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0 Introduction

The fundamental quest of statistical mechanics is to understand the macroscopic

laws of thermodynamics from the microscopic world of interacting particles. In equi-

librium statistical mechanics, the transition from the microworld to the macroworld

is conceptually well understood. The macroscopic equilibrium properties can be ob-

tained by studying the Boltzmann-Gibbs distribution as a function of temperature and

other parameters such as external fields.

The Gibbs formalism, i.e., the study of Boltzmann-Gibbs distributions in the ther-

modynamic limit has been rigorously formulated in the so-called DLR (Dobrushin-

Lanford-Ruelle) formalism. Within this framework, one can rigorously understand

macroscopic equilibrium phenomena such as phase transitions and the laws of equilib-

rium thermodynamics. Even if the equilibrium formalism is well-established, it is still

rarely the case that models in this framework are exactly solvable, i.e., that one has

e.g. explicit expressions for the free energy. Exactly solvable models such as the Ising

model serve as paradigmatic examples where fine details such as correlation functions

even at the critical point can be computed.

In non-equilibrium statistical mechanics, there is no analogue of the Gibbs formal-

ism, i.e., there is no general formalism that gives the distribution of microstates even

for a “simple” non-equilibrium scenario such as a system in contact with two heat reser-

voirs at different temperatures or with two particle reservoirs with different chemical

potentials. Only close to equilibrium there is the general theory of linear response that

relates currents to equilibrium correlation functions.

One problem with the theory of non-equilibrium is the diversity of phenomena it is

supposed to describe, as John Von Neumann once put it: “theory of non-elephants”.

In this work, we therefore want to focus on the simplest possible non-equilibrium

systems, which are systems in contact with two different reservoirs. The aim is to derive

rigorous and exact properties of the so-called non-equilibrium steady state (NESS).

This is the stationary measure of such a system, which, although stationary, is non-

equilibrium because of the non-equilibrium constraints imposed by the reservoirs. In

other words, the stationary measure will be non-reversible, and the system will have a

strictly positive stationary entropy production. Typically the non-reversible character

is clearly visible in the presence of a stationary current.

The nature of NESS is quite different from that of an equilibrium measure. E.g.

quite generically long-range correlations are expected (see [4],[7]), whereas in equi-

librium systems, they usually appear only at the critical point. These long-range
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correlations are also manifest in the large deviations from the NESS temperature or

density profile. Generically, the associated free energy is a non-local function [4]. From

a macroscopic point of view, i.e., starting from the hydrodynamic limit and associated

large deviations, Bertini, Jona-Lasinio, Landim et al [1, 2, 3, 4] developed a quite

general theory predicting the non-equilibrium density or temperature profile, as well

as large deviations, i.e., the leading order of the exponentially small probability of

deviations from this profile.

Our aim is to study models where in the NESS the profile can be computed exactly,

as well as correlation functions, such as the two-point function. The obtained expres-

sions can then be used to test general non-equilibrium theories, such as the formalism

developed in [1], or the theory of McLennan ensembles [18]. The models studied in this

thesis belong to the class of interacting particle systems, or systems of interacting dif-

fusions. Interacting particle systems (IPS) are systems of particles moving on a lattice

and interacting with each other according to stochastic rules. Their study started in

the early seventies in papers by Spitzer [25] and Dobrushin [5]. A standard reference is

Liggett [15]. A famous and thoroughly studied example of IPS is the exclusion process

(EP) where particles move on a lattice according to independent random walks with

the additional constraint that each lattice site is occupied by at most one particle.

Interacting diffusion models come up naturally if one wants to model heat conduction,

or energy transport.

The basic technical tool developed to study the models in this thesis is duality.

Via duality, we connect models of interacting diffusions to simpler interacting particle

systems, both in equilibrium and non-equilibrium setting. Because duality is such a

powerful method, part of the thesis is also devoted to develop a general formalism that

can be used to produce dual processes and associated duality functions or self-duality

functions. In the following we give an overview of the results and models introduced

and studied in this thesis. In the first section we define and shortly review the Brownian

Momentum Process (aka BMP) and its dual, the Symmetric Inclusion Process (aka SIP,

which is a new interacting particle system). Although we also consider several other

models in detail in later chapters and give many statements and theorems that are

equally applicable to a wider class of models, these two models and their generalizations

are an essential starting point in our work and are used extensively as illustrating

examples. After that we give a review of the chapters in the thesis in a way to

emphasize the link between the different chapters rather than the details. Finally we
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0 Introduction

give some future research directions.

0.1 BMP and its relation with SIP

Heat conduction is an example of a non-equilibrium phenomenon closely related to

mass transport. In a given microscopic model, it is of interest to know the temperature

profile in the non-equilibrium steady state (NESS) for specific boundary conditions.

One aim is to derive the Fourier’s law from the microscopic model. Fourier’s law is

a macroscopic phenomenological law which tells that the heat current is proportional

to the temperature difference across the boundaries and the proportionality constant

is independent of the temperature. Besides showing the Fourier’s law one wants to

understand better the correlation structure of the microscopic degrees of freedom in

the NESS. It is expected that non-equilibrium systems exhibit generically long range

correlations in the steady state, related to the inverse of the Laplacian (Dirichlet

Green’s function), see [4], [7] and [17]. Therefore it is important to have microscopic

models where the two-point function and possibly higher order correlation functions

can be computed explicitly.

The Brownian Momentum Process (aka BMP) is a model of heat conduction with

stochastic diffusion of energy analyzed in [8]. To each site i of a lattice we associate a

continuous degree of freedom xi which has to be thought of as momentum. Between

every two adjacent sites (i, i + 1) and for every small time interval there is a random

exchange of momentum that leaves the total energy of the two sites {x2i + x2i+1}
invariant.

More precisely, the model is defined as a Markov diffusion process on the configura-

tion space of N -dimensional vectors (x1, . . . , xN ) ∈ R
N , interpreted as the momenta

associated to the lattice sites {1, . . . , N}. The boundary sites 1 and N are in contact

with heat baths at temperatures TL and TR respectively.

The generator of BMP working on the core of smooth functions is:

L = B1 +BN +

N−1
∑

i=1

Li,i+1. (0.1.1)

Here

Li,j = (xi∂j − xj∂i)
2
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0.2 Duality

represents the exchange of momentum in the bulk part of the system. The operators

B1 and BN are the generator of the Ornstein-Uhlenbeck processes representing the

coupling to the heat baths at temperatures TL and TR and are given by

B1 = TL∂
2
1 − x1∂1

BN = TR∂
2
N − xN∂N .

One way to intuitively understand the effect of the bulk part of the generator is to

consider the operator

A =

(

x
∂

∂y
− y

∂

∂x

)2

(0.1.2)

In the polar coordinates where x = r cos θ and y = r sin θ, this operator reduces to

A =
∂2

∂θ2

which is the generator of a Brownian process for the variable θ. This means that in

the process (x(t), y(t)) with generator (0.1.2) we will have r(t) = r(0) unchanged and

θ(t) will be a Brownian motion on the interval [0, 2π]. This provides for the mixing of

the values of the (x(t), y(t)) while the value of r(t)2 (total energy) remains preserved,

thus providing an energy-conserving mechanism for the transport of momentum in the

model.

This diffusive exchange of momentum between adjacent sites is different from the

energy transport mechanism in the well known KMP model [6]. The later is a model of

energy transport where energy is exchanged randomly at discrete random times. The

two models are however closely related. One can obtain KMP via the ‘instantaneous

thermalization’ limit [9] of the Brownian Energy Process which is directly related to

BMP ( see chapter 1 for more details).

0.2 Duality

Duality is a powerful tool in the study of Markov processes. It has played a funda-

mental role in the study of interacting particle systems and in models of population

dynamics [19]. For example in the context of the Symmetric Exclusion Process (aka
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0 Introduction

SEP) it has been the crucial tool in order to obtain the complete ergodic theory of

this process (see [15], chapters 2 and 8).

Two Markov processes {xt : t ≥ 0} and {ξt : t ≥ 0} with state spaces Ω, resp. Ω′

and with generators L, resp. L are called dual to each other if there exist a duality

function D : Ω′ × Ω → R such that

LD(ξ, ~x) = LD(ξ, ~x) (0.2.1)

where in the lhs of (0.2.1) the operator L is working on the ~x variable, and in the rhs

the operator L is working on the ξ variable (here we implicitly assume that D(ξ, .)

is in the domain of L and D(., ~x) is in domain of L ). This relation then lifts to the

semigroups (which arise by exponentiation of the generator) and to the processes. This

then yields the duality relation between the processes:

E~x[D(ξ, ~x(t))] = Êξ[D(ξ(t), ~x)]. (0.2.2)

This relation is useful in the case that the {xt : t ≥ 0} is ‘complicated’ and the

{ξt : t ≥ 0} is ‘easy’ and the set of dual functions is sufficiently rich. For instance one

can think of ξ being discrete objects indexing polynomials in ~x.

In case that Ω = R
N , if the equations for the evolution of correlation functions of

degree n for the x process are closed (i.e. there is no polynomial of higher order than

n involved), that can be a hint to the existence of the duality property where the dual

process will then be a particle system where the number of particles is not increasing.

0.3 Duality between BMP and SIP

In the study of BMP, a crucial ingredient is that it is dual to a discrete particle system

with absorbing left and right boundaries. The configuration space of this particle

system is Ω = N
N+2. We interpret ξ ∈ Ω = N

N+2 as prescribing the number of

particles in each lattice site i ∈ {0, . . . , N + 1}.
The dual process is as follows. A configuration ξ = (ξ0, . . . , ξN+1) represents K

particles (or walkers) on {0, 1, . . . , N + 1} with K =
∑N+1

i=0 ξi. The walkers can only

jump to neighboring sites and are stuck when arriving to sites 0 or N + 1. The

rate at which there is a jump of a walker depends on how many walkers there are at

neighboring sites. If we have ξi walkers at site i, ξi−1 walkers at site i − 1 and ξi+1

12



0.4 Duality and symmetry

walkers at site i + 1 (for i = 2, . . .N − 1) then each of the walkers at site i jumps to

site i− 1 at rate 2(2ξi−1 + 1) and to site i+ 1 at rate 2(2ξi+1 + 1).

The duality function relating BMP to this dual particle system is a polynomial

indexed by the particle configuration ξ = (ξ0, . . . , ξN+1), ξi ∈ N explicitly given by

D(ξ, ~x) = T ξ0
L T

ξN+1

R

N
∏

i=1

x2ξi

(2ξi − 1)!!
(0.3.1)

where k!! =
∏k

j=1(2j − 1). Due to the symmetry of the generator only even powers of

xi need to be considered here.

In the dual process particles tend to jump with higher rates to the neighbors which

contain more particles. This causes an attractive interaction between the particles,

hence we choose the name Symmetric Inclusion Process (aka SIP) for this process.

This has to be seen in contrast to the repulsive interaction in the exclusion process

(SEP) where there is at most one particle per site..

At the boundaries each of the ξ1 walkers at site 1 is absorbed at site 0 at rate 2 and

it jumps to site 2 at rate 2(2ξ2+1); each of the ξN walkers at site N is absorbed at site

N + 1 at rate 2 and it jumps to site N − 1 at rate 2(2ξN−1 + 1). So particles that are

absorbed at the 0 and N + 1 boundary sites do not interact with each other and with

other particles. An important property of this process is that it conserves the total

number of particles and that starting from any initial configuration, all of the particles

will be ultimately absorbed at either one of the boundaries. Duality between BMP and

SIP has been used to obtain the temperature profile, exact expressions for the two-

point correlation functions, proofs that the equilibrium (TL = TR) is Gaussian and of

the existence of a unique stationary measure in the non-equilibrium case (TL 6= TR)

[8].

0.4 Duality and symmetry

If two Markov process are dual to each other, then the probabilistic properties of

one can be obtained through the study of the other, given that the duality functions

constitute a sufficiently rich (e.g. measure determining) class. This is specially useful

if one of the processes is easier to study than the other.

Duality has been used in the probabilistic literature and particularly in interacting

particle systems since Spitzer [25] used it to study symmetric exclusion process (SEP)
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0 Introduction

and independent random walkers. Ligget [15] used duality systematically for studying

the ergodic properties of spin systems, the SEP and the voter model. Duality has

also been useful in the context of transport models and non-equilibrium statistical

mechanics. For instance, Spohn used duality in the study of SEP in contact with

particle reservoirs at different chemical potentials [26], showing the existence of long-

range correlations. Further applications of duality are in models of energy transport

like the Kipnis-Marchioro-Presutti (KMP) model [14] for heat conduction and also

for other models like BMP and BEP [8]. Duality has also been used in the study of

biological population models, see for example [19].

However, in general there has been no systematic way to show that there is a duality

between two Markov processes, neither a method to construct a (new) dual process for

a given Markov process. Duality between two Markov processes is usually obtained in

an ad-hoc manner, i.e. by an explicit ansatz for a duality function.

We consider two different cases of duality. The duality between two different Markov

processes as introduced before, but also the duality of a Markov process with itself,

called self-duality. The use of self-duality comes from the fact that the dual process

(which is just a copy of of the original process) is often running on a smaller portion of

the state space than the original process, which means that probabilistic properties of

a larger system can be obtained via study of a smaller system. This is most manifest

in the case that the original state space is infinite and the dual state space is finite,

which allows to fully understand the behavior of a system of possibly infinitely many

particles in terms of the behavior of the same system with only finitely many particles.

In chapter one we show that self-duality is directly related to the non-abelian symme-

tries of the generator of the Markov process (we say that an operator S is a symmetry

of the generator L if they commute S.L = L.S). In fact for every symmetry of the

generator there is a duality function associated and for every duality function there is a

corresponding symmetry of the generator. In the case of duality between two different

Markov processes, duality requires a conjugacy relation between the two corresponding

generators. So duality between two different processes can be viewed as a change of

representation of the generator.

One way to think about duality and symmetry is to think of a generator L as being

composed of ‘abstract operators’ (like for example creation and annihilation operators)

which generate an algebra with specific commutation relations. Then for every different

representation of this algebra we can obtain different time evolutions, not necessarily

14



0.5 SIP and its comparison to SEP; correlation inequalities

Markov processes, which are dual to each other.

So it turns out that duality is directly related to different representations of an

algebra. Notice however that such a change of representation of the algebra does not

necessarily transform the generator to a new Markov generator. In the case of finite

state spaces, one can already see that a change of basis does not necessarily preserve

the fact that off-diagonal elements are non-negative which is a necessary property of a

Markov generator. Only when after a change of representation the Markov generator is

transformed into a Markov generator, we are in the situation of two Markov processes

related by duality.

Sandow and Schutz [23] were the first to notice the relation between SU(2) sym-

metry of the SEP and its self-duality, by rewriting its generator in terms of quantum

spin operators. In chapter one we show in much greater generality the relation be-

tween self-dualities and symmetries and give several new examples. For interacting

particle systems used as transport models such as BMP we show how to modify the

duality functions in order to include the effect of the reservoirs at the boundaries. For

energy transport models we uncover a hidden SU(1, 1) symmetry in a large class of

models (including BMP, KMP model) which explains their duality property, as the

SU(2) does for the SEP process. We also show the SU(1, 1) symmetry of SIP and the

corresponding self-duality.

0.5 SIP and its comparison to SEP; correlation

inequalities

Particles in the SIP perform two distinct motions. In addition to a symmetric and inde-

pendent random walk, they jump to neighboring sites with a rate which is proportional

to the number of particles at that site (inclusion jumps, or jumps by ‘invitation’). The

jump rate for a particle from site i to i+ 1 is 2ξi(1 + 2ξi+1) which can be interpreted

as follows. Every particle at site i performs a random walk jump to site i+ 1 at rate

2 and additionally every particle at site i+ 1 invites every particle at i at rate 4 (the

inclusion jumps from i to i+ 1).

These inclusion moves result in a net attractive interaction between particles. This

has to be compared to SEP where particles tend to effectively repel each other (by

not being allowed to be at the same site) in addition to their symmetric random walk.
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In physical terminology, one can therefore think of SIP as the bosonic counterpart of

the fermionic SEP. Intuitively, particles in SIP starting from any configuration tend to

gather and to be less spread out than independent symmetric random walks starting

from the same configuration. Comparison inequalities (as introduced in Liggett [15]

for SEP versus independent random walks) are a rigorous way of describing this idea.

In chapter 2 we analyze SIP in detail and prove the analogue of Liggets comparison

inequality for it. From the comparison inequality, we deduce a series of correlation

inequalities. As expected intuitively, the correlations turn from negative in SEP to

positive in SIP. This is from another point of view quite remarkable because since the

SIP is not a monotone process and positive correlations are in no way related to a FKG

property, such as in the case of ferromagnetic Glauber dynamics. Since the SIP is dual

to the heat conduction model it is immediate to extend those correlation inequalities to

the Brownian momentum process and the Brownian energy process. We also consider

the more general non-equilibrium case in which the system is in contact with boundary

particle reservoirs where we use the self-duality property of SIP to obtain a correlation

inequality.

0.6 Condensation in SIP and other models

Condensation phenomena in particle systems can be described as follows; in a given

finite system we take the limit as the number of particles goes to infinity, if in the

steady state almost all of the particles get concentrated on a finite number of sites ,

i.e. if all sites have a finite number of particles except a few (these few turn out to be

the site(s) where the marginal of the reversible measure has the heaviest tail) , then

the system exhibits condensation.

The attractive interaction between the particles in the SIP makes it a natural candi-

date to study for condensation phenomena. Condensation can arise due to the presence

of sub-exponential tails resulting from a strong particle attraction, as has been shown

in detail in the context of zero-range processes [12] .

In chapter 3 we show that SIP exhibits exponential tails, and thus the attraction

between particles alone is not strong enough and a second contributing factor is re-

quired for condensation. One such factor can be spatial inhomogeneities (or also an

asymmetry in a finite or semi-infinite system). Another possibility for condensation in

SIP is to introduce a parameterm defined as the rate of random walks jumps while the
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rates of inclusion jumps are kept unchanged. Thus for example setting m = 0 would

result in a pure inclusion process. We show that in the limit as m → 0, SIP exhibits

condensation. We also show parallel condensation phenomena in the Brownian En-

ergy Process (derived from BMP and thus related to SIP), which gives an interesting

example of condensation for continuous variables.

0.7 Weak coupling to the heat bath of BMP

In chapter 4 we study the BMP in close-to-equilibrium conditions. One way of achiev-

ing such conditions is to make the system in contact with two heat baths at the

boundaries such that the temperatures of the two baths are different but very close.

In this case we show that the distance between the local equilibrium measure and the

true non- equilibrium steady state is of order at most the square of the temperature

difference between the two baths, which is in agreement with the theory of McLennan

ensembles [16].

An alternative way to achieve close to equilibrium conditions is to fix the temper-

atures of the two heat baths to arbitrary non-equal temperatures but modify and

weaken the coupling of the bulk system to the heat bath with a parameter λ. We

then study the behavior of the non-equilibrium steady state measure for small values

of coupling constant λ. In particular we show which equilibrium measure is selected

as λ→ 0.

For both cases the temperature profile turn out to be linear in the bulk system. We

also give exact computations for the two-point correlation functions for some small

finite size systems and discuss their generic form and we show that they are generally

not multi-linear.

0.8 (Self)-dualities with SU(3)/SU(n) symmetry; future

plans

An interesting future line of research is to find new particle systems or Markov pro-

cesses that exhibit new kinds of symmetries and corresponding (self-)duality proper-

ties. Natural examples are symmetric exclusion type processes with several types of

particles. In the case of two type of particles its natural to expect SU(3) symmetry
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for appropriate choices of jump rates. More generally if one considers n − 1 types of

particles we expect having SU(n) symmetries.

It is an interesting problem to find the necessary and sufficient conditions on the

rates and allowed transitions in a specific process such that it will have a particular

symmetry and be thus an ‘exactly solvable’ model.

In search for new processes and their corresponding dualities, the the idea of the

abstract generator we discussed earlier will be useful. One can start from an abstract

generator of a Markov process that is composed of operators that obey a particular al-

gebra. Different representations of the operators in the algebra will then yield different

process interrelated via duality.

Moreover, as is the case for symmetric exclusion process, one can hope that appro-

priate asymmetric modifications of such processes are associated to the deformations

of the corresponding algebras, as has been established in the case of the asymmetric

exclusion process, [24] and [13].
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1 Duality and hidden symmetries in interacting particle systems

1.0 Abstract

In the context of Markov processes, both in discrete and continuous setting, we show

a general relation between duality functions and symmetries of the generator. If the

generator can be written in the form of a Hamiltonian of a quantum spin system, then

the “hidden” symmetries are easily derived. We illustrate our approach in processes of

symmetric exclusion type, in which the symmetry is of SU(2) type, as well as for the

Kipnis-Marchioro-Presutti (KMP) model for which we unveil its SU(1, 1) symmetry.

The KMP model is in turn an instantaneous thermalization limit of the energy process

associated to a large family of models of interacting diffusions, which we call Brownian

energy process (BEP) and which all possess the SU(1, 1) symmetry. We treat in detail

the case where the system is in contact with reservoirs and the dual process becomes

absorbing.

1.1 Introduction

Duality is a technique developed in the probabilistic literature that allows to obtain

elegant and general solutions of some problems in interacting particle systems. One

transforms the evaluation of a correlation function in the original model to a simpler

quantity in the dual one.

The basic idea of duality in interacting particle systems goes back to Spitzer [11] who

introduced it for symmetric exclusion process (SEP) and independent random walkers

to characterize the stationary distribution. Later, Ligget [8] systematically introduced

duality for spin systems and used it, among others, for the complete characteriza-

tion of ergodic properties of SEP, voter model, etc. Duality property might also be

useful in the context of transport models and non-equilibrium statistical mechanics,

that is when the bulk particle systems is in contact at its boundaries with reservoirs

working at different values of their parameters. For instance, considering again the

symmetric exclusion process in contact with particle reservoirs at different chemical

potentials, Spohn used duality to compute the 2-point correlation function [12], show-

ing the existence of long-range correlations in non-equilibrium systems. In the case

of energy transport, i.e. interacting particle systems with a continuous dynamical

variable (the energy) connected at their boundaries to thermal reservoirs working at

different temperatures, duality has been constructed for the Kipnis-Marchioro-Presutti
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1.1 Introduction

(KMP) model [7] for heat conduction and also for other models [6]. Consequences of

duality include the possibility to express the n-point energy correlation functions in

terms of n (interacting) random walkers. Duality has also been used in the study of

biological population models, see [9] and references therein.

One should notice that the construction of a dual process is usually performed with

an ad-hoc procedure which requires the ansatz of a proper duality function on which

the duality property can be established. The closure of n-point correlations functions

at each order might be an indication that a dual process exists. However in the

general case the closure property is neither sufficient nor necessary to construct the

dual process. In this paper we present a general procedure to derive a duality function

and a dual process from the symmetries of the original process. When applied to

transport models, our theorems allow to identify the source of the existence of a dual

process with the non-abelian symmetries of the evolution operator. The idea is simple:

transport models have in the bulk a symmetry associated with a conserved quantity,

the one that is transported. It may happen in some cases that this symmetry is a

subgroup of a larger group, i.e. that extra (less obvious) symmetry are present. In

that case, one can describe the same physical situation as the transport of another

quantity (another element of the group), and in some cases this makes the problem

simpler. In the physics literature Sandow and Schutz [10] realized that this is case for

the SEP process, whose SU(2) symmetry they made explicit by writing the evolution

operator in quantum spin notation. In this paper we study in full generality the relation

between duality and symmetries. We give a general scheme for constructing duality for

continuous time Markov processes whose generator has a symmetry. For interacting

particle systems used as transport models we detail the effect of the reservoirs. For

particle transport models we generalize the symmetric exclusion process to a situation

where each site can accommodate up to 2j particles, with j ∈ N/2. For energy

transport models we uncover a hidden SU(1, 1) symmetry in a large class of models

for energy transport (including KMP model) which explains their duality property, as

the SU(2) does for the SEP process.
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1 Duality and hidden symmetries in interacting particle systems

1.2 Definitions and Results

1.2.1 Generalities

Let (ηt)t≥0 denote a Markov process on a state space Ω. Elements of the state space

are denoted by η, ξ, ζ,.. The probability measure on path space starting from η is called

Pη, and Eη denotes expectation with respect to Pη. In the whole of this paper, we will

restrict to Feller processes. In that case, to the process (ηt)t≥0 there corresponds a

strongly continuous, positivity-preserving, contraction semigroup At : C (Ω) → C (Ω)

with domain the set C (Ω) of continuous functions f : Ω → R

Atf(η) := Eηf(ηt) = E(f(ηt)|η0 = η) =

∫

f(η′)pt(η, dη
′) (1.2.1)

where pt(η, dη
′) is the transition kernel of the process. The infinitesimal generator of

the semigroup is denoted by L,

Lf = lim
t→0

Atf − f

t

and is defined on its natural domain, i.e. the set of functions f : Ω → R for which the

limit in the r.h.s. exists in the uniform metric. We also consider the adjoint of the

semigroup, with domain M (Ω) the set of signed finite Borel measures, A∗
t : M (Ω) →

M (Ω), defined by

< f,A∗
tµ > = < Atf, µ >

where the pairing < ·, · >: C (Ω)× M (Ω) → R is given by

< f, µ >=

∫

fdµ

The processes which appear in our applications will always be either jump process or

diffusions.

Example 1.2.1. In the case that the Markov process (ηt)t≥0 is a pure jump process

and the state space Ω is finite or countable then the generator is of the form

Lf(η) =
∑

η′∈Ω

c(η, η′)(f(η′)− f(η))

where c(η, η′) ≥ 0 is the rate for a transition from configuration η to configuration η′.

Equivalently we can write

Lf(η) =
∑

η′∈Ω

L(η, η′)f(η′)
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where L(η, η′) is a matrix having positive off-diagonal elements and rows sum equal to

zero, namely

L(η, η′) =

{

c(η, η′) if η 6= η′

−∑η′′ 6=η c(η, η
′′) if η = η′

In the context of a countable state space Ω we have the usual exponential of a matrix,

so that

At = etL =
∞
∑

i=0

(tL)i/i!

and A∗
t = AT

t where the superscript T denotes transposition.

Example 1.2.2. General diffusion processes with state space Ω = R
N are also con-

sidered here. In this case the generator take the form of a differential operator of the

second order

Lf =

N
∑

i,j=1

a(xi, xj)
∂2f

∂xi∂xj
+

N
∑

i=1

b(xi)
∂f

∂xi

(see [13] for general conditions which guarantees that L satisfy the maximum principle

and thus generate a positivity preserving semigroup).

1.2.2 Duality and Self-duality

Definition 1.2.3 (self-duality). Consider two independent copies (ηt)t≥0 and (ξt)t≥0

of a continuous time Markov processes on a state space Ω. We say that the process is

self-dual with self-duality function D : Ω× Ω → R if for all (η, ξ) ∈ Ω× Ω, we have

EηD(ηt, ξ) = EξD(η, ξt) (1.2.2)

Definition 1.2.4 (duality). Consider two continuous time Markov processes: (ηt)t≥0

on a state space Ω and (ξt)t≥0 on a state space Ωdual. We say that (ξt)t≥0 is the dual

of (ηt)t≥0 with duality function D : Ω×Ωdual → R if for all η ∈ Ω, ξ ∈ Ωdual we have

EηD(ηt, ξ) = E
dual
ξ D(η, ξt) (1.2.3)

If At denotes the semigroup of the original process (ηt)t≥0 and Adual
t denotes the

semigroup of the related dual process (ξt)t≥0 then, using Eq. (1.2.1), the definition

1.2.4 is equivalent to

AtD(η, ξ) = Adual
t D(η, ξ) (1.2.4)
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where it is understood that on the l.h.s. of (1.2.4) the operator At works on the η

variable, while on the r.h.s. the operatorAdual
t works on the ξ variable.

If the original process (ηt)t≥0 and the dual process (ξt)t≥0 are Markov processes with

finite or countably infinite state space Ω, resp. Ωdual, (cfr. Example 1.2.1) property

(1.2.4) is equivalent with its “infinitesimal version” in terms of the generators

∑

η′∈Ω

L(η, η′)D(η′, ξ) =
∑

ξ′∈Ω

Ldual(ξ, ξ
′)D(η, ξ′) (1.2.5)

In matrix notation, this reads

LD = DLT
dual (1.2.6)

where D is the matrix with elements D(η, ξ) and (η, ξ) ∈ Ω× Ωdual. Remark that in

this case D is not necessarily a square matrix, because the state spaces Ω and Ωdual

are not necessarily equal and or of equal cardinality.

When Ω = Ωdual and At = Adual
t , then an equivalent condition for self-duality (cfr.

(1.2.2)) is

LD = DLT (1.2.7)

1.2.3 Duality and Symmetries

We first discuss self-duality and then duality. We consider the simple context of

finite or countably infinite state space Markov processes. In many cases of interacting

particle systems, the generator is a sum of operators working only on a finite set of

coordinates of the configuration. Therefore, showing (self)-duality reduces to showing

(self)-duality for the individual terms appearing in this sum, which is a finite state

space situation.

Definition 1.2.5. Let A and B be two matrices having the same dimension. We say

that A is a symmetry of B if A commutes with B, i.e.

AB = BA (1.2.8)

The first theorem shows that self-duality functions and symmetries are in one-to-one

correspondence, provided L and LT are similar matrices, which is automatically the

case in the finite state space context.
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Theorem 1.2.6. Let L be the generator of a finite or countable state space Markov

process. Let Q be a matrix such that

LT = QLQ−1 . (1.2.9)

Then we have

1. If S is a symmetry of the generator, then SQ−1 is a self-duality function.

2. If D is a self-duality function, then DQ is a symmetry of the generator.

3. If S is a symmetry of LT , then Q−1S is a self-duality function

4. If D is a self-duality function, then QD commutes with LT .

PROOF. The proof is elementary. We show items 1 and 2 (item 3 and 4 are obtained

in a similar manner). Combining (1.2.9) with (1.2.8), we find

L(SQ−1) = (SQ−1)LT (1.2.10)

i.e., D = SQ−1 is a self-duality function (see Eq. (1.2.7)). Conversely, if D is a self-

duality function, then combining (1.2.9) with (1.2.7) one proves (1.2.8) for S = DQ.

Remark 1.2.7. Self-duality functions are not unique, i.e. there might exist several

self-duality functions for a process. This is evident from the fact that if D is a duality

function for self-duality, and S is a symmetry, then SD is also a duality function

for self-duality. An interesting question is to study the vector space of self-duality

functions, its dimension, etc. However this question is not addressed in this paper.

See [9] for a discussion of this issue and some examples in the context of Markov

processes with discrete state space.

Remark 1.2.8. In the finite state space context, L and LT are always similar matrices

[14], i.e., there exists a conjugation matrix Q such that LT = QLQ−1. In interacting

particle system the matrix Q can usually be easily constructed. As an example, in the

case that L has a reversible measure, i.e., a probability measure µ on Ω such that

µ(η)L(η, η′) = µ(η′)L(η′, η) (1.2.11)

for all η, η′ ∈ Ω, then a diagonal conjugation matrix Q is given by

Q(η, η′) = µ(η)δη,η′ (1.2.12)
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In general, if µ is a stationary measure then

Lrev(η, ξ) :=
L(ξ, η)µ(η)

µ(ξ)

is the generator of the time-reversed process, which is clearly similar to LT . Therefore,

the similarity of L and LT is equivalent with the similarity of the generator and the

time-reversed generator.

Self-duality is a particular case of duality. To generalize Theorem 1.2.6 to the context

of (general) duality we need the notion of conjugation between two matrices.

Definition 1.2.9. Let A be a matrix of dimension m ×m and let B be a matrix of

dimension n×n. A and B are called conjugate if there exist matrices C of dimension

m× n and C̃ of dimension n×m such that

AC = CB, C̃A = BC̃ (1.2.13)

We then have the following analogue of Theorem 1.2.6.

Theorem 1.2.10. Let L and Ldual be generators of finite or countable state space

Markov chains. Then we have the following.

1. If Q is the matrix that gives the similarity

LT
dual = QLdualQ

−1 (1.2.14)

and C and C̃ are the matrices giving the conjugacy between L and Ldual in the

sense of definition 1.2.9, then:

a) For any symmetry S of the generator L, D = SCQ−1 is a duality function.

b) If D is a duality function, then S = DQC̃ is a symmetry of L.

2. If Q is the matrix that gives the similarity

LT = QLQ−1 (1.2.15)

and C and C̃ are the matrices giving the conjugacy between LT and LT
dual in the

sense of definition 1.2.9, then:

a) For any symmetry S of the transposed generator LT , Q−1SC is a duality

function.

28



1.3 Examples with two sites

b) If D is a duality function, then QDC̃ commutes with LT .

PROOF. The proof of item 1(a) is given by the following series of equalities

L(SCQ−1) = SLCQ−1 = SCLdualQ
−1 = (SCQ−1)LT

dual (1.2.16)

The first equality uses the hypothesis of S being a symmetry of the generator L, the

second comes from the conjugation of the generators, the third is obtained from the

similarity transformation (1.2.14). If one recall (1.2.6) then Eq.(1.2.16) shows that

D = SCQ−1 is a duality function. The proof of the other items follow from a similar

argument.

1.3 Examples with two sites

In this section we present a series of examples where particles jump on two lattice sites.

We wish to show how (self)-duality can be established by making use of the previous

theorems. To identify the symmetries we will rewrite the stochastic generator, or its

adjoint, in terms of generators of some symmetry group. Some of the examples will be

useful later for the study of transport models. In fact, many transport models such as

the exclusion process have a generator that is written as the sum of operators working

on two sites.

1.3.1 Self-duality for symmetric exclusion

We first recover the classical self-duality for symmetric exclusion [8]. One has two sites

(labeled 1, 2) and configurations have at most one particle at each site. Particles hop

at rate one from one site to another, and jumps leading to more than one particle at a

site are suppressed. As usual we write 0, 1 for absence resp. presence of particle. The

state space is then Ω = {00, 01, 10, 11}. Elements in the state space are denoted as

η = (η1η2). The matrix elements of the generator are given by L01,10 = L10,01 = 1 =

−L01,01 = −L10,10, and all other elements are zero.

To apply Theorem 1.2.6 we need to identify a symmetry S of the generator. The

transposed of the generator can be written as

LT = J+
1 ⊗ J−

2 + J−
1 ⊗ J+

2 + 2J0
1 ⊗ J0

2 − 1

2
11 ⊗ 12 (1.3.1)
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where the operators Ja
i with i ∈ {1, 2} and a ∈ {+,−, 0} act on a 2-dimensional

Hilbert space, with basis |0〉 =
(

1
0

)

, |1〉 =
(

0
1

)

, as

J+
i =

(

0 0

1 0

)

J−
i =

(

0 1

0 0

)

J0
i =

(

−1/2 0

0 1/2

)

(1.3.2)

and 1i is the identity matrix. The operators Ja
i with a ∈ {+,−, 0} satisfy the SU(2)

commutation relations:

[J0
i , J

±
i ] = J±

i

[J−
i , J

+
i ] = −2J0

i (1.3.3)

from which we deduce (cfr (1.3.1)) that LT commutes with the three generators of

the SU(2) group, Ja = Ja
1 ⊗ 12 + 11 ⊗ Ja

2 for a ∈ {+,−, 0}. A possible choice for

the symmetry of LT is then obtained by considering the creation operator J+ and

exponentiating in order to have a factorized form

S = eJ
+

= eJ
+
1 ⊗12+11⊗J+

2 = eJ
+
1 ⊗ eJ

+
2 = S1 ⊗ S2

More explicitly, in the basis |0〉 ⊗ |0〉, |0〉 ⊗ |1〉, |1〉 ⊗ |0〉, |1〉 ⊗ |1〉, the matrix S is

S =

(

1 0

1 1

)

⊗
(

1 0

1 1

)

=











1 0 0 0

1 1 0 0

1 0 1 0

1 1 1 1











We also need the similarity transformation between L and LT . The matrix Q, relating

L to its transposed, is the identity since L is symmetric. A duality function for self-

duality is thus given by D = Q−1S = S. Notice that D can also be written as

D(η1η2, ξ1ξ2) =
∏

i∈{1,2}:ξi=1

ηi

which is the usual self-duality function of [8].

1.3.2 Self-duality for 2j-symmetric exclusion

Now we consider two sites with at most 2j particles on each site, with j ∈ N/2. The

state space is Ω = Ω1 × Ω2 where Ωi = {0, 1, . . .2j}. The rates for transitions are
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1.3 Examples with two sites

the following: if there are η1 particles at site 1 and η2 particles at site 2, a particle is

moved from 1 to 2 at rate η1(2j − η2) and from 2 to 1 at rate η2(2j − η1). So in this

case the generator is given by

L(η1η2, η
′
1η

′
2) = η1(2j − η2)δη1−1,η′

1
δη2+1,η′

2
+ η2(2j − η1)δη1+1,η′

1
δη2−1,η′

2

−(η1(2j − η2) + η2(2j − η1))δη1,η′

1
δη2,η′

2

The transposed of this generator can also be expressed as the scalar product between

two spin operators satisfying the SU(2) algebra, namely

LT = J+
1 ⊗ J−

2 + J−
1 ⊗ J+

2 + 2J0
1 ⊗ J0

2 − 2j211 ⊗ 12 (1.3.4)

where the Ja
i , i ∈ {1, 2} and a ∈ {+,−, 0}, act on a (2j+1)-dimensional Hilbert space

with orthonormal basis |0〉, |1〉, . . . |2j〉 as

J+
i |ηi〉 = (2j − ηi)|ηi + 1〉
J−
i |ηi〉 = ηi|ηi − 1〉
J0
i |ηi〉 = (ηi − j)|ηi〉 (1.3.5)

The standard symmetric exclusion process of the previous section is recovered when

j = 1/2. Reasoning as above, a symmetry of the generator is

S = S1 ⊗ S2 = eJ
+
1 ⊗ eJ

+
2

which has matrix elements S(η1η2, ξ1ξ2) = S1(η1, ξ1)S2(η2, ξ2) with

Si(ηi, ξi) = 〈ηi|eJ
+
i |ξi〉 =

(

2j − ηi
ηi − ξi

)

(1.3.6)

where we adopt the convention
(

n
m

)

= 0 for m > n.

To detect the matrix Q giving the similarity transform between L and LT (notice

that L is not symmetric anymore for j 6= 1/2) we make use of remark 1.2.8 and use the

fact that the invariant measures of the 2j-symmetric exclusion process are products of

binomials Bin(2j, ρ), with a free parameter 0 < ρ < 1 (this will be proved in Theorem

1.4.2). Therefore, if we choose ρ = 1/2 then a possible choise is Q = Q1 ⊗Q2 with

Qi(ηi, η
′
i) = δηi,η′

i

(

2j

ηi

)

(1.3.7)
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1 Duality and hidden symmetries in interacting particle systems

Combining (1.3.6) and (1.3.7), Theorem 1.2.6 then implies that a duality function for

self-duality is given by

D = D1 ⊗D2 = Q−1
1 S1 ⊗Q−1

2 S2

with

Di(ηi, ξi) = (Q−1
i Si)(ηi, ξi) =

(

ηi

ξi

)

(

2J
ξi

) (1.3.8)

Later, in Theorem 1.4.2, we will give a probabilistic interpretation of this function.

1.3.3 Self-duality for the dual-BEP

This is a process that can be viewed as a “bosonic” analogue of the SEP (particles

attract each other rather than repel with the exclusion hard core constraint). The

state space is Ω = Ω1 × Ω2 with Ωi = N, i.e. we have two sites each of which can

accommodate an unlimited number of particles. For η1 particles at site 1, η2 particles

at site 2, the rate of putting a particle from 1 to 2 is given by 2η1(2η2+1) and the rate

of moving a particle from 2 to 1 is given by 2η2(2η1 + 1) . We will see later how this

process arises naturally as a dual of the Brownian Energy Process (BEP), see Section

1.5 below.

The matrix of the generator is given by

L(η1η2, η
′
1η

′
2) = 2η1(2η2 + 1)δη′

1,η1−1δη′

2,η2+1 + 2η2(2η1 + 1)δη′

1,η1+1δη′

2,η2−1

−(8η1η2 + 2η1 + 2η2)δη1,η′

1
δη2,η′

2
. (1.3.9)

The transposed of the generator can be written in terms of generators of a SU(1, 1)

algebra as follows. On each site i ∈ {1, 2} we consider operators Ka
i with a ∈ {+,−, 0}

given by

K+
i |ηi〉 = (ηi + 1/2)|ηi + 1〉

K−
i |ηi〉 = ηi|ηi − 1〉
K0

i |ηi〉 = (ηi + 1/4)|ηi〉 (1.3.10)

They satisfy the commutation relations of SU(1, 1):

[K0
i ,K

±
i ] = ±K±

i

[K−
i ,K

+
i ] = 2K0

i (1.3.11)
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1.3 Examples with two sites

The transposed of the generator then reads

LT = 4

(

K+
1 ⊗K−

2 +K−
1 ⊗K+

2 − 2K0
1 ⊗K0

2 +
1

8
11 ⊗ 12

)

(1.3.12)

From the commutation relations, it is easy to see that LT commutes with Ka =

Ka
1 ⊗ 12 + 11 ⊗ Ka

2 , for a ∈ {+,−, 0}. A possible symmetry is then given by the

matrix

S = S1 ⊗ S2 = eK
+
1 ⊗ eK

+
2

which has matrix elements S(η1η2, ξ1ξ2) = S1(η1, ξ1)S2(η2, ξ2) with

Si(ηi, ξi) = 〈ηi|eK
+
1 |ξi〉 =

(2ηi − 1)!!

(2ξi − 1)!!(ηi − ξi)! 2ηi−ξi
(1.3.13)

A similarity transformation LT = Q−1LQ to pass to the transposed is suggested (re-

mark 1.2.8) by the knowledge of the stationary measure of the dual-BEP (see Theorem

1.5.1)

Q(η1η2, η
′
1η

′
2) = Q1(η1, η

′
1)Q2(η2, η

′
2)

with

Qi(ηi, ξi) = δηi,ξi

(

ηi!

(2ηi − 1)!!
2ηi

)−1

(1.3.14)

The self-duality function corresponding to S of (1.3.13) and Q of (1.3.14) then reads

D(η1η2, ξ1ξ2) = D1(η1, ξ1)D2(η2, ξ2)

Di(ηi, ξi) = Q−1(ηi, ηi)Si(ηi, ξi) = 2ξi
ηi!

(ηi − ξi)!(2ξi − 1)!!
(1.3.15)

1.3.4 Self-duality for independent random walkers

This is a classical example which is included here for the sake of completeness. We

have two site 1 and 2, and particles hop independently from 1 to 2 and from 2 to 1 at

rate one. So the rate to put a particle from 1 to 2 in a configuration with η1 particles

at 1 and η2 particles at 2 is simply η1. The generator is given by the matrix

L(η1η2, η
′
1η

′
2) = η2δη1,η′

1−1δη2,η′

2+1 + η1δη1,η′

1+1δη2,η′

2−1 + (−η1 − η2)δη1,η′

1
δη2,η′

2

A self-duality function is D = D1 ⊗D2 with

D(ηi, ξi) =
ηi!

(ηi − ξi)!
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1 Duality and hidden symmetries in interacting particle systems

The invariant measures are product of Poisson distributions and a possible conjugation

is thus given by Q = Q1 ⊗Q2 with

Qi(ηi, ξi) = δηi,ξi

1

ηi!

As a consequence, a symmetry of the generator is given by S = S1 ⊗ S2 with

Si(ηi, ξi) = (DiQi)(ηi, ξi) =
1

(ηi − ξi)!
(1.3.16)

This symmetry comes once more from an underlying structure of creation and annihila-

tion operators satisfying the Heisenberg algebra. Indeed, if one defines for i ∈ {1, 2} op-
erators a+i and a−i which are represented on an Hilbert space with basis |0〉, |1〉, |2〉, . . .
by operators working as

a+i |ηi〉 = |ηi + 1〉
a−i |ηi〉 = ηi|ηi − 1〉 (1.3.17)

then one easily verifies the commutation relation

[a−i , a
+
i ] = 1i .

In terms of these matrices, the transposed of the generator reads

LT = −(a+1 ⊗ 12 − 11 ⊗ a+2 )(a
−
1 ⊗ 12 − 11 ⊗ a−2 ) (1.3.18)

which commutes with a+ = a+1 ⊗ 12 + 11 ⊗ a+2 . The symmetry S in (1.3.16) is then

recognized as S = exp(a+1 )⊗ exp(a+2 ).

1.3.5 Duality between independent random walkers and a

deterministic system

As an example of application of Theorem 1.2.10 we consider again a system of inde-

pendent random walkers jumping between sites 1 and 2. We show that this system is

dual to a deterministic system evolving according to ordinary differential equations.

We consider the “abstract” operator L

L = −(a+1 − a+2 )(a
−
1 − a−2 ) (1.3.19)
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1.3 Examples with two sites

where a+i , a
−
j are operators satisfying the canonical commutation relations

[a−i , a
+
j ] = δi,j1 . (1.3.20)

One way to represent the previous operator is by considering

a−i =
∂

∂xi
, a+i = xi, i ∈ {1, 2}

which obviously satisfy (1.3.20). In this case the operator (1.3.19) takes the form

L = −(x1 − x2)

(

∂

∂x1
− ∂

∂x2

)

which is the generator of the deterministic system of differential equations

dx1(t)

dt
= −(x1(t)− x2(t))

dx2(t)

dt
= (x1(t)− x2(t)) (1.3.21)

with solutions

x1(t) =
x1(0) + x2(0)

2
+
x1(0)− x2(0)

2
e−2t

x2(t) =
x1(0) + x2(0)

2
− x1(0)− x2(0)

2
e−2t (1.3.22)

Another possible way to represent the operator (1.3.19) has just been seen in the pre-

vious paragraph. In this case the creation and annihilation operators are represented

as matrices with elements given by (1.3.17) and then the operator (1.3.19) can be seen

as the transposed of the generator for a system on independent random walkers

LT
dual = −(a+1 ⊗ 12 − 11 ⊗ a+2 ) ◦ (a−1 ⊗ 12 − 11 ⊗ a−2 ) .

It is immediately checked that the function

D(x, ξ) = D(x1, ξ1)D(x2, ξ2)

with

D(xi, ξi) = xξii

gives a conjugation between L and LT
dual, namely

LD(x, ξ) = DLT
dual(x, ξ)
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1 Duality and hidden symmetries in interacting particle systems

In this case, this relation reads more explicitly,

−(x1 − x2)

(

∂

∂x1
− ∂

∂x2

)

(xn1
1 xn2

2 )

= n1x
n1−1
1 xn2+1

2 + n2x
n1+1
1 xn2−1

2 − (n1 + n2)x
n1
1 xn2

2 (1.3.23)

This implies that x(t) and ξ(t) are each other’s dual with duality function D and

the following relation holds

x1(t)
ξ1x2(t)

ξ2 = Eξ1,ξ2(x1(0)
ξ1(t)x2(0)

ξ2(t)) (1.3.24)

where the expectation in the rhs is over the independent random walkers starting from

initial configuration with η1 particles at 1 and η2 particles at 2. We will come back to

this example in section 1.6.4.

Remark 1.3.1. In the last example, we can still use other representations of the

operators a−i , a
+
i , satisfying the commutation relation [a−i , a

+
j ] = δij , such that the

abstract operator (1.3.19) is the generator of a Markovian diffusion process. E.g., if

we choose

a+i = − ∂

∂xi
+ xi

a−i =
∂

∂xi
(1.3.25)

then the abstract operator (1.3.19) reads

L =

(

∂

∂x1
− ∂

∂x2

)2

+ (x1 − x2)

(

∂

∂x1
− ∂

∂x2

)

which is the generator of the (degenerate) diffusion: the “coordinate (x1 − x2)/2 un-

dergoes a Brownian motion and (x1 +x2)/2 remains constant. So in that case we also

have duality

Ex1,x2(D(x1(t), n1)D(x2(t), n2)) = En1,n2(D(x1, n1(t))D(x2, n2(t)))

where D(x, n) can be found by the recursion

D(x, n+ 1) = a+D(x, n)

e.g. the first five polynomials are

D(x, 0) = 1, D(x, 1) = x,D(x, 2) = x2 − 1, D(x, 3) = −3x+ x3, D(x, 4) = 3− 6x2 + x4
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1.4 Symmetric exclusion processes

1.4 Symmetric exclusion processes

In this section we study the 2j-SEP (with j ∈ N/2), i.e. exclusion processes with

at most 2j particles per site, on a graph S. We show how we can understand self-

duality for the 2j-SEP from “classical duality” (in the sense of [8]) of the symmetric

exclusion process on special graphs. We also consider two limits j → ∞ leading to a

deterministic process or a system of independent random walkers. Finally, we consider

the boundary driven case, and show that we have a dual with absorbing boundaries.

1.4.1 Symmetric exclusion on ladder graphs

Consider a countable set S , to be thought of as the underlying lattice, and a finite

set I with cardinality 2j ∈ N. The set I is to be thought of as a “ladder” on each

site with 2j levels.

The state space of SEP on the ladder graph S × I is Ω = {0, 1}S×I . A con-

figuration ζ ∈ Ω is called finite if it contains a finite number of particles, i.e., if
∑

i∈S ,α∈I
ζ(i, α) <∞. The process is described as follows. Let p(i, l) denote a sym-

metric random walk kernel on S , i.e., p(i, l) = p(l, i) ≥ 0,
∑

l∈S
p(i, l) = 1. At each

site i ∈ S and level α ∈ I , there is at most one particle. Each particle attempts to

jump at rate p(i, l) to a site l ∈ S and level β ∈ I .

More formally, the SEP on a ladder graph S ×I is the process with the following

generator on local functions f : Ω → R

Lf(ζ) =
∑

i,l∈S

∑

α,β∈I

p(i, l)(ζ(i, α)(1 − ζ(l, β))(f(ζ(i,α),(l,β))− f(ζ)) (1.4.1)

where ζ(i,α),(l,β) denotes the configuration obtained from η by removing a particle at

site i level α and placing it at site l level β. Since this process is a symmetric exclusion

process on a special graph, then it is self-dual in the following sense:

Proposition 1.4.1. Define for ζ, ζ̃ ∈ Ω, ζ̃ finite,

D(ζ, ζ̃) =
∏

i,α:ζ̃(i,α)=1

ζ(i, α)

then we have the duality relation from [8]

EζD(ζt, ζ̃) = Eζ̃D(ζ, ζ̃t) (1.4.2)
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1 Duality and hidden symmetries in interacting particle systems

where ζt, ζ̃t are independent copies of the ladder SEP with generator (1.4.1) starting

from ζ, resp. ζ̃.

1.4.2 From the ladder SEP to the 2j-SEP

To define the 2j-SEP on a graph S we consider, for a given SEP on a ladder graph

S ×I with 2j levels, the process which consists of giving at time t > 0, and each site

i ∈ S the number of levels (i, α) which are occupied in ζt. More precisely, define the

map π : Ω → Ω(j) = {0, 1, . . . , 2j}S

ζ 7→ π(ζ) = η with ηi =
∑

α∈I

ζ(i, α) (1.4.3)

Then we have the following theorem.

Theorem 1.4.2. Let ζt be the ladder SEP with generator (1.4.1). Then the following

holds:

a) ηt = π(ζt) is a Markov process on Ω(j) with generator

L(j)f(η) =
∑

i,l∈S

p(i, l)ηi(2j − ηl)(f(η
i,l)− f(η)) (1.4.4)

This process will be called the 2j-SEP or reduced ladder SEP with 2j levels.

b) The process ηt with generator L(j) is self-dual with duality function

D(η, ξ) =
∏

i∈S

(

ηi

ξi

)

(

2j
ξi

) (1.4.5)

for ξ ≤ η a configuration with a finite number of particles (D is defined to be

zero in other cases). More precisely, we have

EηD(ηt, ξ) = EξD(η, ξt) (1.4.6)

c) The extremal invariant measures are of the form

ν(j)ρ = ⊗i∈SBin(2j, ρi)

where ρi is harmonic for p(i, l), i.e., such that
∑

l

p(i, l)ρl = ρi

In particular, if the only bounded harmonic functions are constants, then the only

extremal invariant measures are products of binomials with constant density.
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1.4 Symmetric exclusion processes

PROOF. For point (a) remark that the jump rates in the generator (1.4.4) only depend

on the number of particles at a site, and not on the levels. Therefore, if f : Ω → R

depends on ζ only through η = π(ζ), i.e., if f(ζ) = ψ(π(ζ)) = ψ(η), then

Lf(ζ) = L(j)ψ(η) (1.4.7)

Therefore, for every local function ψ : Ω(j) → R,

ψ(π(ζt))− ψ(π(ζ0))−
∫ t

0

L(j)(ψ)(π(ζs))ds =Mt (1.4.8)

is a martingale w.r.t. the filtration Ft = σ{π(ζ)s : 0 ≤ s ≤ t}. This shows that π(ζt)

is a solution of the martingale problem associated to the generator L(j), and hence

coincides with the unique Markov process generated by L(j) (see Th. 4.1, page 182, of

[4]).

Now we turn to point (b). At each site i ∈ S we choose ξi levels at random. For a

given configuration η ∈ Ωj , we choose ζ ∈ Ω consistent, i.e., such that π(ζ) = η. Then

the probability (w.r.t. to the random choices) that all chosen levels are occupied in ζ

is exactly equal to D(η, ξ). As π(ζt) = ηt, the probability that the chosen levels are

occupied at time t (i.e., in ζt) is given by EηD(ηt, ξ). By self-duality of the ladder SEP

(Prop. 1.4.1), the event that at time t > 0 the chosen levels are occupied is the same

as the probability that the particles evolving from the chosen levels during a time t

find themselves at positions which are occupied in ζ. The latter probability equals

EξD(ξt, η).

Point c) follows from the fact that for the ladder SEP with generator (1.4.1), the

product Bernoulli measures indexed by harmonic functions of p(i, j) are the extremal

invariant measures ( see [8] for details) and the image measure of a product of Bernoulli

measure under π is a product of Binomial measures.

1.4.3 Limiting processes as j → ∞

In this section we show that for large j the 2j-SEP converges, when considered on

an appropriate time scale, either to a system of independent random walkers or to a

deterministic limit, depending on the initial density. We remind the reader that for

independent random walkers on a graph S, the configuration space is Ω∞ = N
S and
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1 Duality and hidden symmetries in interacting particle systems

the generator is given by

Lirwf(η) =
∑

i,l∈S

η(i)p(i, l)(f(ηi,l)− f(η)) (1.4.9)

The stationary measures are products of Poisson measures, and the process with gen-

erator (1.4.9) is self-dual with self-duality function

Dirw(η, ξ) =
∏

i∈S

ηi!

(ηi − ξi)!
(1.4.10)

for finite configurations ξ ≤ η, and D = 0 otherwise.

The relation with the reduced ladder SEP for large j is given in the following theo-

rem.

Theorem 1.4.3. Consider the process {η(j)t : t ≥ 0} with generator (1.4.4) started

from initial configuration η(j) ∈ Ω(j). Suppose that, as j → ∞, η(j) → η ∈ Ω∞, then

the process {η(j)t/2j : t ≥ 0} converges weakly in path space to a system of independent

random walkers with generator (1.4.9) and initial configuration η.

PROOF. The process {η(j)t/2j : t ≥ 0} has generator

L
′
j =

1

2j
L(j) (1.4.11)

In order to have a sequence of processes all defined on the same sample space Ω(∞) we

consider the auxiliary process on N
S with generator

L
′′
j f(η) =

∑

i,l∈S

p(i, l)ηi

(

1− ηl
2j

)

I(ηi ≤ 2j)I(ηl ≤ 2j)
(

f(ηi,l)− f(η)
)

(1.4.12)

This auxiliary process behaves as the process with generator L ′
j except for sites which

have more than 2j particles, which are frozen. Started from an initial configuration

with all sites having at most 2j particles, this process coincides with the process ηt/2j .

For any local function f : NS → R, we then have

lim
j→∞

L
′′
j f(η) = lim

j→∞

∑

i,l∈S

p(i, l)ηi

(

1− ηl
2j

)

I(ηi ≤ 2j)I(ηl ≤ 2j)
(

f(ηi,l)− f(η)
)

= Lirwf(η) (1.4.13)
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1.4 Symmetric exclusion processes

Therefore, by the Trotter-Kurtz theorem (see Theorem 2.5 of [4]), this implies that the

corresponding processes ηt/2j converge weakly on path space as j → ∞ to the process

with generator Lirw.

To see that (1.4.10) is (up to a multiplicative consant) a limit of duality functions of

the 2j-SEP, we start from the symmetry (1.3.6) and use the similarity transformation

with Q(j) given by

Q(j)(η, ξ) =
∏

i∈S

Q
(j)
i (ηi, ξi)

with

Q
(j)
i (ηi, ξi) = δηi,ξi

(

2j

ηi

)(

1

2j

)ηi
(

1− 1

2j

)2j−ηi

Then the duality functions

D̃(j) = Q(j)−1
S

with S defined in (1.3.16), satisfy

lim
j→∞

D̃(j) = eDirw .

Another possible limit is obtained when the initial condition has a number of par-

ticles that diverges proportional to j. This limit, as can be understood from the law

of large numbers, is deterministic.

Theorem 1.4.4. Consider the process

x
(j)
i (t) =

η
(j)
t/2j

2j

and suppose that x
(j)
i (0) → xi(0) ∈ [0, 1] for all i ∈ S as j → ∞. Then we have

that x
(j)
i (t) converges to a deterministic system of coupled differential equations with

generator

Lf(x) =
∑

i,l∈S

p(i, l)xi(1− xl)

(

∂

∂xl
− ∂

∂xi

)

(1.4.14)

PROOF. The generator of the process x
(j)
i (t) reads

L
′
jf(x) = 2j

∑

i,l

p(i, l)xi(1− xl)(f(x
(j);i,l)− f(x(j)))
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1 Duality and hidden symmetries in interacting particle systems

where x(j),i,l arises from x(j) by removing a unit 1/2j from i ∈ S and putting it at

l ∈ S . Therefore, for a local smooth function f : [0, 1]S → R we have, by Taylor

expansion

L
′
jf(x) =

∑

i,l

p(i, l)xi(1− xl)

(

∂

∂xl
− ∂

∂xi

)

f(x) +O

(

1

2j

)

The result then follows once more from the Trotter Kurtz theorem. Since the limiting

generator is a first order differential operator, the corresponding process is determin-

istic.

1.4.4 Boundary driven case

We first discuss a duality theorem for standard (i.e. j = 1/2) symmetric exclusion

with extra creation and annihilation of particles at the boundary. The context is a

countable set S , of which we distinguish a subset ∂S ⊆ S called the boundary. We

then consider the generator

L f(η) =
∑

i,l∈S

p(i, l)(η(i)(1− η(l))(f(ηi,l)− f(η)) (1.4.15)

+
∑

i∈∂S

(1 − ρi)η(i)
(

f(ηi)− f(η)
)

+ ρi(1− η(i))
(

f(ηi)− f(η)
)

where 0 < ρi < 1 represent the densities of the particle reservoirs with which the

system is in contact at the boundary sites, and where ηi is the configuration obtained

from η by flipping the occupancy at i.

The first part of the generator represents the hopping of particles on S according

to a symmetric exclusion process, whereas the second part represents creation and

annihilation of particles at the boundary sites.

To introduce duality for this process, we introduce a set ∂eS of sink sites, and a

bijection i 7→ ie which associates each site i ∈ ∂S to a sink site. The dual process will

then be a process that behaves as the exclusion process in the bulk, but particles can

leave the system via boundary sites to sink sites, and will then be stuck at sink sites.

More precisely, a configuration of the dual process is a map

ξ : S ∪ ∂eS → N
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1.4 Symmetric exclusion processes

such that ξ(i) ∈ {0, 1} for i ∈ S (only the sink sites can contain more than one

particle). We call Ωdual the set of all configurations of the dual process.

The duality function is defined as follows: for η ∈ {0, 1}S , ξ ∈ Ωdual

D(η, ξ) =





∏

i∈S :ξ(i)=1

η(i)





(

∏

i∈∂eS

ρξii

)

(1.4.16)

The idea here is that we have the ordinary duality function for the sites i ∈ S and

for the sink sites, we replace the variable ηi by its expectation ρi, corresponding to the

stationary measure of the boundary generator Li.

The generator of the dual process is then defined as follows:

Ldualf(ξ) =
∑

i,l∈S

p(i, l)(ξ(i)(1− ξ(l))(f(ξi,l)− f(ξ)) +
∑

i∈∂S

ξ(i)
(

f(ξi,ie)− f(ξ)
)

(1.4.17)

We then have

Theorem 1.4.5. The boundary driven exclusion process (ηt)t≥0 with generator L in

(1.4.15) and the process (ξt)t≥0 with generator Ldual in (1.4.17) are dual with duality

function D(η, ξ) given by (1.4.16), i.e.,

EηD(ηt, ξ) = EξD(η, ξt) (1.4.18)

PROOF. Abbreviate

Lif(η) = (1− ρi)η(i)
(

f(ηi)− f(η)
)

+ ρi(1− η(i))
(

f(ηi)− f(η)
)

(1.4.19)

and

Ldual
i f(ξ) = ξ(i)

(

f(ξi,ie)− f(ξ)
)

(1.4.20)

For f(η) = η(i) one sees that

Lif(η) = ρi − η(i) (1.4.21)

and hence for ξ a dual configuration which is non-zero only on the sites i ∈ ∂S and

on the corresponding sink site ie ∈ ∂eS , we find

LiD(η, ξ) = ρ
ξie
i (Li (η(i)ξ(i) + (1 − ξ(i))))

= ξ(i)ρ
ξie
i (ρi − η(i))

= ξ(i)
(

ρ
ξie+1
i − ρ

ξie
i η(i)

)

= Ldual
i D(ξ, η)
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1 Duality and hidden symmetries in interacting particle systems

From that and the self-duality of the symmetric exclusion process, it follows that

LD(η, ξ) = LdualD(η, ξ) (1.4.22)

In order to apply this duality result for the boundary driven process with generator

(1.4.4), we first look at the boundary driven exclusion process on a ladder graph. More

precisely, for ζ ∈ {0, 1}S×I we consider the process (ζt)t≥0 with generator

L f(ζ) =
∑

i,l∈S

∑

α,β∈I

p(i, l)(ζ(i, α)(1 − ζ(l, β))(f(ζ(i,α),(l,β))− f(ζ)) (1.4.23)

+
∑

i∈∂S

∑

α∈I

(1− ρi)ζ(i, α)
(

f(ζ(i,α))− f(ζ)
)

+ ρi(1− ζ(i, α))
(

f(ζ(i,α))− f(ζ)
)

In words, this process is the ladder SEP, with additional boundary driving, where

the creation and annihilation rate of particles at the boundary sites does not depend

on the level. If we consider the reduced process, consisting of counting at each site

i ∈ S how many levels in I are occupied, i.e. ηt = π(ζt) then we recover once

again a Markov process (cfr. Theorem 1.4.2). This process, defined on the state space

Ω(j) = {0, 1, . . .2j}S and called the boundary driven 2j-SEP, has generator

Ljf(η) =
∑

i,l∈S

p(i, l)(η(i)(2j − η(l))(f(ηi,l)− f(η)) (1.4.24)

+
∑

i∈∂S

(1− ρi)η(i)
(

f(η(i,α))− f(η)
)

+ ρi(2j − ηi)
(

f(ηi)− f(η)
)

It turns out that the boundary driven 2j-SEP has a nice dual too. To introduce this

dual, we consider admissible dual configurations as maps ξ : S ∪ ∂eS → N such that

0 ≤ ξ(i) ≤ 2j for i ∈ S (only the sink sites can contain more that 2j particles). The

generator of the dual of the boundary driven 2j-SEP is a process on admissible dual

configurations, defined by

L
dual
j f(ξ) =

∑

i,l∈S

p(i, l)(ξ(i)(2j − ξ(l))(f(ξi,l)− f(ξ))

+
∑

i∈∂S

ξ(i)
(

f(ξi,ie)− f(ξ)
)

(1.4.25)

From Theorem 1.4.5 we then infer, in the same way as we derived Theorem 1.4.2 the

following.
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1.5 The Brownian Momentum Process and SU(1, 1) symmetry

Theorem 1.4.6. Let (ηt)t≥0 denote the boundary driven 2j-SEP with generator (1.4.24).

Then (ηt)t≥0 is dual to the process (ξt)t≥0 with generator (1.4.25) with duality function

given by

D(η, ξ) =
∏

i∈∂eS

ρξii
∏

i∈S

(

ηi

ξi

)

(

2j
ξi

) (1.4.26)

PROOF. Denote for i ∈ ∂S ,

Lif(η) = (1− ρi)η(i)
(

f(η(i,α))− f(η)
)

+ ρi(2j − η(i))
(

f(ηi)− f(η)
)

and

L
dual
i f(ξ) = ξ(i)

(

f(ξi,ie)− f(ξ)
)

One then easily computes that for ξ a dual configuration which is non-zero only on

the sites i ∈ ∂S and on the corresponding sink site ie ∈ ∂eS ,

LiD(η, ξ) = ρ
ξie
i

1
(

2j
ξi

)Li

((

ηi
ξi

))

= ρ
ξie
i

1
(

2j
ξi

)

[

(1− ρi)ηi

((

ηi − 1

ξi

)

−
(

ηi
ξi

))

+ (2j − ηi)ρi

((

ηi + 1

ξi

)

−
(

ηi
ξi

))]

= ξi(ρ
ξie+1
i − ρi)

(

ηi

ξi

)

(

2j
ξi

) = L
dual
i D(η, ξ)

The result then follows from combination of this fact and the duality relation (1.4.6).

1.5 The Brownian Momentum Process and SU(1, 1)

symmetry

In this section we study the Brownian momentum process that was introduced in

[5, 2]. We will recover duality [6] in the context of our main Theorems and study the

reversible measures of the dual process.

45



1 Duality and hidden symmetries in interacting particle systems

1.5.1 Generator and Quantum spin chain

Let S be a countable set and p(i, j) a symmetric random walk transition probability

on S . The Brownian momentum process is a Markov process (xt)t≥0 on R
S , with

generator

L =
∑

i,j∈S

p(i, j)Lij (1.5.1)

where

Lij =

(

xi
∂

∂xj
− xj

∂

∂xi

)2

(1.5.2)

and p(i, j) is a symmetric random walk kernel on S .

The generator Lij conserves the energy x2i + x2j and generates a Brownian rotation

of the angle θij = arctan(xj/xi). The interpretation of the generator (1.5.1) is then

as follows: each bond independently, at rate p(i, j) undergoes a Brownian rotation of

its angle θij = arctan(xj/xi). An important example to keep in mind is S = Z
d, and

p(i, j) the nearest neighbor symmetric random walk.

The processes with generator L can be related to quantum spin chains [6]. Consider

the operators

K+
i =

1

2
x2i

K−
i =

1

2

∂2

∂x2i

K0
i =

1

4

(

∂

∂xi
(xi·) + xi

∂

∂xi

)

(1.5.3)

which satisfy the commutation relations of SU(1, 1):

[K0
i ,K

±
i ] = ±K±

i

[K−
i ,K

+
i ] = 2K0

i (1.5.4)

Then the negative of the adjoint of the generator L can be seen as the quantum

“Hamiltonian”

H = −L∗ = −4
∑

ij∈S

p(i, j)

(

K+
i K

−
j +K−

i K
+
j − 2K0

iK
0
j +

1

8

)

(1.5.5)

with spin satisfying the SU(1, 1) algebra (in a representation with spin value 1/4).
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1.5 The Brownian Momentum Process and SU(1, 1) symmetry

1.5.2 Dual process

In [6] we showed that the process with generator L in (1.5.1) and (1.5.2) has a dual,

which is a system of interacting random walkers on S . We show here how this dual

process comes out of the structure of the Hamiltonian (1.5.5).

We notice that the SU(1, 1) group admits a discrete (infinite dimensional) represen-

tation as (unbounded) operators on l2(N):

K
+
i |ξi〉 =

(

1

2
+ ξi

)

|ξi + 1〉

K
−
i |ξi〉 = ξi|ξi − 1〉

K
0
i |ξi〉 =

(

ξi +
1

4

)

|ξi〉 (1.5.6)

where i ∈ S and ξi ∈ N and |0〉, |1〉, |2〉, . . . denotes the canonical basis on l2(N). It

is immediately checked that the (unbounded) operators in (1.5.6) satisfy the SU(1, 1)

commutation relations in (1.5.4). We then define a new generator via the same Hamil-

tonian as in (1.5.5), but now in the representation (1.5.6):

Hdual = −L∗
dual = −4

∑

ij∈S

p(i, j)

(

K
+
i K

−
j + K

−
i K

+
j − 2K 0

i K
0
j +

1

8

)

(1.5.7)

From the previous equation and using the representation (1.5.6) we deduce that the

Hamiltonian above defines a Markov process (ξt)t≥0 with state space NS and generator

Ldual =
∑

i,j∈S

p(i, j)Ldual
ij (1.5.8)

where

Ldual
ij f(ξ) = 2ξi(2ξj + 1)(f(ξi,j)− f(ξ)) +

2ξj(2ξi + 1)(f(ξj,i)− f(ξ)) (1.5.9)

with ξi,j the configuration obtained from ξ by removing a particle from i and putting

it at j. Note that, in general, changing a representation does not imply that a gen-

erator continues to be a generator: the fact that H and Hdual are well-defined as a

Hamiltonian is conserved by similarity transformations (change of representation) but

their property of being (minus) the adjoint of the generator of a Markov process is

dependent on the representation, and needs to be verified by hand.
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1 Duality and hidden symmetries in interacting particle systems

1.5.3 The duality function explained

In [6] we found that L and Ldual are dual processes, with duality function

D(x, ξ) =
∏

i∈S

Di(xi, ξi) (1.5.10)

with

Di(xi, ξi) =
x2ξii

(2ξi − 1)!!
(1.5.11)

We now show how these functions arise from the change of representation. Suppose

that we find a function

C = C(x, ξ) =
∏

i∈S

Ci(xi, ξi)

such that

Ka
i Ci = CiK

a
i (1.5.12)

for a ∈ {+,−, 0}, i ∈ S and Ka
i , resp. K a

i defined in (1.5.3), (1.5.6). The “matrix

product” in the lhs of (1.5.12) is defined as the differential operator Ka
i working on

the xi-variable of Ci(xi, ξi), and in the rhs CiK
a
i (xi, ξi) =

∑

ξ′i
C(xi, ξ

′
i)K

a
i (ξ′i, ξi).

Then for the generators L in (1.5.1),(1.5.2) and the generator Ldual in (1.5.8), (1.5.9)

we find, as a consequence of (1.5.12) and using that L∗ = L,

LC = L∗C = CL∗
dual (1.5.13)

i.e., such a function C is a duality function (cfr. (1.2.6)).

The equation (1.5.12) is most easy if a = +, it then reads

1

2
x2iCi(xi, ξi) =

(

1

2
+ ξi

)

Ci(xi, ξi + 1) (1.5.14)

To find Ci(xi, 0) we use K−
i Ci(xi, 0) = 0 (that follows from (1.5.6), (1.5.12)) so we

can choose Ci(xi, 0) = 1 and then find, via (1.5.14)

Ci(xi, ξi) =
x2ξii

(2ξi − 1)!!
(1.5.15)

which is exactly the duality function that we found in [6]. It is then easy to verify that

(1.5.12) is also satisfied for a ∈ {−, 0} with the choice (1.5.15).
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1.5 The Brownian Momentum Process and SU(1, 1) symmetry

1.5.4 Reversible measures of the dual-BEP

The dual of the BEP, with generator Ldual in (1.5.8) and (1.5.9), is in itself an interact-

ing particle system (particles attract each other), and it can therefore be considered as

a model of independent interest. In some sense, it can be viewed as “the bosonic coun-

terpart” of the SEP. Surprisingly, despite the interaction, the process has reversible

product measures, as is shown below. Remark that, due to the attractive interaction

between the particles, this process does not fall in the class of “misantrope processes”

considered in [1], [3] (where one also has in particular cases stationary product mea-

sures, despite interaction).

Theorem 1.5.1. Consider, for λ < 1/2 the translation invariant product measure νλ

on N
S with marginals

νλ(η0 = k) =
1

Zλ

(2k − 1)!!

k!
λk (1.5.16)

where the normalization is

Zλ =

∞
∑

k=0

(2k − 1)!!

k!
λk =

1
√

(1− 2λ)
. (1.5.17)

Then νλ is reversible for the process with generator Ldual in (1.5.8) and (1.5.9).

PROOF. From the generator (1.5.8), (1.5.9), we infer that

αiαj2i(2j + 1) = 2(j + 1)(2i− 1)αj+1αi−1

is a sufficient condition for detailed balance of a product measure µ with marginals

µ(η0 = k) = αk for the generator Ldual
ij , which is sufficient for detailed balance for

Ldual. This leads to
αj+1

αj
=

2j + 1

2j + 2
(2c)

for some positive constant c. This in turn gives

αj =
(2j − 1)!!

j!
(2c)jα0

which is (1.5.16). The explicit expression for Zλ can be obtained easily from the

identity
∫ ∞

−∞

x2ke−x2/2dx =
√
2π(2k − 1)!!
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1 Duality and hidden symmetries in interacting particle systems

1.6 The Brownian Energy Process

As it was done for SEP, it is interesting to consider the Brownian Momentum Process

on ladder graph S × I with |I | = m ∈ N levels and look at the induced process

which gives the energy at each site.

1.6.1 Generator

Consider the generator, working on local functions f : RS×I → R

L =
∑

i,j∈S

m
∑

α,β=1

p(i, j)Liα,jβ (1.6.1)

where

Liα,jβ =

(

xi,α
∂

∂xj,β
− xj,β

∂

∂xi,α

)2

. (1.6.2)

In this section we show that for the process with the generator above, the total energy

per site defined via

zi =

m
∑

α=1

x2i,α (1.6.3)

is again a Markov process

Theorem 1.6.1. Consider the process x(t) = (xi,α(t))i∈S ,α=1,...,m with generator L

of (1.6.1) and (1.6.2). Consider the corresponding process z(t) = (zi(t))i∈S defined

via the mapping (1.6.3). This is a Markov process on R
S
+ with generator

L(m) =
∑

ij∈S

p(i, j)L
(m)
ij (1.6.4)

with

L
(m)
ij = 4zizj

(

∂

∂zi
− ∂

∂zj

)2

− 2m(zi − zj)

(

∂

∂zi
− ∂

∂zj

)

(1.6.5)

and with stationary measures which are product measures with chi-squared marginals.

PROOF. Denote π : (xi,α)i∈S ,α=1,...,m 7→ (zi)i∈S . Denote by ∂i partial derivative

w.r.t. zi and by ∂i,α partial derivative w.r.t. xi,α. Then, using the identities

∂i,α = 2xi,α∂i

∂2i,α = 2∂i + 4x2i α∂
2
i

∂i,α∂j,β = 4xi,αxj,β∂i∂j (1.6.6)
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1.6 The Brownian Energy Process

we find for a function f : RS×I → R depending on x only through z = π(x)

Lf ◦ π(x) = (L(m)f)(π(x)) (1.6.7)

The proof then proceeds via the martingale problem as in the proof of Theorem 1.4.2.

The stationary measure of the process with generator L(m) is deduced from the knowl-

edge of the stationary measure for the process with generator L. Indeed, it is easy

to check that for the process xi,α(t), products of Gaussian measures ⊗i∈S1,αN(0, σ2)

are invariant and ergodic. The image measure under the transformation π(x) = z

are products ⊗i∈S1χ
2
m(σ) where for σ = 1, χ2

m(1) is the chi-squared distribution with

m degrees of freedom, and for general σ, follows from scaling χ2
m(σ2) = σ2χ2

m(1).

1.6.2 Duality

In this section we show that the BEP defined above has a dual process which is again

a jump process.

To construct the dual we follow a procedure similar to the one of the previous

section. Remark that the generator L in (1.6.1) and (1.6.2) can be written in terms of

the operators

K
a,(m)
i =

m
∑

α=1

Ka
i,α (1.6.8)

with a ∈ {+,−, 0}, where

K+
i,α =

1

2
x2i,α

K−
i,α =

1

2

∂2

∂x2i,α

K0
i,α =

1

4

(

∂

∂xi,α
(xi,α·) + xi,α

∂

∂xi,α

)

(1.6.9)

In other words L is related to a quantum spin chain with Hamiltonian

H(m) = −L∗ = −4
∑

ij∈S

p(i, j)

(

K
+,(m)
i K

−,(m)
j +K

−,(m)
i K

+,(m)
j − 2K

0,(m)
i K

0,(m)
j +

m2

8

)

(1.6.10)
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1 Duality and hidden symmetries in interacting particle systems

where the K-operators in (1.6.8) and (1.6.9) satisfy the commutation relations of

SU(1, 1). Moreover the K operators defined in (1.6.8), (1.6.9), can be rewritten in

z-variables as follows:

K
+,(m)
i =

1

2
zi

K
−(m)
i = 2zi∂

2
i +m∂i

K
0,(m)
i = zi∂i +

m

4
(1.6.11)

The generator L(m) of (1.6.4) is then simply minus the adjoint of the Hamiltonian

H(m) in (1.6.10), rewritten with K-operators in z-variables.

At this point it is important to remark that the SU(1, 1) group admits a family of

discrete infinite dimensional discrete representation labeled by m ∈ N given by

K
+,(m)
i |ξi〉 =

(m

2
+ ξi

)

|ξi + 1〉

K
−,(m)
i |ξi〉 = ξi|ξi − 1〉

K
0,(m)
i |ξi〉 =

(m

4
+ ξi

)

|ξi〉 (1.6.12)

where i ∈ S and ξi ∈ N and |0〉, |1〉, |2〉, . . . denotes the canonical basis on l2(N). We

then define a new generator via the same Hamiltonian as in (1.6.10), but now in the

representation (1.6.12):

H
(m)
dual = −L∗

dual (1.6.13)

= − 4
∑

ij∈S

p(i, j)

(

K
+,(m)
i K

−,(m)
j + K

−,(m)
i K

+,(m)
j − 2K

0,(m)
i K

0,(m)
j +

m2

8

)

Using the representation (1.6.12) we deduce that the Hamiltonian above defines a

Markov process (ξt)t≥0 with state space N
S and generator

L
(m)
dual =

∑

i,j∈S

p(i, j)L
(m),dual
ij (1.6.14)

where

L
(m),dual
ij f(ξ) = 2ξi(2ξj +m)(f(ξi,j)− f(ξ)) +

2ξj(2ξi +m)(f(ξj,i)− f(ξ)) (1.6.15)

The duality function is given in the following theorem.
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1.6 The Brownian Energy Process

Theorem 1.6.2. The processes with generator L(m) and L
(m)
dual are each others dual,

with duality function

D(z, ξ) =
∏

i∈S

Di(zi, ξi) (1.6.16)

where

Di(zi, ξi) = zξii
Γ
(

m
2

)

2ξiΓ
(

m
2 + ξi

) (1.6.17)

with Γ(t) =
∫∞

0 xt−1e−xdx the gamma function.

PROOF. Let

Ci(zi, ξi) = zξii
Γ
(

m
2

)

2ξiΓ
(

m
2 + ξi

)

One verifies easily that

K
a,(m)
i Ci = CiK

a,(m)
i

for a = +,−, 0. The proof then continues as in section 1.5.3.

1.6.3 The instantaneous thermalization limit and the KMP process

In the KMP model, introduced in [7], the energies Ei of different sites i ∈ S are

updated by selecting a pair of lattice sites (i, j) and uniformly redistributing the energy

under the constraint of conserving Ei + Ej . In this section we show that the KMP

model arises by taking what we call here an instantaneous thermalization limit of the

process with generator L(m), for the case m = 2.

We start by computing the stationary measure of the process with generator L
(m)
ij .

Lemma 1.6.3. Let (zi(t), zj(t)) be the Markov process with generator L
(m)
ij , starting

from an initial condition (zi(0), zj(0)) with zi(0) + zj(0) = E. Then in the limit

t → ∞ the distribution of (zi(t), zj(t)) converges to the distribution of the couple

((E + ǫ)/2, (E − ǫ)/2) where ǫ has probability density

f(ǫ) = Cm(E2 − ǫ2)
m
2 −1 (1.6.18)

−E ≤ ǫ ≤ E and f = 0 otherwise, and where Cm is the normalizing constant.
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PROOF. Define (E(t), ǫ(t)) = (zi(t) + zj(t), zi(t) − zj(t)). Then simple rewriting of

L
(m)
ij in the new variables yields that (E(t), ǫ(t)) is a Markov process with generator

L
′ = 4(E2 − ǫ2)∂2ǫ − 4mǫ∂ǫ (1.6.19)

From the form of L ′ we see immediately that E is conserved and that for given E,

ǫ(t) is an ergodic diffusion process with stationary measure solving

∂2ǫ (4(E
2 − ǫ2)f) + ∂ǫ(4mǫf) = 0 (1.6.20)

Now notice that the rhs of (1.6.18) solves

∂ǫ(4(E
2 − ǫ2)f) + (4mǫf) = 0

and hence (1.6.20).

Denote by γm the distribution of ((E + ǫ)/2, (E − ǫ)/2). We can now define what we

mean by instantaneous thermalization.

Definition 1.6.4. Let f : [0,∞)S → R. For e = (ei)i∈S a configuration of energies,

(i, j) ∈ S × S , (e′i, e
′
j) ∈ [0,∞) × [0,∞) we denote by t(e, e′i, e

′
j) the configuration

obtained from e by replacing ei by e
′
i and ej by e′j. The instantaneous thermalization

of a pair (i, j) ∈ S × S is defined by

T
(m)
ij f(e) =

∫

f(t(e, e′i, e
′
j))dγm(e′i, e

′
j) (1.6.21)

The instantaneously thermalized version of the Brownian energy process is then

defined as the process with generator

L
IT
m f(e) =

∑

ij∈S

p(i, j)(T
(m)
ij f(e)− f(e)) (1.6.22)

This means that with rate p(ij) a pair (i, j) ∈ S × S is chosen and the energy is

instantaneously thermalized according to the measure γm. From (1.6.18) one sees that,

for m = 2, the uniform redistribution of the KMP model is recovered.

It is interesting to consider the dual of the instantaneous thermalization process

for general m ∈ N. From the previous discussion one knows that in the case m = 2

this is just the dual of the KMP model. However, the model with generator has for

general m a dual with different duality functions as is shown in Theorem 1.6.6 below.

To introduce this dual, we remind the reader that the Brownian energy process with
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1.6 The Brownian Energy Process

generator L(m) is dual to the discrete particle jump process with generator L
(m)
dual. The

following lemma gives the stationary measure of the dual BEP, which is needed in the

construction of the instantaneous thermalized version of the dual BEP.

Lemma 1.6.5. Let (kt, lt) evolve according to the generator L
ij
dual, and suppose that

initially k0 + l0 = N , then in the limit t → ∞, (kt, lt) converges in distribution to

((N +∆)/2, (N −∆)/2) where ∆ has distribution µ on {−N,−N + 2, . . . , N} with

µ(∆)

µ(∆− 2)
=

(N −∆+ 1)(N +∆− 1 +m)

(N +∆)(N −∆+m)
(1.6.23)

In particular for m = 2, (kt, lt) converges to the uniform measure on the set {(a, b) ∈
{0, . . . , N} : a+ b = N}.

PROOF. The process (Nt,∆t) := (kt + lt, kt − lt) performs transitions (N,∆) →
(N,∆ − 2) at rate 1

4 (N + ∆)(N −∆ +m) and (N,∆) → (N,∆ + 2) at rate 1
4 (N −

∆)(N+∆+m). The marginal ∆t is then an irreducible continuous-time Markov chain

on the set {−N,−N +2, . . . , N}, and hence has a unique stationary measure. Since it

is a pure birth and death chain, this measure is also reversible. The recursion (1.6.23)

then follows from detailed balance.

We denote by γ̂m(k, l) the stationary distribution of lemma (1.6.5). For ξ ∈ N
S , and

(i, j) ∈ S × S , (ξ′i, ξ
′
j) ∈ N × N we denote by t(ξ, ξ′i, ξ

′
j) the configuration obtained

from ξ by replacing the value at i by ξ′i and at j by ξ′j . We then define the dual

thermalization by

T
dual,(m)
ij f(ξ) =

∑

ξ′i,ξ
′

j : ξ′i+ξ′j=ξi+ξj

f(t(ξ, ξ′i, ξ
′
j))γ̂m(ξ′i, ξ

′
j) (1.6.24)

and the dual instantaneously thermalized energy process as the process with generator

L
IT,(m)
dual f(ξ) =

∑

ij∈S

(T
dual,(m)
ij f(ξ)− f(ξ)) (1.6.25)

Theorem 1.6.6. Consider the instantaneously thermalized version of the Brownian

energy process, with generator L IT
m . This process is dual to the process with generator

L
IT,(m)
dual with duality function given by

D(e, ξ) =
∏

i

Di(ei, ξi) (1.6.26)
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1 Duality and hidden symmetries in interacting particle systems

Di(ei, ξi) = eξii
Γ(m/2)

2ξiΓ(m/2 + ξi)
(1.6.27)

PROOF. By the duality result for the Brownian energy process, Theorem 1.6.2, we

have for all (i, j) ∈ S × S

L
(m)
ij D(e, ξ) = L

(m),dual
ij D(e, ξ) (1.6.28)

therefore,

lim
t→∞

(etL
(m)
ij − id)D(e, ξ) = lim

t→∞
(etL

(m),dual

ij − id)D(e, ξ) . (1.6.29)

The result then follows from the definition of the processes, together with lemma 1.6.3

and lemma 1.6.5.

1.6.4 Limiting processes as m → ∞

As it was done for the 2j-SEP, we study here the limiting behavior of the m-BEP

process for large m.

Theorem 1.6.7. Consider the process {z(m)
t : t ≥ 0} with generator L(m) and initial

condition z(m) ∈ R
S
+ and its dual {ξ(m)

t : t ≥ 0} with generator L
(m)
dual and initial

condition ξ(m) ∈ N
S . Suppose that, as m→ ∞, z(m) → z ∈ R

S
+ and ξ(m) → ξ ∈ N

S .

Then:

1. the process {z(m)
t/m : t ≥ 0} converges to the process, (zt)t≥0 started from z, with

generator

L =
∑

ij∈S

p(i, j)Lij

Lij = −2(zi − zj)

(

∂

∂zi
− ∂

∂zj

)

2. the process {ξ(m)
t/m} converges to a system of independent random walkers (ξt)t≥0

started from ξ, with generator

Ldual =
∑

ij∈S

p(i, j)Ldual
ij

Ldual
ij = 2ξi(f(ξ

ij)− f(ξ)) + 2ξj(f(ξ
ji)− f(ξ))
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1.6 The Brownian Energy Process

3. The two limiting processes (xt)t≥0 and (ξt)t≥0 above are each other’s dual, with

duality function

D(x, ξ) =
∏

i∈S

xξii

PROOF. The proof of items 1. and 2. proceeds like in Theorem 1.4.3. For item 3.

compare to example in section 1.3.5.

1.6.5 Boundary driven process

In this last section we consider the m-BEP process in contact at its boundary to

energy reservoirs of the Ornstein-Uhlenbeck type. A duality result for the Brownian

Momentum Process with reservoirs was already proven in [6]. Here we generalize this

result to the general Brownian energy process for arbitrary m ∈ N. We start from the

momentum process {(x(t)i,α) : i ∈ S , α = 1, . . . ,m, t ≥ 0} on a ladder graph with m

levels and all levels at sites i ∈ ∂S connected to a thermalizing Ornstein-Uhlenbeck

process which parameter Ti, to be thought as the temperature. The generator reads

L =
∑

i,j∈S

p(i, j)

m
∑

α,β=1

(

xi,α
∂

∂xj,β
− xj,β

∂

∂xi,α

)2

+
∑

i∈∂S

m
∑

α=1

Ti
∂2

∂x2i,α
− xi,α

∂

∂xi,α
(1.6.30)

If we now consider the induced process {zi(t) : i ∈ S , t ≥ 0} measuring the energy at

each site via the map

zi =

m
∑

α=1

x2i,α ,

then, using the identities (1.6.6), we find the generator

L =
∑

i,j∈S

p(i, j)4zizj

(

∂

∂zi
− ∂

∂zj

)2

− 2m(zi − zj)

(

∂

∂zi
− ∂

∂zj

)

+
∑

i∈∂S

2Ti

(

m
∂

∂zi
+ 2zi

∂2

∂z2i

)

− 2zi
∂

∂zi
(1.6.31)

Introducing as usual a set ∂eS of sink sites and a bijection i 7→ ie which associate each

boundary site i ∈ ∂S to a sink site ie ∈ ∂eS , we have the following duality theorem:

57



1 Duality and hidden symmetries in interacting particle systems

Theorem 1.6.8. Let (zt)t≥0 denote the boundary driven m-BEP with generator (1.6.31).

Then (zt)t≥0 is dual to the process (ξt)t≥0 with generator

Ldualf(ξ) =
∑

i,j∈S

p(i, j)2ξi(2ξj +m)(f(ξi,j)− f(ξ)) + 2ξj(2ξi +m)(f(ξj,i)− f(ξ))

+
∑

i∈∂S

2ξi(f(ξ
i,ie)− f(ξ)) (1.6.32)

with duality function given by

D(z, ξ) =
∏

i∈∂eS

T ξi
i

∏

i∈S

zξii
Γ
(

m
2

)

2ξiΓ
(

m
2 + ξi

) (1.6.33)

PROOF. The bulk part of the duality function coincides with the one of Theorem

1.6.2; the boundary part is easily checked with an explicit computation.

58



Bibliography

[1] C. Bahadoran, H. Guiol, K. Ravishankar, E. Saada, A constructive approach to

Euler hydrodynamics for attractive processes. Application to k-step exclusion.

Stochastic Process. Appl. 99, 1-30 (2002).

[2] C. Bernardin, S. Olla, Fourier’s law for a microscopic model of heat conduction,

J. Stat. Phys. 121, 271 (2005).

[3] C. Cocozza, C. Kipnis, Processus de vie et de mort sur R ou Z, avec interaction

selon les particules les plus proches. C. R. Acad. Sci. Paris Sér. A-B 284, 1291

(1977).

[4] S. N. Ethier, T. G. Kurtz, Markov Processes. Characterization and convergence

Jonh Wiley & Sons (1986).

[5] C. Giardina, J. Kurchan, The Fourier law in a momentum-conserving chain, J.

Stat. Mech. P05009 (2005).

[6] C. Giardina, J. Kurchan, F. Redig, Duality and exact correlations for a model of

heat conduction. J. Math. Phys. 48, 033301 (2007).

[7] C. Kipnis, C. Marchioro, E. Presutti, Heat flow in an exactly solvable model. J.

Stat. Phys. 27, no. 1, 65-74 (1982).

[8] T.M. Liggett, Interacting particle systems. Reprint of the 1985 original. Classics

in Mathematics. Springer-Verlag, Berlin, (2005).
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2 Correlation inequalities for interacting particle systems with duality

2.0 Abstract

We prove a comparison inequality between a system of independent random walkers

and a system of random walkers which either interact by attracting each other – a

process which we call here the symmetric inclusion process (SIP) – or repel each other

– a generalized version of the well-known symmetric exclusion process. As an ap-

plication, new correlation inequalities are obtained for the SIP, as well as for some

interacting diffusions which are used as models of heat conduction, – the so-called

Brownian momentum process, and the Brownian energy process. These inequalities

are counterparts of the inequalities (in the opposite direction) for the symmetric ex-

clusion process, showing that the SIP is a natural bosonic analogue of the symmetric

exclusion process, which is fermionic. Finally, we consider a boundary driven version

of the SIP for which we prove duality and then obtain correlation inequalities.

2.1 Introduction

In Liggett [14], Chapter VIII, proposition 1.7, a comparison inequality between inde-

pendent symmetric random walkers and corresponding exclusion symmetric random

walkers is obtained. This inequality plays a crucial role in the understanding of the ex-

clusion process (SEP); it makes rigorous the intuitive picture that symmetric random

walkers interacting by exclusion are more spread out than the corresponding indepen-

dent walkers, as a consequence of their repulsive interaction (exclusion), or in more

physical terms, because of the fermionic nature of the exclusion process. The com-

parison inequality is a key ingredient in the ergodic theory of the symmetric exclusion

process, i.e., in the characterization of the invariant measures, and the measures which

are in the course of time attracted to a given invariant measure. The comparison

inequality has been generalized later on by Andjel [1], Liggett [15], and recently in the

work of Borcea, Brändén and Liggett [3].

In the search of a natural conservative particle system where the opposite inequality

holds, i.e., where the particles are less spread out than corresponding independent

random walkers, it is natural to think of a “bosonic counterpart” of the exclusion

process. In fact, such a process was introduced in [9] and [10] as the dual of the

Brownian momentum process, a stochastic model of heat conduction (similar models

of heat conduction were introduced in [4] and [8], see also [5] for the study of the
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2.1 Introduction

structure function in a natural asymmetric version).

In the present paper we analyze this “bosonic counterpart” of the exclusion process.

We will call this process (as will be motivated by a Poisson clock representation) the

“symmetric inclusion process” (SIP). In the SIP, jumps are performed according to

independent random walks, and on top of that particles “invite” other particles to

join their site (inclusion). For this process we prove the analogue of the comparison

inequality for the symmetric exclusion process. From the comparison inequality, using

the knowledge of the stationary measure and the self-duality property of the process, we

deduce a series of correlation inequalities. Again, in going from exclusion to inclusion

process the correlations turn from negative to positive. We remark however that these

positive correlation inequalities are different from the ordinary preservation of positive

correlations for monotone processes [12], because the SIP is not a monotone process.

Since the SIP is dual to the heat conduction model it is immediate to extend those

correlation inequalities to the Brownian momentum process and the Brownian energy

process.

We also introduce the non-equilibrium versions of the SIP, i.e., we consider the

boundary driven version of SIP. In this case, for appropriate choice of the boundary

generators, we prove duality of the process to a SIP model with absorbing boundary

condition. We then deduce a correlation inequality, explaining and generalizing the

positivity of the covariance in the non-equilibrium steady state of the heat conduction

model in [9].

All the results will be stated in the context of a family of SIP(m) models, which are

labeled by parameter m ∈ N. As the SEP model can be generalized to the situation

where there are at most n ∈ N particles per site (this corresponds to a quantum spin

chain with SU(2) symmetry and spin value j = n/2), in the same way the SIP model

can be extended to represent the situation of a quantum spin chain with SU(1,1)

symmetry and spin value k = m/4 [9].

The paper is organized as follows. In Section 2 we define the SIP(m) process, re-

stricting to a context where its existence can be immediately established. The main

comparison inequality, which allows to compare SIP walkers to independent walkers

(by a suitable generalization of Liggett comparison inequality) is proved in Section 3.

Correlation inequalities for the SIP(m) process that can be deduced from the com-

parison inequality are proved in Section 5 (the necessary knowledge of the stationary

measure and the self-duality property are presented in Section 4). In particular, in
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Section 5 it is proved that when the SIP(m) process is started from its stationary

measure then correlations are always positive, while when the process is initialized

with a general product measure then positivity of correlations is recovered in the long

time limit. Further correlation inequalities for systems similar to the SIP(m) process

are discussed in the subsequent Sections. Attractive interaction (the SEP(n), which

generalize the standard SEP) is presented in Section 6. Some interacting diffusions

dual to the SIP(m) process are studied in Section 7. Finally the boundary driven

SIP(m) process is analyzed in Section 8.

2.2 Definition

In the whole of the paper, S will denote either a finite set, or S = Z
d. Next, p(x, y)

denotes an irreducible (discrete-time) symmetric random walk transition probability

on S, i.e., p(x, y) = p(y, x) ≥ 0,
∑

y p(x, y) = 1, and p(x, x) = 0. In the case S =

Z
d, we suppose furthermore that p(x, y) is finite range and translation invariant, i.e.,

p(x, y) = π(y − x), and there exists R > 0 such that p(x, y) = 0 for |x− y| > R. This

assumption for the infinite-volume case avoids technical problems for the existence of

the SIP (m) which for the subject of this paper are irrelevant. The proof of existence of

the SIP (m) in our infinite-volume context (with the process started from a “tempered”

initial configuration, i.e. η(y) ≤ ||y||k for some k and for all y) follows from self-duality,

along the lines of [6], Chapter 2.

The symmetric inclusion process with parameter m ∈ (0,∞) associated to the tran-

sition kernel p is the Markov process on Ω := N
S with generator defined on the core

of local functions by

Lf(η) =
∑

x,y∈S

p(x, y)2ηx(m+ 2ηy) (f(η
x,y)− f(η)) (2.2.1)

where, for η ∈ Ω, ηx,y denotes the configuration obtained from η by removing one

particle from x and putting it at y.

In [9], form = 1 this model was introduced as the dual of a model of heat conduction,

the so-called Brownian momentum process, see also [10], and [4] for generalized and

or similar models of heat conduction.

The process with generator (2.2.1) can be interpreted as follows. Every particle has

two exponential clocks: one clock -the so-called random walk clock- has rate 2m, the
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other clock -the so-called inclusion clock- has rate 4. When the random walk clock

of a particle at site x ∈ S rings, the particle performs a random walk jump with

probability p(x, y) to site y ∈ S. When the inclusion process clock rings at site y ∈ S,

with probability p(y, x) = p(x, y) a particle from site x ∈ S is selected and joins site y.

From this interpretation, we see that besides jumps of a system of independent

random walkers, this system of particles has the tendency to bring particles together

at the same site (inclusion), and can therefore be thought of as a “bosonic” counterpart

of the symmetric exclusion process.

To make the analogy with the exclusion process even more transparent, in an exclu-

sion process with at most n particles (n ∈ N) per site (notation SEP (n)), the jump

rate is ηi(n − ηj)p(i, j). Apart from a global factor 4, the SIP (m) is obtained by

changing the minus into a plus and choosing n = m/2.

Notice that the rates in (2.2.1) are increasing both in the number of particles of the

departure and in the number of particles of the arrival site (the rate is p(x, y)2ηx(m+

2ηy) for a particle to jump from x to y). Therefore, by the necessary and sufficient

conditions of [11], Theorem 2.21, the SIP is not a monotone process. It is also easy to

see that due to the attraction between particles in the SIP, there cannot be a coupling

that preserves the order of configurations, i.e., in any coupling starting from an unequal

ordered pair of configurations, the order will be lost in the course of time with positive

probability.

2.2.1 Assumptions on the transition probability kernel

In this section we introduce the assumptions that we need to prove the positivity

of correlations of stationary measures obtained as limits of general initial product

measures (see later for precise definitions). This assumptions are only relevant in the

infinite volume case S = Z
d and they are indeed satisfied in the context of finite-range

translation-invariant underlying random walk kernel p(x, y) = π(y − x). However, all

our results on correlation inequalities for stationary measures depend only on one or

both of the assumptions below, i.e., if on more general graphs, or on Z
d with more

general p(x, y), existence of SIP (m) would be established, then the corresponding

correlation inequalities hold under one or both of the assumptions A1, A2 below.

We define the associated continuous-time random walk transition probabilities of
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random walk jumping at rate 2m:

pt(x, y) =

∞
∑

n=0

(2mt)n

n!
e−2mtp(n)(x, y) (2.2.2)

where p(n) denotes the nth power of the transition matrix p. Denote by P
IRW (m)
x,y

the probability measure on path space associated to two independent random walkers

Xt, Yt started at x, y and jumping according to (2.2.2) and by P
SIP (m)
x,y the corre-

sponding probability for two SIP walkers X
′

t , Y
′

t jumping with the rates of generator

(2.2.1).

We consider two assumptions

- Assumption (A1)

lim
t→∞

sup
x,y

P
IRW (m)
x,y (Xt = Yt) = 0 (2.2.3)

- Assumption (A2)

lim
t→∞

sup
x,y

P
SIP (m)
x,y (X

′

t = Y
′

t ) = 0 (2.2.4)

The assumption (A1) amounts to requiring that for large t > 0, two independent

random walkers walking according to the continuous time random walk probability

(2.2.2) will be at the same place with vanishing probability. The assumption (A1)

follows immediately if we have

lim
t→∞

sup
x,y

pt(x, y) = 0 (2.2.5)

since then

lim
t→∞

sup
x,y

P
IRW (m)
x,y (Xt = Yt) = lim

t→∞
sup
x,y

∑

u∈S

pt(x, u)pt(y, u) = lim
t→∞

sup
x,y

p2t(x, y) = 0

(2.2.6)

Notice also that, by simple rescaling of time, (A1) holds for all m > 0 as soon as it

holds for some m > 0.

Assumption (A2) guarantees that two walkers evolving with the SIP dynamics will

be typically at different positions at large times. Notice that in the case we consider,

i.e., the translation invariant finite-range case S = Z
d, p(x, y) = p(0, y−x) =: π(y−x),

this is automatically satisfied, as the difference walk X
′

t − Y
′

t of two SIP particles is a

random walk Zt on Z
d with generator

LZf(z) = 8π(z)(f(0)− f(z)) +
∑

y

4mπ(y)(f(z + y)− f(z)) (2.2.7)
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which is clearly not positive recurrent.

Assumption (A2) implies that any finite number of SIP particles will eventually be

at different locations. This is made precise in Lemma 2.5.3 in section 2.5.

2.3 Comparison of the SIP with independent random

walks

We will first consider the SIP process with a finite number of particles in subsection

2.3.1 and then state the comparison inequality in subsection 2.3.2.

2.3.1 The finite SIP

If we start the SIP with n particles at positions x1, . . . , xn ∈ S, we can keep track of

the labels of the particles. This gives then a continuous-time Markov chain on Sn with

generator

Lnf(x1, . . . , xn) =
n
∑

i=1

∑

y∈S

2p(xi, y)



m+ 2
n
∑

j=1

I(y = xj)



 (f(xxi,y)− f(x))

= L1,nf(x) + L2,nf(x) (2.3.1)

where xxi,y denotes the n-tuple (x1, . . . , xi−1, y, xi+1, . . . , xn). Further, L1,n, resp.

L2,n denote the random walk resp. inclusion part of the generator and are defined as

follows

L1,nf(x1, . . . , xn) =

n
∑

i=1

∑

y∈S

2mp(xi, y)(f(x
xi,y)− f(x)) (2.3.2)

L2,nf(x1, . . . , xn) =

n
∑

i=1

n
∑

j=1

4p(xi, xj)(f(x
xi,xj )− f(x)) (2.3.3)

2.3.2 Comparison inequality

From the description above, it is intuitively clear that in the SIP, particle tend to be

less spread out than in a system of independent random walkers. Theorem 2.3.1 below

formalizes this intuition and is the analogue of a comparison inequality of the SEP

([14], Chapter VIII, Proposition 1.7).

67



2 Correlation inequalities for interacting particle systems with duality

To formulate it, we need the notion of a positive definite function. A function

f : S × S → R is called positive definite if for all β : S → R such that
∑

x |β(x)| <∞
∑

x,y

f(x, y)β(x)β(y) ≥ 0

A function f : Sn → R is called positive definite if it is positive definite in every pair

of variables.

We first introduce a slightly more general generator with parameters a > 0, b ∈ R

that includes both process of exclusion and inclusion type.

L
a,b
n f(x1, . . . , xn) =

n
∑

i=1

∑

y∈S

p(xi, y)



a+ b
n
∑

j=1

I(y = xj)



 (f(xxi,y)− f(x)) (2.3.4)

so

L
a,b
n = L

a
1,n + L

b
2,n

where

L
a
1,nf(x1, . . . , xn) = a

n
∑

i=1

∑

y∈S

p(xi, y)(f(x
xi,y)− f(x)) (2.3.5)

is the independent random walk part (random walks jumping at rate a) and

L
b
2,nf(x1, . . . , xn) = b

n
∑

i=1

n
∑

j=1

p(xi, xj)(f(x
xi,xj)− f(x)) (2.3.6)

is the “clumping” part, i.e., when b < 0 clumping is discouraged, and b > 0 clumping

is favored.

We call T a,b
n (t) the semigroup on functions f : Sn → R associated to the generator

(2.3.4), and Ua
n(t) the semigroup of a system of independent continuous-time random

walkers (jumping at rate a), i.e., the semigroup associated to the generator L a
1,n in

(2.3.5). Notice that when b < 0, T a,b
n (t) is not always a Markov semigroup. However,

for the applications of negative b, we have in mind generalized exclusion process (see

Section 6) in which case a/b is an integer and in this case T a,b
n (t) is a Markov semigroup.

Theorem 2.3.1. Let f : Sn → R be positive definite and symmetric. Then we have

for b > 0

Ua
n(t)f ≤ T a,b

n (t)f (2.3.7)

and for b < 0, if (T a,b(t))t≥0 is a Markov semigroup, we have

Ua
n(t)f ≥ T a,b

n (t)f (2.3.8)
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2.4 Stationary measures and self-duality for the SIP (m)

PROOF. The proof follows the proof in [14], but for the sake of self-constistency we

prefer to give it explicitly. Suppose b > 0.

Start with the decomposition (2.3.1) and use the symmetry of p(x, y) and f to write

(L a,b
n f − L

a
1,nf)(x) = (L b

2,nf)(x)

= b
n
∑

i=1

n
∑

j=1

p(xi, xj)(f(x
xi,xj )− f(x))

=
b

2

n
∑

i=1

n
∑

j=1

p(xi, xj)(f(x
xi,xj) + f(xxj ,xi)− 2f(x))

=
b

2

n
∑

i=1

n
∑

j=1

p(xi, xj)

×
∑

u,v

f(x1, . . . , xi−1, u, xi+1, . . . , xj−1, v, xj+1, . . . , xn)(δxi,u − δxj,u)(δxi,v − δxj ,v)

≥ 0 (2.3.9)

where in the last step we used that f is positive definite.

Since Ua
n(t) is the semigroup of independent walks, it maps positive definite functions

into positive definite functions, and so we have
(

LnU
a
n(t)f − L

a
1,nU

a
n(t)f

)

= L
b
2,nU

a
n(t)f ≥ 0

We can then use the variation of constants formula

T a,b
n (t)f − Ua

n(t)f =

∫ t

0

ds T a,b
n (t− s)

(

L
b
2,nU

a
n(s)f

)

≥ 0 (2.3.10)

and remember that T a,b
n (t) is a Markov semigroup which therefore maps non-negative

functions into non-negative functions.

The proof for b < 0, under the assumption that T a,b
n (t) is a Markov semigroup is

identical.

2.4 Stationary measures and self-duality for the SIP (m)

The stationary measures of SIP (m) are product measures of “discrete gamma distri-

butions”

νλ(dη) = ⊗x∈Sν
m
λ (dηx)
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2 Correlation inequalities for interacting particle systems with duality

where for n ≥ 0

νmλ (n) =
1

Zλ,m

λn

n!

Γ(m2 + n)

Γ(m2 )
, n ∈ N (2.4.1)

with 0 ≤ λ < 1 a parameter, Γ(r) the gamma-function and

Zλ,m =

(

1

1− λ

)m/2

Notice that for m = 2, νmλ is a geometric distribution (starting from zero), i.e.,

ν2λ(n) = λn(1− λ), n ∈ N and for m/2 an integer νmλ is negative binomial distribution

NB(m/2, λ). Moreover, the measures νm have the following convolution property

νmλ ∗ νlλ = νm+l
λ (2.4.2)

where ∗ denotes convolution, i.e., a sample from νmλ ∗ νlλ is obtained by site-wise

addition of a sample from νmλ and an independent sample from νlλ.

The SIP (m) process is self-dual [10] with duality functions given by D(ξ, η) =
∏

x d(ξx, ηx), with

d(k, l) =
l!

(l − k)!

Γ
(

m
2

)

Γ
(

m
2 + k

) (2.4.3)

where k ≤ l. Self-duality means that

E
SIP (m)
η D(ξ, ηt) = E

SIP (m)
ξ D(ξt, η) (2.4.4)

where E
SIP (m)
η denotes expectation in the SIP process started from the configuration

η.

The relation between the polynomials D and the measure νmλ reads

∫

D(ξ, η)νmλ (dη) =

(

λ

1− λ

)|ξ|

(2.4.5)

as follows from a simple computation using the definition of the Γ-function, Γ(r) =
∫∞

0
xr−1e−xdx.

From conservation of particles in the dual process, we see that self-duality and the

relation (2.4.5) gives stationarity of the measure νΛ.

The relation (2.4.5) can be generalized to “local stationary measure”, i.e. the prod-

uct measures that are obtained from the stationary measure (2.4.1) by allowing a

site-dependent parameter. More precisely, given

λ : S → [0, 1)
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2.4 Stationary measures and self-duality for the SIP (m)

we define the local stationary measure associated to the profile λ by

νλ = ⊗x∈Sν
m
λ(x)

(dηx) (2.4.6)

For x1, . . . , xn ∈ S we denote by
∑n

i=1 δxi
the particle configuration ξ ∈ N

S obtained

by putting a particles at locations xi, i.e., ξ(x) =
∑n

i=1 I(xi = x). We then have the

following relation between the duality functions and the local stationary measures

∫

D

(

n
∑

i=1

δxi
, η

)

νλ(dη) =

n
∏

i=1

ρ(xi) (2.4.7)

where

ρ(xi) =
λ(xi)

1− λ(xi)

For a constant profile λ(x) = λ , ∀x ∈ S, we recover (2.4.5).

By Lemma 2.5.3 below, in the case S = Z
d and translation invariant finite-range

p(x, y), any number of dual particles in the SIP (m) will eventually diffuse away to

infinity. From that it is easy to deduce that the measures νλ are extremal invariant.

To see this, we denote for two finite-particle configurations ξ ⊥ ξ′, if their supports are

disjoint, i.e., there are no site x ∈ S where there are ξ and ξ′ particles. If ξ ⊥ ξ′ then

D(ξ + ξ′, η) = D(ξ, η)D(ξ′, η). Since at large t > 0, assumption (A2) implies that, in

the SIP started with a finite number of particles, particles are with probability close

to one at different locations (see Lemma 2.5.3 for a proof of this), we have that for ξ′ a

fixed configuration, the event ξt ⊥ ξ′ has probability close to one as t→ ∞. Therefore

lim
t→∞

∫

E
SIP (m)
η (D(ξ, ηt))D(ξ′, η)νλ(dη)

= lim
t→∞

E
SIP (m)
ξ

∫

D(ξt, η)D(ξ′, η)νλ(dη)

= lim
t→∞

E
SIP (m)
ξ

∫

D(ξt, η)D(ξ′, η)I(ξt ⊥ ξ′)νλ(dη)

= lim
t→∞

ρ
|ξt|+|ξ′t|
λ

= ρ
|ξ|+|ξ′|
λ

=

∫

D(ξ, η)νλ(dη)

∫

D(ξ′, η)νλ(dη) (2.4.8)

which shows that time-dependent correlations of (linear combinations of) D(ξ, ·) poly-
nomials decay in the course of time to zero, and hence, by standard arguments, νλ is

mixing and thus ergodic.
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2.5 Correlation inequalities in the SIP (m)

For a probability measure µ on the configuration space N
S , we denote its “duality

moment function” Kµ : Sn → R by

Kµ(x1, . . . , xn) =

∫

D

(

n
∑

i=1

δxi
, η

)

µ(dη) (2.5.1)

If µ = νλ is a local stationary measure with profile λ, then

Kνλ
(x1, . . . , xn) =

n
∏

i=1

ρ(xi) (2.5.2)

which is clearly positive definite and symmetric. We can therefore apply Theorem

2.3.1 and obtain the following result.

Proposition 2.5.1. For all t ≥ 0, for all profiles λ : S → [0, 1) and for all x1, . . . , xn ∈
S we have

KνλSt
(x1, . . . , xn) ≥

n
∏

i=1

KνλSt
(xi) (2.5.3)

where St denotes the semigroup of the SIP (m) process. In particular, when the

SIP (m) is started from νλ, the random variables {ηt(x), x ∈ S} are positively cor-

related, i.e., for (x, y) ∈ S × S

∫

E
SIP (m)
η (ηt(x)ηt(y)) νλ(dη) ≥

∫

E
SIP (m)
η (ηt(x)) νλ(dη)

∫

E
SIP (m)
η (ηt(y)) νλ(dη)

PROOF. Denote by E
SIP (m)
x1,...,xn expectation in the SIP (m) process started with n par-

ticles at positions (x1, . . . , xn), by E
IRW (m) expectation in the process of independent

random walkers (jumping at rate 2m) and E
RW (m) a single random walker expectation.

We then have the following chain of inequalities, which is obtained by using sequen-

tially the following: self-duality property (2.4.4), the comparison inequality (2.3.7), the

relation between the measure νλ and the duality function D (2.4.7), the independence

between random walkers, the fact that a single SIP particle moves as a continuous
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2.5 Correlation inequalities in the SIP (m)

time random walk, and finally again self-duality (2.4.4)

∫

E
SIP (m)
η D

(

n
∑

i=1

δxi
, ηt

)

νλ(dη)

= E
SIP (m)
x1,...,xn

∫

D

(

n
∑

i=1

δXi(t), η

)

νλ(dη)

≥ E
IRW (m)
x1,...,xn

∫

D

(

n
∑

i=1

δXi(t), η

)

νλ(dη)

= E
IRW (m)
x1,...,xn

(

n
∏

i=1

ρ(Xi(t))

)

=

n
∏

i=1

E
RW (m)
xi

ρ(Xi(t))

=

n
∏

i=1

∫

E
SIP (m)
xi

(

D(δXi(t), η)
)

νλ(dη)

=

n
∏

i=1

∫

E
SIP (m)
η (D(δxi

, ηt)) νλ(dη) (2.5.4)

This proposition shows that starting from a local stationary measure νλ, the density

profile ρt(x) = E
RW (m)
x ρt(x) predicts (by duality) correctly the density at time t > 0

but the true measure at time t > 0, νλSt, lies above (in the sense of expectations of

D-functions) the product measure with density profile ρt(x).

From the analogy with the SEP emphasized above, one could think that (2.5.3)

extends to the case when the SIP process is started from a general product measure.

However, for general probability measures µ on Ω, the duality moment function Kµ :

Sn → R defined in (2.5.1) is not necessarily positive definite (as is the case for the

special product measures νλ), since we do not have the equality D (
∑n

i=1 δxi
, η) =

∏n
i=1D(δxi

, η) in general. Notice that this problem does not appear in the context of

the standard SEP, as for that model, the self-duality functions are

DSEP

(

n
∑

i=1

δxi
, η

)

=

n
∏

i=1

ηxi
=

n
∏

i=1

DSEP (δxi
, η)
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and hence automatically, for any measure µ, the function Kµ is positive definite in

that model.

If however all xi are different, we have D(
∑n

i=1 δxi
, η) =

∏n
i=1D(δxi

, η). For every

probability measure µ on Ω, the function Ψµ : Sn → R defined by

Ψµ(x1, . . . , xn) =

∫ n
∏

i=1

D(δxi
, η)µ(dη) (2.5.5)

is clearly positive definite. This, together with the fact that under assumption (A2),

a finite number of SIP (m) particles diffuse and therefore eventually will be typically

at different positions, suggests that in a stationary measure, the variables ηxi
are

positively correlated.

To state this result we introduce the class of probability measures with uniform

finite moments

Pf =: {µ : ∀n ∈ N, sup
|ξ|=n

∫

D(ξ, η)µ(dη) =:Mn
µ <∞} (2.5.6)

For a sequence of measures µn ∈ Pf , and µ ∈ Pf , we define that µn → µ if for all ξ

finite particle configuration,

lim
n→∞

∫

D(ξ, η)µn(dη) =

∫

D(ξ, η)µ(dη)

We can then formulate our next result.

Proposition 2.5.2. Assume (A1) and (A2). Let ν ∈ Pf be a product measure. Let

S(t) denote the semigroup of the SIP(m). Suppose that

µ = lim
n→∞

νS(tn) (2.5.7)

for a subsequence tn ↑ ∞. Then we have µ ∈ Pf , µ is invariant and

Kµ(x1, . . . , xn) ≥
n
∏

i=1

Kµ(xi) (2.5.8)

PROOF. First, by duality we have, referring to the definition of Pf , for all t > 0,

∫

E
SIP (m)
η D(ξ, ηt)ν(dη) = E

SIP (m)
ξ

∫

D(ξt, η)ν(dη) ≤M |ξ|
ν <∞
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2.5 Correlation inequalities in the SIP (m)

which shows that both νS(tn) and µ are elements of Pf . The invariance of µ follows

from duality, ν ∈ Pf and Lemma 1.26 in [14], chapter V.

To proceed with the proof of the proposition, we start with the following lemma,

which ensures that, under condition (A2), any number of SIP (m) particles will even-

tually be at different locations.

Lemma 2.5.3. Assume (A2). Start the finite SIP (m) with particles at locations

{x1, . . . , xn}, then

lim
t→∞

P
SIP (m)
x1,...,xn

(∃i 6= j : Xi(t) = Xj(t)) = 0 (2.5.9)

PROOF. We give the proof form = 1. The general case is a straightforward extension.

Put η :=
∑n

i=1 δxi
. Using self-duality we can write

P
SIP (1)
η (∃i 6= j : Xi(t) = Xj(t)) ≤

∑

z

P
SIP (1)
η

(

η2t (z)− ηt(z) > 1
)

≤
∑

z

E
SIP (1)
η (η2t (z)− ηt(z))

=
3

4

∑

z

E
SIP (1)
η (D(2δz, ηt))

=
3

4

∑

z

E
SIP (1)
z,z (D(δXt

+ δYt
, η))

≤ 3
∑

z

E
SIP (1)
z,z (η(Xt)η(Yt))

= 3
∑

z

n
∑

i,j=1

E
SIP (1)
z,z (I(Xt = xi)I(Yt = xj))

≤ 3n2 sup
x,y

P
SIP (m)
x,y (Xt = Yt) (2.5.10)

where in the last step we used the symmetry of the transition probabilities of the

SIP (1) (with two particles).

We now proceed with the proof of the proposition. For x1, . . . , xn ∈ S we define

∣

∣

∣

∣

∣

D(

n
∑

i=1

δxi
, η)−

n
∏

i=1

D(δxi
, η)

∣

∣

∣

∣

∣

= ∆(x1, . . . , xn, η) (2.5.11)

We have that ∆(x1, . . . , xn, η) = 0 if all xi are different, i.e., if |{x1, . . . , xn}| = n.

Since by assumption (A2) and Lemma 2.5.3, the probability that two SIP (m) walkers
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out of a finite number n of them occupy the same position, i.e. Xi(t) = Xj(t) for some

i 6= j, vanishes in the limit t→ ∞, we conclude, using ν ∈ Pf , for any x1, . . . , xn ∈ S,

lim
t→∞

∫

E
SIP (m)
x1,...,xn

∆(X1(t), . . . , Xn(t), η)ν(dη) = 0 (2.5.12)

Moreover from the comparison inequality (2.3.7) we have, using the notation (2.5.5)

E
SIP (m)
x1,...,xn

Ψν(X1(t), . . . , Xn(t)) ≥ E
IRW (m)
x1,...,xn

Ψν(X1(t), . . . , Xn(t)) (2.5.13)

= E
IRW (m)
x1,...,xn

∫ n
∏

i=1

D
(

δXi(t), η
)

ν(dη)

=

n
∏

i=1

E
RW (m)
xi

∫

D(δXi(t), η)ν(dη) + ǫ(t)

where ǫ(t) → 0 as t → ∞ by assumption (A1), i.e., for large t > 0, independent

random walkers are at different locations with probability close to one. Therefore,

using the definition (2.5.7), the self-duality property (2.4.4), the equation (2.5.12), the

equation (2.5.13), and taking limits along the subsequence tn we have

Kµ(x1, . . . , xn) = lim
t→∞

∫

E
SIP (m)
η D

(

n
∑

i=1

δxi
, ηt

)

ν(dη)

= lim
t→∞

∫

E
SIP (m)
x1,...,xn

D

(

n
∑

i=1

δXi(t), η

)

ν(dη)

= lim
t→∞

E
SIP (m)
x1,...,xn

Ψν(X1(t), . . . , Xn(t))

≥ lim
t→∞

n
∏

i=1

E
RW (m)
xi

∫

D(δXi(t), η)ν(dη)

=

n
∏

i=1

Kµ(xi) (2.5.14)
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2.6 Correlation inequalities in the SEP(n)

We now consider the application of the generalized Liggett inequality for negative b.

The SEP (n) is the Markov process on Ω = {0, 1, . . . , n}S with generator

Lf(η) =
∑

x,y∈S

η(x)(n − η(y))p(x, y) (f(ηxy)− f(η)) (2.6.1)

The stationary measures of this process are products of binomial distributions, i.e., for

ρ ∈ [0, 1],

νρ = ⊗x∈SBin(n, ρ) (2.6.2)

Similar to the case of the inclusion process, for a profile ρ : S → [0, 1] we define the

local stationary measure

νρ = ⊗x∈SBin(n, ρ(x))

The duality functions for self-duality are given by (see [10])

D(ξ, η) =
∏

x

d(ξx, ηx) (2.6.3)

for ξ ∈ Ω a configuration with finitely many particles (at most n per site) and with

d(k, l) =

(

l
k

)

(

n
k

) (2.6.4)

The relation between the duality functions and the local stationary measures is, as

usual, i.e., for ξ =
∑n

i=1 δxi
∈ Ω (i.e., at most n particles per site), and ρ a profile:

∫

D(ξ, η)νρ(dη) =

n
∏

i=1

ρ(xi) (2.6.5)

We define, for a probability measure µ on Ω, its duality moment function

Kµ(x1, . . . , xn) =

∫

D

(

n
∑

i=1

δxi
, η

)

µ(dη) (2.6.6)

The following proposition is then the analogue of Proposition 2.5.1 in this context

(with inequality in the other direction since b < 0).
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Proposition 2.6.1. For ρ : S → [0, 1] a density profile and t > 0,

KνρSt
(x1, . . . , xn) ≤

n
∏

i=1

KνρSt
(xi) (2.6.7)

In particular, for starting from νρ, the variables {ηt(x) : x ∈ S} are negatively corre-

lated.

2.7 Correlation inequalities for some interacting

diffusions

2.7.1 The Brownian Momentum Process

The Brownian momentum process is a system of interacting diffusions, initially in-

troduced as a model of heat conduction in [8], and analyzed via duality in [9]. It is

defined as a Markov process on X = R
S via the formal generator on local functions:

LBMP f(η) =





∑

x,y∈S

p(x, y)

(

ηx
∂

∂ηy
− ηx

∂

∂ηy

)2


 f(η) (2.7.1)

The variable ηx has to be thought of as momentum of an “oscillator” associated to

the site x ∈ S. The local kinetic energy η2x has to be thought of as the analogue of

the number of particles at site x in the SIP (m) with m = 1. The expectation of η2x is

interpreted as the local temperature at x.

Defining the polynomials

D(n, z) =
z2n

(2n− 1)!!

we have the duality function D(ξ, ·) defined on X and indexed by finite particle con-

figurations ξ ∈ N
S ,
∑

x ξx <∞:

D(ξ, η) =
∏

x∈S

D(ξx, ηx) (2.7.2)

In [9], [10], we proved the duality relation

E
BMP
η (D(ξ, ηt)) = E

SIP (1)
ξ (D(ξt, η)) (2.7.3)
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As before, for x1, . . . , xn ∈ S we denote by
∑n

i=1 δxi
the particle configuration obtained

by putting a particle at each xi.

Let µ be a product of Gaussian measures on X , with site-dependent variance, i.e.,

for a function ρ : S → [0,∞), we define

µρ = ⊗x∈Sνρ(x)(dηx) (2.7.4)

where

νρ(x)(dηx) =
e−η2

x/2ρ(x)

√

2πρ(x)
dηx

is the Gaussian measure on R with mean zero and variance ρ(x). Then we have

∫

D

(

n
∑

i=1

δxi
, η

)

µρ(dη) =

n
∏

i=1

ρ(xi) (2.7.5)

From this expression, it is obvious that the map

Sn → R : (x1, . . . , xn) 7→
∫

D

(

n
∑

i=1

δxi
, η

)

µρ(dη) (2.7.6)

is positive definite. Therefore, combining the duality property between BMP process
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2 Correlation inequalities for interacting particle systems with duality

and SIP (m) process, (2.7.3), with Theorem 2.3.1 we have the inequality

∫

E
BMP
η D

(

n
∑

i=1

δxi
, ηt

)

µρ(dη)

= E
SIP (1)
x1,...,xn

∫

D

(

n
∑

i=1

δXi(t), η

)

µρ(dη)

≥ E
IRW (m)
x1,...,xn

∫

D

(

n
∑

i=1

δXi(t), η

)

µρ(dη)

= E
IRW (m)
x1,...,xn

(

n
∏

i=1

∫

D
(

δXi(t), η
)

µρ(dη)

)

= E
IRW (m)
x1,...,xn

(

n
∏

i=1

ρ(Xi(t))

)

=
n
∏

i=1

E
RW (m)
xi

ρ(Xi(t))

=

n
∏

i=1

∫

E
SIP (1)
xi

(

D
(

δXi(t), η
))

µρ(dη)

=

n
∏

i=1

∫

E
BMP
η (D (δxi

, ηt))µρ(dη) (2.7.7)

which is the analogue of Proposition 2.5.1 for the BMP process.

In words, it means that the “non-equilibrium temperature profile” is above the

temperature profile predicted from the discrete diffusion equation. It also implies that

the variables {η2x : x ∈ S} are positively correlated under the measure (µρ)t for all

choices of ρ, t > 0.

More precisely, if we denote

ρt(x) = E
RW (m)
x ρ(Xt)

then we have that η2x at time t has expectation ρt(x) when the starting measure is µρ

(since a single particle in the SIP (1) moves as a continuous time random walk). The

correlation inequality for the BMP which we just derived shows that the true measure

at time t > 0 when started from a product of Gaussian measures lies stochastically

above the Gaussian product measure with mean zero and variance ρt(x).
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Similarly, we obtain an analogous correlation inequality for the BMP for a measure

obtained as a limit of product measures. We define

Pf (X) = {µ : ∀n ∈ N : sup
|ξ|=n

∫

D(ξ, η)µ(dη) <∞}

Proposition 2.7.1. Assume (A1) and (A2). Suppose ν ∈ Pf (X) is a product mea-

sure and µ is a limit point of the set {νS(t) : t ≥ 0}, where S(t) denotes the semigroup

of the BMP process. Then we have the inequality

Kµ(x1, . . . , xn) ≥
n
∏

i=1

Kµ(xi)

2.7.2 The Brownian Energy Process

The Brownian energy process with parameterm > 0 (notation BEP (m)) is introduced

in [10] as the process on state space X = [0,∞)S , with generator

L =
∑

x,y∈S

p(x, y)Lm
xy (2.7.8)

with

Lm
xyf(η) = 4ηxηy

(

∂

∂ηx
− ∂

∂ηx

)2

f(η)− 2m(ηx − ηy)

(

∂

∂ηx
− ∂

∂ηx

)

f(η) (2.7.9)

This process is dual to the SIP (m) in the following sense. Define, for ξ ∈ N
S a finite

particle configuration, and η ∈ X the polynomials

D(ξ, η) =
∏

x∈S

d(ξx, ηx) (2.7.10)

with, for k ∈ N, y ∈ [0,∞)

d(k, y) = yk
Γ
(

m
2

)

2kΓ
(

m
2 + k

) (2.7.11)

then we have

E
BEP (m)
η D(ξ, ηt) = E

SIP (m)
ξ D(ξt, η) (2.7.12)

As a consequence, extremal invariant measure of the BEP (m) are products of Γ-

distributions with shape parameters m/2 and scale parameter θ > 0:

νθ(dη) = ⊗x∈Sνθ(dηx) (2.7.13)
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with

νθ(dz) =
1

θm/2Γ
(

m
2

)z
m
2 −1e−z/θ (2.7.14)

Similarly we define the local stationary measures

νθ = ⊗x∈Sνθ(x)(dηx) (2.7.15)

with θ : S → [0,∞), and the duality moment function of a probability measure µ on

X :

Kµ(x1, . . . , xn) =

∫

D

(

n
∑

i=1

δxi
, η

)

µ(dη) (2.7.16)

As a consequence of the correlation inequalities derived for the SIP (m), we derive the

following.

Proposition 2.7.2. 1. For all θ : S → [0,∞), t > 0, and x1, . . . , xn ∈ S we have

K
νθS

BEP (m)
t

(x1, . . . , xn) ≥
n
∏

i=1

K
νθS

BEP(m)
t

µ(xi) (2.7.17)

2. If for some product measure ν on X with finite moments, and a sequence of

tn ↑ ∞ the limit

µ = lim
n→∞

νSBEP (m)(tn)

exists, then

Kµ(x1, . . . , xn) ≥
n
∏

i=1

Kµ(xi) (2.7.18)

2.8 The boundary driven SIP (m)

In this section we consider the non-equilibrium one-dimensional model that is obtained

by considering particle reservoirs attached to the first and last sites of the chain. We

will show that, if one requires reversibility w.r.t. the measure νmλ and duality with

absorbing boundaries, this uniquely fixes the birth and death rates at the boundaries.

2.8.1 Duality for the the boundary driven SIP (m)

The generator of the boundary driven SIP (m) on a chain {1, . . . , N} driven at the

end points, reads

L = L1 + LN + Lbulk (2.8.1)
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2.8 The boundary driven SIP (m)

where Lbulk denotes the SIP (m) generator, with nearest neighbor random walk as

underlying kernel, i.e.,

Lbulkf(η) =
∑

x∈{1,...,N−1}

2ηx(m+ 2ηx+1)
(

f(ηx,x+1)− f(η)
)

(2.8.2)

+
∑

x∈{1,...,N−1}

2ηx+1(m+ 2ηx)
(

f(ηx+1,x)− f(η)
)

and where L1,LN are birth and death processes on the first and N -th variable re-

spectively, i.e.,

L1f(η) = dL(η1)(f(η − δ1)− f(η)) + bL(η1)(f(η + δ1)− f(η))

and

LNf(η) = dR(ηN )(f(η − δN )− f(η)) + bR(ηN )(f(η + δN )− f(η))

These generators model contact with respectively the left and right particle reservoir.

The rates dL, bL, dR, bR are chosen such that detailed balance is satisfied w.r.t. the

measure νmλ , with λ = λL for dL, bL, and λ = λR for dR, bR. More precisely, this

means that these rates satisfy

bα(k)ν
m
λα

(k) = dα(k + 1)νmλα
(k + 1) (2.8.3)

for α ∈ {L,R}.
To state our duality result, we consider functions D(ξ, η) indexed by particle con-

figurations ξ on {0, . . . , N + 1} defined by

D(ξ, η) = ρ
|ξ0|
L D(ξ{1,...,N}, η)ρ

|ξN+1|
R (2.8.4)

where ρα = ρλα
= λα/(1− λα), and where we remember that

D(k, n) =
n!

(n− k)!

Γ
(

m
2

)

Γ
(

m
2 + k

)

is the duality function for the SIP (m). I.e., for the “normal” sites {1, . . . , N} we

simply have the old duality functions, and for the “extra added” sites {0, N + 1} we

have the expectation of the duality function over the measure νmλ .

We now want duality to hold with duality functions D , and with a dual process that

behaves in the bulk as the SIP (m), and which has absorbing boundaries at {0, N+1}.
More precisely, we want the generator of the dual process to be

L̂ = Lbulk + L̂1 + L̂N (2.8.5)
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with Lbulk given by (2.8.2), and

L̂1f(ξ) = ξ1
(

f(ξ1,0)− f(ξ)
)

L̂Nf(ξ) = ξN
(

f(ξN,N+1)− f(ξ)
)

for ξ ∈ N
{0,1...,N+1}. The duality relation then reads, as usual,

(L D(ξ, ·)) (η) =
(

L̂ D(·, η)
)

(ξ) (2.8.6)

Since self-duality is satisfied for the bulk generator with the choice (2.8.4), i.e., since

(LbulkD(ξ, ·)) (η) = (LbulkD(·, η)) (ξ)

(2.8.6) will be satisfied if we have the following relations at the boundaries: for all

k ≤ n:

bα(n)(D(k, n+ 1)−D(k, n)) + dα(n)(D(k, n− 1)−D(k, n))

= k(D(k − 1, n)ρα −D(k, n)) (2.8.7)

where α ∈ {L,R}.
From detailed balance (2.8.3) we obtain

dα(n) =
1

λα

(

n
m
2 + n− 1

)

bα(n− 1) (2.8.8)

Working out (2.8.7) gives, using (2.4.3),

bα(n)

(

n+ 1

n+ 1− k
− 1

)

+ dα(n)

(

n− k

n
− 1

)

= k

(

(

m
2 + k − 1

)

ρα

n− k + 1
− 1

)

(2.8.9)

which simplifies to

bα(n)

n+ 1− k
− dα(n)

n
=

(

(

m
2 + k − 1

)

ρα

n− k + 1
− 1

)

(2.8.10)

Choosing

dα(n) =
n

1− λα
(2.8.11)
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2.8 The boundary driven SIP (m)

and by the detailed balance condition (2.8.8),

bα(n) =
(m

2
+ n

) λα
1− λα

(2.8.12)

it is then an easy computation to see that (2.8.7) is satisfied with the choices (2.8.11),

(2.8.12). Indeed, (2.8.10) reduces to the simple identity

(m

2
+ n

)

(

λ

1− λ

)

1

n+ 1− k
− 1

1− λ
=

m
2 + k − 1

n+ 1− k

(

λ

1− λ

)

− 1

We remark that the requirement of detailed balance alone is not sufficient to fix the

rates uniquely. However, the additional duality constraint (2.8.7) does fix the rates to

the unique expression given by (2.8.11) and (2.8.12).

As a consequence of duality with duality functions (2.8.4), we have that the boundary

driven SIP (m) with generator (2.8.1) has a unique stationary measure µL,R for which

expectations of the polynomials D(ξ, η) are given in terms of absorption probabilities:

∫

D(ξ, η)µL,R(dη) = lim
t→∞

EηD(ξ, ηt)

= lim
t→∞

ÊξD(ξt, η)

=
∑

k,l:k+l=|ξ|

ρkLρ
l
RP̂ξ (ξ∞ = kδ0 + lδN+1) (2.8.13)

Here, Êξ denotes expectation in the dual process (which is absorbing at {0, N + 1})
starting from ξ. In particular, since a single SIP (m) particle performs continuous

time simple random walk (at rate 2m) we have a linear density profile, i.e.,

∫

D(δi, η)µL,R(dη) = ρL

(

1− i

N + 1

)

+ ρR
i

N + 1
(2.8.14)

2.8.2 Correlation inequality for the boundary driven SIP (m)

For x1, . . . , xn ∈ {1, . . . , N} let us denote by (X1(t), . . . , Xn(t)) the positions of par-

ticles at time t evolving according to the SIP (m) with absorbing boundary sites at

{0, N+1}, i.e., according to the generator (2.8.5), and initially at positions x1, . . . , xn.

Let (Y1(t), . . . , Yn(t)) denote the positions at time t of independent random walkers

(jumping at rate 2m) absorbed (at rate 1) at {0, N+1}, initially at positions x1, . . . , xn.

Since the absorption parts of the generators of (X1(t), . . . , Xn(t)) and (Y1(t), . . . , Yn(t))
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2 Correlation inequalities for interacting particle systems with duality

are the same, we have the same inequality for expectations of positive definite functions

as in Theorem 2.3.1. Therefore, we have the following result on positivity of correla-

tions in the stationary state. This has once more to be compared to the analogous

situation of the boundary driven exclusion process, where the stationary covariances

of site-occupations are negative.

Proposition 2.8.1. Let µL,R denote the unique stationary measure of the process with

generator (2.8.1). Let x1, . . . , xn ∈ {1, . . . , N}, then we have

∫

D

(

n
∑

i=1

δxi
, η

)

µL,R(dη) ≥
n
∏

i=1

∫

D(δxi
, η)µL,R(dη) (2.8.15)

In particular, ηx, x ∈ {1, . . . , N} are positively correlated under the measure µL,R.

PROOF. Start from the measure νmλ . Define the map {0, . . . , N + 1}n → R:

(x1, . . . , xn) 7→
∫

D

(

n
∑

i=1

δxi
, η

)

νmλ (dη) =

n
∏

i=1

ρ(xi) (2.8.16)

where ρ(x) = λ
1−λ for x ∈ {1, . . . , N} and ρ(0) = ρL, ρ(N + 1) = ρR. This is clearly

positive definite. Therefore, for x1, . . . , xn ∈ {1, . . . , N}, we have

∫

D

(

n
∑

i=1

δxi
, η

)

µL,R(dη) = lim
t→∞

∫

EηD

(

n
∑

i=1

δxi
, ηt

)

νmλ (dη)

= lim
t→∞

∫

Ê
SIP (m),abs
x1,...,xn

(

D(
n
∑

i=1

δXi(t), η)

)

νmλ (dη)

≥ lim
t→∞

Ê
IRW (m),abs
x1,...,xn

(

∫

D(

n
∑

i=1

δXi(t), η)ν
m
λ (dη)

)

=

n
∏

i=1

lim
t→∞

Ê
IRW (m),abs
xi

ρ(Xi(t))

=

n
∏

i=1

∫

D (δxi
, η)µL,R(dη) (2.8.17)

where we denoted Ê
SIP (m),abs for expectation over SIP (m) particles absorbed at

{0, N + 1}, and Ê
IRW (m),abs for expectation over a system of independent random

walkers (jumping at rate 2m) absorbed (at rate 1) at {0, N + 1}.
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Remark 2.8.2. 1. Proposition 2.8.1 is in agreement with the findings of [9], where

the covariance of ηi, ηj in the measure µL,R was computed explicitly, and turned

out to be positive.

2. For the nearest neighbor SEP on {1, . . . , N} driven at the boundaries, we have

self-duality with absorption of dual particles at {0, N + 1} and duality function

DSEP

(

n
∑

i=1

δxi
, η

)

=
n
∏

i=1

ηxi

where η0 := ρL, ηN+1 = ρR. Since for SEP particles we have the comparison

inequality of Liggett, we have as an analogue of (2.8.15) in the SEP context,

∫ n
∏

i=1

ηxi
µL,R(dη) ≤

n
∏

i=1

∫

ηxi
µL,R(dη)

i.e., ηxi
are negatively correlated. The same holds for the non-equilibrium SEP (n)

driven by appropriate boundary generators. This is in agreement with the results

in [16], where the two-point function of the measure µL,R is computed, and with

the work of [7], where some multiple correlations are explicitly computed.

3. We expect the KMP-model, a model of heat conduction introduced and studied in

[13] to also have positive correlations. Indeed, the KMP and the BEP (2) model

are related by a so-called instantaneous thermalization limit [10]. Therefore, it

is natural to think that similar correlation inequalities should hold for the KMP

as we have derived for the BEP. The limit to obtain the KMP from the BEP

is however difficult to perform on the level of the n-particle representation and

it is thus not clear (to us) how to prove that the KMP preserves the positive

correlation structure of the BEP. A positive hint in this direction comes from

the explicit expression of the two point function which has been computed for the

KMP in the non-equilibrium context in [2].
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3 Condensation in the inclusion process and related models

3.0 Abstract

We study condensation in several particle systems related to the inclusion process.

For an asymmetric one-dimensional version with closed boundary conditions and drift

to the right, we show that all but a finite number of particles condense on the right-

most site. This is extended to a general result for independent random variables with

different tails, where condensation occurs for the index (site) with the heaviest tail,

generalizing also previous results for zero-range processes. For inclusion processes with

homogeneous stationary measures we establish condensation in the limit of vanishing

diffusion strength in the dynamics, and give several details about how the limit is

approached for finite and infinite systems. Finally, we consider a continuous model

dual to the inclusion process, the so-called Brownian energy process, and prove similar

condensation results.

3.1 Introduction

In [1], [2], an interacting particle system was introduced, where particles perform

random walks and interact by “inclusion”, i.e., every particle at site i can attract

particles from a site j to its site at rate p(i, j) = p(j, i). This particle system, the so-

called symmetric inclusion process (SIP), is “exactly solvable” by self-duality, and its

ergodic stationary measures are products of discrete gamma distributions, indexed by

the density. The inclusion process also turns out to be dual to a system of interacting

diffusions, the so-called Brownian energy process (BEP). More details on duality, self-

duality, and the precise relations between SIP and BEP can be found in [1]. In the

present paper we only need the explicit form of the stationary measures of these models.

We prove existence of stationary product measures for inclusion processes under

rather general conditions, in analogy to classical results for exclusion processes [16].

We introduce asymmetric versions of the SIP and the BEP, for simplicity focusing on

a one-dimensional context with N sites and closed boundary conditions. In this case

both models have spatially inhomogeneous product measures as reversible measures

(to be compared with the blocking measure of the asymmetric exclusion process).

Conditioning on K particles in the system (resp. total energy E), we prove that that

in the limit K → ∞ “almost all” the particles (resp. all the energy) are concentrated

on a single site, where the marginal of the reversible measure has the heaviest tail.
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3.2 Inclusion processes

The other sites contain a finite number of particles (resp. finite amount of energy).

We further study condensation in inclusion processes with spatially homogeneous

stationary measures, with the SIP as the main example. The strength of the diffu-

sive part of the dynamics in comparison to the attraction is controlled by a system

parameter m > 0. For fixed particle density ρ we study the limit m→ 0 where attrac-

tion dominates, and show that the single-site marginals converge to Dirac measures

concentrated on zero mass. This corresponds to the fact that a typical configuration

consists of rare piles of typical size 2ρ/m separated by empty sites. The distribution

of pile sizes approaches a power law with exponent −1 and becomes degenerate in the

limit m → 0. This leads to a breakdown of the usual law of large numbers which we

illustrate in detail.

Our results for the asymmetric case also cover condensation phenomena in zero-

range processes, which have attracted a lot of recent research interest [5, 6]. For

inhomogeneous systems, these have been studied before mainly in the context of a

quenched disorder in the jump rates, which have to be non-decreasing functions of

the number of particles [7, 8, 9, 10]. For such systems, the use of coupling techniques

allowed in special cases to also obtain results on the dynamics of condensation. In

contrast, our results cover only the stationary behaviour but apply to a much larger

class of jump rates with essentially no restriction. The widely studied condensation

in spatially homogeneous zero-range processes [11, 12, 13, 14, 15] has a somewhat

different origin than our homogeneous results for the SIP. This is discussed in detail

at the end of Section 4.2.

In the next section we describe the inclusion process and its stationary measures. In

Sections 3 and 4 we study condensation in the asymmetric and spatially homogeneous

case, and discuss extensions and relations to zero-range processes. In Section 5 we

introduce the asymmetric Brownian energy process and discuss condensation in an

example of a system with continuous state space.

3.2 Inclusion processes

The inclusion process on a general discrete set Λ has state space Ω = N
Λ and we

denote a configuration by η = (ηi : i ∈ Λ) where ηi is interpreted as the number of

particles at site i ∈ Λ. The dynamics is defined by the generator defined on the core
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of local functions f : Ω → R:

Lf(η) =
∑

i,j∈Λ

p(i, j)ηi

(m

2
+ ηj

)

(

f(ηi,j)− f(η)
)

, (3.2.1)

where ηi,j is the configuration obtained from η by removing a particle from site i and

putting it to j. The p(i, j) ≥ 0 are jump rates of an irreducible random walk on Λ with

p(i, i) = 0, and the parameter m > 0 determines the rate of diffusion of the particles

as compared to the aggregation part given by the product ηiηj . We also assume the

p(i, j) to be uniformly bounded and of finite range, i.e. there exist C,R > 0 such that

sup
i,j∈Λ

p(i, j) < C and
∣

∣

{

j ∈ Λ : p(i, j) > 0
}∣

∣ < R for all i ∈ Λ . (3.2.2)

This ensures that the dynamics is well defined even on infinite lattices (for a large class

of ’reasonable’ initial conditions) and contains all generic examples we are interested

in, such as nearest-neighbour hopping on regular lattices.

If the p(i, j) are symmetric the inclusion process is also called symmetric (SIP), oth-

erwise asymmetric (ASIP).

3.2.1 Stationary product measures

For ϕ ≥ 0 and λi > 0, i ∈ Λ, define the product probability measure

νϕ(dη) = ⊗i∈Λν
i
ϕ(dηi) , (3.2.3)

where the marginals νi are probability measures on N given by

νiϕ(n) = (zi(ϕ))
−1
λni ϕ

nΓ
(

m
2 + n

)

n!Γ
(

m
2

) (3.2.4)

with the normalizing constant

zi(ϕ) =

∞
∑

n=0

λni ϕ
nΓ
(

m
2 + n

)

n!Γ
(

m
2

) = (1− λiϕ)
−m/2

. (3.2.5)

The parameter ϕ ≥ 0 is called fugacity and controls the particle density, which is

invariant under the time evolution.

Theorem 3.2.1. For all ϕ < ϕc :=
(

supi∈Λ λi
)−1

, νϕ is a stationary measure for the

inclusion process with generator (3.2.1), provided that one of the following conditions

holds:
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3.2 Inclusion processes

a) The p(i, j) are doubly stochastic modulo a constant, i.e.
∑

j∈Λ

(

p(i, j)− p(j, k)
)

= 0 for all i, k ∈ Λ , (3.2.6)

and λi = 1 for all i ∈ Λ.

b) The λi are reversible w.r.t. the p(i, j), i.e.

λip(i, j) = λjp(j, i) for all i, j ∈ Λ , (3.2.7)

and in that case νϕ is also a reversible measure.

This is in direct analogy with well-known results for stationary measures for exclu-

sion processes (see e.g. [16], Thm VIII.2.1). In both cases, the λi are special harmonic

functions solving
∑

j∈Λ

(

λip(i, j)− λjp(j, i)
)

= 0 for all i ∈ Λ , (3.2.8)

i.e. they provide a (not necessarily normalized) stationary distribution for the underly-

ing random walk of a single particle. For the above product measures to be stationary,

the p(i, j) have to be such that they admit a constant solution (first case) or a detailed

balance solution (second case). It is not clear at this point whether these conditions are

really necessary for the existence of stationary product measures in general. Note also

that on infinite lattices ϕc = 0 is possible. But for finite Λ (which we mainly focus on in

this paper), Theorem 3.2.1 guarantees the existence of a family of stationary measures.

PROOF. We have to show for expected values w.r.t. νϕ that

νϕ(Lf) =
∑

η∈Ω

∑

i,j∈Λ

p(i, j)ηi

(m

2
+ ηj

)

(f(ηi,j)− f(η))νϕ(η) = 0 (3.2.9)

for all local functions f . For fixed i, j we get after a change of variable
∑

η∈Ω

p(i, j)ηi

(m

2
+ ηj

)

f(ηi,j)νϕ(η)

=
∑

η∈Ω

p(i, j)(ηi + 1)
(m

2
+ ηj − 1

)

f(η)νϕ(η
j,i) .

The form (3.2.4) of the marginals implies that for all i ∈ Λ and k ≥ 0

νiϕ(k + 1)

νiϕ(k)
= ϕ

m+ 2k

2(k + 1)
λi .
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3 Condensation in the inclusion process and related models

Thus we get for each fixed pair i, j ∈ Λ

νiϕ(n+1) νjϕ(k−1) (n+ 1)
(m

2
+ k − 1

)

= νiϕ(n) ν
j
ϕ(k) k

(m

2
+ n

) λi
λj

for all n ≥ 0 and k ≥ 1. It is easy to check that boundary terms in the sums vanish

consistently, and we do not consider them in the following. Plugging this into (3.2.9)

we get

νϕ(Lf) =
∑

η∈Ω

f(η)νϕ(η)
∑

i,j∈Λ

p(i, j)

(

ηj

(m

2
+ηi

) λi
λj

−ηi
(m

2
+ηj

)

)

, (3.2.10)

and exchanging the summation variables i↔ j in the first part of the sum leads to

νϕ(Lf) =
∑

η∈Ω

f(η)νϕ(η)
∑

i,j∈Λ

ηi (m/2 + ηj)

λi

(

p(j, i)λj − p(i, j)λi
)

. (3.2.11)

This clearly vanishes under the reversibility condition (3.2.7) which implies stationarity

under assumption b). In analogy to (3.2.10) we can derive

νϕ(gLf) =
∑

η∈Ω

f(η)νϕ(η)

∑

i,j∈Λ

p(i, j)

(

ηj

(m

2
+ηi

) λi
λj
g(ηj,i)− ηi

(m

2
+ηj

)

g(η)

)

,

and after using (3.2.7) and the exchange of summation variables this implies

νϕ(gLf) =
∑

η∈Ω

f(η)νϕ(η)
∑

i,j∈Λ

p(i, j)ηi

(m

2
+ηj

)

(

g(ηi,j)− g(η)
)

= νϕ(fLg) ,

so νϕ is also reversible.

Assuming a), the λi and λj in (3.2.11) cancel, and we write the linear (diffusive) part

as
∑

i∈Λ

ηi
m

2

∑

j∈Λ

(p(j, i)− p(i, j)) = 0 ,

which vanishes due to (3.2.6). For the quadratic aggregation part we get
∑

i,j∈Λ

ηiηj (p(j, i)− p(i, j)) =
∑

i,j∈Λ

ηiηj (p(j, i)− p(j, i)) = 0 ,

by another exchange of the summation variables in the second part, using that ηiηj is

symmetric under i↔ j.
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3.3 Condensation in the ASIP

3.2.2 Canonical measures for finite systems

Consider a finite lattice ΛN of size N with corresponding state space ΩN = N
ΛN .

Starting with a fixed number of K particles, the inclusion process with generator LN

as given in (3.2.1) is an irreducible continuous-time Markov chain on the finite set

AK =

{

η ∈ ΩN :
N
∑

i=1

ηi = K

}

, (3.2.12)

and has a unique stationary measure, which we denote by µK .

By conservation of the number of particles, the conditional measure

νϕ

(

dη

∣

∣

∣

∣

∣

N
∑

i=1

ηi = K

)

is also invariant. Indeed for f : ΩN → R we have

∫

LNf(η)νϕ
(

dη
∣

∣AK

)

=

∫

LNf(η)1AK
νϕ(dη)

νϕ(AK)

=

∫

f(η) (L∗
N (1AK

)) (η)νϕ(dη)

νϕ(AK)
= 0 , (3.2.13)

since it is easy to see that with the generator LN also its adjoint L∗
N conserves the

number of particles. In the case of reversible measures νϕ, LN is self-adjoint and there

is nothing to check. By uniqueness of the stationary measure, we thus have

νϕ(. |AK) = µK (3.2.14)

for all ϕ < ϕc and K ∈ N. So the conditioned product measures are actually indepen-

dent of ϕ, and this connection provides an explicit form for the canonical measures

µK .

3.3 Condensation in the ASIP

A generic situation where Theorem 3.2.1 gives rise to spatially inhomogeneous re-

versible measures is a one-dimensional lattice ΛN = {1, . . . , N} with an underlying
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3 Condensation in the inclusion process and related models

asymmetric nearest-neighbour walk. We consider the ASIP with generator

LNf(η) =

N−1
∑

i=1

pηi

(m

2
+ ηi+1

)

(f(ηi,i+1)− f(η))

+

N−1
∑

i=1

qηi+1

(m

2
+ ηi

)

(f(ηi+1,i)− f(η)) (3.3.1)

where p > q > 0. In this case λi = (p/q)i fulfills condition (3.2.7) in Theorem

3.2.1. We will now proceed towards showing that in the limit K → ∞, under the

canonical measure µK , the typical situation will be that all but a finite number of

particles condenses at the right site i = N , whereas the other sites contain a number

of particles distributed according to νiϕc
.

At first sight one could be tempted to think that this is just a consequence of the

asymmetry: particles are pushed to the right. This is, however, not the case. If we

consider independent random walkers, moving at rate p to the right and q to the left,

then the reversible profile measures are Poissonian and given by ⊗N
i=1ν

i
ϕ(dηi) with

νiϕ(n) =
1

zi(ϕ)

(

p

q

)ni
ϕn

n!

with a normalizing constant zi(ϕ) = eϕ(p/q)i which is now finite for all values of ϕ.

As a consequence, no condensation happens: if we condition on having K particles,

and let K tend to infinity, all sites will carry a diverging number of particles. The

condensation phenomenon is thus a combination of the asymmetry, together with the

attractive interaction between the particles in the inclusion process. Indeed, it is the

interaction which is responsible for the existence of a finite critical ϕc.

3.3.1 Condensation

Before we formulate the main result of this Section, we recall the marginals νiϕ for the

ASIP

νiϕ(n) =
1

zi(ϕ)
ϕnλni wi(n) , (3.3.2)

where we have now

λi = (p/q)i (3.3.3)
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3.3 Condensation in the ASIP

and write

wi(n) =
Γ
(

n+ m
2

)

n!Γ(n)
. (3.3.4)

In the present case wi does not dependend on i, but in generalizations explained below

we will allow explicit dependence on i. The weights wi(n) have the asymptotic behavior

wi(n) ∼ n
m
2 −1 (3.3.5)

where an ∼ bn means that an/bn converges to a strictly positive constant.

We remind that the normalizing constants are

zi(ϕ) = (1− λiϕ)
−m/2

=

(

1−
(

p

q

)i

ϕ

)−m/2

. (3.3.6)

Therefore, in the context of Theorem 3.2.1 we have λ1 < λ2 < . . . < λN , ϕc = 1/λN ,

zi(ϕc) < ∞ for all 1 ≤ i ≤ N − 1, and zN(ϕ) < ∞ for all ϕ < ϕc. We then have the

following result.

Theorem 3.3.1. a) In the limit K → ∞, η1, . . . , ηN−1 are asymptotically inde-

pendent and converge in distribution to the critical product measure, i.e. for all

n1, . . . , nN−1 ∈ N

µK (η1 = n1, . . . , ηN−1 = nn−1) → ν1ϕc
(n1) · · · νN−1

ϕc
(nN−1) (3.3.7)

where ϕc = 1/λN = (q/p)N .

b) In the limit K → ∞, the right edge contains “almost all” particles, i.e., for all

δ ∈ (0, 1)

µK
(

ηN ≤ (1− δ)K
)

→ 0 , (3.3.8)

and we have a strong law of large numbers, ηN/K → 1 a.s. .

PROOF. We use that µK = νϕ(. |AK) and write for Λ′ ⊆ ΛN

Z(Λ′,K) =
∑

{ni,i∈Λ′:
∑

i∈Λ′ ni=K}

∏

i∈Λ′

wi(ni)λ
ni

i . (3.3.9)

We then have

µK (η1 = n1, . . . , ηN−1 = nn−1) =

=
1

Z(ΛN ,K)
wN

(

K −
N−1
∑

i=1

ni

)

λ
K−

∑N−1
i=1 ni

N

N−1
∏

i=1

wi(ni)λ
ni

i . (3.3.10)
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3 Condensation in the inclusion process and related models

We first prove that

lim
K→∞

Z(ΛN ,K)

λKNwN (K)
=

N−1
∏

i=1

zi(ϕc) . (3.3.11)

To see this, we choose an appropriate order of summation,

Z(ΛN ,K) =

K
∑

n1=0

K−n1
∑

n2=0

. . .

K−(n1+...nN−2)
∑

nN−1=0




N−1
∏

j=1

wj(nj)λ
nj

j



wN



K −
N−1
∑

j=1

nj



λ
K−

∑N−1
j=1 nj

N

= λKNwN (K)

∞
∑

n1=0

. . .

∞
∑

nN−1=0

ΨK(n1, . . . , nN−1)
N−1
∏

j=1

wj(nj)

(

λj
λN

)nj

(3.3.12)

with

ΨK(. . .) =
wN

(

K−∑N−1
j=1 nj

)

wN (K)
1n1≤K · · · 1nN−1≤K−n1−..−nN−2 . (3.3.13)

We see from (3.3.4) that ΨK ≤ 1. Therefore, by dominated convergence, using that

ϕc = λ−1
N and

zi(ϕc) =

∞
∑

n=0

ϕn
c wi(n)λ

n
i =

∞
∑

n=0

wi(n)

(

λi
λN

)n

<∞ ,

we obtain (3.3.11). Combining (3.3.10) and (3.3.11) with the fact that

lim
K→∞

wN (K − n)

wN (K)
= 1 for all n ∈ N (3.3.14)

(which follows immediately from (3.3.5)), yields item a) of Theorem 3.3.1.

To prove item b), we start with

µK
(

ηN ≤ (1− δ)K
)

=

∑

n≤(1−δ)K wN (n)λnNZ(ΛN \ {N},K − n)

Z(ΛN ,K)
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3.3 Condensation in the ASIP

and estimate, for n ≤ (1− δ)K and a small enough ǫ′ > 0 to be chosen below:

Z(ΛN \ {N},K − n) ≤ (λN−1(1 + ǫ′))
K−n

K−n
∑

n1=0

. . .

K−n−(n1+...+nN−3)
∑

nN−2=0

wN−1



K − n−
N−2
∑

j=1

nj









N−2
∏

j=1

wj(nj)

(

λj
λN−1(1 + ǫ′)

)nj





≤ C (λN−1(1 + ǫ′))
K−n

(1 + ǫ)K . (3.3.15)

Here we have used that (cf. (3.3.5))

wN−1



K − n−
N−2
∑

j=1

nj



 ≤ C(1 + ǫ)K (3.3.16)

for some ǫ > 0 to be chosen below, and the fact that the remaining sums in the RHS

of (3.3.15) converge to a finite value as K → ∞. By (3.3.11) Z(ΛN ,K) is bounded

below by C′λKNwN (K) for K large enough. This then gives

µK
(

ηN ≤ (1−δ)K
)

≤ C′′





∑

n≤(1−δ)K

wN (n)

wN (K)





(

(1+ǫ)1/δ(1+ǫ′)λN−1

λN

)δK

,

since for the summation indices K − n ≥ δK. Choosing ǫ, ǫ′ > 0 small enough such

that

0 <
(1 + ǫ)1/δ(1 + ǫ′)λN−1

λN
< q < 1

and using that wN (n)
wN (K) ≤ 1 , we obtain

µK(ηN ≤ (1− δ)K) ≤ C′′qδK . (3.3.17)

Choosing δ = δK = 1/
√
K → 0, we get a summable bound on the right-hand side.

Since by definition ηN ≤ K a.s. under the measure µK , this implies almost sure con-

vergence and the strong law ηN/K → 1 by Borel-Cantelli.
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3 Condensation in the inclusion process and related models

3.3.2 Generalizations

Notice that in the proof of Theorem 3.3.1 we did not use the specific form of wi and

λi. Therefore, the same proof shows a condensation phenomenon for a general family

of independent random variables η1, . . . , ηN with

P(ηi = n) =
1

zi(ϕ)
wi(n)λ

n
i ϕ

n

under the following hypotheses on the wi, λi:

a) The λi satisfy

λN >
N−1
max
i=1

λi , (3.3.18)

b) the weights wi(n) are subexponential in the following sense

lim
n→∞

wi(n+ 1)

wi(n)
= 1 (3.3.19)

for all 1 ≤ i ≤ N .

From (3.3.19), (3.3.14) follows directly, and it further implies that for all α > 0 there

exists Cα > 0 such that for all n ≥ 0

C−1
α e−αn ≤ wi(n) ≤ Cαe

αn .

From this bound we conclude that for all β > 0, there exists Cβ > 0 such that for all

n, l ≥ 0,

C−1
β e−β(n+l) ≤ wi(n)

wi(l)
≤ Cβe

β(n+l) .

This is all we need in the dominated convergence argument to bound ΨK of (3.3.13),

and to conclude (3.3.16), (3.3.17). Therefore, under the assumptions a), b) we conclude

the statement of Theorem 3.3.1 with

µK = P

(

·
∣

∣

∣

∣

∣

N
∑

i=1

ηi = K

)

.

Example: Zero-range processes

Consider a general zero-range process on ΩN = N
{1,...,N} with generator

LNf(η) =
∑

i,j

p(i, j) gi(ηi)
(

f(ηi,j)− f(η)
)

, (3.3.20)
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where p(i, j) are rates of an irreducible continuous-time random walk on {1, . . . , N}
and where gi : N → [0,∞) with gi(n) = 0 if and only if n = 0. Moreover, we assume

for the moment that gi(n) → γi ∈ (0,∞) as n→ ∞ for all i = 1, . . . , N .

By irreducibility of p(i, j), up to multiplicative constants there exists a unique func-

tion κ : {1, . . . , N} → (0,∞) such that for all i,

N
∑

i=1

(κjp(j, i)− κip(i, j)) = 0 . (3.3.21)

Under these conditions it is well known [17] that the zero-range process has stationary

product measures with marginals

νiϕ(n) =
1

zi(ϕ)

ϕnκni
∏n

k=1 gi(k)
, (3.3.22)

which are of the form (3.3.2) with

wi(n) =
γni

∏n
k=1 gi(k)

and λi =
κi
γi

.

So in order to apply the general result, we need

κN
γN

>
N−1
max
i=1

κi
γi

,

and the subexponentiality condition on wi follows since

lim
n→∞

wi(n+ 1)

wi(n)
= lim

n→∞

γi
gi(n+ 1)

= 1 .

Remark 3.3.2. 1. The case γi = ∞ for some i 6= N can be included as well. In

that case, zi(ϕ) <∞ in (3.3.22) for all ϕ > 0, in particular for ϕ = ϕc = 1/λN .

Therefore the result of Theorem 3.3.1 still holds.

2. If there are more sites i such that λi = λN , then a) of Theorem 3.3.1 holds for

all i where λi < λN . Item b) becomes that all but a finite amount of mass is

concentrated on the sites where λi = λN .

Note that we make no assumptions on the jump rates of the zero-range process except

a regular limiting behaviour, in particular there are no monotonicity assumptions. The

latter have been in place in previous work on inhomogeneous zero-range condensation

where the gi are non-decreasing [7, 8, 10, 9], which made it possible to make much

stronger statements including also the time evolution of the condensation. In that

sense Theorem 3.3.1 is a generalization of previous results regarding only the stationary

distribution.
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3.4 Condensation in homogeneous

inclusion processes

In this section we study condensation in spatially homogeneous systems. There are

two natural situations where Theorem 3.2.1 leads to spatially homogeneous product

measures νϕ. If the p(i, j) are symmetric, i.e. p(i, j) = p(j, i) for all i, j ∈ Λ then

the reversibility condition (3.2.7) is fulfilled by taking a constant λi = 1 for all i ∈ Λ

independent of the geometry of the lattice. The same solution holds for translation

invariant, asymmetric processes according to condition (3.2.6), where

p(i, j) = q(j − i) for some q : Λ → [0,∞) with bounded support .

In the second case the lattice also has to be translation invariant, such as Λ = Z
d

or a finite subset with periodic boundary conditions. The measures νϕ are then not

reversible and the system can support a non-zero stationary current of the form

J(ρ) = ρ
(m

2
+ ρ
)

∑

k∈Λ

k q(k) .

3.4.1 Stationary measures

In both cases discussed above the inclusion process has a family of homogeneous sta-

tionary product measures with marginals

νiϕ(n) =
1

z(ϕ)
ϕnΓ

(

m
2 + n

)

n!Γ
(

m
2

) , (3.4.1)

and the normalizing constant

z(ϕ) =

∞
∑

n=0

ϕnΓ
(

m
2 + n

)

n!Γ
(

m
2

) = (1− ϕ)−m/2 . (3.4.2)

The measures are well defined for all positive ϕ < ϕc = 1, and the average number of

particles per site is given by

ρm(ϕ) = ϕ∂ϕ log z(ϕ) =
m

2

ϕ

1− ϕ
. (3.4.3)

Inverting this relation ϕm(ρ) = ρ
m/2+ρ allows us – with a slight abuse of notation – to

index the measures by the density,

ν(m)
ρ (n) =

1

z(ϕm(ρ))

(

ρ

m/2 + ρ

)n Γ
(

m
2 + n

)

n!Γ
(

m
2

) . (3.4.4)
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inclusion processes

We also replace the superscript since the marginals are site-independent and we want

to stress the dependence on the parameter m. Since the density can take all values

between 0 and ∞, we see that for fixed m > 0 the attraction between the particles is

not strong enough and the inclusion process does not exhibit condensation. However,

if we increase the relative strength of the attractive part in the generator (3.2.1) by

taking m smaller and smaller at a fixed density ρ, a condensation phenomenon occurs

in the limit m→ 0.

Theorem 3.4.1. As m→ 0, we have for all ρ > 0

ν(m)
ρ (0) =

(

m

2ρ

)m/2
(

1 + o(1)
)

→ 1 and

ν(m)
ρ (n) =

m

2

(

m

2ρ

)m/2(

1− m

2ρ

)n

nm/2−1
(

1 + o(1)
)

→ 0 (3.4.5)

for n ≥ 1, which implies
2

m
ν(m)
ρ (n) → 1

n
. (3.4.6)

PROOF. By direct computation we get that

z (ϕm(ρ)) =

(

1− ρ

m/2 + ρ

)−m/2

=

(

2ρ

m

)m/2
(

1 + o(1)
)

→ 1 (3.4.7)

as m → 0, which directly implies the statement for ν
(m)
ρ (0) = 1/z (ϕm(ρ)). For every

fixed n ≥ 1 we have

(

ρ

m/2 + ρ

)n

=

(

1− m

2ρ

)n
(

1 + o(1)
)

→ 1 ,

and using Γ(x) ∼ 1
x as x→ 0 and (3.3.5) we obtain

Γ
(

m
2 + n

)

n!Γ
(

m
2

) =
m

2
nm/2−1

(

1 + o(1)
)

→ 0 ,

which implies the second statement. The limit in (3.4.6) follows immediately from the

asymptotic behaviour.

Therefore, for small diffusion ratem sites are either empty with very high probability,

or contain a large number of particles to match the fixed expected value ρ > 0. From

105



3 Condensation in the inclusion process and related models
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Figure 3.1: The scaled marginal (2/m)ν
(m)
ρ for ρ = 1 and for several values of m (full

colored lines). The asymptotic behaviour as given in (3.4.8) is indicated

by dotted lines.

theorem 3.4.1 we infer the following leading-order behaviour for small fixed m,

ν(m)
ρ (n) ≃ m

2

{

n−1 , 1 ≪ n≪ 2ρ/m

(1 − m
2ρ)

nnm/2−1 , n≫ 2ρ/m
, (3.4.8)

where we have used
(

1− m

2ρ

)n

≃
(

1− mn

2ρ

)

≃ 1 for n≪ 2ρ/m ,

with the notation am ≃ bm if am/bm → 1 as m→ 0.

So the marginals show an approximate power law decay with exponent −1, until an

exponential cut-off sets in at the scale n ∼ 2ρ/m. This is illustrated in Figure 3.1,

where we see that the asymptotic behaviour for large n fits very well also for smaller

values of n. Despite the small prefactor m/2 the density ρ > 0 is realized by the

asymptotic heavy-tail behaviour, and for each m > 0 the distribution is normalized

due to the cut-off. Conditioned on a site being non-empty, its distribution is given by

ν
(m)
ρ (n)/

(

1− ν
(m)
ρ (0)

)

. Using that to leading order

1− ν(m)
ρ (0) ≃ 1−

(

m

2ρ

)m/2

≃ −m
2
logm ,
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inclusion processes

we get with (3.4.8) for the conditional distributions

ν
(m)
ρ (n)

1− ν
(m)
ρ (0)

| logm| → 1

n
as m→ 0 . (3.4.9)

Like in (3.4.6), convergence is clearly non-uniform due to the cut-off, and the limit is

not a probability distribution. The interpretation of this result in terms of conden-

sation depends on the geometry and is different for finite and infinite lattices Λ, as

discussed below.

3.4.2 Finite systems

For finite lattices one can condition on the total number of particles in the system,

defining the canonical measures as in Section 2.2. The basic features of this approach

can already be understood on a system with two sites and Λ = {1, 2}. Let η1, η2 be

two random variables each distributed as ν
(m)
ρ and consider their joint distribution µK

m

conditioned on their sum being equal to K ∈ N, i.e.

µK
m := νρ

(

.
∣

∣η1 + η2 = K
)

. (3.4.10)

For each K ∈ N and m > 0 the inclusion process is irreducible and µK
m is the unique

stationary measure (cf.(3.2.13)). A first observation is that, as before, µK
m does in fact

not depend on ρ since due to cancellation

µK
m(η1 = n1, η2 = n2) =

δn1+n2,K ν
(m)
ρ (n1)ν

(m)
ρ (n2)

∑K
l=0 ν

(m)
ρ (l)ν

(m)
ρ (K − l)

=
δn1+n2,K Γ(m/2 + n1)Γ(m/2 + n2)/(n1!n2!)
∑K

l=0 Γ(m/2 + l)Γ(m/2 +K − l)/(l!(K − l)!)
. (3.4.11)

Proposition 3.4.2. In the limit m→ 0 we have for all K > 0

µK
m → 1

2
(δ(K,0) + δ(0,K)) , (3.4.12)

i.e. all particles concentrate on one of the sites with equal probability.

PROOF. With η2 = K − η1 we have

µK
m(η1 = n, η2 = K − n) =

Γ(m2 + n)Γ(m2 +K − n)/(n!(K − n)!)
∑K

l=0 Γ(
m
2 +l)Γ(

m
2 +K−l)/(l!(K − l)!)

. (3.4.13)
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3 Condensation in the inclusion process and related models

In the normalizing sum, as m→ 0, the two terms for l = 0,K diverge like Γ(m/2)/K,

whereas the rest of the sum converges. Also the term in the numerator of µK
m(η1 = n)

diverges like Γ(m/2)/K if n = 0 or K and is finite otherwise. This implies the result.

The interpretation is that as m → 0 aggregation dominates more and more over

diffusion and the particles tend to cluster on one of the lattice sites. The onset of

condensation for smallm can be well illustrated in the limit of infinitely many particles.

Proposition 3.4.3. In the limit K → ∞ we have for all m > 0,
(η1
K
,
η2
K

)

µK

−→ (B, 1−B) in distribution , (3.4.14)

where B ∈ [0, 1] is a continuous random variable with Beta
(

m
2 ,

m
2

)

distribution and

PDF

fB(x) =
Γ(m/2)2

Γ(m)
xm/2−1(1− x)m/2−1 , x ∈ [0, 1] . (3.4.15)

PROOF. Using (3.3.5) we get as K → ∞ and n/K → x ∈ [0, 1] for the asymptotic

form of the numerator of (3.4.13)

Km−2xm/2−1(1 − x)m/2−1 .

For the denominator we get the integral

Km−2

∫ 1

0

ym/2−1(1 − y)m/2−1K dy = Km−1 Γ(m)

Γ(m/2)2
,

using the representation B(r, s) = Γ(r+s)
Γ(r)Γ(s) for the Beta function. Thus we have that

KµK
m(η1 = n) → fB(x) converges to the PDF of the Beta

(

m
2 ,

m
2

)

distribution.

We see that for m < 2 one site contains most of the particles while for m > 2 both

sites are likely to have around K/2 particles. The boundary case is m = 2, where the

particles are distributed uniformly among the two sites. This is a standard property

of the symmetric Beta distribution and is illustrated in Figure 3.2. In the limit m→ 0

we recover the degenerate distribution (3.4.12).

Remark 3.4.4. a) The result (3.4.12) can be immediately generalized to a finite

set ΛN = {1, . . . , N} of N ≥ 2 sites. In the limit m→ 0 we have for all K ∈ N

µK
m → 1

N

N
∑

i=1

δK ei , (3.4.16)
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Figure 3.2: The limit distribution of η1/K as K → ∞, given by the PDF of

Beta
(

m
2 ,

m
2

)

(cf. 3.4.15) for several values of m.

where ei = (.., 0, 1, 0, ..) ∈ R
N is the standard unit vector in direction i.

b) In the absence of diffusion for m = 0 the inclusion process has in general many

absorbing states which exhibit several isolated piles of particles. However, if

the p(i, j) > 0 for all i, j ∈ ΛN , then all absorbing states have exactly one

pile containing all the particles. The stationary measures are then all possible

mixtures

N
∑

i=1

αiδK ei with αi ∈ [0, 1] and
∑

i

αi = 1 . (3.4.17)

The limit result (3.4.16) leads only to the symmetric mixture, due to homogeneity

and ergodicity of the process for m > 0.

Connection to zero-range processes.

This result is slightly different from most previous work on homogeneous zero-range

condensation, which is mostly discussed in the limit of infinitely many particles [13]

or the thermodynamic limit [11, 6]. In this case, above a certain density or particle

number all sites have heavy-tailed distributions and condensation is a consequence of

large deviation properties of such random variables, as discussed in detail in [14].
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3 Condensation in the inclusion process and related models

For the inclusion process we discuss the two extreme cases of a finite and an infinite

lattice (see next section), in the limit of a vanishing system parameter m → 0. The

distributions of the occupation numbers always have exponential tails due to the cut-

off (3.4.8), which disappears in the limit in a non-uniform way. This is very similar

to results in [18], where a parameter was varied together with the system size in a

joint limit. Analogous results are phrased here in terms of the law of large numbers

in the next section. Size-dependent system parameters have also been studied in [19],

which can lead to a cut-off similar to (3.4.8) and a typical maximal cluster size also in

zero-range processes.

As a further difference to zero-range condensation, there is no non-trivial critical

density ρc for the distribution of sites outside the maximum in the inclusion process.

In fact, in the limit m→ 0 all N particles condense on a single site, which corresponds

to ρc = 0 and is an absorbing state for the dynamics with m = 0. This is related

to results on zero-range processes where the jump rates vanish in the limit of infinite

occupation number, which has been studied in [20] and more recently also in [21].

3.4.3 The infinite-volume limit

For finite systems with a fixed number of particles the exponential part of the product

measures that leads to a cut-off for large n (cf. (3.4.8)) did not play any role due to

cancellation, but will be of importance for infinite systems. For simplicity we consider

stationary configurations of the symmetric inclusion process (SIP) on the infinite lattice

Λ = N which leads to a family of iid random variables η1, η2, . . . with distribution ν
(m)
ρ

(3.4.4). In this context the condensation phenomenon for m → 0 can be formulated

as a breakdown of the usual law of large numbers.

For every m > 0 by definition E(ηi) = ρ and a usual law of large numbers holds, i.e.

SK :=
1

K

K
∑

i=1

ηi → ρ a.s. as K → ∞ . (3.4.18)

On the other hand, ηi → 0 as m → 0 in distribution, and therefore we have for all

K ∈ N even for the unnormalized sums

K
∑

i=1

ηi → 0 in distr. as m→ 0 .
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inclusion processes

This implies that the limiting behaviour of the empirical mean as K → ∞ and m→ 0

depends on the order of limits. Thus we are interested in the joint limit Km → ∞ as

m → 0 to identify the scale on which the law of large numbers changes behaviour. It

turns out that there are two interesting scales for Km.

Proposition 3.4.5. Let κm = −1
m logm . Then as m→ 0 we have (in distr.)

∆Km
:=

Km
∑

i=1

(

1− δ0,ηi

)

−→











0 , Km ≪ κm

Wδ , Km/κm → δ ∈ (0,∞)

∞ , Km ≫ κm

, (3.4.19)

where Wδ ∼ Poi(δ/2) is a Poisson random variable with mean δ/2. In the last case,

∆Km
= Km

2κm

(

1 + o(1)
)

.

Furthermore, on the larger scale 1/m≫ κm we have

SKm
=

1

Km

Km
∑

i=1

ηi −→











0 , Km ≪ 1/m

Xγ , Kmm→ γ ∈ (0,∞)

ρ , Km ≫ 1/m

, (3.4.20)

where Xγ ∼ Gamma
(

γ
2 ,

2ρ
γ

)

is a Gamma random variable with mean ρ.

PROOF. Denote the probability of ηi > 0 by

pm := 1− ν(m)
ρ (0) = −m

2
logm

(

1 + o(1)
)

=
1

2κm

(

1 + o(1)
)

, (3.4.21)

with asymptotics for m → 0. Then 1 − δ0,ηi
∼ Be(pm) are i.i.d. Bernoulli random

variables and therefore ∆Km
∼ Bi(Km, pm) is a Binomial with

P(∆Km
= n) =

(

Km

n

)

pnm(1 − pm)Km−n ,

counting the non-zero contributions to the sum SKm
. pm → 0 as m→ 0 with asymp-

totics given in (3.4.21), and (3.4.19) is a well-known scaling result for Binomial r.v.s.

Since the rescaled random variables (1− δ0,ηi
)/pm have mean 1, we have by the ususal

law of large numbers

∆Km

Kmpm
=

1

Km

Km
∑

i=1

1

pm
(1− δ0,ηi

) → 1 .

This holds whenever Kmpm → ∞ or, equivalently, Km ≫ κm since the sum will have

infinitely many non-zero contributions, and implies that ∆Km
= Km

2κm

(

1 + o(1)
)

.
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3 Condensation in the inclusion process and related models

Analogous to (3.4.2) we get for the characteristic function of ηi

χη(t) = E
(

eitη1
)

=

(

1− ϕ

1− eitϕ

)m/2

.

For the rescaled sum SKm
of Km independent r.v.s we get

χS(t) = χη(t/Km)Km =

(

1 +
2ρ

m

(

1− eit/Km

)

)−Kmm/2

,

where we used ρ = ρm(ϕ) = m
2

ϕ
1−ϕ as in (3.4.3) to fix the density. As K → ∞ we

have for all complex z 6= 0

1− z1/K = − 1

K
log z

(

1 + o(1)
)

. (3.4.22)

This leads to the asymptotics

χS(t) =

(

1− 2ρ

Kmm
it

)−Kmm/2
(

1 + o(1)
)

,

since the correction terms from (3.4.22) are of order 1/Km ≪ 1/(mKm). Therefore,

as m→ 0

χS(t) −→
{

1 , mKm → 0

eitρ , mKm → ∞
,

which implies the weak law of large numbers in the two extreme cases of (3.4.20). In

the intermediate case mKm → γ we have

χS(t) →
(

1− 2ρ

γ
it

)−γ/2

,

which is the characteristic function of a Gamma
(

γ
2 ,

2ρ
γ

)

random variable.

This result leads to the following interpretation for the limiting behaviour of SKm

as m→ 0.

a) Km ≪ κm: There are no non-zero contributions to SKm
and even the unnormal-

ized sum KmSKm
→ 0.

b) Km ∼ κm: There is a finite (Poisson distributed) number of non-zero contribu-

tions to SKm
, but still SKm

→ 0. Since the law of these contributions becomes

degenerate as m→ 0 (cf. (3.4.9)) we have no scaling law for KmSKm
.
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Figure 3.3: The limit distribution of SKm
as m → 0 with mKm → γ, given by the

PDF of a Gamma
(

γ
2 ,

2ρ
γ

)

random variable (3.4.20). In all cases ρ = 1, and

increasing γ (3 values shown) interpolates between the deterministic limits

0 and ρ.

c) κm ≪ Km ≪ 1/m: SKm
has an infinite number of non-zero contributions, but

still vanishes as m→ 0.

d) Km ∼ 1/m: SKm
has a random limiting value (Gamma distributed) with mean

ρ, and infinitely many non-zero contributions. This interpolates between the

deterministic limits 0 and ρ, as shown in Fig. 3.3.

e) Km ≫ 1/m: The usual weak law of large numbers holds, i.e. SKm
→ ρ as

m→ 0.

If we interpret η1, η2, . . . as a configuration of the inclusion process, this result gives

detailed information about the structure of such configurations as m → 0. They are

in direct analogy to results in [18] on a particular zero-range process, which have just

been formulated in an inverted fashion corresponding to a parameter mK → 0 in the

limit K → ∞.
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3 Condensation in the inclusion process and related models

3.5 The Brownian energy process

In [1] we introduced the Brownian energy process with parameterm > 0 (abbreviation

BEP(m)), and explained how, for integer values of m it is related to the Brownian

momentum process with m momenta per site.

More precisely, the BEP(m) is an interacting diffusion process on ΩN = [0,∞)1,...,N

with generator

Lf(x) =

N−1
∑

i=1

4xixi+1

(

∂

∂xi
− ∂

∂xi+1

)2

−2m(xi − xi+1)

(

∂

∂xi
− ∂

∂xi+1

)

, (3.5.1)

where for a configuration of “energies” x ∈ ΩN , xi denotes the energy at site i ∈
{1, . . . , N}.
In [3] we introduced an asymmetric version of the Brownian momentum process.

This model was later studied in [4]. Motivated by this asymmetric modification of the

Brownian momentum process, we now introduce an asymmetric version of BEP(m)

via its generator

Lf(x) =
N−1
∑

i=1

4xixi+1

(

∂

∂xi
− ∂

∂xi+1

)2

−2m(xi − xi+1)

(

∂

∂xi
− ∂

∂xi+1

)

−2Exixi+1

(

∂

∂xi
− ∂

∂xi+1

)

. (3.5.2)

We focus on a one-dimensional nearest-neighbour lattice as for the ASIP in Section 3,

but the definition could of course be generalized to arbitrary geometries. Obviously,

the total energy f(x) =
∑N

i=1 xi is conserved, and for E > 0 the process has a drift to

the left, which can most easily be seen from the stationary measures discussed in the

next section.

3.5.1 Condensation in the ABEP

We first consider m = 2, E > 0, and two sites. This is the simplest case because

the marginals of the stationary distribution are exponential, which makes explicit

computations simple. The generalization to m > 0 and more sites is easy.
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3.5 The Brownian energy process

The generator, written in the variables (x1, x2) =: (u, v), then reads:

L = 4uv

(

∂

∂u
− ∂

∂v

)2

−4(u− v)

(

∂

∂u
− ∂

∂v

)

+2Euv

(

∂

∂u
− ∂

∂v

)

The adjoint (in L2(R, dx)) is given by (the closure of the operator)

L∗ = 4uv

(

∂

∂u
− ∂

∂v

)2

−4(u− v)

(

∂

∂u
− ∂

∂v

)

+2E(u− v)− 2Euv

(

∂

∂u
− ∂

∂v

)

.

As an ansatz for the density of the stationary distribution we put

f(u, v) = abe−aue−bv (3.5.3)

with a, b > 0. Plugging this in the equation for the stationary density L∗f = 0 gives

4uv(b− a)2 + 4(v − u)(b− a) + 2E(u− v)− 2Euv(b− a) = 0 ,

which leads to

b = a+
E

2
(3.5.4)

and

f(u, v) = a(a+ E/2)e−aue−ave−Ev/2 . (3.5.5)

In order to state our condensation result, denote by (UK , VK) the pair (U, V ) with

probability density (3.5.5) conditioned on U + V = K. We then have the following

result, which should be thought of as the analogue of Theorem 3.3.1, but now in

continuous state space setting.

Theorem 3.5.1. a) As K → ∞, VK converges in distribution to a random variable

with exponential distribution with parameter E/2, i.e., with probability density

(E/2)e−u(E/2).
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3 Condensation in the inclusion process and related models

b) As K → ∞, UK/K → 1 almost surely.

PROOF. The proof is a direct computation. Put λ = a + E/2, λ′ = a, then λ >

λ′, λ − λ′ = E/2. First note that the distribution of U + V has probabily density
λλ′

λ−λ′ (e
−λ′x − e−λx).

Next, the conditional density of V given U + V = K is given by

λλ′(λ− λ′)e−λue−λ′(K−u)

λλ′(e−λ′K − e−λK)
=

(λ− λ′)e−(λ−λ′)u

1− e−(λ−λ′)K

which converges, asK → ∞ to (λ−λ′)e−(λ−λ′)u, implying statement a) of the theorem.

To prove statement b): choose 0 < δ < 1, then

P
(

U ≤ (1− δ)K
∣

∣U + V = K
)

=

∫ (1−δ)K

0 λλ′(λ− λ′)e−xλ′

e−(K−x)λdx

λλ′(e−λ′K − e−λK)

=
(λ− λ′)

∫ (1−δ)K

0
e−x(λ−λ′)dx

e(λ−λ′)K − 1
=
e(λ−λ′)K(1−δ) − 1

e(λ−λ′)K − 1

=
(

e−δ(λ−λ′)
)K 1− e(λ

′−λ)K

1− e(λ′−λ)K
→ 0

as K → ∞. As in the proof of Theorem 3.3.1 the bound is summable in K if we choose

δ = 1/
√
K and UK/K ≤ 1 by definition, which implies almost sure convergence.

To generalize the previous computation to the case of N sites and general parameter

m > 0, it is easy to check along the lines of the proof of Theorem 3.2.1 that the

process with generator (3.5.2) has a stationary measure which is a product of Gamma

distributions with identical shape parameterm and site-dependent location parameter.

More precisely, the PDF is given by

f(x1, . . . , xN ) =

N
∏

i=1

a
m/2
i x

m/2−1
i e−aixi

Γ(m/2)
(3.5.6)

with

ai = a+
(i− 1)E

2
(3.5.7)

for i ∈ {1, . . . , N}. After conditioning on the sum X1 + . . . + XN = K we find,

again by simple explicit computation, in the limit K → ∞ that X1/K converges to 1
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3.5 The Brownian energy process

almost surely, and that for i = 2, . . . , N , the law of Xi converges to a shifted Gamma

distribution with density

lim
K→∞

fXi|X1+...XN=K(xi) = Cix
m
2 −1
i e−

(i−1)Exi
2 (3.5.8)

where Ci = ( i−1
2 e)

m
2 /Γ(m2 ) is a normalization constant.

The interpretation of this result is the same as in the discrete case for the ASIP.

Here almost all energy concentrates on the lattice site with the heaviest tail in the

stationary distribution.

3.5.2 Generalizations

Exactly as in the case of condensation in the ASIP (section 3.2), we can formulate a

more general condensation result for independent random variables X1, . . . , XN with

values in [0,∞) and marginal densities

fXi
(x) =

1

zi(µ)
e−λixwi(x) e

µx . (3.5.9)

where 0 < λ1 < minN
j=2 λj . Here a notation with so-called chemical potentials µ ∈ R

is more convenient than the fugacity variable ϕ = eµ used for the SIP, and values

−∞ < µ < µc := λ1 are possible. The normalization

zi(µ) =

∫ ∞

0

e−λixwi(x) e
µx dx

is finite for µ < µc, and for indices i < N also zi(µc) < ∞. The wi : [0,∞) → [0,∞)

are subexponential in the sense that for all y ∈ R

lim
x→∞

w(x + y)

w(x)
= 1 . (3.5.10)

The proof of this result follows the same steps as the proof of the analogous discrete

result, except that we have to replace sums by integrals. As this is a straightforward

extension, we leave the proof to the reader.

Theorem 3.5.2. Denote by (Y K
1 , . . . , Y K

N ) the random variables (X1, . . . , XN ) condi-

tioned on X1 + . . .+XN = K. Then under the above conditions (3.5.9) and (3.5.10)

we have as K → ∞:
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3 Condensation in the inclusion process and related models

a) Condensation on the site with the heaviest tail, i.e.

Y K
1

K
→ 1 almost surely ;

b) Convergence to the critical distribution with µ = µc for other sites, i.e.

(Y K
2 , . . . , Y K

N ) → (Y2, . . . , YN ) in distribution ,

where the Yi are independent with densities

fYi
(y) =

1

zi(µc)
e−λiyeµcywi(y) .

Remark 3.5.3. In the limit m→ 0, also for spatially homogeneous Brownian energy

processes there will be a condensation phenomenon as m→ 0 completely analogous to

the results in Section 4 for the inclusion process. Indeed, for a fixed average energy

ρ > 0 (taking ai = m/(2ρ) in (3.5.6)), the marginal densities of the stationary product

measure are

fXi
(xi) =

1

Γ(m/2)

(

m

2ρ

)m/2

x
m/2−1
i e−mxi/(2ρ) .

Analogous to Theorem 3.4.1 one can easily show that this implies

P(Xi < δ) =

∫ δ

0

fXi
(xi) dxi → 1

for all δ > 0 as m → 0, so that Xi → 0 in probability. Further, all statements

following from Theorem 3.4.1 in Section 4 can be derived in an appropriate version

for continuous variables.

3.6 Conclusion

We have studied condensation phenomena for random variables with exponential tails,

which arise in the inclusion process and related particle systems. In general, condensa-

tion can be due to the presence of subexponential tails resulting from a strong particle

attraction, which has been studied in detail in the context of zero-range processes

[5, 11, 12, 13, 14, 15]. For exponential tails considered in this work, the attraction

between particles alone is not strong enough and a second ingredient is needed for

condensation.
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3.6 Conclusion

One possibility are spatial inhomogeneities, which will lead to a non-zero fraction of

the particles to cluster on the sites with the heaviest tails in the limit of infinitely many

particles. Our result on this in Section 3 applies in great generality, extending also

previous related work on zero-range process [7, 8, 9, 10]. For homogeneous systems,

varying a system parameter can induce condensation for fixed total particle density

as studied in Section 4 for the inclusion process. Previous results in that direction

include [18, 19] for zero-range processes and also [22] for a continuous mass model.

The Brownian energy process studied in Section 5 provides an interesting example

where both versions of condensation can be studied in a system with continuous state

space and dynamics. Condensation for continuous variables has been studied before

in the random average process [22] and mass transport models [23, 24], all of which

use a discontinuous redistribution of mass (or energy) following a jump process.

To summarize, inclusion processes and related systems such as the BEP provide

a rich class of models that exhibit condensation phenomena of several kinds in the

presence of exponential tails, the description of which applies also in more general sit-

uations. For inhomogeneous models we have focused on finite systems, and a further

question would be to consider thermodynamic limits where, for example, inhomogene-

ity is due to random disorder as studied in [7, 8, 9, 10] for zero-range processes. In the

homogeneous case it would be of great interest to exploit duality in the SIP and BEP

to get results on the dynamics of condensation.
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4 Weak coupling limits in a stochastic model of heat conduction

4.0 Abstract

We study the Brownian momentum process, a model of heat conduction, weakly cou-

pled to heat baths. In two different settings of weak coupling to the heat baths, we

study the non-equilibrium steady state and its proximity to the local equilibrium mea-

sure in terms of the strength of coupling. For three- and four-site systems, we obtain

the two-point correlation function and show it is generically not multilinear.

4.1 Introduction

In the study of non-equilibrium systems, exactly solvable models can serve as test-

cases with which general statements about non-equilibrium, such as in [3], [11] can be

tested. Recently, in [6], [7], [8], we studied the Brownian momentum process (BMP)

and showed that this model is exactly solvable via duality with a particle system, the

symmetric inclusion process. In this paper, we look at the close-to-equilibrium states

of the BMP. First, we consider a close-to-equilibrium scenario where the temperature

of the right heat bath is close to the temperature of the left heat bath, and show

that the distance between the local equilibrium measure and the true non-equilibrium

steady state is of order at most the square of the temperature difference, in agreement

with the theory of Mc Lennan ensembles, see [11]. Next, we consider a situation

where the linear chain is coupled weakly to heat baths to left and right ends (with

fixed and different temperatures), and study which equilibrium measure is selected in

the limit where the coupling strength λ tends to zero1, as well as how far the true

non-equilibrium steady state is from the local equilibrium measure for small coupling

strengths. The temperature profile can be computed for all values of λ and is only

linear in the chain including the extra sites associated to the heat baths for λ = 1,

and linear if these sites are not included for all values of λ > 0. Finally, we explicitly

compute the two-point correlation for all λ > 0 for a three and four sites system and

show that the multilinear ansatz of the two-point function introduced in [6], see also

[3], [4] fails for a system of four sites, except when λ = 1.

1The limit λ → 0 is what we call here the weak coupling limit. This should not be confused with

the notion of weak coupling limit in quantum systems introduced by Davis-Van Hove.
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4.2 The model

4.2 The model

The Brownian momentum process on a linear chain {1, . . . , N} coupled at the left

and right end to a heat bath is a Markov process {x(t) : t ≥ 0} on the state space

ΩN = R
{1,...,N}. The configuration x(t) = xi(t) : i ∈ {1, . . .N} is interpreted as a

collection of momenta associated to the sites i ∈ {1, . . . , N}. The process is defined

via its generator working on the core of smooth functions f : ΩN → R which is given

by

L = λB1 + λBN +

N
∑

i,j

p(i, j)Li,j (4.2.1)

with

Li,j = (xi∂j − xj∂i)
2

and where ∂j is shorthand for ∂
∂xj

. The underlying random walk transition rate p(i, j)

is chosen to be symmetric and nearest neighbor, i.e., pi,i+1 = pi+1,i = 1, i ∈ {1, . . . , N−
1}, p(i, j) = 0 otherwise. Since Li,j = Lj,i the symmetry of p(i, j) is no loss of

generality.

The boundary operators B1, BN model the contact with the heat baths, and are

chosen to be Ornstein-Uhlenbeck generators corresponding to the temperatures of the

left and right heat bath, i.e.,

B1 = TL∂
2
1 − x1∂1

BN = TR∂
2
N − xN∂N

Finally, λ > 0 measures the strength of the coupling to the heat baths. The process

with generator (4.2.1) is abbreviated as BMPλ.

If TL = TR = T , then, for all λ > 0, the unique stationary measure of the process

{x(t) : t ≥ 0} is the product of Gaussian measures with mean zero and variance T .

If TL 6= TR there exists a unique stationary measure; the so-called non-equilibrium

steady state denoted by µλ
TL,TR

. The existence and uniqueness of the measure µλ
TL,TR

follows from duality (see next section).

We will look at two different close-to-equilibrium scenarios:

1. λ = 1, TR = TL + ǫ and ǫ→ 0,

2. TL 6= TR, and λ→ 0.
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4 Weak coupling limits in a stochastic model of heat conduction

In both cases we look at the behavior of the measure µλ
TL,TR

, in case two, as λ → 0,

and in case one as ǫ→ 0. Since for λ = 0, the system has infinitely many equilibrium

measures, in the second case it is of interest to find out which of these measure is

selected in the limit λ→ 0. Both in the first and second case, we want to understand

how close the true non-equilibrium steady state is to the local equilibrium measure.

4.3 Duality

The BMPλ can be analyzed via duality. The dual process is an interacting particle

system, the so-called symmetric inclusion process [8], where particles are jumping on

the lattice {0, 1, . . . , N,N + 1} and interacting by “inclusion” (i.e., particles at site

i can attract particles at site j). The “extra sites” 0, N + 1 -associated to the heat

baths- are absorbing. I.e., a dual particle configuration is a map

ξ : {0, . . . , N + 1} → N

specifying at each site the number of particles present at that site. The space of dual

particle configurations is denoted by Ωd
N . For ξ ∈ Ωd

N , ξi,j denotes the configuration

obtained from ξ by removing a particle from i and putting it at j.

The generator of the dual process then reads

Ldϕ(ξ) = 2λξ1[ϕ(ξ
1,0)− ϕ(ξ)] +

+
N−1
∑

i,j=1

p(i, j)
(

2ξj(2ξi + 1)[ϕ(ξj,i)− ϕ(ξ)] + 2ξi(2ξj + 1)[ϕ(ξi,j)− ϕ(ξ)]
)

+2λξN [ϕ(ξN,N+1)− ϕ(ξ)]. (4.3.1)

In words, this means particles at site i jump to j at rate 2p(i, j)(2ξj + 1). At the

boundary site 1 (resp. N) particles can jump at rate 2λ to the site 0 (resp. N + 1)

where they are absorbed. Absorbed particles do not interact with non-absorbed ones.

The dual process is abbreviated as SIPλ. The duality functions for duality between

BMPλ and SIPλ are independent of λ and given by

D(ξ, x) = T ξ0
L T

ξN+1

R

N
∏

i=1

x2ξii

(2ξi − 1)!!

for ξ ∈ Ωd
N a dual particle configuration, and x ∈ ΩN .
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4.4 Temperature profile

The duality relation then reads

LD(ξ, x) = LdD(ξ, x) (4.3.2)

where L works on x and Ld on ξ. The derivation of (4.3.2) is the same as in [6]. By

passing to the semigroup, from (4.3.2) we obtain the duality relation

ExD(ξ, x(t)) = E
d
ξD(ξ(t), x) (4.3.3)

where Ex is expectation in BMPλ starting from x ∈ ΩN , and E
d
ξ is expectation in

SIPλ starting from ξ ∈ Ωd
N .

For ξ ∈ Ωd
N we denote |ξ| = ∑N+1

i=0 ξi the total number of particles in ξ. Since

eventually all particles in a particle configuration ξ ∈ Ωd
N will be absorbed, we have a

unique stationary distribution µλ
TL,TR

with

∫

D(ξ, x)µλ
TL,TR

(dx) =
∑

k,l:k+l=|ξ|

T k
LT

l
RP

d
ξ (ξ(t = ∞) = kδ0 + lδN+1) (4.3.4)

where ξ(t = ∞) denotes the final configuration when all particles are absorbed and

kδ0 + lδN+1 the configuration with k particles at 0 and l particles at N + 1.

4.4 Temperature profile

The local temperature at site i ∈ {1, . . . , N} is defined as

Ti =

∫

x2iµ
λ
TL,TR

(dx)

and by definition T0 = TL, TN+1 = TR. We say that the temperature profile is linear in

the lattice interval [K,L] if there exist a, b ∈ R with Ti = ai+ b, for all i ∈ [K,L]. For

the computation of the temperature profile we only need a single dual walker, which

performs a continuous-time random walk with rates 2p(i, j) and absorption at rate 2λ

from the sites 1, N .

Indeed, using (4.3.4) we have

Ti = TLP
d
δi (ξ(∞) = δ0) + TR

(

1− P
d
δi (ξ(∞) = δ0)

)

(4.4.1)
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4 Weak coupling limits in a stochastic model of heat conduction

From this expression, one obtains the following equations for the temperature profile:

N
∑

i=1

p(i, 1)Ti = T1 − λ(TL − T1)

N
∑

i=1

p(i, k)Ti = Tk

N
∑

i=1

p(i, N)Ti = TN − λ(TR − TN) (4.4.2)

The second equation expresses that the temperature profile is a harmonic function of

the transition probabilities, whereas the first and third equation are boundary condi-

tions. In the case λ = 1 and p corresponding to the simple nearest neighbor random

walk, the equation for Ti, i = 0, . . . , N is the discrete Laplace equation, which gives a

linear temperature profile in [0, N + 1].

Remark 4.4.1. In this paper we restrict to the symmetric nearest neighbor walk kernel

p(i, j). The equations (4.4.2) hold for general symmetric p(i, j). However, in the

cases where it is not translation-invariant and/or not nearest neighbor, the temperature

profile will not be linear.

We have the following theorem that follows immediately from the equations (4.4.2).

Theorem 4.4.2. For all λ > 0, the temperature profile is linear in [1, N ] and is given

by

Ti = ai+ b (4.4.3)

i = 1, . . ., N with

a =
λ(TR − TL)

λ(N − 1) + 2

b =
TL + TR + λ(NTL − TR)

λ(N − 1) + 2

We can now look at different limiting cases:

1. In the case λ = 1 we recover the result from [6]:

T = TL +
TR − TL
N + 1

i

In this case (only) the temperature profile is linear in [0, N + 1].
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4.5 The stationary measure for ǫ→ 0

2. In the limit λ→ 0 we obtain for all i ∈ {1, . . . , N}

lim
λ→0

T
(λ)
i =

TL + TR
2

3. In the limit λ → ∞ we obtain T1 = TL, TN = TR and the profile is linear in

[1, N ], similar to a system with λ = 1 and N − 2 sites.

4. In the limit N → ∞, such that i/N → r ∈ [0, 1] fixed,

lim
N→∞, i

N
→r

Ti = TL + r(TR − TL)

This means that the macroscopic profile is linear and does not depend on λ.

Remark 4.4.3. The expectation of the heat current in the steady state in the system

is J = Ti − Ti−1. This can be seen from computing the effect of the generator on

x2i (the local energy) and writing it in the form of a discrete gradient of the quantity

Ji = x2i −x2i−1 which is then defined to be heat current at site i. Heat conductivity κ is

defined via the equation J = κ∆T . From Theorem 4.4.2 it follows that κ = λ
λ(N−1)+2

which is independent of the temperature (i.e. the system obeys the Fourier’s law for

all values of λ > 0).

4.5 The stationary measure for ǫ → 0

We consider the first weak coupling setting, i.e, λ = 1, TR = TL+ǫ. We will prove that

up to corrections of order ǫ2, the stationary measure is given by a product of Gaussian

measures corresponding to the temperature profile, i.e., the local equilibrium measure.

Let us denote this local equilibrium measure

dνTL,TR
= ⊗N

i=1GTi
(xi)dxi

with Ti given by (4.4.3),

GT (x) =
1√
2πT

exp(−x2/2T )

and µTL,TL+ǫ the true non-equilibrium steady state (with λ = 1). Then we have the

following result.
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4 Weak coupling limits in a stochastic model of heat conduction

Theorem 4.5.1. The true non-equilibrium steady state µTL,TL+ǫ and the local equi-

librium measure νTL,TL+ǫ are at most order ǫ2 apart, i.e., there exists ǫ0 > 0 such that

for all ξ ∈ Ωd
N there exists a constant C = C(ξ) < ∞ such that for all 0 ≤ ǫ ≤ ǫ0 we

have
∣

∣

∣

∣

∫

D(ξ, x)µTL,TL+ǫ(dx) −
∫

D(ξ, x)νTL,TL+ǫ(dx)

∣

∣

∣

∣

≤ C(ξ)ǫ2 (4.5.1)

PROOF. For the local equilibrium measure we have

∫

D(ξ, x)νTL,TL+ǫ(dx) =

N
∏

i=1

T ξi
i (4.5.2)

expanding this up to order ǫ we find,

∏

i

T ξi
i =

∏

i

(

TL +
ǫi

N + 1

)ξi

= T
|ξ|
L

(

1 +
ǫ

TL(N + 1)

∑

i

iξi

)

+O(ǫ2)

Start now from (4.3.4) and expand up to order ǫ:

∫

D(ξ, x)µTLTL+ǫ(dx)

= T
|ξ|
L



1 +
ǫ

TL

∑

k,l:k+l=|ξ|

lPd
ξ(ξ(∞) = kδ0 + lδN+1)



+O(ǫ2) (4.5.3)

Upon identification of (4.5.2) and (4.5.3) we see that we have to prove

∑

k,l:k+l=|ξ|

lPd
ξ(ξ(∞) = kδ0 + lδN+1) = Eξ(ξ∞(N + 1))

=
1

(N + 1)

N+1
∑

i=0

iξi =: ψ(ξ) (4.5.4)

The function ϕ(ξ) := Eξ(ξ∞(N + 1)) is the harmonic function for the dual process,

i.e.,

Ldϕ = 0

which satisfies the boundary conditions

ϕ

(

kδ0 +

N
∑

i=1

ξiδi + lδN+1

)

= ϕ

(

N
∑

i=1

ξiδi

)

+ l (4.5.5)
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4.6 The case λ→ 0

Therefore, it suffices to show that

1

(N + 1)

N+1
∑

i=0

iξi =: ψ(ξ)

both satisfies

Ldψ = 0

and the boundary conditions (4.5.5). That ψ satisfies the boundary conditions is

immediately clear. The fact that ψ is harmonic follows from explicit computation:

Ldψ(ξ) = 2ξ1[ψ(ξ
1,0)− ψ(ξ)]

+

N−1
∑

i=1

(

2ξi+1(2ξi + 1)[ψ(ξi+1,i)− ψ(ξ)] + 2ξi(2ξi+1 + 1)[ψ(ξi,i+1)− ψ(ξ)]
)

+ 2ξN [ψ(ξN,N+1)− ψ(ξ)]

=
1

N + 1

(

2ξ1[−1] +

+

N−1
∑

i=1

(2ξi+1(2ξi + 1)[−1] + 2ξi(2ξi+1 + 1)[+1])

+ 2ξN [+1]
)

=
1

N + 1

(

2ξ1[−1] + +2

N−1
∑

i=1

(ξi − ξi+1) + 2ξN [+1]

)

and since
∑N−1

i=1 (ξi − ξi+1) = ξ1 − ξN we indeed have

Ldψ(ξ) = 0

4.6 The case λ → 0

Next, we consider the second weak coupling setting, i.e., we fix TL 6= TR and study

the behavior of the measure µλ
TL,TR

as a function of λ.
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4 Weak coupling limits in a stochastic model of heat conduction

In this case, the local equilibrium measure is the product of Gaussian measures

corresponding to the temperature profile (4.4.3), i.e., we have to compare µλ
TL,TR

with

νλTL,TR
where

dνλTL,TR
= ⊗N

i=1GTλ
i
(xi)(dxi)

where T λ
i is given by (4.4.3). Denote

ϕ(ξ) =

∫

D(ξ, x) µλ
TL,TR

(dx) (4.6.1)

then ϕ is the harmonic function of the dual generator satisfying the boundary condi-

tions

ϕ(ξ∗ = ξ + kδ0 + lδN+1) = ψ(ξ).ψ(kδ0 + lδN+1) = T k
LT

l
Rψ(ξ)

On the other hand if we put

ψ(ξ) :=

∫

D(ξ, x) νλTL,TR
(dx) = T k

LT
l
R

∏

i

(T
(λ)
i )ξi (4.6.2)

then we see immediately that ψ satisfies the boundary conditions.

We will now first prove

Lemma 4.6.1. There exists λ0 > 0 such that for all ξ ∈ Ωd
N there exists A(ξ) > 0

such that for all 0 < λ ≤ λ0 we have

| (Ldψ) (ξ)| ≤ λ2A(ξ)

In particular, since there is only a finite number of dual particle configurations with

total number of particles equal to K, we have, for all 0 < λ ≤ λ0

sup
ξ:|ξ|=K

| (Ldψ) (ξ)| ≤ C(K)λ2

for some C(K) > 0

PROOF. Compute

Ldψ(ξ) = 2ψ(ξ)

(

λξ1

(

TL
T1

− 1

)

+ λξN

(

TR
TN

− 1

))

+ 2ψ(ξ)

(

N−1
∑

i=1

(

ξi+1(2ξi + 1)

(

Ti
Ti+1

− 1

)

+ ξi(2ξi+1 + 1)

(

Ti+1

Ti
− 1

))

)
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4.6 The case λ→ 0

Put TR − TN = T1 − TL =: γ

Ldψ(ξ) = 2ψ(ξ)

(

λξ1

(−γ
T1

)

+ λξN

(

γ

TN

))

+ 2ψ(ξ)

(

N−1
∑

i=1

(

2ξi+1ξi
(Ti − Ti+1)

2

TiTi+1
+ (Ti − Ti+1)

(

ξi+1

Ti+1
− ξi
Ti

))

)

(4.6.3)

Remember from Theorem 4.4.2 that Ti = λai+ b, hence Ti − Ti+1 = −λα, with

λα =
λ(TR − TL)

λ(N − 1) + 2

b =
TL + TR + λ(NTL − TR)

λ(N − 1) + 2

We find

γ =
TR − TL

λ(N − 1) + 2
= α

and hence, from (4.6.3)

Ldψ(ξ) = 2ψ(ξ)

(

λξ1[
−α
T1

] + λξN [
α

TN
] +

N−1
∑

i=1

(

2λ2α2 ξiξi+1

TiTi+1
− λα

(

ξi+1

Ti+1
− ξi
Ti

))

)

We then see that the first order terms form a vanishing telescopic sum:

N−1
∑

i=1

(

ξi
Ti

− ξi+1

Ti+1

)

=
ξ1
T1

− ξN
TN

and therefore;

Ldψ(ξ) = 4λ2a2ψ(ξ)

N−1
∑

i=1

(

ξi+1ξi
TiTi+1

)

Given this result, we will prove that the measures νλTL,TR
and µλ

TL,TR
are at most order

O(λ log(1/λ)) apart as λ→ 0.
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4 Weak coupling limits in a stochastic model of heat conduction

Theorem 4.6.2. Let ϕ, ψ be the functions defined in (4.6.1) and (4.6.2), then we have

the following. There exists λ0 > 0, such that for all ξ ∈ Ωd
N there is C(ξ) > 0, such

that for all 0 < λ ≤ λ0

|ϕ(ξ) − ψ(ξ)| ≤ C(ξ)λ log
1

λ
(4.6.4)

as a consequence,

lim
λ→0

µλ
TL,TR

= ⊗N
i=1GTL+TR

2

(xi) dxi

i.e., in the limit λ → 0, the equibrium measure corresponding to temperature (TL +

TR)/2 is selected.

PROOF. We start with the following lemma

Lemma 4.6.3. For all ξ ∈ Ωd
N a (dual) particle configuration, there exists c = c(ξ) >

0, a = a(ξ) > 0 such that for all λ > 0, and for all t > 0
∣

∣

∣

∣

∫

ExD(ξ, xt) ν
λ
TL,TR

(dx) −
∫

D(ξ, x) µλ
TL,TR

(dx)

∣

∣

∣

∣

≤ ce−λat

PROOF. Using duality between BMPλ and SIPλ, and (4.3.4)
∣

∣

∣

∣

∫

ExD(ξ, xt) ν
λ
TL,TR

(dx)−
∫

D(ξ, x) µλ
TL,TR

(dx)

∣

∣

∣

∣

=

∣

∣

∣

∣

∣

Eξ

(

N
∏

i=1

(T
(λ)
i )ξi(t)T

ξ0(t)
L T

ξN+1(t)
R

)

− Eξ

(

T
ξ0(∞)
L T

ξN+1(∞)
R

)

∣

∣

∣

∣

∣

≤ C(ξ)Pd
ξ(ξ(t) 6= ξ(∞))

≤ C(ξ)Pd
ξ( there exist particles that are not absorbed at time t)

≤ C(ξ)e−aλt

In order to see the last inequality, we remark that for a particle at positions 1, N , the

probability to be absorbed at the next step is of order λ, as the maximal rate to move

to the other (non-absorbing) neighbor is at most 2(|ξ|+ 1).

Proof of Theorem 4.6.2: using Lemma 6.1, and duality between SIPλ and BMPλ,

we have
∣

∣

∣

∣

∫

ExD(ξ, xt) ν
λ
TL,TR

(dx) −
∫

D(ξ, x) νλTL,TR
(dx)

∣

∣

∣

∣

=

∣

∣

∣

∣

∫ t

0

Ldψ(ξs)ds

∣

∣

∣

∣

≤ C(|ξ|)λ2t
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Combining with Lemma 6.2 we have

∫

D(ξ, xt) ν
λ
TL,TR

(dx) −
∫

D(ξ, x) µλ
TL,TR

(dx) ≤ C(ξ)
(

λ2t+ e−aλt
)

(4.6.5)

Now optimize w.r.t. t by choosing t = (1/aλ) log(a/λ)

4.7 The two point correlation functions in the limit

λ → 0

In this section we prove that for the two-point correlation function in the non-equilibrium

steady state, the deviation from local equilibrium is of order λ, which strengthens

(4.6.4) for ξ = δi + δj (i.e., we get rid of the log(1/λ)-factor). In the appendix we

give explicit expressions for the two-point function of some finite systems, and show

in particular that it is not multilinear for λ 6= 1.

Define for i, j ∈ {1, . . . , N}

Yij =

∫

(x2i x
2
j )µ

(λ)
TLTR

(dx)

and additionally Y0i = TLTi, Yi,N+1 = TiTR.

Denote by T the matrix with elements Tij = TiTj if i 6= j and Tij = 3T 2
i if i = j

where Ti is the temperature profile of Theorem 4.4.2

Theorem 4.7.1. There exists C > 0 such that for all i, j ∈ {1, . . . , N} we have

|Yij −Tij | ≤ Cλ (4.7.1)

PROOF. From the stationarity of µλ
TL,TR

we find that Y satisfies the following system

of linear equations for k, l ∈ {1, . . . , N}

0 = (−4Ykl + Yk−1l + Yk+1l + Ykl−1 + Ykl+1)

+ 4Ykk+1δkl + 4Yk−1kδkl − 4Yk−1kδk,l+1 − 4Ykk+1δk,l−1

+ λ(TLTl − Y1l)δ1k + λ(TLTk − Y1k)δ1l

+ λ(TRTl − YNl)δNk + λ(TRTk − YNk)δNl (4.7.2)
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4 Weak coupling limits in a stochastic model of heat conduction

which has the form

M.Y = D

By explicit computation we obtain

X := M.T−D = O(λ2) (4.7.3)

From this we will now derive that

Y = T+O(λ). (4.7.4)

Put

‖Y −T‖ = ‖M−1M(Y −T)‖ = ‖M−1X‖

We will show that

‖M−1X‖2 ≤ c

λ2
‖X‖2 (4.7.5)

which combined with (4.7.3) gives the desired result (4.7.4).

To obtain (4.7.5) consider

<M−1X,M−1X > = < X, (M−1)TM−1X >

= < X,A−1X >

with A := MMT Using the spectral decomposition of A, we get

< X,A−1X > =
∑

i

1

λ
(A)
i

< X, ei >< ei,X >

≤ 1

mini(λ
(A)
i )

||X||2

where λi are the eigenvalues of A with the corresponding eigenvectors ei. So it suffices

now to see that

min
i
(λ

(A)
i ) ≥ cλ2

We have

min
i
(λ

(A)
i ) = inf

||X||=1
< X,AX >

The matrix M has the form M = K+ λS and hence

< X,AX >=< (KT + λST )X, (KT + λST )X >
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Therefore

< X,AX >

λ2
=
λ2||STX||2 + 2λ < STX,KTX > +||KTX||2

λ2

and so we obtain

lim inf
λ→0

mini(λ
(A)
i )

λ2
> 0

Indeed, sinceM ≡ K+λS is not singular, either K or S must not be singular, therefore

||STX||2 and ||KTX||2 cannot be both zero.

Remark 4.7.2. It follows from the correlation inequalities derived in [8] that Yij ≥
Tij . Indeed, Tij would be the correlation function if the dual walkers were walking

independently, however, two dual walkers interact by inclusion (attraction), and this

leads to a positive covariance.

4.8 Acknowledgment

We would like to thank Christian Giardina for usefull discussions.

4.9 Appendix

Here we derive explicit expressions for the two point correlation function for systems

with three and four sites. We start from the equations (4.7.2).

Since Ykl is symmetric in k and l it suffices to consider k ≤ l. the different cases are

as follows;

1. 1 < k = l < N; (−2Ykk + 3Ykk−1 + 3Ykk+1) = 0

2. 1 < k = l− 1 < N− 1; (−8Ykk+1 + Yk−1k+1 + Yk+1k+1 + Ykk + Ykk+2) = 0

3. 1 < k < l+ 1 < N+ 1; (−4Ykl + Yk−1l + Yk+1l + Ykl−1 + Ykl+1) = 0

4. k = l = 1; (−2Y11 + 3Y10 + 3Y12) + λ(TLT1 − Y11) + λ(TLT1 − Y11) = 0

5. k = l = N; (−2YNN+3YNN−1+3YNN+1)+λ(TRTN−YNN)+λ(TRTN−YNN) = 0

6. 1 = k = l− 1; (−8Y12 + Y02 + Y22 + Y11 + Y13) + λ(TLT2 − Y12) = 0

7. k = l − 1 = N − 1; (−8YN−1N + YN−2N + YNN + YN−1N−1 + YN−1N+1) +

λ(TRTN−1 − YNN−1) = 0

137



4 Weak coupling limits in a stochastic model of heat conduction

8. 1 = k < l+ 1 < N+ 1; (−4Y1l + Y0l + Y2l + Y1l−1 + Y1l+1) + λ(TLT1 − Y1l) = 0

9. 1 = k < l + 1 = N + 1; (−4Y1N + Y0N + Y2N + Y1N−1 + Y1N+1) + λ(TLT1 −
Y1N ) + λ(TRT1 − Y1N ) = 0

10. 1 < k < l+1 = N+1; (−4YkN +Yk−1N +Yk+1N +YkN−1+YkN+1)+λ(TRTk−
YkN ) = 0

4.9.1 3 Sites System

The equations for the two-point correlation function are of the form M.Y = D where

Y =





















Y11

Y12

Y13

Y22

Y23

Y33





















and D =





















−λTLT3 − λTRT1

−3λTRT3

−λTRT2
−3λTLT1

−λTLT2
0





















and the matrix M can be read from the previous equations as;

M =





















0 1 −2(1 + λ) 0 1 0

0 0 0 0 3 −(1 + λ)

0 0 1 1 −(7 + λ) 1

−(1 + λ) 3 0 0 0 0

1 −(7 + λ) 1 1 0 0

0 3 0 −2 3 0





















The explicit solution is via inversion of M. The result for Y and the correlation

functions Cij = Yij − TiTj(1 + 2δij) then reads as follows:

Y11 =
3
(

T 2
R(5 + 3λ) + 2TLTR

(

5 + 9λ+ 2λ2
)

+ T 2
L

(

5 + 23λ+ 24λ2 + 4λ3
))

4(1 + λ)2(5 + λ)

Y12 =
T 2
R(5 + 3λ) + 2TLTR

(

5 + 4λ+ λ2
)

+ T 2
L

(

5 + 13λ+ 2λ2
)

4 (5 + 6λ+ λ2)

Y13 =
T 2
L

(

5 + 13λ+ 2λ2
)

+ T 2
R

(

5 + 13λ+ 2λ2
)

+ 2TLTR
(

5 + 9λ+ 12λ2 + 2λ3
)

4(1 + λ)2(5 + λ)
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Y22 =
3
(

2TLTR
(

5 + 4λ+ λ2
)

+ T 2
L

(

5 + 8λ+ λ2
)

+ T 2
R

(

5 + 8λ+ λ2
))

4 (5 + 6λ+ λ2)

Y23 =
T 2
L(5 + 3λ) + 2TLTR

(

5 + 4λ+ λ2
)

+ T 2
R

(

5 + 13λ+ 2λ2
)

4 (5 + 6λ+ λ2)

Y33 =
3
(

T 2
L(5 + 3λ) + 2TLTR

(

5 + 9λ+ 2λ2
)

+ T 2
R

(

5 + 23λ+ 24λ2 + 4λ3
))

4(1 + λ)2(5 + λ)

and

C11 =
3(TL − TR)

2λ

2(1 + λ)2(5 + λ)
,C12 =

(TL − TR)
2λ

2 (5 + 6λ+ λ2)

C13 =
(TL − TR)

2λ

2(1 + λ)2(5 + λ)
,C22 =

3(TL − TR)
2λ

2 (5 + 6λ+ λ2)

C23 =
(TL − TR)

2λ

2 (5 + 6λ+ λ2)
,C33 =

3(TL − TR)
2λ

2(1 + λ)2(5 + λ)

We see that for all k, l

Ckl ∝ λ(TL − TR)
2

and also Ckl ≥ 0.

One might be interested to see if the bi-linear ansatz introduced in [6] for the special

case λ = 1 is also valid here, i.e.

Yij = a+ bi+ cj + dij

Yii = A+Bi+Di2 (4.9.1)

with the boundary conditions Y0i = TLTi, Yi,N+1 = TiTR.

However, to check the validity of the ansatz we must calculate the correlation func-

tions for a 4 sites system, since in 3 sites systems we have only 6 correlation functions

which are less than the 7 constants of the ansatz.

4.9.2 4 Sites System

Similar to the calculation for the 3 site system, we have M.Y = D where
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4 Weak coupling limits in a stochastic model of heat conduction

Y =









































Y11

Y12

Y13

Y14

Y22

Y23

Y24

Y33

Y34

Y44









































and D =









































0

0

0

− λTLT3

−λTLT2
−3λTLT1

−λT2TR
−λTRT3
−3λT4TR

−λTLT4 − λT1TR









































and where the matrix M is given by








































0 0 1 0 1 −8 1 1 0 0

0 3 0 0 −2 3 0 0 0 0

0 0 0 0 0 3 0 −2 3 0

0 1 −3− λ 1 0 1 0 0 0 0

1 −7− λ 1 0 1 0 0 0 0 0

−1− λ 3 0 0 0 0 0 0 0 0

0 0 0 1 0 1 −3− λ 0 1 0

0 0 0 0 0 0 1 1 −7− λ 1

0 0 0 0 0 0 0 0 3 −1− λ

0 0 1 −2− 2λ 0 0 1 0 0 0









































The solution for Y is

Y11 =
6T2

R(12+λ(14+3λ))+6TLTR(24+λ(76+5λ(8+λ)))+T
2
L(72+3λ(172+3λ(106+λ(46+5λ))))

(6+λ)(2+3λ)(8+λ(16+5λ))

Y12 =
2T2

R(1+λ)(12+λ(14+3λ))+TLTR(48+λ(152+λ(128+λ(44+5λ))))+2T2
L(12+λ(74+λ(121+λ(49+5λ))))

(6+λ)(2+3λ)(8+λ(16+5λ))

Y13 =
T

2
L(1+λ)(24+5λ(4+λ)(5+λ))+T

2
R(24+λ(76+λ(41+4λ)))+2TLTR(24+λ(76+λ(109+λ(47+5λ))))

(6+λ)(2+3λ)(8+λ(16+5λ))

Y14 =
T

2
L(24+5λ(4+λ)(5+λ))+T

2
R(24+5λ(4+λ)(5+λ))+TLTR(48+λ(152+λ(314+3λ(46+5λ))))

(6+λ)(2+3λ)(8+λ(16+5λ))

Y22 =
3(2TLTR(24+λ(76+λ(73+3λ(9+λ))))+T

2
L(24+λ(124+λ(181+7λ(10+λ))))+T

2
R(24+λ(76+λ(77+2λ(12+λ)))))

(6+λ)(2+3λ)(8+λ(16+5λ))

Y23 =
2T2

L(12+λ(5+2λ)(10+λ(8+λ)))+2T2
R(12+λ(5+2λ)(10+λ(8+λ)))+TLTR(2+λ)(24+λ(64+λ(50+7λ)))

(6+λ)(2+3λ)(8+λ(16+5λ))

Y24 =
T

2
R(1+λ)(24+5λ(4+λ)(5+λ))+T

2
L(24+λ(76+λ(41+4λ)))+2TLTR(24+λ(76+λ(109+λ(47+5λ))))

(6+λ)(2+3λ)(8+λ(16+5λ))

Y33 =
3(2TLTR(24+λ(76+λ(73+3λ(9+λ))))+T

2
R(24+λ(124+λ(181+7λ(10+λ))))+T

2
L(24+λ(76+λ(77+2λ(12+λ)))))

(6+λ)(2+3λ)(8+λ(16+5λ))

Y34 =
2T2

L(1+λ)(12+λ(14+3λ))+TLTR(48+λ(152+λ(128+λ(44+5λ))))+2T2
R(12+λ(74+λ(121+λ(49+5λ))))

(6+λ)(2+3λ)(8+λ(16+5λ))

Y44 =
6T2

L(12+λ(14+3λ))+6TLTR(24+λ(76+5λ(8+λ)))+3T2
R(24+λ(172+3λ(106+λ(46+5λ))))

(6+λ)(2+3λ)(8+λ(16+5λ))

and the corresponding correlation functions are
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C11 = 3(TL−TR)2λ(24+λ(50+13λ))
(6+λ)(2+3λ)2(8+λ(16+5λ)) ,C12 = (TL−TR)2λ(1+λ)(24+λ(50+13λ))

(6+λ)(2+3λ)2(8+λ(16+5λ))

C13 = 2(TL−TR)2λ(1+λ)(12+λ(16+λ))
(6+λ)(2+3λ)2(8+λ(16+5λ)) ,C14 = 2(TL−TR)2λ(12+λ(16+λ))

(6+λ)(2+3λ)2(8+λ(16+5λ))

C22 = 3(TL−TR)2λ(2+λ(4+λ))(12+λ(16+λ))
(6+λ)(2+3λ)2(8+λ(16+5λ)) ,C23 = (TL−TR)2λ(24+λ(86+λ(93+λ(27+2λ))))

(6+λ)(2+3λ)2(8+λ(16+5λ))

C24 = 2(TL−TR)2λ(1+λ)(12+λ(16+λ))
(6+λ)(2+3λ)2(8+λ(16+5λ)) ,C33 = 3(TL−TR)2λ(2+λ(4+λ))(12+λ(16+λ))

(6+λ)(2+3λ)2(8+λ(16+5λ))

C34 = (TL−TR)2λ(1+λ)(24+λ(50+13λ))
(6+λ)(2+3λ)2(8+λ(16+5λ)) ,C44 = 3(TL−TR)2λ(24+λ(50+13λ))

(6+λ)(2+3λ)2(8+λ(16+5λ))

We see once more that for all k, l

Ckl ∝ λ(TL − TR)
2

and Ckl ≥ 0.

Now we can directly check the validity of the bi-linear ansatz. Direct calculation

shows that the diagonal part of the ansatz, i.e., Yii = A +Bi +Di2 is valid, but the

non-diagonal part Yij = a+ bi+ cj + dij is not.

If we determine the coeficients a, b, c, d by fitting the bilinear ansatz toY12,Y13,Y23,Y34,

then we obtain

Y14 − (a+ b+ 4c+ 4d) =
3(TL − TR)

2(−1 + λ)λ2

(6 + λ)(2 + 3λ)(8 + λ(16 + 5λ))
.

which shows that the bilinear form can not hold for λ 6∈ {0, 1}. Remark that also when

λ→ ∞ the deviation from the multilinear form vanishes, which is consistent with the

intuition that this limit is the same as having λ = 1 in a smaller system obtained by

removing the sites 1, N .
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Nederlandse Samenvatting

In dit proefschrift bestuderen wij enkele evenwichts en niet-evenwichts stochastische

modellen die exact oplosbaar zijn met de techniek van dualiteit en zelfdualiteit. Deze

modellen bevatten een nieuwe klasse van deeltjessystemen die bosonisch zijn, dat wil

zegen modellen met een attractieve wisselwerking tussen de deeltjes. Als gevolg van

deze attractieve interactie kan in deze modellen condensatie optreden. Ons doel hierbij

is de studie van modellen die een profiel hebben dat exact kan worden berekend, alsook

correlatiefuncties, zoals de tweepunts correlatiefunctie van deeltjesaantallen of van de

energie. De verkregen exacte uitdrukkingen kunnen dan gebruikt worden om algemene

theorieën uit de niet-evenwichts statistische mechanica te testen. De modellen die in

dit proefschrift zijn bestudeerd zijn van het type “interacting particle systems”, alsook

systemen van interagerende diffusieprocessen.

De basistechniek die we ontwikkelen om de modellen in dit proefschrift te bestuderen

is dualiteit. Wij verbinden via dualiteit modellen van interagerende diffusieprocessen

met interacting particle systems, zowel in de evenwichts als in de niet-evenwichts con-

text. Omdat dualiteit een zeer krachtige methode is, is een gedeelte van het proefschrift

gewijd aan de ontwikkeling van een algemeen formalisme van dualiteit, gebaseerd

op symmetrieën van de generator. Dit formalisme kan gebruikt worden om duale

processen en geassocieerde dualiteitsfuncties of zelfdualiteitsfuncties te vinden. Wij

hebben het “Brownian Momentum Process” (BMP) en zijn duaal proces, het Sym-

metric Inclusion Process (SIP), bestudeerd. Met behulp van de dualiteit tussen BMP

en SIP verkrijgen wij exacte analytische formules voor de correlatiefuncties van BMP.

Het BMP is een model voor warmtegeleiding via stochastische diffusie van impuls, en

het SIP is een interacting particle system waarbij deeltjes een random walk op het

rooster Zd uitvoeren en met elkaar een aantrekkende wisselwerking hebben. Wij be-

handelen ook verschillende andere modellen en verkrijgen resultaten die toepasbaar

zijn voor een grotere klasse van modellen. De twee basismodellen (SIP en BMP) en

hun veralgemeningen zijn echter een essentieel startpunt in ons werk en zullen vaak

worden gebruikt als illustrerende voorbeelden.

In hoofdstuk 1 laten wij zien hoe zelfdualiteit in direct verband staat met de niet

abelse symmetrieën van de generator van het Markov proces (wij zeggen dat een op-

erator S een symmetrie van de generator L is indien hij commuteert met de generator,

i.e., S.L = L.S). Met niet abels bedoelen wij dat de symmetrie niet noodzakelijk een

vermenigvuldigingsoperator is, of in de taal van matrices, niet noodzakelijk een di-



agonale matrix. Wij laten zien dat er voor iedere symmetrie van de generator een

corresponderende zelfdualteitsfunctie bestaat, en dat omgekeerd, er voor iedere zelfd-

ualiteitsfunctie een corresponderende symmetrie van de generator is. In het geval van

dualiteit tussen twee verschillende Markov processen, komt dualiteit neer op een con-

jugatie tussen de twee corresponderende generatoren. En dus kan dualiteit tussen twee

verschillenden processen worden beschouwd als het kiezen van een nieuwe represen-

tatie van de generator. Dualiteit wordt op deze wijze direct verwant met verschillende

representaties van dezelfde Lie-algebra.

Wij behandelen in hoofdstuk 1 de samenhang tussen zelfdualiteit en symmetrieën in

veel grotere algemeenheid en geven verschillende nieuwe voorbeelden van dualiteiten.

Voor interacting particle systems of interagerende diffusies gekoppeld aan de randen

met deeltjesreservoirs of warmtebaden, zoals SIP of BMP, tonen wij op welke manier

de dualiteitsfunctie moeten worden veranderd om het effect van de reservoirs aan de

randen mee te nemen. Voor energie transport modellen ontdekken wij een verborgen

SU(1,1) symmetrie in een grote klasse van modellen (waaronder BMP, KMP modellen)

die hun dualiteit verklaren, net als de SU(2) symmetrie voor SEP. Wij bewijzen ook

de SU(1,1) symmetrie van het SIP en de corresponderende zelfdualiteit.

De extra sprongen in SIP (i.e., andere dan de random walk sprongen), de zo-

genaamde inclusie-sprongen, veroorzaken een netto attractieve wisselwerking tussen

deeltjes. Dit moeten we vergelijken met SEP waar de deeltjes een repulsieve interac-

tie hebben (omdat ze niet op de zelfde roosterplaats mogen zijn). In meer fysische

terminologie kan men zo SIP als een bosonisch tegenhanger van het fermionische SEP

beschouwen.

In hoofdstuk 2 analyseren wij het SIP in detail en bewijzen het analogon van

Liggett’s “comparison inequality”, die de verwachtingswaarde van positief definiete

functies in SEP vergelijkt met deze in een systeem van onafhankelijke random walkers.

Met deze comparison inequality leiden wij een aantal correlatieongelijkheden af. Zoals

men intüıtief verwacht, veranderen de correlaties van negatief in SEP naar positief in

SIP. Dit feit is vanuit een ander standpunt bekeken echter vrij opmerkelijk, want SIP

is geen monotoon proces en positieve correlaties zijn dus niet gerelateerd aan de FKG

eigenschap, zoals bijvoorbeeld in de ferromagnetische Glauber dynamica. Aangezien

SIP het duale van het warmtegeleidingsmodel BMP is, kunnen de correlatieongeli-

jkheden voor SIP direct vertaald worden naar BMP en het Brownian Energy Process.

Wij bestuderen ook het algemenere niet-evenwichts geval waar het systeem in contact



is met deeltjesreservoirs en waar wij de zelfdualiteit van de SIP gebruiken om een

correlatie ongelijkheid voor de niet-evenwichts stationaire toestand te verkrijgen. Wij

bewijzen ook in grotere algemeenheid de negatieve correlaties voor niet-evenwichts sta-

tionaire toestanden in modellen van SEP-type, waarvan sommige reeds eerder expliciet

berekend werden met de matrix methode van Derrida.

In hoofdstuk 3 bestuderen wij de condensatie fenomenen en wij laten zien dat, omdat

de stationaire maat van SIP exponentiële staarten heeft, de attractie tussen deeltjes

alleen niet sterk genoeg is, en er een extra factor nodig is voor condensatie. Wij laten

zien dat deze extra factor ruimtelijke inhomogeniteit of ook asymmetrie in een eindig

of half-oneindig systeem kan zijn. Een andere mogelijkheid voor het verkrijgen van

condensatie in SIP is het introduceren van een parameter m gedefinieerd als de rate

van random walk jumps terwijl de intensiteit (rate) van inclusion jumps onveranderd

(gelijk aan 1) blijft. Het geval m = 0 levert dan een zuiver inclusieproces (geen random

walk, enkel attractie) op. Wij laten zien dat in de limiet m → 0 in het SIP condensatie

optreedt. Wij tonen ook gerelateerde condensatiefenomenen in het Brownian Energy

Process (afgeleid van BMP en dus verwant met SIP) zien, wat een interessant nieuw

voorbeeld geeft van condensatie in een model met continue variabelen.

In hoofdstuk 4 bestuderen wij BMP dicht bij evenwicht. Een mogelijkheid om

dicht-bij-evenwicht condities te verkrijgen is het systeem in contact te brengen met

twee warmtebaden aan de randen, met temperaturen die dicht bij elkaar liggen. In dit

geval tonen wij aan dat de afstand tussen de lokale evenwichtsverdeling en de echte

niet-evenwichts stationaire toestand hoogstens van de orde is van het kwadraat van

het verschil tussen de temperaturen van de warmtebaden, in overeenstemming met de

niet-rigoureuze theorie van McLennan ensembles. Een alternatieve mogelijkheid om

condities dicht bij evenwicht te verkrijgen is om de verschillende temperaturen van

de twee warmtebaden vast te houden maar de koppeling van het bulk systeem met

de warmtebaden met een parameter λ te verzwakken. Wij bestuderen dan het gedrag

van de niet-evenwichts stationaire toestand voor kleine waarden van deze kopplingscon-

stante λ. In het bijzonder laten wij zien welke evenwichtsmaat wordt geselecteerd als

λ → 0. Voor beide gevallen zijn de temperatuursprofielen lineair in de bulk. Wij geven

ook exacte berekeningen voor de tweepunts correlatiefuncties voor finite size systemen

en wij laten zien dat zij in het algemeen niet multilineair zijn. Hiermee laten we zien

we dat de veelgebruikte multilineaire ansatz voor de correlatiefuncties alleen waar kan

zijn als bijkomende symmetrieën aanwezig zijn, of in de macroscopische limiet.
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