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preface

sues, and organisms. The last decade has marked the rise of systems biology owing to ad-

vancements in high-throughput techniques for genetic manipulation and measurement of
cellular activities, such as genome-wide microarrays and next-generation sequencing. The advent
of these technologies enabled scientists to progress beyond studying individual genes and come
to a global understanding of the interplay between different elements of the cell. Despite the
encouraging progress in systems biology, the high-dimensional and heterogeneous nature of bio-
logical data poses significant challenges for rigorous analysis and meaningful interpretation. For
instance, differences in experimental design (such as phenotype, response, treatment, and timed
events) or technical artefacts (introduced during sample preparation or data processing) compli-
cate data integration and modelling. Notably, stochastic gene expression, even among isogenic
cells, creates a source of variability at single-cell level that underlies diversified protein synthesis
(Kaern et al., 2005; Kaufmann and van Oudenaarden, 2007; Ozbudak et al., 2002; Blake et al.,
2003; Paulsson, 2004; Sigal et al., 2006). For instance, To and Maheshri (To and Maheshri, 2010)
have shown that high or low gene expression can spontaneously be controlled by the systematic
noise. This phenomenon can result from intercellular variations at the level of pathways that
regulate gene expression (extrinsic noise) or arise from the random production of mRNA and
bursts of protein synthesis (intrinsic noise) due to chance in interaction between cellular com-
ponents. For example, genes responding to environmental stress exhibit higher level of extrinsic
noise while the most robust genes regulate translation and protein degradation (Bar-Even et al.,
2006; Newman et al., 2006). Thus, a full accounting of effect sizes provides crucial information on
pathways and mechanisms that regulate transcriptional changes.

E ; ystems biology is the study of complex interactions between different elements of cells, tis-

To tackle technical bottlenecks and arrive at biologically interpretable results, several classes of
methodology have been developed, ranging from correlative approaches to those aimed to infer
causal relationships. Correlation-based statistical analyses seek to identify the most prominent
candidates (genes, proteins, transcription factors, or metabolites) for follow-up studies. How-
ever, the use of statistical tests that classify data points into ‘changed’ or ‘unchanged’ dismiss
potentially important information on a wide range of effect sizes. Other strategies focus on the
inference of modules of functionally related entities and their joint association with a biological
response. Owing to the coupling and coordination of transcriptional regulation (Maniatis and
Reed, 2002; Soller, 2006), rather than being independent, these modules can link the overall be-
haviour of a system to the interactions between its components. Thus, the use of such mathemati-
cal models can lead to the identification of prominent molecular pathways and multi-gene panels
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wanderers studying the complex inner workings of the universe. For a panel of researchers tack-
ling a biological question having all the tools and techniques in hand, unknown degrees of com-
plexity make the identification of what is before them far from trivial.

To improve our methods for eliciting causal mechanisms, the use of systems with similar proper-
ties can serve as prior knowledge for benchmarking. This prior knowledge could compensate for
the inherent sparseness and noisiness of high-dimensional biological data and improve precision
and accuracy of their interpretation. In addition, the use of data from organisms with identical
genetic background, living under controlled experimental and environmental conditions, is pre-
ferred as it results in inherently lower levels of noise and stochasticity. Integration of data from a
number of model organisms may, therefore, advance the understanding of more complex biologi-
cal systems. The development of strategies for robust translation of findings from one organism
to another constitutes the core of this thesis. In this introduction, I outline alternative methods
for inference of biologically relevant relationships, ranging from simple searches in biological
modules to data-mining, machine learning, and modelling of Bayesian networks.

Data integration

Data integration consists of efforts in combining multiple datasets to provide a unified view of
biological information. There is a necessity for data-mining that goes beyond the analysis of in-
dividual datasets. Hence, consensus and precision in biological interpretation can be reached
only through another source of information (Tenenbaum et al., 2011). Integration of data and
genomic information from multiple experiments can ultimately provide significant mechanistic
insights on genomic, transcriptomic, proteomics, metabolomics, and epigenomic changes that
give rise to specific phenotypes at the molecular, cellular, or organismal level (Figure 1). None-
theless, the process of data integration requires a fine tuning and vigorous setting for optimal
precision of findings. Various data integration strategies, at different levels, can potentially offer
different views on the same biological information. High-level integration methodologies, such
as meta-analyses, are dependent on filtering protocols (i.e. selection of differentially expressed
genes as input) with basic assumptions which can lead to loss of biological information. Never-
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theless, these approaches are useful for obtain-
ing a gross overview over the data (Ficenec et
al.,, 2003). In contrast, low-level approaches,
such as data-mining, can facilitate the use of
mutual information to gain better power in
retrieving valuable information (Choi et al,
2004). Multi-layer integration of biological
data may offer the best of both strategies. This
approach provides a framework in which the
influence of platform- or experiment-specific
noise (Aitchison and Galitski, 2003) can be
reduced since it reinforces the mutual infor-
mation standing out above uncorrelated noise
(Choi et al., 2004; Jiang et al., 2004).

Ups and downs at the transcriptome

The work presented in this thesis is largely
confined to transcriptome data analyses. The
amount of mRNA in the cell is finely regu-
lated in a spatial-temporal manner to ensure
cellular homeostasis. The centrality of RNA
processing (Sharp, 2009), together with the
comprehensive nature of current RNA expres-
sion profiling approaches, makes transcrip-
tome data ideal for modelling of biological re-
sponses. Nevertheless, transcriptome analyses
disregard important levels of regulation at the
translational and post-translational level. Re-
cent studies have demonstrated rather poor
correlations between mRNA and protein levels
(Guo et al., 2010; Selbach et al., 2008).

The study of the transcriptome, in particular
that of higher eukaryotes, is complicated by
extensive RNA processing steps which give
rise to different transcript variants. RNA pro-
cessing events, such as splicing (Cooper et al.,
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Figure 2 — Schematic overview of RNA processing
and its regulation. A single gene can generate pre-
mRNAs that are alternatively processed to generate a
diverse set of mature mRNAs. These isoforms can dif-
fer in inclusion of exons (alternative splicing) and the
polyadenylation sites in the 3' UTR (alternative polyad-
enylation). Alternative protein-coding regions are de-
picted as mutually exclusive splicing of the third exon
and selection of one of the two possible poly(A) sites
(pPA1 and pA2). Alternative splicing, for instance, can
lead to coding frame-shifts which results in degrada-
tion of MRNA by nonsense-mediated decay pathway.
On the other hand, elongation of the 3" UTR can alter
the range of regulatory elements such as microRNAs
(miRNA) targeting the transcript to be subjected to dif-
ferent forms of post-transcriptional regulation, in this
case inhibition. Additional events, such as selection
of alternative first exons, can further diversify the pool
of mRNAs.

2009; Wahl et al.,, 2009), polyadenylation (Lutz, 2008), RNA editing (Bass, 2002; Wulff et al.,
2011) and other post-transcriptional modifications, widely expand the mRNA pool and, there-
fore, coding of an even more diverse set of functional proteins and RNA species (Figure 2). These
events are vital for many physiological and pathophysiological processes. This may explain some
of the relatively diverse phenotypic characteristics of human and chimpanzee that share 99.7%
identical sequence in genome-coding regions (Calarco et al., 2007). In humans, more than 90% of
genes are alternatively spliced in a tissue and cell-specific manner (Wang et al., 2008a). Like regu-
lation of transcription, post-transcriptional processes are tightly controlled. For instance, there
is an important regulatory role for microRNAs on mRNA stability and translational efficacy (Fil-
ipowicz et al., 2008) and epigenetic changes mediated by non-coding RNAs (Wang et al., 2008b;
Cam et al.,, 2009). The integrity of these processes are controlled by mRNA stability and turnover
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machineries (Houseley and Tollervey,
2009) as abnormal RNA processing can
lead to futile or ultimately lethal function
of encoded protein. Hence, the study of
transcriptional and post-transcriptional
control of mRNA expression is essential
for a better understanding of physiology
and pathophysiology. Furthermore, the
comparison of transcriptome profiles
from different cell types and organisms
can help determining the frequency of
alternative processes and the extent to
which it is subjected to species- or tissue-
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and RNA-Seq (next-generation RNA
sequencing) are currently the most im-
portant technologies for transcriptome
profiling (Figure 3). Microarrays have
become one of the most commonly used
tools in transcriptomics studies owing to
their cost-efliciency and speed in simul-
taneously measuring thousands of gene
transcripts. In addition, microarrays
have been designed with distinct features
to address the RNA complexity such as
exon-junction arrays for capturing dif-
ferential splicing events (Johnson et al.,
2003). Despite their obvious potency, microarrays are limited by gene annotations and can only
detect known transcripts for which microarray probes have been designed, whilst novel tran-
scripts and transcript variants will be missed. Moreover, the technical noise in microarray signals,
being dependent on probe hybridization and annealing properties, is relatively high. This nega-
tively affects data reproducibility and cross-platform and sample comparisons (Ioannidis et al.,
2009). RNA-Seq, on the other hand, generates millions of reads and has the potential to measure
the complete transcriptome including alternative splicing and polyadenylation, and RNA editing
events (Pan et al., 2008; Wang et al., 2008a). Nevertheless, RNA-Seq analysis strategies are cur-
rently under development as exact quantification of the relative abundance of different transcript
variants remains challenging.

reference genome
Meaurement of the and coverage count
fluorescent intensity for transcripts

\_l_l

Transcriptome analysis

.

Knowledge
Discovery
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Figure 3 — Workflows for transcriptome analysis. Micro-
array and RNA-Seq are the most common high-throughput
techniques for transcriptome profiling. The main character-
istics of microarrays and RNA-Seq for transcriptome studies
are listed. The general pipeline for conducting a transcrip-
tome study involves recurring steps of experimental design,
data processing, statistical analysis and network inference,
and the validation of findings.

Rewiring regulatory networks in biology

Biological processes do not occur by isolated genes or proteins but act through functional regula-
tory networks. The degree to which gene products appear in the cell and exert their function is
regulated by such biological networks. Therefore, the implications of gene defects would not be
restricted to the activity of specific gene products but can have many severe effects by spread-
ing along sub-network structures (Barabasi et al., 2011). This interconnectivity implies that the
identification of regulatory networks and understanding the evolution and structural features
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Figure 4 — Schematic illustration of biological net-
works. A) Co-expression networks can be construct-
ed under various constraints and settings. A cluster
of ten nodes can be interconnected on the basis of
their nearest neighbours, depicted as a ring. Fully
connected networks of ten nodes represent a cluster
of fully interconnected nodes where all nodes are co-
expressed. Co-expression networks can also be rep-
resented as connected modules. Here, a cluster of ten
partially connected nodes (black) are linked to a clus-
ter of six partially connected nodes (white) through two
independent nodes (gray). B) A Bayesian network that
encodes a joint distribution is very flexible and can be
constructed in different architectures based upon the
data analysis task: Bayesian networks, Bayesian clas-
sifiers (these networks include a class node, depicted
by C, for prediction), dynamic Bayesian networks
(these networks support time-series where nodes rep-
resent variables at a point in time), and hidden Markov
model (these networks can handle unmeasured infor-
mation by incorporating a hidden or latent variable,
depicted by H).
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of specific networks are vital for better under-
standing the phenotypic impacts of genetic de-
fects and the associated complications (Schadt,
2009; Goldstein, 2009; Karlebach and Shamir,
2008). Thus, as genetics is aimed to answer the
question of ‘what, network-based models are
designed to go one step beyond by tackling the
question of ‘how’.

Network-based approaches have transformed
the field of systems biology. These approaches
are mainly expression-centric and can be clas-
sified into two types of module inference and
transcription regulatory network. The first
type of analysis involves the study of co-ex-
pression networks (Figure 4A). This compris-
es the identification of functional relationships
between genes under the assumption that
genes with similar function exhibit interrelat-
ed expression patterns and can be described as
a functional module (Stuart et al., 2003). These
methods require careful interpretation as they
are highly sensitive to noise. Such models are
biased towards identification of relationships
between genes that are tightly co-expressed
and disregard those that do not exhibit suffi-
cient co-expression profiles with other genes
(Michoel et al., 2009). It is important to bear
in mind that correlation does not imply causa-
tion. This issue can be partially addressed by
the use of time-series data. In the second type
of approach, methods go one step further by
taking into account the sense of similarity, rep-
resentativeness, and randomness of biological
data. These models can accommodate hidden
variables, assess the causality of relationships
and, most importantly, provide reasoning
and predictions for unseen data (Figure 4B).
Nonetheless, these models are prone to overfit-
ting and generation of multiple probable solu-
tions that can be circumvented by the use of
multiple independent datasets.

The use of prior knowledge about functional
interactions has been shown to successfully

reduce the search space and to make networks more robust (Segal et al., 2003; Peer et al., 2002;
Steele et al., 2009). This method works for well-studied diseases or biological systems, but is
less likely to identify novel regulatory interactions that are involved in the underlying molecu-
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lar mechanisms of rare or complex dis-
orders. In addition, this bias can falsely
expose the network to sample differences
in the absence of a biological cause. In
this thesis, the unbiased use of indepen-
dent datasets from different organisms
as prior knowledge is further explored
(Figure 5A). Modular structure of regu-
latory networks (Ma et al., 2004) and
largely conserved functional properties
of genes across species provide a detailed
framework for identification of relation-
ships that are conserved across species.
It was hypothesized that relationships
that are identified in an interspecies gene
network are also biologically more mean-
ingful. Furthermore, they result in more
reliable identification of key players in
biological processes under study. How-
ever, translation of regulatory networks
across different platforms or organisms is
far from trivial. This is evident from our
limited knowledge of true protein ortho-
logues and transcript variants coding for
proteins with similar functions in differ-
ent species. For this, new algorithms and
optimization techniques needed to be
developed (Chapter four and five).

’\/\/\.v-/\/vv Full
A D ........ ._—Il Data
——
ty .. o e .l
Time series Cross species

gy

Orthology

Resampling
=
g3
-5
w
H

Scores and
Evaluation
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Data integration Network

Figure 5 — Bayesian regulatory networks in computation-
al biology. A) Interspecies (or inter-platform) integration can
be achieved by taking into account the many-to-many rela-
tionships of orthologue genes/transcripts (depicted by cir-
cles). Depending on the technology used for generating bio-
logical data, the information and coverage on the possible
orthologues and their transcripts varies (depicted in gray).
B) The process of building a prediction model involves parti-
tioning data into training and test folds at random. Next, after
constructing and tuning the parameters, models are tested
on the test data. This process is repeated by resampling
from the full data until all partitions are used for building and
testing the models. The consensus network can be reached
by averaging and assessing all the constructed models. A
number of different computational techniques can be used
to optimise the partitioning, building, and averaging these
networks. The consensus model, the key nodes, and the
predictions can reveal new biological insights.

Among the possible approaches for modelling of biological networks, Bayesian networks have
certain advantages as they are able to deal with uncertainties and stochastic effects (Pearl, 1988;
Friedman, 2004; Friedman et al., 2000; Segal et al., 2003). A Bayesian network can encode gene
interaction by modelling the joint probability distribution that represents possible transcriptional
behaviour for a set of genes. It consists of a directed acyclic graph (DAG) that denotes condi-
tional independencies and a conditional probability distribution for each gene (represented by a
node in the graph). These networks can represent complex relationships between genes and are
capable of integrating different types of data (from phenotypic and genotypic categorical data to
continuous gene expression profiles). In addition, the probabilistic nature of such networks can
easily accommodate noise or missing data by weighting each information source according to its
reliability. In contrast to many statistical models, the transparent nature of Bayesian networks (in
terms of the graphical structure and local probability distributions) leads to better interpretation
and understanding of the underlying biological processes. The combination of a rigorous training
and testing regime (including cross-validation which is a statistical method for assessing the per-
formance of a fitted model in predicting the observation made on unseen data) and optimization
procedures (such as simulated annealing) can lead to the inference of reliable network structure
(Figure 5B).
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Figure 6 — Complexity pyramid, from individual
to mutual. The bottom of the pyramid represents
the functional components of the cell for which
high-throughput biological data are produced
(level 1). The next layer brings complex regulatory
motifs (level 2) function in a highly spatial-temporal
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global organisation of living organisms. Although
the individual elements of these networks can be
unique to a given organism, the topologic prop-
erties of module networks share a high degree of
similarities.

Regulatory motifs

Genes mRNA Proteins Metabolites

Information

Model systems and the study of human diseases

Biomedical research has evolved around model organisms which have played a central role in the
studies of human disorders. In spite of growing achievements in genome-wide association studies
and whole-genome profiling, genetic studies of human diseases are significantly limited owing to
factors such as environmental influences and genetic heterogeneity. The challenges posed by hu-
man genetic research can potentially be circumvented in model organisms. This is due to much
simplified and experimentally traceable system that provides unbiased environment for char-
acterization of genetic data (Aitman et al., 2011). Nevertheless, model systems have their own
limitations and cannot fully replace the human data as genetic architecture and complex traits,
such as epigenetic and environmental effects, are hard to replicate in model organisms. Moreover,
genetic engineering may introduce significant artefacts. Thus, data from model organisms should
be interpreted with care. In addition, the use of multiple model organisms may be necessary to
identify the most prominent and disease-related molecular mechanisms that can be projected on
human data with high precision. The design of such integrative strategies would bridge the gap
between less noisy data from model systems to more stochastic human biology.

As model systems, along with high-throughput transcriptional profiling, continue to transform
the study of human disorders, novel algorithms are needed to capture, characterize, and model
the hierarchy and dynamics of biological data (Figure 6). It is clear that attentive modelling and
optimization of integration strategy would ultimately serve as a powerful system for knowledge
discovery in the study of human genetic disorders.

Oculopharyngeal muscular dystrophy

In this study, I have focused my efforts on the improved understanding of disease mechanisms in
oculopharyngeal muscular dystrophy (OPMD). OPMD is an autosomal dominant and late-onset
disorder, usually manifest in midlife (after the age of 40). OPMD symptoms are progressive and
characterised by ptosis, dysphagia, and weakness of proximal limb (Figure 7). As the disease pro-
gresses, muscle weakness can spread to additional skeletal muscles such as facial muscle weak-
ness, tongue atrophy, and dysphonia (Brais and Rouleau, 1993). In some OPMD patients, reports
have indicated mental retardation, cognitive impairment, spinal cord involvement, and dementia
as additional symptoms (Millefiorini and Filippini, 1967; Sarkar et al., 1995; Blumen et al., 2009;
Linoli et al., 1991; Mizoi et al., 2011; Dubbioso et al., 2011). In spite of these observations, the
main OPMD symptoms are restricted to voluntary muscles. However, the degree to which these
muscles are affected and the associated age of onset is variable. Nevertheless, by the time the dis-
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Figure 7 — Schematic characterisation of oculopharyngeal muscular dystrophy. A) OPMD symptoms
are mainly restricted to skeletal muscles. B) Divers prevalence rates of OPMD estimated in different popula-
tions. Worldwide prevalence is estimated to be 1:100,000. C) Penetrance (%) and progression rate of OPMD
is depicted. D) Overview of genetic information for the PABPN1 and pathogenic mutations.

ease is progressed, the quality of life is greatly affected as ptosis can cause visual limitations, dys-
phagia may lead to aspiration pneumonia and weight loss, and patients with proximal limb weak-
ness can eventually be wheelchair bound. OPMD is a rare disorder with estimated prevalence of
1 in 100,000 in western countries (Fan and Rouleau, 2003). However, there is a vast diversity of
prevalence between different populations (Pulkes et al., 2011; Brais and Rouleau, 1993; Semmler
etal.,, 2007; Uyama et al., 1997; Maksimova et al., 2007; Puzyrev and Maximova, 2008; Agarwal et
al,, 2012). In some isolated populations the incidence is much higher, among which the Bukhara
originated Jewish community (1 in 600) and French-Canadian populations (1 in 1000) have the
highest prevalence (Brais et al., 1995; Blumen et al., 1997).

OPMD is caused by expansion of a homopolymeric alanine (Ala) stretch at the N-terminus of
the Poly(A) Binding Protein Nuclear 1 (PABPN1) (Brais et al., 1998). While wild-type PABPN1
contains a (GCN), repeat within the first exon, in the mutated form it holds an expanded repeat
of (CGN),, ,, that leads to 2-7 additional Ala residues. The most frequently occurring mutation
is estimated to be the expansion of the GCG from 6 to 9 repeats whilst other mutations (such as
the combination of GCA and GCG expansions) have also been reported (Nakamoto et al., 2002;
Scacheri et al., 1999; Robinson et al., 2006). The PABPNI gene is located on chromosome 14q11.2
and has 8 splice variants, 5 of which encode functional proteins (Figure 7). The encoded pro-
tein localizes mostly in the nucleus and to a lower extent in the cytoplasm. Within the nucleus,
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PABPNI is enriched in nuclear speckles (subnuclear structures that are enriched in pre-mRNA
and are located in interchromatic regions). Wide-type PABPN1 has multiple roles in mRNA pro-
cessing, stability and translation, among which the role of PABPN1 in mRNA polyadenylation
has been extensively studied (Kuhn et al., 2009; Wahle, 1991; Wahle, 1995; Apponi et al., 2010).
PABPNI1 protein is also involved in the export of mRNAs from the nucleus to the cytoplasm (Ap-
poni et al., 2010; Calado et al., 2000a; Brune et al., 2005).

The underlying molecular mechanisms by which the mutated PABPN1 causes progressive muscle
weakness are not fully understood. In spite of the ubiquitous expression of PABPN1, the clinical
and pathological features of OPMD are initially restricted to a subset of skeletal muscles. The
wild-type and expanded PABPN1 (expPABPNI1) are prone to aggregation (David et al., 2010;
Klein et al., 2008). PABPN1 accumulates in intranuclear inclusions (INT) in 1-3% of myonuclei
(Tome and Fardeau, 1980; Calado et al., 2000b). To better understand the molecular mechanisms
leading to OPMD, animal models for OPMD were generated in Drosophila, mouse and C. el-
egans with high overexpression of expPABPN1 under a muscle-specific promoter (Chartier et al.,
2006; Davies et al., 2005; Catoire et al., 2008). These model systems recapitulate INI formation
and progressive muscle weakness observed in OPMD. A correlation between INI formation and
muscle weakness has been reported in these models (Chartier et al., 2006; Davies et al., 2005;
Catoire et al., 2008). In addition, it has been shown that protein disaggregation approaches can
attenuate muscle symptoms in OPMD model systems (Davies et al., 2006; Catoire et al., 2008;
Chartier et al., 2009). Nevertheless, in a mouse model with low overexpression of expPABPNI,
muscle symptoms were not observed (Hino et al., 2004). Naturally occurring wild-type PABPN1
inclusions with fibril structures have also been reported in oxytocin-producing neurons (Ber-
ciano et al., 2004; Villagra et al., 2008). In contrast to INI formation in OPMD, the inclusions of
wild-type PABPN1 do not cause a disease. Differing transitional pre-inclusion foci and structural
characteristics have been shown between the wild-type and expanded PABPN1 (Raz et al., 2011).
Therefore, differences in processes that precede the formation of INIs suggest the cytotoxic struc-
ture of the pre-aggregated proteins.

The complexity of the underlying mechanisms and the low prevalence of OPMD call for multi-
disciplinary and combined efforts to decipher disease mechanisms. As the focus of the current
thesis, exhaustive use of the state-of-the-art data-mining strategies and cross-species data in-
tegration can provide a comprehensive, less technically biased, and more accurate mechanistic
insights on the disease pathogenesis. Understanding the underlying causes of OPMD is a key
step toward enabling earlier and more precise diagnosis, prognosis, therapeutic interventions,
and drug discovery.

Thesis overview

In this thesis, I have mainly focused on interdisciplinary approaches for biomedical knowledge
discovery. This required special efforts in developing systematic strategies to integrate various
data sources and techniques, leading to improved discovery of mechanistic insights of human
diseases. Chapter one looks at the possibility in which combining various bioinformatics-based
strategies can significantly improve the characterization of the OPMD mouse model. We discuss
that this approach in knowledge discovery, on the basis of our extensive analysis, helped us to
shed some light on how this model system relates to OPMD pathophysiology in human. In Chap-
ter two, we expand on this combinatory approach by conducting a cross-species data analysis.
In this study, we have looked for common patterns that emerge by assessing the transcriptome
data from three OPMD model systems and patients. This strategy led to unravelling the most
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prominent molecular pathway involved in OPMD pathology. The third Chapter achieves a simi-
lar goal to identify similar molecular and pathophysiological features between OPMD and the
common process of skeletal muscle ageing. Engaging in a study in which the focus was made on
the universality of biological processes, in the light of evolutionary mechanisms and common
functional features, led to novel discoveries. This work helped us to uncover remarkable insights
on molecular mechanisms of ageing muscles and protein aggregation. Chapters four and five
take a different route by tackling the field of computational biology. These chapters aim to extend
network inference by providing novel strategies for the exploitation and integration of multiple
data sources. We show that these developments allow us to infer more robust regulatory mecha-
nisms to be identified while translations and predictions are made across very different datasets,
platforms, and organisms. Finally, I close this thesis by providing an outlook on ways the field
of systems biology can evolve in order to offer enhanced, diversified and robust strategies for
knowledge discovery.
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CHAPTER ONE

Molecular and phenotypic characterization of a mouse
model of oculopharyngeal muscular dystrophy reveals
severe muscular atrophy restricted to fast glycolytic fibres
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ptosis, dysphagia and proximal limb weakness. Autosomal-dominant OPMD is caused
by a short (GCG), ,, expansions within the first exon of the poly(A)-binding protein
nuclear 1 gene (PABPN1), leading to an expanded polyalanine tract in the mutated protein. Ex-
panded PABPN1 forms insoluble aggregates in the nuclei of skeletal muscle fibres. In order to
gain insight into the different physiological processes affected in OPMD muscles, we have used

O culopharyngeal muscular dystrophy (OPMD) is an adult-onset disorder characterized by

a transgenic mouse model of OPMD (A17.1) and performed
transcriptomic studies combined with a detailed phenotypic
characterization of this model at three time points. The tran-
scriptomic analysis revealed a massive gene deregulation in
the A17.1 mice, among which we identified a significant de-
regulation of pathways associated with muscle atrophy. Us-
ing a mathematical model for progression, we have identified
that one-third of the progressive genes were also associated
with muscle atrophy. Functional and histological analysis of
the skeletal muscle of this mouse model confirmed a severe
and progressive muscular atrophy associated with a reduction
in muscle strength. Moreover, muscle atrophy in the A17.1
mice was restricted to fast glycolytic fibres, containing a large
number of intranuclear inclusions (INIs). The soleus muscle
and, in particular, oxidative fibres were spared, even though
they contained INTs albeit to a lesser degree. These results
demonstrate a fibre-type specificity of muscle atrophy in this
OPMD model. This study improves our understanding of the
biological pathways modified in OPMD to identify potential
bio-markers and new therapeutic targets.
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CHAPTER ONE

INTRODUCTION

Oculopharyngeal muscular dystrophy (OPMD) is a late-onset autosomal dominant genetic
disease, characterized by progressive eyelid drooping, swallowing difficulty and proximal limb
weakness in the late stages of the disease. The poly(A)-binding protein nuclear 1 (PABPN1) gene
is mutated in OPMD patients and contains an expanded GCG trinucleotide repeat within exon
1 (Brais et al., 1998). This trinucleotide expansion is translated into a polyalanine tract at the
N-terminus of the PABPN1 protein; in OPMD patients, this tract contains 12-17 alanine re-
peats instead of 10 repeats. PABPN1 with an expanded polyalanine tract forms nuclear aggregates
(Tome et al., 1997). Although PABPNI is ubiquitously expressed, the clinical and pathological
phenotypes are restricted to skeletal muscles in OPMD patients, especially the pharyngeal and
cricopharyngeal muscles (dysphagia), and the levator palpebrae superioris muscle (ptosis of the
eyelid) (Perie et al., 2006).

PABPNI1 is a protein localized in nuclear speckles, which binds with high affinity to poly(A) tails
of mRNAs. PABPN1 promotes the interaction between the poly(A) polymerase and the cleavage
and polyadenylation specificity factor, and controls the length of the poly(A) tail during polyad-
enylation of mRNA (Kuhn et al., 2009; Wahle, 1991; Wahle, 1995; Lemieux and Bachand, 2009).
PABPNI also contributes to the export of mRNA from the nucleus to the cytoplasm (Calado et
al., 2000a; Apponi et al., 2010). The major pathological hallmark of OPMD in intranuclear inclu-
sions (INIs) characterized by tubular filaments (Tome et al., 1997). It has previously been demon-
strated that these INIs contain a large number of nuclear factors such as ubiquitin, subunits of the
proteasome (Calado et al., 2000b), molecular chaperones HSP70 and HSP40 (Abu-Baker et al.,
2003; Tavanez et al., 2009), poly(A) RNA (Calado et al., 2000b), protein involved in mRNA pro-
cessing and transport CUGBP1, SFRS3, FKBP1A, hnRNP A1 and A/B and poly(A) polymerase
(Corbeil-Girard et al., 2005; Fan et al., 2003; Tavanez et al., 2005). The exact role of PABPN1 ag-
gregates in OPMD is still under debate. At present, it is still not clear whether the INIs observed
in OPMD skeletal muscles have a pathological or a protective function by acting as a cellular de-
fence mechanism against abnormal proteins. Several studies have suggested a pathological func-
tion of INIs: (i) the INIs could play a major role by sequestering essential cellular components
such as specific mRNAs (Calado et al., 2000b) splicing or transcription factors (Corbeil-Girard et
al., 2005; Fan et al., 2003), (ii) the frequency of INIs in nuclei of muscle fibres is correlated with
the severity of the disease, with a frequency of 2-5% for heterozygous and 10% for homozygous
patients (Blumen et al., 1999) and (iii) the reduction of the INIs in a mouse model by doxycycline
or trehalose (Davies et al., 2006; Davies et al., 2005) or using intrabodies in a drosophila model
(Chartier et al., 2009) improves muscle function. However, several studies have also suggested
that the INIs might just be the result of a cellular defence mechanism and not the direct cause of
the disease: (i) INIs are found both in affected and less-affected skeletal muscles, (ii) Tavanez et al.
(2009) has recently proposed that the expansion alters the protein conformation and changes the
binding properties of interacting proteins independently of the formation of INTs, (iii) the poly-
alanine domain of PABPN1 is not essential for aggregate formation (Tavanez et al., 2005; Chartier
et al,, 2006; Klein et al., 2008) and (iv) it has been suggested that the soluble form of the mutated
PABPN1 is itself pathogenic, whereas the INIs would be a form of cellular protection (Catoire et
al.,, 2008; Messaed et al., 2007).

In order to study the pathological mechanisms underlying OPMD, several in vitro models have
been developed expressing an expanded PABPN1 transgene: transiently transfected COS-7 and
HeLa cells (Abu-Baker et al., 2003; Messaed et al., 2007; Bao et al., 2002), adenovirus-infected
A549tTA cells (Corbeil-Girard et al., 2005) or stably transfected C2 cells (Kim et al., 2001). In
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Figure 1 - A) The KCl-insoluble nuclear aggregates containing expPABPN1 (green) were detected by im-
munostaining on skeletal muscle cryosections from A17.1 mice. The sections of WT mice did not show any
KCl-insoluble aggregates. (red, dystrophin; blue, nuclei; green, PABPN1; magnification x400.) B) The per-
centage of nuclei containing PABPN1 aggregates was determined on skeletal muscle (TA) cryosections from
6 (T1), 18 (T2) or 26 (T3) weeks old A17 mice (n = 3 per time point with 250-350 fibres counted per muscle;
the percentage of aggregates in T1 and T2 is significantly lower when compared with T3: T1 versus T2 #:* P
<0.01, T2 versus T3 #*# P <0.001).

parallel, different animal models have also been generated: a drosophila model expressing PAB-
PN1 with a polyalanine extension of different lengths, resulting in a muscular dystrophy with
abnormal wing posture (Chartier et al., 2006), a nematode model expressing different lengths of
expanded PABPN1 and showing muscle cell degeneration and abnormal mobility (Catoire et al.,
2008) and several mouse models expressing either ubiquitously (Dion et al., 2005; Hino et al.,
2004) or muscle specifically (Davies et al., 2005) expanded PABPNI1 leading to the formation of
INIs (Davies et al., 2005; Hino et al., 2004; Uyama et al., 2005). In the mouse model developed by
Davies et al., a mutated version of PABPN1 with 17 alanines (expPABPN1) is expressed under the
control of the human skeletal actin (HSA1) promoter, restricting the transgene expression to the
striated muscle. Mice expressing the expPABPN1 transgene (A17.1) show a progressive muscle
weakness and a progressive accumulation of INIs (Davies et al., 2005).

The aim of the present study was to gain insights into the different physiological pathways af-
fected in OPMD muscles by performing both a general transcriptomic analysis and a detailed
phenotypic characterization of the skeletal muscle of A17.1 mice compared with wild-type (WT)
mice at different time points. We have observed that the muscle-restricted expression of the exp-
PABPNI1 transgene induces considerable gene expression deregulation among which genes as-
sociated with muscle atrophy were particularly affected. Functional and histological analysis of
the skeletal muscle of this mouse further confirmed a severe muscular atrophy associated with
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a reduction in muscle strength. Interestingly we showed that this muscular atrophy is restricted
to fast glycolytic fibres, containing a large number of INIs, while oxidative fibres are spared, and
contain less INTIs. These results suggest a fibre-type specificity of muscle atrophy in this OPMD
model, together with a less specific presence of INIs.

RESULTS

Gene expression profiling in muscle from mice expressing expPABPN1

To gain insight into molecular mechanisms involved in OPMD, we performed a transcriptomic
analysis on skeletal muscle from A17.1 mice expressing an expanded form of PABPN1 with 17
alanines (expPABPN1). Davies et al. (Davies et al., 2005; Davies et al., 2008) previously described
that these A17.1 mice show progressive formation of aggregates and progressive muscle weak-
ness from approximately 18 weeks of age, whereas A10.1 mice expressing WT PABPN1 were
indistinguishable from WT mice (Davies et al., 2008). By immunohistochemistry (Figure 1A),
we confirmed that, in A17.1 mice, the number of nuclei containing PABPN1 increases with age.
At 6 weeks (T1), 8% of the nuclei contained aggregates, and this number progressively increased
to 15% at 18 weeks (T2) and 30% at 26 weeks (T3) (Figure 1B). Thus aggregation of expPABPN1
starts at a very early age, suggesting that potentially earlier muscle dysfunction may occur prior
to the onset of muscle weakness symptoms observed from 18 weeks of age (Davies et al., 2005;
Davies et al., 2008).

In order to identify the biological pathways that are initially deregulated, we carried out tran-
scriptomic analyses on the skeletal muscle from 6-week-old mice (T1), when there are no obvi-
ous signs of muscle weakness, as well as from 18 (T2) and 26 weeks (T3) when the A17.1 mice
are showing progressive muscle weakness. RNA expression arrays were generated from WT and
A17.1 RNA isolated from quadriceps muscles, which were hybridized to Illumina Bead array
v.1 containing 46632 unique probe identifiers. After normalization, the quality of the micro-
array hybridization was evaluated with the principal component analysis (PCA) (Chatterjee
and Price, 1991; Pearson, 1901). For all three time points (T1-T3), PCA plots showed that mice
with the same genotype (WT or A17.1) cluster together indicating that most variations in the
arrays could be attributed to the genotype (Figure 2A; PC1). A weaker association was found
with the second component representing technical variations. The Clustergrams representing
hierarchical clustering for each time point (Supplementary Material, Figure S1) further demon-
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Table 1 - Most significant A17.1 deregulated biological processes GO terms. Sorting is according to

P-value.
ID GO term P-value Genes Deregulated genes
G0:0051169 Nuclear transport 1.35E-08 94 46 (49%)
G0:0009056 Catabolic process 1.41E-08 872 361 (41%)
GO0:0015031 Protein transport 1.60E-08 591 250 (42%)
G0:0045859 Regulation of protein kinase activity 1.68E-08 132 50 (38%)
G0:0006796 Phosphate metabolic process 1.69E-08 804 313 (39%)
GO:0006950 Response to stress 1.77E-08 955 289 (30%)
G0:0006457  Protein folding 1.87E-08 107 47 (44%)
G0:0006397 mRNA processing 1.90E-08 219 111 (51%)
GO:0007049 Cell cycle 1.93E-08 615 197 (32%)
G0:0050790 Regulation of catalytic activity 1.96E-08 331 114 (34%)
GO0:0006915  Apoptosis 2.03E-08 647 225 (35%)
G0:0051276 Chromosome organization and biogenesis 2.33E-08 319 135 (42%)
G0:0007517 Muscle development 2.49E-08 179 73 (41%)
G0:0009628 Response to abiotic stimulus 2.60E-08 185 60 (32%)
GO:0007005 Mitochondrion organization 2.68E-08 60 24 (40%)
G0:0006461 Protein complex assembly 2.89E-08 164 66 (40%)
G0:0010608 Posttranscriptional regulation of gene expression 2.27E-07 95 45 (47%)
G0:0006511  Ubiquitin-dependent protein catabolic process 2.27E-07 451 215 (48%)
G0:0016567 Protein ubiquitination 1.88E-05 53 26 (49%)
G0:0006412 Translation 9.69E-03 273 139 (51%)
G0:0042692 Muscle cell differentiation 9.80E-03 75 31 (41%)
G0:0048666 Neuron development 1.31E-02 276 83 (30%)

strated that the differences in the distribution of gene expression intensities between muscle sam-
ples from WT and A17.1 mice were due to changes in the individual gene expression levels be-
tween groups rather than nonspecific variations between samples. These results indicate that the
gene expression changes between A17.1 and WT mice can be classified based on their genotype.

Subsequently, A17.1-deregulated genes were defined with a cut-off P-value of 0.05 and false dis-
covery rate (FDR) corrected. The majority of up- or down-regulated genes were found in the
6-week-old mice (3220 and 3122, respectively). The total amount of either up- or down- regu-
lated genes was gradually reduced at T2 (1910 and 1839, respectively) and T3 (2263 and 1866,
respectively) (Figure 2B). This observation indicates that overexpression of the expPABPN1
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Figure 3 - Validation of A17.1 deregulated
expression level of selected genes in
skeletal muscle of A17 mice. Histograms
indicate the expression levels normalized
to that measured in the WT mice. Values
measured by quantitative RT-PCR (greys
bars) or microarray (black bars) are means
+ standard deviations for n = 5-6 mice per
group (* P <0.05).
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Significant GO categories were selected
with the adjusted P-value of <0.05 cor-
rected with FDR. Next, the significance
of each GO term was evaluated using an
enrichment analysis, which calculates Figure 4 - Validation of the mathematical model for pro-
the significance of each cluster based on gression analysis. Expression plots of individual selected

the proportion of differentially expressed genes showed linear progression. The fold change is calcu-
lated from the microarray analysis. Graphs are sub-grouped

genes that contributes to the respective according to up- or down-regulated genes and positive or
cluster. A list of biological GO categories negative linear regression.

that are significantly deregulated in the
A17.1 mice was created using DAVID (Dennis, Jr. et al., 2003; Huang et al., 2009), revealing a
broad range of deregulated biological processes in the A17.1 mice (Table 1 and Supplementary
Material Table S1). We identified transcriptional deregulation of genes involved in mRNA pro-
cessing (GO:0006397), cell cycle (GO:0007049), the ubiquitin-proteasome pathway (GO:0006511
and GO:0016567), protein transport (GO:0015031) and the mitochondria (GO:0007005), cor-
roborating a previous transcriptome analysis in an OPMD cell model (Corbeil-Girard et al.,
2005). We also found a significant deregulation of apoptosis (GO:0006915), confirming the cell
death previously described in this mouse model (Davies et al., 2005; Davies et al., 2008) and in a
cellular model (Marie-Josee et al., 2006). Importantly, we found a significant deregulation of GO
categories that affect muscle biology.

-2

3

Since the A17.1-deregulated GO categories are biologically very broad and since OPMD affects
muscle cells, we next used the literature to map significant biological concepts that would be mus-
cle related. We assumed that the subgroup of overlapping deregulated genes common to the three
time points is strongly associated with the disease aetiology, and therefore selected this subgroup
for a literature-aided mapping of biological concepts using Anni 2.0 (Jelier et al., 2008). Out of the

34



MOLECULAR AND PHENOTYPIC CHARACTERIZATION OF A MOUSE MODEL OF OPMD

A *kk
rkk
1259 ekl
Z 1.004
]
£ 0.754
L
£ 0.504
%
£ 0.254
0.00 T T
wT A17 WT A17
18 weeks 26 weeks
B *
*kk *kk
704
——
60+
S 504
"o 404
s
g 301
< 204
104
[i} T T
wT A17 wT A17
18 weeks 26 weeks
c *
25+ *
—_ —— *
D 20
£ —_
@
o 15
]
L 10
=
]
Q 54
a
0 T T
WT A17 WT A17
18 weeks 26 weeks

Figure 5 - Measurements of the weight
and functional performance of skeletal
muscle in WT and A17.1 mice at 18 and
26 weeks of age (n = 6 per group). A)
The maximal force produced by the TA
muscle was determined in WT and A17.1
mice (¥#* P <0.001). B) The mass of the
TA muscle was measured in A17.1 and
WT mice (* P <0.05; ##* P <0.001). C)
The specific force (N/g) for the TA mus-
cles of A17.1 and WT mice was calculat-
ed by dividing the maximal absolute force
by the muscle mass (* P <0.05).

2336 overlapping deregulated genes, only 1679 genes were
recognized by Anni 2.0 (Supplementary Material Table
§2). Among these, 481 deregulated genes (28.5%) were
found to be highly associated with the terms ‘muscle atro-
phy’ or ‘skeletal muscle atrophy’ (Supplementary Material
Table S2), suggesting that muscle atrophy may already be
triggered in the A17.1 mouse at 6 weeks.

To validate the transcriptome analysis by quantitative
PCR, we selected 10 genes from the muscular atrophy
association list using both >1.3-fold change and high P-
values criteria. RNA isolated from quadriceps of 6-week-
old WT or A17.1 mice were used for the validation study.
For each gene, the expression level was compared between
the microarray and the quantitative PCR (Figure 3). After
normalization to the WT control, a similar change in ex-
pression level was observed for each gene analysed, dem-
onstrating that our microarray analysis is valid.

As muscle weakness in the A17.1 mice is progressive (Da-
vies et al., 2005), we applied mathematical modelling for
progressiveness on the A17.1-deregulated genes. A linear
regression model was generated using the Limma model
in R (Smyth, 2004) and was applied to all of the genes in
the array. A total of 410 genes were identified as candi-
dates for this progression. Subsequently, these 410 genes
were applied in Anni 2.0 to find an association with the
terms ‘muscle atrophy’ and ‘skeletal muscle atrophy’. Of
the 410 candidate genes, only 168 genes were available for
Anni analysis. Among these 163 genes, 63 (38.6%) were
highly associated with muscle atrophy in the biomedical
literature (Supplementary Material Table S2). This analy-
sis strongly suggests that the deregulation of muscle mass
is progressive in the A17.1 mice. To confirm this analysis,
eight genes were selected using the fold change criteria
and their expression profiles over time were plotted. The
progression plots of fold change showed a linear positive
or negative progression for all selected up- or down-regu-
lated genes, therefore validating the mathematical model-
ling (Figure 4).

Muscle atrophy in A17.1 mice
Since the transcriptomic study indicates muscle atrophy
in the A17.1 mice, we performed a detailed analysis of the

skeletal muscles of the A17.1 mice over time. Using the grip test, it was previously shown that
the A17.1 mice develop a progressive muscle weakness with a significant decrease in strength
compared with WT mice from 18 weeks of age (Davies et al., 2005; Davies et al., 2008), whereas
A10.1 mice expressing WT PABPN1 were indistinguishable from WT mice (Davies et al., 2008).
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Figure 6 - A) Centrally nucle-
ated fibres were determined on
transversal sections of WT (n =
3)and A17.1 (n = 4) TA muscles
of 26 weeks old mice follow-
ing hematoxylin/eosin staining.
For each section, more than
800 fibres were counted from
four random areas. The results
represent the percentage of
centrally nucleated fibres (* P
<0.05). B) Sirius Red staining
of transversal sections of WT (n
=3)and A17.1 (n = 4) TA mus-
cles of 26 weeks old mice (s
P <0.01). C) Citrate synthase
(CS) activity and mitochondrial
complex | activity measurement
on WT and A17.1 muscle (n =
6 per group) from 26-week-old
mice. The activity of complex
| is expressed in nmol/min/ml
and then normalized relative to
citrate synthase as an indicator
of mitochondrial content (:: P
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In order to further analyse the consequences of the expPABPN1 expression on the physiological
function of skeletal muscle, we measured the contractile properties of the tibialis anterior (TA)
skeletal muscle of A17.1 mice at 18 and 26 weeks of age when compared with age-matched WT
littermates. The maximal absolute force of the TA of A17.1 transgenic mice was significantly re-
duced by 36% at 18 weeks and 48% at 26 weeks when compared with WT mice (Figure 5A). The
mass of the TA muscle of A17.1 mice was progressively reduced by 27% at 18 weeks and 39% at
26 weeks when compared with WT mice (Figure 5B). This progressive reduction in muscle mass
was observed from 6 weeks of age (20% reduction at 6 weeks, data not shown) and was also ob-
served in other skeletal muscles such as the quadriceps and the gastrocnemius (data not shown).
This effect is specifically due to the overexpression of expPABPN1 since A10.1 mice expressing
WT PABPNI1 at higher level than A17.1 mice did not show a similar reduction in TA muscle mass
(data not shown). We next calculated the specific force of the TA muscles of A17.1 and WT mice
by normalizing the maximal (absolute) force to the muscle mass. This measure showed that the
specific force of the TA of A17.1 mice was significantly reduced by 14% at 18 weeks and 20% at 26
weeks when compared with WT mice (Figure 5C). Both decreases in muscle mass and in specific
force participate to the decrease in absolute maximal force.

This reduced specific force demonstrates that there is both a qualitative change as well as an
additional pathological process occurring in the skeletal muscle. Whereas immunostaining on
muscle sections did not reveal any obvious modifications of the dystrophin-associated glyco-
protein complex (data not shown), an haematoxylin-eosin (H&E) staining revealed an increased
number of centrally nucleated fibres in A17.1 when compared with WT mice (Figure 6A). In ad-
dition, a Sirius red staining revealed a more pronounced endomysial fibrosis in A17.1 mice when
compared with WT mice (Figure 6B), which could potentially explain the reduced specific force.
This muscle weakness could also result from a modified mitochondrial function, as this pathway
was shown to be deregulated in the transcriptomic data (Table 1). Mitochondrial ATP is gener-
ated via oxidative phosphorylation through the combined action of five enzyme complexes. Ci-
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The reduction in muscle mass and force together with the transcriptomic data suggests that the
expression of expPABPNI triggers muscular atrophy. To further confirm this hypothesis, we per-
formed a detailed histological analysis of the TA muscle of A17.1 mice when compared with
WT mice at 26 weeks of age. We observed a 30% reduction in the maximal cross-sectional area
(CSA) of the TA in Al7.1 transgenic mice when compared with their age-matched WT litter-
mates (Figure 7A). On muscle sections that generated the maximal CSA, we subsequently anal-
ysed individual fibre CSA using an anti-laminin antibody to delimit the muscle fibres. When the
frequency distribution of the fibres was plotted according to their CSA (Figure 7B), a shift was
observed from the large towards the small size of muscle fibres in the A17.1 mice. The CSA was
reduced by ~30% (189 mm?2 for WT mice and 132 mm?2 for A17.1 mice), whereas there was no
change in the total number of fibres between WT and A17.1 mice (Figure 7C). Interestingly,
the reduction in muscle size was not associated with a decrease in myonuclear number (Figure
7D). Overall, these results confirm muscular atrophy, defined as a decrease in cell size by loss of
organelles, cytoplasm and proteins (Sandri, 2008). This reduction in muscle mass is due to an
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Figure 8 - The myosin heavy
chain (MyHC) muscle fibres
subtypes were determined
by immunostaining. A) Immu-
nostaining of laminin (green),
MyHC-IIA (red), MyHC-IIB
(blue) on a TA muscle cryosec-
tion. The distribution of muscle
fibre subtypes (B) and the fre-
quency of the cross-sectional
area (C) of each muscle fibre ! 4 \
subtype were determined in the MyHC IIX
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improper balance between protein synthesis and degradation, inducing a loss of total protein
content in muscle fibres (Nury et al., 2007). The ubiquitin-proteasome pathway is activated dur-
ing muscle atrophy and is involved in the breakdown of major contractile proteins (Gilson et al.,
2007; Vazeille et al., 2008). In particular, MuRF-1 and Atrogin-1, known as atrogenes, play a cru-
cial role in the loss of muscle proteins and their expression is considered as specific atrophy mark-
ers (Sandri, 2008; Bodine et al., 2001). In the progression analysis (Figure 4) and by quantitative
RT-PCR (Figure 3), we have shown that the atrogene MuRF-1 only was indeed up-regulated in
A17.1 mice. We further confirmed that in the TA of 26-week-old A17.1 mice there was a persis-
tence of this MuRF-1 mRNA up-regulation (Figure 7E), mainly mediated by a down-regulation
of the active phosphorylated form of PKB/Akt and a translocation of Foxo3A transcription fac-
tor to the nucleus (Supplementary Material Figure S2). We also measured proteasome activities
(chymotrypsine-, trypsin- and caspase-like) in the TA muscle of 26-week-old mice and observed
a significant increase in the chymotrypsinand caspase-like activity in A17.1 mice, whereas the
trypsinlike activity was not significantly increased (Figure 7F). Altogether, these data confirm
muscular atrophy in the A17.1 mice.

In order to further evaluate if we could locally reproduce this atrophic phenotype in the skel-
etal muscle of an adult WT mice, we overexpressed the expanded PABPN1 transgene using an
adeno-associated virus (rAAV2/8-CAGexpPABPN1, Supplementary Material Figure S3A) in-
jected into the TA of WT mice at 8 weeks of age. Three months post-injection, we confirmed the
overexpression of expPABPNI1 and the presence of expPABPN1 INIs only in the injected muscle
fibres (Supplementary Material Figure S3B). Similar to what we measured in A17.1 mice, we ob-
served a reduced muscle mass and reduced maximal force of the injected TA of WT mice when
compared with the contralateral un-injected leg, leading to a slight but not significant reduction
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in the specific force (Supplementary Material Figure S3C). This result further confirms that the
expression of expPABPN1 in mature muscle fibres induces an atrophic process.

Distinct phenotypes between oxidative and glycolytic fibre subtypes

Muscle is composed of distinct fibre types, which can be defined by the myosin heavy-chain iso-
types (MyHC) they express: MyHC-I in the slow oxidative fibres, MyHC-IIA in the fast oxidative
fibres, MyHC-IIX and MyHC-IIB in the fast glycolytic fibres (Bottinelli and Reggiani, 2000). We
investigated whether the distribution and CSA of oxidative/glycolytic muscle fibre subtypes in
the TA muscle was modified in A17.1 mice compared with WT mice. We therefore performed
a co-immunostaining of the different myosin heavy chains together with a laminin staining to
determine the CSA (Figure 8A). The distribution analysis revealed that the A17.1 muscles had
more MyHC-IIA fibres (17 versus 9% in WT muscle) and fewer MyHC-IIB (48 versus 56% in
WT muscle) (Figure 8B). Interestingly, this result is in accordance with the down-regulation of
Myll mRNA (fast myosin light chain) observed by quantitative PCR (Figure 3). By plotting the
frequency distribution of CSA myofibre subtypes, we observed a shift towards the small size for
the specific MyHC-IIB and MyHC-IIX fibres, whereas surprisingly the MyHC-IIA fibres were
unaffected (Figure 8C). This result suggests that the fast glycolytic fibres are specifically affected
in the A17.1 mice.

In order to further confirm this selective muscle atrophy of the fast glycolytic fibres, we analysed
two other muscles: the extensor digitorum longus (EDL) muscle considered as a ‘fast’ muscle
type and composed of MyHC-IIA, -IIX and -IIB fibres like the TA, and the soleus (SOL) muscle,
considered as a mixed muscle type and composed of MyHC-I and MyHC-IIA fibres. As shown in
Figure 9A, the muscle mass of the EDL of A17.1 mice was reduced by 20% when compared with
WT mice, whereas the muscle mass of the SOL was unchanged in A17.1 and WT mice at 6, 18
and 26 weeks. This difference between the SOL and the EDL further suggests that muscle atrophy
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Figure 10 - expPABPN1 expres-
sion in TA, EDL and SOL mus-
cles before and after KCI treat-
ment. A) Quantitative RT-PCR on
EDL and SOL muscle at 6 weeks
of age (n = 3 for WT; n = 6 for A17
samples). B) Immunostaining of
expPABPN1 in muscle cryosec-
tions (TA, EDL and SOL) without
any KCI treatment (expPABPN1
in green and nuclei stained with
Hoechst in blue). C) Amount of
expPABPN1 positive nuclei before
and after KCI treatment to remove
any soluble protein (n = 4 per
group with around 250-350 fibres
counted per muscle, TA and SOL
(*#* P <0.01 ANOVA test).
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in A17.1 mice is restricted to fast glycolytic fibres. The maximal force measurement of these two
muscle types revealed a decrease in force for the EDL of A17.1 mice, whereas for the SOL muscle,
we did not observe any difference in the maximal force between WT and A17.1 mice (Figure 9B),
confirming that the SOL muscle is spared. By quantitative PCR we further observed in the EDL
muscle a 2-fold increase in MuRF-1 expression similar to previous results observed in quadriceps
and TA muscle, whereas we did not observe any statistical difference for MuRF-1 expression in
the soleus muscle (Figure 9C).

Since we found selective muscle atrophy of the EDL but not of the SOL muscle, we determined
whether such a difference could be due to differential transgene expression levels. The transgene
is under the control of the HSA promoter, which restricts the transgene expression to skeletal
muscles, including the SOL as well as the EDL (Brennan and Hardeman, 1993; Miniou et al.,
1999; Orengo et al., 2008). By quantitative RT-PCR, we confirmed that there were equal mRNA
expression levels in both the SOL and EDL muscles (Figure 10A). Thus differential transgene ex-
pression cannot explain the selective muscle involvement. Therefore, we continued by perform-
ing a direct comparison by immunohistochemical staining of expPABPN1 expression in EDL
and SOL muscle sections of 26-week-old A17.1 and WT mice. The PABPN1 immunostaining re-
vealed a similar pattern of expression in EDL, SOL and TA with a high PABPN1 signal observed
in around 45% of the nuclei in all muscle types (Figure 10B). Interestingly, when we performed a
KClI treatment to remove soluble proteins, the amount of aggregates in the SOL was higher than
in WT, but still two-fold lower than the levels observed in the TA of A17.1 animals (Figure 10C).
Our results thus demonstrate that muscle atrophy in A17.1 mice is specific to fast glycolytic fibres
and that these fibres contain a larger number of KCl-resistant INTs. In slow and fast oxidative
fibres that do not show muscle atrophy, fewer INTs are observed.

DISCUSSION
The aim of the present study was to gain further insight into the biological pathways modified

40



MOLECULAR AND PHENOTYPIC CHARACTERIZATION OF A MOUSE MODEL OF OPMD

in OPMD muscles by a combination of transcriptomic and physiological studies. To generate a
comprehensive picture of the deregulated pathways during disease progression in this mouse
model, we have selected three time points for the transcriptomic analysis: 6 weeks as an early time
point before onset of disease symptoms and 18 and 26 weeks when the mice show progressive
muscle weakness (Davies et al., 2005; Davies et al., 2008). We observed a massive gene deregula-
tion in A17.1 mice when compared with WT mice at all three time points. Among the GO terms
revealed in this study, we identified several pathways deregulated such as mRNA processing, cell
cycle, protein transport, mitochondria and apoptosis, which corroborate a previous gene-based
transcriptome analysis of an in vitro OPMD cell model (Corbeil-Girard et al., 2005). We also
found a deregulation of genes involved in muscle development and muscle cell differentiation,
which could potentially emphasize defects in continuous remodelling of muscle, previously dem-
onstrated in OPMD (Kim et al., 2001; Wirtschafter et al., 2004; Mouly et al., 2005). By mapping
the biological concepts associated with this deregulation, we found that the muscle-restricted
expression of expPABPN1 induced major and progressive deregulation of genes associated with
muscle atrophy. Skeletal muscle atrophy is characterized by a decrease in muscle mass and con-
sequently reduced contractile force of the muscle. Functional and histological analysis of the
skeletal muscle of this mouse model confirmed severe muscular atrophy associated with a reduc-
tion in muscle strength. This atrophic phenotype was due specifically to the overexpression of the
alanine expanded PABPN1 and not simply to overexpression of PABPN1 as we did not observe a
severe muscle atrophy in the A10.1 mice expressing WT PABPNI1. In accordance with this result,
genes associated with atrophy such as MuRF-1 were not changed in the A10.1 mice (data not shown).
The transcriptomic analysis showed homology with previous studies describing the transcrip-
tional changes involved in muscle atrophy (Jagoe et al., 2002; Lecker et al., 2004; Sacheck et al.,
2007; Calura et al., 2008), such as increased expression of atrogenes involved in protein degra-
dation and decreased expression of genes involved in energy production. Two major pathways
mediate protein degradation in skeletal muscle: the autophagic/lysosomal pathway and the ubiq-
uitin-proteasomal pathway (UPP). In the A17.1 skeletal muscles, we confirmed at all time-points
up-regulation of the muscle-specific ubiquitin ligase MuRF-1 gene expression. Since MuRF-1 is
a known atrogene playing a crucial role in the loss of muscle proteins (Sandri, 2008; Bodine et
al,, 2001; Clarke et al., 2007; Cohen et al., 2009; Kedar et al., 2004), these data together with the
increased proteasome activity in A17.1 muscles suggest an increased protein degradation rate in
A17.1 mice related to muscle atrophy. These data also further support previous studies, which
showed that the proteasome is thought to be the major degradation pathway for PABPN1 (Abu-
Baker et al., 2003; Davies et al., 2006). Interestingly, MuRF-1 has also been described to be a po-
tential energy homeostasis regulator for muscle (Hirner et al., 2008). Together with the deregula-
tion of genes involved in protein degradation, we also observed a deregulation of genes involved
in energy production—as described in other atrophic conditions (Jagoe et al., 2002; Lecker et al.,
2004; Sacheck et al., 2007; Calura et al., 2008)—among which a significant cluster of genes related
to mitochondrial organization. We observed a decreased mitochondrial respiratory chain com-
plex I activity in skeletal muscle of the A17.1 mice. This suggests some impairment of oxidative
phosphorylation that may contribute to the muscle dysfunction observed in this mouse model
of OMPD. This is of particular interest since mitochondrial abnormalities have frequently been
observed in OPMD patients (Mugqit et al., 2008; Pauzner et al., 1991; Schroder et al., 1995). This
decrease may solely be the result of a deregulation of genes encoding several subunits of complex
I, as observed both in our transcriptomic data and in the previous transcriptomic analysis per-
formed in an OPMD cell culture model (Corbeil-Girard et al., 2005). Respiratory chain enzymes
are also susceptible to free radical-induced oxidative damage (Zhang et al., 1990), therefore an
increased oxidative stress may also contribute to the decreased complex I activity, as suggested
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in the transcriptomic analysis (response to oxidative stress, GO:0006979). Toriumi et al. (2008)
have recently shown that the polyalanine tract may induce mitochondrial dysfunction with the
rupture of the mitochondrial membrane, release of cytochrome c and apoptosis (Toriumi et al.,
2009). We demonstrated here that the reduction in muscle force was not just a consequence of
muscle atrophy—as observed with the reduced specific force—so expPABPN1 expression clearly
has a deleterious effect in force production potentially via mitochondrial dysfunction or oxidative
stress, which will both need to be studied in more detail.

Interestingly, the detailed characterization of the skeletal muscle phenotype of these mice revealed
a selective atrophy of the fast glycolytic fibres that contained the highest number of INTs, whereas
the oxidative fibres containing less INIs were spared. This result suggests fibre-type specificity for
both muscular atrophy and INIs formation in OPMD, indicating that depending on the muscle
metabolic properties, the expression of expPABPN1 leads to different phenotypes. This raises
two questions: why are there more INIs in fast glycolytic fibres? And why are oxidative fibres
not affected even if these fibres contain INIs? The presence of INIs in both affected (EDL) and
non-affected muscles (SOL) further emphasize the complex and poorly understood role of INIs
in OPMD, which is still currently under debate. Whereas several studies have suggested a patho-
logical function of INIs, several other studies have suggested that the INIs might just be the result
of a cellular defence mechanism and not the direct cause of the disease. In this OPMD mouse
model, we observed before KCI treatment similar amount of expPABPN1 expression in affected
and unaffected muscles, which suggests that the soluble form of the protein in oxidative fibres is
not toxic. We also observed that fast glycolytic fibres contained progressively larger numbers of
INIs and were progressively atrophied, which could support the pathological function of aggre-
gates. However, the presence of unaffected oxidative fibres containing INTs suggest that INTs are
not the only factor involve in muscle atrophy. The difference in the amount of INIs will need to
be more extensively studied to understand why more aggregates are found in fast glycolytic fibres
when compared with slow oxidative fibres. There might be a fibre-type-specific mRNA/protein
preventing (in oxidative fibres) or enhancing (in glycolytic fibres) the formation of INIs, or these
two muscle fibre types may have a different protein degradation system. These two hypotheses
need to be evaluated in the future. We also have to keep in mind that oxidative fibres seems to
be more resistant to atrophy through a protective mechanism mediated by enhanced antioxidant
gene expression (Sandri, 2008; Li et al., 2007; Yu et al., 2008), and therefore might be more resis-
tant to the presence of expanded PABPN1. Another possible mechanism for this selective atrophy
is based on the fact that nuclei in slow fibres contain a smaller myonuclear domain than fast fibres
(Bruusgaard et al., 2006; Gundersen and Bruusgaard, 2008); so nuclear defects could potentially
have fewer consequences and be less visible in slow fibres.

To summarize, we have shown that expression of expPABPNI in muscle fibres leads to a mas-
sive gene deregulation with muscle atrophy as a major consequence. The muscle weakness we
have observed results both from a reduction in muscle mass and a muscle dysfunction due to
increased fibrosis, mitochondrial defects and possible oxidative stress. At the fibre-type level, we
showed that only glycolytic fibres containing the largest number of INIs were affected, whereas
oxidative fibres were spared and contained less INIs. In conclusion, expression of mutant PAB-
PN1 in skeletal muscle of the A17.1 mouse recapitulates several pathological observations seen
in OPMD patients: progressive muscle weakness, muscle atrophy, fibrosis, mitochondrial defects,
affected and unaffected muscle containing INTs. These molecular and pathological changes will
improve our understating of the disease progress in OPMD patients and should provide targets
for future therapeutic strategies that may reverse some or all of these modified pathways essential
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for muscle homeostasis and normal function.

MATERIALS AND METHODS

Mice

A17.1 transgenic mice have previously been described (Davies et al., 2005). Male A17.1 mice and
WT controls were generated by crossing the heterozygous carrier strain A17.1 obtained from Ru-
binsztein’s group (Davies et al., 2005) with the FvB background mice. The mice were genotyped
by PCR 3-4 weeks after birth. Wild type FvB and A17.1 mice were housed in minimal disease
facilities (Royal Holloway, University of London) with food and water ad libitum.

RNA isolation and microarray processing

Total RNA was extracted from skeletal muscles using RNA Bee (Amsbio) according to the manu-
facturer’s instructions. RNA integration number (RIN) was determined with RNA 6000 Nano
(Agilent Technologies). RNA with RIN >7 were used for subsequent steps. RNA labelling was
performed with the Illumina TotalPrep RNA Amplification kit (Ambion) according to the manu-
facturer’s protocol, and subsequently was hybridized to Illumina Mouse v1.1 Bead arrays.

Data processing and analysis

Before data analysis, microarray measurements were normalized to remove systematic errors
by balancing the fluorescence intensities using the quantile method (Smyth and Speed, 2003).
Each time point has been normalized separately. Next, PCA plots were generated to assess the
quality of the data (Chatterjee and Price, 1991; Pearson, 1901). This analysis showed that 47% of
the variations within each data set were attributed to the genetic variation between the WT and
the transgenic mice. Subsequently, statistical analysis was conducted using limma package in R
(Smyth, 2004) to identify genes with significant differences in expression pattern between A17.1
and WT. Statistical analysis includes a cut-oft P-value of 0.05 and FDR correction provided in the
limma package in R. Probe annotation was made with the Illumina mouse whole-genome bead
array version 1 annotation package.

GO analysis. The illuminaMousevlBeadID was used to describe the gene clustering arrange-
ments based on the vocabulary of GO. These clusters have been used to conduct the significance
of GO terms using global test (Goeman et al., 2004) by assigning a P-value to each cluster based
on the assessment of how well group labels can be predicted for different samples (A17.1 versus
WT) based on a regression model. The significance of these GO terms was validated using en-
richment analysis. Enrichment analysis uses a hypergeometric test to calculate the significance
of each cluster based on the number of differentially expressed genes it holds. In this study, we
preferred global test for assessing the significance of GO terms over enrichment method due to
an unrealistic assumption in which genes are treated as black and white (differentially or non-
differentially expressed) for conducting the significance of each GO category whereas, in global
test, gene expression profiles are being used to conduct such an analysis. Subsequently, DAVID
functional annotation clustering tool (Dennis, Jr. et al., 2003; Huang et al., 2009) has been applied
to remove redundancy and increase the specificity threshold for selected pathways, and finally,
the list of deregulated genes was mapped to the concepts in biomedical literature using Anni 2.0
(Jelier et al., 2008). GO categories were selected based on the combination of the following crite-
ria (1): GO categories with the adjusted P-value of <0.05; (2) clusters of GO categories generated
by DAVID, which have P-values >0.05 will be discarded from the analysis; (3) GO categories that
contain at least five genes and less than 1000; (4) from each cluster of GO categories, generated
by DAVID, only two were selected for follow-up studies to reduce the redundancy. Subsequently,
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the 2336 genes that were differentially expressed throughout all three time points were mapped
to biomedical concepts using Anni 2.0.

Definition of muscle atrophy-related genes. Muscle atrophy-related genes are defined as differen-
tially expressed genes associated with the term ‘muscle atrophy” in the biomedical literature, as
determined with the literature analysis tool Anni 2.0 with the association score larger than 0.005.

Real-time RT-PCR analysis

Primers for validation were selected from the gene sequence that harbours the Illumina probe
location using Primer 3 plus program. RNA was extracted using RNA Bee (Amsbio) and treated
with RQ1 RNase-Free DNase (Promega). Subsequently, RNA was reverse transcribed using Re-
vertAid H Minus M-MuLV First Strand kit (Fermentas) according to the manufacturer’s instruc-
tions. An amount of 3.6 ng of cDNA was used for quantitative PCR using SYBR green mix buffer
(BioRad) in a total of 15 ml reaction volume. PCR was carried out as follows: 4 min at 95°C fol-
lowed by 40 cycles at 95°C for 10 s and 60°C for 45 s, the program ended in 1 min at 95°C and
1 min at 60°C. Specificity of the PCR product was checked by melting-curve analysis using the
following program: 65°C increasing 0.5°C in 60 steps of 10s duration. Expression levels were cal-
culated according to the DDCt method normalized to the mHPRT mRNA expression and to the
average of the gene expression level in the WT mice. The statistical significance was determined
with Student’s t-test.

Measurement of muscle contractile properties

Contractile properties of TA muscle were evaluated by measuring the in situ isometric muscle
contraction in response to nerve stimulation as described previously (Vignaud et al., 2007). Mice
were anaesthetized using a pentobarbital solution (i.p. 60 mg/kg). The knee and foot were fixed
with clamps and the distal tendons of the muscles were attached to an isometric transducer (Har-
vard Bioscience) using a silk ligature. The sciatic nerves were proximally crushed and distally
stimulated by a bipolar silver electrode using supramaximal square-wave pulses of 0.1 ms dura-
tion. All data provided by the isometric transducer were recorded and analysed using PowerLab
system (4SP, AD Instruments). All isometric measurements were made at an initial length LO
(length at which maximal tension was obtained during the twitch). Responses to tetanic stimula-
tion (pulse frequency from 6.25, 12.5, 25, 50, 100 and 143 Hz) were successively recorded and
the maximal force was determined. After contractile measurements, mice were sacrificed with an
overdose of anaesthetic solution. Muscles were then weighed to calculate the specific maximal
force, frozen in isopentane cooled in liquid nitrogen and stored at ~80°C.

The isometric contractile properties of soleus and extensor digitorum longus muscles were stud-
ied in vitro. Measurements were performed as described previously (Vignaud et al., 2008). The
muscles were dissected free from adjacent connective tissue and soaked in an oxygenated Tyrode
solution (95% O, and 5% CO,) containing (mM): NaCl (118), NaHCO, (25), KCI (5), KH,PO,
(1), CaCl, (2.5), MgSO, (1), glucose (5), and maintained at a temperature of 20°C. Muscles were
connected at one end to a force transducer. After equilibration (30 min), electrical stimulation
was delivered through electrodes running parallel to the muscle. Isometric contractions were
recorded at the length at which maximal isometric tetanic force was observed (L,). Absolute
maximal isometric force (mN) was measured (usual frequency of 125 Hz, train of stimulation
of 1500 ms). Specific maximal force (mN/mm?) was calculated by dividing the force by the esti-
mated CSA of the muscle. Assuming that muscles have a cylindrical shape and a density of 1.06
mg mm~, muscle CSA corresponds to the wet weight of the muscle divided by its fibre length (L,).
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The fibre length to L ratio of 0.70 (soleus) or 0.45 (EDL) was used to calculate L. Muscles were
weighed and frozen in liquid nitrogen.

Muscle histology, immunohistochemistry and morphometric measurements

Recovered tissues were mounted in Cryo-M-Bed (Bright Instruments, Huntingdon, UK) and
snap frozen in liquid nitrogen-cooled isopentane. Staining was carried out on transverse serial
cryosections of muscles (10 pm). The muscles were sectioned at 10-12 different intervals along
the length of the muscle, allowing the maximal CSA to be determined. For the assessment of tis-
sue morphology and visualization of fibrosis and connective tissue, transverse sections of muscles
were stained, respectively, with H&E and Sirius red for further examination under a light micro-
scope. To assess central nucleation, three random areas were assessed in each section. The total
number of fibres in these areas was counted and the number of centrally nucleated fibres was ex-
pressed as a percentage of the total number of fibres. For morphometric and fibre-type analyses,
sections were air-dried, washed in phosphate-buffered saline (PBS) with 0.1% (v/v) Tween-20
(PBS-T) and stained for laminin (Dako, Z0097, Dako, Trappes, France) or for the different MyHC
isoforms, with antibodies harvested from hybridoma cell lines obtained from the American Type
Culture Collection (Manassas, VA, USA): BA-D5 (IgG2b, anti-MHCI), SC-71 (IgG1, anti-MH-
ClIa), BF-F3 (IgM, anti-MHCIIb) and 6H1 (IgM, anti-MHCIIX). The sections were incubated at
room temperature for 1 h in a blocking solution [bovine serum albumin (BSA) 1%, sheep serum
1%, triton X-100 0.1%, sodium azid 0.001%]. Sections were then incubated at room temperature
for 2 h with anti-MyHC-I (BA-D5, 2:3) and anti-MyHC-IIA (SC-71, 1:3). Sections were then
incubated overnight at 4°C with anti-laminin (1:300) and anti-MyHC-IIb (BF-F3, 1:1) or anti-
MyHC-IIX (6H1, 1:1). Sections were washed as before and secondary antibodies were applied
for 1 h at a dilution of 1:400. Alexa 350 anti-mouse IgG2b, Cy3 anti-mouse IgG1, Alexa 647 anti-
mouse IgM and Alexa 488 goat antirabbit were obtained from Vector Laboratories, Inc. (Burlin-
game, CA, USA). Metamorph software (Roper Scientific) was used to analyse the number, CSA
and MyHC isoforms of fibres. For each muscle, the entire section was analysed.

For PABPN1 immunodetection, sections were blocked with 1% normal goat serum in 0.1 M PBS,
0,1% Triton X100 and incubated overnight at 4°C in primary antibody (a gift from Prof. Elmar
Whale, Halle Germany) diluted to 1:500 in the same buffer. Slides were washed, incubated for 1
h with an anti-dystrophin antibody for fibre detection (NCL-Dysl mouse monoclonal IgG2a,
Novocastra), further incubated with respective secondary antibodies for 2 h at room temperature
and stained with Hoechst to visualize nuclei. When necessary, sections were incubated in 1 M
KCI, 30 mM HEPES, 65 mM PIPES, 10 mM EDTA, 2 mM MgCl,, pH 6.9, for 1 h prior to the im-
munolabelling, to remove any soluble proteins.

Images were visualized using an Olympus BX60 microscope (Olympus Optical, Hamburg, Ger-
many), digitalized using a CCD camera (Photometrics CoolSNAP fx; Roper Scientific, Tucson,
AZ,USA) and analysed using MetaView image analysis system (Universal Imaging, Downington,
PA, USA).

Proteasome peptidase activities

After dissection, TA from A17.1 and WT mice were homogenized for cytosolic extraction in a
Polytron homogenizer (low setting, 3 s) using an ice-cold buffer containing: 50 mM Tris-HCIl
(pH 7.5), 250 mM sucrose, 5 mM MgCl,, 2mM ATP, 1 mM DTT, 0.5 mM EDTA and 0.025%
digitonin, as reported previously (Kisselev and Goldberg, 2005). The homogenate was centri-
fuged at 20000g for 15 min at 4°C. The pellet was discarded and the supernatant represents the
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cytosolic fraction (Kisselev and Goldberg, 2005). Protein quantification was made using the
Bradford method (Pierce), with BSA as a standard. Peptidase activities of the proteasome were
evaluated using appropriate fluorogenic substrates as described previously (Bulteau et al., 2001).
Chymotrypsin-like (CT-like), trypsin-like (Tryp-like) and caspase-like (Casp-like) activities of
the proteasome were assayed using the fluorogenic peptides LLVY-MCA (25 pM), RLR-MCA
(40 pM) and LLE-NA (100 uM), respectively (Kisselev and Goldberg, 2005). The assay buffer
was composed of 50 mM Tris-HCI (pH 7.5), 40 mM KCI, 5 mM MgCL, I mM DTT containing
the appropriated peptide substrate. Enzymatic kinetics were carried out for 30 min at 37°C using
40 pg of cytosolic protein fractions in a temperature-controlled microplate fluorimetric reader
(Fluostar Galaxy, bMG, Stuttgart, Germany). The excitation/emission wavelengths were 350/440
and 333/410 nm for aminomethylcoumarin and betanaphthylamine products. The rate of pro-
teolysis was determined for each substrate as the mean slope by comparing the linear response
of fluorescence with time. Reactions were performed in the presence (20 pM) and absence of
the specific proteasome inhibitor N-Cbz-Leu-Leu-leucinal (MG132), to test the specificity of the
activity measured.

Mitochondrial enzyme activity

All activities were determined at 30°C. Prior to analysis, cells were subjected to three cycles of
freezing and thawing to lyse membranes. Enzyme activities were assessed using an Uvikon 940
spectrophotometer (Kontron Instruments Ltd, Watford, UK). Complex I activity was measured
according to the method of Ragan et al. (Ragan et al., 1988). Complex II-III activity was mea-
sured according to the method of King et al. (King, 1967). Complex IV activity was measured
according to the method of Wharton and Tzagoloft (Wharton and Tzagoloft, 1967). Citrate syn-
thase (CS) activity was determined by the method of Shepherd and Garland (Shepherd and Gar-
land, 1969). Enzyme activities are expressed as a ratio to CS (mitochondrial marker enzyme) to
compensate for mitochondrial enrichment in the cell samples.

Western blotting

Muscle lysates were prepared by homogenizing tissue in RIPA solution (NaCl 0.15 M; HEPES
0.05 M; NP-40 1%; sodium dehoxycholate 0.5%; SDS 0.10%; EDTA 0.01 M) with protease in-
hibitor cocktail (Complete, Roche Diagnostics). Proteins were separated on 4-12% Bis—Tris gel
(Invitrogen) and transferred onto a nitrocellulose membrane (Hybond ECL membrane; Amer-
sham Biosciences), which was blocked by incubation in 5% milk in 0.1 M PBS, 0.1% Tween-20.
Membrane was probed with primary antibodies raised against PABPN1 (gift from Pr. Elmar
Wahle, Halle, Germany, 1:2000) or against GAPDH (Santa Cruz, 1:2000) as a loading control.
The membrane was further incubated with HRP-conjugated antibodies (Jackson ImmunoRe-
search; 1:40000). Immunoreactive bands were detected with enhanced chemiluminescence re-
agent (ECL; Amersham Biosciences) and signals visualized by exposing the membrane to ECI
Hyperfilm (Amersham Biosciences).

Statistical analysis

All data are presented as mean values + standard error of the mean (SEM) (cohort size stated per
experiment). All statistical analyses were performed using the Student t-test, the ANOVA one-
way analysis of variance followed by the Newman-Keuls post-test, or X* analysis using GraphPad
Prism (version 4.0b; GraphPad Software, San Diego CA, USA). A difference was considered to be
significant at * P <0.05, ##* P <0.01 or *##* P <0.001.
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APPENDIX

Generation of expPABPN1 construct and viral vectors

The expanded PABPN1 cDNA was obtained from Dr. Michael Antoniou (Department of Medical
and Molecular Genetics, King’s College London). The cDNA sequence was cloned into a pDD-
derived AAV plasmid under the control of the CAGGs promoter. To produce the rAAV2/8-CAG-
expPABPN1, HEK293T cells were transfected with the expression plasmid and the helper plas-
mids pAdDF6 and pAAV5E18-VD2/8 (James Wilson, University of Pennsylvania, Philadelphia,
PA) using calcium phosphate precipitation. Cell pellets were harvested and lysed in 50 mmol/l
TrisHCI, 150 mmol/l NaCl. Lysates were clarified by centrifugation at 6,700 rpm for 20 minutes
and passed through a 0.45-um filter. Cell lysates were layered on an iodixanol gradient (Sig-
ma-Aldrich, Poole, UK) and centrifuged at 60,000 rpm for 90 minutes. The 40% iodixanol layer
containing the viral particles was isolated, concentrated with phosphate-buffered saline (PBS),
5 mmol/l MgCl2, 12.5 mmol/l KCI (PBSMK), through an Amicon Ultra-15 100 kd (Millipore,
UK). The number of vector genomes was determined relative to a plasmid DNA standard using
Dot blot hybridisation.

Administration of rAAV

Eight-week-old FvB mice were anaesthetised by intraperitoneal injection of 3.75 ml/g body weight
of premixed (1:1) Hypnorm/Hypnovel (Hypnorm: Janssen Pharmaceutical, Belgium; Hypnovel:
Hoffmann-La Roche Ltd, Switzerland). The lower hindlimbs were shaved and the TA muscles
injected with 1x1012 vector genomes or rAAV2/8-CAG-expPABPN1 diluted in injectable saline
(Sigma-Aldrich). Muscle contractile properties and histological assessments of injected tibialis
anterior (TA) muscles were performed three months following administration of rAAV.

Western blotting

Muscle lysates were prepared by homogenising tissue in RIPA solution (NaCl 0.15M; Hepes
0.05M; NP-40 1%; Sodium dehoxycholate 0.5%; SDS 0.10%; EDTA 0.01M) with protease in-
hibitor cocktail (Complete, Roche Diagnostics) and phosphatase inhibitor cocktail (20mM NaF,
10mM b-glycérophosphate, 5mM Na-pyrophsphate, and 1mM Naorthovanadate). Proteins were
separated on 4-12% Bis-Tris gel (Invitrogen) and transferred onto a nitrocellulose membrane
(Hybond ECL membrane; Amersham Biosciences), which was blocked by incubation in 5% BSA
in 0.1M TBS, 0.1% Tween-20. Membrane was probed with primary antibodies raised against
PABPNI (gift from Pr. Elmar Wahle, Halle, Germany, 1:2000), MuRF1 (Abcam; Ab-4125; 1:500),
Foxo3A (Abcam; Ab-12162; 1:1000), Akt (Cell Signaling Technology; 9272; 1:1000), Phospho-
Akt-Ser473 (Cell Signaling Technology; 9271; 1:1000). The membrane was further incubated
with HRP-conjugated antibodies (Jackson ImmunoResearch; 1:40000). Immunoreactive bands
were detected with enhanced chemiluminescence reagent (ECL; Amersham Biosciences) and sig-
nals visualised by exposing the membrane to ECl Hyperfilm (Amersham Biosciences).

Immunohistochemistry

For Foxo3A immunodetection, sections were air dried, fixed with 4% paraformaldehyde, incu-
bated 10 minutes with NH4Cl 50mM, blocked with 4% BSA in 0.1 M PBS, 0,1% Triton X100
and incubated overnight at 4°C in primary antibody (Foxo3A; Cell Signaling Technology; 2497)
diluted 1:100 in the same buffer. Slides were washed, incubated for one hour with anti-dystrophin
antibody for fibre detection (NCL-Dys1 mouse monoclonal IgG2a, Novocastra), further incu-
bated with respective secondary antibodies for 2 hours at room temperature and stained with
Hoechst to visualise nuclei.
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Table S1 - Complete list of the most significant A17.1 deregulated biological processes GO terms,
including sub-categories.

ID GO term P-value Genes Deregulated genes
GO0:0051169  Nuclear transport 1.35E-08 94 46 (49%)
G0:0006913  nucleocytoplasmic transport 2.27E-07 93 46 (49%)
G0:0046822  regulation of nucleocytoplasmic transport 2.27E-07 19 " (58%)
G0:0051170  nuclear import 2.27E-07 60 28 (47%)
G0:0046823  negative regulation of nucleocytoplasmic transport 2.27E-07 7 6 (86%)
G0:0051168  nuclear export 2.27E-07 22 iRl (50%)
G0:0046824  positive regulation of nucleocytoplasmic transport 8.37E-07 7 2 (29%)
GO:0009056 Catabolic process 1.41E-08 872 361 (41%)
G0:0009894  regulation of catabolic process 1.12E-03 33 13 (39%)
G0:0044248  cellular catabolic process 1.87E-03 749 323 (43%)
G0:0009057  macromolecule catabolic process 2.60E-03 583 271 (46%)
G0:0016052  carbohydrate catabolic process 5.41E-03 61 21 (34%)
G0:0016042 lipid catabolic process 2.60E-02 116 28 (24%)
GO:0015031  Protein transport 1.60E-08 591 250 (42%)
G0:0006886 intracellular protein transport 2.27E-07 274 124 (45%)
G0:0017038  protein import 2.27E-07 68 32 (47%)
G0:0051224  negative regulation of protein transport 2.28E-07 10 6 (60%)
G0:0051223  regulation of protein transport 2.32E-07 34 10 (29%)
G0:0042953 lipoprotein transport 4.28E-07 7 1 (14%)
G0:0051222  positive regulation of protein transport 9.19E-07 13 2 (15%)
GO:0009306  protein secretion 2.59E-04 32 4 (13%)
GO0:0045859 Regulation of protein kinase activity 1.68E-08 132 50 (38%)
G0:0006469  negative regulation of protein kinase activity 2.93E-04 36 15 (42%)
G0O:0000079  regulation of cyclin-dependent protein kinase activity 3.44E-04 7 5 (71%)
G0:0043405  regulation of MAP kinase activity 7.75E-04 65 21 (32%)
G0:0045860  positive regulation of protein kinase activity 2.52E-08 91 32 (35%)
GO0:0006796 Phosphate metabolic process 1.69E-08 804 313 (39%)
G0:0045937  positive regulation of phosphate metabolic process 2.80E-04 44 15 (34%)
G0:0045936  negative regulation of phosphate metabolic process 8.86E-04 21 9 (43%)
G0:0019220  regulation of phosphate metabolic process 1.03E-03 93 33 (35%)
G0:0016311  dephosphorylation 9.67E-03 116 57 (49%)
G0:0006072  glycerol-3-phosphate metabolic process 1.03E-02 7 4 (57%)
GO0:0006950 Response to stress 1.77E-08 955 289 (30%)
G0:0001666  response to hypoxia 6.27E-03 26 9 (35%)
GO:0006970  response to osmotic stress 1.30E-02 15 8 (53%)
G0:0009408  response to heat 1.47E-02 26 10 (38%)
GO:0006979  response to oxidative stress 1.69E-02 53 23 (43%)
G0:0006986  response to unfolded protein 2.11E-02 29 8 (28%)
G0:0006974  response to DNA damage stimulus 2.81E-02 240 104 (43%)
GO:0033554  cellular response to stress 2.82E-02 304 128 (42%)
G0:0006952  defense response 3.02E-02 379 69 (18%)
GO:0009611  response to wounding 3.75E-02 315 71 (23%)
GO0:0006457  Protein folding 1.87E-08 107 47 (44%)
G0:0006458  ‘de novo’ protein folding 1.51E-05 13 7 (54%)
GO0:0006397 mRNA processing 1.90E-08 219 111 (51%)
GO:0000398  nuclear mRNA splicing, via spliceosome 2.27E-07 27 iRl (41%)
G0:0050684  regulation of MRNA processing 3.71E-07 4 3 (75%)
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ID GO term P-value Genes Deregulated genes
GO0:0031124  mRNA 3’-end processing 2.96E-06 8 2 (25%)
GO0:0007049 Cell cycle 1.93E-08 615 197 (32%)
G0:0000278  mitotic cell cycle 1.37E-02 232 69 (30%)
G0:0022402  cell cycle process 1.69E-02 338 104 (31%)
GO:0045786  negative regulation of cell cycle 4.87E-02 83 34 (41%)
GO0:0050790 Regulation of catalytic activity 1.96E-08 331 114 (34%)
G0:0043086 negative regulation of catalytic activity 1.12E-03 65 22 (34%)
G0:0051338  regulation of transferase activity 2.17E-03 140 52 (37%)
G0:0043085  positive regulation of catalytic activity 1.39E-02 186 59 (32%)
GO0:0006915  Apoptosis 2.03E-08 647 225 (35%)
G0:0043066  negative regulation of apoptosis 1.87E-02 189 69 (37%)
G0:0042981  regulation of apoptosis 2.49E-02 426 145 (34%)
G0:0043065  positive regulation of apoptosis 2.58E-02 183 64 (35%)
GO:0051402  neuron apoptosis 3.30E-02 67 22 (33%)
G0:0051276 Chromosome organization and biogenesis 2.33E-08 319 135 (42%)
G0:0006325  establishment or maintenance of chromatin architecture 2.27E-07 250 119 (48%)
G0O:0000819  sister chromatid segregation 3.78E-07 17 (18%)
G0:0030261  chromosome condensation 1.19E-06 15 2 (13%)
G0:0070192  chromosome organization involved in meiosis 2.98E-06 15 4 (27%)
G0:0032200  telomere organization 1.41E-05 19 6 (32%)
G0:0033044  regulation of chromosome organization 5.43E-04 9 2 (22%)
GO0:0007517 Muscle development 2.49E-08 179 73 (41%)
G0:0048747  muscle fiber development 2.27E-07 55 21 (38%)
G0:0048644  muscle morphogenesis 2.32E-07 7 2 (29%)
G0:0048634  regulation of muscle development 9.28E-07 26 13 (50%)
G0:0048635  negative regulation of muscle development 6.74E-06 7 4 (57%)
G0:0007525  somatic muscle development 2.32E-05 3 2 (67%)
G0:0048636  positive regulation of muscle development 1.19E-04 2 1 (50%)
GO0:0009628 Response to abiotic stimulus 2.60E-08 185 60 (32%)
GO:0006970  response to osmotic stress 1.30E-02 15 8 (53%)
G0:0009314  response to radiation 2.41E-02 106 36 (34%)
G0:0009266  response to temperature stimulus 2.89E-02 43 14 (33%)
G0:0009612  response to mechanical stimulus 3.88E-02 24 2 (8%)
GO0:0007005 Mitochondrion organization 2.68E-08 60 24 (40%)
G0:0008637  Apoptotic mitochondrial changes 4.55E-08 21 6 (29%)
GO0:0006461 Protein complex assembly 2.89E-08 164 66 (40%)
G0:0043623  cellular protein complex assembly 2.27E-07 115 48 (42%)
G0:0031334  positive regulation of protein complex assembly 2.68E-07 11 7 (64%)
GO:0051259  protein oligomerization 5.26E-07 38 14 (37%)
G0:0043254  regulation of protein complex assembly 5.41E-07 42 20 (48%)
G0:0031333  negative regulation of protein complex assembly 4.72E-06 21 9 (43%)
G0:0010608 posttranscriptional regulation of gene expression 2.27E-07 95 45 (47%)
GO:0006417  regulation of translation 2.27E-07 113 41 (36%)
G0:0031647  regulation of protein stability 3.69E-07 46 14 (30%)
G0:0016441  posttranscriptional gene silencing 4.35E-07 6 3 (50%)
G0:0043487  regulation of RNA stability 9.63E-03 18 3 (17%)
GO0:0006511  ubiquitin-dependent protein catabolic process 2.27E-07 451 215 (48%)
G0:0043161  proteasomal ubiquitin-dependent protein catabolic process ~ 2.27E-07 20 Ihl (55%)
G0:0042787  protein ubiquitination during protein catabolic process 2.32E-07 4 2 (50%)
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ID GO term P-value Genes Deregulated genes
GO0:0016567  Protein ubiquitination 1.88E-05 53 26 (49%)
GO:0031398  positive regulation of protein ubiquitination 2.27E-07 3 2 (67%)
G0:0000209  protein polyubiquitination 2.27E-07 13 9 (69%)
G0:0031396  regulation of protein ubiquitination 2.27E-07 8 4 (50%)
G0:0042787  protein ubiquitination during protein catabolic process 2.32E-07 4 2 (50%)
G0:0051865  protein autoubiquitination 3.24E-05 1 1 (100%)
GO:0006412 translation 9.69E-03 273 139 (51%)
GO:0017148  negative regulation of translation 2.27E-07 21 8 (38%)
G0:0006417  regulation of translation 2.27E-07 113 41 (36%)
G0:0006413  translational initiation 2.27E-07 52 19 (87%)
G0:0006414  translational elongation 2.27E-07 23 10 (43%)
G0:0006418  tRNA aminoacylation for protein translation 2.27E-07 69 22 (32%)
G0:0006415  translational termination 1.37E-06 8 3 (38%)
G0:0045727  positive regulation of translation 4.08E-04 7 2 (29%)
GO0:0042692 muscle cell differentiation 9.80E-03 75 31 (41%)
G0:0014902  myotube differentiation 2.27E-07 22 6 (27%)
GO:0051146  striated muscle cell differentiation 2.59E-07 72 28 (39%)
G0:0055001  muscle cell development 3.16E-07 38 18 (47%)
G0:0045445  myoblast differentiation 7.58E-06 28 4 (14%)
G0:0051147  regulation of muscle cell differentiation 1.07E-05 35 7 (20%)
G0:0051149  positive regulation of muscle cell differentiation 1.10E-05 15 4 (27%)
GO:0051145  smooth muscle cell differentiation 7.99E-06 22 5 (23%)
G0:0051148  negative regulation of muscle cell differentiation 1.61E-04 13 2 (15%)
G0:0048666 neuron development 1.31E-02 276 83 (30%)

Table S2 - A) List of the 1,679 overlapping deregulated genes recognized by Anni 2.0; B) List of the 481
deregulated genes highly associated with the terms ‘muscle atrophy’ or ‘skeletal muscle atrophy’; C) List of
the 163 genes showing a progression profile; D) List of the 63 selected progressive genes related to muscle
atrophy.

(excel file can be retrived from htip://hmg.oxfordjournals.org/content/suppl/2010/03/03/ddq098.DC1/
ddq098_supp_table_2.xIs)

6 week-old 18 week-old 26 week-old

Figure S1 - Clustergrams (heat maps) for each time point of the transcriptomic analysis.
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Figure S2 - A) Muscle extracts from
26-week-old A17.1 and WT mice were im-
munoblotted with the indicated antibody.
B) Immunofluorescence staining for to-
tal Foxo3A (red), dystrophin (green) and
Hoechst staining (blue) on WT and A17.1
TA muscle sections, magnification x400. C)
The percentage of nuclei containing a posi-
tive total Foxo3A staining was determined
on skeletal muscle (TA) cryosections from
26-week-old A17.1 mice (** p<0.01).
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Figure S3 - Measurements of
the weight and functional per-
formance of skeletal muscle in
WT mice injected with rAAV-
CAG-expPABPN1 compared to
the uninjected contralateral leg
(n=3 per group). A) Diagram of
the rAAV2/8-CAG-expPABPN1 con-
struct. B) Western-blot to confirm
the overexpression of expPABPN1
and immunostaining to confirm
the localization in nuclei of inject-
ed muscle fibers (expPABPNT in
green, dystrophin staining in red,
nuclei in blue). C) Measurements of
the muscle mass and the maximal
absolute force of both TA for each
mouse: injected leg (expPABPN1)
and contralateral uninjected leg
(contralateral) (n=3; #** P<0.01; *
P<0.05). As a comparison we have
indicated the corresponding muscle
mass and maximal absolute force of
the WT (plain line) and A17.1 mice
(dash line).
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Deregulation of the ubiquitin-proteasome system is the

predominant molecular pathology
models and patients

in OPMD animal
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culopharyngeal muscular dystrophy (OPMD) is a

late-onset progressive muscle disorder caused by a

poly-alanine expansion mutation in PABPNI. The
molecular mechanisms that regulate disease onset and pro-
gression are largely unknown. In order to identify molecu-
lar pathways that are consistently associated with OPMD,
we performed an integrated high-throughput transcriptome
study in affected muscles of OPMD animal models and pa-
tients. The ubiquitin-proteasome system (UPS) was found as
the most consistently and significantly deregulated pathway
across species. We could correlate the association of the UPS
deregulated genes with stages of disease progression. The ex-
pression trend of a subset of these genes is age-associated and
therefore marks the late onset of the disease, and a second
group with expression trends relating to disease-progression.
We demonstrate a correlation between expression trends and
entrapment in PABPNI1 insoluble aggregates of deregulated
E3 ligases. We also show that manipulations of proteasome
and immunoproteasome activity specifically affect the accu-
mulation and aggregation of mutant PABPN1. We suggest
that the natural decrease in proteasome expression and its
activity during muscle aging contributes to the onset of the
disease.
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BACKGROUND

Oculopharyngeal muscular dystrophy (OPMD) is a late-onset progressive muscle disorder for
which the underlying molecular mechanisms are largely unknown. This autosomal dominant
muscular dystrophy has an estimated prevalence of 1 in 100,000 worldwide (Fan and Rouleau,
2003). A higher prevalence has been reported in the Jewish Caucasian and French-Canadian
populations (1 in 600 and 1 in 1000, respectively) (Blumen et al., 2009; Brais et al., 1995). OPMD
is caused by expansion of a homopolymeric alanine (Ala) stretch at the N-terminus of the Poly(A)
Binding Protein Nuclear 1 (PABPN1) by 2-7 additional Ala residues (Brais et al., 1998). Although
PABPNI1 is ubiquitously expressed, the clinical and pathological features of OPMD are restricted
to a subset of skeletal muscles, causing progressive ptosis, dysphagia, and limb muscle weakness.
In affected muscles, the expanded PABPN1 (expPABPN1) accumulates in intranuclear inclusions
(INT) (Tome and Fardeau, 1980). Animal models for OPMD were generated in Drosophila, mouse
and C. elegans with a muscle-specific expression of expPABPNI1 (Chartier et al., 2006; Davies et
al., 2005; Catoire et al., 2008). These models recapitulate INI formation and progressive muscle
weakness in OPMD, and a correlation between INI formation and muscle weakness has been
reported (Chartier et al., 2006; Davies et al., 2005; Catoire et al., 2008). In these OPMD models
protein disaggregation approaches attenuate muscle symptoms (Davies et al., 2006; Catoire et al.,
2008; Chartier et al., 2009). So far, however, the molecular mechanisms that are associated with
OPMD onset and progression are not known. Previously, we preformed transcriptome analysis
on skeletal muscles from a mouse model of OPMD and found massive gene deregulation, which
was reflected by a broad spectrum of altered cellular pathways (Trollet et al., 2010). We found an
association of transcriptional changes with muscle atrophy (Trollet et al., 2010). Muscle atrophy
was recently reported in homozygous OPMD patients (Blumen et al., 2009). However, the vast
majority of OPMD patients are heterozygous and muscle atrophy is not common pathological
characteristic of the disease in its early stages. Importantly, a mouse model with low and constitu-
tive expPABPNI expression exhibits minor muscle defects without muscle atrophy (Hino et al.,
2004). Hino et al. (2004) suggested that the extent of muscle symptoms caused by expPABPN1
depends on the expression level. Therefore, it is not known whether the massive transcriptional
changes in affected muscles of the A17.1 OPMD model (Trollet et al., 2010) are due to the high
over-expression of expPABPNI1 or that they are common with transcriptional changes in OPMD
patients.

We have generated microarrays of OPMD carriers at pre-symptomatic and symptomatic stages.
Since OPMD is categorized as a rare disorder in Western countries, limited patient material is an
obstacle in reaching conclusive results. Therefore, we performed a cross-species transcriptome
study by integrating transcriptome data from Drosophila and mouse models and heterozygous
OPMD patients. We hypothesized that OPMD-associated molecular mechanisms would be con-
sistently deregulated across species. As bioinformatics analyses of gene expression are biased by
the computational approaches (Ioannidis et al., 2009), here we integrated three computational
methods to obtain a higher degree of confidence and reproducibility. The ubiquitin-proteasome
system (UPS) was identified as the most significant and consistent OPMD-deregulated pathway
across species.

RESULTS

Genome-wide expression profiles from the Drosophila and mouse OPMD models (Chartier et
al.,, 2006; Trollet et al., 2010) were integrated with the expression profiles of heterozygous OPMD
carriers (datasets are described in Table S1 and Table S2). Genes that are differentially expressed
between OPMD and controls (OPMD-deregulated) were identified using limma model in R
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Table 1 - Deregulation of ubiquitin-proteasome system (UPS) in OPMD in Drosophila, human and mouse. For
Drosophila and mouse P-values are derived from the combined analysis of the three time points using global
test, where age was included as a confounder in the model.

Drosophila Mouse Human

Literature Analysis

Ubiquitination #2 #1 #1
GO Categories

Ubiquitin-dependent Protein Catabolic Process 2.81E-04 2.27E-07 1.22E-03

Protein Ubiquitination 7.57E-03 1.88E-05 9.24E-04

Proteasomal Protein Catabolic Process 6.51E-03 2.23E-07 1.86E-03
KEGG Pathways

Ubiquitin Mediated Proteolysis 2.03E-03 8.25E-08 1.52E-03

Proteasome 2.15E-04 1.37E-07 9.27E-03

(Smyth, 2004). To identify the most prominent and consistent feature across all species, com-
parative pathway analysis was performed using three computational methods (Figure S1). In
literature-aided analyses (Jelier et al., 2008), the term ‘ubiquitination’ was found to be the most
strongly associated biomedical concept with OPMD-deregulated genes (Table 1 and Table S3).
A regression-based analysis using global test (GT) (Goeman et al., 2004), and an enrichment
method using DAVID (Dennis, Jr. et al., 2003; Huang et al., 2009) revealed highly significant
deregulation of ubiquitin-proteasome system (UPS)-related GO (Gene Ontology) categories and
KEGG (Kyoto Encyclopedia of Genes and Genomes) pathways across species (Table 1).

To evaluate the level of concordance between the animal models and OPMD patients, gene over-
lap between the OPMD-deregulated UPS genes was determined. Homologous genes were an-
notated using the HomoloGene and Inparanoid databases (see Methods). In total, 16%, 32%
and 25% of the genes annotated to the UPS were identified as OPMD-deregulated in Drosophila,
mouse and human, respectively (Figure 1A). More than half of the OPMD-deregulated genes in
Drosophila (59%) overlapped with their mouse or human homologous genes, and close to half
(45% and 51%) overlapped between mouse and human genes, respectively (Figure 1A). The sim-
ilarity of deregulation direction across species was demonstrated for 14 genes, for which probes
were found in all organisms (Figure 1B). Similar transcriptional changes were found for 13 ho-
mologous genes in mouse and human datasets. Among those, 8 genes showed similar changes in
Drosophila. These results show the consistent UPS deregulation in OPMD.

To validate the microarray analyses, quantitative RT-PCR (Q-PCR) was performed on 19 OP-
MD-deregulated UPS genes from mouse. Genes were selected based on P-value and >1.3 fold
change criteria. For 17/19 genes (89%), Q-PCR results confirmed the results of the microarray
analyses (Figure S2). This demonstrates the reproducibility and validity of the microarray statis-
tical analyses.

In the A17.1 mouse model, muscle atrophy is more prominent in fast glycolytic fibers (quadri-

ceps) as compared with slow oxidative fibers (soleus) (Trollet et al., 2010). Since muscle atrophy is
regulated by the UPS (Cao et al., 2005; Bodine et al., 2001; Sandri, 2008), we analyzed the muscle-

61



CHAPTER TWO

0 Drosophila m Mouse m Human
Mouse 3

n=678

2 2
o

log2 (ratio)
o

Human T hil.
n=742 n=359 E! 5“;! I
* « H
* **
El
2
-
SO ¢ S P PP F PSS
THFF T I IS S
] Quadriceps ] Soleus
60.0 60.0
OFVE mA17.1 OFVB mA17.1
50.0 50.0
¥
40.0 | 400
300 30.0
s s
% 200] % 200]
= =
~ 100 ~ 100
o o
2 a0 2 80
60 6.0
40 40
20 20
00 004
5 N N N Q N 3 ) ) D v N N N Q L 3 X g >
LU N S SHRR QR SRR P & F S &S > &
¥ FE T @ Q_,,b" & & & e o @ Q-"& S

Figure 1 - Cross species deregulation of ubiquitin-proteasome in OPMD. A) Venn-diagram displaying the
overlap in OPMD-deregulated genes in UPS across species. In mouse and Drosophila, OPMD-deregulated
genes should be consistently deregulated in at least two time points. The total number of genes in UPS is in-
dicated in italics. The list of OPMD-deregulated UPS genes is in Additional File 1. B) Transcriptional changes
of selected genes in UPS in different organisms. Histograms display the log2(ratio) of the measured expres-
sion values in Drosophila (white bars), mouse (gray bars), and human (black bars). Significant changes with
the adjusted P < 0.05 are indicated by *. C) RT Q-PCR validation of selected deregulated genes in UPS was
carried out on quadriceps (i) and soleus (ii) muscles of 6 week-old mice. Histograms show the measured
expression values for A17.1 and FVB mice using Q-PCR. Significant changes of measured expression val-
ues of A17.1 mice as compared to FVB with the P < 0.05 are indicated by *.

type specific expression of 10 OPMD-deregulated UPS genes in order to identify a correlation
with muscle atrophy. Q-PCR was performed on RNA isolated from quadriceps and soleus of 6
week-old A17.1 and control (FVB) mice. The majority (8 out of 10) of genes showed no fiber-type
specificity (Figure 1C). Only the deregulation of Trim63 (Trollet et al., 2010) and Ube3b were
specific to fast glycolytic fibers (Figure 1C). This suggests that the majority of OPMD-deregulat-
ed UPS genes are not associated with muscle atrophy in the A17.1 mouse.

The UPS involves an enzymatic cascade of ubiquitination and degradation steps. The ubiquitina-
tion steps start with ubiquitin activation, which requires the ubiquitin-activating enzyme (E1)
and ubiquitin (Ub). This process results in the binding of Ub to the E2-conjugating enzyme.
In a subsequent step the target protein is ubiquitinated with Ub-E2 and E3-ligase complexes,
which ensures target specificity. Poly-ubiquitinated proteins are subjected to degradation. This

62



DEREGULATION OF THE UPS IS THE PREDOMINANT MOLECULAR PATHOLOGY IN OPMD
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Figure 2 - Pie charts show the relative distribution of the UPS units (light colors) and OPMD-deregulat-
ed genes (dark colors) per organism. Numbers indicate the percentage of OPMD-deregulation.

step is employed by the deubiquitinating enzymes (DUBs) and the proteasome (Reyes-Turcu
et al,, 2009; Finley, 2009). Deregulation of genes involved in the ubiquitin activation step was
not found to be consistent between OPMD and the models (Figure 2 and Table 2). Ubiquitin
up-regulation was previously reported in a non-muscle cell model for OPMD (Abu-Baker et
al., 2003). Our study identified only one ubiquitin-encoding gene to be up regulated in mouse
and human genomes, but these deregulated genes were not consistent across species. The E2-
conjugating enzymes were significantly deregulated in Drosophila and mouse genomes, whereas
in humans, the P-value for these enzymes was not significant. This suggests a weak association
of E2 deregulation with OPMD (Figure 2 and Table 2). In contrast, consistent deregulation was
found for E3-ligases, DUBs, and proteasome (Figure 2 and Table 2). The significance of this
strong association was further evaluated by gene-overlap of homologous genes in human and
mouse (Table 2). The gene overlap between mouse and human was found to be significant for all
these three UPS components (P-values are 6.64E-08 for E3-ligases, 1.37E-02 for DUBs and 1.70E-
02 for the proteasome). Overall, this analysis demonstrates consistent deregulation of E3-ligases,
DUBs and proteasome across species.

OPMD is characterized by a late onset and a slow progression of muscle weaknesses (VICTOR
et al.,, 1962; Brais et al., 1998). Progressive muscle weakness has also been reported in the mouse
model (Davies et al., 2005). In 6 week-old mice symptoms were not detected, while muscle weak-
ness was present in 18 week-old mice and was more pronounced by 26 weeks (Davies et al., 2005).
If changes in expression levels are associated with disease onset and progression, a correlation
between age and expression levels should be expected. A linear regression model was applied to
the mouse UPS genes at three time points in order to identify genes that their expression trends
are progressively changed. 80% of the OPMD-deregulated UPS genes show a progressive trend,
which is age-associated (N=171/217, Figure S3A, examples for progressive expression trends are
shown in Figure 3Ai). To identify genes with expression trends that are specific to the disease
a regression model that combines age and disease features was applied. In 30% of the age-asso-
ciated OPMD-deregulated UPS genes (N=50, Figure S3B) the progression trends significantly
(P-value<0.05) differed between A17.1 and the wild-type (WT) controls (examples for progres-
sive expression trends are shown in Figure 3Bi). The genes with disease-specific progression can
be used to mark disease progression and could contribute to disease onset and progression. The
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Table 2 - The distribution of OPMD-deregulated genes in UPS functional units and protein degradation
categories. The number of annotated genes per unit, the percentage of OPMD-deregulated (D.E.) genes
and P-values are indicated per organism. For Drosophila and mouse statistics is generated in combined
datasets from three time points. The overlap in OPMD-deregulated genes between human and mouse and
the percentage of deregulated genes in human D.E. genes are indicated. Protein degradation machineries
are depicted by ¥.

Overlap

Drosophil M Human
osophila ouse uma mouse vs. human

% D.E. P-Value % D.E. P-Value % D.E. P-Value #D.E. % D.E.

Genes (FDR) Genes (FDR) Genes (FDR) Genes Genes
Ubiquitin 50.00  4.18E-05 11.11 1.28E-01 33.33 1.19E-01 0 00.00
E1 Ubiquitin Activation 16.67 1.24E-01 04.76  7.29E-02 1429  7.94E-02 0 00.00
E2 Ubiquitin Conjugation 13.64  9.19E-06  44.42 151E-08 2353  7.31E-02 3 37.50
E3 Ubiquitin Ligase 13.99 1.92E-04  29.58 1.64E-08 2474  4.35E-03 69 47.59
Deubiquitination (DUB) 20.00 1.63E-05  45.83 1.48E-08 2400  3.15E-02 13 72.22
¥  Proteasome 29.79 2.15E-04 36.94 1.37E-07 51.35 9.27E-03 " 57.90

¥AUtOphagy PO 2500 107503 . 3077 813508 . 1875 137502 1 1667

¥ Lysosome 5.00 1.64E-02 2533 6.06E-03  24.68 1.54E-02 6 33.33

group of genes whose expression changes with age independent from the disease, however, may
contribute to the late onset of the disease.

The vast majority of OPMD-deregulated UPS genes, which exhibit progressive expression pro-
files encode for E3-ligases (Figure S3). Expression trends for selected E3-ligases are presented
in Figure 3. Confirmation of the analysis in mouse was carried out on the human homologues
(Figure 3). The age-associated expression trends were similar between A17.1 and WT in mouse
and between controls and expPABPN1 carriers at pre-symptomatic and symptomatic stages in
human (Figure 3A). The progression trends did not significantly differ between genotypes (P-
value > 0.05). In contrast, for those genes with expression trends associated with age and disease
the expression trends of controls significantly differed from those of OPMD subjects (Figure 3B,
P-value <0.05). Validation of progression analysis was performed by Q-PCR analysis of RNA
from 6 and 26 week-old mice (Figure 3C). The Q-PCR results demonstrate the reproducibility
and validity of the microarray progression analysis.

In the progression analysis some differences between human and mouse were noted. The pro-
gression of Trim63 is mouse-specific, whereas the expression of the human TRIM63 is not age-
associated or OPMD-deregulated (Figure 3B). Asb11 is down regulated in mouse while it is up
regulated in human (Figure 3A). The expression trend of Socs4 in mouse is negative while in
human it is positive (Figure 3B). These discrepancies could reflect differences between the two
organisms or between the heterozygous and the high over-expression situation.

Expression of expPABPNI leads to INI formation in affected muscles (Davies et al., 2005; Trollet
et al., 2010). Previous studies have demonstrated that ubiquitin and proteasome proteins co-
localize with INI in affected muscles (Calado et al., 2000) and in non-muscle cells (Abu-Baker et
al., 2003; Tavanez et al., 2005). Since INI formation is a hallmark of OPMD, we studied whether
the expression profiles of OPMD-deregulated E3-ligases correlate with their entrapment with
expPABPNI1 in INI. Co-localization was analyzed with an immunofluorescence procedure in
C2C12 myotubes expressing expPABPNI1 fused to yellow fluorescent protein (YFP). From the
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Figure 3 - Progressive changes in UPS gene expression. Progression trends for selected genes in mouse
(i) and human (ii). Expression values were normalized to 6 weeks-old WT in mouse, and to young healthy
controls (19 years-old in average) in human. P-values demonstrate the significance of differences in expres-
sion trends between controls and OPMD samples. A) The age-associated progression trend is indicated by
P-value >0.05. B) The genotype-specific progression trend is indicated by P-values <0.05. SD represents
variations in mouse (6 weeks N=5 and 26 weeks N=6) and in human (expPABPN1 carriers N=4 and controls
N=5). C) RT Q-PCR validation of selected deregulated genes in UPS was carried out on skeletal muscles of
6 week-old and 26 week-old mice. Histograms show the log2(ratio) of the measured expression values using
microarray and Q-PCR. Significant changes with the P < 0.05 are indicated by *.
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E3-ligases encoding genes that showed A
an association with disease onset or pro-
gression (Figure 3), five were selected
for co-localization studies using specific
antibodies recognizing single proteins
at the appropriate molecular weights.
All 5 proteins showed nuclear localiza-
tion in myotubes and co-localized with
expPABPNI1 in INI (Figures 4). Arihl,
Asbll and Ddbl co-localized with all
sizes of INI structures (Figure 4A) while
the co-localization of Trim63 and Fbxo32
proteins were only evident for larger INI
structures (Figure 4B, highlighted in
boxes). This suggests a correlation be-
tween changes in expression trends and
temporal entrapment in INI.

YFP-PABPN1 + DAPI

IF
Asb11

Figure 4 - Co-localization of selected E3 ligases with INI

B YFP-PABPN1 + DAPI

The proteasome is composed of core and
regulatory subunits. Genes encoding for
the proteasome core subunit were promi-
nently down regulated in mouse and hu-
man (66% and 75%, respectively), while
no preference in deregulation direction
was found for the regulatory subunit

(Figure 5A and Table S5). Down-reg-
ulation of the proteasome could affect
protein degradation and, hence, protein
accumulation. In C2C12 myoblasts that
were treated with low concentrations (5

in C2C12 myotubes expressing YFP-Ala16PABPN1. Im-
munostaining of E3-ligases was visualized with Alexa-594
secondary antibodies. Co-localization with expPABPN1
in myotubes is demonstrated in the merge image. A 2.5X
magnification of nuclei containing expPABPN1 aggregates
is highlighted in a box. A) Arih1, Asb11 and Ddb1 E3 ligases

show consistent co-localization with aggregated YFP-Ala16-
PABPN1. B) Trim63 and Fbxo32 E3 ligases show progres-
sively more co-localization with YFP-Ala16-PABPN1 as INI
size increases. Scale bar is 10um.

1M) of the proteasome inhibitor MG132,
the accumulation of expPABPN1 was
significantly higher as compared with
mock-treated cells (Figure 5B). Simi-
larly, treatment with the DUB inhibitor, PR619, also caused expPABPN1 accumulation (Figure
5B). High nuclear accumulation of expPABPN1, which accompanies INI formation, was consis-
tently measured in MG132 treated cells using a cell-based intensity fluorescence quantification
assay (Figure 5C). Thus, reduced proteasome and DUB activities in muscle cells promoted exp-
PABPNI1 accumulation and INT formation in muscle cells. However, expPABPN1 accumulation
stimulated by proteasome inhibition is not specific to muscle cells (Abu-Baker et al., 2003).

In addition to the proteasome, the lysosome and the autophagy machineries can also facilitate
protein catabolism. To evaluate whether one of these machineries could also regulate expPAB-
PN1 protein accumulation the significance of deregulation in OPMD was analyzed. Overall, de-
regulation of lysosome and autophagy were not consistent across species. The lysosome KEGG
pathway was evaluated as significantly deregulated in OPMD across species by GT but not by
DAVID analysis (Table 2). However, in the literature-aided analysis, only a low level of asso-
ciation was found between OPMD-deregulated genes and lysosome in Drosophila and human
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Figure 5 - The effect of altered proteasome activity on expPABPN1 accumulation and aggregation.
A) Substantial deregulation of proteasome and immunoproteasome encoding genes in mouse and human.
Down-regulation (green) is more pronounced in the core subunit of the proteasome. Immunoproteasome
shows consistent up-regulation (red) in both organisms. B) Western blot analysis of YFP-Ala16-PABPN1
transfected C2C12 cells that were treated with 5uM MG132 or 5nM PR619. Control cells were treated with
DMSO. C) Images show YFP-Ala16-PABPN1 localization in C2C12 after mock-treatment (DMSO), 5 uM
MG 132 or 5U/ml IFNy. Scale bar equals 10 um. Histograms show the integrated intensity of YFP-Ala16-PAB-
PN1 (i) or Histone4-CFP (control) (ii), and the percentage of cells with INI in YFP-Ala16-PABPN1 expressing
cells (iii). Averages represent 509, 773 and 476 cells for DMSO, MG132 and IFNy, respectively. Significant
difference between treatments is reflected by P-values.

(ranked at positions 196 and 789, respectively), while no association was found in mice. Similarly,
the autophagy KEGG pathway was significant across species based on GT but not on DAVID
analysis (Table 2). In the literature-aided analysis, autophagy was ranked 12 in mice, but a lower
priority (ranked 136 and 154) was found in Drosophila and humans, respectively. Furthermore,
the OPMD-deregulated gene overlap between mouse and human were not significant for either
lysosome or autophagy pathways (P-values: 5.37E-01 and 3.70E-01, respectively). This is in sharp
contrast to the consistent proteasome deregulation found across species. This indicates that, from
the protein degradation pathways, only proteasome deregulation is consistently associated with
OPMD across species. From this analysis we cannot exclude lysosome or autophagy deregulation
in OPMD, but the lack of consistency across species and in three bioinformatics analyses suggests
a smaller contribution as compared with the proteasome.
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In contrast to the down regulation of genes in the core-subunit, the expression of genes encoding
for the immunoproteasome subunit (the cytokine-induced proteasome) was consistently elevat-
ed in OPMD (Figure 5A). The immunoproteasome was initially identified in cells of the immune
system after cytokine induction, which is involved in MHC-class-I antigen presentation (Kloetzel
and Ossendorp, 2004). However, the accumulation of cytokine-induced proteasome proteins was
also found in aging skeletal muscle cells (Ferrington et al., 2005). Treatment of C2C12 myoblasts
with IFNy, an inducer of immunoproteasome activity (Osna et al., 2003), led to a significant re-
duction in nuclear expPABPN1 accumulation (Figure 5C and 5Ci) and INI formation (Figure
5Ciii). In contrast to expPABPN1, accumulation of Histone4, which is also a nuclear protein,
was not significantly affected by manipulation of proteasome activity (Figure 5Cii). This suggests
that the accumulation of expPABPN1, but not of Histone4, is receptive to the level of proteasome
and immunoproteasome activity. Together, our results demonstrate that the UPS degradation
machinery regulates expPABPN1 accumulation.

DISCUSSION

UPS is a cellular regulator of homeostasis and is involved in a wide spectrum of human diseases
including cancer, neurodegenerative disorders and diabetes (Hoeller and Dikic, 2009; Liu et al.,
2000; Combaret et al., 2009; Taillandier et al., 2004; Ciechanover and Brundin, 2003). Deregula-
tion of UPS has been reported for myotonic dystrophy type 1 (Vignaud et al., 2010) and muscle
atrophy in mice (Cao et al., 2005; Bodine et al., 2001; Sandri, 2008). In addition, altered UPS
activity has been associated with muscle ageing (Combaret et al., 2009; Lee et al., 1999). Together
these studies suggest that muscle cell function is tightly regulated by the UPS. In this study, we
identified the UPS as the most consistently and significantly deregulated cellular machinery in
OPMD animal models and patients. Transcriptome studies in non-muscle cells expressing exp-
PABPNI1 did not reveal substantial and predominant deregulation of UPS genes (Corbeil-Girard
etal,, 2005). This indicates that the effect of expPABPN1 on UPS deregulation is specific to muscle
cells. Since PABPNI is ubiquitously expressed in every cell but the phenotype is limited to muscle
cells this suggests that UPS deregulation confers the muscle-specific pathogenesis of OPMD.

From six UPS components, only E3-ligases, DUBs and the proteasome were found to be con-
sistently and prominently deregulated in OPMD across species. Relevant to OPMD proteasome
activity is reduced during muscle aging (Combaret et al., 2009; Lee et al., 1999; Ferrington et al.,
2005), and is associated with transcriptional deregulation of proteasomal genes (Lee et al., 1999).
In the analysis of expression trends the expression of 89% of the OPMD-deregulated proteasome
genes were found to be age-associated. This suggests that the natural decrease in proteasome ex-
pression during muscle aging can contribute to the late onset of the disease. Our analysis revealed
that the core subunit of the proteasome is the only UPS subunit that was consistently down regu-
lated which can cause reduced activity of the proteasome machinery. In a recent study, we found
that expression of expPABPN1 in myotubes leads to down-regulation of proteasome-encoding
genes, and causing the accumulation of expPABPNI1 protein (unpublished data). However, pro-
teasome regulation of expPABPN1 accumulation and INI formation is not specific to muscle cells
(Abu-Baker et al., 2003). Since in patients INT are formed only in muscle cells this suggests that
proteasome down-regulation during muscle aging triggers expPABPN1 accumulation. In turn,
accumulation of expPABPNI leads to extensive proteasome down-regulation in OPMD (Figure
6). This feed forward model could justify the muscle-specific INI formation and the late onset in
OPMD.

Hypothesizing that changes in expression levels could reflect pathological changes in disease sta-
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Figure 6 - A model for the involvement of UPS in OPMD disease pathology. In muscle, age-associated
proteasome down regulation affects expPABPN1 protein accumulation. Elevated expPABPN1 accumulation
affects proteasome deregulation during disease onset. Expression profiles of E3-ligases can be sued to
separate disease onset from progression.

tus we have studied the correlation between transcriptional changes of OPMD-deregulated UPS
genes and age. Noticeably, the expression of the vast majority of the OPMD-deregulated UPS
genes is progressed during normal muscle aging. This suggests that transcriptional changes of
these genes are associated with disease onset. The expression trends of a subset of these genes
showed disease-specific progression. Among those, Trim63 and Fbxo32 exhibited disease pro-
gression in mouse. Both genes are known for regulating muscle atrophy in mice (Cao et al., 2005;
Bodine et al., 2001; Sandri, 2008). In the OPMD mouse model, muscle atrophy in exhibited only
in fast muscle glycolytic fibres and Trim63 expression correlates with muscle atrophy in A17.1
(Trollet et al., 2010). However, the majority of the OPMD-deregulated UPS genes did not show
fibre-type specific expression. This could suggest that UPS deregulation in OPMD has a broader
pathological effect than muscle atrophy. Indeed, in affected muscles of OPMD patients, atrophy
may be evident only at a later stage of disease progression. Although a high degree of consistency
between expression trends in mice and human was found for the majority of the genes analyzed
in this study. Trim63 deregulation and progression is probably mouse-specific, as OPMD-de-
regulation or progression was not found in human. Fbxo32, however, was consistently deregu-
lated in both organisms and, therefore, can be a candidate for regulating disease progression and
muscle atrophy in human. After mining the NCBI dataset for tissue-specific expression (Unigene
Hs.352183, Build No. 228 released 2010), Asb11 was noted for its specific expression in skeletal
muscles. Since Asbl11 is consistently OPMD-deregulated in human and mouse, and its expres-
sion trend is associated with disease onset it could represent a relevant candidate for functional
genomic studies. This shows that cross-species transcriptome and progression analyses can be
used to identify target molecules for future studies.

OPMD is characterized by INI formation. The role of INIs in disease pathogenesis is unknown.
Previous studies have shown that many genes whose expression is deregulated by expPABPN1
are found to be co-localized in INT (Corbeil-Girard et al., 2005). Components of the proteasome,
which is OPMD-deregulated, also co-localize in INI (Abu-Baker et al., 2003; Tavanez et al., 2005).
We also found that many of the OPMD deregulated E3-ligases are entrapped in INI. Moreover,
we demonstrate a correlation between temporal changes in expression levels and sequential en-
trapment in INI. Together these studies suggest that entrapment in INI could lead to transcrip-
tional deregulation. It is possible that protein entrapment in INI affects gene expression through
a compensatory mechanism resulting in altered transcriptional profiles.
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CONCLUSIONS

In this study, we combined expression datasets from three organisms and disease models with
different bioinformatics analyses in a single study. This allowed us to identify with high confi-
dence the UPS as the most predominantly deregulated cellular pathway in OPMD. This approach
differs from most microarray studies where results are derived from a single computational anal-
ysis performed on a single organism. We show that with this combined bioinformatics approach
the list of deregulated pathways can be prioritized with high confidence. This approach can facili-
tate studies with complex biological situations and massive gene deregulation such as late onset
disorders and rare-diseases.

The most significant and novel finding in this study is the substantial and cross-species consis-
tent deregulation of the ubiquitin-proteasome system (UPS) in OPMD. We propose that protein
entrapment in PABPN1 aggregates is associated with a substantial transcriptional deregulation of
the UPS that, in turn leads to disruption of homeostasis in skeletal muscles. By taking advantage
of the detailed analysis of gene expression trends and muscle- expression, we predict that candi-
date genes can be selected for functional genomic studies which ultimately lead to the identifica-
tion of OPMD pathogenesis.

METHODS

Generation of microarray datasets

Drosophila and mouse microarray datasets have previously been published (Chartier et al., 2009;
Trollet et al., 2010). Human quadriceps muscle samples were collected with the needle or by an
open surgical procedure from OPMD patients and family members as well as from anonymous
age-matching healthy individuals that gave informed consent. The presence of expansion muta-
tion in PABPN1 in OPMD patients and pre-symptomatic was determined with sequencing. Berg-
strom needle biopsies from the (pre)symptomatic patients were approved by the ethical commit-
tee. Total RNA was extracted from skeletal muscles using RNA Bee (Amsbio) according to the
manufacturer’s instructions. RNA integration number (RIN) was determined with RNA 6000
Nano (Agilent Technologies). RNA with RIN >7 were used for subsequent steps. RNA labeling
was performed with the Illumina” TotalPrep RNA Amplification kit (Ambion) according to the
manufacturer’s protocol, and subsequently was hybridized to Illumina Human v3 Bead arrays.
The generated microarray datasets are deposited and publicly available at GEO repository. GEO
accession numbers for mouse and human microarray datasets are GSE26604 and GSE26605,
respectively.

Data processing and statistical analysis

Microarray measurements were normalized using the quantile method (Smyth and Speed, 2003).
Each organism and time point was normalized separately. The quality of the data was assessed by
principal component analysis.

For Drosophila and mouse, genes differentially expressed between OPMD and control subjects
were identified at each time point by applying a hierarchical linear model using the limma pack-
age inR (Smyth, 2004). Human subjects were grouped into healthy, pre-symptomatic and symp-
tomatic subjects. P-value cut-offs of 0.05 after multiple-testing correction using the method of
Benjamini and Hochberg (False Discovery Rate (FDR) were applied to the Drosophila and mouse
samples and, due to higher inter-individual variation, a nominal P-value cut-oft of 0.05 was used
for human samples) were used. This resulted in lists of OPMD-deregulated genes for each time
point and organism. Probe annotation was done using the indac (Drosophila), illuminaMousev-
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1BeadID (mouse), and illuminaHumanv3BeadID (human) R packages. The OPMD significantly
deregulated genes in the UPS from human and mouse datasets are listed in Additional File 1.

Pathway analyses

Global test (GT) (Goeman et al., 2004) was used to identify significant associations between
GO categories or KEGG pathways and OPMD, while including age as a confounder (Drosophila
and mouse only). Gene sets with multiple testing adjusted (Holm’s method) P-value < 0.05 were
selected as significant. DAVID, a functional annotation clustering tool (Dennis, Jr. et al., 2003;
Huang et al., 2009), was applied on a list of OPMD-deregulated genes and pathway redundancy
was removed by clustering similar GO categories and pathways. In addition, biomedical concepts
that are associated with OPMD-deregulated genes were identified using literature-aided mapping
tool, Anni 2.0 (Jelier et al., 2008). The procedure was performed for each organism separately.
Cross-species analyses were carried out on a group of homologous genes. Drosophila homologues
of mouse and human genes were annotated using HomoloGene (http://www.ncbi.nlm.nih.gov/
homologene) and Inparanoid (http://inparanoid.sbc.su.se) online databases. Integration of three
time-points in Drosophila and mouse (Table S1) were used to identify OPMD-deregulated path-
ways across species (Figure 1). A recent annotation of E3 ligases (Li et al., 2008) was used to
identify OPMD-deregulated E3 ligases. The annotation for all other UPS components is extracted
from KEGG. Since the annotation for genes encoding for lysosome is not available in R pack-
ages, we have extracted the annotation from KEGG website and integrated it into our pathway
analyses.

Progression studies

For testing the significance of the association of expression trends of OPMD-deregulated genes
with age, using limma model in R (Smyth, 2004), a linear regression model (expression ~ «OPMD
+ BAGE + 8(OPMD x AGE) + ¢) was applied on combined datasets from 6 and 26 weeks old
mice. Age-associated changes were identified as those with B significantly different from zero.
OPMD- and age-associated changes were defined as those with & significantly different from
zero. To determine whether the expression profiles of individual genes significantly differ be-
tween controls and OPMD P-values are FDR-corrected with the cut-off threshold of 0.05.

Quantitative RT-PCR analysis

Primers for Q-PCR validation were designed in the sequence surrounding the Illumina probe
location using Primer 3 plus program. RT-QPCR was performed according to the procedure in
Trollet et al. (2010). The list of primers is provided in Table 3.

Cell culture and transfection

C2C12 cells were used for transient transfection experiments. C2C12 cells were cultured in
DMEM containing 20% fetal calf serum. Prior to transfection, cells were seeded on glass. Trans-
fection was carried out in 80% cell confluence with Lipofectamine™ 2000 (Invitrogen) according
to the manufacturer’s protocol. Plasmids used for transfection are YFP-Alal16-PABPN1 and His-
tone4-CFP. For the proteasome modification treatments, cells were treated 16 hours after trans-
fection with DMSO (1:1000), 5 uM MG132 (Sigma-Aldrich), or 5U/ml IFNy (HyCult Biotech)
for 20 hours.

Protein detection and Imaging

For immunocytochemistry, 16 hours post-transfection with YFP-Ala16-PABPN1, C2C12 cells
were incubated with fusion medium (DMEM supplemented with 2.5% Horse serum) for 2 days,
and immunocytochemistry was performed after a short fixation (Raz et al., 2006) followed by a
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15 min incubation with 1% Triton X100, during which PABPNI1 aggregates remain intact. Fol-
lowing antibody incubations, preparations were mounted in Citifluor (Agar Scientific) contain-
ing 400 pg/ml of DAPI (Sigma-Aldrich). Immunofluorescent specimens were examined with a
fluorescence microscope (Leica DM RXA), 63X and 100X lens NA 1.4 plan Apo objective. Inte-
grated intensity was measured with Image] (http://rsbweb.nih.gov/ij/), and intensity values were
corrected for background.

Antibodies used in this study are: Goat anti-Asb-11 (K16) (1:1000) Santa Cruz Biotechnology;
Rabbit anti-atrogin-1 (1:1000) ECM Biosciences; Rabbit anti-Murfl (1:1000) ECM Biosciences;
Goat anti-DDBI1 (1:1000) Abcam; mouse anti-Flag (1:2000) Sigma —Aldrich; Rabbit anti-Des-
min MP Biomedicals. Alexa-Fluor 594 conjugated secondary (Invitrogen) or IRDye 680LT and
800CW conjugated secondaries (Licor Biosciences) were used to detection of first antibody.

Table 3 - The list of primers used for quantitative RT_PCR analysis.

Genes Probe FW Primer Sequence RV Primer Sequence

Arih1 6900025 GAGAAGGATGGCGGTTGTAA ATCTCTTGCTGCCTTTGCAT
Arih2 2810025 AGCCTAACTCCCCCTTGGTA ACCACTGAGGGTGCAAAAAC
Atel 6940722 CAAAGTGATTCTACTGTGGCTGA ACGAAAATCTCCAATGCAGTC
Cul7 3360114 CGGGACTATGCGGTGATACT GTGGGTTCGTCTGTGGTCTT
Psme3 2810537 GCGAAGGTCAAACCCATAGA GAAAGTGATGCATCCCAGGT
Rbx1 2340047 TTGAGGCCAGCCTACAGAGT AGGAAAACTCCCCTGAAGGA
Skpia 2450102 TGCAGCTGGGCTCTCTTAAT GTTTCTCCACCTGGGAACAA
Uchli 1230066 CCTGTCCCTTCAGTTCCTCA GATTAACCCCGAGATGCTGA
Huwe1 106840041 GCTGCATTGAGACTTGAAACC TCCACAACACAGATGCCAAT
Tbl1x 6400524 ATTTTCCCCCTCCCCTAATC GAGCCTGTTCTGGATGGAAA
Ube4b 3610154 GCTGGAGTGGATCAGGACTC TGGTAAGGTCAAACCCCAAA
Ube2o 2190040 CGGTGAGCACATTACAGCTC GCATCATGCTTTGGCTTTTT
Usp4a7 100940601 GAATGCTTGTAAAGTCCCGTTT CTAGCACGCTCTGCAATGAA
Ppp2cb 5570593 ACTGCTACCGTTGTGGGAAC AGGTCCTGGGGAGGAATTTA
Ube3b 6380458 GCCTGCACAGGTAACACAGA ACCAGGAGCTGCTGAGATGT
Fbxo32 110037 GGGAGGCAATGTCTGTGTTT AAGAGGTGCAGGGACTGAGA
Trim63 1740164 CGACCGAGTGCAGACGATCATCTC GTGTCAAACTTCTGACTCAGC
Ubrb 1780605 GCTGCCTTTGTGGAAAGTGT TTGCAGCCAACCACAAATAA
Asb11 2060487 TTGTGCTGAACAAGCTCCTG GAGGGTCCTGAATCATCCAA
mHPRT - CGTCGTGATTAGCGATGATG TTTTCCAAATCCTCGGCATA

Authors’ contributions

SYA and AV preformed the bioinformatics studies. AV and VR preformed the molecular genetics
studies. Biological samples were provided by: BS, BE, MS, JV, CT, GD, AC and MS. The manu-
script was drafted by SYA and VR and written by SYA, PAC, SM and VR. PAC participated in
the bioinformatics design, coordination and data analysis. All authors read and approved the
manuscript.

72



DEREGULATION OF THE UPS IS THE PREDOMINANT MOLECULAR PATHOLOGY IN OPMD

Acknowledgement

This work was supported by grants from European Commission (PolyALA LSHM-
CT-2005018675) and Muscular Dystrophy Association (68016) to S.M.M. and MDA, the Cen-
tre for Medical Systems Biology within the framework of the Netherlands Genomics Initiative
(NGI)/Netherlands Organisation for Scientific Research (NWO), the CNRS (UPR1142), the
ANR Genopat (ANR-09-GENO-025-01), the FRM (“Equipe FRM 2007” N°DEQ20071210560),
and the European Commission (PolyALA LSHM-CT-2005-018675) to M.S. The funders had no
role in study design, data collection and analysis, decision to publish, or preparation of the manu-
script.

73



CHAPTER TWO

Reference List

Abu-Baker,A., Messaed,C., Laganiere,J., Gaspar,C., Brais,B., and Rouleau,G.A. (2003). Involvement of the ubiquitin-protea-
some pathway and molecular chaperones in oculopharyngeal muscular dystrophy. Hum. Mol. Genet 12, 2609-2623.

Blumen,S.C., Bouchard,J.P., Brais,B., Carasso,R.L., Paleacu,D., Drory,V.E., Chantal,S., Blumen,N., and Braverman,l. (2009).
Cognitive impairment and reduced life span of oculopharyngeal muscular dystrophy homozygotes. Neurology 73, 596-601.

Bodine,S.C., Latres,E., Baumhueter,S., Lai,V.K., Nunez,L., Clarke,B.A., Poueymirou,W.T., Panaro,F.J., Na,E., Dharmarajan,K.,
Pan,Z.Q., Valenzuela,D.M., DeChiara,T.M., Stitt, T.N., Yancopoulos,G.D., and Glass,D.J. (2001). Identification of ubiquitin li-
gases required for skeletal muscle atrophy. Science 294, 1704-1708.

Brais,B., Bouchard,J.P, Xie,Y.G., Rochefort,D.L., Chretien,N., Tome,FM., Lafreniere,R.G., Rommens,J.M., Uyama,E.,
Nohira,O., Blumen,S., Korczyn,A.D., Heutink,P., Mathieu,J., Duranceau,A., Codere,F., Fardeau,M., and Rouleau,G.A. (1998).
Short GCG expansions in the PABP2 gene cause oculopharyngeal muscular dystrophy. Nat Genet 18, 164-167.

Brais,B., Xie,Y.G., Sanson,M., Morgan,K., Weissenbach,J., Korczyn,A.D., Blumen,S.C., Fardeau,M., Tome,F.M., Bouchard,J.P,
and . (1995). The oculopharyngeal muscular dystrophy locus maps to the region of the cardiac alpha and beta myosin heavy
chain genes on chromosome 14q11.2-q13. Hum. Mol. Genet 4, 429-434.

Calado,A., Tome,F.M., Brais,B., Rouleau,G.A., Kuhn,U., Wahle,E., and Carmo-Fonseca,M. (2000). Nuclear inclusions in ocu-
lopharyngeal muscular dystrophy consist of poly(A) binding protein 2 aggregates which sequester poly(A) RNA. Hum. Mol.
Genet 9, 2321-2328.

Cao,PR., Kim,H.J., and Lecker,S.H. (2005). Ubiquitin-protein ligases in muscle wasting. Int. J. Biochem. Cell Biol. 37, 2088-
2097.

Catoire,H., Pasco,M.Y., Abu-Baker,A., Holbert,S., Tourette,C., Brais,B., Rouleau,G.A., Parker,J.A., and Neri,C. (2008). Sirtuin
inhibition protects from the polyalanine muscular dystrophy protein PABPN1. Hum. Mol. Genet 17, 2108-2117.

Chartier,A., Benoit,B., and Simonelig,M. (2006). A Drosophila model of oculopharyngeal muscular dystrophy reveals intrinsic
toxicity of PABPN1. EMBO J 25, 2253-2262.

Chartier,A., Raz,V., Sterrenburg,E., Verrips,C.T., van der Maarel,S.M., and Simonelig,M. (2009). Prevention of oculopharyn-
geal muscular dystrophy by muscular expression of Llama single-chain intrabodies in vivo. Hum. Mol. Genet.

Ciechanover,A. and Brundin,P. (2003). The ubiquitin proteasome system in neurodegenerative diseases: sometimes the
chicken, sometimes the egg. Neuron 40, 427-446.

Combaret,L., Dardevet,D., Bechet,D., Taillandier,D., Mosoni,L., and Attaix,D. (2009). Skeletal muscle proteolysis in aging.
Curr. Opin. Clin. Nutr. Metab Care 12, 37-41.

Corbeil-Girard,L.P.,, Klein,A.F., Sasseville,A.M., Lavoie,H., Dicaire,M.J., Saint-Denis,A., Page,M., Duranceau,A., Codere,F.,
Bouchard,J.P,, Karpati,G., Rouleau,G.A., Massie,B., Langelier,Y., and Brais,B. (2005). PABPN1 overexpression leads to up-
regulation of genes encoding nuclear proteins that are sequestered in oculopharyngeal muscular dystrophy nuclear inclu-
sions. Neurobiol. Dis. 18, 551-567.

Davies,J.E., Sarkar,S., and Rubinsztein,D.C. (2006). Trehalose reduces aggregate formation and delays pathology in a trans-
genic mouse model of oculopharyngeal muscular dystrophy. Hum. Mol. Genet 15, 23-31.

Davies,J.E., Wang,L., Garcia-Oroz,L., Cook,L.J., Vacher,C., O’'Donovan,D.G., and Rubinsztein,D.C. (2005). Doxycycline at-
tenuates and delays toxicity of the oculopharyngeal muscular dystrophy mutation in transgenic mice. Nat Med. 11, 672-677.

Dennis,G., Jr., Sherman,B.T., Hosack,D.A., Yang,J., Gao,W., Lane,H.C., and Lempicki,R.A. (2003). DAVID: Database for An-
notation, Visualization, and Integrated Discovery. Genome Biol. 4, 3.

Fan,X. and Rouleau,G.A. (2003). Progress in understanding the pathogenesis of oculopharyngeal muscular dystrophy. Can.
J. Neurol. Sci. 30, 8-14.

Ferrington,D.A., Husom,A.D., and Thompson,L.V. (2005). Altered proteasome structure, function, and oxidation in aged mus-
cle. FASEB J. 19, 644-646.

Finley,D. (2009). Recognition and processing of ubiquitin-protein conjugates by the proteasome. Annu. Rev Biochem. 78,
477-513.

Goeman,J.J., van de Geer,S.A., de,K.F., and van Houwelingen,H.C. (2004). A global test for groups of genes: testing associa-
tion with a clinical outcome. Bioinformatics. 20, 93-99.

Hino,H., Araki,K., Uyama,E., Takeya,M., Araki,M., Yoshinobu,K., Miike,K., Kawazoe,Y., Maeda,Y., Uchino,M., and Yamamura,K.
(2004). Myopathy phenotype in transgenic mice expressing mutated PABPN1 as a model of oculopharyngeal muscular dys-
trophy. Hum. Mol. Genet 13, 181-190.

Hoeller,D. and Dikic,l. (2009). Targeting the ubiquitin system in cancer therapy. Nature 458, 438-444.

Huang,d.W., Sherman,B.T., and Lempicki,R.A. (2009). Systematic and integrative analysis of large gene lists using DAVID
bioinformatics resources. Nat Protoc. 4, 44-57.

74



DEREGULATION OF THE UPS IS THE PREDOMINANT MOLECULAR PATHOLOGY IN OPMD

loannidis,J.P.,, Allison,D.B., Ball,C.A., Coulibaly,l., Cui,X., Culhane,A.C., Falchi,M., Furlanello,C., Game,L., Jurman,G.,
Mangion,J., Mehta,T., Nitzberg,M., Page,G.P., Petretto,E., and van,N., V (2009). Repeatability of published microarray gene
expression analyses. Nat Genet. 41, 149-155.

Jelier,R., Schuemie,M.J., Veldhoven,A., Dorssers,L.C., Jenster,G., and Kors,J.A. (2008). Anni 2.0: a multipurpose text-mining
tool for the life sciences. Genome Biol. 9, R96.

Kloetzel,P.M. and Ossendorp,F. (2004). Proteasome and peptidase function in MHC-class-I-mediated antigen presentation.
Curr. Opin. Immunol. 16, 76-81.

Lee,C.K., Klopp,R.G., Weindruch,R., and Prolla, T.A. (1999). Gene expression profile of aging and its retardation by caloric
restriction. Science 285, 1390-1393.

Li,W., Bengtson,M.H., Ulbrich,A., Matsuda,A., Reddy,V.A., Orth,A., Chanda,S.K., Batalov,S., and Joazeiro,C.A. (2008). Ge-
nome-wide and functional annotation of human E3 ubiquitin ligases identifies MULAN, a mitochondrial E3 that regulates the
organelle’s dynamics and signaling. PLoS. One. 3, e1487.

Liu,Z., Miers,W.R., Wei,L., and Barrett,E.J. (2000). The ubiquitin-proteasome proteolytic pathway in heart vs skeletal muscle:
effects of acute diabetes. Biochem. Biophys. Res. Commun. 276, 1255-1260.

Osna,N.A., Clemens,D.L., and Donohue, T.M., Jr. (2003). Interferon gamma enhances proteasome activity in recombinant Hep
G2 cells that express cytochrome P4502E1: modulation by ethanol. Biochem. Pharmacol. 66, 697-710.

Raz,V., Carlotti,F.,, Vermolen,B.J., van der,P.E., Sloos,W.C., Knaan-Shanzer,S., de Vries,A.A., Hoeben,R.C., Young,|.T,,
Tanke,H.J., Garini,Y., and Dirks,R.W. (2006). Changes in lamina structure are followed by spatial reorganization of hetero-
chromatic regions in caspase-8-activated human mesenchymal stem cells. J Cell Sci. 119, 4247-4256.

Reyes-Turcu,F.E., Ventii,K.H., and Wilkinson,K.D. (2009). Regulation and cellular roles of ubiquitin-specific deubiquitinating
enzymes. Annu. Rev Biochem. 78, 363-397.

Sandri,M. (2008). Signaling in muscle atrophy and hypertrophy. Physiology. (Bethesda. ) 23, 160-170.

Smyth,G.K. (2004). Linear models and empirical bayes methods for assessing differential expression in microarray experi-
ments. Stat. Appl. Genet. Mol. Biol. 3, Article3.

Smyth,G.K. and Speed,T. (2003). Normalization of cDNA microarray data. Methods 37, 265-273.

Taillandier,D., Combaret,L., Pouch,M.N., Samuels,S.E., Bechet,D., and Attaix,D. (2004). The role of ubiquitin-proteasome-
dependent proteolysis in the remodelling of skeletal muscle. Proc. Nutr. Soc. 63, 357-361.

Tavanez,J.P, Calado,P., Braga,J., Lafarga,M., and Carmo-Fonseca,M. (2005). In vivo aggregation properties of the nuclear
poly(A)-binding protein PABPN1. RNA. 11, 752-762.

Tome,F.M. and Fardeau,M. (1980). Nuclear inclusions in oculopharyngeal dystrophy. Acta Neuropathol. 49, 85-87.

Trollet,C., Anvar,S.Y., Venema,A., Hargreaves,|.P,, Foster,K., Vignaud,A., Ferry,A., Negroni,E., Hourde,C., Baraibar,M.A.,
‘t Hoen,P.A., Davies,J.E., Rubinsztein,D.C., Heales,S.J., Mouly,V., van der Maarel,S.M., Butler-Browne,G., Raz,V., and
Dickson,G. (2010). Molecular and phenotypic characterization of a mouse model of oculopharyngeal muscular dystrophy
reveals severe muscular atrophy restricted to fast glycolytic fibres. Hum. Mol. Genet.

VICTOR,M., HAYES,R., and ADAMS,R.D. (1962). Oculopharyngeal muscular dystrophy. A familial disease of late life charac-
terized by dysphagia and progressive ptosis of the evelids. N. Engl. J. Med. 267, 1267-1272.

Vignaud,A., Ferry,A., Huguet,A., Baraibar,M., Trollet,C., Hyzewicz,J., Butler-Browne,G., Puymirat,J., Gourdon,G., and
Furling,D. (2010). Progressive skeletal muscle weakness in transgenic mice expressing CTG expansions is associated with
the activation of the ubiquitin-proteasome pathway. Neuromuscul. Disord. 20, 319-325.

75



CHAPTER TWO

APPENDIX

Supplementary Table 1A - Overview of genome-wide transcriptome microarray datasets of Drosophila
and mouse OPMD models and muscle biopsies of OPMD patients.

Biological Systems  Tissue Number of Samples Age MA Platform
1da
Adult . y 15K INDAC
Drosophila thoracic 3 pools of 50 flies 6 days spotted
per genotype oligonucleotide
muscles
11 days array
6 weeks )
replicates per lllumnina 48K
Mouse Quadriceps 6 18 weeks Mouse v.1 bead
P genotype array
26 weeks
9  Pre-symptomatic 17 — 22 years control
13 Symptomatic 31 - 40 years Pre-Symptomatic )
lllumina 48K
Human Quadriceps 39  Controls 38 — 42 years control Human v.3 bead
array

49 — 60 years symptomatic

58 — 67 years control

Supplementary Table 1B - Overview of muscle biopsies of OPMD patients and controls. All patients are
heterozygous expPABPN1 carriers as indicated by sequence analysis.

Sex Age GCG Mutation Muscle Histology

Female 39 12/6 Sporadic atrophic fibre

Female 37 10/6 Moderate dystrophic alterations
Pre-Symptomatic

Female 37 12/6 Normal

Female 31 9/6 Slight dystrophic alteration

Female 60 9/6 Moderate dystrophic alterations

Female 49 10/6 Moderate dystrophic alterations
Symptomatic

Male 59 10/6 Moderate dystrophic alterations

Female 57 11/6 Severe dystrophic alterations

Supplementary Figure 1 - Integrated METHODS
cross-species high-throughput tran- Trans-organism transcriptome studies

scriptome study.
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Supplementary Table 2 - Literature-aided analysis of the association of biomedical concepts with

OPMD-deregulated genes.

Drosophila Mouse Human

1 ribosomal protein activity 1 Ubiquitination 1 ubiquitin activity

2 ubiquitin activity 2 Ubiquitins 2 RNABinding

3 RNABiInding 3 Ubiquitin 3 Ubiquitination

4 Ubiquitination 4 Ligase 4 RNA Splicing

5 Polyethylene glycol 5  SNAP receptor 5 GTP Binding
monostearate

6 Ligase 6 Internal Ribosome Entry Site 6  protein transport

7  POLR2F 7 Phosphotransferases 7 Alternative Splicing

8 GTP Binding 8  Cullin Proteins 8  Transcription, Genetic

9 ggssgrgli biogenesis and 9  Muscle Proteins 9 intracellular protein transport

10 Ribosome Subunits 19 Mitogen-Activated Protein 10 GTP-binding

Kinases

M Microarray [ QPCR

6 *
; l
a
3

log2 (ratio)
-

-2
-3
-4
J o v N 20 e} o > + Al 0 o > Q > o >
X & 2 & & @ o NN <) L & > © P
L A R I N & & c &

Supplementary Figure 2 - Validation of expression level of selected genes from the pool of UPS OPMD-
deregulated genes on the skeletal muscle of 6 weeks-old OPMD mice, normalized to WT. Histograms
indicate the log2(ratio) of the measured expression values using RT Q-PCR (grey bars) and microarray
(black bars) for 4 WT and 6 OPMC mice (* P <0.05).
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Supplementary Table 4 - Direction of OPMD-deregulation over the functional components of UPS that

are significantly deregulated in all organisms.

Mouse Human
E2 Ubiquitin Conjugation 33 44.42 50.00 50.00 34 23.53 50.00 50.00
E3 Ubiquitin Ligase 526 29.58 51.44 48.56 586 24.74 50.00 50.00
Deubiquitination (DUB) 72 45.83 42.00 58.00 75 24.00 41.18 58.82
Proteasome 37 36.94 59.38 40.62 37 51.35 42.86 57.14

Age associated progression
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Supplementary Figure 3: Temporal changes in UPS gene expression. A linear regression was applied to
identify temporal changes in expression levels of OPMD-deregulated genes in A17.1. A) Histogram shows
the percentage of age associated OPMD-deregulated genes for each of the UPS functional components and
E3-ligase subclasses. B) OPMD-deregulated genes showing age and OPMD associated progression. Histo-
gram shows the percentage of genes with age and OPMD associated expression for each of the functional
components. The number of genes in each bar is indicated.
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CHAPTER THREE

Decline in PABPN1 expression level marks skeletal muscle

aging
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Jelle J. Goeman?®, Barbara van der Sluijs*, Baziel van Engelen*, Marc Snoeck®, John Vissing®,
Silvere M. van der Maarel’, Peter A.C. 't Hoen'and Vered Raz"*

ging-associated disorders can be accompanied by in-

creased tissue degeneration and may provide insight

into key regulators of aging. Oculopharyngeal mus-
cular dystrophy (OPMD) is caused by alanine-expansion
mutations in PABPNI, and is characterized by progressive
skeletal muscle weakness that is manifested after midlife. We
compared expression profiles from Vastus lateralis of controls
and OPMD. Similar to PABPN1 expression, between 40-45
years a transcriptional switch was identified in both OPMD
and muscle aging while trends in OPMD were accelerated.
Among these genes, we identified a significant and progres-
sive decline in PABPNI expression from the fifth decade in
aging muscles. In concurrence with the more severe muscle
weakness, this decline was accelerated in muscles primarily
affected in OPMD. The aging-associated decline of PABPN1
was not detected in other tissues or in blood from OPMD
patients. We show that down-regulation of PABPNI induced
progressive cell senescence in myoblast cultures. We suggest
that a decline in PABPN1 expression marks muscle aging and
reduced levels of the protein causes age-associated muscle de-
generation.
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CHAPTER THREE

INTRODUCTION

Aging is marked by a progressive decline of cellular activities and its rate differs between tis-
sues (Kirkwood and Austad, 2000). A decrease in skeletal muscle performance, as measured by
strength, highly correlates with biological aging. Age-associated muscle weakness in healthy co-
horts starts around the fifth decade and linearly progresses with age (Beenakker et al., 2010). A
decline in muscle strength is suggested to predict functional disability and mortality in elderly
(Liu and Latham, 2011; Ling et al., 2010; Roth et al., 2002). The degenerative loss of muscle func-
tion during aging is regulated by numerous genetic and environmental factors. Consequently, the
onset and progression of aging-associated decline in muscle performance vary greatly between
individuals. Aging is a complex process and the molecular mechanisms that control the onset
and progression of muscle aging, as well as key regulators, are not fully understood. The high
complexity of aging-associated molecular mechanisms is demonstrated by genome-wide changes
in mRNA expression affecting a broad range of biological processes. Genome-wide transcrip-
tional changes can be derived by changes in mRNA stability. Thus, it is expected that regulators of
mRNA processing would regulate aging-associated transcriptional changes.

Aging associated changes can sometimes be exacerbated in patients with late onset degenerative
disorders (Kirkwood and Austad, 2000). Studies of late onset disorders can thereby expose key
regulators of aging that are otherwise difficult to identify. Oculopharyngeal muscular dystrophy
(OPMD) is a late onset autosomal dominant muscle disorder. OPMD is characterized by progres-
sive ptosis, dysphagia, and proximal limb muscle weakness that typically appear from the fifth
decade (Brais et al., 1995; Taylor, 1915; van der Sluijs et al., 2003). OPMD is caused by a trinucleo-
tide repeat expansion mutation in the gene encoding for Poly(A) Binding Protein Nuclear 1 (PAB-
PN1) causing a poly-alanine expansion in the N-terminus of PABPN1 (expPABPN1) (Brais et al.,
1998). PABPN1 binds to mRNA and regulates poly(A) elongation (Benoit et al., 2005). The length
of poly(A) depends on PABPN1 concentration (Kuhn et al., 2009), and knockdown of PABPN1
causes shortening of poly(A) tail mRNA (Apponi et al., 2010). PABPN1 knockdown in mouse
myotubes leads to myogenic defects and reduced cell fusion (Apponi et al., 2010). Reduced cell
fusion was also reported in OPMD myoblast cultures (Perie et al., 2006). Overexpression of mu-
tant PABPNI1 also leads to muscle cell defects in a mouse model (Davies et al., 2005; Trollet et al.,
2010). Mutant PABPN1 is prone to aggregation and accumulates in insoluble nuclear inclusions
(Tome and Fardeau, 1980). Although prevention of protein aggregation in animal models with
high overexpression of expPABPNI1 are effective in delay of muscle weakness (Davies et al., 2005;
Chartier et al., 2009; Catoire et al., 2008), aggregation of wild-type PABPN1 were also reported in
aging rat neuron cells (Berciano et al., 2004). In contrast to aggregates of expAPBPN1, those of
the wild type protein are not disease-associated. In cell models both wild type and expPABPN1
form aggregates, while expPABPN1 is more prone to aggregation (Raz et al., 2011a; Raz et al,,
2011b). Differences in aggregation can be, in part, explained in differences in poly-ubiquitination
(Raz et al., 2011b). Inhibition of the proteasome enhances the aggregation of expPABPNI1 in cell
models (Abu-Baker et al., 2003; Raz et al., 2011b). In OPMD the ubiquitin-proteasome system
(UPS) is significantly deregulated (Anvar et al., 2011; Raz et al., 2011b). Dysfunctional UPS stim-
ulates the formation of many protein aggregates (Balch et al., 2008; Morimoto, 2008; Sherman
and Goldberg, 2001).

It is unclear how a ubiquitously expressed protein, like PABPBN1, predominantly affects only a
subset of skeletal muscles and causes symptoms that are not apparent until midlife. We hypoth-
esized that aging contributes to the initiation and progressiveness of muscle weakness in OPMD.
We investigated the hypothesis that aging factors contribute to OPMD. We identified signifi-
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cant similarities between OPMD-deregulated and aging-regulated expression profiles. In con-
currence with muscle symptoms in OPMD, transcriptional changes were accelerated in OPMD
compared with normal aging. We show that a decline in PABPN1 expression is highly correlated
with age-associated changes in muscle strength in both OPMD and in muscle aging. We show
that down regulation of PABPN1 induces cell senescence. Since PABPN1 regulates mRNA sta-
bility, we suggest that changes in PABPN1 expression levels in muscle cells would lead to broad
transcriptional changes and hence muscle weakness.

RESULTS

Molecular signatures of aging are found in the OPMD mouse model at young age
Symptoms in OPMD do not become apparent until midlife. Therefore, we hypothesised that mo-
lecular processes that control muscle aging are involved in OPMD pathogenesis. We investigated
whether aging-regulated genes are deregulated in a mouse model for OPMD. In the A17.1 mouse
expPABPNI1 is overexpressed in muscles leading to muscle weakness (Davies et al., 2005). In this
mouse model, muscle atrophy initiates after 12 weeks (Trollet et al., 2010). A17.1-deregulated
genes were identified from age-matched wild type controls (Trollet et al., 2010). In a literature-
aided association study (LAS), we observed a large subset of A17.1-deregulated genes, in 6 week-
old A17.1 mice, that were strongly associated with the term ‘Aging’ (Figure 1A). Moreover, the
fold-change of these genes was remarkably high (Figure 1A). This suggests that in this mouse
model aging-associated transcriptional changes are induced already at 6 weeks. In an unsu-
pervised meta-analysis, 104 microarray studies, which are related to muscle development and
muscle disorders, were compared with that of A17.1. Three major clusters of similar transcrip-
tional changes were identified (Figure 1B). The transcriptome of the 6 week-old A17.1 mouse
was clustered together with those related to skeletal muscle aging (Welle et al., 2004; Giresi et al.,
2005), but not with datasets from other muscular dystrophies or myopathies (Figure 1B). These
analyses further indicate that transcriptional changes in OPMD are highly associated with those
of muscle aging.

Common molecular signatures in muscle aging and OPMD

To investigate genome-wide transcriptional changes in OPMD and during aging in humans,
three microarray datasets were generated from Vastus Lateralis muscles. For muscle aging a con-
tinuous cross sectional dataset was generated from controls aged 17-89. Datasets from OPMD
and expPABPNI carries at pre-symptomatic stage were generated after comparing to age-match-
ing control groups (Supplementary Table 1). Major sources of transcriptional variation were
assessed using unsupervised principal component analysis (PCA). In the control dataset age-
associated variations were identified using the first three principal components, covering 49% of
transcriptional variation. Based on the PCA analysis, samples were clustered into two age groups
of 17-42 and 43-89 years (Figure 2A). This suggests a genome-wide transcriptional switch at the
first half of the fifth decade. To verify this, we analysed the expression trends of probes whose
expression changed with age (named here as aging-regulated; P<0.05). We identified a major
switch-point around the age of 4245 years (Figure 2A). An absolute correlation distance measure
of k-means clustering revealed that the up-regulated and down-regulated trends of 70% of the
age-regulated probes are crossed at 42+5 years (Figure 2B). This indicates that a major expres-
sion switch in skeletal muscles occurs during the first half of the fifth decade. This observation
is in agreement with physiological studies in continuous cross-sectional cohorts showing that
aging-related changes in muscle strength start between 40 to 50 years (Kirkwood, 2005; Lexell et
al., 1988; Lindle et al., 1997; Sahin and Depinho, 2010). The aging-regulated genes were mapped
to a wide spectrum of Kyoto Encyclopaedia of Genes and Genomes (KEGG) functional pathways.
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Figure 1 -The A17.1 mouse transcriptome is strongly associated with aging. A) Volcano plot shows the
distribution of significantly deregulated genes (P = 0.05; indicated with a dashed line) in 6 week-old A17.1
mice against fold change. Genes are weighted based on their association with the Aging concept. The
normalized association-weight is presented with a circle on a scale between 0.05 and 1, where 1 equals
the highest association. B) Hierarchical clustering arrangements of 104 datasets in a literature-aided meta-
analysis. Shades of blue indicate degree of similarities: from weak (white) to strong (dark blue). Three skel-
etal muscle aging-related datasets are clustered with OPMD dataset of 6 week-old mice (highlighted in red).
The clusters associated with muscular dystrophies and other myopathies are highlighted in green and blue,
respectively.

These aging-regulated KEGG pathways were highly similar to those that were identified from
independent microarray study of skeletal muscles from two-age group (Welle et al., 2004; Welle
et al.,, 2003; Supplementary Table 2).

Around midlife, muscle weakness symptoms are found in OPMD but not in age-matching con-
trols (van der Sluijs et al., 2003) or in expPABPNI1 carriers at a pre-symptomatic stage (Supple-
mentary Table 2). OPMD-deregulated or pre-symptomatic-deregulated genes were identified
from age-matching controls. Despite the limited number of samples in OPMD, OPMD-de-
regulated genes were highly similar to those identified in OPMD animal models (Anvar et al.,
2011; Raz et al,, 2011b). In OPMD large transcriptional changes were identified, but only minor
transcriptional changes was identified at the pre-symtomatic stage (Figure 2C). Only 9% of the
OPMD-deregulated genes were also deregulated in the pre-symptomatic (Figure 2C). 30 KEGG
pathways were enriched in OPMD-deregulated genes (Supplementary Table 2), whereas no con-
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Figure 2 - High similarities between transcriptomes of muscle aging and OPMD. A) Principal component
analysis (PCA) plots of skeletal muscle datasets from healthy controls (age is indicated with a colour scale).
An age-associated variation is found with the first three principal components. Plots show sample distribution
in the first and second (left) or first and third (right) components. The percentage of variations is indicated
between brackets. The colour scale reflecting the age of the patient samples is given on top of the figure.
Dashed lines separate samples into two age groups. B) Plot shows expression trends for the major cluster
of 6448 probes whose expression are significantly changed with age (P<0.05). 4494 probes whose expres-
sion significantly change with age (p<0.05) were used for k-mean clustering analysis. Similar trends with
up- and or down-regulation were combined using absolute correlation, revealing a switching point at 42+5
years. Up- or down- regulated expression trends (red and blue, respectively) are indicated with dashed
lines, and continuous lines show the 95% boundaries. The middle line indicates the centroid with the age of
individual samples. C) Venn diagram shows the overlap of between genes associated with aging (>42) and
differentially expressed genes between OPMD- or expPABPN1 carriers and age-matched controls. Differen-
tially expressed genes (P<0.05) in OPMD and pre-symptomatic carriers were identified from age matching
control groups. P-values for overlap in differentially expressed genes were calculated with Fisher’s exact test.

sistently deregulated KEGG pathways were found at the pre-symptomatic stage. This indicates
that major transcriptional changes are associated with symptoms and age but not with the expres-
sion of expPABPNI per se.

The transcriptional changes in OPMD were significantly similar to aging-regulated genes (P =
1.1x10; Figure 2C), and high similarity was also found between OPMD-deregulated and ag-
ing-regulated KEGG pathways from two independent studies (Supplementary Table 2). These
analyses suggest that in both OPMD and muscle aging the major age-associated transcriptional
changes occur during the fifth decade. These transcriptional changes are significantly similar.
However, muscle weakness is found in OPMD and not in age-matching controls. This suggests
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Figure 3 — Analysis of differentially expressed genes in aging and in OPMD reveals that the UPS is the
most prominently associated biological process. A) 2D plots of selected biological processes, which are
affected in both OPMD (x-axis) and muscle aging (y-axis). Significantly affected genes have P-value<0.05
(indicated with red lines). Gene association with ‘muscle contraction’, ‘oxidative phosphorylation’, ‘insulin
signalling pathway’, ‘TGFp signalling pathway’, and ‘ubiquitin-proteasome system’ terms is presented by a
circle size. Normalized association weights < 0.1 are discarded. B) Cumulative distribution function (CDF)
plots show the distribution of normalized association weights for overlapping deregulated genes between
OPMD and muscle aging (>42 years) for each of the terms in A. Arrowheads indicate the maximum associa-
tion weights.

that progression and or amplitude of those transcriptional changes may underlie differences in
between OPMD and controls.

The UPS is the most affected pathway in OPMD and muscle aging

Next, we investigated the similarities of molecular changes in OPMD and aging-associated bio-
logical pathways using a literature-association study (LAS). In this study, we assessed the associa-
tion weights of overlapping genes between muscle aging and OPMD with the five most robust
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aging and OPMD-related pathways: oxidative phosphorylation, insulin signaling, tumor growth
factor (TGFp) signaling, the ubiquitin proteasome system (UPS) and muscle contraction (Sup-
plementary Table 2). In the muscle contraction group, the overlapping genes between OPMD
and muscle aging had high association weights (Figure 3A). This suggests that similar molecular
signatures of muscle contraction are found in OPMD and muscle aging. The overlapping genes
between OPMD and muscle aging were strongly associated with oxidative phosphorylation and
the UPS (Figure 3A), while little similarity was found for highly influenced genes in the insulin
or TGFp signaling pathways (Figure 3A). This suggests that different key components in insulin
or TGFp signaling pathways are deregulated in OPMD and muscle aging.

The association weights of the overlapping genes in OPMD-deregulated and aging-regulated
with five functional groups were ranked in Cumulative Distribution Function (CDF) plots and
compared against a theoretical random distribution. The associations of the genes with UPS,
oxidative phosphorylation and muscle contraction were much stronger than expected by chance
(Figure 3B; Kolmogorov-Smirnov test: P = 4.3x10%, 8.1x10% and 2.4x107%, respectively). In
contrast, the distribution of association weights for genes in the insulin and TGEp pathways were
insignificant and did not differ from a theoretical random distribution. The low P value is, in part,
due to the limited number of overlapping genes between OPMD and aging muscle in the latter
pathways. The UPS ranked the highest suggesting that key components of the UPS contribute to
both muscle aging and OPMD.

Age- related transcriptional changes are accelerated in OPMD

Clinical muscle weakness in quadriceps is found in OPMD patients but not in age-matching
controls (Supplementary Table 2). Muscle weakness in quadriceps among healthy subjects is
significant in the elderly (Hairi et al., 2010). Therefore, we investigated whether age-dependent
expression changes are accelerated in OPMD compared to healthy individuals. Age-dependent
expression trends of the probes that differentially expressed in both OPMD and aging were clus-
tered using k-means clustering. One cluster of up- and one cluster of down-regulated probes in
aging show earlier and accelerated changes in OPMD carriers (Figure 4A). Examples of rep-
rehensive expression trends of individual genes from each cluster are presented in Figure 4B.
Among those we identified the cell cycle regulator, CDKNIA (p21), and LMODI and CHRNA1
that are associated with muscle contraction. Among the genes with accelerated expression trends
in OPMD, for some the expression is changed at the pre-symptomatic stage. This analysis suggests
that expression trends in OPMD change faster compared with controls, and therefore changes in
expression profiles are accelerated in OPMD.

Next we evaluated similarities in expression profiles between OPMD and elderly (>80 years).
Significant overlap was identified between OPMD-deregulated and elderly-regulated genes (P
= 1.6x10°'*5; Figure 5A). From those, 74% showed a similar direction of deregulation. Examples
of genes with similar direction of deregulation in both datasets are shown in Figure 5B. All
genes were identified as aging-regulated in independent studies (Welle et al., 2004; Lu et al., 2004;
Rodwell et al., 2004). Since muscle weakness and atrophy is evident in elderly, this analysis sug-
gests that similar molecular changes are associated with muscle weakness in OPMD and elderly.

We also investigated the pool of overlapping genes between OPMD and elderly. The relevance of
this gene pool to aging was assessed with the literature concept ‘Aging’ The association-weight of
these genes to ‘Aging’ was very strong (Figure 5C). This confirms that this procedure can robustly
and quantitatively identify gene association to literature concepts. Similar to the pool of overlap-
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Figure 4 — Aging-associated expression trends are accel-
erated in OPMD. A) Expression trends of aging (>42)-regu-
lated and OPMD-deregulated probes show progressive
transcriptional changes in aging healthy controls (grey lines)
and accelerated changes in OPMD (red lines). Upper plots
show a summary trend (centroids) of all genes in each clus-
ter, and lower plots show individual genes. B) Examples of
expression trends of 10 genes from clusters in A, in healthy
controls (grey lines) and in exPABPN1 carriers at pre-symp-
tomatic and symptomatic stages (red lines). Standard devia-
tions are indicated. Left and right columns show down- or
up- regulated expression trends, respectively.
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ping genes between aging and OPMD, in
the OPMD-elderly pool, strong associa-
tion was found with oxidative phosphor-
ylation, the UPS and muscle contraction.
The association with insulin and TGEB
signalling pathways was less strong (Fig-
ure 5C).

Protein homeostasis is mainly regulated
by the autophagy-lysozyme system and
the UPS. Since the UPS ranks the highest
in both OPMD-aging and OPMD-elder-
ly pool of genes, we next compared the
association-weights of genes associated
with lysozyme, autophagy and the UPS
in the pool of OPMD-elderly overlap-
ping genes. In contrast to the UPS, the
association strength for autophagy and
lysosome was very low (Figure 5C).
The UPS was identified as the most sig-
nificantly and consistently deregulated
pathway in OPMD and models (Anvar
etal., 2011). In that study deregulation of
genes in autophagy and lysozyme ranked
much lower and was not consistently
significant in all OPMD model systems.
This suggest that deregulation of genes
in the UPS has the highest contribution
to muscle weakness in both aging and
OPMD.

PABPN1 expression progressively
declines with aging and the decline is
accelerated in OPMD

OPMD is caused by expression of exp-
PABPNI1. In the mouse model for OPMD
severity of muscle weakness is associated
with an increase in aggregates (Davies et
al., 2005; Trollet et al., 2010). In models
for OPMD aggregation depends on ex-
pression level. To our surprise, among
the OPMD-deregulated genes in our
microarray study we noticed PABPNI.
To validate the microarray observation
PABPNI1 expression levels were deter-
mined with RT-qPCR of RNA from Vas-
tus lateralis. Expression levels in OPMD
patients or expPABPN1 carriers at the
pre-symptomatic stage were compared
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Figure 5 — Similar changes in expression between elderly and OPMD. A) Venn diagram shows the over-
lap of differentially expressed genes in OPMD- and in elderly (>80 year). From the 1140 overlapping genes,
77% show changes in a similar direction. The P-value for the overlap was calculated with Fisher’s exact test.
B) Histogram show change in expression levels of genes with significantly changed expression in the elderly
(80 vs. 60 years) and in OPMD patients (vs. age-matched controls). All genes are reported in the literature as
aging-deregulated (* P <0.05, ** P <0.005, *** P <0.0005, and **** P <0.00005). C) Cumulative distribution
function (CDF) plots show the distribution of normalized association weights for overlapping deregulated
genes between OPMD and elderly (>80 years) for each of the terms indicated in the figure. Arrowheads
indicate the maximum association weights.

with age-matching control groups. A significant decline in expression was found in OPMD com-
pared with age-matching controls (Figure 6A). At the pre-symptomatic stage a slight but insig-
nificant reduction was found (Figure 6A). Since OPMD samples are significantly older compared
with pre-symptomatic, we next analysed whether a change in PABPN1 expression level is associ-
ated with age. RT-qPCR was performed on Vastus lateralis from 78 healthy controls aged 17-89.
A significant decline in PABPNI expression was identified from 43 years onwards (Figure 6B).
A quadratic model or two linear models describes most accurately the change in PABPN1 ex-
pression during age (Figure 6B). A significant shift in expression was identified around 43 years
(Table 1). This age-associated change in PABPNI expression shows a similar trend as decline in
skeletal muscle strength during aging (Kent-Braun et al., 2002; Roth et al., 2002), which is initi-
ated around midlife and progressively declines onwards. This suggests that changes in PABPN1
expression marks muscle aging. Moreover, symptoms in OPMD, but not the expression of exp-
PABPNI1 per se, are associated with a decline in PABPN1 expression.
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Figure 6 — PABPN1 expression declines in OPMD and during muscle aging. A) Box plot shows PABPN1
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spectively. A quadratic fit is shown with a red line (age 17-89), gender-corrected P-value for the quadratic
fit is indicated in red. Blue dashed lines show linear fits for the age groups: 17 - 42 and 43 - 89 years. C)
PABPN1 protein expression in primary myoblasts from young (37y) and old (65y) donors. i) Immunofluores-
cence of PABPN1 (red) and Desmin (green) in myotube cultures of 37 or 65 year-old donors. Scale bar is 10
mm. ii) Histogram shows integrated fluorescence intensity of PABPN1 in myonuclei of 37y and 65y cultures,
Ns7y = 103 and Nesy = 87 myonuclei. P value was calculated with the student’s T-test, significant difference
(p<0.05) is indicated with an asterisk. D) Box plot shows PABPN1 LOG2 expression in blood of OPMD pa-
tients (Norvp = 16) and age-matched controls (Nage-matched control group = 12). Expression values were normalized
to GAPDH and HRPT genes.

To validate the decline in PABPN1 mRNA expression, PABPN1 protein accumulation was deter-
mined in primary muscle cell cultures from 37 or 65 year-old individuals (Figure 6C). Protein
analysis was performed on cultures that were in vitro propagated for a single passage. A nuclear
staining of PABPN1 was found in these myoblasts. A decline in PABPN1 protein accumulation
was observed in Myo-65y compared with Myo-37y, whereas the intensity of Desmin staining was
unchanged (Figure 6Ci). Quantification of nuclear PABPNI1 fluorescence intensity in myonuclei
of fused myotubes revealed a significant decrease in Myo-65y compared with Myo-37y (Figure
6Cii).

PABPN1 is expressed in every cell whilst symptoms in OPMD are predominantly exhibited in a
subset of skeletal muscles. To investigate whether the decline in PABPN1 expression is tissue spe-
cific, the expression of PABPN1 was determined in blood samples of OPMD patients. RT-qPCR
analysis revealed that PABPNI expression levels were unchanged between OPMD patients and
age-matching controls (Figure 6D). This suggests that a decline in PABPN1 expression in OPMD
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Table 1 — Changes in PABPN1 expression depends on chronological age are muscle specific.

Tissue Age (years) Beta P-value
Vastus lateralis 17 - 42 (N = 41) -0.006 (0.009) 0.37
43 - 89 (N = 34) —0.029 (0 006) <0.0001
Frontal Brain Cortex 26 — 69 (N=17) 0.002 (0.007) 0.73
70 95 (N = ) —0.018 (0 008) 0.04
Blood 42 - 102 (N = 150) 0.001 (O 003) 0.69
Kldney Cortex 27 92 (N=72) —0.001 (0.002) 0.76
-0.001 (0.002) 0.42
—0.003 (O 002) 0.15
Kidney Medulla 29-92 (N =61) —0.003 (0.002) 0.11
0.001 (0.002) 0.76
-0.004 (O 002) 0.06
Rectus Abdominis 24 -83 (N =81) -0.000 (0.003) 0.94 Betas (standard errors of the mean)
of a linear model are provided per
0.010 (0.007) 0.13 probes. Values for three indepen-
dent PABPN1 probes are shown for
e, 0001 (0:003) 084 | gatasets from Kidney cortex, Kidney
- _ medulla, Rectus Abdominis and Par-
Parotid glands 19-71(N=13) O'OOO (0.003) 0.93 totid glands. P-values are adjusted for
0.003 (0.005) 0.64 gender. Significant changes are high-
lighted in bold. N indicates number of
-0.001 (0.005) 0.86 samples. Age is indicates in years (y).

is muscle-specific. Next we investigated PABPN1 expression in several aging-related microarray
studies from different tissues. A change in PABPN1 expression was not found in Blood, Parotid
glands, kidney cortex or kidney medulla (Table 1). In postmortal frontal brain cortex we identi-
fied a small decline in PABPNI1 expression in elderly (Table 1). Compared with PABPN1 decline
in Vastus lateralis, the decline in the brain cortex was smaller and delayed (Table 1). Also in Mus-
culus rectus abdominis PABPN1 expression was not changed with age (Table 1). Rectus Abdominis
is a typical posture skeletal muscle, while the Vastus lateralis is involved in muscle movement.
Moreover, muscle weakness is more pronounced in the Vastus lateralis compared with Rectus
Abdominis (Marzani et al., 2005). Together, this analysis suggests that the age-associated decline
in PABPN1 expression marks physiological aging in a subset of skeletal muscles.

PABPN1 down-regulation in human muscle cell culture induces cellular senescence and
myogenic defects

To investigate the effect of PABPN1 down-regulation in muscle cells, three PABPN1 shRNA
clones were selected for functional studies in immortalized human myoblast cultures using the
lentivirus expression system. Compared with controls (H1 empty vector and non-transduced
cells), the three PABPN1 shRNA clones, 121, 122 and 123, led to a 70%, 40% and 20% decrease
in PABPNI expression (Figure 6A). These clones were selected as they represent a physiological
decline in PABPN1. The sh121 clone led to down-regulation that is comparable to the decline in
OPMD patients, while the sh122 clone led to a decline as in healthy controls around 60-70 years.
The small decline in the sh123-transduced cells was comparable to the expression level in 40-50
year-old controls. Western blot analysis of protein extracts from fused cells confirmed substantial
PABPN1 down-regulation in the sh121-transduced cell cultures, and about 40% reduction in
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Figure 7 — PABPN1 down-regulation in myotubes shows myogenic defects and cell senescence. Hu-
man myotubes were transduced with shRNA specific to PABPN1 (121, 122, and 123) or H1 empty vector.
Non-transduced (NT) cells were used as controls. A) Histograms show PABPN1 expression in myoblasts
two weeks after transduction. Fold change was normalized to GAPDH gene and to non-transduced cells.
Averages are of 6 biological replicates. Western blot analysis of PABPN1, MHC1 and MSA in 121-, 122- or
H1- transduced myotubes two weeks after transduction. B) Immunofluorescence of PABPN1 (labelled with
Alexa-594) and myosin (labelled with Alexa-488) in 121- or H1-transduced fused myoblast cultures. Scale
bars are 20 mm. A magnification of a single nucleus is shown in the boxed image. C) Cell growth analysis
of 121-, 122- and H1- transduced myoblasts 3 or 10 weeks in culture. 50,000 cells were plated and were
counted after 2 days in culture. Plots show normalized cell number to un-transduced controls. Averages are
of 3 biological replicates. D) Left: Immunofluorescence of myotube cell cultures of desmin, PABPN1 and
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MHC1. Cells were cultured for 10 weeks before fusion. Nuclei were counter stained with DAPI. Scale bars
are 15 mm (Desmin) or 5 (PABPN1 and MHC1) mm. E) Images of fused myoblast H1- or 121- transduced
cultures. Preceding fusion cells were maintained for 4 or 10 weeks after transduction. Scale bar is 30 mm.
F) Left histogram shows RNA expression of MYH1, DMD, and CAV3in 121-, 122-, 123-, and H1-transduced
fused myoblast cultures. Cells were cultured for 3 weeks before fusion. Fold change was normalized to
GAPDH and to non-transduced cells. Averages are of 3 biological replicates. Significant down-regulation
(P<0.05) is indicated with asterisks. Right histogram shows Fold change in the microarray study in aging.

sh122-transduced cells (Figure 7A). A decrease in the accumulation of nuclear PABPN1 was
also verified by immunofluorescence in the sh121-transduced cells. A reduced PABPNI signal
was found in sh121 cells compared with control cells (Figure 6B). Nuclear PABPN1 is localized
to speckles (Tavanez et al., 2005). In myonuclei of sh121 the speckle localization of PABPN1 was
disrupted (Figure 7B, box). Together, this demonstrates that shRNAs for PABPN1 induced a
decline in mRNA and protein accumulation.

Next we investigated cellular effects of PABPN1 down-regulation. Cell growth was not signifi-
cantly affected in all myoblast cultures two or three passages after transduction (Figure 7C).
However, after a longer culturing period, a 60% decline in cell growth was found in the sh121-
transduced cells, whereas changes were not found in sh122, sh123-transduced cells or in con-
trols (Figure 7C). Senescent cells are marked by heterochromatic foci (HF) (Spector and Gasser,
2003). We observed HF in the sh121-transduced cells but not in controls (Figure 7D). PABPN1
expression was undetectable in nuclei with HF (Figure 7D). In vivo, the majority of muscle cells
are post-mitotic; therefore we compared the abundance of HF nuclei between myoblast and myo-
tube cultures. 24% of myonuclei in 121-fused cultures contained HF whereas in 121-myoblasts
only 9% of the cells were with HE This suggests that the effect of PABPN1 down-regulation on
cellular senescence is more pronounced in post-mitotic cells. Senescent muscle cells exhibit re-
duced fusion (Bigot et al., 2008). The fusion index in control cells was around 70% in transduced
cells and controls, and was not significantly affected during in vitro propagation (Figure 7E).
However, during in vitro propagation of the sh121-transduced cells cell fusion was reduced to
30% (Figure 7E). In concordance with cell growth, no significant reduced cell fusion was found
in sh122- or sh123- transduced cells. Fusion defects can be associated with reduced expression
of sarcomere encoding genes. RT-qPCR of MYHI, DMD and CAV3 revealed a significant re-
duction in fused cultures of sh121-transduced cells (Figure 7F). For these genes a significant
decline in expression was found in our microarray study (Figure 7). The decline in MHYI on
mRNA level was consistent with a reduced protein accumulation in myotubes (Figure 7A). In the
sh122- and sh123- transduced cells a gradual decrease in the expression of MYH]I was observed,
which corresponds to the decline in PABPNI expression (Figure 7F). The expression of DMD
was significantly affected in the sh122- but not in the sh123- transduced cells. The expression of
CAV3 reduced only in the sh121-transduced cells. Our experiments in this cell model suggest a
regulatory role for PABPN1 expression level in induction of cell senescence in muscle cells, which
is associated with a gradual change in expression of sarcomeric genes.

DISCUSSION

PABPNI regulates poly(A) tail length and mRNA stability (Lemay et al., 2010; Kuhn et al., 2009),
and thus plays an indispensable role in cell homeostasis by affecting genome-wide mRNA accu-
mulation. Previous studies demonstrated that a complete knockdown of PABPN1 causes shorting
of poly(A) tail, which is associated with myogenic defects, including reduction in cell growth and
fusion (Apponi et al., 2010; Chartier et al., 2006; Davies et al., 2006; Trollet et al., 2010). Here, for
the first time, a significant decline of PABPN1 expression in affected muscles of OPMD patients is
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also leads to muscle cell defects and at-
rophy, which is associated with genome-
wide transcriptional chances (Trollet et al., 2010). Mild overexpression of either expPABPNI1 or
the wild type allele in fused muscle cell culture also leads to transcriptional changes (Raz et al.,
2011b). These changes, however, are significantly smaller compared with high overexpression
situations (Raz et al., 2011b). Since PABPN1 regulates poly(A) length and hence mRNA stability,
these studies together suggest that manipulations of PABPN1 expression levels below or above a
narrow threshold leads to widespread transcriptional changes in muscle cells.

PABPNI1 is ubiquitously expressed but symptoms in OPMD are predominately exhibited in a
subset of skeletal muscles. Here we found that in OPMD PABPNI1 expression declines in skeletal
muscles but not in blood. During normal muscle aging, PABPNI1 level also decreases. However,
this decline is slower and smaller than in OPMD. The decline in PABPN1 expression was not
found in other tissues like kidney, Parotid glands, blood or Rectus Abdominis muscles, which is
less affected during aging. A smaller and delayed decline in PABPN1 was identified in brain cor-
tex. This suggests that a decline in PABPN1 expression is more prominent in skeletal muscles. The
decline was progressive from the age 43+ years, and perfectly fit to the decline in muscle weakness
during aging (Beenakker et al., 2010). Previous studies demonstrated significant muscle weak-
ness in quadriceps of elderly (Kent-Braun et al., 2002; Roth et al., 2002). A major switch in expres-
sion profiles in both OPMD and aging was identified during the first half of the fifth decade. This
suggests that similar mechanisms initiate muscle weakness in aging and OPMD. Transcriptional
similarities between OPMD and elderly suggest differences in progression of aging-regulated
muscle weakness between OPMD and normal aging (Figure 8).

Protein aggregation is the hallmark of OPMD. Both wild type and mutant PABPNI are prone to
aggregation. However, aggregation potency of expPABPNI1 is higher than that of the wild type
protein (Raz et al., 2011b). In contrast to the aggregation process of wild type PABPN1, that of
expPABPNI1 is irreversible and encompasses stable pre-aggregated forms or oligomers (Raz et al.,
2011a). Aggregates of both wild type and expPABPNI1 entrap a broad rage of nuclear proteins,
including components of the UPS (Calado et al., 2000; Anvar et al., 2011). The rate of protein
entrapment differs between aggregation process of wild type and mutant PABPN1 (Raz et al.,
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2011a). Protein entrapment can be associated with transcriptional changes of nuclear proteins
and UPS encoding genes (Corbeil-Girard et al., 2005; Anvar et al., 2011). Since proteostasis of
nuclear proteins is predominantly regulated by the UPS, changes in expression of UPS encod-
ing genes would affect the ratio of soluble to aggregated proteins. PABPN1 aggregation reduces
the levels of soluble PABPN1 (Raz et al., 2011b), and therefore could lead to a similar effect as
down-regulation. Aggregation of PABPNI1 is regulated by the UPS (Raz et al., 2011b). Moreover,
transcriptional changes of the UPS were identified in OPMD and aging. In elderly and OPMD
the UPS ranked with a highest association. Functional decline of the UPS is associated with an
accumulation and aggregation of misfolded proteins (Balch et al., 2008; Morimoto, 2008; Sher-
man and Goldberg, 2001). In C. elegance, aging is associated with widespread accumulation of
aggregated proteins (David et al., 2010). Changes in proteasome activity in skeletal muscles were
observed in muscle aging (Ferrington et al., 2005). We suggest that age-associated changes in UPS
expression play a role in OPMD onset (Figure 8).

Altogether, our data reveals a strong association between PABPN1 expression in OPMD and in
muscle aging. A decline in PABPNI expression marks muscle aging and we suggest that PABPN1
plays an indispensable role in muscle homeostasis. From this study new regulators of aging cells
could be identified in future studies.
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MATERIALS AND METHODS

Human materials, RNA extraction and RT-qPCR

Datasets: Human and mouse samples that were used in the microarray studies have been previ-
ously published (Anvar et al., 2011; Trollet et al., 2010). A summary of human samples is listed in
Supplementary Table 1.

All human muscle biopsies presented in this study were collected at Radboud Hospital, Nijme-
gen, Canisius-Wilhelmina Hospital, Nijmegen, The Netherlands, and Rigshospitalet, Denmark,
after an approval of the medical ethical committee Arnhem-Nijmegen (CMO nr. 2005/189) and
of the local ethical committee, from The NL and Denmark, respectively. OPMD patients and
pre-symptomatic were genetically confirmed and underwent clinical investigation including
MRC score prior to sampling of muscle biopsy. All quadriceps biopsies were collected using the
Bergstrom needle procedure. The biopsies froze immediately in liquid nitrogen and stored at -80
before RNA extraction.

RNA extraction and RT-qPCR were performed as described in (Trollet et al., 2010). Expression
levels were calculated according to the AACT method, and were first normalized to GAPDH
housekeeping gene and then to controls (17 - 25 years) in the aging studies, or to the age-matching
controls in the studies of expPABPNI1 carriers. The statistical significance was determined with
the Student’s t-test. The list of primers used in this study is provided in Supplementary Table 3.

Microarray and Statistical Analyses

The human and mouse microarray datasets are publicly available at GEO repository under the ac-
cession numbers GSE26605 and GSE26604, respectively. In all datasets genome-wide expression
profiles of skeletal muscles from OPMD were compared to controls. PABPN1 expression in non-
muscle tissues was identified from previously published microarrays, all are publically available:
frontal cortex: (GEO-GD707, GEO-GSE1572; Lu et al., 2004), Rectus abdominis (GEO-GSE5086;
Zahn et al., 2006), blood (GEO-GSE16717; Passtoors et al., 2012), kidney (Rodwell et al., 2004)
and Parotid glands (GEO-GSE8764; Srivastava et al., 2008).

Data Processing: Quantile normalization was applied on the microarray raw dataset and data
quality was assessed by the principal component analysis. Differentially expressed genes between
two age-groups were identified by applying hierarchical linear model using limma package in R
(Smyth, 2004) at a cut-off of 0.05. Furthermore, a list of aging-deregulated genes was filtered for
those that could not be confirmed after integration with additional set of control individuals in
an independent dataset. The OPMD-deregulated genes in the OPMD mouse model and patients
were identified as previously described (Anvar et al., 2011; Trollet et al., 2010). Probe annotation
was carried out using illuminaHumanv3BeadID (human) and illuminaMousevlBeadID (mouse)
R packages. Statistical significance of gene overlap was carried out with the Fisher’s exact test in R.

The principal component analysis (PCA) was applied on the human dataset to identify outliers
and to investigate age-associated variations. PCA analysis was performed in Matlab and in R.

For the literature-aided study (LAS) the association weights between genes and each biological
process were mined using Anni 2.1 (Jelier et al., 2008b). The association weights were normalized
to the scale between 0 and 1, relative to the maximum association weight. Threshold of 0.1 was
applied to remove genes with weak association (based on the level of evidential support in litera-
ture). In addition, genes with P >0.05 (-log, >1.3) in muscle aging and OPMD were excluded.
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Cumulative Distribution Function (CDF) plots were used to examine the association distribution
for deregulated genes in OPMD and muscle aging. The CDF of Gene, is defined as the proportion
of genes with association weight less than or equal to that of Gene, The Kolmogorov-Smirnov
(KS) test was used to identify distributions that significantly differ from a theoretical distribution,
threshold of P <107. Statistical tests were performed in Matlab.

The k-means clustering was used to identify similar expression trends. The procedure was made
with probes. For the control samples an absolute correlation was applied to cluster probes with
reciprocal (up or down) trends. However, in order to optimize the clustering arrangements, aver-
age Silhouette (S, ) values are calculated for each cluster in Matlab. Clustering arrangement of
partitions with S <0.6 were reiterated until the criteria has met. Maximum number of clusters
was set to 20 to avoid overly complex clustering arrangement due to the size of the set. The cluster
centroids were used to provide summarized age-dependent expression patterns for each cluster.

Statistical analyses of linear and quadratic models were carried out with the SPSS software (IMB)
and Matlab, and plots were generated in Matlab.

Pathway Analyses: Genes were mapped to KEGG pathways (Kyoto Encyclopedia of Genes and
Genomes) for assessment of significant transcriptional deregulation in aging (>42 years) or in
OPMD using global test (Goeman et al., 2004; Jelier et al., 2011). DAVID, a functional annotation
clustering tool (Dennis, Jr. et al., 2003; Huang et al., 2009), was used for integration and remov-
ing redundancy. The previously published datasets of Welle et al. (Welle et al., 2004) were used
for replication and independent confirmation of pathway analysis. Subcellular localization was
carried out with Gene Ontology. A recent annotation of genes encoding for aggregation-prone
proteins (David et al., 2010) was used to map the human homologues genes using HomoloGene
(http://ncbi.nlm.nih.gov/homologene) and Inparanoid (http://inparanoid.sbc.su.se) online data-
bases. The meta-analysis was carried out on 104 microarray datasets from various organisms as
described in Jelier et al. (Jelier et al., 2008a).

Cell culture and Lentivirus transduction

The human 7304 immortalized myoblasts were a kind gift from Francesco Muntoni (University
College London, UK) and were prepared by Gillian Butler-Browne and Vincent Mouly (Zhu et
al., 2007). The 7304 cells were propagated in a medium containing DMEM+20% Fetal Calf Serum
supplemented with an equal volume Skeletal Muscle Cell Media (PromoCell, Heidelberg, Ger-
many) at 37 °C under 5% CO,. Cell fusion was carried out in a medium containing DMEM+5%
Horse Serum. Human skeletal primary myoblasts from a 37-year-old (37y) and a 65-year-old
(65y) donor (Tebu-bio, Le Perray en Yvelines, France) are described in (Righolt et al., 2011). Cells
were propagated for only one or two passages and subsequently were seeded on collagen-coated
glass plates for imaging.

The shRNA in lentivirus expression vectors 121 (TRCN0000000121), 122 (TRCN0000000122)
and (TRCN0000000123) 123 were obtained from Sigma-Aldrich. An empty vector, H1, was used
as a negative control. Lentivirus particles were produced as described in (Raz et al., 2006). Virus
transduction was performed with 2mg/ml polybrene. Cells were cultured with viruses (MOI ~25)
overnight, followed by medium refreshing. Transduced cells were maintained in the presence
of 5mg/ml puromycin. PABPNI down-regulation was determined 3 days, 4 weeks and 8 weeks
after transduction using RT-qPCR. Down regulation did not change during culturing. In total, 4
independent transduction experiments were performed. Cell fusion and cell growth experiments
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were carried out in the absence of puromycin. For cell growth analysis 50,000 cells were seeded
in triplicates in a 24 well plate and the number of living cells was counted after two days with
TC10™ Automated Cell Counter (BioRad Hercules, CA, USA). Cell growth experiments were
carried out 3 and 10 weeks after transduction. Cell fusion was carried out 10 weeks after trans-
duction in triplicates and cell fusion index was determined by dividing the number of nuclei in
myotubes to the total number of myotubes.

Immunofluorescence and western blot analyses

The analysis of fused cells was carried out on cells seeded on plastics or on collagen-coated glass
plates. Immunofluorescence was carried out as described in (Raz et al., 2006). Images were re-
corded as described in (Raz et al,, 2011b). Primary antibodies used were: anti-Myosin MF20
(Sigma-Aldrich, MO, USA); anti-Desmin (1:500; Cell Signalling Technology, MS, USA) and the
anti-PABPN1, 3F5 llama single chain antibody (1:1000; Verheesen et al., 2006), recognised with
rabbit-anti-VHH (1:2000). The Alexa 488-, Alexa 430- or Alexa 594- conjugated secondary anti-
bodies against primary antibodies were obtained from Molecular Probes (Invitrogen, CA, USA)
and used (1:2000). DAPI (Sigma-Aldrich, MO, USA) was used for DNA counterstaining.

Western blot analysis of total proteins that were extracted from fused cells was carried out as
described in (Raz et al, 2011b). Primary antibodies were mouse monoclonal anti-muscle ac-
tin (MSA) (1:2000) (Novocastra, Newcastle upon Tyne, UK), 3F5 llama single chain antibody
(1:1000) recognised with rabbit-anti-VHH (1:2000) and anti-Myosin MF20 (1:500) (Sigma-Al-
drich). Detection of the first antibodies was conducted with the Odyssey Infrared Imaging Sys-
tem (LI-COR Biosciences, NE, USA) and suitable secondary antibodies.
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APPENDIX

Supplementary Table 1 — A list of muscle biopsies of OPMD patients and controls. All expPABPN1 car-
riers were confirmed by sequence analysis.

expPABPNT1 carriers

Controls
Pre-symptomatic Symptomatic

Sex Age Sex Age Sex Age Sex Age MRC  Sex Age MRC
Female 17 Male 36 Male 55 Female 37 5 Female 49 4
Male 17 Female 36 Female 56 Female 37 5 Female 54 5
Female 19 Male 36 Female 56 Male 38 5 Female 57 4
Female 19 Female 37 Male 56 Female 39 5 Male 59 5
Male 20 Female 38 Male 58 Female 39 5 Female 60 4
Female 20 Male 39 Female 58 Female 41 5 Female 60 45
Male 22 Female 39 Female 60 Male 66 4.5
Male 23 Male 39 Female 60 Male 68 35
Female 25 Male 40 Female 60 Female 69 45
Female 27 Male 40 Male 60
Male 27 Male 40 Male 61
Female 27 Female 40 Male 66
Male 28 Male 41 Female 67
Male 28 Male 42 Male 67
Male 29 Male 42 Female 67
Male 29 Male 42 Female 67
Female 31 Male 42 Male 68
Female 31 Male 43 Female 70
Male 32 Male 43 Male 70
Female 32 Female 43 Male 73
Female 32 Female 43 Male 77
Female 34 Female 44 Female 85
Female 34 Male 44 Female 87
Male 34 Male 45 Female 89
Female 35 Female 48
Female 35 Male 49
Female 35 Female 49

MRC score is a non-linear clinical measure for muscle weakness. MRC in left and right quadri-
ceps was determined at the same day when biopsies were sampled. Values show an average
of both sides. MRC in age-matching controls and in pre-symptomatic is 5. 5=normal muscle
strength; <5 indicates muscle weakness.
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Supplementary Table 3 — A primer list for RT-qPCR.

DECLINE IN PABPN1 EXPRESSION LEVEL MARKS SKELETAL MUSCLE AGING

Gene FW Primer RV Primer

GUSB 5 CTCATTTGGAATTTTGCCGATT 5" CCGAGTGAAGATCCCCTTTTTA
GapDH 5 CAACGAATTTGGCTACAGCA 5 AGGGGTCTACATGGCAACTG
PABPN1 5 ATGCCCGTTCCATCTATGTTG 5 GCCTGGTCTGTTGGTTCGTT
MYH1 5" TGGACAAACTGCAAGCAAAG 5" GACCTGGGACTCAGCAATGT
CAV3 5" CTGTTGCCTGAGCACAAAAA 5" GTTAGCCAAAGGGGAGGTTC
DMD 5 TGAGAGCTTTATTGCTGCATTTT 5 CATGCCATGTGATGTTTATGC
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CHAPTER FOUR

The identification of informative genes from multiple
datasets with increasing complexity
Seyed Yahya Anvar'?*, Peter A.C. ‘t Hoen? and Allan Tucker'

ingly multi-layered nature of more complex biological systems complicates the modelling of

regulatory networks that can represent and capture the interactions among genes. We believe
that the use of multiple datasets derived from related biological systems leads to more robust
models. Therefore, we developed a novel framework for modelling regulatory networks that in-
volves training and evaluation on independent datasets. Our approach includes the following
steps: (1) ordering the datasets based on their level of noise and informativeness; (2) selection of
a Bayesian classifier with an appropriate level of complexity by evaluation of predictive perfor-
mance on independent data sets; (3) comparing the different gene selections and the influence of
increasing the model complexity; (4) functional analysis of the informative genes. In this paper,
we identify the most appropriate model complexity using cross-validation and independent test
set validation for predicting gene expression in three published datasets related to myogenesis
and muscle differentiation. Furthermore, we demonstrate that models trained on simpler da-
tasets can be used to identify interactions among genes and select the most informative. We
also show that these models can explain the myogenesis-related genes (genes of interest) sig-
nificantly better than others (P < 0.004) since the improvement in their rankings is much more
pronounced. Finally, after further evaluating our results on synthetic datasets, we show that our
approach outperforms a concordance method by Lai ef al. in identifying informative genes from
multiple datasets with increasing complexity whilst additionally modelling the interaction be-
tween genes. We show that Bayesian networks derived from simpler controlled systems have bet-
ter performance than those trained on datasets from more complex biological systems. Further,
we present that highly predictive and consistent genes,
from the pool of differentially expressed genes, across 1 Center for Intelligent Data Analysis, School of
. . Information Systems, Computing and Mathemat-
independent datasets are more likely to be fundamen- ics, Brunel University, Uxbridge, Middlesex, UBS
tally involved in the biological process under study. We spp Kk 2 Genter for Human and Clinical Genetics,
conclude that networks trained on simpler controlled Leiden University Medical Center, the Netherlands.
systems, such as in vitro experiments, can be used to
model and capture interactions among genes in more
complex datasets, such as in vivo experiments, where
these interactions would otherwise be concealed by a Bmc Bioinformatics, 2010,
multitude of other ongoing events. Jan 15; 11:32; doi:10.1186/1471-2105-11-32

In microarray data analysis, factors such as data quality, biological variation, and the increas-

* To whom correspondence should be addressed
at: s.y.anvar@lumc.nl

113



CHAPTER FOUR

BACKGROUND

High-throughput gene expression profiling experiments have increased our understanding of
the regulation of biological processes at the transcriptional level. In bacteria (Bockhorst et al.,
2003) and lower eukaryotes, such as yeast (Segal et al., 2003), modeling of regulatory interac-
tions between large numbers of proteins in the form of regulatory networks has been successful.
A regulatory network represents relationships between genes and describes how the expression
level, or activity, of genes can affect the expression of other genes. The network includes causal
relationships where the protein product of a gene (e.g. transcription factor) directly regulates the
expression of a gene but also more indirect relationships. Modeling has been less successful for
more complex biological systems such as mammalian tissues, where models of regulatory net-
works usually contain many spurious correlations. This is partly attributable to the increasingly
multi-layered nature of transcriptional control in higher eukaryotes, e.g. involving epigenetic
mechanisms and non-coding RNAs. However, a potential major reason for the decreased perfor-
mance is due to biological complexity of datasets which can be defined as the increase of biologi-
cal variation and the presence of different cell types, which is not compensated by an increase in
the number of replicate data points available for modeling. There is an urgent need to identify
regulatory mechanisms with more confidence to avoid wasting laborious and expensive wet-lab
follow-up experiments on false positive predictions.

The main paradigms of this paper are that regulatory interactions that are consistently found
across multiple datasets are more likely to be fundamentally involved and that these regulatory
interactions are easier to find in datasets with less biological variation. In the end, regulatory
networks trained on less complex biological systems could thus be used for the modeling of the
more complex biological systems. We do this using a novel computational technique that com-
bines Bayesian network learning with independent test set validation (using error and variance
measures) and a ranking statistic. Whilst Bayesian networks and Bayesian classifiers have been
used with great success in bioinformatics (Friedman et al., 2000; Xu et al., 2004), an important
weakness has been that, when trying to build models that reveal genuine underlying biologi-
cal processes, a highly accurate predictive model is not always enough (Grossman and Domin-
gos, 2004). The ability to generalize to other datasets is of greater importance (Pefia et al., 2005).
Simple cross-validation approaches on a single dataset will not necessarily result in a model that
reflects the underlying biology and therefore will not generalize well. Our approach is to exploit
multiple datasets of increasingly complex systems in order to identify more informative genes
reflecting the underlying biology.

Bayesian networks have been an important concept for modeling uncertain systems (Pearl, 1986;
Buntine, 1996; Heckerman, 1998; Friedman and Koller, 2003). In the last decade several research-
ers have examined methods for modeling gene expression datasets based on Bayesian network
methodology (Segal et al., 2003; Friedman et al., 2000; Xu et al., 2004). These networks are di-
rected acyclic graphs (DAG) that represent the joint probability distribution of variables effi-
ciently and effectively (Friedman et al., 1997). Each node in the graph represents a gene, and the
edges represent conditional independencies between genes. Bayesian networks are popular tools
for modeling gene expression data as their structure and parameters can easily be interpreted by
biologists.

Bayesian classifiers are a family of Bayesian networks that are specifically aimed to classify cases

within a data set through the use of a class node. The simplest is known as the naive Bayes clas-
sifier (NBC) where the distribution for every variable is conditioned upon the class and assumes
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independence between the variables. Despite this oversimplification, NBCs have been shown
to perform very competitively on gene expression data in classification and feature selection
problems (Grossman and Domingos, 2004; Fielding, 2007; Tobler et al., 2002). Other Bayesian
classifiers, which often have higher model complexity as they contain more parameters, involve
learning different networks such as trees between the variables and therefore relax the indepen-
dence assumption (Friedman et al., 1997). The logical conclusion is the general Bayesian Network
Classifier (BNC) which simply learns a structure over the variables including the class node. In
this paper, we explore the use of the NBC, and the BNC for predicting expression on independent
datasets in order to identify informative genes using classifiers of differing complexity.

Accordingly, in order to optimize the classifier and choose the best method, we need to consider
the classifiers’ bias and variance. Since bias and variance have an inverse relationship (Field-
ing, 2007), which means decreasing in one increases the other, cross-validation methods can be
adopted in order to minimize such an effect. The k-fold cross-validation (Fielding, 2007; Stone,
1974) randomly splits data into k folds of the same size. A process is repeated k times where k-1
folds are used for training and the remaining fold is used for testing the classifier. This process
leads to a better classification with lower bias and variance (Kohavi, 1995) than other training
and testing methods when using a single dataset. In this paper, we exploit bias and variance using
both cross-validation on a single dataset and also independent test data in order to learn models
that better represent the true underlying biology. In the next section we provide a description of
the gene identification algorithm for identifying gene subsets that are specific to a single simple
dataset as well as subsets that exist across datasets of all biological complexity. We used van den
Bulcke et al. (2006) proposed model for generating synthetic datasets to validate our findings
on real microarray data. Moreover, we evaluate the performance of our algorithm by comparing
the ability of this model in identifying the informative genes and underlying interactions among
genes with the concordance model. Finally, we present the conclusion and summary of our find-
ings in the last section.

METHODS

Multi-Data Gene Identification Algorithm

The algorithm involves taking multiple datasets of increasing biological complexity as input and
arepeated training and testing regime. Firstly, this involves a k-fold cross-validation approach on
the single simple dataset (from now on we refer to this as the cross-validation data) where Bayes-
ian networks are learnt from the training set and tested on the test set for all k folds. These folding
arrangements have been used again for assessing a final model. The Bayesian Network learning
algorithm is outlined in the next section.

The Sum Squared Error (SSE) and variance is calculated for all genes over these folds by predict-
ing the measured expression levels of a gene given the measurements taken from others. Next, the
same models from each k fold are tested on the other (more complex) datasets (the independent
test data) and SSE and variance are again calculated. These SSE and variances are used to rank the
genes according to their informativeness (which represents the most predictive and influential
genes). Those that are ranked highly in the single-dataset cross-validation experiments will be
informative, specific to the single datasets experiment, whereas those that are ranked highly on
the independent datasets should be informative in a more general sense in that they are predic-
tive (low SSE) and consistent (low variance) across datasets of all complexity. We evaluate the
statistical significance of these rankings using a method proposed by Zhang et al. (2006). The full
details are outlined in Algorithm 1 where TrainD represents the training data (cross-validation
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Algorithm 1 - Multi Data Gene Identification Algorithm.

Input: {TrainD, TestD,, ... TestD,, folds}
for k = 1:folds
Learn BN using Algorithm 2 on training folds of TrainD
Score SSE on test fold k of TrainD
Score SSE on all independent test datasets {TesiD,...TestD, }
end for
Calculate variance of SSE over all k folds on TrainD and {TestD,... TestD, }
Create gene rankings: trainR_SSE, train_var,
{testR_SSE,...testR_SSE, } and
{testR_var,...testR_var, } by ordering the genes
on the respective SSE and variance scores

Output: {rainR_SSE, train_var,
{testR_SSE,...testR_SSE,,}
{testR_var,...testR_var, }

data, here the relatively simple datasets), and TestD, ... TestD,, represent the more complex test
datasets, independent test data.

Bayesian Network Structure Learning

The goal of learning gene regulatory networks using Bayesian network approaches is to establish
the structure of the network and then to parameterize the conditional probability tables (Su and
Zhang, 2006). As the number of possible network structures is huge, learning the structure of a
network has a high computational cost. Since the effective learning of network structure engages
a trade-oft of bias vs. variance, the necessity of designing an algorithm in which it can generate an
ideal structure for a given dataset, with a degree of biological complexity, is crucial (Chickering et
al., 2004). In this study, instead of using well studied but unrealistic and sometimes not effective
classifiers such as NBC and Tree Augmented Networks (TAN), we use an optimization approach
that uses a simulated annealing search and the Bayes Information Criterion (BIC) as a scoring
metric (Schwarz, 1978). The advantage of simulated annealing over other methods (like greedy
searches or hill climbing) is that it aims to avoid local maxima (Friedman et al., 1997). We have
chosen the BIC as a fitness function as it is less prone to overfitting through the use of a penalizing
term for overly complex models.

Bayesian networks with more connections between their nodes require a higher number of pa-
rameters and as a result increase the complexity of the models exponentially (Lam and Bacchus,
1994). Therefore, we explore three different classes of model learning: the Selective Naive Bayes
(SNB) where only links between a class node representing differentiation status and a gene are
explored, a search that explores structures with links between genes but limiting each gene to
having only one parent (1PB). Limiting the number of parents in a Bayesian network is common
practise but can be considered a crude approach to reducing parameters. As a result we also ex-
plore a full unlimited structure learning (NPB) and learn these structures using the simulated an-
nealing with the BIC scoring metric (which naturally penalises overly complex networks). In this
study, the initial state of the structure is an empty DAG with no link. In order to alter the network
structures, three operators have been used within the simulated annealing. These operators are
adding, removing, or swapping links to generate a new network for validation. These alterations
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can be either accepted or rejected. The Algorithm 2 - Simulated Annealing Structure Learning.
outline of this procedure can be found in

Input: ¢, maxfc, D

Algorithm 2. fe=0, t=t, t =0.001
c=(t/t 1/maxtc
Prediction and Ranking Initial bn to a Bayesian classifier with no inter-gene links
Zhang et al. (2006) proposed a method results = bn
to convert a set of gene rankings into oldscore=score(bn)
position p-values to evaluate the sig- while fo<maxic do

for each operator do
apply operator to bn
newscore=score(bn)
fe=fc+1

nificance of a given gene. However, this
involved working with resampling tech-
niques upon a single dataset. Here, we

use the ranking lists according to the dscore—newscore-oldscore

model’s average SSE and variance for if newscore>oldscore then
both the original simple dataset and the result=nbc
independent test sets in order to gener- else if (0, 7)<e***" then

ate position p-values. This requires us Undo the operator
to include, a number of random genes end if

which can be counted as uninformative ?_ntd for

genes. By comparing the actual ranking end while e

of the gene with the null distribution we output: resuit
can calculate the position p-values. In
this paper we are using three independ-
ent datasets so we do not need to use resampling in order to generate more gene rankings as
Zhang et al. (2006) did in their experiments. In addition, the different rankings will have different
interpretations as some are based purely on the simple dataset whilst others are influenced by er-
ror and variance on the more biologically complex independent data.

Datasets

With the aim of investigating the influence of the complexity of a gene expression dataset on
the performance of classifiers in identifying the gene regulatory network, three gene expression
datasets (with increasing biological variation) have been chosen for this study [GSE3858 (Cao et
al., 2006), GSE1984 (Iezzi et al., 2004), and GSE989 (Tomczak et al., 2004)]. These three datasets
are all concerned with the differentiation of cells into the muscle (Myogenic) lineage. During
this process, mononucleated precursor cells stop to proliferate, differentiate and fuse with each
other to become elongated multinucleated myotubes or myofibres. This in-vitro system mimics
the formation of new muscle fibres in-vivo. The cell types differ between the different datasets:

o GSE3858: Embryonic fibroblasts (EF)

o GSE989 and GSE1984: C2C12 tumor cell line that has the potential for differentiation into
different mesodermic lineages (mainly muscle and bone)

Also methods to drive cells into myogenic differentiation differ:

o GSE3858: Exogenous expression of the myogenic transcription factors are Myod and Myog.
o GSE989 and GSE1984: Serum Starvation
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In addition, the study by Sartorelli in- Table 1 - Specification of three muscle differentiation
cluded different treatments that affect the datasets.

timing and efficiency of the myogenic
differentiation process. The time points
for sampling differ between the stud- Tomczak C2C12 Affy U74A 24 8
ies (Table 1). The class node reflecting
the differentiation status had two pos-
sible states: undifferentiated (for all time
points until myogenic differentiation was
induced) and differentiated (for time points where myogenic differentiation had been induced).
In the rest of this paper we call these datasets by the name of the first author (e.g. Cao instead of
GSE3858).

Dataset Cell Type Platform Samples Time Points

Cao EF Affy 430.2 36 4
Sartorelli ~ C2C12 Affy U74A 32 6

Data Processing and Analysis

The raw microarray data were normalized and summarized with the RMA method (Irizarry et
al., 2003), using the afty package in R. Only the 8904 probesets common to the Affymetrix U74A
and 430.2 used in mentioned studies were considered in the analysis. All datasets were standard-
ized to mean 0 and the standard deviation 1 across the genes. For the scope of this paper, first, we
selected for each dataset a subset of 100 genes most affected by the induction of differentiation.
These genes were identified with Student’s t-test which compared samples from undifferentiated
and differentiated cell cultures, disregarding the time of differentiation. An additional 50 genes
were randomly selected to be able to calculate ranking p-scores described above and using the
Kolmogorov-Smirnov test. For cross-validation we divided Cao dataset into 9 folds, Sartorelli
into 8 folds, and Tomczak into 6 folds based upon the number of samples in each dataset. Simu-
lated annealing has three attributes which should be set before starting the learning phase. It is
crucial to set an appropriate initial temperature, sufficient number of iterations, and a convenient
fitness function. In this study, the initial temperature has been set to 10 and it terminates at 0.001.
The number of iterations has been set to 1000 for the first set of experiments only using most
informative genes (top 100) and then we set the number of iterations to 1500 since we added 50
uninformative genes to the network. The code is implemented in Matlab 2007a using the Bayes
Net toolbox (Murphy, 2001) to generate gene regulatory networks.

Analysis of myogenesis-Related genes

Myogenesis-related genes are defined as genes associated with the Gene Ontology term “Muscle
Development” supplemented with all genes strongly associated with Myogenesis in the biomedi-
cal literature, as determined with the literature analysis tool Anni v2.0 (Jelier et al., 2008) with the
association score greater than 0.02.

Analysis of Synthetic datasets

The use of datasets in which the underlying network is known enables us to validate the new
algorithms that have been developed to identify gene regulatory networks and capture the most
informative genes. van den Bulcke et al. (2006) proposed a new methodology to generate syn-
thetic datasets where the network structure is known and biological, experimental, and model
complexity can be manipulated. However, a disadvantage of this approach is that the generated
networks can contain some overlapping pieces of the known network which may weaken the
models being probabilistically independent (Haynes and Brent, 2009). Whilst SynTReN uses res-
ampling from potentially overlapping networks, the generated data undergoes a robust statistical
cross-validation regime ensuring that any prediction is applied to unseen data. The focus of this
paper is upon the prediction of increasingly complex datasets, sampled from some underlying
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biological process. Consequently, these synthetic datasets can be used for validating the perfor-
mance of our methodology in identifying the informative genes and the interactions among them
in real microarray data. SynTReN (Van den Bulcke et al., 2006) generates networks with more
realistic topological characteristics and since we use this application to investigate the impacts of
biological, experimental, and model complexity on identifying informative genes using the same
sub-network is an advantage. Three datasets have been generated on the well-described network
structure of E. coli (Ma et al., 2004) which contains 1330 number of nodes and 2724 interactions.
These datasets have been generated in a manner that they can match the key characteristics of
real microarray datasets we used in this study (for instance, limiting the number of genes that
were selected for modelling to 150). This enables us to investigate the possibility of reproducing
similar results on synthetic data which can be easily corrected for differences such as number of
samples and time points per dataset (see Additional file 1) and avoid weakening the probabilisti-
cally independent assumption of the generated datasets.

Analysis of Concordance between datasets

The study of the concordance between microarray datasets has increased considerably in the past
few years (Miron et al., 2006). However, a robust statistical method for examining the concord-
ance or discordance among microarray experiments carried out in different laboratories is yet to
develop. Methods such as multiplication of gene p-values in order to generate a list of rankings
for concordance genes showed bias towards datasets with higher significance level (Rhodes et al.,
2002). Lai et al. (2009) proposed a promising methodology (which we call concordance model) to
investigate the concordance or discordance between two large-scale datasets with two responses.
This method uses a list of z-scores, generated using a statistical test of differential expression, as
an input to evaluate the concordance or discordance of two datasets by calculating the mixture
model based likelihoods and testing the partial discordance against concordance or discordance.
Additionally, the statistical significance of a test is being evaluated by the parametric bootstrap
procedure and a list of gene rankings is being generated which can be used for integrating two
datasets efficiently. In this paper we are using a set of gene rankings generated by this method to
evaluate the performance of our model in identifying informative genes from multiple datasets
with increasing complexity.

RESULTS

The aim of this study is to demonstrate firstly, the influence of model complexity in discovering
accurate gene regulatory networks on multiple datasets with increasing biological complexity.
Secondly, to investigate if cleaner and more informative datasets can be used for modelling more
complex ones. Therefore, three public datasets that are concerned with the differentiation of cells
into muscle lineage were chosen for this study. From a biological point of view, Sartorelli is the
most complex dataset since it involves different treatments influencing myogenesis. Tomczak and
Cao are less complex datasets. It is difficult to say how their complexity relates since Tomczak
uses more heterogeneous stimuli to induce differentiation but has more time points, while Cao
uses more defined stimuli (Myod or Myog transduction) and less time points. In order to meet
the scope of this study, we evaluated the quality and informativeness of these datasets based on
two criteria. Firstly, we calculated the average correlations between replicates as a measurement
of noisiness of each dataset. Secondly, using Student’s t-test method, we counted the number
of differentially expressed genes with the significance levels of 0.05 and 0.01 as a measurement
of informativeness (Table 2). Although the average correlations between replicates in all three
datasets are very close, datasets differ in number of significant genes they hold. Tomczak is the
most informative dataset as it includes the most number of significant genes and has a higher
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average correlation value for the repli- Table 2 - The average correlations between replicates
cate samples in the dataset which repre- and number of differentially expressed genes (based on

. BH corrected p-values) in each dataset.
sent the lowest level of noise. In contrast,
Sartorelli contains the least differentially Genes with a P-value (BH) less
expressed genes with almost 12% of what than
Tomczak contains. Moreover, it has the

Dataset ~ Correlation 0.05 0.01
lowest average correlation value and can
be marked as the most complex dataset ~Tomezak  0.975 4602 3604
to model in this study as it has the high-  Cao 0.971 3668 2623
est noise level and the least number of  gioeli 0964 1199 458

informative genes. Therefore, we ordered
these datasets by increasing biological complexity in the following way: Tomczak, Cao, and Sar-
torelli.

Comparison of classifiers and network analysis

We now explore how the different classifiers performed on these three datasets. Figure 1 shows
the average error rate of the different classifiers trained on each given dataset. It can be seen that
of the three classifiers, 1PB and NPB generated the same pattern and have very close error rates
on cross-validation (training) sets. However, it is evident that NPB (particularly on Tomczak)
performs poorer than 1PB on the independent test set, possibly due to overfitting as these models
contain more parameters. Even though SNB performed poorly on both the cross-validation test
and the independent data test, in some cases it could compete with NPB which appears to be
too complex to predict some of the independent datasets accurately. Hence, 1PB has performed
favorably, both in terms of average error rate and the difference between the cross-validation test
and the independent data test (see Additional file 1 for complete set of results).

According to Mac Nally (2000) simple models should be sought for various reasons. Firstly, sim-
ple models are more stable and capable of not overfitting to noise in the data which will influence
the performance of classifier with future data. Secondly, they tend to provide a better insight into
causality and interactions among genes. Finally, reducing the number of parameters will decrease
the cost of validating a model for current and future data. However, we need a model that matches
the complexity of data sets. Considering this argument along with our first set of results, we chose
1PB as a model that can capture the interactions among genes and does not overfit to noise. In
order to understand the impacts of using different datasets for gene selection and training 1PB
classifier (which will be discussed in the next section), we need to analyse the performance of the
1PB classifier on the top 100 (most informative) genes in more detail.

Additional file 1, Figure S7 represents the comparison of the error rate of the 1PB classifier on
cross-validation versus the independent test. It is shown that the 1PB classifier trained on Tomc-

0.35

Figure 1 - The comparison of classifiers —il- NPB - Independent Test Set

w
with increasing model complexity. Three & 030 [0 NPB - Cross-Validation Set
Bayesian network models (SNB, 1PB, and § - 1PB - Independent Test Set
NPB) have beeﬂ trained gsing cross-valida- 5 025 - 1PB - Cross-Validation Set
tion set and validated on independent ldlata—’ '{g [ SNB - Independent Test Set
sets. An average error rate of the classifiers 2 020 o
prediction has been calculated for each 2 ~B-SNB - Cross-Validation Set
gene and an overall SSE on cross-validation 015 : : g
set and independent test set are illustrated Tomczak  Cao  Sartorelli

in this figure.
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Figure 2 - Evaluating the accuracy of 1PB 035
using different datasets for gene selec-
tion. We selected genes using only one da-
taset (black) at a time and compared the av-
erage error rate of 1PB classifier learnt and
trained on a same dataset and validated on
the other two datasets independently (grey).

[[]1PB- Independent Test Set

030k [l 1PB - Cross-Validation Set

0251

0.20

Average Error Rate (SSE)

Tomczak Cao Sartorelli

zak performed significantly better on cross-validation and Sartorelli shows the lowest differentia-
tion between cross-validation and the independent test with almost the same average error rate
on the cross-validation set compared to Cao. Although the differentiation of average error rate
on the cross-validation set and independent test set is high in Tomczak, this model produced the
best models in terms of the lowest overall error rate. This figure raises the idea that Tomczak is the
most informative dataset since it can model any dataset, regardless of the gene selection method,
significantly better than the other alternatives. This will be discussed in more detail in the Extrac-
tion of infotmative genes section.

Comparison of gene selections with differing informativeness

We now look into how the different gene selections impact on the average error rate of the 1PB
classifier for both cross-validation and the independent test. Figure 2 demonstrates the per-
formance of the 1PB classifier in modeling datasets generated using different gene selections.
Clearly, unlike Sartorelli, genes selected from Tomczak and Cao show very good performances
on cross-validation. However, by looking at the average error rate of 1PB on independent test
sets, we can see that the models learnt on Cao over-fitted the data and performed poorly on the
independent test set (with the SSE of 0.32) whereas Sartorelli shows the lowest differentiation
between the two sets. Overall the Tomczak selection performed the best both on cross-validation
and the independent test.

It is important to adopt a methodology that can generate an accurate gene regulatory network,
moreover, it is crucial to generate a model that can capture the significant genes and distinguish
informative genes from uninformative ones. For this purpose, we added 50 randomly selected
genes with high p-values (which imply less relatedness to Myogenesis) from the distribution. This
also has the effect that it will increase the complexity of the datasets.

Figure 3 shows that there is a similar pattern on the average error rate of cross-validation. The
additional random genes do not seem to affect Cao. It does, however, have an interesting im-
pact on Sartorelli. The models learnt on Sartorelli (see Additional file 1) performed even poorer
than SNB on the independent data sets and showed no significant changes when using different
datasets for training. It is interesting because we know that the Sartorelli dataset is noisy and
biologically complex and adding the random genes, which increases the complexity of the mod-
els in terms of more nodes and increases the risk of spurious links, produces a classifier which
appears to be unable to capture the real gene interactions. The error rate and variance of models
learnt on the Sartorelli selection is significantly high in comparison with Tomczak. By comparing
figures 2 and 3, we can conclude that simpler and cleaner datasets tend to perform more reliably
and have more stability while increasing the complexity. Since it is important to validate these
models according to their variances, we demonstrated the average variance of each model on
cross-validation and the independent test set in Additional file 1, Figure S8. Interestingly, we can
see a similar pattern in the classifiers’ variance in comparison with the average error rate (Figure
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Figure 3 - The investigation of inference 035+
of adding more complexity to the model.
We investigated the inference of adding
more complexity to the model by adding
50 randomly selected genes as uninforma-
tive on 1PB classifier performance. In this
figure we compare the average error rate of
1PB classifier after adding 50 uninformative
genes to the model. 0.15
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3). It is clear that we can raise the same conclusion as the simpler and cleaner datasets perform
better than more noisy and complex ones. In this study, Tomczak performed favorably both in
terms of bias and variance.

It is crucial to investigate if these findings are reproducible and are not prone to the number of
samples and time points per dataset. Therefore, we applied our model on three synthetic datasets
that have been generated by manipulating the biological, experimental, and model complexity
of their known network structure using SynTReN application (Van den Bulcke et al., 2006). Ad-
ditional file 1, Figure S9 illustrates that we can see a very similar pattern as we have seen on a real
data where there is an increase on the average error rate of models learnt on multiple synthetic
datasets with increasing biological variability. In the next section, before examining if these mod-
els can help us to capture the interactions in more complex datasets, we will investigate how well
these models separate the informative genes from uninformative ones.

Extraction of informative genes

In order to test the ability of classifiers to separate informative genes from uninformative ones,
we have looked at the result of the Kolmogorov-Smirnov test (KS test) on the ranking of genes
according to their average error rate using a given model. Using this algorithm, we calculated
the p-value, KS test, and the result of investigating the differentiation hypothesis along with the
models’ bias or variance. The results of this investigation are displayed in Additional file 1, Table
S1 where Cao and Tomczak performed very well on cross-validation both in terms of bias and
variance. However, models learnt on Sartorelli fail to separate between informative genes and
uninformative genes as the scores are generally very low.

Generally, Tomczak outperformed Sartorelli and Cao and can be chosen as the most informative
dataset in this study. Models learnt on Tomczak generated the lowest bias and variance and pro-
duced the best separation. In contrast, Sartorelli is the noisiest and less informative dataset while
it failed to handle any increases in complexity (both biological and model wise) and generates
models with highest bias and variance which also cause disability to separate informative genes
from the others. Now the question is whether we can use a simpler and cleaner dataset to model
more complex ones. In the next section we show how we tackled this question.

Analysis of the use of simpler dataset to model more complex one

In this section, we investigate the improvement or deterioration of genes selected by Tomczak on
the Sartorelli dataset. Figure 4 shows the average improvement or deterioration of ranks of myo-
genesis-related genes, top 100 genes (most informative), and 50 randomly selected genes (unin-
formative) in Sartorelli. We compared the original rank of each gene (which can be any number
between 1 and 150 derived from its p-value comparing to others) with its rank based upon the
ability of a model trained on Tomczak to predict gene’s value in Sartorelli. Moreover, we evaluate
the improvement or deterioration of genes rankings in our model with the ones generated using
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Figure 4 - The improvement or deteriora-
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§ 0 trained 1PB classifier on Tomczak and tested
5 on Sartorelli. Finally, we ranked genes accord-
g -of ing to the average error rate of 1PB classifier
g in predicting their values in Sartorelli. This
< 20l figure illustrates the average improvement or

Myogenesis-Related 50 Random deterioration of Myogenesis-Related, Top 100,
Top 100 and 50 randomly selected genes in Sartorelli
generated with our method and the gene

rankings generated by concordance model.

the concordance model described by Lai et al. (2009). We can clearly see that the model learnt
on Tomczak can capture the informative genes in Sartorelli and improve their rank whereas un-
informative genes have been pushed down (almost 17 places in average) in the ranking by the
classifier. Additionally, the improvement is even more pronounced for myogenesis-related genes
with 12.33 places in average, which is significantly better than others with P < 0.004 generated
using KS test, and as expected top 100 genes has been improved by 8.44 places. Even though both
methods perform similarly on improving the ranks of top 100 and deteriorating the ranks of 50
randomly selected genes, the improvement of ranks for myogenesis-related genes are much more
pronounced in our model than in the concordance model (improvement of 5.38 places).

Myh7 and Tor3a are two examples of significant improvements in Sartorelli dataset. Myh7, which
originally ranked 101, improved 96 places to rank 5 (rank 55 in concordance model). During the
learning phase it has been linked to four other genes of which three of them are myogenesis-relat-
ed. These genes, in both datasets, have direct correlations and can represent each other in terms of
prediction and validation. However, Tor3a has a very low rank in both dataset and yet improved
107 places from 128 to 21 (rank 31 in concordance model). It has been linked to Prune which
also improved 106 places (from 131 to 25, 100 in concordance model). All three genes mentioned
above have been selected as informative genes from Tomczak and yet placed into the bottom 50
due to the quality of Sartorelli dataset. These were some examples of the ability of model to pull
out informative genes from a distribution (Figures S10A and S10B).

Although the overall improvement on myogenesis-related genes is significantly high, we were
concerned why this model failed to improve the rank of some genes like Id3 which dropped from
rank 1 in Sartorelli to 133 (rank 51 in concordance model). In the learning process, Id3 has been
linked to 4 genes which are: Fabp3, Rbm38, X99384, and Slco3al. Now in order to answer the
question, firstly, we validate the relatedness of these genes to Id3 in Tomczak dataset to investigate
if they are significant and can represent Id3. Secondly, we study the expression level of these genes
in Sartorelli to identify the reason why this model failed dramatically in predicting the Id3 value.

Additional file 1, Figure S11 demonstrates the expression level of Id3 along with its parent/chil-
dren in both Tomczak and Sartorelli datasets. In Tomczak we can clearly see that there is an
inverse relationship between Id3 and the other 4 genes which is very significant. While the differ-
entiation state changes, Id3 drops from the expression level of approximately 11 to 8.5 and simi-
larly its relatives show an increase of about 2 points in their expression values. This supports the
assumption of the relatedness of these genes to Id3 in the learning process on Tomczak dataset.
However, considering that Id3 is still very significant in Sartorelli, Id3 parent/children show no
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variation and simply are not significant. As a conclusion, this model failed to predict Id3 expres-
sion value and as a result the rank of Id3 dropped 132 places most probably due to the quality
and biological variation of Sartorelli dataset. Since we aim to overcome the lack of overlap on the
gene regulatory network studies across species and platforms, the natural extension of the work
in this paper would be to explore how this model can be used on datasets from multiple biological
systems with increasing complexity. Moreover, it would be valuable to consider methods such as
model averaging (Madigan and Raftery, 1994) that has been shown better generalization in clas-
sifier’s accuracy. Consequently, it improves the performance of classifiers in identifying the most
informative genes and avoids deterioration of cases like Id3. Furthermore, dynamic Bayesian
networks can be adopted when learning from time-series data in order to handle auto-regulation
and feedback loops, two key components of regulatory networks in biological data (Shen-Orr et
al., 2002; Lee et al., 2002).

CONCLUSIONS

In this study, we have investigated a number of different Bayesian classifiers and datasets for
identifying firstly, subsets of genes that are related to myogenesis and muscle differentiation, and
secondly the use of cleaner and more informative datasets in modelling more biologically com-
plex datasets. We have shown that an appropriate combination of simpler and more informative
datasets produce very good results, whereas models learnt on genes selected from more complex
datasets performed poorly. We concluded that simpler datasets can be used to model more com-
plex ones and capture the interactions among genes. Moreover, we have described that highly
predictive and consistent genes, from a pool of differentially expressed genes, across independent
datasets are more likely to be fundamentally involved in the biological process under study. In
three published datasets, we have demonstrated that these models can explain the myogenesis-re-
lated genes (genes of interest) significantly better than others (P < 0.004) since the improvement
in their rankings is much more pronounced. These results imply that gene regulatory networks
identified in simpler systems can be used to model more complex biological systems. In the ex-
ample of muscle differentiation, a myogenesis-related gene network may be difficult to derive
from in vivo experiments directly due to the presence of multiple cell types and inherently higher
biological variation, but may become evident after initial training of the network on the cleaner in
vitro experiments. In order to validate our approach, firstly, we evaluated our model on synthetic
datasets and secondly we performed comparisons between our approach and the method of Lai
et al. (2009) which we call concordance model. It is shown that our model performs compara-
bly in improving the ranks of informative genes and deteriorating the ranks of uninformative
ones, but that the improvement of ranks for myogenesis-related genes is much more pronounced
whilst additionally modelling the interactions among genes. However, it is necessary to develop
other statistical measures so that the model can be quantified to distinguish different degrees of
complexities and platforms whilst handling the auto-regulation and feedback loops within the
network.
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APPENDIX

—l- NPB - Independent Test Set
[ NPB - Cross-Validation Set
-{l}- 1PB - Independent Test Set

-~ 1PB - Cross-Validation Set
[J SNB-Independent Test Set
—Jl- SNB - Cross-Validation Set

Average Error Rate (SSE)

Sartorelli

Cao

Tomczak

Figure S1 - The comparison of classifiers with in-
creasing complexity. Three Bayesian network mod-
els (SNB, 1PB, and NPB) have been trained using
cross-validation set and validated on independent
datasets. An average error rate of the classifiers’
prediction has been calculated for each gene (se-
lected from Tomczak dataset) and an overall SSE
on cross-validation set and independent test set are
illustrated in this figure. These models have been
trained on each dataset and validated on the other
two datasets.
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Figure S3 - The comparison of classifiers with in-
creasing complexity. Three Bayesian network mod-
els (SNB, 1PB, and NPB) have been trained using
cross-validation set and validated on independent
datasets. An average error rate of the classifiers’ pre-
diction has been calculated for each gene (selected
from Cao dataset) and an overall SSE on cross-vali-
dation set and independent test set are illustrated in
this figure. These models have been trained on each
dataset and validated on the other two datasets.
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Figure S2 - The comparison of classifiers with in-
creasing complexity. Three Bayesian network mod-
els (SNB, 1PB, and NPB) have been trained using
cross-validation set and validated on independent
datasets. An average error rate of the classifiers’
prediction has been calculated for each gene (se-
lected from Tomczak dataset) and an overall SSE
on cross-validation set and independent test set are
illustrated in this figure. These models have been
trained on each dataset and validated on the other
two datasets.
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Figure S4 - The comparison of classifiers with
increasing complexity. Three Bayesian network
models (SNB, 1PB, and NPB) have been trained us-
ing cross-validation set and validated on indepen-
dent datasets. An average error rate of the classi-
fiers” prediction has been calculated for each gene
(selected from Cao dataset) and an overall SSE on
cross-validation set and independent test set are
illustrated in this figure. These models have been
trained on each dataset and validated on the other
two datasets.
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Figure S5 - The comparison of classifiers with in-
creasing complexity. Three Bayesian network mod-
els (SNB, 1PB, and NPB) have been trained using
cross-validation set and validated on independent
datasets. An average error rate of the classifiers’
prediction has been calculated for each gene (se-
lected from Sartorelli dataset) and an overall SSE
on cross-validation set and independent test set are
illustrated in this figure. These models have been
trained on each dataset and validated on the other
two datasets.
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Figure S7 - The comparison of the differences be-
tween cross-validation set and independent test
set on average error rates of 1PB classifier (ex-
tracted from figure 1).
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Figure S9 - This figure illustrates the performance
of 1PB classifier on modeling three synthetic da-
tasets generated using SynTReN application by
manipulating the biological and experimental
complexity. There is an increase of the biological
variability on three datasets which matches an in-
crease on the average error rate of models learnt.
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Figure S6 - The comparison of classifiers with in-
creasing complexity. Three Bayesian network mod-
els (SNB, 1PB, and NPB) have been trained using
cross-validation set and validated on independent
datasets. An average error rate of the classifiers’
prediction has been calculated for each gene (se-
lected from Sartorelli dataset) and an overall SSE
on cross-validation set and independent test set are
illustrated in this figure. These models have been
trained on each dataset and validated on the other
two datasets.
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Figure S8 - The investigation of inference of add-
ing more complexity to the model by adding 50
randomly selected genes as uninformative on
1PB classifier performance. In this figure we com-
pare the average variance of 1PB classifier after
adding 50 uninformative genes to the model.
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Figure S10 - A).The expression level of Myh7 along with its parent/children in both Tomczak and Sartorelli
datasets. In Tomczak we can clearly see that there is a strong relationship between Myh7 and the other 4
genes. Moreover, in Sartorelli dataset the correlation still exists between Myh7 and Csrp3, Mylpf, Myom1,
and Ryr1 even though it is not as strong as Tomczak. B) The expression level of Tor3a along with its parent
in both Tomczak and Sartorelli datasets. In Tomczak we can clearly see that there is a good relationship
between Tor3a and Prune. Moreover, in Sartorelli dataset the correlation still exists between Tor3a and Prune.
This figure is an example of a large improvement of rank of a given gene after training on Tomczak. The x-axis
represents both the time points and the differentiation status.
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Tomczak

Normalized Expression
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Figure S11 - The expression level of /d3 along with its parent/children in both Tomczak and Sartorelli
datasets. In Tomczak we can clearly see that there is an inverse relationship between /d3 and the other 4
genes while Sartorelli dataset shows no significant correlations between /d3 and Fabp3, Rbm38, X99384,
and Slco3at. This figure is an example of a large deterioration of rank of a given gene after training on Tom-
czak. The x-axis represents both the time points and the differentiation status.
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Table S1 - Differentiation Hypothesis. Investigating how well the models can separate the informative and
uninformative genes from each other. Firstly, we ranked genes according to their average error rate and
variance. Secondly, using Kolmogorov-Smirnov test and original ranking list, we explored which model can
separate the informative genes from uninformative genes the best.

Error Rate (SSE) Variance
Gene Cross- Independent Cross- Independent
Selection Validation Set Test Set Validation Set Test Set
Differentiation Hypothesis TRUE TRUE TRUE TRUE
P-value 5.02E-24 9.77E-10 5.02E-24 3.68E-05
»  Tomczak
Kolmogorov-Smirnov Test 0.880198 0.552871 0.880198 0.394257
Average Performance 0.165259 0.298921 0.00537 0.018667
Differentiation Hypothesis TRUE TRUE TRUE TRUE
P-value 1.89E-22 6.16E-06 1.91E-20 0.004314
Cao
Kolmogorov-Smirnov Test 0.850297 0.425347 0.810693 0.295842
Average Performance 0.202472 0.320211 0.007819 0.019219
Differentiation Hypothesis FALSE TRUE FALSE FALSE
P-value 0.443901 0.007507 0.527435 0.104457
Sartorelli
Kolmogorov-Smirnov Test 0.145941 0.282178 0.136832 0.205149
Average Performance 0.275287 0.336551 0.014939 0.023772

Table S2 - The specification of three synthetic datasets generated for the purpose of the validation
and reproduction of the result of applying our model on real microarray datasets used for this study.
Three datasets have been generated on the well-described network structure of E. coli (Ma et al., 2004)
which contains 1330 number of nodes and 2724 interactions. Average performance is measured based on

SSE/Variance.
SYND 1 SYND 2 SYND 3

Burnin point 2000 2000 2000
Number of Experiments 15 15 15
Number of Samples per experiment 2 2 2
Number of Nodes 1000 1000 1000
Number of Background nodes 0 0 0
Probability for complex 2-regulator interactions 0.3 0.5 0.7
Biological noise 0.1 0.3 0.5
Experimental noise 0.1 0.3 0.5
Noise on correlated inputs 0.1 0.3 0.5
Number of External nodes 0 0 0
Number of Correlated external nodes 0 0 0
Sub network selection method Cluster Addition
Random seed 13 13 13
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Interspecies translation of disease networks increases
robustness and predictive accuracy

Seyed Yahya Anvar'*, Allan Tucker?, Veronica Vinciotti?, Andrea Venema', Gert-Jan B. van Om-
men’, Silvere M. van der Maarel’, Vered Raz' and Peter A.C. ‘t Hoen'

ene regulatory networks give important insights into the mechanisms underlying physiol-

ogy and pathophysiology. The derivation of gene regulatory networks from high-through-

put expression data via machine learning strategies is problematic as the reliability of these
models is often compromised by limited and highly variable samples, heterogeneity in transcript
isoforms, noise, and other artifacts. Here, we develop a novel algorithm, dubbed Dandelion, in
which we construct and train intraspecies Bayesian networks that are translated and assessed
on independent test sets from other species in a reiterative procedure. The interspecies disease
networks are subjected to multi-layers of analysis and evaluation, leading to the identification of
the most consistent relationships within the network structure. In this study, we demonstrate the
performance of our algorithms on datasets from animal models of oculopharyngeal muscular
dystrophy (OPMD) and patient materials. We show that the interspecies network of genes cod-
ing for the proteasome provide highly accurate predictions on gene expression levels and disease
phenotype. Moreover, the cross-species translation increases the stability and robustness of these
networks. Unlike existing modeling approaches, our algorithms do not require assumptions on
notoriously difficult one-to-one mapping of protein orthologues or alternative transcripts and
can deal with missing data. We show that the identi-
fied key components of the OPMD disease network can
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molecular mechanisms.
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AUTHOR SUMMARY

The identification of gene regulatory networks can provide vital information on biological
processes. Despite numerous advancements in developing machine learning strategies, the
stochastic nature of such biological systems complicates the construction of robust and reliable
network structures. In recent years, the use of cross-species datasets enabled scientists to better
understand the molecular mechanisms that are associated with human disorders. However, it
also presents a challenge in dealing with especially difficult mapping of protein orthologues,
alternative transcript splicing, noise, or other artifacts. Here, we developed a novel algorithm
for constructing interspecies disease networks that provide accurate predictive value over the
disease phenotype and gene expression. We show that the disease-association of potential key
regulators that play a role in interspecies disease networks can be reproduced and validated in
an unseen and independent model system. This study presents a novel strategy for construct-
ing networks that can be translated across species whilst providing a comprehensive view of
regulatory relationships associated with the disease.

INTRODUCTION

The degree to which gene products appear in the cell and exert their function is regulated through
interactions with other genes. This interconnectivity implies that the identification of gene regu-
latory networks is vital for understanding the phenotypic impacts of gene defects and the associ-
ated complications (Schadt, 2009; Goldstein, 2009; Karlebach and Shamir, 2008; Barabasi et al.,
2011). The dawn of high-throughput technologies such as genome-wide sequencing and micro-
array experiments has increased our understanding of molecular behavior at the transcriptional
level. Although these large-scale datasets provide crucial information about both the presence
and relative abundance of RNA transcripts, they also introduce an important challenge in provid-
ing a comprehensive view of molecular mechanisms and regulatory relationships among genes
with different underlying phenotypic conditions.

The presence of this obstacle calls for developing robust machine learning models that can be
used for generating gene networks in which their transcriptional changes can affect phenotypic
outcome. However, building a network that involves thousands of genes and millions of interac-
tions is extremely problematic and requires a great quantity of experimental data for the valid
interpretation of biological causes for a given phenotype. Furthermore, the validity of gene regu-
latory networks is often affected by limited and highly variable samples, heterogeneity in tran-
script isoforms, noise and other artifacts (Raj and van Oudenaarden, 2008; Kluger et al., 2003;
Shahrezaei and Swain, 2008; Pedraza and van Oudenaarden, 2005). Therefore, a probabilistic
approach is needed to identify and predict interconnected transcriptional behaviors that give rise
to disease outcome (Pache et al., 2008) and to, ultimately, offer potential targets for therapeutic
intervention and drug development. Among the possible statistical models, Bayesian networks
have been an important concept for modeling uncertain systems (Pearl, 1988; Friedman, 2004;
Friedman et al., 2000; Segal et al., 2003). Bayesian networks can represent complex stochastic rela-
tionships between genes and are capable of integrating different types of data (i.e. phenotype and
genotype categorical information as well as gene expression data). In addition, the probabilistic
nature of such networks can accommodate noise and missing data by weighting each information
source according to its reliability. In contrast to many statistical models, the transparent nature of
Bayesian networks (in terms of the graphical structure and local probability distributions) leads
to better interpretation and understanding of the underlying biological regulation of the disease.
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The high dimensionality of the genome wide expression profiling datasets and the limited num-
ber of available samples complicates the derivation of robust network structures. Methods such as
the use of prior knowledge about biological interactions (Segal et al., 2003; Peer et al., 2002; Steele
etal., 2009) have been shown to successfully reduce the search space and to make networks more
robust. This method works for well-studied diseases or biological systems, but is not likely to
identify novel regulatory interactions underlying the molecular mechanisms of rare or complex
disorders. In addition, this bias can falsely expose the network to sample differences in the ab-
sence of a disease-related biological cause. In this study, we hypothesize that biologically relevant
relationships between genes are often conserved across species. Thus, the robustness and stability
of a gene network should increase when modeling regulatory networks using related datasets
from different species. Moreover, we hypothesize that the relationships identified in an interspe-
cies gene network should be biologically more meaningful. On the other hand, cross-species
translation of networks is far from trivial given our limited knowledge of true protein orthologues
and transcript variants coding for proteins with similar functions in different species. Therefore,
we explore the performance of a novel algorithm that combines our previously published model
for learning regulatory interactions from multiple datasets of increasing complexity (Anvar et al.,
2010) with an interspecies translation and validation regime, named Dandelion algorithm. We
show that the supplementation of this algorithm with a modeling-driven selection of transcripts
coding for orthologous proteins (exhaustive Dandelion algorithm) significantly improves the ro-
bustness and stability of the interspecies network, when compared to a standard approach in which
expression levels of different transcripts for the same gene are summarized (naive Dandelion
algorithm). We also show that the potential regulatory relationships that play a role in interspecies
disease networks can be reproduced and validated in an unseen and independent model system.

In this study, three publicly available microarray datasets from Drosophila (Chartier et al., 2009),
mouse (Trollet et al., 2010), and human (Anvar et al., 2011) that are all concerned with oculopha-
ryngeal muscular dystrophy (OPMD) have been chosen to gain insight into the key regulators of
the disease. These datasets are described in Table 1. OPMD is a late-onset progressive muscular
disorder for which the underlying molecular mechanisms are largely unknown. This autosomal
dominant muscular disorder has an estimated prevalence of 1 in 100,000 worldwide (Fan and
Rouleau, 2003). OPMD is caused by the expansion mutation of a homopolymeric alanine stretch
at the N-terminus of the Poly(A) Binding Protein Nuclear 1 (PABPN1) by 2-7 additional Ala
residues (Brais et al., 1998). Although PABPNI1 is ubiquitously expressed, the clinical and patho-
logical features of OPMD are restricted to a subset of skeletal muscles, causing progressive ptosis,
dysphagia, and limb muscle weakness. Drosophila and mouse models with muscle-specific over-
expression of expanded PABPNI1 recapitulate progressive muscle weakness in OPMD (Chart-
ier et al., 2006; Davies et al., 2005). However, the potential artifact, heterogeneity in transcript
isoforms, and the presence of overexpression side-effects in OPMD animal models and limited
patient materials complicate the identification of key regulators of OPMD. With the analysis of
these datasets, we demonstrate that modeling of interspecies disease networks increases the robust-
ness of the networks and aids in the identification of key regulators of the disease.
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METHODS

Model of Interspecies Networks using Dandelion Algorithm

To construct interspecies networks that can accurately predict the disease phenotype and provide
a comprehensive view of molecular relationships that underlie the disease-associated biological
processes, we developed a novel Dandelion algorithm with multi-layers of analysis and evaluation
criteria. A schematic presentation of this approach can be found in Figure 1. In addition, the defi-
nition of nomenclatures (italicized terms) used in this study is provided in the Table S1 in Text S1.

The procedure starts with the identification of the disease-associated modules by assessing the
association of transcriptional profiles with the disease state. In this study, gene modules are de-
fined according to current KEGG (Kyoto Encyclopedia of Genes and Genomes) annotation of
molecular pathways to ensure functional relationships among genes within the same cluster. Af-
ter identification of the disease module, the set of genes in the disease module is supplemented
with a set of randomly selected genes for the purpose of network performance estimation and
evaluation. The Dandelion algorithm integrates three recurring phases of training and indepen-
dent testing with the use of multiple datasets derived from the different biological systems. This
involves a reiterative selection of one species as an organism in which intraspecies gene regulatory
networks are constructed. Cross-validation is used for learning and optimization of the intraspe-
cies network structure. Some partitions were purely used for testing the intraspecies network to
ensure, in all experiments, that the test data is previously unseen. Datasets from the other species
are used for interspecies translation, independent testing and validation of the constructed dis-
ease networks. The construction of intraspecies Bayesian networks is governed by our previously
published optimization procedure (Anvar et al., 2010). To ensure that these interspecies networks
are derived from a disease-related biological cause, the specificity and sensitivity of the networks
for prediction of the disease phenotype are assessed. Moreover, the robustness and translatability
at different confidence thresholds are evaluated. After defining the interspecies disease domains,
a subset of genes is selected for unbiased examination of reproducibility and validity of disease-
related transcriptional changes in an unseen and independent model system. The detailed outline
of the procedure, depicted in Figure 1, is provided in the following subsections.

Disease Modules. Disease modules have been identified according to our previously published
study (Anvar et al., 2011) in which we performed an integrated transcriptome analysis to identify
the most significant molecular pathways that are associated with the OPMD across species.

Bayesian Network Structure Learning. A Bayesian network encodes the joint probability dis-
tribution of a set of random variables. It consists of a directed acyclic graph (DAG) that repre-
sents conditional independencies between variables, and conditional distributions at each node
in the graph. Bayesian network classifiers are a special case of Bayesian networks where one node
represents some discrete class to be predicted. Here, each node in the graph represents a gene
transcript (or gene) and the class node represents the disease states. In order to learn the Bayes-
ian network structure of a gene network, the algorithm approximates the likely graphical model
by searching the space of possible networks via single-arc changes that improves some score. We
use a simulated annealing search in conjunction with the Bayes Information Criterion (BIC) as a
scoring metric (Schwarz, 1978). Simulated annealing performs competitively with other optimi-
zation methods as it aims to avoid local maxima (Friedman et al., 1997). There is a trade-off be-
tween simplicity of model with one that can accurately identify the empirical distribution of gene
expression profiles and predict the disease phenotypic outcome. For this reason the BIC is used
as it is less prone to overfitting through the use of a penalizing term for overly complex models.
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Table 1 — Overview of microarray datasets and networks constructed by Dandelion algorithm.

INTERSPECIES TRANSLATION OF DISEASE NETWORKS INCREASES ROBUSTNESS & ACCURACY

Number of Networks

Cross-Validation

Drosophila

Mouse

Human

Number of folds

Age / Time-Point GEO Accession

Samples

Tissue

Species

24

24

49 - 60 Year-old GSE26605

17 - 89 Year-old

4 Symptomatic
18 Controls

Quadriceps

Human

36

24

GSE26604

6, 18, 26 week-old
per genotype

17 OPMD
16 Wild-type
18 OPMD

Quadriceps

Mouse

36

24

1,6, 11 day-old
per genotype

Adult thoracic muscles 18 Wild-type

Drosophila

The initial state of the structure is an empty DAG with no links.
In order to alter the network structures, three operations have
been used within the simulated annealing procedure. These
operators are adding, removing, or swapping links to generate a
new network which can be either accepted or rejected based on
its overall score and the current temperature. The outline of this
algorithm can be found in the Protocol S1 in Text SI.

In this study, the initial temperature (#,) has been set to 10 and
it terminates at 0.001 (¢ ), according to our previously published
optimization procedure (Anvar et al., 2010). The number of it-
erations (maxfc) has been set to 1000 in respect to the number
of nodes available in the network. The training dataset is de-
scribed as D. For the training phase, the mode variable is set to
“train” and the variable networkMap is set to empty. During the
interspecies translation and testing, the variable mode is set to
“test” and the variable networkMap holds information on the
regulatory relationships that are present in the network map
constructed on training organism.

Construction of Interspecies Networks. The Dandelion algo-
rithm takes multiple datasets from different species as input. In
this study, we launch two classes of Dandelion algorithm. Firstly,
the naive Dandelion algorithm, where the expression patterns
of gene transcripts are summarized by averaging the expres-
sion profiles of gene probes, to provide one expression profile
per gene. This enables direct mapping of expression profiles of
orthologous genes when translating networks across species.
This approach significantly simplifies the process of construct-
ing network structures. Secondly, we developed the exhaustive
Dandelion algorithm to overcome the limitations caused by
heterogeneity in transcript isoforms, differences in annotation
between organisms and technical factors (i.e. different microar-
ray platforms). In the exhaustive algorithm, transcripts that are
most likely to be coding for orthologous proteins are selected
automatically in the modeling phase.

The procedure involves reiterative selection of one species for
construction of the Bayesian network while other species are left
aside for independent testing and validation of learnt disease
networks. The highest-scoring intraspecies network structure
is learnt according to the algorithm described in the Protocol
S1 in Text S1. Before interspecies translation, in the exhaustive
Dandelion algorithm, a detailed interaction map of a candi-
date intraspecies disease network of gene transcripts needs to
be transformed to a network map of gene-gene relationships.
This step can be omitted in the naive Dandelion algorithm as the
constructed intraspecies networks are already at the gene level.
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Figure 1 — Schematic overview of the Dandelion algorithm for disease network analysis. The Dandelion
algorithm involves three recurring stages of training and independent testing regime with the use of multiple
datasets derived from different species. In the first step, disease modules are defined as the most consis-
tently disease-associated molecular pathway across species. The disease module is supplemented by a set
of randomly selected genes to assess the performance of the algorithm and to check for overfitting. These
datasets are standardized to mean 0 and standard deviation of 1 across genes. The next step involves re-
iterative selection of one species as an organism in which the gene regulatory network is constructed while
others are left aside for independent testing and validation of learnt disease networks. For an intraspecies
construction of disease network, dataset is divided into k-folds, using cross-validation, and regulatory rela-
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tionships between gene transcripts are learnt using Bayesian network methodology enhanced by simulated
annealing optimization of network BIC score. After applying confidence thresholds on relationship between
genes, the disease network can then be translated to the expected interspecies disease network which we
call a network map. Using the cross-validation and network optimization procedure the algorithm searches
through the relationships found in the training dataset to find the best fit for interspecies representation of
the disease network. These networks are then integrated by removing all the links with low confidence score
across species.

Using the cross-validation and network optimization procedure, the algorithm searches through
the relationships present in the network map (constructed on the training set) to find the best fit
for the interspecies representation of the disease network. These networks are then integrated by
removing all the links with a low confidence score to construct the consensus interspecies disease
networks. The full algorithm details are outlined in the Protocol S2 in Text S1 where Species, .
and train,,, represent the training dataset and the folding arrangements for the selected organ-
ism. Furthermore, the series of Species,, , ... Species,, , and fest,, , ... test  , represent the
datasets and folding arrangements of organisms that are selected for independent test and valida-
tion. The logical variable exhaustive indicates the class of Dandelion algorithm (naive in case of
false and exhaustive in case of true) that needs to be performed. In this study, the human dataset
is divided into 4 folds due to the limited number of patient samples. Mouse and Drosophila da-
tasets are divided into 6 folds. The average Sum of Squared Error (SSE) and standard deviation
(STD) are calculated for all nodes over these folds by predicting the measured expression values
of genes (or gene transcripts) given the measurements taken from others. For the class node, the
state of the disease is predicted given the expression profiles for genes (or gene transcripts) within
the network structure. The number of iterations was set to 1000 for the training phase and was
reduced to 500 during the interspecies translation of disease networks. The code is implemented
in Matlab 2008b using the Bayes Net toolbox (Murphy, 2001).

Network Analysis and Evaluation. The proposed approach consists of three layers of analysis
and evaluation. The constructed interspecies disease networks are assessed for their predictive
accuracy towards the disease phenotype (class node) by calculation of the level of sensitivity and
specificity. Furthermore, the Bayesian networks Sum of Squared Error (SSE) is calculated for
prediction of the expression of all genes (or gene transcripts). Moreover, the level of robustness
and translatability of the generated networks are evaluated. The stability and robustness of rela-
tionships between genes within the disease module are compared to those of the random genes
at different confidence score thresholds. Confidence scores are the ratio of the number of times a
link is found in the interspecies disease networks to the maximum number of times the link can
possibly be found (based upon the number of folds). For approximating the level of translatabil-
ity, the total number of links found during the training phase is compared to the number of links
that were successfully translated to other species. Finally, the interspecies disease domains are
defined based on the Markov blanket principle for the extension of the class node connectivity. In
addition, unstable gene interactions are removed through assessment of the level of confidence
in the relationships between genes. The interspecies disease domains are used to select a subset of
genes to further study the reproducibility and validity of the observed relationships towards their
association with the disease phenotype in an unseen and independent OPMD model system.

To assess the specificity of genes encoding for the proteasomal proteins in accurately predicting
the disease states, we generated three additional gene sets. A set of 100 randomly selected genes,
87 genes within the ribosome pathway, and 70 randomly selected genes with the constraint of
none being deregulated (ND) constitute the three genes sets that are used in a comparative analy-
sis. The human dataset is used for cross-validation whilst mouse and Drosophila datasets were
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used for independent assessment of the constructed networks. Networks are evaluated on their
sensitivity, specificity, and predictive accuracy towards the disease state (OPMD or control).

Microarray Datasets

The human, mouse, and Drosophila microarray datasets have been previously published (Charti-
er et al., 2009; Anvar et al., 2011; Trollet et al., 2010). The human and mouse datasets are publicly
available at GEO repository under the accession numbers GSE26605 and GSE26604, respectively.
In all datasets genome-wide expression profiles of skeletal muscles from OPMD are compared to
controls. In case there are multiple probes for the same gene on the microarray platforms, these
probes usually measure the expression levels of different transcripts from the same gene. The class
node reflects the disease phenotype (control or OPMD) of each sample. A detailed description of
these datasets can be found in Table 1.

Data Processing and Statistical Analysis

Microarray measurements were normalized using the quantile method. In addition, these datas-
ets were standardized to mean 0 and standard deviation 1 across the genes. For the scope of this
paper, the human proteasome-encoding genes were annotated using illuminaHumanv3BeadID
package in R and the mouse and Drosophila homologous were annotated using HomoloGene
and Inparanoid (http://ncbi.nlm.nih.gov/homologene and http://inparanoid.sbc.su.se, respectively)
online databases. Previously published data were used to identify deregulated genes per species
(Anvar et al., 2011). For cross-validation (Stone, 1974; Fielding, 2007) human data were divided
into 4 folds (given the limited number of OPMD samples), while the other datasets were divided
into 6 folds (Table 1). Human, mouse, and Drosophila datasets hold 108, 96, and 78 transcripts,
respectively, which encode for 74, 56, and 53 genes (including genes encoding for the proteasome
and a set of 30 randomly selected genes). The differences are due to limitations of mapping ho-
mologous genes or unavailability of expression data for certain genes in a particular species. The
gene lists are provided in the Table S2 in Text SI.

Cell Model

IM2 cells stably transfected with normal (WTA) or expanded PABPN1 (D7E) and were com-
pared to assess the predictive value of the interspecies modeling approach on an unseen OPMD
disease model (Raz et al., 2011). Exogenous PABPN1 expression is under control of the desmin
promoter. IM2 cells were proliferated in DMEM supplemented with 20% fetal calf serum, 0.5%
chicken embryo extract, 5U/ml interferon gamma, at 33C and 10% CO2. Myotube fusion was
induced by culturing in DMEM supplemented with 5% horse serum at 37C and 5% CO2 for four
days, after which RNA was extracted from three independent cultures.

Quantitative RT-PCR Analysis

Total RNA was extracted using the TRIZOL reagent (Invitrogen) according to manufacturer’s
instruction. First strand cDNA was synthesized with random hexamer oligonucleotides and
MMLYV reverse transcriptase (First Strand Kit; Fermentas, according to manufacturer’s instruc-
tion). 3.6ng cDNA was used per quantitative PCR reaction. gPCR was performed with SYBR
green mix buffer (BioRad) and 7.5 pmole (per reaction) of forward and reverse primersina 15 pL
reaction volume. PCR conditions were as follows: 4 min at 95 °C followed by 40 cycles of 10 sec
at 95 °C and 60 sec at 60 °C. The program was ended with 1 min at 60 °C. For each primer set, the
specificity of the PCR products was determined by melting curve analysis. Expression levels were
calculated according to the AACT method normalized to mHrpt, Desmin, and IM2 parental
cells. The statistical significance was determined with the student’s t-test. The list of primers used
in this study is provided in the Table S3 in Text S1.
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RESULTS

Identification of Disease Module

Previously we identified that the deregulation of the ubiquitin-proteasome system (UPS) is the
predominant molecular pathway affected in OPMD animal models and patients (Anvar et al.,
2011). The UPS, a cellular regulator of homeostasis, is highly dynamic machinery that involves
protein ubiquitination and degradation steps. From the six UPS components, we found that only
E3-ligases, deubiquitinating enzymes, and proteasome components are consistently and promi-
nently deregulated in OPMD across species (Anvar et al., 2011). The proteasome is composed
of core and regulatory subunits. We observed a substantial deregulation of proteasome and cy-
tokine-induced proteasome (also known as immunoproteasome) encoding genes across species
(Figure 2). To obtain more insight in the key components in the proteasome machinery that are
aberrantly expressed in OPMD across species, we generated gene regulatory networks. Unique
to the current approach, the networks were learnt on one species and evaluated on datasets from
other species. This was done to only retain those links between genes that can be found across
multiple species and that are more likely to be directly connected to the disease phenotype than
links that are only found in a single species. For the interspecies translation we used two version
of our newly developed Dandelion algorithm. The naive variant is a straw man approach, where
expression values for different transcripts of the same gene are first summarized. This approach
was then further refined in the exhaustive Dandelion algorithm, where the model chooses the
transcript that is most predictive for the expression value of a transcript in another species.

A Human B Mouse C Drosophila

P=927E-03 P=1.37E-07 P=215E-04

Proteasome Proteasome Proteasome

205 Core Particle 195 Regulatory Particle

195 Regulatory Particle
Lid

am|
]
=

Figure 2 — OPMD-deregulation across different subunits of the proteasome in different species. There
are widespread differences in gene expression (depicted in dark colors) between OPMD and control in the
different functional subunits of proteasome and immunoproteasome in human (A), mouse (B) and Drosophila
(C). The Significance of the association between the disease outcome and expression profiles of genes
encoding for proteasome and immunoproteasome were previously calculated (Anvar et al., 2011) using the
global test (Goeman et al., 2004).
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Figure 3 — Performance of the naive Dandelion algorithm on constructing disease networks that are
learnt on human and evaluated on human, mouse and Drosophila datasets. A) The average Sum of
Squared Error (SSE) for prediction of the disease phenotype (OPMD vs. control) given the gene expression
profiles within the disease networks learnt on human. The cross-validation set which is used during the train-
ing phase is depicted by C.V. and the independent test sets are grouped as IND. Test Sets. B) ROC space
demonstrates the relative sensitivity and specificity of the generated networks in predicting the disease phe-
notype. The results from random expectations are illustrated by the red dash-line. C) Number of relationships
between genes and the class node, after applying confidence thresholds, are depicted in line per species.
D) The number of links found after interspecies translation and optimization of the disease networks within
each species. The orange section, separated by red dash-line, represents the number of links that can be
found in all species with the confidence threshold of 0.1. E) The interspecies disease domain is generated
according to the Markov blanket criteria, after applying the confidence threshold of 0.1.

Naive Construction of Disease Network

The process of constructing disease networks using naive Dandelion algorithm initially starts by
averaging the expression profiles of different gene transcripts in the human datasets. The sum-
marized gene expression values were then used for the learning of intraspecies gene networks
which consequently were translated to the other species. The interspecies networks were assessed
for their predictive accuracy, sensitivity and specificity (Figure 3). The constructed interspecies
networks predict the disease status (control vs. OPMD) of the unseen Drosophila and mouse
samples with a moderate accuracy of 71% and 72%, respectively (Figure 3A). However, a large
number of networks perform worse than random expectations, as evident from the ROC space
(Figure 3B). This result indicates an overall low level of sensitivity and specificity in predicting
the disease phenotype. Moreover, the networks are weak and unstable as they exhibit a very low
level of translatability (Figure 3C). The low level of robustness, stability and translatability is also
evident from the low percentage (8.7%) of relationships with the confidence score of > 0.1 in the
intraspecies networks (Figure 3D). Similarly, after applying the confidence threshold of 0.1, the
interspecies disease domain structure collapses as only two links survive this constraint (Figure
3E). The level of confidence in relationships within the interspecies disease domain is estimated
to be between 0.25 and 0.75 for both links and RPN9 is the only gene found differentially ex-
pressed in the Drosophila dataset. This indicates that averaging the expression patterns for dif-
ferent gene transcripts reduces the information content of the network considerably and should
be avoided for accurate prediction of the disease phenotype and generating biologically relevant
regulatory networks.
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Exhaustive Construction of Disease Network

We used the exhaustive Dandelion algorithm to overcome these limitations and provide a de-
tailed interaction map of molecular pathology that extends our knowledge of disease mechanism
across species. In contrast to the naive variant, the exhaustive Dandelion algorithm searches the
space of possible relationships at the level of gene transcripts to find the best scoring interspecies
regulatory network. It can accommodate missing data and possible dissimilarities by identifying
the best fit for a given relationship across species.

Bayesian networks which are generated using the exhaustive Dandelion algorithm can accurately
predict the disease status from the expression levels of genes coding for proteasomal components
(Figure 4A). We observe over 91% sensitivity and 80% specificity in the prediction of the disease
phenotype in the human dataset (with an average SSE under 0.18), and similar values were ob-
tained for the Drosophila and mouse datasets. The interspecies disease networks have very high
predictive value for other species while they tend to avoid overfitting to a given dataset. This is
evident from the low level of variation in SSE between constructed interspecies networks (0.06 in
human, 0.11 in mouse, and 0.08 in Drosophila). The predictive ability of the interspecies models
is highly robust towards the use of different organisms for training and testing, as the average
SSE for a given species only slightly varies between different networks. Furthermore, the gener-
ated interspecies disease networks exhibit high sensitivity and specificity scores towards their
informativeness to the prediction of the disease status. The majority of these networks provide
sensitivity and specificity scores higher than 70% (Figure 4B). All constructed networks perform
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Figure 4 — Performance of the exhaustive Dandelion algorithm. A) The average Sum of Squared Error
(SSE) for prediction of the disease phenotype (OPMD vs. control) given the gene expression profiles within
the disease networks learnt on human (i), mouse (ii), or Drosophila (iii). The cross-validation set which is
used during the training phase is depicted by C.V. and the independent test sets are grouped as IND. Test
Sets. B) ROC space demonstrates the relative sensitivity and specificity of the generated networks in pre-
dicting the disease phenotype. The results from random expectations are illustrated by the red dash-line.
C) Number of relationships between genes and the class node, after applying confidence thresholds, are
depicted in line per species.
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Figure 5 — Translatability and robustness of interspecies disease networks. A) The number of links
that were found during interspecies translation and optimization of the disease networks per individual da-
tasets. The red dash-line depicts the number and fraction of links that can be found in all species with the
confidence threshold of 0.1. The translatability of disease networks learnt and trained on human (i), mouse
(ii), and Drosophila (iii) are presented separately. The cross-validation set which is used during the training
phase is depicted by C.V. and the independent test sets are grouped as IND. Test Sets. B) The translatability
of relationships over series of different confidence thresholds. These line plots demonstrate the percentage
of relationships with confidence score higher than the threshold. For the independent testing datasets the
ratio is towards the number of links that were expected to be found after generation of the network map. C)
The robustness of disease networks are assessed according to the level of connectivity for genes encoding
for the proteasome as compared to the set of randomly selected genes at different confidence thresholds.

significantly better than random expectations, as presented in the ROC spaces (Figure 4B). In
addition, the gene networks are strongly connected to the class node (representing information
on the control and disease states of the samples) since the number of genes connected to the class
node only drops to 0 when the confidence threshold was raised to 0.3, 0.4, or 0.2 for networks
learnt on human, mouse, or Drosophila, respectively (Figure 4C). These are very restrained con-
fidence thresholds as they require networks to share the same level of confidence for interactions
across all species, and compare favorably to the low number of links remaining at the lower
threshold of 0.1 with the naive Dandelion algorithm.

Figure 5 demonstrates the level of robustness and translatability of the obtained disease networks.
A large fraction of relationships (37.4% in human, 28.7% in mouse, and 34.3% in Drosophila) can
be translated and found in the interspecies disease network with the confidence threshold of 0.1
(Figure 5A). Remarkably, an average of more than 60% of the translated links can be found in all
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Figure 6 — Specificity of the proteasome towards
prediction of disease states. A) The average Sum
of Squared Error (SSE) for prediction of the disease
phenotype (OPMD vs. control) given the gene ex-
pression profiles within the constructed networks
learnt on the proteasome, 100 random genes, 70
not-deregulated random genes (ND), and the ribo-
some. The cross-validation set which is used during
the training phase is depicted by C.V. and the inde-
pendent test sets are grouped as IND. Test Sets. B)
ROC space demonstrates the relative sensitivity and
specificity of the generated networks in predicting
the disease phenotype. The proteasome, 100 ran-
dom genes, 70 random genes (ND), and ribosome
are illustrated in different colors (red, purple, green,
and yellow, respectively). The results from random
expectations are illustrated by the gray dash-line.

organisms. It is evident that the intraspecies net-
works are highly resistant towards noise and the
range of confidence in which interactions can be
found in the training set is at least 0.7 and are
as high as 0.9 in Drosophila and mouse datasets
(Figure 5B). This value is even higher for rela-
tionships that are successfully translated from
the intraspecies network to the other organ-
isms (Figure 5B). Noticeably, the interspecies
networks can still be obtained when applying a
very stringent confidence threshold of 0.9 for all
three constructed interspecies disease networks.
More than 71% and 39% of translated relation-
ships from human pass the confidence thresh-
old of 0.9 in mouse and Drosophila datasets, re-
spectively. However, a slightly more severe drop
in translatability rate is observed for networks
learnt on the mouse data. This can be expected
due to the presence of overexpression and pos-
sibly other artifacts in this model system, also
reflected by the higher level of interconnectivity
of these networks. Despite the presence of noise
and other artifacts in these datasets, a large frac-
tion of interactions between genes encoding for
the proteasome have high confidence scores in
the interspecies networks (Figure 5B). This is
not true for links associated with the randomly
selected genes as the majority of those relation-
ships do not pass the confidence threshold of 0.1
(Figure 5C). Overall, these results show model-
driven selective and predictive ability of the ex-
haustive Dandelion algorithm in capturing the
disease-related relationships between genes in
which exhaustive Dandelion significantly out-
performs the naive Dandelion algorithm.

To assess the specificity of the proteasome in
providing accurate prediction of the disease sta-

tus, we compared the SSE, sensitivity, and specificity of the networks learnt on the proteasome to
that of three additional gene sets. The exhaustive Dandelion algorithm was applied to a set of 70
random genes from which none is deregulated (ND) in OPMD, a set of 100 randomly selected
genes containing also deregulated genes that are expected to link with the class node in one spe-
cies but not necessarily across species, and 87 genes coding for the structurally-related ribosomal
proteins, which are not known to be consistently differentially expressed in different species (An-
var et al., 2011). Noticeably, interspecies networks constructed on the proteasome significantly
outperformed (86% sensitivity and 81% specificity across species) those constructed on other
gene sets (Figure 6). Strikingly, the predictive accuracy of networks learnt on the proteasome was
slightly improved from the previous experiment (Figure 4) in which additional 30 random genes
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Figure 7 — Interspecies disease domains. These interspecies class network structures are learnt on hu-
man (A), mouse (B), or Drosophila (C) dataset and optimized across species. Class network structures are
presented according to Markov blanket criteria. Nodes represent genes. The outer ring reflects deregulation
in the expression in the different species (a, b). Relationships are depicted with lines that represent different
degree of confidence in relationships (described in ¢).

were included. In contrast, the class prediction performance of the other networks was much
lower. The class prediction error for networks learnt on the random genes was much higher than
that of the proteasomal genes (average SSE of 0.43 and 0.21, respectively) but slightly lower than
that of non-deregulated random genes and the ribosome (0.52, and 0.48, respectively) (Figure
6A). Although the performance is still acceptable for training and testing on human, the decrease
in the level of sensitivity and specificity of non-proteasomal networks is particularly apparent
during the translation phase (in this case from human data to mouse and Drosophila) (Figure
6B), indicating that the links between non-proteasomal genes are not conserved across the differ-
ent species. Altogether, these results indicate a model-driven selective ability of the algorithm in
capturing the most informative and consistent gene relationships which led to the construction
of a highly robust interspecies disease network.

Network Genes and Identification of Key Regulators

Interspecies disease domains represent the most robust, disease-associated gene networks. They
are identified by the class node (describing the disease status) and the associated Markov blanket
of interactions with the confidence threshold of 0.1 across species (Figure 7). In the original ex-
periment, the interspecies disease domain that is trained on human data shows the most robust
network as the overall confidence in relationships is very high (Figure 7A). The mouse data,
however, produced the highest number of relatively weaker relationships among genes (Figure
7B). The interspecies disease domain that is trained on the Drosophila data shows the same level
of robustness as those constructed and trained on human (Figure 7C). In Drosophila, Desmin
(DES), a randomly selected gene, is connected to the class node as part of the disease domain.
Although DES (a muscle-specific class III intermediate filament) is a member of the random set,
it is significantly deregulated in both human and Drosophila datasets. This gene has been clearly
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Figure 8 —Validation of differential expression of disease associated genes in an unseen disease
model. Results from gPCR experiments measuring differences in gene expression between control cells
(WTA, N=3 independent cultures) and cells expressing the OPMD-associated PABPN1 with expanded re-
peat (D7E, N=3 independent cultures). Expression levels were normalized to Desmin to correct for differ-
ences in the myogenicity in the different cell cultures. Significant differences (P < 0.05, Student’s T-test)
between measured expression values in D7E and WTA cells are indicated by *, whilst NS stands for no
significant difference. PA28a,, RPT3, RPN15, RPN11, B2, and B5 expression in IM2 cell lines were selected
from the group of genes present in the interspecies disease domain. PA28pB (deregulated in human dataset)
was selected as its role in assembling the lid subunit of the immunoproteasome is highly similar to PA28o
but not part of the interspecies disease domain. B2iis one of the two genes that remained connected to the
class node in the interspecies disease domain constructed by naive Dandelion approach. ACTA1 is a control
for myotube formation.

linked to muscle differentiation (Capetanaki et al., 1997) and is likely associated with the OPMD
phenotype. No other randomly selected genes appear in the disease network which indicates the
reliability and the specificity of the obtained networks. Overall, the interspecies disease domains
exhibit a high level of robustness and informativeness towards different states of the disease. This
is due to the presence of relationships that can be translated across species with at least a mod-
erate confidence (91.7% in human, 55.3% in mouse, and 71.4% in Drosophila). Moreover, the
interspecies disease domains contain a large number of nodes that are differentially expressed in
at least one species (100% in human, 80% in mouse, and 92.9% in Drosophila). Furthermore, the
majority of genes are shared between at least two interspecies disease domains (81.8%, 64%, and
78.6%, for disease domains after training on human, mouse and Drosophila, respectively). Many
of the links between genes present in these network structures demonstrate a strong correlation
in expression profiles in the different species (Table S4 in Text S1). Overall, these results indicate
that the expression levels of the majority of genes in the constructed interspecies networks are
strongly correlated and more likely to be associated with the OPMD phenotype than genes that
are differentially expressed in single species.

Evaluation of Disease Networks on Unseen Disease Model

The model-driven and interspecies selection of genes that are most likely to be associated with
the disease phenotype suggests their association with the disease in an independent and unseen
disease model. Therefore, we evaluated the disease-related transcriptional changes for a subset of
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genes (selected from the interspecies disease domains) in the IM2 cell model (Raz et al., 2011)
with moderate overexpression of the wild-type PABPN1 (WTA) or the mutant PABPN1 pro-
tein isoform (D7E). Remarkably, all the selected genes (PA28«a, RPT3, RPN15, RPN11, 32, and
B5) showed significant differential expression in an unseen IM2 cell model (Figure 8). PA28«
appears to be an essential hub in the interspecies disease domains trained on the human and
mouse datasets (Figure 7). Noticeably, it is also significantly deregulated between D7E and WTA
(Figure 8). In contrast, PA28, which is a closely related homolog in the PA28 complex (Rech-
steiner and Hill, 2005) and also significantly deregulated in human dataset, do not play a part in
the interspecies disease domains. Interestingly, it is evident that the expression pattern of PA28f3
is not deregulated between the D7E and WTA cells (Figure 8). Next, we assessed the expression
of the 2i, a member of immunoproteasome core subunit, present in the interspecies disease
domain constructed with the naive Dandelion algorithm. This gene is not differentially expressed
between D7E and WTA cells (Figure 8). Overall, these results highlight the unique ability of the
exhaustive Dandelion algorithm to identify disease-related genes that can be found across differ-
ent OPMD model systems and patients.

DISCUSSION

Integration of transcriptome data from different species is far from trivial and is complicated by
our limited knowledge of true protein orthologues and transcript variants coding for proteins
with similar functions. Moreover, the presence of noise and artifacts specific to certain model
systems usually leads to limited overlap between results obtained in cross-species comparisons
(Lu et al., 2009; Zhou and Gibson, 2004; Oliva et al., 2005; Blake et al., 2003). In this paper, we
developed a Bayesian-based methodology (Dandelion algorithm) to model gene networks as-
sociated with the same disease in different species. We showed that the integration and analysis
of gene expression datasets from various species increase the robustness of the constructed net-
works and the predictive accuracy of the disease state. We also demonstrated that the interspecies
translation of the networks helps to avoid overfitting. A newly developed model-driven selection
of transcripts that are most likely to be coding for orthologous proteins is essential for the genera-
tion of robust interspecies disease networks.

Our approach for Bayesian modeling of datasets on a similar phenotype from different model
systems and patients is rather unique. Several approaches have been described to avoid overfit-
ting and increase the robustness of Bayesian networks. For example, informative priors derived
from protein-protein interaction (PPI) data or from the literature have been used to generate
more stable and biologically meaningful networks (Segal et al., 2003; Peer et al., 2002; Steele et
al., 2009; Jansen et al., 2003). While these methods obviously bias the results towards well-known
regulatory interactions (Sprinzak et al., 2003; Joyce and Palsson, 2006), these methods may ul-
timately be combined with our modeling approach to obtain regulatory networks with a more
straightforward biological interpretation.

Our method was applied to an a priori defined gene module coding for a well-known biological
structure, the proteasome. Several studies in S. cerevisiae (Zhang et al., 2005; Tanay et al., 2004;
Luscombe et al., 2004; Han et al., 2004) have demonstrated the value of an integrative modeling
approach providing modularized interaction networks without prior assumptions. Zhang et al.
(2005), for instance, took an approach in which they integrated a number of different available
data sources, from PPIs to sequence homology and gene co-expression, while Tanay et al. (2004)
and others (Luscombe et al., 2004; Han et al., 2004) expanded on the statistical analysis of net-
work properties and identifying modules within the network structure. The performance of these
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models depends on the availability of high quantities of samples and may be prone to overfitting
due to the presence of noise and other model-specific artifacts. Therefore, a combination with
our interspecies translation approach may enable the allowing of larger gene regulatory networks
with multiple gene modules and connections between them.

In this study, three microarray datasets from Drosophila, mouse and human, that are all con-
cerned with OPMD, are used to gain insight into key regulatory relationships of interspecies
disease networks that are directly and robustly associated with the disease. Previously, we have
established the importance of the deregulation of the ubiquitin-proteasome system (UPS) for
the disease etiology (Anvar et al., 2011). From the different components of the UPS, the down-
regulation of the proteasome has been associated with the late-onset of the disease (Anvar et al.,
2011) as the reduced proteasome activity can lead to futile protein degradation. However, little is
known about the key components of the proteasome that are contributing to the OPMD pheno-
type. Hence, the generation of interspecies disease networks for the proteasome encoding genes
now shed some light on the underlying regulatory mechanisms that govern the disease-related
transcriptional changes of the proteasome encoding genes.

We identified PA28a, one of the three components of the PA28 subunit, as an important hub
gene in the interspecies disease domain and validated its significant differential expression in an
unseen disease model. PA28a plays an important role in assembling the lid subunit of the im-
munoproteasome and stimulating the proteasome core component (Rechsteiner and Hill, 2005).
Previously we showed that the induction of immunoproteasome activity leads to a significant
reduction in the nuclear expPABPN1 accumulation (Anvar et al., 2011). This observation fur-
ther signifies the role of PA28 assembly and the immunoproteasome in the disease etiology. In
contrast, the other PA28 component PA28p although significantly deregulated in human OPMD
patients, appears to play a less crucial role since its association with the disease did not translate
to the OPMD animal models and could not be reproduced in the OPMD cell model system. On
the other hand, the association of f2 and 5, members of the proteasome core subunit, with the
disease was identified by the interspecies disease domains and reproduced in the OPMD cell
model. Down-regulation of the proteasome core subunit can lead to futile protein degradation
which results in protein accumulation. Our analysis suggests that 32 and 5 are vital regulators of
the proteasome activity which are disease associated. It has been shown that the down-regulation
of the proteasome