
In silico discoveries for 
biomedical sciences

Herman van Haagen



Promotiecommissie

Promotor prof. dr. J.T. den Dunnen LUMC

Co-promotors dr. B. Mons NBIC

dr. P.A.C. 't Hoen LUMC

dr. M.J. Schuemie EMC Rotterdam

Overige leden prof. dr. ir. M.J.T. Reinders TU Delft

prof. dr. J.N. Kok LIACS Leiden

prof. dr. F. A. H. van Harmelen VU Amsterdam

Herman van Haagen
In silico discoveries for biomedical sciences

ISBN/EAN: 978-90-817676-0-6

©H. van Haagen, 2011

Cover design: Freek van Haagen



In silico discoveries for 
biomedical sciences

Proefschrift

ter verkrijging van 

de graad van Doctor aan de Universiteit van Leiden

op gezag van Rector Magnificus prof. mr. P. F. van der Heijden

volgens besluit van het College van Promoties

te verdedigen op woensdag 21 september 2011

klokke 11.15 uur

door

Herman van Haagen

geboren te Breda in 1979



Table of content

Chapter Title Page
1 Introduction 3
2 In silico knowledge and content tracking 19
3 Novel protein-protein interactions inferred 

from literature context
32

4 In silico discovery and experimental validation 
of new protein-protein interactions

65

5 Finding gene-disease relations using implicit 
information in the scientific literature

98

6 General discussion 115

Summary 127
Samenvatting 130
Curriculum vitae 134



Chapter 1

Introduction

3



Introduction

When a researcher starts a new research project, he performs a literature study.  
Let’s say he starts with a new project in muscle diseases and he needs to collect 
information about Duchenne Muscular Dystrophy (DMD). He collects all papers 
about this topic that are relevant for him. A starting point would simply be to go to  
the local public library and ask if they have some textbook about DMD. He will 
also go to Google and enter the topic name or some keywords in the search box;  
thousands of WebPages pop-up. He is hoping that the first pages contain weblinks 
that  are most relevant  for him. Another solution would be to go to more field-
specific databases like PubMed (www.pubmed.org). PubMed is the collection of 
scientific  literature  for  life  sciences.  This  is  the  place  to  be  for  biologists  and 
bioinformaticians. 

It is ironic today that the primary problem encountered in literature research is not  
finding information,  but finding too much information. For instance,  typing the 
search query Duchenne muscular dystrophy  in PubMed results in more than 6000 
hits. Reading 6000 articles is not an option. This problem occurs with other search 
queries as well. When you need information, in the form of text, you get it but it is  
simply too much information for any human being to process. 

Information overload
High throughput experimental techniques, such as microarrays or next generation 
sequencing,  and bioinformatics  tools  (e.g.  sequence alignment  techniques)  have 
increased the pace at which biologists produce new information. This promotes the 
growth of scientific literature, which contains information on those experimental 
results in the form of published articles. PubMed, contains more than 20 millions 
articles published over the last 30 years and the number of published articles is 
growing at such a rate that scientists are not able to keep up even with the most 
current knowledge [9] (i.e., new articles added to PubMed every day). This growth 
is shown in figure in Figure 1. Lastly, more text information can also be found in  
blogs, Wikipedia or any website specific to the field of biology. This information 
explosion creates the need for automated approaches to processing  biomedically 
meaningful  information from large collections of text.
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Figure 1. The growth of scientific literature over the last 40 years.

Text-mining
Text-mining is a specific sub-field of data-mining. It is the process of extracting 
meaningful information from human written text with a computer, for instance, the 
statement  “Malaria  is  transmitted  by  mosquitoes”.  This  introduction  gives  an 
overview of how text-mining had been developed the last two decades and how it  
has become an integral part of life science. First we described state of the art search  
engines and how they tackle the problem of finding relevant documents. Next we 
introduce the concept as a building block for extracting relevant relationships from 
text. We then describe how text-mining can be enriched using other non textual 
data  sources.  Finally  we  describe  what  is  discussed  in  this  thesis  and  coming 
chapters. 

Searching for relevant documents
One of the first  applications when handling textual data with a computer is the 
extraction  of  relevant  documents  from  a  large  collection  of  documents.  For 
instance search engines need to extract the relevant webpages from the internet. 
This process is commonly known as information retrieval (IR) [8]. Biologists can 
now do this via well known generic search engines like Google or Yahoo, and also 
by  querying  collections  specific  to  biomedical  sciences  such  as 
PubMed/MEDLINE.  The  success  rate  of  retrieving  relevant  documents  is 
dependent on the keywords in text and the search query. Keywords are words in 
text that are specific to the content and important points of the document and is the 
basis upon which the document should be found.   To avoid the ambiguities of 
natural languages, keywords may be listed explicitly by the author or curator of the 
article  using  standard  vocabularies.  For  instance in  PubMed this  is  done using 
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Mesh  Terms.  Figure  2  shows  schematically  what  happens  in  a  very  simple 
information retrieval system. 

Figure 2. Schematic drawing of a simple text-mining system

In the search bar a query is entered, in this case “duchenne”. The word “duchenne” 
is scanned in all documents and the documents in which “duchenne” appears are 
returned. If the document does not contain the word “duchenne”, but the article is  
about this topic, then the Mesh Terms keyword “duchenne” might be added to the 
keyword  list  for  this  article.  This  allows  the  document  to  be  retrieved using  a 
keyword search alone.
The exact structure of the search query is very important for the results that are  
returned. State of the art machines help the scientist in defining this query. First  
they can handle typographical errors. When somebody types “duchene” then the 
system (e.g. think of Google) suggests: “Did you mean duchenne?” Second, the 
search engine can make suggestions on what search query is going to be entered.  
This is called an  auto complete function.  It  works by finding searches done by 
other visitors that are similar to the search you are making. When “duch” is typed a 
pull down menu pops up with the words “duchenne”, “duchenne muscular” and 
many more. This example is shown in figure 3. 
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Figure  3. Example for a search query when only the first  four letters in a  
search bar are entered.
 

Box1: Text-mining     jargon  

Indexing
Indexing  is  the  process  of  scanning  all  documents  for  relevant  keywords  and 
storing the keywords per document in a database.
Concept
A concept is the smallest, unambiguous unit of thought. People reach consensus on 
the same meaning of the concept. In text-mining a concept is uniquely identifiable.
Thesaurus
A thesaurus  is  a  list  containing  the  concepts  and  all  synonyms.  In  addition  it  
contains  accession  numbers  that  are  used in  databases  like  Uniprot  and Entrez 
Gene. Most often used thesauri for the biomedical field is UMLS (Unified Medical 
Language System)[1]  and Biothesaurus[3]. Sometimes a combination of different 
thesauri is  made to make the thesaurus more complete and that  is covers more 
terms[4].  For  instance  UMLS contains  less  information  for  proteins.  Therefore 
UMLS information  can  be  complemented  with  protein  information  taken from 
Entrez Gene and Uniprot. An example for Duchenne Muscular Dystrophy is given 
in figure 4. 
Concept recognition software (CRS)
The concepts in text are recognized with concept recognition software (CRS)[5, 6]. 
A CRS scans a document for words that are stored in the thesaurus. The software 
recognizes a word and normalizes it. For instance the word mosquitoes is a plural 
and it is normalized to mosquito.
Ambiguity
A term is called ambiguous if its meaning is not uniquely defined [7]. For instance 
the abbreviation PSA in PubMed has approximately 180 meanings. It  could for 
instance mean Puromycin-sensitive  aminopeptidase  or  prostate  specific  antigen. 
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Based on the context in which a term appears the CRS needs to disambiguate the 
term and map it to a concept.
Concept Unique identifier (CUI)
A concept that is uniquely identified in text is assigned a CUI. This is a number 
that  uniquely represents  the  concept  and  is  used  to  exchange  the  concept  over 
different platforms and databases. A CUI normally is specific for the thesaurus that 
is  used.  For  instance  the  CUI  for  Duchenne  muscular  dystrophy  in  UMLS is 
C0013264 (Figure 3)

A specific search query can still result in thousands of retrieved articles that have to 
be read manually. If a query results in a thousand hits, one might ask whether or  
not all these documents are equally relevant. Should all documents be read or only 
a selection? Can the relevance of the documents be prioritized? A first option is  
then to increase the specificity of the search by adding more search terms to the 
query.
Is there is a redundancy between articles, in other words, do they share the same  
information? Redundancy is normally the case, especially in the introduction of the 
article.  A substantial amount of information is repetition of previous articles. Little 
new  knowledge  is  added  per  new  published  article.  This  is  called  ‘organized 
plagiarism’ (quote by Jan Velterop[10]).  Reading the same information,  though 
rhetorically useful, is far too time consuming. 

Figure  4.  Example  of  an  entry  in  UMLS  for  DMD.  The  field  contains 
descriptions, synonyms and a unique identifier 13264 (last field).

Concepts and relationships
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More sophisticated systems are those that are able to extract relevant sentences and 
phrases  from  text  instead  of  simply  counting  words  and  retrieving  whole 
documents.  Automatic  information  extraction  from  text  is  more  difficult  than 
indexing keywords. Text is structured in such a way that makes it straightforward 
for humans to read, but very  difficult for computers to interpret automatically. An 
example of a sentence that can be extracted from text is “malaria is transmitted by 
mosquitoes”. A computer actually needs to understand the meaning of the sentence 
as we humans do. Processing a sentence like this involves two steps. 

1. Recognizing single concepts in text.
2. Mining the relationship into a concept and assertion. 

PubMed  uses  a  so  called  WORD  based  approach  for  scanning  the 
literature.  Its  counterpart  is  called  the  concept  based approach  (see  Box 1  for 
definitions).  Concepts in text are recognized using concept recognition software 
(CRS)  and  a  thesaurus.  One  of  the  most  important  tasks  of  the  CRS  is  to 
disambiguate a word (see Box1) and map it to its concept unique identifier (CUI). 
Once  a  document  is  tagged  and  all  concepts  are  recognized,  the  CUI  of  the 
concepts are stored in a database. Figure 5 shows an example of a document in 
PubMed tagged by IHOP[11]. IHOP is a text-mining tool based on concepts and is 
an  abbreviation  for  ‘Information  hyperlinked  over  proteins’.  It  tags  documents 
especially for proteins and links them if they appear in the same document. IHOP 
can be found on http://www.ihop-net.org/.

Figure  5. Screenshot of a PubMed abstract. The words highlighted in color 
are recognized as concepts by IHOP. 

The second step is to extract the relationship from a sentence. The sentence 
that  we  use  as  an  example  is  “malaria  is  transmitted  by  mosquitoes”.  Every 
complete thought, or relationship is described as a triplet. A triplet starts with a 
subject (malaria),  then the type of relationship which is  called the predicate (is 
transmitted by), and finally the object (mosquitoes). Figure 6 is a schematic of this 
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triplet.  Another  group  of  biomedically  relevant  triples  are  the  protein-protein 
interactions  (PPIs).  For  instance  the  protein  Dystrophin  (subject)  physically 
interacts (predicate) with the protein Ankyrin-2 (object). 

Figure 6. Schematic drawing of a relationship in triplet format.

Extracting relationships can be done in two ways namely:
1. Natural Language Processing (NLP)
2. Co-occurrences in some defined region of text. 

NLP  is  the  field  within  text-mining  that  studies  how  a  computer  analyses  a 
sentence into its building blocks like nouns (e.g. the subject and the object) and 
verbs (e.g. the predicate). For instance PIE  [12] (http://pie.snu.ac.kr/) is an online 
webtool based on NLP. It is designed to predict PPIs from PubMed abstracts. A 
similar approach was used in [13], where they used Bayesian networks for finding 
novel PPIs. 
An  alternative  method  for  relationship  extraction  is  that  of  co-occurrences. 
PubMed contains more than 20 million abstracts online. With this amount of data it  
is  possible  to  use  a  statistical  approach to  extract  relations.  The co-occurrence 
approach is to identify concepts that co-occur within abstracts, sentences or full 
documents[14,  15],  assuming  that  frequently  co-occurring  concepts  have 
meaningful association. In PPI, the predicate becomes in all cases “is associated 
with”. The level of association can be calculated using well known statistical tests  
such as chi square test or Fisher exact test. 
The  co-occurrence  approach  has  the  advantage  over  NLP  that  it  is  less 
computationally demanding. Only concepts need to be recognized in text without 
any complex processing. On the other hand NLP has the advantage of extracting 
the type of relationship (i.e. the predicate must be a verb). Co-occurrence based 
methods only can conclude that two concepts are ‘associated’. Second, NLP is able 
to handle negations like “Protein A does not interact with protein B”. Note that the 
possibility to handle negations is one of the most difficult to solve in text mining.
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Extending text-mining with other data sources: data-mining
The quality of extracted relationships from text can be improved by adding other 
data  sources  such  as  genome  sequences,  microarray  expression  data,  and 
annotation databases like  the  Gene Ontology.  This  is  called data-mining.  Data-
mining in general contains two steps:

1. Extract information from each database, either non-textual or text. 
2. Combine  the  information  from  these  databases  into  one  statistical 

measurement.
Relationships established by a computer may become more reliable when several 
data sources are combined, producing an evidence factor for the relationship. There 
are systems available as online web applications that work on data integration for 
the extraction of  relationships[16,  17].  One of them is  STRING[18]  (figure  7), 
where there is evidence for a relationship between the proteins DMD and SNTB1.

 

Figure 7. Screenshot of the STRING website. Here the evidence for DMD and 
STBN1 is mostly found in PubMed abstracts and curated databases.
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Another application is when text-mining assists wetlab experiments in annotating 
the result. For instance in microarray experiments a set of differentially expressed 
genes is enriched with information from the literature to find gene functions. This 
is  called  gene  set  enrichment  or  functional  enrichment[19-23].  We  have  used 
microarrays  to  complement  text-mining  for  the  prediction  of  PPIs.  This  is 
described in chapter 4. 

A web of concepts
The next logical step in building triplets is to make a web of interrelated concepts. 
Currently the  world  wide web is  evolving towards a  concept  web or  semantic 
web[24-26] (also called web 3.0). Instead of retrieving documents or WebPages the 
concept web is a web of related concepts where the relationship is extracted from 
text and databases. The current web is a network of document whereas the concept  
web is a network of data (of linked data). One of the first applications in biology  
would be to generate a web of protein-protein interactions[27, 28]. This we can call 
the protein interaction space. Figure 8 shows an example of the interaction space 
surrounding the dystrophin protein generated by STRING. 

Figure  8. Example of a protein network surrounded around the dystrophin 
protein (DMD)

Beyond relationship extraction: Inferred relationships 
There has been much progress in text-mining in the last two decades (reviewed in 
[2, 9, 29-32]). Nevertheless, text-mining can go beyond the relationship extraction 
and building networks. Google, PubMed and even advanced tools such as STRING 
are  state  of  the  art  technologies  for  data  analysis.  However  most  of  these 
technologies focus on information that is already known. A text-mining system is 
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able  to  find a  relationship in  less  time or  is  able  to  find relationships  that  are 
overlooked. However, in theory and with great effort, a human being would have 
been able to extract the relationship by manual searching. 
The goal is that a computer is able to find new relationships that no human being  
could ever find by hand. It might at first seem impossible for a computer to make 
discoveries on the basis of literature alone; after all, Information Extraction is only 
able to extract the facts that have already known (i.e., have been published). The 
principle of inferred relationship extraction is to use facts that have been extracted 
from  several  different  publications  and  link  them  with  each  other  (concept  A 
affects concept B and B affects concept C). One of the first text-mining pioneers,  
Don Swanson, hypothesized that words in text can be linked with each other via 
intermediate  words  and  the  links  would  be  something  meaningful  [33,  34]. 
Swanson found an example in the medical field where he inferred links between 
Reynaud’s disease and fish oil based on the mutual association with concepts such 
as  blood  viscosity,  platelet  aggregation,  and  vascular  reactivity.  Later  research 
confirmed that this disease can be treated with fish oil. Before the discovery the 
disease and the ‘drug’ had never been co-mentioned before in any article. 

This finding was an inspiration and fundamental result for future work based on the 
same idea of the A-B-C triplet [35-38]. In most cases it concerns single examples 
of a biological discovery that was inferred using implicit links. Figure 8 shows a 
schematic  drawing  how  inferred  relationship  extraction  works.  A  large  scale 
analysis  that  proves  that  this  text-mining  approach  will  work  for  many  novel 
relationships has not been done yet.  How much implicit  information is there in 
text? and how effectively can it be inferred are burning questions. 

The  search  space for  all  possible  combinations  of  related  concepts  is  typically 
huge.  The  human  genome  contains  approximately  30,000 genes  (and therefore 
more than 30,000 gene products, e.g. proteins)[39]. The search space for finding 
protein interaction pairs becomes >900 million possible combinations. Text-mining 
will  not  only  be  useful  for  knowledge  discovery,  but  also  assist  a  scientist  in 
narrowing this search space to only the most informative protein pairs first. 

Following the idea of Swanson, in this thesis we describe a text-mining technique 
called concept profiles[40]. The concept profile technique is based on the indirect  
links in text to link concepts with each other while they do not necessarily need to 
be co-mentioned together (Figure 9).
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Figure  9. Principle of inferred relationship extraction. Concept A and B are 
never co-mentioned together in a document.  Therefore they do not  have a 
direct relationship. However, via the intermediate concepts X, Y, and Z an 
indirect relationship can be inferred.

We believe  that  the  full  discovery  potential  of  text-mining  tools  will  only  be 
realized with the advent of data-mining approaches that integrate the literature with 
other large data sets such as genome sequences, microarray expression data, and 
annotation databases like the Gene Ontology. 

However, these resources are generally not entirely independent from the published 
literature.  For  instance,  the  gene  ontology  (GO)  consortium  assigns  functional 
annotations to  genes that  are usually based on evidence described in  literature. 
Another  example  is  microarray  experiments  where  results  are  summarized  in 
articles,  as  well  as  deposited  in  a  database.  Given  the  partial  redundancy  of 
literature and other data sources, the question arises as to what exactly is the added 
value is of other data sources other than text for the extraction of new relationships.

Lastly,  we  are  interested  in  the  predictive  power  of  knowledge  discovery 
algorithms for different kind of relationships. Is this different for protein-protein 
interactions than  for gene-disease relationships? 

Content of this thesis
This  thesis  is  structured  as  follows.  In  chapter  2  we  first  describe  the  basic 
‘ingredients’ that make up a text-mining system. The approach we use is concept 
based text-mining. Second we describe how to analyze text-mining systems using 
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ROC curves, retrospective studies and how to collect test data. Chapter 3 shows 
how implicit  information  extraction  from PubMed abstracts  works  for  protein-
protein  interactions  in  a  large-scale  dataset  analysis.  We  compare  the  implicit  
information extraction method with the classical direct co-occurrence method. Also 
the WORD based method (used by Google and PubMed) is compared with the 
concept based method. 
We  extend  the  text-mining  part  in  chapter  4  with  other  data  sources,  such  as 
microarrays and Gene Ontology, and evaluate what is the added value of additional  
data  sources.  This  chapter  is  therefore  about  data-mining.  We  also  evaluate 
different methods to combine data sources and show the pros and cons of each one. 
We benchmark our system against the application STRING.  
In chapter 5 we investigate another type of relationship namely gene mutation in 
relation to disease. Here, the implicit information extraction is described in detail  
and we show what the B part is in the A-B-C relationship. 
Chapter 6 is the discussion where all findings are outlined and discussed in detail. 
We will discuss the power of text- and data-mining but also the limitations. We 
give future recommendations where data-mining, and in particular text-mining, can 
be improved.
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Abstract
We give  a  brief  overview  of  a  text-mining  pipeline  and  the  techniques  allow 
explicit and implicit knowledge to be extracted from large text collections. First, a 
given ontology is used to tag terms in text as machine-readable concepts. Second, 
concepts  are  associated  with  each  other  using  2x2 contingency tables  and  test 
statistics. Third, from the contingency tables informative pair-wise links between 
concepts can be recovered. These links may be explicitly stated or implied through 
indirect  associations.  Fourth,  validation  techniques  such  as  ROC  curves  and 
retrospective studies can be used to quantify the performance of the information 
extraction  and  knowledge  discovery  process.  Lastly,  we  discuss  methods 
combining  text  information  with  various  non-textual  data  sources  such  as 
microarray expression data.  
We conclude with a brief look at future directions for text-mining and knowledge 
discovery on the internet at large.
 

Keywords:   text-mining,  data-mining,  information  retrieval,  disambiguation,  
retrospective analysis, ROC curve, prioritizer, ontology, semantic web

1 Introduction

The amount of biomedical literature is growing tremendously. It has become 
impossible for researchers to read all publications in their moving field of interest, 
which forces them to make a stringent selection of relevant articles to read. For the 
actual knowledge discovery process, which is in essence a systematic association 
process over an expanding number of interrelated concepts, life scientists 
increasingly rely on the computer. This stringent reduction of the percentage of 
relevant articles that can actually be ‘read’ has the disadvantage that relevant 
information from non-selected articles can be missed. The largest database of 
recorded biomedical literature is PubMed, which contains over 14 million articles 
published in the last 30 years (from 1980 till 2010). Besides the literature there are 
many other resources ranging from curated databases to online blogs, digital books 
recorded in libraries, and any text information that can be found via a search engine 
like Google.

The field that deals with automated information extraction from text is called text-
mining. Text-mining on its own is a challenging field of research that intensively 
has been further developed over the last years. Computer systems have been 
developed based on natural language processing; a method of processing any 
sentence into its building blocks such as the subject, verbs, and nouns. Other 
methods are based on word tagging. PubMed for instance uses the words in a 
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search query and matches it with words found in abstracts with no additional 
information how the words are related with other words in text. In this chapter we 
describe the concept based method for automated information extraction from text. 

2 Concept based text-mining

For concept based text-mining three ‘ingredients ‘are needed: (1) text data (2) a 
word tagger, and (3) a terminology system, mostly controlled vocabulary, or 
ontologies. 
For biomedical text data, normally the abstracts recorded in PubMed are chosen. 
Reasons for this are that this is the greatest source of recorded literature, the 
abstracts are publically available and free to download, and the information density 
of abstracts is higher than that of full text documents (1).
Words in text are recognized by a so called word tagger and mapped to a concept 
identifier (2). In order to do so we first need to understand what a concept is. A 
concept is a unit of thought meaning that people agree that they share information 
about one and the same thing. A concept has terms and other ‘tokens’ that ‘refer’ to 
it. It can have synonyms, abbreviations, but also for instance Uniform Resource 
Identifiers (URI’s) or accession numbers. 
For instance, there exists a protein called dystrophin. When the gene encoding for 
this protein is mutated it can cause diseases such a Duchenne muscular dystrophy 
or Becker muscular dystrophy. Dystrophin normally is abbreviated to DMD. DMD 
(either in italic) also refers to the gene or the disease. Dystrophin is stored in 
databases like Entrez Gene (http://www.ncbi.nlm.nih.gov/gene) with the accession 
number 1756 and Uniprot Knowledge Database (http://www.uniprot.org/) with 
accession number P11532. The words dystrophin, DMD, 1756, and P11532 all 
refer to one and the same concept (we treat a gene and a protein as the same 
concept). The tagger maps the words to the concept identifier for dystrophin. 
Lastly the synonyms, abbreviations, accession numbers, and concept identifiers are 
stored in an Ontology. The most common vocabulary for the biomedical field is the 
unified medical language system (UMLS)(3). An Ontology may be field specific. 
If only drug information from text needs to be extracted a drug-vocabulary is used 
instead of the whole vocabulary with all medical concepts. 

3 Classical direct relationship detection

Once a text-mining system has been developed and concepts in text are recognized 
and stored in a database the question becomes what to do with this tagged text 
data? The main question is which two concepts are significantly related. The 
relationship between two concepts can be of any kind. In biology these are the 
most common ones we chose as examples: (1) two proteins that have a molecular 
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interaction, (2) a mutated gene that causes a disease, (3) a protein that has a 
particular function and (4) a drug that treats a disease or has a (adverse) side effect. 
Any relationship between two concepts can be seen as a triplet with a subject, 
predicate and object. An example of a triplet is protein dystrophin (subject) 
interacts with (predicate) protein ankyrin 2 (object).
The statistical way to define the strength of relationship between two concepts is 
by making a 2x2 contingency table (or frequency table). The table below gives an 
example for concepts X and Y.

X Not X
Y A B
Not Y C D

A are the number of documents where both concept X and Y are co-mentioned. B 
are the number of documents where concept Y occurs but not concept X. C is the 
reverse version of B and D are the number of documents where X and Y are not 
mentioned. Any statistical test can be applied to this table such as the likelihood 
ratio test, chi-squared test or the uncertainty coefficient. If X and Y are frequently  
co-mentioned together (e.g. A is a relatively large number) and the concepts are not 
exceptionally generic so that they occur frequently in text (e.g B and C are small) 
then the two concepts may be significantly related. There are many text-mining 
systems  available  based  on  direct  relationship  detection  such  as  IHOP(4), 
PubGene(5), and systems where text-mining is an integral part such as STRING(6), 
FunCoup(7), and Endeavour(8).

4 Implicit information extraction via concept profiling

The  classical  direct  relationship  detection  method  has  the  disadvantage  that 
concepts that are not co-mentioned together are missed, while they still might be 
related to each other. This could be due to the reason that related concepts are 
stored in full text (frequently not freely available for mining) and not in the abstract  
or  that  concepts  are  related  but  no-one  made  the  link  yet.  Via  indirect  links 
between terms in text, terms can still be related to each other even when they have 
never  been  co-mentioned  -  (9).  This  we  call  implicit  information  extraction. 
Swanson  et.al.  (10) were  the  first  to  demonstrate  that  this  approach  works  by 
linking the treatment of Raynaud's disease with fish oil. Van Haagen et. al.  (11) 
demonstrated  this  idea  further  by  predicting  protein-protein  interactions.  They 
predicted  the  physical  interaction  between  calpain  3,  which  causes  a  form  of 
muscular dystrophy, and parvalbumin B, which is found mainly in skeletal muscle. 
Those two proteins were strongly linked via the intermediate concept  dysferlin, 
which is a protein. 
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Concept profiling contains the following steps (see Fig. 1). First for a concept X 
(e.g a gene, a chemical or drug) the documents are selected wherein X appears. 
Next all other concepts that are co-mentioned with X are processed using the direct 
relationship  detection  method  described  previously  (Fig.  1b).  The  2x2  table 
information for each concept pair is stored in a profile. This concept profile for X is 
basically a vector of N dimensions.  N are the number of concepts that  are co-
mentioned with X. Each entry in the vector is a number associating concept X with 
another concept (taken from a 2x2 table, Fig. 1a). Computation of the ‘conceptual  
association’  between  two  concepts  can  now  be  performed  by  matching  their 
respective concept profiles by vector matching (Fig. 1c). Any distance measure can 
be used for this matching(9) such as the inner product, cosine, angle, Euclidean 
distance or Pearson’s correlation. If two concept profiles have many concepts in 
their individual concept profiles in common, e.g. many implicit links, then the two 
concepts may be related to each other. A webtool is available, dubbed ‘Anni’, for 
implicit information extraction by concept profiling(12). In the next section we will 
describe how to validate text-mining approaches and the amount of relatedness. 

Figure 1. Basic scheme for concept based profiling. (a) Example of a likelihood 
function calculated between concept X and A. Information is taken from a 2x2 
contingency table.  The score reflects the strength of association between X and A. (b) 
Documents selected where concept X appears and is co-mentioned with other 
concepts. For a concept the documents are selected and transformed into a test 
statistic using a 2x2 contingency table.  (c) The inner product score between two 
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concept profiles. The score is only calculated over the concepts the two profiles have in 
common. 

5 Cross validation within text-mining and other performance measures
5.1 Defining a positive and a negative set.

In  the  previous  sections  we  described  how  to  extract  relationships  (content) 
between concepts  from text  either  with direct  relationship detection or  concept 
profiling.  Once  a  system  is  designed  it  needs  to  be  tested  to  evaluate  its  
performance in extracting or predicting relationships. To enable this step we need 
data to train the system and after training testing it. For instance data on protein 
function can be collected from the Gene Ontology (13) and data on gene-disease 
relationships from OMIM (http://www.ncbi.nlm.nih.gov/omim). Here we describe 
an example of the relationship type protein-protein interactions (PPIs). PPIs can be 
collected from online databases such as UniProt(14),  DIP(15),  BioGrid(16) and 
Reactome(17). These samples of curated protein-protein interactions are labeled as 
positives instances. These positives instances are compared with negative instances 
to  see  if  the  text-mining  system can  discriminate  between  the  two  groups.  In 
biology research no databases exists that stores samples of negatives instances, e.g. 
two  proteins  that  have  been  confirmed  not  to  interact.  Normally  generating 
negative instances is done by selecting random pairs from a group of proteins(18).

5.2  Receiver operating characteristics  curves

Receiver  operating characteristics  (ROC)  curves  are  often  used to  evaluate  the  
performance of a prediction algorithm (19). A ROC curve is a graphical plot of the 
true  positive  rate  (sensitivity)  on  the  y-axis  versus  the  false  positive  rate  (1  − 
specificity) on the x-axis (see Fig. 2b). The ROC curve is defined for a  binary 
classifier system (the  positive  and negative  set  described  in  section  5.1)  as  its 
discrimination  threshold  is  varied.  This  measure  is  often  used  in  information 
retrieval  and  it  can  be  explained  as  a  system  design  that  collects  as  much 
information as possible (in terms of true positives) while at the same time reducing 
the noise (the false positives). A ROC curve is constructed as follows; in Fig. 2a  
the distributions of positive and negative instances are given and in Fig.  2b its 
corresponding  ROC  curve.  The  threshold  that  discriminates  between  the  two 
groups is varied from the highest match score (x-axis Fig. 2a) value to the lowest. 
Each threshold corresponds to a true positive and false positive rate in ROC space. 
In Fig. 2a all the way up to the right on the x-axis is the threshold (around 7) where 
no true or negative instances pass this threshold. Therefore the true positive and 
false positive rates are both zero, resulting in the point (0,0) in ROC space (Fig. 2b  
bottom left corner). Then the threshold as a slider is moved to the right. At each 
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point a number of positive and negative instances will pass the threshold resulting 
in a  point  in ROC space anywhere between 0 and 1 on both axes.  Finally  the 
threshold reaches the extreme left point on the x-axis (around -2, Fig. 2a). Here all 
positive and negative instances pass this threshold. This corresponds with the point 
(1,1) in ROC space (top right corner Fig. 2b). 
To translate the ROC space to a single measurement for performance we calculate 
the Area under the ROC curve (AuC). The AuC value normally varies between 0.5 
and 1. 
If  a  system  shows  a  random  behavior  (e.g. two  completely  overlapping 
distributions, no discrimination between positive and negative set) the ROC space 
results in a straight line from the point (0,0) to (1,1). This corresponds with an AuC 
of 0.5. If a system behaves like a perfect classifier the ROC curve starts at point 
(0,0) and moves up to point (0,1) (e.g. first all positive instances are predicted) then 
it moves from point (0,1) to point (1,1) (e.g. all negative instances are predicted). 
This corresponds with an AuC of 1. The AuC for the example in Fig. 2 is 0.92.

Figure  2. Histogram and its corresponding ROC plot. (a) the distribution of 
the positive and negative set. (b) a ROC curve with an AuC of 0.92.

5.3 Cross validation and bias
The performance of an associative in silico discovery system is tested using cross-
validation(20). A system is first trained using training data. Then it is tested using 
test data. There is no explicit data for testing only, nor is their data used only for 
training. There is just data. Therefore a part of the data is selected for training and 
the  remaining  part  for  testing.  The  way  to  select  the  training  and  test  data  is 
arbitrary. Here we describe the most common approach of cross validation the 10-
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fold CV. The first step (1) is to randomly shuffle the samples in your dataset (both 
positive and negative instances).  (2) Then the dataset is divided into 10 equally 
sized subsets. Each piece contains samples of the positive and negative set. (3) In 
one iteration, 9 of the 10 subsets is used for training and the remaining subset is  
used for testing. (4) Step three is repeated until each subset is used once for testing. 
An extremely important step during cross validation is to make sure that none of 
the test data is used during training. Else this would introduce a bias and gives an 
overestimation of the true performance. Within the field of text-mining and biology 
this seems virtually impossible. Most of the data stored in curated databases, such 
as protein-protein interactions or gene-disease relationships recorded in OMIM are 
based on published articles. This means that positives instances in the test set are  
based  on  articles  that  are  also  used  to  train  a  text-mining  system.  Other  data 
sources also have this problem. For instance the Gene Ontology contains functional 
descriptions for a protein that are normally also based on literature evidence. In 
order to evaluate prediction performance it is therefore more appropriate to make 
use of a retrospective analysis

5.4 Retrospective validation

Before we explain the basics of retrospective validation, we need to distinguish 
between two types of prediction. The first one is prediction of current knowledge 
stored in  databases.  This knowledge is  already known and the system recovers 
what is stored in these databases. For this, the cross-validation approach described 
above is useful. 
The second one is the prediction of new and as yet unforeseen knowledge. This 
means ‘implicit’ knowledge that is not recorded in any database that cannot be 
explicitly found in text. To simulate the prediction of these ‘hidden associations’ a  
retrospective validation is done. First a time interval is defined when data is stored 
in a database. For PubMed this could for instance be all the abstracts of articles 
published between 1980 and January 2010. The second step would be to select test  
data  published  after  a  certain  date,  for  instance  all  protein-protein  interactions 
recorded in databases from January 2007 until January 2010. The third step is to 
train the text-mining system before that date using all data before January 2007. 
The last step is to evaluate what test samples were predicted before January 2007 
that became only explicit (also in the literature) knowledge after January 2007. In  
other  words,  protein-protein  interactions  that  could  be  found  by  simple  co-
occurrence  before  the  ‘closure  date’,  but  were  not  added to  the  databases  yet, 
should not be counted as true predictions. In this evaluation there is no procedure 
to repeat these steps multiple times like with cross-validation. This means that no 
standard error on the performance can be calculated. 
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5.5 Prioritizers

Another  way  to  view a  ROC curve  is  as  a  prioritized  list.  The  ROC curve  is 
constructed by varying the threshold. The samples (e.g. protein pairs either a PPI or 
random) are ranked from the highest match score to the lowest. Going down in this 
ranked list from the top prediction to the lowest is done by walking over the ROC 
curve from point (0,0) to point (1,1). Experimental biologists are mainly interested 
in what is  predicted in the top,  e.g. the most  likely predictions.  Prioritizers are 
useful to evaluate where your test samples rank in the top. A ROC curve can also  
be plotted on the absolute scales of true positives and false positives by translating 
a  prioritized list  in  a graphical  way.  Figure  3 shows an example of  20 ranked 
samples  and its  corresponding ROC curve.  This  curve is  also called a  ROC10 
curve. It reflects the amount of true positive predictions (baits) at a fixed number of 
false positives (the costs), in this case 10. You can vary this threshold and define 
for instance a ROC50 or ROC100 curve. 
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Figure 3. Prioritized list of 20 samples and its corresponding ROC10 curve.

6 Extending text-mining systems with other databases: data-mining
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Text-mining actually is a subdivision of the broader field of data-mining. Data-
mining is the field of research to extract any kind of information from a variety of 
resources. For instance, there are many data sources available for proteins. Besides 
the literature, there exists information in curated databases, microarray expression 
data(21,  22),  domain  interaction  databases(23),  functional  annotations  from the 
Gene Ontology, phylogenetic trees and sequence data. There are many tools and 
techniques available for data-mining on databases but  they all  share a common 
idea. To combine all information from several distinct data sources into one should 
reveal more information than can be recovered by the mining of each data source 
alone. Data-mining basically is a two step approach. The first step is to define a 
match or evidence score for every data source that is included in the system. For  
instances a microarray dataset may be transformed into a data matrix by calculating 
Pearson correlations between any two expression profiles for proteins or genes.  
The second step is to combine each evidence score for a data source into a single  
score.  This  can be done,  for  instance,  using a  Bayesian classifier.  For  protein-
protein  interactions  there  are  several  resources  available  based  on  data-mining 
techniques such as STRING(6), FunCoup(7), IntNetDB(24), and Prioritizer(25). 

7 Beyond data-mining and scalable technology for the internet: the semantic 
web 
Data-mining and text-mining are fields of technology that are used for the future 
web 3.0 technology: the semantic web (SW). The first trend in web technology (or 
web 1.0) included the static webpages that made the first version of the internet. No 
information  exchange  was  possible,  just  readable  plain  text  pages.  The  second 
trend (web 2.0) made it possible for users to interact with the internet. Think of  
uploading movies to YouTube, or writing your blog online and online shopping 
with a credit card. Web 2.0 is really the most unstructured and scattered form of  
information. Therefore, the new trend became web 3.0. It will structure the internet 
into a network of concepts and relationships between these concepts. Other terms 
for web 3.0 are the concept web or the semantic web. One of the goals of the web 
is  to present information in a computer readable compact format instead of the 
current webpages that are retrieved after a search query. The predictions that are 
made using concept profiles or other technologies will be part of this SW.
 The best known data model for the SW is RDF (resource description framework). 
RDF is used to translate any kind of date into a triple format. The ontologies used 
in webtechnology are mainly built  using OWL (Web Ontology Language). The 
semantic web project is extremely large and it is very difficult to keep it scalable.  
There is now an ongoing project called the Large Knowledge Collider (LarKC). It  
builds the semantic web with all the current state of the art technology that is out  
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there (machine learning, information theory, pattern recognition, first order logic). 
All information on LarKC can be found on http://www.larkc.eu. 
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Abstract
We  have  developed  a  method  that  predicts  Protein-Protein  Interactions  (PPIs) 
based on the similarity of the context in which proteins appear in literature. This 
method outperforms previously developed PPI prediction algorithms that rely on 
the conjunction of two protein names in MEDLINE abstracts. We show significant 
increases in coverage (76% versus 32%) and sensitivity (66% versus 41% at  a  
specificity of 95%) for the prediction of PPIs currently archived in 6 PPI databases.  
A retrospective analysis shows that PPIs can efficiently be predicted before they 
enter  PPI  databases  and  before  their  interaction  is  explicitly  described  in  the 
literature.  The  practical  value  of  the  method  for  discovery  of  novel  PPIs  is 
illustrated by the experimental  confirmation of  the  inferred physical  interaction 
between CAPN3 and PARVB, which was based on frequent co-occurrence of both 
proteins with concepts like Z-disc, dysferlin, and alpha-actinin. The relationships 
between  proteins  predicted  by  our  method  are  broader  than  PPIs,  and  include 
proteins in the same complex or pathway. Dependent on the type of relationships 
deemed useful, the precision of our method can be as high as 90%. The full set of 
predicted  interactions  is  available  in  a  downloadable  matrix  and  through  the 
webtool Nermal, which lists the most likely interaction partners for a given protein. 
Our framework can be used for prioritizing potential interaction partners, hitherto 
undiscovered, for follow-up studies and to aid the generation of accurate protein 
interaction maps.

Introduction
Protein-protein  interactions  (PPIs),  which  we  define  as  proteins  that  physically 
interact,  are  crucial  in  most  complex  biological  processes.  Experimental  high-
throughput methods such as yeast two-hybrid screens have been used to make large 
inventories of PPIs and to create protein interaction maps[1-6]. However, it is well 
known that  these methods merely show physical  interaction under experimental 
condition  and  not  necessarily  indicate  a  common  involvement  in  a  biological 
process. Computational methods for the prediction of PPIs could theoretically aid 
the discovery of candidate biological interaction partners. There are many different  
sources  of  information that  can be used in  PPI  prediction[7],  including protein 
structures, phylogenetic distribution, interactions between homologous proteins in 
other organisms, genomic neighborhood, and gene fusions. In this article, we will 
focus on one source of information, which is arguably the most comprehensive, but 
also  the  least  structured:  biomedical  literature  itself.  Until  now  text  mining 
techniques are mainly used to rediscover PPIs explicitly described in literature. 
Often, the now 18 million freely available abstract records of MEDLINE are used 
for this purpose. PPIs extracted this way have been shown to improve the accuracy 
of  predicted  biological  networks[8,  9].  Structured  information  on  explicit  PPIs 
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extracted from MEDLINE  and other sources is freely available in the STRING 
database[10], or can be found by querying the iHOP website[11].

However, text mining can go one step further; by combining known associations, 
previously  unknown PPIs  can  be  inferred.  Because  most  text  mining  research, 
including  this  study,  limits  itself  to  MEDLINE  abstracts,  these  ‘previously 
unknown’ interactions also include interactions that are effectively known, but not 
explicit in MEDLINE as they are only mentioned in a full text article. Swanson[12, 
13] et al. were the first to demonstrate that text mining can lead to the discovery of 
new knowledge (e.g. the treatment of Raynaud’s disease by fish oil). Other studies  
in  the  biomedical  domain  verified  the  importance  of  implicit  information  for 
knowledge  discovery[14-16].  Whereas  Swanson  used  a  word-based  approach, 
linking entities by intermediate words that appeared frequently in the contexts of 
both  entities,  in  our  work  we  use  a  concept-based  approach:  different  terms 
denoting  the  same  concept  (i.e. synonyms)  are  mapped  to  a  single  concept 
identifier,  and  ambiguous  terms,  e.g.,  identical  terms  used  to  indicate  different 
concepts (i.e. homonyms) are resolved by a disambiguation algorithm. Such an 
approach is essential given the wide diversity and many ambiguities in gene and 
protein nomenclature[17, 18]. 
In order to predict PPIs, we summarize the typical context in which each protein 
appears into  concept profiles[15, 16, 19].  We hypothesize that a high similarity 
between the concept profiles of two proteins is indicative for an actual biological  
interaction. For example, if two proteins are consistently mentioned together with a 
particular disease, the probability that these proteins interact is  higher than the a  
priori  probability  of  two  randomly  selected  proteins[20,  21].  This  probability 
should  increase  further  when  they  are  also  frequently  co-mentioned  with  a 
particular pathway, a sub-cellular localization, or other proteins. 
In this article, we first demonstrate the added value of a concept-based approach 
over a traditional term-based approach in detecting explicitly described relations. 
We proceed to show the added value of the concept profile-based approach over 
classical direct relation extraction, including the text-mining techniques used in the 
STRING database. Subsequently, we show the predictive power of our method by 
doing  a  retrospective  study;  we  demonstrate  that  we  can  employ the  literature 
available in 2005 to predict 52% of the PPIs newly described in Swiss-Prot in 2007 
at a specificity level of 95%. We show that in addition, some of the PPIs that we 
predicted  but  are  not  yet  recorded  in  any  database  represent  indirect  protein 
interactions and have biological relevance. Finally, we confirm one of the many 
predicted PPIs in three wet lab experiments, supporting our claim that the concept  
profiling method is capable of previously unknown PPI prediction from current 
literature.  
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These predictions  will  be  useful  for  (i)  the  ranking of  potential  PPIs  for  more 
specific experimental analysis, and (ii) complementing other types of data such as 
co-expression and yeast two-hybrid data when using an integrative systems biology 
approach.

Results
Improved PPI detection using concept profiles
We compared the performance of different PPI prediction approaches in detecting 
known human PPIs in MEDLINE. The online human-curated databases Biogrid, 
DIP, HPRD, MINT, Reactome, and UniProt/Swiss-Prot were used to establish a set 
of  61,807 known human PPIs.  A set  of  probable  Non-Interacting Protein Pairs 
(NIPPs) was generated from all pairs of proteins that do not occur in the above 
databases nor in the IntAct[22] database, which includes, in addition to all PPIs 
recorded  in  UniProt/Swiss-Prot,  many  non-curated  PPIs  from  high-throughput 
experiments. We compare four approaches: 

• Word-based  direct  relation.  This  approach uses  direct  PubMed queries 
(words)  to  detect  if  proteins  co-occur  in  the  same abstract.  This  is  the 
simplest  approach and represents  how biologists  might  use  PubMed to 
search for information.

• Concept-based  direct  relation.  This  approach  uses  concept-recognition 
software  to  find  PPIs,  taking  synonyms  into  account,  and  resolving 
homonyms. Here two concepts (in our case two proteins) are detected if 
they co-occur in the same abstract. 

• STRING[10]. The STRING database contains a text mining score which is 
based on direct co-occurrences in literature. 

• Concept  profile-based  relation.  This  approach  uses  the  similarity  in 
literature  context.  Here  two  proteins  (concepts)  can  also  be  indirectly 
related via the concepts in their profiles. More detail on concept profiles  
and their construction can be found in the Methods section.

The word-based and concept-based direct relation methods could find at least one 
abstract containing both proteins for respectively 33% and 32% of the pairs in the 
PPI set. A text mining score from STRING could be obtained for 30% of the PPIs, 
in line with the co-occurrence based approach used to create STRING. Thus, a  
majority  of  the  known PPIs  cannot  be  found explicitly  in  MEDLINE.  For  the 
concept profile-based approach, we could create concept profiles and calculate a 
similarity score for 76% of the PPI set.
Similar  to STRING, the other three approaches can also be used to calculate a 
continuous score that indicates the strength of the relation between two proteins.  
Figure S1 displays the distribution of the similarity scores of the concept profile-
based method for the PPI and NIPP sets. This figure shows that the scores for the 
PPI set are higher although there is also overlap between the two distributions. The 
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continuous scores can be used to rank protein pairs. After ranking the pairs in the 
PPI and in the NIPP set, we calculated the sensitivity at a specificity of 99% and 
95%, and the Area under the Curve (AuC), which is often used in the evaluation of 
classifiers,  and  expresses  the  area  under  the  Receiver  Operator  Characteristics 
(ROC) curve (see supplement S5). An AuC of 0.5 indicates a random classifier; an 
AuC of 1 indicates a perfect classifier. For this analysis, we limited ourselves to  
those pairs in the PPI and NIPP set for which all methods could make a prediction.  
We analyzed 44,920 pairs in the PPI set, and 58,388,409 pairs in the NIPP set.
The results show that,  using concept profiles, we can detect 43% of the known 
PPIs, with a specificity of 99%, and 66% of all known PPIs with a specificity of  
only 95%. In contrast, the direct relations methods and STRING show much lower 
scores (Table S1).

Table  1.  Performance  of  different  PPI  prediction approaches  on detecting 
known PPIs in MEDLINE.  CDR stands for Concept-based Direct  Relation 
method.

Word-
based CDR Concept profiles

STRING

Sensitivity at spec = 99% 28% 37% 43% 39%
Sensitivity at spec = 95% 33% 41% 66% 41%
Area under Curve 0.62 0.69 0.90 0.69
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Figure  1.  Histogram of the distributions of similarity scores of the concept 
profile-based  method  for  the  PPI  and  NIPP  sets.  A  log  transformation  is 
applied to the similarity scores for better visualization.

Proteins connected via one intermediate protein
The results reported in the previous section indicate that not all proteins with high 
similarity  scores  are  known  to  interact  according  to  the  combined  protein 
databases.  One  possible  explanation  for  this  is  that  the  proteins  are  related  in 
another way,  e.g. they could be involved in the same pathway or be part of the 
same protein complex, but do not physically interact. To determine whether this 
occurs, we also tested both concept-based approaches on the detection of known 
connections via one intermediate protein. For instance, if the protein pairs A-B and 
B-C are recorded as PPIs in databases, we form the additional protein pair A-C.  In 
total we were able to create 1,028,265 of such pairs to serve as an independent test 
set.  When the  pairs  are  filtered  on  coverage  by  all  methods  the  remaining  set 
contains 790,245 pairs. At a specificity level of 99% and 95% the sensitivity level  
of the different methods was determined for those pairs. The results are given in 
Table S2 and indicate that the concept profile-based approach is indeed superior in 
predicting relationships between proteins potentially present in the same complex 
or pathway.
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Table  2.  Performance  on  predicting  proteins  that  are  connected  via  an 
intermediate protein.

Concept-
based CDR

STRING

Sensitivity at spec = 99% 8% 9% 8%
Sensitivity at spec = 95% 13% 29% 12%
Area under Curve 0.54 0.78 0.53

Average prediction performance per protein
Most researchers will not be interested in all PPIs, but only in those interactions 
involving a (set of) protein(s) of interest. Therefore, for each protein we created a 
top 10, top 100, and top 1,000 best matching proteins according to the concept-
based direct relation, the concept profile method, and STRING. In these lists, we 
calculated the number of PPIs that are either (i) part of the PPI set, or (ii) described 
in the IntAct  database,  or  else (iii)  part  of  the pairs that  are connected through 
intermediate proteins as described in the previous section. We limited our analyses 
to  the  10,812  proteins  that  were  detected  in  at  least  five  MEDLINE abstracts 
(covered  by  the  concept  profiles  method).  The  averages  of  these  performance 
measures in terms of precision and recall are shown in Table S3. For comparison,  
the average total number of pairs per protein in each set is provided in the third 
column.  For  instance,  on  average  each  protein  is  involved in  8.73  interactions 
according to the PPI set, of which on average 6.34 are found in the top 1,000 of the 
concept profile method (precision and recall of 0.006 and 0.73 respectively) , and 
only 3.93 and 3.83 in the top 1,000 of the concept-based direct relation method and 
STRING respectively. The latter two methods show a slightly better performance 
for the  top 10.  Thus,  it  appears that  co-occurrence-based methods can detect  a 
smaller number of PPIs with a somewhat higher accuracy, but the concept profile  
method,  by including indirect  evidence,  can predict  more PPIs and is  therefore 
likely to be more valuable for actual knowledge discovery.

Table 3. Analysis of the top 10, 100, and 1,000 returned by the Concept Profile 
(CP)  method,  the  Concept-based  Direct  Relation  (CDR)  method,  and  by 
STRING. The analysis shows the precision and recall of protein pairs that are 
in the PPI set, of additional pairs

Top 10 Top 100 Top 1,000
Method Total Precision Recall Precision Recall Precision Recall

PPI
CP 8.73 0.096 0.110 0.033 0.37 0.006 0.73
CDR 8.73 0.108 0.124 0.026 0.30 0.004 0.45
STRING 8.73 0.112 0.128 0.026 0.30 0.004 0.44

IntAct
CP 1.61 0.009 0.056 0.002 0.12 0.000 0.29
CDR 1.61 0.009 0.056 0.002 0.11 0.000 0.24
STRING 1.61 0.008 0.050 0.002 0.11 0.000 0.24

Indirectly 
connected

CP 190.21 0.105 0.006 0.080 0.042 0.048 0.25
CDR 190.21 0.137 0.007 0.068 0.036 0.027 0.14
STRING 190.21 0.100 0.005 0.062 0.033 0.026 0.14

38



Retrospective prediction of currently known PPIs
Protein annotation databases are struggling to stay up-to-date with the literature, 
and there is often a substantial time lag between the first publication of a finding, 
and the time the PPI is entered in a database. It could therefore be postulated that  
many of the unknown PPIs predicted today are in fact correct,  but  may not  be 
entered in a database for several years. We have performed a retrospective study to  
answer the question: how many of the PPIs that would have been predicted by the 
different methods in 2005 were confirmed in 2007? 
Both direct relation and concept profile method-based PPI prediction scores were  
created using a MEDLINE corpus with publication dates up to February 2005. We 
ranked the PPIs according to the scores, and set a cut-off value at the 95% and 99% 
specificity  levels  based  on  PPIs  present  in  Swiss-Prot  2005  (this  is  the  only 
database for which historic versions are available). We subsequently evaluated how 
many of the 3,295 PPIs that were added to Swiss-Prot between 2005 and  2007 
were above these cut-off values in 2005. These are the sensitivity values reported 
in Table S4. We also calculated the AuC based on Swiss-Prot 2007 alone. 
The prediction performance is much better for concept profiles (52% versus 38% 
for a specificity level of 95%). This indicates that the majority of currently known 
PPIs were not yet explicitly described in MEDLINE at our testing point, but would 
have been predicted at a specificity rate of 95%. We postulate that this finding is  
indicative for the assumption that based on the full current literature a meaningful 
percentage of the ‘unknowns’ that pass the prediction threshold will be actual pairs 
worth studying in more detail.  

Table  4. Results of the retrospective prediction of PPIs added to Swiss-Prot 
between 2005 and 2007. PPIs are ranked based on MEDLINE up to 2005, and 
specificity levels are based on Swiss-Prot 2005.The sensitivity is determined on 
Swiss-Prot 2007

Concept-
based

Concept 
profiles

Sensitivity at spec = 99% 27% 33%
Sensitivity at spec = 95% 38% 52%
Area under Curve 0.70 0.84

Case Studies
The next logical step was therefore to investigate whether this method can only 
predict  PPIs  that  are  ‘known’ but  not  explicit  in  the  literature  corpus  used,  or 
whether it would also be able to effectively predict unknown, but real PPIs.  We 
investigated  this  in  two  case  studies.  We  generated  predicted  interactions  for 
proteins  with  two  proteins  that  are  intensively  investigated  in  our  group:  (i) 
Dystrophin  (DMD),  a  structural  protein  causing  Duchenne  muscular  dystrophy 
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when defective,  and (ii)  Calpain 3 (CAPN3),  a protease when mutated causing 
Limb-girdle muscular dystrophy (LGMD). 

DMD
We  presented  the  list  of  predicted  interacting  proteins  with  DMD  ordered  by 
descending association scores, to two experts for evaluation. At a specificity of 
99%, there are 196 proteins predicted to interact with DMD. This list was too long 
to manually evaluate and we therefore restricted the human curation analysis to the 
99.8% specificity level (top 42 proteins, Table S5). The full list  is presented as  
Table 7 in the supplementary file. The 42 proteins include 7 of the 19 dystrophin-
interacting proteins that are known from curated databases (sensitivity of 37% at 
this  very high specificity level).  The remaining established  interaction partners 
generally rank high in the list of literature-predicted targets (13/19 in the top 196, 
p-value from Kolmogorov-Smirnov test for comparison with overall ranking: 3.4 . 

10-10). There are three proteins in the predicted set with at least indirect evidence in 
the literature for a physical interaction with DMD (CAV3, SPTB, ACTN2). One 
protein (SLMAP) may well interact given its distribution and localization but this 
needs experimental testing.  Ten proteins in the list are found in the same protein 
complex as DMD but do not interact directly as far as known. Four proteins in the  
list were found wrongly associated with DMD due to homonym problems during 
literature indexing. 
The remaining 17 proteins in the list are associated with DMD for other reasons  
(e.g. also involved in muscular dystrophy, or structural or functional homology) 
but are not likely to physically interact. If we only allow direct physical interaction 
pairs as true positives (11 proteins) the estimated precision is 26%. If predictions of 
protein pairs in a complex also are counted as true positives (21 proteins in total),  
the estimated precision would be 50%. Since also conceptually-related proteins that  
do not physically interact may be of interest to the biologist, the overall precision 
of our prediction method may be as high as 90%. 
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Table  5.  Top 42 ranked proteins  with DMD. In total  10,812 proteins were 
matched against DMD. 7 proteins as known to interact with DMD. Only 4 
proteins  are  real  false  positives  due  to  homonyms  problem  resulting  in  a 
precision over 0.9.

Rank Protein 
symbol

Swiss-Prot 
id

Log 
similarity
 score

Direct 
relations

In PPI set False positives 
(homonym)

1 UTRN P46939 -5.14 214 x

2 SGCA Q16586 -6.13 119

3 DAG1 Q14118 -6.22 139 x

4 SGCB Q16585 -6.60 54

5 SGCD Q53XA5 -6.95 46

6 FCMD O75072 -7.05 29

7 DYSF O75923 -7.19 43

8 DTNA Q9BS59 -7.31 17 x

9 DRP2 Q13474 -7.34 9

10 SSPN Q0JV68 -7.45 17

11 LAMA2 P24043 -7.46 25

12 GK1 P32189 -7.56 33 x

13 CAPN3 P20807 -7.93 28

14 CAV3 P56539 -7.95 24

15 SNTA1 Q13424 -7.97 8 x

16 EIF3S12 Q9UBQ5 -8.05 91 x

17 BEST1 O76090 -8.13 26 x

18 SPTB P11277 -8.15 15

19 FKRP Q9H9S5 -8.16 4

20 MEB 6988 -8.17 7

21 SLMAP Q14BN4 -8.20 4

22 SNTB1 Q13884 -8.20 6 x

23 NEB P20929 -8.33 16

24 SGCE O43556 -8.35 10

25 SGCG Q13326 -8.46 305

26 ACTN2 P35609 -8.49 11

27 POMT1 Q5JT03 -8.50 3

28 LOC130074 Q6NZ40 -8.50 16 x

29 CMD1K 14541 -8.50 27

30 FER1L3 Q9NZM1 -8.51 3

31 NOS1 P29475 -8.53 42

32 IKBKAP O95163 -8.63 10

33 MACF1 Q5T3B3 -8.66 9

34 AQP4 P55087 -8.67 13

35 CKM P06732 -8.70 11

36 FSHMD1A 3966 -8.74 8

37 TCAP O15273 -8.75 7
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38 DTNB O60941 -8.76 9 x

39 LOC619409 619409 -8.82 5

40 VCL P18206 -8.87 36

41 LGMD1A 6574 -8.88 3

42 SNTG1 Q9NSN8 -8.90 5 x

CAPN3
For  CAPN3,  an  evaluation  of  the  precision  is  more  difficult  since  there  is, 
compared to an intensively studied protein such as  DMD, not enough established 
knowledge about its regulatory partners and substrates. Table S6 summarizes the 
currently  known  interaction  partners  for  CAPN3:  13  interactions  have  been 
described in the literature (not necessarily in the abstracts that were used for our 
predictions, see column ‘direct relation’) and of those, six interactions have been 
entered in PPI databases. These known interaction partners generally rank high in 
the  list  of  literature-predicted  targets  (Table  S6,  p-value  from  Kolmogorov-
Smirnov  test:  5.7  . 10-5).  Interestingly,  the  concept  profiling  method  correctly 
predicted the interaction between myosin light chain 1 (MYL1) and CAPN3 on the 
basis of conceptual overlap in MEDLINE abstracts (specificity > 99%), although 
this  interaction  was  only  described  in  a  full  text  paper[23]  and  not  in  any 
MEDLINE abstract used to generate the concept profiles. 
Apart from literature based rediscovery of known interactions, we also set out to 
actually  find  new  interaction  partners  for  CAPN3.  We  selected  predicted 
interaction partners that have not been entered in PPI databases so far and that do  
not have a direct co-occurrence in MEDLINE. The top ranked conceptual match is 
with  Sarcoglycan-epsilon  (SGCE),  which  is  the  smooth  muscle  counterpart  of 
SGCA. Like for CAPN3,  mutations in SGCA  cause LGMD, but as far as we 
know, the protein is not expressed in skeletal muscle. 
The second highest ranking protein was deemed to be an interesting candidate by 
the experts: Parvalbumin B (PARVB). The concept profiling method yielded a high 
association score because both proteins are described to have a physical interaction 
with dysferlin (DYSF)[24, 25], and with α-actinin (ACTN2)[26, 27], and they are 
both  located  at  the  Z-disc[28,  29].  For  this  predicted  protein  pair,  we 
experimentally demonstrated a physical interaction, using three different set-ups. 
First,  it  was  shown  that  immobilized  GST-fused  PARVB  could  pull  down 
recombinant  T7-CAPN3  from  bacterial  lysates.  Second,  immobilized  GST-
PARVB could pull  down endogenous CAPN3 from IM2 mouse myoblasts,  and 
vice versa (Figure S2). 
CAPN3 is hypothesized to act as a cytoskeleton remodeler and has been shown to 
interact with other focal adhesion proteins like Talin and Vinexin[30] (see Table 
S6). Ectopic CAPN3 over-expression results in cell rounding and cleavage and loss 
of co-expressed Talin and Vinexin[30]. This suggests that CAPN3 is a modulator 
of focal adhesions. Like CAPN3, PARVB is predominantly expressed in skeletal 
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muscle, where it plays a role in cell spreading and localizes to focal adhesions[26] 
(for a review, see [31]). The predicted  interaction is coherent with this hypothesis,  
and substantiates the evidence for a role for CAPN3 outside the sarcomere. 
This showcase is  just  one example of  a correct  and meaningful  PPI  prediction 
using concept profiles. This exemplary case study can not be seen proof that many 
of the other high ranking predictions will  also be true physical and biologically 
relevant interactions. However none of the other consulted applications (STRING, 
iHOP) predicted this pair of interacting proteins. As the predictions using concept 
profiling are based on conceptual relatedness rather than an explicit co-occurrence 
in MEDLINE, this case study is  indicative of the power of concept profiles to 
discover  new,  implicitly  related  pairs  of  interacting  proteins.  The  statistics 
presented  in  this  paper  support  the  conclusion  that  predicted  PPIs  using  our 
method, especially the subset that remains after expert analysis of the top ranking 
list  are likely to be very significantly enriched for proteins that  are worthwhile  
studying in wet lab experiments.

Table  6.  List  of  proteins known to interact with Calpain-3.  In total  10,812 
proteins known to have a concept profile are matched against Calpain-3.
Name Symbol In PPI set In literature

(full text)
Direct 
relation
(abstract)

Rank  in 
literature-
based 
prediction

Significant 
at 
specificity 
of 95 %

Dysferlin DYSF x x x 2 x
Titin TTN x x x 4 x
Filamin C FLNC x x x 27 x
Alpha-actinin ACTN2 x x 43 x
Calpastatin CAST x x 55 x
IkappaBalpha NFKBIA x x x 126 x
Myosin  light 
chain 1

MYL1 x 398 x

Alpha-spectrin SPTAN1 x x 426 x
Filamin A FLNA x 853
Ezrin VIL2 x 2739
Vinexin SORBS3 x 3301
Talin TLN1 x 4725
AHNAK AHNAK x No (*) 7371
YWHAQ YWHAQ x 7617

(*) paper describing this interaction in the abstract appeared in June 2008 and was  
not in the literature corpus used for the prediction
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Figure  2. CAPN3 and PARVB can directly interact. A: Immobilized GST-fused PARVB can 
pull down recombinant CAPN3 from a bacterial T7-tagged CAPN3 lysate (Lane 2 vs 1), where 
unfused GST cannot (Lane 4 vs  3).  As CAPN3 is  an unstable  protein that  outside skeletal 
muscle rapidly autolyses we used the active site mutant C129S48. All fractions were resolved on 
SDS-PAGE gel and analyzed by immunoblotting with anti-CAPN3. The lanes represent: GST-
PARVB non-bound fraction (1), GST-PARVB bound fraction (2), GST non-bound fraction (3), 
GST bound fraction (4). B: Equal loading was confirmed with anti-GST (Lane 1 GST-PARVB, 
Lane 2 GST). C: GST-fused PARVB can pull down endogenous full-length CAPN3 from an 
IM2 lysate (Lane 1 vs 2), contrary to unfused GST (Lane 3 vs 4). Lane 1 GST-PARVB bound 
fraction, Lane 2 non-bound fraction, Lane 3 GST bound fraction, Lane 4 non bound fraction.  
D: Likewise, GST-CAPN3 can pull down endogenous PARVB (Lane 1), contrary to GST (Lane 
2). Both PARVB translation products bind. Here we used the Δ6 variant of Capn3 that does not  
autolyse yet retains function30, 49, and is expressed in the proliferating IM2 myoblasts. The 
arrows indicate the detected proteins and in all panels a molecular marker is depicted on the 
left.
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Discussion
Scientists in general and scientific annotators in particular derive their knowledge 
on  PPIs  not  directly  discovered  by  their  own  experiments  from  the  literature. 
However, as we show here, only 32% of the known PPIs covered by curated PPI 
databases can be found in MEDLINE abstracts (Table S1), the resource that is most 
commonly used for concept searches in the biomedical domain. This is despite the 
use of a sophisticated synonym expansion and homonym disambiguation systems . 
It is likely that many of these interactions are only mentioned in the full text of 
articles, or that the interactions have never been explicitly described in literature  
but were directly submitted to a database. In either case, the applicability of the  
most commonly used approach for PPI detection - the direct relation method in 
publicly available literature - appears to be severely limited. 

The  specificity  and sensitivity  levels  achieved by  our  novel  prediction  method 
appear to be very promising. However, when we predict interaction partners for a 
specific  protein,  the  estimated precision levels  (i.e.  how many of  the  predicted 
proteins are true interaction partners) are still seemingly quite moderate.  A first 
consideration is that we are intrinsically unable to determine an accurate ‘true false 
positive rate’ for the predicted PPIs, due to the fact that many PPIs have simply not 
been discovered and described yet.  This unavoidable complication most certainly 
will lead to an underestimation of precision levels. The case study of CAPN3 and 
PARVB signifies this point; initially this pair would have been classified as a ‘false 
positive’. 
For a realistic estimation of the precision of our prediction method, effectively each 
predicted protein pair should be validated in a wet lab experiment, which is out of  
the  realistic  scope  of  this  study.  For  this  reason  we  developed  Nermal. 
(http://biosemantics.org/nermal).  In  Nermal,  researchers  can  enter  the  UniProt 
identifier of a protein of interest, and the tool will return a ranked list of proteins  
that  are  most  likely  to  interact  with  the  query  protein,  in  combination  with 
information on whether the PPI has already been described explicitly in MEDLINE 
and/or in one of the protein databases.
A  second  complicating  factor  is  the  size  of  the  ‘negative’  set  (>50  million) 
compared to the ‘positive’ set (44,920) . This aspect is illustrated by the average 
prediction performance for each protein in Table S3 and by the case study with 
DMD in Table S5, where the top 42 proteins yielded a precision of only 26%, 
whilst  the  specificity  was  99.8%.  We  are  currently  working  on  a  further 
improvement of the precision by including data sources other than the literature in 
the  PPI  prediction algorithms.  A final  consideration is  that  our  predictions  are 
yielding more  conceptual  connections  than  physically  interacting  proteins  only. 
Conceptual  overlap obviously can indicate  a variety of  other  types  of  relations 
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between  proteins.  For  instance,  we  demonstrate  that  many  proteins  with  high 
concept  profile  similarity  do  not  interact  directly,  but  are  connected  through 
intermediary proteins and are potentially part of the same complex or pathway.  
Therefore,  the  precision is  to  a  certain extent  dependent  on the definition of  a 
useful  prediction.  When other  relationships than direct  physical  interactions are 
also deemed of interest, the precision of our method can become as high as 90%. 
The practical use of concept profiles will be in knowledge discovery in general, 
which  is  much  broader  than  discovery  of  PPIs  alone.  In  fact  the  hypothetical 
connection between any given pair of concepts can be calculated using our method.

To  allow  researchers  to  incorporate  conceptual  overlap  data  into  their  own 
analyses, we have made the concept profile similarity scores publicly available in 
two forms; first, a table containing similarity scores between all human proteins 
can be downloaded from our website; second, the previous mentioned web tool 
dubbed Nermal.

We conclude that concept profile similarity is a significantly better literature based 
predictor of PPIs than co-occurrence based methods. These improved predictions 
can be used to increase the biological interpretation and accuracy of interaction 
maps  generated  by  high-throughput  experiments,  or  can  be  used  to  prioritize 
proteins for further testing. In further studies, we will evaluate whether the use of 
concept profiles can also be applied in the prediction of other types of relations, for 
instance between drugs and diseases, and between genes and diseases.

Methods
Direct relation detection
Direct relations are typically extracted from literature based on co-occurrence[32];  
if two proteins are mentioned in the same sentence or document more often than 
can  be  expected  by  chance,  they  are  presumably  related.  We  evaluated  two 
alternatives for the detection of protein occurrences: a word-based approach and a 
concept-based  approach.  The  word-based  approach  consists  of  combining  the 
names of two proteins in an ‘AND’ query in the PubMed search engine. For the 
concept-based  approach  we  have  used  the  concept-recognition  software 
Peregrine[33,  34],  which  includes  synonyms  and  spelling  variations[35]  of 
concepts and uses simple heuristics to resolve homonyms. For this, Peregrine uses 
a protein ontology that was constructed by combining several  gene and protein 
databases[36]. Even though a previous study has shown that Peregrine achieves 
state-of-the-art performance (75% precision and 76% recall on the BioCreactive II 
gene normalization testset[33, 34]), the concept recognition process is still error 
prone.
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We used the likelihood ratio[19] to indicate the strength of the relation between 
two proteins. This ratio increases with the likelihood of there being a dependency 
between  the  occurrence  of  two  proteins.  Two  hypotheses  are  used:  (i)  the 
occurrence of one protein is statistically dependent on the occurrence of the other 
protein; (ii)  the occurrences are statistically independent.  For each hypothesis a  
likelihood is calculated based on the observed data using the binomial distribution. 
The ratio of these likelihoods tells us how much more likely one hypothesis is over 
the other,  or,  in other words,  how sure we are that there is  a dependency. The  
following equations give the likelihood ratio λ of concepts i and j.

λ i , j =
L nij , n i , p j L n j−nij , N−ni , p j 

Lnij , ni , p1 L n j−nij , N−ni , p2 

where  N is the total number of documents in the corpus,  ni  ,  nj,  and  nij are the 

number of documents containing  i, j, and both  i and  j, respectively. p=
n j

N
, the 

probability  j occurs  in  an  abstract  irrespective  of  i, p1=
nij

n i
,  the  probability  j 

occurs  in  an abstract  containing  i,  p2=
n j−n ij

N−ni
,  the  probability  j occurs  in  a 

document  not  containing  i,  and  L k , l , x = xk
1−x l−k ,  the  likelihood 

function according to the binomial distribution.

Concept profile-based relation detection
To calculate the similarity of the contexts in which proteins appear in literature, we 
summarize the context of each protein in a concept profile. This profile contains all  
concepts that have a direct relation with a protein as found using the direct relation 
method described above. We evaluated two possible ways of applying this method: 
(i) using co-occurrences within a sentence, and (ii) using co-occurrences within an 
abstract.   As shown in supplement S6, co-occurrence within an abstract yields a 
slightly  higher  AuC  on  predicting  PPIs.  We  therefore  used  the  abstract-based 
method in our study. The concepts in a profile include, in addition to proteins, all 
other concepts described in the Unified Medical Language System (UMLS) [37],  
such as diseases, symptoms, tissues, biological processes and many other types of 
concepts. We used the uncertainty coefficient[19] to calculate the weights of the 
concepts in the profiles. The uncertainty coefficient for the stochastic variables X 
and Y is given by

U X ∣Y =
H X −H  X ∣Y 

H  X 
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with H(X) is the entropy for X and H(X|Y) is the entropy for X given Y. X and Y 
can be any concept known in the ontology, e.g. drugs, proteins, diseases, disorders, 
chemicals, etc.  The uncertainty coefficient is an information-theoretical measure 
that takes the a priori probability of direct relations into account. It  gives extra  
weight to those concepts that are very specific for the set of documents belonging 
to  the  protein  for  which  the  concept  profile  is  constructed.  For  a  detailed 
description of concept profiles we refer to Jelier et al.[19].
The similarity score between two concept profiles A and B is  taken as the inner  
product of the concept profile vectors, following Jelier et al.[38].

 ip=∑
k=1

N

Auc  k  Buc  k 

with  uc(k) the kth uncertainty coefficient in the profile and N the total number of 
concepts  the  two  profiles  have  in  common.  The  inner  product  increases  with 
increasing overlap in concept profiles. If two proteins co-occur, the inner product 
of their concept profiles is in general high. This is shown in supplement S4. 

MEDLINE corpus 
We extracted the title and abstract of subsections of MEDLINE. The corpus used in 
our main study has a time span from 1980 up to July 2007 and contains 12,098,042 
citations. The corpus used for the retrospective study has a time span from 1980 up 
to February 2005 and contains 10,363,027 citations. This is an increase in time of 
9.8% whereas the increase in published articles over the last two years is 17%.

Generation of the PPI and NIPP sets
There are many protein databases that describe PPIs. Not all of these use protein 
identifiers that could be linked to our protein ontology and the databases also show 
a  high  degree  of  overlap  (see  supplement  S2).  In  our  analysis  we   use 
BioGRID[39],  DIP[40],  HPRD[41],  IntAct[42],  MINT[43],  Reactome[44],  and 
Swiss-Prot[45]  and  only  consider  human  proteins.  Except  for  IntAct,  all  these 
databases are curated, meaning that they only contain PPIs that were judged to be 
correct  according  to  strict  criteria.  IntAct,  on  the  other  hand,  also  contains 
unchecked results from high-throughput experiments which could contain many 
false positives. For a comparison of the prediction performance of our method on 
the individual databases we refer to supplement S3. The release dates and dates of 
download can be found in supplement S1.
For  the  construction  of  our  set  of  known  PPIs,  we  only  rely  on  the  curated 
databases; if a PPI was mentioned in one of these databases, we assumed it to be a 
true PPI. The resulting positive set contains 61,807 PPIs. After removing pairs that 
are not covered by all four prediction methods, 44,920 PPIs remain. Unfortunately, 
there is no database of proteins that are known not to interact. We can therefore  
only create a set of proteins which are less likely to interact.  For our NIPP set we  
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took all pairs of human proteins that are not in the PPI set, and are not in the high-
throughput part of the IntAct database. For computational reasons the calculation 
of the specificity and AuC was done on a random sample of 44,920 pairs of this  
set, setting both the positive and negative set size equal. Two randomly selected 
proteins form a pair and are checked if (i) they are not in the positive PPI set, (ii) 
not the same protein, e.g. proteins that interact with themselves are not taken into 
account, (iii) the protein pair is not already in the NIPP set, e.g. protein pairs can 
only occur once in a set. The random sample is actually quite small compared to 
the total NIPP set, however the ROC curve analysis is set size independent if the 
sample size is sufficiently large. 
One last remark is that the positive set is incomplete. Therefore the creation of the 
NIPP set will introduce false negatives (PPIs that should have been in the positive 
set  and  recorded in  a  curated  database).  However  the  bias  introduced by false 
negatives is negligible since the ratio of expected PPIs in human compared to the 
total set of formable protein pairs (~60 million) is very small[22]. 

STRING database
A copy of the STRING database, version 7.1, was downloaded from the STRING 
website. STRING is a pre-calculated database in PostgreSQL format. Only the text 
mining score table was used in our analysis. 

Sensitivity, Specificity, Precision 
In  information  retrieval  terms  like  the  sensitivity,  specificity  and  precision  are 
frequently used. The definitions are:

sensitivity=
TP

TPFN

specificity=
TN

TNFP

precision=
TP

TPFP
where  TP are  the  number  of  true positives,  FN number  of  false  negatives,  FP 
number of false positives, and TN number of true negatives. A perfect predictor 
has a specificity and sensitivity of 1. 
When both set sizes are equal (#NIPP=#PPI) the precision equals the sensitivity. 
The specificity is sometimes confused with the precision. The distinction is critical 
when the classes are different sizes. A test with very high specificity can have a  
very low precision if there are far more true negatives than true positives, and vice 
versa. 

Online web tool Nermal
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Nermal is a web tool that prioritizes proteins that are most likely to be related with 
the protein you study. Given a query protein, the similarity scores are calculated 
between this protein and all other proteins in the ontology. The proteins are ranked 
on the similarity scores and presented in a table. Each row shows the similarity 
score between the two proteins, the databases in which the protein pair is known, 
and the sensitivity  and (1-specificity)  for  that  similarity  score.  These two rates 
should be interpreted as follows: given a similarity score between two proteins, (1-
specificity)  is  the  probability  that  a  protein  pair  passing  that  score  is  a  false 
positive. The sensitivity is the probability that you will miss a true PPI at that same 
score. Nermal can be found on http://biosemantics.org/nermal/. The full set of all 
protein pair match scores for human proteins can be downloaded at this link as well 
as the PPI and NIPP set used in the study. 

DNA cloning

PARVB was amplified from proliferating IM2 myoblast cDNA with the following 
UTR  primers:  fw  cgcactcgcttatgtcctc,  rv  ctccacatccttgtacttggtg.  The  ORF  was 
amplified  with  a  nested  PCR  introducing  restriction  sites  for  cloning  into 
pET28aGST (modified pET28a vector with GST tag instead of T7 [46]). Primers 
were:  fw  aatatggatcctcctccgcgccaccacggt,  rv  atattctcgagctccacatccttgtacttgg. 
CAPN3  was  similarly  amplified  with  primers  fw  atgccaactgttattagtc,  and  rv 
ctaggcatacatggtaagc,  and  cloned  into  pET28aGST  using  fw 
tattacggatccatgccaactgttattagtc, and rv gtaatactcgagctaggcatacatggtaagc. The exon 
6 deletion that does not autolyse was used for this experiment. 
CAPN3c129s in pET28c was described previously[47]. All DNA constructs were 
verified by direct sequencing (LGTC, Leiden, The Netherlands), and subsequently 
transformed into BL21 (DE3)-RIL E. coli cells (Stratagene) for protein production.

Protein production and preparation of lysates

BL21  cells  transformed  with  pET28aGST,  pET28aGST-PARVB,  pET28aGST-
CAPN3 or  pET28cCAPN3c129s  were grown to  log  phase  and stimulated with 
1mM IPTG (Fermentas), and left to grow for 3 h at 37 °C. Next cells were spun 
down at 3,000 g and 4°C for 15 min. Pellets were dissolved in lysis buffer A (50 
mM Tris-HCl pH 7.4, 1mM EDTA, 1.5 mg/ml lysozyme, 0.15 M NaCl, 1% Triton, 
Benozonase, 2x protease inhibitor cocktail tablet (Roche Molecular Biochemicals, 
Basel, Switzerland)), and sonicated on ice. Lysate was cleared by centrifugation at 
13,000 g, and 4 °C for 30 min. 
IM2 cells  were grown at 33°C and 10% CO2 in DMEM 60196 (GIBCO-BRL, 
Grand-Island,  NY)  supplemented  with  20%  FCS,  INFγ,  glucose,  pen/strep, 
glutamine and chick embryo extract. 15 cm plates (2x) were grown 75% confluent, 
washed 1x with PBS (37  °C) and lysed on ice with 1 ml lysis buffer B (50 mM 
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Tris-HCl pH 7.5, 150 mM NaCl, 0.2% Triton X-100, 2x protease inhibitor cocktail 
tablet). Lysate was spun down at 13,000 g and 4 °C for 30 min.

Pull-down

GST sepharose beads (4B, Amersham, Uppsala, Sweden) were washed with PBS 
(2x)  and pre-equilibrated with lysis  buffer  (2x),  and added to the  cleared GST 
fusion lysates.  Lysates  were incubated at  4  °C and tumbling for  2 h.  Next  the 
lysates were spun down at 500 g, 4 °C for 5 min, and washed 3x with lysis buffer 
A.  Separately,  IM2 lysates  were treated with washed and pre-equilibrated GST 
sepharose beads (buffer B). An aliquot of the GST fusion proteins was loaded on 
SDS-PAGE gel and Coomassie stained to confirm equal loading. 
IM2 lysate, or T7-CAPN3c129s lysate, was added to the bait, and incubated O/N at 
4 °C and tumbling. GST sepharose beads were spun down and the sup was stored 
as non-bound fraction. The beads were washed 5x with ice cold lysisbuffer (A or  
B, 3x short, 2x five minutes tumbling). All remaining sup was removed with an 
insulin syringe and proteins were eluted with 2x Laemmli sample buffer and boiled 
5 min. An aliquot of the non-bound fraction was similarly prepared.

Western blot

Samples  were  loaded  onto  SDS-PAGE  gels,  separated  and  blotted  to  PVDF 
membrane. Blots were blocked in 4% skimmed milk PBS (Marvel) and incubated 
with primary antibody O/N at 4°C. Next morning blots were washed with 0.05% 
Tween in PBS, and incubated with secondary antibody for 1 h. Blots were washed 
again and scanned with an Odyssey scanner (Licor) or incubated with ECL plus 
(Amersham) and exposed to a Kodak XAR film. The following antibodies were 
used  for  Western  detection:  GaGST  (1;10,000  Stratagene)  MaCAPN3  (1;100, 
12A2  Novocasta,  Newcastle,  UK),  GaPARVB  (1;200  Santa  Cruz), 
GaMouseIRDye680  (1;5,000  Westburg,  Leusden,  NL),  DaGIRDye800  (1;5,000 
Westburg),  RaMouseHRP  (1;2,000  Dako  Cytomation,  Glostrup,  Denmark), 
DaGoatHRP (1;10,000 Promega). 
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Supplementary information belonging to  the  article  “Novel  protein-protein 
interactions inferred from literature context”

S1 Downloaded protein database and release dates
In  total  seven  protein  databases  are  used  in  the  study.  The  UniProt  database 
consists of Swiss-Prot and TrEMBL. 
Protein database Date of download
Biogrid September 28, 2007
DIP September 20, 2007
HPRD August 22, 2007*
IntAct January 26, 2008
MINT September 24, 2007*
Reactome September 20, 2007
UniProt February 14, 2008*
* For these databases it is possible to retrieve the original release dates. HPRD was 
released at January 9, 2007, MINT at June 28, 2007. Swiss-Prot and TrEMBL are 
combined in  the  database UniProt  and  have different  release  versions.  UniProt 
release 12.0 contains Swiss-Prot release 54.0 and TrEMBL release 37.0. Both are 
dated from July 24, 2007.

S2 PPI overlap between the seven databases 
Many of  the  PPIs  appear  in  several  databases.  The  following  table  shows  the 
distribution and overlap over the seven protein databases.  

Biogrid DIP HPRD IntAct MINT Reactome Swiss-Prot
Biogrid 16240 205 15476 3006 2637 909 827
DIP 365 278 84 118 66 53
HPRD 34957 8031 7046 1401 1839
IntAct 17456 5754 595 3839
MINT 10772 375 650
Reacto
me

29672 290

Swiss-
Prot

3841

S3 Performance on individual databases
The positive set is a combination of six protein databases. The databases vary in 
size and also the level of curation of each PPI.  The following table gives the Area 
under the ROC (AuC) curve for each database individually. The last row is the 
AuC for the complete positive set.
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Database Concept profiles Log likelihood String
Biogrid 0.95 0.82 0.82
Dip 0.99 0.96 0.94
Hprd 0.93 0.79 0.78
Intact 0.71 0.57 0.56
Mint 0.87 0.72 0.70
Reactome 0.90 0.60 0.60
Swiss-Prot 0.84 0.71 0.71
Positive set 0.90 0.69 0.69

S4 Relationship between direct relation detection and concept profiles 
The coverage in S3 shows that some PPIs have both overlap in concept profiles and 
a direct relation,  while others have only concept profile overlap. The similarity 
score for proteins that share a direct relation is generally high. This is illustrated in 
figure 1.
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Figure 1. Histogram of the distribution of the similarity scores of: (blue) PPIs 
with concept profile overlap and no direct relation, and (green) PPIs with both 
a concept profile overlap and a direct relation. 

S5 ROC curve analysis
The next  figure  shows the ROC curves  for  the concept  profile  similarity score  
(green), and the likelihood ratio of the direct relation method (red). For the direct 
relation method we discern two special cases: (i) each protein individual occurs in 
Medline but they are never mentioned together, and (ii) one of the proteins does 
not occur in MedLine at all. In the first case the likelihood score is –infinity, in the 
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second case the likelihood score is 0. These cases are quite frequent resulting in 
many duplicate values, and no natural ordering of the PPIs. We assume a perfect 
random ordering, resulting in the straight line at the end of the ROC curve in the 
figure (red for concept based method and black for the String database).

S6 Relation detection at the abstract and sentence level
For the construction of concept profiles, we investigated two options: assume two 
concepts are related when they co-occur (i) in the same sentence, and (ii) in the 
same abstract. For each option we evaluated the performance on the prediction of 
PPIs.

Abstract level Sentence level
AuC* 0.93 0.91

The  difference  in  results  are  neglectable.  There  is  a  very  small  decrease  in 
performance using sentence based detection of relations.
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* this analysis was done using a MedLine corpus up to April 2007 and using an  
older ontology. 

S7 Ranked list of proteins predicted to interact with dystrophin (DMD)
The following table shows the proteins which similarity score with DMD have a 
specificity higher than 99%.
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Rank Protein symbol Log similarity score Direct relations FP rate TP rate Dip Intact Mint
1 UTRN P46939 -5.14 214 0.003 0.856 0 0 1 0 0 0 0
2 SGCA Q16586 -6.13 119 0.013 4.047 0 0 0 0 0 0 0
3 DAG1 Q14118 -6.22 139 0.013 4.047 0 0 1 0 0 0 0
4 SGCB Q16585 -6.6 54 0.022 5.853 0 0 0 0 0 0 0
5 SGCD Q53XA5 -6.95 46 0.032 8.168 0 0 0 0 0 0 0
6 FCMD O75072 -7.05 29 0.034 8.62 0 0 0 0 0 0 0
7 DYSF O75923 -7.19 43 0.039 9.65 0 0 0 0 0 0 0
8 DTNA Q9BS59 -7.31 17 0.048 10.576 0 0 1 0 1 0 0
9 DRP2 Q13474 -7.34 9 0.049 10.625 0 0 0 0 0 0 0
10 SSPN Q0JV68 -7.45 17 0.055 11.543 0 0 0 0 0 0 0
11 LAMA2 P24043 -7.46 25 0.055 11.543 0 0 0 0 0 0 0
12 GK1 P32189 -7.56 33 0.059 12.306 0 0 0 0 0 0 0
13 CAPN3 P20807 -7.93 28 0.08 15.06 0 0 0 0 0 0 0
14 CAV3 P56539 -7.95 24 0.08 15.06 0 0 0 0 0 0 0
15 SNTA1 Q13424 -7.97 8 0.081 15.274 0 0 1 0 0 0 0
16 EIF3S12 Q9UBQ5 -8.05 91 0.091 16.02 0 0 0 0 0 0 0
17 BEST1 O76090 -8.13 26 0.096 16.703 0 0 0 0 0 0 0
18 SPTB P11277 -8.15 15 0.097 16.896 0 0 0 0 0 0 0
19 FKRP Q9H9S5 -8.16 4 0.098 17.046 0 0 0 0 0 0 0
20 MEB 6988 -8.17 7 0.099 17.106 0 0 0 0 0 0 0
21 SLMAP Q14BN4 -8.2 4 0.102 17.288 0 0 0 0 0 0 0
22 SNTB1 Q13884 -8.2 6 0.102 17.288 0 0 1 1 0 0 1
23 NEB P20929 -8.33 16 0.117 18.497 0 0 0 0 0 0 0
24 SGCE O43556 -8.35 10 0.117 18.497 0 0 0 0 0 0 0
25 SGCG Q13326 -8.46 305 0.132 19.584 0 0 0 0 0 0 0
26 ACTN2 P35609 -8.49 11 0.137 19.754 0 0 0 0 0 0 0
27 POMT1 Q5JT03 -8.5 3 0.137 19.754 0 0 0 0 0 0 0
28 LOC130074 Q6NZ40 -8.5 16 0.138 19.925 0 0 0 0 0 0 0
29 CMD1K 14541 -8.5 27 0.138 19.925 0 0 0 0 0 0 0
30 FER1L3 Q9NZM1 -8.51 3 0.138 19.925 0 0 0 0 0 0 0
31 NOS1 P29475 -8.53 42 0.139 20.11 0 0 0 0 0 0 0
32 IKBKAP O95163 -8.63 10 0.152 21.011 0 0 0 0 0 0 0
33 MACF1 Q5T3B3 -8.66 9 0.162 21.337 0 0 0 0 0 0 0
34 AQP4 P55087 -8.67 13 0.162 21.337 0 0 0 0 0 0 0
35 CKM P06732 -8.7 11 0.167 21.668 0 0 0 0 0 0 0
36 FSHMD1A 3966 -8.74 8 0.172 21.859 0 0 0 0 0 0 0
37 TCAP O15273 -8.75 7 0.173 22.153 0 0 0 0 0 0 0
38 DTNB O60941 -8.76 9 0.173 22.153 0 0 1 0 1 0 0

Swiss-Prot id Biogrid Hprd Reactome Swiss-Prot
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39 LOC619409 619409 -8.82 5 0.181 22.675 0 0 0 0 0 0 0
40 VCL P18206 -8.87 36 0.189 23.173 0 0 0 0 0 0 0
41 LGMD1A 6574 -8.88 3 0.192 23.273 0 0 0 0 0 0 0
42 SNTG1 Q9NSN8 -8.9 5 0.194 23.459 0 0 1 0 1 0 0
43 EMD P50402 -8.94 12 0.201 23.864 0 0 0 0 0 0 0
44 GNE Q6QNY6 -9 7 0.205 24.407 0 0 0 0 0 0 0
45 MYOZ2 Q9NPC6 -9.03 7 0.209 24.632 0 0 0 0 0 0 0
46 PGM5 Q15124 -9.04 3 0.212 24.733 0 0 1 0 0 0 0
47 CASQ1 P31415 -9.05 5 0.213 24.892 0 0 0 0 0 0 0
48 NR0B1 P51843 -9.06 18 0.218 25.047 0 0 0 0 0 0 0
49 SYNC1 Q9H7C4 -9.08 4 0.219 25.066 0 0 0 0 0 0 0
50 TTN Q8WZ42 -9.08 7 0.22 25.157 0 0 0 0 0 0 0
51 DENR O43583 -9.12 3 0.228 25.497 0 0 0 0 0 0 0
52 POMGNT1 Q8WZA1 -9.15 7 0.233 25.802 0 0 0 0 0 0 0
53 RAPSN Q13702 -9.19 8 0.239 26.192 0 0 0 0 0 0 0
54 MYOT Q9UBF9 -9.27 5 0.253 27.025 0 0 0 0 0 0 0
55 GDF8 O14793 -9.28 5 0.254 27.08 0 0 0 0 0 0 0
56 AIED 351 -9.3 2 0.256 27.193 0 0 0 0 0 0 0
57 TRIM32 Q13049 -9.31 3 0.256 27.193 0 0 0 0 0 0 0
58 MYH7 P13533 -9.36 18 0.265 27.894 0 0 0 0 0 0 0
59 LAMB1 P07942 -9.36 6 0.266 27.898 0 0 0 0 0 0 0
60 RP23 10277 -9.41 6 0.274 28.242 0 0 0 0 0 0 0
61 SNTG2 Q05AH5 -9.42 2 0.275 28.462 0 0 1 0 0 0 0
62 ACTN3 Q08043 -9.46 5 0.284 28.783 0 0 0 0 0 0 0
63 LMNA P02545 -9.46 17 0.285 28.814 0 0 0 0 0 0 0
64 SPTBN4 Q9H254 -9.51 1 0.289 29.342 0 0 0 0 0 0 0
65 OTC P00480 -9.55 8 0.298 29.59 0 0 0 0 0 0 0
66 DTNBP1 Q96EV8 -9.56 5 0.299 29.616 0 0 0 0 0 0 0
67 SNTB2 Q13425 -9.56 2 0.302 29.732 0 0 1 1 0 0 1
68 LGMD1B 6575 -9.57 0 0.304 29.838 0 0 0 0 0 0 0
69 SYNPO2 Q9UMS6 -9.57 3 0.307 29.862 0 0 0 0 0 0 0
70 RPGR Q4VX65 -9.59 5 0.314 29.997 0 0 0 0 0 0 0
71 SPTBN1 Q01082 -9.59 7 0.314 29.997 0 0 0 0 0 0 0
72 GYPC P04921 -9.6 3 0.318 30.105 0 0 0 0 0 0 0
73 TAZ Q16635 -9.63 8 0.329 30.387 0 0 0 0 0 0 0
74 SNORD95 32757 -9.63 3 0.329 30.387 0 0 0 0 0 0 0
75 DMN O15061 -9.64 3 0.33 30.483 0 0 0 0 0 0 0
76 SEPN1 Q9NZV5 -9.74 2 0.364 31.413 0 0 0 0 0 0 0
77 GATM P50440 -9.76 2 0.37 31.678 0 0 0 0 0 0 0
78 MTM1 Q13496 -9.78 5 0.372 31.823 0 0 0 0 0 0 0
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79 PLEC1 Q15149 -9.82 1 0.384 32.306 0 0 0 0 0 0 0
80 NRG4 Q0P6N4 -9.82 1 0.387 32.363 0 0 0 0 0 0 0
81 AAVS1 22 -9.83 4 0.389 32.414 0 0 0 0 0 0 0
82 MYOD1 O75321 -9.84 9 0.389 32.414 0 0 0 0 0 0 0
83 FLNC Q14315 -9.87 3 0.398 32.802 0 0 0 0 0 0 0
84 VAULTRC3 12656 -9.88 1 0.4 32.846 0 0 0 0 0 0 0
85 CFC1 Q9GZR3 -9.89 16 0.401 32.965 0 0 0 0 0 0 0
86 IL1RAPL1 Q7Z2K4 -9.9 4 0.403 33.116 0 0 0 0 0 0 0
87 DYNLT3 P51808 -9.91 3 0.406 33.239 0 0 0 0 0 0 0
88 DTL Q9NZJ0 -9.93 2 0.411 33.417 0 0 0 0 0 0 0
89 DMPK Q09013 -9.93 5 0.411 33.417 0 0 0 0 0 0 0
90 MYOG P15173 -9.94 8 0.414 33.444 0 0 0 0 0 0 0
91 DGKZ Q13574 -9.95 2 0.417 33.614 0 0 1 0 0 0 0
92 SRRM2 O60382 -9.96 2 0.418 33.686 0 0 0 0 0 0 0
93 SMN1 Q16637 -10.04 3 0.441 34.576 0 0 0 0 0 0 0
94 MYL2 P10916 -10.05 2 0.445 34.75 0 0 0 0 0 0 0
95 MYLPF Q6IB41 -10.09 2 0.457 35.062 0 0 0 0 0 0 0
96 PVALB P02144 -10.1 22 0.464 35.21 0 0 0 0 0 0 0
97 COL6A1 P12109 -10.14 2 0.473 35.566 0 0 0 0 0 0 0
98 MYH7 P12883 -10.14 2 0.474 35.583 0 0 0 0 0 0 0
99 CAPN8 1485 -10.14 1 0.476 35.607 0 0 0 0 0 0 0
100 MEAX 6987 -10.15 2 0.477 35.638 0 0 0 0 0 0 0
101 POMT2 Q59GJ5 -10.15 0 0.479 35.702 0 0 0 0 0 0 0
102 AGRN O00468 -10.18 3 0.483 35.963 0 0 0 0 0 0 0
103 DNPEP Q9HAC6 -10.18 2 0.484 35.967 0 0 0 0 0 0 0
104 XIC 12809 -10.19 0 0.491 36.045 0 0 0 0 0 0 0
105 PDLIM3 Q53GG5 -10.2 2 0.499 36.198 0 0 0 0 0 0 0
106 COL6A2 P12110 -10.21 1 0.5 36.268 0 0 0 0 0 0 0
107 GAA P10253 -10.21 7 0.501 36.3 0 0 0 0 0 0 0
108 LAMA1 P25391 -10.26 0 0.52 36.811 0 0 0 0 0 0 0
109 MYF6 P23409 -10.27 2 0.524 36.845 0 0 0 0 0 0 0
110 CHRNG P07510 -10.29 1 0.531 37.012 0 0 0 0 0 0 0
111 SPTA1 O60686 -10.3 2 0.535 37.144 0 0 0 0 0 0 0
112 CSRP3 P50461 -10.3 3 0.542 37.216 0 0 0 0 0 0 0
113 EPB41 P11171 -10.31 4 0.548 37.322 0 0 0 0 0 0 0
114 PBDX P55808 -10.32 1 0.548 37.322 0 0 0 0 0 0 0
115 LAMB2 P55268 -10.32 1 0.549 37.398 0 0 0 0 0 0 0
116 WDM 50988 -10.34 1 0.561 37.627 0 0 0 0 0 0 0
117 HHG 4902 -10.35 1 0.563 37.68 0 0 0 0 0 0 0
118 RPS4Y1 P22090 -10.35 2 0.563 37.68 0 0 0 0 0 0 0
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119 ITGA7 Q13683 -10.35 1 0.563 37.68 0 0 0 0 0 0 0
120 TNNT2 P45379 -10.37 4 0.574 37.877 0 0 0 0 0 0 0
121 CMD1B 2102 -10.37 2 0.574 37.877 0 0 0 0 0 0 0
122 FOSL2 P15408 -10.38 1 0.578 38.028 0 0 0 0 0 0 0
123 SFRS2 Q01130 -10.39 3 0.582 38.131 0 0 0 0 0 0 0
124 MIB2 Q0JSM5 -10.4 1 0.59 38.257 0 0 0 0 0 0 0
125 MSRB2 Q9Y3D2 -10.4 1 0.59 38.257 0 0 0 0 0 0 0
126 DNM1L O00429 -10.4 1 0.59 38.257 0 0 0 0 0 0 0
127 XKR1 P51811 -10.41 2 0.593 38.307 0 0 0 0 0 0 0
128 XIST 12810 -10.42 0 0.605 38.416 0 0 0 0 0 0 0
129 TPM1 O15513 -10.42 5 0.606 38.439 0 0 0 0 0 0 0
130 COL6A3 P12111 -10.42 1 0.61 38.522 0 0 0 0 0 0 0
131 SUCLG1 P53597 -10.42 1 0.613 38.547 0 0 0 0 0 0 0
132 NRG3 P56975 -10.43 1 0.614 38.587 0 0 0 0 0 0 0
133 PPP1R10 Q96QC0 -10.43 1 0.614 38.587 0 0 0 0 0 0 0
134 RNPS1 Q15287 -10.44 2 0.623 38.738 0 0 0 0 0 0 0
135 MYEF2 Q9P2K5 -10.46 2 0.632 38.88 0 0 0 0 0 0 0
136 GAMT Q14353 -10.48 1 0.646 39.13 0 0 0 0 0 0 0
137 TNNC1 P63316 -10.49 3 0.65 39.232 0 0 0 0 0 0 0
138 RP2 O75695 -10.51 3 0.661 39.446 0 0 0 0 0 0 0
139 MYL6 P60660 -10.51 1 0.663 39.469 0 0 0 0 0 0 0
140 CTSH P09668 -10.51 2 0.664 39.48 0 0 0 0 0 0 0
141 CXADR P78310 -10.53 4 0.681 39.609 0 0 0 0 0 0 0
142 ELOVL4 Q9GZR5 -10.53 1 0.682 39.635 0 0 0 0 0 0 0
143 MYF5 P13349 -10.57 3 0.703 40.025 0 0 0 0 0 0 0
144 FBXO32 Q969P5 -10.59 1 0.716 40.275 0 0 0 0 0 0 0
145 PRX Q9BXM0 -10.6 2 0.716 40.275 0 0 0 0 0 0 0
146 BLOC1S1 P78537 -10.6 1 0.718 40.311 0 0 0 0 0 0 0
147 MUSK O15146 -10.6 1 0.718 40.311 0 0 0 0 0 0 0
148 SMN2 Q16637 -10.62 1 0.731 40.491 0 0 0 0 0 0 0
149 IS2 282552 -10.62 0 0.734 40.516 0 0 0 0 0 0 0
150 DM1 2923 -10.62 2 0.735 40.521 0 0 0 0 0 0 0
151 DYNLL1 P63167 -10.63 1 0.737 40.567 0 0 0 0 0 0 0
152 PDAP1 Q13442 -10.63 1 0.737 40.567 0 0 0 0 0 0 0
153 INVS Q5JS85 -10.65 3 0.748 40.76 0 0 0 0 0 0 0
154 PABPN1 Q86U42 -10.66 1 0.76 40.877 0 0 0 0 0 0 0
155 NOS1AP O75052 -10.67 1 0.762 40.915 0 0 0 0 0 0 0
156 KCNJ10 P78508 -10.67 3 0.765 40.985 0 0 0 0 0 0 0
157 TCTA P57738 -10.68 0 0.767 41.034 0 0 0 0 0 0 0
158 ACTA1 P68133 -10.68 2 0.769 41.074 0 0 1 0 0 0 0
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159 CACNA1I Q9P0X4 -10.68 1 0.776 41.155 0 0 0 0 0 0 0
160 MST4 Q8NC04 -10.71 1 0.786 41.424 0 0 0 0 0 0 0
161 KFSD 6313 -10.72 2 0.786 41.424 0 0 0 0 0 0 0
162 IGFBP5 P24593 -10.72 1 0.789 41.494 0 0 0 0 0 0 0
163 DST O94833 -10.75 7 0.812 41.721 0 0 0 0 0 0 0
164 FRG1 Q14331 -10.76 0 0.82 41.913 0 0 0 0 0 0 0
165 CD5L O43866 -10.77 0 0.823 41.983 0 0 0 0 0 0 0
166 ITPR1 Q14643 -10.79 1 0.83 42.123 0 0 0 0 0 0 0
167 PARVB Q9HBI1 -10.8 0 0.838 42.202 0 0 0 0 0 0 0
168 RIMS1 Q5SZK2 -10.8 1 0.838 42.202 0 0 0 0 0 0 0
169 GAS2 O43903 -10.8 3 0.845 42.293 0 0 0 0 0 0 0
170 WAS P42768 -10.8 238 0.846 42.308 0 0 0 0 0 0 0
171 CDH15 P55291 -10.81 2 0.849 42.363 0 0 0 0 0 0 0
172 ACTC1 P68032 -10.82 1 0.85 42.429 0 0 1 0 0 0 0
173 MLS 7145 -10.82 1 0.85 42.429 0 0 0 0 0 0 0
174 CACNA1S Q13698 -10.82 3 0.851 42.507 0 0 0 0 0 0 0
175 ERF P50548 -10.83 1 0.856 42.558 0 0 0 0 0 0 0
176 SFRS1 Q07955 -10.84 1 0.865 42.672 0 0 0 0 0 0 0
177 DCTN3 O75935 -10.87 1 0.894 42.976 0 0 0 0 0 0 0
178 DDX3Y O15523 -10.87 1 0.894 42.976 0 0 0 0 0 0 0
179 SFRS5 Q13243 -10.87 1 0.896 43.018 0 0 0 0 0 0 0
180 ALG3 Q92685 -10.87 109 0.896 43.018 0 0 0 0 0 0 0
181 RYR1 O75591 -10.88 1 0.908 43.141 0 0 0 0 0 0 0
182 GAS2L1 Q99501 -10.9 1 0.919 43.308 0 0 0 0 0 0 0
183 COL4A5 P29400 -10.9 0 0.919 43.308 0 0 0 0 0 0 0
184 PTBP2 O95652 -10.91 0 0.926 43.393 0 0 0 0 0 0 0
185 MYH6 P13533 -10.91 4 0.928 43.444 0 0 0 0 0 0 0
186 IGFBP4 P22692 -10.92 3 0.933 43.582 0 0 0 0 0 0 0
187 SYNE1 Q5JV23 -10.93 1 0.934 43.62 0 0 0 0 0 0 0
188 ZNF91 Q05481 -10.93 1 0.939 43.637 0 0 0 0 0 0 0
189 SP1 P08047 -10.93 7 0.94 43.669 0 0 0 0 0 0 0
190 PTPN22 Q5TBC0 -10.93 1 0.941 43.671 0 0 0 0 0 0 0
191 LOC619511 619511 -10.94 1 0.943 43.701 0 0 0 0 0 0 0
192 EIF4EBP1 Q13541 -10.95 3 0.953 43.838 0 0 0 0 0 0 0
193 MYOZ1 Q9NP98 -10.97 0 0.977 44.029 0 0 0 0 0 0 0
194 BSN Q2NLD3 -10.98 0 0.988 44.167 0 0 0 0 0 0 0
195 FBXO11 Q86XK2 -10.99 1 0.999 44.248 0 0 0 0 0 0 0
196 ZBTB20 Q9HC78 -10.99 1 0.999 44.248 0 0 0 0 0 0 0
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Abstract
We introduce a framework for predicting novel protein-protein interactions (PPIs), 
based on Fisher’s method for combining probabilities of predictions that are based 
on different data sources,  such as the biomedical literature,  protein domain and 
mRNA expression information. Our method compares favorably to our previous 
method  based  on  text-mining  alone  and  other  methods  such  as  STRING.  We 
evaluated our algorithms through the prediction of experimentally found protein 
interactions underlying Muscular Dystrophy, Huntington’s Disease, and Polycystic 
Kidney Disease,  which had not  yet  been recorded in protein-protein interaction 
databases. We found a 1.74 fold increase in mean average prediction precision for 
dysferlin and a 3.09 fold for huntingtin when compared to STRING. The top 10 of  
predicted  interaction  partners  of  huntingtin  were  analysed  in  depth.  Five  were 
identified previously, and the other five were new potential interaction partners. 
The full matrix of human protein pairs and their prediction scores is available for 
download. Our framework can be extended to predict other types of relationships 
such as proteins in a complex, pathway or related disease mechanisms.

Introduction
The  biomedical  literature  and  domain-specific  databases  contain  a  wealth  of 
background information,  which should aid biomedical  researchers in the design 
and interpretation of their experiments. Many databases compile information from 
several  resources  for  use  as  reference  and  lookup.  Databases  such  as  KEGG, 
STRING, and IntNetDB are examples that are useful for studying protein-protein 
relations.  These  resources  represent  existing  knowledge  well.  However,  of 
particular interest is the potential to reveal genuinely novel relations by data mining 
algorithms [1]. In previous work we showed the ability to predict protein-protein 
interactions using information contained in literature alone [2]. With the so called 
concept profile technology, we found novel protein interaction pairs that could not 
have  been  found  by  a  simple  MEDLINE  query.  This  was  illustrated  by  the 
prediction of the physical interaction between calpain 3, which causes a form of 
muscular dystrophy, and parvalbumin B, which is found mainly in skeletal muscle. 
However, this method does not exploit the full potential of information available 
for data mining. Combining data sets beyond literature may increase coverage and 
the reliability of our predictions.
Combining  data  from  different  sources  for  extracting  relevant  knowledge  is  a 
general objective in bioinformatics. Here, we distinguish data concatenation and 
evidence score combination.  Data concatenation merely summarizes the results of 
queries  to  a number  of  individual  databases  (e.g. www.genecards.org [3]).  The 
summaries are provided to an investigator for interpretation. When investigating 
PPIs,  a summary may contain information on the presence of certain PPIs in a  
curated PPI database,  Gene Ontology terms that are shared, and co-expression of 
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genes in  certain tissues  or  cellular  compartments.  No additional  algorithms are  
provided to predict and highlight putatively novel relations.
Evidence  score  combination  provides  a  score  to  order  the  information  from  a 
combination of data sets. For each set, the score reflects the contribution of the set  
to the overall result of a query across a number of data sets. The individual scores 
are  combined  using  one  of  several  combination  techniques.  Evidence  score 
combination can be used to predict new relationships between biological concepts, 
including protein-protein interactions (PPIs).
Several  web tools are available that provide some form of data integration and 
evidence score combination for the extraction of PPIs [4-6]. (i) STRING[6], which 
is  maintained by EMBL, contains  functional  associations  for  over  600 species. 
STRING uses information on genomic content, high throughput experiments, co-
expression, and co-mentioning in PubMed abstracts and recorded in public curated 
databases like KEGG or Reactome. STRING uses a combination technique based 
on the product of p-values to provide a confidence score for predicted PPIs. (ii) 
FunCoup[5] provides a predicted protein-protein network for eight eukaryotes. It 
uses  information  on  PPIs,  mRNA  expression,  sub-cellular  co-localization, 
phylogenetic  profiles,  miRNA-mRNA  targets,  transcription  factor  regulation, 
protein  expression,  and  protein  domain  interactions.  The  network  is  optimized 
using a Bayesian approach. (iii) IntNetDB v1.0.[4] is restricted to a few species and 
mainly focuses  on human data.  IntNetDB uses  physical  interactions,  phenotype 
similarity, genetic interactions, shared GO annotation, domain-domain interactions, 
co-expression, and gene context in PubMed articles. IntNetDB uses a Naive Bayes 
classifier as combination technique. As stated previously, these web tools perform 
well  on  reproducing  existing  PPIs.  STRING  for  instance  aggregates  known 
interactions  from several  databases  and predictions  made  by  several  predicting 
methods.  Their  evidence  score  reflects  how  well  supported  an  interaction  or 
association is by these sources. Our aim is to develop a true interaction predictor, 
and a score that reflects the likelihood that the prediction is true. In contrast to 
STRING, our method will predict known as well as unknown interactions that can 
have  equally  high  scores.  The  correspondence  with  known  protein-protein 
interactions validates our approach.
The remainder of this article is structured as follows. We give a brief introduction 
of our framework which is based on Fisher’s method for combining p-values based 
on different data sources. Next our framework was validated by evaluating three 
show cases. The first case is on dysferlin (DYSF encoded protein), its deficiency 
causing progressive Limb Girdle Muscular Dystrophy type 2B.  We aimed for the 
discovery of dysferlin interaction partners by immunoprecipitation experiments and 
show how well we could predict these new interactions. The second case relates to 
the huntingtin protein which is associated with Huntington’s disease. We took PPIs 
from the article by Kaltenbach et. al. [7], which had not been stored (yet) in PPI  
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databases and which had not been described in MEDLINE abstracts. They serve as 
a good test set where we simulate that our framework is able to predict proteins 
from these lists. The last show case is on Polycystic Kidney Disease caused by the 
mutated  PKD1  gene.  This  case  illustrated  how  to  solve  homonym  problems 
encountered  in  text  by  including  additional  expression  data.  We  end  with 
summarizing the results  for  each show case and conclude that  we significantly 
improve the discovery of novel PPIs over previous methods.  

Materials and methods

Performance measurement
For  measuring  performance  we  used  receiver  operating  characteristics  (ROC) 
curves and the area under the curve (AuC).  Second, we used the mean average 
precision (MAP). Both are measurements often used in information retrieval. In the 
case studies the test sets used for dysferlin and huntingtin are labeled as positive 
instances. The rest of the proteins in our ontology are labeled as negative instances. 
The AuC values have a range between 0.5 and 1. 0. A value of 0.5 means that the 
systems is no different than a random ordering of the samples,  i.e. the positive 
instances are equally distributed over the ordered list (ordered by match score) of  
all proteins. An AuC of 1 mean the system is a perfect predictor,  i.e. al positive 
instances first rank at the top followed by all negative instances. 
The mean average precision is a measurement more sensitive to samples size of 
both  the  positive  and  negative  set.  The  MAP  is  calculated  by  averaging  all  
precisions  where  each  precision  is  calculated  at  the  occurrence  of  a  positive 
instance in an ordered list (ordered by match score).

Match scores for each individual database.

Concept profiles
To calculate the similarity of the contexts in which proteins appear in literature, we 
summarize  the  context  of  each  protein  in  a  concept  profile.  This  profile  for  a 
protein contains all concepts that are co-mentioned with the protein as found in  
MEDLINE  abstracts.  To  find  concepts  in  text  we  have  used  the  concept-
recognition  software  Peregrine  [8],  which  includes  synonyms  and  spelling 
variations of concepts and uses simple heuristics to resolve homonyms. For this, 
Peregrine uses a protein ontology that was constructed by combining several gene 
and protein databases. Proteins from different species are fused together and we do 
not distinguish between a gene and a protein. 
Each concept in the profile is assigned a weight. The weight reflects the strength of 
the association between the concept and the protein. The concepts that appear in 
both protein profiles are used to calculate a match score. The match score is the  
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inner product calculated over the weights for the shared concepts. For a detailed 
description of concept profiles and weight calculation we refer to [9].

Gene Ontology
Match scores defined for the Gene Ontology were investigated by Mistry  et al. 
[10]. They compared the term overlap with other well known similarity measures 
adapted from the work of Resnik[11], Lin[12], and Jiang[13]. We did a ROC curve 
analyses on all four similarity measures and obtained the highest AuC value for the 
method by Resnik. The score we use is inferred from Resnik. Resnik originally 
defines the score to find the similarity between two GO terms, whereas we want to 
find the similarity between two proteins. First the information content for a GO 
term ti is defined 
IC  ti =−log  p t i 

where  p(ti) is the probability of a gene being annotated to that term.  p(ti) can be 
calculated as follows

In words, the number of genes annotated to GO term  ti divided by all the genes 
under consideration. All the genes are annotated in the root node of the GO graph. 
The information content  of  the root  node therefore is  0  as would be expected. 
Resnik’s  similarity  measure  is  then  calculated  by  taking  the  IC  of  the  lowest 
common ancestor (LCA) shared between two proteins. 
simRe snik  p1 , p2= IC  LCA 

With p1 and p2 the two proteins that form a pair (either random or a PPI). 

Microarray data
Microarray co-expression values are pre-calculated for COXPRESdb [14] and can 
be used directly after download. For Gene Atlas [15] the human GNF1H chip is 
used. First, the log was taken from the MAS5.0 normalized expression values for  
each tissue (78 in total), and probes with the same EntrezGene IDs were averaged. 
Subsequently, a Pearson correlation was calculated for the gene expression values 
for all pairs of genes. 

Tissue specificity
TiGER[16] contains expressed sequence tags that are defined for 30 tissues. For 
TiGER we evaluated a number of vector similarity measures namely, Pearson’s 
correlation coefficient, inner product, cosine, euclidean distance, and the Tanimoto 
coefficient. The latter one showed the best prediction performance. The Tanimoto 
coefficient between two vectors A and B is defined as follows:
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T  A , B=
A⋅B

∥A∥2
∥B∥2

−A⋅B
Tanimoto coefficient values > 0.85 are generally considered similar to each other. 

Domain-domain interactions
We used  InterPro[17]  to  annotate  each  protein  in  our  ontology  with  domains. 
Subsequently we  used DOMINE[18] to determine which domains (one of protein 
A and the other of protein B) interact. The final score is simply the number of 
interacting domains. 

Probable non interacting protein pairs
A null hypothesis was generated by choosing random protein pairs[19]. This null 
hypothesis is used to calculate a single sided p-value for Fisher’s Method. The only 
constraint  that  we  applied  is  that  the  protein  pair  should  not  be  in  a  curated 
database nor in the high-throughput database IntAct [20]. The curated databases 
used are listed in the supplementary files. The complete random protein pair set 
consisted of over 500 millions proteins pairs  (all  possible  combinations of two 
proteins). For computational reasons our analysis was limited to a random subset of 
100,000. 

Combined match score: Fisher's method
Fisher's method combines one sided p-values from different databases into one test  
statistics which follows a χ2 distribution with  2*L degrees of freedom using the 
formula

χ 2=−2∑
i=1

L

log  p i 

When the p-values tend to be small, the test statistic χ2 will be large. The p-values 
are obtained from the random protein pairs distribution described earlier. 
In the first version of Fisher, missing values for this combiner are also completely 
ignored.  This  is  done  by setting the p-value to  1.  The log becomes  0 and the 
missing value does not contribute to the score. The degrees of freedom are fixed 
and are the same for each sample (a protein pair). The second version takes into 
account the degrees of freedom (dof). The dof is only taken for databases that have  
a match score. The last two variations are where the individual database scores are 
weighted. They are weighted with the AuC and MAP values and then the previous 
formula  is  applied.  Fisher’s  method  can  be  sensitive  to  databases  if  p-values 
become 0. Then the combined score is dominated by one database only. This could 
result in false positives. We added a small offset to each p-value of 10 -4 to filter for 
this side effect when p-values are too small (or 0). 
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STRING
We  benchmarked  our  system  against  the  STRING  database.  We  downloaded 
STRING version 8.1 that was last updated on October 18, 2009. A current version 
of  STRING  can  be  found  online:  http://string.embl.de.  The  databases  used  by 
STRING are: 

• Neighborhood in the genome (nscore)
• Gene fusion (fscore)
• Co-occurrence across genomes (homology; pscore and hscore)
• (Co-expression (ascore)
• Experimental/biochemical data (escore), 
• Association in curated databases (dscore)
• Co-mentioned in PubMed abstracts (tscore; text-mining based on direct co-

occurrences) 
String uses a combiner based on the product of probabilities using the following 
formula 

S=1−∏
i

N

1−S i 

With Si the probability score for database i, S the combined score, and N the total 
number of databases to be combined. 

Dataset
The raw scores  for  each database,  and the combined Fisher  Method score,  are 
merged together in a tab delimited text file which can be downloaded from our 
website http://www.biosemantics.org/ppi-prediction

Results and Discussion

Our previous approach used only text-mining for the prediction of PPIs [2]. We 
postulated  that  a  combination  of  information  indicative  of  protein-protein 
associations,  such  as  co-expression  and  functional  and  structural  similarities, 
increases  the  overall  probability  of  a  genuine  PPI.  Therefore,  we  included 
information from these five additional databases:

• Gene Ontology: manual functional annotation 
• COXPRESdb[14]: mRNA co-expression over a wide range of conditions
• Gene Atlas[15]: mRNA co-expression in 78 tissues
• Tiger[16]: expressed sequence tags (EST) counts in 30 tissues
• InterPro/DOMINE[17,  18]:  domain  annotation  and  domain-domain 

interactions
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Our  hypothesis  was  that  these  data  sources  are  valuable  for  the  prediction  or 
protein interactions since two interacting proteins should be expressed in the same 
tissue and cell, are likely to be co-regulated at the transcriptional level, and interact 
via  a  specific  combination  of  protein  domains.  The  selected  databases  are 
publically  available  and  have  suitable  data  formats  for  processing  (xml,  tab 
delimited files, Entrez Gene or Uniprot accession numbers, etc). For each database 
a score was defined that  reflects a degree of association between two proteins.  
Individual scores were then combined to obtain a final score for a protein pair. 
For combining the score we used a method developed by Fisher (see Materials and 
Method  for  detailed  explanation  of  this  method).  This  method  is  based  on 
combining p-values taken from different predictions. Briefly, the match score for 
every database is converted into a single sided p-value. Then, the p-values are log 
transformed and summed resulting in a Fisher score with 2*N degrees of freedom 
(N the number of p-values to be summated). We made two variations of this Fisher 
method. In the first one, the degrees of freedom are fixed (missing values taken 
into account).  In  the  second one,  each p-value is  weighted with AuC or  MAP 
values,  giving more weight  to  the  data sources  that  are most  important  for  the 
prediction. The AuC stands for Area under the ROC curve and MAP for Mean 
Average  Precision.  Both  measures  are  well  known in  the  field  of  information 
retrieval  and  data-mining.  An  AuC  of  0.5  reflects  a  prediction  with  random 
behavior (like flipping a coin).  An AuC of 1 correlates to a perfect  prediction. 
MAP values  range from 0 to  1 (perfect  prediction).  All  performance measures 
(AuC and MAP values) are given in the supplementary files. 
We choose Fisher’s method after evaluating three other methods for combining 
databases  (see  supplementary  files  for  the  other  methods  and  the  evaluation). 
Fisher’s method showed the best overall results both in AuC and MAP. 
In the analysis we will benchmark our system against STRING. STRING is a web 
tool  that  has  been  intensively  optimized  and  updated  since  2000.  It  enables 
downloading of previous releases. STRING has the same approach for predicting 
PPIs, e.g. it defines evidence scores for several databases and combines them into a  
single score.

Example  1:  Predicting  proteins  interacting  with  Dysferlin  (DYSF,  MIM: 
603009)
Dysferlin is a 230 kDa C2-domain containing transmembrane protein. Dysferlin is 
highly  expressed  in  skeletal  muscle,  but  is  also  found in other  tissues  such as 
kidney, heart and monocytes. Mutations in dysferlin cause progressive muscular 
dystrophies  like  Limb  Girdle  Muscular  Dystrophy  type  2B  (MIM:  253601), 
Miyoshi Myopathy (MIM: 254130) and Distal Anterior Compartment Myopathy 
(MIM: 606768 ), collectively referred to as dysferlinopathies [21]. From cellular 
studies  it  is  known  that  dysferlin  participates  in  membrane  repair.  Cultured 
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myotubes  show  a  calcium-dependent  accumulation  of  dysferlin  at  sites  of 
membrane damage upon laser-inflicated membrane wounding [22]. In absence of 
calcium or dysferlin  the  muscle  fiber cannot  repair  the  damage,  and undergoes 
necrosis [22]. 
We performed a high-throughput screen for proteins interacting with dysferlin and 
evaluated  whether  our  PPI  prediction  algorithm  could  predict  dysferlin’s 
experimentally  identified interaction partners.  To date,  nine physical  interaction 
partners were described in literature,  and all  are believed to aid dysferlin in its  
membrane repair function. However, it is not completely understood how dysferlin 
functions, and possibly it does more than membrane repair alone. 
We have developed a specific, robust and reproducible immunoprecipitation (IP) 
method to isolate dysferlin protein complexes from biological sources ( [23], de 
Morrée  et  al  in  preparation).  We  in  vitro differentiated  mouse  myoblasts  to 
spontaneously  contracting  myotubes,  and  immunoprecipitated  dysferlin  protein 
complexes. Mass spectrometry analysis yielded a list of 352 putative interaction 
partners (manuscript in preparation), including the previously described  ANXA2,  
AHNAK,  CAPN3,  TRIM72 encoded  proteins,  underlining  the  validity  of  the 
method.  The  proteins  already  known  to  interact  with  dysferlin  (recorded  in  a 
database) were omitted from this IP list.  We created a prioritized list of 25,036 
proteins with our Fisher combiner, by matching dysferlin against all other proteins 
known in our ontology, and compared the IP dataset with this list. Figure 1a shows 
that  text-mining yields a high AuC of 0.78, indicating that implicit  information 
contained  in  the  literature  is  able  to  correctly  predict  interaction  partners  for  
dysferlin. As shown in figure 1a the other nine databases yield AuC’s between 0.6 
and 0.7, and as a result the Fisher combiner AuC does not differ much from text-
mining alone. Thus, most predictive value is contained in text and to a lesser extent 
in gene expression and Gene Ontology. STRING gives an AuC of 0.63, close to 
random behavior, confirming that our system performs better than STRING. The 
MAP reflects how many IP partners are present in lists of predicted proteins, a  
useful measure for those interested in validation of candidates. In figure 1b the 
MAP are plotted for the IP partners.  The MAP achieved by the AuC weighted 
Fisher combiner was 1.74 fold better  than STRING’s.  Again,  literature had the 
highest predictive value, and the addition of other databases to the prediction led to 
only small improvement in precision. Finally, we evaluated how many dysferlin 
interaction  partners  from  the  IP  list  were  found  in  the  top  50  of  predicted 
interaction  partners.  As  shown  in  table  4,  the  Fisher  combiner  yields  9  hits,  
whereas  STRING finds  only  6.  The  top  50  of  predicted  proteins  are  given  in 
Supplementary table 6.
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Figure 1a. AuC values (ranging from 0.5 till 1) for the individual databases,  
the Fisher methods, and STRING, for the dysferlin case study.
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Figure 1b. MAP values for the individual date sources, the Fisher methods, 
and STRING, for the dysferlin case study.

Example  2:  Predicting  proteins  interacting  with  Huntingtin  (HTT,  MIM: 
613004)
Huntington’s disease (HD, MIM: 143100)  is  a progressive autosomal  dominant 
neurodegenerative disorder that is caused by a CAG repeat expansion in the HTT 
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gene, which results in an expansion of polyglutamines at the N-terminal end of the 
huntingtin protein, and the accumulation of cytoplasmic and nuclear aggregates in 
neurons. The polyglutamine expansion in the protein plays a central role in the 
disease and the size of this expansion has a direct link to the aggregation-proneness 
as well as the severity of pathology and clinical features [24]. When the mutation 
for HD was found, huntingtin was a protein of unknown function but extensive 
research over the past decade has revealed numerous functions for huntingtin and 
many cellular processes are affected in HD, such as transcriptional de-regulation, 
mitochondrial  dysfunction,  and vesicle transport  dysfunction [25].  Although the 
precise underlying disease mechanism of HD is still unknown there is evidence to 
support a role for aberrant protein-protein interactions in HD pathogenesis [26]. 
A  recent  study  by  Kaltenbach  et  al.  [7]  identified  a  comprehensive  set  of 
huntingtin-interacting proteins.  (1)  With yeast  two-hybrid screening (Y2H)  104 
interacting proteins were identified and (2) affinity pull down followed by mass 
spectrometry identified 130 proteins. Subsequently, Kaltenbach et al. tested if the 
interacting proteins they had identified could influence mutant huntingtin toxicity. 
(3) An arbitrary sample of 60, out of the 234, proteins were tested in either over-
expressing or partial loss of function  Drosophila strains expressing the first 336 
amino acids of the huntingtin protein containing an expanded 128 glutamines. 
For the current study, the already known interacting proteins were omitted from 
these three datasets to serve as a test panel to examine if our framework can predict 
proteins from these lists, leaving 92 proteins from the Y2H experiment, 120 from 
the  pull  down  experiments,  and  42  from  the  Drosophila  huntingtin-induced 
neurodegeneration. With our Fisher method (figure 2b), we obtained a MAP of 
0.025 for the Drosophila interaction partners. This is a 3.09 fold increase compared 
to STRING. The Y2H, and IP experiments showed a 1.48, and 2.56 fold increase 
over the STRING method respectively.  The top 50 of predicted proteins out of 
25,036 proteins, are shown in table 3.
From the top 50 proteins identified by our system, 3 proteins namely syntaxin 1A 
(STX1A encoded protein), catenin beta 1 (CTNNB1 encoded protein) and adaptor-
related protein complex 2 (AP2A1 encoded protein) were in the group of 60 that 
we-re tested in the Drosophila model (compared to 0 by STRING, table 1), and all 
three  were  confirmed  to  modify  phenotype,  validating  that  these  PPIs  are 
functional. 
The interaction between huntingtin and syntaxin 1A has been proposed previously 
(PMID: 16162412 ) but the direct interaction between catenin beta 1 and huntingtin 
was a novel prediction in the Kaltenbach paper that was also high in our list (rank  
16)  of  potential  interacting  proteins.  This  protein  shows  no  co-occurrences  in 
MEDLINE abstracts with the huntingtin protein (also not in STRING), but it has 
been reported in some papers that beta catenin overexpression protects cells from 
poly(Q) toxicity (PMID: 12097329). AP2A1 is part of the adaptor protein 2 (AP-2) 
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complex  found  in  clathrin  coated  vesicles  .  Although  AP2A1  has  never  been 
associated  with  HD  previously,  the  AP-2  complex  is  involved  in  the  clathrin 
mediated endocytosis of GABA(A) receptors (PMID: 17690529) and GABA(A) 
receptors are present on the class of striatal GABAergic neurons that are affected in 
Huntington’s disease[27].
There are 5 proteins out of the top 10 predicted interacting partners for huntingtin 
that are new potential huntingtin-interacting proteins:

(1) Platelet-activating  factor  acetylhydrolase  1b,  regulatory  subunit  1 
(PAFAH1B1 encoded protein) inactivates Platelet-Activating Factor (PAF) 
by  removing  the  acetyl  group  at  the  sn-2  position.  It  is  required  for 
induction  of  nuclear  movement  and  control  of  microtubule 
organization[28].  PAFAH1B1 is also known as  LIS1 [29]and deletions in 
LIS1 cause Lissencephaly, a disorder of neuronal migration[30]. A possible 
link  to  HD  might  lie  in  the  fact  that  PAF induces  Clathrin-Mediated 
Endocytosis [31], which is a common pathway used by G protein-linked 
receptors  to  transduce  extracellular  signals.  Both  huntingtin  interacting 
protein  1  (HIP1 encoded  protein)  and  huntingtin  interacting  protein  1 
related (HIP1R encoded protein) have been implicated in this process (see 
below).

(2) Adenomatous polyposis coli protein (Protein APC or FPC, ranks position 
7 in table 3) is a tumor suppressor protein that acts as an antagonist of the  
Wnt signaling pathway and has a role in regulating microtubules and actin 
in  polarized  epithelia  [32].  The  APC gene  is  highly  expressed  in  the 
embryonic and postnatal developing brain. In addition, APC is present in 
astrocytes, although its role in astrocytes is, as yet, unknown [33].

(3) Metabotropic  glutamate  receptor  3 (GRM3 encoded  protein)  is  an 
interesting protein because it has been implicated in Huntington’s Disease 
(contributes 22.21% to the concept profile score, PMID: 9600992) while 
there was no evidence found in STRING (http://string.embl.de/). There is 
convincing evidence showing that glutamate-mediated excitotoxicity plays 
a role in HD pathology [34,  35] but  there have been no reports to our 
knowledge directly implicating mGluR3 in HD.

(4) Vesicle-associated  membrane  protein-associated  protein  B (VAPB 
encoded protein) is a protein that plays an important role in protein folding 
[36]. To function efficiently, the endoplasmic reticulum relies on a system 
that  detects  a  buildup  of  unfolded  or  misfolded  proteins.  The  cell's 
response to prevent or correct this buildup is called the unfolded protein 
response. VAPB is implicated in the autosomal dominant adult-onset form 
of Amyotrophic  Lateral  Sclerosis 8  (ALS8 encoded protein)  and in this 
disease  cytosolic  aggregates  were  present  in  all  cell  types  examined, 
including mouse and human nonneuronal cells[37]. Protein aggregates can 
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impair the ability of cells to function normally and huntingtin aggregates 
are a hallmark of HD[38].

(5) The GABA(A) receptor-associated protein (GABARAP encoded protein) 
protein clusters neurotransmitter  receptors by mediating interaction with 
the  cytoskeleton[39].  Although  there  were  no  co-occurrences  for 
GABARAP  and  STRING  did  not  find  any  functional  links  between 
GABARAP and huntingtin, it is highly likely that this protein is involved 
in  HD,  since  GABA(A)  receptors  are  present  on  the  class  of  striatal 
GABAergic neurons that are affected in Huntington’s disease[27]. 

Of the top 10 predicted interacting partners for huntingtin, there are 5 proteins that 
have been identified previously:

(1) Syntaxin1A (STX1A encoded protein) was identified by Kaltenbach et al. 
and when tested in an HD fruitfly model, STX1A influenced the phenotype 
[7]. Previous studies have shown that huntingtin enhances calcium influx 
by blocking STX1A inhibition of N-type calcium channels[40, 41]. 

(2) Solute carrier family 1 (glial high affinity glutamate transporter) member 
2  (SLC1A2 encoded  protein)  was  also  identified  by  Kaltenbach  et  al. 
SLC1A2 is also called glutamate transporter 1 (GLT1). It is a membrane-
bound  protein  that  is  the  principal  transporter  clearing  the  excitatory 
neurotransmitter glutamate from the extracellular space at synapses in the 
central nervous system and was found to be increased in HD[42, 43]. 

(3) Microtubule-associated protein tau (MAPT encoded protein) promotes 
microtubule assembly and stability, might be involved in the establishment 
and  maintenance  of  neuronal  polarity.  Tau  is  involved  in  several 
neurodegenerative  disorders  such  as  Alzheimer's  disease  (AD)  and 
although AD and HD are both protein aggregation disorders, Tau has never 
been  documented  to  interact  with  mutant  huntingtin.  However,  it  was 
recently suggested that  the  level  of  tau phosphorylation could limit  the 
severity and/or progression of HD[44]. The tau protein in most cases could 
not be detected by our text-mining algorithm or by STRING resulting in no 
co-occurring  hits  with  huntingtin.  However  this  problem  is  solved  by 
intermediate concepts that  relate huntingtin with tau (Neurodegenerative 
Disorders, and Nerve Degeneration). 

(4) Dopamine receptor D2 (DRD2 encoded protein) is a G-protein-coupled 
receptor that inhibits adenylyl cyclase activity. In HD there is a major loss 
of  DRD2 binding  in  the  caudate  nucleus,  putamen and globus pallidus 
externus[45]. 

(5) Huntingtin interacting protein 1 related (HIP1R encoded protein) has a 
role  in  clathrin-mediated endocytosis  (CME)[46].  It  binds to  huntingtin 
interacting protein 1 (HIP1 encoded protein) and links actin to clathrin[47]. 
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Figure 2a. AuC results for the huntingtin case study.
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Figure 2b. MAP results for the huntingtin case study.

Showcase 3: polycystic kidney disease 1 (PKD1, MIM: 601313). Filtering by 
feature selection and solving homonyms 
In specific cases, certain databases may add noise instead of valuable information.  
We evaluated a ranked list for the PKD1 gene that causes polycystic kidney disease 
1.  The  extracellular  part  of  PKD1 encoded  protein  contains  many  domains 
important  for  physical  interactions  with  other  proteins.  The  protein  domain 
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information  therefore  dominated  the  prediction  of  PKD’s  interactions  partners. 
This effect was undesired and therefore the InterPro/DOMINE score was left out.
The prediction of interaction partners for PKD1 by literature analysis alone was 
also not ideal. Although the literature remains the biggest information source, it is 
also the information source which requires the most preprocessing. Text-mining on 
its  own  is  a  challenging  field  of  research  with  involves  many  steps  such  as 
extracting  public  articles,  defining  an  ontology  containing  concepts  and  their 
synonyms, and disambiguating words in text using concept recognition software. 
Disambiguation is the process of mapping a word in text to a unique concept and 
labels it with a unique identifier. A term is considered to be ambiguous if it has  
multiple meanings. We investigated this homonym problem for PKD1. The first  
homonym problem is that the name ‘polycystic kidney disease 1’ itself can refer to 
the gene or the disease. When only concept profiles were used the top of most 
associated  proteins  with  PKD1  showed  six  proteins  that  ranked  high  due  to 
homonyms.  Two  proteins,  protein  kinase  D1  (PRKD1 encoded  protein)  and 
ectonucleotide pyrophosphatase/  phosphodiesterase  1 (ENPP1 encoded protein), 
were caused by direct homonym problems. In literature, PRKD1 is also referred to 
as PKD1. ENPP1 has a synonym PC1 that is also used as a synonym for PKD1. 
The other four proteins had synonym problems in the overlapping concepts of their 
concept profiles. These can be seen as indirect homonym problems. In literature 
protein kinase  D2(PRKD2 encoded protein)  is  referred  to  as  polycystic  kidney 
disease  2  (PKD2 encoded protein)  which  has  a  close  relationship  with  PKD1. 
Protein kinase D3 (PRKD3 encoded protein) is referred to as protein kinase C and 
has  many  relationships  with  PRKD1  in  literature.  The  same  holds  for  protein 
kinase  C  substrate  80K-H (PRKCSH encoded  protein)  which  is  referred  to  as 
protein kinase C substrate. Phosphoglycolate phosphatase (PGP encoded protein) 
is  referred to as PRKD1 which on itself  causes homonym problems.  When the 
concept profiles are used in combination with expression data these homonyms can 
be suppressed. 
For  PKD1  we  generated  a  ranked  list  while  omitting  the  InterPro  domain 
information from the prediction. We calculated the match score based on Fisher’s  
method and checked if mentioned homonyms were suppressed since these proteins 
are not likely to be co-expressed with PKD1. The last column in table 2 shows that 
mentioned proteins with homonym problems indeed had much lower rankings than 
in the prediction based on literature only. Further manual curation by an expert 
showed  that  Fisher’s  method  gives  better  associations  with  PKD1  in  the  top 
predictions  when  concept  profiles  are  used  in  combination  with  microarray 
expression data and eliminating the InterPro domain information. In practice an 
expert should be able to choose which databases are being combined for the best 
prediction. 
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Table  1.  Ranks of  the homonyms associated with PKD1.  The  first  rank is 
based on concept profiles,  showing that  the homonyms rank high.  Fisher's 
methods suppressed these homonyms and the rank becomes lower
Gene 
symbol

Gene name Rank Concept 
profiles

Rank Fisher’s 
method

PRKD1 Serine/threonine-protein kinase D1 2 46

PRKD2 Serine/threonine-protein kinase D2 4 164

PRKD3 Serine/threonine-protein kinase D3 7 328

ENPP1 Ectonucleotide 
pyrophosphatase/phosphodiesterase 
family member 1

15 258

PRKCSH Glucosidase 2 subunit beta 30 283

PGP Phosphoglycolate phosphatase 36 1983

Concluding remarks
In this  study  we have  shown that  combining  information  from the  biomedical 
literature  and  from  different  databases  using  Fisher’s  method  significantly 
improves  the  prediction  of  novel  protein  interactions  compared  to  previously 
applied  methods.  We evaluated  three case  studies  on  dysferlin,  huntingtin,  and 
polycystin-1  and  predicted  proteins  previously  not  recorded  in  any  protein 
interaction  database.  For  huntingtin,  besides  the  literature,  other  databases  like 
Gene Atlas and The Gene Ontology contributed to the matchscore. An evaluation 
of the top 10 predicted huntingtin interacting proteins showed 5 proteins known to 
be associated with huntingtin. The other 5 were novel ones that have been curated 
and are potential interaction partners with huntingtin. From these top 10 proteins 5 
could not be detected with a MEDLINE query, indicating that implicit knowledge 
extraction is possible. 
For dysferlin we showed that the literature remains the biggest information source 
and  that  the  other  databases  to  a  lesser  extent  contribute  to  the  match  score. 
Although for dysferlin the contribution of other databases to the literature alone 
seems low,  the  aid of  other  databases  has  been shown to be useful  in  solving 
homonym problems. This was shown in the PKD1 study. PKD1 showed 6 proteins 
that  were  caused  by  homonyms  and  these  were  suppressed  when  the  concept 
profiles were combined with other databases. Thus the combination of literature 
and non-textual information makes our algorithm more robust. 
Fisher’s Method is a simple and robust method to combine several databases. In 
addition its interpretation is very intuitive. For every database you first define a p-
value for a sample that needs to be evaluated. Fisher’s methods then tells if the 
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combination of individual p-values (taken from different databases) for that sample 
is significant. 
We made a list available of Fisher match scores between every two proteins in our 
ontology. The list can be downloaded from www.biosemantics.org/ppi-prediction. 
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Table 2. Prediction in the top 50
Hungtintin Fisher 

fixed dof
Fisher 
variable dof

Weighted 
Fisher AuC

Weighted 
Fisher MAP

STRING

Y2H 2 3 2 0 0
IP 3 3 3 1 0
Drosophila 3 3 3 2 0
Dysferlin
IP 9 9 9 6 6
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Table 3. Top 50 for huntingtin predicted interacting partners
rank name Y2H MS Drosophila PPI cooccurrences
1 HTT x x 1131
2 STX1A x 2
3 SLC1A2 x 2
4 PAFAH1B1 0
5 GABARAP 0
6 MAPT 0
7 FPC 0
8 DRD2 9
9 GRM3 0
10 VAPB 0
11 HIP1R x 4
12 HIP1 x x 23
13 KIF5B 0
14 MAPRE1 0
15 GSK3B 2
16 CTNNB1 x x 0
17 ATN1 19
18 STX6 0
19 CLASP1 x 0
20 BID 0
21 TMED10 0
22 KIF1B 0
23 CDK5 5
24 NTRK2 0
25 HIPK2 0
26 MAP1S 0
27 AP2A1 x 0
28 CLASP2 0
29 RAE1 0
30 BBS4 0
31 GIPC1 0
32 PACSIN1 x x x 3
33 AKT1 x 2
34 KLC1 0
35 SYT1 x 0
36 NRCAM 0
37 ATXN1 4
38 BCL2L11 2
39 RAB3A 1
40 CDK5R1 1
41 ULK1 0
42 HIF1A 0
43 DIAPH1 0
44 SNCA 18
45 SOD1 5
46 YKT6 0
47 BDNF 38
48 AP2A2 x x x 4
49 TPPP 0
50 DYNC1I1 0
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Supplementary information

S1 Databases for information extraction
Table 1 shows the databases that are used in our analysis and the date of download. 

Table 1. Databases that are combined and their date of download.
Database Date of download
Concept profiles May 2009
Gene ontology July 23, 2009
Gene Atlas April, 2004
Coxpresdb April 17, 2008
TiGER February 19, 2009
InterPro July 22, 2009
DOMINE April 16, 2007
STRING version 8.1 October 18, 2009

S2 Curated Protein-Protein interaction databases

For training,  testing and optimizing our  system we constructed a set  of  known 
human protein-protein interactions (PPIs) taken from public, curated databases. We 
called this set of known PPIs the positive set. The databases used were Biogrid[1], 
DIP[2],  HPRD[3],  Mint[4],  Reactome[5],  and  Uniprot/Swiss-Prot[6].  Table  2 
shows the date of download for these databases. If a PPI was mentioned in one of 
these databases, we assumed it to be a true PPI. There is a level of redundancy 
between these databases meaning that some protein-protein interaction pairs occur 
in multiple databases, which is a good indication that it is a true PPI. These protein 
pairs  count  only once.  We restricted our  analysis  to  human proteins  only.  The 
resulting positive set contains 83,930 PPIs. 
A negative set was constructed as described in the materials and method section of 
the paper. The negative set is the same as the null distribution used for the Fisher 
Method and has a size of 100.000 samples.   

Table  2.  Protein  databases  used  for  the  positive  set  and  their  date  of 
download.
Protein database Data of download
BioGrid July 1, 2009
DIP October 15, 2008
HPRD July 6, 2009
IntAct July 11, 2009
MINT July 23, 2009
Reactome June 11, 2009
UniProt June 17, 2009
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S3 Cross validation
All  performance  measures  (AuC and  MAP)  were  calculated  in  a  5-fold  cross 
validation loop. First  the data consisting of positive and negative instances (e.g 
PPIs and random protein pairs) were splitted in five equally sized parts. Then at 
each  iteration  four  parts  were  used  for  straining  classifiers  and  combination 
methods and the remaining fifth part was used for testing. This was repeated until 
each part was used once for testing. 

S4: Coverage and prediction accuracy of individual databases
In the analyses that follow we first defined a positive set that consists of protein-
protein interactions recorded in six curated databases (see supplement S2), and a 
negative set of probable non-interacting random protein pairs. We evaluated how 
well  each database covers  samples from the positive  and negative set.  Table  3 
shows the coverage for each individual database, the combination of databases and 
STRING. A protein pair is covered if at least one on the individual databases has a  
match  score  for  that  protein  pair.  Our  combined  databases  cover  almost  the 
complete positive set. The coverage is similar to STRING.
To evaluate prediction performance for PPIs, we used the AuC and MAP criteria. 
A third measure is used to reflect the predictions made in the top of a ranked list. It  
counts the number of predicted true positives when the number of predicted false 
positives is fixed to 50. We refer to this measure as ROC50.
For each database the AuC and MAP were calculated and the results are given in 
table 4. The AuC and MAP were calculated in a 5-fold cross validation loop (see 
S3). Figure 1 shows the ROC50. Here it is shown that the concept profiles (cp) has 
the highest number of true positives (over 6,000). The STRING curated database 
score (dscore) also gives a performance of over 6,000 predicted true positives. This 
result is expected since this score is based on curated protein databases, some of  
which were also used to create our evaluation set. The Gene Ontology gives an 
overall best performance with a high AuC and high coverage. 
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Table  3.  Coverage  for  each  database  and  the  databases  combined.   As  a 
benchmark the coverage of STRING is given.
Database Positive set (%) Negative set (%)
Concept profiles 84 24
Gene Ontology biological process 94 34
Gene Ontology molecular function 95 39
Gene Ontology cellular component 95 43
Gene Ontology relationships 99 52
COXPRESdb 95 51
Gene Atlas 69 12
TiGER 72 25
InterPro/DOMINE 95 49
Combined system 99.97 67
All STRING databases 99.13 62

Table  4.  AuC  and  MAP  for  the  individual  databases  for  a  5-fold  cross 
validation. The standard errors are not shown because they were negligible 
small. The Gene Ontology is separated into the three main categories and the 
relationships. 
Database AuC MAP
Concept profiles 0.88 0.90
Gene Ontology biological process 0.91 0.90
Gene Ontology molecular function 0.88 0.85
Gene Ontology cellular component 0.89 0.88
Gene Ontology relationships 0.91 0.88
COXPRESdb 0.82 0.79
Gene atlas 0.80 0.81
TiGER 0.78 0.75
InterPro/DOMINE 0.80 0.77
STRING DATABASES
Neighborhood in the genome 0.69 0.59
Gene fusion 0.69 0.58
Cooccurrences across genomes 0.69 0.59
Coexpression 0.69 0.59
Experimental/biochemical data 0.81 0.82
Association in curated databases 0.82 0.82
Co-mentioned in PubMed abstracts 0.83 0.84
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Figure 1. Number of true positives that are retrieved at 50 false positives for 
each  individual  database.  The  concept  profiles  (cp)  retrieves  the  highest 
amount  of  true  positives,  reflecting  that  the  literature  is  still  the  most 
important  source of  information.  The assocation in curated database score 
(dscore) for STRING shows the best result as expected. The errorbars are the 
standard deviation around the mean calculated over 5-fold cross validation.

S5 Different combining techniques

Before we came to our final approach based on Fisher’s Method we evaluated four 
other combining methods described below. 

(1) Combining rules by Kuncheva
The first  combiner  is  the  one defined by Kuncheva [7].  In  total  there  are  five 
combining rules namely the product, sum, maximum, minimum, and majority vote. 
The combiners defined by Kuncheva are applied to the output of each classifier  
trained on a single database; hence this step requires training data. In our case we 
used a simple logistic regression classifier [8]. Each raw match score defined for a 
database is converted to a probability value between 0 and 1. The concept profiles 
score was first log transformed to produce more normal distributed classes. Since 
we evaluate a two class problem (the class of protein-protein interactions (PPI) and 
the class of non interacting protein pairs (NIPP)) the probability of the second class 
can  be  calculated  once  the  probability  of  the  first  one  is  known.  If  p1 is  the 
probability  for  a  sample  in  class  one  then  p2=1-p1 is  the  probability  for  that 
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sample  in  class  two.  On  the  output  of  each  classifier  the  combining  rule  was 
applied. The product rule for a sample x is defined as follows 

μ j=∏
i=1

L

p i , j  x 

With  µj the  combined  probability  for  class  j and  pi,j(x) the  probability  of  x 
belonging to class j according to database i, and L the total number of databases to 
combine (our case L=6). After the rule is applied, the combined probabilities can 
be normalized to add up to 1. In the same way the sum, maximum and minimum 
rule can be defined. Missing values are completely ignored. If one database has a 
missing  value  the  rule  is  applied  to  the  remaining  databases.  If  a  sample  has 
missing values for all the databases the probabilities are set to 0 and 1 for class one  
(PPIs) and two respectively. 
The  advantage  is  that  these  combiners  do  not  require  training  data.  The 
disadvantage is that the classifiers trained on each database in the first step make 
assumptions  about  your  data,  for  instance  that  the  classes  follow  a  normal 
distribution. This could result in false predictions if the assumptions are not true.

(2) Rank combiners
Calculating a rank combiner is similar to the Kuncheva combiners. The same rules 
such as, product and sum, can be applied to ranks. For instance the rank product is 
a non-parametric statistic that is often used for gene expression profiling [9]. Here 
the formula for the rank product is given. 

RP  x =∏
i=1

L

r x , i
1

L

With rx,i the rank obtained for database i for a sample x. In the same way the other 
combiners based on ranks can be derived.  L are the number of databases with no 
missing value for that sample. The rank for samples where all values are missing is 
set  to positive infinite. The advantage of this  combiner  is  that  it  also does  not 
require any training data. Furthermore, it does not put any constraints on the data. 
The disadvantage is that it is highly sensitive to the presence of poorly performing 
databases.

(3) Maximum AuC linear classifier (MALC)
Marrocco et. al. [10] describes a method where a linear classifier is trained such 
that the resulting trained classifier maximizes the AuC.  Mainstream classifiers are 
designed  to  minimize  the  classification  error,  e.g. taken  into  account  the  false 
negatives,  whereas  the  MALC is  designed to  minimize the false  positives,  e.g. 
maximizing the AuC. We implemented a different version of their algorithm which 
is  both  fast  and  robust.  The  features  (match  scores  defined  for  databases)  are 
combined  in  an  iterative  manner  and  at  each  iteration  step  two  features  are 
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combined and result in a new feature. Step one is to normalize the date between 0 
and 1. The inner product score between concept profiles were first log transformed 
before normalization. Step two is to calculate a Pearson correlation matrix (all pair  
wise  correlations  between any two features).  The  two features  with  the  lowest  
correlation are combined first.  Step three is to apply the linear classifier to the 
features h and k which is given as
x lc=αxh1−α x k

where xlc is the weighted sum of the two features, and alpha the weight parameter 
that needs to be optimized. Step four is to vary the alpha level between 0 and 1 in 
steps of 0.01 (or any other step size) and calculate the AuC for each alpha. Then  
choose the alpha level that corresponds with the highest AuC value. Step five is to 
replace the two features with xlc features and repeat steps two till  five until  all 
features are combined to a single feature.

4) Fisher’s method
The Fisher method was described in the article. The advantage of this method is 
that it is robust, simple, and no information is needed on the positive set (PPIs) 
since it  only uses the null  distribution (negative set of probable non interacting 
protein pairs).

S6 Choosing the best combining method
The four different combining methods (and each with a number of variations) are 
compared which each other using the AuC and MAP as performance criteria in a 5-
fold  cross  validation  loop.  The  results  for  all  combiners  are  given  in  table  3. 
Fisher’s method and the MALC show the best results in both MAP and AuC. To 
further evaluate the accuracy of these combiners we looked at the ROC50 results. 
That is the number of true positives predicted when the number of false positives 
was fixed to 50. The results are given in figure 2. Here the Fisher method shows 
slightly better result than the MALC. Figure 3 shows the ROC curve for the Fisher 
method with fixed degrees of freedom. The histogram for the positive and negative 
set is given in figure 4. 
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Table 5. AuC and MAP for the different combining techniques. The standard 
errors are not shown. 
Kuncheva combining rule AuC MAP
Product 0.94 0.92
Sum 0.91 0.86
Maximum 0.84 0.73
Minimum 0.90 0.86
Majority vote 0.90 0.83
Rank combiners
Mean 0.94 0.83
Max 0.83 0.46
Min 0.93 0.93
Product 0.95 0.90
Fisher’s method
Fixed number of dof (=9) 0.97 0.97
Fisher with variable dof 0.97 0.96
Weighted Fisher with AuC 0.97 0.97
Weighted Fisher with MAP 0.97 0.97
Fisher +4 features from String 0.97 0.97
Maximize AuC
MALC 0.97 0.96
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min (Kuncheva)

majority vote (Kuncheva)

min (ranks)

mean (ranks)

max (ranks)

product (ranks)

MALC

Fisher's Method

Fisher's Method with dof

Weighted Fisher (AuC)

Weighted Fisher (MAP)

0

2
0

0
0

4
0

0
0

6
0

0
0

8
0

0
0

Figure  2.  Number  of  true  positives  at  50  false  positives  for  the  different 
combination techniques
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94



Fisher

similarity score

F
re

qu
en

cy

0 20 40 60 80 100 120

0
1

00
0

2
00

0
3

00
0

4
00

0
5

00
0

positive set
negative set

Figure 4. Histogram plot of the positive PPI set and the negative random set 
for the Fisher combiner.

Table 6. Top 50 of most associated proteins with Dysferlin. 
rank name Co-occurrences PPI
1 DYSF 246
2 MYOF 13
3 TGFB1 0
4 RYR2 0
5 TTN 2
6 MYH7 1
7 KCNQ1 0
8 MYL3 0
9 TNNC2 0
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10 SNTA1 2
11 TCAP 13
12 ADRBK1 0
13 SGCA 18
14 TPM1 0
15 TNNC1 0
16 MYH4 0
17 IL1B 0
18 MYOT 10
19 C5AR1 0
20 OTOF 6
21 SSPN 1
22 FKBP1B 0
23 MYH2 0
24 Cf5 0
25 ACTN2 1
26 UTRN 3
27 TNNT1 0
28 TNNT3 0
29 CSF3R 0
30 CACNA1H 0
31 HMOX1 0
32 MYBPC3 0
33 DES 0
34 GAA 0
35 TPP1 0
36 SNTB1 0
37 KCNE1 0
38 ACTA1 0
39 HCK 0
40 CAV3 35 X
41 CAPN3 44 X
42 FPR1 0
43 RYR1 1
44 KCNMA1 0
45 MYLK2 0
46 MYH6 0
47 TNNI3 0
48 NCF2 0
49 NOS3 0
50 CAV1 0
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Abstract
Despite  large  and  ever-growing  bioinformatic  data  sets,  there  is  often  no 
information  that  explicitly  links  genes  to  a  disease  in  literature.  Bioinformatic 
approaches  have  attempted  to  circumvent  this  problem by searching  for  genes 
similar to those already known to be associated with a disease [1-4]. However, this 
approach is frequently not useful because previous associated genes with a disease 
are not available. Here, we use concept profiles [5, 6], a vector-based description of 
terms, to discover implied relationships between genes and diseases for which no 
explicit link (co-occurrence) has been stated in either text or any other database. In 
a retrospective text mining analysis of scientific literature concept profiles were 
able to prioritize  disease genes on average within the  top 13 out  of  200 genes 
located in a specified linkage interval at least one year before the publication of the 
landmark paper explicitly establishing the gene-disease relationship. Examination 
of the highly-ranked concepts shared between the gene and the disease in concept 
profiles was used by biomedical experts to evaluate the plausibility of the inferred 
relationships and rationalize potential  biological  mechanisms.  By exploiting the 
implicit information in the literature, concept profiles performed two-fold better in 
prioritizing genes of polygenic diseases than the Endeavour gene prioritizer  [2] 
using 26 data-mining resources. These results demonstrate the enormous untapped 
potential of implied information in scientific literature for biomedical discovery, 
and the application of concept profile technology in extracting new knowledge. 
Introduction

Although  linkage  analysis,  association  studies,  and  next  generation  sequencing 
technology have produced voluminous amounts of genetic data that are essential 
for the characterization of disease mechanisms, isolating genes that cause or impact 
the  etiology  of  a  particular  disease  remains  a  time  consuming  and  largely 
serendipitous   task.  Often,  many  interrelated  factors  must  be  considered.  For 
example, individual genes may cause multiple diseases, distinct diseases may be 
caused  by  multiple  genes,  and  different  diseases  will  often  have  phenotypic  
overlap. To cope with these inherent complexities and with the size of large and 
rapidly growing datasets, bioinformatic tools have been developed combining text-
mining  and  data-mining  capabilities  to  automatically  search  for  correlations 
among, and then prioritize, putative gene-disease pairs[7-14].  For example, the 
Endeavour  web  tool  combines  biomedical  ontologies,  text,  and  data  from  26 
distinct sources to prioritize genes for specific diseases [2]. Many of the prioritizers 
that integrate multiple data sources are based on so called ‘seed’ genes, which are 
genes having a known relation to a disease that help to find the next causative gene 
that results in the same phenotype. For instance, a novel gene for breast cancer may 
be found by using information about BRCA1 and BRCA2, genes already known to 
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cause the disease.  However,  for  the  majority of diseases recorded in  OMIM, a 
causative gene is not yet known. In these cases, prioritizers based on seed genes do 
not work. Furthermore, for all those diseases or syndromes where the first gene has 
yet  to  be discovered,  a  prioritizer  will  be  limited to  text  information only,  yet 
before  a  landmark  paper  is  published  describing  the  disease  causing  gene,  the 
disease and the gene tend to have few or no co-occurrence in the same abstract or  
article. Therefore text-mining systems based on direct co-occurrences will fail to 
predict the majority gene-disease relationships. 

However,  woven  within  the  narrative  of  scientific  literature  there  are  a  vast 
network of  relations  among terms  that  are  to  some degree left  implicit  by the 
authors. Implicit relations may arise as a consequence of new findings or as part of  
the scientific rational, and may or may not be intentional. Implicit information may 
be directly related to the immediate narrative or may have ancillary relations. Here, 
we used a text-mining method based on concept profiles to prioritize candidate 
genes by considering this large amount of implicit associative information in text.  
A concept profile for a given concept contains all other concepts that have a co-
occurrence weighted by the Uncertainty Coefficient [5]. Concept profiles must be  
constructed uniquely for a given ontology and corpus [15, 16], but once they have 
been constructed, the similarity between any two concept profiles can be computed 
by taking the inner product of their corresponding weights,  the so-called match 
score[17]. The statistical significance of the match score between the profiles of 
two  concepts  (i.e.,  gene  and  disease)  can  be  evaluated  by  comparing  the  log 
transform  of  the  match  scores  to  that  of  a  null  distribution  constructed  from 
randomly chosen concept pairs (Fig 1). Hence, it is possible using concept profiles 
to establish a statistically significant association between concepts based on highly 
ranked concepts in their profiles, even when they do not have a co-occurrence ( i.e. 
usually an explicit  stated relationship) in the literature.  Discovery of novel  and 
informative  associations  between  genes  and  diseases  is  thus  not  dependent  on 
linkage analyses or seed genes.
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Figure  1.  Distribution  of  concept  profiles  match  scores  calculated  for 
randomly  chosen  gene-disease  combinations.  The  MEDLINE  abstract  text 
corpus is from 1980 until May 2009.
Results and Discussion

We evaluated the effectiveness of concept profiles using 18 previously described 
gene-disease  relationships  taken  from the  Human  Reference  Protein  Data  base 
(HRPD)[18]  (Table  1).  Concept  profiles  for  the  genes  and  the  diseases  were 
constructed from all MEDLINE abstracts up to one year before the landmark paper 
explicitly describing the link between the gene and disease was published. This 
roll-back analysis used two time-delimited corpora: From 1980 to February 2005 
(for  landmark  publications  dating  from February  2006 to December  2006)  and 
from 1980 to August 2006 (landmark publications appearing after august 2007). 
For each of these gene-disease pairs, no co-occurrence was found between the gene 
and the disease before the landmark paper was published, both the gene and the 
disease  appear  in  a  minimum  of  five  abstracts  and  the  disease  is  currently 
considered to be monogenic. For each test gene an artificial linkage interval was 
arbitrarily set containing 200 genes (100 genes upstream and downstream of the 
test gene) following the approach by Aerts et. al. [7]. 
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Table 1. Gene-disease pairs using concept profiles.

Gene Disease
Landmark 
Publication
Date

PMID Rank p-value

MFN2
Hereditary motor and 
sensory neuropathy VI

February 2006 16437557 2 0.0018

RECQL4 Baller-Gerold syndrome February 2006 15964893 1 0.0046

KRT85
Ectodermal dysplasia, pure 
hair-nail type

March 2006 16525032 13 0.0093

ACVR1
Fibrodysplasia ossificans 
progressiva

May 2006 16642017 2 0.0052

TGFBI
Corneal dystrophy, epithelial 
basement membrane

June 2006 16652336 1 0.00045

IL10RB
Hepatitis B virus, 
susceptibility to

June 2006 16757563 16 0.062

IFN-AR2
Hepatitis B virus, 
susceptibility to

June 2006 16757563 3 0.0065

PLA2G6
Infantile neuroaxonal 
dystrophy 1

July 2006 16783378 11 0.043

TREX1
Aicardi-Goutieres syndrome 
1

August 2006 16845398 105 0.93

CHRNG Escobar syndrome August 2007 16826520 66 0.77

DOK7
Myasthenia, limb-girdle, 
familial

16917026 NaN NaN

SCN9A
Paroxysmal extreme pain 
disorder

September 
2006

17145499 15 0.084

MYH11 FAA4 March 2006 16444274 4 0.013

TFAP2A
branchio-oculo-facial 
syndrome

May 2008 18423521 4 0.068

PIK3CA Seborrheic keratosis August 2007 17673550 9 0.076
VLDLR Dysequilibrium syndrome February 2008 18043714 27 0.18
BUB1B PCS February 2006 16411201 12 0.29
TRPV4 Brachyolmia August 2008 18587396 44 0.76

Average rank 20 Average p

The concept profile for each gene in the linkage area was matched with the disease 
profile  resulting  in  a  ranked list  of  the  test  gene  among the  200 genes  in  the 
artificial linkage interval (Table 1). On average the test genes ranked within the top 
20, and in two cases (epithelial basement membrane corneal dystrophy (EBMD)) 
and Baller-Gerold syndrome),  the test  genes ranked number  one.  However,  the 
TGFBI  gene  is  often  co-mentioned  with  generic  disease  types,  like  hereditary 
corneal dystrophy and corneal dystrophy (column 3 in Table 2) suggesting that its 
high rank is not necessarily an indicator of a specific relation to EBMD. For the 
‘Myasthenia, limb-girdle, familial’ there was not enough information for the test 
gene to build a concept profile. When prioritizing gene-disease pairs in practice, it 
is essential that the significance of the putative gene-disease relation be subject to 
evaluation.  Hence  one-sided  p-values  were  calculated  from the  concept  profile 
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match  scores,  using  the  null  distribution  (Fig  1  &  Table  1).  This  p-value  is 
indicative of the quality of the prediction, and therefore of the reliability of the  
ranking of the list: the cases with very high ranks could have been predicted based 
on the low p-value of the gene (Fig 2). If we had used a cut-off p-value of 0.02 to 
reject  the  prioritizer  output  the  results  for  Aicardi-Goutieres  syndrome  1, 
Brachyolmia  and  Myasthenia,  limb-girdle,  familial  would  have  been  rejected. 
Escobar syndrome (test  gene ranks 66) with a p-value of 0.017 for the highest 
ranked gene would have remained as a reliable output. With three outliers rejected 
the average rank of the remaining 15 samples would becomes 12.5. Clearly concept 
profiles  are  highly effective in  identifying gene-disease pairs  deliberately using 
only the implicit information in MEDLINE prior to the landmark paper. 
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Figure 2. p-value of the highest rank gene versus the rank of the test gene.
In  addition  to  prioritizing  genes,  concept  profiles  provide  important  biological 
insight revealing how the gene might be associated with a disease. However, by 
inspecting the highly ranked concepts in the two concept profiles that linking the 
gene and disease a  biomedical  expert  would  likely (example  of  gene  PIK3CA 
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Table 1) choose for instance gene with rank nine over of the first eight for further 
investigation.  To  explore  the  utility  of  the  information  in  concept  profiles  in 
rationalizing predicted gene-disease pairs we chose the three gene-disease pairs 
having the highest ranking: Hereditary motor and sensory neuropathy VI (HMSN 
VI), Baller-Gerold syndrome (B-G syndrome), and EBMD. Biomedical researchers 
with expertise in these genes and diseases evaluated the shared concepts in concept 
profiles for their biological significance. Table 2 shows the top five of overlapping 
concepts between the gene and disease concept profiles.  For B-G syndrome the 
dominating concept is Rothmund-Thomson (R-T) syndrome (contributes more than 
95% to the overall score). Two documents were found that support the association 
between B-G syndrome and R-T syndrome, PMID: 11045594 and 9934984. The 
first  one gives information for the clinical  phenotypic overlap between the two 
syndromes. The gene RECQL4 has been co-mentioned before with R-T syndrome 
as a gene that when mutated causes this syndrome (PMID: 12379465, 12601557, 
12673665, 12734318, 12838562, 12915449, 12952869, 15221963, 15317757, and 
15558713).  Because  of  the  phenotypic  overlap  between  the  two  syndromes, 
RECQL4  would  be  the  most  likely  candidate  to  investigate  first.  Indeed,  the 
landmark  paper  (PMID:  15964893)  reports  precisely  this  reasoning:  “Clinical 
overlap between BGS, Rothmund-Thomson syndrome (RTS), and RAPADILINO 
syndrome  is  noticeable.  Because  patients  with  RAPADILINO syndrome and  a 
subset  of  patients  with  RTS  have  RECQL4  mutations,  we  reassessed  two 
previously reported BGS families and found causal mutations in RECQL4 in both.”

Table 2. Indirect concepts linking the gene with the disease.
Baller-Gerold syndrome Hereditary motor and sensory 

neuropathy VI
Corneal dystrophy, epithelial 
basement membrane

Top Overlapping 
concepts

Contributi
on to 
score

Overlapping 
concepts

Contribution to 
score

Overlapping 
concepts

Contribution 
to score

1 rothmund-
thomson 
syndrome

95.79 opa1 40.37 hereditary 
corneal 
dystrophy

42.28

2 Poikiloderma 2.47 optic atrophy, 
autosomal 
dominant 

35.32 Corneal 
dystrophy

41.43

3 online 
mendelian 
inheritance in 
man

0.45 OPA1 23.17 lattice corneal 
dystrophy

12.08

4 Growth 
deficiency

0.32 Axonal 
neuropathy 

0.61 Dystrophy 2.73

5 Clinical 
variability

0.24 recessive 
inheritance 

0.3 Corneal erosion 0.58
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In the case of HMSN VI, this disease is caused by mutations in the MFN2 gene.  
The overlapping concepts in the top three are all a form of optic atrophy 1. The 
first concept opa1 is the gene in zebrafish, the second concept is a disease and the 
third concept  the  human gene.  Together  they contribute  more than 98% to the 
overall  score.  The  landmark  paper  (PMID:  16437557)  clearly  shows  that  this 
concept  is  a  strong  indirect  link,  stating:  “It  is  intriguing  that  MFN2  shows 
functional overlap with optic atrophy 1 (OPA1), the protein underlying the most 
common form of autosomal dominant optic atrophy, and mitochondrial encoded 
oxidative phosphorylation components as seen in Leber's hereditary optic atrophy.” 
The MFN2 gene ranked second place (Table 1).  This means one false positive 
before the test gene is found. The gene that ranks first place is KIF1B where the 
top five concepts  between it  and  the disease are  hereditary motor  and sensory 
neuropathies (65.61%), HMSN II (15.76%), hereditary liability to pressure palsies

 (7.8%), Axonal neuropathy (4.61%), and HMSN I (2.96%). In consulting 
the supporting documents for KIF1B it was found that mutations Charcot-Marie-
tooth disease type 2A1 (CMT 2A1 or HMSN2A1). Intriguingly, HMSN VI is also 
known as Charcot-Marie-tooth disease type 6 (CMT6). Thus, it appears that KIF1B 
is not a false positive but a gene that causes a related disease. 

Detailed expert analyses of the concept profiles in linking genes to Seckel  
syndrome are provided in the Supplementary Information. 

Table 3. Endeavor Gene Prioritizer predictions for monogenic and polygeneic 
diseases. Averages are only calculated over the ranks that are both covered by 
Endeavour and concept profiles. 
Disease (monogenic) Endeavour Concept profiles
arrthythmia 4 20
congenital heart disease (3) NaN
cardiomyopathy 1 2 2
parkinsons disease (50) NaN
charcot-marie-tooth disease 14 1
amyotrophic lateral sclerosis 27 16
klippel-trenaunay disease (3) NaN
cardiomyopathy 2 1 10
distal  hereditary  motor 
neuropathy 15 51
Cornelia de Lange syndrome (9) NaN
average ranking 11 17

Disease (polygenic) Endeavour Concept profiles
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Rheumatoid_arthritis 11 24
Parkinson_disease 23 30
Atherosclerosis1 54 5
Atherosclerosis2 29 21
Crohn disease 71 11
Alzheimer disease 54 3
Average ranking 40 16

To  gauge  the  performance  of  concept  profiles  against  methods  based  on  co-
occurrence, we replicated a recent study [2] using the gene prioritizer Endeavour 
where gene-disease predictions were made for ten monogenic and six polygenic 
diseases (Table 3). We generated concept profiles for the diseases in these test sets 
and for the test genes in their corresponding linkage interval. We used the same roll 
back  analyses  as  Endeavour,  taking  only  literature  information  up  to  one  year 
before the landmark paper was published. For the monogenic diseases there were 
three genes where there was not enough information to calculate a match score 
using  concept  profiles.  Of  the  7  remaining  gene-disease  pairs  for  monogenic 
conditions,  the  average  performance  of  the  two  methods  was  comparable. 
However,  in  the  case  of  polygenic  diseases  having  inherently  complex 
interrelations  among  numerous  genes  and  other  concepts,  concept  profiles 
outperformed Endeavour’s  ranking on average by two-fold.  By drawing on the 
deep network of conceptual relations that inform the study of polygenic diseases 
but usually remain un-stated in the literature, concept profiles are uniquely suited 
for knowledge discovery in complex multifactorial systems. 
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Figure  3.  Estimation  of  implicit  and  explicit  information.  Co-occurrence 
methods can prioritize only 287 of the possible 40 million gene-disease pairs, 
while concept profiles can prioritize 5% at p= 0.05. Note the vast majority of 
textual information is implicit.
These results indicate the importance of implicit information in discovering new 
knowledge. Concept profiles can be used to estimate the relative proportions of 
implicit  and explicit  information.  For  example,  given the number  of genes and 
diseases  meeting  our  minimal  information  criteria  used  herein,  there  are 
40,404,412  possible  gene-disease  combinations.  The  match  score  and 
corresponding p-value for each these gene-disease pair can be calculated. For each 
p-value, the cumulative number of implicit  and explicit  gene-disease pairs (and 
then normalized to a percentage) can be computed (Supp Info Table 4). Thus, for 
each p-value, we know the fraction of the predicted pairs that are due to implicit 
information (Fig 3).  For p=0.0 only gene-disease pairs with minimally one co-
occurrence are found. But even for extremely significant p-values (p=0.00002) we 
already find some gene-disease pairs for which their  association is  only due to  
implicit information (i.e.,  no co-occurrences found in MEDLINE). For p=0.003, 
still a highly significant gene-disease p value, the amount of implicit information is 
already 47%. For commonly accepted p-values around p=0.05, 88% of the gene-
disease pairs are  due to implicit  information.  Conclusion:  The vast  majority of 
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useful  information  in  text  is  implicit,  and  this  information  is  accessible  with 
concept profiles. 

There  are  5330  gene-disease  predictions  that  are  better  than  p  =  0.0002.  To 
facilitate the expert  evaluation of these predicted gene-disease pairs,  the shared 
concepts from the concept profiles have been posted online along with the related 
PubMed IDs. Experts can search this data on gene or disease or any other related 
concept, and can provide their estimation of the quality of the prediction and leave 
commentary regarding possible biological mechanisms.  
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Supplementary information
Seckel syndrome is known as a rare autosomal recessive disorder characterized by 
growth  retardation,  microcephaly  with  mental  retardation,  and  a  characteristic 
'bird-headed'  facial  appearance.  Presently,  only  one  gene  in  OMIM,  ataxia-
telangiectasia, is related to Seckel Syndrome via its mutated from RAD3-related 
protein (ATR)[1]. Recently a second gene that encodes for Centromere protein J  
(CENPJ) has been identified by Al-Dosari et. al.[2], but this gene had yet to be 
entered in OMIM at the time this analysis was completed. Of the top 20 proteins 
(out  of  the  12,391  proteins  that  had  sufficient  information  to  build  a  concept 
profile) having the highest match score to Seckel Syndrome, CENPJ ranks number 
14,  although  CENPJ  has  no  co-occurrences  with  Seckel  syndrome  in  PubMed 
abstracts (Table 1). The concept microcephaly contributes the most to the match 
score and is the strongest implicit (or indirect) link between Seckel syndrome and 
CENPJ. Other candidate genes appear in this list that have been co-mentioned with 
Seckel syndrome before. For instance the protein pericentrin (PCNT, ranks 2) has 
three articles. The article with PMID: 18157127 describes that PCNT is another 
gene that causes Seckel syndrome. The article with PMID:19546241 gives a nice 
overview  of  related  diseases  with  similar  phenotype  such  as  ‘Primary 
microcephaly’  and  ‘microcephalic  osteodysplastic  primordial  dwarfism type  II’ 
(MOPD II).  This  article  also  lists  microcephalin (MCPH1,  ranks  5)  as  another 
disease-causing candidate. The last article (PMID: 16278902) also mentions the 
concept  MOPD  II.  These  results  prompted  us  to  further  investigated  whether 
CENPJ might be associated with PCNT and ATR. We generated a prioritized list 
for ATR and PCNT and checked the rank of CENPJ.  Surprisingly CENPJ also 
showed no co-occurrences with ATR and it ranked 706. However, CENPJ is co-
mentioned once with PCNT (PMID: 18174396). In this article PCNT is given as 
the cause for primordial dwarfism, and other candidate genes for Seckel syndrome 
are postulated (CDK5RAP2 ranks 32 not in table 1,  and ASPM ranks 15).  We 
performed a new search where related concepts for Seckel syndrome were used as 
PubMed input query and the results aggregated into a single rank using (Table 2). 
In  this  case,  CENPJ  ranks  4th and  although ATR is  a  known gene  for  Seckel 
syndrome (recorded in OMIM), its information content is poor compared to the 
other related Seckel syndrome concepts. 

From  the  PubMed  abstracts  we  selected  candidate  genes  that  have  been  co-
mentioned with Seckel syndrome related concepts and used them as a search query 
in the STRING database of known and predicted protein-protein interactions to see 
if there are any relations between these candidate genes (Fig 1). Again, ATM has 
many links with ATR, while all other links are mainly in the network of PCNT. 
CENPJ has a known physical interaction with PCNT. From a biological view, it 
would be highly interesting to identify the missing link between the ATR and the 
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PCNT  pathway.  In  seeking  potential  relations  between  Seckel  syndrome  and 
CENPJ, it is clearly much easier to inspecting the concept profile overlap between 
(Table 3) than performing multiple PubMed search queries manually reading up to 
17 articles. Lastly, this case demonstrates that using conventional co-occurrence 
approaches to predicting gene-disease relations could have negative performance 
results. Here, ATR, although the first choice to use as seed gene when looking for  
additional  genes  related  to  Seckel  syndrome,  would  lead  to  false  negative 
conclusions.

Figure 1. Candidate genes for Seckel syndrome in a network graph generated 
by STRING. 

Supp Info Table 1. Prioritized list of proteins match with the profile of Seckel 
Syndrome.  The  column  ‘main  concept’  gives  information  which  concept 
contributes the most to the score and is the strongest implicit (or indirect) link 
between Seckel syndrome and CENPJ. NUP85 is a homonym for PCNT and 
retrieves the same articles for PCNT.

ran
k

Co-
occurrence
s

genenam
e

Main 
concept

Contributio
n (%)

OMIM 
gene PMIDs

1 7 ATR ATR 74.43 x

[12640452, 
14571270, 
15309689, 
15496423, 
15616588, 
16015581, 
19504344]

2 3 PCNT
Seckel 
syndrome 54.38 x

[16278902, 
18157127, 
19546241]

3 2 NUP85
Seckel 
syndrome 74.54

[18157127, 
19546241]

4 2 ANTXR1 ANTXR1 66.28
[12640452, 
19504344]

5 3 MCPH1 MCPH1 61.84 x [16217032, 
17102619, 
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19546241]

6 2 NBN NBN 64.58 x
[15616588, 
18664457]

7 0 MCPH2
Primary 
microcephaly 32.01

8 2 FANCD2 FANCD2 47.9 x
[15314022, 
15616588]

9 0 ATRIP ATR 92.91
10 1 DNMT1 DNMT1 98.49 [17015478]
11 1 MDC1 MDC1 19.13 [18664457]

12 1 FANCC
Fanconi's 
Anemia 31.02 x [10232749]

13 6 PALB2
Fanconi's 
Anemia 36.35

[3115102,  6465473, 
7686032, 10232749, 
15314022, 
17224058]

14 0 CENPJ Microcephaly 17.77 x
15 0 ASPM Microcephaly 48.12 x

16 5 CHEK1 CHEK1 28.75

[15616588, 
16217032, 
17015478, 
18077418, 
19504344]

17 0 PROP1 dwarfism 98.96 x

18 2 MMAB MMAB 60.9 x
[15314022, 
19504344]

19 0 TOPBP1 ATR 64.53
20 1 FOXL2 FOXL2 59.56 x [16015581]

Table 2. Rank of proteins in prioritized lists for different concepts that are 
associated with Seckel syndrome, including Seckel syndrome itself

Gene 
name Rank

Seckel 
syndrom
e

PCN
T MOPD II

Primary 
microcepha
ly

Microcepha
ly ATR

PCNT 1 2 1 1 11 70 845
MCPH2 2 7 53 5 1 4 540
ASPM 3 15 38 6 2 2 622
CENPJ 4 14 18 4 3 5 706
ATR 5 1 385 53 29 49 1
MCPH1 6 5 64 7 4 12 271
NUP85 7 3 9 2 15 84 831
NBN 8 6 660 125 24 1 10
MDC1 9 11 233 15 6 63 15
TOPBP1 10 19 257 17 10 237 5
CDK5RAP
2 11 32 36 10 5 14 1233
CHEK1 12 16 254 36 20 223 3
TP53BP1 13 27 500 26 13 170 16
RHO 14 41 373 21 8 261 28
CHEK2 15 26 428 87 36 177 4
ERCC2 16 23 1054 48 42 174 9
MRE11A 17 22 1118 584 63 9 11
GCP3 18 39 4 3 31 1077 7133
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RAD50 19 25 881 478 67 10 17
SEH1L 20 104 54 12 89 67 753

Table 3. Overlapping concepts between Seckel syndrome and CENPJ
Top Overlapping concept Contribution (%)
1 Microcephaly 17.77
2 Primary microcephaly 17.31
3 MCPH1 11.86
4 Mcph1 11.44
5 MCPH1 11.44
6 MCPH1 11.41
7 MCPH1 7.54
8 PCNT 4.38
9 osteodysplastic primordial dwarfism 1.94
10 NUP85 1.11
11 MOPD II 0.93
12 pericentrin 0.77
13 dwarfism 0.72
14 Centrosome 0.55
15 Genes, Recessive 0.32
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Table 4. Estimation of Implicit and Explicit Information
1. O'Driscoll, M., Ruiz-Perez, V.L., Woods, C.G., Jeggo, P.A., and Goodship, 

J.A., A splicing mutation affecting expression of ataxia-telangiectasia and  
Rad3-related protein (ATR) results in Seckel syndrome. Nat Genet, 2003. 
33(4): p. 497-501.

2. Al-Dosari,  M.S.,  Shaheen,  R.,  Colak,  D.,  and  Alkuraya,  F.S.,  Novel  
CENPJ mutation causes Seckel syndrome. J Med Genet. 47(6): p. 411-4.

pvalue matchscore implicit explicit cum imp cum exp % imp % exp

0 -4 0 29 0 29 0.00 1.00

0 -5 0 287 0 316 0.00 1.00

0.00002 -6 5 1139 5 1455 0.00 1.00

9.01E-05 -7 173 2341 178 3796 0.04 0.96

0.00023 -8 997 4333 1175 8129 0.13 0.87

0.00056 -9 3994 8561 5169 16690 0.24 0.76

0.00127 -10 12863 16612 18032 33302 0.35 0.65

0.00308 -11 38259 30653 56291 63955 0.47 0.53

0.00724 -12 109383 55429 165674 119384 0.58 0.42

0.01756 -13 327773 113012 493447 232396 0.68 0.32

0.04645 -14 1027450 142817 1520897 375213 0.80 0.20

0.11323 -15 2610325 78691 4131222 453904 0.90 0.10

0.23868 -16 5050536 26734 9181758 480638 0.95 0.05

0.41924 -17 7252607 6287 16434365 486925 0.97 0.03

0.60682 -18 7619189 906 24053554 487831 0.98 0.02

0.75026 -19 5790456 40 29844010 487871 0.98 0.02

0.84564 -20 3816141 0 33660151 487871 0.99 0.01

0.90624 -21 2460978 0 36121129 487871 0.99 0.01

0.94567 -22 1586840 0 37707969 487871 0.99 0.01

0.97008 -23 995043 0 38703012 487871 0.99 0.01

0.98434 -24 577399 0 39280411 487871 0.99 0.01

0.99236 -25 322237 0 39602648 487871 0.99 0.01

0.99673 -26 169158 0 39771806 487871 0.99 0.01

0.99855 -27 83531 0 39855337 487871 0.99 0.01

0.99948 -28 36376 0 39891713 487871 0.99 0.01

0.99972 -29 15168 0 39906881 487871 0.99 0.01

0.99982 -30 6123 0 39913004 487871 0.99 0.01

0.99989 -31 2528 0 39915532 487871 0.99 0.01

0.99993 -32 971 0 39916503 487871 0.99 0.01

0.99993 -33 38 0 39916541 487871 0.99 0.01

114



Chapter 6

General discussion
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This thesis presents in silico text- and data-mining techniques for the prediction of 
biologically  related  concepts.  The  methods  were  evaluated  on  protein-protein 
interaction data and genes associated with certain diseases. The main part of the 
research  was  the  evaluation  of  the  text-mining  method called  concept  profiles. 
Later  on we  extended concept  profiles  with other  non-textual  information.  The 
many  hurdles  and  findings  are  discussed  below.  We  conclude  with  the  future 
directions where text-mining and data-mining can be improved. 

1. Evaluating set creation
During this research a large part of the effort was needed to collect training and test 
data. 
Collecting good data for the evaluation of a data-mining system is hard. Here we 
describe the problems we encountered. 

1.1 Nature of biological data
The data used in this study has several characteristics that make the application of  
existing data and text-mining methods difficult. The world of biology is far more 
complex than a computer system can model. It is no simple ‘black and white’ or 
the use of TRUE and FALSE labels. 
First,  biological  data  is  sometimes  not  reliable,  and  highly  dependent  on  the 
context it appears in. For instance protein-protein interactions (PPIs) are recorded 
in  protein  databases  and  each  database  has  a  level  of  curation.  Some  protein  
interactions  are  very  well  described  in  databases  like  DIP.  These  PPIs  are 
confirmed with several independent wetlab experiments or have a lot of literature 
evidence. Other protein interactions come from high throughput experiments and 
are  recorded  in  a  database  like  IntAct.  High  throughput  experiments  normally 
contain more false positives. The same holds for instance for the annotation of gene 
functions  in  the  Gene  ontology  (GO).  In  an  old  release  of  the  GO a  gene  is  
assigned a GO term describing a molecular function. In later releases sometimes 
the GO term becomes obsolete because it was wrongly annotated or the GO term is 
merged with another term.
Second, the current knowledge is limited and incomplete. Only a small fraction of 
the total interaction space (e.g. all protein-protein interactions in the human body) 
is described. This results in overestimation of the prediction performance because  
the performance is biased towards well studied proteins, i.e. biased towards only 
this small subset of protein-protein interactions. 
Third, biological data change over time. For instance when two proteins are not 
known to interact, a system would label this protein pair as TRUE NEGATIVE. 
However in a wetlab experiment the two proteins were confirmed to interact. After  
this discovery the protein pair would be labeled as TRUE POSITIVE. 

116



In  an  evaluation  process,  biological  data  should  be  used  keeping  these 
characteristics in mind.  

1.2 Biological nomenclature
The nomenclature of biological names is not standardized. For genes or proteins 
there exist multiple accession numbers (e.g. Uniprot, Entrez Gene, or HUGO Gene 
Nomenclature  Committee),  synonyms,  and  abbreviations  that  all  need  to  be 
mapped to  single  unique  identifiers.  To disambiguate  genes  in  text  is  difficult 
because many genes share the same synonym, resulting in homonym problems. 
For gene-disease relationships it is even harder. Many of the genes are assigned the 
name of the disease they are associated with. These samples cannot be used as a 
test sample. In addition the disease name as it is recorded in databases is hard to 
recognize in text. For instance Alzheimer disease had over 15 variants recorded in  
OMIM (e.g. Alzheimer type 2). In text normally this will be described as that they 
found a new type of Alzheimer disease. Hence not the concept Alzheimer type 2 is  
recognized but the generic concept Alzheimer disease. 
Furthermore,  concepts  are  related to  each other  in  a  hierarchical  ontology.  For 
instance the concept Duchenne muscular dystrophy (DMD) in the ontology is part 
of the concept muscular dystrophies. Once DMD is recognized in text as a concept, 
one could argue if it is informative that in the same text the higher level concept  
muscular dystrophy is recognized.

1.3 Minimum information requirements for text-mining
In chapter  5 we introduced the roll  back analysis.  This  is  a way to simulate a 
prediction over time. We imposed the constraint for gene-disease relationships in 
our test set that the two concepts should not be co-mentioned together before the 
relationship was discovered, to prove that they could have been predicted using the 
implicit  information.  However,  before  that  first  co-occurrence  there  should  be 
enough information available which is sometimes also not the case. In order to 
build  a  concept  profile  for  a  concept  we  maintained  a  threshold  of  at  least  5 
abstracts where that concept is mentioned. 
This limitation resulted in a set of only 18 gene disease pairs described in chapter 4  
where the original list started out with roughly 5,000 gene disease pairs in HPRD. 
The same problem probably occurred in the article by Aerts et al. [1] where they 
obtained a small set of 10 monogenic and 6 polygenic diseases. 

1.4 Curation and confirmation of biological data
One aspect of bioinformatics is that it is important to validate (or verify) every in 
silico prediction  with  a  wet  lab  experiment.  The  results  of  the  experiments 
described in this thesis required interpretation by expert biologists. This introduced 
a dependency on experts, who had to make time in their busy schedules. Luckily, 
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the biologists at our department were very helpful, but still the amount of work that 
could be asked of them was limited. Every bioinformatician would love to have his  
own private biologist.

1.5 Circular reasoning 
Another problem is that  many databases have a certain level  of  redundancy.  In 
machine learning a key step to evaluate a prediction system is to divide the data 
into a training set and a test set. The training data is used to train all the parameters 
that are used in the model of the prediction system. The test data is used to evaluate 
how well the system is able to correctly predict the labels of the test data. Training 
and test data should be independent. That is, no data that is used for training should 
be  used  for  evaluation,  else  this  could  lead  to  an  over  estimation  of  the 
performance. 
However for biological data it is sometimes not possible to divide the data into an 
independent training and test set. For instance when a wet lab experiment is done 
for investigating a PPI, the results will be described in an article and published, and 
the same result  are stored in a database like DIP. To separate the database and 
article  information is  difficult.  Therefore we introduced in chapter 3 and 5 the 
retrospective study (or roll back analysis) and do a prediction simulation over time 
to eliminate the bias. To do this, it is necessary to get access to old releases of  
databases.  Most  databases  do  not  store  previous  releases  for  download.  For  
bioinformatics  purposes  this  would  be  extremely  helpful  to  keep  track  of  old 
releases. 

2. Findings

2.1 Implicit information extraction and content
Chapter  three  and five  showed that  implicit  information  extraction  works.  The 
information, or the indirect links, that connects two concepts can be derived from 
the concept profile overlap. It seems that for PPI prediction the dominating concept 
is normally another protein already associated with one of the two proteins. For 
instance in chapter three CAPN3 was linked with PARVB via the intermediate 
protein  DYSF.  For  gene  disease  relationships  it  is  normally  an  associated 
phenotype, or another gene also known to cause another disease. For instance in 
chapter five RECQ4L was also associated with Rothmund-Thomson syndrome and 
therefore seems to be a good candidate for Baller-Gerald syndrome because these 
two  syndromes  show  clinical  phenotypic  overlap.  These  two  examples  are 
indicative  that  the  implicit  information  is  meaningful  and  well  explains  the 
association between two concepts. We further observe that when an implicit link is  
found between concepts the link is normally one dominating concept. To verify 
this, more samples should to be evaluated. 
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2.2 Added value of other data sources. 
In chapter four we investigated if concept profiles can be improved by adding other 
non-textual data sources. We found that some of the problems encountered with 
text-mining could be solved with the other data sources. We conclude that this may 
work but the performance is dependent on the sample you are looking at. It was  
shown for DYSF that the amount of information in additional databases besides the 
literature  was  poor.  In  the  PKD1  case  study  the  disambiguation  problem  was 
solved by microarray expression data. The nature and the amount of information 
from every source has its pros and cons dependent on the sample. Figure 1 shows 
an example of the AuC output for each database for DMD and HTT to illustrate 
that for each protein another data source is dominating. In many pattern recognition 
approaches it is usual to do feature selection for dimensionality reduction resulting 
in the most informative features. For instance in a microarray experiment the goal  
may be to look for differentially expressed genes. The number of genes checked 
start with 30,000 and after filtering (feature selection) the number of genes will 
vary  from  10  till  100.   However  for  combining  data  sources  the  number  of 
available data sources, suitable for processing, is already limited. Making databases 
inter-operable  is  very  important.  As  stated  earlier  the  data  source  that  is  most 
informative  changes  with  each  sample  (figure  1).  A  generic  feature  selection 
approach therefore seems not appropriate for biological data. A scientist should be 
able  to  select  the  data  source  he  is  interested  in.  Also  on  the  basis  of  known 
knowledge and ROC curve analysis a scientist can get a feeling if the data source is 
informative  for  his  samples  (e.g.  a  protein).  Added  value  of  data  sources  and 
feature selection should be considered for each question separately. 

2.3 Types of relationships
We did the collection of data for the relationship types ‘protein interacts with other 
protein’  and  ‘a  gene  when  mutated  causes  a  certain  disease’.  As  discussed 
preciously  the  prediction  performance  is  dependent  on  each  sample.  The  same 
holds  for  types  of  relationships.  This  can  be  very  well  explained.  For  protein 
interactions 70% of the known PPIs recorded in databases cannot be traced back in 
PubMed abstracts because normally the interactions are stored in a table in full  
text.  When a  gene  is  found for  a  disease,  the  landmark  paper  will  always co-
mentioned the gene and the disease in the abstract, if not even in the title. After the 
landmark  paper  multiple  occurrences  happen  in  articles  published  after  the 
landmark paper. We did an evaluation of the gene disease relationships in OMIM 
and  found  that  ~83%  of  the  known  pairs  have  a  co-occurrence  in  MedLine 
abstracts. The distribution is given in figure 3. We checked another relationship 
type,  that  of  ‘gene  has  function  X’  taken  from  the  Gene  Ontology.  For  this 
relationship type the distributions are given in figure 2. These figures clearly show 
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that  the known relationships are very different.  Since gene/disease relationships 
almost always occur in PubMed abstracts, the association score is in general high. 
The  null  distributions  (or  random  distribution)  tend  to  look  the  same.  For 
knowledge  discovery  scientists  are  interested  in  new  concept  pairs  (e.g.  PPI, 
gene/disease) previously not recorded in any database but found by our text-mining 
system.  Those  are  all  the  pairs  from the  null  distribution.  In  chapter  three  we 
generated a null distribution of random protein pairs. In figure 2 and 3 the null  
distributions  for  gene/disease  and  protein/function  are  given  respectively.  The 
distributions look alike. To investigate if null distributions from different semantic 
types  (e.g.  protein  pairs  or  gene-disease  pair)  as  the  same  and  can  be  treated 
universal  we  calculated  match  scores  for  100,000  random  protein  pairs  and 
100,000 random gene-disease pairs. The results are plotted in figure 4. This plot 
clearly shows that the gene-disease pairs (blue) are different from the protein pairs 
(red) even though the two distributions both have a Gaussian characteristic.  An 
explanation of this difference could lie in the fact that proteins or genes in general  
are more intensively described that diseases (all diseases besides OMIM are taken 
into  account).  Therefore  concept  profiles  for  protein/genes  are  more  enriched 
which results in on average higher match scores. This result means that any pairs of 
two semantic types cannot be treated universally. For instance, when the match 
score  for  a  protein  pair  is  significant  (e.g.  p<0.01)  calculated  under  the  null 
hypothesis that any concept pair (regardless the semantic type) is not related, this  
same protein pair could not be significant (or at least is different) under the null 
hypothesis that protein pairs are not related. 

3 Limitations of text-mining
Concept  profiles  show a  better  performance  in  predicting  associations  between 
concepts than the direct relationship approach (described in chapter two and three).  
However  there  are  still  limitations  in  prediction  performance  even for  concept 
profiles. First, finding a new relationship between two concepts goes as far as there 
is  information.  This  means  that  there  must  be  sufficient  information  for  both 
concepts. For concept profiles we formulated this that there should be at least 5 
articles available for both concepts. Many diseases or proteins are rare that they 
have  not  been  published  about.  In  this  case  text-mining  fails  not  because  of  
technical shortcomings but just due to the lack of information. 
Second, the lack of information can also be within the implicit information. If two 
concepts are related to each other is does not mean that they will always be linked 
with each other via intermediate concepts. If they do not, this is also not due to 
text-mining shortcomings but that there is no implicit links available.  
Third, the biggest limitation is the accuracy of the disambiguation process. This is 
dependent on the style of writing of the author, i.e. which nomenclature he uses for 
words and if words are abbreviated. The problem of disambiguation lies in that 
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humans are more adapted to give names to entities that are easy to recognize and 
easy to remember on how they are named. Normally this is done using an acronym. 
In  addition  biologists  do  not  make  a  standard  convention  about  the  word 
nomenclature for proteins. As Michael Ashburner [2] once said ‘Biologists would 
rather share their toothbrush than share a gene name’. 
It  is  shown  in  competitive  conferences  [3]  where  state  of  the  art  text-mining 
systems compete with each other that there is a maximum performance reachable 
(e.g. 0.88 and 0.50 recall and precision respectively). No computer system is ever  
able to retrieve a 100% score. 

4 Future directions
We believe that text-mining and in particular concept profiles are indispensable in 
biological research. We foresee that text-mining will become a core technology in 
the so called semantic web. The semantic web is a name giving for a trend going 
on the Internet.  The first trend in Internet development was called web 1.0. It was 
the collection of all static HTML pages with only plain text. The second generation 
is called web 2.0 where the web became interactive. Think of user input like credits 
cards, online bookstores or Wikipedia. The third generation is called web 3.0 or the 
semantic web. Here the plain text on web pages, blogs and published literature will 
be linked with each other in a web of concepts, where the links between concepts 
can be facts generated by information extraction (IE) or can be hypothesis being a  
novel relationship using text-mining techniques. 
There is  still  a  lot  to gain in research and the development of text-mining and 
remarkable some of them are not computer oriented. 

4.1 Community annotation
The  first  development  is  that  of  community  annotation  [4].  With  the  common 
technology the way that computers can read text have their limitations in terms of  
accuracy.  Disambiguation  remains  a  key  aspect  and  hard  to  solve  for  many 
concepts. However with the future version of the semantic web and the millions of 
people on the internet every day this can be solved. A person on the web, a so  
called community annotator, can screen an article of interest that has been tagged 
by a text-mining system and correct the words that have been misclassified. With  
misclassification  we  mean  that  a  word  was  too  ambiguous  to  resolve  or  not 
recognized because the word does not appear as a concept in the ontology. For a 
human reader the disambiguation can be done manually even so the ontology can 
be updated with new concepts or synonyms for existing concepts. Or in the case of  
the Alzheimer example, a new type can be corrected for in an article years after  
publication.  Since the internet contains millions of users every day, this annotation 
process increases the accuracy of tagged text over time.
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4.2 Making standard nomenclature
The second improvement is for standardizing databases, identifiers and names for  
concepts.  In  the  past  many  attempts  have  been  made  to  come  to  a  common 
ontology that is accepted world wide by all biology scientists. However thus far 
these attempts have failed for many reasons, some of which are unexplainable. An 
example is that in the past years companies developed their own databases for data-
mining  purposes.  Once  they  published  about  their  database  (in  online  website 
form) it was used frequently over the coming month. After a period of time the 
database became old and not  maintained.  In the end the database ‘dies’  and is 
buried on the ‘database graveyard’. For world wide co-operation we suggest that 
biologists get inspired by ICT companies and organizations like IEEE for whom 
standardizing is a well known principle (http://standards.ieee.org/). For instance, 
with the digital revolution many electronic devices came available for home users 
that need to be universal. A compact disk that can be played with any CD player  
that is bought in Germany or Japan. Or a personal computer where a soundcard 
works and fits in any motherboard. The universal exchangeability works in this 
field, hence, it may work in other fields like biology. 

4.3 Publish everything in blogs
A last improvement would be in the publication of negative results. In data-mining 
systems there  is  often  the need  to  compare groups  of  data.  For  instance for  a 
microarray this could be a treatment group of affected patients and the control  
group (reference group) of healthy people. In chapter one we compared the group 
of PPIs with the group of random protein pairs. There is no database available that 
explicitly  describes  that  some  proteins  do  not  interact.  Publication  of  any 
experiment ever done would be valuable for a computer scientist  (and even for  
biologists so they do not reinvent the wheel). The publication can now be done via 
online blogs, which are generally publicly accessible. 

4.4 Multidisciplinary environment
A complete non technical aspect of improvement is the communication between 
different disciplines. The background of today’s bioinformatician in most cases is  
computer science with very little background in biology. In the same way today’s  
biologist lacks the knowledge in the use of computers. The gap in communication 
between the computer scientist and biologists hampers the further development in 
bioinformatics  research.  For  instance,  biologist  and  most  other  disciplines,  not 
engineering  related,  are  sometimes  not  aware  of  what  is  already possible  with 
today’s  technology.   This results  in reinventing the wheel  or  working with old 
school technology (e.g. massive storage in excel sheets that better could be stored 
in professional database systems like Oracle and MySQL). Engineers and computer 
scientists on the other hand have no idea that people are in need of their computer  
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and engineering skills. When the two worlds never meet they cannot benefit from 
each others knowledge. We would like to encourage organizations to strive to let 
biologists  meet  with  bioinformaticians  in  order  to  learn  from  each  other.  For 
instance now there are conferences dedicated to bioinformatics research and mostly 
visited  by  bioinformaticians.  Same  holds  for  conferences  mostly  oriented  for 
biology. It would be great if a conference was dedicated to present bioinformatics  
tools  and  ideas  purely  to  biologists,  and  that  biologists  present  their  ongoing 
project to bioinformaticians and want feedback or a bioinformatic solution. Such a 
conference  stimulates  the  increase  of  collaborations  between  biologist  and 
bioinformatician.  
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Figure  1.  AuC  result  for  DMD  and  HTT  for  different  databases.  The 
performance  is  dependent  on the  protein  of  interest.  Tiger shows opposite 
behavior then InterPro. 
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Summary

Text-mining is a challenging field of research initially meant for reading large text 
collections with a computer. Text-mining is useful in summarizing text, searching 
for the informative documents, and most  important  to do knowledge discovery. 
Knowledge  discovery  is  the  main  subject  of  this  thesis.  The  hypothesis  that 
knowledge discovery is possible started with the work done by Swanson. He made, 
as a first finding, links between Raynaud’s disease and fish oil using intermediate 
medical terms to relate them to each other. This principle was formalized in the A-
B-C concept. A and C are not directly related to each other but via an intermediate 
concept B that needs to be discovered. 
Tex data can be extended by adding other non textual  data such as microarray 
experiments. Then we are in the field of data-mining. The final goal is to do all  
kinds of discoveries with computer (in silico) using data sources in order to assist  
biology research to save time and discover more. 

In chapter two we introduced the techniques that are mainly used for the rest of the  
research. We explained what we mean by concept based text-mining.  A concept is 
an unambiguous unit of thought, meaning that we all agree talking about the same 
thing. We described how we can define associations between two concepts and the 
strength of association using statistics. We continued how the direct associations 
were used to form these A-B-C triplets and used in our text-mining approach called 
concept profiles. A concept profile is a summary of all concepts related to the main 
concept stored in a vector with weights. With vector algebra we calculate multiple 
indirect, A-B-C, links between two concepts. These indirect links we call implicit  
links.  We introduced the  statistics  used  to  evaluate  our  methods such  as  ROC 
curves, retrospective analyses, and prioritizers. We concluded what would be the 
further of text-mining and how it fits into the World Wide Web. 

In chapter three we did a large scale analysis on the prediction of protein-protein 
interactions (PPIs) taken from several protein databases. We compared our concept 
based text-mining system and concept  profiles with MEDLINE, which is  word 
based, and the direct relationship method used by STRING. By direct relationship 
method we mean that only information is used for two concepts if they co-occur in 
abstracts, e.g. A-C links, and no C. This is the classical way of doing text-mining. 
The direct relationship method only detected around 30% of the known PPIs in 
MEDLINE, concluding that 70% should be detected with indirect or implicit links. 
The  concept  profiles  outperformed any other  method that  was  based  on  direct 
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relations only (Area under ROC curve of 0.90 for concept profiles compared to 
0.69 for other methods).    
Subsequently we did a retrospective analyses to see if PPIs, added in databases 
between 2005 and 2007, could be predicted before 2005. Concept profiles showed 
much better prediction results. 
The most interesting result from this analysis was to confirm one prediction in the 
lab. We made a prioritized list for the protein CAPN3 and predicted PARVB as top 
candidate  with  no  direct  link  with  CAPN3.  It  was  confirmed  with  three 
independent lab experiments that these to proteins physically interact.

We continued on the prediction of PPIs in chapter four. We added five non-textual 
databases to the text-mining part. This should increase the prediction accuracy and 
lower  the  number  of  false  positives.  Hence  we shifted  our  analysis  from text-
mining to data-mining. In this analysis again we used STRING as benchmark. We 
evaluated different ways to combine data sources. The best method appeared to be 
Fisher’s method for combining single sided p-values. We examined how well our 
data-mining system was able to predict meaningful protein pairs using three case 
studies.  The  first  case  study  was  on  Dysferlin.  This  protein  showed  little 
information in additional databases and had its information mostly within text. The 
second case study was on the huntingtin protein. A previous published study of 60 
up  to  120  putative  interaction  partners  with  HTT  was  used  as  test  data.  The 
prediction of these test samples outperformed that of the STRING method. The last 
case study on PKD1 showed that adding other databases is also useful for solving 
homonym problems occurring in text-mining. 

In chapter five we switched to another semantic type combination that of the gene-
disease and we evaluated how well text-mining is able to predict these kind of 
relationships. In contrast to the PPI study where we had a large positive set of PPIs, 
we only evaluated small sets of gene-diseases. This was because it was hard to  
collect  good samples.  We generated a new set  of  18 known gene-disease pairs 
known and we used two sets used to evaluate the gene prioritize Endeavour. One 
contains 10 monogenic diseases and the other six polygenic diseases. We only did 
roll back analysis to simulate if we could predict these gene-disease pairs. We were 
able to rank the test gene 2-fold higher than Endeavour on the polygenic diseases.
In this study we delved more into the implicit or indirect links between gene and 
disease and reasoned if the link was logical.  One case study predicted the gene  
CENPJ when mutated causes Seckel syndrome. Our system was able to rank this 
gene on position 14 out  of  more than 12,000 genes before the landmark paper 
about CENPJ-Seckel syndrome was published.
From these examples and the examples from chapter three is became a burning 
question how much knowledge can be extracted from text using implicit links, i.e. 
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how much information in the whole of MEDLINE is implicit. We did an analysis 
on all gene disease pairs and calculated match scores and p-values for each match  
score. We plotted the p-value against the fraction of explicit links and the fraction 
of  implicit  links.  We were stunned that  for  significant  scores  p-value<0.05 the 
amount of implicit information already succeeded 80%, concluding that the vast 
majority of information is implicit. 

In chapter six we concluded that implicit information extraction really pays of and 
that there is far more information in text that we could imagine. However text-
mining  and data-mining  still  have  their  limitations.  The  best  way to  solve  the 
shortcomings of the methods is by community annotation. The accuracy of a text-
mining system can be increased or even pushed to 100% by manual curation on the 
internet by millions of users. The ironic thing is that every analysis started in silico 
but  ends  with  the  refinement  using  manual  annotation,  although  it  is  done  by 
millions of users.
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Samenvatting

Text-mining is een uitdagend vakgebied dat oorspronkelijk is bedoeld om grote 
verzamelingen van tekst documenten te lezen met een computer. Text-mining is 
nutting voor het samenvatten van tekst, het zoeken naar informatieve documenten, 
en het meest belangrijke om nieuwe relaties te voorspellen. Het voorspellen van 
nieuwe relaties is  het  hoofdonderwerp van dit  proefschrift.  Deze hypothese van 
nieuwe  kennis  extraheren  uit  tekst  begon  met  het  onderzoek  verricht  door 
Swanson. Hij heeft als een van de eerste een link (relatie gevonden) gelegd tussen 
de ziekte van Raynaud en vis olie. De relatie werd gevonden door tussenliggende 
relaties  te  gebruiken  waardoor  ze  indirect  met  elkaar  gekoppeld  worden.  Dit  
principe werd gemodeleerd als een A-B-C model. A en C zijn niet direct met elkaar 
in verband gebracht. Maar via het concept B wel (A-B is een relatie en B-C ook).  
De truuk is om het concept B te vinden en te bepalen of de A-C relatie waar is. 

Tekst informatie van worden aangevuldt met ander soort data zoals bijvoorbeeld 
microarray  experimenten.  Het  uitbreiden  van  tekst  informatie  met  andere 
databronnen  en  dit  analyseren  op  relevante  informatie  heet  data-mining.  Text-
mining is dus een onderdeel van data-mining. Het hoofdoel van data-mining is om 
nieuwe relaties te vinden met het gebuik van alle aanwezige databronnen en een 
computer opdat  biologisch onderzoek versneld wordt  en ook nieuwe informatie 
toereikend is. 

In  hoofdstuk  2  hebben  we  de  technieken  uitgelegd  die  in  dit  proefschrift  zijn 
gebruikt. We hebben uitgelegd wat wordt bedoeld met concept based text-mining.  
Een concept is een universieel eenduidige gedachte over een fysiek (tastbaar zoals  
bijvoorbeeld een fiets) of abstract ding (niet tastbaar zoals bijvoorbeeld de liefde). 
We hebben besproken hoe  we associaties  leggen tussen  twee  concepten  en  de 
sterkte van de associatie bepalen met gebruik van statistiek. Vervolgens hebben we 
uitgelegd hoe deze associaties worden gebruikt in the A-B-C triplets en hoe deze 
de  basis  zijn  van  de  concept  profiles techniek.  Een  concept  profiel  is  een 
verzameling van concepten die relateerd zijn met het hoofdconcept van dat profiel  
en voor elk concept de mate van associatie met het hoofdconcept. Mathematisch 
gezien  is  dit  een  vector  met  weeggetallen.  Met  behulp  van  vector  algebra 
berekenen  we  meerdere  A-B-C  relaties  tussen  twee  concepten.  Deze  indirecte 
relaties (via concept B) noemen we impliciete relaties. 
We hebben statistische methodes omschreven die we gebruiken bij het evalueren 
van onze text-mining technieken, zoals ROC curves, retrospectieve analyses, en 
prioritizers. We besloten met wat de toekomst zou zijn van text-mining en hoe dit 
wordt toegepast binnen het World Wide Web. 
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In hoofdstuk 3 hebben we een analyse gedaan op grote schaal voor het voorspellen 
van eiwit-eiwit interacties (PPIs). Deze eiwit-eiwit interacties hebben we genomen 
uit  eiwit  databases  zoals  UniProt.  We  hebben  ons  concept  based  text-mining 
systeem en de concept profielen vergeleken met het systeem van MEDLINE, dat 
word based is, en vergeleken met de directe relatie methode van STRING.
Met directe relatie methode wordt bedoeld dat alleen informatie wordt gebruikt als 
twee concepten in hetzelfde abstract voorkomen, bijvoorbeeld A-C zonder een B.  
Dit is de klassieke manier van text-mining bedrijven. Uit onze resultaten bleek dat  
de  klassieke  directe  relatie  methode  slechts  30%  van  alle  bekende  PPIs  uit 
databases in MEDLINE kon detecteren. Dit houdt in dat 70% implicit of indirect 
relateerd zijn. The concept profielen presteerden beter dan welke vorm van directe 
relatie methode dan ook. Onze methode had een Area under de ROC curve van 
0.90 vergeleken met 0.69 van andere methodes. 
Vervolgens hebben we een retrospectieve analyse gedaan om te zien of PPIs die 
aan  een  database  zijn  toegevoegd  over  de  periode  2005-2007  konden  worden 
voorspeld  met  kennis  voor  2005.   Concept  profielen  lieten  wederom  betere 
resultaten zien dan de klassieke methode. 
Het  meest  interessante  resultaat  was  dat  we  een  van  de  resultaten  gevalideerd 
hebben in het lab. We hebben een gerangschikte lijst (gerangschikt op hoogste naar  
laagst associatie) gemaakt voor het eiwit CAPN3. We voorspelde het eiwit PARVB 
als  een  top  kandidaat  die  een  moleculaire  interactie  aan  zou kunnen gaan met 
CAPN3. PARVB en CAPN3 hadden tot die tijd geen directe relatie in MEDLINE 
(noch  in  STRING).  Drie  onafhankelijke  lab  experimenten  hebben  uiteindelijk 
bevestigd dat deze twee eiwitten daadwerkelijk een interactie aangaan. 

In  hoofdstuk  4  zijn  we  verder   gegaan  met  het  voorspellen  van  eiwit-eiwit 
interacties.  We  hebben  5  niet  tekstuele  databronnen  toegevoegd  aan  het  text-
mining  systeem.  De  hypothese  is  dat  dit  de  predictie  nauwkeurigheid  moet 
verhogen en het aantal fout positieven moet terugdringen. Deze analyse is dus een 
data-mining analyse geworden. In deze analyse hebben we wederom STRING als 
benchmark gebruikt. 
We  hebben  verschillende  methodes  getest  om  databronnen  met  elkaar  te 
combineren. De beste methode die naar voren kwam is Fisher's methode for het  
combineren  van  enkelzijdige  p-waarden.  Om  te  evalueren  hoe  goed  ons  data-
mining systeem het deed op het voorspellen van nieuwe relaties hebben we drie 
casus studies gedaan. 
De  eerste  casus  ging  over  Dysferlin.  Dit  eiwit  liet  weining  informatie  zien  in 
andere databronnen buiten tekst. De tweede casus was voor het huntingtine eiwit. 
Een eerder gepubliceerde studie naar potentiele eiwit interactie (60 tot 120 stuks) 
partners werd gebruikt  als  test  set.  De voorspellingen van deze testset deed het 
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velen malen beter dan STRING. De laatste casus was voor het eiwit PKD1. Deze 
casus  liet  zien  dat  het  toevoegen  van  andere  databronnen  ook  het  homonym 
probleem binnen text-mining kunnen oplossen 

In hoofdstuk 5 hebben we een ander semantisch type relatie onderzocht. Namelijk 
de gen-ziekte relatie en we hebben onderzocht hoe goed concept profielen dit type 
relatie kan voorspellen. 
In tegenstelling tot de PPI studie, waar we een grote test dataset hadden, hebben we 
in deze analyse een zeer kleine set gebruikt van bekende gen-ziekte relaties. De 
oorzaak hiervan is  dat  het  erg moeilijk  is  om goede samples  te  extraheren die  
geschikt zijn voor testen. 
We  hebben  een  testset  gegenereerd  van  18  bekende  gen-ziekte  paren  en  twee 
testsets die gebruikt zijn bij de studie van de gen prioritizer Endeavour. Een van de 
sets waren monogenetische ziektes en de andere polygenetische ziektes. Voor de 
analyse deden we alleen een 'terug in de tijd' analyse om te simuleren dat we de  
gen-ziekte relatie konden voorspellen voordat het expliciet werd in een landmark 
artikel. Opmerkelijk is dat we het testgen voor de polygenetische ziekten tot 2 keer 
hoger konden rangschikken dan Endeavour. 
In deze studie zijn we ook dieper ingegaan op de impliciete (of indirecte) links en 
hebben we beredeneerd of deze links een logisch verband vormen met het gen en 
de ziekte.  In een van de case studies hebben we het gen CENPJ voorspeld dat 
Seckel syndroom veroorzaakt als het gemuteerd is. Dit gen rangschikte op positie 
14  van  de  12.000  genen.  Dit  gebeurde  al  voordat  het  landmark  paper  werd 
gepubliceerd over CENPJ-Seckel syndroom. 

Van  al  deze  casussen  en  de  casussen  uit  hoofdstuk  3  en  4  ontstond  er  een 
brandende vraag hoeveel impliciete relaties nog ontdekt kunnen worden uit tekst.  
Of anders gezegd hoeveel informatie in heel MEDLINE is impliciet? We hebben 
een analyse gedaan waarbij we voor alle mogelijke gen-ziekte paren een score en 
p-waarde hebben berekend. We hebben de p-waarde geplot versus de fractie van 
expliciete  relaties  met  die  p-waarde.  Zeer  opmerkelijk  was dat  voor  significant  
scorende  relaties  met  eeen  p-waarde  <  0.05  al  bijna  80%  van  al  die  relaties 
impliciet zijn. Dit betekent dat het merendeel van alle informatie in tekst impliciet  
is. 

In  hoofdstuk  6  concludeerde  we  dat  door  middel  van  impliciete  relaties  het 
mogelijk is om nieuwe relaties te voorspellen en dat er dus veel meer informatie in 
tekst zit dan men voor mogelijk hield. Text-mining en data-mining hebben echter 
ook  hun  limitaties.  De  beste  manier  om  deze  limitaties  op  te  lossen  is  door 
'community annotation'. De nauwkeurigheid van een text-mining systeem kan dan 
zelfs richting de 100% gaan door het manueel cureren van relaties door miljoenen 
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gebruikers op het internet. De ironie van dit alles is dat een analyse begon met in 
silico (alles met de computer) methodes, maar dat aan het einde dit wordt verfijnd 
met manuele annotatie, daargelaten dat het door miljoenen gebruikers gebeurt.
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