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1Immunological paradox

Human pregnancy is an interesting immunological paradox. The fetus is a semi-allograft, carrying 

paternal and maternal genes but is not rejected by the maternal immune system. The placenta 

is a key player in maintaining the pregnancy, since this fetus-derived organ is in direct contact 

with the mother. At this fetal-maternal interface, cells of the mother come in direct contact with 

cells of the fetus. This thesis describes the results of investigations on the immune regulation at 

the fetal-maternal interface with emphasis on two immunological challenges during pregnancy. 

First, preeclampsia, which might be immunologically related to host versus graft disease as seen 

in solid organ transplantation and second, egg donation (ED) pregnancies, which show that even 

complete allogeneic fetal allografts can be tolerated by the mother. The immunological mechanisms 

involved in acceptance of the totally allogeneic fetus in ED pregnancies are not well understood 

yet. It is possible that it leads to diff erential immunological regulation. This hypothesis is tested 

in this thesis. This general introduction will give an overview of placenta development, general 

immunology, immunology at the fetal-maternal interface, preeclampsia and ED pregnancies. 

Placenta development1. 

Placenta1.1 

The development of the placenta is essential for fetal growth, development and maintenance 

of (un)complicated pregnancy. The in growth of the placenta in to the maternal endometrium 

promotes acceptance of the fetal allograft, and the placenta serves metabolic and endocrine 

functions. Already at the time of fertilization placental development starts. The placenta develops 

from fetal derived cells. Around four days after fertilization the blastocyst consists of two cell types: 

the inner cell mass, which will form the embryo and the trophoblast, which will form the placenta 

and fetal membranes. During implantation the blastocyst will invade the uterine decidualized 

epithelium. The stem cells of the placenta are progenitor villous trophoblast cells. They can 

develop into invasive extravillous trophoblast or into syncytiotrophoblast (Figure 1). The core of 

the highly branched villi is surrounded by two types of non-invasive trophoblast; the mononuclear 

cytotrophoblast and, when fused, it forms the multinuclear syncytiotrophoblast which overlies 

the villi. The syncytiotrophoblast has direct contact with the surrounding "loating maternal 

blood. The syncytiotrophoblast layer does not divide but is able to shed syncytiotrophoblast 

microparticles, which will enter the maternal blood via the intervillous space [1]. Nutrients in 

the maternal blood will transport across the two layers of trophoblast in to fetal blood vessels. 

These fetal blood vessels originate from the umbilical cord arteries, to supply each villus. Waste 

products and deoxygenated blood are transported in fetal arteries to chorionic villi. The fetal 

vein carries oxygenated blood and nutrients from the placenta to the fetus. Floating villi are not 

in contact with the decidua and are surrounded by the maternal blood which is present in the 

intervillous space. Other villi are attached to the decidua basalis and are called anchoring villi. 

Extravillous trophoblast invades the maternal decidua and is thereby responsible for anchoring 

the placenta to the maternal myometrium. Invasive extravillous cytotrophoblast become either 

interstitial trophoblast cells or multinucleated placental bed giant cells [2]. These cells interact 

with decidual cells in the decidua basalis. Furthermore, extravillous cytotrophoblast cells invade 

the uterine spiral arteries, becoming endovascular trophoblast and partly replacing endothelial 

cells. This gives the fetus access to the maternal vascular system to assure the supply of oxygen 

and nutrients. A balance of this invasion is very important; the cells need to invade enough for 

the anchoring and to receive nutrients, on the other hand over-invasion of trophoblast cells 
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Figure 1 Flowchart of trophoblast development. The trophoblast stem cells differentiate in different trophoblast cells. 

Migratory EVTs are found in the chorionic plate and cell islands. The syncytiotrophoblast forms a superfi cial layer facing 

the intervillous space. EVTs are the basic material for all the non-villous parts of the placenta. In fi gure 4 the different 

types of trophoblast are shown in its environment.

Figure 2 Uterus, placenta and fetal membranes. The fetal membranes consist of the amnion, chorion and the decidua 

parietalis. This latter layer is adjacent to the maternal myometrium. The placenta consists of the chonionic plate, villi 

and the decidua basalis which is adjacent to the maternal myometrium. The fetus is connected to the placenta via the 

umbilical cord.
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1has to be limited to protect the mother from hazardous complications like placenta accreta. 

In healthy pregnancies the extravillous cytotrophoblast cells invades as far as the inner third 

of the myometrium. Failure of this regulation, like inadequate placental invasion, might play a 

role in preeclampsia and fetal growth restriction. On the other hand, excessive invasion might 

lead to placenta accreta, a condition in which the placenta is abnormally deep attached in the 

endometrium and the myometrium. A schematic overview of the placenta and fetal membranes 

in relation to the fetus is depicted in Figure 2. 

Fetal membranes1.2 

The fetal membranes surround and protect the fetus throughout gestation. Their function 

includes turnover of amniotic !luid and enzymatic activity during the initiation of labor. They are 

composed of four layers, from fetal to maternal side: amnion, chorion, trophoblast and decidua. 

The amnion consists of the amniotic epithelium and the amniotic mesoderm. The latter is divided 

in to the basal membrane, a compact stromal layer and a !ibroblast layer. Amnion is adjacent to 

the chorion which facilitates sliding of the amnion across the chorion. The chorion is composed 

of the chorionic mesoderm, which includes blood vessels and a basal membrane. The chorion is 

adjoining the trophoblast layer. These trophoblast cells constitute a population of extravillous 

trophoblast. The decidual layer forms the maternal component of the membranes. In Figure 3 the 

layers are schematically shown.
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Figure 3 Fetal membranes. The layers of the fetal membranes schematically illustrated at the left panel and a histological 

picture at the right panel (H&E staining). From the fetal to the maternal side the fetal membranes consists of the amnion, 

chorion, trophoblast layer and the decidua parietalis. 
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Decidua1.3 

At term the decidua can be divided in to two parts. The maternal side of the placenta is the decidua 

basalis (Figure 4). This is the site where implantation has taken place and where the placenta has 

been developed. Furthermore, upon implantation, this is the �irst location where fetal-maternal 

contact takes place. The second part of the decidua is the decidua parietalis. This is the maternal 

side of the fetal membranes (Figure 3). 

The fetus is never in direct contact with maternal tissues. In the decidua fetal and maternal cells 

come in contact, also referred as the fetal-maternal interface. There are three contact locations. 

First, the decidua parietalis, the maternal part of the membranes contacts the non-invading 

trophoblast of the chorion. Second, the decidua basalis (Figure 4), the maternal part of the 

placenta interacts with invading villous trophoblast and third maternal peripheral blood contacts 

the syncytiotrophoblast layer during utero-placental circulation.

The investigation of immunological mechanisms at the fetal-maternal interface gives insight in 

the processes leading to the acceptance of the fetal allograft.

Immunology2. 

Immune system2.1 

The immune system protects the human body against diseases by identifying and killing 

pathogens and tumor cells. In order to function properly the cells of the immune system must 

distinguish between the own healthy cells and pathogens like virus, bacteria and parasites. The 

innate immune system attacks pathogens in a non-speci�ic manner. The human immune system 

is able to adapt over time to recognize pathogens more ef�iciently and creates immunological 

memory. This part of the immune system is referred to adaptive or acquired immunity. 

Innate immunity2.2 

The innate immune response provides immediate, but non-speci�ic �irst line of defence against 

pathogens. The main function is recruitment of immune cells to the sites of infection, through the 

production of cytokines. Furthermore, it activates the complement cascade, kills pathogens by 

white blood cells and leads to activation of the acquired immune system by antigen presentation. 

Upon an infection in�lammation is one of the �irst responses of the immune system. The individual 

recognizes infection by pain, swelling, redness, heat and a possible dysfunction of the targeted 

tissue. This occurs because chemokines are produced and attracts neutrophils and macrophages, 

which then releases cytokines and thereby triggering other parts of the immune system. The 

complement system refers to a cascade of reactions which eventually helps the immune system 

to recognize and kill pathogens. Natural killer (NK) cells, mast cells, basophils, eosinophils, 

macrophages, neutrophils and dendritic cells belong to the innate immune system. Phagocytes 

(macrophages, neutrophils and dendritic cells) are able to engulf pathogens, which results in the 

release of cytokines and products that kills the engulfed pathogen. The cells of the innate immune 

system are able to activate the acquired immune system. 
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1Acquired immunity2.3 

The acquired immune response is highly speci!ic for a particular pathogen improving with 

successive encounters via memory. T and B cells are involved in the acquired immunity. B cells are 

involved in the humoral immune response and T cells are involved in the cell mediated immune 

response. T cells recognize antigens in the complex of the major histocompatibility complex 

(MHC), presented on the cell surface. When T cells are activated they replicate and these cells 

can develop in to memory cells. Memory T cells have developed the skills to recognize antigens 

since they have previously encountered and responded to an antigen in a prior infection. If the 

pathogen is recognized again throughout life time, this will elicit a faster and a stronger immune 

response. 

The diff erences between the two immune responses are obvious. The innate immune response 

is initiated almost immediately after infection, whereas adaptive immunity takes longer to 

develop. Innate immunity uses generalized and invariant mechanisms to recognize pathogens. 

Innate immunity is often unable to eradicate the pathogens completely, and it does not provide 

a stronger immunity to re-infection. In contrast, the adaptive immune response involves speci!ic 

recognition by highly speci!ic receptors on lymphocytes. This response is powerful enough to 

eradicate the infection and provides immunological memory. However, both immune responses 

work together and are able to protect an individual from harmful pathogenic infections. If an 

individual’s immune response does not work properly, this may lead to serious complications. For 

example immunode!icient patients, who are not able to eradicate an infection are at a higher risk 

to die upon an infection. On the other hand autoimmune diseases like, diabetes or rheumatoid 

arthritis, are the result of an immune system which does not work appropriately. 

Human leukocyte antigens2.4 

Pathogen recognition requires the ability to distinguish self from non-self. The MHC plays a 

pivotal role in this process. The MHC is a region of highly polymorphic genes, located in humans 

on the short arm of chromosome six. The human MHC system is called human leukocyte antigens 

(HLA). The protein products of the HLA genes are divided in to two major groups: class I and 

class II. The structure of these proteins is comparable. HLA class I molecules include HLA-A, -B, 

and -C, which are expressed on all nucleated cells and platelets. HLA class I molecules do not bind 

to peptides derived from pathogen-derived proteins until the peptides have been transported 

into the endoplasmatic reticulum. Transport to the endoplasmatic reticulum does not occur until 

after proteolytic cleavage of the pathogen proteins has occurred in the cytoplasm [3]. Once the 

peptide has bound a HLA class I molecule, this complex will be transported to the cell surface for 

the presentation to CD8 T cells (Figure 5) [4]. The HLA class I molecules inspects the intracellular 

environment. HLA class II molecules includes HLA-DR, -DQ and -DP, they are found an a few 

specialized cell types; macrophages, dendritic cells and B cells. HLA class II molecules bind 

pathogen derived peptides in a location inside endocytic vesicles, where the pathogens proteins 

are present (Figure 5). A peptide will bind to HLA class II molecule and this complex will be 

transported to the cells surface for the presentation to CD4 T cells [5]. The HLA class II molecules 

presents peptides derived from proteins from the extracellular environment. 

The T cells recognize peptides bound to HLA molecules. To bind speci!ically the T cell receptor 

must recognize both the peptide and the part of the HLA molecule surrounding the peptide. 

This leads to antigen recognition and hence T cell activation. CD4 T cells, also known as T helper 

cells or regulatory cells, function by secreting cytokines that instruct other cells to acquire 

eff ector function. They only recognize antigens presented by HLA class II molecules. CD8 T cells 

diff erentiate into cytotoxic eff ector cells and kill the target cells that they recognize. These cells 

only recognize antigens presented by HLA class I molecules. 
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1Cytokines2.5 

Cytokines are small proteins secreted by cells to mediate and regulate immune responses, 

in!lammation and hematopoiesis. After an immune stimulus cytokines are produced and secreted, 

which then will act on a speci!ic membrane receptor. Their expression pro!ile has been used to 

categorize immune responses and the functional status of the immune system. Many cytokines 

have been discovered, and the ones relevant for this thesis, are highlighted here.

Interleukin-2 – IL-2 is produced after antigen binding to the T cell receptor. This leads to an 

expansion of IL-2 receptors on the T cell surface, and leads to growth and diff erentiation of T cells. 

Normal pregnancy is characterized by a shift towards type 2 immunity and inhibition of cytotoxic 

type 1 (IL-2) immune responses. An increased production of IL-2 by peripheral mononuclear 

cells in preeclampsia has been found [6]. 

Interleukin-6 – IL-6 has important roles in hematopoiesis, acute phase reactions and immune 

responses. IL-6 is a pro-in!lammatory as well as an anti-in!lammatory cytokine. It is produced by T 

cells and macrophages to stimulate immune responses. It acts as an anti-in!lammatory cytokines 

by inhibiting tumor necrosis factor (TNF)-α and IL-1, and it activates IL-10. In contrast, increased 

concentrations of IL-6 and other pro-in!lammatory (IL-1, TNF-α, and IL-8) cytokines are found in 

the placentas of pregnancies complicated by pre-term premature rupture of the membranes [7]. 

Furthermore, IL-6 levels in the amniotic !luid are increased preceding uterine contractions [8]. 

Interleukin-10 – IL-10 is an immunosuppressive molecule, produced by T cells, macrophages, 

monocytes and B cells. This cytokine is spontaneously produced in high levels by decidual 

macrophages [9]. It is a type 2 cytokine and appears to be pregnancy protective [10]. IL-10 is 

seen as a facilitator of successful pregnancy and alterations of the levels of IL-10 may be related 

to adverse pregnancy conditions [11]. Decreased villous trophoblast staining of IL-10 has been 

demonstrated in women with preeclampsia compared to normal pregnancy with correlated 

gestational age [12,13]. IL-10 administration in abortion prone mice signi!icantly abrogated the 

incidence of spontaneous fetal loss [14]. IL-10 is produced in a gestational age-dependent manner. 

In !irst and second trimester the IL-10 levels are signi!icantly higher. This may suggest that IL-

10 is downregulated at term to prepare for the onset of labor programmed by the production 

of an in!lammatory milieu [15]. Furthermore, !irst trimester missed abortion placental samples 

showed decreased IL-10 production [16]. 

Interleukin-17 – Th17 cells, the CD4+ cells that produce pro-in!lammatory IL-17, is a recently 

discovered population involved in the maternal immunomodulation [17,18]. These cells are 

closely related to regulatory T cells and diff erentiate upon in!lammatory signals whereas 

conditions that promote tolerance favor generation of regulatory T cells [19]. A balance between 

Th17 and regulatory T cells might be correlated with successful pregnancy; however the role of 

Th17 in human pregnancy remains to be investigated more substantially.

Transforming growth factor-β – TGF-β has well described immunosuppressive eff ects. Already 

during early pregnancy TGF-β might have an important role since it is involved in implantation 

of the blastocyst by inducing apoptosis of endometrial cells within the uterus. Decidual TGF-β 

is proposed to act on uterine NK cells to downregulate their cytotoxicity producing the uterine-

speci!ic phenotype [20]. TGF-β can stimulate two distinct receptors and thereby it is able to initiate 

two diff erent SMAD signaling pathways with opposite eff ects. The TGF-β/ALK1 pathway induces 

proliferation and migration, while activation of the TGF-β/ALK5 signaling pathway inhibits 

these responses. Activation of the TGF-β/ALK5 signaling pathway leads to a cascade of reactions 

eventually leading to the phosphorylation SMAD2. Therefore SMAD2 mediates the signals of TGF-β 

and thus regulates several cellular processes such as proliferation, apoptosis, tissue remodeling 

and diff erentiation. Detection of phosphorylated SMAD2 reveals TGF-β signaling. Endoglin, a 

co-receptor of the TGF-β receptor, highly expressed during angiogenesis, is essential for ALK1 
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signaling. In the absence of endoglin, the TGF-β/ALK5 signaling is predominant and maintains 

quiescent endothelium. High endoglin expression stimulates the ALK1 pathway and indirectly 

inhibits ALK5 signaling, thus promoting the activation state of angiogenesis [21]. Endoglin is 

expressed on trophoblast. Increased serum levels of soluble endoglin are found in pregnancies 

complicated by preeclampsia [22]. 

Galectin-1 – Galectin-1 is an immunoregulatory glycan binding protein. Galectin-1 is able to 

modulate immune cell functions in diff erent manners, for example by blocking the secretion 

of pro-in"lammatory molecules [23], apoptosis of activated T cells [24] and antagonizing T cell 

activation [25]. Galectin-1 de"icient mice show increased rates of fetal loss when compared with 

wild type controls, and injection of Galectin-1 in to the de"icient mice rescued the pregnancy, 

possibly leading to expansion of IL-10 producing regulatory T cells [26].

Vascular endothelial growth factor – Vascular endothelial growth factor (VEGF) is an angiogenic 

protein. Membrane-bound fmslike tyrosine kinase 1 (Flt-1) is a receptor for VEGF and placental 

growth factor (PLGF). A splice variant of Flt-1 is soluble Flt-1 (sFlt-1, also known as sVEGFR-1) 

which antagonizes the VEGF and PLGF receptor. This soluble form prevents interactions of 

VEGF and PLGF with the functional membrane bound Flt-1 which thereby leads to endothelial 

dysfunction. In preeclampsia sFlt-1 is expressed in excessive amounts [27]. Hypoxia is considered 

to be the trigger for the production of sFlt-1 by villous trophoblast cells. VEGF antagonism by 

sFlt-1 may cause the clinical manifestations of preeclampsia, such as hypertension and proteinuria 

[28]. 

Interferon-γ – IFN-γ is a pro-in"lammatory cytokine which plays a critical role in the initiation of 

endometrial vasculature remodeling, angiogenesis at the implantation side and maintenance of 

the decidua [29]. Deviations in these pregnancies are thought to lead to gestational complications 

like preeclampsia and fetal loss [30]. IFN-γ is involved in the innate and adaptive immunity 

against virus, intracellular bacterial infections and tumor control. It is predominantly produced 

by NK cells. 

Immunology at the fetal-maternal interface3. 

The immunological paradox is a medical enigma that has stimulated research for half a century. 

In the early days four hypotheses were postulated [31]. The "irst hypothesis was that the fetus 

lacked immunogenicity. This hypothesis is abandoned since studies showed that the fetus has 

immunogenic properties [32]. The second hypothesis was based on a possible diminished 

maternal responsiveness to pregnancy, leading to acceptance of the foreign fetus. Although 

peripheral changes during pregnancy are described, this hypothesis can not totally hold since 

this would make the pregnant women susceptible to harmful infections. The third hypothesis 

re"lects the uterus as an immune-privileged site; however this is not a unique characteristic of the 

uterus since ectopic pregnancies occur. And the fourth hypothesis states that the placenta is an 

immune barrier. The immune barrier does not re"lect a physical barrier, since fetal and maternal 

cells indeed come in contact at the location known as the fetal-maternal interface. The acceptance 

of the immunological foreign fetus is mediated by both maternal and fetal mechanisms. Already 

during implantation immunological adaptations are necessary, maintaining till the end of a 

successful pregnancy. 
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1Immune escape mechanisms by trophoblast3.1 

HLA expression – Villous trophoblast (syncytiotrophoblast) expresses no HLA antigens on its 

surfaces. Extravillous trophoblast expresses a very particular set of HLA. Only four types of HLA 

class I genes are expressed, HLA-C, HLA-E, HLA-F and HLA-G. These HLA molecules may dampen 

the immune response by interaction with the leukocyte inhibitory receptors (LIR) on uterine NK 

cells, macrophages and with the T cell receptor on CD8+ cells [33,34]. This interaction blocks the 

cytotoxicity of these cells. NK cells have been shown to kill cells which lack HLA expression on the 

cell surface, therefore, by expression HLA molecules, NK cell mediated cytotoxicity is avoided [35]. 

HLA-G is mostly restricted in expression to the extravillous trophoblast. Class II HLA molecules 

are completely absent on extravillous trophoblast cells. Hence, the semi-allogeneic fetus is able to 

evade immune rejection by the maternal immune system. 

B7 family – Second, the co-stimulatory molecules of the B7 family are selectively expressed on 

the trophoblast cells in human placenta. Activation of lymphocytes in circulating maternal blood 

is repressed by expression of B7H1 which is uniquely expressed on syncytiotrophoblast [36]. 

IDO – Indoleamine 2,3-diogygenase (IDO) is an enzymatic protein that catabolises tryptophan 

[37]. T cells are uniquely sensitive to !luctuations of tryptophan, and by the destruction of 

tryptophan by IDO the T cells become inactivated. IDO is produced by trophoblast cells and 

thereby this mechanism may contribute to the reduction or inhibition of immune reactions. 

Furthermore, IDO is as well produced by macrophages in response to IFN-γ.

Th1/Th2 balance – Uncomplicated pregnancy is considered to be an anti-in!lammatory 

condition with predominantly the production of T helper (Th)-2 cytokines. Th1-type reaction 

in the placenta generates mainly in!lammatory responses and correlate with miscarriage. Th2 

cytokines are produced at the fetal-maternal interface and can inhibit Th1 responses, improving 

fetal survival but impairing responses against some pathogens [38]. Th1 cells produce IL-2 and 

IFN-γ, and Th2 cells synthesise IL-4, IL-5, IL-6, IL-9, IL-10 and IL-13. Furthermore, the human 

placenta produces immunosuppressive molecules as progesterone, prostaglandin E2, and 

anti-in!lammatory cytokines as IL-4 and IL-10 [33,39]. In this way trophoblast cells are able to 

in!luence the Th1/Th2 balance by the production of cytokines and hormones [10].

Complement system – In the placenta, the complement system helps to protect the mother and 

fetus against the invasion of pathogens. The fetus is protected by the maternal immune system 

by the expression of complement inhibitors. Trophoblast cells express complement regulatory 

proteins, which are important to protect the fetal cells because complement activation leads to 

destruction of the immunologic target [40]. Uncontrolled complement activation is prevented by 

decay accelerating factor (DAF), membrane cofactor protein (MCP), and CD59 [41]. 

Furthermore, tumor necrosis factor (TNF) α, Fas ligand (CD95L), TNF related apoptosis inducing 

ligand (TRAIL) are ligands identi!ied in or on human trophoblast cells which are able to support 

the pregnancy host defense by supporting the maternal or fetal antibody production [42-44]. 

The various strategies of immune evasion may result in the acceptance of the fetus. However, despite 

these mechanisms the maternal immune system is aware of paternal antigens. Microchimerism 

is the persistence of a small population of foreign cells in another individual. Microchimerism is 

present between mother and fetus [45]. Therefore, other additional mechanisms are necessary to 

tolerate allogeneic cells by the maternal immune system. The microparticles which are shed from 

the syncytiotrophoblast layer lack HLA expression and therefore they will not be attacked by 

alloreactive T cells. However, the microparticles are able to bind to monocytes and stimulate the 

production of in!lammatory cytokines, making them potential contributors to altered systemic 

in!lammatory responsiveness in pregnancy [46]. 
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Maternal cells3.2 

The decidua is populated by a variety of leukocytes during pregnancy [47,48]. Levels of 

lymphocytes are relatively low. During implantation the leukocytes mainly consist of NK cells. 

Macrophages form, after the uterine NK cells, the largest population of decidual leukocytes in 

early pregnancy (20-30%). Their numbers remain relatively constant throughout gestation 

[49]. In contrast, the numbers of NK cells decrease during pregnancy being absent at term [50]. 

This suggests that the innate immune system plays an important role in fetal-maternal immune 

adjustment. Macrophages as the main cells of the innate immune system are key players in the local 

regulation of maternal immune responses toward the fetus. The presence of both macrophages 

and dendritic cells at the fetal-maternal interface permits modulation of the immune response to 

protect the mother and fetus. Figure 6 summarize the leukocyte densities at the fetal-maternal 

interface during gestation.  

Antigen presenting cells

An antigen has the capacity to trigger the adaptive immune response through several steps. 

The antigenic particles or proteins must be captured, processed and presented to T cells. These 

activities are performed by antigen presenting cells (APCs). Three kinds of APCs are de!ined: 

B lymphocytes, macrophages and dendritic cells. APCs sample the environment for potentially 

harmful extracellular particles. They are able to present components of antigenic particles on 

their cell surface via an intracellular breakdown mechanism. T cells can recognize the membrane 

bound components. To come in contact with the T cells, APCs transport antigens from the tissues 

to the peripheral lymphoid organs. 

B cells

Only a few B cells can be detected in the endometrium and decidua. Their number does not vary 

during pregnancy. Uterine B cells are able to respond to antigenic challenges in for example 

pregnancies complicated with intrauterine infections. 

Macrophages

The origin of the macrophages is in the bone marrow where myeloid progenitors diff erentiate 

into promonocytes and then into circulating monocytes which migrate transendothelially into 

the various organs to become macrophages. These macrophages are very eff ective in presenting 

antigenic peptides to T cells. They occur in almost all organs of the body. Upon fertilization, 

macrophages !lux into the decidualized endometrium, and are found in close association with 

trophoblasts populations which secrete chemotactic molecules [51]. Macrophages comprise at 

least 10% of total decidual leukocytes [52]. In the decidua parietalis the trophoblast cells are 

scarce and also the macrophages are found in few numbers [50]. Macrophages are pluripotent, 

especially near the end of pregnancy, therefore it is hypothesized that their relative number 

increase at the end of gestation [52]. The close association of macrophages and extravillous 

trophoblast cells suggest an early recognition of fetal tissue by the immune system and a role 

in placental development, possibly by connection with HLA-G. Two types of macrophages 

populate the decidua, pro-in!lammatory CD163- type 1 macrophages and immune modulatory 

CD163+ type 2 macrophages. Type 1 macrophages produce high levels of IL-12 and have a T cell 

stimulating potential. Type 2 macrophages do not have the T cell stimulating potential, do have 

a phagocytosis potential, and produce high levels of IL-10. Several studies show that decidual 

macrophages may have an immunoinhibitory function at the fetal-maternal interface since these 

macrophages are not able to diff erentiate into dendritic cells. Furthermore, they produce IL-10 

and IDO and express low levels of the T lymphocyte co-stimulatory molecules CD80 and CD86 

[9]. IL-10 can, by blocking the expression of co-stimulatory molecules on APCs, reduce the T cell 

activity against the fetus [53].
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Dendritic cells

Dendritic cells are closely related to macrophages. Dendritic cells have the power to induce 

primary immune responses and occur in mucosal sites such as skin, airways, gut and decidua. 

These cells transform information to the adaptive immune system. They also play a role in 

the induction of immunological tolerance by regulation of T cell mediated immune responses. 

Dendritic cells comprise approximately 1-2% of decidual leukocytes. 

Two types of dendritic cells are reported in the literature. Myeloid dendritic cells are the major 

subpopulation of human blood dendritic cells and express the BDCA-1 (CD1c) antigen. These 

cells are ef!icient in antigen uptake and presentation. Plasmocytoid (or lymphoid) dendritic 

cells express the antigen BDCA-2 (CD303) and have the ability to induce T cell diff erentiation 

into Th2 cells. Thus dendritic cells are able to modulate the immune system in a stimulatory 

or tolerogenic way. This makes them suitable cells to exert regulatory functions in pregnancy. 

Consequently, decreased levels of plasmocytoid dendritic cells can be involved in the impairment 

of diff erentiation into Th2 cells in preeclamptic pregnancies. This has been shown in peripheral 

blood [54]. Furthermore, in the decidua of preeclamptic pregnancies a dense in!iltration of 

immature and mature dendritic cells has been demonstrated [55].

Dendritic cells have several mechanisms to induce immune tolerance in absence of in!lammation 

or infection. First, dendritic cells present antigens in lymph nodes and in response T cells 

proliferate and are then destroyed. Second, dendritic cells can induce IL-10 production. Dendritic 

cells express IDO, which is involved in inhibiting T cell proliferation [56]. These mechanisms 

may operate to prevent maternal T cell activation to the trophoblast. In absence of infection 

dendritic cells have an immature phenotype. They capture antigens generated by dying, infected 

or allogeneic cells. The presentation of these antigens to T cells induces antigen-speci!ic T cell 

tolerance. Antigen capture by dendritic cells in an infectious environment drives dendritic cells 

to draining lymph nodes. Here the dendritic cells will transform into mature dendritic cells. This 

cell functions as a potent APC, capable of activating naive and memory helper T cells, cytotoxic 

T cells and B cells [57]. Relating these diff erent functions to the decidua, immature dendritic 

cells present fetal antigens from invading trophoblast cells and present these to maternal T cells 

which are locally in attendance. This interaction induces tolerance to these antigens. However, in 

the midst of an infection mature dendritic cells are able to capture fetal antigens and migrate to 

lymph nodes which could result in maternal T cell reactivity to the conceptus.

Gestational age
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T cells

The numbers of decidual T cells increase during pregnancy, starting with 5-20% of all CD45+ 

decidual lymphocytes in early pregnancy samples, till 40-80% at term [58]. Decidual T cells 

encompass a very heterogenic subset of T cells that include activated CD4+ and eff ector memory 

type CD8+ T cells. These activated T cells are found together with T cells subsets that are capable 

to suppress the decidual lymphocyte response [59]. Suppression of T cells may lead to acceptance 

of the allograft. Therefore, T cell research has dominated research in the immunology of pregnancy 

in the past years. Furthermore, T cells play an important role in the immunology after solid organ 

transplantations. CD4+ T cells can respond directly or indirectly to antigens of the semi-allogeneic 

allograft. Extravillous trophoblast cells only express HLA-C as the HLA class I molecules, and no 

HLA class II molecules. Therefore direct presentation is unlikely to be very important. In indirect 

presentation, allogeneic HLA molecules are taken up and processed by recipient APCs and these 

processed T cells are presented to recipient T cells in the context of self HLA. In the decidua 

dendritic cells and macrophages are present to ful�ill this role. 

Regulatory CD4+CD25bright T cells are present in human decidua in higher numbers compared 

to peripheral maternal blood [59], suggesting an important role at the fetal-maternal interface. It 

has been shown that fetus speci�ic CD4+CD25bright T cells are recruited to the maternal decidua 

where they are able to suppress the local immune response [60]. T cells produce a variety of type 

1 and type 2 cytokines and thereby may contribute to the local regulation of the fetus-speci�ic 

responses within the decidua. 

Alterations in the distributions of T cells may lead to pregnancy complications. Decreased 

numbers of regulatory T cells in peripheral blood have been found in preeclampsia and recurrent 

spontaneous abortions [61,62]. These results postulate that a suf�icient number of regulatory T 

cells is necessary to maintain an uncomplicated pregnancy. The exact mechanism how regulatory 

T cells are activated and induce tolerance during pregnancy remains to be elucidated.

NK cells

NK cells are the predominant cell type of the decidua during implantation. Every menstrual cycle 

uterine NK cells are activated and expanded in to the decidua. High numbers are found in the 

stroma and clustered around glands and spiral arteries. When trophoblast invasion is complete, 

after the twentieth week, the number of NK cells will decrease. NK cells interact with extravillous 

trophoblast cells, this interaction is thought to be essential for the control of implantation [63]. In 

tubal pregnancies, which are characteristic for excessive trophoblast invasion, NK cells are absent 

[64]. In preeclampsia abnormal implantation occurs as a result of increased NK cell activity. NK 

cells express a variety of receptors which are able to recognize HLA class I molecules. Decidual NK 

cells are diff erent compared to peripheral NK cells. Decidual NK cells express perforin, granzyme 

A and B and, unlike peripheral NK cells, they contain reduced cytolytic activity to HLA class I 

negative targets [65], secrete proteins with immunomodulatory potentials [66] and produce 

angiogenic factors like VEGF and PLGF [67]. Furthermore, decidual NK cells may recognize fetus 

HLA-C1 and HLA-C2 by the expression of killer immunoglobulin like receptor (KIR) [68].

It seems that mother’s immune suppression is restricted to responses directed against the fetus. 

The fetus as well as the mother is dependent on the maternal immune system during the pregnant 

state. Even beyond birth the fetus is protected from harmful pathogens by passive immunization 

by the transfer of maternal antibodies through the colostrum and milk [69]. 
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1Preeclampsia4. 

Four hypertensive disorders can occur during pregnancy; preexisting hypertension, gestational 

hypertension, preeclampsia and superimposed preeclampsia [70]. Preexisting hypertension is 

de!ined as systolic pressure of higher than 140 mmHg and/or diastolic pressure higher 90 mmHg 

before pregnancy, present before the 20th week of pregnancy, or persists longer than 12 weeks 

postpartum. Gestational hypertension refers to elevated blood pressure !irst detected after 20 

weeks of gestation without proteinuria. Some patients with gestational hypertension will develop 

proteinuria over time and be considered preeclamptic, while others will be diagnosed with 

preexisting hypertension because of persistent blood pressure elevation postpartum. Preeclampsia 

refers to the syndrome of new onset of hypertension and proteinuria after 20 weeks of gestation 

in a previously normotensive woman or worsening hypertension with new onset proteinuria in 

a woman with preexisting hypertension (superimposed preeclampsia). Additional symptoms 

include visual disturbances, headache, epigastric pain, thrombocytopenia and abnormal liver 

function can occur. Preeclampsia occurs in approximately 3 to 14% of all pregnancies worldwide 

[71,72]. Abnormal placenta development plays a critical role in the pathogenesis of preeclampsia. 

Immunological factors are postulated to contribute to this abnormal development, since prior 

exposure to paternal antigens appears to protect against preeclampsia [73,74]. Preeclampsia is 

only a disease of pregnancy since it is cured after delivery. 

The pathogenesis of preeclampsia starts during implantation and occurs before clinical 

manifestation. In normal pregnancies the spiral arteries are invaded by cytotrophoblasts and 

these vessels undergo a transformation from small to large leading to facilitated blood !low to the 

placenta. This remodeling of spiral arteries begins in the !irst trimester and is completed by 18 to 

20 weeks of gestation. In preeclampsia the trophoblast cells do not have the capacity to migrate 

into the myometrium part of the spiral arteries. This will result in placental hypoperfusion, since 

the re-modulation of the vessels does not occur [75]. Ischemia and impaired placentation are 

thought to be the primary events leading to the release of soluble factors that are able to cause 

systemic endothelial dysfunction resulting in the clinical symptoms of the disease [76]. 

Preeclampsia and immunology4.1 

Preeclampsia is seen as an immunological disease. It is a disease of primipara and it is thought 

to occur in multipara with new parternity since previous studies have shown that partner 

change increased the risk of preeclampsia or hypertension in pregnancy. However, women who 

change partners often have a longer birth interval, and a longer interval is associated with a 

higher incidence of preeclampsia [77]. Arti!icial donor insemination and ED increase the risk of 

hypertensive disorders in pregnancy. In contrast, there is a protective role of maternal exposure 

to seminal !luid of her partner during an extended period [74].

Pregnancy related disorders as preeclampsia, abortions or fetal growth restrictions are a major 

cause of morbidity and mortality of both the mother and fetus. These disorders are related with 

increased levels of type-1 in!lammatory cytokines, decreased levels of type-2 cytokines and 

macrophages have been found to be aberrantly activated [78].

In the decidua a specialized population of NK cells are present in high numbers at the implantation 

side. Direct interaction between invading trophoblast and decidual NK cells results in the 

production of various cytokines [79]. Hereby, NK cells play a direct role in trophoblast invasion 

and spiral artery remodeling and hereby disturbance of NK cell functions might be involved in 

the pathogenesis of preeclampsia. The receptors for HLA-C expressed on NK cells are known as 

KIRs. Every gestation represents a unique couple-speci!ic interaction between fetal trophoblast 

HLA-C and maternal KIRs [80]. Speci!ic HLA-C – KIR interactions are strongly associated with 
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preeclampsia; mothers lacking most or all activating KIR (women with the AA genotype) when 

the fetus possessed HLA-C belonging to the HLA-C2 group, are at a greatly increased risk of 

preeclampsia [81]. Furthermore, mothers with KIR AA frequencies have an increased risk of 

aff ected pregnancies only when the fetus has more group 2 HLA-C genes (C2) than the mother 

[82].

In normal pregnancy extravillous trophoblasts are located around the spiral arteries. Macrophages 

are located next to this layer in the stroma of the spiral arteries. In pathological pregnancies the 

distribution of macrophages is altered. The macrophages are located within and around the spiral 

arteries. Extravillous trophoblast cells are separated from the arteries. This creates a barrier 

between the spiral arteries and the invading trophoblast cells and complicates the transformation 

of spiral arteries [83]. In the normal situation, macrophages enhance trophoblast survival while 

in the pathologic situation the macrophages induce apoptosis. Aberrantly activated macrophages 

could contribute to the etiology of preeclampsia, fetal growth restrictions or abortions by 

disturbing the placental angiogenesis. Macrophages secrete the angiogenic factor VEGF [84]. Low 

levels of VEGF and PLGF may contribute to the de�iciency in placental angiogenesis. The function 

of VEGF and PLGF can be inhibited by sFlt-1, which is a splice variant of VEGFreceptor 1 (Figure 

7). In pregnancies complicated by preeclampsia the level of sFlt-1 is increased and alters the 

angiogenic activity of macrophages by binding to its receptors [84]. 

Fetal and placental growth is dependent on an adequate IL-10 production. A decreased IL-10 

expression in trophoblast in preeclampsia compared to normal pregnancy has been observed 

[13]. IL-10 can promote the diff erentiation of monocytes into macrophages. Since the level of 

IL-10 is lower in preeclampsia, it is possible that the number of macrophages is also reduced. 
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Figure 7 Cytokines involved in preeclampsia. During normal pregnancy vascular homeostasis is maintained by 

physiological levels of vascular endothelial growth factor (VEGF) and transforming growth factor-β1 (TGF-β1) signaling 

in the vasculature. In preeclampsia soluble endoglin (sEng) and soluble fmslike tyrosine kinase 1 (sFlt-1) derived from 

placental tissue are able to inhibit the normal functions of VEGF and TGF-β1, resulting in endothelial dysfunction [88].
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1Macrophages in the basal plate of the preeclamptic decidua are present in a reduced number 

compared to normal control decidua [85]. This can be caused by reduced migration of monocytes 

through the blood vessels into the tissue, or by reduced diff erentiation after migration of 

monocytes. However, discrepancy in literature exists whether the number of macrophages in 

preeclampsia is increased, reduced or unaltered. 

Since the risk of preeclampsia is lower in second pregnancies with the same partner, there must 

be a certain degree of immunological memory. T cells belong to the adaptive immune system, and 

an activated T cell is able to develop in to memory cells. For this reason, T cells probably have a 

role in the pathogenesis of preeclampsia. NK cells, macrophages and dendritic cells belong to the 

innate immunity, which is probably not able to develop immunological memory. However, recently 

it has been shown that NK cells can demonstrate immunological memory [86,87]. If decidual NK 

cells are also capable of immunological memory, they might play a role in the pathogenesis of 

partner speci"ic preeclampsia. 

Egg donation5. 

ED is the donation of unfertilized eggs to a woman who does not have (appropriate) eggs of herself 

or to women with genetic disorders. The egg donor receives a hormone treatment followed by 

an egg retrieval procedure. After retrieval the eggs are fertilized by sperm of the future father. In 

the meantime the recipient uterus is appropriately prepared to receive the fertilized eggs. After 

several days the best embryo is transferred in the uterus of the recipient. 

The law forbids commercial and anonymous ED in the Netherlands. ED based on non-commercial 

purposes is allowed. The main reason to perform ED in the Netherlands is premature ovarian 

failure. This disease is characterized by early onset of ovarian failure by for example radiotherapy, 

genetic disorders, surgical destruction of the ovaries or an unknown cause. The woman does 

have a functional uterus. Furthermore, ED is necessary if the ovary can not be reached in an IVF 

procedure, although women do have correctly functioning ovaries. An additional indication to 

perform ED is present in women who have a high risk of getting children with high risk genetic 

disorders. The age on which women gets their "irst child has increased up till 29.4 years in the 

Netherlands in 2008. Reasons to postpone pregnancy are the availability of anti-conceptive and 

better educational and career opportunities for women. Since the year 2000 the number of women 

who go abroad for egg donation has increased threefold. Couples wishing an anonymous donor or 

who can not "ind a (non-pro"it) egg donor in the Netherlands go abroad. Spain is by far the most 

popular country, followed by Belgium. Overall, abroad more embryos are transferred per cycle 

compared to the single embryo transfer in the Netherlands. Although exact numbers are dif"icult 

to collect, a maximum of "ive embryo transfer per cycle has been described in ED pregnancies 

performed abroad. Multiple pregnancies are potentially hazardous for the gestational carrier and 

fetuses since they lead to more complications. The costs for ED abroad diff er from 3,000 up to 

30,000 euro per treatment [89].

Pregnancy conceived after ED, re"lects an interesting model to study immunological reactions. ED 

pregnancies are a result of in vitro fertilization of a donated egg by a relative, or more commonly 

an unrelated donor. Hereby, neither of the fetal haplotypes matches with the gestational carrier. 

Progressive knowledge in the "ield of assisted reproductive technologies and extension of the 

medical indications leads to an increase of number of ED pregnancies. Nevertheless, it can lead to 

harmful maternal consequences during pregnancy, which may be related to the allogeneic nature 

of the fetus. Maternal complications in ED pregnancies include an increased risk of pregnancy 

induced hypertension, an increased rate of caesarean section deliveries, an increased risk of 

postpartum hemorrhage and an increased risk of "irst trimester vaginal bleeding. Although the 
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maternal complications are higher in ED pregnancies compared to spontaneously conceived 

pregnancies, there is no increased complication risk for the fetus or newborn [90-93].

Transplantation and egg donation pregnancies5.1 

Since in ED pregnancies the entire fetal genome is allogeneic towards the gestational carrier, 

immune mechanisms in successful ED pregnancies might be relevant for the induction of 

immunological tolerance in solid organ transplantation. 

Blood transfusions are the most widespread kind of transplantations in clinical medicine. Compared 

to solid organ transplantation, blood transfusions have less immunological barriers. Recipients 

and donors are typed and cross-matched for the ABO and the rhesus erythrocyte antigens. If an 

ABO incompatible organ is transplanted a hyperacute rejection may occur. Anti HLA antibodies 

may also be present in prospective transplant patients. Blood transfusions or pregnancies are the 

source of these antibodies. Fetal cells enter the maternal circulation and antibodies against the 

paternal HLA antigens or in case of ED, the donor HLA antigens. The presence of HLA antibodies 

is associated with a reduced chance of a live birth [94]. Besides blood transfusion and pregnancy, 

anti-HLA antibodies can be developed after previous organ transplants. 

Acute rejection of the transplanted graft occurs if donor antigen presenting cells carry complexes of 

donor HLA molecules on their surfaces. In a secondary lymphoid organ they will enter T cell areas 

and present their antigens towards them. The recipient T cells become activated by speci!ically 

binding to the complexes of allogeneic donor HLA. The eff ector T cells have the capability to 

attack the transplanted organ. In (ED) pregnancy this type of immunological rejection possibly 

plays no role, since maternal T cells do not come in contact with fetal antigen presenting cells. In 

chronic rejection, indirect antigen presentation plays a major role. The recipient’s dendritic cells 

enodcytose HLA class I and II particles from donor cells. The peptides are then presented by the 

recipient’s HLA and CD4 T helper cells may become activated. Indirect presentation possibly plays 

a role in the immunology of pregnancy. Fetal derived microparticles are present in the maternal 

bloodstream and might be taken up by maternal antigen presenting cells [46,95] and present 

them via the indirect pathway to maternal T cells. 

In placentas of ED pregnancies severe chronic deciduitis combined with !ibrinoid deposition has 

been observed [96]. These pathological !indings are localized in the basal plate of the placenta, the 

location where the extravillous cytotrophoblast lines with the maternal decidua. This pathological 

!inding is considered to be immunological modulated. 
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1Outline of this thesis6. 

The question why the semi-allogeneic fetus is accepted by the immune system of the mother 

has already risen in 1953 [97]. Medawar was the !irst to imply the fetus as a semi-allograft. Ever 

since then much research has been performed in the !ield of reproductive immunology. However, 

until today pregnancy remains an immunological paradox and the exact mechanism leading to 

the acceptance of the semi-allogeneic fetus remains to be elucidated. Although the mechanism 

is still not yet well understood in normal pregnancies, immunological knowledge of complicated 

pregnancies might give insight in the underlying mechanisms of tolerance. 

The aim of this thesis is to study the immunological mechanisms in uncomplicated, preeclamptic, 

ED and non donor IVF pregnancies. Preeclampsia and ED are seen as an additional immunological 

challenge during pregnancy. Since ED pregnancies are characterized by a higher number of 

HLA mismatches compared with naturally conceived pregnancies, this thesis hypothesizes that 

diff erential immune regulation is necessary to maintain pregnancy.  

To investigate the immunological mechanism, placentas of uncomplicated, preeclamptic, ED and 

non donor IVF pregnancies were collected. They were used to study the local immunological 

mechanisms by immunohistochemistry analysis of the decidua basalis and parietalis. Blood 

samples of umbilical cord blood and of the mothers of uncomplicated, preeclamptic, ED, and non 

donor IVF pregnancies were taken and cells were isolated. Those cells were used to simulate 

peripheral immune responses. The reaction of peripheral cells from uncomplicated, ED, and 

IVF pregnancies and non pregnant controls up on stimulation with own umbilical cord blood, 

allogeneic umbilical cord blood and peripheral blood samples was measured by mixed lymphocyte 

reactions and by cytokine production. The cells were phenotyped using !low cytometry. Of the 

pregnancies described in this thesis the number of HLA mismatches was calculated. 

Chapter 2 investigates the peripheral immune response in uncomplicated pregnancies compared 

with non pregnant controls. The speci!ic and non-speci!ic maternal immune response was 

studied. The aim of Chapter 3 is to study macrophages in the decidua of preterm preeclamptic 

pregnancies compared with uncomplicated preterm control and control pregnancies by 

immunohistochemistry. Chapter 4 describes two case reports. The !irst case describes a 

woman pregnant after IVF suff ering from preeclampsia while the fetuses have severe growth 

retardation. The second case describes an ED pregnancy with preeclampsia without fetal growth 

retardation. The question is raised whether preeclampsia in ED pregnancy is based on diff erent 

pathophysiological mechanism.

The focus of the studies described in the Chapters 5 – 7 is on ED pregnancies. Since the fetus in 

ED pregnancies is fully allogeneic to the gestational carrier, immune mechanisms in successful 

ED pregnancies might be relevant for the induction of immunological tolerance in solid organ 

transplantation. This is discussed in Chapter 5. Chapter 6 gives an overview of the clinical and 

immunological aspects of ED pregnancies. In Chapter 7 ED, non donor IVF and naturally conceived 

pregnancies are studied. The expression of several cytokines in the placenta and in serum of the 

patients is investigated. Furthermore, the phenotype of cells in peripheral blood is analyzed and 

the reactivity of those cells in response to umbilical cord blood of the own or allogeneic umbilical 

cord blood is studied. 

The conclusions of the diff erent chapters are summarized and discussed in Chapter 8.
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Objective: We analyzed peripheral blood from women at term pregnancy for leukocyte 

composition, in vitro proliferative responses and cytokine production after non- and fetus-speci!ic 

stimulation. 

Methods: Maternal PBMCs were collected and stimulated with umbilical cord blood (UCB) of 

own child, 3rd-party UCB, non-speci!ic stimulus PHA and anti-CD3 antibody, with non-pregnant 

females (cPBMC) as control. Nine combinations of patient-child-3rd-party child and control 

were selected on basis of sharing one HLA-DR antigen. The response of mPBMC upon speci!ic 

stimulation with fetal antigens was similar to cPBMC. 

Results: No diff erences were found when comparing the maternal response upon stimulation to 

her own child with stimulation to a control child. Non-speci!ic stimulation with PHA and anti-CD3 

antibody did not reveal a diff erence in proliferation rate between mPBMC and cPBMC. However, 

mPBMC contained a higher percentage of CD14+ cells (p=0.001) and activated T cells (CD25dim, 

p<0.0001), but a lower percentage CD16-CD56bright NK-cells (p=0.001) and CD16+CD56+ NK-

cells (p=0.003). mPBMC produced more IL-6, IL-10 and IL-17 compared to cPBMC (p<0.05). 

Conclusions: We found diff erences in lymphocyte composition and cytokine production between 

mPBMC and cPBMC. These diff erences did not result in quantitative changes in proliferative 

responses during pregnancy compared to non-pregnant controls. 
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Introduction

During pregnancy, semi-allogeneic fetal tissue is directly exposed to the maternal blood since 

it invades the maternal decidua. This implies a possible attack of fetal tissue by the immune 

system of the mother. However, the fetus escapes from maternal rejection and is tolerated by 

the induction of several maternal and fetal mechanisms. In 1953, Medawar suggested several 

mechanisms to explain this ‘immunological paradox of pregnancy’ [1]. One of his explanations is 

based on a diminished maternal responsiveness to pregnancy, leading to acceptance of the foreign 

fetus. Indeed, the cellular immune response seems to be decreased during pregnancy, re!lected 

by the increased susceptibility to viral infections and speci!ic intracellular pathogens, such as 

Listeria monocytogenes and by the remission of some T-cell mediated autoimmune diseases in 

pregnancy [2,3]. Other clinical observations including !lare-ups of humoral autoimmune diseases 

in pregnancy like systemic lupus erythematosus [4], suggest a paradoxical activation of other 

arms of the immune system, including B cells and innate immunity [5]. 

In fact, there is direct evidence for fetus-speci!ic antigen recognition by the maternal adaptive 

immune system even during the !irst trimester exempli!ied by local lymph node swelling in mice 

in !irst pregnancy, a recall !lare in the second pregnancy [6] and the formation of anti-paternal 

antibodies [7]. These antibodies are developed in 10-30% of women against paternal inherited 

human leukocyte antigens (HLA) of the fetus and can persist for more than 10 years [7]. In 

pregnancy, there are two ways of maternal sensitization: one locally in the fetal-maternal interface 

via processing of major histocompatibility complex (MHC) alloantigens by antigen-presenting 

cells and the second via fetal cell entry in the maternal circulation. This entry can consist of 

fetal whole cells (microchimerism), syncytiothrophoblast fragments, fetal DNA, and debris from 

apoptotic cells. The (long-term) consequence of the HLA antibodies is unclear; e.g. the presence 

of anti-paternal antibodies in patients with recurrent spontaneous abortion is associated with a 

higher [8] as well as with a reduced success rate [9] on live birth. T-cell allo-reactivity is observed 

in pregnancy. Primed T cells to paternal HLA antigens and fetus-speci!ic minor histocompatibility 

complexes, like HY, have been demonstrated in the peripheral blood of pregnant women [10-12]. 

In addition, recent studies by our group show that the CD4+CD25dim (activated) T-cell population 

increases in maternal peripheral blood during pregnancy [13]. 

Pregnancy has long been suggested as a balance of the maternal immune system with a 

predominance of T helper 2 immunity [4,14,15]. Nowadays, little consensus on this Th1/Th2 

shift in peripheral blood in normal human pregnancy exists [14,16,17] and more candidate 

mechanisms have been proposed to describe immunostimulation and immunoregulation during 

pregnancy. Saito et al. [18] state that while the Th1/Th2 balance is shifted, Th3 and Tr1 cells, 

which produce immunosuppressive cytokines TGF-β and interleukin (IL)-10 respectively, regulate 

the Th1 cell-induced rejection. A specialized subset of T cells, CD4+CD25bright regulatory T 

cells, regulate overstimulation of either type 1 or type 2 responses [18] and are therefore able 

to suppress autoimmunity [19]. In addition, recently a regulatory NK cell subset and NKr1 cells, 

producing IL-10, have been demonstrated which might play an important role in the maternal 

immune response [18,20,21]. 

These mechanisms (non-speci!ic or speci!ic for fetal antigens) have been described for complicated 

pregnancies in which human placental tissue damage was suggested to occur after immune 

activation [5,22,23]. However, so far speci!ic and non-speci!ic maternal immune responses during 

normal pregnancy have not been compared to non-pregnant controls. Therefore, we determined 

the phenotype of diff erent subsets of leukocytes in the peripheral blood of pregnant and non-

pregnant women using !low cytometry. We also studied the proliferation capacity and cytokine 

production of maternal peripheral blood mononuclear cells (mPBMC) in a mixed lymphocyte 

reaction (MLR) after stimulation with umbilical cord blood (UCB) derived lymphocytes of the 

own child and lymphocytes of another child (3rd-party UCB). A signi!icant positive correlation was 
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found between the number of HLA-DR mismatches and the alloreactivity in transplant recipients 

[24]. Therefore, in this study we used 3rd-party UCB controls with an equal number of HLA class 

II mismatches compared to the own child.

Material and Methods

Blood samples

Heparinized maternal peripheral blood and UCB was obtained from healthy women after 

uncomplicated term pregnancy (with a minimal gestational age of 37 weeks, n=50). UCB was 

obtained directly after cord clamping from the umbilical cord veins. Patients tested in the 

proliferation experiments were 9 women who delivered by a cesarean section and 2 women 

who delivered spontaneously. Control PBMC (cPBMC) samples were obtained from age-matched 

healthy non-pregnant female volunteers (n=30). For each patient-child combination a control 

was selected on the basis of sharing one HLA-DR antigen with the child. We screened for maternal 

HLA antibodies and excluded combinations with HLA-DR antibodies. Table 1 shows the HLA-DR 

typing. Informed consent was obtained from all women. The study was approved by the Ethics 

Committee of the Leiden University Medical Center. 

Blood was layered on a Ficoll Hypaque (LUMC pharmacy; Leiden, The Netherlands) gradient for 

density gradient centrifugation at room temperature (20min/800g). After centrifugation PBMCs 

were collected from the interface, washed twice and counted. Part of the cells were !ixed with 1% 

paraformaldehyde and stored at 4°C until time of cell staining for !low cytometry analysis. For 

proliferation studies the remaining cells were frozen in liquid nitrogen.

Couple Mother UCB 3rd-party UCB Control

1 DR17, DR4 DR17, DR15 DR4, DR13 DR17, DR4

2* DR17, DR4 DR4, DR13 DR4, DR13 DR4 DR11

3 DR1, DR17 DR8, DR17 DR1, DR15 DR1, DR17

4 DR15, DR16 DR17, DR16 DR17, DR15 DR15, DR16

5 DR1, DR17 DR17, DR15 DR17, DR7 DR7 DR15

6 DR10, DR13 DR4, DR13 DR7, DR10 DR4, DR7

7 DR10, DR13 DR7, DR10 DR4, DR13 DR4, DR7

8 DR15, DR16 DR17, DR15 DR1, DR15 DR1, DR17

9* DR4, DR9 DR4, DR13 DR4, DR13 DR4, DR11

10  DR4, DR13 DR4, DR13 DR4 DR17

11  DR17, DR15 DR17, DR7 DR1 DR17

Table 1 HLA-DR typing of mother, own child (UCB), control child (3rd party UCB) and control. Shared antigens are 

depicted in bold font. Combination 2 and 9 were omitted from the MLR results, since the HLA-DR antigens were similar 

between own and control child. Therefore, two extra control-child combinations were added with one shared HLA-DR 

antigen.
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Flow cytometry

The following directly conjugated mouse-anti-human monoclonal antibodies were used for four-

color immuno!luorescence surface staining of the PBMCs: CD45-APC, CD14-FITC, CD19-PE, CD3-

PerCP, CD4-APC, CD8-PE, CD16-FITC, CD25-PE, CD28-APC, CD56-PE, CD69-FITC and HLA-DR-FITC 

(Becton Dickinson, Franklin Lakes, NJ, USA), used in concentrations according to manufactures 

instructions. Flow cytometry was performed on a FACS Calibur using Cellquest-Pro software 

(Becton Dickinson). Percentages were calculated within gates set around the lymphocytes (in 

FCS/SSC dotplot) and the CD45+, CD45+CD3+, CD45+CD3+CD4+, or CD45+CD3+CD8+ fraction. 

%CD14+ cells were calculated within the CD45+ fraction without a lymphogate. Gating strategies 

were performed on basis of previous research [13].

Non-specifi c stimulation

Cultures were established in triplicate in !lat-bottomed 96-well plates (Costar, Cambridge, MA, 

USA). One well contained 1x105 PBMC’s as responder cells in 100 μl of culture medium. Culture 

medium contained RPMI 1640 with 10% human serum and 3 mM L-glutamine. For mitogen 

stimulation, 100 μl of puri!ied phytohemagglutinin (0.4 mg/ml, PHA) (Welcome, Dartford, UK) 

was added. For stimulation with CD3 antibody (Ab) the plates were incubated with 50 μl of anti-

CD3 (OKT3, Ortho Biotec, Bridgewater, NJ, USA), diluted in PBS at 1 μg/ml concentration per 

well for 90 minutes at 37°C in a humidi!ied atmosphere of 5% CO
2
. Plates were washed twice 

with PBS before cells were added. Culture medium alone was used as a negative control. Plates 

were incubated at 37°C in a humidi!ied atmosphere of 5% CO
2
 for 3 days. Cultures were pulsed 

with 20 μCi/well 3H-thymidine diluted in RPMI 1640 medium for the last 8 hours of incubation. 

Just before pulsing, 100 μl of supernatant was removed from each well and stored at -20°C until 

further analysis. 3H-thymidine incorporation was measured by liquid scintillation spectroscopy 

using a betaplate counter (Perkin Elmer, Waltham, MA, USA). The results were expressed as the 

median counts per minute (cpm) for each triplicate culture. 

Specifi c stimulation in one-way mixed lymphocyte reaction

Mixed lymphocyte cultures (MLR) were set up with 100 μl of 1x105 mPBMC or cPBMC in culture 

medium added in triplicate wells in a round-bottom 96-well plate (Costar) to 100 μl of (a) 1x105 

irradiated (30 Gy) fetal leukocytes of her own child; (b) 1x105 irradiated fetal leukocytes of 

a third party child or (c) culture medium. Proliferation was measured on day 5 and day 7 by 

incorporation of 3H-thymidine added during the last 16 hours of culture. Just before pulsing, 100 

μl of supernatant was removed from each well and stored at -20°C until further analysis. The 

results were expressed as the median counts per minute (cpm) for each triplicate culture. 

Cytokine Analysis

Harvested supernatants were tested for the following cytokines: IL-2, IL-4, IL-5, IL-6, IL-10, IL-12 

(p70), IL-13, IL-15, IL-17, IFN-γ, TNF-α, GM-CSF, using a Bio-Plex assay (Bio-Rad Laboratories, 

Veenendaal, The Netherlands) following manufacturers instructions. Samples were analyzed 

using a Bio-Plextm Array Reader with Bio-Plex software. 

Statistical Analysis

To determine diff erences between more than 2 groups an ANOVA was performed. If p<0.05, 

the Mann-Whitney test was performed to compare the phenotype of the diff erent cell-subsets, 
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the proliferative responses and cytokine production of maternal lymphocytes and control 

lymphocytes. To compare the proliferative responses of maternal lymphocytes after speci�ic 

stimulation with lymphocytes of own child and control child, the Wilcoxon signed rank test was 

performed. For all tests the value of p<0.05 was de�ined as signi�icant.

Results

Phenotypic analysis

To compare the diff erent subsets of leukocytes in the peripheral blood between pregnant and 

non-pregnant women, we performed a phenotypic analysis using �low-cytometry. No diff erence 

was observed in %CD3+ T-cells and %CD19+ B-cells. However, mPBMC contained a signi�icantly 

lower percentage of CD16-CD56bright NK-cells (p=0.001) and CD16+CD56+ NK-cells (p=0.003) 

compared to non-pregnant cPBMC (Figure 1a). The %CD14+ monocytes were signi�icantly higher 

in mPBMC (p=0.001, Figure 1b). Analysis of the diff erent subsets of (CD3+) T-cells revealed no 

diff erence in %CD4+ or %CD8+ T-cells (Figure 1c). The activation state of CD3+ T-cells was 

studied by measuring CD69 expression (early marker of activation), IL-2R expression (CD25) and 

Figure 1 Distribution of different subsets of leukocytes in peripheral blood between pregnant (n=50) and non-

pregnant (n=30) women. All lines are median percentages. A. Percentage of CD3+ within lymphogate and CD45+ cells 

in mPBMC (78.1%) and cPBMC (73.6%), percentage of CD19+ in mPBMC (11.9%) and cPBMC (12.8%), percentage 

of CD16-CD56hi+ in mPBMC (0.7%) and cPBMC (2.7%), and percentage of CD16+CD56+ in mPBMC (6.3%) and 

cPBMC (17.3%). B. Percentage of CD14+ within CD45+ cells in mPBMC (22.7%) and cPBMC (14.0%). C. Percentage of 

CD4+ within CD3+ cells in mPBMC (64.9%) and cPBMC (62.3%), percentage of CD8+ in mPBMC (29.2%) and cPBMC 

(29.3%), percentage of CD69+ in mPBMC (0.7%) and cPBMC (0.61%), percentage of CD25+ in mPBMC (26.3%) and 

cPBMC (17.7%), and percentage of HLA-DR+ in mPBMC (6.2%) and cPBMC (4.3%). D. Percentage of CD25dim within 

CD3+CD4+ cells in mPBMC (41.7%) and cPBMC (23.4%), percentage of CD25bright in mPBMC (0.9%) and cPBMC 

(1.0%). E. Percentage of CD28- within CD3+CD8+ cells in mPBMC (19.8%) and cPBMC (13.7%).
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HLA-DR expression (late marker of activation). mPBMC contained a signi!icant higher percentage 

of CD3+CD25+ T-cells compared to cPBMC (p<0.0001), no diff erence in percentage of CD69+, and 

a slightly higher but not signi!icant increase in percentage HLA-DR+ T cells (p=0.11, Figure 1c). 

CD4+ T cells which express CD25 can be divided into a CD25dim population (activated phenotype) 

and a CD25bright population (regulatory phenotype). mPBMC contained a signi!icantly higher 

percentage of CD4+CD25dim T-cells compared to cPBMC (p<0.0001, Figure 1d). However, there 

was no diff erence in percentage of CD4+CD25bright (regulatory) T-cells. The percentage of 

CD8+CD28- T-cells, another cell population with possible suppressive capacity, was not diff erent 

from non-pregnant controls (Figure 1e).

Non-specifi c proliferative response to PHA and anti-CD3

In order to determine the proliferation capacity of mPBMC and cPBMC, cells were stimulated with 

PHA and anti-CD3 Ab for 3 days. There was no signi!icant diff erence in proliferation to PHA or 

anti-CD3 Ab between maternal and control PBMC (p=0.55 vs. p=0.90, Figure 2). 
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Figure 2 Proliferative response. 

Proliferative response of maternal PBMC 

(mPBMC, ○) and non-pregnant control 

PBMC (cPBMC, ●) upon stimulation with 

PHA or anti-CD3 antibody at day 3. Median 

values are depicted by a horizontal line.

Figure 3 Proliferation of mPBMC to own child or a control child. 

Proliferation of mPBMC (●) to own child (UCB, left panel) or to a 

control child (3rd-party UCB, middle panel) measured at day 5 and 7. 

Proliferation of cPBMC (○) 3rd-party UCB (right panel) measured on 

day 5 or day 7. Median values are depicted by a horizontal line.

Figure 4 Cytokines in supernatant (pg/ml). IL-6 (A.), IL-10 (B.) and IL-17 (C.) levels in supernatants of mPBMC (●) vs. 

cPBMC (○) stimulated with PHA, anti-CD3 antibodies, own child (UCB), control child (3rd-party UCB) or culture medium 

(CM).
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Fetus-specifi c immune response

To determine diff erences in the maternal immune response to UCB of her own child compared to 

a 3rd-party UCB, we analyzed proliferative capacity of mPBMC in a MLR. The response of mPBMC 

after stimulation with cells from the own child (UCB), with a control child (3rd-party UCB), and the 

response of cPBMC was signi�icantly higher on day 7 compared to day 5 (p=0.021, p=0.001 and 

p=0.009 respectively), as expected with a normal mixed lymphocyte reaction. A non-parametric 

one-way ANOVA showed no signi�icant diff erences between the responses of mPBMC, after 

stimulation with cells from her own child or control child, and cPBMC, both on day 5 (p=0.11) 

and on day 7 (p=0.34, Figure 3). 

Cytokine production

The cytokine production by mPBMC and cPBMC was measured in the supernatant after co-

culture of PBMC with the diff erent stimuli on the �ifth day. Only IL-6, IL-10 and IL-17 showed a 

signi�icant diff erence between mPBMC and cPBMC responses with stimulation anti-CD3, UCB, 

or 3rd-party UCB (Table 2). We analyzed the amount of these cytokines (pg/ml) after mixed 

lymphocyte reaction daily to determine the day of maximum production. For IL-6, IL-10 and IL-

17 this maximum was on day 5 (data not shown). 

There was no diff erence in cytokine production by mPBMC when stimulated with the own child 

(UCB) compared to control child (3rd-party UCB). However many diff erences were found between 

mPBMC and cPBMC. mPBMC produced signi�icantly more IL-6 after stimulation with all the non-

speci�ic and fetus speci�ic stimuli (Figure 4a). The IL-10 production after allogeneic stimulation 

was signi�icantly higher in mPBMC compared to cPBMC cultures (Figure 4b). mPBMC produced 

signi�icantly more IL-17 compared to controls after PHA and aCD3 stimulation (Figure 4c), no 

diff erences were observed in IL-17 production after UCB stimulation. 

Furthermore in control cultures with control medium alone a signi�icantly higher production of 

IL-6 and IL-10 was observed in mPBMC compared to cPBMC. 

IL2 IL4 IL5 IL6a IL10 IL12b IL13 IL15 IL17
GM-

CSF
IFNγ TNFα

PHA - ↓* ↓* ↑** - ↓ - - ↑** - - -

aCD3 - - - ↑** - - - - ↑* - - -

UCB - - - ↑* ↑* - - - - - - -

3p UCB - - - ↑** ↑* - - - - - - -

CM - - - ↑* ↑* - - - - ↑* - ↑*

Table 2 Cytokine production in supernatants of mPBMC versus cPBMC. Cells stimulated with PHA, anti-CD3, own 

child (UCB), control child (3p UCB) or culture medium (CM). a production very high, b production very low, - = similar 

levels, ↓ = decreased in mPBMC, ↑ = increased in mPBMC, *p<0.05, **p<0.01.
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Discussion

In this study we examined leukocyte composition, proliferative responses and cytokine 

production in mPBMC and cPBMC. We observed a signi!icant increased percentage of monocytes 

and activated T cells (CD3+CD25+) in mPBMC compared to cPBMC. In contrast we observed a 

decreased percentage of both NK-cell subsets (CD16+CD56+ and CD16-CD56bright) in mPBMC. 

No diff erences between mPBMC and cPBMC were observed in the proliferative responses to anti-

CD3, PHA, fetus speci!ic UCB and 3rd-party UCB. However, a signi!icant increase in IL-6, IL-10 and 

IL-17 was observed in mPBMC compared to cPBMC. No diff erences between fetus speci!ic and 

3rd-party UCB were observed. These data indicate that the maternal peripheral immune response 

is altered during pregnancy, though these diff erences do not result in quantitative changes in 

proliferative responses during pregnancy compared to non-pregnant controls. 

 The increase in percentage of CD14+ monocytes in pregnant woman versus non-pregnant women 

con!irms an increased production of monocytes or an increased traf!icking of the monocytes. 

Macrophages and monocytes have been reported to be more activated with cell surface marker 

expression similar to those during systemic sepsis [25,26]. Absolute numbers of circulating NK-

cells (CD16+CD56+) have been described to increase in early pregnancy and decrease in late 

pregnancy when compared to non-pregnant healthy controls [27,28]. We con!irm these data by 

showing a decreased percentage of both NK-cell subsets (CD16+CD56+ and CD16-CD56bright) at 

term pregnancy in pregnant versus non-pregnant women.

With respect to the acquired immunesystem we found no diff erence in percentage of CD8+ 

T-cells, CD4+ T-cells or B-cells in pregnant versus non-pregnant women. Large contradictions 

between the results of diff erent studies have been described; for CD8+ T-cells an increase [29], no 

change [27] and even a decrease [30] were found in pregnant women compared to non-pregnant 

controls. During labor an increase of CD8+ T-cells has been reported [31]. Discrepancies also exist 

for the CD4 (helper) T-cell subset. Some studies show no change [27,32] whereas others found 

a decreased percentage in pregnant women [28]. Frequency and counts of B-cells seem to be 

unaltered during pregnancy [2,28]. These inconsistent !indings may be caused by diff erence in 

analyzing methods or most likely by diff erences between patient groups.

We did !ind a higher percentage of activated T-cells (CD4+CD25dim) in pregnant women 

compared to non-pregnant controls, and a slightly higher percentage of HLA-DR+ T-cells (p=0.11), 

con!irming earlier studies by our group [13]. These !indings provide evidence for activation of the 

adaptive immune system during pregnancy. 

Alterations in the distributions of T cells may lead to pregnancy complications. Decreased 

numbers of regulatory T cells in peripheral blood have been found in preeclampsia and recurrent 

spontaneous abortions [23,33]. These results postulate that a suf!icient number of regulatory T 

cells is necessary to maintain an uncomplicated pregnancy. The exact mechanism how regulatory 

T cells are activated and induce tolerance during pregnancy remains to be elucidated. We found a 

signi!icantly higher percentage of activated T cells (CD4+CD25dim), but no signi!icant diff erence 

between the percentage of CD4+CD25bright in mPBMC compared to cPBMC. Previous studies 

found a signi!icantly increased CD4+CD25bright T cells fraction in peripheral blood samples 

of pregnant women [34,35]. This discrepancy might be explained by diff erent time points of 

maternal blood sampling or due to diff erences in gating strategies of CD25 expression. We earlier 

showed that diff erences in gating strategies might be responsible for diff erent results [13].

HLA-mismatching between maternal and fetal antigens is a possible source of immune activation 

during pregnancy. The responsiveness to fetal antigens is probably a key factor controlling the 

activity of the maternal immune system in pregnancy and may in!luence pregnancy outcome [36]. 

In this study we do not demonstrate a diff erence between the maternal peripheral response to 
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own child UCB and 3rd-party UCB. In contrast to other studies, we used 3rd-party UCB controls 

with an equal number of HLA-DR mismatches compared to the own child. Since we performed 

HLA typing before proliferation, we had to use frozen cells, which is a drawback of this study. 

Our results con�irm an earlier study where reactivity of mPBMC to own and unrelated newborn 

lymphocytes was not diff erent [37]. Steinborn et al. showed reduced responses in MLR to own 

child compared to control donors [38]. In this study, the cells were obtained from adult volunteers 

instead from UCB. The observed diff erence can be explained because fetal antigen presenting 

cells are less ef�icient than adult antigen presenting cells.

Our data show that the mother’s peripheral immune system has an equal proliferation capacity to 

cells from her own child as to those from an unrelated control child. 

We observed also no diff erences in cytokine response between stimulation with own child 

and an unrelated child. However, signi�icant diff erences in IL-6, IL-10 and IL-17 production 

between mPBMC and non-pregnant cPBMC were observed. Recently, Visser et al. reviewed the 

literature on cytokine and chemokine mapping in pre-eclampsia [39], including a few studies on 

normal pregnancies compared to non-pregnant women. One study described increased serum/

plasma levels of IL-6 and TNF-α in pregnant women compared to non-pregnant controls [40]. 

In cultured PBMC (monocytes stimulated with LPS) no diff erence was found in IL-1β, IL-6 or 

TNF-α production [26]. We found an increase in IL-6 production by PBMC from pregnant women 

compared to non-pregnant controls, either spontaneously, but also after non-speci�ic and allo-

speci�ic stimulation. TNF-α production was only higher in supernatant from cells with culture 

medium alone, which was also seen for IL-6 and IL-10 production. Probably these cytokines are 

produced by activated monocytes from the maternal peripheral blood. Again this suggests a more 

activated innate immune system in pregnancy. 

We found no diff erence in IFN-γ levels and a slight decrease in IL-4 after mitogen stimulation. Other 

studies observed a decrease in numbers of maternal lymphocytes producing IFN-γ [14,41,42] and 

no diff erence in producing IL-4 [41,42]. A signi�icantly increased number of PBMC producing IL-4 

and unchanged number of cells secreting IFN-γ in the second and third trimester was found by 

Ekerfelt et al. [43]. These discrepancies in the outcomes of IL-4 and IFN-γ production are possibly 

due to diff erent methods of stimulation or diff erent methods of measuring cytokine production. 

In addition, we used PBMCs while other studies analyzed diff erent cell populations.

Furthermore, we found hardly any IL-12 in our supernatants, which may be due to the fact that 

we used non-separated leukocytes in one culture well (about 20% of CD45+ cells were CD14+) or 

that the percentage of CD14+ macrophages was too low to be able to detect any IL-12 produced. 

On IL-12 also contradictory results have been described; Sakai et al. found a decreased production 

in cultured PBMC (no stimulus) [44] whereas an enhanced production of IL-12 by monocytes was 

seen (stimulation with endotoxin and IFN-γ) by Sacks et al. [41]. It seems that an increased or 

decreased production of IL-12 is dependent on the method applied.

In our patients, IL-10 production was increased especially after stimulation with allo-antigens, 

but also spontaneously. IL-10 is a major T helper cell type 2 or regulatory cytokine produced by 

T regulatory cells or NK cells. It inhibits T cell activation and production of cytotoxic cytokines 

(IL-12 and IFN-γ) but stimulates induction of regulatory T cells [3]. Hereby, the Th1 response is 

suppressed [18]. It is tempting to speculate that Th2 cells do play a role in allo-responses during 

pregnancy, but IL-10 can also be produced by Th1 cells, macrophages and B cells, not only by Th2 

cells. Populations of peripheral blood IL-10-producing NK cells in early pregnancy were increased 

[45]. Veenstra van Nieuwenhoven et al. also reported a mild increase in the IL-10 production of 

pregnant peripheral blood NK in the third trimester of pregnancy compared to non-pregnant 

women [42]; however this increase was not signi�icant. The same group found no change in IL-10 

producing T cells after stimulation with PMA and ionomycin (unpublished data). 
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We observed more IL-17 production after non-speci!ic stimulation, but no diff erence after 

allo-speci!ic stimulation. Nakashima et al. also showed no diff erence in IL-17 production after 

non-speci!ic stimulation (PMA and ionomycin) of PBMC [46]. Th17 cells, the CD4+ cells that 

produce pro-in!lammatory IL-17, is a recently discovered population involved in the maternal 

immunomodulation [47,48]. These cells are closely related to regulatory T cells and diff erentiate 

upon in!lammatory signals whereas conditions that promote tolerance favor generation of Treg 

[49]. A balance between Th17 and Treg might be correlated with successful pregnancy; however 

the role of Th17 in human pregnancy remains to be investigated more substantially.

In conclusion, our results demonstrate that in the peripheral circulation, the innate and the 

acquired immune system are enhanced during pregnancy compared to non-pregnant controls 

re!lected by phenotype of PBMC and in vitro cytokine production. However, there is no changed 

immune response when measuring proliferation capacity. The mother is capable of creating a 

!ine-tuned environment optimal for the fetus to grow but also optimal to maintain adequate 

immune responses to diseases. 
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Abstract

Background: Tolerance towards the semi-allogeneic fetus is a complex and basically unrevealed 

phenomenon. As macrophages are an abundant cell population in the human decidua, changes in 

distribution or phenotype may be involved in the development of preeclampsia. The aim of this 

study was to assess the distribution and phenotype of macrophages in preterm preeclamptic, 

preterm control, and term control placentas.

Methods: Placentas of preterm preeclamptic (n=6), of preterm control (n=5), and of term control 

pregnancies (n=6) were sequentially immunohistochemically stained for CD14, CD163, DC SIGN 

and IL-10. The distributions of CD14+, CD163+, DC SIGN+, IL-10+, CD163+/CD14+, DC SIGN+/

CD14+ and Flt-1/CD14+ cells were determined by double staining and by digital image analysis 

of sequential photomicrographs. 

Results: CD14 and CD163 expression was signi!icantly increased in preterm preeclamptic decidua 

basalis compared with preterm control pregnancies (p=0.0006 and p=0.034 respectively). IL-10 

expression was signi!icantly lower in the decidua parietalis of preterm preeclamptic pregnancies 

compared with preterm control pregnancies (p=0.03). The ratio CD163/CD14 was signi!icantly 

lower in the decidua basalis (p=0.0293) and the ratio of DC SIGN/CD14 was signi!icantly higher 

decidua basalis (p=<0.0001) and parietalis (p=<0.0001) of preterm preeclamptic compared with 

preterm control pregnancies. CD14+ macrophages did express Flt-1.

Conclusion: Alterations in distribution and phenotype of macrophages in the decidua of preterm 

preeclamptic pregnancies compared to control pregnancies may contribute to the pathogenesis 

of preeclampsia.
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Introduction

Maternal immune tolerance towards the semi-allogeneic fetus and placenta is important in 

uncomplicated human pregnancy. Maternal immune cells at the feto-maternal interface are 

directly exposed to fetal antigens at three locations [1]. First, the maternal tissue lining the fetal 

membranes, the decidua parietalis, interact with the trophoblast cells of the chorion. Second, 

the maternal part of the placenta, the decidua basalis, is in!iltrated by invading extravillous 

trophoblast. Third, after the establishment of the utero-placental circulation, maternal peripheral 

blood contacts with syncytiotrophoblast. Several mechanisms, some of them implying a special role 

for macrophages at the three interfaces, have been postulated to promote an immunomodulatory 

state [2,3].

Macrophages are antigen-presenting cells which account for the second most numerous type 

of leukocytes in the human decidua [4]. They are mononuclear phagocytotic cells involved in 

the innate and adaptive immune system. Macrophages promote in!lammation by production of 

in!lammatory molecules during an innate immune response and, are able to present antigens to T 

cells as part of the adaptive immune system. Macrophages may have a role in immunosuppression 

in the human decidua, as suggested by their ability to suppress a one-way mixed lymphocyte 

reaction [5]. Furthermore, macrophages express costimulation molecules CD80 and CD86 in low 

levels and they express indoleamine2,3-dioxygenase, both preventing T lymphocyte activation 

[6]. An alteration in the quantity or distribution of these cells may be involved in the development 

of preeclampsia. Preeclampsia is a relatively common but potentially dangerous disorder in 

human pregnancy, leading to maternal and neonatal morbidity and mortality. It aff ects 1-7% 

of nulliparous women who have a three times higher risk than multiparous women [7,8]. The 

disease is characterized by inadequate transformation of the spiral arteries [9] and generalized 

maternal sFlt-1-mediated endothelial cell dysfunction [10]. Furthermore, immunologic factors 

are involved in the pathogenesis of preeclampsia since earlier exposure with paternal antigens 

decreases the risk of preeclampsia [11,12]. 

The exact role of macrophages in the human decidua and their function in preeclampsia remains 

unknown. The numbers of macrophages have been studied by several groups with varying results. 

A reduction in the number of CD14+ macrophages [13], no alteration [14] and increased numbers 

of macrophages [15] have been found in decidua from preeclampsia compared to control women. 

Because of these discrepancies in the literature we intended to study the role and distribution 

of macrophages in control and preeclamptic decidua. For phenotypic characterization of the 

macrophage subsets three diff erent markers were tested. CD14, a glycosylphosphatidylinositol-

anchored membrane protein, is present on monocytes and macrophages. The macrophage 

scavenging receptor, CD163 is a mononuclear phagocyte restricted cell surface glycoprotein 

antigen present on type 2 macrophages (M2 cells) which have been reported to exert an anti-

in!lammatory function [16]. Gene expression pro!iling shows that human decidua mainly contains 

M2 cells, which contribute to the immunosuppressive state favorable to the maintenance of the 

semi-allogeneic fetus [17]. In contrast to M2 cells, macrophages stimulated with Th1 cytokines 

polarize toward a pro-in!lammatory type 1 macrophages (M1 cells). These cells are able to 

defend upon utero-placental infections but do not contribute to the tolerance of the fetus [18]. 

Furthermore, we used the dendritic cell-speci!ic marker ICAM3-grabbing nonintegrin (DC SIGN) 

for phenotypic characterization. DC SIGN is highly expressed on immature DCs but also present 

on macrophages in the human decidua [19,20]. 

In addition we stained the IL-10 and Flt-1 expression by immunohistochemistry in the 

decidua basalis and parietalis. IL-10 is an immunosuppressive molecule, produced by T cells, 

macrophages/monocytes and B cells. This cytokine is spontaneously produced in high levels 

by decidual macrophages [6]. It is a Th2 type cytokine and appears to be pregnancy protective 

[21]. Decreased villous trophoblast staining of IL-10 has been demonstrated in women with 
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preeclampsia compared to normal pregnancy with correlated gestational age [22]. 

Coexpression of CD14 and CD68 as a general macrophage marker, with either CD163, DC SIGN 

or sFlt was studied to de�ine the phenotype of cells. We determined the number and type of 

macrophages in decidua of preterm preeclamptic, preterm control, and term control pregnancies 

and de�ined the natural polarization of decidual macrophages and alterations of the phenotype 

of these cells.

Material and Methods

Patient selection

After a pilot study of �ive preterm preeclamptic and �ive term control placentas, six preterm 

preeclamptic, �ive preterm control and six term control placentas were collected. Criteria for 

inclusion in the preeclamptic group were presence of hypertension (diastolic blood pressure ≥ 

95 mm Hg), proteinuria (> 0.3 gr/l/24 hours) and a gestational age below 34 0/7 weeks. Term 

placentas were collected from healthy women after normal, uncomplicated pregnancies of 37-42 

weeks gestational age. Preterm placentas were collected if delivered before 34 weeks gestational 

age after an uncomplicated pregnancy without any signs of infection. This group contained 

a quadruplet of which the placentas were analyzed as separate. The values obtained in the 

singleton preterm control placenta were in the same range as those observed in the placentas of 

the quadruplet pregnancy. No signi�icant diff erences were present between the singleton preterm 

control placenta and the quadruplet preterm control placentas for the stainings of CD14, CD163 

and DC SIGN as well as in the decidua basalis or parietalis (data not shown). Tissue samples 

were collected within �ive hours after the time of delivery of the placenta after primary caesarean 

section or vaginal delivery. The study was approved by the ethics committee of the Leiden 

University Medical Center (LUMC) and informed consent of every patient was obtained. 

Immunohistochemistry

Tissue blocks of the placenta and rolls of fetal membranes were taken at three locations, �ixed in 

4% formalin and routinely embedded in paraf�in. Sequential serial sections (4μm-thick) were cut 

on adhesive coated glasses and dried overnight at 37°C. Tissue sections were deparaf�inized and 

hydrated by xylene in decreasing alcohol concentration to demi-H
2
O. Endogenous peroxidase was 

blocked with 3% hydrogen peroxide for 20 minutes. After a wash step with demi-H
2
O, antigen 

retrieval was performed by boiling the sections for 10 minutes in citrate buff er (pH 6.0). The 

slides were cooled down for 20 minutes followed by another wash step. The optimal dilution 

for each primary antibody was determined in positive decidual tissue selected on the basis of 

maximal speci�ic reactivity and minimal background staining (Table 1). As a control the primary 

antibody was replaced by normal serum. The primary antibody was incubated for one hour at 

room temperature at the appropriate dilutions in PBS with 1% BSA (except for IL-10, which was 

pre treated with normal goat serum for 30 minutes and incubated overnight). After washing three 

times in PBS the slides were incubated 30 minutes with Envision (DAKO, North America Inc, USA). 

Another wash step was followed by 5 minutes incubation with diaminobenzidine (DAB, DAKO 

Cytomation). Demi-H
2
O was used to stop the reaction. The tissue sections were subsequently 

counterstained with haematoxylin (SIGMA, Switzerland, Steinheim).The slides were mounted in 

mounting medium (Surgipath Medical Ind., Inc. Richmond) and covered. 
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Antibody Isotype Dilution Source

CD14 IgG2a 1:200 Novocastra, Newcastle, United Kingdom

CD68 IgG1 1:250 DAKO, North America Inc, USA

CD163 IgG1 1:20 Abcam, Cambridge, United Kingdom

DC SIGN (CD209) IgG2b 1:4000 Miltenyi Biotecs MACS, Bergisch Gladbach, Germany

IL-10 Polyclonal IgG 1:50 Hycult Biotech, Uden, The Netherlands

Flt-1 Polyclonal IgG 1:250 Santa cruz, Biotechnology Inc, Heidelberg, Germany

Table 1 Antibody characteristics.

Double label immunohistochemistry of CD68 and CD163 or DC SIGN

To determine if cells were double positive for CD68 and CD163 or DC SIGN, besides the use of 

sequential slides, also double labelling was performed. Extensive investigation showed that the 

combination of CD14 and CD163 or DC SIGN did not give reliable results. Therefore, CD163 or 

DC SIGN and CD68, a general and a pan-macrophage marker, double labelling was performed. 

The sections were deparaf!inised in xylene followed by alcohol 100%. Blocking was performed 

with methanol 0.3% H
2
O

2
. The sections were rehydrated and rinsed with PBS. The Tris-HCL 

buff er (pH8.2, 100 mM) was preheated in a water bath at 97°C. The sections were incubated 

with the buff er for 30 minutes on 97°C, and cooled down for 45 min. on ice. Thereafter sections 

were incubated with the !irst antibody (CD163 or DC SIGN), for 1 hour at room temperature and 

afterwards rinsed with PBS. The sections were incubated with Envision-HRP anti-mouse (DAKO, 

North America Inc, USA) for 30 minutes and rinsed with PBS. For 7 minutes at room temperature 

the sections were incubated with Vector NovaRed (Vector Laboratories Inc, Burlingame, USA) and 

rinsed with PBS. Then the sections were incubated with the second antibody (CD68) for 1 hour, 

followed by incubation with Rabbit anti-mouse (DAKO) for 30 minutes, APAAP mouse (DAKO) for 

30 minutes and with Vector blue (Vector laboratories Inc, Burlingame, USA) for 25 minutes. In 

between each step the slides were rinsed with PBS. Finally, the sections were dried and covered 

with mounting medium (Pertex, Histolab Products, Gothenburg, Sweden).

Double label immunohistochemistry of CD14 and Flt-1

Double-immunohistochemistry staining of CD14 and Flt-1 was performed using the DAKO 

Envision G/2 Doublestain system (code K5361) following the manufactors protocol. Brie!ly, 

slides were deparaf!inized and hydrated via graded alcohols to demiwater. Heat-induced antigen-

retrieval was performed with citrate buff er (pH 6.0) for 20 minutes in a microwave, followed by 

washing steps in PBS. Endogenous alkaline phosphatase and peroxidase activity was blocked for 

5 min by dual endogenous enzyme block. The sections were incubated with primary antibody 

anti-Flt-1 (dilution 1:250, Santa cruz-316), followed by incubation with Polymer/HRP reagent, 

using DAB+ as chromogen. Next a blocking step with double stain block reagent was performed. 

The sections were incubated with the second primary antibody anti-CD14 (dilution 1:200 in 

1% BSA/PBS, Novocastra, clone 1F6), afterwards a Rabbit/Mouse LINK was added, followed by 

incubation with Polymer/AP reagent, using Permanent Red as chromogen. As a control, primary 

antibodies were replaced with isotype control antibodies to obtain single immunohistochemical 

staining. Double stained sections were counterstained with haematoxylin.
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Quantifi cation of staining

Equivalent �ields containing decidua of sequential sections were digitized blinded by study group 

(Zeiss Axioskop 40, magni�ication 200x, Zeiss Axiocam MRc 5 camera, 150x150dpi). For every 

staining of one placenta a total of 15 pictures of the decidua parietalis and 15 of the basalis 

were taken (3 locations and 5 pictures per location). Only the decidual stroma was selected for 

evaluation; irrelevant structures like blood vessels and shadows were digitally removed. Using 

Image-J software [23], the numbers of positive pixels per area were measured indicating the level 

of expression. The program is able to identify and measure positive cells by setting a threshold. 

For every staining a macro was made, prede�ining the threshold of a positive cell. This threshold 

was independently de�ined by two observers. Of the 15 pictures the mean and standard deviation 

of the number of pixels per area were calculated. The CD163/CD14 ratio and the DC SIGN/CD14 

ratio were calculated for every side matched pictures. All analyses were performed blinded for the 

pregnancy group. Placentas included in the preterm preeclamptic group all showed histological 

characteristics of preeclampsia (increased syncytial knots, chronic villitis, decidual vasculopathy, 

thickening of trophoblastic basement membrane, and infarction) [24], blindly observed in H&E 

staining.

Statistical analysis 

The total amount of pixels per area for every antibody staining was compared between preterm 

preeclampsia versus preterm control placentas and preterm control versus term control. Ratios 

(CD163/CD14 and DC SIGN/CD14) were calculated in order to de�ine the amount of CD163+ and 

DC SIGN+ cells within the macrophage population. Descriptive statistical analysis was performed 

using Graph Pad Prism (Graph Pad Software Inc.) and SPSS (SPSS Inc 17). A p value of <0.05 was 

considered statistically signi�icant. The one way ANOVA and the non-parametric Mann Whitney 

test were used to identify diff erences between the data.

Results

Pilot fi ndings and patient characteristics

In a pilot study of 5 other preterm preeclamptic and term control placentas a diff erence was 

found in the level of expression of CD14, CD163 and DC SIGN in preterm preeclamptic and term 

control. A higher expression rate of CD14 and CD163 and a lower expression rate of DC SIGN was 

found in decidua basalis of preterm preeclamptic placentas compared with term control placentas 

(data not shown). Because a diff erence in gestational age in preterm preeclamptic and term 

control placentas (40 weeks versus 30 weeks respectively, p=<0.05) could have an eff ect on these 

outcomes, a preterm control group was collected for the current study. Patient characteristics are 

shown in Table 2. Patients in the preterm preeclampsia group had a signi�icantly lower gestational 

age, a higher systolic and a higher diastolic blood pressure (p=<0.05) compared with term 

control and preterm control placentas (Table 2). The gestational age of preterm preeclampsia 

and preterm control group were 33 and 34 weeks respectively (p=0.033). The decidua of preterm 

preeclamptic, preterm control and term control placentas all showed positive cells for the used 

antibodies. Negative control slides were all negative. In general, the average amount of expression 

for every antigen is higher in the decidua basalis, compared to the decidua parietalis irrespective 

of the pregnancy group (Figure 1A-D). The staining location of CD14+, CD163+ and DC SIGN+ 

cells was in general similar at both locations (decidua basalis and parietalis, Figure 1E). 
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Figure 1 Photomicrographs of sequential sections stained immunohistochemically for CD14, CD163 and DC SIGN 

of the decidua basalis (A.) and decidua parietalis (B.) (original magnifi cation x400, positive cells are brown, nuclei are 

stained blue). The upper row shows the staining in preterm preeclamptic (PE) pregnancies. In the decidua basalis more 

CD14+ and CD163+ staining is present in the preterm preeclampsia group compared with preterm controls, the amounts 

of DC SIGN staining do not differ between the preterm preeclampsia group and preterm controls. In the decidua parietalis 

no signifi cant differences are present. Asterisks indicate examples of positive cells. C and D. Graphs illustrating the 

amount of positive pixels per area in the decidua basalis (C.) and parietalis (D.) respectively for each antibody in preterm 

preeclamptic, preterm control or term control placentas. Statistical differences were determined using the non-parametric 

Mann Whitney test. Values presented as means, the error bars indicate the SEM. E. Photomicrographs of sequential 

sections stained immunohistochemically for CD14, CD163 and DC SIGN (original magnifi cation x200, positive cells are 

brown, nuclei are stained blue). In the upper panel the same pattern of staining for the three antigens is visible. The lower 

panel shows a magnifi cation in which asterisks indicate positive cells for CD14, CD163 and DC SIGN.
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Preeclampsia Preterm Term p value*

 Maternal age (years) 31±6 28±2.5 30±2.5 ns

Gestational age (weeks) 33±2 34±0.5 39±1.5 <0.05**

Highest systole (mmHg) 185±10 123±2 126±14 <0.05***

Highest diastole (mmHg) 106±11.5 76±7.5 77±12.5 <0.05***

Gravidity 1 2 1 ns

Parity 0 0 0 ns

Medication 4 x anti-

hypertensive

no no <0.05****

Table 2 Patient characteristics. Plus-minus values are ranges. * One way ANOVA. **One way ANOVA, followed by t-test 

showed signifi cant differences between the comparisons of all groups (preeclampsia vs term p=<0.0001, preeclampsia 

vs preterm p=0.033, preterm vs term p=0.0023). ***One way ANOVA, followed by t-test showed signifi cant differences 

between preeclampsia versus term and preeclampsia versus preterm. ****Kruskal-Wallis test.

Comparison in level of expression of CD14, CD163 and DC SIGN in decidua 

basalis an parietalis between preterm preeclampsia and preterm control 

To compare the phenotype of decidual macrophages of the preterm preeclamptic, term control 

and preterm control !irst the expression of the markers CD14 and CD163 were analyzed. The level 

of expression of CD14 and CD163 was signi!icantly higher in the preterm preeclamptic decidua 

basalis compared with the decidua basalis of preterm control pregnancies (p=0.0006 and p=0.034 

respectively, Figure 1C). No signi!icant diff erences were present in the level of expression of DC 

SIGN positive cells in the decidua basalis. In the decidua parietalis no signi!icant diff erences were 

present between preterm preeclamptic and preterm control pregnancies for CD14, CD163 or DC 

SIGN (Figure 1A-D). 

Comparison in level of expression of CD14, CD163 and DC SIGN in decidua 

basalis and parietalis between preterm and term control 

As gestational age could have an eff ect on study outcomes in comparing outcomes of the level of 

expression in macrophage markers, we also analyzed the diff erences between the preterm and 

term control group. Signi!icant diff erences are present for CD14 and DC SIGN. CD14 expression 

is signi!icantly lower in the preterm control group compared with the term control group 

(p=0.0012, Figure 1C). CD163 is signi!icantly higher in preterm control group compared with 

the term control group (p=0.0174, Figure 1C). In the decidua parietalis no signi!icant diff erences 

were present between preterm and term control pregnancies (Figure 1D). 

The ratio CD163/CD14 is lower and the ratio DC SIGN/CD14 is higher in 

preterm preeclamptic decidua basalis, when compared with preterm control 

pregnancies 

In general, the sequential stained slides showed a similar staining pattern for CD14, CD163 and 

DC SIGN although not all CD14+ cells are positive for CD163 or DC SIGN (Figure 1E). To prove 

that cells were double positive for CD68 and CD163 or DC SIGN next to the use of sequential 

slide also double labeling was performed. The double staining of CD68 and CD163 or DC SIGN 
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con irms that some cells which were positive for a general macrophage marker are as well 

positive for the M2 marker (Figure 2A and B). To examine the natural polarization of decidual 

macrophages and alterations of the phenotype the CD163/CD14 and DC SIGN/CD14 ratios of 

subsequent areas were calculated. Although, the individual level of expression of CD163 is higher 

in preterm preeclamptic decidua basalis compared with preterm control (Figure 1C), the number 

of CD163 positive cells in the fraction of CD14 positive cells (CD163/CD14) was signi icantly 

lower in preterm preeclamptic decidua basalis compared with preterm control decidua basalis 

(p=0.0293, Figure 3A). By contrast the level of DC SIGN in the fraction of CD14 positive cells (DC 

SIGN/CD14) was signi icantly higher in preterm preeclamptic placentas than in preterm control 

placentas (p=<0.0001, Figure 3A). As in the decidua basalis, in the decidua parietalis the ratio DC 

SIGN/CD14 was signi icantly higher in preterm preeclamptic and preterm control pregnancies 

(p=<0.0001, Figure 3B). The ratio CD163/CD14 and ratio DC SIGN/CD14 is signi icantly higher 

in decidua basalis of preterm controls compared with term controls (p=0.0190 and <0.0001 

respectively, Figure 3A). In the decidua parietalis the ratio DC SIGN/CD14 is signi icantly lower in 

preterm controls compared with term controls (p=<0.0001, Figure 3B).

CD14+ macrophages are Flt-1+

As suggested that decidual macrophages are a possible additional source of sFlt-1 production and 

thereby they could contribute to the pathogenesis of preeclampsia. Therefore we investigated 

whether macrophages are positive for Flt-1. Double labeling of CD14 and Flt-1 shows that 

macrophages in the decidua basalis did express Flt-1 (Figure 2C). 

Lower expression of IL-10 in decidua parietalis of preterm preeclamptic 

pregnancies compared with preterm control pregnancies

To functionally characterize cells in the decidua, immunohistochemical staining of IL-10 was 

performed on placental tissue. The level of expression of IL-10 in preterm preeclamptic decidua 

parietalis is signi icantly lower compared with preterm control pregnancies (p=0.03). No 

signi icant diff erences were found in the expression of IL-10 in the decidua basalis of preterm 

preeclamptic, preterm control and term control placentas (Figure 4). 

Discussion

This study investigated the phenotype and natural polarization of decidual macrophages by 

comparing the myeloid cell markers CD14, CD163 and DC SIGN cells in decidua basalis and 

parietalis of preterm preeclamptic, preterm control, and term control pregnancies using 

immunohistochemistry and an objective quanti ication method. We found signi icantly more 

CD14+ cells in the decidua basalis in preterm preeclamptic pregnancies compared with preterm 

control pregnancies. In addition the speci ic M2 marker CD163, was signi icantly upregulated 

in the decidua basalis in preterm preeclamptic pregnancies compared with preterm control 

pregnancies. Insight of the functional importance of the phenotypic diff erences in decidual 

macrophages is limited by lack of M1 markers, and therefore the M2 ratio of CD163/CD14 was 

used. In the decidua basalis the number of M2 cells (ratio of CD163/CD14) was signi icantly 

lower in placentas from preterm preeclamptic pregnancies compared with preterm control 

pregnancies. The ratio DC SIGN/CD14 was signi icantly higher in decidua basalis and parietalis 

of preterm preeclamptic pregnancies compared with preterm control pregnancies. In addition to 

the preterm control group we compared the term control group with the preterm control group. 

A signi icantly lower level of expression of CD14 was present in the decidua basalis of preterm 



Chapter 3

58

A.    CD68/CD163 B.  CD68/DC SIGN C.     CD14/Flt-1

*

*

*

Figure 2 Double staining. A. Example 

of cells in the decidua parietalis which 

are double positive for CD68 (blue) and 

CD163. No nuclear counter staining was 

used. The pictures in the lower panel 

show a magnifi cation from the pictures in 

the upper panel. (Original magnifi cation 

x400) B. Example of cells in the decidua 

parietalis which are double positive for 

CD68 (blue) DC SIGN (red). No nuclear 

counter staining was used. The pictures in 

the lower panel show a magnifi cation from 

the pictures in the upper panel. (Original 

magnifi cation x400.) C. Example of cells 

in the decidua basalis which are double 

positive for CD14 (red) and Flt-1 (brown). 

The nuclei are stained blue. The pictures in 

the lower panel show a magnifi cation from 

the pictures in the upper panel. Double 

positive cells are indicated by an asterisk. 
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Figure 3 A. Ratio CD163/CD14 and DC SIGN/CD14 calculated from subsequent pictures. The ratio CD163/CD14 is 

signifi cantly lower (p=0.0293) and the ratio DC SIGN is signifi cantly higher (p=0.0001) in preterm preeclamptic decidua 

parietalis compared with preterm control pregnancies. B. The ratios of CD163/CD14 and DC SIGN/CD14 in the decidua 

parietalis. The ratio CD163/CD14 is not signifi cantly different and the ratio DC SIGN is signifi cantly higher (p=0.0001) in 

preterm preeclamptic decidua parietalis compared with preterm control pregnancies. 
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Figure 4 IL-10 results. A. Photomicrographs of sections stained immunohistochemically for IL-10 in preterm preeclamptic 

and preterm control decidua parietalis (original magnifi cation x400). Asterisks indicate examples of positive cells. B. In 

the decidua basalis no signifi cant differences are present in the amount of IL-10+ cells between preterm preeclamptic, 

preterm control or term control pregnancies. In the decidua parietalis less IL-10 staining is present in the preterm 

preeclampsia group compared with preterm controls (p=0.03). 
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control compared with term controls (p=0.0012). This indicates that it is important to have a 

gestational age matched control group when investigating macrophages in preterm preeclamptic 

pregnancies. 

The most abundant diff erences are found in the decidua basalis, and not in the decidua parietalis, 

which could be explained by the invasion of trophoblast which occurs in the decidua basalis and 

not in the decidua parietalis.

Maternal tolerance towards the semi-allogeneic fetus is important for an uncomplicated 

pregnancy. The decidual cell population consists of several immunologic cells and a disturbance 

in the distribution of phenotype of these cells may lead to pregnancy complications. Macrophages 

and DCs are present in the human decidua [6,19,25,26] and an alteration of the phenotype and 

distribution may be involved in the pathogenesis of preeclampsia [27].

The sequential stained immunohistochemical slides showed that in general CD14+ cells can 

also be DC SIGN+ and CD163+. Our study con"irms earlier reports of predominant polarization 

to M2 macrophages in the term placenta (reviewed by Nagamatsu et al [28]). The amount of 

CD14+ or CD163+ cells in the decidua basalis were signi"icantly higher in placentas from preterm 

preeclamptic pregnancies compared with preterm control pregnancies. Severity of preeclampsia 

could contribute to this higher number and diff erent functionality of macrophages present in the 

decidua. Therefore, two placentas from most severe cases of preeclampsia (based on the level of 

diastolic pressure, amount of proteinuria and gestational age) demonstrated the highest number 

of cells in the decidua basalis. 

The number of M2 macrophages in relation to all macrophages (ratio CD163/CD14) was lower in 

placentas from preterm preeclamptic pregnancies, compared with preterm control pregnancies. 

To our knowledge, this is the "irst study that describes a decrease in M2 in the decidua basalis 

of preterm preeclamptic pregnancies compared to preterm control pregnancies. We speculate 

that this lower amount of M2 may contribute to the etiology of preeclampsia. Furthermore, we 

have shown an increase of the ratio of DC SIGN+ cells in placentas from preterm preeclamptic 

pregnancies. The phenotypic plasticity of myeloid cells such as DCs and macrophages is substantial 

and a subset distinction is dif"icult to make. Only a few markers are known which really make the 

distinction between macrophages and DCs. Gardner et al [19]. already postulated that DC SIGN is 

present on decidual macrophages but not on decidual DCs. It remains unclear whether this cell 

subset, also called intermediate antigen presenting cells, is a subset of macrophages or of DCs. 

CD14+DC SIGN+ cells are reported in other human tissues [29,30], and these cells produce large 

amounts of proin"lammatory cytokines [31]. In line with the study of Gardner et al, our study also 

shows in general a similar staining pattern between CD14+ and DC SIGN+ cells. The presence 

of this subset of DC SIGN+ macrophages in the decidua is pregnancy-associated and these cells 

may play a crucial role for the local immune response. Therefore, alterations in the function and 

distribution of this cell may result in pathological pregnancies, like preeclampsia which has been 

shown by Huang et al [32]. Preeclamptic decidua contained an in"iltrate of DC SIGN+ cells in 

contrast to their sparse presence in the decidua of uncomplicated pregnancies. This study also 

con"irms an increased level of DC SIGN expression in preterm preeclamptic decidua compared 

to preterm control decidua. However, current study relates DC SIGN+ cells with macrophages in 

stead of DCs because of their co-localization and as shown by double staining. In contrast to our 

study, Scholz et al found no signi"icant diff erences between preeclamptic and control placentas 

in the amount of DC SIGN+ cells using immunohistochemistry [33]. However, they found a higher 

amount of DC SIGN+ cells in placentas from patients who developed HELLP (hemolysis, elevated 

liver enzymes, low platelets) syndrome. It is possible that our preterm preeclamptic group is 

more comparable with the HELLP group of the study of Scholz et al. since our study included only 

very severe preterm preeclamptic patients with deliveries with a gestational age below 34 0/7 

weeks.
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In addition of the presence macrophage antigens in the decidua, this study investigated the 

production of IL-10 in placental tissue. During pregnancy IL-10 is an important cytokine, it plays 

a role in the prevention of placental rejection. Human pregnancy is a type 2 immune state shown 

by a shift in cytokine production from type 1 to type 2. This balance is diff erent in preeclampsia 

in which a decrease in IL-10 compared to the pro-in�lammatory cytokines is present. IL-10 is 

secreted by cytotrophoblast and it can suppress an allogeneic immune response in vitro [34]. It is 

possible that IL-10 may be involved in protecting the semi-allogeneic fetus in normal pregnancy 

[21]. To our knowledge, only one earlier published study performed IL-10 immunohistochemical 

staining on placental tissue [22]. Hennesy et al. showed a change in IL-10 immunolocalization 

in term placentas from women with preeclampsia compared to those with a normal pregnancy 

outcome. They showed a general decrease in cytoplasmic trophoblast villi IL-10 content in 

preeclamptic pregnancies. Additionally, a decrease in IL-10+ trophoblast cells located in the 

decidual tissue was present. A lower level of IL-10 in the decidua basalis suggests an impaired 

protective mechanism of the mother toward the allogeneic fetus in preeclampsia. 

Our digital analysis shows that the number of IL-10 positive cells is lower in the decidua parietalis 

of preeclamptic pregnancies compared to preterm pregnancies. This indicates that there is 

a diff erence in defense mechanism between the decidua parietalis and basalis. The decidua 

parietalis contacts the non-invading trophoblast of the chorion and the decidua basalis interacts 

with invading villous trophoblast. It seems that the contact between the chorion in the decidua 

parietalis in preterm pregnancies synthesizes the trophoblast cells to produce IL-10, which 

does not appear in preeclamptic decidua parietalis. Since this study showed a lower amount of 

positive IL-10 cells in the decidua parietalis of preeclamptic pregnancies compared with preterm 

pregnancies, we speculate that a high level of IL-10 is necessary to maintain pregnancy without 

complications, and that a down regulation of IL-10 produced by the decidua parietalis is a 

permissive condition for the development of preeclampsia. 

Recently, it has been shown in chronic kidney disease that monocytes may be a possible source 

of sFlt-1 [35]. Increase of sFlt-1 leads to endothelial dysfunction and increased levels have been 

found in patients with preeclampsia [10,36]. Double labeling immunohistochemical staining of 

CD14+ and Flt-1 shows that macrophages in the decidua basalis are positive for Flt-1. Since we 

found an increase of the amount of CD14+ cells in preeclamptic decidua basalis compared with 

preterm decidua basalis (p=0.0006) it is possible that decidual macrophages are responsible for 

the increased sFlt-1 production which may contribute to the etiology of preeclampsia. 

Tolerance of the genetically foreign fetus by the maternal immune system fetus is a complex 

phenomenon and remains to be elucidated. Multiple mechanisms are involved in maintaining the 

pregnancy. Localized secretion of immunoregulatory cytokines may prevent immune rejection of 

the placenta. In addition, the presence of immunomodulatory cells may be important in dampening 

an in�lammatory immune response. Preeclampsia is a state in which the immune system has 

to work harder to maintain pregnancy. Alterations in immunomodulatory cells in the decidua 

basalis and parietalis of preterm preeclamptic pregnancies compared to control pregnancies may 

contribute to the etiology of preeclampsia. The question is whether alterations in the immune 

system lead to the pathogenesis of preeclampsia or its prevention in subsequent pregnancies. 

In conclusion, present study shows that macrophages can be DC SIGN+ as well as CD163+ based 

upon the double staining and based on the similar staining pattern of these antigens. An increase 

of CD163+ cells in preterm preeclamptic placentas was found compared with preterm control 

placentas. However, the total amount of CD14+ cells is also increased in preterm preeclamptic 

placentas compared with preterm control placentas. The amount of CD163+ cells in the fraction of 

CD14+ cells is lower in preterm preeclamptic placentas compared with preterm control placentas. 

Furthermore, this study found an increase in DC SIGN/CD14 myeloid cells in the decidua parietalis 

and basalis of preterm preeclamptic pregnancies compared with preterm control pregnancies. 
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This study suggests that further investigation of the distribution and phenotype of macrophages 

is possibly relevant for further understanding the immunology at the fetal-maternal interface. 
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Abstract

Background: Egg donation (ED) gives women with premature ovarian or other causes of 

reproductive failure the ability to conceive. This results in a unique pregnancy since the entire 

fetal genome can be allogeneic to the mother. Two cases of IVF, one after ED and the other non 

donor IVF, are discussed to demonstrate why we hypothesize a diff erent possibly immunological 

mechanism as the cause of preeclampsia in ED pregnancies as compared to non donor IVF. 

Case 1 describes a 30 year old woman whose pregnancy after non donor IVF resulting in a 

dizygotic twin was complicated by preeclampsia and intra-uterine growth retardation of both 

fetuses. The pregnancy was a result of concurrent IVF and spontaneous conception, which is 

extremely rare. 

Case 2 describes a 41 year old woman pregnant after ED of a dizygotic twin whose pregnancy was 

also complicated by severe preeclampsia. Both fetuses had a normal fetal birth weight. 

We suggest a diff erent pathophysiological mechanism of preeclampsia after ED compared with 

preeclampsia in non donor IVF conception. 

Results: ED pregnancies are associated with a higher incidence of pregnancy-induced hypertension 

and a speci!ic placental pathology. Other perinatal complications, such as intrauterine growth 

retardation and prematurity are also reported, but the incidence is comparable to conventional 

IVF. It is known that during pregnancy, both local and systemic immunological changes occur. 

Possibly, in ED pregnancies these changes are diff erent or more pronounced. 

Conclusion: Because of a higher degree of antigenic dissimilarity compared to non donor IVF, 

ED pregnancies represent an interesting model to study complex immunological interactions, 

as the allogeneic fetus is not rejected but tolerated by the pregnant woman. Knowledge of the 

immune system in ED pregnancies might have broader signi!icance, as it may also give insight 

into immunologic aspects of tolerance in solid organ transplantation.
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Introduction

We postulate that preeclampsia in egg donation (ED) pregnancies might have a diff erent 

pathophysiological mechanism, compared with spontaneously conceived pregnancies. This 

chapter describes two examples of clinical complications in twin pregnancies resulting from 

assisted reproductive pregnancies. By describing both cases the diff erences and similarities 

become apparent.

Case 1 depicts a pregnancy after a non donor IVF procedure and case 2 illustrates a pregnancy 

after ED. In case 1 an infertile couple underwent non donor IVF with the transfer of one embryo, 

however resulting in a dizygotic pregnancy of concurrent IVF and spontaneous conception. 

Although this is an interesting and rare phenomenon, for the consideration of this chapter 

the focus is on the possible related development of preeclampsia and intra-uterine growth 

retardation of both fetuses. The second case discusses a woman pregnant after ED complicated 

by severe preeclampsia, however without intra-uterine growth retardation in none of the fetuses. 

By comparing both cases, we hypothesize a possible diff erent pathophysiological immunological 

mechanism as the cause of preeclampsia in ED pregnancies. 

Case 1 Dizygotic twin pregnancy following transfer of one 

embryo

Introduction

Two case reports suggest spontaneous conception in IVF cycles in which two embryos were 

transferred resulting in quadruplet pregnancies with diff erent zygosity [1,2]. Although eff orts are 

exerted to reduce the risk of multiple pregnancies, in general no advice against intercourse during 

the transfer period of an IVF cycle is given as it might have a positive eff ect on the success rate of 

IVF procedures [3]. In this case report we discuss a woman who conceived from intercourse and 

through an embryo transfer in the same menstrual cycle. Already during pregnancy permission 

was obtained from the couple to publish this report. 

Case

A 30 year old nulliparous, ovulatory woman and her 39 year old partner (normospermia) were 

examined for primary infertility. Her medical history revealed appendectomy after perforation, 

menorrhagia due to an intramural myoma and a treated PID due to Chlamydia trachomatis. 

Shortly thereafter, a hysterosalpingogram and a laparoscopy showed a myoma (diameter 8 cm) 

in the anterior uterine wall and possible tubal obstruction as tube permeability for contrast 

"luid was absent. The couple was referred to a university center for uterine and possibly tubal 

surgery. During surgery, directly after myomectomy and myometrium closure whereby the 

cavum uteri was not opened, diff erent approaches for testing tubal patency showed no tubal 

patency. An intramural obstruction of both tubes was considered. Seven months after surgery 

an IVF procedure resulted in 7 fertilized oocytes out of 10 collected. One of them was transferred 

and ended in a biochemical pregnancy and 5 were suitable for cryopreservation. Three months 

after the "irst transfer a 10-cell stage cryo embryo was transferred in a spontaneous cycle at the 

16th cycle day, leaving 4 cryopreserved embryos. Ultrasound at 7 weeks gestation revealed a 

dichorial twin pregnancy with a septum of 6mm. The crown rump lengths were 8.74mm and 

8.77mm, both conform a pregnancy duration of 6 weeks and 6 days. Routine ultrasound scan at 
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19 weeks gestational age showed a severely growth retarded boy (p<3), and a girl with a normal 

growth pattern (p10-50). The growth retardation of the boy persisted throughout gestation and 

at 35+6 weeks gestational age the abdominal circumference of boy was below p3, whereas the 

girl showed an abdominal circumference in between p3 and p10, with an estimated fetal weight 

of 1,720 g and 2,200 g, respectively. Ultrasound scan of the �lows in the artery cerebri media of the 

boy showed a high end diastolic �low, with brainsparing, indicative of placental insuf�iciency [4]. 

The patient developed preeclampsia (high blood pressure and proteinuria) from the 29th week 

onwards. Throughout gestation the cardiotocograms (CTG) were normal, the fetal movements 

were good, and the patient had no other clinical complaints, besides gastric acid complaints. 

At 36+0 weeks gestation, after spontaneously ruptured membranes, the boy showed signs of fetal 

distress (a raised basal heart frequency of 175/min combined with decelerations), indicating 

a caesarean section. The girl was born in cephalic position with an Apgar score of 10 after 1 

minute, with a body weight of 2,025g. The boy was born after version and extraction, with an 

Apgar score of 6 after 1 minute and 7 after 5 and 10 minutes, with a body weight of 1,475g. The 

boy was admitted to the NICU because of a need for mechanical ventilation and hypoglycemia. 

The girl developed a mild hyperbilirubinemia without a need for phototherapy. After 9 days the 

twins were transferred in good condition to a non-academic centre with body weights of 1,550g 

(boy) and 2,055g (girl). The mother was discharged in good clinical condition three days after the 

cesarean section. 

Human leukocyte antigen (HLA) typing showed that both children are of maternal and paternal 

origin as both inherited one set of antigen from the mother and the other from the father. By 

coincidence, the father and mother share 5 HLA antigens (Figure 1A, blue). Macroscopically the 

placentas were separated (Figure 1B). Microscopically, the dividing fetal membrane showed two 

amniotic and two chorionic membranes with fused trophoblast (Figure 1C). Fluorescence in situ 

hybridization (FISH) staining clearly shows that the one of the membranes originates from the 

girl and the other from the boy (Figure 1D).

Discussion

Ultrasound scan around 20 weeks of gestation was compatible with dizygotic twins as the fetuses 

had diff erent genders. After birth two separate placentas were identi�ied (Figure 1B) and no 

vascular anastomoses were present. HLA typing demonstrates that the children are derived from 

two diff erent oocytes of the same mother (Figure 1A). Histological examination of the dividing 

fetal membranes showed that this was a diamniotic, dichorionic membrane (Figure 1C). Both 

�indings strongly support dizygosity. Possibility of transfer of two embryos, instead of one, or 

laboratory mishandling have been considered, but rejected in favor of natural fertilization 

as the most plausible hypothesis. Four fertilized oocytes are still cryopreserved. The embryo 

transfer took place in the patients’ own cycle, the sperm characteristics were normal and the 

couple con�irmed intercourse without contraception in the period around embryo transfer. An 

increased rate of monozygotic twin pregnancy is observed after the transfer of one blastocyte 

[5]. The assumption of monozygosity in cases of twin pregnancies of the same gender could be an 

overestimation of monozygosity as one of the twins might be conceived after natural conception. 

Therefore, we hypothesize that dizygotic twin pregnancy following transfer of one embryo occurs 

more often than is expected. 

It is known that hysterosalpingography is of limited use for detecting tubal patency because of its 

low sensitivity; however its high speci�icity makes it a useful test for ruling in tubal obstruction 

[6]. The negative tubal patency test, even after several attempts at laparoscopy, was possibly 

caused by swollen tissue after myoma surgery. This case report shows that at least one oocyte 

was able to travel through one of the tubes. 
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The ideal outcome of IVF is a singleton pregnancy after single embryo transfer, since multiple 

gestations have a higher risk of complications for the mother and fetus [7]. The couple in this case 

was not advised against having intercourse without contraception. This case is also an example 

of a twin pregnancy showing a substantial increased risk of maternal and fetal complications 

since the mother developed preeclampsia and both children showed severe intra-uterine growth 

retardation. Interestingly, the HLA typing of the mother and boy is similar, which is possible since 

the mother and father share one set of HLA antigens. It is assumed that a certain level of HLA 

mismatches is necessary to develop an uncomplicated pregnancy. We hypothesize that because 

of the high level of HLA sharing, and therefore the low level of mismatches, the boy has a more 

severe growth retardation compared to the girl.

Based on this case, we suggest that couples should abstain from intercourse without contraception 

during an IVF procedure to prevent multiple gestations, which are related to higher maternal and 

fetal complications. 
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Figure 1 Four evidences strongly suggesting that the twin in this case report was dizygotic. HLA-typing of the 

mother, both children and father; macroscopic examination of the placenta; histology of the dividing fetal membrane; 

FISH staining of the X and Y chromosome. A. HLA typing of 5 HLA antigens shows that both children inherited one set 

of antigens from the mother. The other set of HLA antigens is inherited from the father. By coincidence, the father and 

mother share 5 HLA antigens (blue). B. Pictures of the placenta from the fetal side (upper picture) and from the maternal 

side (lower picture). These pictures show that two separate placentas were present, without vascular anastomoses. C. 

May-Grünwald-Giemsa staining of the dividing fetal membrane showing that the twin was dichorionic and diamniotic. 

D. FISH staining of two adjacent amniotic membranes. Blue stains the cell nucleus, red stains the X-chromosome and 

green the Y-chromosome. The enlargement clearly shows that one amniotic membrane originates from the girl and the 

other from the boy. 
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Case 2 Preeclampsia as complication in egg donation 

pregnancies: is there a different pathophysiological 

mechanism?

Introduction

In 1984 the �irst successful egg donation (ED) pregnancy was described [8]. The initial indication 

was premature ovarian failure. Nowadays, several indications leading to ED or embryo donations 

have increased the use of this technique worldwide. Pregnancy after ED is unique since the fetal 

genome can be entirely allogeneic towards the mother (Figure 2). It is suggested that therefore 

these pregnancies may result in more, mainly hypertensive, complications in comparison to 

spontaneously conceived or in vitro fertilization (IVF) pregnancies [9,10]. Remarkably, especially 

the mothers can be af�licted by these severe complications, while in contrast fetal parameters 

may be completely normal. This article describes a patient, pregnant after ED, suff ering from 

severe preeclampsia, without growth retardation of none of the children. 

Case

A 41-year-old primigravida, was pregnant of a dichorial, diamniotic twin pregnancy after ED. The 

oocytes were donated by the patient her sister. The indication for ED was idiopathic premature 

ovarian failure. The patient had no speci�ic medical history. At a gestational age of 28 weeks, 

patient was referred to our academic center, due to a severe, early preeclampsia. Besides a 

progressive edema in the face and ankles, patient had headache complaints and was nauseous. 

Patient used methyldopa 500mg 3 times a day. 

Patients blood pressure was 130/80 mmHg and there were signs of edema of the legs. From the 

start of pregnancy patient had gained 40 kilo’s of weight. Her �luid balance was positive (400-800 

ml per day), while her urine production was decreased: 25-30 ml/h. Re�lexes of the limbs were 

normal. 

Blood tests showed the following results (with references values in brackets): hemoglobin 6.9 

mmol/l (7.5-10), hematocrit 0.34 l/l (0.37-0.47), thrombocytes 187x109/l (150-450), creatinine 

81 μmol/l (44-80), urea 10.7 mmol/l (2.5-7.5), uric acid 0.58 mmol/l (0.14-0.34), ASAT17 U/l 

(5-30), ALAT 7 U/l (5-34), LDH 355 U/l (100-248). Total protein loss was 2.6 g/24 h. Ultrasound 

showed of both children normal fetal movements and a normal biometry. Estimated fetal weight of 

the �irst child was 1371 grams (p50) and the second child 1275 grams (p30). Doppler ultrasound 

examination of the umbilical artery was comparable with a normal placenta perfusion. 

As maternal blood pressure was acceptable and stable a conservative management was installed. 

To induce fetal lung maturation betamethason (12 mg 2 times within 48 hours) was given. During 

hospitalization edema became more prominent and the positive �luid balance increased up till 1 

liter/day. Urine production was stable on average 30 ml/day. The blood test result for creatinine, 

ureum and uric acid became gradually more abnormal with maximum values of 92μmol/l, 14.7 

and 0.72 mmol/l respectively. The total loss of protein increased up to 17 grams/24 hours, which 

made the decision to terminate pregnancy. 

Delivery started spontaneously at gestational age 29+1. The �irst fetus (boy) was born in head 

position with a birth weight of 1363 grams (p50-75). By primary breech extraction a daughter 

was born with a birth weight of 1369 grams (p50-75). Both children had normal Apgar scores. 

Post partum patient recovery was quick. Urine production normalized and the peripheral edema 

disappeared. In one week 20 kilograms of body weight were lost and the kidney function became 
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normal again (creatinine 63 μmol/l, ureum 4.9 mmol/l and uric acid 0.4 mmol/l). Two weeks after 

delivery patient could leave hospital in good condition. Six weeks after delivery patient reported 

no complaints. Blood pressure was 125/75 mmHg without medication and no proteinuria. Both 

children were transferred to a non-academic hospital. 

Discussion

In the literature several perinatal complications of ED pregnancies as compared to spontaneous 

and IVF pregnancies have been described. There is an increased incidence of early pregnancy 

complications (in particular blood loss), but late complications as well [11,12]. Reasons for these 

higher incidences of complications, although some of them might be explained by the higher 

incidence of multiplets, are still unidenti"ied. Interestingly, the incidence of pregnancy induced 

hypertension is signi"icantly higher if the donor of the egg is not related to the recipient, compared 

to a related donor [11]. 

HLA incompatibility

Complete HLA-incompatibility refers to a situation whereby the fetal genome is completely 

diff erent as compared to the genome of the mother. This situation normally does not occur in 

natural conceived pregnancies. It is suggested that partner choice by women aims at an optimal 

possible number of HLA-matches and mismatches [12]. Sharing of too many HLA-molecules 

with the partner might be unfavorable, as this is hypothesized to be related to occurrence of 

preeclampsia [13,14]. This suggests that preeclampsia in ED pregnancies where the number of 

mismatches is increased might be based on a diff erent pathophysiological mechanism, compared 

to preeclampsia in non-ED pregnancies. As shown in our patient, although an increased incidence 

of hypertensive complications in ED pregnancies has been reported, surprisingly no eff ect on 

placental perfusion or birth weight has been demonstrated [15]. The incidence of other perinatal 

complications as prematurity are similar to non donor IVF pregnancies [15]. 

Immune response

For an adequate immune reaction associated with normal implantation, maternal (allogeneic) 

immune recognition needs a certain level of HLA-incompatibility [16]. In ED pregnancies it is 

possible that this immunological response against fetal and placental tissue is inadequate, which 

may play a role in the development of speci"ic hypertensive complications. This might be the 

pathophysiological background for of preeclampsia in ED pregnancies [11]. Indeed, at the fetal-

maternal interface of the placentas of ED pregnancies an increased immunological activation 

and "ibrin deposition are found, which resembles graft-versus-host disease after solid organ 

transplantation [17]. 

Activation of the immune system may lead to an increased production of certain cytokines and 

antiangiogenic factors. In a pilot study of pregnancy complicated by preeclampsia it was found 

that in ED pregnancies a higher amount of soluble fms-like tyrosine kinase (sFlt, an antagonist 

of the pro angiogenic vascular endothelial growth factor (VEGF)), and soluble endogline (sEng, a 

co receptor of transforming growth factor (TGF)-β) were found. Serum levels of these substances 

were determined in our patient (Table 1). Remarkably high levels of sFlt, sEng and TGF-β were 

found, compared to levels in uncomplicated spontaneously conceived pregnancies. These values 

are also found severe forms of preeclampsia and are suggested to possibly explain kidney disorders 

in preeclampsia. The source of sFlt could be, other than the placenta, maternal monocytes. Recent 

studies showed that monocytes in chronic kidney disease patients also produce sFlt [18]. Post 

partum the production of sFlt by monocytes will decrease and thereby the kidney function will 

return back to normal, as in our patient. 
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Cytokine Function Patient Control

TGF-β (pg/ml) Immune regulation 45506 158

sEng (ng/ml) TGF-β co receptor

Anti-angiogenic

71 13

sFlt (pg/ml) VEGF antagonist

Antagonist of pro- angiogenic molecules

14298 8396

Table 1 Cytokine levels. Level of specifi c cytokines in serum (tested by Luminex) of the patient discussed in this case 

compared with median levels of 51 uncomplicated pregnancies. TGF-β: transforming growth factor-β. sEng: soluble 

endoglin. sFlt: soluble fms-like tyrosine kinase. VEGF: vascular endothelial growth factor.

Conclusion

More research is needed for the understanding of underlying mechanism of preeclampsia in ED 

pregnancies. This might also give insight in the mechanism of occurrence of preeclampsia in non 

donor pregnancies. This knowledge can also be of signi!icance for other areas of patient care, for 

example transplantation medicine. 

Consideration

Case 1 describes a dizygotic pregnancy of concurrent IVF and spontaneous conception. Although 

this is an interesting and rare phenomenon, for this discussion the focus was on the development 

of preeclampsia. Since case 1 describes a dichorial diamniotic pregnancy, conceived by non donor 

IVF, this pregnancy can be considered as a control pregnancy for the second patient of this chapter. 

Case 2 is also a dichorial diamniotic pregnancy, however being conceived after ED. Both cases 

received hormonal treatment for hormonal treatment for endometrium preparation, however 

only patient 1 received hormonal treatment for oocyte retrieval. Interestingly, patient 1 developed 

preeclampsia combined with severe growth retardation, while patient 2 developed severe 

preeclampsia without fetal growth retardation. These !indings are illustrating our hypothesis 

that preeclampsia in ED pregnancies might have a diff erent pathophysiological mechanism, as 

explained in case 2. 
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Figure 2 Schematic drawing 

of the inheritance of the most 

immunogenic HLA-antigens in a 

normal and ED pregnancy. A. In 

a spontaneously conceived (or non 

donor IVF) pregnancy the child inherits 

antigens of the father and antigens of 

the mother. The 5 most immunogenic 

HLA antigens (HLA-A, -B, -C, -DR and 

-DQ) are depicted in red for the mother 

and in blue for the father. The child 

inherits one set from the mother and 

one set from the father. Comparing the 

antigens of the child with the mother a 

maximum of 5 mismatches is possible. 

B. In an unrelated ED pregnancy no 

antigens from the mother are present 

in the fetus. The antigens of the donor 

are depicted in yellow and the antigens 

from the father in blue. The set of 

genes inherited by the child contains 

no antigens of the mother; therefore, a 

maximum of 10 mismatches is possible 

between the mother and the child in an 

ED pregnancy.



Preeclampsia in non donor IVF and egg donation pregnancies

73

4

The characteristics of case 1 and case 2 are summarized in Table 2. Figure 3 shows the birth 

weight of the four children born in the cases, plotted between references values. 

Case 1: IVF Case 2: ED

Age 35 year 41 year

Gravidity Primigravida Primigravida

Choronicity Dichorial diamniotic Dichorial diamniotic

Infertility based on Tubal obstruction Premature ovarian failure

Onset preeclampsia 29 weeks 28 weeks

Medication No medication Methyldopa

Protein loss 0.36 g/24h 2.6 – 17 g/24h

Delivery 36+0 29+1

Mode of delivery Cesarean section Spontaneously

Birth weight and gender 

(percentiles)

1550 g (P<2.3) boy

2025 g (P5-P10) girl

1363 g (P50-P75) boy

1369 g (P50-P75) girl

Number of HLA mismatches 0 (boy)

5 (girl)

5 (boy)

5 (girl)

Placenta weight 980 g 640 g

Table 2 Characteristics of case 1 and case 2.

Figure 3 Reference curves (mean and 1 to 2 standard deviations) for boys and girls from primiparous women. 

The circle indicates case 1; preeclampsia in a non donor IVF pregnancy with severe growth retardation of both fetuses 

and the square indicated case 2; preeclampsia in an ED pregnancy with normal fetal birth weights. (Curves adapted 

from [19].)
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In case 2 HLA typing of the mother and the boy are identical, which is possible since the mother 

and father share one set of HLA antigens. It is assumed that a certain level of HLA mismatches is 

necessary to develop an uncomplicated pregnancy. Partner choice by women seems to aim at an 

optimal number of HLA matches and mismatches [12]. We hypothesize that because of the high 

level of HLA sharing, and therefore the low level of mismatches, the boy is more severely growth 

retarded compared to the girl. Sharing of too many HLA molecules with the partner has also 

shown to be unfavorable, since this might also be related with the occurrence of preeclampsia 

[13,14]. In contrast, too many of the same HLA antigens between mother and child may as well 

be a disadvantage. 

It is thought that preeclampsia is the consequence of an unsuccessful attack of the maternal non 

speci�ic host defense on the implanting blastocyst, resulting in defective implantation resulting in 

a continuously stimulation of the maternal in�lammation response [11]. Control of placentation 

has an immunological basis, with interaction between maternal and fetal genes. In some of the ED 

pregnancies there might also be a shorter pre-pregnancy exposure, via sperm, to non-maternal 

antigens, possibly leading to inadequate immunoprotection of placentation, eventually resulting 

in preeclampsia. 

Further immunological involvement in the pathogenesis of preeclampsia is demonstrated by 

uterine NK cells and their relation with implantation. NK cells express KIR receptors; HLA is 

the most important ligand for these receptors. The combination of maternal (inhibitory) KIR 

AA genotype and fetal HLA-C2 is associated with an increased risk of preeclampsia [20]. The 

consequence of this interaction is that fetal HLA-C2 will only interact with an inhibitory KIR 

receptor, resulting in too much inhibition of uterine NK cells. It is thought that this interaction 

results in inadequate trophoblast invasion and insuf�icient remodeling of the spiral arteries, which 

is associated with the causation of preeclampsia. Since this combination has a disadvantage eff ect 

in evolution, the frequencies of these genotypes in populations have been investigated. Indeed, 

populations with a high frequency of the KIR AA genotype, have a low frequency of HLA-C2 and 

vice versa [20]. As commercial ED is not possible in the Netherlands, many women who are in 

need of ED go abroad. Hereby, such a population-protective eff ect might not be present, raising 

this as a possibility for the increased incidence of preeclampsia in ED pregnancies. The sperm of 

donors with a C1/C1 genotype is predicted to be safer than sperm of C2/C2 males, since the latter 

will always results in a fetus expressing C2 [21]. In the future it might become feasible to perform 

HLA-typing before IVF or ED, the combination of maternal KIR AA, fetal C2 and sperm donors 

with the C2/C2 genotype should be avoided in order to decrease the risk of preeclampsia. If the 

fetus has more C2 genes than the mother the risk of getting preeclampsia is two times higher (OR 

2.09, 95% CI: 1.24-3.58, p=0.007) [21]. This shows that preeclampsia is not only explained by the 

combination of KIR genotype and HLA-C genotype; the genotype of mother and both children in 

case 1 was C1/C1. Even in the presence of the protective fetal phenotype, the patient did develop 

preeclampsia. In case 2 the mother was C1/C2 and both children were C2/C2. The maternal KIR 

typing is unknown. It is possible that preeclampsia in case 2 is partly caused by the ‘dangerous’ 

C2/C2 phenotype of the fetus. 

In this chapter only 2 cases were described. Further investigation of preeclamptic ED placentas 

is essential to con�irm our hypothesis that preeclampsia in ED pregnancies is based on a 

diff erent pathophysiological mechanism. Because of a higher degree of antigenic dissimilarity, 

ED pregnancies represent an interesting model to study complex immunological interactions, 

as even in these pregnancies the allogeneic fetus is not rejected but tolerated by the pregnant 

woman. Understanding the fetus speci�ic tolerance induction during pregnancy may lead to new 

insights for the induction of donor speci�ic tolerance also in the transplantation setting.
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Abstract

In egg donation (ED) pregnancies the fetus is allogeneic to the gestational carrier. During these 

ED pregnancies the mother has to cope with a higher degree of antigenic dissimilarity compared 

with spontaneously conceived pregnancies. At the fetal-maternal interface maternal cells and 

fetal cells come in close contact. Understanding the immune mechanisms at this fetal-maternal 

interface gives more insight into the question why the (semi-)allogeneic fetus is accepted and not 

rejected by the mother. The degree of antigenic dissimilarity in ED pregnancies is comparable 

with that in solid organ transplantations with HLA mismatched unrelated donors. Therefore, 

the immunologic interactions between mother and child in successful ED pregnancies may be 

relevant for the induction of immunological tolerance in solid organ transplantation. 
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Introduction

The fetus is a semi-allograft expressing both maternal (self) and paternal (non-self) genes. The 

placenta and fetal membranes are directly exposed to maternal tissue. Therefore during the 

accomplishment of uncomplicated pregnancy speci!ic, local immune adaptations are necessary at 

the fetal-maternal interface. As in egg donation (ED) pregnancies the fetus can be fully allogeneic 

to the mother, ED pregnancies represent an interesting model to study complex immunologic 

interactions between the fetus and the pregnant women. During these ED pregnancies the mother 

has to cope with a higher degree of antigenic dissimilarity compared to spontaneously conceived 

pregnancies. Understanding immune mechanisms involved in successful ED pregnancies can 

possibly lead to new strategies for the induction of immunological tolerance in human leukocyte 

antigen (HLA) mismatched solid organ transplantations. To elucidate aspects of ED pregnancies 

as an immunological model for solid organ transplantation, knowledge of maternal mechanisms 

during spontaneously conceived pregnancies in the acceptance of the developing fetus and 

placenta is essential. In this review immunogenetic and immunological similarities between ED 

pregnancy and transplantation are discussed. In addition an overview of immunological aspects 

of spontaneous, uncomplicated pregnancy is given, showing why fetal tissues are immunologically 

tolerated in the maternal host environment. 

Egg donation pregnancies

ED pregnancies are a result of in vitro fertilization (IVF) of an oocyte, donated by a related or, 

more commonly, by an unrelated donor. Hereby, neither of the fetal haplotypes will match with 

the gestational carrier. Increased knowledge in the !ield of assisted reproductive technologies, 

a more liberal interpretation of medical indications and social acceptance of the procedure has 

led to an ever increasing number of ED pregnancies. Clinically relevant complications in ED 

pregnancies, presumably related to the allogeneic nature of the fetus, occur more frequently. 

The literature reports on a higher risk of pregnancy induced hypertension, a higher incidence of 

cesarean sections, an increased risk of postpartum hemorrhage and more !irst trimester vaginal 

bleeding complications [1-5]. Although these maternal complications are higher in ED pregnancies 

compared to spontaneously conceived pregnancies, they are not associated with an increase in 

fetal and/or neonatal complications [3,4,6,7]. This suggests that downregulation of the maternal 

immune response preventing a detrimental maternal immunological response is possible, even in 

a completely allogeneic situation. Histological !indings of ED placentas show some resemblance 

with a host versus graft rejection phenomenon as seen with solid organ transplantations [8]. 

Severe chronic deciduitis admixed with !ibrinoid deposition has been observed in ED placentas 

compared with non donor IVF placentas [8]. Histological !indings, as chronic deciduitis, found in 

the basal plate of the placenta where extravillous cytotrophoblast interfaces with the maternal 

decidua, are thought to resemble immune mediated placenta pathology. 

Although the possible maternal complications in ED pregnancies are clearly described, relatively 

little is known on the underlying immune regulation in ED pregnancies. Research in this !ield 

will not only help us to understand the role of the immune system in ED pregnancies but may 

give insight into strategies to induce immunologic tolerance in HLA mismatched solid organ 

transplantations. 
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Blood transfusion

In ED pregnancy, the mother is exposed to foreign cells and antigens, a situation that has some 

resemblance to blood transfusions and organ transplantation (Figure 1). It is to be conceived that 

the downregulation of the maternal alloimmune response to the fetus during ED pregnancies 

needs more adaptation compared to a spontaneously conceived pregnancy. The degree of antigenic 

dissimilarity (re�lected by the number of HLA mismatches) is in general higher in ED pregnancies 

compared to spontaneously conceived pregnancies. In the transplantation setting the degree of 

HLA compatibility between the donor and recipient is relevant for graft survival. More mismatches 

will lead to poorer graft survival [9]. Enhanced graft survival has been observed in kidney 

transplant recipients who prior to transplantation received a blood transfusion [10]. However, as 

discussed later, pretransplant blood transfusion can have diff erent immunomodulatory eff ects as 

they either activate or suppress the immune system of the recipient. 

Downregulation of the immune system by HLA-DR matched blood transfusions 

Pretransplant allogeneic blood transfusion has a positive eff ect on kidney graft survival [10]: 

patients transfused with one HLA-DR matched transfusion (semi-allogeneic, a situation similar 

to a normal pregnancy) showed an enhanced kidney [11] and heart [12] transplant survival. No 

bene�icial eff ect was seen for pretransplant blood transfusion with fully HLA-DR mismatched blood 

transfusions (a situation similar to ED pregnancies). In addition, HLA alloantibody formation was 

signi�icantly higher after fully HLA mismatched transfusions compared to one HLA-DR matched 

transfusions [13]. The immune mechanism suggested to be involved in modulation of alloreactivity 

by blood transfusion might as well occur during conception and prior exposure to semen [14]. 

The shared HLA-DR allele is supposed to play a pivotal role in the downregulation of the immune 

response [15,16] as CD4+ regulatory T cells may recognize an allopeptide in the context of this self 

HLA-DR on the transfused blood cells. When this allopeptide is shared between the blood donor 

and organ donor, CD4+ T cells are capable of downregulating all activated T cells involved in graft 

rejection, leading to an enhanced graft survival. A similar mechanism may play a role during a 

normal pregnancy or during an ED pregnancy where the fetus shares the HLA class II allele with 

the mother. However, the situation is diff erent in fully allogeneic ED pregnancies, where the fetus 

is completely HLA mismatched. It is to be expected that a stronger or diff erent immune regulation 

is necessary to prevent rejection of the fully allogeneic fetus. Studies in mice demonstrate that 

the maternal T cell repertoire is aware of paternal antigens during pregnancy, but in healthy 

pregnancy reactive T cells do not mediate a detrimental anti-fetal immunity [17]. In humans, it 

has been shown that a distinct subset of HLA-DR+ regulatory T cells is involved in the induction of 

preterm labor and in the induction of organ rejection after transplantation [18]. All these studies 

suggest that a HLA-DR match play an important role in the induction of immunological tolerance. 

Since more HLA mismatches are inherent to ED pregnancies, one can imagine that the higher 

number of HLA-DR mismatches in ED pregnancies led to more complications. As the allogeneic 

fetus is able to survive nine months in the uterus, without any additional immunosuppressive 

medication as is needed in solid organ transplantation, it is likely that a very ef�icient local and 

peripheral immune regulation is responsible for such a successful ED pregnancy. 

The role of antibody formation

Preceding organ transplantation a screening for HLA antibody is performed as in organ 

transplantation preformed donor speci�ic HLA antibodies are associated with (hyper) acute 

graft failure. It is well known that blood transfusions are associated with the induction of HLA 

alloantibodies. The degree of HLA mismatches determines the immunization; HLA alloantibodies 
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are formed more frequently after transfusion of donors with two HLA class II mismatches 

compared to one HLA class II mismatch [11]. Since more than 30% of the women produce HLA 

antibodies directed against the paternal HLA antigens of the fetus already before delivery [19], 

it is commonly assumed that during pregnancy the formation of these antibodies is a harmless 

phenomenon. However, recently it has been shown that HLA alloantibodies are associated with 

a reduced chance of live birth in patients with recurrent miscarriages [20]. Only 41% of HLA-

antibody positive pregnant recurrent miscarriage patients had a live birth compared to 76% 

of HLA-antibody negative recurrent miscarriage patients. Furthermore, placental abruption is 

increased in patients with a higher prevalence of HLA class I antibodies whereby the presence 

of these antibodies possibly serve as a marker for the activation of maternal immune response 

against the fetus [21]. It remains to be elucidated which role HLA alloantibody formation plays 

in pregnancy complications. They may either play a role in the etiology or may be a parameter 

associated with a detrimental immune response by maternal immune cells. Similarly, the 

induction of donor speci!ic HLA antibodies after kidney transplantation is associated with a 

higher incidence of chronic rejection [22], although patients with donor speci!ic HLA antibodies 

may have an excellent graft function for many years [23]. Also here, it is unclear whether the 

antibodies are the direct cause of the clinical problems.
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Figure 1 Organ transplantation versus egg donation pregnancy. Schematic overview of the differences in the 

medical consequences between solid organ transplantation and egg donation pregnancies, while in both situation 

antigenic dissimilarity is present.
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Preeclampsia

Preeclampsia is a syndrome characterized by the newly onset hypertension and proteinuria 

after 20 weeks of gestation, which disappears after delivery. Immunologic abnormalities, similar 

to those observed in allograft rejection, have been observed in preeclamptic women [24]. For 

example, the most dangerous form of preeclampsia is HELLP (hemolysis, elevated liver enzymes 

and low platelets) which is in addition to hypertension characterized by elevated liver enzymes 

and low platelet counts and this disease may lead to multi organ failure. Cytopenias and multi 

organ failure are as well reported in organ transplant rejection [25]. Women with preeclampsia 

have an increased level of circulating fetal DNA in comparison to controls [26]. Also after organ 

transplantation a substantial degree of donor lymphocyte chimerism may be present in the 

recipient [27]. Furthermore, as a host versus graft immune response is stopped by removal of the 

transplanted organ, also in preeclampsia a rapid maternal recovery occurs after removal of the 

placental products [28].

Preeclampsia might be the consequence of an unsuccessful attack of the maternal innate immune 

system towards the implanting blastocyst, eventually results in defective implantation which 

may lead to stimulation of the maternal in�lammatory response [29]. In ED pregnancies there 

is only a short duration of exposure to non-maternal antigens, which could lead to an altered 

or inadequate immunoprotection of placentation, eventually resulting in preeclampsia. The 

incidence of preeclampsia in pregnancies conceived with assisted reproductive technologies and 

thus related with potentially less exposure of sperm, is indeed higher [30]. 

Uterine NK cells are supposed to play a pivotal role during implantation and preeclampsia. 

NK cells express killer immuno-globulin like receptors (KIR) to which HLA is able to bind. KIR 

receptors can be divided in inhibiting (AA) and activating (BB) KIRs. The combination of maternal 

KIR AA genotype especially with an HLA-C2 is associated with an increased risk of preeclampsia 

[31]. HLA-C2 has a much stronger binding with inhibiting KIRs than with activating KIRs. The 

interaction of maternal uNK cells with an AA genotype with a fetal C2 allele expressed on placental 

trophoblast tissue will possibly result in an inhibition of uterine NK cells. It is thought that the 

inhibition of uterine NK cells results in inadequate trophoblast invasion into the spiral arteries, 

which will eventually lead to preeclampsia. Such a KIR AA – HLA-C2 combination is supposed 

to have an evolutionary disadvantage. In populations with a high frequency of KIR AA, a low 

frequency of HLA-C2 and vice versa was found [31]. If the fetus has a HLA-C2 gene, the risk of 

getting preeclampsia is two times higher (OR 2.09, 95% CI: 1.24-3.58, p=0.007) [32]. Of course, 

preeclampsia not based on this KIR AA – HLA-C2 combination should not be excluded and other 

mechanisms as well play a role in the pathogenesis of preeclampsia. 

Immunology in complicated ED pregnancies

Success of egg donation procedures

The European Society of Human Reproduction and Embryology (ESRHE) publishes annual data 

on assisted reproductive technology. After ED, 5516 clinical pregnancies were reported resulting 

from 12685 embryo transfers, giving a clinical pregnancy rate of 43.5%. The mean birth rate of 

these embryo transfers was 27.2% (n=3448) [33]. This means that a total of 71.8% of all embryo 

transfers after ED do not result in a continuing pregnancy. For IVF the pregnancy rate was 32.4% 

(31665 pregnancies from 96572 embryo transfers). At a �irst glance this higher pregnancy rate 

in ED pregnancies compared to IVF pregnancies is surprising. However, the reason to perform 

ED is ovarian failure and, as there are no uterine abnormalities, ED might be more successful 
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compared to IVF pregnancies, in which there may be an underlying and unknown mechanism 

responsible for implantation failure. Unsuccessful embryo transfers in ED procedures, resulting 

in miscarriage may be related to a non optimal HLA-match between the egg donor, sperm and 

gestational carrier. Surprisingly, nearly 30% of all embryo transfers in ED pregnancies result in 

a continuing pregnancy, resulting in a mother who carries a completely allogeneic fetal allograft. 

A number of complications have been described, of which some might be due to the allogeneic 

nature of the fetus. 

Taking the more vigorous immune response in ED into account, it could be of importance to perform 

HLA-typing of the egg donor and recipient in order to select haplo-identical combinations which 

would be more similar to spontaneously conceived pregnancies. However, this suggestion has to 

be evaluated in well designed studies. HLA-typing could then be performed before fertilization of 

the donated egg, whereby the combination of maternal KIR AA – fetal HLA-C2 and sperm donors 

with the C2/C2 genotype should be avoided in order to decrease the incidence of preeclampsia. In 

the Netherlands commercial and anonymous egg donations are forbidden by law. ED based on a 

non-commercial basis is allowed, but infertile women should !ind their egg donor by themselves. 

In several cases this might be a family member who is donating an oocyte, but many women, 

who want to make use of the opportunity of ED to get pregnant, go abroad for the treatment. It 

might be useful to perform an international study on the relevance of HLA/KIR matching and the 

success rate of ED pregnancies. The sperm of donors with a C1/C1 genotype is predicted to be 

safer than C2/C2 males, since this certain results in a fetus expressing C2 [32]. 

The underlying immunogenetic diff erences between donor and recipient in solid organ 

transplantation and ED pregnancies are similar and form the basis of their most important 

complications (graft rejection and preeclampsia). However, the medical regimes for women 

pregnant via ED or for transplantation patients are totally diff erent. For solid organ transplantation 

the donor requires an extensive screening and the patient receives immunosuppressive therapy 

besides a comprehensive medical follow up. In contrast, an ED pregnancy occurs mostly via an 

unknown donor, the pregnant women does not receive extra medical care, and does not use any 

additional medication (Figure 1). ED pregnancies results in an immunologically unique situation 

and until now the immunological mechanism behind the success of these pregnancies remains 

unclear. It remains to be established whether immunological principles additional to those present 

in spontaneously conceived pregnancies are operating in the ED fully allogeneic pregnancies. 

Uncomplicated pregnancy and immunology

Placental development in an allogeneic environment

The development of the placenta is essential for fetal development and growth during 

uncomplicated pregnancy as it prevents rejection of the fetal allograft, and exerts metabolic and 

endocrine functions. The placenta develops from fetal derived cells and is able to anchor in the 

maternal myometrium. Several immune escape mechanisms are necessary to enable growth 

of the immunogenetically foreign fetal cells into the maternal uterine lining. The blastocyst 

consists of the inner cell mass, which will form the embryo, and the trophoblast, which will form 

the placenta and fetal membranes. During implantation the blastocyst invades the maternal 

uterine epithelium (Figure 2). Placental progenitor stem cells develop into invasive extravillous 

trophoblast or into non-invasive trophoblast cells covering placental villi. Villous trophoblast can 

be classi!ied in two types; the mononuclear cytotrophoblast and, after fusing, the multinuclear 

syncytiotrophoblast layer overlying the villi is formed. The syncytiotrophoblast, surrounded by 

maternal blood, is in direct contact with maternal immune cells. Extravillous trophoblast invades 
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the maternal decidua and myometrium and is thereby responsible for anchoring the placenta. 

Maternal endothelial cells in the spiral arteries are replaced by endovascular trophoblast cells 

originating from extravillous trophoblast. It is also crucial for the supply of oxygen and nutrients 

to the fetus by changing the maternal vascular system. A balance of this invasion is very important; 

the cells need to invade enough for the anchoring and for receiving nutrients; on the other hand 

over-invasion of trophoblast cells has to be limited to protect the mother.

Fetal defense mechanisms 

Fetal trophoblast cells are the crucial cell population in the placenta which protects the fetus 

from destruction by the maternal immune system. Villous cytotrophoblast is the inner layer 

of the villous surface epithelium. Villous syncytiotrophoblast is the super!icial layer facing the 

intervillous space. Villous trophoblasts lack HLA expression and do not provoke an allogeneic 

immune response by circulating maternal T cells. Until now it is unexplained how these cells 

circumvent a maternal immune attack by e.g. peripheral NK cells, which normally would destroy 

cells without any HLA expression. The remaining trophoblast cells, the extravillous trophoblast, 

migrate into the maternal decidua and are the dominant cell type needed for the development of 

all nonvillous parts of the placenta. Extravillous trophoblast does not express HLA-A or -B, but 

does express HLA-E, -F, -G and -C [34], which serve as ligands for leukocyte inhibitory receptors. 

The consequences of these interactions include activation of pathways in natural killer (NK) cells 

and macrophages that interfere with the killer functions of these cells [34-36]. HLA-G has potent 

immunomodulatory functions [37], whereas HLA-C and -E have shown to elicit an allogeneic 

immunomodulatory response by maternal NK and T cells [38]. Several other immunomodulatory 

mechanisms have been postulated to contribute to successful pregnancy. Antigen presenting 

cells express a membrane bound or soluble form of HLA-G, which can activate the Fas/Fas 

ligand pathway resulting in destruction of activated T cells [39]. HLA class II molecules are 

not presented by trophoblast cells as the HLA class II transactivator (CIITA) is not expressed 

[40]. Furthermore, the B7H1 protein, a co-stimulatory molecule of the B7 family, is expressed 

on syncytiotrophoblast, which leads to inhibition of lymphocytes circulating in maternal blood 

[41]. In addition trophoblast cells contain indoleamine 2,3-dioygenase (IDO), an inhibitor of 

tryptophan metabolism; this may inactivate T cells since they reduce tryptophan, required for T 

cell activation [42]. TNFα, Fas ligand and TRAIL are ligands identi!ied in or on human trophoblast 

cells which are able to support the pregnancy host defense by supporting maternal and/or fetal 

antibody production [43-45]. Th2 cytokines, produced at the maternal-fetal interface, can inhibit 

Th1 responses, improving fetal survival but impairing responses against some pathogens [46]. 
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Figure 2 Implantation of the blastocyst in to the maternal 

endometrium. The genetically different blastocyst invades in to the 

maternal endometrium. Several immunological escape mechanisms 

are necessary for the fetal cells to be tolerated by the maternal 

immune cells, as depicted in detail in fi gure 3. 
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The human placenta produces immunosuppressive molecules as progesterone, prostaglandin 

E2, and anti-in!lammatory cytokines as IL-10 and IL-4 [35,47]. Finally, trophoblast cells express 

complement regulatory proteins, which are important to protect the fetal cells from complement 

dependent destruction [48]. Complement inhibition is required in normal pregnancy and 

uncontrolled activation at the maternal-fetal interface that leads to bad pregnancy outcomes [49]. 

All these mechanisms, summarized in Figure 3, maintain the immunosuppressive environment 

in the pregnant uterus and in this way, and possibly by other still unde!ined mechanisms, the 

(semi-)allogeneic fetus is capable to survive during its nine months housing in the uterus.

Maternal defense mechanisms

Multiple strategies are used by trophoblast cells, including altered HLA expression, synthesis of 

immunosuppressive molecules, and expression of high levels of complement regulatory proteins 

that may protect the embryonic tissues from destruction by maternal anti-paternal alloantibodies 

and T cells. Nevertheless, maternal leukocytes are potentially capable to elicit an alloimmune 

response since syncytiotrophoblasts and circulating syncytiotrophoblasts micro particles may 

come directly in contact with maternal immune cells [50]. 

During early pregnancy, the uterus seems to be immune compromised as T and B cells are hardly 

present. Macrophages and NK cells interact with the trophoblast cells. Decidual NK cells are 

diff erent compared to peripheral NK cells. Decidual NK cells express perforin, granzyme A and 
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B but, unlike peripheral NK cells, they have a reduced cytolytic activity to HLA class I negative 

targets [51], secrete proteins with immunomodulatory potentials [52] and produce angiogenic 

factors like vascular endothelial growth factor and placental growth factor [53]. Decidual 

NK cells may recognize fetus HLA-C1 and HLA-C2 by the expression of KIR. Macrophages are 

antigen presenting cells which are the second most numerous type of leukocytes in the human 

decidua [54]. Macrophages are involved in both the innate and the adaptive immune system 

and consist of diff erent functional subpopulations. Some macrophages promote in�lammation 

by production of in�lammatory molecules during an innate immune response and, as part of 

the adaptive immune system are able to present antigens to T cells. Others may have a role in 

immunosuppression by the expression low levels of costimulatory molecules CD80 and CD86 and 

the expression of indoleamine 2,3-dioxygenase, both preventing T lymphocyte activation [55]. 

The number of decidual T cells increases during pregnancy, starting with 5-20% of all CD45+ 

decidual lymphocytes in early pregnancy, till 40-80% at term [56]. Decidual T cells encompass a 

very heterogenic subset of T cells that include activated CD4+ and eff ector memory type CD8+ T 

cells. These activated T cells are found together with T cells subsets that are capable to suppress 

the decidual lymphocyte response [57]. T cells are in close contact with fetal trophoblast cells 

in the decidua; however they do not attack the non villous trophoblast cells, since trophoblast 

lack HLA class Ia expression. Fetus speci�ic regulatory CD4+CD25bright T cells are present in 

human decidua in higher numbers compared to peripheral maternal blood [57], suggesting 

an important role for these cells at the fetal-maternal interface. It has been shown that fetus 

speci�ic CD4+CD25bright T cells are recruited to the maternal decidua where they are able to 

suppress the local immune response [58]. T cells are able to produce a variety of type 1 and type 

2 cytokines and thereby may contribute to the local regulation of the fetus-speci�ic responses 

within the decidua. Also speci�ic CD8+ T cell subsets, which do not express perforin and have 

a reduced expression of granzyme B, are more present in decidual tissue [59]. These cells also 

express KIR receptors which are then able to communicate with HLA-C expressed on trophoblast. 

The properties of these CD8+ T cells suggest that they may play a role in immune regulation at 

the fetal-maternal interface. Fetus speci�ic immunological tolerance during pregnancy depends 

on a very complex network of cytokines, complement, hormones, immune and non-immune cells. 

Acceptance is not simply based on the consequence of a balance between the type 1 (associated 

with abortion) and type 2 (associated with successful pregnancy) cytokines, since many cytokines 

are pluripotent. However, in an uncomplicated pregnancy the child is able to survive in the semi-

allogeneic environment and the mother accepts the semi-allograft. ED pregnancies re�lect an 

extreme immunologic challenge, in which the fetal genome is immunogenetically fully allogeneic 

to the mother.

Conclusion

In ED pregnancies the fetus is allogeneic to the gestational carrier. This creates an interesting 

immunological paradox. The fetus is accepted by the mother although being immunogenetically 

completely unrelated to the mother (unless the egg is donated by a relative). In solid organ 

transplantation the same immunogenetic dissimilarity is present; however immunosuppressive 

drugs are unavoidable to maintain the graft. Resemblances between graft rejection and pregnancy 

complicated by preeclampsia are clearly present. Multiple immunomodulatory strategies are used 

by trophoblast cells in the placenta to avoid rejection, including altered HLA expression, synthesis 

of immunosuppressive molecules, and expression of high levels of complement regulatory 

proteins. We hypothesize that in ED pregnancies these immunomodulatory strategies lead to an 

active downregulation of the alloimmune response and as a consequence to acceptance of the 

fetal allograft. Knowledge of the immune mechanism, leading to successful ED pregnancy might 

be useful for future strategies to induce immune tolerance in solid organ transplantation.
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Abstract

Background: Egg donation (ED) makes it possible for subfertile women to conceive. Pregnancies 

achieved using ED with unrelated donors are unique, since the entire fetal genome is allogeneic 

to the mother. The aims of this review were to evaluate the consequences of ED pregnancies and 

to place them in the special context of their atypical immunologic relationships.

Methods: This review comprised an online search of English language publications listed in 

Pubmed/Medline, up to January 29th 2010. Seventy-nine papers met inclusion criteria. Using 

the literature and the authors’ own experience, the relevant data on pregnancy outcome and 

complications, placental pathology and immunology were evaluated. 

Results: Multiple studies document that ED pregnancies are associated with a higher incidence 

of pregnancy-induced hypertension and placental pathology. The incidence of other perinatal 

complications, such as intrauterine growth restriction, prematurity, and congenital malformations, 

is comparable to conventional in vitro fertilisation. During pregnancy, both local and systemic 

immunologic changes occur. In ED pregnancies these changes are more pronounced. There is 

almost no information in the literature on the long-term complications of ED pregnancies for the 

mother.

Conclusion: ED pregnancies have a higher risk of maternal morbidity. Due to the high degree 

of antigenic dissimilarity, ED pregnancies represent an interesting model to study complex 

immunologic interactions, as the fully allogeneic fetus is not rejected but tolerated by the pregnant 

woman. Knowledge of the immune system in ED pregnancies has broader signi!icance, as it may 

also give insight into immunologic aspects of tolerance in solid organ transplantation.



Clinical and immunologic aspect of egg donation pregnancy

93

6

Introduction

The !irst successful pregnancy achieved after egg donation (ED) was reported in 1984 [1]. Since 

then, thousands of pregnancies after ED have occurred worldwide. The original indication 

was premature ovarian failure [2,3]. More recent indications include advanced maternal age, 

diminished ovarian reserve, secondary infertility following treatment of childhood malignancies 

[4], multiple failed in vitro fertilisation (IVF) attempts [5], and maternally inherited genetic 

abnormalities [6]. Infertile women who do not produce euploid embryos also depend upon ED to 

achieve a successful pregnancy.

Eggs obtained from a suitable donor, either provided by relatives or via independent, sometimes 

for pro!it organizations [7], are fertilised with sperm of the recipient’s partner or donor and the 

resulting embryos are transferred into the recipient’s uterus. Some pregnancies achieved using 

ED are unique, since the entire fetal genome is allogeneic to the mother. Therefore, ED pregnancies 

represent an interesting model to study complex immunologic interactions between the fetus and 

the pregnant woman. Despite a continued increase in the number of ED pregnancies, relatively 

little is known about the underlying biology and long-term complications of this approach. 

Similar immunologic interactions exist in surrogate gestations, in which biological motherhood is 

achieved without pregnancy by transferring fertilised eggs to the uterus of a second woman. This 

treatment is used for women without a functioning uterus, or in women for whom pregnancy 

would be life-threatening [8].

Delaying childbirth and the resulting demand for infertility treatment have resulted in ~1% 

of United States (US) infants being conceived through assisted reproductive technologies [9]. 

Currently about 10% of the IVF cases in the US use ED [10]. This has increased the demand for 

the availability of oocyte donors; in the US more than 100,000 women have donated their oocytes 

[11]. In Europe, a recent report showed a total of 11491 egg donations [12].

ED was initially developed as a therapy for young women with premature ovarian failure, rather 

than as a means of overcoming the age-related decline in fertility. However, age-related infertility 

is now one of the most common reasons to use ED, especially in women over 40 [13]. The data 

suggest that fertility depends on oocyte age and quality and less on uterine age [14-16]. Some 

studies report that ED in women of advanced maternal age is as successful in establishing 

pregnancy as in younger recipients [17-20]. This would suggest that endometrial receptivity is 

unaltered by age [13,17]. However, in the late 40s and beyond, the success rate of ED starts to 

decline, so there are likely to be as-yet undiscovered factors that are aff ected by maternal age 

[14,15,21]. Advanced maternal age is almost always inherent to ED; thus it will therefore be a 

confounding factor in research studies of ED. 

Obesity [22], an endometrial thickness of < 8mm, and the need for the use of GnRH analogue to 

down-regulate the pituitary before endometrial priming negatively in!luences pregnancy rates 

[23]. In contrast, high birth rates have been observed in frozen-thawed embryo replacement cycles 

in which embryos are derived from cycles that used GnRH analogues [24]. Besides the recipient’s 

mid-cycle endometrial thickness, the quality of the transferred embryos is also important for a 

successful pregnancy [25-27]. 

Methods

The aims of this systematic review were to evaluate the consequences of ED pregnancies 

and to place the !indings in the literature in the special context of their atypical immunologic 

relationships in ED pregnancies.
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A search in PubMed, using the Medical Subject Headings (MeSH) terms ‘oocyte donation’ and ‘egg 

donation’, in combination with ‘pregnancy outcome’ or ‘pregnancy complications’ or ‘immunology’ 

or ‘placenta’ was performed. English language was used as a limit. Time was not limited but the 

search was completed on January 29th 2010. The titles and abstracts of the resulting articles were 

scanned and evaluated by the �irst, second and last authors (M.L.P.H, E.E.L.O.L. and S.A.S). Inclusion 

criteria were original and review articles that focused on current knowledge in ED pregnancies 

regarding pregnancy outcome and complications, placental pathology, and immunologic aspects. 

In addition, some background articles on reproductive and transplantation immunology were 

included. Exclusion criteria were: case reports, letters, and articles with an exclusive focus on 

ethics of ED. The main search identi�ied 505 potentially relevant studies. Figure 1 shows the �low 

chart, which led to the �inal 79 references included in the review. 

Consequences of egg donation pregnancies

Many studies of ED pregnancies have focused on perinatal complications, such as preeclampsia, 

the mode of delivery, and immediate neonatal problems, such as prematurity. In addition, ethical 

and medical concerns have been raised regarding the eff ects of treatment on the donor [11]. With 

regard to the recipient, most of the emphasis has been on short-term complications of pregnancy, 

because of the higher incidence of both early and late obstetrical problems. The reason for the 

higher incidence of complications in ED pregnancies is unclear from the literature reviewed.
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Figure 1 Flow chart depicting selection of articles for systematic review.



Clinical and immunologic aspect of egg donation pregnancy

95

6

Maternal complications

ED enables women of advanced age to achieve successful pregnancies. However, advanced 

maternal age leads to potential medical and obstetric complications. Pregnant recipients above 

the age of 40 are at an increased risk for gestational diabetes, preeclampsia and thrombophlebitis 

[28]; above the age of 45 they are at an increased risk of hypertension, proteinuria, premature 

rupture of membranes, second- and third trimester haemorrhage, preterm delivery and lower 

mean infant birth weights [15,29]. One study that corrected for maternal age and multiple 

gestation concluded that women who conceived with donor oocytes remain at high risk for 

preterm labor, preeclampsia, and protracted labor, requiring caesarean section delivery [30]. 

The rate of caesarean section deliveries in ED pregnancies is increased compared to spontaneous 

conceptions, and is reported to range from 40-76% of cases [4,5,18,31-35].

Pregnancy-induced hypertension

ED pregnancies are associated with a higher than expected incidence of pregnancy-induced 

hypertension (PIH), ranging from 16-40% of cases [5,31-34,36-39]. This is most likely due to 

a higher incidence of placental pathology [6]. It has been suggested that the increased rate of 

hypertension in ED pregnancies is related to advanced maternal age, nulliparity and ovarian 

failure [6], since these factors are associated with multiple obstetric complications [40]. However, 

a study by Sheff er-Mimouni et al. found that these factors were not independent risk factors for 

PIH [33]. They concluded that the higher incidence of PIH in ED pregnancies is due to an altered 

immune response. In another report, an increased risk for PIH was observed in women with ED 

pregnancies in women < 35 years or > 40 years of age [41].

In the studies above the control groups were spontaneously conceived pregnancies. Since 

IVF pregnancies are associated with more obstetric complications than naturally conceived 

pregnancies [42], they represent a more appropriate control group to examine the consequences 

of ED. Wiggins et al. found a 3-fold increased incidence of hypertensive complications in ED 

compared to standard IVF pregnancies (26% vs. 8%, respectively, p=0.02) [39]. For nulliparous 

women this diff erence was even more signi"icant, with 37% of the ED group and 8% of the standard 

IVF group aff ected by hypertension (p<0.003). Multiple logistic regression analysis in nulliparous 

patients showed an odds ratio of 7.1 (p=0.019). In singleton and twin pregnancies the same eff ect 

was found (OR: 4.9, p=0.017). Maternal age was not an added risk factor for the development 

of PIH (OR: 1.0) [39]. Interestingly, the incidence of PIH appears to be signi"icantly higher if the 

oocyte donor is unrelated to the recipient (20% vs. 3.7% for standard IVF, p=0.03), versus a 

related, sibling donor (8% vs. 3.7% for standard IVF, p=0.31) [43]. This study retrospectively 

analyzed 61 ED pregnancies that were classi"ied into two subgroups according to the relationship 

between the ED and recipient, and 127 non donor IVF pregnancies. The groups were matched for 

age, parity and number of fetuses. This study is the only one that has speci"ically examined the 

immunogenetic origin of the egg and its relationship to complications of pregnancy. These data 

suggest that PIH is more frequent with an immunologically unrelated donor.

Bleeding

A possible result of the unique, non-physiological immunologic relationship between the fertilised 

oocyte and the maternal decidua is shallower placental invasion [44,45]. The higher incidence of 

bleeding complications in the "irst trimester could be related to this insuf"icient placentation. 

On the other hand, excessive invasion might result in more postpartum haemorrhage in ED 

pregnancies as a result of placenta praevia or abnormal placentation [33]. 

The incidence of "irst trimester vaginal bleeding is increased in ED pregnancies, ranging from 12-

53% of cases [6,31,34]. Signi"icant blood loss is estimated to occur in 43-53% of "irst trimester 

cases [33,34] and 6% of second trimester cases [6,33]. The incidence of "irst trimester bleeding is 
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Figure 2 Photomicroscopic images from ED and spontaneously conceived pregnancies placentas. (H&E stained 

sections, original magnifi cation 400X). A. Decidua basalis of ED pregnancy placenta with deciduitis illustrated by the 

infi ltration of mononuclear cells (arrow). B. Normal decidua basalis from a spontaneously conceived pregnancy with 

normal decidual cells (arrow). C. Villi from an ED pregnancy placenta. The stromal cellularity is increased by an infi ltrate 

of mononuclear cells (arrow). D. Villi of a spontaneously conceived pregnancy placenta. 
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Figure 3 Schematic drawing of the inheritance of the most immunogenic HLA-antigens in a spontaneously 

conceived and an ED pregnancy. A. In a spontaneously conceived (or non donor IVF) pregnancy the child inherits 

antigens of the father and antigens of the mother. The 5 most immunogenic HLA antigens (HLA-A, -B, -C, -DR and -DQ) 

are depicted in orange for the mother and in blue for the father. The child inherits one set from the mother and one set 

from the father. Comparing the antigens of the child with the mother a maximum of 5 mismatches is possible (dashed 

line). B. In an unrelated ED pregnancy no antigens from the mother are present in the fetus. The antigens of the donor 

are depicted in green and the antigens from the father in blue. The set of genes inherited by the child contains no 

antigens of the mother, therefore, a maximum of 10 mismatches is possible between the mother and the child in an ED 

pregnancy (dashed line).
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substantially higher if compared to standard IVF pregnancies [34] and second trimester bleeding 

is higher if compared to the spontaneously conceived population (< 1%) [46]. It has been assumed 

that more bleeding complications are associated with multiple implantation sites and early fetal 

loss [47]. However, in ED cases in which only two oocytes per cycle are transferred, the frequency 

of bleeding still remains high [34]. Other explanations, such as endometrial preparation therapy, 

have been suggested, but a possible relationship between various steroid replacement regimens 

and !irst trimester bleeding is dif!icult to assess.

Long-term consequences

The study of the traf!icking of intact fetal cells into the maternal circulation (fetal cell 

microchimerism) is relevant to ED pregnancies, because it is not yet known if these circulating 

fetal cells play a role in establishing or maintaining tolerance to the conceptus. This merits further 

investigation. Furthermore, the consequences of the persistence of foreign circulating fetal cells 

for the mother’s long-term health are currently unknown. In one study, however, allogeneic male 

fetal cells were shown to persist for up to 9 years in the circulation of healthy post-partum women 

who conceived using egg donors and delivered male infants [48]. The implications of becoming 

microchimeric with an unmatched population of fetal progenitor cells are an area for future 

research.

ED conception is often hidden from the mother’s and the baby’s medical records, so correlations 

between ED and speci!ic adverse outcomes are dif!icult to make. In approximately 40-50% of the 

cases the fact that it was an ED pregnancy is never disclosed to the child or other family members 

[49]. The literature search revealed no studies evaluating long-term eff ects of ED for the mother. 

Long-term outcome studies are therefore warranted [50].

Fetal and neonatal complications

In most studies that assessed the obstetrical outcome after ED relatively little has been reported 

on fetal and/or neonatal complications. Elevated risks (relative to the general population) are 

primarily related to the higher incidence of multiple gestation [6,51]. The incidence of intrauterine 

growth restriction is also not increased compared to the general population [34]. The incidence 

of preterm deliveries in ED singleton pregnancies (10.6%) is not increased if compared to the 

general population [34,35]. Signi!icantly, there appears to be no eff ect of ED pregnancy (with or 

without PIH) on neonatal birth weight [18,34]. The general health status of children under 5 years 

old who were conceived using ED is at least as good as that of children conceived using standard 

IVF procedures [52]. There is also no increase in the incidence of congenital malformations in 

infants resulting from ED pregnancies [33,35].

Placental pathology

At the fetal-maternal interface signi!icant histological and immunohistochemical diff erences are 

present when comparing ED and non donor IVF pregnancies. Characteristic pathologic !indings 

in ED cases include a higher incidence of villitis of unknown etiology, chronic deciduitis, massive 

chronic intervillositis, maternal !loor infarction, and ischemic changes, as seen with preeclampsia 

[53-55] (Figure 2). The chronic deciduitis observed in ED placentas is characterized by its severity 

and the presence of a dense, !ibrinoid deposition in the basal plate. Furthermore, an increased 

in!iltration of CD4+ T helper cells and CD56+ NK cells is present in the basal plate of ED placentas 

[55]. It is in the basal plate where extravillous trophoblast (of fetal origin) interfaces with and 

invades the maternal tissue. The extravillous trophoblast cells do not express classical Human 

Leukocyte Antigen (HLA) -A and HLA-B molecules, thereby preventing interaction with cytotoxic 
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T cells. However, they do express a unique combination of HLA antigens (HLA-C and the non-

classical HLA-E and HLA-G) that interact with KIR receptors on uterine natural killer cells [56-

58], although HLA-C can also serve as a target molecule for CD8+ T cells [59]. The striking �indings 

of a dense �ibroid deposition and mononuclear cell in�iltration in the basal plate suggest that the 

placental abnormalities are related to an immune-mediated response that is more pronounced 

in ED pregnancies. The placental damage may be the consequence of a type of graft-versus-host 

disease and/or organ rejection type of reaction [55].

Immunologic aspects of egg donation pregnancies

Normal fetal-maternal immunology 

A successful pregnancy is an interesting immunologic paradox. The fetus carries paternal and 

maternal genes but is not rejected by the maternal immune system, over a period of nine months 

(Figure 3). In spontaneously conceived gestations, several speci�ic protective mechanisms have 

been postulated to explain the maternal tolerance of the fetus. Since the fetal tissue is directly 

exposed to the maternal blood, it is at risk of being attacked by components of both the innate 

and acquired immune system, with the potential risk of death. Therefore, to develop tolerance 

to the fetus, humans need an immune privileged site at the fetal-maternal interface in order 

to reproduce [60]. In spontaneously conceived pregnancies, immune recognition of the semi-

allogeneic fetus takes place, but the soluble and cellular components of the maternal immune 

system are kept under control (or are locally down-regulated), leading to a maternal immune 

system that favours implantation of the embryo [61]. The currently accepted view is that a 

successful pregnancy depends on an appropriate balance of the diff erent components of the 

maternal immune system, with predominance of T helper 2 immunity [62-65]. At the human fetal-

maternal interface, maternal recognition of fetal antigens presented by trophoblast cells or by fetal 

cells traf�icking into the maternal circulation, is essential for the induction of immunoregulatory 

mechanisms [66]. It is apparent that activated T cells at the maternal interface include regulatory 

T cells [66,67]. These regulatory T cells have an important role in the local down-regulation of 

human fetal-speci�ic allogeneic T cell responses [68]. In studies of peripheral blood only minor 

diff erences in systemic immunoregulation were found between pregnant women and non-

pregnant female controls (unpublished data). All of these protective mechanisms maintain the 

immunosuppressive environment in the pregnant uterus, and in this way the semi-allogeneic 

fetus is capable of surviving in the uterus.

Parallels with blood transfusions

The mechanism(s) involved in the eff ective down-regulation of the maternal immune response 

to the semi-allogeneic fetus can be compared to the ones involved in the tolerizing eff ect of 

pre-transplant blood transfusions. Blood transfusions have an immunomodulating eff ect, as 

demonstrated by the positive association of kidney graft survival and the number of allogeneic 

transfusions [69]. In addition, a bene�icial eff ect of HLA-DR matched transfusions has been 

shown in kidney [70] and heart [71] transplantation. Furthermore, more HLA alloantibodies are 

formed after HLA mismatched transfusions compared with HLA-DR shared transfusions [72]. 

Down-regulation of the immune response may occur by the induction of regulatory CD4+ T cells, 

which are induced when the donor and recipient share at least one HLA-class II molecule [73]. 

This immunomodulating eff ect only occurs in case of semi-allogeneic or one HLA-DR shared 

blood transfusions. Blood transfusions that are fully HLA mismatched with the recipient lead to 

immunization, rather than tolerization of the patient.
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Immune studies in egg donation

Although other mechanisms can be involved, it is likely that down-regulation of the maternal 

alloimmune response to the fetus in an ED pregnancy is far more dif!icult than in spontaneously 

conceived pregnancies with semi-allogeneic fetuses. Compared with spontaneously conceived 

pregnancies, there is a higher degree of antigenic dissimilarity in ED cases. If the 5 most 

immunogenic HLA antigens (HLA-A, -B, -C, -DR, and -DQ) are taken into consideration, the maximal 

number of mismatches in spontaneous conceived pregnancies would be 5. In ED pregnancies this 

could reach a maximum of 10 mismatches (Figure 3). Since ED pregnancies are characterized by 

more HLA mismatches, it is to be expected that a possible relationship between aspects of immune 

regulation and the number of HLA mismatches will become more apparent in ED pregnancies. In 

pregnant women who conceived by ED, an increased percentage of intracellular IFN-γ (Th1) and 

IL-4 (Th2) positive CD4+ T lymphocytes was found in peripheral blood compared with pregnant 

women after spontaneous conception [74]. This hyperactivation of Th1 and Th2 cells, induced by 

the allogeneic fetus, is speci!ic for ED pregnancies. IFN-γ is also involved in spiral artery formation. 

Furthermore, the Th2 eff ect was more pronounced in ED pregnancies than in spontaneously 

conceived pregnancies [74]. This suggests that the additional mechanism of Th2 immunity in ED 

pregnancies leads to a successful pregnancy, even with a completely allogeneic fetus. Although 

this study investigated immune cells in the peripheral blood, the widely accepted view is that 

the active immune mechanisms take place at the fetal-maternal interface; therefore, it is possible 

that an eff ect will be even more prominent at this location. Recently, a statistically signi!icant 

correlation between the extent of HLA mismatches and the percentage of CD4+CD25dim activated 

T cells in the decidua parietalis of uncomplicated pregnancies was described [75]. 

In spontaneously conceived pregnancies, the correlation between the number of amino acid 

triplet sequence (HLA epitope) mismatches between pregnant women and their children, and 

antibody production in the pregnant woman against the paternal antigens inherited by the 

child has been studied [76]. A positive correlation was found between the number of triplet 

mismatches (0-22) and the percentage of women producing HLA antibodies (p<0.0001). If 0 triplet 

mismatches were present, no antibodies were formed, even in the case of 1 or 2 classical HLA 

antigen mismatches. It remains to be established whether the actual number of HLA mismatches 

or epitope mismatches is more important in establishing tolerance to the fetus. However, it is 

likely that in ED pregnancies, the number of both HLA antigen and epitope mismatches will be 

even higher than in spontaneously conceived pregnancies. Therefore, the percentage of women 

producing antibodies will be higher, and this may have clinical implications. Although the clinical 

relevance of speci!ic anti-fetal HLA antibodies is controversial, a recent study clearly showed that 

the presence of these antibodies in early pregnancy is associated with a reduced chance of a live 

birth (Nielsen et al., 2010 unpublished).  

The immune system clearly plays an important role in ED pregnancies. Unfortunately, there is a lack 

of information from the mother’s perspective about the long-term eff ects of exposure to foreign 

cells and antigens in the recipient, since the usual clinical endpoint is the chance of having a take-

home baby. From the literature it is unknown at present whether, later in life, the consequences 

of having conceived using ED may be harmful or not. In addition, when investigating immunologic 

aspects of ED pregnancies it is important to analyze the underlying reason why ED was necessary. 

For example, it is accepted that premature ovarian failure is a heterogeneous disorder in which 

some of the idiopathic forms are based on abnormal self-recognition by the immune system 

[77]. It is possible that the preexisting immunologic mechanisms involved in premature ovarian 

failure may contribute to the immunologic diff erences between ED and spontaneously conceived 

pregnancies. 
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Discussion

Although ED gives infertile women the opportunity to conceive, it may lead to harmful consequences 

during pregnancy if compared with spontaneously conceived pregnancies. This review gave an 

overview of the consequences of ED pregnancies with respect to their atypical fetal-maternal 

immunologic relationships. Review of the literature showed that women who conceived by ED 

have an increased risk of PIH [5,31-34,36-39,41], an increased rate of caesarean section deliveries 

[4,5,18,31-35], an increased risk of postpartum haemorrhage [33], and an increased risk of 

�irst trimester vaginal bleeding [6,31,34]. All of these complications can be the consequence of 

ED pregnancies; however other factors that correlate with infertility and age could also be an 

underlying cause. For example, women conceiving through ED are more often primigravidas, and 

more frequently have ovarian failure compared with women who conceive spontaneously. These 

factors are all associated with obstetrical complications [40]. More studies that correct for these 

confounding variables (e.g. maternal age, nulliparity, and ovarian failure) are needed to determine 

the speci�ic role that ED plays in these important obstetrical complications. The higher risk of 

maternal morbidity in women who conceived through ED is a limitation of this form of treatment 

for infertility. For the bene�its to outweigh the risks it might be important to select low risk donor-

recipient combinations. The egg donors should be less than 35 years old [78] and unaff ected by 

infectious diseases or hereditary syndromes [5,79]. Considering the immunologic mechanisms in 

ED, it might be worthwhile to perform HLA-typing of donor and recipient in order to select haplo-

identical combinations that would be more comparable to spontaneously conceived pregnancies 

than fully HLA mismatched combinations.

Although the literature conclusively demonstrates an increased risk of ED-related pregnancy 

complications for the mother, it does not show an increased complication rate for the fetus or 

newborn [33,35,52]. Since there is a general lack of studies on the long-term outcome of ED 

pregnancies, it is currently unknown whether the child or mother experiences any consequences 

later in life. It is therefore important to document ED conception in the medical record to evaluate 

the subsequent consequences of carrying an allogeneic fetus. In ED pregnancy, the mother is 

exposed to foreign cells and antigens, a situation that is comparable to blood transfusions and 

organ transplantation. ED pregnancy leads to a hyperactivation of Th1 and Th2 cells compared 

to spontaneously conceived pregnancies [74]. This suggests that the allogeneic fetus induces an 

additional mechanism that leads to a successful pregnancy. It is possible that these mechanisms 

may have its consequences later in life. Therefore, long-term follow-up studies are strongly 

recommended.

Conclusions

ED provides a valuable addition to the list of treatment options for women who require assisted 

reproductive therapy. The bene�its of having a take-home baby are counter-balanced by the 

higher risk of maternal morbidity. The increased rate of complications may be related to the 

allogeneic nature of the fetus. To understand the underlying mechanism(s) of acceptance of the 

allogeneic fetus, more research regarding the unique immunologic aspects of ED pregnancies is 

warranted. Understanding the role of the immune system in successful ED pregnancies also has 

broader biomedical signi�icance in that it may also give insight into immune mechanisms leading 

to immunologic tolerance for HLA mismatched solid organ transplants. 
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Abstract

Background:  In oocyte donation (OD) pregnancies, there is a higher level of antigenic dissimilarity 

between mother and fetus compared to naturally conceived (NC) pregnancies. This might leads 

to a higher degree and/or a diff erent type of immunoregulation to maintain an uncomplicated 

pregnancy. 

Methods: To test the hypothesis, diff erent immunological aspects of OD (n=28) were compared 

with those of NC (n=51), and as an additional control non-donor IVF (n=20) pregnancies. The 

expression of IL-10, IL-6, galectin-1, pSMAD2 and Flt-1 was studied immunohistochemically in 

decidua and in maternal serum. Maternal peripheral blood mononuclear cells (mPBMCs) were 

characterized by !lowcytometry and correlated with the number of HLA mismatches. mPBMCs 

were stimulated with umbilical cord blood or control PBMCs in a mixed lymphocyte culture. 

Results: Compared to NC, OD pregnancies expressed less IL-10, IL-6, galectin-1, pSMAD2 and 

Flt-1 in the decidua and more IL-10 and IL-6 in serum. The percentages of CD4+CD25bright 

and CD4+CD25dim cells were higher in mPBMCs of OD and IVF pregnancies compared to NC. 

The number of HLA mismatches was positively correlated with the percentage of activated 

CD4+CD25dim cells in mPBMCs of OD. Functional studies showed a lower proliferative response 

in OD pregnancies. 

Conclusion: Immunoregulation in OD is diff erent than in NC pregnancies. A higher degree of 

peripheral immunoregulation and a diff erent cytokine pro!ile in the decidua was found in OD and 

IVF pregnancies compared to NC pregnancies. More HLA mismatches in OD pregnancies leads 

to higher percentages of activated T cells in peripheral blood, but their reactivity is eff ectively 

compensated by regulatory T cells.
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Introduction

In pregnancy, genetically diff erent or semi-allogeneic fetal tissue invades the maternal decidua 

and is directly exposed to the maternal blood. This causes a risk of being attacked by components 

of the immune system of the mother. However, the fetus not only escapes maternal immune 

rejection, but induces tolerance, creating an immune privileged site at the fetal-maternal 

interface [1,2]. The most accepted view is that a successful pregnancy depends on an appropriate 

balance of the maternal immune system with a predominance of T helper 2 immunity [3-5]. In 

oocyte donation (OD) pregnancies, there is a higher degree of antigenic dissimilarity compared 

to naturally conceived (NC) pregnancies. In OD pregnancies, adaptation of the maternal immune 

system is probably even more necessary to maintain uncomplicated acceptance of the allogeneic 

fetus [6]. Indeed, an increased percentage of intracellular IFN-γ (Th1) and IL-4 (Th2) positive 

CD4+ T lymphocytes was found in the peripheral blood of pregnant women who conceived by 

OD compared with pregnant women after natural conception [7]. This hyperactivation of Th1 

and Th2 by the allogeneic fetus is speci#ic for OD pregnancies [7]. Histological #indings in OD 

placentas often show a host versus graft rejection phenomenon similar to that seen with solid 

organ transplantation [8]. Severe chronic deciduitis admixed with #ibrinoid deposition has 

been observed in OD placentas compared with non-donor in vitro fertilization (IVF) placentas 

[8]. Chronic deciduitis is found in the basal plate of the placenta, the site where extravillous 

cytotrophoblast interfaces with the maternal decidua. This pathology is thought to have an immune 

basis. Although OD pregnancies represent a very interesting model to investigate immunological 

interactions, most research has focused on the medical maternal and fetal complications rather 

than on the basic immunology. Although much research has been performed on the immunology 

of normal pregnancy, the immunology of OD pregnancies has not been studied intensively. The 

current study focused on immunological aspects of OD pregnancies compared to NC pregnancies. 

We hypothesized that there are diff erential immunoregulatory mechanisms that govern OD 

pregnancies compared to NC and IVF pregnancies at both local (fetal-maternal interface) and 

peripheral (peripheral blood) levels. 

Maternal immune adaptations to the developing embryo are necessary in order to guarantee 

pregnancy success. Cytokines play an important role in promoting immune tolerance. Interleukin- 

(IL)-10 is seen as a facilitator of successful pregnancy; alterations of its levels may be related 

to adverse pregnancy conditions [9,10]. In addition, increased concentrations of IL-6 and other 

pro-in#lammatory (IL-1, TNF-α, and IL-8) cytokines are found in the placentas of pregnancies 

complicated by pre-term premature rupture of the membranes [11]. During pregnancy, the 

expression of gal-1 is upregulated during implantation. Supplemental administration of gal-1 

rescues the pregnancy in a mouse model of spontaneous abortion by inducing expansion of 

regulatory T cells that produce IL-10  [12]. Decreased expression of gal-1 in trophoblasts may 

partly explain disturbed diff erentiation during early placentation that leads to early pregnancy 

loss [13]. Another important immunoregulatory molecule is TGF-β, which is involved in blastocyst 

implantation by inducing apoptosis of endometrial cells within the uterus [14]. Decidual TGF-β is 

proposed to act on uterine natural killer (NK) cells to downregulate their cytotoxicity, resulting 

in the uterine-speci#ic phenotype [15]. Binding of TGF-β to its receptor leads to activation of the 

TGF-β/ALK5 signaling pathway, which results in a cascade of reactions that eventually lead to the 

phosphorylation of SMAD2 (pSMAD2). TGF-β is a repressor of cytotrophoblast outgrowth [15], 

and it plays a role in angiogenesis. Angiogenesis also forms part of the maternal adaptation during 

embryo implantation. Regulation of vascular endothelial growth factor (VEGF) levels is a highly 

regulated process. Flt-1 is a receptor for VEGF and placental growth factor (PLGF). A splice variant 

of Flt-1 is sFlt1 (also known as sVEGFR-1), which antagonizes the VEGF and PLGF receptors. This 

soluble form prevents interactions of VEGF and PLGF with the functional membrane bound Flt-1, 

which thereby leads to endothelial dysfunction [16]. In the peripheral blood of preeclampsia 

patients, soluble Flt-1 (sFlt-1) is expressed in excessive amounts [17]. Since OD pregnancies are 
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associated with a higher incidence of preeclampsia, the levels of sFlt-1 in serum and decidua were 

tested as well. 

The maternal blood is present in the intervillous space and is in direct contact with the outer 

syncytiotrophoblast layer of the placenta. This layer undergoes turnover, which precipitates 

shedding of microparticles into maternal blood. Therefore, in addition to the analysis of cytokine 

expression in the decidua, we also studied cytokine levels in maternal serum and the phenotype 

of peripheral blood mononuclear cells (PBMCs) by �low cytometry. CD4CD25bright regulatory T 

cells are believed to have a crucial role in maintaining pregnancy [18]. Transfer of CD4+CD25+ 

T cells from normal pregnant mice in to abortion prone mice prevents fetal rejection in the 

abortion prone mice  [19]. In human an increased percentage of CD4+CD25+ T cells is present 

during pregnancy [20], however this study does not distinguish between CD4+CD25bright and 

CD4+CD25dim cells. Previously, it has been shown that the CD4+CD25+ cells can be divided in 

three fractions [18]. The percentage of FoxP3+ cells within the CD25bright T cells in peripheral 

blood of pregnant women is around 53% [21]. FoxP3 is an additional marker which may help to 

distinguish between eff ector and regulatory cells. However, this phenotypic distinction remains 

controversial  [22] and therefore functional tests remains to be established until a speci�ic marker 

for regulatory T cells is found. Since OD pregnancies are characterized by a higher number of 

HLA mismatches compared with NC pregnancies, the role of the number HLA mismatches was 

studied by correlating phenotypic results with the degree of antigenic dissimilarity. Furthermore, 

functional assays were performed to demonstrate the immune reaction of maternal PBMCs 

against fetal cells. We hypothesized that diff erences in the immunoregulatory mechanisms are 

present between OD, non-donor IVF, and NC pregnancies.

Material and Methods

Patient selection

Pregnancies conceived by OD (n=28), non-donor IVF (n=20), and NC (n=51) were studied. The non 

donor IVF group consisted of cases that conceived by IVF with the woman’s own oocytes. Medical 

records were reviewed and clinical data were summarized. Placentas, peripheral blood and 

umbilical cord blood (UCB) samples were collected at delivery from women after uncomplicated 

pregnancies at 37-42 weeks’ gestational age. Exclusion criteria were complications such as 

preeclampsia, preterm birth, immunological diseases, and infections. Placental tissue samples 

were collected within �ive hours after delivery. The study protocol was approved by the ethics 

committee of the Leiden University Medical Center (LUMC), and informed consent of every 

patient was obtained. 

Blood samples

Peripheral blood samples from the mothers and the UCB were obtained at term and collected 

in heparinized tubes. Blood was layered on a Ficoll Hypaque (LUMC pharmacy; Leiden, The 

Netherlands) gradient for density gradient centrifugation at room temperature (20min/800g). 

After centrifugation PBMCs were collected from the interface, washed twice and counted. The 

cells were frozen in fetal calf serum with 10% dimethyl sulfoxide and stored in liquid nitrogen 

until proliferation studies and �low cytometry analyses were performed.
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HLA typing

For every mother and child the HLA-types were determined in the typing laboratory of the 

Leiden University Medical Center. DNA was typed for the loci HLA-A, -B, -C, -DRB1 and -DQB1 

using sequence speci!ic oligonucleotides (SSO) PCR. The number and types of HLA matches and 

mismatches for every mother and child combination was calculated (Calculation by Microsoft 

Access 2003). 

Cytokine determination in serum and supernatant

The levels of IL-10 and IL-6 in maternal serum were tested using a Th1/Th2 Bio-Plex Luminex™ 

system assay (Bio-Rad Laboratories, Veenendaal, The Netherlands) following the manufacturer’s 

instructions. TGF-β1 was tested with the Milliplex™MAP single plex assay (Millipore Corporation, 

Billerica, MA, USA). Samples were analyzed using a Bio-Plex™ Array Reader with Bio-Plex software. 

An enzyme-linked immunosorbent assay (ELISA) for the presence of galectin-1 was performed 

as described [23] and sFlt-1 in maternal serum was performed by following the manufacturer’s 

operating instructions (R&D Systems, Minneapolis, Minnesota). 

Immunohistochemistry

For every study group (OD, NC and non donor IVF pregnancies) ten cases were selected randomly 

for immunohistochemical staining. These selected cases were representative of the patient 

characteristics as shown for the whole cohort in Table I. The mode of delivery was not signi!icantly 

diff erent between the three groups. Tissue samples of the placenta and rolls of fetal membranes 

were !ixed in 4% formalin and processed for immunohistochemistry as previously described 

[24]. Brie!ly, sequential serial sections (4μm-thick) were cut. Tissue sections were deparaf!inized 

and endogenous peroxidase was blocked. Antigen retrieval was performed by boiling the sections 

for 10 minutes in citrate buff er (pH 6.0). The optimal dilution for each primary antibody was 

determined in positive decidual tissue selected on the basis of maximal speci!ic reactivity and 

minimal background staining; IL-10 1:100 (HP9016, Hycult Biotech Inc, Plymouth meeting, PA), 

IL-6 1:20 (AF-206-NA R&D Systems Europe Ltd.), pSMAD2 1:1000, Flt-1 1:250 (SC-316, Santa Cruz 

Biotechnology, Inc, Heidelberg, Germany), gal-1 1:500 (sc-28248, Santa Cruz Biotechnology). The 

primary antibodies were incubated for one hour (IL-10 and IL-6 overnight) at room temperature 

at the appropriate dilutions in PBS with 1% BSA. As a negative control the primary antibody 

was replaced with PBS with 1% BSA. Slides were incubated for 30 minutes with Envision (DAKO, 

North America Inc, USA) or for IL-10 with Powervision (Immunologic, Duiven, the Netherlands). 

For IL-6, a secondary goat antibody was labeled with HRP, (DAKO, North America Inc, USA, 1:200), 

and for gal-1 a secondary goat anti-rabbit antibody was labeled with HRP, followed by incubation 

with diaminobenzidine (DAB, DAKO Cytomation). The tissue sections were subsequently 

counterstained with haematoxylin (SIGMA, Switzerland, Steinheim), except for the pSMAD2 

slides, since this staining is positive in the nuclei. The slides were mounted in mounting medium 

(Surgipath Medical Ind., Inc. Richmond) and covered. Images of all immunohistochemical staining 

results were captured using a microscope (Carl Zeiss Inc., Oberkochen, Germany) and digitally 

analyzed (Zeiss Axioskop 40, magni!ication 200x, Zeiss Axiocam MRc 5 camera, 150x150dpi). For 

every staining of one placenta a total of 5 pictures of the decidua parietalis and 5 of the decidua 

basalis was taken, blinded for the study group. Only the decidua was selected; blood vessels and 

shadows were digitally removed. Using Image-J software [25], the number of positive pixels per 

area was measured, indicating the level of expression for each immunohistochemical staining. 

This program is able to identify and measure positive cells by setting a threshold. For every 

staining experiment, an automatically running function was made, prede!ining the threshold of a 

positive cell. This threshold was independently de!ined by two observers. 
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Phenotypic characterization of maternal peripheral blood cells 

Flow cytometric analysis was performed with a standardized protocol, using gating strategies as 

previously described [18]. In short, a four-color immuno�luorescence staining was performed with 

directly conjugated mouse-anti-human monoclonal antibodies. CD45-APC, CD14-PE, CD25-PE, 

CD3-PerCP and CD4-APC were used in concentrations according to manufacturer’s instructions 

(Becton Dickinson). The maternal PBMCs used for the functional assays were phenotyped. Only 

spontaneously deliveries were included for this analysis. These values were compared with a 

previously run control panel of 39 NC spontaneously delivered pregnancies that were obtained 

using the same standardized protocol [26]. Flow cytometry was performed on a Calibur �low 

cytometer using Cellquest Pro software (Becton Dickinson) and all samples were analyzed using 

the same template. Percentages were calculated within the lymphogate set around the viable 

lymphocytes based on the expression of CD45, CD14 and CD3. The percentages of CD4+CD25dim 

and CD4+CD25bright cells were calculated within the CD3+CD4+ cell population.

Functional analysis

Functional assays were performed to demonstrate the reaction of mPBMCs against mother’s 

paired umbilical cord blood (UCB), a third party UCB (3p UCB) and third party peripheral 

blood leukocytes (3p PBL). Responders (mPBMCs) and stimulators (UCB, 3p UCB and 3p PBL) 

for the mixed lymphocyte cultures (MLC) were selected on the basis of the number of HLA-DR 

mismatches. As a re�lection of the normal genetics in pregnancy, responders of the OD, non 

donor IVF and NC pregnancies were selected to have 1 HLA-DR mismatch with their own UCB 

(as is usually the situation in non donor pregnancies). In addition, a fully allogeneic OD group 

was studied, which had 2 HLA-DR mismatches with own UCB (indicated in the �igures as OD*). 

As controls, the maternal responder cells were stimulated with 2 HLA-DR mismatched 3p UCB 

and 3p PBL. In each group, a total of �ive mother-UCB combinations were tested. MLCs were set 

up with 50 μl of 1x106 mPBMCs in culture medium added in triplicate wells in a round-bottom 

96-well plate (Greiner Bio-one) to 50 μl with 1x106 irradiated (30 Gy/3000 Rad) stimulators or 

culture medium. Proliferation was measured on day 7 by incorporation of 3H-thymidine added 

during the last 16 hours of culture. The results were expressed as the median counts per minute 

(cpm) for each triplicate culture. 

Statistical analysis 

Descriptive statistical analyses were performed using Graph Pad Prism (Graph Pad Software 

Inc.) and SPSS (SPSS Inc 17). The non parametric one-way ANOVA Kruskal-Wallis test was 

performed, and when signi�icant, the post test Dunns was used to analyze between more than 

two independent groups. The non-parametric Mann Whitney test was used to identify diff erences 

between two independent groups. Linear data was analyzed with the linear regression analysis. 

Data were considered signi�icant at p<0.05.

Results

Clinical data

The patient characteristics are shown in Table I. No signi�icant diff erences between the three 

groups were present with respect to gestational age. Maternal age was signi�icantly higher and 
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gravidity was signi!icantly lower in the OD group compared with the NC pregnancies. The mode 

of delivery diff ered signi!icantly between the three groups. Therefore the in!luence of the mode 

of delivery (primary section, secondary section and spontaneous) and the pregnancy group 

was analyzed in a logistic regression model backward-stepwise (Wald). Pregnancy group and 

mode of delivery were used as a predictor for high (above median) or low (below median) serum 

levels. Using the backward model, pregnancy groups seemed to be the predictor for the levels 

of IL-10, IL-6, TGF-β, and the mode of delivery had no in!luence. For Gal-1 the mode of delivery 

Oocyte 

donation

 (OD) 

N=26

Naturally 

conceived

 (NC)

N=51

Non donor 

IVF

 (IVF)

N=20

P value 

ANOVA
Post test

Gestational age  (days) 278.0

 (257-293)

275.5

 (264-293)

273.0

 (257-294)

ns

Maternal age (years) 37.5

 (30-45)

33.0

 (28-40)

36.0

 (28-41)

0.0003 ED vs NC: ***

ED vs IVF: ns

IVF vs NC: ns

Gravidity (number) 2

 (1-5)

3

 (1-7)

2

 (1-5)

0.023 ED vs NC: *

ED vs IVF: ns

IVF vs NC: ns

Total HLA mismatches 

 (A, B, C, DR, DQ)

6

 (2-10)

4

 (0-5)

3

 (0-4)

<0.0001 ED vs NC: ***

ED vs IVF: ***

IVF vs NC: ns

Mode of delivery 0.0012 ED vs NC: ns

ED vs IVF: *

IVF vs NC: **

    - Primary section 7 35 4

    - Secundary section 5 1 2

    - Spontaneous 14 15 14

    - Vacuum extraction 2 1 1

HLA class I mismatches 4.0

 (1-6)

2.5

 (0-3)

2.0

 (0-3)

<0.0001 ED vs NC: ***

ED vs IVF: ***

IVF vs NC: ns

HLA class II mismatches 2

 (0-4)

1

 (0-2)

1

 (0-2)

0.0001 ED vs NC: ***

ED vs IVF: *

IVF vs NC: ns

Table I Patient characteristics. Values are medians with the minimum and maximum. The one-way ANOVA Kruskal-

Wallis test was performed. When signifi cant, the post test Dunns was used to analyze differences between groups.
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Figure 1 Immunohistochemical analysis. Photomicrographs of sections stained for IL-10, IL-6, galectin-1, pSMAD2 

and Flt of the decidua basalis (upper panel) and decidua parietalis (lower panel). Original magnifi cation x200. For every 

group, oocyte donation (OD), naturally conceived (NC) and non donor IVF, a representative example per staining is 

given. Positive cells are stained brown. Nuclei are stained blue (except for pSMAD2). The results of the digital image 

analysis of the immunohischochemical staining are depicted in Figure 2.
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seemed to be a predictor for higher serum levels. For sFlt, neither mode of delivery nor pregnancy 

group had an in!luence on the serum levels. This statistical test was not performed for the 

immunohistochemistry analysis since in those selected cases there was no signi!icant diff erence 

between the groups in mode of delivery. For the !low cytometry analysis only spontaneously 

delivered pregnancies were used. Inherent to OD pregnancies the number of HLA mismatches 

was signi!icantly higher compared to NC and non donor IVF pregnancies (6, 4, 3 respectively, 

p=<0.0001). When analyzed separately, both the number of HLA class I and class II mismatches 

were signi!icantly higher in OD compared to NC and non donor IVF pregnancies (p=<0.0001 and 

p=0.0001 respectively).

Immunohistochemical studies in placenta

The decidua of OD, NC and IVF pregnancies all showed cells that were positively stained by the 

antibodies used (Figure 1). Figure 1 shows representative pictures of the immunohistochemical 

staining by location for every antibody used. The results of the digital image analysis of the 

immunohischochemical staining are depicted in Figure 2. Signi!icant diff erences in the decidua 

basalis and decidua parietalis of OD, NC and IVF pregnancies were found for all the tested 
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Figure 2 Placental and serum cytokine levels. Upper two rows show graphs illustrating the amount of positive pixels 

per standardized area in the decidua basalis and decidua parietalis of oocyte donation (OD, n=10), naturally conceived 

(NC, n=10) and non donor IVF pregnancies (IVF, n=10) tested by immunohistochemical staining. Lowest row shows 

results of serum cytokine levels defi ned by ELISA compared between OD (n=26), NC (n=51) and IVF (n=20). Level 

of signifi cance indicated with asterisk, *** = p<0.001, **= p=0.001-0.01, *= p=0.01-0.05, ns = not signifi cant. Values 

presented as means, error bars indicate the SEM.
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Figure 3 CD25+ cells in peripheral blood samples of oocyte donation (OD, n=13), naturally conceived (NC, n=39) 

and non donor IVF pregnancies (IVF, n=5). Level of signifi cance indicated with asterisk, *** = p<0.001, **= p=0.001-

0.01, *= p=0.01-0.05, ns = not signifi cant. All values are of spontaneously delivered pregnancies. Values presented 

as means, error bars indicate the SEM. The horizontal line within the box indicates the median, the ends of the box 

correspond to the upper and lower quartiles of the data and the whiskers indicate minimum and maximum values.

Figure 4 Correlation between the number of HLA mismatches and the percentage of CD4+CD25dim cells in 

oocyte donation (OD) pregnancies (n=26) in peripheral blood. A. Considering HLA-A, -B, -C, -DR and -DQ the 

maximal number of HLA mismatches is 10 in OD pregnancies. A positive correlation between the number of mismatches 

and more CD4+CD25dim cells in peripheral blood of OD pregnancies is found. B. The number of mismatches of the 

HLA-A, HLA-DR and HLA-DQ antigens relates with more CD4+CD25dim cells in peripheral blood of OD pregnancies 

(p=0.03, p=0.04 and p=0.001 respectively). The horizontal lines represent the median of the data. The non parametric 

Mann-Whitney test was performed to analyze values between the groups (ns = non signifi cant).
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cytokines except for pSMAD2 in the decidua parietalis. The level of expression in the decidua 

basalis and parietalis was signi!icantly lower in OD pregnancies compared with NC pregnancies 

for IL-10, IL-6, gal-1 and Flt (Figure 2). IVF showed similar results at both locations compared 

to OD for IL-10, IL-6 and Flt (only in the decidua parietalis, Figure 2). The level of expression of 

IL-6 and pSMAD2 in the decidua basalis was signi!icantly higher in OD pregnancies compared 

with IVF pregnancies (Figure 2). The level of expression of Flt in the decidua basalis and gal-1 in 

the decidua parietalis is signi!icantly lower in OD pregnancies compared with IVF pregnancies 

(Figure 2).

Maternal serum analysis

The ANOVA test showed signi!icant diff erences between OD, NC and IVF pregnancies with respect 

to serum levels of IL-10, IL-6 and TGF-β1 (p=0.01, p<0.0001 and p<0.0001 respectively, Figure 

2). The levels of sFlt-1 and galectin-1 did not signi!icantly diff er between the three groups. Serum 

levels of IL-6 and IL-10 are signi!icantly higher in OD pregnancies compared with NC pregnancies. 

TGF-β1 serum levels were statistically signi!icantly lowest in OD pregnancies, followed by NC 

pregnancies, and highest in IVF pregnancies. 

Correlation between the number of HLA mismatches and the percentage of 

CD4CD25dim cells in the peripheral blood

The percentage of CD3+CD25+ cells was higher in OD and IVF pregnancies compared to NC 

pregnancies (p=0.0009, Figure 3). Within the CD25 fraction the percentage of CD25dim cells 

was also higher in OD and IVF pregnancies compared to NC pregnancies (p=0.0028, Figure 3). 

The same was found for CD4+CD25bright cells; the percentage of CD4+CD25bright cells was 

higher in OD and IVF pregnancies compared to NC pregnancies (p<0.0001, Figure 3). The ratio 

of CD4+CD25dim:CD4+CD25bright cells was lower in OD and IVF pregnancies compared to NC 

Figure 5 Mixed lymphocyte culture. Results in counts per minute. The responders were the maternal PBMCs of OD 

with one HLA-DR mismatch (n=5), OD with two HLA-DR mismatch (OD*, n=5), normal conceived (NC, n=5) and non 

donor IVF pregnancies (IVF, n=5). They were stimulated with their own UCB, 3p UCB or 3p PBL. Medium and PHA were 

used as a control. Values are presented as means, with error bars indicating the SEM. The non parametric T test was 

performed to analyze values between the groups. A p value of <0.05 was considered signifi cant.
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pregnancies (p=0.0018, Figure 3). A signi�icant positive correlation between the percentage of 

CD4+CD25dim in peripheral blood and the number of HLA mismatches was found in OD pregnancies 

(R2:0.022 p=0.015, Figure 4). No correlation was found between the number of HLA mismatches 

and CD4+CD25bright or CD4+CD25dim cells in NC pregnancies (data not shown). However, the 

number of HLA mismatches did not aff ect the ratio of CD4+CD25dim:CD4+CD25bright cells in OD 

and NC pregnancies (data not shown). To determine whether mismatches of a speci�ic HLA locus 

were responsible for the increased percentage of CD4+CD25dim cells, the HLA mismatches were 

analyzed separately by locus. HLA-A, HLA-DR and HLA-DQ mismatches signi�icantly correlated 

with the increased percentage of CD4+CD25dim in peripheral OD blood (p=0.03, p=0.04 and 

p=0.001, respectively, Figure 4).

Mixed lymphocyte cultures

To investigate the fetus-speci�ic immune response of mPBMCs collected after OD, NC, and non 

donor IVF pregnancies, these cells were stimulated with their own UCB, control UCB, and PBL. The 

OD group was subdivided in a group with one HLA-DR mismatch and a group with two HLA-DR 

mismatches (OD*). To determine the proliferative capacity of mPBMCs, the cells were stimulated 

with PHA. No signi�icant diff erences between the groups were observed (Figure 5). As a negative 

control, cells were cultured with medium for 6 days. No signi�icant diff erences were found here 

either between the groups (Figure 5). In the case of one HLA-DR mismatch, the mPBMCs of the OD 

pregnancy group showed signi�icantly lower proliferation against their own UCB compared with 
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Placental 

biopsies

Cytokine analysis

Collection of 
mPBMCs Flow cytometry

Mixed lymphocyte culture

Immunohistochemistry

Collection of 

serum

+ UCB

+ 3p UCB

+ 3p mPBL

Responder

mPBL

Stimulator

OD, NC and IVF

OD IVF

� IL-10

� IL-6

� TGF-�

� CD3+CD25+

� CD25dim

� CD25bright

� TGF-�

� CD3+CD25+

� CD25dim

� CD25bright

� proliferation ns

� IL-10

� IL-6

� gal-1
� Flt

� IL-10

� IL-6

MethodsMaterial Results

Figure 6 Overview of materials, methods and results. Maternal blood was used to collect serum for the performance 

of cytokine analysis by ELISA. mPBMCs were collected and analyzed by fl ow cytometry. Together with irradiated UCB, 

3p UCB and 3p mPBL mPBMCs were cultured. The placenta and fetal membranes were collected after delivery to 

perform immunohistochemical staining. The main results for OD and IVF compared to NC are shown in the last two 

rows. Abbreviations: oocyte donation (OD), naturally conceived (NC) in vitro fertilization (IVF), maternal peripheral blood 

mononuclear cells (mPBMCs), maternal peripheral blood lymphocytes (mPBL) umbilical cord blood (UCB), third party 

(3p), non signifi cant (ns).
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NC pregnancies (p=0.0079, Figure 5), and also compared with IVF pregnancies (p=0.0079, Figure 

5). Also the response to 3p UCB and 3p PBL by OD pregnancies showed a signi!icantly lower 

proliferation compared with NC pregnancies (p=0.0079 and p=0.05 respectively, Figure 5). Even 

when OD with two HLA mismatches were compared to NC, with a single HLA-DR mismatch, the 

response by OD pregnancies was still signi!icantly lower compared with NC pregnancies (p=0.03, 

Figure 5). 

An overview of the major diff erences observed between the diff erent types of pregnancies is 

given in Figure 6.

Discussion

OD pregnancies are a result of in vitro fertilization of a donated oocyte by a relative, or more 

commonly an unrelated donor. In the latter case, neither of the fetal haplotypes matches with 

the gestational carrier. This creates a unique immunological situation to study the immune 

mechanisms that underlie these pregnancies. A better understanding of the maternal immune 

adaptations during OD pregnancy could increase the chance of successful gestation in patients 

with a history of infertility. In this work, we found strong peripheral regulation in OD and IVF 

pregnancies compared to NC pregnancies, and a diff erential maternal adaptation is in the decidua 

of OD and IVF pregnancies (Figure 6).

The results of this study showed that several immunological aspects are diff erent in OD 

pregnancies compared with NC pregnancies. OD pregnancies express less IL-10, IL-6, gal-1, 

pSMAD2 and Flt-1 in the decidua (except for pSMAD2 in the decidua parietalis) compared to 

NC pregnancies. Although less immunoregulation in the decidua of OD and IVF pregnancies was 

found, we found more immunoregulation in the peripheral blood compared with NC pregnancies. 

In serum, OD pregnancies express more IL-10 and IL-6 but less TGF-β compared with NC 

pregnancies. Although these results suggests that IL-10 is plays an important role in uncomplicated 

pregnancy, recent data in mice show that a defect in IL-10 is not harmful for the pregnancy [27]. 

Immunohistochemical staining of pSMAD2 was used in this study to de!ine TGF-β signaling. 

TGF-β is a repressor of cytotrophoblast outgrowth [15], possibly resulting in a proper balance 

for optimal placental growth. An imbalance in TGF-β signaling may lead to placental pathologies. 

We found less pSMAD2 placental expression in uncomplicated OD and IVF pregnancies, without 

placental pathology. Generally, in IVF pregnancies, placenta accreta occurs more frequently [28]. 

It is possible that the lower amount of pSMAD2 is counterbalanced by an altered mechanism, 

preventing placental pathologies. Gal-1 can be present intracellular and extracellular and thereby 

may elicit diff erent functions [29]. Immunohistochemical staining of Gal-1 in our study shows 

that it is expressed in cytoplasm compartment in decidua basalis and extracellularly in decidua 

parietalis. It is possible that this diff erent location is a result of trophoblast invasion. In the 

decidua parietalis non-invading trophoblast contacts the chorion and in the decidua basalis there 

is interaction between decidual cells and invading villous trophoblast.

The cytokines analyzed in this study have an immunological regulatory role during pregnancy. 

We therefore hypothesized that we would !ind increased IL-10, IL-6 and gal-1 expression in 

the decidua of OD pregnancies compared with NC. However, we found the opposite. Overall, we 

found that these cytokines were lower in OD and IVF pregnancies compared to NC pregnancies 

at the fetal-maternal interface. It is possible that maternal adaptation of the fetal allograft 

is more prominent during the !irst trimester. Therefore, it would be worthwhile investigating 

the immunological alterations of cytokines in decidua of !irst trimester samples. There are, 

however, limitations to the access of human !irst trimester samples. Furthermore, it is possible 

that immunoregulation in OD pregnancies also takes place on the fetal side of the placenta, as 
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suggested by preliminary observations which shows an OD-speci�ic lesion at the fetal side of the 

placenta, containing cells involved in the immunomodulation (Schonkeren et al, submitted). More 

studies are necessary to unravel the underlying mechanisms in the immunologic diff erences 

between OD and NC pregnancies.

The percentages of CD4+CD25bright and CD4+CD25dim cells were higher in mPBMCs of OD and 

IVF pregnancies compared to NC. In OD, the number of HLA mismatches was positively correlated 

with the percentage of CD4+CD25dim cells (activated T cells) in mPBMCs of OD. However, there was 

no correlation with the number of HLA mismatches and the ratio CD4+CD25dim:CD4+CD25bright 

in OD pregnancies, suggesting that a higher number of CD4+CD25bright cells is necessary to 

regulate the immune system peripherally in OD pregnancies. That seems to be the case, as we 

demonstrated by our functional analyses. In OD pregnancies, more peripheral immunoregulation 

is present. The ratio of CD4+CD25dim:CD4+CD25bright was signi�icantly lower in OD and IVF 

peripheral blood samples compared to NC. This suggests that relatively more CD4+CD25bright 

regulatory cells are present compared to NC pregnancies with the same number of CD4+CD25dim 

cells. A previous study showed hyperactivation of T helper 1 and T helper 2 cells in peripheral 

blood of OD compared with NC pregnancies [7]. The authors stated that the activation of T helper 

2 cells and the relative suppression of T helper 1 chemokine expression re�lected an additional 

regulatory counteractive mechanism. In agreement with this �inding, we found a higher 

percentage of blood CD4+CD25dim activated T cells in OD compared with NC pregnancies, and 

the percentage of blood CD4+CD25bright regulatory T cells was higher compared to the activated 

T cells, suggesting a counteractive response in OD pregnancies. 

The number of HLA mismatches also appears to play a crucial role, as a positive correlation was 

found between with the percentage of CD4+CD25dim cells in peripheral blood of OD pregnancies. 

This correlation was not present in the peripheral blood of NC pregnancies. A higher number of 

HLA-A, -DR and -DQ mismatches leads to more CD4+CD25dim cells in maternal peripheral blood 

in OD pregnancy. No correlation was found between the ratio CD4+CD25dim:CD4+CD25bright 

and number of HLA mismatches for OD and NC pregnancies (data not shown), suggesting 

that the higher number of activated cells is controlled by a higher number of regulatory cells. 

The percentage of CD4+CD25bright and CD4+CD25dim cells in peripheral blood of term NC 

pregnancies is comparable with previous studies [18]. Previously, we showed a central role 

of HLA-C mismatches in the induction of the decidual lymphocyte response to fetal cells by 

CD4+CD25dim cells [26]. In contrast, the number of CD4+CD25dim cells in the peripheral blood 

of OD pregnancies was not mediated by the number of HLA-C mismatches, or by the presence of 

HLA-C1 or HLA-C2 mismatches (data not shown). This shows that for decidual regulation HLA-C, 

the only classical HLA antigen expressed on trophoblast, plays an important role. In contrast, for 

peripheral responses, HLA-A, -DR and -DQ but not HLA-C are essential, since the presence of more 

CD4+CD25dim cells in the periphery of OD pregnancies was associated with a higher number of 

mismatches on the HLA-A, HLA-DR and HLA-DQ antigens. To explain these results, we postulate 

that the impact of fetal microchimerism in maternal blood plays a role in the immunological 

response, as seen in the OD pregnancies. Antigens on fetal cells migrate in to the maternal blood, 

and fetal (and thus partly paternal) antigens may be able to modulate the maternal immune 

response during pregnancy, which persists in maternal circulation for decades after delivery  

[30]. The presence of fully allogeneic fetal cells in maternal circulation has been demonstrated 

in after OD [31]. Strong peripheral immunoregulation in OD might therefore be bene�icial for the 

persistence of microchimerism. 

Our functional assays con�irm the presence of a stronger peripheral immunoregulation in OD 

and IVF pregnancies. mPBMCs of OD pregnancies with one HLA-DR mismatch showed less 

proliferation upon stimulation with own UCB compared to NC and IVF pregnancies. This indicates 

that in IVF and NC pregnancies less peripheral regulation of immunological response towards the 
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woman’s infant is present. Even in OD pregnancies with two HLA-DR mismatches the alloimmune 

response to the UCB is lower than in NC pregnancies. The mechanisms behind the diff erences in 

response to fetus-speci"ic stimulation in an OD pregnancy remain to be established. In a previous 

study in NC pregnancies, we found no signi"icant diff erences between the responses of mPBMCs 

to her own child or a control child compared to non-pregnant controls [32]. This indicates that 

peripheral immune regulation in NC pregnant women is not very diff erent from that of non-

pregnant controls. Here, we show that in OD pregnancies the situation is diff erent. The peripheral 

immune response is signi"icantly altered compared to NC pregnant controls. 

A limitation of this study is that it is dif"icult to de"ine a proper control group for OD pregnancies. 

Woman who undergo non donor IVF receive two hormonal treatments; one to retrieve the 

oocytes and a second one for the induction of a proper milieu before embryo transfer. Woman 

who undergo OD only receive the hormonal treatment necessary for embryo transfer. Although 

upon implantation the embryo consists of only a few cells, and alterations in the immune 

system during decidualization by hormonal treatment used in assisted reproductive techniques 

may aff ect those cells in the "irst trimester, it is unlikely that this treatment is responsible for 

immunological disturbances in the last trimester. However, vulnerability to changes in the 

hormonal surroundings of the blastocyst in the periconceptional period might results in peri-

implantation programming and explains long term eff ects via changing of phenotype of fetal 

cells. This remains to be further elucidated and indeed it has been shown that in vitro culture of 

embryos is associated with changes in fetal outcomes [33]. It even has been proposed that the 

composition of culture medium is of more in"luence than the procedure of in vitro culture itself 

[34]. 

In conclusion, in this study we provide evidence that the immunoregulation in OD pregnancies is 

diff erent compared with NC pregnancies, both with regard to the peripheral and the local immune 

responses. The number of HLA mismatches in OD pregnancies aff ects the number of activated T 

cells in the periphery. The mechanisms by which this altered immune response is evoked remain 

to be established. Future studies are necessary to investigate the immunoregulatory mechanisms 

involved in successful, but also in pathological, OD pregnancies.
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Summary and general discussion

This thesis investigated immunological factors during pregnancy at the fetal-maternal interface. 

Uncomplicated naturally conceived, preeclamptic, uncomplicated egg donation (ED), and 

uncomplicated IVF pregnancies were included to de�ine possible alterations in immunological 

mechanisms. The fetus consists of paternal and maternal genes, and is thereby semi-allogeneic 

towards the mother. Despite of these immunogenetic diff erences the fetus escapes from immune 

rejection by the maternal immune system and is tolerated for the duration of the pregnancy. 

This thesis stated that changes in immune regulation locally in the placenta contribute to the 

pathogenesis of preeclampsia, and therefore preeclampsia was seen as an immunological 

challenge during pregnancy. Another immunological challenge is re�lected by ED pregnancies. 

Even in ED pregnancies, where the fetus is totally allogeneic towards the mother, the fetus 

escapes from immune rejection by the maternal immune system. This thesis hypothesized that 

diff erential immunoregulation during pregnancy is necessary to accept the allogeneic fetus in 

ED pregnancies. Table 1 gives an overview of the pregnancies, materials, methods, results and 

conclusions of every chapter discussed in this thesis. 

A general introduction on pregnancy was given in chapter 1. The biological basis of placental 

development, reproductive  immunology, preeclampsia and ED is reviewed. 

No systematic study on speci�ic and non-speci�ic maternal immune responses during normal 

pregnancy compared with non-pregnant controls was performed so far. We analyzed the phenotype 

of cells of peripheral blood samples of both groups and studied the proliferative capacity of 

these cells upon speci�ic or non-speci�ic stimulation (chapter 2). Non pregnant control females 

were compared with women carrying an uncomplicated pregnancy. We found no diff erences 

between the response of maternal peripheral blood mononuclear cells (mPBMCs) and control 

PBMCs (cPBMCs) upon speci�ic stimulation. Although this was not re�lected in the proliferative 

immune response upon speci�ic stimulation, a diff erent composition of leukocyte subsets was 

found in peripheral blood samples. Pregnant women contained a higher percentage of CD14+ 

cells and CD25dim cells, and a lower percentage of CD16+CD56bright and CD16+CD56+ NK cells. 

Furthermore, serum of pregnant women contained more IL-6, IL-10 and IL-17. Stimulation of 

mPBMCs and cPBMCs with allogeneic stimuli resulted in diff erent amounts of cytokine production 

between the two groups. These data indicate that a pregnant woman is capable of creating a �ine-

tuned environment, optimal for the growth and survival of the fetus, but as well optimal for the 

mother to maintain adequate immune responses to infections or diseases. 

Preeclampsia is a disease of pregnancy caused by multiple factors. The etiology is not fully 

understood. Preeclampsia is thought to be an immunologically driven disease because there is an 

association with primigravida, while subsequent pregnancies with the same father are protected. 

Also the possibility of preeclampsia occurring in subsequent pregnancies with a diff erent father, 

the protective role of blood transfusions, previous abortions and prolonged semen or seminal 

�luid exposure are in line with this reasoning [1,2]. Macrophages are an abundant cell population 

in the human decidua, alterations within this cell population may lead to immunological 

disturbance, possibly involved in preeclampsia. Decidual macrophages play an important role 

in promoting immune tolerance via the production of anti-in�lammatory substances, like IL-10 

and indoleamine 2,3-diogygenase (IDO). Trophoblast may interact with decidua macrophages 

via HLA-G and thereby stimulate the production of anti-in�lammatory cytokines. Macrophages 

appear to disrupt vascular smooth muscle in the spiral arteries, prior to trophoblast invasion, and 

activated macrophages have been shown to inhibit trophoblast invasion [3]. These data suggest 

that inadequate production of the cytokines by macrophages, and their roles in spiral artery 

remodeling, potentially contribute to the pathogenesis of preeclampsia. We therefore investigated 

the distribution and phenotype in decidual macrophages in preeclamptic and control pregnancies 

(chapter 3) [4]. Macrophages polarize into diff erent phenotypes. Pro-in�lammatory macrophages 
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Pregnancies Materials Methods Results Conclusion

Chapter 2

Uncomplicated 

spontaneously 

concieved 

(mPBMC) 

Non pregnant 

women 

(cPBMC)

UCB

mPBMC

cPBMC

FACS: mPBMC vs cPBMC: 

↓ NK cells, ↑ monocytes, ↑ CD3+CD25+ T cells

↑ CD3+CD25dim T cells
The maternal peripheral 

immune response is altered 

during pregnancy, though 

these diff erences do not result 

in quantitative changes in 

proliferative responses during 

pregnancy compared to non-

pregnant controls.

MLC: No diff erence in proliferation upon stimulation 

with aCD3, PHA, fetus speci"ic UCB and 3rd 

party UCB between mPBMCs and cPBMCs

Luminex: mPBMC vc cPBMC: 

↑ IL-6 (after stimulation with UCB or 3rd party 
UCB)

↑ IL-10 (after stimulation with 3rd party UCB),

↑ IL-17 (after a-speci"ic stimulation)

Chapter 3

Preterm 

preeclamptic

Preterm 

control 

Term control 

Placentas

Fetal 

membranes

IHC:
Preterm preeclampsia vs preterm controls

↑ CD14 and CD163 expression in the decidua 
basalis  

↓ IL-10 expression in the decidua parietalis 

↓CD163/CD14 in the decidua basalis

↑DC SIGN/CD14 in the decidua basalis and 
parietalis 

CD14+ macrophages did express Flt-1

Alterations in distribution and 

phenotype of macrophages in the 

decidua of preterm preeclamptic 

pregnancies compared to control 

pregnancies may contribute to the 

pathogenesis of preeclampsia.

Chapter 4

Non donor IVF 

ED 

Clinical data

Placenta

Comparison 

of clinical 

data

IVF: dizygotic twin pregnancy was complicated 

by preeclampsia and intra uterine growth 

retardation.

ED: dizygotic twin pregnancy was complicated 

by severe preeclampsia, both fetuses had a 

normal fetal birth weight.

We suggest a diff erent 

pathophysiological mechanism of 

preeclampsia after ED compared 

with preeclampsia in non-donor 

IVF conception.

Chapter 5

ED 
79 

publications

Review of 

literature
ED pregnancies are associated with a higher 

incidence of pregnancy-induced hypertension 

and placental pathology. 

Perinatal complications, such as intrauterine 

growth restriction, prematurity, and 

congenital malformations, is comparable to 

conventional in vitro fertilisation. 

ED pregnancies have a higher 

risk of maternal morbidity. Due 

to the high degree of antigenic 

dissimilarity, ED pregnancies 

represent an interesting model 

to study complex immunologic 

interactions.

Chapter 6

ED

Test 

hypothesis
During ED pregnancies the mother has to cope 

with a higher degree of antigenic dissimilarity 

compared with spontaneously conceived 

pregnancies. Maternal cells and fetal cells 

come in close contact. Understanding the 

immune mechanisms gives more insight into 

the question why the (semi) allogeneic fetus is 

accepted and not rejected by the mother.

The immunologic interactions 

between mother and child in 

successful ED pregnancies may 

be relevant for the induction of 

immunological tolerance in solid 

organ transplantation.

Chapter 7

ED

IVF

NC

Placenta 

Fetal 

membranes

UCB

Maternal 

blood

IHC: ED vs NC: ↓IL-10, IL-6, galectin-1, pSMAD2 

and Flt 
Immunoregulation in ED is 

diff erent than in NC pregnancies, 

partly due to procedure 

considering similarities with IVF 

pregnancies. An altered peripheral 

and local regulation was found in 

ED and IVF pregnancies compared 

to NC pregnancies, shown by the 

level of cytokines present in serum 

and placenta tissue, the phenotype 

of the cells in the periphery and 

the response of mPBMCs upon 

stimulation.

Luminex: ED vs NC: ↑ IL-10, IL-6 , ↓TGF-β

FACS: ED/IVF vs NC: ↑ CD4+CD25bright and 

CD4+CD25dim cells were higher in mPBMCs

HLA 

relation:

The number of HLA mismatches was positively 

correlated with the percentage of activated 

CD4+CD25dim T cells in mPBMCs of ED.

MLC: ED/IVF vs NC: ↑ immunoregulation

Table 1 Main results of the chapters discussed in this thesis. For abbreviations, see the abbreviation list. 
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(type 1) have pro-in�lammatory and cytotoxic properties and are able to eradicate intracellular 

pathogens. In contrast, anti-in�lammatory macrophages (type 2) display anti-in�lammatory 

properties and are able to secrete IL-10. CD163 is a marker present on type 2 macrophages. The 

human decidua contains type 2 macrophages contributing to the immune suppression necessary 

to maintain the semi-allogeneic fetus whereas type 1 macrophages are able to defend against 

utero-placental infection, but possibly do not contribute to tolerance of the fetus. We found a 

decreased expression of type 2 macrophages in the decidua basalis of preeclamptic pregnancies 

compared to preterm control pregnancies. Furthermore, the level of expression of IL-10 was lower 

in the decidua parietalis of preeclamptic pregnancies compared to preterm control pregnancies. 

The distribution of decidual macrophages is altered in preeclamptic pregnancies and we showed 

that the macrophages contain fmslike tyrosine kinase 1 (Flt-1). The soluble form of this cytokine 

(sFlt-1) is produced in excessive forms in preeclampsia. Macrophages may be responsible for 

this increased sFlt-1 production, and by an alteration of distribution they may contribute to the 

pathogenesis of preeclampsia. 

Immunological tolerance between mother and fetus is needed for successful reproduction. Sharing 

of too many HLA antigens between mother and father has been shown to form a disadvantage 

on pregnancy outcome, sharing of too few HLA antigens may as well alter pregnancy outcome 

[5]. Since preeclampsia is a disorder of the immunological mechanisms involved in the normal 

fetal-maternal responses, possibly based on HLA (mis)matching, we hypothesized that the 

immunological mechanism of preeclampsia is diff erent in normal pregnancies and ED pregnancies 

(chapter 4) [6,7]. Two dizygotic pregnancies are described. Both pregnancies resulted from 

assisted reproductive techniques. Interestingly, the non donor IVF pregnancy developed 

preeclampsia with severe growth retardation and the ED pregnancy developed preeclampsia 

without fetal growth retardation. Although only two cases are investigated, these nicely illustrate 

the hypothesis why preeclampsia in ED pregnancies might have another pathophysiological 

mechanism. 

ED pregnancies represent a very interesting model to investigate immunological interactions. 

So far most research is focused on the medical complications in mother and fetus rather than 

basic immunology. The immunological dissimilarity in ED pregnancies is comparable to the 

immunological dissimilarity in solid organ transplantations. The acceptance of a fetal allograft in 

normal pregnancies requires the avoidance of rejection by altered HLA expression on trophoblast 

cells, production of immunosuppressive cytokines and other immunomodulatory strategies. These 

mechanisms are most probably as well present in ED pregnancies. However, since the potentially 

higher degree of immunological dissimilarity compared with naturally conceived pregnancies, 

additional mechanisms are possibly needed for the acceptance of the fetal allograft (chapter 5). 

Expanding knowledge of immunological mechanisms in successful and failed ED pregnancies 

is potential viable in understanding the immunological interactions involved in acceptance or 

rejection of solid organ transplantations. 

ED gives infertile women the opportunity to conceive, however, it has a higher incidence of 

harmful maternal consequences, compared with naturally conceived pregnancies (chapter 6) 

[8]. Women who conceived by ED have an increased risk of pregnancy induced hypertension, 

increased rate of cesarean section deliveries, increased risk of post partum hemorrhage and an 

increased risk of �irst trimester vaginal bleeding. However, it is not associated with an increased 

complication rate for the fetus or newborn. 

The immunological mechanism in ED, naturally conceived and non donor IVF pregnancies has 

been studied in chapter 7. We found an altered immune reaction, locally as well as peripherally 

in ED and non donor IVF pregnancies compared with naturally conceived pregnancies. We tested 

this by the analysis of several cytokines in serum and placental tissue. Furthermore, mPBMCs 

were phenotyped by �low cytometry and correlated with the number of HLA mismatches. 
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mPBMCs were stimulated with (allogeneic) UCB or control PBMCs in a mixed lymphocyte reaction. 

Diff erences in cytokine expression in decidua and maternal serum between ED, IVF and naturally 

conceived pregnancies were found. The percentage CD4+CD25bright and CD4+CD25dim were 

higher in mPBMCs of ED and IVF pregnancies compared to naturally conceived pregnancies. In 

ED pregnancies, the number of HLA mismatches is positively correlated with the percentage of 

CD4+CD25dim in mPBMCs. Although the exact mechanism remains to be elucidated, we found that 

the immunology in ED and non donor IVF pregnancies is altered compared to naturally conceived 

pregnancies. The presence of fetal cells in maternal blood (fetal microchimerism) possibly plays 

a role. Antigens of fetal cells migrate into the maternal blood, and fetal (and thus partly parternal) 

antigens may be able to modulate the maternal immune response during pregnancy. In ED 

pregnancies the impact of microchimerism might be altered, and thereby leading to a positive 

correlation between the percentage of CD4+CD25dim and the number of HLA mismatches in ED 

pregnancies.

Experimental considerations

To identify possible immunologic mechanisms contributing to aberrant immunology in pregnancy, 

it is essential to validate factors potentially in"luencing the outcome. In our studies we cautiously 

selected the control groups. In chapter 3, in addition to a term control group, a preterm control 

group was selected. In this way the gestational age between the preterm preeclamptic group 

and the preterm control group did not signi"icantly diff er. As the gestational age might aff ect the 

immunological outcome, this in"luence of time was ruled out. In chapter 7 a non donor IVF group 

was included to serve as a control group for ED pregnancies, both had comparable hormonal 

treatment before pregnancy. Furthermore, for all our tissue included, we delicately de"ined the 

location of immunological importance. On a protocol basis we collect placentas of pregnancies 

with our interest. Biopsies at three locations of the placenta and fetal membranes are taken. If 

there would be a diff erence in immune regulation at diff erent locations, this potential bias is ruled 

out by this approach. 

We used mixed lymphocyte cultures (MLC or mixed lymphocyte reactions) to measure T cell 

alloimmune responses. When allogeneic leukocytes are cultured together, T cell populations 

expand. The total proliferation of lymphocytes is measured by monitoring the uptake of 3H 

thymidine, during cell division. In this test the stimulators are inactivated by radiation, and are 

not able to proliferate. CD4+ T cells are critical for this reaction, and therefore the HLA class II 

mismatch plays an important role. In our studies, HLA typings of all mothers and children were 

performed and the number of mismatches between mother and child were calculated. For the 

performance of the MLCs, control cells were selected on the basis of the number of HLA-DR 

mismatches. 

The immunohistochemical protocols were extensively tested for every antigen described in 

this thesis. For every test a negative control was used, to test for the speci"icity of the antibody 

involved. We also reduced non-speci"ic background staining. The main cause of non-speci"ic 

background staining is non-immunological binding of the speci"ic immune sera by hydrophobic 

and electrostatic forces to certain sites within tissue sections. Since some antibodies showed non-

speci"ic background staining, we reduced this by blocking with serum. Furthermore, tissue may 

show endogenous peroxidase activity, resulting in non-speci"ic staining. The solution commonly 

used for eliminating endogenous peroxidase activity is by the pretreatment of the tissue section 

with hydrogen peroxide prior to incubation of primary antibody. The precision, by which we 

tested our stainings, resulted in optimal staining for every antibody used. We used digital analysis 

methods to analyze our staining intensity, as a consequence objective results where gathered. Only 

the relevant areas were selected for analysis. We focused the analysis of the immunohistochemical 
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staining on the decidua basalis and the decidua parietalis. These are the maternal parts of the 

placenta and fetal membranes respectively; hereby the immune interactions at the fetal-maternal 

interface were studied. Maternal blood �loats through the placenta in the intervillous space. The 

analysis of maternal peripheral blood provides information on the systemic maternal immune 

responses. It contains trophoblast micro particles, shed from the syncytiotrophoblast layer of the 

villi. By the analysis of the decidua basalis, decidua parietalis and the maternal peripheral blood, 

the three diff erent fetal-maternal interfaces were studied. To better characterize the relative 

proportion of the studied cell populations of maternal peripheral blood, the results of the �low 

cytometry analysis were presented as the fraction of cells in the CD45+ and CD3+ fraction. The 

separate fractions did not signi�icantly diff er. Therefore, we expressed the results as a percentage 

of the absolute number of CD45+CD3+ cells. 

The term fetal allograft is widely used. The mother accepts the immunologically foreign fetus 

during uncomplicated pregnancy, like an engrafted organ is tolerated [9]. The consequence 

of this understanding is that immunopathological recognition of fetal antigens might be 

viewed as an alloimmune reaction like graft rejection [10]. Despite the resemblances there are 

arguments against this model. The fetal derived cells, which invade the maternal decidua, use 

several immunological escape mechanisms. These mechanisms are not present during organ 

transplantation. For example, the villous trophoblast expresses no HLA antigens on its surface, and 

extravillous trophoblast expresses a very particular set of HLA antigens. Therefore, the use of the 

term allograft should not be used carelessly. However, many common mechanisms determining 

graft and fetal outcome exist. Pregnancy and organ transplantation both re�lects a precise balance 

between pro acceptance and anti rejection stimuli. Analysis of immune reactions shows that 

graft rejection shares many similar mechanisms with recurrent spontaneously abortions and 

preeclampsia [9]. Decreased graft rejection and successful pregnancy outcome is associated with 

the presence of unique suppressor cells producing elevated levels of type 2 cytokines. It has been 

shown that the rejection of allograft and spontaneous abortions are associated with elevated type 

1 cytokines [9]. However, acceptance solely based on a type 2 phenomenon is oversimpli�ied since 

type 1 cytokines are as well necessary to avoid rejection of the (fetal) allograft [10]. 

Future perspective

In this thesis uncomplicated ED pregnancies were investigated, and considered the fetus as fully 

allogeneic. The placentas were collected after nine months uncomplicated pregnancy. It would be 

valuable to study also the immunological interactions upon embryo transfer. After transfer the 

maternal cells meet the allogeneic fetal cells for the �irst time. This is an interesting time point to 

investigate the maternal immunological response. Collection of local tissue is limited at this time 

point, but the peripheral immune response might as well be altered. Furthermore, it would be 

very interesting to analyze those pregnancies which fail to succeed in the beginning. Only 30% of 

embryo transfers after ED succeed, thus 70% of all pregnancies after ED, are not continuing [11]. 

The embryo transfers which result in miscarriage might have a very interesting immunological 

basis, possibly playing a role in the pathology of a miscarriage. Tissue of these pregnancies is 

therefore viable to study, and might give more insights in the immunological interactions, already 

during the implantation phase of pregnancy. The pathological mechanism of preeclampsia during 

ED pregnancies might be diff erent compared with naturally conceived pregnancies. This thesis 

focused on uncomplicated ED pregnancies. However, investigation of preeclamptic ED placentas 

is essential to con�irm this hypothesis. 

In addition to ED pregnancies, mole pregnancies (hydatidiform mole) are as well fully allogeneic 

towards the mother. A complete mole pregnancy is entirely derived from the paternal genome. 

It is caused by a single sperm combining with an egg which has lost its DNA. The genotype is 
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typically 46,XX (diploid), which is due to subsequent mitosis of the fertilizing sperm. It is also 

possible that an empty egg is fertilized by two sperms, which may result in the 46,XY genotype. 

Immunological interactions between mother and the mole pregnancy are possible comparable 

with the immunology in ED pregnancies. 

Recurrent miscarriage represents a complication in pregnancy, is also supposed to have an 

immunological pathophysiology. There must be a reason why in those maternal and paternal 

combinations the couple is not able to get pregnant. Immune cells at the fetal-maternal interface 

of recurrent miscarriage pregnancies might reveal the underlying immunological mechanism. 

Conclusion

In conclusion, this thesis studied uncomplicated pregnancies and two immunological challenges 

during pregnancy, preeclampsia and ED. First, uncomplicated pregnancies were studied and 

we found that pregnancy is characterized by changes in cytokine production and composition 

of peripheral blood leukocytes, which is not re!lected in the proliferative response to the fetus. 

There seems to be an optimal balance between maternal protection against infections and 

fetal tolerance. Second, pregnancies complicated by preeclampsia were investigated. We found 

a diff erential distribution and phenotype of decidual macrophages in preterm preeclamptic 

pregnancies, which may explain why less immunoregulation takes place in preeclampsia placentas. 

Finally, ED pregnancies were analyzed leading to the hypothesis that preeclampsia might have 

diff erent pathophysiological mechanism compared with normal and non donor IVF pregnancies. 

Furthermore, the resemblances between solid organ transplantation were discussed and we 

showed that ED pregnancies lead to more maternal complications and the immunoregulation 

in ED and IVF pregnancies is altered compared with normal pregnancies. We found diff erential 

immunological interactions in successful ED pregnancies compared with naturally conceived 

pregnancies. 

These results indicate that preeclampsia and ED pregnancies are indeed immunological 

challenges during pregnancy. It is a scienti!ic challenge to further reveal the immunological 

mechanism of preeclampsia and ED pregnancies, contributing to precious information for the 

!ields of immunology, transplantation and obstetrics. 
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Ontwikkeling van de placenta

Zwangerschap is een interessante immunologische situatie. Gedurende negen maanden is de 

moeder zwanger van een foetus die zowel maternale (moederlijke) als paternale (vaderlijke) 

genen bij zich draagt, zonder dat er een immunologische afstoting plaatsvindt door de moeder. De 

herkomst van de foetus en placenta ligt in een klompje cellen, de blastocyste, dat in de baarmoeder 

groeit. De foetus komt niet direct in aanraking met maternale cellen, maar de placenta groeit 

wel in de uterus. Gedurende de eerste weken van de zwangerschap begint het complexe proces 

van de placenta ontwikkeling. De placenta wordt opgebouwd door trofoblastcellen, deze cellen 

vormen de barrière tussen de foetus en de moeder. Twee belangrijke subtypes van trofoblast 

bestaan: cytotrofoblast stamcellen en syncytiotrofoblast. Het syncytiotrofoblast is een dikke 

laag van cellen samengevloeid, en dus uit meerdere celkernen bestaat. Cytotrofoblast stamcellen 

zijn in staat om zich te vermenigvuldigen in nieuwe trofoblastcellen, die de basis vormen van 

syncytiotrofoblast of welke diff erentiëren in extra villeuze trofoblastcellen. Extra villeuze 

trofoblastcellen kunnen ingroeien in de decidua, spierweefsel en de spiraal arteriën van de uterus. 

In de arteriën zorgen trofoblastcellen voor een vergroting van de diameter, resulterend in bloed 

toevoer van de moeder richting de placenta. Op deze manier krijgt de groeiende foetus voldoende 

voedingsstoff en en zuurstof aangeleverd. De invasie van foetale cellen in de moederlijke decidua 

is verder verantwoordelijk voor het verankeren van de placenta aan de uterus. In gezonde 

zwangerschappen wordt dit proces strikt gereguleerd, over-invasie kan namelijk schadelijk 

zijn voor de moeder, en inadequate invasie zal leiden tot zwangerschapscomplicaties zoals pre-

eclampsie (zwangerschapsvergiftiging). 

Immunologie en het foetale-maternale grensgebied

De locatie waar de placenta ingroeit in de uterus, de decidua basalis, vormt één van de drie foetale-

maternale grensgebieden. Het tweede gebied bevindt zich meer richting de foetale kant van de 

placenta, waar het syncytiotrofoblast een laag over de villi vormt. Het maternale bloed stroomt in 

de intervilleuze ruimtes en komt hier dus in direct contact met de foetale syncytiotrofoblast. Het 

laatste grensgebied ligt in de foetale vliezen. Deze vliezen bestaan uit vier lagen. De eerste laag, 

vanuit de foetus gezien, is het amnion gevolgd door het chorion, de trofoblast en aan de maternale 

zijde de decidua parietalis. De trofoblastcellen in de vliezen zijn een populatie van extravilleuze 

trofoblastcellen en komen direct in contact met de maternale zijde van de vliezen, de decidua 

parietalis. 

Deze drie foetale-maternale grensgebieden worden in dit proefschrift onderzocht. In deze 

gebieden zorgen verschillende immunologische mechanismen ervoor, dat de foetus niet wordt 

afgestoten door de moeder. Voor het ontstaan van een immuunreactie is het onderscheid tussen 

lichaamseigen en niet-lichaamseigen van belang. Dit onderscheid is ook van belang bij de 

acceptatie van getransplanteerde organen. Humane Leukocyten Antigenen (HLA) van de donor 

zijn niet-lichaamseigen antigenen waartegen de ontvanger na een orgaantransplantatie een 

afstotingsreactie kan ontwikkelen. T cellen zijn cellen van het immuunsysteem die de vreemde 

HLA moleculen kunnen herkennen en een afstotingsreactie kunnen veroorzaken. De T staat voor 

thymus (zwezerik). T cellen vormen een belangrijk onderdeel van het speci!ieke immuunsysteem 

van de mens. De macrofaag is deel van de niet-speci!ieke immuniteit. Macrofagen zijn in staat 

antigenen te presenteren op het celoppervlak. De T cel kan deze antigenen herkennen en hierop 

weer vermenigvuldigen en diff erentiëren, wat uiteindelijk kan leiden tot een immuunreactie. 

Het uiteindelijke doel van een immuunreactie is indringers of veranderde lichaamseigen cellen 

(bijvoorbeeld bij tumoren) te verwijderen. Onder indringers vallen bacteriën, parasieten 

en virussen. Maar cellen van een getransplanteerd orgaan, of de niet-lichaamseigen foetus 
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kunnen ook als indringer worden gezien, en daardoor dus een immuunreactie uitlokken. De 

trofoblastcellen hebben verschillende mechanismen ontwikkeld die ervoor zorgen dat zij kunnen 

ontsnappen aan een aanval door het moederlijke immuunsysteem. Tijdens de zwangerschap 

zorgt het moederlijke immuunsysteem voor een onderdrukking van deze reactie tegen de foetus, 

zodat de zwangerschap voldragen kan worden. Deze onderdrukking vindt voornamelijk lokaal in 

de baarmoeder plaats, zodat het immuunsysteem in de rest van het lichaam intact blijft om daar 

bescherming te bieden tegen indringers. 

Verschillen in het immuunsysteem tussen zwangere en niet-zwangere vrouwen worden besproken 

in hoofdstuk 2. In het perifere bloed van deze vrouwen wordt gekeken of er verschillen zijn 

tussen het fenotype van de T cellen, en hoe zij reageren wanneer deze cellen in een laboratorische 

setting samen worden gebracht met cellen van haar eigen kind, een vreemd kind of een vreemde 

volwassene. In deze test wordt de mate van vermenigvuldiging van de moederlijke T cellen 

gemeten. Wij vonden dat de T cellen tussen zwangeren en niet-zwangeren niet in hogere mate 

vermenigvuldigen na speci!ieke stimulatie, alhoewel er wel fenotypische verschillen van T cellen 

werden gevonden. Deze resultaten suggereren dat zwangere vrouwen een precieze balans vormen 

tussen de zorg voor optimale groei van de foetus, en ook voor handhaving van een adequate 

immuun reactie tegen infecties. 

In dit proefschrift worden twee immunologische uitdagingen beschreven welke mogelijk veel 

vragen van het maternale immuunsysteem om de zwangerschap niet af te stoten. Dit zijn pre-

eclampsie en eiceldonatie zwangerschappen. 

Pre-eclampsie

Pre-eclampsie (zwangerschapsvergiftiging) is een zwangerschapscomplicatie die gekarakteriseerd 

wordt door hypertensie en eiwitverlies. In ongeveer 5% van alle zwangerschappen komt pre-

eclampsie voor en het is een belangrijke oorzaak van de maternale morbiditeit en mortaliteit in 

de westerse wereld. Ondanks uitgebreid onderzoek blijft de precieze oorzaak van pre-eclampsie 

onduidelijk. Pre-eclampsie kan leiden tot levensbedreigende ziektes; eclampsie en HELLP. 

Wanneer er convulsies optreden tijdens de pre-eclamptische zwangerschap spreekt men van 

eclampsie. Het HELLP syndroom kenmerkt zich door multi orgaan falen. De foetus is vaak groei-

vertraagd en het leidt vaker tot, al dan niet geïnduceerde, vroeggeboorte. De klinische symptomen 

van pre-eclampsie komen vaak pas tot uiting na de 20e zwangerschapsweek. Veel onderzoek 

richt zich momenteel op het bepalen van een marker welke het ontstaan van pre-eclampsie kan 

voorspellen, echter deze markers zijn nog niet klinisch toepasbaar. Behalve symptoombestrijding 

is de enige eff ectieve behandeling van pre-eclampsie het verwijderen van de placenta. Dit wijst 

op het feit dat de placenta een belangrijke rol speelt in de ontstaanswijze van pre-eclampsie. 

De spiraalarteriën in de placenta zijn niet goed gevormd. De extravilleuze cytotrofoblastcellen 

in!iltreren wel het deciduale gedeelte van de uterus, maar reiken niet tot het myometrium. 

Hierdoor ontwikkelen de spiraalarteriën een onvoldoende diametergrootte hetgeen resulteert 

in placentaire hypoperfusie. Deze verslechterde placentatie, samen met ischemie zorgen voor 

productie van factoren welke verantwoordelijk zijn voor systemische endotheel schade. 

Pre-eclampsie wordt gezien als een immunologische aandoening. Het komt vaker voor bij eerste 

zwangerschappen, bij bepaalde families, en wanneer sperma-expositie voor de zwangerschap 

laag was. Mede hierdoor wordt verondersteld dat eerdere blootstelling aan paternale 

antigenen beschermend werkt tegen het ontstaan van pre-eclampsie. In hoofdstuk 3 worden 

zwangerschappen gecompliceerd door pre-eclampsie besproken. Macrofagen zijn witte bloedcellen 

welke in vergelijking met andere witte bloedcellen in hoge mate voorkomen in de maternale 

decidua. Verstoring van het type en aantal macrofagen kan een rol spelen in de pathofysiologie 
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van pre-eclampsie. Placenta’s van ongecompliceerde, pre-eclamptische zwangerschappen zijn 

verzameld en vervolgens door middel van immunologische kleuringen is gekeken naar het type 

macrofagen in de decidua. Wij vonden dat in de decidua van pre-eclamptische zwangerschappen, 

naar verhouding, minder immuunregulerende macrofagen voorkwamen. Mogelijk leidt deze 

verstoring in vergelijking met ongecompliceerde zwangerschappen tot het ontstaan van pre-

eclampsie. 

Eiceldonatie

Pre-eclampsie wordt in de literatuur vergeleken met de immunologische reactie verantwoordelijk 

voor de afstoting van een transplantatie orgaan. Bij een orgaantransplantatie wordt een 

lichaamsvreemd orgaan in het lichaam van de ontvanger geplaatst. Deze situatie is vergelijkbaar 

met de zwangerschap tot stand gekomen door eiceldonatie. De moeder is zwanger van een totaal 

lichaamsvreemd kind, het bevat genen van de vader en van de eiceldonor. Immunologische kennis 

betreff ende de acceptatie van de zwangerschap kan in een breder perspectief worden toegepast 

bij de acceptatie van transplantatie organen en auto-immuunziekten. 

In hoofdstuk 4 wordt het voorkomen van pre-eclampsie bij een eiceldonatie zwangerschap 

besproken. Twee zwangerschappen worden met elkaar vergeleken: een tweeling zwangerschap 

tot stand gekomen na in vitro fertilisatie (IVF) met de eicel van de moeder zelf en een 

tweeling zwangerschap ook tot stand gekomen door IVF, maar met donor eicellen. In de IVF 

zwangerschap ontstaat pre-eclampsie en is er ernstige groeivertraging van beide kinderen, en in 

de eiceldonatie zwangerschap ontstaat eveneens pre-eclampsie, maar hebben de kinderen een 

normaal geboortegewicht. Mogelijk is de pathogenese van pre-eclampsie anders in eiceldonatie 

zwangerschappen, de totale genetische mismatch tussen moeder en kind kan hier een rol in 

spelen. 

De hypothese dat het immunologische mechanisme bij eiceldonatie zwangerschappen en de 

acceptatie van orgaantransplantaties vergelijkbaar zijn, wordt onderbouwd in hoofdstuk 5. Bij 

de acceptatie van een totaal lichaamsvreemde foetus, zoals bij de eiceldonatie zwangerschappen, 

spelen mogelijk immunologische mechanismen een rol, die ook van toepassing zijn bij de acceptatie 

van een lichaamsvreemd orgaan. Kennis van deze mechanismen kan mogelijk toegepast worden 

in het veld van de transplantatie geneeskunde. 

Ook al biedt eiceldonatie de mogelijkheid aan onvruchtbare vrouwen toch zwanger te worden, 

deze zwangerschappen gaan in vergelijking met spontane zwangerschappen gepaard met 

meer maternale complicaties. Deze klinische en immunologische aspecten van de eiceldonatie 

zwangerschappen worden uiteengezet in hoofdstuk 6. De moeder heeft vaker hypertensieve 

aandoeningen (zoals pre-eclampsie), keizersneden en vaginale bloedingen. De moeder leidt dus 

aan meer complicaties in eiceldonatie zwangerschappen, maar de klinische uitkomst van de 

foetus is net zo goed als in spontane zwangerschappen. 

De immunologische regulatie in eiceldonatie en IVF zwangerschappen is anders dan in spontane 

zwangerschappen (hoofdstuk 7). De hormonale behandeling in deze zwangerschappen 

beïnvloedt het klompje cellen, dat later de foetus wordt, waarschijnlijk op een zodanige wijze, 

dat het terug te zien is in de placenta na geboorte. Ook in het moederbloed vonden wij verschil 

in het fenotype van de cellen van eiceldonatie en IVF zwangerschappen vergeleken met spontane 

zwangerschappen. Opvallend was dat bij een toename van het genetisch aantal verschillen tussen 

moeder en kind bij een eiceldonatie zwangerschap, de moeder meer geactiveerde T cellen in haar 

bloed had. Er lijkt een optimale balans te zijn tussen de afstoting en acceptatie van de foetus. 



Nederlandse samenvatting

139
9

Dit proefschrift heeft twee immunologische uitdagingen tijdens de zwangerschap onderzocht, 

de resultaten onderbouwen dat eiceldonatie en pre-eclamptische zwangerschappen inderdaad 

een provocatie van het moederlijke immuunsysteem vormen. Nu is het een uitdaging om het 

immunologische mechanisme van pre-eclampsie en eiceldonatie zwangerschappen verder 

te ontrafelen, deze kennis zorgt voor waardevolle informatie voor zowel de immunologie, 

transplantatie en obstetrie.
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anderen was dit niet gelukt. Daarom wil ik iedereen die hieraan bijgedragen heeft bedanken! Ook 

alle voormalig zwangere die hun placenta hebben afgegeven, bedankt!

Sicco, jouw enthousiasme en positieve blik hebben mij niet alleen gestimuleerd voor de 

wetenschap, maar ook voor de gynaecologie. Heel erg bedankt dat je die ene dag na de overdracht 
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3p third party

APC antigen presenting cell

BDCA blood dendritic cell antigen

CD cluster of diff erentiation

CPM counts per minute

DAF decay accelerating factor

DC SIGN dendritic cell-speci"ic intercellular 

adhesion molecule-3 grabbin 

nonintegrin

DC dendritic cell

ED egg donation

ELISA enzyme linked immunosorbent assay

Eng endoglin

FACS "luorescent activated cell sorting

Flt fmslike tyrosine kinase

FM fetal membranes

Gal-1  galectin-1

HELLP hemolysis elevated liver enzymes        

 low platelets

HLA human leukocyte antigen

IDO indoleamine 2,3-dioygenase

IFN-γ interferon-γ

IL interleukin

IVF in vitro fertilization

KIR killer immuno-globulin like receptor 

Abbreviations

LUMC leiden university medical center

M1 macrophages type 1

M2 macrophages type 2

MACS magnetic activated cell sorting

MHC major histocompatibility complex

MLC mixed lymphocyte culture

MLR mixed lymphocyte reaction

NK natural killer

OD oocyte donation

PBL peripheral blood leukocyte

PBMC peripheral blood mononuclear cell

PHA phytohaemagglutinin

PLGF placental growth factor

pSMAD phosphorylated SMAD

RNA ribo nucleic acid

sEng soluble endoglin

sFlt soluble fmslike tyrosine kinase 1

SI stimulation index

TGF transforming growth factor

Th T helper

TNF tumor necrosis factor 

TRAIL TNF-related apoptosis-inducing ligand

UCB umbilical cord blood

VEGF vascular endothelial growth factor
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