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1
Introduction

In this first chapter, we set the scene for the research projects presented in this
thesis. We begin with a brief description of the standard model of cosmology,
ΛCDM, and describe its main components. To study these observationally, a
large variety of techniques has been developed. The one central to the studies in
this thesis is weak gravitational lensing. We therefore provide a short description
of how this method works, and give some examples of its applications. We also
provide a short overview of the other chapters.

1.1 The ΛCDM framework

For millennia, people believed that the Earth was the centre of the Universe,
with the Sun, the planets and all the stars revolving around it. Almost 500
years ago, this ancient world view started to change, and it has been subject
to change ever since. Due to the work of, amongst others, Nicolaus Coperni-
cus and Galileo Galilei, it became clear that our Sun did not revolve around
the Earth, but that the Earth and the planets moved around the Sun. At the
same time, Giordano Bruno proposed that the stars in our sky were actually
very distant suns like our own, although it took more than two centuries before
their distances from us could be determined. With the help of his telescope,
Galileo Galiliei found that the faint band of light that crossed our nocturnal sky
actually consisted of many small stars our eyes could not discern. This large
collection of stars was called our Galaxy, and at the beginning of the twentieth
century it was a hot topic of debate whether or not other galaxies similar to ours
existed outside our own. In the 1920s, Edwin Hubble measured the distances
to some faint nebulae in the sky whose origin was uncertain. These distance
measures conclusively showed that these objects had to reside far outside our
Galaxy, and therefore had to be galaxies themselves. Subsequent observations
showed that the Universe was filled with uncountable galaxies - currently, it is
estimated that there are more than 100 billion of them.

Soon after the discovery of the existence of other galaxies, another important
one followed. A few years earlier, in 1912, Slipher had already measured the
spectra of these faint clouds that turned out to be nearby galaxies, and deter-
mined that almost all of them were recessing from us at high speeds. Combining
these velocity measurements with the distance measurements, Edwin Hubble
and others soon discovered that the more distant a galaxy was located from our
galaxy, the faster it was moving away from us. The interpretation was as simple
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CHAPTER 1. INTRODUCTION

as it was astonishing: it could only mean that all galaxies were moving away
from each other, hence the Universe was expanding. Until then, the Universe
had been thought to be static. If it was expanding, it meant that it had a be-
ginning as well. This moment when everything was created has become famous
as the Big Bang (the name was coined by Fred Hoyle in 1949, who believed in a
static Universe and invented the term to sarcastically express his dislike in the
theory - although according to his reading, the term only served to highlight the
differences between the theories). The fact that people had great difficulties in
believing in a Universe that was not static but expanding was demonstrated by
one of the greatest minds of all times, Albert Einstein. In his work on General
Relativity a few years earlier, he added a constant to one of his equations so
that it would enforce a static Universe rather than an expanding one (the largest
error of his career, he later confessed, as he could have predicted the expansion
of the Universe before it was observed).

Another change of our world view was initiated in the 1930s by the work
of Fritz Zwicky on groups of galaxies (galaxy clusters), but only became widely
known after the work of Vera Rubin and her collaborators in the 1960s. Zwicky
studied the orbital velocities of galaxies in the Coma cluster, and inferred from
their large velocities that ‘missing’ mass had to be present to prevent these
galaxies from flying off. Rubin studied rotation curves1 of nearby spiral galax-
ies and deduced the total mass enclosed within a certain radius using standard
Newtonian physics. The total mass exceeded the mass that could be accounted
for by the sum of stars, gas and dust (the baryons). Hence another component
had to be present, exerting gravity, but invisible to the eye: dark matter. Nowa-
days, the presence of dark matter has been confirmed by various observations,
including the stellar dynamics in nearby galaxies, the kinematics of satellite
galaxies in clusters, and by observations of hot X-ray emitting gas. These ob-
servations support the view that the galaxies and galaxy clusters we observe
are embedded in giant dark matter structures. One of the most convincing
observations supporting the existence of dark matter has been made by Clowe
et al. (2006) in a system called the Bullet Cluster. In this work, two galaxy
clusters are studied just after they crashed into each other. The hot gas from
both galaxy clusters, which constitutes the major part of the ordinary baryonic
matter, collided violently and slowed down, whilst emitting a huge amount of
X-ray radiation. The dark matter, however, which only interacts through grav-
itation, did not collide and moved on after the collision, forming two separate
clumps, clearly offset from the gas.

At about the same time of the first observations of galaxy rotation curves,
Penzias and Wilson, two radio engineers working for Bell Labs, measured a
source of radio noise at millimeter wavelengths coming from all directions in the
sky. Radiation in this wavelength regime had already been predicted in 1948
by Gamow, Alpher and Herman as a relic of the Big Bang. Shortly after the
Big Bang, the Universe consisted of one giant immensely dense and hot soup of
elementary particles and radiation. After approximately 380 000 years of expan-
sion and cooling, the conditions in the Universe allowed protons and electrons to
recombine and form hydrogen atoms. During this process, photons were emit-
ted with an energy of 13.6 eV, i.e. with a frequency peaking in the ultraviolet.

1a rotation curve depicts the orbital velocity of stars as a function of distance from the
galactic centre
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1.1. THE ΛCDM FRAMEWORK

Most of these photons traversed the Universe ever since, although the expan-
sion of the Universe redshifted their frequency to the millimeter regime. This
radiation, known as the Cosmic Microwave Background Radiation (CMBR),
was exactly what Penzias and Wilson observed. The CMBR is found to be ex-
tremely homogeneous, and is very well described by a black-body spectrum with
a temperature of 2.71 K, with fluctuations of the order 10−5 K. The observation
of the CMBR at exactly the expected wavelength regime is considered as one
of the strongest proofs that the Big Bang actually happened. Detailed observa-
tions of the CMBR pattern across the sky with, amongst others, the Wilkinson
Microwave Anisotropy Probe (WMAP) space telescope (Bennett et al. 2003;
Jarosik et al. 2011) revealed a wealth of information about the structure of the
Universe (e.g. that space appears flat rather than curved). It also provided
constraints on the total amount of matter in the Universe, as well as strong
evidence that a large fraction of the matter in the Universe has to be in a non-
baryonic form (i.e. dark matter). The extreme homogeneity of the CMBR is
commonly attributed to a period just after the Big Bang when the Universe
expanded extremely rapid - exponentially - for a short timespan, which is called
inflation. During inflation, the tiny quantum fluctuations in the Universe were
blown up, and formed the seeds of the structure that formed afterwards.

In 1998, two independent research groups, called the high-z SN search2

and the Supernova Cosmology Project3 determined the distance to very dis-
tant galaxies by studying the light of exploding stars (supernovae; Riess et al.
1998; Perlmutter et al. 1999). This lead to the discovery that these distant
galaxies are actually more distant than predicted for a Universe that expands
at a constant rate. The only explanation again changed our world view radically
- not only is the Universe expanding, but the expansion is actually accelerating!
This conclusion has been disputed over the years, but the evidence supporting
this view is increasing. For example, the CMBR observations show that the
Universe is practically flat, which means that the average density in the Uni-
verse is close to a particular value (the critical density). Combining this with
the constraints on the total amount of matter in the Universe, it follows that
an additional form of energy has to be present. Also, studies of the growth
of structure point in the same direction (e.g. Schrabback et al. 2010). What
is causing this acceleration is not clear, but it is attributed to a hypothetical
form of energy: dark energy. The nature of dark energy is not understood at
all. Attempts have been made to relate it to the ground state energy of the
quantum field that pervades space, but the discrepancy between the theoretical
value and the value that follows from cosmological observations is an incredible
factor of 10−120, which serves as a perfect illustration of our ignorance. These
four components, i.e. the baryons, radiation, dark matter and dark energy, are
currently believed to make up the Universe.

Parallel to all these observations, astronomers have developed countless mod-
els to describe our Universe and the way it evolves. Most of these models were
discarded at some point as observations proved them wrong. One of them,
however, has managed to stand the test of time so far, and is currently the
most favoured model by the majority of the astronomical society. The model
is called ΛCDM. The ”CDM” stands for Cold Dark Matter, where the ”Cold”

2http://cfa-www.harvard.edu/cfa/oir/Research/supernova/home.html
3http://supernova.lbl.gov/
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CHAPTER 1. INTRODUCTION

Figure 1.1: Contribution to the total energy density of the Universe by the three
main components of ΛCDM.

indicates that the dark matter particles have relatively high masses and move
at low speeds (as opposed to Hot Dark Matter, where the particles are assumed
to move with relativistic speeds). The Λ refers to the constant Einstein added
to his equations to enforce a static Universe, which he considered a mistake,
but ironically has been reintroduced as the most natural description for dark
energy. The ΛCDM model describes how the Universe, starting from a very hot
and dense state, expanded, gradually cooled and eventually formed stars and
galaxies. The strength and beauty of ΛCDM is that from a modest number of
initial conditions and ingredients, it has the ability to predict with great pre-
cision a large variety of observations, ranging from the observations of density
peaks in the cosmic microwave background radiation, to the cosmic abundances
of the light elements (hydrogen, helium, deuterium and lithium), to the cluster-
ing of galaxies in the current day Universe. In ΛCDM, hot dark matter is also
present in the form of neutrino’s, but they only make up a small fraction of the
total energy budget.

In our Universe, the baryons only make up a very modest part of the total
content, as is depicted in Figure 1.1. The two dark components, dark matter
and dark energy, dominate the energy density, but their nature is poorly un-
derstood at best. The majority of current research in cosmology is aimed at
improving our understanding of these components: how are they distributed in
the Universe, what are they made of, how do they interact, etc.

These efforts can be roughly divided into two main streams: numerical sim-
ulations and observations. In the first stream, the evolution and formation of
structure in a certain volume of the Universe is simulated with computers. This
field has rapidly expanded over the last two decades, propelled by the enormous
growth of computational power. In recent simulations such as the Millennium
Simulation (Springel et al. 2005), the movements of ten billion particles were
traced from the moment of the formation of hydrogen (recombination) up to
the current-day Universe, which is already an incredible achievement. The main
difficulty with simulations is the correct incorporation of the baryons: baryonic
physics is notoriously difficult, as many different processes such as supernova
explosions and AGN4 activity are important, but they are intertwined as well.
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1.2. GRAVITATIONAL LENSING

These processes play, however, a very significant role in the formation of struc-
ture, and need to be incorporated accurately. If the implementation of these
processes is not correct, neither will be the predictions from the simulations.

Although simulations improve our understanding of the evolution of our
Universe, how it came to be as we observe it today, they need to be constrained
by observations. For example, when we compare simulations with different
implementations of supernova feedback to observations, we can learn which sce-
nario is more likely than the other. But the opposite is true as well: for a given
set of observations, we need simulations to help interpret what we see. Com-
paring observations with the results from simulations is generally complicated.
Observations are distorted by all sorts of processes in the intergalactic medium,
the atmosphere and the telescope, for which we have to correct. Simulations,
however, offer a simplification of reality, as not all the processes that occur in
the real Universe are accounted for. To match the observations to simulations
and vice versa, we have to translate the one into the other, and herein lies the
difficulty. Nonetheless, it is worth the effort as only through the combination of
both we can improve our understanding of the Universe.

This thesis is part of the observational effort to study how dark matter is
distributed in and around galaxies and galaxy clusters, and how it traces the
baryons. The main technique we have used in our studies is gravitational lensing,
which we introduce in the following section.

1.2 Gravitational lensing

As light emitted by distant galaxies (sources) travels through the Universe
towards our telescopes, it is deflected by the gravitational pull of massive galax-
ies and galaxy clusters (lenses) that it passes on its way. Rather than in straight
lines, each lightray follows a wiggly path through space. This effect is known as
gravitational lensing. A sketch of a gravitational lens system is shown in Figure
1.2. A galaxy at a distance Ds from us that resides in the source plane emits
light rays, that travel towards Earth (depicted by the thick solid line). After
traveling the distance Dds, the lightray is deflected by a massive structure in
the lens plane, and travels the remaining Dd in a direction that is different from
its original path towards the observer on Earth. This deflection of a lightray is
described by the following geometrical relationship:

~β = ~θ − ~α(Dd
~θ)

Dds

Ds
, (1.1)

with ~β the angular position of the source, ~θ the angular position of the image,
and ~α(Dd

~θ) the deflection angle. Introducing the angular coordinate ~ξ = Dd
~θ,

the deflection angle is given by

~α(~ξ) =
4G

c2

∫
d2ξ′Σ(~ξ′)

~ξ − ~ξ′

|~ξ − ~ξ′|2
(1.2)

4Active Galactic Nuclei refer to the centre of galaxies that harbour a massive black hole
that actively accretes matter. An enormous amount of energy is released during this process
through the expulsion of material in jets with speeds that near the speed of light.
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CHAPTER 1. INTRODUCTION

Figure 1.2: Sketch of a gravitational lens system (Bartelmann & Schneider 2001)

with Σ(~ξ′) the surface mass density and ~ξ the impact parameter (Bartelmann
& Schneider 2001).

Gravitational lensing affects our observations in several ways. Firstly, the
observed location of source galaxies is different from their real positions on
the sky. Since we do not know their positions beforehand, we cannot measure
this effect. Secondly, if the lens is very massive, the lightrays are bent around
different sides of the lens towards Earth. As a result, we may observe more
than one image of the same source galaxy. The length of the path that the light
travels before it reaches us generally differs between the images. Therefore,
when the light emitted by the source suddenly changes (for example due to a
supernova explosion), this ‘news’ arrives at Earth for each image at a different
moment. These so-called time delays can be used to study the rate of expansion
of the Universe (Refsdal 1964), and constrain several cosmological parameters
(Coe & Moustakas 2009).

From Equation (1.2) it can be observed that the deflection depends on the
impact parameter; photons that pass the lens at different distances are deflected
by different amounts. This differential deflection of the lightrays leads to a
remapping of the background sky. Consequently, the total amount of light of the
sources is magnified, and their shapes are distorted. If the source galaxy image
is small compared to the angular scale on which the lens properties change, the
deflection of the lightrays can locally be described by the deflection matrix. The
deflection matrix relates the intrinsic (unlensed) surface-brightness of the source

6



1.2. GRAVITATIONAL LENSING

I(x, y) to the observed one, I ′(x′, y′). It is given by:(
x′

y′

)
= (1 − κ)

(
1 − g1 −g2
−g2 1 + g1

)(
x
y

)
(1.3)

with (x, y) the observed coordinates and (x′, y′) the undistorted ones. κ is the
convergence, defined as

κ =
Σ(~ξ)

Σcrit
; Σcrit =

c2

4πG

Ds

DdDds
, (1.4)

with Σcrit the critical surface mass density. The weak lensing regime is defined
as the regime where κ � 1 holds; if κ ≥ 1, Equation (1.1) can have multiple
solutions, resulting in multiple images of a single source for particular lens-
source configurations. g1, g2 ≡ (γ1, γ2)/(1− κ) is the reduced shear and (γ1, γ2)
the shear. The shear describes the stretch of the image of the source due to the
gravitational potential of the lens. Its effect on a round source is illustrated in
Figure 1.3. The quantity we measure from the source ellipticities is the reduced
shear, however. In weak lensing, κ � 1, and therefore g ≈ γ, hence the reduced
shear is approximately equal to the shear. If the distortion is small, it can be
shown that the ellipticities of source galaxies change as follows:

eobsi = einti + gi, (1.5)

with eobsi one of the two components of the observed ellipticity, and einti the in-
trinsic ellipticity of the source. The shear can be retrieved in a certain part of the
sky by averaging the ellipticities of a large number of sources: 〈gi〉 ≈ 〈eobsi 〉. The
fundamental assumption made here is that the intrinsic ellipticities of galaxies
have random orientations; the intrinsic part of the observed ellipticities aver-
ages out, leaving us with the average shear imprinted on those sources. This
assumption is actually not correct as neighbouring galaxies that are or have
been subject to the same large-scale gravitational field may have correlated el-
lipticities, an effect known as intrinsic alignments (e.g. Hirata et al. 2004, 2007).
This affects studies that rely on the correlation of the ellipticities, but not the
studies where the ellipticities are correlated with the location of the lenses as
the lensing signal is generally averaged over large numbers of sources, and the
effect averages out.

If a spherically symmetric lens lenses a source, the shape of the source is
stretched tangentially, i.e. in the direction perpendicular to the vector that
connects the lens with the source projected onto the plane of the sky. To un-
derstand this qualitatively, trace the lightrays back past the lens to the source.
The lightrays that passed the lens at small impact radii (close to the lens) were
deflected more than the lightrays that passed it at larger radii, hence the real
image of the source is stretched radially compared to the image we observed.
Vice versa, the observed image is stretched tangentially with respect to the real
image. This process is illustrated in Figure 1.4.

A commonly used method to extract the shear from the shapes of the sources
is therefore by measuring the source ellipticity components in the direction tan-
gent to the line that connects the lens and the source, hence the direction in
which they were distorted. The quantity we measure is the tangential shear
(also known as the galaxy-mass cross-correlation function),

γt = −[γ1 cos(2θ) + γ2 sin(2θ)], (1.6)

7
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Figure 1.3: Gravitational shear applied on an intrinsically round source. If g1
is positive (negative), the source is stretched horizontally (vertically); if g2 is
positive (negative), the source is stretched in the x = y (x = −y) direction
(source: D. Clowe).

with θ the angle between the horizontal axis and the vector between the lens
and the source. By measuring the tangential shear in concentric rings centred
on the lens, the radial shear pattern of the lens can be studied.

To determine whether galaxy-galaxy lensing produces a tangential shear that
is positive or negative, we imagine a round source galaxy that lies on the hori-
zontal axis that passes through the centre of the lens, hence cos(2θ) = 1. The
distortion of its shape is in the tangential direction: the source is stretched ver-
tically. In Figure 1.3 we find that this corresponds to a negative γ1. Therefore,
the tangential shear is positive.

The tangential shear is a convenient way to quantify the lensing signal, be-
cause it can be directly related to the differential surface mass density:

〈γt(ξ)〉 =
∆Σ(ξ)

Σcrit
, (1.7)

8



1.2. GRAVITATIONAL LENSING

Figure 1.4: Cartoon of galaxy-galaxy lensing. Lightrays of a source passing
the lens at different impact parameters are bent by different amounts. As a
consequence, the shape of the source becomes elongated in the direction per-
pendicular to the lens-source separation. When seen in projection on the sky,
a coherent shear pattern is formed around the lens when there are multiple
sources at different positions behind the lens.

where ∆Σ(ξ) = Σ̄(< ξ) − Σ̄(ξ) is the difference between the mean projected
surface density enclosed by ξ and the mean projected surface density on a circle
at ξ. Since we only measure the difference between projected densities, and not
the projected density itself, we can in principle not determine the mass of the
lenses, unless we know the value of the projected density at a certain position
in the lens plane. In other words, if we were to increase the density uniformly
across the lens plane, the tangential shear in the weak lensing regime (κ � 1)
would not change, but the mass obviously would – this problem is known as the
mass-sheet degeneracy (Falco et al. 1985; Schneider & Seitz 1995). The most
common solution to this problem is to assume a certain two-dimensional profile
for the density (e.g. based on results from numerical simulations), and fit the
corresponding lensing signal to the observed shear. Amongst the most popular
models are the Singular Isothermal Sphere (SIS) profile, and the Navarro-Frenk-
White (NFW) profile (Navarro et al. 1996). The total mass is then obtained
by integrating the density in an area where the density is larger than a certain
threshold value.

Another consequence of differential deflections is that the source galaxies are
magnified, which leads to an increase of their flux. This cannot be measured
for individual objects, as their brightnesses are not known a priori. However,
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if the luminosity function5 of a certain sample of sources is accurately known,
the effect is measurable (e.g. Hildebrandt et al. 2011). The systematic errors
of shear and magnification are different, mainly because different quantities are
measured: for shear, we measure the shapes of galaxies, whilst for magnification
we measure their total flux. Particularly for high-redshift lenses magnification
is expected to complement shear in constraining the dark matter distribution,
because for magnification more faint and high-redshift sources can be used as
the flux of a (faint) source is more easy to determine than its shape (van Waer-
beke 2010).

The distortion of the background sky leads only by approximation to a
stretch of the sources; the actual change of shape is more complex. The source
galaxies are slightly bent as well, in such a way that the total deformation gives
the sources the appearance of a banana. These higher-order distortions are
called flexion, and they can be measured on small projected scales close to the
lens (e.g. Goldberg & Natarajan 2002; Goldberg & Bacon 2005; Bacon et al.
2006; Velander et al. 2011). Flexion is particularly sensitive to substructures
in the lens, which makes it a useful complement to shear. If the distortion is
very strong, for example close to a massive cluster of galaxies, the image of a
source can be stretched into long arcs, and in exceptional cases even into rings
(Einstein rings). This is the regime of strong lensing.

Shear, flexion and magnification are part of weak gravitational lensing. So
far, most weak lensing studies have utilised the shape distortions by measuring
the shear. The science chapters presented in this thesis are based on shear mea-
surements too, and we discuss this further in the next section. Please note that
in the forthcoming, when references are made to ‘weak lensing’, we generally
mean the shear, unless explicitly stated otherwise.

1.2.1 Shear measurement

To measure the weak lensing signal, the ellipticities of a large number of
source galaxies need to be accurately determined. In practice, this is a difficult
task. When we observe galaxies from Earth, the images are distorted by the
atmosphere, telescope and camera optics, changing the observed ellipticities of
the galaxies and hence the shear we would infer from them. Since the gravita-
tional lensing signal is very small, we have to correct for these distortions to a
high level of accuracy. Any residual ellipticity pattern that is not due to gravita-
tional lensing, but still present in the data, may be misinterpreted as real shear,
which could bias the science results. Note that besides the technical difficulties,
there are also physical complications (e.g. intrinsic alignments), which have to
be properly accounted for when interpreting the observed lensing signal.

A large variety of methods has been developed since the 90s of last cen-
tury, aimed at recovering the unconvolved shapes (i.e. the images before they
entered Earth’s atmosphere) of the galaxies as precisely as possible. Their per-
formance has been tested on artificial survey images that contain large numbers
of galaxies whose morphologies mimic those of real galaxies (Heymans et al.
2006; Massey et al. 2007; Bridle et al. 2010). The best can measure the grav-
itational distortion with the precision of a few percent, which already enables

5The luminosity function describes the number density of galaxies as a function of lumi-
nosity.
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a wealth of science projects. A lot of work is currently invested in develop-
ing methods that can reach an even higher precision, with subpercent errors
on the measured shear values. This requires the understanding and control of
ever smaller subtleties in the data, a difficult task but certainly worth the effort.

1.2.2 Galaxy-galaxy/cluster lensing

In this thesis, we study the shear profile around (the positions of) lenses. If
these lenses are other galaxies, this is called galaxy-galaxy lensing; if these lenses
are clusters, this is called cluster lensing. As the shear of a lens is typically 10-
100 times smaller than the intrinsic ellipticities of source galaxies, we generally
cannot measure the tangential shear of a single lens. Only for massive low-
redshift clusters the shear can be large enough to be detected for an individual
system. For less massive clusters, and in the case of galaxy-galaxy lensing, the
lensing signal has to be averaged over many lenses, as that reduces the noise
caused by the intrinsic ellipticities of the sources. Even for small and low-mass
lens galaxies, the lensing signal can be measured as long as we stack a sufficiently
large number of lenses. The downside of stacking is that individual properties
of galaxies cannot be studied; however, when we stack lenses of a certain type
or brightness, we can still learn about the average properties, which is very
interesting and useful.

It is clear from the definition of Σcrit in Equation (1.4) that the magnitude
of the lensing signal depends on the distances from us to the lens, to the source,
and between the lens and the source. We measure a small signal at a given
physical scale if either the lens is very close to us (Dd is small), or if the lens
is very close to the source (Dds is small). When the lens is roughly halfway
between the source and the observer, the ratio of the distances, called the lensing
efficiency, is optimal for lensing. To convert the tangential shear to ∆Σ, we
need to know either the individual redshifts of all galaxies involved, or the
redshift distribution of the lenses and sources, and use the average distances.
If no individual redshifts are available, the redshifts distributions can usually
be obtained from public photometric redshift catalogues, to which identical
selection criteria can be applied as was done for the lenses and sources.

In practice, there are various other issues that have to be accounted for:
galaxies that were selected as sources may actually be physically associated to
the lens; the ellipticity estimates of the sources may be inaccurate due to a
variety of reasons; residual false shear patterns may still be present in the data.
These complications have to be addressed and, when necessary, corrected. We
will not go into detail here, as they are discussed when they come along in the
following chapters.

1.3 Applications of weak gravitational lensing

Gravitational lensing is a unique tool in observational cosmology as it is the only
method that directly probes the projected matter density distribution around
lenses. Furthermore, since lensing does not depend on visible tracers, it can
be used to measure the projected distribution of matter over a huge range of
scales, from a few tens of kpc to a few Mpc. In contrast, other methods rely on
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the availability of visible tracers such as planetary nebulae or satellite galaxies
that orbit the lenses, which limit their applicability to small scales (for plan-
etary nebulae) or to particular types of lens galaxies (only central galaxies in
satellite kinematic studies). Still other methods have to make assumptions on
the physical state of the object (such as hydrostatical equilibrium of hot gas in
X-ray measurements), which makes them less robust.

A broad variety of research topics can be studied with weak lensing. On
large scales, weak lensing can be used to study the large-scale distribution of
matter. Lensing by the large-scale distribution imprints coherent shear patterns
on the ellipticities of galaxies, which can be studied by correlating the elliptic-
ities of galaxies in a certain patch of the sky. These measures provide us with
estimates of the statistical properties of the distribution of matter (e.g. Huff
et al. 2011). When we have redshift information available for the galaxies, we
can split the galaxies in redshift slices, and learn how these correlation functions
– and hence the distribution of matter – change with time. These changes are
on the one side due to gravity, which makes the distribution more clumpy as
material is pulled towards each other. Acting in the opposite direction is dark
energy, causing an accelerated expansion of the Universe, which pulls space -
and therefore the matter that is embedded - apart. Hence by studying the vari-
ations of these correlation functions with time, we can measure how dark energy
impacts the growth of structure, and therefore study properties of dark energy
itself (Schrabback et al. 2010).

When we measure the lensing signal around galaxies, we can compare the
matter distribution to the light distribution. This reveals where the dark matter
is residing, how much there is of it and how it is distributed (e.g. Gavazzi et al.
2007). By splitting the lenses as a function of type, environment, and redshift,
we learn which types of galaxies host most of the dark matter, how this depends
on the environment and how this has evolved over time (e.g. van Uitert et al.
2011; Leauthaud et al. 2012). This knowledge is crucial for understanding how
galaxies form and evolve. Such studies also provide insights on the properties
of dark matter (e.g. about its clumpiness), which may eventually lead to clues
about the nature of dark matter.

Similarly to galaxies, we can also measure the lensing signal around groups
of galaxies and galaxy clusters. This enables us to calibrate their masses with-
out the need to make assumptions about the physical state of the cluster (e.g.
hydrostatical equilibrium in X-ray measurements, or virial equilibrium in satel-
lite kinematic studies). This is particularly useful for low-mass clusters, which
have fewer tracers of the mass and are typically not in equilibrium. Measuring
the mass as a function of the number of cluster members (e.g. Sheldon et al.
2009), and of redshift (e.g. see Chapter 6), leads to important insight into the
formation and evolution of clusters, and hence into the physics that govern these
processes.

In short, the observational constraints obtained from lensing provide crucial
information on the relation between dark matter and baryons, the formation
of structure and the evolution of the Universe. The expected arrival of high
quality imaging data from upcoming surveys, in combination with the expected
improvement of the methods used for lensing, leads to the believe that weak
lensing is a particularly promising way to study dark energy in comparison to
other methods (Albrecht et al. 2006).
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1.4 This thesis

In this thesis we study the distribution of matter around galaxies and galaxy
clusters with weak gravitational lensing. Amongst the questions we attempt to
answer are the following: how massive are the dark matter haloes of galaxies?
Do some type of galaxies have more dark matter than others? What is the
relation between the baryonic properties of galaxies (e.g. the total amount of
light emitted, or the total mass in stars) and the total amount of dark matter of
their haloes? Which of the baryonic tracers is most closely related to the halo
mass of a galaxy? Are the dark matter haloes triaxial or not, and can we detect
that with gravitational lensing? Does that depend on the type of galaxy? How
massive are galaxy clusters, and how does the mass scale with their richness
(total number of member galaxies)? Does the relation between mass and rich-
ness evolve with redshift?

We study these questions using the imaging data from the Red Sequence
Cluster Survey 2 (RCS2), which is a 900 square degree imaging survey in the
g′r′z′-bands. With a median seeing in the r′-band of 0.7′′, and a depth of ∼24.3
in mr′ , this survey enables many unique (lensing) studies that cannot be per-
formed with any other currently available imaging data set. In Chapter 2, we
discuss the details of the RCS2, and highlight the differences between the RCS2
and the other imaging surveys that have been used for lensing studies. We detail
on the image reduction we have performed, and outline the steps that led to the
creation of the galaxy shape catalogues. The shape catalogues, which contain
the ellipticities of all the galaxies in the survey, are at the core of the science
studies worked out in further chapters. We have performed various checks to
ensure that the quality of the catalogues is at the desired level, and the results
of these checks are presented.

The RCS2 overlaps with various other surveys, including ∼300 square de-
grees with the Sloan Digital Sky Survey (SDSS; York et al. 2000). The com-
bination of spectroscopic coverage and photometry in five optical bands (u, g,
r, i, z) in the SDSS provides a wealth of information on galaxies that is not
available for the RCS2 alone. We use this information, but also benefit from the
improved lensing quality of the RCS2, by matching the shape catalogues from
the RCS2 with various catalogues of the SDSS. This results in 17 000 matching
galaxies with a spectroscopic redshift, and many other galaxy properties such
as stellar mass, velocity dispersion and luminosity. These galaxies form the lens
sample of Chapter 3 and Chapter 4.

In Chapter 3, we study the relation between the baryonic properties of
galaxies and their dark matter haloes. As this relation depends on galaxy type,
we split the 17 000 matching galaxies in an elliptical (early-type) and spiral
(late-type) sample. These samples are further divided in bins of either luminos-
ity, stellar mass or dynamical mass, and the lensing signal of the lenses in each
bin is measured. To model the lensing signal accurately, we have to account
for the fact that a fraction of the lenses are satellite of a larger system. At
large projected separations, these larger systems contribute significantly to the
lensing signal, which has to be taken into account. For that purpose, we imple-
ment a halo model, which enables us to study both the mass and the clustering
properties of the lenses. We study how the average luminosity and stellar mass
relate to the total halo mass. Furthermore, we determine the satellite fraction of
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the lens samples, and study how it depends on luminosity and stellar mass. We
derive mass-to-luminosity ratios and baryonic fractions of the lens galaxies, and
study their dependence on luminosity and stellar mass, respectively. Finally, we
divide the lens bins into redshift slices, in order to study potential evolutionary
trends in the relation between baryons and dark matter.

In Chapter 4 we use a subsample of the lenses from Chapter 3 to address
the question: which observable property of galaxies is most closely related to
the lensing signal? We compare three properties: the stellar mass, the spec-
troscopic velocity dispersion and the model velocity dispersion, which is an
alternative estimate of the spectroscopic velocity dispersion of galaxies. The
calculation of the model velocity dispersion is based on the results of Taylor
et al. (2010), who demonstrated that the dynamical mass and stellar mass are
linearly related if one accounts for the structure of a galaxy. As the model ve-
locity is calculated using quantities that are generally better determined than
the spectroscopic velocity dispersion, it is believed that the former is a more
robust velocity dispersion estimator. Comparing the model velocity dispersion
to the spectroscopic velocity dispersion, we find that they correlate well for de
Vaucouleur-type galaxies at redshifts z < 0.2, and these are the galaxies that
form the lens sample. To determine which galaxy property is most closely re-
lated to the lensing signal, we measure how the lensing signal depends on each
of them. We cannot directly interpret the measurements, however, because the
three galaxy properties are correlated. To account for this, we remove the de-
pendence of the lensing signal on either stellar mass or velocity dispersion, and
study whether there is a residual dependence on the other property. Compar-
ing these residuals enables us to determine which property of galaxies is most
closely related to the lensing signal.

Weak gravitational lensing is not only a useful tool to determine the total
masses of galaxies and their relative correlation with respect to the underlying
dark matter distribution, but it can also be used to study the shapes of the
dark matter haloes of galaxies. This is the subject of Chapter 5. Numerical
simulations predict that matter collapses in triaxial haloes. If the orientation
of galaxies and dark matter haloes are correlated (so either aligned or oriented
at a 90◦ angle, i.e. anti-aligned), the lensing signal around galaxies becomes
anisotropic. Hence by studying anisotropies in the weak lensing signal we can
learn about the average projected dark matter halo ellipticity of galaxies. We use
the imaging data from the RCS2 to select the lenses and sources, and perform
the lensing analysis on the whole survey area. We select massive low-redshift
galaxies as lenses to optimize the lensing signal-to-noise and to minimize poten-
tial systematic contributions. To study potential environmental dependencies,
we divide the lens sample in an isolated and a clustered part, and analyse them
separately. There are several complications that could change the anisotropy
of the lensing signal. We address the impact of a few of them: PSF residual
systematics in the galaxy shape catalogues, additional lensing by foreground
structures, clustering and magnification. We set up a number of idealised sim-
ulations to estimate the impact of these complications on our measurements.
To interpret the observed anisotropy of the shear in terms of the average halo
ellipticity of galaxies, we need to account for the intrinsic scatter in the position
angles between galaxies and their dark matter hosts. Recent studies suggest
that the scatter is large, with a value in the range 20◦-40◦. We present esti-
mates of the impact of this scatter on the observed anisotropy of the lensing
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signal.
Finally, we move our attention to larger structures and study the largest

gravitationally bound systems in the Universe, galaxy clusters, in Chapter 6.
Cluster evolution has been one of the main science goals of the RCS2, and the
survey design was chosen such as to optimize the detection of clusters up to
a redshift z ∼ 1. Nearly 30 000 galaxy clusters have been detected using the
cluster red sequence method, a detection method that utilizes the property that
the early-type galaxies in a cluster have very similar colours. These clusters
are spread over a large range of optical richnesses (number of cluster members)
and have redshifts in the range 0.2 < z < 1.2. To learn about the growth and
evolution of clusters, we can study how various properties of clusters are related
as a function of redshift. One of the relations of interest is the one between the
mass of a cluster and the richness. A careful calibration of the mass-richness
relation is also crucial for studies aimed at constraining cosmological parameters
using cluster number counts. To determine the evolution of the mass-richness
relation, we divide the cluster sample into bins of richness and redshift, and
measure the lensing signal in each bin to determine the average cluster mass.
We end the chapter by measuring the excess galaxy number density around the
clusters, and outline how we can use it to improve the modeling of the lensing
signal.
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2
Data reduction of the RCS2

In this chapter we present the weak lensing analysis of the Red Sequence Cluster
Survey 2 (RCS2). The shape catalogues that result from this analysis are used
in all science chapters of this thesis. We begin with a description of the survey
specifications, then discuss the reduction steps, and detail the creation of the
shape catalogues. Finally, we describe a number of basic tests we have performed
to ensure the robustness of the results.

2.1 Introduction

The rise of weak gravitational lensing studies has been closely related to the
ability to accurately measure the shapes of large numbers of galaxies. With the
advent of mosaic CCD cameras that imaged several square degrees of sky, the
conditions were set to extract the lensing signal from the data and use it for
science. From the first detection of the lensing signal by Tyson et al. (1990), the
field has rapidly expanded and has proven to be of great use in a wide variety
of research areas, ranging from the study of galaxy formation and evolution
using galaxy-galaxy lensing, to the testing of cosmological models through the
measurement of the lensing properties of the large scale structure (LSS). One of
the main propellants of the rapid progress of the field has been the continuous
inauguration of ever larger cameras and telescopes with larger fields of view
and improved image quality, and the resulting mapping of ever larger parts of
the sky to greater depths. As a result, the number of galaxies whose shapes
has been reliably determined has increased by orders of magnitudes (from a
few thousands to tens of millions in the most recent surveys), and so has the
signal-to-noise of the lensing measurements.

To date, a broad variety of imaging surveys has been used for lensing. We
show in Table 2.1 a list of the most recent surveys and their main characteristics
relevant for weak lensing studies. In any survey, the observation time can either
be used to image a large patch of sky, but shallow, or to image a small area to
great depths. The weak lensing science that can be extracted strongly depends
on this choice. The wide but shallow surveys (e.g. SDSS) contain many objects
at low redshift, and the stacked lensing signal of low-redshift lenses (galaxies,
galaxy groups and/or clusters) provides tight constraints on the distribution
of matter in the nearby universe (e.g. Mandelbaum et al. 2006; Sheldon et al.
2009). In addition, these surveys are particularly suited for studying the lensing
signal of low-mass galaxies (as there are many of them), and for studies of the
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Table 2.1: The characteristics of current large imaging surveys relevant for weak
lensing studies

Survey Size Depth Bands PSF size

(1) (2) (3) (4) (5)

SDSS 10 000 22 ugr iz 1.5
RCS2 900 24.3 g′r′(i′)z′ 0.7

CFHTLS-WIDE 171 24.8 u∗g′r′i’z′ 0.7
RCS1 90 25.2 Rcz

′ 0.8
CTIO 90 23.5 R 1.05

CFHT12K-VIRMOS 17 24.5 BVRI 0.75
COSMOS 1.64 28.6 I g 0.09

(1) name of the survey; (2) area of the survey [deg2]; (3) depth of the band
used for lensing (note that different definitions have been utilized); (4)

wavelength coverage (PI imaging, the lensing band in bold font); (5) median
size of the PSF in the band used for lensing [arcsec].

intrinsic alignment of galaxies (e.g. Hirata et al. 2004), which can occur if the
galaxies are subject to the same large-scale gravitational field, e.g. during their
time of formation. Finally, if the PSF1 is small, these surveys can be used for
constraining cosmological parameters (Amara & Réfrégier 2007). The galaxies
in a small but deep survey (e.g. COSMOS) are spread over a large range of
redshifts, which makes those surveys particularly suited for evolutionary studies,
e.g. to study how the stellar mass-to-halo mass relation evolves (Leauthaud
et al. 2012) or how the universe expands (Schrabback et al. 2010). For deep
surveys it is also possible to measure the lensing signal from individual massive
low-redshift clusters (e.g. Okabe et al. 2010).

With a size of 900 deg2 and a depth of 24.3 in the r′-band, the RCS2 fills the
gap between these two survey strategy extremes of width and depth. The survey
was specifically designed to optimize the detection of clusters from z ∼ 0.1 to
1 via the red sequence method (Gladders & Yee 2000), a technique that takes
advantage of the fact that the early-type galaxies belonging to a given cluster
have very similar colours, and their positions are clustered. The main goals
of the survey are to use the cluster catalogue to constrain the cosmological
parameters ΩM and σ8, to study the evolution of clusters, to define a large
sample of strong lensing clusters and to perform weak lensing studies. Thanks
to its combination of size, depth and seeing, the RCS2 is well suited for a large
range of lensing studies, as we demonstrate in this thesis.

In this chapter, we will discuss the characteristics of the RCS2 in Section
2.2. The reduction we have performed is described in Section 2.3. In Section

1The Point Spread Function (PSF) describes the observed shape of a point source (e.g.
a star) across the field-of-view of the camera. The shape and size of the PSF are mainly
determined by the optics of the telescope and the conditions in the atmosphere. The observed
galaxies in an image have been convolved with the PSF, and their shapes need to be corrected
for this convolution before they can be used in lensing studies. If the PSF is small and round,
this correction is generally more accurate, which is crucial for lensing studies that rely on the
correlation of galaxy ellipticities.
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2.4 we detail the creation of the shape catalogues. We have performed some
basic tests to ensure that no errors occurred in the reduction process that, if
unnoticed, could affect our science results. This is presented in Section 2.5.
Note that various details of the survey have already been described in Gilbank
et al. (2011) and van Uitert et al. (2011). This chapter is intended to provide
more details on the steps carried out to construct the catalogues with shape
measurements. In particular, the various quality checks discussed in Section 2.5
have not been described in these papers.

2.2 Red Sequence Cluster Survey 2

The RCS2 is a nearly 900 square degree multicolour imaging survey, car-
ried out with the Canada-France-Hawaii Telescope (CFHT), a 3.6m telescope
located at the top of Mauna Kea, Hawaii. With a median seeing of 0.7′′ in the
r′-band, this site is exceptionally suited for deep surveys that require a good
resolution. The camera that has been used is the wide field imager MegaCam
(Boulade et al. 2003), which consists of 36 2048×4612 pixel CCD chips, placed
in 4 rows and 9 columns. The lay-out of the chips, and the variation of the
pixel size across the sky, are shown in Figure 2.1. The pixel size variation is
the result of small non-linearities in the camera optics. MegaCam covers about
1×1 degree on the sky, properly sampling the PSF with an average pixel size of
0.186′′. The size of the camera enables the surveying of large parts of the sky
in a reasonable amount of time.

The survey consists of two parts: the primary survey, which covers about
740 square degrees, is divided into 13 well-separated patches on the sky (in-
cluding the uncompleted patch 1303), each with an area ranging from 20 to 100
square degrees. The second part is formed by the CFHT Legacy Survey Wide,
comprising of 171 square degrees of imaging data in u?, g′, r′, i′ and z′. In
this thesis we have only used data from the primary survey area. If references
are made to ‘the survey’ from here on, we implicitly mean the primary survey.
The location of the various patches on the sky are shown in Figure 2.2. The
lay-out of the exposures within the patch CDE2338 is shown in Figure 2.3 as
an example. A number of these patches coincide with other surveys, including
the Sloan Digital Sky Survey (SDSS) (York et al. 2000) and the WiggleZ Dark
Energy Survey (Blake et al. 2008). Combining data from these surveys is ad-
vantageous, as it enables science projects that cannot be performed on either of
the data sets individually, as we demonstrate in Chapters 3 and 4.

The observations of the survey were performed in three filters (g′, r′ and z′).
About half of the survey area is observed in the i′-band as part of the Canada-
France High-z quasar survey (Willott et al. 2005), and was made available for
the RCS2 through a data exchange agreement. Details of the observations in
each of these bands can be found in Table 2.2. Note that the depth of the r′-
and z′-band were chosen to detect M∗ + 1 red-sequence cluster galaxies at a
redshift z ∼ 1.

The survey is observed in single exposures, since the observations are deep
enough for the survey objectives, and valuable CCD read-out time is saved (≈2
minutes per read-out). As a result, small gaps in the surveyed area are present
due to the separation between the chips, but they cause no limitations to the
science projects. A disadvantage of single exposures is that the removal of cos-
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Figure 2.1: The variation of the pixel size in the MegaCam camera, also known
as the camera distortion, induced by slight non-linearities in the camera optics.
The colour bar indicates the size of the pixels in arcsec, and their relative size
with respect to the mean. The pixel size is largest in the centre of the camera.
The lay-out of the individual chips is clearly discernible. The variation is smooth
and constant over time; the small jumps in the pattern between the central
chips are caused by a lack of stars to trace the relative astrometry. The camera
distortion generates a false shear signal, which has been corrected for in the
lensing analyses. This image is a product of the THELI pipeline (Erben et al.
2005, 2009).

mic rays is more difficult, especially those that hit galaxies and stars. However,
they introduce no bias in the analyses, but only act as a minor source of noise.

To quantify the image quality, the variation of the PSF is measured across
the field in each exposure. The images of the stars are used for this purpose
because they are essentially point sources. For each star, the Full Width Half
Maximum (FWHM) is determined, which is the distance from the star’s centre
where the flux reaches half of its maximum value. The median stellar FWHM
is a measure of the quality of the PSF; the larger it is, the more the observed
images of galaxies are smeared out, which causes them to appear rounder. Cor-
recting the observed shapes for this smearing becomes increasingly difficult for
larger PSF sizes, particularly for small and faint galaxies. Additionally, the
depth of the images decreases if the PSF is large, as very faint galaxies are
smeared out such that they become buried in the background noise. Weak lens-
ing studies therefore require observations with small PSF sizes.

The median stellar FWHM of the primary survey images in each band is
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Figure 2.2: The location of the RCS2 patches on the sky in Cartesian projection,
as a function of right ascension and declination. The grey scale denotes the dust
maps from Schlegel et al. (1998). The labels indicate the name of the patches.
The name-less patch in the centre is the uncompleted patch 1303, for which
no photometric catalogues exist because of its non-contiguous nature (image
courtesy: David Gilbank).

Table 2.2: Details on the various observing bands of the RCS2 (PI data)

Band Area [deg2] texp [sec] mlim
(a) Median seeing

g′ 740 240 24.4 0.79′′

r′ 740 480 24.3 0.71′′

i′ 400 500 23.7 0.53′′

z′ 740 360 22.8 0.67′′

(a) the 5σ point source limiting magnitude, averaged over all chips

given in Table 2.2. It differs between the observing bands due to the differ-
ence of the atmospheric conditions during the observations. The distribution
of the FWHMs in the r′-band, the band used for the lensing analysis, is shown
in Figure 2.4. The values of the FWHM range from 0.5′′ to 1.0′′, and have a
median value of 0.71′′. This is exceptionally good for a ground-based survey
(e.g. compare Table 2.1.)

In November 2004, when approximately 20% of the primary survey area
had been observed, the lens L3 was accidentally mounted incorrectly after the
wide-field corrector had been disassembled. This surprisingly led to a signif-
icant improvement in the PSF pattern, and the new configuration was kept.
The dramatic improvement of the PSF pattern is demonstrated by plotting the
stellar ellipticity vectors across the camera in Figure 2.5; prior to that moment,
the PSF showed a strong pattern, with ellipticities reaching up to 15% in the
corners of the images. After this moment, no clear PSF pattern could be dis-
cerned, and the amplitude of the PSF ellipticity was significantly reduced. The
FWHM distribution of the two sets are shown in Figure 2.4. We note, however,
that none of the area observed prior to November 2004 has been discarded, as
we correct for the potential residual systematics that may result from the very
elliptical PSF (detailed in Section 2.5.4).
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Figure 2.3: The location of the 81 exposures in the patch 2338, as a function
of right ascension (horizontal axis) and declination (vertical axis). The circles
denote the location of bright stars from the Bright Star Catalogue 4, with a
magnitude between 4 and 6. The blue box shows the overlap with the SDSS
(image courtesy: rcs2.org)

2.3 Data reduction

The basic reduction of the images is performed with Elixir2 at the CFHT.
Elixir consists of a collection of programs that is used for the instant assessment
of the image quality of telescope data, and also contains programs to perform
the basic image reduction. The goal of this reduction is to remove the instru-
mental signature from the data, so that the images can be used for science. This
reduction corrects for the positive offset of the detector of the camera, for the
dark current (the electrons that are occasionally released in the CCD due to
thermal motions instead of photons), for the unequal sensitivity of the pixels in
the CCD, and for the presence of fringes, which are caused by thin-film inter-
ference effects in the detector. Once this basic reduction has been performed,
objects are detected with SExtractor (Bertin & Arnouts 1996). The locations
of the detections are compared to the USNO 1.0 star catalogue to calculate the
astrometric solution, such that the (x, y)-locations of the pixels can be trans-
lated into sky coordinates. Finally, by comparing the observed photon counts
of these stars to their known magnitudes, zero points, that is the conversion
factor between counts and apparent magnitude, are calculated for each image.

2http://www.cfht.hawaii.edu/Instruments/Elixir/
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Figure 2.4: The distribution of the FWHM of the stars in the 739 r′-band images
in the primary survey area of the RCS2. The solid black (dashed red) line shows
the distribution for the images observed after (before) the change of the lens
configuration.

Using the zero points, we can determine the apparent magnitudes of all detected
objects in the image.

We retrieve the Elixir processed images from the Canadian Astronomy
Data Centre (CADC) archive3. We use the THELI pipeline (Erben et al. 2005,
2009) to subtract the image backgrounds, create weight maps that we use in
the object detection phase, and to identify satellite and asteroid trails. To ob-
tain a more accurate astrometric solution, we run SCAMP (Bertin 2006) on the
images, which enables us to match our catalogues to other catalogues, including
the photometric catalogues from Gilbank et al. (2011), and the spectroscopic
catalogues from the SDSS. Additionally, we use the polynomial coefficients from
SCAMP that describe the mapping from image to sky coordinates to calculate the
systematic shear that results from the camera distortion, and for which we have
to correct.

3http://www1.cadc-ccda.hia-iha.nrc-cnrc.gc.ca/cadc/
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Figure 2.5: The ellipticities of the stars in two exposures as a function of po-
sition in the mosaic. The green sticks indicate the size and orientation of the
ellipticities of the stars that are used for modeling the PSF (note that only half
of the total number of stars is plotted for clarity). The dashed lines approxi-
mately denote the chip boundaries. On the left-hand side, we show the stellar
ellipticities in the field 2143H6, which was observed before the lens configuration
changed. The PSF shows a clear pattern, and is very elliptical in the corners of
the image. On the right-hand side, we show the stellar ellipticities in 1613A2,
which was observed after the lens-configuration change. No pattern is observed
in the PSF, and the PSF ellipticity is small across the image.

Each exposure contains areas where the photometry is affected by the re-
flection haloes of large stars, diffraction spikes, satellite and asteroid trails, and
other anomalies. Excluding such areas in lensing studies is important, as the
shape measurement of galaxies in those areas is unreliable, and may contami-
nate the lensing signal. For that purpose, we create image masks for our lensing
analyses by combining the masks from the automated masking routines from
THELI with the RCS2 masks, as neither of these masks individually works suf-
ficiently well for our purposes. The THELI mask poorly covers the large stellar
reflections, potentially because we run the pipeline on individual chips. The
RCS2 masks covers these large stellar reflections well, but misses many satellite
and asteroid trails that are properly masked by THELI. To exclude the contam-
inated areas that are not covered by either mask, we inspect all masks by eye,
and manually improve them where necessary.

An additional advantage of the visual inspection of the data was the dis-
covery of various problematic exposures that were not flagged by the standard
image quality checks. Two sets of these exposures are discussed in the last two
paragraphs of the next section.

2.3.1 Problematic exposures

For a number of exposures, problems occurred either during the observations
or the image reduction. Consequently, some images had to be excluded from
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the science analysis. We describe the problems of these fields below.
During parts of the observing run 05BQ03, the upper half of the camera

(chips 18 to 36) was not read out due to a failure in the power supply in the
South controller. The four RCS2 r′-band images that were taken in this run
have been discarded.

The read-out of chip 5 failed for the twenty-one r′-band exposures taken in
observing runs 03BQ06 and 03BQ07. This did not affect the other chips, and
the exposures were included.

The r′-band exposures of the patches 0047F8, 2338I1 and 2338I8 exhibit a
strange feature; faint horizontal and vertical trails emerge from the bright stars,
which are most likely caused by an electronic problem during the read-out. As
it is not clear how this anomaly depends on the brightness, nor whether stars
and galaxies are affected in an equivalent way, these three exposures have been
removed from the science analyses.

Finally, the central pixels of the bright stars in chip 28 to 36 in the observing
runs 04BQ02 and 04BQ03 have negative values. This problem was caused by a
failure of the video board in the South controller, which resulted in the ampli-
fier saturating at 32K instead of the usual 65K. All the problematic stars are
masked, as to make sure they are not used to model the PSF. The exposures
have been included in the science analyses.

2.4 Catalogue creation

We use SExtractor (Bertin & Arnouts 1996) to detect the objects in the
images. From the object catalogues we select the stars, which are used for
modeling the PSF variation across the images. An accurate model of the local
size and shape of the PSF is essential, as the measured galaxy images have to be
corrected for the smearing of the PSF to obtain their unconvolved shapes. Hence
we require a clean star catalogue, that contains many stars distributed over the
entire image in order to sample the spatial variation of the PSF. To separate
the stars from the galaxies, we first identify the locus of the stellar branch in a
size-magnitude diagram. We select the non-saturated objects close to the stellar
branch with a S/N ratio larger than 30 and with no SExtractor flags raised.
To remove small galaxies that have been misidentified as stars, and stars that
have been affected by cosmic rays, we fit a second-order polynomial to both the
size and the ellipticity of these star-candidates as a function of their position
in the chip, and discard all 3-sigma outliers. We clean the stellar selection
even further in the shape measurement pipeline by removing shape parameter
outliers. All objects larger than 1.2 times the local size of the PSF are classified
as galaxies, and passed on to the shape measurement pipeline. Smaller objects
are not included as they consist of a mixture of stars and galaxies. The resulting
effective galaxy number density is 11.6 arcmin−2. Two diagnostic plots of the
star-galaxy separation are shown in Figure 2.6. The separation has been fully
automated, but as a precaution we inspect the diagnostic plots for all exposures
by eye. The separation fails only for a few chips that have either very few stars
or a PSF with a large FWHM, and we manually adjust those. As neighbouring
patches overlap by ∼ 1 arcminute, we remove all galaxies within 35 arcseconds
from the image edges in order to avoid duplicating the objects in our analysis.
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Figure 2.6: In panel (a), we show the size-magnitude diagram of one of the chips
in a randomly picked exposure. The black dots are the SExtractor detections,
the green pentagons are the selected stars, the red triangles are the 3-sigma
outliers, and the blue squares are the selected galaxies. The dashed lines indicate
the location of the stellar branch. Thanks to the good image quality the stars
are easily separated from the galaxies. In panel (b), we show the location of the
same stars and their ellipticity vectors as a function of position in the chip. The
3-sigma outliers are indicated by the thick red lines.

Elixir provides approximate zero-points for each pointing, which we use
to measure the r′-band apparent magnitudes of the objects in the images. We
correct the magnitudes for galactic extinction using the dust maps from Schlegel
et al. (1998). We asses the quality of the photometry in Section 2.5.

2.4.1 Weak lensing analysis

For our lensing analysis we measure the shapes of galaxies with the KSB
method (Kaiser et al. 1995; Luppino & Kaiser 1997; Hoekstra et al. 1998), using
the implementation described by Hoekstra et al. (1998, 2000). There are several
alternative methods to measure shapes of galaxies. We use the KSB method
because it measures the shapes of galaxies accurately in simulations (see Section
2.5), and because it has been extensively used and tested on real data. Finally,
the method is fast.

In KSB, galaxy shapes are defined by the raw pseudo ellipticities, which we
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call polarizations from here on:

ε1 =
Q11 −Q22

Q11 + Q22
; ε2 =

Q12

Q11 + Q22
, (2.1)

where Qij is the weighted moment of the brightness distribution B(x):

Qij =

∫
d2x B(x)W (x)xixj , (2.2)

with W (x) a Gaussian weight function. The weight function and the integral
are centered at the galaxy. To convert the measured galaxy polarizations into
ellipticities, the polarizations have to be corrected for the circularization by the
weight function, and for smearing by the PSF. These corrections are described
by complex formula that can be found in the original papers. To correct for
the PSF, we need to determine the smear susceptibility tensor, P sm?, which de-
scribes how the PSF affects the galaxy polarizations. P sm? is estimated by the
combination of various higher-order moments of the brightness distribution of
the stars in a chip. The components of the tensor are interpolated at the loca-
tion of the galaxies using a polynomial that is third-order in y and second-order
in x (the length of the chip in the y-direction is more than twice the length in
the x-direction), fitted to each chip separately.

The PSF correction has a limited accuracy in practice. One of the reasons
is that in the KSB formalism, it is assumed that the brightness distribution of
stars can be described by an isotropic profile convolved with a small anisotropic
kernel. The PSF is generally more complicated which may lead to biases. To
study the magnitude of these biases, this implementation of KSB has been tested
on simulations with a variety of PSFs, which we will discuss in Section 2.5.2.

The ellipticities of the galaxies are also affected by slight non-linearities in
the mapping between the sky coordinates and the CCD pixels in the camera,
an effect which is called camera distortion. We calculate the shear induced by
this distortion using the polynomial coefficients from SCAMP that describe how
the image coordinates are mapped onto the sky coordinates. The camera shear
of MegaCam is shown in Figure 2.7. The images of both the stars and the
galaxies are sheared, with a value reaching 1.5% at the corners of the images.
At large lens-source separations, where the gravitational lensing signal is small,
the camera shear dominates the observed lensing signal. Hoekstra et al. (1998,
2000) demonstrate that the observed shear is the sum of the gravitational shear
and the camera shear. We therefore simply subtract the camera shear from the
observed ellipticities of the galaxies to correct for it, after correcting the galaxy
shapes for smearing by the PSF.

In real data, there is always shear present to some level that is not produced
by gravitational lensing (systematic shear), due to imperfect PSF corrections,
biases in the shape measurement pipeline, the image masks and the survey lay-
out. When we measure the mean lensing signal around galaxies or clusters of
galaxies on small scales, these systematic contributions average out since we
generally average over a large number of lens-source orientations. On larger
scales, however, we cannot average over many orientations, because we perform
the lensing analysis on single exposures. We do this because including source
galaxies from neighbouring exposures to the analysis barely improves the lens-
ing signal-to-noise on small scales, which is the regime we are interested in in

27



CHAPTER 2. DATA REDUCTION OF THE RCS2

Figure 2.7: Shear induced by camera distortion in the MegaCam imager. The
camera shear is largest in the corners of the mosaic, with values up to 1.5%. As
the observed shear is the sum of the gravitational shear and the camera shear,
we simply subtract the camera shear from the observed galaxy ellipticities to
correct for it.

the studies of this thesis. Hence the source galaxies at large separations always
reside in the corners. Consequently, there is systematic contribution to the real
shear. To remove this signal, we measure the lensing signal around a catalogue
of random lens positions. In the absence of systematic shear in the shape cata-
logues, the shear signal around random lenses is zero, but if systematic shear is
present, the random signal and the real signal are equally affected. We use 40
000 random lenses per image, roughly 20 times the number of real lenses used at
most per image in the science analyses. The random lensing signal is measured
using the same binning, and subtracted from the real lensing signal. We test
the correction in the next section.

2.5 Quality Checks

We perform various tests to assess the quality of the photometry and the
shape measurements. Furthermore, we study the fidelity of our corrections for
camera shear and systematic shear. These tests are done to ensure that no
major systematics remain in the catalogues that may bias the science results.
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Figure 2.8: Internal comparison of the r′-band magnitudes of galaxies that
reside in the areas that overlap with neighbouring exposures. Each overlapping
exposure is indicated by a different colour, and their names shown in the top-left
corners. The photometry of the majority of exposures agrees well internally,
as the histograms are centered on zero and have a small width. Only a few
exposures have erroneous zero-points. We show one example in the right-hand
panel, where the zero-point of the image 704853 is off by ∼0.5 magnitude.

2.5.1 Photometry

As a check of internal consistency, we compare the magnitudes of the galax-
ies from different exposures that reside in the overlapping areas. Depending on
its location in the patch, an exposure may overlap with up to 8 neighbours. We
match the galaxies from adjacent fields, and make histograms of the difference in
r′-band magnitudes. A few examples are shown in Figure 2.8. These histograms
show that for nearly all exposures, the zero-points between neighbouring fields
are consistent as the histograms are centered close to zero. Only for a few expo-
sures, the histograms are significantly shifted from zero, which indicates that in
either one of the exposures the zero-point is far off. As the exposures generally
overlap with more than one neighbour, the fields with erroneous photometry
are easily identified.

Next, we compare the ‘raw’ dust-corrected r′-band magnitudes of the galax-
ies to the more accurately calibrated ones from Gilbank et al. (2011). For each
exposure we make a histogram of the difference in magnitudes. A few examples
are shown in Figure 2.9. The histograms demonstrate that the magnitudes agree
well for the majority of galaxies. The fields with an erroneous zero-point as re-
vealed by the internal comparison are easily identified from these histograms
as well since they are significantly shifted from 0. None of the histograms are
Gaussian, but they all show a tail at mr′ −mr′,Gilbank < 0. This is likely due
to the fact that different apertures have been used in the measurements. In one
exposure, the histograms are offset by ∆mr ≈ 2, indicating that a major error
occurred in one of the photometric solutions. On average, however, the magni-
tudes agree well, and differ in the r′-band by 〈mr′ −mr′,Gilbank〉 = 0.00 ± 0.26.
The scatter is dominated by faint galaxies; when we limit the comparison to
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Figure 2.9: Comparison of the r′-band magnitudes of galaxies with the photo-
metric catalogues from Gilbank et al. (2011) for three exposures. The left-hand
and middle panel show the same exposures as in Figure 2.8, the right-hand panel
shows the exposure with image number 704583 whose zero-point was found to
be off, which is again confirmed. The top-left corner of each plot shows the ob-
serving run number, the image name, the patch name, the number of galaxies,
the percentage of matched galaxies and the mean offset. For the majority of ex-
posures, the magnitudes agree well. The non-Gaussian shapes of the histograms
are likely due to a difference in the size of the aperture used for measuring the
flux.

galaxies with mr′ < 23, we find 〈mr′ −mr′,Gilbank〉 = 0.01 ± 0.14.
In the whole thesis we use the photometric catalogue from Gilbank et al.

(2011), except in Chapter 3, as the photometric catalogue was not available at
the time of writing. However, in Chapter 3 the ‘raw’ Elixir magnitudes are only
used to select the source galaxy sample and for this purpose they are sufficiently
accurate.

2.5.2 Galaxy shapes

The implementation of the KSB method we use has been tested on the
Shear Testing Programme (STEP) simulations (the HH method in Heymans
et al. 2006; Massey et al. 2007). The STEP simulations are used for the blind
testing and comparison of shape measurement methods. These simulations con-
sist of an artificial set of survey images, containing a large number of galaxies
whose morphologies mimic those of real galaxies. To these galaxies a shear is
applied which is constant, but differs from image to image. The images are then
convolved with a variety of PSFs, to test the reliability of methods under differ-
ent observing conditions. The goal of any of the tested methods is to determine
as accurately as possible the value of the input shear. Its values is not known
beforehand to avoid tweaking of the methods. The performance of each method
is determined by two numbers, mi and ci, the multiplicative bias and the shear
calibration bias, defined as

〈γ̃i〉 − γinput
i = miγ

input
i + ci, (2.3)
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where i denotes the different components, γinput
i is the input shear and 〈γ̃i〉 is

the averaged measured shear. A non-zero mi indicates that the method does
not respond one-to-one to shear, and a non-zero ci generally indicates that the
PSF has not been properly corrected for. For STEP1, the HH method has an
average multiplicative bias of 〈m〉 = −0.015 ± 0.006, and a mean calibration
bias 〈c〉 that is consistent with shot noise at the 0.1% level. For STEP2, the
average 〈m〉 is −0.01, and the mean 〈c〉 is consistent with zero. Note, however,
that for the simulations with a highly elliptical PSF (simulation set D and E
in STEP2), all tested shape measurement pipelines (including the HH method)
have a significant non-zero shear calibration bias. This is not a major concern in
this thesis for a number of reasons. First of all, the area with a highly elliptical
PSF in the RCS2 is very small compared to the total survey area; potentially
biased galaxy shapes will not contribute much to the total signal. Furthermore,
most of the systematics will average out since we measure the lensing signal
around galaxies and galaxy clusters for a large number of random lens-source
orientations. Finally, by subtracting the random lensing signal from the signal
computed with real lenses, we remove PSF residuals from the galaxy-mass cross-
correlation function at large-scales that are still present because we do not have
enough lens-source orientations to average over. Note that in the measurement
of the correlation between the ellipticities of galaxies, as is done in cosmic shear
studies, or in cluster mass reconstruction studies, PSF residuals can introduce
a significant bias in the result. The areas with a highly elliptical PSF should
be excluded from such analyses. In conclusion, the results of the STEP simu-
lations indicate that the HH method is a shape measurement method accurate
and robust enough for the scientific purposes of this thesis, and suggest that the
shear measured in the RCS2 data is underestimated by 1–2 % at most.

As for the photometry, we make an internal comparison of the ellipticity
estimates using the galaxies in the areas that overlap with neighbouring expo-
sures. Histograms of the differences in the e2 ellipticity components are shown
in Figure 2.10. The histograms are all centered on zero. Combining all the
overlapping regions, we find that the average spread has a value 0.09, which
decreases to 0.05 and 0.03 if we only compare galaxies with mr′ < 23 and
mr′ < 22, respectively. The average galaxy polarization errors for these selec-
tions are 0.05, 0.02 and 0.01. The average ellipticity error of these galaxies is
larger, however, due to uncertainties in the PSF correction. Additionally, we
compare galaxies close to the sides of the image, where the PSFs pattern differs
most between the images. Hence the values for the average spread are reason-
able, which demonstrates that the method is stable, and the ellipticity estimate
for a galaxy is robustly measured in the RCS2.

The shapes of galaxies in the RCS2 have been measured independently with
the shapelet method (Refregier 2003; Refregier & Bacon 2003), using the im-
plementation of Kuijken (2006). This shape measurement technique provides
independent estimates of the ellipticity of galaxies. We compare the elliptic-
ity components of 450 000 galaxies in Figure 2.11. For small ellipticities, the
ellipticity components agree well. For galaxies with ei > 0.15, the ellipticities
measured with KSB are slightly larger than those measured with shapelets. This
discrepancy might be caused by the rapid radial decline of the shapelets basis
functions. Consequently, shapelets have difficulties in fitting galaxies with flat
surface brightness profiles, and very elliptical galaxies, leading to biases in the
ellipticity measurement.
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Figure 2.10: Three examples of the comparison of the e2 ellipticity component
of the galaxies that reside in the areas that overlap with neighbouring exposures.
Each overlapping exposure is indicated by a different colour, and their names
shown in the top-left corners. Both the e1 and e2 ellipticity component agree well
internally, as all histograms are narrow and centered on zero. This demonstrates
that the ellipticities of galaxies are robustly determined with the KSB method.

Another standard test performed in gravitational lensing is the measurement
of the so-called cross shear. Gravitational lensing only produces ’tangential’
distortions – the shapes of source galaxies are stretched in the direction per-
pendicular to the lens-source separation. The cross shear measures the shear
component that is rotated by 45 degrees with respect to the lens-source sepa-
ration vector. A non-zero cross shear indicates the presence of systematics in
the shape catalogues. If the cross shear is zero, however, the shape catalogues
are not necessarily free of systematics. The cross shear and the tangential shear
are measured simultaneously in the science analyses. In all the lensing measure-
ments we perform throughout this thesis, we find that the cross shear signal is
consistent with zero. As an example, we refer the interested reader to Figure
3.5 in Chapter 3.

2.5.3 Camera shear correction

The camera shear results from slight non-linearities in the mapping between
the sky coordinates and the CCD pixels. It is calculated by taking the gradient
of the polynomial fits from SCAMP that describe the mapping between image
to sky coordinates. The camera shear pattern is mainly radial, as can be seen
in Figure 3.4 in Chapter 3. To check whether we properly remove the camera
shear, we measure the tangential shear around the centre of the images, using the
corrected and uncorrected galaxy ellipticities. The result of this test is shown
in Figure 2.12. When we do not correct for camera shear, we observe that
the measured signal turns negative towards the edges of the images. After the
correction, the effect is reduced but some residual is still present. We attribute
this to residual PSF systematics, as we demonstrate in the next section.
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Figure 2.11: Comparison of the ellipticity components of 450 000 galaxies mea-
sured with the KSB method and with the shapelets method, for e1 in the left-
hand panel, and for e2 in the right-hand panel. The ellipticities agree well for
ei < 0.15, but for larger ellipticities KSB measures larger values.

Figure 2.12: The shear around the centre of the camera. In panel (a), the
correction for camera shear has not been applied. Consequently, the signal be-
comes negative at scales >10 arcmin as the camera distortion is mainly radial.
We apply the camera shear correction in panel (b), which strongly suppresses
the large-scale negative signal. A small residual negative signal is left, which is
caused by imperfect PSF corrections of the galaxy shapes. In lensing measure-
ments, the subtraction of the signal around random lenses corrects for this.

2.5.4 Random catalogues

For each image, a large number of random lens positions are generated.
The lenses that reside inside the masked regions are removed. We measure
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Figure 2.13: The signal of the random lens catalogues for the exposures taken
prior to the lens-configuration change (left-hand panel), and the exposures ob-
served afterwards (right-hand panel), after applying the correction for camera
shear. The thick line shows the average, the hatched area shows the scatter be-
tween the exposures. The random signal of the left-hand panel turns negative
at large scales, which indicate the presence of PSF residual systematics in the
shape catalogues.

the lensing signal using 40 000 random lenses per image, and show the average
signal in Figure 2.13 (after applying the correction for camera shear). The left
panel shows the random signal for the 160 exposures taken prior to the change
of the orientation of the lens, which took place in November 2004. The right
panel shows the random signal for the 600 exposures taken after that moment.
In both cases, the random signal on small scales is consistent with zero, since
the signal is averaged over many lens-source orientations. At large scales, the
random shear signal of the images observed before the lens configuration change
turns negative. This residual pattern is due to imperfect PSF corrections of the
galaxies that reside near the edges and corners of the images, where the PSF
was found to be very elliptical (see Figure 2.5).

To demonstrate how the random signal impacts the lensing measurements,
we measure the tangential shear around 1.6×106 lenses with magnitudes in the
range 19.5 < mr′ < 21.5, using 14 × 106 source galaxies with 22 < mr′ < 24.
We perform the measurement both with and without subtracting the random
lensing signal, and show both results in Figure 2.14. Without correcting for
the random signal, the shear increases from ∼6 to ∼10 arcminutes, after which
it rapidly decreases and turns negative. Correcting the shear with the random
signal removes this odd bump and negative signal. The corrected signal is
smooth, suggesting that the correction for systematic contributions works well.
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3
On the relation between baryons and

dark matter in galaxies in the Red
Sequence Cluster Survey 2

We present the results of a study of weak gravitational lensing by galaxies using
imaging data that were obtained as part of the second Red Sequence Cluster
Survey (RCS2). In order to compare to the baryonic properties of the lenses we
focus here on the ∼300 square degrees that overlap with the DR7 of the SDSS.
The depth and image quality of the RCS2 enables us to significantly improve
upon earlier work for luminous galaxies at z ≥ 0.3. Comparison with dynam-
ical masses from the SDSS shows a good correlation with the lensing mass for
early-type galaxies. For low luminosity (stellar mass) early-type galaxies we find
a satellite fraction of ∼40% which rapidly decreases to < 10% with increasing
luminosity (stellar mass). The satellite fraction of the late-types has a value in
the range 0-15%. We find that early-types with a r-band luminosity in the range
1010 < Lr < 1011.5 h−2

70 L� have virial masses that are about five times higher

than those of late-type galaxies and that the mass scales as M200 ∝ L2.34+0.09
−0.16 .

We also measure the virial mass-to-light ratio, and find for early-types that
have a total luminosity within the virial radius of L200 < 1011 h−2

70 L� a value of
M200/L200 = 42±10 h70M�/L�, which increases for higher luminosities to val-
ues that are consistent with those observed for groups and clusters of galaxies.
For late-type galaxies we find a lower value of M200/L200 = 17 ± 9 h70M�/L�.
Our measurements also show that early- and late-type galaxies have comparable
halo masses for stellar masses M∗ < 1011 h−1

70 M�, whereas the virial masses of
early-type galaxies are higher for higher stellar masses. Finally, we determine
the efficiency with which baryons have been converted into stars. Our results
for early-type galaxies suggest a variation in efficiency with a minimum of ∼10%
for a stellar mass M∗,200 = 1012 h−1

70 M�. The results for the late-type galaxies
are not well constrained, but do suggest a larger value.

E. van Uitert, H. Hoekstra, M. Velander, D.G. Gilbank, M.D. Gladders,
H.K.C. Yee, A&A accepted (ref. AA/2011/17308);
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3.1 Introduction

There is now overwhelming evidence that galaxies are surrounded by dark
matter haloes. Studying the global properties of the haloes, such as their virial
masses or density profiles, however, has proven difficult due to a lack of reliable
tracers of the gravitational potential at large distances. Improving observational
constraints is important because the details of galaxy formation are not com-
pletely clear, even though significant progress has been made in recent years
(e.g. Bower et al. 2010; Kim et al. 2009). The relation between the baryons and
the dark matter in galaxies has been studied using numerical simulations (e.g.
Wang et al. 2006; Croton et al. 2006; Somerville et al. 2008; Moster et al. 2010)
and it is important to confront the predictions with observations. This requires
reliable estimates of both the dark matter and the baryonic content of galaxies.

Several observables can be used to trace the baryons, such as the luminosity
of a galaxy, which is readily available. It is also possible to derive stellar masses
by fitting stellar synthesis models to either the spectral features of a galaxy
(Kauffmann et al. 2003; Gallazzi et al. 2005) or to its colours (Bell & de Jong
2001; Salim et al. 2007). The stellar mass estimates are tightly correlated to
various other important global properties of galaxies (colour, metallicity, lumi-
nosity, environment, see e.g. Grützbauch et al. 2011, and references therein) and
they are therefore considered a useful tracer of the baryonic content of a galaxy.

Numerical simulations suggest that the dark matter haloes of massive galax-
ies extend out to hundreds of kiloparsecs (e.g. Springel et al. 2005), which is
supported by observations (e.g. Hoekstra et al. 2004). For nearby galaxies it
is possible to study the dark matter distribution using the dynamics of plan-
etary nebulae (e.g. Napolitano et al. 2009). In addition, studies of satellite
galaxies around central galaxies (e.g. More et al. 2011; Conroy et al. 2007) have
provided constraints on the relation between baryons and dark matter. Unfor-
tunately these studies require spectroscopy of large numbers of objects, which
makes them rather expensive. Furthermore, the observations are limited to
small scales due to the requirement of having optical tracers, which complicates
the determination of the virial mass of the haloes galaxies reside in, unless one
is willing to extrapolate the measurements.

Fortunately it is possible to probe the matter distribution on large scales,
thanks to an effect called weak gravitational lensing; we can measure the distor-
tion of the shapes of faint background galaxies (sources) caused by the bending
of light rays by intervening mass concentrations (lenses). The distortion is in-
dependent of the type of matter in the lenses, and so the projected mass of the
lens is measured without any assumption on the physical state of the matter at
scales from a few kiloparsec to a few megaparsec.

The weak lensing signal around a single galaxy is too weak to detect since
it is 10-100 times smaller than the intrinsic ellipticities of galaxies. Therefore
the galaxy-galaxy signal has to be averaged over many lenses to decrease the
shape noise. Although individual galaxies cannot be studied in this way, their
average properties can be determined (e.g. Brainerd et al. 1996; Fischer et al.
2000; Hoekstra et al. 2004). Only more recently has it become possible to study
lenses as a function of properties such as type, luminosity, stellar mass, etc., be-
cause early studies lacked the ancillary data needed to subdivide the lenses into
subsamples. For instance Hoekstra et al. (2005) used nearly 34 square degrees

38



3.1. INTRODUCTION

of the Red Sequence Cluster Survey (RCS) (Gladders & Yee 2005) for which
photometric redshifts were available (Hsieh et al. 2005), to study the relation
between the virial mass and baryonic contents of isolated galaxies in the red-
shift range 0.2 < z < 0.4, and derived star formation efficiencies for early- and
late-type galaxies. Thanks to the wealth of ancillary data, the Sloan Digital
Sky Survey (SDSS; York et al. 2000) has had a major impact on galaxy-galaxy
lensing studies (e.g. Guzik & Seljak 2002; Mandelbaum et al. 2006). This is
evidenced by Mandelbaum et al. (2006) who used nearly 5000 square degrees of
the SDSS DR4 (Adelman-McCarthy et al. 2006) to study galaxies in the red-
shift range 0.02 < z < 0.35 as a function of galaxy type and environment, and
constrained the stellar mass to virial mass relation, the luminosity to virial mass
relation and the satellite fractions of the lens samples.

Currently no survey can surpass the precision that can be achieved by the
SDSS at low redshift (z < 0.3) because of the large survey area and the avail-
ability of spectroscopic data. We note, however, that complementing the SDSS
data with deeper imaging by the Panoramic Survey Telescope & Rapid Response
System1 (Pan-STARRS; Kaiser et al. 2002) will provide a major improvement,
as is demonstrated by the results we present here. For lenses with z > 0.3 it
is possible to achieve a significant improvement over the SDSS results by sur-
veying a smaller area with deeper data and good image quality; it allows us to
use sources at higher redshifts. This is important because the amplitude of the
lensing signal scales proportionally to the ratio of the angular diameter distance
between the lens and the source and the distance between the observer and the
source. The signal decreases rapidly when the lens redshift approaches the peak
of the source redshift distribution, which occurs around z ∼ 0.35 for the SDSS.

In this paper we use data from the second generation Red Sequence Clus-
ter Survey (RCS2) to measure the weak lensing signal around galaxies that are
observed in the SDSS. The RCS2 is a nearly 900 square degree imaging survey
carried out by the Canada-France-Hawaii-Telescope (CFHT), and is ∼2 mag-
nitudes deeper than the SDSS in r′. The increase in depth combined with a
median seeing of 0.7′′, which is a factor of two smaller than the seeing in the
SDSS, results in a source galaxy number density that is about five times higher,
and a source redshift distribution that peaks at z∼0.7.

We use the overlapping area between the two surveys, which amounts to ap-
proximately 300 square degrees, in order to assign the spectroscopic redshifts,
luminosities, stellar masses and dynamical masses from the SDSS to the lenses.
The lensing analysis itself is performed on the RCS2 data. Even though the
overlap between the surveys is modest, the loss in survey area is outweighed by
the gain in the number density of source galaxies and the improvement of the
lensing efficiency. This enables us to improve the measurements of the lensing
signal around the most massive galaxies, which mostly reside at redshifts where
the SDSS lensing is not very sensitive.

In this paper we describe the lenses in Section 3.2. The weak lensing anal-
ysis is discussed in Section 3.3. The halo model that we have implemented is
introduced in Section 3.4. In Section 3.5 we compare the weak lensing mass to
the dynamical mass. We describe the luminosity results in Section 3.6, and the
stellar mass results in Section 3.7. We summarize our conclusions in Section
3.8. Throughout the paper we assume a WMAP5 cosmology (Komatsu et al.

1http://pan-starrs.ifa.hawaii.edu/public/
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2009) with σ8 = 0.8, ΩΛ = 0.73, ΩM = 0.27, Ωb = 0.045 and the dimensionless
Hubble parameter h = 0.7. All distances quoted are in physical (rather than
comoving) units unless explicitly stated otherwise.

3.2 Lens Sample

The SDSS has imaged roughly a quarter of the entire sky, and has observed
the spectra for about one million galaxies (Eisenstein et al. 2001; Strauss et al.
2002). The combination of spectroscopic coverage and photometry in five op-
tical bands (u, g, r, i, z) in the SDSS provides a wealth of galaxy information
that is not available for the RCS2. To use this information, but also benefit
from the improved lensing quality of the RCS2, we use the 300 square degrees
overlap between the surveys for our analysis. We match the RCS2 catalogues
to the DR7 (Abazajian et al. 2009) spectroscopic catalogue, to the MPA-JHU
DR72 stellar mass catalogue and to the NYU Value Added Galaxy Catalogue
(NYU-VAGC)3 (Blanton et al. 2005; Adelman-McCarthy et al. 2008; Padman-
abhan et al. 2008) which yields the spectroscopic redshift, luminosity, stellar
mass, and the dynamical mass of 1.7×104 galaxies. These form the lens sample
of this work; we study the distortion these galaxies imprint as a function of their
baryonic content on the shapes of the background galaxies.

As the relation between dark matter and baryons depends on galaxy type,
we split the lens sample into early- and late-type galaxies using the frac deV
parameter included in the SDSS photometric catalogues. This parameter is
determined by simultaneously fitting frac deV times the best-fitting De Vau-
couleur profile plus (1-frac deV ) times the best-fitting exponential profile to an
object’s brightness profile. This has been done in the g, r and i band, and we
use the average value. We classify galaxies with frac deV > 0.5 as early-types,
and galaxies with frac deV < 0.5 as late-types. The classification of early-types
is at least 96% complete and 76% reliable (96% of all early-type galaxies are
in the early-type sample, while 76% of all the galaxies in the early-type sam-
ple are actually early-types), and the classification of late-types is at least 55%
complete and 90% reliable (Strateva et al. 2001; Mandelbaum et al. 2006).

We visually inspect the brightest and most massive early- and late-type
galaxies of our lens sample using our RCS2 imaging data. We find that about 30
of the 100 most massive late-types (with a stellar mass in the range 1011.4−1012.5

h−1
70 M�) actually consists of multiple objects with small separations. These

galaxies reside at a redshift of ∼ 0.4, and are not well resolved in the SDSS.
They are not removed from the analysis as that may introduce a selection bias.
More importantly, including them facilitates a comparison to the literature. As
a test, we excluded these lenses, and found that the results did not significantly
change (note, however, that due to the low number of massive late-type lenses,
the errors are large).

3.2.1 Luminosities & Stellar Masses

The MPA-JHU stellar mass catalogue contains about 7×105 unique galaxies,
and provides the r-band absolute magnitudes and the stellar mass estimates of

2http://www.mpa-garching.mpg.de/SDSS/DR7/
3http://sdss.physics.nyu.edu/vagc/
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Figure 3.1: Stellar mass versus luminosity of the lens sample. The colour coding
represents the redshift of the galaxies as denoted in the lower right-hand corner.
The histograms for all galaxies (black solid line), the early-types (red dot-dashed
line) and the late-types (blue dotted line), as a function of stellar mass and
luminosity are also shown, and are drawn slightly offset for clarity. The dashed
diagonal lines indicate the additional mass-to-light ratio cuts we have applied
(objects with M∗/Lr between 0.2 h70M�/L� and 10 h70M�/L� have been
selected) to remove outliers that may contaminate the lensing signal.
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our lenses. The absolute magnitudes that are used to compute the luminosities
and stellar masses are based on the Petrosian apparent magnitudes from the
SDSS. The Petrosian apparent magnitude measures the flux within a circular
aperture whose radius depends on the azimuthally averaged brightness profile
in the r-band. It does not include the flux at very large radii from a galaxy, and
therefore underestimates the total flux by typically a few tenths of a magnitude
(Blanton et al. 2001). Although we do not correct for the missing flux as it
would complicate a comparison with previous observational work, this should
be kept in mind when comparing our results to predictions from numerical sim-
ulations.

The absolute magnitudes have been corrected for extinction using the dust
maps from Schlegel et al. (1998), the k-corrections have been calculated to
z = 0.0 using the KCORRECT v4 2 code (Blanton et al. 2003; Blanton & Roweis
2007), and the distance modulus is determined with h = 0.7. We convert the
absolute magnitudes into solar luminosities using the absolute AB magnitude
in the SDDS r-band of Msolar = 4.65 for z = 0.0. We account for passive evo-
lution by dividing the luminosities of the early-type galaxies by (1 + z). The
luminosity evolution of late-type galaxies can in principle be computed if the
star formation histories (SFHs) are accurately known. The SFHs are generally
uncertain, however, since they depend on many parameters such as the stel-
lar mass, environment, assembly history, and AGN activity of a galaxy. Hence
the luminosity evolution is difficult to determine and the correction highly un-
certain. We therefore do not correct the luminosites of late-type galaxies for
evolution.

The stellar masses have been estimated by fitting a library of Bruzual &
Charlot (2003) stellar population models to the u, g, r, i, z photometry of the
galaxies in the SDSS. The initial mass function (IMF) was taken to be a Kroupa
(2001) IMF and the modelling methodology follows Salim et al. (2007).

Nearly all galaxies with a spectroscopic redshift from DR7 are present in
the stellar mass catalogue. Figure 3.1 shows the stellar mass versus luminosity
for the matched galaxies. The different colours represent galaxies at differ-
ent redshifts. The most massive and luminous galaxies in our sample reside
in the highest redshift range, and are almost exclusively early-type galaxies.
Also shown are the histograms of the stellar masses and of the luminosities on
respectively the horizontal and vertical axis. The dashed lines indicate the ad-
ditional 0.2 < M∗/Lr < 10 h70M�/L� cut we apply to minimize the outlier
contamination of the lensing bins.

3.2.2 Dynamical Masses

The motions of stars in a galaxy provide an alternative way to estimate
the mass of a galaxy at small radii, and constrain the scaling relations between
baryons and dark matter. Spectroscopic observations are required to measure
the velocity dispersion, which is converted into a dynamical mass estimate via
the scalar virial theorem, taking into account projection effects and assumptions
on the structure of the stellar orbits:

GMdyn = KV (n)σ2
losRe, (3.1)

with σlos the line-of-sight velocity dispersion of the galaxy, Re the effective
radius (containing 50% of the light of the best fit Sérsic model), and KV (n) a
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term that includes the effects of structure on stellar dynamics, which can be
approximated by (Bertin et al. 2002):

KV (n) ∼=
73.32

10.465 + (n− 0.94)2
+ 0.954, (3.2)

with n the Sérsic index (Sérsic 1968).
Using the dynamical mass as a tracer for the total mass of a galaxy has

various complications. Firstly, it is implicitly assumed that the velocity disper-
sion in Equation 3.1 is only generated by the radial motions of the stars, and
the KV (n) term is derived under the assumption that the mass distribution is
spherical, dynamically isotropic, and non-rotating. In reality, however, the ro-
tation of a galaxy contributes to the measured velocity dispersion as well, and
this effect is particularly important in late-type galaxies. The majority of the
early-type galaxies in our study are massive and luminous. They are expected
to rotate slowly (e.g. Emsellem et al. 2007), so their dynamical mass estimates
are less affected. The dynamical masses of late-type galaxies, however, are po-
tentially overestimated. A second complication arises from the fact that the
spectroscopic fibre within which the velocity dispersion is measured has a fixed
size. Therefore, the physical region over which the velocity dispersion is aver-
aged depends on the redshift of a galaxy, and hence it probes different regions
for galaxies at different redshifts. If the velocity dispersion changes with radius,
we would effectively assign different dynamical masses to the same galaxy de-
pending on its redshift. Thirdly, the dynamical mass is measured within the
effective radius. The effective radius is a rather arbitrary point, as it depends
on parameters such as the shape, the brightness profile and the orientation of
a galaxy, and the distribution of dust within the galaxy. Even if a galaxy is
spherical and isotropic, it is not clear whether the effective radius marks a spe-
cial point in relation to the total mass content of a galaxy, given that the dark
matter does not follow the distribution of stars. This is most obvious in the
outer regions of a galaxy, where most of the matter is dark.

To calculate the dynamical mass of our lenses, we retrieve the velocity dis-
persions from the SDSS spectroscopic catalogue. As it is complex to estimate
the velocity dispersion of galaxies whose spectra are dominated by multiple com-
ponents, e.g. galaxies with different stellar populations or different kinematic
components, the SDSS only provides estimates for spheroidal systems whose
spectra are dominated by red stars. At low redshift, the selection also includes
the bulges of late-type galaxies because their spectra are similar to the spectra
of early-type galaxies. The Sérsic index and the effective radius are obtained
from the NYU-VAGC. The sizes and fluxes are underestimated 10% and 15%
respectively for large galaxies and galaxies with high Sérsic indices (Blanton
et al. 2005), whereas the Sérsic index itself is underestimated by ∼ 0.5 to ∼ 1.3
for galaxies with high Sérsic indices. It is shown in Guo et al. (2009) that these
biases arise from background overestimation and subtraction. As a result, the
dynamical mass estimates for these galaxies may be slightly biased, but we do
not account for it since we do not know the correction for each galaxy. To
ensure that the dynamical mass is computed in approximately the rest-frame
r-band, we split the sample according to redshift. For galaxies at z < 0.2 we
use the Sérsic index and effective radius in the r-band, for galaxies between
0.2 < z < 0.4 we use the values in the i-band, and for galaxies at z > 0.4 we
average the values of the i- and z-band.
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3.3 Lensing analysis

3.3.1 The RCS2

The lensing signal can be detected with high significance at low redshifts
(z < 0.3) using SDSS data only. At higher redshifts, the significance decreases
rapidly, because of the limited imaging depth and image quality of the SDSS. To
improve the lensing signal-to-noise ratio at z ≥ 0.3, we use the deep imaging data
from the Red Sequence Cluster Survey 2 (RCS2) (Gilbank et al. 2011) instead.
The RCS2 is a nearly 900 square degree imaging survey in three bands (g′, r′

and z′) carried out with the Canada-France-Hawaii Telescope (CFHT) using the
1 square degree camera MegaCam. The primary survey area is divided into 13
well-separated patches on the sky (including the uncompleted patch 1303), each
with an area ranging from 20 to 100 square degrees 4. Since the RCS2 consists
of single exposures only, it is difficult to identify cosmic rays, especially those
that hit stars and galaxies. However, only a small fraction of objects is hit by a
cosmic ray, and the affected objects do not bias the measurements, but act as a
negligible source of noise (Hoekstra et al. 2004). We perform the weak lensing
analysis in the SDSS and RCS2 overlap using the 8 minute exposures of the
r′-band (r′lim ∼24.8), which is best suited for lensing as it has a median seeing
of 0.7′′.

3.3.2 Image processing

We retrieve the Elixir5 processed images from the Canadian Astronomy Data
Centre (CADC) archive6. We use the THELI pipeline (Erben et al. 2005,
2009) to subtract the image backgrounds, to create weight maps that we use
in the object detection phase, and to identify satellite and asteroid trails. To
obtain accurate astrometry, we run SCAMP (Bertin 2006) on the images, which
enables us to match our catalogues to the SDSS. The polynomial coefficients
from SCAMP describing the mapping from image to sky coordinates are used to
calculate the camera distortion. We use the automated masking routines from
the THELI pipeline to generate image masks and to combine them with the
RCS2 masks in order to omit image regions that contaminate the lensing signal
(e.g. saturated stars, satellite trails). All masks are inspected by eye, and man-
ually improved where necessary.

We use SExtractor (Bertin & Arnouts 1996) to detect the objects in the
images. To select the stars for modelling the PSF variation across the images,
we first identify the locus of the stellar branch in a size-magnitude diagram.
We select the non-saturated objects close to the stellar branch with a signal to
noise ratio larger than 30 and with no SExtractor flags raised. To remove small
galaxies that have been misidentified as stars, and stars that have been affected

4The CFHT Legacy Survey Wide, comprising of 171 square degrees of imaging data in u?,
g′, r′, i′ and z′, is also included in the RCS2, but is not used in this study.

5http://www.cfht.hawaii.edu/Instruments/Elixir/
6http://www1.cadc-ccda.hia-iha.nrc-cnrc.gc.ca/cadc/
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by cosmic rays, we fit a second-order polynomial to both the size and the ellip-
ticity of these star-candidates, and discard all 3-sigma outliers. We clean the
stellar selection even further in the shape measurement pipeline by removing
shape parameter outliers. All objects larger than 1.2 times the local size of the
PSF are classified as galaxies.

In Figure 3.2 we illustrate the star-galaxy separation. It has been fully auto-
mated, but as a precaution we inspect all size-magnitude diagrams by eye. The
separation fails for a few chips that have either very few stars or a PSF with a
large FWHM, and we manually adjust those. As neighbouring patches overlap
by ∼1 arcminute, we remove all galaxies within 35 arcseconds from the image
edges in order to avoid duplicating the lenses and sources in our analysis.

Elixir provides approximate zeropoints for each pointing, which we use
to measure the r′-band magnitudes of the objects in the images. We correct
the magnitudes for galactic extinction using the dust maps from Schlegel et al.
(1998). These magnitudes are not as accurately calibrated as those from Gilbank
et al. (2011), and differ in the r′-band on average by −0.01± 0.32. Our calibra-
tion is, however, sufficiently accurate to select the source galaxy sample. For
the calculation of the luminosity overdensity, which is discussed in Section 3.6.1,
we use the catalogues from Gilbank et al. (2011) instead.

3.3.3 Contamination correction

A fraction of the galaxies in the source catalogue is physically associated with
the lenses. Since we lack redshifts for the sources, we are unable to remove them.
These objects are not lensed, and therefore dilute the lensing signal. To esti-
mate this contamination we measure fcg(r), the excess source number density
around the lenses. We show the overdensity around the lenses which have been
divided into seven stellar mass bins (defined in Table 3.3) as a function of lens-
source separation in Figure 3.3. The error bars are computed assuming that the
number of source galaxies in each radial bin follows a Poisson distribution. The
contamination increases with stellar mass, as massive galaxies reside in denser
environments and therefore have more satellite galaxies. Although the overden-
sity is shown independently of the lens galaxy type in Figure 3.3, we measure
it for the early- and late-types separately in the science analysis presented in
Section 3.5, 3.6 and 3.7. Assuming that the satellite galaxies have random ori-
entations, we correct for the contamination by boosting the lensing signal with
a factor 1 + fcg(r). Note, however, that the contamination correction may be
too small if satellite galaxies are preferentially radially aligned in the direction
of the lens. This type of intrinsic alignment has been studied with seemingly
different results; some authors (e.g. Agustsson & Brainerd 2006; Faltenbacher
et al. 2007) who determined the galaxy orientation using the isophotal position
angles, have observed a stronger alignment than others (e.g. Hirata et al. 2004;
Mandelbaum et al. 2005a) who used galaxy moments. Siverd et al. (2009) and
Hao et al. (2011) attribute the discrepancy to the different definitions of the
position angle of a galaxy. As we measure the shapes of source galaxies using
galaxy moments, we expect that intrinsic alignment only has a minor impact
on the correction factor and hence can be safely ignored.

Gravitational lenses do not only shear the images of the source galaxies, but
also magnify the background sky. As a result, the flux of the sources is magni-
fied, and the source galaxy number density is diluted. These combined effects
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Figure 3.2: Size-magnitude diagram of one of the chips in a randomly picked
exposure. The black dots are the SExtractor detections, the green pentagons
are the selected stars, the red triangles are the 3-sigma outliers, and the blue
squares are the selected galaxies. The dashed lines indicate the location of the
stellar branch. Thanks to the good image quality the stars are easily separated
from the galaxies.

are known as magnification bias, and it changes the source density around the
lenses. The effect is negligible for the lensing study presented here.

3.3.4 Shape measurement

The measurement of the shapes of galaxies is central to any weak lensing
analysis. The accuracy that is required depends on the science goal. For exam-
ple, in cosmic shear studies aimed at constraining cosmological parameters, it is
necessary to accurately correct the measured galaxy shapes for the anisotropic
smearing of the PSF since the signal is small and very sensitive to any PSF
residual systematic. In contrast, in the case of galaxy-galaxy lensing the sig-
nal is averaged over many lens-source pairs with random orientations, which
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Figure 3.3: Source galaxy overdensity as a function of distance from the lenses
for the different stellar mass bins. The overdensity increases with stellar mass.
Massive galaxies reside on average at higher redshifts and live in denser envi-
ronments with more satellite galaxies.

removes most of the PSF systematics on small scales.
For our lensing analysis we measure the shapes of galaxies with the KSB

method (Kaiser et al. 1995; Luppino & Kaiser 1997; Hoekstra et al. 1998), using
the implementation described by Hoekstra et al. (1998, 2000). The measured
galaxy shapes are corrected for smearing by the PSF under the assumption that
the brightness distribution of stars can be described by an isotropic profile con-
volved with a small anisotropic kernel. Generally, the PSF is more complicated
which may lead to biases. The version of KSB we use has been tested on simu-
lated images as part of the Shear Testing Programme (STEP) 1 and 2 (the ‘HH’
method in Heymans et al. (2006) and Massey et al. (2007) respectively). These
tests have shown that the correction scheme works well for a variety of PSFs;
in STEP2, the HH method underestimates the shear on average by 1-2% only.

The mapping between the sky coordinates and the CCD pixels is slightly
non-linear due to the camera optics, which causes an additional shear that needs
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Figure 3.4: Shear induced by camera distortion in the MegaCam imager. The
camera shear is largest in the corners of the mosaic, with values up to 1.5%. As
the observed shear is the sum of the gravitational shear and the camera shear,
we simply subtract the camera shear from the observed galaxy ellipticities to
correct for it.

to be corrected. We calculate the shear induced by this distortion using the
polynomial coefficients from SCAMP describing the mapping from image to sky
coordinates. The camera shear of MegaCam is shown in Figure 3.4. The images
of both the stars and the galaxies are sheared, with a value reaching 1.5% at the
corners of the images. At large lens-source separations, where the gravitational
lensing signal is small, the camera shear dominates the observed lensing signal.
Hoekstra et al. (1998, 2000) demonstrate that the observed shear is the sum of
the gravitational shear and the camera shear. We therefore simply subtract the
camera shear from the observed ellipticities of the galaxies to correct for it.

To demonstrate the excellence of the RCS2 as a lensing survey, we measure
the galaxy-mass cross-correlation function in the exposures that significantly
overlap with the SDSS (defined as having more than 30 matching objects).
301 exposures of the total overlapping 350 meet this requirement, which after
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3.3. LENSING ANALYSIS

masking and exclusion of the image boundaries leads to an effective area of
approximately 260 square degrees. The galaxy-mass cross-correlation function
measures the correlation between the galaxies and the surrounding distribution
of (predominantly dark) matter. We compute it by measuring the azimuthally
averaged tangential shear as a function of radial distance from the lens:

〈γt〉(r) =
∆Σ(r)

Σcrit
, (3.3)

where ∆Σ(r) = Σ̄(< r) − Σ̄(r) is the difference between the mean projected
surface density enclosed by r and the mean projected surface density in an
annulus at r, and Σcrit is the critical surface density

Σcrit =
c2

4πG

Ds

DlDls
, (3.4)

with Dl, Ds and Dls the angular diameter distance to the lens, the source, and
between the lens and the source respectively.

Since we do not have redshifts for all galaxies we separate the lenses from
the sources using magnitude cuts (see e.g. Hoekstra et al. 2004). Objects with
19.5 < mr′ < 21.5 are defined as lenses, and objects with 22.0 < mr′ < 24.0
are sources. We discard objects with ellipticities larger than 1, and objects that
have a SExtractor flag raised. Using these selection criteria we find 7.3×105

lenses and 5.9×106 sources. The corresponding effective source number den-
sity is 6.3 arcmin−2, which is five times higher than the source density of 1.2
arcmin−2 used in the SDSS analysis (Mandelbaum et al. 2005a). To obtain the
approximate redshift distribution of the lenses and sources, we apply identical
magnitude cuts to the photometric redshift catalogues of the Canada-France-
Hawaii-Telescope Legacy Survey (CFHTLS) “Deep Survey” fields (Ilbert et al.
2006). We stack the signals of all the lenses in the RCS2, and azimuthally aver-
age them in radial bins. To remove the contributions of systematic shear (from,
e.g., the image masks), we subtract the signal computed around random lenses
from the signal around the real lenses. We measure the source galaxy overden-
sity as a function of lens-source separation, and boost the signal to correct for
the contamination as outlined in Section 3.3.3. Figure 3.5 shows the tangential
shear, and the inset shows the signal at small scales using a linear vertical scale.

We also measure the cross shear around the lenses by rotating the back-
ground galaxies 45◦ and repeating the measurement. Gravitational lensing does
not produce cross shear, and a non-zero signal indicates the presence of residual
systematics in the catalogues. We indicate the cross shear with the red symbols
in the inset in Figure 3.5, and note that it is consistent with zero on all scales.

For reference, we fit a singular isothermal sphere (SIS) and a Navarro-Frenk-
White (NFW) profile (Navarro et al. 1996) to the tangential shear on scales
between 0.2 and 0.6 arcminutes (∼60-180 h−1

70 kpc at the median lens redshift
zmed = 0.34). The SIS signal is given by

γt,SIS(r) =
rE
2r

=
4πσ2

c2
Dls

Ds

1

2r
, (3.5)

where rE is the Einstein radius and σ the velocity dispersion. We indicate the
best fit SIS model with the dashed line in Figure 3.5. The NFW density profile
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Figure 3.5: Galaxy-mass cross-correlation function around 7.3×105 apparent
magnitude selected lenses measured with 5.9×106 sources. The black symbols
are the tangential shear, the red symbols are the cross shear. The top axis shows
the projected separation in physical units for the median lens redshift zmed=0.34.
The inset shows the signal on a linear scale for small separations. The signal has
been corrected for contributions from systematic shear, and boosted to account
for source galaxy contamination. The dashed (dotted) line shows the best fit
SIS (NFW), fitted to the shear on scales between 0.2 and 0.6 arcminutes. The
clustering of galaxies causes excess shear at scales >1 arcminutes.

is given by

ρ(r) =
δcρc

(r/rs)(1 + r/rs)2
, (3.6)

with δc the characteristic overdensity of the halo, ρc the critical density for
closure of the universe, and rs = r200/cNFW the scale radius, with cNFW the
concentration parameter. The NFW profile is specified by two free parameters:
the mass and the concentration parameter. Since numerical simulations have
shown that the concentration depends on the mass and redshift of the halo,
we can reduce the number of free parameters in the fit by adopting a mass-
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concentration relation. We use the mass-concentration relation from Duffy et al.
(2008), which is based on numerical simulations using the best fit parameters
of the WMAP5 cosmology. It is given by

cNFW = 5.71
( M200

2 × 1012h−1M�

)−0.084

(1 + z)−0.47, (3.7)

with M200 the mass in units of h−1M�. M200 is defined as the mass inside a
sphere with radius r200, the radius where the density is 200 times the critical
density ρc. We use the median lens redshift zmed = 0.34 for the stacked lenses
in the NFW fit, and calculate the tangential shear profile using the analytical
expressions provided by Bartelmann (1996) and Wright & Brainerd (2000). The
best fit NFW profile is indicated by the dotted line in Figure 3.5.

It is clear that both the SIS and NFW profiles underestimate the signal at
scales larger than ∼1 arcminute, which corresponds to ∼300 h−1

70 kpc at the me-
dian lens redshift. The majority of galaxies live in clustered environments, and
with gravitational lensing we measure the shear induced by neighbouring galaxy
haloes as well. This excess lensing signal complicates a straightforward analysis
of the data. The problem could be avoided by studying the lensing signal on
small scales around isolated galaxies (following Hoekstra et al. 2005), but this
requires the availability of redshifts for all galaxies, which we do not have in the
RCS2. Alternatively, the lensing signal can be modelled taking the clustering of
the lenses into account, which enables the simultaneous study of the mass and
of the clustering properties of the galaxies. This is inherent in the halo model
(Seljak 2000; Cooray & Sheth 2002), which we will use here.

The lenses in a bin generally have a range of masses. The correct interpreta-
tion of the signal therefore requires knowledge of the distribution of the masses
of the lens galaxies, an issue we return to at the end of Section 3.4.

3.4 Halo model

Galaxies form in the gravitational potential of dark matter haloes and there-
fore trace the large scale distribution of matter in the universe. The quantity
that describes the relation between galaxies and dark matter is referred to as
galaxy biasing. The description of galaxy biasing is non-trivial as the physics
governing galaxy formation is complex, and the bias may depend on the dark
matter halo mass, environment, scale and redshift (e.g. Cresswell & Percival
2009; Coupon et al. 2011; Kovač et al. 2011). To gain insight into the relation
between galaxies and dark matter the weak lensing signal around galaxies can
be used, as it measures the correlation between the galaxies and the surrounding
dark matter distribution. These lensing measurements provide constraints for
models of the large scale distribution of matter, which are commonly described
with the power spectrum of the density fluctuations (e.g. Peacock & Dodds
1996; Smith et al. 2003). For a given power spectrum, the lensing signal can be
computed directly (Guzik & Seljak 2001):

γt(θ) = 6π2

(
H0

c

)2

ΩM

∫ ∞

0

dχW1(χ)
f(χ)

a(χ)

×
∫

dkkP (k, χ)J2(kr(χ)θ),

(3.8)
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with r(χ) the angular comoving distance, χ the radial distance (in a flat universe,
r(χ) = χ and χ = a−1 DA with a the scale factor and DA the angular diam-
eter distance), W1(χ) the normalized radial distribution of the lenses, f(χ) =∫∞
χ

dχ′g(χ, χ′)W2(χ′), with W2(χ′) the radial distribution of the sources, and

g(χ, χ′) =
DlDls

Dsa(zl)
. (3.9)

P (k) is the power spectrum under consideration, and J2 is the second Bessel
function of the first kind. Instead of using a single power spectrum to describe
the distribution of matter in the universe, it is beneficial to consider the various
components that contribute, as is done in the halo model. This allows a simul-
taneous study of the halo masses of galaxies and of their clustering properties.

In the halo model the mass distribution in the universe is described as a dis-
tinct number of dark matter haloes that are clustered. As the large scale spatial
distribution of haloes is unlikely to affect the physics inside individual haloes,
and vice versa, the description of the model can be separated into two steps:
the halo mass function and the bias at large scales, and the halo occupation
distribution at small scales.

The large scale distribution of haloes can be described by the halo number
density. In the Press-Schechter approach (Press & Schechter 1974) the dark
matter haloes are assumed to form by spherical collapse. This, however, leads
to a halo number density that overestimates the abundance of galaxies below
the non-linear mass scale. Better agreement with numerical simulations of hi-
erarchical structure formation comes from the assumption of ellipsoidal rather
that spherical collapse (Sheth et al. 2001). The number density of bound objects
is generally written as

nh(M, z)dM =
ρ̄

M
f(ν)dν, (3.10)

where nh(M, z) is the halo mass function which depends on the halo mass M
and redshift z, and ρ̄ is the mean matter density of the universe at redshift z.
Unless explicitly stated otherwise we use M = M200. The peak height ν is given
by

ν =

(
δsc(z)

σ(M, z)

)2

, (3.11)

with δsc(z) the critical overdensity required for spherical collapse at redshift z,
and σ(M, z) the rms of the density fluctuation field on the scale R = (3M/4πρ̄)1/3,
extrapolated to z using linear theory. In the case of ellipsoidal collapse, f(ν) is
given by (Sheth et al. 2001)

f(ν) = A (1 + (aν)−p) ν−1/2e−aν/2, (3.12)

with a = 0.707, p = 0.3, and A = 0.13683 a constant that is determined by
requiring

∫
f(ν)dν = 1 (i.e. mass conservation).

How the haloes trace the mass is given by the halo-to-mass bias, which is
defined as the ratio of the power spectrum of the halo distribution to the power
spectrum of the matter distribution. We use an analytical formula for the bias
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as given by Sheth et al. (2001), but incorporate the adjustments described in
Tinker et al. (2005):

b(ν) = 1 +
1√
aδsc

×[√
a(aν) +

√
ab(aν)1−c − (aν)c

(aν)c + b(1 − c)(1 − c/2)

]
,

(3.13)

with a = 0.707, b = 0.35 and c = 0.80. The scale dependence of the bias is given
by

b2(ν, r) = b2(ν)
[1 + 1.17ξm(r)]1.49

[1 + 0.69ξm(r)]2.09
, (3.14)

where ξm(r) is the matter correlation function, which in turn is the Fourier
transform of the non-linear power spectrum PNL(k) from Smith et al. (2003),
and r is the distance to the centre of the halo.

To describe how the galaxies and dark matter are distributed within the
haloes, we closely follow the approach outlined in Guzik & Seljak (2002) and
Mandelbaum et al. (2005b). Galaxies living inside dark matter haloes are di-
vided into two classes; they are either a central galaxy located in the central
halo, or a satellite galaxy located in a subhalo inside the central halo. The frac-
tion of satellites in a certain sample of galaxies is denoted by α. The number
of satellites in a central halo is described by the halo occupation distribution
(HOD). Galaxy formation simulations (e.g. Zheng et al. 2005; Kravtsov et al.
2004) show that the HOD is well approximated by a powerlaw Ns(M) ∝ M ε

with ε = 1, which is cut off below a certain minimal halo mass. Rather than this
steep cut off, we follow Mandelbaum et al. (2005b) and assume a more gradual
transition, and use ε = 2 for halo masses smaller than Mchar, whilst ε = 1 for
halo masses larger than Mchar, where Mchar = 3Mh. Mh is the typical halo
mass of a certain set of galaxies (for example the galaxies selected in a luminos-
ity bin). The amplitude is determined by normalizing to the total number of
satellites in the set.

3.4.1 Lensing signal from the halo model

We now proceed to explain how the lensing signal is computed. The ensem-
ble averaged tangential shear is the sum of the signal around central galaxies
and satellites, since we cannot distinguish between them. We compute each
contribution separately, starting with the signal around central galaxies. It is
assumed that the central galaxies are located at the centre of the dark matter
haloes. Two terms contribute to the lensing signal around central galaxies: the
signal coming from the halo where the galaxy resides (γ1h

t,cent), and the signal

from nearby haloes (γ2h
t,cent). Hence the total signal around central galaxies is

given by
γt,cent = γ1h

t,cent + γ2h
t,cent. (3.15)

The density profiles of the central haloes are assumed to be NFW, which we
compute using the mass-concentration relation from Duffy et al. (2008) given
by Equation (3.7). By picking a central halo mass we can thus compute the
tangential shear of the central halo term directly, as spectroscopic redshifts are
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available for all lenses.
The calculation of γ2h

t,cent requires the power spectrum describing the corre-
lation between the galaxy in the central halo and the dark matter of nearby
haloes:

P 2h
cent(k,Mh, r) = bg(Mh, r)

PNL(k)

(2π)3

×
∫ Mlim

0

dνf(ν)b(ν, r)ydm(k,M),

(3.16)

with bg(Mh, r) the bias of the central galaxy, PNL(k) the non-linear power spec-
trum from Smith et al. (2003), and ydm(k,M) the radial Fourier transform of
the central halo density profile divided by mass:

ydm(k,M) =
1

M

∫ r200

0

dr4πr2ρdm(r,M)
sin(kr)

kr
, (3.17)

which we calculate using the analytical formula given in Pielorz et al. (2010).
The dark matter profiles of adjacent haloes cannot overlap, which is pre-

vented by implementing halo exclusion. Different approaches to halo exclusion
have been used in the literature. For example, Cacciato et al. (2009) set the
two-halo correlation function to zero below r180, which leads to a sharp trunca-
tion in the halo models. We follow the approach of Tinker et al. (2005), which
leads to a more natural smooth cut-off: the integral in Equation (3.16) is cut off
for masses greater than Mlim which is chosen such that the r200 of the central
halo does not overlap with the r200 of nearby haloes: r200(Mh)+r200(Mlim) = r.
It should be noted that this choice, as any other halo exclusion approach, is an
approximation. Ultimately, numerical simulations should be used to provide
improved estimates for P 2h

cent. Note that P 2h
cent(k,Mh, r) not only depends on

the wavenumber but also on the projected separation r, because of the scale
dependence of the bias and the implementation of halo exclusion.

The contribution of the satellites to the lensing signal consists of three terms:
the signal from the subhalo where the satellite resides (γtrunc

t,sat ), the signal from

the central halo in which the subhalo resides (γ1h
t,sat), and the signal from nearby

haloes (γ2h
t,sat). Hence the total signal around satellites is given by

γt,sat = γtrunc
t,sat + γ1h

t,sat + γ2h
t,sat. (3.18)

First we compute the lensing signal of the subhalo, γtrunc
t,sat , following Mandel-

baum et al. (2005b). The density profile is assumed to follow an NFW profile
in the inner regions. The outer regions of the subhalo are tidally stripped of
its dark matter by the central halo. Due to this stripping the lensing signal
is proportional to r−2 at radii larger than the truncation radius. Based on
good agreement with numerical simulations, Mandelbaum et al. (2005b) chose
a truncation radius of 0.4r200, and we use the same. This choice corresponds to
roughly 50% of the dark matter being stripped from the subhalo.

To compute the lensing signal induced by the halo where the subhalo resides,
we calculate the power spectrum describing the correlation between the subhalo
and the dark matter profile of the central halo:

P 1h
sat(k,Mh) =

1

(2π)3n̄

∫
dνf(ν)Ns(M,Mh)

×ydm(k,M)yg(k,M),

(3.19)
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with n̄ the mean galaxy number density, which can be determined using n̄ =

ρ̄
∫

dνf(ν)Ns(M,Mh)
M , and yg the radial Fourier transform of the radial distribu-

tion of satellites around the central halo. We assume that the radial distribution
of satellites follows an NFW profile with a concentration cg, given by the mass-
concentration relation from Duffy et al. (2008). To asses the sensitivity to the
shape of the radial distribution of the satellites, we also calculate the γ1h

t,sat term
using a cg that is varied by a factor of two. We find that this change mainly
impacts the model signal at small scales: for a larger (smaller) concentration,
the signal increases (decreases). At scales larger than a few hundred kpc, the
change of the model signal is negligible. When we fit these adjusted models to
the data, we find that the best fit model parameters do not change significantly.
We conclude that the signal-to-noise of our data currently does not enable us to
discriminate between halo models with different radial distributions of satellite
galaxies.

Finally we compute the contribution from nearby haloes to the lensing signal
around satellite galaxies:

P 2h
sat(k,Mh, r) =

PNL(k)

(2π)3

∫ Mlim

0

dνf(ν)b(ν, r)ydm(k,M)

× ρ̄

n̄

∫
dνf(ν)b(ν, r)

Ns(M,Mh)

M
yg(k,M).

(3.20)

The three power spectra are converted into their respective shear signals using
Equation (3.8), and the contributions from the central galaxies and satellites
are combined to yield

γt = (1 − α) γt,cent + α γt,sat, (3.21)

where α is the fraction of satellites of the sample. The resulting model is com-
pared to the data.

The lens sample is selected to cover a range in an observable, such as lu-
minosity or stellar mass, as the relation between the mean observable and the
lensing mass is a useful constraint for simulations. The dark matter haloes of
the lenses from such a sample have different masses, however, and it is therefore
important to account for the scatter in the observable-halo mass relation. If
the halo mass distribution is well-known, this can be done by integrating the
models over the distribution of halo masses. Unfortunately, the distribution
is generally not accurately known as the lenses span a considerable range in
observable, redshift and environment. A simpler approach is to study how the
lensing mass is related to the mean halo mass for a given halo mass distribution.
This approach, which was proposed by Mandelbaum et al. (2006), provides the
leading-order correction for the scatter, and we use it in this paper.

3.5 Comparison with dynamical mass

The dynamical mass traces the gravitational potential of a galaxy at small
scales, and typically provides estimates of the total mass enclosed by the effec-
tive radius, which is of the order of a few kpc. Comparison to the mass derived
from strong lensing shows that both estimates agree well for early-type galaxies
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(Bolton et al. 2008). In contrast, weak lensing traces the gravitational potential
at much larger scales, and the mass is usually determined within r200, whose
values range between a few tens to a few hundreds of kpc. To study how the
dynamical mass is related to the weak lensing mass, we measure the lensing
signal for galaxies divided into seven dynamical mass bins, as detailed in Table
3.1. The lensing signal of the stacked galaxies in each bin is shown in Figure
3.6. We fit our halo model to the lensing signal in the distance interval between
50 h−1

70 kpc and 2 h−1
70 Mpc. At scales smaller than 50 h−1

70 kpc the lensing sig-
nal is very noisy, since we do not have many sources at small separations, and
lens light contamination might bias the shear signal. At scales larger than 2
h−1
70 Mpc we measure the lensing signal using mainly sources that reside at the

edge of the images, where the PSF ellipticity is large for the data taken prior
to a change in the MegaCam configuration7(up to 15%), and the residual PSF
systematics noticeably bias the lensing signal. We fit for the central halo mass
and the satellite fraction, and use Equation (3.13) to compute the bias because
the lensing signal is not well constrained at scales >3 h−1

70 Mpc.
We impose two priors on the fits. Firstly, we do not fit halo masses that are

lower than the mean stellar mass of the galaxies in the bin. This prior could
introduce a bias if the assumed IMF is significantly different from the true one,
leading to stellar mass estimates that are too high, but this is not expected to
be the case. The second prior we impose is on the satellite fraction, which is not
well constrained by the data for the most massive galaxies and is anti-correlated
with the best fit halo mass (see Appendix 3.C for details). To prevent this from
biasing the halo mass low, we limit the range of fitted satellite fractions to be
less than 20% in the three highest dynamical mass bins as they contain galaxies
that are expected to be nearly exclusively centrals. The best fit halo model for
each bin is also shown in Figure 3.6. We find that the model fits the data well.
The resulting best fit halo masses for the early- and late-type galaxies are shown
in Figure 3.7, and detailed in Table 3.1. The error bars on the best fit halo mass
(satellite fraction) indicate the 1σ deviations determined by marginalizing over
the satellite fraction (halo mass).

For the early-type galaxies, we find that the dynamical mass correlates
well with the halo mass. The halo mass is ∼10 times larger than the mean
dynamical mass for Mdyn < 1 × 1011 h−1

70 M�, which increases to a factor ∼50
for the highest dynamical mass bins, as the galaxy dark matter haloes extend
far beyond the effective radius. To establish whether we can scale the dynam-
ical mass to the lensing mass, we replace Re with the best fit lensing r200 in
Equation (3.1). We find that the rescaled dynamical masses are 8 times larger
than the best fit lensing masses for D1 and D2, but the difference decreases for
the more massive bins: the rescaled dynamical mass is only 40% larger than
the best fit lensing mass for D7. We therefore cannot simply rescale the mean
dynamical mass to the lensing mass. Note that at the high mass end, galaxies
predominantly live in groups and clusters. With lensing we fit the halo mass of
the entire structure, whereas the dynamical mass is determined for the individ-
ual galaxy only.

We observe that for the late-type galaxies the halo mass does not correlate

7In November 2004, the lens L3 was accidentally mounted incorrectly after the wide-field
corrector had been disassembled. As this surprisingly led to a significant improvement in the
image quality for the u∗-, g′-,and r′-band, the new configuration was kept. About 20% of the
RCS2 survey was obtained prior to this change.

56



3.5. COMPARISON WITH DYNAMICAL MASS

T
ab

le
3.

1:
D

y
n

am
ic

al
m

as
s

re
su

lt
s

S
am

p
le

lo
g(
M

d
y
n
)

n
le
n
s

〈z
〉

〈M
d
y
n
〉

f l
a
te

M
e
a
rl
y

h
α
e
a
rl
y

M
la
te

h
α
la
te

(1
)

(2
)

(3
)

(4
)

(5
)

(6
)

(7
)

(8
)

(9
)

D
1

[1
0.

00
,1

0
.5

0]
2

01
1

0.
08

1.
96

0.
44

2.
86

+
4
.8
4

−
2
.6
4

0.
24

+
0
.1
1

−
0
.0
9

7.
00

+
6
.9
1

−
5
.1
9

0.
17

+
0
.1
1

−
0
.0
9

D
2

[1
0.

50
,1

1
.0

0]
4

75
2

0.
10

5.
91

0.
35

5.
69

+
3
.3
7

−
2
.8
0

0.
41

+
0
.0
7

−
0
.0
6

1.
06

+
3
.1
6

−
1
.0
4

0.
11

+
0
.1
2

−
0
.0
8

D
3

[1
1.

00
,1

1
.2

5]
2

76
2

0.
13

13
.2

0.
25

25
.4

+
7
.6
6

−
7
.8
6

0.
14

+
0
.0
7

−
0
.0
7

6.
10

+
8
.5
0

−
5
.3
9

0.
19

+
0
.1
5

−
0
.1
2

D
4

[1
1.

25
,1

1
.5

0]
2

28
1

0.
16

23
.6

0.
16

40
.3

+
1
1
.0

−
1
0
.7

0.
31

+
0
.0
9

−
0
.0
8

45
.1

+
1
7
.3

−
1
7
.6

0.
00

+
0
.0
9

−
0
.0
0

D
5

[1
1.

50
,1

1
.7

5]
1

71
5

0.
22

41
.7

0.
07

15
0+

2
4
.4

−
3
7
.1

0.
20

+
0
.0
0

−
0
.0
9

12
.7

+
2
7
.0

−
1
2
.7

0.
00

+
0
.3
9

−
0
.0
0

D
6

[1
1.

75
,1

2
.0

0]
93

5
0.

32
72

.5
0.

05
42

1+
9
6
.7

−
1
0
7

0.
20

+
0
.0
0

−
0
.2
0

4.
96

+
6
6
.1

−
4
.9
4

0.
00

+
0
.2
0

−
0
.0
0

D
7

[1
2.

00
,1

2
.5

0]
38

0
0.

39
13

7.
4

0.
07

66
9+

1
8
4

−
3
5
1

0.
20

+
0
.0
0

−
0
.2
0

31
3+

3
2
0

−
3
0
0

0.
20

+
0
.0
0

−
0
.2
0

(1
)

th
e

d
y
n

am
ic

al
m

as
s

ra
n

g
e

of
th

e
b

in
in

u
n

it
s

of
h
−
1

7
0
M

�
;

(2
)

th
e

n
u

m
b

er
of

le
n

se
s;

(3
)

th
e

m
ea

n
re

d
sh

if
t;

(4
)

th
e

m
ea

n
d

y
n

am
ic

al
m

as
s

in
u

n
it

s
of

10
1
0
h
−
1

7
0
M

�
;

(5
)

th
e

fr
ac

ti
on

of
la

te
ty

p
e

ga
la

x
ie

s;
(6

)
th

e
b

es
t

fi
t

h
al

o
m

as
s

fo
r

th
e

ea
rl

y
ty

p
es

in
u

n
it

s
of

10
1
1
h
−
1

7
0
M

�
;

(7
)

th
e

b
es

t
fi

t
sa

te
ll

it
e

fr
ac

ti
on

fo
r

th
e

ea
rl

y
ty

p
es

;
(8

)
th

e
b

es
t

fi
t

h
al

o
m

as
s

fo
r

th
e

la
te

ty
p

es
in

u
n

it
s

of
10

1
1
h
−
1

7
0
M

�
;

(9
)

th
e

b
es

t
fi

t
sa

te
ll

it
e

fr
ac

ti
on

fo
r

th
e

la
te

ty
p

es
.

57



CHAPTER 3. RELATION BARYONS AND DM IN GALAXIES

Figure 3.6: Lensing signal ∆Σ for each dynamical mass bin as a function of
physical distance from the lens. The green dashed line shows the γ1h

t,cent term,

the blue dashed line the γ2h
t,cent term, the green dotted line the γtrunc

t,sat term, the

red dotted line the γ1h
t,sat term, the blue dotted line the γ2h

t,sat term, and the black

line shows the sum of the terms. The γ1h
t,sat term causes a prominent bump for

the two lowest dynamical mass bins, which indicates that a significant number
of lenses in these bins are satellites.

well with the mean dynamical mass. In particular, the best fit halo masses of
the D5 and D6 late-type bins are low. These low values may be explained if ro-
tation constitutes a major part of the observed velocity dispersions of late-type
galaxies, leading to an overestimation of the dynamical mass. Additionally,
the effective radius for some late-type galaxies at high redshift may be over-
estimated, since a significant fraction consists of multiple objects with small
separations as we observed in Section 3.2.

For early-type galaxies the dynamical mass is a useful tracer of the total
mass at small scales, but it appears to be less reliable for late-type galaxies.
How the dynamical mass changes for galaxies where rotation is important, or
for galaxies that are populated over a large range of redshifts, may be studied
with numerical simulations. In any case, it is not clear how to translate a dy-
namical mass estimate into a total mass estimate of the halo of a galaxy. With
weak lensing we measure the total halo masses of galaxies directly, providing
estimates that can easily be compared to simulations.

3.6 Luminosity results

The optical luminosity is a readily measured quantity which is related to
the stellar mass, and hence the baryonic content of a galaxy. Therefore, we
continue by measuring the lensing signal as a function of luminosity. We divide
our lens sample into eight luminosity bins, as detailed in Table 3.2. We mea-
sure ∆Σ of the stacked lenses and show the results in Figure 3.8, together with
the best fit halo model. The amplitude of the lensing signal clearly increases
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3.6. LUMINOSITY RESULTS

Figure 3.7: Best fit halo mass as a function of the mean dynamical mass. The
red squares (blue triangles) denote the halo mass for the early-types (late-types).
The early-/late-type division is based on the brightness profiles of the lenses.
The dynamical mass correlates well with the lensing mass for the early-type
galaxies, but not for the late-type galaxies.

for the brighter galaxies as expected. Furthermore, the shear from the γ1h
t,sat

term causes a prominent bump for the fainter lenses, but not for the brighter
ones. This indicates that a considerable fraction of the low luminosity lenses
are satellites. We split the lenses into early- and late-types using the frac deV
parameter as before, and study the signals separately.

There are various issues we have to address before we can interpret the mea-
surements. First of all, lens galaxies scatter between luminosity bins due to
luminosity errors. If the luminosity errors are large compared to the width of
the bins this could potentially introduce a bias. This bias is greatest at the
highest luminosities, where the luminosity function is steep. In this case, on
average more low luminosity (and mass) galaxies scatter into the higher lumi-
nosity bins, biasing the best fit halo mass low. The average absolute magnitude
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3.6. LUMINOSITY RESULTS

Figure 3.8: Lensing signal ∆Σ for each luminosity bin as a function of physical
distance from the lens. The green dashed line shows the γ1h

t,cent term, the blue

dashed line the γ2h
t,cent term, the green dotted line the γtrunc

t,sat term, the red

dotted line the γ1h
t,sat term, the blue dotted line the γ2h

t,sat term, and the black
line shows the sum of the terms. A significant fraction of the low luminosity
lenses are satellites in larger haloes, as the γ1h

t,sat term causes a prominent bump
at ∼ 1Mpc in the lensing signal.

error is ∼0.03 for z < 0.33, and ∼0.07 for z > 0.33, small compared to the
minimal bin-width of 0.5. We find that the induced bias is relevant for the L7
and L8 bins of the early-types only, with corrections of 4% and 7% respectively.
The corrections are smaller than the measurement errors on the halo mass for
these bins. We detail the calculation of the correction factor in Appendix 3.A.

When we fit a halo mass to the stacked shear signal of galaxies within a lu-
minosity bin, the resulting mass is not equal to the mean halo mass, nor to the
central mass of the original distribution (Tasitsiomi et al. 2004; Mandelbaum
et al. 2005b; Cacciato et al. 2009; Leauthaud et al. 2010) because the distribu-
tion in halo mass is not uniform (in addition, the NFW profile itself depends on
mass). It is useful to convert the measured lensing mass to the mean halo mass
to allow comparison with simulations. The correction we have to apply depends
not only on the distribution of halo masses for a given luminosity, but also on
the halo mass function. Since the halo mass function is a declining function —
steeply at the high mass end — we will preferentially select lower mass haloes.
Hence, the underlying function from which we draw our galaxies is the halo
mass function convolved with the halo mass distribution. In Appendix 3.B we
discuss how we calculate the correction factor that we apply to obtain the mean
of the halo mass in each luminosity bin. The values are given in Table 3.4, and
range between 5-30%.

The best fit halo mass for each luminosity bin, corrected for the scatter and
the width of the halo mass distribution, is given in Table 3.2, and is shown
as a function of luminosity in Figure 3.9a. The error bars on the halo masses
are the 1σ deviations determined by marginalizing over the satellite fraction.
We fit a powerlaw of the form M200 = M0,L(L/L0)βL , with a pivot L0 = 1011
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CHAPTER 3. RELATION BARYONS AND DM IN GALAXIES

Figure 3.9: Best fit halo mass (top), and the mass-to-light ratio (bottom) as
a function of mean luminosity. The red squares (blue triangles) denote the
early-type (late-type) results. The division in early-/late-types is based on the
brightness profiles of the lenses. The dashed lines are the powerlaw fits, with
values as indicated in the text.

h−2
70 Lr,�. As the errors of the best fit halo masses are asymmetric due to the

constraints we impose on the halo model fits, we fit the powerlaw directly to
the shear measurements (with symmetric error bars). Hence we do not fit for
the halo mass for each bin, but determine the best fit M0,L and βL for all bins
simultaneously, whilst fitting the satellite fraction for each bin separately. Note
that the best fit satellite fractions from this approach are close to the values
given in Table 3.2. For the early-types, we find M0,L = 2.76+0.19

−0.20 × 1013h−1
70 M�

and βL = 2.34+0.09
−0.16, and for the late-types M0,L = 0.61+0.29

−0.24 × 1013h−1
70 M� and

βL = 2.2+0.7
−0.6, as shown in Figure 3.9a. The error on M0,L (βL) is determined by

marginalizing over βL (M0,L). We show the 67.8%, 95.4% and 99.7% confidence
limits of the two powerlaw fits in Figure 3.10. The results for the early-types
are better constrained because we have more early-type galaxies in our lensing
sample. These are also more massive than the late-type galaxies and hence
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3.6. LUMINOSITY RESULTS

Figure 3.10: 67.8%, 95.4% and 99.7% confidence limits of the powerlaw fits
between luminosity and halo mass, in red (blue) for the early-type (late-type)
galaxies. The red square (blue triangle) indicates the best fit of the early-types
(late-types). The powerlaw fit for the early-types is better constrained than for
the late-types, because the majority of galaxies in our lens sample are early-
types. The early-types also reside in more massive haloes, and consequently
produce a stronger lensing signal.

produce a stronger lensing signal.

We compare our analysis to two previous weak lensing studies. Hoekstra
et al. (2005) measured the lensing signal of ∼ 1.4 × 105 isolated galaxies with
photometric redshift 0.2 < z < 0.4 in the RCS. In the R-band, they found
a virial mass of MH05

R = 7.5+1.2
−1.1 × 1011h−1M� for a galaxy of luminosity

LR = 1010h−2L�, and a powerlaw index of βH05
R = 1.6± 0.2. We use the trans-

formations from Lupton (2005)8, and find that r ≈ R + 0.24 for the early-type
galaxies in our sample, which make up the majority of the lenses. We convert

8http://www.sdss.org/dr7/algorithms/sdssUBVRITransform.html#Lupton2005
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CHAPTER 3. RELATION BARYONS AND DM IN GALAXIES

LR to Lr, use our powerlaw fit to predict M200, and convert that to the virial
mass by increasing it by 30%. We find that Mvir = (7.2± 1.5)× 1011h−1M� for
a LR = 1010h−2L� galaxy, in good agreement with Hoekstra et al. (2005). The
powerlaw index of Hoekstra et al. (2005) is shallower than the βL = 2.34+0.09

−0.16

that we find. A possible explanation is that a fraction of the low luminosity
galaxies in Hoekstra et al. (2005) are satellites, whose masses are biased high
due to the added lensing signal of nearby galaxies, flattening the powerlaw in-
dex. We note two caveats: the lens sample of Hoekstra et al. (2005) does not
exclusively consist of early-types, and the lens samples we compare reside in
different environments.

Mandelbaum et al. (2006) present results for 3.5 × 105 galaxies using SDSS
data. Galaxies are divided into early-types and late-types based on their bright-
ness profile (using the same selection criterium that we have applied to our
lenses), and are studied in bins of absolute r-band magnitude. To compare the
results, we convert our luminosities according to the definitions used in Mandel-
baum et al. (2006): the absolute magnitude is calculated using a k-correction
to z=0.1, the distance modulus is calculated using h = 1.0 and a passive evo-
lution term is included which is given by 1.6(z − 0.1). As a result, we decrease
the absolute magnitudes of our lenses by roughly one magnitude. Additionally,
we increase our masses by 30% since Mandelbaum et al. (2006) define the halo
mass using 180ρ̄ instead of 200ρc. There are various other differences between
the analyses, such as the use of a different correction factor for the width of the
halo mass distribution, a different cosmology, a different mass-concentration
relation for the NFW profiles, and differences in the modelling of the lensing
signal. These differences are expected to have a minor impact on the best fit
halo mass, but they limit the accuracy of a detailed comparison.

Matching our luminosity bins to those of Mandelbaum et al. (2006) closest
in mean luminosity, we find that the best fit halo masses for the early- and
late-type galaxies are generally in agreement. To quantify whether the results
are consistent, we fit a powerlaw of the form M180 = M̃0,L(L̃/L̃0)βL̃ , where

L̃0 = 1.2 × 1010h−2L�. The tilde indicates that the luminosity is calculated
following Mandelbaum et al. (2006). The powerlaw is fitted to the best fit halo
mass directly, and the weights of the measurements are calculated from the error
bars through which the model passes, i.e., if the model is larger (smaller) than
the data point, we use the positive (negative) error bar. For the early-types we
find M̃0,L = 7.3+2.1

−1.7 × 1011h−1M� and βL̃ = 2.7 ± 0.2 for our data, while using

Mandelbaum et al. (2006) results we find M̃0,L = 11.2+1.9
−1.8 × 1011h−1M� and

βL̃ = 2.3 ± 0.2, in fair agreement with our findings. For the late-types we find

M̃0,L = 2.7+3.9
−1.8 × 1011h−1M� and βL̃ = 3.0+1.0

−1.6, while using the results of Man-

delbaum et al. (2006) we find M̃0,L = 7.8± 1.1× 1011h−1M� and βL̃ = 1.1+0.3
−0.4.

The results from Mandelbaum et al. (2006) prefer a shallower slope and a higher
offset, but the fits are consistent.

3.6.1 Mass-to-light ratio

A large number of the galaxies in our brightest luminosity bins reside in groups
or small clusters. To identify those lenses, we cross-correlate our lens sample
with the preliminary RCS2 cluster catalogue, to be presented in a future publi-
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3.6. LUMINOSITY RESULTS

cation. We take galaxies with a separation <360h−1
70 kpc from the cluster centre,

and within 0.05 from the cluster redshift, to be cluster members. Using these
criteria, we find that from L5 to L7, 3%, 26%, 43% of the late-type galaxies,
and from L5 to L8, 12%, 31%, 48% and 66% of the early-type galaxies can be
associated with clusters. The best fit halo mass of these galaxies is the mass of
the group or cluster within r200, while the luminosity is only measured for the
lens galaxy. The resulting mass-to-light ratio, shown in Figure 3.9b, is there-
fore higher than what we would measure for the individual galaxies, or for the
clusters.

To obtain the mass-to-light ratios of the groups and clusters, we estimate
the amount of additional luminosity coming from other cluster members within
r200. We assume that the spectral energy distributions (SEDs) of the galax-
ies physically associated with the lens are similar to the SED of the lens, and
convert their apparent magnitudes to absolute magnitudes using the same con-
version that has been used for the lenses. The apparent magnitudes we use are
those from the photometric catalogues from Gilbank et al. (2011). As these
catalogues do not cover all fields (e.g. the fields in the uncompleted patch
1303), only ∼90% of the lenses are used for the calculation of L200. We mea-
sure the source galaxy overdensity as in Section 3.3.3 using all the galaxies with
mlow < mr < 24, where mlow is the magnitude of the brightest galaxy that
resides at the lens redshift, and calculate the mean luminosity overdensity as a
function of lens-source separation. mlow is determined by selecting the bright-
est galaxy in the photometric redshift catalogues from Ilbert et al. (2006) that
resides at the redshift of the lens or higher. We sum the luminosity overdensity
to r200 and add it to the lens luminosity to obtain the total luminosity within
r200, L200. To make sure that we do not miss a signicant fraction of L200 from
galaxies with mr > 24, we also calculate L200 using an upper limit of 23.5,
and find that the results do not change significantly. The values of L200 are
given in Table 3.2. We show the mass-to-light ratio M200/L200 as a function of
L200 in Figure 3.11. For L200 < 1011 h−2

70 L� we calculate the weighted mean,
and find a value of M200/L200 = 42 ± 10 h70M�/L� for early-type galaxies,
whilst M200/L200 = 17 ± 9 h70M�/L� for late-type galaxies. The total mass-
to-light ratio increases with L200 for the early-types to ∼180 h70M�/L� at
L200 = 5 × 1011h−2

70 L�. The total mass-to-light ratio is roughly a factor of two
larger for early-types than for late-types. This suggests that the difference in
the best fit halo mass between early- and late-types for a given luminosity is
not solely due to the fact that early-types reside in denser environments, but is
at least partly intrinsic. The value of L200 for the L7 late-type bin could not be
robustly determined, and is excluded from the results.

We compare our results to the M200/L200 from Sheldon et al. (2009a,b)
which have been determined for the clusters in the maxBCG catalogue (Koester
et al. 2007). The quoted values of L200 in their work have been measured in the
i-band, and are calculated using a k-correction to z = 0.25. We convert them to
the r-band luminosities we use by accounting for the mean difference between
i-band and r-band absolute magnitudes of early-type galaxies at z = 0.25, the
mean difference between the k-corrections to z = 0.25 and z = 0.0, and the dif-
ference between the i-band and r-band solar magnitudes. The final conversion
factor is small as the corrections partly cancel each other, and we convert their
luminosities to our definition by multiplying them by 1.06. Note that we do not
account for differences in the redshift evolution of the luminosities, as it is not
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CHAPTER 3. RELATION BARYONS AND DM IN GALAXIES

Figure 3.11: Mass-to-light ratio using the total halo mass and luminosity within
r200, as a function of L200. The red squares (blue triangles) denote the early-
type (late-type) results. The hatched area indicates the converted M200/L200 of
the maxBCG clusters from Sheldon et al. (2009a). The M200/L200 for individual
galaxies at low luminosities are naturally extended to the ratios for the maxBCG
clusters.

mentioned in Sheldon et al. (2009a) which correction, if any, they have used.
The converted M200/L200 from Sheldon et al. (2009a) are indicated with the
hatched area in Figure 3.11. The mass-to-light ratios overlap, and the ratios
we have determined, for individual galaxies at low luminosities, and for galaxy
groups and small clusters at high luminosities, are naturally extended to the
M200/L200 of clusters from the maxBCG cluster sample.

3.6.2 Satellite fraction

Figure 3.12 shows the best fit satellite fraction as a function of luminosity.
The satellite fraction is decreasing with increasing luminosity for the early-type
galaxies, from ∼ 40% at Lr = 1010h−2

70 L� to < 10% at Lr = 1011h−2
70 L�. For the
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Figure 3.12: Best fit satellite fraction as a function of mean luminosity. The
red squares (blue triangles) denote the satellite fraction for the early-type (late-
type) galaxies. The satellite fraction decreases with luminosity for the early-
types, and no trend is observed for the late-types. The dashed area indicates
the area excluded by the prior on the satellite fraction.

late-type galaxies, no clear trend with luminosity is observed, and the satellite
fraction has a value of 0-20%. The satellite fractions are not well constrained
for the highest luminosity bins. As demonstrated in Appendix 3.C, the sum of
the halo model satellite terms has the same shape as the central term at the
high halo mass end. As a result, the halo model fit cannot discriminate between
the two profiles. The implementation of a more sophisticated description of
the truncation of the subhaloes is necessary to improve the constraints on the
satellite fraction at the high luminosity/stellar mass end. For instance, recent
work by Limousin et al. (2009) suggests that massive early-type satellite galaxies
are stripped of a far larger fraction of their dark matter than the 50% we have
assumed so far, and we discuss the implications in Appendix 3.C.

Mandelbaum et al. (2006) find a satellite fraction of 10-15% for late-type
galaxies, independent of stellar mass or luminosity. The satellite fraction for
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Figure 3.13: Lensing signal ∆Σ for each stellar mass bin as a function of physical
distance from the lens. The green dashed line shows the γ1h

t,cent term, the blue

dashed line the γ2h
t,cent term, the green dotted line the γtrunc

t,sat term, the red dotted

line the γ1h
t,sat term, the blue dotted line the γ2h

t,sat term, and the black line shows
the sum of the terms. Similar to the lensing signal of the luminosity bins, we
find that the γ1h

t,sat term causes a clearly noticeable bump at ∼1h−1
70 Mpc in the

lensing signal for the low stellar mass bins, which indicates that a significant
fraction of these galaxies are satellites.

early-types decreases with luminosity from 27% at 〈L̃/L̃0〉 = 1.1 to 15% at
〈L̃/L̃0〉 = 4.9, and both trends are consistent with our findings.

3.7 Stellar mass results

The stellar mass of a galaxy is believed to be a better tracer of the baryonic
content of a galaxy than the luminosity, as it is less sensitive to recent star
formation. Therefore, we divide our lens sample into seven stellar mass bins
and study the lensing signal. The details of the samples are listed in Table 3.3.
Figure 3.13 shows the lensing signal of the stacked lenses in each bin, together
with the best fit halo model. Similar to the luminosity results, we find that
the lensing signal increases with stellar mass, and observe the presence of the
γ1h
t,sat bump for the lower stellar mass bins. We split the lens sample into early-

and late-types using the frac deV parameter as before, and study the signals
separately.

To interpret the results, we have to account for a number of issues. The
random stellar mass errors are about 0.1 dex, independent of stellar mass, and
do not include the systematic error. The random error determines the scatter-
ing of lenses amongst bins, and its value is large compared to the bin width.
We calculate the bias resulting from this scatter in Appendix 3.A, and find that
the best fit halo masses have to be corrected with a factor ranging between
0.9 − 1.4. Once corrected for the scatter, we convert the lensing mass to the
mean halo mass. This correction has already been introduced in Section 3.6,
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3.7. STELLAR MASS RESULTS

Figure 3.14: Best fit halo mass as a function of mean stellar mass. The red
squares (blue triangles) denote the early-type (late-type) galaxies. The sepa-
ration of the lenses into early/late-types is based on their brightness profiles.
The dashed lines are the powerlaw fits, with values as indicated in the text. For
stellar masses lower than 1011 h−1

70 M� the best fit halo masses of early- and
late-type galaxies are similar, but for M∗ > 1011 h−1

70 M� we find that the best
fit halo masses of early-types are larger.

and we discuss in Appendix 3.B how we calculate it. We increase the corrected
halo mass accordingly to obtain the mean halo mass (see Table 3.4 for details).

The resulting halo masses are given in Table 3.3, and shown in Figure 3.14.
This figure shows that the relation is different for early-types and late-types.
Below a stellar mass of 1011h−1

70 M�, the halo mass is similar for both galaxy
types, but for stellar masses larger than 1011h−1

70 M� the halo masses of early-
type galaxies are more massive for a given stellar mass than the halo masses of
late-type galaxies, and increase more steeply with stellar mass. These trends
in the stellar mass to halo mass relation are in agreement with those found by
Mandelbaum et al. (2006).

We fit a powerlaw of the form M200 = M0,M (M∗/M0)βM , with M0 =
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3.7. STELLAR MASS RESULTS

Figure 3.15: 67.8%, 95.4% and 99.7% confidence limits of the powerlaw fits
between stellar mass and halo mass, in red (blue) for the early-type (late-type)
galaxies. The red square (blue triangle) indicates the best fit of the early-types
(late-types). The solid contour lines result from fitting the powerlaw to all the
lensing data as described in the text. The dashed contours are the results from
fitting the powerlaw between stellar mass and halo mass to the measurements
in Mandelbaum et al. (2006).

2 × 1011h−1
70 M�, fitting the lensing measurements simultaneously as we did for

the luminosities. For the early-types, we find M0,M = 11.6 ± 0.9 × 1012h−1
70 M�

and βM = 1.9 ± 0.1, and for the late-types M0,M = 3.7+2.6
−1.9 × 1012h−1

70 M� and
βM = 1.2 ± 0.4. These fits are shown in Figure 3.14 as the dashed red and
blue lines for the early- and late-type galaxies respectively. We show the 67.8%,
95.4% and 99.7% confidence limits of the two powerlaw fits in Figure 3.15.

In order to compare with the results of Mandelbaum et al. (2006), we lower
their halo masses by 30% to account for the difference between Mvir and M200.
We compare the halo masses of the bins with comparable mean stellar mass,
and find that the best fit halo masses generally agree well. We fit a powerlaw
between stellar mass and halo mass to their results, and the dashed contours in
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Figure 3.15 show the resulting best fit normalisation and slope. The results of
the late-types agree, although the errors are large. For the early-types, Man-
delbaum et al. (2006) find a somewhat steeper slope and a higher offset. Note
that this difference is mostly driven by their highest stellar mass bin, for which
they fit a halo mass that is 50% larger than what we find for our corresponding
bin. If we exclude that point from the fit, the 1σ contours overlap.

Moster et al. (2010) used numerical simulations to predict the relation be-
tween stellar mass and halo mass. We find that for M∗ < 4 × 1011 h−1

70 M�,
the halo masses we have determined are about 1-2 σ lower than their mod-
els. At higher stellar masses, the discrepancy is significantly larger. Not only
their model, but also the models of various other groups (e.g. Wang et al. 2006;
Croton et al. 2006; Somerville et al. 2008; Behroozi et al. 2010; Neistein et al.
2011) predict that the halo masses of galaxies with a stellar mass >1011 h−1

70 M�
increases rapidly as a function of stellar mass, a trend we do not observe in
our measurements. This would imply that the predicted relation between stel-
lar mass and halo mass for galaxies with M∗ > 4 × 1011 h−1

70 M� is too steep,
possibly because the relation has not yet been well constrained by observations
in this mass range. Although contamination of the high stellar mass bins by
unresolved mergers may bias the best fit halo masses low, we estimate that this
is not sufficient to explain the discrepancy.

3.7.1 Baryon conversion efficiency

To study the efficiency of star formation as a function of stellar mass, we mea-
sure the baryon conversion efficiency η = M∗/(Mh × fb), where fb = Ωb/ΩM is
the cosmological baryon fraction. We cannot simply use the mean stellar and
halo mass, because we measure the halo mass of the environment where the
galaxy resides. The mean stellar mass, however, is determined using the indi-
vidual lenses only, which leads to an underestimation of η. To account for this,
we estimate the additional amount of stellar mass within r200 assuming that the
SEDs of the cluster members are similar to that of the lens galaxy. Under that
assumption we determine M∗,200 = 〈M∗〉 × (L200/Lr), where L200 is the total
luminosity within r200 as discussed in Section 3.6.1. The error bars assume that
the number of source galaxies in each radial bin follows a Poisson distribution.
We give the values of M∗,200 in Table 3.3, and plot η as a function of M∗,200 in
Figure 3.16.

The stars that make up the diffuse intracluster light (ICL) also contribute to
the total stellar mass. The ICL typically makes up 10–20% of the stellar light
in galaxy groups and clusters (see Giodini et al. 2009, and references therein).
We do not account for the additional stellar mass from the ICL, because our
lens sample consists of a mixture of isolated galaxies and galaxies in groups and
clusters. The average contribution from the ICL is hard to determine, partic-
ularly because the contribution for low mass structures is very uncertain. The
ICL is expected to be of importance for the S6 and S7 bins only, as they contain
the largest fraction of cluster associated galaxies, and the derived values of η
might at most increase with 10–20%.

We find that η decreases from ∼40% at M∗ ∼ 5 × 1010 h−1
70 M� to a mini-

mum of ∼10% for a stellar mass M∗,200 = 1012 h−1
70 M�, and seems to increase

again at higher stellar masses. The baryon conversion efficiency for the late-
types is higher, and no clear trend is observable because of the large errors. For
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3.7. STELLAR MASS RESULTS

Figure 3.16: Baryon conversion efficiency η as a function of M∗,200, the stellar
mass enclosed within r200. The red squares (blue triangles) denote the early-
type (late-type) galaxies. η is smaller for the early-types than for the late-types
for M∗,200 > 1011 h−1

70 M�.

some bins η is larger than unity, but the error bars cover the reasonable range
of η < 1. The value of M∗,200 for the S6 late-type bin could not be robustly
determined, and is excluded from the results.

Hoekstra et al. (2005) divide the lens sample in red and blue galaxies based
on their B − V colour, and find that the baryon conversion efficiency for iso-
lated blue galaxies in the magnitude range 18 < RC < 24 is about twice the
value found for isolated red galaxies. Although we cannot compare the results
in detail due to differences in the type selection and differences in the adopted
IMF, our results also suggest a larger value for η for late-type galaxies in the
range M∗,200 > 1011 h−1

70 M�. A similar trend has also been observed in Man-
delbaum et al. (2006) for stellar masses M∗ > 1011 h−1

70 M�, but note that the
baryon conversion efficiencies were determined using M∗ instead of M∗,200, and
the values are therefore lower limits.
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Figure 3.17: Best fit satellite fraction as a function of the mean stellar mass.
The red squares (blue triangles) denote the early-type (late-type) results. The
satellite fraction decreases with stellar mass for the early-types, and no trend
is observed for the late-types. The dashed area indicates the area excluded by
the prior on the satellite fraction.

3.7.2 Satellite fraction

In Figure 3.17 we show the satellite fraction for the early- and late-type galaxies
as a function of stellar mass. The satellite fraction of the late-types is only well
determined for the S1 and S2 bins, and appears to be constant as a function of
stellar mass, with a value of ∼10%. The satellite fraction of the early-types is
45% for the lowest stellar mass bin, but decreases to < 10% for M∗ ≥ 2 × 1011

h−1
70 M�. Mandelbaum et al. (2006) find a satellite fraction of about 10-15%

for late-type galaxies, independent of stellar mass or luminosity. For the early-
types, Mandelbaum et al. (2006) find that the satellite fraction decreases with
stellar mass from 50% at 1010 h−1

70 M� to roughly 10% at 3 × 1011 h−1
70 M�,

consistent with our findings.
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3.7.3 Dependence on redshift

The stellar mass of a galaxy and the dark matter content of its halo evolve with
time. The stellar mass increases as galaxies form stars and merge with satellites
and other galaxies. Satellite galaxies residing in subhaloes are tidally stripped
of their dark matter, whilst the dark matter content of central haloes increases
due to mergers. The evolution of the relation between stellar mass and dark
matter content of galaxies has been studied with numerical simulations (e.g.
Moster et al. 2010; Conroy & Wechsler 2009). These simulations predict that
the dark matter content of haloes that host galaxies of M∗ > 1011 h−1

70 M�
increases faster than the stellar mass, while the stellar mass grows faster for
haloes hosting galaxies of M∗ < 1011 h−1

70 M�.
To study this, we bin the early-type galaxies in stellar mass and redshift,

and measure their halo mass. To avoid the degeneracy between halo mass and
satellite fraction affecting the results, we fix the satellite fraction to the value
we find by fitting the halo model to all lenses in each stellar mass bin. We apply
the various corrections (e.g. scattering of lenses between bins), and show the
results in Figure 3.18.

The errors on the best fit halo masses are large, and we therefore do not
obtain tight constraints on the evolution of the halo masses for the low stellar
mass bins. For the highest stellar mass bin, however, it appears that the halo
mass is smaller by roughly a factor of two for the two highest redshift slices. The
redshift dependent stellar-to-halo mass relation of Moster et al. (2010) predicts
that at M∗ = 6 × 1011 h−1

70 M�, the halo mass increases by ∼ 35% between
z = 0.5 and z = 0.0. In Leauthaud et al. (2012), the evolution of the stellar-to-
halo mass relation from z = 1 to z = 0.2 is studied using a combined galaxy-
galaxy weak lensing, galaxy spatial clustering, and galaxy number densities
analysis in the COSMOS survey (Scoville et al. 2007). At stellar masses M∗ >
h−1
70 1011, the halo mass appears to decrease with redshift for a given stellar mass,

but the small volume probed by COSMOS prevents a clear detection. Brown
et al. (2008) study the growth of the dark matter content of massive early-type
galaxies between a redshift of 0.0 and 1.0 by measuring the space density and
spatial clustering of the galaxies. They find that between redshift z = 1.0 and
z = 0.0, the dark matter haloes grow with ∼100%, while the stellar masses of
these galaxies only grow with ∼30%. Conroy et al. (2007) utilizes the motions
of satellite galaxies around isolated galaxies to constrain the evolution of the
virial-to-stellar mass ratio, and they find that between z ∼ 1 and z ∼ 0 this
ratio remains constant for host galaxies with a stellar mass below 1.5 × 1011

h−1
70 M�, but increases by a factor 3.3 ± 2.2 for hosts with M∗ > 1.5 × 1011

h−1
70 M�. These findings are in qualitative agreement with our results.

3.8 Conclusions

We measured the halo masses for early- and late-type galaxies and compared
these to their luminosity and stellar mass. For this purpose, we measured the
weak lensing signal induced by the galaxies with SDSS spectroscopy that over-
lap with the RCS2, and modelled the data with a halo model. This enabled us
to improve the constraints on the lensing measurements for the most massive
galaxies, which typically reside at redshifts where the SDSS is not very sensitive.
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Figure 3.18: Halo mass as a function of the mean stellar mass for early-type
galaxies in different redshift slices. Although we lack the statistical precision to
draw definite conclusions, the measurements support the view that at the high
stellar mass end, galaxies at a higher redshift have lower halo masses.

The halo mass and the dynamical mass correlate well for early-type galaxies,
but not for late-type galaxies. A likely explanation is that late-type galaxies are
rotating, resulting in an overestimation of the velocity dispersion, and hence
of the dynamical mass. Furthermore, in contrast to the dynamical mass, the
weak lensing mass can easily be related to numerical simulations, and provides
constraints for the models that describe the relationship between baryons and
dark matter.

The halo masses of galaxies increase with luminosity and stellar mass. For a
given luminosity, the halo mass of the early-types is on average about five times
larger than the late-types. We fitted a powerlaw relation between the luminosity
and halo mass, and find that in the range 1010 < Lr < 1011.5 h−2

70 L�, the halo

mass scales with luminosity as Mh ∝ L2.34+0.09
−0.16 and Mh ∝ L2.2+0.7

−0.6 for the early-
and late-type galaxies respectively. For an early-type galaxy with a fiducal lumi-
nosity L0 = 1011 h−2

70 Lr,�, we obtain a mass M200 = (2.76+0.19
−0.20) × 1013h−1

70 M�.

76



3.8. CONCLUSIONS

We computed L200, the additional luminosity around the lenses within r200, and
find that the M200/L200 ratio of the early-types is larger than for the late-types:
for L200 < 1011 h−2

70 L� we find M200/L200 = 42±10 h70M�/L� for early-types,
whilst M200/L200 = 17 ± 9 h70M�/L� for late-types. This suggests that the
difference in halo mass is not solely due to the fact that early-types reside in
denser environments, but is at least partly intrinsic.

Below a stellar mass of 1011 h−1
70 M� the halo mass of early- and late-types

are comparable. For larger stellar masses, the best fit halo masses of the early-
types are larger than the late-types. We computed M∗,200, the total stellar mass
within r200, in order to calculate the baryon conversion efficiency η. Our results
for early-type galaxies suggest a variation in efficiency with a minimum of ∼10%
for a stellar mass M∗,200 = 1012 h−1

70 M�. The results for the late-type galaxies
are not well constrained, but do suggest a larger value.

The satellite fraction is ∼40% for the low luminosity (stellar mass) early-
type galaxies, and decreases rapidly to < 10% with increasing luminosity (stellar
mass). The satellite fraction of the late-types has a value in the range 0-15%,
independent of luminosity or stellar mass. The satellite fraction is difficult to
constrain at the high stellar mass/luminosity end, as the shape of the combined
shear signal from the satellites mimics an NFW profile. Decreasing the trun-
cation parameter leads to tighter constraints, and appears to be justified for
the most massive early-type satellites based on the N-body simulation results
of Limousin et al. (2009). Additional support comes from studying the shear
signal of massive early-type galaxies that were selected to be satellites shown in
Appendix 3.C, but the errors are currently too large to constrain the fraction
of dark matter that is stripped. A more realistic description of the stripping
of the haloes of massive satellite galaxies may result in an improvement of the
constraints on the satellite fraction from weak lensing studies alone.

The halo mass appears to decrease with redshift for the highest stellar mass
bins, a trend that is qualitatively in agreement with predictions from numeri-
cal simulations. The signal-to-noise on the measurements is currently too low
to provide a detailed view on the growth of dark matter haloes, but it shows
that with future surveys weak lensing can be used to study in great detail the
evolution of the relation between baryons and dark matter.
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3.A. SCATTER OF LENSES BETWEEN BINS

Appendices

3.A Scatter of lenses between bins

In this Appendix we describe how we calculate the bias that results from the
scatter of galaxies between lensing bins due to the stellar mass errors. The bias
that results from the scatter due to the luminosity errors has been calculated in
a similar fashion. To begin, we create a large set of simulated lens catalogues.
We construct the stellar mass function from the MPA/JHU catalogue, randomly
draw stellar masses from this distribution and assign these to our lenses. We fit
a powerlaw of the form M200 = α∗M

β∗
∗ to our initial observations, and calculate

the halo mass of each galaxy. Assuming that the density profile of each lens
follows an NFW profile, we calculate the ellipticities of the source galaxies under
the assumption that they are intrinsically round. Next we create 20 new lens
catalogues by applying a log-normal scatter with a width of 0.1 to the stellar
masses. We use the stellar mass bins from Table 3.3 to stack the lensing signal of
the scattered lenses, and measure the tangential shear using the original source
catalogue. We fit the lensing signal between 30 and 200 h−1

70 kpc with the halo
model, imposing a satellite fraction of 0% as the lenses were randomly inserted
in the images. The ratio of the best fit halo masses for the original lenses and
the lenses with scattered stellar masses gives the bias.

As the stellar mass function and the best fit powerlaw are different for the
two galaxy types, we make two sets of simulations to study the bias for early-
and late-type galaxies separately. We do not account for evolution with redshift,
although the stellar mass function evolves between z = 0.0 and z = 1.0, most
strongly for M∗ < 1011 h−1

70 M� (e.g. Vulcani et al. 2011; Pozzetti et al. 2010).
We are only sensitive to the change of the shape of the stellar mass function,
which is most noticeable for 1010.5 < M∗ < 1011 h−1

70 M�. However, the bias
in this regime is small, and we do not expect the change in shape to strongly
affect our results. The relation between stellar mass and halo mass may also
evolve between z = 0.0 and z = 0.5 (e.g. Moster et al. 2010; Leauthaud et al.
2012). We currently lack sufficient signal-to-noise to study this in detail. As
we will demonstrate, the bias is not very sensitive to changes in the powerlaw
slope, and a mild evolution does not significantly alter the results.

The ratio of the input halo masses to the best fit halo mass measured for the
lenses that have been scattered is shown in Figure 3.19. The error bars indicate
the standard deviation of the simulations. We find that the bias is highest for
the early-types at the high mass end. This is due to the steepness of the stellar
mass function, which leads to the net effect that low stellar mass objects scatter
into and contaminate the high stellar mass bins. The bias for early-types at the
low mass end is slightly smaller than 1, as the stellar mass function turns over at
∼5×1010 h−1

70 M∗ and becomes smaller with decreasing stellar mass. The stellar
mass function of the late-types is monotonically decreasing, and consequently
the bias does not become smaller than unity. At the high mass end, the stellar
mass function of the late-types is poorly determined due to the lack of objects.
We cannot reliably determine the bias for the S6 late-type bin, and therefore
apply the correction factor of the S5 bin to this bin as well.

The observed stellar masses have already been scattered, and the best fit
powerlaw is therefore too shallow. To investigate how this affects the bias, we
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CHAPTER 3. RELATION BARYONS AND DM IN GALAXIES

Figure 3.19: Ratio of the best fit halo mass for the unscattered lens catalogue
to the best fit halo mass for the lenses to which a log-normal scatter of 0.1 in
stellar mass has been applied, for the early-type galaxies (left) and the late-type
galaxies (right). The halo masses are underestimated at the high stellar mass
end due to low mass objects scattering into the high mass bins.

correct our initial halo masses for the scattering, and again fit a powerlaw be-
tween stellar mass and halo mass. We repeat our simulations with these new
powerlaw slopes, and find that the correction factors change by at most 4%.
The correction we apply is obtained using the corrected powerlaw slopes.

The intrinsic stellar mass function is steeper than the observed one as on
average more low stellar mass objects have scattered upward. Although we
cannot retrieve the intrinsic stellar mass function, we can obtain an estimate
of the level of contamination. For this purpose, we draw 1 × 108 objects from
the observed stellar mass function, apply the log-normal scatter, and compare
the number of objects in the stellar mass bins before and after the scatter. The
number of lenses in the three lowest stellar mass bins does not change much
after the scatter, but it increases with stellar mass for the more massive bins,
reaching a maximum of 36% more lenses in the S7 early-type bin. The increase
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3.B. MEAN VERSUS FITTED HALO MASS

in the number of objects may be even larger, as the observed stellar masses
have already been scattered, and therefore the observed stellar mass function is
smoother than the intrinsic one. As the stellar mass function at the high mass
end is already very uncertain, we do not attempt to retrieve the intrinsic stellar
mass function. However, the bias correction is sensitive to the slope at the high
mass end, and the correction factors may actually be larger.

3.B Mean versus fitted halo mass

The distribution of halo masses for a certain luminosity (or stellar mass) is
given by the conditional probability function, which is usually described by a
log-normal function of the form

P (mh|l) ∝ exp
(
− (mh −mh,cent)

2

2σ2
mh

)
(3.22)

where l = log(L), mh = log(Mh) and σmh
is the scatter in mh. In this Ap-

pendix we study how the best fit lensing mass is related to either the mean
halo mass or to the centre of the halo mass distribution, mh,cent. To mimic the
selection of real galaxies, we assign a value to mh,cent and σmh

, and randomly
draw 1000 galaxies from the conditional probability function which has been
convolved with the halo mass function (Equation 3.10). We calculate the NFW
shear profiles of these galaxies, average their signals to simulate the usual lens-
ing procedure, and fit an NFW profile to the stacked shear. Figure 3.20 shows
the ratio of Mh,cent to the best fit NFW mass in the top panel, and the ratio
of the mean halo mass to the best fit NFW mass in the lower panel. The lines
correspond to different values of σmh

, ranging from 0.10 to 0.40 from bottom to
top. Note that the scale of the vertical axes in the two panels is different.

In Figure 3.20a we see that the best fit NFW mass is considerably lower than
the central mass of the distribution. This is mainly the result of the declining
halo mass function, which leads us to preferentially pick lower mass haloes. The
shape of an NFW profile changes with halo mass because the NFW concentra-
tion parameter depends on halo mass. The shape and amplitude of the stacked
shear signal is therefore not equal to the profile of an NFW with a corresponding
mean halo mass. Therefore, the best fit NFW mass underestimates the mean
halo mass, as demonstrated in Figure 3.20b.

The ratios in Figure 3.20a and 3.20b are sensitive to the value of σmh
. We

use the results from More et al. (2011), who studied the distribution of halo
masses as a function of luminosity and stellar mass using the kinematics of
satellite galaxies orbiting central galaxies. As only central galaxies are consid-
ered in their work, the actual scatter for a sample of galaxies consisting of both
centrals and satellites may be larger. On the other hand, part of the scatter may
be introduced through uncertainties in the determination of the halo masses,
which would imply a lower intrinsic scatter.

We use Figures 4 and 9 from More et al. (2011) to read off the values we
assign to σmh

for the luminosity and stellar mass bins. We list these values, and
the corresponding correction factor to the mean halo mass, in Table 3.4. The
luminosities and stellar masses in our sample extend to higher values than More
et al. (2011) use, but their figures suggest that σmh

does not change rapidly at
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CHAPTER 3. RELATION BARYONS AND DM IN GALAXIES

Figure 3.20: Ratio of the central mass of the halo mass distribution, mh,cent,
and the best fit NFW mass (top) and the ratio of the mean halo mass and the
best fit NFW mass (bottom) as a function of best fit NFW mass. Different lines
correspond to values of σmh

0.10 (bottom line), 0.15, 0.20, 0.25, 0.30, 0.35 and
0.40 (top line). The lensing mass is converted to the mean halo mass using the
corrections from the bottom panel.

the high mass/luminosity end, and we therefore assume that the values remain
constant. For the stellar masses we use the NFW masses that have been cor-
rected for the scattering of objects between the bins.

There are further sources of uncertainty to consider in future studies, and
we list a few of them: luminosity bins have a certain width, the luminosity
function is not constant inside a luminosity bin, and lens galaxies are located
at a range of redshifts. We expect that these complications further broaden the
conditional probability function, which means that the correction factors we use
may be too low. These complications should be taken into account to enable a
detailed comparison between observations and simulations.
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MASSES

Table 3.4: Values of σmh
assigned to the luminosity and stellar mass bins, and

the correction factors fcorr we apply to convert the measured lensing mass into
the mean halo mass.

Sample σmh
(early) fcorr(early) σmh

(late) fcorr(late)

L1 0.20 1.07 0.25 1.10
L2 0.25 1.11 0.29 1.14
L3 0.30 1.17 0.30 1.15
L4 0.33 1.20 0.33 1.20
L5 0.37 1.26 0.34 1.21
L6 0.39 1.28 0.35 1.23
L7 0.40 1.28 0.35 1.22
L8 0.40 1.27 0.35 1.23

S1 0.15 1.03 0.10 1.01
S2 0.18 1.06 0.10 1.02
S3 0.26 1.12 0.10 1.02
S4 0.32 1.19 0.10 1.02
S5 0.36 1.24 0.10 1.02
S6 0.40 1.28 0.10 1.02
S7 0.40 1.27 - -

3.C Constraints on the satellite fraction at high halo
masses

The satellite fraction is not well constrained at the high luminosity/stellar mass
end. The reason for this is illustrated in Figure 3.21. In Figure 3.21a we show
the lensing signal of the L6 luminosity bin, together with the five terms of the
halo model, using the standard truncation radius of 0.4r200 for the satellite
galaxies. The satellite shear signal on scales < 1.5 h−1

70 Mpc in the halo model is
the sum of stripped satellite term and the γ1h

t,sat term. It is clear that the shape
of the combined signal is very similar to the shape of the shear signal coming
from the central halo. As a result the error on the satellite fraction is large.
The satellite fraction and the halo mass are anti-correlated, as we can see from
Figure 3.22. The model either prefers a large mass and small satellite fraction,
or a small mass and large satellite fraction. To reduce any bias in the best fit
halo mass, we decrease the allowed range for the satellite fractions to a uniform
prior between 0% and 20% for the highest stellar mass and luminosity bins, as
almost all of the galaxies in these bins are expected to be centrals.

Recent work by Limousin et al. (2009) shows that the half mass radius of a
subhalo is a strongly decreasing function of projected cluster-centric distance.
Furthermore, the radial distribution of early-type satellites is more peaked
around the cluster centre than the radial distribution of late-type satellites (e.g.
Ann et al. 2008). Hence we expect that the massive elliptical satellite galaxies,
which practically always reside close to the centre of a cluster, are stripped of a
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Figure 3.21: Lensing signal of the L6 early-type bin, shown together with the
five components of the best fit halo model. In the upper panel the truncation
radius of the stripped satellites is 0.4r200, and the shape of the combined satellite
1-halo terms mimicks the shape of the central NFW term. In the lower panel
the truncation radius is 0.2r200, changing the shape of the combined satellite
1-halo terms. Note that the halo model in the lower panel is not a fit, but serves
to illustrate the effect of choosing a different truncation radius.

far larger fraction of their dark matter.
To determine whether we can observe a change in the truncation radius of

massive early-type satellite galaxies, we make a selection of galaxies that are
likely to be satellites and study their shear profile. We consider early-types
in the mass range 1010.5 < M∗ < 1011.75 h−1

70 M�, and divide them in three
mass bins; galaxies more massive than 1011.75 h−1

70 M� will almost exclusively
be central galaxies and hence not significantly stripped. To determine whether
the galaxies are satellites or centrals, we use the SDSS DR7 photometric red-
shift catalogue Photoz, which contains the photometric redshifts of 260 million
galaxies, and match them to our source galaxy catalogue. The lenses that have a
neighbouring galaxy of the same luminosity or brighter within 750 h−1

70 kpc, and
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Figure 3.22: χ2 values of the halo model fits to the L6 early-type bin. The
green star indicates the best fit. The three contours show the 67.8%, 95.4% and
99.7% confidence intervals (∆χ2 of 2.3, 6.2 and 11.8 respectively). The best fit
halo mass is anti-correlated with the best fit satellite fraction.

lie within the 1σ errors of the photometric redshift of the source, are selected for
the satellite sample. The galaxies that do not have brighter neighbours within 1
h−1
70 Mpc and within the 1σ errors of the photometric redshift are selected for the

central sample. Note that we do not aim to obtain samples that are complete,
but we strive to make a selection that enables us to quantitatively study the
differences in the lensing signal.

In Figure 3.23 we show the stacked shear signal of the galaxies, for the central
sample and for the satellite sample, together with their halo model components.
The shear signals of the central sample are indeed described well by an NFW
profile. The galaxies preferentially live in isolated environments, and conse-
quently the γ2h

t,cent term is overestimated. The halo model fits of the satellite
sample are dominated by the satellite terms, as can be observed from the best
fit satellite fractions indicated in the plot. The shear signal around 100 h−1

70 kpc
is different from the signal of the central sample at the same scale, and is lower
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Figure 3.23: Lensing signal ∆Σ as a function of physical distance from the lens.
The lensing signal is measured for central galaxies (left) and for the satellite
galaxies (right), for the 1010.5 < M∗ < 1011.0 h−1

70 M� bin (top), 1011.0 < M∗ <
1011.5 h−1

70 M� bin (middle) and 1011.5 < M∗ < 1011.75 h−1
70 M� bin (bottom).

Indicated in each plot is the number of lenses, the logarithm of the best fit halo
mass in units of h−1

70 M� and the best fit satellite fraction. The shear signal
is reduced at large lens-source separations for the central galaxies, indicating
that they are isolated. At small lens-source separations the shear signal of the
satellite sample appears to be reduced compared to the central sample. Note
that the 2-halo terms are not shown for clarity.

than the halo model fit. This suggests that additional stripping of dark matter
occurs at small scales. The measurements are too noisy, however, to constrain
which fraction of the dark matter haloes is stripped.

To illustrate the impact the choice of truncation radius has on the best fit
satellite fractions, we also consider stripped satellite profiles with a truncation
radius of 0.2r200. In Figure 3.21b we show the shear signal of the same bin,
but with this smaller truncation radius. Note that the halo model parameters
are identical in both panels for illustrative purposes, and that the model in the
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Figure 3.24: Best fit satellite fraction for the four highest luminosity bins of
early-types. The thick solid (thin dashed) lines indicate the results determined
using a truncation radius of 0.2r200 (0.4r200). Decreasing the truncation radius
tightens the constraints on the satellite fraction.

lower panel is not a fit. The shear signal of the satellites at small scales is
now clearly different from the central halo term, and the satellite fraction can
be better constrained. We have also fit halo models with a truncation radius
of 0.2r200 to the four most luminous early-type bins. The constraints on the
satellite fraction for both models are shown in Figure 3.24. The satellite frac-
tion is better constrained for the models with a truncation radius of 0.2r200.
Setting the truncation radius to 0.2r200 is a rather arbitrary choice, however,
and in future studies it is necessary to include a more realistic prescription for
the stripping of the satellites.

Mandelbaum et al. (2006) study the environmental dependence of the shear
profile as a function of luminosity. They distinguish galaxies residing in a high-
density environment and in a low-density environment. The brightest galaxies
of their low-density sample are almost exclusively centrals, whilst in the high-
density sample they are a mixture of centrals and satellites. As the lensing
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signal is then an average of the shear profiles from satellites and centrals, this
may explain why they do not observe a reduction of the signal at small scales.
Note that the satellite galaxies we study are more massive, and hence are ex-
pected to reside in denser environments where the haloes are stripped of a larger
fraction of their dark matter content.
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4
Stellar mass versus velocity dispersion as

tracer of the lensing signal around
galaxies

We present the results of a weak gravitational lensing analysis to determine
whether the stellar mass or the velocity dispersion is more closely related to the
amplitude of the lensing signal around galaxies - and hence to the projected dis-
tribution of dark matter. The lensing signal on small scales corresponds most
closely to the lensing velocity dispersion in the case of a singular isothermal
profile, but is on larger scales also sensitive to the clustering of the haloes. We
select over 4000 lens galaxies at a redshift z < 0.2 with de Vaucouleur surface
brightness profiles that reside in the ∼300 square degree overlap between the
Red Sequence Cluster Survey 2 (RCS2) and the data release 7 (DR7) of the
Sloan Digital Sky Survey (SDSS). We consider both the spectroscopic velocity
dispersion and the model velocity dispersion (a combination of the stellar mass,
the size and the Sérsic index of a galaxy). The latter is thought to be a more
reliable velocity dispersion estimator because it is calculated using quantities
that are more robustly determined in the SDSS than the spectroscopic velocity
dispersion. Comparing the model and spectroscopic velocity dispersion we find
that they correlate well for de Vaucouleur-type galaxies. We find that the stellar
mass and the spectroscopic velocity dispersion trace the amplitude of the lens-
ing signal on small scales equally well. The model velocity dispersion, however,
does significantly worse. A possible explanation is that the halo properties that
determine the small-scale lensing signal - mainly the total mass - also depend
on the structural parameters of galaxies, such as the effective radius and Sérsic
index. We need, however, a larger lens sample to explore which combination of
galaxy properties fully determine the distribution of dark matter around galax-
ies, which will provide valuable insights into galaxy formation processes.

E. van Uitert, H. Hoekstra, M. Franx, D.G. Gilbank, M.D. Gladders, H.K.C.
Yee, to be submitted;
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CHAPTER 4. GALAXY PROPERTIES TRACERS OF LENSING SIGNAL

4.1 Introduction

Galaxies form and evolve in the gravitational potentials of large dark matter
haloes. The physical processes that drive galaxy formation cause correlations
between the properties of the galaxies and their dark matter haloes. Hence
to gain insight into these processes, various properties of galaxies (e.g. colour,
metallicity, stellar mass, luminosity, velocity dispersion) can be observed and
compared (e.g. Smith et al. 2009; Graves et al. 2009). This has lead to the
discovery of a large number of empirical scaling laws, such as the Faber-Jackson
relation (Faber & Jackson 1976). These scaling laws help us to disentangle the
processes that govern galaxy formation, and serve as important constraints for
the theoretical and numerical efforts in this field. Although much progress has
been made over the last few decades, many details are still unclear and warrant
further investigation.

One key parameter in galaxy formation is thought to be the total mass of a
galaxy. Galaxies that have more massive dark matter haloes than others attract
more baryons as well, consequently form more stars which results in larger stel-
lar masses. The relation between the stellar mass and the total mass of galaxies
has been the subject of various studies based on observations (e.g. Mandelbaum
et al. 2006; van Uitert et al. 2011; Leauthaud et al. 2012; More et al. 2011;
Wake et al. 2011) and simulations (e.g. Guo et al. 2010; Moster et al. 2010),
and the two components are indeed found to be correlated. Another property of
galaxies that is related to the total mass is the velocity dispersion, the luminos-
ity weighted dispersion of the motions of stars along the line-of-sight within a
spectroscopic aperture. The velocity dispersion provides a dynamical estimate
of the central mass, and correlates with the stellar mass (Taylor et al. 2010) and
the total mass of galaxies (van Uitert et al. 2011).

A fundamental question that is of interest in this context is which property of
galaxies is most tightly correlated to the total mass. This is interesting, because
it shows which property in the centre of dark matter haloes is most intimately
linked to the large-scale potential, and is therefore least sensitive to galaxy for-
mation processes such as galaxy mergers and supernova activity that introduce
scatter in these relations. The properties of galaxies we compare in this work
are the stellar mass and the velocity dispersion. Note that there are various
other observables that trace the total mass, and could have been used instead,
but most of them are either expected to exhibit a large amount of scatter (e.g.
metallicity), or they are directly related to the stellar mass (e.g. luminosity).

The total mass of galaxies is not directly observable, and can only be deter-
mined by indirect means. An excellent tool to do this is via weak gravitational
lensing. In weak lensing the distortion of the images of faint background galaxies
(sources) due to the gravitational potentials of intervening structures (lenses)
is measured. From this distortion, the differential surface mass density of the
lenses can be deduced, which can be modelled to obtain the total mass. A ma-
jor advantage of gravitational lensing over other methods that aim to determine
the total mass is that it does not rely on optical tracers. Dark matter haloes of
galaxies generally extend over hundreds of kpcs, but at large distances no op-
tical tracers can be used. This complicates studies that rely on optical tracers
to determine the total mass. This does not affect weak lensing, as the distor-
tion can be measured for any galaxy, out to very large radii (several Mpcs).
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The major disadvantage of weak lensing is that the lensing signal of individual
galaxies is too weak to detect as the induced distortions are typically 10-100
times smaller than the intrinsic ellipticities of galaxies. Therefore, the signal
has to be averaged over hundreds or thousands of lenses to yield a useful signal.
However, the average total mass for a certain selection of galaxies is still a very
useful measurement, which can be compared to simulations.

It is important to note that the lensing signal on small and large scales mea-
sures different properties of the dark matter haloes. On small scales, within
the virial radius, the lensing signal traces the dark matter distribution of the
halo that hosts the galaxy and is therefore directly related to the halo mass.
On projected separations larger than a few times the virial radius, however, the
lensing signal is mainly determined by neighbouring structures, and therefore
depends on the clustering properties of the lens sample under investigation. In
this work, we ignore the lensing signal at large scales and focus at the signal at
small scales, which mainly depends on the halo mass of galaxies.

The outline of this work is as follows. In Section 4.2, we discuss the various
steps of the lensing analysis: we start with a description of the lens selection,
then provide a brief outline of the creation of the shape measurement cata-
logues, and finally discuss the lensing analysis. The measurements are shown
in Section 4.3, and we conclude in Section 4.4. Throughout the paper we as-
sume a WMAP7 cosmology (Komatsu et al. 2011) with σ8 = 0.8, ΩΛ = 0.73,
ΩM = 0.27, Ωb = 0.046 and h = 0.7 the dimensionless Hubble parameter. All
distances quoted are in physical (rather than comoving) units unless explicitly
stated otherwise.

4.2 Lensing analysis

In this study we use the ∼300 square degrees of overlapping area between
the Sloan Digital Sky Survey (SDSS; York et al. 2000) and the Red Sequence
Cluster Survey 2 (RCS2; Gilbank et al. 2011). We use the SDSS to obtain
the properties of the lenses (e.g. stellar mass, velocity dispersion), information
that is not available in the RCS2. The lensing analysis is performed on the
RCS2, because it is ∼2 magnitudes deeper than the SDSS in r′. The increase in
depth combined with a median seeing of 0.7′′, which is a factor of two smaller
than the seeing in the SDSS, results in a source galaxy number density that is
about five times higher, and a source redshift distribution that peaks at z∼0.7.
Therefore, the RCS2 enables a high-quality detection of the lensing signal, even
for a moderate number of lens galaxies.

4.2.1 Lenses

The SDSS has imaged roughly a quarter of the entire sky, and has mea-
sured the spectra for about one million galaxies (Eisenstein et al. 2001; Strauss
et al. 2002). The combination of spectroscopic coverage and photometry in five
optical bands (u, g, r, i, z) in the SDSS provides a wealth of galaxy information
that is not available from the RCS2. To use this information, but also benefit
from the improved lensing quality of the RCS2, we use the 300 square degrees
overlap between the surveys for our analysis. We match the RCS2 catalogues
to the DR7 (Abazajian et al. 2009) spectroscopic catalogue, to the MPA-JHU
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DR71 stellar mass catalogue and to the NYU Value Added Galaxy Catalogue
(NYU-VAGC)2 (Blanton et al. 2005; Adelman-McCarthy et al. 2008; Padman-
abhan et al. 2008) which yields the spectroscopic redshifts, velocity dispersions,
and the stellar masses of 1.7 × 104 galaxies. From these galaxies we select our
lenses using criteria that are detailed below.

The spectroscopic fibre within which the velocity dispersion is measured
has a fixed size. The physical region where the velocity dispersion is aver-
aged is therefore different for a sample of galaxies with different sizes and
redshifts. To account for this, we follow Bezanson et al. (2011) and scale
the observed spectroscopic velocity dispersion to a fixed size of Re/8 using
σspec = σap

spec(8.0rap/Re)
0.066, with rap=1.5′′ the radius of the SDSS spectro-

scopic fiber, Re the effective radius in the r-band, and σap
spec the observed ve-

locity dispersion. This correction is based on the best-fit relation determined
using 40 galaxies in the SAURON sample (Cappellari et al. 2006). However, the
spectroscopic velocity dispersions provided in the DR7 spectroscopic catalogues
are generally noisy for exponential galaxies. To obtain more reliable velocity
dispersion estimates for these galaxies, we also predict the velocity dispersion
based on quantities that are more robustly determined following Bezanson et al.
(2011):

σmod =

√
GM∗

0.557KV (n)Re
(4.1)

with M∗ the stellar mass, n the Sérsic index and KV (n) a term that includes
the effects of structure on stellar dynamics, and can be approximated by (Bertin
et al. 2002)

KV (n) ∼=
73.32

10.465 + (n− 0.94)2
+ 0.954. (4.2)

The equation for σmod is based on the results of Taylor et al. (2010), who demon-
strated that the structure-corrected dynamical mass is linearly related to the
stellar mass for a selection of low-redshift galaxies in the SDSS.

The stellar mass estimates in the MPA-JHU DR7 catalogues are based on
the model magnitudes. The Sérsic index and the effective radius in Equation
(4.1), however, correspond to a different flux, i.e. the Sérsic model flux, which
is the total flux of the best fit Sérsic model. This flux is also provided in the
NYU-VAGC catalogue, and differs slightly from the model flux. To calculate
σmod consistently, we therefore scale the stellar mass with the ratio of the model
flux to the Sérsic model flux.

Bezanson et al. (2011) find that the model and the observed velocity disper-
sion correlate very well in the range 60 km s−1 < σ < 300 km s−1, for galaxies
in the redshift range 0.05 < z < 0.07, and for a few galaxies with redshifts
1 < z < 2.5. The SDSS spectroscopic sample extends to z ∼ 0.5, and there-
fore contains many more massive galaxies. To determine whether the velocity
dispersions correlate well in this range too, we compare the dispersions for the
complete SDSS spectroscopic sample in Figure 4.1. We find that the velocity
dispersions agree well, though at z > 0.2 the range in velocity dispersion be-
comes too small to assess whether the velocity dispersions are still correlated.

To study whether the spectroscopic velocity dispersion and the model

1http://www.mpa-garching.mpg.de/SDSS/DR7/
2http://sdss.physics.nyu.edu/vagc/
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Figure 4.1: Comparison of the spectroscopic velocity dispersions to the model
velocity dispersions for all galaxies with SDSS spectroscopy. The green trian-
gles show the average spectroscopic velocity dispersion for bins of model veloc-
ity dispersion, the purple diamonds show the average model velocity dispersion
for bins of spectroscopic velocity dispersion. The error bars indicate the scat-
ter. The blue line shows the one-to-one correspondence. Only galaxies with a
spectroscopic velocity dispersion error smaller than 15% have been used in the
comparison. The velocity dispersions correlate well at z < 0.2, but at z > 0.2
the range in velocity dispersion becomes too small to assess whether this is still
the case .

velocity dispersion agree equally well for de Vaucouleur and exponential galax-
ies, we split the galaxies based on their frac dev parameter from the SDSS
photometric catalogues. This parameter is determined by simultaneously fit-
ting frac deV times the best-fitting De Vaucouleur profile plus (1-frac deV )
times the best-fitting exponential profile to an object’s brightness profile. The
frac dev parameter is therefore a measure of the slope of the brightness profile
of a galaxy; galaxies with frac dev > 0.5 predominantly have a de Vaucouleurs
profile, and frac dev < 0.5 an exponential profile. We select all galaxies with
redshifts z < 0.2, and show the comparison in Figure 4.2. We find that for the
de Vaucouleur galaxies, the spectroscopic and model velocity dispersion agree
very well. For the exponentials, however, we find that the spectroscopic veloc-
ity dispersion is ∼0.1 dex higher than the model velocity dispersion. This is
not surprising: Taylor et al. (2010) found that the relation between the stellar
mass and the structure-corrected dynamical mass has a weak dependence on the
Sérsic index, i.e. the ratio of the stellar mass and the dynamical mass increases
with increasing Sérsic index (see Figure 14 in Taylor et al. 2010). The offset in
the relation between spectroscopic and model velocity dispersion for exponen-
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Figure 4.2: Comparison of the spectroscopic velocity dispersions to the model
velocity dispersions for exponential galaxies (left) and de Vaucouleur galaxies
(right) in the redshift range 0 < z < 0.2. For de Vaucouleurs, the dispersions
agree very well, but for exponential galaxies, we find that the spectroscopic
velocity dispersion is roughly 0.1 dex higher than the model velocity dispersion.

tial galaxies is a direct consequence. It might be caused by the contribution of
the disk velocity of spiral galaxies to the spectroscopic velocity dispersion. One
could in principle apply a Sérsic index dependent correction, but we choose to
use only de Vaucouleur galaxies, because there are very few exponentials in the
velocity dispersion range we are interested in.

In Figure 4.3, we plot the spectroscopic and model velocity dispersion as
a function of stellar mass. We only select galaxies with redshifts z < 0.2;
at higher redshifts, the range in velocity dispersions is too small to establish
whether the correlation works well. The three lens samples we use are indicated
by the dashed lines. We select all de Vaucouleur galaxies with a stellar mass
10.8 < log(M∗) < 11.5 in units of h−1

70 M�; all de Vaucouleur galaxies with a
model velocity dispersion 180 km s−1 < σmod < 300 km s−1; and all de Vau-
couleurs with a spectroscopic velocity dispersion 200 km s−1 < σspec < 300 km
s−1 and δσspec/σspec < 0.15. With these criteria we select 4735, 4218 and 4317
lenses respectively, and they form the lens samples of this study.

4.2.2 Data reduction

The RCS2 is a nearly 900 square degree imaging survey in three bands (g′, r′

and z′) carried out with the Canada-France-Hawaii Telescope (CFHT) using the
1 square degree camera MegaCam. The photometric calibration of the RCS2
is described in detail in Gilbank et al. (2011). The magnitudes are calibrated
using the colours of the stellar locus and the overlapping Two-Micron All-Sky
Survey (2MASS), and are accurate to < 0.03 mag in each band compared to the
SDSS. The creation of the galaxy shape catalogues is described in detail in van
Uitert et al. (2011). We refer readers to that paper for more detail, and present
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Figure 4.3: Model velocity dispersion (left) and spectroscopic velocity dispersion
(right) as a function of stellar mass. The dashed lines indicate the selection cuts
for the lenses.

here a short summary of the most important steps.
We retrieve the Elixir3 processed images from the Canadian Astronomy

Data Centre (CADC) archive4. We use the THELI pipeline (Erben et al. 2005,
2009) to subtract the image backgrounds, create weight maps that we use in the
object detection phase, and to identify satellite and asteroid trails. To detect
the objects in the images, we use SExtractor (Bertin & Arnouts 1996). The
stars that are used to model the PSF variation across the image are selected us-
ing size-magnitude diagrams. All objects larger than 1.2 times the local size of
the PSF are identified as galaxies. We measure the shapes of the galaxies with
the KSB method (Kaiser et al. 1995; Luppino & Kaiser 1997; Hoekstra et al.
1998), using the implementation described by Hoekstra et al. (1998, 2000). This
implementation has been tested on simulated images as part of the Shear Test-
ing Programme (STEP) 1 and 2 (the ‘HH’ method in Heymans et al. 2006 and
Massey et al. 2007 respectively), and these tests have shown that it reliably
measures the unconvolved shapes of galaxies for a variety of PSFs. Finally,
we correct the source ellipticities for camera shear, a false shear signal which
originates from slight non-linearities in the camera optics. The resulting shape
catalogue of the RCS2 contains the ellipticities of 2.2×107 galaxies, from which
we select the subset of approximately 1×107 galaxies that coincides with the
SDSS.

4.2.3 Lensing measurement

In weak lensing, the ellipticities of the source galaxies are used to measure
the azimuthally averaged tangential shear around the lenses as a function of
projected separation:

〈γt〉(r) =
∆Σ(r)

Σcrit
, (4.3)

3http://www.cfht.hawaii.edu/Instruments/Elixir/
4http://www1.cadc-ccda.hia-iha.nrc-cnrc.gc.ca/cadc/
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where ∆Σ(r) = Σ̄(< r) − Σ̄(r) is the difference between the mean projected
surface density enclosed by r and the mean projected surface density at a radius
r, and Σcrit is the critical surface density:

Σcrit =
c2

4πG

Ds

DlDls
, (4.4)

with Dl, Ds and Dls the angular diameter distance to the lens, the source, and
between the lens and the source, respectively. Since we lack redshifts for the
background galaxies, we select galaxies with 22 < mr′ < 24 that have a reli-
able shape estimate (ellipticities smaller than one, no SExtractor flag raised)
as sources. We obtain the approximate source redshift distribution by applying
identical magnitude cuts to the photometric redshift catalogues of the Canada-
France-Hawaii-Telescope Legacy Survey (CFHTLS) “Deep Survey” fields (Ilbert
et al. 2006).

To correct the signal for systematic contributions, we subtract the random
shear signal from the measured source ellipticities. Details on the calculation
of this correction can be found in van Uitert et al. (2011). Note that this cor-
rection mostly affects large scales (>20 arcmin), as on small scales the lensing
signal is generally averaged over many lens-source orientations causing the sys-
tematic contributions to average out. As the lenses and sources barely overlap
in redshift, we do not have to correct the lensing signal for the contamination
of physically associated galaxies in the source sample. The source galaxy over-
density near the lenses is found to be a few percent at most, confirming that
this correction is unimportant.

Although neither the dark matter nor the baryonic component are well de-
scribed by a singular isothermal sphere (SIS), the sum of the two components
is remarkably close (e.g. Treu & Koopmans 2004; Koopmans et al. 2009). The
SIS signal is given by

γt,SIS(r) =
rE
2r

=
4πσ2

lens

c2
DlDls

Ds

1

2r
, (4.5)

where rE is the Einstein radius and σlens the lensing velocity dispersion. Based
on the range of stellar masses and velocity dispersions of our lenses, we expect
the majority of lenses to be central galaxies (see, e.g. van Uitert et al. 2011
or Mandelbaum et al. 2006 for estimates of the satellite fraction for galaxies in
these ranges). Therefore, the lensing signal of our galaxies should be reason-
ably well described by an SIS profile over a relatively large range of projected
separations.

To determine whether the stellar mass or the velocity dispersion is a better
tracer of the amplitude of the lensing signal, we would ideally select lenses
in a very narrow range in stellar mass, split those in a high and low velocity
dispersion bin, and compare their lensing signals. A difference between the
lensing signal of the low and high velocity dispersion would indicate a residual
dependence on velocity dispersion. Similarly, we would like to select lenses
in a very narrow range of velocity dispersion, split them in stellar mass and
compare their signals. Comparing the lensing signals of these four bins would
allow us to determine whether the stellar mass or the velocity dispersion is more
closely related to the lensing signal on small scales - and hence to the projected
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distribution of dark matter. Unfortunately, we do not have a sufficient number
of lenses for this approach.

Instead, we have to select lenses that cover a larger range in stellar mass (and
velocity dispersion). We cannot simply split the lenses in velocity dispersion and
compare their lensing signals, because the stellar mass and velocity dispersion
are correlated, and the high velocity dispersion bin also has a larger mean stellar
mass. To account for this, we determine how the lensing signal scales with stellar
mass, and subtract this trend from the high and low velocity dispersion bins.
We also determine how the lensing signal scales with velocity dispersion, and
remove this trend from the high and low stellar mass bin. If the lensing signal of
galaxies strongly depends on the velocity dispersion, but only weakly on stellar
mass, we expect a clear positive difference between the high and low velocity
dispersion bins after we removed the trend with stellar mass. At the same time,
we should see only a very small difference between the high and low stellar mass
bin after removing the trend with velocity dispersion. Hence by studying the
differences in the residual lensing signals, we can tell which observable is more
closely related to the lensing signal of galaxies.

4.3 Results

To study whether the lensing signal mainly depends on stellar mass or ve-
locity dispersion, we first have to determine how the lensing signal scales with
these observables. We discuss how this is done for the model velocity dispersion;
for the spectroscopic velocity and the stellar mass, we follow a similar approach.
The general procedure is summarized below.

• We sort the lenses in model velocity dispersion, and divide them in five
quintiles;

• We measure the lensing signal of each quintile, to which we fit an SIS
profile on scales between 50 h−1

70 kpc and 1 h−1
70 Mpc. This is roughly the

range where the galaxy dark matter halo dominates the lensing signal.
This results in five best-fit lensing velocity dispersions, σlens;

• We use the five values of σlens to fit the linear relation σlens = amod ×
(σmod/200 km s−1) + bmod. We show the measurements and the fit in
Figure 4.4, and give the best-fit parameters in Table 4.1;

• We determine the median stellar mass of these lenses, and divide them
into a low and high stellar mass sample. We measure the lensing signal of
both samples, and show them in the top-left panel of Figure 4.5;

• For each lens in the low and high stellar mass sample, we use the model
velocity dispersion to calculate σlens using the linear relation, and subtract
their SIS profiles from the lensing signal. The residuals are shown in the
middle-left panel of the same figure;

• Finally, we determine the difference between the residual lensing signal of
the high and low stellar mass bin, δ(∆Σ−∆Σtrend), which is shown in the
bottom-left panel.
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Figure 4.4: Best-fit lensing velocity dispersion as a function of spectroscopic ve-
locity dispersion (left panel, black), model velocity dispersion (left panel, orange)
and stellar mass (right panel). Dashed lines indicate the best-fit linear relation
between the observable and σlens. The linear relations are used to remove the
dependence of the lensing signal on these observables.

When we subtract two SIS profiles with different amplitudes from each other,
the result is also an SIS profile. Therefore, to quantify the residuals, we fit an
SIS to δ(∆Σ−∆Σtrend) on the same scales, and determine the residual Einstein
radius, rresE . These values can be found in Table 4.2.

Similarly, we determine the dependence of the lensing signal on spectroscopic
velocity dispersion and stellar mass. For the spectroscopic velocity dispersion,
we fit σlens = aspec × (σspec/200 km s−1) + bspec and for the stellar mass, we fit
σlens = astel× log(M∗/1011 h−1

70 M�)+bstel. The best-fit parameters are shown in
Table 4.1. These trends are removed from the lensing signals, and the residuals
are shown in Figure 4.5 (middle panel).

From the bottom panels of the first and second columns of Figure 4.5,
we observe that if we remove the dependence on model velocity dispersion, the
lensing signal still depends on stellar mass. When we remove the dependence on
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Table 4.1: Best-fit powerlaw parameters that describe the relation between the
galaxy property and the lensing velocity dispersion in the indicated range. De-
tails of the fitting are described in the text.

σmod amod bmod

[km/s] [km/s] [km/s]

180 < σmod < 300 44 ± 96 141 ± 108
100 < σmod < 400 93 ± 49 80 ± 50

σspec aspec bspec
[km/s] [km/s] [km/s]

180 < σspec < 300 176 ± 86 −5 ± 100
100 < σspec < 400 129 ± 42 45 ± 45

log(M∗) astel bstel
[h−1

70 M�] [km/s] [km/s]

10.8 < log(M∗) < 11.5 134 ± 71 179 ± 15
10.5 < log(M∗) < 12.0 118 ± 44 178 ± 12

Table 4.2: The residual Einstein radius, obtained by fitting an SIS profile to
δ(∆Σ−∆Σtrend) between 50 h−1

70 kpc and 1 h−1
70 Mpc for a mean lens redshift of

z = 0.13. The bracketed values show the results for a different linear relation
between the observable and σlens, as detailed in the text.

removed residual rresE [ h−1
70 kpc]

trend dependence

σmod M∗ 0.88 ± 0.25 (0.78 ± 0.25)
M∗ σmod −0.18 ± 0.24 (−0.12 ± 0.24)
σspec M∗ 0.30 ± 0.25 (0.42 ± 0.25)
M∗ σspec 0.37 ± 0.24 (0.42 ± 0.24)
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Figure 4.5: In the top row, we show the lensing signal ∆Σ as a function of
physical distance from the lens, for the lens samples that have been split by the
median value of one of the observables, as indicated in the plots. Red triangles
(green diamonds) indicate the signal of the lenses with larger (smaller) stellar
masses/velocity dispersions. In the middle row, we show the lensing signal of
the same samples after we subtracted the trend with the observable that is
indicated on top of each column. The difference between the residual trends for
the two lens samples are shown in the bottom row. The dotted lines show the
best-fit SIS profiles to the difference between the residuals.

stellar mass, the difference between the residuals of the model velocity samples
is consistent with zero. These trends are reflected by the values for rresE in Table
4.2. The third and fourth columns of Figure 4.5 show that if we remove the
dependence on spectroscopic velocity dispersion, the difference of the residual
signal of the high and low stellar mass sample is consistent with the difference
between the residual signal of the high and low spectroscopic velocity dispersion
samples after we removed the dependence on stellar mass.

These results suggest that the stellar mass is a better tracer of the lensing
signal of galaxies than the model velocity dispersion. Furthermore, the stellar
mass and the spectroscopic velocity dispersion trace the lensing signal equally
well, as the residual Einstein radii are consistent. As a consistency test, we
have also looked at the residual dependence on model velocity dispersion af-
ter removing the trend with spectroscopic velocity dispersion, and vice versa.
These trends confirm our previous findings: the spectroscopic velocity disper-
sion is more sensitive to the lensing signal of galaxies than the model velocity
dispersion.
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There is a weak indication that the lensing signal has a residual dependence
on stellar mass after we remove the trend with spectroscopic velocity dispersion,
and vice versa. This would imply that both the stellar mass and the velocity dis-
persion contain independent information on the projected distribution of dark
matter around galaxies. Unfortunately, we do not have sufficient signal-to-noise
to obtain a clear detection.

The results depend on the linear relations we have fit to remove the depen-
dence on the observables. To study how sensitive the residual trends are on
these relations, we have also fit them using all de Vaucouleur galaxies in the
range 100 km s−1 < σspec < 400 km s−1, 100 km s−1 < σmod < 400 km s−1 and
10.5 h−1

70 M� < log(M∗) < 12 h−1
70 M�, respectively. The best-fit parameters of

these fits are shown in Table 4.1. We repeated the analysis using these values,
and show the residual Einstein radii between brackets in Table 4.2. We find that
this does not significantly change the results, i.e. the model velocity dispersion
traces the lensing signal of galaxies worse than either the stellar mass or the
spectroscopic velocity dispersion.

It is somewhat surprising that σmod is a poorer tracer of the total mass than
σspec, particularly because we observe in Figure 4.1 that they correlate well. To
study where the samples differ, we plot the average effective radii and Sérsic
indices as a function σmod and σspec in Figure 4.6. We find that at low velocity
dispersions, the values of re and n are similar, but at high velocity dispersions,
the lenses in the σspec samples have larger effective radii, whilst the lenses in the
σmod have larger Sérsic indices. Hence the difference between the performance
of σmod and σspec could be due to an additional dependence of the lensing signal
on the structural parameters of the lenses.

To test whether the lensing signal depends on the size of galaxies, we select
the lenses from the model velocity dispersion sample, and remove the lensing
signal dependence on σmod. Then we determine the median effective radius,
split the lenses into a low and high effective radius sample and measure their
residual lensing signal. As before, we measure the difference between the resid-
ual lensing signals of the high and low effective radius sample, to which we fit
an SIS profile. We find rresE = 0.53 ± 0.25 h−1

70 kpc, which suggests that the
lensing signal depends on the size of a galaxy. However, in Figure 4.7 we find
that the effective radius is correlated with stellar mass, so part of this residual
may be caused by the dependence on stellar mass. Therefore, we repeat the test
using the lenses from the stellar mass sample, and remove the lensing signal de-
pendence on stellar mass. Then we determine the median effective radius, split
the lenses into a low and high effective radius sample and measure the differ-
ence between their residual lensing signals. We find rresE = 0.14 ± 0.24 h−1

70 kpc.
Studying the residual dependence on Sérsic index, we find rresE = 0.04±0.25 h−1

70

kpc for the model velocity dispersion sample, and rresE = 0.11±0.24 h−1
70 kpc for

the stellar mass sample. These results do not provide conclusive evidence that
the small-scale lensing signal depends on these structural parameters.

Although the three lens samples overlap, they are not identical. Hence part
of the trends we observe might actually be due to differences in the lens samples.
To test this, we could define a fourth sample by selecting galaxies that pass all se-
lection criteria, i.e. 180 km s−1 < σmod < 300 km s−1, 180 km s−1 < σspec < 300
km s−1, δσspec/σspec < 0.15 and 10.8 h−1

70 M� < log(M∗) < 11.5 h−1
70 M�. How-

ever, if we simultaneously select on stellar mass and model velocity dispersion,
we implicitly also select on effective radius and Sérsic index. This is demon-
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Figure 4.6: Mean effective radius and Sérsic index as a function of spectroscopic
velocity dispersion (left, black filled diamonds), model velocity dispersion (left,
black open triangles) and stellar mass (right, black diamonds). In red, we show
the averages for the lens samples that simultaneously satisfy 180 km s−1 <
σmod < 300 km s−1, 180 km s−1 < σspec < 300 km s−1, δσspec/σspec < 0.15 and
10.8 h−1

70 M� < log(M∗) < 11.5 h−1
70 M�. By simultaneously applying all selection

criteria the average sizes and Sérsic indices of the samples change, which shows
that we implicitly exclude galaxies from a certain area of structural parameter
space.

strated in Figure 4.6 and Figure 4.7, where we show the mean effective radius
and Sérsic index for the lens samples. When we select lenses that pass all selec-
tion criteria, we exclude lenses with large effective radii and small Sérsic indices
at low stellar mass, lenses with small effective radii and small Sérsic indices at
low spectroscopic velocity dispersions, and lenses with small effective radii and
large Sérsic indices at low model velocity dispersions. If the lensing signal of a
galaxy also depends on its structural parameters, the lensing measurements of
this fourth sample could be biased, making the results harder to interpret.
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Figure 4.7: The effective radius as a function of stellar mass (left), model velocity
dispersion (middle) and spectroscopic velocity dispersion (middle). The black
dots show all de Vaucouleur galaxies with z < 0.2, the red dots are the lenses
that satisfy 180 km s−1 < σmod < 300 km s−1, 180 km s−1 < σspec < 300
km s−1, δσspec/σspec < 0.15 and 10.8 h−1

70 M� < log(M∗) < 11.5 h−1
70 M�. By

using all selection criteria simultaneously, we exclude large galaxies at low stellar
masses and high model velocity dispersions, and small galaxies in the velocity
dispersion samples. These selection biases could bias the lensing analysis if the
lensing signal of a galaxy also depends on the effective radius.

4.4 Conclusion

In this work, we study which property of galaxies is most tightly correlated
to the weak gravitational lensing signal on small scales. The properties we com-
pare are the stellar mass, the spectroscopic velocity dispersion and the model
velocity dispersion. We find that the lensing signal of galaxies is equally well
traced by the stellar mass and the spectroscopic velocity dispersion. There is
a weak indication for a residual dependence on stellar mass after removing the
trend with spectroscopic velocity dispersion, and vice versa. This suggests that
both tracers contain independent information on the projected distribution of
dark matter around galaxies. Unfortunately, the signal-to-noise of our lensing
measurements is not sufficient to make a definite statement.

The model velocity dispersion traces the lensing signal significantly worse,
which is surprising as the spectroscopic velocity dispersion and model velocity
dispersion correlate well for our lenses. At high velocity dispersions, however,
the lenses in the σmod-sample have smaller effective radii and larger Sérsic in-
dices than those in the σspec-sample. This suggests that these structural pa-
rameters contain additional information on the projected distribution of dark
matter around galaxies. To test this, we measure how the lensing signal depends
on the size and Sérsic index of the lenses. We do not find conclusive evidence
for a residual dependence on these structural parameters, which could be due
to insufficient signal-to-noise caused by the relatively small lens sample of this
study.

The lensing signal on small projected separations from the lenses mainly
depends on the halo mass. Our results therefore suggest that the stellar mass
and spectroscopic velocity dispersion trace the halo mass equally well, but the
model velocity dispersion does worse. However, at larger separations, neighbour-
ing structures contribute to the lensing signal as well, and we cannot exclude the
possibility that differences between the clustering properties of the lens samples
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also has some effect. To account for the clustering properties of the galaxies, and
remove their contribution from the lensing signal, we could model the lensing
signal using the halo model formalism (Seljak 2000; Cooray & Sheth 2002). An
additional advantage of this approach would be that it enables a simultaneous
study of the halo mass and the clustering properties of galaxies. We postpone
this analysis to a future work.

Ideally, one should also remove the potential lensing signal dependence on
the structural parameters of galaxies, i.e. split the lens sample both in veloc-
ity dispersion and structural parameters, and study the residual dependence on
stellar mass. With the current data, we do not have sufficient signal-to-noise
to perform such an analysis. Ultimately, one could simultaneously fit all these
parameters, i.e. Mh = f(σ,M∗, re, n, ...), which could also contain products of
the parameters such as σM∗, and determine the covariance matrix between the
coefficients. The relative magnitude of the coefficients would give new insights
into which observables are important, and hence would provide valuable insights
into galaxy formation processes.
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5
Constraints on the shapes of dark matter
haloes from weak gravitational lensing

We study the shapes of galaxy dark matter haloes by measuring the anisotropy
of the weak gravitational lensing signal around galaxies in the second Red-
sequence Cluster Survey (RCS2). We determine the average shear anisotropy
within the virial radius for three lens samples: the ‘all’ sample, which contains
all galaxies with 19 < mr′ < 21.5, and the ‘red’ and ‘blue’ samples, whose
lensing signals are dominated by massive low-redshift early-type and late-type
galaxies, respectively. To study the environmental dependence of the lensing
signal, we separate each lens sample into an isolated and clustered part and
analyse them separately. We address the impact of several complications on the
halo ellipticity measurement, including PSF residual systematics in the shape
catalogues, multiple deflections, and the clustering of lenses. We estimate that
the impact of these is small for our lens selections. Furthermore, we measure
the azimuthal dependence of the distribution of physically associated galaxies
around the lens samples. We find that these satellites preferentially reside near
the major axis of the lenses, and constrain the angle between the major axis of
the lens and the average location of the satellites to 〈θ〉 = 43.7◦±0.3◦ for the ‘all’
lenses, 〈θ〉 = 41.7◦±0.5◦ for the ‘red’ lenses and 〈θ〉 = 42.0◦±1.4◦ for the ‘blue’
lenses. For the ‘red’ galaxies, the shear anisotropy is on average marginally
positive, although close to the lens the signal turns negative. For the ‘blue’
galaxies, the signal is marginally negative. For the ‘all’ sample, we find that the
anisotropy of the galaxy-mass cross-correlation function 〈f −f45〉 = 0.23±0.12,
providing weak support for the view that the average galaxy is embedded in,
and preferentially aligned with, a triaxial dark matter halo. Assuming an el-
liptical Navarro-Frenk-White (NFW) profile, we find that the ratio of the dark
matter halo ellipticity and the galaxy ellipticity fh = eh/eg = 1.50+1.03

−1.01, which
for a mean lens ellipticity of 0.25 corresponds to a projected halo ellipticity of
eh = 0.38+0.26

−0.25 if the halo and the lens are perfectly aligned. For isolated galaxies

of the ‘all’ sample, the average shear anisotropy increases to 〈f−f45〉 = 0.51+0.26
−0.25

and fh = 4.73+2.17
−2.05, whilst for clustered galaxies the signal is consistent with

zero. These constraints provide lower limits on the average dark matter halo
ellipticity, as scatter in the relative position angle between the galaxies and the
dark matter haloes is expected to reduce the shear anisotropy by a factor ∼2.

E. van Uitert, H. Hoekstra, T. Schrabback, D.G. Gilbank, M.D. Gladders,
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H.K.C. Yee, submitted to A&A;
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5.1. INTRODUCTION

5.1 Introduction

Over the last few decades a coherent cosmological paradigm has developed,
ΛCDM, which provides a framework for the study of the formation and evolu-
tion of structure in the Universe. N-body simulations that are based on ΛCDM
predict that (dark) matter haloes collapse such that their density profiles closely
follow a Navarro-Frenk-White profile (NFW; Navarro et al. 1996), which is in
excellent agreement with observations. Another fundamental prediction from
simulations is that the haloes are triaxial (e.g. Dubinski & Carlberg 1991; All-
good et al. 2006), which appear elliptical in projection. This prediction of dark
matter haloes, as well as many others concerning the evolution of their shapes
(e.g Vera-Ciro et al. 2011), the effect of the central galaxy on the dark matter
halo shape (e.g. Kazantzidis et al. 2010; Abadi et al. 2010; Machado & Athanas-
soula 2010) and their dependence on environment (e.g Wang et al. 2011), remain
largely untested observationally.

Direct observational constraints on the halo ellipticities have proven to be
difficult, mainly due to the lack of useful tracers of the gravitational poten-
tial. On small scales (∼few kpc), halo ellipticity estimates have been obtained
through the combination of strong lensing and stellar dynamics (e.g. van de
Ven et al. 2010; Dutton et al. 2011; Suyu et al. 2011), planetary nebulae (e.g.
Napolitano et al. 2011) and HI observations in late-type galaxies (e.g. Banerjee
& Jog 2008; O’Brien et al. 2010). On larger scales, the distribution of satellite
galaxies around centrals has been used (e.g. Bailin et al. 2008), but such studies
have only provided constraints for rich systems that may not be representative
for the typical galaxy in the universe.

Weak gravitational lensing does not depend on the presence of optical trac-
ers and is capable of providing ellipticity estimates on a large range of scales
(between a few kpc to a few Mpc). Therefore it is a powerful observational
technique to study the ellipticity of dark matter haloes. In weak lensing the
distortion of the images of faint background galaxies due to the dark matter po-
tentials of intervening structures, the lenses, is measured. This has been used to
determine halo masses (e.g. van Uitert et al. 2011) as well as the extent of haloes.
If galaxies preferentially align (or anti-align) with respect to the dark matter
haloes in which they are embedded, the lensing signal becomes anisotropic. This
signature can be used to constrain the ellipticity of dark matter haloes of galax-
ies (Brainerd & Wright 2000; Natarajan & Refregier 2000).

The core assumption in the weak-lensing-based halo ellipticity studies is that
the orientation of galaxies and dark matter haloes are correlated; if they are not,
the shear signal is isotropic and cannot be used to constrain the ellipticity of
the haloes. The relative alignment between the baryons and the dark matter
has been addressed in a large number of studies based on numerical simula-
tions (e.g. van den Bosch et al. 2002, 2003; Bailin et al. 2005; Kang et al. 2007;
Bett et al. 2010; Hahn et al. 2010; Deason et al. 2011), in studies based on the
distribution of satellite galaxies around centrals (Wang et al. 2008; Agustsson
& Brainerd 2010) and in studies based on the ellipticity correlation function
(Faltenbacher et al. 2009; Okumura et al. 2009). The general consensus is that
although the galaxy and dark matter are aligned on average, the scatter in the
differential position angle distribution is large. Bett (2011) examined a broad
range of galaxy-halo alignment models by combining N -body simulations with
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semi-analytic galaxy formation models, and found that for most of the models
under consideration, the stacked projected axis ratio becomes close to unity.
Consequently, the ellipticity of dark matter haloes may be difficult to measure
with weak lensing in practice.

Knowledge of the relative alignment distribution is not only crucial for halo
ellipticity studies, but also for studies of the intrinsic alignments of galaxies. Nu-
merical simulations predict that the shapes of neighbouring dark matter haloes
are correlated (e.g. Splinter et al. 1997; Croft & Metzler 2000; Heavens et al.
2000; Lee et al. 2008). The shapes of galaxies that form inside these haloes may
therefore be intrinsically aligned as well. Measuring this effect is interesting as
it provides constraints on structure formation. Also, the lensing properties of
the large-scale structure in the universe, known as cosmic shear, are affected by
intrinsic alignments, and benefit from a careful characterization of the effect.
Intrinsic alignments are studied observationally by correlating the ellipticities
of galaxies as a function of separation; misalignments can significantly reduce
these ellipticity correlation functions (e.g. Heymans et al. 2004).

To date, only three observational weak lensing studies have detected the
anisotropy of the lensing signal (Hoekstra et al. 2004; Mandelbaum et al. 2006a;
Parker et al. 2007). These studies have provided only tentative support for
the existence of elliptical dark matter haloes, as they were limited by either
their survey size and lack of colour information (Hoekstra et al. 2004; Parker
et al. 2007) or their depth (Mandelbaum et al. 2006a). To improve on these
constraints, we use the Red-sequence Cluster Survey 2 (RCS2, Gilbank et al.
2011). Covering 900 square degree in the g′r′z′-bands, a limiting magnitude
of r′lim ∼ 24.3 and a median seeing of 0.7′′, this survey is very well suited for
lensing studies (see van Uitert et al. 2011). Using the colours we select massive
luminous foreground galaxies at low redshifts. To investigate whether the for-
mation histories and environment affect the average halo ellipticity of galaxies,
the lenses are separated by galaxy type and environment, and the signals are
studied separately.

The structure of this paper is as follows. We describe the lensing analysis,
including the data reduction of the RCS2 survey, the lens selection and the
definition of the shear anisotropy estimators, in Section 5.2. We present mea-
surements using a simple shear anisotropy estimator in Section 5.3, and use it
to study the potential impact of PSF residual systematics in the shape cata-
logues. Various complications exist that might have altered the observed shear
anisotropy, and in Section 5.4 we study the impact of two of them: multiple
deflection and the clustering of the lenses. The shear anisotropy measurements
are shown and interpreted in Section 5.5. We conclude in Section 5.6. Through-
out the paper we assume a WMAP7 cosmology (Komatsu et al. 2011) with
σ8 = 0.8, ΩΛ = 0.73, ΩM = 0.27, Ωb = 0.046 and the dimensionless Hubble pa-
rameter h = 0.7. The errors on the measured and derived quantities in this work
generally show the 68% confidence interval, unless explicitly stated otherwise.

5.2 Lensing analysis

For our lensing analysis we use the imaging data from the second Red-
sequence Cluster Survey (RCS2; Gilbank et al. 2011). The RCS2 is a nearly
900 square degree imaging survey in three bands (g′, r′ and z′) carried out with

112



5.2. LENSING ANALYSIS

the Canada-France-Hawaii Telescope (CFHT) using the 1 square degree camera
MegaCam. In this work, we use the ∼700 square degrees of the primary survey
area. The remainder constitutes the ‘Wide’ component of the CFHT Legacy
Survey (CFHTLS) which we do not consider here. We perform the lensing
analysis on the 8 minute exposures of the r′-band (r′lim ∼24.3), which is best
suited for lensing with a median seeing of 0.71′′.

5.2.1 Data reduction

The photometric calibration of the RCS2 is described in detail in Gilbank
et al. (2011). The magnitudes are calibrated using the colours of the stellar
locus and the overlapping Two-Micron All-Sky Survey (2MASS), and have an
accuracy better than 0.03 mag in each band compared to the SDSS. The cre-
ation of the galaxy shape catalogues is described in detail in van Uitert et al.
(2011). We refer readers to that paper for more detail, and present here a short
summary of the most important steps.

We retrieve the Elixir1 processed images from the Canadian Astronomy
Data Centre (CADC) archive2. We use the THELI pipeline (Erben et al. 2005,
2009) to subtract the image backgrounds, create weight maps that we use in the
object detection phase, and to identify satellite and asteroid trails. To detect
the objects in the images, we use SExtractor (Bertin & Arnouts 1996). The
stars that are used to model the PSF variation across the image are selected
using size-magnitude diagrams. All objects larger than 1.2 times the local size
of the PSF are identified as galaxies. We measure the shapes of the galax-
ies with the KSB method (Kaiser et al. 1995; Luppino & Kaiser 1997; Hoekstra
et al. 1998), using the implementation described by Hoekstra et al. (1998, 2000).
This implementation has been tested on simulated images as part of the Shear
Testing Programmes (STEP) (the ‘HH’ method in Heymans et al. 2006 and
Massey et al. 2007), and these tests have shown that it reliably measures the
unconvolved shapes of galaxies for a variety of PSFs. Finally, the source elliptic-
ities are corrected for camera shear, which originates from slight non-linearities
in the camera optics. The resulting shape catalogue of the RCS2 contains the
ellipticities of 2.2×107 galaxies. A more detailed discussion of the analysis can
be found in van Uitert et al. (2011).

5.2.2 Lenses

To study the halo ellipticity of galaxies, we measure the shear anisotropy of
three lens samples. The first sample contains all galaxies with 19 < mr′ < 21.5,
and is referred to as the ‘all’ sample. This sample consists of different types
of galaxies that cover a broad range in luminosity and redshift. The shear
anisotropy measurement of this sample enables us to determine whether galax-
ies are on average aligned with their dark matter haloes.

The formation history of galaxies differs between galaxy types, and conse-
quently the relation between baryons and dark matter may differ too. Therefore,
the average dark matter halo shapes, and the orientation of galaxies within these
haloes, might depend on galaxy type. To examine this, we separate the lenses

1http://www.cfht.hawaii.edu/Instruments/Elixir/
2http://www1.cadc-ccda.hia-iha.nrc-cnrc.gc.ca/cadc/
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Figure 5.1: Number of lenses as a function of absolute magnitude (a) and red-
shift (b) for the three lens samples, obtained by applying identical cuts to the
CFHTLS W1 photometric redshift catalogue from the CFHTLenS collaboration
(Hildebrandt et al. 2011). The ‘all’ sample (black solid lines) has the broadest
distributions, and covers absolute r′-band magnitudes between −18 and −24,
and redshifts between 0 and 0.6. The luminosities of the ‘blue’ sample (blue
dotted lines) are in the range −24 < Mr < −20, with redshifts 0.15 < z < 0.6.
The ‘red’ sample (purple dot-dashed lines) has the narrowest distributions, with
luminosities −24 < Mr < −22 and redshifts 0.3 < z < 0.6.

as a function of their type.
Various selection criteria have been employed to separate early-type from

late-type galaxies. In most cases, galaxies are either selected based on the slope
of their brightness profiles (Mandelbaum et al. 2006b; van Uitert et al. 2011),
or on their colours (Mandelbaum et al. 2006a; Hoekstra et al. 2005). To study
how these selection criteria relate, Mandelbaum et al. (2006a) compare the se-
lection based on their SDSS u − r model colour to the selection based on the
frac dev parameter3, and find that the assigned galaxy types agree for 90% of
the galaxies.

We choose to separate the galaxy types based on their colours, as the g′-, r′-
and z′- band colours are readily available for all galaxies in the RCS2. The aim of
the separation is two-fold: to make a clean separation between the red quiescent
galaxies which typically exhibit early-type morphologies and blue star-forming
galaxies that typically have late-type morphologies, and to select massive lenses
at low redshifts to optimize the lensing signal-to-noise, and minimize potential
contributions from multiple deflections (see Section 5.4.1). To determine where
these massive low-redshift galaxies reside in the colour-magnitude plane, we use
the photometric redshift catalogues of the CFHTLS Wide from the CFHTLenS
collaboration (Hildebrandt et al. 2011), and define our boxes accordingly; details
of the selection of the ‘red’ and ‘blue’ lens sample are described in Appendix
5.A. Note that these lens samples overlap with the ‘all’ sample, but not with

3The frac dev parameter is determined by simultaneously fitting frac deV times the best-
fitting de Vaucouleur profile plus (1-frac deV ) times the best-fitting exponential profile to an
object’s brightness profile
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Table 5.1: Properties of the lens samples: the number of lenses, the mean
redshift, the mean luminosity, the mean ellipticity, the fraction of lenses that
are isolated, the virial mass, the virial radius and the scale radius.
Sample Nlens 〈z〉 〈Lr′〉 〈|eg|〉 fiso M200 r200 rs

[1010 h−2
70 L�] [1010 h−1

70 M�] [h−1
70 kpc] [h−1

70 kpc]

All 1 681 826 0.31 2.86 0.25 0.20 21.1+0.5
−1.4 150+1

−3 23.9+0.2
−0.5

Red 136 196 0.43 8.91 0.20 0.41 138 ± 8 280 ± 5 54.6+1.1
−1.0

Blue 147 079 0.31 4.68 0.26 0.55 44.4+3.3
−3.8 192 ± 5 32.7+0.8

−0.9

each other. Details of the samples are given in Table 5.1.
To study how well we can separate early-types from late-types, we compare

our selection to previously employed separation criteria. Details of the compari-
son can be found in Appendix 5.A. We find that the ‘red’ sample is very similar
to the selection based on the u′ − r′ colour, whilst ∼58% of the ‘blue’ sample
are actually red according to their u′ − r′ colour. Most of these contaminants
of the ‘blue’ sample are not massive, and actually dilute the lensing signal. The
purity of the ‘blue’ sample could be improved by shifting the selection boxes
to bluer colours, but this at the expense of removing the majority of massive
late-type lenses. Finally, we note that ∼70% of the ‘all’ sample are considered
blue based on their u′ − r′ colours.

To study the second objective of the lens selection, i.e. to select massive and
bright low-redshift lenses, we apply the colour cuts to the CFHTLS W1 photo-
metric catalogue, and show the distribution of absolute magnitudes and photo-
metric redshifts of the lens samples in Figure 5.1. We find that the ‘red’ lens sam-
ple consists of galaxies with absolute magnitudes in the range −24 < Mr < −22,
and most with redshifts between 0.3 and 0.6. The galaxies from the ‘blue’ sam-
ple have absolute magnitudes in the range −24 < Mr < −20, and are located at
redshifts between 0.1 and 0.6. For the blue galaxies, we cannot define a criterion
that exclusively selects luminous lenses in a narrow redshift range, based on the
g′r′z′ magnitudes alone. Finally, the ‘all’ sample has the broadest luminosity
and redshift distribution. It is possible to narrow down the redshift range by
discarding the lenses with the largest apparent magnitudes from each sample.
We choose not to, however, because this lowers the signal-to-noise of the lensing
measurement, which consequently broadens the constraints on the average halo
ellipticity.

Note that due to the lack of a very blue observing band in the CFHTLS, the
photometric redshifts below 0.2 are biased high (Hildebrandt et al. 2011). As a
consequence, a fraction of the galaxies of the ‘blue’ lens sample may have been
shifted to higher redshifts, and thus larger luminosities. The mean redshift and
luminosity of the sample may therefore be somewhat smaller than the values
quoted in Table 5.1, and the distributions shown in Figure 5.1 are only indica-
tive.

Since the dark matter halo ellipticity is measured relative to the elliptic-
ity of the galaxy, it is interesting to examine the distribution of the latter. In
Figure 5.2, we show the ellipticity distribution of the lens samples; the mean
galaxy ellipticity of each sample is given in Table 5.1. The ellipticity distribu-
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Figure 5.2: Ellipticity distribution of the g′r′z′-colour selected lens samples.
The dashed lines indicate the ellipticity cuts we apply to exclude the roundest
and most elliptical lenses. The ellipticity distributions of the ‘all’ and the ‘blue’
sample are similar, but the ‘red’ sample contains relatively more round galaxies.

tions of the ‘all’ and ‘blue’ sample are comparable, and are broader than the
‘red’ sample one, because the ‘all’ and ‘blue’ sample have a considerable frac-
tion of disk galaxies. The differences between the ellipticity distributions have
consequences for the weighting scheme of the lensing anisotropy measurements,
as we will discuss in Section 5.2.3. In the analysis, we only use galaxies with
0.05 < eg < 0.8, which excludes round lenses that do not have a well-defined
position angle, and very elliptical galaxies whose shapes are potentially affected
by neighbours and/or cosmic rays.

The ellipticity of dark matter haloes may depend on the environment of a
galaxy. We therefore divide the lens samples further into isolated and clustered
ones, and study the lensing signal separately. As we lack redshifts for all the
galaxies, we have to use an isolation criterion based on projected angular sepa-
rations: if the lens has a neighbouring galaxy within a fixed projected separation
that is brighter (in apparent magnitude) than the lens, it is selected for the clus-
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tered sample. If the lens is the brightest object, it is selected for the isolated
sample. We test various values for the fixed minimum separation, and compare
the tangential shear at large scales in Appendix 5.B. Based on these results,
we use a minimum separation of 1 arcmin. Note that an environment selection
based on apparent magnitudes cannot be very pure; a fraction of the lenses from
the isolated sample may still be the brightest galaxy in a cluster. Some of the
lenses of the clustered sample may in reality be isolated, but have been selected
for the clustered sample due to the presence of bright foreground galaxies. How-
ever, the difference between the large-scale lensing signal of the isolated and the
clustered sample indicates that our selection criterion works reasonably well.
The fraction of the lens sample that is isolated, fiso, is indicated in Table 5.1.

5.2.3 Shear anisotropy

The lensing signal is quantified by the tangential shear, γt, around the lenses
as a function of projected separation. As the distortions are small compared to
the shape noise, the tangential shear needs to be azimuthally averaged over a
large number of lens-source pairs:

〈γt〉(r) =
∆Σ(r)

Σcrit
, (5.1)

where ∆Σ(r) = Σ̄(< r) − Σ̄(r) is the difference between the mean projected
surface density enclosed by r and the mean projected surface density at a radius
r, and Σcrit is the critical surface density:

Σcrit =
c2

4πG

Ds

DlDls
, (5.2)

with Dl, Ds and Dls the angular diameter distance to the lens, the source,
and between the lens and the source respectively. Since we lack redshifts, we
select galaxies with 22 < mr′ < 24 and a reliable shape estimate as sources.
We obtain the approximate source redshift distribution by applying identical
magnitude cuts to the photometric redshift catalogues of the Canada-France-
Hawaii-Telescope Legacy Survey (CFHTLS) “Deep Survey” fields (Ilbert et al.
2006), and find a median source redshift of zs = 0.74. To convert the tangential
shear to ∆Σ, we use the average critical surface density that is determined by
integrating over the source redshift distribution:

〈Σcrit〉 =
c2

4πG

1

Anorm

∫ ∞

zl

dzs p(zs)
Ds

DlDls
;

Anorm =

∫ ∞

0

dzs p(zs),

(5.3)

with p(zs) the redshift distribution of the sources, and zl the mean redshift of
the lens sample used to determine Dl and Dls. We also measure the cross shear,
γ×, the component of the shear in the direction of 45◦ from the lens-source sep-
aration vector. The azimuthally averaged cross shear signal should vanish since
gravitational lensing does not produce it. If this signal is non-zero, however, it
indicates the presence of systematics in the shape catalogues. As the lenses are
large and their light may contaminate the lensing signal near the lenses, we only
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Figure 5.3: Schematic of a lens galaxy. The tangential shear is measured in
regions A and B, the cross shear is measured in regions C and D. The cross shear
is subtracted from the tangential shear to correct for systematic contributions
to the shear.

consider the signal on scales larger than 0.1 arcmin for lenses with mr′ > 19,
and scales larger than 0.2 arcmin for lenses with mr′ < 19. These criteria are
based on the reduction of the source number density near the lenses, as dis-
cussed in Appendix 5.D. Hence the smallest scales we probe is 28 kpc for the
‘all’ and ‘blue’ sample, and 34 kpc for the ‘red’ sample at the mean lens redshift.
To remove contributions of systematic shear (from, e.g., the image masks), we
subtract the signal computed around random points from the signal computed
around the real lenses (see van Uitert et al. 2011).

The lensing signal around triaxial dark matter haloes has an azimuthal de-
pendence. If galaxies are preferentially aligned or oriented at a 90◦ angle (anti-
aligned) with respect to the dark matter distribution, the lensing signal along
the galaxies’ major axis is respectively larger or smaller than along the minor
axis, and this dependence can be determined.

To measure the anisotropy in the signal, we first follow the approach used by
Parker et al. (2007). For each lens, the tangential shear is measured separately
using the sources that lie within 45◦ of the semi-major axis (γt,B), and using
those that lie within 45◦ of the semi-minor axis (γt,A) (indicated by B and A in
Figure 5.3, respectively). The ratio of the shears captures the anisotropy of the
signal:

fmm(r) =
γt,B(r)

γt,A(r)
. (5.4)

A value of fmm that is significantly larger (smaller) than unity at small scales
indicates that the dark matter haloes are (anti-)aligned with the galaxies. Sys-
tematic contributions to the shear, however, may bias the anisotropy of the
lensing signal. If the systematic shear is fairly constant on the scales where we
measure the signal, it can be removed following Mandelbaum et al. (2006a).
In this approach, the cross shear component computed in the regions that are
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rotated by 45◦ with respect to the major/minor axes (region C and D in Figure
5.3), γ×,C−D ≡ (γ×,C−γ×,D)/2, is subtracted from the tangential shear. Spuri-
ous shear signals contribute equally to γt,A, γt,B and γ×,C−D, and are therefore
removed. The corrected ratio then becomes:

f corr
mm (r) =

γt,B(r) + γ×,C−D(r)

γt,A(r) − γ×,C−D(r)
. (5.5)

If γ×,C−D is zero, the errors on f corr
mm approximately increase by a factor√

1 + 1/
√

2; if γ×,C−D is non-zero, however, the errors of f corr
mm can either be-

come larger or smaller than those of fmm.
Alternatively, we can assume that the differential surface density distribu-

tion can be described by an isotropic part plus an azimuthally varying part
(Mandelbaum et al. 2006a):

∆Σmodel(r) = ∆Σiso(r)[1 + 2feg cos(2∆θ)], (5.6)

where eg is the observed ellipticity of the lens, ∆θ is the angle from the major
axis, and f is the ratio of the amplitude of the anisotropy of the lensing signal
and the ellipticity of the galaxy, which is the parameter we want to determine.
Mandelbaum et al. (2006a) show that the azimuthally varying part is given by:

f∆Σiso(r) =

∑
i wi∆Σieg,i cos(2∆θi)

2
∑

i wie2g,i cos2(2∆θi)
, (5.7)

with i the index of the lens-source pairs, wi the weight applied to the ellipticity
estimate of each source galaxy, which is calculated from the shape noise, and
eg,i the ellipticity of the lens. This ellipticity is also determined using the KSB
method, and it is a measure of (1−R2)/(1 +R2) with R the axis ratio (R ≤ 1)
if the lens has elliptical isophotes. To remove contributions from systematic
shear, we also measure

f45∆Σiso(r) =

∑
i wi∆Σi,45eg,i cos(2∆θi + π/2)

2
∑

i wie2g,i cos2(2∆θi + π/2)
, (5.8)

where Σi,45 is the projected surface density measured by rotating the source
galaxies by 45◦. The systematic shear corrected halo ellipticity estimator is
then given by (f −f45)∆Σiso(r). The average values of fmm, f corr

mm and (f −f45)
within a certain range of projected separations are determined by calculating
the ratio of two measurements for each radial bin, and subsequently averaging
that ratio within the range of interest. We assume that the errors of each
measurement are Gaussian. Consequently, the probability distribution of the
ratio is asymmetric, which we have to account for. We describe how to calculate
the mean and the errors of the ratio for a radial bin, and how to average that
ratio within a certain range of projected separations, in Appendix 5.C. Note
that to convert f , the anisotropy in the shear field, to fh = eh/eg, the ratio of
the ellipticity of the dark matter halo and the ellipticity of the galaxy, we have
to adopt a density profile (e.g. f/fh=0.25 for a singular isothermal ellipsoid,
see Mandelbaum et al. 2006a).

It is clear from Figure 5.2 that the ellipticity distributions of the red and
blue lens samples are different. It is unclear, however, whether the underlying
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ellipticity distribution of the dark matter haloes differs as well. If the underlying
distribution is similar for both samples, the projected dark matter halo ellipticity
cannot depend linearly on the galaxy ellipticity. Hence Equation (5.6) might
not be optimal, and could depend differently on eg. We therefore generalise
Equation (5.7) to

f∆Σiso(r) = A

∑
i wi∆Σie

α
g,i cos(2∆θi)

2
∑

i wie2αg,i cos2(2∆θi)
, (5.9)

A =
Σie

2α
g,i

Σieαg,i

Σieg,i
Σie2g,i

(5.10)

and calculate it for different values of α. Equation (5.8) changes similarly. The
factor A in Equation (5.9) scales each measurement of f to the ‘standard’ of
α = 1 as used in Mandelbaum et al. (2006a), which eases a comparison of f for
different values of α. The optimal weight results in the best signal-to-noise of
the measurement.

The different halo ellipticity estimators can in principle be used to study the
relation between the ellipticity of the galaxy and the ellipticity of their dark
matter hosts. In particular, Equation (5.5) is defined such that it depends on
the average dark matter halo ellipticity, whilst Equation (5.9) is sensitive to the
relation between the galaxy ellipticity and the dark matter ellipticity. Hence by
comparing the f∆Σiso(r) for different values of α, we gain insight in the relation
between the ellipticity of the galaxies and their dark matter haloes. Note that
as an alternative, we could weight Equation (5.5) with the lens ellipticity.

It is useful to assess the signal-to-noise we expect to obtain for the shear
anisotropy measurement compared to the signal-to-noise of the tangential shear
itself. For this purpose, we write Equation (5.6) in its most basic form:

∆Σmodel(r) = ∆Σiso(r)[1 + f̄ cos(2∆θ)], (5.11)

which has the following solution for the anisotropic part:

f̄∆Σiso =

∑
i wi∆Σi cos(2∆θi)∑

i wi cos2(2∆θi)
. (5.12)

If the dark matter halo is described by a singular isothermal ellipsoid (SIE; see
Mandelbaum et al. 2006a), and if the galaxy is perfectly aligned with the halo,
we find f̄ = eh/2. Hence the anisotropic signal is a factor eh/2 lower than the
isotropic signal. To assess the relative size of the error of f̄∆Σiso compared to
Σiso, we insert Equation (5.11) into Equation (5.12), define a new weight w̃i ≡
wi cos2(2∆θi), and determine the error using σf̄∆Σiso

= 1/
√∑

i w̃i. Since wi and

cos2(2∆θi) are uncorrelated, it follows that σf̄∆Σiso
= 1/

√∑
i wi〈cos2(2∆θ)〉 =√

2σ∆Σiso , with σ∆Σiso = 1/
√∑

i wi the error on ∆Σiso. Hence the error of

f̄∆Σiso is a factor
√

2 larger than the error of ∆Σiso. Consequently, the signal-
to-noise of the anisotropic part of the lensing signal, (S/N)ani, is related to the
signal-to-noise of the isotropic part, (S/N)iso, as:

(S/N)ani =
0.15√

2

( eh
0.3

)
(S/N)iso. (5.13)

In the best-case scenario, the expected signal-to-noise of the shear anisotropy is
an order of magnitude lower than the signal-to-noise of the azimuthally averaged

120



5.2. LENSING ANALYSIS

shear. Applying the correction to remove systematic contributions increases the
errors of the shear anisotropy by another factor of

√
2. If the dark matter is

described by an elliptical NFW, the signal decreases rapidly with increasing
separation (see Figure 2 of Mandelbaum et al. 2006a), and is only larger than
the SIE signal on very small scales. If no redshift information is available for
the lenses, the rapid decline of the shear anisotropy is particularly disadvanta-
geous as the signal can only be averaged as a function of angular separation.
Consequently, the anisotropy signal is smeared out, making it harder to detect.
Finally, if the galaxy and the halo are misaligned, the signal decreases even fur-
ther. These considerations show that we need very large lens samples to achieve
sufficient signal-to-noise to enable a detection, and it motivates our choice to
select broad lens samples.

5.2.4 Contamination correction

A fraction of our source galaxies are physically associated with the lenses.
They cannot be removed from the source sample because we lack redshifts. Since
these galaxies are not lensed, but are included in calculating the average lensing
signal, they dilute the signal. To correct for this dilution, we boost the lensing
signal with a boost factor, i.e. the excess source galaxy density ratio around the
lenses, 1+fcg(r). This is the ratio of the local total (satellites + source galaxies)
number density and the average source galaxy number density. This correction
assumes that the satellite galaxies are randomly oriented. If the satellites are
preferentially radially aligned to the lens, the contamination correction for the
azimuthally averaged tangential shear will be too low. If the radial alignment
of the physically associated galaxies has an azimuthal dependence, the shear
anisotropy can either be biased high or low.

This type of intrinsic alignment has been studied with seemingly different
results; some authors (e.g. Agustsson & Brainerd 2006; Faltenbacher et al. 2007)
who determined the galaxy orientation using the isophotal position angles, have
observed a stronger alignment than others (e.g. Hirata et al. 2004; Mandelbaum
et al. 2005a) who used galaxy moments. This discrepancy was attributed by
Siverd et al. (2009) and Hao et al. (2011) to the different definitions of the po-
sition angle of a galaxy; the favoured explanation is that light from the central
galaxy contaminates the light from the satellites, which affects the isophotal
position angle more than the galaxy moments one. As we measure the shapes
of source galaxies using galaxy moments, we expect that intrinsic alignment has
a minor impact at most and can be ignored.

To study whether the distribution of source galaxies has an azimuthal de-
pendence, we perform the analysis separately using the galaxies residing within
45 degrees of the major axis, and within 45 degrees of the minor axis. On small
scales, the extended light of bright lenses leads to erroneous sky background
estimates, which causes a local deficiency in the source number density. This
deficiency is different along the major axis and minor axis, which could bias the
correction we make to account for physically associated galaxies in the source
sample. To determine which scales are affected, we study the source number
density around galaxies as a function of their brightness and ellipticity. The
results are shown in Appendix 5.D. For galaxies with mr′ < 19, we find a larger
deficiency along the major axis on projected scales smaller than 0.2 arcmin; for
galaxies with mr′ > 19, the deficiency is larger on projected scales smaller than
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Figure 5.4: Excess source galaxy density ratio as a function of projected distance
to the lenses. The green squares (blue triangles) indicate the excess density ratio
measured using sources within 45 degrees of the major (minor) axis. The arrows
indicate the location of the virial radius at the mean redshift of the lenses. We
find that the excess density ratio along the major axis is higher than along the
minor axis, most noticeably for the ‘red’ sample. Please note the different scales
of the vertical axes.

0.1 arcmin. Therefore, we only use scales larger than 0.1 arcmin for galaxies
with mr′ > 19, and scales larger than 0.2 arcmin for galaxies with mr′ < 19.
The overdensities around the lens samples are shown in Figure 5.4. We find that
the source sample is only mildly contaminated by physically associated galaxies,
as the overdensities reach a maximum excess of only 30% for the ‘red’ lenses at
the smallest projected separations. The excess source galaxy density ratio is a
few percent larger along the major axis than along the minor axis within the
virial radii of the lens samples, most noticeably for the ‘red’ lens sample.

The measured anisotropy is caused by two effects4: anisotropic magnifica-

4Another effect is mentioned in Mandelbaum et al. (2006a) that could cause an anisotropic
source density ratio: additional lensing by foreground galaxies. We estimate that this has a
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Figure 5.5: Mean angle between the location of the satellites and the major axis
of the lens galaxy as a function of projected separation. The orange triangles,
purple diamonds and blue squares indicate the results for the ‘all’, ‘red’ and
‘blue’ lens sample. The arrows on the horizontal axis indicate the location of
the virial radii at the mean redshift of the lenses, and correspond to 150 kpc,
280 kpc and 192 kpc for the ‘all’, ‘red’ and ‘blue’ lens samples, respectively. The
satellite galaxies preferentially reside near the major axis of the lenses.

tion, and the presence of physically associated sources that are anisotropically
distributed. As we lack redshifts for our galaxies, we cannot disentangle the
two effects. However, we estimate the impact of anisotropic magnification for
the lens samples in Appendix 5.E, and find that even in the case where the
galaxy and the dark matter halo are perfectly aligned, the effect is small. We
conclude therefore that the observed anisotropy is the result of the anisotropy
of the distribution of satellite galaxies.

We correct the tangential shear in the major and minor axis quadrant for the
contamination by satellites by multiplying with their respective excess galaxy

negligible impact because the number of additional massive foreground galaxies is small due
to our lens sample selection.
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density ratio, before we measure the shear ratios. To calculate the correction
of (f − f45), we observe how f∆Σiso(r) changes in the presence of physically
associated galaxies in the source sample that are anisotropically distributed.
Rather than Equation (5.7), the quantity we actually measure is

f̃∆̃Σiso(r) =
A

N

∑
i

wi∆Σie
α
g,i cos(2∆θi)

1 + fcg(r,∆θ)
;

N = 2
∑
i

wie
2α
g,i cos2(2∆θi),

(5.14)

with 1 + fcg(r,∆θ) the azimuthally varying excess galaxy density ratio, and

∆̃Σiso the unboosted lensing signal. We assume that 1+fcg(r,∆θ) has a similar
azimuthal dependence as the shear, and can be described by

1 + fcg(r,∆θ) = Niso(r) + 2N∆θ(r)eαg cos(2∆θ), (5.15)

with α the exponent of the ellipticity used to weigh the shear measurement, Niso

the azimuthally averaged boost factor and N∆θ the amplitude of the anisotropy.
Using a Taylor expansion, we find that to first order

f(r) = f̃(r) + feff(r), (5.16)

with feff(r) = AN∆θ(r)/Niso(r). To determine feff(r), we measure both the
angle-averaged boost factor, Niso(r) = NLS/NLR, where NLS denotes the num-
ber of lens-source pairs and NLR the number of pairs of lenses with random
sources, and the azimuthally varying part, ξ∆θ(r) =

∑
LS e

α
g cos(2∆θ)/NLR.

For the adopted model of the excess galaxy density ratio this gives Niso(r) =
〈1 + fcg(r)〉∆θ, which is averaged over the angle, and ξ∆θ = 2N∆θ(r)e2αg . These
measurements are combined to give

feff(r) = A
ξ∆θ(r)

〈1 + fcg(r)〉∆θ〈e2αg 〉
. (5.17)

We determine the average value of feff(r) within the virial radius, and add it to
〈f − f45〉. The values are tabulated in Table 5.3. Note that a similar correction
is applied in Mandelbaum et al. (2006a).

To compare the anisotropy of the distribution of satellites to the literature,
we now assume that at a narrow radial range the excess galaxy density ratio
can be described by 1 + fcg = Niso + Ñ∆θ cos(2∆θ). We fit this to the excess
density ratio in the major and minor axis quadrants, separately for each radial
bin. We use these fits to compute 〈θ〉, the mean angle between the location of
the satellites and the major axis of the central galaxy, using

〈θ〉 =

∫ π/2

0
dθθfcg(θ)∫ π/2

0
dθfcg(θ)

. (5.18)

In Figure 5.5, we show 〈θ〉 as a function of projected separation for the three
lens samples.

We find that satellite galaxies preferentially reside near the major axis of
the lenses, most strongly for the ‘red’ lenses. We determine the weighted mean
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of 〈θ〉 within the virial radius, and find 〈θ〉 = 43.7◦ ± 0.3◦ for the ‘all’ sample,
〈θ〉 = 41.7◦ ± 0.5◦ for the ‘red’ sample and 〈θ〉 = 42.0◦ ± 0.4◦ for ‘blue’ sample.
Additionally, for the ‘red’ lenses we find that 〈θ〉 becomes more isotropic at larger
projected separations. It is useful to compare our results to previous studies,
that are based on simulations (e.g. Sales et al. 2007; Faltenbacher et al. 2008;
Agustsson & Brainerd 2010) and observations (e.g. Brainerd 2005; Agustsson
& Brainerd 2006, 2010; Faltenbacher et al. 2007; Bailin et al. 2008; Nierenberg
et al. 2011). In these works, 〈θ〉 is found to be in the range between 41◦ and 43◦

for red central galaxies, whilst no anisotropy is observed for blue central galaxies.
We can only make a useful comparison for the ‘red’ lens sample, as this sample
is comparable to previously studied red galaxy samples (i.e. predominantly
containing red early-type galaxies, the majority of them expected to be centrals
based on their luminosity distribution). We find that the constraints agree well.
For the ‘blue’ and ‘all’ sample, we cannot make a comparison to previous work as
these samples contain a mixture of early-type and late-type galaxies, and a fair
fraction of them is expected to be a satellite of a larger system. The constraints
we obtained are still interesting, however, as similar selection criteria can be
applied to simulations, and the results compared.

5.2.5 Virial masses and radii

To determine to which projected separations the dark matter haloes of the
galaxies dominate the lensing signal, we estimate the average halo size of each
lens sample. For this purpose we model the azimuthally averaged tangential
shear (after applying the contamination corrections) with an NFW profile, and
fit for the mass. The NFW density profile is given by

ρ(r) =
δcρc

(r/rs)(1 + r/rs)2
, (5.19)

with δc the characteristic overdensity of the halo, ρc the critical density for
closure of the universe, and rs = r200/cNFW the scale radius, with cNFW the
concentration parameter. We adopt the mass-concentration relation from Duffy
et al. (2008)

cNFW = 5.71
( M200

2 × 1012h−1M�

)−0.084

(1 + z)−0.47, (5.20)

which is based on numerical simulations using the best fit parameters of the
WMAP5 cosmology. M200 is defined as the mass inside a sphere with radius
r200, the radius inside of which the density is 200 times the critical density ρc.
We calculate the tangential shear profile using the analytical expressions pro-
vided by Bartelmann (1996) and Wright & Brainerd (2000). We fit the NFW
profile between 50 and 500 kpc at the mean lens redshift; closer to the lens the
lensing signal might be contaminated by lens light, and at larger separations
neighbouring structures bias the lensing signal high. The best fit M200, r200 and
rs are given in Table 5.1. Note that in general, the best fit masses are lower than
the mean halo mass because the shear of NFW profiles does not scale linearly
with mass, and the distribution of the halo masses is not uniform (Tasitsiomi
et al. 2004; Mandelbaum et al. 2005b; Cacciato et al. 2009; Leauthaud et al.
2012; van Uitert et al. 2011). The resulting uncertainty in the actual mass is not
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Table 5.2: Shear ratios for the lens samples
Sample 〈1/fmm〉 〈1/f corr

mm 〉

All 1.15+0.10
−0.09 0.87 ± 0.09

Red 0.93+0.10
−0.09 0.81+0.11

−0.10

Blue 1.16+0.19
−0.16 1.04+0.21

−0.17

important here as we are mainly interested in the extent of the haloes, which is
affected less (an increase of 30% in mass leads to an increase of only 10% in size).

5.3 Shear ratio

In this section we present the measurements of the ensemble-averaged ratio
of the tangential shear along the major and minor axis of the lenses. This
is a basic indicator of the presence of anisotropies in the lensing signal. We
note that the shear ratio is not an optimal estimator as the weight is simply a
step function, and does not depend on the ellipticity of the galaxy. It enables,
however, a comparison to Parker et al. (2007). Furthermore, we will use the
shear ratio to examine how PSF residual systematics in the shape catalogues
affect the anisotropy (Section 5.3.1).

For all elliptical non-power law profiles, the shear ratio varies as a function
of distance to the lens. This radial dependence differs for different dark matter
density profiles (Mandelbaum et al. 2006a). Hence to obtain constraints on the
halo ellipticity of the dark matter, we have to adopt a particular density profile.
To compare our results to those from Parker et al. (2007), we first assume that
the density profile follows an SIE profile on small scales. In that case, the shear
ratio is constant, and we determine the average and the 68% confidence limits
as detailed in Appendix 5.C.

In Figure 5.6, we show the average tangential shear along the major and
minor axis, the average cross shear in the quadrants that are rotated by 45
degrees, and the inverse of the shear ratios fmm and f corr

mm . The tangential
shear and the cross shear have been multiplied with the projected separation in
arcmin, to enhance the visibility of the measurements on large scales where the
signal is close to zero and the error bars are small. We show the inverse of the
ratios following the definition used in Parker et al. (2007). We do not observe a
clear signature for an alignment or anti-alignment between the lenses and their
dark matter haloes. Furthermore, we find that on small scales (<1 arcmin),
fmm and f corr

mm are consistent, which suggests that the systematics present on
these scales are smaller than the measurement errors. On larger scales, the
difference is larger, which underlines the importance of applying the corrections
to remove systematic contributions. The correction is largest for the ‘all’ lens
sample, because its lensing signal is smallest and therefore most susceptible to
systematic contributions. We determine the average shear ratio within the virial
radius at the mean lens redshift, and show the results in Table 5.2.

Parker et al. (2007) used 22 square degrees of the CFHTLS to measure the
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Figure 5.6: Lensing signal multiplied with the projected separation in arcmin as
a function of angular distance from the lens, for the ‘all’ lens sample (left-hand
panels), the ‘red’ lens sample (middle panels) and the ‘blue’ lens sample (right-
hand panels). In the top panels, the green squares (blue triangles) show the
average r∆Σ along the major (minor) axis (quadrants B (A) in Figure 5.3). The
dashed lines indicate the best fit NFW profile times the projected separation,
fitted to the azimuthally averaged lensing signal on scales between 50 and 500
kpc using the mean lens redshift. In the middle panel, the green squares (blue
triangles) show the cross shear signal averaged in quadrant D (C) of Figure 5.3.
In the bottom panels, 1/fmm and 1/f corr

mm are shown by the red squares and
black triangles, respectively. The dotted lines indicate the virial radius from
the best-fit NFW profiles. The shear ratio does not provide clear signs for the
alignment between galaxies and their dark matter haloes.

shapes of ∼ 2× 105 lenses, selected with a brightness cut of 19 < i′ < 22. Their
lens sample consisted of a mixture of early-type and late-type galaxies with a
median redshift of 0.4. The shear ratio was determined using measurements out
to 70 arcsec (corresponding to 250 h−1 kpc at z = 0.4), with a best-fit value of
〈1/fmm〉 = 0.76 ± 0.10. Excluding the round lenses with e < 0.15, the best-fit
ratio is 〈1/fmm〉 = 0.56±0.13. The lens sample from Parker et al. (2007) can be
best compared to our ‘all’ sample; comparing the relative number of early-/late-
types in both samples using the CFHTLS W1 photometric redshift catalogue
(Hildebrandt et al. 2011), we find they are similar. Also, the average mass of the
lenses are comparable. Fitting the shear ratio on the same physical scale, we find
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〈1/f corr
mm 〉 = 0.98±0.08 for the ‘all’ sample, which is ∼2σ larger than Parker et al.

(2007). Excluding lenses with e < 0.15, we find 〈1/f corr
mm 〉 = 0.95+0.11

−0.10, which
is even almost 3σ apart. Since the lens samples are comparable, this is most
likely the result of differences in the analysis. Firstly, Parker et al. (2007) do not
apply a correction for systematic contributions. However, systematic shear only
tends to increase 1/fmm; if systematics were present, the discrepancy would be
even larger. Secondly, it is not clear whether Parker et al. (2007) accounted
for the non-gaussianity of the ratio of two gaussian distributed variables in
determining the shear ratio; this is particularly important when the signal-to-
noise of the lensing measurements is not very high. Generally, accounting for the
non-gaussianity increases the positive error bar of the shear ratio, and decreases
the negative one. This could bring their result closer to ours. Finally, it is
not described how the average ratio was determined. These differences could
explain the discrepancy between the results.

5.3.1 Imperfect PSF correction

To measure the ellipticities of galaxies, we have to correct their observed
shapes for smearing by the PSF. The precision of the PSF correction is lim-
ited, which is mainly due to the inaccuracy of the PSF model (Hoekstra 2004).
Hence, residual PSF patterns may still be present in the shape catalogues. These
residuals affect both the ellipticity estimates of the lens and the source galaxies,
albeit with a different amount. Lens galaxies are typically large and bright,
while source galaxies are small and faint, and hence harder to correct for. Re-
gardless of that, PSF residuals tend to align the lens and source galaxies. If not
accounted for, it could add a false anti-alignment signal to the shear anisotropy
measurement (see Hoekstra et al. 2004).

We correct for PSF residual systematics in the catalogues by subtracting the
cross shear signal in the quadrants that are rotated by 45 degrees with respect
to the major and minor axes (γx,C−D and f45∆iso(r) in f corr

mm and (f − f45),
respectively). To quantify how much PSF residuals actually contribute to these
correction terms, and test whether they are properly removed, we introduce on
purpose an additional bias in the PSF correction, and recalculate the shapes
of the galaxies. Usually, the ellipticities of galaxies in the KSB method are
computed as follows:

eg =
1

Pγ

[
ε− (1 + b) × P sm

P sm?
ε?
]
, (5.21)

with Pγ the shear polarisability, P sm the smear susceptibility tensor, and ε the
polarizations (Kaiser et al. 1995). The starred quantities are determined using
the PSF stars. The bias b is normally equal to zero, but to mimic an imperfect
PSF correction we set it to −0.05, and recalculate the shapes of all galaxies. We
create new random shear catalogues, and repeat the analysis using these biased
shapes. We show the difference between the original and the biased shear ratios
of the lens samples in Figure 5.7.

We find that the difference of the shear ratios that are determined using the
original and the PSF biased catalogues is consistent with zero on all scales for
1/f corr

mm , the shear ratio estimator that is corrected with the cross shear terms.
For the uncorrected shear ratio estimator, 1/fmm, we find that the difference is
consistent with zero on small scales, but turns negative for projected separations
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Figure 5.7: Difference between the original and the PSF biased shear ratios
(1/f corr

mm )−(1/f corr
mm )bias (black triangles) and (1/fmm)−(1/fmm)bias (red squares)

as a function of projected separation from the lens for the three lens samples.
We find that the PSF residuals are properly removed from the corrected ratio
1/f corr

mm , as the difference is consistent with zero on all scales. For the uncorrected
ratio 1/fmm, the difference is negative and decreases with projected separation.
This result shows that the cross term effectively removes PSF residuals in the
shear ratio estimators.

larger than a few arcmins. This shows that if PSF residuals are still present in
the shape catalogues, it affects 1/fmm, but not 1/f corr

mm . Hence we conclude that
PSF residuals are properly accounted for using the cross shear signal.

5.4 Impact of multiple lenses

More than one lens may contribute to the shearing of a single source galaxy.
Furthermore, some of the lenses are lensed themselves. In this section, we
estimate the impact of these multiple lensing events on the halo ellipticity mea-
surements. We also study the impact of the clustering of the lenses, and the
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correlation between their shapes, on the shear anisotropy.

5.4.1 Multiple deflections

Some foreground galaxies in our data lens both the lenses from the lens
samples and the source galaxies. We denote these foreground galaxies with
L2, and our selected lenses with L1. The impact of these ‘multiple deflections’
on the halo ellipticity measurements were first discussed in Howell & Brainerd
(2010), who found that it adds a strong false anti-alignment signal to the shear
anisotropy measurements. Multiple deflections affect the halo shape measure-
ment in three ways. Firstly, the orientation of the lens light changes, leading to
a misalignment if the light was aligned with the halo. Consequently, the lensing
signal is averaged in quadrants that are rotated with respect to the unlensed
ones, causing a reduction of the shear anisotropy. This effect is only important
if the projected separation between L2 and L1 is small, as only those configu-
rations lead to significant changes in the ellipticity of L1. Secondly, the source
galaxies experience shear not only from L1, but also from L2. Especially source
galaxies close to L2 are affected. Finally, the lensing of L2 changes the observed
positions of L1 and the sources. We ignore this third effect as the impact is
negligible.

In the presence of L2, Equation (5.4) changes to

f̃mm(r) =

∫ π/4+δθ

−π/4+δθ
γ̃tdθ +

∫ 5π/4+δθ

3π/4+δθ
γ̃tdθ∫ 3π/4+δθ

π/4+δθ
γ̃tdθ +

∫ 7π/4+δθ

5π/4+δθ
γ̃tdθ

, (5.22)

where the integration is performed over quadrants that are rotated by δθ, the
change of the position angle of L1 caused by the lensing of L2. γ̃t is the sum of
the shear of L1 and L2 at the location of a source galaxy. The γ̃1-component is
given by γ̃1 = γt,L1 cos(2θ) + γt,L2 cos(2φ), with γt,L1 and γt,L2 the tangential
shear of L1 and L2, θ the angle between the source galaxy and L1 and φ the
angle between the source galaxy and L2. Hence the signal that is measured is
given by

γ̃t = [γt,L1 cos(2θ) + γt,L2 cos(2φ)] × cos(2θ)+

[γt,L1 sin(2θ) + γt,L2 sin(2φ)] × sin(2θ).
(5.23)

The change of the equations for f corr
mm (r), f∆Σiso(r) and f45∆Σiso(r) in the

presence of L2 can be derived in a similar way.
To obtain an intuitive understanding of the impact of multiple deflections on

the halo ellipticity measurements, we compute the change of the shear anisotropy
of a single lens in the presence of an additional foreground galaxy using simple
idealised simulations. These simulations, which are discussed in Appendix 5.F,
suggest that multiple deflections mainly affect the shear anisotropy of round
(e < 0.15) lens galaxies, and at large projected separations. To confirm these
findings, we create a large set of simulated image catalogues to obtain a rough
estimate of the impact.

For the simulated catalogues we adopt an image size of 30×30 arcmins.
We randomly assign positions to 10 000 galaxies (approximately the galaxy
number density of the RCS2). Redshifts are assigned to each background galaxy
by drawing from the redshift distribution of the RCS2 source galaxies. The
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background galaxies are intrinsically round, and not convolved with a PSF, to
avoid introducing unnecessary sources of noise. We insert 50 lenses at a typical
lens redshift of z = 0.4, to which we assign an ellipticity eg with a random value
between 0 and 0.4 and a random position angle. The ellipticity of the dark
matter halo, eh, is proportional to the ellipticity of the galaxy via eh = fh × eg.
We use a fixed value for fh = 1.0, but we also test the impact of loosening this
assumption. Each lens is modeled with an SIE profile, and the induced shear
on each source is computed with (Mandelbaum et al. 2006a)

γt =
4πσ2

c2
DlDls

Ds

1

2r
×
[
1 +

eh
2

cos(2θ)

]
, (5.24)

with eh the ellipticity of the dark matter halo, and σ the velocity dispersion of
the lens which we have set to 200 km s−1. We create 20 sets of 500 catalogues,
and determine the mean lensing signal and the scatter between the simulations
sets. This enables us to assess the significance of potential trends.

To study the impact of multiple deflections, we would ideally assign velocity
dispersions to all galaxies that reside in front of the lenses following their veloc-
ity dispersion distribution, and use them to compute the shear on the lenses and
sources. The galaxies that reside behind the lenses only introduce noise, and
can be ignored. This is computationally expensive as there are many galaxies
at lower redshifts. However, the majority of the foreground galaxies are not
massive, and are close in redshift to the lenses (resulting in small lensing effi-
ciencies), so their contribution to multiple deflections is negligible.

For computational speed-up, we therefore define a smaller number of fore-
ground galaxies. We choose their velocity dispersions and redshifts such that
the impact of multiple deflections is comparable to what is expected using all
the foreground galaxies5. On these grounds, we randomly insert a second set
of 500 round lenses with a truncated isothermal sphere (TIS) profile with a ve-
locity dispersion of 100 km s−1 and truncation radius of 150 arcsecs, located at
a redshift of 0.1. Both the source galaxies and the L1 lenses are lensed by the
L2 lenses, and we change their ellipticities accordingly. Then we measure the
shear anisotropy around the L1 lenses as we would in observations, i.e. using
the ‘observed’ ellipticities. We show the anisotropy of the lensing signal in panel
(a) of Figure 5.8, confirming the predicted trends from Appendix 5.F: multi-
ple deflections lead to a reduction of the shear anisotropy, with a magnitude
that increases for larger separations to the lens. On small scales, the reduction
of the shear anisotropy is larger for the shear estimators that have not been
corrected for systematic contributions (f and fmm) than for the corrected ones
((f − f45) and f corr

mm ) (see Figure 5.18b). As long as the separation between the
sources and L1 is small, the additional shear from L2 is relatively constant and
hence efficiently removed using the cross terms. The correction does not work
on larger scales as the additional shear from L2 varies spatially. Note that the

5Using the photometric redshift catalogue of the CFHTLS “Deep Survey” fields from Ilbert
et al. (2006), we find that approximately 30% of all galaxies in the RCS2 have a redshift
z < 0.4, with a mean of z = 0.35. The lensing efficiency at z = 0.1 is about 6 times larger
than at z = 0.35 for a source at z = 0.4, hence we can reduce the number of L2 lenses by a
factor of six when we place them at z = 0.1. Note that we ignore the increase of the lensing
efficiency by a factor of two for the source galaxies when the L2 lenses are placed at z = 0.1,
which increases the impact of multiple deflections. Additionally, the use of a smaller number
of more efficient lenses also leads to an increase of the impact of multiple deflections.
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Figure 5.8: (a) Anisotropy of the lensing signal in the simulations in the pres-
ence of additional foreground galaxies that lens both the lenses and the sources.
In the top panel, we show (f−f45) and f with the filled black and open green di-
amonds, computed with the exponent in the weight α = 1.0. In the lower panel,
we show f corr

mm (fmm) with the filled black diamonds (open green diamonds). The
dashed lines show the signal in the absence of multiple deflections. The uncor-
rected shear estimators f and fmm are increasingly reduced for larger distances
to the lens. The reduction of the systematic shear corrected estimators is clearly
smaller on scales < 100 arcsec, but the difference decreases at larger separations
as the systematic shear is not constant anymore and the correction therefore in-
accurate. (b) Anisotropy of the lensing signal in the simulations in the presence
of additional foreground galaxies, excluding lens galaxies with e < 0.05 from
the analysis. The exclusion of round lenses is found to reduce the impact of
multiple deflections, particularly for fmm and f corr

mm as these measurements are
not weighed with the lens ellipticity.

reduction of the shear anisotropy is smaller for (f − f45) than for f corr
mm , because

the signal of the former is weighted with the ellipticity of the lenses; the most
elliptical lenses are less affected by multiple deflections (see Appendix 5.F).

Based on Figure 5.18c in Appendix 5.F, we expect that the impact of
multiple deflections is reduced if we exclude the roundest lenses. Therefore, we
repeat the simulations, excluding lenses with an observed (rather than intrinsic)
ellipticity e < 0.05 as is done in the measurements on the real data. We show
the results in panel (b) of Figure 5.8. Excluding the roundest lenses significantly
reduces the impact of multiple deflections for fmm and f corr

mm . The improvement
for f and (f − f45) is minor, as the roundest lenses are already downweighted
in this measurement. There is some residual signal left on the largest scales,
but to constrain halo shapes in real data we only use measurements on small
scales. Therefore, we find it unlikely that multiple deflections strongly biases
the lensing anisotropy.

These conclusions do, however, depend on our assumptions. The number
and the masses of the L2 lenses is most critical. In our simulations, we have as-
sumed an average velocity dispersion of 100 km s−1 for the L2 lenses. However,
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more massive L2 lenses contribute more to multiple deflections as their shear
patterns affect larger patches of the sky. Most of the massive L2 lenses reside
relatively close in redshift to the L1 lenses, and consequently their lensing effi-
ciency is small. Therefore, we do not expect that assuming a constant velocity
dispersion for the L2 lenses rather than drawing them from the distribution has
a large impact on the results.

A second important assumption is that we have modeled the density distri-
bution of the L1 galaxy with an SIS. This is a reasonably accurate description
of a galaxy density profile at small scales, but not on large scales. For NFW
profiles, which are more appropriate, the lensing anisotropy declines strongly as
a function of radius (Mandelbaum et al. 2006a). A small reduction by multiple
deflections of an already small signal has a relatively larger impact. One way to
account for this is to give larger weights to the measurements on small scales.
Alternatively, the shear anisotropy could be fit using measurements on small
scales only.

We also assumed that the relation between the ellipticity of the galaxy and
the ellipticity of the dark matter halo is linear. To study the impact this might
have on the anisotropy of the lensing signal, we loosen the assumption. We as-
sign a random value to eh between 0 and 0.4, but we keep the position angles of
the dark matter and the galaxy perfectly aligned. Not surprisingly, we find that
the shear ratios fmm and f corr

mm are unchanged, as the average halo ellipticity
does not change. Without multiple deflections, we find that 〈f −f45〉 is reduced
by 25% to 0.1875. In this case, the anisotropy of the lensing signal is no longer
proportional to e2g, but to eh×eg: the factor eh comes from Equation (5.24), and
the factor eg from the weight in Equation (5.7). When we average over a flat
lens ellipticity distribution, the lensing signal in the original case is ∝

∫
deg e2g,

which becomes ∝ 〈eh〉
∫
deg eg if eh is randomly assigned. The second integral

is 25% smaller than the original. Hence the decrease of 〈f − f45〉 results from
no longer giving a larger weight to the galaxies with large dark matter halo
ellipticities in the measurement. If we include multiple deflections, the relative
decrease of (f − f45) is similar as in Figure 5.8a.

Our simulations show that on small scales (<1 arcmin), the impact of mul-
tiple deflections is a few percent at most. This result is robust to changes in the
simulation set-up, which shows that it is very unlikely that multiple deflections
affect the shear anisotropy measurements on these scales. On larger scales, the
impact of multiple deflection is more uncertain, and could have an important
effect on weak lensing studies that investigate the alignment between galaxies
and the large-scale structure. Ultimately, realistic numerical simulations should
be used to accurately assess and model the impact multiple deflections have as
a function of the selection of the lens sample. This is necessary to improve the
precision of the gravitational lensing constraints on the shapes of dark matter
haloes with data from upcoming surveys.

Howell & Brainerd (2010) report a significant and strong decrease in fmm

with projected lens-source separation. However, for computational speed-up,
Howell & Brainerd (2010) only use those foreground galaxies that reside within
100 arcsec from the lens to calculate the multiple deflection signal. Figure 5.18a
shows that this leads to an overestimation of the reduction of the shear ratios.
Furthermore, redshifts are assigned to galaxies whose positions have been ob-
served in real data. This causes an unphysical correlation between the positions
of foreground and background galaxies, and amplifies the chance of having a
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Figure 5.9: (a) Anisotropy of the lensing signal in the simulations using the ob-
served positions of the ‘red’ lens sample in the RCS2. The filled black diamonds
(open green diamonds) show the shear anisotropy estimators (not) corrected for
systematic shear. The ellipticities of the lenses have been randomly assigned.
The lensing anisotropy declines slightly at scales > 20 arcsec, which is expected
as clustering of lenses with random position angles leads to an isotropic signal
at large scales. In panel (b), we add an additional ellipticity of 0.03 to the e1
component of the lenses to mimic intrinsic alignments. This increases the shear
anisotropy, but also induces cross shear, so that the systematic shear corrected
shear anisotropy estimators are unchanged.

low-redshift foreground galaxy close to a lens, which could result in an overes-
timate of the effect. Finally, no correction for systematic shear is implemented,
which would have reduced the impact as well.

5.4.2 Clustering of lenses

Many galaxies in the Universe reside in groups and clusters. Hence the
shear we measure around a lens galaxy is the sum of the shear from the lens and
neighbouring galaxies. At small projected separations from the lens, the signal is
dominated by the lens galaxy, but at larger separations the shear from the neigh-
bours becomes increasingly important. This may affect the shear anisotropy
measurements. To study this, we assign the positions of the lenses from the real
lens samples to the simulated lenses. The lens ellipticities are randomly drawn
between 0 and 0.3, and are modeled with an SIE profile. The positions of the
galaxies with 22 < mr′ < 24 in the RCS2 are assigned to the simulated sources.
The lenses are put at a redshift z = 0.4, and the source redshifts are randomly
drawn from their redshift distribution. We assume that fh = 1, and that no
foreground lenses are present as that would potentially mix different effects. To
obtain the errors, we determine the scatter between 20 random realizations. We
show the results in Figure 5.9a for the ‘red’ lens sample.

We find that clustering of the red lenses slightly reduces the lensing anisotropy
on large scales. This can be easily understood: if galaxies with random ellip-
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ticities cluster, the resulting lensing signal around the lens ensemble at large
scales becomes more isotropic. The impact of clustering on the shear anisotropy
around the ‘blue’ and ‘all’ lenses is smaller, and is therefore not shown. We note
that, additionally, dark matter haloes may be stripped in high-density environ-
ments, which could reduce the anisotropy signal as well.

Numerical simulations suggest that dark matter haloes are aligned, and point
toward each other (e.g. Splinter et al. 1997; Croft & Metzler 2000; Heavens et al.
2000; Lee et al. 2008). If the galaxies that reside in these haloes are preferen-
tially aligned with the halo - a prerequisite for measuring halo shapes - the
observed galaxy ellipticities are expected to show this alignment as well. In
particular, the ellipticities of luminous red galaxies are believed to be increas-
ingly correlated with decreasing separations (e.g. Hirata et al. 2007; Okumura
et al. 2009; Joachimi et al. 2011), which can be understood in a framework in
which galaxies form in a linear tidal field (Blazek et al. 2011). Similar studies
for spiral galaxies show the effect is considerably weaker (Mandelbaum et al.
2011). Intrinsic alignments also affect the shear anisotropy signal.

To obtain a conservative estimate of the impact of intrinsic alignments, we
add an ellipticity of 0.03 to all the e1 components of the lenses. The result for
the ‘red’ lenses is shown in Figure 5.9b. We find that correlated lens ellipticities
increases the shear anisotropy on large scales; the shear pattern of neighbouring
lenses amplifies each other. However, correlated lens ellipticities also induces
cross shear of an equal magnitude, hence the corrected shear anisotropy esti-
mator is unchanged. In reality, the intrinsic alignments are scale dependent,
and the correlation decreases for larger separations. Furthermore, if the lens
galaxies are pointing towards each other, the contributions of the shear along
the major axis systematically add up, which could amplify the effect. This is
difficult to model, however, but we will assess it with numerical simulations in
a future work.

The main conclusion from our simulations is that the impact of multiple
deflections, clustering of lenses and the correlations of their ellipticities is small,
and can be safely ignored for the lens selection in this work (i.e. particularly
for the ‘blue’ and ‘red’ lens sample, which were selected to contain massive,
elliptical, and low-redshift galaxies). More realistic studies using numerical
simulations are required to quantify the effects more precisely. This is a crucial
step in correctly interpreting the lensing anisotropy in future lensing data that
are of higher precision.

5.5 Halo ellipticity

The simulations from the previous section indicate that multiple deflections
and clustering have a small impact on the shear anisotropy, in particular for
the ‘blue’ and ‘red’ lens samples where we have selected massive, elliptical,
low-redshift lenses. Now we proceed with the actual measurements. We show
(f−f45)∆Σiso as a function of projected distance to the lens in Figure 5.10. We
multiply the lensing signal with the projected separation in arcmin to enhance
the visibility of the signal on large scales. Each row shows the measurements
for one of the lens samples, whilst the exponent of the galaxy ellipticities, α in
Equation (5.9), differs between the columns. To quantify the shear anisotropy,
we first determine the average value of (f − f45) non-parametrically, as detailed
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in Appendix 5.C. The best-fit values are summarized in Table 5.3.
For the ‘all’ sample of lenses, we find that 〈f − f45〉 is marginally positive,

independent of the applied weight. For the ‘red’ lenses, we find that 〈f − f45〉
is consistent with zero if we take w ∝ e0.0. For larger values of α, however,
〈f − f45〉 turns marginally positive due to the two data points near the virial
radius. Closer to the lens, the signal is slightly negative. For the blue galaxies,
the signal is marginally negative.

Next, we fit an SIE and an elliptical NFW profile. For the SIE fit, we first
determine the Einstein radius rE by fitting a singular isothermal sphere (SIS)
profile to the azimuthally averaged tangential shear measurements within the
virial radius at the mean lens redshift. To determine fh, we fit (Mandelbaum
et al. 2006a)

(f − f45)∆Σ(r) =
ΣcritrEfh

8r
; (5.25)

the errors of fh are determined from the χ2-values of the fit. Since (f−f45)/fh =
0.25 on all scales for an SIE profile (Mandelbaum et al. 2006a), we expect to
find best-fit values for fh that are four times larger than the non-parametrically
determined 〈f − f45〉. The best-fit values are shown in Table 5.3. We find that
fh is consistent with, but not exactly, four times 〈f − f45〉. The difference may
be due to differences between the fitting methods; if we first fit an SIS profile,
we correlate the azimuthally averaged tangential shear measurements, whilst if
we determine 〈f−f45〉 non-parametrically, each data point is treated separately.
The general trends, however, are consistent and the conclusions do not depend
on how we fit the data.

Currently, no analytical expression exists for the shear anisotropy of an ellip-
tical NFW profile. Therefore, we use the numerically integrated values of f/fh
and f45/fh as a function of r/rs from Mandelbaum et al. (2006a) (shown in Fig-
ure 2 of that paper), which have been kindly provided by Rachel Mandelbaum.
Since our lens galaxies span a broad range in redshifts, we first determine the
redshift-averaged lensing model by integrating the elliptical NFW profiles over
the redshift distribution of each lens sample (shown in Figure 5.1), and weigh
each lens redshift bin with the lensing efficiency 〈Dls/Ds〉 that is averaged over
the source redshift distribution. Note that this is an important correction;
for the ‘all’ sample, the integrated profile results in about 50% larger values
for (f − f45) compared to the profile computed using the mean lens redshift.
For the ‘red’ and ‘blue’ sample, the difference is smaller because their redshift
distributions are narrower. Also note that the SIE profiles do not have to be
corrected, since the azimuthally averaged lensing signal and the anisotropic part
are equally changed when we integrate over the lens redshift distribution as both
scale ∼ 1/r, leaving the best-fit value of fh unaffected.

The best fit values of fh for the elliptical NFW profiles are less significant
than 〈f − f45〉 for the same lensing measurements. The reason is that the el-
liptical NFW fit is very sensitive to the signal close to the lens, but not to the
signal at larger separations. We find that for the ‘all’ and ‘red’ sample, (f−f45)
actually turns slightly negative close to the lens, rather than increasing strongly
as would have been expected for an elliptical NFW profile that is aligned with
the lens. Although this might be just caused by noise, it could also indicate that
a single elliptical NFW profile does not describe the shear anisotropy signal well.

Finally, we note that for the ‘all’ sample 〈f − f45〉∆Σiso turns negative at
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Table 5.3: The best-fit values for the anisotropy of the galaxy-mass cross-
correlations function, 〈f − f45〉, and the ratio of the dark matter halo ellipticity
and the galaxy ellipticity, fh, for an SIE and an elliptical NFW profile.

Sample α 〈feff〉 〈f − f45〉 fh(SIE) fh(NFW)

All 0.0 1.3 ± 0.6 × 10−3 0.19 ± 0.10 0.47 ± 0.37 0.96+0.83
−0.80

All 0.5 1.1 ± 0.7 × 10−3 0.21+0.11
−0.10 0.57 ± 0.40 1.19+0.89

−0.85

All 1.0 0.8 ± 0.8 × 10−3 0.23 ± 0.12 0.70 ± 0.46 1.50+1.03
−1.01

All 1.5 0.6 ± 1.0 × 10−3 0.26 ± 0.15 0.83 ± 0.55 1.80+1.23
−1.19

All 2.0 0.4 ± 1.2 × 10−3 0.29 ± 0.17 0.97 ± 0.65 2.12+1.45
−1.42

Red 0.0 11.9 ± 1.8 × 10−3 0.13 ± 0.15 0.00 ± 0.58 −0.19+1.09
−1.08

Red 0.5 11.3 ± 2.1 × 10−3 0.19 ± 0.16 0.05 ± 0.60 −0.14+1.12
−1.10

Red 1.0 9.3 ± 2.5 × 10−3 0.28 ± 0.18 0.25 ± 0.70 0.20+1.34
−1.31

Red 1.5 7.2 ± 3.1 × 10−3 0.40 ± 0.22 0.61 ± 0.86 0.87+1.67
−1.63

Red 2.0 5.2 ± 4.0 × 10−3 0.54 ± 0.27 1.09 ± 1.07 1.82+2.12
−2.08

Blue 0.0 1.5 ± 1.4 × 10−3 −0.16+0.18
−0.19 −0.56 ± 0.68 −1.24+1.62

−1.65

Blue 0.5 2.0 ± 1.6 × 10−3 −0.25 ± 0.19 −0.75 ± 0.70 −1.62+1.69
−1.72

Blue 1.0 2.3 ± 1.9 × 10−3 −0.35+0.21
−0.22 −1.01 ± 0.81 −2.17+1.97

−2.03

Blue 1.5 2.5 ± 2.3 × 10−3 −0.45 ± 0.26 −1.24 ± 0.96 −2.67+2.36
−2.44

Blue 2.0 2.5 ± 2.7 × 10−3 −0.53+0.31
−0.32 −1.44 ± 1.17 −3.06+2.85

−2.95

projected separations >5 arcmin. A similar trend can be observed in Figure 5.6,
where the inverse of the corrected shear ratio of the ‘all’ sample is slightly larger
than unity. We cannot directly interpret this as the result of an anti-alignment
of galaxies with the large-scale structure, as we found in the previous section
that multiple deflections and the clustering of galaxies produce a similar trend
at these scales, and we cannot disentangle the effects. To constrain the average
halo ellipticities of galaxies we only use the lensing signal on scales <1 arcmin,
however, where the effect of multiple deflections and clustering of galaxies can
be safely ignored, and a non-zero signal reflects an anisotropy of the projected
gravitational potential.

5.5.1 Environmental dependence

To study whether the lensing anisotropy depends on the lens environment
we measure the signal for the isolated and clustered lens sample. In Figure
5.11 we show (f − f45)∆Σiso for the w ∝ e1.0 bin, which is the same weight as
used in Mandelbaum et al. (2006a) and hence enables a direct comparison. We
determine 〈f − f45〉 and fit fh for the elliptical density profiles, and show the
results in Table 5.4.

The lensing anisotropy for the isolated ‘all’ lenses is positive, and the values
of (f−f45)∆Σiso and fh are larger than those of the clustered sample by almost
∼2σ. For the ‘red’ and the ‘blue’ lenses, we find that on small scales, the
lensing anisotropy is more negative for the clustered sample. When we average
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Figure 5.11: Anisotropic shear signal multiplied with the projected separation
in arcmin around the ‘all’ sample (top panels), the ‘red’ sample (middle panels)
and the ‘blue’ sample (bottom panels), for the isolated lenses on the left-hand
side, and the clustered lenses on the right-hand side (using w ∝ e1.0). The green
triangles denote f∆Σiso, the red squares f45∆Σiso, and the black diamonds
(f − f45)∆Σiso. The vertical dotted lines indicate the virial radius at the mean
lens redshift, the dashed lines indicate the best fit elliptical NFW profiles. Please
note the different scalings of the vertical axes. For the ‘all’ sample, the shear
anisotropy is larger for the isolated sample; for the ‘red’ and ‘blue’ sample, the
shear anisotropy is more negative on small scales for the clustered samples, but
the differences are not significant when averaged within the virial radius.

the signals within the virial radius, or fit the elliptical density profiles, we find
that this difference is not statistically significant.
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Table 5.4: Similar to Table 5.3 for the isolated and clustered lenses.
Sample α Environment 〈f − f45〉 fh(SIE) fh(NFW)

All 1.0 isolated 0.51+0.26
−0.25 2.35 ± 1.00 4.73+2.17

−2.05

All 1.0 clustered 0.18 ± 0.13 0.40 ± 0.51 0.90+1.17
−1.15

Red 1.0 isolated 0.11 ± 0.25 0.49 ± 0.97 0.40+1.96
−1.90

Red 1.0 clustered 0.47 ± 0.26 0.46 ± 1.05 −1.23+1.90
−1.83

Blue 1.0 isolated −0.18 ± 0.30 0.05 ± 1.06 0.38+2.32
−2.45

Blue 1.0 clustered −0.43+0.34
−0.35 −1.54 ± 1.33 −3.46+3.26

−3.45

5.5.2 Interpretation

The shear anisotropy measurements provide weak support that the average
galaxy is preferentially aligned with its triaxial dark matter host. The signifi-
cance of the detection for the ‘all’ sample does not depend on how we weigh the
measurement with the observed galaxy ellipticity, which indicates that more
elliptical galaxies do not reside in, or are better aligned with, more elliptical
dark matter haloes. We find that the errors on 〈f − f45〉 increase for larger
values of the exponents of the weights, because the effective number of lenses
decreases: round lenses barely contribute to the signal for the largest expo-
nents. Furthermore, we find that the shear anisotropy signal of isolated galaxies
is stronger than that of clustered galaxies: the difference is almost 2σ. One
possible explanation is that the dark matter haloes of isolated galaxies are less
subject to stripping, and may preserve their original shapes. Clustered galaxies,
on the other hand, may lose more of their dark matter, particularly in the outer
regions. An alternative explanation is that the fraction of lenses in the clus-
tered sample that are satellites is larger. Since the host halo in which satellite
galaxies are embedded dominates the lensing signal, and since the orientation
of the major axis of the satellites and the major axis of the central galaxy are
expected to not be strongly aligned, this would also lead to a reduction of the
anisotropy of the lensing signal.

The average shear anisotropy of both the ‘red’ and ‘blue’ lenses is consistent
with zero. We find no significant differences between the clustered and isolated
sample, because we lack precision. For the ‘red’ lenses, the anisotropy signal on
small scales appears negative, whilst near the virial radius it turns positive. We
find a weak indication that the shear anisotropy and the detection significance
increases for larger exponents of the lens ellipticity in the weights, which could
indicate that the red galaxies with larger ellipticities preferentially reside in,
and align with, more elliptical dark matter haloes. For the ‘blue’ lenses, we find
that for the largest exponents the anisotropy is marginally negative, which is
suggestive of an anti-alignment between the galaxy and the dark matter halo.

The negative shear anisotropy at small projected separations for the ‘red’
lens sample occurs at the same scale where the contamination is highest. Since
we observed in Section 5.2.4 that the distribution of satellites is anisotropic,
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the observed signal could also be caused by a radial alignment of physically
associated galaxies in the source sample. We estimate the value of the average
tangential intrinsic alignment that would produce the signal we observe in Ap-
pendix 5.G. We find that we require a value that is roughly ten times larger
then the results from Hirata et al. (2004). Conversely, the expected impact of
intrinsic alignments is about a factor ten smaller than the signal we observe,
hence it is unlikely that our measurements are significantly affected. Hence the
negative shear anisotropy on small scales is unlikely caused by intrinsic align-
ments.

Currently, weak lensing constraints on the ellipticity of dark matter haloes
have been presented in Hoekstra et al. (2004), Mandelbaum et al. (2006a) and
Parker et al. (2007). We already compared our results with those from Parker
et al. (2007) in Section 5.3. Mandelbaum et al. (2006a) measured the weak lens-
ing anisotropy around 2×106 lenses with photometric redshifts in the SDSS. On
average, they find fh = −0.06±0.19 for the red galaxies, and fh = −1.1±0.6 for
the blue galaxies on scales 20-300 h−1kpc for an SIE profile. Fitting an elliptical
NFW profile yields fh = 0.60 ± 0.38 and fh = −1.4+1.7

−2.0 for the red and blue
lenses, respectively. Separating the lenses in luminosity bins, they find that the
lensing signal is consistent with zero for most of their bins. Only for the brightest
red lenses a detection is reported, also at the ∼2 sigma level. A detailed compar-
ison between the results is complicated due to differences in the lens selections.
Our ‘red’ lens samples can be best compared with the L5 and L6 red sample from
Mandelbaum et al. (2006a), as these are most similar in absolute magnitudes;
Mandelbaum et al. (2006a) find 〈f−f45〉 = 0.08±0.08 and 〈f−f45〉 = 0.29±0.12
for L5 and L6, which agrees well with the 〈f −f45〉 = 0.28±0.18 that we found.
For the elliptical NFW profile, Mandelbaum et al. (2006a) found fh = 0.4±0.57
and fh = 1.7 ± 0.7 for the red L5 and L6 sample, and the average of those val-
ues is roughly within 1σ of our best fit value 0.20+1.34

−1.31. Our ‘blue’ lens sample
covers a broad range in luminosity, and roughly corresponds to the blue lens
bins L3 to L5 of Mandelbaum et al. (2006a). For these bins, Mandelbaum et al.
(2006a) finds 〈f − f45〉 = −0.29+0.26

−0.27, −0.36+0.25
−0.26 and −0.27± 0.28 respectively,

which agrees well with −0.35+0.21
−0.22. In conclusion, we find that our results and

the results from Mandelbaum et al. (2006a) are consistent.
In an earlier work, Hoekstra et al. (2004) used 45.5 deg2 of the RCS (Glad-

ders & Yee 2005) to measure the lensing anisotropy around 1.2 × 105 lenses
selected with 19.5 < RC < 21. A ∼2σ detection of fh = 0.77+0.18

−0.21 was obtained
by fitting a TIS using a maximum likelihood method. This result appears to be
significantly different from ours, and from Mandelbaum et al. (2006a). In the
latter, various reasons are given why the results could differ, which also apply
to us: most importantly, the lens samples are very different, and the method of
analysis differs. Possibly, the maximum likelihood method is a better estima-
tor of the shear anisotropy, as it takes into account the positions and relative
orientations of the lens galaxies. The result from a maximum likelihood fit,
however, is difficult to interpret as it is not clear how multiple deflections affect
the measurement, and because the radial dependence of the signal cannot be
visualized, which makes it difficult to identify residual systematics.

Converting the average shear anisotropy into the average projected ellipticity
of dark matter haloes is complicated. The simulations in this work have shown
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that multiple deflections and clustering can have some impact on the lensing
anisotropy. If we select the lens sample carefully as we did (in particular the
‘blue’ and ‘red’ lens sample that consist of isolated, elliptical, low-redshift, mas-
sive lenses), the impact of these complications is small. However, misalignments
between the position angles of the galaxies and their dark matter haloes cause a
reduction of the lensing anisotropy. Therefore, the observational constraints on
the shear anisotropy from previous weak lensing analyses, as well as from this
work, only provide lower limits on the average halo ellipticity. To constrain the
halo ellipticity from the lensing anisotropy, we need to know how galaxies are
orientated in their triaxial dark matter haloes.

The orientation of galaxies in their dark matter haloes has received consid-
erable attention in recent years. Studies of the distribution of satellite galaxies
around centrals in the SDSS (Wang et al. 2008; Agustsson & Brainerd 2010) and
in numerical simulations (Kang et al. 2007; Deason et al. 2011), studies based on
the ellipticity correlation functions of galaxies (Faltenbacher et al. 2009; Oku-
mura et al. 2009), and studies based on angular momentum considerations in
numerical simulations (Bett et al. 2010; Hahn et al. 2010) all point in a similar
direction: on average, red galaxies are aligned with their dark matter hosts,
but with a considerable scatter between the position angles with a value in the
range ∼20-40 degrees. The dispersion for blue galaxies is even larger.

Scatter between the position angles irrevocably leads to a reduction in the
anisotropy of the lensing signal; with lensing, we only measure the component of
the dark matter halo ellipticity that is aligned with the lens light. To study the
magnitude of the reduction, we use the simulations from the previous section,
where the position angle of the dark matter halo is given by the position angle
of the light, plus a Gaussian with zero mean and a certain width. In Figure
5.12, we show the average f corr

mm and 〈f − f45〉 as a function of σθ, the dispersion
of the position angle distribution. We find that a σθ in the range between 20
to 40 degrees leads to a reduction in the anisotropy of ∼25-65%. This result
indicates that the scatter in the relative position angle significantly dilutes the
shear anisotropy measurements.

Qualitatively similar results have been obtained by Bett (2011), who used
the Millennium simulation (Springel et al. 2005) in combination with semi-
analytic galaxy formation models to predict the stacked projected axis ratio, q,
of large numbers of haloes. Various alignment models were tested, and different
methods used to measure the halo shapes. For most scenarios, q turned very
close to unity, implying an nearly isotropic shear signal.

In reality, the alignment between the position angle of the galaxy and the
dark matter may be scale dependent. Besides that, the dark matter haloes are
not rigid once formed; their shapes continue to evolve in a way that depends
on, amongst others, their formation history and environment; the galaxies in
the centre of the haloes may evolve differently. Furthermore, the central galaxy
is expected to sphericalise the dark matter haloes (e.g. Kazantzidis et al. 2010;
Abadi et al. 2010; Machado & Athanassoula 2010). Indications already exist
that the alignment depends on lens luminosity (Faltenbacher et al. 2009; Man-
delbaum et al. 2006a) and environment (Hahn et al. 2010); it could depend on
other lens characteristics (e.g. lens ellipticity, redshift) as well. Finally, once
more, multiple deflections and clustering are expected to have some impact on
the anisotropy of the lensing signal. All these effects have to be accurately mod-
eled and well understood before we can interpret any measured anisotropy in
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Figure 5.12: Anisotropy of the lensing signal averaged between 1 and 200 arcsec,
for a Gaussian distributed position angle difference between the dark matter
and the light distribution with zero mean and width σθ. Large values for σθ as
have been reported in the literature lead to significant reductions in the shear
anisotropy.

terms of the average property of dark matter haloes. Note that the study of
intrinsic alignments of galaxies are similarly affected, and require this knowledge
as well for a correct interpretation.

Our results underline the need for photometric redshifts - and consequently
luminosities - for the lenses. Without photometric redshifts, we can only select
lenses based on their colours and magnitudes. To achieve sufficient signal-to-
noise in order to obtain competitive constraints on the average halo ellipticity,
we have to select large numbers of galaxies that cover a broad range of lumi-
nosities and redshifts. If the average halo ellipticity depends on the luminosity
of a galaxy (as the results from Mandelbaum et al. 2006a suggest), the signal-
to-noise of the shear anisotropy measurements decrease, and may even average
out in the worst case scenario. If luminosities are available, we can not only se-
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lect lenses in narrow luminosity ranges, but also weigh the lensing measurement
with luminosity, which improves the signal-to-noise of the lensing measurement.
The lack of photometric redshifts also forces us to stack the lensing signal as a
function of angular separation, rather than physical, which decreases the signal-
to-noise as well. This is particular disadvantageous as the shear anisotropy
signal of an elliptical NFW profile drops very rapidly with increasing radius,
and the signal may be smeared out and become undetectable. We note that
a preliminary photometric redshift catalogue exists for the RCS2 for the area
that has also been observed in the i′-band, but it only covers the redshift range
z > 0.4 due to the absence of observations in the u-band, which limits its use-
fulness for this study.

A new technique has recently been proposed to improve halo ellipticity mea-
surements: the use of a higher order distortion of lensing known as flexion
(Hawken & Bridle 2009; Er & Schneider 2011; Er et al. 2011a,b). Although the
measurement of the flexion signal is difficult for galaxy-scale potentials, the first
positive detections have already been reported (Velander et al. 2011). Using
mock simulations of clusters with SIE and elliptical NFW profiles, Er et al.
(2011b) find that flexion is more sensitive to the halo ellipticity than the shear;
this may be true as well for stacked galaxy potentials. Furthermore, the sys-
tematic errors in flexion measurements differ from those in shear. Hence we
anticipate that additional useful constraints can be obtained with flexion.

5.6 Conclusion

We present measurements of the anisotropy of the weak lensing signal around
galaxies using data from the Red-sequence Cluster Survey 2 (RCS2). We de-
fine three lens samples: the ‘all’ sample contains all galaxies in the range
19 < mr′ < 21.5, whereas the ‘red’ and ‘blue’ samples are dominated by massive
low-redshift early-type and late-type galaxies, respectively. To study the envi-
ronmental dependence of the lensing signal, we also subdivide each lens sample
into an isolated and clustered part, and analyse them separately.

We address the impact of several complications on the shear anisotropy mea-
surements, including residual PSF systematics in the shape catalogues, multi-
ple deflections, the clustering of lenses, and correlations between their intrinsic
shapes. We run a set of idealised simulations to estimate the impact these might
have on real data, and find them to be small, but not entirely negligible. We
demonstrate that the impact of these complications can be reduced by a careful
selection of the lens sample, i.e. low-redshift, massive and elliptical galaxies, as
has been done in this work.

We also measure the distribution of physically associated galaxies around
the lens samples. We find that these satellites predominantly reside near the
major axis of the lenses. The results of the ‘red’ sample are in good agreement
with previously reported values, whilst the constraints of the ‘all’ and ‘blue’
sample cannot be easily compared as they consist of a mixture of early-type
and late-type galaxies.

The shear anisotropy is quantified by the anisotropy of the galaxy-mass cross-
correlation function, 〈f−f45〉, and by the ratio of the projected dark matter halo
ellipticity and the observed galaxy ellipticity, fh. For the ‘all’ sample we find
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that 〈f − f45〉 = 0.23 ± 0.12, and fh = 1.50+1.03
−1.01 for an elliptical NFW profile,

which for a mean lens ellipticity of 0.25 corresponds to a projected halo ellipticity
of eh = 0.38+0.26

−0.25 if the halo and the lens are perfectly aligned. Note that various
studies indicate that this may not be the case. These constraints provide weak
support that galaxies are embedded in, and preferentially aligned with, triaxial
dark matter haloes. For isolated galaxies, the average shear anisotropy is larger
than for clustered galaxies; for elliptical NFW profiles, we find fh = 4.73+2.17

−2.05

and fh = 0.90+1.17
−1.15, respectively. The decrease of the lensing anisotropy signal

around clustered galaxies may be due to the stripping of dark matter haloes in
dense environments.

For the ‘red’ galaxies, the shear anisotropy is on average marginally pos-
itive, although close to the lens the signal turns negative. As a result, the
elliptical NFW constraints for the ‘red’ sample are consistent with zero. For
the ‘blue’ lenses, we find that the shear is marginally negative, suggesting an
anti-alignment between the galaxy and the dark matter. Our measurements
highlight the need for (photometric) redshifts in lensing studies. In order to
reach sufficient signal-to-noise that enable competitive constraints on the shear
anisotropy, we have to stack large numbers of galaxies that span a broad range
in luminosities and redshifts. This smears out the shear anisotropy, and in the
worst case the anisotropy might even average out.
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5.A Lens selection

We define our ‘red’ and ‘blue’ lens samples using the W1 photometric redshift
catalogue from the CFHTLenS collaboration (Hildebrandt et al. 2011). This
catalogue contains the apparent magnitudes of galaxies observed in the same
filters as in the RCS2, but also their photometric redshifts and absolute magni-
tudes. We split the sample in quiescent (typically early-type) and star-forming
(typically late-type) galaxies according to their photometric type identifier TBPZ.
TBPZ corresponds to the galaxy type of the best-fit template (E/S0, Sbc, Scd,
Im, SB3, SB2, with TBPZ values from 1.0 to 6.0). We select the early-types
and late-types with TBPZ < 1.5 and TBPZ > 1.5 respectively. These selec-
tions are further divided into a bright and faint sample using Mr′ < −22.5
and Mr′ > −22.5. For these four samples, we plot the colours as a function of
magnitude in Figure 5.13. We define selection boxes of the ‘red’ and ‘blue’ lens
sample, which are aimed at selecting the bright early-types and late-types. Fig-
ure 5.13 shows that the ‘red’ lens sample contains almost no late-type galaxies,
nor faint early-types. Unfortunately, for the ‘blue’ sample we cannot exclusively
select luminous late-type galaxies, and the sample also contains faint late-type
and early-type galaxies. These selection criteria are applied to the catalogues
of the RCS2 to select the ‘red’ and ‘blue’ lens sample.

To study how well we can separate early-types from late-types, we compare
our selection to previously employed separation criteria. We find that 98% of the
‘red’ lenses, 57% of the ‘blue’ lenses and 28% of the ‘all’ lenses have a photomet-
ric type TBPZ < 1.5, and therefore have a spectral energy distributions similar
to red elliptical galaxies. The ‘red’ sample therefore barely contains late-type
galaxies. The majority of the ‘blue’ sample are actually faint red early-type
galaxies, as can be seen from Figure 5.13. The lensing signal is dominated,
however, by the massive late-type galaxies. The faint lenses mainly add noise.
The purity of the ‘blue’ sample could be improved by shifting the selection boxes
to bluer colours, but this at the expense of removing the majority of massive
late-type lenses. Finally, the majority of the ‘all’ sample are blue and not very
massive late-type galaxies. As a check, we also compare to the u − r colour
selection criterion, which has been used in Mandelbaum et al. (2006a). In this
work, galaxies with an SDSS u− r > 2.22 model colour are selected for the red
sample, whilst galaxies with u−r < 2.22 are selected as blue galaxies. When we
select galaxies based on identical u′−r′ criteria (hence ignoring small differences
between the filters), we find very similar results: 99% of the ‘red’ lenses, 58%
of the ‘blue’ lenses and 30% of the ‘all’ lenses have a colour u′ − r′ > 2.22 and
are red.
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Figure 5.13: Colour-magnitude diagrams that are used to define the lens sam-
ple selection. In gray we show the locations of the galaxies with mr′ < 21.5
from the W1 photometric redshift catalogue from the CFHTLenS collaboration
(Hildebrandt et al. 2011). In the top row we show the late-type galaxies with
an absolute magnitude Mr′ < −22.5, in the second row we show the late-types
with Mr′ > −22.5, and in the third and fourth row we show the early-types
with Mr′ < −22.5 and Mr′ > −22.5, respectively. The coloured boxes illustrate
the lens sample selection criteria; all galaxies that reside in all the red dashed
(green solid) boxes form the ‘red’ (‘blue’) lens sample. We find that the ‘red’
lens sample contains very few late-types, as they are excluded in the g′ − r′

versus g′ diagram (first column). Also, most faint early-type galaxies are ex-
cluded from this sample as well (see, e.g., the third and fourth columns). For
the ‘blue’ lens sample, we cannot define selection criteria that exclusively select
bright late-type galaxies, and this sample therefore also contains a number of
faint late-type and early-type galaxies.

5.B Environment selection

We subdivide the lenses in a clustered and an isolated sample, depending on
whether or not the lens has a neighbour within a certain projected radius range
that has a lower apparent magnitude than the lens. To determine which radius
effectively separates the lenses into a low-density and a high-density sample, we
compare the lensing signals for four lens selections: those that have a brighter
neighbour within 30 arcsecs, those with a brighter neighbour between 30 arc-
secs and 1 arcmin, those with a brighter neighbour between 1 arcmin and 2
arcmins, and those that are the brightest object within 2 arcmins. We show
the lensing signal of the four selections in Figure 5.14. We find that the lens-
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Figure 5.14: The lensing signal as a function of projected separation for the
three lens samples that have been divided according to the minimum distance
to a brighter galaxy, as indicated in the top right panel. The red diamonds indi-
cate the lensing signal of those lenses that have a brighter neighbour within 30
arcsecs, the green squares the signal of the lenses that have a brighter neighbour
between 30 and 60 arcsecs, the blue triangles the signal of the lenses that have a
brighter neighbour between 60 and 120 arcsecs, and the orange circles the signal
of the lenses that have no brighter neighbour within 2 arcmins. The dashed lines
show the best fit NFW profiles fitted to the lensing signal of the total sample
between 50 and 500 kpc using the mean lens redshift. The lensing signal on
scales <0.5 arcmin is roughly similar for all lens samples, but the lensing signal
on larger scales clearly decreases for increasingly isolated galaxies.

ing signal at scales smaller than ∼0.5 arcmin does not change much using the
different isolation criteria, which demonstrates that we select haloes of similar
mass. However, the large-scale signal decreases significantly for an increasing
minimum separation to a brighter neighbour. The galaxies with no brighter
object within 1 arcmin are selected for the isolated sample, the other galaxies
are selected for the clustered sample. We could in principle select a more clearly
distinguished sample of isolated and clustered lenses, e.g. by only selecting those
galaxies with no brighter neighbour within 2 arcmins, and those with a brighter
neighbour within 30 arcsecs. However, this would reduce the signal-to-noise of
the lensing measurements such that no useful constraints could be obtained on
the average halo ellipticity, and we therefore choose not to.

Note that the dependence of the large-scale lensing signal on the distance to
a brighter neighbour is partly caused by differences in the lens environment, and
partly by differences of the projected densities along the line-of-sight (LOS). For
the clustered lenses, the LOS projections do not simply add random noise, but
systematically increase the large-scale lensing signal because of the neighbour
selection. Similarly, for the isolated galaxies, the underdense LOS leads to a de-
crease of the lensing signal on large scales. For the purpose of this work this is
not important, since our main focus is to measure the anisotropy of the lensing
signal. However, it should be kept in mind in the interpretation of the results.
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5.C Average ratios and their errors

To calculate fmm, f corr
mm and (f − f45) we have to determine the ratio of two

variables. Let us call these variables x and y, and m = x/y the ratio we are
interested in. If x and y are independent and have a Gaussian distribution
with means µx and µy and widths σx and σy we can compute the probability
distribution of m using (Hinkley 1969)

p(m) =
b(m)c(m)√

2πa3(m)σxσy

[
2Φ

(
b(m)

a(m)

)]
+

1

πa2(m)σxσy
e
− 1

2

(
µ2
x

σ2
x
+

µ2
y

σ2
y

)
,

(5.26)

where

a(m) =

√
1

σ2
x

m2 +
1

σ2
y

, (5.27)

b(m) =
µx

σ2
x

m +
µy

σ2
y

, (5.28)

c(m) = e
1
2

b2(m)

a2(m)
− 1

2

(
µ2
x

σ2
x
+

µ2
y

σ2
y

)
, (5.29)

and

Φ(m) =

∫ m

−∞

1√
2π

e−
1
2u

2

du. (5.30)

By integrating p(m) we can determine the median, and the 68% confidence
intervals.

Next, we want to combine various measures of mi into one average. We follow
the approach described in Mandelbaum et al. (2006a). It relies on the use of
a slightly different variable, i.e. yi − mxi, which is again a random Gaussian
variable. If the shear ratio is constant over the range of interest, its value can
be determined with

−Z√∑
wi

<

∑
wi(yi −mxi)∑

wi
<

Z√∑
wi

, (5.31)

where wi = 1/(σ2
yi

+m2σ2
xi

) and σ2
yi

and σ2
xi

the error on yi and xi, respectively.
Z = 0 then gives the average ratio, whilst Z = 1 gives the 68% confidence in-
tervals. Note that Equation (5.31) can also be used to determine the ratio of
a single measurement, but we prefer the use of Equation (5.26) as it directly
provides the full probability distribution.

5.D Lens light contamination

The light from bright and elliptical lenses changes the source number density
along the major and minor axis differently on small projected separations close
to the lens. This could bias the correction we make to account for physically
associated galaxies in the source sample. We investigate the size of the effect by
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Figure 5.15: The source number density along the major and minor axis close
to bright foreground galaxies, indicated by green squares and blue triangles,
respectively, selected on their apparent magnitudes (columns) and ellipticity
(rows). On small scales, the deficiency of background galaxies along the major
axis is larger for brighter and more elliptical galaxies.

selecting all galaxies with 16 < mr′ < 18, 18 < mr′ < 19 and 19 < mr′ < 20,
and divide each selection in three ellipticity bins. For each of these samples,
we measure the source number density in the major and minor axis quadrants,
and show the results in Figure 5.15. On small scales, we find that the deficiency
in the major axis quadrants is indeed significantly larger, and the difference
increases for brighter and more elliptical galaxies. For projected separations
larger than 0.2 arcmin, the difference is negligible, except for the brightest and
most elliptical bins. Therefore, for galaxies with mr′ < 19 we only use scales
larger than 0.2 arcmin, whilst for galaxies with mr′ > 19 we use scales larger
than 0.1.
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5.E Magnification

Magnification may also affect the shear anisotropy measurements. In this ap-
pendix, we address two potential contaminants: anisotropic magnification by
the lens, and additional magnification by other foreground galaxies.

5.E.1 Anisotropic magnification

If dark matter haloes are triaxial, the magnification of background sources will
have an azimuthal dependence. Hence if the galaxy and dark matter halo are
aligned, part of the observed anisotropy in the distribution of source galaxies
may be due to anisotropic magnification. The shear anisotropy measurements
are corrected, however, assuming that the anisotropic distribution is solely due
to physically associated galaxies. If anisotropic magnification has a strong effect
on the source density, the correction might therefore be biased. To obtain an
estimate of the impact of anisotropic magnification, we assume that the galaxy
and the dark matter halo are perfectly aligned. Furthermore, we assume that at
small scales the stacked density profile of the lenses is approximately described
by an SIE, with a surface density given by (Mandelbaum et al. 2006a)

κ =
4πσ2

c2
DlDls

Ds

1

2r
×
[
1 +

eh
2

cos(2θ)

]
. (5.32)

σ is the average velocity dispersion, which we determine by fitting an SIS to
the azimuthally averaged tangential shear within the virial radius, Dls/Ds is
determined by integrating over the source redshift distribution, and the halo
ellipticity eh is assumed to be equal to the mean galaxy ellipticity, as tabulated
in Table 5.1 (i.e. assuming fh = 1). We determine the magnification using
µ = 1 + 2κ at a projected separation of 10 arcsecs. The change in number
density due to magnification in the major axis quadrant, fmag

B (r), is calculated
with (Narayan 1989)

fmag
B (r) =

2

π

∫ π/4

−π/4

dθNB(m, r, θ)/N0(m)dm

=
2

π

∫ π/4

−π/4

dθµ
2.5s(m)−1
B dm,

(5.33)

where N0(m) is the background galaxy number density, NB(m, r, θ) is the num-
ber density after magnification in the major axis quadrant, and s(m) is the slope
of the logarithmic galaxy number counts at magnitude m. The change in num-
ber density along the minor axis, fmag

A (r), is calculated similarly. We determine
s(m) using the photometric redshift catalogue of Ilbert et al. (2006), and find
that it decreases from 0.34 at mr′ = 22 to 0.22 at mr′ = 24; we use the average
value s(m) = 0.28. Hence the number density of our source sample is diluted
due to magnification, more strongly along the major axis of the lenses than along
the minor axis as the magnification along the major axis is larger. For the ‘all’
lens sample, we find that at 10 arcsecs, fmag

B = 0.9969 and fmag
A = 0.9974. For

the ‘red’ lens sample we find fmag
B = 0.9927 and fmag

A = 0.9935, and for the
‘blue’ lens sample we find fmag

B = 0.9946 and fmag
A = 0.9954. Hence the effect

of anisotropic magnification is expected to be very small, and does not cause
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Figure 5.16: Cartoon to illustrate a potential bias in the halo ellipticity mea-
surement due to magnification. In the presence of a foreground galaxy L2, the
quadrants where the tangential shear is averaged are rotated. L2 also magnifies
the background sky, leading to an relative increase or decrease in number of
sources in the minor axis quadrant. This potentially biases the measured shear
ratio on small scales.

the observed anisotropy of the excess source galaxy density ratio.

5.E.2 Magnification by L2

Foreground galaxies that lens both the lens galaxy and the sources also magnify
the background sky. This causes a change in the source number density around
the foreground galaxy. Consequently, the positions of the foreground galaxy
and the background sources become related. This could potentially lead to a
false shear anisotropy signal. We explain the effect using a cartoon in Figure
5.16.

In this figure, we measure the shear anisotropy around lens L1. The intrin-
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sic shape of L1 is shown by the black ellipse, and the regions where we average
the tangential shear in the absence of a foreground lens are indicated by the
black lines. In the presence of a foreground lens L2 that is located close to one
of the original quadrant’s axes, the position angle of L1 changes, and the quad-
rants where we average the shear rotate, as indicated by the red dotted lines.
L2 also locally magnifies the background sky, leading to either an increase or
decrease in the source number density around L2. When we average the tan-
gential shear in the rotated quadrants as would be done in observations, these
magnified sources predominantly move into the minor axis quadrant (region A

in Figure 5.3). If the source number density increases around L2, we find that
we have more sources in the minor axis quadrants than in the major axis quad-
rants. Furthermore, the average shear changes, biasing the shear ratio high. If
the source number density decreases instead, the opposite effect happens.

The presence of this bias could be identified by comparing the number counts
of the sources in the two quadrants for the radial bins close to the lens, as
the effect is strongest on small scales. The effect is mixed, however, with the
anisotropic distribution of satellite galaxies. However, we already found in Ap-
pendix 5.E.1 that magnification for our source sample is negligible. Therefore,
we expect that this source of bias is small, and can be ignored with the current
data. The effect may be measurable by selecting a sample of source galaxies
that are clearly in the background, and whose number density slope is steep (e.g.
Lyman-break galaxies), as these are the conditions favourable to magnification.

5.F Multiple deflections

To visualize how the shear anisotropy is affected by multiple deflections, we sim-
ulate a lens galaxy L1 at a redshift 0.4. We assume the L1 is an SIE, with an
ellipticity e1 = 0.2 and e2 = 0. The dark matter halo is perfectly aligned with
the light distribution, and has the same ellipticity as the lens. We compute the
lensing signal with Equation (5.24) for a velocity dispersion of 200 km s−1. In
the absence of multiple deflection, we find that fmm = (π+eh)/(π−eh) = 1.136.
We insert a second lens L2 in the image, a round SIS at z = 0.1 with a velocity
dispersion σ = 200 km s−1. For every position of L2 in the simulated image,
we calculate f̃mm(r = 100), the shear ratio we would observe for a projected
lens-source separation of 100 arcsecs, using a source redshift of 0.8. The result
is shown in Figure 5.17.

We find that depending on the location of L2, f̃mm either becomes larger
or smaller than 1.136, and even in some configurations turns negative. These
trends can easily be understood: e.g. if L2 is located at (50,250), left to the lens
and the ring of sources, it increases the tangential shear of the sources along
the major axis (region B in Figure 5.3), but it decreases the tangential shear of
the sources along the minor axis (region A in Figure 5.3). The impact on the
ellipticity of L1 is very small, and consequently we find that f̃mm increases. If
L2 is located very close to the sources, it can change the source ellipticities by
such amounts that the net tangential shear with respect to L1 becomes negative,
which results in a negative shear ratio.

Equivalently to Equation (5.23), we compute f̃ corr
mm as a function of the posi-

tion of L2, which is shown in the right-hand panel of Figure 5.17. If L2 is at a
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Figure 5.17: Observed shear ratio of an elliptical lens L1 at z = 0.4 for sources at
a projected separation of 100 arcsecs, in the presence of an additional foreground
galaxy L2 at z = 0.1 that is located at (x, y). In the left-hand panel we show
f̃mm, the ratio of the average shear along the major and minor axis. The location
of L1 is indicated by the blue ellipse in the centre of the image, the location of
the sources by the cyan dots. We find that depending on the position of L2,
the shear ratio either increases or decreases. The black solid lines indicate the
position of L2 where f̃mm remains constant, the red dot-dashed (green dashed)
lines indicate a decrease (increase) of f̃mm of 0.2, 0.4 and 0.6, respectively. In
the right-hand panel, we show f̃ corr

mm , the shear ratio corrected using the cross
terms. For large L2-source separations, the induced shear on the lens and the
sources is almost constant, and is effectively removed using the cross terms.
For small separations, the residual is large as the applied shear from L2 varies
strongly along the ring of sources. Note that both L1 and L2 are modeled by
an SIS.

large distance from the sources and L1, the induced shear on both L1 and the
sources is almost constant, and is effectively removed using the cross terms. For
smaller separations, correcting the ratio using the cross terms does not work
well as the applied shear from L2 varies strongly along the ring of sources.

To quantify the net effect of multiple deflections on the shear ratio, we deter-
mine the total contribution to γt,A and γt,B by integrating over all L2 positions.
Then we compute the average value of the ratio:

〈f̃mm(r)〉 =
γt,B0 + ¯nL2∆γt,B
γt,A0 + ¯nL2∆γt,A

, (5.34)

where γt,A0 and γt,B0 are the average tangential shear along the minor and
major axis in the absence of L2, ∆γt,A and ∆γt,B are the total contributions to
the tangential shear along the minor and major axis, and ¯nL2 is the foreground
galaxy number density. The change of the shear ratio depends on the ellipticity
of the lens, the density profiles of L1 and L2, the area within which we integrate
the contributions of L2, and on the number of second deflectors, ¯nL2. We study
these dependencies below.

In Figure 5.18a, we show 〈f̃mm〉 and 〈f̃ corr
mm 〉 as a function of rout, the radius

of the circle centred at L1 within which we integrate the contributions of L2
(hence for a rout of 50 arcsecs, we only account for contributions of L2 that are
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located within 50 arcsecs from L1), for a L1-source separation of 100 arcsec.
We use three different profiles for L2, i.e. an SIS and two truncated SIS (TIS)
profiles with a truncation radius of 50 and 150 arcsec. Most real galaxies have
a density distribution that falls somewhere in between these extremes. The
value for ¯nL2 we have adopted is 100 galaxies per square degree. The velocity
dispersions and redshifts of the galaxies are similar to the values used before.

We find that the reduction of the shear ratio is a strong function of rout. It
reaches a minimum when rout is equal to the L1-source projected separation,
which is expected from Figure 5.17; if L2 is located at the ring of sources, the
shear ratio becomes large and negative, which leads to a reduction of the average
ratio. For larger rout, we find that the shear ratio increases again. If L2 is an
SIS, we find that the ratio turns over and continues to decrease. If L2 is a TIS,
it does not contribute to the shear ratio if it is located at a projected separation
much larger than the truncation radius, and the ratio therefore converges to
a certain value. We observe that the impact of multiple deflections is mostly
removed for 〈f̃ corr

mm 〉. Even if L2 is an SIS, the total reduction of the shear ratio
is small as long as we integrate the contributions of L2 over a sufficiently large
area.

In Figure 5.18b, we show 〈f̃mm〉 and 〈f̃ corr
mm 〉 as a function of projected source

separation for an rout of 4000 arcsec. We find that 〈f̃mm〉 decreases with rs if
L2 is an SIS. If L2 is a TIS, 〈f̃mm〉 reaches a minimum because L2 cannot shear
both L1 and the sources if rs becomes much larger than the truncation radius,
which reduces the impact on 〈f̃mm〉. Furthermore, we find that 〈f̃ corr

mm 〉 is hardly
affected by multiple deflections on small scales. On large scales, however, the
contribution from L2 is no longer constant, and the correction scheme fails.

Finally, we show the bias of the shear ratio as a function of ellipticity of L1
in Figure 5.18c. We find that the reduction is largest for the roundest lenses,
as their position angles are affected most by the presence of L2. The impact of
multiple deflections decreases for lenses with larger ellipticities.

For completeness, we show the impact of an additional foreground lens L2
located at (x, y) on f∆Σiso and (f − f45)∆Σiso in Figure 5.19. Similarly as for
the shear ratios shown in Figure 5.17, we find that the cross terms remove most
of the systematic contributions as long as L2 is not located very nearby.

5.G Intrinsic alignments

The shear anisotropy (f − f45)∆Σiso of the ‘red’ lens sample on small scales
is negative (Figure 5.10). Since the source sample contamination of physically
associated galaxies is largest at the same scales (see Figure 5.4), and since the
distribution of these satellite galaxies is anisotropic (see Figure 5.5), a negative
shear signal could also be caused if these satellite galaxies are preferentially radi-
ally aligned. To estimate the value of the average tangential intrinsic alignment
that would produce such a signal, we rewrite Equation (5.9):

f∆Σiso(r) =
A

N

Ns∑
i=1

wi∆Σie
α
g,i cos(2∆θi)+

A

N

NI∑
i=1

wi∆ΣcritγIe
α
g,i cos(2∆θi);

(5.35)
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Figure 5.19: Net effect on f∆Σiso (left-hand panel) and (f − f45)∆Σiso (right-
hand panel) for a L1 SIS with an ellipticity (e1, e2) = (0.2, 0.0), measured using
sources at 100 arcsec, in the presence of a second foreground galaxy L2 located
at (x, y). The location of L1 is indicated by the blue ellipse in the centre of the
image, the location of the sources by the cyan dots. We find that depending on
the position of L2, the contribution to the shear is either positive or negative.
The black solid lines indicate the position of L2 with no net contributions to
f∆Σiso and (f − f45)∆Σiso, the red dot-dashed (green dashed) lines indicate a
decrease (increase) of ∆Σ of 1, 2 and 3 [M�/pc2] respectively.

N = 2

Ns∑
i=1

wie
2α
g,i cos2(2∆θi) + 2

NI∑
i=1

wie
2α
g,i cos2(2∆θi),

with γI the tangential intrinsic alignment, and Ns and NI the number of sources
and physically associated galaxies, respectively. We assume that the shear sig-
nal is isotropic, hence the first term on the right-hand side of Equation (5.35)
cancels. As the shear anisotropy is expected to be positive for the red early-
type galaxies that make up the ‘red’ lens sample, our estimate of γI is a lower
limit. To account for the fraction of satellites that is anisotropically distributed,
we multiply Equation (5.35) with fcg(r,∆θ)/〈fcg(r)〉∆Θ. For fcg we adopt the
same form as in Section 5.2.4, i.e. Equation (5.15), which we insert into Equa-
tion (5.35). Ignoring the isotropic part, which cancels when averaged over the
angle, we obtain:

f∆Σiso(r) =
A

N

NI∑
i=1

wi∆ΣcritγIe
2α
g,i cos2(2∆θi)

2N∆θ

Niso − 1
, (5.36)

and therefore

γI =
f∆Σiso(r)

2AΣcrit

Ns + NI

NI

Niso − 1

N∆θ

=
f∆Σiso(r)

2AΣcrit

Niso

N∆θ
,

(5.37)

where we used that (Ns+NI)/NI = Niso/(Niso−1). Averaging the results of the
first two radial bins of the ‘red’ lenses, we obtain γI = −0.062+0.042

−0.062 for α = 1 at
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an average separation of 0.19 arcmin (∼65 kpc at the mean lens redshift). Our
constraints are not particularly competitive (compare, e.g., Hirata et al. 2004),
mainly because our methods are not designed for this measurement. For exam-
ple, had we included brighter galaxies in the source sample, a larger fraction of
those would be physically associated to the lenses, improving the constraints on
the galaxy overdensity, and hence on γI . This, however, is not the purpose of
this work. Note that the value and error on γI we obtain is roughly a factor 10
larger than the results from Hirata et al. (2004), who aimed their analysis to
measure this effect using data from the SDSS (although no division was made
between early-type and late-type galaxies, which could average out the effect).
Conversely, the expected impact of intrinsic alignments is about a factor ten
smaller than the signal we observe, hence it is unlikely that our measurements
are significantly affected. Hence the negative shear anisotropy is unlikely caused
by intrinsic alignments.
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6
Redshift dependence of the mass-richness

relation of clusters in the second
Red-sequence Cluster Survey

We study the relation between the richness and mass of a sample of 1.4×104

clusters of galaxies in the redshift range 0.2 < z < 1.2 and masses M200 >
2×1013h−1

70 M�, discovered in the second Red-sequence Cluster Survey (RCS2).
Cluster masses are determined from the weak gravitational lensing signal of the
clusters; the depth and image quality of the RCS2 enable the detection of the
cluster-mass cross-correlation signal even at redshifts z ∼ 1. We fit the mass-
richness relation with M200 = A(N200/20)α, and find A = (15.09 ± 0.66) ×
1013h−1

70 M� and α = 0.86 ± 0.05 for the full sample. To explore any redshift
dependence of the scaling relation, we split the cluster sample in four redshift
slices. We find that the mass-richness relation depends on redshift. The change
with redshift is strongest for galaxy groups and poor clusters; we find that a
N200 = 5 cluster at z = 0.25 is 1.6+0.6

−0.4 times more massive than a N200 = 5
cluster at z = 0.7. For the clusters with N200 > 15, the data are consistent with
no change. With this calibration between richness and mass, the RCS2 cluster
sample can be exploited to constrain cosmological parameters. We discuss a
few potential observational biases and physical processes that may contribute
to the observed redshift dependence.

E. van Uitert, H. Hoekstra, E. Semboloni, D.G. Gilbank, M.D. Gladders,
H.K.C. Yee, in preparation;
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6.1 Introduction

Galaxy clusters correspond to the largest gravitational potentials in the uni-
verse. Their abundance as a function of mass sensitively depends on various
cosmological parameters, such as the normalization of the matter power spec-
trum, σ8, and the cosmological matter density, ΩM (e.g. Evrard 1989; White
et al. 1993). The evolution of the abundance depends on the dark energy equa-
tion of state (e.g. Voit 2005; Allen et al. 2011). These cosmological parameters
can therefore be constrained by accurately determining the cluster mass func-
tion, and its dependence on redshift.

The first step of determining the cluster mass function is the detection of the
clusters. Clusters can be found in various ways, such as by detecting X-ray peaks
in the sky background (e.g. Böhringer et al. 2000; Lloyd-Davies et al. 2011), by
measuring the spectral distortions of the cosmic microwave background radia-
tion from inverse Compton scattering, known as the Sunyaev-Zeldovich effect
(SZE; Sunyaev & Zeldovich 1972) which has recently been applied to various
dedicated surveys (e.g. Williamson et al. 2011; Marriage et al. 2011), or by
detecting galaxy density enhancements in optical surveys (e.g. Gladders & Yee
2005; Koester et al. 2007). These observations provide various cluster properties
which can be related to the mass, including the X-ray flux and temperature,
SZE properties of the clusters such as the detection significance, the number
of cluster members within a certain aperture (the richness), but not the mass
itself.

The total mass of a cluster can only be determined indirectly. Various meth-
ods have been employed for this purpose. The kinematics of satellite galaxies
in clusters have been used (e.g. van der Marel et al. 2000;  Lokas et al. 2006),
but these observations are generally expensive as they require spectroscopic ob-
servations of many cluster members. Additionally, assumptions on the satellite
orbits are needed to convert the velocity dispersions into a mass estimate. X-ray
luminosities emitted by hot gas in clusters can also be used to estimate the mass
(e.g. Reiprich & Böhringer 2002), under the assumption that the gas is in hy-
drostatical equilibruim. The results of Mahdavi et al. (2008) suggest, however,
that clusters are generally not in hydrostatical equilibruim, which could bias
the X-ray based mass estimates. The Sunyaev-Zeldovich effect has also been
used (e.g. Williamson et al. 2011), and appears particularly useful to estimate
the masses of massive clusters at high redshifts. Another popular method, the
one employed in this work, is weak gravitational lensing.

In weak lensing the distortion of the images of faint background galaxies
(sources) due to the gravitational potentials of intervening structures (lenses)
is measured. From this distortion, the differential surface mass density of the
lenses can be deduced, which can be modeled to obtain the total mass. A major
advantage of gravitational lensing over other methods is that it does not rely on
optical tracers; the distortion can be measured for any lens, out to large radii
where no optical tracers can be used. Additionally, the weak lensing signal does
not depend on the physical state of the matter in the clusters, and no assump-
tions have to be made (e.g. virial equilibrium) to measure the total mass.

Weak gravitational lensing has been used to determine the mass of individ-
ual massive low-redshift clusters (e.g. Hoekstra 2007; Okabe et al. 2010). The
signal-to-noise of low-mass clusters or galaxy groups is generally not high enough
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to obtain a reliable mass estimate. However, by stacking the signal of a certain
set of these clusters, the average mass of these systems can be determined (e.g.
Mandelbaum et al. 2006; Sheldon et al. 2009b).

A number of complications limit a simple interpretation of the weak lensing
mass estimates of clusters. The two complications that are thought to dominate
are the triaxiality of dark matter haloes (e.g. Clowe et al. 2004; Corless & King
2007), and the presence of correlated and uncorrelated structure along the line-
of-sight (e.g. Metzler et al. 2001; Hoekstra 2001; Hoekstra et al. 2011b). These
complications are mainly thought to increase the scatter of the mass estimates,
but may even lead to small (∼5-10%) biases if model fitting techniques are used
(Becker & Kravtsov 2011; Rasia et al. 2012). The lensing signal can be modeled
in various ways, and particular choices can reduce this bias (Mandelbaum et al.
2010). More detailed numerical simulations are required to quantify this bias
more precisely, e.g. as a function of mass and redshift, to interpret the results
correctly. This is important for the exploitation of clusters as a percent-level
precision tool for cosmology.

To accurately determine the cluster mass function and its redshift depen-
dence, we need mass estimates of large numbers of clusters covering a broad
range of masses and redshifts. Since the lensing signal of individual clusters
that are not massive, or located at high redshifts, is generally too weak to ex-
tract a reliable mass estimate, we cannot measure the cluster mass function
directly from the data. A common solution is to determine how a cluster prop-
erty that can be directly estimated from the data is related to the total mass
as determined from lensing. A convenient cluster property that can be used
for this purpose is the richness, because it is a quantity that can be obtained
from readily available multi-colour imaging data, the same data that is used for
the lensing analysis. To constrain the cosmological parameters with the cluster
richness function rather than the mass function requires a careful calibration of
the relation between the mass and richness of clusters.

To determine the richness of a cluster it is necessary to distinguish the clus-
ter galaxies from the fore- and background galaxies. Cluster members can be
identified if their redshift or velocity dispersions are available, which either re-
quires spectroscopy or observations in many bands for reliable photometric red-
shifts. Alternatively, cluster members can be identified using their colours as the
majority of early-type galaxies in a cluster populate a narrow range in colour-
magnitude space, i.e. the E/S0 ridge-line or the red sequence (Gladders & Yee
2000). The advantage of the latter is that observations in only two bands suf-
fice, which makes it cheap and particularly suited for the automated detection of
clusters in large imaging surveys (e.g. Gladders & Yee 2005). This richness does
not include the blue star-forming galaxies, but since we are mainly interested
in calibrating a cluster observable to the total mass, this is of no importance.

Note that the mass-richness relation is not only interesting for the exploita-
tion of clusters as cosmological probes, but also to improve our understanding
of cluster evolution processes. Once formed, clusters continue to evolve through
the accretion of galaxies and dark matter, internal processes in the cluster mem-
bers, tidal interactions and mergers with other clusters. These processes change
both the appearance of clusters as well as other intrinsic properties, such as their
mass, shape and angular momentum. To learn more about these processes, we
can study the evolution of the relation between various cluster properties, such
as the relation between mass and richness.
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This study is performed using the imaging data from the second Red-sequence
Cluster Survey (RCS2; Gilbank et al. 2011). The study of cluster evolution is
one of the main science goals of the RCS2. The survey design was chosen such
to optimize the detection of a large number of clusters using the red sequence
method (Gladders & Yee 2000). A preliminary cluster catalogue has been made
available containing 27 793 clusters spread over a large range in optical richness,
and redshifts in the range 0.2 < z < 1.2 (Gladders et al., in prep.). In contrast,
the redshift range of the maxBCG cluster sample (Koester et al. 2007), a cata-
logue of 13 823 clusters that has been detected in the Sloan Digital Sky Survey
(SDSS; York et al. 2000), only covers a redshift range 0.1 < z < 0.3, which
limits their use for evolutionary studies. The redshift range of clusters in the
RCS2, however, combined with the excellent lensing quality of the data, makes
the RCS2 exceptionally suited for this purpose. This is demonstrated in this
work, where we analyse the redshift dependence of the mass-richness relation.

The outline is as follows. In Section 6.2, we discuss the various steps of the
lensing analysis: we detail the creation of the shape measurement catalogues,
provide a short summary on the detection of clusters, and discuss the modeling
of the lensing signal. The mass-richness relation for the RCS2 clusters is pre-
sented in Section 6.3, and its redshift dependence is discussed in Section 6.4.
We conclude in Section 6.5. Throughout the paper we assume a WMAP7 cos-
mology (Komatsu et al. 2011) with σ8 = 0.8, ΩΛ = 0.73, ΩM = 0.27, Ωb = 0.046
and h = 0.7 the dimensionless Hubble parameter. All distances quoted are in
physical (rather than comoving) units unless explicitly stated otherwise.

6.2 Lensing analysis

The Red-sequence Cluster Survey 2 (RCS2) (Gilbank et al. 2011) is a nearly
900 square degree imaging survey in three bands (g′, r′ and z′) carried out with
the Canada-France-Hawaii Telescope (CFHT) using the 1 square degree field
of view camera MegaCam. In this work, we use the 740 square degree of the
primary imaging data. The remainder constitutes the ‘Wide’ component of the
CFHT Legacy Survey (CFHTLS). The lensing analysis is performed on the 8
minute exposures of the r′-band (r′lim ∼24.3), which is best suited for lensing
with a median seeing of 0.71′′.

6.2.1 Data reduction

The photometric calibration of the RCS2 is described in detail in Gilbank
et al. (2011). The magnitudes are calibrated using the colours of the stellar
locus and the overlapping Two-Micron All-Sky Survey (2MASS), and have an
accuracy smaller than 0.03 mag in each band compared to the SDSS. For more
details, we refer the reader to Gilbank et al. (2011).

The lensing analysis is described in van Uitert et al. (2011). Here, we
present a summary of the essential steps. In order to create the shape cata-
logues, we retrieve the Elixir1 processed images from the Canadian Astronomy
Data Centre (CADC) archive2. We use the THELI pipeline (Erben et al. 2005,
2009) to subtract the image backgrounds, create weight maps that we use in the

1http://www.cfht.hawaii.edu/Instruments/Elixir/
2http://www1.cadc-ccda.hia-iha.nrc-cnrc.gc.ca/cadc/
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object detection phase, and to identify satellite and asteroid trails. To detect
the objects in the images, we use SExtractor (Bertin & Arnouts 1996). The
stars that are used to model the PSF variation across the image are selected
using size-magnitude diagrams. All objects larger than 1.2 times the local size
of the PSF are identified as galaxies. We measure the shapes of the galax-
ies with the KSB method (Kaiser et al. 1995; Luppino & Kaiser 1997; Hoekstra
et al. 1998), using the implementation described by Hoekstra et al. (1998, 2000).
This implementation has been tested on simulated images as part of the Shear
Testing Programmes (STEP) (the ‘HH’ method in Heymans et al. (2006) and
Massey et al. (2007), respectively), and these tests have shown that it reliably
measures the unconvolved shapes of galaxies for a variety of PSFs. Finally, the
source ellipticities are corrected for camera shear, which originates from slight
non-linearities in the camera optics. The resulting shape catalogue of the RCS2
contains the ellipticities of 2.2×107 galaxies. A more detailed discussion of the
analysis can be found in van Uitert et al. (2011).

6.2.2 Cluster detection

The clusters are identified with the Cluster-Red-Sequence method (CRS;
Gladders & Yee 2000) using the deep optical imaging data of the RCS2. This
technique makes use of the property that the majority of early-type galaxies
of a cluster at a given redshift populate a narrow volume in colour-magnitude
space, i.e. the red sequence, with a small scatter (e.g. Bower et al. 1992). The
intrinsic colour scatter does not significantly evolve up to a redshift of 1.5 (for a
compilation of low- and high-redshift results, see Jaffé et al. 2011), and has a low
variance between clusters (e.g. López-Cruz et al. 2004). In the CRS method,
the colours, magnitudes and the locations of the galaxies are used to span a
space in which the overdensities correspond to clusters. These overdensities are
detected to identify and characterize the clusters following the methodology of
Gladders & Yee (2000), the method that has been successfully applied to detect
clusters in the first Red-sequence Cluster Survey (Gladders & Yee 2005). The
location of the overdensity in colour space provides an accurate estimate of the
redshift of the cluster. The significance of the detected overdensity is related to
the richness. Details of the implementation of the CRS method for the RCS2 is
presented in Gladders et al. (in prep.).

To identify the centre of the cluster, we use the location of the overdensity
in the colour-magnitude-position space. The position of the brightest cluster
galaxy is another commonly used estimator of the centre (e.g. Koester et al.
2007), and has been measured as well for the RCS2 clusters (Gralla et al., in
prep.). By comparing the lensing signals around both estimates of the cluster
centre, we can determine which one is closer to the actual centre of the projected
total mass distribution. This will be done in a future work.

The richness of a cluster can be characterized in various ways (e.g. Rykoff
et al. 2011; Rozo et al. 2009; Hansen et al. 2005; Yee & López-Cruz 1999). In
this work we use N200, the richness estimator that was used in the weak lensing
analysis of the maxBCG clusters (Johnston et al. 2007; Sheldon et al. 2009b,a),
as it eases a comparison of the results. N200 is defined as the number of E/S0

(red sequence) galaxies brighter than M*+2 within rgal200, the radius where the
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density is 200 times the critical density ρc. This radius is determined from
the empirical relationship between Ngal, the number of red sequence cluster

members within a fixed 1 h−1 Mpc aperture, and rgal200, the radius where the
mean number density of galaxies is 200 times larger than the mean space density
of galaxies, as measured for the maxBCG clusters (Hansen et al. 2005). This
relation implicitly assumes that galaxies are unbiased with respect to the dark
matter. The relation is given by

rgal200 = 0.156N0.6
galh

−1Mpc. (6.1)

This radius agrees within 5% to the r200 as determined with lensing (Johnston
et al. 2007).

The definition of richness slightly differs between the maxBCG and the
RCS2: the N200 of a maxBCG cluster includes all red galaxies (within ±2σ
of the red sequence) brighter than 0.4L∗ in the i-band. We study how the rich-
ness estimates compare by matching the maxBCG cluster catalogue to the RCS2
cluster catalogue, using the ∼300 square degrees overlap between the RCS2 and
the SDSS. Approximately 150 clusters are matched. We find that the richness
estimates agree well, albeit with large scatter. However, there is no evidence
for a large systematic offset, and we conclude that we do not need to account
for the different definitions of richness in order to compare the results of the
maxBCG and the RCS2.

In this work, we use a preliminary version of the RCS2 cluster catalogue,
which contains 14 279 clusters with N200 > 5. We show the distribution of red-
shift and richness of the cluster sample in Figure 6.1. The cluster sample covers
a redshift range of 0.2 < z < 1.2, which makes this sample very well suited for
evolutionary studies (in particular compared to the maxBCG cluster sample of
the SDSS, that only covers redshifts 0.1 < z < 0.3). The richness estimates are
not discrete values, as the average number of background galaxies is subtracted.
Note that the abundance of clusters drops below N200 < 4 (log(N200) < 0.6).
The lack of low-richness clusters at low redshift is not physical, and will be
corrected in the final cluster catalogue. The richness estimates are therefore
potentially biased in this richness range. We cannot assess this bias by compar-
ing to the publicly available maxBCG catalogue, as this catalogue only covers
10 < N200 < 190. Therefore, we only include clusters with N200 > 5 in our
analysis. Since most of the lensing signal is produced by the rich clusters, this
cut only causes a small increase of the errors of the best fit parameters of the
mass-richness relation.

6.2.3 Lensing measurement

Imprinted on the ellipticities of the source galaxies are small distortions
induced by the density profiles of the clusters. These distortions are measured
by averaging the ellipticities of the source galaxies in radial bins centered at the
lenses. The resulting tangential shear,

〈γt〉(r) =
∆Σ(r)

Σcrit
, (6.2)

is related to the surface density contrast ∆Σ(r) = Σ̄(< r) − Σ̄(r), the differ-
ence between the mean projected surface density enclosed by r and the mean
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Figure 6.1: Redshift versus log(N200), the logarithm of the number of early-
type cluster members brighter than M*+2 inside r200, of the cluster sample.
The clusters cover a large range in richness and redshift, and are therefore very
well suited to study the redshift dependence of the mass-richness relation.

projected surface density at a radius r. Σcrit is the critical surface density:

Σcrit =
c2

4πG

Ds

DlDls
, (6.3)

with Dl, Ds and Dls the angular diameter distance to the lens, the source,
and between the lens and the source, respectively. Since we lack redshifts, we
select galaxies with 22 < mr′ < 24 that have a reliable shape estimate (ellip-
ticities smaller than one, no SExtractor flag raised) as sources. We obtain the
approximate source redshift distribution by applying identical magnitude cuts
to the photometric redshift catalogues of the Canada-France-Hawaii-Telescope
Legacy Survey (CFHTLS) “Deep Survey” fields (Ilbert et al. 2006). To remove
contributions of systematic shear (from, e.g., the image masks), we subtract the
signal computed around random points from the signal computed around the
real lenses (see van Uitert et al. 2011).

The distortions induced by weak lensing are much smaller than the intrin-
sic ellipticities of the sources. The lensing measurement of a single cluster is
therefore generally very noisy. To improve the signal-to-noise, the lensing signal
is therefore stacked for a sample of clusters that have similar properties (e.g.
within a certain richness range). Stacking the lensing signal has the additional
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advantage that the contribution from uncorrelated structures, as well as from
potential small-scale residual systematics, averages out.

6.2.4 Contamination

A fraction of our source galaxies is physically associated with the clusters.
They are not lensed and therefore dilute the lensing signal. We cannot remove
them from the source sample because we lack redshifts. We can remove the
bright elliptical cluster members using their colours. The faint cluster mem-
bers, however, cannot be efficiently removed using their colours, because their
red sequence is not well defined, and many of them are blue (Hoekstra 2007).
Fortunately, we can account for the dilution of the lensing signal by measuring
the excess source galaxy density around the lenses, fcg(r), and boost the lensing
signal with 1+fcg(r). This correction implicitly assumes that the satellite galax-
ies are randomly oriented. If the satellites are preferentially radially aligned to
the lens, however, the contamination correction may be too low. Attempts have
been made to measure this type of intrinsic alignment around galaxies. Some
intrinsic alignment was detected in the studies that used the isophotal position
angles for the galaxies (e.g. Agustsson & Brainerd 2006; Faltenbacher et al.
2007), whilst studies that used the galaxy moments instead did not measure a
significant detection (e.g. Hirata et al. 2004; Mandelbaum et al. 2005). This
discrepancy was attributed by Siverd et al. (2009) and Hao et al. (2011) to the
different definitions of the position angle of a galaxy; the favoured explanation
is that light from the central galaxy contaminates the light from the satellites,
which affects the isophotal position angle more than the galaxy moments one.
In addition, Sheldon et al. (2009b) detects no intrinsic alignment for a sample
of 4119 spectroscopically confirmed clusters from Berlind et al. (2006), using
all galaxies from the SDSS main spectroscopic sample (Strauss et al. 2002) in
the range ±2000 km s−1. Since we measure the shapes of source galaxies using
galaxy moments, and considering the results from Sheldon et al. (2009b), we
expect that intrinsic alignments have a minor impact at most and can be ignored.

6.2.5 Lensing analysis

Numerical simulations suggest that the density distribution of collapsed dark
matter haloes over a wide range of masses are well described by a Navarro-Frenk-
White profile (NFW; Navarro et al. 1996). Therefore, we use this profile to
model the lensing signal. The NFW density profile is given by

ρ(r) =
δcρc

(r/rs)(1 + r/rs)2
, (6.4)

with δc the characteristic overdensity of the halo, ρc the critical density for
closure of the universe, and rs = r200/c200 the scale radius, with c200 the con-
centration parameter. The NFW profile is fully specified for a given set of
(M200, c200), with M200 the mass inside a sphere of radius r200, the radius in-
side of which the density is 200 times the critical density ρc. Since numerical
simulations have shown that the concentration depends on the mass and red-
shift of the halo, we can reduce the number of free parameters in the fit by
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adopting a mass-concentration relation. Although the concentration at a fixed
cluster mass exhibits a large scatter (e.g. Bahé et al. 2012), this does not affect
our analysis since we stack the lensing signals of a large number of clusters. We
use the mass-concentration relation from Duffy et al. (2008), which is based on
numerical simulations using the best fit parameters of the WMAP5 cosmology.
It is given by

cNFW = 5.71
( M200

2 × 1012h−1M�

)−0.084

(1 + z)−0.47. (6.5)

Hence the only parameter we fit is M200. We calculate the tangential shear pro-
file using the analytical expressions provided by Bartelmann (1996) and Wright
& Brainerd (2000).

To determine in which range the lensing signals of the clusters are accurately
described by an NFW profile, we show the tangential shear of the full cluster
sample in Figure 6.2. Since the assigned cluster centre used in the lensing mea-
surements does not always correspond to the actual centre of the dark matter
distribution, the lensing signal on small scales is biased low (e.g. Johnston et al.
2007; Hoekstra et al. 2011a). On large scales, the lensing signal is increased by
the contribution of neighbouring structures. To prevent the effect of miscenter-
ing of clusters and the neighbouring structures from biasing the results, we fit
the NFW profiles between 0.2 and 2 h−1

70 Mpc. We find that in this range, the
NFW profile describes the lensing signal well, as is shown in Figure 6.2. Note
that for this figure, we fit both M200 and c200 since the clusters cover a broad
range of masses and concentrations.

In future work the measurements will be analysed using cluster halo models
similar to those described in Johnston et al. (2007), and account for the mis-
centering of the clusters, for the additional lensing signal on large scales from
neighbouring structures and for the scatter between halo mass and richness.
This will enable us to include a broader range of scales in the fit, which im-
proves the errors on the best fit parameters. Also, it will enable us to study
the relation between the total mass and various other cluster properties, such
as the concentration and the bias.

The results from Johnston et al. (2007) show that the distribution of pro-
jected radial offsets between the actual and the observed cluster centres is not
well constrained by the lensing measurements. The lensing results are therefore
sensitive to the assumed shape of this distribution that is used as a prior in the
lensing models. To improve the prior from the data, we plan to use the galaxy
overdensity measured around the cluster centres. Galaxies trace the dark matter
potential, and the number density is therefore also affected by miscentering of
clusters. We show the average galaxy overdensity around all clusters in Figure
6.2, and as a function of richness in Appendix 6.A. In short, the results we
present here are preliminary, although we do not expect that the best fit values
of M200 will change significantly.

6.3 Mass-richness relation

To determine the relation between richness and mass, we divide the clusters
in bins of richness. Details for the cluster samples are given in Table 6.1. The
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Figure 6.2: Stacked lensing signal and galaxy overdensity measured for all clus-
ters with N200 > 5 in the RCS2. The dashed line in the top panel indicates
the best fit NFW profile fitted to shear; the vertical dot-dashed lines indicate
the fitting range. The surface density Σ that corresponds to the best fit lens-
ing profile has been scaled to match the observed galaxy overdensity in the
range 0.2 < r < 2 h−1

70 Mpc in the bottom panel. Both profiles are shown for
illustration only.

richness ranges are chosen such to enable a straightforward comparison to John-
ston et al. (2007). The lensing signals of all clusters in each bin are stacked, and
boosted with the excess source galaxy density to correct for the contamination
of physically associated galaxies in the source sample. The resulting lensing
signals are shown in Figure 6.3, together with their best fit NFW profiles. We
find that in the range between 200 h−1

70 kpc and 2 h−1
70 Mpc, the lensing signal

is described reasonably well by a single NFW profile, which is reflected by the
χ2-values of the fit. The average χ2 is 8.4, whilst the expected value is 6. The
largest χ2 is for the 18< N200 <25 bin, and has a value of 15.0.

Before we can compare the mass-richness relation we need to correct N200

for Eddington bias: clusters scatter preferentially from richness ranges where
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Table 6.1: Cluster sample details

bin N200 nclus zmed 〈N200〉 N corr
200 M200[1013h−1

70 M�]
(1) (2) (3) (4) (5) (6)

N1 5-6 2815 0.72 5.48 2.91 3.40+0.51
−0.51

N2 6-7 2218 0.69 6.49 3.92 4.22+0.63
−0.58

N3 7-8 1723 0.68 7.50 4.93 5.46+0.79
−0.72

N4 8-9 1323 0.66 8.48 5.91 4.90+0.84
−0.79

N5 9-12 2545 0.63 10.3 7.78 5.06+0.56
−0.56

N6 12-18 2117 0.58 14.4 11.85 10.86+0.80
−0.74

N7 18-25 851 0.55 20.9 18.22 13.59+1.35
−1.23

N8 25-41 513 0.51 30.7 27.40 19.10+1.84
−1.80

N9 41-71 160 0.47 50.4 47.37 38.35+4.58
−4.21

N10 71-220 14 0.45 82.0 75.87 30.65+15.21
−12.49

(1) richness range of the bin; (2) number of clusters; (3) median redshift; (4)
mean richness; (5) mean richness corrected for Eddington bias; (6) best fit
NFW mass.

the number of clusters is high to those where the abundance is low. Since there
are generally more poor clusters than rich clusters, the average richness of clus-
ters within a certain richness range is biased high. For broad richness bins the
bias is small, but for small richness ranges as used in our analysis the bias is
non-negligible.

To correct the values of N200 for Eddington bias, we follow Bayes theorem.
The probability distribution of N200 given an observed value Nobs

200 (the pos-
terior) is proportional to the product of the chance of having a value of Nobs

200

given a distribution of N200 (likelihood) and the probability distribution of N200

(prior):

p(N200|Nobs
200 ) ∝ p(Nobs

200 |N200)p(N200). (6.6)

The adopted likelihood distribution is a Poisson distribution. In principle, the
observed richness distribution can be used as an estimate of the prior. However,
as shown in Figure 6.1, the cluster sample is incomplete at the low richness end
by an uncertain amount, and using it as a prior would lead to an erroneous cor-
rection. Since we expect that the cluster sample is complete for approximately
N200 > 15, we fit a powerlaw to the richness distribution at N200 = 15. For
the prior, we replace the observed richness distribution with this powerlaw at
N200 < 15, whilst at larger richnesses we use the observed richness distribution.
The posterior is normalized and integrated up to the mean, N corr

200 . These values
are tabulated in Table 6.1, as well as the uncorrected values.

We show both the original and the Eddington-corrected mass-richness re-
lation in Figure 6.4. The Eddington correction mainly affects the low-richness
bins. We fit the corrected mass-richness relation with M200 = A(N corr

200 /20)α,
and find A = (15.09 ± 0.66) × 1013h−1

70 M� and α = 0.86 ± 0.05. The errors on
the amplitude are determined by marginalizing over the slope, and vice versa.
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6.3. MASS-RICHNESS RELATION

Figure 6.4: Best fit cluster mass versus the richness. The black diamonds denote
the results from this work, the red triangles denote the results from the lensing
analysis of the maxBCG clusters in Johnston et al. (2007). Open symbols in-
dicate the original measurements, the filled symbols indicate the measurements
corrected for Eddington bias.

The likelihood contour of this fit is shown in panel (a) of Figure 6.5. Without
the correction for Eddington bias, we obtain A = (12.84 ± 0.50) × 1013h−1

70 M�
and α = 1.03 ± 0.05, which demonstrates that the correction is important.

Not all detections in the cluster catalogue are real clusters: a fraction of
the clusters may actually correspond to a chance projection of galaxies rather
than to a real cluster. These false detections have presumably a different lensing
mass than the real clusters of that richness, and therefore potentially bias the
average lensing signal. The fraction of real clusters is called the purity, which is
generally a function of richness and redshift, but its particular shape depends
on the cluster detection algorithm. Therefore, to determine the actual value of
the purity for our cluster sample, we need to apply the detection algorithm to
simulations that mimic the RCS2, which has currently not been done. The false
positives do not add random noise, but a coherent (but likely lower) lensing
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Figure 6.5: 67.8%, 95.4% and 99.7% confidence limits of the fits to the mass-
richness relation. In panel (a), the solid black lines indicate the results for the
full RCS2 sample, and the dotted black lines indicate the results for the RCS2
clusters in the redshift range 0.1 < z < 0.3. The contours do not overlap, which
suggests that the mass-richness relation depends on redshift. In panel (b) we
compare the results for the RCS2 clusters in the redshift range 0.1 < z < 0.3
to the results of the maxBCG sample covering the same richness range as the
RCS2, i.e. N corr

200 > 4, which is indicated by the dashed red lines. The agreement
between the results is fair.

signal. How large the impact is on the lensing mass needs to be addressed with
simulations. Note, however, that the purity is only expected to be less than
100% for the low-richness bins. The high-richness bins should be very pure, and
the bias on the masses negligible. The effect on the best-fit parameters of the
mass-richness relation is therefore expected to be small.

6.3.1 Comparison to the maxBCG cluster sample

We compare our results to the weak lensing analysis of the maxBCG cluster
sample (Koester et al. 2007), a catalogue of 13 823 clusters that has been de-
tected in the SDSS. The cluster detection algorithm employed in Koester et al.
(2007) identifies the cluster red-sequence galaxies, and selects the brightest, the
BCG, as centre of the cluster. The resulting cluster sample covers the richness
range 10 < N200 < 190 and a redshift range of 0.1 < z < 0.3. In Sheldon et al.
(2009b), the cluster sample is extended to N200 = 3, which leads to a sample
of ∼130 000 galaxy groups and clusters. The lensing analysis of the sample
is presented in Sheldon et al. (2009b); the mass-richness relation is derived in
Johnston et al. (2007).

The richnesses of Johnston et al. (2007) have not been corrected for Ed-
dington bias. We perform the correction, using a probability distribution for
the maxBCG sample of p(N200) ∝ (N200)−3 over the entire richness range,
following Andreon & Hurn (2010). We show both the original and the Ed-
dington bias corrected results in Figure 6.4. We fit the same powerlaw to
the corrected results in the overlapping richness range, N corr

200 > 3, and find
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A = (16.29 ± 0.88) × 1013h−1
70 M� and α = 0.99 ± 0.06, which does not agree

well with our results. However, the average redshift of the clusters in the RCS2
sample is considerably higher than those in the maxBCG sample. To account
for possible changes with redshift, and to enable a fairer comparison between
the results, we only select RCS2 clusters that cover the same redshift range.
Hence we select all clusters with 0.1 < z < 0.3 from the RCS2 cluster sample,
measure their lensing signals and fit the mass-richness relation. We find that
A = (14.91± 0.88)× 1013h−1

70 M� and α = 0.72± 0.08, and show the confidence
limits in Figure 6.5b. The amplitude of the fit is about 2σ lower than the am-
plitude of the maxBCG results in the range N corr

200 > 3. Using the marginalized
errors on the powerlaw slopes, we find that best fit slopes for the maxBCG and
the RCS2 are more than ∼3σ apart. Figure 6.5 shows that this discrepancy is
partly the result of the particular shapes of the contours, and that the actual
tension is somewhat smaller.

There are several differences between the analyses that may contribute to
the difference between the results. For example, the lensing models used in this
work and in Johnston et al. (2007) are different. To estimate how much this im-
pacts the results, we create a mock lensing signal that mimics a typical lensing
model used in Johnston et al. (2007), and fit a single NFW profile to it. The
difference between the input mass and the best fit NFW mass then provides an
estimate of the sensitivity of the results on the adopted lensing model.

In the lensing models of Johnston et al. (2007), it is assumed that a frac-
tion pc of the clusters is correctly centered, and their lensing signal follows an
NFW profile, ∆Σcent

NFW. The other (1−pc) is miscentered with a Gaussian radial
offset distribution that has a width σs = 0.42 [h−1 Mpc]. We refer readers to
Johnston et al. (2007) for details on the calculation of the average shear of these
miscentered clusters, ∆Σmiscent

NFW . Neighbouring clusters add to the lensing sig-
nal at large projected separations. To calculate their contribution to the shear,
∆Σ2h, we use the 2-halo term from the halo model described in van Uitert et al.
(2011), and use the best fit mass-bias relation from Johnston et al. (2007) to
calculate the bias for a given halo mass, b(M200). Hence the lensing signal is
modeled with

∆Σmod = pc∆Σcent
NFW + (1 − pc)∆Σmiscent

NFW + b(M200)∆Σ2h. (6.7)

To account for the scatter between mass and richness, we integrate this model
over a halo mass probability distribution P (M200) that is log-normal and has
a variance that depends on richness following Equation (25) in Johnston et al.
(2007). We fit a single NFW profile to the resulting signal on scales between 200
h−1
70 kpc and 2 h−1

70 Mpc, and use a weight that is proportional to the projected
separation squared to account for the increase of background galaxies at larger
projected separations. The redshift we adopt for the model clusters is z = 0.3.
We find that the best fit NFW mass overestimates the input mass with 9% for
an input cluster of mass M200 = 3 × 1013h−1

70 M� and richness N200 = 5, which
reduces to 5% for a M200 = 3 × 1014h−1

70 M� cluster with richness N200 = 50.
Note that we use different values for the fraction of correctly centered clusters
for the low and high mass model, i.e. pc = 0.6 and pc = 0.75, respectively, based
on Figure 5 from Johnston et al. (2007). Also note that we adopt a concentra-
tion of c = 3.5 for both clusters, but the results do not sensitively depend on this
choice. Therefore, if the RCS2 clusters have a similar miscentering distribution
as the maxBCG clusters, we find that the differences between the modeling of
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the lensing signal only has a minor effect on the best fit masses. The reason is
that various effects cancel each other: the miscentering lowers the model lens-
ing signal on small scales, whilst the 2-halo term increases the model signal
on large scales. Additionally, by integrating the models over a log-normal halo
mass probability distribution, we increase the model signal on all scales. Note,
however, that the actual miscentering distribution for the RCS2 clusters might
be different from what we assumed, as the cluster centres have been found with
a different algorithm. The actual bias could therefore differ somewhat from the
values presented here.

A second potential source of difference between the results from the RCS2
and the maxBCG is that we used the observed richness distribution as the prior
in the calculation of the Eddington bias correction. The real richness distribu-
tion, which should have been used, is different from the observed one as clusters
have already scattered. Therefore, the Eddington bias correction is potentially
biased, and this bias could differ between the RCS2 and the maxBCG results.
To estimate the size of the bias for the SDSS, we create a mock catalogue of 106

clusters by random drawing clusters from a richness distribution that scales as
Nclus(N200) ∝ Nβ

200. These richnesses are assumed to be the real values. Next,
we assume that the probability distribution of the richness of each mock clus-
ter is Poisson, and we reassign the richness of each cluster by random drawing
from their Poisson distribution, mimicking the scatter that affects the richness
estimates in real data. The resulting values are assumed to be the observed
richnesses. We try different values of β, and find that the value that, after ap-
plying the scatter, results in an observed richness distribution with slope −3 in
the range 3 < N200 < 200 is given by β = −2.55. Hence the real richness distri-
bution of the maxBCG sample is shallower than the observed one. The reason
is that the scatter is dominated by the N200 = 1 and N200 = 2 clusters, as their
abundance is largest. These clusters mainly scatter to other low richnesses, and
less and less to increasing richnesses, causing a steepening of the slope.

To obtain the correct Eddingtion bias correction, we use as a prior p(N200) ∝
N−2.55

200 , and recalculate the average values of the richness. We find that at
low richnesses, the values we obtain are ∼25% larger than the values tabu-
lated in Table 6.1, but the difference decreases to less than a percent for the
highest richness bins. We use these new values to fit the mass-richness dis-
tribution for the maxBCG clusters in the range N corr

200 > 4, and find A =
(15.74 ± 0.85) × 1013h−1

70 M� and α = 1.03 ± 0.06, which is consistent with
the previous best fit values. Hence the bias from assuming an incorrect prior
is small, and does not significantly affect the results. For the RCS2, we can-
not perform a similar test due to the fact that the current catalogue cannot be
parameterized by a single powerlaw. Nevertheless, for the final RCS2 cluster
sample a similar approach might work.

A third potential difference between the results could arise if the purity of
the two cluster samples differ, and the lensing signals are not corrected for it.
The purity is likely to differ somewhat between the catalogues as different clus-
ter detection algorithms have been used. Koester et al. (2007) show how the
purity of the sample depends on particular settings of the maxBCG algorithm
using mock catalogues. The purity is typically of the order 90% or higher at
richnesses N200 > 10; how the purity varies at lower richnesses is not shown.
In the lensing analysis of the maxBCG clusters, no correction for the purity of
the sample is mentioned. Since we do not correct for it either, the impact on
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the two lensing analyses may actually be comparable. This can be tested by
applying both cluster finding algorithms to simulated data. To compare the
results with simulations, it is important to account for the false positives in the
cluster sample.

6.4 Redshift dependence of the mass-richness rela-
tion

The clusters in the RCS2 survey cover a large redshift range, which makes
them particularly suited for evolutionary studies of cluster properties. Here,
we study the redshift dependence of the mass-richness relation. We split each
richness bin in four redshift slices, and stack the lensing signal of all clusters in
each slice. We fit NFW profiles to the shear, and show the best fit NFW masses
as a function of richness in Figure 6.6.

We find that the mass-richness relation evolves with redshift. At a fixed
richness below N corr

200 < 15, the mass increases with decreasing redshift, whilst at
N corr

200 ≥ 15 the best fit masses do not increase by much. We fit the mass-richness
relation in each redshift slice, and show the best fit models in Figure 6.6. The
best fit powerlaw parameters are given in Table 6.2, and shown as a function
of redshift in Figure 6.7. To quantify the redshift dependence, we fit a linear
relation to the powerlaw parameters of the form A = aA,z× (z−0.4)+bA,z, and
similarly for α. We show the best fit parameters in Table 6.3, and the confidence
contours of the fits in Figure 6.8. We find a clear indication that the slope of
the mass-richness relation increases with increasing redshift.

We quantify the redshift dependence of the rich and poor clusters separately
by performing the fit to the clusters with a richness that is respectively larger
and smaller than N corr

200 = 15. The best fit powerlaw parameters are shown in
Figure 6.7, and the redshift dependence of these parameters is shown in Table
6.3. We find that the redshift dependence of the amplitude and slope for the
poor and rich clusters are similar, although the errors are rather large and
potential differences may be buried in the noise.

The redshift dependence of the mass-richness relation is also measured in
Sheldon et al. (2009b) for the maxBCG clusters, but due to the limited redshift
range of that sample no change with redshift was found. However, in a study of
the relation between X-ray luminosity and richness for the maxBCG clusters,
Rykoff et al. (2008) find that the X-ray luminosity at z = 0.28 is twice as high
as the X-ray luminosity at z = 0.14. Becker et al. (2007) study the relation
between velocity dispersion and richness for the same clusters, and find that the
clusters at high redshifts systematically have higher velocity dispersions. Both
Becker et al. (2007) and Rykoff et al. (2008) expect the main cause to be the
evolution of the N200 richness measure, implying a fractional decrease in N200

of 30%-40% from z = 0.14 to z = 0.28 (i.e. N200 is underestimated at higher
redshifts). No evidence is presented that supports such a strong decrease of
N200, and it does not explain why no redshift dependence of the mass-richness
relation was detected in Johnston et al. (2007). Note that no correction for the
Eddington bias was applied in each of these works, and a redshift dependent bias
could contribute to the apparent evolution. To test this assumption, we compare
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Figure 6.6: Redshift dependence of the mass-richness relation. Different colours
correspond to different redshift bins, as indicated in the figure. The dashed lines
indicate the powerlaw fits to the mass-richness relation in each redshift slice.

the slope of the cluster number counts for the maxBCG clusters with z ≥ 0.25
and z ≤ 0.20, respectively. We find that the slope of the high redshift-sample
is ∼ −3.5, only slightly steeper than the slope of ∼ −3 for the low-redshift
sample. The Eddington bias correction for the high-redshift sample is therefore
slightly larger, which actually increases the difference between the high- and
low-redshift results. The discrepancy remains therefore unexplained.

Our results suggest that the mass-richness relation is steeper at higher
redshifts. The strongest change occurs at the lowest richness range: we find
that a N corr

200 = 5 cluster at z = 0.25 is 1.6+0.6
−0.4 times more massive than a

N corr
200 = 5 cluster at z = 0.7. This ratio and its errors are determined using

the best fit parameters of the fit to the mass-richness relation in the redshift
range 0.1 < z < 0.3 and 0.55 < z < 0.80, respectively. Clusters with N corr

200 > 15
do not appear to change much in mass over the same redshift interval. In the
following sections, we discuss various observational biases and physical processes
that may contribute to the observed redshift dependence.
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Figure 6.7: Redshift dependence of the powerlaw parameters of the mass-
richness relation. The black diamonds indicate the results for all clusters,
the green triangles (blue squares) for the clusters in the range N corr

200 > 15
(N corr

200 < 15). The black solid lines indicate the best fit linear relation be-
tween these parameters and redshift, and the green dashed (blue dotted) lines
are for the clusters in the range N corr

200 > 15 (N corr
200 < 15).

6.4.1 Non-evolutionary causes of redshift dependenceM200−
N200

The observed change in the mass-richness relation with redshift may be
caused by cluster evolution processes, but potentially also partly by the way the
richness is defined. Additionally, there may be observational effects that cause
a change in the mass-richness relation with redshift. Hence to study the clus-
ter evolution processes, we first need to address if the redshift evolution of the
mass-richness relation has different causes. We mention various effects below,
and discuss how to estimate their impact.
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Table 6.2: best fit parameters of the powerlaw fits to the mass-richness relation
at different redshifts

z A α
[1013h−1

70 M�]

0.10-1.20 15.09 ± 0.66 0.86 ± 0.05

0.10-0.30 14.91 ± 0.88 0.72 ± 0.08
0.30-0.55 13.91+0.83

−0.85 0.83 ± 0.07
0.55-0.80 15.80+2.19

−2.25 1.11 ± 0.16
0.80-1.20 9.17+8.55

−5.81 0.46+0.49
−0.46

Figure 6.8: 67.8%, 95.4% and 99.7% confidence limits of the fits that describe
the linear redshift dependence of the best fit parameters of the mass-richness
relation, as detailed in the text. In panel (a) we show the results for the redshift
dependence of the amplitude of the mass-richness relation, and in panel (b) for
the slope.

The richness measure N200 is by definition a redshift dependent quantity: it
includes all galaxies brighter than M*+2, which is a lower magnitude limit that
evolves with redshift. Also, as the critical density changes with redshift, so does
r200, the radius within which we count the number of cluster members. Further-
more, at the high redshift end, the richness estimates are somewhat incomplete,
which has not been corrected for. Hence, two identical clusters located at dif-
ferent redshifts are potentially assigned with different values of N200. Note that
already for the maxBCG cluster sample, which extends to z = 0.3, it has been
suggested that N200 evolves (Becker et al. 2007; Rykoff et al. 2008). Our cluster
sample extends to z ∼ 1, making an evolution of N200 even more relevant. To
understand how the richness of a given cluster changes with redshift, we can
apply the detection method on simulations that mimic the RCS2 survey.

The purity of the cluster sample may depend not only on richness, but also
on redshift. If the fraction of false detections increases with redshift for a fixed
richness, this would lower the lensing mass and could cause the trend we ob-
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Table 6.3: best fit parameters that describe the linear redshift dependence of the
normalization and slope of the mass-richness relation, as detailed in the text.

N corr
200 aA,z bA,z aα,z bα,z

[1013h−1
70 M�] [1013h−1

70 M�]

all −1.7 ± 4.5 14.4 ± 0.6 0.57 ± 0.35 0.81 ± 0.05
N corr

200 < 15 −10.9+11.7
−8.8 15.1 ± 1.8 −0.17 ± 0.75 0.84 ± 0.13

N corr
200 > 15 2.2 ± 7.6 13.4 ± 1.0 0.81 ± 1.09 0.99 ± 0.14

serve. The purity of the sample, and its dependence on richness and redshift,
needs to be estimated using simulations as well.

The miscentering distribution of clusters may also depend on redshift. Mis-
centering causes a drop in the lensing signal on small scales, which biases the
lensing mass low if not accounted for (see Figure 4 in Hoekstra et al. (2011a)
for estimates of the amplitude of this bias). In our final analysis, we include the
miscentering distribution in the cluster halo model fits, and the lensing mass
should be unaffected. However, the richness estimates of clusters are also af-
fected by miscentering. Hilbert & White (2010) estimated the impact using
the Millennium Simulation, and found that the cluster abundances are reduced
by ∼20%. The miscentering of clusters may be dependent on the richness and
the redshift of the clusters, and so is the size of the bias. We can in principle
estimate the impact for each lensing bin once we have fitted the cluster halo
model to the shear, using the constraints this has provided on the miscentering
distribution.

6.4.2 Impact of cluster evolutionary processes

Next to these observational effects, there are several cluster evolution pro-
cesses that affect the redshift evolution of the mass-richness relation. Below,
we describe some of the processes that may be important in shaping this re-
lation. We cannot disentangle these processes using the mass-richness relation
alone. The goal of this section is to describe how each of these processes might
impact the evolution of the mass-richness relation, and indicate which of them
could contribute to the observed redshift dependence. It is important to realize
that the richness estimates only include the red-sequence galaxies. The blue,
star-forming galaxies, which are an important component of clusters, are not
included.

Galaxy clusters evolve through the accretion of matter. Large clusters ac-
crete matter faster than small clusters, because their potential wells are deeper
and more extended (e.g. Fakhouri et al. 2010). Clusters accrete galaxies, gas
and dark matter; how this affects the mass-richness relation depends on the
relative amount of accreted total mass and galaxies. If the amount of accreted
galaxies and total mass would not depend on the richness of a cluster nor on
its redshift, clusters would only move up on the mass-richness relation, and no
redshift dependence would be observed. A possible explanation for the increase
of the mass of poor clusters with decreasing redshift is that poor clusters accrete
relatively more dark matter than galaxies, compared to the rich clusters. This
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could mean that either the accreted galaxies in poor clusters have more massive
dark matter haloes, or lower luminosities such that they do not increase the
richness of the clusters. Alternatively, poor clusters could accrete a larger addi-
tional amount of dark matter compared to rich clusters. This could be assessed
using numerical simulations.

The galaxies that reside in a cluster evolve as well. Galaxies are stripped of
their gas through tidal interactions and ram pressure stripping, which quenches
their star formation (e.g. Boselli & Gavazzi 2006). Consequently, the late-type
spiral galaxies that are accreted turn into early-type S0 galaxies, and subse-
quently appear on the E/S0 ridgeline. Hence even without accreting new galax-
ies, the richness of early-type galaxies in clusters may increase as more galaxies
turn red. The fraction of satellites whose star formation is quenched strongly in-
creases with halo mass (Wetzel et al. 2011), which could indicate that satellites
in rich clusters are more efficiently quenched than those in small clusters. Hence,
in the absence of accretion events, the richness of rich clusters may grow faster
than the richness of poor clusters. The richness of poor clusters may therefore
be lagging behind, which could also be partly responsible for the flattening of
the mass-richness relation over time.

The richness of a galaxy cluster decreases if early-type cluster members
merge, but the mass remains constant. When we determine the masses of clus-
ters at a fixed richness, this leads to an increase of mass with decreasing redshift.
The dependence of galaxy mergers on environment has been studied in Perez
et al. (2009). In this work, it is found that the majority of merging galaxies are
found in intermediate density environments. If such environments mainly cor-
respond to galaxy groups, hence if mainly the galaxies in poor groups merge, it
could explain why the mass of low-richness clusters increase more rapidly than
those of high-richness clusters.

There are various other processes that may also have an effect on the redshift
dependence of the mass-richness relation. For example, the properties of field
galaxies that are accreted by clusters may evolve over time as well; the fraction
of late-type galaxies that is accreted is likely larger at high redshift than at low
redshift. Additionally, the pre-processing of accreted galaxies may be differ-
ent for rich and poor clusters. The environment of the cluster is also expected
to play a role, as it provides the material that accretes onto the cluster. In
short, numerous processes are potentially involved in the evolution of the mass-
richness relation, which makes any trend particularly hard to interpret. To start
unraveling the various physical processes, we can compare our measurements to
predictions from numerical simulations such as those described in Hilbert &
White (2010). In this work, the mass-richness relation is predicted using semi-
analytic galaxy formation models in the Millennium simulation. The predictions
from this work are found to agree well with the maxBCG results from Johnston
et al. (2007). It would be very interesting to see if a similar study, but now as
a function of redshift, correctly predicts the redshift dependence we find.

6.5 Conclusion

We present the first results of the weak lensing analysis of the RCS2 clus-
ter sample. The preliminary RCS2 cluster catalogue contains 1.4 × 104 galaxy
clusters with N200 > 5, with masses M200 > 2 × 1013h−1

70 M� and redshifts in
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the range 0.2 < z < 1.2. The redshift coverage makes this cluster sample par-
ticularly suited for cluster evolution studies. In this work, we study the relation
between the mass and richness of clusters, and how this relation depends on
redshift. The calibration between richness and mass enables the exploitation of
the RCS2 cluster sample to constrain cosmological parameters. Furthermore,
the redshift dependence of the mass-richness relation can be used to study clus-
ter evolution processes.

We split the cluster sample in richness bins, stack the lensing signal in each
bin and fit an NFW profile between 0.2 and 2 h−1

70 Mpc. We fit the mass-richness
relation with M200 = A(N corr

200 /20)α, and find A = (15.09 ± 0.66) × 1013h−1
70 M�

and α = 0.86 ± 0.05. To study the redshift dependence of the mass-richness re-
lation, we split the cluster sample in four redshift slices. We find that the mass-
richness relation depends on redshift. The change with redshift is strongest
for galaxy groups and poor clusters: we find that a N corr

200 = 5 cluster at
z = 0.25 is 1.6+0.6

−0.4 times more massive than a N corr
200 = 5 cluster at z = 0.7.

The high-richness clusters at different redshifts have comparable masses. Fit-
ting a linear relation to the slope of the mass-richness relation of the form
α = aα,z × (z − 0.4) + bα,z, we find aα,z = 0.57 ± 0.35 and bα,z = 0.81 ± 0.05.

Finally, we measure the excess galaxy number density around the cluster
samples. We find that the number density profiles of the N corr

200 < 7-bins are
steeper than the dark matter profiles on small scales, whilst for the N corr

200 > 7-
bins the overdensities are generally less steep. The overdensities can be used
to improve the modeling of the lensing signal, as they provide additional con-
straints on the miscentering distribution of the clusters.
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6.A Distribution of satellites

The galaxies in a cluster trace the dark matter distribution, although there
are indications that the slope of the radial distribution of satellites galaxies
differs from the slope of the projected total mass distribution (e.g. Watson et al.
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2010, 2011; Budzynski et al. 2012; Tal et al. 2012). The radial distribution of
satellite galaxies can be determined by measuring the galaxy overdensity around
clusters. If a fraction of the clusters is not correctly centered, this also affects the
observed distribution of satellites. Hence the overdensity measurement provides
additional constraints on the miscentering distribution of the clusters. When
we implement a more sophisticated lensing model, in which we account for the
miscentering of clusters, the galaxy overdensity can serve as a prior for the
miscentering distribution. Including this information is beneficial, as it reduces
the errors on the best fit parameters from the lensing model.

To illustrate this, we measure the total galaxy overdensity in a similar
way as for the sources, as discussed in Section 6.2.4. We use all galaxies in the
magnitude range 16 < mr′ < 24, and show the results for all clusters in Figure
6.2, and for the clusters divided in richness bins in Figure 6.9. Overplotted in
each panel is the surface mass density, Σ, that corresponds to the best fit NFW
model of the lensing measurements in the same richness bin, scaled with an
arbitrary amplitude to match the data between 0.2 and 2 h−1

70 Mpc. This model
is shown for illustration only, and no attempts have been made to improve the
fit. It shows, however, that simply rescaling Σ does not describe the excess
galaxy density well. In particular, for the N corr

200 < 7-bins we find that the
overdensities follow steeper profiles on small scales, whilst for the N corr

200 > 7-
bins the overdensities are generally flatter.

Closing in to the lens (r <100 h−1
70 kpc), we find that the overdensities do

not increase as rapidly, and even decrease for the innermost radial bin. This is
partly due to the miscentering of galaxies, which flattens the Σ profile on small
scales (Johnston et al. 2007). Note that miscentering has a significantly smaller
effect on Σ than on ∆Σ, which is clearly illustrated in Figure 4 in Johnston et al.
(2007). However, the signal-to-noise of the overdensity measurements is five to
ten times larger than the one from shear, and the overdensity may therefore still
provide useful constraints.

There are several other effects that cause a reduction of the galaxy number
density near clusters. For example, the presence of large cluster galaxies in the
centre of a cluster blocks or swamps the light of small satellites that are close
to the line of sight. Additionally, the sky background subtraction near bright
clusters could be inaccurate due to the high abundance of galaxies, and due
to the diffuse intercluster light. This could affect the detection of faint cluster
members, which would bias the excess galaxy number density measurements.
Next to that, magnification leads to a reduction in number density of background
sources close to the clusters, which also reduces the excess galaxy density. If
not accounted for, these effects could be misinterpreted as being the result of
miscentering. The impact of these complications have to be estimated before
we can use the galaxy overdensity to improve the cluster halo model fits of the
lensing signal.

186



6.A. DISTRIBUTION OF SATELLITES

F
ig

u
re

6.
9:

T
h

e
ov

er
d

en
si

ty
of

ga
la

x
ie

s
in

th
e

m
ag

n
it

u
d

e
ra

n
ge

16
<

m
r
′
<

24
w

it
h

sh
ap

e
m

ea
su

re
m

en
ts

ar
ou

n
d

th
e

cl
u

st
er

s
as

a
fu

n
ct

io
n

of
p

ro
je

ct
ed

se
p

ar
at

io
n

.
T

h
e

d
a
sh

ed
li

n
es

in
d

ic
at

e
th

e
su

rf
ac

e
d

en
si

ty
Σ

th
at

co
rr

es
p

on
d

to
th

e
b

es
t

fi
t

m
o
d

el
to

th
e

le
n

si
n

g
m

ea
su

re
m

en
ts

,
sc

al
ed

w
it

h
an

ar
b

it
ra

ry
am

p
li

tu
d

e
to

m
at

ch
th

e
d

at
a

b
et

w
ee

n
0.

2
an

d
2
h
−
1

7
0

M
p

c.

187





Nederlandse samenvatting

Een mysterieus heelal

We leven in een mysterieus heelal. Volgens de huidige overtuiging, die
gebaseerd is op een groot aantal verschillende waarnemingen, ontstond ons hee-
lal 13.7 miljard jaar geleden uit de oerknal (Big Bang). Het heelal was toen
onvoorstelbaar heet, dicht en klein. Er volgde een lange periode waarin het hee-
lal uitzette en afkoelde, een periode die nog steeds gaande is. Na 380 duizend
jaar was het heelal voldoende afgekoeld om de vorming van waterstof mogelijk
te maken. Daarbij kwam licht met een specifieke frequentie vrij, dat we van-
daag de dag nog steeds kunnen waarnemen: de kosmische achtergrond straling.
De frequentie van dit licht is in de loop van de tijd steeds lager geworden ten
gevolge van de uitdijing van het heelal: we nemen het tegenwoordig waar in
het millimeter regime. Dit licht geldt als een van de belangrijkste bewijzen
dat de oerknal daadwerkelijk heeft plaatsgevonden, en toont ons als het ware
een foto van het heelal op het moment dat waterstof gevormd werd. Dit heeft
ontzettend veel belangrijke informatie opgeleverd over het vroege heelal. Het
laat bijvoorbeeld zien dat het heelal zeer gelijkmatig was, met slechts miniscule
dichtheidsverschillen. Als reden voor deze homogeniteit wordt tegenwoordig
aangenomen dat het heelal een fractie van een seconde na de oerknal voor een
heel korte periode met een explosieve snelheid expandeerde, een proces dat ‘in-
flatie’ genoemd wordt.

Daar waar het heelal ietsje dichter was dan op andere plaatsen, groeiden
kleine inhomogeniteiten en klonterden samen ten gevolge van hun onderlinge
zwaartekracht, en vormden de basis voor de gigantische structuren waaruit later
de sterrenstelsels -zoals onze Melkweg - ontstonden. Bij de vorming van sterren-
stelsels speelde een grote variëteit aan processen een rol: door de zwaartekracht
werd materie uit de omgeving aangetrokken, sterren vormden en straalden grote
hoeveelheden licht uit, massieve sterren ontploften na een kort leven, materie viel
in zwarte gaten waarbij ongelooflijke hoeveelheden energie vrijkwam, reusachtige
gaswolken botsten met hoge snelheid op elkaar, kleine sterrenstelsels vielen in
grotere en werden daarbij door de zwaartekracht uiteen gereten, en ga zo maar
door. De wisselwerking van al deze en nog vele andere processes hebben het
innerlijk en uiterlijk van de sterrenstelsels in het huidige heelal bepaald.

In de observationele kosmologie, de tak van de sterrenkunde waarin dit proef-
schrift thuishoort, proberen we het ontstaan en de ontwikkeling van deze grote
structuren te begrijpen. We willen te weten komen hoe uit die miniscule inho-
mogeniteiten in het vroege heelal, de grote variëteit aan structuur in het huidige
heelal is ontstaan. Welke processen zijn daarbij betrokken geweest, en wat was
hun onderlinge wisselwerking? Waarom zijn er verschillende soorten sterrens-
telsels ontstaan, die ruwweg in twee typen onderverdeeld kunnen worden: de
zogeheten spiraalstelsels, gekarakteriseerd door de aanwezigheid van spiraalar-
men, en elliptische sterrenstelsels, die een zeer gelijkmatige verschijning hebben?
Waarom zijn er meer kleine stelsels dan grote? Hoe zijn deze stelsels verdeeld
in de ruimte? Kortom, kunnen we een model voor de evolutie van het heelal op-
stellen, die het huidige heelal zoals deze is waargenomen correct kan voorspellen?
Dit zijn het soort vragen die men in de kosmologie probeert te beantwoorden.
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Zoals gezegd leven we in een mysterieus heelal. Niet alleen de onstaans-
geschiedenis, maar ook de huidige inhoud van ons heelal stelt ons voor grote
raadsels. Waarnemingen laten zien dat ons heelal maar voor zo’n 4% uit nor-
male ‘baryonische’ materie bestaat. Dit is de materie waar we bekend mee zijn
in het dagelijkse leven, en waar alles wat we in het heelal rechtstreeks kun-
nen waarnemen uit is opgebouwd. De overige 96% is onder te verdelen in 23%
donkere materie en 73% donkere energie. Het label “donker” refereert naar de
eigenschap van deze componenten dat we ze niet direct kunnen waarnemen. Ze
stralen geen licht uit, en absorberen dat ook niet. Waar bestaan ze dan uit, zou
je je kunnen afvragen? Deze vraag houdt kosmologen al jaren bezig, en is nog
steeds niet beantwoord.

Als we de donkere componenten niet kunnen waarnemen, hoe weten we dan
dat ze er zijn? En hoe kunnen we er iets over te weten komen? We kunnen
het bestaan ervan afleiden uit het effect dat deze componenten hebben op hun
omgeving. Donkere materie oefent zwaartekracht uit op zijn omgeving, net als
gewone materie. Dat is dan ook de manier waarop donkere materie is ontdekt:
in de jaren 30 van de vorige eeuw bestudeerde de Zwitserse sterrenkundige Fritz
Zwicky de bewegingen van sterrenstelsels die door de zwaartekracht gebonden
zijn in een grote groep van sterrenstelsels, de Coma cluster. De snelheden van
deze sterrenstelsels waren dusdanig hoog dat je zou verwachten dat de stelsels
uit elkaar zouden vliegen. De massa die de groep van sterrenstelsels zou moeten
hebben om door de zwaartekracht gebonden te blijven, was ruwweg 160 keer
hoger dan de massa die je op basis van de sterrenstelsels aan de totale cluster
zou toewijzen. Er moest dus nog een andere component in het cluster aanwezig
zijn, dat zwaartekracht uitoefende op de sterrenstelsels, maar die je niet kon
zien: donkere materie.

Het karakter van donkere energie is haast volledig tegengesteld aan dat van
donkere materie. Donkere energie wordt verondersteld de veroorzaker te zijn
van de versnelde uitdijing van het heelal. Dat het heelal versneld uitdijt is in
1998 voor het eerst waargenomen door twee verschillende onderzoeksgroepen,
het high-z SN search-team en het Supernova Cosmology Project-team, die beiden
een vergelijkbaar onderzoek uitvoerden. Men gebruikte hiervoor waarnemingen
aan een bepaalde type sterren die, aan het eind van hun leven beland, ont-
ploften, de zogeheten supernova van het type Ia. Een bijzondere eigenschap
van deze supernovae is dat ze een karakteristieke lichtcurve hebben: na de ex-
plosie verandert hun helderheid met de tijd op een specifieke wijze. De vorm
van deze lichtcurve staat in nauw verband met de maximale helderheid van de
supernova. Door deze eigenschap kunnen ze gebruikt worden om de afstand
te bepalen tot sterrenstelsels: wanneer de helderheidscurve van een supernova
is gemeten, en daaruit de maximale helderheid is afgeleid, en deze vergeleken
wordt met de waargenomen helderheid, kan de afstand tot die supernova (en dus
tot het sterrenstelsel waar deze supernova in verblijft) worden bepaald. Door
deze metingen te combineren met de roodverschuiving1 van dezelfde sterrens-
telsels, kon men de uitdijingsgeschiedenis van het heelal achterhalen. Er volgde
een onverwachte conclusie: de ver weg gelegen sterrenstelsels lagen verder weg
dan men zou verwachten op basis van een aangenomen constante expansie van
het heelal, hetgeen betekende dat het heelal versneld uitdijt. De veroorzaker van
deze versnelde uitdijing van het heelal heeft de naam ‘donkere energie’ gekregen.
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Gedurende de laatste jaren is het observationele bewijs voor het bestaan
van donkere materie en donkere energie flink toegenomen. Mede daardoor is
de overgrote meerderheid van de sterrenkundigen ervan overtuigd geraakt dat
deze componenten daadwerkelijk bestaan. Over de aard van donkere materie en
donkere energie bestaat nog veel onduidelijkheid. Het afgelopen decennium zijn
er vrijwel dagelijks nieuwe theorieën ontwikkeld om hun oorsprong te verklaren,
maar tot nog toe heeft geen enkele van deze theorieën geleid tot voorspellin-
gen die bevestigd zijn met waarnemingen. Vooralsnog blijven donkere materie
en energie veelal benamingen van deze twee verschijnselen - het overschot aan
zwaartekracht in- en rondom sterrenstelsels en clusters van sterrenstelsels, en
de versnelde uitdijing van het heelal.

Het onderzoek naar donkere materie en energie is een van de meest actieve
onderzoeksgebieden binnen de sterrenkunde op dit moment. Dit proefschrift is
daar ook een onderdeel van. We beperken ons in dit werk tot het bestuderen van
donkere materie. We onderzoeken de distributie van donkere materie rondom
sterrenstelsels en clusters van sterrenstelsels. We meten de totale hoeveelheid
donkere materie die in sterrenstelsels aanwezig is, en kijken hoe dit afhangt
van de eigenschappen van deze stelsels, zoals bijvoorbeeld de totale hoeveelheid
licht die wordt uitgestraald, of van het type stelsel. Verder kijken we welke
zichtbare eigenschap van een sterrenstelsel de beste indicator is van de totale
massa van de donkere materie die in het stelsel aanwezig is. Ook bestuderen we
hoe de donkere materie rondom sterrenstelsels is verdeeld, of het de verdeling
van sterren volgt, of dat het sferisch symmetrisch is verdeeld, onafhankelijk van
de vorm van het sterrenstelsel. Ten slotte meten we de massa van clusters van
sterrenstelsels, en bepalen hoe dit afhangt van het aantal sterrenstelsels in het
cluster. Al deze metingen geven ons nieuwe informatie over hoe donkere materie
in het heelal is verdeeld, wat bijdraagt aan een beter begrip van dit mysterieus
component.

De onderzoeken in dit proefschrift zijn uitgevoerd met behulp van een bepaal-
de techniek, te weten zwaartekrachtlenswerking. Deze techniek heeft de afgelopen
tien jaar sterk aan populariteit gewonnen, en is nu een van de meest gebruikte
methoden in het onderzoek naar donkere materie en donkere energie. In de
volgende sectie beschrijven we hoe zwaartekrachtslenzen werken.

Zwaartekrachtlenswerking

Het licht van een sterrenstelsel legt een lange weg af voordat het wordt
opgevangen door onze telescopen. Wanneer het licht onderweg in de buurt van
een massief object komt, bijvoorbeeld een cluster van sterrenstelsels, wordt het
aangetrokken door de zwaartekracht van dit object. Ten gevolge hiervan wordt
het licht afgebogen, vergelijkbaar met de werking van een lens (maar veroorza-

1De roodverschuiving geeft aan hoeveel het spectrum van een sterrenstelsel is verschoven
ten gevolge van zijn beweging naar ons toe of van ons af. Omdat het heelal uitdijt bewegen
sterrenstelsels gemiddeld genomen van ons vandaan en lijken daardoor roder. Hoe verder
weg een sterrenstelsel staat, des te sneller beweegt hij van ons vandaan, en des te groter is
zijn roodverschuiving. Het licht van verder weg gelegen sterrenstelsels is ook langer onderweg
geweest, en het heelal was dus jonger toen het werd uitgezonden. Kortom, hoe verder weg
een sterrenstelsel staat, des te groter is zijn roodverschuiving, en des te jonger het heelal toen
het licht werd uitgezonden. De roodverschuiving is daarmee ook een maat voor de leeftijd die
het heelal had toen de sterrenstelsels hun licht uitzonden.
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Figuur 6.10: De lichtstralen van een ver weg gelegen sterrenstelsel (de bron)
worden onderweg naar de aarde afgebogen door een zwaar object (de lens). De
waarnemer op aarde neemt een vervormd sterrenstelsel waar.

akt door een andere reden!). Daarom wordt dit effect zwaartekrachtlenswerking
genoemd. In Figuur 6.10 illustreren we dit proces. Het massieve object dat
de afbuiging veroorzaakt wordt de lens genoemd, het stelsel wiens lichtstralen
worden afgebogen de bron.

Lichtstralen die dichter langs de lens passeren, worden meer afgebogen om-
dat de zwaartekracht lokaal sterker is. Alle lichtstralen van de bron worden dus
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Figuur 6.11: Een voorbeeld van een zwaartekrachtlens, gefotografeerd door de
Hubble ruimtetelescoop. De grote ovaalvormige sterrenstelsels in de voorgrond
zijn erg zwaar en vervormen daardoor de beelden van de sterrenstelsels die
erachter liggen tot dunne slierten.

een beetje anders verbogen. Hierdoor verandert de schijnbare vorm van de bron:
de vorm die wij waarnemen, is niet de echte vorm van de bron - de vorm die
we zouden waarnemen als er geen zwaartekrachtlens aanwezig was. Wanneer
de lichtstralen van de bron vlak langs de lens scheren, en de lens erg zwaar is,
kunnen deze vervormingen grote vormen aannemen. In extreme gevallen kan
het beeld van de bron tot een lange boog uiteen getrokken worden, zodat het
niet meer herkenbaar is als een sterrenstelsel. Een voorbeeld hiervan laten we
in Figuur 6.11 zien. Dit effect wordt ook wel ‘sterke zwaartekrachtlenswerking’
genoemd.

Op grotere afstand van de lens zijn de vervormingen van daarachter gele-
gen sterrenstelsels minder spectaculair, maar ze zijn nog steeds aanwezig. De
zwaartekrachtlenswerking in dit regime wordt ‘zwakke zwaartekrachtlenswerk-
ing’ genoemd. In tegenstelling tot het ‘sterke zwaartekrachtlenswerking’ signaal,
dat alleen in uitzonderelijke gevallen rondom massieve sterrenstelsels is waar te
nemen, hebben alle sterrenstelsels een ‘zwakke zwaartekrachtlenswerking’ op de
vormen van erachter gelegen sterrenstelsels. Het effect op een enkele bron is
echter te klein om te zien. De reden is dat alle bronnen ook een intrinsieke vorm
hebben. Als ze slechts een klein beetje van vorm veranderen, kunnen we dus
niet vaststellen of ze door de zwaartekrachtlens van vorm zijn veranderd. We
weten echter dat de gemiddelde vorm van een sterrenstelsel rond is. Wanneer
we nu de waargenomen vormen van duizenden bronnen middelen rondom een
gegeven lens, dan middelen hun intrinsieke vormen weg. Wat we overhouden is
de vervorming ten gevolge van de zwaartekrachtlens. De meeste sterrenstelsels
hebben echter niet voldoende sterrenstelsels in de achtergrond. Om deze re-
den wordt het signaal rondom honderden tot duizenden zwaartekrachtslenzen
gemiddeld. Gezamenlijk hebben deze sterrenstelsels voldoende bronnen om het
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signaal meetbaar te maken. We kunnen dus niet het ‘zwakke zwaartekrachtlens’
signaal van een individueel sterrenstelsel meten, maar wel het gemiddelde signaal
van een bepaalde set van sterrenstelsels. Wanneer we nu de lenzen zo selecteren
dat ze allemaal dezelfde eigenschap hebben, bijvoorbeeld allemaal een vergelijk-
bare helderheid, kunnen we het gemiddelde signaal van een bepaald type lens te
weten komen. Zelfs van heel kleine en niet massieve sterrenstelsels is de zwakke
zwaartekrachtlenswerking te meten, zolang we maar voldoende lenzen hebben
om over te middelen.

Het signaal van zwaartekrachtslenzen kan direct vertaald worden naar de
verdeling van materie rondom een lens. Niet alleen gewone ‘baryonische’ ma-
terie, maar ook donkere materie oefent zwaartekracht uit op de lichtstralen van
bronnen. Met de zwaartekrachtlenswerking kunnen we dus de verdeling van alle
materie rondom sterrenstelsels meten. Als we het signaal meten als een functie
van de afstand tot de lens, kunnen we bepalen hoe de verdeling van alle ma-
terie rondom sterrenstelsels van de straal afhangt. Dit stelt ons in staat om de
gemiddelde totale massa van een bepaald type lens te bepalen. Ook kunnen we
de verdeling van de totale materie vergelijken met de verdeling van de sterren.
Dit stelt ons in staat om te bepalen waar de donkere materie zich ophoudt.

Het gebruik van zwaartekrachtslenzen heeft verscheidene voordelen ten op-
zichte van andere methoden die de totale massa van sterrenstelsels bepalen.
Het signaal dat we meten kan direct worden omgezet in een massa distribu-
tie. Andere methoden zijn gebaseerd op verscheidene aannames, die niet in
alle gevallen correct zijn en kunnen leiden tot verkeerde conclusies. Een tweede
groot voordeel is dat het signaal van zwaartekrachtslenzen tot op grote afs-
tand van de lens te meten is, terwijl andere methoden beperkt zijn tot kleine
schaal. De verdeling van materie op zulke grote afstanden tot de lens geeft veel
extra inzicht in de formatiegeschiedenis van sterrenstelsels. Ten slotte is het
zwaartekrachtlens signaal voor alle type sterrenstelsels te meten, en zijn andere
methoden vaak beperkt zijn tot een bepaald type sterrenstelsel.

Om het ‘zwakke zwaartekrachtlens’ signaal te meten, moeten we de vor-
men van duizenden sterrenstelsels nauwkeurig meten. Dit vereist waarnemingen
van grote delen van de hemel, met een lange integratietijd om ook de vormen
van zwakke en ver weg gelegen sterrenstelsels te kunnen bepalen. Er zijn de
afgelopen jaren verscheidene waarneemprogramma’s uitgevoerd, die een deel
van de hemel hebben waargenomen met als doel de vorm van zoveel mogelijk
sterrenstelsels te bepalen. In dit werk maken we ook gebruik van zo’n waarneem-
programma, te weten de Red-sequence Cluster Survey 2 (RCS2). De RCS2
bestaat uit waarnemingen van 900 vierkante graden van de hemel (de maan is
ongeveer een halve vierkante graad, en de totale hemel beslaat ongeveer 40 000
vierkante graden), die waargenomen zijn in drie verschillende kleurfilters. Met
deze filters kunnen we de helderheid van sterrenstelsels in drie golflengte ge-
bieden meten, en daarmee kunnen we hun kleur bepalen. Dit helpt ons om
sterrenstelsels van een bepaald type te selecteren. In totaal zijn er meer dan
20 miljoen sterrenstelsels waargenomen, waarvan de vormen zijn bepaald. Deze
vormen vormen de basis voor dit proefschrift.
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Dit proefschrift

Dit proefschrift gaat over het bepalen van de massaverdeling van alle materie
rondom sterrenstelsels en clusters van sterrenstelsels in de RCS2, door middel
van het meten van hun zwakke zwaartekrachtlenswerking op de vormen van er-
achter gelegen sterrenstelsels. In hoofdstuk 2 beschrijven we de RCS2, en de
methode die we gebruikt hebben om uit de waarnemingen de vormen van alle
waargenomen sterrenstelsels te halen. Verder presenteren we enkele tests om ons
ervan te vergewissen dat de catalogi met de vormen van sterrenstelsels die we
gebruiken van voldoende kwaliteit is. In hoofdstuk 3 gebruiken we deze vormen
om de zwakke zwaartekrachtlenswerking rondom een set van 17 000 sterrens-
telsels te meten. Deze sterrenstelsels zijn ook in een ander waarneemprogramma
waargenomen (in de Sloan Digital Sky Survey, SDSS). We hebben daardoor veel
extra informatie beschikbaar voor deze stelsels, zoals een nauwkeurige schatting
van hun roodverschuiving, een bepaling van het type stelsel, hun helderheid en
hun stellaire massa (de totale massa aanwezig in sterren), informatie die we
anders niet uit de RCS2 hadden kunnen halen. We verdelen deze stelsels in
verschillende kleinere sets, onder meer als een functie van helderheid en stellaire
massa, en meten het gemiddelde zwaartekrachtlens signaal van elke set om hun
gemiddelde massa te bepalen. We vinden onder meer dat spiraalstelsels van
een gegeven helderheid minder zwaar zijn dan elliptische stelsels van dezelfde
helderheid. Verder vinden we dat de totale massa van spiraalstelsel en elliptis-
che stelsels met een lage stellaire massa vergelijkbaar is, maar voor een hoge
stellaire massa vinden we dat de elliptische stelsels zwaarder zijn.

Hoofdstuk 4 is een vervolg op hoofdstuk 3. We gebruiken dezelfde set
van lenzen, maar nu om een andere vraag te beantwoorden, te weten: welke
waarneembare eigenschap van sterrenstelsels is het nauwst gerelateerd aan hun
zwaartekrachtlens signaal? Deze vraag is belangrijk in de context van de for-
matie van sterrenstelsels; het vertelt ons welke waarneembare eigenschap het
nauwst samenhangt met de verdeling van donkere materie, en dus het minste
verstoord is door andere processen. We vergelijken drie verschillende eigenschap-
pen van sterrenstelsels: de model snelheidsdispersie, de waargenomen snelhei-
dsdispersie en de stellaire massa. De snelheidsdispersie is een maat voor de
snelheid waarmee sterren in het centrum van sterrenstelsels bewegen. De model
snelheidsdispersie is een schatting van de snelheidsdispersie, die gebaseerd is
op andere eigenschappen van een sterrenstelsel, zoals zijn grootte en stellaire
massa. De model snelheidsdispersie komt goed overeen met de waargenomen
snelheidsdispersie voor elliptische sterrenstelsels, en daarom kijken we in dit
hoofdstuk alleen naar dit type sterrenstelsel. We vinden dat de waargenomen
snelheidsdispersie en de stellaire massa evengoed schalen met het signaal van
de zwaartekrachtslenzen. De model snelheidsdispersie is echter minder nauw
gerelateerd, wat veroorzaakt kan worden door een buiten beschouwing gelaten
afhankelijkheid van het signaal van bijvoorbeeld de grootte van een sterrens-
telsel.

In hoofdstuk 5 proberen we de vorm van de verdeling van donkere materie
rondom sterrenstelsels te meten. Een eventuele meting van dit effect is van groot
belang voor verschillende andere onderzoeksgebieden, waaronder de studie hoe
sterrenstelsels ten opzichte van elkaar georienteerd zijn. Wanneer een sterrens-
telsel in een elliptische donkere materie halo zit, die dezelfe orientatie heeft, dan
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wordt het zwaartekrachtlens signaal rondom het sterrenstelsel asymmetrisch.
Dit is echter een zeer zwak effect, en om het te meten middelen we het signaal
over drie sets met zeer veel lenzen. De eerste set bestaat uit zo’n 100 000 zeer
heldere elliptische stelsels, de tweede set uit ongeveer evenveel spiraalstelsels,
en de derde set bestaat uit 1.6 miljoen normale sterrenstelsels, en mengsel van
allerlei soorten stelsels die het gemiddelde sterrenstelsel in het heelal represen-
teert. We vinden een zwakke aanwijzing dat het gemiddelde sterrenstelsel in
een elliptische donkere materie halo zit, die dezelfde orientatie heeft. Voor de
spiraalstelsels vinden we een zeer kleine aanwijzing dat hun donkere materie
halo ge-anti-alinieerd is, dat wil zeggen dat de vorm van het sterrenstelsel en de
donkere materie halo 90 graden ten opzichte van elkaar staan. We bestuderen de
invloed van verschillende mogelijk verstorende complicaties op deze metingen,
en geven schattingen van de grootte van hun invloed op het signaal.

In het laatste hoofdstuk van dit proefschrift, hoofdstuk 6, maken we gebruik
van een catalogus van clusters van sterrenstelsels in de RCS2 die door col-
lega’s beschikbaar is gesteld. Deze clusters zijn verdeeld over een grote bereik
in afstand (tussen roodverschuiving 0.2 < z < 1.2), en daarmee leeftijd. Dat
maakt deze cluster catalogus zeer geschikt voor het bestuderen van de formatie
en evolutie van clusters. Om deze evolutie te kwantificeren, meten we de re-
latie tussen de ’richness’ van een cluster, een schatting van het totale aantal
sterrenstelsels dat bij een cluster hoort, en de massa, die we bepalen door de
zwaartekrachtlenswerking van de clusters te meten. We vinden dat de relatie
tussen de massa en de richness van clusters in het huidige heelal anders is dan die
van een paar miljard jaar geleden. Clusters die slechts uit enkele sterrenstelsels
bestaan, zijn in de tussentijd tot wel twee keer zwaarder geworden. Clusters
die uit tientallen leden bestaan, zijn daarentegen gemiddeld genomen weinig in
massa veranderd. We bespreken enkele effecten die deze waargenomen trend
kan verklaren, onderverdeeld in mogelijke observationele en fysiche effecten.

196



Curriculum Vitae

Volgens de overleveringen ben ik op 23 februari 1984 in Groningen geboren. Op
12 jarige leeftijd ging ik naar het Praedinius gymnasium in Groningen, waar ik
6 jaar later met goede herinneringen en een diploma op zak weer vertrok in de
richting van Leiden om sterrenkunde te gaan studeren. Eenmaal aangekomen
werd ik lid van Minerva, ging op Der Wilde Kaiser wonen, volgde vakken kun-
stgeschiedenis, klassieke muziek, Spaans en Hebreeuws, haalde mijn motorrijbe-
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