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Oxidative stress and apoptosis

Oxidative stress is defined as ‘a disturbance in the prooxidant-
antioxidant balance in favor of the former, leading to potential 
damage’.(9) This imbalance can either be caused by an excess 
of reactive oxygen species (ros) or a diminished amount of 
antioxidants such as superoxide dismutase (sod), catalase, 
vitamins. Oxidative stress is involved in the pathophysiology 
of a wide range of diseases and an excess of ros also plays an 
important role in anthracycline-induced cardiotoxicity. After 
administration of doxorubicin, free radicals are formed by 
one-electron addition to its quinone moiety, which quickly 
regenerates to its original structure by reducing oxygen to the 
superoxide anion (O2

•-) (figure 2).These reactive oxygen species 
induce apoptosis, both via the extrinsic (Fas-mediated) and the 
intrinsic (mitochondrial) pathway.(10-13) Cardiomyocytes are 
especially vulnerable to doxorubicin-induced apoptosis, as they 
contain low levels of ros scavenging enzymes.(14) Although the 
role of apoptosis in doxorubicin-induced cardiotoxicity is well-
established in vitro, it remains uncertain whether this mechanism 
is responsible for the chronic cardiac toxicity.(8) 

Secondary alcohol metabolites

Doxorubicin may also cause cardiac myopathy by the formation of 
its secondary alcohol metabolites such as doxorubicinol (doxol). 
Two mechanisms for its cardiotoxicity have been postulated: 
interference with intracellular Ca handling, and indirectly by 
disrupting iron metabolism, mainly by switching off the Iron 
Regulatory Protein 1 (irp-1).(15) Direct evidence that the alcohol 
metabolites of doxorubicin play a relevant role in cardiotoxicity is 
based upon the observation that animals lacking or overexpressing 
the gene coding for the enzyme that catalyses the conversion of 
doxorubicin to doxol show decreased and increased cardiotoxicity 
respectively. The involvement of secondary alcohol metabolites is 
further supported by the observation that taxanes that stimulate 

introduction and outline 

Cardiac effects of anthracyclines

The first anthracycline, daunorubicin, was originally isolated 
from the S. peucetius in 1957.(1) Since then, numerous analogues 
have been developed, of which doxorubicin (Adriamycin®) is still 
the most commonly used (figure 1).(2) Doxorubicin is used in 
the treatment of a wide range of malignancies, including breast 
cancer, ovarian cancer, leukemia and sarcomas.(3) 

Soon after the introduction of doxorubicin, cardiotoxic side-
effects were noted.(1;4) These effects are commonly divided 
into acute, sub-acute and chronic effects.(5) The acute effects 
consist of rhythm disturbances and myocarditis and occur almost 
instantaneously after doxorubicin administration. The sub-acute 
and chronic effects develop after at least 3 months, but can 
also become apparent years later and may lead to congestive 
heart failure (chf). The latter types of toxicity are mainly dose-
dependent and vary between < 1% for doses up to 450 mg/m² 
and 47% for doses over 700 mg/m².(6) Other risk-factors include 
age and gender.(4) Commonly used concomitant therapies in the 
treatment of cancers, like radiation and Herceptin, are also known 
to increase the occurrence of doxorubicin induced cardiotoxicity.
(7) 

Molecular mechanisms of cardiac effects of 
anthracyclines

The cardiotoxic effects of doxorubicin are probably mediated by 
the induction of apoptosis via free radical mediated mechanisms, 
but deregulation of intracellular Ca-homeostasis seems to play 
a role as well.(8) This is different from the anti-tumor effect, 
which is mainly regulated via interference with dna replication, 
alkylation and cross-linking, rna transcription and inhibition of 
topoisomerase ii.(3)
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abundant intracellular iron. This switch is controlled via a 4Fe-S 
cluster present within irp1 (figure 3).(25;26) 

irp2 shares extensive sequence homology with irp1, but lacks 
the 4Fe-S cluster and its activity is regulated by protosomal 
degradation in the presence of intracellular iron.(25;26) 
Doxorubicin and doxorubicinol interfere with this mechanism 
via several distinct mechanisms. It has been described that 
doxorubicin (and doxorubicinol) irreversibly inactivated irp1 
(formation of a null protein), resulting in decreased irp1-rne 
binding.(27) Further investigations revealed that low (sub-clinical) 
concentrations of doxorubicin actually increased irp1-rne 
interaction, while higher concentrations of doxorubicin indeed led 
to the formation of a null protein.(28;29) In contrast with the “null 
protein”-theory, a subsequent study showed that complexes of 
doxorubicin Fe and Cu reversibly decreased irp1-rne binding by 
formation of disulfide complexes.(13) The influence of doxorubicin 
on irp2-rne binding is less extensively investigated. However, 
doxorubicin also appears to decrease irp2-rne binding.(29;30) It 
thus seems that doxorubicin favors iron sequestration over iron 
uptake by diminished irp1- and irp2-rne binding.

In summary, the pathophysiology of doxorubicin is an 
accumulation of several processes, in which the formation of free 
radicals and the disturbance of iron metabolism are key features. 

Endogenous defense mechanisms against cardiac 
effects of anthracyclines

At present, several mechanisms to protect against free radical 
induced cardiotoxicity have been identified. These include 
prooxidant-reducing proteins such as transferrin and haptoglobin, 
heat-shock proteins and antioxidants, such as vitamin C and E, 
catalase and superoxide dismutase (sod). sod catalyzes (O2

•- + 
2H+→ H2O2) the reaction in which O2

•- is converted to hydrogen 
peroxide, which is further degraded by catalase to water. (2H2O2 
→ 2 H2O + O2). Three isoforms of sod have been identified: 
cytosolic sod (sod1), mitochondrial sod (sod2) and extracellular 
sod (sod3). The intracellular forms are more abundantly present.

the formation of doxorubicinol aggravate the cardiotoxicity 
of doxorubicin.(16;17) In keeping with these findings is the 
relationship between the extent of formation of secondary alcohol 
metabolites of anthracycline analogue in vitro and the clinically 
observed cardiotoxicity.(8;18)  

Iron-mediated toxicity

Iron can intensify the damage induced by ros and induce the 
formation of hydroxyl (.oh) radicals via the Haber-Weiss reaction 
(O2

•-+ H2O2 →  OH•+ OH-+ O2). This reaction can only occur 
when an intracellular pool of free iron is present.(19) To date,  
it has not been completely elucidated how such a pool of free 
iron is formed within the cardiomyocyte. Most of the iron is 
stored in the iron-storage protein ferritin. Conflicting evidence 
exists with regard to iron release from ferritin in the presence 
of doxorubicin. Earlier studies showed that the presence of 
O2

•- and the semiquinone of doxorubicin enabled Fe2+ release 
from ferritin.(20-22) However, subsequent studies paradoxically 
demonstrated that doxorubicin favors accumulation of iron in 
ferritin by causing post-transcriptional changes to ferritin resulting 
in a decreased ability to release Fe2+.(23;24) It is hypothesized that 
these mechanisms can be both protective and unfavorable, as iron 
within ferritin is not available for free radical reactions. However, 
free iron deficiency hampers several intracellular processes, such 
as dna synthesis.(19) 

Doxorubicin and its metabolite doxorubicinol influence iron 
metabolism in a different way as well, as they interfere with the 
regulation by Iron Regulatory Proteins (irps).(15) Cellular iron 
regulation is partly dependent on regulation by irps which can 
bind to the iron-responsive regions (ires) present on 5’- or 3’ 
untranslated regions mrna of, among others, ferritin and the 
transferrin receptor (TfR). Binding irp to ire results in increased 
intracellular iron uptake and decreased iron storage of iron in 
ferritin. Two related irps have been identified in humans, namely 
irp1 and irp2. irp1 switches from its active apo form, which is 
capable to bind ires, to its inactive holo form in the presence of 
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Also echographic assessment of lvef has been used to assess 
anthracycline-induced cardiotoxicity. Literature shows that, when 
appropriate techniques are used, assessment of lvef with this 
method is comparable to lvef assessment with radionuclides.
(45-48)

A disadvantage of both nuclear and echographic determination 
of the lvef is that it is unclear if it is feasible for the early detection 
of cardiotoxicity, as the decline in lvef commonly occurs 
late in the pathophysiological process and is often insidious.
(49-51) However, other reports show that even small early (a 
change of 4% in ejection fraction) changes in lvef measured 
with echocardiography, as well as with radionuclide methods 
may be predictive for the occurrence of anthracycline-induced 
cardiotoxicity.(52-54)

In the past few decades, heart failure with preserved ejection 
fraction has become increasingly important and has also been 
associated with significant morbidity and mortality.(55;56) 
Administration of anthracyclines also impairs diastolic function, 
even in the absence of a declined left ventricular ejection fraction.
(57-63) It has therefore been suggested that diastolic dysfunction 
could precede an ensuing decline in lvef and may be useful as a 
marker for anthracycline-induced cardiotoxicity.  

Biochemical markers - cardiac troponins and  
natriuretic peptides 

In cardiovascular disease, including anthracycline-induced heart 
failure, an extensive amount of biomarkers has been studied for 
the detection of myocardial injury, including creatine kinases, 
cardiac troponins and natriuretic peptides. 

Troponins are thin-filament associated complexes that are 
involved in the regulation of the actin-myosin cross-bridges of 
striated muscles and consist of three subunits: troponin T, C and 
I.(64) Cardiac troponin T and I are both highly sensitive and specific 
markers for myocardial injury.(65) Both markers are established 
as diagnostic and prognostic tools in acute coronary syndromes.
(66) Cardiac troponins have also been suggested as early markers 
for anthracycline-induced cardiotoxicity, albeit with ambivalent 

Detection methods for cardiac side effects  
of anthracyclines

Detection of anthracycline-induced cardiotoxicity is difficult, 
as a clinically relevant decline in left ventricular function often 
appears late after the administration of anthracyclines. Because 
of the impact of the impaired cardiac function, several detection 
methods have been investigated and evaluated to detect 
anthracycline-induced cardiotoxicity as early as possible.
 
endomyocardial biopsy  Endomyocardial biopsy was often 
used until the 1980s for the detection of anthracycline-induced 
cardiotoxicity.(31-33) After exposure to anthracyclines, highly 
specific histopathological changes occur in the myocardium, 
including extensive depletion of myofibrillar bundles, myofibrillar 
lysis, distortion and disruption of z-lines, mitochondrial swelling 
and swelling and disruption of the sarcoplasmatic reticulum, 
leading to intramyocyte vacuolization.(34-36) These changes are 
dose-dependent and occur scattered throughout the myocardium.
(36) Endomyocardial biopsy is the most sensitive and specific 
method to detect anthracycline-induced cardiotoxicity. However, 
it is largely abandoned now, because of the lack of experience in 
obtaining and assessing the biopsies and the fact that it is a highly 
invasive procedure.(31-33) 

measurement of left ventricular function  Another 
commonly used method to assess cardiac function after treatment 
with anthracyclines is by determination of left ventricular 
systolic and diastolic function by either multigated radionuclide 
angiography (muga) or cardiac echography. With a muga scan, 
gamma radiation produced by 99Technetium-labeled erythrocytes 
is measured and used to calculate several cardiac indices for 
systolic and diastolic function, such as left ventricular ejection 
fraction (lvef).(37) Radionuclide assessment of lvef is widely  
used to determine left ventricular function in cardiac disease.  
As several studies have shown that a decline in nuclear lvef  
is indeed predictive (sensitivity varies between 55% and 100%)  
for future congestive heart failure in patients using anthracyclines, 
it is currently regarded as the gold standard.(38-44)  
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the diagnosis of cardiac ischemic diseases, congestive heart 
failure and arrhythmias. Several clinical studies have related 
prolongation of the qt-interval to anthracycline administration.
(73-76) As anthracyclines are not known to influence cardiac 
ion channels, these prolonged qt-intervals may be related to 
a disturbed repolarization due to myocardial injury. Although 
no relation between the degree of qt-prolongation and cardiac 
disease has been shown in patients treated with anthracyclines, 
it is known that prolonged qt-intervals are associated with 
increased mortality in patients with heart failure.(77) Other 
evidence that qt-prolongation might be an appropriate marker 
for cardiac injury is suggested by the commonly used preclinical 
model for anthracycline-induced cardiotoxicity. In mice, 
adriamycin induces st-prolongations that can be abolished by 
concomitant administration of the clinically effective protective 
compound dexrazoxane.(78) Some investigators also related an 
increased qt-dispersion, which reflects the regional differences 
in repolarization, to exposure to anthracyclines.(79-81) Increased 
qt-dispersion has been related to increased cardiac mortality 
in various clinical conditions.(82) However, more recent studies 
indicate that qt-dispersion is an unreliable predictor of cardiac 
events in general(83;84), making it unlikely that qt-dispersion will 
prove to be a suitable marker for anthracycline-induced cardiac 
injury. Finally, changes in heart rate variability (hrv), which reflects 
changes in autonomic regulation of circulatory function, have also 
been described after anthracycline administration(85;86), but a 
subsequent report failed to confirm these results.(49) rendering 
the value of this measure questionable.  

Protective strategies

Several protective strategies have been suggested in order to 
diminish the cardiotoxicity by anthracyclines, including less toxic 
compounds, improved dosage schedules and the concomitant 
administration of protective compounds.

less toxic anthracyclines  Numerous presumed less 
toxic analogues have been developed, of which only epirubicin 

results. (For an excellent review, see Germanakis et al.(67)) These 
contrasting findings can be related to many factors, including 
heterogenic study populations, variable cumulative anthracycline 
doses, and different study protocols with regard to type of assay 
and sampling time. Nevertheless, most reports show that at least 
some patients have detectable troponin, suggesting that it might 
be a prognostic marker in anthracycline-induced cardiotoxicity. 

The family of natriuretic peptides consists of 3 distinct types: 
atrial natriuretic peptide (anp), brain natriuretic peptide (bnp) and 
C-type natriuretic peptide (cnp). All natriuretic peptides share 
vasodilative properties and are involved in sodium and water 
homeostasis.(68) anp is stored in granules inside cardiomyocytes 
and released in response to cardiac wall stress. The formation 
of bnp in response to cardiac wall stress is more complex; pre-
probnp is synthesized in the ventricular wall and subsequently 
cleaved via probnp into its active form bnp and the inactive amino-
terminal fragment nt-probnp. As bnp is less sensitive for transient 
changes in hemodynamics, such as the administration of infusion 
fluids, it is a better marker for cardiovascular disease, such as 
heart failure, than anp.(68) Indeed, both bnp and nt-probnp 
are known to be increased in heart failure and both markers are 
widely used as independent risk factors for cardiovascular events. 
Most studies have shown that elevated bnp and nt-probnp 
levels correlate well with echocardiographic and/or radionuclide 
parameters of myocardial dysfunction.(69) cnp is mainly produced 
by the endothelium and its role in the pathophysiology of heart 
disease is yet to be established.(70) It has been reported that after 
administration of anthracyclines, concentrations of circulating 
natriuretic peptides increase. Especially persistently elevated 
(nt-pro)bnp levels have prognostic value.(71) However, nt-probnp 
has also been suggested as possible early marker for the 
evaluation of anthracycline-induced cardiotoxicity in children,(71)
and adults.(this thesis) A disadvantage however is that bnp (and to 
a lesser extent also nt-probnp) levels are subject to biological (day-
to-day) variation which make them less suitable for monitoring 
disease progression unless strict protocols are followed.(72)

electrocardiography  Electrocardiography is widely 
used for the evaluation of cardiac function, and is useful for 
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studies with these compounds showed promising results, 
but evidence of protective effects in humans could not be not 
demonstrated. 

Blocking the renin-angiotensin system (ras), either by ace 
inhibitors or atii receptor blockers, improves the outcome of 
patients with systolic heart failure.(93) In the treatment of 
anthracycline-induced cardiac failure, treatment with ace-
inhibitors was efficacious, too.(94-97) This suggests that 
concomitant administration of ras-inhibiting agents may be 
beneficial. This hypothesis was supported by animal studies 
showing that modulation of the ras could prevent against 
anthracycline-induced cardiotoxicity.(89;98-103) It appears 
that in clinical practice, too, ace inhibitors and atii-antagonists 
are beneficial in patients treated with anthracyclines.(104;105) 
However, these trials were performed in small patient populations 
and had several methodological shortcomings, so additional 
research is needed to confirm whether or not ace-inhibitors/atii 
antagonists can be considered as protective. 

The only compound that has a proven efficacy against 
anthracycline-induced cardiac failure is the iron chelator 
dexrazoxane.(106) This compound is capable to chelate 
intracellular iron (complexes), thereby preventing the formation 
of free radicals.(107) However, the possible association of 
dexrazoxane with a higher risk for secondary malignancies and an 
increased occurrence of (serious) adverse effects limits its clinical 
use to patients with advanced (metastasized) tumors.(106) 

Aims of the thesis

It is clear that there is a special need for markers that can be used 
to detect anthracycline-induced cardiotoxicity in an early stage 
and identify those patients at risk for the development of chf.

The studies described in this thesis aim to, firstly, identify 
possible biomarkers and detection methods to identify 
anthracycline-induced cardiotoxicity early and secondly, 
identify new possible strategies to prevent anthracycline-
induced cardiotoxicity. Chapter 2 comprises a pilot-study 
to identify biomarkers for course-to-course evaluation of 

and idarubicin are used in clinical practice. Although epirubicin 
is less cardiotoxic than doxorubicin, this advantage is clinically 
less significant as higher doses are needed to achieve similar 
anti-tumor efficacy compared to doxorubicin, thereby offsetting 
the favorable cardiotoxic profile. The data for idarubicin are 
contradictory and larger trials are needed to assess if this analogue 
indeed has a lower incidence of cardiotoxicity.(8) Some advances 
have been made with the development of liposome-encapsulated 
doxorubicin, these suggest a favorable cardiotoxic profile. 
However, only limited efficacy data are available and treatment 
costs are relatively high. The value of this compound thus remains 
to be established.(2) 

different dosing strategies  Traditionally, anthracyclines 
are administered as bolus infusion over a maximum of 
approximately 60 minutes. Soon after their introduction it was 
suggested that a prolonged infusion period (up to 96 hours) 
could reduce cardiotoxicity.(87) Since then, over 30 trials have 
compared the occurrence of (sub-)clinical cardiotoxicity after 
bolus injection with prolonged infusions. (For a review, see (88) 
According to a meta-analysis, the occurrence of clinical heart 
failure is significantly lower in patients receiving anthracyclines 
with an infusion duration of six hours or longer as compared 
to bolus infusion (rr = 0.27; 95%CI 0.09 to 0.81, P = 0.02).(88) 
Although it seems that the anti-tumor efficacy is not hampered 
by slow infusion, these trials were mainly performed in patients 
with metastasized disease and the follow up period was not 
clearly specified. Should it be proven, however, that modification 
of dosing schedules does not to impair the intended anti-tumor 
effects of anthracyclines while avoiding the untoward cardiac 
effects, this might prove a feasible future strategy. 

protective agents  Based on the (presumed) pathophysi-
ological mechanism, protective compounds were developed that 
should be administered concomitantly with the anthracycline-
containing chemotherapy. As ros-overload is a major 
pathophysiological mechanism it is logical that free radical 
scavengers like N-acetylcysteine, coenzyme Q10, vitamin E and 
C were evaluated as protective agents.(89-92) Indeed, animal 
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anthracycline-induced cardiotoxicity. In chapter 3, the effects of 
doxorubicin on the iron metabolism is discussed. A novel method 
to assess repolarization disturbances after anthracycline therapy 
is described in chapter 4. In chapter 5 and 6, the pharmacokinetics 
of a potentially novel protective compound lecithinized superoxide 
dismutase (pc-sod) in healthy subjects are described. These data 
were used to design the study described in chapter 7. This study 
investigated the clinical efficacy of pc-sod against anthracycline-
induced cardiotoxicity in female breast cancer patients. It 
concludes with an overall discussion, conclusions and suggestions 
for further research (chapter 8). 
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Figure 3  Proposed mechanisms of iron-mediated cardiotoxicityFigure 1 Chemical structure of Doxorubicin

Figure 2 ros generation after anthracycline administration
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introduction

Anthracyclines, such as Doxorubicin (dxr), cause serious cardiac 
side-effects.(1) Acute tachy-arrhythmias and acute heart failure 
may occur after high doses, but these reactions are now rare due 
to changed dosage-schemes (e.g. slower infusion) with the aim to 
prevent this. However, the sub-acute or chronic cardiac effects of 
anthracyclines remain a clinical problem. Clinically, anthracycline-
induced cardiotoxicity manifests itself as left ventricular failure 
which develops insidiously over months to years after completion 
of the anthracycline-based chemotherapy and may result in 
congestive heart failure (chf).(2;3)

Recent studies suggest an incidence of this type of 
cardiotoxicity of 5% in doses up to 400 mg/m² increasing to  
48% in subjects receiving 700 mg/m².(4) But even at doses up  
to 150 mg/m² chf was occasionally reported.(4) In addition to  
the cumulative dose, age, gender and dosing schedule have been 
reported as independent risk factors.(5) 

The mechanism of anthracycline-induced cardiotoxicity is 
not totally unravelled. It is likely that the decline in myocardial 
function is related to apoptosis of cardiac myocytes that occurs 
apparently at random in the myocardium.(6) Anthracycline-
induced formation of reactive oxygen species (ros) in the presence 
of intracellular iron, impaired homeostasis of intracellular iron and 
calcium (that may facilitate the apoptosis induced by the ros)  
have been put forward as mechanisms. However, other possible 
mechanisms have been suggested and it is likely that anthra cy-
cline-induced cardiotoxicity develops as a result of a large number 
of different insults.(3) 

It is generally acknowledged that anthracycline-induced cardio-
toxicity becomes evident after completion of the chemotherapy. 
The gold standards to detect anthracycline-induced cardiotoxicity 
are cardiac imaging techniques or myocardial biopsy. However, 
these methods have either the disadvantage that cardiotoxicity  
is detected late, namely when decline in left ventricular ejection 
fraction (lvef) already has occurred (imaging techniques) or that  
it is highly invasive and based on the assumption that the damage 
is equally distributed over the myocardium (biopsy).

abstract

The clinical assessment of the myocardial damage caused by 
anthracycline (ant)-therapy is difficult. Therefore a study was 
performed to evaluate non-invasive markers of anthracycline-
induced cardiac effects, with emphasis on course-to-course 
variation.Eligible for study participation were patients, without 
known cardiologic abnormalities who did not use cardiotoxic 
medication (except for ant-therapy), who had previously 
completed at least 3 cycles of anthracycline-containing 
chemotherapy (n=14) and patients who were ant-naïve and  
who were scheduled to receive doxorubicin (dxr)-containing 
chemotherapy (n=12). Seven patients in this last group also 
completed at least 3 cycles and were available for follow-up 
assessments; thus a total population of 21 patients (12F/9M) 
completed at least 3 courses ant-chemotherapy. In these patients 
blood samples and ecg-recordings were taken within 6 months 
after completion of ant-therapy. In 12 patients (10F/2M) assess-
ments were also done before, immediately afterwards and at  
24hr after each course of ant. 

In the patients who completed chemotherapy, nt-probnp  
was 277% (n=21; 95% CI: 86%-661%, p<0.001) higher compared 
to healthy volunteers.

During the first course nt-probnp rose 269% (n=12; 167-409%, 
p<0.0001) at 24hr post-administration. 

The linear corrected qt (qtcL) directly after the first 
administration of ant increased by 9.56 msec (n=12; 3.85-15.27, 
p<0.001) and this prolongation was still present at 24 hours,  
11.48 msec (n=12; 5.61-17.34, p<0.0001).

Both nt-probnp and qtcL returned to baseline before the start 
of the next course and a similar pattern was observed during each 
course. 

nt-probnp and qtcL may be useful markers for course- 
to-course evaluation of anthracycline-induced cardiotoxicity. 
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Eligible for study participation were patients who had previously 
(within six months) completed at least 3 cycles of anthracycline-
containing chemotherapy (n=14) and patients who were 
anthracycline-naïve and who were scheduled to receive 
doxorubicin (dxr)-containing chemotherapy (n=12). Seven 
patients in this last group also completed at least 3 cycles and 
were available for follow-up assessments; thus a total population 
of 21 patients completed at least 3 courses ant-chemotherapy.  
Of the anthracycline-naive group the majority (n=9) received 
dxr combined with cyclophosphamide for breast cancer. Two 
patients were treated with dxr and cisplatin for a carcinoma of 
the endometrium and osteosarcoma respectively and one patient 
received dxr in combination with vincristine, etoposide and 
ifosfamide for an Ewing sarcoma. The median number of courses 
of this subpopulation was 4; four patients received more courses, 
namely 5, 6 and 8 courses respectively. 

Patients and volunteers with known cardiac abnormalities, 
e.g. symptoms of angina pectoris, myocardial infarction or other 
myocardial abnormalities, or receiving other drugs with a known 
or suspected cardiotoxic potential and patients with clinically 
significant abnormalities, other than those related to their 
malignancy, were excluded from the study. Subjects did not use 
any qt-prolonging agents, except for 5-ht3-receptorantagonists 
for the prevention of nausea. Especially patients with an impaired 
renal function, haemoglobin level below 5 mmol/L or other 
clinically significant laboratory abnormalities other than those 
possibly related to their disease were excluded. A summary of the 
demographics of the patients and the volunteers is given in table 1.

The Medical Ethics Committee of Leiden University Medical 
Center (lumc) approved the protocol for this observational study. 
All patients were included after giving written informed consent to 
participate.

Study outline

For each patient assessment consisted of blood sampling and ecg-
recording within 6 months after completion of the chemotherapy. 
In the subpopulation of anthracycline-naïve patients (n=12) 

Animal studies have shown that anthracycline-induced apoptosis 
can occur already after a single dose.(7-9) This is line with the find-
ing in humans that even at low cumulative doses cardiotoxicity 
have been reported.(4) If this could be measured and confirmed 
in humans, it might be possible to detect anthracycline-induced 
cardiotoxicity in an early stage. Unfortunately, the assessment of 
apoptosis itself in humans is difficult, but it can be hypothesised 
that the cell loss in the heart may be detected indirectly. It is con-
ceivable that cardiac damage results in leakage of cardiac enzymes 
into the circulation, conduction disturbances and that the loss of 
function will be compensated by autocrine cardiac mechanisms. 
Indeed, it has been reported that elevated concentrations of tropo-
nin, prolongation of qt-interval and increased levels of natriuretic 
peptides are associated with anthracycline-induced cardiotoxicity 
after completion of chemotherapy.(10-13) However, little informa-
tion is available for the course-to-course effects of anthracyclines 
on these markers and thus they are not used to assess the early 
effects of anthracyclines on the heart. Additionally, the evaluation 
of interventions or treatments designed to prevent the damage 
requires a robust early and preferably quantitative marker of the 
damage. Hence, there is a need for biomarkers that can be used  
to detect early anthracycline-induced cardiotoxicity. Therefore a 
study was performed to evaluate non-invasive markers of anthra-
cycline-induced cardiotoxicity, with emphasis on course-to-course 
variation during 4 subsequent chemotherapy courses. 

materials and methods
Study population

The study was carried out in 26 patients with various malignancies 
who received dxr as chemotherapy, in combination with other 
chemotherapeutics (etoposide, vincristine, ifosfamide, actino my-
ci ne, docetaxel, cyclophosphamide, methotrexate, 5-flurouracil, 
cisplatin) and a group of healthy controls. One patient received 
epirubicin; for this patient the epirubicin dose was converted to 
the equivalent dxr-dose with the commonly used conversion 
factor of 0.5.(14;15)
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concentrations were measured using routine methodology at the 
central laboratories for clinical chemistry of lumc.

Renal function

Glomerular filtration rate was estimated using the mdrd formula: 
gfrestimate(mL/min)= 32788 x creatinine (µmol/L)-1,154 x age-0,203 x 
constant (1 for males, 0.742 for females).(17)

ecg recordings and analysis

For each patient a 5-minute ecg recording was made using the 
CardioPerfect device (Welch Allyn, Delft, The Netherlands). Heart 
rate (hr) and qt-interval were measured using the software 
supplied with the device. Care was taken to optimally assess the 
duration of the qt-interval as it has been reported that in 10-15% 
of cases ecg’s fiducial points (e.g. P-onset, qrs-onset and end 
of T-wave) are not measured correctly by automated computer 
programs. Therefore the ecg recordings were additionally analysed 
after fiducial segment averaging (fsa) to obtain heart rate and 
qt-interval. This analysis was done using Intraval (Advanced 
Medical Systems, Maasdam, the Netherlands).(18) 

For both analyses correction of the qt-interval for heart rate was 
done using Bazett’s formula (qtcB= qt/√ (rr)) and using the linear 
correction method according to Framingham (qtcL= qt + 0.154 * 
(1 – rr)).

Statistics

Data from all patients were compared to the data obtained in 
the group of controls. The analysis of variance was conducted 
with factors group and gender and bmi and age as covariate, 
contrasts between the two groups were calculated along with 95% 
confidence intervals and least square mean estimates.

Data from the subpopulation of anthracycline-naïve 
patients were analysed for changes occurring during the course 

measurements were made at each chemotherapy course. For 
comparability only data from the first 4 courses were used in 
the analysis. At each of these assessments blood sampling and 
ecg recording were done before (t=0), at completion of the 
chemotherapy infusion (t=4) and at 24 hours (t=24) after the drug 
administration. For the controls a single assessment was done.

Medication

All chemotherapy was prepared by the pharmacy of Leiden 
University Medical Center according to the applicable guidelines. 
The median total volume load for the anthracycline-naïve 
subpopulation during the courses was 250ml over 2 hours. 

Sample handling and assays

Blood samples were centrifuged immediately after collection and 
serum/plasma was stored at –40° until analysis. The samples were 
analysed for cardiac troponin T (cTnT), the mass concentration 
of creatine kinase-mb (ck-mb mass), atrial natriuretic peptide 
(anp) and the N-terminal propeptide of B-type natriuretic 
peptide (nt-probnp). Each individual assay was performed 
batchwise to avoid interassay and interindividual variability using 
automated and validated assays at the Central Laboratories 
for Clinical Chemistry of lumc. The concentrations of cTnT and 
nt-probnp in serum were determined using an automated 
electrochemiluminescence immunometric assay on a Modular 
E170 Immunoanalyser (eclia, Roche Diagnostics, Mannheim 
Germany). Lower limits of detection and cv’s were 0.01 ng/ml and 
2.6%-5.6% for cTnT and 5 ng/L and 2.3%-3.2% for nt-probnp. 
ck-mb (mass) was analysed in serum using an automated 
analyser IMx with the kit provided by the manufacturer (Abbott 
Diagnostics, Illinois, usa; detection limit 0.7 mg/L). Concentration 
of anp was determined using an immunoextraction (ria) with 
a C-terminal-specific antiserum (Incstar, Stillwater, mn, usa; 
lower limit of detection 0.1 pmol/L, cv: 6.8%-8.9%) as previously 
described.(16) In addition haemoglobin, electrolytes and creatinine 



3736 anthracycline-induced cardiotoxicity, a pathophysiology based approach for early detection and protective strategies chapter 2 evaluation of biomarkers for cardiotoxicity of anthracycline-based chemotherapy36 37

increment was observed (figure 1). Similar 2-3 fold increases were 
found after the 2nd, 3rd and 4th course of dxr-therapy. nt-probnp 
levels had returned to baseline before the start of each subsequent 
dxr course. ck-mb and anp showed no differences between the 
groups, although there was a trend towards an increased anp in 
the group of patients who already completed chemotherapy (n=21) 
(table 2). Renal function (estimated using the mdrd formula) was 
stable during the 4 courses and none of the subjects experienced 
clinical significant electrolyte abnormalities during the courses.

Anthracycline-naïve patients had higher anp and nt-probnp 
than the healthy controls (n=14) by 140.8% (n=12; 19.4%-385.6%, 
p<0.02), 113.1% (n=12; 8.0%-320.1%, p<0.04) respectively.

cTnT concentrations were below the limit of detection in most 
cases and not further analysed for this reason.

In additional analyses the percentage change from baseline was 
calculated for all courses together (table 3). Rises of 238% (n=12; 
149-358%, p<0.0001), 44% (n=12; 4-101%, p<0.04), 26% (n=12; 
4-52%, p<0.02) for nt-probnp, anp and ck-mb were found at 24 
hours. There was no correlation between ck-mb on one hand and 
anp and nt-probnp. 

ecg 

No differences in hr and (corrected) qt-time could be observed 
when the patients who had completed the chemotherapy (n=21) 
were compared with the healthy volunteers (n=14) (table 2). 
However there was a trend to a slightly prolonged qtc, corrected 
according to Bazett. 

During each chemotherapy course (corrected) qt-time was 
prolonged immediately after completion of a course and remained 
so at 24 hours after the dxr-course. As an example: during the 
first course qtc (using a linear correction method) increased by 
9.56 msec (n=12; 3.85-15.27, p = <0.001) at completion and was 
increased by 11.48 msec (n=12; 5.61-17.34, p = < 0.0001) at 24 
hours. Similar prolongations were observed during the subsequent 
courses. Heart rate did not change during the courses (figure 2). In 
the additional ecg-analyses using fsa, similar results were found.

(measurements at t = 0, 4 and 24) and whether there was a 
difference between courses. Two analyses were performed (1) 
analysis of variance with (within subject) factors time (0, 4 and 24), 
course and time by course using the data in original measurement 
units and (2) analysis of variance on change from baseline with 
baseline (t=0) as covariate, with (within subject) factors time (4 
and 24), course and time by course. Least square means were 
calculated for the different course/time point combinations along 
with 95% confidence intervals. 

In order to quantify the overall (average) time effect, the average 
change from baseline averaged over the 4 courses for the t=4 
and t=24 time point with 95% confidence interval was calculated 
within the anova model.

All parameters, except for the ecg measurements, were log 
transformed prior to analysis to realize a normal distribution 
of the data and meet the requirements for anova. In case of 
log transformation results were back-transformed resulting in 
geometric means and geometric mean ratios (for the contrasts 
and change from baseline). Geometric mean ratios were 
further translated into percentage change along with their 95% 
confidence intervals. Correlation analysis was performed on 
several biomarkers using regression analysis. All calculations were 
performed using sas V9.1.2 (sas Institute, Inc, Cary, nc, usa).

results
Biochemical markers 

Patients who completed chemotherapy had 277% (n=21; 95% CI: 
86%-661%, p<0.001) higher nt-probnp levels in comparison to 
healthy volunteers (n=14). 
For the subpopulation of patients who were also followed during 
chemotherapy it was first investigated whether difference in 
volume loading resulted in different nt-probnp responses. As this 
was not the case the data are given for the entire group. In these 
anthracycline-naïve patients, the estimated increase in nt-probnp 
was 269% (n=12; 167-409%, p<0.0001) at 24 hour after the first 
dxr-course. Directly after completion of the dxr-infusion no 
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that the increases in nt-probnp are (partly) caused by volume 
loading, this is highly unlikely as the infused volumes were low.

Additionally, the increase in nt-probnp was transient as levels 
had returned to baseline at the subsequent course. This temporal 
relationship suggests that the initial effects of dxr on the heart 
are at least partly reversible during its first phases or compensated 
for by other mechanisms. This is plausible as animal studies 
indicated that the number of apoptotic cardiomyocytes after dxr 
show a biphasic pattern.(8) It is also in keeping with the notion 
that in clinical practice overt anthracycline-induced cardiotoxicity 
develops after repeated exposure and failure of compensatory 
mechanisms.(3)

When all courses were taken together, an increase in atrial 
natriuretic peptide (anp) and ck-mb occurred after dxr. This 
effect could not be demonstrated for each individual patient-
course combination, most likely because the increase in anp 
varied between individuals and the study population was small. 
Furthermore cTnT level stayed below the detection limit in most 
cases. Both cTnT and ck-mb are widely used to assess myocardial 
injury in different clinical conditions.(25) There are conflicting 
data in the literature with regard to cTnT.(12;13;26-28) A possible 
explanation for this discrepancy may be that many of the studies 
that failed to show an effect were small. 

A surprising finding was that nt-probnp and anp were higher 
in the group of patients prior to anthracycline-therapy when 
compared to healthy volunteers. Missov et al. reported comparable 
results for cardiac Troponin I in patients with hematologic 
malignancies prior to anthracycline-therapy.(29) They suggested 
that patients with malignancies could experience some 
myocardial wall stress because of increased catecholamine release 
and an elevated sympathetic drive associated with anaemia and 
reflex tachycardia. However, our patients had normal haemoglobin 
concentrations, were normotensive, and had a normal heart rate, 
making this explanation for our population unlikely. 

We also found significant prolongations of the qt-interval 
immediately after and at 24 hours after each chemotherapy cycle. 
As it has been shown that in 10-15% of cases ecg’s fiducial points 
(e.g. P-onset, qrs-onset and end of T-wave) are not measured 
correctly by automated computer programs, the analysis of 

discussion

In the present study several markers that may be indicative for 
cardiac damage after dxr administration were investigated. 
The most important findings of this study are the observed 
change in nt-probnp and prolonged qtc-intervals. This study 
indicates that at 24 hours after each course of anthracycline 
chemotherapy as well as after completion of a full chemotherapy 
regimen, significant increases in serum nt-probnp are observed. 
Furthermore, the (corrected) qt-interval was prolonged with each 
course (course-to-course prolongation).

nt-probnp is cleaved from probnp when it is converted into 
active bnp upon secretion. It is secreted equimolarly with bnp 
by the ventricle wall mainly in response to wall stretch and its 
secretion may be enhanced by catecholamine’s, angiotensin 
ii, endothelin and hypoxia.(19) nt-probnp is a well-established 
marker for congestive heart failure.(20) Elevated levels of 
nt-probnp (and bnp) are most notably associated with chf, 
but also with other cardiac conditions.(21) It is also known that 
concomitant kidney failure results in more pronounced elevations 
of nt-probnp, especially in patients with an ejection fraction below 
35%.(22;23) As all included patients had a stable renal function 
during the study period, this could not explain the elevations of 
nt-probnp in our study.

Elevation of concentrations of natriuretic peptides associated 
with previous exposure to anthracyclines has been described 
before, but this is mostly reported after completion of 
chemotherapy.(10;11;24) An important additional finding of this 
study is that nt-probnp is elevated relatively rapidly after exposure 
to anthracyclines. This effect was present for each individual 
subject, during each subsequent chemotherapy cycle. Therefore, 
we assume that dxr causes sufficient myocardial wall stress or 
neurohumoral responses on catecholamines or angiotensin to 
result in acutely elevated concentrations of nt-probnp. This effect 
takes some time to develop as the nt-probnp concentrations were 
unchanged immediately after the courses (t=4 hrs). However, 
elevated concentrations were invariably found in each patient at 
the 24 hours’ time point. Although it cannot totally be excluded 
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qt-intervals was performed using two methods which basically 
showed identical results.(18) The mechanism for the prolonged 
repolarisation of the heart after dxr-administration is unclear. 
Hypothetically, it may be a direct effect of dxr on cardiac  
repolarisation or the outcome of the loss of cardiomyocytes.  
The first explanation is supported by the observation that dxr  
is associated with acute arrhythmias and sudden cardiac death; 
however, there are no reports of dxr being a qt-prolonging drug. 
Although it is true that 5-ht3 receptor antagonists, which were 
used for the prevention of nausea, can prolong the qt-interval. 
However, qt-prolongations are present only very shortly after 
administration (up to 20 min) and qt-intervals even decline 
thereafter.(30) Therefore 5-ht3 receptor antagonists cannot be 
responsible for the changes in qt-interval we observed at 4 and 24 
hours after the chemotherapy. The second explanation which links 
qt-interval prolongation to myocardial cell death may be more 
plausible. Whatever the cause of the qt-interval prolongation, it is 
certain that prolonged qt-intervals are linked to increased mortal-
ity and a variety of cardiac disorders, including heart failure.(31) 

Although our exploratory study may have identified promising 
markers to assess the course-to-course effects of doxorubicin on 
the heart, it is important to also stress the limitations of this study. 
Obviously, the findings reported here should not be considered 
synonymous with anthracycline-induced cardiotoxicity, because 
no information is available to relate our findings to a measure of 
left ventricular function. However, it is unlikely that during the 
observation period of this study signs of ventricular dysfunction 
would have been detected as it is known that for the majority 
of the patients this develops over a longer period. Secondly, the 
patients included in this study received different dosing regimens 
and cytostatic drug combinations, which may have influenced 
the findings in this small cohort of patients. At present there is no 
indication that this occurred, but our group was probably too small 
to find such differences would they have been present. 

In conclusion, the data indicate that nt-probnp and the 
qt-interval are sensitive markers for the early detection of the 
course-to-course cardiac effects of dxr. Further research is 
needed to prospectively establish how the early changes in these 
markers relate to left ventricular dysfunction.
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Table 1 Subject characteristics and cumulative doxorubicin dose

 

Patients Controls

Completed >3 course ant-chemotherapy ant-naive

(n=21) (n=12) (n=14)

Age (yrs) 46 ± 15 48 ± 13 46 ± 14

Gender (F/M) 12/9 10/2 8/6

bmi (kg/m2) 22.9 ± 2.7 25.3 ± 2.1 23.0 ± 2.1

Cumulative doxorubicin dose (mg) 520 (270) 440 (138) na

Estimated Glomerular Filtration Rate (mL/min) 84.5 ± 26.4 86.2 ± 21.2 na

Haemoglobin(µmol/L) 6.9 ± 1.1 7.8 ± 0.8 na

 
bmi, age and the estimated glomerular filtration rate (using the mdrd formula) are given as mean ± sd.  
The cumulative dose is given as median with the interquartile range. ant: anthracycline., bmi: Body Mass Index.

 
Table 2 (Bio)markers and the differences between patients receiving at least three courses  
of anthracycline-containing chemotherapy and healthy controls

Variable Controls 
(n=14)

Patients
(n=21)

Patients 
vs controls

95%-confidence 
interval

p-value

lower upper

anp (pmol/L) 11.3 20.7 82.9% -0.2% 235.0% 0.05

ck-mb mass (mg/L) 1.1 0.9 -15.7% -48.1% 37.0% 0.48

nt-probnp (ng/L) 39.5 148.9 276.6% 86.3% 661.4% <0.001

hr 67 71  4.20 -1.95 10.36 0.17

qt (msec) 400 400 -0.31 -18.1 17.47 0.97

qtc Bazett (msec) 420 433 13.05 -0.36 26.46 0.06

qtc linear (msec) 414 422  8.22 -2.68 19.13 0.13

 
Average values of biochemical markers and ecg parameters and contrasts between anthracycline-chemotherapy 
completers and controls, including 95%-confidence intervals and P-values (for the biochemical markers contrasts  
are represented in percentage difference, for ecg parameters results are shown in absolute differences).
anp: Atrial Natriuretic Peptide, ck-mb: Creatine Kinase Isoenzyme mb, nt-probnp: N-terminal pro Brain Natriuretic 
Peptide, hr: heartrate, qt: qt-interval, qtc Bazett: qt interval corrected according to Bazett, qtc linear: qt interval 
corrected according to Framingham’s linear correction method. Averages are estimated, as mixed model analysis  
was used to correct for predose and missing values. 
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Figure 2 Heart rate (beats per minute) and qt-intervals (milliseconds) change from baseline with  
95% CI error bars. A. Heart rate, B. qt-interval, C. qtc-interval (Bazett), D. qtc-interval (linear).

Table 3 Summary table change from baseline (average of all 4 courses)

 

4h 24h

change
95%-confidence interval

p-value change
95%-confidence interval

p-value
lower upper lower upper

Atrial natriuretic peptide 38.1% -0.3% 91.3% 0.05 44.3% 3.6% 101.2% 0.03

ck-mb mass (mg/L) -2.2% -18.6% 17.6% 0.80 26.1% 4.4% 52.2% 0.02

nt-probnp (ng/L) 18.0% -14.6% 63.0% 0.30 237.9% 149.4% 357.8% <0.001

hr (bpm) -0.29 -3.37 2.79 0.85 1.46 -1.67 4.60 0.34

qt (msec) 10.95 3.91 17.98 0.004 10.96 3.77 18.15 0.005

qtc Bazett (msec) 10.79 4.70 16.88 0.002 15.82 9.66 21.97 <0.001

qtc linear (msec) 10.04 5.39 14.69 <0.001 13.13 8.40 17.85 <0.001

Average change (for all four courses) from baseline, 95%-confidence intervals and P-values (for the biochemical 
markers results represent percentage change, for ecg parameters results are shown in absolute changes).
anp: Atrial Natriuretic Peptide, ck-mb: Creatine Kinase Isoenzyme mb, nt-probnp: N-terminal pro Brain Natriuretic 
Peptide, hr: heartrate, qt: qt-interval, qtc Bazett: qt interval corrected according to Bazett, qtc linear: qt interval 
corrected according to Framingham’s linear correction method.
Averages are estimated, as mixed model analysis was used to correct for predose and missing values.

Figure 1 nt-probnp, mean serum concentration (standard deviation) at baseline, 4 and 24 hours  
in 12 patients who were sampled during each course of anthracycline-containing chemotherapy.
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chapter 3 
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due to anthracycline-based 
chemotherapy in early stage, 
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introduction

Anthracyclines are used in the treatment of several cancers 
because of their ability to inhibit topoisomerase ii.(1) They are  
also known to facilitate the formation of free radicals in the 
presence of (non-protein bound) iron, which are supposed to be 
responsible for the (cardio)toxic side effects of anthracyclines.(1-4) 

There seems to be consensus that under physiological 
conditions non-protein bound iron (npbi, or sometimes referred 
to as non-transferrin bound iron) is not present extracellularly 
as iron is tightly bound to transport- and storage proteins, such 
as transferrin (serum) and ferritin (intracellular).(5) However, in 
case of iron overload, which may occur in hemochromatosis, 
dialysis, hemolytic anemia’s and after certain (mostly high-dose) 
chemotherapy regimens the presence of npbi has been reported. 
(6-11) This suggests that the binding capacity of the transport- 
and storage proteins does not suffice under these pathological 
conditions. npbi in its ferrous form (Fe2+) is highly reactive and 
capable to catalyze the Haber-Weiss reaction in which hydroxyl 
radicals are formed, resulting in lipid peroxidation, dna damage, 
and eventually apoptosis.(5,12-14) It can be envisaged that 
in the case of anthracycline-induced cardiotoxicity, npbi can 
even be more harmful as the heart has relatively low levels of 
antioxidants and (excess) iron is able to form a stable complex with 
doxorubicin (dox), which easily undergoes self-reduction to form 
a semiquinone free radical of dox.(3;12) In addition, in vitro studies 
have shown that anthracyclines deregulate intra-cellular iron 
metabolism and iron trafficking pathways, thereby aggravating the 
effects of (intracellular) iron overload.(13;14) 

Although iron metabolism has been investigated in cancer 
patients receiving high doses of chemotherapy, effects in 
(surgically tumor-free) cancer patients receiving lower doses of 
anthracyclines have not been studied. Therefore, we performed 
a study to evaluate the effects of the combination of the 
anthracycline doxorubicin and cyclophosphamide (ac) on iron 
metabolism in female breast cancer patients who underwent 
adjuvant treatment with ac chemotherapy for early stage breast 
cancer.

abstract

introduction  Iron-catalyzed free radicals seem to play a role 
in anthracycline-induced cardiotoxicity and may lead to organ 
damage and dysfunction. The aim of this study was to evaluate 
iron metabolism in breast cancer patients who received adjuvant 
doxorubicin/cyclophosphamide treatment (ac).

patients and methods  We included 39 female breast-cancer 
patients (median age 47), scheduled to receive intravenous 
ac-chemo therapy. Iron status [total iron, transferrin, ferritin,  
latent iron binding capacity (libc) and non-protein bound iron 
(npbi)] was studied during the first course of chemotherapy. 
Samples were taken prior to, immediately and 2:30 hrs after 
the doxorubicin infusion (total iron, libc and npbi) and at 24 
hrs after completion of the chemotherapy course. Additional 
measurements (at baseline and 24 hrs) were done during the 
subsequent chemotherapy courses and at 1 and 4 months after 
completion of the entire chemotherapy treatment. 

results  Immediately after the first administration of doxo-
rubicin npbi increased by 65.7% (95%CI: 23.5 to 122.3%) and 
returned to baseline at 24 hours. In parallel, total iron increased 
with 187.1% (95%CI: 153.7 to 225.0%) at 24 hours, accompanied 
by an almost total saturation of transferrin. Ferritin levels 
increased gradually over baseline, and were 79.1% (95%CI: 37.1  
to 33.9%) higher at baseline of the fifth course.

discussion and conclusion  This study shows that a single 
intravenous dose of doxorubicin immediately results in an increase 
of highly toxic npbi in early stage breast cancer patients and this 
suggest that that npbi may be, at least in part, responsible for the 
toxicity caused by doxorubicin.
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1 month after chemotherapy blood was sampled for iron, 
libc, non-protein bound iron npbi, ferritin and transferrin. 
At approximately 4 months after chemotherapy ferritin and 
hemoglobin were determined. 

laboratory procedures
All assays were performed at the Central Laboratories of Leiden 
University Medical Center (lumc).

Ferritin, transferrin, libc and total iron 

Assays for ferritin, transferrin, libc and total iron were performed 
using routine methodology. Lower limits of detection (inter- and 
intra-assay variability between brackets) were 0.5 µg/L (<5.35%), 
13 mg/L (<1.2%), 4.2 µmol/L (<4.3%) and 0.24 µmol/L (<2.8%)  
for ferritin, transferrin, libc and total iron respectively. 

npbi

npbi concentrations were measured using a colorimetric method 
as described previously.(15) Briefly, the serum samples were mixed 
9:1 with a 40 mM ntA containing buffer of 5 mM Tris-hcl pH 6.5. 
After filtration and centrifugation thioglycolic acid sodium salt 
(3 mM) was added. Measurements were done using a Reader 
Spectra Max 250 plate reader at 537 nm. The (pooled) sera used for 
repeated experiments and patient sera were stored at -80 ºC until 
the measurements (no influence of storage on the npbi results 
were found). The lower limit of detection (inter- and intra-assay 
variability between brackets) was 0.01 µmol/L (<9.2%). 

Liver chemistry and hemoglobin 

Assays for lactate dehydrogenase (ldh), bilirubin, alanine 
aminotransferase (alt), aspartate aminotransferase (ast) and 
hemoglobin were measured using routine methodology. 

methods
Patient population and study protocol

The patient population consisted of early-stage female breast 
cancer patients who underwent adjuvant treatment with a 
combination of doxorubicin (dox) and cyclophosphamide 
chemotherapy. Main exclusion criteria included prior or 
concomitant use of cardiotoxic medication, distant metastases, 
a history of other malignant disease, a life expectancy of less 
than one year, pre-existing cardiovascular diseases and elevated 
transaminases above 3 times the upper limit of normal. 

Eligible patients were scheduled for four or five (depending on 
the institutional guideline) three-weekly courses of intravenous 
(iv) doxorubicin (60mg/m² over 15 min) and cyclophosphamide 
(600 mg/m² over 15 min).

The medical ethical committee of Leiden University Medical 
Center (lumc) approved the study protocol before inclusion of the 
first subject. All subjects gave written informed consent before 
participation.

Study procedures and measurements

Before the first course of chemotherapy concentrations of total  
iron, latent iron binding capacity (libc), non-protein bound  
iron (npbi), ferritin and transferrin were determined at baseline 
(t=0). After the patients had received anti-emetic therapy, the  
iv infusion of doxorubicin was started. Immediately after the 
doxorubicin infusion was completed (t= 0:15 hours) the first  
sample was obtained for determination of total iron, libc and  
npbi, followed by the cyclophosphamide infusion. At t=2:30 hours 
after the doxorubicin administration a second sample (total iron, 
libc and npbi) was obtained. The following morning (t=24:00  
hours) blood was sampled for determination of iron, latent iron 
binding capacity (libc), non-protein bound iron (npbi), ferritin and 
transferrin. Baseline and 24 hour measurements were repeated  
during each subsequent chemotherapy course. At approximately  
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change during the first 2:30 hours post-dose but declined with 
-75.6% (-82.6 to -65.8%) at 24 hours following chemotherapy. 
Ferritin was increased with 17.2% (8.3 to 26.9%) at 24 hour after 
ac administration. Hemoglobin and transferrin did not change 
significantly during the first course.

Additional analyses showed that the changes (for all 
parameters) at 24 hours were similar during all subsequent 
chemotherapy courses. 

Long-term effects of chemotherapy on iron metabolism

Ferritin increased by 79.1% (37.1 to 133.9%) during the courses 
(difference between baseline course 5 and 1) and decreased during 
the follow up period (table 2, figure 2). 

libc and transferrin changed minimally over course baseline. 
npbi did not change significantly over baseline during the courses.

Hemoglobin level declined during each subsequent 
chemotherapy course, difference (percentage change, 
95%-confidence interval between brackets) between the baseline 
values of course 5 and 1 was -10.2% (-12.9 to -7.4%). After a full 
chemotherapy cycle hemoglobin levels increased again.(table 2, 
figure 2). 

Liver function and haemolysis parameters

During the first course bilirubin increased from 6.8 U/L baseline to 
9.9 U/L at 24 hours, while ldh declined from 359 U/L to 297 U/L 
and concentrations of ast and alt did not change markedly during 
the courses and concentrations remained within the normal 
limits.

discussion
During the first course of doxorubicin in early breast cancer 
patients an increase in npbi level occurred almost immediately 
after doxorubicin infusion and at 24 hours total iron concentration 

statistical analyses 
To assess the changes within the first course (course 1) measure-
ments at baseline, 0:15, 2:30 (only total iron, libc, npbi) and 24:00 
were analyzed (after log-transformation) using a mixed model 
analysis of variance (sas proc mixed) with visit (occasion) as repeated 
factor within subject and time as fixed effects, and subject as random 
effect. To assess long-term treatment effects the course baseline and 
follow up measurements of all variables were analyzed the same way. 
Correction for multiple comparisons was not done because of the 
exploratory nature of the study. All statistical analyses were performed 
using sas for windows V9.1.2 (sas Institute, Inc., Cary, nc, usa).

results
Baseline characteristics

We included 39 patients (23 were scheduled for 4 courses and 16 for 
5 courses) with a median age of 49 years (range 30-66 years), mean 
bmi 25.3 kg/m2 (sd 4.4) and a mean cumulative doxorubicin dose 255 
mg/m2 (sd 58) (table 1). 

Iron metabolism during the first ac course 

At baseline, 32 of the 37 (maximal value: 1.26 µmol/L) obtained 
samples were positive for npbi, directly and at 2:30 hours after 
doxorubicin infusion all samples turned positive for npbi, ranges  
were 0.14 - 1.51 µmol/L and 0.09 - 1.45 µmol/L respectively. At 24 
hours following the chemotherapy course 26 of the 35 (maximal 
value: 1.18 µmol/L) obtained samples were positive for npbi. 

Mean npbi concentration increased (percentage change, 95% 
confidence interval between brackets) directly after the doxorubicin 
infusion with 65.7% (23.5 to 122.3%). At 2:30 hours post-dose the 
increase was 47.3% (14.2 to 90.1%) and at 24 hours no differences 
were observed (table 2, figure 1). 

After a small initial decline, iron increased with 187% (154 to 
225%) at 24 hours after the first chemotherapy course. libc did not 
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negligible, and bilirubin, transaminases and ldh did not change 
considerably during the courses. Although erythropoiesis is 
affected by chemotherapy, this does not seem to be the cause 
of the iron peaks as these occurred almost immediately after ac 
administration, while the effects on erythrocytes occurred later 
and no signs of hemolysis were present. We hypothesize that 
ac-chemotherapy provoke diffuse (low-grade) injury to several 
tissues, such as the gastro-intestinal mucosa, splenic cells, etc., 
which together cause sufficient cellular damage to provoke the 
observed iron peaks. 

We also found small increases of ferritin within 24 hours after 
each course which seems to be cumulative and results in a gradual 
increase over the entire treatment period. The iron-storage protein 
ferritin, which is abundantly present intracellularly and in small 
amounts in serum, is associated with total body iron-store in 
healthy individuals. Elevated ferritin levels have been reported to 
result from increased synthesis in response to inflammation and 
because of cellular damage and/or a nonspecific response of the 
reticuloendothelial system to an increased tumor load in cancer 
patients.(19-24) Also, it has been suggested that increased ferritin 
levels could protect against tumor proliferation.(21) However, 
a response to tumor proliferation is unlikely in our population 
of early stage breast cancer patients. We cannot exclude that 
the rise is caused by an acute phase response to a (low-grade) 
inflammatory response to the administered chemotherapy, but 
the absence of increases in hscrp (results not shown) render this 
explanation less likely. Another possibility is that (at least) some 
of the observed changes reflect a direct effect of doxorubicin on 
iron metabolism or a protective response to the chemotherapy-
induced iron overload. This explanation would be in keeping with 
the notion that pre-clinical studies have shown that doxorubicin 
has marked effects on intra-cellular iron homeostasis by 
increasing accumulation of iron in ferritin, inducing increased 
expression of ferritin and inhibiting release of iron from ferritin.(4)

A potential drawback of our study is that we attribute the 
changes to effects of ac-chemotherapy as we (for obvious 
reasons) did not include a placebo control. However, we consider 
it unlikely that the changes that we observed can be attributed 
to spontaneous time (circadian) effects. Also, it is unlikely that 

almost tripled, leading to a complete saturation of transferrin.  
It was also shown that within 24 hours after administration small 
rises in serum ferritin were observed and that ferritin increased 
gradually over baseline during the ac courses.

An intriguing finding of this study was that almost directly after 
dox infusion npbi increases, indicating that even relatively low 
doses of dox as employed in the adjuvant setting are potentially 
harmful. The observation that the peaks are lower compared to 
previous studies could relate to the fact that we used an optimized 
spectrophotometric method, which allowed us to determine free 
iron concentrations more realistically.(15) However, it cannot be 
ruled out that the increase in npbi is dose-dependent and that 
the dose of doxorubicin that we studied did not provoke a similar 
iron overload as in patients receiving high dose chemotherapy. 
The fact that in other studies npbi was detectable for a longer 
period of time also supports this hypothesis.(8-10) The current 
opinion that npbi is not detectable in (healthy) subjects without 
apparent iron overload can be questioned based on the data in 
this study, as we found npbi levels prior to chemotherapy in a 
majority of patients. This is in keeping with other data indicating 
that under physiological conditions npbi can be present, although 
it is important to note that in these papers different assays were 
used.(8;15) Obviously, our population consisted of patients and it 
cannot be excluded that the presence of npbi before dosing with 
anthracyclines reflects the disease state, but we consider this 
unlikely in view of the fact that they were treated curatively and 
did not have macroscopic residual tumor. Thus, it seems that also 
under conditions without apparent iron overload circulating npbi 
can be present, although its role is unclear. 

The observation that iron concentrations increase shortly 
after chemotherapy in patients who are tumor free may help 
to further understand the possible source of iron that is not 
immediately apparent from previous experiments. Previous 
experiments have suggested that the possible sources of iron 
includes destructed tumor cells, impaired erythropoiesis, damage 
to the gastrointestinal mucosa, hemolysis and liver injury. (6;8-
11;16-18)However, in our surgically tumor free population, tumor 
lysis, hepatic injury, and also hemolysis does not seem a major 
contributor for the observed iron bursts, as tumor mass was 
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cyclophosphamide contributed greatly to the increased release 
of npbi, as the maximal increase in npbi was already present 
immediately after completion of the doxorubicin infusion and 
before the administration of cyclophosphamide.

In summary, we found that a single iv dose of doxorubicin 
immediately results in occurrence of highly toxic npbi in the 
circulation. This could help to further understand the in vivo 
mechanism of doxorubicin toxicity and may produce leads into 
protective agents for this.
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Table 3 Percentage change from baseline of course 1 (95% confidence interval) for hemoglobin, 
ferritin and transferring for each chemotherapy course and at follow up.

Hemoglobin Ferritin Transferrin

Course 2
-4.4%
(-6.6 to -2.1)

19.9
(-1.2 to 45.4)

-0.8
(-15.1 to 15.9)

Course 3
-7.8
(-10.5 to -4.9)

46.9
(14.4 to 88.7)

-3.8
(-18.2 to 13.2)

Course 4
-8.3
(-10.5 to -6.0)

59.3
(29.2 to 96.3)

2.0
-13.3 to 19.9)

Course 5
-10.2
(-12.9 to -7.4)

79.1
(37.1 to 133.9)

0.2
(-14.7 to 17.8)

Follow up 1 month
-4.4
(-6.7 to -2.0)

68.6
(37.9 to 106.1)

14.9
(-2.0 to 34.8)

Follow up 4 months
6.6
(4.1 to 9.1)

25.0
(2.6 to 52.2)

n/a

 

Table 1 Baseline characteristics

Female breast cancer patients (n = 39)

mean sd

Iron parameters 

Hemoglobin - mmol/L 7.7 0.7

Total iron - µmol/L 16.5 6.7

npbi - µmol/L 0.44 0.26 

libc - µmol/L 43.9 13.6

Ferritin - µg/L 70.7 62.7

Transferrin - g/L 2.61 0.60

Liver chemistry 

alt - U/L 24.4 24.9

ast - U/L 31.7 16.5

ldh - U/L 393 222

Bilirubin - mg/dL 7.8 4.5

Table 2 Percentage change from course baseline (95% confidence interval) for total iron, latent iron 
binding capacity (libc), non-protein bound iron (npbi), hemoglobin haemoglobin, ferritin and transferrin 
during the first chemotherapy course 

 Time post-dose 0:15 hr 2:30 hr 24 hr

Total iron -15.4
(-19.8 to -10.8)

-25.1
(-33.0 to -16.2)

187.1
(153.7 to 225.0)

libc -2.1
(-6.8 to 2.8)

3.1
(-5.0 to 11.9)

-75.6
(-82.6 to -65.8)

npbi 65.7
(23.5 to 122.3)

47.3
(14.2 to 90.1)

-10.6
(-44.7 to 44.5)

Ferritin 17.2
(8.3 to 26.9)

Transferrin 6.0
(-8.9 to 23.3)

Hemoglobin 
-2.4
(-4.2 to -0.5)
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Figure 2 Mean (standard deviation as error bars) serum concentration of hemoglobin (a), 
transferrin (b) and ferritin (c) at baseline and 24 hours after each chemotherapy course and  
during the follow-up period.

Figure 1 Mean (standard deviation as error bars) serum concentrations of non-protein bound iron (a), 
total iron (b) and latent iron binding capacity (c) during the first course. *significant p < 0.001
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chapter 4 

Increased Beat-to-Beat variation 
of the qt-interval in early-stage 
breast cancer patients treated 
with doxorubicin    

 
 

Broeyer FJ, Ritsema van Eck HJ , Mackaaij C, Kors JA, Osanto S, 
Cohen AF, Burggraaf J 
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introduction

Prolongation of the qt/qtc interval is considered a risk factor for 
the development of arrhythmias, in particular Torsade de Pointes 
(TdP). Especially, drug-induced increases in qt/qtc-interval 
duration receive substantial scrutiny and has been an important 
reason for drugs to be taken off the market. To prevent these 
withdrawals it is obligatory that (almost) all drugs before receiving 
market authorization have to be evaluated for their potential to 
prolong the qt-interval.(1)

However, despite the wide-spread use of qt/qtc-prolongation 
as marker to assess pro-arrhythmic risk, there is increasing 
evidence that its ability to predict drug-induced arrhythmogenicity 
is limited.(2) Therefore, several other markers have been 
suggested, including T-wave morphology changes, increased 
spatial dispersion of repolarisation, and elevated lability of 
repolarisation also known as decreased repolarisation reserve.(3) 

The latter can be measured using variation in T-wave 
morphology (eg T-wave alternans) and beat-to-beat qt-interval 
variations, such is the qt variability index as proposed by Berger.(4) 
Recently, another method for the assessment of short term beat-
to-beat variations (stv) based on the dimensions of a Poincaré 
plot has been suggested.(5) Indeed, increased stv was predictive 
for the occurrence of TdP in animals (5-7) and also in humans 
increased stv was noted after administration of drugs with known 
arrhythmogenic potential such as sotalol.(8)

The cardiotoxicity of anthracyclines is well known and includes 
changes in repolarization (prolongation of qt-interval), arrhyth-
mias, and congestive heart failure which develop years after 
exposure.(9) The mechanism of the arrhythmogenic potential of 
anthracyclines has never been fully explored. Recently it has been 
shown in animals that anthracyclines are able to diminish repolar-
ization reserve, but is unclear if this also occurs in humans.(10)

We hypothesized that anthracyclines also reduce repolarisation 
reserve in humans at clinically employed doses. Therefore, serial 
5-min ecg recordings obtained in female breast cancer patients 
treated with doxorubicin were analyzed for beat-to-beat qt 
variation and assessment of repolarization reserve. 

abstract

introduction  Diminished repolarization reserve is regarded 
as predictive for pro-arrhythmic events. Recently a new method 
for the evaluation of changes in qt-intervals, based on the 
dimensions of a Poincaré plot, has been developed to assess the 
repolarisation reserve. Further, it was recently discovered that 
doxorubicin, an antitumor drug with known cardiotoxic properties, 
influences cardiac repolarisation in rabbits. The aim of this study 
was to assess the effect of doxorubicin on cardiac repolarisation in 
humans using this new method.

patients and methods  In 39 patients treated with doxo-
rubicin for early-stage breast cancer, 5-minute ecg recordings 
were obtained before, at 3 and 24 hr after the first and the last 
scheduled doxorubicin infusion. All ecg recordings were analyzed 
using fiducial fragment averaging, after which beat-to-beat qt 
variability was calculated. Data are shown as means and 95% 
confidence intervals (95%CI) and compared using analysis of 
variance.

results  Mean short term qt-interval variability (stvmean) was 
1.25 msec (95%CI: 1.08-1.42) at baseline of the first course and 
increased to 1.78 msec (1.48-2.08) and 1.81 msec (1.48-2.13) at 
3 and 24 hrs after doxorubicin infusion respectively. During the 
last course a higher pre-dose stvmean of 1.72 msec (1.38-2.06) 
compared to the first course was observed. Also, the doxorubicin-
induced increases were larger; stvmean increased to 2.45 
msec (1.69-3.22) and 3.17 msec (2.35-3.99) at 3 and 24 hours 
post-administration respectively. Comparable changes in the 
normalized qtvi, as proposed by Berger, were observed. 

discussion and conclusion  We show that after doxorubicin 
infusion qt-variability increased, suggesting an effect of doxo-
rubicin on the repolarisation reserve in humans. It remains to be 
elucidated whether these effects actually relate to an increased 
susceptibility for anthracycline induced cardiac failure.
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remainder complexes until maximum correlation was attained.  
In a similar way the other trigger points were identified, after 
which a similar fine-adjustment procedure was followed. Two 
independent observers assessed whether the endT-segment 
was correctly cross-correlated, and if necessary correlation was 
manually adjusted until maximum correlation was attained. 

qt variability parameters

Poincaré plots were constructed by plotting each qt value against 
the preceding value (figure 1). Short term qt variability (stv30) was 
calculated as proposed by Thomsen, [3] from the mean distance 
orthogonal to the diagonal between the points of the Poincaré plot 
in a window of 30 consecutive qt intervals. This window is moved 
over the total length of the recording, tracking the stv value over 
the full 5 min data set. This results in the following parameters: 
mean short-term variability (stvmean) that is defined as the 
average of all stv values in the 5 minutes, the qt variability index 
over 30 consecutive qt intervals (qtvi30) as proposed by Berger, 
the average of all qtvi30 (qtvimean) values, and the normalized 
overall variability index (qtvin) over the entire 5 min recording 
period. 

Heart rate variability

Heart rate variability was assessed according to the most recent 
guidelines using validated hrv-analysis software (The Biomedical 
Signal Analysis Group, Kuopio, Finland).(12) The analyses were 
performed for the time domain and included the rr-interval 
(rr), standard deviation of the rr-interval (rrsd), the root-mean 
square of the difference of successive r-r intervals (rmssd) and 
the percentage of intervals differing more than 50 msec (nn50) 
were calculated. After Fourier transformation was done analyses 
in the frequency were performed for the very low frequency power 
(0-0.04 Hz), low frequency power (0.04-0.15 Hz), high frequency 
power (0.15-0.4 Hz) and the ratio between lf and hf were 
calculated.

methods
Patient population and study protocol

The patient population consisted of early-stage female 
breast cancer patients who underwent adjuvant treatment 
with a combination of cyclophosphamide and doxorubicin 
chemotherapy. Main exclusion criteria included pre-existing 
cardiovascular diseases, prior or concomitant use of drugs with 
known or suspected cardiotoxic effects, distant metastases, a 
history of other malignant disease, a life expectancy of less than 
one year, and elevated transaminases above 3 times the upper 
limit of normal. Eligible patients were scheduled for four or five 
(depending on the institutional guideline) three-weekly courses 
of doxorubicin 60mg/m2 and cyclophosphamide 600 mg/m2. 
Prior to every doxorubicin and cyclophosphamide administration 
all patients received anti-emetic therapy according to the 
institutional guideline. The medical ethical committee of Leiden 
University Medical Center (lumc) approved the study protocol 
before inclusion of the first subject. All subjects gave written 
informed consent before participation. 

ecg recordings and analysis

For each patient 5-minute ecg recordings (sampling rate 
600/s, without filtering) were made at baseline, and at 4 and 
24 hours after the start of the chemotherapy at the first and the 
last chemotherapy course, and 6 weeks after the last course. 
Recordings were made using the CardioPerfect device (Welch 
Allyn, Delft, The Netherlands). ecg recordings were analyzed 
for heart rate, qt-intervals and beat-to-beat qt-variability after 
fiducial segment averaging (fsa) (11) with the Intraval software 
package (Advanced Medical Systems, Maasdam, the Netherlands). 
fsa is based on the coherence of relative small segments within 
the qrs-complex from beat-to-beat. Fiducial points of each 
individual complex are first detected by the analysis software 
supplied with the ecg-recording device. The individual complexes 
were then cross-correlated in turn with the average of the 
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doxorubicin infusion respectively. The baseline stvmean value 
before the last chemotherapy course was with 1.72 msec higher 
than the baseline value before the first course (p < 0.01). During 
the last course larger increases compared to the effects after the 
first course were observed; stvmean was 2.45 msec (p <0.02) 
and 3.17 msec (p <0.0001) at 4 and 24 hours post-administration 
respectively. 

The normalized qtv was -1.73 (-1.83 to -1.63) at baseline and 
increased to -1.46 (-1.57 to -1.34) and -1.55 (-1.66 to -1.43) at  
3 and 24 hours post-chemotherapy. During the last course qtv 
was -1.47 (-1.61 to -1.34) at baseline and increased to -1.31 (-1.47  
to -1.14), -1.18 (-1.37 to -0.99) at 3 and 24 hours post-
chemotherapy respectively (figure 2).

Short term rr-variability and qt-dispersion did not change 
significantly during the courses. 

Heart rate variabilty

Mean rr-interval did not change during the courses, but we 
observed changes in autonomic nervous system mediated 
regulation of the heart rate variability (table 2). This comprised of 
changes in the parasympathetic and sympathetic activity in both 
the time and frequency domain. The change in parasympathetic 
activity consisted of changes in rmssd, nn50 and the high 
frequency component of the spectral analysis. For the sympathetic 
activity changes in rrsd and the low frequency component of 
the spectral analyses were noted. Consistent with these changes 
were the changes in lf/hf ratio, suggesting a shift in sympathetic/ 
parasympathetic balance.

Comparable changes were observed after the first and the last 
chemotherapy course. 

discussion
The main finding of the present study is that it in humans a 
combination of doxorubicin and cyclophosphamide at clinically 
relevant doses diminishes repolarization reserve. This was 

Statistics

All variables were analyzed using a mixed model analysis of 
variance with time, group and time by group as fixed factors and 
subject as random factor. The following contrasts were calculated 
within the model: for both the first and the last chemotherapy 
course the value obtained at baseline was compared to the values 
at 4 and 24 hrs after start of the chemotherapy, comparison of 
the baselines at the first and last chemotherapy course, and 
comparison of the baseline at the first course with the value 
obtained at 6 wks follow-up value. The effects were reported 
as the estimate of the difference, least square mean estimates, 
95% confidence intervals and the p-value. All calculations were 
performed using sas for windows V9.1.2 (sas Institute, Inc., Cary, 
nc, usa).

results
Baseline characteristics

Thirty-nine patients were included in this study. The median 
age of the patients was 49 years (range 30-66 years) and the 
mean bmi was 25.3 kg/m2 (sd 4.4). Twenty-three and sixteen 
patients completed the scheduled 4 or 5 courses of chemotherapy 
respectively, which translates into a mean cumulative doxorubicin 
dose of 255 mg/m2 (sd 58). 
 

qt interval and qt variability

Mean corrected (linear) qt interval was 424 msec at baseline 
and was prolonged at the 4 hrs time point by 13 msec (95%CI: 
7-19msec), this prolongation was still present 24 hrs after 
administration. During the last chemotherapy course similar 
increments were observed (table 2). 

The mean short term qt variability (stvmean) was 1.25 msec at 
baseline of the first course and increased to 1.78 msec (p<0.0001) 
and 1.81 msec (p<0.0001) at 4 and 24 hours after the start of the 
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There are several limitations in our experiment to unambi-
gu ous ly ascribe the observed effects to doxorubicin. First, 
the chemotherapy included both anthracyclines and 
cyclophosphamide rendering it theoretically possible that 
the observed effects are attributable to the administration of 
cyclophosphamide. However, we consider this unlikely as there 
is no evidence that cyclophosphamide has effects on cardiac 
conduction. Secondly, it might have been that general stress 
experienced by the patients caused by their clinical condition  
and the anticipation of treatment altered autonomic nervous 
system tone. We consider it unlikely that this causes the changes 
in repolarization reserve during the courses, as a constant  
“stress-level” can be assumed during a chemotherapy course.

Finally, our data conform with the findings after doxorubicin  
in animals.

In conclusion, we showed for the first time in humans that 
assessing beat-to-beat qt-variability in 5 min ecg recordings is 
a suitable approach to assess changes in repolarisation reserve. 
The results of the analysis suggest that doxorubicin decreases 
repolarization reserve in female breast cancer patients and 
confirms results in animals. We suggest that this method may 
possibly be suitable as a marker for anthracycline-induced 
arrhythmogenicity in humans. 

It is tempting to speculate that stv could also be of use in  
drug-development programs to identify agents capable of 
inducing pro-arrhythmic events, but this has to be investigated 
further by exploring the effects of qt-prolonging agents with  
and without known association to TdP. 

evidenced by both an increase in beat-to-beat qt-variation and 
changes in the normalized qt-variation index. The changes in 
repolarisation reserve were accompanied by a change in the heart 
rate variability.

Repolarization reserve is a measure of the ability of the 
myocardial membrane to maintain its normal repolarisation 
behavior.(13) Important contributors to a stable repolarisation are 
the normal function of the delayed rectifier potassium currents 
Ikr and Iks. Several factors that may influence the repolarization 
reserve, such as gender, electrolyte imbalances, and congestive 
heart failure have been described. Importantly, it was recently 
described that in rabbits repolarisation reserve was reduced 
after administration of doxorubicin.(10) In these experiments 
the animals became more susceptible to erythromycin-induced 
TdP. Interestingly, erythromycin blocks the rapid component of 
the delayed rectifier potassium current, Ikr. This observation is in 
keeping with clinical reports showing that patients being treated 
with anthracyclines are more susceptible to TdP after receiving  
Ikr-blocking drugs.(9;14-17)

It is already known that anthracyclines can prolong of the 
qt-interval, but the underlying mechanism is unclear.(18) We 
suggest that the decreased repolarization reserve may play a role 
in the pro-arrhythmogenic properties of anthracyclines. Also beat-
to-beat qt-variation is increased after exposure to doxorubicin, as 
shown by the increased short term variability and changes in the 
normalized qt-variation index.

The molecular or electrophysiological mechanisms underlying 
the finding are not immediately clear. Doxorubicin is not known 
to directly block Ikr/Iks channels. However, it may be possible 
that doxorubicin specific factors, including doxorubicin induced 
down-regulation of Ikr, increased interventricular and transmural 
heterogeneity by reduced cell-to-cell coupling, apoptosis of 
cardiomyocytes and the fact that the secondary alcohol metabolite 
of doxorubicin, doxorubicinol, influences several ion-pumps play 
a role.(13) It is also known that repolarisation reserve is influenced 
by the autonomic nervous system.(12;19) As we showed that both 
the parasympathetic and sympathetic activity were affected by 
the chemotherapy, altered nervous system tone could also have 
contributed to our observations. 
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Table 1 

Baseline characteristics n = 39

mean ± sd

qt variability parameters

qt (msec) 405 ± 27 

qtc (msec) 424 ± 19

qtvi -1.73 ± 0.29

stvi (msec) 1.24 ± 0.51

hrv analysis

rr (msec) 881 ± 117

rrsd (msec) 33 ± 13

rmssd (msec) 29.9 ± 15.3

nn50 (%) 11.0 ± 13.0

lf (n.u.) 53.3 ± 18.0

hf (n.u.) 46.7 ±18.0

lf / hf 1.52 ± 1.11

qtvi: qt-variation index; stvi: short term variation; qtd: qt dispersion; rr: rr-interval; rrsd: rr-interval;  
rmssd: root-mean square of the difference of successive r-r intervals; nn50: percentage of intervals differing more  
the 50 msec; lf: low frequency component of hrv-spectral analysis, normalized units; hf: high frequency component 
of hrv-spectral analysis, normalized units.

reference list

1 Guidance for Industry E14 Clinical Evaluation of 
qt/qtc Interval Prolongation and Proarrhythmic 
Potential for Non-Antiarrhythmic Drugs. 2008. 

2 Sugiyama A. Sensitive and reliable 
proarrhythmia in vivo animal models for 
predicting drug-induced torsades de pointes in 
patients with remodelled hearts. Br J Pharmacol 
2008 Jun 16.

3 Thomsen mb, Matz Jr, Volders PGA, Vos ma. 
Assessing the proarrhythmic potential of 
drugs: Current status of models and surrogate 
parameters of torsades de pointes arrhythmias. 
Pharmacology & Therapeutics 2006 
Oct;112(1):150-70.

4 Berger RD. qt variability. J Electrocardiol 
2003;36 Suppl:83-7.

5 Thomsen mb, Verduyn SC, Stengl M, Beekman 
JDM, de Pater G, van Opstal J, et al. Increased 
Short-Term Variability of Repolarization Predicts 
d-Sotalol-Induced Torsades de Pointes in Dogs. 
Circulation 2004 Oct 19;110(16):2453-9.

6 Thomsen mb, Truin M, van Opstal JM, Beekman 
JDM, Volders PGA, Stengl M, et al. Sudden 
cardiac death in dogs with remodeled hearts 
is associated with larger beatGÇôtoGÇôbeat 
variability of repolarization. Basic Research in 
Cardiology 2005 May 1;100(3):279-87.

7 Thomsen mb, Volders PGA, Beekman JDM, 
Matz Jr, Vos ma. Beat-to-Beat Variability of 
Repolarization Determines Proarrhythmic 
Outcome in Dogs Susceptible to Drug-
Induced Torsades de Pointes. Journal of the 
American College of Cardiology 2006 Sep 
19;48(6):1268-76.

8 Hinterseer M, Thomsen mb, Beckmann BM, 
Pfeufer A, Schimpf R, Wichmann HE, et al. Beat-
to-beat variability of qt intervals is increased in 
patients with drug-induced long-qt syndrome: 
a case control pilot study. Eur Heart J 2008 Jan 
2;29(2):185-90.

9 Minotti G, Menna P, Salvatorelli E, Cairo G, 
Gianni L. Anthracyclines: molecular advances 
and pharmacologic developments in antitumor 
activity and cardiotoxicity. Pharmacol Rev 2004 
Jun;56(2):185-229.

10 Milberg P, Fleischer D, Stypmann J, Osada 
N, Monnig G, Engelen ma, et al. Reduced 
repolarization reserve due to anthracycline 
therapy facilitates torsade de pointes induced 
by IKr blockers. Basic Res Cardiol 2007 
Jan;102(1):42-51.

11 Ritsema van Eck HJ. Fiducial segment averaging 
to improve cardiac time interval estimates. 
Journal of Electrocardiology 2002 Oct;35(4, Part 
2):89-93.

12 Heart rate variability. Standards of 
measurement, physiological interpretation, and 
clinical use. Task Force of the European Society 
of Cardiology and the North American Society of 
Pacing and Electrophysiology. Eur Heart J 1996 
Mar;17(3):354-81.

13 Roden DM. Taking the "idio" out of 
"idiosyncratic": predicting torsades de 
pointes. Pacing Clin Electrophysiol 1998 
May;21(5):1029-34.

14 Arbel Y, Swartzon M, Justo D. qt prolongation 
and Torsades de Pointes in patients previously 
treated with anthracyclines. Anticancer Drugs 
2007 Apr;18(4):493-8.

15 Barbey JT, Pezzullo JC, Soignet SL. Effect of 
arsenic trioxide on qt interval in patients with 
advanced malignancies. J Clin Oncol 2003 Oct 
1;21(19):3609-15.

16 Unnikrishnan D, Dutcher JP, Varshneya N, 
Lucariello R, Api M, Garl S, et al. Torsades de 
pointes in 3 patients with leukemia treated with 
arsenic trioxide. Blood 2001 Mar 1;97(5):1514-6.

17 Vizzardi E, Zanini G, Antonioli E, D'Aloia A, 
Raddino R, Cas LD. qt Prolongation: A Case 
of Arsenical Pericardial and Pleural Effusion. 
Cardiovasc Toxicol 2008;8(1):41-4.

18 Meinardi MT, van Veldhuisen DJ, Gietema JA, 
Dolsma WV, Boomsma F, van den Berg MP, et al. 
Prospective evaluation of early cardiac damage 
induced by epirubicin-containing adjuvant 
chemotherapy and locoregional radiotherapy 
in breast cancer patients. J Clin Oncol 2001 May 
15;19(10):2746-53.

19 Michael G, Xiao L, Qi XY, Dobrev D, Nattel 
S. Remodelling of cardiac repolarization: 
how homeostatic responses can lead to 
arrhythmogenesis. Cardiovasc Res 2009 Feb 
15;81(3):491-9.



anthracycline-induced cardiotoxicity, a pathophysiology based approach for early detection and protective strategies chapter 4 increased beat-to-beat variation of the qt-interval in early-stage breast cancer patients treated  
with doxorubicin

7574

Figure 1 Poincaré plot beat-to-beat qt variability, before and 24 hours after chemotherapy

Figure 2 A: qt variation index, B: short term variability
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chapter 5 

Disturbed iron metabolism  
due to anthracycline-based 
chemotherapy in early stage, 
surgically cured female breast 
cancer patients
Based on: J Clin Pharmacol. 2008 Jan;65(1):22-9 
 
 
Broeyer FJ, van Aken BE, Suzuki J, Kemme MJ, Schoemaker HC,  
Cohen AF, Mizushima Y, Burggraaf J 
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introduction 
 

Reactive oxygen species (ros), like super oxide anion (O2
•-)  

and hydrogen peroxide (H2O2), play an important role in health 
and disease. They have been implicated in the pathophysiology 
of different disease states, including anthracycline-induced 
cardiotoxicity (aic), inflammatory bowel disease, ischemia/
reperfusion injury and neurodegenerative conditions.(1-8) The 
hypothesis is that in these pathologic conditions, relatively large 
amounts of ros are produced which cause functional damage to 
many tissues and even apoptosis.(9) The underlying mechanism 
for the deleterious effect of ros on tissues is not totally unravelled, 
but includes cell membrane damage due to lipid peroxidation, and 
direct damage to proteins and dna.(9) 

There are different endogenous defence mechanisms against 
the ros damage such as superoxide-dismutase (sod), catalase, 
peroxidases and vitamin A and E which all share free radical 
scavenger properties.(10-12)

sod acts as a free radical scavenger by catalysing the 
dismutation of superoxide to hydrogen peroxide and oxygen as 
shown below: 
 

O2
•- + O2

•- + 2H+  →  H2O2 + OO2
•-

Three iso-forms of sod exist in humans: cytosolic Cu,Zn sod 
(sod1), mitochondrial Mnsod (sod2) and extracellular Cu,Zn sod 
(sod3) of which the intracellular forms are the more abundant.  
The endothelial cell surface is protected by sod3, but this 
protection seems insufficient in many clinical conditions and 
therefore it has been suggested that additional protection may  
be of benefit.(13) Indeed, over the last decade therapeutic use  
of sod has been explored, but there is consensus that up to now 
this has been of limited value. (14) Likely explanations for the 
limited success of exogenously administered sod are that the 
intracellular iso-forms of sod hardly bind to the endothelium and 
that they are relatively short-lived. In addition, particularly for 
sod3, which is an attractive candidate for therapeutic use, the 
manufacturing process is difficult.(15)

abstract 

aim  To study the pharmacokinetics, safety and tolerability of 
single rising doses up to 80mg of pc-sod in healthy Caucasian 
volunteers.

methods  This double blind, placebo controlled, 4-period cross 
over study was performed in eight healthy volunteers (4 male/4 
female). Three doses of pc-sod (20, 40 and 80 mg) and placebo 
were administered iv in randomised order. Serum and urinary 
pc-sod concentrations were measured pre-dose and up to 96 
hours after dosing. In addition to standard safety measurements, 
the urinary excretion of nag, a-gst, p-gst was measured to 
evaluate renal function. The pk of pc-sod was analysed using non-
compartmental and compartmental methods.

results  All treatments were well tolerated, and no obvious 
relationship between adverse events and treatment was observed. 
No effects of pc-sod on renal function could be detected. Dose 
normalised Cmax and auc were not different between the different 
dosages, indicating linearity of plasma concentrations with dose. 
Estimated pc-sod clearance was 2.54 ml/min (95%-CI 2.07-2.83). 
The terminal half-life was estimated to be 1.54 days (95%-CI: 0.93-
2.15). sod activity was elevated above baseline for 19 ± 6 hours 
after the 80mg dose.

discussion  Single iv administrations of pc-sod in doses up to 
80 mg were well tolerated in healthy Caucasian male and female 
volunteers. With the doses used, sod-activity was linearly related 
to the dose, after the 80mg dose it was present for an appreciable 
period. These findings suggest that it is worthwhile to investigate 
pc-sod in clinical conditions characterised by a high radical 
overload.
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subjects and methods
The study protocol was approved by the Medical Ethical Committee 
of the Leiden University Medical Center and performed according to 
the principles of the International Conference on Harmonisation and 
Good Clinical Practise and the Helsinki Declaration. Written informed 
consent was obtained for all subjects before study entry.

Subjects

Eight healthy subjects (4 female and 4 male) aged between 18-45 
years and within 20% of the normal body weight range relative to 
height and frame size were included in this double blind, placebo-
controlled, 4-way cross over study. Subjects were included after a 
full medical screening showed no clinically significant abnormali-
ties. Subjects were excluded in case of a history of drug allergy or 
hypersensitivity, or drug, alcohol or nicotine abuse.  

Study medication

The subjects were dosed 4 times using an ascending dose sched-
ule with randomised placebo as summarised in table 1. Dose esca-
lation was performed when no significant clinical abnormalities 
were observed after the previous lower dose. The washout period 
between doses was at least 1 week.

The pc-sod preparation consists of an average of 4 molecules 
lecithin derivative covalently bound to the human derived CuZn-
sod, produced by genetic recombination using E.coli as a host cell. 
The lecithinised product has 3x103 U sod-activity per mg. For this 
study, a single batch of the lyophilised formulation also containing 
sucrose was used. Placebo consisted of sucrose. The final prepara-
tion that was administered consisted of pc-sod or placebo diluted 
with distilled water and 5% mannitol.

Therefore, there is a need for sod preparations that are relatively 
easy to manufacture, show a reasonably long residence time 
in the body and will be taken up by organs that are relatively 
poorly protected against free radicals. This has resulted in the 
development of pc-sod (recombinant human sod1 covalently 
coupled to an average of 4 molecules of lecithin) and a chimeric 
recombinant superoxide dismutase consisting of sod2 and sod3.
(13;16;17)

pc-sod has a higher affinity to the cell membrane, an enhanced 
distribution to various tissues and a prolonged systemic half-life 
compared to sod1 alone. In addition, it has a 4.5-fold increase in 
oxygen-radical scavenging effects resulting in a 100-fold increase 
in protective effects against vascular endothelial cell injuries, 
compared to unmodified sod.(16) Pre-clinical data showed that 
pc-sod is effective in several models including inflammation, 
chemotherapy-induced cardiotoxicity, ischemia-reperfusion 
injury, and motor dysfunction after spinal cord injury.(18) The pre-
clinical data also indicated that pc-sod is well tolerated, although 
multiple doses to monkeys were associated with the presence 
of lipid inclusion bodies in renal tubular cells. However, this was 
entirely reversible and not associated with functional impairment 
or necrosis of cells. Thus, pc-sod is a potentially protective agent 
in pathological conditions mediated by free radical overproduction.
(19-22)

In a previous study in Japanese volunteers, where doses up 
to 20mg were investigated, pc-sod was well tolerated, but the 
duration of increased elevation of sod activity was only 3 hrs which 
is too short to be of likely clinical relevance. The current study was 
performed to assess the tolerability, pharmacokinetics and effects 
of single (higher) ascending doses of pc-sod in healthy Caucasian 
volunteers. The study was designed such that detectable sod 
activity would be present for a period of 12-24 hrs. Furthermore, 
special attention was given to the effects of the compound on 
renal function and tubular integrity as this was an issue with very 
high doses of pc-sod in pre-clinical experiments. The effects on 
renal function were assessed by measurement of the urinary 
excretion of specific markers for tubular damage (N-acetyl-ß-
glucosaminidase (nag), α- and π-glutathione S-transferase (gst)) 
and microalbumin.
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pc-sod concentrations of 626, 2500 and 10000 ng/ml for serum 
and 626, 5000 and 20000 ng/ml for urine; each concentration in 
triplicate. The coefficients of variation for the intra-assay variability 
for the respective concentrations were 5.6, 3.2 and 1% in serum, 
and 7.3%, 2.3% and 2.3% in urine. The coefficients of variation 
for the inter-assay variability in serum and urine were 7.9, 2.7 and 
1.3% and 4.9%, 8.2% and 1.2% respectively. Repeated freezing 
and thawing had no appreciable effects (cv < 10% after 3 freeze/
thaw cycles).

pc-sod activity was measured using a nitrite method previously 
described.(23)

The test is based upon the principle that when hypoxanthine 
and xanthine-oxidase are brought together superoxide anion is 
formed. When superoxide anion reacts with hydroxylamine, nitrite 
is formed and this can be measured by colour densitometry with 
the aid of a colouring reagent. sod present in serum will inhibit the 
formation of nitrite by reacting with the superoxide anion. Serum 
sod activity was quantified using the reduction in superoxide 
anion generation caused by serum added to the system. The 
assay had a lower limit of quantification of 3 µg/mL. Intra- and 
interassay variability was 3.9% and 7.5% for serum and 6.8% 
and 10.9% for urine respectively. Both assays were performed at 
Daiichi Pure Chemicals Co. Ltd, Ibaraki (Japan).

Antibody formation against pc-sod was measured by 
quantification of specific IgE, IgG and IgM titres. For anti-pc-sod 
IgE antibody measurement, anti-human IgE mouse monoclonal 
antibody (alkaline phosphatase labelled) was used as secondary 
antibody. The titre was qualitatively judged using the level of the 
positive control (human anti-perennial rye class IgE antibody) as 
the reference value and was described as positive if the titre was 
higher than 0.2 IU/ml. For anti-pc-sod-IgG+IgM measurements 
anti-human IgG and IgM mouse monoclonal antibody (alkaline 
phosphatase labelled) was used as secondary antibody. The titre 
was qualitatively judged in reference to the antibody level of 
a pooled normal human serum sample (negative control) and 
indicated as positive if the value exceeded the average value of 4 
normal human serum samples 3.1-fold.

Urinary nag activity was measured using a commercially 
available colorimetric assay (Roche Diagnostics, Switzerland, 

Study days

The subjects were admitted to the research unit after an overnight 
fast. After preparation and baseline measurements, the study drug 
was administered intravenously over 60 min. During the study 
days, frequent measurements of vital signs, 12-lead ecg recording 
and evaluation of adverse events, blood sampling and fractionated 
urine collection took place. The subjects remained in the unit 
for 24 hrs and returned for follow-up assessments and blood 
sampling at 48 and 96 hours after dosing. During the study day’s 
subjects used standard meals and abstained from using xanthine-
containing drinks or food.  

Sampling and assays

Serum pc-sod concentrations and sod-activity were measured in 
venous blood samples that were taken pre-dose (twice), at 20, 40, 
60, 65, 75, 90 min, and at 2, 3, 4, 8, 12, 24, 48, 96 and 168 hrs after 
start of the infusion. The last time point coincided with the first 
pre-dose sample of the subsequent study day. After collection, the 
tubes were kept at 4°C for and subsequently centrifuged at 2000g 
for 10 minutes at 4°C. The separated serum was stored at 

-20°C until analysis within 1 month after sampling. 
Urine was collected during the study period over the following 

time spans: 0-4 hr, 4-8 hr, 8-12 hr, 12-24 hr, and 24-48 hr. Urine 
samples were, immediately after voiding, stored at 4°C and from 
each collection period, aliquots of 2 ml were taken and stored at 
-20°C until analysis within 1 month after sampling. Samples to 
assess antibody formation were taken at completion of the last 
administration and at 1 and 3 weeks after the last dosing. 

Blood samples for routine haematology and biochemistry were 
taken before and at 24 hrs after each infusion.

Serum and urinary pc-sod concentrations were measured 
using an enzyme linked immunosorbent assay (elisa), consisting 
of an antibody against human Cu, Zn-sod, and a second antibody 
against human Cu, Zn-sod conjugated with horseradish 
peroxidase. The assay has a lower limit of quantification 626 ng/
mL. The intra-assay variability and inter-assay was investigated at 
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conditional error estimation with the ‘interaction’ option was used 
and residual error was modelled as the sum of an additive and a 
constant coefficient of variation component. 

Multiplying the urine weights with the associated concentra-
tions and summing over 48 hours calculated the cumulative 
excretion of pc-sod. Average renal clearance over this period was 
calculated by dividing the cumulative renal excretion by the serum 
auc over the same time span. Renal clearance was compared 
between doses using factorial analysis of variance (factors subject 
and treatment).

The relationship between activity and serum concentration was 
investigated using graphical and regression techniques. Linear 
mixed effect modelling was performed to examine the relationship 
between pc-sod concentration and sod activity. 

The compartmental pharmacokinetic analyses were performed 
using nonmem version V (GloboMax llc, Hanover, md). All statis-
tical calculations were performed using spss for Windows software 
(spss, Inc., Chicago, il).

results
General

Eight subjects (4 female and 4 male; age range: 18-27 years; mean 
bmi: 23.4 kg/m2) were included. All subjects completed the study 
and no important drug-related adverse events were noted. No 
serious adverse events occurred during the study. There was no 
obvious relationship between the occurrence of any adverse event 
and one of the treatments. The most frequently observed adverse 
event was an upper respiratory tract infection, which occurred 
on placebo (twice) as well as on active drug (twice after 20 and 40 
mg and three times after 80 mg). Other common adverse events 
were headache and haematoma’s after blood sampling. One 
subject experienced multiple premature ventricular complexes, 
independent of treatment. No clinical significant changes were 
observed during any treatment in vital signs, ecg-monitoring, and 
the routine laboratory tests. No antibodies against pc-sod were 
found during 2 subsequent follow up visits.

reference value: 1.39 - 3.23 U/24hr, detection limit 1 U/L). 
Urinary excretion of alpha-glutathione S-transferase (α-gst) 
and pi-glutathione S-transferase (p-gst) was determined using 
validated quantitative enzyme immunoassays (Biotrin, Dublin, 
Ireland; limit of detection: α-gst 0.09 µg/L and p-gst 1.72 µg/L 
and both intra- and inter assay variability below 6.9%). Urinary 
microalbumin and creatinine concentrations were measured 
using routine methodology at the central laboratories for clinical 
chemistry of lumc.

 
Data analysis

Vital signs, ecg and laboratory parameters were analysed 
by generating average graphs of parameters over time per 
treatment. If these graphs suggested possible differences between 
treatments, areas under the effect curve over the first 12 hours 
divided by the corresponding time span (auc) were calculated and 
compared between treatments using factorial analysis of variance 
(factors subject and treatment).

The cumulative urinary excretion of nag, α-gst, p-gst and 
creatinine over 0-4h and over 0-48h were calculated. For values 
below the detection limit, the detection limit was used. The 
cumulative 24 hours microalbumin excretion was evaluated as 
the microalbumin over creatinine ratio. The values were compared 
between treatments using factorial analysis of variance (factors 
subject and treatment).

The pharmacokinetics of pc-sod was assessed using a non-
compartmental pk approach for Cmax, auc0-48hr and auc0-7days. 
These parameters were compared between doses after dividing 
the parameter by the doses using factorial analysis of variance 
(anova; factors subject and dose) to assess dose-linearity. Within-
individual ratios for the different doses were compared using 
paired Student t-tests. 

Compartmental pharmacokinetics (using a two compartment 
open model) was performed on all of the profiles by analysing 
the data as arising from a multiple dose sequence. The analyses 
were performed using non-linear mixed effect modelling, which 
estimates all curves for all subjects simultaneously. First order 
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activity was above the limit of quantification increased from 8 ± 3 
hours after the 40mg dose to 19 ± 6 hours after the 80mg dose. 

Relationship between activity and concentration  
in serum

Individual graphs indicated that a linear model was most suitable 
to describe the pc-sod concentration - sod activity relationship. 
The average estimated linear relationship between pc-sod 
concentration and sod activity had an intercept of 650 ng/ml 
(95% CI: -746 - 2046) and a slope of 0.913 (0.790 – 1.036) ng  
sod activity per ng pc-sod.  

Effects on renal function

The urinary excretion of nag, α-gst, p-gst and microalbumin/
creatinine ratio over both 4 (not shown) and 48 hours (table 3) 
after each subsequent dose, did not differ between active drug and 
placebo. 

discussion
 
This study showed that single iv administration of pc-sod in doses 
up to 80 mg was well tolerated in healthy Caucasian volunteers. 
For all safety parameters that were assessed, no treatment effect 
was observed. Particularly, the absence of effect on renal function 
is important, as there were indications from pre-clinical data 
that pc-sod could possibly affect renal function. All markers for 
evaluation of renal function, including protein and creatinine 
excretion, did not show differences between the different pc-sod 
doses and placebo. In our assessment urinary nag, a- and p-gst 
were included, enzymes used to evaluate tubular damage. The first 
is derived from tubular lysosomes, the latter are cytosolic enzymes 
that are found in the proximal and distal tubular cells respectively. 
All these markers are specific for tubular damage and are very 
sensitive in detecting renal dysfunction in a very early stage.(24) 

pc-sod concentrations

For two occasions at which placebo was infused (F3 and F4; both 
female) concentrations of pc-sod were found in 5 samples (5/543 
= 0.92%). No explanation for this anomaly could be found, and 
these data were omitted from the analysis. 
Mean plasma profiles are given in figure 1, and the non-
compartmental parameters (Cmax and auc0-7days) are summarised 
in table 2. No significant changes were observed in the dose 
normalised Cmax (p=0.402) and auc0-7days (p=0.102) for the 
different doses given, indicating linear pharmacokinetics. The 
within individual ratio’s (40 vs 80mg) were 1.98 (95%-CI: 1.80-
2.14), 1.99 (95%-CI: 1.71-2.27) and 1.88 (95%-CI: 1.60-2.16) for 
Cmax, auc0-48 and auc0-7days respectively, which confirmed that 
no significant dose effect was present. The mean cumulative 
excretion of pc-sod over 48 hours increased with higher doses 
(table 3), but renal clearance was independent of the dose 
(p=0.154).

When the profiles were modelled using a 2-compartment 
model and as if originating from a multiple dose regimen, a good 
fit of the data was obtained (figure 1; table 2). When the model 
parameters are expressed differently, estimates for the half-lives 
can be calculated. This showed that the initial half-life (t½α) was 
11.0 hours (95%-CI: 5.0-17.0) and terminal half-life (t½b) was 1.54 
days (95%-CI: 0.93 – 2.15). 

pc-sod activity

After the 20 mg dose, sod-activity could not be detected for a 
number of individuals, which may be attributed to the relatively 
high limit of quantification. At each higher dose, a higher sod 
activity was observed which was present for a longer time-period 
(figure 2). Mean ± sd maximum sod activity increased from 10.4 
± 2.8 µg/ml after 40 mg to 18.7 ± 2.0 µg/ml after 80 mg pc-sod 
dosing. Analysis after log-transformation revealed a (back-
transformed) geometric mean ratio of 1.85 (95%-CI: 1.53 - 2.24) 
indicating a doubling of activity with a doubling of administered 
dose. The mean ± sd duration of the period during which sod 
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an important role in the protection against myocardial damage 
after ischemia/reperfusion.(29-31) Due to its increased affinity 
for the cell membrane it is possible that with pc-sod this problem 
can be overcome.(16) Indeed, several in vitro and in vivo studies 
showed beneficial effects of pc-sod in various disease models.
(19;26-28;32-38)

The study reported here has some shortcomings. First, only 
serum pc-sod activity was measured and no information is 
provided on the presence of pc-sod intracellularly or at the cell 
membrane. In this study we found a small volume of distribution 
of pc-sod in humans. This suggests that the drug does not have 
high intracellular penetration and hence its likely therapeutic 
benefit will only be assessable after demonstration of intracellular 
activity. However, it may also be that the beneficial effects of 
pc-sod are not dependent on the intracellular activity as the 
volume of distribution (range: 0.05-0.10 L/kg) in animal species in 
which the compound was tested for efficacy is comparable to the 
volume of distribution in humans (0.07 L/kg). Second, it seems 
paradoxical that sod converts O2

•- in H2O2 which is also a ros, 
and therefore potentially harmful. However, although the exact 
mechanism is not elucidated, it is apparent that this does not 
translate into ‘clinical damage’. Indeed, many laboratory models 
show that administration of exogenous sod provides protection 
against damage induced by free radicals.(19;26-28;32-38) 
Moreover, in the protection against free radical induced damage 
during the reperfusion phase of ischemia-reperfusion injury, there 
are strong indications that sod is of prime importance.(39)

In summary, this study showed that pc-sod in doses up to  
80 mg was well tolerated in healthy Caucasian volunteers. For the 
80 mg dose, serum sod-activity was elevated above baseline for 
at least 19 ± 6 hours. These findings suggest that is worthwhile 
to further investigate pc-sod as protective agent in patients with 
clinical conditions associated with a high radical overload. 

acknowledgement  The authors wish to thank mr Wolf Ondracek 
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These findings suggest that single iv doses of pc-sod up to 80 
mg is not associated with untoward effects on renal function in 
humans. 

Non-compartmental pharmacokinetic analyses indicated 
linearity of serum concentrations with increasing dose. The 
compartmental pharmacokinetic analysis of the pc-sod profiles 
was complicated by the occurrence of detectable pc-sod 
concentrations in 5 samples of 2 subjects (<1% of the total 
amount of samples) during placebo treatment. Sampling and 
environmental factors were investigated for these samples 
but no explanation was found for the aberrant results. It may 
be that an interfering endogenous compound was present in 
these subjects. The data of these samples were omitted and this 
resulted in an adequate description of the concentration profiles. 
It was shown that the compound has a relatively small central 
volume of distribution (5 L) and a low clearance (2.5 ml/min). As 
the renal clearance was only approximately 0.05 ml/min, it is 
concluded that the clearance is predominantly extra-renal. This is 
in keeping with data in non-human primates using [3H]-labelled 
pc-sod showing that only 10% of pc-sod is excreted unchanged 
in the urine. Although the exact clearance mechanism of pc-sod 
remains to be elucidated, it is likely that the compound is cleared 
through multiple mechanisms among which utilization in various 
biochemical processes, hepatic clearance and inactivation by 
esterase’s may play a role.

Previous trials with sod-preparations failed to show beneficial 
effects in humans.(25) A cause of this failure could be the short 
half-life of these compounds. With the doses used in this study, 
it was shown that sod-activity was linearly related to the dose, 
and that is was present for an appreciable period. After the 80 
mg dose, the sod-activity was elevated above baseline for at 
least 24 hrs. This indicates that pc-sod could be beneficial in 
pathological conditions characterised with an acute ros-overload, 
like ischemia/reperfusion injury, neurological ischemic disease 
and aic.(19;26-28) Another reason why earlier trials with sod-
preparations in humans did not show beneficial effects may be 
explained by the finding that in these trials the target such as 
the cytosol and the mitochondria was not reached. This seems 
necessary as especially the intra-cellular isoforms of sod play 
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Table 3 Summary of urinary pc-sod excretion. Urinary pc-sod excretion in 48 hours (percentage of 
dose, sd; n=8) and renal clearance of pc sod over 48 hours. (upper panel) Cumulative urinary excretion 
of nag, a-gst and p-gst over 48 hours and the ratio of microalbumin over creatinine 24 hr after iv 
administration of pc-sod. (lower panel) 

Urinary pc-sod excretion

pc-sod dose Placebo 20 mg 40 mg 80 mg P-value

Cumulative pc-sod excretion  
(% dose per 48 hours)

na 1.58 (0.56) 1.03 (0.76) 1.52 (0.54) na

Renal clearance pc-sod over 48 hours† 

 (ml/min) 
na 0.048 (0.015) 0.036 (0.026) 0.057 (0.022) na

Renal safety parameters

pc-sod dose Placebo 20 mg 40 mg 80 mg P-value

nag (U)* 4.1 (1.8) 4.0 (1.6) 3.7 (1.4) 4.3 (1.4) 0.77

a-gst (µg)* 14.1 (6.5) 18.6 (12.6) 14.5 (8.7) 15.1 (9.1) 0.35

p-gst (µg)* 9.5 (3.2) 10.4 (3.2) 8.9 (2.6) 9.6 (3.1) 0.53

Microalbumin/ creatinine ratio  
24 h after dose

0.043 (0.031) 0.039 (0.023) 0.044 (0.024) 0.03 (0.017) 0.53

 
†  Average renal clearance was calculated using the serum auc over 48 hours: renal clearance0-48h = cumulative renal 
excretion0-48h/serum auc0-48h No difference in renal clearance between the different doses was observed (p=0.154)
* normal values: nag-excretion: 2.8 – 6.4U per 48 hours;a-gst: < 22.2 µg per 48 hours; p-gst: < 85.2 µg per 48 hours

Table 1 Administration schedule of pc-sod 
 

Subject code Study day 1 Study day 2 Study day 3 Study day 4

f1/m1 20 mg pc-sod 40 mg pc-sod 80 mg pc-sod Placebo

f2/m2 20 mg pc-sod 40 mg pc-sod Placebo 80 mg pc-sod

f3/m3 20 mg pc-sod Placebo 40 mg pc-sod 80 mg pc-sod

f4/m4 Placebo 20 mg pc-sod 40 mg pc-sod 80 mg pc-sod

 
f = female, m = male

 
Table 2 Mean (sd; n=8) Pharmacokinetic parameters of pc-sod administered as iv-infusion over 
1 hour. The summary of the non-compartmental analyses is given in the upper part of table and the 
parameters based upon population pharmacokinetic approach using a 2-compartment pharmacokinetic 
model are given in the lower part of the table. 

Non-compartmental pharmacokinetic parameters for iv sod

dose (mg)

Parameter 20 40 80

Cmax (µg/ml) 4.95 (0.91) 9.33 (1.12) 18.38 (2.58)

Dose-normalised Cmax (ng/ml/mg) 247 (46) 233 (28) 230 (32)

auc0-7days (µg/ml•day) 6.73 (1.77) 11.63 (2.21) 21.67 (4.64)

Dose-normalised auc0-7days (ng/ml•day/mg) 336 (88) 291 (55) 271 (58)

Compartmental pharmacokinetic parameters for iv pc-sod

mean 95%-confidence interval

Clearance(L/day) 3.53 2.98 – 4.08

Intercompartmental clearance(L/day) 1.17 0.57 – 1.77

Central volume(L) 4.98 4.37 – 5.59

Steady State volume(L) 7.44 6.70 – 8.18

Initial half-life*(days) 0.47 0.21 – 0.72

Terminal half-life*(days) 1.54 0.93 – 2.15

Residual error

Constant cv(%) 42.1

Additive sd(ng/ml) 20.2

 
cv: inter-individual variability in population parameters; *results from alternative parameterisation.
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Figure 1 Mean (+sd) observed pc-sod serum concentration-time profiles (symbols) following iv 
administration of pc-sod. The lines indicate the predicted profiles based upon the pharmacokinetic 
modelling.

Figure 2 Mean (sd) sod activity profile after intravenous administration of 20, 40 and 80 mg pc-sod.
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chapter 6 

The pharmacokinetics of pc-sod, 
a lecithinized recombinant 
superoxide dismutase, after 
single- and multiple-dose 
administration to healthy 
Japanese and Caucasian 
volunteers     
Based on: J Clin Pharmacol. 2008 Feb;48(2):184-92

 
Suzuki J, Broeyer FJ, Cohen AF, Takebe M, Burggraaf J, Mizushima Y.
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introduction
 
 
Overproduction of free radicals, such as the superoxide anion, 
is associated with the pathology of different diseases.(1-3) 
Superoxide dismutase (sod), which catalyses the dismutation 
of superoxide to hydrogen peroxide and oxygen, is important 
in the defense against free radical overload.(4) It thus seems 
logical to develop sod as a potential treatment modality. 
However, attempts to achieve this have failed mainly because 
exogenous sod has a low affinity for the cell-membrane and 
has unfavorable pharmacokinetics (e.g. a very short half-life).(5) 
These characteristics limit the clinical use of sod, as especially the 
intra-cellular isoforms of sod play a role in protection against free-
radical induced damage and exogenous sod needs to be active for 
a certain period of time to exert its potential protective effect.(5-7) 

Therefore a recombinant Cu,Zn sod, covalently bound to on 
average 4 molecules of lecithin (pc-sod), have been developed. In 
pre-clinical experiments pc-sod has a 4.5 times greater oxygen-
radical scavenging effect, which leads to a 100-fold increase in 
protective effect against O2- induced vascular endothelial cell 
damage compared with unmodified sod.(8) In addition, a stronger 
binding to human vascular endothelial cells was demonstrated.(9) 
Furthermore, studies in rats showed that pc-sod had a prolonged 
residence time, compared to unmodified sod and was effective 
in various animal models.(2;3;10-19) These characteristics make 
pc-sod a potentially protective agent in various pathological 
conditions that involve free radical overproduction.

Previous phase I trials in Caucasians demonstrated that pc-sod 
was well tolerated in doses up to 80mg, but the pharmacokinetics 
in other ethnic groups has not been reported yet. This may be of 
particular importance for the clearance of pc-sod as apparently 
most differences caused by ethnic factors occur during drug 
metabolism.(20)

Therefore, a pharmacokinetic study with single iv doses (up to 
160mg) and repeated iv doses (80mg/day for 7days) of pc-sod 
in healthy Japanese volunteers was performed. As a previously 
performed pk study in Caucasians used the same methodology, 
the pk of the single iv 80 mg dose were compared. 

abstract
 
 
To study the pharmacokinetics (pk) of single rising intravenous 
doses (40-160mg) and repeated doses (80mg for 7 days) of lecithi-
ni zed superoxide dismutase (pc-sod) in Japanese volunteers and 
to compare the pk of pc-sod between Caucasians and Japanese. 

The Japanese study consisted of two parts: a single dose, 
open-label, dose-escalation and a multiple dose, single-blind, 
placebo-controlled part. The pk of pc-sod was determined using 
non-compartmental and compartmental methods. pk-data from 
a study with pc-sod in Caucasians was reanalyzed using the same 
methodology.

The mean (sd) terminal half-life of pc-sod in Japanese subjects 
was 25 (4) hours for the 40mg and 80mg and 31 (15) hours for the 
160mg dose. There was non-linearity between dose-normalized 
Cmax and clearance (p-values 0.002 and 0.022). After multiple 
dosing, steady state was reached after 5 days. The observed 
accumulation ratio was 2.6 (0.5). 

The pk of the single 80 mg dose was similar for Japanese and 
Caucasians.

The pk of pc-sod was shown to be non-linear with dose 
which may be attributable to a saturable clearing mechanism. 
The relative long half-life of pc-sod (>24 hrs) suggests that it is 
worthwhile to study the compound as protective agent in clinical 
conditions with free radical overload. 
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cysteine residues of rhsod was converted to S-(2-hydroxyethyl-
thio-) cysteine and phosphatidylcholine derivatives were then 
covalently bound to this modified rhsod to produce pc-sod. The 
specific activity of pc-sod was about 3,000 U/mg of protein when 
assayed with the cytochrome C method using a xanthine-xanthine 
oxidase-cytochrome C system. Vials for injection containing 30 mg 
of pc-sod were produced by a freeze-drying process with purified 
sucrose as an additive. The test drug was dissolved in xylitol 5% 
(Japan) or mannitol 5% (Netherlands). Placebo consisted of either 
xylitol or mannitol. 

Study days (Japanese)

The subjects were admitted to the research unit after an overnight 
fast. After preparation and baseline measurements, the study drug 
was administered intravenously over 60 min. For the participants 
of the multiple-dose cohort the study drug was administered 7 
times with an interval of 24 hours in between. During the study 
days, frequent measurements of vital signs, 12-lead ecg recording 
and evaluation of adverse events, blood sampling and fractionated 
urine collection took place. The subjects remained in the unit 
for 48 hrs (multiple dose: 72 hrs) and returned for follow-up 
assessments and blood sampling one and two weeks after (last) 
dosing. During the study days subjects had standard meals and 
abstained from using xanthine-containing drinks or food.  

Sampling (Japanese)

pc-sod serum concentrations were assessed before administra-
tion and at 30, 60, 90 minutes and 2, 3, 5, 9, 13, 25, and 48 hours 
after dosing (single dose). For the multiple dose part serum pc-sod 
concentrations were assessed 60 minutes prior to each adminis-
tration and at 30, 60, 90 minutes and 2, 3, 5, 9 and 13 hours on day 
1 and 4. In addition pc-sod concentrations were determined 23, 
48, 72 and 168 hours after the last administration.

Cumulative urinary pc-sod concentrations were measured at 
-12-0, 0-6, 6-12, 12-24, and 24-48 hours (and 48-72 hours for 

subjects and methods
Subjects

For the study performed in Japan, eligible for study participation 
were male Japanese volunteers, within 20% of the normal body 
weight range relative to height and frame size. All subjects were 
screened prior to study participation and considered healthy based 
on history, physical examination and laboratory assessment. 
This study protocol was approved by irb of The Kitasato Institute, 
Research Center for Clinical Pharmacology (formerly known as  
The Kitasato Institute Bio-Iatric Center). The study in Caucasian 
subjects was performed as previously described.(21) This protocol 
was approved by the Medical Ethics Committee of Leiden 
University Medical Center. From both Japanese and Caucausian 
subject’s written informed consent was obtained before screening. 

Study design

The study in Japanese subjects was done in three cohorts of six 
male volunteers who received escalating single doses of pc-sod 
(40, 80 and 160 mg) in an open-label fashion and a single cohort 
of eight male volunteers who received seven daily doses of pc-sod 
(80 mg) in a placebo-controlled design (6 active treatment, 2 
placebo). Dose escalation occurred when no clinically significant 
safety issues were observed in the previous dose-level. The 
multiple dose part of the study started after completion of the 
highest dose of the single dose study.

The study in Caucasian subjects consisted of eight healthy 
subjects (4 female and 4 male) who received single doses of 
pc-sod (20, 40 and 80 mg) in a double blind, placebo-controlled, 
4-way cross-over study. 

Trial medication

Recombinant human sod (rhsod) was produced in Escherichia 
coli, the exact procedure is described elsewhere.(8) One of the 
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concentration curve (auc) from time 0 to 24 hours), auc0-last (auc 
from time 0 to last point measured), auc0-∞ (auc from time 0 to 
infinity), clearance (Cl), volume of distribution (Vd) and terminal 
elimination half-life (t1/2). The degree of accumulation of pc-sod 
expected during the multiple-dose regimen was predicted based 
on the single-dose data. The predicted accumulation ratio (Rpred) 
was defined as the auc0-∞ of the 80mg single-dose cohort divided 
by auc0-24 of the 80mg single-dose cohort. 
After multiple-dose administration, the following parameters were 
determined from the pc-sod concentration versus time data: Cmax, 
auc0-∞, auc0-24 and t1/2 after the first administration and Cmax, 
aucint (auc over the 24 dosing interval during steady state) and 
t1/2 after the last administration. The observed accumulation ratio 
(Robs) was defined as aucint (auc over the 24 hour dosing interval) 
on day 7 of the multiple-dose cohort divided by auc0-24 on day 1. 
The accumulation of pc-sod in serum at steady-state (Rss, steady-
state accumulation ratio) was defined as the aucint on day 7 of the 
multiple-dose cohort divided by auc0-∞ on day 1. 

Compartmental pharmacokinetic analyses

Compartmental analysis was performed using the software 
program WinNonlin V5.0 (Pharsight Corp, Mountain View, ca). 
A 2-compartment model with macro-constants was used. 
Observations were iteratively reweighted using the square of the 
predicted concentration corresponding to a constant coefficient 
of variation residual error model. Using this model Cmax, Cl, 
initial half-life (t½, initial), terminal half-life (t½, initial) and Vd were 
determined for both single- and multiple dose data . 

Statistical analysis

Pharmacokinetic parameters were summarized using mean, 
standard deviation (sd), median, minimum and maximum. 
Tolerability and safety variables were summarized using 
descriptive statistics (n, mean, sd, median, minimum and 
maximum for continuous variables).

the multiple dose cohort) after the start of administration, for the 
single dose cohorts and the first day and the last day of the mul-
tiple dose cohort. In addition during day 2 to 6 cumulative urinary 
pc-sod concentration was measured for each 24 hour period.

For all cohorts safety laboratory assessments were done 
before each administration, at 24 hours and 1 week after pc-sod 
administration. For the multiple dose cohort additional safety 
assessments were done at 48 and 72 hours after the last dose.

The study outline for the Caucasian subjects was comparable  
to those of the Japanese volunteers.(21)

Serum and urinary pc-sod concentrations were measured 
using an enzyme linked immunosorbent assay (elisa), consisting 
of an antibody against human Cu, Zn-sod, and a second antibody 
against human Cu, Zn-sod conjugated with horseradish peroxi-
dase. The assay has a lower limit of quantification 0.626 µg/mL. 
The intra-assay variability and inter-assay was investigated at 
pc-sod concentrations of 0.626, 2.50 and 10.0 µg/ml for serum 
and 0.626, 5.0 and 20.0 µg/ml for urine (each concentration 
in triplicate). The coefficients of variation for the intra-assay 
variability for the respective concentrations were 5.6, 3.2 and 1.0% 
in serum, and 7.3%, 2.3% and 2.3% in urine. The coefficients of 
variation for the inter-assay variability in serum and urine were 
7.9, 2.7 and 1.3% and 4.9%, 8.2% and 1.2% respectively. Repeated 
freezing and thawing had no appreciable effects (cv < 10% after 3 
freeze/thaw cycles). 

Non-compartmental pharmacokinetic analyses

The data were analysed using non-compartmental analysis with 
estimation of the elimination half-life (ln2/λz) using log-linear 
regression of the terminal part of the curve, where the number 
of included points was determined by the software program 
WinNonlin V5.0 (Pharsight Corp, Mountain View, ca). Extrapolation 
of the auc0-∞ was done using the calculated auc0-last to which 
Clast/ λz was added. The pharmacokinetic parameters of pc-sod 
after single doses (for both the Japanese and Caucasian subjects, 
only 80mg data) were analysed for Cmax, (maximum observed 
plasma drug concentration), auc0-24 (area under the plasma drug 
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Following single-dose intravenous pc-sod administration in 
Japanese serum pc-sod concentrations were elevated above 
baseline for 24 hours in all doses used. Mean (sd) terminal half- 
life (t1/2) of pc-sod was 24.7 (4.3), 24.9 (3.5), 31.3 (14.6) hours  
for the 3 ascending doses respectively. After 80mg single dose  
in Caucasian a terminal half-life of 26.1 (11.2) hours was found. 

Dose-normalized Cmax and clearance (Japanese) were 259.4 
(31.4), 254.9 (24.7) and 358.0 (74.1) ng/ml/mg and 167.4 (27.4), 
143.9 (18.9) and 119.4 (30.0) ml/hr for 40, 80 and 160mg pc-sod 
respectively. These data indicated that the pharmacokinetics of 
pc-sod is dose-dependent. (p-values 0.002 and 0.022). 

Urinary pc-sod concentrations were below the limit of 
quantification for the 40mg, and 80mg, but after 160mg pc-sod 
the cumulative urinary excretion 0-48hr was 2.28 (1.34) mg, which 
is 1.4 (0.8)% of the administered dose.

After multiple-dose administration of pc-sod 80mg Cmax, day7 
was 38.1 (2.1) µg/mL. The aucint was 649.7 (98.3) hr*µg /mL. 
Based on the seven trough serum pc-sod concentrations, steady 
state was reached after 5 days. The Robs 2.6 (0.4) was greater 
than the value calculated from the single dose data (Rpred: 2.0 
(0.2), p=0.02).Urinary pc-sod concentrations were below limit of 
quantification during the multiple-dose regimen. 

Compartmental pharmacokinetic analyses

When data were modeled using a 2-compartmental model a good 
fit was obtained. In two subjects (in the 80 and 160 mg single dose 
cohort) no adequate estimation of half-life could be calculated. 
The results after compartmental analyses were comparable to 
those obtained with non-compartmental analyses (table 3). 

Comparison Caucasians-Japanese

The non-compartmental pharmacokinetics of the 80mg single 
dose administrations were compared between Japanese and 
Caucasians using Cmax, clearance, volume of distribution, half-life 
and auc0-∞.(table 1) 

Dose-normalized Cmax and total clearance were used to assess 
dose-linearity using single factor factorial analysis of variance on 
log-transformed data (anova; factor dose) to assess dose-linearity. 
Mean differences and 90%-CI intervals in Cmax (µg/mL), t½ (hr), 
clearance (mL/hr), volume of distribution and auc0-∞ (µgαhr/
mL) between Japanese and Caucasian were determined using 
two-sample student t-tests on log-transformed data assuming 
unequal variances.

results
General

Twenty-six male Japanese volunteers (age: 20-32, mean bmi: 
21.4 kg/m²) were included. In the Caucasian study eight subjects 
(4 female/4 male, age: 18-27, mean bmi: 23.4 kg/m²) participa ted.

All Japanese subjects completed the study. No adverse 
events were observed in 40 and 80mg single dose groups. The 
most common adverse event was mild diarrhea (twice in the 
160mg-group, once in the 80mg multiple dose group, in one 
subject receiving placebo). These events were considered possibly 
related to the study drug. Other adverse events were headache, 
muscle pain, fatigue, pain in the right hip and influenza. These 
events occurred once and were considered not to be related to 
the study medication. In one subject in the multiple doses group 
antibodies against pc-sod were detected at the first follow up. 
Follow up at 6 months showed that these antibodies were no 
longer present.

Safety analysis in Caucasians did not indicate any safety issues, 
results of the safety analyses are reported elsewhere.(21)  

Non-compartmental pharmacokinetic analyses

The mean serum concentrations of pc-sod versus time curves for 
the single-dose and the multiple-dose regimens are shown in figure 
1 and 2 respectively. A summary of the pharmacokinetic parameters 
is given in table 1 (single dose) and table 2 (multiple-dose). 
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auc0-∞ during single-dose and following the first dose in the 
multiple dose regimen is underestimated because of incomplete 
characterization of the terminal elimination phase. Second, it 
may be that at higher exposures as in the multiple-dose part 
makes the observed non-linearity in the single-dose cohorts 
clearer. When the pharmacokinetic profiles were modeled 
using a 2-compartment model the estimated pharmacokinetic 
parameters were comparable to those determined with non-
compartmental methods, indicating that we adequately described 
the pharmacokinetic properties of pc-sod. Nevertheless, the 
finding that steady state is reached after approximately 5 days, 
which is more compatible with a half-life of 24 hrs, may suggest 
that there is a ‘deep’ compartment containing very little amounts 
of drug.(24) Thus for practical reasons it seems that the relevant 
elimination half-life of pc-sod is in the order of 24 hours.  

Based on our data there are no indications that after 80mg 
single dose of pc-sod there are differences of clinical significance 
between Japanese and Caucasian subjects.

Generally, pc-sod was well tolerated in doses up to 160 mg. 
The observation that one of the Japanese subjects developed 
antibodies against pc-sod after multiple doses of pc-sod requires 
further investigation and the development of antibodies should  
be monitored in future trials.

In conclusion, this study demonstrates that pc-sod 
concentrations were elevated above baseline for at least 24 hours 
after single doses of pc-sod greater or equal of 40mg. Dose 
non-linearity was demonstrated after single doses, indicating 
saturable clearance. During the multiple-dose regimen steady 
state was reached after 5 days. Accumulation was slightly higher 
than expected. It was shown that pk after a single iv dose of 80 
mg pc-sod is similar for healthy Japanese and Caucasian subjects. 
The pharmacokinetics of pc-sod make it is worthwhile to further 
investigate pc-sod in patients with diseases characterized by high 
free radical overload.
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discussion 
 

In this study we evaluated the pharmacokinetic profile of pc-sod 
following single doses of 40, 80 and 160mg and multiple doses 
(80mg/day for 7 days) in Japanese volunteers. Additionally, 
pharmacokinetics of 80mg single dose pc-sod in Japanese and 
Caucasian subjects was compared.

The mean plasma concentration versus time curve for the 
48 hours following a single dose of pc-sod was characterized 
by bi-exponential decline from peak plasma concentration. 
Half-lives were more than 24 hours for all investigated doses, 
which is substantially longer than previous reports in trials 
with unlecithinized sod.(22;23) The excretion of pc-sod is 
predominantly extra-renal, as urinary excretion was less than 2% 
in the 160mg cohort. This is in line with findings from a previous 
study in healthy Caucasians, but in contradiction with results in 
earlier trials with unlecithinized recombinant sod, where urinary 
excretions up to 57% were reported. These data suggest that the 
diminished urinary excretion, and possibly the prolonged half-
life, can be attributed to the addition of lecithin to sod.(22;23) 
In contradiction with earlier studies in Japanese and Caucasians 
dose-dependency of the pharmacokinetic parameters was shown, 
likely because in this study higher doses were studied. As also, 
Cmax showed dose-dependency, this strongly suggests a saturable 
clearance for pc-sod. 

After multiple dosing steady state was reached after 5 days. 
Pharmacokinetics after the multiple dose regimen showed a 
similar pattern of distribution and elimination as observed during 
the single dose cohorts. But some differences were observed. First, 
terminal half-life was longer than during single dose regimen (56.8 
vs 24.9 hours), second a slightly higher accumulation ratio than 
predicted on the single dose data (Rpred 2.0 vs Robs 2.6) was found. 

For the higher than expected accumulation and longer half-
life of pc-sod after multiple dosing, some possible explanations 
can be given. First, during the multiple-dose regimen the final 
part of auc0-∞ is better characterized due to longer sampling 
(48 hours vs. 168 hours in the single- and multiple dose cohort 
respectively). It is therefore highly likely that the calculated 
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Table 2 Comparison of the pharmacokinetic parameters of intravenous single-dose and multiple-dose 
pc-sod administrations.  

Parameter Single dose pc-sod 
80mg 

Multiple dose 
pc-sod 80 mg dose
(after first dose)

Multiple dose 
pc-sod 80 mg dose
(after last dose)

Cmax 
(µg/mL)

20.4 (2.0) 20.4 (1.4) 38.1 (2.1)

21.1 (17.7-22.9) 21.0 (18.0-21.8) 39.2 (35.2-39.9)

auc0-24 
(hrαµg/mL)

Mean (sd) 281.5 (30.6) 253.9 (53.9) na

Median (min-max) 283.6 (241.3-321.9) 255.8 (170.7-321.5) na

aucint
(hrαµg/mL)

Mean (sd) na na 649.7 (98.3)

Median (min-max) na na 673.8 (514.4-742.2)

auc0-∞ 
(hrαµg/mL)

Mean (sd) 564.6 (81.2) 411.8 (151.3) na

Median (min-max) 236.4 (191.6-297.0) 397.3 (215.0-620.3) na

Percent extrapolation
Mean (sd) 26.1 (3.9) 37.0(12.6) 20.0 (4.4)

Median (min-max) 26.6 (21.2-31.8) 36.8 (22.0-51.3) 19.9 (14.5-25.5)

t ½ 
(hours)

Mean (sd) 24.9 (3.5) 16.5 (5.1) 56.8 (20.8)

Median (min-max) 25.5 (21.1-30.5) 16.2 (10.6-22.1) 58.3 (34.0-87.1)

Predicted 
accumulation ratio, 
Rpred

Mean (sd) 2.0 (0.2) na na

Median (min-max) 2.0 (1.8-2.2) na na

Observed 
accumulation ratio, 
Robs

Mean (sd) na na 2.6 (0.4)

Median (min-max) na na 2.5 (2.0-3.2)

Steady-state 
accumulation ratio, 
Rss

Mean (sd) na na 1.7 (0.6)

Median (min-max) na na 1.7(1.0-2.4)

Cmax, maximum observed serum drug concentration; t0-∞, half-life; auc0-24, area under the plasma drug 
concentration versus time curve (auc) from time 0 to 24 hours; aucint, auc over 1 dosing interval during steady state; 
auc0-∞, auc from time 0 to infinity.
Rpred, predicted accumulation ratio, defined as auc0-∞ divided by auc0-24; Robs, observed accumulation ratio, 
defined at aucint on day 7 divided by auc0-24 on day 1; Rss, steady-state accumulation ratio, defined as aucint on day 
7 of the multiple-dose cohort divided by auc0-∞ on day 1.

Table 1 Non-compartmental pharmacokinetic parameters in Japanese and Caucasian volunteers. 

Japanese Caucasians Caucasians 
vs. Japanese

DoseParameter
40 mg 
(n=6)

80 
(n=6)

160 
(n=6)

80 mg 
(n=8)

Mean of 
difference†

Cmax 
(µg/mL)

Mean (sd) 10.4 (1.3) 20.4 (2.0) 57.3 (11.9) 18.4 (2.6)
0.86 
(0.73-1.02)Median 

(min-max)
10.0 
(9.3-12.6)

21.1 
(17.7-22.9)

54.9 
(44.0-79.4)

18.2 
(14.3-23.0)

t ½ (hr)

Mean (sd) 24.7 (4.3) 24.9 (3.5) 31.3 (14.6) 26.1 (11.2)
1.02 
(0.77-1.34)Median 

(min-max)
25.3  
(18.9-29.4)

25.5  
(21.1-30.5)

25.3  
(22.2-60.1)

23.0  
(14.7-48.1)

Clearance 
(mL/hr)

Mean (sd) 167.4 (27.4) 143.9 (18.9) 119.4 (30.0) 167.9 (35.3)
0.86 
(0.73-1.02)Median 

(min-max)
169.2  
(134.7-208.7)

153.9  
(116.9-160.5)

121.4  
(66.4-157.4)

173.4 
(123.3-219.0)

Vd (L)

Mean (sd) 5.62 (1.31) 4.88 (0.55) 4.58 (0.58) 5.81 (2.38)
1.02 
(0.77-1.34)Median 

(min-max)
5.7 (3.9-7.0) 4.7 (4.3-5.7) 4.7 (3.8-5.4)

5.03 
(3.73-10.74)

auc0–∞
(µgαhr/mL)

Mean (sd) 244.4 (40.0) 564.6 (81.2) 1440.0 (493.7) 496.3 (108.3)
1.16 
(0.98-1.37)Median 

(min-max)
236.4 
(191.6-297.0)

519.7 
(498.4-684.3)

1318.5 
(1016.7-2411.2)

461.4 
(365.2-648.8)

Percent 
extrapolation

Mean (sd) 25.1(6.4) 24.9(3.5) 30.7(12.2) 24.9(11.6)

naMedian
(min-max)

27.1
(15.7-31.4)

25.5
(21.1-30.5)

25.5
(22.2-54.4)

21.9
(8.1-44.6)

 
Cmax, maximum observed serum drug concentration; t1/2, half-life; Vd, volume of distribution; auc0-∞, auc from 
time 0 to infinity; † 90%-confidence intervals between brackets. 
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Figure 1a & b Serum pc-sod concentration (mean ± sd) after single intravenous doses in Japanese 
(N=6, open circles 40 mg, closed circles 80 mg, closed triangles 160 mg) Caucasian (N=8, open triangles 
80 mg) volunteers.

Ta
b

le
 3

 
Co

m
pa

rt
m

en
ta

l a
na

ly
se

s 
of

 p
ha

rm
ac

ok
in

et
ic

 p
ar

am
et

er
s 

in
 Ja

pa
ne

se
 v

ol
un

te
er

s.

P
ar

am
et

er
Si

n
gl

e 
d

os
e 

p
c-

so
d

 
4

0
 m

g 
in

tr
av

en
ou

s
Si

n
gl

e 
d

os
e 

p
c-

so
d

 
8

0
 m

g 
in

tr
av

en
ou

s
Si

n
gl

e 
d

os
e 

p
c-

so
d

 
1

6
0

 m
g 

in
tr

av
en

ou
s

M
u

lt
ip

le
 d

os
e 

p
c-

so
d

 
8

0
 m

g 
d

os
e

Es
ti

m
at

e
St

an
d

ar
d

Er
ro

r
Es

ti
m

at
e

St
an

d
ar

d
Er

ro
r

Es
ti

m
at

e
St

an
d

ar
d

Er
ro

r
Es

ti
m

at
e

St
an

d
ar

d
Er

ro
r

C m
ax

 
(µ

g/
m

L)

M
ea

n 
(s

d)
11

.3
 (2

.4
)

0.
8

 (0
.4

)
20

.1
 (2

.7
)

0.
9

 (0
.5

)
51

.4
 (5

.8
)

3
.1

 (1
.6

)
19

.9
 (1

.1
)

1.
2

 (0
.3

)

M
ed

ia
n 

(m
in

-m
ax

)
11

.0
 

(8
.9

-1
5

.2
)

0.
7

 
(0

.5
-1

.5
)

20
.2

 
(1

6
.8

-2
4

.1
)

0.
8

 
(0

.3
-1

.4
)

49
.8

 
(4

5
.3

-6
1.

7
)

2.
7

(1
.8

-6
.1

)
20

.3
 

(1
8

.1
-2

0.
9)

1.
2

 
(0

.9
-1

.6
)

%
-c

v
7.

2
 (2

.5
)

4
.2

 (2
.0

)
5

.9
 (2

.3
)

5
.9

 (1
.3

)

Vd
 (L

)
M

ea
n 

(s
d)

6
.0

 (1
.5

)
0.

6
 (0

.3
)

5
.4

 (1
.0

)
1.

3
 (1

.6
)

6
.5

 (2
.2

)
3

.4
 (3

.0
)

7.
5

 (1
.4

)
0.

5
 (0

.3
)

M
ed

ia
n 

(m
in

-m
ax

)
6

.1
 (4

.0
-8

.1
)

0.
6

 (0
.3

-1
.0

)
5

.4
 (4

.2
-6

.5
)

0.
7

 (0
.3

-4
.1

)
6

.4
 (4

.2
-1

0.
1)

2.
8

 (0
.8

-8
.1

)
7.

1
 (5

.7
-9

.4
)

0.
4

 (0
.3

-0
.9

)

%
-c

v
9.

5
 (2

.3
)

21
.8

 (2
3

.7
)

46
.4

 (2
7.

6
)

6
.4

 (2
.1

)

Cl
ea

ra
nc

e
(m

L/
hr

)

M
ea

n 
(s

d)
16

3
.0

(2
7.

1)
15

.5
(7

.4
)

13
4

.6
(2

0.
0)

20
.5

(1
8

.7
)

93
.4

(3
0.

4)
45

.3
(2

9.
0)

11
0.

7(
22

.3
)

4
.1

(2
.3

)

M
ed

ia
n 

(m
in

-m
ax

)
16

2.
5

(1
32

.0
-2

0
8

.8
)

13
.3

(8
.6

-2
5

.6
)

12
7.

8
(1

0
9.

7-
15

8
.6

)
14

.5
(7

.7
-5

3
.4

)
95

.0
(4

7.
2-

12
6

.8
)

46
.4

(1
4

.4
-8

4
.7

)
10

6
.0

(8
4

.7
-1

49
.5

)
3

.3
(2

.5
-8

.4
)

%
-c

v
9.

5
 (4

.3
)

15
.8

 (1
5

.0
)

58
.2

 (4
2.

3)
3

.6
 (1

.2
)

t ½
, i

ni
tia

l 
(h

ou
rs

)

M
ea

n 
(s

d)
1.

4
 (0

.8
)

0.
8

 (0
.6

)
3

.9
 (3

.0
)

2.
6

 (1
.8

)
4

.5
 (1

.1
)

2.
2

 (0
.7

)
5

.5
 (3

.2
)

1.
7

 (0
.8

)

M
ed

ia
n 

(m
in

-m
ax

)
1.

7
 (0

.4
-2

.3
)

0.
7

 (0
.2

-1
.9

)
3

.2
 (0

.7
-8

.0
)

2.
5

(0
.6

-5
.3

)
4

.3
 (3

.3
-5

.9
)

2.
0

 (1
.5

-3
.3

)
4

.9
 (2

.3
-5

.5
)

1.
7

 (0
.7

-1
.7

)

%
-c

v
56

.0
 (2

9.
8

)
72

.0
 (1

4
.7

)
50

.9
 (1

9.
8

)
32

.5
 (8

.8
)

t ½
, 

te
rm

in
al

 
(h

ou
rs

)

M
ea

n 
(s

d)
27

.2
 (6

.0
)

5
.0

 (2
.6

)
31

.0
 (9

.4
)

16
.8

 (2
2.

5
)

63
.7

 (3
5

.7
)

81
.7

 (7
1.

9)
54

.7
 (1

0.
2

)
6

.0
 (2

.6
)

M
ed

ia
n

(m
in

-m
ax

)
28

.4
 

(2
0.

2-
35

.2
)

4
.7

 
(2

.3
-8

.6
)

27
.7

 
(2

2.
1-

43
.5

)
6

.6
 

(2
.4

-5
5

.9
)

54
.8

 
(2

9.
1-

10
3

.8
)

75
.0

 
(9

.7
-1

66
.6

)
56

.5
 

(3
8

.4
-5

4
.7

)
6

.5
(2

.4
-6

.0
)

%
-c

v
17

.3
 (5

.8
)

43
.6

 (4
9.

1)
10

4
.6

 (6
0.

8
)

10
.6

 (3
.7

)

 C m
ax

, e
st

im
at

ed
 m

ax
im

um
 d

ru
g 

co
nc

en
tr

at
io

n;
 t ½

 in
iti

al
,in

iti
al

 h
al

f-
lif

e;
 t ½

 in
iti

al
, t

er
m

in
al

 h
al

f-
lif

e;
 V

d,
 v

ol
um

e 
of

 
di

st
rib

ut
io

n;
 %

-c
v,

 m
ea

n 
co

ef
fic

ie
nt

 o
f v

ar
ia

tio
n 

in
 p

er
ce

nt
ag

e 
w

ith
 s

ta
nd

ar
d 

de
vi

at
io

n 
be

tw
ee

n 
br

ac
ke

ts
. 0 12 24 36 48

Time (hrs)

0

10

20

30

40

50

60

70

Japanese 40 mg

Japanese 80 mg

Japanese 160 mg

Caucasians 80 mg

pc
-s

o
d

 (µ
g/

m
L)

a.

0 12 24 36 48
Time (hrs)

100

80

60

40

20

10

8

6

4

2

1

pc
-s

o
d

 (µ
g/

m
L)

b.



anthracycline-induced cardiotoxicity, a pathophysiology based approach for early detection and protective strategies112

Figure 2 Serum pc-sod concentration (mean) after repeated administration of 80 mg/day 
intravenously for seven days in Japanese volunteers. 
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chapter 7 

Evaluation of lecithinized human 
recombinant super oxide 
dismutase as cardioprotectant  
in anthracycline-treated breast 
cancer patients    

Broeyer FJ, Osanto S, Suzuki J, de Jongh F, van Slooten H,  
Tanis BC, Bruning TA, Bax JJ, Ritsema van Eck HJ, de Kam ML, 
Cohen AF, Mituzhima Y, Burggraaf J
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introduction 
 

Anthracyclines are widely used in treatment regimens of cancer, 
including breast cancer. Their use is hampered by occurrence of 
irreversible cardiotoxicity which typically manifests as congestive 
heart failure (chf) months to years after anthracycline exposure.  
It is primarily related to cumulative anthracycline dose and it 
seems that females are affected more often than males.(1;2)  
The incidence increases from 5% in patients receiving doses up 
to 400 mg/m2 to 48% in patients receiving more then 700 mg/
m2 of doxorubicin.(1) Although less toxic analogues such as 
epi-doxorubicin have been developed, anthracycline-induced 
cardiotoxicity remains a clinical problem.(3) As the decline in 
ejection fraction and clinically manifest chf usually become 
apparent relatively late after anthracycline therapy, it is difficult 
to assess the cardiotoxic effects of anthracyclines early. However, 
anthracycline cardiac toxicity has also been reported to occur 
after only single dose administration.(1) This suggests that it 
may be possible to use (bio)markers of cardiac effects due to 
anthracyclines occurring early and that may be predictive of the 
late toxicity. Indeed, several markers such as qt-prolongation 
and changes in nt-probnp and cardiac troponin levels have been 
suggested to be such early markers.(4-7) These markers can 
potentially also be used to assess the effects of putative protective 
strategies.(4)

The mechanism of anthracycline-induced cardiotoxicity has not 
been fully elucidated, but formation of reactive oxidative species 
(ros), such as the superoxide (O2-) radical seem to play a major 
role.(8) Superoxide dismutase (sod) is an important scavenger of 
these ros and its use to prevent organ damage mediated by free 
radical overload has been investigated.(8) However, the currently 
existing therapies using exogenous sod as a protectant has been 
limited by for instance its short half-live and low affinity for the 
cell membrane.(9) Lecithinized sod (pc-sod) has a 100-200 fold 
higher affinity for the cell membrane and improved free radical 
scavenging properties.(10) Several animal-models, including a 
rodent doxorubicin-induced cardiotoxicity model, showed that 
pc-sod protected against free-radical mediated injuries.(11-20) 

abstract
 
aim  Anthracycline-induced cardiotoxicity is (partly) mediated 
by free radicals overload. A randomized study was performed 
in breast cancer patients to investigate whether free-radical 
scavenger Super Oxide Dismutase (sod) protects against 
anthracycline-induced cardiotoxicity as measured by changes in 
echo- and electrocardiography and an array of biomarkers.

methods and results  Eighty female, chemotherapy-naïve 
breast cancer patients (median age 49, range 24-67) scheduled 
for 4 or 5 courses of adjuvant three-weekly doxorubicin plus 
cyclophosphamide (ac) chemotherapy, were randomly assigned to 
receive 80 mg pc-sod (human recombinant sod bound to lecithin) 
or placebo, administered intravenously (iv) immediately prior to 
each ac course.

The primary end point was protection against cardiac damage 
evaluated using echocardiography, qt-assessments, and a set 
of biochemical markers for myocardial function, oxidative stress 
and inflammation. Assessments were performed before and 
during each course of chemotherapy, and at 1, 4 and 9 months 
after completion of chemotherapy regimen. In all patients 
cardiac effects such as increases in nt-probnp concentration 
and prolongation of the qtc-interval were noticed. There were 
no differences between the pc-sod and placebo-treated patients 
in systolic or diastolic cardiac function or for any other of the 
biomarkers used to assess cardiac effects of anthracyclines. 
 
conclusion  pc-sod at a dose of 80 mg iv is not cardioprotective 
in patients with breast carcinoma treated with anthracyclines.

clinical trial registration information  The 
study is registered at www.controlled-trials.com, number 
isrctn56637853. 
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The Netherlands. After randomization (1:1 to 80mg pc-sod or 
placebo) of eligible patients baseline assessments were done and 
the patients started their scheduled chemotherapy (4 or 5 courses) 
consisting of a combination of doxorubicin (60 mg/m2 over 
approximately 30 min) and cyclophosphamide (600 mg/m2 over 
approximately 30 min) administered iv. Patients were admitted 
to the hospital in the morning of each chemotherapy course. 
After baseline assessments were completed the patients received 
pc-sod or placebo as a 1-hr iv infusion. Immediately thereafter, 
anti-emetics followed by ac. After discharge in the afternoon, a 24 
hour visit took place in the morning of the following day. A similar 
procedure was repeated during a maximum of four courses. 
Patients receiving 5 courses received the study drug at the third 
course but no measurements were done. Median volume loading 
during the courses was 300ml per hour (in total approximately 850 
ml in 4 hours). After completion of chemotherapy, follow up visits 
took place at 1, 4 and 9 months.

 
Study medication 

pc-sod consists of an average of 4 molecules lecithin derivative 
covalently bound to the human derived CuZn-sod, produced 
by genetic recombination using E.coli as a host cell.(10) The 
lecithinized product has 3x103 U sod-activity per mg. A single 
batch of the lyophilized formulation was used. The pc-sod 
formulation consisted of 80 mg pc-sod and 133mg sucrose, 
the placebo formulation only consisted of sucrose. pc-sod and 
placebo were prepared for use by dissolution in 5% mannitol 
diluted with distilled water; all study medication was prepared at 
the lumc hospital pharmacy. 

Outcome measures

efficacy  Efficacy assessments included echocardiography (left 
ventricular ejection fraction [lvef], e/a ratio), electrocardiography 
[ecg] (qt-assessments) and blood sampling for biomarkers of 
cardiac function or damage (nt-probnp, ck-mb and troponin T),  

Early clinical studies in healthy subjects showed that a single 
intravenous (iv) dose of 80 mg pc-sod resulted in increased  
sod-activity in vivo for 16-24 hours.(21;22)

The efficacy of pc-sod as cardioprotective agent against 
anthracycline-induced cardiotoxicity was explored in an 
early phase ii study in woman with breast cancer, using serial 
echocardiography measurements, electrocardiography and a  
set of (bio)markers, reflecting myocardial function, oxidative  
stress and inflammation.(4;7;23-28) 

methods
Patient population

This multi-center, randomized, placebo-controlled trial was 
performed in female patients with early-stage breast cancer 
eligible for adjuvant doxorubicin and cyclophosphamide (ac) 
chemotherapy. Patients were scheduled to receive either 4 or 
5 ac cycles according to national guidelines at that time. Prior 
or concomitant use of cardiotoxic medication was an exclusion 
criterion. Patients with distant metastases, a history of other 
malignant disease, a life expectancy of less than one year, pre-
existing cardiovascular diseases, elevated transaminases above 
3 times the upper limit of normal and patients of whom we were 
unable to obtain a good quality echocardiogram before study drug 
administration were excluded. 

The institutional review board of Leiden University Medical 
Center (lumc) approved the study protocol. All patients gave 
written informed consent before participation and the study was 
conducted in accordance with the declaration of Helsinki (South 
Africa 1996 amendment), Good Clinical Practice and all applicable 
local laws and regulations. 

Study protocol

This study was coordinated and designed by the Centre of Human 
Drug Research (chdr) and carried out in 5 oncology centers in 
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for Research and Treatment of Cancer (eortc): QoL (eortc qlq-
C30, version 3) and QoL (eortc qlq-br23).(30) Qol was assessed 
at baseline, during each course and 1, 4 and 9 months after 
completion of chemotherapy.

pharmacokinetics  Blood was sampled for the determination 
of pc-sod serum concentrations during the first and last course 
at baseline and directly, 4 hours and 23 hours after the end of the 
infusion of pc-sod or placebo.

echocardiography  Echocardiography was performed at 
two locations in the Netherlands: the department of cardiology 
of lumc, Leiden and the department of cardiology of Maasstad 
Ziekenhuis, Rotterdam. The examinations were performed by 
a single echographer in each center and all examinations were 
supervised by an experienced cardiologist. To exclude inter-
observer variability all echo assessments for each individual 
patient were done at one center. 

The investigations consisted of routine imaging, M-mode 
imaging for measurement of left ventricular end-diastolic and 
end-systolic wall thickness (septum, posterior wall), fractional 
shortening and left ventricular ejection fraction (lvef, calculated 
according to Teichholz).(31) Measurements were made from 
the parasternal long-axis (or short-axis) view. The ratio of early 
rapid ventricular filling over atrial assisted filling (e/a ratio) was 
measured using pulsed-wave Doppler. Regional systolic function 
was evaluated with visual assessment of wall motion (and 
wall motion score index, wmsi) according to the 16-segment 
model. The examinations were performed using agevivid-7 
echocardiograph equipped with pulsed-wave Doppler in the  
lumc and using a Hewlett-Packard hp 5500 with a S3 probe in  
the Maasstad Ziekenhuis.

ecg recordings and analysis  For each patient 5-minute 
ecg recording were made using the CardioPerfect device (Welch 
Allyn, Delft, The Netherlands). ecg recordings were analyzed 
after fiducial segment averaging (fsa) to obtain heart rate, and 
qt-interval. This analysis was done using Intraval (Advanced 
Medical Systems, Maasdam, the Netherlands).(20) 

inflammation (macrophage inhibiting protein 1 [mip-1], high 
sensitivity c-reactive protein [hscrp], tumor necrosis factor alfa 
[tnf-a] and soluble intercellular adhesion molecule-1 [slcam]),  
and oxidative stress (oxldl, urinary biopyrrin and non-protein 
bound iron [npbi]). 

Echocardiography, ecgs and blood sampling for determination 
of nt-probnp, ck-mb (mass) and troponin T concentrations were 
done at baseline and 1 (including npbi), 4 and 9 months after a  
full chemotherapy regimen. 

ecg and blood sampling (for all biomarkers) was done before 
and at 24 hours after the start of each chemotherapy course. 
In addition ecg-recordings were made and blood was sampled 
for determination of ck-mb (mass), troponin T and tnf-α 
concentration at 4 hours after the start of each chemotherapy 
course.  
 
safety  During the study period hematology and blood chemi- 
stry were frequently assessed. Glomerular filtration rate (gfr) 
was determined during the courses from 24 hours creatinine 
clearance, during the follow up visits the mdrd formula was  
used.(29) In addition, at the first follow-up visit antibodies  
against pc-sod were determined.

All (serious) adverse events ((s)ae) were monitored from inclu-
sion until last follow up and (s)ae’s and concomitant medica-
tion were classified according to the World Health Organization 
Adverse Reaction Terminology and drug (whoart and whodrug) 
classification system. 

After completion of the last chemotherapy cycle for every 10th 
patient (until 60 patients were included), an interim safety report 
was reviewed by an independent Data Monitoring Committee 
(dmc). This report included all occurred (S)ae and laboratory safety 
data. After each report the dmc informed the principal investigator 
if in their opinion the data raised any safety concerns. The dmc 
was blinded during the whole study period, but could request 
emergency deblinding of (a part of) the data when deemed 
necessary.

quality of life  Quality of life (QoL) was assessed using two 
validated questionnaires developed by the European Organization 
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estimated that the protection by pc-sod will reduce incidence 
of cardiomyopathy from 33% to 5.5% in the patients. In order 
to be able to demonstrate this treatment effect (power=80%; 
2-sided test; p<0.05) a total of 72 patients is required. Second 
an exploratory power calculation on the biomarkers has been 
performed. These showed that this study has 80% power to  
detect (2 sided test; p<0.05) a difference in nt-probnp levels 
between the groups of approximately 53%. 

efficacy and safety population  Eighty female breast 
cancer patients were randomized to pc-sod or placebo. After 
randomization one patient was excluded because of an ab - 
normal echography at baseline. During the trial 7 patients were 
replaced: 4 patients dropped out (2 patient’s request, 1 because 
of discontinuation of chemotherapy due to extreme nausea), 4 
patients had incomplete echocardiographic assessments (2 due 
to logistic problems, 2 due to equipment failure). Data of replaced 
patients are used in both safety and efficacy analyses. Two patients 
were excluded from the efficacy analyses because of anomalies 
in pk-results, hence the safety population and efficacy population 
consisted of 79 and 77 patients respectively.

treatment effects  First, for each course the difference 
between the 24 hour and the baseline measurement was 
calculated and this series of four differences was compared 
between placebo and pc-sod treatment. This short term effect 
was analyzed using a mixed model analysis of variance (sas proc 
mixed) with visit as repeated factor within patient, treatment 
(pc-sod/placebo), group (4 or 5 courses) and treatment by group, 
treatment by time, group by time and treatment by group by time 
as fixed effects. For ecg parameters, tnfa and ck-mb (mass) the 
difference between the measurement at 4 hour and baseline at 
the occasion was analyzed the same way.

Second, the baseline measurement of each course except the 
first and the follow-up measurements were compared between 
Placebo and pc-sod. The long-term treatment effect for the 
echocardiographic, ecg parameters and ck-mb and nt-probnp was 
analyzed using a mixed model analysis of variance (sas proc mixed) 
with visit (occasion) as repeated factor within patient, treatment, 

For the analyses correction of the qt-interval for heart rate was 
done using Bazett’s formula (qtcB= qt/√ (rr)), Fredericia’s cubic 
root qtcF=qt * (1/rr)¹³;and using the linear correction method 
according to Framingham Heart Study (qtcL= qt + 0.154 * (1 – rr)). 

Assays

Samples were assayed for nt-probnp, troponin T and ck-mb (mass) 
and npbi at the Central Clinical Chemical laboratory (ckcl) of lumc. 
Lower limits of detection (inter- and intra-assay variability) were 
5 ng/L (< 5.8%), 0.1 ng/mL (< 2.5%), 0.01 µg/mL (< 5.6%) and 
0.01 µmol/L (< 9.2) for nt-probnp, cTnT, ck-mb (mass) and npbi 
respectively. Assays for tnf-a, hscrp, slcam, mip-1a, oxldl and 
urinary bioppyrin were performed at the Netherlands Organization 
for Applied Scientific Research (TNO). The lower limits of detection 
of the assays (inter- and intra-assay variability) were 0.12 pg/
mL (<12.5%), 0.1 µg/L (< 10%), 0.35 ng/mL (< 12.5%), 10 pg/mL 
(< 10%), 1 mU/L (< 7.5%) and 0.1 U/L (< 12.5%) for tnfa, hscrp, 
slcam, mip-1a, oxldl and urinary biopyrrin respectively. 

Serum pc-sod concentrations were measured using an enzyme 
linked immunosorbent assay (elisa), consisting of an antibody 
against human Cu, Zn-sod, and a second antibody against human 
Cu, Zn-sod conjugated with horseradish peroxidase. The assay has 
a lower limit of quantification 626 ng/mL and the coefficients of 
variation did not exceed 7.9% which was observed for the lower 
concentrations. Antibody formation against pc-sod was measured 
by quantification of specific IgE, IgG and IgM titres as described 
previously.(21)  

Statistical analyses 

power  As both the incidence of sub-clinical cardiotoxicity and 
the treatment effects were unknown, the power calculation of 
the study has been performed using a number of assumptions: (1) 
The incidence of subclinical cardiomyopathy in patients is 33%; 
(2) Animal experiments suggest that pc-sod treatment prevents 
cardiomyopathy in 100% of the cases. It has therefore been 
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Safety

There were no clinically relevant findings related to pc-sod 
treatment on clinical laboratory measurements, vital signs or ecg 
findings. gfr was stable during the study period. The ae pattern 
did not differ among treatment groups (table 2) and the majority 
of ae’s could be attributed to the chemotherapeutics and were 
mild to moderate in intensity. Antibodies against pc-sod were not 
detected in any of the patients

efficacy
Long-term effects

echocardiography  lvef (± sd) and e/a ratio (± sd) were 67% 
± 6, 1.06 ± 0.28 and 64% ± 7, 1.1 ± 0.3 at baseline, in patients 
receiving placebo and pc-sod respectively and the overall decline 
(95% confidence interval between brackets) was -1% (-2 to1%), 
0.0 (0.0 to 0.0%) and -2% (-3 to -0%), 0.0 (0.0 to 0.0%) during  
the study (figure 1, table 3).  

Differences (95%-confidence interval between brackets) 
between pc-sod and placebo on lvef and e/a ratio were -1%  
(-3 to 1%) and 0.0 (-0.1 to 0.0%) respectively. 

wmsi did not change significantly during the trial and no 
differences between treatments were observed.

biomarkers - myocardial injury  During courses and follow  
up the overall change (percentage change, 95%-confidence inter - 
val between brackets) of nt-probnp and ck-mb was 32.0% 
(12.8 to 54.5), -5.7% (-12.4 to 1.4%) and 14.2% (-2.6 to 33.8%), 
-7.6% (-14.2 to -0.5%) in patients receiving placebo and pc-sod 
respectively (figure 2, table 3).

The differences between pc-sod and placebo were -13.5% 
(-30.9 to 8.2%) and -2.0% (-11.7 to 8.8%) for nt-probnp and ck-mb 
respectively. 

During the follow-up period in 10 patients (6 pc-sod, 4 placebo) 
detectable (although not pathologically elevated) troponin levels 
were present. 

group, treatment by time, treatment by group, time by group and 
treatment by time by group as fixed effects. The baseline value of 
the first course was included as covariate.

time effects  To assess the 4 and 24 hour difference from 
baseline within a course, the estimated differences from baseline 
were compared to 0 (no difference from baseline) within the first 
treatment mixed model for the ecg and biomarker parameters. 
The estimated difference between the course 1 baseline and 
follow up measurements (long-term time-effects) for the 
echocardiographic, ecg parameters, ck-mb and nt-probnp were 
compared to 0 (no difference from baseline) within the second 
treatment mixed model.

pharmacokinetics  Compartmental pharmacokinetic analysis 
was performed using nonmem Version vi software (GloboMax llc, 
Hanover, md), maximum serum concentration and half-life were 
reported.
 
additional (sub-group analyses)  All data was also 
analyzed excluding patients who received trastuzumab or left-
sided radiotherapy as concomitant therapy. 

All statistical analyses were performed using sas for windows 
V9.1.2 (sas Institute, Inc., Cary, nc, usa). The study is registered at 
www.controlled-trials.com, number isrctn56637853. 

results
Baseline characteristics

The median age of the 79 patients who received at least one dose 
of pc-sod and ac chemotherapy was 49 years (range 24-67 years). 
The median (min-max) number of courses was 4 (1 to 5) and 4 (2 
to 5) for placebo and pc-sod, combined with ac chemotherapy, 
respectively (table 1).
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-19.1%), -48.6% (-65.9 to -22.5%) in patients receiving placebo or 
pc-sod respectively. For tnf-alpha this effect was already present 
at 4 hours post-dose. At 24 hours the difference between pc-sod 
and placebo for hscrp, slcam-1, tnf-α, mip-1α was -2.9% (-19.0 
to16.5%), -0.7% (-2.7 to 1.4%), -5.3% (-18.1 to 9.6%) and -3.3% 
(-45.7 to 72.1%) respectively (table 4).

electrocardiography  Heart rate showed a small 
increment at 24 hour during the courses in the pc-sod arm, 
changes were -1.2 bpm (-3.2 to 0.7 bpm) and 3.6 bpm (1.8 to 5.5 
bpm) in patients receiving placebo and pc-sod respectively. 
After each course the (corrected) qt-interval prolonged at 4 
hours post-dose and increased further at 24 hours post-dose. 
Overall prolongation of the qtc interval (using a linear correction 
method) at 24 hours post-dose was 12.4 msec (8.8 to 15.9 msec) 
and 9.8 msec (6.4 to 13.2 msec) in patients receiving placebo 
and pc-sod respectively.

The difference between pc-sod and placebo at 24 hours after 
each chemotherapy cycle in heart rate, qt-interval, corrected 
qt-interval (Bazett), qt-interval (linear) was 4.9 bpm (2.2 to 7.6 
bpm), -11.0 msec (-18.2 to -3.9 msec), 3.0 msec (-2.5 to 8.4 msec) 
and -2.7 msec (-7.4 to 1.9 msec) respectively (table 4). 

Number of courses and other adjuvant therapy
It was also analyzed if other (potentially cardiotoxic) adjuvant therapy 
or the number courses influenced our results. As all analyses showed 
comparable results; only the full dataset was reported.

quality of life  In both treatment groups similar effects 
(decline) on QoL during the chemotherapy were observed (data not 
presented).

pharmacokinetics  Maximum serum concentrations were 
reached within 1 hour and amounted to 32.4 mg/L (sd 11.9)  
and 31.4 mg/L (sd 12.1) for the first and last visit respectively.  
The estimated half-life was approximately 20 hours. 

electrocardiography  Heart rate and qtc-interval (corrected 
using a linear method) increased during courses and follow up 
with 0.6 bpm (-1.5 to 2.8 bpm), 5 msec (3.8 to 11.3msec) and 4.0 
bpm (1.9 to 6.2 bpm), 10.8 msec (7.0 to 14.7 msec) in patients  
with placebo or pc-sod respectively (figure 3, table 3). 

The differences between pc-sod and placebo for heart 
rate, qt-interval, corrected qt-interval (Bazett) and corrected 
qt-interval (linear) were 3.4 bpm (0.4 to 6.5 bpm), -3.1 msec 
 (-11.6 to 5.4 msec), 7.4 msec (1.9 to 12.9 msec) and 3.3 msec  
(-2.1 to 8.7 msec) respectively.  

Effects within the courses

oxidative stress  Urinary biopyrrin increased (percentage 
change, 95%-confidence interval between brackets) within the 
courses in the placebo group only, although this effect was not 
present for each individual course. Change at 24 hours was 13.0% 
(0.8 to 26.7%) and 3.4% (-7.9 to 16.0%) in patients receiving 
placebo and pc-sod respectively. While oxldl and npbi levels 
did not change significantly between baseline and at 24 hours, 
the difference in percentage change (95%-confidence interval 
between brackets) between pc-sod and placebo was 10.3%  
(-20.5 to 52.9%), 6.2% (0.2 to 12.5%) and -8.5% (-22.2 to 7.6%) 
for urinary biopyrrin, oxldl and npbi respectively (table 4).

myocardial injury  The overall increment at 24 hours post-
dose for nt-probnp and ck-mb (mass) was 199.8% (154.6 to 
253.0%), 8.2% (0.6 to 16.4%) and 263.8% (207.9 to 329.7%), 
10.3% (2.5 to 18.8%) in patients receiving placebo and pc-sod 
respectively. 

The difference at 24 hours post-dose between pc-sod and 
placebo was 21.4% (-3.9 to 53.3%) and 2.0% (-8.1 to 13.1%) for 
nt-probnp and ck-mb respectively (table 4). 

inflammation  Within the courses hscrp and slcam did not 
change markedly, while tnf-α and mip-1α declined with -23.2% 
(-30.5 to -15.1%), -46.9% (-64.5 to -20.4%) and -27.2% (-34.5 to 
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Independent of the explanation of the failure of free radical 
scavenging agents as protective agents against anthracycline-
induced cardiotoxicity, our study re-emphasizes the necessity 
to identify other strategies to reduce the risk of anthracycline-
induced chf.

We considered the possibility that the administered doses of 
anthracyclines did not induce sufficient myocardial damage to 
detect any prophylactic effect of pc-sod, as lvef and e/a ratio 
did not change markedly. However, the profound changes in nt-
probnp concentration and (corrected) qt-interval, indicate that in 
all patients indeed experienced some (subclinical) cardiotoxicity, 
as both markers are associated with the occurrence of anthracy-
cline induced cardiac failure and an adverse outcome.(44) 

A limitation of our study is that although the echo- and 
electrocardiographic and biochemical endpoints used in this 
study are well established markers of (anthracycline induced) 
cardiac damage and functional impairment, oxidative stress and 
inflammation, the study was not designed to detect differences in 
cardiac mortality or the occurrence of clinical chf. Furthermore, 
some patients received additional potentially cardiotoxic 
treatments such as trastuzumab and/or radiotherapy. However, 
re-analysis of the data excluding these patients did not result in 
different findings. An additional yield of this trial is that we have 
demonstrated several robust biomarkers that are mechanistically 
associated with the Adriamycin-induced acute myocardial 
damage. These biomarkers could be used in future studies with 
other investigative agents that protect against this damaging 
effect.

In conclusion, we showed that iv administration of 80mg 
pc-sod prior to each chemotherapy course was not efficacious 
as protective agent against anthracycline-induced cardiotoxicity, 
as evaluated by echocardiography, electrocardiography and 
a comprehensive array of biomarkers of myocardial damage, 
inflammation and oxidative stress, in female breast cancer 
patients treated with a combination of cyclophosphamide and 
doxorubicin for early stage breast cancer. 
 

discussion
 
pc-sod did not show a protective effect on cardiotoxicity, as 
evidenced by differences in nt-probnp concentration and pro-
longation of the qtc-interval, which occurred in all breast cancer 
patients undergoing ac chemotherapy. Also, echocardiographic 
systolic (lvef) function or any of the array of the other biomarkers 
assessed did not show a clinical significant change during or  
following chemotherapy and were also not affected by pc-sod. 

Safety analyses did not show any unfavorable effects of  
pc-sod at the administered dose, as laboratory assessments  
and ae patterns were similar between treatments. 

The lack of a cardioprotective effect of pc-sod at a dose 
of 80 mg iv on any of the markers of anthracycline-induced 
cardiotoxicity in chemo-naïve breast cancer patients may be 
explained by a lack of efficacy of pc-sod at the dose used.

However, the negative findings in this study are in keeping  
with the results of several other studies, showing that exoge- 
 nously administered free radical scavengers are not able to  
protect against anthracycline-induced cardiotoxicity and add to 
the increasing knowledge that free radical mediated injury is only 
partly involved in the pathogenesis of the cardiotoxicity of anthra-
cyclines.(32-34) In addition, we were not able to demonstrate the 
occurrence of oxidative stress in vivo, as none of the biomarkers  
for oxidative stress changed after doxorubicin infusion. 

Another reason for the lack of effects of pc-sod (and maybe 
of free radical scavenging agents in general) could be that the 
therapeutic window of these agents seem to be narrow. This 
involves the observation that in animals a bell-shaped dose-
response curve (higher doses of sod showed less protection) is 
present after administration of (pc-) sod.(11;35-39) If such a bell-
shaped curve is also present in humans, this could implicate that 
in this study not the correct dosage was used. Although several 
mechanisms could be responsible for this bell-shaped effect  
curve, the most plausible explanation is (pc-) sod causing excess 
ros formation. In particular this concerns formation of H²O² 
which has been shown to be capable to induce apoptosis in 
cardiomyocytes.(8;37;40-43)
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Table 2  Summary of Adverse Events 

Adverse Event Placebo (n = 40) pc-sod (n = 39)

No. of Patients % No. of Patients %

General

Fatigue 30 75 30 77

Malaise 6 15 8 21

Hot flushes 15 38 16 41

Surgery related aes 7 18 8 21

Change of taste 11 28 8 21

Central nervous system disorders

Headache 26 65 18 46

Dizziness 8 20 8 21

Gastro-intestinal system disorders 

Nausea 32 80 29 74

Constipation 11 28 11 28

Dyspepsia 7 18 13 33

Mucositis 5 13 9 23

Psychiatric disorders† 10 25 11 28

Respiratory system disorders

Respiratory tract infections 13 33 17 44

Vision disorders 

(Kerato-) conjunctivitis 18 43 18 46

 
Note: Adverse events occurring during chemotherapy in more then 20 patients in one of the the 2 treatment groups. 
† Nervousness, emotional lability, anxiety, agitation, insomnia, impaired concentration, abnormal thinking, depression 
and hallucinations

Table 1 Baseline Demographics and Clinical Characteristics 

Placebo (n = 40) pc-sod (n = 39)

Age, bmi and cumulative doxorubicin dose; median (range)

Age (years) 47.0 (30 – 66) 50.0 (24 – 67)

bmi (kg/m2) 24.0 (19.4 – 37.7) 25.5 (19.6 – 38.5)

Cumulative doxorubicin dose (mg/m2) 240 (60 – 300) 240 (120 – 300)

Echocardiography; mean (sd)

lvef (%) 66 ± 6 64 ± 7

e/a ratio 1.06 ± 0.28 1.08 ± 0.28

Hemoglobin, renal function, and cardiac (bio)markers; mean (sd)

Hemoglobin (mmol/L) 7.7 ± 0.7 8.0 ± 0.7

gfr (ml/min) 100.5 ± 23.9 106.3 ± 37.4

nt-probnp (ng/L) 71 ± 46 84 ± 92

ck-mb mass (mg/L) 1.7 ± 0.9 1.7 ± 0.5

qtcL (msec) 426 ± 12.7 433 ± 24.0

Number of courses†; n (%)

1 2 (3%) 0 (0%)

2 0 (0%) 1 (1%)

3 2 (3%) 0 (0%)

4 17 (22%) 20 (25%)

5 19 (24%) 18 (23%)

Adjuvant therapy; n (%)

Hormonal therapy 24 (60%) 26 (67%)

Trastuzumab 0 (0%) 5 (13%)

Docetaxel 0 (0%) 4 (10%)

Gosereline 2 (5%) 3 (8%)

Radiotherapy; n (%)

Right Prior to chemotherapy 3 (8%) 3 (8%)

After cessation of chemotherapy 3 (10%) 9 (23%)

Left Prior to chemotherapy 4 (10%) 4 (10%)

After cessation of chemotherapy 6 (15%) 9 (22%)

 
† Number of courses doxorubicin, cyclophosphamide (all patients received pc-sod or placebo prior to their 
chemotherapy courses). No statistical comparison was done at baseline, as baseline values were included as covariates. 



anthracycline-induced cardiotoxicity, a pathophysiology based approach for early detection and protective strategies chapter 7 evaluation of lecithinized human recombinant super oxide dismutase as cardioprotectant in  
anthracycline-treated breast cancer patients 

134 135

Table 4 Effects within the courses 

Overall change from 
course baseline  
(at 24 hours)

Difference 
between 
treatments

 95%-confidence 
interval

p-value

Placebo pc-sod

Biomarkers of oxidative stress

Urinary biopyrrin  
(µmol/g creatinine, % change)

13.0 3.4 10.3   -20.5 to 52.9 0.55   

oxldl (mU/L, % change) -3.0 3.0   6.2   0.2 to 12.5 0.04   

npbi (µmol/L, % change) 15.9 5.1 -8.5   -22.2 to 7.6 0.28   

Biomarkers of myocardial injury

nt-probnp (ng/L, % change) 199.8 263.8 21.4   -3.9 to 53.3 0.10   

ck-mb mass (mg/L, % change) 8.2   10.3   2.0   -8.1 to 13.1 0.71   

Biomarkers of inflammation

hscrp (µg/L, % change) -2.0 -4.8 -2.9   -19.0 to16.5 0.75   

slcam-1 (ng/L, % change) -1.1 -1.8 -0.7   -2.7 to 1.4 0.50   

tnf-a (pg/L, % change) -23.2 -27.2 -5.3   -18.1 to 9.6 0.46   

mip-1a (pg/mL, % change) -46.9 -48.6 -3.3   -45.7 to 72.1 0.91   

Electrocardiography

Heart rate (bpm) -1.2   3.7   4.9   2.2 to 7.6 <0.001

qt-interval (msec) 16.3 5.3 -11.0   -18.2 to -3.9 0.003   

qtcB-interval (msec) 14.2 17.1 3.0   -2.5 to 8.4 0.23   

qtcL-interval (msec) 14.2 11.5 -2.7   -7.4 to 1.9 0.24   

 
* Significant change from baseline (p < 0.05)

 

Table 3 Long-term effects 

Overall change over 
course baseline and 
follow up

Difference 
between 
treatments

 95%-confidence 
interval

p-value

Placebo pc-sod

Echocardiographic parameters

Left ventricular ejection fraction (%) -1 -2 -1 -3 to 1 0.31   

e/a ratio -0.0 -0.0 -0.0 -0.1 to 0.0 0.48   

Biomarkers of myocardial injury

nt-probnp (ng/L, % change) 32.0  14.2 -13.5 -30.9 to 8.2 0.20

ck-mb mass (mg/L, % change) -5.7 -7.6   -2.0 -11.7 to 8.8 0.70

Electrocardiography

Heart rate (bpm) 0.6 4.0 3.4 0.4 to 6.5 0.03

qt-interval (msec) 6.8   3.6 -3.1 -11.6 to 5.4 0.46

qtcB-interval (msec, corrected Bazett) 8.8 16.2 7.4 1.9 to 12.9 <0.01

qtcL-interval (msec, corrected Framingham) 7.5 10.8 3.3 -2.1 to 8.7 0.23

* Significant change from baseline (p < 0.05)
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Figure 1 Mean left ventricular ejection fraction (a) and e/a-ratio (b) for pc-sod (open circles) and 
placebo (closed circles) and 95%-confidence intervals (pc-sod down, placebo up) at baseline and 1, 4 
and 9 months post-chemotherapy.

Figure 2 Mean nt-probnp (a) concentrations, ng/L, and qtc (b), milliseconds, linear corrected for 
heart rate according to Framingham, during chemotherapy and follow up for pc-sod (open circles) and 
placebo (closed circles) and 95%-confidence intervals (pc-sod up, placebo down) during the course and 
1, 4, 9 months post-chemotherapy.
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0xidative stress  After anthracycline administration the 
damage to the myocardium begins with ros. Therefore we 
included several parameters indicative of oxidative stress in our 
model. First oxidative damage was assessed by measuring the 
oxidation product of Low Density Lipoprotein (oxldl). oxldl is 
a predictor of mortality in congestive heart failure (chf) and in 
a recent study it was shown that chronic exposure to oxldl, as 
measured by antibodies against oxldl, is associated with an 
increased morbidity and mortality in chf.(3;4) Other markers 
of oxidative stress used in our studies was the measurement of 
oxidative metabolites of bilirubin in urine. Urinary biopyrrins are 
associated with (intracellular) oxidative stress and conditions 
associated with free radical overload, including congestive heart 
failure and acute coronary syndromes and could therefore also be 
useful in the detection of anthracycline-induced oxidative stress.
(5;6) 

In chapter 7 it was shown that oxldl and urinary biopyrrins 
are not elevated after the administration of anthracyclines, 
suggesting that these markers are not suitable for the detection of 
anthracycline-induced cardiotoxicity in humans. This is in keeping 
with the knowledge that these markers were never directly linked 
to anthracycline-induced cardiotoxicity. The reason for this lack 
of response could be that these markers are not sensitive enough 
to detect oxidative stress caused by anthracyclines, or the dose 
used in our studies was too low to generate sufficient ros (or 
a combination of both). Another possibility is that the effect of 
oxidative stress in vivo plays a less prominent role than previously 
thought. 

In vitro and animal studies show that npbi is an important factor 
in the generation of ros.(7-9) npbi is elevated after administration 
of the free radical generating chemotherapeutic bleomycin.(10) As 
discussed previously, npbi has a pivotal role in the pathophysiology 
of anthracycline-induced cardiotoxicity.(11) In this thesis (chapter 
3) we further explored npbi as a marker for oxidative stress 
after the administration of anthracyclines. It was shown that 
npbi was increased for a short time after the administration of 
anthracyclines. These results give further insight in the in vivo 
mechanism of anthracycline-induced cardiotoxicity and indicate 
that after administration of anthracyclines npbi indeed is involved 

summary and discussion
 

 
Traditionally drug development starts with the evaluation of 
kinetics and tolerability, while in a later stage efficacy is evaluated. 
An alternative approach that includes biomarkers for clinical 
endpoints early in the clinical development has been advocated, 
with potential gains in time and information content of the 
development process.(1;2) This thesis described the such an 
approach for a drug to inhibit anthracycline-induced cardiotoxicity. 

The thesis comprises two parts: in chapter 2, 3 and 4 we tried to 
further identify biomarkers suitable for detection of anthracycline-
induced cardiotoxicity with an attempt to provide further insight 
in the pathophysiology of anthracycline-induced cardiotoxicity. In 
chapter 5, 6 and 7 the development of a novel compound shown 
to be effective against anthracycline-induced cardiotoxicity in 
animals, was described.  

Biomarkers for clinical endpoints in anthracycline-
induced cardiotoxicity

Although the underlying mechanisms are still not completely 
unravelled, reactive oxygen species (ros), which are formed in 
the presence of non-protein bound iron (npbi), are likely to play 
a pivotal role in anthracycline-induced cardiotoxicity. These 
ros lead to apoptosis of cardiomyocytes eventually causing 
cardiomyopathy and clinical heart failure. Several stages in the 
development of anthracycline-induced cardiac failure may be 
evaluated using biomarkers. Therefore a comprehensive set of 
biomarkers, including markers of oxidative stress, myocardial 
injury and remodelling, and markers related to the inflammatory 
processes that accompany the injury were selected. Theoretically, 
a combination of these biomarkers can be used to assess the risk 
for the future development of cardiac failure. Secondly a model 
using a combination of these markers could be useful in the 
evaluation of new protective compounds against anthracycline-
induced cardiotoxicity.
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injury and have been suggested to detect anthracycline-induced 
cardiotoxicity in an early stage of pathology.(13-16) In chapter 
2 of this thesis we further explored some of these markers 
(cardiac troponins, nt-probnp and ck-mb) and showed that the 
administration of anthracyclines give an almost immediate two- 
to threefold increase of nt-probnp, while no effects for the other 
markers was seen. As elevated levels of nt-probnp are associated 
with an increased myocardial wall stretch, our findings suggest 
that the administration of anthracyclines causes an immediate 
increase in myocardial wall stress. It can only be speculated what 
the mechanism is for the increase in wall stress, as it is possible 
that the increase in nt-probnp is either caused by direct damage 
to the myocardium or represents the neurohormonal response 
to the damage. Whatever the mechanism is, our findings suggest 
that nt-probnp is suitable for the course-to-course evaluation 
of anthracycline-induced cardiotoxicity. Furthermore, it can 
be hypothesized that assuming this marker is an indication of 
myocardial wall stress, preventing the rise in this marker could 
be an indication of a cardioprotective. effect.. Indeed, there is 
evidence that the concurrent administration of ace inhibitors 
(which reduce afterload) can protect against anthracycline-
induced cardiotoxicity.(17;18)

In addition to biochemical markers, electrocardiographic 
parameters could also be indicative of cardiac failure; a marker that 
is of interest is cardiac repolarization. Repolarization is represented 
in the ecg by the length of qt-interval. The qt-interval may be 
prolonged in the failing heart and studies related qt-prolongation 
to the occurrence of heart failure.(19) Lengthening of the 
qt-interval has also been described after administration of 
anthracycline and has therefore been suggested as an early marker 
for anthracycline-induced cardiomyopathy.(16) The research 
described in this thesis showed that anthracyclines directly affect 
repolarization, as a prolongation of the qt-interval occurred 
after administration of anthracyclines. In addition, the results in 
chapter 4 suggest that repolarization reserve, which represents 
lability of repolarization, is affected by the administration of 
anthracyclines. It was shown that the repolarization reserve, as 
measured by a new method to assess the beat-to-beat variation in 
qt-interval, increases after the administration of anthracyclines. 

in the mechanism of the cardiotoxicity of anthracyclines. The 
finding that npbi is released after the administration could also 
explain the efficacy of the iron chelator dexrazoxane against 
anthracycline-induced cardiotoxicity. Therefore our results and 
those of others indicate that npbi is an interesting marker to 
include in a pathophysiology-based model. 

inflammation  In the early stages of congestive heart failure 
pro-inflammatory cytokines such as tumor necrosis factor alpha 
(tnfα), soluble IcaM and macrophage inhibiting protein (mip) 
are elevated.(12) It can be hypothesized that when the injury by 
anthracyclines is supposed to occur (during and shortly after 
the anthracycline infusions) these biomarkers will (transiently) 
increase as a sign of the myocardial damage.

In our study no changes in these biomarkers were observed 
during or shortly after chemotherapy. This can be attributed to 
several causes. First, because anthracyclines (or the dose that was 
used) simply do not induce the production of pro-inflammatory 
cytokines. Another possibility is that anthracyclines suppress 
the production of pro-inflammatory cytokines by a yet unknown 
mechanism or that these cytokines exert a local reaction and that 
this goes unnoticed when using systemic venous blood samples. 
Finally, it cannot be excluded that the concomitant administration 
of corticosteroids suppressed the inflammatory reaction after 
anthracycline administration. Inflammatory markers therefore 
are of limited use in a model for early evaluation of anthracycline-
induced cardiotoxicity.

cardiac injury  All the earlier described processes eventually 
lead to cardiac injury and failure. It is necessary, therefore, to 
include markers of cardiac function. Unfortunately, traditional 
markers of cardiac function, such as left ventricular ejection 
fraction (lvef), measured by echocardiography of nuclear imaging, 
are unsuitable for the early detection of anthracycline-induced 
cardiotoxicity.(11) This is merely because a decline in lvef occurs 
in a stage of chronic pathology, when damage to the myocardium 
is irreversible. and compensatory mechanisms like remodeling 
are exhausted. Several biochemical markers, including natriuretic 
peptides and cardiac troponins, could be indicative of cardiac 
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prolonged half-life and enhanced affinity for the cell membrane.
(22;23) Indeed, studies in animals showed that pc-sod could 
be efficacious against anthracycline-induced cardiotoxicity. In 
chapter 5 and 6 of the thesis the first-in-human studies of this 
compound are described. It was shown that in humans, too, 
pc-sod had a prolonged half-life and an increased sod activity 
until 24 hours after administration. It can be hypothesized that 
these characteristics make pc-sod a possible candidate to be a 
protective agent in anthracycline-induced cardiotoxicity. Using 
the model described earlier, the efficacy of pc-sod was evaluated 
in female breast-cancer patients, who received doxorubicin as 
adjuvant treatment. pc-sod failed to show efficacy. Among the 
possible causes for this failure discussed in chapter 7, the most 
likely explanation is that free radical formation is not the sole 
explanation for the cardiotoxicity of anthracyclines. Evidence 
for this can be found in the fact that the anti-cardiotoxic effect 
of dexrazoxane is mediated by its ability to specifically inhibit 
doxorubicin-induced dna damage in cardiomyocytes and 
probably not by counteracting the formation of free radicals.(24) 
Secondly, mitoxantrone, which is not known to cause free radical 
overload, also causes cardiotoxicity.(25-27) The findings in this 
thesis support the increasing knowledge that ros are not solely 
responsible for anthracycline-induced cardiotoxicity and further 
preclinical research is necessary to elucidate the exact mechanism 
of anthracycline-induced cardiotoxicity.  

Future directives

potentially new biomarkers  In this thesis a comprehen-
sive set of biomarkers is used, recently two new biomarkers have 
been discovered, st2 and galectin-3.(12;28) Both markers are 
associated with cardiac fibrosis and remodeling and can be used 
to detect heart failure in an early stage.(12;28) There is a case to 
evaluate these markers in anthracycline-induced cardiotoxicity, 
as it can be hypothesized that administration of anthracyclines 
leads to cardiac remodeling and fibrosis. The latter is supported 
by the finding that late gadolinium enhancement, which is a 
marker of cardiac fibrosis, can be detected with cardiac mri after 

As anthracyclines are not known to block cardiac ion channels, 
it is possible that both effects (prolongation of the qt-interval 
and the increased lability of repolarization), is an early sign of 
the cardiotoxic effects of anthracyclines. These results point 
to a potentially powerful non-invasive technique to evaluate 
anthracycline-induced cardiotoxicity at an early stage.

In summary, in this thesis an extensive array of (bio)markers 
was evaluated for the early detection of anthracycline-induced 
cardiotoxicity. It can be concluded that particularly the markers of 
cardiac failure (e.g. nt-probnp and prolongation of the qt-interval) 
could be suitable for the early detection of anthracycline-induced 
cardiotoxicity. 

The multi-marker approach described in this thesis could be a 
powerful tool in the development of cardioprotective compounds. 
This is in keeping with a research study that used a multi-marker 
approach to predict heart failure in the general community.(20)  

Protective Strategies

The second part of this thesis consisted of the development of a 
new compound that could protect against anthracycline-induced 
cardiotoxicity. 

The general belief was that the toxicity of anthracyclines could 
almost solely be explained by the effect of free radicals, which are 
formed intracellularly in the presence of iron. Therefore, numerous 
free radical scavengers have been evaluated in the past decade, 
both preclinically and clinically, to antagonize the toxic effects 
of anthracyclines – so far with limited effect, however.(21) As a 
possible explanation for this failure it has been suggested that 
the exogenously administered antioxidants did not reach the 
cytosol, or had too short a half-life. There is also evidence that 
the therapeutic range of antioxidants is narrow.(22;23) One of the 
most important antioxidants is superoxide dismutase (sod), which 
is present in the cytosol, mitochondria and (in small amounts) 
extracellularly. sod has an important function in scavenging free 
radicals formed in the presence of anthracyclines.

To overcome some of the disadvantages of sod a lecithinized 
superoxide dismutase (pc-sod) was developed which has a 
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New chemotherapeutic agents like liposomal anthracyclines mat 
solve the problem entirely. A recent meta-analysis demonstrated 
that the occurrence of clinical and subclinical cardiotoxicity 
was considerably reduced with these agents when compared to 
doxorubicin.(34)

In addition, some other less ordinary strategies, such as 
modifying intracellular transcription factors, are worth exploring. 
The observation that concurrent treatment with the monoclonal 
antibody against the her2/neu oncogene initially augments 
the occurrence of heart failure, leads to the hypothesis that 
upregulating her2/neu could protect against anthracycline-
induced cardiotoxicity. Indeed there is preclinical evidence that 
this protects cardiomyocytes from toxicity of anthracyclines.
(35-37) Another interesting target is gata4, a transcription factor 
that regulates myocyte differentiation and sarcomere synthesis, 
and influences survival and several cardiac genes that play a role 
in anti-apoptotic signaling.(38;39). Additionally it suppresses 
anthracycline-induced apoptosis.(40) As gata4 overexpression 
by alfa-adrenergic agonists antagonizes anthracycline-induced 
cardiotoxicity it has been suggested that administration of alfa-
adrenergic agonists could be cardioprotective in anthracycline 
induced heart failure. This seems paradoxical as increasing 
adrenergic drive has a deleterious influence on the outcome in 
heart failure. Nevertheless some authors suggest that the use of 
alfa-adrenergic agonists should be evaluated.(41) Finally, it has 
been suggested that exercise could prevent against anthracycline-
induced cardiotoxicity by increasing neuregulin/erbB signaling.
(41) It can be expected that when the exact mechanism of 
anthracycline-induced cardiotoxicity is further elucidated even 
more protective options will emerge. 

Overall conclusion

In this thesis the development of a pathophysiology-based  
method for the early evaluation of anthracycline-induced cardio-
toxicity was described. We evaluated a comprehensive array of 
biomarkers, representing several aspects of anthracycline-induced 
cardiotoxicity, including cardiac injury and remodeling, free 

administration of anthracyclines.(29;30) In addition to these 
biochemical markers, some new echocardiographic parameters 
are worth exploring in anthracycline-induced cardiotoxicity. One 
promising technique is 2D speckle tracking which measures 
cardiac strain.(31). Recent studies demonstrated that patients 
treated with anthracyclines have impaired cardiac strain as 
measured by 2D speckle tracking.(32;33) These results are in 
keeping with the results in this thesis, which showed elevated 
levels of probnp after the administration of anthracyclines. 
Moreover, late gadolinium enhancement, detected by cardiac 
mri could in itself could be indicative of anthracycline-induced 
cardiotoxicity in an early stage, as incidental reports suggest 
that this technique could be suitable in the early identification of 
anthracycline-induced cardiotoxicity.(29;30) New techniques and 
markers may improve the biomarker model investigated in this 
thesis. However, the utility of any of these markers is dependent 
upon the availability of good cardioprotective agents.

new protective strategies  The lack of efficacy of pc-sod 
described in this thesis and the minimal effectivity of other agents 
indicate that it is unlikely that anthracycline induced cardiotoxicity 
is purely caused by free radical species.. The question remains how 
the distressing occurrence of late toxicity of anthracyclines can be 
prevented. So far, the only protective compound that has shown 
efficacy is dexrazoxane.(21) In the most recent ASCO guidelines it is 
advised to consider the administration of dexrazoxane in patients 
receiving 300/m2 or more of adriamycin. However, caution 
should be exercised when administering this agent in settings 
in which doxorubicin-based therapy has been shown to improve 
survival, as it has been suggested that the anti-tumor action of 
doxorubicin is impaired after the administration of dexrazoxane. 
So there is still need for other cardioprotectants or less cardiotoxic 
anti-tumor agents. A simple and relatively safe method that 
could be protective against anthracycline-induced cardiotoxicity 
is the concomitant administration of ace inhibitors.(17;18) 
Additional studies should determine whether the concomitant 
administration of ace inhibitors is indeed protective or just inhibits 
the neurohumoral response to damage. Other strategies than 
the development of protective agents should also be explored. 
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Integendeel zelfs, gezien het feit dat patiënten langer blijven leven 
(door verbeterde anti-tumor therapie, zal de incidentie van hartfalen 
na anthracycline bevattende chemotherapie alleen maar toene-
men. Vandaar dat er een noodzaak blijft een oplossing te vinden 
voor dit grote klinische probleem.

hoofdstuk 2 – pilot studie biomarkers  In dit hoofdstuk 
worden de uitkomsten van een pilotstudie beschreven waarin 
diverse biomarkers, die mogelijk geschikt zijn voor de vroege  
detectie van anthracycline-geïnduceerde cardiotoxiciteit, werden 
onderzocht in een groep patiënten die voor diverse vormen van  
kanker anthracyclines toegediend kregen. De belangrijkste bevin-
dingen in dit hoofdstuk zijn dat na toediening van anthracyclines 
verlenging van het qt-interval en een vrijwel directe stijging van 
het nt-probnp optreedt. Dit suggereert dat deze markers mogelijk 
geschikt zijn voor de vroege detectie van anthracycline-geïndu-
ceerde cardiotoxiciteit.

hoofdstuk 3 – vrij ijzer na anthracycline bevattende 
chemotherapie  IJzer (en dan met name in zijn niet eiwitgebon-
den vorm) lijkt belangrijk in het mediëren van de schadelijke effec-
ten van anthracyclines. In dit hoofdstuk wordt de aanwezigheid van 
vrij ijzer na het toedienen van anthracycline bevattende chemothe-
rapie bekeken. Het blijkt dat het toedienen van anthracycline-bevat-
tende chemotherapie grote invloed heeft op het ijzermetabolisme. 
Vrijwel direct na het toedienen van anthracyclines ontstaat er een 
overschot aan ijzer. Dit blijkt uit het feit dat er een stijging zichtbaar 
is van de hoeveelheid (transferine-gebonden) ijzer en dat de ijzer-
verzadiging van transferrine vrijwel 100% is. Aangezien met name 
eiwit in zijn niet gebonden vorm theoretisch van belang lijkt voor 
het veroorzaken van vrije radicalen gemedieerde schade is er geke-
ken naar de aanwezigheid van dit vrije ijzer. Het blijkt dat er direct 
na toediening ook een toename is van vrij ijzer. Dit ijzer is mogelijk 
beschikbaar voor toxische reacties waarin vrije radicalen kunnen 
ontstaan en kan op die manier schade aan de hartspier geven.

hoofdstuk 4 – qt interval variabiliteit  Verlenging van 
het qt/qtc wordt gezien als een belangrijke risicofactor voor het 
ontstaan van arythmieën. Geneesmiddel geïnduceerde qt/qtc 

nederlandse samenvatting
Dit proefschrift bestaat uit 2 delen. In de eerste hoofdstukken wordt de 
ontwikkeling van een biomarkermodel voor anthracycline-geïnduceerd 
hartfalen beschreven. In het tweede deel wordt de ontwikkeling van 
een nieuw geneesmiddel tegen anthracycline-geïnduceerde cardiotoxi-
citeit beschreven.

hoofdstuk 1 – algemene introductie  Anthracyclines 
worden veelvuldig gebruikt in de behandeling van kanker. Een 
nadeel van deze behandeling is het optreden van late hartschade, 
welke jaren na de laatste toediening nog kan optreden. Er zijn 
een aantal risicofactoren voor het optreden van deze hartschade, 
waarvan de cumulatieve dosering de belangrijkste is. Om die reden 
is men in de klinische praktijk beperkt in het behandelen met 
anthracyclines.

Het pathofysiologisch mechanisme van anthracycline-geïndu-
ceerde cardiotoxiciteit is niet geheel bekend, maar een belang-
rijke rol wordt toegekend aan de formatie van vrije radicalen na 
toediening van anthracyclines, al dan niet in de aanwezigheid van 
vrij ijzer. Deze vrije radicalen veroorzaken via verschillende wegen 
apoptose van de hartspiercel.

Het blijkt lastig om in een vroeg stadium het optreden van 
anthracycline-geïnduceerd hartfalen te voorspellen, aangezien 
een daadwerkelijke daling van de systolische kamerfunctie vaak 
pas laat in het ziekteproces optreedt. Er zijn om die reden in de 
literatuur diverse (bio)markers beschreven die mogelijk voorspel-
lend zijn voor het later optreden van anthracycline-geïnduceerd 
hartfalen, waaronder natriuretische peptiden, troponine en crea-
tine kinase mb. Ook verlenging van de qt-tijd is gesuggereerd als 
mogelijke voorspeller.

Er zijn diverse manieren voorgesteld om deze late hartschade 
te voorkomen. Waaronder de ontwikkeling van minder schadelijke 
anthracyclines en andere doseringsschema’s. 

Gebaseerd op de gedachte dat vrije radicalen betrokken zijn bij 
het ontstaan van anthracycline-geïnduceerd hartfalen, zijn er ver-
scheidene beschermende stoffen ontwikkeld, zoals vrije radicalen 
vangers en ijzerchelatoren. Helaas heeft dit tot op heden nog niet 
geleid tot een vermindering van het optreden van late hartschade. 
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Kaukasiërs en Japanners, vandaar dat al vroeg in het ontwikke-
lingsproces de kinetiek moet worden vergeleken. In hoofdstuk 
6 wordt beschreven dat de kinetiek van pc-sod in Kaukasiërs en 
Japanners vergelijkbaar is.

hoofdstuk 7 – effectiviteit pc-sod in vrouwelijke 
borstkanker patiënten   In dit hoofdstuk wordt de werk-
zaamheid van pc-sod onderzocht in vrouwelijke borstkanker pati-
enten, die een combinatie van adriamycine (een anthracycline) en 
cyclofosfamide kregen als adjuvante behandeling. Voor de beoor-
deling van de werkzaamheid werd gebruik gemaakt van een model 
met meerdere biomarkers, gebaseerd op de pathofysiologie van 
anthracycline-geïnduceerde hartschade. Hiervoor werden er (bio)
markers die kenmerkend zijn voor hartschade, vrije radicalen over-
productie en voor de ontstekingreactie (welke gepaard gaat met de 
anthracycline geïnduceerde hartschade) geselecteerd. Gebruikma-
kend van dit model blijkt pc-sod niet werkzaam als beschermende 
stof tegen anthracycline-geinduceerde cardiotoxiciteit. Hiervoor 
zijn een aantal redenen te noemen: de belangrijkste zijn dat de 
pathofysiologie van anthracycline-geïnduceerde cardiotoxiciteit 
waarschijnlijk ingewikkelder is dan eerder werd aangenomen en 
dat het wegvangen van vrije radicalen alleen mogelijk onvoldoende 
bescherming biedt. Een andere reden zou kunnen zijn dat pc-sod 
een nauwe therapeutische range heeft. 

Samenvattend wordt in dit proefschrift een op de pathofysio-
logie van anthracycline-geïnduceerde cardiotoxiciteit gebaseerd 
evaluatiemodel beschreven. Een uitgebreide set biomarkers, die 
inzoomen op verschillende aspecten van anthracycline-geïndu-
ceerde cardiotoxiciteit, waaronder cardiale schade en remodel-
lering, vrije radicalen overproductie en de ontstekingsreactie die 
gepaard gaat met de schade. Met name de markers specifiek voor 
cardiale schade lijken geschikt voor vroege detectie van anth-
racycline-geïnduceerde hartschade. In het tweede deel van het 
proefschrift wordt de ontwikkeling van een nieuwe vrije radicalen 
vanger tegen anthracycline geïnduceerde hartschade gepresen-
teerd. Gebruikmakend van het eerder genoemde model blijkt dit 
middel niet effectief. Dit suggereert dat een bredere kijk op het 
mechanisme van anthracycline-geïnduceerde cardiotoxiciteit 
noodzakelijk is.

tijd verlenging is een belangrijke reden om nieuwe geneesmid-
delen niet toe laten tot de markt. Uit recent onderzoek blijkt dat 
de voorspellende waarde van verlenging van het qt/qtc interval 
voor het daadwerkelijk optreden van arythmieën beperkt is. Om 
die reden is er gezocht naar andere markers. Een belangrijke risi-
cofactor voor het optreden van arythmieën blijkt de afname van 
de capaciteit van de cardiale celmembraan om te kunnen repola-
riseren: de zogenaamde repolarisatiereserve. Eén van de uitingen 
hiervan blijkt een toename van de slag-tot-slag variatie van het qt-
interval. Uit onderzoek in diermodellen blijkt dat een toename van 
slag-tot-slag variatie in qt interval het optreden van arythmieën 
induceert. 

Het is bekend dat anthracyclines na toediening arythmogeen 
kunnen zijn, het precieze mechanisme is echter niet bekend. In 
dit hoofdstuk wordt bekeken of er na het toedienen van anthracy-
clines een verandering is van de slag-tot-slag variatie van het qt-
interval. Inderdaad blijkt de slag-tot-slag variatie in het qt interval 
toe te nemen na de toediening van anthracyclines, hetgeen aan-
toont dat anthracyclines kennelijk de repolarisatiereserve beïn-
vloeden. Mogelijk is dit een verklaring voor de bij anthracyclines 
geobserveerde arythmogeniciteit.
 
hoofdstuk 5 en 6 – farmacokinetiek langwerkend 
super-oxide dismutase (pc-sod)  Theoretisch is één van 
de manieren om te beschermen tegen schade veroorzaakt door 
vrije radicalen het toedienen van exogene vrije radicalenvangers. 
Superoxide dismutase (sod) is het enzym dat de reactie waarin het 
toxische superoxide radicaal wordt omgezet in waterstofperoxide 
catalyseert (O2

•-+ 2H+ → H2O2). Een nadeel van exogeen sod is 
dat de halfwaardetijd kort is en dat het een beperkte affiniteit heeft 
voor de celmembraan. Om die reden is pc-sod, een recombinant 
superoxide dismutase, waaraan 4 lecithine staarten zijn gekop-
peld, ontwikkeld. Preklinisch onderzoek liet zien dat pc-sod een 
4-voudige hogere affiniteit had voor de celmembraan en een 100-
200 voudige hogere activiteit dan normaal sod. Wij lieten zien dat 
pc-sod circa 20 uur actief blijft in gezonde vrijwilligers, hetgeen 
pc-sod mogelijk geschikt maakt als beschermend agens tegen 
ziekten veroorzaakt door vrije radicalen overproductie.  
De kinetiek van geneesmiddelen kan verschillen tussen  
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