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Now this is not the end. It is not even the 
beginning of the end. But it is, perhaps, 
the end of the beginning.

Winston Churchill
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Systems biology is the study of complex interactions between different elements of cells, tis-
sues, and organisms. The last decade has marked the rise of systems biology owing to ad-
vancements in high-throughput techniques for genetic manipulation and measurement of 

cellular activities, such as genome-wide microarrays and next-generation sequencing. The advent 
of these technologies enabled scientists to progress beyond studying individual genes and come 
to a global understanding of the interplay between different elements of the cell. Despite the 
encouraging progress in systems biology, the high-dimensional and heterogeneous nature of bio-
logical data poses significant challenges for rigorous analysis and meaningful interpretation. For 
instance, differences in experimental design (such as phenotype, response, treatment, and timed 
events) or technical artefacts (introduced during sample preparation or data processing) compli-
cate data integration and modelling. Notably, stochastic gene expression, even among isogenic 
cells, creates a source of variability at single-cell level that underlies diversified protein synthesis 
(Kaern et al., 2005; Kaufmann and van Oudenaarden, 2007; Ozbudak et al., 2002; Blake et al., 
2003; Paulsson, 2004; Sigal et al., 2006). For instance, To and Maheshri (To and Maheshri, 2010) 
have shown that high or low gene expression can spontaneously be controlled by the systematic 
noise. This phenomenon can result from intercellular variations at the level of pathways that 
regulate gene expression (extrinsic noise) or arise from the random production of mRNA and 
bursts of protein synthesis (intrinsic noise) due to chance in interaction between cellular com-
ponents. For example, genes responding to environmental stress exhibit higher level of extrinsic 
noise while the most robust genes regulate translation and protein degradation (Bar-Even et al., 
2006; Newman et al., 2006). Thus, a full accounting of effect sizes provides crucial information on 
pathways and mechanisms that regulate transcriptional changes.

To tackle technical bottlenecks and arrive at biologically interpretable results, several classes of 
methodology have been developed, ranging from correlative approaches to those aimed to infer 
causal relationships. Correlation-based statistical analyses seek to identify the most prominent 
candidates (genes, proteins, transcription factors, or metabolites) for follow-up studies. How-
ever, the use of statistical tests that classify data points into ‘changed’ or ‘unchanged’ dismiss 
potentially important information on a wide range of effect sizes. Other strategies focus on the 
inference of modules of functionally related entities and their joint association with a biological 
response. Owing to the coupling and coordination of transcriptional regulation (Maniatis and 
Reed, 2002; Soller, 2006), rather than being independent, these modules can link the overall be-
haviour of a system to the interactions between its components. Thus, the use of such mathemati-
cal models can lead to the identification of prominent molecular pathways and multi-gene panels 
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of interconnected regulatory networks. 
Nevertheless, these approaches may 
fail to provide mechanistic insight and 
discriminate between cause and con-
sequence, which are among the main 
goals of systems biology. Allegorically, 
systems biology at its current state of 
development is like a group of blind 
wanderers studying the complex inner workings of the universe. For a panel of researchers tack-
ling a biological question having all the tools and techniques in hand, unknown degrees of com-
plexity make the identification of what is before them far from trivial.

To improve our methods for eliciting causal mechanisms, the use of systems with similar proper-
ties can serve as prior knowledge for benchmarking. This prior knowledge could compensate for 
the inherent sparseness and noisiness of high-dimensional biological data and improve precision 
and accuracy of their interpretation. In addition, the use of data from organisms with identical 
genetic background, living under controlled experimental and environmental conditions, is pre-
ferred as it results in inherently lower levels of noise and stochasticity. Integration of data from a 
number of model organisms may, therefore, advance the understanding of more complex biologi-
cal systems. The development of strategies for robust translation of findings from one organism 
to another constitutes the core of this thesis. In this introduction, I outline alternative methods 
for inference of biologically relevant relationships, ranging from simple searches in biological 
modules to data-mining, machine learning, and modelling of Bayesian networks.

Data integration
Data integration consists of efforts in combining multiple datasets to provide a unified view of 
biological information. There is a necessity for data-mining that goes beyond the analysis of in-
dividual datasets. Hence, consensus and precision in biological interpretation can be reached 
only through another source of information (Tenenbaum et al., 2011). Integration of data and 
genomic information from multiple experiments can ultimately provide significant mechanistic 
insights on genomic, transcriptomic, proteomics, metabolomics, and epigenomic changes that 
give rise to specific phenotypes at the molecular, cellular, or organismal level (Figure 1). None-
theless, the process of data integration requires a fine tuning and vigorous setting for optimal 
precision of findings. Various data integration strategies, at different levels, can potentially offer 
different views on the same biological information. High-level integration methodologies, such 
as meta-analyses, are dependent on filtering protocols (i.e. selection of differentially expressed 
genes as input) with basic assumptions which can lead to loss of biological information. Never-

Figure 1 – Schematic illustration of data 
integration. The recurrent integration of 
biological data (genome, transcriptome, 
phenome, and environment) requires spe-
cial efforts in utilising data sources, protein-
protein interaction (PPI) networks and pro-
tein complexes, biomedical literature, etc. 
The proper tuning and enhanced strategies 
for integrative studies leads to knowledge 
discovery by providing information on dif-
ferential expression, the most prominent 
molecular pathways, common patterns, and 
regulatory dynamics and networks.
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theless, these approaches are useful for obtain-
ing a gross overview over the data (Ficenec et 
al., 2003). In contrast, low-level approaches, 
such as data-mining, can facilitate the use of 
mutual information to gain better power in 
retrieving valuable information (Choi et al., 
2004). Multi-layer integration of biological 
data may offer the best of both strategies. This 
approach provides a framework in which the 
influence of platform- or experiment-specific 
noise (Aitchison and Galitski, 2003) can be 
reduced since it reinforces the mutual infor-
mation standing out above uncorrelated noise 
(Choi et al., 2004; Jiang et al., 2004).

Ups and downs at the transcriptome
The work presented in this thesis is largely 
confined to transcriptome data analyses. The 
amount of mRNA in the cell is finely regu-
lated in a spatial-temporal manner to ensure 
cellular homeostasis. The centrality of RNA 
processing (Sharp, 2009), together with the 
comprehensive nature of current RNA expres-
sion profiling approaches, makes transcrip-
tome data ideal for modelling of biological re-
sponses. Nevertheless, transcriptome analyses 
disregard important levels of regulation at the 
translational and post-translational level. Re-
cent studies have demonstrated rather poor 
correlations between mRNA and protein levels 
(Guo et al., 2010; Selbach et al., 2008).

The study of the transcriptome, in particular 
that of higher eukaryotes, is complicated by 
extensive RNA processing steps which give 
rise to different transcript variants. RNA pro-
cessing events, such as splicing (Cooper et al., 
2009; Wahl et al., 2009), polyadenylation (Lutz, 2008), RNA editing (Bass, 2002; Wulff et al., 
2011) and other post-transcriptional modifications, widely expand the mRNA pool and, there-
fore, coding of an even more diverse set of functional proteins and RNA species (Figure 2). These 
events are vital for many physiological and pathophysiological processes. This may explain some 
of the relatively diverse phenotypic characteristics of human and chimpanzee that share 99.7% 
identical sequence in genome-coding regions (Calarco et al., 2007). In humans, more than 90% of 
genes are alternatively spliced in a tissue and cell-specific manner (Wang et al., 2008a). Like regu-
lation of transcription, post-transcriptional processes are tightly controlled. For instance, there 
is an important regulatory role for microRNAs on mRNA stability and translational efficacy (Fil-
ipowicz et al., 2008) and epigenetic changes mediated by non-coding RNAs (Wang et al., 2008b; 
Cam et al., 2009). The integrity of these processes are controlled by mRNA stability and turnover 

Figure 2 – Schematic overview of RNA processing 
and its regulation. A single gene can generate pre-
mRNAs that are alternatively processed to generate a 
diverse set of mature mRNAs. These isoforms can dif-
fer in inclusion of exons (alternative splicing) and the 
polyadenylation sites in the 3’ UTR (alternative polyad-
enylation). Alternative protein-coding regions are de-
picted as mutually exclusive splicing of the third exon 
and selection of one of the two possible poly(A) sites 
(pA1 and pA2). Alternative splicing, for instance, can 
lead to coding frame-shifts which results in degrada-
tion of mRNA by nonsense-mediated decay pathway. 
On the other hand, elongation of the 3’ UTR can alter 
the range of regulatory elements such as microRNAs 
(miRNA) targeting the transcript to be subjected to dif-
ferent forms of post-transcriptional regulation, in this 
case inhibition. Additional events, such as selection 
of alternative first exons, can further diversify the pool 
of mRNAs.
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machineries (Houseley and Tollervey, 
2009) as abnormal RNA processing can 
lead to futile or ultimately lethal function 
of encoded protein. Hence, the study of 
transcriptional and post-transcriptional 
control of mRNA expression is essential 
for a better understanding of physiology 
and pathophysiology. Furthermore, the 
comparison of transcriptome profiles 
from different cell types and organisms 
can help determining the frequency of 
alternative processes and the extent to 
which it is subjected to species- or tissue-
specific regulation (Licatalosi and Dar-
nell, 2010).

Genome-wide expression microarrays 
and RNA-Seq (next-generation RNA 
sequencing) are currently the most im-
portant technologies for transcriptome 
profiling (Figure 3). Microarrays have 
become one of the most commonly used 
tools in transcriptomics studies owing to 
their cost-efficiency and speed in simul-
taneously measuring thousands of gene 
transcripts. In addition, microarrays 
have been designed with distinct features 
to address the RNA complexity such as 
exon-junction arrays for capturing dif-
ferential splicing events (Johnson et al., 
2003). Despite their obvious potency, microarrays are limited by gene annotations and can only 
detect known transcripts for which microarray probes have been designed, whilst novel tran-
scripts and transcript variants will be missed. Moreover, the technical noise in microarray signals, 
being dependent on probe hybridization and annealing properties, is relatively high. This nega-
tively affects data reproducibility and cross-platform and sample comparisons (Ioannidis et al., 
2009). RNA-Seq, on the other hand, generates millions of reads and has the potential to measure 
the complete transcriptome including alternative splicing and polyadenylation, and RNA editing 
events (Pan et al., 2008; Wang et al., 2008a). Nevertheless, RNA-Seq analysis strategies are cur-
rently under development as exact quantification of the relative abundance of different transcript 
variants remains challenging.

Rewiring regulatory networks in biology
Biological processes do not occur by isolated genes or proteins but act through functional regula-
tory networks. The degree to which gene products appear in the cell and exert their function is 
regulated by such biological networks. Therefore, the implications of gene defects would not be 
restricted to the activity of specific gene products but can have many severe effects by spread-
ing along sub-network structures (Barabasi et al., 2011). This interconnectivity implies that the 
identification of regulatory networks and understanding the evolution and structural features 

 
Figure 3 – Workflows for transcriptome analysis. Micro-
array and RNA-Seq are the most common high-throughput 
techniques for transcriptome profiling. The main character-
istics of microarrays and RNA-Seq for transcriptome studies 
are listed. The general pipeline for conducting a transcrip-
tome study involves recurring steps of experimental design, 
data processing, statistical analysis and network inference, 
and the validation of findings.
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of specific networks are vital for better under-
standing the phenotypic impacts of genetic de-
fects and the associated complications (Schadt, 
2009; Goldstein, 2009; Karlebach and Shamir, 
2008). Thus, as genetics is aimed to answer the 
question of ‘what’, network-based models are 
designed to go one step beyond by tackling the 
question of ‘how’.

Network-based approaches have transformed 
the field of systems biology. These approaches 
are mainly expression-centric and can be clas-
sified into two types of module inference and 
transcription regulatory network. The first 
type of analysis involves the study of co-ex-
pression networks (Figure 4A). This compris-
es the identification of functional relationships 
between genes under the assumption that 
genes with similar function exhibit interrelat-
ed expression patterns and can be described as 
a functional module (Stuart et al., 2003). These 
methods require careful interpretation as they 
are highly sensitive to noise. Such models are 
biased towards identification of relationships 
between genes that are tightly co-expressed 
and disregard those that do not exhibit suffi-
cient co-expression profiles with other genes 
(Michoel et al., 2009). It is important to bear 
in mind that correlation does not imply causa-
tion. This issue can be partially addressed by 
the use of time-series data. In the second type 
of approach, methods go one step further by 
taking into account the sense of similarity, rep-
resentativeness, and randomness of biological 
data. These models can accommodate hidden 
variables, assess the causality of relationships 
and, most importantly, provide reasoning 
and predictions for unseen data (Figure 4B). 
Nonetheless, these models are prone to overfit-
ting and generation of multiple probable solu-
tions that can be circumvented by the use of 
multiple independent datasets.

The use of prior knowledge about functional 
interactions has been shown to successfully 

reduce the search space and to make networks more robust (Segal et al., 2003; Pe’er et al., 2002; 
Steele et al., 2009). This method works for well-studied diseases or biological systems, but is 
less likely to identify novel regulatory interactions that are involved in the underlying molecu-

Figure 4 – Schematic illustration of biological net-
works. A) Co-expression networks can be construct-
ed under various constraints and settings. A cluster 
of ten nodes can be interconnected on the basis of 
their nearest neighbours, depicted as a ring. Fully 
connected networks of ten nodes represent a cluster 
of fully interconnected nodes where all nodes are co-
expressed. Co-expression networks can also be rep-
resented as connected modules. Here, a cluster of ten 
partially connected nodes (black) are linked to a clus-
ter of six partially connected nodes (white) through two 
independent nodes (gray). B) A Bayesian network that 
encodes a joint distribution is very flexible and can be 
constructed in different architectures based upon the 
data analysis task: Bayesian networks, Bayesian clas-
sifiers (these networks include a class node, depicted 
by C, for prediction), dynamic Bayesian networks 
(these networks support time-series where nodes rep-
resent variables at a point in time), and hidden Markov 
model (these networks can handle unmeasured infor-
mation by incorporating a hidden or latent variable, 
depicted by H).
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lar mechanisms of rare or complex dis-
orders. In addition, this bias can falsely 
expose the network to sample differences 
in the absence of a biological cause. In 
this thesis, the unbiased use of indepen-
dent datasets from different organisms 
as prior knowledge is further explored 
(Figure 5A). Modular structure of regu-
latory networks (Ma et al., 2004) and 
largely conserved functional properties 
of genes across species provide a detailed 
framework for identification of relation-
ships that are conserved across species. 
It was hypothesized that relationships 
that are identified in an interspecies gene 
network are also biologically more mean-
ingful. Furthermore, they result in more 
reliable identification of key players in 
biological processes under study. How-
ever, translation of regulatory networks 
across different platforms or organisms is 
far from trivial. This is evident from our 
limited knowledge of true protein ortho-
logues and transcript variants coding for 
proteins with similar functions in differ-
ent species. For this, new algorithms and 
optimization techniques needed to be 
developed (Chapter four and five).

Among the possible approaches for modelling of biological networks, Bayesian networks have 
certain advantages as they are able to deal with uncertainties and stochastic effects (Pearl, 1988; 
Friedman, 2004; Friedman et al., 2000; Segal et al., 2003). A Bayesian network can encode gene 
interaction by modelling the joint probability distribution that represents possible transcriptional 
behaviour for a set of genes. It consists of a directed acyclic graph (DAG) that denotes condi-
tional independencies and a conditional probability distribution for each gene (represented by a 
node in the graph). These networks can represent complex relationships between genes and are 
capable of integrating different types of data (from phenotypic and genotypic categorical data to 
continuous gene expression profiles). In addition, the probabilistic nature of such networks can 
easily accommodate noise or missing data by weighting each information source according to its 
reliability. In contrast to many statistical models, the transparent nature of Bayesian networks (in 
terms of the graphical structure and local probability distributions) leads to better interpretation 
and understanding of the underlying biological processes. The combination of a rigorous training 
and testing regime (including cross-validation which is a statistical method for assessing the per-
formance of a fitted model in predicting the observation made on unseen data) and optimization 
procedures (such as simulated annealing) can lead to the inference of reliable network structure 
(Figure 5B).

Figure 5 – Bayesian regulatory networks in computation-
al biology. A) Interspecies (or inter-platform) integration can 
be achieved by taking into account the many-to-many rela-
tionships of orthologue genes/transcripts (depicted by cir-
cles). Depending on the technology used for generating bio-
logical data, the information and coverage on the possible 
orthologues and their transcripts varies (depicted in gray). 
B) The process of building a prediction model involves parti-
tioning data into training and test folds at random. Next, after 
constructing and tuning the parameters, models are tested 
on the test data. This process is repeated by resampling 
from the full data until all partitions are used for building and 
testing the models. The consensus network can be reached 
by averaging and assessing all the constructed models. A 
number of different computational techniques can be used 
to optimise the partitioning, building, and averaging these 
networks. The consensus model, the key nodes, and the 
predictions can reveal new biological insights.

B

Data integration

 
Time series Cross species

Human

Mouse

Drosophila

Orthology

t0 t1 tn. . . . .

A
Full

Data

Test
Set

Train
Set

Model

Re
sa

m
pl

in
g

Sc
or

es
 a

nd
Ev

al
ua

tio
n

Consensus
Network



PREFACE

17

Model systems and the study of human diseases
Biomedical research has evolved around model organisms which have played a central role in the 
studies of human disorders. In spite of growing achievements in genome-wide association studies 
and whole-genome profiling, genetic studies of human diseases are significantly limited owing to 
factors such as environmental influences and genetic heterogeneity. The challenges posed by hu-
man genetic research can potentially be circumvented in model organisms. This is due to much 
simplified and experimentally traceable system that provides unbiased environment for char-
acterization of genetic data (Aitman et al., 2011). Nevertheless, model systems have their own 
limitations and cannot fully replace the human data as genetic architecture and complex traits, 
such as epigenetic and environmental effects, are hard to replicate in model organisms. Moreover, 
genetic engineering may introduce significant artefacts. Thus, data from model organisms should 
be interpreted with care. In addition, the use of multiple model organisms may be necessary to 
identify the most prominent and disease-related molecular mechanisms that can be projected on 
human data with high precision. The design of such integrative strategies would bridge the gap 
between less noisy data from model systems to more stochastic human biology.

As model systems, along with high-throughput transcriptional profiling, continue to transform 
the study of human disorders, novel algorithms are needed to capture, characterize, and model 
the hierarchy and dynamics of biological data (Figure 6). It is clear that attentive modelling and 
optimization of integration strategy would ultimately serve as a powerful system for knowledge 
discovery in the study of human genetic disorders.

Oculopharyngeal muscular dystrophy
In this study, I have focused my efforts on the improved understanding of disease mechanisms in 
oculopharyngeal muscular dystrophy (OPMD). OPMD is an autosomal dominant and late-onset 
disorder, usually manifest in midlife (after the age of 40). OPMD symptoms are progressive and 
characterised by ptosis, dysphagia, and weakness of proximal limb (Figure 7). As the disease pro-
gresses, muscle weakness can spread to additional skeletal muscles such as facial muscle weak-
ness, tongue atrophy, and dysphonia (Brais and Rouleau, 1993). In some OPMD patients, reports 
have indicated mental retardation, cognitive impairment, spinal cord involvement, and dementia 
as additional symptoms (Millefiorini and Filippini, 1967; Sarkar et al., 1995; Blumen et al., 2009; 
Linoli et al., 1991; Mizoi et al., 2011; Dubbioso et al., 2011). In spite of these observations, the 
main OPMD symptoms are restricted to voluntary muscles. However, the degree to which these 
muscles are affected and the associated age of onset is variable. Nevertheless, by the time the dis-

Figure 6 – Complexity pyramid, from individual 
to mutual. The bottom of the pyramid represents 
the functional components of the cell for which 
high-throughput biological data are produced 
(level 1). The next layer brings complex regulatory 
motifs (level 2) function in a highly spatial-temporal 
manner to provide diverse sets of functional mod-
ules. These sub-networks are the building blocks 
of molecular pathways (level 3). Modules of func-
tionally related entities work as components of a 
nested structure that represents context-oriented 
global organisation of living organisms. Although 
the individual elements of these networks can be 
unique to a given organism, the topologic prop-
erties of module networks share a high degree of 
similarities.

Proteins MetabolitesmRNAGenes

Regulatory motifs

Functional
Modules and

Molecular Pathways

Ontologies
and Module

Networks

  O
rg

an
ism

 Sp
ec

i�
cit

y          Universality
Biological and Computational Complexity

Information



PREFACE

18

ease is progressed, the quality of life is greatly affected as ptosis can cause visual limitations, dys-
phagia may lead to aspiration pneumonia and weight loss, and patients with proximal limb weak-
ness can eventually be wheelchair bound. OPMD is a rare disorder with estimated prevalence of 
1 in 100,000 in western countries (Fan and Rouleau, 2003). However, there is a vast diversity of 
prevalence between dif﻿ferent populations (Pulkes et al., 2011; Brais and Rouleau, 1993; Semmler 
et al., 2007; Uyama et al., 1997; Maksimova et al., 2007; Puzyrev and Maximova, 2008; Agarwal et 
al., 2012). In some isolated populations the incidence is much higher, among which the Bukhara 
originated Jewish community (1 in 600) and French-Canadian populations (1 in 1000) have the 
highest prevalence (Brais et al., 1995; Blumen et al., 1997).

OPMD is caused by expansion of a homopolymeric alanine (Ala) stretch at the N-terminus of 
the Poly(A) Binding Protein Nuclear 1 (PABPN1) (Brais et al., 1998). While wild-type PABPN1 
contains a (GCN)10 repeat within the first exon, in the mutated form it holds an expanded repeat 
of (CGN)12-17 that leads to 2-7 additional Ala residues. The most frequently occurring mutation 
is estimated to be the expansion of the GCG from 6 to 9 repeats whilst other mutations (such as 
the combination of GCA and GCG expansions) have also been reported (Nakamoto et al., 2002; 
Scacheri et al., 1999; Robinson et al., 2006). The PABPN1 gene is located on chromosome 14q11.2 
and has 8 splice variants, 5 of which encode functional proteins (Figure 7). The encoded pro-
tein localizes mostly in the nucleus and to a lower extent in the cytoplasm. Within the nucleus, 

Figure 7 – Schematic characterisation of oculopharyngeal muscular dystrophy. A) OPMD symptoms 
are mainly restricted to skeletal muscles. B) Divers prevalence rates of OPMD estimated in different popula-
tions. Worldwide prevalence is estimated to be 1:100,000. C) Penetrance (%) and progression rate of OPMD 
is depicted. D) Overview of genetic information for the PABPN1 and pathogenic mutations.
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PABPN1 is enriched in nuclear speckles (subnuclear structures that are enriched in pre-mRNA 
and are located in interchromatic regions). Wide-type PABPN1 has multiple roles in mRNA pro-
cessing, stability and translation, among which the role of PABPN1 in mRNA polyadenylation 
has been extensively studied (Kuhn et al., 2009; Wahle, 1991; Wahle, 1995; Apponi et al., 2010). 
PABPN1 protein is also involved in the export of mRNAs from the nucleus to the cytoplasm (Ap-
poni et al., 2010; Calado et al., 2000a; Brune et al., 2005).

The underlying molecular mechanisms by which the mutated PABPN1 causes progressive muscle 
weakness are not fully understood. In spite of the ubiquitous expression of PABPN1, the clinical 
and pathological features of OPMD are initially restricted to a subset of skeletal muscles. The 
wild-type and expanded PABPN1 (expPABPN1) are prone to aggregation (David et al., 2010; 
Klein et al., 2008). PABPN1 accumulates in intranuclear inclusions (INI) in 1-3% of myonuclei 
(Tome and Fardeau, 1980; Calado et al., 2000b). To better understand the molecular mechanisms 
leading to OPMD, animal models for OPMD were generated in Drosophila, mouse and C. el-
egans with high overexpression of expPABPN1 under a muscle-specific promoter (Chartier et al., 
2006; Davies et al., 2005; Catoire et al., 2008). These model systems recapitulate INI formation 
and progressive muscle weakness observed in OPMD. A correlation between INI formation and 
muscle weakness has been reported in these models (Chartier et al., 2006; Davies et al., 2005; 
Catoire et al., 2008). In addition, it has been shown that protein disaggregation approaches can 
attenuate muscle symptoms in OPMD model systems (Davies et al., 2006; Catoire et al., 2008; 
Chartier et al., 2009). Nevertheless, in a mouse model with low overexpression of expPABPN1, 
muscle symptoms were not observed (Hino et al., 2004). Naturally occurring wild-type PABPN1 
inclusions with fibril structures have also been reported in oxytocin-producing neurons (Ber-
ciano et al., 2004; Villagra et al., 2008).  In contrast to INI formation in OPMD, the inclusions of 
wild-type PABPN1 do not cause a disease. Differing transitional pre-inclusion foci and structural 
characteristics have been shown between the wild-type and expanded PABPN1 (Raz et al., 2011). 
Therefore, differences in processes that precede the formation of INIs suggest the cytotoxic struc-
ture of the pre-aggregated proteins. 

The complexity of the underlying mechanisms and the low prevalence of OPMD call for multi-
disciplinary and combined efforts to decipher disease mechanisms. As the focus of the current 
thesis, exhaustive use of the state-of-the-art data-mining strategies and cross-species data in-
tegration can provide a comprehensive, less technically biased, and more accurate mechanistic 
insights on the disease pathogenesis. Understanding the underlying causes of OPMD is a key 
step toward enabling earlier and more precise diagnosis, prognosis, therapeutic interventions, 
and drug discovery.

Thesis overview
In this thesis, I have mainly focused on interdisciplinary approaches for biomedical knowledge 
discovery. This required special efforts in developing systematic strategies to integrate various 
data sources and techniques, leading to improved discovery of mechanistic insights of human 
diseases. Chapter one looks at the possibility in which combining various bioinformatics-based 
strategies can significantly improve the characterization of the OPMD mouse model. We discuss 
that this approach in knowledge discovery, on the basis of our extensive analysis, helped us to 
shed some light on how this model system relates to OPMD pathophysiology in human. In Chap-
ter two, we expand on this combinatory approach by conducting a cross-species data analysis. 
In this study, we have looked for common patterns that emerge by assessing the transcriptome 
data from three OPMD model systems and patients. This strategy led to unravelling the most 
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prominent molecular pathway involved in OPMD pathology. The third Chapter achieves a simi-
lar goal to identify similar molecular and pathophysiological features between OPMD and the 
common process of skeletal muscle ageing. Engaging in a study in which the focus was made on 
the universality of biological processes, in the light of evolutionary mechanisms and common 
functional features, led to novel discoveries. This work helped us to uncover remarkable insights 
on molecular mechanisms of ageing muscles and protein aggregation. Chapters four and five 
take a different route by tackling the field of computational biology. These chapters aim to extend 
network inference by providing novel strategies for the exploitation and integration of multiple 
data sources. We show that these developments allow us to infer more robust regulatory mecha-
nisms to be identified while translations and predictions are made across very different datasets, 
platforms, and organisms. Finally, I close this thesis by providing an outlook on ways the field 
of systems biology can evolve in order to offer enhanced, diversified and robust strategies for 
knowledge discovery.
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Oculopharyngeal muscular dystrophy (OPMD) is an adult-onset disorder characterized by 
ptosis, dysphagia and proximal limb weakness. Autosomal-dominant OPMD is caused 
by a short (GCG)8-13 expansions within the first exon of the poly(A)-binding protein 

nuclear 1 gene (PABPN1), leading to an expanded polyalanine tract in the mutated protein. Ex-
panded PABPN1 forms insoluble aggregates in the nuclei of skeletal muscle fibres. In order to 
gain insight into the different physiological processes affected in OPMD muscles, we have used 
a transgenic mouse model of OPMD (A17.1) and performed 
transcriptomic studies combined with a detailed phenotypic 
characterization of this model at three time points. The tran-
scriptomic analysis revealed a massive gene deregulation in 
the A17.1 mice, among which we identified a significant de-
regulation of pathways associated with muscle atrophy. Us-
ing a mathematical model for progression, we have identified 
that one-third of the progressive genes were also associated 
with muscle atrophy. Functional and histological analysis of 
the skeletal muscle of this mouse model confirmed a severe 
and progressive muscular atrophy associated with a reduction 
in muscle strength. Moreover, muscle atrophy in the A17.1 
mice was restricted to fast glycolytic fibres, containing a large 
number of intranuclear inclusions (INIs). The soleus muscle 
and, in particular, oxidative fibres were spared, even though 
they contained INIs albeit to a lesser degree. These results 
demonstrate a fibre-type specificity of muscle atrophy in this 
OPMD model. This study improves our understanding of the 
biological pathways modified in OPMD to identify potential 
bio-markers and new therapeutic targets.

Molecular and phenotypic characterization of a mouse 
model of oculopharyngeal muscular dystrophy reveals 
severe muscular atrophy restricted to fast glycolytic fibres
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INTRODUCTION
Oculopharyngeal muscular dystrophy (OPMD) is a late-onset autosomal dominant genetic 
disease, characterized by progressive eyelid drooping, swallowing difficulty and proximal limb 
weakness in the late stages of the disease. The poly(A)-binding protein nuclear 1 (PABPN1) gene 
is mutated in OPMD patients and contains an expanded GCG trinucleotide repeat within exon 
1 (Brais et al., 1998). This trinucleotide expansion is translated into a polyalanine tract at the 
N-terminus of the PABPN1 protein; in OPMD patients, this tract contains 12-17 alanine re-
peats instead of 10 repeats. PABPN1 with an expanded polyalanine tract forms nuclear aggregates 
(Tome et al., 1997). Although PABPN1 is ubiquitously expressed, the clinical and pathological 
phenotypes are restricted to skeletal muscles in OPMD patients, especially the pharyngeal and 
cricopharyngeal muscles (dysphagia), and the levator palpebrae superioris muscle (ptosis of the 
eyelid) (Perie et al., 2006).

PABPN1 is a protein localized in nuclear speckles, which binds with high affinity to poly(A) tails 
of mRNAs. PABPN1 promotes the interaction between the poly(A) polymerase and the cleavage 
and polyadenylation specificity factor, and controls the length of the poly(A) tail during polyad-
enylation of mRNA (Kuhn et al., 2009; Wahle, 1991; Wahle, 1995; Lemieux and Bachand, 2009). 
PABPN1 also contributes to the export of mRNA from the nucleus to the cytoplasm (Calado et 
al., 2000a; Apponi et al., 2010). The major pathological hallmark of OPMD in intranuclear inclu-
sions (INIs) characterized by tubular filaments (Tome et al., 1997). It has previously been demon-
strated that these INIs contain a large number of nuclear factors such as ubiquitin, subunits of the 
proteasome (Calado et al., 2000b), molecular chaperones HSP70 and HSP40 (Abu-Baker et al., 
2003; Tavanez et al., 2009), poly(A) RNA (Calado et al., 2000b), protein involved in mRNA pro-
cessing and transport CUGBP1, SFRS3, FKBP1A, hnRNP A1 and A/B and poly(A) polymerase 
(Corbeil-Girard et al., 2005; Fan et al., 2003; Tavanez et al., 2005). The exact role of PABPN1 ag-
gregates in OPMD is still under debate. At present, it is still not clear whether the INIs observed 
in OPMD skeletal muscles have a pathological or a protective function by acting as a cellular de-
fence mechanism against abnormal proteins. Several studies have suggested a pathological func-
tion of INIs: (i) the INIs could play a major role by sequestering essential cellular components 
such as specific mRNAs (Calado et al., 2000b) splicing or transcription factors (Corbeil-Girard et 
al., 2005; Fan et al., 2003), (ii) the frequency of INIs in nuclei of muscle fibres is correlated with 
the severity of the disease, with a frequency of 2-5% for heterozygous and 10% for homozygous 
patients (Blumen et al., 1999) and (iii) the reduction of the INIs in a mouse model by doxycycline 
or trehalose (Davies et al., 2006; Davies et al., 2005) or using intrabodies in a drosophila model 
(Chartier et al., 2009) improves muscle function. However, several studies have also suggested 
that the INIs might just be the result of a cellular defence mechanism and not the direct cause of 
the disease: (i) INIs are found both in affected and less-affected skeletal muscles, (ii) Tavanez et al. 
(2009) has recently proposed that the expansion alters the protein conformation and changes the 
binding properties of interacting proteins independently of the formation of INIs, (iii) the poly-
alanine domain of PABPN1 is not essential for aggregate formation (Tavanez et al., 2005; Chartier 
et al., 2006; Klein et al., 2008) and (iv) it has been suggested that the soluble form of the mutated 
PABPN1 is itself pathogenic, whereas the INIs would be a form of cellular protection (Catoire et 
al., 2008; Messaed et al., 2007).

In order to study the pathological mechanisms underlying OPMD, several in vitro models have 
been developed expressing an expanded PABPN1 transgene: transiently transfected COS-7 and 
HeLa cells (Abu-Baker et al., 2003; Messaed et al., 2007; Bao et al., 2002), adenovirus-infected 
A549tTA cells (Corbeil-Girard et al., 2005) or stably transfected C2 cells (Kim et al., 2001). In 
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parallel, different animal models have also been generated: a drosophila model expressing PAB-
PN1 with a polyalanine extension of different lengths, resulting in a muscular dystrophy with 
abnormal wing posture (Chartier et al., 2006), a nematode model expressing different lengths of 
expanded PABPN1 and showing muscle cell degeneration and abnormal mobility (Catoire et al., 
2008) and several mouse models expressing either ubiquitously (Dion et al., 2005; Hino et al., 
2004) or muscle specifically (Davies et al., 2005) expanded PABPN1 leading to the formation of 
INIs (Davies et al., 2005; Hino et al., 2004; Uyama et al., 2005). In the mouse model developed by 
Davies et al., a mutated version of PABPN1 with 17 alanines (expPABPN1) is expressed under the 
control of the human skeletal actin (HSA1) promoter, restricting the transgene expression to the 
striated muscle. Mice expressing the expPABPN1 transgene (A17.1) show a progressive muscle 
weakness and a progressive accumulation of INIs (Davies et al., 2005).

The aim of the present study was to gain insights into the different physiological pathways af-
fected in OPMD muscles by performing both a general transcriptomic analysis and a detailed 
phenotypic characterization of the skeletal muscle of A17.1 mice compared with wild-type (WT) 
mice at different time points. We have observed that the muscle-restricted expression of the exp-
PABPN1 transgene induces considerable gene expression deregulation among which genes as-
sociated with muscle atrophy were particularly affected. Functional and histological analysis of 
the skeletal muscle of this mouse further confirmed a severe muscular atrophy associated with 

Figure 1 - A) The KCl-insoluble nuclear aggregates containing expPABPN1 (green) were detected by im-
munostaining on skeletal muscle cryosections from A17.1 mice. The sections of WT mice did not show any 
KCl-insoluble aggregates. (red, dystrophin; blue, nuclei; green, PABPN1; magnification ×400.) B) The per-
centage of nuclei containing PABPN1 aggregates was determined on skeletal muscle (TA) cryosections from 
6 (T1), 18 (T2) or 26 (T3) weeks old A17 mice (n = 3 per time point with 250–350 fibres counted per muscle; 
the percentage of aggregates in T1 and T2 is significantly lower when compared with T3: T1 versus T2 ** P 
<0.01, T2 versus T3 *** P <0.001).
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a reduction in muscle strength. Interestingly we showed that this muscular atrophy is restricted 
to fast glycolytic fibres, containing a large number of INIs, while oxidative fibres are spared, and 
contain less INIs. These results suggest a fibre-type specificity of muscle atrophy in this OPMD 
model, together with a less specific presence of INIs.

RESULTS
Gene expression profiling in muscle from mice expressing expPABPN1
To gain insight into molecular mechanisms involved in OPMD, we performed a transcriptomic 
analysis on skeletal muscle from A17.1 mice expressing an expanded form of PABPN1 with 17 
alanines (expPABPN1). Davies et al. (Davies et al., 2005; Davies et al., 2008) previously described 
that these A17.1 mice show progressive formation of aggregates and progressive muscle weak-
ness from approximately 18 weeks of age, whereas A10.1 mice expressing WT PABPN1 were 
indistinguishable from WT mice (Davies et al., 2008). By immunohistochemistry (Figure 1A), 
we confirmed that, in A17.1 mice, the number of nuclei containing PABPN1 increases with age. 
At 6 weeks (T1), 8% of the nuclei contained aggregates, and this number progressively increased 
to 15% at 18 weeks (T2) and 30% at 26 weeks (T3) (Figure 1B). Thus aggregation of expPABPN1 
starts at a very early age, suggesting that potentially earlier muscle dysfunction may occur prior 
to the onset of muscle weakness symptoms observed from 18 weeks of age (Davies et al., 2005; 
Davies et al., 2008).

In order to identify the biological pathways that are initially deregulated, we carried out tran-
scriptomic analyses on the skeletal muscle from 6-week-old mice (T1), when there are no obvi-
ous signs of muscle weakness, as well as from 18 (T2) and 26 weeks (T3) when the A17.1 mice 
are showing progressive muscle weakness. RNA expression arrays were generated from WT and 
A17.1 RNA isolated from quadriceps muscles, which were hybridized to Illumina Bead array 
v.1 containing 46632 unique probe identifiers. After normalization, the quality of the micro-
array hybridization was evaluated with the principal component analysis (PCA) (Chatterjee 
and Price, 1991; Pearson, 1901). For all three time points (T1-T3), PCA plots showed that mice 
with the same genotype (WT or A17.1) cluster together indicating that most variations in the 
arrays could be attributed to the genotype (Figure 2A; PC1). A weaker association was found 
with the second component representing technical variations. The Clustergrams representing 
hierarchical clustering for each time point (Supplementary Material, Figure S1) further demon-

Figure 2 - Transcriptomic 
study in quadriceps muscles 
of A17.1 and WT mice at 6, 18 
and 26 weeks. A) PCA plots 
for each time point data sets. 
A17.1 and WT samples are 
represented with black and 
white dots, respectively. B) 
Venn diagram of the deregu-
lated genes using the unbi-
ased cut-off P-value of 0.05, 
showing the number of A17.1 
deregulated genes in each 
time point and the overlapping 
genes between two or three 
time points.
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strated that the differences in the distribution of gene expression intensities between muscle sam-
ples from WT and A17.1 mice were due to changes in the individual gene expression levels be-
tween groups rather than nonspecific variations between samples. These results indicate that the 
gene expression changes between A17.1 and WT mice can be classified based on their genotype.

Subsequently, A17.1-deregulated genes were defined with a cut-off P-value of 0.05 and false dis-
covery rate (FDR) corrected. The majority of up- or down-regulated genes were found in the 
6-week-old mice (3220 and 3122, respectively). The total amount of either up- or down- regu-
lated genes was gradually reduced at T2 (1910 and 1839, respectively) and T3 (2263 and 1866, 
respectively) (Figure 2B). This observation indicates that overexpression of the expPABPN1 

Figure 3 - Validation of A17.1 deregulated 
expression level of selected genes in 
skeletal muscle of A17 mice. Histograms 
indicate the expression levels normalized 
to that measured in the WT mice. Values 
measured by quantitative RT–PCR (greys 
bars) or microarray (black bars) are means 
± standard deviations for n = 5–6 mice per 
group (* P <0.05).

Table 1 - Most significant A17.1 deregulated biological processes GO terms. Sorting is according to 
P-value.

ID

GO:0051169

GO:0009056

GO:0015031

GO:0045859

GO:0006796

GO:0006950

GO:0006457

GO:0006397

GO:0007049

GO:0050790

GO:0006915

GO:0051276

GO:0007517

GO:0009628

GO:0007005

GO:0006461

GO:0010608

GO:0006511

GO:0016567

GO:0006412

GO:0042692

GO:0048666

GO term

Nuclear transport

Catabolic process

Protein transport

Regulation of protein kinase activity

Phosphate metabolic process

Response to stress

Protein folding

mRNA processing

Cell cycle

Regulation of catalytic activity

Apoptosis

Chromosome organization and biogenesis

Muscle development

Response to abiotic stimulus

Mitochondrion organization

Protein complex assembly

Posttranscriptional regulation of gene expression

Ubiquitin-dependent protein catabolic process

Protein ubiquitination

Translation

Muscle cell differentiation

Neuron development

P-value

1.35E-08

1.41E-08

1.60E-08

1.68E-08

1.69E-08

1.77E-08

1.87E-08

1.90E-08

1.93E-08

1.96E-08

2.03E-08

2.33E-08

2.49E-08

2.60E-08

2.68E-08

2.89E-08

2.27E-07

2.27E-07

1.88E-05

9.69E-03

9.80E-03

1.31E-02

Genes

94

872

591

132

804

955

107

219

615

331

647

319

179

185

60

164

95

451

53

273

75

276

Deregulated genes

46	 (49%)

361	 (41%)

250	 (42%)

50	 (38%)

313	 (39%)

289	 (30%)

47	 (44%)

111	 (51%)

197	 (32%)

114	 (34%)

225	 (35%)

135	 (42%)

73	 (41%)

60	 (32%)

24	 (40%)

66	 (40%)

45	 (47%)

215	 (48%)

26	 (49%)

139	 (51%)

31	 (41%)

83	 (30%)
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gene leads to considerable changes in the 
expression of a large number of genes. 
More importantly, most of the A17.1 de-
regulated genes overlapped between two 
or three time points (T1 61%; T2 86.9%; 
T3 80.9%, Figure 2B), with a similar ra-
tio between the up- or down-deregulated 
genes at all time-points, indicating that 
overexpression of expPABPN1 does not 
lead to preferential transcriptional up- or 
down-regulation in the A17.1 mouse.

Since a massive gene deregulation was 
found in the A17.1 mice, rather than tak-
ing a gene-by-gene analysis approach, we 
searched for the biological pathways that 
were significantly affected in this OPMD 
mouse model. To determine the gene on-
tology (GO) categories that were signifi-
cantly associated with the expPABPN1 
overexpression genotype, we used the 
global test analysis (Goeman et al., 2004). 
Significant GO categories were selected 
with the adjusted P-value of <0.05 cor-
rected with FDR. Next, the significance 
of each GO term was evaluated using an 
enrichment analysis, which calculates 
the significance of each cluster based on 
the proportion of differentially expressed 
genes that contributes to the respective 
cluster. A list of biological GO categories 
that are significantly deregulated in the 
A17.1 mice was created using DAVID (Dennis, Jr. et al., 2003; Huang et al., 2009), revealing a 
broad range of deregulated biological processes in the A17.1 mice (Table 1 and Supplementary 
Material Table S1). We identified transcriptional deregulation of genes involved in mRNA pro-
cessing (GO:0006397), cell cycle (GO:0007049), the ubiquitin–proteasome pathway (GO:0006511 
and GO:0016567), protein transport (GO:0015031) and the mitochondria (GO:0007005), cor-
roborating a previous transcriptome analysis in an OPMD cell model (Corbeil-Girard et al., 
2005). We also found a significant deregulation of apoptosis (GO:0006915), confirming the cell 
death previously described in this mouse model (Davies et al., 2005; Davies et al., 2008) and in a 
cellular model (Marie-Josee et al., 2006). Importantly, we found a significant deregulation of GO 
categories that affect muscle biology.

Since the A17.1-deregulated GO categories are biologically very broad and since OPMD affects 
muscle cells, we next used the literature to map significant biological concepts that would be mus-
cle related. We assumed that the subgroup of overlapping deregulated genes common to the three 
time points is strongly associated with the disease aetiology, and therefore selected this subgroup 
for a literature-aided mapping of biological concepts using Anni 2.0 (Jelier et al., 2008). Out of the 

Figure 4 - Validation of the mathematical model for pro-
gression analysis. Expression plots of individual selected 
genes showed linear progression. The fold change is calcu-
lated from the microarray analysis. Graphs are sub-grouped 
according to up- or down-regulated genes and positive or 
negative linear regression.
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2336 overlapping deregulated genes, only 1679 genes were 
recognized by Anni 2.0 (Supplementary Material Table 
S2). Among these, 481 deregulated genes (28.5%) were 
found to be highly associated with the terms ‘muscle atro-
phy’ or ‘skeletal muscle atrophy’ (Supplementary Material 
Table S2), suggesting that muscle atrophy may already be 
triggered in the A17.1 mouse at 6 weeks.

To validate the transcriptome analysis by quantitative 
PCR, we selected 10 genes from the muscular atrophy 
association list using both >1.3-fold change and high P-
values criteria. RNA isolated from quadriceps of 6-week-
old WT or A17.1 mice were used for the validation study. 
For each gene, the expression level was compared between 
the microarray and the quantitative PCR (Figure 3). After 
normalization to the WT control, a similar change in ex-
pression level was observed for each gene analysed, dem-
onstrating that our microarray analysis is valid. 

As muscle weakness in the A17.1 mice is progressive (Da-
vies et al., 2005), we applied mathematical modelling for 
progressiveness on the A17.1-deregulated genes. A linear 
regression model was generated using the Limma model 
in R (Smyth, 2004) and was applied to all of the genes in 
the array. A total of 410 genes were identified as candi-
dates for this progression. Subsequently, these 410 genes 
were applied in Anni 2.0 to find an association with the 
terms ‘muscle atrophy’ and ‘skeletal muscle atrophy’. Of 
the 410 candidate genes, only 168 genes were available for 
Anni analysis. Among these 163 genes, 63 (38.6%) were 
highly associated with muscle atrophy in the biomedical 
literature (Supplementary Material Table S2). This analy-
sis strongly suggests that the deregulation of muscle mass 
is progressive in the A17.1 mice. To confirm this analysis, 
eight genes were selected using the fold change criteria 
and their expression profiles over time were plotted. The 
progression plots of fold change showed a linear positive 
or negative progression for all selected up- or down-regu-
lated genes, therefore validating the mathematical model-
ling (Figure 4).

Muscle atrophy in A17.1 mice
Since the transcriptomic study indicates muscle atrophy 
in the A17.1 mice, we performed a detailed analysis of the 

skeletal muscles of the A17.1 mice over time. Using the grip test, it was previously shown that 
the A17.1 mice develop a progressive muscle weakness with a significant decrease in strength 
compared with WT mice from 18 weeks of age (Davies et al., 2005; Davies et al., 2008), whereas 
A10.1 mice expressing WT PABPN1 were indistinguishable from WT mice (Davies et al., 2008). 

Figure 5 - Measurements of the weight 
and functional performance of skeletal 
muscle in WT and A17.1 mice at 18 and 
26 weeks of age (n = 6 per group). A) 
The maximal force produced by the TA 
muscle was determined in WT and A17.1 
mice (*** P <0.001). B) The mass of the 
TA muscle was measured in A17.1 and 
WT mice (* P <0.05; *** P <0.001). C) 
The specific force (N/g) for the TA mus-
cles of A17.1 and WT mice was calculat-
ed by dividing the maximal absolute force 
by the muscle mass (* P <0.05).
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In order to further analyse the consequences of the expPABPN1 expression on the physiological 
function of skeletal muscle, we measured the contractile properties of the tibialis anterior (TA) 
skeletal muscle of A17.1 mice at 18 and 26 weeks of age when compared with age-matched WT 
littermates. The maximal absolute force of the TA of A17.1 transgenic mice was significantly re-
duced by 36% at 18 weeks and 48% at 26 weeks when compared with WT mice (Figure 5A). The 
mass of the TA muscle of A17.1 mice was progressively reduced by 27% at 18 weeks and 39% at 
26 weeks when compared with WT mice (Figure 5B). This progressive reduction in muscle mass 
was observed from 6 weeks of age (20% reduction at 6 weeks, data not shown) and was also ob-
served in other skeletal muscles such as the quadriceps and the gastrocnemius (data not shown). 
This effect is specifically due to the overexpression of expPABPN1 since A10.1 mice expressing 
WT PABPN1 at higher level than A17.1 mice did not show a similar reduction in TA muscle mass 
(data not shown). We next calculated the specific force of the TA muscles of A17.1 and WT mice 
by normalizing the maximal (absolute) force to the muscle mass. This measure showed that the 
specific force of the TA of A17.1 mice was significantly reduced by 14% at 18 weeks and 20% at 26 
weeks when compared with WT mice (Figure 5C). Both decreases in muscle mass and in specific 
force participate to the decrease in absolute maximal force.

This reduced specific force demonstrates that there is both a qualitative change as well as an 
additional pathological process occurring in the skeletal muscle. Whereas immunostaining on 
muscle sections did not reveal any obvious modifications of the dystrophin-associated glyco-
protein complex (data not shown), an haematoxylin-eosin (H&E) staining revealed an increased 
number of centrally nucleated fibres in A17.1 when compared with WT mice (Figure 6A). In ad-
dition, a Sirius red staining revealed a more pronounced endomysial fibrosis in A17.1 mice when 
compared with WT mice (Figure 6B), which could potentially explain the reduced specific force. 
This muscle weakness could also result from a modified mitochondrial function, as this pathway 
was shown to be deregulated in the transcriptomic data (Table 1). Mitochondrial ATP is gener-
ated via oxidative phosphorylation through the combined action of five enzyme complexes. Ci-

Figure 6 - A) Centrally nucle-
ated fibres were determined on 
transversal sections of WT (n = 
3) and A17.1 (n = 4) TA muscles 
of 26 weeks old mice follow-
ing hematoxylin/eosin staining. 
For each section, more than 
800 fibres were counted from 
four random areas. The results 
represent the percentage of 
centrally nucleated fibres (* P 
<0.05). B) Sirius Red staining 
of transversal sections of WT (n 
= 3) and A17.1 (n = 4) TA mus-
cles of 26 weeks old mice (** 
P <0.01). C) Citrate synthase 
(CS) activity and mitochondrial 
complex I activity measurement 
on WT and A17.1 muscle (n = 
6 per group) from 26-week-old 
mice. The activity of complex 
I is expressed in nmol/min/ml 
and then normalized relative to 
citrate synthase as an indicator 
of mitochondrial content (** P 
<0.01).
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trate synthase levels were similar in WT and A17.1 TA muscle, 
suggesting that the total amount of mitochondria is preserved; 
however, assessment of mitochondrial respiratory chain en-
zyme activity showed a decreased activity in complex I (NADH: 
ubiquinone reductase) in A17.1 when compared with WT mice 
(Figure 6C). In contrast, complex II–III (succinate:cytochrome 
c reductase) and complex IV (cytochrome c oxidase) activities were not decreased when com-
pared with control levels (data not shown). These data suggest a mitochondrial dysfunction, 
which could result in muscle contractile defects and therefore also participate to the decrease in 
specific force.

The reduction in muscle mass and force together with the transcriptomic data suggests that the 
expression of expPABPN1 triggers muscular atrophy. To further confirm this hypothesis, we per-
formed a detailed histological analysis of the TA muscle of A17.1 mice when compared with 
WT mice at 26 weeks of age. We observed a 30% reduction in the maximal cross-sectional area 
(CSA) of the TA in A17.1 transgenic mice when compared with their age-matched WT litter-
mates (Figure 7A). On muscle sections that generated the maximal CSA, we subsequently anal-
ysed individual fibre CSA using an anti-laminin antibody to delimit the muscle fibres. When the 
frequency distribution of the fibres was plotted according to their CSA (Figure 7B), a shift was 
observed from the large towards the small size of muscle fibres in the A17.1 mice. The CSA was 
reduced by  ~30% (189 mm2 for WT mice and 132 mm2 for A17.1 mice), whereas there was no 
change in the total number of fibres between WT and A17.1 mice (Figure 7C). Interestingly, 
the reduction in muscle size was not associated with a decrease in myonuclear number (Figure 
7D). Overall, these results confirm muscular atrophy, defined as a decrease in cell size by loss of 
organelles, cytoplasm and proteins (Sandri, 2008). This reduction in muscle mass is due to an 

Figure 7 - Evaluation of the skel-
etal muscle atrophy at 26 weeks 
of age. A) The maximal cross sec-
tion area (CSA) of the TA muscle 
was measured for the TA of WT and 
A17.1 mice (n = 6 per group), *** 
P <0.001. B) The frequency of the 
cross-sectional area (CSA) of the 
muscle fibres was determined in 
the TA muscle from WT and A17.1 
mice. The plotted lines represent 
the mean of three different muscles 
for each group (x2 analysis per-
formed on data sets, P <0.001). C) 
The total number of fibres per mus-
cle was determined in the TA of WT 
and A17.1 mice and did not show 
any difference (n = 3 per group). 
NS represents non-significant. D) 
The number of nuclei per fibre on 
TA muscle section was similar in 
both A17.1 and WT mice (n = 4 per 
group with around 250–350 fibres 
counted per muscle). E) MuRF1 
mRNA expression in TA muscle 
of 26-week-old mice. Values mea-
sured by quantitative RT–PCR are 
means ± standard deviations for n 
= 5–6 mice per group, * P <0.05. F) 
Proteasome activity in TA muscle of 
26-week-old mice. Ct-like, chimo-
trypsin-like; Tryp-like, Trypsin-like; 
Casp-like, Caspase-like. The re-
sults are expressed in F.U/min, ** 
P <0.01; n = 4 for WT and n = 6 
for A17.1.
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improper balance between protein synthesis and degradation, inducing a loss of total protein 
content in muscle fibres (Nury et al., 2007). The ubiquitin–proteasome pathway is activated dur-
ing muscle atrophy and is involved in the breakdown of major contractile proteins (Gilson et al., 
2007; Vazeille et al., 2008). In particular, MuRF-1 and Atrogin-1, known as atrogenes, play a cru-
cial role in the loss of muscle proteins and their expression is considered as specific atrophy mark-
ers (Sandri, 2008; Bodine et al., 2001). In the progression analysis (Figure 4) and by quantitative 
RT–PCR (Figure 3), we have shown that the atrogene MuRF-1 only was indeed up-regulated in 
A17.1 mice. We further confirmed that in the TA of 26-week-old A17.1 mice there was a persis-
tence of this MuRF-1 mRNA up-regulation (Figure 7E), mainly mediated by a down-regulation 
of the active phosphorylated form of PKB/Akt and a translocation of Foxo3A transcription fac-
tor to the nucleus (Supplementary Material Figure S2). We also measured proteasome activities 
(chymotrypsine-, trypsin- and caspase-like) in the TA muscle of 26-week-old mice and observed 
a significant increase in the chymotrypsinand caspase-like activity in A17.1 mice, whereas the 
trypsinlike activity was not significantly increased (Figure 7F). Altogether, these data confirm 
muscular atrophy in the A17.1 mice. 

In order to further evaluate if we could locally reproduce this atrophic phenotype in the skel-
etal muscle of an adult WT mice, we overexpressed the expanded PABPN1 transgene using an 
adeno-associated virus (rAAV2/8-CAGexpPABPN1, Supplementary Material Figure S3A) in-
jected into the TA of WT mice at 8 weeks of age. Three months post-injection, we confirmed the 
overexpression of expPABPN1 and the presence of expPABPN1 INIs only in the injected muscle 
fibres (Supplementary Material Figure S3B). Similar to what we measured in A17.1 mice, we ob-
served a reduced muscle mass and reduced maximal force of the injected TA of WT mice when 
compared with the contralateral un-injected leg, leading to a slight but not significant reduction 

Figure 8 - The myosin heavy 
chain (MyHC) muscle fibres 
subtypes were determined 
by immunostaining. A) Immu-
nostaining of laminin (green), 
MyHC-IIA (red), MyHC-IIB 
(blue) on a TA muscle cryosec-
tion. The distribution of muscle 
fibre subtypes (B) and the fre-
quency of the cross-sectional 
area (C) of each muscle fibre 
subtype were determined in the 
whole of TA muscle from WT 
and A17.1 mice at 26 weeks. 
The data represented are the 
mean of three different muscles 
for each group. * P <0.05; and 
X2 analysis performed on data 
sets: MyHC-IIX P <0.001 and 
MyHC-IIB P <0.001.
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in the specific force (Supplementary Material Figure S3C). This result further confirms that the 
expression of expPABPN1 in mature muscle fibres induces an atrophic process.

Distinct phenotypes between oxidative and glycolytic fibre subtypes
Muscle is composed of distinct fibre types, which can be defined by the myosin heavy-chain iso-
types (MyHC) they express: MyHC-I in the slow oxidative fibres, MyHC-IIA in the fast oxidative 
fibres, MyHC-IIX and MyHC-IIB in the fast glycolytic fibres (Bottinelli and Reggiani, 2000). We 
investigated whether the distribution and CSA of oxidative/glycolytic muscle fibre subtypes in 
the TA muscle was modified in A17.1 mice compared with WT mice. We therefore performed 
a co-immunostaining of the different myosin heavy chains together with a laminin staining to 
determine the CSA (Figure 8A). The distribution analysis revealed that the A17.1 muscles had 
more MyHC-IIA fibres (17 versus 9% in WT muscle) and fewer MyHC-IIB (48 versus 56% in 
WT muscle) (Figure 8B). Interestingly, this result is in accordance with the down-regulation of 
Myl1 mRNA (fast myosin light chain) observed by quantitative PCR (Figure 3). By plotting the 
frequency distribution of CSA myofibre subtypes, we observed a shift towards the small size for 
the specific MyHC-IIB and MyHC-IIX fibres, whereas surprisingly the MyHC-IIA fibres were 
unaffected (Figure 8C). This result suggests that the fast glycolytic fibres are specifically affected 
in the A17.1 mice.

In order to further confirm this selective muscle atrophy of the fast glycolytic fibres, we analysed 
two other muscles: the extensor digitorum longus (EDL) muscle considered as a ‘fast’ muscle 
type and composed of MyHC-IIA, -IIX and -IIB fibres like the TA, and the soleus (SOL) muscle, 
considered as a mixed muscle type and composed of MyHC-I and MyHC-IIA fibres. As shown in 
Figure 9A, the muscle mass of the EDL of A17.1 mice was reduced by 20% when compared with 
WT mice, whereas the muscle mass of the SOL was unchanged in A17.1 and WT mice at 6, 18 
and 26 weeks. This difference between the SOL and the EDL further suggests that muscle atrophy 

Figure 9 - The weight and 
functional performance of the 
soleus (SOL) and extensor 
digitorum longus (EDL) was 
evaluated in A17.1 and WT 
mice. A) The muscle mass of the 
SOL and EDL muscles of A17.1 
and WT mice was measured at 
6, 18 and 26 weeks of age (6 
weeks n = 4 per group; 18 weeks 
n = 6 per group; 26 weeks n = 6 
per group; *** P <0.001; NS is 
non-significant). B) The maximal 
force of SOL and EDL was eval-
uated for A17.1 and WT mice at 
26 weeks (* P <0.05; NS is non-
significant). C) MuRF1 mRNA 
expression in EDL and soleus 
muscle from 6-week-old A17.1 
and WT mice. Values measured 
by quantitative RT–PCR are 
means ± standard deviations 
for n = 4–6 mice per group (** 
P <0.01; NS is non-significant).
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in A17.1 mice is restricted to fast glycolytic fibres. The maximal force measurement of these two 
muscle types revealed a decrease in force for the EDL of A17.1 mice, whereas for the SOL muscle, 
we did not observe any difference in the maximal force between WT and A17.1 mice (Figure 9B), 
confirming that the SOL muscle is spared. By quantitative PCR we further observed in the EDL 
muscle a 2-fold increase in MuRF-1 expression similar to previous results observed in quadriceps 
and TA muscle, whereas we did not observe any statistical difference for MuRF-1 expression in 
the soleus muscle (Figure 9C). 

Since we found selective muscle atrophy of the EDL but not of the SOL muscle, we determined 
whether such a difference could be due to differential transgene expression levels. The transgene 
is under the control of the HSA promoter, which restricts the transgene expression to skeletal 
muscles, including the SOL as well as the EDL (Brennan and Hardeman, 1993; Miniou et al., 
1999; Orengo et al., 2008). By quantitative RT–PCR, we confirmed that there were equal mRNA 
expression levels in both the SOL and EDL muscles (Figure 10A). Thus differential transgene ex-
pression cannot explain the selective muscle involvement. Therefore, we continued by perform-
ing a direct comparison by immunohistochemical staining of expPABPN1 expression in EDL 
and SOL muscle sections of 26-week-old A17.1 and WT mice. The PABPN1 immunostaining re-
vealed a similar pattern of expression in EDL, SOL and TA with a high PABPN1 signal observed 
in around 45% of the nuclei in all muscle types (Figure 10B). Interestingly, when we performed a 
KCl treatment to remove soluble proteins, the amount of aggregates in the SOL was higher than 
in WT, but still two-fold lower than the levels observed in the TA of A17.1 animals (Figure 10C). 
Our results thus demonstrate that muscle atrophy in A17.1 mice is specific to fast glycolytic fibres 
and that these fibres contain a larger number of KCl-resistant INIs. In slow and fast oxidative 
fibres that do not show muscle atrophy, fewer INIs are observed.

DISCUSSION
The aim of the present study was to gain further insight into the biological pathways modified 

Figure 10 - expPABPN1 expres-
sion in TA, EDL and SOL mus-
cles before and after KCl treat-
ment. A) Quantitative RT–PCR on 
EDL and SOL muscle at 6 weeks 
of age (n = 3 for WT; n = 6 for A17 
samples). B) Immunostaining of 
expPABPN1 in muscle cryosec-
tions (TA, EDL and SOL) without 
any KCl treatment (expPABPN1 
in green and nuclei stained with 
Hoechst in blue). C) Amount of 
expPABPN1 positive nuclei before 
and after KCl treatment to remove 
any soluble protein (n = 4 per 
group with around 250–350 fibres 
counted per muscle, TA and SOL 
(** P <0.01 ANOVA test).
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in OPMD muscles by a combination of transcriptomic and physiological studies. To generate a 
comprehensive picture of the deregulated pathways during disease progression in this mouse 
model, we have selected three time points for the transcriptomic analysis: 6 weeks as an early time 
point before onset of disease symptoms and 18 and 26 weeks when the mice show progressive 
muscle weakness (Davies et al., 2005; Davies et al., 2008). We observed a massive gene deregula-
tion in A17.1 mice when compared with WT mice at all three time points. Among the GO terms 
revealed in this study, we identified several pathways deregulated such as mRNA processing, cell 
cycle, protein transport, mitochondria and apoptosis, which corroborate a previous gene-based 
transcriptome analysis of an in vitro OPMD cell model (Corbeil-Girard et al., 2005). We also 
found a deregulation of genes involved in muscle development and muscle cell differentiation, 
which could potentially emphasize defects in continuous remodelling of muscle, previously dem-
onstrated in OPMD (Kim et al., 2001; Wirtschafter et al., 2004; Mouly et al., 2005). By mapping 
the biological concepts associated with this deregulation, we found that the muscle-restricted 
expression of expPABPN1 induced major and progressive deregulation of genes associated with 
muscle atrophy. Skeletal muscle atrophy is characterized by a decrease in muscle mass and con-
sequently reduced contractile force of the muscle. Functional and histological analysis of the 
skeletal muscle of this mouse model confirmed severe muscular atrophy associated with a reduc-
tion in muscle strength. This atrophic phenotype was due specifically to the overexpression of the 
alanine expanded PABPN1 and not simply to overexpression of PABPN1 as we did not observe a 
severe muscle atrophy in the A10.1 mice expressing WT PABPN1. In accordance with this result, 
genes associated with atrophy such as MuRF-1 were not changed in the A10.1 mice (data not shown). 
The transcriptomic analysis showed homology with previous studies describing the transcrip-
tional changes involved in muscle atrophy (Jagoe et al., 2002; Lecker et al., 2004; Sacheck et al., 
2007; Calura et al., 2008), such as increased expression of atrogenes involved in protein degra-
dation and decreased expression of genes involved in energy production. Two major pathways 
mediate protein degradation in skeletal muscle: the autophagic/lysosomal pathway and the ubiq-
uitin-proteasomal pathway (UPP). In the A17.1 skeletal muscles, we confirmed at all time-points 
up-regulation of the muscle-specific ubiquitin ligase MuRF-1 gene expression. Since MuRF-1 is 
a known atrogene playing a crucial role in the loss of muscle proteins (Sandri, 2008; Bodine et 
al., 2001; Clarke et al., 2007; Cohen et al., 2009; Kedar et al., 2004), these data together with the 
increased proteasome activity in A17.1 muscles suggest an increased protein degradation rate in 
A17.1 mice related to muscle atrophy. These data also further support previous studies, which 
showed that the proteasome is thought to be the major degradation pathway for PABPN1 (Abu-
Baker et al., 2003; Davies et al., 2006). Interestingly, MuRF-1 has also been described to be a po-
tential energy homeostasis regulator for muscle (Hirner et al., 2008). Together with the deregula-
tion of genes involved in protein degradation, we also observed a deregulation of genes involved 
in energy production—as described in other atrophic conditions (Jagoe et al., 2002; Lecker et al., 
2004; Sacheck et al., 2007; Calura et al., 2008)—among which a significant cluster of genes related 
to mitochondrial organization. We observed a decreased mitochondrial respiratory chain com-
plex I activity in skeletal muscle of the A17.1 mice. This suggests some impairment of oxidative 
phosphorylation that may contribute to the muscle dysfunction observed in this mouse model 
of OMPD. This is of particular interest since mitochondrial abnormalities have frequently been 
observed in OPMD patients (Muqit et al., 2008; Pauzner et al., 1991; Schroder et al., 1995). This 
decrease may solely be the result of a deregulation of genes encoding several subunits of complex 
I, as observed both in our transcriptomic data and in the previous transcriptomic analysis per-
formed in an OPMD cell culture model (Corbeil-Girard et al., 2005). Respiratory chain enzymes 
are also susceptible to free radical-induced oxidative damage (Zhang et al., 1990), therefore an 
increased oxidative stress may also contribute to the decreased complex I activity, as suggested 
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in the transcriptomic analysis (response to oxidative stress, GO:0006979). Toriumi et al. (2008) 
have recently shown that the polyalanine tract may induce mitochondrial dysfunction with the 
rupture of the mitochondrial membrane, release of cytochrome c and apoptosis (Toriumi et al., 
2009). We demonstrated here that the reduction in muscle force was not just a consequence of 
muscle atrophy—as observed with the reduced specific force—so expPABPN1 expression clearly 
has a deleterious effect in force production potentially via mitochondrial dysfunction or oxidative 
stress, which will both need to be studied in more detail.

Interestingly, the detailed characterization of the skeletal muscle phenotype of these mice revealed 
a selective atrophy of the fast glycolytic fibres that contained the highest number of INIs, whereas 
the oxidative fibres containing less INIs were spared. This result suggests fibre-type specificity for 
both muscular atrophy and INIs formation in OPMD, indicating that depending on the muscle 
metabolic properties, the expression of expPABPN1 leads to different phenotypes. This raises 
two questions: why are there more INIs in fast glycolytic fibres? And why are oxidative fibres 
not affected even if these fibres contain INIs? The presence of INIs in both affected (EDL) and 
non-affected muscles (SOL) further emphasize the complex and poorly understood role of INIs 
in OPMD, which is still currently under debate. Whereas several studies have suggested a patho-
logical function of INIs, several other studies have suggested that the INIs might just be the result 
of a cellular defence mechanism and not the direct cause of the disease. In this OPMD mouse 
model, we observed before KCl treatment similar amount of expPABPN1 expression in affected 
and unaffected muscles, which suggests that the soluble form of the protein in oxidative fibres is 
not toxic. We also observed that fast glycolytic fibres contained progressively larger numbers of 
INIs and were progressively atrophied, which could support the pathological function of aggre-
gates. However, the presence of unaffected oxidative fibres containing INIs suggest that INIs are 
not the only factor involve in muscle atrophy. The difference in the amount of INIs will need to 
be more extensively studied to understand why more aggregates are found in fast glycolytic fibres 
when compared with slow oxidative fibres. There might be a fibre-type-specific mRNA/protein 
preventing (in oxidative fibres) or enhancing (in glycolytic fibres) the formation of INIs, or these 
two muscle fibre types may have a different protein degradation system. These two hypotheses 
need to be evaluated in the future. We also have to keep in mind that oxidative fibres seems to 
be more resistant to atrophy through a protective mechanism mediated by enhanced antioxidant 
gene expression (Sandri, 2008; Li et al., 2007; Yu et al., 2008), and therefore might be more resis-
tant to the presence of expanded PABPN1. Another possible mechanism for this selective atrophy 
is based on the fact that nuclei in slow fibres contain a smaller myonuclear domain than fast fibres 
(Bruusgaard et al., 2006; Gundersen and Bruusgaard, 2008); so nuclear defects could potentially 
have fewer consequences and be less visible in slow fibres.

To summarize, we have shown that expression of expPABPN1 in muscle fibres leads to a mas-
sive gene deregulation with muscle atrophy as a major consequence. The muscle weakness we 
have observed results both from a reduction in muscle mass and a muscle dysfunction due to 
increased fibrosis, mitochondrial defects and possible oxidative stress. At the fibre-type level, we 
showed that only glycolytic fibres containing the largest number of INIs were affected, whereas 
oxidative fibres were spared and contained less INIs. In conclusion, expression of mutant PAB-
PN1 in skeletal muscle of the A17.1 mouse recapitulates several pathological observations seen 
in OPMD patients: progressive muscle weakness, muscle atrophy, fibrosis, mitochondrial defects, 
affected and unaffected muscle containing INIs. These molecular and pathological changes will 
improve our understating of the disease progress in OPMD patients and should provide targets 
for future therapeutic strategies that may reverse some or all of these modified pathways essential 



MOLECULAR AND PHENOTYPIC CHARACTERIZATION OF A MOUSE MODEL OF OPMD 

43

for muscle homeostasis and normal function.

MATERIALS AND METHODS
Mice
A17.1 transgenic mice have previously been described (Davies et al., 2005). Male A17.1 mice and 
WT controls were generated by crossing the heterozygous carrier strain A17.1 obtained from Ru-
binsztein’s group (Davies et al., 2005) with the FvB background mice. The mice were genotyped 
by PCR 3–4 weeks after birth. Wild type FvB and A17.1 mice were housed in minimal disease 
facilities (Royal Holloway, University of London) with food and water ad libitum.

RNA isolation and microarray processing
Total RNA was extracted from skeletal muscles using RNA Bee (Amsbio) according to the manu-
facturer’s instructions. RNA integration number (RIN) was determined with RNA 6000 Nano 
(Agilent Technologies). RNA with RIN >7 were used for subsequent steps. RNA labelling was 
performed with the Illumina TotalPrep RNA Amplification kit (Ambion) according to the manu-
facturer’s protocol, and subsequently was hybridized to Illumina Mouse v1.1 Bead arrays.

Data processing and analysis
Before data analysis, microarray measurements were normalized to remove systematic errors 
by balancing the fluorescence intensities using the quantile method (Smyth and Speed, 2003). 
Each time point has been normalized separately. Next, PCA plots were generated to assess the 
quality of the data (Chatterjee and Price, 1991; Pearson, 1901). This analysis showed that 47% of 
the variations within each data set were attributed to the genetic variation between the WT and 
the transgenic mice. Subsequently, statistical analysis was conducted using limma package in R 
(Smyth, 2004) to identify genes with significant differences in expression pattern between A17.1 
and WT. Statistical analysis includes a cut-off P-value of 0.05 and FDR correction provided in the 
limma package in R. Probe annotation was made with the Illumina mouse whole-genome bead 
array version 1 annotation package.

GO analysis. The illuminaMousev1BeadID was used to describe the gene clustering arrange-
ments based on the vocabulary of GO. These clusters have been used to conduct the significance 
of GO terms using global test (Goeman et al., 2004) by assigning a P-value to each cluster based 
on the assessment of how well group labels can be predicted for different samples (A17.1 versus 
WT) based on a regression model. The significance of these GO terms was validated using en-
richment analysis. Enrichment analysis uses a hypergeometric test to calculate the significance 
of each cluster based on the number of differentially expressed genes it holds. In this study, we 
preferred global test for assessing the significance of GO terms over enrichment method due to 
an unrealistic assumption in which genes are treated as black and white (differentially or non-
differentially expressed) for conducting the significance of each GO category whereas, in global 
test, gene expression profiles are being used to conduct such an analysis. Subsequently, DAVID 
functional annotation clustering tool (Dennis, Jr. et al., 2003; Huang et al., 2009) has been applied 
to remove redundancy and increase the specificity threshold for selected pathways, and finally, 
the list of deregulated genes was mapped to the concepts in biomedical literature using Anni 2.0 
(Jelier et al., 2008). GO categories were selected based on the combination of the following crite-
ria (1): GO categories with the adjusted P-value of <0.05; (2) clusters of GO categories generated 
by DAVID, which have P-values >0.05 will be discarded from the analysis; (3) GO categories that 
contain at least five genes and less than 1000; (4) from each cluster of GO categories, generated 
by DAVID, only two were selected for follow-up studies to reduce the redundancy. Subsequently, 
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the 2336 genes that were differentially expressed throughout all three time points were mapped 
to biomedical concepts using Anni 2.0.

Definition of muscle atrophy-related genes. Muscle atrophy-related genes are defined as differen-
tially expressed genes associated with the term ‘muscle atrophy’ in the biomedical literature, as 
determined with the literature analysis tool Anni 2.0 with the association score larger than 0.005.

Real-time RT–PCR analysis
Primers for validation were selected from the gene sequence that harbours the Illumina probe 
location using Primer 3 plus program. RNA was extracted using RNA Bee (Amsbio) and treated 
with RQ1 RNase-Free DNase (Promega). Subsequently, RNA was reverse transcribed using Re-
vertAid H Minus M-MuLV First Strand kit (Fermentas) according to the manufacturer’s instruc-
tions. An amount of 3.6 ng of cDNA was used for quantitative PCR using SYBR green mix buffer 
(BioRad) in a total of 15 ml reaction volume. PCR was carried out as follows: 4 min at 95�������°������C fol-
lowed by 40 cycles at 95°C for 10 s and 60°C for 45 s, the program ended in 1 min at 95°C and 
1 min at 60°C. Specificity of the PCR product was checked by melting-curve analysis using the 
following program: 65����������������������������������������������������������������������������°���������������������������������������������������������������������������C increasing 0.5�����������������������������������������������������������°����������������������������������������������������������C in 60 steps of 10s duration. Expression levels were cal-
culated according to the DDCt method normalized to the mHPRT mRNA expression and to the 
average of the gene expression level in the WT mice. The statistical significance was determined 
with Student’s t-test.

Measurement of muscle contractile properties
Contractile properties of TA muscle were evaluated by measuring the in situ isometric muscle 
contraction in response to nerve stimulation as described previously (Vignaud et al., 2007). Mice 
were anaesthetized using a pentobarbital solution (i.p. 60 mg/kg). The knee and foot were fixed 
with clamps and the distal tendons of the muscles were attached to an isometric transducer (Har-
vard Bioscience) using a silk ligature. The sciatic nerves were proximally crushed and distally 
stimulated by a bipolar silver electrode using supramaximal square-wave pulses of 0.1 ms dura-
tion. All data provided by the isometric transducer were recorded and analysed using PowerLab 
system (4SP, AD Instruments). All isometric measurements were made at an initial length L0 
(length at which maximal tension was obtained during the twitch). Responses to tetanic stimula-
tion (pulse frequency from 6.25, 12.5, 25, 50, 100 and 143 Hz) were successively recorded and 
the maximal force was determined. After contractile measurements, mice were sacrificed with an 
overdose of anaesthetic solution. Muscles were then weighed to calculate the specific maximal 
force, frozen in isopentane cooled in liquid nitrogen and stored at ~80°C.

The isometric contractile properties of soleus and extensor digitorum longus muscles were stud-
ied in vitro. Measurements were performed as described previously (Vignaud et al., 2008). The 
muscles were dissected free from adjacent connective tissue and soaked in an oxygenated Tyrode 
solution (95% O2 and 5% CO2) containing (mM): NaCl (118), NaHCO3 (25), KCl (5), KH2PO4 
(1), CaCl2 (2.5), MgSO4 (1), glucose (5), and maintained at a temperature of 20°C. Muscles were 
connected at one end to a force transducer. After equilibration (30 min), electrical stimulation 
was delivered through electrodes running parallel to the muscle. Isometric contractions were 
recorded at the length at which maximal isometric tetanic force was observed (L0). Absolute 
maximal isometric force (mN) was measured (usual frequency of 125 Hz, train of stimulation 
of 1500 ms). Specific maximal force (mN/mm2) was calculated by dividing the force by the esti-
mated CSA of the muscle. Assuming that muscles have a cylindrical shape and a density of 1.06 
mg mm-3, muscle CSA corresponds to the wet weight of the muscle divided by its fibre length (Lf). 
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The fibre length to L0 ratio of 0.70 (soleus) or 0.45 (EDL) was used to calculate Lf. Muscles were 
weighed and frozen in liquid nitrogen.

Muscle histology, immunohistochemistry and morphometric measurements
Recovered tissues were mounted in Cryo-M-Bed (Bright Instruments, Huntingdon, UK) and 
snap frozen in liquid nitrogen-cooled isopentane. Staining was carried out on transverse serial 
cryosections of muscles (10 µm). The muscles were sectioned at 10–12 different intervals along 
the length of the muscle, allowing the maximal CSA to be determined. For the assessment of tis-
sue morphology and visualization of fibrosis and connective tissue, transverse sections of muscles 
were stained, respectively, with H&E and Sirius red for further examination under a light micro-
scope. To assess central nucleation, three random areas were assessed in each section. The total 
number of fibres in these areas was counted and the number of centrally nucleated fibres was ex-
pressed as a percentage of the total number of fibres. For morphometric and fibre-type analyses, 
sections were air-dried, washed in phosphate-buffered saline (PBS) with 0.1% (v/v) Tween-20 
(PBS-T) and stained for laminin (Dako, Z0097, Dako, Trappes, France) or for the different MyHC 
isoforms, with antibodies harvested from hybridoma cell lines obtained from the American Type 
Culture Collection (Manassas, VA, USA): BA-D5 (IgG2b, anti-MHCI), SC-71 (IgG1, anti-MH-
CIIa), BF-F3 (IgM, anti-MHCIIb) and 6H1 (IgM, anti-MHCIIX). The sections were incubated at 
room temperature for 1 h in a blocking solution [bovine serum albumin (BSA) 1%, sheep serum 
1%, triton X-100 0.1%, sodium azid 0.001%]. Sections were then incubated at room temperature 
for 2 h with anti-MyHC-I (BA-D5, 2:3) and anti-MyHC-IIA (SC-71, 1:3). Sections were then 
incubated overnight at 4°C with anti-laminin (1:300) and anti-MyHC-IIb (BF-F3, 1:1) or anti-
MyHC-IIX (6H1, 1:1). Sections were washed as before and secondary antibodies were applied 
for 1 h at a dilution of 1:400. Alexa 350 anti-mouse IgG2b, Cy3 anti-mouse IgG1, Alexa 647 anti-
mouse IgM and Alexa 488 goat antirabbit were obtained from Vector Laboratories, Inc. (Burlin-
game, CA, USA). Metamorph software (Roper Scientific) was used to analyse the number, CSA 
and MyHC isoforms of fibres. For each muscle, the entire section was analysed.

For PABPN1 immunodetection, sections were blocked with 1% normal goat serum in 0.1 M PBS, 
0,1% Triton X100 and incubated overnight at 4°C in primary antibody (a gift from Prof. Elmar 
Whale, Halle Germany) diluted to 1:500 in the same buffer. Slides were washed, incubated for 1 
h with an anti-dystrophin antibody for fibre detection (NCL-Dys1 mouse monoclonal IgG2a, 
Novocastra), further incubated with respective secondary antibodies for 2 h at room temperature 
and stained with Hoechst to visualize nuclei. When necessary, sections were incubated in 1 M 
KCl, 30 mM HEPES, 65 mM PIPES, 10 mM EDTA, 2 mM MgCl2, pH 6.9, for 1 h prior to the im-
munolabelling, to remove any soluble proteins.

Images were visualized using an Olympus BX60 microscope (Olympus Optical, Hamburg, Ger-
many), digitalized using a CCD camera (Photometrics CoolSNAP fx; Roper Scientific, Tucson, 
AZ, USA) and analysed using MetaView image analysis system (Universal Imaging, Downington, 
PA, USA).

Proteasome peptidase activities
After dissection, TA from A17.1 and WT mice were homogenized for cytosolic extraction in a 
Polytron homogenizer (low setting, 3 s) using an ice-cold buffer containing: 50 mM Tris–HCl 
(pH 7.5), 250 mM sucrose, 5 mM MgCl2, 2mM ATP, 1 mM DTT, 0.5 mM EDTA and 0.025% 
digitonin, as reported previously (Kisselev and Goldberg, 2005). The homogenate was centri-
fuged at 20000g for 15 min at 4°C. The pellet was discarded and the supernatant represents the 
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cytosolic fraction (Kisselev and Goldberg, 2005). Protein quantification was made using the 
Bradford method (Pierce), with BSA as a standard. Peptidase activities of the proteasome were 
evaluated using appropriate fluorogenic substrates as described previously (Bulteau et al., 2001). 
Chymotrypsin-like (CT-like), trypsin-like (Tryp-like) and caspase-like (Casp-like) activities of 
the proteasome were assayed using the fluorogenic peptides LLVY-MCA (25 µM), RLR-MCA 
(40 µM) and LLE-NA (100 µM), respectively (Kisselev and Goldberg, 2005). The assay buffer 
was composed of 50 mM Tris–HCl (pH 7.5), 40 mM KCl, 5 mM MgCl2, 1 mM DTT containing 
the appropriated peptide substrate. Enzymatic kinetics were carried out for 30 min at 37°C using 
40 µg of cytosolic protein fractions in a temperature-controlled microplate fluorimetric reader 
(Fluostar Galaxy, bMG, Stuttgart, Germany). The excitation/emission wavelengths were 350/440 
and 333/410 nm for aminomethylcoumarin and betanaphthylamine products. The rate of pro-
teolysis was determined for each substrate as the mean slope by comparing the linear response 
of fluorescence with time. Reactions were performed in the presence (20 µM) and absence of 
the specific proteasome inhibitor N-Cbz-Leu-Leu-leucinal (MG132), to test the specificity of the 
activity measured.

Mitochondrial enzyme activity
All activities were determined at 30°C. Prior to analysis, cells were subjected to three cycles of 
freezing and thawing to lyse membranes. Enzyme activities were assessed using an Uvikon 940 
spectrophotometer (Kontron Instruments Ltd, Watford, UK). Complex I activity was measured 
according to the method of Ragan et al. (Ragan et al., 1988). Complex II–III activity was mea-
sured according to the method of King et al. (King, 1967). Complex IV activity was measured 
according to the method of Wharton and Tzagoloff (Wharton and Tzagoloff, 1967). Citrate syn-
thase (CS) activity was determined by the method of Shepherd and Garland (Shepherd and Gar-
land, 1969). Enzyme activities are expressed as a ratio to CS (mitochondrial marker enzyme) to 
compensate for mitochondrial enrichment in the cell samples.

Western blotting
Muscle lysates were prepared by homogenizing tissue in RIPA solution (NaCl 0.15 M; HEPES 
0.05 M; NP-40 1%; sodium dehoxycholate 0.5%; SDS 0.10%; EDTA 0.01 M) with protease in-
hibitor cocktail (Complete, Roche Diagnostics). Proteins were separated on 4–12% Bis–Tris gel 
(Invitrogen) and transferred onto a nitrocellulose membrane (Hybond ECL membrane; Amer-
sham Biosciences), which was blocked by incubation in 5% milk in 0.1 M PBS, 0.1% Tween-20. 
Membrane was probed with primary antibodies raised against PABPN1 (gift from Pr. Elmar 
Wahle, Halle, Germany, 1:2000) or against GAPDH (Santa Cruz, 1:2000) as a loading control. 
The membrane was further incubated with HRP-conjugated antibodies (Jackson ImmunoRe-
search; 1:40000). Immunoreactive bands were detected with enhanced chemiluminescence re-
agent (ECL; Amersham Biosciences) and signals visualized by exposing the membrane to ECl 
Hyperfilm (Amersham Biosciences).

Statistical analysis
All data are presented as mean values ± standard error of the mean (SEM) (cohort size stated per 
experiment). All statistical analyses were performed using the Student t-test, the ANOVA one-
way analysis of variance followed by the Newman–Keuls post-test, or X2 analysis using GraphPad 
Prism (version 4.0b; GraphPad Software, San Diego CA, USA). A difference was considered to be 
significant at * P <0.05, ** P <0.01 or *** P <0.001.
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APPENDIX
Generation of expPABPN1 construct and viral vectors
The expanded PABPN1 cDNA was obtained from Dr. Michael Antoniou (Department of Medical 
and Molecular Genetics, King’s College London). The cDNA sequence was cloned into a pDD-
derived AAV plasmid under the control of the CAGGs promoter. To produce the rAAV2/8-CAG-
expPABPN1, HEK293T cells were transfected with the expression plasmid and the helper plas-
mids pAdDF6 and pAAV5E18-VD2/8 (James Wilson, University of Pennsylvania, Philadelphia, 
PA) using calcium phosphate precipitation. Cell pellets were harvested and lysed in 50 mmol/l 
TrisHCl, 150 mmol/l NaCl. Lysates were clarified by centrifugation at 6,700 rpm for 20 minutes 
and passed through a 0.45-μm filter. Cell lysates were layered on an iodixanol gradient (Sig-
ma-Aldrich, Poole, UK) and centrifuged at 60,000 rpm for 90 minutes. The 40% iodixanol layer 
containing the viral particles was isolated, concentrated with phosphate-buffered saline (PBS), 
5 mmol/l MgCl2, 12.5 mmol/l KCl (PBSMK), through an Amicon Ultra-15 100 kd (Millipore, 
UK). The number of vector genomes was determined relative to a plasmid DNA standard using 
Dot blot hybridisation.

Administration of rAAV
Eight-week-old FvB mice were anaesthetised by intraperitoneal injection of 3.75 ml/g body weight 
of premixed (1:1) Hypnorm/Hypnovel (Hypnorm: Janssen Pharmaceutical, Belgium; Hypnovel: 
Hoffmann-La Roche Ltd, Switzerland). The lower hindlimbs were shaved and the TA muscles 
injected with 1x1012 vector genomes or rAAV2/8-CAG-expPABPN1 diluted in injectable saline 
(Sigma-Aldrich). Muscle contractile properties and histological assessments of injected tibialis 
anterior (TA) muscles were performed three months following administration of rAAV.

Western blotting
Muscle lysates were prepared by homogenising tissue in RIPA solution (NaCl 0.15M; Hepes 
0.05M; NP-40 1%; Sodium dehoxycholate 0.5%; SDS 0.10%; EDTA 0.01M) with protease in-
hibitor cocktail (Complete, Roche Diagnostics) and phosphatase inhibitor cocktail (20mM NaF, 
10mM b-glycérophosphate, 5mM Na-pyrophsphate, and 1mM Naorthovanadate). Proteins were 
separated on 4-12% Bis-Tris gel (Invitrogen) and transferred onto a nitrocellulose membrane 
(Hybond ECL membrane; Amersham Biosciences), which was blocked by incubation in 5% BSA 
in 0.1M TBS, 0.1% Tween-20. Membrane was probed with primary antibodies raised against 
PABPN1 (gift from Pr. Elmar Wahle, Halle, Germany, 1:2000), MuRF1 (Abcam; Ab-4125; 1:500), 
Foxo3A (Abcam; Ab-12162; 1:1000), Akt (Cell Signaling Technology; 9272; 1:1000), Phospho-
Akt-Ser473 (Cell Signaling Technology; 9271; 1:1000). The membrane was further incubated 
with HRP-conjugated antibodies (Jackson ImmunoResearch; 1:40000). Immunoreactive bands 
were detected with enhanced chemiluminescence reagent (ECL; Amersham Biosciences) and sig-
nals visualised by exposing the membrane to ECl Hyperfilm (Amersham Biosciences). 

Immunohistochemistry
For Foxo3A immunodetection, sections were air dried, fixed with 4% paraformaldehyde, incu-
bated 10 minutes with NH4Cl 50mM, blocked with 4% BSA in 0.1 M PBS, 0,1% Triton X100 
and incubated overnight at 4°C in primary antibody (Foxo3A; Cell Signaling Technology; 2497) 
diluted 1:100 in the same buffer. Slides were washed, incubated for one hour with anti-dystrophin 
antibody for fibre detection (NCL-Dys1 mouse monoclonal IgG2a, Novocastra), further incu-
bated with respective secondary antibodies for 2 hours at room temperature and stained with 
Hoechst to visualise nuclei.
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Table S1 - Complete list of the most significant A17.1 deregulated biological processes GO terms, 
including sub-categories.

ID

GO:0051169

GO:0006913

GO:0046822

GO:0051170

GO:0046823

GO:0051168

GO:0046824

GO:0009056

GO:0009894

GO:0044248

GO:0009057

GO:0016052

GO:0016042

GO:0015031

GO:0006886

GO:0017038

GO:0051224

GO:0051223

GO:0042953

GO:0051222

GO:0009306

GO:0045859

GO:0006469

GO:0000079

GO:0043405

GO:0045860

GO:0006796

GO:0045937

GO:0045936

GO:0019220

GO:0016311

GO:0006072

GO:0006950

GO:0001666

GO:0006970

GO:0009408

GO:0006979

GO:0006986

GO:0006974

GO:0033554

GO:0006952

GO:0009611

GO:0006457

GO:0006458

GO:0006397

GO:0000398

GO:0050684

GO term

Nuclear transport

nucleocytoplasmic transport

regulation of nucleocytoplasmic transport

nuclear import

negative regulation of nucleocytoplasmic transport

nuclear export

positive regulation of nucleocytoplasmic transport

Catabolic process

regulation of catabolic process

cellular catabolic process

macromolecule catabolic process

carbohydrate catabolic process

lipid catabolic process

Protein transport

intracellular protein transport

protein import

negative regulation of protein transport

regulation of protein transport

lipoprotein transport

positive regulation of protein transport

protein secretion

Regulation of protein kinase activity

negative regulation of protein kinase activity

regulation of cyclin-dependent protein kinase activity

regulation of MAP kinase activity

positive regulation of protein kinase activity

Phosphate metabolic process

positive regulation of phosphate metabolic process

negative regulation of phosphate metabolic process

regulation of phosphate metabolic process

dephosphorylation

glycerol-3-phosphate metabolic process

Response to stress

response to hypoxia

response to osmotic stress

response to heat

response to oxidative stress

response to unfolded protein

response to DNA damage stimulus

cellular response to stress

defense response

response to wounding

Protein folding

‘de novo’ protein folding

mRNA processing

nuclear mRNA splicing, via spliceosome

regulation of mRNA processing

P-value

1.35E-08

2.27E-07

2.27E-07

2.27E-07

2.27E-07

2.27E-07

8.37E-07

1.41E-08

1.12E-03

1.87E-03

2.60E-03

5.41E-03

2.60E-02

1.60E-08

2.27E-07

2.27E-07

2.28E-07

2.32E-07

4.28E-07

9.19E-07

2.59E-04

1.68E-08

2.93E-04

3.44E-04

7.75E-04

2.52E-03

1.69E-08

2.80E-04

8.86E-04

1.03E-03

9.67E-03

1.03E-02

1.77E-08

6.27E-03

1.30E-02

1.47E-02

1.69E-02
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Table S2 - A) List of the 1,679 overlapping deregulated genes recognized by Anni 2.0; B) List of the 481 
deregulated genes highly associated with the terms ‘muscle atrophy’ or ‘skeletal muscle atrophy’; C) List of 
the 163 genes showing a progression profile; D) List of the 63 selected progressive genes related to muscle 
atrophy. 
(excel file can be retrived from http://hmg.oxfordjournals.org/content/suppl/2010/03/03/ddq098.DC1/
ddq098_supp_table_2.xls)
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Figure S2 – A) Muscle extracts from 
26-week-old A17.1 and WT mice were im-
munoblotted with the indicated antibody. 
B) Immunofluorescence staining for to-
tal Foxo3A (red), dystrophin (green) and 
Hoechst staining (blue) on WT and A17.1 
TA muscle sections, magnification x400. C) 
The percentage of nuclei containing a posi-
tive total Foxo3A staining was determined 
on skeletal muscle (TA) cryosections from 
26-week-old A17.1 mice (** p<0.01).

Figure S3 - Measurements of 
the weight and functional per-
formance of skeletal muscle in 
WT mice injected with rAAV-
CAG-expPABPN1 compared to 
the uninjected contralateral leg 
(n=3 per group). A) Diagram of 
the rAAV2/8-CAG-expPABPN1 con-
struct. B) Western-blot to confirm 
the overexpression of expPABPN1 
and immunostaining to confirm 
the localization in nuclei of inject-
ed muscle fibers (expPABPN1 in 
green, dystrophin staining in red, 
nuclei in blue). C) Measurements of 
the muscle mass and the maximal 
absolute force of both TA for each 
mouse: injected leg (expPABPN1) 
and contralateral uninjected leg 
(contralateral) (n=3; ** P<0.01; * 
P<0.05). As a comparison we have 
indicated the corresponding muscle 
mass and maximal absolute force of 
the WT (plain line) and A17.1 mice 
(dash line).
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Oculopharyngeal muscular dystrophy (OPMD) is a 
late-onset progressive muscle disorder caused by a 
poly-alanine expansion mutation in PABPN1. The 

molecular mechanisms that regulate disease onset and pro-
gression are largely unknown. In order to identify molecu-
lar pathways that are consistently associated with OPMD, 
we performed an integrated high-throughput transcriptome 
study in affected muscles of OPMD animal models and pa-
tients. The ubiquitin-proteasome system (UPS) was found as 
the most consistently and significantly deregulated pathway 
across species. We could correlate the association of the UPS 
deregulated genes with stages of disease progression. The ex-
pression trend of a subset of these genes is age-associated and 
therefore marks the late onset of the disease, and a second 
group with expression trends relating to disease-progression. 
We demonstrate a correlation between expression trends and 
entrapment in PABPN1 insoluble aggregates of deregulated 
E3 ligases. We also show that manipulations of proteasome 
and immunoproteasome activity specifically affect the accu-
mulation and aggregation of mutant PABPN1. We suggest 
that the natural decrease in proteasome expression and its 
activity during muscle aging contributes to the onset of the 
disease.
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BACKGROUND
Oculopharyngeal muscular dystrophy (OPMD) is a late-onset progressive muscle disorder for 
which the underlying molecular mechanisms are largely unknown. This autosomal dominant 
muscular dystrophy has an estimated prevalence of 1 in 100,000 worldwide (Fan and Rouleau, 
2003). A higher prevalence has been reported in the Jewish Caucasian and French-Canadian 
populations (1 in 600 and 1 in 1000, respectively) (Blumen et al., 2009; Brais et al., 1995). OPMD 
is caused by expansion of a homopolymeric alanine (Ala) stretch at the N-terminus of the Poly(A) 
Binding Protein Nuclear 1 (PABPN1) by 2-7 additional Ala residues (Brais et al., 1998). Although 
PABPN1 is ubiquitously expressed, the clinical and pathological features of OPMD are restricted 
to a subset of skeletal muscles, causing progressive ptosis, dysphagia, and limb muscle weakness. 
In affected muscles, the expanded PABPN1 (expPABPN1) accumulates in intranuclear inclusions 
(INI) (Tome and Fardeau, 1980). Animal models for OPMD were generated in Drosophila, mouse 
and C. elegans with a muscle-specific expression of expPABPN1 (Chartier et al., 2006; Davies et 
al., 2005; Catoire et al., 2008). These models recapitulate INI formation and progressive muscle 
weakness in OPMD, and a correlation between INI formation and muscle weakness has been 
reported (Chartier et al., 2006; Davies et al., 2005; Catoire et al., 2008). In these OPMD models 
protein disaggregation approaches attenuate muscle symptoms (Davies et al., 2006; Catoire et al., 
2008; Chartier et al., 2009).  So far, however, the molecular mechanisms that are associated with 
OPMD onset and progression are not known. Previously, we preformed transcriptome analysis 
on skeletal muscles from a mouse model of OPMD and found massive gene deregulation, which 
was reflected by a broad spectrum of altered cellular pathways (Trollet et al., 2010). We found an 
association of transcriptional changes with muscle atrophy (Trollet et al., 2010). Muscle atrophy 
was recently reported in homozygous OPMD patients (Blumen et al., 2009). However, the vast 
majority of OPMD patients are heterozygous and muscle atrophy is not common pathological 
characteristic of the disease in its early stages. Importantly, a mouse model with low and constitu-
tive expPABPN1 expression exhibits minor muscle defects without muscle atrophy (Hino et al., 
2004). Hino et al. (2004) suggested that the extent of muscle symptoms caused by expPABPN1 
depends on the expression level. Therefore, it is not known whether the massive transcriptional 
changes in affected muscles of the A17.1 OPMD model (Trollet et al., 2010) are due to the high 
over-expression of expPABPN1 or that they are common with transcriptional changes in OPMD 
patients. 

We have generated microarrays of OPMD carriers at pre-symptomatic and symptomatic stages. 
Since OPMD is categorized as a rare disorder in Western countries, limited patient material is an 
obstacle in reaching conclusive results. Therefore, we performed a cross-species transcriptome 
study by integrating transcriptome data from Drosophila and mouse models and heterozygous 
OPMD patients. We hypothesized that OPMD-associated molecular mechanisms would be con-
sistently deregulated across species. As bioinformatics analyses of gene expression are biased by 
the computational approaches (Ioannidis et al., 2009), here we integrated three computational 
methods to obtain a higher degree of confidence and reproducibility. The ubiquitin-proteasome 
system (UPS) was identified as the most significant and consistent OPMD-deregulated pathway 
across species. 

RESULTS
Genome-wide expression profiles from the Drosophila and mouse OPMD models (Chartier et 
al., 2006; Trollet et al., 2010) were integrated with the expression profiles of heterozygous OPMD 
carriers (datasets are described in Table S1 and Table S2). Genes that are differentially expressed 
between OPMD and controls (OPMD-deregulated) were identified using limma model in R 
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(Smyth, 2004). To identify the most prominent and consistent feature across all species, com-
parative pathway analysis was performed using three computational methods (Figure S1). In 
literature-aided analyses (Jelier et al., 2008), the term ‘ubiquitination’ was found to be the most 
strongly associated biomedical concept with OPMD-deregulated genes (Table 1 and Table S3). 
A regression-based analysis using global test (GT) (Goeman et al., 2004), and an enrichment 
method using DAVID (Dennis, Jr. et al., 2003; Huang et al., 2009) revealed highly significant 
deregulation of ubiquitin-proteasome system (UPS)-related GO (Gene Ontology) categories and 
KEGG (Kyoto Encyclopedia of Genes and Genomes) pathways across species (Table 1). 

To evaluate the level of concordance between the animal models and OPMD patients, gene over-
lap between the OPMD-deregulated UPS genes was determined. Homologous genes were an-
notated using the HomoloGene and Inparanoid databases (see Methods). In total, 16%, 32% 
and 25% of the genes annotated to the UPS were identified as OPMD-deregulated in Drosophila, 
mouse and human, respectively (Figure 1A). More than half of the OPMD-deregulated genes in 
Drosophila (59%) overlapped with their mouse or human homologous genes, and close to half 
(45% and 51%) overlapped between mouse and human genes, respectively (Figure 1A). The sim-
ilarity of deregulation direction across species was demonstrated for 14 genes, for which probes 
were found in all organisms (Figure 1B). Similar transcriptional changes were found for 13 ho-
mologous genes in mouse and human datasets. Among those, 8 genes showed similar changes in 
Drosophila. These results show the consistent UPS deregulation in OPMD.

To validate the microarray analyses, quantitative RT-PCR (Q-PCR) was performed on 19 OP-
MD-deregulated UPS genes from mouse. Genes were selected based on P-value and >1.3 fold 
change criteria. For 17/19 genes (89%), Q-PCR results confirmed the results of the microarray 
analyses (Figure S2). This demonstrates the reproducibility and validity of the microarray statis-
tical analyses. 

In the A17.1 mouse model, muscle atrophy is more prominent in fast glycolytic fibers (quadri-
ceps) as compared with slow oxidative fibers (soleus) (Trollet et al., 2010). Since muscle atrophy is 
regulated by the UPS (Cao et al., 2005; Bodine et al., 2001; Sandri, 2008), we analyzed the muscle-

Table 1 - Deregulation of ubiquitin-proteasome system (UPS) in OPMD in Drosophila, human and mouse. For 
Drosophila and mouse P-values are derived from the combined analysis of the three time points using global 
test, where age was included as a confounder in the model.

Drosophila Mouse Human

Literature Analysis

Ubiquitination # 2 # 1 # 1

GO Categories

Ubiquitin-dependent Protein Catabolic Process 2.81E-04 2.27E-07 1.22E-03

Protein Ubiquitination 7.57E-03 1.88E-05 9.24E-04

Proteasomal Protein Catabolic Process 6.51E-03 2.23E-07 1.86E-03

KEGG Pathways

Ubiquitin Mediated Proteolysis 2.03E-03 8.25E-08 1.52E-03

Proteasome 2.15E-04 1.37E-07 9.27E-03
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type specific expression of 10 OPMD-deregulated UPS genes in order to identify a correlation 
with muscle atrophy. Q-PCR was performed on RNA isolated from quadriceps and soleus of 6 
week-old A17.1 and control (FVB) mice. The majority (8 out of 10) of genes showed no fiber-type 
specificity (Figure 1C). Only the deregulation of Trim63 (Trollet et al., 2010) and Ube3b were 
specific to fast glycolytic fibers (Figure 1C). This suggests that the majority of OPMD-deregulat-
ed UPS genes are not associated with muscle atrophy in the A17.1 mouse.

The UPS involves an enzymatic cascade of ubiquitination and degradation steps. The ubiquitina-
tion steps start with ubiquitin activation, which requires the ubiquitin-activating enzyme (E1) 
and ubiquitin (Ub). This process results in the binding of Ub to the E2-conjugating enzyme. 
In a subsequent step the target protein is ubiquitinated with Ub-E2 and E3-ligase complexes, 
which ensures target specificity. Poly-ubiquitinated proteins are subjected to degradation. This 

Figure 1 - Cross species deregulation of ubiquitin-proteasome in OPMD. A) Venn-diagram displaying the 
overlap in OPMD-deregulated genes in UPS across species. In mouse and Drosophila, OPMD-deregulated 
genes should be consistently deregulated in at least two time points. The total number of genes in UPS is in-
dicated in italics. The list of OPMD-deregulated UPS genes is in Additional File 1. B) Transcriptional changes 
of selected genes in UPS in different organisms. Histograms display the log2(ratio) of the measured expres-
sion values in Drosophila (white bars), mouse (gray bars), and human (black bars). Significant changes with 
the adjusted P < 0.05 are indicated by *. C)  RT Q-PCR validation of selected deregulated genes in UPS was 
carried out on quadriceps (i) and soleus (ii) muscles of 6 week-old mice. Histograms show the measured 
expression values for A17.1 and FVB mice using Q-PCR. Significant changes of measured expression val-
ues of A17.1 mice as compared to FVB with the P < 0.05 are indicated by *.
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step is employed by the deubiquitinating enzymes (DUBs) and the proteasome (Reyes-Turcu 
et al., 2009; Finley, 2009). Deregulation of genes involved in the ubiquitin activation step was 
not found to be consistent between OPMD and the models (Figure 2 and Table 2). Ubiquitin 
up-regulation was previously reported in a non-muscle cell model for OPMD (Abu-Baker et 
al., 2003). Our study identified only one ubiquitin-encoding gene to be up regulated in mouse 
and human genomes, but these deregulated genes were not consistent across species. The E2-
conjugating enzymes were significantly deregulated in Drosophila and mouse genomes, whereas 
in humans, the P-value for these enzymes was not significant. This suggests a weak association 
of E2 deregulation with OPMD (Figure 2 and Table 2). In contrast, consistent deregulation was 
found for E3-ligases, DUBs, and proteasome (Figure 2 and Table 2). The significance of this 
strong association was further evaluated by gene-overlap of homologous genes in human and 
mouse (Table 2). The gene overlap between mouse and human was found to be significant for all 
these three UPS components (P-values are 6.64E-08 for E3-ligases, 1.37E-02 for DUBs and 1.70E-
02 for the proteasome). Overall, this analysis demonstrates consistent deregulation of E3-ligases, 
DUBs and proteasome across species. 

OPMD is characterized by a late onset and a slow progression of muscle weaknesses (VICTOR 
et al., 1962; Brais et al., 1998). Progressive muscle weakness has also been reported in the mouse 
model (Davies et al., 2005). In 6 week-old mice symptoms were not detected, while muscle weak-
ness was present in 18 week-old mice and was more pronounced by 26 weeks (Davies et al., 2005). 
If changes in expression levels are associated with disease onset and progression, a correlation 
between age and expression levels should be expected. A linear regression model was applied to 
the mouse UPS genes at three time points in order to identify genes that their expression trends 
are progressively changed. 80% of the OPMD-deregulated UPS genes show a progressive trend, 
which is age-associated (N=171/217, Figure S3A, examples for progressive expression trends are 
shown in Figure 3Ai). To identify genes with expression trends that are specific to the disease 
a regression model that combines age and disease features was applied. In 30% of the age-asso-
ciated OPMD-deregulated UPS genes (N=50, Figure S3B) the progression trends significantly 
(P-value<0.05) differed between A17.1 and the wild-type (WT) controls (examples for progres-
sive expression trends are shown in Figure 3Bi). The genes with disease-specific progression can 
be used to mark disease progression and could contribute to disease onset and progression. The 

Figure 2 - Pie charts show the relative distribution of the UPS units (light colors) and OPMD-deregulat-
ed genes (dark colors) per organism. Numbers indicate the percentage of OPMD-deregulation.
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group of genes whose expression changes with age independent from the disease, however, may 
contribute to the late onset of the disease. 

The vast majority of OPMD-deregulated UPS genes, which exhibit progressive expression pro-
files encode for E3-ligases (Figure S3). Expression trends for selected E3-ligases are presented 
in Figure 3. Confirmation of the analysis in mouse was carried out on the human homologues 
(Figure 3). The age-associated expression trends were similar between A17.1 and WT in mouse 
and between controls and expPABPN1 carriers at pre-symptomatic and symptomatic stages in 
human (Figure 3A). The progression trends did not significantly differ between genotypes (P-
value > 0.05). In contrast, for those genes with expression trends associated with age and disease 
the expression trends of controls significantly differed from those of OPMD subjects (Figure 3B, 
P-value <0.05). Validation of progression analysis was performed by Q-PCR analysis of RNA 
from 6 and 26 week-old mice (Figure 3C). The Q-PCR results demonstrate the reproducibility 
and validity of the microarray progression analysis.

In the progression analysis some differences between human and mouse were noted. The pro-
gression of Trim63 is mouse-specific, whereas the expression of the human TRIM63 is not age-
associated or OPMD-deregulated (Figure 3B). Asb11 is down regulated in mouse while it is up 
regulated in human (Figure 3A). The expression trend of Socs4 in mouse is negative while in 
human it is positive (Figure 3B). These discrepancies could reflect differences between the two 
organisms or between the heterozygous and the high over-expression situation.

Expression of expPABPN1 leads to INI formation in affected muscles (Davies et al., 2005; Trollet 
et al., 2010). Previous studies have demonstrated that ubiquitin and proteasome proteins co-
localize with INI in affected muscles (Calado et al., 2000) and in non-muscle cells (Abu-Baker et 
al., 2003; Tavanez et al., 2005). Since INI formation is a hallmark of OPMD, we studied whether 
the expression profiles of OPMD-deregulated E3-ligases correlate with their entrapment with 
expPABPN1 in INI. Co-localization was analyzed with an immunofluorescence procedure in 
C2C12 myotubes expressing expPABPN1 fused to yellow fluorescent protein (YFP). From the 

Drosophila Mouse Human Overlap 
mouse vs. human

% D.E. 
Genes

P-Value 
(FDR)

% D.E. 
Genes

P-Value 
(FDR)

% D.E. 
Genes

P-Value 
(FDR)

# D.E. 
Genes

% D.E. 
Genes

Ubiquitin 50.00 4.18E-05 11.11 1.28E-01 33.33 1.19E-01 0 00.00

E1 Ubiquitin Activation 16.67 1.24E-01 04.76 7.29E-02 14.29 7.94E-02 0 00.00

E2 Ubiquitin Conjugation 13.64 9.19E-06 44.42 1.51E-08 23.53 7.31E-02 3 37.50

E3 Ubiquitin Ligase 13.99 1.92E-04 29.58 1.64E-08 24.74 4.35E-03 69 47.59

Deubiquitination (DUB) 20.00 1.63E-05 45.83 1.48E-08 24.00 3.15E-02 13 72.22

¥ Proteasome 29.79 2.15E-04 36.94 1.37E-07 51.35 9.27E-03 11 57.90

¥ Autophagy 25.00 1.07E-03 30.77 8.13E-08 18.75 1.37E-02 1 16.67

¥ Lysosome 5.00 1.64E-02 25.33 6.06E-03 24.68 1.54E-02 6 33.33

Table 2 - The distribution of OPMD-deregulated genes in UPS functional units and protein degradation 
categories. The number of annotated genes per unit, the percentage of OPMD-deregulated (D.E.) genes 
and P-values are indicated per organism. For Drosophila and mouse statistics is generated in combined 
datasets from three time points. The overlap in OPMD-deregulated genes between human and mouse and 
the percentage of deregulated genes in human D.E. genes are indicated. Protein degradation machineries 
are depicted by ¥.
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Figure 3 - Progressive changes in UPS gene expression. Progression trends for selected genes in mouse 
(i) and human (ii). Expression values were normalized to 6 weeks-old WT in mouse, and to young healthy 
controls (19 years-old in average) in human. P-values demonstrate the significance of differences in expres-
sion trends between controls and OPMD samples. A) The age-associated progression trend is indicated by 
P-value >0.05. B) The genotype-specific progression trend is indicated by P-values <0.05. SD represents 
variations in mouse (6 weeks N=5 and 26 weeks N=6) and in human (expPABPN1 carriers N=4 and controls 
N=5). C) RT Q-PCR validation of selected deregulated genes in UPS was carried out on skeletal muscles of 
6 week-old and 26 week-old mice. Histograms show the log2(ratio) of the measured expression values using 
microarray and Q-PCR. Significant changes with the P < 0.05 are indicated by *.
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E3-ligases encoding genes that showed 
an association with disease onset or pro-
gression (Figure 3), five were selected 
for co-localization studies using specific 
antibodies recognizing single proteins 
at the appropriate molecular weights. 
All 5 proteins showed nuclear localiza-
tion in myotubes and co-localized with 
expPABPN1 in INI (Figures 4). Arih1, 
Asb11 and Ddb1 co-localized with all 
sizes of INI structures (Figure 4A) while 
the co-localization of Trim63 and Fbxo32 
proteins were only evident for larger INI 
structures (Figure 4B, highlighted in 
boxes). This suggests a correlation be-
tween changes in expression trends and 
temporal entrapment in INI. 

The proteasome is composed of core and 
regulatory subunits. Genes encoding for 
the proteasome core subunit were promi-
nently down regulated in mouse and hu-
man (66% and 75%, respectively), while 
no preference in deregulation direction 
was found for the regulatory subunit 
(Figure 5A and Table S5). Down-reg-
ulation of the proteasome could affect 
protein degradation and, hence, protein 
accumulation. In C2C12 myoblasts that 
were treated with low concentrations (5 
mM) of the proteasome inhibitor MG132, 
the accumulation of expPABPN1 was 
significantly higher as compared with 
mock-treated cells (Figure 5B). Simi-
larly, treatment with the DUB inhibitor, PR619, also caused expPABPN1 accumulation (Figure 
5B). High nuclear accumulation of expPABPN1, which accompanies INI formation, was consis-
tently measured in MG132 treated cells using a cell-based intensity fluorescence quantification 
assay (Figure 5C). Thus, reduced proteasome and DUB activities in muscle cells promoted exp-
PABPN1 accumulation and INI formation in muscle cells. However, expPABPN1 accumulation 
stimulated by proteasome inhibition is not specific to muscle cells (Abu-Baker et al., 2003). 

In addition to the proteasome, the lysosome and the autophagy machineries can also facilitate 
protein catabolism. To evaluate whether one of these machineries could also regulate expPAB-
PN1 protein accumulation the significance of deregulation in OPMD was analyzed. Overall, de-
regulation of lysosome and autophagy were not consistent across species. The lysosome KEGG 
pathway was evaluated as significantly deregulated in OPMD across species by GT but not by 
DAVID analysis (Table 2). However, in the literature-aided analysis, only a low level of asso-
ciation was found between OPMD-deregulated genes and lysosome in Drosophila and human 

Figure 4 - Co-localization of selected E3 ligases with INI 
in C2C12 myotubes expressing YFP-Ala16PABPN1. Im-
munostaining of E3-ligases was visualized with Alexa-594 
secondary antibodies. Co-localization with expPABPN1 
in myotubes is demonstrated in the merge image. A 2.5X 
magnification of nuclei containing expPABPN1 aggregates 
is highlighted in a box. A) Arih1, Asb11 and Ddb1 E3 ligases 
show consistent co-localization with aggregated YFP-Ala16-
PABPN1. B) Trim63 and Fbxo32 E3 ligases show progres-
sively more co-localization with YFP-Ala16-PABPN1 as INI 
size increases. Scale bar is 10μm.
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(ranked at positions 196 and 789, respectively), while no association was found in mice. Similarly, 
the autophagy KEGG pathway was significant across species based on GT but not on DAVID 
analysis (Table 2). In the literature-aided analysis, autophagy was ranked 12 in mice, but a lower 
priority (ranked 136 and 154) was found in Drosophila and humans, respectively. Furthermore, 
the OPMD-deregulated gene overlap between mouse and human were not significant for either 
lysosome or autophagy pathways (P-values: 5.37E-01 and 3.70E-01, respectively). This is in sharp 
contrast to the consistent proteasome deregulation found across species. This indicates that, from 
the protein degradation pathways, only proteasome deregulation is consistently associated with 
OPMD across species. From this analysis we cannot exclude lysosome or autophagy deregulation 
in OPMD, but the lack of consistency across species and in three bioinformatics analyses suggests 
a smaller contribution as compared with the proteasome.

Figure 5 - The effect of altered proteasome activity on expPABPN1 accumulation and aggregation. 
A) Substantial deregulation of proteasome and immunoproteasome encoding genes in mouse and human. 
Down-regulation (green) is more pronounced in the core subunit of the proteasome. Immunoproteasome 
shows consistent up-regulation (red) in both organisms. B) Western blot analysis of YFP-Ala16-PABPN1 
transfected C2C12 cells that were treated with 5mM MG132 or 5nM PR619. Control cells were treated with 
DMSO. C) Images show YFP-Ala16-PABPN1 localization in C2C12 after mock-treatment (DMSO), 5 mM 
MG132 or 5U/ml IFNg. Scale bar equals 10 mm. Histograms show the integrated intensity of YFP-Ala16-PAB-
PN1 (i) or Histone4-CFP (control) (ii), and the percentage of cells with INI in YFP-Ala16-PABPN1 expressing 
cells (iii). Averages represent 509, 773 and 476 cells for DMSO, MG132 and IFNg, respectively. Significant 
difference between treatments is reflected by P-values.
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In contrast to the down regulation of genes in the core-subunit, the expression of genes encoding 
for the immunoproteasome subunit (the cytokine-induced proteasome) was consistently elevat-
ed in OPMD (Figure 5A). The immunoproteasome was initially identified in cells of the immune 
system after cytokine induction, which is involved in MHC-class-I antigen presentation (Kloetzel 
and Ossendorp, 2004). However, the accumulation of cytokine-induced proteasome proteins was 
also found in aging skeletal muscle cells (Ferrington et al., 2005). Treatment of C2C12 myoblasts 
with IFNg, an inducer of immunoproteasome activity (Osna et al., 2003), led to a significant re-
duction in nuclear expPABPN1 accumulation (Figure 5C and 5Ci) and INI formation (Figure 
5Ciii). In contrast to expPABPN1, accumulation of Histone4, which is also a nuclear protein, 
was not significantly affected by manipulation of proteasome activity (Figure 5Cii). This suggests 
that the accumulation of expPABPN1, but not of Histone4, is receptive to the level of proteasome 
and immunoproteasome activity. Together, our results demonstrate that the UPS degradation 
machinery regulates expPABPN1 accumulation.

DISCUSSION
UPS is a cellular regulator of homeostasis and is involved in a wide spectrum of human diseases 
including cancer, neurodegenerative disorders and diabetes (Hoeller and Dikic, 2009; Liu et al., 
2000; Combaret et al., 2009; Taillandier et al., 2004; Ciechanover and Brundin, 2003). Deregula-
tion of UPS has been reported for myotonic dystrophy type 1 (Vignaud et al., 2010) and muscle 
atrophy in mice (Cao et al., 2005; Bodine et al., 2001; Sandri, 2008). In addition, altered UPS 
activity has been associated with muscle ageing (Combaret et al., 2009; Lee et al., 1999). Together 
these studies suggest that muscle cell function is tightly regulated by the UPS.  In this study, we 
identified the UPS as the most consistently and significantly deregulated cellular machinery in 
OPMD animal models and patients. Transcriptome studies in non-muscle cells expressing exp-
PABPN1 did not reveal substantial and predominant deregulation of UPS genes (Corbeil-Girard 
et al., 2005). This indicates that the effect of expPABPN1 on UPS deregulation is specific to muscle 
cells. Since PABPN1 is ubiquitously expressed in every cell but the phenotype is limited to muscle 
cells this suggests that UPS deregulation confers the muscle-specific pathogenesis of OPMD. 

From six UPS components, only E3-ligases, DUBs and the proteasome were found to be con-
sistently and prominently deregulated in OPMD across species. Relevant to OPMD proteasome 
activity is reduced during muscle aging (Combaret et al., 2009; Lee et al., 1999; Ferrington et al., 
2005), and is associated with transcriptional deregulation of proteasomal genes (Lee et al., 1999). 
In the analysis of expression trends the expression of 89% of the OPMD-deregulated proteasome 
genes were found to be age-associated. This suggests that the natural decrease in proteasome ex-
pression during muscle aging can contribute to the late onset of the disease. Our analysis revealed 
that the core subunit of the proteasome is the only UPS subunit that was consistently down regu-
lated which can cause reduced activity of the proteasome machinery. In a recent study, we found 
that expression of expPABPN1 in myotubes leads to down-regulation of proteasome-encoding 
genes, and causing the accumulation of expPABPN1 protein (unpublished data). However, pro-
teasome regulation of expPABPN1 accumulation and INI formation is not specific to muscle cells 
(Abu-Baker et al., 2003).  Since in patients INI are formed only in muscle cells this suggests that 
proteasome down-regulation during muscle aging triggers expPABPN1 accumulation. In turn, 
accumulation of expPABPN1 leads to extensive proteasome down-regulation in OPMD (Figure 
6). This feed forward model could justify the muscle-specific INI formation and the late onset in 
OPMD.

Hypothesizing that changes in expression levels could reflect pathological changes in disease sta-
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tus we have studied the correlation between transcriptional changes of OPMD-deregulated UPS 
genes and age. Noticeably, the expression of the vast majority of the OPMD-deregulated UPS 
genes is progressed during normal muscle aging. This suggests that transcriptional changes of 
these genes are associated with disease onset. The expression trends of a subset of these genes 
showed disease-specific progression. Among those, Trim63 and Fbxo32 exhibited disease pro-
gression in mouse. Both genes are known for regulating muscle atrophy in mice (Cao et al., 2005; 
Bodine et al., 2001; Sandri, 2008). In the OPMD mouse model, muscle atrophy in exhibited only 
in fast muscle glycolytic fibres and Trim63 expression correlates with muscle atrophy in A17.1 
(Trollet et al., 2010). However, the majority of the OPMD-deregulated UPS genes did not show 
fibre-type specific expression. This could suggest that UPS deregulation in OPMD has a broader 
pathological effect than muscle atrophy. Indeed, in affected muscles of OPMD patients, atrophy 
may be evident only at a later stage of disease progression. Although a high degree of consistency 
between expression trends in mice and human was found for the majority of the genes analyzed 
in this study. Trim63 deregulation and progression is probably mouse-specific, as OPMD-de-
regulation or progression was not found in human. Fbxo32, however, was consistently deregu-
lated in both organisms and, therefore, can be a candidate for regulating disease progression and 
muscle atrophy in human. After mining the NCBI dataset for tissue-specific expression (Unigene 
Hs.352183, Build No. 228 released 2010), Asb11 was noted for its specific expression in skeletal 
muscles. Since Asb11 is consistently OPMD-deregulated in human and mouse, and its expres-
sion trend is associated with disease onset it could represent a relevant candidate for functional 
genomic studies. This shows that cross-species transcriptome and progression analyses can be 
used to identify target molecules for future studies. 

OPMD is characterized by INI formation. The role of INIs in disease pathogenesis is unknown.  
Previous studies have shown that many genes whose expression is deregulated by expPABPN1 
are found to be co-localized in INI (Corbeil-Girard et al., 2005). Components of the proteasome, 
which is OPMD-deregulated, also co-localize in INI (Abu-Baker et al., 2003; Tavanez et al., 2005). 
We also found that many of the OPMD deregulated E3-ligases are entrapped in INI. Moreover, 
we demonstrate a correlation between temporal changes in expression levels and sequential en-
trapment in INI. Together these studies suggest that entrapment in INI could lead to transcrip-
tional deregulation. It is possible that protein entrapment in INI affects gene expression through 
a compensatory mechanism resulting in altered transcriptional profiles.

Figure 6 - A model for the involvement of UPS in OPMD disease pathology. In muscle, age-associated 
proteasome down regulation affects expPABPN1 protein accumulation. Elevated expPABPN1 accumulation 
affects proteasome deregulation during disease onset. Expression profiles of E3-ligases can be sued to 
separate disease onset from progression.
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CONCLUSIONS
In this study, we combined expression datasets from three organisms and disease models with 
different bioinformatics analyses in a single study. This allowed us to identify with high confi-
dence the UPS as the most predominantly deregulated cellular pathway in OPMD. This approach 
differs from most microarray studies where results are derived from a single computational anal-
ysis performed on a single organism. We show that with this combined bioinformatics approach 
the list of deregulated pathways can be prioritized with high confidence. This approach can facili-
tate studies with complex biological situations and massive gene deregulation such as late onset 
disorders and rare-diseases.

The most significant and novel finding in this study is the substantial and cross-species consis-
tent deregulation of the ubiquitin-proteasome system (UPS) in OPMD. We propose that protein 
entrapment in PABPN1 aggregates is associated with a substantial transcriptional deregulation of 
the UPS that, in turn leads to disruption of homeostasis in skeletal muscles. By taking advantage 
of the detailed analysis of gene expression trends and muscle- expression, we predict that candi-
date genes can be selected for functional genomic studies which ultimately lead to the identifica-
tion of OPMD pathogenesis.

METHODS
Generation of microarray datasets
Drosophila and mouse microarray datasets have previously been published (Chartier et al., 2009; 
Trollet et al., 2010). Human quadriceps muscle samples were collected with the needle or by an 
open surgical procedure from OPMD patients and family members as well as from anonymous 
age-matching healthy individuals that gave informed consent. The presence of expansion muta-
tion in PABPN1 in OPMD patients and pre-symptomatic was determined with sequencing. Berg-
strom needle biopsies from the (pre)symptomatic patients were approved by the ethical commit-
tee. Total RNA was extracted from skeletal muscles using RNA Bee (Amsbio) according to the 
manufacturer’s instructions. RNA integration number (RIN) was determined with RNA 6000 
Nano (Agilent Technologies). RNA with RIN >7 were used for subsequent steps. RNA labeling 

was performed with the Illumina® TotalPrep RNA Amplification kit (Ambion) according to the 
manufacturer’s protocol, and subsequently was hybridized to Illumina Human v3 Bead arrays. 
The generated microarray datasets are deposited and publicly available at GEO repository. GEO 
accession numbers for mouse and human microarray datasets are GSE26604 and GSE26605, 
respectively. 

Data processing and statistical analysis
Microarray measurements were normalized using the quantile method (Smyth and Speed, 2003). 
Each organism and time point was normalized separately. The quality of the data was assessed by 
principal component analysis. 

For Drosophila and mouse, genes differentially expressed between OPMD and control subjects 
were identified at each time point by applying a hierarchical linear model using the limma pack-
age in R (Smyth, 2004). Human subjects were grouped into healthy, pre-symptomatic and symp-
tomatic subjects. P-value cut-offs of 0.05 after multiple-testing correction using the method of 
Benjamini and Hochberg (False Discovery Rate (FDR) were applied to the Drosophila and mouse 
samples and, due to higher inter-individual variation, a nominal P-value cut-off of 0.05 was used 
for human samples) were used. This resulted in lists of OPMD-deregulated genes for each time 
point and organism. Probe annotation was done using the indac (Drosophila), illuminaMousev-
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1BeadID (mouse), and illuminaHumanv3BeadID (human) R packages. The OPMD significantly 
deregulated genes in the UPS from human and mouse datasets are listed in Additional File 1.

Pathway analyses
Global test (GT) (Goeman et al., 2004) was used to identify significant associations between 
GO categories or KEGG pathways and OPMD, while including age as a confounder (Drosophila 
and mouse only). Gene sets with multiple testing adjusted (Holm’s method) P-value < 0.05 were 
selected as significant. DAVID, a functional annotation clustering tool (Dennis, Jr. et al., 2003; 
Huang et al., 2009), was applied on a list of OPMD-deregulated genes and pathway redundancy 
was removed by clustering similar GO categories and pathways. In addition, biomedical concepts 
that are associated with OPMD-deregulated genes were identified using literature-aided mapping 
tool, Anni 2.0 (Jelier et al., 2008). The procedure was performed for each organism separately. 
Cross-species analyses were carried out on a group of homologous genes. Drosophila homologues 
of mouse and human genes were annotated using HomoloGene (http://www.ncbi.nlm.nih.gov/
homologene) and Inparanoid (http://inparanoid.sbc.su.se) online databases. Integration of three 
time-points in Drosophila and mouse (Table S1) were used to identify OPMD-deregulated path-
ways across species (Figure 1). A recent annotation of E3 ligases (Li et al., 2008) was used to 
identify OPMD-deregulated E3 ligases. The annotation for all other UPS components is extracted 
from KEGG. Since the annotation for genes encoding for lysosome is not available in R pack-
ages, we have extracted the annotation from KEGG website and integrated it into our pathway 
analyses.

Progression studies
For testing the significance of the association of expression trends of OPMD-deregulated genes 
with age, using limma model in R (Smyth, 2004), a linear regression model (expression ~ aOPMD 
+ bAGE + d(OPMD x AGE) +  e) was applied on combined datasets from 6 and 26 weeks old 
mice. Age-associated changes were identified as those with b significantly different from zero. 
OPMD- and age-associated changes were defined as those with d significantly different from 
zero. To determine whether the expression profiles of individual genes significantly differ be-
tween controls and OPMD P-values are FDR-corrected with the cut-off threshold of 0.05.

Quantitative RT-PCR analysis
Primers for Q-PCR validation were designed in the sequence surrounding the Illumina probe 
location using Primer 3 plus program. RT-QPCR was performed according to the procedure in 
Trollet et al. (2010). The list of primers is provided in Table 3.

Cell culture and transfection
C2C12 cells were used for transient transfection experiments. C2C12 cells were cultured in 
DMEM containing 20% fetal calf serum. Prior to transfection, cells were seeded on glass. Trans-
fection was carried out in 80% cell confluence with LipofectamineTM 2000 (Invitrogen) according 
to the manufacturer’s protocol. Plasmids used for transfection are YFP-Ala16-PABPN1 and His-
tone4-CFP. For the proteasome modification treatments, cells were treated 16 hours after trans-
fection with DMSO (1:1000), 5 mM MG132 (Sigma-Aldrich), or 5U/ml IFNg (HyCult Biotech) 
for 20 hours. 

Protein detection and Imaging
For immunocytochemistry, 16 hours post-transfection with YFP-Ala16-PABPN1, C2C12 cells 
were incubated with fusion medium (DMEM supplemented with 2.5% Horse serum) for 2 days, 
and immunocytochemistry was performed after a short fixation (Raz et al., 2006) followed by a 
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15 min incubation with 1% Triton X100, during which PABPN1 aggregates remain intact. Fol-
lowing antibody incubations, preparations were mounted���������������������������������������� in Citifluor (Agar Scientific) contain-
ing 400 µg/ml of DAPI (Sigma-Aldrich). Immunofluorescent specimens were examined with a 
fluorescence microscope (Leica DM RXA), 63X and 100X lens��������������������������������� NA 1.4 plan Apo objective�������. Inte-
grated intensity was measured with ImageJ (http://rsbweb.nih.gov/ij/), and intensity values were 
corrected for background. 

Antibodies used in this study are: Goat anti-Asb-11 (K16) (1:1000) Santa Cruz Biotechnology; 
Rabbit anti-atrogin-1 (1:1000) ECM Biosciences; Rabbit anti-Murf1 (1:1000) ECM Biosciences; 
Goat anti-DDB1  (1:1000) Abcam; mouse anti-Flag (1:2000) Sigma –Aldrich; Rabbit anti-Des-
min MP Biomedicals. Alexa-Fluor 594 conjugated secondary (Invitrogen) or IRDye 680LT and 
800CW conjugated secondaries (Licor Biosciences) were used to detection of first antibody.

Authors’ contributions
SYA and AV preformed the bioinformatics studies. AV and VR preformed the molecular genetics 
studies. Biological samples were provided by: BS, BE, MS, JV, CT, GD, AC and MS. The manu-
script was drafted by SYA and VR and written by SYA, PAC, SM and VR. PAC participated in 
the bioinformatics design, coordination and data analysis.  All authors read and approved the 
manuscript.

Genes Probe FW Primer Sequence RV Primer Sequence

Arih1 6900025 GAGAAGGATGGCGGTTGTAA ATCTCTTGCTGCCTTTGCAT

Arih2 2810025 AGCCTAACTCCCCCTTGGTA ACCACTGAGGGTGCAAAAAC

Ate1 6940722 CAAAGTGATTCTACTGTGGCTGA ACGAAAATCTCCAATGCAGTC

Cul7 3360114 CGGGACTATGCGGTGATACT GTGGGTTCGTCTGTGGTCTT

Psme3 2810537 GCGAAGGTCAAACCCATAGA GAAAGTGATGCATCCCAGGT

Rbx1 2340047 TTGAGGCCAGCCTACAGAGT AGGAAAACTCCCCTGAAGGA

Skp1a 2450102 TGCAGCTGGGCTCTCTTAAT GTTTCTCCACCTGGGAACAA

Uchl1 1230066 CCTGTCCCTTCAGTTCCTCA GATTAACCCCGAGATGCTGA

Huwe1 106840041 GCTGCATTGAGACTTGAAACC TCCACAACACAGATGCCAAT

Tbl1x 6400524 ATTTTCCCCCTCCCCTAATC GAGCCTGTTCTGGATGGAAA

Ube4b 3610154 GCTGGAGTGGATCAGGACTC TGGTAAGGTCAAACCCCAAA

Ube2o 2190040 CGGTGAGCACATTACAGCTC GCATCATGCTTTGGCTTTTT

Usp47 100940601 GAATGCTTGTAAAGTCCCGTTT CTAGCACGCTCTGCAATGAA

Ppp2cb 5570593 ACTGCTACCGTTGTGGGAAC AGGTCCTGGGGAGGAATTTA

Ube3b 6380458 GCCTGCACAGGTAACACAGA ACCAGGAGCTGCTGAGATGT

Fbxo32 110037 GGGAGGCAATGTCTGTGTTT AAGAGGTGCAGGGACTGAGA

Trim63 1740164 CGACCGAGTGCAGACGATCATCTC GTGTCAAACTTCTGACTCAGC

Ubr5 1780605 GCTGCCTTTGTGGAAAGTGT TTGCAGCCAACCACAAATAA

Asb11 2060487 TTGTGCTGAACAAGCTCCTG GAGGGTCCTGAATCATCCAA

mHPRT - CGTCGTGATTAGCGATGATG TTTTCCAAATCCTCGGCATA

Table 3 - The list of primers used for quantitative RT_PCR analysis.
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APPENDIX

Biological Systems Tissue Number of Samples Age MA Platform

Drosophila
Adult 
thoracic 
muscles

3 pools of 50 flies 
per genotype

1 day 15K INDAC 
spotted 
oligonucleotide 
array

6 days

11 days

Mouse Quadriceps 6 replicates per 
genotype

6 weeks
Illumina 48K 
Mouse v.1 bead 
array

18 weeks

26 weeks

Human Quadriceps

9 Pre-symptomatic 17 – 22 years control

Illumina 48K 
Human v.3 bead 
array

13 Symptomatic 31 – 40 years Pre-Symptomatic

39 Controls 38 – 42 years control

    49 – 60 years symptomatic

    58 – 67 years control

 
 

Sex Age GCG Mutation Muscle Histology

Pre-Symptomatic

Female 39 12/6 Sporadic atrophic fibre

Female 37 10/6 Moderate dystrophic alterations

Female 37 12/6 Normal

Female 31 9/6 Slight dystrophic alteration

Symptomatic

Female 60 9/6 Moderate dystrophic alterations

Female 49 10/6 Moderate dystrophic alterations

Male 59 10/6 Moderate dystrophic alterations

Female 57 11/6 Severe dystrophic alterations

Supplementary Table 1B - Overview of muscle biopsies of OPMD patients and controls. All patients are 
heterozygous expPABPN1 carriers as indicated by sequence analysis.

Supplementary Table 1A - Overview of genome-wide transcriptome microarray datasets of Drosophila 
and mouse OPMD models and muscle biopsies of OPMD patients.

Supplementary Figure 1 - Integrated 
cross-species high-throughput tran-
scriptome study.

�
Normalisation
Quality Control
Annotation
Filtration

Pre-processing

Limma in R

t-Statistics �

Global Test DAVID Anni 2.0

� � �

Differentially
expressed genes

Significant GO categories
Significant KEGG pathways« » Associated

concepts

Filtration
Overrepresented biological processes
Modular and structural analysis
Progression analysis
etc.

Trans-organism transcriptome Analysis

QPCR
Microscopy

Validation

METHODS
Trans-organism transcriptome studies
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  Drosophila   Mouse   Human

1 ribosomal protein activity 1 Ubiquitination 1 ubiquitin activity

2 ubiquitin activity 2 Ubiquitins 2 RNA Binding

3 RNA Binding 3 Ubiquitin 3 Ubiquitination

4 Ubiquitination 4 Ligase 4 RNA Splicing

5 polyethylene glycol 
monostearate 5 SNAP receptor 5 GTP Binding

6 Ligase 6 Internal Ribosome Entry Site 6 protein transport

7 POLR2F 7 Phosphotransferases 7 Alternative Splicing

8 GTP Binding 8 Cullin Proteins 8 Transcription, Genetic

9 ribosome biogenesis and 
assembly 9 Muscle Proteins 9 intracellular protein transport

10 Ribosome Subunits 10 Mitogen-Activated Protein 
Kinases 10 GTP-binding

Supplementary Table 2 - Literature-aided analysis of the association of biomedical concepts with 
OPMD-deregulated genes.

Supplementary Figure 2 - Validation of expression level of selected genes from the pool of UPS OPMD-
deregulated genes on the skeletal muscle of 6 weeks-old OPMD mice, normalized to WT. Histograms 
indicate the log2(ratio) of the measured expression values using RT Q-PCR (grey bars) and microarray 
(black bars) for 4 WT and 6 OPMC mice (* P <0.05).
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Supplementary Table 4 - Direction of OPMD-deregulation over the functional components of UPS that 
are significantly deregulated in all organisms.

Mouse Human

    # Total 
Genes

% D.E. 
Genes UP DOWN # Total 

Genes
% D.E. 
Genes UP DOWN

E2 Ubiquitin Conjugation 33 44.42 50.00 50.00 34 23.53 50.00 50.00

E3 Ubiquitin Ligase 526 29.58 51.44 48.56 586 24.74 50.00 50.00

Deubiquitination (DUB) 72 45.83 42.00 58.00 75 24.00 41.18 58.82

Proteasome 37 36.94 59.38 40.62 37 51.35 42.86 57.14

Supplementary Figure 3: Temporal changes in UPS gene expression. A linear regression was applied to 
identify temporal changes in expression levels of OPMD-deregulated genes in A17.1. A) Histogram shows 
the percentage of age associated OPMD-deregulated genes for each of the UPS functional components and 
E3-ligase subclasses. B) OPMD-deregulated genes showing age and OPMD associated progression. Histo-
gram shows the percentage of genes with age and OPMD associated expression for each of the functional 
components. The number of genes in each bar is indicated.
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Additional files
Title: A list of deregulated UPS genes in mouse and hu-
man datasets.

Description: This additional file contains t-statistics 
(fold change and P value) for genes within the ubiqui-
tin-proteasome pathway, in human and mouse datasets. 
The t-statistics represent the association of the gene ex-
pression profiles to OPMD.

Link: http://www.skeletalmusclejournal.com/content/
supplementary/2044-5040-1-15-s2.xlsx
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Aging-associated disorders can be accompanied by in-
creased tissue degeneration and may provide insight 
into key regulators of aging.  Oculopharyngeal mus-

cular dystrophy (OPMD) is caused by alanine-expansion 
mutations in PABPN1, and is characterized by progressive 
skeletal muscle weakness that is manifested after midlife. We 
compared expression profiles from Vastus lateralis of controls 
and OPMD. Similar to PABPN1 expression, between 40-45 
years a transcriptional switch was identified in both OPMD 
and muscle aging while trends in OPMD were accelerated. 
Among these genes, we identified a significant and progres-
sive decline in PABPN1 expression from the fifth decade in 
aging muscles. In concurrence with the more severe muscle 
weakness, this decline was accelerated in muscles primarily 
affected in OPMD. The aging-associated decline of PABPN1 
was not detected in other tissues or in blood from OPMD 
patients. We show that down-regulation of PABPN1 induced 
progressive cell senescence in myoblast cultures. We suggest 
that a decline in PABPN1 expression marks muscle aging and 
reduced levels of the protein causes age-associated muscle de-
generation.
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INTRODUCTION
Aging is marked by a progressive decline of cellular activities and its rate differs between tis-
sues (Kirkwood and Austad, 2000). A decrease in skeletal muscle performance, as measured by 
strength, highly correlates with biological aging. Age-associated muscle weakness in healthy co-
horts starts around the fifth decade and linearly progresses with age (Beenakker et al., 2010). A 
decline in muscle strength is suggested to predict functional disability and mortality in elderly 
(Liu and Latham, 2011; Ling et al., 2010; Roth et al., 2002). The degenerative loss of muscle func-
tion during aging is regulated by numerous genetic and environmental factors. Consequently, the 
onset and progression of aging-associated decline in muscle performance vary greatly between 
individuals. Aging is a complex process and the molecular mechanisms that control the onset 
and progression of muscle aging, as well as key regulators, are not fully understood. The high 
complexity of aging-associated molecular mechanisms is demonstrated by genome-wide changes 
in mRNA expression affecting a broad range of biological processes. Genome-wide transcrip-
tional changes can be derived by changes in mRNA stability. Thus, it is expected that regulators of 
mRNA processing would regulate aging-associated transcriptional changes. 

Aging associated changes can sometimes be exacerbated in patients with late onset degenerative 
disorders (Kirkwood and Austad, 2000). Studies of late onset disorders can thereby expose key 
regulators of aging that are otherwise difficult to identify. Oculopharyngeal muscular dystrophy 
(OPMD) is a late onset autosomal dominant muscle disorder. OPMD is characterized by progres-
sive ptosis, dysphagia, and proximal limb muscle weakness that typically appear from the fifth 
decade (Brais et al., 1995; Taylor, 1915; van der Sluijs et al., 2003). OPMD is caused by a trinucleo-
tide repeat expansion mutation in the gene encoding for Poly(A) Binding Protein Nuclear 1 (PAB-
PN1) causing a poly-alanine expansion in the N-terminus of PABPN1 (expPABPN1) (Brais et al., 
1998). PABPN1 binds to mRNA and regulates poly(A) elongation (Benoit et al., 2005). The length 
of poly(A) depends on PABPN1 concentration (Kuhn et al., 2009), and knockdown of PABPN1 
causes shortening of poly(A) tail mRNA (Apponi et al., 2010). PABPN1 knockdown in mouse 
myotubes leads to myogenic defects and reduced cell fusion (Apponi et al., 2010). Reduced cell 
fusion was also reported in OPMD myoblast cultures (Perie et al., 2006). Overexpression of mu-
tant PABPN1 also leads to muscle cell defects in a mouse model (Davies et al., 2005; Trollet et al., 
2010). Mutant PABPN1 is prone to aggregation and accumulates in insoluble nuclear inclusions 
(Tome and Fardeau, 1980). Although prevention of protein aggregation in animal models with 
high overexpression of expPABPN1 are effective in delay of muscle weakness (Davies et al., 2005; 
Chartier et al., 2009; Catoire et al., 2008), aggregation of wild-type PABPN1 were also reported in 
aging rat neuron cells (Berciano et al., 2004). In contrast to aggregates of expAPBPN1, those of 
the wild type protein are not disease-associated. In cell models both wild type and expPABPN1 
form aggregates, while expPABPN1 is more prone to aggregation (Raz et al., 2011a; Raz et al., 
2011b). Differences in aggregation can be, in part, explained in differences in poly-ubiquitination 
(Raz et al., 2011b). Inhibition of the proteasome enhances the aggregation of expPABPN1 in cell 
models (Abu-Baker et al., 2003; Raz et al., 2011b). In OPMD the ubiquitin-proteasome system 
(UPS) is significantly deregulated (Anvar et al., 2011; Raz et al., 2011b). Dysfunctional UPS stim-
ulates the formation of many protein aggregates (Balch et al., 2008; Morimoto, 2008; Sherman 
and Goldberg, 2001). 

It is unclear how a ubiquitously expressed protein, like PABPBN1, predominantly affects only a 
subset of skeletal muscles and causes symptoms that are not apparent until midlife. We hypoth-
esized that aging contributes to the initiation and progressiveness of muscle weakness in OPMD. 
We investigated the hypothesis that aging factors contribute to OPMD. We identified signifi-
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cant similarities between OPMD-deregulated and aging–regulated expression profiles. In con-
currence with muscle symptoms in OPMD, transcriptional changes were accelerated in OPMD 
compared with normal aging. We show that a decline in PABPN1 expression is highly correlated 
with age-associated changes in muscle strength in both OPMD and in muscle aging. We show 
that down regulation of PABPN1 induces cell senescence. Since PABPN1 regulates mRNA sta-
bility, we suggest that changes in PABPN1 expression levels in muscle cells would lead to broad 
transcriptional changes and hence muscle weakness.

RESULTS
Molecular signatures of aging are found in the OPMD mouse model at young age 
Symptoms in OPMD do not become apparent until midlife. Therefore, we hypothesised that mo-
lecular processes that control muscle aging are involved in OPMD pathogenesis. We investigated 
whether aging-regulated genes are deregulated in a mouse model for OPMD. In the A17.1 mouse 
expPABPN1 is overexpressed in muscles leading to muscle weakness (Davies et al., 2005). In this 
mouse model, muscle atrophy initiates after 12 weeks (Trollet et al., 2010). A17.1-deregulated 
genes were identified from age-matched wild type controls (Trollet et al., 2010). In a literature-
aided association study (LAS), we observed a large subset of A17.1-deregulated genes, in 6 week-
old A17.1 mice, that were strongly associated with the term ‘Aging’ (Figure 1A). Moreover, the 
fold-change of these genes was remarkably high (Figure 1A). This suggests that in this mouse 
model aging-associated transcriptional changes are induced already at 6 weeks. In an unsu-
pervised meta-analysis, 104 microarray studies, which are related to muscle development and 
muscle disorders, were compared with that of A17.1. Three major clusters of similar transcrip-
tional changes were identified (Figure 1B). The transcriptome of the 6 week-old A17.1 mouse 
was clustered together with those related to skeletal muscle aging (Welle et al., 2004; Giresi et al., 
2005), but not with datasets from other muscular dystrophies or myopathies (Figure 1B). These 
analyses further indicate that transcriptional changes in OPMD are highly associated with those 
of muscle aging.

Common molecular signatures in muscle aging and OPMD
To investigate genome-wide transcriptional changes in OPMD and during aging in humans, 
three microarray datasets were generated from Vastus Lateralis muscles. For muscle aging a con-
tinuous cross sectional dataset was generated from controls aged 17-89. Datasets from OPMD 
and expPABPN1 carries at pre-symptomatic stage were generated after comparing to age-match-
ing control groups (Supplementary Table 1). Major sources of transcriptional variation were 
assessed using unsupervised principal component analysis (PCA). In the control dataset age-
associated variations were identified using the first three principal components, covering 49% of 
transcriptional variation.  Based on the PCA analysis, samples were clustered into two age groups 
of 17-42 and 43-89 years (Figure 2A). This suggests a genome-wide transcriptional switch at the 
first half of the fifth decade. To verify this, we analysed the expression trends of probes whose 
expression changed with age (named here as aging-regulated; P<0.05). We identified a major 
switch-point around the age of 42±5 years (Figure 2A). An absolute correlation distance measure 
of k-means clustering revealed that the up-regulated and down-regulated trends of 70% of the 
age-regulated probes are crossed at 42±5 years (Figure 2B). This indicates that a major expres-
sion switch in skeletal muscles occurs during the first half of the fifth decade. This observation 
is in agreement with physiological studies in continuous cross-sectional cohorts showing that 
aging-related changes in muscle strength start between 40 to 50 years (Kirkwood, 2005; Lexell et 
al., 1988; Lindle et al., 1997; Sahin and Depinho, 2010). The aging-regulated genes were mapped 
to a wide spectrum of Kyoto Encyclopaedia of Genes and Genomes (KEGG) functional pathways. 
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These aging-regulated KEGG pathways were highly similar to those that were identified from 
independent microarray study of skeletal muscles from two-age group (Welle et al., 2004; Welle 
et al., 2003; Supplementary Table 2). 

Around midlife, muscle weakness symptoms are found in OPMD but not in age-matching con-
trols (van der Sluijs et al., 2003) or in expPABPN1 carriers at a pre-symptomatic stage (Supple-
mentary Table 2). OPMD-deregulated or pre-symptomatic-deregulated genes were identified 
from age-matching controls. Despite the limited number of samples in OPMD, OPMD-de-
regulated genes were highly similar to those identified in OPMD animal models (Anvar et al., 
2011; Raz et al., 2011b). In OPMD large transcriptional changes were identified, but only minor 
transcriptional changes was identified at the pre-symtomatic stage (Figure 2C). Only 9% of the 
OPMD-deregulated genes were also deregulated in the pre-symptomatic (Figure 2C). 30 KEGG 
pathways were enriched in OPMD-deregulated genes (Supplementary Table 2), whereas no con-

Figure 1 - The A17.1 mouse transcriptome is strongly associated with aging. A) Volcano plot shows the 
distribution of significantly deregulated genes (P = 0.05; indicated with a dashed line) in 6 week-old A17.1 
mice against fold change. Genes are weighted based on their association with the Aging concept. The 
normalized association-weight is presented with a circle on a scale between 0.05 and 1, where 1 equals 
the highest association. B) Hierarchical clustering arrangements of 104 datasets in a literature-aided meta-
analysis. Shades of blue indicate degree of similarities: from weak (white) to strong (dark blue). Three skel-
etal muscle aging-related datasets are clustered with OPMD dataset of 6 week-old mice (highlighted in red). 
The clusters associated with muscular dystrophies and other myopathies are highlighted in green and blue, 
respectively.
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sistently deregulated KEGG pathways were found at the pre-symptomatic stage. This indicates 
that major transcriptional changes are associated with symptoms and age but not with the expres-
sion of expPABPN1 per se.

The transcriptional changes in OPMD were significantly similar to aging-regulated genes (P = 
1.1×10-40; Figure 2C), and high similarity was also found between OPMD-deregulated and ag-
ing-regulated KEGG pathways from two independent studies (Supplementary Table 2). These 
analyses suggest that in both OPMD and muscle aging the major age-associated transcriptional 
changes occur during the fifth decade. These transcriptional changes are significantly similar. 
However, muscle weakness is found in OPMD and not in age-matching controls. This suggests 

Figure 2 - High similarities between transcriptomes of muscle aging and OPMD. A) Principal component 
analysis (PCA) plots of skeletal muscle datasets from healthy controls (age is indicated with a colour scale). 
An age-associated variation is found with the first three principal components. Plots show sample distribution 
in the first and second (left) or first and third (right) components. The percentage of variations is indicated 
between brackets. The colour scale reflecting the age of the patient samples is given on top of the figure. 
Dashed lines separate samples into two age groups. B) Plot shows expression trends for the major cluster 
of 6448 probes whose expression are significantly changed with age (P<0.05). 4494 probes whose expres-
sion significantly change with age (p<0.05) were used for k-mean clustering analysis. Similar trends with 
up- and or down-regulation were combined using absolute correlation, revealing a switching point at 42±5 
years. Up- or down- regulated expression trends (red and blue, respectively) are indicated with dashed 
lines, and continuous lines show the 95% boundaries. The middle line indicates the centroid with the age of 
individual samples. C) Venn diagram shows the overlap of between genes associated with aging (>42) and 
differentially expressed genes between OPMD- or expPABPN1 carriers and age-matched controls. Differen-
tially expressed genes (P<0.05) in OPMD and pre-symptomatic carriers were identified from age matching 
control groups. P-values for overlap in differentially expressed genes were calculated with Fisher’s exact test.
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Figure 3 – Analysis of differentially expressed genes in aging and in OPMD reveals that the UPS is the 
most prominently associated biological process. A) 2D plots of selected biological processes, which are 
affected in both OPMD (x-axis) and muscle aging (y-axis). Significantly affected genes have P-value<0.05 
(indicated with red lines). Gene association with ‘muscle contraction’, ‘oxidative phosphorylation’, ‘insulin 
signalling pathway’, ‘TGFβ signalling pathway’, and ‘ubiquitin-proteasome system’ terms is presented by a 
circle size. Normalized association weights < 0.1 are discarded. B) Cumulative distribution function (CDF) 
plots show the distribution of normalized association weights for overlapping deregulated genes between 
OPMD and muscle aging (>42 years) for each of the terms in A. Arrowheads indicate the maximum associa-
tion weights.

that progression and or amplitude of those transcriptional changes may underlie differences in 
between OPMD and controls.

The UPS is the most affected pathway in OPMD and muscle aging
Next, we investigated the similarities of molecular changes in OPMD and aging-associated bio-
logical pathways using a literature-association study (LAS). In this study, we assessed the associa-
tion weights of overlapping genes between muscle aging and OPMD with the five most robust 
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aging and OPMD-related pathways: oxidative phosphorylation, insulin signaling, tumor growth 
factor (TGFβ) signaling, the ubiquitin proteasome system (UPS) and muscle contraction (Sup-
plementary Table 2). In the muscle contraction group, the overlapping genes between OPMD 
and muscle aging had high association weights (Figure 3A). This suggests that similar molecular 
signatures of muscle contraction are found in OPMD and muscle aging. The overlapping genes 
between OPMD and muscle aging were strongly associated with oxidative phosphorylation and 
the UPS (Figure 3A), while little similarity was found for highly influenced genes in the insulin 
or TGFβ signaling pathways (Figure 3A). This suggests that different key components in insulin 
or TGFβ signaling pathways are deregulated in OPMD and muscle aging.

The association weights of the overlapping genes in OPMD-deregulated and aging-regulated 
with five functional groups were ranked in Cumulative Distribution Function (CDF) plots and 
compared against a theoretical random distribution. The associations of the genes with UPS, 
oxidative phosphorylation and muscle contraction were much stronger than expected by chance 
(Figure 3B; Kolmogorov-Smirnov test: P = 4.3×10-39, 8.1×10-25 and 2.4×10-26, respectively). In 
contrast, the distribution of association weights for genes in the insulin and TGFβ pathways were 
insignificant and did not differ from a theoretical random distribution. The low P value is, in part, 
due to the limited number of overlapping genes between OPMD and aging muscle in the latter 
pathways. The UPS ranked the highest suggesting that key components of the UPS contribute to 
both muscle aging and OPMD.

Age- related transcriptional changes are accelerated in OPMD
Clinical muscle weakness in quadriceps is found in OPMD patients but not in age-matching 
controls (Supplementary Table 2). Muscle weakness in quadriceps among healthy subjects is 
significant in the elderly (Hairi et al., 2010). Therefore, we investigated whether age-dependent 
expression changes are accelerated in OPMD compared to healthy individuals. Age-dependent 
expression trends of the probes that differentially expressed in both OPMD and aging were clus-
tered using k-means clustering. One cluster of up- and one cluster of down-regulated probes in 
aging show earlier and accelerated changes in OPMD carriers (Figure 4A). Examples of rep-
rehensive expression trends of individual genes from each cluster are presented in Figure 4B. 
Among those we identified the cell cycle regulator, CDKN1A (p21), and LMOD1 and CHRNA1 
that are associated with muscle contraction. Among the genes with accelerated expression trends 
in OPMD, for some the expression is changed at the pre-symptomatic stage. This analysis suggests 
that expression trends in OPMD change faster compared with controls, and therefore changes in 
expression profiles are accelerated in OPMD.

Next we evaluated similarities in expression profiles between OPMD and elderly (>80 years). 
Significant overlap was identified between OPMD-deregulated and elderly-regulated genes (P 
= 1.6×10-168; Figure 5A). From those, 74% showed a similar direction of deregulation. Examples 
of genes with similar direction of deregulation in both datasets are shown in Figure 5B. All 
genes were identified as aging-regulated in independent studies (Welle et al., 2004; Lu et al., 2004; 
Rodwell et al., 2004). Since muscle weakness and atrophy is evident in elderly, this analysis sug-
gests that similar molecular changes are associated with muscle weakness in OPMD and elderly.

We also investigated the pool of overlapping genes between OPMD and elderly. The relevance of 
this gene pool to aging was assessed with the literature concept ‘Aging’. The association-weight of 
these genes to ‘Aging’ was very strong (Figure 5C). This confirms that this procedure can robustly 
and quantitatively identify gene association to literature concepts. Similar to the pool of overlap-
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ping genes between aging and OPMD, in 
the OPMD-elderly pool, strong associa-
tion was found with oxidative phosphor-
ylation, the UPS and muscle contraction. 
The association with insulin and TGFβ 
signalling pathways was less strong (Fig-
ure 5C).

Protein homeostasis is mainly regulated 
by the autophagy-lysozyme system and 
the UPS. Since the UPS ranks the highest 
in both OPMD-aging and OPMD-elder-
ly pool of genes, we next compared the 
association-weights of genes associated 
with lysozyme, autophagy and the UPS 
in the pool of OPMD-elderly overlap-
ping genes. In contrast to the UPS, the 
association strength for autophagy and 
lysosome was very low (Figure 5C). 
The UPS was identified as the most sig-
nificantly and consistently deregulated 
pathway in OPMD and models (Anvar 
et al., 2011). In that study deregulation of 
genes in autophagy and lysozyme ranked 
much lower and was not consistently 
significant in all OPMD model systems. 
This suggest that deregulation of genes 
in the UPS has the highest contribution 
to muscle weakness in both aging and 
OPMD.

PABPN1 expression progressively 
declines with aging and the decline is 
accelerated in OPMD
OPMD is caused by expression of exp-
PABPN1. In the mouse model for OPMD 
severity of muscle weakness is associated 
with an increase in aggregates (Davies et 
al., 2005; Trollet et al., 2010). In models 
for OPMD aggregation depends on ex-
pression level. To our surprise, among 
the OPMD-deregulated genes in our 
microarray study we noticed PABPN1. 
To validate the microarray observation 
PABPN1 expression levels were deter-
mined with RT-qPCR of RNA from Vas-
tus lateralis. Expression levels in OPMD 
patients or expPABPN1 carriers at the 
pre-symptomatic stage were compared 

Figure 4 – Aging-associated expression trends are accel-
erated in OPMD. A) Expression trends of aging (>42)-regu-
lated and OPMD-deregulated probes show progressive 
transcriptional changes in aging healthy controls (grey lines) 
and accelerated changes in OPMD (red lines). Upper plots 
show a summary trend (centroids) of all genes in each clus-
ter, and lower plots show individual genes. B) Examples of 
expression trends of 10 genes from clusters in A, in healthy 
controls (grey lines) and in exPABPN1 carriers at pre-symp-
tomatic and symptomatic stages (red lines). Standard devia-
tions are indicated. Left and right columns show down- or 
up- regulated expression trends, respectively.
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with age-matching control groups. A significant decline in expression was found in OPMD com-
pared with age-matching controls (Figure 6A). At the pre-symptomatic stage a slight but insig-
nificant reduction was found (Figure 6A). Since OPMD samples are significantly older compared 
with pre-symptomatic, we next analysed whether a change in PABPN1 expression level is associ-
ated with age. RT-qPCR was performed on Vastus lateralis from 78 healthy controls aged 17-89.  
A significant decline in PABPN1 expression was identified from 43 years onwards (Figure 6B). 
A quadratic model or two linear models describes most accurately the change in PABPN1 ex-
pression during age (Figure 6B). A significant shift in expression was identified around 43 years 
(Table 1). This age-associated change in PABPN1 expression shows a similar trend as decline in 
skeletal muscle strength during aging (Kent-Braun et al., 2002; Roth et al., 2002), which is initi-
ated around midlife and progressively declines onwards. This suggests that changes in PABPN1 
expression marks muscle aging. Moreover, symptoms in OPMD, but not the expression of exp-
PABPN1 per se, are associated with a decline in PABPN1 expression.
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To validate the decline in PABPN1 mRNA expression, PABPN1 protein accumulation was deter-
mined in primary muscle cell cultures from 37 or 65 year-old individuals (Figure 6C). Protein 
analysis was performed on cultures that were in vitro propagated for a single passage. A nuclear 
staining of PABPN1 was found in these myoblasts. A decline in PABPN1 protein accumulation 
was observed in Myo-65y compared with Myo-37y, whereas the intensity of Desmin staining was 
unchanged (Figure 6Ci). Quantification of nuclear PABPN1 fluorescence intensity in myonuclei 
of fused myotubes revealed a significant decrease in Myo-65y compared with Myo-37y (Figure 
6Cii).

PABPN1 is expressed in every cell whilst symptoms in OPMD are predominantly exhibited in a 
subset of skeletal muscles. To investigate whether the decline in PABPN1 expression is tissue spe-
cific, the expression of PABPN1 was determined in blood samples of OPMD patients. RT-qPCR 
analysis revealed that PABPN1 expression levels were unchanged between OPMD patients and 
age-matching controls (Figure 6D). This suggests that a decline in PABPN1 expression in OPMD 
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Figure 6 – PABPN1 expression declines in OPMD and during muscle aging. A) Box plot shows PABPN1 
LOG2 fold change in Vastus lateralis. Fold change was measured from RT-qPCR and was normalized to 
GAPDH and HRPT genes and to age matching control groups (Npre-symptomatic = 6, Nage-matched control group = 16; 
NOPMD = 9. Nage-matched control group = 20). B) Scatter plot shows PABPN1 LOG2 expression in quadriceps of 78 
healthy controls between 17 and 89 years. Male and female samples are indicated in black and gray, re-
spectively. A quadratic fit is shown with a red line (age 17-89), gender-corrected P-value for the quadratic 
fit is indicated in red.  Blue dashed lines show linear fits for the age groups: 17 - 42 and 43 - 89 years. C) 
PABPN1 protein expression in primary myoblasts from young (37y) and old (65y) donors. i) Immunofluores-
cence of PABPN1 (red) and Desmin (green) in myotube cultures of 37 or 65 year-old donors. Scale bar is 10 
mm. ii) Histogram shows integrated fluorescence intensity of PABPN1 in myonuclei of 37y and 65y cultures, 
N37y = 103 and N65y = 87 myonuclei. P value was calculated with the student’s T-test, significant difference 
(p<0.05) is indicated with an asterisk. D) Box plot shows PABPN1 LOG2 expression in blood of OPMD pa-
tients (NOPMD = 16) and age-matched controls (Nage-matched control group = 12). Expression values were normalized 
to GAPDH and HRPT genes.
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is muscle-specific. Next we investigated PABPN1 expression in several aging-related microarray 
studies from different tissues. A change in PABPN1 expression was not found in Blood, Parotid 
glands, kidney cortex or kidney medulla (Table 1).  In postmortal frontal brain cortex we identi-
fied a small decline in PABPN1 expression in elderly (Table 1). Compared with PABPN1 decline 
in Vastus lateralis, the decline in the brain cortex was smaller and delayed (Table 1). Also in Mus-
culus rectus abdominis PABPN1 expression was not changed with age (Table 1). Rectus Abdominis 
is a typical posture skeletal muscle, while the Vastus lateralis is involved in muscle movement. 
Moreover, muscle weakness is more pronounced in the Vastus lateralis compared with Rectus 
Abdominis (Marzani et al., 2005). Together, this analysis suggests that the age-associated decline 
in PABPN1 expression marks physiological aging in a subset of skeletal muscles.

PABPN1 down-regulation in human muscle cell culture induces cellular senescence and 
myogenic defects
To investigate the effect of PABPN1 down-regulation in muscle cells, three PABPN1 shRNA 
clones were selected for functional studies in immortalized human myoblast cultures using the 
lentivirus expression system. Compared with controls (H1 empty vector and non-transduced 
cells), the three PABPN1 shRNA clones, 121, 122 and 123, led to a 70%, 40% and 20% decrease 
in PABPN1 expression (Figure 6A). These clones were selected as they represent a physiological 
decline in PABPN1. The sh121 clone led to down-regulation that is comparable to the decline in 
OPMD patients, while the sh122 clone led to a decline as in healthy controls around 60-70 years. 
The small decline in the sh123-transduced cells was comparable to the expression level in 40-50 
year-old controls. Western blot analysis of protein extracts from fused cells confirmed substantial 
PABPN1 down-regulation in the sh121-transduced cell cultures, and about 40% reduction in 

Tissue Age (years) Beta P-value

Vastus lateralis 17 – 42 (N = 41) -0.006 (0.009) 0.37

43 – 89 (N = 34) -0.029 (0.006) <0.0001

Frontal Brain Cortex 26 – 69 (N = 17) 0.002 (0.007) 0.73

70 – 95 (N = 13) -0.018 (0.008) 0.04

Blood 42 – 102 (N = 150) 0.001 (0.003) 0.69

Kidney Cortex 27 – 92 (N = 72) -0.001 (0.002) 0.76

-0.001 (0.002) 0.42

-0.003 (0.002) 0.15

Kidney Medulla 29 – 92 (N = 61) -0.003 (0.002) 0.11

0.001 (0.002) 0.76

-0.004 (0.002) 0.06

Rectus Abdominis 24 – 83 (N = 81) -0.000 (0.003) 0.94

0.010 (0.007) 0.13

0.001 (0.003) 0.64

Parotid glands 19 – 71 (N = 13) 0.000 (0.003) 0.93

0.003 (0.005) 0.64

-0.001 (0.005) 0.86

Table 1 – Changes in PABPN1 expression depends on chronological age are muscle specific.

Betas (standard errors of the mean) 
of a linear model are provided per 
probes. Values for three indepen-
dent PABPN1 probes are shown for 
datasets from Kidney cortex, Kidney 
medulla, Rectus Abdominis and Par-
totid glands. P-values are adjusted for 
gender. Significant changes are high-
lighted in bold. N indicates number of 
samples. Age is indicates in years (y).
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Figure 7 – PABPN1 down-regulation in myotubes shows myogenic defects and cell senescence. Hu-
man myotubes were transduced with shRNA specific to PABPN1 (121, 122, and 123) or H1 empty vector. 
Non-transduced (NT) cells were used as controls. A) Histograms show PABPN1 expression in myoblasts 
two weeks after transduction. Fold change was normalized to GAPDH gene and to non-transduced cells. 
Averages are of 6 biological replicates. Western blot analysis of PABPN1, MHC1 and MSA in 121-, 122- or 
H1- transduced myotubes two weeks after transduction. B) Immunofluorescence of PABPN1 (labelled with 
Alexa-594) and myosin (labelled with Alexa-488) in 121- or H1-transduced fused myoblast cultures. Scale 
bars are 20 mm. A magnification of a single nucleus is shown in the boxed image. C) Cell growth analysis 
of 121-, 122- and H1- transduced myoblasts 3 or 10 weeks in culture. 50,000 cells were plated and were 
counted after 2 days in culture. Plots show normalized cell number to un-transduced controls. Averages are 
of 3 biological replicates. D) Left: Immunofluorescence of myotube cell cultures of desmin, PABPN1 and 
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sh122-transduced cells (Figure 7A). A decrease in the accumulation of nuclear PABPN1 was 
also verified by immunofluorescence in the sh121-transduced cells. A reduced PABPN1 signal 
was found in sh121 cells compared with control cells (Figure 6B). Nuclear PABPN1 is localized 
to speckles (Tavanez et al., 2005). In myonuclei of sh121 the speckle localization of PABPN1 was 
disrupted (Figure 7B, box). Together, this demonstrates that shRNAs for PABPN1 induced a 
decline in mRNA and protein accumulation.

Next we investigated cellular effects of PABPN1 down-regulation. Cell growth was not signifi-
cantly affected in all myoblast cultures two or three passages after transduction (Figure 7C). 
However, after a longer culturing period, a 60% decline in cell growth was found in the sh121-
transduced cells, whereas changes were not found in sh122, sh123-transduced cells or in con-
trols (Figure 7C). Senescent cells are marked by heterochromatic foci (HF) (Spector and Gasser, 
2003). We observed HF in the sh121-transduced cells but not in controls (Figure 7D). PABPN1 
expression was undetectable in nuclei with HF (Figure 7D). In vivo, the majority of muscle cells 
are post-mitotic; therefore we compared the abundance of HF nuclei between myoblast and myo-
tube cultures. 24% of myonuclei in 121-fused cultures contained HF whereas in 121-myoblasts 
only 9% of the cells were with HF. This suggests that the effect of PABPN1 down-regulation on 
cellular senescence is more pronounced in post-mitotic cells. Senescent muscle cells exhibit re-
duced fusion (Bigot et al., 2008). The fusion index in control cells was around 70% in transduced 
cells and controls, and was not significantly affected during in vitro propagation (Figure 7E). 
However, during in vitro propagation of the sh121-transduced cells cell fusion was reduced to 
30% (Figure 7E). In concordance with cell growth, no significant reduced cell fusion was found 
in sh122- or sh123- transduced cells. Fusion defects can be associated with reduced expression 
of sarcomere encoding genes. RT-qPCR of MYH1, DMD and CAV3 revealed a significant re-
duction in fused cultures of sh121-transduced cells (Figure 7F). For these genes a significant 
decline in expression was found in our microarray study (Figure 7). The decline in MHY1 on 
mRNA level was consistent with a reduced protein accumulation in myotubes (Figure 7A). In the 
sh122- and sh123- transduced cells a gradual decrease in the expression of MYH1 was observed, 
which corresponds to the decline in PABPN1 expression (Figure 7F). The expression of DMD 
was significantly affected in the sh122- but not in the sh123- transduced cells.  The expression of 
CAV3 reduced only in the sh121-transduced cells. Our experiments in this cell model suggest a 
regulatory role for PABPN1 expression level in induction of cell senescence in muscle cells, which 
is associated with a gradual change in expression of sarcomeric genes.

DISCUSSION
PABPN1 regulates poly(A) tail length and mRNA stability (Lemay et al., 2010; Kuhn et al., 2009), 
and thus plays an indispensable role in cell homeostasis by affecting genome-wide mRNA accu-
mulation. Previous studies demonstrated that a complete knockdown of PABPN1 causes shorting 
of poly(A) tail, which is associated with myogenic defects, including reduction in cell growth and 
fusion (Apponi et al., 2010; Chartier et al., 2006; Davies et al., 2006; Trollet et al., 2010). Here, for 
the first time, a significant decline of PABPN1 expression in affected muscles of OPMD patients is 

MHC1. Cells were cultured for 10 weeks before fusion. Nuclei were counter stained with DAPI. Scale bars 
are 15 mm (Desmin) or 5 (PABPN1 and MHC1) mm. E) Images of fused myoblast H1- or 121- transduced 
cultures. Preceding fusion cells were maintained for 4 or 10 weeks after transduction. Scale bar is 30 mm. 
F) Left histogram shows RNA expression of MYH1, DMD, and CAV3 in 121-, 122-, 123-, and H1-transduced 
fused myoblast cultures. Cells were cultured for 3 weeks before fusion. Fold change was normalized to 
GAPDH and to non-transduced cells. Averages are of 3 biological replicates. Significant down-regulation 
(P<0.05) is indicated with asterisks. Right histogram shows Fold change in the microarray study in aging.
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reported. Since a decline in PABPN1 ex-
pression was not found at the pre-symp-
tomatic stage it suggests that the decline 
in PABPN1 expression is not caused by 
the expression of expPABPN1, per se. We 
show that a down-regulation of PABPN1 
expression, to levels that are found in 
vivo (OPMD and aging), in muscle cell 
culture leads to cellular defects, including 
cell senescence and myogenic defects. In 
accordance with disease progression, the 
decline in cell growth and fusion corre-
lates with levels of PABPN1 down-regu-
lation. Primary myoblast cultures from 
OPMD patients also exhibit reduced 
cell growth and fusion defects (Perie et 
al., 2006). Overexpression of PABPN1 
also leads to muscle cell defects and at-
rophy, which is associated with genome-

wide transcriptional chances (Trollet et al., 2010). Mild overexpression of either expPABPN1 or 
the wild type allele in fused muscle cell culture also leads to transcriptional changes (Raz et al., 
2011b). These changes, however, are significantly smaller compared with high overexpression 
situations (Raz et al., 2011b). Since PABPN1 regulates poly(A) length and hence mRNA stability, 
these studies together suggest that manipulations of PABPN1 expression levels below or above a 
narrow threshold leads to widespread transcriptional changes in muscle cells.

PABPN1 is ubiquitously expressed but symptoms in OPMD are predominately exhibited in a 
subset of skeletal muscles. Here we found that in OPMD PABPN1 expression declines in skeletal 
muscles but not in blood. During normal muscle aging, PABPN1 level also decreases. However, 
this decline is slower and smaller than in OPMD. The decline in PABPN1 expression was not 
found in other tissues like kidney, Parotid glands, blood or Rectus Abdominis muscles, which is 
less affected during aging. A smaller and delayed decline in PABPN1 was identified in brain cor-
tex. This suggests that a decline in PABPN1 expression is more prominent in skeletal muscles. The 
decline was progressive from the age 43± years, and perfectly fit to the decline in muscle weakness 
during aging (Beenakker et al., 2010). Previous studies demonstrated significant muscle weak-
ness in quadriceps of elderly (Kent-Braun et al., 2002; Roth et al., 2002). A major switch in expres-
sion profiles in both OPMD and aging was identified during the first half of the fifth decade. This 
suggests that similar mechanisms initiate muscle weakness in aging and OPMD. Transcriptional 
similarities between OPMD and elderly suggest differences in progression of aging-regulated 
muscle weakness between OPMD and normal aging (Figure 8).

Protein aggregation is the hallmark of OPMD. Both wild type and mutant PABPN1 are prone to 
aggregation. However, aggregation potency of expPABPN1 is higher than that of the wild type 
protein (Raz et al., 2011b). In contrast to the aggregation process of wild type PABPN1, that of 
expPABPN1 is irreversible and encompasses stable pre-aggregated forms or oligomers (Raz et al., 
2011a). Aggregates of both wild type and expPABPN1 entrap a broad rage of nuclear proteins, 
including components of the UPS (Calado et al., 2000; Anvar et al., 2011). The rate of protein 
entrapment differs between aggregation process of wild type and mutant PABPN1 (Raz et al., 

Figure 8 – Schematic presentation of decline in PABPN1 
expression in association with protein aggregation dur-
ing aging. Upper panel represents age-associated changes 
in PABPN1 expression manifested during midlife, with ac-
celeration in OPMD (in red). Lower panel illustrates the de-
cline in the level of soluble PABPN1 during aging of skeletal 
muscle, regulated by the UPS.
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2011a). Protein entrapment can be associated with transcriptional changes of nuclear proteins 
and UPS encoding genes (Corbeil-Girard et al., 2005; Anvar et al., 2011). Since proteostasis of 
nuclear proteins is predominantly regulated by the UPS, changes in expression of UPS encod-
ing genes would affect the ratio of soluble to aggregated proteins. PABPN1 aggregation reduces 
the levels of soluble PABPN1 (Raz et al., 2011b), and therefore could lead to a similar effect as 
down-regulation. Aggregation of PABPN1 is regulated by the UPS  (Raz et al., 2011b). Moreover, 
transcriptional changes of the UPS were identified in OPMD and aging. In elderly and OPMD 
the UPS ranked with a highest association. Functional decline of the UPS is associated with an 
accumulation and aggregation of misfolded proteins (Balch et al., 2008; Morimoto, 2008; Sher-
man and Goldberg, 2001). In C. elegance, aging is associated with widespread accumulation of 
aggregated proteins (David et al., 2010). Changes in proteasome activity in skeletal muscles were 
observed in muscle aging (Ferrington et al., 2005). We suggest that age-associated changes in UPS 
expression play a role in OPMD onset (Figure 8).

Altogether, our data reveals a strong association between PABPN1 expression in OPMD and in 
muscle aging. A decline in PABPN1 expression marks muscle aging and we suggest that PABPN1 
plays an indispensable role in muscle homeostasis. From this study new regulators of aging cells 
could be identified in future studies.
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MATERIALS AND METHODS
Human materials, RNA extraction and RT-qPCR
Datasets: Human and mouse samples that were used in the microarray studies have been previ-
ously published (Anvar et al., 2011; Trollet et al., 2010). A summary of human samples is listed in 
Supplementary Table 1.

All human muscle biopsies presented in this study were collected at Radboud Hospital, Nijme-
gen, Canisius-Wilhelmina Hospital, Nijmegen, The Netherlands, and Rigshospitalet, Denmark, 
after an approval of the medical ethical committee Arnhem-Nijmegen (CMO nr. 2005/189) and 
of the local ethical committee, from The NL and Denmark, respectively. OPMD patients and 
pre-symptomatic were genetically confirmed and underwent clinical investigation including 
MRC score prior to sampling of muscle biopsy. All quadriceps biopsies were collected using the 
Bergstrom needle procedure. The biopsies froze immediately in liquid nitrogen and stored at -80 
before RNA extraction. 

RNA extraction and RT-qPCR were performed as described in (Trollet et al., 2010). Expression 
levels were calculated according to the ∆∆CT method, and were first normalized to GAPDH 
housekeeping gene and then to controls (17 - 25 years) in the aging studies, or to the age-matching 
controls in the studies of expPABPN1 carriers. The statistical significance was determined with 
the Student’s t-test. The list of primers used in this study is provided in Supplementary Table 3.

Microarray and Statistical Analyses
The human and mouse microarray datasets are publicly available at GEO repository under the ac-
cession numbers GSE26605 and GSE26604, respectively. In all datasets genome-wide expression 
profiles of skeletal muscles from OPMD were compared to controls. PABPN1 expression in non-
muscle tissues was identified from previously published microarrays, all are publically available:  
frontal cortex:  (GEO-GD707, GEO-GSE1572; Lu et al., 2004), Rectus abdominis (GEO-GSE5086; 
Zahn et al., 2006), blood (GEO-GSE16717; Passtoors et al., 2012), kidney (Rodwell et al., 2004) 
and Parotid glands (GEO-GSE8764; Srivastava et al., 2008). 

Data Processing: Quantile normalization was applied on the microarray raw dataset and data 
quality was assessed by the principal component analysis. Differentially expressed genes between 
two age-groups were identified by applying hierarchical linear model using limma package in R 
(Smyth, 2004) at a cut-off of 0.05. Furthermore, a list of aging-deregulated genes was filtered for 
those that could not be confirmed after integration with additional set of control individuals in 
an independent dataset. The OPMD-deregulated genes in the OPMD mouse model and patients 
were identified as previously described (Anvar et al., 2011; Trollet et al., 2010). Probe annotation 
was carried out using illuminaHumanv3BeadID (human) and illuminaMousev1BeadID (mouse) 
R packages. Statistical significance of gene overlap was carried out with the Fisher’s exact test in R.

The principal component analysis (PCA) was applied on the human dataset to identify outliers 
and to investigate age-associated variations. PCA analysis was performed in Matlab and in R.

For the literature-aided study (LAS) the association weights between genes and each biological 
process were mined using Anni 2.1 (Jelier et al., 2008b). The association weights were normalized 
to the scale between 0 and 1, relative to the maximum association weight. Threshold of 0.1 was 
applied to remove genes with weak association (based on the level of evidential support in litera-
ture). In addition, genes with P >0.05 (-log10 >1.3) in muscle aging and OPMD were excluded. 
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Cumulative Distribution Function (CDF) plots were used to examine the association distribution 
for deregulated genes in OPMD and muscle aging. The CDF of Genei is defined as the proportion 
of genes with association weight less than or equal to that of Genei. The Kolmogorov-Smirnov 
(KS) test was used to identify distributions that significantly differ from a theoretical distribution, 
threshold of P <10-3.  Statistical tests were performed in Matlab.

The k-means clustering was used to identify similar expression trends. The procedure was made 
with probes. For the control samples an absolute correlation was applied to cluster probes with 
reciprocal (up or down) trends. However, in order to optimize the clustering arrangements, aver-
age Silhouette (Savg) values are calculated for each cluster in Matlab. Clustering arrangement of 
partitions with Savg <0.6 were reiterated until the criteria has met. Maximum number of clusters 
was set to 20 to avoid overly complex clustering arrangement due to the size of the set. The cluster 
centroids were used to provide summarized age-dependent expression patterns for each cluster.

Statistical analyses of linear and quadratic models were carried out with the SPSS software (IMB) 
and Matlab, and plots were generated in Matlab. 

Pathway Analyses: Genes were mapped to KEGG pathways (Kyoto Encyclopedia of Genes and 
Genomes) for assessment of significant transcriptional deregulation in aging (>42 years) or in 
OPMD using global test (Goeman et al., 2004; Jelier et al., 2011). DAVID, a functional annotation 
clustering tool (Dennis, Jr. et al., 2003; Huang et al., 2009), was used for integration and remov-
ing redundancy. The previously published datasets of Welle et al. (Welle et al., 2004) were used 
for replication and independent confirmation of pathway analysis. Subcellular localization was 
carried out with Gene Ontology. A recent annotation of genes encoding for aggregation-prone 
proteins (David et al., 2010) was used to map the human homologues genes using HomoloGene 
(http://ncbi.nlm.nih.gov/homologene) and Inparanoid (http://inparanoid.sbc.su.se) online data-
bases. The meta-analysis was carried out on 104 microarray datasets from various organisms as 
described in Jelier et al. (Jelier et al., 2008a).

Cell culture and Lentivirus transduction
The human 7304 immortalized myoblasts were a kind gift from Francesco Muntoni (University 
College London, UK) and were prepared by Gillian Butler-Browne and Vincent Mouly (Zhu et 
al., 2007). The 7304 cells were propagated in a medium containing DMEM+20% Fetal Calf Serum 
supplemented with an equal volume Skeletal Muscle Cell Media (PromoCell, Heidelberg, Ger-
many) at 37 °C under 5% CO2. Cell fusion was carried out in a medium containing DMEM+5% 
Horse Serum.  Human skeletal primary myoblasts from a 37-year-old (37y) and a 65-year-old 
(65y) donor (Tebu-bio, Le Perray en Yvelines, France) are described in (Righolt et al., 2011). Cells 
were propagated for only one or two passages and subsequently were seeded on collagen-coated 
glass plates for imaging.

The shRNA in lentivirus expression vectors 121 (TRCN0000000121), 122 (TRCN0000000122) 
and (TRCN0000000123) 123 were obtained from Sigma-Aldrich. An empty vector, H1, was used 
as a negative control. Lentivirus particles were produced as described in (Raz et al., 2006). Virus 
transduction was performed with 2mg/ml polybrene. Cells were cultured with viruses (MOI ∼25) 
overnight, followed by medium refreshing. Transduced cells were maintained in the presence 
of 5mg/ml puromycin. PABPN1 down-regulation was determined 3 days, 4 weeks and 8 weeks 
after transduction using RT-qPCR. Down regulation did not change during culturing. In total, 4 
independent transduction experiments were performed. Cell fusion and cell growth experiments 
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were carried out in the absence of puromycin. For cell growth analysis 50,000 cells were seeded 
in triplicates in a 24 well plate and the number of living cells was counted after two days with 
TC10TM Automated Cell Counter (BioRad Hercules, CA, USA). Cell growth experiments were 
carried out 3 and 10 weeks after transduction. Cell fusion was carried out 10 weeks after trans-
duction in triplicates and cell fusion index was determined by dividing the number of nuclei in 
myotubes to the total number of myotubes.

Immunofluorescence and western blot analyses
The analysis of fused cells was carried out on cells seeded on plastics or on collagen-coated glass 
plates. Immunofluorescence was carried out as described in (Raz et al., 2006). Images were re-
corded as described in (Raz et al., 2011b). Primary antibodies used were: anti-Myosin MF20 
(Sigma-Aldrich, MO, USA); anti-Desmin (1:500; Cell Signalling Technology, MS, USA) and the 
anti-PABPN1, 3F5 llama single chain antibody (1:1000; Verheesen et al., 2006), recognised with 
rabbit-anti-VHH (1:2000). The Alexa 488-, Alexa 430- or Alexa 594- conjugated secondary anti-
bodies against primary antibodies were obtained from Molecular Probes (Invitrogen, CA, USA) 
and used (1:2000). DAPI (Sigma-Aldrich, MO, USA) was used for DNA counterstaining.

Western blot analysis of total proteins that were extracted from fused cells was carried out as 
described in (Raz et al., 2011b). Primary antibodies were mouse monoclonal anti-muscle ac-
tin (MSA) (1:2000) (Novocastra, Newcastle upon Tyne, UK), 3F5 llama single chain antibody 
(1:1000) recognised with rabbit-anti-VHH (1:2000) and anti-Myosin MF20 (1:500) (Sigma-Al-
drich). Detection of the first antibodies was conducted with the Odyssey Infrared Imaging Sys-
tem (LI-COR Biosciences, NE, USA) and suitable secondary antibodies.
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APPENDIX
Supplementary Table 1 – A list of muscle biopsies of OPMD patients and controls. All expPABPN1 car-
riers were confirmed by sequence analysis.

Controls
expPABPN1 carriers

Pre-symptomatic Symptomatic

Sex Age Sex Age Sex Age Sex Age MRC Sex Age MRC

Female 17 Male 36 Male 55 Female 37 5 Female 49 4 

Male 17 Female 36 Female 56 Female 37 5 Female 54 5 

Female 19 Male 36 Female 56 Male 38 5 Female 57 4 

Female 19 Female 37 Male 56 Female 39 5 Male 59 5 

Male 20 Female 38 Male 58 Female 39 5 Female 60 4 

Female 20 Male 39 Female 58 Female 41 5 Female 60 4.5 

Male 22 Female 39 Female 60 Male 66 4.5 

Male 23 Male 39 Female 60 Male 68 3.5 

Female 25 Male 40 Female 60 Female 69 4.5 

Female 27 Male 40 Male 60 

Male 27 Male 40 Male 61 

Female 27 Female 40 Male 66 

Male 28 Male 41 Female 67 

Male 28 Male 42 Male 67 

Male 29 Male 42 Female 67 

Male 29 Male 42 Female 67 

Female 31 Male 42 Male 68 

Female 31 Male 43 Female 70 

Male 32 Male 43 Male 70 

Female 32 Female 43 Male 73 

Female 32 Female 43 Male 77 

Female 34 Female 44 Female 85 

Female 34 Male 44 Female 87 

Male 34 Male 45 Female 89 

Female 35 Female 48 

Female 35 Male 49 

Female 35 Female 49 

MRC score is a non-linear clinical measure for muscle weakness. MRC in left and right quadri-
ceps was determined at the same day when biopsies were sampled. Values show an average 
of both sides. MRC in age-matching controls and in pre-symptomatic is 5. 5=normal muscle 
strength; <5 indicates muscle weakness.
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Supplementary Table 3 – A primer list for RT-qPCR.

Gene FW Primer RV Primer

GUSB 5’ CTCATTTGGAATTTTGCCGATT 5’ CCGAGTGAAGATCCCCTTTTTA

GapDH 5’ CAACGAATTTGGCTACAGCA 5’ AGGGGTCTACATGGCAACTG

PABPN1 5’ ATGCCCGTTCCATCTATGTTG 5’ GCCTGGTCTGTTGGTTCGTT

MYH1 5’ TGGACAAACTGCAAGCAAAG 5’ GACCTGGGACTCAGCAATGT

CAV3 5’ CTGTTGCCTGAGCACAAAAA 5’ GTTAGCCAAAGGGGAGGTTC

DMD 5’ TGAGAGCTTTATTGCTGCATTTT 5’ CATGCCATGTGATGTTTATGC
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NETWORKS IN BIOLOGY
beyond differential expression





113

In microarray data analysis, factors such as data quality, biological variation, and the increas-
ingly multi-layered nature of more complex biological systems complicates the modelling of 
regulatory networks that can represent and capture the interactions among genes. We believe 

that the use of multiple datasets derived from related biological systems leads to more robust 
models. Therefore, we developed a novel framework for modelling regulatory networks that in-
volves training and evaluation on independent datasets. Our approach includes the following 
steps: (1) ordering the datasets based on their level of noise and informativeness; (2) selection of 
a Bayesian classifier with an appropriate level of complexity by evaluation of predictive perfor-
mance on independent data sets; (3) comparing the different gene selections and the influence of 
increasing the model complexity; (4) functional analysis of the informative genes. In this paper, 
we identify the most appropriate model complexity using cross-validation and independent test 
set validation for predicting gene expression in three published datasets related to myogenesis 
and muscle differentiation. Furthermore, we demonstrate that models trained on simpler da-
tasets can be used to identify interactions among genes and select the most informative. We 
also show that these models can explain the myogenesis-related genes (genes of interest) sig-
nificantly better than others (P < 0.004) since the improvement in their rankings is much more 
pronounced. Finally, after further evaluating our results on synthetic datasets, we show that our 
approach outperforms a concordance method by Lai et al. in identifying informative genes from 
multiple datasets with increasing complexity whilst additionally modelling the interaction be-
tween genes. We show that Bayesian networks derived from simpler controlled systems have bet-
ter performance than those trained on datasets from more complex biological systems. Further, 
we present that highly predictive and consistent genes, 
from the pool of differentially expressed genes, across 
independent datasets are more likely to be fundamen-
tally involved in the biological process under study. We 
conclude that networks trained on simpler controlled 
systems, such as in vitro experiments, can be used to 
model and capture interactions among genes in more 
complex datasets, such as in vivo experiments, where 
these interactions would otherwise be concealed by a 
multitude of other ongoing events.

The identification of informative genes from multiple 
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BACKGROUND 
High-throughput gene expression profiling experiments have increased our understanding of 
the regulation of biological processes at the transcriptional level. In bacteria (Bockhorst et al., 
2003) and lower eukaryotes, such as yeast (Segal et al., 2003), modeling of regulatory interac-
tions between large numbers of proteins in the form of regulatory networks has been successful. 
A regulatory network represents relationships between genes and describes how the expression 
level, or activity, of genes can affect the expression of other genes. The network includes causal 
relationships where the protein product of a gene (e.g. transcription factor) directly regulates the 
expression of a gene but also more indirect relationships. Modeling has been less successful for 
more complex biological systems such as mammalian tissues, where models of regulatory net-
works usually contain many spurious correlations. This is partly attributable to the increasingly 
multi-layered nature of transcriptional control in higher eukaryotes, e.g. involving epigenetic 
mechanisms and non-coding RNAs. However, a potential major reason for the decreased perfor-
mance is due to biological complexity of datasets which can be defined as the increase of biologi-
cal variation and the presence of different cell types, which is not compensated by an increase in 
the number of replicate data points available for modeling. There is an urgent need to identify 
regulatory mechanisms with more confidence to avoid wasting laborious and expensive wet-lab 
follow-up experiments on false positive predictions. 

The main paradigms of this paper are that regulatory interactions that are consistently found 
across multiple datasets are more likely to be fundamentally involved and that these regulatory 
interactions are easier to find in datasets with less biological variation. In the end, regulatory 
networks trained on less complex biological systems could thus be used for the modeling of the 
more complex biological systems. We do this using a novel computational technique that com-
bines Bayesian network learning with independent test set validation (using error and variance 
measures) and a ranking statistic. Whilst Bayesian networks and Bayesian classifiers have been 
used with great success in bioinformatics (Friedman et al., 2000; Xu et al., 2004), an important 
weakness has been that, when trying to build models that reveal genuine underlying biologi-
cal processes, a highly accurate predictive model is not always enough (Grossman and Domin-
gos, 2004). The ability to generalize to other datasets is of greater importance (Peña et al., 2005). 
Simple cross-validation approaches on a single dataset will not necessarily result in a model that 
reflects the underlying biology and therefore will not generalize well. Our approach is to exploit 
multiple datasets of increasingly complex systems in order to identify more informative genes 
reflecting the underlying biology.

Bayesian networks have been an important concept for modeling uncertain systems (Pearl, 1986; 
Buntine, 1996; Heckerman, 1998; Friedman and Koller, 2003). In the last decade several research-
ers have examined methods for modeling gene expression datasets based on Bayesian network 
methodology (Segal et al., 2003; Friedman et al., 2000; Xu et al., 2004). These networks are di-
rected acyclic graphs (DAG) that represent the joint probability distribution of variables effi-
ciently and effectively (Friedman et al., 1997). Each node in the graph represents a gene, and the 
edges represent conditional independencies between genes. Bayesian networks are popular tools 
for modeling gene expression data as their structure and parameters can easily be interpreted by 
biologists.

Bayesian classifiers are a family of Bayesian networks that are specifically aimed to classify cases 
within a data set through the use of a class node. The simplest is known as the naïve Bayes clas-
sifier (NBC) where the distribution for every variable is conditioned upon the class and assumes 
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independence between the variables. Despite this oversimplification, NBCs have been shown 
to perform very competitively on gene expression data in classification and feature selection 
problems (Grossman and Domingos, 2004; Fielding, 2007; Tobler et al., 2002). Other Bayesian 
classifiers, which often have higher model complexity as they contain more parameters, involve 
learning different networks such as trees between the variables and therefore relax the indepen-
dence assumption (Friedman et al., 1997). The logical conclusion is the general Bayesian Network 
Classifier (BNC) which simply learns a structure over the variables including the class node. In 
this paper, we explore the use of the NBC, and the BNC for predicting expression on independent 
datasets in order to identify informative genes using classifiers of differing complexity.

Accordingly, in order to optimize the classifier and choose the best method, we need to consider 
the classifiers’ bias and variance. Since bias and variance have an inverse relationship �������(Field-
ing, 2007), which means decreasing in one increases the other, cross-validation methods can be 
adopted in order to minimize such an effect. The k-fold cross-validation (Fielding, 2007; Stone, 
1974) randomly splits data into k folds of the same size. A process is repeated k times where k-1 
folds are used for training and the remaining fold is used for testing the classifier. This process 
leads to a better classification with lower bias and variance (Kohavi, 1995) than other training 
and testing methods when using a single dataset. In this paper, we exploit bias and variance using 
both cross-validation on a single dataset and also independent test data in order to learn models 
that better represent the true underlying biology. In the next section we provide a description of 
the gene identification algorithm for identifying gene subsets that are specific to a single simple 
dataset as well as subsets that exist across datasets of all biological complexity. We used van den 
Bulcke et al. (2006) proposed model for generating synthetic datasets to validate our findings 
on real microarray data. Moreover, we evaluate the performance of our algorithm by comparing 
the ability of this model in identifying the informative genes and underlying interactions among 
genes with the concordance model. Finally, we present the conclusion and summary of our find-
ings in the last section.

METHODS
Multi-Data Gene Identification Algorithm
The algorithm involves taking multiple datasets of increasing biological complexity as input and 
a repeated training and testing regime. Firstly, this involves a k-fold cross-validation approach on 
the single simple dataset (from now on we refer to this as the cross-validation data) where Bayes-
ian networks are learnt from the training set and tested on the test set for all k folds. These folding 
arrangements have been used again for assessing a final model. The Bayesian Network learning 
algorithm is outlined in the next section. 

The Sum Squared Error (SSE) and variance is calculated for all genes over these folds by predict-
ing the measured expression levels of a gene given the measurements taken from others. Next, the 
same models from each k fold are tested on the other (more complex) datasets (the independent 
test data) and SSE and variance are again calculated. These SSE and variances are used to rank the 
genes according to their informativeness (which represents the most predictive and influential 
genes). Those that are ranked highly in the single-dataset cross-validation experiments will be 
informative, specific to the single datasets experiment, whereas those that are ranked highly on 
the independent datasets should be informative in a more general sense in that they are predic-
tive (low SSE) and consistent (low variance) across datasets of all complexity. We evaluate the 
statistical significance of these rankings using a method proposed by Zhang et al. (2006). The full 
details are outlined in Algorithm 1 where TrainD represents the training data (cross-validation 
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data, here the relatively simple datasets), and TestD1 … TestDM represent the more complex test 
datasets, independent test data.

Bayesian Network Structure Learning
The goal of learning gene regulatory networks using Bayesian network approaches is to establish 
the structure of the network and then to parameterize the conditional probability tables (Su and 
Zhang, 2006). As the number of possible network structures is huge, learning the structure of a 
network has a high computational cost. Since the effective learning of network structure engages 
a trade-off of bias vs. variance, the necessity of designing an algorithm in which it can generate an 
ideal structure for a given dataset, with a degree of biological complexity, is crucial (Chickering et 
al., 2004). In this study, instead of using well studied but unrealistic and sometimes not effective 
classifiers such as NBC and Tree Augmented Networks (TAN), we use an optimization approach 
that uses a simulated annealing search and the Bayes Information Criterion (BIC) as a scoring 
metric (Schwarz, 1978). The advantage of simulated annealing over other methods (like greedy 
searches or hill climbing) is that it aims to avoid local maxima (Friedman et al., 1997). We have 
chosen the BIC as a fitness function as it is less prone to overfitting through the use of a penalizing 
term for overly complex models. 

Bayesian networks with more connections between their nodes require a higher number of pa-
rameters and as a result increase the complexity of the models exponentially (Lam and Bacchus, 
1994). Therefore, we explore three different classes of model learning: the Selective Naïve Bayes 
(SNB) where only links between a class node representing differentiation status and a gene are 
explored, a search that explores structures with links between genes but limiting each gene to 
having only one parent (1PB). Limiting the number of parents in a Bayesian network is common 
practise but can be considered a crude approach to reducing parameters. As a result we also ex-
plore a full unlimited structure learning (NPB) and learn these structures using the simulated an-
nealing with the BIC scoring metric (which naturally penalises overly complex networks). In this 
study, the initial state of the structure is an empty DAG with no link. In order to alter the network 
structures, three operators have been used within the simulated annealing. These operators are 
adding, removing, or swapping links to generate a new network for validation. These alterations 

Algorithm 1  - Multi Data Gene Identification Algorithm.

Input:	 {TrainD, TestD1, …TestDM, folds}
	 for k = 1:folds
		  Learn BN using Algorithm 2 on training folds of TrainD
		  Score SSE on test fold k of TrainD
		  Score SSE on all independent test datasets {TestD1…TestDM}
	 end for

	 Calculate variance of SSE over all k folds on TrainD and {TestD1…TestDM}
	 Create gene rankings: trainR_SSE, train_var, 
	 {testR_SSE1…testR_SSEM} and

	 {testR_var1…testR_varM} by ordering the genes

	 on the respective SSE and variance scores

Output:	 trainR_SSE, train_var, 
	 {testR_SSE1…testR_SSEM}
	 {testR_var1…testR_varM}
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can be either accepted or rejected. The 
outline of this procedure can be found in 
Algorithm 2.

Prediction and Ranking
Zhang et al. (2006) proposed a method 
to convert a set of gene rankings into 
position p-values to evaluate the sig-
nificance of a given gene. However, this 
involved working with resampling tech-
niques upon a single dataset. Here, we 
use the ranking lists according to the 
model’s average SSE and variance for 
both the original simple dataset and the 
independent test sets in order to gener-
ate position p-values. This requires us 
to include, a number of random genes 
which can be counted as uninformative 
genes. By comparing the actual ranking 
of the gene with the null distribution we 
can calculate the position p-values. In 
this paper we are using three independ-
ent datasets so we do not need to use resampling in order to generate more gene rankings as 
Zhang et al. (2006) did in their experiments. In addition, the different rankings will have different 
interpretations as some are based purely on the simple dataset whilst others are influenced by er-
ror and variance on the more biologically complex independent data.

Datasets
With the aim of investigating the influence of the complexity of a gene expression dataset on 
the performance of classifiers in identifying the gene regulatory network, three gene expression 
datasets (with increasing biological variation) have been chosen for this study [GSE3858 (Cao et 
al., 2006), GSE1984 (Iezzi et al., 2004), and GSE989 (Tomczak et al., 2004)]. These three datasets 
are all concerned with the differentiation of cells into the muscle (Myogenic) lineage. During 
this process, mononucleated precursor cells stop to proliferate, differentiate and fuse with each 
other to become elongated multinucleated myotubes or myofibres. This in-vitro system mimics 
the formation of new muscle fibres in-vivo. The cell types differ between the different datasets:

•	 GSE3858: Embryonic fibroblasts (EF)

•	 GSE989 and GSE1984: C2C12 tumor cell line that has the potential for differentiation into 
different mesodermic lineages (mainly muscle and bone)

Also methods to drive cells into myogenic differentiation differ:

•	 GSE3858: Exogenous expression of the myogenic transcription factors are Myod and Myog.

•	 GSE989 and GSE1984: Serum Starvation

Input:	 t0, maxfc, D

	 fc=0, t=t0, tn=0.001

	 c=(tn/t0)
1/maxfc

	 Initial bn to a Bayesian classifier with no inter-gene links

	 results = bn

	 oldscore=score(bn)

	 while fc<maxfc do

		  for each operator do

			   apply operator to bn

			   newscore=score(bn)

			   fc=fc+1

			   dscore=newscore-oldscore

			   if newscore>oldscore then

				    result=nbc

			   else if r(0,1)<edscore/t then

				    Undo the operator

			   end if

		  end for

		  t=t x c

	 end while

Output:	 result

Algorithm 2  - Simulated Annealing Structure Learning.
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In addition, the study by Sartorelli in-
cluded different treatments that affect the 
timing and efficiency of the myogenic 
differentiation process. The time points 
for sampling differ between the stud-
ies (Table 1). The class node reflecting 
the differentiation status had two pos-
sible states: undifferentiated (for all time 
points until myogenic differentiation was 
induced) and differentiated (for time points where myogenic differentiation had been induced). 
In the rest of this paper we call these datasets by the name of the first author (e.g. Cao instead of 
GSE3858).

Data Processing and Analysis
The raw microarray data were normalized and summarized with the RMA method (Irizarry et 
al., 2003), using the affy package in R. Only the 8904 probesets common to the Affymetrix U74A 
and 430.2 used in mentioned studies were considered in the analysis. All datasets were standard-
ized to mean 0 and the standard deviation 1 across the genes. For the scope of this paper, first, we 
selected for each dataset a subset of 100 genes most affected by the induction of differentiation. 
These genes were identified with Student’s t-test which compared samples from undifferentiated 
and differentiated cell cultures, disregarding the time of differentiation. An additional 50 genes 
were randomly selected to be able to calculate ranking p-scores described above and using the 
Kolmogorov-Smirnov test. For cross-validation we divided Cao dataset into 9 folds, Sartorelli 
into 8 folds, and Tomczak into 6 folds based upon the number of samples in each dataset. Simu-
lated annealing has three attributes which should be set before starting the learning phase. It is 
crucial to set an appropriate initial temperature, sufficient number of iterations, and a convenient 
fitness function. In this study, the initial temperature has been set to 10 and it terminates at 0.001. 
The number of iterations has been set to 1000 for the first set of experiments only using most 
informative genes (top 100) and then we set the number of iterations to 1500 since we added 50 
uninformative genes to the network. The code is implemented in Matlab 2007a using the Bayes 
Net toolbox (Murphy, 2001) to generate gene regulatory networks.

Analysis of myogenesis-Related genes
Myogenesis-related genes are defined as genes associated with the Gene Ontology term “Muscle 
Development” supplemented with all genes strongly associated with Myogenesis in the biomedi-
cal literature, as determined with the literature analysis tool Anni v2.0 (Jelier et al., 2008) with the 
association score greater than 0.02.

Analysis of Synthetic datasets
The use of datasets in which the underlying network is known enables us to validate the new 
algorithms that have been developed to identify gene regulatory networks and capture the most 
informative genes. van den Bulcke et al. ��������������������������������������������������(2006)�������������������������������������������� proposed a new methodology to generate syn-
thetic datasets where the network structure is known and biological, experimental, and model 
complexity can be manipulated. However, a disadvantage of this approach is that the generated 
networks can contain some overlapping pieces of the known network which may weaken the 
models being probabilistically independent ��������������������������������������������������(Haynes and Brent, 2009)��������������������������. Whilst SynTReN uses res-
ampling from potentially overlapping networks, the generated data undergoes a robust statistical 
cross-validation regime ensuring that any prediction is applied to unseen data. The focus of this 
paper is upon the prediction of increasingly complex datasets, sampled from some underlying 

Dataset Cell Type Platform Samples Time Points

Tomczak C2C12 Affy U74A 24 8

Cao EF Affy 430.2 36 4

Sartorelli C2C12 Affy U74A 32 6

`

Table 1  - Specification of three muscle differentiation 
datasets.
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biological process. Consequently, these synthetic datasets can be used for validating the perfor-
mance of our methodology in identifying the informative genes and the interactions among them 
in real microarray data. SynTReN (Van den Bulcke et al., 2006) generates networks with more 
realistic topological characteristics and since we use this application to investigate the impacts of 
biological, experimental, and model complexity on identifying informative genes using the same 
sub-network is an advantage. Three datasets have been generated on the well-described network 
structure of E. coli (Ma et al., 2004) which contains 1330 number of nodes and 2724 interactions. 
These datasets have been generated in a manner that they can match the key characteristics of 
real microarray datasets we used in this study (for instance, limiting the number of genes that 
were selected for modelling to 150). This enables us to investigate the possibility of reproducing 
similar results on synthetic data which can be easily corrected for differences such as number of 
samples and time points per dataset (see Additional file 1) and avoid weakening the probabilisti-
cally independent assumption of the generated datasets.

Analysis of Concordance between datasets
The study of the concordance between microarray datasets has increased considerably in the past 
few years �������������������������������������������������������������������������������������(Miron et al., 2006)�����������������������������������������������������������������. However, a robust statistical method for examining the concord-
ance or discordance among microarray experiments carried out in different laboratories is yet to 
develop. Methods such as multiplication of gene p-values in order to generate a list of rankings 
for concordance genes showed bias towards datasets with higher significance level (Rhodes et al., 
2002). Lai et al. (2009) proposed a promising methodology (which we call concordance model) to 
investigate the concordance or discordance between two large-scale datasets with two responses. 
This method uses a list of z-scores, generated using a statistical test of differential expression, as 
an input to evaluate the concordance or discordance of two datasets by calculating the mixture 
model based likelihoods and testing the partial discordance against concordance or discordance. 
Additionally, the statistical significance of a test is being evaluated by the parametric bootstrap 
procedure and a list of gene rankings is being generated which can be used for integrating two 
datasets efficiently. In this paper we are using a set of gene rankings generated by this method to 
evaluate the performance of our model in identifying informative genes from multiple datasets 
with increasing complexity.

RESULTS
The aim of this study is to demonstrate firstly, the influence of model complexity in discovering 
accurate gene regulatory networks on multiple datasets with increasing biological complexity. 
Secondly, to investigate if cleaner and more informative datasets can be used for modelling more 
complex ones. Therefore, three public datasets that are concerned with the differentiation of cells 
into muscle lineage were chosen for this study. From a biological point of view, Sartorelli is the 
most complex dataset since it involves different treatments influencing myogenesis. Tomczak and 
Cao are less complex datasets. It is difficult to say how their complexity relates since Tomczak 
uses more heterogeneous stimuli to induce differentiation but has more time points, while Cao 
uses more defined stimuli (Myod or Myog transduction) and less time points. In order to meet 
the scope of this study, we evaluated the quality and informativeness of these datasets based on 
two criteria. Firstly, we calculated the average correlations between replicates as a measurement 
of noisiness of each dataset. Secondly, using Student’s t-test method, we counted the number 
of differentially expressed genes with the significance levels of 0.05 and 0.01 as a measurement 
of informativeness (Table 2). Although the average correlations between replicates in all three 
datasets are very close, datasets differ in number of significant genes they hold. Tomczak is the 
most informative dataset as it includes the most number of significant genes and has a higher 
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average correlation value for the repli-
cate samples in the dataset which repre-
sent the lowest level of noise. In contrast, 
Sartorelli contains the least differentially 
expressed genes with almost 12% of what 
Tomczak contains. Moreover, it has the 
lowest average correlation value and can 
be marked as the most complex dataset 
to model in this study as it has the high-
est noise level and the least number of 
informative genes. Therefore, we ordered 
these datasets by increasing biological complexity in the following way: Tomczak, Cao, and Sar-
torelli.

Comparison of classifiers and network analysis
We now explore how the different classifiers performed on these three datasets. Figure 1 shows 
the average error rate of the different classifiers trained on each given dataset. It can be seen that 
of the three classifiers, 1PB and NPB generated the same pattern and have very close error rates 
on cross-validation (training) sets. However, it is evident that NPB (particularly on Tomczak) 
performs poorer than 1PB on the independent test set, possibly due to overfitting as these models 
contain more parameters. Even though SNB performed poorly on both the cross-validation test 
and the independent data test, in some cases it could compete with NPB which appears to be 
too complex to predict some of the independent datasets accurately. Hence, 1PB has performed 
favorably, both in terms of average error rate and the difference between the cross-validation test 
and the independent data test (see Additional file 1 for complete set of results).

According to Mac Nally (2000) simple models should be sought for various reasons. Firstly, sim-
ple models are more stable and capable of not overfitting to noise in the data which will influence 
the performance of classifier with future data. Secondly, they tend to provide a better insight into 
causality and interactions among genes. Finally, reducing the number of parameters will decrease 
the cost of validating a model for current and future data. However, we need a model that matches 
the complexity of data sets. Considering this argument along with our first set of results, we chose 
1PB as a model that can capture the interactions among genes and does not overfit to noise. In 
order to understand the impacts of using different datasets for gene selection and training 1PB 
classifier (which will be discussed in the next section), we need to analyse the performance of the 
1PB classifier on the top 100 (most informative) genes in more detail.

Additional file 1, Figure S7 represents the comparison of the error rate of the 1PB classifier on 
cross-validation versus the independent test. It is shown that the 1PB classifier trained on Tomc-

Figure 1  - The comparison of classifiers 
with increasing model complexity. Three 
Bayesian network models (SNB, 1PB, and 
NPB) have been trained using cross-valida-
tion set and validated on independent data-
sets. An average error rate of the classifiers’ 
prediction has been calculated for each 
gene and an overall SSE on cross-validation 
set and independent test set are illustrated 
in this figure.

Genes with a P-value (BH) less 
than

Dataset Correlation 0.05 0.01

Tomczak 0.975 4602 3604

Cao 0.971 3668 2623

Sartorelli 0.964 1199 458

Table 2  - The average correlations between replicates 
and number of differentially expressed genes (based on 
BH corrected p-values) in each dataset.
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zak performed significantly better on cross-validation and Sartorelli shows the lowest differentia-
tion between cross-validation and the independent test with almost the same average error rate 
on the cross-validation set compared to Cao. Although the differentiation of average error rate 
on the cross-validation set and independent test set is high in Tomczak, this model produced the 
best models in terms of the lowest overall error rate. This figure raises the idea that Tomczak is the 
most informative dataset since it can model any dataset, regardless of the gene selection method, 
significantly better than the other alternatives. This will be discussed in more detail in the Extrac-
tion of infotmative genes section.

Comparison of gene selections with differing informativeness
We now look into how the different gene selections impact on the average error rate of the 1PB 
classifier for both cross-validation and the independent test. Figure 2 demonstrates the per-
formance of the 1PB classifier in modeling datasets generated using different gene selections. 
Clearly, unlike Sartorelli, genes selected from Tomczak and Cao show very good performances 
on cross-validation. However, by looking at the average error rate of 1PB on independent test 
sets, we can see that the models learnt on Cao over-fitted the data and performed poorly on the 
independent test set (with the SSE of 0.32) whereas Sartorelli shows the lowest differentiation 
between the two sets. Overall the Tomczak selection performed the best both on cross-validation 
and the independent test.

It is important to adopt a methodology that can generate an accurate gene regulatory network, 
moreover, it is crucial to generate a model that can capture the significant genes and distinguish 
informative genes from uninformative ones. For this purpose, we added 50 randomly selected 
genes with high p-values (which imply less relatedness to Myogenesis) from the distribution. This 
also has the effect that it will increase the complexity of the datasets. 

Figure 3 shows that there is a similar pattern on the average error rate of cross-validation. The 
additional random genes do not seem to affect Cao. It does, however, have an interesting im-
pact on Sartorelli. The models learnt on Sartorelli (see Additional file 1) performed even poorer 
than SNB on the independent data sets and showed no significant changes when using different 
datasets for training. It is interesting because we know that the Sartorelli dataset is noisy and 
biologically complex and adding the random genes, which increases the complexity of the mod-
els in terms of more nodes and increases the risk of spurious links, produces a classifier which 
appears to be unable to capture the real gene interactions. The error rate and variance of models 
learnt on the Sartorelli selection is significantly high in comparison with Tomczak. By comparing 
figures 2 and 3, we can conclude that simpler and cleaner datasets tend to perform more reliably 
and have more stability while increasing the complexity. Since it is important to validate these 
models according to their variances, we demonstrated the average variance of each model on 
cross-validation and the independent test set in Additional file 1, Figure S8. Interestingly, we can 
see a similar pattern in the classifiers’ variance in comparison with the average error rate (Figure 

Figure 2  - Evaluating the accuracy of 1PB 
using different datasets for gene selec-
tion. We selected genes using only one da-
taset (black) at a time and compared the av-
erage error rate of 1PB classifier learnt and 
trained on a same dataset and validated on 
the other two datasets independently (grey).
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3). It is clear that we can raise the same conclusion as the simpler and cleaner datasets perform 
better than more noisy and complex ones. In this study, Tomczak performed favorably both in 
terms of bias and variance.

It is crucial to investigate if these findings are reproducible and are not prone to the number of 
samples and time points per dataset. Therefore, we applied our model on three synthetic datasets 
that have been generated by manipulating the biological, experimental, and model complexity 
of their known network structure using SynTReN application ����������������������������������(Van den Bulcke et al., 2006)�����. Ad-
ditional file 1, Figure S9 illustrates that we can see a very similar pattern as we have seen on a real 
data where there is an increase on the average error rate of models learnt on multiple synthetic 
datasets with increasing biological variability. In the next section, before examining if these mod-
els can help us to capture the interactions in more complex datasets, we will investigate how well 
these models separate the informative genes from uninformative ones.

Extraction of informative genes
In order to test the ability of classifiers to separate informative genes from uninformative ones, 
we have looked at the result of the Kolmogorov-Smirnov test (KS test) on the ranking of genes 
according to their average error rate using a given model. Using this algorithm, we calculated 
the p-value, KS test, and the result of investigating the differentiation hypothesis along with the 
models’ bias or variance. The results of this investigation are displayed in Additional file 1, Table 
S1 where Cao and Tomczak performed very well on cross-validation both in terms of bias and 
variance. However, models learnt on Sartorelli fail to separate between informative genes and 
uninformative genes as the scores are generally very low.

Generally, Tomczak outperformed Sartorelli and Cao and can be chosen as the most informative 
dataset in this study. Models learnt on Tomczak generated the lowest bias and variance and pro-
duced the best separation. In contrast, Sartorelli is the noisiest and less informative dataset while 
it failed to handle any increases in complexity (both biological and model wise) and generates 
models with highest bias and variance which also cause disability to separate informative genes 
from the others. Now the question is whether we can use a simpler and cleaner dataset to model 
more complex ones. In the next section we show how we tackled this question.

Analysis of the use of simpler dataset to model more complex one
In this section, we investigate the improvement or deterioration of genes selected by Tomczak on 
the Sartorelli dataset. Figure 4 shows the average improvement or deterioration of ranks of myo-
genesis-related genes, top 100 genes (most informative), and 50 randomly selected genes (unin-
formative) in Sartorelli. We compared the original rank of each gene (which can be any number 
between 1 and 150 derived from its p-value comparing to others) with its rank based upon the 
ability of a model trained on Tomczak to predict gene’s value in Sartorelli. Moreover, we evaluate 
the improvement or deterioration of genes rankings in our model with the ones generated using 

Figure 3  - The investigation of inference 
of adding more complexity to the model. 
We investigated the inference of adding 
more complexity to the model by adding 
50 randomly selected genes as uninforma-
tive on 1PB classifier performance. In this 
figure we compare the average error rate of 
1PB classifier after adding 50 uninformative 
genes to the model. 0.15
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the concordance model described by Lai et al. (2009). We can clearly see that the model learnt 
on Tomczak can capture the informative genes in Sartorelli and improve their rank whereas un-
informative genes have been pushed down (almost 17 places in average) in the ranking by the 
classifier. Additionally, the improvement is even more pronounced for myogenesis-related genes 
with 12.33 places in average, which is significantly better than others with P < 0.004 generated 
using KS test, and as expected top 100 genes has been improved by 8.44 places. Even though both 
methods perform similarly on improving the ranks of top 100 and deteriorating the ranks of 50 
randomly selected genes, the improvement of ranks for myogenesis-related genes are much more 
pronounced in our model than in the concordance model (improvement of 5.38 places). 

Myh7 and Tor3a are two examples of significant improvements in Sartorelli dataset. Myh7, which 
originally ranked 101, improved 96 places to rank 5 (rank 55 in concordance model). During the 
learning phase it has been linked to four other genes of which three of them are myogenesis-relat-
ed. These genes, in both datasets, have direct correlations and can represent each other in terms of 
prediction and validation. However, Tor3a has a very low rank in both dataset and yet improved 
107 places from 128 to 21 (rank 31 in concordance model). It has been linked to Prune which 
also improved 106 places (from 131 to 25, 100 in concordance model). All three genes mentioned 
above have been selected as informative genes from Tomczak and yet placed into the bottom 50 
due to the quality of Sartorelli dataset. These were some examples of the ability of model to pull 
out informative genes from a distribution (Figures S10A and S10B).

Although the overall improvement on myogenesis-related genes is significantly high, we were 
concerned why this model failed to improve the rank of some genes like Id3 which dropped from 
rank 1 in Sartorelli to 133 (rank 51 in concordance model). In the learning process, Id3 has been 
linked to 4 genes which are: Fabp3, Rbm38, X99384, and Slco3a1. Now in order to answer the 
question, firstly, we validate the relatedness of these genes to Id3 in Tomczak dataset to investigate 
if they are significant and can represent Id3. Secondly, we study the expression level of these genes 
in Sartorelli to identify the reason why this model failed dramatically in predicting the Id3 value.

Additional file 1, Figure S11 demonstrates the expression level of Id3 along with its parent/chil-
dren in both Tomczak and Sartorelli datasets. In Tomczak we can clearly see that there is an 
inverse relationship between Id3 and the other 4 genes which is very significant. While the differ-
entiation state changes, Id3 drops from the expression level of approximately 11 to 8.5 and simi-
larly its relatives show an increase of about 2 points in their expression values. This supports the 
assumption of the relatedness of these genes to Id3 in the learning process on Tomczak dataset. 
However, considering that Id3 is still very significant in Sartorelli, Id3 parent/children show no 

Figure 4  - The improvement or deteriora-
tion of genes ranking in Sartorelli. Firstly, 
we selected 100 informative and 50 uninfor-
mative genes using Tomczak dataset and ex-
tracted their ranks in Sartorelli. Secondly, we 
trained 1PB classifier on Tomczak and tested 
on Sartorelli. Finally, we ranked genes accord-
ing to the average error rate of 1PB classifier 
in predicting their values in Sartorelli. This 
figure illustrates the average improvement or 
deterioration of Myogenesis-Related, Top 100, 
and 50 randomly selected genes in Sartorelli 
generated with our method and the gene 
rankings generated by concordance model.
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variation and simply are not significant. As a conclusion, this model failed to predict Id3 expres-
sion value and as a result the rank of Id3 dropped 132 places most probably due to the quality 
and biological variation of Sartorelli dataset. Since we aim to overcome the lack of overlap on the 
gene regulatory network studies across species and platforms, the natural extension of the work 
in this paper would be to explore how this model can be used on datasets from multiple biological 
systems with increasing complexity. Moreover, it would be valuable to consider methods such as 
model averaging ������������������������������������������������������������������������������(Madigan and Raftery, 1994)��������������������������������������������������� that has been shown better generalization in clas-
sifier’s accuracy. Consequently, it improves the performance of classifiers in identifying the most 
informative genes and avoids deterioration of cases like Id3. Furthermore, dynamic Bayesian 
networks can be adopted when learning from time-series data in order to handle auto-regulation 
and feedback loops, two key components of regulatory networks in biological data (Shen-Orr et 
al., 2002; Lee et al., 2002).

CONCLUSIONS
In this study, we have investigated a number of different Bayesian classifiers and datasets for 
identifying firstly, subsets of genes that are related to myogenesis and muscle differentiation, and 
secondly the use of cleaner and more informative datasets in modelling more biologically com-
plex datasets. We have shown that an appropriate combination of simpler and more informative 
datasets produce very good results, whereas models learnt on genes selected from more complex 
datasets performed poorly. We concluded that simpler datasets can be used to model more com-
plex ones and capture the interactions among genes. Moreover, we have described that highly 
predictive and consistent genes, from a pool of differentially expressed genes, across independent 
datasets are more likely to be fundamentally involved in the biological process under study. In 
three published datasets, we have demonstrated that these models can explain the myogenesis-re-
lated genes (genes of interest) significantly better than others (P < 0.004) since the improvement 
in their rankings is much more pronounced. These results imply that gene regulatory networks 
identified in simpler systems can be used to model more complex biological systems. In the ex-
ample of muscle differentiation, a myogenesis-related gene network may be difficult to derive 
from in vivo experiments directly due to the presence of multiple cell types and inherently higher 
biological variation, but may become evident after initial training of the network on the cleaner in 
vitro experiments. In order to validate our approach, firstly, we evaluated our model on synthetic 
datasets and secondly we performed comparisons between our approach and the method of Lai 
et al. ������������������������������������������������������������������������������������(2009)������������������������������������������������������������������������������ which we call concordance model. It is shown that our model performs compara-
bly in improving the ranks of informative genes and deteriorating the ranks of uninformative 
ones, but that the improvement of ranks for myogenesis-related genes is much more pronounced 
whilst additionally modelling the interactions among genes. However, it is necessary to develop 
other statistical measures so that the model can be quantified to distinguish different degrees of 
complexities and platforms whilst handling the auto-regulation and feedback loops within the 
network.
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APPENDIX

Figure S1 - The comparison of classifiers with in-
creasing complexity. Three Bayesian network mod-
els (SNB, 1PB, and NPB) have been trained using 
cross-validation set and validated on independent 
datasets. An average error rate of the classifiers’ 
prediction has been calculated for each gene (se-
lected from Tomczak dataset) and an overall SSE 
on cross-validation set and independent test set are 
illustrated in this figure. These models have been 
trained on each dataset and validated on the other 
two datasets.

Figure S2 - The comparison of classifiers with in-
creasing complexity. Three Bayesian network mod-
els (SNB, 1PB, and NPB) have been trained using 
cross-validation set and validated on independent 
datasets. An average error rate of the classifiers’ 
prediction has been calculated for each gene (se-
lected from Tomczak dataset) and an overall SSE 
on cross-validation set and independent test set are 
illustrated in this figure. These models have been 
trained on each dataset and validated on the other 
two datasets.

Figure S3 - The comparison of classifiers with in-
creasing complexity. Three Bayesian network mod-
els (SNB, 1PB, and NPB) have been trained using 
cross-validation set and validated on independent 
datasets. An average error rate of the classifiers’ pre-
diction has been calculated for each gene (selected 
from Cao dataset) and an overall SSE on cross-vali-
dation set and independent test set are illustrated in 
this figure. These models have been trained on each 
dataset and validated on the other two datasets.

Figure S4 - The comparison of classifiers with 
increasing complexity. Three Bayesian network 
models (SNB, 1PB, and NPB) have been trained us-
ing cross-validation set and validated on indepen-
dent datasets. An average error rate of the classi-
fiers’ prediction has been calculated for each gene 
(selected from Cao dataset) and an overall SSE on 
cross-validation set and independent test set are 
illustrated in this figure. These models have been 
trained on each dataset and validated on the other 
two datasets.
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Figure S5 - The comparison of classifiers with in-
creasing complexity. Three Bayesian network mod-
els (SNB, 1PB, and NPB) have been trained using 
cross-validation set and validated on independent 
datasets. An average error rate of the classifiers’ 
prediction has been calculated for each gene (se-
lected from Sartorelli dataset) and an overall SSE 
on cross-validation set and independent test set are 
illustrated in this figure. These models have been 
trained on each dataset and validated on the other 
two datasets.

Figure S6 - The comparison of classifiers with in-
creasing complexity. Three Bayesian network mod-
els (SNB, 1PB, and NPB) have been trained using 
cross-validation set and validated on independent 
datasets. An average error rate of the classifiers’ 
prediction has been calculated for each gene (se-
lected from Sartorelli dataset) and an overall SSE 
on cross-validation set and independent test set are 
illustrated in this figure. These models have been 
trained on each dataset and validated on the other 
two datasets.

Figure S7 - The comparison of the differences be-
tween cross-validation set and independent test 
set on average error rates of 1PB classifier (ex-
tracted from figure 1).

Figure S8 - The investigation of inference of add-
ing more complexity to the model by adding 50 
randomly selected genes as uninformative on 
1PB classifier performance. In this figure we com-
pare the average variance of 1PB classifier after 
adding 50 uninformative genes to the model.

Figure S9 - This figure illustrates the performance 
of 1PB classifier on modeling three synthetic da-
tasets generated using SynTReN application by 
manipulating the biological and experimental 
complexity. There is an increase of the biological 
variability on three datasets which matches an in-
crease on the average error rate of models learnt.
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Figure S10 - A).The expression level of Myh7 along with its parent/children in both Tomczak and Sartorelli 
datasets. In Tomczak we can clearly see that there is a strong relationship between Myh7 and the other 4 
genes. Moreover, in Sartorelli dataset the correlation still exists between Myh7 and Csrp3, Mylpf, Myom1, 
and Ryr1 even though it is not as strong as Tomczak. B) The expression level of Tor3a along with its parent 
in both Tomczak and Sartorelli datasets. In Tomczak we can clearly see that there is a good relationship 
between Tor3a and Prune. Moreover, in Sartorelli dataset the correlation still exists between Tor3a and Prune. 
This figure is an example of a large improvement of rank of a given gene after training on Tomczak. The x-axis 
represents both the time points and the differentiation status.
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Figure S11 - The expression level of Id3 along with its parent/children in both Tomczak and Sartorelli 
datasets. In Tomczak we can clearly see that there is an inverse relationship between Id3 and the other 4 
genes while Sartorelli dataset shows no significant correlations between Id3 and Fabp3, Rbm38, X99384, 
and Slco3a1. This figure is an example of a large deterioration of rank of a given gene after training on Tom-
czak. The x-axis represents both the time points and the differentiation status.
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Table S2 - The specification of three synthetic datasets generated for the purpose of the validation 
and reproduction of the result of applying our model on real microarray datasets used for this study. 
Three datasets have been generated on the well-described network structure of E. coli (Ma et al., 2004) 
which contains 1330 number of nodes and 2724 interactions. Average performance is measured based on 
SSE/Variance.

SYN D 1 SYN D 2 SYN D 3

Burnin point 2000 2000 2000

Number of Experiments 15 15 15

Number of Samples per experiment 2 2 2

Number of Nodes 1000 1000 1000

Number of Background nodes 0 0 0

Probability for complex 2-regulator interactions 0.3 0.5 0.7

Biological noise 0.1 0.3 0.5

Experimental noise 0.1 0.3 0.5

Noise on correlated inputs 0.1 0.3 0.5

Number of External nodes 0 0 0

Number of Correlated external nodes 0 0 0

Sub network selection method Cluster Addition

Random seed 13 13 13

Table S1 - Differentiation Hypothesis. Investigating how well the models can separate the informative and 
uninformative genes from each other. Firstly, we ranked genes according to their average error rate and 
variance. Secondly, using Kolmogorov-Smirnov test and original ranking list, we explored which model can 
separate the informative genes from uninformative genes the best.

     
Error Rate (SSE) Variance

 

Gene 
Selection

Cross-
Validation Set

Independent 
Test Set

Cross-
Validation Set

Independent 
Test Set

» Tomczak

Differentiation Hypothesis TRUE TRUE TRUE TRUE

P-value 5.02E-24 9.77E-10 5.02E-24 3.68E-05

Kolmogorov-Smirnov Test 0.880198 0.552871 0.880198 0.394257

Average Performance 0.165259 0.298921 0.00537 0.018667

Cao

Differentiation Hypothesis TRUE TRUE TRUE TRUE

P-value 1.89E-22 6.16E-06 1.91E-20 0.004314

Kolmogorov-Smirnov Test 0.850297 0.425347 0.810693 0.295842

Average Performance 0.202472 0.320211 0.007819 0.019219

Sartorelli

Differentiation Hypothesis FALSE TRUE FALSE FALSE

P-value 0.443901 0.007507 0.527435 0.104457

Kolmogorov-Smirnov Test 0.145941 0.282178 0.136832 0.205149

Average Performance 0.275287 0.336551 0.014939 0.023772
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Gene regulatory networks give important insights into the mechanisms underlying physiol-
ogy and pathophysiology. The derivation of gene regulatory networks from high-through-
put expression data via machine learning strategies is problematic as the reliability of these 

models is often compromised by limited and highly variable samples, heterogeneity in transcript 
isoforms, noise, and other artifacts. Here, we develop a novel algorithm, dubbed Dandelion, in 
which we construct and train intraspecies Bayesian networks that are translated and assessed 
on independent test sets from other species in a reiterative procedure. The interspecies disease 
networks are subjected to multi-layers of analysis and evaluation, leading to the identification of 
the most consistent relationships within the network structure. In this study, we demonstrate the 
performance of our algorithms on datasets from animal models of oculopharyngeal muscular 
dystrophy (OPMD) and patient materials. We show that the interspecies network of genes cod-
ing for the proteasome provide highly accurate predictions on gene expression levels and disease 
phenotype. Moreover, the cross-species translation increases the stability and robustness of these 
networks. Unlike existing modeling approaches, our algorithms do not require assumptions on 
notoriously difficult one-to-one mapping of protein orthologues or alternative transcripts and 
can deal with missing data. We show that the identi-
fied key components of the OPMD disease network can 
be confirmed in an unseen and independent disease 
model. This study presents a state-of-the-art strategy in 
constructing interspecies disease networks that provide 
crucial information on regulatory relationships among 
genes, leading to better understanding of the disease 
molecular mechanisms.

Interspecies translation of disease networks increases 
robustness and predictive accuracy
Seyed Yahya Anvar1,*, Allan Tucker2, Veronica Vinciotti2, Andrea Venema1, Gert-Jan B. van Om-
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INTRODUCTION
The degree to which gene products appear in the cell and exert their function is regulated through 
interactions with other genes. This interconnectivity implies that the identification of gene regu-
latory networks is vital for understanding the phenotypic impacts of gene defects and the associ-
ated complications (Schadt, 2009; Goldstein, 2009; Karlebach and Shamir, 2008; Barabasi et al., 
2011). The dawn of high-throughput technologies such as genome-wide sequencing and micro-
array experiments has increased our understanding of molecular behavior at the transcriptional 
level. Although these large-scale datasets provide crucial information about both the presence 
and relative abundance of RNA transcripts, they also introduce an important challenge in provid-
ing a comprehensive view of molecular mechanisms and regulatory relationships among genes 
with different underlying phenotypic conditions.

The presence of this obstacle calls for developing robust machine learning models that can be 
used for generating gene networks in which their transcriptional changes can affect phenotypic 
outcome. However, building a network that involves thousands of genes and millions of interac-
tions is extremely problematic and requires a great quantity of experimental data for the valid 
interpretation of biological causes for a given phenotype. Furthermore, the validity of gene regu-
latory networks is often affected by limited and highly variable samples, heterogeneity in tran-
script isoforms, noise and other artifacts (Raj and van Oudenaarden, 2008; Kluger et al., 2003; 
Shahrezaei and Swain, 2008; Pedraza and van Oudenaarden, 2005). Therefore, a probabilistic 
approach is needed to identify and predict interconnected transcriptional behaviors that give rise 
to disease outcome (Pache et al., 2008) and to, ultimately, offer potential targets for therapeutic 
intervention and drug development. Among the possible statistical models, Bayesian networks 
have been an important concept for modeling uncertain systems (Pearl, 1988; Friedman, 2004; 
Friedman et al., 2000; Segal et al., 2003). Bayesian networks can represent complex stochastic rela-
tionships between genes and are capable of integrating different types of data (i.e. phenotype and 
genotype categorical information as well as gene expression data). In addition, the probabilistic 
nature of such networks can accommodate noise and missing data by weighting each information 
source according to its reliability. In contrast to many statistical models, the transparent nature of 
Bayesian networks (in terms of the graphical structure and local probability distributions) leads 
to better interpretation and understanding of the underlying biological regulation of the disease.

AUTHOR SUMMARY
The identification of gene regulatory networks can provide vital information on biological 
processes. Despite numerous advancements in developing machine learning strategies, the 
stochastic nature of such biological systems complicates the construction of robust and reliable 
network structures. In recent years, the use of cross-species datasets enabled scientists to better 
understand the molecular mechanisms that are associated with human disorders. However, it 
also presents a challenge in dealing with especially difficult mapping of protein orthologues, 
alternative transcript splicing, noise, or other artifacts. Here, we developed a novel algorithm 
for constructing interspecies disease networks that provide accurate predictive value over the 
disease phenotype and gene expression. We show that the disease-association of potential key 
regulators that play a role in interspecies disease networks can be reproduced and validated in 
an unseen and independent model system. This study presents a novel strategy for construct-
ing networks that can be translated across species whilst providing a comprehensive view of 
regulatory relationships associated with the disease.
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The high dimensionality of the genome wide expression profiling datasets and the limited num-
ber of available samples complicates the derivation of robust network structures. Methods such as 
the use of prior knowledge about biological interactions (Segal et al., 2003; Pe’er et al., 2002; Steele 
et al., 2009) have been shown to successfully reduce the search space and to make networks more 
robust. This method works for well-studied diseases or biological systems, but is not likely to 
identify novel regulatory interactions underlying the molecular mechanisms of rare or complex 
disorders. In addition, this bias can falsely expose the network to sample differences in the ab-
sence of a disease-related biological cause. In this study, we hypothesize that biologically relevant 
relationships between genes are often conserved across species. Thus, the robustness and stability 
of a gene network should increase when modeling regulatory networks using related datasets 
from different species. Moreover, we hypothesize that the relationships identified in an interspe-
cies gene network should be biologically more meaningful. On the other hand, cross-species 
translation of networks is far from trivial given our limited knowledge of true protein orthologues 
and transcript variants coding for proteins with similar functions in different species. Therefore, 
we explore the performance of a novel algorithm that combines our previously published model 
for learning regulatory interactions from multiple datasets of increasing complexity (Anvar et al., 
2010) with an interspecies translation and validation regime, named Dandelion algorithm. We 
show that the supplementation of this algorithm  with a modeling-driven selection of transcripts 
coding for orthologous proteins (exhaustive Dandelion algorithm) significantly improves the ro-
bustness and stability of the interspecies network, when compared to a standard approach in which 
expression levels of different transcripts for the same gene are summarized (naïve Dandelion 
algorithm). We also show that the potential regulatory relationships that play a role in interspecies 
disease networks can be reproduced and validated in an unseen and independent model system.

In this study, three publicly available microarray datasets from Drosophila (Chartier et al., 2009), 
mouse (Trollet et al., 2010), and human (Anvar et al., 2011) that are all concerned with oculopha-
ryngeal muscular dystrophy (OPMD) have been chosen to gain insight into the key regulators of 
the disease. These datasets are described in Table 1. OPMD is a late-onset progressive muscular 
disorder for which the underlying molecular mechanisms are largely unknown. This autosomal 
dominant muscular disorder has an estimated prevalence of 1 in 100,000 worldwide (Fan and 
Rouleau, 2003). OPMD is caused by the expansion mutation of a homopolymeric alanine stretch 
at the N-terminus of the Poly(A) Binding Protein Nuclear 1 (PABPN1) by 2-7 additional Ala 
residues (Brais et al., 1998). Although PABPN1 is ubiquitously expressed, the clinical and patho-
logical features of OPMD are restricted to a subset of skeletal muscles, causing progressive ptosis, 
dysphagia, and limb muscle weakness. Drosophila and mouse models with muscle-specific over-
expression of expanded PABPN1 recapitulate progressive muscle weakness in OPMD (Chart-
ier et al., 2006; Davies et al., 2005). However, the potential artifact, heterogeneity in transcript 
isoforms, and the presence of overexpression side-effects in OPMD animal models and limited 
patient materials complicate the identification of key regulators of OPMD. With the analysis of 
these datasets, we demonstrate that modeling of interspecies disease networks increases the robust-
ness of the networks and aids in the identification of key regulators of the disease.
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METHODS
Model of Interspecies Networks using Dandelion Algorithm
To construct interspecies networks that can accurately predict the disease phenotype and provide 
a comprehensive view of molecular relationships that underlie the disease-associated biological 
processes, we developed a novel Dandelion algorithm with multi-layers of analysis and evaluation 
criteria. A schematic presentation of this approach can be found in Figure 1. In addition, the defi-
nition of nomenclatures (italicized terms) used in this study is provided in the Table S1 in Text S1.

The procedure starts with the identification of the disease-associated modules by assessing the 
association of transcriptional profiles with the disease state. In this study, gene modules are de-
fined according to current KEGG (Kyoto Encyclopedia of Genes and Genomes) annotation of 
molecular pathways to ensure functional relationships among genes within the same cluster. Af-
ter identification of the disease module, the set of genes in the disease module is supplemented 
with a set of randomly selected genes for the purpose of network performance estimation and 
evaluation. The Dandelion algorithm integrates three recurring phases of training and indepen-
dent testing with the use of multiple datasets derived from the different biological systems. This 
involves a reiterative selection of one species as an organism in which intraspecies gene regulatory 
networks are constructed. Cross-validation is used for learning and optimization of the intraspe-
cies network structure. Some partitions were purely used for testing the intraspecies network to 
ensure, in all experiments, that the test data is previously unseen. Datasets from the other species 
are used for interspecies translation, independent testing and validation of the constructed dis-
ease networks. The construction of intraspecies Bayesian networks is governed by our previously 
published optimization procedure (Anvar et al., 2010). To ensure that these interspecies networks 
are derived from a disease-related biological cause, the specificity and sensitivity of the networks 
for prediction of the disease phenotype are assessed. Moreover, the robustness and translatability 
at different confidence thresholds are evaluated. After defining the interspecies disease domains, 
a subset of genes is selected for unbiased examination of reproducibility and validity of disease-
related transcriptional changes in an unseen and independent model system. The detailed outline 
of the procedure, depicted in Figure 1, is provided in the following subsections.

Disease Modules. Disease modules have been identified according to our previously published 
study (Anvar et al., 2011) in which we performed an integrated transcriptome analysis to identify 
the most significant molecular pathways that are associated with the OPMD across species.

Bayesian Network Structure Learning. A Bayesian network encodes the joint probability dis-
tribution of a set of random variables. It consists of a directed acyclic graph (DAG) that repre-
sents conditional independencies between variables, and conditional distributions at each node 
in the graph. Bayesian network classifiers are a special case of Bayesian networks where one node 
represents some discrete class to be predicted. Here, each node in the graph represents a gene 
transcript (or gene) and the class node represents the disease states. In order to learn the Bayes-
ian network structure of a gene network, the algorithm approximates the likely graphical model 
by searching the space of possible networks via single-arc changes that improves some score. We 
use a simulated annealing search in conjunction with the Bayes Information Criterion (BIC) as a 
scoring metric (Schwarz, 1978). Simulated annealing performs competitively with other optimi-
zation methods as it aims to avoid local maxima (Friedman et al., 1997). There is a trade-off be-
tween simplicity of model with one that can accurately identify the empirical distribution of gene 
expression profiles and predict the disease phenotypic outcome. For this reason the BIC is used 
as it is less prone to overfitting through the use of a penalizing term for overly complex models.
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The initial state of the structure is an empty DAG with no links. 
In order to alter the network structures, three operations have 
been used within the simulated annealing procedure. These 
operators are adding, removing, or swapping links to generate a 
new network which can be either accepted or rejected based on 
its overall score and the current temperature. The outline of this 
algorithm can be found in the Protocol S1 in Text S1.

In this study, the initial temperature (t0) has been set to 10 and 
it terminates at 0.001 (tn), according to our previously published 
optimization procedure (Anvar et al., 2010). The number of it-
erations (maxfc) has been set to 1000 in respect to the number 
of nodes available in the network. The training dataset is de-
scribed as D. For the training phase, the mode variable is set to 
“train” and the variable networkMap is set to empty. During the 
interspecies translation and testing, the variable mode is set to 
“test” and the variable networkMap holds information on the 
regulatory relationships that are present in the network map 
constructed on training organism.

Construction of Interspecies Networks. The Dandelion algo-
rithm takes multiple datasets from different species as input. In 
this study, we launch two classes of Dandelion algorithm. Firstly, 
the naïve Dandelion algorithm, where the expression patterns 
of gene transcripts are summarized by averaging the expres-
sion profiles of gene probes, to provide one expression profile 
per gene. This enables direct mapping of expression profiles of 
orthologous genes when translating networks across species. 
This approach significantly simplifies the process of construct-
ing network structures. Secondly, we developed the exhaustive 
Dandelion algorithm to overcome the limitations caused by 
heterogeneity in transcript isoforms, differences in annotation 
between organisms and technical factors (i.e. different microar-
ray platforms). In the exhaustive algorithm, transcripts that are 
most likely to be coding for orthologous proteins are selected 
automatically in the modeling phase.

The procedure involves reiterative selection of one species for 
construction of the Bayesian network while other species are left 
aside for independent testing and validation of learnt disease 
networks. The highest-scoring intraspecies network structure 
is learnt according to the algorithm described in the Protocol 
S1 in Text S1. Before interspecies translation, in the exhaustive 
Dandelion algorithm, a detailed interaction map of a candi-
date intraspecies disease network of gene transcripts needs to 
be transformed to a network map of gene-gene relationships. 
This step can be omitted in the naïve Dandelion algorithm as the 
constructed intraspecies networks are already at the gene level. 
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Figure 1 – Schematic overview of the Dandelion algorithm for disease network analysis. The Dandelion 
algorithm involves three recurring stages of training and independent testing regime with the use of multiple 
datasets derived from different species. In the first step, disease modules are defined as the most consis-
tently disease-associated molecular pathway across species. The disease module is supplemented by a set 
of randomly selected genes to assess the performance of the algorithm and to check for overfitting. These 
datasets are standardized to mean 0 and standard deviation of 1 across genes. The next step involves re-
iterative selection of one species as an organism in which the gene regulatory network is constructed while 
others are left aside for independent testing and validation of learnt disease networks. For an intraspecies 
construction of disease network, dataset is divided into k-folds, using cross-validation, and regulatory rela-
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Using the cross-validation and network optimization procedure, the algorithm searches through 
the relationships present in the network map (constructed on the training set) to find the best fit 
for the interspecies representation of the disease network. These networks are then integrated by 
removing all the links with a low confidence score to construct the consensus interspecies disease 
networks. The full algorithm details are outlined in the Protocol S2 in Text S1 where Speciestrain 
and trainfolds represent the training dataset and the folding arrangements for the selected organ-
ism. Furthermore, the series of Speciestest 1 … Speciestest M and testfolds 1 … testfolds M represent the 
datasets and folding arrangements of organisms that are selected for independent test and valida-
tion. The logical variable exhaustive indicates the class of Dandelion algorithm (naïve in case of 
false and exhaustive in case of true) that needs to be performed. In this study, the human dataset 
is divided into 4 folds due to the limited number of patient samples. Mouse and Drosophila da-
tasets are divided into 6 folds. The average Sum of Squared Error (SSE) and standard deviation 
(STD) are calculated for all nodes over these folds by predicting the measured expression values 
of genes (or gene transcripts) given the measurements taken from others. For the class node, the 
state of the disease is predicted given the expression profiles for genes (or gene transcripts) within 
the network structure. The number of iterations was set to 1000 for the training phase and was 
reduced to 500 during the interspecies translation of disease networks. The code is implemented 
in Matlab 2008b using the Bayes Net toolbox (Murphy, 2001).

Network Analysis and Evaluation. The proposed approach consists of three layers of analysis 
and evaluation. The constructed interspecies disease networks are assessed for their predictive 
accuracy towards the disease phenotype (class node) by calculation of the level of sensitivity and 
specificity. Furthermore, the Bayesian networks Sum of Squared Error (SSE) is calculated for 
prediction of the expression of all genes (or gene transcripts). Moreover, the level of robustness 
and translatability of the generated networks are evaluated. The stability and robustness of rela-
tionships between genes within the disease module are compared to those of the random genes 
at different confidence score thresholds. Confidence scores are the ratio of the number of times a 
link is found in the interspecies disease networks to the maximum number of times the link can 
possibly be found (based upon the number of folds). For approximating the level of translatabil-
ity, the total number of links found during the training phase is compared to the number of links 
that were successfully translated to other species. Finally, the interspecies disease domains are 
defined based on the Markov blanket principle for the extension of the class node connectivity. In 
addition, unstable gene interactions are removed through assessment of the level of confidence 
in the relationships between genes. The interspecies disease domains are used to select a subset of 
genes to further study the reproducibility and validity of the observed relationships towards their 
association with the disease phenotype in an unseen and independent OPMD model system. 

To assess the specificity of genes encoding for the proteasomal proteins in accurately predicting 
the disease states, we generated three additional gene sets. A set of 100 randomly selected genes, 
87 genes within the ribosome pathway, and 70 randomly selected genes with the constraint of 
none being deregulated (ND) constitute the three genes sets that are used in a comparative analy-
sis. The human dataset is used for cross-validation whilst mouse and Drosophila datasets were 

tionships between gene transcripts are learnt using Bayesian network methodology enhanced by simulated 
annealing optimization of network BIC score. After applying confidence thresholds on relationship between 
genes, the disease network can then be translated to the expected interspecies disease network which we 
call a network map. Using the cross-validation and network optimization procedure the algorithm searches 
through the relationships found in the training dataset to find the best fit for interspecies representation of 
the disease network. These networks are then integrated by removing all the links with low confidence score 
across species.
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used for independent assessment of the constructed networks. Networks are evaluated on their 
sensitivity, specificity, and predictive accuracy towards the disease state (OPMD or control).

Microarray Datasets
The human, mouse, and Drosophila microarray datasets have been previously published (Charti-
er et al., 2009; Anvar et al., 2011; Trollet et al., 2010). The human and mouse datasets are publicly 
available at GEO repository under the accession numbers GSE26605 and GSE26604, respectively. 
In all datasets genome-wide expression profiles of skeletal muscles from OPMD are compared to 
controls. In case there are multiple probes for the same gene on the microarray platforms, these 
probes usually measure the expression levels of different transcripts from the same gene. The class 
node reflects the disease phenotype (control or OPMD) of each sample. A detailed description of 
these datasets can be found in Table 1. 

Data Processing and Statistical Analysis
Microarray measurements were normalized using the quantile method. In addition, these datas-
ets were standardized to mean 0 and standard deviation 1 across the genes. For the scope of this 
paper, the human proteasome-encoding genes were annotated using illuminaHumanv3BeadID 
package in R and the mouse and Drosophila homologous were annotated using HomoloGene 
and Inparanoid (http://ncbi.nlm.nih.gov/homologene and http://inparanoid.sbc.su.se, respectively) 
online databases. Previously published data were used to identify deregulated genes per species 
(Anvar et al., 2011). For cross-validation (Stone, 1974; Fielding, 2007) human data were divided 
into 4 folds (given the limited number of OPMD samples), while the other datasets were divided 
into 6 folds (Table 1). Human, mouse, and Drosophila datasets hold 108, 96, and 78 transcripts, 
respectively, which encode for 74, 56, and 53 genes (including genes encoding for the proteasome 
and a set of 30 randomly selected genes). The differences are due to limitations of mapping ho-
mologous genes or unavailability of expression data for certain genes in a particular species. The 
gene lists are provided in the Table S2 in Text S1.

Cell Model
IM2 cells stably transfected with normal (WTA) or expanded PABPN1 (D7E) and were com-
pared to assess the predictive value of the interspecies modeling approach on an unseen OPMD 
disease model (Raz et al., 2011). Exogenous PABPN1 expression is under control of the desmin 
promoter. IM2 cells were proliferated in DMEM supplemented with 20% fetal calf serum, 0.5% 
chicken embryo extract, 5U/ml interferon gamma, at 33C and 10% CO2. Myotube fusion was 
induced by culturing in DMEM supplemented with 5% horse serum at 37C and 5% CO2 for four 
days, after which RNA was extracted from three independent cultures. 

Quantitative RT-PCR Analysis
Total RNA was extracted using the TRIZOL reagent (Invitrogen) according to manufacturer’s 
instruction. First strand cDNA was synthesized with random hexamer oligonucleotides and 
MMLV reverse transcriptase (First Strand Kit; Fermentas, according to manufacturer’s instruc-
tion). 3.6ng cDNA was used per quantitative PCR reaction. qPCR was performed with SYBR 
green mix buffer (BioRad) and 7.5 pmole (per reaction) of forward and reverse primers in a 15 mL 
reaction volume. PCR conditions were as follows: 4 min at 95 °C followed by 40 cycles of 10 sec 
at 95 °C and 60 sec at 60 °C. The program was ended with 1 min at 60 °C. For each primer set, the 
specificity of the PCR products was determined by melting curve analysis. Expression levels were 
calculated according to the  ΔΔCT method normalized to mHrpt, Desmin, and IM2 parental 
cells. The statistical significance was determined with the student’s t-test. The list of primers used 
in this study is provided in the Table S3 in Text S1.
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RESULTS
Identification of Disease Module
Previously we identified that the deregulation of the ubiquitin-proteasome system (UPS) is the 
predominant molecular pathway affected in OPMD animal models and patients (Anvar et al., 
2011). The UPS, a cellular regulator of homeostasis, is highly dynamic machinery that involves 
protein ubiquitination and degradation steps. From the six UPS components, we found that only 
E3-ligases, deubiquitinating enzymes, and proteasome components are consistently and promi-
nently deregulated in OPMD across species (Anvar et al., 2011). The proteasome is composed 
of core and regulatory subunits. We observed a substantial deregulation of proteasome and cy-
tokine-induced proteasome (also known as immunoproteasome) encoding genes across species 
(Figure 2). To obtain more insight in the key components in the proteasome machinery that are 
aberrantly expressed in OPMD across species, we generated gene regulatory networks. Unique 
to the current approach, the networks were learnt on one species and evaluated on datasets from 
other species. This was done to only retain those links between genes that can be found across 
multiple species and that are more likely to be directly connected to the disease phenotype than 
links that are only found in a single species. For the interspecies translation we used two version 
of our newly developed Dandelion algorithm. The naïve variant is a straw man approach, where 
expression values for different transcripts of the same gene are first summarized. This approach 
was then further refined in the exhaustive Dandelion algorithm, where the model chooses the 
transcript that is most predictive for the expression value of a transcript in another species.
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Figure 2 – OPMD-deregulation across different subunits of the proteasome in different species. There 
are widespread differences in gene expression (depicted in dark colors) between OPMD and control in the 
different functional subunits of proteasome and immunoproteasome in human (A), mouse (B) and Drosophila 
(C). The Significance of the association between the disease outcome and expression profiles of genes 
encoding for proteasome and immunoproteasome were previously calculated (Anvar et al., 2011) using the 
global test (Goeman et al., 2004).
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Naïve Construction of Disease Network
The process of constructing disease networks using naïve Dandelion algorithm initially starts by 
averaging the expression profiles of different gene transcripts in the human datasets. The sum-
marized gene expression values were then used for the learning of intraspecies gene networks 
which consequently were translated to the other species. The interspecies networks were assessed 
for their predictive accuracy, sensitivity and specificity (Figure 3). The constructed interspecies 
networks predict the disease status (control vs. OPMD) of the unseen Drosophila and mouse 
samples with a moderate accuracy of 71% and 72%, respectively (Figure 3A). However, a large 
number of networks perform worse than random expectations, as evident from the ROC space 
(Figure 3B). This result indicates an overall low level of sensitivity and specificity in predicting 
the disease phenotype. Moreover, the networks are weak and unstable as they exhibit a very low 
level of translatability (Figure 3C). The low level of robustness, stability and translatability is also 
evident from the low percentage (8.7%) of relationships with the confidence score of ≥ 0.1 in the 
intraspecies networks (Figure 3D). Similarly, after applying the confidence threshold of 0.1, the 
interspecies disease domain structure collapses as only two links survive this constraint (Figure 
3E). The level of confidence in relationships within the interspecies disease domain is estimated 
to be between 0.25 and 0.75 for both links and RPN9 is the only gene found differentially ex-
pressed in the Drosophila dataset. This indicates that averaging the expression patterns for dif-
ferent gene transcripts reduces the information content of the network considerably and should 
be avoided for accurate prediction of the disease phenotype and generating biologically relevant 
regulatory networks. 

Figure 3 – Performance of the naïve Dandelion algorithm on constructing disease networks that are 
learnt on human and evaluated on human, mouse and Drosophila datasets. A) The average Sum of 
Squared Error (SSE) for prediction of the disease phenotype (OPMD vs. control) given the gene expression 
profiles within the disease networks learnt on human. The cross-validation set which is used during the train-
ing phase is depicted by C.V. and the independent test sets are grouped as IND. Test Sets. B) ROC space 
demonstrates the relative sensitivity and specificity of the generated networks in predicting the disease phe-
notype. The results from random expectations are illustrated by the red dash-line. C) Number of relationships 
between genes and the class node, after applying confidence thresholds, are depicted in line per species. 
D) The number of links found after interspecies translation and optimization of the disease networks within 
each species. The orange section, separated by red dash-line, represents the number of links that can be 
found in all species with the confidence threshold of 0.1. E) The interspecies disease domain is generated 
according to the Markov blanket criteria, after applying the confidence threshold of 0.1.
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Exhaustive Construction of Disease Network
We used the exhaustive Dandelion algorithm to overcome these limitations and provide a de-
tailed interaction map of molecular pathology that extends our knowledge of disease mechanism 
across species. In contrast to the naïve variant, the exhaustive Dandelion algorithm searches the 
space of possible relationships at the level of gene transcripts to find the best scoring interspecies 
regulatory network. It can accommodate missing data and possible dissimilarities by identifying 
the best fit for a given relationship across species. 

Bayesian networks which are generated using the exhaustive Dandelion algorithm can accurately 
predict the disease status from the expression levels of genes coding for proteasomal components 
(Figure 4A). We observe over 91% sensitivity and 80% specificity in the prediction of the disease 
phenotype in the human dataset (with an average SSE under 0.18), and similar values were ob-
tained for the Drosophila and mouse datasets. The interspecies disease networks have very high 
predictive value for other species while they tend to avoid overfitting to a given dataset. This is 
evident from the low level of variation in SSE between constructed interspecies networks (0.06 in 
human, 0.11 in mouse, and 0.08 in Drosophila). The predictive ability of the interspecies models 
is highly robust towards the use of different organisms for training and testing, as the average 
SSE for a given species only slightly varies between different networks. Furthermore, the gener-
ated interspecies disease networks exhibit high sensitivity and specificity scores towards their 
informativeness to the prediction of the disease status. The majority of these networks provide 
sensitivity and specificity scores higher than 70% (Figure 4B). All constructed networks perform 

Figure 4 – Performance of the exhaustive Dandelion algorithm. A) The average Sum of Squared Error 
(SSE) for prediction of the disease phenotype (OPMD vs. control) given the gene expression profiles within 
the disease networks learnt on human (i), mouse (ii), or Drosophila (iii). The cross-validation set which is 
used during the training phase is depicted by C.V. and the independent test sets are grouped as IND. Test 
Sets. B) ROC space demonstrates the relative sensitivity and specificity of the generated networks in pre-
dicting the disease phenotype. The results from random expectations are illustrated by the red dash-line. 
C) Number of relationships between genes and the class node, after applying confidence thresholds, are 
depicted in line per species.
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significantly better than random expectations, as presented in the ROC spaces (Figure 4B). In 
addition, the gene networks are strongly connected to the class node (representing information 
on the control and disease states of the samples) since the number of genes connected to the class 
node only drops to 0 when the confidence threshold was raised to 0.3, 0.4, or 0.2 for networks 
learnt on human, mouse, or Drosophila, respectively (Figure 4C). These are very restrained con-
fidence thresholds as they require networks to share the same level of confidence for interactions 
across all species, and compare favorably to the low number of links remaining at the lower 
threshold of 0.1 with the naïve Dandelion algorithm. 

Figure 5 demonstrates the level of robustness and translatability of the obtained disease networks. 
A large fraction of relationships (37.4% in human, 28.7% in mouse, and 34.3% in Drosophila) can 
be translated and found in the interspecies disease network with the confidence threshold of 0.1 
(Figure 5A). Remarkably, an average of more than 60% of the translated links can be found in all 

Figure 5 – Translatability and robustness of interspecies disease networks. A) The number of links 
that were found during interspecies translation and optimization of the disease networks per individual da-
tasets. The red dash-line depicts the number and fraction of links that can be found in all species with the 
confidence threshold of 0.1. The translatability of disease networks learnt and trained on human (i), mouse 
(ii), and Drosophila (iii) are presented separately. The cross-validation set which is used during the training 
phase is depicted by C.V. and the independent test sets are grouped as IND. Test Sets. B) The translatability 
of relationships over series of different confidence thresholds. These line plots demonstrate the percentage 
of relationships with confidence score higher than the threshold. For the independent testing datasets the 
ratio is towards the number of links that were expected to be found after generation of the network map. C) 
The robustness of disease networks are assessed according to the level of connectivity for genes encoding 
for the proteasome as compared to the set of randomly selected genes at different confidence thresholds.
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organisms. It is evident that the intraspecies net-
works are highly resistant towards noise and the 
range of confidence in which interactions can be 
found in the training set is at least 0.7 and are 
as high as 0.9 in Drosophila and mouse datasets 
(Figure 5B). This value is even higher for rela-
tionships that are successfully translated from 
the intraspecies network to the other organ-
isms (Figure 5B). Noticeably, the interspecies 
networks can still be obtained when applying a 
very stringent confidence threshold of 0.9 for all 
three constructed interspecies disease networks. 
More than 71% and 39% of translated relation-
ships from human pass the confidence thresh-
old of 0.9 in mouse and Drosophila datasets, re-
spectively. However, a slightly more severe drop 
in translatability rate is observed for networks 
learnt on the mouse data. This can be expected 
due to the presence of overexpression and pos-
sibly other artifacts in this model system, also 
reflected by the higher level of interconnectivity 
of these networks. Despite the presence of noise 
and other artifacts in these datasets, a large frac-
tion of interactions between genes encoding for 
the proteasome have high confidence scores in 
the interspecies networks (Figure 5B). This is 
not true for links associated with the randomly 
selected genes as the majority of those relation-
ships do not pass the confidence threshold of 0.1 
(Figure 5C). Overall, these results show model-
driven selective and predictive ability of the ex-
haustive Dandelion algorithm in capturing the 
disease-related relationships between genes in 
which exhaustive Dandelion significantly out-
performs the naïve Dandelion algorithm.

To assess the specificity of the proteasome in 
providing accurate prediction of the disease sta-

tus, we compared the SSE, sensitivity, and specificity of the networks learnt on the proteasome to 
that of three additional gene sets. The exhaustive Dandelion algorithm was applied to a set of 70 
random genes from which none is deregulated (ND) in OPMD, a set of 100 randomly selected 
genes containing also deregulated genes that are expected to link with the class node in one spe-
cies but not necessarily across species, and 87 genes coding for the structurally-related ribosomal 
proteins, which are not known to be consistently differentially expressed in different species (An-
var et al., 2011). Noticeably, interspecies networks constructed on the proteasome significantly 
outperformed (86% sensitivity and 81% specificity across species) those constructed on other 
gene sets (Figure 6). Strikingly, the predictive accuracy of networks learnt on the proteasome was 
slightly improved from the previous experiment (Figure 4) in which additional 30 random genes 

Figure 6 – Specificity of the proteasome towards 
prediction of disease states. A) The average Sum 
of Squared Error (SSE) for prediction of the disease 
phenotype (OPMD vs. control) given the gene ex-
pression profiles within the constructed networks 
learnt on the proteasome, 100 random genes, 70 
not-deregulated random genes (ND), and the ribo-
some. The cross-validation set which is used during 
the training phase is depicted by C.V. and the inde-
pendent test sets are grouped as IND. Test Sets. B) 
ROC space demonstrates the relative sensitivity and 
specificity of the generated networks in predicting 
the disease phenotype. The proteasome, 100 ran-
dom genes, 70 random genes (ND), and ribosome 
are illustrated in different colors (red, purple, green, 
and yellow, respectively). The results from random 
expectations are illustrated by the gray dash-line.
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were included. In contrast, the class prediction performance of the other networks was much 
lower. The class prediction error for networks learnt on the random genes was much higher than 
that of the proteasomal genes (average SSE of 0.43 and 0.21, respectively) but slightly lower than 
that of non-deregulated random genes and the ribosome (0.52, and 0.48, respectively) (Figure 
6A). Although the performance is still acceptable for training and testing on human, the decrease 
in the level of sensitivity and specificity of non-proteasomal networks is particularly apparent 
during the translation phase (in this case from human data to mouse and Drosophila) (Figure 
6B), indicating that the links between non-proteasomal genes are not conserved across the differ-
ent species. Altogether, these results indicate a model-driven selective ability of the algorithm in 
capturing the most informative and consistent gene relationships which led to the construction 
of a highly robust interspecies disease network.

Network Genes and Identification of Key Regulators
Interspecies disease domains represent the most robust, disease-associated gene networks. They 
are identified by the class node (describing the disease status) and the associated Markov blanket 
of interactions with the confidence threshold of 0.1 across species (Figure 7). In the original ex-
periment, the interspecies disease domain that is trained on human data shows the most robust 
network as the overall confidence in relationships is very high (Figure 7A). The mouse data, 
however, produced the highest number of relatively weaker relationships among genes (Figure 
7B). The interspecies disease domain that is trained on the Drosophila data shows the same level 
of robustness as those constructed and trained on human (Figure 7C). In Drosophila, Desmin 
(DES), a randomly selected gene, is connected to the class node as part of the disease domain. 
Although DES (a muscle-specific class III intermediate filament) is a member of the random set, 
it is significantly deregulated in both human and Drosophila datasets. This gene has been clearly 

Figure 7 – Interspecies disease domains. These interspecies class network structures are learnt on hu-
man (A), mouse (B), or Drosophila (C) dataset and optimized across species. Class network structures are 
presented according to Markov blanket criteria. Nodes represent genes. The outer ring reflects deregulation 
in the expression in the different species (a, b). Relationships are depicted with lines that represent different 
degree of confidence in relationships (described in c).

C

BA
Class

RPN7

RPT6

α6PA28α

α3
α7

RPN10

RPN1

RPN3

RPT2

RPN15

Disease Domain trained on Human (Markov Blanket)

Class
RPN7

RPT6

β3

PA28α

α3

β5i

RPN10

RPN11

RPN3

RPT3

RPN15

Disease Domain trained on Mouse (Markov Blanket)

RPN9

RPN5

α5

α6

RPN8

RPN6

RPN12

RPT5

RPT4

β5

β2
β4

β1i

β2i

Class

DES

RPT6

β5

PA28α β2

α7

RPN5

RPN2

RPT3

RPN8

Disease Domain trained on Drosophila (Markov Blanket)

RPT5
RPT4

β3

Drosophila Data Set Human Data Set

Mouse Data Set

GENE

Deregulated

Not deregulated

GENE

Interspecies Con�dence 
in Relationship:

Strong Moderate Weak

α4

1.0 0.75 0.5 0.25 0.0



INTERSPECIES TRANSLATION OF DISEASE NETWORKS INCREASES ROBUSTNESS & ACCURACY

147

linked to muscle differentiation (Capetanaki et al., 1997) and is likely associated with the OPMD 
phenotype. No other randomly selected genes appear in the disease network which indicates the 
reliability and the specificity of the obtained networks. Overall, the interspecies disease domains 
exhibit a high level of robustness and informativeness towards different states of the disease. This 
is due to the presence of relationships that can be translated across species with at least a mod-
erate confidence (91.7% in human, 55.3% in mouse, and 71.4% in Drosophila). Moreover, the 
interspecies disease domains contain a large number of nodes that are differentially expressed in 
at least one species (100% in human, 80% in mouse, and 92.9% in Drosophila). Furthermore, the 
majority of genes are shared between at least two interspecies disease domains (81.8%, 64%, and 
78.6%, for disease domains after training on human, mouse and Drosophila, respectively).  Many 
of the links between genes present in these network structures demonstrate a strong correlation 
in expression profiles in the different species (Table S4 in Text S1). Overall, these results indicate 
that the expression levels of the majority of genes in the constructed interspecies networks are 
strongly correlated and more likely to be associated with the OPMD phenotype than genes that 
are differentially expressed in single species.

Evaluation of Disease Networks on Unseen Disease Model
The model-driven and interspecies selection of genes that are most likely to be associated with 
the disease phenotype suggests their association with the disease in an independent and unseen 
disease model. Therefore, we evaluated the disease-related transcriptional changes for a subset of 

Figure 8 –Validation of differential expression of disease associated genes in an unseen disease 
model. Results from qPCR experiments measuring differences in gene expression between control cells 
(WTA, N=3 independent cultures) and cells expressing the OPMD-associated PABPN1 with expanded re-
peat (D7E, N=3 independent cultures). Expression levels were normalized to Desmin to correct for differ-
ences in the myogenicity in the different cell cultures. Significant differences (P < 0.05, Student´s T-test) 
between measured expression values in D7E and WTA cells are indicated by *, whilst NS stands for no 
significant difference. PA28α, RPT3, RPN15, RPN11, β2, and β5 expression in IM2 cell lines were selected 
from the group of genes present in the interspecies disease domain. PA28β (deregulated in human dataset) 
was selected as its role in assembling the lid subunit of the immunoproteasome is highly similar to PA28α 
but not part of the interspecies disease domain. β2i is one of the two genes that remained connected to the 
class node in the interspecies disease domain constructed by naïve Dandelion approach. ACTA1 is a control 
for myotube formation.
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genes (selected from the interspecies disease domains) in the IM2 cell model (Raz et al., 2011) 
with moderate overexpression of the wild-type PABPN1 (WTA) or the mutant PABPN1 pro-
tein isoform (D7E). Remarkably, all the selected genes (PA28α, RPT3, RPN15, RPN11, β2, and 
β5) showed significant differential expression in an unseen IM2 cell model (Figure 8). PA28α 
appears to be an essential hub in the interspecies disease domains trained on the human and 
mouse datasets (Figure 7). Noticeably, it is also significantly deregulated between D7E and WTA 
(Figure 8). In contrast, PA28β, which is a closely related homolog in the PA28 complex (Rech-
steiner and Hill, 2005) and also significantly deregulated in human dataset, do not play a part in 
the interspecies disease domains. Interestingly, it is evident that the expression pattern of PA28β 
is not deregulated between the D7E and WTA cells (Figure 8). Next, we assessed the expression 
of the β2i, a member of immunoproteasome core subunit, present in the interspecies disease 
domain constructed with the naïve Dandelion algorithm. This gene is not differentially expressed 
between D7E and WTA cells (Figure 8). Overall, these results highlight the unique ability of the 
exhaustive Dandelion algorithm to identify disease-related genes that can be found across differ-
ent OPMD model systems and patients. 

DISCUSSION
Integration of transcriptome data from different species is far from trivial and is complicated by 
our limited knowledge of true protein orthologues and transcript variants coding for proteins 
with similar functions. Moreover, the presence of noise and artifacts specific to certain model 
systems usually leads to limited overlap between results obtained in cross-species comparisons 
(Lu et al., 2009; Zhou and Gibson, 2004; Oliva et al., 2005; Blake et al., 2003). In this paper, we 
developed a Bayesian-based methodology (Dandelion algorithm) to model gene networks as-
sociated with the same disease in different species. We showed that the integration and analysis 
of gene expression datasets from various species increase the robustness of the constructed net-
works and the predictive accuracy of the disease state. We also demonstrated that the interspecies 
translation of the networks helps to avoid overfitting. A newly developed model-driven selection 
of transcripts that are most likely to be coding for orthologous proteins is essential for the genera-
tion of robust interspecies disease networks.

Our approach for Bayesian modeling of datasets on a similar phenotype from different model 
systems and patients is rather unique. Several approaches have been described to avoid overfit-
ting and increase the robustness of Bayesian networks. For example, informative priors derived 
from protein-protein interaction (PPI) data or from the literature have been used to generate 
more stable and biologically meaningful networks (Segal et al., 2003; Pe’er et al., 2002; Steele et 
al., 2009; Jansen et al., 2003). While these methods obviously bias the results towards well-known 
regulatory interactions (Sprinzak et al., 2003; Joyce and Palsson, 2006), these methods may ul-
timately be combined with our modeling approach to obtain regulatory networks with a more 
straightforward biological interpretation. 

Our method was applied to an a priori defined gene module coding for a well-known biological 
structure, the proteasome. Several studies in S. cerevisiae (Zhang et al., 2005; Tanay et al., 2004; 
Luscombe et al., 2004; Han et al., 2004) have demonstrated the value of an integrative modeling 
approach providing modularized interaction networks without prior assumptions. Zhang et al. 
(2005), for instance, took an approach in which they integrated a number of different available 
data sources, from PPIs to sequence homology and gene co-expression, while Tanay et al. (2004) 
and others (Luscombe et al., 2004; Han et al., 2004) expanded on the statistical analysis of net-
work properties and identifying modules within the network structure. The performance of these 
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models depends on the availability of high quantities of samples and may be prone to overfitting 
due to the presence of noise and other model-specific artifacts. Therefore, a combination with 
our interspecies translation approach may enable the allowing of larger gene regulatory networks 
with multiple gene modules and connections between them. 

In this study, three microarray datasets from Drosophila, mouse and human, that are all con-
cerned with OPMD, are used to gain insight into key regulatory relationships of interspecies 
disease networks that are directly and robustly associated with the disease. Previously, we have 
established the importance of the deregulation of the ubiquitin-proteasome system (UPS) for 
the disease etiology (Anvar et al., 2011). From the different components of the UPS, the down-
regulation of the proteasome has been associated with the late-onset of the disease (Anvar et al., 
2011) as the reduced proteasome activity can lead to futile protein degradation. However, little is 
known about the key components of the proteasome that are contributing to the OPMD pheno-
type. Hence, the generation of interspecies disease networks for the proteasome encoding genes 
now shed some light on the underlying regulatory mechanisms that govern the disease-related 
transcriptional changes of the proteasome encoding genes. 

We identified PA28α, one of the three components of the PA28 subunit, as an important hub 
gene in the interspecies disease domain and validated its significant differential expression in an 
unseen disease model. PA28α plays an important role in assembling the lid subunit of the im-
munoproteasome and stimulating the proteasome core component (Rechsteiner and Hill, 2005). 
Previously we showed that the induction of immunoproteasome activity leads to a significant 
reduction in the nuclear expPABPN1 accumulation (Anvar et al., 2011). This observation fur-
ther signifies the role of PA28 assembly and the immunoproteasome in the disease etiology. In 
contrast, the other PA28 component PA28β although significantly deregulated in human OPMD 
patients, appears to play a less crucial role since its association with the disease did not translate 
to the OPMD animal models and could not be reproduced in the OPMD cell model system. On 
the other hand, the association of β2 and β5, members of the proteasome core subunit, with the 
disease was identified by the interspecies disease domains and reproduced in the OPMD cell 
model. Down-regulation of the proteasome core subunit can lead to futile protein degradation 
which results in protein accumulation. Our analysis suggests that β2 and β5 are vital regulators of 
the proteasome activity which are disease associated. It has been shown that the down-regulation 
of the proteasome core subunit can trigger expPABPN1 accumulation and play a role in the dis-
ease late-onset (Anvar et al., 2011). Relevant to the late-onset of the OPMD, previously it has been 
shown that the proteasome activity declines during muscle ageing (Ferrington et al., 2005; Com-
baret et al., 2009; Lee et al., 1999), a phenomena which is highly associated with the transcrip-
tional changes of the proteasomal genes (Lee et al., 1999). In follow-up studies, the functional role 
of proteasomal protein dysregulation in the disease pathology and ageing of muscles needs to be 
investigated. Furthermore, the functional relevance of gene regulatory relationships should be 
investigated where changes in protein level mimic the in vivo situation and directly affect the pro-
tein catabolism. This would ultimately result in better understanding of the mechanism in which 
the loss of proteostasis leads to degenerative loss of muscle function during ageing and in OPMD.

In conclusion, this study presents a state-of-the-art strategy in constructing interspecies disease 
networks that provide crucial and comprehensive information on gene regulatory relationships. 
This leads to better understanding and identification of the molecular mechanisms underlying 
the disease. The high level of specificity and sensitivity of these models enables the prioritization 
of candidate regulators of molecular disease mechanisms to be studied in follow-up validation 
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experiments. In particular, it is crucial to carry out additional experiments to investigate the 
functional relevance of proteasomal proteins dysregulation to the OPMD pathology. We believe 
that robust and unbiased construction of the interspecies networks for rare or complex human 
diseases can lead to novel discovery and identification of key regulators which can ultimately of-
fer potential targets for therapeutic interventions and drug developments.
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APPENDIX
Table S1 – Terminological definitions.

Term Definition

Disease Module
Molecular pathway in which gene expression profiles are significant associated with the 
disease phenotype. Modules are described based on the current KEGG (Kyoto Encyclo-
pedia of Genes and Genomes) annotation of molecular pathways.

Intraspecies Network Gene network in which structural relationships among genes are based on the training 
with data from a single organism. 

Interspecies Network Gene regulatory network of which the structure holds a consensus across all species.

Sum Squared Error

The SSE measurement is the sum of the squares of the deviations between the mea-
sured expression values (or assigned disease phenotype) and the values predicted 
from the response variable which can be the class node (discrete variable), gene or 
gene transcript node (continuous variable). The identifier for the graph node is repre-
sented by g and the case id is represented by i. 

( )∑
=

−=
n

i
igigg valuepredictedvaluemeasuredSSE

1

2
,,

Sensitivity

The probability of accurate prediction of cases with the disease-associated phenotype.

disease

disease
casesofnumbertotal
casesTrueofnumber

ySensitivit =

Specificity

The probability of accurate prediction of control cases without the disease-associated 
phenotype.

control

control
casesofnumbertotal
casesTrueofnumber

ySpecificit =

Confidence Score

The ratio of the number of times a link is found in a network structure to the maximum 
number of times the link can be found.

For the training set (species A):

( )
Aonnetworksdconstructeofnumbertotal

nfoundislinkatimesofnumber
ScoreConfidence Aspecies

=

For the independent test set (species B):

( )
Bonnetworksdconstructeofnumbertotaln

nfoundislinkatimesofnumber
ScoreConfidence

Aspecies

Bspecies
×

=

Robustness The number of relationships found for genes from the disease module compared to 
those from random genes after applying different confidence thresholds. 

number of True cases disease

number of True cases control

total number of True cases disease

total number of True cases control

number of times a link is found

number of times a link is found

total number of constructed networks on A

total number of constructed networks on B
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Translatability
The likelihood of finding genes neighboring relatives that are selected as part of the 
intraspecies network structure during the phase of independent testing in the other spe-
cies.

Naïve Dandelion
A class of Dandelion algorithm in which the networks are constructed on datasets de-
rived from different organisms, where transcript expression levels for the same gene are 
averaged.

Exhaustive Dandelion
A class of Dandelion algorithm in which the structure of intraspecies networks are learnt 
on gene transcript level. This procedure involves a model-driven selection of the most 
probable homologous transcript isoform which is best translated across species. 

Disease Domain

A sub-network structure associated with the class (disease) node which is defined 
based on the Markov blanket principle for the extension of the class node connectivity. 
This sub structure is composed of class node, its children, and its children’s other par-
ents that share the same level of confidence (≥0.1). A Markov blanket of the class node 
is the only knowledge needed to predict the disease phenotype.

Protocol S1 – Algorithm for Simulated Annealing Structure Learning.

Input: 	 t0 = 10, maxfc = 1000, D, mode, netmap
	 fc = 0, t = t0, tn = 0.001
	 c = (tn / t0)

1/maxfc

	 Initial bn to a Bayesian classifier with no inter-gene links
	 result = bn
	 oldscore = score(bn)
	 While fc < maxfc do

	      For each operator do

	      	 If mode = ‘train’
	      		  Apply operator to bn
	      	 Else if mode = ‘test’
	      		  Apply operator to bn based on links available in networkMap
	      	 End if

	           	 newscore = score(bn)
	           	 fc = fc + 1
	           	 dscore = newscore – oldscore
	           	 If newscore > oldscore then

	                		 result = bn
	           	 Else if r(0,1) < e dscore/t then

	                		 Undo the operator
	           	 End if

	      End for

	      t = t X c
	 End while

Output:	 result
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Protocol S2 – Dandelion algorithm of interspecies construction of disease network.

Input: 	 Speciestrain, {Speciestest 1, …, Speciestest M}, trainfolds, {testfolds 1, …, testfolds M}, exhaustiveT/F

	 For k = 1 to trainfolds

	      Learn intraspeciesTranscriptbn using Algorithm 1 on training folds of Speciestrain

	      Score Scpeciestrain {NodesSSE, NodesSTD, LinksConfidence}
	      If exhaustive = true
	      	 Transform intraspeciesTranscriptbn to intrascpeciesGenebn

	      End if

	      Assess Disease Connection
	      If intraspeciesGenebn is not connected to disease node then

	      	 Drop intrascpeciesGenebn

	      Else

	      	 Translate intrascpeciesGenebn to networkMap
	      	 For i = 1 to M
			   Optimize and Test networkMap in Speciestest i using Algorithm 1

			   Score Scpeciestest i {NodesSSE, NodesSTD, LinksConfidence}
	      	 End for

	      End if

	 End for

	 Integrate intraspeciesGenebn using LinksConfidence threshold of 0.1
Output:	 interspeciesbn

Proteasome and 30 Ran-
dom Genes 100 Random Genes 70 Random Genes (not 

deregulated) Ribosome

PSMD3 LOC643791 LOC644993 LOC651979 CPSF4L WTAP FAU RPS6

PSMD12 C9orf79 LOC147710 OR4A47 LOC652683 CRTC2 RPSA RPS7

PSMD11 MGRN1 PCDHB5 KCTD14 MME LSM14B RPL10A RPS9

PSMD6 LOC653587 KIAA1688 CDK5RAP2 LOC653261 PRKG2 RPL3 RPS10

PSMD7 CNGA4 A4GALT TMPRSS4 CD200R1 LUM RPL3L RPS11

PSMD13 OTOR SFN ADAMTS13 HSD11B1 PRUNE RPL4 RPS12

PSMD14 GPR89A BCL10 FRAS1 PDE4DIP RPS3AP47 RPL5 RPS13

PSMD8 GPR89B MSX2 SCUBE1 EEPD1 P2RX2 RPL6 RPS14

SHFM1 HAPLN4 SNRPB LOC642855 KRTAP4-11 NAV1 RPL7 RPS15

PSMD4 LOC641994 HERC3 LOC442261 SLFN14 XRCC2 RPL7A RPS15A

PSMD2 THBS2 HRASLS2 ZNF100 POU4F1 C17orf87 RPL8 RPS16

PSMD1 ZNF768 DLD HDGFRP3 LOC442132 CACNA1I RPL9 RPS17

PSMC2 KIAA1147 LOC649217 LOC642453 ST6GLA2 ELSPBP1 RPL11 RPS18

PSMC1 C19orf59 IGHG1 RHBDD1 ACTR3B EPGN RPL12 RPS19

LOC643668 BARHL2 GNPTAB RSL1D1 PEF1 LOC650933 RPL13 RPS20

Table S2 - Gene lists for independent tests and performance assessments.
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PSMC5 LOC400831 NOC4L LOC652610 OGG1 HDX RPL15 RPS21

PSMC6 HMGN4 PLD3 LOC646699 TAF9B APOL3 RPL17 RPS23

PSMC3 TSSK4 LOC648974 KNDC1 LOC653421 CNOT4 RPL18 RPS24

PSMC4 RTKN2 GTPBP8 DACT3 LOC441347 PFAS RPL18A RPS25

PSMA6 RXRA LIF FLJ16369 FRMPD2 MAP3K14 RPL19 RPS26

PSMA2 MYL5 LOC440104 VIPR1 HSCB   RPL21 RPS27

PSMA4 UBTD1 WAC COPS8 CHD1   RPL22 RPS27A

PSMA8 OR1J4 KALRN NIF3L1 LOC645781   RPL23A RPS28

PSMA7 TRAPPC5 UNC93A PPAP2C LOC729446   RPL24 RPS29

PSMA5 ADAM20 IFNAR1 LOC644431 FAM129C   RPL26 UBA52

PSMA1   NMT1 TCTE3 FAM90A15   RPL27 RPL14

PSMA3   LOC652750 TTF2 C1orf187   RPL30 RPL23

PSMB6   LOC653707 RPS7 HIPK2   RPL27A RPL35

PSMB7   SLC26A9 ITGA8 XKR3   RPL28 RPL13A

PSMB3   ETFDH CCAR1 RAB2A   RPL29 RPL36

PSMB2   ADAM23 PDCD10 FOXR1   RPL31 MRPL13

PSMB5   FBXO9 LOC651400 CD72   RPL32 RPS27L

PSMB1   LOC643089 CDC42BPG TRAF4   RPL34 RPL26L1

PSMB4   ATP5D SP2 NCAN   RPL35A C15orf15

PSME1   CST6 LOC649432 HRC   RPL36AL RPL10L

PSME2   RPL11 LOC732093 LOC643577   RPL37 RPL22L1

PSME3   FAM47B TMEM165 AKR7A2P1   RPL37A RSL24D1P11

PSME4   LHFPL4 LHCGR PLK2   RPL38  

POMP   MGC42105 SPAG7 RABL2B   RPL39  

PSMF1   STOX2 INOC1 CLGN   RPL41  

IFNG   FRMD5 OR2T10 LRRC49   RPL36A  

PSMB9   CHL1 DEPDC5 CHORDC1   RPLP0  

PSMB10   UNQ830 ADAD1 KRT18P51   RPLP1  

PSMB8   STCH LOC339529 OR13G1   RPLP2  

PSMB11   B4GALNT3 FZD9 CCL21   RPS2  

AKR1CL1   SUMO2 CD46 LRFN2   RPS3  

CHRNA5   C20orf30 JARID1B SLC35A5   RPS3A  

UNC13B   CNIH3 DUX4 RDH12   RPS4X  

DES   DBX2 DPPA4 FAM154B   RPS4Y1  

STT3A   GSTM5P1 YSK4 LOC388948   RPS5  
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Table S3 – The list of primers that were used for qPCR validation study in IM2 cell model of OPMD.

Gene FW Primer Sequence RV Primer Sequence

RPN11 (Psmd14) CACCTGAACAGCTGGCAATA GAGCATTGGGAACGAAGAAG

RPN15 (Shfm1) AGCACGGCTACAAGATGGAG TGAACCAAAAAGATTAAATCAAAACA

RPT3 (Psmc4) ACCTCAGACCAGAAGCCAGA CACCACACGGATAAATGCAG

b2 (Psmb7) GCACTACCGCTGTCCTCACCG AGGGGTGGTATGCACCCCGAG

b5 (Psmb5) CGGTCGCAGCAGCCTCCAAA GCATACACGGAGCCAGAGCCC

PA28a (Psme1) AAGCCAAGGTGGATGTGTTC GGGTACTGGGATGTCCAATG

PA28b (Psme2) CCTGGAGAGTGAAAGCGAAA GTCATCAGCCTCCTGGAAAA

b2i (Psmb10) ATTTGCTCCTGGAACCACAC CCACTTCATTCCACCTCCAT

ACTA1 (Acta1) CGAGGTATCCTGACCCTGAA AGGTGTGGTGCCAGATCTTC

mHPRT CGTCGTGATTAGCGATGATG TTTTCCAAATCCTCGGCATA
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The rapid development of “omics” technologies (genomics, transcriptomics, proteomics, 
metabolomics, and others) has allowed for a more detailed understanding of complex bio-
logical systems. However, analytical approaches for meaningful interpretation of multi-

layer omics datasets are lagging behind the technological advancements. The sparse, amorphous, 
distributed, and poorly reproducible state of omics datasets and the lack of standard for gener-
ating such data in many disciplines further complicate the analysis of these datasets (Ioanni-
dis, 2005). These bottlenecks pose the importance of developing stringent computational strate-
gies and a validation regime that can distinguish between true signals and noise (Ioannidis and 
Khoury, 2011). Interdisciplinary approaches are required to bridge the growing gap between 
technological development, biomedical research, and computational biology. Thus, converging 
loops between theory and experiment should help to understand the dynamics of biological net-
works and processes. Integrative analyses of different and multifaceted biological datasets should 
facilitate the study of human genetic disorders. 

In this Outlook, I firstly discuss the scientific rationale for carrying out multi-disciplinary re-
search on a rare human genetic disorder and further outline how that can benefit society. I then 
describe and provide an overview on some of the key mechanistic insights unravelled by my 
colleagues and myself through the course of our studies. Finally, some directions which could 
enhance the evolution of the field of systems biology are discussed.

Remarkable insights from a rare event
DNA sequence polymorphisms contribute to individual differences in disease susceptibility. As 
genetic information can be passed onto mRNA and proteins that perform cellular functions, ge-
netic studies have often focused on the one-to-one relationship between phenotype and genomic 
variation as the basis for knowledge discovery. There are, however, common patterns that under-
lie the diversity, complexity, development and progression of genetic diseases. Hence, looking 
for shared molecular activities, across organisms or processes with similar characteristics (such 
as ageing, late-onset neuromuscular and protein aggregation disorders), can lead to uncovering 
new insights into mechanisms that are important for diverse biological conditions. In particular, 
such combined strategies would facilitate the study of rare diseases. There are an estimated 8,000 
rare disorders, many of which are known to be of genetic origin (Stolk et al., 2006; Schieppati et 
al., 2008). Given the low prevalence of rare diseases, it is particularly difficult to employ tradi-
tional approaches and, therefore, they require special integrative efforts to improve discovery of 
underlying mechanisms. Notably, in spite of the low prevalence of each rare disease, about 30 
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million people are estimated to be affected by a rare disease in Europe (Kaplan and Laing, 2004). 
In the work presented in this thesis, my colleagues and I have mainly focused on developing 
computational approaches and conducting an interdisciplinary study to unravel novel associa-
tions based on shared functional features. Here, I discuss an outlook on how such strategies can 
lead to significant findings that benefit society. I do this based on the result of our investigations 
on Oculopharyngeal muscular dystrophy (OPMD).

PABPN1, the protein mutated in OPMD, regulates poly(A) tail length and RNA stability (Lemay 
et al., 2010; Kuhn et al., 2009). As such, PABPN1 plays an important role in a variety of cellular 
processes (Kuhn et al., 2009; Wahle, 1991; Wahle, 1995; Lemieux and Bachand, 2009; Calado et 
al., 2000; Apponi et al., 2010). It has been shown that manipulation of PABPN1 or expanded PAB-
PN1 (expPABPN1) expression levels in muscle cells, i.e. high over-expression or complete gene 
knockdown, leads to muscle defects including muscle weakness and muscle atrophy, impaired 
cell growth and apoptosis, and impaired cell fusion (Apponi et al., 2010; Chartier et al., 2006; Da-
vies et al., 2006; Trollet et al., 2010). We have shown that expPABPN1 expression in muscle fibres 
leads to substantial gene deregulation in OPMD patients and in OPMD model systems (Anvar 
et al., 2011a; Raz et al., 2011; Trollet et al., 2010). In the OPMD mouse model, by performing an 
integrative analysis empowered by a number of computational and data-mining methods, we re-
ported muscle atrophy as the major contributor to muscle weakness. This was evident from both 
the reduction of muscle mass and loss of contractile force due to increased fibrosis, mitochondrial 
defects, oxidative stress, and deregulation of the ubiquitin-proteasome system (see Chapter one). 
In this mouse model, these observations were mainly restricted to the glycolytic fibres. Despite 
some pathological similarities between OPMD patients and the mouse model, muscle atrophy is 
rare among OPMD patients. It is possible that the severe atrophy in glycolytic fibres of OPMD 
mice is the result of the high overexpression of expPABPN1 rather than the mutation itself. To 
correct for potential artefacts, an integrative approach was designed in which microarray datasets 
from three different organisms were combined to gain insight in the common molecular path-
ways that underlie OPMD. The result of such an extensive strategy, presented in Chapter two, was 
the identification of the ubiquitin-proteasome system (UPS) as the most prominently deregulated 
molecular pathway in OPMD model systems and patients (Anvar et al., 2011a). Transcriptome 
studies in non-muscle cells expressing expPABPN1 did not reveal prominent deregulation of 
UPS genes (Corbeil-Girard et al., 2005). This suggests that the effect of expPABPN1 on UPS 
deregulation is specific to muscle cells or to post-mitotic cells. Deregulation of the UPS has also 
been reported in myotonic dystrophy type 1 (Vignaud et al., 2010) and in muscle atrophy in mice 
(Cao et al., 2005; Bodine et al., 2001; Sandri, 2008). In addition, altered UPS activity has been 
associated with muscle ageing (Combaret et al., 2009; Lee et al., 1999). Together, these studies 
suggest that muscle cell function is tightly regulated by the UPS.

The UPS is the main regulator of protein homeostasis (also referred to as proteostasis) and is 
involved in a wide spectrum of human diseases including cancer, neurodegenerative disorders 
and diabetes (Hoeller and Dikic, 2009; Liu et al., 2000; Combaret et al., 2009; Taillandier et al., 
2004; Ciechanover and Brundin, 2003). To maintain protein homeostasis, it is essential to up-
hold balance between activities of protein quality-control machineries, the UPS and autophagy-
lysosome (Powers et al., 2009). These machineries can adequately respond to damaged proteins 
and organelles through adjustment of the level of chaperones and proteases (Goldberg, 2003; 
Meusser et al., 2005; Guisbert et al., 2008; Morimoto, 2008; Ron and Walter, 2007). However, 
progressive exhaustion of these quality-control systems, owing to ageing (Hipkiss, 2006; Wang et 
al., 2009; Munch and Bertolotti, 2010; Ben-Zvi et al., 2009) or genetic mutation (Olzmann et al., 
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2007), would lead to accumulation of altered proteins as the accumulation of misfolded proteins 
surpasses the system’s capacity (Tyedmers et al., 2010). It has been suggested that the aggregation 
of proteins can spread to other proteins of mainly the same type (Gidalevitz et al., 2006; Rajan et 
al., 2001; Ben-Zvi and Goloubinoff, 2002) which could explain the age-dependent and progres-
sive nature of protein aggregation phenomena. Excessive aggregation of proteins could lead to a 
progressive decline in the level of soluble proteins available in cells. This may result in reduced 
level of functional protein and, consequently, lead to pathophysiological abnormalities. Thus, 
understanding the molecular processes regulating cellular homeostasis may unravel mechanistic 
insights in pathological aspects of various protein aggregation and late-onset diseases.

The UPS involves an enzymatic cascade of ubiquitination and degradation steps. From the six 
UPS components, only E3-ligases, deubiquitinating enzymes and the proteasome were found to 
be consistently and prominently deregulated in OPMD model systems and patients (Figure 1). 
Particularly, E3-ligases are fundamental to the specificity of this system and are classified into the 
RING finger, HECT, and U-Box domains (Deshaies and Joazeiro, 2009). Moreover, many of the 
E3-ligases play an important role in maintaining genomic integrity (Lipkowitz and Weissman, 
2011). Therefore, it is essential to understand what type of E3-ligases are involved in forming 
the E2-E3 complex to specify the fate of proteins involved in protein aggregation disorders. In 
OPMD, we found that a subset of the deregulated E3-ligases co-localize with the aggregates of 
mutant PABPN1. Moreover, their RNA expression profiles correlate with their sequential entrap-
ment in intranuclear inclusion (INI) (Anvar et al., 2011a). It would be essential to look for pos-
sible E3-ligases that differentially bind and/or regulate wild-type and mutant PABPN1 in OPMD. 
This is important since differential regulation of PABPN1 may in part explain the enhanced level 
of PABPN1 aggregates and reduced level of soluble proteins in OPMD patients. Intriguingly, E3-
ligases are also recognised as potential drug targets (Nalepa et al., 2006; Xu and Jaffrey, 2011). 

Figure 1 – Schematic overview of the ubiq-
uitin-proteasome system. A) Protein deg-
radation through the ubiquitin-proteasome 
system involves several steps. Firstly, the 
ubiquitin (Ub) is being activated by ubiquitin-
activating enzyme (E1). Next, ubiquitin is de-
livered to ubiquitin-conjugation enzyme (E2) 
for formation of the E2-Ub, ubiquitin ligase 
(E3) and substrate complex. Consequently, 
ubiquitins are being transferred to the sub-
strate in order to tag the substrate with the 
polyubiquitin chain. In the fourth step, E3 
releases the polyubiquitylated substrate. 
The proteasome recognises the polyubiqui-
tin chain as a degradation signal. Therefore, 
substrate is deubiquitinated and destroyed 
by the proteasome in ATP-manner. B) Within 
the ubiquitin-proteasome system, E2, E3, 
deubiquitinating enzymes and proteasome 
show significant deregulation. Pie charts il-
lustrate the relative distribution of the deregu-
lated genes widespread throughout different 
components of the ubiquitin-proteasome sys-
tem across species. A fraction of deregulat-
ed genes within individual species are shown 
in dark colours.
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Hence, focused profiling efforts can lead to the identification of ubiquitination events that are 
regulated by potential therapeutic compounds (Kim et al., 2011; Emanuele et al., 2011).

The process of ubiquitination and degradation through UPS machinery is a modifiable process 
that can be tuned by the manipulation of specific deubiquitinating enzymes or proteasome ac-
tivity. This possibility further provides opportunities for therapeutic interventions (Lipkowitz 
and Weissman, 2011; Crawford et al., 2011). Relevant to OPMD, proteasome activity is reduced 
during muscle aging (Combaret et al., 2009; Lee et al., 1999; Ferrington et al., 2005) and perhaps, 
consequently, leads to accumulation of altered proteins. Concordantly, the expression of many 
aggregation-prone proteins was found to be deregulated in OPMD as well as in other protein 
aggregation disorders (Anvar et al., 2011a; Corbeil-Girard et al., 2005). Our analysis revealed 
that the core subunit of the proteasome was consistently down-regulated in OPMD (Anvar et al., 
2011a). Additionally, we have shown that expPABPN1 expression in myotubes leads to down-
regulation of proteasome-encoding genes and affects the accumulation of expPABPN1 protein 
(Raz et al., 2011). In turn, manipulation of proteasome activity also affects the accumulation and 
aggregation of expPABPN1 (Anvar et al., 2011a; Raz et al., 2011). In spite of this prominent link 
between proteasome activity, expPABPN1 accumulation and INI formation, this process is not 
specific to muscle cells (Abu-Baker et al., 2003). Since the onset of OPMD coincides with pro-
teasomal down-regulation in ageing muscle, it is possible that the decline in proteasome activity 
during muscle aging triggers or accelerates expPABPN1 accumulation. Subsequently, in OPMD, 
aggregation of mutant PABPN1 leads to extensive proteasome down-regulation and entrapment 
of proteasomal proteins in INIs. This feed forward model along with the onset of skeletal muscle 
ageing could explain the muscle-specific and INI formation in OPMD (Figure 2). Notably, de-
crease in skeletal muscle performance, as measured by muscle strength, strongly correlates with 
chronological ageing (Beenakker et al., 2010). Loss of muscle function during ageing is regulated 
by numerous genetic and environmental factors (Roth et al., 2002) which may explain the differ-
ences in muscle performance among individuals (Kostek and Delmonico, 2011). Ageing associ-
ated physiological changes can be accompanied by an increased susceptibility to degenerative 
disorders (Kirkwood and Austad, 2000). Although in most tissues ageing is marked by a progres-
sive decline of cellular functions starting at mid-life (Kirkwood, 2005; Lexell et al., 1988; Lindle 
et al., 1997; Sahin and Depinho, 2010), the rate of functional changes is tissue-specific (Kirkwood 
and Austad, 2000).

We found substantial similarities in transcriptional changes between muscle ageing and OPMD. 
The most striking finding, based on the analysis of expression profiles, was the significant decline 
in PABPN1 expression during the first half of the fifth decade. Since changes in skeletal muscle 
performance commence at the fifth decade (Lindle et al., 1997; Roth et al., 2002) our results sug-
gest a correlation between PABPN1 expression and the onset of muscle ageing. Moreover, among 
controls, PABPN1 expression in females was significantly lower than in males. This observation is 
in agreement with previous studies indicating that ageing-associated changes in muscle strength 
are more pronounced in females (Kent-Braun et al., 2002; Roth et al., 2002). Concordantly, the 
OPMD prevalence of the Uruguayan population is estimated to be higher in females (Medici 
et al., 1997). Thus, the PABPN1 expression profile could additionally mark gender-associated 
decline in muscle performance. Together, the progressive decline in PABPN1 expression during 
muscle ageing and the accelerated reduction of its expression in OPMD indicate a strong correla-
tion with muscle weakness. The early mid-life onset of PABPN1 down-regulation (as compared to 
that of frontal cortex brain tissues (Lu et al., 2004) with the onset of 85 years; and Rectus Abdomi-
nis (Zahn et al., 2006) tissues with unchanged expression) suggests temporal-spatial specific-
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ity. However, some reports have indicated mental retardation, cognitive impairment, spinal cord 
involvement, and dementia in some OPMD patients (Millefiorini and Filippini, 1967; Sarkar et 
al., 1995; Blumen et al., 2009; Linoli et al., 1991; Mizoi et al., 2011; Dubbioso et al., 2011). Thus, 
it would be interesting to assess PABPN1 expression in respect to the central nervous system.

Age-dependent progressive decline of PABPN1 expression and loss of muscle function suggests 
that PABPN1 may play a role in ageing of skeletal muscles (see Chapter three). PABPN1 expres-
sion in OPMD patients is only 30% of that found in young healthy controls. In immortalized 
human myoblast cultures, this expression level leads to progressive cellular defects including 
reduced cell growth and fusion and induced cell senescence. Heterochromatic foci (HF), the 
hallmark of cellular senescence (Spector and Gasser, 2003), could be observed in cells with 70% 
PABPN1 down-regulation. Notably, PABPN1 expression was undetectable in nuclei with HF. We 
suggest that the effect of PABPN1 down-regulation on cellular senescence is more pronounced 
in non-mitotic cells as they exhibit a three-fold higher amount of cells with HF. Myotube cul-
tures from OPMD muscles also show premature senescence and reduced cell fusion (Perie et 
al., 2006). Relevant to reduced muscle performance, the expression of muscle contraction genes 
highly depend on PABPN1 expression level. Recently, we showed that increased PABPN1 protein 
accumulation in muscle cells results in a reduced amount of the soluble and functional protein 
(Raz et al., 2011). Since PABPN1 regulates mRNA stability it is expected that decline in functional 
PABPN1 would have a broad effect on cellular functions as demonstrated here and by Apponi et 
al. (Apponi et al., 2010).  Together, for the first time, our data indicates the progressive response of 
muscle cell function to the level of PABPN1 in a spatial-temporal manner, highlighting PABPN1 
role as a key regulator of muscle ageing.

Ageing cells exhibit distinctive features ranging from the accumulation of damaged macromol-
ecules to changes in nuclear architecture (Campisi and Vijg, 2009; Oberdoerffer and Sinclair, 

Figure 2 – A model for molecular mech-
anisms involved in OPMD pathology. 
In muscles, age-associated proteasome 
down-regulation triggers expPABPN1 pro-
tein accumulation. Subsequently, elevated 
expPABPN1 aggregation leads to protea-
some deregulation during disease onset. 
This feed forward loop and the onset of 
muscle ageing leads to loss of proteostasis 
and INI formation. As part of ageing-related 
transcriptional changes, there is a signifi-
cant reduction in the expression of PABPN1. 
This age-associated decline is accelerated 
in OPMD patients. In cell cultures, reduced 
expression of PABPN1 during ageing of 
skeletal muscles leads to progressive cell 
senescence and defects in cell fusion and 
growth. The effect on the expression of mus-
cle contraction genes highly depends on the 
level of PABPN1 expression. The decline in 
PABPN1 expression may partially explain 
the progressive decline in muscle perfor-
mance during ageing and accelerated mus-
cle weakness in OPMD patients.
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2007). In particular, it has been suggested 
that ageing and age-related disorders are 
strongly associated with mechanisms 
that control chromatin structure through 
DNA methylation, RNA interference, 
histone variants, and post-translational 
modifications (Oberdoerffer and Sinclair, 
2007; Campisi and Vijg, 2009; Rakyan et 
al., 2010; Teschendorff et al., 2010; Estell-
er, 2007; Pogribny et al., 2006; Tryndyak 
et al., 2006; Ronn et al., 2008; Tohgi et al., 
1999; Martin, 2009; Rando and Chang, 
2012). Nuclear chromatin is associated 
with processes that mediate DNA repli-
cation and transcription (Trinkle-Mulca-
hy and Lamond, 2007). Markedly, gene 
transcription is strongly modulated by its 
relative position within the nucleus (Sex-
ton et al., 2007). This suggests that dis-
ruption of the positioning of the chroma-
tin at the nuclear envelop can affect the 
regulation of gene expression (Akhtar 
and Gasser, 2007). Furthermore, DNA 
and chromatin modifications are recog-
nized as both responsive and effectors of 
the ageing process (Martin, 2009; Rando 
and Chang, 2012). Therefore, the spatial 
distribution of genes across the nuclear 
envelop can significantly contribute to 
the transcriptional control. Aged cells, in 
particular, show several changes on their chromatin and nuclear envelop structure that contrib-
ute to the lineage and tissue-specific gene expression (Krishnamurthy et al., 2004; Rando and 
Chang, 2012). It will be interesting to investigate the possibility in which epigenetic changes play 
a role in mechanisms that underlie the onset and progression of OPMD. Identification of possible 
epigenetic factors that may be functionally associated with the OPMD phenotype can provide 
insights on the relationship between the genome and environment. This would potentially lead 
to a better understanding and characterization of the severity of symptoms in OPMD patients.

PABPN1 is involved in pre-mRNA polyadenylation, where it stimulates poly(A) polymerase and 
regulates poly(A) tail length and RNA stability (Lemay et al., 2010; Kuhn et al., 2009). It is now 
widely accepted that alternative processing of pre-mRNA can result in structural variation and 
differing function of encoded proteins (Moore and Silver, 2008; Birzele et al., 2008), as well as 
regulation of gene expression. Elongation or shortening of the 3’ un-translated region (UTR), 
as a consequence of alternative polyadenylation, can lead to changes in binding of miRNAs and, 
therefore, differential regulation of mRNAs. Considering the role of PABPN1 in regulating the 
poly(A) tail and initial indications regarding a widespread discordance between deregulated 
transcripts of genes, it is crucial to pursue such investigation using next-generation sequencing. 
Moreover, mechanisms that regulate the 3’ UTR are controlled in a tissue-specific manner. There-

Figure 3 – Probabilistic network integration. Datasets 
from multiple sets of independent experiments on differ-
ent species are individually tested and optimised for their 
association with a given phenotype. Various statistical ap-
proaches can be used to infer confidence weight for any giv-
en intraspecies regulatory relationship. These weights can 
then be used to integrate network structures across species. 
Graphical networks can be derived from the final weighted 
matrix after applying a confidence threshold.
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fore, it is essential to pinpoint how ageing-associated decline of soluble PABPN1 and induced 
aggregation of the mutant PABPN1 may lead to tissue-specific changes in poly(A) site usage. In 
addition, diversification of RNA, and consequently protein function and structure, is regulated 
through processes of which alternative splicing plays a central role. In particular, skeletal muscle 
is reported as one of the tissues with the highest rate of alternative splicing (Pan et al., 2008; Wang 
et al., 2008; Castle et al., 2008). It is not surprising that genetic mutations may lead to deregula-
tion of this process and consequently cause a widespread transcriptional changes (Cooper et al., 
2009; Wang and Cooper, 2007; Tazi et al., 2009). Thus, it is important to pursue the possibility 
that alternative splicing is differentially regulated in OPMD patients and model systems.

The work, presented in this thesis, strongly highlights the fascinating nature and value of interdis-
ciplinary studies. We have shown that the concept of a universality of biological processes in the 
light of evolutionary mechanisms and common functional processes can lead to novel discover-
ies. Engaging in the study of a variety of organisms or biological behaviours, looking for shared 
molecular features in a rare disease such as OPMD, enabled us to uncover insights on a broader 
spectrum of conditions and phenomena such as ageing of skeletal muscles and protein aggrega-
tion disorders.

Figure 4 – Schematic overview of the 
Dandelion algorithm for disease network 
analysis. The Dandelion algorithm involves 
three recurring stages of training and an 
independent testing regime with the use 
of multiple datasets derived from different 
species. In the first step, disease modules 
are defined based on prior knowledge. The 
next step involves reiterative selection of 
one species for which the gene regulatory 
network is constructed while others are left 
aside for independent testing and valida-
tion of the learnt disease networks. For the 
construction of an intraspecies disease 
network, the dataset is divided into k-folds, 
using cross-validation. Subsequent, regu-
latory relationships between gene tran-
scripts are learnt using a Bayesian network 
methodology based upon simulated an-
nealing optimization of the network Bayes 
Information Criterion (BIC) score. After ap-
plying confidence thresholds on relation-
ships between genes, the disease network 
is translated to the expected interspecies 
disease network. This is achieved by the 
use of the cross-validation and network 
optimization procedure. The algorithm 
searches through the relationships found 
in the training dataset to find the best fit 
for the interspecies representation of the 
disease network. These networks are then 
integrated by removing all the links with low 
confidence score across species.
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The inner workings of complex biological networks
Functional interdependencies and the modular nature of cell’s molecular components imply the 
indispensable role of network-based approaches to human diseases. It is widely established that 
these dependencies revealed by regulatory networks can provide valuable information regarding 
underlying biological processes (Avery and Wasserman, 1992; Tong et al., 2004; Costanzo et al., 
2010; St Onge et al., 2007; Schuldiner et al., 2008; Collins et al., 2007; Segre et al., 2005; Drees 
et al., 2005; Guarente, 1993; Hartman et al., 2001; Jonikas et al., 2009). Despite the generation 
of vast quantities of data by high-throughput technologies, biological data are usually sparse, 
noisy and ambiguous, limited in number of samples, and high-dimensional. Thus, integration of 
data and genomic information from human and various model systems can ultimately provide a 
better indication of common molecular mechanisms that underlie a given phenotype. However, 
the presence of noise and technical artefacts specific to model systems usually leads to limited 
overlap between results obtained in cross-species comparison (Lu et al., 2009; Zhou and Gibson, 
2004; Oliva et al., 2005; Blake et al., 2003; Jelier et al., 2008). Additionally, integrative approaches 
are far from trivial and are complicated due to our limited knowledge of true protein orthologues, 
transcript variants coding for proteins with similar function, and evolutionary conservation of 
biological processes. These bottlenecks further require fine tuning and optimization of the inte-
gration strategy. Another aspect of complexity arises from the generation of large-scale networks 
(having thousands of nodes and millions of possible interactions), owing to limited computation-
al power and intelligent algorithms for scalability and reducing dimensionality (Venkatesan et al., 
2009; Barabasi et al., 2011). Markedly, such stochastic systems require a probabilistic approach at 
the core for modelling regulatory networks. 

We first established, in Chapter four, a way in which gene networks that are highly informative 
for determining “muscle differentiation” can be robustly identified from multiple independent 
datasets with increasing level of complexity and stochasticity (Anvar et al., 2010). We showed 
that the proper use of a modelling strategy in combination with multiple datasets leads to the 
construction of gene networks that can explain the myogenesis-related genes significantly better 
than those that have less involvement in myogenesis. This approach resulted in networks that 
were consistently more parsimonious to myogenesis-related genes. Moreover, these models pro-
vide the robust prediction of biological outcome and expression profiles. Establishing a strategy 
which can accommodate the integration of multiple datasets enables the possibility of overcom-
ing the limitations of cross-species integrative studies. Such exploitation would lead to more ro-
bust regulatory mechanisms to be identified and predictions to be made across various platforms 
and organisms (Figure 3 and Figure 4). In Chapter five, we showed that the integration and 
analysis of microarray datasets from various species increase the robustness of the constructed 
networks and the predictive accuracy of the disease state (Anvar et al., 2011b). We also demon-
strated that the interspecies translation of these networks helps to avoid overfitting. In addition, 
this approach provides a state-of-the-art model-driven selection of transcript isoforms that are 
most likely to be coding for orthologous proteins. Notably, another fascinating application of this 
strategy would be the identification of alternative splicing events and their regulators (Zhang et 
al., 2010). These powerful features are essential for understanding the phenotypic implications 
of such strong relationships as part of evaluating the conservation and dynamics of interspecies 
disease networks. Moreover, the high level of specificity and sensitivity of these models enables 
the prioritization of candidate regulators of the disease molecular mechanisms to be studied in 
follow-up validation experiments. In particular, it is crucial to carry out additional experiments 
to investigate the tissue-specificity of the network (Reverter et al., 2008; Lage et al., 2010) and the 
functional relevance of encoded proteins dysregulation to the disease pathology. This can also 
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be achieved by re-constructing tissue- 
or cell-specific sub-networks from the 
model by integrating a variety of tissue-
specific data sources (Jerby et al., 2010; 
Kirouac et al., 2010).

Our approach for Bayesian modelling 
of datasets on a similar phenotype from 
different model systems and patients is 
unique. Several approaches have been de-
scribed to avoid overfitting and increase 
the robustness of Bayesian networks. For 
example, informative priors derived from 
protein-protein interaction (PPI) data 
or from the literature have been used to 
generate more stable and biologically 
meaningful networks (Segal et al., 2003; 
Pe’er et al., 2002; Steele et al., 2009; Jansen 
et al., 2003). While these methods obvi-
ously bias the results towards well-known 
regulatory interactions and are less likely 
to detect novel relationships (Sprinzak et 
al., 2003; Joyce and Palsson, 2006), they 
may ultimately be combined with our 
modelling approach to obtain regulatory 
networks with a more straightforward 
biological interpretation. 

Our method was applied to an a priori 
defined gene module coding for a well-
known biological structure, the pro-
teasome. Several studies in S. cerevisiae 
(Zhang et al., 2005; Tanay et al., 2004; 
Luscombe et al., 2004; Han et al., 2004) 
have demonstrated the value of an in-
tegrative modelling approach provid-
ing modularized interaction networks 
without prior assumptions. Zhang et al. 
(Zhang et al., 2005), for instance, took 
an approach in which they integrated a 
number of different available data sourc-
es, from PPIs to sequence homology and 
gene co-expression, while Tanay et al. 
(Tanay et al., 2004) and others (Luscombe 
et al., 2004; Han et al., 2004) expanded on 
the statistical analysis of network prop-
erties and identified modules within the 
network structure. The performance of 

Figure 5 – Schematic illustration of Dandelion module 
networks. In a bottom-up approach, gene modules are cu-
rated on the basis of their literature-aided and cross-species 
association or according to predefined ontologies. The al-
gorithm involves three recurring phases of training and an 
independent testing regime with the use of multiple datasets 
from different platforms, experiments, or organisms. First, 
consensus networks are constructed for individual modules 
using our previously described Dandelion algorithm (Chap-
ter five). These sub-networks are then overlaid based on 
common nodes and relationships within different network 
structures. Finally, using protein-protein interaction databas-
es or associations in co-expression networks, the Dandelion 
algorithm attempts to assemble and optimise the full module 
network by adding relationships and nodes to interlink sub-
networks. Additionally, the Dandelion algorithm would allow 
for novel nodes and relationships to be added to the global 
module network structure. The growth of module networks is 
constrained on the overall improvement of the network per-
formance.
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these models depends on the availability of high quan-
tities of samples and may be prone to overfitting due 
to the presence of noise and other model-specific arte-
facts. Therefore, a combination of their approach with 
our interspecies translation may enable the discovery 
of larger gene regulatory networks with multiple gene 
modules and connections between them.

Understanding the dynamics of network structure is 
essential for determining causal interdependencies as 
well as characterization of network modularity and 
gene spatial properties. In model organisms, it has 
been shown that hub proteins are tend to be encoded 
by essential genes (Jeong et al., 2001) which are highly 
conserved (Fraser et al., 2002; Eisenberg and Levanon, 
2003; Saeed and Deane, 2006). Identification of essen-
tial genes is important for discovery of sub-networks 
that are associated with a disease phenotype, owing 
to the disease-related genes being located in the net-
work-based vicinity of the hub nodes (Goh et al., 2007; 
Feldman et al., 2008). The importance of nodes to the 
network can be estimated using the ‘betweenness cen-
trality’ measure (Yu et al., 2007) which gives some ad-
ditional insights on topology, information flow, and the 
stability of a network (Han, 2008). Topological proper-
ties of disease networks reveal clouds of densely inter-
connected nodes that can be used for gene module pre-
diction (Girvan and Newman, 2002; Palla et al., 2005; 
Ahn et al., 2010; Enright et al., 2002). In addition to 
network topology, functional characterisation of sub-
networks can improve in describing mechanisms that 
give rise to a specific phenotype.

Here, I discuss a strategy to tackle some challenges in 
bridging the gap between multi-layers of biological 
data. In a study presented in Chapter five, we developed 
a novel algorithm for constructing interspecies disease 
networks that provide an assumption-free and model-
driven selection of the most important transcript iso-
forms across species (Anvar et al., 2011b). We achieved 
this by use of prior knowledge on pathways that are 
disease-associated. This was owing to the fact that, on a 
genome-wide scale, searching the space of possible net-
works via single-arc changes is not realistic and compu-
tationally expensive. One of the possible strategies for 
reducing the high dimensionality is the use of statistical algorithms such as ridge and LASSO re-
gression (Friedman et al., 2008; Tibshirani, 1996). These algorithms apply a penalty for complex 
models that may be tuned by cross-validation. However, this would mean that the same dataset is 
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Figure 6 – A model for network recon-
struction and evaluation. Known networks, 
produced based on control experiments or 
molecular pathways, can be reconstructed 
using the Dandelion algorithm. Reconstruct-
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ing incorporated (depicted in black) within 
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could uncover key regulators of a given 
pathway under specific phenotype or ex-
perimental setting.
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used, in two steps, for generating the net-
work space and construction of disease 
network which would lead to overfitting 
and other biases. Another alternative is 
based on treating functional modules as 
blocks of interconnected nodes which 
can be assembled together by the use of 
overlaying nodes and relationships. In 
conjunction with assembling overlay-
ing nodes and modules, additional links 
are added to the network for global op-
timization of the inter-module relation-
ships (Figure 5). This can be reached by 
simple hill-climbing, greedy algorithms 
or more sophisticated simulated anneal-
ing and MCMC (Markov Chain Monte 
Carlo) searching methods. Within the 
optimization step, evidences from PPI 
networks can be used for confidence 
assessment. In addition to the utility of 
PPI networks, reconstruction of known 
functional pathways, or those produced 
by alternative models on control datasets, 
can be combined with allowing for novel 
relationships (Battle et al., 2010) (Figure 
6). This strategy potentially can help au-
tomating the process of optimization and 
confidence assessment. Moreover, the 
maximal information coefficient (Reshef 
et al., 2011) can be integrated to assess the 
functional association for relationships 
in the vicinity of the essential nodes.

Finally, the evolution of these network 
properties over time would provide a 
crucial framework for better understand-
ing the causal relationship and dynamics 
of gene regulatory networks in the con-
text of human diseases. Thus, I believe 
that robust and unbiased construction 
and analysis of the interspecies networks 
for rare or complex human diseases can 
lead to novel discovery and identification 
of key regulators. The result of such exploration can ultimately offer potential targets for thera-
peutic interventions and drug developments. In the last section, I will discuss a few strategies 
that, in my view, can be pursued to enhance data integration and the ideal utility of network-
based approaches on a larger scale. This would consequently provide a disease-oriented global 
view of genomics, transcriptomics, proteomics, and newly defined field of phenomics. The term 
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Figure 7 – Network medicine, linking across multi-layers 
of biological data. Datasets from different organisms or 
platforms can be combined for enhanced identification of 
interspecies (inter-platform) networks. Time-series datas-
ets can provide information on the dynamics of biological 
networks while protein-protein interaction and co-expres-
sion networks can be used for optimization and scaling. 
Networks constructed on transcriptome data are linked to 
networks related to pharmacology, phenomics, and envi-
ronment. Genomic information, reflected in transcriptome, 
are interlinked and translated to diverse sets of phenotypes 
through environmental factors. Likewise, these multi-layers 
of densely interconnected regulatory relationships are rep-
resented through a framework of pharmacological entities.
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“phenomics” is derived from the word ‘phenome’ which was first introduced by Michael Soule 
(Soule, 1967).

From systems biology to personalized medicine
In recent years, the studies of human diseases have changed significantly, owing to advancements 
in the field of systems biology and high-throughput technologies. It is widely believed that the 
integration of genomics, transcriptomics, and large-scale phenotyping has major potential for 
novel discoveries in network biology of multi-layered human disorders (Bilder et al., 2009; Fre-
imer and Sabatti, 2003; Schilling et al., 1999; Searls, 2005). Phenotypic variations are determined 
by a complex network of genetic and environmental interactions. In the last two decades, signifi-
cant efforts have been made on genomic and transcriptomic studies. Now we have reached the 
time to invest special efforts in the field of phenomics which still requires our careful attention. 
This is due to the lack of standardisation and data available. Although limited phenotyping efforts 
for obvious disease-related features seems to be sufficient in most cases, extensive and global phe-
notyping can pave the way for better standardization of phenotypic information and mechanistic 
understanding of context-oriented genetic and environmental interactions. This would lead to 
the discovery of novel dependencies between genomics, transcriptomics, and phenomics data. 
Additionally, this combinatory framework provides an information-rich model that can distinct-
ly characterise the correlation or causal relationships and account for different sources of varia-
tion (Houle et al., 2010). The importance of the integrative approaches is evident from experi-
ments carried out in yeast that demonstrate a substantial growth from lethal or disease causing 
single-gene deletions (34%) to those that occur in conjunction with at least one environmental 
condition (97%) (Hopkins, 2008). Nevertheless, the design of an integrative strategy needs to be 
addressed with precision and care as navigating such data is extremely challenging. For instance, 
one of the basic information losses is that phenotypic data is often treated as a discretised en-
tity whereas the most vital piece of information lays in the relative and continuous changes of 
phenotypic information, phenomena which is now well-established for other data-types such as 
transcriptome.

Having established the modular network structure, the next step in exploring the interplay be-
tween transcriptomics and phenotypic states of human diseases is to determine the environmen-
tal factors through which these networks are regulated in a full range of spatial and temporal 
scale. Adequate combination of prior knowledge (Ochs, 2010) can further provide confirmatory 
insights on data-flow and ordering of causal relationships across multi-layers of biological data 
(Figure 7). Yet, the use of prior knowledge-centric approaches needs to be avoided to minimize 
the biases that can be introduced by such techniques. An intriguing possibility of such methods 
is that the construction of multifaceted biological networks may provide insights on efficacy and 
off-target toxicity of drugs in a phenotype-centric and tissue-specific manner, some of which 
can be determined by the analysis of such network structure (Albert et al., 2000; Kitano, 2007). 
Likewise, special efforts in modelling the dynamics of metabolic responses in different tissues 
can provide valuable insights into the effects of drugs and diseases (Figure 8). Another intrigu-
ing benefit of engaging in metabolomics studies is the possibility of linking different levels of 
biological organization (genomics, transcriptomics, proteomics, etc.), owing to their differing op-
erational behaviour (Holmes et al., 2008a; Holmes et al., 2008b; Nicholson and Wilson, 2003). An 
extensive review by Hopkins (Hopkins, 2008) provides valuable information on the usability of 
biological networks in drug discovery along with a brief outlook on future prospects. While some 
of these advancements seem farfetched and years in the future, a few preliminary developments 
can be pursued that provides a new basis for a global infrastructure of network medicine. For in-



PERSPECTIVES

173

stance, the adoption of methods that deal with dynamics of these networks, in a spatial-temporal 
manner, can act as a cornerstone for robust integration of pharmaceutical data and chemical 
interactions. This combinatory strategy provides a valuable framework for drug discovery and 
personalized therapeutic interventions. Notably, recent approaches for simple characterization 
of the network topology had made a remarkable contribution in developing strategies for priori-
tization and combination of drug targets (Gerber et al., 2008; Potapov et al., 2008; Wunderlich 
and Mirny, 2006). Mining biomedical and biochemical literature in conjunction with ontologies 
(such as KEGG and GO) are also well-explored to better determine the efficacy of drug develop-
ment (Yildirim et al., 2007; Ji et al., 2007; Spiro et al., 2008; Gunther et al., 2008). Bayesian ap-
proaches can bridge between these different sources of information and provide a global network 
infrastructure in which transcriptome data, environmental factors, and phenotypic information 
can come together to provide a predictive and model-driven framework for assessing the clusters 
of chemical networks and pharmacology data (Figure 7). To conclude, the context- and case-
specific identification of the optimal point of interaction between molecules for drug discovery 
is the future of systems biology applications in the field of personalized medicine. In order to 
achieve this ambition, novel and integrative advancements are needed to better understand the 
global organisation of networks in the study of human genetic disorders.
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Figure 8 – Applications of multifaceted omics re-
search. Special efforts in combined analysis across 
multi-layers of biological data provide an infrastruc-
ture in which bioinformatics can play a central role. 
Naturally, the main applications of omics research 
can be divided into three fields of personalized med-
icine, drug discovery, and molecular epidemiology. 
Profiling of individuals can provide an enhanced 
framework for better therapeutic interventions. The 
utility of this strategy is to comprehend patients’ sus-
ceptibility to diseases or alter therapies on the basis 
of their response to different medicine. Molecular 
epidemiology studies can be enhanced by looking 
for common patterns in profiles within a population. 
This would allow for the identification of biomarkers, 
susceptibilities of specific populations to diseases, 
and health screening programmes. Finally, these 
studies can lead to uncovering new biological tar-
gets for drug discovery.
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Long after the discovery of DNA by Friedrich Miescher in 1869 and recognition of its central 
role as holder of genetic information, we still know little about how DNA is determining 
the development and function of all cells and organisms. . Within the double helix structure 

of the DNA, discovered by James D. Watson and Francis Crick in 1953, it is the four nucleotides 
(Adenine, Thymine, Cytosine, and Guanine) that carry the genetic information. It is astonish-
ing that the level of complexity and diversity among living organisms, or between objects of the 
same species, arise from differing sequences of the four nucleotides The interpretation of this 
highly diverse and evolving genomic information becomes more crucial as we intend to bet-
ter understand the molecular mechanisms underlying human disorders. By the early 1970s, the 
growing concept and advancements by Fred Sanger in sequencing the first genome (Φ-X174 
bacteriophage) established the cornerstones of innovations in 21st century systems biology. The 
field of systems biology is aimed to model how individual elements of the cell interact in a con-
certed fashion to bring forth highly dynamic biological organisation and behaviours in versatile 
environments. To many scientists, the rise of systems biology goes back to the beginning of the 
last decade, owing to the advent of high-throughput technologies in production of vast amount 
of genomic, transcriptomic, and proteomic data. As genetics is aimed to answer the question of 
‘what’, systems biology is aimed to construct models that are designed to go one step beyond by 
tackling the question of ‘how’.

Complexity is perhaps the most common adjective used to describe biology and its related com-
putational models. In every cell, biological functions are mediated through complex networks 
of interactions between metabolites, proteins, and DNA. On the basis that cells are evolved to 
survive and not for scientists to understand, the stochastic nature of biological data requires spe-
cial efforts for combined and interdisciplinary investigations. Looking for common patterns that 
underlie the diversity, development, and inner cell dynamics of organisms can lead to uncover 
the most prominent and shared functional features. Likewise, in the field of computational biol-
ogy, inspirations from biological systems led to development of novel algorithms for knowledge 
discovery. Early works on data-mining and machine learning in the 1960s, for instance, evolved 
around the idea on the activity of neurons in the brain to give rise to a class of powerful algo-
rithms known as neural networks. Genetic algorithm is another example where inspirations from 
common operations in DNA sequence evolution led to the development of one of the most used 
optimisation techniques in the field of systems biology. In realisation of complexity and variety 
of living organisms and biological processes, the 21st century systems biology has ever more em-
braced the idea of interdisciplinary and combined efforts for knowledge discovery.

summary
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In this thesis, I have explored novel strategies that can bridge the gap between multi-layers of 
biomedical data to provide a strong vision on how molecular networks are structured, under vari-
ous conditions, to attain particular functional behaviours underlying human diseases. Extensive 
use of computational and integration approaches can provide comprehensive and more accurate 
mechanistic insights on the disease pathogenesis. In doing so, we have focused on attempting to 
unravel molecular mechanisms that are involved in the aetiology of oculopharyngeal muscular 
dystrophy (OPMD). OPMD is an autosomal dominant and late-onset disorder which usually 
manifest in midlife, after the age of 40. The main symptoms are slowly progressive ptosis (droop-
ing of eyelid), dysphagia (difficulty swallowing), and weakness of proximal limb muscles. In most 
patients, life expectancy is not reduced. However, the quality of life is greatly affected as ptosis 
can cause visual limitations, dysphagia may lead to aspiration pneumonia and weight loss, and 
patients with proximal limb weakness can eventually be wheelchair bound. Cases of OPMD are 
reported in over 30 countries and the prevalence is estimated to be of 1 in 100,000 worldwide. 
The genetic cause of this disease is the expansion mutation in the Poly(A) Binding Protein Nucle-
ar 1 (PABPN1) protein. The underlying molecular mechanisms by which the mutated PABPN1 
causes tissue-specific and progressive muscle weakness are not fully understood. In chapter one 
and two, we have shown that attentive modelling and optimization of integration strategy can 
serve as a powerful system for knowledge discovery. Combinatory survey of differing expression 
patterns and collective transcriptional behaviours into structured communities led to the discov-
ery of the ubiquitin-proteasome system as the most prominently involved molecular pathway 
in OPMD patients and model systems. In addition, our data indicated that age-dependent and 
progressive decline of PABPN1 expression result in progressive deregulation of muscle contrac-
tile genes, induction of cellular senescence, and decline of cell growth and fusion (chapter three). 
Since PABPN1 regulates mRNA stability it is expected that decline in functional PABPN1 would 
have a broad effect on cellular functions. Our data suggest a progressive response of muscle cell 
function to the level of PABPN1 in a spatial-temporal manner, highlighting PABPN1 role as a 
regulator of muscle ageing. Understanding the underlying causes of OPMD is a key step toward 
enabling earlier and more precise diagnosis, prognosis, therapeutic interventions, drug discovery 
and potential prevention.

Functional interdependencies and the modular nature of the molecular components of the cell 
necessitate the study of biological networks in human diseases. Moreover, integration of data and 
genomic information from human and various model systems can provide a better indication of 
common molecular mechanisms that underlie a given phenotype. Therefore, I provided a frame-
work in which a model-driven construction of disease networks on modules of functionally re-
lated genes can be translated across species to identify the most essential regulatory relationships 
(chapter four and five). This is where bridging the multi-layers of biomedical data can transform 
the field of biomedical network inference and analysis. The adoption of methods that deal with 
evolutionary dynamics of these networks, in a spatial-temporal manner, can act as a cornerstone 
for robust integration of pharmaceutical data and chemical interactions. This combinatory strat-
egy provides a valuable framework for drug discovery and personalized therapeutic interventions 
as our understanding of biological networks and phenotypes plays an essential role in improving 
efficacy of a drug and inhibiting its off-target toxicity. Improvements in systems biology method-
ologies will bring us ever closer to the central question of ‘how’ and beyond.
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Lang na de ontdekking van DNA door Friedrich Miesscher in 1869 en de herkenning van 
DNA als de bron van genetische informatie, weten we nog maar weinig over de manier 
waarop DNA de ontwikkeling en functie van cellen en organismen bepaalt. Binnen de dub-

bele helix structuur van het DNA, ontdekt door James D. Watson and Francis Crick in 1953, zijn 
het de vier nucleotiden (Adenine, Thymine, Cytosine en Guanine) die de genetische informatie 
dragen. Het is verbazingwekkend dat verschillende opeenvolging van de vier nucleotiden ten 
grondslag ligt aan de hoge complexiteit and diversiteit tussen organismen, of zelfs tussen indivi-
duen van dezelfde soort.bij elkaar gehouden door glucose- en fosfaat-groepen.  De interpretatie 
van de verscheidenheid in genomische informatie is cruciaal wanneer we de moleculaire mecha-
nismen onderliggend aan ziektes proberen te begrijpen. Aan het begin van de jaren 70, legden 
het concept en de vorderingen van Fred Sanger bij het sequensen van het eerste genoom (Φ-X174 
bacteriophage) de grondslag voor de innovaties in de systeem biologie van de 21e eeuw. Het doel 
van systeem biologie is om een model op te zetten dat laat zien hoe individuele elementen van de 
cel met elkaar samenwerken in een dynamische biologische organisatie. Volgens veel onderzoek-
ers is het opkomen van systeem biologie tijdens het laatse decennium te danken aan de opkomst 
van de high-throughput technologie, die in staat is een grote hoeveelheid genomische, transcrip-
tomische en proteomische data te produceren. Terwijl de genetica is gericht op het beantwoorden 
van de vraag “wat?”, richt de systeem biologie zich op het construeren van modellen die ontwor-
pen zijn om een stap verder te gaan, en de vraag “hoe?” proberen te beantwoorden.

De term complexiteit wordt veelal gebruikt om biologie en de gerelateerde computer modellen 
te beschrijven. In elke cell worden biologisch functies gemedieerd door complexe netwerken van 
interacties tussen metabolieten, eiwitten en DNA. Ervan uitgaande dat cellen zijn geëvolueerd 
om te overleven en niet om begrepen te kunnen worden door onderzoekers, vraagt de stochast-
ische natuur van biologische data om een combinatie van specialistische inzet en interdicliplinair 
onderzoek. Het zoeken naar patronen die ten grondslag liggen aan de diversiteit, ontwikkeling 
en intracellulaire dynamiek van organismen kan leiden tot de ontdekking van de meest vooraan-
staande en gedeelde functionele eigenschappen. In het veld van de computationele biologie heeft 
inspiratie uit biologische systemen geleid tot de ontwikkeling van nieuwe algoritmen voor ken-
nisvergaring (. Zo heeft werk aan ‘data-mining’ en ‘machine learning’ tijdens de jaren 60, ge-
basseerd op het idee van de activiteit van neuronen in de hersenen, geleid tot de ontwikkeling 
van krachtige algoritmen, genaamd ‘neurale netwerken’. Genetisch algoritmen zijn andere voor-
beelden, waarbij inspiratie uit gemeenschappelijke functies in DNA sequentie evolutie hebben 
geleid to de ontwikkeling van een van de meest gebruikte optimalisatie technieken in het veld van 
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systeem biologie. In de herkenning van de complexiteit en verscheidenheid van levende organis-
men en biologische processen, heeft de systeem biologie van de 21e eeuw het idee van interdici-
plinair en gecombineerd onderzoek voor kennisvergaring steeds meer omarmd.

In dit proefschrift, heb ik nieuwe strategieën onderzocht, die een brug slaan tussen de diverse 
lagen van biomedische data. Hierbij was het doel inzicht te verschaffen in de structuur van mo-
leculaire netwerken onder verschillende condities, om zo de functionele eigenschappen die ten 
grondslag liggen aan menselijke aandoeningen te achterhalen. Uitgebreid gebruik van compu-
tationele en integratieve benaderingen kunnen  nauwkeuriger mechanistische inzichten geven 
in de pathogenese van menselijke aandoeningen. Op deze manier, heb ik mij gericht op de on-
trafeling van moleculaire mechanismen die betrokken zijn bij de etiologie van oculopharyngeale 
spier dystrofie (OPMD). OPMD is een autosomaal dominante aandoening die tot uiting komt 
na het 40e levensjaar. De belangrijkste symptomen van OPMD zijn progressieve ptosis (hangen-
de oogleden), dysfagie (moeite met slikken) en spierzwakte van proximale ledematen. Hoewel 
bij de meeste patienten de levensverwachting normaal is, wordt de kwaliteit van leven ernstig 
beinvloed, aangezien ptosis visuele beperkingen kan veroorzaken, dysfagie kan leiden tot aspi-
ratiepneumonie en gewichtsverlies en patiënten met spierzwakte van de proximale ledematen 
uiteindelijk afhanklijk kunnen worden van een rolstoel. Meer dan 30 landen hebben gevallen van 
OPMD gemeld en de prevalentie wordt geschat op 1 op de 100.000. De genetische oorzaak van 
deze aandoening is een mutatie in het Poly(A) Binding Protein Nuclear 1 (PABPN1) eiwit. Het 
onderliggende moleculaire mechanisme waarmee het gemuteerde PABPN1 eiwit progressieve 
spierzwakte veroorzaakt is niet duidelijk. In hoofdstuk één en twee hebben we laten zien dat aan-
dachtig modelleren en optimaliseren van integratie strategieën nieuwe mechanistische kennis 
kan opleveren. Gecombineerd onderzoek naar de veranderlijke expressie patronen heeft geleid 
tot de ontdekking van het ubiquitine-proteasoom systeem, als het meest prominent betrokken 
moleculaire systeem in OPMD patiënten en model systemen. Onze data suggereren dat leeftijd-
afhankelijke en progressieve afname van PABPN1 expressie resulteert in deregulatie van spier 
contractie genen, inductie van cel veroudering en afname van cel groei en fusie (hoofdstuk drie). 
Omdat PABPN1 mRNA stabiliteit reguleert, is het te verwachten dat een afname van functioneel 
PABPN1 eiwit een breed effect heeft op cellulaire functies. Als eerste in dit veld, laat onze data het 
progressieve effect van het niveau van PABPN1 op de functie van spier cellen zien, en benadrukt 
het de rol van PABPN1 als een regulator van spier veroudering. Het begrijpen van de onder-
liggende oorzaken van OPMD is een belangrijke stap richting eerdere en meer precieze diagnose, 
prognose, behandeling, medicijn ontwikkeling en het eventueel voorkomen van de ziekte.

De onderlinge functionele afhankelijkheid en de modulaire aard van de moleculaire componenten 
van de cel maken de studie van biologische netwerken in menselijke aandoeningen noodzakelijk. 
Daarnaast geeft de integratie van data en genomische informatie van de mens en verscheidene 
model systemen een betere indicatie van gemeenschappelijke moleculaire mechanimsen die ten 
grondslag liggen aan een bepaald fenotype. Daarom heb ik een kader verschaft waarin een model 
gedreven constructie van ziekte netwerken op basis  van modules van functioneel gerelateerde 
genen zijn getransleerd over verschillende diersoorten om de meest essentiële relaties te identi-
ficeren (Hoofdstuk vier en vijf). De brug tussen de diverse lagen van biomedische data kan zo 
het veld van biomedische netwerk transformeren. Methoden die de evolutionaire dynamiek van 
deze netwerken modelleren, in een ruimte- en tijdsafhankelijke manier, vormen een basis voor de 
robuuste integratie van farmaceutische data en chemische interacties. Deze gecombineerde strat-
egie kan ook waardevol zijn voor medicijn ontwikkeling en geindividualiseerde behandeling. Be-
sef van biologische netwerken en fenotypes zal een essentiële rol spelen in het verbeteren van de 
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werkzaamheid van medicijnen en het verminderen van bijwerkingen. Nieuwe methoden uit de 
systeem biologie zullen ons helpen bij het beantwoorden van de centrale vraag “hoe?” en verder.
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1	 1PB		  one parent Bayesian network

A	 A		  adenine

	 Ala		  alanine

B	 BIC		  Bayes information criterion

	 BNC		  Bayesian network classifier

C	 C		  cytosine

	 CDF		  cumulative distribution function

	 CS		  citrate synthase

	 CSA		  cross-sectional area

	 CV		  cross-validation

D	 D.E.		  differentially expressed

	 DAG		  directed acyclic graph

	 DAVID		  database for annotation, visualization, and integrated discovery

	 DNA		  deoxyribonucleic acid

	 DUB		  deubiquitinating enzyme

E	 E1		  ubiquitin-activating enzyme

	 E2		  ubiquitin-conjugating enzyme

	 E3		  ubiquitin ligase

	 EDL		  extensor digitorum longus muscle

	 EF		  embryonic fibroblast

	 expPABPN1	 expanded Poly(A) Binding Protein Nuclear 1

F	 FDR		  false discovery rate
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	 FVB		  friend virus B inbred

G	 G		  guanine

	 GO		  gene ontology

	 GT		  global test

H	 HF		  heterochromatic foci

I	 IND		  independent

	 INI		  intranuclear inclusion

K	 KEGG		  Kyoto Encyclopedia of genes and genomes

	 KS		  Kolmogorov-Smirnov test

L	 LAS		  literature-aided association study

M	 MCMC		  Markov chain Monte Carlo

	 MDIC		  multiple datasets with increasing complexity

	 MIC		  maximal information coefficient

	 mRNA		  messenger ribonucleic acid

	 MyHC		  myosin heavy chain

N	 NBC		  naïve Bayes classifier

	 ND		  non-deregulated

	 NPB		  unlimited Bayesian network

	 NS		  not significant

	 NT		  non-transduced

O	 OPMD		  oculopharyngeal muscular dystrophy

P	 PABPN1	 poly(A) binding protein nuclear 1

	 PCA		  principal component analysis

	 PPI		  protein-protein interaction

R	 RIN		  RNA integration number

	 RNA-Seq	 RNA sequencing

	 RT qPCR	 reverse transcription polymerase chain reaction

S	 SNB		  selective naïve Bayes

	 SOL		  soleus muscle

	 SSE		  sum squared error

T	 T		  thymine
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	 TA		  tibialis anterior muscle

	 TAN		  tree augmented network

U	 Ub		  ubiquitin

	 UPS		  ubiquitin-proteasome system

	 UTR		  un-translated region

W	 WT		  wild-type

Y	 YFP		  yellow fluorescent protein
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