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Chapter 1

Introduction

In the last decade, the deployment of simulation systems in the automotive indus-
try on the basis of the finite element method (FEM) became a standard for the
evaluation of sheet metal forming processes. The scope of application begins with
the car development phase and ends with the engineering phase of the produc-
tion process. During the product design phase, the forming simulation enables
to evaluate the producibility of parts and to derive necessary part modifications
as early as possible. Another application in this phase is the investigation of
the springback behavior that allows identifying actions for reducing this effect,
which decreases the scattering of part shape in the press shop. Furthermore, the
prediction of the process forces on the basis of the FEM supports the selection
of the best possible press line for each part and the computed forming history
increases the quality of simulations regarding the product functionality. During
the engineering phase of the production process the forming simulation is applied
for optimizing its design. Possibly, the springback is compensated by deriving a
tool modification from the predicted part geometry. The mentioned applications
of the finite element method in the field of the production of sheet metal parts
underline its economic importance. Nevertheless, the benefit of the FEM based
simulation strongly depends on the accuracy of the computed prediction.

The prediction of the forming simulation is based on laws, which originate from
theoretical physics. The aim of theoretical physics is to construct mathematical
models such as to enable us, from use of knowledge gathered in a few observa-
tions, to predict by logical processes the outcome in many other circumstances
[1]. Consequently, the predictive capability of FEM based simulations is mainly
determined by the chosen physical theory and its numerical solution. The laws,
utilized for forming simulations, can be grouped in universal and non-universal
laws of nature. This thesis focuses on constitutive laws, which are material specific
and therefore non-universal laws of nature. The universal laws of nature are the
balance relations for mass, linear momentum, rotational momentum and energy.
In this context, the term material represents the sheet metal, which is shaped
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12 CHAPTER 1. INTRODUCTION

by a forming operation. For each material a specific stress-strain relation has to
be identified and calibrated, which belongs to the group of the constitutive laws.
Additionally, a constitutive law for modeling the frictional response between the
material and the tool surface is needed. In order to follow the fundamental idea
of theoretical physics, the mentioned constitutive laws, which are mathematical
models, have to be calibrated on the basis of a few experiments and should be
predictive for their field of application. Consequently, in this thesis, the calibra-
tion of given constitutive laws is performed by considering the minimum possible
experimental data. Additional experiments are applied solely for investigating the
predictive capability of the calibrated constitutive laws. The applied numerical
solution of the physical laws based on the finite element method is considered to
be sufficiently accurate in this thesis.

Subsequently, the term material model is used as a synonym for the stress-
strain relation. In the last decades, manifold material models have been proposed
for modeling the elasto-plastic material behavior of sheet metals (For example:
[2], [3], [4], [5], [6], [7], [8] and [9]). Unfortunately, a general recommendation
regarding the choice of the material model for a given material is not available.
Generally, it is expected that the best choice of the material model depends on
the considered steel grade or aluminum alloy. In order to treat all aspects con-
cerning material modeling, which are introduced below, this thesis is limited to
the investigation of the interstitial free mild steel DX54. However, it is expected
that the findings of this thesis are transferable to other materials.

Microstructural models are not considered in this thesis1. The investigations
are limited to hypo-elasto-plastic material models. Furthermore, thermodynamic
effects are neglected. These stress-strain relations comprise a model for the elastic-
ity, the yield locus and the material hardening. Regarding the yield locus models,
only phenomenological ones are considered, which are not directly derived from
microstructure-based models [11]. This choice is made, as these yield loci are
not computationally expensive and therefore enable the solution of elasto-plastic
mechanical problems for industrial applications. A major focus of this thesis is
the choice of the yield locus model and its calibration. Apart from the commonly
applied Hill ´48 [8] model also the Barlat ´89 [2] and the Barlat 2000 [3] yield
locus are investigated. This set of yield loci represents different levels of com-
plexity regarding the model parameters. Today, yield loci have been published,
which comprise much more parameters as the Barlat 2000 model [5]. Such models
are able to reflect the input data of the calibration experiments highly accurate.
However, the amount of necessary calibration experiments rises, which leads to
an additional cost for the model calibrations. One has to bear in mind that ma-
terial model calibrations of various steel grades and aluminum alloys need to be
provided for the application of the forming simulation in the engineering phase of
the product and the production process. Consequently, at the moment the com-
plexity of the Barlat 2000 or similar yield loci is assumed to be the limit, which

1An approach for modeling a forming process based on microstructural plasticity is given by
Thieme-Marti [10].
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can be treated for the mentioned application. The findings regarding the choice
of the yield loci and the calibration procedure are assumed to be transferable with
respect to other yield loci. Hence, only the mentioned yield loci are investigated.
Additionally, the need for the consideration of the strain rate dependency of the
hardening effect of the material and the Bauschinger effect are analyzed. Thereby,
only simple isotropic models are applied, which can be calibrated based on tensile
tests. Finally, steels can show a significant dependency of the Young’s modulus
with respect to the forming history [12]. This effect can affect the quality of the
prediction of the elastic springback and is, therefore, analyzed too. As mentioned
above, constitutive laws of forming simulations also comprise the modeling of the
frictional response between the sheet metal and the tool surface. Hence, also a
friction law needs to be analyzed. However the treatment of the friction model
is in this context aligned to the temperature conditions, which hold for the ex-
periments, considered in this thesis. Also the dependency of friction with respect
to the contact pressure and the relative velocity between the sheet metal and the
tool surface are neglected.

The objective of this thesis is threefold: Firstly, the identification of potentials
regarding material models in order to maximize the benefit of the FEM simulation
and, secondly, the development of an identification and validation procedure for
material models. Thirdly, the investigation of the effect of the deviations between
the measured data and the true values of the calibration experiments on the
predictive capabilities of material models.

Authoritative for the evaluation of the accuracy of the predictions of the simu-
lation is the press shop process. Unfortunately, the FEM cannot capture all effects
influencing the production process. Examples are wear, thermodynamic effects
and scattering material properties. Furthermore, the material model should be
validated in advance for the application in the product and production process
development, which excludes the press shop process as a source for the model
identification and validation in the case a new material is introduced for the car
body. Some of the non treatable effects, occurring in the press shop, are avoided,
if the prediction of the simulation is investigated on the basis of experiments,
performed under laboratory conditions. This implies the application of the same
batch of the material for all calibration and validation experiments. It has to be
mentioned that the calibration of the constitutive laws on the basis of another
batch of the same material may lead to other model parameters. However, for the
subsequent investigations it is assumed that a representative batch is selected for
the calibration and validation of the constitutive laws. Apart from the standard
calibration experiments (tensile test, bulge test, shear test), which are also referred
to as fundamental experiments in this thesis, further experiments are introduced
for the identification of the model parameters (complementary experiments) and
the validation of the constitutive laws (validation experiments).

The parts, produced in the press shop, should not show any material failure.
In order to avoid the occurrence of material failure, the design of the production
process needs to be optimized. Thereby, failure criteria, which are based on the
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results of the forming simulation, are deployed. These failure criteria are also
considered by the validation experiments. However, the evaluations are limited
to the failure mode localized necking. The failure is analyzed on the basis of an
experimentally determined forming limit curve, as the applied experiments do not
show a pronounced non-linear strain path.

The design and the commissioning of the experiments are parts of this the-
sis. However, more emphasis is given to the mathematical procedures, which are
applied to reach the above mentioned objectives.

Both, the complementary and the validation experiments, introduced in this
thesis, are designed for the investigation of constitutive laws and their parameters.
Under ideal conditions, each experiment shows a different sensitivity with respect
to the constitutive laws and the associated parameters regarding the prediction
of the measured quantities. However, this desired property of the complementary
and validation experiments has to be assured. Generally, it is difficult to predict
all these sensitivities solely by theoretical considerations. As the identification
of the model parameters depends on the chosen constitutive laws, this choice is
made first. Subsequently, the sensitivities of the model parameters with respect
to the deviation between the prediction of the simulation and the measured data
of the experiments are investigated. Based on the determined sensitivities and
the knowledge about the choice of the model parameters, leading to an accurate
prediction of the measured data, allows selecting the investigated experiments
for the identification and validation of the selected constitutive laws. For the
determination of the desired information, an optimization problem can be for-
mulated. The objective is to minimize the deviation between the prediction of
the simulation and the measured data by searching for the best possible choice
of the model parameters. A second component of this solution is the application
of evolutionary strategies. As these optimization algorithms are based on statis-
tical methods, also information regarding the sensitivity of the object variables
(model parameters) is given. Another aspect for choosing evolutionary strategies
is that these minimization problems are expected to be multimodal. Generally, it
is indented to add only model parameters to the search space of the optimization,
which cannot be determined by the fundamental experiments. These parameters
will be referred to as unknown model parameters in this thesis. In this context it
has to be mentioned that the procedures for evaluating the results of the funda-
mental experiments are not investigated in this thesis. Therefore, the quantities,
derived from these experiments are assumed to be given. One should consider
that this set of unknown model parameters and the above introduced distinction
between complementary and validation experiments depends on the applied con-
stitutive laws. Originating from the selected constitutive laws and the determined
unknown model parameters, the validation experiments are applied for analyzing
the predictive capability of the calibrated constitutive laws.



Chapter 2

Optimization

2.1 Introduction

2.1.1 Object variables

A frequently arising problem in the field of engineering is the optimization of the
performance of a system. In this thesis the location of the optimum is assumed
to be invariant with respect to time (static optimization). The parameters, which
are modified in order to obtain the desired performance, are referred to as object
variables xi (xi ∈ R). It is convenient to assemble these variables into a vector

x = [x1, x2, . . . , xn]
T
. Depending on the optimization task, the domain of the

object variables may be restricted. Expression (2.1) defines the term feasible
region M [13]:

M := {x ∈ R
n|gi (x) ≤ 0, ∀i ∈ {1, . . . , k}} . (2.1)

k is the number of the functions gi, which are referred to as constraints.
Expression (2.2) summarizes the possible states of these functions:

gi (x) ≤ 0 ⇒ satisfied,

gi (x) = 0 ⇒ active,

gi (x) < 0 ⇒ inactive,

gi (x) > 0 ⇒ violated.

(2.2)

If M is identical to R
n, the optimization problem is called unconstrained.

15
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2.1.2 Objective function

For comparing the performance of a system under different choices of the objective
variables, a measure is needed, which is termed objective function f . Depending
on the problem, an appropriate objective function has to be formulated, which
gives a minimum or a maximum value for the best possible performance of the
system. Such an objective function enables transforming the optimization task
into a search for a minimum or maximum respectively

min f (x) , max f (x) , x ∈M, f :M ⊆ R
n → R. (2.3)

2.1.3 Global, local minimum

The term global minimum of an objective function is defined by [13]

∀x ∈M : f (x∗) ≤ f (x) ,

M 6= ∅,x∗ ∈M,

f (x∗) > −∞.
(2.4)

M , as introduced above, is the feasible region and x∗ the global minimum.
The problem of finding such a global minimum is termed global optimization
problem. Any maximization problem can be transformed into a minimization
problem, since the identity

max {f (x) |x ∈M} = −min {−f (x)|x ∈M} (2.5)

holds [13]. Hence, without loss of generality only minimization problems are

considered in this chapter. A local minimum f̂ (x̂) is defined as

∃ǫ ∈ R , ǫ > 0 : ∀x ∈M : ‖x− x̂‖ < ǫ⇒ f̂ ≤ f (x) . (2.6)

2.1.4 Multicriteria optimization

Optimization problems can comprise multiple objectives. Equation (2.7) shows a
minimization problem consisting of q objectives:

min f (x) =




min f1 (x)
min f2 (x)
...

min fq (x)


x ∈M f :M ⊆ R

n → R
q. (2.7)

The vector f combines the values of the objectives fi with respect to the
solution x. If x∗ is the minimum of each fi, the solution is referred to as ideal.
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Provided that conflicts between the objectives fi exist (2.8), a unique solution
cannot be determined:

min fi (x)→ x∗
i , min fj (x)→ x∗

j ∧ x∗
j 6= x∗

i . (2.8)

In this section, an extract of the methods will be introduced for dealing with
multi-objective optimization problems.

2.1.5 Pareto optimization

An approach for treating multi-objective problems is the Pareto optimization. A
solution x′ dominates a solution x′′ if expression (2.9) applies [14]:

x′ ≺ x′′ ⇔: ∀ i ∈ {1, . . . , q} : fi (x
′) ≤ fi (x

′′)

∧∃ j ∈ {1, . . . , q} : fj (x
′) < fj (x

′′) .

(2.9)

This definition, which is referred to as the principle of Pareto-Dominance,
compares two solutions x′ and x′′ in consideration of each objective of the vector
f. Consequently, a solution x′ is referred to as non-dominated, if no x′′ exists,
which dominates x′. The set of non-dominated solutions are termed either Pareto-
Set PS (2.10) or efficient set [14]:

PS = {x′ ∈M | 6 ∃ x′′ ∈M : x′′ ≺ x′} . (2.10)

This set contains the best solutions of the multi-objective optimization prob-
lem. The term Pareto-Front is defined as the mapping of the Pareto-Set into the
objective function space. In this thesis, the treatment of constraints in association
with the Pareto optimization is omitted. Figure 2.1 illustrates five solutions in the
objective function space of a minimization problem consisting of two objectives.
Both components of the vectors f(x1) and f(x2) are superior to the associated
values of f(x3), f(x4) and f(x5). In other words, the solutions x1 and x2 are
non-dominated by x3, x4 and x5. The solutions x1 and x2 are incomparable; as
neither x1 dominates x2 nor x2 dominates x1.

For the determination of the Pareto-Front diverse solutions have to be iden-
tified, which differ sufficiently from each other. As each of these solutions is a
compromise, finally one has to make a choice on the basis of additional, a pos-
teriori defined, experience based preferences, which are difficult to formulate as
an objective function. A procedure for finding a Pareto-Front is the weighted
Tchebycheff method. First of all, for each objective fi, a single-objective opti-
mization is performed

f∗i = min
x∈M

fi (x) . (2.11)
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Figure 2.1: Example of non-dominated and dominated solutions.

As a next step, several vectors w are chosen and for each vector the optimiza-
tion, defined by expression (2.12), is performed:

∑
ωi = 1, min

x∈M
max

i=1,...,q
ωi |fi (x)− f∗i | . (2.12)

The Tchebycheff method minimizes the maximum deviation between each ob-
jective fi and the related result of the single-objective optimization f∗i . Expression
(2.12) aggregates the results of the multiple objectives to a scalar value. Each
of these optimizations gives a point of the Pareto-Front [15]. The Tchebycheff
method allows to compute all points on the Pareto-Front by changing the weights
ωi [16]. A downside of this method is the computational cost for determining the
Pareto-Front. First of all, q single-objective optimizations are necessary in order
to identify all f∗i . Moreover for each point on the Pareto-Front an additional
single-objective optimization has to be performed.

Evolutionary algorithms, which are introduced in chapter 2.3, are especially
suitable for the determination of a Pareto-Set. This type of optimization algo-
rithm deals simultaneously with different solutions. Hence, in combination with
some extensions, Evolutionary Algorithms are able to identify a Pareto-Set within
a single run. As an example the fundamental idea of the Strength Pareto Evolu-
tionary Algorithm 2 (SPEA2), which was published by Zitzler in 2001, is given in
this section [17]. Further algorithms can be found in [18] and [19]. The applied
Evolutionary Algorithm is complemented by an archive P , which includes a pre-
scribed number of N̄ solutions, containing the so far detected promising solutions.
At the beginning of the optimization, the archive is an empty set and t is equal
to 0. Subsequently, the optimization step t+ 1 is discussed. A raw fitness value,
as defined by

R (i) =
∑

j∈Pt∪Pt,j≺i

S (j), S (i) =
∣∣{j|j ∈ Pt ∪ Pt ∧ i ≺ j

}∣∣ , (2.13)

is assigned for each solution of the current population Pt and the members
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of the archive P̄t. In this section, |A| gives the number of the elements of a set
A. A high value of the raw fitness R(i) indicates that the associated solution is
dominated by many other ones. If the raw fitness R(i) is equal to 0.0, the solution
is non-dominated. For maximizing the diversity of the generated solutions, a
density is introduced, which is assigned to each solution. Mathematically, the
density is defined as given by

D (i) =
1

σk
i + 2

. (2.14)

The formulation of (2.14) implies that D(i) < 1. For the determination of σk
i ,

the distance in the objective function space of the solution i to all the solutions
of the population and the archive is computed and sorted in an increasing order.
σk
i denotes the distance of the solution i to its k-th nearest neighbor. Zitzler

recommends choosing k as given by

k =
√
N +N (2.15)

(N : Population size; N : Archive size). Consequently, an accumulation of so-
lutions in a region of the Pareto-Front is identified by high values of the associated
density. In SPEA2, both, the raw fitness and the density are additively combined
to a scalar fitness value

F (i) = R (i) +D (i) . (2.16)

Equation (2.17) illustrates the update of the archive:

P t+1 =
{
i|i ∈ Pt ∪ Pt ∧ F (i) < 1

}
. (2.17)

According to (2.17) all non-dominated solutions are transferred to the archive.
If the number of known non-dominated solutions is smaller than the prescribed
archive size, dominated solutions are copied to the archive. In this case, these
dominated solutions are taken, implying the best fitness values (2.16). If the num-
ber of non-dominated solutions exceeds the archive size, solutions are iteratively
sorted out. Thereby, a solution i is discarded, if i ≤d j for all j of P̄t+1:

i ≤d j ⇔ ∀ 0 < k <
∣∣P t+1

∣∣ : σk
i = σk

j ∨
∃ 0 < k <

∣∣P t+1

∣∣ :
[(
∀ 0 < l < k : σl

i = σl
j

)
∧ σk

i < σk
j

]
.

(2.18)

Alternatively stated, the solution, which is located closest to another solution,
is discarded from the archive. Additionally, equation (2.18) considers the distance
to the second closest solution and so forth. The selection within the EA is per-
formed on the basis of the fitness function (2.16). It has to be mentioned that
additional modifications with respect to the EA-Algorithm are necessary in order
to obtain the desired search performance. For example, the strategy parameters
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of an ES-Algorithm (evolutionary strategy), which will be introduced in the next
chapter, should be individually adapted for each member of the population [20].
The individual adaptation of the strategy parameters is necessary, as diverse solu-
tions are desired and the associated optimal strategy parameters may be different.
If the stopping criterion for the optimization is satisfied, the set Pt contains the
non-dominated solutions.

2.1.6 Scalarization

Another technique for treating multicriteria optimization problems are the scalar-
ization methods [16]. The idea of scalarization is to transform multiple objectives
to a single one by applying an aggregation of the objectives. Two of these methods
are shown below.

Additive weighted aggregation

Firstly, the well known additive aggregation of the objectives is discussed. For
each objective a weight wi is introduced, which has to be defined a priori. As
shown by (2.19) the weighted objectives are added in order to generate a single-
objective function F (x) [21]:

F (x) =

q∑

i=1

ωifi (x) . (2.19)

A drawback of this method is that the result of the optimization depends on
the choice of the weights. Additionally, a poor performance induced by the choice
of the object variables with respect to a single objective in combination with a
small weight may not be reflected by the result of the objective function F (x).
Hence, for real-live problems the selection of the weights might be a difficult task.

From expression (2.20) follows, that a point, which is non-dominated with
respect to (2.9) is also non-dominated with respect to (2.19) [16] (x′ ≺ x′′ ←→
f′ (x′) ≺ f′′ (x′′)):

∀f′, f′′ ∈ R
q : f′ ≺ f′′ →

q∑

i=1

f ′i <

q∑

i=1

f ′′i . (2.20)

Consequently, also the question arises, whether this type of aggregation en-
ables to determine all points on the Pareto-Front. For introducing theorem 1,
which answers this question, the definitions 1,2 and 3 are necessary.

Definition 1 A subset C ⊆ R
q is called a cone, if αd ∈ C for all d ∈ C and for

all α ∈ R, α > 0 [21].

Definition 2 A cone C in R
q is called convex, if αd1 + (1− α)d2 ∈ C for all

d1,d2 ∈ C and for all 0 < α < 1 [21].
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Definition 3 Given a Pareto optimization problem (Expression 2.7), then a so-
lution x is called efficient in the Geoffrion sense or properly efficient, if (a) it is
efficient, and (b) there exists a number N > 0 such that ∀i = 1, . . . , q and ∀x ∈M
satisfying fi (x) < fi (x

∗), there exists an index j such that fj (x
∗) < fj (x) and

fi(x
∗)−fi(x)

fj(x)−fj(x∗)
≤ N [16].

Theorem 1 Let us assume a Pareto optimization problem (Expression 2.7) with

a Pareto-Front that is cone convex with respect to the positive orthant
(
R

q
≥

)
. Then

for each properly efficient point x ∈M there exist weights ω1 > 0, . . . , ωq > 0 such
that x is one of the solutions of

∑q
i=1 wifi(x)→ min [16].

Therefore, by variation of the weights ωi, all points on the Pareto-Front can
be obtained, if the Pareto-Front is cone convex.

Desirability functions

Another method to transform a multi-objective optimization problem into a single-
objective one is to aggregate the objectives multiplicatively in combination with
Harrington desirability functions. Expression (2.21) illustrates the one-sided and
(2.22) the two-sided Harrington desirability function [22]:

d1 (f (x) , b0, b1) = e(−e(−(b0+b1f(x)))), (2.21)

d2 (f (x) , U, L, n) = e(−|
2f(x)−(U+L)

U−L |n). (2.22)

The expressions (2.21) and (2.22) map the objective function f to the interval
[0; 1] (figure 2.2). If the objective function is equal to the desired value, the
corresponding value of the desirability function is 1.0. For a non-satisfying result
of the objective function f , the desirability function gives values close to 0.0. The
mapping according to (2.21) and (2.22) implies a gray-zone, which is determined
by the parameters n, U , L, b0 and b1. The gray-zone enables the user to weight
deviations of the objective function from the desired value.

This approach is especially suitable, if the corresponding values f of the op-
timum and the non-acceptable values of f are a priori known. Figure 2.3 shows
three different choices of the parameter n. According to the example, deviations
from the optimum are stronger penalized, if n is chosen to be small.

Nevertheless, the choice of the exponent is arbitrary and has to be performed
based on experience. Additionally, the desirability function can be applied to
model constraints. A violation of the constraint corresponds to a value close to
0.0. If the constraint is fulfilled, the desirability function is equal to 1.0. Finally,
the objectives and the constraints can be multiplicatively aggregated
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Figure 2.2: Left: Visualization of a one-sided Harrington desirability function;
Right: Visualization of a two-sided Harrington desirability function.
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Figure 2.3: Effect of n on the shape of the two-sided Harrington desirability
function.
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dA(x) =

r∏

i=1

d1 (fi (x) , b0i, b1i)

s∏

j=1

d2 (fj (x) , Uj , Lj , nj)

t∏

k=1

d1 (gk (x) , b0k, b1k)

u∏

l=1

d2 (gl (x) , Ul, Ll, nl) .

(2.23)

This type of aggregation gives pessimistic results, as shown by

dA(x) ≤ min
i=1,...,r;j=1,...,s;k=1,...,t;l=1,...,u

(

d1 (fi (x) , b0i, b1i) ; d2 (fj (x) , Uj , Lj , nj) ;

d1 (gk (x) , b0k, b1k) ; d2 (gl (x) , Ul, Ll, nl)).

(2.24)

Expression (2.25) shows the transformation of (2.23) into a minimization prob-
lem:

F (x) = 1− dA(x). (2.25)

A similar type of desirability functions can be found in [23].

2.2 One dimensional strategies

The discussion of one dimensional strategies is limited to functions f(x) : R→ R,
which are unimodal in x ∈ [a, b] ⊆ R, and the desired minimum is located within
this interval.

2.2.1 Simultaneous optimization

A possible solution is to create a set of points P = {xi ∈ [a; b]} , i ∈ {1, ..., n}
and to compute the corresponding objective function values f(xi). The point
x = min

xi∈P
(f (xi)) is assumed to be the minimum of f(x). It can be theoretically

shown that an equidistant distribution of the search points is the best choice
[24]. The interval of uncertainty regarding the true minimum x∗ is defined by
x∗ ∈ [c; d] ⊆ [a; b]. For a given number n of uniformly distributed points, the size
of the interval of uncertainty is given by expression

un =
2(b− a)
n+ 1

< ǫ (2.26)
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[24]. Thereby, n refers to the amount of points inside of the interval ] a; b [ .
Expression (2.27) shows the determination of the equidistant distributed points
xi, needed for seeking the optimum:

xi = a+

(
b− a
n+ 1

)
i, i = 1, ..., n. (2.27)

The interval of uncertainty is given with respect to smallest computed objec-
tive function value by

[
x− un

2 ;x+ un

2

]
. An estimation of an appropriate choice

of n for a given accuracy ǫ is shown by expression

2(b− a)
ǫ

− 1 < n. (2.28)

An advantage of this method is the possibility of computing the objective
function values simultaneously. However, depending on the needed accuracy ǫ the
method can be computationally expensive. In order to reduce the needed amount
of objective function evaluations, it is advantageous to adapt the search according
to the information, available during the optimization, regarding the location of
the optimum. Therefore, sequential methods are introduced subsequently, which
possess this property.

2.2.2 Sequential methods

The above shown equidistant minimum search method can be applied multiple
times. Each time the search is repeated, the original interval is reduced by a factor
α. Consequently, after k repetitions, the interval shrinks by the factor αk. The
factor α depends on the amount of objective function evaluations per repetition
α = 2

n+1 . It is more advantageous to reduce n and to perform more repetitions
than vice versa [24], as the shrinking of the investigated interval depends expo-
nentially on k. The minimum number of objective function evaluations per step
(repetition) is n = 2. As the reduced interval is defined by the lowest objective
function value x(k) with respect to the actual step k and both neighbor points,
the value of n cannot be smaller than n = 2. If n is chosen to be equal to three,
only in the first step three computations of the objective function are necessary.
For the following steps, f(x) needs to be evaluated only two times, as one of the

points x
(k)
i is coincident with a point x

(k−1)
i of the previous step.

By giving up the constraint of using equidistant points, it is possible to enforce
on the basis of two points (n = 2) that each step comprises a point of the previous
one. Consequently, only one evaluation of the objective function is needed for each
step, which leads to a better performance compared with the equidistant interval
division methods.

Figure 2.4, taken from [25], shows the interval division for the steps k − 1

and k. τ defines the relative position of the points x
(k)
1 , x

(k)
2 with respect to the

interval
[
a(k); b(k)

]
. The equation (2.29), which leads to coincident points between

the steps, can be directly derived from this figure:
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a(k−1) x
(k−1)
1 x

(k−1)
2 b(k−1)
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︸ ︷︷ ︸
(b(k−1)−a(k−1))τ
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(b(k−1)−a(k−1))τ
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(b(k)−a(k))(1−τ)
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︸ ︷︷ ︸
(b(k−1)−a(k−1))τ2

x
(k)
1 = x

(k−1)
2

Figure 2.4: Derivation of τ for the golden section interval division.

τ2 = (1− τ). (2.29)

The positive root of (2.29) is τ =
√
5−1
2 ≈ 0.618. Consequently, using this

value of τ leads to an interval division, which comprises only one evaluation of
f(x) per step. This procedure is referred to as golden section interval division.

2.2.3 Interpolation methods

Newton method

A root of the function f(x) can be computed by applying the Newton method,
provided the function is differentiable. The method estimates the root starting
from a linearization of f(x) at x(k). The root of the linear function x(k+1) is taken
as an improved value for a further iteration. Expression (2.30) summarizes both
steps and gives x(k+1):

x(k+1) = x(k) − f(x(k))
[
df(x)

dx

∣∣∣∣
x=x(k)

]−1

. (2.30)

If the function f(x) is linear, the Newton method gives the exact solution
within one iteration.
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Regula Falsi iteration

Expression (2.31) illustrates an approximation of the derivative at the point x(k)

[26]:

df(x)

dx

∣∣∣∣
x=x(k)

≈ f(x(k))− f(x(m))

x(k) − x(m)
, m < k. (2.31)

An exchange of the derivative of (2.30) by expression (2.31) leads to the Regula
Falsi iteration

x(k+1) = x(k) − f(x(k))
[
f(x(k))− f(x(m))

x(k) − x(m)

]−1

. (2.32)

A root of a continuous function f(x) within the interval [a; b] exists, if f(a)
and f(b) are of opposite sign. Therefore, the sign of the corresponding function
values of the initial values x(0) and x(1) has to be different.

Provided f(x) is linear, expression (2.31) gives the exact derivative and there-
fore also (2.32) leads to the exact solution by one iteration. For a stable conver-
gence of the Regula Falsi iteration, f(x(k)) and f(x(m)) have to be of opposite
sign [26], which is achieved by selecting an appropriate value of m.

Lagrangian interpolation

Finally, the Lagrangian interpolation is introduced. For searching a minimum,
the function f(x) is interpolated by a pth order polynomial, which is fitted on the
basis of p + 1 evaluations of f(x). The optimum is derived from the stationary
point of the interpolated polynomial. Expression (2.33) shows the computation
of the stationary point of a second order polynomial [24]:

A(k) =

[(
b(k)

)2

−
(
c(k)

)2
]
f
(
a(k)

)

B(k) =

[(
c(k)

)2

−
(
a(k)

)2
]
f
(
b(k)

)

C(k) =

[(
a(k)

)2

−
(
b(k)

)2
]
f
(
c(k)

)

d(k) =
1

2

A(k) +B(k) + C(k)

[
b(k) − c(k)

]
f
(
a(k)

)
+

[
c(k) − a(k)

]
f
(
b(k)

)
+

[
a(k) − b(k)

]
f
(
c(k)

) .

(2.33)

The stationary value is a minimum, if the denominator is positive. In order
to improve the computed minimum, the procedure can be repeated. It is recom-
mended to choose the initial value b(0) in the middle of the interval

[
a(0); c(0)

]
[24].

Each further iteration needs only one additional objective function evaluation, as
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shown by table 2.1. If the function f(x) is a quadratic function, the Lagrange
interpolation gives the exact minimum within one iteration.

Table 2.1: Recursion algorithm for the Lagrange interpolation.

if a(k) < d(k) < b(k) ∧ f(d(k)) < f(b(k))





a(k+1) = a(k)

b(k+1) = d(k)

c(k+1) = b(k)

if a(k) < d(k) < b(k) ∧ f(d(k)) > f(b(k))





a(k+1) = d(k)

b(k+1) = b(k)

c(k+1) = c(k)

if b(k) < d(k) < c(k) ∧ f(d(k)) < f(b(k))





a(k+1) = b(k)

b(k+1) = d(k)

c(k+1) = c(k)

if b(k) < d(k) < c(k) ∧ f(d(k)) > f(b(k))





a(k+1) = a(k)

b(k+1) = b(k)

c(k+1) = d(k)

2.3 Evolutionary algorithms

Evolutionary algorithms are methods, inspired by the natural evolution, for solv-
ing optimization problems. According to the Darwinian theory of evolution, the
adaptive change of species is explained by the principle of natural selection.
Species are favored, which are best adapted to their environmental conditions.
Furthermore, Darwin recognized that offspring are subject to mutation, in which
the occurrence of small, apparently random and undirected variations of the ge-
netic material occurs. The copying process of the genetic information between
the parents and the offspring works highly accurately, however not perfect [13].
These slight imperfections are equivalent to the mutation. The fitness in the sense
of evolution of an individual is measured indirectly by its ability to survive and
to reproduce in its environment. Mutation enables genetic changes, which opti-
mize in combination with selection the fitness. In nature, selection is based on
the fitness of the individual. The fitter the individual, the higher is the chance
to bring its genetic information to the next generation (“survival of the fittest”).
The objective of natural evolution is to find continuously an appropriate adaption
of the species with respect to the environmental conditions. In literature, recom-
bination, which describes the combination of the parental genetic material, is not



28 CHAPTER 2. OPTIMIZATION

considered as an essential contribution to the evolution, because this process does
not induce any new information.

As mentioned above, evolutionary algorithms (EA), which are applied for op-
timizing fitness functions, imitate natural evolution. In the field of evolutionary
algorithms, the term fitness function is usually applied, which is equivalent to
the above introduced objective function. For the solution of the numerical op-
timization problem, the objective function is interpreted as a so-called adaptive
landscape in the context of evolutionary algorithms [13]. During the optimization,
the development of the initial population subject to genetic operators (selection,
mutation and recombination) is simulated. In contrast to natural evolution, the
fitness of individuals can be directly quantified. The objective is to find a choice of
the object variables, which minimizes the fitness function. The term evolutionary
algorithm summarizes three main streams of algorithms. The origins of two of
them are in the United States of America. Holland (1965; 1975) has developed
the genetic algorithms (GA) and Fogel (1962; 1966) published another variant of
EA called evolutionary programming (EP). Finally, evolutionary strategies (ES)
were developed by students at the Technical University of Berlin (Rechenberg,
1965; 1971; Schwefel, 1965, 1975) [27]. Subsequently, only evolutionary strate-
gies are discussed, because these are the most powerful variants of evolutionary
algorithms for real-valued and mixed-integer variables.

2.4 Evolutionary strategies

Typically, evolutionary strategies (ES) are applied for optimizations of non-linear
fitness functions. During the optimization procedure, trial choices of the object
variables, called individuals, are created. The set of individuals is referred to as a
population. The term generation is introduced for distinguishing between differ-
ent populations. Usually, the initial population is generated randomly. As a next
step, the fitness of the individuals of the first population is computed. In order to
obtain a progress, only the best individuals with respect to the fitness are selected
for creating the subsequent population. The optimization enters at this state into
a loop. The termination condition of this loop is either a resource (maximum
number of generations, maximum CPU time) or a convergence (in the space of
fitness values, object variables, strategy parameters) criterion. The offspring of
the selected individuals is generated by recombination and mutation operators.
The first mentioned operator combines the parental genetic information. The mu-
tation operator generates, on the basis of the result of recombination, stochastic
variations, which have to comply with the boundary conditions of the optimization
problem. The occurrence of small mutations should be more likely. This operator
introduces alterations regarding the object variables into the optimization pro-
cess, which is essential for finding an optimum. Again, the fitness of the members
of the new generation is evaluated and only those individuals are selected, which
show promising properties. The loop is repeated until the termination condition
is fulfilled. Figure 2.5 summarizes the general form of an evolutionary strategy.
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1 t = 0 P : Population

2 Pt ← Init ()

3 Evaluate (Pt)

4 while (termination criterion is not fulfilled) do

5 Gt ← Generate (Pt)

6 Evaluate (Gt)

7 Pt+1 ← Select (Gt ∪ Pt)

8 t← t+ 1

9 end while

Figure 2.5: A general scheme of evolutionary strategies [28].

ES do not use any information regarding the structure of the optimization
problem. Only the associated fitness value of a given choice of the objective
variables is needed. Hence, from the perspective of the optimizer, the fitness
function acts as a black box. Because of this property, the ES belong to the zero-
order optimization algorithms. A first-order optimization algorithm also takes
the first derivative of objective function into account and a second-order one the
second derivative respectively.

The evaluation of the fitness values of each individual, belonging to a pop-
ulation, can be performed independently. If the determination of the fitness of
individuals is time consuming, this property of evolutionary strategies offers the
potential to perform the evaluation of the fitness function simultaneously, i. e.,
to exploit parallelism.

The standard notation (µ/ρ+, λ)-ES describes the selection strategy (plus,
comma strategy), the number of parents involved in the creation of one offspring
ρ, the amount of the created offspring λ and the number of parents µ. For the
special case ρ = 1, the offspring is generated without any recombination (cloning).
For the remaining cases ρ > 1, the offspring is procreated on the basis of more
than one parent. λ, µ and ρ are referred to as exogenous parameters, as these
quantities are defined in advance and are kept constant during the optimization.

2.4.1 Selection

After creating λ descendants and computing the related fitness values, the comma
strategy chooses the best µ individuals of the offspring for the new generation.
The plus strategy selects the best µ individuals out of the set, consisting of parents
and offspring. Hence, the latter mentioned strategy enables individuals to survive
several generations. Consequently, in both cases the population size remains
constant. Furthermore, the presented selection schemes are strictly deterministic
[29]. The comma strategy even discards good solutions, if all offspring is worse
than the parents. Because of this behavior the scheme is able to overcome local
minima. This property is especially for multimodal landscapes advantageous [13].
Additionally, in contrast to the plus strategy, the comma strategy is suitable for
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the application to changing environments. The plus strategy preserves solutions
and is therefore not able to follow a moving optimum. A drawback of the comma
scheme is its convergence behavior. In the worst case, the comma strategy can
even diverge, whereas the plus strategy shows only a premature stagnation [27].
Nevertheless, the comma selection mechanism is usually applied in ES [29], due to
the fact that it is advantageous for the self-adaptation of the strategy parameters.

2.4.2 Recombination

Inspired by nature, the recombination combines parental genetic information for
the creation of individuals. The term multirecombination is applied for the case,
if more than two parents are involved in the creation of offspring ρ > 2 [27]. The
recombination operator is only used for populations, which consist of at least two
or more individuals µ > 1. Generally, this operator causes in ES the creation of a
single offspring. The recombination is performed on the basis of ρ parental vectors
a. The recombination is termed discrete, if each component of the resultant vector
r is obtained by a random selection from the corresponding components of the
parental vectors a. Expression (2.34) illustrates the introduced procedure [27] (n
dimension of the parameter space):

(r)k := (amk
)k , with mk = random {1, . . . , ρ} , k ∈ [1;n]. (2.34)

Another approach is the intermediate recombination, which takes all ρ parents
into account. The computation of the resultant vector r is performed in analogy
with the center of mass

(r)k :=
1

ρ

ρ∑

i=1

(ai)k . (2.35)

2.4.3 Mutation

The selection guides the optimization into promising search space regions, whereas
mutation is needed for exploring the search space. Generally, the variation of the
parental state should not depend on any fitness information. The performance of
the mutation operator depends on the optimization problem. A general method
for designing such an operator has not been established yet. Subsequently, the
recommendations of Beyer [27] are given, which have been derived from theoretical
considerations and analyses of ES-implementations.

The first principle requires the reachability of an arbitrary point in the search
space, independent of the position of the parental point, within a finite number
of mutations. Another principle is referred to as scalability, which formulates the
need for an adaptation of the mutation operator with respect to the properties
of the fitness landscape. Finally, the variation of the parental state should not
introduce any bias (principle of unbiasedness). A violation of the presented design
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principles does not necessarily indicate that the considered operator will generally
fail.

A search space can consist of combinations of real-valued, integer-valued or
binary object variables. Subsequently, a pure real-valued search space is assumed.
A discussion of the remaining types of object variables is omitted in this work.
A comprehensive introduction regarding the treatment of these types of variables
can be found in [30]. Commonly, the standard normal distribution plays a crucial
role in formulating mutation operators

N
(
µ, σ2

)
=

1

(2πσ2)
1
2

exp

(
− 1

2σ2
(x− µ)2

)
. (2.36)

The offspring x(g+1) is created by adding a mutation to a parent x(g)

x(g+1) = x(g) + z. (2.37)

Equation (2.38) shows a possible mutation operator, consisting of standard
normal distributions (2.36) for each dimension

z ∼ σ (N1 (0, 1) ,N2 (0, 1) , . . . ,Nn (0, 1))
T
. (2.38)

The symbol∼ denotes the equality in distribution. According to the scalability
principle, the parameter σ enables the adaptation of (2.38) with respect to the
fitness landscape. Strategy parameters, like σ, which are continuously changed
during the optimization, are referred to as endogenous. Procedures for adapting
the endogenous parameters are shown in the next section.

Each component of the random vector z (2.38) is drawn independently from
the normal distribution with a zero mean and a variance of one. In this case, the
surfaces of equal probability density are concentric spheres in the search space
(figure 2.6 (left)). The midpoint of these spheres coincides with the parental
state x(g). Expression (2.38) is also termed isotropic mutation operator. For a
n-dimensional vector x, the multivariate Gaussian distribution takes the form

N (m,C) =
1

(2π)
n
2

1

|C| 12
exp

(
−1

2
(x−m)

T
C−1 (x−m)

)
. (2.39)

The eigenvalues of the covariance matrix C must be strictly positive, other-
wise the distribution cannot be normalized properly [31]. A covariance matrix,
implying this property, is said to be positive definite. Additionally, the covari-
ance matrix has to be symmetric [32]. Therefore, surfaces of constant densities
are hyper ellipsoids, which are aligned along the principal axes of the covariance
matrix. The center of these hyper ellipsoids is coincident with m. As the eigen-
vectors, obtained from solving the standard eigenvalue problem of a symmetric
matrix, are orthogonal [26], the principal axes system of the covariance matrix C

is also orthogonal. Generally, the covariance matrix C can be decomposed into a
diagonal matrix D2, containing the eigenvalues, and an orthogonal matrix B:



32 CHAPTER 2. OPTIMIZATION

C = BD2BT , BBT = I,

D2 = diag (d1, d2, . . . , dn)
2
= diag

(
d21, d

2
2, . . . , d

2
n

)
.

(2.40)

The expressions (2.40) are only valid for a positive definite and symmetric
matrix. The matrixD, containing n independent components, scales the spherical
distribution with respect to the principal axes, whereas the matrix B defines the
rotation between the coordinate system of the search space and the principal
axes. The latter mentioned matrix implies n(n-1)/2 degrees of freedom [33]. For
generating a Gaussian normal distributed random vector N (m,C), the following
expression can be applied

N (m,C) ∼m+BDN(0, I) . (2.41)

According to (2.41), the desired random vector can be obtained by realizing
(0, 1)-normally distributed numbers, which can be easily realized on a computer.
Expression (2.42) shows the relation between the distribution of the vector z and
the distribution of its components zi

p (z) =

n∏

i=1

pi (zi) . (2.42)

On the basis of (2.38) and (2.39) an alternative formulation of (2.38) can be
derived:

z ∼ N(0,C1 (σ)) , C1 (σ) = σ2I, (2.43)

D2
1 = C1, B = I. (2.44)

Expression (2.45) illustrates an extended version of (2.38), which introduces
for each dimension an endogenous parameter σi:

z ∼ (σ1N1 (0, 1) , σ2N2 (0, 1) , . . . , σnNn (0, 1))
T
. (2.45)

As a consequence, the surfaces of equal probability density are in this case
ellipsoidal. This approach enables a better adaption of the mutation operator with
respect to the fitness landscape. Provided, the endogenous strategy parameters σi
are well determined, the probability density reflects promising directions. Hence,
the likelihood of generating successful mutations is higher, than it would be if an
isotropic mutation operator were applied. Expression (2.46) shows an alternative
form of (2.45):
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z ∼ N(0,C2 (σi)) , C2 (σi) =




σ2
1 0 0 · · · 0

0 σ2
2 0 · · · 0

0 0 σ2
3 · · · 0

...
...

...
. . .

...
0 0 0 · · · σ2

n



. (2.46)

As C2 is a diagonal matrix, the eigenvectors of C2 are orthogonal and identical
to the coordinate system of the search space. Therefore, the ellipsoidal surfaces
are orientated along the axes of the search space (figure 2.6 (middle)). Expression
(2.47) shows the eigendecomposition of C2:

D2
2 = C2, B = I. (2.47)

N (0,C1(σ)) N (0,C2 (σi)) N (0,C3 (σi, αij))

Figure 2.6: Equal density of different normal distributions.

An improved adaptation of the mutation operator with respect to the fitness
landscape can be obtained by introducing orthogonal rotations of the eigenvectors
(figure 2.6 (right)). This procedure assures, that the covariance matrix remains
positive definite. Expression (2.48) and (2.49) define the rotation matrix B [13]:

B (α) =




n−1∏

i=1

n∏

j=i+1

R (αij)


 , (2.48)

R (αij) = (rkl) , rii = rjj = cosαij , rij = −rji = − sinαij . (2.49)

The endogenous strategy parameters αij define the angles of the rotation with
respect to the axes i and j. In the most general case, n(n− 1)/2 rotation angles
are applied. Consequently, all degrees of freedom of the orthogonal matrix B

are defined by a rotation angle. The expressions (2.50) illustrate the mutation
operator, which comprises a scaling of each diagonal element and a rotation:

z ∼ N(0,C3 (σi, αij)) , C3 = BC2B
T , C3 = BD2

2B
T . (2.50)
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2.4.4 Adaptation of endogenous strategy parameters

The adaptation of the endogenous strategy parameter plays a crucial role in evo-
lutionary strategies. Generally, without changing the strategy parameters a poor
performance is expected [34]. On the basis of the strategy parameters, the size of
mutation steps (step-size) in the search space is varied. At the beginning of this
section, the original 1/5th-rule is introduced, which is applied for the adaption of
an isotropic Gaussian mutation operator (2.38) in (1+1)-ES. The performance of
such an ES strongly depends on the choice of the mutation strength σ [27]. Ac-
cording to (2.38), the expected length of the mutation with respect to the search
space is proportional to σ. The smaller the mutation strength σ is, the smaller
the expected length of the mutation step in the search space is. The term success
probability is introduced for describing the likelihood that the offspring replaces
the parent. The success probability becomes approximately 50%, if the mutation
strength is assumed to be very small (i. e., asymptotically approaching zero)
and the fitness landscape is smooth. On the one hand, such a mutation strength
leads to a remarkable evolvability. On the other hand, the expected length of the
mutation steps is small and therefore the number of necessary optimization steps
for finding the optimum is inacceptable high. In case the mutation strength is
very large, the success probability reduces and, consequently, a progress is not ob-
tained anymore. Thus, the success probability is very low. Again, such a selection
of the mutation strength would lead to an unsatisfying search performance. The
term evolutionary window, introduced by Rechenberg (1973), describes a range
of mutation strengths between the discussed extreme cases, which maximize the
performance of the ES. Rechenberg has performed investigations on the basis of a
sphere and a corridor test problem for n≫ 1. For both problems the success prob-
ability, leading to an optimum regarding the ES performance (PsSphere

≈ 0.27;
PsCorridor

≈ 0.184), was determined. Rechenberg regarded these test problems as
representative for real-world fitness functions. On the basis of these results he
recommended to execute the ES under a success probability of 0.2 (1/5th rule),
which is a compromise between the results of the investigated test problems. The
desired success probability can be obtained by adapting the mutation strength
during the optimization. Figure (2.7) shows the implementation of the 1/5th
rule. For the computation of the success probability, G generations are created
by a constant mutation strength and the successful mutations Gs are counted.
The obtained success probability is compared with the desired value of 0.2 and,
if necessary, the step size is multiplicatively adapted. This procedure assures a
positive sign of the mutation strength, as the modification is performed multi-
plicatively. The best possible value of the exogenous parameter depends on the
fitness function, the choice of G and the dimension of the search space. Schwefel
recommended using 0.85 ≤ a < 1, provided the search space consists of more than
30 dimensions and G is selected to be equal to n [27]. Finally, one has to bear in
mind, that the 1/5th-rule is only suitable for the adaptation of a single strategy
parameter. Additionally, this adaptation procedure is usually only applied for a
(1 + 1)-ES.
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1. perform the (1 + 1) ES for a number G of generations:
-keep σ constant during this period
-count the number Gs of successful mutations during this period

2. determine an estimate of Ps by
Ps = Gs

G

3. change σ according to

σ =







σ/a if Ps > 1/5
σa if Ps < 1/5
σ if Ps = 1/5

4. goto 1

Figure 2.7: Implementation of the 1/5th rule [27].

The self-adaptation, which is not restricted to a single strategy parameter, is
another procedure for changing the endogenous parameters. For applying this
method, each individual is extended by a set of strategy parameters. Both the
position of the individual in the search space and the strategy parameters undergo
variation. Nevertheless, the decision whether an individual becomes a parent of
the next generation is only performed on the basis of the fitness value, which is
determined by the object variables. It is assumed that successful individuals are
an indication for a good quality of the parental strategy parameters. In other
words, well adapted strategy parameters with respect to the fitness landscape
should produce on average fitter individuals and therefore have a higher chance
to survive. The above mentioned variation of the strategy parameters consists of
recombination and mutation. An intermediate recombination is recommended for
the adaptation of the strategy parameters [13]. The self-adaptation approach is
suitable for all of the introduced mutation operators. First of all, the procedure
for mutating the strategy parameter of an isotropic Gaussian mutation operator
is shown (2.38). The space of the individuals I consists of the search space in
conjunction with the space of the strategy parameter σ

I = R
n × R. (2.51)

The parameter σ of (2.38) has to remain positive. Thus, the mutation of σ
is performed multiplicatively. In order to avoid any deterministic drift without
selection, the distribution, applied for the mutation of the strategy parameter,
should give 1.0 as mean value. Furthermore, the distribution should lead to a
higher probability of small changes than of large ones. Finally, the probability of
the occurrence of a value and its associated reciprocal value should be equal. All
the mentioned requirements are fulfilled by the log-normal distribution [24]. Ex-
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pression (2.52) shows the density function of the log-normal distribution Ln(µ, σ2)
[32]:

f (x) =

{
1

σ
√
2π

1
x exp[− (ln x−µ)2

2σ2 ] if x > 0

0 if x ≤ 0
,

µ ∈ R, σ ∈ R
+.

(2.52)

In order to draw a Ln(µ, σ2) distributed random number, relation

x = exp (µ+ σy) ∼ Ln (µ, σ) , y ∼ N(0, 1) (2.53)

can be applied [32]. Expression (2.53) transforms a N(0, 1) distributed random
number y to a Ln(µ, σ2) distributed one. The update of the mutation strength
for an isotropic Gaussian mutation operator is performed on the basis of a prod-
uct, consisting of a Ln(0, 1) random number and the mutation strength of the
generation g

σ(g+1) ∼ σ(g) exp (τN(0, 1)) . (2.54)

The exogenous strategy parameter τ , which is referred to as learning parameter
[27], determines the rate of the self-adaptation. Schwefel (1975) and Beyer (1996)
suggested choosing τ to be inversely proportional to the square root of the problem
dimension

τ ∝ 1√
n
. (2.55)

For avoiding a mutation strength σ close to zero, which would lead to negligible
mutations on average, a threshold is introduced

σ < ε0 → σ = ǫ0. (2.56)

If the mutation strength σ reaches a value below the threshold ǫ0, σ is set
equal to the threshold.

Now, the update procedure of the endogenous parameters for the mutation
operator implying n strategy parameters is introduced. This scheme implies an
extension of the space of the individuals as given by

I = R
n × R

n. (2.57)

Schwefel (1977) suggested the expression (2.58) for computing the vector
σ(g+1) = (σ1, . . . , σn)

T :

σ
(g+1)
i ∼ σ

(g)
i exp (τ0N(0, 1) + τNi (0, 1)) . (2.58)
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Expression (2.59) shows recommended values for the learning parameters (Schwe-
fel, 1977):

τ0 ∝
1√
2n
, τ ∝ 1√

2
√
n
. (2.59)

Again, as for the isotropic Gaussian mutation operator, a threshold is intro-
duced for avoiding σi values close to zero. The threshold ǫ0 is applied for each
component of the vector σ

σi < ǫ0 → σi = ǫ0. (2.60)

Finally, the strategy parameter adaptation of the most general mutation op-
erator (2.50) is discussed. This approach consists, as mentioned above, of n σi
values and n(n − 1)/2 rotation angles. Expression (2.61) shows the space of the
individuals:

I = R
n × R

n × R
n(n−1)/2. (2.61)

The adaption of the rotation angles differs from the σi values, as the desired
expected change of these angles is zero. Additionally, expression (2.62) should be
complied:

p (αi) = p (−αi) . (2.62)

These requirements are fulfilled by a Gaussian normal distribution and an
additive mutation scheme. Expression (2.63) summarizes the adaptation of the
σi values and the rotation angles:

σ
(g+1)
i ∼ σ

(g)
i exp (τ0N(0, 1) + τNi (0, 1)) ,

α
(g+1)
j ∼ α

(g)
j + βNj (0, 1) .

(2.63)

Schwefel recommends to choose the factor β equal to 0.0873. The rotation
angles αj are defined within the interval [−π, π]. Whenever an angle αj is outside
the permissible interval, a mapping is performed as shown by (2.64) [13]:

∣∣∣α(g+1)
j

∣∣∣ > π → α
(g+1)
j = α

(g+1)
j − 2πsign

(
α
(g+1)
j

)
. (2.64)

Experimental studies showed that the presented self-adaptation mechanism of
the strategy parameters is a noisy process, which can show remarkable fluctuations
during the optimization [27]. The above mentioned intermediate recombination is
able to reduce these fluctuations. Nevertheless, the introduced self-adaptation can
fail. In this case the evolution gets stuck in a local optimum because the mutation
operator is unable to create superior offspring with respect to their parents. One
has to bear in mind that there is no general solution for this problem. In the
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subsequent sections advanced techniques are introduced, which take the history
of the search process into account.

2.4.5 Derandomized self adaptation

Ostermeier [35] analyzed the self-adaptation mechanism on the basis of an (1, λ)-
ES. The investigated algorithm comprises for each offspring k (1 ≤ k ≤ λ) a
global mutation strength variation parameter ξk, which takes two possible states
with equal probability (α, 1/α;α ∈ [1.1; 1.5]) and a vector ξk for the independent
variation of the object variables (Individual strategy parameter ξki ). The compo-
nents of the vector ξk are drawn from an appropriate distribution. Expression
(2.65) shows the mutation operator (O: Offspring, P: Parent):

x
(g)
Ok

= x
(g)
P + ξkξkδgzk. (2.65)

Each component of the random vector z is drawn from a normal distribution
with zero mean and a variance of one. The random vector z is modified multi-
plicatively by the strategy parameters of the previous generation δ(g), the global
mutation strength variation ξk and the individual strategy parameter variation
ξk. The fittest individual is selected as a parent for the following generation
(sel ∈ 1, . . . , λ, index of the selected individual)

x
(g+1)
P = x

(g)
Osel

. (2.66)

The individual strategy parameters for the next generation are computed on
the basis of the parameter variation of the selected offspring

δ(g+1) = ξselξselδ(g). (2.67)

The multiplications of (2.65) and (2.67) are performed component wise.
Ostermeier identified two basic shortcomings of the presented self-adaption

mechanism. First of all, the scheme does not relate the size of the mutation of the
objective variables of the selected individual with the variation of the individual
strategy parameters for the following generation. As the components of z are
drawn from a normal distribution, a large mutation is possible, even when a small
value of the related individual strategy parameter variation occurs. However,
in such a case, the individual strategy parameter variation should reflect the
large mutation. Furthermore, the variation of the strategy parameter within a
generation is the same as the one between different generations. On the one hand,
a distinct variation is necessary for assuring a successful selection procedure. On
the other hand, for reducing random fluctuations of the strategy parameters in
the generation sequence the inter-generational variation should be much smaller.

Ostermeier suggested a derandomized mutative step-size control in order to
overcome the mentioned shortcomings. In this case, the modification of the indi-
vidual strategy parameters is derived from the sampled random vector z of the
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selected offspring and not drawn from a distribution. The expected values of
E (|zi|) and E (xi) are equal, as shown by

zi ∼ N(0, 1) , (2.68)

yi ∼ χ2 ∼ z2i , (2.69)

and

xi ∼ χ ∼ √yi. (2.70)

The distribution of the absolute value of each component of z is given by (2.70)
[36]. Expression (2.71) [32] shows the computation of the expected value of a χ
distributed random variable xi:

E (xi) =
√
2
Γ ((k + 1) /2)

Γ (k/2)
. (2.71)

As the value |zi| is a scalar, the degree of freedom k is equal to one (The
results of the gamma function Γ can be found in [26]):

E (xi) =

√
2

π
, Γ

(
1

2

)
=
√
π, Γ (1) = 1. (2.72)

As the adaptation of the individual strategy parameter is performed mul-
tiplicatively, the exponential function is applied for transforming the expected
value to one and to obtain an equal probability for the occurrence of a variation
and its associated reciprocal variation

ξi = exp

(
∣∣zseli

∣∣−
√

2

π

)
. (2.73)

The update of the strategy parameters is given by

δ(g+1) =
(
ξsel

)β (
ξzsel

)βscal
δ(g). (2.74)

For each component of the vector z, the absolute value |zi| is computed. Ac-
cording to expression (2.73), the individual strategy parameter δgi is increased or

decreased, if |zi| is bigger or smaller than the expected value
√

2
π .

Ostermeier also introduced two exogenous strategy parameters β (0 < β < 1)
and βscal(0 < βscal < 1) for reducing the random inter-generational fluctuations
without affecting the variation between competing offspring. These parameters
allow decreasing the modification of the individual strategy parameters. Finally,
the expressions (2.75) summarize the discussed modifications. Again, all the
multiplications and powers of vectors refer to components:
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x
(g)
Ok

= x
(g)
P + ξkδgzk,

x
(g+1)
P = x

(g)
Osel

,

δ(g+1) =
(
ξsel

)β (
ξzsel

)βscal
δ(g),

ξzsel
= (ξ1, ξ2, . . . , ξn)

T
, with ξi = exp

(
∣∣zseli

∣∣−
√

2

π

)
.

(2.75)

2.4.6 Cumulative step-size adaptation

The following section deals with a further generalized derandomized procedure
for the adaptation of the global mutation strength in consideration of inter-
generational information. In [37] the cumulative step-size adaptation is presented
on the basis of a (µ/1, λ)-CSA-ES and a (µ/µ, λ)-CSA-ES. The latter mentioned
algorithm is discussed in this section, which uses an intermediate recombination.
The core of the cumulative step-size adaptation (CSA) is the evolution path. Fig-
ure 2.8 [33] shows three different evolution paths in an idealized representation,
consisting each of five generations. The solid vectors illustrate the connection
between the resultant centroids of the intermediate recombination from one gen-
eration to the next one and the dashed vector shows the resultant from the initial
state to the last generation. As opposed to the vectors connecting the genera-
tional sequence of the centroids, the resultant ones differ significantly in length. A
long evolution path (length of the resultant vector), shown by 2.8 (right), in com-
parison with a path obtained by random selection, illustrated by 2.8 (middle),
leads under the application of the CSA to an increased mutation strength and
vice versa. A mathematical definition of the reference state for assessing the path
length is given below. If the evolution path is too short, the search is probably
close to an optimum. Hence, the mutation strength is reduced in order to focus
the optimization on this region. In the other case, a long evolution path indicates
a long distance to the optimum. In such a case it is reasonable to increase the
mutation strength.

Figure 2.8: Evolution paths of different length [33].
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Expression

x
(g+1)
k = 〈x〉(g)µ + δ(g)zk (2.76)

illustrates the isotropic mutation of the offspring k (1 ≤ k ≤ λ) originating

from the centroid 〈x〉(g)µ of the previous generation

〈x〉(g)µ =
1

µ

∑

i∈I
(g)
sel

x
(g)
i . (2.77)

I
(g)
sel contains the µ indices, selected within the generation g. δ(g) ∈ R is the

mutation strength of the generation g (δ(g) > 0) and zk is a normal distributed
random vector. The components of zk are drawn independently on the basis of a
zero mean and a variance of one. Each zk is determined independently from the
other random vectors of the generation g+1. A mathematical formulation of the
evolution path is given by

s(g+1) = (1− c) s(g) + cu

√
µ

δ(g)

(
〈x〉(g+1)

µ − 〈x〉(g)µ

)
, (2.78)

which is a weighted sum of the consecutive centroids and

δ(g+1) = δ(g) exp

(∥∥s(g+1)
∥∥− E (‖N(0, I)‖)

DE (‖N(0, I)‖)

)
(2.79)

defines the update of the mutation strength. Expression (2.79) compares the
Euclidean norm of the evolution path s(g+1) with the expected value of the Eu-
clidean norm of a normal distributed random vector with zero mean and a identity
matrix as a covariance matrix (E (‖N(0, I)‖)).

The expressions

z ∼ N (0, I) , (2.80)

y ∼ χ2 ∼ zT z (2.81)

and

x ∼ χ ∼ √y (2.82)

show the equivalence of the random variables ‖z‖ and x. E (‖N(0, I)‖) is the
expected value of a χ distribution

E (‖z‖) = E (‖N(0, I)‖) = E (x) =
√
2
Γ ((k + 1) /2)

Γ (k/2)
. (2.83)

The degree of freedom k of this distribution is identical to the dimension
of the search space. If the length of the evolution path s(g+1) is smaller than
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E (‖N(0, I)‖), the global mutation strength is decreased according to (2.79). In
the opposite case, the mutation strength is increased. The expected length of a
normal distributed random vector is the above mentioned reference state for as-
sessing the evolution path length, which is obtained from random selection. If the
Euclidean norm of s(g+1) is equal to E (‖N(0, I)‖), the global mutation strength
remains unchanged. The successful steps are expected to be perpendicular to each
other [33]

z
(g)T

sel z
(g+1)
sel ≈ 0 ; z

(g+1)
sel =

√
µ

s(g)

(
〈x〉(g+1)

µ − 〈x〉(g)µ

)
. (2.84)

Large values of the exogenous damping parameter D lead to a slow adaptation
of the mutation strength. The exogenous parameter c weights the influence of the
history with respect to the evolution path. In the limit case c = 1 the history
of the evolution path is ignored. Hansen 1998 recommended for the mentioned
parameters the values

c =
1√
n
, D =

√
n. (2.85)

Originating from

z = ax, x ∼ N(0, σ2
x), z ∼ N(0, a2σ2

x) (2.86)

and

x ∼ N(0, σ2
x), y ∼ N(0, σ2

y), x+ y ∼ N(0, σ2
x + σ2

y), (2.87)

which gives the rule for the addition of variances of normal distributions,

1

µ

µ∑

i=1

zi ∼
1√
µ
N(0, I) , zk ∼ N(0, I) (2.88)

can be derived [38]. Expression

〈x〉(g+1)
µ ∼ 〈x〉(g)µ + δ(g)

1

µ

µ∑

i=1

zi (2.89)

is derived from (2.76) and (2.77). The expressions (2.88), (2.89) and (2.90) are
derived under the assumption of a random selection. Inserting (2.88) into (2.89)
leads to (2.90), which shows that the difference vector of the centroids between
the generations g and g + 1 is normally distributed:

√
µ

δ(g)

(
〈x〉(g+1)

µ − 〈x〉(g)µ

)
∼ N(0, I) . (2.90)

As (2.90) is normally distributed under random selection, s(g+1) is also equally
distributed, if the constant cu is chosen according to (2.91) and s(0) ∼ N(0, I)
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s(g+1) ∼ s(g) ∼ N(0, I) ⇒ (1− c)2 + c2u = 12. (2.91)

This expression is derived by applying (2.87). An extension of the introduced
cumulative step-size adaptation is shown in the next section, which is not re-
stricted to an isotropic mutation operator.

2.4.7 Covariance matrix adaptation

The best adaptation of the mutation operator with respect to the fitness landscape
is obtained by deploying a covariance matrix implying a global scaling, a scaling
for each eigenvector and an orthogonal rotation of the coordinate system defined
by the eigenvectors. As introduced above, the related covariance matrix can be
derived from a set of strategy parameters. Another approach is to learn the
covariance matrix directly from the optimization sequence. The adaptation of it
is determined by the history of successful steps and the selected individuals of the
current population. This procedure is referred to as covariance matrix adaptation
(CMA). The introduction of the CMA is mainly taken from [33].

The offspring is drawn from a Normal distribution, as given by

x
(g+1)
k ∼ σ(g)N

(
m(g),C(g)

)
. (2.92)

For the numerical computation of the random vector, expression (2.41) is

applied. σ(g) ∈ R
+ is the global mutation strength. x

(g+1)
k the k-th offspring of

the generation g + 1, whereas m(g) ∈ R
n is the centroid of the generation g and

C(g) the covariance matrix of the generation g.

The following section treats the update procedures for m, C and σ. Hansen
applies an extended intermediate recombination, which implies additional weights
for each parent

m(g+1) =

µ∑

i=1

wix
(g+1)
i:λ (2.93)

for updating m. All parents are involved in the recombination process, there-
fore ρ is equal to µ. The expression i : λ ranks the individuals according to their
fitness value as shown by

f
(
x
(g+1)
1:λ

)
≤ f

(
x
(g+1)
2:λ

)
≤ · · · ≤ f

(
x
(g+1)
λ:λ

)
. (2.94)

The higher the fitness of the parents the higher their weight for the recombi-
nation is. Expression (2.95) defines the weight factors:

µ∑

i=1

wi = 1, w1 ≥ w2 ≥ · · · ≥ wµ, wi ∈ R
+. (2.95)
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The expression (2.96) is a useful definition for the subsequent presentation of
the CMA-ES:

µeff =




µ∑
i=1

wi

‖w‖




2

=

(
µ∑

i=1

w2
i

)−1

. (2.96)

The lowest possible value of µeff is 1.0. In this case, one parent has a weight
of 1.0 and the remaining parents a weight of 0.0. If all parents have the same
weight 1

µ , µeff is equal to µ, which is the highest possible value of µeff .
Generally, a fast search is desired, which implies a small population size λ.

Under this condition, it is difficult to obtain a reliable estimation of the covariance
matrix. Hansen suggested deploying information from previous generations in
order to improve the computation of the covariance matrix. Expression (2.97)
illustrates the estimation of the covariance matrix within the generation g + 1:

C(g+1)
µ =

µ∑

i=1

wi

(
x
(g+1)
i:λ −m(g)

)(
x
(g+1)
i:λ −m(g)

)T

. (2.97)

The same weights are applied as for the extended intermediate recombination.
Hansen [33] interprets (2.97) as an estimation of the variances of the sampled
steps, because the mean is taken from the previous generation. Expression (2.98)
demonstrates the assignment of prior information to the covariance matrix:

C(g+1) = (1− cµ)C(g) +
cµ

σ(g)2
C(g+1)

µ . (2.98)

The recent generations possess a higher weight than the older ones. The
exogenous parameter cµ controls the significance of the older information with
respect to the current covariance matrix and is referred to as learning rate. If cµ
is chosen to be zero, the initial covariance matrix is preserved. A value of cµ = 1
means that any prior information is discarded. Inserting (2.97) into (2.98) and
applying

y
(g+1)
i:λ =

x
(g+1)
i:λ −m(g)

σ(g)
(2.99)

gives

C(g+1) = (1− cµ)C(g) + cµ

µ∑

i=1

wiy
(g+1)
i:λ y

(g+1)T

i:λ . (2.100)

The parameter cµ balances between two extreme cases. If cµ is chosen too
big, the covariance matrix could degenerate and a small value of cµ leads to

slow learning. Usually, as an initial covariance matrix C(0) the unity matrix I is
utilized.
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A drawback of the presented estimation of the covariance matrix is that the
sign information of the steps is not reflected yyT = (−y)(−y)T . Hansen proposed
to overcome this shortcoming by introducing a so-called evolution path. Successful
steps are accumulated and stored in a vector pc. Expression (2.101) defines this
vector:

p(g+1)
c = (1− cc)p(g)

c +
√
cc (2− cc)µeff

(
m(g+1) −m(g)

σ(g)

)
. (2.101)

The factor of the second summand on the right hand side is a normalization
constant and cc defines the significance of the previous generations similar as cµ.
Expression (2.102) shows the generation of a covariance matrix on the basis of an
evolution path:

C(g+1) = (1− c1)C(g) + c1p
(g+1)
c p(g+1)T

c . (2.102)

Both approaches for adapting the covariance matrix can be combined as given
by

C(g+1) = (1− c1 − cµ)C(g) + c1p
(g+1)
c p(g+1)

T

c + cµ

µ∑

i=1

wiy
(g+1)
i:λ y

(g+1)T

i:λ . (2.103)

Thereby the information of each generation (estimation of the covariance ma-
trix) and the correlations between the generations (evolution path) are efficiently
used for updating the covariance matrix. The constants c1 and cµ control the sig-
nificance of the information of the previous generations. Hansen [33] recommends
to choose c1 and cµ according to

c1 ≈
2

n2
(2.104)

and

cµ ≈ min
(µeff

n2
, 1− c1

)
. (2.105)

Additionally, the CMA-ES comprises an overall scale of the mutation operator,
which is similar to the above introduced cumulative step-size adaptation. This
mechanism is introduced, as the largest reliable learning rate for the covariance
matrix update (2.103) is too slow for achieving the desired change rates of the
global mutation strength. Expression

p(g+1)
σ = (1− cσ)p(g)

σ +
√
cσ (2− cσ)µeffC

(g)− 1
2
m(g+1) −m(g)

σ(g)
(2.106)

shows a slightly modified version of (2.78), which is adapted to the weighted
intermediate recombination and contains a rescaling of the eigenvalues. For the
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exogenous parameter cσ, which weights the influence of the previous generations
on the evolution path, Hansen recommends the same range as for cc.

The matrix C(g)−
1
2
, defined as

C(g)−
1
2 = B(g)D(g)−1

B(g)T , (2.107)

eliminates the scaling of the axes, which is caused by the covariance matrix
C(g) within the mutation. However, the rotation of the axis is not affected by

C(g)−
1
2
. On the basis of this rescaling, it is possible to compare the length of the

evolution path with the expected length of a N(0, I) distributed normal vector.
The fundamental idea of the adaption of the global mutation strength is the
same as mentioned in the section about the cumulative step-size adaptation. A
successful adaptation of the global mutation strength is obtained, if the vectors,
connecting the centroids of each generation are in expectation perpendicular to
each other in the rescaled space. If the centroids of each generation are considered
in the search space, expression

(
m(g) −m(g−1)

)T

C(g)−1
(
m(g+1) −m(g)

)
≈ 0 (2.108)

holds. In other words, the vectors m(g+1) −m(g) and m(g) −m(g−1) are in
expectation C−1 conjugate. The derivation of (2.108) can be found in [33]. Apart
from the constant cσ and the formula signs, the adaptation of the global mutation
strength is identically computed as (2.79):

σ(g+1) = σ(g)exp


 cσ
dσ




∥∥∥p(g+1)
σ

∥∥∥
E ‖N(0, I)‖ − 1




 . (2.109)

2.4.8 (1+λ)-CMA-ES

Subsequently, a (1+λ)-CMA-ES is introduced, which is developed by Igel et al.
[20]. The offspring is procreated in the same way, as shown for the (µ/µ, λ)-CMA-
ES (Expression (2.92)). The best fitness value of each generation, comprising λ

offspring, is denoted by the symbol x
(g+1)
1:λ ∈ R

n. For the adaptation of the
step size σ, a procedure similar to the 1/5th rule (Rechenberg 1973) is applied.

Thereby, λ
(g+1)
succ is defined as the number of offspring concerning a generation,

whose fitness is better than the one of the parent. The success probability p
(g+1)
succ =

λ(g+1)
succ

λ is smoothed, as given by

p(g+1)
succ = (1− cp)p(g)succ + cpp

(g+1)
succ . (2.110)

The adaptation of the step size σ (2.111) is performed multiplicatively:
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σ(g+1) = σ(g)exp

(
1

d

p
(g+1)
succ − ptargetsucc

1− ptargetsucc

)
. (2.111)

In order to limit the adaptation of the step size by the damping factor, the

result of the sub term
p(g+1)
succ −ptarget

succ

1−ptarget
succ

must lie within the interval ]−1; 1[. For

obtaining the desired interval, ptargetsucc < 0.5 must hold. This restriction of the
mentioned sub term leads to an argument of the exponential function, which is
larger than − 1

d and smaller than 1
d .

Provided x
(g+1)
1:λ corresponds to a better fitness value than the parent x

(g)
parent,

this offspring is taken as a parent of the next generation and the covariance matrix
is updated. The update procedure of the covariance matrix also depends on the

smoothed success probability p
(g+1)
succ , as shown by the expressions

if p
(g+1)
succ < pthresh

p
(g+1)
c = (1− cc)p(g)

c +
√
cc (2− cc)

[
x
(g+1)
parent−x

(g)
parent

σ
(n)
parent

]

if p
(g+1)
succ ≥ pthresh

p
(g+1)
c = (1− cc)p(g)

c

(2.112)

and

if p
(g+1)
succ < pthresh

C(g+1) = (1− ccov)C(g) + ccovp
(g+1)
c p

T (g+1)
c

if p
(g+1)
succ ≥ pthresh

C(g+1) = (1− ccov)C(g) + ccov

(
p
(g+1)
c p

T (g+1)
c + cc (2− cc)C(g)

)
. (2.113)

Thereby, the update of the covariance matrix takes the actual step into ac-
count, if the smoothed success probability is below the threshold. In this case, the
evolution path and the adaptation of the covariance matrix is computed in the
same way as shown for the (µ/µ, λ)-CMA-ES. The term

√
cc (2− cc) normalizes

the variance of pc, which is considered to be a random variable (see [20]).
According to (2.112), the evolution path shrinks, if the smoothed success prob-

ability exceeds the threshold. For preserving the variance of C in this case, which
is affected by the shrinking evolution path, the update of the covariance matrix
is complemented by the term cc (2− cc)C(g). The threshold pthresh limits the
adaptation of the covariance matrix in the case of small step sizes. Table 2.2
summarizes recommendations regarding the choice of the exogenous parameters,
as given in [20]. The suggestion of the success probability ptargetsucc lies in the same
dimension as 1/5th rule of Rechenberg.
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Table 2.2: Recommended values of the exogenous parameters of
the (1+λ)-CMA-ES algorithm.

Adaptation Step Size

d = 1 + n
2λ ptargetsucc = 1

5+
√

λ
2

cp =
ptarget
succ λ

2+ptarget
succ λ

Adaptation Covariance Matrix
cc =

2
n+2 ccov = 2

n2+6 pthresh = 0.44

2.5 Newton method

The Newton method is an optimization procedure, which is based on the second
derivative of the objective function. The application of this algorithm is limited
to differentiable and unconstrained minimization problems as given by:

minimize: f(x), x ∈ R
n, f ∈ R. (2.114)

Thereby, the optimization procedure identifies the root of the first derivative

∇f(x) = 0. (2.115)

It has to be mentioned that this root could also correspond to a local maxi-
mum or a saddle point of f(x). For investigating the computed stationary point,
the Hessian matrix ∇2f(x) can be calculated. Provided this matrix is positive
definite, the considered stationary point is a local minimum. The expressions

∇f =
∂f(x)

∂x
=

[
∂f(x)

∂x1
,
∂f(x)

∂x2
, ...,

∂f(x)

∂xn

]T
(2.116)

and

∇2f(x) =

(
∂2f(x)

∂xi∂xk

)

i,k=1,...,n

(2.117)

define the first and second derivative respectively. The root of the first deriva-
tive is computed based on a linearization of the stationary condition with respect
to the current position x(n) (2.115). The desired stationary point is iteratively
determined. Expression

∇f(x(n)) +∇2f(x(n))∆x(n+1) = 0 (2.118)

shows the linearization of the nth iteration. This expression is solved for the
vector ∆x(n+1), which gives, in consideration of
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x(n+1) = x(n) +∆x(n+1), (2.119)

the update of the solution x(n+1) regarding the nth iteration

x(n+1) = x(n) −
[
∇2f(x(n))

]−1

∇f(x(n)). (2.120)

In order to apply the Newton method for constrained problems, as defined by

minimize: f(x), f ∈ R, x ∈ R
n,

gj(x) ≤ 0, j = 1, ..., ng,

hi(x) = 0, i = 1, ..., nh,

(2.121)

the objective function can be exchanged by a Lagrange function. This func-
tion, as defined by the expression (2.122), enables to transform the constrained
problem to an unconstrained one:

L(x,λ,µ) = f(x) +

ng∑

j=1

λjgj(x) +

nh∑

k=1

µkhk(x). (2.122)

Provided, the problem comprises only equality constraints ng = 0;nh > 0, the
stationary point of the Lagrange function

∇L(x,λ,µ) = 0 (2.123)

is a necessary condition of a local minimum. However, the stationary point is
only a local minimum, if the Hessian matrix is positive definite.

In the general case, comprising equality and inequality constraints (ng >
0;nh > 0), the Kuhn-Tucker optimality conditions (2.124), (2.125), (2.126) and
(2.127) have to be applied for the determination of a local minimum:

λj ≥ 0, (2.124)

∇xL(x,λ,µ) = 0, (2.125)

λjgj(x) = 0, (2.126)

hi(x) = 0. (2.127)

Expression

∇xL(x,λ,µ) = ∇xf(x) +

ng∑

j=1

λj∇xgj(x) +

nh∑

i=1

µi∇xhi(x) (2.128)
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gives the partial derivative of L(x,λ,µ) with respect to x. For solving the
optimization problem on the basis of the Kuhn-Tucker optimality conditions, the
equations (2.125),(2.126) and (2.127) need to be linearized as given by (2.129),
(2.130) and (2.131) [26]:

∇xL(x
(n),λ(n),µ(n)) +

(∇2
xf(x

(n)) +

ng∑

j=1

λ
(n)
j ∇2

xgj(x
(n)) +

nh∑

i=1

µ
(n)
i ∇2

xhi(x
(n)))∆x(n+1) +

ng∑

j=1

∇xgj(x)∆λ
(n+1)
j +

nh∑

i=1

∇xhi(x)∆µ
(n+1)
i = 0, (2.129)

λ
(n)
j gj(x

(n)) + gj(x
(n))∆λ

(n+1)
j + λ

(n)
j ∇xgj(x

(n))T∆x(n+1) = 0, (2.130)

hi(x
(n)) +∇xhi(x

(n))T∆x
(n+1)
i = 0. (2.131)

For the linearization, the variables ∆x,∆λj and ∆µi are introduced. Now,
apart from x, also the Lagrange multipliers λj and µj need to be updated as
given by the expressions:

x(n+1) = x(n) +∆x(n+1), (2.132)

λ
(n+1)
j = λ

(n)
j +∆λ

(n+1)
j , (2.133)

µ
(n+1)
i = µ

(n)
i +∆µ

(n+1)
i . (2.134)

On the basis of the shown equation system (2.129), (2.130) and (2.131) the
desired solution can be computed iteratively.

2.6 Sequential quadratic programming

Unfortunately, the Newton method can converge to a solution, which violates
the constraints [25]. In order to avoid this shortcoming of the Newton method,
Sequential Quadratic Programming algorithms can be deployed. The introduction
of these algorithms is mainly taken from [25]. As a first step, additional constraints
are defined:

λ
(n+1)
i ≥ 0,

gj(x
(n)) +∇xgj(x

(n))T∆x(n+1) ≤ 0. (2.135)
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By applying the relation λ
(n+1)
j = λ

(n)
j + ∆λ

(n+1)
j expression (2.130) can be

rearranged as given by

λ
(n+1)
j gj(x

(n)) + λ
(n)
j ∇xgj(x

(n))T∆x(n+1) = 0. (2.136)

Additionally, if λ
(n)
j of the second summand of (2.136) is exchanged by λ

(n+1)
j ,

expression

λ
(n+1)
j (gj(x

(n)) +∇xgj(x
(n))T∆x(n+1)) = 0 (2.137)

is obtained. Expression

∇xf(x
n) +

ng∑

j=1

λ
(n)
j ∇xgj(x

(n)) +

nh∑

i=1

µ
(n)
i ∇xhi(x

(n)) +B(n)∆x(n+1) +

ng∑

j=1

∇xgj(x
(n))∆λ

(n+1)
j +

nh∑

i=1

∇xhi(x
(n))∆µ

(n+1)
i = 0 (2.138)

is derived by inserting (2.128) in (2.129) and introducing the abbreviation
B(n) for the terms comprising the second derivative of f(x) with respect to x.

The relations λ
(n+1)
j = λ

(n)
j +∆λ

(n+1)
j and µ

(n+1)
j = µ

(n)
j +∆µ

(n+1)
j allow to write

(2.138) in the form given by

∇xf(x
n) +B(n)∆x(n+1) +

ng∑

j=1

∇xgj(x
(n))λ

(n+1)
j +

nh∑

i=1

∇xhi(x
(n))µ

(n+1)
i = 0.

(2.139)
For a better overview, the additional constraints (2.135) and the rearranged

equations (2.139), (2.137) are summarized by

λ
(n+1)
i ≥ 0,

λ
(n+1)
j (gj(x

(n)) +∇xgj(x
(n))T∆x(n+1)) = 0,

∇xf(x
n) +B(n)∆x(n+1) +

ng∑

j=1

∇xgj(x
(n))λ

(n+1)
j +

nh∑

i=1

∇xhi(x
(n))µ

(n+1)
i = 0,

gj(x
(n)) +∇xgj(x

(n))T∆x
(n+1)
j ≤ 0,

hi(x
(n)) +∇xhi(x

(n))T∆x
(n+1)
i = 0.

(2.140)

Equation (2.131) is not affected by the additional constraints and is therefore
repeated. Due to the linearization of the original problem and the introduced



52 CHAPTER 2. OPTIMIZATION

additional constraints (2.135), the equations (2.140) describe the Kuhn-Tucker
optimality conditions of a quadratic function as given by

minimize: ∇xf(x
n)T s+

1

2
sTB(n)s,

gj(x
(n)) +∇xgj(x

(n))T s ≤ 0,

hi(x
(n)) +∇xhi(x

(n))T s = 0.

(2.141)

The shown considerations allow formulating an optimization algorithm which
is referred to as Sequential Quadratic Programming (SQP). Starting from a so-
lution x(n), it is possible to formulate an optimization problem on the basis of a
quadratic function, which is also called quadratic program, for improving the so-
lution x(n). Thereby, each optimization step comprises the solution of a quadratic
sub program. A drawback of the method is the determination of the Hessian ma-
trix, which is computational expensive. Quasi-Newton methods give an approxi-
mation of the Hessian matrix by a reduced cost. The Broyden-Fletcher-Goldfarb-
Shanno (BFGS) is a well known member of the class of the quasi-Newton methods.
Thereby, [39] and [25] are given as references for this method. Provided the Hes-
sian matrix B(n) is positive semidefinite ∆xTB(n)∆x ≥ 0, the quadratic problem
(2.141) is convex and a solution, which complies the Kuhn-Tucker conditions is a
global minimum. For this case efficient solution strategies, like the interior-point
methods, exist, which are described in [25]. In order to enforce a positive semidef-
inite Hessian matrix, the BFGS method can be modified as suggested by Powell
[25].

2.7 Summary

Generally, evolutionary strategies are characterized by low demands regarding
the structure of the fitness landscape. These optimization procedures are able to
search for an optimum based on zero-order information. As derivatives of the fit-
ness function are not needed, evolutionary strategies are suitable for discontinuous
optimization problems. The ability to overcome local minima is a further property
of these optimization algorithms. For the analysis of the constitutive laws, real-
valued as well as integer-valued parameters have to be considered. Therefore,
for this task an evolutionary strategy comprising the introduced derandomized
self adaptation is applied, as this algorithm is able to treat mixed-integer opti-
mization problems. However, some investigations of this thesis are solely based on
real-valued object variables. In these cases also the (µ/µ, λ)-CMA-ES, whose field
of application is limited to real-valued object variables, is applied and compared
with the (1, λ)-DR-ES. Provided the corresponding landscape of the optimization
problem is unimodal, it is expected that the (1 + 1)-CMA-ES algorithm shows a
better performance in comparison with the (µ/µ, λ)-CMA-ES [20]. This property
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of the (1+ 1)-CMA-ES can give additional insight into the optimization task. As
long as the search spaces of the optimization tasks are real-valued in this thesis,
the performance of the evolutionary strategies is compared with the deterministic
SQP algorithm.
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Chapter 3

Production process of sheet
metal parts

3.1 Introduction

The manufacturing of sheet metal parts for car bodies usually consists of several
process steps. The original blank is transformed into the desired part shape by
stamping, postforming, trimming and piercing operations. For each of these op-
erations a part specific tool has to be designed. For the manufacturing of parts,
the tools are mounted in a press line. Additional handling systems are necessary
in order to transport the intermediate products from one press to the next one.
The whole process runs usually fully automatic, which leads to high productiv-
ity. The design of the production process is determined by the producibility of
the sheet metal part, the minimization of the sheet metal consumption, the ro-
bustness regarding scattering of the material behavior and the process conditions.
Further aspects are the minimization of the investments for the tools, the required
geometrical tolerances of the part and functionality demands like the mechanical
strength of crash relevant parts.

3.2 The stamping operation

In the following chapter, production processes are discussed, which start with a
stamping operation. The term stamping is used for describing the first shaping
operation of the process and the term postforming is applied for the remaining
shaping stages. The experiments of this thesis are based on stamping operations.
Hence, in this thesis a detailed discussion of the design and the functionality of
trimming and postforming operations is omitted. For a comprehensive description
of stamping operations, a simplified example is introduced, as depicted in figure
3.1.
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Figure 3.1: Example; The geometry of the part.

Figures 3.2 and 3.3 show a stamping operation, which is related to the men-
tioned example. The following section focuses on the description of the sequence
of the stamping operation.
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Figure 3.2: Example; Left: Initial position of the tool; Right: Illustration of the
state, when the die, the blank and the binder are in contact.

The initial state of the press after inserting the blank into the tool is illustrated
by figure 3.2 (left). During the first phase of the operation the press ram goes
down. As soon as the die, the blank and the binder are in contact, the binder
force begins to act against the die (figure 3.2 (right)). It has to be mentioned,
that the binder force progression depends on the motion of the binder. For the
built up of the desired binder force, a press specific level of binder movement
is necessary. In the second phase of the operation, the drawbeads are formed,
if existent, which completes the binder closing phase (figure 3.3 (left)). The
functionality of drawbeads will be explained in the next section. Afterwards, the
die goes down until the tool is closed and the material is formed according to
the geometry of the die and the punch (figure 3.3 (right))1. During this phase,
the material is plastically strained. The material flow in the binder zone strongly
affects the result of the stamping operation. For controlling the material flow,
there is a window of permissible levels of restraining forces. On the one hand,
exceeding the upper limit of the restraining forces leads to an insufficient material
flow, which causes material failure. On the other hand there is a tendency for
wrinkles, if the material is not restrained enough [41].

1An introduction in press and tooling technology can be found in [40].
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Figure 3.3: Example; Left: State of the tool after binder closing; Right: Final
position of the tool after the forming operation.

The binder is connected with a hydraulic system, which is able to induce
the desired binder force. The binder force causes a restraining force resulting
from the frictional response between the binder, the blank and the die. This
is one way to control the material flow of the sheet metal during the stamping
operation. Another method for controlling the material flow are drawbeads, which
are located perpendicular to the material flow in the binder region, as depicted in
figure 3.5. While the material passes through the drawbead additional mechanical
work needs to be done. This causes restraining forces acting in the opposite
direction of the material flow. The mentioned solution can be applied locally in
the binder zone. As opposed to the binder force, the drawbeads are more robust
regarding scattering process conditions. The disadvantage of using drawbeads is
the additional material consumption.

The edge contour of the formed material is a function of the restraining forces
and the blank geometry. Figure 3.4 (right) shows the material flow of a stamping
operation without a drawbead. The minimization of the material consumption im-
plies that the edge of the blank moves close to the die radius during the stamping
operation. If the edge of the sheet metal reaches the die radius zone, a disconti-
nuity with respect to the restraining forces is caused, because the binder cannot
control the material flow anymore. Such discontinuities can lead to process insta-
bilities, which are usually omitted. In the case the operation contains drawbeads
(figure 3.4(left)), the edge of the blank should not move into the drawbead, oth-
erwise the continuity of the restraining forces is also disturbed. Figure 3.4 also
demonstrates the fact, that drawbeads can increase the material consumption of
the production process. Thereby, an equivalent strain field is assumed in the
zones, which do not pass through the drawbead during the stamping operation.

Subsequently, the springback effect is introduced. In the closed state of the
tool the contact forces between formed material and the die face are in equi-
librium. When the tool opens, the mentioned forces cannot act anymore. The
stamped part enters another equilibrium state, which is accompanied with a de-
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Figure 3.4: Comparison of the material flow with (left) and without (right) ap-
plying a drawbead.
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Figure 3.5: Drawbead; Left: Geometry of the drawbead; Right: The drawbead
induces restraining forces, which act in the opposite direction of the material flow.
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formation. This physical effect is called springback. In order to deal with this
effect a tool modification, called springback compensation, is computed based on
the deformation caused by the springback effect. The objective is to obtain the
desired part geometry after it has reached the final equilibrium state. A descrip-
tion of the methods needed for a springback compensation is given in [42] and
[43].

For the commissioning of the stamping tools the binder has to be touched up
and the radii of the punch and die are polished. The above mentioned function of
the binder regarding the control of the material flow requires a constant pressure
distribution between the die, the blank and the binder.

Moreover, the system, consisting of the press, the tool and the sheet metal
are slightly elastically deformed during the stamping operation [44],[45] and [46].
Therefore, it is necessary to modify the binder surface slightly, in order to obtain
a constant pressure distribution. This modification has to be done manually in
the tool shop. Spacers (figure 3.6), adjustable in height, between the binder and
the die, give the operator of the production process in the press shop the chance
to modify the above discussed pressure distribution locally. Such modifications
are necessary to deal with scattering process conditions.
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Figure 3.6: Illustration of a spacer.

3.3 Development of production processes

Usually the part geometry is given in the coordinate system of the product (global
coordinate system of the car design). The first step of the production process
development is the definition of the part alignment with respect to the direction
of the press ram movement. A possible approach is to introduce an additional
coordinate system, as depicted in figure 3.7, for the definition of this alignment.
In the example of this thesis the z-coordinate is defined to be coincident with
direction of the press ram movement. Regarding the stamping operation, the
minimization of the sheet metal consumption, the consideration of the undercut
condition and avoidance of wrinkles have to be taken into consideration. The
term undercut is defined in the next section. Furthermore, subsequent operations
in the direction of the press ram movement are preferred; otherwise an additional
tool investment is necessary for the redirection of the press motion within the tool.
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Therefore, for finding the best part alignment, all of the production operations
have to be taken into consideration.
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Figure 3.7: Definition of the drawing direction.

Any straight line parallel to the direction of the press ram movement, which
causes two or more intersections with the part surface, defines points belong-
ing to a region of undercut. Obviously, the regions of undercut change, if the
part alignment with respect to the stamping direction changes (figure 3.8 (mid-
dle)). Aligned parts or intermediate geometries, which are produced by stamping
operations, must not have any zone of undercut. If any alignment of the part
violates the undercut condition, an intermediate shape has to be designed (figure
3.8 (right)). Such a geometry enables the engineer to remove the zones of under-
cut by splitting the shaping of the part in different operations. In this case at
least one postforming operation is needed for the production of the desired part
geometry.
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Figure 3.8: Example; Left: Analysis of the undercut of the part geometry with re-
spect to direction 1. The part geometry possesses a zone of undercut with respect
to the selected direction; Middle: Analysis of the undercut of the part geometry
with respect to direction 2. The shown modification of the part alignment also
leads to a zone of undercut; Right: Analysis of the undercut with respect to the
intermediate geometry. This geometry in combination with the selected drawing
direction does not show any undercut but needs an additional forming step.

As a next step the binder surface is designed. The main functionalities of
the binder are the above mentioned material flow control and the avoidance of
wrinkles. The second function cannot be explained by the example, depicted in
figure 3.1. Especially for complex double-curved part geometries a non trivial
binder geometry is necessary in order to deal with wrinkling effects. Wrinkles are
caused by differences concerning the developed length of different cross sections
of the same normal direction with respect to the die surface.

Finally the gap between the part geometry, respectively the intermediate shape
and the binder has to be closed. This geometry is called addendum (figure 3.9
(left)). The geometry of the stamping operation is derived from the part or the
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intermediate geometry and the binder and the addendum (figure 3.9 (right)). The
subsequent operations are also designed at the same time.
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Figure 3.9: Example; Left: Illustration of a stamping operation based on the
intermediate shape; Right: Derivation of the tool surfaces.

Today, the design of the production processes is supported by CAD systems.
All process relevant surfaces and contours are described by a 3D model. Based
on the process design the tool design is initiated and finite element analyses are
performed. Such a simulation enables the design engineer to evaluate the stamp-
ing operation with respect to material failure and the development of wrinkles.
As soon as a satisfying design has been found for the stamping operation, the
subsequent operations are also analyzed based on a simulation. If the process
has finally reached a mature state the springback is analyzed and, if necessary,
compensated. For complex parts the design of a production process is a non
trivial task. Usually, several optimization loops are necessary, to find the desired
optimum regarding the mentioned conditions.

3.4 Example

By looking at the example, obviously, there is no part alignment, which does not
violate the undercut condition figure 3.8 (left) and 3.8 (middle). Therefore, an
intermediate shape is introduced as depicted in figure 3.8 (right). This geometry,
in conjunction with the addendum and the binder, leads to the design of the
stamping operation with respect to the tool surfaces (figure 3.9). The tool design
is shown, schematically, by figures 3.2 and 3.3. As depicted in figure 3.10 the
stamped material is trimmed in another operation and finally postformed in order
to obtain the desired part geometry.
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Figure 3.10: Example; Illustration of the production process; Left: Stamping
operation; Middle: Trimming operation; Right: Postforming operation.
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3.5 Industrial production process

As a further example the production stages of a side panel are given, which are
illustrated by figure A.1. The process starts with a stamping operation (OP1) and
is followed by two trimming operations (OP2, OP3). The remaining process steps
(OP4, OP5, OP6) contain further trimming, piercing and postforming operations.
Generally, car body shell parts like the side panel have to fulfill high requirements
regarding the surface quality. Wrinkles, arising during stamping usually have a
negative impact on the quality of the car body shell. Consequently, the stamping
operation comprises a complex double-curved binder surface in order to minimize
the development of wrinkles. The trimming of the part is distributed to several
operations in order to enable an automatic disposal of the trimmed material.



Chapter 4

Steels for car bodies

4.1 The crystalline structure of metals

Metals, generally, consist of a crystalline structure. Technical metals are produced
by a transformation from the liquid to the solid state. The growth of the metallic
lattice starts locally at crystallization seeds. The crystals, resulting from different
crystallization seeds, are called grains. In the final solid state of the metal the
grain boundaries are in contact with each other [47]. In a perfect metal the
electrons are not attached to a specific nucleus. This state of the electrons is
called electron gas. Electrostatic forces are acting between the positively charged
nuclei and the electron gas. Because of the nuclear structure of the metals it
is possible for nuclei to change their position without affecting significantly the
electrostatic equilibrium state [47].

4.2 The elastic behavior of metals

As long as a mechanical system returns to the initial state after load removal,
the deformation is referred to as elastic. Loads applied to a structure consisting
of metal atoms, cause a variation of the interatomic spacing of the nuclei. The
atomic reaction is necessary in order to reach an equilibrium state with respect to
the external load. After the load is removed, the nuclei return to their original po-
sition. Generally, elastic deformations change the volume of the metal. Provided,
the metallic lattice is free of defects, the material will be deformed elastically until
brittle fracture occurs [48].

4.3 The plastic behavior of metals

Plastic deformations are not reversible after load removal. The condition for the
occurrence of a permanent deformation is the mentioned possibility of nuclei, to
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change their position in a metallic lattice and the presence of defects that dis-
turb the crystalline structure. Such defects usually occur in metals for technical
applications during the growing phase of the crystalline structure. Typical de-
fects are missing nuclei and foreign atoms, which are integrated in the crystalline
structure. The mechanism of plastic deformation is based on the movement of
dislocations, which are linear defects. Plastic yielding usually occurs in conjunc-
tion with an elastic deformation. At a low level of the external load, the material
is deformed elastically, which generates the internal forces for the load balance.
Higher load levels activate the movement of dislocations. In the simplest case the
dislocations move along a line through the crystal, which is called slip line. Figure
4.1 illustrates the slip displacement of a dislocation [48]. For the movement of a
dislocation from one lattice position to the next one, only the bonds in the vicin-
ity have to be broken. Therefore the energy, necessary for the slip displacement,
is relatively small [47] compared with breaking of the atomic bond. Since the
movement of dislocation does not alter the crystal structure of the metal, the vol-
ume is not affected by this displacement mechanism [49]. The theory of plasticity
assumes a macroscopically uniform strain distribution. However, as mentioned
above, on microscopic scale the plastic deformation is confined to the slip of dis-
locations [50]. The force, necessary for the dislocation movement, is anisotropic
with respect to the lattice axis. The lowest level of internal forces arises in planes
with the highest density of nuclei. The lattice axes of the grains are randomly
orientated in the metal. Statistically, the effect of the mentioned anisotropy dis-
appears due to the high amount of grains. As the anisotropy does not affect the
macroscopic behavior of the material, the metal properties are regarded as quasi
isotropic [47]. Mechanical processes, such as cold rolling, can cause a preferred
orientation of the grains, which leads to an anisotropy with respect to the plastic
properties.

Figure 4.1: Slip displacement of a dislocation [48].

The strength of a metal is affected by several effects. With an increasing strain
also the density of dislocations is increasing. In this case there is a need for a
higher internal force level in order to move the dislocations, as the slip lines are
blocking each other. This effect is called hardening. Provided the hardening effect
would not exist, the maximum external force which could be applied to a structure
would be determined by the force state initializing the dislocation movement. The
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initial strength of a metal is also affected by the size of the grains and the presence
of foreign atoms. Generally, the grain boundaries are obstructing the movement
of the dislocations. The smaller the grains of a constant volume of metal are,
the bigger the surface of the grain boundaries is. Therefore the size of the grains
affect the slip displacement (Hall-Petch relation [51]). Additionally, the grain
refinement also leads to an increased ductility of the material. Foreign atoms,
dissolved in the metallic lattice, can also hinder the movement of the dislocations.

4.4 Metallurgy of steels

The remaining part of this chapter will be focused on steels. Iron carbon alloys,
which can be forged without any additional treatment are called steels (concen-
tration of carbon < 2% [52]). Even small variations of the carbon concentration
can lead to remarkable changes of the steel characteristics. The crystalline struc-
ture of steels depends on the temperature. Some structures are just stable in
a specific temperature range [53]. The lattice structures of steel are the cubic
centered crystals of ferrite and the face centered crystals of austenite (figure 4.3).
The iron-carbon phase diagram (figure 4.2) describes the crystalline structure in
dependence on the carbon concentration and the temperature. The diagram is
valid for very low cooling rates, which means the system is always in a thermody-
namic equilibrium, and in the absence of other alloying elements. For example,
if the melt with a carbon content in the range between 0.02% and 0.8% is cooled
from 1600 degree Celsius to room temperature under the condition of the ther-
modynamic equilibrium, the austenite, which exists above 723◦C [47] (figure 4.2),
is transformed into a cubic centered lattice. The face centered crystals of austen-
ite can dissolve more carbon atoms than the cubic centered ferrite. The carbon,
which cannot be dissolved by the cubic centered lattice, precipitates as cementite
and forms a lamellar structure with the ferrite. The characteristics of the ferrite
phase are low hardness and high formability, whereas the cementite exhibits a
high hardness and brittleness [47]. The phase, consisting of ferrite and cementite,
is referred to as perlite. Provided, the cooling rate is violating the thermodynamic
equilibrium, the diffusion of the carbon atoms is hinted. In this case a very fine
distributed cementite phase is formed, which is also called bainite [52]. At high
cooling rates the austenite transforms into a cubic centered lattice and the car-
bon atoms are trapped, which means they do not have enough time to diffuse out
of the crystal structure. This leads to a distorted cubic centered lattice, which
is called martensite. The formation of martensite causes a rising strength and
mechanical hardness of steel. A side effect is the decreasing formability and the
brittle material behavior [53]. In order to reduce the brittleness of martensitic
steels, it is possible to perform a heat treatment, which is called tempering. This
procedure enables the precipitation of iron carbides, which reduces the distortion
of the cubic centered lattice. Finally a steel is obtained, which shows a compro-
mise between a high hardness and an acceptable brittleness. Because of the high
cooling rate, martensite is not shown in the iron-carbon phase diagram [54].
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Figure 4.2: Illustration of an Iron-Carbon phase diagram [54].

Figure 4.3: Left: Model of a cubic centered crystal.; Right: Model of a face
centered crystal.
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The diffusion rate of carbon can be decreased by adding additional alloying
elements. As a consequence, the required cooling rate for obtaining martensite
is reduced [47]. Alloying elements can also lead to the existence of austenite
at ambient temperature and increase the strength of the steel based on finely
dispersed carbides [52]. These carbides hinder the movement of the dislocations.

4.5 Steelmaking

The primary source material for the steel production is iron ore, lime and coke.
Iron ore, occurring in the nature, is consisting of iron oxides and sulphides

(Fe3O4;Fe2O3;FeCO3;FeS2), accompanied by other molecules like silicon ox-
ides, manganese oxides and phosphorus oxides (SiO2;Al2O3;CaO;MgO;P2O5)
[55]. The conversion of iron ore to raw iron is performed in a furnace and is
mainly consisting of the chemical reduction of iron oxides. The coke provides
the carbon, which is necessary for the reduction process. Carbon has a higher
affinity to oxygen than iron. Hence, the carbon removes the oxygen from the iron
oxides. Additionally the silicon oxides, the manganese oxides and the phosphorus
oxides are also reduced by the carbon. The sulphur is removed from the iron
sulphides by the lime [55]. Finally raw iron is obtained from this process step.
Raw iron is used for casting processes and for the steel production. The latter
will be discussed in more detail in the next section.

For steelmaking, a converter is charged by hot raw iron. The task of the con-
verter is to reduce the carbon concentration of the raw material. This is done by
blowing oxygen into the converter, which leads to a chemical reaction between
the oxygen and the carbon of the raw iron. The reaction product (CO) is gaseous
and leaks out of the converter. The primary metallurgy ends with this process
step. Other converters are used for the final composition of the alloying elements
and for obtaining extremely low carbon contents, which is called secondary metal-
lurgy. For the subsequent production steps the material is casted and transferred
to the hot-rolling mill. If the production process is not immediately continued,
slabs are cast.

In the case the hot-rolling process is run based on slabs, it is necessary to
heat up the material again. In the hot-rolling mill the material is descaled, rolled
for obtaining the desired sheet thickness, cooled and coiled. The result of this
production step is referred to as hot-rolled strip. Additionally it is possible to
produce hot-dip or electrolytically coated hot-rolled strips, if the material is not
cold rolled. The production path of cold-rolled sheet comprises pickling, cold-
rolling, annealing, cooling, temper-rolling and coiling. A hot-dip coated sheet is
produced based on a modified annealing and cooling operation. Electrolytically
coated cold-rolled sheets are made in a subsequent process step.

Hot-rolled strips are usually produced in thickness range of 1.6mm to 6 mm.
Instead of cold-rolled sheets the hot-rolled strips tend to shrink and show less
accuracy regarding the planarity and the thickness. The advantage of the lat-
ter mentioned type of sheet is the lower price as the cold-rolling process is not
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required. Cold-rolled sheets are available with a thickness below than 1.6mm.

4.6 Steels for the automotive industry

In the following section, some cold-rolled steel types, for the application in the
automotive industry, are discussed (for further details see [56]).

As mentioned above, carbon can be dissolved in the lattice structure of steels.
This non stoichiometric compound between the iron and the carbon is referred
to as interstitial bond. Steels, which consist of a ferrite structure without any
dissolved carbon, are called interstitial free steels (IF-Steels). The structure of
these steels comprises extremely small amounts of carbon. In order to remove the
carbon from the ferrite structure the steel is alloyed with niobium or titanium. The
alloying elements cause the formation of carbides and nitrides. The pure ferrite
structure leads to an excellent formability and hardening properties. Furthermore
such steels show a high resistance to aging [57]. These steels are applied for
geometrical highly complex parts, as door inners or fenders.

In contrast to the IF-steels, the micro-alloyed steels show on the one hand a
higher initial strength but on the other hand a lower formability. The reason for
the mechanical characteristic of this steel type is the structure, consisting of fine
grains and the finely dispersed carbides. Additionally, the amount of carbon is
higher compared to IF-steels. The fine grains and the carbides hinder the move-
ment of the dislocations, as discussed above, which finally increases the strengths
of the steel. The carbides are formed by alloying the steel with niobium, titanium
and vanadium. The fields of application of micro-alloyed steels are structural
parts and crash relevant parts.

Lastly, dual-phase steels are discussed in this section, which consist of a
martensite and a ferrite phase. Dual-phase steels show a relatively low initial
strength, due to the ferrite, and a high tensile strength caused by the martensite.
Another property of such steels is high energy absorption capacity, caused by the
pronounced hardening effect. During the annealing process in the cold-rolling
mill, the steel is partially transformed to austenite. The remaining non trans-
formed phase is ferrite. Subsequently, the steel is fast cooled and the austenite
transforms into martensite. Usually, dual-phase steels also contain very small
amounts of retained austenite and bainite. Alloying elements like, manganese,
chromium, molybdenum, silicon and vanadium are used in order to decrease the
critical cooling temperature. The alloying concept has to be adapted to the pos-
sible cooling rates of the annealing line, which depends on the cooling facilities,
the sheet thickness and the line speed. Hot dip galvanizing is performed during
the annealing processes. As such production lines are characterized by a lower
cooling rate, the amount of alloying elements has to be increased for suppressing
the formation of bainite [58]. Dual-phase steels are used for geometrical complex
structural parts and for crash relevant parts because of the high energy absorption
capacity.
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4.7 Summary

Today, the modeling of the elasto-plastic material behavior of sheet metals at the
atomic level is computationally too expensive for industrial applications. Conse-
quently, a suitable approximation of the microscopic level is needed to obtain ap-
plicable mathematical formulations for modeling the material response. Thereby,
on the one hand a reduction of the complexity of the material behavior is neces-
sary. On the other hand, the dominating characteristic of the material response
needs to be reflected by such material models. An introduction of these models
is given in chapter 5.2. The above mentioned anisotropy, which is induced by the
cold rolling process, is a crucial material property of sheet metals, which are ap-
plied for car body parts. This effect also has to be considered by material models,
which are used for forming simulations.
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Chapter 5

Forming simulation

5.1 Continuum mechanics

5.1.1 Introduction

Mechanics is concerned with the investigation of the motion of material bodies
under the influence of forces. In continuum mechanics the assumption is made,
that the matter is continuously distributed in space [59]. The properties and the
response of the matter are described by smooth scalar-, vector- or tensor-valued
functions and the number of discontinuities is finite. Hence, microscopical inho-
mogeneities of the matter due to the molecular structure are ignored in continuum
mechanics. An exception are constitutive models, which sometimes deal with the
microscopical structure of the matter. But the response and the properties of such
models are also assumed to be smooth and the number of discontinuities is again
finite [60]. The notation, applied for the presentation of continuum mechanics, is
taken from Haupt [59].

5.1.2 Kinematics

The kinematics describes the motion of a body. Figure 5.1 shows a material body
B in the initial χt0 and in the deformed state χt. The latter mentioned state
is called deformed or current configuration. The initial state is referred to as
reference or undeformed configuration. The concept of different configurations is
needed in order to measure the deformation of a body. The term initial configu-
ration should be viewed as an idealization, because usually in reality such a state
does not exist [60]. As the internal force state of solids depends on its deformation
and the history of its deformation, a reference configuration is needed in order to
label the material points. The vector variable X, based on a Cartesian coordinate
system, is defined on this configuration and does not change with time [60]. The
components of the vector X are called material or Lagrangian coordinates. The
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3: Euclidean Space; χt0 [B] ⊂ E

3; χt [B] ⊂ E
3

Figure 5.1: A reference and a deformed configuration [59].

relation between the deformed configuration χt and the reference configuration
χt0 is described by the mapping function [61]:

x = φt0 (X, t) , X ∈ χt0 [B] , x ∈ χt [B] . (5.1)

As the current configuration is time-depended, the mapping is a function of
time t. The coordinates of the vector x, which give the position of the material
point X at the time t, are called spatial or Eulerian coordinates.

A pure rigid motion, as formulated in (5.2), does not lead to any variation of
the distance between material points:

x = Q (t) (X−Xo) + x0 (t) . (5.2)

In this case the material is considered as unstrained. The rigid motion consists
of a rotation about X0 defined by the orthogonal tensor Q(t) and a translation
x0(t). The rotation Q(t) has the following properties:

QT = Q−1, QQT = 1. (5.3)

If the distance between material points changes, strains occur. In this case the
motion deviates from a rigid body motion. Hence, a meaningful strain measure
should filter out the rigid body motion [62]. For the characterization of the
deformation the term deformation gradient is introduced:

F =
∂x

∂X
. (5.4)
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Provided the motion is rigid, the deformation gradient gives the following
result:

F =
∂ (Q (t) (X−Xo) + x0 (t))

∂X
= Q (t) . (5.5)

Obviously, the deformation gradient of a rigid body motion is identical with
the associated rotation tensor. The tensor

E =
1

2

(
FTF− 1

)
(5.6)

represents a strain measure called Green strain tensor. Expression (5.7) shows
the result of this tensor in the case of a rigid body motion:

E =
1

2

(
QTQ− 1

)
=

1

2
(1− 1) = 0. (5.7)

Consequently, this tensor is invariant regarding rigid body motions, which is
the most important feature of strain measures. The Green strain tensor is not
a unique measure for strains. There are many other strain measures, which are
used in continuum mechanics. Subsequently, a strain rate measure, called rate-of-
deformation, is introduced. For this tensor the definition of the velocity gradient
is necessary

L = gradv =
∂v

∂x
=
∂v

∂X

∂X

∂x
,

F−1 =
∂X

∂x
,

∂v

∂X
=

∂

∂t

∂x

∂X
=

∂

∂t
F = Ḟ,

L = ḞF−1.

(5.8)

The rate-of-deformation is defined by

D = sym (gradv) =
1

2

(
L+ LT

)
. (5.9)

This tensor is also invariant with respect to rigid body motions. The proof
can be found in [61].

5.1.3 Balance relations

This section deals with the balance relations for mass, linear momentum, rota-
tional momentum and energy. These relations are considered to be universal laws
of nature [59]. The free-body principle forms the foundation for the formulation
of the balance relations. According to this principle, a slice of a body B in the
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Figure 5.2: Force and torque [59].

current configuration χt with a finite volume and a piecewise smooth surface is
imaginary cut out. The influence from the environment on this domain is substi-
tuted by physical quantities [59].

Figure 5.2 shows the physical quantities, which are involved in the momentum
balance equations. The depicted slice is assumed to be in the current configura-
tion. The physical quantities are divided into the external surface force density
t (Cauchy stress vector) and the external volume force density per unit mass f

(5.10), the external torque (5.11) with respect to the point c, the linear momen-
tum (5.12) and the rotational momentum (5.13):

F (B, t) =

∫∫

∂χt(B)

tda+

∫∫∫

χt(B)

fρdv, (5.10)

MC (B, t) =

∫∫

∂χt(B)

(x− c)× tda+

∫∫∫

χt(B)

(x− c)× fρdv, (5.11)

I (B, t) =

∫∫∫

χt(B)

vρdv, (5.12)

Dc (B, t) =

∫∫∫

χt(B)

(x− c)× vρdv. (5.13)

The balance equation of linear momentum (5.14) implies the equivalence of
the external forces and the material time derivative of linear momentum:
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d

dt
I (B, t) = F (B, t) . (5.14)

As a consequence the material, belonging to the above mentioned domain, is
accelerated if a resultant external force exists. In the case of static problems the
material time derivative of linear momentum has to vanish. Hence, the resultant
external force of the considered domain, has to be zero.

At this point, it should be mentioned, that the time derivative has to be
performed with respect to a material point. As the material points are not fixed
in space, the material time derivative has to take the material movement into
account. The concept of the reference and the current configuration gives at
any time a unique identification of material points for the computation of this
derivative1. The material time derivative of a quantity is equal to the partial
derivative with respect to time, if this quantity is represented by Lagrangian
coordinates.

The balance equation of linear momentum does not take rotational movements
into account. Therefore, equation (5.15) requires the equivalence of the change
of the rotational momentum and the external torque, which is called balance of
rotational momentum:

d

dt
Dc (B, t) = Mc (B, t) . (5.15)

The balance of mass requires that the mass of any imaginary cut-out domain
has to be constant. This means the matter does not pass the boundaries of the
domain.

d

dt
m (B, t) = 0 (5.16)

Finally, the balance of energy is presented by

K̇ (B, t) + Ė (B, t) = Le (B, t) +Q (B, t) . (5.17)

This equation contains the internal energy

E (B, t) =

∫∫∫

χt[B]

eρdv, (5.18)

the kinetic energy

K (B, t) =
1

2

∫∫∫

χt[B]

v2ρdv, (5.19)

the power of the external forces

1A comprehensive description of material time derivatives can be found in [60].
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Le (B, t) =

∫∫

∂χt[B]

t · vda+
∫∫∫

χt[B]

f · vρdv, (5.20)

and the resultant heat supply

Q (B, t) =

∫∫

∂χt[B]

qda+

∫∫∫

χt[B]

rρdv. (5.21)

The quantity e is called specific internal energy per unit mass. The heat flow
density is described by q and r is referred to as heat supply per unit mass.

The presented formulation of the fundamental laws are valid for closed systems,
i. e., an exchange of matter with the environment is not allowed. An extension
of the presented fundamental laws for open systems can be found in [59].

5.1.4 Stress tensor

An important assumption in continuum mechanics is the linear dependence of the
Cauchy stress vector t with respect to the surface normal n (5.22) of a cut-out
domain [59]:

t (x, t,n) = σ (x, t) · n. (5.22)

The second-order tensor field σ(x, t) is called Cauchy stress. Based on this
relation and the divergence theorem

∫∫

a

σ · nda =

∫∫∫

v

div (σ) dv, (5.23)

the equation for the balance of linear momentum

d

dt

∫∫∫

χt[B]

vρdv −
∫∫

∂χt[B]

tda−
∫∫∫

χt[B]

fρdv = 0 (5.24)

can be transformed into its local form by substituting the surface integral with
a volume integral

∫∫∫

χt[B]

v̇ρ− divσ − fρdv = 0. (5.25)

As expression (5.25) has to be valid for any given volume of integration,

v̇ρ− divσ − fρ = 0 (5.26)

holds. The same transformation can be performed with the balance of rota-
tional momentum. In [59] the derivation of the local form is described in detail.
The local form of the balance of rotational momentum is given by
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σ = σT . (5.27)

As a consequence, the Cauchy stress tensor is symmetric, as long as the balance
of rotational momentum is fulfilled.

The local form of energy balance equations is given by (q = −qn)

ė (x, t) = −1

ρ
divq+ r +

1

ρ
σ : gradv. (5.28)

The vector q is called Cauchy heat flux vector and is similarly derived as the
Cauchy stress tensor. As long as the thermodynamical quantities q and r are not
taken into account, the balance equation reduces to

ė (x, t) =
1

ρ
σ : gradv. (5.29)

As the contraction of the tensorial product on two indices of a symmetric and
a skew symmetric tensor is zero as shown by

σ : gradv = σ : sym (gradv) = σ : D, (5.30)

(5.29) can be expressed as given by

ė (x, t) =
1

ρ
σ : D. (5.31)

The physically significant product of the stress tensor and the strain rate ten-
sor has to remain invariant. This connection between the mentioned tensors is
also referred to as conjugation in power. As mentioned above, there are vari-
ous definitions of strain rate tensors but the only one, which can be applied in
conjunction with the Cauchy stress tensor, is the rate of deformation. For each
type of strain rate tensor a stress tensor is necessary, which is conjugate in power.
For example the conjugate stress tensor of the Green strain rate Ė is the Second
Piola-Kirchhoff stress tensor, as defined by

S = det (F)F−1σF−T . (5.32)

This symmetric stress tensor S refers to the reference configuration.

5.1.5 Initial and boundary conditions

The formulation of an initial-boundary-value problem consists of the balance equa-
tions, the constitutive laws and suitably defined initial and boundary conditions.
Initial conditions are prescribed position or velocity distributions, defined at the
beginning of the motion. Boundary conditions are either applied for stipulating
a motion or a stress vector. The first mentioned case is referred to as geometric
boundary condition. The prescription of stress vectors is called dynamic boundary
condition [59].
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5.2 Constitutive laws - stress-strain relation

5.2.1 Introduction

The relation between strains and stresses is formulated by the constitutive equa-
tions. Generally, constitutive laws are material specific relations between two
physical quantities. In this work, constitutive laws for describing the stress-strain
relation and the frictional response in a contact interface are discussed. As op-
posed to the introduced balance laws, the constitutive equations are non-universal
in nature.

5.2.2 Formulation of constitutive laws

Truesdell [1] mentions three general principles for the design of constitutive laws:

• According to the principle of determinism, the current stress state of a
material point is uniquely determined by the past history of the body’s
motion.

• Additionally the stress state is only affected by the history of motion of the
point’s environment. This principle is called local action. In this work only
simple materials are discussed, in which the stress state of a material point
is determined by the history of its deformation gradient.

• Finally, according to the principle of observer-invariance, the material re-
sponse should remain unchanged under a superposed rigid body motion.

Materials can show a direction dependent material behavior. In other words,
the change of the reference configuration can affect the material response. A sym-
metry group contains all possible changes of the reference configuration, which do
not affect the material response. Expression (5.33) shows the associated mathe-
matical representation of the constitutive functional based on the stress state

σ(t) = F (F(t)) = F (F(t)H) . (5.33)

Thereby, H is a time-independent tensor, belonging to the symmetry group
and possessing the property |det (H)| = 1 [59]. This property contains the as-
sumption that any change of the volume should also alter the material response.
The symmetry group of solids is a subset of the orthogonal tensors [62]. If the
symmetry group is identical to the entire set of orthogonal tensors, the material
is said to be isotropic.

Materials may show a disproportionally strong resistance to certain types of
deformation. Kinematic conditions are introduced to model such material prop-
erties [59]. The plastic incompressibility, which will be discussed below, is an
example for such a material behavior. Finally, the compliance of the principle of
irreversibility has to be assured. However, today there is no generally valid and
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universally acknowledged formulation of the principle of irreversibility. On the ba-
sis of experience, the Clausius-Duhem inequality proved its worth in continuum
mechanics [59].

Subsequently, material models will be presented, which are applied for the de-
scription of the elasto-plastic material behavior of sheet metals. Furthermore, this
chapter is focused on material models, which are suitable for forming simulations.

5.2.3 Split of the strain tensor

For modeling the elasto-plastic response of sheet metals, a domain is introduced,
which defines the admissible stress states. The material response of a material
point is elastic, if the associated stress state is not on the boundary of this domain.
In this case only elastic strains occur. If the stress state is on the boundary of
this domain, plastic yielding may occur. The strains related to plastic yielding
are referred to as plastic strains. The total strains are a combination of elastic
and plastic strains. A crucial issue of formulating elasto-plastic material models
is the decomposition of the plastic and the elastic strains from the total strains.
Two approaches are commonly used for forming simulations. Expression

D = De +Dp (5.34)

shows the additive split of the rate-of-deformation and

F = FeFp (5.35)

gives the multiplicative split of the deformation gradient. Especially, the mul-
tiplicative split leads to a very complicated representation of the constitutive law.
In order to simplify the representations of the material model, infinitesimal de-
formations are assumed. Nevertheless, the presented elasto-plastic models can be
extended for large deformations.

5.2.4 Infinitesimal deformations

In this section, the term infinitesimal deformation is defined and the consequences
regarding continuum mechanics are discussed. The definition of infinitesimal de-
formations is taken from Haupt [59]. u (X, t) is defined as the difference between
the Eulerian and the Lagrangian coordinates:

u (X, t) = x−X. (5.36)

Strains are considered to be small, if (5.37) and (5.38) are valid:

‖H‖ ≪ 1, ‖H‖ =
√
H : H, (5.37)

|u (X, t)| ≪ L0. (5.38)
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L0 is the characteristic length of the body. The definition of H is given by

H (X, t) = Gradu (X, t) . (5.39)

For infinitesimal deformations, the difference between the reference and the
current configuration is negligible, which implies expression

u (X, t) ≈ u (x, t) . (5.40)

The assumption of infinitesimal deformations enables the linearization of the
strain tensor

ǫ =
1

2

[
gradu (x, t) + gradu (x, t)

T
]
. (5.41)

For infinitesimal deformations, the additive split of the total strain is assumed

ǫ = ǫe + ǫp. (5.42)

5.2.5 Elasticity

First of all, the modeling of an isotropic elastic material behavior is discussed in
this section. Expression (5.43) shows an elastic constitutive law, which is applied
for infinitesimal elastic strains:

σ = C : ǫ. (5.43)

The relation between the stress state and the strain state is linear. Expression
(5.44) shows a possible definition of the fourth order tensor C [61]:

C = λ1⊗ 1+ 2µI. (5.44)

The material model contains the parameters λ and µ, which are called Lamé
constants. For the expression (5.44) the second-order identity tensor 1 and the
fourth-order symmetric identity tensor I is applied. A definition of these tensors
is given in the appendix B. If the contraction of the tensorial product on two
indices is performed, (5.44) can be written in the following form [48]:

σij = λǫkkδij + 2µǫij . (5.45)

The expressions (5.46) and (5.47) give the Young’s modulus E and the Poisson
ratio υ dependent on the Lamé constants:

E = µ
3λ+ 2µ

λ+ µ
, (5.46)

υ =
λ

2(λ+ µ)
. (5.47)

The elastic constitutive law may be derived from the potential:
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Ψ =
1

2ρ
ǫ : C : ǫ. (5.48)

This approach will be useful for the derivation of the elasto-plastic constitutive
law. The stress tensor is obtained from this potential as shown by

σ = ρ
∂Ψ

∂ǫ
= C : ǫ. (5.49)

5.2.6 Plastic incompressibility

As mentioned in chapter 4, an elastic deformation of steel may be accompanied
with a change of the volume. In contrast, the mechanism, causing plastic yielding,
preserves the volume of the deformed material. This effect is termed hypothesis
of plastic incompressibility [48]. In order to account for the incompressibility, the
stress tensor is additively split into a hydrostatic and a deviatoric part

dev (σ) = σ − 1

3
tr (σ)1 = S. (5.50)

Only hydrostatic stresses can affect the volume of the material. Hence, the
constitutive law for modeling plasticity only depends on the deviatoric part of the
stress state.

5.2.7 Clausius-Duhem inequality

As opposed to the elastic response of the material, the plastic yielding is history
dependent. The presented constitutive law is formulated on the basis of the in-
ternal variable concept. The internal variables are representing the deformation
history of the material, like the hardening of the material. Plastic yielding is an
irreversible material response, as the movement of the dislocations in the metal
lattice, causing plastic yielding, cannot be reversed. For modeling the plastic ma-
terial response, the compliance of this irreversibility is assured by the application
of the Clausius-Duhem inequality:

σ : ǫ̇− ρ
(
Ψ̇ + sṫ

)
− q · grad (t)

t
≥ 0. (5.51)

The subsequent derivation of the mechanical dissipation is taken from Chaboche
[48]. ρ is the density of the material, s the specific entropy, t the temperature and
q the heat flux. The free energy is given by

Ψ = e− ts. (5.52)

Under a constant (ṫ = 0) and uniform (grad (t) = 0) temperature distribution,
which is assumed in this thesis, the Clausius-Duhem inequality might be rewritten
in the following form



82 CHAPTER 5. FORMING SIMULATION

σ : ǫ̇− ρΨ̇ ≥ 0. (5.53)

If the existence of a free energy potential, depending on the strain state and
the internal variables, is assumed

Ψ (ǫ, ǫp, t,αk) , (5.54)

the time derivative of the free energy can be expressed by

Ψ̇ =
∂Ψ

∂ǫe
: ǫ̇e +

∂Ψ

∂t
ṫ+

∂Ψ

∂αk
∗ α̇k. (5.55)

The symbol ∗ represents the suitable product, depending on the type of the
internal variable (scalar, vector, tensor). As a constitutive law may consist of sev-
eral internal variables, the index k is introduced. The derivation of (5.55) implies
the assumption that Ψ is only affected by ǫe, which leads to a representation of
the free energy, depending on the elastic strain, the temperature and the internal
variables

Ψ (ǫ, ǫp, t,αk) = Ψ ((ǫ− ǫp) , t,αk) = Ψ (ǫe, t,αk) . (5.56)

Expression (5.57) shows the time derivative of the free energy (ṫ = 0, grad (t) =
0):

Ψ̇ =
∂Ψ

∂ǫe
: ǫ̇e +

∂Ψ

∂αk
∗ α̇k. (5.57)

Expression (5.58) is obtained by inserting (5.57) into (5.53) and applying the
additive split of the strain tensor for the stress power term σ : ǫ̇:

σ : ǫ̇p + σ : ǫ̇e − ρ
(
∂Ψ

∂ǫe
: ǫ̇e +

∂Ψ

∂αk
∗ α̇k

)
≥ 0. (5.58)

The left hand side of (5.58) is termed as mechanical dissipation, which is the
difference of the stress power σ : ǫ̇ and the change of the internal energy [61]. For
an elastic deformation of a material, the dissipation is equal to zero. The forces,
which are associated with the internal variables, are termed

qk = ρ
∂Ψ

∂αk
. (5.59)

If the constitutive law of elasticity (5.49) and (5.59) is inserted in (5.58), (5.60)
is obtained

σ : ǫ̇p − qk ∗ α̇k ≥ 0. (5.60)

This form of the Clausius-Duhem inequality is subsequently applied for the
derivation of the associative elasto-plastic constitutive law.
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5.2.8 Elasto-plastic constitutive law

On the basis of the principle of maximum dissipation, which is often credited to
von Mises [61], the associative elasto-plastic constitutive law is derived. As stated
above, plastic yielding may occur, if the stress state is located on the boundary
of the domain of the admissible stress states. Mathematically, the domain is
described by a function f , which is termed as yield locus. f is a function of the
stress state and the associated forces of the internal variables. f = 0 represents
the boundary of the domain

f (σ,qk) = 0. (5.61)

Among the possible admissible states τ and p, σ and q is the actual state,
which maximizes the dissipation (5.60)(S ∈space of the symmetric tensors):

Dp (σ,qk, ǫ̇
pα̇k) = max

τ∈Eσ

(Dp (τ ,pk, ǫ̇
p, α̇k)) , Eσ = {τ ∈ S|f (τ ,pk) ≤ 0} .

(5.62)
The maximization of the dissipation can be transformed into a minimization

by introducing a negative sign. The dissipation is a linear function of the stress
state and the internal variables. Therefore, this function is convex. Provided f is
a strictly convex function, the maximization of the plastic dissipation is a convex
optimization problem and a unique solution exists [26]. A sufficient regularity of
the permissible states of the stress state and the internal variables is assumed. Lp

is the Lagrange function of the optimization problem:

Lp (σ,qk, ǫ̇
p, α̇) = −σ : ǫ̇p + qk ∗ α̇k + λf (σ,qk) . (5.63)

The expressions (5.64) and (5.65) show the stationary point of (5.63)

Lp (σ,qk, ǫ̇
p, α̇)

∂σ
= −ǫ̇p + λ

∂f (σ,qk)

∂σ
= 0, ǫ̇p = λ

∂f (σ,qk)

∂σ
, (5.64)

Lp (σ,qk, ǫ̇
p, α̇)

∂qk
= α̇k + λ

∂f (σ,qk)

∂qk
= 0, α̇k = −λ∂f (σ,qk)

∂qk
. (5.65)

The solution of the constraint optimization problem has to fulfill, as shown by
(5.66), the local Kuhn-Tucker conditions:

λ ≥ 0 , f (σ,qk) ≤ 0 , λf (σ,qk) = 0. (5.66)

Expression (5.64) shows the evolution equation for the plastic strain and (5.65)
the evolution of the internal variables. Plastic yielding occurs, if the yield locus is
equal to zero and λ has a positive value. Expression (5.67) is obtained by inserting
(5.64) and (5.65) into (5.60):
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λσ :
∂f (σ,qk)

∂σ
+ λqk ∗

∂f (σ,qk)

∂qk
≥ 0. (5.67)

According to (5.67) the Clausius-Duhem inequality is a priori satisfied, if
f(σ,qk) is convex, non-negative and zero-valued at the origin in the σ and qk

space. It is important to mention, that the convexity of f is not a consequence of
the principle of irreversibility. However, it is convenient to formulate constitutive
laws, which automatically comply the Clausius-Duhem inequality [62]. In associa-
tive plastic materials, the yield locus is used as a potential for the formulation of
the evolution of the plastic strain and the internal variables. Expressions (5.68)
and (5.69) show a generalized formulation of the evolution laws. In this case,
the evolution of the plastic strain and the internal variables does not necessarily
depend on the yield locus. The stress update algorithm, discussed in the next
chapter, is presented on the basis of these equations:

ǫ̇p = γr (σ,qk) , (5.68)

q̇k = γh (σ,qk) . (5.69)

However, for the investigations of this thesis only the flow rule according the
expression (5.64) is applied. Therefore, subsequently the term yield locus also
represents the flow rule.

5.2.9 Yield loci

Among a wide range of yield loci, three will be discussed in detail. The von Mises
yield locus is suitable for materials, which show an isotropic inelastic material
behavior. The Barlat ´89 [2] and the Barlat 2000 yield locus [3] [63] were designed
for modeling the anisotropic plastic material behavior of sheet metals.

In order to simplify the formulation of the yield loci, a plastic material response
without hardening effect is assumed (perfect plasticity). As a consequence, the
yield loci do not contain any internal variables. In the section 5.2.10, the extension
of the yield loci for modeling isotropic hardening is discussed.

For the derivation of the von Mises yield locus, a relation between the bound-
ary of the elastic domain and the elastic shear energy [48] is assumed. Expression
(5.70) shows the integration of the elastic shear energy w with respect to a ma-
terial point up to the material response switches from an elastic to an inelastic
behavior:

w =

∫ ǫe

0

S : dEe, dev(ǫ) = E. (5.70)

On the basis of the elastic constitutive law (5.44), a relation between the
deviatoric strain and stress tensor can be derived [48]:
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dEe =

(
1

2µ

)
dS. (5.71)

The application of (5.71) enables the formulation of the shear energy for ar-
bitrary stress states

w =

∫ s

0

1

2µ
S : dS =

1

4µ
S : S. (5.72)

According to the von Mises criterion, plastic yielding occurs at the same level
of w independent of the loading path. Hence, it is sufficient to determine w on the
basis of a single experiment. The beginning of plastic yielding for an arbitrary
loading path can be predicted by comparing the elastic shear energy with the
experimental determined value of w. Usually, w is determined by a tensile test
(chapter 6). The stress state of this experiment is uniaxial

σ =



Y0 0 0
0 0 0
0 0 0


 , S =




2
3Y0 0 0
0 − 1

3Y0 0
0 0 − 1

3Y0


 . (5.73)

Expression (5.74) shows the relation between the initial yield strength Y0 and
the shear energy, which is derived by inserting (5.73) in (5.72):

w =

(
1

6
µ

)
· Y 2

0 . (5.74)

The given expressions (5.72),(5.74) enable to eliminate w

1

4µ
S : S =

1

6µ
Y 2
0 . (5.75)

A rearrangement of (5.75) gives (5.76), which is referred to as von Mises yield
locus:

f =

(
3

2
S : S

) 1
2

− Y0 = 0. (5.76)

The introduction of the equivalent stress, shown by (5.77), will be useful for
the definition of the hardening law (M: von Mises):

σM =

(
3

2
S : S

) 1
2

. (5.77)

The yield locus gives negative values for stress states, which belong to the
elastic domain, and is equal to zero for stress states on the boundary of the elastic
domain. Hence, the function fulfills the above discussed requirements regarding
a yield locus.

The rolling processes of the steel production causes an anisotropic material
behavior (chapter 4), which is uniformly directed. Subsequently, two yield loci
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are introduced, which are able to take this effect into account. The axes of
anisotropy are coincident with the rolling direction, the transverse direction in
the plane of the sheet and normal to this plane [8]. The shape of the boundary
of the elastic domain will be referred to as yield locus shape in this work. The
Barlat 2000 yield locus considers the direction dependent material behavior by a
parameterized yield locus shape. This means, the onset of plastic yielding depends
on the stress state. However, the values of the stress tensor depend on its basis.
In order to obtain a unique description of the anisotropy, the basis of the stress
tensor has to be coincident with the axes of anisotropy. Mathematically, the
parameterization of the yield locus shape consists of two linear mappings of a
given stress tensor, which can be controlled by the αi values, and the yield locus
exponent a:




L′
11

L′
12

L′
21

L′
22

L′
66



=

1

3




2 0 0
−1 0 0
0 −1 0
0 2 0
0 0 3






α1

α2

α7


 , (5.78)
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L′′
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L′′
21

L′′
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=

1

9




−2 2 8 −2 0
1 −4 −4 4 0
4 −4 −4 1 0
−2 8 2 −2 0
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α3

α4

α5

α6

α8



, (5.79)
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X ′
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L′
11 L′

12 0
L′
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σxx
σyy
σxy


 , (5.80)



X ′′

11

X ′′
22

X ′′
12


 =



L′′
11 L′′

12 0
L′′
21 L′′

22 0
0 0 L′′

66





σxx
σyy
σxy


 , (5.81)

φ′ = |X ′
1 −X ′

2|
a
, φ′′ = |2X ′′

2 +X ′′
1 |

a
+ |2X ′′

1 +X ′′
2 |

a
, (5.82)

φ = φ′ + φ′′ = 2 (Y0)
a
. (5.83)

The yield locus is formulated in the principal space of the mapped stress ten-
sors

(
X′,X′′). The parameters are obtained by the minimization of the difference

between the measured stress states and strain rate ratios (R values) of differ-
ent experiments (fundamental experiments, chapter 6) and the predictions of the
yield locus. The Barlat 2000 yield locus is restricted to plane stress states. For
mechanical systems, which are much thinner in one dimension than in the others
and subjected to loads generating mainly stresses perpendicular to the direction
of the thinnest dimension, the plane stress assumption is often made [62]. In this
case, three components of the stress tensor are assumed to be zero as shown by
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σ =



σxx σxy 0
σyx σyy 0
0 0 0


 . (5.84)

Forming simulations are often performed under the plane stress assumption.
The convexity of the yield locus has been proven [3]. Expression (5.85) illustrates
the Barlat2000 yield locus in the form as introduced for the von Mises yield locus:

f (σ) = σB2000 (σ)− Y0 =

(
1

2

(
φ′ + φ′′)

) 1
a

− Y0 = 0. (5.85)

Expression

f =

[
1

2
φ

] 1
a

− Y0 (5.86)

gives the relation between these two formulations of the Barlat 2000 yield
locus. Both versions are equivalent as shown by (5.87), which proves that the
partial derivative with respect to the stress tensor is the same apart from the
constant ψ. Hence, the relation between the stress state and the strain increment
differs only by a factor:

∂f

∂σ
=

1

2a

[
φ

2

] (1−a)
a ∂φ

∂σ
= ψ

∂φ

∂σ
. (5.87)

From the perspective of the computational implementation, (5.85) should be
preferred, because this formulation of the yield locus has the dimension of stress.
As opposed to (5.85), (5.83) has the dimension of stress to the power of a. Es-
pecially for a large number of a, the evaluation of (5.83) could lead to computa-
tionally intractable numbers [62].

Finally, the Barlat ´89 yield locus is introduced, which is given by:

K1 =
σxx + hσyy

2
, K2 =

√(
σxx − hσyy

2

)2

+ p2σ2
xy, (5.88)

f(σ) =

(
1

2
[a |K1 +K2|m + a |K1 −K2|m + c |2K2|m]

) 1
m

− Y0 = 0. (5.89)

The Barlat ´89 yield locus reduces to the function proposed by Hill (1948)
for the exponent of m = 2. The parameters a, c, h and p, which describe the
anisotropy of the material, can be obtained from measured R values of tensile
tests in three different directions. The parameters a and c are coupled, if a flow
curve based on a tensile test in the rolling direction is applied. Another option
is to compute the parameters by the minimization of the difference between the
measured stress states and strain rate ratios (R values) of different experiments
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(fundamental experiments, chapter 6) and the predictions of the yield locus. As
the yield locus has a limited amount of parameters, it is necessary to make a
compromise regarding the predictive capability with respect to the results of all
the fundamental experiments.

5.2.10 Strain hardening

As mentioned above, the hardening effect of the material can be modeled by
introducing internal variables. The further derivations are valid for the yield loci,
which have been introduced. Subsequently, the hardening effect is assumed to be
isotropic. Hence, a scalar internal variable and a scalar associate force are suitable
for modeling the material hardening

α = ǫp. (5.90)

As an internal variable the accumulated equivalent plastic strain is applied.
Expression (5.91) shows the definition of the accumulated equivalent plastic strain:

ǫp =

∫
ǫ̇pdt, ǫ̇p =

σ : ǫ̇p

σ
. (5.91)

The equivalent plastic strain rate ǫ̇p is obtained by assuming the equivalence
of the stress power given by the product of the equivalent quantities (equivalent
plastic strain rate, equivalent stress) and the contraction of the tensorial quantities
on two indices (plastic strain rate tensor, stress tensor). Expression (5.92) shows
a postulated hardening law, depending on the internal variable, which is referred
to as flow curve:

Y (ǫp) = Y0 + κ (ǫp) . (5.92)

Y0 represents the yield strength and κ is the associated force of the internal
variable

q = κ. (5.93)

Expression (5.94) shows the von Mises yield locus in consideration of the
isotropic hardening law given by (5.92):

f (σ, κ) =

(
3

2
dev (σ) : dev (σ)

) 1
2

− (Y0 + κ) = 0. (5.94)

As opposed to expression (5.76) the elastic domain is not constant, if the
hardening effect is considered (5.94). Thereby, the elastic domain is enlarged,
independent of the loading path, by increasing values of κ. The partial derivative
of (5.94) with respect to the associated force of the internal variables leads to

∂f (σ, κ)

∂κ
=

(
∂
(
3
2dev (σ) : dev (σ)

) 1
2 − (Y0 + κ)

)

∂κ
= −1. (5.95)
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According to (5.96), the development of ǫ̇p is equal to the Lagrange multiplier
λ:

ǫ̇p = −λ∂f (σ, κ)
∂κ

= λ. (5.96)

The expressions (5.97) summarize the associative elasto-plastic constitutive
law for isotropic hardening and the assumption of infinitesimal strains on the
basis of the von Mises yield locus:

σ̇ = C : ǫ̇,

ǫ̇p = λ
∂f (σ,q)

∂σ
,

ǫ̇p = λ,

f (σ, κ) = σM (σ)− (Y0 + κ (ǫp)) ,

λ ≥ 0, f (σ, κ) ≤ 0, λf (σ, κ) = 0.

(5.97)

5.2.11 Strain rate dependent hardening

The hardening effect can be influenced by the strain rate. A simple model to
take this effect into account is the strain rate sensitivity m [64] [65]. Generally,
the strain rate sensitivity can be formulated by different choices of the base of
the logarithm [66]. In this thesis for the definition of the strain rate sensitivity
the natural logarithm is taken and m is assumed to be independent of the strain
history. Two tensile tests, performed under different rates (D, dynamic; S, static),
are needed in order to identify the model parameter m

m =
ln (YD (ǫp) /YS (ǫp))

ln (ǫ̇pD/ǫ̇
p
S)

. (5.98)

Essentially, this approach modifies the flow curve dependent on the strain
rate. Another approach for modeling the strain rate dependent hardening, com-
prising two model parameters, is the Cowper-Symonds model [67]. Finally also the
Johnson-Cook model is mentioned, which is suitable for modeling the hardening
behavior strain rate and temperature dependent [68].

5.2.12 The Bauschinger effect

Experimental observations based on uniaxial tests show that the hardening behav-
ior of steel is affected by alternating tensile and compression loading (Bauschinger
effect). Figure 5.3 shows a schematic visualization of the stress-strain relation of a
specimen that firstly undergoes a uniaxial tensile loading up to point B is reached.
Thereby, point A represents the initial yield strength. At point B a uniaxial com-
pression load is induced, which leads to an elastic material response. Plastic
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yielding under compression occurs at point C. Provided the absolute value of
the uniaxial stress with respect to point C is lower than in point B, as shown by
figure 5.3, a material softening occurs induced by the previous tensile loading.

�

�

�

σ

ε

Figure 5.3: Example of the Bauschinger effect (Relation between the true stress
σ and the true strain ǫ).

For considering the Bauschinger effect in the multiaxial case, the yield locus
is extended by a kinetic stress tensor (back stress tensor) X as given by relation
[7]

σ̄(σ −X)− κ(ǫp)− Y0 ≤ 0. (5.99)

The kinematic stress tensor leads to a displacement of the yield locus in the
stress space, which allows describing the Bauschinger effect. The evolution of
the kinematic stress tensor is given by the non-linear kinematic hardening laws,
which are introduced below. Subsequently, the Bauschinger effect is assumed to
be isotropic. Consequently, the calibration of kinematic hardening models can be
performed on the basis of uniaxial tension and compression tests.

Armstrong Federick law

Expression (5.100) illustrates the kinematic hardening law, suggested by Arm-
strong and Federick [69]:

dX = C

(
2

3
adǫp −Xdǫp

)
. (5.100)

The model parameters C and a can be calibrated based on an experimentally
determined stress-strain relations obtained from uniaxial tension and compression

tests. Under the assumption of a von Mises yield locus f =
[
3
2dev (σ) : dev (σ)

] 1
2−

κ(ǫp) − Y0 and the consideration of the relation (5.64) the following form of the
Armstrong Federick law is obtained
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dX = C

(
a

S

σ̄M
−X

)
dǫp. (5.101)

As the yield locus is independent of the hydrostatic stress state f(σ −X) =
f(S−X) expression (5.101) can be written as given by

dX = C

(
a

σ

σ̄M
−X

)
dǫp. (5.102)

Under uniaxial tensile and compression test conditions, only the first eigen-
values of the stress and the kinematic stress tensor are non-zero. Consequently,
(5.102) reduces to a scalar equation

dX = C (a−X) dǫp. (5.103)

Furthermore, (5.103) comprises the identity σM = σ. Thereby, σ represents
the uniaxial stress and X the uniaxial kinematic stress. The solution of this
differential equation is given by [7]

X(ǫp) = νa+ (X0 − νa)e−νC(ǫp−ǫp0). (5.104)

If a specimen undergoes multiple cycles of tension and compression, the evolu-
tion of the kinematic stress has to be described by intervals. Each one represents
a phase of tension or compression. The initial values X0, ǫp0

are the values at the
end of the previous phase. Depending on the plastic flow, ν is chosen to be either
equal to 1 or −1.

In order to reflect the experimentally determined equivalent stress of this ex-
periment, also the initial yield strength Y0 and the strain hardening κ(ǫp) have to
be taken into account as given by [7]

Y (ǫp) = νa+ (X0 − νa)e−νC(ǫp−ǫp0) + ν (κ(ǫp) + Y0) . (5.105)

The model parameters C and a can be calibrated by minimizing the deviation
between the stress-strain relation of the model and the experimentally determined
one. Thereby, multiple transitions between tension and compression and vice
versa under different levels of accumulated plastic strain are necessary.

Chaboche Rousselier law

Chaboche and Rousselier suggest an extension of the Armstrong Federick law,
which comprises multiple, additively aggregated, kinematic stress tensors X =∑n

1=i Xi. A comprehensive description of the Chaboche model can be found in
[70]. For each kinematic stress tensor an evolution law is defined as given by

dXi =
2

3
Cidǫ

p − γiXidǫ
p. (5.106)
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For the discussion of the Chaboche Rousselier Law, n is assumed to be equal
to 1

dX =
2

3
Cdǫp − γXdǫp. (5.107)

The second sub-term on the right hand side limits the evolution of the kine-
matic stress increments. The maximum possible kinematic stress can be analyzed
by determining the stationary point dX = 0. As the strain increment dǫp is a
deviatoric tensor, also X = dev(X) holds. This relation is only valid, if the initial
value of the kinematic stress tensor is also deviatoric (for example X0 = 0). Con-
sequently, the second invariant of the kinematic stress tensor can be computed
by J2(X) = ( 32dev(X) : dev(X))

1
2 = ( 32X : X)

1
2 . In [48] the limit case of the

kinematic tensor is discussed on the basis of the second invariant of the kinematic
stress tensor. By inserting dX = 0 and dǫp =

[
2
3dǫ

p : dǫp
] 1

2 in (5.107), the limit
of the second invariant of the kinetic stress tensor is obtained

J2(X) ≤ C

γ
. (5.108)

According to (5.108), the second invariant of the kinematic stress tensor is
limited by a finite boundary. The relation (5.106) can be expressed as illustrated
by

dXi = (Ci
σ

σ̄M
− γiXi)dǫ

p, (5.109)

which is derived in the same way as shown above on the basis of the Arm-
strong Federick law. The calibration of (5.109) can be performed as shown for the
Armstrong Federick law. However, more model parameters are available for mini-
mizing the deviation between the experimentally determined stress-strain relation
and prediction of the model.

In this thesis, the law as given by (5.109) is applied. It has to be mentioned
that this law is only equivalent to the Chaboche Rousselier model, if the plasticity
model comprises a von Mises yield locus. The initial state of the kinematic tensor
is assumed to be zero (X0 = 0).

5.3 Constitutive laws - friction

The contact of bodies can be accompanied with the transmission of forces between
them. As long as the bodies cannot interpenetrate, forces can act in normal
direction with respect to the contact interface. Additionally, most of the technical
systems transmit non negligible forces in the corresponding tangent direction,
induced by the frictional response. Provided the micromechanical behavior of the
system in the contact area is neglected, the forces, acting in normal direction,
can be treated by introducing a purely geometrical constraint. For modeling the
friction, the derivation of a suitable constitutive law is necessary.
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Generally, the frictional behavior is strongly affected by the presence of a
lubricant. Thereby, the term dry friction describes the case without any lubricant
in the contact interface. In this case, the frictional response is determined by the
micromechanical behavior, which depends on the material properties of the bodies
and their surface roughness [71]. However, technical systems usually comprise a
lubricant in the contact zone. Therefore, dry friction has to be considered as a
limit case. Provided, the bodies are not directly in contact due to a sufficient
amount of lubricant, the frictional forces have to be transmitted solely by the
lubricant. Under this condition, the frictional response is only determined by the
hydrodynamic properties of the lubricant [72]. The frictional response, occurring
in technical applications usually lies between the mentioned extreme cases.

Expression (5.110) shows the commonly applied friction model of Coulomb,
which is based on the assumption of dry friction [73]:

tT (x, t) = −µ |tN (x, t)| γT (x, t)

‖γT (x, t)‖
, tN = t · n, tN ≤ 0. (5.110)

All the mentioned quantities refer to one of the two contact surfaces. Thereby,
n describes the normal of the contact surface, t the surface traction and tT the
tangent force in the contact zone. γT (x, t) reflects the relative movement of
the bodies in the contact interface in tangent direction. The negative sign is
introduced, as the tangent force acts in the opposite direction of the relative
movement γT . According to the Coulomb model, the relation between the normal
and the tangent force in the contact interface is linear. The model parameter µ
is referred to as friction coefficient.

The dependency of the frictional response with respect to the relative velocity
in the contact interface, the contact pressure and the temperature are not con-
sidered by the Coulomb model. However, it is possible to introduce a friction
coefficient, which is a function of these quantities.

Generally, for the production of sheet metal parts in the press shop, lubricants
are applied. Due to the contact pressure between the sheet and the tools, a
direct contact between the sheet metal and the tool surface is expected. As
specialized surface textures of the sheet metal are usually applied, the lubricant
can still influence the frictional response in the contact interface [74]. Thereby,
the texture partially retains the lubricant. Hence, in sheet metal forming an
intermediate frictional behavior with respect to the above introduced extreme
cases should occur. As mentioned above, the Coulomb model cannot consider the
hydrodynamic frictional response, when a lubricant acts in the contact interface.
Nevertheless, in this work, the Coulomb model is applied, which disregards the
hydrodynamic effect of the lubricant (5.110).

It is assumed that the neglected effects can be considered, at least on aver-
age, by determining the friction coefficient inversely under forming conditions.
Furthermore, micromechanical effects, induced by the normal forces, are ignored
and therefore the contact in normal direction is represented by a geometrical
constraint.
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5.4 Failure criterion - Forming limit curve

5.4.1 Introduction

The most common failure mode in sheet metal forming is localized necking. For
less ductile metals, fracture may occur without showing this failure mode. This
case is not considered in this work. Before the onset of diffuse necking the ma-
terial response is stable. Depending on the strain state, still additional external
loading is possible without entering the localized necking state. The occurrence
of localized necking requires a plane strain state. In the phase between the onset
of diffuse and localized necking, the strain state is transformed, independent of
the previous strain path to the plane strain state. According to Hora [75], this
transition is accompanied with a hardening effect, which explains the additional
forming capacity of the material. Obviously, in the case of a plane strain state,
the material enters directly the localized necking mode, as the transition is unnec-
essary. Once the local necking zone is formed, the strain increments, caused by
additional external loading, concentrate in this zone, whereas the material out-
side of the neck is marginally strained. Hence, in the state of instability a slight
additional external loading leads to fracture. In order to obtain a stable produc-
tion process of stamping parts in the press shop, the onset of localized necking is
considered to be the failure limit and has to be avoided [76].

5.4.2 Prediction of localized necking

For the simulation based prediction of localized necking, the so called direct and
indirect method can be applied [75]. For the first mentioned method a high
resolution of the finite element mesh is needed, in order to predict the localized
strain state directly, as the width of a localized neck is in the dimension of the
sheet thickness [77]. Today, typically applied sizes of shell elements in industrial
forming simulations are in the dimension of 1-2 times of the sheet thickness.
Hence, the resolution of the discretization is insufficient for computing the strain
state in the necking zone. Another approach, called indirect method, compares
the computed strain and stress tensor fields with limit values.

The widely applied forming limit curve is one of the indirect methods for
predicting the onset of localized necking, which is defined in the principal in-
plane strain space and was originally introduced by Keeler [78] for α > 0 and
complemented by Goodwin [79] for α < 0. The quantity α is given by expression

α =
ǫ̇2
ǫ̇1
. (5.111)

ǫ1 and ǫ2 are the first and second eigenvalues (principal values) of the in-plane
strain tensor. Figure 5.4 shows an example of a forming limit curve.

For the evaluation of a forming simulation, the entire stain tensor field of the
midsurface is visualized in combination with the forming limit curve (figure 5.5)
in the eigenvalue space of the in-plane strain tensor. This diagram is referred to
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Figure 5.4: Example of a forming limit curve.

as forming limit diagram. A material point is considered to be safe in terms of
localized necking under the condition that the associated strain state is located
below the limit curve in the in-plane principal strain space.
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Figure 5.5: Example of a forming limit diagram.

The forming limit curve mainly depends on the hardening [80], the strain
rate sensitivity [80] and the Bauschinger effect [77]. Additionally, the strain path
affects the forming limit [81]. Generally, a forming limit curve is only valid for
linear strain paths. A non-linear strain path can occur, if a part is produced by
multiple forming operations.

In practice the forming limit curve is either determined experimentally or com-
putationally. In chapter 6, the Nakajima experiment for the determination of the
forming limit curve is introduced. In this work, only experimentally determined
forming limit curves are applied. Hence, an introduction of procedures for the
prediction of forming limits is omitted here. Approaches for the computation of
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forming limits have been proposed for example by Marciniak and Kuczynski [82],
Hora [75] and Gese [77].

5.5 Finite element method

5.5.1 Shape functions

The most common approach for computing numerical solutions of partial dif-
ferential equations of engineering problems is the finite element method. The
introduction of the finite element method, which is mainly based on [60] and [61],
is focused on the field of solid mechanics. Furthermore, only purely mechanical
problems are considered, which can be described without taking a heat flow and
a heat supply into account.

The solution of the partial differential equations is approximated by shape
functions. In order to obtain a good approximation of the solution, without
formulating complex mathematical shape functions, the domain of the mechanical
problem is geometrically subdivided, which is termed discretization. These sub
domains are referred to as finite elements. The elements are described by a set of
nodes. Each node contains its position in space. A set of elements and its nodes
is called mesh.

Dependent on the mechanical problem, different types of meshes are applied in
Finite-Element-Programs. For solid mechanics with a history dependent material
behavior, Lagrange meshes are usually preferred. The nodes of this mesh type
are coincident with the material points. Therefore, the nodes follow the motion
of the material points. Subsequently, only Lagrangian meshes are discussed2.

For the interpolation of the geometry and the field quantities within an ele-
ment, usually the same shape functions are applied. Thereby, the interpolation
is based on the corresponding coordinates and the values of the field quantities
at the nodes. This approach is termed isoparametric concept [83]. Figure 5.6
illustrates as an example a velocity field in one dimension. The geometry x(X)
can be expressed by the given shape functions N1(X) and N2(X), dependent on
the nodal coordinates x1 and x2. The same shape functions also provide a de-
scription of the velocity field v(X), which depends on the nodal velocities v1 and
v2. A detailed description of the shape functions, which are implemented in finite
element programs, is given in [84].

5.5.2 Continuity of shape functions

On the basis of the fundamental theorem of calculus

2A comprehensive description of other mesh types like Eulerian or hybrid techniques, which
combine the advantages of Eulerian and Lagrangian meshes, can be found in [60].
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b∫

a

f,x (x) dx = f (b)− f (a) , (5.112)

the continuity requirements for the shape functions between the element bound-
aries can be derived. Cn(x) means that the nth derivative with respect to x of a
function f is continuous [60]. According to (5.112), the definite integral can be
computed, if f is C0(x).
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x(X) = N1(X)x0 +N2(X)x1
v(X) = N1(X)v0 +N2(X)v1
N1(X) = 1−X; N2(X) = X

Figure 5.6: Example of shape functions.

Generally, the balance equations and the constitutive law can be formulated
in different configurations. For the subsequent discussion, the updated Lagrange
approach is selected, which implies a formulation of the continuum mechanical
equations in the current configuration, as shown in the chapter 5.1. Expression
(5.113) recalls the balance of momentum in the global formulation:

∫∫∫

χt[B]

ρv̇ − divσ − ρfdv = 0. (5.113)

The desired solution is the velocity field v. This field is described by the
same shape functions as the deformation field (figure 5.6). The constitutive law
gives the dependency of stress state σ with respect to the rate of deformation
D. Hence, σ is a function of D. D contains, as introduced above, the partial
derivative of the velocity field v with respect to x. Thus, the second derivative
of the velocity field v is needed for the integration of (5.113). In consideration of
(5.112), the required continuity of the shape functions, representing the velocity
field v, is C1(x). However, it is difficult to formulate shape functions, which show
a C1(x) continuity between the element edges for two or three dimensions [60].
The continuity requirements concerning the shape function can be reduced by
transforming the partial differential equation into the so-called weak form.
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5.5.3 Weak form of the differential equations

According to the principle of d’Alembert, expression

∫∫∫

χt[B]

w (x) · η (x) dv = 0 (5.114)

holds throughout the integration area χt for any test vector field η(x), if
w(x) = 0 [59]. w is also a vector-valued function. Therefore (5.113) can be
written in the given form by introducing the test function δv:

∫∫∫

χt[B]

δv · ρv̇ − δv · divσ − δv · ρfdv = 0. (5.115)

The sub term, which contains the stress state σ, can be reformulated by
applying the product rule:

∫∫∫

χt[B]

δv · divσdv =

∫∫∫

χt[B]

div (δv · σ) dv −
∫∫∫

χt[B]

∇ (δv) : σdv. (5.116)

Finally, the first summand on the right hand side of (5.116) is transformed
into a surface integral (Gauss’s theorem) and the result is inserted in (5.115):

∫∫∫

χt[B]

δv·ρv̇dv−
∫∫

∂χt[B]

δv·σ·nda+
∫∫∫

χt[B]

∇ (δv) : σdv−
∫∫∫

χt[B]

δv·ρfdv = 0. (5.117)

Now, a continuity of C0(x) of the shape functions, representing the velocity
field, is sufficient for the integration of the partial differential equation. For δv
an arbitrary function can be applied. However the chosen function for δv has
to meet the boundary conditions of the mechanical problem. Usually, the shape
functions are also used for the formulation of δv.

5.5.4 The discrete differential equations

Subsequently, the notation, given in [60], is applied. The element-wise integration
of the partial differential equations on the basis of the shape functions leads to a
discrete form of the problem. Expression

x (X, t) = xI (t)NI (X) (5.118)

defines the approximation of the motion based on shape functions, which is
applied for the discretization of the weak form of the introduced partial differential
equation. The motion is described by the nodes, whose index is given by I and
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its positions by xI. From the isoparametric concept follows expression (5.119),
which gives an approximation of the displacement field:

u (X, t) = uI (t)NI (X) . (5.119)

The partial derivative of the displacement field with respect to the time, leads
to the velocity field

v (X, t) =
∂u (X, t)

∂t
= u̇I (t)NI (X) . (5.120)

As the shape functions do not depend on time, only the nodal velocities have
to be considered. Consequently, the same shape functions can be applied as for
the displacement field.

Expression

∂v

∂x
= L = Lij = viINI,j , D =

1

2

(
L+ LT

)
, (5.121)

shows the computation of the velocity gradient L, which is needed for the
determination of the rate of deformation D. Subsequently, the index i refers to
the components of vectors. For the derivation of the discrete form of the partial
differential equation shown by (5.117), sub terms are introduced as shown by

δP int =

∫∫∫

χt[B]

∇ (δv) : σdv, (5.122)

δP kin =

∫∫∫

χt[B]

δv · ρv̇dv (5.123)

and

δP ext =

∫∫

∂χt[B]

δv · σ · ndv +
∫∫∫

χt[B]

δv · ρfdv. (5.124)

Thereby, the sub term δP int is referred to as internal power, which is associated
with the internal forces of the mechanical system. The external power δP ext refers
to the external forces and δP kin corresponds to the kinetic forces. Expression
(5.125) is an alternative form of (5.117), called principle of virtual power:

δP kin − δP ext + δP int = 0. (5.125)

As mentioned above, any test function, which fulfills the boundary conditions
of the mechanical system can be applied as a test function. Commonly, the shape
function is taken as a test function as shown by expression

δv (X) = δviINI (X) . (5.126)
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If (5.126) is inserted in (5.122),(5.123) and (5.124), the expressions

δP int = δviIf
int
iI = δviI

∫∫∫

χt[B]

∂NI

∂xj
σjidv, (5.127)

δP kin = δviIf
kin
iI = δviI

∫∫∫

χt[B]

ρNIv̇idv = δviI

∫∫∫

χt[B]

ρNINJdvv̇iJ = δviIMijIJv̇jJ

(5.128)
and

δP ext = δviIf
ext
iI = δviI

∫∫

∂χt[B]

NInjσjida+ δviI

∫∫∫

χt[B]

NIρfidv (5.129)

are obtained. These expressions imply a summation over repeated indices.
It is important to mention that the nodal velocities of the test functions can be
placed in front of the integral. This property of the chosen test function leads to
the so-called discrete momentum equations. Thereby, this equation comprises the
entire set of nodes. For obtaining a compact notation, a vectorization according
to the Voigt notation [60] of the nodal displacements d, velocities v, accelerations
a and forces f is performed:

f = fa = fiI, a = (I− 1)nSD + i. (5.130)

The nodal forces f are taken as an example (nSD: Number of space dimen-
sions). The vector fext contains the external nodal forces and fint the internal
ones. Expression (5.131) shows (5.125) in the discrete form:

δviI
(
MijIJv̇jJ + f intiI − fextiI

)
= δvT

(
Ma+ fint − fext

)
= 0. (5.131)

The integrals of the equations (5.127),(5.128) and (5.129) are not determined
in a closed form. A possible numerical solution of these integrals is the Gauss
quadrature, which is shown by

1∫

−1

1∫

−1

1∫

−1

f (ξ) dξ1dξ2dξ3 =

nQ1∑

Q1=1

nQ2∑

Q2=1

nQ3∑

Q3=1

ωQ1
ωQ2

ωQ3
f
(
ξ1Q1

, ξ2Q2
, ξ3Q3

)
.

(5.132)
This quadrature procedure is based on a normalized cubic integration domain,

whose extension in each dimension is given by the interval [−1, 1]. For the nu-
merical integration, the function f needs to be evaluated at predefined positions
in space - called integration points. The computed function values are finally
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weighted and summed up as given by 5.132. The weights and the position of
the integration points are given by tables. The number of integration points nQi
(5.132) determines the degree of the polynomial, which is exactly integrated by
the Gaussian quadrature. Further details regarding this numerical integration
procedure can be found in [84].

In order to apply the numerical integration, the parental configuration is in-
troduced. Figure (5.7) illustrates the mapping of the motion between the parent
and the current configuration based on two dimensions.
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Figure 5.7: The parent configuration.

The motion, dependent on the coordinate system of the parent configuration
is given by expression

x (ξ, t) = xI (t)NI (ξ) . (5.133)

The displacement and velocity field can be expressed in the same manner. The
numerical integration of the integrals (5.127),(5.128) and (5.129) is shown for the
internal forces. The expression (5.134) refers to a single element and, therefore,
the domain of the integration is described by the symbol E:

δP int = δviIf
int
iI = δviI

∫∫∫

χt[E]

∂NI

∂xj
σjidv. (5.134)

For the application of the Gaussian numerical integration scheme, the domain
of the parent configuration pc is applied for the integration

δP int = δviI

1∫

−1

1∫

−1

1∫

−1

∂NI

∂xj
σjiJξdvpc. (5.135)

The computation of Jξ is shown below. The partial derivative of the shape
function with respect to x is performed on the basis of the coordinate system of
the parent configuration
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δP int = δviI

1∫

−1

1∫

−1

1∫

−1

∂NI

∂ξk

∂ξk
∂xj

σjiJξdvpc = δviI

1∫

−1

1∫

−1

1∫

−1

∂NI

∂ξk
F x
kjσjiJξdvpc.

(5.136)
For the computation of F x

kj , the function ξ (x, t) is needed, which cannot be

written in a closed form. However, F ξ
nm = ∂xn/∂ξm can be computed. Expression

(5.137) is obtained by inserting the inverse of F ξ
nm in (5.136), which is equivalent

to F x
kj :

δP int = δviI

1∫

−1

1∫

−1

1∫

−1

∂NI

∂ξk

(
F ξ
kj

)−1

σjiJξdvpc, Jξ = det
(
Fξ

)
. (5.137)

Expression (5.137) shows the computation of the nodal forces on the basis
of shape functions. The introduced scheme for determining the nodal forces is
referred to as continuum element.

Finally, the element wise computed element nodal forces have to be combined
to a vector, which describes all the nodal forces of the mechanical problem (global
node force vector fint). This operation is referred to as scatter. Expression (5.138)
shows the gather operation, which is applied to extract the displacement vectors of
an element from the global displacement vector. The boolean matrix Le is called
connectivity matrix, which allows to extract element specific quantities from the
associated global vector. Expression (5.138) shows the extraction of the element
displacement vector de from the global displacement vector d:

de = Led. (5.138)

The nodal forces are scattered by applying the transposed connectivity matrix.
This procedure implies that the associated nodal forces of different elements,
which refer to the same node, are summed up:

f int =
∑

e

LT
e f

int
e . (5.139)

For solving of (5.131), a similar procedure needs to be performed for the
external nodal forces fext and for the mass matrix M.

5.5.5 Shell elements

The best accuracy of the numerical integration is obtained, if the domain of the
continuum elements is similar to a cube in the current configuration. Large dif-
ferences regarding the edge lengths of the elements lead to a reduction of the
accuracy of the numerical integration [85]. Many technical applications like sheet
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metal forming imply dealing with structures, which are very thin in one dimen-
sion compared with the other ones. Thereby, the thickness direction of formed
sheet metal parts is in the dimension of millimeters and the remaining ones in
the dimension of meters. According to Okan [86], at least 12 continuum elements
in thickness direction are necessary in order to reflect the stress field of a bend-
ing operation accurately. The mentioned property of the numerical integration
regarding the relation between the element edge lengths leads, in consideration
of the findings reported by Okan [86], to a large amount of continuum elements
and small element edge lengths. As shown below, the smaller the size of the
elements, the larger the computational cost for solving the discrete partial differ-
ential equations based on an explicit integration scheme is. In case an implicit
solution scheme is applied, the effort is rising by an increasing amount of elements.
Hence, a reduction of the element size leads anyway to an increasing computa-
tional cost. Today, for industrial sheet metal forming simulations, the application
of continuum elements is too expensive.

Subsequently, assumptions, verified by observations of the mechanical behavior
of thin structures (shell structures), are introduced, which allow to reduce the
effort for solving the discrete partial differential equations. These assumptions
lead to another type of element, which is referred to as shell element3. For the
development of shell elements, the kinematic of the structure is described on
the basis of the deformation of a reference surface and additional assumptions.
Commonly, however not necessarily, the midsurface is taken as such a reference.
Figure 5.8 illustrates the kinematic assumptions of the Kirchhoff-Love and the
Reissner-Mindlin theory on the basis of a shell, which is bent in one direction.
According to the first mentioned theory, the normal to the midsurface remains
straight and keeps normal. The latter mentioned one assumes that this normal
remains only straight, however a rotation of it with respect to the midsurface is
allowed. According to these theories, it is possible to describe the motion of an
arbitrary material point by a relative rotation with respect to the motion of the
midsurface (reference surface). As opposed to the Reissner-Mindlin assumption
the Kirchhoff-Love assumption is limited to thin shells. Furthermore, the stress
state normal to the midsurface is assumed to be negligible, which is referred to
as plane stress condition.

In order to consider these assumptions, another weak form of the momentum
balance needs to be derived. However, this procedure is very complex, especially if
the elements have to be suitable for non-linear computations. Another approach
is to apply continuum elements and to implement the kinematic assumptions
by constraints on the motion of the corresponding nodes, which is referred to
as continuum based shell theory. Additionally, the constitutive law needs to be
adjusted in order to obtain a plane stress state. In this case it is sufficient to use
only one element in thickness direction, which reduces the amount of elements,
necessary for an accurate prediction of the stress and strain states enormously.
Subsequently, only the latter mentioned theory is introduced.

3A comprehensive introduction in shell elements can be found in [87].
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Figure 5.8: Kinematic assumptions; Left: Visualization of the Kirchhoff-Love
assumption; Right: Visualization of the Reissner-Mindlin assumption.

Figure 5.9 illustrates the concept of the continuum-based shell elements, com-
prising a master slave node concept. The slave nodes are the nodes associated
with the continuum element. The master nodes are located on the midsurface
(reference surface). In order to formulate the relations between the master and
slave nodes, a convention regarding the node numbering is introduced. The slave
nodes on the top surface, which is the outer surface of the shell in the positive
ξ3-direction (local coordinate system of the element), are marked by +. The slave
nodes on the opposite surface (bottom surface) are described by a − sign. The
correspondence between the master and the slave nodes is defined by coincident
ξ1 and ξ2 coordinates. Each slave node possesses the same node number as the as-
sociated master node. Lines along constant ξ1 and ξ2 coordinates are called fibers
and the unit vectors along them are referred to as directors pI (ξ1, ξ2). Surfaces,
defined by constant ξ3 values are called lamina.
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Figure 5.9: Example of a continuum-based shell element [60].

The Reissner-Mindlin kinematic assumption is reflected by requiring the fibers
to remain straight. In order to obtain straight fibers, only two slave nodes are
allowed to lie on a fiber. Additionally, the shape functions need to be linear.

As mentioned above, the kinematics of the shell is represented by rotations
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with respect to the motion of the midsurface (reference surface) respectively the
master nodes. The expressions (5.140) and (5.141) show the definition of the
translational and rotational nodal velocities and the associated nodal forces and
moments:

ḋI =
[
vxI

vyI
vzI ωxI

ωyI
ωzI

]T
, (5.140)

fI =
[
fxI

fyI
fzI mxI

myI
mzI

]T
. (5.141)

The motion and the velocity field, depending on the local element coordinate
system ξi, are given by the expressions (5.142) and (5.143) (nMN : Number of
master nodes):

x (ξ, t) =

nMN∑

I−=1

xI− (t)NI− (ξ) +

nMN∑

I+=1

xI+ (t)NI+ (ξ) , (5.142)

v (ξ, t) =

nMN∑

I−=1

vI− (t)NI− (ξ) +

nMN∑

I+=1

vI+ (t)NI+ (ξ) . (5.143)

The kinematic condition is formulated by expressions (5.144) and (5.145):

vI+ = vM
I + h+I ωI × pI, (5.144)

vI− = vM
I − h−I ωI × pI. (5.145)

Thereby, h+/h− describe the initial distance between the midsurface and the
top/bottom surface. The velocity of the master nodes is denoted by vM

I . The
continuum-based shell theory comprises the additional assumption that the bal-
ance of momentum in the direction of the fibers is not enforced, which allows
treating the fibers as inextensible. As the fiber has to remain straight, the rela-
tive velocities of the slave nodes with respect to the corresponding master nodes
can be computed by the cross product of the angular velocities and the director.
The assumption of inextensible fibers enables to compute the velocities of the
slave nodes by scaling the result of the cross product on the basis of the initial
thickness.

For deriving a direct transformation between velocity vector of the master and
the slave nodes (5.146), the cross product of (5.144) and (5.145) is rearranged as
given by (5.147) and assembled to a transformation matrixTI as shown by (5.148):

TIḋI =

[
vI−

vI+

]
, (5.146)

h+ωI × pI = Λ+ωI, Λ
+
ij = h+eijkpk, (5.147)
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TI =

[
I Λ−

I Λ+

]
. (5.148)

For enforcing the plane stress condition, the strain state, considered at each
quadrature point, is transformed with respect to a coordinate system (êx, êy, êz),
whose z-direction is perpendicular to the lamina surfaces in the current configu-
ration. Expression (5.149) shows the transformation of the rate of deformation to
this coordinate system:

D̂ = RT
lamDRlam, (Rij)lam = ei · êj . (5.149)

Finally, the constitutive law is applied with respect to this coordinate system.
The treatment of the plane stress assumption with respect to the constitutive law
is given below in this chapter.

In consideration of the introduced constraints, the integration procedure of
continuum elements can be applied for the computation of the nodal forces of the
slave nodes. As a final step, the nodal forces of the master nodes are computed
based on the transposed transformation matrix TI and the forces of the slave
nodes

fI = TT
I

[
fI−

fI+

]
. (5.150)

Apart from the internal forces also the external forces and the mass matrix
have to be adjusted according to kinematic quantities given by (5.140). This leads
to a discrete form of the partial differential equations.

Even though the strain field of the shell elements is linear in thickness direction,
the corresponding stress state, which follows from the constitutive law of the
material, is not necessarily linear. The elasto-plastic material model, which is
investigated in this work, implies a non-linear relation between the strain and the
stress state. In order to reflect this non-linearity, several quadrature points in
thickness direction of the shell are needed.

The most significant drawbacks of the application of shell elements are the
mentioned assumptions, which might limit the accuracy of the computation, and
the occurrence of locking effects (shear, membrane and volume locking). Provided
a shell is bent by moments acting on the edge of a structure and the resultant
deformation is single curved, the transversal shear should vanish. However, shell
elements can induce an undesired transversal shear under such a deformation
mode. As the shear stiffness is larger than the bending stiffness, the split of the
internal work with respect to the bending and shear, induced by the external load-
ing and the dynamic forces, is shifted by the occurrence of this effect. Thereby,
the corresponding internal work of the bending mode is reduced. Consequently,
the bending stiffness is overestimated. This behavior of shell elements is referred
to as shear locking. The above considered deformation mode is also inextensi-
ble in the tangent direction with respect to the reference surface. If the shell
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element predicts an extension for such a case, again a shift of the internal work
is induced, as the membrane stiffness is larger than the bending stiffness. This
effect is referred to as membrane locking, which also leads to an overestimation of
the bending stiffness. Provided, the material of a structure is incompressible, the
violation of this constrained by an element is called volume locking. Procedures
for circumventing these locking effects are the numerical underintegration, the ap-
plication of high order shape functions or the so-called assumed strain methods4.
In this thesis, an underintegrated 4-node quadrilateral shell element is applied,
which is based on the first mentioned approach for avoiding the locking effects.
This element comprises only one integration point with respect to the reference
surface. In thickness direction the element contains several integration points for
considering the non-linear relation between the strain and the stress state.

5.5.6 The explicit solution procedure

The introduced discrete partial differential equations are usually solved by explicit
and implicit solution procedures. Among the explicit solution algorithms the cen-
tral difference method on the basis of a diagonal mass matrix is the most applied
one and therefore shown below. A rearrangement of (5.131) in consideration of
(Cdamp: Damping matrix)

fn = fnext − fnint (5.151)

allows the computation of the nodal accelerations

an = M−1
(
fn −Cdampv

n− 1
2

)
. (5.152)

The accelerations referring to the time step n follow from the resultant global
nodal forces of the same time step, which are defined by (5.151), and the nodal
velocities of the point in time given by

tn−
1
2 =

1

2
(tn + tn−1). (5.153)

Provided, the mass matrix is diagonal, the computation of the nodal accel-
erations is a trivial task, which can be performed without solving an equation
system. A diagonal mass matrix (lumped mass matrix) can be obtained by uni-
formly distributing the total mass of each element to its nodes.

The computed nodal accelerations allow determining the nodal velocities by
an integration formula, which is derived by rearranging a difference formula, as
shown by

vn+ 1
2 = vn + (tn+

1
2 − tn)an. (5.154)

Thereby, the time increment is given by

4An introduction of this procedures is given in [60].



108 CHAPTER 5. FORMING SIMULATION

tn+1 = tn +∆tn+
1
2 (5.155)

and the point in time for the integration of the nodal velocities is given by

tn+
1
2 =

1

2

(
tn+1 + tn

)
. (5.156)

∆tn+
1
2 defines the time step. Finally, expression (5.157) shows the update of

the nodal displacements:

dn+1 = dn +∆tn+
1
2vn+ 1

2 . (5.157)

Consequently, the explicit solution procedure enables to accomplish the update
of the nodal velocities and the displacements without solving any equations, which
is the most important property of this method. Subsequently, the algorithm of
the explicit method is introduced.

The procedure starts with the initialization of the nodal velocities, the stress
state, the state variables of the material and the computation of the mass matrix.
Furthermore the initial conditions of the mechanical problem are considered. As
a next step, the global resultant nodal forces are determined by the subroutine
get force (figure 5.11). Firstly, the global external forces are computed within
this subroutine. Secondly, within a loop the internal forces of the elements are
computed. Based on the connectivity matrix the nodal velocities of the considered
element are extracted from the global velocity vector. A second loop is necessary
to treat each integration point of each element, which comprises the computation
of the strain measure, the update of the stress state according to the constitutive
law and the numerical integration with respect to the considered element. The
implementation of the stress update algorithm is shown below. For the calculation
of the resultant nodal forces, the external nodal forces, related to the considered
element are determined from the global external force vector by applying the
connectivity matrix. Finally, the scatter operation is accomplished in order to
complement the global resultant nodal force vector by the results, computed for
each element. On the basis of the computed resultant nodal force vector, returned
by the subroutine get force, the nodal accelerations are computed (5.152). As a
next step, a loop is entered, which is stopped by reaching the termination time.
The first operation within the loop is the update of the time, as shown by the
expressions (5.155) and (5.156). According to (5.154), the nodal velocities are
determined. For considering time dependent constraints, the prescribed nodal
velocities are directly assigned to the global nodal velocity vector

v
n+ 1

2

iI = vi(xI, t
n+ 1

2 ). (5.158)

The nodal displacements are updated as given by expression (5.157). Gener-
ally, constraints can be also formulated in the same manner as shown above on
the basis of displacements. Now, the subroutine get force is executed and the
nodal accelerations are determined according to the time update, performed at
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the beginning of the loop. Finally, also the nodal velocities are updated as shown
by expression (5.159) and the algorithm is continued at the beginning of the loop:

vn+1 = vn+ 1
2 + (tn+1 − tn+ 1

2 )an+1. (5.159)

Figure 5.10 summarizes the sequence of the explicit method, which is taken
from [60]. The advantage of the explicit method is that it rarely fails by treating
highly non-linear problems. However, the size of the time step has to be limited;
otherwise the explicit method gives undesired solutions. A stable time step is
given by

∆t = α∆tcrit, ∆tcrit ≤ min
le
ce
. (5.160)

Thereby, le is the characteristic length of the element and ce the wave speed,
which depends on the material of the problem. This relation shows that a de-
creasing element size directly increases the amount of time steps needed for the
solution of the problem. Consequently, the element length is one of the decisive
factors influencing the total computation time. The parameter α is an additional
safety factor, considering a possible destabilization of the solution procedure by
the occurrence of nonlinearities and is recommended to be chosen between 0.8
and 0.98 [60].

1 Initialization, Consideration initial conditions
2 Call sub routine get force
3 Compute accelerations (5.152)
4 a) Time update (5.155) (5.156)
4 b) Partial update nodal velocities (5.154)
4 c) Consideration boundary conditions (5.158)
4 d) Update nodal displacements (5.157)
4 e) Call sub routine get force
4 f) Compute nodal accelerations an+1 (5.152)
4 g) Second partial update nodal velocities (5.159)
4 h) Update Step n = n+ 1
4 i) If t is not equal to the termination time goto 4a)

Figure 5.10: Scheme of the explicit method [60].

5.5.7 The implicit solution procedure

The introduced implicit solution procedure can only treat static problems. This
choice is made, as this restriction leads to a consistent derivation of the implicit
solution originating from the potential energy. The solution of the mechanical
problem, formulated by the potential energy, is found by determining the station-
ary point of expression



110 CHAPTER 5. FORMING SIMULATION

1 Initialization, fn = 0
2 Compute external nodal forces fnext
3 Loop, Elements
3 a) Perform gather operation (nodal displacements, nodal velocities)
3 b) Initialize fneint

= 0
3 c) Loop, Integration points
3 c) α) Compute strain measure
3 c) β) Stress update (see section 5.5.9)
3 c) γ) Compute internal forces fneint

3 c) δ) End Loop
3 d) Compute external nodal forces with respect to the element
3 e) Compute resultant nodal forces with respect to the element fne
3 f) Determine resultant nodal forces (Perform scatter operation) fn

3 g) End Loop

Figure 5.11: The sub routine get force [60].

W (d) =Wint (d)−Wext (d) (5.161)

in consideration of the constraints of the system. According to expression

0 = r =
∂W

∂d
=
∂Wint

∂d
− ∂Wext

∂d
= f int − fext, (5.162)

the forces of conservative problems solely depend on the derivative of the
associated potential. In the case of a static problem, the internal forces should be
in equilibrium with the external forces and, consequently, the residuum r should
be equal to zero. Commonly, this equation is solved by a Newton method. In
order to apply this procedure, expression (5.162) is linearized as shown by

0 = r (dυ) +
∂r (dυ)

∂d
∆d. (5.163)

Usually, multiple steps υ are necessary to determine the solution. Expression
(5.164) illustrates the update of the displacement vector after each iteration:

dυ+1 = dυ +∆d. (5.164)

The partial derivative of the residuum with respect to the displacement is the
Hessian matrix of the potential energy

A =
∂r

∂d
=
∂f int

∂d
− ∂f ext

∂d
. (5.165)

The computation of the Hessian matrix implies a linearization of the con-
stitutive law, the strain measure, the weak form of the balance equations and
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deformation dependent loads [71]. The update of the displacement vector of each
iteration is computed by solving the linear equation system given by

r+A∆d = 0. (5.166)

If the boundary condition just implies that a degree of freedom of a node is
vanishing, it is sufficient to eliminate the corresponding equation from (5.166).
Provided, a constraint depends on the displacement of the mechanical system,
the Lagrange multiplier method can be deployed. Thereby, expression (5.161)
is complemented by the constraint and the Lagrange multiplier. The solution is
obtained by searching the stationary point of the Lagrange function

L =W + λTg =W + λIgI. (5.167)

The partial derivative of

∂L

∂d
=
∂W

∂d
+
∂gT

∂d
λ (5.168)

with respect to d is linearized for the application of the Newton method:

∂W

∂d
+
∂gT

∂d
λ+

∂2W

∂d∂d
∆d+

∂gT

∂d
∆λ+ λI

[
∂2g

∂d∂d
∆d

]

I

= 0. (5.169)

Additionally also the constrained function needs to be linearized as given by

g +
∂g

∂d
∆d = 0. (5.170)

Expression (5.171) shows the resulting linear equation system, which has to
be solved for each iteration:

[
∂2W
∂d∂d + λI

[
∂2g

∂d∂d

]
I

∂gT

∂d
∂g
∂d 0

] [
∆d

∆λ

]
=

[
−∂W

∂d −
∂gT

∂d λ

−g

]
. (5.171)

Figure 5.12 summarizes the solution of a static problem based on the implicit
method.

Subsequently, the solution of a static problem based on the implicit method
is summarized. First of all, the initialization of the nodal displacements, the
initial stress state and the state variables of the material need to be performed.
Additionally the initial conditions are treated. Usually, the loads are increased
incrementally, which leads to a better convergence of the implicit solution scheme.
In this context, the term pseudo time is introduced, which is associated with the
load increments. The pseudo time is only an artificial quantity, as in this section
only static problems are considered. As a next step, the algorithm enters a loop,
which is repeated until all the load increments are performed. Within this loop,
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another loop is performed, which is terminated if the convergence criterion is met
for the considered load increment. A typical convergence criteria is the comparison
between the norm of the displacement increment and the total displacements

‖∆d‖ ≤ ǫ ‖d‖ . (5.172)

Other criteria are based on the residual and on the error energy, which are
defined by the product of the displacement increment and the residual. Within
the loop, the global resultant nodal forces are determined by the subroutine get
force, which is identical to the one, introduced for the explicit method. Now,
the Hessian matrix is computed and, if necessary, the constraints are considered.
The linear equation system (5.166) or (5.171) is solved. Based on the solution,
the trial displacement vector is updated. This procedure is repeated until the
convergence criteria are met. After the inner loop is left, the computed trial
displacement is considered to be the solution of the actual load increment and the
load is increased.

1 Initialization, Consideration initial conditions
2 Newton iteration for load increment n+ 1
2 a) Call sub routine get force f

(
dυ, tn+1

)

2 b) Compute A(dυ) (5.165)
2 c) Solve linear equation (5.166) or (5.171)
2 d) Update displacements (5.164)
2 e) Check convergence criterion (5.172), If not met then goto 2 a)

3 Update displacements dn+1 = dυ,
pseudo time t = t+∆t, step count n = n+ 1

4 If t is not equal to the termination time goto 2

Figure 5.12: Scheme of the implicit method [60].

5.5.8 Discussion explicit, implicit methods

The simulation of a forming operation is a highly non-linear mechanical problem,
which especially results from the material response and the contact constraints.
The treatment of the contact constraints is not introduced in this thesis. A com-
prehensive description of computational contact mechanics can be found in [71].
The treatment of these nonlinearities is more difficult based on implicit methods
than on the explicit ones. For example, the linearization of the constitutive law
is not necessary, if the explicit method is applied. However, the implicit method
needs less time steps for the computation of the solution. The drawback of implicit
method with respect to the forming simulation is that the non-linearity, induced
by the contact constraint, can cause the necessity of additional time steps. As
the explicit method mainly comprises matrix multiplications, this method is more
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suitable for distributing the computational tasks to different processors. There-
fore, the disadvantage of the explicit method regarding the amount of time steps,
needed for the computation of the solution, can be compensated by using mul-
tiple processors. Consequently, both methods can be advantageous concerning
the needed time for computing the solution, depending on the available software
and hardware resources. For the investigation and validation of the constitutive
laws, the choice of the solution procedure should depend on the method applied
in the serial operation. In this work the explicit method is chosen for the forming
simulation. In the case of the springback simulation, the implicit method is ad-
vantageous. As this mechanical problem does not comprise strong nonlinearities,
this method is able to give a solution within a few pseudo time steps. The appli-
cation of the explicit method would imply the computation of much more time
steps.

5.5.9 Stress update algorithm

Subsequently, the numerical implementation of the introduced elasto-plastic con-
stitutive law is presented. The algorithm, shown below, is suitable for the explicit
method. For the implicit solution procedure also a linearization of the elasto-
plastic constitutive law is necessary.

Each time step implies a computation of the strain increment at the integration
points of the elements. The constitutive law gives on the basis of this strain
increment, the related stress update. The equations (5.173) recall the elasto-
plastic constitutive law, which has been presented in chapter 5.2:

σ̇ = C : (ǫ̇− ǫ̇p) ,

ǫ̇p = λ̇r,

q̇ = λ̇h,

λ > 0, f ≤ 0, λf = 0.

(5.173)

The elastic part of the constitutive law is written, as opposed to (5.49), in a rate
form, which simplifies the numerical solution. First of all, under the assumption
of an elastic material response the stress increment is computed:

σn+1
trial = σn +C : ∆ǫ. (5.174)

As a next step, the material response is analyzed. If (5.175) is valid, the strain
increment is elastic:

f
(
σn+1

trial,q
n
)
< 0. (5.175)

In this case, the increment of the elastic strain is identical to the prescribed
strain increment and (5.174) gives the stress update:
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σn+1 = σn+1
trial, q

n+1 = qn, ∆ǫe = ∆ǫ. (5.176)

The treatment of the remaining cases

f
(
σn+1,qn

)
= 0

ḟ < 0 elastic loading

ḟ = 0 ∧ λ = 0 neutral loading

ḟ = 0 ∧ λ > 0 plastic loading

(5.177)

will be shown below, which implies the computation of the solution of the
differential equations (5.173). Simo and Hughes have summarized procedures for
solving these equations. One of these procedures is the implicit Euler scheme.
The expressions (5.178) summarize this scheme:

ẋ = f (t,x) ,

tn = t0 + nh,

x
(
t0
)

= x0, x (tn) = xn,

xn+1 − xn

h
≈ f

(
tn+1,xn+1

)
,

xn+1 ≈ xn + hf
(
tn+1,xn+1

)
.

(5.178)

The solution xn+1 can be computed based on the Newton method. The time
discretization is defined by the increment h. Consequently, the application of the
implicit Euler scheme leads to the expressions (5.179). The following notations
have been taken from [60]:

ǫn+1 = ǫn +∆ǫ,

ǫp
n+1

= ǫp
n

+∆λn+1rn+1
(
σn+1,qn+1

)
,

qn+1 = qn +∆λn+1hn+1
(
σn+1,qn+1

)
,

σn+1 = C :
(
ǫn+1 − ǫp

n+1
)
,

fn+1 = f
(
σn+1,qn+1

)
= 0.

(5.179)

Subsequently, for all quantities, which refer to the time n + 1, the subscript
n + 1 is omitted. Expression (5.180) shows the equations, suitable for a Newton
method:
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a = −ǫp + ǫp
n

+∆λr = 0,

b = −q+ qn +∆λh = 0,

f = f (σ,q) = 0.

(5.180)

The linearization of σ = C : (ǫ− ǫp) leads for the kth iteration step of the
Newton method to expression (5.181), as ǫ remains constant during the stress
update [61] (∆ǫp = ǫp − ǫp

n

; ∆σ = σ − σn):

∆σ = −C : ∆ǫp. (5.181)

This equation enables to perform the linearization of the first equation of
(5.180) based on the stress state. The equations

a(k) +
∂a(k)

∂σ(k)
: ∆σ(k) +

∂a(k)

∂q(k)
∗∆q(k) +

∂a(k)

∂∆λ(k)
· δλ(k) = 0,

b(k) +
∂b(k)

∂σ(k)
: ∆σ(k) +

∂b(k)

∂q(k)
∗∆q(k) +

∂b(k)

∂∆λ(k)
· δλ(k) = 0,

f (k) +
∂f (k)

∂σ(k)
: ∆σ(k) +

∂f (k)

∂q(k)
∗ q(k) = 0

(5.182)

illustrate the linearization of (5.180) for the Newton iteration step k. The un-
knowns of the linearized equations are: ∆σ(k), ∆q(k) and ∆λ(k). The linearization
of these equations leads to (5.183), for the iteration step k of the Newton method:

f
(k)
A =

∂f (k)

∂A
, r

(k)
A =

∂r(k)

∂A
, h

(k)
A =

∂h(k)

∂A
,

∆r(k) = r(k)σ : ∆σ(k) + r(k)q ∗∆q(k),

∆h(k) = h(k)
σ : ∆σ(k) + h(k)

q ∗∆q(k),

a(k) +C−1 : ∆σ(k) +∆λ(k)∆r(k) + δλ(k)r(k) = 0,

b(k) −∆q(k) +∆λ(k)∆h(k) + δλ(k)h(k) = 0,

f (k) + f (k)σ : ∆σ(k) + f (k)q ∗∆q(k) = 0.

(5.183)

The linear equation system is solved for the unknowns ∆σ(k),∆q(k) and δλ(k).

The expressions 5.184 show the update of ǫp
(k+1)

, q(k+1) and ∆λ(k+1):
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ǫp(k+1) = ǫp(k) −C−1 : ∆σ(k),

q(k+1) = q(k) +∆q(k),

∆λ(k+1) = ∆λ(k) + δλ(k).

(5.184)

The procedure is repeated until convergence is obtained. Measures for the
convergence are the residuals a(k), b(k) and f (k):

c(k) =

[
a(k)

b(k)

]
,
∥∥∥c(k)

∥∥∥ < Tolerance1

∣∣∣f (k)
∣∣∣ < Tolerance2. (5.185)

Finally, the converged solution gives the update values for σn+1, qn+1 and
ǫp

n+1

.

5.5.10 Plane stress constraint

First of all, the elastic material response is discussed. Expression 5.186 shows an
alternative form of (5.45):

ǫij =
1 + υ

E
σij −

υ

E
σkkδij . (5.186)

Using the Voigt notation (definition see [60]), the strain and stress tensor can
be represented by vectors. This allows a simpler representation of the fourth order
elasticity tensor by a matrix:




ǫ11
ǫ22
ǫ33
ǫ23
ǫ31
ǫ12



=




1
E − υ

E − υ
E 0 0 0

− υ
E

1
E − υ

E 0 0 0
− υ

E − υ
E

1
E 0 0 0

0 0 0 1+υ
E 0 0

0 0 0 0 1+υ
E 0

0 0 0 0 0 1+υ
E







σ11
σ22
σ33
σ23
σ31
σ12



. (5.187)

If the plane stress condition (σ31 = 0 ;σ32 = 0 ;σ33 = 0) is inserted in (5.187)
the following relations are obtained:

ǫ31 = 0,

ǫ32 = 0,

ǫ33 = − υ

1− υ (ǫ11 + ǫ22) .

(5.188)
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Consequently, on the basis of the given in-plane strains (ǫ11, ǫ22, ǫ12), which
result from the explicit solution procedure, the in-plane stress state (σ11, σ22, σ12)
can be computed. By enforcing the plane stress condition, the constitutive law
also gives the out-of-plane strains based on a post-calculation (5.188).

In the case of a plastic material response, the stress update step can be comple-
mented by the plane stress conditions [62]. Expression (5.189) shows the extended
constitutive law:

ǫn+1 = ǫn +∆ǫ,

ǫp
n+1

= ǫp
n

+∆λn+1 · rn+1
(
σn+1,qn+1

)
,

qn+1 = qn +∆λn+1 · hn+1
(
σn+1,qn+1

)
,

σn+1 = C :
(
ǫn+1 − ǫp

n+1
)
,

fn+1 = f
(
σn+1,qn+1

)
= 0,

σ31 = 0,

σ32 = 0,

σ33 = 0.

(5.189)

In [62] further methods are given for the consideration of the plane stress
constraint.

5.6 Summary

The presentation of the theoretical background with respect to the forming sim-
ulation is aligned to the objectives of this thesis. Originating from continuum
mechanics, the constitutive laws and the failure criterion are introduced, which
are investigated in the subsequent chapters. The introduction of the finite ele-
ment method is given, for the discussion of the results, obtained from forming
simulations, and for the explanation of the post processing procedures, needed
for the subsequently introduced optimizations.
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Chapter 6

Experiments

The aim of this chapter is to introduce the experiments, which are needed for the
identification and validation of the constitutive laws. The results of these experi-
ments and a discussion of the experimental conditions are given in the subsequent
chapters. For differentiating the functionality of the introduced experiments, three
categories are defined:

• Fundamental experiments

• Complementary experiments

• Validation experiments

The fundamental experiments give the experimental input data for the cali-
bration of the material model (see chapter 7) and the failure model according to
the state of the art. In this work, the results and the evaluation procedure of
these experiments are assumed to be reliable and therefore are not investigated.

The complementary experiments are introduced for generating additional in-
put data for the material and the friction model calibration. An ideal complemen-
tary experiment shows a high sensitivity concerning one parameter of the material
or friction model. As opposed to the fundamental experiments, the measured data
of these experiments does not lead directly to the desired model parameter. For
the parameter identification a comparison between the prediction of the simula-
tion and the measured data is necessary. Suitable quantities are selected, which
are sensitive with respect to the investigated model parameter. Finally a value
for the model parameter is chosen, which gives the best prediction of the mea-
sured data on the basis of the selected quantities. This procedure is referred to
as indirect method. The application of this method requires the determination of
all the other model parameters in advance. Provided, the insensitivity of a model
parameter with respect to the prediction of the measured quantities is proven, it
is possible to apply the indirect method without knowing this parameter. This
exception allows determining the unknown model parameters sequentially.

119
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Finally additional validation experiments are proposed in order to validate
the predictive capability of the material and friction models. Furthermore, these
experiments are applied for the validation of the failure criteria. The results,
obtained from these experiments are not taken into account for the model cali-
bration.

One should consider that the introduced classification of the experiments (fun-
damental, complementary and validation experiments) generally depends on the
applied constitutive laws. The classification, shown in this chapter, results from
the constitutive laws, which are used in the subsequent chapters.

Generally, the usage of a standard set of complementary and validation exper-
iments is recommended, which simplifies the material logistics, the execution of
real and simulation based experiments and the postprocessing. In this paragraph,
some key requirements for the design of these experiments are summarized.

• Deviations between the manufactured die face and the CAD data have to
be avoided; otherwise the expressiveness of the experiments is reduced.

• The experiments should be suitable for all steel grades and aluminum alloys
comprised in a car body.

• In order to minimize the computation time of forming simulations, a rigid
tool behavior during the forming operation should be assumed. To avoid the
violation of this assumption, an adequate tool stiffness has to be assured.

• The size of the specimen should be as small as possible in order to limit the
expenses for purchasing material, logistics and measurements. Additionally,
a small dimension of an experiment also has a positive effect regarding the
computational cost of the related simulation based investigations.

• Today, shell elements are widely used for modeling the sheet metal of form-
ing simulations. These elements can be applied, if the tool radius divided
by the sheet thickness does not go below a value of 1.5 [88]. The tool design
should consider this limitation. On the one hand, the applied sheet thickness
should be minimal for avoiding the violation of shell element discretization
restrictions. On the other hand, the availability of thin high strength steels
could be limited.

• In order to avoid differences between the experiment and the simulation
model, caused by touching up the binder zone, a material flow between the
binder and the die should be avoided.

Consequently, tools which are applied for the series production of parts are
not recommended for the identification and validation of constitutive laws, as the
tryout of the tools and wear lead to deviations with respect to the CAD data.
Furthermore, these tools are designed for a specific material and thickness.

An experiment is suitable for the identification or validation of material mod-
els, friction models and failure criteria, if and only if reproducible results are
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obtained. It is recommended to use quantities for these investigations, which can
be directly obtained from real experiments. Examples are material failure, the
sheet thickness, the springback effect, the press force and the strain field on the
part surface.

The reproducibility of the experiments has to be analyzed before comparing
the results of the experiments with the simulation. It is recommended to perform
at least three experiments under the same conditions and to select one of them
as a reference for further investigations. The minimum deviation between the
measured result and the mean of all experiments, which have been performed
under the same conditions, is used as selection criteria. Applying mean values for
the description of an experimental result could lead to non-physical states. This
statement is of particular importance, if several quantities are measured based on
a single experiment.

6.1 Fundamental experiments

6.1.1 Tensile test

The tensile test is a standardized experiment (EN ISO 6892-1) for the determi-
nation of the stress-strain relation under an uniaxial stress state. The specimen
is loaded in direction of the tensile axis. Due to this load case, the corresponding
eigenvalues of the stress state (principal stresses) within the specimen are zero,
apart from the eigenvalue, associated with the tensile direction. Both, the applied
tensile force and the elongation of the material are recorded while the experiment
runs.
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Figure 6.1: Tensile test; Left: Specimen of the experiment; Right: Schematic
relation between the true stress σ and the true strain ǫ [80].

The stress state is computed in the current configuration, i. e., the Cauchy
(or true) stress is identified. For the determination of the Cauchy stress from
the tensile force and the measured elongation in tensile direction, plastic incom-
pressibility is assumed A0l0 = Al (A = wt), which implies the preservation of the
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volume. Expression (6.1) gives the relation between the Cauchy stress and the
measured quantities:

σ =
F

A
=

Fl

A0l0
. (6.1)

The index 0 refers to the initial state. The corresponding logarithmic (or true)
strain in direction of the tensile axis is shown by (6.2). In this case, the material
time derivative of this strain measure is equal to the rate-of-deformation [60]:

ǫ =

l∫

l0

dl

l
, ǫ̇ = D. (6.2)

Commonly, the plastic hardening (flow curve) is derived from the relation
between the plastic strain and the stress state as shown by figure 6.1 (right). By
a rising load, the specimen elongates uniformly. However, at a material specific
strain level, diffuse necking occurs, which is accompanied with a non uniform
elongation of the specimen. The above introduced expressions are only valid as
long as the specimen is uniformly elongated. Unfortunately, due to this limitation,
the maximum measurable equivalent plastic strain for the stress-strain relation is
lower than that one occurring at industrial parts [89].

Additionally, the uniaxial stress states and R values (6.3) for the calibration
of the yield locus are obtained from this experiment:

R =
ǫ̇ηη
ǫ̇ζζ

. (6.3)

On the basis of an uniaxial stress level below the yield strength, the Young’s
modulus and the Poisson’s ratio can be determined.

6.1.2 Bulge test

A quadratic shaped specimen is clamped between the binder and the die (figure
6.3). The material flow in the binder zone has to be avoided, which is achieved by
a sufficient binder force and a drawbead. These tool components are rotationally
symmetric. Instead of a punch, oil is applied as a media for the forming process,
which avoids the influence of friction apart from the die radius where the motion
is negligible. The sheet metal is formed by an increasing level of oil pressure
(figure 6.2)[89].

At the top of the dome, a biaxial stress state is induced. During the forming
process, the deformation field in the region of the top of the dome and the oil
pressure is recorded. Nowadays, optical measurement systems are available for
the determination of a time dependent deformation field [90]. The exploitation
of the measured data enables the computation of the associated strain field. If
the ratio between the sheet metal thickness and the bulge diameter is small,
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Figure 6.2: Bulge test; Left: State before performing the experiment; Right: State
while performing the experiment.
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Figure 6.3: Specimen of the bulge test.

bending stresses can be neglected [91] and consequently, it is possible to deploy
the membrane theory for the determination of the biaxial stress state

σb =
pR

2t
. (6.4)

According to this relation, the biaxial stress state at the top of the dome
depends on the oil pressure p, the curvature 1

R and the thickness t of the sheet
metal at the corresponding location. Expression (6.4) is valid, if both principal
stresses are assumed to be equivalent (σb = σ1 = σ2) [92]. Furthermore, the
application of (6.4) implies the assumption that the shape of the dome in the pole
zone is spherical. Originating from the assumption of plastic incompressibility,
the strain in thickness direction is computed from principal strain values of the
sheet surface (ǫ1,ǫ2):

t = t0e
ǫ3 , ǫ3 = −(ǫ1 + ǫ2). (6.5)

The determination of the pole curvature is still a subject of research. One
solution is to fit a sphere in the pole region for determining the curvature. Another
solution is the application of a quadratic response surface instead of a sphere for
the approximation of the pole surface [93]. On the basis of the bulge test a flow
curve can be obtained, which does not show the limitation of the tensile test, as
much higher strain levels can be reached before a material failure occurs. It has
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to be mentioned that this flow curve refers to the biaxial stress state. Today, the
biaxial flow curve is usually transformed to the space of the uniaxial flow curve.
Finally, both flow curves are combined to a flow curve describing the hardening
effect even for high strain levels. For this procedure an isotropic hardening of the
material is assumed. An approach for this transformation is the application of the
equivalent plastic work relation [94]. If the hardening behavior of the material
depends on the stress state, the isotropic hardening assumption might not be
suitable. In such a case, the biaxial flow curve serves a valuable contribution for
the calibration of an anisotropic elasto-plastic hardening model. Finally, the bulge
test gives a biaxial stress state and an additional R value (6.6) for the calibration
of the yield locus1:

rb =
ǫ̇yy
ǫ̇xx

. (6.6)

6.1.3 Miyauchi test

For the generation of an approximately pure shear stress state, the Miyauchi test
can be performed [96]. The definition of a pure shear stress state is given by [62]:

σ1 = |σ3| , σ2 = 0, σ1 > σ2 > σ3. (6.7)

The eigenvalues σi of the stress tensor are assumed to be sorted ascending in
expression (6.7). Figure 6.4 illustrates the specimen of the test, which is subdi-
vided into the zones A,B,C for the explanation of the experiment.
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Figure 6.4: Miyauchi Test; Left: State before performing the experiment; Right:
State after performing the experiment.

The external force F is acting, homogeneously distributed, in the zones A and
B, causing a shear deformation in zone C. Figure 6.4 illustrates both, the initial
state and the deformed state of the specimen. A fixture is needed, which is able
to clamp the specimen sufficiently in these zones and enables to perform the test
in a tensile testing machine. Optical measurement systems allow determining
directly the time dependent deformation in zone C. On the basis of the measured
deformation, the strain field is computed. The shear stress is obtained by applying

1Aretz shows in his work [95] that the Bulge test might not generally be suitable for the
determination of the value of rb.
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τ =
F

2ht
. (6.8)

The evaluation of the experimental data leads to a flow curve with respect
to the shear state and gives another stress state for the yield locus calibration.
In case the material shows a pronounced anisotropic hardening, the experiment
could be applied for the calibration of an elasto-plastic model, which takes this
effect into account.

6.1.4 Nakajima test

The Nakajima test [81] is applied for the analysis of the onset of localized neck-
ing for different strain states. An alternative experiment has been proposed by
Marciniak, which is not introduced here. Both experiments are standardized (ISO
12004-2).
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Figure 6.5: Nakajima Test; Left: State before performing the experiment; Right:
State while performing the experiment.
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Figure 6.6: Nakajima Test; Specimen of the experiment.

The specimen is clamped between a rotationally symmetric binder and die. A
material flow in the binder zone is avoided by a drawbead and a sufficient binder
force. Usually, the Nakajima test is performed in specially designed testing ma-
chines. In this case, the forming operation can differ from the standard forming
process (see chapter 3). Commonly, the binder and the die remain in a fixed
position after the binder closing stage. The sheet metal is formed by a moving



126 CHAPTER 6. EXPERIMENTS

spherical punch. Figure 6.5 illustrates the geometry of the tool and figure 6.6
the specimen. Different strain states are obtained by the variation of the speci-
men width w (figure 6.6). The deformation field is recorded during the forming
process, which enables to compute a time-depended strain field on the surface.
Friction affects the results of the Nakajima experiment. A suitable lubricant has
to be deployed for reducing the effect of friction as much as possible [97]. For
the determination of the limit strain before localized necking occurs, different
methods have been proposed. Two of these methods are the position-dependent
determination (ISO 12004-2) and time-dependent determination. Thereby, the
time-dependent method proposed by Volk [98] is based on the thinning rate of
the sheet metal in the necking zone. If localized necking occurs, the thinning rate
in the necking zone increases significantly. This effect is taken as a criterion for
the determination of the forming limit. The forming limit curve (FLC) is cre-
ated on the basis of the determined forming limits with respect to different strain
states.

6.2 Complementary experiments

6.2.1 YLIT-Experiments

The Yield Locus Identification Tools (YLIT) have been developed jointly by
ThyssenKrupp Steel Europe and BMW. The YLIT-Experiments are performed
to generate additional data for determining the best possible yield locus shape
with respect to the considered steel grade. Two basic geometries are used:

• Spherical punch

• Cubic punch

All experiments consist of a rotationally symmetric die and binder. The YLIT-
1-TKSE comprises a spherical punch and the YLIT-2-TKSE a cubical punch
with fillets. The geometry of the YLIT-2-TKSE and YLIT-3-BMW is similar
but different in dimension. The punch geometry of the YLIT-1-TKSE and the
YLIT-4-BMW is identical; however the blank geometry is different. Additional
information regarding the experiments is given in [99].

During the forming process, the specimen is clamped between the binder and
the die. The forming process is identical to the standard process (chapter 3).
However, these experiments can be performed in a testing machine for Nakajima
experiments. In this case, the kinematical sequence of the tools can differ from
the standard process (see section 6.1.4). While the specimen is formed, its de-
formation is recorded. On the basis of the deformation field, the strain field is
computed a posteriori. For the investigation of the yield locus, the strain state of
the material points are considered, which are finally located in the necking zone.
Apart from the strain state, the maximum drawing depth according to the FLC is
also determined. Both, the strain state and the drawing depth are compared with
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Figure 6.7: YLIT-3-BMW; Left: State before performing the experiment; Right:
State while performing the experiment.
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Figure 6.8: YLIT-4-BMW; Left: State before performing the experiment; Right:
State while performing the experiment.
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Figure 6.9: YLIT-Experiments; Specimens of the experiments.
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the prediction of the simulation. The term drawing depth describes the maxi-
mum deformation of material points of the specimen with respect to the drawing
direction at a given time during the forming operation. The maximum possible
drawing depth is limited by the occurrence of a material failure (maximum draw-
ing depth). The aim of this experiment is to search a yield locus shape, which
leads to an accurate prediction of the measured quantities (indirect method). For
obtaining the desired sensitivity of the yield locus shape on the prediction of the
strain state and the drawing depth, the width of the rectangular specimen has to
be optimized. As the measured data is determined before the elastic springback
occurs, the measured strain field can be directly compared with the simulation
result.

6.2.2 Bending experiment

For the investigation of the Young’s modulus a bending test is proposed. A
rectangular specimen is clamped between the binder and the die (figure 6.10).
The specimen is bent by the punch movement. As long as the gap between the
die and the punch is larger than the sheet thickness, the influence of friction is
not expected to be significant.
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Figure 6.10: Bending experiment; Left: State before performing the experiment;
Right: State after performing the experiment.
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Figure 6.11: Bending experiment; Specimen of the experiment.

After the forming operation, before the punch is moved back to the initial
position, the internal forces of the specimen are in equilibrium with the contact
forces between the sheet and the tool surface. The movement of the punch to
the initial position induces a new equilibrium state, which is accompanied with a
deformation of the specimen (springback). The final geometry of the specimen is
quantified by an angle α, as the zones A and C are not affected by the bending
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operation (figure 6.12). Consequently, the angle α reflects the springback behav-
ior of the specimen. The springback effect is directly proportional to the bending
radius rd [88]. Hence, for maximizing it and for minimizing the risk of reaching
discretization limitations of shell elements, a high value for the bending radius
is recommended [86]. Basically, an arbitrary alignment of the formed specimen
is possible to evaluate the springback behavior. Most important is to choose an
alignment, which allows a reproducible determination of the springback (angle
α). In this thesis, the zone of the formed specimen, which is located between the
binder and the die during forming, is clamped in the measuring fixture. Figure
6.12 illustrates the measuring fixture for the determination of the angle α. How-
ever, this type of alignment implies the influence of the gravity on the determined
bending angle, which is expected to be small. The sensitivity of measured angle
α with respect to the gravity depends on the stiffness of the formed specimen.
Thereby, the stiffness is mainly affected by the initial thickness of the specimen.
The thicker the material, the less influence is expected by gravity. Neverthe-
less, this effect should be investigated in advance before any comparison between
measured and predicted angles.

α

������

������������ α

Figure 6.12: Bending experiment; Left: Definition of the angle α and the zones
A, B and C; Right: The applied measuring fixture.

6.2.3 Friction experiment

For the investigation of the frictional behavior between, the sheet metal and the
tools, it would be necessary to determine the stress distribution in the contact
zone. Today, it is very difficult to measure the desired stress distribution during a
forming process. Therefore, another approach is chosen in this work. The validity
of the Coulomb friction model is assumed and the model parameter µ is deter-
mined by an inverse approach. The sensitivity of this experiment concerning the
model parameters of the stress-strain relation will be shown in chapter 8. The
dependency of the frictional behavior with respect to the contact pressure, the
temperature and the relative velocity between the contact surfaces is neglected.
Nevertheless, if a more advanced model for the description of the frictional be-
havior exists and its parameters are known, the proposed experiment could be
applied for validation purpose. Figure 6.13 illustrates the proposed experiment.
According to figure 6.14, the rolling direction of the specimen is chosen to be
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perpendicular to the symmetry plane. The specimen is taken from the coil un-
der preserving the as-delivered condition regarding the lubricant. Only in the
center of the specimen the lubricant film is removed for inducing a grid for the
strain measurement. However, this zone is not in contact with the tool surface
and therefore the removal of the lubricant film does not affect the results of the
experiment. During the forming process the specimen is clamped between the
binder and the die. The sequence of the tool movement is identical to the stan-
dard forming process, which is shown in chapter 3. For the inverse determination
of the model parameter µ, the strain state is measured at position P (figure 6.14)
at the top surface. Thereby, the model parameter µ is adjusted in order to obtain
a simulation based prediction of the strain state equal to the measured one. In
order to maximize the dependency of the friction on the measured strain state,
the relative movement between the sheet and the punch radius should be maxi-
mized. The desired property of the experiment is obtained by choosing Rp and
dbp (distance between the binder and the punch contour) sufficiently large. The
experimental setup, used in this thesis, does not allow measuring the strain state
during forming. Hence, the strain field is analyzed after tool opening. Under this
condition, it is necessary to take the effect of the springback on the strain field
into account. As a consequence, the forming simulation has to be complemented
by a springback simulation in order to compare an equivalent mechanical state of
the formed specimen.
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Figure 6.13: Friction experiment; Left: State before performing the experiment;
Right: State after performing the experiment.

6.3 Validation experiments

6.3.1 U-Profile experiment

Generally, the deformation of car body parts, caused by the springback effect,
is complex. It is a combination of side wall curl, torsion, flange and side wall
rotations. The effect is mainly determined by the geometry, the material and
production process of the part. Especially double-curved-part regions increase
the geometrical stiffness and therefore reduce the springback effect.
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Figure 6.14: Friction experiment; Left: Specimen of the experiment; Right: Shape
of the specimen after the forming operation.
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Figure 6.15: U-Profile experiment; Left: State before performing the experiment;
Right: State after performing the experiment.
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Figure 6.16: U-Profile experiment; Left: Specimen of the experiment; Right:
Shape of the specimen after the forming operation.
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For the validation of material and friction models based on the springback
effect, a u-profile experiment is proposed (figure 6.15). The geometry of this
experiment maximizes the springback effect because of the single-curved geometry
and shows a complex deformation except from torsion. The forming process of
this experiment comprises a binder closing and a stamping stage. A detailed
description of the kinematical sequence of the tools is omitted here, as it is a
standard forming process like introduced in chapter 3. In this work, the rolling
direction of the specimen is chosen to be perpendicular to the symmetry plane
(figure 6.16 (left)). Another orientation of the rolling direction with respect to the
symmetry plane could give further information regarding the predictive capability
of the material model. During forming, a relative movement between the sheet
metal and the tool surface occurs. Hence, friction could affect the forming process.
The equilibrium state of the formed sheet after tool opening will be referred to as
actual geometry. If the material flow is homogeneous in length direction, the cross
sections perpendicular to this direction with respect to the actual geometry are
approximately identical. For obtaining the desired homogeneous material flow
during the forming process, a drawbead is recommended, which is suitable for
all considered materials. Without such a drawbead, slight disturbances of the
lubricant distribution or geometrical defects, caused by the touch up procedure
can lead to an inhomogeneous material flow. Consequently, it is sufficient to
analyze a cross section for characterizing the actual geometry as shown by figure
6.17. For the analysis of the springback effect, the actual geometry has to be
aligned. As the top surface (figure 6.15 (right)) can be approximately described
by a plane, it is recommended to align the actual geometry with respect to this
zone. In order to reduce the data, needed for quantifying the springback effect,
the quantities side wall rotation, side wall curl and flange rotation are introduced
(figure 6.17). The reference points A’,B’,C’,D’ and E’ are derived under the
assumption that the shrinking, caused by the springback effect, is negligible. If
this assumption holds, the position of A’ is determined by equating the developed
length of SA and SA’. The remaining points B’,C’,D’ and E’ are identified in the
same way.

The influence of the gravity on the actual geometry is minimized by aligning
the length direction of the u-profile parallel with respect to the gravity accelera-
tion. A comparison of the experimentally determined quantities with the predic-
tion of the simulation enables to validate the applied material and friction model.
A key requirement for comparing the simulation result with the measured data
is the identity of the material flow. If deviations occur, the material flow of the
simulation has to be adjusted according to the measured one.

6.3.2 Hole extrusion experiment

For the validation of the forming limit curve (FLC) with respect to low α val-
ues (α = ǫ̇2/ǫ̇1), the hole extrusion experiment is proposed (figure 6.18). The
specimen of the experiment comprises holes of different diameters di.



6.3. VALIDATION EXPERIMENTS 133

����������	
����
�

������	
����
�

��������������

� ��

��
�

�

��

��

���

�

� ���� �

�

�

�

Figure 6.17: U-Profile experiment; Quantification of the springback effect.
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Figure 6.18: Hole extrusion experiment; Zone of the FLC validation.
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The length direction of the specimen is, in this thesis, chosen to be parallel to
the rolling direction. During the forming phase, the specimen is clamped between
the binder and the die (figure 6.19 (left)). Subsequently, the hole is extruded by
the punch (figure 6.19 (right)).
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Figure 6.19: Hole extrusion experiment; Left: State before performing the exper-
iment; Right: State after performing the experiment.
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Figure 6.20: Hole extrusion experiment; Specimen of the experiment.

The center of the hole should lie on the rotational symmetry axis of the punch.
In order to comply this condition, an additional fixture is needed, which supports
the alignment of the specimen and clamps it during the binder closing phase. The
kinematic sequence of the tools of this experiment is identical to the standard
forming process, shown in chapter 3. The failure mode localized necking leads to
a lower bound with respect to the hole diameter, which will be referred to as dmin.
If the diameter di is chosen to be smaller than dmin, the hole extrusion will lead to
localized necking. This diameter dmin is identified experimentally, by analyzing
the onset of localized necking visually. It should be mentioned that depending
on the investigated material this experiment can also lead to the failure mode
fracture. However, in this thesis such materials are not treated. Subsequently,
the hole diameter is varied in steps of 0.5mm. The manufacturing procedure of
the hole can affect the onset of localized necking. A standard piercing operation
leads to an additional material hardening of the sheet metal on the edge of the
hole. The FLC is not suitable for the consideration of this effect. Hence, for the
validation of the FLC another method for the manufacturing of the hole is needed.
The mentioned hardening effect is avoided, if the hole is manufactured by a milling
process. For the validation of the FLC, the diameter dmin is also determined based
on the simulation. If the predicted value of dmin is coincident with experimentally
identified value, the FLC is able to reflect the localized necking regarding the
considered strain state. For this indirect validation of the FLC, the parameters
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of the material and the friction model have to be determined in advance.
Nevertheless, if the hole is manufactured on the basis of a standard piercing

process, the experimental result could be used for the validation of failure models,
which takes the local hardening effects of trimming operations into account.

A similar experiment is described in the ISO/TS 16630. The objective of this
experiment is to determine the limiting hole expansion ratio, which is given by

λ =
Dh −D0

D0
. (6.9)

D0 is defined as the initial hole diameter. In order to identifyDh, the specimen
has to be observed during the forming process and the punch travel has to be
stopped as soon as the material failure has extended through the thickness of the
specimen. The advantage of the hole extrusion experiment, introduced in this
thesis, is the possibility of evaluating the specimen a posteriori. Consequently,
any observation of the specimen during the forming operation is not necessary,
which simplifies the experimental setup.

6.3.3 Cylindrical deepening experiment

Finally, a validation experiment of the FLC regarding a strain state, which can
be characterized by an α value slightly above 0 (figure 6.21), is introduced.
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Figure 6.21: Cylindrical deepening experiment; Zone of the FLC validation.

Figure 6.22 shows the experimental setup of the experiment. During the form-
ing process, the square shaped specimen is clamped between the binder and the
die. The movement of the punch, the die and the binder is equal to the standard
forming process described in chapter 3.

The objective of the experiment is to determine the maximum drawing depth
limited by the onset of localized necking. Thereby, the movement of the press ram
and the punch force are recorded. As the material flow between the binder and the
die is prevented, the above mentioned strain state is induced in the side wall zone.
Provided, a material failure occurs in this zone, the experiment can be applied
for an indirect validation of the forming limit curve. The validation is performed
by comparing the simulation based prediction of the maximum possible drawing
depth with the experimentally determined maximum drawing depth. For this
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Figure 6.22: Cylindrical deepening experiment; Left: State before performing the
experiment; Right: State while performing the experiment.
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Figure 6.23: Cylindrical deepening experiment; Specimen of the experiment.

validation, the parameters of the material model and the friction model have to
be identified in advance. As it is difficult to observe the development of localized
necking during the forming process, the maximum drawing depth is determined
indirectly.

The beginning t0 of the forming operation is determined by the increasing
punch force and the onset of localized necking t1 is assumed to be coincident with
the force maximum. The difference between the onset of localized necking and the
fracture is assumed to be small in terms of the drawing depth2. As the progress
of the ram movement is recorded, it is possible to derive the maximum drawing
depths on the basis of t0 and t1.

2An investigation of the material response beyond the onset of localized necking is given in
[100].



Chapter 7

Determination of the model
parameters

This chapter treats the determination of the model parameters on the basis of
the measured input data obtained from the fundamental experiments. The de-
termination procedure of the model parameters depends on the selected material
model. As mentioned in chapter 5.2 in this thesis elasto-plastic material models,
under the assumption of an isotropic hardening behavior, are applied. Thereby,
the yield loci Hill ´48, Barlat ´89 and Barlat 2000 are investigated. The Hill ´48
yield locus is obtained, if the exponent of the Barlat ´89 yield locus is chosen to
be equal to 2. For the investigation of the Bauschinger effect, the applied mate-
rial model is also complemented by the Chaboche-Rousselier kinematic hardening
model. However, this thesis is not focused on this effect and therefore a descrip-
tion of the calibration procedure of this model is omitted. Table 7.1 shows the
parameters, which can be directly identified from the results of the fundamental
experiments. This table is only valid for the considered material models.

Table 7.1: Directly identified model parameters.

Elasticity Yield Locus Hardening

Young’ Modulus - Flow Curve
Poisson Ratio Strain Rate Sensitivity m

As a consequence, only a calibration procedure for identifying the model pa-
rameters of the yield locus is needed. As mentioned in chapter 5.2, the model
parameters are obtained by the minimization of the difference between the mea-
sured stress states and strain rate ratios (R values) of different experiments (fun-
damental experiments, chapter 6) and the predictions of the yield locus. First of
all, the computation of the stress states and strain rate ratios based on the yield

137
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locus are introduced.

7.1 Tensile test

As mentioned in chapter 6, the tensile test is characterized by an uniaxial stress
state. The direction of the induced force F defines the tensile axis of the exper-
iment. α describes the angle between the tensile axis (coordinate system ξ, η, ζ)
and the axes of anisotropy (coordinate system x,y,z). The x-axis of the latter
mentioned coordinate system corresponds to the rolling direction.
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Figure 7.1: Tensile test; Stress state in the ξ, η-plane.

For the calibration of the yield locus, usually three types of specimens are
investigated, differing regarding the angle (0◦, 45◦ and 90◦) between the tensile
axis and the rolling direction. For each specimen the uniaxial stress and the R
values are determined. The application of the yield locus requires a stress tensor
representation, whose basis is coincident with the axes of anisotropy (chapter 5.2).
The basis of the tensor σ (7.1) is coincident with the coordinate system ξ, η, ζ:

σ =

(
σξξ σξη
σηξ σηη

)
, σ∗ =

(
σxx σxy
σyx σyy

)
. (7.1)

The basis of the stress tensor σ∗ (7.1) is identical with the axes of anisotropy.
The relation between both representations σ, σ∗ of the uniaxial stress state is
given by (7.2):

σ = R(α)Tσ∗R(α), R (α) =

(
cosα − sinα
sinα cosα

)
. (7.2)

Thereby, R(α) is an orthogonal rotation tensor. Inserting σ∗ into (7.2) gives
the equations [50]:
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σξξ = σxx cos
2 α+ σyy sin

2 α+ σxy2 cosα sinα,

σηη = σxx sin
2 α+ σyy cos

2 α− σxy2 cosα sinα,

σξη = − (σxx − σyy) cosα sinα+ σxy
(
cos2 α− sin2 α

)
.

(7.3)

As the ξ-axis of the coordinate system ξ,η,ζ is coincident with the tensile axis
and the stress state is uniaxial, the first eigenvector of σ refers to the tensile
axis. Therefore, σξξ is the principal value of the stress tensor and the remain-
ing principal values are equal to 0.0. Consequently, a rearrangement of (7.3) in
consideration of

σuα = σξξ, σηη = 0, σξη = 0 (7.4)

gives the stress tensor with respect to the axes of anisotropy

σxx = σuα cos2 α,

σyy = σuα sin2 α,

σxy = σuα cosα sinα.

(7.5)

Finally, the associated equivalent stress of the yield locus, depending on the
measured stress state of the tensile test and the model parameters, is computed.
If the model parameters of the yield locus are calibrated in the desired way,
the deviation between the computed equivalent stress and the stress value of
the flow curve, regarding the equivalent hardening state Y (ǫref ), is small. The
quantification of this deviation is shown below. Expression (7.6) introduces an
abbreviation for the equivalent stress under an uniaxial stress state:

σuα (P) = σ (σ∗ (σuα, α) ,P) . (7.6)

Thereby, σ is an equivalent stress, obtained from an arbitrary yield locus. The
vector P comprises the parameters of the yield locus.

Apart from the equivalent stress, also the computation of the Rα value (7.7)
[2] on the basis of the yield locus is introduced:

Rα =
ǫ̇ηη
ǫ̇ζζ

. (7.7)

Figure 7.1 also illustrates the strain state of the tensile test in the ξ,η plane.
Figure 7.2 complements the visualization of the strain state of 7.1 by the thickness
direction.
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Figure 7.2: Tensile test; Visualization of the strain state.

For the computation of Rα the relation between the strain rate tensor ǫ̇ and
ǫ̇∗

ǫ̇ =

(
ǫξξ ǫξη
ǫηξ ǫηη

)
, ǫ̇∗ =

(
ǫxx ǫxy
ǫyx ǫyy

)
, (7.8)

is needed

ǫ̇ = R(α)T ǫ̇∗R(α), R (α) =

(
cosα − sinα
sinα cosα

)
. (7.9)

The basis of the strain rate tensor ǫ̇∗ is the axes of anisotropy. The strain
tensor ǫ̇ refers to the coordinate system ξ,η,ζ. Inserting ǫ̇∗ into 7.9 and applying
R(α) leads to

ǫ̇ξξ = ǫ̇xx cos
2 α+ ǫ̇yy sin

2 α+ ǫ̇xy2 cosα sinα,

ǫ̇ηη = ǫ̇xx sin
2 α+ ǫ̇yy cos

2 α− ǫ̇xy2 cosα sinα,

ǫ̇ξη = − (ǫ̇xx − ǫ̇yy) cosα sinα+ ǫ̇xy
(
cos2 α− sin2 α

)
.

(7.10)

The strain rate ǫ̇ζζ is not affected by the transformation of the basis of the
strain rate tensor as the rotation is performed in the ξ,η plane. Provided the
plastic incompressibility can be assumed, the expressions

ǫ̇ξξ + ǫ̇ηη + ǫ̇ζζ = 0 (7.11)

and

ǫ̇xx + ǫ̇yy + ǫ̇zz = 0 (7.12)

hold. A rearrangement of 7.11, 7.12 and the equality ǫ̇ζζ = ǫ̇zz leads to
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ε̇ζζ = ε̇zz = − (ε̇ξξ + ε̇ηη) = − (ε̇xx + ε̇yy) . (7.13)

Consequently, it is possible to formulate Rα depending on the strain rate
tensor components of ǫ̇∗:

Rα = − ǫ̇xx sin
2 α+ ǫ̇yy cos

2 α− 2 cosα sinαǫ̇xy
˙ǫxx + ˙ǫyy

. (7.14)

If the introduced relation between the strain rate tensor and the stress tensor
is applied (Expression (5.64)),

ǫ̇∗ = λ
∂f

∂σ
, ǫ̇xx = λ

∂f

∂σxx
, ǫ̇yy = λ

∂f

∂σyy
, ǫ̇xy = λ

∂f

∂σxy
, (7.15)

Rα can be expressed on the basis of the partial derivatives of the yield locus
with respect to the stress tensor σ∗ [4]:

Rα (σ∗ (σα, α) ,P) = −
sin2 α ∂f

∂σxx
+ cos2 α ∂f

∂σyy
− sin 2α ∂f

∂σxy

∂f
∂σxx

+ ∂f
∂σyy

∣∣∣∣∣
σ∗(σuα,α);P

.

(7.16)
Expression (7.17) shows the application of a finite difference scheme for the

numerical determination of the partial derivatives:

∂f

∂σxx
≈ f (σxx +∆σ, σyy, σxy)− f (σxx −∆σ, σyy, σxy)

2∆σ
,

∂f

∂σyy
≈ f (σxx, σyy +∆σ, σxy)− f (σxx, σyy −∆σ, σxy)

2∆σ
,

∂f

∂σxy
≈ 1

2

f (σxx, σyy, σxy +∆σ)− f (σxx, σyy, σxy −∆σ)

2∆σ
.

(7.17)

The partial derivative with respect to σxy implies the factor 0.5, as the yield
locus f includes σxy and σyx [63]. For the comparison of the experimentally deter-
mined value and the computed Rα value the following abbreviation is introduced

Rα (P) = Rα (σ∗ (σuα, α) ,P) . (7.18)

7.2 Bulge test

As mentioned in chapter 6, at the apex of the bulge specimen an equibiaxial stress
state is generated. According to



142 CHAPTER 7. DETERMINATION OF THE MODEL PARAMETERS

σ =

(
σξξ σξη
σηξ σηη

)
=

(
σb 0
0 σb

)
= σb

(
1 0
0 1

)
(7.19)

it is possible to extract the components σb from the stress tensor. As a result,
the stress state is equivalently expressed by a multiplication of the scalar value
σb and the identity tensor. As any vector remains unchanged by a multiplication
with the identity tensor, every non-zero vector is an eigenvector of the identity
matrix with eigenvalue of 1. Consequently, a transformation of the basis of the
biaxial stress state does not affect the components of the stress tensor. Therefore,
the biaxial stress state is directly inserted in the yield locus for the computation
of the equivalent stress. Again, for the comparison of the obtained equivalent
stress with the stress value of the flow curve, an abbreviation is introduced

σb (P) = σ (σ∗ (σb) ,P) . (7.20)

The measurement of the strain rate ratio

Rb =
ε̇yy
ε̇xx

(7.21)

is an additional quantity for the calibration of the yield locus. Inserting (7.15)
into (7.21) gives the Rb value in dependency of the partial derivatives of the yield
locus with respect to the stress state σ∗:

Rb (σ∗ (σb) ,P) =

∂f
∂σyy

∂f
∂σxx

∣∣∣∣∣
σ∗(σb);P

. (7.22)

As opposed to the Rα value, the Rb value is defined for the strain state whose
basis is identical with the axes of anisotropy. Expression (7.23) shows an abbre-
viation of the computed Rb value:

Rb (P) = Rb (σ∗ (σb) ,P) . (7.23)

7.3 Shear test

Depending on the angle α of the shear axes with respect to the axes of anisotropy,
a transformation of the basis of the stress tensor σ

σ =

(
0 σξη
σηξ 0

)
=

(
0 σs
σs 0

)
(7.24)

has to be performed (figure 7.3). In consideration of an equivalent hardening
state, the equivalent stress state is computed on the basis of the stress tensor,
which is related to the axes of anisotropy. Expression (7.25) illustrates an abbre-
viation of the equivalent stress:
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σs (P) = σ (σ∗ (σs, α) ,P) . (7.25)
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Figure 7.3: Shear test; Stress state in the ξ, η-plane.

7.4 Calibration of the Barlat 2000 yield locus

Usually, the flow curve for modeling the isotropic hardening is derived from a
tensile test whose tensile axis is coincident with the rolling direction. The Barlat
2000 yield locus does not necessarily reproduce the flow curve exactly for this
experiment. For example, if a calibration of the yield locus is performed based
on an optimization by equally weighting the deviations between all the measured
and predicted quantities, a difference between σB2000

u0◦ (σ∗,α, a) and Y (ǫref ) is
expected. Provided the hardening of the material can be assumed to be isotropic
and an exact reproduction of the flow curve is desired, a scaling of the yield locus
is applied:

f (σ∗) = γσB2000 (σ∗,α, a)− Y (ǫref ) = 0. (7.26)

The scaling factor γ is derived from equation

γσB2000
u0◦ (σ∗,α, a) = Y (ǫref ) . (7.27)

The vector α contains the model parameters αi of the Barlat 2000 yield locus.
Subsequently, a multiplication of the model parameters αi by the factor β is
investigated. By inserting βα into the Barlat 2000 yield locus, 7.28 can be derived:

σB2000 (σ∗, βα, a) = βσB2000 (σ∗,α, a) . (7.28)
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Consequently, the multiplication of the vector α by the scalar β is equal to
a scaling of the yield yield locus. Therefore, provided the yield locus is scaled
according to (7.26), its shape is not affected by the factor β. As a result, one of
the αi parameters can be prescribed without loss of generality. As a consequence,
the space of the model parameter is reduced by one dimension.

7.4.1 Objective function

Firstly, a multiplicative aggregation on the basis of Harrington desirability func-
tions is shown. Secondly, the objectives are additively combined to a single scalar
objective value [4]. For a compact presentation of the objective functions, the sets
A and B are introduced

A = {u0◦, u45◦, u90◦, b, s} ,
B = {0◦, 45◦, 90◦, b} ,

(7.29)

and the domain of the parameter space αi is given by

αi ∈ [L;U ] . (7.30)

7.4.2 Harrington desirability functions

By the application of the two-sided Harrington desirability function, the results
of the equivalent stresses σB2000

I (I ∈ A) and the R values RB2000
J (J ∈ B) are

mapped onto an interval [0, 1]. For the formulation of the objective function, the
results are multiplicatively aggregated as given by

d =
∏

I∈A

d2
(
σB2000
I , UI , LI , nI

) ∏

J∈B

d2
(
RB2000

J , UJ , LJ , nJ
)
. (7.31)

The choice of the Parameters UI ,LI ,nI ,UJ ,LJ and nJ is discussed below. The
value of the optimum is a priori known, as the target of the calibration procedure is
the minimization of the deviation between predicted and measured stress states
and strain rate ratios. In this case, the Harrington desirability functions are
especially suitable, as only the location of the optimum in the model parameter
space is unknown.

The domain of the model parameters αi (7.30) can be considered by applying
the one-sided Harrington desirability functions. Originating from the limits of the
domain, the parameters of the desirability functions are derived

L→ b0L , b1L , U → b0U , b1U . (7.32)

The parameter b1 defines the slope within the gray zone between the states 0.0
and 1.0. Depending on the choice of b1 the parameter b0 determines the position
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of the gray zone. As the domain of the model parameter space is a hypercube,
for each dimension of the model parameter space two one-sided Harrington desir-
ability functions have to be defined.

Expression (7.33) gives the desirability functions for the domain of the model
parameter space:

g =

7∏

i=1

d1 (αi, b0L , b1L)

7∏

i=1

d1 (αi, b0U , b1U ) . (7.33)

The objective function is given by

F = 1− dg. (7.34)

Subsequently, the term MAHDF (Multiplicative Aggregation based on Har-
rington Desirability Functions) is applied in order to refer to the presented aggre-
gation of the objectives and the treatment of the constraints.

7.4.3 Additive aggregation of the objectives

Subsequently, another formulation of the objective function is discussed, with-
out applying the Harrington desirability functions. Expression (7.35) shows an
additive aggregation of the objectives to a single scalar value f :

f =
∑

I∈A

γI

(
σB2000
I − Y (ǫref )

Y (ǫref )

)2

+
∑

J∈B

γJ

(
RB2000

J −Red
J

Red
J

)2

. (7.35)

Thereby, each measured quantity is compared with the prediction of the model
and the result is normalized by the measured quantity. Finally, the normalized
result is squared in order to penalize larger deviations disproportionate (ed: ex-
perimentally determined). In this case, the boundary condition with respect to
the αi values is considered by a penalty function as given by

gU (x) =

{
(1 + |x− U |nUkU ) if x > U
1 if x ≤ U

,

gL (x) =

{
(1 + |x− L|nLkL) if x < L
1 if x ≥ L

.

(7.36)

Thereby, for both, the lower gL and the upper bound gU , a penalty function
is defined. The penalty functions (7.36) are multiplicatively aggregated as given
by expression

g =

7∏

i=1

gU (αi) gL (αi) . (7.37)
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Finally, the additively aggregated objectives and the penalty functions are
combined multiplicatively to a single scalar objective value

F = fg. (7.38)

For this type of aggregation the term AAOMAC (Additive Aggregation of the
Objectives and Multiplicative Aggregation of the Constraints) is introduced.

7.4.4 Termination of the optimization

The termination criterion for the application of the evolutionary strategies is
twofold. On the one hand, the maximum number of objective function evalua-
tions is limited by the parameter nmax. On the other hand, a criterion based
on the model parameter space is applied. For the latter mentioned criterion,
the difference between the αi values of current and the previous fitness function
evaluation is computed for each dimension

∆αn+1
i =

∣∣αn+1
i − αn

i

∣∣ . (7.39)

The obtained value ∆αn+1
i is accumulated according to

∆βn+1
i = ∆βn

i (1− c) + ∆αn+1
i c. (7.40)

The accumulation concept is taken from [33]. The significance, defined by c,

of the previous ∆α
(n+1)
i values decreases exponentially. If the accumulated value

∆βn+1
i of all i is smaller than the threshold ǫ, the optimization is aborted:

(
∀ i ∈ {1, . . . , 7} : ∆β(n+1)

i < ǫ
)
∨ n > nmax. (7.41)

In this thesis, c is chosen to be equal to 0.8 and for ǫ a value of 0.0001 is
applied.

7.4.5 Weighting of the objectives

Basically, the yield locus should give a good prediction of the stress states and the
strain rate ratios of the fundamental experiments. However, over-fitting effects
have to be definitely avoided. Oscillations of the yield locus shape could lead to
a non-physical response of the material model, as the Clausius-Duhem inequality
might be violated (chapter 5.2). Considering the Barlat 2000 yield locus, the
anisotropy of the sheet metal is introduced by two linear transformations, which
avoids oscillations and the yield locus is even convex. However, depending on
the material, the Barlat 2000 yield locus might not be able to predict all the
measured results of the fundamental experiments in the same quality. Therefore,
the calibration procedure has to deal with the definition of compromises. For a
high quality of the prediction of some stress states and strain rate ratios, a worse
representation of the remaining states has to be accepted. In this chapter, the
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underlying prioritization is performed based on experience. The lowest priority
for the calibration of the investigated DX54 steel grade is given to the shear stress.
All the subsequent analyses are performed on the basis of this steel grade.

The expressions (7.42) give the relation between the parameters of the desir-
ability functions and the constants, defined in table 7.2:

UI = Y (ǫref ) + Y (ǫref ) cI , I ∈ A,
LI = Y (ǫref )− Y (ǫref ) cI ,

UJ = Red
J +Red

J cJ , J ∈ B,
LJ = Red

J −Red
J cJ .

(7.42)

The priority of a stress state or a strain rate ratio can be increased by choosing
a lower value of the exponent n. Also the parameters U and L can be modified
in order to change the priority of an objective. For the subsequent investigations,
only the exponent of the shear stress is increased in order to reduce its priority
in comparison to the other objectives.

Table 7.2: Weights of the multiplicative aggregation.

cI = 2
cJ = 2
nu0◦ = nu45◦ = nu90◦ = nb = 3; ns = 10
nJ = 3
I ∈ A, J ∈ B

Table 7.3 summarizes the weights, applied for the additive aggregation of
the objectives. Again, the priority of the objective related to the shear stress
is reduced. In this case, the weight γs is decreased. The other objectives are
equally weighted. Furthermore, the choice of the parameters regarding the penalty
function are given by table 7.3.

Table 7.3: Weights of the additive aggregation and the parameters
of the penalty functions.

γu0◦ = γu45◦ = γu90◦ = γb = 1; γs = 0.01
γJ = 1
nU = nL = 5
kU = kL = 5
J ∈ B
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7.4.6 Investigation of the calibration procedure

In this section, the calibration of the Barlat 2000 yield locus on the basis of differ-
ent optimization algorithms ((µ/µ, λ)-CMA-ES, (1 + 1)-CMA-ES, (1, λ)-DR-ES
and SQP) is investigated. Additionally, the introduced procedures for aggregating
the objectives are compared. In this section, the exponent of the Barlat 2000 yield
locus is chosen to be equal to 5.0. It is assumed that the subsequently presented
results are invariant with respect to the choice of this exponent.

Generally, calibration problems can be multimodal [13]. Therefore, a global
optimization algorithm could be advantageous for the calibration of the yield
locus. For the subsequent investigation, the initial values of the parameters αi

are chosen to be equal to 1, as recommended in [3]. The domain of the parameter
space is given by

αi ∈ [0; 2] . (7.43)

Firstly, the results of a yield locus calibration resulting from a standard
(µ/µ, λ)-CMA-ES and an additive aggregation (AAOMAC) are presented. The
performance of evolutionary strategies can differ between optimizations of the
same problem, as these algorithms are based on statistical methods. As a con-
sequence, the calibrations of the yield locus are repeated 100 times in order to
evaluate the performance of the optimization. Figure 7.4 (left) shows the number
of objective function evaluations, needed for finding an optimum for each opti-
mization. The (µ/µ, λ)-CMA-ES algorithm in combination with the mentioned
aggregation of the objectives is able to find the optimum within 1500 and 3000
computations of the objective function value. The mean value of the needed
objective function evaluations is 2398.

For the analysis of the progression of the objective function value, optimization
21 is chosen (figure 7.4 (right)), which represents the mean in terms of the needed
objective function values for finding the optimum. Figure 7.4 (right) is based on
a logarithmic scale. This figure confirms the above suggested stopping criterion.

Figure 7.5 shows the results of optimizations, performed under the appli-
cation of a (µ/µ, λ)-CMA-ES in combination with a multiplicative aggregation
(MAHDF ). The results are evaluated in the same way as described above. The
analysis of the results show that the MAHDF is advantageous regarding the
convergence.

Apart from the (µ/µ, λ)-CMA-ES also a (1+1)-CMA-ES is analyzed. Igel [20]
reported a better performance of the (1 + 1)-CMA-ES in the case of a unimodal
optimization problem. According to figure 7.6 (left), the performance of the (1 +
1)-CMA-ES is better than the standard (µ/µ, λ)-CMA-ES. This result indicates
a possible unimodality of the Barlat 2000 yield locus calibration problem.

By applying the MAHDF approach in combination with the CMA-ES-(1+1)
the performance of the optimization improves (figure 7.7 (left)).
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Figure 7.4: This investigation is based on the (µ/µ, λ)-CMA-ES algorithm and
the AAOMAC is applied; Left: Analysis of the number of the needed objective
function evaluations for finding the optimum; Right: Propagation of a single
optimization (Optimization 21).
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Figure 7.5: This investigation is based on the (µ/µ, λ)-CMA-ES algorithm and the
MAHDF is applied; Left: Analysis of the number of the needed objective function
evaluations for finding the optimum; Right: Propagation of a single optimization
(Optimization 27).
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Figure 7.6: This investigation is based on the (1 + 1)-CMA-ES algorithm and
the AAOMAC is applied; Left: Analysis of the number of the needed objective
function evaluations for finding the optimum; Right: Propagation of a single
optimization (Optimization 30).
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Figure 7.7: This investigation is based on the (1+1)-CMA-ES algorithm and the
MAHDF is applied; Left: Analysis of the number of the needed objective function
evaluations for finding the optimum; Right: Propagation of a single optimization
(Optimization 93).
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Figure 7.8: This investigation is based on the (1, λ)-DR-ES algorithm and the
AAOMAC is applied; Left: Analysis of the number of the needed objective func-
tion evaluations for finding the optimum; Right: Propagation of a single opti-
mization (Optimization 4).

The (1, λ)-DR-ES shows a worse performance as the (µ/µ, λ)-CMA-ES al-
gorithms (figures 7.8, 7.9) and in this case, the AAOMAC is advantageous in
comparison with the MAHDF .
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Figure 7.9: This investigation is based on the (1, λ)-DR-ES algorithm and the
MAHDF is applied; Left: Analysis of the number of the needed objective function
evaluations for finding the optimum; Right: Propagation of a single optimization
(Optimization 79).

Finally, the SQP algorithm in combination with the AAOMAC shows the best
performance (figure 7.10). This result is again an indication that the investigated
problem could be, at least within the investigated domain, unimodal. Both opti-
mizations based on the SQP algorithm are stopped, when the same value of the
objective function is reached as obtained by applying the (µ/µ, λ)-CMA-ES.
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Figure 7.10: This investigation is based on the SQP algorithm; Left: Propagation
of the optimization using the AAOMAC; Right: Propagation of the optimization
using the MAHDF .

Table 7.4: Calibration of the Barlat 2000 yield locus using the
AAOMAC.

Quantity ED (µ/µ, λ) (1 + 1) (1, λ) SQP
-CMA-ES -CMA-ES -DR-ES

σN
u0◦ 1.000000 1.000000 1.000000 1.000000 1.000000
σN
u45◦ 1.032511 1.000002 0.999951 0.998167 0.999970
σN
u90◦ 0.996696 1.000506 1.000513 1.025667 1.000575
σN
b 1.164572 1.164636 1.164670 1.165610 1.164549
σN
s 0.585851 0.532718 0.532719 0.538683 0.532729
RN

0◦ 1.000000 1.000000 1.000000 1.000000 1.000000
RN

45◦ 0.780172 0.780297 0.780203 0.777518 0.780189
RN

90◦ 1.271552 1.271703 1.271600 1.263591 1.271696
RN

b 0.431034 0.431082 0.431052 0.428901 0.431043
F 9.98E-05 9.98E-05 7.29E-04 1.00E-04

The tables 7.4 and 7.5 summarize the predictions of the Barlat 2000 yield
locus depending on the used optimization algorithm for the calibration of the
model parameters (ED: experimentally determined). The depicted stress states
are normalized with respect to the stress state of the tensile test, whose tensile
axis is coincident with the rolling direction (N: Normalized):

σN
I =

σI
σu0◦

, I ∈ A. (7.44)

Also the strain rate ratios are transformed as given by

RN
J =

RJ

R0◦
, J ∈ B. (7.45)
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The algorithms (µ/µ, λ)-CMA-ES, (1 + 1)-CMA-ES and SQP lead to similar
results independent of the applied method for the aggregation of the objectives.
The (1, λ)-DR-ES algorithm does not reach the same level regarding the quality
of the calibration. Neither the AAOMAC nor the MAHDF approach generally
leads to a better performance of the optimization. For the industrial application,
the SQP algorithm combined with the AAOMAC seems to be a good choice.

Table 7.5: Calibration of the Barlat 2000 yield locus using the
MAHDF.

Quantity (µ/µ, λ) (1 + 1) (1, λ) SQP
-CMA-ES -CMA-ES -DR-ES

σN
u0◦ 1.000000 1.000000 1.000000 1.000000
σN
u45◦ 1.000339 1.000366 0.995789 1.000884
σN
u90◦ 1.001821 1.001835 0.986455 1.003796
σN
b 1.161177 1.161204 1.168191 1.160623
σN
s 0.532888 0.532892 0.529737 0.533360
RN

0◦ 1.000000 1.000000 1.000000 1.000000
RN

45◦ 0.777034 0.777314 0.792740 0.774955
RN

90◦ 1.261597 1.261531 1.307770 1.258105
RN

b 0.427429 0.427425 0.442515 0.429197
F 9.16E-07 9.16E-07 7.75E-06 1.00E-06

7.5 Calibration of the Barlat ´89 yield locus

For the identification of the parameters a,c,h and p of the Barlat ´89 yield locus,
the same procedure based on the minimization of the introduced objective func-
tions could be applied. However, another approach exists for the determination
of the Barlat ´89 yield locus parameter, which has been suggested by Barlat and
is shown below [2].

Provided the flow curve is derived from a tensile test, whose tensile axis is
coincident with the rolling direction, the parameters a and c are coupled:

a = 2− c. (7.46)

This relation is derived by inserting this stress state σxx = Y (ǫref ) ;σyy = 0;
σxy = 0 into the Barlat ´89 yield locus. Expression

σyyh = Y (ǫref ) (7.47)

is derived by inserting the stress state of an tensile test, whose tensile axis is
perpendicular to the rolling direction σxx = 0 σxy = 0. The formulation of the
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Barlat ´89 yield locus enables the analytical determination of Rα, as an analytical
solution of the derivative of f with respect to σ∗ exists [2]:

ǫ̇xx = λ̇
∂f

∂σxx
= λ̇m

{
a (K1 −K2) |K1 −K2|m−2

(
1

2
− σxx − hσyy

4K2

)

+a (K1 +K2) |K1 +K2|m−2

(
1

2
+
σxx − hσyy

4K2

)

+2mcKm−1
2

σxx − hσyy
4K2

}
,

(7.48)

ǫ̇yy = λ̇
∂f

∂σyy
= λ̇m

{
a (K1 −K2) |K1 −K2|m−2

(
h

2
+ h

σxx − hσyy
4K2

)

+a (K1 +K2) |K1 +K2|m−2

(
h

2
− hσxx − hσyy

4K2

)

−2mcKm−1
2 h

σxx − hσyy
4K2

}
,

(7.49)

ǫ̇xy = λ̇
∂f

∂σxy
= λ̇m

{
a (K1 +K2) |K1 +K2|m−2

−a (K1 −K2) |K1 −K2|m−2

+2mcKm−1
2

}
p2
σxy
2K2

.

(7.50)

For this yield locus Barlat derived an alternative expression for the computa-
tion of Rα:

Rα(a, c, h, p) =
2mY (ǫref )

m

(
∂f

∂σxx
+ ∂f

∂σyy

)
σuα

− 1. (7.51)

If R00◦ and R90◦ are represented under the application of (7.48),(7.49) and
(7.51), two expressions are obtained depending on c and h. Both expressions
are independent of p as the shear stress σxy vanishes by transforming the related
uniaxial stress tensors ofR00◦ andR90◦ to the axes of anisotropy. A rearrangement
of the obtained relations leads to the expressions

a = 2− c = 2− 2

√
R0◦

1 +R0◦

R90◦

1 +R90◦
(7.52)
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and

h =

√
R0◦

1 +R0◦

1 +R90◦

R90◦
. (7.53)

Finally, p can be numerically determined by equating the experimentally de-
termined Red

45◦ value with the computed RB89
45◦ (a, c, h, p) value according to

RB89
45◦ (a, c, h, p) = Red

45◦ . (7.54)

7.6 Summary

In this chapter, calibrations of the yield loci are introduced, which are applied in
the subsequent sections. Within the domain of the investigated parameter space,
the calibration of the Barlat 2000 yield locus seems to be an unimodal problem.
Therefore, a SQP algorithm in combination with an additive aggregation of the
deviations between the predictions of the model and the measured quantities is
recommended for this task.
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Chapter 8

Calibration of the
constitutive laws

8.1 Introduction

The examinations, presented in this and the following chapters, are based on
the interstitial free mild steel DX54 and all simulations are performed with the
simulation system LS-Dyna. In order to obtain comparable simulation results,
each simulation is performed by the same choice of the numerical parameters, as
given in the appendix D. The investigation of the procedures for the evaluation of
the fundamental experiments are not subject of this work and therefore the stress
states and the strain rate ratios, obtained from these experiments, are assumed
to be suitable for the calibration of a material model.

The von Mises yield locus, which is not able to reflect the anisotropy of sheet
metals, is not considered in the subsequent investigations and is only presented
in chapter 5.2 for the introduction of the Barlat ´89 and the Barlat 2000 yield
locus. A commonly applied yield locus in the industrial environment is the Hill
´48. The Barlat ´89 yield locus reduces to the Hill ´48, if its exponent is chosen
to be equal to 2. The calibration of the Hill ´48 yield locus is simple, provided
the same calibration procedure is applied as shown for the Barlat ´89 yield locus
(see chapter 7), which is based on three R values, obtained from three tensile
tests. As the exponent of the Barlat ´89 yield locus is predefined (m = 2), only
the parameters a,c,h and p have to be calibrated. Nevertheless, the calibration of
the Hill ´48 yield locus could be also performed by taking additional fundamental
experiments into account. However, in this work the calibration of the Hill ´48
yield locus is limited to the procedure, shown in chapter 7.

As opposed to the Hill ´48, the Barlat ´89 offers more flexibility to control
its shape, as this formulation comprises the exponent as an additional parameter.
Again, various calibration procedures exist to determine the model parameters of
this yield locus. For the further investigations, the exponent is treated indepen-
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dent of the determination of the model parameters a,c and h, which are identified
in the same way as shown in chapter 7. However, one has to bear in mind that
for the calibration of the parameter p, the value of the exponent has to be known
in advance. The exponent is identified by an inverse method, which is introduced
below.

The Barlat 2000 yield locus needs further fundamental experiments for the
calibration of its eight parameters αi and the exponent a. In this work, the
calibration of the Barlat 2000 yield locus is performed on the basis of tensile,
bulge and Miyauchi tests. Thereby, three tensile tests are performed as described
above, which give the R values R0◦ = R00, R45◦ = R45 and R90◦ = R90 and the
uniaxial stress states σu0◦ = σ00, σu45◦ = σ45 and σu90◦ = σ90. From the Bulge
test a biaxial stress state and from the Miyauchy test a shear stress state are
obtained. All of the experimentally determined stress states have to be identified
under an equal state of hardening Y (ǫref ). The parameters αi are obtained by
the minimization of the difference between predicted and measured stress states
and strain rate ratios (see chapter 7).

Figure 8.1 illustrates a calibration of the Barlat 2000 yield locus for the ma-
terial DX54. For the calibration of the yield locus parameters, the Rb value is
assumed to be equal to 1. For each measured stress state and strain rate ratio the
same weight is applied as given in table 7.2. The yield locus Barlat 2000 reflects
the stress states of the fundamental experiments sufficiently (figure 8.1/figure
8.2). An exception is the shear stress, which is less accurately predicted by this
model calibration. If other weights are used for the calibration of the yield locus,
the model value of the shear stress might show less deviation with respect to the
experimentally determined one. If the exponent is chosen to be equal to 2, the
biaxial stress state is not predicted well compared with the other exponents.
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and the predicted R values; Right: Comparison between the measured and the
predicted σu45◦ value.

Figure 8.2 (left) illustrates the prediction of the R values. Apart from a = 2,
slight deviations between the measured and the computed R values on the basis
of the yield locus Barlat 2000 are recognizable (R45, R90). The stress state σu45◦

of the tensile test, whose angle between the tensile axis and the rolling direction is
45◦, is also well reflected by the yield locus. As mentioned above, the application
of the yield locus requires a stress tensor representation, whose basis is coincident
with the axes of anisotropy. Commonly, the yield locus is visualized in the eigen-
value space of the stress tensor. Consequently, the experimentally determined
stress state can only be visualized in this space, if the associated transformation
of the basis with respect to the axes of anisotropy leads to a tensor belonging to
the eigenvalue space. Therefore, the uniaxial stress state σu45◦ cannot be visual-
ized in the eigenvalue space, as the mentioned transformation induces a σxy value
unequal to zero. Therefore, the diagram 8.2 (right) is introduced.

The stress states, which are related to plane strain states, obviously differ, if
different exponents are applied. Unfortunately, the experimental data does not
give an indication regarding the selection of the exponent.

According to

max[σ1(a = 4)]−max[σ1(a = 6)]

σu0◦
∼ 0.02, (8.1)

it seems to be difficult to identify the exponent on the basis of a plane strain
experiment. This is because, a highly accurate measurement of the stress state
with respect to the plane strain state is necessary in order to determine the ex-
ponent. Provided such an experiment exists, it is necessary to bear in mind that
the identification of the exponent would strongly depend on the measurement
accuracy of the fundamental experiments. For example, a slight deviation of the
biaxial stress state from the true value, in combination with the result of the plane
strain experiment, would lead to a different exponent. Therefore, an additional
type of identification experiments is necessary in order to determine the yield
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locus exponent.
Obviously, the question regarding the yield locus exponent is avoided if the

Hill ´48 yield locus is applied. However, as shown by figure 8.3 the Hill ´48 (Barlat
´89 yield locus; m = 2) is not able to reflect the experimentally determined stress
states (fundamental experiments) in the same way as the Barlat 2000 yield locus.
The biaxial stress state and σu45◦ are poorly reflected by the yield locus Hill ´48
(figure 8.3, 8.4 (right)).
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Figure 8.3: Barlat ´89 yield locus; Comparison between the measured and the
predicted stress states.

However, the R values are exactly predicted, as the calibration procedure of
this yield locus is solely based on them (figure 8.4 (left)). Also the Barlat ´89
cannot reach the same level of accuracy regarding the prediction of the measured
data obtained from the calibration experiments in comparison with the Barlat
2000 yield locus. According to the figures 8.3 and 8.4 (right), the prediction of
the biaxial stress state and σu45◦ depends on the exponent. On the one hand,
the larger the exponent is chosen, the better the Barlat ´89 yield locus reflects
the stress state σu45◦ . On the other hand, the best representation of the stress
state σb is given for exponents between 4.0 and 5.0 (figure 8.3). Within the inves-
tigated range of exponents, there is none, which leads to an accurate prediction
of all the considered stress states. The representation of the R values is of same
quality, independent of the choice of the exponent, which results from the chosen
calibration procedure. Consequently, the Barlat 2000 yield locus might able to
predict arbitrary stress states better than the Hill ´48 and Barlat ´89 yield lo-
cus, provided the identified exponent reflects the material behavior. Therefore, it
seems to be reasonable to focus the subsequent investigations on the Barlat 2000
yield locus.
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dicted σu45◦ value.

Other yield loci like Banabic 2005 [4] or Dell 2006 [101] have the same potential
of reflecting the measured data of the fundamental results on a same quality level
as the Barlat 2000 model. In this context, it is assumed that the Barlat 2000
yield locus represents this class of yield loci, which allows focusing the further
investigations on this model.

In recent years, yield loci like the CPB06ex3 [5] have been proposed comprising
more model parameters. On the one hand, these yield loci offer an accurate
prediction of the experimentally determined stress states and strain rate ratios.
On the other hand, the increased amount of model parameters is accompanied
with the need for additional fundamental experiments. For example, for the
application of the yield locus CPB06ex3 21 model parameters have to be identified
for a plane stress problem. Today, it seems to be difficult to conduct all these
fundamental experiments for industrial applications.

Finally, the question arises, whether the differences with respect to the yield lo-
cus shape are relevant for forming simulations. Figure 8.5 illustrates the specimen
of the YLIT-3-BMW experiment and three simulation results, based on different
yield locus setups. The location of the predicted necking remarkably depends on
the choice of the yield locus and the exponent. This example underlines the need
for choosing an appropriate yield locus and, if necessary, its exponent.

Another aspect of the material model is the hardening effect. In industrial
practice, the material hardening is usually assumed to be isotropic and is de-
scribed by the flow curve, which is obtained from a tensile test in the rolling
direction. Under uniaxial stress conditions, the maximum measurable equivalent
plastic strain is lower than that one occurring at industrial parts. On the one
hand, an appropriate extrapolation of the measured data, obtained from the ten-
sile test, could be performed. On the other hand, further experiments are available
(for example: Bulge test) to complement the uniaxial flow curve that do not have
the same limitation as the tensile test.
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Figure 8.5: YLIT-3-BMW; Locations of the occurrence of localized necking, de-
pending on the choice of the yield locus and its exponent [99].
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For the first mentioned approach experience is needed, in order to choose
a suitable extrapolation. Figure 8.6 shows the result of standard extrapolation
methods. Depending on the choice of the extrapolation method, a remarkably
different hardening behavior is assumed. Additionally, arbitrary linear combina-
tions based on the shown extrapolation methods can be generated for modeling
the hardening effect. In this work, the flow curve is derived from the experimental
data of tensile and bulge tests, as this approach is less dependent on experience
and should allow a more realistic representation of the hardening effect. Nev-
ertheless, the subsequently presented results depend on the chosen way of the
description of the hardening effect.

Sheet metals also show a strain rate dependent hardening behavior. It is still
an open question whether this effect has to be taken into account for industrial
forming simulations.
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Figure 8.7: Influence of the strain rate dependency of the hardening effect
(SRD=1: The strain rate dependency is considered; SRD=0: The strain rate
dependency is not considered).

Figure 8.7 summarizes simulation based predictions of the maximum drawing
depth under variation of the Barlat 2000 yield locus exponent regarding the YLIT-
4-BMW. Furthermore, both cases are considered, with (SRD = 1) and without
(SRD = 0) taking the strain rate dependency of the material hardening effect into
account. Additionally, the experimentally determined maximum drawing depth is
also given in figure 8.7. A significant dependency of the consideration of the strain
rate effect on the prediction of the drawing depth is recognizable. These results
indicate the necessity for analyzing the strain rate dependency of the hardening
effect. These results confirm the findings reported in [99].
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As mentioned in chapter 5.2, the elastic material model comprises the model
parameters Young’s modulus and Poisson ratio. For the prediction of the spring-
back effect both model parameters play a crucial role, as the part deforms elasti-
cally in order to reach another equilibrium state after tool opening. Usually the
Young’s modulus is assumed to be independent of the strain state. Commonly, for
modeling the elastic behavior of steel, it is recommended to choose the Young’s
modulus equal to 210000N/mm2. For example, this value can be found in [106].
However, the investigations of Doege et al. show an influence of the deformation
on the value of the Young’s modulus (figure 8.8). Other authors like Thibaud et
al. [107] and Yoshiha et al. [6] also report a dependency of the Young’s modulus
with respect to plastic yielding.
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Figure 8.8: Strain dependency of the Young’s modulus; DC06 [12].

Even at low strain levels, the Young’s modulus is below the common literature
values. For an equivalent strain of 10%, the Young’s modulus decreases to a value
of 190000N/mm2. It has to be mentioned, that the results of figure 8.8 are
obtained from the material DC06. However, in this chapter the material DX54
is investigated. It is assumed that the DX54 will also show a strain dependent
Young’s modulus of the same magnitude, as both materials differ only slightly
regarding the tolerances of the yield strength and the coating (DX54 hot-dip
coated, DC06 electrolytically coated). Industrial parts can show equivalent strain
levels on such a scale and therefore this effect should be investigated for obtaining
the best possible springback prediction. In order to be able to apply a standard
material model, comprising a Young’s modulus, which is independent of the strain
history, a simplified approach is chosen for taking the observations of Doege et al.
into account. Thereby, it is assumed to be sufficient to apply a reduced Young’s
modulus. The Poisson ratio is considered to be independent of the strain history
and is directly determined from the tensile test.

Furthermore, cyclic loading of metals affects the material response, which is
referred to as Bauschinger effect. The complementary and validation experiments
are not expected to be strongly sensitive with respect to this effect. However, the
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Chaboche-Rousselier kinematic hardening model [7] will be deployed in order to
confirm this expectation.

The measured data, obtained from the investigated experiments, might depend
on friction between the tool surface and the specimen. In order to determine a
description of the friction, the Coulomb model is applied and its model parameter
µ is inversely calibrated.

For the subsequent investigations, a material model comprising an elastic
model, the Barlat 2000 yield locus and an isotropic hardening model is deployed.
The exponent of the yield locus, the need for the consideration of the strain state
dependency of the Young’s modulus, the friction coefficient and the necessity of
considering the strain rate dependent hardening and the Bauschinger effect cannot
be determined by the fundamental experiments. It is proposed to identify these
unknown model parameters inversely by complementary experiments. Thereby,
the consideration of the strain rate dependency of the hardening effect and the
Bauschinger effect is treated as unknown model parameter.

In an ideal case, the results of each complementary experiment are exactly
sensitive with respect to one of the unknown parameters. Provided, for each un-
known parameter such an experiment would exist, the identification procedure
could be performed in an arbitrary order. However, the complementary experi-
ments might be sensitive with respect to more than one unknown. Under these
circumstances, it can still be possible to determine the values of the investigated
parameters. However, the order of determining the unknowns is not arbitrary any
more. The knowledge regarding the sensitivities allows investigating whether the
determination of the desired parameter is possible on the basis of a given set of
experiments. Furthermore, if necessary, an order for evaluating the experiments
can be derived. Finally, it is necessary to know, whether any combination of the
unknown parameters exists, which leads to a sufficient accurate prediction of the
measured data.

For the analysis of the sensitivities, a formulation of an optimization problem
is recommended. The objective function, which has to be minimized, is the differ-
ence of the results obtained from the simulation and the measured data [108]. The
parameters of the optimization are the above mentioned unknown parameters of
the material and friction model. The time consumption for the optimization is
determined by the computation time of an objective function evaluation, which
lies in this case between an hour and a few hours, and the soft- and hardware
resources. Therefore, an optimization strategy is preferred, which gives the de-
sired result with a minimum of objective function evaluations. Additionally, an
optimization strategy is needed, which allows sensitivity analyses, supports the
treatment of discrete parameters and is able to overcome local minima. Grid and
gradient methods are, therefore, not recommended. It is proposed to use evolu-
tionary strategies for performing the optimization. An evolutionary strategy im-
plying a derandomized self adaptation [35] ((1, λ)-DR-ES) meets the mentioned
demands and shows a high robustness regarding nonlinearities. Hence, this ap-
proach seems to be a good compromise in comparison to a sampling, which can be
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more computationally expensive, and does not focus on the interesting parameter
space regions. In other words, the application of an optimization based approach
enables to use the knowledge of the optimum, given by the measured data. Be-
cause of the computational cost of the objective function evaluations, the number
of simulation runs is limited to 100. Therefore, the presented optimization results
are not expected to reflect the best possible optimum, as more objective function
evaluations would be desirable. The chosen limit is a compromise in order to ob-
tain the desired information by investing an affordable computational effort. The
contribution of the optimization regarding the choice of the unknown parameters
is threefold. Firstly, the sensitivities of the investigated parameters with respect
to the deviation between the simulation results and the measured data are given.
Secondly, depending on the sensitivities, the optimization allows the identifica-
tion of the unknowns. Thirdly, the investigation based on the optimization assures
that interrelations between the unknown parameters are considered.

The range of the parameter space is derived from investigations or defined
on the basis of experience. According to the findings, summarized in figure 8.1,
the lower limit of the Barlat 2000 yield locus exponent is chosen to be equal to
2.5. This investigation shows a loss of the flexibility of the Barlat 2000 yield, if
the yield locus exponent is selected from an interval between 2.0 and 3.0. But it
has to be mentioned that this interval is only valid for the investigated material.
The upper limit is set based on experience equal to 8. The range of the Young’s
modulus is derived from the lowest value reported by the investigations of Doege
and the common literature value (210000N/mm2). Finally, the range of the
friction model parameter is chosen according to experience. A summary of the
parameters, discussed in this section, is given by table 8.1.

Table 8.1: Summary of the unknown model parameters.

Parameter

Strain Rate Dependency of the Hardening Effect
Exponent Barlat 2000
Kinematic Hardening
Young’s Modulus
Friction Coefficient

8.2 YLIT-Experiments

As mentioned in chapter 6, the YLIT-Experiments are performed to generate
additional data for determining the best possible yield locus shape with respect
to the considered sheet metal. According to the figures 8.1 and 8.3 the shape of
the yield locus of the investigated material is asymmetric in the principal stress
space. In order to take this property into account and to maximize the benefit
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of the YLIT-Experiments two specimens are considered, as introduced in [99].
Thereby, the specimens differ in the angle between their length direction and the
axes of anisotropy. For the subsequent investigations this angle is chosen to be
equal to 0◦ (rolling direction RD) and 90◦ (transverse direction TD).

Figure 8.9 illustrates the scheme of the optimization for the investigation of the
YLIT-Experiments. As depicted, each optimization step comprises a calibration
of the yield locus parameter αi depending on the selected yield locus exponent
a. The parameters αi are computed as given in chapter 7. After the yield locus
parameters are determined, the input files for the simulation are generated, the
forming simulation is performed and the results are evaluated. Thereby, both
specimens are considered simultaneously within a simulation run. Subsequently,
the simulation results are prepared for the comparison with the measured data.
Finally the value of the objective function is computed.

Evaluation of the Objective Function

Optimization

Minimization of 

the difference 

between the 

simulation based 

prediction and the 

measured data of 

the  YLIT-

Experiment.

Measured Data

Drawing Depth

Strain State

Pre-Processing

Forming Simulation

Post-Processing

Model Parameter   Exponent Barlat 2000, Friction, Strain Rate Dependency, 

Kinematic Hardening, Young’s Modulus

Calibration of the Yield Locus  

The calibration is performed, depending on the given 

exponent.

Figure 8.9: YLIT-4-BMW; Sequence of the Optimization.

The quality of the material model is measured on the basis of the compari-
son between the predicted and the experimentally determined maximum drawing
depth. Beyond this limit value, the experiments of the investigated material DX54
show the failure mode localized necking (figure A.2). Therefore, the forming limit
curve is applied for the evaluation of the state of the material concerning the
occurrence of failure. The experimental determination of the maximum drawing
depth is difficult, as the onset of localized necking is a question of interpreta-
tion. Differences regarding philosophy of the identification of localized necking
between the YLIT-Experiments and the Nakajima experiment should be avoided
(see chapter 6). Otherwise, a consistent comparison regarding the predicted and
the experimentally determined maximum drawing depth is not possible. In order
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to avoid these difficulties, in [109] it is suggested to derive the experimentally
determined maximum drawing depth based on measured strain fields and the
forming limit curve. Generally, for the application of the forming limit curve, a
strain field describing the midsurface of the sheet with respect to the thickness
direction is needed. However, the measured strain field corresponds to the surface
of the sheet. The deviation of the strain fields belonging to the surface and the
midsurface is assumed to be negligible in the necking zone.

Table 8.2: YLIT-4-BMW; Measured results.

Experiment ǫ1 ǫ2 dMDD [mm]

1(RD) 0.402 −0.141 41.9
2(RD) 0.397 −0.145 41.3
3(RD) 0.384 −0.138 40.9

41.4 (Mean RD)

4(TD) 0.423 −0.164 42.3
5(TD) 0.429 −0.164 42.5
6(TD) 0.421 −0.169 42.7

42.5 (Mean TD)

Additionally, the prediction of the strain state in the necking zone is taken into
account. Thereby, the strain state of a material point is taken, which is located
within the necking zone. However, the measured strain state of this material point
refers to a drawing depth, which does not show localized necking.

The analysis of the failure limit and the strain state is performed subsequent
to the simulation. As today’s available storage media do not allow storing the
simulation results of each computed time step (explicit method), the export of
the needed data has to be predefined at given points in time. Consequently, the
quality of the simulation based prediction in terms of the maximum drawing depth
depends on the choice of the points in time which define the export of the results.
It seems to be reasonable to consider the quality, regarding the predicted material
failure, with respect to the drawing depth. Therefore, a set D of drawing depths
is introduced, which defines the export of the simulation results. The choice of
the size of this set is a compromise between the time consumption of the data
export and the resolution of the predicted maximum drawing depth. In this work,
the size of the set D is chosen to be 27. The mean value of the experimentally
determined maximum drawing depth of the specimens in rolling direction and
in transverse direction is referred to as reference drawing depth. This reference
value is included to the set D. Originating from the reference, 13 ascending and
also 13 descending drawing depths are included to this set as shown by table 8.3.
The values, given in this table, refer to the reference drawing depth. According
to table 8.3 the resolution of the data export is chosen to be dependent on the
deviation between the predicted and the experimentally determined forming limit.
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The resolution is maximized in the range of the reference drawing depth.

Table 8.3: YLIT-4-BMW; Definition of the export of the simulation
results with respect to the reference drawing depth.

Index Plot State 1 2;3 4;5 6;7 8;9
Drawing Depth ±0.00 ±0.25 ±0.50 ±0.75 ±1.00
[mm]

Index Plot State 10;11 12;13 14;15 16;17 18;19
Drawing Depth ±1.25 ±1.50 ±1.75 ±2.00 ±2.50
[mm]

Index Plot State 20;21 22;23 24;25 26;27
Drawing Depth ±3.00 ±4.00 ±5.00 ±6.00
[mm]

Table 8.4: YLIT-4-BMW; The chosen values of the parameters of
the Harrington desirability functions.

Parameter Drawing Depth; daMDD Strain State; ǫ1, ǫ2

U 4 0.5
L −4 −0.5
n 2 2

In consideration of the forming velocity, the set D is mapped on a set of points
in time. According to the latter mentioned set, the results of the simulation
are exported. Consequently, 27 strain fields are obtained, referring each to a
known drawing depth. Finally, the maximum drawing depth is identified for
both specimens, whose associated strain field does not contain any points in the
principal strain space lying above the forming limit curve. Additionally, as two
specimens are investigated, two further strain fields are exported, applied for the
analysis of the strain states referring to the above mentioned material points in
the necking zone.

For the formulation of an optimization problem, three objectives per specimen
have to be treated. The first objective is the difference between the measured and
the predicted maximum drawing depth. The second and the third objective result
from the deviation between the measured and predicted first ǫ1 and second prin-
cipal ǫ2 in-plane strain, regarding the considered material point. The expressions
(8.2) summarize the computation of the mentioned objectives (S = {RD,TD};
sim: simulation; ed: experimentally determined; dMDD: Displacement of the ma-
terial points with respect to the drawing direction, which define the maximum
drawing depth):
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fadMDD
= daMDDsim−daMDDed, f

a
ǫ1 = ǫa1sim−ǫa1ed , faǫ2 = ǫa2sim−ǫa2ed , a ∈ S. (8.2)

For treating this multiple objective problem desirability functions are applied,
as no conflict between the objectives is expected. In this case, a prior knowledge
regarding the link between the objectives is necessary.

Table 8.4 summarizes the parameters of the Harrington desirability function,
which are applied for linking the objectives (O = {dMDD, ǫ1, ǫ2}). The values for
the parameters are chosen based on experience.

For the drawing depth and for both principal values of the considered strain
state a desirability function is defined. On the basis of this set of desirability
functions for each specimen (in and perpendicular to the rolling direction) a min-
imization problem is formulated as shown by

f = 1−
∏

Q∈O

∏

a∈S

d2(f
a
Q, UQ, LQ, nQ). (8.3)

Table 8.5: YLIT-4-BMW; Domain of the parameter space.

Parameter Domain Type

Strain Rate Dependency (SRD)
(0 =off; 1 =on)

0− 1 Discrete

Exponent Barlat 2000 4− 8 Continuous
Kinematic Hardening (KH)
(0 =off; 1 =on)

0− 1 Discrete

Young’s Modulus 190000N/mm2

− 210000N/mm2
Continuous

Friction Coefficient 0.08− 0.12 Continuous

Table 8.5 shows the domain of the parameter space. For the optimization,
the experiments 2 and 5 are taken as a reference (table 8.2). The selection of the
reference is based on the maximum drawing depth. These experiments show the
least deviation with respect to the mean value.

The subsequent optimization results are based on the experiment YLIT-4-
BMW. The punch shape of this experiment is identical to the YLIT-1-TKSE,
however, the shape of the blank and the process conditions are different. Accord-
ing to figure 8.10 (left), satisfying results are only obtained in consideration of the
strain rate dependency of the hardening effect. The best prediction of the strain
state and the drawing depth is obtained by choosing the exponent between 4.9
and 5.3. This range is derived from figure 8.11 by considering both, the best and
the worst fitness value related to each yield locus exponent. Figure 8.11 (right)
results from figure 8.11 (left) by hiding all simulation runs, which are performed
without taking the strain rate dependency of the hardening into account.
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Figure 8.10: YLIT-4-BMW; Left: Relation between the strain rate dependency
of the hardening effect and the objective function; Right: Relation between the
consideration of the kinematic hardening model and the objective function.

In [110] the same batch of the material DX54 is investigated. However, the
experiment is performed in the laboratory of ThyssenKrupp Steel Europe (YLIT-
1-TKSE). The presented results in this thesis are based on the experiment YLIT-4-
BMW, which is performed in the laboratory of BMW. The measured data of both
laboratories lead in combination with the inverse determination of the Barlat 2000
yield locus exponent to similar conclusions. According to the optimization results,
shown in [110], a yield locus exponent between 4.7 and 5.0 can be recommended
for the considered steel grade, which is in a good accordance with the investigation
shown above. If the exponent is chosen to be equal to 5.0, the measured data of
both laboratories can be well predicted by the simulation. Both the results shown
in [110] and in this work are based on the same forming limit diagram.
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Figure 8.11: YLIT-4-BMW; Analysis of the influence of the yield locus exponent
on the value of the objective function; Left: All experiments are taken into ac-
count; Right: Only objective function evaluations are visualized, which consider
the strain rate dependency of the hardening.
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According to figure 8.12 (right), friction does not play a crucial role for the
prediction of the measured quantities of the investigated YLIT-Experiment, as
objective function values close to the optimum are obtained for friction coefficients
between 0.09 and 0.12. Additionally, with and without taking the kinematic
hardening model into account (figure 8.10 (right)), the same minimum value of
the objective function is obtained. As the blank of the YLIT-Experiment does not
contain any zone, whose related stress state undergoes changes between tension
and compression during forming, the measured quantities should not be affected
by the Bauschinger effect. This theoretical consideration is in accordance with
the optimization result. From the optimization results follows that the optimum
is independent of the choice of the Young’s modulus. The Young’s modulus
only influences the elastic part of the strain state. As ǫe ≪ ǫp (ǫe accumulated
equivalent elastic strain; ǫp accumulated equivalent plastic strain) holds for this
experiment, the influence of the Young’s modulus should be small. Low objective
function values are obtained independent of the choice of the Young’s modulus
(figure 8.12 (left)).
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Figure 8.12: YLIT-4-BMW; Left: Relation between the Young’s modulus and
the objective function; Right: Relation between the friction coefficient and the
objective function.

8.2.1 Barlat 2000 yield locus; A generalized parameter iden-
tification

The above presented investigations are performed by a variation of the yield locus
shape, which only depends on the yield locus exponent. Thereby, the Rb value
and the weights of the input data, obtained from the fundamental results, are kept
constant. Subsequently, the variation of the yield locus shape is complemented
by adding the Rb value and the weights as additional parameters.

In order to investigate the effect of these additional parameters on the pre-
dictive capability of the simulation, another optimization on the basis of the
YLIT-4-BMW experiment is performed. The above identified dependences of
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the Young’s modulus, the friction coefficient, the strain rate dependency of the
hardening effect and the kinematic hardening are assumed to be valid indepen-
dent of the parameterization of the yield locus shape and the mentioned weights.
Therefore, these parameters are excluded from this analysis. Because of their
marginal sensitivity, the values of the Young’s modulus and the friction coeffi-
cient are chosen based on experience and the kinematic hardening model is not
applied. The strain rate dependency of the material is considered. Consequently,
the optimization comprises

• the yield locus exponent,

• the Rb value and

• eight weighting factors.

Generally, a small deviation between the stress and the strain rate ratios of
the fundamental experiments and the prediction of the yield locus is desired.
Therefore, the multiplicative aggregation on the basis of the Harrington desirabil-
ity function is preferred for this investigation, as this approach penalizes devia-
tions of a single quantity between the input data and the prediction of the model
strongly. Basically, also the additive aggregation, as introduced in chapter 7 could
be applied. This solution would lead in combination with the SQP Algorithm to
a better performance regarding the calibration of the yield locus parameters αi.
However, the difference regarding the computational effort is negligible in com-
parison to a single forming simulation.
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Figure 8.13: YLIT-4-BMW; Penalization of large values of dmax by applying a
one-sided Harrington desirability function.

Preliminary investigations showed that depending on the choice of the weights,
even under the application of the Harrington desirability functions, large devia-
tions between the input data and the prediction of the model can occur. In order
to avoid gaining wrong conclusions, such undesired calibrations are considered
by penalizing the value of the objective function of the optimization. Thereby,
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the objective function (8.3) is complemented (8.4) by an one-sided Harrington
desirability function, which maps the maximum deviation dmax (8.5) between the
input data and the model prediction to an interval between [0; 1]:

f = 1−


 ∏

Q∈O

∏

a∈S

d2(f
a
Q, UQ, LQ, nQ)


 d1(dmax, b0, b1), (8.4)

dσ = max
I∈A

{|(σI − Y (ǫref ))/Y (ǫref )|} ,

dR = max
J∈B

{∣∣(RJ −Red
J )/Red

J

∣∣} ,

dmax = max {dσ; dR} .
(8.5)

The parameters of the one-sided Harrington desirability function are experi-
ence based chosen (b0 = 11; b1 = −77). Figure 8.13 shows a visualization of the
corresponding desirability function. The choice of parameters b0 and b1 lead to a
significant penalization of the objective function, if dmax is greater than 0.1.

The parameter space of the optimization is summarized by table 8.6. The
application of the Harrington desirability functions for the calibration of the yield
locus leads to three weights for each quantity of the input data. For reducing the
dimension of the problem, the parameters U , L and n of the desirability function
are coupled as given by

UI = Y (ǫref ) + Y (ǫref )wI , I ∈ A,
LI = Y (ǫref )− Y (ǫref )wI ,

UJ = Red
J +Red

J wJ , J ∈ B,
LJ = Red

J −Red
J wJ ,

nI = wI ,

nJ = wJ ,

wI > 0,

wJ > 0.

(8.6)

As the parameter space contains only real valued parameters, the optimization
can be realized by all the introduced optimization algorithms. The budget of ob-
jective function evaluations is limited to 150 for each optimization. Subsequently,
the results of the optimizations based on the (1, λ)-DR-ES, the (µ/µ, λ)-CMA-ES,
the (1 + 1)-CMA-ES and the SQP are compared.
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Table 8.6: YLIT-4-BMW; Domain of the parameter space.

Parameter Domain Type

Exponent Barlat 2000 2.5− 8 Continuous
Rb 0.5− 1.5 Continuous
wI , I ∈ A 1.0− 3.0 Continuous
wJ , J ∈ B 1.0− 3.0 Continuous
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Figure 8.14: YLIT-4-BMW; (1, λ)-DR-ES; Left: Relation between the yield locus
exponent and the objective function; Right: Relation between the Rb value and
the objective function.
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Figure 8.15: YLIT-4-BMW; (1, λ)-DR-ES; Left: Relation between the weight of
the σu45◦ value and the objective function; Right: Propagation of the optimiza-
tion.
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Figure 8.16: YLIT-4-BMW; (µ/µ, λ)-CMA-ES; Left: Relation between the yield
locus exponent and the objective function value; Right: Relation between the Rb

value and the objective function.
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Figure 8.17: YLIT-4-BMW; (µ/µ, λ)-CMA-ES; Left: Relation between the weight
of the σu45◦ value and the objective function; Right: Propagation of the optimiza-
tion.
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Figure 8.18: YLIT-4-BMW; (1 + 1)-CMA-ES; Left: Relation between the yield
locus exponent and the objective function; Right: Relation between Rb value and
the objective function.
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Figure 8.19: YLIT-4-BMW; (1 + 1)-CMA-ES; Left: Relation between the weight
of the σu45◦ value and the objective function; Right: Propagation of the optimiza-
tion.
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Figure 8.20: YLIT-4-BMW; SQP; Left: Relation between the yield locus exponent
and the objective function; Right: Relation between theRb value and the objective
function.
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Table 8.7: YLIT-4-BMW; Summary of the computed optimums.

Parameter (1, λ) (µ/µ, λ) (1 + 1) SQP
-DR-ES -CMA-ES -CMA-ES

Lowest Objec-
tive Function
value

0.0068 0.0442 0.0707 0.0432

Yield locus ex-
ponent

5.1754 4.6987 4.9718 5.0202

Rb 0.9632 0.9545 0.9540 0.8874
Weight σu45◦ 1.7033 1.4191 2.4965 1.1196
Weight σu90◦ 1.1274 1.7036 1.0000 1.1821
Weight σb 1.1310 2.2178 1.0450 1.6630
Weight σs 1.0485 2.8588 3.0000 1.6566
Weight R0◦ 1.7244 1.2382 1.1826 1.7289
Weight R45◦ 2.1859 1.8121 1.0000 2.0320
Weight R90◦ 1.777 2.1172 2.9971 2.0412
Weight Rb 1.7497 2.1143 3.0000 2.4764

By summarizing the results of the optimizations, the best prediction of the
measured data is obtained by choosing the yield locus exponent between 4.7 and
5.2 (figures 8.14, 8.16, 8.18, 8.20 (left)), which is in accordance with the previous
investigations. The sensitivity of the yield locus exponent with respect to the
quality of the simulation result is shown by each optimizer. Above, the value of
the Rb value is assumed to be equal to 1.0. The optimization results confirm this
assumption. Apart from the (1, λ)-DR-ES all the investigated optimizers indicate
a dependency of the Rb value with respect to the predictive capability of the
simulation (figures 8.14, 8.16, 8.18, 8.20; (right)).
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Figure 8.21: YLIT-4-BMW; SQP; Left: Relation between the weight of the σu45◦

value and the objective function; Right: Propagation of the optimization.
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The (µ/µ, λ)-CMA-ES needs the most objective function evaluations for reach-
ing low objective function values. On the basis of the budget of 150 objective
function evaluations, the (1 + 1)-CMA-ES gives the worst result regarding the
objective function (table 8.7). Both, the SQP and the (1, λ)-DR-ES converge
fast. However, the (1, λ)-DR-ES gives lower objective function values within the
considered budget of objective function evaluations.

Generally, the yield locus should reflect each input data set with a high accu-
racy. Therefore, difference of the weights should be as small as possible. According
to Table 8.7 the lowest objective function value, identified by the (1, λ)-DR-ES
algorithm, is associated with the smallest differences of the weights in comparison
to the other algorithms. Table 8.8 illustrates the input data and the prediction
of the yield locus on the basis of the best simulation run of the (1, λ)-DR-ES
optimization. The given stress states and strain rate ratios are normalized as
introduced in chapter 7.

The optimizations show the possibility of determining the best possible weights,
the yield locus exponent and the Rb value automatically. According to the pre-
sented examinations, the (1, λ)-DR-ES should be preferred for this task.

Table 8.8: Comparison between the input data and the prediction
of the model based on the optimum obtained from the (1, λ)-DR-
ES.

Quantity Input Data Model Prediction

σu0◦ 1.000000 1.000000
σu45◦ 1.032511 1.000032
σu90◦ 0.996696 1.001763
σb 1.164572 1.164573
σs 0.585851 0.532380
R0◦ 1.000000 1.000000
R45◦ 0.780172 0.785487
R90◦ 1.271552 1.273829
Rb 0.415170 0.418341

8.2.2 Barlat ´89 yield locus

Apart from the Barlat 2000 model also the Barlat ´89 yield locus is investigated by
an additional optimization. For the calibration of the yield locus parameter a,c,h
and p, the procedure, described in chapter 7, is utilized. The parameter space is
chosen to be identical to the one, defined by table 8.5. Regarding the consideration
of the strain rate dependency of the hardening effect, the optimization exhibits
the same correlation between the measured data and the simulation results in
comparison with the Barlat 2000 model (figure 8.23). Consequently, only when
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the strain rate dependent hardening is taken into account, it is possible to predict
the measured data accurately. The best possible prediction of the experimentally
determined drawing depth and strain state is achieved by selecting the yield locus
exponent in the range between 3.7 and 4.0 (figure 8.22).
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Figure 8.22: YLIT-4-BMW; Barlat ´89; Left: Relation between the yield locus
exponent and the objective function; Right: Relation between the yield locus
exponent and the objective function. However, only the objective function eval-
uations are visualized, which are performed in consideration of the strain rate
dependency of the hardening effect.
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Figure 8.23: YLIT-4-BMW; Barlat ´89; Relation between the consideration of
the strain rate dependency of the hardening and the objective function.

8.2.3 Discussion of the results

According to table 8.9, both yield loci lead to an accurate prediction of the mea-
sured quantities. As the Barlat 2000 yield locus reflects the measured quantities
of the fundamental results more accurately than the Barlat ´89 yield locus, the
prediction of arbitrary stress states should be better. Therefore, the Barlat 2000
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yield locus is preferred in this work. The commonly applied Hill ´48 does not give
the best possible prediction of the measured quantities. The consideration of the
strain rate dependency of the hardening effect leads in combination with the Hill
´48 yield locus to a remarkable overestimation of the forming limit. Consequently,
the consideration of the strain rate dependency of the hardening effect does not
necessarily lead to an improvement of the stress-strain relation. Additionally, an
increasing accuracy by applying a complex yield locus should not be taken for
granted. Hence, for the inverse identification of a complex yield locus, the strain
rate dependency of the hardening effect should be taken into consideration. More
generally, it can be concluded, that a calibration of a yield locus should not be
performed without carefully considering the material hardening.

Table 8.9: YLIT-4-BMW; Investigations of the Barlat ´89 and Bar-
lat 2000 yield locus.

Experiment Type Investigated Quantities Value
Objective
Function

YLIT-4-
BMW

RD/TD ǫ1 ǫ2 dMDD

[mm]
Simulation RD 0.493 -0.237 42.7 0.4030
Barlat ´89 TD 0.512 -0.259 42.4
m=2
SRD=off
Simulation RD 0.457 -0.222 47.0 0.9807
Barlat ´89 TD 0.463 -0.240 47.9
m=2
SRD=on
Simulation RD 0.411 -0.165 42.2 0.0562
Barlat ´89 TD 0.404 -0.170 42.2
m=3.9
SRD=on
Simulation RD 0.415 -0.159 41.2 0.0173
Barlat 2000 TD 0.403 -0.173 42.4
a = 5.12
SRD=on
Measured RD 0.397 -0.145 41.3
Data TD 0.429 -0.164 42.5

In [99] the YLIT-2-TKSE and the YLIT-3-BMW are applied for the validation
of the determined exponent. Table 8.10 shows the published results, which confirm
the above presented findings. It should be mentioned that the examinations of
[99] and of this thesis are performed under the application of the same batch of
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the DX54. The Barlat 2000 in combination with an exponent equal to 5.0 leads
to satisfying results with respect to the investigated YLIT-Experiments. The
predicted strain state of the YLIT-2-TKSE and the YLIT-3-BMW underlines
that Barlat 2000 yield locus is advantageous in comparison with the Hill ´48
model, concerning the investigated DX54 steel grade.

Table 8.10: Results obtained from the experiments YLIT-2-TKSE
and YLIT-3-BMW [99].

Source Data YLIT-2-TKSE YLIT-3-BMW
ǫ1, RD ǫ2, RD ǫ1, TD ǫ2, TD

Measured Data 0.41 -0.14 0.36 -0.14
Simulation
Barlat 2000, a=5.0
SRD=on

0.40 -0.17 0.36 -0.15

Simulation
Barlat ´89, m=2
SRD=on

0.47 -0.25 0.36 -0.19

Simulation
Barlat ´89, m=2
SRD=off

Mesh Instability Mesh Instability 0.40 -0.20

Provided the Barlat 2000 or the Barlat ´89 yield locus and the same ap-
proach for modeling the hardening effect is applied, the optimization shows a
need for taking the strain rate sensitivity into account. Furthermore, as the pre-
dicted quantities of the YLIT-4-BMW are insensitive with respect to the Young’s
modulus, the friction and the Bauschinger effect, it is possible to determine the
exponent of the yield locus indirectly from this experiment. Nevertheless, for the
investigation of the remaining complementary experiments, the same parameter
set is applied in order to analyze whether a mandatory order of the evaluation of
these experiments exists.

8.3 Bending experiment

As opposed to the investigations of the YLIT-Experiments, the yield locus expo-
nent is subsequently reduced to discrete values. As a consequence, the calibration
of the αi values of each exponent can be done in advance. For the calibration
of the yield locus parameter, the Rb value is assumed to be 1.0 and the weights,
regarding the results of the fundamental experiments, of the multi-objective cal-
ibration procedure are chosen as given in table 7.3. The optimization process is
illustrated by figure 8.24.

The parameter space of the optimization is complemented by the Poisson
ratio. This parameter can be identified by evaluating a tensile test. The Poisson
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ratio is included in the subsequent optimization in order to analyze, whether it is
necessary to determine this parameter experimentally. Alternatively, it could be
sufficient to take a literature value v = 0.30 [111] for this parameter. The domain
of the optimization parameters are given by table 8.11.

Evaluation of the Objective Function 

Optimization 

 

Minimization of 

the difference 

between the 

simulation based 

prediction and the 

measured data of 

the  bending 

experiment. 

 

Measured Data 

Angle Springback 

Pre-Processing 

Forming / Springback 

Simulation 

Post-Processing 

Model Parameter    Exponent Barlat 2000, Friction, Strain Rate Dependency,  

   Kinematic Hardening, Young’s Modulus, Poisson Ratio 

Calibration of the Yield Locus    

The calibration is performed in advance, based on a given 

set of yield locus exponents. 

Figure 8.24: Bending experiment; Sequence of the optimization.

Table 8.11: Bending experiment; Domain of the parameter space.

Parameter Domain Type

Strain Rate Dependency (SRD)
(0 =off; 1 =on)

0− 1 Discrete

Exponent Barlat 2000 4− 8 Discrete
Kinematic Hardening (KH)
(0 =off; 1 =on)

0− 1 Discrete

Young’s Modulus 190000N/mm2

− 210000N/mm2
Continuous

Poisson Ratio 0.24− 0.30 Continuous
Friction Coefficient 0.08− 0.12 Continuous

For the quantification of the deviation between the real experiment and the
prediction of the simulation, the difference of the angle α is computed. This
quantity is defined as given by figure 6.12 and is directly used for the formulation
of the objective function:
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Table 8.12: Bending experiment; Measured results.

Experiment Angle (α)[◦]

1 82.43
2 82.57
3 82.93
Mean 82.64

fBE1 = |αsim − αed| . (8.7)

The application of the norm leads to a minimization problem (BE: Bending
experiment).

Table 8.12 shows the experimentally determined angles α. As a reference
for the optimization experiment 2 is taken, as it shows the least deviation with
respect to the mean value. According to figure 8.25, the deviation between the
measured and the predicted springback angle depends on both, the consideration
of the strain rate effect of the material hardening and the yield locus exponent.
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Figure 8.25: Bending experiment; Left: Relation between the yield locus exponent
and the objective function; Right: Relation between the strain rate dependency
of the hardening effect and the objective function.

According to 8.26 (right), a slight influence of the Poisson ratio with respect
to the quality of the springback prediction is recognizable. The Young’s modulus
shows a stronger sensitivity regarding the conformity of the simulation and the
measured data (figure 8.26 (left)). The figures 8.27 illustrate a visualization of the
optimization results, obtained on the basis of an exponent equal to 5. This sub
space shows the sensitivity of the Young’s modulus clearer. The elastic springback
behavior is mainly determined by the stress state after tool closing and the elastic
material response. Consequently, the parameters of the elastic material model
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play a more important role as for the prediction of the strain field, which is
confirmed by this sensitivity analysis.
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Figure 8.26: Bending experiment; Left: Relation between the Young’s modulus
and the objective function; Right: Relation between the Poisson ratio and the
objective function.
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Figure 8.27: Bending experiment; Analysis of the Young’s modulus based on a
yield locus exponent equal to 5; Left: Objective function evaluations without
consideration of the strain rate dependency of the hardening effect; Right: Ob-
jective function evaluations with consideration of the strain rate dependency of
the hardening effect.

Finally the effect of the friction and the Bauschinger effect on the objective
function is investigated. The parameter of the friction model does not show a
sensitivity (figure 8.28). This result can be explained by the contact pressure
between the punch and the blank, which should be small in comparison with
industrial parts. Hence, a significant shear stress in the contact zone, induced by
the friction, should not occur.

Furthermore, an influence of the Bauschinger effect on the predicted spring-
back is not expected, as a transition between tension and compression should not
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occur at any material point. This assessment is confirmed by the optimization
result.
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Figure 8.28: Bending experiment; Left: Relation between the friction coefficient
and the objective function; Right: Relation between the consideration of the
kinematic hardening model and the objective function.

By considering figure 8.25 (right) it has to be concluded that better results
are obtained by ignoring the strain rate dependency of the material, which is
a contradiction with respect to the results of the YLIT-Experiments. However,
this experiment shows a strong linear sensitivity concerning the Young’s modu-
lus. According to figures 8.27 (left) and 8.27 (right) a prediction of the measured
data should be possible either with our without taking the strain rate dependency
into account. Consequently, at least two solutions of the optimization exist and,
therefore, it is not possible to derive inversely values of the unknowns from this
experiment. This also explains the above mentioned contradiction regarding the
strain rate sensitivity. For the procedure of determining the unknown model pa-
rameters, this experiment can give a contribution. However, apart from one, all
the sensitive unknown parameters have to be identified in advance. As this exper-
iment is highly sensitive regarding the Young’s modulus, this model parameter is
determined by the bending experiment.

8.4 Friction experiment

For the friction experiment the optimization procedure is given by figure 8.29 and
the domain of the parameter space is shown by table 8.13.

Table 8.14 shows the measurement data, obtained from the friction experi-
ment. The experiments 1 and 4 show the least deviation from the mean values
and are therefore chosen as a reference for the optimization. The position P of
the considered strain state is defined in chapter 6. The predicted strain state is
derived from the integration point, representing the position P at the top surface.

For measuring the deviation between the simulation based prediction and the
measured data on the basis of the strain state, the distance of both results in
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Table 8.13: Friction experiment; Domain of the parameter space.

Parameter Domain Type

Strain Rate Dependency (SRD)
(0 =off; 1 =on)

0− 1 Discrete

Exponent Barlat 2000 4− 8 Discrete
Kinematic Hardening (KH)
(0 =off; 1 =on)

0− 1 Discrete

Young’s Modulus 190000N/mm2

− 210000N/mm2
Continuous

Friction Coefficient 0.08− 0.12 Continuous

Table 8.14: Friction experiment; Measured results.

Experiment ǫ1 ǫ2

1 0.130 −0.088
2 0.132 −0.088
3 0.128 −0.082
4 0.130 −0.088
Mean 0.130 −0.087

Evaluation of the Objective Function

Optimization

Minimization of 

the difference 

between the 

simulation based 

prediction and the 

measured data of 

the  friction 

experiment.

Measured Data

Strain State

Pre-Processing

Forming / Springback 

Simulation

Post-Processing

Model Parameter   Exponent Barlat 2000, Friction, Strain Rate Dependency, 

Kinematic Hardening, Young’s Modulus

Calibration of the Yield Locus  

The calibration is performed in advance, based on a given 

set of yield locus exponents.

Figure 8.29: Friction experiment; Sequence of the optimization.
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the eigenvector space (principal in-plane strain space) is computed (FE: Friction
experiment):

fFE =

√
(ǫ1sim − ǫ1ed)2 + (ǫ2sim − ǫ2ed)2. (8.8)

According to figure 8.30 (right), the deviation of the strain state between the
measured data and the prediction of the simulation depends on the consideration
of the strain rate effect of the material hardening. The yield locus exponent shows
only a slight sensitivity (figure 8.30 (left)). However, for a best possible inverse
identification of the friction model parameter, the yield locus exponent should be
determined in advance.
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Figure 8.30: Friction experiment; Left: Relation between the yield locus exponent
and the objective function; Right: Relation between the consideration of the strain
rate dependency of the hardening effect and the objective function.

Furthermore, the optimization results (figure 8.31) do not indicate a sensitivity
of the difference between the predicted and the measured strain state with respect
to the choice of the Young’s modulus and the Bauschinger effect. The elastic part
of the strain state is small in comparison with the plastic one. Consequently, the
sensitivity of the Young’s modulus on the prediction of the strain state, which
only affects the elastic part of the strain state, should be small. The optimization
result confirms this assumption. None of the material points undergo a change
between tension and compression during the forming operation. Therefore, the
mechanical behavior of this experiment should not be affected by the Bauschinger
effect, which is also in accordance with the presented results.

A strong correlation between the parameter of the friction model and the
quality of the predicted strain state at the considered position is shown by the
optimization (figure 8.32). According to this result, it is possible to determine
the friction coefficient inversely.

The optimization on the basis of the friction experiment shows a sensitiv-
ity of the objective function with respect to the consideration of the strain rate
dependency of the hardening effect and the friction. In consideration of the YLIT-
Experiments only the friction model parameter remains unknown. A satisfying
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Figure 8.31: Friction experiment; Left: Relation between the Young’s modulus
and the objective function; Right: Relation between the consideration of the
kinematic hardening model and the objective function.
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Figure 8.32: Friction experiment; Left: Relation between the friction coefficient
and the objective function; Right: Relation between the friction coefficient and the
objective function in consideration of the strain rate dependency of the hardening
effect.
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prediction of the strain state is obtained by taking the strain rate sensitivity into
account, which is in accordance with the findings based on the YLIT-Experiments.

8.5 Discussion of the results of the sensitivity
analysis

According to the above presented findings, the yield locus identification tools
(YLIT) are suitable for indirectly determining both, the necessity for the consid-
eration of the strain rate dependency of the hardening effect and the choice of the
yield locus exponent. The optimization based on the bending experiment shows a
sensitivity of the yield locus exponent, the strain rate dependency of the material
hardening and the Young’s modulus with respect to the predicted springback. In
the case of the friction experiment, the consideration of the strain rate dependency
of the hardening effect and the friction coefficient play a crucial role for the predic-
tion of the measured data. Provided, the examination of the YLIT-Experiments
is performed in advance, the bending and friction experiments allow determining
the Young’s modulus and the friction coefficient separately. The discussion of
this section shows the necessity of evaluating the complementary experiments in
a pre-defined order. As expected, all the investigated experiments are insensi-
tive with respect to the Bauschinger effect. Generally, the applied evolutionary
strategy supports the analysis of the experiments, which are performed for the
inverse determination of model parameters. Even the limited number of objective
function evaluations is sufficient for the computation of the desired sensitivities
of the unknown model parameters with respect to the measured data.

8.6 Determination of the unknown model param-
eters

For the investigated material the shown optimization results of the YLIT-4-BMW
are sufficient for the determination of the yield locus exponent. As mentioned
above, the amount of objective function evaluations is limited, because of the
computational cost. In order to analyze the best possible value of the expo-
nent the golden section interval division is deployed (see 2.2.2). Thereby, the
strain rate sensitivity of the hardening effect is taken into account and for the
remaining unknowns values are selected based on experience (Young’s modulus=
190000N/mm2; µ = 0.10; the kinematic hardening model is not considered). Fig-
ure 8.33 comprises the results of the search of the yield locus exponent. The results
refer to the experiment YLIT-4-BMW. The domain of the yield locus exponent
is chosen to be [2; 8].

The search for the yield locus exponent is assumed to be converged after
7 objective function evaluations. Table 8.15 shows a comparison between the
simulation runs 7 and 9, which does not show a significant difference. However,
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Figure 8.33: YLIT-4-BMW; Golden section interval division; Left: Propagation
of the optimization; Right: Relation between the yield locus exponent and the
objective function.

between simulation run 6 and 7 an improvement regarding the drawing depth is
recognizable.

Table 8.15: YLIT-4-BMW; Analysis of the golden section interval
devision.

Evaluation
Objective
Function

Exponent RD/TD ǫ1 ǫ2 dMDD

[mm]
Value
Objective
Function

6 5.374 RD 0.418 -0.156 40.2 0.1302
TD 0.403 -0.169 41.7

7 5.039 RD 0.414 -0.159 41.4 0.0285
TD 0.404 -0.175 42.9

9 5.118 RD 0.415 -0.159 41.2 0.0173
TD 0.403 -0.173 42.4

The shown results confirm the findings of section 8.2. Furthermore, the golden
section interval division enables to determine the yield locus exponent within a
few objective function evaluations. For the investigation of another material, the
golden section interval division can be directly applied, if the following conditions
are fulfilled:

• The weights for taking the fundamental experiments regarding the yield
locus calibration into account are known.

• An appropriate value of Rb is known.

Thereby, it is assumed that the results regarding the strain rate dependency
of the hardening effect are generally valid, provided the same strategy for deter-
mining the flow curve is applied.
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Table 8.16: YLIT-4-BMW; Analysis of the yield locus exponent.

Type Exponent RD/TD ǫ1 ǫ2 dMDD

[mm]
Value
Objective
Function

Simulation 5.00 RD 0.409 -0.159 41.9 0.1033
TD 0.400 -0.175 43.7

Simulation 5.12 RD 0.415 -0.159 41.2 0.0173
TD 0.403 -0.173 42.4

Measured RD 0.397 -0.145 41.3
Data TD 0.429 -0.164 42.5

Even though the best prediction of the measured quantities is obtained based
on selecting the yield locus exponent equal to 5.12 (table 8.16), for the further
investigations this parameter is chosen to be equal to 5.0. This choice results from
the comparison between the investigations on the basis of the YLIT-1-TKSE and
the YLIT-4-BMW. Choosing the Barlat 2000 yield locus exponent equal to 5.0
leads to an adequate prediction of the measured quantities with respect to both
experiments.

As discussed, it is recommended to identify the friction coefficient inversely,
in consideration of the identified yield locus exponent and the necessity of taking
the strain rate sensitivity of the material hardening into account. Consequently,
only one unknown sensitive parameter remains. For the inverse determination
of the parameter of the friction model, a uniformly distributed sampling of an
one dimensional set of friction coefficients could be applied. For each member of
this set a simulation is performed and the same objective function is evaluated as
for the above introduced optimization. The best choice of the friction coefficient
corresponds to the lowest computed value of the objective function. The advan-
tage of this approach is that the simulations can be performed simultaneously.
However, for the identification of the material model parameters, it is sufficient
to perform the simulations sequentially, which offers the chance to take the in-
termediate results into account for defining the next optimization steps [24]. For
the determination of the friction coefficient two sequential methods are investi-
gated. Figure 8.35 shows the results of the golden section interval division. After
five simulation runs the optimization is assumed to have converged, as the value
of the objective function only changes marginal between the friction coefficients
0.0894 and 0.0917 (see table 8.17 and figure 8.35). According to Figure 8.34, the
correlation between the friction coefficient and the value of the objective function
is similar to a second degree polynom. Hence, also a Lagrangian interpolation
is applied for the determination of the minimum, comprising a second degree
polynom. Figure 8.36 illustrates the results of this procedure. The Lagrangian
interpolation is slightly advantageous in comparison to the other methods, as four
objective function evaluations are sufficient to compute a friction coefficient lying
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in the interval between 0.0894 and 0.0917.
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Figure 8.34: Friction experiment; Uniform sampling; Relation between the friction
coefficient and the objective function.
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Figure 8.35: Friction experiment; Golden section interval division; Left: Propa-
gation of the optimization; Right: Relation between the friction coefficient and
the objective function.
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Table 8.17: Friction experiment; Summary of the results of the
golden section interval division.

Number Objective
Function Evaluation

Friction Coefficient Value Objective Function

1 0.104721 0.005754
2 0.095279 0.002656
3 0.089443 0.002033
4 0.085836 0.002719
5 0.091672 0.002040
6 0.088065 0.002216
7 0.090294 0.002014
8 0.090820 0.002042
9 0.089969 0.002032

Table 8.18: Friction experiment; Summary of the results of the
Lagrange interpolation method.

Number Objective
Function Evaluation

Friction Coefficient Value Objective Function

1 0.080000 0.004532
2 0.100000 0.004099
3 0.120000 0.011614
4 0.091089 0.001997
5 0.090466 0.002038
6 0.091824 0.002094
7 0.091004 0.002013
8 0.091290 0.002032
9 0.091122 0.001989
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Figure 8.36: Friction experiment; Lagrange interpolation; Left: Propagation of
the optimization; Right: Relation between the friction coefficient and the objec-
tive function.

Finally, the remaining unknown - the Young’s modulus is investigated by one
dimensional strategies on the basis of the bending experiment. The application of
the inverse method is possible, if the yield locus and the necessity of the consid-
eration of the strain rate dependency of the material hardening are determined in
advance. Only one unknown remains, which can be searched by a one-dimensional
procedure. In consideration of the fluctuations of the experiment (table 8.12), a
maximum deviation between the predicted and the measured angle α of ±0.05
seems to be sufficient for the inverse identification of the Young’s modulus. The
result of the inverse determination of the Young’s modulus, based on a uniform
sampling, is given by figure 8.37. Additionally, the results of the golden section
interval division are shown by figure 8.38. According to 8.37, the correlation be-
tween the Young’s modulus and the objective function is quasi linear. Therefore,
the interpolation method Regula Falsi iteration is also analyzed. For the appli-
cation of this method, the objective function is modified as given by expression
(BE: Bending experiment):

fBE2 = αsim − αed. (8.9)

The result of this method is, as illustrated by 8.39, slightly better than the
golden section interval division in consideration of the needed accuracy.

Figure A.5 shows the accumulated plastic strain of the upper surface after the
forming operation. As the maximum accumulated plastic strain of the bending
experiment is within the range of Doege’s investigations (see figure 8.8), also an
extended elasticity model is applied. This model is able to take the dependency
of the Young’s modulus with respect to the accumulated equivalent plastic strain
into account. The same values of the remaining unknowns are chosen as for the
inverse determination of the Young’s modulus. This extended elasticity model
leads to an objective function value of 0.32. This result is worse than the one
obtained by the optimization. However, the result is better than choosing the
common literature value of the Young’s modulus (210000N/mm2), which leads
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to an objective function value of 0.49 (see figure 8.37). One has to bear in mind
that Doege investigated the steel grade DC06. Provided the relation between
the Young’s modulus and the accumulated plastic strain would be known for the
investigated material, the prediction of the extended model could be better and
the bending experiment could be applied for validation purposes. In this thesis the
bending experiment is applied as a complementary experiment and the inversely
determined Young’s modulus is investigated based on the validation experiments.

Depending on the considered experiment, the interpolation methods show a
slight advantage. If, a general method is preferred for the determination of the
unknowns, the golden section interval division is recommended.
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Figure 8.37: Bending experiment; Uniform sampling; Relation between the
Young’s modulus and the objective function.
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Figure 8.38: Bending experiment; Golden section interval division; Left: Prop-
agation of the optimization; Right: Relation between the Young’s modulus and
the objective function.

For the final material and friction model calibration, a unique set of parameters
has to be identified, which leads for each experiment to a satisfying prediction of
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Figure 8.39: Bending experiment; Regula Falsi iteration; Left: Propagation of the
optimization; Right: Relation between the Young’s modulus and the objective
function.

the measured data. This condition is complied by the identified model parameters
(table 8.19), as shown by table 8.20.

Table 8.19: Summary of the inverse parameter identification.

Parameter Value

Yield Locus Exponent 5.0
Friction Coefficient 0.091
Strain Rate Dependency Considered
Kinematic Hardening Not Considered
Young’s Modulus 189000N/mm2

For the chosen material and friction model, the fundamental and the com-
plementary experiments are sufficient for determining the unknown parameters.
However, additional complementary experiments might be needed, if more com-
plex models need to be calibrated. Even the investigated sequence of evaluating
the complementary experiments might depend on the type of material and friction
model. Consequently, the introduced procedure of determining the unknowns is
only suitable for a material model comprising the assumption of isotropic hard-
ening and a Barlat 2000 yield locus. Other yield loci, comprising less or an equal
amount of model parameters like the Barlat ´89 can be also treated by the intro-
duced procedure.
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Table 8.20: Verification of the identified unknowns (table 8.19).

Experiment Type Investigated Quantities Value
Objective
Function

YLIT-4-
BMW

RD/TD ǫ1 ǫ2 dMDD

[mm]
Simulation RD 0.409 -0.159 41.9 0.1033

TD 0.400 -0.175 43.7
Measured RD 0.397 -0.145 41.3
Data TD 0.429 -0.164 42.5

Bending Angle α[◦]
Experiment Simulation 82.56 0.0066

Measured 82.57
Data

Friction ǫ1 ǫ2
Experiment Simulation 0.129 -0.089 0.00202

Measured 0.130 -0.088
Data

8.7 Noise in numerical solutions

The above shown sensitivity analyses do not indicate a strong effect of numerical
noise on the computed quantities. In this context, noise is defined as the varia-
tion of the results induced by repeating the numerical solution of a mechanical
problem. In order to investigate the noise, each complementary experiment is
performed multiple times under the same parameter configuration. This inves-
tigation allows deciding, whether additional methods are necessary for treating
noise. The unknowns are chosen according to the results of the identification
procedure, as given by table 8.19. For analyzing the results, the same objective
functions are applied as for the sensitivity analyses. Additionally, for each sim-
ulation the calibration of the yield locus is repeated. Consequently, both, the
stability of the simulation and the calibration procedure are investigated. The
maximum deviation of the objective function value between two simulation based
predictions is below 1.0 · 10−6 for each complementary experiment. In consid-
eration of the above presented results, the numerical solution of the mechanical
problem is stable and additional methods for treating noise are not necessary.
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8.8 Discussion of the complementary experiments

This section is devoted to the discussion of the most important issues regarding the
measurement methodology, the treatment of the simulation results and numerical
settings. For the shown investigations, the above identified unknowns are applied
(table 8.19).

8.8.1 YLIT-Experiments

The strain fields, resulting from the measured data and the simulation, are dis-
crete. Generally, each strain state of the discrete fields refers to a location in
space. Thereby, the associated locations of the strain states, resulting from the
simulation, are not coincident with those, obtained from the measured data. As
a consequence, an interpolation of the discrete strain fields is necessary in order
to compare the strain states at defined reference locations. In order to avoid
performing such an interpolation for both discrete strain fields, the reference lo-
cations are taken from the measured data. Therefore, it is sufficient to compute
the strain states at the reference locations on the basis of the simulation result.

Expression (8.10) shows the applied interpolation formula [112], which weights
the contribution of a quantity in consideration of the associated distance with
respect to the reference location:

Z =

(∑N−1
i=1

Zi

R2
i

)
+ CẐ

R̂2(∑N−1
i=1

1
R2

i

)
+ C

R̂2

. (8.10)

This distance is also applied for the selection of the N nearest quantities,
taken into account for the interpolation. Figure 8.40 illustrates the interpolation
scheme. In this work, N is chosen to be equal to 10. The quantity, whose position
is the closest one to the preference location, is especially weighed by the constant
C. The value of C=1.5 is taken according to the recommendation of [113]. Ri

defines the distance of the point i to the reference location. Zi represents the
value of the quantity, which is interpolated, at the point i. The variables denoted
by “ˆ” refer to the point, which is located closest to the reference location.

The first and second in-plane principal strains are interpolated independently
from each other by the introduced scheme. The corresponding positions of the
strain state, which are taken into account for the interpolation, are coincident
with the integration points belonging to the element. In this thesis only shell
elements are considered. On the basis of the shape functions, the locations of
the integration points in the midsurface are determined. As a next step, the
normal direction of the element is computed according to the definition of the
applied FEM-System. In conjunction with the normal direction, the position of
each integration point can be computed. The applied under-integrated element
type comprises only one integration point in the midsurface. All the integration
points in thickness direction lie on the same fiber. For the interpolation of the
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strain state, only the outer integration point, corresponding to the surface of the
measured strain field, is taken into account.
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Figure 8.40: YLIT-4-BMW; Interpolation of the quantities referring to integration
points of the elements.

Because of the applied Gaussian integration in thickness direction, none of the
integration points are directly located at the top surface. The applied element
would also support a Simpson integration scheme in thickness direction, which
implies integration points directly located on the surface. However, as mentioned
above, all the experiments of this work should be computed with the same nu-
merical configuration. As the Gaussian integration scheme is advantageous for
computing bending stresses under the same computational effort, this scheme is
applied in this work. As a consequence, for the comparison of the computed and
the measured strain field, the integration points are considered, which are closest
to the optically measured surface. The deviation between the strain states, related
to these integration points, and the associated surface strain states are assumed
to be negligible. This simplification is possible, as the considered location for the
comparison between the measured and the computed strain state is not subject
to bending effects.
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z∗ = 0.94911
z0 = 0.0

ǫ1(z0) = 0.40013
ǫ1(z∗) = 0.40690

∆ǫ = ǫ1(z0)− ǫ1(z∗) = −0.00677

Figure 8.41: YLIT-4-BMW; First principal strain; Left: Geometrical conditions
of the considered element; Right: Computed strain states.

The strain state, shown by figure 8.41, is taken from a simulation, which is
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based on the identified unknown parameters (table 8.19). Thereby, only the spec-
imen is considered, whose length direction is parallel to the transverse direction.

The difference between the given first principal strains is small (figure 8.41).
Additionally, the local z-coordinate of the outer integration point is 0.94911, as the
applied Gaussian integration comprises 7 integration points through the thickness.
As the Reissner-Mindlin shell elements are applied, the strain distribution in thick-
ness direction is linear. Therefore, the difference between ǫ1(z∗) and ǫ1(z = 1) is
marginal in consideration of the depicted geometrical conditions. Consequently,
for the discussed application, it is not necessary to distinguish between the strain
state of the outer integration point and the surface.

8.8.2 Bending experiment

The prediction of the springback behavior strongly depends on the computed
stress state after the forming operation. For an accurate prediction of the stress
state an appropriate choice of the element size is necessary. If the element size is
chosen to be too large, the bending stresses are not reflected well by the simulation
model. The larger the bending radius, the larger the element size can be chosen.

In the thesis of Okan [86] an edge length of shell elements between 0.5mm
and 2.0mm is investigated on the basis of a rotational bending operation and
a bending radius of 3mm. Okan [86] recommends an alignment of the mesh of
the specimen as shown by figure 8.42. Provided this alignment is performed, the
prediction of the springback is invariant with respect to the investigated range
of the element length. In this thesis, the bending radius is chosen to be equal
to 10mm. An element edge length of 1.0mm is selected, which should give in
consideration of the investigations of Okan, an accurate prediction of the stress
state.

�

��

�

�

��������	

Figure 8.42: Bending experiment; Left: For the generation of the mesh of the
specimen, the depicted nodes are assumed to be extruded in y-direction. An
alignment of the mesh in x-direction leads to equal x-coordinates of the nodes Ni

and the point A; Right: Definition of the gap width.

Generally, deviations between the tool geometry in the laboratory and the
simulation model can affect the conclusions, if model parameters are inversely
determined. In this context, it is most difficult to provide the desired gap width
(figure 8.42 (right)), as this quantity depends on the manufacturing tolerances of
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the die and the punch. Furthermore, the gap width also depends on the assembly
accuracy of the tool and the design of the guides, which assure a reproducible
alignment between the die and the punch. Therefore, the effect of the gap width
on the springback behavior is investigated based on simulations.

y = -0.6385x + 55.731
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Figure 8.43: Bending experiment; Analysis of the influence of the gap width on
the prediction of the springback.

The correlation between the gap width and the predicted springback angle is
approximately linear. Hence, figure 8.43 also comprises a regression of a linear
function. From the given slope follows that a deviation between the experiment
and the simulation model of 0.0063mm leads to an error of 0.01◦. Consequently,
the gap width of the tool and the simulation model has to match very accurately.
As it is difficult to adjust the gap width of the tool according to the design value in
consideration of the needed accuracy, it is recommended to measure it by applying
a gauge block and to adapt the simulation model according to the measured result.
At this point it has to be mentioned that the gap width might alter due to the
elastic deformation of the press and the tool. Consequently, this effect has to be
minimized by assuring a sufficient stiffness of the tool in the design phase of the
experiment.

The alignment of the formed specimen, for measuring the springback, is in-
troduced in chapter 6. For the prediction of the springback, boundary conditions
have to be introduced, which reflect the alignment induced by the measurement
fixture. Figure 8.44 shows the applied statically determined support conditions.

As mentioned in chapter 6, the measured springback is expected to be slightly
affected by the gravity effect. A simulation based investigation showed that the
angle α is 0.05◦ smaller, if the springback simulation is complemented by the
consideration of the gravity effect. The direction of the gravity field is coincident
with the positive z-coordinate, as given in figure 8.44. Even though the influence
of the gravity effect is rather small, it is still considered by the investigations
of this thesis. However, the effect of the gravity on the measured springback
depends on the sheet thickness. Therefore, the given result is only valid for the
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Locked degrees of freedom:
A:x,y,z
B:x,z
C:z

Figure 8.44: Bending experiment; Support conditions for the springback simula-
tion.

investigated steel DX54, whose sheet metal thickness is 1.0mm.

8.8.3 Friction experiment

The comparison between the predicted and the measured strain state is limited to
a single point P . The applied simulation model considers the double symmetry of
the mechanical problem. Subsequently, only the computed quarter of the formed
specimen is considered. The evaluated strain states are given by the integration
points of the elements, which are closest to the top surface (definition top surface,
see chapter 6). For the further discussion a set Q is defined, which contains these
integration points. The integration points of the midsurface of the applied element
type are located between the element nodes.

As a consequence of the considered symmetry, the point P is located at the
intersection of the symmetry planes. Hence, a strain state will never be available
at this location, as the symmetry condition is defined by the element nodes.
Consequently, the question arises, whether an extrapolation is necessary, in order
to obtain a suitable prediction at the point P .

Figure 8.46 shows the strain states of the integration points, on the top surface
in the neighborhood of the point P in the principal in-plane strain space. As men-
tioned above, the applied element type possesses only one integration point, which
corresponds to the top surface. Therefore, the evaluation of 16 elements leads to
16 computed strain states. The size of the evaluated zone is 16mm×16mm in the
original state before forming. According to figure 8.46, the investigated zone of the
strain field can be regarded as constant, if the maximum measurement accuracy
of 0.001 with respect to the principal strain values is taken into consideration.

Consequently, a significant difference of the strain state at the intersection of
the symmetry planes (point P ) and the related closest integration point, belonging
to Q, is not expected. Therefore the strain state, related to this integration point,
is considered to be the desired prediction with respect to the point P .

As mentioned in chapter experiments, the strain field is measured after tool
opening. In order to obtain the mechanical state of the specimen after tool open-
ing, the consideration of the elastic springback is necessary, which might signif-
icantly affect the prediction of the strain field. Figure 8.46 shows the first and
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Figure 8.45: Friction experiment; Definition of the symmetry planes.
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Figure 8.46: Friction experiment; Strain state of the set Q; Left: In the closed
state of the tool; Right: After the springback of the specimen.
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second principal strain field, with and without consideration of the springback
effect in the neighborhood of the point P . Thereby, the depicted strain states
result from the integration points belonging to the set Q. Obviously, the spring-
back effect should be taken into consideration, as the strain state is affected in
the dimension of the measurement accuracy. A comparison of the figures 8.46
and 8.47 shows that the difference between the corresponding strain states of the
integration points, belonging to the set Q and the midsurface, is marginal. Hence,
the strain states of the outer integration points can be considered to be equivalent
to the ones at the surface.

1.2860E-01

1.2862E-01

1.2864E-01

1.2866E-01

1.2868E-01

1.2870E-01

1.2872E-01

-8.910E-02 -8.900E-02 -8.890E-02

e
1

e2

Figure 8.47: Friction experiment; Strain state of the integration points on the
midsurface, which lie on the same fiber as the integration points of the set Q
(after the springback of the specimen).
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Chapter 9

Validation experiments

9.1 Introduction

The validity with respect to the scope of application is the most important prop-
erty of a calibrated material and friction model. In other words, the calibrated
model, derived from a few selected experimentally determined quantities, has to be
able to treat arbitrary stress states, occurring in industrial forming simulations.
Unfortunately, it is impossible to verify all possible stress states by comparing
simulation based predictions with measured data. For the industrial application,
it seems to be reasonable to limit the validation to some selected experiments.
However, one has to bear in mind, that such a validation cannot be regarded as
a proof of the general predictive capability of the investigated material model.

In order to obtain the best possible quality of the validation, the same batch
of sheet metal should be applied for the fundamental, the complementary and
the validation experiments. Regarding the subsequent investigations, this recom-
mendation is complied. All the experimentally determined data is based on the
interstitial free steel DX54. According to the findings of the chapter 8, which refer
to the investigated steel DX54, the Barlat 2000 yield locus in combination with
an isotropic hardening leads to a satisfying prediction of the measured quanti-
ties concerning the YLIT-Experiments. Additionally, the strain rate dependency
of the hardening effect should be considered, if the flow curve is derived from
the tensile and the bulge tests. Finally, the chapter 8 also comprises an inverse
determination of the Young’s modulus and the friction coefficient.

Subsequently, each experiment is analyzed by an optimization, whose param-
eter space contains the yield locus exponent, the consideration of the strain rate
dependency of the hardening effect, the consideration of the kinematic harden-
ing model, the Young’s modulus and the friction coefficient. These optimizations
are performed in order to investigate whether it is possible to predict the mea-
sured data by a variation of these parameters. Furthermore, an analysis regarding
the sensitivities of the parameters with respect to the accuracy of the simulation

207
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model is needed. These sensitivities indicate, which parameters are validated by
the considered experiment. Each optimization is performed on the basis of the
same parameter space, as defined by table 9.1, and an evolutionary strategy is
applied, comprising a derandomized self adaptation [35] ((1, λ)-DR-ES).

Table 9.1: Domain of the parameter space.

Parameter Domain Type

Strain Rate Dependency (SRD)
(0 =off; 1 =on)

0− 1 Discrete

Exponent Barlat 2000 4− 8 Discrete
Kinematic Hardening (KH)
(0 =off; 1 =on)

0− 1 Discrete

Young’s Modulus 190000N/mm2

− 210000N/mm2
Continuous

Friction Coefficient 0.08− 0.12 Continuous

Additionally, the prediction of the simulation on the basis of the selected
models and their parameters (table 8.19) is investigated. This chapter comprises
the investigation of the u-profile, the cylindrical deepening and the hole extrusion
experiment. A description of the experimental setup, the measured quantities
and the related evaluation procedure is given in chapter 6.

9.2 U-Profile experiment

The u-profile experiment is performed in order to validate the considered material
and friction model on the basis of the springback effect. As opposed to all of the
other experiments, discussed in this thesis, the specimen of the u-profile exper-
iment is not clamped between the die and the binder. Under ideal conditions,
the springback effect is large compared with the measurement accuracy. Conse-
quently, the springback effect should be maximized. The larger the drawing depth
the larger the side wall curl and the flange rotation are. Provided, the specimen
is clamped in the binder zone, the attainable drawing depth is mainly determined
by the forming limit of the material. Higher levels of drawing depth are possible,
if a material flow between the binder and the die occurs. Hence, a relative move-
ment in the interface between the specimen and the tool surface in the binder
zone is desired (figure 9.1 (left)). In order to analyze the effect of the investigated
parameters on the quality of the springback prediction, the material flow in the
binder zone should be adapted according to the experimentally determined one.
Subsequently the material flow is quantified by a scalar value, representing the
distance between the edge of the specimen and the center of the drawbead (figure
9.1 (right)). The material flow along the length direction of the formed specimen
(definition see figure 6.16) is assumed to be constant.
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Figure 9.1: U-Profile experiment; Left: Definition of the binder zone; Right:
Definition of the dESCD.

For the description of the material flow, the quantity dESCD is introduced
(distance between the edge of the specimen and the center of the drawbead). Pro-
vided a deviation between the predicted and the measured material flow occurs,
additional restraining forces are defined in the simulation model. This procedure
only works, if the dESCD of the simulation is smaller than the experimentally
determined one. However, without any artificial restraining force, none of the
performed simulations showed the opposite case. Hence, the treatment of this
event is not considered in this thesis. As spacers are applied between the binder
and the die, the material flow is mainly affected by the geometry of the drawbead,
the friction and the additional restraining forces. Figure 9.2 shows the sequence of
the optimization, which also comprises the adaption of the dESCD. A description
of the algorithm, applied for the adjustment of the material flow is given below.

Evaluation of the Objective Function

Optimization

Minimization of 

the difference 

between the 

simulation based 

prediction and the 

measured data of 

the  u-profile 

experiment.

Measured Data

Side Wall Rotation

Side Wall Curl

Flange Rotation

Pre-Processing

Forming Simulation

Post-Processing

Model Parameter   Exponent Barlat 2000, Friction, Strain Rate Dependency, 

Kinematic Hardening, Young’s Modulus

Calibration of the Yield Locus  

The calibration is performed in advance, based on a given 

set of yield locus exponents.

Analysis Material Flow

Springback Simulation

Post-Processing

Figure 9.2: U-Profile experiment; Sequence of the optimization.

The springback behavior of the specimen is quantified by the scalar values side
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wall rotation αSWR, side wall curl dSWC and flange rotation αFR. Consequently,
for the comparison between the predicted and the measured data these quantities
need to be combined to a single scalar objective value. The aggregation of the
objectives is performed by applying the two-sided Harrington desirability function
[22]. The desirability values are aggregated multiplicatively as given by

fαSWR
= αSWRsim

− αSWRed
,

fdSWC
= dSWCsim

− dSWCed
,

fαFR
= αFRsim

− αFRed
,

(9.1)

f = 1−
∏

Q∈W

d2(fQ, UQ, LQ, nQ), W = {αSWR, dSWC , αFR} . (9.2)

This expression also comprises the formulation of a minimization problem.
Table 9.2 summarizes the parameters, which are chosen based on experience for
the definition of the desirability functions.

Table 9.2: U-Profile experiment; The chosen values of the param-
eters of the Harrington desirability functions.

Parameter αSWR dSWC αFR

U 4 1 4
L −4 −1 −4
n 2 2 2

Table 9.4 shows the estimated measurement accuracy of the applied evaluation
procedure, which is derived from the measurement procedure and the measure-
ment equipment. The values of the measured quantities (table 9.3) do not reflect
the fluctuations of the experimental results, as each experiment leads to the same
result. It is assumed that the interval defined by the measurement accuracy con-
tains the fluctuations of the corresponding real values.

Table 9.3: U-Profile experiment; Measured results.

Experiment αSWR dSWC αFR

1 2.5 9.0◦ 12.0◦

2 2.5 9.0◦ 12.0◦

3 2.5 9.0◦ 12.0◦
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Table 9.4: U-Profile experiment; Estimated measurement accuracy.

αSWR dSWC αFR

±0.25◦ ±0.25mm ±0.25◦

The figures 9.3, 9.4, 9.5, 9.6 and 9.7 summarize the results of the optimization.
According to figure 9.3 (left), the springback of the u-profile does not depend on
the choice of the yield locus exponent. The accordance between the predicted and
the experimentally determined springback is affected by considering the strain rate
dependency of the hardening effect. Both, the friction coefficient and the Young’s
modulus might influence the conformity between the simulation result and the
measured data (figure 9.4).
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Figure 9.3: U-Profile experiment; Left: Relation between the yield locus exponent
and the objective function; Right: Relation between the consideration of the strain
rate dependency of the hardening effect and the objective function.

In this context the question arises, whether it is sufficient to reduce either
the Young’s modulus or the friction coefficient in order to obtain low objective
function values. However, it could be also possible that both parameters need to
be reduced. In order to answer this question, the parameter space is subdivided.
Figure 9.5 (left) illustrates the correlation between the friction coefficient and the
objective function value. Thereby, only objective function evaluations are consid-
ered, which comprise values of the Young’s modulus greater than 200000N/mm2.
According to this figure, a dependency between the friction coefficient and the
objective function is not recognizable. Based on the same procedure also the
Young’s modulus is analyzed. In this case, only simulation runs are considered,
which comprise friction coefficients greater than 0.09. The best objective function
values can be obtained by values of the Young’s modulus close to the lower bound
of the object variable space. According to figure 9.5 (right), an approximately
linear correlation between the Young’s modulus and the objective function exists.
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Figure 9.4: U-Profile experiment; Left: Relation between the friction coefficient
and the objective function; Right: Relation between the Young’s modulus and
the objective function.

Figure 9.6 is obtained by excluding additionally all the simulation runs, which
are performed with and without consideration of the kinematic hardening effect.
According to this figure, independent of the consideration of the kinematic hard-
ening model, an approximately linear correlation between the Young’s modulus
and the objective function exists.
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Figure 9.5: U-Profile experiment; This figure shows subspaces of the optimization
results; Left: Relation between the friction coefficient and the objective function
value; Right: Relation between the Young’s modulus and the objective function
value.

Finally, the Bauschinger effect is investigated. According to figure 9.7, the
kinematic hardening model should not be applied.

Figure 9.8 visualizes the geometry of the specimen before and after springback
(Choice parameters: Table 9.5 second line). Table 9.5 summarizes some additional
investigations regarding the consideration of the Bauschinger effect. The best pre-
diction is obtained, if the kinematic hardening model is not applied. Provided the
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Figure 9.6: U-Profile experiment; This figure shows the relation between the
Young’s modulus and the objective function value of two different subspaces of
the optimization.
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Figure 9.7: U-Profile experiment; Relation between the consideration of the kine-
matic hardening model and the objective function.
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kinematic hardening model is applied, the quality of the simulation based pre-
diction can be improved by decreasing the Young’s modulus. However, such a
modification of the Young’s modulus would be problem specific. Therefore, table
9.5 contains another simulation based on an extended elasticity model, which is
able to take the dependency of the Young’s modulus with respect to the accumu-
lated equivalent plastic strain into account. This model disregards any effect of
the prestrain path, as the Young’s modulus depends on the accumulated equiva-
lent plastic strain. According to figure A.6, the maximum accumulated equivalent
plastic strain exceeds the domain of Doege’s investigations. Therefore the rela-
tion between the accumulated plastic strain and the Young’s modulus is linearly
extrapolated for this examination. Thereby, a better prediction of the springback
is obtained. In consideration of the uncertainties with respect to the mentioned
extrapolation it can be concluded that the application of the kinematic hardening
model should be complemented by a suitable description of the dependency of the
Young’s modulus regarding plastic yielding. Unsatisfying results are obtained, if
the kinematic hardening model is applied in combination with a Young’s modu-
lus of 210000N/mm2. The determination of a reduced Young’s modulus based
on the bending experiment, offers the chance to improve the springback predic-
tion. However, if the accumulated equivalent plastic strain differs significantly in
different regions of an industrial part, it is recommended to apply an extended
elasticity model as mentioned above. The results show the need for another val-
idation experiment, which is especially designed for being highly sensitive with
respect to the Bauschinger effect.

Finally, the results, obtained from the u-profile experiment confirm the choice
of the unknown parameters, identified by the complementary experiments.
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Figure 9.8: U-Profile experiment; Geometry of the specimen before and after
springback.
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Table 9.5: U-Profile experiment; Investigation of the kinematic
hardening model (SRD= on, Yield locus exponent= 5, µ = 0.091).

Type Investigated Quantities Value
αSWR dSWC αFR Objective
[◦] [mm] [◦] Function

Simulation 9.49 2.06 11.85 0.1894
Young’s Modulus= 189000N/mm2

KH= on
Simulation 9.02 2.52 12.35 0.0080
Young’s Modulus= 189000N/mm2

KH= off
Simulation 8.01 1.80 10.58 0.4920
Young’s Modulus= 210000N/mm2

KH= on
Simulation 8.57 2.09 11.08 0.2075
Young’s Modulus= 210000N/mm2

KH= off
Simulation 9.61 2.32 11.93 0.0544
Young’s Modulus= 174000N/mm2

KH= on
Simulation 9.01 2.43 10.95 0.0715
Young’s Modulus Strain Dependent
KH= on
Measured Data 9.0 2.5 12.0
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9.3 Cylindrical deepening experiment

The objective of this experiment is the validation of the forming limit curve (FLC)
(see chapter 6), which requires the occurrence of the failure mode localized neck-
ing. The investigated material DX54 showed this failure mode in combination
with this experiment. The derivation of the maximum drawing depth (dMDD)
from the measured data is given in chapter 6. Table 9.6 shows the results refer-
ring to the investigated steel DX54. The first experiment, given by this table,
shows the smallest deviation with respect to the mean value and, therefore, is
taken as a reference drawing depth for the optimization.

Table 9.6: Cylindrical deepening experiment; Measured results.

Experiment dMDD [mm]

1 23.0
2 23.1
3 22.6
Mean Value 22.9
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Figure 9.9: Cylindrical deepening experiment; Sequence of the optimization.

For the evaluation of the FLC, the simulation based prediction of the maxi-
mum drawing depth is compared with the experimentally determined one. The
predicted maximum drawing depth is obtained by the same procedure, as intro-
duced for the YLIT-Experiments. Based on a predefined set of drawing depths,
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the associated strain fields are evaluated in terms of the FLC. This leads to a rela-
tion between the drawing depth and the predicted occurrence of localized necking.
Table 9.7 shows the investigated drawing depths of the simulation, which are given
with respect to the reference drawing depth.

Table 9.7: Cylindrical deepening experiment; Evaluated drawing
depths concerning the simulation.

Index Plot State 1 2;3 4;5 6;7 8;9 10;11 12;13
Drawing Depth ±0.00 ±0.10 ±0.20 ±0.30 ±0.40 ±0.50 ±0.60
[mm]

Index Plot State 14;15 16;17 18;19 20;21 22;23 24;25 26;27
Drawing Depth ±0.70 ±0.80 ±0.90 ±1.00 ±1.25 ±1.50 ±2.00
[mm]

The objective function is defined by (CDE: Cylindrical deepening experiment)

fCDE = |dMDDsim
− dMDDed

| . (9.3)

Thereby, the difference between the experimentally determined maximum
drawing depth and the predicted one is computed. The application of the norm
leads to a minimization problem.
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Figure 9.10: Cylindrical deepening experiment; Left: Relation between the yield
locus exponent and the objective function; Right: Relation between the friction
coefficient and the objective function.

The scheme of the optimization sequence is given by figure 9.9. Figure 9.10
(left) shows a correlation between the yield locus exponent and the objective
function. Also the consideration of the strain rate dependency of the hardening
effect affects the accuracy of the simulation based prediction (figure 9.11 (left)). If
the objective function evaluations, comprising a yield locus exponent equal to 4.0,
are excluded from the evaluation of the optimization results, satisfying objective
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Figure 9.11: Cylindrical deepening experiment; Left: Relation between the con-
sideration of the strain rate dependency of the hardening effect and the objective
function; Right: Relation between the consideration of the strain rate dependency
of the hardening effect by excluding the objective function evaluations, which are
based on a yield locus exponent equal to 4.
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Figure 9.12: Cylindrical deepening experiment; Relation between the friction
coefficient and the objective function; Left: The yield locus exponent is chosen to
be equal to 5; Right: The yield locus exponent is chosen to be equal to 6.
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function values are only obtained in consideration of the strain rate dependency
of the hardening effect. A low yield locus exponent seems to stabilize the material
response.

Also the choice of the friction coefficient influences the conformity between the
simulation and the experiment (figure 9.10(right)). A better visualization of the
correlation between the friction coefficient and the objective function is obtained
by excluding the objective function evaluations based on selected yield locus ex-
ponents. According to figure 9.12, more than one optimum exists, depending on
the choice of the yield locus exponent. In such a case the validation is successful,
if one of the optimums corresponds to the identified unknown model parameters.

The optimization results show that the prediction of the drawing depth does
not depend on the choice of the Young’s modulus (figure 9.13 (left)). As the
elastic strains are very small compared with the plastic ones, the influence of the
Young’s modulus should be small, which is confirmed by the optimization result.
Furthermore, the consideration of the kinematic hardening model does not affect
the prediction of the maximum drawing depth. This result is expected, as none
of the material points undergo a change between tension and compression during
the forming operation.
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Figure 9.13: Cylindrical deepening experiment; Left: Relation between the
Young’s modulus and the objective function; Right: Relation between the con-
sideration of the kinematic hardening model and the objective function.

The discussion of the results shows that a validation of the forming limit curve
is only possible, if the material and the friction model is well calibrated.

Table 9.8 shows the prediction of the simulation on the basis of the model
calibration of chapter 8. In comparison with the experimentally determined max-
imum drawing depth the simulation result is slightly optimistic. Under the as-
sumption that the calibration of the material and friction model is reliable, this
result indicates, that the forming limit is reflected too optimistic by the FLC in
the investigated zone. However, the identified accuracy of this FLC in combina-
tion with the calibrated material and friction model should be still suitable for
tool shop and press shop applications.
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Table 9.8: Cylindrical deepening experiment; Validation of the
identified unknowns (table 8.19).

Type dMDD[mm] Value Objective Function

Simulation 23.8 0.8
Measured Data 23.0

9.4 Hole extrusion experiment

The objective of the hole extrusion experiment is the validation of the forming
limit curve (see section 5.4). Thereby, the smallest possible hole diameter (dmin)
is identified, which does not lead to localized necking during forming. The inves-
tigation of the unknown parameters (table 9.1) on the basis of an optimization,
which gives the best possible prediction of dmin, would imply a determination of
dmin for each parameter configuration. Generally, the simulation based determi-
nation of dmin for a given parameter configuration comprises several simulations,
as each one gives the prediction of the occurrence of localized necking with respect
to only one hole diameter. In order to avoid such a computational expensive pro-
cedure, the hole diameter is kept constant. This diameter, which will be referred
to as reference diameter, is chosen to be equal to the smallest possible value ac-
cording to an experimental study (table 9.9). A conservative interpretation of the
results of table 9.9 leads to the conclusion that a hole diameter of d = 10.5mm
should generally not lead to localized necking.

Table 9.9: Hole extrusion experiment; Summary of the experimen-
tal results (LN: Localized necking; WN: Without localized neck-
ing).

Hole Diameter [mm] Stripe 1 Stripe 2 Stripe 3 Stripe 4

9.0 LN LN LN LN
9.5 LN LN LN LN
10.0 WN WN WN LN
10.5 WN WN WN WN
11.0 WN WN WN WN

Based on the chosen reference diameter d = 10.5mm a point in the search
space (table 9.1) is searched, which gives the most pessimistic prediction in terms
of localized necking. Consequently, this optimization does not contain a compar-
ison with measured data, as the reference diameter represents the experimental
observation. This modified optimization sequence is visualized by figure 9.15. The
quantification of this objective is realized by determining the maximum of dFLCi

as defined by figure 9.14 (HEE: Hole extrusion experiment)
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fHEE = −max(dFLCi
). (9.4)

The negative sign is introduced to transform the max(dFLCi
) to a minimization

problem. Provided, the strain path is linear, this approach gives a reasonable
estimation of the remaining forming potential. If dFLCi

is equal to 1.0, the strain
state si lies on the forming limit curve. For strain states, which are located above
the forming limit curve, the corresponding dFLCi

value is greater than 1.0.

ε�

ε�

�� ��

����

dFLCi
= di

FLCi

Figure 9.14: Hole extrusion experiment; Definition of dFLCi
.
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Figure 9.15: Hole extrusion experiment; Sequence of the optimization.

Figure 9.16 (left) illustrates that a choice of the yield locus exponent equal to
8.0 leads to the prediction of localized necking on the basis of the reference hole
diameter. The objective function evaluations, resulting from the other yield locus
exponents, do not lead to the prediction of a material failure. All the objective
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Figure 9.16: Hole extrusion experiment; Left: Relation between the yield locus
exponent and the objective function; Right: Relation between the consideration
of the strain rate dependency of the hardening effect and the objective function.

function evaluations, which show an objective function value below −1.0 corre-
spond to a yield locus exponent of 8.0. Figure 9.16 (right) shows the analysis of
the strain rate dependent hardening effect. Provided only the objective function
values below −1.0 are considered, the stabilization effect of the strain rate depen-
dent hardening is recognizable. For the objective function evaluations, which lead
to an objective function value above −1.0, the consideration of the strain rate
dependent hardening marginally affects the distance of the most critical point
(max (dFLCi

)) to the forming limit curve.
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Figure 9.17: Hole extrusion experiment; Left: Relation between the Young’s mod-
ulus and the objective function; Right: Relation between the friction coefficient
and the objective function.

According to figure 9.17 (left), the choice of the Young’s modulus does not
affect the failure prediction. As the elastic strains are very small compared with
the plastic ones, the elastic material behavior influences the total strain state
only slightly, which explains the result of 9.17 (left). Also the friction coefficient
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does not affect the prediction of the localized necking. A correlation between the
objective function and the consideration of the kinematic hardening model is not
recognizable (figure 9.18). This result is expected, as none of the material points
undergo a change between tension and compression during the forming operation.
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Figure 9.18: Hole extrusion experiment; Relation between the consideration of
the kinematic hardening model and the objective function.

Due to the presented results, associated with the yield locus exponent equal to
8.0, a carefully identified material model is needed, in advance of the evaluation
of this experiment.
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Figure 9.19: Hole extrusion experiment; Verification of the identified unknowns
(table 8.19).

Figure 9.19 shows the prediction of the simulation on the basis of the identified
unknown parameters as given by table 8.19. In comparison to the experimental
study, the prediction of the simulation is slightly to optimistic. Consequently,
the investigated FLC leads to a slight overestimation of the forming limit with
respect to the investigated strain state, provided the constitutive laws reflect the
material and frictional response well.
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9.5 Discussion of the results

The results of the optimizations, shown in this chapter, confirm the choice of the
unknown parameters, identified by the complementary experiments. The expo-
nent of the yield locus and the friction coefficient have a negligible effect on the
value of the objective function of the u-profile experiment. However, the consider-
ation of the strain rate dependency of the hardening effect, the Bauschinger effect
and the Young’s modulus affect the prediction of the springback of this experi-
ment. The investigations also show that the application of the analyzed kinematic
hardening model should be complemented by a suitable model for considering the
dependency of the Young’s modulus with respect the plastic yielding. According
to the above presented findings, the objective function of the cylindrical deepen-
ing experiment is sensitive concerning the yield locus exponent, the consideration
of the strain rate dependency of the hardening effect and the friction coefficient.
The consideration of the Bauschinger effect and the Young’s modulus does not
influence the predicted maximum drawing depth. The results of this experiment
also show that such optimizations are not necessarily unimodal. The prediction of
the smallest possible hole diameter of the hole extrusion experiment is primarily
affected by the choice of the yield locus exponent.

9.6 Noise in numerical solutions

The u-profile, the cylindrical deepening and the hole extrusion experiment are
investigated with respect to noise of the computed quantities, caused by the FEM
simulation. The analysis is performed in the same way as introduced in chapter
8. None of the experiments shows remarkable fluctuations of the value of the
introduced objective function values due to numerical noise.

9.7 Discussion of the experiments

9.7.1 U-Profile experiment

As mentioned above, the material flow of the simulation is adapted according
to the experimentally determined one. The adaptation of the material flow is
performed by applying artificial restraining forces. Based on experience, the cor-
relation between the restraining force and the material flow in the binder zone
is assumed to be linear. Therefore a Regula Falsi iteration is deployed for the
determination of the restraining force, provided the dESCD deviates from the
measured value. In consideration of the experimental conditions, it seems to be
reasonable to allow deviations between the experimentally determined and the
predicted dESCD of ±0.5mm. For example, even under laboratory conditions it
is difficult to trim and to align the specimen with respect to the binder surface
within the tolerance of ±0.5mm.



9.7. DISCUSSION OF THE EXPERIMENTS 225

For the first simulation run, a value of the artificial restraining force has to be
specified. Furthermore, for the adaption of the material flow, a tolerance regarding
the dESCD needs to be defined and two trial restraining force values (upper and
lower bound) have to be given. The choices of the mentioned quantities, applied
in this thesis, are summarized in table 9.10.

Table 9.10: U-Profile experiment; Parameters of the material flow
adjustment.

Lower Limit 0.0N/mm
Upper Limit 20.0N/mm
Tolerance dESCE ±0.5mm

Provided, the first simulation run leads to a dESCD which is smaller than
the experimentally determined one, another forming simulation is induced. In
order to adjust the material flow a higher level of restraining force is needed.
Consequently, the upper bound is taken as a trial. Originating from the dESCD,
obtained from the second simulation, and the dESCD of the previous simulation
an adjustment of the artificial restraining force is computed on the basis of Regula
Falsi iteration. In the case the computed restraining force does not lead to the
desired material flow, further adaptations of the restraining force can be computed
by the Regula Falsi iteration. In the regular case, the upper value should lead to a
dESCD, which is larger than the one of the experiment. Consequently, the Regula
Falsi iteration can be applied for the determination of the root of the function
fMFA (MFA: Material flow adjustment), as given by

fMFA = dESCDed
− dESCDsim

. (9.5)

Provided, the upper trial value is still not sufficient to obtain a larger dESCD as
the experimentally determined one, the upper value is multiplicatively enlarged.

The trial value for the subsequent objective function evaluations is derived
from the mean values of the previously applied artificial restraining forces. This
procedure can be regarded as a simple learning strategy in order to avoid com-
puting at least three forming simulations for each objective function evaluation.
Figure 9.20 shows a comparison of the trial and the needed artificial restraining
forces. Only 26% of the objective function evaluations are associated with an
adjustment of the trial restraining force. Provided an optimization needs to be
performed under the application of a similar material, the initial restraining force
should be increased, according to the results shown by figure 9.20. The exper-
imentally determined value of the dESCD is 43.0mm. According to figure 9.21
(left), all the associated forming simulations of the objective function evaluations
comply the above given tolerance. Figure 9.21 (right) summarizes the objective
function evaluations, whose corresponding artificial restraining force is adjusted
by the application of the Regula Falsi iteration. Without exception, the difference
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between the dESCD value obtained from the forming simulation and the desired
one is very small. Additionally, the adaption of the trial restraining force con-
verged without investing more than three forming simulations (figure 9.22). The
assumed linear relation between the material flow and the artificial restraining
force is confirmed by this result. However, one has to bear in mind, that this
linear relation is only valid for small changes of the restraining forces.
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Figure 9.20: U-Profile experiment; Applied artificial restraining forces for the
adjustment of the material flow.
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Figure 9.21: U-Profile experiment; Left: The corresponding value of the dESCD

of each objective function evaluation; Right: Value of the dESCD of objective
function evaluations comprising an adjustment of the artificial restraining force.

9.7.2 Cylindrical deepening experiment

Provided, the specimen is not clamped in the binder zone, the maximum drawing
depth depends on the material flow in the binder zone. In this case the material
flow of each objective function evaluation has to be adjusted to the experimentally
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Figure 9.22: U-Profile experiment; Number of forming simulations per objective
function evaluation.

determined one, as performed for the u-profile experiment. Additionally, the
material flow also depends on the touching up procedure, which is very difficult
to consider in the simulation model. For the u-profile experiment, spacers have
been applied to avoid this effect. However, in this case spacers would cause strong
wrinkles, which leads to unstable experimental data. Therefore, as mentioned in
chapter 6, the specimen is clamped between the binder and the die. Consequently,
the maximum drawing depth depends mainly on the formability of the material.
However, as shown by the optimization, the friction, occurring in the interface
between the specimen and the tool, affects the maximum possible drawing depth.

9.7.3 Hole extrusion experiment

Optical measurement systems enable to compute the strain field on the surface
of the specimen based on the deformation of the measurement grid. The applied
experimental equipment does not support an online measurement of the deforma-
tion. Therefore, only the strain field, associated with the state of the specimen
after tool opening, can be considered. In this context the question arises, whether
it would be possible to validate the forming limit curve directly by the strain field,
derived from the optical measurement system. However, for the application of the
forming limit curve, the strain field needs to be known at the midsurface, which
cannot be determined without additional mechanical assumptions. Furthermore,
the applied laser technology for inducing the measurement grid on the surface of
the specimen leads to imperfections on the sheet metal surface, which affects the
onset of localized necking.

For the comparison of the measured and the predicted strain state, localized
necking should be avoided. An experimental analysis showed that the occurrence
of localized necking can be avoided by choosing the hole diameter d ≥ 11mm
(material: DX54).

Therefore, in this thesis the results of the optical measurement system are



228 CHAPTER 9. VALIDATION EXPERIMENTS

only applied for the validation of the predicted strain field. The strain difference
between the outer Gaussian integration point and the surface is neglected.

For obtaining an equivalent mechanical state of the specimen compared with
the experiment, the forming simulation is complemented by a springback sim-
ulation. Figure A.7 shows the difference between the first and second princi-
pal strains. The prediction of the simulation is in good accordance with the
experimentally determined strain field. However, deviations are visible in the
highlighted zones. These deviations can be explained by the analysis of the mea-
surement grid. The accuracy of the computed strain field is interfered in the
highlighted zones, as the grid points are strongly distorted there. Therefore, the
mentioned deviation should be an artifact.



Chapter 10

Uncertainties in the input
data

For the investigations of the previous chapters, the quantities, derived from the
fundamental experiments, are assumed to be given. These quantities will be re-
ferred to as input data in this chapter. However, their true values are unknown.
In this context the question arises, whether the conclusions of the inverse de-
termination regarding the yield locus parameters, the Young’s modulus and the
friction coefficient depend on the uncertainties of the input data. Additionally,
the conformity between the simulation based predictions and the measured data
of the validation experiments might also be affected by these uncertainties. Un-
fortunately, the determination of the confidence interval of the input data is very
costly. Hence, the interval of the uncertainty is estimated on the basis of experi-
ence and the mean is assumed to be coincident with the measured values.

A possible solution for investigating this question could be a design of ex-
periments (DOE) of the input data in the estimated range of their uncertainty.
Thereby, for each variation of the input data, the unknowns (Young’s modulus,
yield locus parameters, friction coefficient) are inversely determined according to
the introduced one-dimensional methods. For the identification of the yield locus
parameters, the one-dimensional method might not be sufficient for other mate-
rials. Provided for the calibration of the yield locus an inverse identification of
the yield locus exponent, the Rb value and the weighting of the input data are
necessary, a multidimensional optimization needs to be performed. Such a proce-
dure based on a design of experiments gives the sensitivity of the input data with
respect to the inversely identified unknowns. These sensitivities allow evaluating
the reliability of the inverse parameter identification. Provided, this evaluation
leads to satisfying results, the validation experiments could be analyzed in the
same way by computing the sensitivity of the uncertain input data with respect
to the accordance between the simulation and experiment. For the treatment of
the validation experiments, it seems to be reasonable to keep the inversely deter-

229
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mined model parameters fixed, as this study is focused on the investigation of the
uncertainty with respect to the input data. On the basis of such an investigation
it can be assured, that the conclusions, derived from the validation experiments,
do not strongly depend on the uncertainty of the input data. The needed input
data depends on the choice of the material and friction model and its calibration
procedure. Subsequently, the applied material model comprises a model for elas-
ticity, the Barlat 2000 yield locus, an isotropic hardening and the consideration
of the strain rate dependency of the hardening effect. The considered Coulomb
friction law implies only one model parameter - the friction coefficient. This pa-
rameter is determined inversely by the friction experiment and, therefore, the
input data does not contain any quantity regarding the friction model. The cali-
bration of the Barlat 2000 yield locus is performed as given in chapter 7. From the
chosen models and the calibration procedure of the yield locus follows a thirteen
dimensional parameter space for the mentioned investigations (see table 10.1). In
consideration of the commonly available hardware resources in an industrial envi-
ronment and the chosen material model, such a procedure would be too expensive.
If a material model and its calibration procedure needs less input quantities, the
discussed approach could be affordable in terms of computational effort.

10.1 An optimization based approach

However, in this thesis, an approach is preferred, which is able to cope with all
common material models and calibration procedures applied in the field of sheet
metal forming simulations. Hence, another procedure is suggested. Instead of
performing a design of experiment, an optimization problem can be formulated.

Table 10.1: Assumed tolerances of the input data.

Parameter Tolerance Parameter Tolerance

σu0◦ ±1% m value ±2%
σu45◦ ±1% ∆κ(1.5) (Scaling Flow Curve) ±1% w.r.t. κ(1.5)
σu90◦ ±1% ∆Y (Shift Flow Curve) ±1% w.r.t. Y0
σb ±1% υ (Poisson ratio) ±5%
σs ±1% tb (Blank Thickness) ±1%
R0◦ ±5%
R45◦ ±5%
R90◦ ±5%

The parameter space of the optimization follows from the input data and the
assumed uncertainties. The objective is to find a vector in the search space,
which maximizes the deviation between the simulation result and the measured
data of the considered experiments. The objective function, introduced for each
experiment in the previous chapters, can be also applied for this optimization by
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transforming the minimization into a maximization problem (see chapter 2). As
a result, the worst case regarding the influence of the uncertainty of the input
data on the conformity between the investigated experiment and the simulation
based prediction is obtained. This approach is a compromise in order to ana-
lyze the quality of the inverse determined parameters by investing a minimum of
computational effort.

For the validation experiments less computational effort is needed to analyze
the sensitivity of the uncertainties with respect to the conformity between the
simulation result and the measured data, as for each point in the parameter space
only one simulation run is needed for obtaining the objective function value.
However, today, the application of a DOE is in this case still too expensive and
therefore also the same optimization based approach is applied for the validation
experiments.

10.2 Treatment of the modified input data

Table 10.1 summarizes the input data, needed for the calibration of the cho-
sen constitutive laws. Furthermore, this table shows the assumed uncertainties
regarding the input data. The definition of β and ∆Y is given below. The pa-
rameters of the yield locus are calibrated for each computation of the objective
function before the forming simulation is performed. Consequently, any change
of the input data concerning the calibration of the yield locus parameters is con-
sidered. The hardening effect is in this work described by a flow curve, which is
given by discrete supporting points. It does not seem to be reasonable to include
each point of the flow curve to the set of the input data. The corresponding
dimension of the search space would grow enormously, depending on the amount
of supporting points, which is usually greater than 10. Consequently, the flow
curve is assumed to be given and the uncertainty with respect to the true value of
the flow curve is reflected by two mapping operations, as given below. The first
mapping, shown by

YSHFC(ǫ
p,∆Y ) = Y0 +∆Y + κ (ǫp) , (10.1)

is a shift of the flow curve ∆Y parallel to the axis of the equivalent stress.
This shift of the flow curve is introduced for modeling the uncertainty with re-
spect to the determination of the yield strength (SHFC: Shift flow curve). The
second mapping reflects the uncertainty regarding the slope of the experimentally
determined flow curve. According to

YSCFC(ǫ
p, β) = Y0 + βκ (ǫp) , β = 1 +

∆κ (ǫpr)

κ (ǫpr)
, (10.2)

the scaling operation is independent of the yield strength Y0. Hence, both
mapping operations are independent of each other. The scaling factor β is derived
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from a given variation ∆κ, which is defined with respect to a given equivalent
plastic strain ǫpr (SCFC: Scaling flow curve).

On the basis of the modified static flow curve, a set of flow curves representing
each a specific strain rate is computed by applying the strain rate sensitivity
model. As the m value is a parameter of the strain rate sensitivity model, the
value of this parameter follows directly from the modified input data. Also the
blank thickness tb and the Poisson Ratio υ possess the same property. In this
thesis, the uncertainty of the input data, needed for the identification of the
model parameters of the kinematic hardening model, is not considered.

10.3 Investigation of the optimization algorithm

For performing the mentioned investigations, a suitable optimization algorithm
needs to be chosen. Subsequently, the performance of the (1, λ)-DR-ES, the
(µ/µ, λ)-CMA-ES, the (1 + 1)-CMA-ES and the SQP is compared on the ba-
sis of the YLIT-4-BMW experiment. It is assumed that the obtained findings
are representative for this optimization task. Therefore, the chosen optimiza-
tion algorithm is applied for the investigation of the other experiments. For the
mentioned investigation, the unknown parameters of the friction and material
model are chosen as given by table 8.19. Figure 10.1 shows the sequence of the
optimizations.

Evaluation of the Objective Function 

Optimization 

 

Maximization of 

the difference 

between the 

simulation based 

prediction and the 

measured data of 

the  experiment. 

 

Measured Data Pre-Processing 

Simulation 

Post-Processing 

Fixed Parameter     

Exponent Barlat 2000, Friction, Strain Rate 

Dependency, Kinematic Hardening, Young’s Modulus 

Calibration of the Yield Locus    

Uncertainty  

Input data 

Figure 10.1: Sequence of the optimizations.

The figures 10.2 and 10.3 show the performance of the investigated optimiza-
tion algorithms based on the YLIT-4-BMW experiment. Bearing in mind the
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Figure 10.2: YLIT-4-BMW; Progression of the optimization; Left: Application of
the (1, λ)-DR-ES algorithm; Right: Application of the SQP algorithm.

-0.20
-0.18
-0.16
-0.14
-0.12
-0.10
-0.08
-0.06
-0.04
-0.02
0.00

0 25 50 75 100

V
a

lu
e

 O
b

je
c
ti
v
e

 
F

u
n

c
ti
o

n

Number Objective Function 
Evaluation

-0.20
-0.18
-0.16
-0.14
-0.12
-0.10
-0.08
-0.06
-0.04
-0.02
0.00

0 25 50 75 100

V
a

lu
e

 O
b

je
c
ti
v
e

 
F

u
n

c
ti
o

n

Number Objective Function 
Evaluation

Figure 10.3: YLIT-4-BMW; Progression of the optimization; Left: Application
of the (µ/µ, λ)-CMA-ES algorithm; Right: Application of the (1 + 1)-CMA-ES
algorithm.
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limited budget of 100 objective function evaluations, the (1, λ)-DR-ES is the best
suitable procedure for this optimization task.

10.4 Experiments

For each experiment, the worst case, identified by this optimization approach, is
compared with the prediction of the simulation implying the standard material
and friction model calibration (table 10.2). In table 10.2 the absolute values of
the objective function evaluations are given. As mentioned above, the uncertainty
of the measured quantities has been assumed. Hence, a wider range of interval of
the uncertainty could lead to worse results. The figures 10.2, 10.3, 10.4, 10.5 and
10.6 show the progression of the optimizations of the experiments. According to
these figures, the computed worst case regarding the prediction of the measured
data of each experiment should be reliable.

10.4.1 YLIT-4-BMW

Even with the worst possible set of measured quantities, obtained from the fun-
damental experiments, the results of the YLIT-4-BMW are predicted well (table
10.2). Consequently, the identified yield locus exponent gives satisfying results in
the domain of the uncertainty of the fundamental experiments. A similar result
is reported in [110], which is based on the experiment YLIT-1-TKSE.

10.4.2 Bending experiment

As shown by table 10.2, the prediction of springback is affected by the uncertainty
of the input data. In addition, the springback of the specimen is also strongly
affected by the gap width, as mentioned in chapter 9. Consequently, this exper-
iment has to be performed very carefully, in order to exclude all known negative
effects. However, this investigation shows, that the inverse determination of the
Young’s modulus cannot be performed highly accurate, as the difference between
choosing the Young’s modulus equal to 190000N/mm2 and 210000N/mm2 is 0.5◦

(see figure 8.37). Nevertheless, it seems to be better to derive a reduction of the
Young’s modulus based on the bending experiment than using the standard liter-
ature value of the Young’s modulus. If the relation between the Young’s modulus
and the accumulated plastic strain is given, the bending experiment can serve as
a validation experiment.

10.4.3 Friction experiment

The analysis of the friction experiment does not show a strong dependence of
the uncertainty concerning the input data on prediction of the strain state at the
reference position P . Therefore, according to this examination, this experiment
is suitable for an inverse determination of the friction coefficient. But it has to
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Figure 10.4: Progression of the optimization; Left: Investigation based on the
bending experiment; Right: Investigation based on the friction experiment.

be mentioned that the objective of the friction experiment is not to calibrate the
Coulomb model for press shop conditions. The friction coefficient is only needed
for the simulation of the presented experiments.

10.4.4 U-Profile experiment

Table 10.2 does not show a strong effect of the uncertainty of the input data with
respect to the predicted side wall curl. The deviation of the side wall rotation and
the flange rotation between the standard model calibration and the worst case is
larger. Consequently, a validation based on this experiment should take these
uncertainties, induced by the input data, into account. This optimization is per-
formed by the selection of the parameters as given by table 8.19. Consequently,
the optimization is performed without taking the kinematic hardening effect into
account. However, a similar result is expected if the stress-strain relation com-
prises the kinematic hardening model and the extrapolated relation between the
accumulated plastic strain and the Young’s modulus.

10.4.5 Cylindrical deepening experiment

As shown in table 10.2, the maximum deviation between the experimentally de-
termined drawing depth and the predicted one is slightly higher than the one ob-
tained from identified material model (see table 8.19). The optimization results
show (figure 10.5 (right)) the existence of choices of the input data, belonging
to the domain of uncertainty, which lead to a precise prediction of the drawing
depth.

10.4.6 Hole extrusion experiment

The value of the objective function represents the distance (see chapter 9) of the
most critical point in the principal in-plane strain space with respect to forming
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Figure 10.5: Progression of the optimization; Left: Investigation based on the
u-profile experiment; Right: Investigation based on the cylindrical deepening ex-
periment.

limit curve. According to table 10.2, the dependency of the objective function
value with respect to the uncertainty of the input data is marginal.
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Figure 10.6: Progression of the optimization; Investigation of the hole extrusion
experiment.

10.5 Summary

Generally, for the inverse determination of the unknown model parameters and
the validation of constitutive laws the effect of the uncertainty with respect to the
input data should be taken into consideration. Otherwise, the reliability of the in-
vestigations remains unknown. The prediction of the quantities, which are related
to the springback effect shows the strongest sensitivity regarding the uncertainties
of the input data (u-profile experiment, bending experiment). In consideration of
the limited budget of objective function evaluations for the proposed optimization
task the application of the (1, λ)-DR-ES is recommended.
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Table 10.2: Summary of the investigations regarding the uncertain-
ties of the input data.

Experiment Type Investigated Quantities Value
Objective
Function

YLIT-4-
BMW

RD/TD ǫ1 ǫ2 dMDD

[mm]
Simulation RD 0.409 -0.159 41.9 0.1033

TD 0.400 -0.175 43.7
Simulation RD 0.411 -0.165 42.9 0.4169
Worst Case TD 0.402 -0.184 44.9
Measured Data RD 0.397 -0.145 41.3

TD 0.429 -0.164 42.5

Bending Angle α[◦]
Experiment Simulation 82.56 0.0066

Simulation 82.80 0.2309
Worst Case
Measured Data 82.57

Friction ǫ1 ǫ2
Experiment Simulation 0.129 -0.089 0.00202

Simulation 0.129 -0.091 0.00369
Worst Case
Measured Data 0.130 -0.088

U-Profile αSWR[
◦] αFR[

◦] dSWC [mm]
Experiment Simulation 8.9 2.54 12.2 0.00548

Simulation 9.7 2.69 13.3 0.16055
Worst Case
Measured Data 9 2.5 12

Cylindrical dMDD[mm]
Deepening Simulation 23.8 0.8
Experiment Simulation 23.9 0.9

Worst Case
Measured Data 23.0

Hole max (dFLCi
)

Extrusion Simulation 0.919 0.919
Experiment Simulation 0.943 0.943

Worst Case
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Chapter 11

Summary and outlook

This thesis is focused on constitutive laws, which are suitable for forming sim-
ulations in an industrial environment. For modeling the elasto-plastic material
response, an elasticity model, a yield locus and a hardening model needs to be
chosen. Additionally, the Bauschinger effect, the strain rate dependency of the
hardening effect and the dependency of the Young’s modulus with respect to
plastic yielding might need to be taken into consideration. The completion of the
material model by the consideration of the Bauschinger effect or the strain rate
dependent hardening is interpreted as a boolean model parameter and is consid-
ered to be unknown. For reflecting the dependency of the Young’s modulus with
respect to plastic yielding, this model parameter is also treated as unknown. The
frictional response between the sheet metal and the tool surface is described by the
Coulomb model, which comprises one model parameter - the friction coefficient.
In this context, this parameter is also assumed to be unknown.

For the identification of potentials regarding the improvement of the predictive
capabilities of the forming simulation, additional experiments are necessary. The
examination of these experiments can be performed by formulating optimization
problems, which comprise an objective function quantifying the deviation between
the simulation based prediction and the measured data. The task of the optimiza-
tion is to search for a choice of the unknown model parameters, which leads to the
best possible prediction of the measured data. The result of such an optimiza-
tion is twofold: Firstly, the best possible predictive capability of the simulation
based on the selected material model (elasticity model, yield locus and harden-
ing law) is known by the variation of the unknown model parameters. Secondly,
information regarding the sensitivity of the unknown model parameters with re-
spect to the simulation based prediction is obtained. Thereby, the optimization
based procedure assures the consideration of the interactions between the un-
known model parameters. For this task, a (1, λ)-DR-ES is applied, which belongs
to the group of evolutionary strategies. This algorithm allows treating integer-
valued and real-valued object variables. Additionally, as this algorithm is based

239
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on statistical methods, the (1, λ)-DR-ES allows combining the task of searching
for an optimum and deriving information regarding the sensitivities of the object
variables within a single optimization. Subsequently, the findings, obtained from
this procedure are discussed.

The presented investigations based on the YLIT-Experiments show that the
Barlat 2000 yield locus is advantageous compared with the widely applied Hill
´48 or Barlat ´89 yield locus for modeling the material response of the steel grade
DX54. Unfortunately, the choice of the exponent of the Barlat 2000 model cannot
be determined by the considered fundamental experiments. A disadvantageous
choice of this exponent can lead to worse simulation based predictions than apply-
ing a simpler model like the Hill ´48. Therefore, a carefully performed validation
has to precede the application of a complex yield locus like the Barlat 2000 for the
forming simulation. A general ranking of the suitability with respect to industrial
applications cannot be given, as other steel grades or aluminum alloys might be
sufficiently described by a model comprising less model parameters like the Hill
´48. Basically, the Barlat ´89 also enables a satisfactory modeling of the material
response in terms of the YLIT-Experiments. However, this yield locus does not
reach the same level of quality concerning the reproduction of the measured stress
and strain rate ratios, derived from the fundamental experiments, like the Barlat
2000 yield locus. Therefore, in this thesis the Barlat 2000 yield locus is preferred,
as this model should give a better prediction of the material response for arbitrary
stress states.

The analysis shows the need for taking the strain rate dependency of material
hardening into account, if the Barlat 2000 yield locus is applied and the flow curve
is entirely derived from the fundamental experiments. Otherwise, the simulations
of the YLIT-Experiments show unsatisfactory predictions of the measured data.
The investigation also shows the connection between modeling the material hard-
ening and the yield locus. If the strain rate dependency of the material hardening
is taken into account and the Hill ´48 yield locus is applied, the maximum draw-
ing depth is overestimated. The yield locus Hill ´48 leads to better predictions
concerning the YLIT-Experiments, if the strain rate dependency of the material
hardening is not taken into account. However, one has to bear in mind that these
findings are only valid for the chosen way of deriving the flow curve. The indus-
trial relevance of the examinations based on the YLIT-Experiments is shown in
[114] based on an industrial part (body side). This publication comprises an inves-
tigation of the influence of the choice of the yield locus, its exponent and the con-
sideration of the strain rate dependency of the hardening on the prediction of the
material thinning. Essentially, the findings derived from the YLIT-Experiments
are confirmed by this study. For example the application of the Barlat 2000 yield
locus without consideration of the strain rate dependency of the hardening effect
leads to an unrealistic prediction of the material thinning.

Another effect, investigated in this thesis, is the dependency of the Young’s
modulus with respect to plastic yielding. Based on the bending experiment, the
observations of Doege et al. can be confirmed. The bending experiment enables
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to estimate a reduction of the Young’s modulus with respect to the dimension
of equivalent plastic strain induced by this experiment. The examination of the
u-profile experiment showed, that this approach leads to an improved prediction
of the springback. Using this reduced Young’s modulus, the consideration of
the Bauschinger effect worsens the prediction of the springback behavior of the
u-profile. However, if a model is applied, which considers the non-linear depen-
dency of the Young’s modulus with respect to plastic yielding and the Bauschinger
effect, a satisfying prediction of the springback of the u-profile can be obtained.
Thereby, the relation between the Young’s modulus and the accumulated plastic
strain, which is taken from Doege et al., is extrapolated. For getting more in-
sight into this issue, the determination of the Young’s modulus with respect to
the maximum expected level of accumulated plastic strain, occurring in industrial
forming simulations, is necessary. However, this effect of the material response
needs to be analyzed on the basis of another experiment. The inverse determina-
tion of the reduced Young’s modulus based on the bending experiment, is only a
simplified approach in order to improve the springback prediction. Furthermore,
an experiment is needed, which shows a stronger sensitivity with respect to the
Bauschinger effect.

For the description of the frictional response between the sheet metal and the
tool surface, the Coulomb model is applied. The examination of this model is
performed in order to describe the frictional response concerning the experimen-
tal conditions of the introduced experiments. Thereby, the friction coefficient is
determined inversely based on the friction experiment. For an improved predic-
tion of the frictional response under the press shop conditions, the applied model
should take the temperature, the pressure and the relative velocities between the
tool and the sheet metal in the contact interface into consideration. If such a
model and its calibration is available, the introduced friction experiment can be
applied for validation purpose.

The strain state, induced by the hole extrusion experiment cannot be easily
obtained from the Nakajima test. However, a tensile test enables to create such
a strain state. Therefore, the hole extrusion test can be performed to validate a
forming limit curve, derived from the results of the Nakajima and the tensile test.
This validation assures the right choice of the slope of the forming limit curve with
respect to its left branch. The validation of the prediction of localized necking with
respect to the plane strain state is of special importance as most of the industrial
deep drawing parts fail by this strain state. Therefore, the validation of the
predictive capability of the forming simulation is complemented by the cylindrical
deepening experiment. The analysis of this thesis shows that the applied forming
limit curve is able to reflect the failure mode localized necking sufficiently accurate
with respect to the investigated strain states using the identified constitutive laws
and their parameters. In other words, the prediction of the simulation is in
accordance with the experimental observations concerning the onset of localized
necking.
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The sensitivities, obtained from the optimization based investigations, allow
formulating a simplified inverse determination of the yield locus exponent of the
Barlat 2000 yield locus, the reduction of the Young’s modulus and the identifica-
tion of the friction coefficient of the Coulomb model. Thereby, the determination
of the yield locus exponent has to precede the identification of the Young’s mod-
ulus and the friction coefficient. Provided the Rb value and the weighting of the
stress and strain rate ratios, obtained from the fundamental experiments, are
known, the search for the yield locus exponent is one dimensional. By applying
the golden section interval division, within 7 objective function evaluations, a
satisfying value of the yield locus exponent can be computed for the investigated
material. The YLIT-Experiments also allow to determine the weighting of the
input data and the Rb value. In this case the object variable space is 10 dimen-
sional, if the Barlat 2000 yield locus is calibrated. As this search space is solely
real valued, the (1, λ)-DR-ES, the (µ/µ, λ)-CMA-ES, the (1+1)-CMA-ES and the
SQP algorithm are investigated. The best performance is obtained by applying
the (1, λ)-DR-ES.

The inverse determination of the friction coefficient and the reduction of the
Young’s modulus can be performed simultaneously. In both cases, the dimension
of the parameter space is one-dimensional. The best of the investigated methods
for finding the friction coefficient is the Lagrange interpolation. The reduction
of the Young’s modulus can be efficiently determined by applying the Regula
Falsi iteration. However, the friction coefficient as well as the reduction of the
Young’s modulus can be also efficiently determined by applying the golden section
interval division. Generally, the result of the inverse determination of unknown
parameters depends on the formulation of the universal and non-universal laws
of nature and their numerical solution. Therefore, if possible, direct methods
should be preferred. Provided, direct methods for the determination of the yield
locus exponent, the Young’s modulus and the friction coefficient are available, the
introduced complementary experiments can serve as validation experiments.

The inversely identified unknown parameters should lead to the desired pre-
dictive capability of the constitutive laws. In order to analyze the quality of the
chosen way of modeling the material and the frictional response, the predictions
of the simulation and the measured data are compared on the basis of the valida-
tion experiments. Obviously, the calibrated constitutive laws are only satisfying,
if they lead to a successful prediction of the measured data of all the validation
experiments. As the amount of validation experiments is limited, the underlying
validation should be interpreted as an indication of the predictive capability of the
forming simulation. However, this procedure should not be regarded as proof of
the general validity of the chosen constitutive laws, their calibration, the applied
universal laws of nature and the associated numerical solution.

The measured data, obtained from the fundamental experiments is expected
to deviate from the true values. For the investigation of the related consequences
concerning the inverse determination of the discussed model parameters and the
performed validations, an optimization based approach is suggested. Thereby, the



11.1. OUTLOOK 243

space of the object variables comprises all the measured data, obtained from the
fundamental experiments. The objective of the optimization is to determine the
worst possible simulation based prediction by considering the uncertainty with
respect to results obtained from the fundamental experiments. For this investi-
gation, the inversely determined unknowns are excluded from the search space.
Provided, the worst possible prediction of the simulation still gives acceptable
results, the influence of this uncertainty is assumed to be small. In this context,
a general valid definition for the distinction between acceptable and unacceptable
results cannot be given, as such a classification depends on the needed predictive
capabilities of the forming simulation. As the associated search space of this op-
timization is real-valued, the performance of different optimization algorithms is
compared. The best performance is obtained by applying the (1, λ)-DR-ES algo-
rithm. Apart from the experiments related to the springback effect, none of the
investigated experiments show a strong influence of the uncertainty of the input
data with respect to the accordance between the simulation and the measured
data, which confirms their desired field of application. However, the bending ex-
periment can only give an estimation of the reduction of the Young’s modulus in
order to capture its dependency with respect to plastic yielding.

The presented results confirm that a stress-strain relation, consisting of a
complex material model, does not necessarily lead to an improved accuracy of
the forming simulation. All the known effects of the material response need to
be analyzed in order to obtain the desired benefits from a complex model. Ad-
ditionally, an extensive validation procedure is necessary in order to assure the
functionality of the applied stress-strain relation. The (1, λ)-DR-ES shows the
best performance with respect to the optimization tasks, presented in this thesis,
among the investigated algorithms. An exception is the calibration of the Barlat
2000 yield locus, which seems to be an unimodal optimization problem within the
investigated search space. Therefore, the application of the SQP in combination
with an additive aggregation of the objectives is recommended for this task.

In this thesis, potentials and a procedure for the identification and validation
of material models are shown, in order to maximize the benefit of the forming
simulation. Additionally a method, for taking the uncertainties of the input data
for the identification and validation of material models into account, is suggested.

11.1 Outlook

The most limiting factor for the presented investigations is the computational cost
of the FEM simulations. In chapter 10 the effect of the uncertainty with respect
to the input data on the identification and the validation of material models is
examined. For this task the budget of 100 objective function evaluations is rather
small. More objective function evaluations would be desirable in order to obtain
a more reliable assessment of this issue.

The investigations of this thesis are limited to a single batch of the considered
material. However, different batches of the same material might show scattering
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material properties, which can for instance affect the feasibility of the parts and
their springback behavior. For the consideration of fluctuating material proper-
ties in an industrial environment, a suitable compromise between the benefit of
modeling this effect and the related additional cost has to be found, since it seems
to be too expensive to perform the presented investigations for different batches
of the same material.

The assumption of an isotropic hardening behavior might not be suitable for
all steel grads and aluminum alloys, applied for a car body. Consequently the
information regarding the material hardening with respect to different stress states
obtained from the fundamental experiments, could be utilized for the calibration
of enhanced material models. As a consequence, the shape of the yield locus
changes depending on the material hardening. As the shape of the yield locus
has a significant influence on the predicted strain and stress states, such a model
needs to be validated very carefully. The findings, which result from the YLIT-
Experiments, show that slight modifications of the yield locus shape can cause
significant changes of the predicted strain state. The challenge of deploying a
yield locus, which is able to consider the anisotropic hardening behavior, is to
assure for any deformation history a meaningful response of the model. Possible
mathematical models for taking an anisotropic hardening into account can be
found in [115] and [101]. At this point one should also think of a non-associative
flow rule, which would allow combining a simple flow potential with a complex
yield locus. Such a model allows avoiding any negative side effects of a changing
yield locus surface, caused by an anisotropic hardening law.

None of the presented experiments is highly sensitive with respect to the
Bauschinger effect. Therefore, an additional experiment for the validation of
a kinematic hardening model is required. Such a validation should also take into
account that the Bauschinger effect especially affects the material response of
material points, which undergo a non-linear strain path.

High strength steels can show apart from localized necking the failure modes
shear and normal fracture. For the prediction of such failure modes the forming
limit curve is not suitable. Hence, other failure criteria have to be deployed and
the validation process has to be complemented by further experiments for assuring
their predictive capability.

Today, theoretical physics is the best known method for predicting the behav-
ior of the nature on the basis of few experimental observations. Nevertheless, the
laws, given by theoretical physics are not equivalent to reality. Thereby, in the
future, theoretical physics will only improve but will never be able to describe
nature exactly. As the forming simulation is embedded in this theoretical frame
work, one should never expect exact predictions from it.
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Additional figures
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Figure A.1: Production process of a side panel.
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Figure A.2: YLIT-Experiments; Left: Shape of the specimen of the YLIT-3-BMW
after forming; Right: Shape of the specimen of the YLIT-4-BMW after forming.

Figure A.3: Bending experiment; The shape of the specimen after the bending
operation.

Figure A.4: Left: Hole extrusion experiment; The shape of the specimen after the
forming operation; Right: U-Profile experiment; The shape of the specimen after
the forming operation.
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Figure A.5: Bending experiment; Field of the accumulated plastic strain on the
upper surface.
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Figure A.6: U-Profile experiment; Field of the accumulated plastic strain on the
upper surface.
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Figure A.7: Hole extrusion experiment; Comparison of the predicted and mea-
sured strain field.
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Tensor analysis

The subsequently presented symbols and tensors are taken from [60], [62] and
[116].

B.1 Symbols

· a · b Contraction of the inner indices; Example: a and b are
vectors ai, bj ; The contraction of the inner indices is iden-
tical with the scalar product aibi.

: a : b Double contraction of the inner indices; Example: a and
b are second-order tensors (aij , bkl); The double contrac-
tion of the inner indices is given by aijbij .

⊗ a⊗ b Dyadic product; a⊗ b := aibj

tr (•) tr(a) Trace of a tensor; Example: For a second order tensor a
the trace is given by tr(a) = aii

‖•‖ ‖a‖ L2 Norm of a vector, which is the Euclidean distance and

defined by ‖a‖ =
(∑n

i=1 a
2
i

) 1
2
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B.2 Tensors

(1)ij = δij Second-order identity tensor; Example:
For a vector a, the following equation ap-
plies: 1a = a.

(I)ijkl =
1
2 (δikδjl + δilδjk) Fourth-order symmetric identity; Exam-

ple: For a second-order tensor a, the re-
lation I : a = a : I = sym (a) is valid.

(1⊗ 1)ijkl = δijδkl For a second-order tensor a, the identity
satisfies (1⊗ 1) : a = tr (a)1.



Appendix C

Shape functions

As an example, the shape functions of an eight-node hexahedral element are given
below [60]. Figure C.1 summarizes the constants of expression (C.1) and shows a
visualization of the element.

NI (ξ) = NI (ξ, η, ζ) =
1

8
(1 + ξIξ) (1 + ηIη) (1 + ζIζ) ; I = 1, . . . , 8 (C.1)

�

�

�

�

�

�

�

� I ξI ηI ζI

1 −1 −1 −1
2 1 −1 −1
3 1 1 −1
4 −1 1 −1
5 −1 −1 1
6 1 −1 1
7 1 1 1
8 −1 1 1

Figure C.1: Left: Visualization of an eight-node hexahedral element; Right: Def-
inition of the constants of the shape functions.
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Appendix D

Numerical parameters
LS-Dyna

All forming and springback simulations of this thesis are performed with the sim-
ulation system LS-Dyna. Table D.1 summarizes the choice of important numerial
parameters.

Table D.1: Choice of numerical parameters.

Name Parameter Value

Contact Tool/Specimen

Geometric Boundary Condition Soft 4
Dynamic Boundary Condition Soft 0
Offset Type Real
Shell Element Type 2
Integration Points In Thickness Direction 7
Type Integration In Thickness Direction Gauss
Solution Scheme

Forming Simulation Explicit
Springback Simulation Implicit
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Samenvatting

In het afgelopen decennium is de toepassing van simulatie op basis van de eindige-
elementenmethode (EEM) in de auto-industrie uitgegroeid tot een evaluaties-
tandaard voor metaalplaatvormingsprocessen. De technische en economische vo-
ordelen van simulatie op EEM-basis hangen sterk af van de nauwkeurigheid van
de berekende voorspelling. Het voorspellend vermogen van simulaties op EEM-
basis wordt in hoofdzaak bepaald door de gekozen natuurkundige theorie en de
numerieke oplossing ervan. Deze dissertatie richt zich met name op materiaalmod-
ellen die tot de groep der constitutieve wetten behoren. Voor elk materiaal moet
een specifiek materiaalmodel worden aangewezen en geijkt. Dit materiaalmodel
geeft de respons weer van de materie van een mechanisch systeem dat onder in-
vloed van krachten wordt vervormd. In de afgelopen decennia is een variëteit
aan materiaalmodellen voorgesteld om het elastoplastische materiaalgedrag van
een metaalplaat te modelleren. Voor het kiezen van een materiaalmodel voor een
gegeven materiaal is helaas geen algemene aanbeveling voorhanden. Dit werk
heeft een drieledig doel: ten eerste het vaststellen van het potentieel van de ma-
teriaalmodellen teneinde het voordeel van de EEM-vormgevingssimulatie te max-
imaliseren; ten tweede het ontwikkelen van een identificatie- en validatieproces
voor materiaalmodellen; en ten derde het onderzoeken welk effect de afwijkin-
gen tussen de gemeten gegevens en de werkelijke waarden van de ijkexperimenten
hebben op het voorspellend vermogen van materiaalmodellen.

De in dit werk gëıntroduceerde experimenten zijn ontworpen ten behoeve van
het onderzoek van materiaalmodellen en hun modelparameters. Onder ideale om-
standigheden vertoont ieder experiment een andere gevoeligheid ten aanzien van
het materiaalmodel en de daarmee samenhangende parameters voor het voor-
spellen van de gemeten grootheden. Deze gewenste eigenschap van de experi-
menten moet echter gewaarborgd zijn. Over het algemeen is het lastig om al
deze gevoeligheidswaarden uitsluitend met theoretische beschouwingen te voor-
spellen. Op basis van de vastgestelde gevoeligheidswaarden en de kennis omtrent
de keuze van de modelparameters die tot een nauwkeurige voorspelling van de
meetgegevens leiden, kan men de onderzochte experimenten selecteren ten be-
hoeve van identificatie en validatie van het geselecteerde materiaalmodel. Ter
bepaling van de gewenste informatie kan een optimalisatieprobleem worden gefor-
muleerd. Het doel is om de afwijking tussen de voorspelling van de simulatie
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en de meetgegevens zo klein mogelijk te maken door de best mogelijke keuze
van modelparameters te zoeken. Een tweede component van deze oplossing is
het toepassen van evolutiestrategieën. Aangezien deze optimalisatiealgoritmen
op statistische methoden berusten, wordt ook informatie over de gevoeligheid van
de modelparameters gegeven.

Volgens de gepresenteerde resultaten leidt een complex materiaalmodel niet
noodzakelijkerwijs tot grotere nauwkeurigheid van de vormgevingssimulatie. In
deze dissertatie wordt bijvoorbeeld aangetoond dat het complexe vloeiopper-
vlak volgens Barlat 2000 gunstig kan zijn in vergelijking met het veelgebruikte
vloeioppervlak volgens Hill ´48 voor het modelleren van de materiaalrespons van
staalkwaliteit DX54. De keuze van de exponent van het Barlat 2000-model kan
meestal niet door de standaard ijkexperimenten worden bepaald. Deze parameter
heeft helaas invloed van betekenis op het voorspellend vermogen van het mate-
riaalmodel. Dit onderzoek toont aan dat het vloeioppervlak volgens Barlat 2000
zijn voordelen kwijtraakt als deze modelparameter ongeschikt wordt gekozen. De
gevoeligheidswaarden die zijn verkregen uit op optimalisatie gebaseerde onder-
zoekingen in combinatie met een geschikt experiment, maken het mogelijk om een
vereenvoudigde inverse bepaling van de vloeioppervlakexponent van het vloeiop-
pervlak volgens Barlat 2000 te formuleren. Behalve de vloeioppervlakexponent
worden ook andere modelparameters en uitbreidingen van het materiaalmodel
in beschouwing genomen. Het beste voorspellende vermogen van de vormgev-
ingssimulatie wordt verkregen als alle relevante effecten van de materiaalrespons
door het materiaalmodel in beschouwing worden genomen.

Om de functionaliteit van het toegepaste materiaalmodel te waarborgen is
een uitgebreide validatieprocedure noodzakelijk. Het geijkte materiaalmodel is
pas bruikbaar als het een geslaagde voorspelling van de meetgegevens van alle
validatie-experimenten oplevert. Aangezien het aantal validatie-experimenten
beperkt is, moet de onderliggende validatie worden gëınterpreteerd als een in-
dicatie van het voorspellend vermogen van de vormgevingssimulatie. Deze proce-
dure mag echter niet worden gezien als een bewijs van de algemene validiteit van
het gekozen materiaalmodel, de ijking daarvan, de overige mechanische wetten en
de daarmee samenhangende numerieke oplossing.

De uit de ijkexperimenten verkregen meetgegevens zullen naar verwachting
van de werkelijke waarden afwijken. Voor het onderzoek van de daarmee verband
houdende gevolgen wat betreft de identificatie van het materiaalmodel en de ijking
van de parameters daarvan wordt een op optimalisatie gebaseerde benadering
voorgesteld. Het doel van de optimalisatie is om de voorspelling op basis van de
slechtst mogelijke simulatie te bepalen door de onzekerheid ten aanzien van de uit
de ijkexperimenten verkregen resultaten in beschouwing te nemen. Dit onderzoek
toont aan dat men de kwaliteit van de inverse bepaling van modelparameters en
de validatie van materiaalmodellen met deze procedure kan beoordelen.
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Wat de in deze dissertatie gepresenteerde optimalisatietaken betreft, laat de
(1, λ)-DR-ES onder de onderzochte algoritmen het beste resultaat zien. Een uit-
zondering vormt de ijking van het vloeioppervlak volgens Barlat 2000, welke een
unimodaal optimalisatieprobleem binnen de onderzochte zoekruimte lijkt te zijn.
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Neusäß, Realschule Neusäß and Staatliche Fachoberschule Augsburg. He stud-
ied civil engineering at the University of Applied Science of Augsburg and the
Technical University of Munich. He received his diploma degree in civil engineer-
ing from the Technical University of Munich in 2002.

He began his professional career in 2002 at department of forming technology
of the BMW Group as a computational engineer. He performed feasibility studies
of forming tools in the early phase of the product development. Later, he coordi-
nated the engineering of production processes within the department of forming
technology. Afterwards, he developed processes including the corresponding au-
tomations for the compensation of the elastic springback of sheet metal parts and
the prediction of press forces. Furthermore, he was engaged in research for the
computation of the correspondence between CAD surfaces, the prediction of the
elastic deformation of tools during the forming process and the computation of
the geometry of assemblies in consideration of the elastic material behavior of
parts. Today, he is responsible for the research in the fields of material modeling,
springback compensation and press force computation. He is also a member of
working groups for the standardization of experiments in the field of sheet metal
processing.

Since 2008, he is a member of the group of Prof. Thomas Bäck as an external
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