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CHAPTER 1

Introduction

Light is a ubiquitous carrier of information. Its intensity, direction, frequency and polar-
isation provide knowledge about its source and the medium it has propagated through.
By means of photodetectors, cameras, spectrometers and polarisers, these properties of
light can be measured efficiently. Not only can one obtain knowledge about the source
and medium in this way; one can also use light to transfer data from one place to another
by encoding this data in one or more properties of the light.

In the past twenty years, great interest has been shown for another property of light,
its orbital angular momentum. Contrary to the polarisation, which is associated with the
spin angular momentum of light and can take two orthogonal states, the orbital angular
momentum can take infinitely many orthogonal states. If this property can be measured
efficiently, it opens the way to interesting new physics and could serve as an additional
property to encode data in, with its infinitely many possible states as its greatest asset.

The orbital angular momentum of light is associated with Laguerre-Gaussian beams,
that contain a phase singularity around which the phase of the field increases in an az-
imuthal fashion, exp(iℓϕ), forming a so-called optical vortex. The intensity vanishes at
the position of the singularity, forming a dark hole in the intensity profile of the beam.
Each photon in a Laguerre-Gaussian beam carries an orbital angular momentum of ℓℏ.
ℓ is often also used to indicate the topological charge of the optical vortex. The case
where ℓ = 0 corresponds to a flat wave front, of which the light coming from a distant
point source, for instance a star, is the most common example. Generating beams with
an optical vortex is accomplished by special optical elements, such as a spiral phase plate,
a fork hologram or a spatial light modulator, that all imprint the azimuthal phase profile
to an incoming beam. A wide range of ℓ can be achieved in this way. Optical vortices
also occur naturally, for example as higher-order laser modes, in speckle patterns and in
optical caustics.

Efficient measurement of the orbital angular momentum of light is very challenging.
An ideal measurement system should have infinitely many output ports, each correspond-
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1. INTRODUCTION

ing to a different orbital angular momentum state, much like a polarising beam splitter
for measuring the spin angular momentum, which has two output ports, corresponding
to each of the two polarisation states. An alternative way to determine the spin angular
momentum of a photon is to use a polariser, which transmits one of the states and blocks
the other and can be seen as a filter for a specific spin angular momentum state.

Several methods to measure the orbital angular momentum of light have been stud-
ied in the past. Interference of a beam containing an optical vortex with a flat wave front
results in an interference pattern with a fork-like structure that reveals the topological
charge of the vortex. The need for an additional flat wave front make this method un-
favourable for many applications, especially when the beam under study is spread out
over a large area. A filter for orbital angular momentum states can be achieved with a
spiral phase plate, that can be used to test whether the input light is in a specific state
or not. Finally, a system of Mach-Zehnder interferometers and Dove prisms provides a
measurement of the orbital angular momentum state, but is technically very challenging
and difficult to implement in a larger optical system.

In this thesis, we present two new ways to measure the orbital angular momentum
of light. The first method, which we describe in detail in chapter 2 and 3, is based on
a multi-pinhole interferometer, a system of a number of pinholes arranged on a circle.
We demonstrate that by studying the diffraction pattern behind such a multi-pinhole
interferometer, one can determine the topological charge of an incoming optical vortex.
Since a multi-pinhole interferometer consists of a finite number of apertures, that can be
placed far apart, this system can be used to study optical fields with large-scale intensity
fluctuations, such as, for instance, can be expected in astronomy. The multi-pinhole
interferometer can also be used to make optical vortex maps of an optical field, which
makes it possible to not only determine the topological charge of the vortices in the
field, but also their anisotropy and orientation. We describe this method and present its
results for a speckle pattern in 4 and 5.

In chapter 6, we present the second new way to measure the orbital angular mo-
mentum of light, the mode sorter, which approaches the ideal measurement system de-
scribed before very closely. The mode sorter consists of two custom optical components
that transform the azimuthal phase profile of an optical vortex into a tilted plane wave.
An additional lens focusses these tilted plane waves to different positions on a detector.
These positions are related to the orbital angular momentum of the incoming light. In
chapter 7 we demonstrate that this mode sorter can also determine the contribution of
each orbital angular momentum state in a superposition. In special cases, we can even
determine the relative phase between the modes.

All theory, simulations and experiments presented in chapter 2 to 7, have been per-
formed with monochromatic and fully coherent light. In chapter 8, we theoretically study
the response of both the multi-pinhole interferometer and the mode sorter for polychro-
matic and (partially) incoherent light. The results of these calculations form the starting
point for studying applications of measuring the orbital angular momentum of light.
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CHAPTER 2

Probing the orbital angular momentum of light with a
multipoint interferometer

We present an efficient method for probing the orbital angular momentum of optical vor-
tices of arbitrary sizes. This method, based on a multipoint interferometer, has its most
important application in measuring the orbital angular momentum of light from astro-
nomical sources, opening the way to interesting new astrophysics. We demonstrate its
viability by measuring the orbital angular momentum of Laguerre-Gaussian laser beams.

G. C. G.  Berkhout  and  M. W.  Beijersbergen, Method  for  probing  the  orbital  angular
momentum  of  optical  vortices  in  electromagnetic  waves  from  astronomical  objects, Physical
Review Letters 101, 100801 (2008).
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2. PROBING THE ORBITAL ANGULAR MOMENTUM OF LIGHT WITH A MULTIPOINT
INTERFEROMETER

2.1 Introduction

It is well understood that light carries angular momentum that, under given circum-
stances, can be separated into spin and orbital angular momentum [1, 2]. The spin angular
momentum is associated with polarization and its transfer to a material body has been
measured by Beth [3]. The orbital angular momentum (OAM) is associated with an op-
tical vortex and gives rise to a complex field amplitude of the form ∝ exp(iℓϕ) and thus
a twisted wave front. Such a field has an on-axis singularity resulting in a central dark
point in the intensity profile and every photon in it carries an OAM of ℓℏ [1]. It has been
demonstrated that the OAM of a laser beam enables it to rotate trapped particles [4].

Laser beams with OAM occur spontaneously as higher-order transverse modes or can
be created using a spiral phase plate (SPP) [5] or a fork hologram (FH) [6, 7]. Optical vor-
tices also occur in speckle patterns [8, 9], where until now only vortices with topological
charge -1 and +1 [10] have been observed and higher-order zeros are, although not strictly
forbidden, very unlikely.

Recently, the interest for OAM of light in astrophysics has grown [11]. Several possi-
ble sources of OAM have been suggested, from bright point sources behind a turbulent
interstellar medium to the cosmic microwave background (CMB). Measurement of the
OAM of the associated vortices could open the way to interesting new astrophysics. Due
to the large propagation distances one expects the intensity variation of astronomical
optical vortices to be on very large scales.

Determining the OAM state of an optical vortex requires knowledge of the phase
distribution around the singularity. Thidé et  al. proposed a method for generating and
detecting OAM in low-frequency radio beams [12], using an antenna array for coherent
measurement of the local field vector in a finite number of points and software to re-
construct the incident vector field. We propose a method based on measuring only the
phase instead of the full electric vector, that would allow detection of OAM at optical
wavelengths.

Since direct measurement of the phase in the visible regime is not possible, one needs
to rely on interferometric techniques. Leach et  al. [13] proposed an interferometric
method for measuring the OAM of a single photon. A more commonly used technique
is to interfere the wave front under study with a flat wave front [14, 15], in which case
the interferogram reveals the OAM state of the optical vortices. This technique can also
be applied to less symmetric optical vortices such as those occurring in speckle patterns,
where the interferogram shows their position, OAM state and skewness [8]. In principle,
this method allows one to distinguish between infinitely many states.

When the optical vortex is large compared to the detector area, it becomes difficult to
measure the phase distribution, since the dark region around the singularity is accordingly
larger, leaving less light to interfere with. Moving the detector away from the axis of
the vortex towards areas of higher intensity does not solve this, since the amount of
phase change over a given area decreases as one moves radially outwards. A possible
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2.2. THEORY AND SIMULATIONS

solution is to use more that one aperture roughly separated by the size of the optical
vortex. Performing Young’s double slit experiment [16] with Laguerre-Gaussian beams
indeed reveals information about the OAM state of the beam [17]. However in this case
the length of the slits has to be of the order of the size of the beam, which in many
astronomical cases is infeasible.

This problem can be solved by using pointlike apertures instead of slits. In this chap-
ter we describe a system of two or more points, enclosing the singularity of the optical
vortex, which we call a multipoint interferometer (MPI), and show that it can be used to
measure the OAM state of an optical vortex. We experimentally realize this system by
replacing the points with pinholes. This so-called multi-pinhole interferometer has been
studied in the context of partially coherent light [18, 19] where the resulting interference
patterns reveals information about the coherence properties of the illuminating beam.

2.2 Theory and simulations

We start by studying the proposed method theoretically. The most convenient class of
optical vortices are the Laguerre-Gaussian (LG) beams, which have a complex field am-
plitude given by

upℓ(r, ϕ, z) ∝ rℓLℓ
p

(
2r2

w2

)
exp

(
− r2

w2

)
exp(−iℓϕ), (2.1)

where w is the waist size of the beam, Lℓ
p(2r2/w2) is the associated Laguerre polynomial,

p is the radial mode index and ℓ is the azimuthal mode index.
Since the optical vortices are rotationally symmetric in intensity, we choose to uni-

formly distribute the points in the MPI in a circle, centered around the singularity of the
optical vortex. A general MPI consists of N points, has radius a and lies in the xy plane
(see figure 2.1).

Since we consider the Fraunhofer limit, the far-field intensity pattern IN
ℓ behind a

general MPI illuminated by an on-axis, normally incident LG beam is given by the Fourier
transform of the field distribution in the aperture plane

IN
ℓ (x, y, z) ∝

∣∣∣∣∣∣∣
N−1∑
n=0

exp (−iℓαn) exp
(
i
ka
z

(x cosαn + y sinαn
))∣∣∣∣∣∣∣

2

, (2.2)

where k = 2π/λ is the wave number and αn = 2πn/N the azimuthal coordinate of the
nth point. For two pinholes and a Gaussian beam (i.e., ℓ = 0), equation 2.2 reduces to
I2

0 ∝ cos2(kax/z), reproducing the result for the central part of the interference pattern
in Young’s experiment with two pinholes. If the number of points goes to infinity, cor-
responding to an annular aperture, equation 2.2 converges to the Bessel function of the
first kind of order |ℓ|, J|ℓ|(kar/z), where r is the radial distance. For other values of N and
ℓ, equation 2.2 yields unexpectedly complex patterns, some of which are shown in figure
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2. PROBING THE ORBITAL ANGULAR MOMENTUM OF LIGHT WITH A MULTIPOINT
INTERFEROMETER

z

(x,y,z)

1

N-1

x
y

a

n 0αn

Figure 2.1: Geometry and notation of a generic multipoint interferometer consisting of N points,
uniformly distributed over a circle of radius a in the xy plane. The points are indicated by open
dots and the angular coordinate of the nth point is αn = 2πn/N.

2.2.
A nonzero azimuthal mode index has a significant effect on the observed patterns,

as can be seen by comparing the second and third column of figure 2.2 to the first. The
results for N = 2 are easily understood; the azimuthal phase dependence of the LG beam
introduces a phase difference of π between the two points for odd ℓ, shifting the observed
patterns by half a period with respect to the patterns for even ℓ. This phase difference
can however also be introduced by a tilt of the illuminating beam with respect to the
plane of the MPI, making it impossible to distinguish between OAM and a tilt of the
beam. The same arguments hold for N = 3 where we observe three shifted patterns that
repeat for ℓ′ = ℓ + 3. A two or three point interferometer can therefore only be used to
measure the OAM if the optical axis of the illuminating beam is known.

This ambiguity is however removed in the case of four or more points, where the
phase distribution caused by different values of ℓ is inherently different from the phase
differences introduced by a tilt of the incoming wave front. This can be seen from simple
geometry, and it is also evident in the resulting patterns. For four points some ℓ states
result in a shift of the pattern but, more importantly, others in qualitatively different pat-
terns. Even though the patterns for five points look similar by eye, all patterns in this case
differ significantly, in particular in the details surrounding the bright spots. Further sim-
ulations show that for an MPI of N points we observe N different patterns. The patterns
for positive and negative ℓ are mirrored in the x axis (see figure 2.3). For an even number
of points the patterns are symmetric in the x axis and in this case there is no difference
between the pattern for positive and negative ℓ, making it impossible to differentiate be-
tween negative and positive OAM states, reducing the number of distinguishable states
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2.2. THEORY AND SIMULATIONS

N=2

N=3

N=4

N=5

N=6

N=16

ℓ=0 ℓ=1 ℓ=2

Figure 2.2: Far-field intensity patterns behind an MPI of N points illuminated by an LG beam
with azimuthal mode index ℓ calculated from equation 2.2 (linear gray scale, white corresponds to
high intensity). N = 2, ℓ = 0 reproduces the results for Young’s experiment with two pinholes.
N = 16 hints at the fact that the observed patterns converge to a Bessel function of order |ℓ|. At
intermediate values the pattern is very dependent on the azimuthal mode index ℓ, and therefore
the OAM of the field at the location of the MPI.
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2. PROBING THE ORBITAL ANGULAR MOMENTUM OF LIGHT WITH A MULTIPOINT
INTERFEROMETER

N=5

N=6

ℓ=-1 ℓ=0 ℓ=1

Figure 2.3: Simulated far-field intensity patterns behind an MPI of N points illuminated by an
LG beam with azimuthal mode index ℓ calculated from equation 2.2. The patterns for ℓ values of
opposite sign are mirrored in the x axis. For an odd number of points one can determine the sign
of ℓ.

to N/2 − 1.
Further simulations have shown that the observed qualitative patterns change only

marginally when the phase front is not perpendicular to the interferometer plane, proving
that an MPI is an efficient OAM detector if it consists of at least four points.

2.3 Experiment and results

To demonstrate the method we measured the interference patterns behind a multi-
pinhole interferometer, where the diffraction of the light on the pinholes is used to over-
lap the light from the different points. We assume that the finite size of the pinholes
does not change the interference pattern qualitatively, but adds a convolution with the
diffraction pattern of a single pinhole to it. The size of the multi-pinhole interferometer
is chosen to be of the order of the waist size of the beam in order to collect maximum
intensity from the donut-shaped intensity profile of an ℓ = 1 laser beam.

We built a setup to study the interference patterns (see figure 2.4 for details) and
measured the interference pattern for the different multi-pinhole interferometers for ℓ
between −3 and +3. All observed patterns show excellent agreement with the simulations
as can be seen by comparing figures 2.2 and 2.5. The effect of the finite size of the pinholes
can be seen at the edges of the patterns where the intensity drops.

Even if the LG beam is not perfectly on-axis and perpendicular, the observed pattern
can still be distinguished clearly, as long as the singularity is located within the circle
formed by the pinholes. For example in figure 2.5, the observed pattern for N = 4, ℓ = 1
is skewed but can still be clearly differentiated from ℓ = 0 and ℓ = 2.

8



2.4. DISCUSSION

HeNe

FH

D MPI CCDM1

M2 M3

M4 L

f f

FW

Figure 2.4: Setup to measure interference patterns behind a multi-pinhole interferometer. A
helium-neon laser (HeNe), a filter wheel (FW), two mirrors (M1 and M2) and a fork hologram
(FH) are used to create LG beams and a set of mirrors (M3 and M4) and a diaphragm (D) are used
to select an LG beam to illuminate the multi-pinhole interferometer (MPI). A CCD camera (CCD)
and a lens (L) are used to record the far-field image.

2.4 Discussion

We demonstrated that the interference pattern behind an MPI illuminated by an LG
beam yields information about the azimuthal mode index ℓ of the beam. To our knowl-
edge this is the first method that can be used to measure the OAM of light, without
requiring coverage of a large area of the field. As our detection method relies only on a
finite number of point measurements, it can be scaled to arbitrarily large sizes and can
thus be used to measure arbitrarily large optical vortices such as expected to come from
astronomical sources. In the experiments that we performed, we used the diffraction of
light on small pinholes to overlap the light from the different points. With this method,
the position of the far field increases with increasing separation of the points, leading to
increasingly large system size, and increasingly small periodicity of the patterns, making
it more difficult to detect. In order to increase the size of the MPI, extra measures have
to be taken to combine the light, for example using telescopes and mirrors. This is what
is foreseen in the Darwin mission [20]. Darwin is a space-based infrared nulling interfer-
ometer that combines the light from four telescope satellites in a central beam combiner
satellite. As the telescopes are small with respect to the distance between them, the sys-
tem operates as a multi-pinhole interferometer. The light from the different telescopes
follows paths of equal length to the beam combiner. In fact, the nulling in Darwin is
obtained by introducing phase shifts between the telescopes that correspond to a ℓ = 1
mode, converting an incoming plane wave into a vortex with a null in the center. This is
essentially the same as is done in a vortex coronagraph [21], effectively making Darwin a
synthetic aperture version of a vortex coronograph. Darwin would be a perfect detector
for astronomical OAM at length scales of hundreds of meters, provided that the different
interference patterns can be distinguished. The technique of multipoint interferometry
can also be implemented in other existing and future telescope arrays, such as the the
VLT [22], ALMA [23] and KEOPS [24], albeit slightly modified because of the noncircu-
lar arrangement of the individual telescopes.

9
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N=2

N=3

N=4

N=5

N=6

N=7

ℓ=0 ℓ=1 ℓ=2

Figure 2.5: Measured far-field intensity patterns behind an MPI of N points illuminated by an LG
beam with azimuthal mode index ℓ. The measured patterns show excellent agreement with the
calculated ones (compare figure 2.2).
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2.5. CONCLUSION

2.5 Conclusion

In conclusion, we discussed a new interferometric technique to probe the OAM of light.
This technique uses an MPI which makes use of the interferometric combination of the
light from a finite number of point measurements. This allows to scan a field for phase
singularities and measure their corresponding OAM of light, does not require knowledge
of the direction of the beam, and can be scaled to arbitrary dimensions because it samples
only a finite number of points in the field. This scalability makes the detection method
very useful for systems where the optical vortices are expected to be large, such as in
astrophysics. Multi-telescope systems can be used as OAM detectors provided that at
least four telescopes are used.
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CHAPTER 3

Using a multipoint interferometer to measure the
orbital angular momentum of light

Recently it was shown that the orbital angular momentum of light can be measured using
a multipoint interferometer, a system in which the light from several point measurements
is interferometrically combined. This system has important applications in optics but
could also be employed to detect astrophysical orbital angular momentum. Until now,
the response of a multipoint interferometer to an on-axis, normally incident Laguerre-
Gaussian beam has been studied by visual inspection. In this paper we present an al-
gorithm to determine the orbital angular momentum of the impinging beam from the
obtained interference patterns. Using this algorithm we extend our study to general op-
tical vortices and a superposition of optical vortices.

G. C. G. Berkhout and M. W. Beijersbergen, Using a multipoint interferometer to measure
the  orbital  angular  momentum  of  light  in  astrophysics, Journal  of  Optics  A:  Pure  and
Applied Optics 11, 094021 (2009).
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3. USING A MULTIPOINT INTERFEROMETER TO MEASURE THE ORBITAL ANGULAR
MOMENTUM OF LIGHT

3.1 Introduction

Since its discovery, the orbital angular momentum (OAM) of light has been studied in-
tensively [1, 25]. The fact that light carries angular momentum that, under given cir-
cumstances, can be separated into spin and orbital angular momentum is nowadays well
known. Recently the possibility that light from astronomical sources possesses OAM
was suggested [11, 26]. Detection of this OAM may have interesting implications for as-
trophysics, since it is known that the OAM of light can be transferred to small particles
or atoms (for a recent review, see [25]). A method for detecting OAM in low-frequency
radio beams has been proposed recently [12]. Since this method relies on a coherent
measurement of the local field vector it cannot be applied to optical wavelengths. In this
paper we describe the details of the method that was proposed in [27], based on a so-
called multipoint interferometer. The main advantage of this method lies in the fact that
it relies on only a finite number of point measurements, making it possible to measure
OAM on, in principle, arbitrarily large length scales.

The simplest class of light fields carrying OAM are the so-called optical vortices. A
general optical vortex has a complex field amplitude of the form ∝ exp(iℓϕ), resulting in a
phase singularity at its centre. At the position of this phase singularity, the intensity drops
to zero. As one makes a full turn around the singularity in counterclockwise fashion, the
phase increases by 2πℓ, where ℓ is the vorticity. Away from the singularity the intensity
increases until, for an isolated optical vortex, it consequently drops outside a bright ring
of radius proportional to ℓ. The exact form of the intensity profile depends on the origin
and propagation of the optical vortex and the presence of other optical vortices. Optical
vortices can be created, for example, using a spiral phase plate [5] or a fork hologram
[6, 7], but they also occur in more generic fields, such as in speckle patterns [8, 28].

Several methods exist to detect optical vortices. A method that is often used is inter-
fering the optical vortex with a flat wave front. The resulting interference pattern reveals
information on the vorticity, the position and the anisotropy of the optical vortex [8].
One can also convert an optical vortex to a Gaussian beam using holographic techniques
and detect its intensity using a monomode fibre or pinhole [29]. Both methods require
the coveragd of an extended region around the optical vortex in order to detect the vor-
ticity.

So far no quantitative analyses of the expected optical vortices from astronomical
sources have been presented. The only reasonable assumption one can make is that the
associated intensity profile will fluctuate on large scales due to the large propagation dis-
tances of the light coming from these sources. It will therefore be virtually impossible to
cover a sufficient part of the intensity profile using a single detector, making it impossi-
ble to measure the vorticity using interference with a flat wave front. This is illustrated
by figure 3.1. One can place the detector near the centre of the optical vortex where the
phase varies rapidly, but the amplitude is very low. Alternatively one can place the de-
tector in regions of higher intensity, but hardly any phase change is present there. In a
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Figure 3.1: A Laguerre-Gaussian ℓ = 1 beam (see text for details). Colours indicate phase, while
intensity shows amplitude. This figure shows the intrinsic difficulty in measuring the orbital angular
momentum of light if only a small part of the beam can be covered using a single detector (shown
as grey squares). In the centre there is hardly any intensity, while in the outer parts there is hardly
any phase change.

previous paper [27] we discussed an interferometric method based on a so-called multi-
point interferometer, where the light of several points, roughly separated by the typical
length scale of the intensity fluctuations around the optical vortex, is interferometrically
combined. From the resulting interference patterns the vorticity of the impinging vor-
tex can be determined. We experimentally realised the multipoint interferometer by a
multi-pinhole interferometer, where we used the diffraction of the light at the pinholes
to overlap the light from the different points. Theory and experiment using laser beams
prove to be in excellent agreement.

It is possible to scale a multipoint interferometer to, in principle, arbitrary sizes by re-
placing the pinholes by telescopes and using beam combiner optics to interferometrically
combine the light from the different telescopes. This technique could already be imple-
mented at existing telescope arrays, where one has to take into account the non-circular
arrangement of the telescopes.

A convenient basis for describing a light beam possessing OAM are the Laguerre-
Gaussian beams which have a complex field amplitude given by

upℓ(r, ϕ, z) ∝ rℓLℓ
p

(
2r2

w2

)
exp

(
− r2

w2

)
exp(−iℓϕ), (3.1)

where w is the waist size of the beam, Lℓ
p(2r2/w2) is the associated Laguerre polynomial,

p is the radial mode index and ℓ is the vorticity.
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Figure 3.2: Geometry and notation of a generic multipoint interferometer consisting of N points,
uniformly distributed over a circle of radius a in the xy plane. The points are indicated by open
dots and the angular coordinate of the n-th point is αn = 2πn/N.

A general multipoint interferometer consists of N points, uniformly distributed over a
circle of radius a as shown in figure 3.2. The azimuthal angle of each point is given by αn =

2πn/N. The far-field interference pattern behind a general multipoint interferometer is
given by the Fourier transform of the field distribution in the aperture plane. In the
case of an on-axis, normally incident Laguerre-Gaussian beam, the interference pattern
is given by

IN
ℓ (x, y, z) ∝

∣∣∣∣∣∣∣
N−1∑
n=0

exp (−iℓαn) exp
(
i
ka
z

(x cosαn + y sinαn
))∣∣∣∣∣∣∣

2

. (3.2)

Results of this equation are shown in [27] and in figures 3.3 and 3.4.
In any real system the points will be replaced by apertures and the observed interfer-

ence pattern will be convoluted by the diffraction pattern of an individual aperture. As
long as the diameter of the aperture is small compared to the separation of the apertures,
the interference pattern can be observed in the central lobe of the diffraction pattern.

Equation 3.2 gives the interesting result that the interference pattern behind a mul-
tipoint interferometer of N points is the same for an impinging beam with ℓ = m and
ℓ′ = m + N for N ≥ 4. This effect can be explained by comparing the phases of the
impinging fields at the different points for both ℓ states. The number of distinguishable
l states is therefore equal to N and the observed patterns are periodic in ℓ.

It is also observed that the patterns for ℓ = −|m| and ℓ = |m| are the same but mirrored
in the x axis. For an even number of points N, the observed interference patterns are
symmetric about the x axis and it is in this case impossible to distinguish between ℓ =
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N=5

N=6

ℓ=-1 ℓ=0 ℓ=1

Figure 3.3: Far-field intensity patterns behind an multipoint interferometer of N points illuminated
by a Laguerre-Gaussian beam with vorticity ℓ, calculated from equation 3.2. The patterns for ℓ =
−|m| and ℓ = |m| are mirrored in the x axis. For an odd number of points N, one can differentiate
between the patterns for even and odd values of ℓ; for even N one cannot.

−|m| and ℓ = |m|, reducing the number of distinguishable ℓ states to N/2 + 1. Figure 3.3
shows this behaviour for N = 5 and N = 6. This behaviour is already explained in [27],
but is shown here for the sake of completeness.

In a real application one has to take these effects into account in selecting the number
of points. It is for instance known that in all observed speckle patterns only optical
vortices with ℓ = −1 and ℓ = 1 occur [8]. In this case a multipoint interferometer with
N = 5 would suffices.

For a large number of points N, the multipoint interferometer converges to an annular
aperture and the resulting interference pattern is described by the well know Bessel func-
tion. The order of the Bessel function depends on the l state of the impinging Laguerre-
Gaussian beam since

lim
N→∞

IN
ℓ (x, y, z) ∝ J|ℓ|

(
kar

z

)
. (3.3)

In this limit one cannot distinguish between clockwise and counterclockwise vortices
of the same vorticity. Figure 3.4 illustrates that the convergence can already be seen for
relatively small number of points, in this case N = 16.

So far we have only considered the response to an on-axis, normally incident Laguerre-
Gaussian beams, studied by visual inspection. In this paper we will describe an algorithm
that can be used to determine the vorticity based on the interference patterns. Using this
algorithm we will generalise our findings to general optical vortices.
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N=16

ℓ=0 ℓ=1 ℓ=2

Figure 3.4: Far-field intensity patterns behind an multipoint interferometer of N = 16 points illu-
minated by a Laguerre-Gaussian beam with vorticity ℓ. The intensity patterns hint at the fact that
the patterns converge to a Bessel function in the limit that N→ ∞ as described by equation 3.3.

3.2 Characterising interference patterns

A general optical field can be decomposed on a bases of Laguerre-Gaussian beams, see
e.g. [30]

u(r, ϕ, z) ∝
∞∑

ℓ=−∞
cℓupℓ(r, ϕ, z), (3.4)

where cℓ is a weighting coefficient and upl(r, ϕ, z) are the pure Laguerre-Gaussian modes as
described by equation 3.1. As it turns out from the simulations, the interference pattern
behind a general multipoint interferometer for this general wave front can be described
by

IN =

N+m−1∑
ℓ=m

cℓIN
ℓ , (3.5)

where m indicates an arbitrary integer and IN
ℓ are the interference patterns behind a

general multipoint interferometer for a pure Laguerre-Gaussian mode as described by
equation 3.2. Note that the summation runs over N terms only since the interference
patterns for ℓ = m and ℓ = m + N are the same and hence we can only distinguish N
different cℓ. In case N is even the summation runs over N/2 + 1 terms only. m can be
chosen arbitrarily since the interference patterns are periodic in ℓ. The surprising fact
is that the intensity patterns form an orthogonal basis for describing the interference
patterns.

In practise the weighting constants cℓ can be found by performing a 2D convolution
algorithm to the interference patterns calculated by

cℓ = IN ∗ ∗IN
ℓ (0,0) = F −1

{
F

{
IN

}
∗ F

{
IN
ℓ

}}
(0,0), (3.6)

where ∗∗ denotes convolution, F and F −1 2D Fourier transform and 2D inverse Fourier
transform respectively and (0,0) the central pixel of the convolution. In the following
analyses this algorithm is used to determine the weighting factors cℓ. This algorithm
requires knowledge of the response of a multipoint interferometer, but as can be seen in
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equation 3.2 this response is determined by the number of points and the separation of
the pinholes only. For any real optical system the diffraction of the light at the apertures
has to be taken into account, but as stated above this will only introduce an envelope on
the observed interference pattern.

3.3 General optical vortices

3.3.1 Tilt

In general the singularity axis of an impinging optical vortex will not coincide with the
axis of to the multipoint interferometer, which will have an effect on the observed inter-
ference patterns. We have studied the effect of a tilt of the optical vortex with respect
to the multipoint interferometer.

As can be seen from figure 3.5, a tilt of the impinging optical vortex results in a shift
of the observed interference patterns, as is expected since these are far-field interference
patterns. In order to determine the vorticity of the optical vortex one first has to shift
the pattern to remove the shift introduced by the tilt. This is possible since the centre
of the interference pattern is unique for N ≥ 5, except for N = 6. For N = 4 and N = 6,
the centre of the pattern is not uniquely determined but centring at any of the repeating
unit patterns will work in this case. In the case of a real detection system, the observed
interference pattern is convoluted by the diffraction pattern of a single aperture, which
makes it more difficult to find the centre of the interference pattern. Before applying
the algorithm described above, one has to make sure that there are enough periods of the
interference pattern in the central lobe of the diffraction pattern.

3.3.2 Displacement

A displacement of the beam with respect to the multipoint interferometer results in a
blurring of the observed interference patterns as can be seen in figure 3.6. The displace-
ment is quantified by a vector r0 = (x0, y0,0). In order to analyse these blurred patterns
we use the algorithm that is described above to determine the coefficients cℓ. In the simu-
lations we capture only a finite part of the infinite interference patterns, which introduces
a certain amount of error in the values cℓ. For consistency with the previous part of this
paper, we choose the same pinhole separation as used above. However, we note that the
error in the determination of cℓ can be minimised by increasing the pinhole separation.

We calculated the normalised overlap with the different modes for a optical vortex
that is displaced over r0 = (x0,0,0). To avoid effects coming from the intensity profile of
the optical vortex, we only consider the phase of the optical vortex and set the intensity
to be uniform. As explained before the intensity fluctuations for large optical vortices are
expected to be on large scales and the intensity between the different points or apertures
will not vary much. The results are shown in figure 3.7. As expected, for an on-axis beam,
the coefficient cℓ equals one for ℓ = 1 and is zero elsewhere. As the beam is displaced,
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θ=0°

φ=0° φ=0.1° φ=0.2°

θ=90°

Figure 3.5: Far-field intensity patterns behind an multipoint interferometer of N = 5 illuminated by
a Laguerre-Gaussian beam with vorticity ℓ. The propagation axis of the impinging beam is tilted
with respect to the normal of the multipoint interferometer over θ and ϕ, which are the azimuthal
and polar angles respectively. The tilt results in a shift of the observed interference pattern as is
indicated by the white arrows.

N=6

N=5

ℓ=0 ℓ=1 ℓ=2

Figure 3.6: Far-field interference patterns behind a multipoint interferometer with N = 5 illumi-
nated by an optical vortex of uniform intensity with its centre displaced over r0 = (0.5a,0,0). The
displacement results in a blurring of the interference patterns.
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Figure 3.7: (a) Decomposition (see equations 3.5 and 3.6) for a displaced optical vortex with uniform
intensity and vorticity ℓ = 1. The position of the singularity is displaced over distance r0 = (x0,0,0).
In the limit that the singularity is far from the multipoint interferometer, the wave front that is
sensed by the multipoint interferometer becomes essentially flat. (b) Same calculation, but for an
optical vortex with ℓ = 2.

the distribution broadens, but still peaks at ℓ = 1 of the impinging optical vortex. For
even larger displacements there is more and more overlap with the ℓ = 0 state. Once the
singularity moves out of the circle transcribing the pinholes, the ℓ = 0 component dom-
inates. Further simulations show that this switching behaviour happens very fast. The
fact that the distribution converges to a pure ℓ = 0 state can intuitively be understood,
since the wave front that is sensed by the multipoint interferometer effectively becomes
flat as the singularity is far away from the centre of the multipoint interferometer.

For an impinging optical vortex with ℓ = 2, we observe the same behaviour, but in two
steps. The resulting interference pattern first shows a strong peak at ℓ = 1 mode before
it finally converges to an ℓ = 0 state. These simulations confirm the fact it is possible to
determine the vorticity of an optical vortex as long as the singularity axis is within the
circle through the points of the multipoint interferometer.

3.3.3 Anisotropic optical vortices

Many optical vortices that occur in more generic systems, for instance speckle patterns,
are anisotropic, meaning that the phase does not increase linearly with the azimuthal an-
gle around the phase singularity (see figure 3.8). These anisotropic optical vortices can
be described by a set of Stokes parameters, using a single parameter α to describe the
anisotropy [31, 32] where 0 ≤ α ≤ π. We analysed the performance of the multipoint
interferometer impinged by an anisotropic optical vortex for varying α in terms of its
decomposition on the different pure modes. In the simulations we used the same pa-
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Figure 3.8: (a) Phase profile of an anisotropic optical vortex. The color coding is the same as in
figure 3.1. Lines indicate phase contours separated by π/4. (b) Mode decomposition as a function
of α obtained by applying the algorithm as described by equation 3.6.

rameters as above and again only consider the phase of the optical vortex and assume
a uniform intensity. One can see that the system is able to determine the vorticity of
the impinging beam, except in the region around α = π/2 where the vortex reduces to
an edge dislocation and the vorticity is not defined. The width of the region in which
the vorticity is determined is dependent on the experimental error and depends on the
real application. As before we note that the error is strongly dependent on the distance
between the points, and that the simulations are not optimised for reducing the error.
One can see that the vortex changes sign as the anisotropy goes through α = π/2 since
the orientation of the zero field lines of the real and imaginary part changes sign here.

3.3.4 Superposition of optical vortices

It is possible to generate a superposition of Laguerre-Gaussian beams using, for instance,
a fork hologram [29, 33]. For communication purposes it would be interesting to be able
to decompose this superposition on a basis of pure modes. A general superposition is
described by equation 3.5. As described above one can use only N different pure modes
when using a multipoint interferometer of N points. Figure 3.9 (a) shows the interference
pattern for behind a multipoint interferometer with N = 5 for a randomly chosen set of
superposition coefficients shown in figure 3.9 (b) as input. Figure 3.9 (b) also shows the
output coefficients cℓ determined using the algorithm described above. The difference
between the input and output values is caused by fact that there is some error in the
output coefficients cℓ because of the fact that only a finite part of the interference pattern
is captured. This can be improved by capturing a larger part of the pattern, for instance
by increasing the separation between the points in the multipoint interferometer. This
parameter has not been optimised in these simulations.

These simulations show that it is possible to decompose a superposition of optical
vortices with different ℓ modes onto a basis of pure ℓ modes using a multipoint interfer-
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Figure 3.9: (a) Far-field interference pattern behind a multipoint interferometer with N = 5 illu-
minated by a randomly chosen superposition of Laguerre-Gaussian modes. (b) Input randomly
chosen superposition coefficients cℓ versus output coefficients as determined by using the method
described above.

ometer. It requires however several Fourier transforms to perform this decomposition,
which cost valuable computation time, making it not very useful for fast communication
purposes as opposed to the method proposed by [33] that returns the coefficients cℓ with-
out calculation. The multipoint interferometer can however be useful in cases where the
beam is strongly diverging, which might occur in long range communication.

3.4 Conclusion

We described an algorithm to characterise the response of a multipoint interferometer
and used it to study this response in the case of a general optical vortex and a superposi-
tion of optical vortices. This showed that in most cases it is possible to measure the vor-
ticity of the optical vortex. We also showed that a multipoint interferometer can be used
to decompose a superposition of Laguerre-Gaussian modes, which is potentially useful
for application in free space communication, albeit that the analysis is time consuming.
We conclude that a multipoint interferometer is a useful tool for measuring the vorticity
of a general vortex of, in principle, arbitrary sizes as are expected to be associated with
OAM in astrophysics.
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CHAPTER 4

Measuring optical vortices in a speckle pattern using a
multi-pinhole interferometer

We show that it is possible to find and characterise optical vortices in a speckle pattern
using a multi-pinhole interferometer. This measurement does not require an additional
flat wave front to interfere with the speckle, providing great experimental ease. In addi-
tion, a multi-pinhole interferometer can be made arbitrarily large and can therefore be
adjusted to the expected speckle size. We present experimental results confirming our
understanding.

G. C. G. Berkhout and M. W. Beijersbergen, Measuring optical vortices in a speckle pattern
using a multi-pinhole interferometer, Optics Express 18, 13836 (2010).
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4. MEASURING OPTICAL VORTICES IN A SPECKLE PATTERN USING A MULTI-PINHOLE
INTERFEROMETER

4.1 Introduction

Speckle patterns are very common in optics, since they occur when coherent light is
scattered by a rough surface or an inhomogeneous medium [34]. The rough texture of
the surface or medium causes the scattered light to interfere in a random fashion resulting
in the well-known granular far-field intensity patterns.

The theory of speckle is well established [35]. Due to the random nature of the inter-
ference, points exist in a speckle pattern where the field amplitude is equal to zero and the
phase is singular. Around these singular points, the field is proportional to exp(iℓϕ), or,
in other words, the phase varies in an azimuthal fashion, forming an optical vortex [10].
Optical vortices are generally associated with orbital angular momentum [1]. Many exper-
imental and theoretical studies have been performed on the optical vortices in speckle
patterns [8, 28, 30, 36–38]. Optical vortices in speckle mostly have topological charge
± 1, however very rare doubly degenerate vortices have been observed [36]. Contrary
to the optical vortices in Laguerre-Gaussian beams, the vortices in speckle patterns are
anisotropic, meaning that the phase of the field does not increase linearly with the az-
imuthal angle around the singularity [9, 32]. The phase distribution in speckle patterns
may be studied experimentally by interfering the pattern with a flat wave front [8]. The
position of the vortex shows up as a fork-like structure in the interference pattern with
its topological charge given by the orientation of the fork.

Recently it was suggested that light from astronomical sources could posses orbital
angular momentum [11, 26, 39, 40]. One of the most likely fields to contain this orbital
angular momentum is a speckle pattern caused by starlight scattering from a inhomo-
geneous interstellar medium [11]. Studying these patterns could reveal interesting new
information about the star and the interstellar medium. Because of the large distance be-
tween the scatterer and the detector, these speckles are expected to be large compared to
available detectors, making it impossible to study them by interference with a flat wave
front.

We recently studied an alternative way to find and characterise optical vortices, that is
based on measuring and analysing the interference pattern behind a multipoint interfer-
ometer, which consists of a finite number of small apertures arranged in circular fashion
[27]. We showed that the interference pattern contains information on the vorticity of
the optical vortex impinging the apertures. Guo et al. [41] developed an efficient analy-
sis to extract the relative phases of the light at the individual apertures by performing a
Fourier transform on a single interference pattern. Because the system is based on a finite
number of pinholes, the light throughput is inherently not very high, making it less suit-
able for applications at low light levels. In this paper we demonstrate experimentally that
the multi-pinhole interferometer, in combination with the Fourier transform method to
analyse the interference pattern, can be used to measure vorticity in a speckle pattern,
opening the way to do this on a variety of sources including astronomical.

To demonstrate this method experimentally, we measured optical vortices in the lab-
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Figure 4.1: Schematic drawing of the setup that is used to measure optical vortices in a speckle
pattern. A helium-neon laser (HeNe), appropriately attenuated with a neutral density filter wheel
(FW), and two mirrors (M1 and M2) are used to illuminate a small part of a light shaping diffusor
(LSD) which creates the speckle pattern. At a sufficiently large distance to guarantee fully de-
veloped speckle, a multi-pinhole interferometer (MPI), a lens (L) and a CCD camera (CCD) are
placed on a translation stage (TS) that can be moved in the x and y-direction. Several multi-pinhole
interferometers with different number of pinholes, pinhole separation and pinhole diameter are
combined on a single optical component and a diaphragm (D) is used to select one.

oratory using pinholes, forming a multi-pinhole interferometer [42]. One could also think
of replacing the points by telescopes and using recombination optics to overlap the light
from the different points. In principle, any given point separation would be possible in
this way, making it also suitable for the case that the speckle is much larger than a sin-
gle detector. We proved theoretically that this method is sensitive to detect anisotropic
optical vortices and found that the vortex can be identified as long as the singularity is
enclosed by the multipoint interferometer [43]. In this paper, we verify this statement
by measuring the position and vorticity of optical vortices in a speckle pattern.

4.2 Experiment

To demonstrate the use of a multi-pinhole interferometer for measuring optical vortices
in a speckle pattern, we built a setup as shown in figure 4.1. We illuminate a light shaping
diffuser, a specially designed ground glass plate, by a helium-neon laser to create a speckle
pattern. At a sufficiently large distance to guarantee fully developed speckle, a multi-
pinhole interferometer is mounted on a translation stage. The stage further holds a lens
and a CCD camera to record the far field interference pattern behind the multi-pinhole
interferometer. The translation stage can be moved in the x and y-direction. In this paper
we only present the results for a scan in one direction since we believe that this gives the
clearest demonstration of the principle.

A multi-pinhole interferometer consists of N pinholes uniformly distributed on a cir-
cle with radius b. As shown in [27], the interference pattern behind such an interferometer
contains information on the vorticity of the illuminating optical field for N ≥ 4 and the
number of vortex modes that can be detected depends on N. For an odd number of pin-
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holes, N different vortex modes can be distinguished, while this reduces to N/2+1 modes
for an even number of pinholes as one cannot distinguish between positive and negative
values of ℓ in this case. In a speckle pattern, one only expects vortices with ℓ = ±1. For
the above reasons, a multi-pinhole interferometer with N = 5 is used in this experiment,
which allows detection of optical vortices with ℓ = 0, ±1, ±2.

The distance between the light shaping diffusor an the multi-pinhole interferometer
is chosen such that the generated speckle is fully developed and that the average distance
between two speckles at the interferometer is Xsp ∼ 1 mm. The radius of the interfer-
ometer is a = 100 µm, which is much smaller than the average speckle size to reduce the
possibility that two vortices impinge the multi-pinhole interferometer at the same time.
The diameter of the pinholes is b = 50 µm, which is the largest pinhole diameter available
to garuantee as much throughput as possible. In this experiment, the translation stage is
moved in the x-direction over 3 mm and the interference pattern is recorded after every
50 µm. Around the positions where the interference pattern changes because of the pres-
ence of an optical vortex, the distance between two consecutive measurements is reduced
to 10 µm to improve the resolution.

Direct measurement of the speckle field intensity in the point under study is not
possible in the current setup. Instead we determine the total intensity in the recorded
interference patterns which is proportional to the total intensity in a small ring around the
point under study. Since the intensity around a singularity varies approximately linearly
with the distance from the singularity, a minimum in the total intensity in the image
implies a minimum in the field intensity at this point.

4.3 Results

Figure 4.2 shows the interference patterns behind the multi-pinhole interferometer at
two different positions in the speckle pattern. By comparing these patterns to the pat-
terns published in [27], one can see that the interference pattern in figure 4.2 (a) corre-
sponds to the pattern for an optical vortex with ℓ = 0, while figure 4.2 (b) resembles
the interference pattern for an optical vortex with ℓ = −1. The orientation of the pat-
terns is determined by the orientation of the multi-pinhole interferometer with respect
to the CCD camera. The Fourier transform analysis as presented by Guo et al. allows a
quantitative analysis of these interference patterns [41].

Due to the random nature of the fully developed speckle pattern, the local propaga-
tion direction of the light impinging the multi-pinhole interferometer varies, causing the
interference pattern to move on the CCD-camera. Before the Fourier transform analysis
is applied, the interference pattern is first centred on the image.

Guo et al. showed that the relative phases ψ at the pinholes can be determined from
the phase of the Fourier transform of the interference pattern behind a multi-pinhole in-
terferometer. They showed that the relative phases can be extracted from the vertices of
a polygon, that is a scaled and shifted copy of the multi-pinhole interferometer. Since we
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Figure 4.2: Interference patterns behind the multi-pinhole interferometer recorded at two dif-
ferent positions in the speckle pattern. (a) shows the interference pattern at relative position
x = 0 mm, a region of high field intensity. (b) shows the interference pattern at relative posi-
tion x = 1 mm, a region of low field intensity. The changing pattern is explained by an optical
vortex impinging the multi-pinhole interferometer in (b). The size of each pixel in the CCD image
is 6.5 µm and both images contain 1392 × 1040 pixels. Both images are recorded using the same
settings of the CCD-camera and are normalised to the peak intensity of image (a), allowing a direct
comparison of the total intensities in the images.

use a multi-pinhole interferometer with five pinholes, the polygon is in fact a pentagon.
Figure 4.3 (a) shows the phase of the Fourier transform of the interference pattern in

4.2 (b). For clarity the aforementioned pentagon is overlaid on the phase of the Fourier
transform. Due to the symmetry of the multi-pinhole interferometer, this pentagon can
be drawn in ten different orientations (not drawn in figure 4.3 (a)). To reduce the ef-
fect of the noise, we determine the relative phases at the pinholes for each of the ten
different orientations of the pentagon and average these. Figure 4.3 (b) shows the av-
erage relative phases for figure 4.3 (a), where ϕ denotes the azimuthal angle, and gives a
comparable result to figure 3 (b) in [41], showing that the optical vortex impinging the
multi-pinhole interferometer in this case has topological charge ℓ = −1. The vorticity
of the field impinging the multi-pinhole interferometer is determined by fitting a line
through the averaged phase profile and determining the value of the fit at ϕ = 2π.

In total 93 interference patterns were recorded as a function of position in the speckle
pattern. Figure 4.4 shows the results of the data analysis for all these patterns. The
total intensity in each image is shown in figure 4.4 (a), where the curve is normalised
to its maximum and shows two minima. The minimum around x = 1 mm corresponds
to the image shown in figure 4.2 (b). From figure 4.4 (b) it is clear that this position
can be associated with an optical vortex of topological charge ℓ = −1. The minimum at
x = 2.6 mm proves to be associated with an optical vortex of topological charge ℓ = 1 (see
Fig. 4.4 (b)). The width of the plateau of both peaks in figure 4.4 is ∼ 100 µm, which
confirms the fact that an optical vortex can be observed as long as its axis lies well within
the multi-pinhole interferometer.
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Figure 4.3: (a) Phase of the Fourier transform of the interference pattern in figure 4.2 (b). As a guide
to the eye the positions where the relative phase is read off are shown as the vertices of the white
pentagon. The same pentagon can be drawn in ten different orientations. (b) shows the average
phase at the individual pinholes ψ calculated from the ten different orientations as a function of
the azimuthal angle ϕ. The dotted lines are drawn as a guide to the eye and indicate the relative
phases for optical vortices of topological charge ℓ = 2, 1,0,−1,−2 from top to bottom.
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Figure 4.4: (a) Normalised total intensity in the recorded interference patterns as a function of
multi-pinhole interferometer position x. Since this intensity is proportional to the intensity in a
small ring around the vortices, it is expected not to go to zero. (b) Vorticity of the field imping-
ing the multi-pinhole interferometer as calculated using the Fourier transform analysis. The two
minima in (a) clearly correspond to optical vortices of opposite sign.
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4.4 Discussion

We demonstrated that a multi-pinhole interferometer is an efficient tool for finding and
characterising optical vortices in a speckle pattern. The main advantage of this technique
is in the fact that it does not require an additional flat wave front to interfere with the
speckle. In addition, this method relies only on a finite number of point measurements
and can therefore be scaled to arbitrary sizes, making it applicable to the case where the
speckle pattern is much larger than the detector area. The pinholes can be replaced by
telescopes and optics to combine the light from them. For electromagnetic fields at lower
frequencies wave pipes or electronics can be used to transport and combine the signals.

An important application is foreseen in finding optical vortices in speckled astronom-
ical wave fronts. A more detailed study has to be performed on the exact nature of the
speckles that can be expected in astronomical wave fronts.

Some care has to taken in choosing the separation between the pinholes or telescopes.
The average speckle size determines both the lower and upper limit of this separation.
The pinholes cannot be placed too close to the vortex, since there is hardly any intensity.
On the other hand, as the pinholes are placed too far apart, neighbouring vortices start
to affect the measurement. We found that a pinhole separation that is roughly one tenth
of the average speckle size is a good trade-off.

Combining a large number of multi-pinhole interferometers in a single array would
make it possible to find a large number of optical vortices in a wave front in one mea-
surement. Knowledge of the position and vorticity of these vortices makes it possible to
reconstruct the wave front, making such an array suited to be used as a wave front sen-
sor. The ability to detect optical vortices is an advantage over existing wave front sensors
like the Shack-Hartmann sensor, although a more detailed study has to be carried out to
compare the performances of both sensors.

4.5 Conclusion

We demonstrated that a multi-pinhole interferometer, using only a finite number of aper-
tures, can be used to quantitatively map the vorticity in a fully developed speckle pattern.
To our understanding this is the first method to measure optical vortices in a speckle pat-
tern without the need for a reference wave front. In addition a multi-pinhole interferom-
eter can, in principal, be scaled to arbitrary sizes, which allows measurement of optical
vortices in speckle patterns with any given speckle size.
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CHAPTER 5

Quantitative mapping of the optical vortices in a
speckle pattern

In previous chapters, we have demonstrated that a multi-pinhole interferometer can be
used to measure the topological charge of an optical vortex. We further showed that
this method can be used to find the optical vortices in a speckle pattern. Here, we show
that a multi-pinhole interferometer can also be used to make a two-dimensional map of
an optical field in terms of radially independent optical vortex components, exp(imϕ),
where m is an integer. From these maps, we can not only determine the position and
topological charge of the optical vortices in the field, but also their anisotropy and their
orientation. We present results for an isotropic optical vortex and a speckle pattern con-
taining several vortices. The results from the latter case can serve as the starting point to
experimentally study the statistics of the anisotropy and orientation of optical vortices
in a speckle pattern.

G. C. G. Berkhout, Y. O. van Boheemen, M. P. van Exter, and M. W. Beijersbergen, in
preparation for publication.
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5. QUANTITATIVE MAPPING OF THE OPTICAL VORTICES IN A SPECKLE PATTERN
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Figure 5.1: Phase of the field for (a) an isotropic ℓ = 1 optical vortex and (b) an anisotropic ℓ = 1
optical vortex. The black lines indicate equal phase lines and are spaced π/4 radians apart. In (b)
the lines are more closely spaced around the y axis, showing the anisotropic character of the vortex.
In addition, the dashed lines indicate lines of constant intensity. For an isotropic optical vortex,
the lines of constant intensity are circles, while for an anisotropic optical vortex they are ellipses.

5.1 Introduction

Optical vortices are of great importance in optics, both for their fundamental properties
and their connection to the orbital angular momentum of light [1, 25], as well as for their
applications in optical communication [30, 33] and coronography [21].

Optical vortices are associated with phase singularities in an optical field. Isotropic
or pure optical vortices are characterised by a complex amplitude whose azimuthal be-
haviour is characterised by, A(ϕ) ∝ exp(iℓϕ), where ℓ is the topological charge, i.e., the
integer number of multiples of 2π that the phase of the field increases in a full turn around
the vortex. For an isotropic optical vortex, this phase increase goes linear with the az-
imuthal coordinate, ϕ. However, in general, this phase increase does not have to be linear,
in which case the vortex is called anisotropic (see figure 5.1 for a comparison). Not only
does the phase increase in a nonlinear fashion around an anisotropic vortex, also the in-
tensity profile around it is anisotropic, meaning that the lines of constant intensity are
ellipses [44], which is indicated by the dashed lines in figure 5.1. Describing the azimuthal
behaviour of the field around an anisotropic optical vortex requires more than one pure
optical vortex mode, such that the field can be decomposed in the orthogonal basis of
pure vortex modes

A(ϕ) =
∑

m

λm√
2π

eimϕ, (5.1)

where the factor 1/
√

2π ensures normalization. The coefficient λ0 is related to the local
intensity of the field, while the coefficients λ−1 and λ1 are related to the derivatives of the
field. In the case of an isotropic optical vortex, λm = δm,ℓ, where δi,j is the Kronecker
delta.

Anisotropic optical vortices occur in speckle patterns, which arise naturally from the
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5.2. THEORY

interference of a large number of more or less random plane waves. At particular places
in a speckle pattern the amplitude of the field vanishes, causing the phase to be singu-
lar. Around these phase singularities an optical vortex is formed, whose exact form is
determined by the local interference of the plane waves. Several parametrisations have
been proposed to characterise the behaviour of the field around such a vortex. In [9],
Freund introduced two parameters to describe the field, which he called the anisotropy
and skewness. However, the division between anisotropy and skewness depends on the
overall phase of the optical field. This was pointed out by Schechner and Shamir [45],
who claimed that the parameters introduced by Freund are inconvenient as ”they are
not functionally independent of each other.” The true independent parameters are the
anisotropy of the vortex and the orientation of the major semi-axis of the ellipse shown
in figure 5.1 (b). A detailed description of these parameters is given in [32, 44, 46]. In
[44], the statistical distributions of the anisotropy and orientation in a speckle pattern
are given. Experimental verification of the distribution of the anisotropy has been shown
in [38].

A convenient way to find the optical vortices is to interfere the speckle pattern with
a reference beam [8, 38, 47], which allows reconstruction of the phase around the phase
singularity. From this phase reconstruction, the topological charge, anisotropy and ori-
entation of the optical vortex can be determined.

In previous chapters we have described a different method to measure the topological
charge of an optical vortex using a multi-pinhole interferometer (MPI). In chapter 4, we
have shown that this method also works for finding optical vortices in a speckle pattern.
Here, we demonstrate that we can use an MPI to map a field in terms of its pure optical
vortex components, in other words, that we can find the coefficients λm for each position
in the field. From these coefficients, we can determine the position of the optical vortices
and their topological charges as well as their anisotropy and orientation.

We present results for an isotropic optical vortex with ℓ = −1 and a speckle pattern.
The latter case can serve as a starting point for studying the statistics of the anisotropy
and orientation of the optical vortices in a speckle pattern.

5.2 Theory

A general MPI consists of N pinholes with diameter b, positioned equidistantly on the
circumference of a circle with radius a. Provided that the pinholes do not overlap, the
transmission function of the MPI, T(x, y), is given by

T(x, y) =
N−1∑
k=0

circ(x − xk, y − yk), (5.2)
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where
circ(x, y) =

{
1 if

√
x2 + y2 ≤ b/2

0 if
√

x2 + y2 > b/2 , (5.3)

and (xk, yk) = (a cosαk, a sinαk) is the centre of the k-th pinhole with αk = 2πk/N. The
diffraction pattern behind the MPI is given by

I(u,v) ∝
∣∣∣F {A(x, y)T(x, y)}

∣∣∣2 , (5.4)

where A(x, y) is the complex field incident on the MPI, and F denotes the Fourier trans-
form. If the pinholes are small compared to the scale of the fluctuations in the incident
field, the amplitude and phase of this field can be considered to be constant over the area
of a pinhole, and the diffraction pattern can be written as (see [27, 41])

I(u,v) ∝

∣∣∣∣∣∣∣∣
N−1∑
k=0

AkF {circ(x − xk, y − yk)}

∣∣∣∣∣∣∣∣
2

, (5.5)

where Ak = |Ak| exp(iϕk) is the complex amplitude of the field incident on the k-th pin-
hole and |Ak| and ϕk are the amplitude and phase respectively. If the MPI is illuminated
with an optical vortex, the observed diffraction patterns depend in a qualitative way on
the topological charge of the vortex [27]. A more quantitative analysis of the diffrac-
tion patterns is presented in [41]; this analysis is based on taking the numerical Fourier
transform of the diffraction patterns, which is given by

g(x, y) ∝ F −1{I(u,v)} (5.6)

∝
N−1∑
k,l=1

PklAkA∗l , (5.7)

where ∗ denotes the complex conjugate and

Pkl(x, y) =
∫

circ(α − xk, β − yk)circ(α − xl − x, β − yl − y)dαdβ, (5.8)

and the integral is taken over the entire area of the image. Although the input of the
Fourier transform is a real-valued intensity image, I(u,v), its output g(x, y) is complex
valued. Moreover, g(x, y) is the convolution of the complex field just after the MPI with
its complex conjugate. In the special case that the MPI consists of an odd number of
pinholes and the diameter of the pinholes is not more than half the separation between
them, g(x, y) consists of a number of discrete peaks that are located at (xk − xl, yk − yl) and
given by

g(xk − xl, yk − yl) ∝ AkA∗l , (5.9)

36



5.2. THEORY

A2A0* A3A0*

A2A4*
A3A4* A2A1* A3A1*

A4A0*A1A0*

S
A1A4*

A2A3* A3A2*

A4A1*

A0A4* A0A1*

A1A3* A1A2* A4A3* A4A2*

A0A3* A0A2*

Figure 5.2: Graphical representation of equation 5.9 for an N = 5 multi-pinhole interferometer
illuminated with an on-axis and centred ℓ = 1 optical vortex. Each of the 20 spots corresponds to
a cross-product, AkA∗l . In addition, the central peak is given by S = ∑N−1

k=0 |Ak|2. As a guide to the
eye, N = 5 dashed pentagons are drawn, which will be used in the analysis described in section 5.3.

where Ak and Al are the complex amplitudes at the k-th and l-th pinhole, respectively.
Interestingly, each peak corresponds to a single product of the amplitudes at two pin-
holes. Figure 5.2 shows a typical example of equation 5.6 for N = 5. Because the input
signal of the Fourier transform, I(u,v), is real valued, g∗(x, y) = g(−x,−y) which can be
clearly seen in the figure.

From the set of cross-products, AkA∗l , the amplitude of the field at each of the pin-
holes can be determined (details of this analysis are provided in section 5.3). Once the
complex amplitudes are determined, these can be rewritten in the basis of radially inde-
pendent optical vortex modes

Ak =

(N−1)/2∑
m=−(N−1)/2

λm√
2π

eim(2πk/N). (5.10)

As explained in chapter 2, an MPI with and odd number of pinholes N can only detect N
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different vortex modes and hence the summation in equation 5.10 runs from m = −N−1
2

to m = N−1
2 . We further define γm ≡ |λm|2.

Once we have decomposed the field in the aforementioned basis, we can use the re-
sults to calculate the anisotropy and orientation of the optical vortex using the equations
given in [44]

s3 =
γ1 − γ−1

γ1 + γ−1
. (5.11)

Finally, we can calculate the orientation of the optical vortex by

ϕ0 =
1
2 (arg λ1 − arg λ−1). (5.12)

5.3 Analysis

To extract the complex amplitudes at the pinholes from the diffraction patterns behind
an MPI, we apply the following analysis steps:

1. Centre the diffraction patterns on the CCD-image and crop the image;

2. Calculate the inverse discrete Fourier transform (IDFT);

3. Determine the complex peak amplitudes of all N(N − 1) + 1 peaks in the IDFT
image;

4. Derive the complex amplitudes, Ak, at the pinholes;

5. Rewrite these amplitudes in terms of the radially independent vortex modes (coef-
ficients λk);

6. Calculate the anisotropy and orientation of the optical vortex.

Below we describe these steps in more detail.
Due to the fact that the MPI moves, while the CCD-camera is fixed, the diffraction

pattern moves across the CCD-camera as the stage moves, which affects the Fourier
transform of the image. To avoid this, we first determine the centre of the diffraction
patterns by making use of the Bessel function amplitude envelope, caused by the diffrac-
tion at the individual pinholes. We do so by convoluting the diffraction pattern with the
Bessel pattern expected from a single pinhole and determining the maximal overlap be-
tween the two images, which corresponds to the centre of the diffraction pattern. Once
the centre of the diffraction pattern is determined, the pattern is shifted such that its
centre coincides with the centre of the image, by circularly rotating the pixels in both
the x and y direction. The original image has 768×512 pixels. After centring, the image is
cropped to 512×512 pixels, by removing 128 columns of pixels on either side of the image.

We take the complex discrete Fourier transform of this centred and cropped image,
which returns an image as described by equation 5.9. Due to the fact that we use a discrete
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Fourier transform, the position, (xkl, ykl), and diameter, s, of all N(N − 1) + 1 peaks in the
Fourier transformed image is scaled and given by

(xkl, ykl) =
nd
λz (xk − xl, yk − yl), (5.13)

s = nd
λz b, (5.14)

where a and b are the dimensions of the multi-pinhole interferometer, z = 0.1 m is the
distance between the MPI and the CCD, λ = 633 nm is the wavelength, n = 512 is the
number of pixels, and d = 9.0 µm is the pixel size. For convenience, we define Skl ≡ AkA∗l
and use the positions given in equation 5.13 as a starting point for finding the peak am-
plitudes |Skl|. The absolute value of the complex amplitude around these peaks, |g(x, y)|
around these peaks is described by the convolution between two pinholes which is de-
scribed by

|g(x, y)| = c
√

(x − xkl)2 + (y − ykl)
2 + |Skl|, (5.15)

where c is a negative constant. We fit this function to the amplitude of the transformed
image around each of the peak positions (xkl, ykl) and find the peak amplitudes |Skl|. The
phase can be directly determined from the phase of g(x, y), which can be combined with
|Skl| to give the complex value of Skl. In addition, we determine the peak amplitude of
the central peak in the Fourier transform, S. To do this, we perform a fitting routine
similar to the one described in equation 5.15, but remove the central pixel of the Fourier
transform, since this pixel alone contains all the background offset of the original image.

From this set of Skl, we can determine the complex amplitude of the field at the pin-
holes. For each fixed value of l, we can apply the following analysis. For demonstration
purposes, we take l = 0 and use

AkA∗0 ≡ Sk0, (5.16)

for k = 1 . . .N − 1. In addition, the intensity of the central peak of the Fourier transfor-
mation is given by

S =

N−1∑
k=0
|Ak|2

= |A0|2 +
N−1∑
k=1

∣∣∣∣∣∣Sk0

A0

∣∣∣∣∣∣2 , (5.17)

where we used equation 5.16 to get to the second part of this equation. Equation 5.17 can
be solved for A0

|A0| =

√
1
2

(
S −

√
S2 − 4S0

)
, (5.18)
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Figure 5.3: Schematic overview of the setup used to measure a map of the pure vortex modes
in a complex field, and thereby the position, charge, anisotropy and orientation of the vortices
contained in the field. We use the setup to study the far-field of a fully developed speckle pattern,
which is generated by illuminating a light shaping diffuser (LSD) with a helium-neon (HeNe) laser
beam. The LSD can be replaced by a fork hologram, which produces isotropic optical vortices.
Two mirrors (M1 and M2) and a filter wheel (FW) are used to steer and attenuate the beam. The
MPI is mounted on a translation stage (TS) that can moved in the x- and y-direction. An iris (D)
is used to shield the MPI from any stray light. The far-field diffraction pattern behind the MPI is
recorded with a lens (L) and a CCD-camera, which is fixed to the optical table.

where S0 =
∑N−1

k=1 |Sk0|2. Since we can determine the field up to an overall phase, we choose
the phase of A0 to be 0. From equation 5.16 and the obtained values for Sk0 we can now
determine Ak for k = 1 . . .N − 1. This analysis can be repeated for l = 1 . . .N − 1, which
reduces the noise in the determined amplitudes.

Finally we rewrite the obtained complex amplitudes in the basis of radially indepen-
dent optical vortex modes using equation 5.10 and calculate the anisotropy and orienta-
tion of the vortex using equations 5.11 and 5.12, respectively.

5.4 Experiment

To experimentally measure a map of the pure vortex modes in a complex field, and
thereby the position, charge, anisotropy and orientation of the vortices contained in the
field, we use the setup shown in figure 5.3. In this particular experiment we use an MPI
with N = 5, a = 100 µm and b = 50 µm. The stage is used to scan the MPI through
the far-field of a fully developed speckle pattern that is generated by illuminating a light
shaping diffuser with a helium-neon laser (see figure 5.3 and its caption for more details).
The diffuser can be replaced by a fork hologram which generates isotropic optical vor-
tices. For each position of the translation stage the diffraction pattern is captured using
the CCD-camera; the image is analysed directly as described above, to avoid storage of
large amounts of data.
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5.5 Results

To demonstrate the validity of our method, we first analyse the far-field of a fork holo-
gram, which contains an isotropic optical vortex in each of its diffraction orders, except
for the zeroth order. We choose the diffraction order that contains a vortex with ℓ = −1.
This vortex is studied with the setup presented previously, where we scanned the MPI
in 20 by 20 steps of 20 µm. The results of the analysis are shown in figure 5.4, were we
show γm ≡ |λm|2, for m = 0,±1,±2. As expected, only the γ−1 shows a contribution in
the centre of the beam. At the beams edges, the beam starts resembling a flat wave front
and, indeed, the γ0 components becomes dominant.

From the above results, we can derive the anisotropy and orientation of the optical
vortices. For the case of the isotropic ℓ = −1 vortex, we obtain

s3 = 1.00, (5.19)
ϕ0 = −0.441π, (5.20)

which proves that our system gives the expected result.
Subsequently, we study a speckle pattern which is scanned with 200 by 200 steps of

20 µm (see figure 5.5). Following the same method, we can calculate the anisotropy and
orientation of the vortices in the speckle patterns. The γ0 components is proportional
to the locally averaged intensity of the field and it indeed resembles the intensity of a
speckle pattern. One can see several optical vortices of both charge ℓ = −1 and ℓ = 1,
which show up as bright spots in the γ−1 and γ1 images, respectively. The results from this
analysis serve as a starting point for a statistical analysis of the anisotropy and orientation
of optical vortices in a speckle pattern.

5.6 Conclusion

We have demonstrated that an MPI can be used to map a field in terms of its optical
vortex components. These maps can not only be used to find the positions and topo-
logical charges of the optical vortices in the field, but also to determine their anisotropy
and orientation. We have presented results for a field with an isotropic optical vortex,
which proves the validity of the analysis. In addition, we have shown the optical vortex
maps for a speckle pattern, which contains several optical vortices. By studying a large
number of these optical vortices, one can determine the statistics and the anisotropy and
orientation of these vortices; this is subject for further study.
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Figure 5.4: Coefficients of the radially independent optical vortex modes in an isotropic ℓ = −1 op-
tical vortex. As expected only the γ−1 is present in and around the centre of the beam. Further away
from the centre of the beam, the wave front becomes flatter and γ0 gives the highest contribution.
All images are normalised to the peak of the γ0 image.
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Figure 5.5: Coefficients of the radially independent optical vortex modes in a speckle patterns.
The γ0 is proportional to the locally averaged intensity and indeed resembles an image of a speckle
pattern. Several optical vortices, both of topological charge ℓ = −1 and ℓ = 1, can be seen as bright
spots in the γ−1 and γ1 images, respectively. Detailed study of the area around each vortex will yield
the anisotropy and orientation of each of the vortices.
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CHAPTER 6

Efficient sorting of orbital angular momentum states
of light

We present a method to efficiently sort orbital angular momentum (OAM) states of light
using two static optical elements. The optical elements perform a Cartesian to log-polar
coordinate transformation, converting the helically phased light beam corresponding to
OAM states into a beam with a transverse phase gradient. A subsequent lens then focuses
each input OAM state to a different lateral position. We demonstrate the concept ex-
perimentally by using two spatial light modulators to create the desired optical elements,
applying it to the separation of eleven OAM states.

G. C. G. Berkhout, M. P. J. Lavery, J. Courtial, M. W. Beijersbergen, and M. J. Padgett,
Efficient  sorting  of  orbital  angular  momentum states  of  light, Physical Review Letters 105,
153601 (2010).
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6. EFFICIENT SORTING OF ORBITAL ANGULAR MOMENTUM STATES OF LIGHT

6.1 Introduction

Nearly 20 years ago it was recognized by Allen et  al. that helically phased light beams,
described by a phase cross section of exp(iℓϕ), carry an orbital angular momentum (OAM)
of ℓℏ per photon, where ℓ can take any integer value [1, 2, 25]. The unlimited range of ℓ
gives an unbounded state space, and hence a large potential information capacity [30,
33]. At the level of single photons, OAM entanglement is a natural consequence of the
conservation of angular momentum in nonlinear optics [48]. This entanglement makes
OAM a potential variable for increased-bandwidth quantum cryptography [49–51], but
only if a single photon can be measured to be in one of many different states.

Generation of helically phased beams with OAM is most usually accomplished using
a diffractive optical element, i.e., hologram, the design of which is a diffraction grating
containing an ℓ-fold fork-dislocation on the beam axis [52, 53]. If the hologram is illumi-
nated by the output from a laser, or single-mode fiber, the first-order diffracted beam has
the required helical phase structure. The same setup, when used in reverse, couples light
in one particular OAM state into the fibre. In this case, the hologram acts as a mode
specific detector, working even for single photons [29]. However, such a hologram can
only test for one state at a time. Testing for a large number of possible states requires a
sequence of holograms, thereby negating the potential advantage of the large OAM state
space. More sophisticated holograms can test for multiple states, but only with an effi-
ciency approximately equal to the reciprocal of the number of states [33, 54]. For classical
light beams, the OAM state can be readily inferred by the interference of the beam with
a plane wave and counting the number of spiral fringes in the resulting pattern [15]. One
can also use the diffraction pattern behind specific apertures to determine the OAM state
of the incoming light beams [27, 55]. All of these approaches again require many photons
to be in the same mode so as to produce a well-defined pattern.

The symmetry of helically phased beams means that their rotation about the beam
axis induces a frequency shift, each OAM component inducing a separate frequency side-
band [56], which could, in principle, be used to measure OAM [30]. However, spinning
a beam about its own axis at a rate sufficient to measure its frequency shift is not tech-
nically possible. This technical challenge is lessened by using a static beam rotation to
introduce an ℓ-dependent phase shift within a Mach-Zehnder interferometer; a cascade
of N − 1 interferometers can measure N different states [13]. Although establishing the
principle for single-photon measurement of OAM, for large N, this cascaded interfero-
metric approach remains technically demanding for inclusion into larger systems.

6.2 Theory

In this chapter we are motivated by the simple example of the discrimination of plane
waves within direction space. A lens is all that is required to focus a plane wave to a spot
in its focal plane, the transverse position depending on the transverse phase gradient of
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6.2. THEORY

the plane wave. This allows multiple plane waves to be distinguished from each other
using a detector array. A requirement for the separation of any two plane waves is an
additional phase change of 2π across the aperture of the lens, resulting in a difference in
spot positions comparable to the Rayleigh resolution limit. This suggests an approach
for separating OAM states, for which a change in mode index of ∆ℓ = 1 corresponds to
an increment in the azimuthal phase change of 2π. The key optical component in this
approach is one that transforms azimuthal position in the input beam into a transverse
position in the output beam, i.e., an optical element that transforms a helically phased
beam into a transverse phase gradient. This corresponds to the transformation of an in-
put image comprising concentric circles into an output image of parallel lines. Mapping
each input circle onto an output line gives the required deviation in ray direction and
hence the phase profile of the transforming optical element. However the resulting vari-
ation in optical path length means that the transformation introduces a phase distortion
that needs to be corrected by a second element. The transforming system therefore com-
prises two custom optical elements, one to transform the image and a second, positioned
in the Fourier plane of the first, to correct for the phase distortion. This transformation
is an example of an optical geometric transformation which has been previously studied
in the context of optical image processing [57]. It was shown that a geometric transfor-
mation can only be implemented by a single optical element if the mapping is conformal.
The optical element performs a mapping (x, y) 7→ (u,v), where (x, y) and (u,v) are the
Cartesian coordinate systems in the input and output plane, respectively. In our approach
v = a arctan(y/x) and the conformal mapping requires u = −a ln(

√
x2 + y2/b), similar to

[58, 59]. The phase profile of the transforming optical element is then given by

ϕ1(x, y) =
2πa
λf

y arctan
( y

x

)
− x ln

 √
x2 + y2

b

 + x
, (6.1)

where λ is the wavelength of the incoming beam, and f is the focal length of the Fourier-
transforming lens. The parameter a scales the transformed image and a = d/2π, where
d is the length of the transformed beam. b translates the transformed image in the u
direction and can be chosen independently of a.

The required phase correction can be calculated by the stationary phase approxima-
tion [59] and is given by,

ϕ2(u,v) = −2πab
λf exp

(
−u

a

)
cos

(v
a

)
, (6.2)

where u and v are the Cartesian coordinates in the Fourier plane of the first element.
Figure 6.1 (a) and (b) show the phase profiles of the transforming and phase-correcting
optical element, respectively. One can see that the transforming optical element contains
a line discontinuity. The end of this line, i.e., the centre of the phase profile, defines the
axis around which the OAM is measured.
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Figure 6.1: Phase profiles of (a) the transforming and (b) the phase-correcting optical element. d is
the length of the transformed beam. In (b) only that part of the phase-correcting element is shown,
that is illuminated by the transformed beam. In the experiment, the phase profiles are displayed on
the spatial light modulators (SLMs) with 2π phase modulation. (c) Schematic overview of the setup.
We use SLMs to both generate Laguerre-Gaussian beams (SLM1) and create the desired phase
profiles for the transforming and phase-correcting optical elements (SLM2 and SLM3, respectively).
L1 is the Fourier-transforming lens and L2 focusses the transformed beams. We use beamsplitters
to ensure perpendicular incidence on the SLMs.
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6.3. EXPERIMENT AND RESULTS

A lens is inserted after the phase-correcting element to focus the transformed beam,
which now has a 2πℓ phase gradient, to a spot in its focal plane. In the plane of this lens,
the transformed beam is rectangular, meaning that the diffraction limited focal spot is
elongated in the direction orthogonal to the direction in which the spot moves. The
transverse position of the spot changes as a function of ℓ and is given by

tℓ =
λf
d ℓ. (6.3)

6.3 Experiment and results

We use diffractive spatial light modulators (SLMs) to create the desired phase profiles.
For monochromatic light, an SLM can be programmed such that any desired phase profile
is applied to the first-order diffracted beam, limited in complexity only by the spatial
resolution of the SLM. Figure 6.1 (c) shows a schematic overview of the optical system.
We use Laguerre-Gaussian (LG) beams as our OAM states. The first SLM, programmed
with both phase and intensity information [51], is used to generate any superposition of
LG modes. Using relay optics and an iris to select the first-order diffracted beam, this
input state is directed onto the transforming element, displayed on the second SLM,
which performs the required geometrical transformation in the back focal plane of the
Fourier-transforming lens. We choose d such that the transformed beam fills 80% of the
width of the phase corrector element in order to avoid diffraction effects at its edges. A
third SLM is used to project the phase-correcting element. The diffracted beam from
this SLM has a transverse phase gradient dependent on the input OAM state. These
direction states are focussed onto a CCD array by a lens and, as discussed above, the
lateral position, tℓ, of the resulting elongated spots is proportional to the OAM state of
the incident beam.

Figure 6.2 shows modeled and observed phase and intensity profiles at various places
in the optical system for a range of OAM states. The modeled data is calculated by plane
wave decomposition. In the second column, one can see that an input beam with circular
intensity profile is unfolded to a rectangular intensity profile with a 2πℓ phase gradient.
As predicted, the position of the elongated spot changes with the OAM input state. We
recorded the output of the mode sorter for input states between ℓ = −5 and ℓ = 5. The
experimentally observed spot positions are in good agreement with the model prediction.
Our system further allows us to identify a superposition of OAM states, as can be seen
in the final row of figure 6.2, where an equal superposition of ℓ = −1 and ℓ = 2 gives two
separate spots in the detector plane at the position of ℓ = −1 and ℓ = 2. We note that
observed spots are slightly broader than the modelled ones, which is due to aberrations
introduced by the optical system.

To directly measure the state of any input beam, we define eleven, equally sized, rect-
angular regions in the detector plane, all centred around one of the expected spot position

49



6. EFFICIENT SORTING OF ORBITAL ANGULAR MOMENTUM STATES OF LIGHT

ℓ=
-1

 
ℓ=

0
ℓ=

1
ℓ=

2
ℓ=

5
ℓ=

-1
 &

 ℓ
=

2
input beam

phase
corrector
plane

x

y

u

v

s

t

s

t

modeled
detector
plane

observed
detector
plane

-π

π

ψ
 (

ra
d)

Figure 6.2: Modeled and observed phase and intensity profiles at various planes in the optical sys-
tem. From left to right, the images show the modeled phase and intensity distribution of the input
beam just before the transforming optical element and just after the phase-correcting element, and
the modeled and observed images in the CCD plane for five different values of ℓ. The final row
shows the results for an equal superposition of ℓ = −1 and ℓ = 2. The last two columns are 6×
magnified with respect to the first two columns.
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Figure 6.3: Total intensities in all detector regions for pure input OAM states from ℓ = −5 to ℓ = 5,
for both the (a) modeled and (b) observed results. The regions all have the same size and are chosen
such that they fill the entire aperture. The intensities are shown as a fraction of the total intensity
in the input beam.

for the eleven input modes used in the experiment. By measuring the total intensity in
each of these regions, we can determine the relative fraction of a specific OAM state in
the input beam. Figure 6.3 (a) and (b) show the results for eleven pure input states, both
modeled and observed, as shown in the third and fourth column of figure 6.2, respec-
tively. Since the spots for two neighboring states slightly overlap, some of the light in a
state leaks into neighboring regions, i.e., there is some cross talk between different states.
This cross talk shows up as the off-diagonal elements in figure 6.3. As described before,
our experimental results show slightly broader spots than the modelled data and hence
the off-diagonal elements are slightly larger. It is clearly possible to determine the input
state of the light beam from the position of the output spot in the detector plane.

A commonly used measure to quantify the amount of cross talk between channels is
the channel capacity, which is the maximum amount of information that can be reliably
transmitted by an information carrier [60]. In an optical system, this channel capacity
can be quoted as “bits per photon”. If a photon can be in one of N input states and its
state can be measured perfectly at the output, the channel capacity takes the theoretical
maximum value of log2 N.

Table 6.1 presents the channel capacity of the system for the modeled and observed
results, calculated from the data shown in figure 6.3. A generic approach to minimize
cross talk is to increase the separation between channels. We therefore consider the
cases where we use only every other state, ∆ℓ = 2, and every third state, ∆ℓ = 3. This
approach gives fewer states, but less overlap between different spots. In all cases, due
to the experimental imperfections, the channel capacity for the observed data is slightly
lower than the modeled one, but for ∆l = 3 it approaches the model very closely.
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ℓ N log2 N Modeled Observed
1 11 3.46 2.36 1.96
2 6 2.59 2.10 1.93
3 4 2.00 1.70 1.68

Table 6.1: Channel capacity calculated from the results shown in figure 6.3. The first three columns
show the separation between the channels,∆l, the number of states taken into account, N, and the
theoretical maximum value, log2 N. The last two columns correspond to the data shown in figures
6.3 (a) and (b), respectively.

6.4 Discussion

We note that the optical transformation is only perfect for rays which are normally in-
cident on the transforming element. Helically phased beams are inherently not of this
type, the skew angle of the rays being ℓ/kr [61]. Although this skew angle is small when
compared to the angles introduced by the transforming element, it might introduce a
slight transformation error which increases with ℓ. If the input is a ringlike intensity pro-
file, the skew angle leads to a sinusoidal distortion from the expected rectangular output.
This potential skew ray distortion is reduced by decreasing the propagation distance over
which the transformation occurs, i.e., reducing f.

In its present form, our approach is limited by the fact that the resulting spots are
slightly overlapping. This is because our transformation discards the periodic nature of
the angular variable, using instead only a single angular cycle and producing an inclined
plane wave of finite width, and similarly a finite width of spot. One option for improve-
ment is to modify the transformation to give multiple transverse cycles, which results in
larger phase gradient and thus a larger separation between the spots, albeit at the expense
of increased optical complexity. One approach to implementing this improvement would
be to add a binary phase grating to the transforming elements, producing both positive
and negative diffraction orders. By adjusting the pitch of the grating appropriately, two
identical, adjoining copies of the reformatted image are created in the plane of the phase
corrector.

We further recognise that there is a 70% light loss associated with the two SLMs that
comprise the mode sorter. This loss could, however, be eliminated by replacing the SLMs
with the equivalent custom-made refractive optical elements.

6.5 Conclusion

In conclusion, we have described a novel system comprising of two bespoke optical ele-
ments that can be used to efficiently measure the OAM state of light. We have shown
numerical and observed data to support our method. The method has a limitation due
to the overlap of the spots for different states that could be reduced by applying an addi-
tional diffraction grating to the first surface. The system opens the way to many interest-
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ing investigations ranging from experiments in multiport quantum entanglement [49], to
applications in astrophysics [11] and microscopy [62], all of which make use of the OAM
state basis.
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CHAPTER 7

Measuring orbital angular momentum superpositions
of light by mode transformation

In chapter 6 we reported on a method for measuring orbital angular momentum (OAM)
states of light based on the transformation of helically phased beams to tilted plane waves.
Here we consider the performance of such a system for superpositions of OAM states
by measuring the modal content of noninteger OAM states and beams produced by a
Heaviside phase plate.

G. C. G. Berkhout, M. P. J. Lavery, M. J. Padgett, and M. W. Beijersbergen, Measuring
orbital  angular  momentum  superpositions  of  light  by  mode  transformation, Optics  Letters
36, 1863 (2011).
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7. MEASURING ORBITAL ANGULAR MOMENTUM SUPERPOSITIONS OF LIGHT BY MODE
TRANSFORMATION

7.1 Introduction

Ever since it was first described that a light beam containing an optical vortex, exp(imϕ),
carries an orbital angular momentum (OAM) of mℏ per photon for integer m [1], this
subject has drawn significant interest [25]. In addition to its fundamental properties, the
application of OAM in optical communication [33] has been studied.

Optical vortices occur in higher-order laser modes; can be created by means of a mode
converter [63], spiral phase plate [5] or fork hologram [52]; and can also be made by en-
coding the appropriate hologram on a spatial light modulator (SLM) [47]. In addition,
optical vortices occur in caustics [64] and speckle patterns [8].

Although creating optical vortices is relatively straightforward, measuring their topo-
logical charge, m, is not. Several methods are being used, ranging from interference [15],
diffraction [27, 55], holograms [54], q-plates [65] and interferometers [13] to mode specific
detection [29]. All these methods have significant disadvantages; they either work only
for many photons in the same state, have low throughput, are technically very challenging
or can detect only one state at a time.

Recently we have described a system comprising two custom, static optical compo-
nents that allows simultaneous detection of many different OAM modes (chapter 6). The
system is based on performing a Cartesian to log-polar optical transformation [58] that
transforms the helically phased beam around an optical vortex into a tilted plane wave.
Optical vortices with different topological charges are transformed into plane waves with
a different tilt that, in turn, are focused to different positions in the focal plane of a lens.
The topological charge is thus encoded in the lateral position of the spot; all radial infor-
mation is encoded in the orthogonal axis in the focal plane. Because of the design of the
optical transformation, the spots will slightly overlap, which limits the use of the system
for single photon applications. This could be resolved by changing the design of the two
custom components, at the expense of making the optical design more complex [66].

The main advantage of the mode-transforming system is its ability to detect multiple
modes at the same time. A spectrum of optical vortices can be generated by spontaneous
parametric downconversion [67] or by phase plates, such as noninteger spiral phase plates
[68] and angular sector phase plates [69]. A misaligned beam also gives rise to a spectrum
of OAM states [70]. Finally, one can create arbitrary superpositions of orbital angular
momentum states by displaying the correct superposition of spiral phase plates as a holo-
gram on the SLM.

The modal content of any superposition can be directly derived from the positions
and relative intensities of the spots on a detector in the focal plane of the mode sorter.
For potential single-photon applications, the position where the photon hits the detector
is statistically determined by the input superposition.
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(a) (b)

Figure 7.1: Schematic drawing of (a) a spiral phase plate and (b) a Heaviside phase plate.

7.2 Theory

In this chapter, we measure the modal content of noninteger OAM states and beams
produced by a Heaviside phase plate (see figure 7.1). Following [69], we can calculate these
modal contents theoretically, neglecting the radial dependence. A general superposition
of optical vortex states is given by

A(ϕ) =
∑

m
λmAm(ϕ), (7.1)

where Am(ϕ) = 1√
2πeimϕ are the normalized vortex states. The modal coefficients for an

arbitrary superposition can be found by

λm =
1
√

2π

∫ 2π

0
e−imϕA(ϕ)dϕ. (7.2)

We further define γm = |λm|2. The normalization of the vortex states guarantees that∑
m γm = 1.

A noninteger OAM state is given by exp(iQϕ), where Q is the non-integer topological
charge. From equation 7.2, we calculate that

λm = sinc((Q −m)π)ei(Q−m)π, (7.3)

which reduces to λm = δm,Q if Q becomes integer, where δi,j is the Kronecker delta.
In addition to the noninteger spiral phase plate, we measure the modal content of the

field behind a Heaviside phase plate, which is characterised by a phase step of π between
the two halfs of the phase plate, resulting in a spectrum as defined in [69].

7.3 Experiment

A schematic overview of the experimental setup is shown in figure 7.2. Although it is
possible to manufacture all required optical components from glass or plastic, we encode
them on three SLMs, which can be used to imprint any spatially varying phase to a beam.
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Figure 7.2: Schematic overview of the setup. See text for details.
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Figure 7.3: CCD images for an equal superposition of two modes (m = −1 and m = 0) with a
relative phase of (a) ψi = 0 and (b) ψi = π. Both images are scaled to the peak intensity of the image
shown in (a). The color scale is inverted for clarity.

SLM1 is used to create all input states, either by encoding a noninteger or Heaviside phase
plate or by encoding an arbitrary superposition of spiral phase plates. The input states
are imaged onto SLM2 using two lenses (L1 and L2) and a diaphragm (D) to filter out the
correct diffraction order. The mode sorter, whose phase profiles are described in chapter
6, comprises two SLMs (SLM2 and SLM3), together with a lens (L3). A lens (L4) is used
to focus the output of the mode sorter onto a CCD camera. We use beam splitters to
ensure perpendicular incidence on all SLMs.

7.4 Results

As described above, the position of the focussed spot on the CCD camera depends on
the OAM state of the input beam. For a superposition, we expect to see more than
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Figure 7.4: Summed CCD images with a relative phase of (a) ψi = 0 (corresponding to figure 7.3
(a)), (b) ψi = π/2 and (c) ψi = π/2 (corresponding to figure 7.3 (b)) (solid lines). The dashed lines
show the fitted peaks of the individual modes. (d) The measured relative phase, ψm, as returned by
the fit versus the input relative phase, ψi, as set on SLM1.

one spot with relative intensities, depending on the modal content (see figure 7.3 for
typical examples). Since there is no extra information in the y axis of the CCD images,
we sum them over the rows to increase the signal-to-noise ratio. We extract the relative
amplitudes from these summed images by fitting a sum of the theoretically expected
peaks for the individual modes. In the fitting routine, we allow some margin in the peak
position and the peak width to compensate for possible experimental errors.

We study the output of the mode sorter for an equal superposition of two modes
(m = −1 and m = 0) with changing relative phase. Figure 7.4 (a-c) show typical summed
images. Note that one can only see the effect of the relative phase in the regions where
the peaks overlap and interfere constructively or destructively, depending on the relative
phase. In addition, figure 7.4 shows the fitted peaks of both modes as dashed curves. The
fit returns the amplitudes of the peaks and the relative phase between the states. Figure
7.4 (d) shows the fitted relative phases for a number of input phases, as set on SLM1.
This figure demonstrates that the relative phase between the states in conserved by the
transformation. The output relative phases also depend on the angular orientation of the
mode sorter around the optical axis. All data are corrected for this orientation.

Figure 7.5 (a-e) shows the modal decomposition for noninteger OAM states, both
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theoretical as calculated from equation 7.3 (black), and exprimental (gray), where Q is
varied between Q = −1 and Q = 0. One can clearly see that the peak shifts from m = −1
to m = 0. For noninteger values of Q, the spectrum broadens. Figure 7.5 (f) shows
the results for a Heaviside phase plate. The results of the fits are qualitatively in good
agreement with the theoretically predicted values.

7.5 Discussion

We have shown that mode transformation preserves the relative phase between input
states and that this relative phase can be measured in regions where the peaks of two
transformed modes overlap, which experimentally works fine if the modes have ∆m = 1.
An alternative way to measure the relative phase would be interfering the output of the
mode sorter with a flat wave front, increasing the complexity of the system. The fact that
the mode transformation separates the modes spatially and preserves coherence, could
be used to manipulate modes in a superposition.

An important application of a optical vortex mode sorter is in optical communication.
The optical vortex states span a higher-dimensional basis, which could be used to encode
information in. As shown in this chapter, our mode sorter could be used to decode the
information that is in superpositions of neighboring optical vortex states.

7.6 Conclusion

In conclusion, we have shown the principle that our previously presented mode sorter
can be used to determine the modal content of OAM superpositions in a single, prac-
tical measurement. This system can be used as a decoder in higher-dimensional optical
communication schemes based on OAM states.
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Figure 7.5: Modal decomposition of a non-integer OAM state with (a) Q = −1, (b) Q = − 3
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4 , (e) Q = 0 and (f) the beam produced by a Heaviside phase plate. Theoretical
data is shown in black, experimental data in grey.
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CHAPTER 8

Towards applications based on measuring the orbital
angular momentum of light

Efficient measurement of the orbital angular momentum (OAM) of light has been a long-
standing problem in both classical and quantum optics. In this thesis, we have presented
two ways to solve this problem, thus opening the way for applications based on the OAM
of light. In previous chapters, we have identified large bandwidth optical communication
and the detection of OAM in astrophysics as potential applications. The application of
OAM generation and detection will, in general, involve more complex types of light than
the monochromatic, coherent laser light that we used to test our detection methods. In
this final chapter, we take the first steps towards the development of such applications
by addressing two important aspects of detecting OAM in real applications. First we
study the response of both detection systems to polychromatic and (partially) incoherent
light. Secondly, we study the orthogonality of the output states in one of our detection
systems, the mode sorter, and its response to single photons, which are both relevant for
applications in large bandwidth optical communication. These first assessments reveal
important properties of the OAM detection systems, that, amongst many other aspects,
have to be studied in more detail in the development of applications.
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8. TOWARDS APPLICATIONS BASED ON MEASURING THE ORBITAL ANGULAR MOMENTUM
OF LIGHT

8.1 Introduction

Ever since it was found in 1992 that light can carry orbital angular momentum [1], many
efforts have been made to measure this quantity, both for beams of light as well as for
single photons. A number of different measurement schemes has been described in the
literature. It was, for instance, already known before 1992, that one can find wave front
dislocations, or optical vortices, in a speckle pattern by interfering the pattern with a flat
wave front, such that the optical vortices show up as a characteristic fork-like interference
pattern [8]. The OAM of a Laguerre-Gaussian beam is directly linked to the topological
charge of the optical vortex at its centre and the interference method can therefore be
used to measure this OAM [53]. It does, however, require many photons to be in the same
OAM state to build up the interference pattern. Another way to measure the OAM of a
light beam is to use special apertures like the multi-pinhole interferometer (MPI) [27] or
a triangular aperture [55], that create qualitatively different diffraction patterns for light
in different OAM states. Again this requires many photons to be in the same state. One
can also use specific holograms to sort orbital angular momentum states spatially [33, 54],
but only with an efficiency that is approximately equal to 1/N, where N is the number of
detected states and one again needs many photons to be in the same state.

There are also methods to measure the OAM of a single photon. One of these meth-
ods is to test if a single photon is in a specific state or not, by means of a hologram and
a single mode fibre [29]. By repeating this test with a series of different holograms, one
can build up a statistical average of the OAM states of the input photons. For a single
photon, this measurement discriminates between two states and does not benefit from
the infinite nature of the OAM state space. The first measurement to discriminate be-
tween more than two OAM states for a single photon was described by Leach et al. [13],
who used a Mach-Zehnder interferometer combined with a Dove prism to spatially sort
photons based on their OAM. The experiment showed the sorting of four OAM states.
In order to sort more states, interferometers have to be added to the setup. To sort N
different states, one needs N− 1 Mach-Zehnder interferometers, which is experimentally
very challenging. In chapters 6 and 7 of this thesis, we have presented a different scheme
to sort OAM states, that is much easier to set up since it consists of only two custom op-
tical elements and two lenses. This mode sorter converts N different input OAM states
into N spatially separated output spots, where N is limited only by the accuracy of the
optics. The only disadvantage of this system is that the output spots slightly overlap,
which limits the accuracy by which one can determine the OAM of a single photon. This
can, however, be overcome by modifying the design of the two custom optical elements,
an example of which has been given in chapter 6.

The MPI and the mode sorter presented in this thesis have made measuring the OAM
of a light beam experimentally much more feasible; in the case of the mode sorter it even
works for single photons. This opens the way towards applications of the OAM of light.
So far, we have only treated the case of coherent, monochromatic light. Several times
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however, we have hinted at the possiblity of detecting OAM in light from astrophysical
sources and the possibility of astrophysical sources generating light with orbital angu-
lar momentum has been treated elsewhere [11, 26, 71]. Light from astrophysical sources
will, in general, not be monochromatic and coherent. It is therefore crucial to study the
response of both the MPI and the mode sorter to polychromatic and (partially) inco-
herent light. The idea that partially coherent light can carry OAM has been described
extensively in literature [72–76]. It has also been shown that a special class of partially
incoherent light beams can, perhaps surprisingly, still produce diffraction patterns with
true intensity zeros behind a MPI [18, 42].

A second application of the OAM of light mentioned in this thesis, is its use for high
dimensional communication schemes, which has been discussed in the literature [30, 33].
Our mode sorter can form a key part of this application, provided the different OAM
states can be separated sufficiently well. In this chapter, we study the channel separation
and the response of the mode sorter for single photons.

This chapter provides calculations for relatively simple examples of polychromatic
and (partially) incoherent light and is organised as follows. We treat the MPI and the
mode sorter in section 8.2 and section 8.3, respectively. In the latter section, we also
study the channel separation of the mode sorter and its response in the quantum regime,
with concluding remarks in section 8.4.

8.2 Multi-pinhole interferometer

8.2.1 Response to polychromatic light

All results presented in previous chapters were obtained with a helium-neon laser, that
has a wavelength λ = 632.816 nm. Due to thermal expansion of the laser cavity this fre-
quency can vary by only ∆λ = ±0.001 nm, being limited by the small spectral width of the
optical gain. This has a very minute effect on the diffraction pattern behind a multi-point
interferometer (MPI), as can be easily seen by considering an N = 2 MPI, which is Young’s
double slit experiment with the slits replaced by pinholes. The far-field diffraction pat-
tern behind the N = 2 MPI is given by bright bands on a dark background separated by
a distance ∆x, which is given by

∆x =
λz
2a , (8.1)

where z is the distance from the MPI to the detector and a is the distance from the
pinholes to the centre of the MPI. It should be noted that the diffraction pattern scales
with λz.

The diffraction patterns behind a general MPI have been extensively discussed in
chapter 2 and 3. For N ≥ 4, they contain information on the topological charge of an im-
pinging optical vortex. These diffraction patterns can be analysed qualitatively by look-
ing at their numerical Fourier transform [41]. This Fourier transformed image shows 2N
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copies of the MPI, that are scaled with respect to the original. For odd N, one can directly
determine the relative phase of the incident optical field at each pinhole by determining
the phase of the Fourier transformed image at the vertices of one of these copies of the
MPI. In addition we can also derive the relative amplitudes of the fields at the individual
pinholes, as shown in chapter 5. The radius of the MPI in the Fourier transform, r, and
the size of the pinholes, s, are given by

r =
nda
λz , (8.2)

s = ndb
λz , (8.3)

where n is the number of pixels in the original image, d the pixel size, a and b the sep-
aration and the diameter of the pinholes in the MPI respectively, λ the wavelength and
z the propagation distance. In [41], Guo et  al. state that the phase of the field can be
unambiguously determined if the separation between the pinholes is at least two times
their diameter. This can be easily understood from the above equation, since for smaller
separations the pinholes will overlap in the Fourier transformed image and the phase
cannot be unambiguously determined.

As can be seen from equation 8.2, the positions and sizes of the pinholes in the Fourier
transformed image not only depend on the separation and diameter of the pinholes in
the MPI, but also on the wavelength. If the field impinging on the MPI contains light
of multiple wavelengths, the Fourier transformed image will be the addition of images of
the pinholes for different wavelengths.

In order to demonstrate this point, we simulated the diffraction pattern behind an
MPI for several different input fields. The patterns are shown in figure 8.1 and were
recorded behind the same N = 5 MPI with a = 200 µm, b = 50 µm, recorded at z = 0.1 m.
We have simulated the diffraction pattern for three different wavelengths, λ = 633 nm,
λ = 700 nm and λ = 780 nm, and superpositions thereof. To be able to more clearly
distinguish the individual modes in the superpositions, we gave the modes a different
topological charge. Although this is somewhat artificial, it simulates a superposition of
wavelengths and modes and therefore helps to illustrate our point more clearly.

As in previous chapters, we analyse the diffraction patterns by calculating the numer-
ical Fourier transform of the diffraction patterns. Figure 8.2 shows the absolute value of
this Fourier transform for the diffraction patterns shown in figure 8.1. As explained be-
fore, one can see 10 pentagons in the Fourier transform, where some of the points are
shared between two pentagons. The size of these pentagons decreases when the wave-
length increases (compare figure 8.2 (a) and (b)). As expected, a superpositions of the
patterns for two wavelengths results in the superposition of the two Fourier transformed
images. In figure 8.2 (c) these two patterns can still be distinguished, but in figure 8.2 (d),
where the wavelengths are closer together, the points start overlapping.
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Figure 8.1: Diffraction patterns behind an N = 5 MPI. The parameters for the MPI are the same
for all four images, but the wavelength of the light is varied. (a) λ = 633 nm with ℓ = 0, (b) λ = 780
nm with ℓ = −1, (c) a superposition of (a) and (b), and (d) a superposition of (a) and λ = 700 nm
with ℓ = −1.
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Figure 8.2: Absolute value of the numerical Fourier transform of the diffraction patterns shown in
figure 8.1.
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Figure 8.3: Phase of the numerical Fourier transform of the diffraction patterns shown in figure
8.1.

Figure 8.3 shows the phase of the Fourier transform and illustrates the overlap even
better. One can clearly see that the phase is equal at all the pinholes for figure 8.3 (a) and
increases from 0 to 2π in figure 8.3 (b). In figure 8.3 (c), one can still distinguish the two
different wavelengths, but this is impossible in figure 8.3 (d), where the different pinholes
overlap and the phase is blurred.

It depends on the exact source that is studied, how stringent the requirement on the
wavelength is. If the source emits a spectrum that consists of several frequency lines that
are not related, the vorticity can only be determined if the resulting peaks in the Fourier
transform do not overlap. The required wavelength separation is then given by

∆λ

λ
=

2b
4a sin(π/N) − b . (8.4)

The size of the pinholes should be kept as small as possible to allow for a large wavelength
range to be detectable. If the MPI is illuminated by a spectrum of different wavelengths,
the analysis will return a blurred Fourier transformed image. If all different wavelengths
contain a vortex, or in other words, if the input field is a white light vortex [77], the
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analysis will still return this vorticity and the method is adequate. In other cases, one has
to be careful in interpreting the image.

8.2.2 Partial coherence

As mentioned before, it has been show that partially coherent light can still contain op-
tical vortices and possess orbital angular momentum [72–76]. The aim of this section is
to find out if an MPI is able to detect the vorticity in such a field. Intuitively, one would
think that this is not the case, since the interference patterns is washed out by the (par-
tial) incoherent character of the beam. However, Gbur et  al. show that special types of
partially coherent beams can generate diffraction patterns with true intensity zeroes [18].
Below we give an analysis that is based on the one presented by Gbur, but for a single
wavelength. The interference pattern behind N pinholes is given by

I(x, y) ∝ r(N)†M(N)r(N), (8.5)

where

r(N) =


A1eiϕ1

A2eiϕ2

. . .

ANeiϕN

 , (8.6)

with Aj the amplitude of the optical field at the j-th pinhole and ϕj ≡ kRj is the phase
introduced by the distance Rj between the pinhole and the observation point (x, y). The
matrix M(N) is given by

M(N) =


1 µ12 . . . µ1N
µ∗12 1 . . . µ2N
...

...
. . .

...

µ∗1N µ∗2N . . . 1

 , (8.7)

where

µjk =
⟨A∗j Ak⟩√

IjIk
(8.8)

is the spectral degree of coherence and Ij would be the intensity observed if only the j-th
pinhole would be open and the average is taken over an ensemble of space–frequency
realizations of the field. The important parameter is the matrix M(N), which describes
the degree of coherence between each of the pinholes. The case of fully coherent beams,
i.e. µjk = 1 for all j, k has been described extensively in previous chapters. If not all µjk
are equal to 1, the diffraction pattern will be partly washed out. In the case N = 2, this
results in a pattern that does not contain any intensity zeroes. Gbur shows that for N > 2
and special classes of partially coherent beams, the intensity patterns will still contain
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Figure 8.4: Diffraction patterns behind an N = 5 MPI for different types of input beams. (a)
Coherent beam l = 0, (b) coherent beam ℓ = −1, partially incoherent beam ℓ = 0 satisfying
equation 8.9 and (d) partially incoherent beam ℓ = −1 satisfying equation 8.9. All other parameters
are equal for all images.

intensity zeroes. One of these special cases is the case where all µjk are real and equal for
j , k and µjj = 1 and

µ = − 1
N − 1 . (8.9)

By comparing the diffraction patterns with the diffraction patterns obtained in pre-
vious chapters, one can see that these patterns are in fact equal, but with the colours
inverted (see figure 8.4).

We also study intermediate cases by varying µ between 1 and − 1
N−1. Figure 8.5 shows

diffraction patterns for several values of µ. We believe that it is justified to conclude that,
except for the fully incoherent case, all patterns contain a remainder of the pattern for
the fully coherent case. This can be understood by the idea that a partially coherent
beam can be considered as having a fully coherent part and a fully incoherent part. The
fully coherent part will result in a diffraction pattern as studied in chapter 2 and the
incoherent part will result in a uniform background. Applying the Fourier analysis, as
described before, shows that this idea is justified. The Fourier transformed images are
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Figure 8.5: Diffraction patterns behind an N = 5 MPI for beams with different coherence. (a)
Fully coherent beam µ = 1, (b) µ = 1

N−1 , (c) incoherent beam µ = 0 and (d) µ = − 1
N−1 . All other

parameters are equal for all images.

comparable to the ones presented, for instance, in figure 8.2 and 8.3 (a) and (b), the only
noticeable difference being that the central pixel has a larger amplitude due to the fact
that all incoherent contributions end up in this pixel. The only exception is the case
that µjk = 0, or, in other words, the case of fully incoherent light, where the diffraction
pattern is completely washed out.

8.3 Mode sorter

8.3.1 Monochromaticity

The OAM mode sorter that is extensively described in chapters 6 and 7 separates optical
vortex states by transforming them to inclined plane waves, which are in turn focussed
to different positions on a detector by a standard lens. The two custom optical elements
that are needed to perform the transformation are created using two spatial light modu-
lators (SLMs). The main advantage of SLMs is their flexibility to add any desired phase
profile to an incoming beam. The phase profiles of the aforementioned custom optical
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components are described by (see chapter 6)

ϕ1(x, y) =
2πa
λf

y arctan
( y

x

)
− x ln

 √
x2 + y2

b

 + x
, (8.10)

ϕ2(u,v) = −2πab
λf exp

(
−u

a

)
cos

(v
a

)
. (8.11)

In addition, the SLMs can be used to compensate for any aberrations or misalign-
ment in the optical setup. The SLMs used in chapter 6 and 7 are reflective devices and
their main disadvantage is their low reflectivity. Especially when combined with the
beam splitters, that are used to ensure perpendicular incidence on the SLMs, the overall
throughput of the mode sorter is low, typically about 1%. An alternative is to make the
two custom components out of a transparent material like glass or plastic. The thickness
profiles of the optical components then needs to be of the following form

t1(x, y) =
λϕ1(x, y)

2π(n − 1)
, (8.12)

t2(u,v) =
λϕ2(u,v)
2π(n − 1)

, (8.13)

where n is the refractive index of the material. In other words

t1(x, y) =
a

f(n − 1)

y arctan
( y

x

)
− x ln

 √
x2 + y2

b

 + x
, (8.14)

t2(u,v) = − ab
f(n − 1)

exp
(
−u

a

)
cos

(v
a

)
. (8.15)

Conveniently, these thickness profiles are independent of the wavelength of the input
light, provided that the dispersion of the glass is negligible, which can be achieved with
special types of glass over a fairly large range of wavelengths. The fact that the optics
can operate at different wavelengths makes them extremely suitable for applications in
high-dimensional optical communication.

8.3.2 Partial coherence

The orbital angular momentum of partially coherent light is still well defined and each
photon has a well defined orbital angular momentum when measured. Since the mode
sorter focusses individual photons to a position on the detector depending on the orbital
angular momentum of the photon, the mode sorter still works for partially coherent light.
The mode sorter can therefore be used to measure OAM spectrum of a partially coherent
light beam.
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8.3.3 Orthogonality

One disadvantage of the OAM mode sorter is the fact that the spatially separated output
spots slightly overlap for different OAM states. In this section we further study this lack
of orthogonality or separability, which introduces cross-talk between the states.

In the mode sorter based on spatial light modulators that is described in chapter
6 and 7, the output aperture of the mode sorter is square and completely filled by the
transformed beam. As explained in chapter 7, there is no information about the OAM
state in the one of the two transformed axes, so we will treat this problem as being one-
dimensional. If we assume that the lens that focusses the transformed OAM states is
much larger than the output aperture of the mode sorter, the focussed spots will have a
intensity profile, I(α), determined by this square aperture

I(α) ∝
(

sin(α)
α

)2
, (8.16)

where α = kd
2f (t−tℓ), k = 2π

λ
is the wavenumber,λ the wavelength, d the aperture size, f the

focal length and tℓ = λf
d is the central position of the ℓ-th peak. The focussed peaks will

slightly overlap, which is inherent to the optical design. One could argue that increasing
the size of the aperture d would decreases the width of the spots. This does however also
decreases the separation between the spots and the overlap will remain the same. The
same reasoning holds for changing the focal length of the final lens. To further support
this argument we present a numerical study of this system.

The most convenient way to use a mode sorter in a communication scheme would be
to define regions of interest in its focal plane. If a photon hits the detector in a specific
region, we can link this position to an orbital angular momentum. We define the ℓ-th
region such that its centre coincides with the peak position for the ℓ-th mode. The
width of one region is given by the separation of the two peaks and so

tℓ −
λf
2d < t ≤ tℓ +

λf
2d . (8.17)

Since sin(α)/α cannot be integrated analytically, we numerically evaluate the problem.
First of all, we calculate the intensity in each of the defined regions for an input beam
with ℓ = 0. About 80% of the intensity ends up in the correct beam while the other 20%
is spread out over the other bins, mostly the neighbouring ones.

To determine whether the overlap indeed does not depend on f or on d, we have
calculated the intensity in all regions for several values of these parameters. As expected
there is indeed no dependence.

As shown in the previous chapter, the mode sorter is sensitive to superpositions of
modes. In addition the relative phase between modes is preserved. This relative phase
does, however, alter the exact intensity distribution and therefore the intensity recorded
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Figure 8.6: Intensity in each of the regions when illuminated with a pure ℓ = 0 optical vortex.

in the defined bins. To study the effect of this relative phase, we have numerically studied
an equal superposition of two modes, ℓ = −1 and ℓ = 0, where we vary the relative phase.
Figure 8.7 shows the intensity in one of the regions, the one corresponding to either ℓ = −1
or ℓ = 0, which are equal since the problem is symmetric. As expected the intensity in
the regions depends on the relative phase between the modes.

The variation is significant, about 20% of the peak value and this is something that
needs to be taken into account, since it can affect the outcome of the measurements.
The relative phase is also affected by the exact angular orientation of the mode sorter. A
possible solution to this dependence on the relative phase is to use only pure modes and
keep their relative phase fixed.

8.3.4 Quantum optics

Decreasing the intensity of the input beam does not change the working principle of the
mode sorter and thus it should able to sort individual photons. The restriction that the
spatially separated output spots slightly overlap leaves some inaccuracy in the determi-
nation of the OAM value of the photon. This can be resolved by modifying the opti-
cal design by adding a binary grating to the first optical element of the mode sorter and
changing the second custom element accordingly. This will create a number of diffraction
orders, all containing the same phase ramp. By changing the periodicity of the grating,
these phase ramps can be connected to form a higher phase ramp, thereby increasing the
separation between the final spots. Implementing this, does increase the overall optical
complexity of the system.

In an optical communication scheme, one could also use only every second, third or
even fourth mode. The latter option reduces the overlap between different output states
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Figure 8.7: Intensity in the ℓ = 0 region for an equal superposition of ℓ = −1 and ℓ = 0, A ∝
e−iϕ + eiβ as a function of relative phase between the modes, β.

to below the 1% level.
As the orbital angular momentum states are spatially separated in the focus of the

mode sorter, this allows us to perform operations on the individual modes in a spectrum,
like changing the relative phase and amplitudes. This can also have applications in more
fundamental studies of OAM.

One could use the same mode sorter, but inverted, to generate OAM states and su-
perpositions thereof.

8.4 Conclusion

For almost twenty years, efficient measurement of the orbital angular momentum of light
has been experimentally challenging. In this thesis we have presented two novel methods
to solve this measurement problem, which open the way for use of the OAM of light
in applications. These applications will bring new challenges like measuring the OAM
of polychromatic and (partially) incoherent light. In this final chapter we have shown
with some initial calculations that the multi-pinhole interferometer is able to detect the
OAM of an incoming light beam with a limited wavelength range and that it still works
for partially incoherent light. In addition, we have shown that the mode sorter works for
both polychromatic and partially coherent light. Finally, we have shown that the inherent
cross-talk in the mode sorter can be reduced by changing the optical design. All these
aspects of the applications of orbital angular momentum detection are very interesting
and the initial calculations presented here can serve as a starting point for more detailed
study.
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Samenvatting

Licht is een veelvoorkomende drager van informatie. De intensiteit, richting, kleur en po-
larisatie geven informatie over de bron van het licht en het medium waar het doorheen is
gegaan. Door middel van fotodetectoren, camera’s, spectrometers en polarisatoren kun-
nen deze eigenschappen nauwkeurig worden gemeten. Op deze manier kan niet alleen
kennis worden vergaard over de bron en het medium; ook kan het licht worden gebruikt
om informatie te versturen van de ene plek naar de andere, door deze informatie te ver-
sleutelen in één of meerdere eigenschappen van het licht.

In de afgelopen twintig jaar is de interesse gegroeid voor een andere eigenschap van
licht, het baanimpulsmoment. In tegenstelling tot de polarisatie, die twee toestanden,
horizontaal en verticaal, kan aannemen, kan het baanimpulsmoment van een lichtbun-
del oneindig veel orthogonale toestanden aannemen. Als deze eigenschap nauwkeurig
kan worden gemeten, dan biedt dit mogelijkheden voor interessant, nieuw onderzoek en
kan het baanimpulsmoment worden gebruikt als extra eigenschap om informatie in te
versleutelen, waarbij het aftelbaar oneindige mogelijke toestanden een groot voordeel is.

Eén manier om licht met baanimpulsmoment te maken is door middel van zoge-
naamde Laguerre-Gauss bundels. Deze bundels hebben een fasesingulariteit waaromheen
de fase van het optische veld lineair toeneemt met de poolhoek ϕ volgens exp(iℓϕ), waar-
bij ℓ een geheel getal is; in het centrum van zo een bundel bevindt zich een zogenaamde
optische vortex. Op de positie van de fasesingulariteit is de intensiteit gelijk aan nul en,
in het geval van een Laguerre-Gauss bundel resulteert dit in een ringvorming intensiteits-
profiel. Elk foton in een Laguerre-Gauss bundel heeft een baanimpulsmoment van ℓℏ. ℓ
wordt vaak ook gebruikt om de topologische lading van de optische vortex aan te geven.
ℓ = 0 komt overeen met een vlak faseprofiel, waarvan het verre veld van een puntbron,
zoals bijvoorbeeld een ster, een veelvoorkomend voorbeeld is. Bundels met een optische
vortex kunnen worden gemaakt met speciale optische elementen, zoals een spiraalfase-
plaat, een vorkhologram of een spatial  light  modulator. Op deze manier kan een groot
aantal verschillende waarden van ℓ worden bereikt. Optische vortices komen ook voor
als hogere orde toestanden van laser licht, in optische caustieken en in spikkelpatronen.

Het meten van het baanimpulsmoment van licht zonder kennis vooraf is erg uitda-
gend. Een ideaal meetsysteem zou, in principe, oneindig veel verschillende uitgangen
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moeten hebben, elk overeenkomend met één van de baanimpulsmomenttoestanden. Zo
een systeem zou het complexe equivalent zijn van een polariserende bundelsplitser, die
twee uitgangen heeft, elk overeenkomend met één van de twee polarisatietiestanden. Een
alternatief om de polarisatie van licht te bepalen is het gebruik van een polarisator, die
één van de toestanden blokkeert en de ander doorlaat, hetgeen we een filter noemen.

In het verleden zijn verschillende manieren bestudeerd om het baanimpulsmoment
van licht te meten. Het interfereren van een optische vortex met een bundel met een
vlak faseprofiel resulteert in een interferentiepatroon waaruit de topologische lading van
de vortex kan worden bepaald. Het feit dat er een tweede bundel nodig is, maakt deze
methode niet erg geschikt voor sommige toepassingen, met name als de bestudeerde bun-
del groot is in vergelijking met een typische detector, zoals bijvoorbeeld te verwachten
is voor licht van astronomische bronnen. Een filter voor baanimpulsmomenttoestanden
kan worden gerealiseerd met een spiraalfaseplaat, die kan worden gebruikt om te testen
of een foton zich in een bepaalde toestand bevindt of niet. Tenslotte kan een combina-
tie van Mach-Zehnder interferometers en Dove prisma’s worden gebruikt om de baan-
impulsmomenttoestand van een foton te meten, maar dit is technisch erg uitdagend en
moeilijk in te bouwen in een groter optisch systeem.

In dit proefschrift presenteren we twee nieuwe manieren om het baanimpulsmoment
van licht te meten. De eerste manier, waarvan we de details in hoofdstuk 2 en 3 beschrij-
ven, is gebaseerd op een meerpuntsinterferometer, een systeem van een aantal openingen
in een cirkelvormig patroon, waarachter het licht via diffractie wordt gecombineerd. We
laten zien dat de topologische lading van een inkomende optische vortex kan worden
bepaald op basis van de interferentiepatronen achter zo een meerpuntsinterferometer.
Het grootste voordeel van een meerpuntsinterferometer is het feit dat de openingen ver
van elkaar kunnen worden geplaatst, hetgeen het mogelijk maakt om dit systeem aan
te passen aan optische bundels of velden die veel groter zijn dan een typische detector.
De meerpuntsinterferometer kan ook worden gebruikt om zogenaamde vortexkaarten
te maken, op basis waarvan het mogelijk is om optische vortices in een spikkelpatroon te
vinden, hetgeen het onderwerp is van hoofdstuk 4 en 5.

In hoofdstuk 6 presenteren we een toestandssorteerder voor baanimpulsmomenttoe-
standen. De toestandssorteerder bestaat uit twee speciale optische elementen en twee
lenzen die inkomende optische vortices met een verschillende topologische lading om-
vormen en focusseren op verschillende posities op een detector. In hoofdstuk 7 laten
we zien dat deze toestandssorteerder ook in staat is om de bijdragen van verschillende
optische vortices in een superpositie te bepalen. In speciale gevallen kunnen we zelfs de
relatieve fase tussen de toestanden bepalen.

Alle resultaten in hoofdstuk 2 tot en met 7 zijn verkregen met monochromatisch en
coherent licht. In hoofdstuk 8 breiden we deze resultaten theoretisch uit naar polychro-
matisch en (deels) incoherent licht. De resultaten van deze berekeningen dienen als uit-
gangspunt bij het bestuderen van toepassingen van het baanimpulsmoment van licht, zo-
als bijvoorbeeld optische communicatie.
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