
Content-Based Retrieval of Visual Information

Ard Oerlemans

Content-Based Retrieval of Visual Information

PROEFSCHRIFT

ter verkrijging van
de graad van Doctor aan de Universiteit Leiden

op gezag van de Rector Magnificus prof. mr. P. F. van der Heijden,
volgens besluit van het College voor Promoties
te verdedigen op donderdag 22 december 2011

klokke 10.00 uur

door

Adrianus Antonius Johannes Oerlemans

geboren te Leiderdorp
in 1977

Promotiecommissie

Promotor: Prof. dr. J.N. Kok

Co-promotor: Dr. M.S. Lew

Overige leden: Prof. dr. C. Djeraba (University of Lille)

Prof. dr. T.H.W. Bäck

Prof. dr. H.A.G. Wijshoff

Dr. E.M. Bakker

The cover of this thesis consists of images from the MIRFLICKR-25000 dataset.
Each column represents the top results of a color-based query using a specific
wavelength of light as the query.

Contents

1 Introduction 1
1.1 Content-based image retrieval . 3
1.2 Research areas in CBIR . 5

1.2.1 Image segmentation . 5
1.2.2 Curse of dimensionality . 5
1.2.3 Semantic gap . 6
1.2.4 Searching with relevance feedback 6
1.2.5 Future CBIR challenges . 6

1.3 Thesis contents . 7

2 Features 9
2.1 Introduction . 9
2.2 Color features . 10

2.2.1 Color histogram . 10
2.2.2 Color moments . 10

2.3 Texture features . 11
2.3.1 Local binary patterns . 11
2.3.2 Symmetric covariance . 11
2.3.3 Gray level differences . 12

2.4 Feature vector similarity . 12

3 Machine Learning 15
3.1 Introduction . 15

3.1.1 A sample binary classification problem 16
3.2 k -nearest neighbor . 16
3.3 Artifical neural networks . 17
3.4 Support vector machines . 18

4 Performance Evaluation 21
4.1 Precision . 21
4.2 Recall . 22
4.3 Precision-Recall graphs . 22

iv

4.4 Average precision . 25
4.5 Accuracy . 26

5 Interest Points Based on Maximization of Distinctiveness 27
5.1 Introduction . 27
5.2 Related work . 28
5.3 Maximization Of Distinctiveness (MOD) 28

5.3.1 The MOD paradigm . 29
5.3.2 The special case of template matching 30
5.3.3 Detector output . 31

5.4 Matching images . 36
5.5 Experiments and results . 36
5.6 Discussion and conclusions . 39

6 Learning and Visual Concept Detection 41
6.1 Introduction . 41
6.2 Related work . 43
6.3 Maximization Of Distinctiveness (MOD) 43
6.4 Detecting visual concepts . 43

6.4.1 Classifiers . 44
6.5 Experiments . 44

6.5.1 Tree detection . 46
6.5.2 Building detection . 46
6.5.3 Sky detection . 48
6.5.4 Beach classification . 49
6.5.5 Face detection . 49

6.6 Experiments on MIRFLICKR-25000 dataset 51
6.6.1 Concept ’Animals’ . 52
6.6.2 Concept ’Indoor’ . 54
6.6.3 Concept ’Night’ . 56
6.6.4 Concept ’People’ . 58
6.6.5 Concept ’Plant life’ . 60
6.6.6 Concept ’Sky’ . 62
6.6.7 Concept ’Structures’ . 64
6.6.8 Concept ’Sunset’ . 66
6.6.9 Concept ’Transport’ . 68
6.6.10 Concept ’Water’ . 70
6.6.11 Overall results . 72

6.7 Discussion, conclusions and future work 72

7 Multi-Dimensional Maximum Likelihood 75
7.1 Introduction . 75
7.2 Definitions . 76
7.3 Detailed description . 76

v

7.4 Related work . 78
7.5 Multi-Dimensional Maximum Likelihood similarity (MDML) . . . 79
7.6 Experiments on stereo matching 80

7.6.1 Results - template based . 80
7.6.2 Results - pyramidal template based 80

7.7 Future work . 83

8 Texture Classification: What Can Be Done with 1 or 2 Features? 85
8.1 Introduction . 85
8.2 Related work . 86
8.3 Our method . 86
8.4 Results . 88
8.5 Discussion, conclusions and future work 90

9 Detecting and Identifying Moving Objects in Real-Time 93
9.1 Introduction . 93
9.2 Related work . 94
9.3 Motion detection . 94

9.3.1 Building the background model 95
9.3.2 Adaptive background model 97
9.3.3 Post processing . 98

9.4 Object tracking . 98
9.4.1 Data structure . 99
9.4.2 Object motion prediction 100
9.4.3 Rule-based object tracking 101

9.5 Results . 105
9.6 Conclusions and future work . 106

10 Hybrid Maximum Likelihood Similarity 109
10.1 Introduction . 109
10.2 Related work . 110
10.3 Visual similarity . 110

10.3.1 The maximum likelihood training problem 110
10.3.2 Hybrid maximum likelihood similarity 111

10.4 Relevance feedback in object tracking 111
10.4.1 Pixel-level feedback . 112
10.4.2 Object-level feedback . 113

10.5 Conclusions and future work . 114

A RetrievalLab 117
A.1 Introduction . 117
A.2 Related work . 117
A.3 Example usage . 118

A.3.1 Image retrieval . 118

vi

A.3.2 Visual concept detection . 120
A.4 Discussion, conclusions and future work 121

Bibliography 123

Nederlandse Samenvatting 131

Acknowledgements 135

Curriculum Vitae 137

Chapter 1

Introduction

We live in an Age of Information, a period in time where almost limitless amounts
of information are available from a multitude of sources containing text, images,
video, audio and other types of information. Take for example Facebook, which
has over 10 billion photos, or Google, which has indexed tens of billions of web-
pages, or YouTube, which hosts over 140 million videos. Beyond these publicly
available sources, there are for example the digitized contents of the libraries and
museums worldwide.

Storing this information in a database is not enough to take advantage of the
knowledge stored in this data. We also need to be able to search through it.
In many situations, text annotation is incomplete or missing in which case it is
necessary to turn to content analysis techniques, that is, methods which analyze
the pictorial content of the media. It is also noteworthy that even when text
annotation is available, it may be possible to improve the quality of search results
by also using the pictorial content information.

Searching through digital data is a very active field of research. For each of
the types of digital information, specific search methods exist and this thesis
aims to add to that research by exploring a specific part of searching in digital
information: content-based image retrieval (CBIR). In this type of searching, the
pictorial contents of images are automatically analyzed and indexed, to allow
search methods to use these contents, instead of relying on descriptions.

In this thesis, we extend existing methods for performing content-analysis of im-
ages, but we also try to extend the search process itself by adding an interactive
component, which is called relevance feedback. We also look at relevance feedback
procedures in video-analysis, or more specifically, object tracking.

When searching for information, a user in general starts with supplying a de-
scription of what the user wants to find, also known as the query. The search
engine processes the query and presents the results to the user. These results are
possibly ranked by relevance, which is usually the similarity of the search results

2 Chapter 1

to the query. This is a very common way of searching, used by all the well-known
text search engines on the Internet.

The most widely used method of searching on the Internet is text-based search-
ing. The user supplies a set of descriptive words and the search engine retrieves
documents that contain these words.

The common technique for text based searching, is the inverted index [48]. An in-
verted index contains all known words from the documents in the database and for
each word it contains a list of documents that contain that specific word. Search
speeds are greatly improved, because not every document has to be compared to
the query.

Relevance feedback was originally designed to extend the search process by asking
the user to give feedback on the search results to the search system. The search
system can combine this feedback with the original query to run a new search
with hopefully more relevant results.

An example of this would be a person asking for a book about Africa in a book
store. Initially, the employee of the book store will come up with a few books that
have Africa as their topic. However, after looking at these books, the customer
decides that some of these books describe the African culture and some others
describe the species of animals that live there. At this point the customer decides
that it was actually these species of animals that he or she was interested in and
not the culture.

The customer points out a book that is more like what he or she was looking
for and also points out another book that does not contain the desired type of
information. Now the person working at the book store knows more about the
type of books the customer is looking for and can search for another set of books
to show to the customer. Essentially, by giving feedback, the query has been
changed in a direction that will result in better search results.

The original relevance feedback algorithm was designed in 1971 by J.J. Rocchio
[65] and it was applied to text-based searching. Later, Salton and Buckley [69]
improved the original formula, to get to the following result:

Qi+1 = αQi + β
∑
rel

Di

|Di|
− γ

∑
nonrel

Di

|Di|
(1.1)

In words, this means that the query is adjusted by including knowledge of relevant
and non-relevant documents. The new query Q is based on a weighted sum of the
previous query and the relevant and non-relevant documents that were selected by
the user. Eventually, this process will result in a query point that is at the optimal
location for separating the two classes of relevant and non-relevant documents.

For text based searches, this translates to using a weight vector for the words
that are used for the document retrieval. Relevant documents increase weights
on certain words (or even add new words) and non-relevant documents decrease
the weights on other words.

Content-based image retrieval 3

1.1 Content-based image retrieval

Content-based image retrieval (CBIR) uses the actual pictorial contents of images
in the search process. In this case, the query is an image, instead of a set of words.
The search system uses contents of the image to search for matching images.

There are many reasons to use image contents in the search process, instead of
user-supplied tags. Some of them are:

• Tags could be missing
A set of pictures taken at a vacation, is usually not tagged. The entire set
probably has a description, but the contents of each individual image are
not described.

• Tags could be incorrect or not descriptive of the contents
Users may supply tags that are incorrect, for example, these could be a
representation of the situation in which the picture was taken, but not what
can be seen on the picture.

Note that users still might want to search for these higher-level descriptions.
This is probably one step further than CBIR, because in this case the con-
tents of images are linked to a notion of a situation or a location. (Photos
taken of the crowd at the inauguration of Obama will probably not show the
president, but when using this image as input for a search, people expect
the search engine to return images of a crowd at this specific event only.)

• Tags are not always able to capture the true contents
For example, for more complex textures such as a view of the Rocky Moun-
tains, there are no words that truly describe the image contents.

These examples explain the need for using different techniques than text-based
searching. Content-based techniques do not depend on external descriptions to
perform a search task. However, it is also possible to combine the two types of
searching.

The contents of images can be analyzed in various ways. Low-level features such
as color, texture and shape are commonly used, but higher level features, or
concepts are also available for describing images.

A good overview of the history of CBIR systems is given by Veltkamp et al. [91]
and Smeulders et al. [83]. However, we would like to emphasize a few notable
systems from the past.

QBIC (Query-By-Image-Content) [16] was developed by IBM and presented in
1995 as one of the first systems that enabled searching through image and video
databases based on image contents. Even today, the QBIC technology is still
commercially used in DB2, a data-management product by IBM. The system can
use image properties such as color percentages, color layout and textures in the
search process.

In the same year, Chabot [59] was presented. By integrating image information

4 Chapter 1

stored in a database, which can be text and other data types, in combination with
properties of image contents, the user can search for ’concepts’.

One of the first systems that used relevance feedback in an image retrieval system
was MARS, Multimedia Analysis and Retrieval System. It was first demonstrated
in 1996 as a basic image retrieval system [29] by Thomas Huang and was later
extended with the relevance feedback component [68] by Rui.

The ImageScape image retrieval system [37] by Michael Lew, used several methods
for searching through images, one of them being query by icons, a method that
used predefined visual concepts, which made it one of the first systems to use
visual concepts for image retrieval. The concepts could be placed on a canvas by
the user in the form of icons and the system would then retrieve images for which
the concept was detected at the user-specified locations.

In content-based retrieval, several promising research directions have emerged.
Some try to reduce content-based searching to text-based searching, others focus
on the problems of interest point detection or sub-image searching and yet another
direction is the use of relevance feedback techniques.

Usually, image database lack user-supplied tags, so automatically tagging these
would be a desirable option. As described in [41], real-time automated tagging of
images is already a promising research direction. This research combines low-level
features into a concept that can be described with words. Searching for images
is then reduced to text-based searching. The query image is translated into tags
(in real-time) and the database is queried for the best matching concepts.

Interest points are locations within an image that can be automatically calculated
and that define the best input for other algorithms, such as object matching,
tracking and image retrieval.

One of the earliest interest point detectors was Moravecs corner detector [52].
Other well-known more recent algorithms are SIFT [44] and SURF [1].

Searching for images, or image contents, is not bound by the area of the entire
image. The query contents can be part of a larger image. The research area for
sub-image searching tries to solve this problem by subdividing database images
into smaller subimages that can be matched to the query.

The same method can also be applied by subdividing the query image into sub-
images and to use these as separate queries. The ImageScape system [37] did this
by handling each user-placed icon as a query for a visual concept.

Some of the challenges in this research area are:

• How can we subdivide an image into regions that are meaningful to be used
for sub-image searching

• What features can be used to describe the sub-images so that they can be
matched to other sub-images, that possibly have different shapes or sizes

In a CBIR task, the text-based relevance feedback process can be translated
to changing the image contents that the user is searching for. The user-supplied

Research areas in CBIR 5

image is combined with feedback on the search results, resulting in a virtual query
image that contains elements of both the user input and the feedback images.

As an example: if the original query contained the color green and a round shape,
but the user has given positive feedback for an image that contains the color blue,
the new query would probably result in images that contain the color blue and
round shapes.

1.2 Research areas in CBIR

This paragraph describes some of the topics in content based image retrieval that
have drawn the attention of researchers in previous years and it introduces a few
challenges of CBIR that will probably be the subject of many research projects
in the future.

1.2.1 Image segmentation

In partial image searches, the question is how to define the image parts. A
straightforward way would be to linearly divide the image into several rectan-
gular regions, but this will have problems in that real object boundaries will
rarely coincide with the rectangular regions. A better way would be to use image
properties as a segmentation guide, so that the segmented regions have the same
properties. There are several ways of selecting segmentation properties, but image
intensity, color and texture are common choices.

A recent example of such a segmentation method is fuzzy regions [63], used in the
FReBIR system.

1.2.2 Curse of dimensionality

One of the first, logical, steps in setting up an image retrieval system is to select
a large number of different features, to increase the chance of finding perfectly
matching images. For example, one could choose multiple color features to im-
prove color-based matching.

However, there is a downside to increasing the number of features that are used
for similarity matching and this is expressed by the ’curse of dimensionality’.
This term, which was first mentioned by the mathematician Richard Bellman [2],
is used to express the difficulties that arise with using distances between high-
dimensional vectors. In high-dimensional spaces, every vector seems to be at a
very large distance from any other vector and then the question is, what the
usefulness of these distances is in finding the best match based on the selected
features.

6 Chapter 1

1.2.3 Semantic gap

In many image retrieval systems, low-level features such as color, texture and
shape are commonly used to describe images or parts of images. On the other
hand, users tend to think in higher level concepts, such as house, person or desert.
(Or even higher level concepts such as ’inauguration of Obama’.) The relation
between a set of low-level features and a high-level concept is still a challenge for
researchers in the CBIR community and the term ’semantic gap’ is often used to
describe the lack of a solid theory or methods to overcome this.

In other words, the semantic gap is used to describe the unclear relation, if any,
between low-level features and high-level concepts. One would like to say ’if the
texture of the area is this and the color is that, there must be a car in this area’.
However, there are still no systems that truly bridge the semantic gap by providing
these kinds of rules.

1.2.4 Searching with relevance feedback

If only the contents of an image are used as a query for an image retrieval system,
ambiguities will definitely arise. A well known saying is ’an image is worth a
thousand words’ and this also applies to the images that are used as input for
image retrieval: one image can have many different meanings to many different
users. In other words, two different users may have significantly different goals
for their query when the same image is used as a query.

In text-based searches this effect can also be seen, when a word has several mean-
ings, such as ’monitor’. The Wikipedia disambiguation page for monitor lists
several different meanings, from the computer monitor to a town in Indiana, US.
Without asking the user for feedback, there is no way of knowing what a user is
searching for.

1.2.5 Future CBIR challenges

There are many challenges in the field of CBIR research that still need to be
addressed. An overview of these challenges was recently given in [40]. The authors
conclude that the following five challenges are noteworthy:

• Concept detection in the presence of complex backgrounds

• Multi-modal analysis and retrieval

• Experiential multimedia exploration

• Interactive search

• Performance evaluation

Thesis contents 7

1.3 Thesis contents

This research has focused on two types of digital information: images and video.
Chapters 2, 3 and 4 give a general overview of the image features, machine learning
techniques and performance evaluation methods that were used. Chapters 5 to 8
contain techniques that are applied to image searching. Chapters 9 and 10 show
the results of relevance feedback on object tracking in video. A more detailed
description of each chapter is given below.

Chapter 2 gives an overview of existing image features and similarity methods that
are used in this research. Chapter 3 gives an overview of the machine learning
techniques used in this research. In chapter 4 various performance measures are
described that were used to evaluate the experiments.

In Chapter 5 a new interest point detector is presented. The detector uses local
dissimilarity to determine the most distinctive points in an area, based on a
selected feature or combination of features. We presented this work at the 10th
ACM International Conference on Multimedia Information Retrieval (MIR) in
Vancouver, Canada in 2008.

Chapter 6 demonstrates the use of relevance feedback for visual concept detection.
A visual concept is learned by asking the user for positive and negative exam-
ples of the concept. This concept is then used for pointing out parts of images
that contain the concept. This contribution was published in the proceedings of
the 21st Benelux Artificial Intelligence Conference (BNAIC) in Eindhoven, The
Netherlands in 2009.

An improved version of the paper used our new interest point detector combined
with an enhanced wavelet representation feature and shows results of experiments
on the MIRFLICKR-25000 dataset. This paper was presented at the 11th ACM
International conference on Multimedia Information Retrieval (MIR) in Philadel-
phia, Pennsylvania, USA in 2010.

Chapter 7 presents a novel similarity measure that uses the coincidence of feature
values in a training set of similar images and maps this in a 3D space. The
resulting surface is used as the similarity measure when searching for new images.

In Chapter 8, a new texture feature is described, which is a generalization of
the well-known 3x3 texture unit paradigm, that has shown that the statistical
distribution of 3x3 blocks is a very good classifier for textures [25]. The novel
texture feature was published in the proceedings of the 6th IEEE International
Symposium on Image and Signal Processing and Analysis (ISPA) in Salzburg,
Austria in 2009.

Chapter 9 presents a robust, adaptive object tracking system that was presented
at the 11th Annual Conference on Computing and Imaging (ASCI) conference in
2005. It was also used as the basis for further research for this thesis.

Chapter 10 builds on the new similarity measure based on multidimensional max-
imum likelihood. This work was presented at the IEEE International Workshop

8 Chapter 1

on Human Computer Interaction (HCI)in Rio de Janeiro, Brasil in 2007.

Chapter 10 also demonstrates the use of relevance feedback to object tracking.
Tracked objects can be selected as positive or negative examples and the tracking
system can keep tracking these objects when they are standing still, or it can
ignore them. A paper based on this techniques was published in the ACM Inter-
national Conference on Image and Video Retrieval (CIVR) in Amsterdam, The
Netherlands in 2007.

Appendix A describes RetrievalLab, an educational and research tool to illuminate
the process of content-based retrieval. RetrievalLab was presented at the ACM
International Conference on Multimedia Retrieval (ICMR) in Trento, Italy in
2011.

Chapter 2

Features

This chapter describes the low level features we have used in the content-analysis
of images. First, a short introduction is given to explain what a low level feature
is and then the features that were used in this thesis are explained in detail. Also,
we describe a few measures for calculating the similarity of low level features.

2.1 Introduction

The contents of images need to be described in a form that the search system
understands. This can be done in various ways and usually one starts with the
extraction of low level features. A low level feature can be extracted from an
image by calculating a mathematical formula or by running a simple algorithm
on the image data. The result is a number or a set of numbers that represents
the feature and this set of numbers is called the feature vector. These vectors are
almost always normalized to unit length. A low level feature generally focuses on
aspects such as color, texture or shape.

Low level features can be combined to form more complex descriptions of image
contents and these are often called high level features or high level semantics.
Examples are ’grass’, ’building’ or ’flag’. The higher level features are difficult
to measure directly from the image contents and often need to be trained with
examples to be usable as a feature.

As mentioned in the previous chapter, the bridge between these two representa-
tions is called the semantic gap and there is still no clear solution on how to define
a high level feature in terms of low level features. One might question if there will
ever be an unambiguous way of representing high level concepts with low level
features.

10 Chapter 2

2.2 Color features

2.2.1 Color histogram

A color histogram represents the distribution of colors in the image. For example,
if we take an image with RGB pixel values in the range [0, 255], a histogram
of the distribution of these RGB values can be created with 64 bins by quantiz-
ing the color information for each channel into 4 ranges: [0 . . . 63], [64 . . . 127],
[128 . . . 191], [192 . . . 255]. In other words, this is the same as reducing the bits
per channel to 2 and then using the combined 6 bit RGB value as an index in the
histogram.

The color space used for the histogram is arbitrary, although it has been shown
that using the YUV space has better retrieval performance than the RGB space
[74]. Also, the number of bits per channel can be of influence to the performance
of the feature.

2.2.2 Color moments

Color moments are also based on the distribution of color values in the image,
but this feature tries to capture the distribution in just a few parameters. In
statistics, the n-th central moment µn of a random variable X or a probability
density function f(x) with mean µ is:

µn = E[(X − E[X])n] =

∫ ∞
∞

(x− µ)nf(x)dx (2.1)

The first central moment µ1 is defined as zero. The second central moment is
equal to the variance of the distribution and the third central moment is termed
the skewness, a measure of symmetry for the distribution.

The fourth central moment is the kurtosis of the distribution, a value represent-
ing the type of measurements that resulted in the given variance. Higher kurtosis
means that the variance is the result of a small number of more extreme measure-
ments, instead of a larger number of measurements with lower variance.

In this research we have used the second, third and fourth central moment of
the distribution of color values as a low level feature, which again can be applied
to each of the individual color channels of the color space that is used. Note
that these moments can also be used on grayscale values, which then results in a
feature that is on the boundary of color (intensity) and texture.

Texture features 11

2.3 Texture features

2.3.1 Local binary patterns

The Local Binary Patterns (LBP) texture feature is a feature that was introduced
by Harwood [24] and Ojala [60] and that is invariant to monotonic changes in gray
scale. The basis of the feature is the distribution of grayscale differences in regions
of 3x3 pixels. The center pixel in the 3x3 region is used as a threshold for the
other 8 pixels and each of these pixels is then converted to a binary value and
then multiplied by a fixed value based on its location in the region, after which
they are summed to get the LBP value for the 3x3 region.

LBP =
∑
i

2i|Ii > threshold (2.2)

Where i ranges over the 8 locations mentioned before. In Figure 2.1, an example
is shown of how the LBP value for a 3x3 region is calculated. In this case, the
final LBP value is 25.

Figure 2.1: a) an example of a 3x3 region with grayscale values, b) the thresholded
and converted values of the region, c) the fixed values for each pixel location, d)
the values that are taken into account for the overall LBP value

The distribution of LBP values over an image results in a histogram with 256 bins
and this histogram can be used for similarity comparisons.

2.3.2 Symmetric covariance

The symmetric covariance texture measure was published in 1993 by Harwood
[24]. It forms a histogram of values that are calculated for 3x3 regions of pixels,
very much like the LBP texture measure, only this feature focuses on the pair-wise
differences of two pixels in the neighborhood, instead of looking at the entire 3x3
region.

Given a 3x3 neighborhood of a pixel as seen in figure 2.2, the SCOV value is
defined as:

12 Chapter 2

Figure 2.2: A 3x3 region around a pixel, with each surrounding pixel labeled

SCOV =
1

4

4∑
i=1

(gi − µ)(g
′

i − µ) (2.3)

where µ is the mean grayscale value of the 3x3 region.

2.3.3 Gray level differences

Ojala et al. [60] describe four different texture features, based on the absolute
gray level differences of neighboring pixels. The simplest two, DIFFX and DIFFY,
create a histogram of the absolute differences in horizontal and vertical directions.
The DIFF2 feature creates one histogram for both the horizontal and vertical
directions and DIFF4 also includes the diagonal directions. DIFF4 is therefore
rotational invariant (with respect to 45 degree angles).

2.4 Feature vector similarity

When comparing image features, there are several methods for calculating the
similarity. Examples of commonly used similarity measures are:

• LP , where P can be 1, 2, . . . ,∞.

dLP (X,Y) =

(
n∑
i=1

|xi − yi|P
) 1
P

(2.4)

For P = 1, this results in the sum of absolute differences and for P = 2,
it is the Euclidean distance, or the commonly used distance between two
vectors in geometry.

• EMD, or earth-movers-distance. The EMD computes the difference between
two distributions in terms of the amount of work it takes to redistribute the
values in one distribution to end up with the values of the second distribu-
tion. It is defined as

EMD(P,Q) =

∑m
i=1

∑n
j=1 fijdij∑m

i=1

∑n
j=1 fij

(2.5)

Feature vector similarity 13

where dij is the distance between two elements of the distribution and fij
is taken from the flow F = [fij], that is the result of minimizing:

WORK(P,Q, F) =

m∑
i=1

n∑
j=1

fijdij (2.6)

However, although these methods do result in a ranking of search results,
there is not much intuition behind using these formulas if one does not take
a very close look at what feature values really represent. For example, when
a YUV feature with three elements is used, does a difference of 0.1 in Y
represent the same visual difference as a difference of 0.1 in U? The L1

distance assumes this, but it is clearly not intuitive.

14 Chapter 2

Chapter 3

Machine Learning

This chapter gives an overview of the automated learning techniques that were
used in this thesis. First, a short introduction to machine learning for classification
is given and then all methods used are described in detail.

3.1 Introduction

Searching for images in a database requires some form of similarity measure to
determine if an image is a match to the query. The result of the search is then
a list of images, ranked by similarity to the query image. The similarity can
be calculated in many ways, for example by using the low level features and the
feature similarity measures that were mentioned in the previous chapter. However,
classification methods based on high level semantics are also commonly used. A
classifier would then be an algorithm that can answer a question like ’Does this
image contain grass?’

First, we introduce some mathematical notation for describing the datasets that
we have used in the machine learning tasks. We denote a dataset by D, one data
point is represented by x, the number of dimensions of a data point is denoted by
n, the number of data points in the set by m and the classification of a data point
as c. Note that the features and the resulting feature vectors we have described
in the previous chapter, can be concatenated to form one large vector that forms
one data point in the dataset.

A binary classification problem can be seen as a mapping between data point and
two possible outputs. We define these outputs as -1 and 1. The formal definition
of a dataset with binary labels can then be given as:

D = {(xi, ci)|xi ∈ Rn, ci ∈ {−1, 1}}mi=1 (3.1)

16 Chapter 3

3.1.1 A sample binary classification problem

This section shows an example of a toy binary classification problem. In this
example, the objective is to determine if a car is a sports car. Given a few
properties of a car, we would like to automatically determine if the car is a sports
car.

First, let us take a look at a the example in table 3.1.

Car Weight Engine displ. Supercharger Sports car?

Audi TT 1290 1.8 yes yes

DAF Truck 4000 8.0 no no

Ford Focus 1200 2.0 no no

Ferrari 1500 4.0 no yes

Table 3.1: A sample dataset for binary classification.

This short list of examples can be used to train a binary classifier. After training,
the classifier would then hopefully be able to classify new samples based on weight,
engine displacement and the presence of a supercharger. If we would present a
new sample to the classifier, for example (900, 1.4, no), then the classifier would
probably output that this is not a sports car.

The following sections demonstrate a few classification techniques that were used
in this thesis.

3.2 k-nearest neighbor

The k-nearest neighbor classification algorithm is an algorithm that needs to keep
all training data within reach when classifying new examples. First, the algorithm
needs a distance function for objects that need to be classified. This function is
then used to calculate the distance between the new sample and all training
samples.

The simplest form of nearest-neighbor classification is to find the closest matching
training sample and to classify the new sample with the same classification that
this closest training sample has. However, a more robust version of this is to use a
few of the closest training samples, to see if they all have the same classification.

The k in k-nearest-neighbor classification stands for the number of close training
samples that are used in determining which label to assign to the new sample. In
case of a 3-nearest-neighbor classification, the three closest training samples are
selected and the label that has the highest occurrence is selected as the label for
the new sample. Figure 3.1 illustrates this.

Artifical neural networks 17

Figure 3.1: Example of the k-nearest neighbor classification. Based on the three
nearest neighbors, the input will be classified as the type represented by the
triangles.

3.3 Artifical neural networks

An artificial neural network is a biologically inspired method for learning math-
ematical functions. Neural networks have many more applications than binary
classification, but they are well suited for them. Several recommended surveys of
neural network research are [13] [18] [98].

Figure 3.2: An example of a simple three layer neural network with seven artificial
neurons. The thickness of an arrow represents the weight of the connection.

Neural networks are based on a simple computational element, which is used in
a network-like structure to perform complex computations. This simple element
is called an artificial neuron, a simplified model of the main component of the
human brain, the neuron.

An artificial neuron can have several weighted inputs and the sum of these inputs
is fed into an activation function to determine the output of the neuron.

18 Chapter 3

output = f

(
n∑
i=1

xiwi

)
(3.2)

where xi is input value i and wi is the weight for input i. Inputs usually have
a value between -1 and 1. The activation function is a function that outputs a
value between -1 and 1, based on the input value. There are several options for
this activation function, but a sigmoid is a common choice.

A combination of several artificial neurons that are connected to each other, re-
sults in a neural network. Some neurons process the inputs and other neurons
process the outputs of these input neurons. These neurons are usually organized
in layers and in each successive layer, the number of neurons decreases.

For our binary classification problem, a neural network that ends in just one
neuron can be used. The network learns to classify samples by applying a learning
algorithm such as the back-propagation algorithm to a set of training samples.
If a well-suited network size is chosen, the network will generalize the training
samples and it can then be used to classify new samples.

3.4 Support vector machines

Support vector machines, or SVMs in short, is a technique that was developed by
Vladimir Vapnik [90]. The basic idea is that the input data are handled as vectors
in a vector space and that a hyperplane is determined that best separates the
positively labeled input vectors from the negative input vectors. The hyperplane
is said to have maximum margin, as it forms the best possible separation of the
two classes and has maximum distance to the closest vectors of each class.

To find this maximum margin hyperplane, two other hyperplanes are used that
are placed at the boundaries of both classes. By maximizing the distance be-
tween these two hyperplanes, the resulting maximum margin hyperplane can be
determined.

Non-linear classification is accomplished by transforming the vector space with a
given kernel function and trying to find the hyperplane in this new vector space.
If the kernel function is not linear, the resulting hyperplane in the transformed
space is in fact a representation of a non-linear shape in the original vector space.

A good tutorial can be found in [4]. We have used a library by Joachims [34] in
our experiments.

Support vector machines 19

Figure 3.3: An example of the maximum margin hyperplane that was found after
training the support vector machine. Vectors on the two margins are called the
support vectors.

20 Chapter 3

Chapter 4

Performance Evaluation

For testing and comparing the effectiveness of retrieval and classification methods,
ways of evaluating the performance are required. This chapter discusses several
of these methods, such as precision, recall, precision-recall graphs and average
precision. Note that we use the term ’documents’ in the descriptions because
most of these methods were originally designed for evaluating text search engines,
but in evaluating the performance of CBIR systems, ’documents’ can be directly
translated to ’images’.

4.1 Precision

In a retrieval task, precision is defined as the number of relevant documents
retrieved as a fraction of the total number of documents retrieved:

precision =
#retrieved and relevant

#retrieved
(4.1)

Precision values can be between 0.0 and 1.0. As an example, suppose a query
returns 10 search results and 4 of these results are relevant for the user, then the
precision of this result set is said to be 0.4. Note that a precision value always
needs the number of documents in the result set to be meaningful in comparisons.
A precision of 0.5 when returning just two documents gives a different perspective
than a precision of 0.5 when the retrieval system returns 100 documents.

For a classification task, the precision is defined as:

precision =
#true positives

#true positives + #false positives
(4.2)

22 Chapter 4

This states that the precision of a classifier with respect to positive classification
is the fraction of correctly classified positives in the total number of positively
classified documents.

4.2 Recall

Recall is another measure of the effectiveness of a retrieval method. Recall is
defined as the number of relevant documents retrieved as a fraction of the total
number of relevant documents that are in the database:

recall =
#retrieved and relevant

#relevant in database
(4.3)

Recall values have the same range as precision values, between 0.0 and 1.0. As an
example, if a retrieval result set with 10 documents contains 4 relevant documents
and there are 40 relevant documents in the database, the recall value for this result
set is 0.1. Note that the recall value also needs to be accompanied by the number
of documents that were retrieved. Also note that the recall value will always be
1.0 if the entire database is returned as a result set in response to a query.

In a classification task, the definition of recall is given by:

recall =
#true positives

#true positives + #false negatives
(4.4)

This formula tells us the fraction of positively classified documents with respect
to all positives that are in the data set.

4.3 Precision-Recall graphs

To give a graphical impression of the performance of a retrieval method, precision-
recall graphs can be created. (Some researchers refer to them as recall-precision
graphs, probably a more correct naming, but the term precision-recall is most
widely used.) To generate such a graph, a single query is repeatedly executed
and the number of returned results is varied. For each of these results sets, the
precision and recall are determined and both these values are plotted as a single
coordinate in the graph. The shape of the resulting graph gives a quick indication
of the performance of a retrieval method. Note that for very low recall values,
it is often not very elegant to plot the corresponding precision values, since the
result sets used are probably very small and the values can fluctuate rapidly. It
is common to start the graph at a recall value of 0.1.

First, the two extreme shapes of a precision-recall graph will be discussed. The
ideal shape of a precision-recall graph would be the situation where all returned

Precision-Recall graphs 23

documents are always relevant. For each recall value, the precision would always
be 1.0. Only if no more relevant documents can be found, the search results will
contain irrelevant documents. Note that the graph has only been plotted up to
the first recall value of 1.0.

Figure 4.1: The optimal precision-recall graph, with every precision value at 1.0.

The worst case scenario would be when all relevant results only show up after all
irrelevant documents have been returned. In this case, when recall values increase
from 0.0 to 1.0, the precision would increase slowly from 0.0 to a value specific
for the database. (Note that we can plot the coordinate 0.0, 0.0 now.) Assuming
that the database contains 100 documents and 10 relevant documents, the final
precision would be 0.1 for a recall value of 1.0.

Figure 4.2: The worst case scenario for a precision-recall graph: all relevant
documents are ranked lowest.

24 Chapter 4

Some examples of precision-recall graphs are given below, together with an ex-
planation on how to read these graphs.

Figure 4.3: A linear relation between recall and precision.

This graph shows a linear relation between precision and recall. For this graph,
with increasing recall, precision decreases until the point where all relevant docu-
ments are retrieved. This graph tells us that for any given number of results, the
percentage of relevant documents has an inverse linear relation with the number
of retrieved documents.

Figure 4.4: A precision-recall graph that indicates high retrieval precision.

This graph shows higher precision values for lower recall values, compared to the
first graph. This tells us that for short result sets, the precision is very high, but
as the number of retrieved documents increases, the precision decreases. In other
words, this probably means that most of the relevant are results are returned in

Average precision 25

the top of the result set, but some of the relevant documents are not detected by
the retrieval method and are mixed with the rest of the results.

Figure 4.5: A precision-recall graph that indicates a rapidly decreasing precision
with increasing result set sizes.

This graph shows a lower precision at low recall levels than the first graph. This
translates to the notion that the percentage of relevant documents in the search
results will decrease sharply when the number of search results is increased. In
other words, many irrelevant documents show up in the top results.

4.4 Average precision

Another method for measuring the performance of a retrieval method is the av-
erage precision. This is a value that does not need a fixed length of the result
set to be usable in comparisons. The average precision is calculated by averaging
the precision values at each relevant document in the result set, usually up to the
point where recall is 1.0.

Assume the last relevant document is retrieved at position N in the result set
and that the function relevant returns 1 when a document is relevant and that
precision returns the precision of the result set up to a certain point. Then the
formula for the average precision can be given as:

average precision =

∑N
i=1 relevant(i)precision(i)∑N

i=1 relevant(i)
(4.5)

With this value, the overall performance of a retrieval method can be assessed
with one number, without the need for a graph or a fixed number of returned
documents.

26 Chapter 4

4.5 Accuracy

In classification tasks, another measure is available to determine the performance
of the classifier: the accuracy. It is defined as

accuracy =
#true positives + #true negatives

#true positives + #true negatives + #false positives + #false negatives

(4.6)

This yields the fraction of correctly classified documents with respect to the total
number of documents. It can be seen as the probability that a classification, either
positive or negative, is correct.

Chapter 5

Interest Points Based on
Maximization of
Distinctiveness

Interest or salient points are typically meaningful points within an image which
can be used for a wide variety of image understanding tasks. In this chapter
we present a novel algorithm for detecting interest points within images. The
new technique is based on finding the locations in an image which exhibit local
distinctiveness. We evaluate our algorithm on the Corel stock photography test set
in the context of content based image retrieval from large databases and provide
quantitative comparisons to the well known SIFT interest point and Harris corner
detectors as a benchmark.

5.1 Introduction

In a typical content-based image retrieval [40] task, image features are compared
for matching images. When the image features are close, it is assumed the images
are similar. These features can be computed globally (over the entire image) or
locally (over small parts of the image). For locally computed image features, it
is necessary to determine which image points should be used for describing the
image content. These image points are called interest points and various methods
exist to select these points.

We introduce a novel method of computing interest points based on local unique-
ness and evaluate the effectiveness.

28 Chapter 5

5.2 Related work

Many interest point detectors are available [1] [40] [44] [43] [51] [52] [89], and
depending on the application, different performance measures can be chosen.
Arguably, the original interest point detector was created by Moravec [52] who
needed to find extremely computationally efficient methods for performing real
time robotic navigation. In the 70s, it was impossible to perform real time video
analysis on a mobile computer so his necessity led to the invention of interest
points. In current times, there are now other data intensive tasks, one of which
is content based image retrieval from large databases typically measured in the
thousands to millions of images. In this image retrieval context, it is again impor-
tant to have information efficient descriptors to perform content based searches
in a user acceptable response time.

A good overview is given in Sebe, et al. [72] and also Schmid, et al. [71]. In these
works, it is clear that one of the best performing interest or salient point detectors
is the Harris corner detector. The Harris corner detector [23] is an interest point
detector that is invariant to rotation, scale and illumination changes. It uses
the auto-correlation function for comparing a small part of an image to the area
around it. SIFT [44] [43] features are invariant to changes in scale and rotation.
Trujillo and Olague [89] use genetic programming to detect salient points.

There are a wide variety of methods of evaluating different interest point detectors.
Schmid et al. [71] use two evaluation criteria for interest points: repeatability
rate and information content. The former criterion determines the stability of
the interest point under various transformations. The latter is a measure of the
distribution of the feature values for those interest points. A distribution that is
spread out indicates more information content. Sebe, et al. [80] suggest a good
measure is using the information content as measured by the average information
content of all messages or the entropy. Tian et al. [88] use the retrieval accuracy
in a content based image retrieval task to evaluate their wavelet-based salient
point method. So far we have briefly discussed what different methods exist. In
the next section we will discuss why different methods are interesting and explain
the fundamental motivation behind our own interest/salient point paradigm.

5.3 Maximization Of Distinctiveness (MOD)

In Moravecs [52] original interest operator from 1979, the main intuition was to
use points which had high x and y gradients which in principle would be distinctive
just as there are typically far fewer edge pixels than non-edge pixels within an
image.

Nearly a decade later, Harris [23] came up with a robust method for detecting
corners which also had high x and y gradients and are an intuitive method for

Maximization Of Distinctiveness (MOD) 29

salient point detection. The usage of Moravecs and Harris work as salient points
was intuitive but also in our opinion adhoc.

Recently, Lowe [44] proposed the Scale Invariant Feature Transform (SIFT) method
which focuses on looking through the neighboring scales to find extrema in the
difference of the Gaussian which is an approximation to the Laplacian of the
Gaussian. The fundamental notion was to find scale invariant interest points on
the assumption that scale invariance was important to good features:

L = set of extrema in the Laplacian of the Gaussian
S = set of stable points in L
H = set of higher contrast points in S (see page 98 of [44])
P = set of H where edge responses are eliminated.

In addition to P, one or more orientations are assigned to each element of P and
a descriptor is computed using the gradient magnitudes and orientations for each
level of the image pyramid where the orientations are adjusted for the assigned
orientation.

While we agree that the scale invariance is a useful aspect of a good feature, it
depends on the particular context. In many areas such as texture classification,
image retrieval, video retrieval, stereo matching, and motion estimation contexts,
the scale is assumed to be very similar between the correspondences or between
the query and the results images. For example, in texture classification, one does
not want to match a fine grain texture with a coarse grain texture. In summary,
there are many areas where the scale is important and where the variation of scale
is beneficial in reducing candidates and maximizing the accuracy of a matching
algorithm.

5.3.1 The MOD paradigm

In the scale dependent visual matching areas such as stereo matching or motion
estimation, the typical techniques are variations of feature vector matching, of
which the most popular and intuitive method would be template matching.

Unlike the SIFT method which strives to find points which are scale invariant, we
strive to find points which optimize distinctiveness in matching. In matching, the
most common problem to address is the one to many mapping, where one point
may have many good matches. We first compute a distinctiveness of matching
measure which finds the most distinctive point in a local region based on the
matching method to be finally used. This means searching the neighboring region
around a point, computing the dissimilarity to each point in the region and then
estimating the distinctiveness as the minimum of the dissimilarity values in the
region. One benefit this has beyond the local gradient interest point methods
is that it can remove points which are only similar from the perspective of the
matching algorithm.

30 Chapter 5

We were motivated to design a new paradigm for salient point detection which
would both be intuitive, adaptable to diverse image matching fields, and be cen-
tered on optimizing a criterion function.

Our fundamental notion is that we want to minimize the probability of a mis-
match when we select a match based on a distortion or dissimilarity measure.
Therefore, we want to select salient points which will have a lower number of
similar candidates in any local region.

We assume for simplicity that the distinctiveness of a point is inversely related to
the similarity of that point to the closest wrong match.

Let D(x, y) represent the distinctiveness of a pixel at (x, y). Then the function
we are optimizing can be expressed elegantly as

D(P) = argmin
R

[−Similarity(R,P)] (5.1)

where R represents a region based on a pixel location P .

and the constellation of salient points would be

C = maxima of D(P) (5.2)

This means that we select the set of pixels which are local maxima of distinctive-
ness with regard to the similarity function used in the matching algorithm.

One of the advantages of this paradigm is that the similarity function can be
adapted to the area of computer vision or pattern recognition. It can be adapted
to be rotation invariant, scale invariant, color invariant, etc. As mentioned earlier,
different problem areas have different constraints.

Another advantage of the MOD paradigm is that the similarity function can be
also utilize sets of imagery such as all of the frames in a video shot because R
can include the region near a pixel in the video shot specified as (x, y, t) where
t represents the frame number. This would mean that we could find all of the
salient pixels over a video shot, not merely a single frame.

5.3.2 The special case of template matching

The implementation of interest point method for the special case of template
matching is based on selecting points in the image that maximize local distinc-
tiveness. In this case, the distinctiveness value of a point is determined by the
distance to the best matching neighbor in an area surrounding that point. We
determine the distance between two points by calculating the SAD of grayscale
values in a square template window.

Maximization Of Distinctiveness (MOD) 31

Figure 5.1: Example images from the ’aviation’ class.

Figure 5.2: Example images from the ’wl bird1’ class.

5.3.3 Detector output

Figures 5.1 to 5.3 show example images from three classes of the Corel database.

32 Chapter 5

Figure 5.3: Example images from the ’dogs’ class.

Figures 5.4 to 5.12 show the output of the Harris corner detector, the SIFT interest
point detector and the MOD interest point detector for the same input images.
Visually, the Harris detector seems to capture the structure of the objects in the
image better than the MOD detector, but we will show the effect of this for the
retrieval results in section 5.5.

Maximization Of Distinctiveness (MOD) 33

Figure 5.4: An image with the output of the Harris corner detector.

Figure 5.5: An image with the output of the SIFT interest point detector.

Figure 5.6: An image with the output of the MOD interest point detector.

34 Chapter 5

Figure 5.7: An image with the output of the Harris corner detector.

Figure 5.8: An image with the output of the SIFT interest point detector.

Figure 5.9: An image with the output of the MOD interest point detector.

Maximization Of Distinctiveness (MOD) 35

Figure 5.10: An image with the output of the Harris corner detector.

Figure 5.11: An image with the output of the SIFT interest point detector.

Figure 5.12: An image with the output of the MOD interest point detector.

36 Chapter 5

5.4 Matching images

For each interest point, a feature vector is created that contains color and texture
information. We have chosen color moments [87] as the color feature and local
binary patterns [61] as the texture feature. Color moments are calculated for a 3x3
region around the interest point. The local binary patterns feature is calculated
for a 19x19 region around the interest point.

We then use these feature vectors to compare images, by determining the best
matches between interest points. The sum of all these best matches is the distance
between the images.

In other words, for each point in an image I, the closest matching point in image
J is searched for and this distance is used for calculating the overall distance of
image I to image J . The distance between two images I and J is defined as the
sum of the distance from I to J and the distance from J to I:

d(I, J) =
∑
x

bestmatch(Ix, J) +
∑
y

bestmatch(Jy, I) (5.3)

where Ix is interest point x in image I.

5.5 Experiments and results

For testing the new salient points method, we used a subset of the Corel photo
database. We selected 18 classes of images, each class containing 100 images. We
have used 20 randomly selected images from each class as the query images. The
results are averaged over these 20 queries.

Each image was resized to have a width of 320 pixels, to speed up computation
and to make sure the calculated features are more scale-invariant. The settings for
our interest point detector were set to a neighborhood size of 15 and a template
size of 3, which was empirically determined by looking at the detector output.

Table 5.1 gives an overview of retrieval accuracy for the first 15 images returned,
for the three interest point detectors.

Experiments and results 37

Image class Harris SIFT MOD

aviation 0.110 0.370 0.390

beaches 0.213 0.597 0.320

butterfly 0.140 0.157 0.307

cactus 0.127 0.303 0.257

castles 0.147 0.137 0.150

cats 0.243 0.267 0.493

dogs 0.207 0.157 0,333

horses 0.070 0.067 0.080

mammals 0.103 0.077 0.130

models 0.357 0.228 0.253

mountain 0.130 0.077 0.260

orchids 0.137 0.197 0.323

pyramids 0.170 0.373 0.627

roses 0.373 0.357 0.703

tulips 0.137 0.170 0.143

waterfall 0.210 0.170 0.383

wl bird1 0.217 0.237 0.283

wl fish 0.120 0.333 0.309

Table 5.1: Average precision of the three methods, using 20 query images and a
result set of 15 images.

38 Chapter 5

Among the best results for the MOD algorithm are ’pyramids’ and ’roses’, of
which the results are shown in Figures 5.13 and 5.14.

Figure 5.13: Recall-precision for the ’pyramids’ class.

Figure 5.14: Recall-precision for the ’roses’ class.

Discussion and conclusions 39

Figure 5.15 shows the overall retrieval results for our interest point method com-
pared to the SIFT and Harris methods. It is clear that the MOD gives significantly
better results in the context of image retrieval than either the SIFT method or
the Harris points.

Figure 5.15: Overall retrieval recall-precision.

5.6 Discussion and conclusions

In this chapter we introduced a novel paradigm for interest point detection based
on a criterion of maximization of distinctiveness. We have used two features
for describing each interest point, the local binary pattern for texture and color
moments for color. We compared the MOD method in a content-based image
retrieval experiment to the SIFT interest point and the Harris corner detector
and we have showed that it outperforms both detectors for this task.

Intuitively, our interest point detector places points at locations that are more
uniform in color or texture. These points clearly are useful for content-based
retrieval tasks, since these areas also contain information.

40 Chapter 5

Chapter 6

Learning and Visual
Concept Detection

Visual concept detection is the automated detection of image semantics. Detect-
ing image semantics is particularly useful in content based retrieval because it
allows us to annotate media with semantically meaningful information. One com-
putationally efficient approach toward subimage annotation is to focus on regions
which are considered salient. The novel contribution in this chapter is using the
regions found from the maximization of distinctiveness (MOD) saliency approach
for automatic visual concept detection. We present results based on real images
and compare nearest neighbor classification, support vector machines and a neural
network.

6.1 Introduction

Bridging the gap between low level features such as color histograms and semantic
descriptions such as ’trees’ is highly useful for searching image databases and
digital libraries. From the panels of CIVR and MIR conferences, it has been said
repeatedly that one of the primary goals of the community is automatic annotation
of images and video. It would be ideal to have a program which receives as input
an unknown image, analyzes the pictorial content of the image and then outputs
a set of keywords. In this chapter we present our ongoing work in detecting visual
concepts toward automatic image annotation.

The basis of visual concept detection is the need for automatically describing
the content of images. For image retrieval tasks, these generated descriptions of
images can be very useful. For example, the following image in Figure 6.1 could
be classified as containing buildings and trees:

42 Chapter 6

Figure 6.1: An image which could be labeled with trees, buildings and sky.

With this annotation, it is possible to search for these images using keywords.
A high level overview of our system frame work is shown in Figure 6.2. In our
system, a visual concept is learned interactively by our program using positive
and negative responses from the user. Once the visual concept has been learned,
it is applied to an unknown image and automatically outputs descriptive text.

Figure 6.2: The overall visual concept detection system.

For detecting visual concepts in images, we have compared the following methods:
nearest neighbor classification, support vector machines and a neural network. We
also use several approaches for segmenting images into sub-images using wavelet-
based salient points and maximization of distinctiveness (MOD) based interest
points, of which the visual concepts are determined.

Related work 43

6.2 Related work

In the recent years, visual concept detection or automated image annotation has
become a very active field of research. As the amount of visual information
available increases, the need for new methods for searching it also increases. For
example, Srikanth et al. [84] describe an image annotation method that uses an
ontology for linking annotation words. They measure the retrieval performance
when annotation words are connected to other words in a hierarchy. Retrieval
accuracy improves using this knowledge.

Other closely related work in the research literature for visual concept detection
is face detection in complex images. Representative examples would be the neural
network work by Rowley and Kanade [66] or the information theoretic approach
by Lew and Huijsmans [39] in which the authors detect the specific visual concept
of a human face. An excellent survey of the work done in face detection is found
in Yang, et al. [95].

6.3 Maximization Of Distinctiveness (MOD)

Recently, we have proposed the Maximization of Distinctiveness paradigm [56]
for detecting interest points in images. These interest points have the property
that they are optimized for visual content matching using feature vectors. The
selected points have the highest distinctiveness with respect to certain features,
in a local region around the selected point.

For computing the MOD interest point, each pixel in an image is first assigned a
distinctiveness value that is based on the dissimilarity of the point to all pixels in a
neighborhood around it. The dissimilarity for a pixel is estimated as the inverse of
the similarity value for the closest matching point in the neighborhood, when the
features are considered that will be used for matching. The dissimilarity values
are combined to form a distinctiveness map of an image and the local maxima in
this distinctiveness map will yield the MOD interest points. The details of this
method are described in chapter 5 of this thesis.

6.4 Detecting visual concepts

We used two steps in detecting visual concepts in images: Visual concept descrip-
tion and visual concept matching.

First, the visual concepts need to be described. This can be done by selecting
positive and negative examples and to use a classification method which uses these
positive and negative examples to create a general model of the concept.

For each of the positive and negative examples, a number of feature vectors is
extracted. We have used an HSV based color feature, color moments and a texture

44 Chapter 6

feature created by Ojala [62], which is invariant under grayscale variations and
rotation.

The second step for visual concept detection is to match each image to the visual
concepts. Images are compared to the generalized model and are classified as
either matching or non-matching for each visual concept. The list of matching
concepts is then an annotation for the image.

For describing the visual concepts, we have used the interactively selected lists of
positive and negative images.

For matching images with visual concepts, we have looked at three different meth-
ods: Nearest neighbor classification, support vector machines and a neural net-
work. These methods are explained in detail in the next three sections. We expect
classification using SVMs or the neural network to outperform the nearest neigh-
bor method because of the generalization capabilities of these machine learning
techniques, but we included the nearest neighbor method as a benchmark.

6.4.1 Classifiers

For our experiments, we have used three different classifiers. The details of each
of these classifier types can be found in chapter 3 of this thesis. Here we only
describe the parameters used (if any) for each of the classifiers.

First, as a benchmark, we used a k-nearest neighbor classifier that uses the label
of the closest positive of negative example of a concept as a classification.

Secondly, we have used a neural network with one variable sized hidden layer and
one output unit. In most experiments, the hidden layer consisted of 25 units.

The third classification technique we have used is the support vector machine
(SVM). In these experiments, we have chosen to use a third order polynomial
kernel, because we assume the feature vectors are not linearly separable.

6.5 Experiments

We have tested our system on a dataset of tourist-like images of the cities of
Leiden and Amsterdam and several other images. This section shows the user
interface of the program, the results of applying concepts to a few of these images
and also the results of an application of visual concept detection to face detection.

Figure 6.3 shows the images that were selected from the tourist database for
detecting trees, buildings and blue sky. For the beach and face concepts, we have
selected images from the web.

Figure 6.4 shows the interface of our visual concept detection program. Users can
add concepts and assign image regions to the positive or negative examples for
each concept.

Experiments 45

Figure 6.3: Images selected from the Tourist Database.

Figure 6.4: The user interface of the Visual Concept Detection program.

46 Chapter 6

6.5.1 Tree detection

This section shows where the concept ’Tree’ was detected in some of the Tourist
Database images. Figures 6.5 to 6.7 contain the examples.

Figure 6.5: Tree detection with nearest neighbor classification.

Figure 6.6: Tree detection with SVM classification.

6.5.2 Building detection

This section shows where the concept ’Building’ was detected in some of the
Tourist Database images. All examples are contained in figures 6.8 to 6.10.

Experiments 47

Figure 6.7: Tree detection with neural network classification.

Figure 6.8: Building detection with nearest neighbor classification.

Figure 6.9: Building detection with SVM classification.

48 Chapter 6

Figure 6.10: Building detection with neural network classification.

6.5.3 Sky detection

This section shows where the concept ’Sky’ was detected in some of the Tourist
Database images. All examples are contained in figures 6.11 to 6.13.

Figure 6.11: Sky detection with nearest neighbor classification.

Experiments 49

Figure 6.12: Sky detection with SVM classification.

Figure 6.13: Sky detection with neural network classification.

6.5.4 Beach classification

This section shows the detection of the ’Beach’ concept on an image from the
web. Figure 6.14 shows the example.

6.5.5 Face detection

Figure 6.15 shows the results of applying a ’Face’ concept to an image. In this
case, the training image set and test set were very small, but we present this result
as an example of other uses of the visual concept detection.

50 Chapter 6

Figure 6.14: Beach detection with neural network classification.

Figure 6.15: Output of the visual concept detector for the ’face’ concept.

Experiments on MIRFLICKR-25000 dataset 51

6.6 Experiments on MIRFLICKR-25000 dataset

The MIRFLICKR-25000 dataset was presented at the MIR conference held in
2008 [31]. The dataset contains 25000 images that were retrieved from the Flickr
website. All original user annotations are available, as well as the EXIF metadata.
Also, a ground truth is supplied for a large number of visual concepts, from general
to very specific topics. For example, the concept ’people’ is annotated, but also
’baby’.

The ten general topics of the dataset annotations are:

• Animals

• Indoor

• Night

• People

• Plant life

• Sky

• Structures

• Sunset

• Transport

• Water

We have used these general annotations in our experiments. We have compared
the classification accuracy of SIFT [44] features with a support vector machine
(SVM) as a classifier to MOD interest points with both an SVM and a neural
network as classifiers with a basic set of features.

For the MOD based classification, we used the EWF, an Extended Wavelet Fea-
ture set which combines the wavelet [85] [86] [92] representation of a grayscale
version of the image region [73], with the HSV Histogram [74] and Local Binary
Patterns [60] [75].

For a comparative benchmark, SIFT features with an SVM classifier have shown
to be a good classifier for visual concepts [3], so we have chosen to use that as a
baseline method.

The SVM classifiers were constructed using a radial basis function (RBF) kernel
function, which has been suggested as the optimal kernel in our context [6].

For our tests, we have selected a set of 50 training images for each concept.
The training set contained 25 positive examples and 25 negative examples. Each
positive example was manually segmented into regions that contain the concept.
Only interest points within these regions were used in the tests.

For the test set for each concept, we have randomly selected 5000 images from the
dataset, of which 50% were positively labeled and 50% were negatively labeled,
although not all concepts have 2500 positive examples in the dataset. In those
cases, more negatives were added.

52 Chapter 6

First, we give the detailed annotation results for a few of the general concepts.
We show graphs of the true positive rate compared to the true negative rate. The
true positive rate is defined as the fraction of positives detected:

true positive rate = tp/(tp+ fn) (6.1)

Note that in a classification context, this is also known as the ’recall’ value. The
true negative rate is then defined as the fraction of negatives detected:

true negative rate = tn/(tn+ fp) (6.2)

In order to give a proper idea of the diversity and difficulty level of the concepts,
we show in Figures 6.16 to 6.45 examples of interesting concepts in each sub-
section below along with the performance graphs and the detected salient points
corresponding to the visual concept. In Figure 6.46 we show the averaged results
over all of the concepts.

6.6.1 Concept ’Animals’

Figure 6.16 shows some example images for the ’Animals’ concept. These images
show the wide variety of images that can be classified as containing animals. Not
only real animals that are clearly visible, but also hand drawn animals or parts
of an animal result in the same annotation. Also note that the animal does not
have to be the subject of the image, but it might also be seen in the background.

Figure 6.16: Some example images for the ’Animals’ concept.

Figure 6.17 shows the classification results for the ’Animals’ concept and figure
6.18 shows some detection examples of the MOD based concept detection.

Experiments on MIRFLICKR-25000 dataset 53

Figure 6.17: Classification results for the ’Animals’ concept.

Figure 6.18: Some MOD based concept detection results for the ’Animals’ concept.

As explained above, the Animals concept contains a wide variety of images and it
seems that 25 training images is probably not enough to create a reliable classifier
for all images with animals. As there are many more different types of animals
than there are training images, a larger training set should be used.

54 Chapter 6

6.6.2 Concept ’Indoor’

Figure 6.19 shows some example images for the ’Indoor’ concept. The concept
’Indoor’ contains images that were taken indoors. However, the images do not
explicitly have to show a typical indoor situation like a room with a view to
the outside world. Intuitively, the concept can be described as for example ’not
containing sky’ or ’not containing grass’.

Figure 6.19: Some example images for the ’Indoor’ concept.

Figure 6.20 shows the classification results for the ’Indoor’ concept and figure 6.21
shows some detection examples of the MOD based concept detection.

The detection of the concept ’indoor’ shows to be very difficult. The real question
is if there is a direct relationship between visual properties of an image region and
the concept indoor. The concept cannot be pointed out in an image, although the
image does get the label ’indoor’. The results show that the number of detected
regions does give a hint of the probability of the image being indoor.

Experiments on MIRFLICKR-25000 dataset 55

Figure 6.20: Classification results for the ’Indoor’ concept.

Figure 6.21: Some MOD based concept detection results for the ’Indoor’ concept.

56 Chapter 6

6.6.3 Concept ’Night’

Figure 6.16 shows some example images for the ’Night’ concept. The concept
’night’ contains images that were taken at night. Although this sounds like a
trivial concept to detect, because the images would usually be dark in color, also
the contents are needed to determine if an image was really taken at night. Not
all areas of an image need to be dark for it to be taken at night and not all images
with many dark areas were taken at night.

Figure 6.22: Some example images for the ’Night’ concept.

Figure 6.23 shows the classification results for the ’Night’ concept and figure 6.24
shows some detection examples of the MOD based concept detection.

The results of the MOD based detector show that many image areas that are not
dark, are still classified as being part of the night concept. We anticipated this
earlier when discussing what images in this concept class would look like. The
retrieval performance of the MOD based methods clearly outperform the SIFT
based method.

Experiments on MIRFLICKR-25000 dataset 57

Figure 6.23: Classification results for the ’Night’ concept.

Figure 6.24: Some MOD based concept detection results for the ’Night’ concept.

58 Chapter 6

6.6.4 Concept ’People’

Figure 6.25 shows some example images for the ’People’ concept. In the MIRFLICKR-
25000 dataset, there are two different annotations for the ’People’ concept. The
annotation ’people’ is a less strict annotation than ’people r1’, in which one or
more persons are really clearly visible, probably even the subject of the picture.
We have used the ’people r1’ annotation. The example images show that in some
images only a face is visible, but in other images the entire person can be seen or
even a large crowd of people.

Figure 6.25: Some example images for the ’People’ concept.

Figure 6.26 shows the classification results for the ’People’ concept and figure 6.27
shows some detection examples of the MOD based concept detection.

Compared to the results for ’Animals’, the ’People’ concept detection results are
more promising for the MOD method. Both the SVM and the NN classifiers
slightly outperform SIFT-SVM.

Experiments on MIRFLICKR-25000 dataset 59

Figure 6.26: Classification results for the ’People’ concept.

Figure 6.27: Some MOD based concept detection results for the ’People’ concept.

60 Chapter 6

6.6.5 Concept ’Plant life’

Figure 6.28 shows some example images for the ’Plant life’ concept. The ’plant
life’ concept is intuitively linked to green plants, but the images again show the
wide variety of images that are in the dataset. The ’Plant life’ concept contains
plants, trees, grass, flowers.

Figure 6.28: Some example images for the ’Plant life’ concept.

Figure 6.29 shows the classification results for the ’Plant life’ concept and figure
6.30 shows some detection examples of the MOD based concept detection.

The graph again shows an improved detection rate for the MOD based methods,
however in this case the MOD-SVM outperforms the MOD-NN method, which
we have not seen for the previous two concepts.

Experiments on MIRFLICKR-25000 dataset 61

Figure 6.29: Classification results for the ’Plant life’ concept.

Figure 6.30: Some MOD based concept detection results for the ’Plant life’ con-
cept.

62 Chapter 6

6.6.6 Concept ’Sky’

Figure 6.31 shows some example images for the ’Sky’ concept. The ’Sky’ concept
is usually regarded as an easy concept to detect. Blue sky has a very specific
color and almost no texture. However, in this dataset, the sky concept can also
be considered a reasonably difficult one. Cloudy skies and night skies, or just a
vague notion of sky somewhere in the image are the main reasons for this.

Figure 6.31: Some example images for the ’Sky’ concept.

Figure 6.32 shows the classification results for the ’Sky’ concept and figure 6.33
shows some detection examples of the MOD based concept detection.

The graph above shows the classification results for the ’sky’ concept. Again, the
MOD based methods outperform the SIFT method.

Experiments on MIRFLICKR-25000 dataset 63

Figure 6.32: Classification results for the ’Sky’ concept.

Figure 6.33: Some MOD based concept detection results for the ’Sky’ concept.

64 Chapter 6

6.6.7 Concept ’Structures’

Figure 6.34 shows some example images for the ’Structures’ concept. The ’Struc-
tures’ concept contains images with man-made structures on it. One can think of
buildings, roads, bridges or fences.

Figure 6.34: Some example images for the ’Structures’ concept.

Figure 6.35 shows the classification results for the ’Structures’ concept and figure
6.36 shows some detection examples of the MOD based concept detection.

In this case, the increase in performance is less obvious, although the MOD meth-
ods perform slightly better.

Experiments on MIRFLICKR-25000 dataset 65

Figure 6.35: Classification results for the ’Structures’ concept.

Figure 6.36: Some MOD based concept detection results for the ’Structures’ con-
cept.

66 Chapter 6

6.6.8 Concept ’Sunset’

Figure 6.37 shows some example images for the ’Sunset’ concept. The ’Sunset’
concept is a typical color-based concept. Usually the colors red, orange or dark
blue can be found and one would expect higher classification accuracy because of
the more obvious relation between image features and the concept.

Figure 6.37: Some example images for the ’Sunset’ concept.

Figure 6.38 shows the classification results for the ’Sunset’ concept and figure 6.39
shows some detection examples of the MOD based concept detection.

The test set for the sunset concept did not contain 50% positively labeled images,
as there are not enough positive images in the MIRFLICKR dataset. So, if
the accuracy would be plotted in a graph (not visible here), it would flatten
around 0.58, which is the percentage of negatively labeled images. For very high
thresholds, all images will be classified as not containing the concept, so for 58%
of the images this will be true, instead of the expected 50% as with the other
tested concepts.

Experiments on MIRFLICKR-25000 dataset 67

Figure 6.38: Classification results for the ’Sunset’ concept.

Figure 6.39: Some MOD based concept detection results for the ’Sunset’ concept.

68 Chapter 6

6.6.9 Concept ’Transport’

Figure 6.40 shows some example images for the ’Transport’ concept. The ’Trans-
port’ concept covers all kinds of transport, such as cars, boats, bicycles. Like with
other concepts, often only partial views of a concept are visible in the images. A
few common shapes exist among the cars and bicycles, for example the tires.
These are round and black. For boats, water is usually present around them.

Figure 6.40: Some example images for the ’Transport’ concept.

Figure 6.41 shows the classification results for the ’Transport’ concept and figure
6.42 shows some detection examples of the MOD based concept detection.

Just like the concept indoor, the transport concept is a difficult concept to grasp
with visual descriptors. Many different objects and situations relate to the word
transport and as such, a high retrieval performance was not expected from our
classifiers with the limited training set. Still, the MOD based methods perform
better than the SIFT based method.

Experiments on MIRFLICKR-25000 dataset 69

Figure 6.41: Classification results for the ’Transport’ concept.

Figure 6.42: Some MOD based concept detection results for the ’Transport’ con-
cept.

70 Chapter 6

6.6.10 Concept ’Water’

Figure 6.43 shows some example images for the ’Water’ concept. The concept
’Water’ refers to more than what one would first expect: not just water like a
river or an ocean, but also rain or an aquarium are covered by this concept. The
standard ’blue and ripples’ description is clearly not sufficient.

Figure 6.43: Some example images for the ’Water’ concept.

Figure 6.44 shows the classification results for the ’Water’ concept and figure 6.45
shows some detection examples of the MOD based concept detection.

Experiments on MIRFLICKR-25000 dataset 71

Figure 6.44: Classification results for the ’Water’ concept.

Figure 6.45: Some MOD based concept detection results for the ’Water’ concept.

72 Chapter 6

6.6.11 Overall results

Figure 6.46 shows the overall Recall versus True Negative rate. The MOD based
methods outperform the SIFT based method, but the distinction between SVM
and a neural network for the MOD based methods is not obvious. The neural
network slightly outperforms the support vector machine approach, especially for
high recall values.

Figure 6.46: Average performance over all concepts.

6.7 Discussion, conclusions and future work

The results from the different concepts and classifiers show the promising results
that can be obtained when using the MOD interest points as a hint on where to
look for concepts within images. Especially the combination of a more advanced
classifier like the support vector machine or a neural network with the MOD
regions turns out to give very interesting results.

As an example, detecting the ’tree’ concept, as shown in Figure 6.9, with a support
vector machine yields a correct classification of a small image region, that we did

Discussion, conclusions and future work 73

not expect to be easily detected.

The other results on the Leiden-Amsterdam database show that the ’building’
concept detection results in some errors. The nature of this concept is visually
more complex than a ’sky’ concept, so we expected more difficulties with detecting
the concept, which can be clearly seen in Figure 6.10.

For the MIRFLICKR experiments, our research has focused on a new method of
interest point detection for sub-image visual concept detection. Our experiments
have shown that the MOD based classifiers with a few standard features outper-
form the SIFT based classifier with SIFT feature descriptors, a method that has
been recently shown to be very effective for visual concept detection.

The results of the experiments also indicate that for the far majority of the con-
cepts, the neural network based classifiers have equal or greater performance than
the SVM based classifiers. On average over all the concepts, the neural network
has a 7.4% improvement, although the main contribution comes from the highest
recall values, where the neural network clearly outperforms SVM.

In our results we compare relative detection rates for the same training and test
sets between MOD and SIFT salient points. We expect that the absolute detection
rates can be significantly improved by using more training images, which we intend
on pursuing in the future.

Also for future research, we would like to improve our MOD based concept de-
tector by using other features. In the current tests, only three basic features were
used and we expect that for example a scale-invariant feature would benefit the
detection of concepts that vary in size.

74 Chapter 6

Chapter 7

Multi-Dimensional
Maximum Likelihood

7.1 Introduction

In retrieval applications, there is a point where the similarity between two docu-
ments has to be determined. Documents similar to the query should be ranked
higher in the search results than documents that are less similar.

An interesting question to ask is: how do we determine similarity? When are two
image features similar? Assuming that these features are represented by vectors
of real numbers, standard ways of determining feature similarity exist, such as
the sum of absolute distances (SAD). However, these methods assume certain
properties of the data that is used. For example, as will be described later in this
chapter, using a sum of squared distances (SSD) as a similarity metric, assumes
that the feature differences of similar images are normally distributed.

Previous research has shown that this is not always true and that more optimal
similarity measures exist if the distribution of feature data of similar images is
known. This research extends this work to a multi-dimensional situation where
not only the distribution of feature value differences is analyzed, but also the
relation of these differences to the feature values themselves. In other words,
given a set of similar images, we are not examining the distribution of (x − y)
for each pair of features but the distribution of (x, y), which is a 2D distribution.
This approach results in the multi-dimensional maximum likelihood (MDML)
similarity measure.

76 Chapter 7

7.2 Definitions

A distance is a function D with nonnegative real values, defined on the Cartesian
product X ×X of a set X. So, for every x, y ∈ X:

1. D(x, y) = 0

A distance is called a metric if the following properties also hold for every x, y, z ∈
X:

2. D(x, y) = 0 if and only if x = y

3. D(x, y) = D(y, x)

4. D(x, z) = D(x, y) +D(y, z)

A set X provided with a metric is called a metric space. As an example, every set
X has the trivial discrete metric D(x, y) = 0 if x = y and D(x, y) = 1 otherwise.

If one of the metric conditions is not met, the distance function is referred to as
a similarity measure.

7.3 Detailed description

We begin by reviewing the theory of maximum likelihood theory. Given two
images X and Y with feature vectors x and y, the probability of these two being
similar, is the product of the probabilities of the similarity of each element of the
vector.

Sim(x, y) =

n∏
i=1

Psim(xi, yi) (7.1)

These individual probabilities Psim(xi, yi) are directly linked to the distribution
of the feature value co-occurrences and are often modeled by a chosen probability
density function.

The origin of the widely used L2 distance metric is the assumption that the
differences between feature vector elements are normally distributed [78], with
the same parameters for each element. This results in the following similarity
metric:

Sim(x, y) =

n∏
i=1

1

σ
√

2π
e

(
− (xi−yi)

2

2σ2

)
(7.2)

If one wants to find the most similar image to an image X, we loop through all
images Y to find the image with the highest similarity value resulting from 7.2.

However, since σ and µ are both constants in this formula, we can simplify the
maximization problem using:

Detailed description 77

Sim(x, y) =

n∏
i=1

e−(xi−yi)
2

(7.3)

Applying ln(ab) = ln(a) + ln(b) to this function yields:

Sim(x, y) =

n∑
i=1

ln
(
e−(xi−yi)

2
)

(7.4)

Which in turn can be simplified to:

Sim(x, y) =

n∑
i=1

−(xi − yi)2 (7.5)

Finally, if we convert the maximization problem to a minimization problem, we
can use:

Sim(x, y) =

n∑
i=1

(xi − yi)2 (7.6)

This is exactly the sum of squared distances. So now we can conclude that if the
differences of all feature values have the same normal distribution, using L2 as a
distance metric is justified.

As mentioned before, the normal distribution does not always represent the true
distribution in retrieval experiments. For example in motion detection in video,
a representative distribution and the best fit Gaussian is shown in figure 7.1.

Figure 7.1: An example of the best fit Gaussian to the true distribution in one of
our video retrieval experiments.

Especially the more prolonged tails of the true distribution are noticeable. This
suggests that other distributions might have a better fit to the true underlying
distribution and that other similarity metrics should be used in this case.

78 Chapter 7

There are three assumptions that are made when the L2 distance metric is used
for determining the similarity of two feature vectors:

1. The difference (x − y) between elements of the feature vectors contains all
information needed to determine similarity.

2. The differences between the elements of similar feature vectors follow a
Gaussian distribution.

3. All differences of the elements in the feature vector have identical indepen-
dent distributions.

The first assumption is widely used in all types of distance metrics. It is assumed
that the differences of feature vectors follow a certain distribution for similar
images and that this difference captures it all. However, there are many other
possibilities that can be analyzed. Instead of using the differences, looking at the
absolute values (x, y) or even (x + y) or (x ∗ y) might result in better distance
metrics.

The second assumption states that (x−y) follows a Gaussian distribution, which is
explained by the derivation of the L2 metric in this chapter. The third assumption
is based on the fact that the same distance metric is used for each feature value
when determining the similarity of feature vectors. The same function is used for
each feature vector element.

If the third assumption is not true, then the distribution of each feature vector
element of similar images should be determined and a suitable distance should be
selected based on that distribution. This will not be addressed in this chapter,
but it will be the focus of future research.

If the second assumption is not true (which it is not, as was demonstrated by
previous research [76]), a better approximation for the true distribution should
be used to select a distance metric that better suits the data. This will be the
focus of the rest of this chapter.

If the first assumption is not true, more information should be extracted from the
original feature values. In this chapter, we do this by examining the distribution
of (x, y).

7.4 Related work

A lot of research has been done in the field of distances and metrics. Below is a
review of a few recent papers. Almost all try to improve on the standard L1 and
L2 norms by looking at their general form, the Minkowski Lp norm:

DLp(x, y) =
(∑

(x− y)p
) 1
p

(7.7)

With SAD (L1) and SSD (L2) being two instances of this norm.

Multi-Dimensional Maximum Likelihood similarity (MDML) 79

Sebe et al. [78] analyze the true noise distributions of similar items from various
test sets and the authors conclude that the implied Gaussian or Exponential
distributions are often not close enough to the true noise distributions. The
presented Cauchy metric has increased performance over both L1 and L2. Further
research, also by Sebe et al. [76], shows that using the histogram of feature value
differences of similar items, further increases the similarity measure performance.
This research addresses assumption 2, the differences of feature values of similar
images do not follow a Gaussian distribution.

Yu et al. [97] build on the research by Sebe and introduce several other distance
measures based on different probability distributions that are implied by the har-
monic mean and the geometric distribution, as opposed to the arithmetic mean
and the median that are related to L2 and L1. Yu also correctly identifies the
problem of the possibility of having different noise distributions for individual fea-
ture elements. He shows that using several distance measures for sets of feature
elements, by using a boosting algorithm to find these sets, the performance of the
distance measure increases. This research addresses assumptions 2 and 3, the dif-
ferences of feature values of similar images do not follow a Gaussian distribution
and also the distributions of differences of feature elements are not the same for
each element.

However, the second assumption, stating that (x − y) contains all information
needed to determine similarity, is not addressed by these papers. Our research
will focus on this assumption to determine if more information should be used.

7.5 Multi-Dimensional Maximum Likelihood sim-
ilarity (MDML)

As mentioned above, previous research [76] has shown that analyzing the distribu-
tion P (xi − yi) of feature differences for adjusting the similarity metric results in
better retrieval results. The resulting similarity metric was called the maximum
likelihood metric. In this research we are directing our focus at the distribution
of P (xi, yi) and we attempt to create a 2D version of this metric. Using (x, y)
seems like the most general approach to analyze the data.

Recall that a similarity measure can be thought of as a histogram of feature value
co-occurrences. If given enough training samples, the normalized histogram will
give a representation of the true joint probability of the occurrence of each feature
value pair for a certain class of images. The similarity of two images, given the
class C of one of them, can then be calculated by

Sim(x, y) =

n∏
i=1

HC(xi, yi) (7.8)

80 Chapter 7

Where HC is the probability of the two feature values occurring for similar images,
determined by the histogram for class C. To convert this into a minimization
problem and to get more numerical stability in the calculations (by converting
the product to a sum), we get:

Sim(x, y) = −
n∑
i=1

log (HC(xi, yi)) (7.9)

Determining the similarity of two feature vectors is now reduced to directly using
the true 2D distribution of similar feature values.

7.6 Experiments on stereo matching

Stereo matching is the process of finding corresponding image locations in sets
of images, such that these locations represent the same real-world location. The
difference between the pixel locations in the images is called the disparity.

Stereo matching algorithms come in various forms, but three important categories
can be distinguished: local, semi-global and global methods. Local methods try
to find the best match to a single location by using information around that lo-
cation or possibly even only the pixel itself. Global methods try to optimize a
global correspondence function, which causes local correspondences to be influ-
enced by neighboring locations. Semi-global methods use the same principle as
global methods, a form of functional optimization, however restricted to a subset
of the global set of correspondences to improve calculation times.

A well-known dataset for testing stereo matching algorithms is the Middlebury
dataset. A total of 28 sets of stereo images and corresponding ground truth were
released between 2001 and 2006. In our experiments we have used the datasets
released in 2001, 2003 and a few from 2005, together with two other sets (Map
and Tsukuba) that were used in the experiments from [70].

7.6.1 Results - template based

For our first experiments, we have selected a template size of 11 and a search
range of one line, because the images are already rectified. Table 7.1 shows the
accuracy of template based stereo matching for each Middlebury dataset and
various similarity measures. The experiments were carried out with 10-fold cross
validation.

7.6.2 Results - pyramidal template based

These experiments were based on a variation of the template based stereo match-
ing algorithm: it uses a 5-layer pyramid of subsampled versions of the original

Experiments on stereo matching 81

Dataset L1 L2 ML MDML

Barn 1 93.88 (0.07) 92.93 (0.05) 94.75 (0.08) 96.66 (0.05)

Barn 2 91.43 (0.09) 91.70 (0.12) 94.46 (0.10) 95.63 (0.09)

Bull 95.27 (0.07) 95.54 (0.08) 97.26 (0.08) 97.66 (0.04)

Poster 84.58 (0.13) 85.29 (0.09) 87.08 (0.11) 94.18 (0.22)

Sawtooth 93.92 (0.09) 92.97 (0.11) 94.90 (0.15) 96.59 (0.13)

Venus 92.46 (0.13) 92.45 (0.14) 93.75 (0.14) 95.53 (0.10)

Map 92.30 (0.09) 91.33 (0.06) 92.57 (0.05) 93.05 (0.09)

Tsukuba 51.27 (1.16) 50.11 (1.18) 51.84 (0.97) 71.05 (0.87)

Cones 81.23 (0.26) 81.77 (0.24) 88.72 (0.21) 92.14 (0.16)

Teddy 77.97 (0.26) 77.70 (0.21) 84.40 (0.22) 88.68 (0.24)

Art 56.01 (0.13) 54.87 (0.16) 68.10 (0.19) 73.01 (0.20)

Books 72.83 (0.36) 75.43 (0.20) 78.01 (0.26) 86.65 (0.26)

Dolls 78.63 (0.12) 76.51 (0.11) 81.69 (0.11) 85.90 (0.16)

Table 7.1: Average accuracy and unbiased standard deviation of found correspon-
dences for the Middlebury datasets and various similarity measures

image. Searching for a match starts at the lowest resolution layer. Each layer has
a separately trained ML or MDML classifier. The matching template location on
the low resolution image is used as the center of the limited search range for the
next higher resolution.

For these experiments, we have selected a template size of 11 and a search range of
one line, because the images are already rectified. Table 7.2 shows the accuracy of
template based stereo matching for each Middlebury dataset and various similarity
measures. The experiments were carried out with 10-fold cross validation.

82 Chapter 7

Dataset L1 L2 ML MDML

Barn 1 93.88 (0.07) 92.93 (0.05) 94.75 (0.08) 96.66 (0.05)

Barn 2 90.90 (0.29) 91.20 (0.33) 91.50 (0.22) 95.58 (0.11)

Bull 94.94 (0.06) 95.15 (0.08) 95.13 (0.07) 97.79 (0.04)

Poster 85.48 (0.14) 86.03 (0.09) 85.84 (0.18) 94.41 (0.20)

Sawtooth 93.03 (0.10) 91.98 (0.11) 93.44 (0.13) 96.65 (0.13)

Venus 92.51 (0.10) 92.10 (0.09) 86.61 (0.09) 96.12 (0.01)

Map 90.39 (0.10) 88.69 (0.10) 91.45 (0.08) 94.53 (0.16)

Tsukuba 46.22 (1.01) 41.23 (0.75) 51.64 (0.65) 74.61 (0.09)

Cones 75.91 (0.27) 75.63 (0.22) 80.29 (0.28) 92.14 (0.17)

Teddy 76.24 (0.26) 75.57 (0.16) 83.82 (0.28) 89.64 (0.24)

Art 53.73 (0.23) 51.44 (0.20) 64.53 (0.28) 75.48 (0.10)

Books 68.27 (0.36) 68.49 (0.21) 75.72 (0.15) 87.99 (0.29)

Dolls 74.45 (0.17) 72.00 (0.18) 75.28 (0.14) 87.03 (0.12)

Table 7.2: Average accuracy and unbiased standard deviation of found correspon-
dences for the Middlebury datasets and various similarity measures

Future work 83

7.7 Future work

Given the MDML histogram and assuming enough training samples were avail-
able to find the true probability distribution, an optional next step is to find a
parametric representation of the distribution. This will reduce the need to keep
the histogram data for calculating distances. Several methods can be thought of
when converting a histogram to a 2D function:

• PCA

• Surface approximation

• Wavelets

As the research by Sebe has shown, using an approximation to the true distribu-
tion will result in suboptimal accuracy, but usually this will be compensated for
by processing speed or memory consumption.

In case of the stereo matching algorithm described in this chapter, the 2D his-
togram uses 64 kilobytes of memory and uses a lookup in the probability distri-
bution array for each pixel in the template matching step. Future research will
be focusing on the accuracy of stereo matching with parametric 2D approaches
based on the true distribution, taking into account the effect on processing time
and memory.

84 Chapter 7

Chapter 8

Texture Classification:
What Can Be Done with 1
or 2 Features?

For real-time imaging, pattern classification with short feature-vectors is desirable.
One well-known and effective method used for texture classification is the use of
statistical information on 3x3 pixel blocks. Our method is an extension of this
method to larger and non-square features, which we call ’constructed features’.
The standard 3x3 features are very usable for real-time imaging, because the
resulting feature space can only contain 512 elements and the vectors can be
created very quickly. However, larger or non-square features might give better
classification results. Our proposed method searches for small sets of constructed
features, with arbitrary size and shape, which will give the best results for a
classifying a specific texture, and still keeping the feature vectors as short as
possible. In this chapter, we show the selected features and the performance of
our method with a minimum distance classifier and with a neural network on a
texture classification task.

8.1 Introduction

In many applications such as video analysis, computational efficiency is of criti-
cal importance. Thus, in certain contexts, the maximum allowed computational
complexity is known beforehand and the algorithm must therefore be designed to
accommodate the computational requirements.

Furthermore, the novel aspect of this chapter is in exploring binary pattern ori-
ented features which are not simply 3x3 templates. We attempt to find more

86 Chapter 8

general template shapes which could give better performance and accuracy than
the traditional 3x3 features.

Our texture classification method generates features for a specific texture and
iteratively selects the best features to use. In this way, a feature set of any size
can be created, that will give the best classification results for that specific texture.

8.2 Related work

In 1990, Wang and He have introduced the Texture Unit (TU) [93], which is
generally considered as the basis for texture analysis based on the distribution of
3x3 pixel blocks.

A variant of the TU was introduced by Ojala et al. [60], which they named the
local binary pattern (LBP). They showed that classifying textures using LBP
features turned out to be very effective, especially when combined with a local
contrast measure. Later they have improved the LBP feature by creating a rota-
tion invariant version of it [62].

Other texture unit variants include multiscale selected local binary features by
Raja [64] or the simplified texture unit by Madrid-Cuevas [45]. Variants of local
image features have also been applied to other fields, for example face detection
[33] or facial expression recognition [26].

In 1996, Huijsmans et al. [30] showed that using frequencies of 3x3 binary patterns
is very helpful in copy-locating in image databases. In their experiments, they
showed that using a subset of all features or non-equal weighing yielded better
results than using the entire set of features with equal weights. Mäenpää later
found the same results for the LBP features [46].

In line with these findings, we expect that non-square features or larger features
might also improve better classification results over the use of the entire range of
3x3 features.

8.3 Our method

We define a ”Constructed” feature as a binary pattern of NxN in size. An example
is shown in Figure 8.1. All these constructed features are tested for classification
accuracy.

In general, the method applies to arbitrarily large features. For computational
efficiency reasons, we note that the space of all potential features is exponential,
which is not feasible for straightforward searching. To make the problem tractable,
we record all possible features within the training set up to a certain size and then
we select features which appear in all images of the training set. These features
form the space for candidate features.

Our method 87

Figure 8.1: Constructing a feature. Starting with a 3x3 feature in a), we can then
create a new feature in by joining several 3x3 features together to ’construct’ a
5x5 feature as in b).

For our first experiments, we used an even more restricted set of features: each
of the features in the candidate set for a specific class was required to be present
in every image from that class. We wanted to make sure we were using the most
descriptive features, which are probably those features that can be found in every
positive example.

To get binary images for our feature construction, we create edge-detected ver-
sions of our textures with the Marr-Hildreth algorithm. This method detects
intensity changes in an image by convolving it with the ∇2G filter, where ∇2 is
the Laplacian operator

(
∂2x

∂x2
+
∂2y

∂y2

)
(8.1)

and G stands for the two dimensional Gaussian distribution

G(x, y) = e−
x2+y2

2πσ2 (8.2)

In effect, this is a ’mexican-hat’ operator. The zero-crossings in the output of
this convolution mark the intensity changes. Pixels with an intensity change, or
zero-crossing, are set to 1 in the resulting image and the rest of the pixels are set
to 0. Figure 8.2 shows an example of this edge detection method.

The sigma parameter that is used for the Marr-Hildreth algorithm selects the
scale the method works on, or the size of the mexican hat. Higher values yield the
detection of less detailed structures in the images. In our experiments we used a
fixed value of 2.0 for sigma, but by varying this parameter, the search space for
the best features could even be extended.

For each feature, we keep track of the number of times it is found within each
image. Note that the number of features that can be found for each class is sig-
nificantly less than the maximum number of possible features. For computational
purposes, the features are stored in hash tables for fast lookups.

88 Chapter 8

Figure 8.2: Brodatz texture D1 and the result of the Marr-Hildreth edge detection
applied to it with sigma = 2.0

Since we are trying to find an optimal feature set, in theory every possible combi-
nation of features should be tested for classification accuracy, but the required pro-
cessing time will increase exponentially. We therefore use a greedy hill-climbing
method by iteratively increasing the feature set by adding a feature to the set
that minimizes the training error.

The first feature can be selected directly by using the feature that minimizes the
training error. After that, in case that x features are already found for a specific
class, we test the classification accuracy of all sets of features that consist of these
x features plus one of each of the features that are left. By repeatedly following
this procedure, a best feature set of any length can be found.

8.4 Results

For testing our method, we used 12 textures from the Brodatz database, which
are listed in Figure 8.3. We created a separate classifier for each texture class.

For each of these classes, we have generated random subblocks of size 64x64
and we selected 50 training blocks from the upper half of the image and 50 test
blocks from the lower half. For this experiment, we have limited the size of the
constructed features to 7x7.

Table 8.1 contains the results from our first experiments. We have determined the
best two features for each class, using 3x3 features only and with the constructed
features. Also, we show the comparison between minimum distance classifiers
and neural network classifiers. The neural network is a fully connected 3-layer

Results 89

network that has a hidden layer with 10 nodes and one output node. These values
were determined by empirical testing. The number of input nodes is equal to the
number of features.

Note that for each class, there are 50 positive examples of that class and 550
negative examples in both the training and the test set. The misdetection rates
are given over all test images.

Class Nearest neighbor Neural network

(1st and 2nd feature) (1st and 2nd feature)

3x3 constructed 3x3 constructed

D1

0.043 0.002 0.008 0.002 0.035 0.005 0.083 0.005

D3

0.095 0.103 0.070 0.077 0.087 0.102 0.065 0.068

D4

0.072 0.047 0.072 0.047 0.052 0.040 0.063 0.042

D6

0.018 0.023 0.005 0.027 0.027 0.028 0.003 0.032

D9

0.180 0.107 0.180 0.107 0.047 0.060 0.047 0.060

D11

0.097 0.108 0.080 0.073 0.100 0.098 0.078 0.055

D16

0.057 0.102 0.057 0.047 0.050 0.053 0.042 0.042

D17

0.060 0.058 0.055 0.058 0.052 0.085 0.047 0.053

90 Chapter 8

Class Nearest neighbor Neural network

(1st and 2nd feature) (1st and 2nd feature)

3x3 constructed 3x3 constructed

D20

0.060 0.008 0.000 0.017 0.060 0.007 0.083 0.007

D21

0.000 0.000 0.000 0.000 0.003 0.000 0.000 0.020

D24

0.088 0.097 0.088 0.097 0.080 0.012 0.083 0.012

D29

0.083 0.115 0.097 0.088 0.102 0.090 0.102 0.065

Table 8.1: Misdetection rates and the selected features for 3x3 fea-
tures only and for constructed features, using a minimum distance
classifier or a neural network.

8.5 Discussion, conclusions and future work

The first thing that is noticeable in the results, is that adding a second feature
does not always give a better test result. This is probably caused by the small
number of images in the training and test sets. In general, the training error was
lower with two features.

Also, it is interesting to see that for some textures, the optimal features are still
the 3x3 features, even when all constructed features are considered. The reason
for this could be the fine scale of the texture. The small details might have are
already been captured by the 3x3 features.

For the minimum distance classifiers with one feature, 8 out of 12 selected features
were constructed features. For the neural network classifiers with one feature, 9
out of 12 selected features were constructed features. These features were selected
based on a lower misdetection rate on the training set.

Table 8.2 shows a comparison between constructed features and 3x3 features. It
can be seen that using the constructed features gives an improved classification
result on average.

Discussion, conclusions and future work 91

MDC-1 MDC-2 NN-1 NN-2

Underperforming 1 2 4 3

Equal 5 6 2 4

Outperforming 6 4 6 5

Table 8.2: The performance of the constructed features compared to the 3x3
features.

For us, this justifies the idea of further experimenting with constructed features
instead of 3x3 features for texture classification.

Our next experiments will focus on the constructed features with what we call
d̈on’t carep̈ixels. After constructing a feature, we will test the same feature with
one or more pixels left out. We expect these features to outperform the features
shown in this chapter.

92 Chapter 8

D1 D3 D4

D6 D9 D11

D16 D17 D20

D21 D24 D29

Figure 8.3: Brodatz textures used in our experiments.

Chapter 9

Detecting and Identifying
Moving Objects in
Real-Time

For surveillance applications or for human-computer interaction, the automated
real-time tracking of moving objects in images from a stationary camera can be
very useful. In this chapter we describe a novel method for object tracking which
works in real-time using standard hardware. The object tracking algorithm uses
an improved adaptive version of an existing robust motion detection method and a
set of decision-rules is used to handle difficult situations such as tracking multiple
objects at the same time, crossing paths and partial occlusion. Experiments on
several real complex test sets were performed and discussed.

9.1 Introduction

Tracking moving objects in images from a stationary camera, such as people
walking or cars driving, is a very useful technique for surveillance applications.
The same technique can also be used in different environments, such as human-
computer interaction or the automated counting of objects. A well-known exam-
ple of a real-time object tracking application used for human-computer interaction
is the Sony eye-toy.

We have implemented a new method of object tracking by using decision rules
for handling the fairly general problem of unlimited moving objects, occlusions
by the environment and other objects, and indoor and outdoor lighting.

94 Chapter 9

9.2 Related work

A lot of work has been done in the field of object tracking. [8] [10] [19] [20] [42]
[49] [94] One of the main conferences for this research subject is Performance
and Evaluation of Tracking and Surveillance (PETS). The articles clearly show
that several common problems such as occlusions, multiple objects and variable
illumination are largely unsolved. Many of the systems achieve good accuracy by
making special assumptions such as a single person, two persons, only indoors
lighting, etc. In fact, the conclusions of some of the advanced systems are simply
that they are unsuited for outdoors [82]. In short, the general problem that we
have looked at is very difficult.

The first step for every object tracking algorithm is motion detection. This can be
done using a standard background-subtraction method based on color or intensity,
but other more sophisticated methods like Gaussians [14] or optical flow [50] [47]
are widely used. For an overview of background subtraction algorithms, see [5].

For the object tracking itself, a variety of methods is available. The choice of the
right method depends on the application. Object tracking can be done with just
simple nearest-neighbor matching of regions with motion [53]. An improvement
of this method would be to use motion prediction, for example with Kalman
filters [17] or Bayesian networks [20].

Other methods for object tracking include the kernel-based object tracker made
by Comaniciu et al. [9]. Another interesting real-time object tracking system to
look at is W4, by Haritaoglu et al. [21] [22].

9.3 Motion detection

Horprasert, Harwood and Davis have developed a method [27] [28] for robust
motion detection using background subtraction with a statistical model of the
background. We have chosen to adapt this method for our object tracking algo-
rithm, because of its robustness to changes in lighting and the ability to adapt to
deposited objects. The main idea of this method is to decompose the difference
between the current color information and the modeled background for every pixel
into a chromaticity (color) component and a brightness component.

After the background model is created (see below for details), new frames can
be compared to this model to detect motion by comparing the expected RGB
value for pixel i, Ei = [ER(i), EG(i), EB(i)], to the RGB value of that pixel in
the current frame, Ii = [IR(i), IG(i), IB(i)] in the following way:

When seen in a three-dimensional RGB cube, the line between the origin and
Ei is called the expected chromaticity line for pixel i. All colors on this line are
perceived as the same color but with a different brightness. When comparing
a pixel value from the current frame to the background model, there is a point
αiEi for which the distance from Ii to αiEi is minimal. This distance is called

Motion detection 95

the chromaticity distortion, the difference in color. The value αi is called the
brightness distortion, the difference in brightness.

Figure 9.1: The RGB cube with points E and I.

If the chromaticity distortion or the brightness distortion exceeds certain thresh-
olds, the pixel is classified as a motion-pixel.

9.3.1 Building the background model

The background model is created using a set of N frames without motion. We
have used N = 50 for our experiments, which equals to two seconds of video.
First, for each pixel i the mean RGB value over N frames is calculated. The
mean R value of pixel i for example, is calculated as follows:

µR(i) =

N∑
j=1

IR(ij) (9.1)

where ij is pixel i in frame j. This results in the expected color value

Ei = [µR(i), µG(i), µB(i)] (9.2)

for each pixel i. Next, the standard deviation

si = [σR(i), σG(i), σB(i)] (9.3)

is calculated, where σR(i) is the standard deviation for the IR values of pixel i
over N frames. The value si is used for normalizing the mean RGB values.

As mentioned above, the brightness distortion αi can be found by minimizing the
distance between Ii and the line OEi:

φ(αi) = (Ii − αiEI)2 (9.4)

96 Chapter 9

In terms of RGB values and taking the normalization into account, the equation
for αi can be written as:

αi = argmin
c

[(
IR(i)−cµR(i)

σR(i)

)2
+(

IG(i)−cµG(i)
σG(i)

)2
+(

IB(i)−cµB(i)
σB(i)

)2]

=

(
IR(i)µR(i)

σ2
R

(i)
+
IG(i)µG(i)

σ2
G

(i)
+
IB(i)µB(i)

σ2
B

(i)

)
(
[
µR(i)

σR(i)
]2+[

µG(i)

σG(i)
]2+[

µB(i)

σB(i)
]2
)

(9.5)

The chromaticity distortion CD for pixel i can be calculated by taking the abso-
lute difference between Ii and αiEi. In terms of RGB values this becomes:

CDi =

√
IR(i)− αiµR(i)

σ2
R(i)

+
IG(i)− αiµG(i)

σ2
G(i)

+
IB(i)− αiµB(i)

σ2
B(i)

(9.6)

Two other values are also calculated: the variation of the brightness distortion αi
and the variation of the chromaticity distortion bi. These are defined as:

ai =

√∑N
i=1(αi − 1)2

N
(9.7)

bi =

√∑N
i=1(CD)2

N
(9.8)

Note that, although the name may suggest otherwise, these values are actually the
standard deviations of the brightness and the chromaticity distortion. Using these
two values, the normalized brightness distortion and the normalized chromaticity
distortion can be calculated:

αi =
αi − 1

αi
(9.9)

CDi =
CDi

bi
(9.10)

At this point, each pixel is modeled by a tuple of four values: (Ei, si, ai, bi).
Now, for each new frame, pixel values can be compared to the model to detect
motion. For each pixel the normalized chromaticity distortion and the normalized
brightness distortion are calculated and compared to certain thresholds. Motion

Motion detection 97

is detected at a pixel if the normalized chromaticity distortion is higher than τCD
or if the normalized brightness distortion is below τα.

Thresholds τCD and τα are selected by creating a histogram of the normalized
chromaticity distortions and a histogram of the normalized brightness distortions
of all pixels of all frames in the training set. Below is an example of such his-
tograms:

Figure 9.2: Histograms of the (a) normalized Alpha (brightness) and (b) CD
(chromaticity) values

By choosing a percentage of all pixels of the training set which should be correctly
classified as background pixels, a chromaticity distortion threshold can be selected.
Note that in fact all pixels should be classified as background, but this would result
in too high a threshold.

9.3.2 Adaptive background model

The model described above is static. Once all values are calculated, the model is
not changed, although the scene for which the model is made could be changing
due to different lighting conditions or deposited objects. To handle the situation
of a changing background, we have altered the algorithm described above to get
an adaptive version.

To accomplish this, the entire training set is kept in memory and for each new
frame the oldest frame in the training set is replaced by the current frame, but
only those pixels where no motion is detected are replaced. Ideally, the back-
ground model should be recalculated completely at this point, but for real-time
applications this is too time-consuming. For this reason, only one scanline of the
model is recalculated.

The global chromaticity distortion threshold cannot be used in this adaptive ver-
sion of the model, so it is changed into a per-scanline threshold. Each time the

98 Chapter 9

background model for a scanline is updated, the chromaticity distortion threshold
for that line is recalculated.

Another difference between the motion detection method by Horprasert et al. and
our method is the use of an upper bound for the brightness distortion, where the
lower bound is denoted by τα1 and the upper bound by τα2. We classify a pixel
as motion pixel when the brightness distortion is below τα1 or above τα2.

9.3.3 Post processing

The output of the motion detection algorithm contains noise. This is especially
true when used with compressed video input, because the algorithm was designed
to be used with uncompressed data. For clearing the noise from the images, a
number of image filters has been used, such as removing salt-and-pepper noise,
erosion, dilation and median filtering.

For object tracking, the output of the motion detection has to be converted to a
list of regions with motion. Each motion-pixel is assigned a region ID, based on
8-connectivity.

9.4 Object tracking

For each input frame, the motion detection algorithm yields a list of regions, or
blobs. A blob, short for ’binary large object’, is a coherent group of pixels where
motion was detected. Every object moving through the scene will create such a
blob in a series of successive frames. The task of the object tracking algorithm
is linking the positions of these blobs to a single object and to find out the path
which has been followed by the object.

Figure 9.3 illustrates this. The object tracking algorithm should report one object
for each frame and for each of these frames, the object has to be given the same
identifier.

For each frame, the task is to link each blob to an object that was present in the
previous frame. One possibility for finding a corresponding object for each blob is
comparing the positions of the blobs with all positions of objects in the previous
frame. An improved method would be to predict the position each object would
have in the current frame and to compare those to the positions of the blobs. This
method is of course very dependent on the method of motion prediction used.

For speed reasons, we chose to use yet another method for linking blobs to objects.
We decided to use the bounding boxes of the blobs for tracking. Object positions
and estimated positions are also stored as a bounding box.

Object tracking 99

Figure 9.3: Some frames from a sequence where one person walks through the
scene.

9.4.1 Data structure

First, we define the data structures used by the object tracking algorithm. The
inputs for the algorithm are the blobs detected by the motion detection algorithm.
These blobs have the following properties:

• Position of the bounding box

• A list of pixels belonging to the blob

• Color model

The color model contains the average color for 32 parts of the blob. We chose to
divide the blobs vertically into 32 equal parts. Figure 9.4 is a schematic view of
such color models.

Figure 9.4: Output of the motion detection algorithm: blobs and their color
models.

The object tracking algorithm keeps an internal list of tracked objects. For each
frame, these objects are compared with the detected blobs and if they correspond,
they are updated with information of these blobs. Objects have the following
properties:

100 Chapter 9

• Object ID

• A history of a maximum of 25 positions of this object in previous frames

• The predicted position of this object for the next 25 frames

• Color model

• Type

Object positions are stored for the prediction of movement. The object type can
be either be simple or compound, which will be explained later.

Before explaining each step of the object tracking algorithm, we show a typical
situation in figure 9.5: the motion detection algorithm has detected two blobs
and the object tracking algorithm was tracking two objects. The blobs correspond
with the predicted positions of the objects, so the objects will be updated with the
position and color information of the blobs. The third image shows all previous
and predicted positions of the tracked objects.

Figure 9.5: An input frame, the detected blobs and the previous and estimated
object positions.

9.4.2 Object motion prediction

Using the coordinates of the bounding boxes of the previous positions of an object,
a prediction can be made for the position of these bounding boxes in future
frames. A bounding box of an object position at a certain time is actually a tuple
(tk, X1, Y1, X2, Y2). A prediction has to be made for these tuples with values tk+1

and higher, where tk is the value of t for the current frame. We chose to use a
quadratic approximation of (tk, (X1 +X2)/2) and (tk, (Y1 + Y2))/2).

With this approach, the size of the predicted bounding box will be same as the
current size. (Figure 9.5 illustrates this.)

A quadratic approximation of a series of tuples (t1, X1), . . . , (tn, Xn) can be cal-
culated by a least-squares fit of a quadratic function. The quadratic function can
be described by the function y = ax2 + bx+ c. We try to find the values for a, b
and c so that the error-value, defined as

ε(a, b, c) =

n∑
i=1

(at2i + bti + c−Xi)
2 (9.11)

Object tracking 101

has the smallest value.

It is known that if the partial derivatives of the error function with respect to a,
b and c are all equal to zero, the error function has the least value. The partial
derivative of the error function with respect to a is

∂ε

∂a
=

n∑
i=1

2(at2i + bti + c−Xi) (9.12)

Setting this equal to zero and rearranging gives the following formula:

a[

n∑
i=1

t2i] + b[

n∑
i=1

ti] + cn =

n∑
i=1

Xi (9.13)

The same can be done for the partial derivatives with respect to b and c, which
yields these formulas:

a[

n∑
i=1

t3i] + b[

n∑
i=1

t2i] + c[

n∑
i=1

ti] =

n∑
i=1

Xi (9.14)

a[

n∑
i=1

t4i] + b[

n∑
i=1

t3i] + c[

n∑
i=1

t2i] =

n∑
i=1

Xi (9.15)

These three formulas can be solved and the resulting a, b and c values can be
used for the quadratic prediction function.

9.4.3 Rule-based object tracking

For object tracking, the task is to find corresponding blobs in the current frame
for the objects being tracked. We define this correspondence in two different ways:

• A blob belongs to a tracked object, if the blob covers more than 50% of the
predicted bounding box of the object

• An object contains a blob, if more than 50% of the area of the blob is within
the area of the predicted bounding box of the object

Note that this means that an object can have no more than one blob belonging
to it and that a blob can be contained by no more than one object.

To illustrate the concepts of belongs to and contains, a few schematic examples
will be given. In these examples, a red circle stands for a blob and a green square
stands for the predicted position of an object. Figure 9.6 shows the ideal situation:
A blob belongs to an object (it covers more than 50% of the bounding box) and
the object also contains the blob (at least 50% of the blob is inside the bounding
box).

102 Chapter 9

Figure 9.6: A blob belonging to an object, which also contains the blob.

Figure 9.7: An object containing a blob, which does not belong to it.

Figure 9.7 shows that a blob can be contained by an object, but that the blob
does not have to belong to it.

We need to find not only one object which a blob belongs to, but every object a
blob belongs to. Also, we want to know every blob that is contained by an object.
At this point, we introduce the Type property of an object: The Type property of
an object can be either simple or compound. Simple objects are all objects which
can be tracked by the straightforward version of the object tracking algorithm in
which every blob corresponds to no more than one object.

Compound objects are virtual objects which consist of two or more objects which
are currently occluding or occluded. The object tracking algorithm will track
these objects just as simple objects, but will also track the actual simple objects
which are involved.

The object tracking starts with an empty list of tracked objects. For each new
input frame the following is done:

Object tracking 103

• For each blob, all objects it belongs to are searched for. A matrix B is
created, where the value at Bi,j equals 1 if blob i belongs to object j and it
equals 0 otherwise.

• For each tracked object, the blobs it contains are determined. A matrix
C is created, where the value at Ci,j equals 1 if object i contains blob j,
otherwise this value is 0.

• For each blob k, calculate the number of objects the blob belongs to:

bk =
∑
i

Bk,i (9.16)

• For each object l not being part of a compound object, calculate the number
of blobs contained by that object:

cl =
∑
j

Cl,j (9.17)

• For each blob k, follow these rules to determine which objects need to be
updated:

– bk = 0
There is no object which this blob belongs to. This situation will be
handled later.

– bk = 1
This blob belongs to one object l. Check the c value for that object
and do the following:

∗ cl = 0
The object does not contain any blob. Apparently, the predicted
position of the object and the actual position are differing. Update
the object with information of the blob.

∗ cl = 1
The object contains a blob. We assume that this blob is the blob
we are currently checking. Update the object with information of
the blob.

∗ cl > 1
The object contains more than one blob. There are two possible
cases:

· The object is a simple object. We assume that the object
contains the current blob and several other blobs and that
all these blobs actually belong to one object. The object is
updated with information of all blobs.

· The object is a compound object. We assume that the com-
pound object has split up into one or more simple objects and

104 Chapter 9

at most one compound object. For all blobs contained by the
object, try to find a corresponding simple object by comparing
their predicted positions to the blob positions. In other words,
try to find the simple objects which contain the blobs.

For all blobs for which no object is found, try to use the color
model to find the corresponding object. The object with the
closest matching color model will be updated with the infor-
mation of a blob.

– bk > 1
This blob belongs to more than one object. We assume this is the
result of two or more objects occluding each other. All objects this
blob belongs to are combined into a new compound object. Note that
an existing compound object can be one of these objects.

The c value for each of the objects is not checked at this point. We
assume that objects do not split up into several parts because of failing
motion detection at the same time that it starts occluding an object.

• For each object l not updated yet, check the c value of the object. We then
have the following possibilities:

– c = 0
The object does not contain a blob. It is possible that this is a simple
object which is part of a compound object. This will be handled later.

– c = 1
The object contains one blob. The object is updated with information
of that blob.

– c > 1
The object contains more than one blob. If the object is a simple
object, we assume that all blobs are part of the object. The object will
be updated with the combined information of these blobs.

If the object is a compound object, we assume the object has split into
one or more simple objects and at most one compound object. Use the
previous rule for the case bk = 1, cl > 1 and with a compound object.

• Each object that is still part of a compound object is updated with its
predicted position.

• For each blob that does not belong to an object and that is not contained
by an object, create a new object.

• Each object that has not been updated at this point, is deleted from the list
of tracked objects.

There are some assumptions made in the above algorithm, which might not always
be true for some situations. Consequently, we expect the algorithm to fail for
those situations. For example, we assume that objects can only be detected as
two separate blobs because of failing motion detection, but we do not take into

Results 105

account the possibility of an object actually splitting up. This can happen when
someone steps out of a car, or when someone leaves a suitcase behind.

9.5 Results

We have tested the output of the object tracking algorithm on a set of six videos
for which we created a ground truth. Table 9.1 gives a description for each video
(see also Figure 9.8).

Number Description

1 one person walking

2 a car driving

3 two persons walking

4 two persons walking, crossing paths

5 one person walking, partial occlusion

6 PETS2000 test video

Table 9.1: Test videos used in our experiments.

For our experiments, we define the following: An object is detected if the area of
the object in the ground truth covers at least 50% of the area of an object in the
program output, or if the area of the object in the program output covers at least
50% of the area of the object in the ground truth.

For each frame of the input video, the following values are calculated:

• G - # of objects in the ground truth for this frame

• P - # of objects in the program output for this frame

• C - # of correctly detected objects for this frame

• I - # of false detections for this frame

Note that (I + C) = P .

With these values, we can evaluate the object tracking algorithm. We have used
the following benchmarks:

• The detection rate: For all frames, the percentage of objects correctly de-
tected, C/P .

• The misdetection rate: For all frames, the percentage objects detected when
no object was present, I/P .

• The mean error for the position of detected objects. The error-value for one
object-position is:

106 Chapter 9

ε = (Gx1 − Px1)2 + (Gy1 − Py1)2 + (Gx2 − Px2)2 + (Gx2 − Px2)2 (9.18)

where the corners of the bounding box are (x1, y1) and (x2, y2).

• The standard deviation of the error.

• The probability of an object ID change between two frames.

The results that we obtained can be seen in table 9.2.

Video number

1 2 3 4 5 6

Detection 100.0 91.76 100.0 100.0 94.74 44.80

Misdetection 0.00 21.43 0.00 5.88 0.00 2.74

Mean error 2.75 4.94 9.48 3.85 4.80 7.84

Error std.dev. 3.47 4.29 4.99 3.21 4.15 4.32

P(id switch) 0.06 0.00 0.09 0.00 0.00 0.03

Table 9.2: Results from our object tracking experiments.

Note that for all videos 1-5, the detection rates are high and the misdetection
rates are low. For the PETS2000 video which we chose for its complexity, it
clearly shows an area for future improvement in our decision rules. In the current
implementation, no rules exist in our algorithm for a situation which occurs in
this video: A car being parked and someone stepping out of it, which results in
1 object becoming 2 objects. This problem will be addressed with an update to
our rules.

9.6 Conclusions and future work

We have shown that using a rule-based algorithm for object tracking, we can
reliably track multiple objects under several complex situations such as crossing
paths, occlusion, and variable lighting. Our current system needs to be refined
toward handling the situation where a single object becomes multiple objects.

Conclusions and future work 107

Figure 9.8: Some frames from the six video sequences used for testing the object
tracking algorithm.

108 Chapter 9

Chapter 10

Hybrid Maximum
Likelihood Similarity

In this chapter we present an object tracking system which allows interactive user
feedback to improve the accuracy of the tracking process in real-time video. In
addition, we describe the hybrid maximum likelihood similarity, which integrates
traditional metrics with the maximum likelihood estimated metric. The hybrid
similarity measure is used to improve the dynamic relevance feedback process
between the human user and the objects detected by our system.

10.1 Introduction

Human Computer Interaction (HCI) will require the computer to have similar
sensory capabilities as humans including face [7] [36] [77] [79] and body [11] [27]
[35] [40] [54] [79] [81] [96] understanding.

This chapter presents an interactive video tracking system which includes real-
time user feedback in both motion detection and object tracking. The feedback
from the user is applied in real-time, so the change in the tracking results is
immediately visible.

Tracking and identifying moving objects in images from a stationary camera, such
as people walking by or cars driving through a scene, has gained much attention
in the recent years. It can be a very useful technique for human-computer inter-
action, the next-generation games, and for surveillance applications [96].

We developed an object tracking system [58] that can analyze live input streams
from any video input device and which is able to output the locations, unique
identifiers and pictorial information of the moving objects in the scene. All com-
ponents are plug-ins, so in theory any method for object segmentation, tracking

110 Chapter 10

and user feedback can be inserted.

Object detection and identification however is a topic that has its unique set of
problems that still are not fully addressed. Multiple object tracking is complicated
by the fact that objects can touch or interact with each other, can occlude another,
even leave the scene and come back again. And the usual problems with single
object tracking, like illumination changes, partial occlusion or object deformation,
still apply as well.

To get improved object tracking results, we investigate methods to include user
feedback for detecting moving regions and to ignore or focus on specific tracked
objects. Our object tracking framework includes color-based relevance feedback
[67] functionality at both the segmentation and tracking level.

However, we have seen from earlier experiments [78] that matching the users feed-
back to new input from the segmentation and tracking algorithms using standard
visual similarity metrics, performs poorly in some situations. Similarity metrics
that adjust to the true visual similarity are needed. Especially for the constantly
slightly changing object appearances, differences in color-feature values do not
always have the same visual difference, so we are investigating new similarity
metrics that are applied to the object tracking framework, but are applicable in
general visual similarity matching as well.

10.2 Related work

There has been significant research on motion tracking - an extensive review
has been written by Yilmaz et al. [96], that gives a clear overview of object
tracking and the challenges and limitations that current object tracking systems
face. Notable scientific meetings on object tracking and related research include
the Performance and Evaluation of Tracking and Surveillance PETS) and Video
Surveillance & Sensor Networks (VSSN).

Relevance feedback [67] is an interactive method that has been successfully in-
troduced into text and image queries. It is an interactive query process where a
computers internal representation of the object that a user is interested in is con-
tinually updated by providing the system with information about the relevancy
of the query outcome.

10.3 Visual similarity

10.3.1 The maximum likelihood training problem

In chapter 7 of this thesis, the Multi-Dimensional Maximum Likelihood (MDML)
paradigm was presented as a method for determining similarity of feature values
using the 2D distribution of a training set of these feature values. It was shown

Relevance feedback in object tracking 111

that the multi-dimensional approach outperforms the 1D maximum likelihood
similarity measure.

In general it is difficult to find sufficient training examples to arrive at a statis-
tically representative model of the underlying probability density function. This
fundamental training problem motivates the Hybrid Maximum Likelihood Simi-
larity Measure described next.

10.3.2 Hybrid maximum likelihood similarity

In practice, the L2 distance measure is typically a rough but not perfect fit to
the underlying similarity measure. Therefore, we propose the Hybrid Maximum
Likelihood Similarity (HMLS) measure which interpolates between the L2 dis-
tance and the maximum likelihood distance to both obtain a better similarity
measure and address the training problem from Section 10.3.1. At both the pixel
and object-level feedback, the general algorithm for using the hybrid maximum
likelihood similarity measure for a color feature is:

• For each feature vector element x:

– Initialize a histogram Hx to Hx[i][j] = (i− j) ∗ (i− j)
– Normalize Hx so that the sum of all Hx[i][j] is 1

• When calculating the similarity between to elements at position x with
values i and j:

– Use Hx[i][j]

• After feedback from the user:

– Create a new histogram Htemp[i][j] for each feature vector element

– Fill Htemp with the feature values from the examples from the user

– Normalize Htemp

– Set Hx = w ∗Hx + (1− w) ∗Htemp

In this algorithm, i and j range over the possible values of the feature vector
element, in our case [0 . . . 255]. The last step in the algorithm generates a new
version of the histogram that will converge to the true similarity distribution if
enough training samples are given.

10.4 Relevance feedback in object tracking

Figure 10.1 gives an overview of our object tracking system and the location of
the relevance feedback module in it.

For our first experiments, we decided to use color-based relevance feedback, so we
have used our own adaptation of a color-based motion detection method developed
by Horprasert et al. [27]. The main idea of their method is to decompose the

112 Chapter 10

Figure 10.1: The components of the object tracking system with relevance feed-
back.

difference between the current color information and the modeled background for
every pixel into a chromaticity (color) component and a brightness component.

As mentioned in chapter 9, one assumption that the authors of this motion de-
tection method made, was that the lighting would stay roughly constant. In
real world applications however, the light can change gradually. Thus, we imple-
mented an adaptive version of their model to compensate for dynamic real world
lighting. Small parts of the background model are continuously updated with
new data, to compensate for these gradual changes in lighting. Another effect of
this adaptation is that deposited objects can be added to the background model
if they do not move for a given period of time. For further details, please refer to
section 9.3.2 of chapter 9.

We use bounding boxes as a method for object tracking. Objects are considered
either simple or compound. Simple objects are objects that can be tracked by
the straightforward version of the object tracker, in which every blob corresponds
to no more than one object. In the case of object interactions, or overlapping
objects, there is ambiguity as to which blob belongs to which object. We define
compound objects as virtual objects which consist of two or more objects which
are currently interacting in some fashion. The object tracker will track these
objects just as simple objects, but will also track the actual simple objects which
are involved.

10.4.1 Pixel-level feedback

Our object tracking system continuously compares pixel values to the modeled
background to decide whether a pixel should be considered as part of a moving

Relevance feedback in object tracking 113

object. The relevance feedback component can change this decision by learning
from user input. An example is given in figure 10.2. In this case, the user indicates
that pixels that look like the selected part of the image (the brick wall) should
never be considered to be an object, even if the background model indicates that
it should, which could happen in case of fast lighting changes.

Figure 10.2: User feedback for the object segmentation algorithm: selecting a
negative example.

The user can supply feedback while the tracking system is running. The selected
positive and negative examples are immediately included in the decision process,
so the effect on the object tracking results is instantly visible.

The HMLS is trained using all pairs of pixels in the area that the user has selected.

10.4.2 Object-level feedback

We will now present an example of using feedback for the tracking algorithm.
Figure 10.3 shows a frame from a sequence in which a person is leaving an object
behind. In figure 10.4, the user selects a positive example for the object tracking
algorithm. In this case, objects with similar color will always remain marked as
foreground and they will not be added to the background model, which is the
normal behavior for adaptive object tracking algorithms. Figure 10.5 shows the
object being classified as a foreground object based on the user feedback.

Negative examples for the object tracking algorithm are useful for marking objects
that are not interesting to the user. The tracking algorithm will ignore objects
that are similar to the examples supplied by the user.

The HMLS metric is trained using information on the tracked object from each
frame in which it is still tracked.

114 Chapter 10

Figure 10.3: One frame from a sequence where someone leaves an object behind,
together with the object tracking results.

Figure 10.4: The user selects a positive example for the object tracking algorithm.

10.5 Conclusions and future work

Based on user surveys, our interactive video tracking system has shown that
including relevance feedback in the motion detection and object tracking process
is intuitive and promising.

The strong point of the HMLS is that it gives the benefits of maximum likelihood
similarity estimation while also addressing the limited training set problem.

In future work, we are interested in treating the temporal space as a wavelet
based texture [73], learning optimal features [38], and performing more extensive
quantitative evaluation including comparing different similarity measures.

Conclusions and future work 115

Figure 10.5: The object tracking using the positive example. The object will not
be added to the background model and stays visible as a tracked object.

116 Chapter 10

Appendix A

RetrievalLab

A.1 Introduction

RetrievalLab is a tool for illuminating content based retrieval. It can be used
in research and in educational workshops to explore, compare, and demonstrate
the use of features, databases, images and evaluation methods in content based
retrieval tasks. Regarding education, the intention is that students will be able to
learn about content based retrieval without spending numerous months creating
a custom system. In addition, RetrievalLab has a plugin architecture that makes
it possible for users to add new functionality.

A.2 Related work

There has been significant prior work in content based retrieval (CBR) systems.
See Datta et al. [12] for a recent survey. A few examples of such systems include
the the GNU Image Finder and imgSeek.

RetrievalLab was inspired by Matlab [15], except that the native data structures
and functionality are specifically designed toward facilitating content based re-
trieval (CBR) research. For example, in retrieval contexts, we have the notion of
a database of multimedia objects which is common to most CBR systems. The
typical usage in Matlab would be to load the pictorial, feature, and tag informa-
tion into separate arrays. In RetrievalLab, there is the fundamental notion of a
database object so the user can issue a command like

MyDatabaseObject = loaddatabase("MyImageDirectory")

More information will be given in Section A.3, but the fundamental notion is that
databases are now native objects which can be updated, copied, manipulated, and
analyzed or used as sets of positive and negative examples in machine learning.

118 Appendix A

RetrievalLab provides the following:

• Programming interface - Matlab-like algebraic/functional.

• Database data structure is a fundamental and native object.

• Free (unlike Matlab or Mathematica)

• User extendable plug-in architecture with sample plug-ins.

• Basic functionality for all research stages: loading databases, feature ex-
traction, machine learning, visualization of results, and quantitative bench-
marking and evaluation.

While there are many research systems which provide some of the items above,
we are currently not aware of any other system which provides all of them.

A.3 Example usage

This section will demonstrate a few uses of the RetrievalLab program, by showing
the commands that are needed to accomplish certain tasks. A more extensive
description is available at http://press.liacs.nl/researchdownloads/retrievallab/.

A.3.1 Image retrieval

In a typical image retrieval task, a database is loaded into a variable and both
ground truth tags and features are loaded into memory. We added support
for loading ground truth for the MIRFLICKR [31] [32] and IMAGECLEF [55]
datasets.

> db=loaddatabase("D:/MIR-Flickr/")

> loadmirflickrtags(db, "D:/tree_r1.txt")

> loadfeature(db, "hsv")

After that, an image is loaded and the same feature as was used for the database
is calculated.

> im=loadimage("D:/Trees/tree1.jpg")

> updatefeature(im, "hsv")

With the database and the image, a search query can be executed that results in
an index.

Example usage 119

> index=searchimage(db, im)

> displayindex(index)

Figure A.1: Result of the ’displayindex’ function.

Results can be displayed in the form of a standard grid, or a 2D view with results
centered around the best matching image, where the feature distance is used to
determine the distance in the image.

> displayindexmap(index)

Figure A.2: Result of the ’displayindexmap’ function.

Finally, we evaluate the results. In this case, we evaluate the tree r1 tag using:

> evaluateindex(index, "tree_r1")

120 Appendix A

which returns the MAP (mean average precision) value with respect to the ground
truth.

A.3.2 Visual concept detection

In a typical visual concept detection query, two databases with positive and neg-
ative examples are loaded into variables and after that, the images are segmented
and features are calculated. With these two databases, a visual concept can be
created based on the selected classifier.

First, the positive database is loaded and the enhanced wavelet representation
feature [57] is added to the image segments.

> dbpos=loaddatabase("D:/Trees/")

> segmentimage(dbpos, "sift")

> updatefeature(dbpos, "hsv")

> updatefeature(dbpos, "lbp")

> updatefeature(dbpos, "wavelet")

Note that each image segment now has three different features attached to it.
All three features will be used. For the negative examples, we do the same.
(Segmenting and feature extraction is omitted for brevity.)

> dbneg=loaddatabase("D:/NotTrees/")

The concept can then be learned with a selected classifier. Currently, nearest
neighbor, SVM and neural network classifiers are supported.

> concept=learnvisualconcept(dbpos, dbneg, "svm")

After this an image is loaded and segments and features are added. We can now
apply our visual concept to this image.

> findvisualconceptlocations(im, concept, "tree")

> displayimage(im)

Figure A.3: Result of detecting a concept.

Discussion, conclusions and future work 121

A.4 Discussion, conclusions and future work

The current system gives a programming interface to content based retrieval func-
tionality, which is both user extendable and focuses on the typical CBR compo-
nents including diverse features [12] [74] [80], distance measures [76], and classi-
fiers [76]. We think that having a database as a native object facilitates many
typical database operations. In addition, RetrievalLab has built-in support for
the MIRFLICKR [31] [32], IMAGECLEF [55] test sets.

In future work, we will add plug-ins for video database analysis. Note that our
framework was designed for generality regarding media types and should be able
to accommodate most kinds of media.

122 Appendix A

Bibliography

[1] H. Bay, Tuytelaars T., and L. Van Gool. Surf: Speeded up robust features.
In Proceedings of the European Conference on Computer Vision (LNCS vol.
3951), pages 404–417. Springer, 2006.

[2] R.E. Bellman. Dynamic programming. Princeton University Press, Princeton,
NJ, USA, 1995.

[3] M. Blighe and N.E. O’Connor. Myplaces: detecting important settings in a
visual diary. In Proceedings of the 2008 international conference on Content-
based image and video retrieval, pages 195–204, 2008.

[4] C.J.C. Burges. A tutorial on support vector machines for pattern recognition.
Data Mining and Knowledge Discovery, 2:121–167, 1998.

[5] T.H. Chalidabhongse, K. Kim, D. Harwood, and L.S. Davis. A perturbation
method for evaluating background subtraction algorithms. In Proceeding of
the Joint IEEE International Workshop on Visual Surveillance and Perfor-
mance Evaluation of Tracking and Surveillance (VS-PETS), pages 110–116,
2003.

[6] C.-C. Chang and C.-J. Lin. LIBSVM: A library for support vector ma-
chines. ACM Transactions on Intelligent Systems and Technology, 2:27:1–
27:27, 2011.

[7] I. Cohen, N. Sebe, A. Garg, M.S. Lew, and T.S. Huang. Facial expression
recognition from video sequences. In Proceedings of the IEEE International
Conference on Multimedia and Expo (ICME’02), vol. II, pages 121–124, 2002.

[8] A. Colombari, A. Fusiello, and V. Murino. Segmentation and tracking of
multiple video objects. Pattern Recognition, 40:1307–1317, 2007.

[9] D. Comaniciu, V. Ramesh, and P. Meer. Kernel-based object tracking.
IEEE Transactions on Pattern Analysis and Machine Intelligence, 25:564–
577, 2003.

[10] M. Cristani, M. Bicego, and V. Murino. Integrated region- and pixel-based
approach to background modelling. In Proceedings of the IEEE Workshop
on Motion and Video Computing, pages 3–8, 2002.

124 Bibliography

[11] R. Cucchiara. Multimedia surveillance systems. In Proceedings of the third
ACM international workshop on Video surveillance & sensor networks, pages
3–10, 2005.

[12] R. Datta, D. Joshi, J. Li, and J.Z. Wang. Image retrieval: Ideas, influences,
and trends of the new age. ACM Computing Surveys, 40(1), April 2008.

[13] M. Egmont-Petersen, D. De Ridder, and H. Handels. Image processing with
neural networks - a review. Pattern Recognition, 35:2279–2301, 2002.

[14] T. Ellis and M. Xu. Object detection and tracking in an open and dynamic
world. In Proceedings of Workshop on Performance Evaluation of Tracking
and Surveillance, page unnumbered, 2001.

[15] D.M. Etter. Introduction to Matlab (2nd Edition). Prentice Hall, 2004.

[16] M. Flickner, H. Sawhney, W. Niblack, J. Ashley, Q. Huang, et al. Query by
image and video content: the qbic system. Computer, 28:23–32, 1995.

[17] N. Funk. A study of the kalman filter applied to visual tracking. Technical
report, University of Alberta, 2003.

[18] G. Giacinto and F. Roli. Design of effective neural network ensembles for
image classification purposes. Image and Vision Computing, 19:699–707,
2001.

[19] B. Gloyer, H.K. Aghajan, K.-Y. Siu, and T. Kailath. Video-based freeway-
monitoring system using recursive vehicle tracking. In Proceedings of the
SPIE Symposium on Electronic Imaging: Image and Video Processing, pages
173–180, 1995.

[20] B. Han, Y. Zhu, D. Comaniciu, and L.S. Davis. Kernel-based bayesian filter-
ing for object tracking. pages 227–234, 2005.

[21] I. Haritaoglu, D. Harwood, and L.S. Davis. W4: A real time system for de-
tecting and tracking people. In Proceedings of the IEEE International Con-
ference on Automatic Face and Gesture Recognition, pages 222–227, 1998.

[22] I. Haritaoglu, D. Harwood, and L.S. Davis. W4: Real-time surveillance of
people and their activities. IEEE Transactions on Pattern Analysis and
Machine Intelligence, 22:809–830, 2000.

[23] C. Harris and M. Stephens. A combined edge and corner detector. In Pro-
ceedings of the 4th Alvey Vision Conference, pages 147–151, 1988.

[24] D. Harwood, T. Ojala, M. Pietikäinen, S. Kelman., and L.S. Davis. CAR-
TR-678 - texture classification by center-symmetric auto-correlation, using
kullback discrimination of distributions. Technical report, Computer Vision
Laboratory, Center for Automation Research, University of Maryland, Col-
lege Park, Maryland, 1993.

[25] D.-C. He, L. Wang, and J. Guibert. Texture discrimination based on an op-
timal utilization of texture features. Pattern Recognition, 21:141–146, 1988.

[26] L. He, C. Zou, L. Zhao, and D. Hu. An enhanced lbp feature based on
facial expression recognition. In Proceedings of the 27th Annual International

Bibliography 125

Conference of the IEEE Engineering in Medicine and Biology Society, pages
3300–3303, 2005.

[27] T. Horprasert, D. Harwood, and L.S. Davis. A statistical approach for real-
time robust background subtraction and shadow detection. In Proceedings of
the IEEE Frame-Rate Applications Workshop, pages 1–19, 1999.

[28] T. Horprasert, D. Harwood, and L.S. Davis. A robust background subtraction
and shadow detection. In Proceedings of the Asian Conference on Computer
Vision, pages 983–988, 2000.

[29] T.S. Huang, S. Mehrotra, and Ramchandran K. Multimedia analysis and
retrieval system (mars) project. In Proceedings of the 33rd Annual Clinic on
Library Application of Data Processing - Digital Image Access and Retrieval,
1996.

[30] D.P. Huijsmans, S. Poles, and M.S. Lew. 2d pixel trigrams for content-based
image retieval. In Proceedings of the 1st International workshop on Image
databases and Multi-Media search, pages 139–145, 1996.

[31] M.J. Huiskes and M.S. Lew. The mir flickr retrieval evaluation. In Proceed-
ings of the 2008 ACM International Conference on Multimedia Information
Retrieval, pages 39–43, 2008.

[32] M.J. Huiskes, B. Thomee, and M.S. Lew. New trends and ideas in visual
concept detection: the mir flickr retrieval evaluation initiative. In Proceed-
ings of the 2010 ACM International Conference on Multimedia Information
Retrieval, pages 527–536, 2010.

[33] H. Jin, Q. Liu, H. Lu, and X. Tong. Face detection using improved lbp under
bayesian framework. In Proceedings of the Third International Conference
on Image and Graphics, pages 306–309. IEEE computer society press, 2004.

[34] T. Joachims. Making large-scale svm learning practical. In B. Schlkopf,
C. Burges, and A. Smola, editors, Advances in Kernel Methods - Support
Vector Learning, pages 41–56. MIT Press, 1999.

[35] N. Lazarevic-McManus, J. Renno, and G. A. Jones. Performance evaluation
in visual surveillance using the f-measure. In Proceedings of the 4th ACM
international workshop on Video surveillance and sensor networks, pages
45–52, 2006.

[36] M.S. Lew. Information theoretic view-based and modular face detection.
In Proceedings of the 2nd. International Conference on Automatic Face and
Gesture Recognition, pages 198–203, 1996.

[37] M.S. Lew. Next generation web searches for visual content. IEEE Computer,
33:46–53, 2000.

[38] M.S. Lew, T.S. Huang, and K. Wong. Learning and feature selection in stereo
matching. IEEE Transactions on Pattern Analysis and Machine Intelligence,
16:869–881, 1994.

126 Bibliography

[39] M.S. Lew and N. Huijsmans. Information theory and face detection. In
Proceedings of the 13th International Conference on Pattern Recognition,
pages 601–605, 1996.

[40] M.S. Lew, N. Sebe, C. Djeraba, and R. Jain. Content-based multimedia in-
formation retrieval: State of the art and challenges. ACM Transactions on
Multimedia Computing, Communications, and Applications, 2:1–19, Febru-
ary 2006.

[41] J. Li and J. Wang. Real-time computerized annotation of pictures. IEEE
Transactions on Pattern Analysis and Machine Intelligence, 30:985–1002,
2008.

[42] L. Li, W. Huang, I.Y.H. Gu, and Q. Tian. Foreground object detection from
videos containing complex background. In Proceedings of the eleventh ACM
international conference on Multimedia, pages 2–10, 2003.

[43] D.G. Lowe. Object recognition from local scale invariant features. In Pro-
ceedings of the Seventh IEEE International Conference on Computer Vision,
pages 1150–1157, 1999.

[44] D.G. Lowe. Distinctive image features from scale-invariant keypoints. Inter-
national Journal of Computer Vision, 60:91–110, 2004.

[45] F.J. Madrid-Cuevas, R. Medina Carnicer, M. Prieto Villegas, N.L.
Fernández Garćıa, and Carmona Poyato. Simplified texture unit: A new
descriptor of the local texture in gray-level images. In Proceedings of the first
Iberian conference on Pattern recognition and image analyis (LNCS2652),
pages 470–477. Springer, 2003.

[46] T. Mäenpää, T. Ojala, M. Pietikäinen, and Soriano M. Robust texture clas-
sification by subsets of local binary patterns. In Proceedings of the 15th
international conference on pattern recognition, volume 3, pages 3947–3950,
2000.

[47] J. Malo, J. Guttierrez, I. Epifanio, and F.J. Ferri. Perceptually weighted
optical flow for motion-based segmentation in mpeg-4 paradigm. Electronics
Letters, 36:1693–1694, 2000.

[48] C.D. Manning, P. Raghavan, and H. Schütze. Introduction to Information
Retrieval. Cambridge University Press, 2008.

[49] S.J. McKenna, S. Jabri, Z. Duric, A. Rosenfeld, and H. Wechsler. Tracking
groups of people. Computer Vision and Image Understanding, 80:42–56,
2000.

[50] M. Middendorf and H. Nagel. Vehicle tracking using adaptive optical flow
estimation. In Proceeding of the Workshop on Performance Evaluation of
Tracking and Surveillance, pages 42–56, 2000.

[51] K. Mikolajczyk and C. Schmid. A performance evaluation of local descriptors.
IEEE Transactions on Pattern Analysis and Machine Intelligence, 27:1615–
1630, 2005.

Bibliography 127

[52] H. Moravec. Visual mapping by a robot rover. In Proceedings of the Inter-
national Joint Conference on Artificial Intelligence, pages 598–600, 1979.

[53] C. Motamed. Motion detection and tracking using belief indicators for video
surveillance applications. In Proceedings of the 1st IEEE Workshop on Per-
formance Evaluation of Tracking and Surveillance (PETS2000), pages 58–63,
2000.

[54] W. Nam and J. Han. Motion-based background modeling for foreground
segmentation. In Proceedings of the 4th ACM international workshop on
Video surveillance and sensor networks, pages 35–44, 2006.

[55] S. Nowak and M.J. Huiskes. New strategies for image annotation: Overview
of the photo annotation task at imageclef 2010. In CLEF (Notebook Pa-
pers/LABs/Workshops)’10, 2010.

[56] A. Oerlemans and M.S. Lew. Interest points based on maximization of dis-
tinctiveness. In Proceeding of the 1st ACM international conference on Mul-
timedia information retrieval, pages 202–207, 2008.

[57] A. Oerlemans and M.S. Lew. Minimum explanation complexity for mod
based visual concept detection. In Proceedings of the international conference
on Multimedia information retrieval, pages 567–576, 2010.

[58] A. Oerlemans, M.S. Lew, and E.M. Bakker. Detecting and identifying moving
objects in real-time. In Proceedings of the Conference of the Advanced School
for Computing and Imaging, pages 358–365, 2005.

[59] V. Ogle and M. Stonebraker. Chabot: Retrieval from a relational database
of images. IEEE Computer, 28:40–48, 1995.

[60] T. Ojala, M. Pietikäinen, and D. Harwood. A comparative study of texture
measures with classification based on feature distributions. Pattern Recogni-
tion, 29:51–59, 1996.

[61] T. Ojala, M. Pietikäinen, and T. Mäenpää. Gray scale and rotation invariant
texture classification with local binary patterns. In Proceedings of the Sixth
European Conference on Computer Vision, pages 404–420, 2000.

[62] T. Ojala, M. Pietikäinen, and T. Mäenpää. Multiresolution gray-scale and ro-
tation invariant texture classification with local binary patterns. IEEE Trans-
actions on Pattern Analysis and Machine Intelligence, 24:971–987, 2002.

[63] S. Philipp-Foliguet, J. GONYA, and P.-H. Gosselina. Frebir: An image
retrieval system based on fuzzy region matching. Computer Vision and Image
Understanding, 113:693–707, 2009.

[64] Y. Raja and S. Gong. Sparse multiscale local binary patterns. In Proceedings
of the 17th British machine vision conference, volume II, pages 799–808,
2006.

[65] J.J. Rocchio. Relevance feedback in information retrieval. In G. Salton,
editor, The SMART Retrieval System - Experiments in Automatic Document
Processing, pages 313–323. Prentice Hall, 1971.

128 Bibliography

[66] H. Rowley, S. Baluja, and T. Kanade. Neural network-based face detection.
IEEE Transactions on Pattern Analysis and Machine Intelligence, 20(1):23–
28, 1998.

[67] Y. Rui and T.S. Huang. Relevance feedback techniques in image retrieval,
pages 219–258. Springer-Verlag, London, UK, 2001.

[68] Y. Rui, T.S. Huang, and S. Mehrotra. Content-based image retrieval with
relevance feedback in mars. In Proceedings of the International Conference
on Image Processing, volume 2, pages 815–818, 1997.

[69] G. Salton and C. Buckley. Improving retrieval performance by relevance
feedback. Journal of the American Society for Information Science, 41:288–
297, 1990.

[70] D. Scharstein and R. Szeliski. A taxonomy and evaluation of dense two-
frame stereo correspondence algorithms. International Journal of Computer
Vision, 47:7–42, 2002.

[71] C. Schmid, R. Mohr, and C. Bauckhage. Evaluation of interest point detec-
tors. International Journal of Computer Vision, 37:151–172, 2000.

[72] N. Sebe, T. Gevers, J. van de Weijer, and S. Dijkstra. Corner detectors for
affine invariant salient regions: Is colour important? In Proceedings of the
International Conference on Image and Video Retrieval, pages 61–71, 2006.

[73] N. Sebe and M.S. Lew. Wavelet based texture classification. In Proceedings
of the 15th International Conference on Pattern Recognition (ICPR), vol III,
pages 959–962, 2000.

[74] N. Sebe and M.S. Lew. Color-based retrieval. Pattern Recognition Letters,
22:223–230, February 2001.

[75] N. Sebe and M.S. Lew. Texture features for content-based retrieval, pages
51–85. Springer-Verlag, 2001.

[76] N. Sebe and M.S. Lew. Robust Computer Vision: Theory and Applications.
Kluwer Academic Publishers, 2003.

[77] N. Sebe, M.S. Lew, I. Cohen, Y. Sun, T. Gevers, and T.S. Huang. Authentic
facial expression analysis. In Proceedings of the International Conference on
Automatic Face and Gesture Recognition (FG), pages 517–522, 2004.

[78] N. Sebe, M.S. Lew, and D.P. Huijsmans. Toward improved ranking metrics.
IEEE Transactions on Pattern Analysis and Machine Intelligence, 22:1132–
1143, October 2000.

[79] N. Sebe, M.S. Lew, X. Zhou, T.S. Huang, and E.M. Bakker. The state of
the art in image and video retrieval. In Proceedings of the 2nd international
conference on Image and video retrieval, pages 1–8, 2003.

[80] N. Sebe, Q. Tian, E. Loupias, M.S. Lew, and T. Huang. Evaluation of salient
point techniques. Image and Vision Computing, 21:367–377, 2003.

Bibliography 129

[81] M. Siddiqui and G. Medioni. Robust real-time upper body limb detection and
tracking. In Proceedings of the 4th ACM international workshop on Video
surveillance and sensor networks, pages 53–60, 2006.

[82] N.T. Siebel and S. Maybank. Real-time tracking of pedestrians and vehi-
cles. In Proceedings of Performance Evaluation of Tracking and Surveillance
PETS, page unnumbered, 2001.

[83] A.W.M. Smeulders, M. Worring, S. Santini, A. Gupta, and R. Jain. Content-
based image retrieval at the end of the early years. IEEE Transactions on
Pattern Analysis and Machine Intelligence, 22:1349–1380, 2000.

[84] M. Srikanth, J. Varner, M. Bowden, and D. Moldovan. Exploiting ontologies
for automatic image annotation. In Proceedings of the 28th annual interna-
tional ACM SIGIR conference on Research and development in information
retrieval, pages 552–558, 2005.

[85] E.J. Stollnitz, T.D. DeRose, and D.H. Salesin. Wavelets for computer graph-
ics: A primer, part 1. IEEE Computer Graphics and Applications, 15:76–84,
1995.

[86] E.J. Stollnitz, T.D. DeRose, and D.H. Salesin. Wavelets for computer graph-
ics: A primer, part 2. IEEE Computer Graphics and Applications, 15:75–85,
1995.

[87] M. Stricker and M. Orengo. Similarity of color images. In Proceedings of
SPIE - Storage and Retrieval of Image and Video Databases III, vol. 2, pages
381–392, 1995.

[88] Q. Tian, N. Sebe, E. Loupias, M.S. Lew, and T.S. Huang. Content-based
image retrieval using wavelet-based salient points. In Proceedings of SPIE -
Storage and Retrieval for Media Databases, pages 425–436, 2001.

[89] L. Trujillo and G. Olague. Using evolution to learn how to perform inter-
est point detection. In Proceeding of the 18th International Conference on
Pattern Recognition, pages 211–214, 2006.

[90] V.N. Vapnik. The Nature of Statistical Learning Theory. Springer, 1995.

[91] R.C. Veltkamp and M. Tanase. A survey of content-based retrieval systems.
In O. Marques and B. Furht, editors, Content-Based Image and Video Re-
trieval, pages 47–101. Kluwer, 2002.

[92] J.S. Walker. A Primer on Wavelets and their Scientific Applications, Second
Edition. Chapman & Hall, London, 2008.

[93] L. Wang and D.-C. He. Texture classification using texture spectrum. Pattern
recognition, 23:905–910, 1990.

[94] Q. Xiong and C. Jaynes. Multi-resolution background modeling of dynamic
scenes using weighted match filters. In Proceedings of the ACM 2nd inter-
national workshop on Video surveillance & sensor networks, pages 88–96,
2004.

130 Bibliography

[95] M.-S. Yang, D.J. Kriegman, and N. Ahuja. Detecting faces in images: A
survey. IEEE Transactions on Pattern Analysis and Machine Intelligence,
24(1):34–58, 2002.

[96] A. Yilmaz, O. Javed, and M. Shah. Object tracking: A survey. ACM Com-
puting Surveys, 38, December 2006.

[97] J. Yu, J. Amores, N. Sebe, P. Radeva, and Q. Tian. Distance learning for
similarity estimation. IEEE Transactions on Pattern Analysis and Machine
Intelligence, 30:451–462, 2008.

[98] G.P. Zhang. Neural networks for classification: a survey. IEEE Transactions
on Systems, Man and Cybernetics, 30:451–462, 2000.

Nederlandse Samenvatting

In het huidige digitale tijdperk zijn zeer veel gegevens beschikbaar in de vorm van
bijvoorbeeld foto’s, video’s en geluid. Deze hoeveelheid gegevens neemt dagelijks
met onvoorstelbare snelheid toe. Een voorbeeld hiervan is YouTube, waar elke
dag voor ongeveer zeven jaar aan video bijgeplaatst wordt. Ook op websites als
Flickr zijn al miljarden foto’s geüpload. Maar wat is het nut van al deze digitale
informatie, als er niet op een handige manier in teruggezocht kan worden?

Dit proefschrift beschrijft een aantal onderzoeken die als doel hadden het terug-
zoeken van digitale afbeeldingen te vergemakkelijken. De technieken staan bekend
als Content-Based Image Retrieval (CBIR) methodes, wat betekent dat de inhoud
van afbeeldingen gebruikt wordt om de gebruiker te ondersteunen in zijn zoekpro-
ces.

De gangbare manier van zoeken op internet vindt plaats door middel van het
invoeren van tekst. Als er gezocht wordt naar een afbeelding, dan is men hier-
bij afhankelijk van de bij de afbeeldingen geplaatste omschrijvingen. Helaas is
het vaak zo dat niet de juiste omschrijving bij een afbeelding staat, of dat er
zelfs helemaal geen omschrijving bij een afbeelding gegeven wordt. Denk hier-
bij bijvoorbeeld aan een serie vakantiefoto’s die op internet gezet wordt. Er zal
waarschijnlijk wel een omschrijving voor de gehele serie foto’s zijn, zoals ’Vakantie
in Frankrijk 2011’, maar niet elke losse foto zal een specifieke beschrijving hebben,
zoals bijvoorbeeld ’De Eiffeltoren’. In dit geval zullen de gangbare methoden van
zoeken met tekst niet de gewenste resultaten kunnen geven, want er zijn immers
geen tekstuele omschrijvingen beschikbaar aan de hand waarvan die ene specifieke
afbeelding van de Eiffeltoren uit de serie gevonden kan worden.

Zoals hierboven al vermeld, onderzoeken de technieken uit dit proefschrift de
inhoud van afbeeldingen en proberen hieruit informatie af te leiden die gebruikt
kan worden voor zoekacties. Voor de gebruiker betekent dit dat hij of zij ook kan
zoeken naar een afbeelding die lijkt op een afbeelding die hij of zij zelf al heeft, of
dat er gezocht kan worden naar omschrijvingen die door de computer automatisch
van afbeeldingen afgeleid zijn.

Een voorbeeld van de eerste manier, is het zoeken naar een afbeelding van een
specifiek type auto. Als een gebruiker al een afbeelding heeft van het type auto,
maar hij of zij wil er graag nog meer bekijken, dan kunnen CBIR technieken

132 Nederlandse Samenvatting

uitkomst bieden. Deze technieken kunnen afbeeldingen met hetzelfde type auto
terugvinden, zelfs als er verder geen informatie beschikbaar is bij de afbeelding.
Er wordt dan gezocht op overeenkomsten tussen de inhoud van beide foto’s. De
computer kan zien of twee foto’s op elkaar lijken.

Een voorbeeld van de tweede manier van zoeken op basis van beeldinhoud, is het
zogenaamde ’visual concept detection’, het automatisch herkennen van bepaalde
visuele concepten of ideen op een afbeelding. Hierbij wordt een foto geänalyseerd
door de computer en zullen er automatisch bepaalde woorden bij een foto geplaatst
worden die uit deze automatisch analyse volgen. Hierbij kan gedacht worden aan
’gebouw’, ’berg’, ’zee’, maar ook aan meer specifieke woorden als ’winkel’, ’Mount
Everest’ of ’strand bij Noordwijk’. Uiteraard zullen deze concepten een keer door
de computer geleerd moeten worden aan de hand van voorbeelden, maar hierna
zal het geleerde concept gebruikt kunnen worden en zal er zonder tussenkomst
van een mens bij elke afbeelding een lijst met woorden gemaakt kunnen worden.
Hierna kan de gebruiker weer zoeken met tekst, zoals hij of zij gewend is. De
foto van de Eiffeltoren uit de eerder genoemde serie vakantiefoto’s kan dan toch
gevonden worden.

In dit proefschrift worden drie wetenschappelijke bijdragen beschreven op het
gebied van content-based image retrieval: het MOD paradigma, geconstruëerde
textuur-patronen en de zogenaamde multi-dimensional maximum likelihood mea-
sure, een meerdimensionale aanpak voor het vergelijken van eigenschappen van
afbeeldingen. Elk van deze bijdragen zal hieronder besproken worden.

Op het gebied van het terugzoeken van visuele informatie is een zeer uitdagend
probleem van de laatste jaren het detecteren van visuele concepten, waarbij de
computer gevraagd wordt om automatisch een beeld te voorzien van relevante
steekwoorden. Op een fundamenteel niveau betekent dit dat de computer een
vorm van begrip voor afbeeldingen heeft gekregen. Als de computer een strand,
gebouw, gezicht of zonsondergang ziet, worden deze concepten herkend op basis
van het beeld, net zoals een mens zou doen. De kleuren, vormen en andere
eigenschappen (ook wel ’features’ genoemd) worden hiervoor gebruikt. Het is tot
zeer recent haast onmogelijk gebleken om dit probleem op te lossen.

De eerste bijdrage van dit proefschrift, te vinden in hoofdstuk 6, is een algoritme
voor visuele concept detectie dat gebruik maakt van ’salient points’, automatisch
bepaalde punten in een afbeelding die interessant of opvallend zijn. In dit proef-
schrift wordt een nieuw paradigma voorgesteld dat MOD heet, wat staat voor
Maximization Of Distinctiveness. Hierbij worden deze interessante punten gese-
lecteerd op basis van hun onderscheidend vermogen. De MOD aanpak is getest op
de meest uitdagende internationale wetenschappelijke test set en bleek een signifi-
cante verbetering te geven ten opzichte van de beste methode uit de literatuur van
visuele concept detectie. In tegenstelling tot de andere onderzoeken die salient
points gebruiken voor het analyseren van beelden, generaliseert deze methode tot
elk type beeldinhoud en elk type afbeeldingen.

In hoofdstuk 8 is de tweede bijdrage van dit proefschrift te vinden, op het gebied

Nederlandse Samenvatting 133

van computationeel efficiënte textuur beschrijvingen. Eenvoudig omschreven, zegt
een textuur beschrijving iets over het materiaal waar naar gekeken wordt, zoals
bijvoorbeeld bakstenen of grind. Afbeeldingen die dezelfde textuur bevatten,
kunnen teruggevonden worden als de door de computer bepaalde beschrijving van
de textuur maar goed genoeg is. Textuur features zijn waarschijnlijk de meest
gebruikte visuele eigenschappen in de computer vision. Op dit moment is de
meest voorkomende textuur feature in de wetenschappelijke literatuur de ’local
binary patterns’ (LBP), een 256 dimensionale beschrijving van 3x3 patronen.
Er is herhaaldelijk vastgesteld dat deze feature een hoge mate van accuraatheid
heeft, maar dat het gebruik ervan ook een significante computationele rekenkracht
vereist. In dit proefschrift wordt beschreven dat het mogelijk is om met grotere
patronen dan 3x3 een vergelijkbare nauwkeurigheid te behalen als met LBP, maar
dan met slechts 2 dimensies in plaats van 256. Dit verhoogt de computationale
efficiëntie met een factor honderd en reduceert de hoeveelheid benodigd geheugen
met een vergelijkbare factor.

De derde bijdrage van dit proefschrift, terug te vinden in hoofdstuk 7, is een
beschrijving van de ’multi-dimensional maximum likelihood’ (MDML) methode
voor het vergelijken van eigenschappen van afbeeldingen. Op dit moment is op
het gebied van computer vision de meest voorkomende manier van het vergelij-
ken van eigenschappen van afbeeldingen de ’sum of squared differences’ (SSD).
Gebruikmakend van de theorie van meest aannemelijke schatters wordt in dit
proefschrift beschreven dat het gebruik van SSD alleen optimaal is bij bepaalde
aannames over de onderliggende kansverdeling van de ruis, in het bijzonder wan-
neer deze Gaussisch is. In dit proefschrift wordt het bekende computer vision
probleem beschreven van het zoeken van overeenkomsten in afbeeldingen die uit
twee zichtpunten gemaakt zijn, eenvoudig gezegd: een stereo-paar. Hierbij wordt
voor elk punt uit de ene afbeelding een overeenkomend punt gezocht in de andere
afbeelding. Met deze overeenkomsten kan dan de driedimensionale structuur van
de beeldinhoud berekend worden of de beweging van de camera.

Dit proefschrift laat zien dat de optredende ruis in de analyse van stereo-paren
niet Gaussisch is, dus dat in dit geval het gebruik van SSD niet optimaal is.
Daarnaast worden er diverse methoden onderzocht om de werkelijke ruisdistributie
te schatten en hierbij wordt gevonden dat de ééndimensionale aanpak een tweede
fundamentele aanname heeft: het verschil tussen eigenschappen bevat voldoende
informatie om de gelijkheidsdistributie te modelleren. Dit proefschrift toont aan
dat dat niet zo is.

Op het gebied van computer vision is het probleem van het vinden van overeenkom-
sten tussen afbeeldingen van twee zichtpunten een zeer belangrijke en uitdagende
geweest in de afgelopen twintig jaar. In dit proefschrift wordt beschreven dat
de meerdimensionale aanpak de eerder genoemde tweede aanname overwint en
significant betere resultaten geeft bij de meest geloofwaardige en gerespecteerde
internationale test set in het vinden van overeenkomsten in stereo-paren. In het
algemeen verbetert dit werk de theorie van computationale gelijkheid op een fun-

134 Nederlandse Samenvatting

damentele manier, die mogelijk op alle gebieden van patroonherkenning en com-
puter vision verbetering kan brengen.

De laatste hoofdstukken van dit proefschrift, 9 en 10, beschrijven onderzoeken die
enigszins losstaan van de content-based image retrieval. Deze onderzoeken hebben
te maken hebben met automatische video-analyse. De technieken die beschreven
worden, zijn ontworpen voor videobeelden van stilstaande camera’s, wat veelal
neerkomt op beveiligingscamera’s. Het doel van de technieken is om bewegende
personen of object in beeld te onderscheiden en deze te volgen. Hierbij kan de
gebruiker terugkoppeling geven aan de processen die objecten proberen te volgen,
zodat bepaalde objecten altijd zichtbaar blijven als bewegend object, zelfs als ze
lang stil staan. Ook is het mogelijk om bepaalde delen van het beeld juist aan
te merken als achtergrond, waarmee het nooit als een bewegend object gezien zal
worden.

Als laatste wordt er in dit proefschrift nog een programma beschreven dat voor
zowel onderzoek als onderwijs gebruikt kan worden. RetrievalLab stelt de ge-
bruiker in staat om complexe bewerkingen uit te voeren op databases van af-
beeldingen, zonder dat daar iets voor geprogrammeerd hoeft te worden. Het geeft
hiermee snel inzicht in de processen die schuil gaan achter content-based image
retrieval en het detecteren van visuele concepten.

Acknowledgements

First, I would like to thank my parents, who, each in their own way, have given
me so much valuable advice and shared their experiences with life, that I would
not have been able to get to the point in life where I am now. Although we have
our own way of looking at things, I have learned a lot from them, probably a lot
more than they realize.

I also would like to thank Gerrie Oerlemans for making me more of a family guy
and for putting my feet back on the ground sometimes. And thanks to Peter van
der Salm for challenging me with questions and discussions to make me think
more deeply about my own research. Wim and Lenie Faber have also given me a
lot of support in the last few years.

Someone who has also given me very valuable advice and who was always able
to set things in perspective, is Jan Kool. Although he is not around anymore to
share in my happiness of receiving my degree, I am sure he has always known that
I would be able to finish my thesis. He always pointed me in the right direction
and told me about his own experiences to make all of my problems a lot easier to
handle. He deserves a lot of credit for that.

Many thanks to Robin Hermann, who started out as a colleague when I started
with my PhD program, but became a very valuable friend along the way. We had
many discussions about every subject imaginable and I have learned a lot from
him. He always had some good advice for me, no matter what the subject was.
Maarten van der Heijden has also become a very good friend in these years and
someone who I could always talk to when things were not going as planned.

At LIACS I have also had a lot of interesting discussions with Mark Huiskes and
Bart Thomée about our research and we even travelled together to conferences a
few times. I had a great time with you.

I would also like to thank my cousins Pieter van Maasdam, Bas van Goozen,
Joost Kortekaas and Thijs van Maasdam for their support and mostly for keeping
my mind off of things when needed. The sunday evening tradition has been an
important part of my life and although I was not always able to be there, I will
make it up to you guys.

My colleagues and friends at VDG Security also deserve a word of thanks, for

136 Acknowledgements

giving me the time I needed to finish research papers or my thesis and for the chal-
lenging discussions we had about all kinds of things. Also the not-so-challenging
discussions have been great fun. Marijn Loomans, Timme Grijpink and all others,
thanks.

A lot of other people have also been very supportive in the last few years, such
as Jelle Bosma, Elise Zandstra, Casper Deurloo, Sander Eijkelhof and Mariëlle
Linting.

And last but certainly not least, I wish to express my most deepest gratitude to
my girlfriend Rolien. She has always supported me in attempting to reach the
goals I had set for myself, even if that meant that I could not give her all the
attention she deserves. I realize that I can be unpredictable and maybe even a
little difficult to live with sometimes, especially when my mind is set to something,
but I am sure that we will have a great future together. I could not have done
this without you.

Curriculum Vitae

Ard Oerlemans graduated from Leiden University with a M.Sc. degree in 2004.
During his studies, Ard also worked as a software engineer for VDG Security BV,
a company that develops software for recording and analyzing surveillance video.
He was also interested in image and video analysis so he started his PhD research
at Leiden University in the domain of content based image and video retrieval.

Since then he has published his work in the leading venues in multimedia re-
trieval and also contributed to both teaching and research activities at LIACS.
He believes in the synergistic interaction between academia and private industry.
In particular, academia provides a fertile environment for doing frontier, next-
generation research and private industry provides strong societal relevance. This
thesis can be seen as both the culmination of his work and the beginning of the
next stage of his career.

