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Chapter 1  
 

General introduction 
 

1.1 Bacterial reaction center 

1.1.1 Photosynthesis 

Life on Earth is predominantly due to photosynthesis, a process which consists of 

two different pathways namely anoxygenic and oxygenic. In anoxygenic 

photosynthesis only carbon dioxide is consumed, while in oxygenic 

photosynthesis along with that oxygen is also liberated. In general photosynthetic 

process produces food for living beings and provides the fossil fuels for human 

energy consumption. Photosynthesis has been well studied in higher plants, algae, 

cyanobacteria as well as in green and purple bacteria (Blankenship, 2002). These 

organisms utilize sunlight to power their cellular processes and derive their 

biomass through chemical reactions driven by light. Photosynthesis is initiated by 

photon absorption in an antenna pigment. A wide variety of different antenna 

complexes are found in different photosynthetic systems (Blankenship, 2002) using 

pigments such as (bacterio)chlorophylls (B)Chl, carotenoids and bilins (i.e., open-

chain tetrapyrroles). Antennas allow to increase the spectral range of the photons 

as well as the absorption cross section without having to build an entire reaction 

center. Due to the functional organisation of the antenna, excitations are 

transferred into the photosynthetic reaction center (RC) in which the charge 

separation occurs. The RC is an integral membrane pigment-protein complex that 

carries out light-driven electron transfer reactions. One or more electronically 

excited BChl molecules transfer an electron to nearby acceptor molecules, thereby 

creating an ion pair state consisting of the oxidized primary donor and a reduced 

acceptor. After this initial electron transfer event, a series of electron transfer 

reactions takes place that eventually stabilizes the stored energy in forms that can 

be used by the cell. The RC complex from the anoxygenic purple bacteria namely 
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Rhodobacter sphaeroides is the best understood of all photosynthetic RCs, from both 

a structural and a functional point of view (Deisenhofer & Norris, 1993; 

Blankenship et al., 1995). These were the first reaction center complexes to be 

purified and studied by picosecond kinetic methods and the first even to have X-

ray structures resolved (Hunter et al., 2008). Much of the molecular level 

understanding of the early events in photosynthesis is based on the information 

derived from this system. 

1.1.2 Overview of Purple Bacteria 

Purple bacteria are photosynthetic gram-negative prokaryotes that convert light 

energy into chemical energy by the process of anoxygenic photosynthesis. Purple 

bacteria contain photosynthetic pigments–bacteriochlorophylls and carotenoids—

and can grow using inorganic materials as a source of nutrients, with CO2 as sole 

carbon source and using photosynthesis or chemosynthesis as a source of energy. 

Purple sulfur bacteria differ from purple nonsulfur bacteria on both metabolic and 

genetic basis. The species of two major groups often coexisted under light and 

anoxic places in nature. Purple sulfur bacteria are poorly equipped for metabolism 

and growth in the dark, while the purple nonsulfur bacteria possess diverse 

capacities for dark metabolism and growth. Purple nonsulfur bacteria are a 

physiologically versatile group of purple bacteria that can grow well both 

phototrophically and in darkness. Many genera of purple nonsulfur bacteria are 

known and one of the most widely studied is Rhodopseudomonas sphaeroides. This 

was first identified and named by van Niel (van Niel, 1944). Later this generic 

name has been changed to Rhodobacter (R.) sphaeroides and continued to hold the 

same name (Hunter et al., 2008). These bacteria contain complexes that catalyze 

light-induced electron and proton transport across the photosynthetic membrane 

and have been optimized by nature to perform with quantum efficiency close to 

unity. They grow most rapidly with N2 as sole nitrogen source and show the 

highest rates of in vivo nitrogenase activity (Madigan, 1984). Purple nonsulfur 

bacteria occasionally form dense blooms in habitats where levels of sulfide are 
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either low or undetectable. They are also present in sewage(Holm & Vennes, 1970; 

Siefert et al., 1978) and waste lagoons  (Jones, 1956; Cooper et al., 1975). 

 

     
Figure 1.1 (A) Schematic representation of the photosynthetic apparatus in the intracytoplasmic 
membrane of purple bacteria. The RC (red) is surrounded by the light-harvesting complex I (LH-
I, green) to form the LH-I–RC complex, which is surrounded by multiple light-harvesting 
complexes LH-II (green), forming altogether the PSU. Photons are absorbed by the light-
harvesting complexes and excitation is transferred to the RC initiating a charge (electron-hole) 
separation. The RC binds quinone, reduces it to hydroquinone and releases the latter. This 
hydroquinone is oxidized by the bc1 complex, which uses the exothermic reaction to pump 
protons across the membrane; electrons are shuttled back to the RC by the cytochrome c2 complex 
(blue) from the ubiquinone–cytochrome bc1 complex (yellow). The electron transfer across the 
membrane produces a large proton gradient that drives the synthesis of ATP from ADP by the 
ATPase (orange). Electron flow is represented in blue, proton flow in red, and quinone flow, 
likely confined to the intramembrane space, in black (Hu et al., 1998) Copyright (© 1998) National 
Academy of Sciences, U.S.A. (B) Arrangement of pigment–protein complexes in the modeled 
bacterial PSU of R. sphaeroides. (Hu et al., 1998) Copyright (© 1998) National Academy of Sciences, 
U.S.A. (C) AFM picture of photosynthetic membrane, LH2 complexes (green) funnel light energy 
to RC-LH1 complexes (red) as seen by AFM (small square) or by molecular modeling (bigger 
square) Reprinted by permission from Macmillan Publishers Ltd: Nature, ref (Bahatyrova et al., 
2004) © 2004. 
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1.1.3 The photosynthetic membrane of purple bacteria 

The photosynthetic apparatus of these purple bacteria (Figure 1.1) consists of light 

harvesting antenna complexes (LH), the RC protein, an ubiquinone-cytochrome b/c 

oxidoreductase complex and ATP synthase (Hu et al., 1998). The energy flow is 

facilitated by the peripheral light-harvesting complex, LH2, the core light-

harvesting complex, LH1 (Karrasch et al., 1995; McDermott et al., 1995; Hu & 

Schulten, 1998; Bahatyrova et al., 2004) and the RC (Deisenhofer et al., 1985; Allen 

et al., 1987; Ermler et al., 1994; Camara-Artigas et al., 2002a). The RC reduces 

quinone to hydroquinone as a result of electron transfer; subsequently the 

ubiquinol-cytochrome c2 oxidoreductase (bc1 complex) (Crofts et al., 1983; Valesco 

& Crofts, 1991; Gennis et al., 1993; Xia et al., 1997) oxidizes hydroquinone and 

reduces cytochrome c2, which completes the cycle by shuttling electrons back to 

the RC. The ATP-synthase (Junge et al., 1997; Fillingame, 2000; Fillingame et al., 

2000) makes use of the resulting proton gradient. The purple bacterial 

photosynthetic unit displays a certain simplicity in contrast to its counterpart in 

plants and the supramolecular organization of the constituent proteins is difficult 

to determine and must be ascertained by combining atomic force microscopy 

(Bahatyrova et al., 2004; Scheuring et al., 2004; Scheuring & Sturgis, 2005; Scheuring 

et al., 2005), cryo-electron microscopy (Jungas et al., 1999; Siebert et al., 2004; Qian et 

al., 2005) and linear dichroism (Frese et al., 2004) studies.  

1.1.4 Structure and function of purple bacterial RCs  

The structure and function of purple bacterial RCs have been studied over many 

decades. The crystallographic determination of the RC structure was the first of a 

membrane protein and has been awarded by the Nobel prize of Chemistry in 1994 

to Deisenhofer, Huber and Michel  (Deisenhofer et al., 1985).  

  The RC of R. sphaeroides is a transmembrane protein complex made of three 

major polypeptides, L, M and H (for light, medium and heavy) (Yeates et al., 1987; 

Ermler et al., 1994; Camara-Artigas et al., 2002a), see Figure 1.2A. The L and M 

subunits contain five transmembrane α-helices, which are packed together in a 
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nearly symmetrical way. Subunit H is more globular in shape and is located 

mainly in the cytoplasmic side of the membrane. The L and M subunits bind the 

cofactors. Four molecules of bacteriochlorophyll a (BChl a), two molecules of 

bacteriopheophytin a (BPhe a), two ubiquinone-10 molecules (Q), a non-heme iron 

(Fe2+) and a carotenoid molecule (Car) form the cofactors of the RC protein. The 

arrangement of the cofactors is shown in Figure 1.2B. 

  The cofactors form two nearly symmetric branches, the “active” A-branch 

and the “inactive” B-branch. Two BChls form the primary donor (P), a tightly 

interacting dimer called the “Special Pair” (PL and PM). On either side of the 

special pair an additional BChl molecule is located, known as the accessory BChl 

(BA and BB). The two BPhe (Φ) are positioned at an edge-to-edge distance of ~14 Å 

from the special pair. 

  Situated below the BPhe are the ubiquinones-10, (QA and QB). Finally, the 

non-heme Fe2+ ion is located in the center of the two branches near the cytoplasmic 

 
Figure 1.2: (A) The complex arrangement of 3 polypeptide subunits are represented in different 
colors with a ribbon representation, L (blue), M (yellow)  and H (violet) with RC. (B) Clear view 
of cofactors in the reaction center (RC) of R. sphaeroides wild type (WT). The primary electron 
donor, the special pair, is formed by the two bacteriochlorophyll a (BChl) molecules PL and PM. 
BA and BB are accessory BChl cofactors. A and B are bacteriopheophytin (BPhe) cofactors. On 
the acceptor side, two ubiquinone-10 cofactors QA and QB with a non-heme iron in between are 
localized. Side chains are omitted for sake of clarity. The symmetry of the cofactor arrangement is 
broken by a carotenoid cofactor (Car). The light-induced electron transfer occurs selectively via 
branch A. [PDB entry 1M3X, the figure has been made with Accelrys Discovery Studio] (Camara-
Artigas et al., 2002b). 
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side of the membrane. The tenth cofactor, the carotenoid molecule, breaks the 

apparent symmetry of the cofactor arrangement and is located near BB. In the RC 

of R. sphaeroides R26, a mutant strain, the carotenoid molecule is not present.  

1.1.5 Spectroscopy of RCs 

The purple bacterial RC has been studied with many spectroscopic techniques 

(Hoff & Deisenhofer, 1997). The BChl and BPhe cofactors in particular have 

distinctive absorbance spectra that provide a very sensitive probe of the structural 

and functional integrity of the complex, and provide a means to follow the route 

and rate of light-driven electron transfer. 

  The absorbance spectrum of the purified R. sphaeroides RC is shown in 

Figure 1.3. Owing to their electronic structure, the BChl and BPhe cofactors give 

rise to three sets of absorbance bands in the so-called Soret (300–420 nm), Qx (500–

630 nm) and Qy (650–950 nm) regions. Molar absorption coefficients (ε) for the 

prominent bands in the Qy region allow the concentration of RCs to be monitored. 

A particularly useful feature of the spectrum is that the purity of the complex can 

be measured from the ratio of protein absorbance at 280 nm to BChl absorbance at 

802 nm, with a ratio of 1.3 or less indicating RCs of sufficient purity for 

crystallization (Okamura et al., 1974). The structural integrity of the RC can be 

checked through characteristic spectral changes that take place as the protein 

 
Figure 1.3 The absorbance spectrum of the purified RC of R. sphaeroides  (WT). 
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unfolds and the cofactors are released from their native binding sites (Hughes et 

al., 2006). Photo-oxidation of the RC is accompanied by respective changes in its 

absorbance spectrum, and especially the Qy absorbance band attributed to the P 

BChls at 870 nm vanishes (the term ‘bleached’ is often used to describe this). The 

primary donor BChls were first identified through photobleaching of the 

absorbance band of a BChl species at 870 nm. 

1.1.6 Energy and Kinetics of RCs 

Though many spectroscopic techniques have been applied, the technique of 

picosecond-absorbance transient-difference spectroscopy has been very 

informative with respect to finding the path of the electron flow in these 

complexes (Blankenship, 2002). Figure 1.4 A and B summarizes the kinetics and 

energetics of the electron transfer process. After photochemical excitation of P to 

P*, one electron is transferred to the primary electron acceptor ΦA within 4 ps, 

forming the primary radical pair state AP  (Martin et al., 1986). The A  anion 

radical decays in about 200 ps and transfers the electron to the ubiquinone QA. The 

      
Figure 1.4 (A) Free energies of the states involved in light-activated charge separation in the RCs. 
(B) Midpoint redox potentials of centres involved in light-driven cyclic electron transfer. Centres 
are labelled using the convention reactant/product. Cyt bc1 refers to electron transfer through the 
high-potential chain formed by the iron–sulfur centre and cytochrome c1. “This research was 
originally published in Biochemical Society Transactions. Jones, M. R., The petite purple 
photosynthetic powerpack. Biochemical Society Transactions. 2009; 37: 400-407 © the Biochemical 
Society”. 
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electron subsequently moves from QA to QB in 100 s reducing QB once. 

Meanwhile, the oxidized primary electron donor P is re-reduced by accepting an 

electron from cytochrome c at the periplasmic side of the protein. The RC can be 

excited again and QA can give a second electron to QB. The doubly reduced and 

protonated QB leaves the RC to the ubiquinone pool. New ubiquinone from the 

ubiquinone pool of the membrane replaces the ubiquinol leading to the initial state 

of the RC. The movement of charge through the RC proceeds with extremely high 

quantum efficiency, and at each stage in electron transfer the productive forward 

reaction (black arrows) is much faster than competing reactions such as 

recombination of radical pairs to the ground state (grey arrows). To achieve this, 

movement of the electron through the RC involves the formation of radical pairs 

with progressively decreased free energies (Figure 1.4B). The P* excited state is a 

strong reductant, with an estimated excited state redox potential of -940 mV vs 

normal hydrogen electrode (Jones, 2009).  

1.1.7 The Solid-state photo-CIDNP effect 

The discovery of the solid-state photo-CIDNP effect (for reviews, (Jeschke & 

Matysik, 2003; Daviso et al., 2008b) by Zysmilich and McDermott in 1994 in frozen 

and quinone-blocked bacterial RCs of R. sphaeroides R26 by 15N magic-angle 

spinning (MAS) NMR under continuous illumination with white light offered 

NMR access to the electron-nuclear processes during the charge separation 

(Zysmilich & McDermott, 1994). By induction of a non-Boltzmann nuclear spin 

order upon photo-reaction in rigid samples, a signal enhancement of a factor of 

more than 10,000 has been observed by 13C MAS NMR in several RCs (Prakash et 

al., 2005; Prakash et al., 2006). In the meantime, the solid-state photo-CIDNP has 

been observed also on Rhodopseudomonas acidophila (Diller et al., 2008) of the green 

sulphur bacterium Chlorobium tepidum, (Roy et al., 2007) of the heliobacterium 

Heliobacillus mobilis (Roy et al., 2008) as well as of the photosystems I and II of 

plants (Matysik et al., 2000a; Alia et al., 2004; Diller et al., 2007b) and algae (Janssen 

et al., 2010). The signal enhancement provided by the solid-state photo-CIDNP 
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effect may thus be considered an intrinsic property of natural photosynthetic RCs 

and allows directly resolving the signals of 13C atoms within the RC (Matysik et al., 

2009).  

  Under continuous illumination on RCs of R. sphaeroides WT, two solid-state 

mechanisms run in parallel to induce net nuclear polarization which remains 

under steady-state conditions (Jeschke & Matysik, 2003; Daviso et al., 2008b): (i) 

Electron–electron–nuclear three-spin mixing (TSM) breaks the balance by coherent 

evolution of the correlated radical pair state in interaction with the nuclear spins 

and the applied magnetic field, depending on the signs of the electron–electron 

and of the anisotropic electron–nuclear interactions (Jeschke, 1997, 1998). (ii) In the 

electron-nuclear differential decay (DD) mechanism (Polenova & McDermott, 

1999) only a single matching condition with a dependence of secular part of the 

hyperfine coupling is required and the difference of singlet and triplet radical pair 

lifetimes must be of the order of the inverse hyperfine coupling (Jeschke & 

Matysik, 2003). The mechanism has been summarized and explained in Chapter 2 

(this thesis). Understanding of the spin-chemical processes (Daviso et al., 2009a) 

allowed to apply photo-CIDNP MAS NMR as an analytical tool for elucidating 

electronic structures of the cofactors forming radical pairs (Daviso et al., 2009c). 

1.2 Theoretical background of Solid State NMR 

1.2.1 Basic interactions in solid state NMR 

Nuclear magnetic resonance (NMR) has established its own importance starting 

from structural characterization of liquids, compounds in solution and solids, 

further to polymers, proteins and also membrane proteins (Schmidt-Rohr & 

Spiess, 1994). The advances in multidimensional NMR have been exploited in 

many fields in physics, chemistry, material science and also in biology. 

  Lorentz predicted the splitting of spectral lines of an atom placed in an 

external magnetic field on the basis of classical theory. This splitting was first 

observed by Zeeman. The Zeeman interaction in NMR describes the interaction 
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between the nuclear magnetic moment ( ) of a spin with an external static 

magnetic field 0B  in the spin Hamiltonian, and is expressed as  

     00 BH   .      1.1 

The magnetic moment ( ) can be expressed in terms of a nuclear spin operator I 

as I  , and equation 1.1 can be rewritten as  

     00 BIH z       1.2 

assuming that 0B  points in the Z-direction. Although the Zeeman interaction is the 

most dominant interaction in NMR and generally determines the quantization z-

axis of the spins, it contains little structural information in itself (Abragam, 1961). 

  In NMR, relevant chemical and structural information originates from the 

local fields that the nuclear spins experience. These fields are due to the shielding 

of the 0B field by the electron clouds and from all the interactions between the 

spins. For an ensemble of nuclear spins placed in a large magnetic field containing 

two types of nuclei, i.e. abundant spins I (e.g., 1H) with a gyromagnetic ratio I  

and a resonant frequency of I  and a rare spin S (e.g., 13C, 15N) with a 

gyromagnetic ratio of S and a resonance frequency of S , the interactions can be 

described in the spin Hamiltonians by the chemical shift term CSH , and the 

homonuclear and heteronuclear dipolar terms, II
DH  and IS

DH respectively. In the lab 

frame all the interactions can be represented by the spin Hamiltonian  

     IS
D

II
DCS HHHHH  0 .    1.3 

1.2.2 Chemical shielding Hamiltonian 

The chemical shielding Hamiltonian describing the electron distribution acting on 

a spin I, is expressed by 

     0BIH zzzCS  ,     1.4 

where ),,,( zyxqppq  are the components of chemical shielding tensor, in the 

laboratory frame where the z axis is along the static magnetic field.  
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  The electronic distribution around a nucleus in a molecule is rarely 

spherically symmetric. Since the chemical shielding arises from the electronic 

surroundings of a nucleus, its value depends on the orientation of the molecule in 

the magnetic field 0B . This orientation dependence is best described in terms of a 

chemical shielding tensor, which is a 3×3 matrix with elements pq  determined by 

the orientation of the laboratory frame with respect to a molecular principle axes 

frame where 0PQ  for QP   and by YYXX  , and ZZ themselves.  

  In solid-state NMR, the three principal axis tensor elements are often 

replaced by 

      ZZYYXXiso  
3

1
,    1.5 

      isoZZ   ,    1.6 

      



 YYXX 
     1.7 

Here, iso  is the isotropic value, while  and  are the chemical shift anisotropy 

(CSA) and asymmetry parameter, respectively (Schmidt-Rohr & Spiess, 1994; 

Duer, 2004). 

  The expression for the anisotropic frequency shift of a single site in a static 

sample can be derived from the values  ,   and the polar angles   ,  of the 0B  

field in the principal axis system 

    0
22 ))2cos(sin η13cos(δ

2

1
),( B  .  1.8 

And the chemical shielding Hamiltonian CSH in the principal axis system becomes 

    zIBH 0
22

isoCS ]})2cos(sin η13cos[δ
2

1
σ{   . 1.9 

1.2.3 Dipolar coupling Hamiltonian 

The heteronuclear coupling is responsible for much of the broadening observed in 

the solid-state NMR spectrum. Since each spin represents a nuclear magnetic 

moment that produces a small magnetic field, every spin “feels” the magnetic field 
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produced by the nearby spins. The strength of the heteronuclear dipolar coupling 

is represented by the truncated dipolar Hamiltonian 

    j
z

i
zij

i j ij

SI
IS SI

r
H 2)1cos3(

2

1

4
2

3
0

D   



 ,  1.10 

where ijr  represents the internuclear distance, 0 is the vacuum permeability, 

I and S  are the gyromagnetic ratios of the interacting I and S spins, respectively, 

and i
zI  and j

zS  are the z-components of the nuclear spin angular momentum 

operators respectively. The angle ij describes the orientation of the internuclear 

vector with respect to the orientation of the external magnetic field. Since the 

magnitude of the coupling between two nuclear spins has a r-3 distance 

dependence, the dipolar coupling is a long-range through space interaction. Spins 

also experience a homonuclear dipolar coupling, which results from an interaction 

between spins of the same species. The homonuclear dipolar Hamiltonian of the I 

spins is given by 

   )3)(1cos3(
2

1

4
2

3

II
0

D
jij

z
i
zij

i j ij

II II
r

H II 


  



 .  1.11 

There again ijr and ij  represent the internuclear distance and the angle between 

this internuclear vector and the external magnetic field, respectively. Two 

equivalent spins are able to undergo an energy-conserving “flip-flop” transition in 

which one spin flips up while the other spin flips down (Schmidt-Rohr & Spiess, 

1994). 

1.3 High resolution NMR Techniques for solids 

In liquid-state NMR, spectra consist of a series often resolved lines that are due to 

the averaging of the anisotropic NMR interactions by rapid tumbling of the 

molecules. In contrast, in solid-state NMR the effects of anisotropic interactions are 

observed and hence the resulting signals are generally very broad. Therefore 

special techniques for coherent averaging of the couplings “in spin space” and “in 

real space” by sample rotations and pulse sequence are essential for high 

resolution solid state NMR spectra (Schmidt-Rohr & Spiess, 1994).  
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1.3.1 Magic angle spinning 

Magic-angle spinning (MAS) is routinely used in the majority of solid-state NMR 

experiments. As discussed in earlier sections 1.2.2 and 1.2.3, the dependence on the 

molecular interaction is of the form    2cossin1cos3 22  , where the angle 

  ,  describes the orientation of the interacting tensors, in particular the chemical 

shielding and dipolar coupling  0 tensors. In the MAS experiment, the sample 

is spun rapidly in a cylindrical rotor around a spinning axis oriented at the magic 

angle   074.5431arccos m  with respect to the applied magnetic field 0B  

(Andrew et al., 1958; Lowe, 1959). MAS makes the average of the heteronucelar 

dipolar coupling and CSA interactions zero. Thus at fast sample rotation, the 

inhomogeneous anisotropic line broadenings are removed resulting in narrow 

central lines flawed by narrow sidebands. The spinning also partially removes 

homonuclear dipolar-coupling effects. For a detailed mathematical description of 

MAS, see (Duer, 2004). 

1.3.2 Cross-polarization 

Cross-polarization (CP) is the most important signal enhancement technique in 

solid-state NMR. It was introduced in 1962 by Hartmann and Hahn for static 

samples. Here nuclear polarization is transferred from abundant spins (I = 1H) to 

rare spins (S = 13C, 15N) relying on the heteronuclear dipolar interaction (Figure 

1.5). The maximum possible enhancement factor for the signals of the rare spins is 

given by SI  / , which is 4 for 1H and 13C (Schmidt-Rohr & Spiess, 1994). The 

 

  
Figure 1.5 Energy levels of the I (1H) and S (13C) spins. (A) In the laboratory frame the transfer of 
magnetization is not possible. (B) In the rotating frame the transfer of magnetization is possible as 
the energy separation is determined by the rf-field. The matching condition is then fulfilled. (C) 
Pulse sequence for HH-CP. 
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transfer can be described in the doubly rotating frame, that is, one in which the 1H 

spins are considered in a frame in which all the rf irradiation fields during 1H 

pulses appear static, and the S spins are considered in a frame in which all the rf 

fields appear static. Here we assume that all pulses are exactly on resonance for 

the spins to which they are applied. The simple pulse sequence is shown in Figure 

1.5B. An initial /2 pulse is applied on the I spins and the resulting magnetization 

is locked at an rf field B1I. Simultaneously another spin-lock field of B1S is applied 

to the S spins that has the same nutation frequency SSS B11    as the one on the I 

spins SII B11   , thus satisfying the Hartmann-Hahn (HH) condition (Hartmann 

& Hahn, 1962) 

     SI 11   .      1.12 

  The transfer depends on how well the HH condition is fulfilled. Typical rf-

field strengths for the HH CP are between 50 kHz and 100 kHz. The optimal CP 

contact time depends on the size of the heteronuclear dipolar coupling and on 

rotating frame relaxation times 1T of the two spins. 

  Advantages of the CP over the direct excitation of low abundant spins are 

the increase in polarization and faster repetition delays due to shorter relaxation 

times of abundant spins. CP can be combined with MAS leading to modified HH 

matching conditions 

       rSI n  11 .     1.13 

Here the difference between the rf-field amplitudes must be an integral multiple of 

the spinning frequency (Stejskal et al., 1977; Stejskal et al., 1984). 

1.3.3 Spin decoupling 

Although MAS removes the main effects of the anisotropic dipolar interactions on 

the linewidths, higher order effects must be still removed by spin decoupling. This 

can be achieved through the application of rf-frequency irradiation schemes on the 

non-observed spins for heteronuclear interactions and on the observed spins for 

homonuclear interactions. There are several techniques either for heteronuclear 

decoupling, such as CW and gated decoupling, TPPM, SPINAL, XiX, SWf-TPPM 
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or for homonuclear decoupling such as LG, WAHUHA, MREV-8, BR-24, FSLG, 

PMLG, DUMBO etc. A few of the mentioned techniques are discussed below. 

1.3.3.1 Continuous wave (CW) decoupling 

For a spin system, where a single spin S is coupled to a number N of I spins, 

continuous high power rf-field irradiation on the I spins eliminates the effect of the 

heteronucelar couplings on the observed S spin, regardless of the states of its 

magnetization (Sarles & Cotts, 1958). 

1.3.3.2 Two-pulse phase modulated decoupling (TPPM) 

TPPM was the first multiple-pulse decoupling sequence (Bennett et al., 1995) 

which improved heteronuclear decoupling efficiency compared to CW 

decoupling. This sequence consists of a continuous repetition of two pulses of 

length p  and phase  . The phase and the angle of the pulses are 150 and 1800, 

but in practice the exact phase and length values are best optimized 

experimentally. At slow spinning speeds, the variation of these values of efficient 

decoupling is quite large, but at high MAS frequencies, the sequence needs to be 

optimized very carefully in order to obtain narrow lines. 

1.3.3.3 Lee-Goldburg (LG) decoupling  

MAS can be used to remove the effects of the homonuclear dipolar couplings on 

NMR spectra, provided the spinning frequency is much faster than the strength of 

the dipolar interactions, which for protons are usually of the order of tens of kHz. 

Thus spinning frequencies up to 70 kHz are not sufficient to decouple and 

multiple-pulse sequences must be applied to suppress the homonuclear dipolar 

line-broadening effects. The Lee-Goldburg scheme is shown in Figure 1.6. The 

basic principle of this technique is to irradiate the protons continuously with an 

off-resonance rf-field of intensity 11 B   and off resonance value 

0  rfLG , in such a way that the total effective field effB  in the rotating 

frame is inclined at the magic angle 074.54m  with respect to the static magnetic  
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Figure 1.6 The Lee-Goldburg scheme, viewed from rotating frame, where RFframe    around 

the z-axis. (A) on-resonance, (B) off-resonance with rf-fields. The pulse schemes and time 
dependent rf irradiation field profiles in the xy-plane of the on-resonance rotating frame of FSLG 
(C, D), PMLG5 (E, F) and wPMLG5 (G, H). Asterisks denote possible data sampling points. The 
rotation frequencies ΔLG (grey) and −ΔLG (black) of the irradiation vector in the case of FSLG 

obey the relation ΔLG = 2/1 , where 1 is the rf intensity. The continuous time-dependent 
phase in FSLG is replaced in PMLGn by n discrete phases (shown by dots in E – H). The set of 
phase values for both PMLG5 and for wPMLG5 are given below 
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field direction. The LG condition is given by 

    12
2

1   LG     1.14 

(Lee & Goldburg, 1965). 

  The LG irradiation scheme averages the homonuclear dipolar interaction to 

zero-order, and a scheme can be incorporated with standard HH-CP to suppress 

the proton-proton interactions during the CP transfer experiment. This is referred 

to as LG-CP. Several variations and modifications of the LG scheme, to improve 

the averaging of spin-space interactions are in use. For example: (i) Frequency-

switched LG (FSLG): This involves application of an off-resonance rf-field at 

LG  for a duration of LG  with phase x, immediately followed by the 

application of another off-resonance rf-field at LG for a duration of LG  with 

phase x̄  (Mehring & Waugh, 1972; Bielecki et al., 1989; Levitt et al., 1993). This 

involves simultaneous switching of both the phase and the frequency of the rf-

irradiation as shown in Figure 1.6 (C & D). (ii) Phase-modulated LG (PMLG): This 

consists of a series of pulses in which the phase is changed, while their frequencies 

are kept constant. Hence, in both FSLG and PMLG, both the zero- and the first-

order homonuclear dipolar interactions are averaged. A PMLGn cycle 

approximates an LG unit by n on-resonance pulses, each with duration of LG /n, 

with n= 3,5,9… and a phase increment of Δ = 207.8/n between successive pulses, 

again followed by the same set of pulses in the reverse order with an overall phase 

shift of 1800 with respect to the first set. The pulse sequence and the rf profile in 

the on-resonance rotating frame are shown in Figure 1.6 (E & F). High-resolution 

1H spectra can then be obtained in a 1D way by inserting observation windows in 

the PMLG cycle, wPMLGn (Vinogradov et al., 2002). The rf-schematic of this 

approach is shown in Figure 1.6 (G & H) (Vinogradov et al., 2005). Implementing 

such sequences is experimentally challenging since the free-induction decay (FID) 

data points are collected at particular points in between sets cycle of pulses. High 

power with short pulse lengths is required to achieve maximum decoupling 

efficiency.  
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1.3.4 Recoupling techniques 

Fast MAS averages the inhomogeneous and partly the homogeneous anisotropic 

interactions present in the solid-state, giving rise to narrow lines in the spectra. As 

a result, the structural information about the distance and orientation content of 

these interactions is lost. Using recoupling techniques, it is possible to reintroduce 

homonuclear and heteronuclear dipolar couplings even under MAS conditions. 

Recoupling reintroduces the anisotropic interactions under MAS by interfering 

with the averaging of the spatial part through manipulations of the spin part. Such 

techniques are based on the fact that the dipole-dipole coupling between nuclei 

that are spatially close permits the build-up of zero-quantum or double-quantum 

coherences. These can be classified into heteronuclear and homonuclear 

recoupling sequences. 

1.3.4.1 Heteronuclear recoupling sequence 

CP and phase- or frequency- switched LG-CP under MAS conditions are examples 

for heteronuclear recoupling of dipolar interactions. Examples of other well 

known solid-state NMR recoupling techniques are R3, REDOR and TEDOR (Oas et 

al., 1988; Gullion & Schaefer, 1989; Hing et al., 1992). In particular we should 

mention that the symmetry theory of recoupling (Levitt, 2002) has facilitated the 

plan of designing rotor-synchronized radio-frequency pulse sequences which 

selectively restore subsets of spin interactions, and suppress others (Eden & Levitt, 

1999; Carravetta et al., 2000; Brinkmann & Levitt, 2001). 

1.3.4.2 Homonuclear recoupling sequences 

A number of sequences for broadband 13C–13C dipolar recoupling under MAS 

conditions have been developed, such as PDSD, RFDR and DARR (Szeverenyi et 

al., 1982; Bennett et al., 1992; Takegoshi et al., 2001). PDSD (Proton-Driven Spin 

Diffusion) was one of the first experiments used for dipolar-mediated polarization 

transfer under MAS. The transfer of magnetization from 13C to 13C occurs directly 

through space and is mediated by the interaction with the protons. The 

polarization transfer is inefficient when the 13C-13C dipolar coupling is smaller 
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than the difference of their resonance frequencies. Since no rf radiation is applied 

during the PDSD mixing time in 2D experiments, the recoupling is most efficient 

at low spinning frequencies. Typical mixing times in protonated compounds are in 

the order of 10 ms for 13C-13C transfer via direct bonds up to several 100 ms for 

long range transfer (Szeverenyi et al., 1982; Grommek et al., 2006). However, in 

such long-range transfers, the 13C-13C correlations tend to be lost due to the so-

called dipolar truncation effect. The strong dipolar coupling for a pair of adjacent 

13C–13C spins tends to suppress weaker couplings between a 13C spin in the pair 

and remote 13C spins (Baldus & Meier, 1997; Hoshino et al., 1998; Hohwy et al., 

1999).  

  In DARR (13C–1H dipolar-assisted rotational resonance), broadband 

recoupling is achieved by 13C–13C spectral overlap, made possible by 13C-1H 

interactions. The 13C–1H dipolar interaction is recovered by suitable rf irradiation 

on the protons. This sequence recouples 13C–13C dipolar interactions broadbandly 

but non-uniformly. This unique feature makes it possible to suppress the dipolar 

truncation effects even though the sample is extensively 13C labeled (Takegoshi et 

al., 2001; Takegoshi & Terao, 2002; Crocker et al., 2004). 

1.3.5 Spin diffusion 

The term “spin diffusion” was first introduced by Bloembergen to describe the 

phenomenon of polarization transfer through homonuclear dipolar couplings in 

solids which on a macroscopic level looked like a diffusion process (Bloembergen, 

1949). In general, spin diffusion can be observed on two different physical scales, 

either as spatial spin diffusion or as spectral spin diffusion. Spatial spin diffusion 

describes the flow of magnetization in space between equivalent nuclei due to a 

non-equilibrium distribution of the initial longitudinal magnetization (Abragam, 

1961). Spectral spin diffusion is the flow of polarization between spins of different 

resonance frequencies (Suter & Ernst, 1982). Real systems often show both aspects 

of spin diffusion. Spin diffusion has two important application aspects in solid-

state NMR namely, (i) as a transport mechanism to transfer magnetization in a 
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two-dimensional correlation experiment which then establishes the relative 

orientation of tensorial interactions (Linder et al., 1985) and (ii) measuring 

distances between spins, e.g., between domains in a heterogeneous polymer  

(Cheung, 1981; Heinen et al., 1998; Mulder et al., 2000). 

  Spin diffusion between protons can be used to measure domain sizes in 

polymers. Usually, these systems have a dense network of homonuclear dipolar 

couplings resulting in a fast spin-diffusion rate constant. Here, the diffusion rate 

constants are in the order of about 1 nm2/ms, allowing to probe distances up to 

200 nm (Schmidt-Rohr & Spiess, 1994). Such true 1H spin diffusion has revealed 

long-range inter-molecular distance restraints in a self-aggregated Chl a samples 

(de Boer et al., 2002). Recently, similar experiments have been applied to 

chlorosomes to determine the orientation of BChls (Ganapathy et al., 2009). 

  Proton-driven spin diffusion between rare nuclei is a "classical" spin 

diffusion experiment applied to obtain distance constraints. Biosynthetically site-

directed, 13C and 15N labelled samples allowed the observation of long-range 

distance correlations up to 7Å in the -spectrin SH3 domain (Castellani et al., 

2002). Such spin diffusion experiments also allow the observation of polarization 

transfer across small couplings even in the presence of strong coupling without 

severe dipolar-truncation effects (Grommek et al., 2006). Recently, complex 

formation and light activation in membrane-embedded sensory rhodopsin II has 

been observed by such experiments (Etzkorn et al., 2010). 

1.4 Aim and scope of this thesis 

Light-induced charge transfer in photosynthetic RCs is highly efficient, having a 

quantum yield for the entire electron transfer chain close to unity. Artificial 

systems have not yet reached such yield, and it is not clear how to improve their 

efficiency. In RCs of R. sphaeroides, the electron transfer is selective on one of the 

two symmetric branches of cofactors. It is observed that electron transfer in 

structurally similar RCs, as that of photosystem I, occurs equally over both 

branches, to make the mechanism of charge separation even more mysterious. To 

solve these questions, the first goal to reach will be to construct a complete picture 
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of the orbitals involved in electron transfer. A second goal is to complement such a 

static orbital picture with dynamic information. Since electron transfer is coupled 

to phonons, it is related to local mobility, which might be crucial for directing the 

transfer and for dissipating efficiently the energy. A third aspect is to which 

degree and by what means the environment of the protein tunes the properties of 

the entire electron transfer pathway. 

  The solid-state photo-CIDNP effect with its dramatic enhancement of local 

NMR signals provides an analytical tool that is especially suited for studying 

electron transfer in photosynthetic RCs. In fact, photo-CIDNP MAS NMR has been 

applied to explore the electronic structures of the electron donors. It was possible 

to obtain an almost complete picture of the electronic ground state of the donor in 

the mutant R. sphaeroides R26 (Daviso et al., 2009c). Also other donors have been 

analyzed, for example the donor of photosystem II of plants, which has been 

identified to be monomeric and highly asymmetric (Matysik et al., 2000a; Diller et 

al., 2007b). In this thesis, the photo-CIDNP MAS NMR assessment of electronic 

structure of the donor of R. sphaeroides WT, the Special Pair in its ground state will 

be completed (Chapter 2). In addition, the electronic structure of the acceptor, the 

bacteriopheophytin, will be provided (Chapter 4).  

  For studying the dynamics of the Special Pair, a new strategy is introduced, 

aiming to further develop the methodology of photo-CIDNP MAS NMR. A spin-

torch type experiment is applied here by transferring the photo-CIDNP 

polarization to nearby carbon atoms by using 13C-13C spin diffusion between 

different isotope labels. Thus, local mobility will be probed (Chapter 3).  

  To explore the protein pocket, which might tune to the Special Pair, an 

alternate spin-torch experiment using protons is proposed. In this concept, the 

strong polarization of the donor carbons is transferred to the pocket, which can be 

studied at atomic resolution. To this end, the possibility to use 13C photo-CIDNP 

for 13C-1H transfer is explored (Chapter 5).  
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Chapter 2  
 

Two-dimensional nanosecond laser-
flash photo-CIDNP MAS NMR 
experiments provide direct access to the 
electronic structure of the donor in 
bacterial reaction centers 
 
Abstract 
 
Although the two branches of cofactors are apparently symmetrically arranged, 

electron transfer in photosynthetic reaction centers (RCs) of the photosynthetic 

purple bacteria Rhodobacter (R.) sphaeroides  wildtype (WT) occurs exclusively via 

the redox chain formed by the cofactors on the A branch. Previous 13C and 15N 

photochemically induced dynamic nuclear polarization (photo-CIDNP) solid-state 

magic-angle spinning (MAS) NMR studies using selective isotope labelling 

patterns of the cofactors have shown that an electron distribution map of the 

ground state can be obtained. Here we present a complete mapping of the 

electronic ground state of the donor cofactors in RCs (WT). Following biosynthetic 

labelling of RCs from R. sphaeroides (WT), the increased selectivity of the novel 

time-resolved two-dimensional dipolar-assisted rotational resonance (DARR) 

MAS NMR experiment simplifies the signal assignment compared to complex 

spectra of the same RCs obtained by continuous illumination. The shielding 

pattern of the 13C nuclei confirms that there is excess electron density towards 

pyrrole ring III of PL. compared with pyrrole ring III of PM and the pattern of 13C 

shifts for the ring carbons is well in line with ε
M

-δ
L PP  charge transfer character, 

with εδ  . Hence symmetry breaking of the electronic structure with excess 

negative charge on the PL is detected in the ground state, to mediate asymmetric 

electron transfer following excitation. 
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2.1 Introduction 

The discovery of the solid-state photo-CIDNP (photochemically induced dynamic 

nuclear polarization) effect (for reviews, (Jeschke & Matysik, 2003; Daviso et al., 

2008b)) by Zysmilich and McDermott in frozen and quinone-blocked bacterial 

reaction centers (RCs) of Rhodobacter (R.) sphaeroides R26 by 15N magic-angle 

spinning (MAS) NMR under continuous illumination with white light offers NMR 

access to the electron-nuclear processes during charge separation (Zysmilich & 

McDermott, 1994). By induction of a non-Boltzmann nuclear spin polarization 

upon photo-reaction in rigid samples, a signal enhancement of a factor of more 

than 10,000 has been observed by 13C MAS NMR in several RCs (Prakash et al., 

2005; Prakash et al., 2006; Roy et al., 2008). The solid-state photo-CIDNP effect can 

now be produced routinely for the enhancement of the 13C MAS NMR for various 

photosynthetic RCs, including those of the purple bacteria of R. sphaeroides wild 

type (WT) (Prakash et al., 2005) and R26 (Zysmilich & McDermott, 1994; Prakash et 

 
Figure 2.1 (A): Arrangement of cofactors in reaction centers (RCs) of Rhodobacter (R.) sphaeroides 
wildtype (WT). The primary electron donor, the special pair, is formed by the two 
bacteriochlorophyll a (BChl) molecules PM and PL. BA and BB are accessory BChl cofactors, A and 
B are bacteriopheophytin (BPhe) cofactors. On the acceptor side, two ubiquinone-10 cofactors 
QA and QB are located with a non-heme iron in between. The symmetry of the cofactor 
arrangement is broken by a carotenoid (Car) cofactor. The light-induced electron transfer occurs 
selectively via branch A. (B): The spatial arrangement of the two cofactors PL (right, isotope labels 
in grey) and PM (left, isotope labels in grey) forming the special pair. The pyrrole rings are 
numbered with Roman numbers. Pyrrole rings I are overlapping. The isotope labelling pattern 
has been obtained by feeding with 3-13C1-δ-aminolevulinic acid (3-ALA, see Figure 2.4). The long 
side chains are omitted to provide a better view on the arrangement of the active elements in the 
charge separation process. [pdb entry 1M3X, (Camara-Artigas et al., 2002b) the figure has been 
made with Accelrys Discovery Studio] 
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al., 2006) and Rhodopseudomonas acidophila (Diller et al., 2008), of the green sulphur 

bacterium Chlorobium tepidum (Roy et al., 2007), of the heliobacterium Heliobacillus 

mobilis (Roy et al., 2008) as well as of the photosystems I and II of plants (Matysik et 

al., 2000a; Alia et al., 2004; Diller et al., 2007b) and algae (Janssen et al., 2010). Hence 

there is converging evidence that the solid-state photo-CIDNP effect is an intrinsic 

property of natural photosynthetic RCs (Matysik et al., 2009).  

  In RCs of R. sphaeroides, light absorption induces charge separation within 4 

ps from the primary donor (P) to the primary acceptor, a bacteriopheophytin (ΦA) 

(for review, see (Hoff & Deisenhofer, 1997)) (Figure 2.1A). The primary electron 

donor is a special pair formed by 2 bacteriochlorophyll a (BChl) cofactors called PL 

and PM (Figure 2.1B). The radical pair is initially in a pure spin-correlated singlet 

state (Figure 2.2). From this singlet state, photochemically induced dynamic 

electron polarization (photo-CIDEP) is observed as strongly enhanced absorptive 

and emissive signals in the EPR spectrum (Blankenship et al., 1975; Hoff et al., 

1977). During the lifetime of the radical pair, the electron-spin system oscillates 

between the singlet (S) of the radical pair state and the triplet state with magnetic 

quantum number 0 (T0), with a frequency that depends on both the hyperfine 

tensor and the difference of the electron Zeeman interaction between the two 

electrons forming the radical pair.  

  The coherent interconversion from singlet to triplet radical pairs and back 

gives rise to spin sorting within the scheme of the well-known radical pair 

mechanism (RPM) (Figure 2.2) (Closs & Closs, 1969; Kaptein & Oosterhoff, 1969). 

Under continuous illumination (CI), the RPM does not induce signal enhancement 

because the reaction products of both decay branches are identical. Hence, no net 

nuclear polarization is induced by the RPM in RCs of R. sphaeroides WT. 

Transiently, using time-resolved experiments, however, this nuclear polarization 

can be observed (Daviso et al., 2009a). Therefore, the sign of the transient light-

induced signals follows Kaptein’s sign rules (Kaptein, 1971).  

  In solid-state photo-CIDNP MAS NMR experiments under CI on RCs of R. 
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sphaeroides WT, two additional solid-state mechanisms run in parallel to induce net 

nuclear polarization which remains under steady-state conditions (Figure 2.2) 

(Jeschke & Matysik, 2003; Daviso et al., 2008b): (i) Electron–electron–nuclear three-

spin mixing (TSM) breaks the balance by coherent evolution of the correlated 

radical pair state in interaction with the nuclear spins and the applied magnetic 

field, depending on the signs of the electron–electron and of the anisotropic 

electron–nuclear interactions (Jeschke, 1997, 1998). (ii) In the electron-nuclear 

differential decay (DD) mechanism (Polenova & McDermott, 1999), the symmetry 

is broken by different lifetimes of the S and of the T0 states. The dependence of 

          
Figure 2.2 Kinetics and spin dynamics of electron transport in quinone-depleted RCs of R. 
sphaeroides wild type (WT). After absorption of a photon the photochemically excited state of the 
primary donor P* is formed and an electron is transferred to the primary acceptor ΦA, a 
bacteriopheophytin cofactor. Initially, the radical pair is in its singlet state 1(P•+ΦA•−). It evolves 
into a triplet state 3(P•+ΦA•−) due to the electronic interactions and hyperfine coupling with 
nearby nuclei, a process which is known as intersystem crossing (ISC). The radical-pair 
mechanism (RPM) leads to sorting of nuclear spins via the isotropic hyperfine coupling, but 
without a net increase of the population difference of the spin up and the spin down nuclear 
states. In the TSM, hyperfine coupling, nuclear and electronic Zeeman interactions, and 
anisotropic interactions involving electrons and nuclei lead to symmetry breaking and net 
nuclear polarization that can be observed both in laser excitation experiments and under steady-
state conditions. The lifetime for recombination from the singlet state to the ground state is 20 ns, 
while charge recombination from the 3(P•+ΦA•−) radical pair state forms a donor triplet state 3P 
with a time constant of 1 ns. With continuous illumination the difference in recombination rates 
from the singlet and triplet states to the neutral ground state also break the symmetry when they 
match the inverse of the pseudosecular component of the hyperfine interaction, a process which 
is known as the DD mechanism. For the WT, the 3P is rapidly converted (100 ns) in a carotenoid 
triplet (3Car) and followed by a much slower decay from the carotenoid triplet state to the ground 
state. Time-resolved experiments have shown that a large fraction of the excited state decays via 
3Car, in competition with back conversion to the 3(P•+ΦA•−) that decays rapidly with 20 ns to 
establish the steady state. Before reaching this steady state, however, transient effects from RPM, 
TSM and DD can be observed with time-resolved photo-CIDNP, on a timescale of 10 s and 
different mechanisms can be resolved by adjusting the time between the photo-CIDNP excitation 
and the NMR detection scheme. 
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secular part of the hyperfine coupling is the only single matching of interactions 

A2 I   is required and the difference of singlet and triplet radical pair lifetimes 

must be of the order of the inverse hyperfine coupling (Jeschke & Matysik, 2003).  

  In time-resolved experiments on RCs of R. sphaeroides WT, transient nuclear 

polarization has been observed up to 10 s (Daviso et al., 2009a). The decay from 

the singlet state to the ground state is 20 ns, much faster than the pathway via the 

three triplet states, which is rate limited by the decay from the carotenoid triplet 

state to the ground state, 10 s (Figure 2.2). Thus, transient nuclear polarization 

can be observed, originating from the nuclear polarization associated with rapid 

decay of the 1(P•+ΦA•−) state while the polarization associated with the decay of 

the T0 channel is hidden by dipolar dephasing from the paramagnetic triplet on 

the carotenoid (3Car) during its lifetime. As a result, the nuclear polarization of the 

triplet decay channel cannot be detected on the nearby nuclei in experiments with 

a short delay <10 s between optical excitation and NMR detection (Figure 2.2) 

(Daviso et al., 2008b; Daviso et al., 2009a). 

  Time-resolved photo-CIDNP MAS NMR has also been demonstrated to 

map the electron spin density on the donor with atomic selectivity since the 

transient nuclear polarization intensities reflect the local electron spin densities on 

the donor (Daviso et al., 2009c). Interpretation of one-dimensional envelope of 

transient nuclear polarization however requires chemical shift assignments, which 

need to be obtained in separate experiments. Here we show that two-dimensional 

nanosecond laser-flash photo-CIDNP MAS NMR experiments allow for direct 

measurement of both chemical shifts and local electron spin densities in a single 

experiment. 

2.2 Methodology 

2.2.1 Dipolar assisted rotational resonance (DARR) spectroscopy 

To explore connectivities between carbons, 13C-13C homonuclear shift-correlation 

experiments are necessary. In solid state NMR, different pulse sequences have 

been developed for use with MAS, such as DRAMA (Tycko & Dabbagh, 1990), 
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RFDR (Bennett et al., 1992; Bennett et al., 1998) , C7 (Lee et al., 1995), PDSD 

(Szeverenyi et al., 1982; Grommek et al., 2006) and DARR (Takegoshi et al., 2001). 

With DARR (Dipolar assisted rotational resonance), In the DARR experiment, 

nuclear polarization transfer is driven by a spin-diffusion-type mechanism while 

the heteronuclear (1H-13C) dipolar couplings are re-established by continuous 1H rf 

irradiation on a rotary resonance condition. The pulse program for a DARR 

experiment is shown in Figure 2.3A. As in any two-dimensional experiment, there 

are four periods: i) preparation, ii) evolution, iii) mixing and iv) acquisition. In the 

preparation period, a standard cross polarization (CP) step is used mainly to 

enhance the 13C polarization, by factor of ~ 4 by transfer of magnetization from the 

protons. During the evolution period (t1) the 13C nuclei precess according to their 

chemical shift. For a well resolved spectrum, efficient heteronuclear 1H-13C 

decoupling as TPPM is required during this period. After the evolution period, the 

magnetization is put along the z-axis with a /2 pulse and mixing (tmix) occurs 

longitudinally with low power irradiation on 1H. The 1H rf field strength is set to 

the n=1 rotary resonance condition (Nielsen et al., 1992). During the acquisition, 

TPPM (Bennett et al., 1995) is applied in the 1H channel for optimum decoupling. 

   13C signal assignments can be obtained by analyzing 13C–13C cross peaks in 

data sets collected with a short mixing time, where polarization transfer by 13C–13C 

dipolar interactions occurs mostly within directly bonded 13C–13C pairs. At longer 

mixing times, long range correlations may also be observed. In broadband dipolar 

recoupling experiments, however, such long-range correlations are quenched by 

dipolar truncation (Takegoshi, 2008). The strong dipolar coupling for a pair of 

adjacent 13C–13C spins tends to obscure weaker couplings between a 13C spin in the 

pair and remote 13C spins (Baldus & Meier, 1997; Hoshino et al., 1998; Hohwy et al., 

1999). However, DARR produces broadband recoupling of weakly interacting 13C 

spins without appreciable dipolar truncation effects even though the sample is 

extensively 13C labelled (Takegoshi et al., 2003; Crocker et al., 2004; Igumenova et 

al., 2004). In addition to broadband recoupling, DARR has other features that  
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Figure 2.3 Two-dimensional 13C-13C CP DARR MAS NMR pulse program. Solid bars indicate the 
/2 pulses and CP is cross polarization, TPPM and CW are different types of decoupling 
methods that can be applied, while Acq is the acquisition. t1 and t2 are the indirect and direct 
dimensions of the 2D experiment and tmix is the spin diffusion mixing time. (A) Standard DARR 
experiment, (B) modified DARR experiment with CI setup, (C) Two-dimensional 13C-13C photo-
CIDNP laser DARR MAS NMR pulse program used for the experiment. Solid bars indicate the 
/2 pulses, Δ is the delay between the laser pulse and the /2 pulse on the carbon channel, here 
Δ= 0 μs, during the 13C mixing time 1H was irradiated under the rotational resonance condition 
(ω1H = nωR). The phase cycling used in the pulse program is 1 = 0 2, 2 = 0, 3 = 2, 4 = 0 0 0 0 0 0 
0 0 2 2 2 2 2 2 2 2, 5 = 0 0 0 0 2 2 2 2, 6 = 0 2 1 3 and receiver R= 0 2 1 3 2 0 3 1 2 0 3 1 0 2 1 3. 
Here definitions are: 0 = +X, 1 = +Y, 2 = -X, 3 = -Y. 
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make it very suitable for homonuclear shift-correlation experiments: (i) tolerance 

with respect to the spinning speed and its stability, (ii) low rf-power requirements, 

(iii) tolerance to rf inhomogeneity, and (iv) good signal strength when a long 

mixing time is applied, comparable to the spin-lattice relaxation time of 13C. 

Finally, cross peak intensities in DARR experiments at lower spinning frequencies 

correlate well with internuclear distances (Takegoshi et al., 2003). 

2.2.2 Modified DARR for photo-CIDNP under continuous illumination 

The modified pulse program using the strong initial 13C polarization provided by 

the solid-state photo-CIDNP effect is displayed in Figure 2.3B. The preparation 

period has been modified from the standard DARR experiment (Figure 2.3A) by 

replacing the CP segment with a simple 13C /2 pulse.  Light is obtained from a 

1000-W xenon arc lamp (Matysik et al., 2000b). 

2.2.3 Modified DARR for photo-CIDNP under laser-flash illumination 

The modified pulse program using the strong initial 13C polarization provided by 

the solid-state photo-CIDNP effect is displayed in Figure 2.3C. The preparation 

period has been modified from the standard DARR experiment (Figure 2.3A) by 

removing the CP segment to enhance the 13C signal. Advanced photo-CIDNP 

techniques are used here for selective excitation of the source for the nuclear 

polarization, and the laser-flash photo-CIDNP segment (Daviso et al., 2008a) is 

incorporated, using a laser flash and a subsequent /2 pulse. The presaturation of 

13C pulses allows for accelerating the experiment by destroying any residual 

polarization from the previous /2 pulse.  

2.3 Materials and Methods  

2.3.1 Sample preparation 

The selective isotopic labelling in RCs of R. sphaeroides is achieved by feeding of 

selectively labelled 3-13C1-δ-aminolevulinic acid (3-ALA), which is a precursor for 

the formation of BChl and BPhe (Figure 2.4), and leads to a 13C enrichment of 
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~60% (Schulten et al., 2002). The 3-ALA has been purchased from Buchem B.V. 

(Apeldoorn, The Netherlands). 

  The RCs were isolated as described earlier (Shochat et al., 1994) and the 

quinones were removed by incubating the RCs at a concentration of 0.6 μM in 4% 

LDAO, 10 mM o-phenanthroline, 10 mM Tris buffer, pH 8.0, containing 0.025% 

LDAO and 1 mM EDTA (Okamura et al., 1975). Approximately 15 mg of RC 

protein complex embedded in LDAO micelles were used for a NMR experiment. 

2.3.2 MAS NMR experiments 

NMR experiments were performed with an Avance DMX-200 NMR spectrometer 

equipped with a double resonance CP/MAS probe (Bruker-Biospin, Karlsruhe, 

Germany). The sample was loaded into a clear 4-mm sapphire rotor and inserted 

into the MAS probe. It was frozen slowly at a low spinning frequency of 600 Hz to 

ensure a homogeneous sample distribution against the rotor wall (Fischer et al., 

1992). The light and dark spectra were collected using a Hahn echo pulse sequence 

with the CYCLOPS phase cycle of the (/2) pulse. The data were collected with 

TPPM carbon-proton decoupling (Bennett et al., 1995) at a temperature of 223 K 

under continuous illumination with white light (Matysik et al., 2001). The 

optimum length of the (/2) carbon pulse, determined on uniformly 13C labelled 

tyrosine, is ~4.0 μs at a strength of 62.5 kHz. The rotational frequency for MAS was 

 
Figure 2.4 Biosynthetic pathway for the formation of selectively 13C isotope labelled 
bacteriochlorophyll a (BChl) by feeding the bacteria with 3-13C1-δ-aminolevulinic acid (3-ALA).  
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8 kHz. A total number of 128 scans were collected with a recycle delay of 4 s and a 

line broadening of 10 Hz was applied prior to Fourier transformation. The 13C-

MAS NMR spectra were referenced to the 13COOH response of solid 

tyrosine·(HCl) at 172.1 ppm. All the spectra were phased by using only the zeroth 

order phase correction.  

2.3.3 Lamp set up 

The continuous illumination setup for the MAS NMR experiments comprises a 

1000-Watt xenon arc lamp with collimation optics, a liquid filter and glass filters, a 

focusing element and a light fiber. Since the emission spectrum of a Xe lamp is 

similar to sunlight, the full range of radiation from UV to IR is available for 

illumination. Disturbance of the spinning frequency counting, which operates 

from a weak light source in the near-IR region, was avoided by water and also by 

various glass filters such as W27 and K3G. A fiber bundle was used to transfer the 

radiation from the collimation optics to the sample (Matysik et al., 2000b; Daviso et 

al., 2008b). 

2.3.4 2D 13C-13C photo-CIDNP DARR MAS NMR under continuous 
illumination 

All the two-dimensional (2D) 13C-13C photo-CIDNP DARR MAS NMR 

experiments were recorded with a DMX-200 (4.7 Tesla) magnet system. The 

sample has been frozen in the dark. Samples were kept spinning at 8 kHz at a 

temperature of 223 K under continuous illumination with white light (Matysik et 

al., 2000b). The DARR pulse program was modified to incorporate the excitation 

with light (Figure 2.3B). For DARR experiments, all spectra were collected with 

200 t1 increments and 64 scans, with a recycle delay of 4 s. A spin diffusion mixing 

time of 1 second was applied.  

2.3.5 Laser setup  

Using 1064-nm flashes of a Nd:YAG laser (SpectraPhysics Quanta-Ray INDI 40-10, 

Irvine CA, USA), and frequency-doubling with a second harmonic generator, 532-
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nm laser flashes were generated with pulse lengths of 6-8 ns and an energy 

between 20 to 270 mJ. The laser was operating with repetition rates between 1 and 

4 Hz. Time-resolved photo-CIDNP MAS NMR data were acquired with NMR 

detection immediately after light excitation, using a presaturation pulse sequence 

to erase the polarization and coherence from previous scans as described in Daviso 

et al. (Daviso et al., 2008a).  

2.3.6 2D 13C-13C photo-CIDNP laser DARR MAS NMR experiments 

The 2D 13C-13C photo-CIDNP laser-flash DARR MAS NMR experiment was 

recorded with the sample spinning at 8 kHz at a temperature of 223 K using a 

DMX-200 (4.7 Tesla) magnet system. The sample was frozen in the dark. The pulse 

program was modified to incorporate the triggering of the laser pulse CIDNP 

excitation (Figure 2.3C). For laser-flash DARR experiments, all spectra were 

collected with 100 t1 increments in 3024 scans, with a recycle delay of 4 s. A spin 

diffusion mixing time of 1 second was applied.  

2.3.7 Data processing 

All spectra were processed using the TopSpin (version 1.2) software package 

(Bruker-Biospin, Karlsruhe, Germany). The Qsine window function was applied 

along with zero-filling to 1024 data points in both the t1 and the t2 dimensions. 

2.4 Results 

2.4.1 1D 13C MAS NMR experiments 

Figure 2.5 shows the one-dimensional 13C MAS NMR spectra of 3-ALA labelled 

RCs of R. sphaeroides WT. The data were obtained in a magnetic field of 4.7 Tesla 

and at a temperature of 223 K with a MAS frequency of 8 kHz. Figure 2.6 provides 

a detailed view on the carbonylic and aliphatic regions. 
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  Spectrum A in Figure 2.5 is collected in the dark, and no signal is observed. 

Upon CI with white light, strong polarization is established (Spectrum B in Figure 

2.5 and 2.6). All signals are light-induced and emissive (negative). The sign of the 

signal has been explained by the dominance of the TSM over the DD mechanism 

(Prakash et al., 2005). The two strongest signals at 119.4 and 134.2 ppm have been 

assigned to the C-12 and C-2 carbons, respectively. The strong solid-state photo-

CIDNP effect confirms that these aromatic carbons obtain direct strong 

enhancement from the electron spin that is delocalized over the special pair 

(Daviso et al., 2008b). All other signals are considerably weaker. At least four 

signals can be distinguished in the carbonyl region. The carbonyl carbon atoms are 

labelled and may gain intensity from the nearby C-2 and C-12 that are strongly 

polarized. The intensity of the signals in the aliphatic region between 0 and 60 

ppm is less than for the signals in the aromatic region. Since for unlabelled RCs 

 
Figure 2.5 One-dimensional 13C photo-CIDNP MAS NMR spectra of 3-ALA labelled RCs of R. 
sphaeroides WT (A) in the dark, (B) under continuous light and (C) under nanosecond laser-flash 
with Δ = 0 μsec.  
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under continuous illumination, very little photo-CIDNP arises at aliphatic carbons 

(Prakash et al., 2005), the observed intensity gain in the 1D experiments is 

attributed to transfer from strongly polarized aromatic carbons by 13C spin 

diffusion. 

  In Spectrum C in Figure 2.5 and 2.6, photo-CIDNP is induced by laser 

flashes, immediately followed by NMR detection. This spectrum’s signs are from 

the RPM, and the signals are both absorptive and emissive (Kaptein, 1971). As 

discussed in the above theory section, the sign and intensities of the transient 

response provides direct access to isotropic hyperfine values.  

 
Figure 2.6 Carbonyl and aliphatic regions of one-dimensional 13C photo-CIDNP MAS NMR spectra 
of 3-ALA labelled RCs of R. sphaeroides WT (A) in the dark, (B) under nanosecond laser-flash with 
Δ = 0 μsec and (C) under continuous light.  
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2.4.2 Continuous illumination 2D 13C-13C photo-CIDNP DARR MAS NMR 
spectrum 

In Figure 2.7A, the two-dimensional 13C-13C photo-CIDNP DARR MAS NMR 

spectra of 3-ALA labelled RCs of R. sphaeroides WT obtained under continuous 

illumination with white light are shown. The spin-diffusion mixing time is 1 s. In 

addition to the diagonal peaks, several cross peaks are observed. In such 2D 

experiments, generally spins are allowed to evolve at their characteristic frequency 

during the t1 and t2 time intervals. During the mixing period (tmix), between t1 and 

t2, magnetization is transferred between spins via the dipolar coupling. In general, 

spins that are close in space will interact. Thus, a two-dimensional dataset is 

collected as a function of both t1 and t2. Two-dimensional Fourier transformation 

of this time domain dataset leads to a two-dimensional frequency spectrum, with 

frequency axes labelled f1 and f2, corresponding with the t1 and t2 axes in the time 

domain, respectively. Signals along the f1 = f2 diagonal are autocorrelation peaks 

and arise from magnetization that did not transfer between spins during the 

mixing period. Additionally, there are cross peaks present as a result of transfer of 

magnetization by the dipolar coupling during the tmix period between the 

interacting spins. Hence, the intensity and the sign of the cross peaks depends on 

the state obtained after the preparation, at the start of the evolution period t1, and 

reflect the strength and sign of correlated diagonal peaks along the f2 dimension. 

  Many carbons of the BChl cofactors of the special pair have been already 

assigned in previous studies on unlabelled (Prakash et al., 2005; Prakash et al., 

2006), 4-ALA (Schulten et al., 2002; Daviso et al., 2009a) and 5-ALA (Prakash et al., 

2007) labelled WT RCs. While the 4- and 5-ALA label patterns allow to study the 

aromatic carbons of the BChl and BPhe macrocycles, 3-ALA labelling leads to 

isotope enrichment of the more peripheral carbon positions (Figure 2.1 and 2.4). 

This label pattern is particularly suitable for observation of spin diffusion since it 

combines a range of internuclear distances for the bacteriochlorin rings and some 

side chains with a good dispersion of chemical shifts that facilitates the detection 

of transfer between pairs of labels. 
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Figure 2.7 Two-dimensional 13C-13C photo-CIDNP DARR MAS NMR spectra of 3-ALA labelled 
RCs of R. sphaeroides WT with a spin-diffusion mixing time of 1 s, collected with a spinning 
frequency of 8 kHz at a temperature of 223 K. (A) Light source used is a 1000 W xenon lamp. (B) 
Data obtained with the laser setup. Circled region displayed less number of cross peaks in laser 
experiment compared to the same regions with CI experiment.  
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  In photo-CIDNP MAS NMR on RCs of R. sphaeroides WT, signals from three 

cofactors are enhanced, the two BChl cofactors of the special pair and the primary 

electron acceptor BPhe in the active A branch. In the DARR spectrum of Figure 2.7, 

however, only two networks are observed. The more extended network is labelled 

in blue and is assigned to cofactor PL of the special pair. It represents a complete 

set of correlation signals for eight carbon nuclei, including the responses from the 

C-2 and the C-12 with the strongest intensities. From this network, all chemical 

shift assignments have been obtained (Table 2.1). A second network, labelled in 

red, is from a spin system comprising five 13C nuclei, and is assigned to cofactor 

PM. As observed previously, most of the signals assigned to PL are shielded 

compared to the signals of PM (Schulten et al., 2002; Prakash et al., 2005; Prakash et 

al., 2007; Daviso et al., 2009c). In particular the difference between the chemical 

shifts of the C-12 atoms of 9.0 ppm is remarkable.  

2.4.3 Time-resolved 2D 13C-13C photo-CIDNP DARR MAS NMR spectrum 

Figure 2.7B shows the two-dimensional 13C-13C photo-CIDNP laser DARR MAS 

NMR spectra of 3-ALA labelled RCs of R. sphaeroides WT collected at 223 K with a 

spin-diffusion mixing time of 1 s and a MAS frequency of 8 kHz. In time-resolved 

experiments on RCs of R. sphaeroides WT without a delay between laser flash and 

NMR detection, the light-induced signals are mainly due to the transient 

polarization as explained in (Figure 2.2) (Daviso et al., 2009a). Hence, the 13C-13C 

correlation experiment provides both a view on the electronic structure and the 

chemical shift assignments of the labelled atoms in the special pair. 

  In the time-resolved two-dimensional spectrum, mainly peaks from PL 

appear and only a few from PM.  In the one-dimensional dataset collected with 

laser excitation, the signals in the aliphatic region are strong compared to the CI 

experiment and the signals from C-171 PM, C-171 PL and C-81 PL are absorptive. In 

Figure 2.7, selected regions of 2D spectra are displayed. Since Figure 2.7A is 

obtained with CI, all diagonal peaks are emissive, which leads to a completely 

emissive sets of cross peaks. The cross peak intensities confirm that the signal 
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strength is transferred along the f2 dimension. For example, the cross peak, C12 

(PL) / C71 (PL) is very pronounced, as the corresponding diagonal peak in the f2 

direction is also strong. In Figure 2.7B, laser flashes were used as source of the 

photo-CIDNP enhancement and both absorptive and emissive signals occur. The 

cross peaks in the aliphatic region, for example, C18 (PM) / C171 (PM) show the 

same sign as the diagonal peaks along the f2 dimension (see dashed arrows).  

  Compared to the continuous illumination experiment, less diagonal peaks 

occur due to the selectivity of the RPM, therefore also less cross peaks are 

observed for the same mixing time of 1 s. Hence, the enhancement mechanism in 

the 2D Laser-DARR acts as a filter for correlation experiments. The higher 

selectivity also allows for clarifying the assignments for C7 (PM), C7 (PM), C8 (PL) 

and C18 (PM) (Table 2.1). 

Table 2.1 Assignment of the signals from 3-ALA-labelled BRCs obtained with continuous 
illumination and nanosecond laser-flash excitation, with their respective signs of polarization. For 
the continuous illumination experiment all the polarization is emissive. (E = emissive; A = 
absorptive). 
 

Carbon’s 
position in 

BChl a 
 PL  

Sign 
in 

laser 
expt 

 PM  

Sign 
in 

laser 
expt 

 BPhe 

2  134.3  E  136.2  E   

31  193.5  -  195.6  -   

7  46.1  -  48.3  E   

81  32.1  A       

12  119.5  E  128.8  E  126.9 

131  189.4  E  187.5  -   

171  29.9  A  28.4  A   

18  49.1  -  50.9  E   

71  19.1  -    -   
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2.4.4 Experimental reconstruction of the electronic structures of the Special Pair 

Nearly complete sets of 13C assignments for the macrocyles of both the PL and PM 

cofactors are presented in Table 2.2 and 2.3, respectively, compiling the results of 

this work using the 3-Ala label pattern (Table 2.1) with that of previous work 

using 4- and 5-Ala label patterns (Schulten et al., 2002; Prakash et al., 2007; 

Egorova-Zachernyuk et al., 2008; Daviso et al., 2009a). After correction for ring 

current effects, the comparison of 13C chemical shifts of the special pair with 

chemical shifts obtained from a BChl in solution in chloroform provide the full 

signature of the ground state electronic structure with great detail (Figure 2.8). 

Apparently the formation of the supermolecule leads to a concentration of 

electronic shielding, indicated with yellow spheres in the overlap region of pyrrole 

rings I of PL and PM (Figure 2.8). These results validate the earlier observations for 

RCs of the carotenoid-less mutant R26 (Daviso et al., 2009c) and show that the 

presence of the carotene has little effect on the ground state electronic properties 

and the structure of the Special Pair. In addition, theoretical studies indicate that 

accumulation of negative charge on the PL and PM can be established by partial 

charge transfer from the axial histidines HisL173 and HisM202 (Alia et al., 2009; 

Wawrzyniak et al., 2011). 

  Figure 2.8 compiles the differences in chemical shift, reflecting the shielding 

and deshielding by the electronic distribution for the ground state of the Special 

Pair. This has been experimentally obtained in the present study by the laser-flash 

experiment (Table 2.1). In line with earlier time-resolved photo-CIDNP studies, the 

PL is more shielded than the PM (Zysmilich & McDermott, 1994; Schulten et al., 

2002; Prakash et al., 2007; Daviso et al., 2009c). For both cofactors, considerable 

shielding is observed for the 13C on pyrrole rings I, indicating accumulation of 

electron density in the overlap region. The shift pattern also points to more 

relative electron density on the  pyrrole ring III of PL , while the pyrrole ring III of 

PM is deshielded, indicating accumulation of positive charge in the region. 
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Table 2.2  13C positions in PL and their NMR chemical shifts 1. 
 

Chemical shift (ppm) of PL 
Chemical 

shift (ppm) 
of BChl a in 

acetone 
solution a 

Measured 
by MAS 

NMR 

Calculated 
ring 

current 

Real CS  
Corrected 
(observed 
-calculated 

ring 
current)  

Corrected 
(corr CS-CS 

in liquid)  

Carbon’s 
position 
in BChl a  

δModel δPL δRC 
δPL(Corr)= 
δPL- δRC 

Δ(Corr)= 
δPL(Corr)- 
δModel 

1 151.2 143.5 b -1.3 144.8 -6.4 

2 142.0 134.3 c -2.3 136.6 -5.4 

3 137.7 127.4 b -3.3 130.7 -7.0 

31 199.3 193.5 c -4.2 197.7 -1.6 

4 150.0 136.8 b -2.0 138.8 -11.2 

5 99.9 103.0 b -1.1 104.1 4.2 

6 168.9 165.9 b -0.1 166.0 -2.9 

7 48.3 46.1 c 0.3 45.8 -2.5 

71 23.4 19.1 c 0.0 19.1 -4.3 

8 55.8 54.7 b 0.2 54.5 -1.3 

81 30.8 32.1 c 0.4 31.7 0.9 

9 158.5 162.6 b 0.2 162.4 3.9 

10 102.4 100.4 b 0.2 100.2 -2.2 

11 149.5 153.6 b 0.2 153.4 3.9 

12 124.0 119.5 c 0.2 119.3 -4.7 

13 130.6 130.8 b 0.2 130.6 0.0 

131 189.0 189.4 c 0.2 189.2 0.2 

14 160.8 157.2 b 0.2 157.0 -3.8 

15 109.7 108.7 b 0.2 108.5 -1.2 

16 152.0 145.6 b 0.2 145.4 -6.6 

17 50.5 50.0 b 0.2 49.8 -0.7 

171 30.5 29.9 c 0.3 29.6 -0.9 

18 49.5 49.1 c 0.1 49.0 -0.5 

19 167.3 161.0 b -0.1 161.1 -6.2 

20 96.3 104.1 b -0.5 104.6 8.3 

a Egorova-Zachernyuk (2008); (b) earlier works; (c) This work 
1 NMR chemical shifts of PL (δPL) , its monomeric chlorophyll in acetone (δModel) and 
respective differences in chemical shift after the subtraction of estimated ring current  
effects (Δ(Corr)). 
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Table 2.3 13C positions in PM and NMR chemical shifts 2. 
 

Chemical shift (ppm) of PM 
Chemical 

shift (ppm) 
of BChl a in 

acetone 
solution a 

Measured 
by MAS 

NMR 

Calculated 
ring 

current 

Real CS  
Corrected 

(observed -
calculated 

ring 
current)  

Corrected 
(corr CS-

CS in 
liquid)  

Carbon’s 
position 
in BChl a 

δModel δPM δRC 
δPM(Corr)= 
δPM- δRC 

Δ(Corr)= 
δPM(Corr) - 
δModel 

1 151.2 148.5 b -1.1 149.6 -1.6 

2 142.0 136.2 c -2.1 138.3 -3.7 

3 137.7 129.7 b -3.2 132.9 -4.8 

31 199.3 195.6 c -4.2 199.8 0.5 

4 150.0 144.5 b 0.1 144.4 -5.6 

5 99.9 101.2 b -1.3 102.5 2.6 

6 168.9 166.5 b -0.2 166.7 -2.2 

7 48.3 48.3 c 0.2 48.1 -0.2 

71 23.4 22.6 b -0.1 22.7 -0.7 

8 55.8 52.7 b 0.3 52.4 -3.4 

81 30.8 29.5 b 0.6 28.9 -1.9 

9 158.5 158.5 b 0.3 158.2 -0.3 

10 102.4 98.3 b 0.1 98.2 -4.2 

11 149.5 149.8 b 0.3 149.5 0.0 

12 124.0 128.8 c 0.2 128.6 4.6 

13 130.6 132.8 b 0.1 132.7 2.1 

131 189.0 187.5 c 0.1 187.4 -1.6 

14 160.8 160.1 b 0.1 160.0 -0.8 

15 109.7 106.6 b 0.1 106.5 -3.2 

16 152.0 151.5 b 0.1 151.4 -0.6 

17 50.5 47.4 b 0.1 47.3 -3.2 

171 30.5 28.4 c 0.1 28.3 -2.2 

18 49.5 50.9 c 0.1 50.8 1.3 

19 167.3 164.4 b 0.0 164.4 -2.9 

20 96.3 102.0 b -0.3 102.3 6.0 

a Egorova-Zachernyuk (2008); (b) earlier works; (c) This work 
2 NMR chemical shifts of PM (δPM) , its monomeric chlorophyll in acetone (δModel) and 
respective differences in chemical shift after the subtraction of estimated ring current  
effects (Δ(Corr)). 
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  This character of the special pair could be well represented as ε
M

-δ
L PP , from 

the photo-CIDNP analysis of the ground state chemical shifts. We find  >  which 

would imply that there is some dipole character in the ground state, superimposed 

on a overall negative charge and is well in line with earlier NMR studies that 

indicate balancing of the special pair charge state by the protein surroundings 

(Alia et al., 2009). The electronically excited state and the radical cation state have 

been studied by other spectroscopic methods. From the absorption and Stark 

spectroscopy, it has been concluded that the excited state has 
ML PP  charge transfer 

character, while the radical cation state has more negative charge on the PL, which 

parallels the findings in this chapter (Lendzian et al., 1993; Daviso et al., 2009c). The 

ε
M

-δ
L PP charge transfer character and associated symmetry breaking of the 

electronic structure can possibly mediate asymmetric electron transfer following 

excitation, which will be further explored in chapter 3.  

 
Figure 2.8 The cofactors PL and PM of the Special Pair, with the numbering of pyrrole rings and 
meso carbon atoms. The spheres correspond with the difference in chemical shifts after the 
correction by the estimated ring current effects, which reflect the relative electronic distribution 
for PL and PM in the electronic ground state derived experimentally. Yellow and orange colored 
spheres represent negative (shielding) and positive (deshielding) differences in chemical shifts, 
respectively. 
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Chapter 3  
 
 

Dynamic asymmetry in the Special Pair 
of Rhodobacter sphaeroides observed by 
photochemically induced dynamic 
nuclear polarization 13C NMR 
 
Abstract 
 
Electron transfer in photosynthetic reaction centers (RCs) of the photosynthetic 

purple bacteria Rhodobacter (R.) sphaeroides wild type (WT) occurs almost 

exclusively via the A branch. The primary electron donor, the Special Pair (P), is 

constituted by two bacteriochlorophyll a (BChl) cofactors. Here we investigate the 

internal dynamics of P by 13C photochemically induced dynamic nuclear 

polarization (photo-CIDNP) solid-state magic-angle spinning (MAS) NMR dipolar 

correlation spectroscopy and site-selective 13C isotope enrichment of P in the 

ground state. Solid-state photo-CIDNP excitation leads to strong signal 

enhancement in two-dimensional dipolar-assisted rotational resonance (DARR) 

MAS NMR experiments. 2D spectra collected with different mixing times allow for 

both the assignment of signals and mapping of rapid oscillatory motion of P 

around its ground state equilibrium structure with atomic selectivity from the 

kinetics of the 13C spin-diffusion processes. With a rate matrix analysis the 

dynamic partial averaging of dipolar interactions is resolved for individual 13C 

spin pairs. The data provide convincing evidence that the collective modes are 

localized towards the PM bacteriochlorophyll that is connected to the active branch 

accessory bacteriochlorophyll via His M202 and a water molecule and possible 

implications of the localized dynamics for symmetry breaking and charge transfer 

are discussed. 
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3.1 Introduction 

In photosynthetic reaction centers (RCs) of the purple bacterium Rhodobacter (R.) 

sphaeroides WT (for reviews, see (Hoff & Deisenhofer, 1997; Hunter et al., 2008)), 

the primary electron donor is a bacteriochlorophyll a (BChl) dimer, called the 

Special Pair P, comprising two dimer halves PL and PM (Figure 3.1A). Two 

additional BChl cofactors called accessory BChls (BA & BB), two 

bacteriopheophytins (ΦA & ΦB), two quinones and a non-heme iron are organized 

into two pseudo-symmetric branches named A and B (Figure 3.1B). It was found 

that collective nuclear motion on the potential energy surface of the excited state of 

the primary electron donor P* enables the charge transfer in the RC which is 

initiated by 
ML PP  internal charge transfer character, followed by the formation of 


ABP  and AP  intermediates over the active A branch (Moore et al., 1999; 

Yakovlev et al., 2010a). Excitations that enter the RC from the antenna are thought 

to lose excitonic character and gain polaronic character by coupling to two specific 

collective nuclear modes, a higher frequency intradimer mode of around 130 cm-1 

and a low frequency protein mode of ~30 cm-1 (Novoderezhkin et al., 2004). This 

 
Figure 3.1 (A) The arrangement of cofactors in reaction centers (RCs) of Rhodobacter (R.) 
sphaeroides wild type (WT). The primary electron donor, the special pair, is formed by the two 
bacteriochlorophyll a (BChl) molecules PL and PM. BA and BB are accessory BChl cofactors. A and 
B are bacteriopheophytin (BPhe) cofactors. The two ubiquinone-10 cofactors QA and QB are 
localized on the acceptor side with a non-heme iron in between. Side chains are omitted to 
provide a clear view on the active parts. The apparent symmetry of the cofactor arrangement is 
broken by a carotenoid cofactor (Car). The light-induced electron transfer occurs selectively via 
branch A. (B) Another view of spatial arrangement of the cofactors PL (top, right, isotope labels in 
blue), PM (bottom, middle, isotope labels in red) forming the Special Pair and an accessory 
bacteriochlorophyll on the A branch (BA) along with hydrogen bondings with nearest water 
molecules. [PDB entry 1M3X, the figure has been made with Accelrys Discovery Studio]. 
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low frequency mode has been proposed to be connected to a protic species, e.g. the 

reorganization of the phenolic OH of Tyr M210 between P and BA or the water 

molecule that is hydrogen bonded to the BA ring V keto functionality and the Nπ of 

the HisM202 that is axially coordinated with the Nτ to the Mg2+ of the PM. Such 

hydrogen bondings can stabilize a 
ABP  charge transfer contribution in a collinear 

proton coupled electron transfer (PCET)-type process from the P* to the BA along 

the chain of polar groups Mg(PM)–N–C–N(HisM202)–HOH(55)–O=(BA) (Moore et 

al., 1999; Yakovlev et al., 2002; Potter et al., 2005; Grondelle & Novoderezhkin, 2006; 

Alia et al., 2009; Yakovlev et al., 2010b; Wawrzyniak, 2011).  

  Stark effect measurements on RCs of R. sphaeroides that are sensitive to 

changes in the electronic charge distribution following excitation reveal a large 

change in dipole moment, 8.6 D, and the excited state of the Special Pair contains 

significant 
ML PP  charge-transfer character (Deleeuv et al., 1982; Lockhart & Boxer, 

1987, 1988). These observations are consistent with hole-burning experiments 

(Johnson et al., 1991; Purchase & Völker, 2009), where large values for the total 

Huang-Rhys factor of ~1.5 and the Special Pair marker mode of  ~120 cm-1 have 

been reported and attributed to a geometry change in the excited state induced by 

the primary charge separation (Reddy et al., 1992; Lyle et al., 1993). 

  As demonstrated also by differences in vibrational frequencies 

(Palaniappan et al., 1993), the structure of the two cofactor halves (Camara-Artigas 

et al., 2002a) and their chemical shifts (see chapter 2), the symmetry between the 

two cofactors is already broken in the ground state (Schulten et al., 2002; Daviso et 

al., 2009c). In addition, theoretical calculations indicate that the axial histidines 

donate electron density to PL and PM and that the orientation of the 31 acetyl group 

in PL and protein surrounding modulate the distribution of the excess electron 

density over the two halves of the special pair (Alia et al., 2004; Wawrzyniak et al., 

2011).  For the radical cation state, it has been shown by 1H ENDOR (Lendzian et 

al., 1993) that the electron-spin density is asymmetrically distributed in favor of PL 

in the Special Pair. Recent 13C and 15N laser-flash photo-CIDNP MAS NMR 

(Daviso et al., 2009b; Daviso et al., 2010) allowed to determine the electronic 
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structure of the HOMO at atomic resolution. In this study it has also been shown 

that there is excess spin density on the PL in the radical cation state. Hence the 

asymmetry of the HOMO is an intrinsic property of the Special Pair complex with 

its axial histidines and is caused by small differences between the thermally 

averaged geometries of the two cofactors in their surrounding protein matrix. 

Here we explore a new avenue by probing the dynamics of the BChl in the Special 

Pair by labelling of the macrocycle rings at various positions (Figure 3.1B). These 

positions were 13C labelled by culturing R. sphaeroides in a medium containing a 

selectively isotope labelled precursor of the tetrapyrrole synthesis, 3-13C1-δ-

aminolevulinic acid (3-ALA) (Figure 3.2). 

  The solid-state photo-CIDNP effect (for reviews, (Jeschke & Matysik, 2003; 

Daviso et al., 2008b; Matysik et al., 2009)) has been observed for the first time in 

1994 by Zysmilich and McDermott (Zysmilich & McDermott, 1994) in RCs of R. 

sphaeroides and allows enhancement of 13C signals of the Special Pair by a factor of 

more than 10,000 (Prakash et al., 2005; Prakash et al., 2006). Upon illumination, a 

highly electron spin-ordered radical pair is formed, and nuclear polarization is 

established in nearby nuclei by up to three mechanisms, called three-spin mixing 

(Jeschke, 1997, 1998), differential decay (Polenova & McDermott, 1999) and 

differential relaxation (Goldstein & Boxer, 1987; McDermott et al., 1998). The 

combined operation of these mechanisms in generating photo-CIDNP is now well 

understood (for a review, see (Daviso et al., 2009a)). In the meanwhile, the effect 

has also been observed in RCs of plants, of green sulfur bacteria and of purple 

non-sulfur bacteria (Matysik et al., 2009). The signal enhancement provided by the 

solid-state photo-CIDNP effect may thus be considered an intrinsic property of 

natural photosynthetic RCs and allows directly resolving the signals of 13C atoms 

within the RC (Matysik et al., 2009). In chapter 2 an experimental scheme is 

introduced for two-dimensional chemical-shift correlation spectroscopy using 

dipolar-assisted rotational resonance (DARR) following excitation by photo-

CIDNP (Takegoshi et al., 2001). In the DARR experiment, nuclear polarization 

transfer is driven by a spin-diffusion-type mechanism while the heteronuclear (1H-
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13C) dipolar couplings are re-established by continuous 1H rf irradiation on a 

rotary resonance condition 1 = nr, with 1 the nutation frequency of the 1H rf 

irradiation, r the spinning frequency, and n= 1 or 2 (Levitt et al., 1988; Oas et al., 

1988). Such an irradiation leads not only to a broadening of the 13C lines but also to 

an active recoupling at second-order resonance conditions which is based on the 

matching of the nutation frequency of the I spins to the isotropic chemical-shift 

difference of S-spin pairs (1 = nr Δ iso) (Scholz et al., 2008). DARR spectra can 

provide 13C assignments and provide information about the local mobility. The 

decay rates of the diagonal peaks are related to local mobility, and the build-up of 

the cross peaks depends on the magnitude of the dipolar couplings, which are 

maximum if the molecule is rigid. 

  In an analogy to other dipolar processes, such as the Förster transfer of 

optical excitations (Förster, 1948), spin diffusion in static samples can be described 

phenomenologically by a rate constant ijW  that characterizes transfer of 

magnetization between two nuclei i and j and is given by (Abragam, 1961)  

       20
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with the dipolar coupling constant ij  between the two spins being given by  
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The function  00
ijg  describes the intensity of the normalized zero-quantum line at 

frequency zero, which can be approximated by the overlap between the two NMR 

single-quantum lines of spins i and j, assuming that the broadening mechanisms 

are uncorrelated. Since the dipolar coupling constant between the two spins 

depends on the inverse third power of the distance r, spin diffusion is a short- to 

intermediate-range effect with 6 ijij rW . Using this distance dependence, solid-

state NMR experiments based on spin diffusion have been introduced to obtain 

distance information in solids (Douglass & McBrierty, 1978; McBrierty, 1979; 

Caravatti et al., 1982; Szeverenyi et al., 1982; Henrichs & Linder, 1984; Caravatti et 
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al., 1985) in analogy to the nuclear Overhauser effects in liquids (Hull & Sykes, 

1975; Kalk & Berendsen, 1976; Gordon & Wüthrich, 1978; Kumar et al., 1980; 

Kumar et al., 1981).  

  Although dipolar couplings are in zeroth-order approximation averaged by 

MAS (Andrew et al., 1959; Lowe, 1959), spin diffusion has also been observed in 

polycrystalline solids under MAS (Kubo & McDowell, 1988), opening the 

possibility to use distance restraints derived from spin-diffusion data as a tool for 

protein structure determination (Griffiths et al., 2000; Mulder et al., 2000; van 

Rossum et al., 2000; Castellani et al., 2002; de Boer et al., 2002; Hiller et al., 2005; van 

Gammeren et al., 2005; De Paepe et al., 2008; Gardiennet et al., 2008; Loquet et al., 

2008). With MAS, spin diffusion is promoted not directly by the dipolar-coupling 

Hamiltonian. It involves higher-order terms in the average Hamiltonian expansion 

that have a form similar to the static dipolar Hamiltonian (Grommek et al., 2006). 

Since the spin-diffusion rate constant is proportional to the square of the effective 

dipolar-coupling strength, dynamic processes will lead to a slowdown of the spin-

diffusion process due to the reduction in the strength of the dipolar couplings. 

3.2 Materials and Methods 

3.2.1 Sample preparation 

The selective isotope labelling in RCs of R. sphaeroides is achieved by feeding the 

bacteria with selectively labelled 3-13C1-δ-aminolevulinic acid (3-ALA), which is a 

 
Figure 3.2 Biosynthetic pathway for the formation of selectively 13C isotope labelled 
bacteriochlorophyll a (BChl) by feeding the bacteria with 3-13C-δ-aminolevulinic acid (3-ALA). 
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precursor for the formation of BChl and BPhe, and leads to a 13C enrichment of 

~60%. The 3-ALA (Figure 3.2) has been purchased from Buchem B.V. (Apeldoorn, 

The Netherlands). The RCs were isolated as described earlier (Shochat et al., 1994) 

and the quinones were removed by incubating the RCs at a concentration of 0.6 

μM in 4% LDAO, 10 mM o-phenanthroline, 10 mM Tris buffer, pH 8.0, containing 

0.025% LDAO and 1 mM EDTA (Okamura et al., 1975). Approximately 15 mg of 

RC protein complex embedded in LDAO micelles were used for a NMR 

experiment. 

3.2.2 MAS NMR experiments 

NMR experiments were performed with an Avance DMX-200 (4.7 Tesla) NMR 

spectrometer equipped with a 4 mm MAS probe (Bruker BioSpin GmbH, 

Karlsruhe, Germany). The sample was loaded into a clear 4 mm sapphire rotor 

and inserted into the MAS probe. It was frozen slowly at a low spinning frequency 

of 600 Hz to ensure a homogeneous sample distribution against the rotor wall 

(Fischer et al., 1992).  

  All two-dimensional (2D) 13C-13C photo-CIDNP DARR MAS NMR 

experiments were recorded with a MAS frequency of 8 kHz and at a set 

temperature of 223 K using continuous illumination with white light (Matysik et 

al., 2000b). The spectra were measured in 64 scans with 200 t1 increments and a 

recycle delay of 4 s, resulting in a total experiment time of 11 h for a mixing time of 

2 s. Spin-diffusion mixing times between 0.02 to 10 s were used. The FID was 

detected with proton decoupling using the TPPM sequence (Bennett et al., 1995). 

The optimum length of the (π/2) carbon pulse, determined on uniformly 13C 

labelled tyrosine, was ~4.0 μs, corresponding with the nutation frequency of 

62.5 kHz. All 13C-MAS NMR spectra were referenced to the carbonyl resonance of 

solid tyrosine•(HCl) set to 172.1 ppm. 

  2D spectra were processed using the TopSpin (version 2.1) software 

package (Bruker BioSpin GmbH, Rheinstetten, Germany). A sine-squared window 

function was applied along with zero filling to 1024 data points in both 
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dimensions. All 2D data sets were deconvoluted using the mixed line shape 

function with a 90% Gaussian and 10% Lorentzian contribution to obtain 

integrated intensities. 

3.2.3 The rate-matrix approach 

To obtain quantitative data for the spin-diffusion rate constants of Eq. (3.1), a rate-

matrix approach has been applied. The diagonal peaks were normalized with the 

sum of the respective cross peak intensities. These integrated and normalized 

diagonal and cross-peak intensities were used to determine the spin-diffusion rate 

constants using Matlab scripts (Matlab, The MathWorks, Natick, Massachusetts, 

USA). The time evolution of the spin-diffusion process is described by the 

differential equation 

        tpWtp
dt

d 
 ,   (3.3) 

where  tp


 is the time-dependent vector of all the polarizations of the involved 

resonances and the matrix W  contains the rate constants ijW  in the off-diagonal 

elements while the diagonal elements are given by (Ernst & Meier, 1998) 

     )(
1

j

ji
ijjj RWW  



.   (3.4) 

Here, )(
1

jR is the longitudinal relaxation rate constant of the resonance j. A sparse 

rate matrix with non-zero elements for all 13C spin pairs that are separated by a 

distance less than 6 Å was used. Non-linear least-square fitting was used to 

optimize the spin-diffusion rate constants and the relaxation-rate constants in 

order to obtain information about the possible polarization-transfer pathways. For 

the fit, a series of 2D photo-CIDNP DARR MAS NMR spectra with spin-diffusion 

mixing times from 0.02 s to 10 s (not shown) were used. Figure 3.3, showing a 

spectrum with a mixing time of 2 s, is an example of this series of spectra. The 

obtained rate constants are shown in Table 3.2 & Table 3.3 and plots of some of the 

experimental cross-peak and diagonal-peak intensities together with the best fitted 

curves are shown in Figure 3.4 and Figure 3.5. The intensity of the diagonal peak 

at zero mixing time has been normalized to unity. 
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3.3 Results & discussion 

3.3.1 Signal assignment 

Many 13C resonances of the BChl cofactors of the Special Pair have already been 

assigned in previous studies on unlabelled (Prakash et al., 2006; Daviso et al., 

2009b), and selectively with 4-ALA (Schulten et al., 2002; Daviso et al., 2009a) and 

5-ALA (Prakash et al., 2007) labelled WT RCs. While the 4-ALA and 5-ALA label 

patterns allow the study of the aromatic carbons of the BChl and BPhe 

macrocycles, 3-ALA labelling leads to isotope enrichment of the more peripheral 

carbon positions (Figure 3.1A and 3.2). This labelling pattern is particularly 

suitable for observation of spin diffusion because it provides a broad range of 

distances as well as chemical-shift differences between pairs of labels. Figure 3.3 

shows a 2D photo-CIDNP DARR MAS NMR spectrum of a selectively labelled 3-

ALA (WT) RC sample.  

  In this experiment, the spin-diffusion mixing time was set to 2 s to observe 

as many cross peaks as possible. In Chapter 2, similar experiment had been 

performed but with a mixing time of 1 s. The corresponding 1D spectra shown on 

the top and on the side demonstrates that all signals are emissive (negative). The 

negative sign of the signal has been explained by the dominance of the three-spin 

mixing mechanism which involves a symmetry breaking process by the nuclear 

Zeeman, hyperfine and anisotropic interactions. This leads to emissive signals, 

independent of the sign of all other interactions involved.  

  Only 13C nuclei from the two BChl cofactors of the Special Pair and the 

primary electron acceptor BPhe of the A branch that form the primary radical pair 

are observed with photo-CIDNP MAS NMR on RCs of R. sphaeroides WT (Prakash 

et al., 2005; Prakash et al., 2006; Daviso et al., 2009a; Daviso et al., 2010). The earlier 

studies have demonstrated that PL carries a higher electron spin density and 

shows generally higher signal intensities than PM. Further, the two-dimensional 

spectrum displayed in Figure 3.3, we observe two correlation networks; and they 

have been assigned in the similar way i.e., the one with the higher signal 

intensities is from PL and labelled in blue, while the second one is assigned to PM 
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and is labelled red. The isolated C7/C8 pair can be conveniently added into the 

red network. In addition, at 126.9 ppm (C12 Phe), a signal occurs without any 

correlation, and is therefore assigned to the primary acceptor.  

 

  The strategy applied for assigning the spectrum in chapter 2 as been 

applied here. Starting point for the assignments can be the C31 resonances, which 

appear in the carboxylic region at lowest field, i.e., at 195.6 ppm for the red and at 

 

Figure 3.3 Two-dimensional photo-CIDNP DARR MAS NMR spectra of 3-ALA labelled 
RCs of R. sphaeroides WT obtained at a temperature of 223 K with a spin-diffusion mixing 
time of 2 s and a MAS frequency of 8 kHz. Two correlation networks are distinguished: 
One network is assigned to PL (blue) while the other is assigned to PM (red). Intermolecular 
cross peaks are shown in purple. 
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193.5 ppm for the blue network. Alternatively, the signals of the two aromatic 

carbon positions, C2 and C12, provide a starting point, since these carbons obtain 

the strongest enhancement by the TSM photo-CIDNP effect (Prakash et al., 2005). 

Aliphatic carbons C7 and C18, located on the macrocycle, resonate with a chemical 

shift around 50 ppm. Two labelled side chain carbons, C81 and C171, resonate 

around 30 ppm. Table 3.1 summarizes the assignments. Since the photo-CIDNP 

polarization transfer among the labelled 13C atoms is mediated by spin diffusion, 

which operates through space providing access to the intermolecular distances 

and thus acting as a “Spin-torch” experiment. In addition to the two 

intramolecular networks, there are few cross-peaks, labelled purple, that arise 

from correlations between PL and PM. Examples of such correlations between PL 

and PM are C31(PL) / C131(PM) (7.1 Å), C81(PL) / C131(PM) (7.1 Å) and from PM to 

PL: C12(PM) / C18(PL) (13.1 Å), C2(PM) / C18(PL) (5.5 Å), C2(PM) / C81(PL) (7.9 Å), 

C2(PM) / C171(PL) (6.3 Å), C2(PM) / C12(PL) (8.4 Å), C2(PM)/ C131(PL) (8.8 Å).  

Table 3.1 Assignment of the signals from 3-ALA-labelled from Special Pair in BRCs obtained with 
continuous illumination. 

13C 
position 

PL 
(ppm) 

PM 

(ppm) 

2 134.3 136.0 

3' 193.5 195.6 

7 46.1 48.3 

8' 32.1 - 

12 119.5 128.8 

13' 189.4 187.5 

17' 29.9 28.4 

18 49.1 50.9 
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3.3.2 Spin Diffusion Measurements 

The spin-diffusion rate depends directly on the strength of the dipolar couplings. 

Local dynamics will lead to partial averaging of dipolar couplings and, therefore, 

also to a reduction of the spin-diffusion rate constants compared to the 

corresponding rigid spin configuration The rate constants extracted from the 

DARR spectra are shown in Table 3.2 and Table 3.3, while some characteristic 

experimental sets for the build up and decay of cross-peak and diagonal-peak 

intensities, together with the analysis from the nonlinear least squares fitting of the 

rate matrix in eq (3.4), are shown in Figure 3.4 and Figure 3.5. The intensity of the 

diagonal peak at zero mixing time has been normalized to unity. 

  Due to the sparse labelling pattern of the BChl rings (Figure 3.1 and 3.2), the 

shorter internuclear distances are optimal for direct transfer of polarization within 

pairs of labels. The distances for intramolecular pairs are equal in PL and PM: 

C171/C18 (2.5 Å), C71/C81 (2.5 Å), C2/C31 (2.8 Å), and C12/C131 (2.8 Å). In 

addition, for the overlap region of PL and PM, the intramolecular distances for the 

C2/C31 pairs (2.8 Å) are significantly shorter than the shortest intermolecular 

distance between pairs of labels in the ring and in the side chain positions, C2 

(PL)/C21 (PM) (3.8 Å). Polarization transfer between the nearby 13C nuclei is mainly 

direct and can provide information about the local mobility. 

  The DARR spectra (Figure 3.3) also reveal correlation peaks for long range 

transfer up to 13 Å. Examples of long distance correlations between PL and PM are 

C81(PL) / C131(PM) (7.1 Å), C2(PM) / C81(PL) (7.9 Å),  C2(PM) / C12(PL) (8.4 Å) and 

C12(PM) / C18(PL) (13.1 Å). Very little direct polarization transfer over such a long 

distance is possible and these cross peaks are attributed to relayed multi-step 

polarization transfer. The quantitative analysis of the spin-diffusion pathways 

with the relaxation matrix confirms that these long distance correlation events are 

mediated by relayed transfer involving various nuclei in the network of labels. 

Figure 3.6 shows four examples of such networks of multi-step transfers. In Figure 

3.6A, the correlation network linking C2(PM) and C81(PL), over a distance of 7.9 Å, 
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Table 3.2 13C-13C correlation pairs (diagonal peaks) with calculated rate constants for decay of the 
peaks obtained by nonlinear least squares fitting of the relaxation matrix. 
 

No Correlation pair 
Calculated rate 
constant (sec-1) 

Displayed 

1 C2(PM)  0.07 A 
2 C31(PM)  0.84 B 
3 C12(PM)  0.35 C 
4 C131(PM)  0.00 D 
5 C18(PM)  0.09 - 
6 C2(PL)  0.31 A 
7 C31(PL)  0.12 B 
8 C7(PL)  0.81 - 
9 C81(PL)  0.02 - 

10 C12(PL)  0.37 C 
11 C131(PL)  0.21 D 
12 C171(PL)  0.00 I 
13 C18(PL)  0.23 J 

Table 3.3 13C-13C correlation pairs (cross peaks) with distances and calculated rate constants for the 
rise of the peaks obtained by nonlinear least squares fitting of the relaxation matrix. 
 

No Correlation pair 
Distance 

(Å) 
Calculated rate 
constant (sec-1) 

 
Displayed 

1 C2(PM) / C-31(PM) 2.8 3.02 E,F 
2 C2(PM) / C18(PM) 5.1 0.18 - 
3 C2(PM) / C2(PL) 3.8 0.00 - 
4 C2(PM) / C31(PL) 5.1 0.00 - 
5 C2(PM) / C18(PL) 5.5 0.08 - 
6 C31(PM) / C2(PL) 4.9 0.22 - 
7 C31(PM) / C31(PL) 6.0 0.00 - 
8 C31(PM) / C7(PL) 5.4 0.33 - 
9 C31(PM) / C81(PL) 5.6 1.93 - 

10 C31(PM) / C12(PL) 5.9 0.35 - 
11 C31(PM) / C171(PL) 5.8 0.00 - 
12 C31(PM) / C18(PL) 5.6 0.19 - 
13 C12(PM) / C131(PM) 2.8 0.61 G,H 
14 C12(PM) / C31(PL) 6.0 0.08 - 
15 C131(PM) / C18(PM) 6.0 0.14 - 
16 C18(PM) / C2(PL) 5.9 0.04 - 
17 C2(PL) / C-31(PL) 2.8 1.61 E,F 
18 C2(PL) / C18(PL) 5.0 0.41 - 
19 C31(PL) / C7(PL) 5.6 0.15 - 
20 C7(PL) / C81(PL) 2.5 0.00 - 
21 C81(PL) / C12(PL) 5.2 0.00 - 
22 C12(PL) / C131(PL) 2.9 2.19 G,H 
23 C131(PL) / C171(PL) 4.9 0.51 - 
24 C171(PL) / C18(PL) 2.5 10.00 K,L 
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Figure 3.4 Decay of normalized diagonal peaks of PL (blue) and PM (red) and evolution of 
corresponding cross peaks of PL (blue) and PM (red) for selected 13C-13C correlation pairs. 
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is presented. The transfer occurs via two steps: first from C2(PM) to C31(PM) (2.8 

Å), and then to C81(PL) (5.6 Å). In Figure 3.6B, the most efficient pathway allowing 

for the correlation between C2(PM) and C12(PL), at a distance of 8.4 Å, is indicated. 

The transfer occurs via five steps, first from C2(PM) to C2(PL) (3.8 Å), then via 

C18(PL) (5.0 Å), to C171(PL) (2.5 Å), C131(PL) (4.9 Å) and finally to C12(PL) (2.9 Å). 

In this pathway, the C2(PM) and C2(PL) act as a bridge to transfer the polarization 

between the two cofactors of the Special Pair.  

 
Figure 3.5 Decay of normalized diagonal peaks of PL (blue) and PM (red) and evolution of 
corresponding cross peaks of PL (blue) and PM (red) for selected 13C-13C correlation pairs. 
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In Figure 3.6C, the transfer over a distance of 13.1 Å between C12(PM) to C18(PL) 

can proceed by several pathways. From the analysis of rate constants, we see that 

the polarization is transferred to C12(PM) via C131(PM) (2.8 Å), C18(PM) (6.0 Å), 

C2(PM) (5.1 Å), C31(PM) (2.8 Å) and finally to C18(PL) (5.6 Å). In Figure 3.6D, 

another example of long-distance transfer is presented. While the distance 

between C81(PL) to C131(PM) is 13.1 Å, the polarization is transferred via C31(PM) 

(5.6 Å), C2(PM) (2.8 Å), C18(PM) (5.1 Å) and finally to C131(PM) (6.0 Å). In any case, 

the occurrence of such long-distance contacts demonstrates that reduction of 

dipolar couplings by motional averaging is limited, and confirms that packing 

effects on the BChl comprising the Special Pair from the protein surrounding lead 

to a ground state potential energy surface that enhances the mobility of the rings 

for selective collective modes. A single, well defined and narrow NMR signal 

 
Figure 3.6 Selected polarization-transfer pathways obtained from the rate-matrix analysis. The 
solid line indicates the shortest distance between two carbons, while the dashed lines show the 
possible relay transfer between those two carbon atoms. 
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component is observed for every 13C label of P by partial dynamic averaging of the 

supermolecular structure, instead of e.g. spectral doubling or gross 

inhomogeneous broadening due to polymorphism (Schulten et al., 2002; Prakash et 

al., 2005). This contrasts with optical spectroscopy that operates on a much shorter 

time scale and reveals quasi-static site disorder, variations of the structure of the 

special pair in the protein complex. In the optical experiments variations of the site 

energies lead to inhomogeneous broadening of the optical absorption profile 

(Hunter et al., 2008). 

  The left part of Figure 3.4 (Plots A-D) compares the signal decay on selected 

carbons of both halves of the Special Pair. Those selected carbon atoms displayed 

there, show a different kinetics trend depending on their positions in the Special 

Pair. The difference is summarized in Figure 3.7, Table 3.2 and Table 3.3. The 

origin of this difference, however, is not clear. It may be due to enhanced mobility 

in low frequency collective vibrational modes that gives spectral density at the 

higher end of the T1 NMR sensitivity region to drive spin-lattice relaxation. 

Alternatively, less dynamics can lead to an increase of the spin diffusion efficiency 

and more rapid decay. Hence, although plots A-D of Figure 3.4 clearly 

demonstrate that the symmetry in the Special Pair regarding the dynamics is 

broken, it is difficult to conclude for which of the two rings there is more 

constrained dynamics. 

  To determine which of the two sides is more flexible, the time dependence 

of the build up of the cross peaks is studied. This can be correlated with the spin 

diffusion efficiency, while T1 relaxation of the carbons is not relevant on that short 

time scale. The kinetics of the decay of the diagonal-peaks is shown in the left 

parts of Figure 3.4 and 3.5. These two figures are summarized in Figure 3.7A and 

Table 3.2. Here the magnitude is visualized by the radius and color of the circle 

that matches the labelled position on Special Pair. The circles on the right side are 

larger than for the left hand side of the pseudo–C2 axis. The kinetics of the build-

up of the cross-peaks is shown in the right parts of Figure 3.4, 3.5 and is 

summarized in Figure 3.7B and Table 3.3. In this Figure 3.7B, the magnitude of the 
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spin-diffusion rate constants is visualized by the line width of an ellipse 

connecting the two 13C labels involved. The spin diffusion in the right half of the 

Special Pair supermolecule is faster than the spin diffusion in the left half. 

Interestingly, this difference cannot be attributed to the two individual cofactors 

PL and PM, and is associated with the left and right half of the Special Pair 

supermolecule. All three pairs on the right half (C2/C18 and C12/C131 of PL as 

well as C2/C31 of PM) are significantly stronger coupled than the two pairs on the 

left half (C2/C18 and C12/C131 of PM as well as C2/C31 of PL). In addition the pair 

(C12/C131 of PM) at the edge of the inactive branch appears to be rather mobile.  

3.3.3 Possible implications for directed electron transfer  

The Special Pair supermolecule is thus relatively rigid towards the PL side, while 

the PM side shows significantly more mobility that partially averages the dipolar 

couplings and leads to longer buildup times than for the corresponding pairs on 

the A side (Figure 3.7B). This shows that there is dynamic asymmetry in the 

Special Pair. The NMR detects a constrained but homogeneous structure with 

rapid averaging of dynamic disorder revealed by narrow lines in the spectra. In 

contrast, optical spectroscopy suggests heterogeneity which is revealed by 

inhomogeneous line broadening due to site disorder of the system (Reddy et al., 

1992; Reddy et al., 1993). In addition, there is converging evidence for asymmetry 

of the average electronic structure, both for the ground- and the excited state, from 

distortions imposed upon the structure by geometric constraints and steric 

hindrance of the side chains. The protein environment also affects the electronic 

structure of the porphyrin ring via the electron-phonon coupling (Chapter.2; 

Lendzian et al., 1993; Yamasaki et al., 2008; Daviso et al., 2009c).  

  To add to the structural basis for the asymmetry of the dynamics in the 

ground state observed with NMR, an analysis of polymorphism of the PL and PM 

in the available X-ray structures with resolution better than 3Å is shown in Figure 

3.8, using the Normal-Coordinate Structural Decomposition (NSD) method 

(Jentzen et al., 1997).  A vibrating molecule moves along its normal coordinates, 
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and the molecular distortion is expressed as a sum of displacements along 3N-6 

normal coordinates. For porphyrin systems, the macrocycle deformations are soft 

modes of distortion and correspond with the six lowest-frequency normal modes 

of the molecule. This method quantifies the nonplanarity of porphyrin structures 

by displacements along the lowest-frequency normal coordinates of the 

macrocycle (Jentzen et al., 1998; Shelnutt et al., 1998).  

  The bar graph of the displacements along the low frequency ring modes in 

Figure 3.8, indicates similarities and differences for the PL and PM in 3 different 

crystal structures. The largest variability is found for both BChls along the 

saddling and ruffling normal coordinates, which represent the softest modes of 

distortion and corresponds with the lowest frequency vibrations, usually around 

65 cm-1 and 88 cm-1 in porphyrins (Shelnutt et al., 1998). In PL, the displacement 

along the doming mode coordinate is remarkably persistent and is ~ 1.1 Å in the 

three structures (Figure 3.8A). The doming mode has a characteristic frequency 

around 135 cm-1 in porphyrins (Shelnutt et al., 1998). In contrast, the displacement 

for doming in PM is small (Figure 3.8B). This makes it easier to deform the PM ring 

than the PL ring, in line with the NMR data that show enhanced dynamics for the 

PM relative to the PL. In addition, for the NSD analysis in Figure 3.8 the magnitude 

of the displacements along the saddling and ruffling coordinates for the PM   

 
Figure 3.7 Spin-diffusion dynamics in the Special Pair. (A) The rate constants of carbon atoms 
from their diagonal peaks (The magnitude is visualized by the radius). (B) The rate constants of 
carbon atoms from their cross peaks (The magnitude of spin-diffusion-rate constants are 
visualized by the linewidth of an ellipse connecting the two 13C labels). 
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appears larger than for the PL. In this way the static structural variation in the X-

ray data matches the dynamics observed in NMR data. 

   
Figure 3.8 Nonplanarity of the PL (A) and PM (B) for three different X-Ray structures of R. 
sphaeroides RCs along the six lowest frequencies normal coordinates of the macrocycles.  
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  In early theoretical treatments of electron transfer in proteins, a coupling of 

the system to many thermal vibrational modes is invoked to obtain a rapid 

transfer process (Marcus, 1956b, 1965; Marcus & Sutin, 1985). In contrast with the 

Marcus treatment, in recent Redfield matrix analyses the charge separation 

dynamics is determined by the combined displacement along two selective 

vibrational modes to produce a high forward transfer rate and a low probability 

for back transfer. A 130 cm-1 collective mode connected with the intermolecular 

dynamics within the special pair governs the displacement along the first reaction 

coordinate (Novoderezhkin et al., 2004). A planar ring structure is anomalous for a 

five-coordinated Mg2+. NMR and modeling studies have provided evidence that 

the ground state exhibits HisL173+ ε
M

-δ
L PP -HisM202+-H2O- charge transfer 

character (Schulten et al., 2002; Prakash et al., 2007; Alia et al., 2009; Daviso et al., 

2009b; Wawrzyniak et al., 2011; Wawrzyniak, 2011). In this scheme, the HisM202 is 

stabilizing both PM and the attached water molecule by hydrogen bonding and 

partial charge transfer at both imidazole nitrogens (Alia et al., 2009). In addition, 

EPR shows that after the release of an electron into the active branch the PM carries 

excess positive charge. In contrast, the studies on RCs of R. sphaeroides by Stark 

spectroscopy indicate that the excited state of the Special Pair contains charge-

transfer character of the form 
ML PP  (Lockhart & Boxer, 1987, 1988). In parallel 

hole-burning experiments showing a marker mode of ~120 cm-1, indicate a 

persistent change upon excitation (Reddy et al., 1992; Lyle et al., 1993).  

  Our analysis suggests that the special pair dynamics involved in the 

initiation of charge transfer is asymmetric and restricted to the overlap region 

formed by the rings I of the PL and the PM, where most of the dynamics is in the 

PM. According to the NMR and X-ray, the PM is in an anomalous planar average 

structure with enhanced mobility in selective modes. The release of free energy in 

the excited state could then activate its deformation for mediating charge transfer 

by a geometry change, possibly towards a more domed conformation of the PM 

and involving lowering of the free energy by the damping of vibrations. Finally, 

the dynamics detected with the NMR affects the ring structure and should give 
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rise to fluctuations in the ε
M

-δ
L PP charge transfer character. Indeed, in analyses of X-

ray structures, charge density distributions depend on the polymorphism in the 

structure (Wawrzyniak et al., 2011). 

 

 

 



79 

Chapter 4  
 
 

Characterization of bacteriopheophytin 
a in the active branch of the reaction 
center of Rhodobacter sphaeroides by 
13C photo-CIDNP MAS NMR 
 

Abstract 

 

The electronic structure of the primary electron acceptor, bacteriopheophytin a 

(A), in photosynthetic reaction centers (RCs) of the purple bacterium Rhodobacter 

(R.) sphaeroides is investigated by photochemically induced dynamic nuclear 

polarization (photo-CIDNP) magic-angle spinning (MAS) NMR spectroscopy. 

Uniformly labelled RCs have been prepared for these experiments, by adding the 

u-13C4--aminolevulinic acid as a precursor in the growing medium of R. 

sphaeroides wild type (WT). By using assignments from different selective labelling 

patterns, the 13C observed chemical shifts attributed to the A have been compiled. 

These assignments are supported by theoretical calculations of 13C chemical shifts 

of a bacteriopheophytin in two conformations, a fully relaxed geometry and in the 

x-ray structure found for A. The relative electronic densities of A in the ground 

state have been obtained by comparing these assignments with those of free 

bacteriopheophytin in acetone solution. From that analysis, it can be concluded 

that A in the active branch is not tuned in a special manner by its surrounding 

and appears to be electronically close to free bacteriopheophytin. 
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4.1 Introduction 

Natural photosynthesis achieves the conversion of solar energy with a remarkably 

small set of cofactors, and the functional programming of the pigment 

chromophores is to a large extent encoded by their conformation, local 

environment, dynamics and mutual interactions. The photosynthetic apparatus of 

plants, algae and bacteria contain densely packed pigment-pigment and pigment-

protein complexes for harvesting light and separating electrons and protons across 

the photosynthetic membrane (for reviews, (Hoff & Deisenhofer, 1997; Hunter et 

al., 2008)). Both the photosynthetic reaction centers (RCs) and the light harvesting 

antennae of the purple bacterium Rhodobacter (R.) sphaeroides contain networks of 

interacting bacteriochlorophyll BChl a. In the RC, four BChl a and two 

bacteriopheophytin (BPhe) a are positioned in an apparent symmetric 

arrangement and use the energy absorbed by the BChls in LH2 and LH1 light 

harvesting antennae complexes. Two BChl a form an interacting dimer called the 

“Special Pair” (P). On either side of the special pair an additional BChl a molecule 

is located, the accessory BChls (BA and BB). In addition, two BPhe (Φ) are 

positioned at an edge-to-edge distance of ~14 Å from the special pair (Yeates et al., 

1988; Ermler et al., 1994; Camara-Artigas et al., 2002b).  

  Despite an approximate global symmetry in the arrangement of these six 

cofactors, their functioning is asymmetric, since charge separation proceeds almost 

exclusively over the A-branch. When excitations from the antennae are trapped by 

the special pair in the RCs, quantum delocalization by electron tunneling from the 

P* into the BA and then into the ΦA, leads to symmetry breaking of the excited state 

to establish the consecutive charge transfer contributions 
ABP  and AP . Hence, 

for the RC of R. sphaeroides, the charge transfer proceeds along the redox gradient 

represented by the cofactors of the A branch, and the functional mechanisms of 

this electron transfer process have been well studied. EPR, ENDOR and optical 

methods have provided insight into the electronic and spatial structure of the 

Special Pair donor and have clarified the role of the accessory BChls in the ET 

reaction (Feher et al., 1972; Lubitz et al., 1985; Shkuropatov & Shuvalov, 1993; 
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Schmidt et al., 1994; Holzwarth & Muller, 1996; Franken et al., 1997a, b; Lubitz & 

Feher, 1999; Moore et al., 1999). The two halves of P are bound to the L and M 

subunits of the protein complex. MAS NMR in the dark and with photo-CIDNP 

enhancement has revealed packing effects on the cofactors induced by the folding 

and self-assembly of the RC complex. These packing effects produce structural 

deformation and electrostatic polarization of the BChl macrocycles and lead to 

electronic asymmetry of the form ε
M

-δ
L PP between the two BChl a of the P, (Prakash 

et al., 2007; Alia et al., 2009; Daviso et al., 2009c; Wawrzyniak et al., 2011). The 

variation of chemical shifts, also relative to the 13C responses of BChl a in solution, 

cannot be explained by local side chain interactions, such as hydrogen bonding or 

nonplanarity of the C31 acetyl, but appears to be dominated by protein-induced 

macrocycle distortion (Daviso et al., 2009c; Wawrzyniak et al., 2011). Shaping of the 

macrocycle prominently affects the site energies, and this allows for dynamic 

structural tuning of the energy levels of the BChls by photosynthetic protein 

complexes (Daviso et al., 2009c; Pandit et al., 2010; Wawrzyniak et al., 2011). In 

addition, 15N and 13C NMR data and DFT calculations have revealed an 

asymmetric electronic environment of P, which can facilitate thermodynamic 

control over the rate and direction of electron transfer (Alia et al., 2009; 

Wawrzyniak et al., 2011). Light enhanced DARR correlation spectroscopy of 

dynamic measurements in the ground state has shown that the protein 

environment induces strain on the BChls of P. The pair of BChls is subject to 

thermally activated dynamics along a few specific soft collective vibrational 

modes, which may lead to polymorphism in crystallization experiments and 

explain the inhomogeneous broadening of the optical absorption at ambient 

temperature (Huber et al., 1998). The special pair dynamics is asymmetric, it is 

restricted to the overlap region formed by the rings I of the PL and the PM, and 

most of the dynamics is in the PM (Chapter.2).  

  The excitation of P causes a change in the shape of P and its environment 

(Friesner & Won, 1989). The localized dynamics initiates directional charge 

transfer character in the special pair at the first stage of the photochemistry by 

symmetry breaking of excitons and increasing the polaronic character, leading to a 
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
ML PP  charge transfer contribution to the product state (Moore et al., 1999). The rate 

of formation of the AP  primary product state depends on its free energy level 

relative to the 
ABP intermediate. When BPhe a is replaced by plant pheophytin a 

with a more negative redox potential, the free energy level of AP  is ~ 200 cm-1 

above 
ABP , and this slows down the forward electron transfer (Franken et al., 

1997a, b). For such pheophytin-modified RCs of R. sphaeroides R-26, a coupling to 

collective nuclear modes in the development on the excited state potential energy 

surface leads to classically coherent control over the quantum delocalization in the 

formation of the charge separated states 
ABP , AP , and this has helped to 

resolve the mechanism of symmetry breaking in the first steps of the charge 

separation processes (Shuvalov & Yakovlev, 2003).  

  In contrast with the Marcus theory of electron transfer, the charge 

separation dynamics is apparently not coupled to random thermal motion in 

many nuclear modes (Marcus, 1956a, b, 1965). The strength of the coherence 

primarily depends on the displacement along two collective nuclear modes, an 

intradimer mode of around 130 cm-1 and a low frequency mode of ~32 cm-1 that is 

attributed to reorganization of a water molecule (Yakovlev et al., 2002). This H2O is 

hydrogen bonded to the BA ring V keto functionality and the Nπ of the HisM202 

that is axially coordinated with its Nτ to the Mg2+ of the PM. According to DFT 

modeling guided by MAS NMR data, this structural motif can stabilize a 


ABP charge transfer contribution by a release of free energy (Alia et al., 2009; 

Wawrzyniak et al., 2011). The 130 cm-1 collective mode is connected with the 

intermolecular dynamics within the special pair and its histidine ligands that 

develop the 
ML PP  charge transfer character upon excitation of the RC. Via the 

partially charged and polarizable His and the H2O, the change in magnitude and 

angle upon excitation of the electric dipole moment of P that is governed by the 

intradimer displacement along the 130 cm-1 reaction coordinate can be coupled to 


ABP charge transfer, initially without a large structural displacement in the H2O 

bridge (Alia et al., 2009; Wawrzyniak et al., 2011).  
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  According to a recent Redfield density matrix analysis of a 

phenomenological model of the RC, comprising the P* and the 
ABP diabatic states 

strongly coupled to two modes, the electron transfer proceeds only after some 

passages through the crossing point of the P* and the 
ABP  energy levels, by the 

displacement along the second reaction coordinate, the 32 cm-1 collective mode 

that is thought to be connected with the rotation of the water molecule . Thus, 

there is converging evidence that efficient photoproduct formation in a few 

picoseconds in the first steps of charge separation with a high forward transfer 

rate and a low probability for back transfer requires the combined displacement 

along a few selective vibrational modes coupled to symmetry breaking and charge 

transfer.  

  Thus, photosynthetic RC complexes represent complex dynamic topologies 

to promote charge separation on the excited state surface by easily accessible 

transition states and well-defined reaction coordinates for proceeding from the 

reactant to the product configurations 
ML PP  and 

ABP . However, full charge 

separation requires transfer of an electron to the primary acceptor ΦA to form the 

donor-acceptor radical pair state AP  (Martin et al., 1986).  

  The purpose of this study is to investigate by photo-CIDNP MAS NMR, the 

extent of functional preprogramming of the ΦA, in its ground state, by charging, 

conformational tuning, or strain that produces thermal activation in specific 

modes. The discovery of the solid-state photo-CIDNP effect for R. sphaeroides R26 

RCs under continuous illumination with white light, offers NMR access to the 

electronic and spatial structure of both the donor and the acceptor in the primary 

charge separation process (Zysmilich & McDermott, 1994). By induction of a non-

Boltzmann nuclear spin polarization upon photoreaction in rigid samples, a signal 

enhancement of a factor of more than 10,000 has been observed by 13C MAS NMR 

in several RCs (Prakash et al., 2005; Prakash et al., 2006; Roy et al., 2008). The 

method is rapidly evolving, and solid-state photo-CIDNP is now routinely 

observed for virtually all types of photosynthetic RCs, including those of purple 

bacteria of R. sphaeroides wildtype (WT) (Prakash et al., 2005) and of 
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Rhodopseudomonas acidophila (Diller et al., 2008) of the green sulphur bacterium 

Chlorobium tepidum (Roy et al., 2007), of the heliobacterium Heliobacillus mobilis 

(Roy et al., 2008) as well as of the photosystems I and II of plants (Matysik et al., 

2000a; Alia et al., 2004; Diller et al., 2007a) and algae (Janssen et al., 2010). The 

occurrence of the solid-state photo-CIDNP effect is an intrinsic property of natural 

photosynthetic RCs and Photo-CIDNP is a good method to resolve the local spatial 

and electronic structure both the donor and the acceptor, thereby providing access 

to intimate details of how the AP  state is involved in the cascade of symmetry 

breaking mechanisms (Matysik et al., 2009).  

4.2 Materials and Method 

4.2.1 Sample Preparation and specific isotopic labelling 

The isotope labelling of cofactors in RCs is achieved by using labelled δ-

aminolevulinic acid (ALA) that acts as a precursor for the biosynthesis of BChl and 

BPhe (Jordan, 1991; Matysik et al., 2001). By enriching the growth medium with (u-

13C)-ALA labelled substrate, RCs that are labelled in the macroaromatic cycles of 

the cofactors are produced (Figure 4.1). The RCs were isolated as described 

previously (Shochat et al., 1994). Quinones were removed by incubating the RCs at 

a concentration of 0.6 μM in 4% LDAO, 10 mM o-phenanthroline, 10 mM Tris 

buffer, pH 8.0, containing 0.025% LDAO and 1 mM EDTA (Okamura et al., 1975). 

 
Figure 4.1 Biosynthetic pathway for the formation of selectively 13C isotope labelled 
bacteriocholorophyll a (BChl) by feeding the bacteria with u-13C4-δ-aminolevulinic acid (u-ALA). 
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Approximately 15 mg of RC protein complex embedded in LDAO micelles was 

used for NMR experiments. Similarily with selective labeling of δ-aminolevulinic 

acid at different positions namely 3-13C-ALA (chapter 3), 4-13C-ALA (Daviso et al., 

2009a) and 5-13C-ALA (Prakash et al., 2007) RC’s with sparse labeling in the 

cofactor rings were prepared (see: Figures in Appendix-A). 

4.2.2 MAS-NMR experiments 

NMR experiments were performed with an Avance DMX-200 NMR spectrometer 

equipped with a MAS probe (Bruker, Karlsruhe, Germany). The sample was 

loaded into a clear 4-mm sapphire rotor, inserted into the MAS probe and frozen 

slowly at a low spinning frequency of 600 Hz to ensure a homogeneous sample 

distribution against the rotor wall (Fischer et al., 1992) . The light and dark spectra 

were collected with a Hahn echo pulse sequence with the CYCLOPS phase cycle of 

the (π/2) pulse and detection under proton decoupling using the TPPM sequence 

(Bennett et al., 1995) at a temperature of 223 K under continuous illumination with 

white light (Matysik et al., 2001). The optimum length of the (π /2) carbon pulse, 

determined on uniformly 13C labelled tyrosine, is ~4 μs under our experimental 

conditions using a rf strength of 62.5 kHz. A recycle delay of 4 s was used. The 

sample was spinning at a MAS frequency of 8 kHz. A total number of 6240 scans 

(approximately 7 hrs) were collected for u-ALA RCs, while for 3-ALA, 4-ALA and 

5-ALA labelled bacterial RCs around 256 scans (approximately 20 mins) were 

collected. An artificial line broadening of 30 Hz was applied prior to Fourier 

transformation. All the 13C-MAS NMR spectra were referenced to the carbonyl 

resonance of solid tyrosine.(HCl) at 172.1 ppm. A small zero order phase 

correction was applied to correct line shape asymmetry to the dark and photo-

CIDNP spectra of the RCs. 

4.2.3 Theoretical models and methods  

The coordinates for the initial model of the bacteriopheophytin molecule have 

been extracted from the 1M3X crystal structure of R. sphaeroides WT (Camara-

Artigas et al., 2002a). From this crystal structure, bacteriopheophytin a of the active 
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branch with residue id of 855 has been used. This model was partially optimized 

by relaxing carbons and nitrogens in the porphyrin ring, and all the hydrogen 

atoms, while fixing the positions of the peripheral carbon atoms. In this way x-ray 

crystallography and molecular modeling refinement artifacts were corrected by 

DFT, while preserving the supramolecular structure of the system due to the 

applied constraints. A DFT model of a fully relaxed BPhe a was obtained to mimic 

the free monomers in solution state. Both geometry optimizations have been 

carried out in vacuum within the DFT framework with the ADF program (Fonseca 

Guerra et al., 1998; te Velde et al., 2001; ADF2009.01, 2009) using the Becke’s (Becke, 

1988) and Lee-Young-Parr’s (Lee et al., 1988) gradient-corrected functional (BLYP) 

in conjunction with a TZP Slater-type basis set.   

  NMR chemical shifts have also been computed with ADF program. The 

calculated 13C chemical shifts were referred to calculations performed on TMS and 

calibrated accordingly.  The difference of chemical shifts between the constrained 

and fully relaxed geometry of the BPhe a has been obtained and compared with 

the experimental observations. 

4.3 Results 

  The origin of the solid state photo-CIDNP effect is now well understood, 

which makes it applicable for in-depth biophysical investigations (Jeschke & 

Matysik, 2003; Daviso et al., 2009a). The overview of the photo-CIDNP 

mechanisms in different RCs is presented in Chapter 2, Figure 2.2. We use 

different labeling patterns and perform photo-CIDNP on WT RCs under 

continuous illumination, where the enhancement is established by the 

combination of the three spin mixing (TSM) and differential decay (DD) 

mechanisms (Prakash et al., 2005). In the electron-electron-nuclear TSM the 

symmetry of coherent spin evolution in the spin correlated radical pair is broken 

by the combined operation of nuclear Zeeman interaction, electron-electron 

coupling and pseudosecular hf coupling (Jeschke, 1997). In the DD mechanism, the 

symmetry of the coherent spin evolution in the correlated radical pair is broken by 

different lifetimes of singlet and triplet radical pairs (Polenova & McDermott, 



  Bacteriopheophytin 

87 

1999). Understanding of these spin-chemical processes allowed to apply photo-

CIDNP MAS NMR as an analytical tool for elucidating electronic structures of the 

special pair (Daviso et al., 2009c). Here we build on these earlier studies and follow 

a self-consistent approach to assign the ΦA response and apply photo-CIDNP 

magic-angle spinning (MAS) NMR to conclude on the characterization of the 

electronic and spatial structure of the donor-acceptor radical pair state AP . 

4.3.1 Signal intensity 

 Figure 4.2 shows 13C MAS NMR spectra of RCs of R. sphaeroides WT containing 

uniformely 13C labelled BChl and BPhe cofactors. The top trace (spectrum A) 

shows the data for the sample when it is measured in the dark. The signal is very 

weak and comprises a broad feature around 35 ppm from the aliphatic carbons in 

the protein. Upon illumination with continuous white light, however, strong 

emissive signals appear (spectrum B). All light induced signals are emissive and 

are negative relative to the absorptive spectrum in trace A. The light induced 

signals appear in spectral regions in which carbons of BChl and BPhe cofactors are 

resonating. This contrasts with data collected from RCs with 13C at natural 

abundance (Prakash et al., 2006), where only the response from the aromatic 13C is 

 
 
Figure 4.2 One-dimensional 13C photo-CIDNP MAS NMR spectra of u-ALA labelled RCs of R. 
sphaeroides WT (A) in the dark and (B) under continuous illumination with white light. All the 
spectra have been collected at a magnetic field of 4.7 Tesla and a temperature of 223 K at a 
spinning frequency of 8 kHz. 
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enhanced. Obviously, the polarization is spread by spin diffusion within the 

frozen sample and allows also for enhancement of aliphatic carbons. Even though 

an increase in signal-to-noise of about one hundred is expected by incorporation of 

uniformly labelled cofactors, this is not experimentally observed. The overall 

signal intensity achieved here in samples with cofactors that are uniformly 

labelled in the macrocycle is significantly smaller than for samples with cofactors 

containing 13C in natural abundance or samples with sparsely labelled cofactors 

(Schulten et al., 2002; Prakash et al., 2007; Daviso et al., 2008b).  

  Although dense labeling opens new channels for spin diffusion and spin-

spin relaxation, these effects can be ruled out as sink for intensity as shown by 

time-resolved experiments using laser excitation immediately before the NMR 

acquisition (data not shown). Hence, the addition of nuclear spins affects the 

build-up of nuclear polarization. In a future combined experimental and 

theoretical study, this phenomenon will be addressed further.  

4.3.2 Peak assignments 

By using different labeling patterns and by exploiting the additional selectivity 

offered by the photo-CIDNP mechanism it is possible to address the ground state 

NMR response with atomic selectivity for the 13C carbons of the rings and the 

pheripheral side chains of the cofactors involved in the formation of the primary 

radical pair AP . Isotopically labelled RCs prepared from 3-13C-ALA, 4-13C-ALA 

or 5-13C-ALA substrate in the growth medium have been studied already and 

provided almost complete chemical shift assignments for signals originating from 

the donor BChls PL and PM, including the peripheral carbons. Here we make the 

next step, which is to resolve the weak response from the A from the strong 

background of the photo-CIDNP signals originating from the Special Pair, which 

has been partially assigned previously (Schulten et al., 2002; Prakash et al., 2005; 

Prakash et al., 2006; Prakash et al., 2007; Daviso et al., 2009a). 

  In Figure 4.3A, the 13C MAS NMR spectrum of u-ALA labelled RCs is 

shown. The data are aligned with spectra collected from RCs obtained by feeding 

the 3-13C-ALA, 4-13C-ALA or 5-13C-ALA labelled precursors in the growth medium 
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for R. sphaeroides WT (Figure 4.3 B, C & D). From the spectra a peak list has been 

compiled consisting of 78 chemical shifts that are sequentially indexed (Table 4.1). 

Most of the signals from the Special Pair have been already assigned and these are 

indicated with the dotted lines in Figure 4.3. The peaks indicated by solid lines are 

attributed to bacteriopheophytin, and the corresponding shifts are given in 

parenthesis in the table 4.1 along with the index numbers, while table 4.2 presents 

a self-consistent assignment of the signals that is based on the comparison with 

solution data, 2D data for RCs reconstituted with plant Pheo a and chemical shift 

calculations. 

  In Figure 4.3A, in the region between 200 and 180 ppm, four signals are 

from the carbonyls of the Special Pair cofactors (Chapter 2). The peak at 197.0 ppm 

with index 1 is attributed to C31 of the ΦA and the signal at 188.6 ppm (# 5) is 

ascribed to C131 of the ΦA. The shifts are comparable with the chemical shifts 

observed for the C31 (199.2 ppm) and C131 (189.3 ppm) response from monomeric 

BPhe a in acetone solution and both signals align well with the downfield response 

from the 3-13C-ALA labelled RCs in Figure 4.3B, where the carbonyl carbons are 

also labelled (Egorova-Zachernyuk et al., 2008). 

  The region between 180 and 160 ppm shows two sets of signals that 

reproduce well across the collection of labelled samples. The 8 strongest signals (# 

12 - 19) originate from the Special Pair (Prakash et al., 2007; Daviso et al., 2009a). In 

the downfield part of the region, 4 relatively weak peaks are discerned, (# 7 - 10) at 

174.2, 172.9, 170.7 and 169.3 ppm. These signals match very well with the C173, C6, 

C19 and C133 of the BPhe a in solution and with the 2D correlation data collected 

from a sample reconstituted with uniformly labelled plant pheophytin a (Egorova-

Zachernyuk et al., 1997; Egorova-Zachernyuk et al., 2008). In addition the peak at 

168.2 ppm (# 11) is in line with a previous photo-CIDNP assignment for the C9 of 

the ΦA (Daviso et al., 2009a). 

  In the region between 160 and 140 ppm, most of the response is due to 

aromatic carbons of Special Pair cofactors PL and PM (Prakash et al., 2007; Daviso et 

al., 2009a). Only the signals with index 20, 24 and 29, are attributed to ΦA. In the 

region between 140 and 119 ppm (# 30 - 41), all signals that originate from the  
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Table 4.1 Complete peak list of NMR 13C chemical shifts with index numbers from u-ALA RCs 
spectrum (the signals attributed to the A are given in parenthesis). 
 

index  
13C Chemical 
shift (ppm) 

 index  
13C Chemical 
shift (ppm) 

1 (197.0)  40 126.9 
2 195.6  41 119.5 
3 193.5  42 108.7 
4 189.4  43 (107.5) 
5 (188.6)  44 106.6 
6 187.5  45 104.1 
7 (174.2)  46 103.0 
8 (172.9)  47 102.0 
9 (170.7)  48 101.2 

10 (169.3)  49 100.4 
11 (168.2)  50 (99.6) 
12 166.5  51 98.3 
13 165.9  52 (97.6) 
14 164.4  53 (95.1) 
15 162.6  54 (65.8) 
16 161.0  55 (55.6) 
17 160.1  56 54.7 
18 158.5  57 52.7 
19 157.2  58 (52.5) 
20 (154.4)  59 51.7 
21 153.6  60 50.9 
22 151.5  61 50.0 
23 149.8  62 49.1 
24 (148.7)  63 48.3 
25 148.5  64 47.4 
26 145.6  65 46.1 
27 144.5  66 (33.6) 
28 143.5  67 32.1 
29 (141.2)  68 (31.5) 
30 138.7  69 29.9 
31 137.2  70 29.5 
32 136.8  71 28.4 
33 136.2  72 (27.2) 
34 134.3  73 (24.6) 
35 132.8  74 22.6 
36 130.8  75 (21.3) 
37 129.7  76 19.1 
38 128.8  77 (13.5) 
39 127.4  78 (11.4) 
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Figure 4.3 A set of one-dimensional 13C photo-CIDNP MAS NMR spectra collected from (A) u-
ALA, (B) 3-ALA, (C) 4-ALA, (D) 5-ALA labelled RCs of R. sphaeroides WT under continuous light in 
a magnetic field of 4.7 Tesla and at a temperature of 223 K. The spinning frequency was set to 8 
kHz. The dotted lines indicate the responses from PL and PM using the assignments obtained in 
previous work, while the signals from the ΦA are designated by solid lines. When signals from the 
PL, PM and the ΦA coincide, their position is indicated with dashed lines. 
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Special Pair and bacteriopheophytin have been assigned before (Daviso et al., 

2009a). The relatively strong response in this region is in line withthe assignments 

to carbons of the aromatic ring, which is the source of buildup of nuclear spin 

polarization (Daviso et al., 2009a).   

  For the region between 110 and 90 ppm four signals can be attributed to the 

ΦA. Three of these signals (43, 52 & 53) have been identified earlier (Prakash et al., 

2007). The peak at 99.6 ppm (# 50) is ascribed to the C10 (ΦA). The relatively 

intense response from the C5 at 97.6 ppm and the C20 at 95.1 ppm confirms that 

these ΦA signals are from carbons in the aromatic ring.  

  In the aliphatic region of the spectrum, the signals at 55.6 (# 55) and 52.5 (# 

58) ppm are attributed to the C8 and the C18 of the ΦA, while the other signals 

were already assigned from photo-CIDNP MAS NMR data collected from 3-13C-

ALA and 4-13C-ALA labelled RCs (Daviso et al., 2009a). The distinct peak at 65.8 

ppm (# 54) is assigned to carbon C132 from all the cofactors by analogy with data 

for the BChl and BPhe monomers in solution (Egorova-Zachernyuk et al., 2008). In 

the region between 40 and 0 ppm, most of the signals, with indices between 66 and 

78, are from the Special Pair and were rigorously assigned by 2D DARR 

experiments from 3-13C-ALA labelled RCs (Chapter.3). The remaining peaks at 

33.6, 31.5, 27.2, 24.6 and 21.3 ppm are tentatively assigned to the 

bacteriopheophytin by comparing with the solution data of BPhe (Egorova-

Zachernyuk et al., 2008). Two distinct signals at 13.5 and 11.4 ppm (# 77 & 78) 

indicated by dashed lines, represent the collective responses from the peripheral 

carbons C21 and 121 or 82 of all cofactors. The assignments for PL and PM are 

summarized in the tables provided in the appendix. 

4.3.3 Electronic tuning of A in the protein matrix 

During electron transfer, the bacteriopheophytin in the active branch forms a 

radical pair state with the Special Pair. In chapter 2, we learnt that the differences 

in chemical shifts of the BChl a in the Special Pair (PL and PM), are very significant, 

and that the variations in 13C chemical shifts of macrocycles reflect the changes in 

shape of the macrocycles, the electronic properties of the protein surrounding and  
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Table 4.2  13C NMR chemical shifts assigned to BPhe a  and its monomers in acetone, with respective 
theoretically calculated chemical shift differences between the monomer and protein-bound BPhe a 
 
 

 13C Chemical shift (ppm) 

IUPAC 

Observed 
shifts of 

BPhe a in 
Acetone 

Observed 
shifts of 

BPhe a by  
Photo-
CIDNP 

MAS NMR 

Experimental 
 (solid- 

liquid) 

Theoretically 
calculated 

shifts of fully 
relaxed   
BPhe a 

Theoretically 
calculated 
shifts of 

constrained 
Bphe a 

Theoretical  
 (Const- 

relax) 

1 139.7 141.2 1.5 140.7 140.7 0.0 

2 138.5 138.7 0.2 149.2 145.4 -3.8 

21 13.9 13.5 -0.4 17.2 17.0 -0.2 

31 199.2 197.0 -2.2 201.9 201.4 -0.5 

32 34.0 33.6 -0.4 35.2 37.8 2.6 

4 138.1 137.2 -0.9 142.3 142.6 0.3 

5 97.9 97.6 -0.3 100.5 100.4 -0.1 

6 172.4 172.9 0.5 173.5 171.3 -2.2 

71 23.7 24.6 0.9 25.7 26.5 0.8 

8 55.4 55.6 0.2 66.0 65.5 -0.5 

81 30.7 27.2 -3.5 39.6 45.5 5.9 

82 11.5 11.4 -0.1 13.7 18.5 4.9 

9 164.3 168.2 3.9 173.1 175.0 1.9 

10 100.2 99.6 -0.6 101.7 100.2 -1.4 

121 11.5 11.4 -0.1 12.1 13.1 1.0 

13 129.2 126.9 -2.3 138.6 137.6 -1.0 

131 189.3 188.6 -0.7 196.3 193.5 -2.8 

132 65.5 65.8 0.3 76.3 75.1 -1.3 

133 170.2 169.3 -0.9 179.4 178.5 -0.9 

14 148.7 148.7 0.0 151.6 151.7 0.1 

15 110.3 107.5 -2.8 119.3 117.8 -1.5 

16 158.7 154.4 -4.3 171.1 170.6 -0.5 

17 51.4 51.7 0.3 64.4 62.7 -1.7 

171 31.3 31.5 0.2 35.3 33.3 -2.0 

18 50.9 52.5 1.6 59.3 56.8 -2.5 

181 22.9 21.3 -1.6 25.6 26.2 0.6 

19 171.7 170.7 -1.0 174.4 172.1 -2.3 

20 97.2 95.1 -2.1 102.4 101.4 -1.0 
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hydrogen bonding of e.g. the 31-acetyl and 131-keto carbonyl groups. Figure 4.4A 

and table 4.2 show the differences in the chemical shift () for the A in the 

protein matrix relative to BPhe a monomer species in acetone. There are little 

changes in electron density in rings I and III, while for rings II and IV there are 

cumulative negative shifts. Significant 's for the C81, C9 and C16 atoms are 

around ~ 3.5 ppm and for the C31, C13, C15, and C20 the  ~ 2.0 ppm. The small 

changes in electron density in rings I and III indicate a planar ring conformation 

and a stable configuration with distinct pyrrole and pyridine nitrogen atoms in the 

bacteriopheophytin a, as opposed to the much softer and distorted 

bacteriochlorophyll ring system with the coordinated Mg2+ ion in the center that is 

subject to polymorphism, dynamics and electrostatic polarization (Chapter 2). 

Since the pheo is involved in the cascade of symmetry breaking events in the RC, 

and symmetry breaking is related to structural distortions in the ground state, the 

data indicate that the primary source of the symmetry breaking is in the 

deformation of P, while the extent of protein induced deformation of the BPhe a 

molecule appears much less (Pandit et al., 2010; Wawrzyniak et al., 2011). The 

deformation of the A has been analyzed with theoretical calculations, where the 

electronic structures of the bacteriopheophytin molecule in a completely relaxed 

state and in the protein matrix with constraints were computed. Figure 4.4B shows 

that the  from these calculations are similar and match the experimental 

observations. When a completely relaxed BPhe a from computer modeling is 

overlaid with BPhe a from the X-ray data for the bacterial RC (Figure in Appendix-

B), the structural differences are small, within 0.2 Å. For the peripheral region the 

differences are larger, and produce chemical shift differences up to 10 ppm, in line 

with the experimental data (Table 4.2). In particular the conformation of the ethyl 

substituent on C81 and C82 appears affected.  

  Finally, an electrochemical investigation of the redox properties of 

bacteriopheophytin a in aprotic solvents was performed by cyclic voltammetry to 

determine the midpoint potential, which is -0.65 V with respect to the normal 

hydrogen electrode (Cotton & Van Duyne, 1979). This is very close to the 

experimental midpoint potential of -0.63 V determined for the BPhe a in both 
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active and inactive branch in the protein (Woodbury & Parson, 1984; Noy et al., 

2006). This implies that the redox potential of the BPhe cofactor present in the 

protein matrix is only marginally affected by the surrounding environment. 

  This matches very well with our observation that the structure of the A is 

very similar to the structure of BPhe a in solution, with little evidence for packing 

effects from the protein matrix. We thus conclude that the BPhe of the active 

branch is not tuned in a special manner by its surroundings and represents an 

electron sink due to its redox potential that is different from P. A similar 

conclusion has been made for the subsequent cofactor namely the Quinone 

acceptor QA in RCs that they remain in the same orientation even upon 

illiumination light by ENDOR experiments (Flores et al., 2010). Taking together, 

the cofactors in the active branch appear to be the same under normal conditions. 

 

 

 

 
Figure 4.4 Relative electron densities of bacteriopheophytin (A) in the electronic ground state 
derived (A) experimentally from the chemical shift differences between BPhe a in solution in 
acetone and BPhe a cofactor in RC and (B) Theoretically calculated chemical shift differences 
between fully relaxed structure and constrained optimized structure of BPhe a from the x-ray 
structure from 1M3X  (Camara-Artigas et al., 2002b). 
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Chapter 5  
 
 

Towards photo-CIDNP spin-torch 
experiments using protons 
 
Abstract 
 
In chapter 3, spin-torch experiments to transfer the strongly enhanced 13C photo-

CIDNP polarization to neighboring 13C labelled atoms by the natural spin 

diffusion process have been reported. 2D DARR 13C-13C photo-CIDNP MAS NMR 

experiments have been performed and a polarization transfer up to a distance of 

13.1 Å via relay transfer steps have been observed. Here, an alternative approach 

for spin-torch experiments is proposed. We aim for transferring the strong 

polarization of 13C to directly bonded 1H atoms and observe the 1H NMR spectra. 

This experiment is challenging since the influence of homonuclear dipolar 

interactions from the proton pool is large. Several types of experiments have been 

performed to overcome this problem. For observing a 13C-polarized proton 

spectrum, we recognized the importance of efficient phase cycling at the Lee-

Goldburg condition. In addition, application of wPMLG techniques allows for 

improvement of proton resolution. This technique might allow for exploration of 

the proton contacts in the protein pocket. In particular, neighboring hydrogen 

bonds could be studied in great detail. We propose to implement the solid-state 

photo-CIDNP effect to 13C-1H heteronuclear correlation experiments to map the 

entire proton network in a single experiment. 
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5.1 Introduction 

NMR is an insensitive technique. Since it is an invaluable tool to study structure 

and function of proteins close to their native states, as well as protein-protein 

interactions, great effort has been spent on increasing the signal-to-noise ratio. To 

this end, polarization transfer techniques have been developed by different groups 

both in solid- and liquid- state NMR. Cross-polarization (CP) is probably the most 

important signal enhancement technique in solid state NMR. It was introduced in 

1962 by Hartmann and Hahn for the static condition (Hartmann & Hahn, 1962). 

Here the polarization is transferred from abundant spins (I = 1H) to rare spins (S = 

13C, 15N, 29Si) and the signal is observed from the rare spin species. For Hartmann-

Hahn matching, both abundant and rare spins are irradiated simultaneously at 

their Larmor frequencies, with matching according to   

        SBIB SI 11        (1) 

In the picture of the doubly rotating frame, this condition is fulfilled if both spins 

are spin locked. Polarization transfer between I and S spins takes place, when the 

energy gaps in the rotating frame between the spin states of I and S spins are 

equal. 

  This polarization transfer followed by high power decoupling during signal 

detection resulted in the famous CP experiments introduced by Waugh and 

coworkers (Pines et al., 1973). The combination of CP with magic angle spinning 

(MAS), explored by Schaefer’s group experimentally and theoretically (Stejskal et 

al., 1977), allowed for obtaining high resolution spectra of low abundant spins in 

polycrystalline samples.  

  The CP transfer can occur in both directions, from I → S as well as from S → 

I, depending on the relative magnitudes of the initial polarizations of the dipolar 

coupled spins. Inverse CP experiments from S → I are rare and unusual because of 

broad lines from the proton detection. Haw’s was the first group to exploit this 

counterintuitive technique. Here, CP from the low- nuclei to protons allowed to 

identify the resonance of immobile protons closely associated with 31P nuclei in 
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calcium phosphate samples (Crosby et al., 1988). CP from deuterons to protons 

provides information on the rapid proton exchange in solids, especially in samples 

spin diluted by deuteration (Zheng et al., 1993). Kinetics studies using CP in both 

directions, 1H → 13C and 13C → 1H, enabled studying molecular motions of 

fullerene-70 solvated in toluene (Kolodziejski et al., 1996). Collecting high 

resolution 1H spectra is always challenging due to strong homonuclear dipolar 

interactions among protons, and requires both intermediate spinning frequency 

12-15 kHz, along with multiple pulse decoupling schemes like LG, FSLG, PMLG 

etc. The homonuclear decoupling is even more difficult at very high MAS 

frequencies than at low and intermediate ones. Only in the last two years, it has 

been shown that homonuclear decoupling at 50-70 kHz is possible but still the 

resolution is not netter than at low frequencies (Leskes et al., 2009). The details of 

multiple pulse decoupling approach have been discussed in the introduction 

chapter.  

  The solid-state photo-CIDNP effect was discovered by Zysmilich and 

McDermott in 1994 (Zysmilich & McDermott, 1994). They observed light-induced 

enhancement of NMR signals in frozen and quinone-blocked bacterial reaction 

 
Figure 5.1 (A) Spatial arrangement of the two cofactors PL (right, isotope labels in blue) and PM 
(left, isotope labels in red) forming the Special Pair. The pyrrole rings are numbered with Roman 
numerals. Pyrrole rings I are overlapping. (B) The arrangement of cofactors in reaction centers 
(RCs) of R. sphaeroides wild type (WT). The primary electron donor, the special pair, is formed by 
the two bacteriochlorophyll a (BChl) molecules PL and PM. BA and BB are accessory BChl 
cofactors. A and B are bacteriopheophytin (BPhe) cofators. The acceptor side is formed by two 
ubiquinone-10 cofactors QA and QB and a non-heme iron. Side chains are omitted for sake of 
clarity. The apparent symmetry of the cofactor arrangement is broken by a carotenoid cofactor 
(Car). The light-induced electron transfer occurs selectively via branch A [PDB entry 1M3X, 
(Camara-Artigas et al., 2002b) the figure has been made with Accelrys Discovery Studio]. 
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centers (RCs) of Rhodobacter (R.) sphaeroides R26 by 15N MAS NMR under 

continuous illumination with white light, which offered NMR access to the 

electron-nuclear processes during the charge separation (for reviews, (Jeschke & 

Matysik, 2003; Daviso et al., 2008b)). By induction of a non-Boltzmann nuclear spin 

polarization upon photo-reaction in rigid samples, a signal enhancement of a 

factor of more than 10,000 has been observed by 13C MAS NMR for RCs of the 

purple bacteria of R. sphaeroides wildtype (WT) (Prakash et al., 2005; Prakash et al., 

2006). The structural properties of the RCs (Figure 5.1) and mechanisms of photo-

CIDNP have been already described in detail in Chapter 2. 

  In this Chapter, we aim to transfer this strong enhancement of nuclear 

polarization from labelled carbon atoms to the nearby protons. Such spin-torch 

experiments might allow for better understanding of the proton environment in 

the pocket tuning the Special Pair. Since 1H-1H spin diffusion is very efficient, the 

enhanced 1H polarization is rapidly transferred to other protons in the sample. In 

this outlook, I present an exploratory search for the best experimental conditions 

for detection of enhanced 1H signals and look for the most suitable pulse scheme, 

allowing for efficient polarization transfer and fast 1H detection under MAS 

conditions. The 5-ALA label pattern (Figure 5.2) is particularly suitable for these 

studies since the selectively labelled carbon positions C5, C10 and C20 carry 

directly bound protons. These protons might present the best targets for this initial 

study. This Chapter shows the present state of the development. 

5.2 Materials and Methods 

5.2.1 Sample preparation 

Selective isotopic labelling in RCs of R. sphaeroides is achieved by feeding 

selectively labelled 5-13C1-δ-aminolevulinic acid (5-ALA), which is a precursor for 

the formation of BChl and BPhe, and leads to a 13C enrichment of ~60%. The 5-

ALA (Figure 5.2) has been purchased from Buchem B.V. (Apeldoorn, The 

Netherlands). The RCs were isolated as described earlier (Shochat et al., 1994) and 

the quinones were removed by incubating the RCs at a concentration of 0.6 μM in 
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4% LDAO, 10 mM o-phenanthroline, 10 mM Tris buffer, pH 8.0, containing 0.025% 

LDAO and 1 mM EDTA (Okamura et al., 1975). Approximately 15 mg of RC 

protein complex embedded in LDAO micelles were used in the NMR experiment. 

5.2.2 MAS NMR experiments 

All NMR experiments were performed with an Avance DMX-400 (9.4 Tesla) NMR 

spectrometer equipped with a 4 mm MAS probe (Bruker BioSpin GmbH, 

Karlsruhe, Germany). The sample was loaded into a clear 4 mm sapphire rotor 

and inserted into the MAS probe. It was frozen slowly at a low spinning frequency 

of 600 Hz to ensure a homogeneous sample distribution against the rotor wall 

(Fischer et al., 1992). All experiments were recorded with a MAS frequency of 8 

kHz and at a set temperature of 223 K. The probe used for these experiments was a 

triple resonance probe with a special hole to insert the light fiber inside. The 

optimum length of the (/2) proton pulse and carbon pulses, determined on 

uniformly 13C labeled tyrosine, was ~3.1 μs and ~5.0 μs with a rf-field strengths of 

80 kHz and 50 kHz, respectively. A recycle delay of 4 s was used for all 

experiments. 

  In several experiments, TPPM proton decoupling (Bennett et al., 1995) with 

a pulse length of 5.5 μs and phase of 150 was used. For the spin lock experiments, 

the contact time used was 1 ms. The effective fields on proton and carbon used for 

 
Figure 5.2 Biosynthetic pathway for the formation of selectively 13C isotope labelled 
bacteriochlorophyll a (BChl a) by feeding bacteria with 5-13C-δ-aminolevulinic acid (5-ALA). 
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the Lee-Goldburg (LG-) CP experiments were 73 kHz and 65 kHz, respectively. 

The offset used for the LG-CP condition on the protons was 42.42 kHz. A proton 

pulse length of 1.1 μs for the wPMLG3 homonuclear decoupling was used. The 

phases of these pulses are 34.63, 103.90, 173.17, 353.17, 283.90 and 214.63 degrees. 

The magic flip angle used for the wPMLG experiment was around 1.3 μs. The 

acquisition window during wPMLG was 0.5 μs.  

5.3 Results & discussion 

5.3.1 Carbon polarization 

To study whether the enhanced nuclear polarization of the carbons can be 

transferred to a nearby proton, a series of five experiments was performed. The 

first experiment (Figure 5.3A), the starting point for the further development of 

pulse schemes, was the standard Hahn echo scheme for the direct observation of 

the strong polarization on the carbon nuclei in a one-dimensional experiment. This 

pulse sequence is usually employed in one-dimensional photo-CIDNP 13C MAS 

NMR experiments with continuous illumination. The obtained 13C spectra are 

displayed in Figure 5.3A’. The spectrum measured in the dark is shown in black, 

Table 5.9 : Chemical shifts of 13C labels in the cofactors for 5-ALA-labelled RCs of R. 

sphaeroides WT  

13C 

position 

BChl in 

solutiona 

(ppm) 

PLb 

(ppm) 

PMb 

(ppm) 

BPheob 

(ppm) 

4 150.0 136.3 144.5 137.2 

5 99.9 97.3 105.4 97.6 

9 158.5 160.8 158.8 162.8 

10 102.4 100.4 98.3 101.9 

14 160.8 157.2 - 148.7 

15 109.7 110.6 106.9 107.9 

16 152.0 145.7 149.5 151.6 

20 96.3 108.8 103.1 94.9 
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while the spectrum observed with continuous illumination is shown in grey. The 

spectrum in the dark contains only noise. In the spectrum obtained with CI 

(shown in grey), strong light-induced signals occur in the range between 80 and 

180 ppm. due to the strong enhancement of the solid-state photo-CIDNP effect. 

The total experimental time used for such a spectrum was 10 minutes under CI 

with a recycle of delay of 4 s. The observed light-induced signals have been 

assigned previously (Prakash et al., 2007) and are summarized in Table 5.1.  

5.3.2 Single-pulse proton experiments 

Until now, the solid-state photo-CIDNP effect has been observed for 13C and 15N. 

Previous attempts to observe this effect directly on protons failed. In such 

 
 
Figure 5.3 Pulse programs used for the experiments and their respective spectra are displayed 
adjacent to it (black spectra are obtained when the light is off and the grey colored spectra are 
obtained when the light was on). (A) Hahn echo experiment with carbon acquisition. (B) Single 
/2 degree pulse on proton and acquisition on the same channel. (C) Spin lock pulse on carbon 
channel only after the /2 pulse on carbon. (D) Spin lock pulse on both carbon and proton 
channel after the  /2 pulse just on carbon. 
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experiments a single /2 pulse is used to excite the protons as shown in Figure 

5.3B. The 1H data obtained with this procedure are displayed in Figure 5.3B’. The 

spectra measured in the dark and with continuous illumination are almost 

identical. In both spectra, two broad peaks at around 0.5 and 5.0 ppm occur, 

having a FWHH of 2000 Hz. These signals are attributed to protons in the protein 

backbone and in the frozen water molecules of the buffer, and there is no evidence 

for direct solid-state photo-CIDNP of the protons.  

  To quantify the efficiency of polarization transfer from carbons to the 

protons, we first performed two spin lock experiments (Figure 5.3C & D). The first 

one consists of a /2 pulse on the carbons, followed immediately by a spin lock 

pulse of 1 ms (Figure 5.3C) on the 13C channel only. In the second experiment, spin 

lock pulses were applied in parallel on both the carbon and the proton channel 

(Figure 5.3D). In both experiments, the acquisition was performed on the 13C 

channel. Comparing the two spectra obtained with continuous illumination (in 

grey), the 13C photo-CIDNP signal intensity is reduced by ~30% when the spin 

lock field is applied to the 1H channel (Figure 5.3C’ & D’). This loss of intensity 

could imply that ~30% of photo-CIDNP polarization of carbons has been 

transferred to protons. Hence, this observation suggests that polarization transfer 

to the proton pool occurs and might be experimentally observable. 

5.3.3 Inverse CP from carbons to protons 

After observation of the loss of 13C polarization, presumably to the proton pool in 

the CP experiment, the next aim is to observe the proton spectrum after the spin 

lock pulse on both channels. For optimal selectivity of the carbon to proton 

transfer during CP, the spin lock pulse on the protons was modified (Figure 5.4A) 

to satisfy the Lee-Goldburg (LG-) CP condition. At this condition the proton–

proton interactions are largely suppressed by applying an off-resonance rf field 

resulting in an effective field in the rotating frame pointing along an axis tilted by 

the magic angle with respect to the direction of the external field (Lee & Goldburg, 

1965). At the same time, transfer by the heteronuclear carbon–proton dipolar 
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interaction is allowed via a Hartmann–Hahn condition imposed on the effective rf 

fields experienced by the nuclei (Hartmann & Hahn, 1962). Additionally the phase 

cycling has been optimized to suppress the huge water peak coming from the 

buffer solution. It has been shown that under this condition the polarization can be 

transferred within a particular 1H-13C spin pair (van Rossum et al., 2000). 

  The spectrum obtained with inverse LG-CP is displayed in Figure 5.4A’. 

The spectrum obtained with continuous illumination is shown in grey as a broad 

peak, while in the dark experiment, there were no signals observed in the 

spectrum displayed in black color. This broad peak occurs at 8.5 ppm, which is 

where the response from the protons at C5, C10 and C20 is expected, but with 

FWHH of 2800 Hz. For such a spectrum, 10 k scans and approximately 11 hrs were 

required. When the pattern of this spectra were compared to that of the spectra in 

Figure 5.3B, these data clearly prove that the photo-CIDNP polarization from 13C 

has been transferred to 1H and can be observed in a one-dimensional 1H spectrum. 

5.3.4 Inverse CP from carbon to proton with wPMLG 

Caused by strong dipolar coupling, 1H NMR in the solid-state is still a challenging 

task. To improve the proton resolution, various methods have been developed as, 

for example, MREV8, BR24, BLEW12, FSLG, PMLG, DUMBO, R-symmetry etc. 

 
Figure 5.4 Pulse programs used for the experiments and their respective spectra are displayed 
adjacent to it (only the spectra with CI is displayed). (A) Polarization transfer from 13C→1H with 
LG-CP condition. (B) Polarization transfer from 13C→1H with LG-CP with wPMLG method. The 
corresponding spectra are displayed adjacent to the respective pulse program. 
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Recently, windowed phase-modulated Lee-Goldburg (wPMLG) homonuclear 

decoupling has been proposed by Vega’s group (Leskes et al., 2006). Here, 

acquisition is sandwiched by trains of pulses with specific phases reducing dipolar 

interactions (Figure 5.4B). Thus, by applying the LG-CP experiment followed by 

wPMLG detection, photo-CIDNP on the carbon atoms has been successfully 

transferred to attached protons (Figure 5.4B’). As the chemical shift suggests, the 

small broad light-induced peak at about 8.5 ppm with a FWHH of 2000 Hz 

originates from the protons directly bound to the carbons C5, C10 and C20.  

  For this experiment 3k scans were used, which corresponds to a 

measurement time of three hours. The reduction of time and line width, compared 

to the previous spectrum, is due to wPMLG detection. Since the signal is still 

rather broad (4-5 ppm), it is currently difficult to distinguish different hydrogen 

bonding networks around the Special Pair. Further improvement of the 

decoupling strategy will presumably yield better resolution.  

5.4 Future experiments 

The preliminary results presented here could be starting blocks for many new 

experiments in the future. For instance, two-dimensional 13C-1H experiments 

could be envisaged resolving the hydrogen bonding in the Special Pair of 

photosynthetic reaction centers. In addition, the solid-state photo-CIDNP effect 

can be used as a spin-torch to explore for example the protein vicinity of the 

Special Pair in detail. In particular, the conformational, electronic as well as 

protonic state of the amino acids surrounding the Special Pair can be studied. 

5.4.1 2D photo-CIDNP 13C-1H correlation experiment  

In the pilot experiments presented in Figure 5.4, the possibility for polarization 

transfer between the highly polarized 13C and the thermally polarized 1H has been 

demonstrated. Careful optimization of more advanced transfer experiments might 

provide more details on the proton network close to the carbonyl carbons of the 

cofactors. To obtain two-dimensional data, allowing for assignments, a pulse 

scheme is proposed in Figure 5.5. In this sequence, carbons are measured in the 
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indirect dimension, while the proton information is obtained during the direct 

acquisition. Hence, this scheme inverts the usual way of 2D 13C-1H experiments. 

5.4.2 Labeled carotenoid in RCs 

The presence of selectively 13C labeled carotenoid (Car) would allow obtaining 

more insight into the conformation of the Car present in RCs. The distance 

between the Car and the special pair cofactor PM is 10.1 Å (Figure 5.6). As we have 

seen in chapter 3, polarization transfer of 13.1 Å has been observed in 2D DARR 

experiments. Such a sample might be prepared by growing R. sphaeroides WT cells 

with a 13C labeled precursor of the biosynthesis of the spheroidene such as 

pyruvate (Rohmer, 1999). 

 

 

 
Figure 5.5 2D Pulse sequence proposed for 2D 13C-1H photo-CIDNP experiment. 

 
Figure 5.6  Visual display of  Car  and Special Pair in RC of R. sphaeroides WT cells. 
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5.4.3 15N labeled RCs with selectively Histidines 

The presence of selectively 13C labeled cofactors increases signal and selectivity of 

the photo-CINDP MAS NMR experiment. RCs also have been selectively isotope- 

labelled at histidines (Alia et al., 2001). Polarization transfer experiments might be 

applied to study the axial histidines (HisL173 and HisM202) of the Special Pair, 

displayed in Figure 5.7. In particular, it would be of interest to determine their 

protonation characteristics and whether there is a change upon charge separation 

as indicated in chapters 2 and 3. 

    
Figure 5.7 Presence of histidines HisL173 and HisM202 near the Special Pair. 
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Figures of selectively labelled 
bacteriochlorophyll a  

* for chapter 4 
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Appendix-A 1 Biosynthetic pathway for the formation of selectively 13C isotope labelled 
bacteriochlorophyll a (BChl) by feeding the bacteria respectively with (A) 3-13C1-δ-aminolevulinic 
acid (3-ALA), (B) 4-13C1-δ-aminolevulinic acid (4-ALA) and (c) 5-13C1-δ-aminolevulinic acid (5-
ALA). 
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Overlaid view of bacteriopheophytin  

* for chapter 4 
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Appendix-B. 1 Overlaid view of bacteriopheophytin in two conformations. The molecule 
displayed in grey color is the bacteriopheophytin as in x-ray structure (Camara-Artigas et al., 
2002b) and the molecule displayed in black is from the fully relaxed geometry by theoretical 
modelling. (A) view from the side and (B) view from the top. 
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Summaries 
 

Summary in English 

Photosynthesis is the physico-chemical process by which plants, algae and 

photosynthetic bacteria use light energy to drive the synthesis of organic 

compounds. Light-induced electron transfer in photosynthetic reaction centers 

(RCs) is highly efficient, having a quantum yield close to unity. In RCs of 

Rhodobacter (R.) sphaeroides wild type (WT), the primary electron donor is a 

bacteriochlorophyll a (BChl) dimer, called the Special Pair P, comprising two 

dimer halves PL and PM. Two additional BChl cofactors called accessory BChls (BA 

and BB), two bacteriopheophytins (ΦA and ΦB), two quinones and a non-heme iron 

are organized into two pseudo-symmetric branches named A and B. After the 

photo excitation the electron is transferred only via the active “A” branch. On the 

other hand, in structurally similar RCs, as that of photosystem I, the electron 

transfer occurs equally over both branches. Neither the reason for the high 

efficiency nor that of the directionality of the electron transfer has been elucidated 

so far. To solve these questions, the solid-state photo-chemically induced nuclear 

polarization (photo-CIDNP) effect with its dramatic enhancement of local NMR 

signals provides an analytical tool especially suited for studying electron transfer 

in photosynthetic RCs. In fact, photo-CIDNP MAS NMR has been applied to 

explore electronic structures of the electron donors and acceptors in RCs.  

  In this Thesis, the first goal was to reach a complete picture of the electronic 

ground state of the donor of the RC of R. sphaeroides WT. Chapter 2 reports 2D 

photo-CIDNP DARR experiments by nanosecond laser flash excitation on 13C 

labelled bacterial RCs at selected positions in the Special Pair. Combined with 

previous results, a complete chemical shift assignment of the Special Pair is 

obtained. The shielding pattern of the 13C nuclei confirms that there is excess 

electron density towards pyrrole ring III of PL compared with pyrrole ring III of 

PM, and the pattern of 13C shifts for the ring carbons is well in line with the ε
M

-δ
L PP  

charge transfer character, with εδ  . Hence symmetry breaking of the electronic 
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structure with excess negative charge on the PL is detected in the ground state. The 

results suggest that asymmetric distribution of electron density mediates the 

asymmetric electron transfer following excitation. 

  Functional properties may also depend on dynamic aspects. Therefore, in 

Chapter 3, we probe the dynamics of the Special Pair by a new strategy that is 

based on photo-CIDNP MAS NMR experiments. Spin-torch based experiments are 

introduced, where the polarization transfer of enhanced photo-CIDNP signals 

between 13C-13C of different isotope labels is observed by spin diffusion process, 

This experiment, thus allows probing the local mobility in the Special Pair. 

Polarization transfer among the 13C labelled carbon atoms of the Special Pair in 3-

ALA bacterial RCs is studied by 2D photo-CIDNP DARR experiments with 

continuous illumination. From a series of experiments with different mixing times, 

dynamic asymmetry in the Special Pair is observed. It appears that the break of the 

pseudo-C2 symmetry is related to the entire supermolecule rather than to the 

individual PL and PM molecules. The dynamic picture is compared with 

polymorphism in terms of Shelnutt’s NSD (normal-coordinate structural 

decomposition) analysis, suggesting that collective modes are localized towards 

the PM bacteriochlorophyll. The arising picture is also in line with Redfield’s 

theory approach. Possible implications of the localized dynamics for symmetry 

breaking and charge transfer are discussed. 

  In Chapter 4, the study of the electronic ground state is extended from the 

Special Pair to the primary electron acceptor. To this end, bacterial RCs containing 

u-13C4-δ-aminolevulinic acid (u-ALA) labelled BChl and BPhe are studied under 

continuous illumination. By comparison with the literature, a full assignment for 

the bacteriopheophytin (A) has been obtained. It appears that the electronic 

structure of A is very similar to that of a BPhe a in solution, with little evidence 

for packing effects induced by the protein matrix. It is concluded that the A of the 

active branch is not tuned in a special manner by its environment. 

   To explore the protein pocket which might tune the Special Pair, 

alternative spin-torch experiments are proposed in Chapter 5. In this concept, the 

strong polarization of the donor carbons is transferred to the pocket, which can be 
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studied at atomic resolution. To this end, the possibility to use 13C photo-CIDNP 

for 13C-1H transfer is explored. In this Chapter, results on polarization transfer 

between the highly polarized 13C and the thermally polarized 1H are discussed. An 

outlook is presented for the application of such spin-torch experiments to study 

the aromatic environment of the Special Pair.  

 

Summary in Dutch (Samenvatting)  

Fotosynthese is het fysisch-chemische proces waarmee planten, algen en 

fotosynthetische bacteriën licht energie gebruiken voor de synthese van 

organische bestanddelen. Door licht veroorzaakte elektron overdracht in 

fotosynthetische reactie centra (RC) is zeer efficiënt, met een kwantum efficiëntie 

van bijna 100%. In RCs van Rhodobacter (R). sphaeroides WT, de primaire elektron 

donor is een bacteriochlorophyll (BChl) dimeer, het zogenaamde Special Pair P, 

bestaande uit PL en PM. In het RC zijn verder twee extra BChl cofactoren accessory 

BChls (BA en BB) genaamd, twee bacteriopheophytines (ΦA en ΦB), twee quinonen 

en een non-heem-ijzer zijn onderverdeeld in twee pseudo-symmetrische takken A 

en B. Het elektron wordt alleen overgedragen via de actieve "A" tak. Maar in 

structureel gelijksoortige RC, zoals in het reactie centrum van fotosysteem I, vindt 

elektronen overdracht in gelijke mate plaats via beide takken. Het geheim van de 

hoge kwantum efficiëntie in de richting van de elektronen overdracht is tot op 

heden ontrafeld. Om deze vraagstukken op te lossen is het photo-CIDNP effect 

(photo-chemically induced nuclear polarization), met zijn zeer grote versterking 

van lokale NMR signalen, een uitzonderlijk prakisch analytisch gereedschap dat 

speciaal geschikt is om elektronen overdracht in fotosynthetische reactie centra te 

bestuderen. Zo is photo-CIDNP toegepast om de elektronische structuur van de 

elektron donor in kaart te brengen. 

  Het eerste doel van dit proefschrift was om een compleet beeld van de 

elektronische grondtoestand van de donor van het RC van R. sphaeroides WT te 

verkrijgen. Hoofdstuk 2 doet verslag van 2D photo-CIDNP DARR experimenten 

met nanosecond laser flash excitatie van bacteriële RC, die op specifieke plaatsen 
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in het Special Pair zijn verrijkt met 13C isotopen. Samen met eerder behaalde 

resultaten is een complete chemical shift bepaling van het Special Pair verkregen. 

Het 'shielding' patroon van de 13C kernen bevestigt dat er een lichte overmaat van 

elektronen dichtheid is op pyrrool ring III van PL in vergelijking met pyrrool ring 

III van PM, verder is het patroon van de 13C shifts voor de ring koolstoffen in goede 

overeenkomst met het verwachte karakter van de ε
M

-δ
L PP  ladingsoverdracht 

waarbij geldt dat εδ  . Er is dus een breking van de symmetrie in de elektronische 

grondtoestand met een overmaat van negatieve lading op PL gedetecteerd. De 

asymmetrische distributie van elektronen dichtheid draagt mogelijkerwijs bij aan 

de asymmetrie van de elektronen overdracht die na excitatie uitsluitend langs de 

actieve tak plaatsvindt. 

  Functionele eigenschappen kunnen ook afhangen van dynamische 

aspecten. Daarom is in Hoofdstuk 3 de dynamiek van de Special Pair onderzocht 

met behulp van een nieuwe strategie die is gebaseerd op photo-CIDNP MAS NMR 

experimenten. Spin-torch gebaseerde experimenten, waar de polarisatie 

overdracht tussen verschillende 13C isotopen door spin diffusie mee kan worden 

geobserveerd, worden in dit hoofdstuk geïntroduceerd. Deze experimenten maken 

het mogelijk om de locale mobiliteit in het Special Pair te meten. Polarisatie 

overdracht tussen de met 13C isotopen verrijkte atomen van het Special Pair in 3-

ALA bacteriële RC is onderzocht met behulp van 2D photo-CIDNP DARR 

experimenten onder constante belichting. Met behulp van de gepresenteerde serie 

van experimenten met verschillende 'mixing times’ is de dynamische asymmetrie 

van het Special Pair in kaart gebracht. Het lijkt erop dat de breking van de pseudo-

C2 symmetrie meer is gerelateerd aan het totale supermolecuul dan aan de 

individuele moleculen PL en PM. Het dynamische plaatje is vergeleken met 

polymorfisme in termen van Shelnutt’s NSD analyse die mogelijke variabiliteit in 

de kristallijne toestanden aangeeft, in de richting van de PM bacteriochlorophyll. 

Het resultaat is tevens in lijn met de ‘Redfield’s theory’ benadering. Mogelijke 

implicaties van de lokale dynamiek van de symmetrie breking en de 

ladingsoverdracht worden besproken. 
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  In Hoofdstuk 4 wordt naast de elektronische grondtoestand van het Special 

Pair ook die van de primaire elektronen acceptor onderzocht. Hiervoor zijn 

bacteriële RC met u-13C4-δ-aminolevulinic acid (u-ALA) verrijkte BChl en BPhe 

bestudeerd onder constante belichting. Door vergelijking met al bekende waarden 

uit de literatuur is een complete toekenning van de signalen van bacteriële 

pheophytine (A) gerealiseerd. Het lijkt erop dat de elektronische structuur van 

A in sterke mate overeenkomt met die van een BPhe a molecuul in oplossing, en 

er is weinig bewijs gevonden voor packing effecten van de eiwit matrix. Daarom is 

geconcludeerd dat de A van de actieve tak niet op een speciale manier is 

afgestemd door zijn directe omgeving. 

  Om het eiwit pocket, dat mogelijkerwijs de Special Pair afstemt, te 

bestuderen, zijn alternatieve spin-torch experimenten voorgesteld (Hoofdstuk 5). 

In dit concept wordt de sterke polarisatie overdracht van de donor koolstoffen aan 

de pocket tot op atomair nivo bekeken. Hiervoor is de mogelijkheid om 13C photo-

CIDNP te gebruiken voor 13C-1H overdracht onderzocht. In dit hoofdstuk worden 

de resultaten van polarisatie overdracht tussen sterk gepolariseerde 13C atomen en 

thermisch gepolariseerde 1H besproken. Een vooruitblik van de mogelijke 

toepassing van dergelijke spin-torch experimenten om in de toekomst de 

omgeving van het aromatische systeem van het Special Pair te onderzoeken wordt 

hier gepresenteerd. 

Summary in Tamil (ஆய்வு சுருக்கம் ) 

        தாவரங்கள், பாசிகள் மற்றும் ஒளிச்ேசர்க்ைக  ெசய்யும் பாக்டீரியாக்கள், ஒளிச்ேசக்ர்ைக என்ற 

இயற்-ேவதிய ெசய்முைறைய ெகாண்டு ஒளி ஆற்றைல உபேயாகித்து, கரிமச் ேசர்மங்கைள உற்பத்தி 

ெசய்து ெகாள்கின்றன. இந்த ஒளிச்ேசர்க்ைக விைனைமய நிைலயங்களில் நிகழும், ஒளியால்  

தூண்டப்பட்ட எலக்ட்ரான் பரிமாற்றம், மிகவும் சிறப்பாக நைடெபறுகின்ற ஒரு ேவதிவிைனயாகும். 

ேமலும், இந்த ேவதிவிைனயின் குவாண்டம் ெசயல்திறனின் மதிப்பு இலக்கம் ஒன்ைற ெநருங்குகிறது. 

ஆர். ஸ்ெபாராய்ட்ஸ் WT  என்ற நுண்னுயிரியின் ஒளிச்ேசர்க்ைக விைனைமயத்தில், எலக்ட்ரான் 

பரிமாற்றத்திற்கு, இைணகாரணியின் இரண்டு சமச்சீர் கிைளகளில், ஒன்று தான் ேதர்வு ெசய்யப்படுகிறது. 

மற்ெறாரு பக்கம், அேத அைமப்புைடய ேபாட்ேடாசிஸ்டம் I-ல்  உள்ள ஒளிச்க்ேசர்ைக 

விைனைமயத்தில்,  எலக்ட்ரான் பரிமாற்றம், இைணகாரணியின் இரண்டு கிைளகளிலும் 

நைடெபறுகின்றது. இத்தைகய எலக்ட்ரான் பரிமாற்றத்தின் ெசயல்திறன் மற்றும் திைச, இன்னும் 
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அறியப்படாத ஒன்றாகும். இைத கண்டறிய, ஒளிச்ேசர்க்ைக விைனைமயத்திலிருந்து, திண்மநிைல 

ேபாட்ேடா-சி.ஐ.டி.என்.பி என்கின்ற பரிேசாதைனயின் மூலம் கிைடக்கும், மிைகப்படுத்தப்பட்ட 

என்.எம்.ஆர் உள்ைசைக ஒரு பகுக்கின்ற கருவியாக விழங்குகின்றது. எனேவ, இந்த ஆய்வில்  ேபாட்ேடா-

சி.ஐ.டி.என்.பி  என்.எம்.ஆர் உத்தி மூலம் எலக்ட்ரான் வழங்கியின் இலத்திரனைமப்பு ஆய்வு 

ெசய்யப்பட்டுள்ளது. இந்த ஆய்வுக்கட்டுைர ஐந்து அத்தியாயங்களாக பிரிக்கப்பட்டுள்ளன.  

        அத்தியாயம் ஒன்று: இந்த ஆய்வு பற்றிய ேநாக்கம் மற்றும் அைத சார்ந்த பல விபரங்கள் 

முன்னுைரயாக வழங்கப்பட்டுள்ளது. 

         அத்தியாயம் இரண்டு: இந்த பரிேசாதைனக்கு ேதர்வு ெசய்யப்பட்ட சிறப்பு இடங்களில் 

கதிரியக்க 13C கரிமத்தால் அைடயாளம் ெசய்யப்பட்ட, சிறப்பு இைண ெகாண்ட ஒளிச்ேசர்க்ைக 

விைனைமயமானது, நாேனா விநாடி ஊெடாளி ஒளித்ெதரிப்பு ெகாண்டு, கிளர்வு ெசய்யப்பட்டது. இந்த 

பரிேசாதைனயின் மூலம் சிறப்பு இைணயின் முழுைமயான ேவதி நகர்வின் ஒதுக்கல் ெபறப்பட்டது. 

ேமலும், PM  பிேரால் வைளயம் III -ஐ விட, PL   பிேரால் வைளயம் III-ைன ேநாக்கி, கூடுதல் எலக்ட்ரான் 

அடர்த்தி இருப்பதால், கதிரியக்க 13C அணுக்கருவின் ேவதி நகர்வு அைமப்பு , 
ε

M
-δ

L PP  εδ  ன் மின்னுட்ட 

பரிமாற்ற தன்ைமக்கு சமநிைலயில் இருக்கின்றது. இதனால் தாழ்நிைல PL -ல் உள்ள கூடுதல் குைற 

மின்னுட்டம் அதனின் சமச்சீர்  எலக்ட்ரான் அைமப்ைப முறிவுெசய்கின்றது. இந்த கண்டறியப்பட்ட 

சமச்சீரற்ற எலக்ட்ரான் அடர்த்தி பரவல், கிளர்வுற்ற நிைலயில் நைடெபறும் சமச்சீரற்ற எலக்ட்ரான் 

பரிமாற்றத்திற்கு ெசயல்தூக்கியாக ெசயல்படலாம்.  

        அத்தியாயம் மூன்று: ஒரு புதிய உத்தியான,  ேபாட்ேடா-சி.ஐ.டி.என்.பி மாஸ் என்.எம்.ஆர் 

பரிேசாதைன ெகாண்டு, சிறப்பு இைணயின் இயக்க பண்பு ஆராயப்பட்டுள்ளன. ேமலும், இந்த 

பரிேசாதைனயின் மூலம் சிறப்பு இைணயின் உள் நகர்திறைன ஆய்வு ெசய்ய முடிகின்றது. 

ெதாடர்ச்சியான ஒளியூட்டம் ெகாண்ட 2D ேபாட்ேடா-சி.ஐ.டி.என்.பி DARR பரிேசாதைன ெகாண்டு, 3-ALA 

பாக்டீறிய விைன ைமயத்தில் உள்ள, சிறப்பு இைணயில், அைடயாளமிடப்பட்ட கதிரியக்க 13C கரிம 

அணுக்கருக்களுக்குள் நைடெபறும் ஒருமுைனயாக்கல் பறிமாற்றம்  ஆய்வு ெசய்யப்பட்டுள்ளன. 

ேமற்கண்ட பரிேசாதைனகளில் ெபறப்பட்ட இயக்கவியல் அைமப்பு பற்றி, Shelnutt's NSD பகுப்பாய்வு 

ெகாண்டு விளக்கம் அளிக்கப்பட்டுள்ளது. சமச்சீர் முறிவு மற்றும் மின்னூட்ட பரிமாற்றத்திற்கு 

ெதாடர்புைடய, குறிப்பிட்ட இடத்தில் ஏற்ப்படும் இயக்க நிைல பண்பால், ஏற்படக்கூடிய விைளவுகள் பற்றி 

கருத்துக்கள் ெதரிவிக்கப்பட்டுள்ளன.  

       அத்தியாயம் நான்கு: முதலில், சிறப்பு இைணயின் தாழ்நிைல பற்றிய  தகவல்கள், முதன்ைம 

எலக்ட்ரான் ஏற்பிக்கு விரிவு ெசய்யப்பட்டுள்ளன. U-ALA BChl  மற்றும் BPhe பாக்டீரியாவின் 

விைனைமயங்கள், ெதாடர்ச்சியான ஒளியூட்டம் மூலம் பரிேசாதைன ெசய்யப்பட்டுள்ளன. இதன்மூலம், 

A-ன் முழுைமயான ேவதி நகர்வின் ஒதுக்கல் ெபறப்பட்டுள்ளன. இதனால் BPhe - யின் உந்தப்பட்ட கிைள, 

தனது சுற்றத்தால் இைசப்புறவில்ைல என்பது உறுதி ெசய்யப்பட்டுள்ளன.  



  Samenvatting 

135 

                  அத்தியாயம் ஐந்து: சிறப்பு இைணைய இைசப்புற ைவக்கக்கூடிய புரத விைன ைமயத்ைத, 

ேவறுபட்ட ஸ்பின்-டார்ச் பரிேசாதைன ெகாண்டு ஆய்வு ெசய்யும் முைறகள், முன்ெமாழியப்பட்டுள்ளது. 

ேமலும், கதிரியக்க 13C ெகாண்ட ேபாட்ேடா-சி.ஐ.டி.என்.பி பரிேசாதைன மூலம், 13C-1H அணுக்களின் 

இைடயில் இயலக்கூடிய பரிமாற்றம் விளக்கமாக ெகாடுக்கப்பட்டுள்ளது. இறுதியாக, ஸ்பின்-டார்ச் 

பரிேசாதைனயின் எதிர்கால பயன்பாடாக, சிறப்பு இைணயின் அேராேமடிக் கரிம அணுக்களின் சுற்றத்ைத, 

ஆய்வு ெசய்யக்கூடிய உத்திகள் விளக்கப்பட்டுள்ளன.  
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இன் சாலிட்ஸ்” . தனது ஆராய்ச்சியின் ேபாது பல பயண மாணியங்கைள ெபற்றார். பின்குறிப்பிட்ட 

பல சர்வேதச ேகாைட கால பள்ளிகளில் கலந்து ெகாண்டார். (1) ஐேராப்பியன் ஸ்கூல் ஆன் சாலிட் 
ஸ்ேடட் என்.எம்.ஆர், அட்வான்ஸ்டு ெலவல் ேகார்ஸ், பயலாஜிகல் சாலிட்ஸ், ெஜர்மனி (ேம 29 - 

ஜூன் 2, 2006); (2) எம்ேபா ெவார்க்சாப் ஆன் மல்டிடய்ெமன்ஷனல் என்.எம்.ஆர் இன் ஸ்டிரக்சுரல் 
பயாலஜி, சிஓேகா - லூகா. இத்தாலி (27 ஆகஸ்ட் - 1 ெசப்டம்பர், 2006); (3) எச்.ஆர்.எம்.சி'ஸ் 
சம்மர் ஸ்கூல் ஆன் ேபாேடா ெகமிஸ்ட்ரி: பண்டெமண்டல்ஸ் அண்டு அப்ளிேகஷண்ஸ், 

மாஸ்திரிக்த், ெநதர்லாண்டு (31 ேம - 4 ஜூன் 2008); (4) சம்மர் ஸ்கூல் என்.எம்.ஆர்.சி.எம். எஸ்டி. 
படீ்டர்ஸ்பர்க், ரஷ்யா (3 - 5  ஜூைல, 2008). 2008 ஆம் ஆண்டு, எம்ேபா நிறுவனத்திடமிருந்து 

குறுகிய கால ஆய்வுக்கல்வி உதவித்ெதாைகைய Ôஇஸ்பின்-டார்ச் எக்ஸ்பிரிெமன்ட் வித் 13C 
ேபாேடா-சி.ஐ.டி.என்.பி மாஸ் என்.எம்.ஆர் பார் எக்ஸ்பிேளாரிங் பயலாஜிகல் ஸ்டிரக்சர்ஸ்” 

என்கின்ற ஆய்விற்கு ெபற்றார். இந்த மாணியத்தின் மூலம் ேமற்கூறிய குறிகிய கால ஆய்ைவ 

சுவிட்சர்லாந்து நாட்டில் உள்ள இ.டி.ஹச் ஆய்வு ைமயத்தில் ேபராசிரியர்கள் கு. எஷ்ஹ்கி மற்றும் 

ம. எர்ன்ஸ்ட் ஆகிேயாரின் கீழ் ேமற்ெகாண்டார். இவர் தனது முைனவர் பட்ட ஆய்வின் 

முடிவுகைள பல அறிவியல் ஆராய்ச்சி மாநாடுகளில் பங்குெபற்று உைரகள் மற்றும் அச்சு மூலம் 

அறிமுகப்படுத்தினார். மார்ச் 2011 முதல் ைலடன் பல்கைலகழகத்தின், எல்.ஐ.சி ஆய்வுைமயத்தில், 

என்.எம்.ஆர் துைறயின் இைடக்கால தைலைம ஆய்வுப் ெபாருப்பாளராக பணிபுரிந்துவருகிறார். 



 

141 

Acknowledgements 
 
This is the page I have waited to write at the end, so that I could mention all the 

people who had helped and guided me to this point. From the bottom of my heart, 

I acknowledge all the people who had supported me in one way or the other. This 

has been a long fun-filled adventurous journey in quest for science and life.  

  I enjoyed scientific discussions and collaborations with Prof. Shimon Vega, 

Prof. Gunnar Jeschke and Prof. Matthias Ernst for which I am always indebt. Dr. 

Peter Gast was there for any discussions regarding the isolation of RCs and 

reconstitution of carotenoid samples. Working with Dré de Wit and Wouter van 

der Meer in the Biophysics group was a nice experience. Dr. Alia’s guidance 

provided especially during the labelled sample preparations is appreciated. Dr. 

Francesco Buda’s explanations of theoretical simulations and his insight on the 

mechanisms were useful. The concepts discussed with Bela helped me to look at 

the photo-CIDNP theory more deeply. Setting up laser experiments along with 

Eugenio was a good learning experience. Discussions with all the above 

mentioned people and SSNMR group members had helped me to gain insight and 

knowledge about the photosynthetic process. I am very grateful to Kees Erkelens 

for his constant support and encouragement to try the new NMR experiments 

with confidence.  “If any experiment doesn’t give good results in one hour, try 

another experiment or change the sample” are his words, which have stayed in my 

mind forever. The useful tips and notes pasted on the walls of the NMR room by 

Fons Lefeber and his patience for correcting my Dutch pronunciations were 

invaluable.  

  Life in the SSNMR group and in Holland was a great experience, especially 

within an international atmosphere. The time I spent with Anjali, Chen, Esha, 

Firat, Fu, Geerten, Jose-Luis, Kiran, Khuram, Prashant, Saeed, Sameera, Shipra, 

Smitha, Thomas & Wim was unforgettable. Assisting student practicals with 

William and Virginie was fun. Rob’s guitar tips and Reinier’s tips on “running” 

were always encouraging. I also want to thank Geertje for translating my thesis 

summary. The sports activities with Anna, Niels, Swapna and Johan were nice and 



Acknowledgements 

142   

enjoyable. Discussions with Ben and Bela about any topic in science were always 

exciting. Sharing the LCP-2 office with Piotr, Thierry and the other intern students 

was very enjoyable. The break time discussions on history, culture and abstract 

ideas were exhilarating. Swapna and Johan were always there to appreciate my 

culinary creations, running circuits and cycling trips. 

  Liesbeth was always very kind and supportive in the administrative 

activities and her tips about life in Leiden were useful. Esther’s help in dealing 

with IND and other townhall related issues were always spontaneous. Raphael’s 

timely solution for any mechanical problem is very much appreciated. All the 

support for the tools, accessories and many other things from Trudie, Arjan, 

Arnold, Mark and Paul are very much acknowledged.  

  Life outside the lab was also very pleasant, especially with my apartment 

mates Alfi, Ma Tao, Hung Bo and Chang. The badminton sessions with Ding were 

always fun and challenging. Thanks to Raja, Krishna, Ravi, Prasad, Uma, 

Sudeshna, Sushmit and Nusrat for all the memorable get-togethers. Support from 

Shiva anna’s family makes me feel as a member in their family. Special thanks to 

Amol and Monica for their interesting conversations over science and philosophy. 

I also would like to thank Anand, Sathish, Raghupathy, Subi and Vishwa for their 

constant support in all my ventures. Mani’s commitment for the Tamil translation 

and all other friends who helped at various instances are highly valued. I am very 

lucky to have Malou as “Taal maatje”. Her support in learning language and 

decoding the Dutch expressions were very useful. 

  The warmth and affection from my mom and dad has always nourished me 

in many ways. Their constant support, encouragement and wishes helped me to 

achieve this goal. The interesting stories from my sister and brother-in-law about 

Arvind and Sakthi’s activities were always refreshing and relaxing. I want to 

thank all my relatives for their support given to my family while I was away from 

home. I would like to thank my in-law’s family for their special support. This 

endeavor is incomplete without acknowledging my beloved wife, Naveena who 

could understand me very well and make me smile always. I am very lucky and 

happy that I can spend rest of my life with her. 



<<
  /ASCII85EncodePages false
  /AllowTransparency false
  /AutoPositionEPSFiles true
  /AutoRotatePages /None
  /Binding /Left
  /CalGrayProfile (Dot Gain 20%)
  /CalRGBProfile (sRGB IEC61966-2.1)
  /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
  /sRGBProfile (sRGB IEC61966-2.1)
  /CannotEmbedFontPolicy /Error
  /CompatibilityLevel 1.4
  /CompressObjects /Tags
  /CompressPages true
  /ConvertImagesToIndexed true
  /PassThroughJPEGImages true
  /CreateJobTicket false
  /DefaultRenderingIntent /Default
  /DetectBlends true
  /DetectCurves 0.0000
  /ColorConversionStrategy /CMYK
  /DoThumbnails false
  /EmbedAllFonts true
  /EmbedOpenType false
  /ParseICCProfilesInComments true
  /EmbedJobOptions true
  /DSCReportingLevel 0
  /EmitDSCWarnings false
  /EndPage -1
  /ImageMemory 1048576
  /LockDistillerParams false
  /MaxSubsetPct 100
  /Optimize true
  /OPM 1
  /ParseDSCComments true
  /ParseDSCCommentsForDocInfo true
  /PreserveCopyPage true
  /PreserveDICMYKValues true
  /PreserveEPSInfo true
  /PreserveFlatness true
  /PreserveHalftoneInfo false
  /PreserveOPIComments true
  /PreserveOverprintSettings true
  /StartPage 1
  /SubsetFonts true
  /TransferFunctionInfo /Apply
  /UCRandBGInfo /Preserve
  /UsePrologue false
  /ColorSettingsFile ()
  /AlwaysEmbed [ true
  ]
  /NeverEmbed [ true
  ]
  /AntiAliasColorImages false
  /CropColorImages true
  /ColorImageMinResolution 300
  /ColorImageMinResolutionPolicy /OK
  /DownsampleColorImages true
  /ColorImageDownsampleType /Bicubic
  /ColorImageResolution 300
  /ColorImageDepth -1
  /ColorImageMinDownsampleDepth 1
  /ColorImageDownsampleThreshold 2.00000
  /EncodeColorImages true
  /ColorImageFilter /DCTEncode
  /AutoFilterColorImages true
  /ColorImageAutoFilterStrategy /JPEG
  /ColorACSImageDict <<
    /QFactor 0.15
    /HSamples [1 1 1 1] /VSamples [1 1 1 1]
  >>
  /ColorImageDict <<
    /QFactor 0.15
    /HSamples [1 1 1 1] /VSamples [1 1 1 1]
  >>
  /JPEG2000ColorACSImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 30
  >>
  /JPEG2000ColorImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 30
  >>
  /AntiAliasGrayImages false
  /CropGrayImages true
  /GrayImageMinResolution 300
  /GrayImageMinResolutionPolicy /OK
  /DownsampleGrayImages true
  /GrayImageDownsampleType /Bicubic
  /GrayImageResolution 300
  /GrayImageDepth -1
  /GrayImageMinDownsampleDepth 2
  /GrayImageDownsampleThreshold 2.00000
  /EncodeGrayImages true
  /GrayImageFilter /DCTEncode
  /AutoFilterGrayImages true
  /GrayImageAutoFilterStrategy /JPEG
  /GrayACSImageDict <<
    /QFactor 0.15
    /HSamples [1 1 1 1] /VSamples [1 1 1 1]
  >>
  /GrayImageDict <<
    /QFactor 0.15
    /HSamples [1 1 1 1] /VSamples [1 1 1 1]
  >>
  /JPEG2000GrayACSImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 30
  >>
  /JPEG2000GrayImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 30
  >>
  /AntiAliasMonoImages false
  /CropMonoImages true
  /MonoImageMinResolution 1200
  /MonoImageMinResolutionPolicy /OK
  /DownsampleMonoImages true
  /MonoImageDownsampleType /Bicubic
  /MonoImageResolution 1200
  /MonoImageDepth -1
  /MonoImageDownsampleThreshold 1.50000
  /EncodeMonoImages true
  /MonoImageFilter /CCITTFaxEncode
  /MonoImageDict <<
    /K -1
  >>
  /AllowPSXObjects false
  /CheckCompliance [
    /None
  ]
  /PDFX1aCheck false
  /PDFX3Check false
  /PDFXCompliantPDFOnly false
  /PDFXNoTrimBoxError true
  /PDFXTrimBoxToMediaBoxOffset [
    0.00000
    0.00000
    0.00000
    0.00000
  ]
  /PDFXSetBleedBoxToMediaBox true
  /PDFXBleedBoxToTrimBoxOffset [
    0.00000
    0.00000
    0.00000
    0.00000
  ]
  /PDFXOutputIntentProfile ()
  /PDFXOutputConditionIdentifier ()
  /PDFXOutputCondition ()
  /PDFXRegistryName ()
  /PDFXTrapped /False

  /CreateJDFFile false
  /Description <<

    /BGR <>
    /CHS <FEFF4f7f75288fd94e9b8bbe5b9a521b5efa7684002000410064006f006200650020005000440046002065876863900275284e8e9ad88d2891cf76845370524d53705237300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c676562535f00521b5efa768400200050004400460020658768633002>
    /CHT <FEFF4f7f752890194e9b8a2d7f6e5efa7acb7684002000410064006f006200650020005000440046002065874ef69069752865bc9ad854c18cea76845370524d5370523786557406300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c4f86958b555f5df25efa7acb76840020005000440046002065874ef63002>
    /CZE <>
    /DAN <FEFF004200720075006700200069006e0064007300740069006c006c0069006e006700650072006e0065002000740069006c0020006100740020006f007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400650072002c0020006400650072002000620065006400730074002000650067006e006500720020007300690067002000740069006c002000700072006500700072006500730073002d007500640073006b007200690076006e0069006e00670020006100660020006800f8006a0020006b00760061006c0069007400650074002e0020004400650020006f007000720065007400740065006400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006b0061006e002000e50062006e00650073002000690020004100630072006f00620061007400200065006c006c006500720020004100630072006f006200610074002000520065006100640065007200200035002e00300020006f00670020006e0079006500720065002e>
    /DEU <>
    /ESP <>
    /ETI <>
    /FRA <>
    /GRE <>

    /HRV (Za stvaranje Adobe PDF dokumenata najpogodnijih za visokokvalitetni ispis prije tiskanja koristite ove postavke.  Stvoreni PDF dokumenti mogu se otvoriti Acrobat i Adobe Reader 5.0 i kasnijim verzijama.)
    /HUN <>
    /ITA <>
    /JPN <FEFF9ad854c18cea306a30d730ea30d730ec30b951fa529b7528002000410064006f0062006500200050004400460020658766f8306e4f5c6210306b4f7f75283057307e305930023053306e8a2d5b9a30674f5c62103055308c305f0020005000440046002030d530a130a430eb306f3001004100630072006f0062006100740020304a30883073002000410064006f00620065002000520065006100640065007200200035002e003000204ee5964d3067958b304f30533068304c3067304d307e305930023053306e8a2d5b9a306b306f30d530a930f330c8306e57cb30818fbc307f304c5fc59808306730593002>
    /KOR <FEFFc7740020c124c815c7440020c0acc6a9d558c5ec0020ace0d488c9c80020c2dcd5d80020c778c1c4c5d00020ac00c7a50020c801d569d55c002000410064006f0062006500200050004400460020bb38c11cb97c0020c791c131d569b2c8b2e4002e0020c774b807ac8c0020c791c131b41c00200050004400460020bb38c11cb2940020004100630072006f0062006100740020bc0f002000410064006f00620065002000520065006100640065007200200035002e00300020c774c0c1c5d0c11c0020c5f40020c2180020c788c2b5b2c8b2e4002e>
    /LTH <>
    /LVI <>
    /NLD (Gebruik deze instellingen om Adobe PDF-documenten te maken die zijn geoptimaliseerd voor prepress-afdrukken van hoge kwaliteit. De gemaakte PDF-documenten kunnen worden geopend met Acrobat en Adobe Reader 5.0 en hoger.)
    /NOR <>
    /POL <>
    /PTB <FEFF005500740069006c0069007a006500200065007300730061007300200063006f006e00660069006700750072006100e700f50065007300200064006500200066006f0072006d00610020006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000410064006f0062006500200050004400460020006d00610069007300200061006400650071007500610064006f00730020007000610072006100200070007200e9002d0069006d0070007200650073007300f50065007300200064006500200061006c007400610020007100750061006c00690064006100640065002e0020004f007300200064006f00630075006d0065006e0074006f00730020005000440046002000630072006900610064006f007300200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002000650020006f002000410064006f00620065002000520065006100640065007200200035002e0030002000650020007600650072007300f50065007300200070006f00730074006500720069006f007200650073002e>
    /RUM <>
    /RUS <FEFF04180441043f043e043b044c04370443043904420435002004340430043d043d044b04350020043d0430044104420440043e0439043a043800200434043b044f00200441043e043704340430043d0438044f00200434043e043a0443043c0435043d0442043e0432002000410064006f006200650020005000440046002c0020043c0430043a04410438043c0430043b044c043d043e0020043f043e04340445043e0434044f04490438044500200434043b044f00200432044b0441043e043a043e043a0430044704350441044204320435043d043d043e0433043e00200434043e043f0435044704300442043d043e0433043e00200432044b0432043e04340430002e002000200421043e043704340430043d043d044b04350020005000440046002d0434043e043a0443043c0435043d0442044b0020043c043e0436043d043e0020043e0442043a0440044b043204300442044c002004410020043f043e043c043e0449044c044e0020004100630072006f00620061007400200438002000410064006f00620065002000520065006100640065007200200035002e00300020043800200431043e043b043504350020043f043e04370434043d043804450020043204350440044104380439002e>
    /SKY <>
    /SLV <>
    /SUO <>
    /SVE <>
    /TUR <>
    /UKR <>
    /ENU (Use these settings to create Adobe PDF documents best suited for high-quality prepress printing.  Created PDF documents can be opened with Acrobat and Adobe Reader 5.0 and later.)
  >>
  /Namespace [
    (Adobe)
    (Common)
    (1.0)
  ]
  /OtherNamespaces [
    <<
      /AsReaderSpreads false
      /CropImagesToFrames true
      /ErrorControl /WarnAndContinue
      /FlattenerIgnoreSpreadOverrides false
      /IncludeGuidesGrids false
      /IncludeNonPrinting false
      /IncludeSlug false
      /Namespace [
        (Adobe)
        (InDesign)
        (4.0)
      ]
      /OmitPlacedBitmaps false
      /OmitPlacedEPS false
      /OmitPlacedPDF false
      /SimulateOverprint /Legacy
    >>
    <<
      /AddBleedMarks false
      /AddColorBars false
      /AddCropMarks false
      /AddPageInfo false
      /AddRegMarks false
      /ConvertColors /ConvertToCMYK
      /DestinationProfileName ()
      /DestinationProfileSelector /DocumentCMYK
      /Downsample16BitImages true
      /FlattenerPreset <<
        /PresetSelector /MediumResolution
      >>
      /FormElements false
      /GenerateStructure false
      /IncludeBookmarks false
      /IncludeHyperlinks false
      /IncludeInteractive false
      /IncludeLayers false
      /IncludeProfiles false
      /MultimediaHandling /UseObjectSettings
      /Namespace [
        (Adobe)
        (CreativeSuite)
        (2.0)
      ]
      /PDFXOutputIntentProfileSelector /DocumentCMYK
      /PreserveEditing true
      /UntaggedCMYKHandling /LeaveUntagged
      /UntaggedRGBHandling /UseDocumentProfile
      /UseDocumentBleed false
    >>
  ]
>> setdistillerparams
<<
  /HWResolution [2400 2400]
  /PageSize [595.440 841.680]
>> setpagedevice


