):H2O solution for 60 sec followed by a
rinsing step in pure water and critical point drying. The resulting membrane
covers an area of ∼ 300 × 300 µm2 and is not perfectly flat due to a small
lattice mismatch between the Al0.35Ga0.65As (l = 0.565603 nm) membrane
layer and the GaAs (l = 0.565325 nm) substrate [79]. This lattice mismatch
of about 0.05% causes a compressive strain in the membrane. After etching
the sacrificial layer, the freestanding photonic crystal slab buckles releasing
the strain. The buckled membrane is symbolically depicted in a form of a
bent slab in Figure 4.1(d).

In the end, the membrane is transferred to a transparent gel layer [80] with
a refractive index of 1.4 on a standard microscope slide. The sample is gently
placed on the gel using tweezers, and the GaAs substrate is carefully peeled
off. As a result, an almost flat photonic crystal slab is created, as shown in
Figure 4.1(f).

Figures 4.2(a) and (b) show the optical images of a photonic crystal slab
before and after the transfer, respectively. As can be seen, a few cracks oc-
cur along the sample surface depending on how gently the slab is placed on
the gel. Typically, there is a damage free area on the sample that is larger
than ∼ 200× 200 µm2. In addition to the structures with the lattice constant
a = 820 nm, the hole radius r ∼ 150 nm, and the area A ∼ 300 × 300 µm2,
we have transferred samples with a = 960 nm, r ∼ 270 nm, and a surface
area A ∼ 425 × 425 µm2, and samples with a = 350 nm, r ∼ 100 nm, and
A ∼ 425 × 425 µm2. Out of about 25 transferred membranes, only about 5
had significant damage or folds from the transfer process. Considering that in
those ∼ 5 cases the transfer was not done very carefully, we conclude that the
∼ 80% yield can be increased by taking more care during the transfer process.
Equally important, membranes that have collapsed onto the substrate during
the fabrication process, can be picked up with the gel layer and used in experi-
ments. This demonstrates the robustness and versatility of our technique, and
suggests that samples could be made without the use of critical point drying.

Figures 4.2(c) and (d) show the interference microscope images of the slab
at a wavelength of 549 nm, before (c) and after (d) the transfer, demonstrating
that the structure on the gel is flatter. The equidistant fringes next to the
sample in Figure 4.2(c) result from a small angle between the glass slide and

55



i
i

i
i

i
i

i
i

4. Method to transfer photonic crystals to a transparent gel substrate

a) b)

c) d)

Figure 4.2. Optical microscope images of a freestanding photonic crys-
tal slab (a) and the same photonic crystal slab after being transferred
to the gel substrate (b). The sample size is ∼ 300 × 300 µm2. Interfer-
ence microscope images of the photonic crystal slab before (c) and after
(d) placement on the gel showing that the structure on the gel is flat-
ter. The height difference between a neighboring dark and white fringe
is 274.5 nm.
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the holder of the microscope. To estimate an upper limit for height differences
along a membrane before and after the transfer, we count the fringes along
the sample diagonal from the edge to the center of the structure. For a typical
sample, we estimate the maximum height difference to be ∼ 10 µm for a
freestanding membrane and ∼ 1 µm for a membrane on a gel. This shows
that the membranes not only survive the transfer, but also become significantly
flatter.

4.3 Experiment

We perform reflection and transmission measurements for wavelengths be-
tween 650 and 1700 nm using white light from a lamp coupled to a 50 µm
multimode fiber. The output of this fiber is imaged onto the sample with a
1.5 times magnification to create a 75 µm spot on the sample. Apertures in the
beam limit the numerical aperture of the incident beam to NA ∼ 0.025. The
reflected/transmitted light is collected into a 400 µm fiber and then sent to a
fiber-coupled grating spectrometer. A silicon CCD array spectrometer (Ocean
Optics USB2000) with a spectral resolution of ≈ 1.5 nm is used for detection
in the visible and near-infrared part of the spectrum (λ ∼ 650–900 nm). For
the infrared part of the spectrum (λ ∼ 900–1700 nm), we use an InGaAs array
spectrometer (Ocean Optics NIR512) with a ≈ 3 nm spectral resolution. A
Glan-Thompson polarizing beamsplitter cube is placed in a parallel part of
the beam and is used to measure the reflectivity and transmissivity for s- and
p-polarized light as a function of wavelength and angle of incidence.

The experimental setup for measuring the linear reflection spectra is iden-
tical to the setup shown in Figure 3.4(a) of Chapter 3. The linear transmission
spectra are measured by aligning lenses L3 and L4 to collect the transmitted
light rather then the reflected light.

4.4 Results and Discussion

4.4.1 Leaky modes of photonic crystal slabs before and after
the transfer to the gel substrate

Figure 4.3 shows typical experimental reflection spectra of a photonic crystal
slab before (blue circles) and after (red circles) the transfer to the gel. The
measurements are done with p-polarized light incident at an angle of 35◦ along
the ΓX symmetry direction of the square lattice. The reflection spectra consist
of sharp resonant features superimposed on a slowly oscillating background.
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Figure 4.3. Measured reflection spectra of the slab suspended in air
(blue circles) and transferred on the gel (red circles). The solid lines are
obtained by fitting a Fano model (described in the text) to the exper-
imental data. The dashed lines indicate the center frequencies of the
p-polarized (0,±1) and (-1,±1) modes, as determined from the fit.

The two resonances in the spectra are the p-polarized (0,±1) and (-1,±1)
leaky modes. A red shift of the resonances is observed after the transfer to
the gel. Each leaky mode is labeled by the dimensionless reciprocal lattice
vector (Gx, Gy) that is involved in the coupling of the incoming light to the
leaky mode. This notation assumes that the plane of the periodicity is parallel
to the xy-plane of the Cartesian coordinate system, with the ΓX symmetry
direction of the square lattice parallel to the x-axis. Furthermore, we consider
an experimental geometry in which the component of the incoming wave vector
along the z-axis is perpendicular to the sample, and is denoted as k⊥. The
component of the incoming wave vector in the xy-plane is labeled as k||.

It is clear from the measured spectra that the resonant features for the
membrane on the gel substrate are more prominent than those for the free-
standing membrane. The main reason for this is the removal of the highly-
reflective GaAs substrate. In the case of the freestanding structure, the GaAs

58



i
i

i
i

i
i

i
i

4.4 Results and Discussion

substrate and the membrane act as two mirrors and form a Fabry-Perot cavity
with air in between. The observed waviness of the membrane introduces vari-
ations in the distance between the substrate and membrane, which are much
larger than λ/4. This creates strong variations in the reflected amplitude of
the non-resonant contribution. Illuminating with a large spot is equivalent to
averaging over all the substrate to membrane distances, and as a consequence
the resonances in the reflection spectra for the freestanding slab have lower
visibility compared to the slab transferred to the gel.

To quantify the red shift of the resonances due to the transfer to the gel we
fit a Fano model to the measured reflectivity spectra (solid lines in Fig. 4.3).
Within this model, the reflectivity as a function of the frequency, R(ν), is
given by [60,67]

R(ν) =

∣∣∣∣∣∣rD +
∑
j

rRj
i(ν − νj) + γj + Γj

∣∣∣∣∣∣
2

, (4.1)

where rD represents the non-resonant (direct) contribution, and the sum repre-
sents the resonant contribution. Leaky mode j has an amplitude rRj , a center
frequency νj , and an escape rate Γj . The loss rate γj in the model describes
losses due to the absorption, higher order diffraction, and the scattering from
imperfections of the structure [67]. Accordingly, the quality factor (Qj) of
the leaky mode is defined as Qj = νj/(2(Γj + γj)), and can be interpreted
as the number of optical periods before the intensity of the mode decays by
e−2π [68]. To fit experimental data, we assume that the amplitude of the direct
contribution, in a small frequency region around the center frequency, can be
approximated with a linear function of the frequency ν: rD = c1 + c2ν, and
we allow the amplitude rRj to be a complex number.

From the fits to the measured data in Fig. 4.3 we find frequencies νj of
0.561 and 0.633× c/a for the freestanding structure, and 0.547 and 0.615× c/a
for the structure transferred to the gel. This corresponds to a red shift of 2.5
and 2.8% for the (0,±1) and (−1,±1) mode. Qualitatively this red shift can
be understood from a nearly free photon picture [69,81,82]. The leaky modes
are due to the folded mode of the slab waveguide with an effective refractive
index. When the slab is placed on a substrate with a higher refractive index,
i.e., gel instead of air, this effective refractive index increases and a red shift
is observed.

Although this waveguide model explains the physical origin of the fre-
quency shift, it cannot be used directly for a quantitative description of the
experimental data. The waveguide model does not contain a simple way to cal-
culate the effect of the holes on the effective refractive index and does not take
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4. Method to transfer photonic crystals to a transparent gel substrate

into account the interaction between the modes. This issue can be resolved by
comparing our experimental data with finite-difference time-domain (FDTD)
calculations. We use a freely available software package called MEEP [61] to
calculate the frequencies of the resonances for an infinite slab with parameters
identical to the experimental structure. The calculations are performed for a
structure with a lattice constant a = 820 nm, a radius of holes r = 160 nm,
and a thickness of the slab d = 122 nm. For the refractive index of the slab
material we use a value of 3.1975, which is the tabulated value for the refrac-
tive index of the Al0.35Ga0.65As at a wavelength of 1.5 µm [62]. The refractive
index of the gel is taken to be 1.4. Figure 4.4 shows the measured and the
calculated dispersion relations for both the s- and p-polarized (0,±1) modes,
for a freestanding membrane and a membrane on the gel. The experimental
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Figure 4.4. Measured (blue circles) and calculated (solid blue lines) dis-
persion relations of the two (0,±1) modes, for a freestanding membrane.
The s-polarized mode is lower in frequency than the p-polarized mode.
Measured (red diamonds) and calculated (dashed red lines) dispersion
relations of the two (0,±1) modes, for the membrane transferred to the
gel substrate. The calculations are performed for a structure with a lat-
tice constant a = 820 nm, a radius of holes r = 160 nm, and a thickness
of the slab d = 122 nm. The refractive indices of the slab material and
the gel are taken to be 3.1975 and 1.4, respectively.
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4.4 Results and Discussion

dispersion is obtained by fitting a Fano model of Equation 4.1 to the measured
reflection spectra done at oblique angles of incidence with the wave vector k||
along the ΓX symmetry direction of the square lattice. The s-polarized (0,±1)
mode has a lower frequency than the p-polarized (0,±1) mode. As can be seen,
the experimental data before (blue circles) and after (red diamonds) the trans-
fer to the gel substrate agree very well with the calculated data for a slab in air
(solid blue lines) and a slab with gel instead of air on one of the sides (dashed
red lines), and shows a red shift of ≈ 2.5% for the entire band. This uniform
shift is consistent with the simple waveguide picture, where the presence of
the gel increases the effective refractive index of the slab by ≈ 2.5%.

4.4.2 Interaction between the leaky modes of photonic crystal
slabs transferred to a gel substrate

Transferring photonic crystal membranes to an optically transparent gel sub-
strate creates flat structures that are ideally suited for transmission measure-
ments. Figure 4.5 shows the measured transmission as a function of frequency
(vertical axis) and wave vector k|| (horizontal axis). Experimental data is
shown for both s- (a) and p-polarized (b) light along the ΓX and the ΓM
symmetry direction of the square lattice. The transmission spectra reveal
many leaky modes also for higher order photonic bands. This demonstrates
the excellent optical quality of the transferred structure. In this chapter we
will limit the discussion to the lower frequency modes. For s-polarized light
with k|| along the ΓX symmetry direction, going from low to high frequencies,
we observe the (-1,0), the (0,±1), the (1,0), and the (−1,±1) leaky modes of
the fundamental TE waveguide mode. For frequencies around ∼ 0.7 × c/a,
we identify the (0,±1) leaky mode of the fundamental TM mode close to the
Γ-point. The TM mode interacts with the TE mode [82]. This TE-TM mixing
together with higher order waveguide modes complicates the labeling of the
modes for frequencies above 0.7× c/a.

We will analyze the interaction between the (1,0) and (-1,±1) leaky modes
of the fundamental TE waveguide mode in detail. For a wave vector k|| along
the ΓX symmetry direction, the (1,0) mode couples to s-polarized radiation.
Of the two (-1,±1) modes, the low frequency mode couples to s-polarization,
while the higher frequency mode couples to p-polarized radiation.

Figure 4.6 shows the measured transmission spectra for angles of incidence
from 10◦ to 40◦ in steps of 1◦ (solid gray lines). The curves are vertically
offset for clarity. We show the experimental data for the in-plane wave vector
k|| along the ΓX symmetry direction of the square lattice, for s- (a) and p-
polarized (b) light. The data in Figure 4.6(a) shows a clear avoided crossing
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4. Method to transfer photonic crystals to a transparent gel substrate

(a)

(b)

Figure 4.5. Gray scale plot of the measured transmission as a function
of frequency (vertical axis) and wave vector k|| (horizontal axis). Mea-
surements are shown for s- (a) and p-polarized (b) incident light, and
for the ΓX and the ΓM symmetry direction of the square lattice. The
graphs reveal the presence of many leaky modes. The gray shaded area
below the light line (solid line) is inaccessible in our experiment.
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Figure 4.6. Measured transmission spectra (solid gray lines) for angles
of incidence from 10◦ to 40◦ in steps of 1◦, vertically offset for clar-
ity. The experimental data are shown for wave vector k|| along the ΓX
symmetry direction and for s- (a) and p-polarization (b). The resonant
features in transmission that correspond to (1,0) and (-1,±1) modes, are
fitted with Fano lineshapes (dashed red lines). Indicating the position
of the resonant frequencies, the black lines serve as guides to the eye,
and demonstrate the avoided crossing between the s-polarized (1,0) and
(-1,±1) mode.

between the s-polarized (1,0) and (-1,±1) modes.
The dashed red lines are fits to the data using the Fano model. As can be

seen, this model describes very well the measured transmission spectra. By
fitting the Fano lineshapes to the sharp features in the spectra, we obtain the
dispersion relations and the quality factors of the leaky modes. The black
lines indicate the fitted center frequencies, and serve to guide the eye. At the
avoided crossing, the quality factor of the lower energy (1,0) mode increases
while its amplitude decreases. As a result, this mode becomes subradiant and
disappears from the spectra.
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4. Method to transfer photonic crystals to a transparent gel substrate

To gain insight and to get quantitative data for the avoided crossing of the
modes, we introduce a simplified coupled mode theory that retains the essential
symmetries of a complete band structure calculation. The interaction between
the three modes can be described by a coupled mode theory featuring a 3× 3
matrix of the following form:

H =

 ν1 κ1 −κ1
κ1 ν2 + κ2 κ2
−κ1 κ2 ν2 + κ2

 . (4.2)

Here ν1 and ν2 are the frequencies of the unperturbed modes, that is the
guided modes of a dielectric slab with an appropriate effective refractive index,
without holes. The symmetry and the interaction between the three modes
represented by this matrix is consistent with the nearly free photon picture
introduced by Sakoda et al. [82]. The dispersion of these modes, ν(k||), can be
obtained by folding the dispersion of the fundamental TE waveguide mode of
the slab back to the first Brillouin zone by adding an appropriate reciprocal lat-
tice vector. In this picture, ν1 corresponds to the non-degenerate (1, 0) mode,
while ν2 corresponds to the twofold degenerate (−1,±1) modes. The coupling
constant κ1 characterizes the interaction between the s-polarized (1,0) and
(−1,±1) mode, while the coupling constant κ2 characterizes the interaction
between the two (−1,±1) modes.

The resonant frequencies of the leaky modes are given by the eigenvalues
of the matrix H, and can be written as:

ν0 = ν2 + 2κ2 (4.3)

ν± = ν1 + ν2
2 ±

√(
ν1 − ν2

2

)2
+ 2κ2

1, (4.4)

where ν0 is the resonant frequency of the p-polarized (−1,±1) mode, ν+ is the
resonant frequency of the s-polarized (−1,±1) mode, and ν− is the resonant
frequency of the s-polarized (1, 0) mode. The coupling between the s-polarized
(1,0) and (−1,±1) leaky mode, introduces the frequency splitting between the
two modes equal to 2

√
2κ1 at k|| = G/4 (G = 2π/a).

Figure 4.7 shows the dispersion relations for the three modes obtained from
the Fano fits of Fig. 4.6 (circles). The dashed lines represent the dispersion
of the modes ν1, ν2 in the coupled mode theory. The resulting fit of the
coupled mode theory to the experimental data is represented by the solid line
and shows excellent agreement. The fitted values of the coupling constants
are κ1 = 0.012 × c/a and κ2 = 0.022 × c/a. This corresponds to a splitting
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4.4 Results and Discussion

relative to the center frequency of the two uncoupled modes (νc = 0.608× c/a)
of 2
√

2κ1/νc = 5.6% and 2κ2/νc = 7.2%. To reduce the number of fitting
parameters, we assumed that both coupling constants are independent of the
in-plane wave vector k||.

In the coupled mode theory the uncoupled s-polarized (1,0) and (−1,±1)
leaky modes follow dispersions of ν1(k||) and ν2(k||):

ν1(k||) = 1
2π

(
(vp − vg)

5G
4 + vg

(
k|| +G

))
, (4.5)

ν2(k||) = 1
2π

(
(vp − vg)

5G
4 + vg

√(
k|| −G

)2
+G2

)
, (4.6)

where the phase velocity and group velocity are defined as

vp = 2π νw
βw

∣∣∣∣
βw=βw0

, (4.7)

vg = 2π ∂νw
∂βw

∣∣∣∣
βw=βw0

. (4.8)

Here the dispersion relation of the waveguide mode νw(βw) is expanded in Tay-
lor series around the point of the avoided crossing (βw0 = 5/4× 2π/a, νw0),
and then folded back to the first Brillouin zone. From the fit we obtain
the values for the phase velocity vp = 0.486× c and for the group velocity
vg = 0.327× c, where c is the speed of light in vacuum. Furthermore, from
the phase velocity, we determine the value of the effective refractive index of
the waveguide mode nw0 = 2.06. This value is consistent with the nearly free
photon picture where the effective refractive index of the guided mode nw is
limited by the refractive index of the surrounding medium ngel = 1.4 on one
side and the effective refractive index of the slab waveguide nslab ∼ 3 on the
other side.

We will now discuss the quality factors of the coupled modes and the
coupling to the external radiation. Only one of the (−1,±1) modes couples
to p-polarized light, while the two other modes couple to s-polarized light.
The reciprocal lattice vector (0, 2) couples the two degenerate (−1,±1) waves
with electric fields E1 and E2 (|E1| = |E2|), and creates two non-degenerate
modes E1 ±E2. The resulting mode denoted by the “+” sign has an electric
field distribution which is even with respect to the mirror plane through the
holes, and therefore couples to p-polarized radiation. The mode denoted by
the “-” sign has an odd field distribution with respect to the same mirror
plane and couples to s-polarized light. The standing wave component of the
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Figure 4.7. Dispersion relations for the s-polarized (1,0) mode and both
the s- and p-polarized (-1,±1) modes derived from the fits of Fig. 4.6
(circles). The solid lines are obtained from a coupled mode theory with
only 3 modes (see text). Note that the labels ν0, ν+, and ν− correspond
to the p-polarized (−1,±1) mode, the s-polarized (−1,±1) mode, and
the s-polarized (1, 0) mode, respectively. The dashed lines indicate the
unperturbed modes and cross at k|| = G/4.

pattern concentrates the electric field in the holes for the p-polarized (−1,±1)
mode, and in the dielectric medium for the s-polarized mode. As a result, the
p-polarized mode is higher in frequency than the s-polarized mode [68].

The reciprocal lattice vector (2,1) couples the (1,0) wave with the two
(−1,±1) waves. The two modes show an avoided crossing where one of the
modes becomes long-lived (subradiant) and disappears from the spectra, while
the other one becomes short-lived (superradiant) and remains visible in the
spectra [83–85]. This is a feature of the external coupling that can occur in
open systems where the modes are coupled via a continuum [86, 87]. The
radiation of one mode into the surroundings is suppressed by destructive in-
terference, and as a result the quality factor of this mode is considerably
increased. Meanwhile, the radiation of the other mode into the continuum is
increased via constructive interference and the corresponding quality factor is
decreased.
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4.4 Results and Discussion

Figure 4.8 shows the quality factor (Q) for the s-polarized (1,0) mode as a
function of the wave vector k|| oriented along the ΓX symmetry direction (blue
circles), as obtained by fitting a Fano model to the experimental transmission
spectra. The error bars represent 95% confidence intervals determined from
the fit. The dashed red line is a prediction of the quality factor and is given
by

1
Q

= 1
Qideal

+ 1
Qloss

. (4.9)

Here Qideal is the calculated quality factor of the s-polarized (1,0) leaky mode
for an ideal two-dimensional photonic crystal slab with parameters identical
to the experimental structure. In experimental structures this quality factor is
never reached due to absorption, imperfections and/or finite size effects. The
effect of these loss mechanisms is characterized with the quality factor Qloss.
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Figure 4.8. Experimental quality (Q) factor (blue circles) of the (1,0)
mode as a function of the wave vector k||, obtained by fitting the Fano
model to the measured transmission spectra. Error bars represent 95%
confidence intervals determined from the fit. The calculated quality fac-
tor for an ideal two-dimensional photonic crystal slab is used to obtain
the dashed red line which serves as a guide to the eye (see text). Quality
factors as high as 300 are measured, a value limited by the finite size of
the structure.
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4. Method to transfer photonic crystals to a transparent gel substrate

We did not attempt to accurately describe the losses in the experimental
structure, and used a constant value of 250 for Qloss, independent of k||. Since
the field distribution in the slab depends on the mode and k||, it is more
realistic to consider Qloss as a function of k||. In fact, the data points for
k|| < G/4 ((1,0) mode) are described better with Qloss = 175, while the data
points for k|| > G/4 are described better with Qloss = 325.

As can be seen in the figure, the quality factor increases as the wave
vector k|| approaches midway between the Γ and the X point, where the
avoided crossing occurs. At the avoided crossing, the (1,0) mode disap-
pears and the corresponding quality factor diverges. The highest measured
quality factor in our case is 300. For this case, the light travels a distance
of Qλ0/neff ≈ 200 µm before diffracting into the surrounding media. Here
λ0 = 1.38 µm and neff = 2.06 are the resonant wavelength and the effective
refractive index of the leaky mode, respectively. Since our sample covers an
area of ∼ 300 × 300 µm2, this suggests that the quality factor is limited by
the finite size of the sample, and not by the optical quality of the structure.

4.5 Conclusions

We have demonstrated a novel method to transfer large freestanding photonic
crystal slabs ∼ 300 × 300 µm2 to a transparent substrate (gel) with a low
refractive index of ngel = 1.4. This eliminates the buckling of the membranes
due to a lattice mismatch between the Al0.35Ga0.65As membrane and the GaAs
substrate. As a result, almost perfectly flat membranes which allow for both
the reflection and transmission measurements, are created. After the trans-
fer to the gel, the measured resonant frequencies of the leaky modes are red
shifted with respect to those of a freestanding slab. This can be explained by
the change in the effective refractive index of the leaky modes via a change in
dielectric environment. More importantly, the resonant features in the exper-
imental reflection spectra for photonic crystal slabs on the gel substrate are
more prominent than those for freestanding photonic crystal slabs. We believe
that this is due to the removal of the Fabry-Perot cavity that is formed by
the highly-reflective GaAs substrate and the wavy membrane. Therefore, the
structures on the gel are more attractive for studying the resonant effects in
photonic crystal slabs.

We show that the interaction between the s-polarized (1,0) and (-1,±1)
mode leads to an avoided crossing for the in-plane wave vector k|| midway
between the Γ and the X point of the square lattice. This avoided crossing
can be described by a coupled mode theory featuring a 3×3 matrix instead of
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a complete photonic band structure calculation. At the avoided crossing the
lower energy s-polarized (1,0) mode disappears from the transmission spectra
becoming a subradiant mode with a high quality factor. For this mode, we
measure Q factors as high as 300 and show that these values are probably
limited by the finite size of our structures (diffraction) demonstrating the
excellent optical quality of the transferred membranes.

The high quality factor of leaky modes, makes our structures especially
attractive for experimental study of nonlinear resonant effects, such as second
harmonic generation [47–49]. Coupling to a resonance with a high Q factor
accumulates considerable field intensity in the nonlinear material of a photonic
crystal. If both the fundamental and the second harmonic waves couple res-
onantly to the structure phase-matching conditions are fulfilled [47, 48], and
large enhancement in the second harmonic response can be achieved.

The presented transfer technique may prove to be a robust and relatively
simple way to integrate a wide variety of devices based on different materials.
The transfer technique can be applied to increase extraction efficiency of light-
emitting diodes by using diffraction from a photonic crystal layer [74]. Posi-
tioning a gallium phosphide membrane with a cavity on a flat diamond sub-
strate with nitrogen-vacancy centers to achieve long coherence times [75,77,78]
could probably also be done with our method. Finally, it should be possible to
create a versatile lab-on-chip system by picking up a high Q photonic crystal
nanocavity with the gel layer, and placing it on top of a network of microfluidic
channels for biochemical sensing applications. Both the photonic crystal cavity
and the microfluidic channels can be fabricated independently using desired
materials and technologies. This kind of freedom, intrinsic to our method,
could prove to be a very useful tool for integration of photonic crystal devices
in a single chip.
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Chapter 5

Interpretation of Fano lineshape
reversal in the reflectivity spectra of
photonic crystal slabs

5.1 Introduction
Asymmetric Fano lineshapes [66,88] are a characteristic feature of (quantum)
interference between two interfering paths and have been identified in many
physical systems. These systems include, but are not limited to, neutron scat-
tering [89], conductance of quantum dots [90,91], optical transmission through
metal hole arrays [85, 92], scattering spectra of microwave cavities [93] and
photonic crystal structures [58, 59, 94]. Recently, it has been suggested that
the details of the Fano lineshape, in particular a complex valued q parame-
ter, contains information on the decoherence and dephasing of the underlying
quantum system [93, 95]. Similarly, reversal of the Fano lineshape asymme-
try has been linked to the ability to tune the interaction, and thus also the
coherence, between the two channels [90,96].

Photonic crystal slabs, i.e., dielectric slabs perforated with a regular lattice
of holes, show distinct Fano resonances in their reflection and transmission
spectra. These photonic crystal slabs support optical modes for a combination
of frequency ω and in-plane wave vector k||, which are above the light line
defined by ω = ck||, with c the speed of light in vacuum. These modes are
either propagating (Fabry-Perot) modes of the slab, or leaky modes that couple
incident light from the surrounding media to a guided mode of the slab via

This chapter is based on Lj. Babić and M. J. A. de Dood, Interpretation of Fano
lineshape reversal in the reflectivity spectra of photonic crystal slabs, Opt. Express 18,
26569–26582 (2010).
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5. Interpretation of Fano lineshape reversal in the reflectivity spectra of photonic crystal
slabs

diffraction, picking up an additional crystal momentum equal to a reciprocal
lattice vector. The interference of this resonant mode with the propagating
Fabry-Perot mode leads to Fano resonances [57]. Typically, these resonant
features in reflection spectra are used to find the dispersion relation of the
leaky modes [58,59,94].

In most experimental studies the asymmetry parameter of the dispersive
lineshape is considered to be constant and is regarded as a fit parameter.
This asymmetry parameter, often denoted as q, can be interpreted as the
amplitude of the resonant contribution relative to the background. The sign
of q controls the asymmetry of the lineshape [66, 97]. In this picture, the
asymmetry can only be reversed when the direct reflectivity reaches zero for
which the lineshape becomes Lorentzian. The interference leading to the Fano
lineshape in the reflectivity spectra of photonic crystal slabs can be tuned
either via tuning the parameters of the structure, or via tuning the angle of
incidence. Calculations at normal incidence for symmetric photonic crystal
structures [98] confirm that this situation can be realized by tuning the ratio
d/a of slab thickness over lattice constant. This shifts the resonance frequency
of a leaky mode over a zero in the direct reflection of the slab and reverses
the asymmetry. Experimentally this reversal has recently been demonstrated
in reflection spectra of p-polarized light from a photonic crystal waveguide via
angle tuning [67,99]. When the angle of incidence is tuned through Brewster’s
angle, the amplitude of the direct reflection reaches zero and the asymmetry is
reversed. The symmetry of the system ensures that the reflectivity reaches a
true zero and the amplitude reflection coefficient for the electric field changes
sign, corresponding to a π phase shift. It is this phase shift that is responsible
for the reversal of the asymmetry.

In this chapter we show that experimental reflectivity spectra for an asym-
metric slab structure also show Fano lineshapes that reverse their asymmetry.
This is surprising as these asymmetric structures generally do not give a true
zero in the amplitude reflection coefficient; the interference leading to zeros
in the reflectivity (Fabry-Perot modes) is not complete and the asymmetric
structure does not have a Brewster’s angle where the reflectivity for p-polarized
light goes through zero. In order to describe the reversal of the asymmetry
a complex q parameter is needed in a system that obeys both time reversal
symmetry and energy conservation. We stress that the origin of the complex
q in our work is not due to dephasing or decoherence as reported in litera-
ture [93, 95], but due to the asymmetry of the system. While dephasing and
decoherence always result in a complex q parameter, the inverse statement is
not true.
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5.2 Experiment

Photonic crystal slabs with a square lattice of holes with a hole radius of
∼ 150 nm and a lattice constant a = 820 nm were fabricated in a commercially
grown AlGaAs layer structure [51] using a combination of e-beam lithography
and reactive ion etching techniques. The samples were fabricated using the
facilities of the Kavli Nanolab Delft. The layers of the AlGaAs layer structure
are deposited on a 〈100〉 GaAs substrate and consist of a 1 µm thick Al rich
Al0.7Ga0.3As layer, a 150 nm thick Ga rich Al0.35Ga0.65As layer, and a 100 nm
thick GaAs capping layer. To create the hole pattern, a 150 nm silicon nitride
layer is deposited on top of the structure and serves as a mask during the final
reactive ion etching step. The lattice of holes is created by e-beam lithography
in a ∼ 500 nm thick layer of positive tone e-beam resist, ZEP 520A [52], and
transferred into the nitride mask layer using a low pressure reactive ion etching
step in a CHF3/Ar plasma. After removal of the e-beam resist in a low pressure
O2 plasma, the hole pattern is etched deep into the AlGaAs heterostructure
in a BCl2/Cl2/N2 reactive ion etch process at 100 W RF power, a pressure of
∼ 4.5 µbar, and flow rates of 15, 7.5, and 10 sccm respectively. The nitrogen
flow in this process was optimized to create near vertical side walls of the
holes. After etching the holes, the nitride mask is removed using the CHF3/Ar
etching procedure described above.

To create a freestanding membrane the residual oxide layer is first removed
by dipping the sample in 15:1 deionized H2O:buffered hydrofluoric acid (BHF)
solution for 15 sec. The sample is then placed in a 3:1 citric acid:H2O2 solution
for 120 sec to selectively remove the GaAs capping layer. The freestanding
membrane is created by etching the sacrificial Al0.7Ga0.3As layer in a concen-
trated 1:4 HF (40%):H2O solution for 60 sec followed by a rinsing step in pure
water and critical point drying. The resulting freestanding membrane covers
an area of ∼ 300× 300 µm2 and is used to measure specular reflectivity spec-
tra at oblique angles of incidence. Afterwards, the membrane is transferred to
a transparent gel layer [80], with a refractive index of 1.4 on a standard micro-
scope slide to create a membrane without the highly reflective GaAs substrate
and the reflectivity measurement is repeated.

The specular reflectivity measurements are done for wavelengths between
900 and 1700 nm using white light from a lamp coupled to a 50 µm multi-
mode fiber. The output of this fiber is imaged onto the sample with a 1.5
times magnification to create a 75 µm spot on the sample. The reflected
light is collected into a 400 µm fiber and then sent to a fiber-coupled grating
spectrometer with an InGaAs array (Ocean Optics NIR512) with a ≈ 3 nm
spectral resolution. Apertures in the beam limit the numerical aperture of the
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input beam to NA ∼ 0.025. A Glan-Thompson polarizing beamsplitter cube
is placed in a parallel part of the beam and is used to measure both the s- and
p-polarized reflectivity as a function of wavelength and angle of incidence.

5.3 Results

The experimentally measured reflection spectra for the symmetric slab struc-
ture are shown in Fig. 5.1. The figure shows the measurements (symbols)
and calculations based on a complete scattering matrix method (solid gray
lines), for angles of incidence of 60◦ (left), 70◦ (middle), and 80◦ (right).
The frequency ω and the wave vector k|| are plotted in dimensionless units
ωa/(2πc) and k||a/(2π), respectively. The incident beam is p-polarized with
the parallel wave vector k|| oriented along the ΓX symmetry direction of the
photonic lattice. The numerical calculations assume an ideal two-dimensional
photonic crystal slab with air on both sides. The calculations use the tabulated
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Figure 5.1. Measured (blue symbols) and calculated (solid gray
lines) reflection spectra for different angles of incidence for a sym-
metric (freestanding) slab, showing the asymmetry reversal of the
p-polarized (-1,±1) mode at Brewster’s angle. The dashed red lines
are fits to the data using the Fano model described in the text.
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value for the refractive index of the Al0.35Ga0.65As at a wavelength of 1.5 µm;
n2 = 3.1975 [62]. The thickness of the slab and the value of r/a are identical
to those of the experimental structure. The calculations are performed for a
structure with a lattice constant a = 820 nm, a radius of holes r = 160 nm,
and a thickness of the slab d = 122 nm.

As can be seen in the figure, the calculations give good qualitative agree-
ment with the data. Both the measured and the calculated reflectivity spectra
are well described by the Fano lineshape. The dashed red lines in Fig. 5.1 show
a fit using a Fano model, with the reflectivity R(ω) given by

R(ω) =
∣∣∣∣rD exp(−i∆ξ) + rRΓ0

i(ω − ω0) + Γ0

∣∣∣∣2 . (5.1)

The first term represents the direct contribution with an amplitude rD, while
the second term represents the resonant contribution with an amplitude rR.
The resonance is characterized by a frequency ω0, and a linewidth Γ0. The
phase ∆ξ represents the phase difference between the resonant and the non-
resonant contribution at the resonance frequency and controls the asymmetry
of the resonance. We assume that the amplitude of the slowly varying non-
resonant contribution as a function of frequency ω, rD(ω), can be approxi-
mated well with

rD(ω) =
∣∣∣r0 + r1ω + r2ω

2
∣∣∣ , (5.2)

where r0, r1 and r2 are fit parameters.
The asymmetry of the Fano lineshape in Fig. 5.1 of the p-polarized (-1,±1)

mode is reversed by tuning the angle of incidence, creating a nearly symmetric
lineshape at an angle of incidence of 70◦. Based on the asymmetry of the
lineshape in reflectivity measurements for every 5◦ (not shown) we estimate
that the asymmetry reversal occurs at an angle of incidence of 71 ± 1◦. This
corresponds to a Brewster’s angle θB for a uniform dielectric slab in air with
an effective refractive index of tan(θB) equal to neff = 2.9± 0.2. We expect
this value to be comparable to the effective refractive index estimated from the
direct (non-resonant) reflectivity of the slab at the resonance frequency. This
contribution is modeled by the Fresnel reflection coefficients of the dielectric
slab with an effective refractive index that represents the average effect of
the holes. Since this background is close to zero for all frequencies for angles
of incidence close to Brewster’s angle we analyze calculated spectra over a
broad frequency range for angles of incidence of 60◦ and 80◦. From these fits,
we obtain values of the effective refractive index of 3.02 and 2.89, consistent
with the effective refractive index found from analyzing the asymmetry of the
resonant contribution.

75



i
i

i
i

i
i

i
i

5. Interpretation of Fano lineshape reversal in the reflectivity spectra of photonic crystal
slabs

Table 5.1 summarizes the resonance frequency, the linewidth and the phase
difference, as obtained from the Fano model for both the measured and calcu-
lated reflection spectra in Fig. 5.1. The table shows the excellent agreement
between the measured and calculated spectra for the resonance frequency (ω0)
and the corresponding linewidth (Γ0). The phase difference ∆ξ changes sign
as the resonant Fano lineshape changes the asymmetry. The relatively large
error bars for ∆ξ are representative for the variation in the fitted value of ∆ξ
for different choices of the background (direct) contribution; e.g., by setting
both r1 and r2 equal to zero in Eq. 5.2. Close to Brewster’s angle for the
symmetric slab, the background (direct) contribution reaches zero amplitude
and the phase difference ∆ξ becomes undefined. The comparison between the
experimental and calculated spectra presented above confirms the picture that
the asymmetry reversal occurs around the true zero in the direct reflectivity
at Brewster’s angle.

After reflection measurements, the symmetric, freestanding, photonic crys-
tal membrane was transferred to a transparent gel substrate by sticking the
membrane to the gel and peeling of the GaAs substrate, as described in Chap-
ter 4 of this thesis. The gel is optically transparent and has a refractive index
ngel = 1.4. Figure 5.2 shows measured (symbols) and calculated (solid gray
lines) reflection spectra for an asymmetric slab for angles of incidence of 75◦
(left), 78◦ (middle), and 83◦ (right).

The experimental data in the figure clearly show that the asymmetry re-
versal of the Fano lineshape of the p-polarized (-1,±1) mode also occurs in
the asymmetric case when there is no Brewster’s angle. In this case, the
asymmetry reversal is observed at a significantly larger angle of incidence of
78 ± 1◦, compared to the symmetric structure. The parameters of the fitted
Fano lineshapes are summarized in Table 5.1.

5.4 Discussion

A detailed inspection of the calculated spectra for the asymmetric structure
(not shown) reveals that the amplitude of the direct reflectivity is low, but does
not reach zero. This implies that a simple change of the sign of the amplitude
reflection coefficient in the direct channel cannot be responsible for the reversal
of the Fano lineshape. In order to convincingly show that a true zero in the
direct reflectivity is not a necessary condition for the asymmetry reversal of
a Fano lineshape we performed additional calculations on a structure with
a much larger lattice constant. The parameters of this structure are tuned
to give a minimum in the direct reflectivity that is very different from zero.
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Table 5.1. Fitted values of the Fano resonances: the center frequency,
the linewidth, and the phase difference between the resonant and the di-
rect contribution in the reflectivity. Results are given for both measured
and calculated spectra, for various angles of incidence for a symmetric
slab (top) and an asymmetric slab on a substrate (bottom).

angle (◦) ω0 (2πc/a) Γ0 (2πc/a) ∆ξ (rad)

Symmetric
60 0.640 ± 0.005 0.009 ± 0.001 −2.19 ± 0.10

Experiment 70 0.636 ± 0.005 0.015 ± 0.002 −0.58 ± 0.15
80 0.635 ± 0.005 0.015 ± 0.002 1.90 ± 0.08

60 0.639 ± 0.001 0.014 ± 0.001 −1.28 ± 0.02
Calculation 70 0.638 ± 0.001 0.014 ± 0.001 —

80 0.635 ± 0.001 0.012 ± 0.001 1.68 ± 0.07

Asymmetric
75 0.611 ± 0.005 0.009 ± 0.001 −0.60 ± 0.06

Experiment 78 0.611 ± 0.005 0.009 ± 0.001 −0.13 ± 0.15
83 0.610 ± 0.005 0.008 ± 0.001 0.51 ± 0.24

75 0.620 ± 0.001 0.014 ± 0.001 −0.72 ± 0.24
Calculation 78 0.620 ± 0.001 0.014 ± 0.001 −0.06 ± 0.37

83 0.618 ± 0.001 0.015 ± 0.001 1.26 ± 0.05

The calculations are performed for both a symmetric (air-slab-air) and an
asymmetric (air-slab-gel) structure and are summarized in section 5.4.3.

The remainder of this chapter is structured as follows: we will first in-
troduce a general scattering matrix formalism for asymmetric structures and
apply this to the specific case of a photonic crystal slab on a substrate with
only two inputs and two outputs. This results in analytical expressions for the
reflected amplitude and the asymmetry parameter q of the Fano resonance.
We then apply this truncated scattering matrix method to interpret our ex-
perimental data and compare the results to those obtained using a complete
scattering matrix.
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Figure 5.2. Measured (blue symbols) and calculated (solid gray lines)
reflection spectra for different angles of incidence for an asymmetric (on
gel) slab, showing the asymmetry flip of the p-polarized (-1,±1) mode.
The dashed red lines are fits to the data using the Fano model described
in the text.

5.4.1 Scattering matrix formalism

We introduce a scattering matrix formalism to describe the resonant coupling
of incident radiation to a planar photonic crystal slab. Compared to earlier
work [60], which deals with symmetric structures, our formalism deals with
both symmetric and asymmetric photonic crystal waveguide structures. We
will apply this formalism to the particular case of a planar photonic crystal slab
on a substrate to gain physical insight in the origin of the asymmetry reversal
of the dispersive (Fano) lineshape. We will give results for oblique angles
of incidence for both symmetric (air-slab-air) and asymmetric (air-slab-gel)
structures, and discuss the conditions for asymmetry reversal of the dispersive
(Fano) lineshape in detail.

We consider an optical system with m inputs and m outputs that can
be described by temporal coupled-mode theory featuring a m×m scattering
matrix [60]. For the specific case of a photonic crystal slab the inputs and
outputs of the system are defined by a plane wave incident on the slab that
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is either transmitted, reflected or diffracted. The plane waves can couple to
a guided mode in the photonic crystal membrane, thereby transforming the
guided modes into leaky modes. This occurs whenever a photonic band in the
band structure of a photonic crystal slab is above the light line. The resulting
transmission and reflection spectra of a photonic crystal membrane contains
several peaks, each with a dispersive (Fano) lineshape characteristic for the
resonant coupling [58,59,94].

The input of the optical system is described by a column vector b+ that
contains the amplitudes of the modes at the input. A similar vector b− con-
tains the amplitudes of the modes at the output. For a planar multilayer
structure the amplitudes bi in a medium with refractive index ni are related
to the E-field in the i-th layer by [100]

b±,i =
√

1
2
kiz
k0
E±,i, (5.3)

where k0 = 2π/λ is the wave number and kiz is the component of the wave
vector perpendicular to the interface: kiz = ni cos θik0. To avoid confusion
with the E-field, we will refer to these amplitudes as b-field amplitudes. This
b-field amplitude is normalized in such a way that the square of the ampli-
tude relates directly to the power flux, defined by the Poynting vector, in
the z-direction normal to the interface. The scattering matrix S relates the
amplitudes of input and output modes via

b− = Sb+.

For a lossless system that does not break time-reversal symmetry the scat-
tering matrix S needs to be unitary and symmetric [60]:

SS† = I, Sij = Sji.

To describe the coupling to leaky modes we will characterize each mode
at a specific in-plane wave vector k‖ by a center frequency ωp and a linewidth
Γp. The linewidth Γp is related to the coupling strength between the incoming
light and the leaky mode. The total scattering matrix of a layered structure
with N independent resonances can be written as

S = C +
N∑
p=1

dp ⊗ dp
i(ω − ωp) + Γp

. (5.4)

Here dp is a vector containing the coupling constants of each mode to the res-
onator, ωp are the resonance frequencies, Γp denotes the resonance linewidth,
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and C is a unitary and symmetric scattering matrix. Linear optical structures
impose both time-reversal symmetry and energy conservation constraints on
the system and require that the matrix elements of C, Γp, and the coupling
constants dp are not independent [60].

5.4.2 Example: 2-port asymmetric slab

For a system with 2 inputs and 2 outputs the relation between C, Γ, and
d can be made explicit and insight can be gained by studying this case in
more detail. Therefore, we will restrict ourselves to the simplest asymmetric
photonic crystal structures where no higher order diffraction occurs. In that
case the system has only two inputs and two outputs and the scattering matrix
reduces to a 2×2 matrix. The inputs and outputs of this system correspond to
the reflected and transmitted modes. Compared to the earlier work reported
in Ref. [60] we do retain the essential asymmetry induced by the substrate.
The photonic crystal slab has an effective refractive index equal to n2 and is
sandwiched between a substrate with a refractive index n3 and a superstrate
with a refractive index n1.

The expressions for the asymmetric structure are identical to those of the
symmetric structure if we refer to the amplitude reflection and transmission
coefficients r′ and t′ of the b-field as defined by Eq. 5.3. The complete scat-
tering matrix is given by

S =
(
r′ t′

t′ r′

)
+

Γ0
i(ω − ω0) + Γ0

(
−(r′ ± t′) ∓(r′ ± t′)
∓(r′ ± t′) −(r′ ± t′)

)
, (5.5)

where the ± sign corresponds to a situation where the E-field on both sides of
the slab oscillates in phase or out of phase. For a symmetric slab this defines
the modes as either even or odd relative to the symmetry plane in the middle
of the slab [63]. The coefficients r′ and t′ are related to the more commonly
used Fresnel coefficients r and t of the slab via r′ = r and t′ = t

√
k3z/k1z for

both s- and p-polarized light [100].
The reflected intensity of the slab given by R(ω) = |S11(ω)|2 can be written

in a form that is identical to the original result of Fano [66]:

R(ε) = |S11(ε)|2 = |r′|2 |q + ε|2

1 + ε2
. (5.6)

Here ε is the normalized detuning in units of the linewidth ε = (ω − ω0)/Γ0,
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and the asymmetry parameter q is given by

q = ±i t
′

r′
. (5.7)

A similar expression can be derived for the transmission with an asymmetry
parameter q̃ = −q−1. For a symmetric slab q reduces to a real-valued pa-
rameter since the Fresnel transmission coefficient has a π phase difference with
the reflection coefficient. This is no longer true for the more general case of
an asymmetric slab for which the phase difference between t′ and r′ varies as
a function of angle of incidence and the resulting q parameter is complex.

Figure 5.3 shows the calculated phase difference between the direct and the
resonant contribution in the reflection of p-polarized light for the fundamental
TE mode supported by a waveguide layer with an effective refractive index neff
equal to 3.16 representative of the AlGaAs material used in the experiment.

For this calculation we used the matrix element S11 in Eq. 5.5 at the
resonance frequency and we used complex Fresnel coefficients r and t defined
as

r = r12 + r23 exp[i2k2zd]
1− r21r23 exp[i2k2zd] exp[−i2k1zd]

t = t23t12 exp[i(2k2z − k1z − k3z)d/2]
1− r21r23 exp[i2k2zd] .

Here the coefficients rij and tij refer to the Fresnel coefficients of a single inter-
face between layer i and j. The figure shows the phase difference as a function
of angle of incidence and dimensionless quantity neffd/λ. Figure 5.3 (a) shows
the phase difference for a symmetric structure with air on both sides, while
Fig. 5.3 (b) shows the phase difference for the same slab with the air on one
side replaced by a transparent gel with refractive index n3 = 1.4. This figure
clearly shows large, abrupt jumps in the phase difference for both symmetric
and asymmetric slab structures. The phase jumps in the symmetric case are
easily understood as points where the direct reflectivity reaches zero. This
occurs at Brewster’s angle (vertical dashed line in (a)) and whenever the re-
flectivity becomes zero due to interference in the film (horizontal solid lines).
This Fabry-Perot condition is satisfied whenever the optical path length of
the film defined as neffd cos θ is equal to mλ/2, with m integer. This situation
changes for the asymmetric structure (b). The Fabry-Perot condition produces
a minimum in the reflectivity, but the reflectivity does not reach zero. As can
be seen in the figure, for angles smaller than arctan(n3/n1) the phase jumps
at the minimum in the reflectivity. To understand the phase jump for larger
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Figure 5.3. Calculated phase difference between the direct and the res-
onant contribution for a slab with an effective refractive index of 3.16,
representative for AlGaAs used in the experiment. The plot shows the
phase difference as a function of angle of incidence and dimensionless
quantity neffd/λ for a symmetric membrane structure (a) and an asym-
metric structure on a gel substrate with n3 = 1.4 (b). The solid and
dashed lines are explained in the text. The corresponding asymmetry
parameter q of the Fano resonance as a function of angle of incidence is
shown for the symmetric (c) and asymmetric structure (d) for a value
of neffd/λ = 0.3. The solid line refers to the real part of q, while the
dash-dot line shows the imaginary part of q for the asymmetric structure.
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angles of incidence we write the reflectivity of the asymmetric slab as [101]:

R = |r|2 = r12
2 + r23

2 + 2r12r23 cos 2β
1 + r122r232 + 2r12r23 cos 2β ,

with β = k2zd.
From this expression it is clear that the minima and maxima in the reflec-

tivity are found by the condition

cos 2β = ±1.

These conditions are indicated by the solid and dashed horizontal lines in the
figure. The reflectivity of the asymmetric slab can only become zero for a
specific combination of frequency and angle of incidence. The frequency at
which the reflectivity becomes zero is given by the above condition, while the
angle is defined by the additional condition that

r12 = ±r23.

This leads to two angles, indicated by the dashed vertical lines in Fig. 5.3 (b).
The smallest of the two angles is independent of the refractive index of the layer
n2 and is equal to Brewster’s angle arctan(n3/n1) between the superstrate and
substrate [101]. The second angle depends on the refractive index of the slab,
superstrate, and substrate material. For a slab with d/a < 0.5 this angle
is always larger than Brewster’s angle between the superstrate and the slab
material. From the figure, it can be seen that the phase difference jumps for
angles close to this larger angle for dimensionless quantities neffd/λ that are
not close to m/2, with m being integer. The value of the refractive index of
the substrate plays an important role in determining the two angles and also
controls the apparent repulsion between the phase jumps due to the Fabry-
Perot effect and due to angle tuning.

The angle from the simple truncated scattering matrix model is consistent
with the experimental results presented in Section 5.3. For a structure with
an effective refractive index of 2.9± 0.2 on a substrate with a refractive index
of 1.4, the minimum in the direct reflectivity (see the vertical dashed line in
Fig. 5.3) occurs at an angle of 78.1 ± 1.5◦. This number compares well with
the experimental value of 78± 1◦. Figures 5.3 (c) and (d) show the calculated
asymmetry parameter q as a function of angle for a value of neffd/λ = 0.3.
This value corresponds to the experimentally measured frequency of the Fano
resonance of the symmetric structure at Brewster’s angle. The real part of q
is represented by the solid blue line, while the complex part of q is shown by
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the red dash-dot line. For the symmetric structure the q is real-valued, while
the q parameter for the asymmetric structure in Fig. 5.3 (d) is clearly complex
with a non-trivial phase that depends on the angle of incidence.

5.4.3 Asymmetry reversal with nonzero background

In this section we present numerical data calculated by a complete scattering
matrix method that show that the asymmetry of a Fano resonance can be
reversed if the direct reflectivity does not reach zero. The parameters of the
photonic crystal structure in the calculation are tuned to give a minimum in
direct reflectivity that is very different from zero to more clearly illustrate
the point. We consider a two-dimensional photonic crystal slab with a lattice
constant a = 2 µm and use the same radius of holes r = 160 nm and slab
thickness d = 122 nm as in the experimental structure. The refractive index
of the slab material is taken to be nslab = 3.157, equal to the infrared refractive
index of Al0.35Ga0.65As at a wavelength of 2.5 µm [62].

Figures 5.4 and 5.5 summarize the calculated reflection spectra and corre-
sponding phase difference ∆ξ for the symmetric structure. These data should
be compared to the data in Figures 5.6 and 5.7 obtained for the asymmetric
structure.

The calculated reflection spectra in Figure 5.4 show the Fano lineshape
reversal for the symmetric structure. Spectra are shown for angles of incidence
from 68◦ to 76◦ in steps of 2◦ (solid lines) and are offset vertically by 0.8 for
clarity. The horizontal dash-dot lines indicate the zero reflectance for each
angle of incidence. The dashed lines show the fitted Fano lineshapes to data.
As can be seen, the asymmetry of the Fano lineshape is reversed by tuning
the angle of incidence. At Brewster’s angle (θ = 72◦), the direct reflectivity
reaches zero, and the Fano lineshape reduces to the symmetric Lorentzian
lineshape of the resonant contribution.

The solid line in Fig. 5.5 shows the phase difference ∆ξ between the reso-
nant and the non-resonant contribution, for the p-polarized (-1,±1) mode over
a large range of angles. This phase difference is obtained at the resonance fre-
quency, by fitting the Fano model of Eq. 5.1 to the calculated reflection spec-
tra. The phase difference ∆ξ influences the interference between the direct
and resonant reflectivity and controls the asymmetry of the Fano lineshape.
Whenever this phase difference is an integer multiple of π radians, the asym-
metry reversal of the Fano lineshape occurs. As can be seen in Figure 5.5, the
phase difference goes through zero for an angle of incidence of 72◦. This angle
is exactly equal to Brewster’s angle for the symmetric structure and the direct
reflectivity is zero (see Fig. 5.4).
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Figure 5.4. Calculated reflection spectra for a symmetric structure
(solid lines), for angles of incidence from 68◦ to 76◦ in steps of 2◦, ver-
tically offset by 0.8 for clarity, showing the asymmetry reversal of the
p-polarized (-1,±1) mode. The calculations are performed for a struc-
ture with a lattice constant a = 2 µm, a radius of holes r = 160 nm,
and a slab thickness d = 122 nm. Note that the zero in the amplitude
reflection coefficient is indicated by the dash-dot lines, for each reflec-
tivity spectrum. The dashed lines show the fit of the Fano model to the
calculated data.

Figure 5.5 shows a small, abrupt change, in the phase difference, for an
angle of incidence of ≈ 12◦, as indicated by the vertical arrow. The origin of
this phase change is an extra diffraction order of the leaky mode into the sur-
rounding air. These diffraction orders occur whenever the length of the wave
vector in air is larger or equal than the parallel component of the wave vector
of the waveguide mode modulo a reciprocal lattice vector G. In dimensionless
units this diffraction condition is given by

|ks| = nsω0 > |k|| + G|, (5.8)

where ks is the wave vector in the substrate/superstrate and k|| is the parallel
component of the incident wave vector, ω0 is the dimensionless frequency of
the resonance and ns is the refractive index of the substrate/superstrate. The
inset of Fig. 5.5 shows the dispersion ω0(θ) of the p-polarized (-1,±1) leaky
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Figure 5.5. Calculated phase difference between the resonant and the
non-resonant contribution, as a function of the angle of incidence, for a
symmetric structure (solid line). The phase difference is obtained for the
p-polarized (-1,±1) mode at the resonance frequency, by fitting a Fano
model to the calculated reflection spectra. The asymmetry reversal of
the Fano lineshape (∆ξ = 0) occurs at Brewster’s angle. The dashed line
represents the phase difference calculated using a coupled-mode theory
with only two modes, as described in the text. The inset shows the
calculated dispersion relation of the leaky mode (solid line), and the
folded light line in air (dashed line).

mode (solid line) obtained from the calculated spectra together with the folded
light line in air (dashed line)∗. The crossing of these lines corresponds to the
condition for diffraction in air, which occurs for angles larger than 12◦.

How does the phase difference between the resonant and the non-resonant
contribution compare to the phase difference calculated with the relatively
simple coupled-mode theory of only two modes as presented in Section 5.4.2?
To answer this question, we ignore the effect of higher diffraction orders and

∗To convert in-plane wave vectors k|| to angles of incidence θ for a mode with a dispersion
ω(k||) in a medium with a refractive index n, we use the expression θ = arcsin(k||/(nω)),
with ω and k|| expressed in dimensionless units ωa/(2πc) and k||a/(2π), respectively.
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use the truncated 2×2 matrix to describe the system. The direct reflectivity
of our slab can be well described by the reflectivity of a uniform slab with a
frequency dependent effective refractive index n2, which takes into account the
extra dispersion due to the presence of the holes [57]. We fitted the Fano model
to the calculated p-polarized reflection spectrum for an angle of incidence of
10◦. For this angle there are no diffraction orders in air for the relevant (-1,±1)
mode. The calculated reflection spectrum consists of sharp resonant features
going from zero to unity superimposed on a slowly oscillatory background.
The direct reflectivity is well described by an effective refractive index

n2 = 3.118− 0.014ω + 0.029ω2, (5.9)

with ω expressed in dimensionless units ωa/(2πc). Since the p-polarized
(-1,±1) mode shows a flat dispersion (see inset of Fig. 5.5), the resonance
frequency does not change significantly with k||. Therefore, we assume that
Equation 5.9 can be used for other angles of incidence as well. The dashed
line in Fig. 5.5 shows the calculated phase difference using Eq. 5.5 and the
known dispersion of the resonant mode. As can be seen, the agreement be-
tween the solid and the dashed line is excellent for angles below 12◦. For angles
larger than 12◦ there is a small deviation as the truncated two-port system
fails to describe the diffraction orders in air. Apparently, the influence of the
diffraction orders on the phase difference at Brewster’s angle is small, and the
truncated scattering matrix accurately captures the physical process related
to the reversal of the Fano lineshape.

To emphasize that in the asymmetric case the direct reflectivity does not
reach zero while the asymmetry of the Fano lineshape is reversed, Figure 5.6
shows the calculated reflection spectra (solid lines), for angles of incidence from
72◦ to 80◦ in steps of 2◦. The spectra are offset vertically by 0.2 for clarity,
with the horizontal dash-dot lines indicating zero reflectance. It is clear from
the figure that the asymmetry reversal occurs between 76◦ and 78◦, but that
the direct reflectivity does not reach zero for the entire angle range from 72◦
to 80◦.

The corresponding phase difference ∆ξ between the direct and the resonant
contribution is shown by the solid line in Fig. 5.7. The parameters of the
structure are identical to those of the symmetric structure of Fig. 5.5, with
the only difference that the air on one side has been replaced by a dielectric
with a refractive index of 1.4. As can be seen, the phase difference goes through
zero for an angle of incidence of 77.2◦, which is larger than Brewster’s angle
for the symmetric structure. Similar to the symmetric structure we observe
abrupt changes in the phase difference due to higher order diffraction in the
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Figure 5.6. Calculated reflection spectra for an asymmetric structure
(solid lines), for angles of incidence from 72◦ to 80◦ in steps of 2◦, ver-
tically offset by 0.2 for clarity, showing the asymmetry reversal of the
p-polarized (-1,±1) mode. Note that the zero in the amplitude reflec-
tion coefficient is indicated by the dash-dot lines, for each reflectivity
spectrum. Dashed lines show the fit of the Fano model to the calculated
data.

air and in the substrate, as indicated by the vertical arrows. The inset shows
the dispersion relation of the leaky mode (solid line) together with folded
light lines in air (dashed line) and in the substrate (dash-dot lines). From
the crossings of these lines with the dispersion of the leaky mode we conclude
that there are four higher diffraction orders. The diffraction order into the
substrate that uses the (-1,0) reciprocal lattice vector is present for all angles
of incidence.

The dashed line in Figure 5.7 shows the calculated phase difference using
coupled-mode theory of Section 5.4.2 truncated to only two modes. In the
calculation we use the same effective refractive index for the slab as a function
of frequency (Eq. 5.9) as obtained for the symmetric slab, since the increase
in the effective refractive index caused by the gel substrate is small. As can
be seen, the truncated coupled-mode theory reproduces the main features in
the phase difference. We note a slight difference in the angle where the Fano
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Figure 5.7. Calculated phase difference between the resonant and the
non-resonant contribution, as a function of the angle of incidence, for
an asymmetric structure (solid line). The phase difference is obtained
for the p-polarized (-1,±1) mode at the resonance frequency, by fitting
a Fano model to the calculated reflection spectra. The asymmetry re-
versal of the Fano lineshape (∆ξ = 0) occurs beyond Brewster’s angle
for the symmetric structure. The dashed line represents the phase dif-
ference calculated using a coupled-mode theory with only two modes, as
described in the text. The inset shows the calculated dispersion rela-
tion of the leaky mode (solid line), and the folded light lines in both air
(dashed line) and gel (dash-dot lines).

lineshape reversal occurs between the truncated model and the full calculation.
This difference can be attributed to the presence of higher order diffraction.
For a lossless system, the amplitude of the resonance should be equal to 1, when
there is no higher order diffraction. Due to the higher order diffraction, the
amplitude of the resonance in Fig. 5.6 is significantly reduced. Nevertheless,
we believe that the truncated model accurately describes the physical process
underlying the reversal of the Fano lineshape.

89



i
i

i
i

i
i

i
i

5. Interpretation of Fano lineshape reversal in the reflectivity spectra of photonic crystal
slabs

5.5 Conclusions
The measured reflectivity spectra for p-polarized light for a photonic crystal
slab on a gel substrate, show several Fano lineshapes on top of a slowly varying
background. The asymmetry of the Fano lineshape can be reversed by tuning
the angle of incidence. For symmetric slabs, with air on both sides, the angle
at which the asymmetry reverses is equal to Brewster’s angle, and the direct
contribution reaches zero. For asymmetric slabs this is no longer true: the
reversal is observed for an angle of incidence beyond Brewster’s angle, and the
direct reflectivity no longer reaches zero. A truncated two-port coupled-mode
theory can be applied to both the symmetric and the asymmetric structures,
which reveals the underlying mechanism of the asymmetry reversal. For asym-
metric photonic crystal slabs with d/a < 0.5, the reversal of the asymmetry
occurs for angles larger then Brewster’s angle. We show that the resonances
in reflection spectra of a lossless photonic crystal waveguide should be de-
scribed by a complex q parameter in the Fano model. Only for a symmetric
structure the q parameter, which gives the ratio between the resonant and the
direct contribution, can be taken as real. The reversal of the asymmetry oc-
curs whenever the phase difference between the resonant and the non-resonant
contribution is an integer multiple of π, which does not necessarily coincide
with a minimum in the direct reflectivity.
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Chapter 6

Second harmonic generation in
transmission from photonic crystals
on a gel substrate

6.1 Introduction

Increasing the efficiency of frequency conversion processes has always been an
important goal of nonlinear optics. As long as phase-matching conditions are
satisfied, a higher nonlinear conversion efficiency can be achieved by either
focusing the light or by using a material with a larger nonlinear susceptibil-
ity [29]. The phase-matching condition ensures that all the waves generated
in the material are in phase, and therefore add up constructively. For most
nonlinear media this condition is not automatically satisfied due to material
dispersion. Common ways to phase-match the nonlinear interaction are to use
temperature tuning or angle tuning of a birefringent nonlinear crystal, e.g.,
BBO, KTP, or LiNbO3. Unfortunately, this method cannot be applied to op-
tically isotropic materials with a much larger nonlinear susceptibility. This is
the case with some III-V semiconductor materials. For example, gallium ar-
senide (GaAs) has a more than 70 times larger effective second-order nonlinear
susceptibility χ(2)

eff than that of BBO but is not birefringent.
Bloembergen et al. [33] were the first to propose a structure with period-

ically alternating layers of low and high refractive index as a way to satisfy
the phase-matching condition. For this structure, an existing phase mismatch
can be compensated by adding or subtracting an appropriate reciprocal lat-
tice vector G of the photonic lattice. This is called quasi-phase-matching.
The nonlinear conversion efficiency can be further enhanced significantly by a
strong spatial confinement of the optical fields which enhances the field inten-
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6. Second harmonic generation in transmission from photonic crystals on a gel substrate

sities. This has been demonstrated by Scalora et al. [46] for the case of second
harmonic generation (SHG) from one-dimensional periodic GaAs/AlAs struc-
tures where the enhancement of the second harmonic (SH) signal is achieved
by confining both the fundamental and second harmonic optical fields.

Cowan et al. [47] showed theoretically how to use leaky modes of a free-
standing two-dimensional photonic crystal slab to achieve both quasi-phase-
matching and strong spatial confinement. Leaky modes couple incident light
from the surrounding media to a guided mode of the slab via diffraction from
the photonic lattice. Using a Green’s function formalism, the authors calcu-
lated an enhancement of SH signal in reflection of more than 6 orders of magni-
tude compared to the SH signal off-resonance. An experimental investigation
by Mondia et al. [48] resulted in an enhancement of the second harmonic signal
generated in reflection from a two-dimensional GaAs photonic crystal slab on
an Al2O3 cladding layer. The SH signal was generated by focusing a tunable
laser with short pulses (150 fs) to a 35 µm spot on the sample. By tuning the
laser frequency and the angle of incidence authors investigated the enhance-
ment of the SH signal. When both the fundamental and the second harmonic
wave are resonant with the leaky modes of the structure, an enhancement of
more than 1200 times compared to the noise floor was measured.

Torres et al. [49] present a theoretical and experimental study of the second
harmonic signal generated in reflection from a one-dimensional GaN photonic
crystal. They report an enhancement of more than 5000 times compared to an
unpatterned GaN slab when both the fundamental and the second harmonic
wave are resonant with the leaky modes of the structure. When only the fun-
damental beam is resonant with the structure, the enhancement is significantly
reduced to a factor of 350.

In this chapter we study the influence of leaky modes on the second har-
monic generation from a two-dimensional Al0.35Ga0.65As photonic crystal slab
on a transparent gel substrate. Compared to earlier experiments in litera-
ture [48, 49] a narrow linewidth pulsed laser at 1.535 µm is collimated rather
than focused on the sample and the SH signal is measured in transmission
instead in reflection. The resonant coupling of both the fundamental and SH
wave to the leaky modes of the structure is probed by tuning the angle of
incidence. In contrast to the work presented in References [48, 49] where the
condition of double resonance was achieved at oblique angles of incidence, our
structure is doubly resonant at normal incidence. At normal incidence, the sec-
ond harmonic signal is enhanced by a factor 10000 relative to the non-resonant
signal. The double resonance condition at normal incidence combined with the
high enhancement of the SH signal in transmission holds promise for collinear

92



i
i

i
i

i
i

i
i

6.2 Sample preparation

down-conversion [102,103].
Compared to earlier experiments [48,49], our experiments clearly show the

effect of the resonant coupling of the second harmonic waves to leaky modes
of the structure. By increasing the angle of incidence the fundamental beam
is tuned away from resonance, resulting in a decrease of the second harmonic
signal. However, at angles of incidence of ± 9.1◦ two local maxima are clearly
observed in the experimental second harmonic signal.

We use a coupled mode theory [60, 100] to explain the main features of
the measured second harmonic signal as a function of the angle of incidence.
Within this theory, each of the leaky modes of the photonic crystal is treated
as a resonance, and the SH signal in transmission depends on how efficiently
the fields at the fundamental and the second harmonic frequency couple in or
out of these resonances, and on the phase mismatch. Unlike numerical meth-
ods such as finite difference time domain calculations or a Green’s function
approach, our approach offers direct insight into the underlying physical mech-
anism. More importantly, our simple model uses parameters that are easily
obtained by independent measurements of the linear as well as the nonlinear
optical properties of the system instead of assuming parameters of an ideal
two-dimensional photonic crystal slab. This makes the model immediately
applicable to realistic experimental structures that have a finite size and very
likely a number of fabrication imperfections. We show that the measured sec-
ond harmonic signal cannot be explained by considering the resonant coupling
at only the fundamental frequency, and that resonant effects at the second
harmonic frequency have to be included.

6.2 Sample preparation

Photonic crystal slabs with a square lattice of holes with a hole radius of
∼ 150 nm and a lattice constant a = 820 nm were fabricated in a commercially
grown AlGaAs layer structure [51] using a combination of e-beam lithography
and reactive ion etching techniques. The samples were fabricated using the
facilities of the Kavli Nanolab Delft. The layers of the AlGaAs layer structure
are deposited on a <100> GaAs substrate and consist of a 1 µm thick Al rich
Al0.7Ga0.3As layer, a 150 nm thick Ga rich Al0.35Ga0.65As layer, and a 100 nm
thick GaAs capping layer. The composition of the slab layer is chosen to render
the structure optically transparent at both the fundamental (1535±1 nm) and
second harmonic wavelength (767.5 ± 0.5 nm). To create the hole pattern, a
150 nm silicon nitride layer is deposited on top of the structure and serves as a
mask during the final reactive ion etching step. The lattice of holes is created
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6. Second harmonic generation in transmission from photonic crystals on a gel substrate

by e-beam lithography in a ∼ 500 nm thick layer of positive tone e-beam
resist, ZEP 520A [52], and transferred into the nitride mask layer using a low
pressure reactive ion etching step in a CHF3/Ar plasma. After removal of the
e-beam resist in a low pressure O2 plasma, the hole pattern is etched deep
into the AlGaAs heterostructure in a BCl2/Cl2/N2 reactive ion etch process
at 100 W RF power, a pressure of ∼ 4.5 µbar, and flow rates of 15, 7.5, and 10
sccm respectively. The nitrogen flow in this process was optimized to create
near vertical side walls of the holes. After etching the holes, the nitride mask
is removed using the CHF3/Ar etching procedure described above.

To ensure a nonzero efficiency for second harmonic generation, the ΓX
direction of the photonic lattice is deliberately rotated relative to the crys-
tallographic <100> direction of the AlGaAs of the slab layer by an angle of
∼ 22.5◦. Therefore, the incident electric field of the fundamental is never along
a crystallographic axis of the AlGaAs and the effective nonlinearity is nonzero.
Collinear second harmonic generation along one of the crystallographic direc-
tions is forbidden due to the 43̄m symmetry of the GaAs lattice [29].

To create a freestanding membrane the residual oxide layer is first removed
by dipping the sample in 15:1 deionized H2O:buffered hydrofluoric acid (BHF)
solution for 15 sec. The sample is then placed in a 3:1 citric acid:H2O2 solution
for 120 sec to selectively remove the GaAs capping layer. The freestanding
membrane is created by etching the sacrificial Al0.7Ga0.3As layer in a concen-
trated 1:4 HF (40%):H2O solution for 60 sec followed by a rinsing step in pure
water and critical point drying. The resulting freestanding membrane covers
an area of ∼ 300×300 µm2. Finally, the membrane is transferred to a transpar-
ent gel layer [80] with a refractive index of 1.4 on a standard microscope slide,
as described in Chapter 4 of this thesis. As a result, an almost perfectly flat
membrane which allows for reflection as well as transmission measurements is
created.

6.3 Experiment

Figure 6.1 shows the setup used for both second harmonic generation and lin-
ear transmission measurements. Alternating between the two experiments is
done by flipping both mirrors (flip mirrors) either “down” for second harmonic
generation or “up” for linear transmissivity measurements. The second har-
monic is generated by a Q-switched Cobolt Tango laser which has a specified
center wavelength of 1535 ± 1 nm, and a narrow linewidth < 0.04 nm. The
laser produces pulses with a typical duration of ≈ 3.8 ns (full width at half
maximum) at a repetition rate of 5 kHz. The generated signal at second har-
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Figure 6.1. Setup used for second harmonic generation and linear trans-
mission measurements. A fiber-coupled lamp and a spectrometer are
used for linear transmission measurements, while a pulsed laser operat-
ing at 1.535 µm and a CCD camera equipped with a bandpass filter (SH
filter) are used for second harmonic measurements. The polarization of
the incident beam is set by a Glan-Thompson polarizing beamsplitter
cube, and the angle of incidence θ is controlled by placing the sample
on a motorized rotation stage. For linear transmission measurements
an aperture in the beam limits the angular spread of the incoming light
beam. Flip mirrors are used to alternate between the two measurements.
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6. Second harmonic generation in transmission from photonic crystals on a gel substrate

monic wavelength is measured in transmission by an Apogee Alta U1 Peltier
cooled CCD camera. Rather then being strongly focused, the fundamental
beam is collimated by a lens (not shown), and has a waist of ∼ 0.5 mm, and
a corresponding half-angular width of ∼ 1 mrad. A 25 nm wide bandpass
filter (Andover 766FS10-25) centered at a wavelength of 766.5 nm (sh filter)
is placed in front of the silicon CCD camera to filter out the fundamental
beam. The polarization of the incident fundamental beam is set to either s
or p using a Glan-Thompson polarizing beamsplitter cube. Furthermore, a
half-wave plate is placed before the polarizer (not shown) to adjust the power
at the fundamental wavelength that is incident on the sample. Typically, an
average power of ∼ 10 mW is used in the experiments.

Linear transmission measurements are performed for wavelengths between
650 and 1700 nm using white light from a halogen lamp coupled to a 50 µm
multimode fiber. The output of this fiber is imaged onto the sample with a 2
times magnification to create a 100 µm spot on the sample. The transmitted
light is collected into a 400 µm fiber and then sent to a fiber-coupled grating
spectrometer. Visible light is detected with a silicon CCD array spectrometer
(Ocean Optics USB2000) with a spectral resolution of ≈ 1.5 nm, while the
spectrum in the near infrared is detected with an InGaAs array spectrometer
(Ocean Optics NIR512) with a ≈ 3 nm spectral resolution. The measure-
ments are done with a very low numerical aperture of the incident beam of
NA ≈ 0.01, set by inserting an aperture in the beam path. A Glan-Thompson
polarizing beamsplitter cube in a parallel part of the beam is used to measure
the transmission of both s- and p-polarized light as a function of wavelength
and angle of incidence.

6.4 Results and discussion

The linear transmission and reflection spectra of two-dimensional photonic
crystal slabs are well-known, and show a number of asymmetric, dispersive
lineshapes [58,59] due to the coupling of the incident light to one of the leaky
modes of the photonic crystal slab via diffraction from the photonic lattice.
The coupling of a continuum of modes to a single resonant channel leads to
interference between the direct (non-resonant) and indirect (resonant) channel,
as was first described by Fano [66]. For a photonic crystal slab, the direct
channel corresponds to the Fresnel reflection of the slab, while the resonant
channel is created by diffraction of incoming light from the regular photonic
lattice into a guided mode of the structure [60].

Figure 6.2 shows a gray scale plot of the measured transmission as a func-
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tion of frequency (vertical axis) and the in-plane wave vector k|| (horizontal
axis), for both s- (a) and p-polarized (b) incident light. The crystal is oriented
so that the parallel component of the wave vector k|| is along the crystallo-
graphic ΓM direction of the photonic lattice. The dark lines that are clearly
visible in the figure correspond to the minima of the Fano lineshapes of the
leaky modes. The dashed red and the dash-dot blue horizontal lines in the
figure indicate the frequencies of the fundamental and the second harmonic.

The experimental transmission spectra T (ν) = |t(ν)|2 in the wavelength
range between 1400 and 1700 nm (i.e., frequencies ν between 0.48 and 0.58 c/a)
are well described by two independent Fano resonances:

t(ν) = tD(ν) + A1Γ1
(ν − ν1) + i(Γ1 + γ1) + A2Γ2

(ν − ν2) + i(Γ2 + γ2) , (6.1)

where tD(ν) is the frequency dependent transmission through the slab given
by the Fresnel coefficients of the layered medium. We assume that this direct

(a) (b)

Figure 6.2. Gray scale plot of the measured transmission as a function
of frequency (vertical axis) and wave vector k|| (horizontal axis). Mea-
surements are shown for s- (a) and p-polarized (b) incident light with k||
along the ΓM symmetry direction of the square lattice. The dashed red
and the dash-dot blue lines indicate the frequencies of the fundamental
and the second harmonic light.
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6. Second harmonic generation in transmission from photonic crystals on a gel substrate

contribution can be approximated well by a linear function over this relatively
small frequency range. The parameters A1,2 and ν1,2 denote the amplitudes
and resonance frequencies of the two modes, while Γ1,2+γ1,2 give the linewidths
of the resonances. The radiative coupling to the mode is characterized by Γ1,2.
The loss, quantified by γ1,2 includes both higher order diffraction as well as
scattering loss due to imperfections of the structure. Accordingly, the quality
factors of the modes are given by Q1,2 = ν1,2/(2(Γ1,2 + γ1,2)) [68]. Figure 6.3
shows the frequencies ν1,2 as a function of the in-plane wave vector k|| for both
s- (blue circles) and p-polarized light (red diamonds). The frequencies display
a clear avoided crossing caused by Bragg type scattering from the periodic
array of holes. At normal incidence the leaky modes of the structure are

−0.1 0 0.1
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Figure 6.3. Dispersion relations of the lowest four leaky modes for the
in-plane wave vector k|| oriented along the ΓM direction of the square
lattice. Each mode couples to the structure via an addition of one of the
four (1,0) reciprocal lattice vectors. The measurements show two modes
for both s- (blue circles) and p-polarized light (red diamonds). The solid
blue and dashed red lines are fits to the experimental data points using a
coupled mode theory, as described in the text. The laser (fundamental)
frequency is indicated by the black dash-dot line.
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resonant with the pulsed laser operating at 1535 nm (frequency 0.5342 c/a).
The avoided crossing between the leaky modes is well described by the

coupled mode theory using a 2×2 Hamiltonian matrix [85,86,104]

H =
(
E1 V
W E2

)
,

where E1 and E2 are energy eigenvalues of the uncoupled modes. For a closed
system the energy eigenvalues are real, and the matrix H is Hermitian, and the
off-diagonal elements are related by V = W ∗. The eigenvalues of the coupled
system lead to an avoided crossing with energies

E± = E1 + E2
2 ±

√
E1 − E2

2 + VW.

For an open or dissipative system, such as the leaky modes of the photonic
crystal slab considered here, the same Hamiltonian can be used to describe the
dynamics of the system. Complex-valued energies E1,2 = hν1,2 + i(Γ1,2 + γ1,2)
contain both the resonance frequency and the linewidth of the leaky photonic
modes. Keeping the restriction V = W ∗ corresponds to so-called internal
coupling since the only difference to the Hermitian coupling is that both modes
are individually coupled to the continuum. The fully non-Hermitian case with
V 6= W ∗ corresponds to external coupling, where the modes are coupled via the
continuum. An important feature of this external coupling is that it creates
a mode with a considerably increased lifetime (subradiant mode), and as a
consequence a second mode with a shorter lifetime (superradiant mode). As
can be seen from Figure 6.3, modes below the laser frequency (νlaser) become
subradiant at normal incidence and disappear from the measured transmission
spectra.

For our geometry the leaky modes are excited via diffraction using one of
the four (1, 0) reciprocal lattice vectors. For a parallel component of the wave
vector in the ΓM (1, 1) direction, the dispersion of the modes of the uncoupled
system are obtained by folding the dispersion relation of the fundamental TE
waveguide mode. The resulting dispersion relations of the uncoupled modes
ν1,2 can be expressed in dimensionless units as:

ν1,2 = ν0

√(
1±

αk||√
2

)2
+
(
αk||√

2

)2
, (6.2)

where ν0 is the center frequency at normal incidence, and α is a dimensionless
parameter that we introduced to control the slope ∂ν1,2/∂k||. The physical
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6. Second harmonic generation in transmission from photonic crystals on a gel substrate

interpretation of this parameter is that the phase velocity (∝ ν/k) and the
group velocity (∝ ∂ν/∂k) are different.

The avoided resonance crossing in Fig. 6.3 is well described by a center
frequency of 0.5210±0.0001 and a frequency splitting of 0.0130±0.0002 for
s-polarized light, and a center frequency of 0.5250±0.0001 and a frequency
splitting of 0.0099±0.0001 for p-polarized light. The corresponding values for
α are 0.733±0.004 and 0.577±0.002 respectively. The resulting dispersion us-
ing this relatively simple model is represented by the solid lines for s-polarized
light and with dashed lines for p-polarized light in the figure. We stress that
the complete band structure of the leaky modes can be obtained by using for
instance finite difference time domain (FDTD) simulation software package
MEEP [61]. These calculations will correctly predict the dispersion of the
modes and the coupling between the s- and p-polarized modes, but do not
give physical insight. Our model gives an analytical expression for the reso-
nance frequency of the mode close to the laser (fundamental) frequency. This
expression allows to quantify the detuning ∆νF (k||) of the leaky mode relative
to the fundamental frequency. It is this detuning, in units of the linewidth of
the resonance, that controls the power that leaks into the resonant mode and
thus plays an important role in second harmonic experiments. The amplitude
of the fundamental field in the leaky mode, excited by the fundamental beam
at frequency νF , as a function of k|| is described by a Lorentzian [60]

EF (k||) ∝
g1(k||)

(ν1(k||)− νF ) + ig1(k||)

= 1
i+ ∆νF (k||)/g1(k||)

,

where ν1(k||) and g1(k||) represent the dispersion relation and the linewidth of
the leaky mode close to the fundamental frequency.

Neglecting resonances at the second harmonic frequency, the intensity of
the second harmonic signal ISH as a function of the in-plane wave vector k||
is given by

ISH(k||) = ID +

 AF

1 + ∆F (k||)2

g1(k||)2


2

. (6.3)

The first term in the sum (ID) represents the direct (non-resonant) contri-
bution, while the second term in the sum represents the resonantly enhanced
second harmonic signal with an amplitude AF .

Figure 6.4 shows the measured second harmonic signal in transmission for
various angles of incidence. The data are plotted as a function of the in-plane
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6.4 Results and discussion

wave vector k|| of the s-polarized fundamental beam (blue circles). As a re-
sult of the resonant coupling to leaky modes of the structure, four distinct
peaks are clearly observed in the logarithmic plot at k|| = 0, k|| = ± 0.085,
and k|| = −0.38× 2π/a. At normal incidence (k|| = 0), the fundamental beam
couples resonantly to the structure (see Fig. 6.3), and we measure the highest
second harmonic value of 72000 ± 2000 cts/s. This value is more than 10000 ×
larger than the measured non-resonant contribution of 6.9 ± 0.2 cts/s, deter-
mined by taking the averaged value of the measured signal in the interval
k|| ∈ [−0.28,−0.22]× 2π/a. For k|| ∼ 0.25× 2π/a the detuning of the funda-
mental beam from the leaky modes is maximum. A secondary maximum in the
SH signal at k|| = −0.38× 2π/a (θ = −45◦) with a value of around 7500 cts/s,
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Figure 6.4. Measured second harmonic (SH) intensity in transmission
as a function of the wave vector k|| of the s-polarized fundamental beam
(blue circles). The resonantly enhanced signal is more than 10000 ×
larger than the non-resonant signal (horizontal line). The solid gray and
the dashed red line are calculations taking into account the measured
linewidth and dispersion of the mode that is resonant at the fundamental
frequency. The dash-dot black line is a fit to the data using the linewidth
as the only adjustable parameter. Both models fail to explain the peaks
at k|| = ± 0.085× 2π/a, which are due to resonant leaky modes at the
second harmonic frequency. The inset zooms in on second harmonic
intensity at normal incidence (k|| = 0).
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6. Second harmonic generation in transmission from photonic crystals on a gel substrate

is due to the resonant coupling of the fundamental beam to the (-1,-1) leaky
mode of the structure. This resonant contribution to the SH signal disappears
for the p-polarized fundamental beam (not shown), because the structure does
not support leaky modes at the fundamental frequency in that case (Fig. 4.5
of Chapter 4).

The solid gray line in Figure 6.4 is the second harmonic signal calculated
using Equation 6.3 with no adjustable parameters. We use the dispersion
relation of the s-polarized leaky mode close to the fundamental frequency as
given by Eq. 6.2, and take the measured average quality factor of the leaky
mode Q1 = 90 as a measure of the linewidth. For a fundamental frequency
νF = 0.5342 c/a this translates to a linewidth of g1 = νF /(2Q1) = 0.003 c/a.
For the amplitude of the resonant contribution we substituteAF = 268

√
cts/s,

which is the square root of the measured SH signal at normal incidence, and
for the non-resonant contribution we use the measured value of ID = 6.9 cts/s.
The calculated function has a local minimum at k|| = 0 instead of a maximum
(see the inset of Fig. 6.4), and therefore doesn’t explain the measured SH peak
at normal incidence. This artefact occurs because the dispersion relation given
by the coupled mode theory crosses the fundamental frequency twice, which
is not true for the experimental data. Using a spline fit instead of the coupled
mode theory to describe the dispersion relation of the leaky mode results in a
second harmonic intensity which has a maximum at normal incidence (dashed
red line) and matches better the measured signal. However, the model fails to
predict the correct width of the measured SH signal and does not reproduce
the peaks at k|| = ± 0.085× 2π/a.

The main peak of the SH signal can be explained by Eq. 6.3 if the linewidth
of the leaky mode close to the fundamental frequency is used as a fit parameter.
The best fit, represented by the black dash-dot line in Figure 6.4, gives a
linewidth of g1 = 0.00185 ± 0.00006 × c/a, which is a factor 1.6 smaller than
the value obtained from the linear transmission measurements.

The two peaks in the SH signal that occur at k|| = ± 0.085× 2π/a, and have
a value of ≈ 240 cts/s, cannot be explained by a relatively simple model that
only considers the leaky mode at the fundamental frequency. As the in-plane
wave vector of the incident fundamental beam is tuned away from k|| = 0 the
power of the fundamental in the slab drops, and as a consequence the second
harmonic intensity is expected to drop monotonically as well. Instead, the
generated second harmonic field in the photonic crystal slab also couples to
leaky modes of the structure. This double resonant coupling is the origin of
the reduced width of the measured second harmonic signal at normal incidence
and of the two additional peaks at k|| = ± 0.085 × 2π/a.
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6.4 Results and discussion

The incident laser beam couples to the fundamental TE mode of the pho-
tonic crystal slab waveguide. This mode has its E-field components predom-
inantly in the plane of periodicity [82], i.e., in the x- and y-directions. The
nonlinear tensor properties of the material are related to the cubic 43̄m sym-
metry of the AlGaAs crystal. For this crystal symmetry the only nonzero
tensor elements are d14 = d25 = d36 [29]. Therefore, the generated second har-
monic wave has the main E-field component in the z-direction, perpendicular
to the plane of periodicity [29], and couples most efficiently to TM waveguide
modes. The second harmonic intensity can be written in this case as:

ISH(k||) = ID +

 AF

1 + ∆F (k||)2

g1(k||)2


2

× 1
1 + ∆SH(k||)2

g3(k||)2

×L2 sin2(∆kL/2)
(∆kL/2)2 .

Here, the first term is the direct contribution from the slab, while the second
term is a product of the resonant contribution at the fundamental frequency,
the resonant contribution at the second harmonic frequency, and a term related
to the phase mismatch ∆k between the waveguide modes involved. The phase
mismatch ∆k = |2k||(νF )− k||(νSH) + G|, where k||(νF ) is the in-plane wave
vector of the fundamental beam, and k||(νSH) is the in-plane wave vector of the
wave at the second harmonic frequency νSH . The length L is the length of the
sides of our square structure. The dispersion relation and the linewidth of the
leaky mode close to the second harmonic frequency, ν3(k||) and g3(k||), define
the frequency detuning (ν3(k||) − νSH)/g3(k||) = ∆SH/g3, which determines
how efficiently the generated second harmonic couples to external radiation.
To understand the measured second harmonic signal, it is important to identify
the leaky mode to which the second harmonic wave couples.

To find out which TM leaky modes can be excited at the second har-
monic frequency, we use the nearly free photon picture introduced by Sakoda
et al. [82]. In this picture, the photonic crystal slab is approximated with a
dielectric slab with an effective dielectric permittivity that takes into account
the effect of holes and different polarizations. The dispersion of the leaky
modes of the photonic crystal slab is obtained by folding the dispersion of
the waveguide modes of the dielectric slab back to the first Brillouin zone by
adding an appropriate reciprocal lattice vector. Figure 6.5 shows the disper-
sion relation of relevant fundamental TE and fundamental TM leaky modes
plotted over the measured transmission spectra for s-polarized light (from
Fig. 6.2(a)). Figure 6.6 shows the dispersion relation of relevant fundamental
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6. Second harmonic generation in transmission from photonic crystals on a gel substrate

TE and fundamental TM leaky modes plotted over the measured transmission
spectra for p-polarized light (from Fig. 6.2(b)). The dispersion of the TE
leaky modes (dash-dot lines) is obtained by folding the dispersion of the funda-
mental TE waveguide mode of the slab with an effective dielectric permittivity
εTE = 0.89 × ε, where ε is the dielectric permittivity of Al0.35Ga0.65As [62].
Similarly, by folding the dispersion of the fundamental TM waveguide mode
of a slab with an effective dielectric permittivity εTM = 0.95× ε the dispersion
of TM leaky modes (dashed lines) is obtained. Each leaky mode is denoted
with a reciprocal lattice vector (Gx, Gy) used for folding of the guided modes
back into the first Brillouin zone. For clarity, only the relevant leaky modes at
the fundamental and at the second harmonic frequency are shown. The nearly
free photon approximation doesn’t take into account the interaction between
the leaky modes, and as a consequence it cannot describe the frequency split-
ting between the modes of the photonic crystal slab. As can be seen, good
agreement between the nearly free photon picture and measured spectra is
obtained away from the crossings.

The horizontal purple lines in Figures 6.5 and 6.6 indicate the fundamental
and second harmonic frequencies. The s-polarized fundamental wave couples
to a mode of the family of (1,0) TE modes. The figures show that the generated
SH signal could couple to one or more modes of the family of (2,1) TM modes
at normal incidence. We stress that the leaky modes due to TM waveguide
modes are generally less visible in transmission spectra than resonances due to
TE modes. Therefore, we need to resort to the nearly free photon picture in
order to resolve these modes. In the nearly free photon picture, the family of
(2,1) TM modes is 8-fold degenerate at normal incidence, and it is impossible
to say with certainty to which modes the second harmonic radiation is most
likely to couple to. For nonzero angles of incidence, the dispersions of the
(-2,-1) and (1,-2) modes are resonant with the second harmonic frequency.
Therefore, we speculate that the generated second harmonic wave couples
to one of these modes at angles of incidence of θ = ± 9.1◦, indicated by the
dotted lines in Figures 6.5 and 6.6. Since the measured second harmonic signal
is elliptically polarized, we conclude that the second harmonic wave couples
to both s- and p-polarized leaky modes of the structure.

Unfortunately, it is not possible to resolve the dispersion relations and the
linewidths for the modes at the second harmonic frequency from the measured
transmission spectra. The main reason for this is that there are other reso-
nances due to TE modes around the second harmonic frequency. All these
modes interact, and as a consequence the transmission spectra do not consist
of isolated and easily recognizable Fano lineshapes superimposed on top of the
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6.4 Results and discussion

Figure 6.5. Dispersion relation of leaky TE (dash-dot lines) and TM
(dashed lines) modes in the nearly free photon picture, plotted on top of
the measured transmission data for s-polarized light (from Fig. 6.2(a)).
The dispersion relations are obtained by folding the dispersions of the
fundamental TE and TM waveguide modes of a dielectric slab on a
gel back to the first Brillouin zone. The fundamental and second har-
monic frequencies, νF = 0.5342 c/a and νSH = 1.0684 c/a, are indicated
by horizontal purple lines. The dotted lines indicate constant angles of
incidence θ = ± 9.1◦.
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6. Second harmonic generation in transmission from photonic crystals on a gel substrate

Figure 6.6. Dispersion relation of leaky TE (dash-dot lines) and TM
(dashed lines) modes in the nearly free photon picture, plotted on top of
the measured transmission data for p-polarized light (from Fig. 6.2(b)).
The dispersion relations are obtained by folding the dispersions of the
fundamental TE and TM waveguide modes of a dielectric slab on a
gel back to the first Brillouin zone. The fundamental and second har-
monic frequencies, νF = 0.5342 c/a and νSH = 1.0684 c/a, are indicated
by horizontal purple lines. The dotted lines indicate constant angles of
incidence θ = ± 9.1◦.
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6.5 Conclusions

Fabry-Perot background.
In principle, the generated second harmonic field can couple to TE leaky

modes as well. Unlike TE modes of an ideal, infinitely long photonic crystal,
TE leaky modes of the photonic crystal slab can have a small component of
the E-field perpendicular to the plane of the slab [63], related to the absence
of the continuous translational symmetry in the direction perpendicular to the
plane of periodicity. This small component of the fundamental electric field
perpendicular to the plane of periodicity can give rise to a second harmonic
field with an electric field component in the plane of periodicity which can
efficiently couple to TE leaky modes. We estimate that this effect is much
smaller compared to the contribution to the SH signal due to resonant coupling
of the second harmonic waves to TM leaky modes.

6.5 Conclusions
We investigate the influence of leaky modes on the second harmonic signal gen-
erated in transmission from a two-dimensional Al0.35Ga0.65As photonic crystal
slab on a gel substrate. By tuning the angle of incidence of the fundamental
beam we probe the resonant coupling of the fundamental and the second har-
monic wave to leaky modes of the structure. At normal incidence, both the
fundamental and the second harmonic wave resonantly couple to the struc-
ture, and we measure a second harmonic enhancement of more than 10000 ×
compared to the measured non-resonant contribution. This is more than eight
times larger than the experimental enhancement measured in reflection by
Mondia et al. [48]. Two additional maxima can be clearly seen in the mea-
sured second harmonic for angles of incidence of ± 9.1◦. We explain this effect
by a resonant coupling of the second harmonic wave to leaky modes of the
photonic crystal slab. Compared to experimental results reported in Refer-
ences [48, 49], our measurements convincingly show the influence of resonant
effects at second harmonic frequency.

Using a relatively simple coupled mode theory rather than full numerical
calculations we analyze the effects of resonant coupling of waves at the funda-
mental and the second harmonic frequency to leaky modes of the structure on
the second harmonic generation. This coupled mode approach offers valuable
physical insight and is applicable to less-than-perfect structures. This makes
it a very useful tool for future analysis and design of both linear and nonlinear
optical properties of photonic crystal slabs.
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Frequency conversion in two-dimensional photonic structures

With the advent of nanotechnology it became possible to structure semicon-
ductor materials on a wavelength and subwavelength scale. This opened a
door to novel materials called photonic structures with exciting linear and
nonlinear optical properties. Semiconductor photonic crystals and nanowires
are examples of these photonic structures. Photonic crystals are periodic di-
electric structures with features on a wavelength and subwavelength scale with
the periodicity in one, two, or all three spatial directions. Nanowires are essen-
tially one-dimensional structures with diameters ranging from a few to several
hundred nanometers and typical lengths of several micrometers. They can be
grown in a random as well as in a periodic fashion on a suitable substrate.

This thesis presents an experimental study of second harmonic generation
in two-dimensional aluminum gallium arsenide photonic crystal slabs (Chap-
ters 3–6) and second harmonic generation in ensembles of aligned gallium
phosphide nanowires (Chapter 2). The motivation behind using these III-V
semiconductor photonic structures for frequency conversion is their relatively
large nonlinearity. The extra dispersion due to the special arrangement of di-
electric material in these novel structures may be used to compensate a phase
mismatch in the nonlinear process.

Gallium phosphide nanowires are randomly grown on a gallium phosphide
substrate by epitaxy at elevated temperatures using ∼ 20 nm gold droplets as
a catalyst. As-grown nanowires have a diameter determined by the size of gold
droplets and a length determined by the growth time. A typical length of these
wires is several micrometers. The high length-to-width aspect ratios of the
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nanowires combined with the high refractive index of gallium phosphide can
lead to strong birefringence. In Chapter 2 we investigate if this birefringence
can be used to phase-match second harmonic generation. The enhancement
of the second harmonic signal is only effective for nanowires that are much
longer than the coherence length. However, long nanowires (> 10 µm) have
a significantly reduced birefringence due to the bending of the wires. We also
discuss a number of experiments that aim at separating the second harmonic
generated in the substrate from the second harmonic generated in nanowires
that are shorter than the coherence length. Unfortunately, we were not able
to separate these two contributions.

Chapter 3 describes the fabrication of freestanding, two-dimensional pho-
tonic crystal slabs with a square lattice of holes perforated in a ∼ 150 nm thick
Al0.35Ga0.65As slab. Samples that are investigated in this chapter have a hole
radius of r ∼ 150 nm, a lattice constant a = 890 nm, and a surface area of
∼ 300× 300 µm2. The freestanding slabs are supported by a GaAs substrate.
The linear optical properties of these structures are investigated by measuring
the reflection spectra as a function of angle of incidence. These spectra show
dispersive, asymmetric lineshapes superimposed on top of a slowly oscillating
background. The lineshapes can be understood in terms of the Fano model.
Within this model, the interference between a direct (non-resonant) and an
indirect (resonant) contribution gives rise to the asymmetric lineshape in the
spectra. The direct contribution is due to the Fresnel reflection of the incident
light from the slab, and the resonant contribution is due to the coupling of
the incident light to a leaky waveguide mode via diffraction from the lattice.
By using the Fano model it is possible to obtain the dispersion relation and
the quality factor of the resonance from the experimental reflection spectra.
The nonlinear optical properties of the photonic crystal slabs are investigated
by measuring the nonlinear reflection spectra as a function of angle of inci-
dence. We show that the resonant coupling of a pulsed laser at a wavelength
of 1.535 µm can significantly enhance the second harmonic signal. A second
harmonic enhancement of more than 4500 × compared to the non-resonant
contribution is measured when the pulsed laser beam is tuned into resonance
with one of the leaky modes of the structure.

Freestanding photonic crystal slabs are not flat, but they buckle because of
a small lattice mismatch (0.05%) between the Al0.35Ga0.65As material of the
slab and the GaAs substrate. In Chapter 4, we present a novel technique to
transfer a freestanding photonic crystal slab to a transparent gel layer. In con-
trast to the freestanding structures, the transferred structures are almost per-
fectly flat, and they allow for transmission measurements. Most importantly,
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the resonant features in the measured reflection spectra of a structure on a
gel are much more visible than those of a freestanding structure. Therefore,
the transferred structures are more attractive for investigating the resonant
coupling of light to photonic crystal slabs. In addition, we study in more detail
an avoided crossing between two modes in experimental transmission spectra.
At the avoided crossing one of the modes becomes long-lived (subradiant) and
the other mode becomes short-lived (superradiant). For the subradiant mode
we measure quality factors as high as Q = 300. This value is limited by the
finite size of the structure, which suggests an excellent optical quality of the
photonic crystal slabs transferred to the gel substrate.

The linear reflection and transmission spectra of a two-dimensional pho-
tonic crystal slab consist of asymmetric Fano lineshapes due to the resonant
coupling of light to leaky modes of the photonic crystal slab via diffraction
from the photonic lattice. The coupling of a continuum of modes to a single
resonant channel leads to interference between the direct (non-resonant) and
the indirect (resonant) channel. This is described by the Fano model. The
generally accepted picture is that for a lossless system the sign of a real-valued
parameter q of the Fano model determines the asymmetry of the lineshape.
For a lossless and symmetric air-slab-air structure, the sign of q changes if the
amplitude reflection coefficient of the direct contribution goes through zero. As
a consequence, the asymmetry of the Fano lineshape in the reflection spectra
for p-polarized light can be reversed by tuning the angle of incidence through
Brewster’s angle for the symmetric system. In Chapter 5 we show that for
a lossless and asymmetric air-slab-gel structure it is also possible to change
the asymmetry of the Fano lineshape by angle tuning without reaching the
condition of zero amplitude. However, this requires a complex-valued param-
eter q and shows that the picture of a real-valued parameter q that controls
the asymmetry is not complete. More importantly, this demonstrates that a
Fano type resonance, characterized by a complex-valued parameter q is not
necessarily a sign of microscopic processes of decoherence and/or dephasing.

Chapter 6 studies in more detail second harmonic generation from pho-
tonic crystal slabs transferred on a gel substrate. In contrast to Chapter 3,
we use a collimated laser beam, and we measure the second harmonic sig-
nal in transmission instead in reflection as a function of angle of incidence.
Compared to Chapter 3 we go a step further in understanding the importance
of leaky modes at both the fundamental and second harmonic frequency for
the nonlinear process of second harmonic generation. The main features of
the experimental second harmonic signal as a function of angle of incidence
are explained in terms of a relatively simple coupled mode theory. Unlike
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full numerical calculations, our model offers direct insight into the underlying
physical mechanism. Furthermore, the model does not assume parameters
of an ideal two-dimensional photonic crystal slab. Instead, it uses measured
dispersion relations and quality factors of relevant modes as well as the mea-
sured non-resonant second harmonic signal. This makes the model applicable
to less-than-perfect structures with a finite size and a number of fabrication
imperfections. At normal incidence, both the fundamental and the second
harmonic field resonantly couple to leaky modes of the structure, and we mea-
sure second harmonic enhancements as large as 10000 × compared to the
non-resonant contribution. In addition, the measurements convincingly show
the effect of the resonant coupling of the second harmonic wave to a leaky
mode of the structure. The angular width of the measured second harmonic
signal is a factor of 1.6 smaller than the width deduced from the linear optical
properties of the leaky mode at the fundamental frequency. More obviously,
two additional satellite peaks appear at angles of incidence of ± 9.1◦. These
satellites can be explained by considering the resonant coupling of both the
fundamental beam and the second harmonic beam to leaky modes of the pho-
tonic crystal slab. This accounts for the reduced width of the measured second
harmonic signal at normal incidence and for the two satellite peaks, and shows
the importance of a double resonant condition for efficient second harmonic
generation from a photonic crystal.
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Frequentieconversie in tweedimensionale fotonische structuren

Moderne nanotechnologie maakt het mogelijk om halfgeleiderstructuren te
bouwen op golflengte- en subgolflengteschaal. Dit heeft geleid tot nieuwe
materialen, de zogenaamde fotonische structuren, met spannende lineaire en
niet-lineaire optische eigenschappen. Voorbeelden van deze fotonische struc-
turen zijn fotonische kristallen en nanodraadjes van halfgeleider materiaal.
Fotonische kristallen bestaan uit een zich periodiek herhalende diëlectrische
structuur, waarbij de periode in één, twee, of alledrie ruimtelijke richtingen
vergelijkbaar of zelfs kleiner is dan de golflengte van licht. Nanodraadjes zijn
min of meer ééndimensionale structuren, met een diameter tussen een paar
nanometer en enkele honderden nanometers. Men kan ze laten groeien op
zowel willekeurige als periodieke wijze op een geschikt substraat.

Dit proefschrift presenteert experimenteel onderzoek naar frequentiever-
dubbeling in platen van tweedimensionale aluminium-galliumarsenide foto-
nisch kristallen (hoofdstukken 3–6) en frequentieverdubbeling in gelijjkgerichte
verzamelingen galliumfosfidenanodraadjes (hoofdstuk 2). De motivatie om
deze III-V halfgeleidende structuren te gebruiken voor frequentieconversie is
hun relatief grote niet-lineariteit. De extra dispersie, die optreedt wegens de
bijzondere rangschikking van diëlectrisch materiaal in deze nieuwe structuren,
kan worden gebruikt om te compenseren dat de fases in het niet-lineaire proces
niet op elkaar aansluiten.

Galliumfosfidenanodraadjes worden bij verhoogde temperaturen door mid-
del van epitaxie willekeurig gedeponeerd op een galliumfosfidesubstraat, met
∼ 20 nm grote gouddruppeltjes als catalysator. De diameter van de zo ontstane
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nanodraadjes wordt bepaald door de gouddruppeltjes, en de lengte door de
groeitijd. De lengte van zulke draadjes is typisch enkele micrometers. De hoge
lengte-breedteverhouding van de nanodraadjes, gecombineerd met de hoge bre-
kingsindex van galliumfosfide, kan leiden tot zeer sterke dubbelbrekendheid.
In hoofdstuk 2 onderzoeken we of deze dubbelbrekendheid gebruikt kan wor-
den om faseaansluiting teweeg te brengen bij frequentieverdubbeling. Deze
verbetering van het frequentieverdubbelingssignaal is alleen effectief bij nano-
draadjes die veel langer zijn dan de coherentielengte. Bij langere nanodraadjes
(> 10 µm) is de dubbelbrekendheid echter aanzienlijk lager door het buigen
van de draadjes. Wij bespreken ook een aantal experimenten met als doel
het frequentieverdubbelingssignaal dat gegenereerd wordt in het substraat te
onderscheiden van het signaal dat gegenereerd wordt in de nanodraadjes die
korter zijn dan de coherentielengte. Helaas is het niet gelukt deze twee bijdra-
gen te onderscheiden.

Hoofdstuk 3 gaat over de fabricage van vrijstaande, tweedimensionale pla-
ten van fotonisch kristal met een vierkant gatenrooster in een ∼ 150 nm dikke
plaat van Al0.35Ga0.65As. De in dit hoofdstuk onderzochte preparaten heb-
ben gaten met een straal van r ∼ 150 nm, een roosterconstante a = 890 nm,
en een oppervlakte van ∼ 300× 300 µm2. De vrijstaande platen worden on-
dersteund door een GaAs-substraat. De lineaire optische eigenschappen van
deze systemen worden onderzocht door de reflectiespectra te meten als functie
van de invalshoek. Deze spectra vertonen dispersieve, asymmetrische curves
bovenop een langzaam oscillerende achtergrond. We kunnen deze curves door
middel van het Fanomodel uitleggen. In dit model veroorzaakt de interfe-
rentie tussen een rechtstreekse (niet-resonante) en een indirecte (resonante)
bijdrage de asymmetrische curve van het spectrum. De rechtstreekse bijdrage
komt door de Fresnelreflectie van het invallende licht aan de plaat, en de
resonante bijdrage komt door de koppeling van het invallende licht aan een
lekkende geleide mode via diffractie aan het rooster. Door het Fanomodel te
gebruiken, is het mogelijk om de dispersierelatie en de kwaliteitsfactor van de
resonantie te verkrijgen uit de experimentele reflectiespectra. De niet-lineaire
optische eigenschappen van de fotonische kristallen worden onderzocht door
de niet-lineaire reflectiespectra te meten als functie van de hoek van inval. Wij
tonen aan dat de resonante koppeling van een laserpuls bij een golflengte van
1.535 µm het frequentieverdubbelingssignaal aanzienlijk kan versterken. Wij
meten een versterking van de frequentieverdubbeling van meer dan 4500 keer,
vergeleken met de niet-resonante bijdrage, wanneer de bundel van laserpulsen
zo ingesteld wordt dat hij resoneert met een van de lekkende modes van de
structuur.
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Vrijstaande platen van fotonisch kristal zijn niet vlak; ze buigen doordat de
roosters van het Al0.35Ga0.65As-materiaal van de plaat en het GaAs-substraat
net niet (op 0.05% na) op elkaar aansluiten. In hoofdstuk 4 presenteren we een
nieuwe techniek om een vrijstaande plaat van fotonisch kristal over te brengen
op een transparante laag gel. In tegenstelling tot de vrijstaande structuren,
zijn de zo overgebrachte structuren bijna altijd vlak. Het belangrijkste is
dat de resonanties in de gemeten reflectiespectra van een structuur op gel veel
zichtbaarder zijn dan die van een vrijstaande structuur. Daardoor zijn de over-
gebrachte structuren veel bruikbaarder voor het onderzoek aan de resonante
koppeling van licht aan de platen van fotonisch kristal. Daarbij onderzoeken
we ook in meer detail een ontweken kruising tussen twee modes in de experi-
mentele transmissiespectra. Bij de ontweken kruising krijgt één van de modes
een lange levensduur (wordt subradiant) en de andere mode een korte (su-
perradiant). Voor de subradiante mode meten we kwaliteitsfactoren tot aan
Q = 300. Deze waarde wordt beperkt door de eindige grootte van de struc-
tuur, wat suggereert dat de platen van fotonisch kristal die overgebracht zijn
op het gelsubstraat van uitstekende optische kwaliteit zijn.

De lineaire reflectie- en transmissiespectra van een tweedimensionale plaat
van fotonisch kristal bestaan uit asymmetrische Fanocurves door de resonante
koppeling van licht aan lekkende modes van het fotonisch kristal door diffractie
aan het fotonisch rooster. De koppeling van een continuüm aan modes aan een
enkel resonant kanaal leidt tot interferentie tussen het directe (niet-resonante)
en het indirecte (resonante) kanaal. Dit wordt beschreven door het Fanomo-
del. De algemeen geaccepteerde interpretatie is dat het teken van een reële
parameter q van het Fanomodel de asymmetrie van de curve bepaalt voor een
systeem zonder verliezen. Voor een symmetrische lucht-plaat-lucht structuur
zonder verliezen verandert het teken van q als de amplitudereflectiecoëfficiënt
van de directe bijdrage door nul gaat. Als gevolg daarvan kan de asymmetrie
van de Fanocurve in het reflectiespectrum voor p-gepolariseerd licht worden
gespiegeld door de hoek van inval voorbij de Brewsterhoek in te stellen, in het
symmetrische systeem. In hoofdstuk 5 laten we zien dat het ook mogelijk is
om de asymmetrie van de Fanocurve door de hoek in te stellen zonder aan de
voorwaarde van nul amplitude te voldoen, voor een asymmetrische lucht-plaat-
gel structuur zonder verliezen. Dit vereist echter een complexe parameter q
en toont aan dat de interpretatie van een reële q die de asymmetrie bepaalt
niet volledig is. Nog belangrijker is dat dit aantoont dat een Fano-achtige
resonantie die gekarakteriseerd wordt door een complexe q niet noodzakelijk
wijst op microscopische processen van decoherentie en/of defasering.

In hoofdstuk 6 wordt in meer detail ingegaan op frequentieverdubbeling
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in platen van fotonisch kristal overgebracht op een gelsubstraat. In tegen-
stelling tot hoofdstuk 3, gebruiken we een gecollimeerde laserbundel, en we
meten het doorgelaten frequentieverdubbelingssignaal in plaats van het gere-
flecteerde als functie van de hoek van inval. Vergeleken met hoofdstuk 3 gaan
we een stap verder in het begrijpen hoe belangrijk de lekkende modes zijn
voor het niet-lineaire proces van frequentieverdubbeling, bij zowel de grond-
als de verdubbelde frequentie. De belangrijkste verschijnselen van het experi-
mentele frequentieverdubbelingssignaal worden verklaard aan de hand van een
betrekkelijk eenvoudige gekoppelde-modetheorie. In tegenstelling tot volledige
numerieke berekeningen, biedt ons model inzicht in het fysisch mechanisme
dat eraan ten grondslag ligt. Bovendien maakt het model geen aannames over
de parameters van een ideale plaat van fotonisch kristal. In plaats daarvan
gebruikt het zowel de gemeten dispersierelaties en de kwaliteitsfactoren van
de relevante modes als het gemeten niet-resonante frequentieverdubbelings-
signaal. Hierdoor is het model toepasbaar op niet-ideale structuren met een
eindige grootte en een aantal fabricagedefecten. Bij loodrechte inval koppelen
de velden van zowel de grond- als de verdubbelde frequentie resonant aan de
lekkende modes van de structuur, en we meten een versterking van de frequen-
tieverdubbeling tot aan 10000 keer zo groot vergeleken met de niet-resonante
bijdrage. Bovendien laten de metingen op overtuigende wijze het effect zien
van de resonante koppeling van de frequentieverdubbelde golf aan een lekkende
mode van de structuur. De hoekbreedte van het gemeten frequentieverdub-
belingssignaal is een factor 1.6 kleiner dan de breedte die zou volgen uit de
lineaire optische eigenschappen van de lekkende mode bij de grondfrequentie.
Nog duidelijker zijn de twee bijkomende zijpieken die verschijnen bij hoeken
van inval van ± 9.1◦. Deze zijpieken kunnen worden verklaard door de re-
sonante koppeling te beschouwen van zowel de grondfrequentiebundel als de
frequentieverdubbelde bundel aan de lekkende modes van de plaat. Dit ver-
klaart de versmalde hoek van het gemeten frequentieverdubbelingssignaal bij
loodrechte inval en de twee zijpieken, en toont het belang aan van een dubbele
resonantievoorwaarde voor efficiënte frequentieverdubbeling in een fotonisch
kristal.
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