
PHYSICAL REVIEW A 85, 033823 (2012)

Bosonic, fermionic, and anyonic symmetry in two-photon random scattering
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We experimentally demonstrate the importance of two-photon symmetry for the propagation of spatial quantum
correlations in a multiple-scattering disordered system. Two distinguishable entangled photons with tunable
spatial exchange symmetry are sent through the scattering medium. The two photons are observed to have an
ensemble-averaged tendency to cluster together (bosonic symmetry) or to avoid each other (fermionic symmetry).
An intermediate degree of clustering is observed for anyonic exchange symmetry.
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I. INTRODUCTION

Symmetry plays a crucial role in the description of mul-
tiparticle systems. This is common knowledge in solid-state
physics, but it is less known in optics. In quantum optics,
the most prominent example of the importance of symmetry is
the occurrence of photon bunching in two-photon interference.
Hong, Ou, and Mandel were the first to show that when
two identical photons are combined on a beamsplitter they
always leave via the same output channel and never choose
different channels [1]. Later experiments with photons that
were distinguishable by their polarization have shown how the
symmetry of the two-particle wave function can be changed
and how the two-particle interference changes accordingly
from photon bunching to antibunching. The first quantum
interference experiments were performed with an ordinary
beamsplitter, with two input and two output channels [2–4].

Recent experiments have extended the number of available
spatial channels and studied the evolution of the full spatial
wave function upon propagation through a two-dimensional
maze of beamsplitters, built from coupled waveguides. After
the first so-called quantum walk experiments with classical
light [5], it was quickly suggested to use quantum-entangled
photon pairs as input and study the resulting quantum correla-
tions between the numerous output channels [6]. In 2010, the
first quantum-correlated random walk was demonstrated for
a symmetric two-photon input [7]. In 2012, the symmetry of
the input state was modified and the two-particle random walk
was also studied with states with different symmetry [8]. The
number of input channels in all mentioned experiments was
limited to either 2 or 3.

This paper adds two aspects to the discussion. First, we
experimentally demonstrate two-particle quantum interference
for a much larger geometry that comprises typically ≈100
spatial input modes and a comparable number of output
modes. Second, our geometry is truly random, being based on
naturally occurring scattering in disordered systems. This fact,
among others, allows us to average over multiple-scattering
geometries and extract important statistical information on the
(symmetry of the) two-particle interference.

Coherent scattering in random media has attracted lots of
interest on account of its intriguing physics, which includes
speckle formation [9], conductance fluctuations [10,11], en-
hanced backscattering [12], and indications of Anderson
localization [13]. Multiparticle effects have been studied via
the propagation of quantum noise and quantum entanglement

through random media [14–18]. Symmetry aspects in multi-
particle scattering have not yet been explored.

This paper demonstrates the role of symmetry on the
propagation of two distinguishable photons through a multiply
scattering random medium. We regard the full spatial structure
of a multimode entangled photon pair (typically N ≈ 100
spatial modes). In essence, our scattering medium acts as
an N × N multimode random beamsplitter that coherently
redistributes the spatial information but does not affect the
polarization labeling that makes our photons distinguishable.
We can tune the spatial exchange symmetry of the photons
such that they mimic the intrinsic symmetries of bosons,
fermions, and anyons. These experiments demonstrate that
this symmetry strongly affects the spatial quantum correlations
after propagation through the disordered scatterer, even after
ensemble averaging.

A central concept in our theoretical description is the two-
photon field AHV (ρ1,ρ2) = 〈0|âH (ρ1)âV (ρ2)|�〉, where â is
the photon annihilation operator and |�〉 is the optical quantum
state. The two-photon field AHV (ρ1,ρ2) is the probability
amplitude to observe the H -polarized photon at transverse
position ρ1 and the V -polarized photon at ρ2. We will first
study the evolution of an input two-photon field with the
natural bosonic symmetry AHV (ρ1,ρ2) = AHV (ρ2,ρ1). Next,
we introduce an experimental technique that allows us to tune
the particle exchange symmetry. For an antisymmetric input
field AHV (ρ1,ρ2) = −AHV (ρ2,ρ1), we observe photon anti-
bunching in the output channels where the photons try to avoid
each other and never scatter into identical spatial modes. For
anyonic symmetry, we observe how the exchange interaction
between the two photons combines effective attraction with
repulsion.

II. EXPERIMENT: BOSONIC SYMMETRY

Figure 1 shows the experimental setup. Quantum-entangled
photon pairs with orthogonal H and V polarization are gener-
ated in the nonlinear optical process of spontaneous parametric
down-conversion (SPDC), where a single pump photon occa-
sionally splits up into two photons [19]. We use a 5-mm-long
periodically poled KTP crystal and a 200 mW cw single-mode
beam from a krypton ion laser operating at a wavelength of
413 nm and focused to a waist w ≈ 150 μm, thus generating
N ≈ 100 spatial modes [20]. The pump light is removed
with an antireflective-coated GaP wafer positioned behind the
KTP crystal, while the frequency-degenerate photon pairs are
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FIG. 1. (Color online) Experimental setup. From left to right:
quantum-entangled photon pairs pass through an optional retarder (to
tailor the spatial two-photon symmetry) and scatter from a random
medium, comprising two rotating diffusors, before being detected by
two photon counters and coincidence logic.

selected with narrow-band interference filters (�λ = 1 nm at
λ ≈ 826 nm). The symmetry of the input two-photon field
can be modified by an optional custom-made retarder plate, to
be discussed below. The photon pairs generated are focused
onto a scattering medium comprising two random phase plates
(scattering angle 1◦) positioned in conjugate planes [16]. Both
plates are continuously rotated to allow ensemble averaging.
The spatial correlation of the scattered photons is measured
with two single-photon detectors, located in the far field of
the scattering medium and connected to fast electronics that
record both individual and coincidence counts. A polarizing
beamsplitter (not shown) separates the scattered H and V

photons before detection and allows us to position the two
detectors effectively on top of each other. Each detector is
connected to a single-mode optical fiber, whose compact image
(140 μm) can be scanned in the far-field plane of the scattering
medium. All scans are (for the moment) limited to the x

direction, keeping yH = yV = 0 fixed [transverse coordinate
ρ = (x,y)].

The image on the left-hand side of Fig. 2 shows the experi-
mental result obtained without a retarder. This false-color plot
depicts the coincidence rate Rcc(xH ,xV ) ∝ |AHV (xH ,xV )|2
as a function of the transverse positions xH and xV of the
H - and V -polarized photon in the detector plane, where
the bar denotes ensemble averaging. Previous correlation
measurements on a stationary scattering medium exhibited
two-photon speckle in the absence of one-photon speckle

(see Figs. 3 and 4(c) in Ref. [16]). Being interested in
ensemble-averaged pair correlations only, we now apply a
sample rotation to average over many (�100) speckle patterns.
This removes most features from the two-photon speckle,
apart from a prominent enhancement along the diagonal
xH = xV . All discussed two-photon features are observed in
the absence of one-photon speckle, at approximately constant
single-photon count rate, and after subtraction of a small
fraction (≈10%) of accidental coincidence counts. Integration
times are typically 12 s per date point.

The enhanced coincidence rate observed along the xH = xV

diagonal is the photon bunching that we wish to study. For
a quantitative analysis, we select data within a rectangular
box oriented at 45◦ and project and average the data along
this direction. The upper (blue) curve in the central image of
Fig. 2 shows the projected coincidence rate as a function of
the position difference xH − xV . Photon bunching is observed
as an increase of the coincidence rate around xH − xV ≈ 0
by a bunching factor F ≡ Rcc(xH = xV )/Rcc(xH 	= xV ) =
1.90 ± 0.03 with respect to neighboring values. This is close
to the value of 2 expected from the bosonic symmetry of
the incident two-photon field, as discussed below. The width
of the bunching peak (FWHM = 0.54 ± 0.02 mm for a
high-quality Gaussian fit) denotes the size of a spatial mode. It
is comparable to the size of the two-photon speckles observed
for a static (nonrotating) sample and Fourier related to the
average spot size of the two-photon illumination on the final
diffusor [16].

III. EXPERIMENTS: MODIFIED SYMMETRY

Next, we discuss two-photon scattering of input states with
a different symmetry. We modify this symmetry by passing the
photon pairs through a custom-made retarder plate, comprising
two identical zero-order retarders with retardation phase ϕ/2
that are rotated 90◦ with respect to each other and mounted
side-by-side to fill two half-spaces (x < 0 and x > 0). Since
the plate is positioned in the far field of the source and since
the emission angles of the photons are anticorrelated, the two
photons will generally pass through opposite plate segments.
The retardation phases imposed by the retarder thereby modify

FIG. 2. (Color online) Observation of bosonic and fermionic symmetry in two-photon scattering. (Left, right) False-color plots of the
coincidence count rate, observed in the far field of a random scattering medium, vs the detector positions xH and xV ; the left figure is measured
for a symmetric (ϕ = 0) two-photon input field; the right figure applies to the antisymmetric (ϕ = π ) case. (Middle) Projected coincidence
rate vs the position difference xH − xV . The upper (blue) ϕ = 0 curve exhibits photon bunching; the lower (red) ϕ = π curve exhibits photon
antibunching.
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the bosonic symmetry of the incident field into a new symmetry

Aplate(ρ2,ρ1) = eiϕAplate(ρ1,ρ2) (1)

for x1 > 0 and x2 < 0. We will neglect the weak field
associated with photon pairs that do not split up, but instead
both pass through the same plate segment; the probability
of these rare pairs is ≈0.05 in our experiment. A similar trick
with a segmented retarder plate has been used before to modify
the two-photon coincidence pattern behind a double slit from
spatial bunching to antibunching [21].

After modification, we again send the two-photon state
through the multiple-scattering system that randomly mixes
the positions of the photons. Despite this mixing, the sym-
metry between the two dominant contributions remains intact
throughout the system. An essential requirement for this, is
that the propagation and scattering are polarization insensitive,
as is (practically) the case in our paraxial geometry with
small scattering angles. The combined two-photon field in
any transverse plane that follows can thus be written as

AHV (ρ1,ρ2) ≈ Aq(ρ1,ρ2) + eiϕAq(ρ2,ρ1) , (2)

where Aq(ρ1,ρ2) singles out the scattered field that originates
from all photon pairs at positions x1 > 0 and x2 < 0 on the
retarder plate. It is important to note that the spatial symmetry
described by Eq. (2) is generally different from that described
by Eq. (1). They are identical only for bosonic (ϕ = 0)
and fermionic (ϕ = π ) symmetry, where Eq. (2) reduces to
AHV (ρ1,ρ2) = ±AHV (ρ2,ρ1) in any transverse plane. For the
more general case (ϕ 	= {0,π}), we cannot rewrite Eq. (2) in a
comparable form, due to the complex nature of Aq(ρ1,ρ2).
On these grounds, one might even state that the bosonic
and fermionic symmetries are more robust than the anyonic
symmetry in our experiment.

Figure 3 is a graphical representation of Eq. (2). It shows
how the observed bunching effects originate from the interfer-
ence of the field Aq with its mirror image. When the detectors
are displaced with respect to each other (ρ1 	= ρ2) these two
contributions will generally differ and thus sum incoherently to
the ensemble-averaged signal. At ρ1 ≈ ρ2, however, the field
propagators become identical and the two contributions add
coherently. The two-photon coincidence rate at ρ1 ≈ ρ2 will
thus be enhanced by a factor |1 + exp (iϕ)|2/2 = 1 + cos ϕ as
compared to neighboring positions ρ1 	= ρ2. Photon bunching
occurs for the symmetric (ϕ = 0) two-photon input, while
antibunching occurs for the antisymmetric (ϕ = π ) input.

FIG. 3. (Color online) Graphical explanation of bunching effect.
The observed bunching effects originate from the interference of two
generic scattering paths of the photon pair from the retarder plane
(left), via propagation and scattering (denoted by sharp ss symbols),
to the detectors (right).

The image on the right-hand side of Fig. 2 is a false-color
plot of the average coincidence rate Rcc(xH ,xV ) observed for
an antisymmetric input field (ϕ = π ). A drastic reduction
of the coincidence count rate is now observed for all pairs
around the diagonal xH = xV , irrespective of the individual
values of xH and xV . We again select a rectangular box,
project onto the diagonal, and plot the projected coincidence
rate versus the position difference xH − xV . The lower (red)
curve in the central image of Fig. 2 shows the occurrence
of photon antibunching around xH ≈ xV . The central min-
imum decreases to a bunching factor F = 0.09 ± 0.04 of
neighboring values, to be compared with an ideal value of
0. At a FWHM of 0.40 ± 0.02 μm, the central minimum is
slightly narrower than the maximum observed under photon
bunching and two small shoulders appear. We attribute the
somewhat smaller width of the fermionic structure and its
additional weak shoulder (a remnant of photon bunching) to
the small contribution of photon pairs with x1.x2 > 0 in the
retarder plane; a contribution that we previously neglected.
Both aspects also show up in numerical calculations that
simulate our system in one transverse dimension.

As a final experiment, we replace the ϕ = π plate by
a similar ϕ = π/2 retarder plate. This plate transforms the
generated state into a two-photon field with the unusual sym-
metry Aplate(x2 < 0,x1 > 0) = exp (iϕ)Aplate(x1 > 0,x2 < 0),
where exp (iϕ) = i for the considered ϕ = π/2. The symmetry
of this state interpolates between bosonic and fermionic and
can hence be called anyonic.

The term anyon was introduced by Wilczek [22] to describe
the statistics of composite quasiparticles in a two-dimensional
system, formed by charged particles and flux tubes. These
composites behave as quasiparticles with fractional quantum
statistic [22–24], as they acquire a phase factor ± exp (iϕ)
upon exchange, where the sign depends on the sense of
rotation around the vortex. Anyons are the key ingredient
for topological quantum computing, where quantum infor-
mation is stored in the topological structure of a quantum
state [25,26]. Our experiment shows that anyonic symmetry
is also relevant for the scattering statistics of entangled
photon pairs.

Figure 4 shows the results obtained under illumination
with a two-photon field with anyonic symmetry (ϕ = π/2).
The two figures on the right-hand side are false-color plots
of the coincidence count rate versus the detector positions.
The main figure shows a diagonal projection of these data,
using the method described earlier. The two wiggly (blue and
black) curves are obtained for two different orientation of the
retarder plate, where the front side of the plate was facing either
the source or the scattering medium. These two curves are
approximate mirror images, in agreement with the inversion
(ϕ → −ϕ) or (x → −x) associated with the reorientation of
the plate. Each curve demonstrates an intriguing combination
of bunching and antibunching. The exchange interaction
between the two photons is now asymmetric, such that the
H -polarized photon prefers to be on the right-hand side of
the V -polarized photon, but avoids the left-hand side for one
orientation of the plate, and vice versa for the other orientation.
This unusual asymmetry originates from the spatial structure
of the Aq field at the second diffusor. It disappears at increased
scattering angles and is absent if we scan the detectors in the
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FIG. 4. (Color online) Observation of anyonic symmetry in two-
photon scattering. (Left) Projected coincidence rate vs the position
difference xH − xV for an input field with anyonic symmetry. The
two wiggly (blue and black) curves are measured for ϕ = π/2 and
ϕ = −π/2, respectively. The nonwiggly (red) curve is measured
while scanning in the orthogonal transverse direction yH − yV .
(Right) False color plots of the coincidence count rate observed at
ϕ = π/2 while scanning either in the (xH ,xV ) plane (top right) or in
the (yH ,yV ) plane (bottom right). The scale of both figures is identical
to that of Figs. 2(a) and 2(c).

orthogonal transverse direction yH − yV (see red nonwiggly
curve in Fig. 4).

IV. CONCLUDING DISCUSSION

In conclusion, we have shown that particle exchange sym-
metry plays a crucial role in two-photon scattering. Depending

on the symmetry of the two-photon field of two distinguishable
(H and V polarized) photons, we have observed spatial
bunching, spatial antibunching, and mixed behavior, thus
mimicking the behavior of bosons, fermions, and anyons.
These bunching effects originate from the conservation of (a
special form of) particle exchange symmetry.

From a general perspective, our experiments demonstrate
the importance of exchange symmetry in multiparticle scatter-
ing. For the extreme cases of bosonic (ϕ = 0) and fermionic
(ϕ = π ) symmetry, this exchange symmetry applies to any
(ρ1,ρ2) combination and Eqs. (1) and (2) are equivalent. For
intermediate symmetries (0 < ϕ < π ) only the more general
Eq. (2) applies. To quantify the exchange symmetry also
for these cases, we introduce the global (spatially averaged)
symmetry parameter

S ≡
∫∫

A∗(ρ2,ρ1)A(ρ1,ρ2) dρ1dρ2∫∫ |A(ρ1,ρ2)|2dρ1dρ2
. (3)

This real-valued symmetry parameter S is conserved under
unitary scattering and propagation if these processes are identi-
cal for both particles. The parameter S determines the bunching
factor after random scattering via F ≈ 1 + S. For our system
S = cos ϕ, with fermionic (S = −1) and bosonic (S = 1)
symmetry as extreme cases. Similar exchange symmetries will
be crucial in any future two-particle experiment.
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