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General Introduction  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Amongst the most fundamental processes in glycochemistry and glycobiology are the 

union of two carbohydrate building blocks in a glycosylation reaction, and the breaking of 

a glycosidic bond in the hydrolysis of a glycoconjugate by the action of a glycosyl 

hydrolase. Various mechanistic pathways can lead to such a glycosylation event. This holds 

true for both chemical glycosylation reactions and enzymatic hydrolysis of glycosidic 

bonds. When looking in close detail, it becomes apparent that these processes share some 

common mechanistic features. Detailed analysis of both the chemical glycosylation and the 

glycosidase-mediated hydrolysis of a glycosidic bond can assist in the development of 

efficient stereoselective glycosylation reactions, in guiding the design of tailored probes to 

study glycosidases, and in the development of potent and selective inhibitors of these 

enzymes.  
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As depicted in Scheme 1A, a chemical glycosylation reaction starts with the activation of 

an anomeric leaving group in donor 1a by a promoter (E
+
X

-
), followed by expulsion of the 

aglycone. The transient oxacarbenium ion can be intercepted by the counterion of the 

promoter (X
-
) to form covalent intermediate 3a. Attack of the nucleophile, either on the 

covalent intermediate or the oxacarbenium ion (not shown in the scheme), results in the 

formation of the glycosidic bond, as in 5a. Analogously, when a glycoside enters the active 

site of a (retaining) glycosyl hydrolase (1b, the so-called ‘Michaelis complex’, Scheme 

1B), a general acid/base residue protonates the leaving group while a nucleophilic residue 

attacks the anomeric center (as in transition state 2b). A covalent linkage is formed 

between the glycoside and the enzyme (3b) with inversion of configuration at the anomeric 

center of the glycoside. Subsequently, this species can be attacked by water from the 

opposite face to release the glycoside (4b) and produce hemiacetal product 5b, with overall 

retention of configuration.  

 

Scheme 1. Mechanisms of chemical glycosylation (A) and enzymatic hydrolysis by a retaining glycosidase (B) 

 

Knowledge on the nature of the covalent intermediates 3a and 3b provides fundamental 

insight into the mechanistic pathways that are in operation during the course of a chemical 

glycosylation or enzymatic hydrolysis reaction. The use of modern spectroscopic 

techniques in combination with cleverly designed ‘substrates’ has led to a deep insight into 

the reaction mechanisms described above.  

 

In this Chapter some studies on these common mechanistic features in glycobiology and 

glycochemistry are highlighted, with a focus on lessons learned with respect to similarities 

in glycosylation events, such as they occur in a reaction vessel and in nature. Drawing on 

selected examples, it is laid out how electron-deprived carbohydrates can be of use to 

generate covalent intermediates, both in glycochemistry and glycobiology, and used to 

study mechanisms underlying chemical glycosylation reactions and enzymatic hydrolysis 

processes. 
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Glycobiology 

The reactivity of a glycoside in a glycosylation or hydrolysis reaction is determined by its 

ability to accommodate the positive charge that develops at the anomeric center during 

expulsion of the activated aglycone. In glycochemistry, the influence of the substituents on 

the carbohydrate core is well established and the reactivity of a carbohydrate building block 

can be tuned through the use of different protecting groups. Also the orientation of the 

substituents on the ring is of influence, and studies on glycoside hydrolysis have revealed 

that the rate of the reaction is directly related to the number of axial hydroxyl substituents.
1
 

An axially positioned hydroxyl function has a smaller deactivating effect on the developing 

positive charge in the transition state compared to an equatorially oriented hydroxyl. Also 

the position of the substituent on the carbohydrate core is of importance. The rate of 

hydrolysis of a series of x-deoxy-x-fluoro- and x-deoxy-dinitrophenylglucosides (with x 

indicating the position of the hydroxyl on the pyranosyl core that is substituted with a 

fluoride or hydrogen, respectively) was investigated, and in the fluoro series, the order of 

reactivity was revealed to be 2-fluoro < 4-fluoro < 3-fluoro < 6-fluoro < parent sugar. This 

trend was reversed in the corresponding x-deoxyglucoside series.
2
 These results were 

explained by the deactivating effect of the electron-withdrawing fluorine atom and the 

activating effect of the deoxy center, on the formation of the oxacarbenium ion-like 

intermediate. 

Based on the deactivating effect of the C2-fluorine atom, Withers and colleagues designed 

the 2-deoxy-2-fluoroglycosides as mechanism-based enzyme inhibitors to enable the study 

of retaining glycosyl hydrolases.
3
 By introducing an electron-withdrawing fluorine atom 

next to the anomeric center of a glycoside, the hydrolysis of covalent glycosyl-enzyme 

adducts (3b � 5b) is considerably tempered. To accelerate the glycosylation step (1b � 

3b), which is also retarded by the action of the fluorine atom, a potent anomeric leaving 

group was introduced, typically a fluoride, nitrophenyl or dinitrophenyl. Because the 

second step of the double displacement reaction sequence (3b � 5b) is slowed down more 

than the first displacement event (1b � 3b), exposing a glycosidase to these inhibitors 

results in accumulation of the covalent glycosyl-enzyme intermediate (3b). With these 

probes, the nucleophilic residues of many retaining β-glycosyl hydrolases have been 

characterized by mass spectrometry after enzymatic digestion of the stable adducts 3b. In 

most cases, the nucleophile of a glycosyl hydrolase is the carboxylate moiety of an aspartic 

acid or glutamic acid residue,
4
 but sialidases can also employ a tyrosine residue as the 

catalytic nucleophile.
5

 Insightful information on the three-dimensional structure of 

inhibitor-glycosidase complexes has been obtained through X-ray crystallography studies 

on the inhibitor-bound enzymes. This has revealed that β-glucosidase
6

 and most β-

xylosidase enzymes
7 , 8

 produce an α-linked glycosyl adduct with the pyranosyl chair 

adopting a 
4
C1 conformation (6, Figure 1). Interestingly, in several β-mannosidases, the 

covalent α-mannosyl intermediate takes up an 
O
S2 skew boat conformation (7, Figure 1). 

The different conformations of the bound glucosides and mannosides provide an 

explanation why β-glucosidase and β-mannosidase enzymes display a high degree of 

similarity (practically all β-mannosidases belong to glycosyl hydrolase (GH) families, 
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which also contain β-glucosidases, see www.cazy.org),
9
 particularly around the C2-OH 

position of the active site, while glucose and mannose are epimeric structures at C-2.
10

 As 

depicted in Figure 1, the covalent intermediates in the β-glucosidases and β-mannosidases 

place most ring substituents in a (pseudo-)equatorial position while positioning the 

anomeric substituent in a (pseudo-)axial orientation. These conformations are ideally suited 

to allow for nucleophilic displacement of the anomeric acyl group, and in the case of β-

mannosidase, provide an explanation on how the enzyme manages to circumvent the steric 

hindrance by the C-2 substituent in the displacement event. 

 

Figure 1. Covalent intermediate 6 from β-glucosidase, and 7 from β-mannosidase 

 

 

 

 

 

 

Deactivated glycosyl inhibitors have also been used to obtain structural information on the 

transient Michaelis complex (1b, Scheme 1). Davies and co-workers
11

 were the first to 

report on a crystal structure of a Michaelis complex of an endo-β-1,4-glucanase enzyme (a 

member of the GH7 family) in complex with a β-1,4-pentaglucoside substrate, featuring 

non-hydrolyzable sulfide linkages. This structure revealed that the proximal (-1) residue of 

the substrate was distorted away from the relaxed 
4
C1 conformation. This finding was 

corroborated
12

 by analysis of the crystal structures of a GH5 β-glucosidase, incubated with 

2-fluoroglucobioside 8 (Scheme 2) at pH 5.5, a pH at which the enzyme is inactive. In this 

Michaelis complex, the proximal (-1) residue takes up a 
1
S3 skew boat conformation (9), 

placing the scissile C1-O-DNP linkage in a pseudo-axial position, ready for aglycone 

departure upon nucleophilic attack from the other side of the sugar ring.  

 

Scheme 2. Left: Probe 8, and the conformational itinerary of β-glucosidases (1S3 ↔ 4H3 ↔ 4C1). Right: Probes 11 

and 12, and the conformational itinerary of β-mannosidases (1S5 ↔ B2,5 ↔ OS2) 
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Using probes 11
13

 and 12,
14

 the structures of the Michaelis complexes of mutant β-

mannosidases of the GH2 and GH26 families were obtained. In these the proximal (-1) 

pyranosides appeared to adopt a 
1
S5 skew boat conformation (13, Scheme 2). From these 

structures, the similarities between the β-mannosidases and β-glucosidases again become 

apparent. Both complexes place the substrate in a conformation that allows for the pseudo-

axial displacement of the leaving group (the sugar or aglycone in the +1 position), while 

minimizing steric interactions of the incoming nucleophile with H-3 and H-5. Ab initio 

calculations show that the 
1
S5 conformation of the mannose ring in the Michaelis complex 

of β-mannosidases best orchestrates the structural requirements for nucleophilic 

displacement, including bond elongation/shrinking, leaving-group orientation, and charge 

distribution.
15

 Similarly, computation of the free-energy landscape (FEL) of β-glucose 

reveals that a structure approaching a 
1
S3/B3,O conformation represents the optimal structure 

for displacement of a β-glucoside, as found in the Michaelis complexes described above.
10

 

 

The conformations of the Michaelis complex and covalent intermediate together flank the 

transition state of the hydrolysis reaction (Scheme 1, 1b and 3b), and using Stoddart’s 

Hemisphere representation of pseudo-rotational itineraries,
16

 the structure of the 

glycopyranosyl ring in the transition state can be deduced (2b). For the β-glucosidases 

described above, the 
1
S3 Michaelis complex and the 

4
C1 covalent adduct flank a 

4
H3 half 

chair conformation, implying this conformation for the glucopyranosyl oxacarbenium ion-

like moiety in the transition state (10, Scheme 2, 
1
S3 ↔ 

4
H3 ↔ 

4
C1).

17
 Analogously, it can 

be deduced that the conformational itinerary for the hydrolysis of β-mannosides (
1
S3 � 

O
S2) 

passes through a B2,5 boat conformation (14).
14,18

 Notably, this boat structure, in which the 

anomeric center is partially sp
2
-hybridized, resembles the conformation observed for D-

mannono-1,5-lactone in solution, also featuring an sp
2
-hybridized anomeric center.

19
 The 

occurrence of the B2,5 conformation in the β-mannosidase transition state was further 

evidenced by the screening of a set of β-mannosidase inhibitors, where tight binding was 

observed with inhibitors having a boat (or similar) conformation.
20

 Using similar methods, 

the rotational itineraries of sialidases (
6
S2 ↔ 

6
H5 ↔ 

2
C5),

5
 L-fucosidases (

1
C4 ↔ 

3
H4 ↔ 

3
S1),

21
 and xylanases (

1
S3 ↔ 

4
H3 ↔ 

4
C1)

7a
 have been deduced.  

 

In contrast to β-glycosidase inhibitors, such as 15 (Figure 2), the 2-fluoro α-glycosyl 

probes (16, Figure 2) were found to be poor inhibitors of α-glycosidases. Kinetic studies 

have revealed that the C-2 fluorine substituent has a larger deactivating effect on the 

glycosylation step (1b � 3b, Scheme 1) of the α-linked probes than on the deglycosylation 

step (3b � 5b, Scheme 1), resulting in slow substrates instead of inhibitors.
22

 It has been 

postulated that the hydrolysis of β-glycosides takes place with more positive charge 

development at the anomeric carbon atom in comparison to α-glycoside hydrolysis, which 

proceeds with the development of significant positive charge at the ring oxygen.
23

 The 

deactivating effect of a C-2 fluorine thus has a greater impact on the mode of action of the 

β-glucosidase probes. The difference between α- and β-fused probes might also be 
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explained by the intrinsic higher stability of the α-configured inhibitors, which benefit from 

the stabilizing anomeric effect.
24

 As a result, the α-probes are less reactive in the 

glycosylation step (1b � 3b). In addition, the covalent intermediate formed from α-

glycosides has the higher energy β-configuration, and is easily hydrolyzed in the 

deglycosylation step (3b � 5b). Taken together, these effects hamper the accumulation of 

the covalent glycosyl-enzyme adducts (3b). As an alternative to the 2-deoxy-2-

fluoroglycosyl probes, 5-fluoroglycosides (17, Figure 2) were designed as mechanism-

based inhibitors for α-glycosidases.
25

 With these, α-glucosidases,
26

 α-mannosidases,
27

 and 

α-galactosidases
28

 were covalently glycosylated facilitating the characterization of the 

nucleophilic residues. 

 

Figure 2. Relative reactivities of probes 15-17 

 

 

 

 

 

Although inverting glycosidases do not hydrolyze glycosides through the intermediacy of a 

covalent adduct, and therefore are beside the scope of this Chapter, the GH47 α-

mannosidase involved in N-glycan processing is worth mentioning because of the 

intriguing conformational changes taking place during the hydrolysis of the α-mannosidic 

linkage. Using non-hydrolyzable thiomannobioside 18 and known inhibitor 1-

deoxymannojirimycin (19, Scheme 3), the crystal structures of both the Michaelis complex 

and the inhibitor-enzyme complex were obtained.
29

 Interestingly, in the Michaelis complex 

the mannosyl residue at the -1 position adopts a 
3
S1 skew boat (20) to accommodate the 

anomeric substituent in a pseudo-axial orientation, and the mannoside takes up an 

unexpected 
1
C4 chair in the product complex (22). These intermediates together flank a 

transition state in which the mannosyl cation adopts a 
3
H4 oxacarbenium ion-like structure 

(21). 

 

Scheme 3. Probes for α-mannosidases, and the catalytic itinerary (3S1 ↔ 3H4 ↔ 1C4) 
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Recently it was proposed that the β-stereoselectivity in glycosylations of mannuronic acid 

donors can be explained with a product-forming 
3
H4 oxacarbenium ion-like transition state 

(vide infra, see Chapters 2-4). This is further endorsed by the observation that mannuronic 

acid lactone 23, having an sp
2
-hybridized anomeric carbon, takes up a 

3
H4 

conformation,
30

 in contrast to the B2,5 conformation of D-mannono-1,5-

lactone and the conformation of the mannosyl ring in the transition states in 

the β-mannosidases described above.  

 

The covalent attachment of glycosyl inhibitors in the enzyme active site has been employed 

in activity-based protein profiling (ABPP). For this purpose, covalent inhibitors were 

converted into activity-based probes by grafting a fluorescent group or ligation handle to 

the pyranoside to allow the visualization of the bound enzyme (Scheme 4). For instance, 

Vocadlo and Bertozzi used 2-fluoro-6-azidogalactosyl probe 24 to study β-galactosidase 

activity in vitro.
31

 Overnight incubation of bacterial β-galactosidase LacZ with probe 24 

was followed by a Staudinger ligation using a FLAG-phosphine. This allowed for Western 

blot analysis of the covalent glycosyl-enzyme adduct, after SDS-PAGE, using anti-FLAG-

horseradish peroxidase (HRP). In a similar manner, 5-fluoro probe 25 was employed to 

inhibit N-acetyl-β-glucosaminidases, which could then be labeled with a phosphine-FLAG 

tag for Western blot analysis, or functionalized with an alkyne-functionalized biotin to 

allow for pull-down of the enzyme from a cell lysate using streptavidin resin.
32

 

 

Scheme 4. Two-step and direct probes based on fluoroglycosides 24-26 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

O
OBn

N3

OAc

MeO2C

O

23

F
O

HO

HO

F

N3

F
O

HO
HO

NH

HO

F

ON3

O

OH

HO
NH

O

F

O
HO O

NO2

NO2

R2

O
R1 R1

R1 = CH2OH, H

R2 = biotin, BODIPY

24

26

25

-
O O

HO O

LacZ

+

O O

HO O
O

HO

HO

F

N3

O O

HO O
O

HO

HO

F

NH

O
N
H

O

FLAGHOOC

Staudinger
ligation

incubation

Western blot
analysis



 Chapter 1 

 

16 

Next to these two-step probes, direct probes based on fluoroglycosides have been reported. 

These probes have the visualization moiety already installed on the pyranoside, allowing 

for the direct visualization of the trapped enzymes. In this way, endo-β-xylanase and 

cellulase enzymes were labeled with xylobioside probes 26, and the kinetic parameters for 

inhibition were similar for the tagged and untagged probes.
33

 The probes were used to label 

both pure enzyme samples and the excreted proteome of the soil bacterium Cellulomonas 

fimi. A beneficial effect of the lipophilic BODIPY moiety on enzyme binding kinetics was 

observed with probes developed to label β-glucocerebrosidase (GBA), a retaining 

exoglucosidase, which degrades glucosylceramide (Figure 3). 2-Deoxy-2-fluoroglucosides 

with different anomeric leaving groups (27) and cyclophellitol-based probes (28) were 

compared for their activity-based inhibition properties of GBA, revealing that the 

fluoroglucoside probes were much less potent inhibitors than the cyclophellitol-based 

probes (see Chapter 8).
34

  

 

Figure 3. GBA probes (R = azide, BODIPY) 

 

 

 

 

 

 

Several factors may contribute to this large difference in inhibition properties and labeling 

affinity. The 2-deoxy-2-fluoroglycosides were designed to decrease the reactivity of the 

donor glycoside through depletion of electron density at the anomeric carbon, leading to 

stabilization of the covalent glycosyl-enzyme adduct. As said, this reduced reactivity is 

already embedded in the glycosyl fluoride or (di)nitrophenyl glycoside. In contrast, the 

cyclitol epoxide inhibitor is optimally geared to enhance initial reaction within the 

glycosidase active site: it should be more electron-rich, and the epoxide is optimally 

positioned for protonation by the general acid/base catalyst. Only after activation and 

substitution by the catalytic nucleophile an intermediate is formed that is comparatively 

more stable than a normal glycosyl-enzyme adduct due to a relatively stable ester linkage 

(compared to the natural acylal intermediate). For the 2-deoxy-2-fluoroglycosides, the 

intrinsic decrease in reactivity was compensated by introducing a potent leaving group, and 

in the case of the anomeric fluoride series, the propensity of the fluorine to depart within a 

glycosidase active site to become substituted by the nucleophile appeared such that also 

mutant enzymes (lacking the acid/base catalyst) were effectively modified. Indeed, the 

anomeric fluorine does not require, and likely neither invites, protonation, in other words, 

does not capitalize on the intrinsic mechanism of a retaining glycosidase. In line with this 

reasoning, it was found that 2-deoxy-2-fluorideglucoside probe 29, bearing a β-N-phenyl 

trifluoroacetimidate as anomeric leaving group, inhibited and labeled GBA much more 

potently than the corresponding compound equipped with an anomeric fluoride (see 

Chapter 9). In contrast to the anomeric fluoride, this leaving group required enzymatic 
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protonation in the active site in order to be expelled, since mutant GBA lacking the 

acid/base residue proved inert towards imidate probe 29 featuring the anomeric 

acetimidate, but not the analogous anomeric fluoride probe.  

 

Glycochemistry 

In the previous section specifics and merits of covalent glycosyl-enzyme adducts were 

discussed, with a focus on lessons learned both with respect to glycosidase enzymology and 

physiology. In recent years it became apparent that, upon activation of a donor glycoside, 

covalent intermediates composed of the donor glycoside and components of the activating 

species could be formed as well. In this section some studies pertaining the formation and 

relevance of such intermediates in chemical glycosylation pathways are discussed. 

 

A breakthrough in the general understanding of reactive covalent intermediates involved in 

glycosylation reaction came with the first observation made by Crich and Sun of a covalent 

mannosyl triflate (30, Scheme 5).
35

 Serendipitous pre-activation of a 4,6-O-benzylidene-

protected sulfoxide donor prior to addition of the nucleophile provided the β-linked 

disaccharide product with unexpected high stereoselectivity. This prompted the 

investigation of the intermediate formed upon pre-activation, and using low-temperature 

NMR spectroscopy, the anomeric α-triflate 30 was identified. The existence of this species 

suggested that the high β-selectivity observed arose from the SN2-like substitution on the 

axial α-triflate. When this covalent intermediate dissociates to the (solvent-separated) ion 

pair, the mannosyl oxacarbenium ion takes up a 
4
H3 half chair conformation (31) (or 

closely related B2,5 boat conformation), providing the α-product upon nucleophilic attack.
36

 

 

Scheme 5. Intermediates upon pre-activation of 4,6-O-benzylidene protected mannose  

 

 

 

 

 

In this scenario, the equilibrium between the covalent intermediate and the (solvent-

separated) oxacarbenium ion, in combination with the rate of substitution on both species, 

determines the stereoselectivity of the reaction. The benzylidene group in 30 serves to 

stabilize the anomeric triflate with respect to the oxacarbenium ion 31 by conformationally 

restricting the mannosyl chair structure, and hampering the flattening of the ring to 

accommodate the sp
2
-hybridized oxacarbenium ion. In addition, the benzylidene ring locks 

the C-6 oxygen atom in the most electron-withdrawing tg conformation,
37

 thereby 

electronically disfavoring the formation of the anomeric cation. Besides this 

conformational restriction, the stabilization of anomeric triflates has also been attained 

through the incorporation of electron-withdrawing substituents.
38,39

 For example, using a 

series of increasingly fluorinated mannopyranosides (32-34, Figure 4), it was established 

that the stability of the intermediate triflate increased upon degree of fluorination.
38
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this case, the stability of the anomeric triflates was mirrored in the stereoselectivity of the 

mannosylation reactions: the more stable triflate gave the highest β-selectivity. However, it 

should be noted that the stability of an anomeric triflate is no general measure for the 

amount of SN2-like substitution, and consequently the stereoselectivity of a glycosylation 

reaction. This is illustrated by the benzylidene-protected mannosyl triflates (35-37, Figure 

4), of which 2-fluoromannosyl triflate 35
40

 and 2,3-diazidomannosyl triflate 36
41

 are both 

more stable than mannosyl triflate 30 (Tdecomp ~ -10 ºC),
35

 while condensation reactions 

with triflates 35 and 36 proceed with a significantly diminished β-selectivity. In fact, in 

many cases (if not most), the observation of a single anomeric triflate does not guarantee an 

SN2-like pathway. For example, benzylidene-protected glucosyl donors can be activated to 

provide an α-triflate intermediate (such as 37,
42

 Figure 4), but these are substituted in the 

ensuing condensation event with retention of configuration at the anomeric center to 

provide α-glucosides with good selectivity. This stereochemical outcome can be 

rationalized by assuming that the observed anomeric triflate serves as a reservoir for the 

more reactive oxacarbenium ion, which reacts in an α-selective manner. Alternatively, it 

can be hypothesized that the axial α-triflate is in dynamic equilibrium with the more 

reactive equatorial β-triflate, which can be substituted in an SN2-like manner to provide the 

α-linked products, in line with Lemieux’s in situ anomerization protocol featuring 

anomeric halides.
43

 Obviously, axial α-triflates benefit from a strong stabilizing anomeric 

effect, making these species largely favored over their equatorially-linked counterparts. As 

a consequence, a large number of axial α-triflates have been reported
44

 while there are only 

very few reports on equatorial triflates,
45

 of which the best studied examples are the 

mannuronic acid triflates described below (see also Chapters 2-4).
30

 

 

Figure 4. Triflates 32-37 

 

 

 

 

 

 

 

 

 

 

 

Condensation reactions involving mannuronic acid donors proceed with high 

stereoselectivity to provide β-linked products. This selectivity can be explained by 

invoking an SN2-like displacement mechanism on an anomeric α-triflate. Indeed, these 

intermediates have been observed by NMR spectroscopy (Scheme 6). However, the 

triflates obtained by pre-activation of the corresponding donors occurred as mixtures of two 

conformers, a 
4
C1 chair conformer with an axial triflate, and a 
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triflate in an equatorial direction. Not only does this triflate lack the anomeric stabilization 

present in its 
4
C1 chair counterpart, it also places three substituents in sterically unfavorable 

axial positions. Presumably these triflates adopt this unexpected conformation because of 

the electron-depleted anomeric center. To stabilize the partial positive charge at the 

anomeric center, the mannuronic acid adopts a conformation approaching the 
3
H4 half chair 

conformation (41, Scheme 6), which represents the most favorable conformation for the 

mannuronate oxacarbenium ion.
46,47,48,49

 Notably, all mannuronic acid triflates observed to 

date are significantly more labile than what would be expected based on the consideration 

that the electron-withdrawing carboxylic acid ester at C-5 should disfavor collapse of the 

triflate into the corresponding oxacarbenium ion (41/42). Taken together, another pathway 

to account for the high β-selectivity of the mannuronic acid donors can be envisaged, in 

which a 
3
H4 half chair oxacarbenium ion-like intermediate is selectively attacked on the 

diastereotopic face that leads to the formation of the chair product, that is, the β-face 

(Scheme 6). 

 

Scheme 6. Conformational mixture of mannuronic acid triflates 38-40, and the corresponding oxacarbenium ion 

half chairs 41/42 

 

Because all common glycosylation conditions involve the use of electrophilic activators 

having triflate counterions (Ph2SO/Tf2O, AgOTf/p-TolSCl, NIS/TfOH for thioglycosides, 

TMSOTf, TfOH for glycosyl imidates), anomeric triflates can be postulated to be an 

intermediate in the vast majority of glycosylation reactions performed to date. Whether 

they are actually the glycosylating species or merely a resting state depends on many 

variables, including the reactivity of the coupling partners, reaction temperature, solvent, 

and concentration. 

Besides anomeric triflates, various other covalent species have also been produced upon 

glycosyl donor activation. For example, Gin and co-workers described that the intermediate 

formed in their dehydrative glycosylation protocol is an oxosulfonium triflate species.
50

 

These species are more stable than the corresponding anomeric triflates, and it has been 

shown that per-O-methyl mannosyl triflate is rapidly converted into oxosulfonium triflate 

43 by treatment with diphenylsulfoxide (Figure 5). The higher stability of oxosulfonium 

triflates with respect to covalent triflates was used in the study of covalent intermediates 

formed upon activation of sialic acids.
51

 While pre-activation of sialic acid thio-donors with 

a stoichiometric amount of a thiophilic promoter resulted in rapid elimination of the 

putative anomeric triflate, the addition of an excess of diphenylsulfoxide yielded a 

diastereomeric mixture of oxosulfonium triflates (44, Figure 5). Through this stabilized 

intermediate,
52

 a variety of acceptors were glycosylated with moderate α-stereoselectivity. 
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The stereoselectivity in these condensations was improved by conducting the reaction in a 

mixture of acetonitrile/dichloromethane. This solvent mixture is commonly used for the 

stereoselective construction of α-sialosides, and indicates that the product-forming species 

in these condensation reactions is not the observed oxosulfonium triflate, but rather that a 

solvent-stabilized oxacarbenium ion-like species is at the basis of the observed selectivity. 

 

Figure 5. Other covalent intermediates 

 

 

 

 

 

 

 

 

 

 

 

The addition of diorganosulfides to anomeric triflate intermediates leads to the formation of 

glycosyl sulfonium ions (such as 45 and 46, Figure 5), which can be rather stable, and in 

cases even be used as storable glycosyl donors.
53,54

 Notably, most glycosyl sulfonium ions 

prefer to place the anomeric sulfonium ion moiety in an equatorial position. In some cases, 

these glycosyl sulfonium ions can be used for the stereoselective formation of glycosidic 

bonds, through the direct SN2-like displacement of the intermediates. The reactivity and 

selectivity of these species critically depend on both the substituents of the glycosyl core as 

well as the substituents on the sulfonium center. Boons and co-workers elegantly exploited 

the stability of the intramolecular sulfonium ions for the stereoselective construction of α-

glucosidic and α-galactosidic bonds.
55

 Sulfonium species 47 (Figure 5) can be obtained 

using a chiral SPh auxiliary appended at the C-2 position, or through aromatic substitution 

by an oxathiane intermediate.
56

 This trans-decalin sulfonium system is relatively stable and 

can be substituted in an SN2-like manner from the α-face to provide the 1,2-cis-linked 

target products. Also in this system the protecting groups on the carbohydrate core played 

an important role, and it was shown that electron-withdrawing protecting groups promoted 

an SN2-like reaction pathway over the alternative SN1 trajectory by disfavoring collapse of 

the “covalent” sulfonium ion into the oxacarbenium ion.
57

 Bicyclic mannosyl sulfonium 

ions, such as 48 (Figure 5), have also been generated, and these proved to be stable at room 

temperature for several hours.
58

 Nucleophilic substitution of these species mainly produced 

the β-configured product. Since substitution of 48 in an SN2-like manner would give the α-

product, a 
3
H4 half chair oxacarbenium ion (preferred for mannosides) was invoked as 

product-forming intermediate. 
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In summary, the expanding body of studies on stability and reactivity of donor glycosides 

in glycochemistry and glycobiology has witnessed a remarkable increase in examples of 

intermediates in which the substrate/donor glycoside after activation is captured as a 

covalent intermediate prior to further processing towards the product. Detailed analysis of 

such intermediates in chemical carbohydrate synthesis has aided in the understanding of 

pathways and mechanisms involved in stereoselective glycosylation events, and whether or 

not covalent intermediates are actually involved in a glycosylation, or merely serve as 

thermodynamic sinks to store reactive species. Likewise, tailored glycosidase probes have 

unambiguously established the existence of covalent enzyme-substrate intermediates in the 

case of retaining glycosidases. Although it is tempting to assume that these intermediates 

are crucial in the process towards glycoconjugate hydrolysis, also here it is not excluded 

that the actual species that will capture water in the enzyme active site is in fact a charge-

separated glycoside species. From a practical point of view, modified carbohydrate donors 

are finding increasing application in chemical glycobiology studies. New generations of 

“Withers-type” 2-deoxy-2-fluoroglycosides emerge that, next to their application in 

structural biology studies on isolated enzymes, are potent and selective enough to also 

allow activity-based profiling of retaining glycosidases in complex biological samples, a 

promising yet underdeveloped field of research in chemical biology. Also, tailored and 

shelf-stable donor glycosides equipped with a good anomeric leaving group have found 

their use in chemoenzymatic synthesis of glycoconjugates, for instance involving a 

transglycosylase reaction effected by a mutant glycosidase lacking either the general 

acid/base or nucleophile residue.
59

 Interestingly, the first examples of shelf-stable donor 

glycosides, that can be made to react in a chemical glycosylation reaction upon transfer to 

the acceptor, have appeared in literature as well. Without a doubt, future research involving 

a range of functionally, stereochemically, and conformationally well-defined donor 

glycosides will lead to exciting discoveries furthering both the general understanding of a 

chemical glycosylation reaction and the involvement of glycoprocessing enzymes in 

chemical glycobiology.  
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Chapter 2 
 

 

Equatorial Anomeric Triflates from 

Mannuronic Acid Esters 

 

 

 

 

Introduction 

The stereoselective construction of glycosidic linkages has long been, and continues to be, 

one of the main challenges in synthetic carbohydrate chemistry.
1

 Whereas 1,2-trans 

glycosidic linkages can be obtained reliably by taking advantage of neighbouring group 

participation of an acyl protective group at the C-2 position in the donor glycoside,
2
 a 

general method for the stereoselective formation of 1,2-cis glycosidic bonds has not been 

identified.
3,4  

In the development of efficient procedures for the introduction of 1,2-cis 

bonds, the stereochemical outcome is usually interpreted with the aid of a nucleophilic 

displacement mechanism (Scheme 1).
1
 Typically, condensation of a suitably protected 

glycosyl donor and acceptor starts with the activation of the leaving group attached to the 

C-1 of the donor I by a suitable electrophile (E
+
). Activated species II can then undergo an 

SN2-type substitution by an appropriate nucleophile, such as the acceptor.  

 

Scheme 1. General glycosylation mechanism 
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Alternatively, expulsion of the activated leaving group in II can produce the solvent-

separated oxacarbenium ion III and the contact ion pair IV. This latter species can be 

intercepted by the counterion of the activator species (X
-
) to give intermediate V, in which 

the group X is covalently attached to the anomeric center of the glycosyl donor. Depending 

on the stability of the glycosyl oxacarbenium ions and the nucleofugality of the leaving 

group X
-
, an equilibrium will be established between the covalent intermediate V, the 

contact ion pair IV and the solvent-separated ion pair III. The mechanism can best be 

regarded as a continuum between an SN2-like and an SN1-like substitution, through the 

intermediacy of the different reactive species (III-V), and depends on the many variables 

operating in a glycosylation reaction.
5
 

 

Traditionally, the β-mannosidic linkage has been one of the most difficult cis-glycosidic 

linkages to construct. A breakthrough in the construction of this type of glycosidic bonds 

has been reported by Crich and co-workers, who have shown that 4,6-O-benzylidene 

protected mannosides gave excellent β-selectivities in glycosylations with various 

acceptors.
6
 In an attempt to visualize the reactive intermediate, the 4,6-O-benzylidene 

protected mannosyl sulfoxide donor was pre-activated in DCM-d2 at -78 ºC, and the 

mixture was analyzed by low-temperature NMR spectroscopy. A covalent α-anomeric 

triflate was detected, which proved to be stable up to -10 ºC.
7
 It follows that the β-

selectivity can be explained by an SN2-like substitution on the anomeric α-triflate (V, 

Scheme 1). Since this first report, the detection of anomeric triflates using NMR 

spectroscopy has found widespread application in determining the reactivity and stability of 

glycosylation intermediates.  

 

Previous work by van den Bos et al.
8

 has revealed that glycosylations of 1-thio 

mannuronate ester donors (such as 1 and 2, Scheme 2, see also Chapter 3) proceed with 

excellent 1,2-cis selectivity to provide β-linked products. A plausible mechanistic rationale 

for this selectivity involves an SN2-like substitution on an anomeric triflate. In the 

equilibrium of the triflate (1a, Scheme 2) with the (solvent-separated) ion pair (1b/1c, 

Scheme 2), the covalent species should be favored because of the electron-withdrawing 

effect of the C-5 carboxylic ester. On the other hand, it can also be postulated that the 

mannuronic acid oxacarbenium ion is at the basis of the observed stereoselectivity. As 

revealed by Woerpel and co-workers, the mannopyranosyl oxacarbenium ion preferentially 

takes up the 
3
H4 conformation (1b), because this places all ring substituents in an 

electronically favored position.
9
 A heteroatom substituent at the C-2 position prefers to 

occupy an equatorial position in a half chair oxacarbenium ion to allow for 

hyperconjugative stabilization of the cation by the adjacent C-H bond. Alkoxy substituents 

at C-3 and C-4 prefer an axial orientation because this allows for through-space electron 

donation to the electron-poor cation. In addition, as argued by Bols and co-workers, axial 

alkoxy substituents are less electron-withdrawing when taking up an axial orientation. 

Moreover, in the case of mannuronic acid, the 
3
H4 conformation positions the carboxylate 

moiety in an axial position, in which it is aligned perfectly the coordinate to the electron-
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depleted anomeric center. Based on these substituent preferences, the mannuronic acid 
3
H4 

half chair (1b) should be significantly favored over the 
4
H3 half chair (1c). Nucleophilic 

attack on a half chair cation preferentially takes place on the diastereotopic face leading to 

the chair product. Thus an incoming nucleophile will approach the mannuronic acid 
3
H4 

oxacarbenium ion from the β-face. 

 

Scheme 2. Possible intermediates in the glycosylation of donors 1 and 2 

 

 

 

 

 

 

 

To gain insight in the possible glycosylation intermediates, their stabilities, and their 

involvement in the reaction mechanism, this Chapter describes the use of low-temperature 

NMR spectroscopy to study the activation of mannuronate donors. The effect of electron-

withdrawing substituents, next to the methyl ester at C-5, was also evaluated through the 

use of an azido moiety at C-2. 

 

Results and Discussion 

To monitor the activation, a solution of donor 1 and Ph2SO (1.3 eq) in DCM-d2 was cooled 

to -80 ºC and treated with triflic anhydride (1.3 eq).
10

 The first 
1
H NMR spectrum already 

revealed complete consumption of the starting material in favor of two sets of new signals 

(Figure 1). When the reaction mixture was warmed to -40 ºC the two resonance sets 

coalesced to one averaged set of signals. Upon cooling to -80 ºC, the two resonance sets 

appeared again, indicating a dynamic equilibrium of two species. Above -40 ºC 

decomposition was observed. Using 2D COSY and HSQC measurements, all pyranosyl 

peaks were assigned as shown in Figure 1.  

 

Figure 1. 
1H NMR spectrum of donor 1 after pre-activation at -80 ºC 
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The anomeric H-1 signal at 5.97 ppm was a singlet as expected for a manno H-1. The H-1* 

doublet at 6.19 ppm however displayed a coupling constant of 
3
JH1-H2 = 8.2 Hz indicating a 

trans-diaxial relationship between H-1* and H-2*. In mannosyl pyranosides such a large 

coupling constant is caused by a change in conformation from the 
4
C1 to the 

1
C4 chair. This 

ring flip was supported by the coupling constants of the other ring protons. The chemical 

shifts of the two anomeric signals H-1 and H-1* are both indicative for an anomeric 

triflate.
7
 Strikingly, this suggests that activation of mannuronate 1 leads to a conformational 

mixture of anomeric triflates in which the 
1
C4 chair product 1a*, which accommodates the 

anomeric triflate in the equatorial position, is predominantly formed (1a* : 1a = 1.4 : 1, 

Scheme 3).  

 

To probe the influence of an azido functionality at C-2, mannosazide methyl uronate donor 

2 was investigated for its reactive intermediates upon activation. Compound 2 was obtained 

through the synthesis described in Chapter 3, where it is employed in the construction of 

bacterial oligosaccharides. Its natural equivalent, mannosaminuronic acid, is found in 

various (bacterial) polysaccharides,
11

 in which it generally is β-linked. So a solution of β-

thio donor 2 and Ph2SO in DCM-d2 was treated with Tf2O at -80 ºC, and the donor was 

rapidly consumed. The 
1
H NMR spectrum thus obtained reveals again two sets of signals 

(Figure 2, top), which coalesce upon warming to -40 ºC (Figure 2, bottom). From 

comparison with the spectra obtained from the activation of donor 1, it follows that donor 2 

also produces a conformational mixture of α-anomeric triflates. Interestingly, the 
1
C4 

conformer 2a* with the triflate equatorially again predominates (2a* : 2a = 3 : 1, Scheme 

3). 

 

Figure 2. Fragments of the 1H NMR spectra after pre-activation of donor 2 at -80 ºC (top) and at -40 ºC (bottom) 
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To confirm that the spectrum displayed in Figure 2 indeed belongs to a conformational 

mixture of α-anomeric triflates, N-phenyl trifluoroacetimidate 3 was activated in a low-

temperature NMR experiment (Scheme 3). When donor 3 was treated with an equimolar 

amount of TfOH in DCM-d2 at -80 ºC, the imidate was immediately consumed and the 

resulting spectrum matched the one shown in Figure 2. Activation of 1-thio mannuronate 2 

and imidate 3 thus lead to an identical mixture of anomeric α-triflates in which the 

equatorial triflate 2a* prevails (Scheme 3). 

 

Scheme 3. Anomeric α-triflates generated from donors 1-3 

 

Whereas axial anomeric triflates have been frequently characterized by NMR studies,
12

 

equatorial anomeric triflates have up to now never been spectroscopically detected. 

Nonetheless, they have been invoked as product-forming intermediates during 

glycosylation,
13 , 14  

a hypothesis primarily based on Lemieux’s proposal that anomeric 

halogens can epimerize in situ from the more stable axial to the more reactive equatorial 

configuration.
15

 With electron-withdrawing substituents at the anomeric center, pyranosyl 

ring inversion has been observed before, but always to profit from the stabilizing anomeric 

effect.
16,17  

Since the preference for an electronegative substituent to reside in an axial 

anomeric position is more pronounced in mannosides than in other glycosides,
17, 18  

the 

finding that mannosyl methyl uronates preferentially form the equatorial triflates 1a*/2a* is 

highly unexpected. In addition to the lack of anomeric stabilization, this structure also 

places three of the five substituents in a sterically disfavored axial position.  

 

This atypical behavior of donors 1 and 2 may be rationalized by taking into account that 

this species carries a significant amount of positive charge on its anomeric carbon atom; the 

presence of the anomeric triflate, the C-5 ester (and the C-2 azide in 2) together render the 

anomeric center of the mannosyl core electron-deficient. Consequently, the structure of 

equatorial triflates 1a*/2a* approximates the structure of the corresponding oxacarbenium 

ions 1b/2b. In analogy to the preferred 
3
H4 half-chairs 1b/2b, the 

1
C4 triflates 1a*/2a* place 

all ring substituents in their electronically most favorable orientation: the C-2 functionality 

is positioned equatorially, the C-3 and C-4 substituents are positioned axially, and the 

carboxylate at C-5 adopts a pseudo-axial position to allow a through-space stabilization of 

the partially electron-positive anomeric center,
8c, 19

 as outlined above. Notably, this 

stabilizing effect should be strong enough to overrule both the anomeric effect and the 

unfavorable 1,3-diaxial interactions. The preferential flip of the electron-deficient 

mannuronate core to the 
1
C4 chair conformation thus supports the model as proposed for 

the lower ground-state energy of the 
3
H4 half-chair mannuronate oxacarbenium ion.

8b
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To endorse the postulation that the developing positive charge at C-1 is the driving force 

for the inversion of chair conformation, mannuronate lactone 4 was synthesized (Scheme 

4). As in the mannuronate oxacarbenium ion, the C-1 of the lactone is sp
2
-hybridized and 

carries a partial positive charge. Analysis by NMR spectroscopy revealed that lactone 4 

adopts a flattened 
1
C4 chair at room temperature.

20
 X-ray crystallography corroborated this 

structure (Figure 3).  

 

Scheme 4. Synthesis of lactone 4, and exploded transition state VI 

 

 

 

 

 

 

Reagents & conditions: a) TFAA, DMSO, DCM (29%).  

 

The existence of the conformational mixture of α-anomeric triflates provides support for a 

glycosylation pathway having both SN1- and SN2-character. Substitution of the triflate is 

accompanied by the development of significant oxacarbenium ion character at the anomeric 

center. To accommodate this (partial) positive charge, the mannuronates 1 and 2 adopt a 

conformation approaching the 
3
H4 half-chair, as illustrated by the asymmetric “exploded” 

transition state VI (Scheme 4).
21

 The (stereo)electronic effects stabilizing this conformation 

are already apparent in the neutral triflates 1a*/2a* and lactone 4, and will become more 

important with increasing positive charge at C-1. In this glycosylation scenario, the amount 

of SN1- and SN2-like character is determined by the reactivity of the incoming nucleophile. 

 

Figure 3. ORTEP representation of the X-ray structure of compound 4 (see Appendix 2 for a colored ball-and-

stick model) 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Empirical formula  C16H17N3O7 

Formula weight  363.33 

T [K]  120(2) 

λ [Å]  0.71073 

Crystal system  Monoclinic 

Space group  P 21 

Unit cell dimensions  

a [Å]  10.914(2) [10.989(3)]♦ 

b [Å]  7.502(2) [7.718(2)] 

c [Å]  11.151(3) [11.376(2)] 

β [°]  112.923(7) [115.766(7)] 

V [Å3]  840.9(4) [868.9(3)] 

Z  2 

Dc [g/cm3]  1.435 [1.389] 

µ [mm-1]  0.114 [0.111] 

F(000)  380 

Crystal size [mm3]  0.40 x 0.30 x 0.15 

θ range for data collection  3.3 → 32.5 

Reflections collected  8915 

Independent reflections  5756 [Rint = 0.0246] 

Completeness to θ = 32.5  99.0 % 

Max. and min. transmission 0.9830 and 0.9557 

Data / restraints / parameters  5756 / 1 / 303 

Goodness-of-fit on F2  1.039 

Final R indices [I>2σ(I)]  R1 = 0.0430, wR2 = 0.0926 

R indices (all data)  R1 = 0.0561, wR2 = 0.0999 

Largest diff. peak and hole  0.330 and -0.218 e.Å-3 
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Conclusion 

In conclusion, activation of mannosyl methyl uronates leads to the predominant formation 

of equatorial mannosyl triflates. The ring inversion required to position the anomeric 

triflate equatorially is favored by the stereoelectronic preferences of the mannosyl 

substituents, which are also at the basis of the stability of the corresponding 
3
H4 half chair. 

This finding suggests that both the anomeric triflate and the formation of the 
3
H4 

oxacarbenium ion contribute to the excellent β-selectivity observed in the condensation of 

mannuronic acid donors. 

 

Experimental Section 

General procedure for the low-temperature NMR experiments.  

Ph2SO/Tf2O activation: A mixture of the donor (30 µmol) and Ph2SO (39 µmol) was co-evaporated with toluene 

(2x). The residue was dissolved in DCM-d2 (0.6 mL) and transferred to an NMR tube under an argon atmosphere. 

The tube was stoppered and sealed. The NMR probe was cooled to -80 ºC, locked and shimmed. In an acetone 

bath (-80 ºC) the sample was treated with Tf2O (39 µmol), shaken thrice and placed back in the NMR magnet. The 

first 1H spectrum was immediately recorded. Further temperature changes were executed depending on the spectra 

recorded, but always with multiples of 10 ºC.  

TfOH activation: The donor (39 µmol) was co-evaporated with dry toluene (2x), dissolved in DCM-d2 (0.6 mL) 

and transferred to an NMR tube under an argon atmosphere. At -80 ºC in the acetone bath TfOH (39 µmol) was 

added, the sample was transferred to the pre-cooled NMR magnet and the first 1H spectrum was immediately 

recorded.  

 

Methyl (4-O-acetyl-2-azido-3-O-benzyl-2-deoxy-D-mannopyranosyl uronate)-δδδδ-lactone (4). Methyl (2-azido-

4-O-acetyl-3-O-benzyl-2-deoxy-α-D-mannopyranosyl uronate) (0.14 g, 0.37 mmol) was 

dissolved in DCM (2 mL), the solution was cooled to 0 ºC, followed by the addition of DMSO 

(1.15 mL, 16.3 mmol) and trifluoroacetic anhydride (1.15 mL, 8.13 mmol). After 2 h at 0 ºC, 

the reaction was quenched by the addition of sat. aq. NaHCO3, the mixture was diluted with 

EtOAc, washed with sat. aq. NaCl, dried over Na2SO4 and concentrated in vacuo. Purification using flash column 

chromatography (silica gel, 40% EtOAc in PE) yielded the title compound as a colorless oil (Yield: 39 mg, 0.11 

mmol, 29%), which was crystallized from toluene/PE as colourless needles. Rf 0.58 (PE/EtOAc, 1/1, v/v); [α]D
20 -

32.0 (c 1, DCM); mp 92-94 ºC (from EtOAc/PE); IR (neat, cm-1) 756, 976, 1171, 1213, 1732, 1753, 2112; 1H 

NMR (CDCl3, 400 MHz, HH-COSY, HSQC) δ 7.25-7.37 (m, 5H, CHarom), 5.77 (dd, 1H, J = 1.8, 3.7 Hz, H-4), 

5.01 (d, 1H, J = 1.2 Hz, H-5), 4.67 (d, 1H, J = 11.2 Hz, CHH Bn), 4.63 (d, 1H, J = 11.3 Hz, CHH Bn), 4.13-4.19 

(m, 2H, H-2, H-3), 3.46 (s, 3H, CH3 CO2Me), 2.16 (s, 3H, CH3 Ac); 13C-APT NMR (CDCl3, 100 MHz, HSQC) 

δ 169.0, 166.7 (C=O Ac, CO2Me), 165.1 (C-1), 135.6 (Cq Bn), 128.4, 128.3, 128.2 (CHarom), 78.0 (C-5), 75.5 (C-

3), 73.5 (CH2 Bn), 67.6 (C-4), 58.1 (C-2), 52.8 (CH3 CO2Me), 20.6 (CH3 Ac); HRMS [M+NH4]
+ calcd for 

C16H21N4O7 381.14048, found 381.14137. 
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Introduction 

N-Acetyl-D-mannosaminuronic acid (ManNAcA) is a common constituent of various 

bacterial polysaccharides. It is found in Gram-positive and Gram-negative cell wall 

glycopolymers,
1
 bacterial (surface) antigens

2
 and the enterobacterial common antigen 

(ECA).
3
 Within these bacterial glycans, ManNAcA is primarily β-1,3 or β-1,4 linked to a 

wide variety of other hexapyranosides. For example, the cell-wall polysaccharide from 

Micrococcus luteus, a teichuronic acid,
4
 is composed of alternating ManNAcA and glucose 

residues, both linked through cis-glycosidic linkages (Figure 1).
5
 M. luteus has been 

implicated to play a role in recurrent bacteremia,
6

 septic shock
7

 and meningitis.
8
 

Interestingly, whereas the peptidoglycan part of the M. luteus cell wall lacks 

immunomodulatory activity, its teichuronic acid component induces the production of 

inflammatory cytokines.
9
 Additionally, it was shown that reduction of the carboxylic acids 

to the primary alcohols led to elimination of the immunostimulating activity.
9
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To date, only a few research papers detail the synthesis of ManNAcA-containing 

oligosaccharide fragments,
10

 and no general protocol exists. Litjens et al. previously 

described the synthesis of the β-mannosaminuronic acid-containing acidic trisaccharide, β-

D-GlcpNAc-(1→4)-β-D-ManpNAcA-(1→3)-α-L-GalNAcA(4-OAc), of the bacteriolytic 

complex of lysoamidase.
11

 The β-mannosamine linkage in this trimer was constructed 

using a 4,6-O-benzylidene mannosazide thioglycoside
12

 following the pioneering work of 

Crich and co-workers on β-mannoside synthesis.
13

 However, compared to the 2,3-O-benzyl 

protected 4,6-O-benzylidene mannopyranoside, the 2-azido-3-O-benzyl mannopyranoside 

showed reduced β-stereoselectivity. As part of a program directed at the efficient 

construction of anionic oligosaccharides including alginate, appropriately derivatized 

mannuronate (ManA) donors were glycosylated with a variety of acceptor glycosides to 

produce 1,2-cis ManA linkages with good efficiency and high β-stereoselectivity.
14

 These 

results enable the direct use of oxidized donor molecules in the construction of higher 

oligosaccharides, instead of oxidation at the oligosaccharide stage when 4,6-O-benzylidene 

protected donors are employed. 

 

Figure 1. Micrococcus luteus teichuronic acid displaying the repetitive motif [→6)-α-D-Glcp-(1→4)-β-D-

ManpNAcA-(1→] (A), and the ManN3A donors used in this Chapter (B) 

 

 

 

 

 

Continuing the research presented in Chapter 2, here an in-depth study is presented on the 

use of ManN3A donors in the construction of β-ManNAcA glycosidic bonds. ManN3A 

donors with different aglycone moieties were synthesized and assessed for their reactivity 

under glycosylating conditions, the nature of the activated species formed upon pre-

activation with emphasis on both structural and conformational aspects, and their 

glycosylating properties.
15

 The outcome of these studies was applied in the first synthesis 

of a series of tri-, penta-, and heptasaccharide fragments corresponding to the Micrococcus 

luteus teichuronic acid. 

 

Results and Discussion  

Synthesis of the mannosazide methyl uronate donors. The ManN3A donors used in this 

study are β- and α-(S)-phenyl mannosides 1 and 2,
16

 β- and α-N-phenyl 

trifluoroacetimidates 3 and 4,
17

 1-hydroxyl mannuronate 5,
18

 β-sulfoxide 6 and the α-

sulfoxides 7a/b (Figure 1).
19

 

The synthetic route towards the donors started off with the introduction of an azido 

functionality at C-2, for which several protocols exist,
20

 e.g. diazo-transfer on a 

glycosamine,
21

 azidonitration on a glycal
22

 and azide-substitution of a good leaving 

group.
23

 Since mannosamine as a starting compound for the diazo-transfer reaction is 

relatively expensive and azidonitration of D-glucal often lacks stereoselectivity,
24

 the 
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protocol entailing inversion of the stereochemistry at C-2 of D-glucose was explored 

(Scheme 1). Known α-glucopyranosyl derivative 8, synthesized from methyl α-D-

glucopyranoside using a one-pot procedure developed by Beau and co-workers,
25

 was used 

as starting material.
26,27,28

  

 

Scheme 1. Synthesis of donors 1-7 

Reagents and conditions: a) i. TMSCl, pyridine; ii. PhCHO, Cu(OTf)2, TES, DCM/MeCN (8: 73% over 2 steps); 

b) Tf2O, pyridine, DCM, -15 ºC; c) NaN3, DMF, 80 ºC; d) 2% H2SO4, Ac2O (11: 77% over 3 steps); e) PhSH, 

BF3•OEt2, DCE, 35 ºC (12: 40% and 15: 20%); f) NaOMe, MeOH (13: quant., 16: 98%, 20: 98%); g) i. TEMPO, 

BAIB, DCM/H2O; ii. MeI, K2CO3, DMF (14: 83%, 17: 70%, 21: 71% over 2 steps); h) Ac2O, pyridine (1: quant., 

2: 94%); i) m-CPBA, DCM (6: 90%, 7a: 62%, 7b: 31%); j) i. TMSI, DCM; ii. PhSH, NaH, DMF (15: 54% over 2 

steps); k) 4% piperidine, THF (18: quant); l) TBS-Cl, imidazole, DCM (19: 80%); m) AcCl, pyridine (22: 94%); 

n) TBAF, AcOH, THF (5: quant); o) CF3C(NPh)Cl, Cs2CO3, acetone (3: 10%, 4: 69%). 

 

Triflation of the C2-OH in compound 8 and subsequent SN2-displacement with NaN3 

provided mannosazide 10
29

 which was transformed into compound 11 by acidic hydrolysis 

and in situ acetylation using 2% H2SO4 in Ac2O. This building block was used to prepare 

donors 1-7. In an attempt to obtain the β-thio mannopyranoside 12, compound 11 was 

subjected to iodination and subsequent thiophenylation using NaH as a base. While 

substitution of an α-mannosyl halogenide by a thiolate normally produces the β-anomer via 

SN2-substitution, these conditions gave solely the α-anomer 15, together with the β-

glucosazide as the major side-product. Also under mildly basic phase-transfer conditions 

the formation of the gluco epimer was observed. When compound 11 was subjected to 

Lewis-acidic thiophenylation conditions (BF3•OEt2, PhSH), the desired (S)-phenyl 
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mannosazide was obtained as an anomeric mixture with the β-anomer 12 as the major 

product (60% total yield, 12 : 15 = 2 : 1). After Zemplén deacetylation of 12 and 15, the 

primary hydroxyls in 13 and 16 were regio- and chemoselectively oxidized using 

TEMPO/BAIB,
30

 after which methylation and acetylation gave donor compounds 1 and 2, 

respectively. The acetylation of the C4-OH in 17 was accompanied by the transition from 

the 
4
C1 to the 

1
C4 chair conformation, as indicated by NMR analysis (

3
JH1-H2 = 9.2 Hz, 

measured at 25 ºC).
31

 At -80 ºC interconversion of the 
1
C4 and 

4
C1 chairs was slowed down 

sufficiently to allow detection of resonance sets for both conformers and from these 
1
H-

NMR spectra it was deduced that donor 2 exists as a conformational mixture of 
4
C1 : 

1
C4 

chairs in a ~ 1 : 10 ratio. Oxidation of β-thio compound 1 (m-CPBA) yielded compound 6 

as a single diastereomer in 90%.
32

 On the other hand, oxidation of α-thio compound 2 

resulted in a mixture of diastereomers (93%, 7a : 7b = 2 : 1), which were readily separable. 

The sulfoxide moieties in 6 and 7a/b were obtained in diastereomerically pure but 

undefined form.
33

 The 
1
H NMR spectra of the α-sulfoxides 7a/b

 
show that both donors 

exist exclusively in the 
1
C4 conformation. 

The imidates 3 and 4 and hemiacetal donor 5 were synthesized from 11 as follows. 

Regioselective liberation of the anomeric position of compound 11 with piperidine and 

introduction of the temporary silyl-group (TBSCl, pyridine) gave compound 19 (α : β = 1 : 

9). Deacetylation, TEMPO/BAIB-oxidation and methylation then afforded methyl uronate 

21. Hemiacetal 5 was obtained by acetylation of the C4-OH and desilylation using TBAF 

in the presence of AcOH. Analysis of its 
1
H NMR spectrum at -80 ºC revealed that 

compound 5 predominantly resides in the 
1
C4 chair (

4
C1 : 

1
C4 = 1 : 1.7). Subsequently, 

compound 5 was converted to the N-phenyl trifluoroacetimidates 3 and 4, which were 

readily separated by column chromatography. Imidate formation was accompanied by 

epimerization of the C-2 and the α-imidate 4 was contaminated with a minor amount (~5%) 

of its gluco configured epimer.
34

 Mannuronate 4 also adopted a mixture of conformations 

(
4
C1 : 

1
C4 = 1.3 : 1). 

 

Activation of the donors. To investigate the behavior of the ManN3A donors upon 

activation and subsequent glycosylation with MeOH-d4, a series of low-temperature NMR 

experiments was conducted (Figure 2). As described in Chapter 2, β-thiodonor 1 and β-

imidate donor 3 were uneventfully activated using Ph2SO-Tf2O and stoichiometric TfOH, 

respectively, and both donors were rapidly converted at -80 ºC into a mixture of anomeric 

α-triflates I/I*. The 
1
H NMR spectrum of this conformational triflate mixture is depicted in 

Figure 2A, and shows that the equatorial anomeric 
1
C4 triflate I* prevails over its 

4
C1 

counterpart I (I*: I = 3 : 1). Structure I* arranges three substituents in sterically 

unfavorable axial positions and does not benefit from a stabilizing anomeric effect. This 

conformation is in line with the structural preference of the related mannuronate ester 

oxacarbenium ion, which preferentially adopts a 
3
H4 half chair or closely related 

conformation.
35,36

 Because the anomeric carbon is quite electron depleted, the α-triflate I* 

takes up a structure closely mimicking the structure of the 
3
H4-like oxacarbenium ion, 

which is best stabilized by an equatorial substituent at C-2, and by axial substituents at C-3, 
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C-4 and C-5. Treatment of the conformational mixture of anomeric α-triflates I/I* with a 

25-fold excess of MeOH-d4 at -80 ºC rapidly provided methyl mannoside 23 with high β-

selectivity (see Table 1, entries 1 and 3).  

 

Table 1. Results of the activation of donors 1-7 and coupling to MeOH-d4 

 

Entry Compound Leaving Group Temp. (ºC) Intermediates α/β-ratio 23
a 

1 1 β-SPh -80 I/I* 1/5b 

2 2 α-SPh -80 → -40 I/I* 1/6b 

3 3 β-C(NPh)CF3 -80 I/I*
 1/>10b 

4 4 α-C(NPh)CF3 -80 I/I* 1/>10b 

5 5 α-OH -80 → +10 II 0/1c 

6 6 β-S(O)Ph -80 I/I*, III 1/5d 

7 7a α-S(O)Ph (R or S) -80 → -20 IV-a (R or S) nd 

8 7b α-S(O)Ph (R or S) -80 → -60 I/I*, IV-b (R or S) 1/5e 

a As determined by 1H NMR; b Full conversion of the activated species; c Mixture of 5/23 ~ 3/1; d Mixture of 6/23 

~ 2/3; e Mixture of 7b/23/2 ~ 4/5/1 

 

In similar activation experiments, donors 2, 4, 5, 6 and 7a/b were assessed and the results 

of these experiments are summarized in Figure 2 and Table 1. First, a mixture of α-thio 

donor 2 and Ph2SO (1.3 eq) in DCM-d2 (0.05 M) at -80 ºC was treated with Tf2O (1.3 eq) 

and a 
1
H NMR spectrum was recorded. Upon activation several new signals appeared 

indicating the formation of the conformational mixture of α-triflates I/I*. However, unlike 

the rapid consumption of β-thio donor 1, α-thio donor 2 remained present, and a prolonged 

reaction time (~1h) at -80 ºC did not lead to more conversion.
37

 Raising the temperature to -

40 ºC eventually gave complete conversion of donor 2 into the mixture of α-triflates also 

observed after activation of β-donors 1 and 3. Above -40 ºC decomposition was observed. 

Cooling down to -80 ºC and addition of MeOH-d4 to the activation mixture of donor 2 

generated mainly β-methyl mannopyranoside 23 (Table 1, entry 2).  

To monitor the activation of α-imidate 4, a solution of donor 4 in DCM-d2 (0.05 M) was 

treated with TfOH (1.3 eq) at -80 ºC. As with β-imidate donor 3, compound 4 was quickly 

consumed and the spectrum obtained was identical to the one displayed in Figure 2A and 

the one obtained from activation of donor 3. Thus both imidate donors produce the same 

conformational mixture of α-anomeric triflates upon pre-activation. Addition of MeOH-d4 

to the activation mixture gave rapid conversion to the β-methyl mannopyranoside 23 with 

excellent selectivity (Table 1, entry 4).
38

 

 

O

N3

BnO
AcO

R

MeO2C activator

1-7

I - IV
MeOH-d4

O

N3

BnO
AcO

OCD3

MeO2C

23



 Chapter 3 

 

38 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Next, hemiacetal donor 5 was subjected to activating conditions (1.3 eq Tf2O, 1.3 eq 

Ph2SO, 0.05 M in DCM-d2). The donor was completely consumed at -40 ºC resulting in a 

single set of signals as displayed in Figure 2B. The anomeric proton (δ = 6.16 ppm) 

appeared as a doublet with a coupling constant of 8.3 Hz, in analogy to the large coupling 

constant observed for the anomeric proton in equatorial triflate I* (
3
JH1-H2 = 8.8 Hz). The 

activated species generated from donor 5 proved to be stable up to +10 ºC. Given the 

similarity between the 
1
H-spectrum from activation of 5 and the resonance set belonging to 

the equatorial triflate I*, and the anomeric chemical shift values reported by Garcia and 

Gin
39

 for oxosulfonium triflates, the intermediate formed upon activation of hemiacetal 5 

was assigned oxosulfonium triflate structure II residing in the 
1
C4 chair conformation. 

Upon addition of MeOH-d4 (25 equivalents at -80 ºC) the activated mixture of donor 5 

remained unchanged, in contrast to the fast conversion of anomeric triflates I/I*. Only after 

warming of the mixture to +10 ºC full consumption of intermediate II was observed. Next 

to β-coupled product 23 which was formed in 25%, regenerated donor 5 was found as the 

main product (Table 1, entry 5). 
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Figure 2. Part of the 1H-NMR 

spectra obtained after activation 

of donors 1-4 (A) at -80 ºC, 

hemiacetal donor 5 (B) at -10 

ºC, β-sulfoxide donor 6 (C) at -

80 ºC and α-sulfoxide donors 7a 

(D) at -50 ºC and 7b (E) at -80 

ºC (the numbering in the spectra 

corresponds to the species 

drawn) 

 

 

When the β-sulfoxide donor 6 was treated with Tf2O at -80 ºC, the 
1
H-NMR spectrum 

showed full consumption of the donor, with the conformational mixture of α-triflates I/I* 

as the major product alongside a second product (Figure 2C). Based on the relatively small 

chemical shift of H-1 (δ = 5.22 ppm), the chemical shift of C-1 (δ = 91.4 ppm) and the 

activation experiments of the α-sulfoxides 7a/b (vide infra) it was assumed that this latter 

species corresponds to the β-sulfonium bistriflate species III.
40

 Addition of MeOH-d4 

resulted in a mixture of products containing the methyl mannoside product 23 (α : β = 1 : 5, 

~ 60%) and regenerated donor 6. 

Activation of α-sulfoxide diastereomer 7a (1.3 eq Tf2O) at -80 ºC led to the rapid formation 

of one predominant species (Figure 2D). However, the signals did not correspond to the 

peaks assigned to the (conformational mixture of) anomeric triflates I/I*. Since an overall 

down-field shift was observed for the pyranosyl protons, the doublet assigned to H-1 at δ 

5.38 ppm displayed a coupling constant of JH1-H2 = 10.8 Hz and the chemical shift of C-1 

was indicative for an anomeric thio functionality (δ = 86.2 ppm), the activated species was 

considered to be the equatorial α-anomeric sulfonium bistriflate IV-a.
41
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Because the stereochemistry of the parent sulfoxide 7a was not determined, the 

stereochemistry of the sulfonium bistriflate cannot be determined either. Prolonged reaction 

time and warming of the reaction mixture to -20 ºC did not lead to transformation of this 

species into the anomeric triflate I/I*. Treatment of the activated mixture with MeOH-d4 

resulted in a complex mixture of compounds, which contained a substantial amount of 

recovered donor 7a. Interestingly, activation of the other α-sulfoxide diastereomer 7b in a 

similar NMR experiment led to different intermediates. The α-triflates I/I* were formed as 

well as a new species, which did not correspond to the sulfonium bistriflate IV-a. Based on 

the similarity of the 
1
H-resonances of this species and IV-a, and the chemical shift of C-1 

(δ = 85.4 ppm), again indicative of an anomeric thio group, this species was assigned to be 

the other diastereomeric sulfonium bistriflate IV-b (Figure 2E). Gradual warming of the 

reaction mixture to -60 ºC led to further conversion of IV-b into anomeric triflates I/I* 

(I/I* : IVb ~ 4 : 3). The addition of MeOH-d4 resulted in a mixture of products containing 

methyl mannoside 23 (α : β = 1 : 5, ~50%), together with regenerated donor 7b and α-thio 

mannuronate 2 (Table 1, entry 8).
42

  

The activation experiments described above provide a detailed picture of the behavior of 

donors 1-7 upon activation. The reactivity boundaries of the activation protocols used and 

the influence of the anomeric configuration are apparent. While β-thio donor 1 is rapidly 

activated at -80 ºC, its α-counterpart 2 requires a higher temperature (-40 ºC) in order to be 

fully consumed. The reactivity difference between two anomers is often attributed to a 

stabilizing anomeric effect in the α-anomer. However, both α- and β-mannoside 1 and 2 

exist in a conformation in which the sulfur aglycone is positioned equatorially, thereby 

lacking anomeric stabilization.
43

 As a result, the reactivity difference between 1 and 2 may 

be attributed to a difference in stability caused by the (stereo)electronic repulsion between 

the substituents on C-1, C-2 and the ring-oxygen (the destabilizing ∆2-effect).
44

 The 

reactivity difference between the α- and β-thiomannosides 1 and 2 was not observed for the 

imidate anomers 3 and 4. Under the influence of a stoichiometric amount of TfOH both 

donors were rapidly transformed into a mixture of α-triflate conformers, which gave an 

identical β-selectivity in the ensuing substitution by MeOD-d4. Hemiacetal donor 5 was 

fully converted to the relatively stable oxosulfonium triflate II upon activation. Treatment 

of this activated intermediate with a nucleophile did not result in effective glycosylation. 

Instead mainly hemiacetal 5 was regenerated. This result shows that the oxosulfonium 

triflate is not easily expelled from the mannuronate donor and that a competing attack at 

either of the sulfonium centers in II can take place. Although glycosyl sulfoxides are 

generally regarded to be amongst the most powerful glycosyl donors, the results obtained 

with the sulfoxide donors 6 and 7a,b show a reactivity limit for the sulfoxide method. 

Because of the unreactivity of the mannosaziduronic acid core, reactivity differences 

became apparent not only between the α- and β-anomers, but also between the two 

different sulfoxide diastereomers which provided different reactive species upon Tf2O-

activation.
45

 Although the existence of pyranosyl sulfonium bistriflates has been postulated 

before,
40

 such species have not been experimentally observed, since they commonly rapidly 

collapse to the corresponding anomeric triflates.
46
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Glycosylations with glucosyl acceptors. To assess the glycosylating properties of 

mannosazide methyl uronates with a glycosyl acceptor, the donors 1-4, which provided a 

productive glycosylation with MeOH-d4 as described above, were further examined. First 

β-thio donor 1 was pre-activated with the Ph2SO-Tf2O reagent combination for 15 min 

during which time the temperature was raised from -65 ºC to -55 ºC. Then acceptor 24 was 

added and disaccharide 27 was produced in high yield and selectivity (Table 2, entry 1).  

 

Table 2. Condensations of the mannosazide methyl uronate donors 1-4 with acceptors 24-26 

 

 

a The yield includes 45% of the β-linked disaccharide bearing one isopropylidene group on C-1 and C-2, due to 

cleavage of the C5,6-isopropylidene functionality under the coupling conditions. 

 

In contrast, when α-thiodonor 2 was pre-activated from -80 ºC to -40 ºC, as deduced from 

the NMR experiments to be the optimal activation temperature, and subsequently 

condensed with acceptor 24, the yield of disaccharide 27 was significantly lower, while the 

stereoselectivity remained intact (Table 2, entry 2). This poor coupling efficiency may be 

attributed to the fact that the pre-activation temperature (-40 ºC) is close to the temperature 

at which decomposition of the anomeric triflate sets in, as observed in the NMR 

experiments. Optimization of the glycosylation of donor 2 proved to be precarious; 

monitoring of the activation progress was troublesome and slight adjustments to the 

Entry Donor Acceptor (Pre-)activation Product Yield (α : β) 

1 1 24 
Ph2SO, Tf2O, -65 ºC → -55 ºC  

(15 min), then add 24 
27 90% (1 : 7) 

2 2 24 
Ph2SO, Tf2O, -80 ºC → -40 ºC  

(1 h), then add 24 
27 45% (1 : 5) 

3 2 24 
Ph2SO, Tf2O, -65 ºC → -55 ºC  

(15 min), then add 24 
27 75% (1 : 6) 

4 3 24 0.2 eq. TfOH 27 84% (1 : 2) 

5 4 24 0.2 eq. TfOH 27 53% (1 : 5) 

6 1 25 
Ph2SO, Tf2O, -65 ºC → -55 ºC  

(15 min), then add 25 
28 85% (0 : 1)a 

7 2 25 
Ph2SO, Tf2O, -65 ºC → -55 ºC  

(15 min), then add 25 
28 58% (0 : 1) 

8 1 26 
Ph2SO, Tf2O, -65 ºC → -55 ºC  

(15 min), then add 26 
29 53% (1 : 4) 
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experimental procedure resulted in considerable differences in glycosylation outcome. The 

best conditions found involved activation of thiomannoside 2 with Ph2SO-Tf2O for 15 

minutes at -65 ºC to -55 ºC prior to addition of acceptor 24, and led to the stereoselective 

formation of disaccharide 27 in 75% yield (Table 2, entry 3). The imidate donors 3 and 4 

were coupled with acceptor 24 under the agency of a catalytic amount of triflic acid. The α-

imidate 4 provided predominantly the β-linked disaccharide, whereas the use of β-imidate 3 

led to the formation of a substantial amount of the α-linked disaccharide (Table 2, entries 4 

and 5). Since NMR analysis of imidate donors 3 and 4 showed that both form the same 

mixture of α-triflate intermediates under pre-activation conditions with an equimolar 

amount of TfOH, and that both provided excellent β-selectivity in the glycosylation of 

MeOH-d4, the significant amount of α-product 27 generated from β-imidate 3 must arise 

from SN2-displacement of the anomeric imidate by the nucleophile, already present in the 

reaction mixture.
47

 Because the thiomannosides 1 and 2 performed best in terms of yield 

and β-selectivity, these donors were further probed with the secondary acceptor, 1,2:3,4-di-

isopropylideneglucofuranose (25). Under the optimal pre-activation conditions, the 

condensations of 1 and 2 with 25 gave the β-linked dimer 28 as the sole product (Table 2, 

entries 6 and 7). Also in this case the β-configured donor was shown to be superior to its α-

linked equivalent. Moreover, the glycosylation of β-thio donor 1 with the sterically 

hindered acceptor 26 provided the coupled product 29 with high preference for the β-

linkage (Table 2, entry 8), establishing the solid β-stereoselectivity of this donor. 

 

Glycosylation study to produce 1,2-cis glucosides. Now that the thorough survey of 

activation and glycosylation capabilities of the various ManN3A donors has resulted in an 

ideal donor for construction of the β-manno linkage, attention was focused on the α-gluco 

linkage present in the M. luteus repeating motif (Figure 1). This type of cis-linkage has 

been subject of much research,
48

 and several strategies based on different glucosyl donors 

have been developed, including anchimeric assistance of acyl functionalities at C-3 or C-

6,
49

 intramolecular glucosylation, 
50

 conformationally locked donors,
51

 sterically 

demanding donors,
52

 and glycosylations of glucosyl halides via in situ anomerization.
53,54

 

The four donors 30-33 (Table 3) were designed to induce α-selective glycosylations, and 

their glycosylating properties with ManN3A acceptors 14 and 17 were evaluated. The 

conformational restriction imposed by the 4,6-O-benzylidene acetal of donors 30-32 was 

expected to induce α-selective glycosylations by stabilizing the 
4
H3 half chair 

oxacarbenium ion, or through the rapid equilibration of the covalent α-triflate to the β-

triflate.
55

 The pre-activation of donor 30 proceeded uneventfully, and the disaccharide was 

obtained with good α-selectivity but modest yield (Table 3, entry 1). The dehydrative 

glycosylation (Table 3, entry 2) produced the coupled product also with good α-selectivity, 

however in poor yield. When imidate donor 32 was activated at -78 ºC in the presence of 

acceptor 17, modest selectivity and yield were observed (Table 3, entry 3), however both 

were significantly improved upon reacting at -4 ºC (Table 3, entry 4). 

 

 



β-ManNAcA-containing Oligosaccharides  

 

43 

Table 3. Glycosylations of different glucoside donors with acceptors 14 and 17 

 

Entry Donor Acceptor Solventa Pre-

activation 

Reaction 

temperature 
Yield (α : β) 

1 30 17 DCM 20min -80 ºC 60% (5 : 1) 

2 31 17 DCM 90min -40 ºC 30% (6 : 1) 

3 32 17 DCM - -78 ºC 49% (2 : 1) 

4 32 17 DCM - -4 ºC 96% (4 : 1) 

5 33 17 DCM - -12 ºC >98% (3 : 1) 

6 33 17 Et2O - -30 ºC 72% (1 : 0) 

7 33 14 Et2O - -30 ºC >98% (1 : 0) 

a Concentration 0.05 M 

 

Next, the bulky Fmoc protecting group was installed at C-6 to investigate its steric 

shielding of the β-site to deliver the α-product. 
52,56

 Donor 33 was obtained from 2,3,4-tri-

O-benzyl-α/β-D-glucopyranose
57

 by regioselective formation of the N-phenyl 

trifluoroacetimidate
58

 and subsequent Fmoc installation at the C-6 hydroxyl. When the 

glycosylation of donor 33 with acceptor 17 was performed in DCM as the solvent, good 

selectivity and excellent yield was observed (Table 3, entry 5). When the solvent was 

changed to diethyl ether, the α-glycoside product was formed exclusively in high yields 

(Table 3, entry 6). Finally, when β-fused acceptor 14 was coupled, complete 

stereoselectivity and a near-quantitative yield were obtained (Table 3, entry 7).
59

 The 

excellent combination of imidate donor 33 with acceptor 14 was therefore transferred to the 

construction of M. luteus repeating fragments. 

 

Oligosaccharide assembly. The alternating character of the Glc and ManNAcA building 

blocks allows for a disaccharide block coupling strategy. Guided by the excellent β-

selectivities obtained with ManN3A β-thio donor 1, the Glc-ManN3A thiophenyl dimer 34 

was selected to serve as iterative building block (Scheme 2). Disaccharide 34 was 

efficiently produced on gram-scale by treating a mixture of donor 33 and acceptor 14 with 

a catalytic amount of TfOH in diethyl ether (0.05 M) at -35 ºC to -15 ºC. The α-coupled 

product 34 was formed as the sole product in 90% yield.  
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Scheme 2. Synthesis of repeating disaccharide 34, its pre-activation as monitored with NMR spectroscopy, and 

subsequent addition of MeOH-d4 to the activation mixture 

Reagents and conditions: a) 14, TfOH, Et2O, -35 ºC → -15 ºC (34: 90%); b) Ph2SO, Tf2O, DCM-d2, -80 ºC; c) 

MeOH-d4 (25 eq). 

 

To investigate how the α-glucosyl appendage in 34 affects the glycosylation properties of 

the ManN3A donor, disaccharide 34 was subjected to activation conditions and the progress 

of the activation reaction was monitored using low-temperature NMR spectroscopy as 

described above. After addition of Tf2O at -80 ºC donor 34 was immediately consumed 

producing a conformational mixture of anomeric triflates 35, in which the 
1
C4 chair product 

35* dominates (
1
C4 : 

4
C1 = 4 : 1). The H-1 signal, characteristic of the equatorial triflate, 

resides at δ 6.22 ppm with a coupling constant of JH1-H2 = 8.8 Hz (C-1 δ 100.5 ppm), and 

the axial triflate appeared as a singlet at δ 5.99 ppm (Figure 3, top). Addition of MeOH-d4 

to this mixture resulted in rapid conversion to the β-fused methyl disaccharide 36 (Figure 3, 

bottom).  

 

Figure 3. Fragments of the 1H NMR spectra of triflates 35/35* at -80 ºC (top), and of the mixture after addition of 

MeOH-d4 to produce crude compound 36 (bottom) 
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Encouraged by this result, the construction of M. luteus teichuronic acid fragments was 

commenced. Thus, dimer 34 was activated (Ph2SO-Tf2O, -65 ºC to -55 ºC for 15 min) and 

reacted with glucosyl acceptor 24 at -60 ºC to provide trisaccharide 37 as a single 

stereoisomer in 65%. Liberation of the C6”-OH was accomplished by treatment of 

compound 37 with a catalytic amount of TBAF in THF to give trisaccharide acceptor 38 in 

high yield (Scheme 3).  

 

Scheme 3. Synthesis of tri-, penta-, and heptasaccharides 51-53 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Reagents and conditions: a) 34, Ph2SO, Tf2O, TTBP, DCM, -65 ºC → -55 ºC, then 24 (37: 65%); b) TBAF, THF 

(38: 98%); c) 34, Ph2SO, Tf2O, TTBP, DCM, -70 ºC → -60 ºC, then 38, -80 ºC, o.n. (39: 65%); d) Et3N, pyridine 

(40: 89%, 42: 78%); e) 34, Ph2SO, Tf2O, TTBP, DCM, -70 ºC → -55 ºC, then 40, -80 ºC, 2 days (41: 23%); f) 

H2O2, aq. KOH (43: 85%, 44: 83%, 45: 83%); g) H2S, pyridine/H2O, 2 days; h) Na (s), NH3 (l), THF, -60 ºC (47: 

70% over two steps); i) Ac2O, NaHCO3, H2O/THF (51: 43%, 52: 35%, 53: 14%, over two steps). 

 

In the ensuing glycosylation event dimer 34 and trimer 38 were combined under analogous 

conditions to provide all-cis product 39 as the sole isomer in 42% yield (Scheme 3). To 

improve the yield, the reaction temperature and time were adjusted and when 34 and 38 

were condensed overnight at -80 ºC, pentasaccharide 39 was obtained in 65%.
60
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of the Fmoc group in 39 with a catalytic amount of TBAF in THF proceeded sluggishly to 

yield compound 40 in 83% yield after 3 days. The use of excess triethylamine in pyridine 

improved both the yield (89%) and reaction time (3 hours) of this deprotection step. 

Finally, to construct heptasaccharide 41, disaccharide donor 34 was activated and reacted 

with pentasaccharide 40 over two days at -80 ºC. Heptamannuronate 41 was obtained in 

23% yield,
60

 alongside 40% of unreacted pentasaccharide 40, reflecting the lower reactivity 

of the bulky pentasaccharide acceptor. Cleavage of the Fmoc group using Et3N/pyridine 

proceeded uneventfully to give heptasaccharide 42 in 78% yield. 

 

Global deprotection of oligosaccharides 38, 40 and 43 started with saponification of the 

methyl esters (Scheme 3). Reaction of trisaccharide 38 with KOH in THF/H2O gave the 

desired uronic acid 43 together with side products generated by β-elimination in the 

ManN3A-moiety. The use of a more nucleophilic and less basic reagent mixture (H2O2 in 

aqueous KOH) reduced the undesired β-elimination and mannuronic acid 43 was obtained 

in 85% yield. Application of these conditions to substrates 40 and 42 delivered di- and tri-

acid 44 and 45, respectively, in good yields. Simultaneous reduction of the azide 

functionality and the benzyl ethers in trisaccharide 43 with H2 and Pd/C proved to be 

troublesome and led to an inseparable product mixture. A stepwise approach in which the 

azide was transformed into the free amine using H2S in pyridine/H2O prior to reduction of 

the benzyl groups also failed because reduction of the azide was accompanied by 

cyclization to provide lactam 47. Formation of this amide probably results from attack of 

the free amine to the thiol acid, generated from the carboxylic acid and H2S.
61

  

In the end, direct Birch reduction of trisaccharide 43 proved to be the most efficient 

protocol and anionic trisaccharide 51 was obtained after acetylation of the free amine in 

43%. When pentasaccharide 46 was treated under similar conditions, target pentamer 52 

was formed in 35% yield. Unfortunately, fragmentation of the oligosaccharide occurred 

during the Birch reduction. High Performance Anion Exchange Chromatography (HPAEC, 

see Figure 4A) and LC-MS indicated that a substantial amount of trisaccharide 48 next to 

pentamer 49 was formed. Formation of the trisaccharide cannot be explained by β-

elimination of the mannuronic acid residue but must have occurred via the unexpected 

cleavage of the β-mannosyl glycosidic bond.
62,63

 Finally, heptamer 47 was subjected to the 

reduction conditions and after subsequent acetylation and purification target compound 53 

was obtained. The reduction of the heptamer was also accompanied by fragmentation, and 

HPAEC-analysis revealed the formation of zwitterionic tri- and pentasaccharide 48 and 49, 

next to the desired product 50 (Figure 4B). Gel filtration (HW40) of the product mixture 

was hampered by poor separation of heptamer 41 from the smaller fragments, however 

pure 50 was obtained, which yielded heptasaccharide 53 in 14% yield after N-acetylation. 
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Figure 4. HPAEC traces of the crude reaction mixture of the Birch reduction of pentasaccharide 44 (A) and 

heptasaccharide 45 (B), gradient 0-400 mM NaOAc 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Conclusion 

In this Chapter a thorough evaluation of the glycosylation properties of a series of 

mannosaziduronic methyl ester donors is described. Depending on the anomeric leaving 

group and the pre-activation conditions, reactive intermediates with various stabilities are 

formed: anomeric triflates from the α- and β-(S)-phenyl and N-phenyl 

trifluoroacetimidates, an oxosulfonium triflate from the hemiacetal, and sulfonium 

bistriflates from the α- and β-sulfoxides. Interestingly, the intermediates formed from the 

sulfoxides, generally regarded to be very powerful glycosyl donors, did not provide 

productive glycosylations. When the pre-activation reaction proceeded uneventfully, the 

glycosyl intermediate coupled with various acceptors in a highly β-stereoselective manner. 

The selective formation of the β-linked products from the mannosaziduronic acid donors 

can be explained by the SN2-like substitution on the α-triflate. Alternatively, the selective 

attack of the 
3
H4-like oxacarbenium ion from the β-face in an SN1-like process, can also 

account for the observed selectivity. The high β-stereoselectivity and good coupling 

efficiency of the β-S-phenyl ManN3A were exploited in the synthesis of M. luteus 
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B 
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teichuronic acid fragments. An α-stereoselective glycosylation between a glucosyl N-

phenyl trifluoro imidate and an S-phenyl mannosaziduronic acid acceptor provided the key 

α-Glc-(1→4)-β-ManN3A-SPh building block, which was used in the assembly of tri-, 

penta- and heptasaccharide fragments. Final deprotection of the oligomers under Birch 

reduction conditions, which was accompanied by partial fragmentation of the 

oligosaccharide chain, yielded the anionic tri-, penta- and heptasaccharide M. luteus 

teichuronic acid fragments. The results presented here may facilitate the synthesis of other 

complex (uronic acid-containing) oligosaccharides. Moreover, this research illustrates the 

importance of a comprehensive survey of the behavior in glycosylations when unreactive 

carbohydrate moieties are the building blocks of interest.  

 

Experimental Section 

General procedure for the low-temperature NMR experiments.  

Ph2SO/Tf2O activation: A mixture of the donor (30 µmol) and Ph2SO (39 µmol) was co-evaporated with toluene 

(2x). The residue was dissolved in DCM-d2 (0.6 mL) and transferred to an NMR tube under an argon atmosphere. 

The tube was stoppered and sealed. The NMR magnet was cooled to -80 ºC, locked and shimmed. In an acetone 

bath (-80 ºC) the sample was treated with Tf2O (39 µmol), shaken thrice and placed back in the NMR magnet. The 

first 1H spectrum was immediately recorded. Further temperature changes were executed depending on the spectra 

recorded, but always with multiples of 10 ºC. Ultimately, the sample was placed in the acetone bath (-80 ºC) and 

MeOH-d4 (25 µl), which was used for its invisibility in 1H-NMR, was added. After shaking the sample thrice it 

was placed back in the NMR magnet at -80 ºC and immediately a 1H spectrum was recorded. Then the 

temperature was raised to RT and a final 1H spectrum was recorded.  

TfOH activation: The donor (39 µmol) was co-evaporated with dry toluene (2x), dissolved in DCM-d2 (0.6 mL) 

and transferred to an NMR tube under an argon atmosphere. At -80 ºC in an acetone bath TfOH (39 µmol) was 

added, the sample was transferred to the pre-cooled NMR magnet and the first 1H spectrum was immediately 

recorded. Further temperature changes were executed depending on the spectra recorded, but always with 

multiples of 10 ºC. Ultimately, the sample was placed in the acetone-bath (-80 ºC) and MeOH-d4 (25 µl) was 

added. After shaking the sample thrice it was placed back in the NMR magnet at -80 ºC and immediately a 1H 

spectrum was recorded. Then the temperature was raised to RT and a final 1H spectrum was recorded. 

 

General procedure for the Ph2SO/Tf2O-mediated glycosylations. A mixture of the donor (1 eq), Ph2SO (1.3 eq) 

and TTBP (2.5 eq) was co-evaporated twice with toluene. While under an argon atmosphere, freshly distilled 

DCM (0.05 M) was added, followed by the addition of activated molecular sieves (3Å). The resulting mixture was 

stirred for 30 min at room temperature and cooled to the activation temperature. Tf2O (1.3 eq) was added in one 

portion and the activation progress was monitored by TLC analysis. Then the mixture was cooled to the indicated 

reaction temperature and a solution of the acceptor (0.3-0.5 M in DCM) was slowly added via the wall of the 

flask. The mixture was allowed to warm to 0 ºC, after which Et3N or pyridine was added to quench the reaction. 

Aqueous work-up, passage of the residue through a column of Sephadex LH-20 (eluted with DCM/MeOH, 1/1, 

v/v) and purification using flash column chromatography (silica gel) gave the coupled product. 

 

General procedure for the TfOH-mediated glycosylations. A mixture of the donor (1 eq) and the acceptor (1.5 

eq) were together co-evaporated with toluene (2x). While under an argon atmosphere, freshly distilled DCM (0.05 

M) was added, followed by the addition of activated molecular sieves (3Å). The resulting mixture was stirred for 

30 min at room temperature and cooled to the activation temperature. TfOH (0.2 eq) was added and the reaction 

mixture was warmed to the desired temperature. Then the reaction was quenched by the addition of Et3N or 

pyridine. After aqueous work-up, the product was purified using Sephadex LH-20 (eluted with DCM/MeOH, 1/1, 

v/v) and flash column chromatography (silica gel). 
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Methyl (phenyl 4-O-acetyl-2-azido-3-O-benzyl-2-deoxy-1-thio-ββββ-D-mannopyranosyl uronate) (1). Compound 

14 (0.47 g, 1.14 mmol) was treated with Ac2O/pyridine (6 mL, 1/3, v/v) at room temperature 

for 3h until full conversion was observed with TLC analysis. The mixture was diluted with 

EtOAc (15 mL), washed with sat. aq. NaCl (2 x 20 mL), dried over Na2SO4, concentrated in 

vacuo and co-evaporated with toluene (2x) to yield the title compound as a yellowish oil (Yield: 0.51 g, 0.11 

mmol, quant.). TLC: Rf 0.37 (PE/EtOAc, 2/1, v/v); [α]D
20 -35.8 (c 1, DCM); IR (neat, cm-1): 692, 739, 1051, 1225, 

1747, 2106; 1H NMR (CDCl3, 400 MHz, HH-COSY, HSQC): δ 7.22-7.50 (m, 10H, CHarom), 5.43 (t, 1H, J = 9.7 

Hz, H-4), 4.79 (s, 1H, H-1), 4.73 (d, 1H, J = 12.2 Hz, CHH Bn), 4.64 (d, 1H, J = 12.2 Hz, CHH Bn), 4.22 (d, 1H, 

J = 3.2 Hz, H-2), 3.86 (d, 1H, J = 9.9 Hz, H-5), 3.82 (dd, 1H, J = 3.7, 9.6 Hz, H-3), 3.69 (s, 3H, CH3 CO2Me), 

1.99 (s, 3H, CH3 Ac); 13C-APT NMR (CDCl3, 100 MHz, HSQC): δ 169.3, 167.0 (C=O Ac, CO2Me), 136.9 (Cq 

Bn), 133.5 (Cq SPh), 129.0, 128.8, 128.4, 128.0, 127.8, 127.6 (CHarom), 86.1 (C-1), 78.9 (C-3), 76.5 (C-5), 72.4 

(CH2 Bn), 68.0 (C-4), 63.0 (C-2), 52.5 (CH3 CO2Me), 20.5 (CH3 Ac); 13C-GATED (CDCl3, 100 MHz): δ 86.1 

(JC1,H1 = 155 Hz, C-1); HRMS: [M+NH4]
+ calcd for C22H27N4O6S 475.16458, found 475.16457. 

 

Methyl (phenyl 4-O-acetyl-2-azido-3-O-benzyl-2-deoxy-1-thio-αααα-D-mannopyranosyl uronate) (2). Compound 

17 (1.0 g, 2.39 mmol) was treated with Ac2O/pyridine (8 mL, 1/3, v/v) at room temperature 

until TLC analysis indicated complete conversion of the starting material. EtOAc (10 mL) was 

added and the mixture was washed with sat. aq. NaCl (2x), dried over Na2SO4, filtered and 

concentrated in vacuo to yield the title compound as a yellowish oil (Yield: 1.03 g, 2.25 

mmol, 94%). Spectroscopic data were in accord with those reported previously. 64 TLC: Rf 0.56 (PE/EtOAc, 4/1, 

v/v); 1H NMR (CDCl3, 400 MHz, HH-COSY, HSQC): δ 7.65 (d, 2H, J = 6.7 Hz, CHarom), 7.25-7.36 (m, 8H, 

CHarom), 5.73 (d, 1H, J = 9.2 Hz, H-1), 5.55 (dd, 1H, J = 3.1, 4.6 Hz, H-4), 4.65 (d, 1H, J = 11.5 Hz, CHH Bn), 

4.62 (d, 1H, J = 11.5 Hz, CHH Bn), 4.55 (d, 1H, J = 2.9 Hz, H-5), 3.95 (dd, 1H, J = 3.0, 4.6 Hz, H-3), 3.48 (bs, 

4H, H-2, CH3 CO2Me), 2.04 (s, 3H, CH3 Ac); 13C-APT NMR (CDCl3, 100 MHz, HSQC): δ 169.4, 168.0 (C=O 

CO2Me, Ac), 136.3 (Cq Bn), 132.2 (CHarom), 131.7 (Cq SPh), 128.7, 128.3, 128.1, 128.0, 127.8, 125.1 (CHarom), 

80.7 (C-1), 74.8 (C-3), 73.2 (C-5), 72.9 (CH2 Bn), 68.2 (C-4), 57.6 (C-2), 52.2 (CH3 CO2Me), 20.7 (CH3 Ac); 13C-

GATED (CDCl3, 100 MHz): δ 80.7 (JC1,H1 = 163 Hz, C-1); HRMS: [M+Na]+ calcd for C22H23N3O6SNa 480.11998, 

found 480.11957. 

 

Methyl (4-O-acetyl-2-azido-3-O-benzyl-2-deoxy-1-O-(N-phenyl-trifluoroacetimidoyl)-ββββ-D-mannopyranosyl 

uronate) (3) and methyl (4-O-acetyl-2-azido-3-O-benzyl-2-deoxy-1-O-(N-phenyl-

trifluoroacetimidoyl)-αααα-D-mannopyranosyl uronate) (4). Hemiacetal 5 (0.44 g, 1.21 

mmol) and N-phenyl trifluoroacetimidoyl chloride 65  (0.36 mL, 2.42 mmol) were 

dissolved in acetone (4 mL). Cs2CO3 (0.47 g, 1.45 mmol) was added and the resulting 

suspension was stirred for 6 h. EtOAc (10 mL) and H2O (10 mL) were added, the layers 

were separated and the organic fraction was washed with sat. aq. NaCl (2x), dried over 

Na2SO4 and concentrated in vacuo. Purification using flash column chromatography 

(silica gel, 14% EtOAc in PE for the α-anomer, 25% EtOAc in PE for the β-anomer) 

yielded the α-anomer as an oil and the β-anomer as a yellowish solid (Yields: α-

anomer: 0.45 g, 0.84 mmol, 69% containing 6% of the α-gluco epimer; β-anomer: 67 mg, 0.13 mmol, 10%); TLC: 

Rf α 0.48, β 0.30 (PE/EtOAc, 2/1, v/v). Spectroscopic data for the α-anomer: IR (neat, cm-1) 694, 1055, 1117, 

1207, 1720, 1747, 2110; 1H NMR (CDCl3, 400 MHz, HH-COSY, HSQC) δ 7.25-7.41 (m, 7H, CHarom), 7.13 (t, 1H, 

J = 7.5 Hz, CHarom NPh), 6.84 (d, 2H, J = 7.7 Hz, CHarom NPh), 6.50 (bs, 1H, H-1), 5.54 (t, 1H, J = 6.3 Hz, H-4), 

4.72 (d, 1H, J = 11.7 Hz, CHH Bn), 4.65 (d, 1H, J = 11.7 Hz, CHH Bn), 4.45 (d, 1H, J = 5.9 Hz, H-5), 4.04 (dd, 

1H, J = 3.2, 6.7 Hz, H-3), 3.83 (dd, 1H, J = 3.3, 5.1 Hz, H-2), 3.63 (s, 3H, CH3 CO2Me), 2.12 (s, 3H, CH3 Ac); 
13C-APT NMR (CDCl3, 100 MHz, HSQC) δ 169.3, 167.3 (C=O Ac, CO2Me), 142.8 (Cq NPh), 141.8 (q, J = 36 

Hz, Cq C=N), 136.5 (Cq Bn), 128.6, 128.3, 128.1, 127.9 (CHarom), 124.4 (CHarom NPh), 119.1 (CHarom NPh), 115.7 

(q, J = 284 Hz, CF3), 93.0 (C-1), 75.0 (C-3), 73.1 (CH2 Bn), 72.9 (C-5), 67.7 (C-4), 59.0 (C-2), 52.4 (CH3 

CO2Me), 20.5 (CH3 Ac); 13C-GATED (CDCl3, 100 MHz) δ 93.0 (JC1,H1 = 182 Hz, C-1); HRMS 

[M(hemiacetal)+Na]+ calcd for C16H19N3O7Na 388.11152, found 388.11170. Spectroscopic data for the β-anomer: 

[α]D
20 -22.0 (c 1, DCM); IR (neat, cm-1) 696, 1121, 1163, 1211, 1719, 1757, 2112; 1H NMR (CDCl3, 400 MHz, 

HH-COSY, HSQC) δ 7.25-7.38 (m, 7H, CHarom), 7.11 (t, 1H, J = 7.4 Hz, CHarom NPh), 6.88 (d, 2H, J = 7.7 Hz, 
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CHarom NPh), 6.22 (bs, 1H, H-1), 5.75 (t, 1H, J = 5.0 Hz, H-4), 4.77 (d, 1H, J = 11.7 Hz, CHH Bn), 4.70 (d, 1H, J 

= 11.7 Hz, CHH Bn), 4.26 (bs, 1H, H-5), 3.95-4.02 (m, 1H, H-3), 3.68 (t, 1H, J = 3.2 Hz, H-2), 3.54 (s, 3H, CH3 

CO2Me), 2.09 (s, 3H, CH3 Ac); 13C-APT NMR (CDCl3, 100 MHz, HSQC) δ 169.3, 167.1 (C=O Ac, CO2Me), 

143.2 (Cq NPh), 136.6 (Cq Bn), 128.5, 128.0, 127.6, 127.1 (CHarom), 124.1 (CHarom NPh), 119.1 (CHarom NPh), 

115.6 (q, J = 284 Hz, CF3), 92.4 (C-1), 74.6 (C-3), 72.2 (CH2 Bn), 72.0 (C-5), 67.0 (C-4), 55.7 (C-2), 52.3 (CH3 

CO2Me), 20.4 (CH3 Ac); 13C-GATED (CDCl3, 100 MHz) δ 92.4 (JC1,H1 = 175 Hz, C-1); HRMS 

[M(hemiacetal)+Na]+ calcd for C16H19N3O7Na 388.11152, found 388.11172.  

 

Methyl (4-O-acetyl-2-azido-3-O-benzyl-2-deoxy-αααα/ββββ-D-mannopyranosyl uronate) (5). Compound 22 (3.87 g, 

8.08 mmol) was dissolved in dry THF (80 mL), AcOH (1.11 mL, 19.4 mmol) was added and 

the mixture was cooled to 0ºC. TBAF (1M in THF, 12.9 mL, 12.9 mmol) was added drop-

wise and the mixture was stirred at room temperature for 5 h. Then, the mixture was washed 

with sat. aq. NaCl (3x), dried over Na2SO4, concentrated in vacuo and purified using flash column 

chromatography (silica gel, 33% EtOAc in PE) to yield the title compound as a colorless oil (Yield: 2.90 g, 7.94 

mmol, 98%, α : β = 13 : 1). TLC: Rf 0.34 (PE/EtOAc, 1/1, v/v); IR (neat, cm-1): 1020, 1124, 1225, 1740, 2106, 

3375; 1H NMR (CDCl3, 400 MHz, HH-COSY, HSQC): δ 7.25-7.38 (m, 5H, CHarom), 5.59 (d, 1H, J = 6.7 Hz, C-1 

α), 5.50 (dd, 1H, J = 4.0, 5.3 Hz, H-4), 4.91 (d, 0.08H, J = 1.8 Hz, H-1 β), 4.66 (d, 1H, J = 11.9 Hz, CHH Bn), 

4.63 (d, 1H, J = 11.8 Hz, CHH Bn), 4.52 (d, 1H, J = 3.9 Hz, H-5), 3.97 (dd, 1H, J = 3.1, 5.3 Hz, H-3), 3.63 (dd, 

1H, J = 2.9, 6.6 Hz, H-2), 3.55 (s, 3H, CH3 CO2Me), 2.10 (s, 3H, CH3 Ac); 13C-APT NMR (CDCl3, 100 MHz, 

HSQC): δ 169.9, 168.8 (C=O Ac, CO2Me), 136.8 (Cq Bn), 128.3, 128.0, 127.6 (CHarom), 93.0 (C-1 β), 91.4 (C-1 

α), 75.2 (C-3), 72.9 (CH2 Bn), 72.4 (C-5), 68.3 (C-4), 60.4 (C-2), 52.5 (CH3 CO2Me), 20.8 (CH3 Ac); 13C-GATED 

(CDCl3, 100 MHz): δ 91.4 (JC1,H1 = 170 Hz, C-1 α); HRMS: [M+Na]+ calcd for C16H19N3O7Na 388.11152, found 

388.11167. 

 

Methyl (phenyl 4-O-acetyl-2-azido-3-O-benzyl-2-deoxy-1-thio-ββββ-D-mannopyranosyl uronic S-oxide) (6). A 

solution of compound 1 (80 mg, 0.17 mmol) in dry DCM (0.8 mL) was cooled to 0 ºC and 

treated with m-CPBA (43 mg, 70 wt%, 0.17 mmol) for 25 min after which time the reaction 

was stopped by the addition of sat. aq. NaHCO3. The layers were separated and the organic 

layer was washed with sat. aq. NaHCO3 (1x) and sat. aq. NaCl (2x), dried over Na2SO4 and concentrated in vacuo. 

The product was obtained after flash column chromatography (silica gel, 40% EtOAc in PE) as a white amorphous 

solid (Yield: 74 mg, 0.16 mmol, 90%). TLC: Rf 0.24 (PE/EtOAc, 2/1, v/v); [α]D
20 +71.4 (c 0.7, DCM); IR (neat, 

cm-1): 1047, 1231, 1744, 2110; 1H NMR (CDCl3, 400 MHz, HH-COSY, HSQC): δ 7.71 (dd, 2H, J = 1.9, 7.5 Hz, 

CHarom), 7.48-7.55 (m, 3H, CHarom), 7.30-7.40 (m, 5H, CHarom), 5.46 (t, 1H, J = 9.7 Hz, H-4), 4.80 (d, 1H, J = 12.2 

Hz, CHH Bn), 4.68 (dd, 1H, J = 1.3, 3.3 Hz, H-2), 4.62 (d, 1H, J = 12.2 Hz, CHH Bn), 3.94 (d, 1H, J = 1.3 Hz, H-

1), 3.76 (dd, 1H, J = 3.5, 9.5 Hz, H-3), 3.71 (s, 3H, CH3 CO2Me), 3.61 (d, 1H, J = 9.9 Hz, H-5), 1.99 (s, 3H, CH3 

Ac); 13C-APT NMR (CDCl3, 100 MHz, HSQC): δ 169.3, 166.5 (C=O Ac, CO2Me), 141.1 (Cq S(O)Ph), 136.6 (Cq 

Bn), 131.8, 129.1, 128.3, 127.8 124.9 (CHarom), 93.0 (C-1), 78.4 (C-3), 77.0 (C-5), 72.1 (CH2 Bn), 68.0 (C-4), 57.1 

(C-2), 52.8 (CH3 CO2Me), 20.5 (CH3 Ac); 13C-GATED (CDCl3, 100 MHz): δ 93.0 (JC1,H1 = 155 Hz, C-1); HRMS: 

[M+Na]+ calcd for C22H23N3O7SNa 496.11489, found 496.11438. 

 

Methyl (phenyl 4-O-acetyl-2-azido-3-O-benzyl-2-deoxy-1-thio-αααα-D-mannopyranosyl uronic (R/S)S oxide) 

(7a/7b). A solution of compound 2 (0.23 g, 0.5 mmol) in DCM (25 mL) was cooled to 0 ºC 

and treated with m-CPBA (123 mg, 70 wt%, 0.5 mmol) for 2 h after which time the reaction 

was stopped by the addition of sat. aq. NaHCO3. The organic phase was separated, washed 

with sat. aq. NaHCO3 (1x) and sat. aq. NaCl (2x), dried over Na2SO4 and concentrated in 

vacuo. Purification using flash column chromatography (silica gel, 33% EtOAc in PE to give the minor 

diastereomer, 50% EtOAc to give the major diastereomer) yielded the two sulfoxide diastereomers of compound 7 

as yellowish oils (Yield major 7a: 147 mg, 0.31 mmol, 62%; yield minor 7b: 74 mg, 0.16 mmol, 31%). TLC: Rf 

major 0.11, minor 0.20 (PE/EtOAc, 3/2, v/v); Spectroscopic data for the major diastereomer 7a: [α]D
20 +113.6 (c 

0.8, DCM); IR (neat, cm-1): 1051, 1223, 1751, 2106; 1H NMR (CDCl3, 400 MHz, HH-COSY, HSQC): δ 7.71 (dd, 

2H, J = 1.4, 8.0 Hz, CHarom), 7.48-7.56 (m, 3H, CHarom), 7.30-7.40 (m, 5H, CHarom), 5.56 (dd, 1H, J = 1.4, 3.7 Hz, 

H-4), 5.05 (d, 1H, J = 10.6 Hz, H-1), 4.69 (d, 1H, J = 11.3 Hz, CHH Bn), 4.65 (d, 1H, J = 11.3 Hz, CHH Bn), 4.45 

O

N3

BnO
AcO

OH

MeO2C

O

N3

BnO
AcO

SPh

MeO2C O

O
OBn

N3

S

OAc

MeO2C O

Ph



β-ManNAcA-containing Oligosaccharides  

 

51 

(s, 1H, H-5), 4.12 (t, 1H, J = 3.3 Hz, H-3), 3.95 (dd, 1H, J = 2.8, 10.6 Hz, H-2), 3.35 (s, 3H, CH3 CO2Me), 2.13 (s, 

3H, CH3 Ac); 13C-APT NMR (CDCl3, 100 MHz, HSQC): δ 169.9, 167.5 (C=O CO2Me, Ac), 138.8 (Cq SPh), 

136.0 (Cq Bn), 131.0, 128.7, 128.5, 128.3, 128.1, 125.1 (CHarom), 85.6 (C-1), 74.5 (C-3), 74.2 (C-5), 73.1 (CH2 

Bn), 68.1 (C-4), 54.0 (C-2), 52.2 (CH3 CO2Me), 21.0 (CH3 Ac); 13C-GATED (CDCl3, 100 MHz): δ 85.6 (JC1,H1 = 

164 Hz, C-1); HRMS: [M+Na]+ calcd for C22H23N3O7SNa 496.11489, found 496.11477. Spectroscopic data for the 

minor diastereomer 7b: [α]D
20 +0.2 (c 1, DCM); IR (neat, cm-1): 1051, 1221, 1749, 2106; 1H NMR (CDCl3, 400 

MHz, HH-COSY, HSQC): δ 7.71 (d, 2H, J = 7.1 Hz, CHarom), 7.48-7.60 (m, 3H, CHarom), 7.24-7.35 (m, 5H, 

CHarom), 5.52 (dd, 1H, J = 2.5, 4.4 Hz, H-4), 5.27 (d, 1H, J = 9.4 Hz, H-1), 4.61 (s, 2H, CH2 Bn), 4.58 (d, 1H, J = 

2.4 Hz, H-5), 4.04 (t, 1H, J = 3.9 Hz, H-3), 3.81 (dd, 1H, J = 3.1, 9.4 Hz, H-2), 3.49 (s, 3H, CH3 CO2Me), 2.10 (s, 

3H, CH3 Ac); 13C-APT NMR (CDCl3, 100 MHz, HSQC): δ 169.7, 167.7 (C=O CO2Me, Ac), 139.8 (Cq SPh), 

136.1 (Cq Bn), 131.1, 129.2, 128.2, 128.1, 128.0, 124.4 (CHarom), 90.4 (C-1), 75.1 (C-3), 73.9 (C-5), 73.2 (CH2 

Bn), 67.9 (C-4), 52.6, 52.5 (C-2, CH3 CO2Me), 20.9 (CH3 Ac); 13C-GATED (CDCl3, 100 MHz): δ 90.4 (JC1,H1 = 

166 Hz, C-1); HRMS: [M+Na]+ calcd for C22H23N3O7SNa 496.11489, found 496.11449. 

 

Methyl 3-O-benzyl-4,6-O-benzylidene-αααα-D-glucopyranoside (8). To a solution of methyl α-D-glucopyranoside 

(97.1 g, 0.5 mol) in 500 mL pyridine was added TMSCl (349 mL, 2.75 mol) and the 

resulting solution was stirred at RT for 75 min. The mixture was diluted with Et2O, the 

organic layer was washed with H2O, dried over MgSO4 and concentrated in vacuo. The 

per-silylated product was directly used in the next reaction step. 1H NMR (CDCl3, 400 MHz, HH-COSY, HSQC): 

δ 4.61 (d, 1H, J = 3.6 Hz, H-1), 3.77 (m, 2H, H-6), 3.67 (m, 1H, H-3), 3.41-3.52 (m, 3H, H-2, H-4, H-5), 3.34 (s, 

3H, CH3 OMe), 0.13-0.17 (m, 36H, CH3 TMS); 13C-APT NMR (CDCl3, 100 MHz, HSQC): δ 99.7 (C-1), 75.4 (C-

2), 74.0 (C-3), 72.3 (C-4), 72.1 (C-5), 62.3 (C-6), 54.5 (OMe). The per-silylated intermediate (~ 0.5 mol) and 

PhCHO (111.2 ml, 1.1 mol) were dissolved in DCM (1 L) under argon. The mixture was cooled to 10 ºC, and a 

solution of pre-dried Cu(OTf)2 (1.8 g, 5 mmol) in MeCN was added. To the resulting greenish solution, TES (88.8 

ml, 550 mmol) was added dropwise in 1 h. The reaction mixture was stirred for 3 h and the reaction was quenched 

by the addition of NaOMe (67.5 g, 1.25 mol) in 150 ml MeOH and stirred overnight. The mixture was reduced in 

volume, diluted with EtOAc, washed with H2O (3x) and sat. aq. NaCl, dried over MgSO4 and concentrated in 

vacuo. The title compound was obtained through crystallization from EtOAc/PE as white fluffy crystals (Yield: 

135.9 g, 365.0 mmol, 73%). Spectroscopic data were in accord with those previously reported.25 1H NMR (CDCl3, 

400 MHz, HH-COSY, HSQC): δ 7.24-7.49 (m, 10H, CHarom), 5.56 (s, 1H, CH Ph), 4.96 (d, 1H, J = 11.6 Hz, CHH 

Bn), 4.78 (d, 1H, J = 11.6 Hz, CHH Bn), 4.80 (s, 1H, H-1), 4.29 (m, 1H, H-6), 3.72-3.82 (m, 3H, H-2, H-3, H-4), 

3.82-3.85 (m, 1H, H-5), 3.63 (m, 1H, H-6), 3.44 (s, 3H, CH3 OMe), 2.38 (s, 1H, 3-OH). 13C-APT NMR (CDCl3, 

100 MHz, HSQC): δ 101.24 (CH Ph), 99.86 (C-1), 81.90 (C-5), 78.80 (C-2), 74.74 (CH2 Bn), 72.36 (C-3), 68.96 

(C-6), 62.53 (C-4), 55.34 (OMe). 

 

Methyl 3-O-benzyl-4,6-O-benzylidene-2-O-trifluoromethylsulfonyl-αααα-D-glucopyranoside (9). Compound 8 

(90 g, 242 mmol) was dissolved in DCM (600 mL). Pyridine (150 mL) was added and the 

solution was cooled to -15 ºC. Trifluoromethanesulfonic anhydride (60 mL, 370 mmol) 

was slowly added over ~1.5 h after which TLC analysis indicated complete conversion of 

the starting material. The reaction was quenched with H2O (100 mL), washed with sat. aq. NaCl (3 x 400 mL) and 

dried over Na2SO4. After filtration, the mixture co-evaporated with toluene (3x). The crude product was used in 

the next step without further purification. Spectroscopic data were in accord with those previously reported.66 

TLC: Rf 0.62 (PE/EtOAc, 6/1, v/v); 1H NMR (CDCl3, 400 MHz, HH-COSY, HSQC): δ 7.12-7.50 (m, 10H, 

CHarom), 5.56 (s, 1H, CH Ph), 4.97 (d, 1H, J = 3.8 Hz, H-1), 4.85 (d, 1H, J = 11.0 Hz, CHH Bn), 4.77 (d, 1H, J = 

11.1 Hz, CHH Bn), 4.73 (dd, 1H, J = 4.0, 9.6 Hz, H-2), 4.31 (dd, 1H, J = 4.7, 10.2 Hz, H-6), 4.13 (t, 1H, J = 9.4 

Hz, H-3), 3.85-3.96 (m, 1H, H-5), 3.76 (t, 1H, J = 10.3 Hz, H-6), 3.69 (t, 1H, J = 9.4 Hz, H-4), 3.47 (s, 3H, CH3 

OMe); 13C-APT NMR (CDCl3, 100 MHz, HSQC): δ 137.3, 136.9 (Cq), 129.1, 129.0, 128.3, 128.2, 127.9, 126.0 

(CHarom), 118.4 (q, J = 320 Hz, CF3), 101.5 (CH Ph), 97.6 (C-1), 83.6 (C-2), 82.0 (C-4), 75.3 (CH2 Bn), 75.0 (C-

3), 68.7 (C-6), 62.2 (C-5), 55.8 (OMe). 
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Methyl 2-azido-3-O-benzyl-4,6-O-benzylidene-2-deoxy-αααα-D-mannopyranoside (10). Triflate 9 (242 mmol) was 

dissolved in dry DMF (500 mL) and NaN3 (31.4 g, 483 mmol) was added. The resulting 

suspension was heated at 80ºC overnight, after which TLC analysis showed complete 

conversion of the starting material. EtOAc (400 mL) and H2O (400 mL) were added, the 

layers were separated and the organic layer was washed with sat. aq. NaCl (3 x 300 mL). 

The combined aqueous layers were extracted with EtOAc (300 mL). The organic layers were dried over Na2SO4, 

filtered and concentrated in vacuo to yield crude compound 10, which was used in the next step without further 

purification. A small fraction was purified using flash column chromatography (silica gel, 11% EtOAc in PE) for 

characterization. TLC: Rf 0.55 (PE/EtOAc, 6/1, v/v); [α]D
20 +31.9 (c 1, DCM); IR (neat, cm-1): 696, 1067, 2104; 

1H NMR (CDCl3, 400 MHz, HH-COSY, HSQC): δ 7.46-7.52 (m, 2H, CHarom), 7.25-7.42 (m, 8H, CHarom), 5.62 (s, 

1H, CH Ph), 4.88 (d, 1H, J = 12.2 Hz, CHH Bn), 4.73 (d, 1H, J = 12.2 Hz, CHH Bn), 4.65 (d, 1H, J = 1.4 Hz, H-

1), 4.25 (dd, 1H, J = 4.2, 9.7 Hz, H-6), 4.07-4.14 (m, 2H, H-3, H-4), 3.97-3.99 (m, 1H, H-2), 3.84 (t, 1H, J = 10.2 

Hz, H-6), 3.73-3.80 (m, 1H, H-5), 3.35 (s, 3H, CH3 OMe); 13C-APT NMR (CDCl3, 100 MHz, HSQC): δ 138.0, 

137.4 (Cq), 129.0, 128.8, 128.5, 128.3, 128.2, 128.1, 127.6, 127.4, 126.0, 125.2 (CHarom), 101.5 (CH Ph), 100.0 (C-

1), 79.0 (C-4), 75.5 (C-3), 73.1 (CH2 Bn), 68.6 (C-6), 63.6 (C-5), 62.6 (C-2), 54.8 (OMe); 13C-GATED (CDCl3, 

100 MHz): δ 100.0 (JC1,H1 = 171 Hz, C-1); HRMS: [M+H]+ calcd for C21H24N3O5 398.17105, found 398.17101. 

 

Acetyl 4,6-di-O-acetyl-2-azido-3-O-benzyl-2-deoxy-α/βα/βα/βα/β-D-mannopyranoside (11). Compound 10 (242 mmol) 

was dissolved in Ac2O (750 mL) and the resulting solution was cooled to 0ºC. Sulfuric acid 

(95%, 15 mL) was added drop-wise and the reaction was closely followed by TLC analysis. 

Sat. aq. NaHCO3 was carefully added until gas evolution was no longer observed. EtOAc 

was added and the mixture was washed with sat. aq. NaHCO3, dried over Na2SO4, filtered, concentrated in vacuo 

and co-evaporated with toluene (2x). Flash column chromatography (silica gel, 33% EtOAc in PE) yielded 

compound 11 as a yellowish oil (Yield: 78.7 g, 187mmol, 77% over three steps, α : β = 6.6 : 1). TLC: Rf 0.51 

(PE/EtOAc, 1/1, v/v); IR (neat, cm-1): 727, 908, 1213, 1740, 2110; 1H NMR (CDCl3, 400 MHz, HH-COSY, 

HSQC): δ 7.20-7.45 (m, 5H, CHarom), 6.06 (d, 1H, J = 2.0 Hz, H-1 α), 5.72 (d, 0.15H, J = 1.1 Hz, H-1 β), 5.35 (t, 

1H, J = 9.8 Hz, H-4 α), 5.25 (t, 0.15H, J = 9.5 Hz, H-4 β), 4.70 (d, 1H, J = 12.0 Hz, CHH Bn), 4.62 (d, 1H, J = 

11.9 Hz, CHH Bn), 4.19 (dd, 1H, J = 5.0, 12.4 Hz, H-6), 4.03-4.15 (m, 1H, H-6), 3.97 (dd, 1H, J = 3.7, 9.4 Hz, H-

3), 3.87-3.94 (m, 2H, H-2, H-5), 3.61-3.67 (m, 0.15H, H-5 β), 2.10 (s, 3H, CH3 Ac), 2.07 (s, 3H, CH3 Ac), 2.03 (s, 

3H, CH3 Ac); 13C-APT NMR (CDCl3, 100 MHz, HSQC): δ 170.6, 169.2, 168.0 (C=O Ac), 137.0 (Cq Bn), 128.4, 

128.0, 127.6 (CHarom), 91.5 (C-1 α), 91.2 (C-1 β), 75.8 (C-3), 72.3 (CH2 Bn), 71.0 (C-5), 66.7 (C-4), 62.0 (C-6), 

59.8 (C-2), 20.6, 20.6, 20.5 (CH3 Ac); 13C-GATED (CDCl3, 100 MHz): δ 91.5 (JC1,H1 = 176 Hz, C-1 α), 91.2 

(JC1,H1 = 163 Hz, C-1 β); HRMS: [M+Na]+ calcd for C19H23N3O8Na 444.13774, found 444.13744. 

 

Phenyl 4,6-di-O-acetyl-2-azido-3-O-benzyl-2-deoxy-1-thio-ββββ-D-mannopyranoside (12). Compound 11 (3.67 g, 

8.73 mmol) was dissolved in dry DCE (40 mL). After addition of PhSH (0.99 mL, 9.60 

mmol) and BF3•Et2O (2.21 mL, 17.5 mmol) the mixture was heated at 35 ºC until TLC 

analysis indicated complete consumption of the starting material (~2h). The reaction was 

diluted with EtOAc (40 mL), quenched with sat. aq. NaHCO3, washed with sat. aq. NaHCO3 (2x) and sat. aq. 

NaCl, dried over Na2SO4 and concentrated in vacuo. The title compound was obtained from crystallization 

(EtOAc, PE) and flash column chromatography (silica gel, 25% EtOAc in PE) as a white solid (Yield: 1.76 g, 3.73 

mmol, 40%). Using flash column chromatography, α-thio mannoside 15 was obtained (0.84 g, 1.77 mmol, 19%). 

TLC: Rf 0.41 (PE/EtOAc, 3/2, v/v); [α]D
20 -38.9 (c 1, DCM); Melting point: mp 175-178 ºC; IR (neat, cm-1): 689, 

739, 1034, 1231, 1364, 1736, 2110; 1H NMR (CDCl3, 400 MHz, HH-COSY, HSQC): δ 7.45-7.53 (m, 2H, 

CHarom), 7.25-7.40 (m, 8H, CHarom), 5.28 (t, 1H, J = 9.8 Hz, H-4), 4.72 (d, 1H, J = 12.0 Hz, CHH Bn), 4.72 (s, 1H, 

H-1), 4.59 (d, 1H, J = 12.2 Hz, CHH Bn), 4.10-4.23 (m, 3H, H-2, H-6), 3.72 (dd, 1H, J = 3.7, 9.5 Hz, H-3), 3.52 

(ddd, 1H, J = 2.5, 6.4, 9.2 Hz, H-5), 2.06 (s, 3H, CH3 Ac), 2.01 (s, 3H, CH3 Ac); 13C-APT NMR (CDCl3, 100 

MHz, HSQC): δ 170.6, 169.4 (C=O Ac), 136.9 (Cq Bn), 134.0 (Cq SPh), 131.4, 128.9, 128.6, 128.2, 127.8 

(CHarom), 85.8 (C-1), 79.6 (C-3), 76.4 (C-5), 72.2 (CH2 Bn), 67.4 (C-4), 62.9 (C-2), 62.8 (C-6), 20.7, 20.7 (CH3 

Ac); 13C-GATED (CDCl3, 100 MHz): δ 85.8 (JC1,H1 = 153 Hz, C-1); HRMS: [M+NH4]
+ calcd for C23H29N4O6S 

489.18023, found 489.18018. 
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Phenyl 2-azido-3-O-benzyl-2-deoxy-1-thio-ββββ-D-mannopyranoside (13). Compound 12 (0.81 g, 1.72 mmol) in 

MeOH (10 mL) was treated with NaOMe (cat.) for 4h at room temperature. The mixture was 

neutralized using Amberlite-H+ and subsequently filtered off. MeOH was evaporated and the 

residue was purified using flash column chromatography (67% EtOAc in PE) to yield the title 

compound as a white foam (Yield: 0.66 g, 1.69 mmol, 98%). TLC: Rf 0.20 (PE/EtOAc, 3/2, v/v); [α]D
20 -40.8 (c 1, 

DCM); IR (neat, cm-1): 691, 727, 1067, 2102, 3319; 1H NMR (CDCl3, 400 MHz, HH-COSY, HSQC): δ 7.18-7.45 

(m, 10H, CHarom), 4.69-4.75 (m, 2H, H-1, CHH Bn), 4.65 (d, 1H, J = 11.7 Hz, CHH Bn), 4.08 (d, 1H, J = 2.8 Hz, 

H-2), 3.96 (t, 1H, J = 9.4 Hz, H-4), 3.83 (dd, 1H, J = 3.0, 12.1 Hz, H-6), 3.77 (dd, 1H, J = 4.6, 12.2 Hz, H-6), 3.66 

(bs, 1H, OH), 3.58 (dd, 1H, J = 3.7, 9.3 Hz, H-3), 3.23-3.29 (m, 1H, H-5), 2.91 (bs, 1H, OH); 13C-APT NMR 

(CDCl3, 100 MHz, HSQC): δ 137.1 (Cq Bn), 133.9 (Cq SPh), 130.4, 128.9, 128.4, 127.9, 127.7, 127.3 (CHarom), 

85.2 (C-1), 82.1 (C-3), 79.8 (C-5), 72.4 (CH2 Bn), 66.3 (C-4), 62.9 (C-2), 61.8 (C-6); 13C-GATED (CDCl3, 100 

MHz): δ 85.2 (JC1,H1 = 156 Hz, C-1); HRMS: [M+NH4]
+ calcd for C19H25N4O4S 405.15910, found 405.15913. 

 

Methyl (phenyl 2-azido-3-O-benzyl-2-deoxy-1-thio-ββββ-D-mannopyranosyl uronate) (14). Diol 13 (0.53 g, 1.37 

mmol) was dissolved in DCM/H2O (7.5 mL, 2/1, v/v) and treated with TEMPO (43 mg, 0.27 

mmol) and BAIB (1.10 g, 3.43 mmol) until TLC showed full conversion to the lower running 

uronic acid (Rf 0.26, PE/EtOAc, 1/1, v/v + 1% AcOH). The reaction was quenched with sat. 

aq. Na2S2O3 (10 mL) after which the mixture was diluted with EtOAc (20 mL) and washed with sat. aq. NaCl (2x). 

The combined aqueous layers were extracted with EtOAc and the organic layers were dried over Na2SO4, filtered, 

concentrated in vacuo and co-evaporated with toluene (2x). The residue was dissolved in DMF (7.5 mL), MeI 

(0.26 mL, 4.11 mmol) and K2CO3 (0.57 g, 4.11 mmol) were added and the mixture was allowed to stir for 45 min. 

Then EtOAc (20 mL) and H2O (20 mL) were added and the organic fraction was washed with sat. aq. NaCl (2x), 

dried over Na2SO4, filtered and concentrated. Purification using flash column chromatography (silica gel, 33% 

EtOAc in PE) yielded compound 14 as a white solid (Yield: 0.47 g, 1.14 mmol, 83%). TLC: Rf 0.33 (PE/EtOAc, 

2/1, v/v); [α]D
20 -41.3 (c 1, DCM); Melting point: mp 141-141 ºC; IR (neat, cm-1): 691, 727, 907, 1078, 1742, 

2106; 1H NMR (CDCl3, 400 MHz, HH-COSY, HSQC): δ 7.44-7.48 (m, 2H, CHarom), 7.24-7.36 (m, 8H, CHarom), 

4.76 (s, 2H, CH2 Bn), 4.71 (d, 1H, J = 1.2 Hz, H-1), 4.20 (t, 1H, J = 9.5 Hz, H-4), 4.11 (d, 1H, J = 2.6 Hz, H-2), 

3.76 (s, 3H, CH3 CO2Me), 3.75 (d, 1H, J = 9.7 Hz, H-5), 3.63 (dd, 1H, J = 3.7, 9.2 Hz, H-3), 3.37 (bs, 1H, 4-OH); 
13C-APT NMR (CDCl3, 100 MHz, HSQC): δ 168.9 (C=O CO2Me), 137.2 (Cq Bn), 133.7 (Cq SPh), 131.1, 128.9, 

128.4, 127.9, 127.6 (CHarom), 86.3 (C-1), 81.0 (C-3), 77.9 (C-5), 72.8 (CH2 Bn), 67.8 (C-4), 62.9 (C-2), 52.6 (CH3 

CO2Me); 13C-GATED (CDCl3, 100 MHz): δ 86.3 (JC1,H1 = 155 Hz, C-1); HRMS: [M+Na]+ calcd for 

C20H21N3O5SNa 438.10941, found 438.10903. 

 

Phenyl 4,6-di-O-acetyl-2-azido-3-O-benzyl-2-deoxy-1-thio-αααα-D-mannopyranoside (15). A solution of 

compound 11 (1.79 g, 4.27 mmol) in freshly distilled DCM (10 mL) was cooled to 0ºC and 

TMSI (0.67 mL, 4.7 mmol) was added drop-wise. When TLC analysis indicated complete 

consumption of the starting material (~50 min), the solution was concentrated in vacuo at 40ºC 

and co-evaporated with dry toluene. The iodide was directly used in the next reaction. TLC: Rf 

0.76 (PE/EtOAc, 1/1, v/v); 1H NMR (CDCl3, 400 MHz): δ 7.13-7.20 (m, 5H, CHarom), 6.75 (s, 1H, H-1), 5.36 (t, 

1H, J = 9.9 Hz, H-4), 4.67 (d, 1H, J = 12.1 Hz, CHH Bn), 4.62 (d, 1H, J = 12.0 Hz, CHH Bn), 4.40 (dd, 1H, J = 

3.6, 9.6 Hz, H-3), 4.24 (dd, 1H, J = 4.8, 12.6 Hz, H-6), 4.06-4.11 (m, 2H, H-2, H-6), 3.75 (ddd, 1H, J = 2.2, 4.7, 

10.1 Hz, H-5), 2.08 (CH3 Ac), 2.04 (CH3 Ac). The crude iodide (~4.27 mmol) was dissolved in dry DMF (15 mL) 

and cooled to 0ºC. A solution of PhSH (0.48 mL, 4.7 mmol) and sodium hydride (60% dispersion in oil, 0.188 g, 

4.69 mmol) in dry DMF (5 mL) was added and the resulting mixture was stirred until TLC analysis indicated 

complete consumption of the starting material (~3h). MeOH (6 mL) was added and the mixture was reduced in 

volume. The residue was partitioned between EtOAc and H2O and the organic phase was washed with H2O (3x), 

dried over Na2SO4, filtered and concentrated in vacuo. Crystallization from EtOAc/PE yielded compound 15 as an 

off-white solid (Yield: 1.09 g, 2.31 mmol, 54%). Spectroscopic data were in full accord with those reported 

previously.64 TLC: Rf 0.35 (PE/EtOAc, 4/1, v/v); 1H NMR (CDCl3, 400 MHz, HH-COSY, HSQC): δ 7.22-7.48 

(m, 10H, CHarom), 5.48 (d, 1H, J = 1.7 Hz, H-1), 5.31 (t, 1H, J = 9.6 Hz, H-4), 4.70 (d, 1H, J = 12.0 Hz, CHH Bn), 

4.62 (d, 1H, J = 12.0 Hz, CHH Bn), 4.36 (ddd, 1H, J = 2.3, 5.8, 9.7 Hz, H-5), 4.22 (dd, 1H, J = 5.9, 12.2 Hz, H-6), 

4.05-4.14 (m, 2H, H-2, H-6), 3.95 (dd, 1H, J = 3.6, 9.3 Hz, H-3), 2.03 (s, 3H, CH3 Ac), 2.03 (s, 3H, CH3 Ac); 13C-
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APT NMR (CDCl3, 100 MHz, HSQC): δ 170.6, 169.4 (C=O Ac), 137.0 (Cq Bn), 132.6 (Cq SPh), 131.8, 129.1, 

128.6, 128.2, 128.0, 127.9 (CHarom), 85.8 (C-1), 76.6 (C-3), 72.5 (CH2 Bn), 69.8 (C-5), 67.5 (C-4), 62.3 (C-6), 62.1 

(C-2), 20.7, 20.6 (CH3 Ac); 13C-GATED (CDCl3, 100 MHz): δ 85.8 (JC1,H1 = 168 Hz, C-1); HRMS: [M+Na]+ calcd 

for C23H25N3O6SNa 494.13563, found 494.13516. 

 

Phenyl 2-azido-3-O-benzyl-2-deoxy-1-thio-αααα-D-mannopyranoside (16). Compound 15 (2.75 g, 5.83 mmol) was 

dissolved in MeOH (30 mL) and treated with cat. NaOMe overnight. The mixture was 

neutralized with Amberlite-H+, filtered and concentrated. The residue was redissolved in EtOAc 

(30 mL) and washed with H2O (3 x 25 mL). The combined aqueous layers were extracted with 

EtOAc (30 mL). The organic fractions were dried over Na2SO4 and concentrated in vacuo to 

yield compound 16 as a colorless oil (Yield: 2.2 g, 5.67 mmol, 97%). A small portion was purified using flash 

column chromatography (silica gel, 40% EtOAc in PE) for analysis. TLC: Rf 0.25 (PE/EtOAc, 2/1, v/v); [α]D
20 

+39.5 (c 1, DCM); IR (neat, cm-1): 692, 743, 1070, 1261, 2102, 3348; 1H NMR (CDCl3, 400 MHz, HH-COSY, 

HSQC): δ 7.25-7.46 (m, 10H, CHarom), 5.40 (d, 1H, J = 1.0 Hz, H-1), 4.73 (d, 1H, J = 11.6 Hz, CHH Bn), 4.67 (d, 

1H, J = 11.7 Hz, CHH Bn), 4.07-4.12 (m, 1H, H-5), 4.06 (dd, 1H, J = 1.3, 3.5 Hz, H-2), 4.01 (t, 1H, J = 9.4 Hz, 

H-4), 3.86 (dd, 1H, J = 3.5, 9.1 Hz, H-3), 3.77-3.81 (m, 2H, H-6), 3.23 (bs, 1H, 4-OH), 2.43 (bs, 1H, 6-OH); 13C-

APT NMR (CDCl3, 100 MHz, HSQC): δ 137.1 (Cq Bn), 132.9 (Cq SPh), 132.0, 129.2, 128.6, 128.2, 128.1, 128.0 

(CHarom), 86.4 (C-1), 79.4 (C-3), 73.3 (C-5), 72.6 (CH2 Bn), 66.8 (C-4), 62.1 (C-2), 61.9 (C-6); 13C-GATED 

(CDCl3, 100 MHz): δ 86.4 (JC1,H1 = 168 Hz, C-1); HRMS: [M+Na]+ calcd for C19H21N3O4SNa 410.11450, found 

410.11438. 

 

Methyl (phenyl 2-azido-3-O-benzyl-2-deoxy-1-thio-αααα-D-mannopyranosyl uronate) (17). Diol 16 (2.26 g, 5.83 

mmol) was dissolved in DCM/H2O (40 mL, 3/1, v/v) and treated with TEMPO (0.18 g, 1.17 

mmol) and BAIB (4.69 g, 14.6 mmol). The resulting emulsion was stirred vigorously until TLC 

analysis showed full conversion to the lower running uronic acid (Rf 0.23, PE/EtOAc, 1/1, v/v + 

1% AcOH) after 1h. Then, sat. aq. Na2S2O3 (100 mL) was added and the resulting mixture was 

extracted with EtOAc (2 x 50 mL). The organic layers were dried over Na2SO4, concentrated in vacuo and co-

evaporated with toluene (2x). The residue was dissolved in dry DMF (40 mL) followed by addition of MeI (1.1 

mL, 17.5 mmol) and K2CO3 (4.83 g, 35.0 mmol). After 1h the mixture was diluted with EtOAc (40 mL) and H2O 

(40 mL). The layers were separated, the organic layer was washed with sat. aq. NaCl (2x) and the combined 

aqueous layers were extracted with EtOAc. The organic fraction was dried over Na2SO4, concentrated in vacuo 

and purified using flash column chromatography (silica gel, 25% EtOAc in PE) to yield the title compound as a 

yellowish oil (Yield: 1.69 g, 4.08 mmol, 70% over two steps). Spectroscopic data were in accord with those 

reported previously.64 TLC: Rf 0.71 (PE/EtOAc, 1/1, v/v); 1H NMR (CDCl3, 400 MHz, HH-COSY, HSQC): δ 

7.46-7.50 (m, 2H, CHarom), 7.25-7.43 (m, 8H, CHarom), 5.53 (d, 1H, J = 3.8 Hz, H-1), 4.76 (d, 1H, J = 11.6 Hz, 

CHH Bn), 4.71 (d, 1H, J = 11.6 Hz, CHH Bn), 4.60 (d, 1H, J = 7.7 Hz, H-5), 4.31 (t, 1H, J = 7.8 Hz, H-4), 3.94 (t, 

1H, J = 3.6 Hz, H-2), 3.88 (dd, 1H, J = 3.4, 7.9 Hz, H-3), 3.69 (s, 3H, CH3 CO2Me), 3.13 (bs, 1H, 4-OH); 13C-

APT NMR (CDCl3, 100 MHz, HSQC): δ 169.8 (C=O CO2Me), 137.1 (Cq Bn), 132.5 (Cq SPh), 131.9, 129.1, 

128.5, 128.0, 127.9 (CHarom), 85.2 (C-1), 77.9 (C-3), 73.2 (CH2 Bn), 73.1 (C-5), 68.2 (C-4), 60.9 (C-2), 52.6 (CH3 

CO2Me); 13C-GATED (CDCl3, 100 MHz): δ 85.2 (JC1,H1 = 168 Hz, C-1); HRMS: [M+Na]+ calcd for 

C20H21N3O5SNa 438.10941, found 438.10912. 

 

4,6-Di-O-acetyl-2-azido-3-O-benzyl-2-deoxy-αααα/ββββ-D-mannopyranose (18). Compound 11 (4.21 g, 10.0 mmol) 

was dissolved in dry THF (48 mL) and treated with piperidine (2 mL) overnight. Then, 

EtOAc was added and the mixture was washed with 1M aq. HCl (2x) and H2O. The 

combined aqueous layers were extracted with EtOAc. The organic fraction was dried over 

Na2SO4, filtered, concentrated in vacuo and purified using flash column chromatography (silica gel, 50% EtOAc 

in PE) to yield compound 18 as a yellowish oil (Yield: 3.53 g, 9.3 mmol, 93%, α : β = 4 : 1). TLC: Rf 0.38 

(PE/EtOAc, 1/1, v/v); IR (neat, cm-1): 727, 907, 1043, 1231, 1736, 2108; 1H NMR (CDCl3, 400 MHz, HH-COSY, 

HSQC): δ 7.29-7.41 (m, 5H, CHarom), 5.28 (t, 1H, J = 9.6 Hz, H-4), 5.21 (s, 1H, H-1 α), 4.74 (s, 1H, H-1 β), 4.69 

(d, 1H, J = 12.1 Hz, CHH Bn), 4.57 (d, 1H, J = 12.1 Hz, CHH Bn), 4.14 (d, 1H, J = 4.7 Hz, H-6), 4.10 (d, 1H, J = 

2.4 Hz, H-6), 4.05-4.07 (m, 1H, H-3), 4.03-4.05 (m, 1H, H-5), 3.94 (dd, 1H, J = 2.0, 3.5 Hz, H-2), 2.07 (s, 3H, 
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CH3 Ac), 2.00 (s, 3H, CH3 Ac); 13C-APT NMR (CDCl3, 100 MHz, HSQC): δ 171.1, 169.8 (C=O Ac), 137.2 (Cq 

Bn), 128.3, 128.2, 128.0, 127.7, 127.5 (CHarom), 92.9 (C-1 β), 92.3 (C-1 α), 75.8 (C-3), 71.9 (CH2 Bn), 68.2 (C-5), 

67.4 (C-4), 62.4 (C-6), 61.1 (C-2), 20.5, 20.5 (CH3 Ac); 13C-HMBC (100 MHz, CDCl3): δ 92.9 (JC1,H1 = 159 Hz, 

C-1 β), 92.3 (JC1,H1 = 173 Hz, C-1 α); HRMS: [M+Na]+ calcd for C17H21N3O7Na 402.12717, found 402.12701. 

 

4,6-Di-O-acetyl-2-azido-3-O-benzyl-1-O-tert-butyldimethylsilyl-2-deoxy-αααα/ββββ-D-manno-pyranoside (19). 

Hemiacetal 18 (1.73 g, 4.56 mmol) was dissolved in dry DCM (18 mL), followed by the 

addition of TBS-Cl (0.79 g, 5.26 mmol) and imidazole (0.60 g, 8.77 mmol). The mixture 

was stirred until full conversion of the starting material was indicated by TLC analysis (~16 

h). EtOAc and H2O were added, the layers were separated and the organic fraction was washed with H2O (2x), 

dried over Na2SO4, filtered and concentrated in vacuo. Purification using flash column chromatography (silica gel, 

11% EtOAc in PE) furnished the title compound as a colorless oil (Yield: 1.99 g, 4.07 mmol, 80%, α : β = 1 : 9.3) 

together with 6-O-acetyl-2-azido-3-O-benzyl-1-O-tert-butyldimethylsilyl-2-deoxy-β-D-mannopyrano-side as a 

yellowish oil (Yield: 0.23 g, 0.51 mmol, 10%). TLC: Rf α 0.66, β 0.53, 4-OH 0.41 (PE/EtOAc, 2/1, v/v); 

Spectroscopic data compound 19: IR (neat, cm-1) 837, 1047, 1231, 1742, 2106; 1H NMR (CDCl3, 400 MHz, HH-

COSY, HSQC) δ 7.27-7.39 (m, 5H, CHarom), 5.26 (t, 0.11 H, J = 9.8 Hz, H-4 α), 5.10 (t, 1H, J = 9.7 Hz, H-4 β), 

5.08 (s, 1H, H-1 α), 4.84 (d, 1H, J = 1.0 Hz, H-1 β), 4.69 (d, 1H, J = 12.3 Hz, CHH Bn), 4.55 (d, 1H, J = 12.3 Hz, 

CHH Bn), 4.13 (d, 2H, J = 4.6 Hz, H-6 β), 4.01 (dd, 0.11H, J = 3.6, 9.7 Hz, H-3 α), 3.91-3.94 (m, 0.11H, H-5 α), 

3.88 (d, 1H, J = 3.0 Hz, H-2 β), 3.67 (dd, 0.11H, J = 1.9, 3.4 Hz, H-2 α), 3.57 (dd, 1H, J = 3.7, 9.5 Hz, H-3 β), 

3.50 (ddd, 1H, J = 3.6, 5.7, 9.6 Hz, H-5 β), 2.04 (s, 3H, CH3 Ac), 2.01 (s, 3H, CH3 Ac), 0.92 (s, 9H, CH3 tBu), 

0.16 (s, 3H, CH3 Me), 0.13 (s, 3H, CH3 Me); 13C-APT NMR (CDCl3, 100 MHz, HSQC) δ 170.4 (C=O Ac α), 

169.5 (C=O Ac β), 137.5 (Cq Bn), 128.5, 128.1, 128.0, 127.6 (CHarom), 95.4 (C-1 β), 93.1 (C-1 α), 77.3 (C-3 β), 

75.8 (C-3 α), 72.4 (C-5 β), 71.7 (CH2 Bn), 68.9 (C-5 α), 67.6 (C-4 α), 67.5 (C-4 β), 63.1 (C-2 β), 62.9 (C-6), 62.1 

(C-2 α), 25.7 (CH3 tBu β), 25.5 (CH3 tBu α), 20.7, 20.5 (CH3 Ac), 17.9 (Cq tBu), -4.2, -5.3 (CH3 Me); 13C-

GATED (CDCl3, 100 MHz): δ 95.4 (JC1,H1 = 157 Hz, C-1 β), 93.1 (JC1,H1 = 170 Hz, C-1 α); HRMS [M+Na]+ calcd 

for C23H35N3O7SiNa 516.21365, found 516.21318. Spectroscopic data for 6-O-acetyl-2-azido-3-O-benzyl-1-O-

tert-butyldimethylsilyl-2-deoxy-β-D-mannopyranoside: [α]D
20 +64.8 (c 1, DCM); IR (neat, cm-1) 837, 1084, 1234, 

1740, 2104, 3490; 1H NMR (CDCl3, 400 MHz, HH-COSY, HSQC) δ 7.29-7.40 (m, 5H, CHarom), 4.82 (s, 1H, H-

1), 4.71 (d, 1H, J = 11.8 Hz, CHH Bn), 4.60 (d, 1H, J = 11.8 Hz, CHH Bn), 4.38 (dd, 1H, J = 2.1, 11.8 Hz, H-6), 

4.21 (dd, 1H, J = 6.8, 11.8 Hz, H-6), 3.84 (dd, 1H, J = 0.8, 3.5 Hz, H-2), 3.63 (t, 1H, J = 8.5 Hz, H-4), 3.35-3.44 

(m, 2H, H-3, H-5), 3.13 (bs, 1H, 4-OH), 2.03 (s, 3H, CH3 Ac), 0.92 (s, 9H, CH3 tBu), 0.15 (s, 3H, CH3 Me), 0.12 

(s, 3H, CH3 Me); 13C-APT NMR (CDCl3, 100 MHz, HSQC) δ 170.9 (C=O Ac), 137.2 (Cq Bn), 128.4, 127.9, 127.7 

(CHarom), 95.2 (C-1), 79.6 (C-3), 73.8 (C-5), 71.5 (CH2 Bn), 66.3 (C-4), 63.4 (C-6), 62.4 (C-2), 25.4 (CH3 tBu), 

20.5 (CH3 Ac), 17.7 (Cq tBu), -4.4, -5.6 (CH3 Me); 13C-GATED (CDCl3, 100 MHz): δ 95.3 (JC1,H1 = 157 Hz, C-1); 

HRMS [M+Na]+ calcd for C21H33N3O6SiNa 474.20308, found 474.20264. 

 

2-Azido-3-O-benzyl-1-O-tert-butyldimethylsilyl-2-deoxy-αααα/ββββ-D-mannopyranoside (20). The mixture of 19 

(7.90 g, 16 mmol) was dissolved in MeOH (200 mL) and treated with NaOMe (cat.) 

overnight. The mixture was neutralized with Amberlite-H+, filtered and concentrated. The 

residue was dissolved in EtOAc and washed with H2O (2x). The combined aqueous 

fractions were extracted with EtOAc. The organic layers were dried over Na2SO4, filtered and concentrated in 

vacuo to yield the title compound as a colorless oil (Yield: 6.50 g, 15.9 mmol, 98%, α : β = 1 : 7.7) TLC: Rf α 

0.30, β 0.19 (PE/EtOAc, 2/1, v/v); IR (neat, cm-1): 729, 837, 1074, 2106, 3400; 1H NMR (CDCl3, 400 MHz, HH-

COSY, HSQC): δ 7.30-7.42 (m, 5H, CHarom), 5.05 (s, 1H, H-1 α), 4.85 (s, 1H, H-1 β), 4.73 (d, 1H, J = 11.8 Hz, 

CHH Bn), 4.62 (d, 1H, J = 11.8 Hz, CHH Bn), 3.86 (dd, 1H, J = 3.5, 11.8 Hz, H-6), 3.80 (d, 1H, J = 3.2 Hz, H-2), 

3.75-3.79 (m, 2H, H-4, H-6), 3.42 (dd, 1H, J = 3.5, 9.2 Hz, H-3), 3.22-3.29 (m, 1H, H-5), 0.92 (s, 9H, CH3 tBu), 

0.15 (s, 3H, CH3 Me), 0.12 (s, 3H, CH3 Me); 13C-APT NMR (CDCl3, 100 MHz, HSQC): δ 137.4 (Cq Bn), 128.1, 

128.0, 127.5 (CHarom), 94.9 (C-1 β), 92.9 (C-1 α), 79.4 (C-3), 75.5 (C-5), 71.6 (CH2 Bn), 66.2 (C-4), 63.0 (C-2), 

61.8 (C-6), 25.3 (CH3 tBu), 17.5 (Cq tBu), -4.4, -5.7 (CH3 Me); 13C-GATED (CDCl3, 100 MHz): δ 94.9 (JC1,H1 = 

157 Hz, C-1 β), 92.9 (JC1,H1 = 168 Hz, C-1 α); HRMS: [M+Na]+ calcd for C19H31N3O5SiNa 432.19252, found 

432.19232. 
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Methyl (2-azido-3-O-benzyl-1-O-tert-butyldimethylsilyl-2-deoxy-αααα/ββββ-D-mannopyranosyl uronate) (21). Diol 

20 (8.77 g, 21.41 mmol) was dissolved in DCM/H2O (100 mL, 3/1, v/v), followed by 

addition of TEMPO (0.67 g, 4.23 mmol) and BAIB (17.24 g, 53.52 mmol). The resulting 

emulsion was vigorously stirred until analysis by TLC indicated complete conversion to the 

lower running uronic acid (Rf 0.41, PE/EtOAc, 1/1, v/v + 1% AcOH) after ~4 h. Then sat. aq. Na2S2O3 (50 mL) 

was added and the mixture was extracted with EtOAc (3 x 75 mL). The organic layers were dried over Na2SO4, 

concentrated in vacuo and co-evaporated with toluene. The crude uronic acid was dissolved in dry DMF (100 mL) 

and treated with MeI (3.99 mL, 64.1 mmol) and K2CO3 (17.75 g, 128 mmol). After the reaction was stirred for 2 

h, H2O and EtOAc were added, the layers were separated and the organic fraction was washed with sat. aq. NaCl. 

The combined aqueous layers were extracted with EtOAc. The organic fractions were dried over Na2SO4, 

concentrated in vacuo and purified using flash column chromatography (silica gel, 20% EtOAc in PE). The 

product was isolated as a colorless oil (Yield: 6.61 g, 15.1 mmol, 71%, β >> α). TLC: Rf 0.79 (PE/EtOAc, 1/1, 

v/v); IR (neat, cm-1): 841, 1088, 1747, 2108, 2934, 3431; 1H NMR (CDCl3, 400 MHz, HH-COSY, HSQC): δ 7.17-

7.35 (m, 5H, CHarom), 4.77 (s, 1H H-1 β), 4.68 (d, 1H, J = 12.1 Hz, CHH Bn), 4.63 (d, 1H, J = 12.2 Hz, CHH Bn), 

3.99 (t, 1H, J = 9.4 Hz, H-4), 3.65-3.72 (m, 5H, H-2, H-5, CH3 CO2Me), 3.41 (dd, 1H, J = 3.4, 9.2 Hz, H-3), 0.87 

(s, 9H, CH3 tBu), 0.11 (s, 3H, CH3 Me), 0.08 (s, 3H, CH3 Me); 13C-APT NMR (CDCl3, 100 MHz, HSQC): δ 168.8 

(C=O CO2Me), 137.3 (Cq Bn), 128.0, 127.4, 127.3 (CHarom), 95.2 (C-1 β), 78.2 (C-3), 74.3 (C-5), 71.8 (CH2 Bn), 

67.2 (C-4), 62.8 (C-2), 52.0 (CH3 CO2Me), 25.1 (CH3 tBu), 17.3 (Cq tBu), -4.7, -6.0 (CH3 Me); 13C-GATED 

(CDCl3, 100 MHz): δ 95.2 (JC1,H1 = 157 Hz, C-1 β); HRMS: [M+NH4]
+ calcd for C20H35N4O6Si 455.23204, found 

455.23208. 

 

Methyl (4-O-acetyl-2-azido-3-O-benzyl-1-O-tert-butyldimethylsilyl-2-deoxy-αααα/ββββ-D-mannopyranosyl uronate) 

(22). Compound 21 (4.0 g, 9.15 mmol) was dissolved in dry pyridine (45 mL) and reacted 

with acetyl chloride (0.98 mL, 13.7 mmol) at 0ºC. After 5 h the mixture was quenched with 

H2O, diluted with EtOAc and washed with sat. aq. NaCl (2x). The organic fractions were 

dried over Na2SO4, concentrated in vacuo and co-evaporated with toluene (2x) to yield the title compound as an 

off-white solid (Yield: 4.12 g, 8.6 mmol, 94%). Analytical data are reported for the β-anomer. TLC: Rf 0.58 

(PE/EtOAc, 2/1, v/v); IR (neat, cm-1): 841, 1103, 1236, 1369, 1749, 2110, 2932; 1H NMR (CDCl3, 400 MHz, HH-

COSY, HSQC): δ 7.28-7.42 (m, 5H, CHarom), 5.31 (t, 1H, J = 10.1 Hz, H-4), 4.92 (s, 1H, H-1), 4.72 (d, 1H, J = 

12.3 Hz, CHH Bn), 4.63 (d, 1H, J = 12.3 Hz, CHH Bn), 3.93 (d, 1H, J = 2.6 Hz, H-2), 3.86 (d, 1H, J = 9.9 Hz, H-

5), 3.70 (s, 3.5H, H-3, CH3 CO2Me), 3.67 (d, 0.5H, J = 3.2 Hz, H-3), 2.00 (s, 3H, CH3 Ac), 0.94 (s, 9H, CH3 tBu), 

0.20 (s, 3H, CH3 Me), 0.15 (s, 3H, CH3 Me); 13C-APT NMR (CDCl3, 100 MHz, HSQC): δ 169.0, 167.0 (C=O Ac, 

CO2Me), 137.0 (Cq Bn), 128.1, 127.6, 127.2 (CHarom), 95.0 (C-1), 76.4 (C-3), 72.5 (C-5), 71.6 (CH2 Bn), 67.5 (C-

4), 62.9 (C-2), 52.0 (CH3 CO2Me), 25.1 (CH3 tBu), 20.2 (CH3 Ac), 17.4 (Cq tBu), -4.6, -5.9 (CH3 Me); 13C-

GATED (CDCl3, 100 MHz): δ 95.0 (JC1,H1 = 157 Hz, C-1); HRMS: [M+Na]+ calcd for C22H33N3O7SiNa 

502.19800, found 502.19907. 

 

Methyl 6-O-(methyl 4-O-acetyl-2-azido-3-O-benzyl-2-deoxy-ββββ-D-mannopyranosyl uronate)-2,3,4-tri-O-

benzyl-αααα-D-glucopyranoside (27). Donor 1 (46 mg, 0.1 mmol) was condensed 

with acceptor 24 (70 mg, 0.15 mmol) using the general procedure for Ph2SO/Tf2O-

mediated glycosylations to provide the title compound as a white solid (Yield: 73 

mg, 0.9 mmol, 90%, α : β = 1 : 7). TLC: Rf 0.18 (PE/EtOAc, 2/1, v/v); [α]D
20 +1.7 

(c 1, DCM); IR (neat, cm-1): 733, 696, 1028, 1226, 1749, 2110, 2918; 1H NMR 

(CDCl3, 400 MHz, HH-COSY, HSQC): δ 7.20-7.40 (m, 20H, CHarom), 5.32 (t, 1H, J = 9.1 Hz, H-4’), 4.99 (d, 1H, 

J = 10.8 Hz, CHH Bn), 4.87 (d, 1H, J = 11.5 Hz, CHH Bn), 4.80 (d, 1H, J = 10.8 Hz, CHH Bn), 4.78 (d, 1H, J = 

12.0 Hz, CHH Bn), 4.62-4.68 (m, 3H, CHH Bn, CH2 Bn), 4.52-4.59 (m, 2H, CHH Bn, H-1), 4.28 (s, 1H, H-1’), 

4.10 (d, 1H, J = 9.7 Hz, H-6), 4.00 (t, 1H, J = 9.2 Hz, H-3), 3.80 (ddd, 1H, J = 1.5, 6.2, 9.7 Hz, H-5), 3.74 (d, 1H, 

J = 9.2 Hz, H-5’), 3.70 (bs, 4H, H-2’, CH3 CO2Me), 3.54 (dd, 1H, J = 3.6, 9.1 Hz, H-3’), 3.48 (dd, 1H, J = 3.5, 9.7 

Hz, H-2), 3.44 (dd, 1H, J = 6.4, 10.5 Hz, H-6), 3.35 (t, 1H, J = 9.6 Hz, H-4), 3.31 (s, 3H, CH3 OMe), 2.03 (s, 3H, 

CH3 Ac); 13C NMR (CDCl3, 100 MHz, HSQC): δ 169.2, 167.3 (C=O Ac, CO2Me), 138.5, 138.2, 137.9, 137.1 (Cq 

Bn), 128.4, 128.3, 128.2, 128.0, 127.9, 127.8, 127.6, 127.5 (CHarom), 99.6 (C-1’), 97.6 (C-1), 81.9 (C-3), 79.8 (C-

2), 77.5 (C-4), 76.4 (C-3’), 75.6, 74.5, 73.2 (CH2 Bn), 73.0 (C-5’), 72.0 (CH2 Bn), 69.5 (C-5), 68.8 (C-6), 68.0 (C-
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4’), 60.9 (C-2’), 55.0 (OMe), 52.5 (CH3 CO2Me), 20.6 (CH3 Ac); 13C-GATED (100 MHz, CDCl3): δ 99.6 (JC1’,H1’ 

= 159 Hz, C-1’), 97.7 (JC1,H1 = 159 Hz, C-1); HRMS: [M+Na]+ calcd for C44H49N3O12Na 834.32084, found 

834.32120. 

 

3-O-(Methyl 4-O-acetyl-2-azido-3-O-benzyl-2-deoxy-ββββ-D-mannopyranosyl uronate)-1,2:5,6-di-O-isopro-

pylidene-αααα-D-glucofuranose (28). Donor 1 (46 mg, 0.1 mmol) was condensed 

with acceptor 25 (39 mg, 0.15 mmol) using the general procedure for Ph2SO/Tf2O-

mediated glycosylations to provide the title compound as a white solid (Yield: 49 

mg, 0.85 mmol, 85% including 47% 1,2-O-isopropylidene-protected disaccharide). 

TLC: Rf 0.31 (PE/EtOAc, 1/1, v/v); [α]D
20 -53.3 (c 0.72, DCM); IR (neat, cm-1): 

1020, 1053, 1223, 1371, 1746, 2110, 2984; 1H NMR (CDCl3, 400 MHz, HH-

COSY, HSQC): δ 7.30-7.42 (m, 5H, CHarom), 5.94 (d, 1H, J = 3.7 Hz, H-1), 5.35 (t, 

1H, J = 9.3 Hz, H-4’), 4.70 (d, 1H, J = 12.3 Hz, CHH Bn), 4.64 (app d, 2H, J = 11.8 Hz, H-1’, CHH Bn), 4.49 (d, 

1H, J = 3.7 Hz, H-2), 4.43-4.48 (m, 1H, H-5), 4.32-4.37 (m, 2H, H-3, H-4), 4.18 (dd, 1H, J = 6.8, 8.4 Hz, H-6), 

4.03 (dd, 1H, J = 6.3, 8.4 Hz, H-6), 3.86 (d, 1H, J = 2.5 Hz, H-2’), 3.82 (d, 1H, J = 9.4 Hz, H-5’), 3.73 (s, 3H, CH3 

CO2Me), 3.67 (dd, 1H, J = 3.5, 9.2 Hz, H-3’), 2.03 (s, 3H, CH3 Ac), 1.49 (s, 3H, CH3 iPr), 1.44 (s, 3H, CH3 iPr), 

1.35 (s, 3H, CH3 iPr), 1.30 (s, 3H, CH3 iPr); 13C-APT NMR (CDCl3, 100 MHz, HSQC): δ 169.3, 167.1 (C=O Ac, 

CO2Me), 136.9 (Cq Bn), 128.6, 128.2, 127.8 (CHarom), 111.9, 108.4 (Cq iPr), 104.9 (C-1), 97.6 (C-1’), 82.7 (C-2), 

81.2 (C-3), 80.3 (C-4), 76.9 (C-3’), 73.2 (C-5, C-5’), 72.3 (CH2 Bn), 68.0 (C-4’), 65.6 (C-6), 61.3 (C-2’), 52.7 

(CH3 CO2Me), 26.7, 26.4, 26.2, 25.1 (CH3 iPr), 20.7 (CH3 Ac); 13C-GATED (CDCl3, 100 MHz): δ 104.9 (JC1,H1 = 

182 Hz, C-1), 97.6 (JC1’,H1’ = 157 Hz, C-1’); HRMS: [M+Na]+ calcd for C28H37N3O12Na 630.22694, found 

630.22605. 

 

Methyl 4-O-(methyl 4-O-acetyl-2-azido-3-O-benzyl-2-deoxy-ββββ-D-mannopyranosyl uronate)-2,3,6-tri-O-

benzyl-αααα-D-glucopyranoside (29). Donor 1 (46 mg, 0.1 mmol) was condensed 

with acceptor 26 (70 mg, 0.15 mmol) using the general procedure for 

Ph2SO/Tf2O-mediated glycosylations to provide the title compound as an 

amorphous white solid (Yield: 43 mg, 0.53 mmol, 53%, α : β = 1 : 4). The 

anomeric ratio was determined by 1H NMR analysis of the mixture after Sephadex chromatography, using 

diagnostic signals of the α-coupled product: δ 5.62 (d, J = 5.8 Hz, H-1’), 5.42 (dd, J = 5.3, 5.9 Hz, H-4), 4.28 (d, J 

= 5.0 Hz, H-5’). Data for the β-coupled product 29: Rf 0.24 (PE/EtOAc, 2/1, v/v); [α]D
20 +8.7 (c 0.68, DCM); IR 

(neat, cm-1) 1047, 1099, 1231, 1751, 2110, 2910; 1H NMR (CDCl3, 400 MHz, HH-COSY, HSQC) δ 7.20-7.38 (m, 

20H, CHarom), 5.21 (t, 1H, J = 9.8 Hz, H-4’), 4.99 (d, 1H, J = 11.2 Hz, CHH Bn), 4.86 (d, 1H, J = 11.2 Hz, CHH 

Bn), 4.74 (d, 1H, J = 12.1 Hz, CHH Bn), 4.69 (d, 1H, J = 12.0 Hz, CHH Bn), 4.57-4.62 (m, 3H, H-1, H-1’, CHH 

Bn), 4.49 (d, 1H, J = 12.3 Hz, CHH Bn), 4.42 (d, 1H, J = 12.0 Hz, CHH Bn), 4.36 (d, 1H, J = 12.3 Hz, CHH Bn), 

3.98 (t, 1H, J = 9.1 Hz, H-3), 3.88 (t, 1H, J = 9.1 Hz, H-4), 3.76-3.82 (m, 2H, H-5, H-6), 3.73 (d, 1H, J = 2.8 Hz, 

H-2’), 3.64 (dd, 1H, J = 2.5, 11.8 Hz, H-6), 3.57 (s, 3H, CH3 CO2Me), 3.52 (dd, 1H, J = 3.6, 9.4 Hz, H-2), 3.47 (d, 

1H, J = 9.9 Hz, H-5’), 3.37 (s, 3H, CH3 OMe), 3.28 (dd, 1H, J = 3.5, 9.6 Hz, H-3’), 1.97 (s, 3H, CH3 Ac); 13C 

NMR (CDCl3, 100 MHz, HSQC) δ 169.4, 167.2 (C=O Ac, CO2Me), 139.1, 138.0, 137.8, 137.3 (Cq Bn), 128.6, 

128.5, 128.4, 128.2, 128.1, 128.0, 127.8, 127.6, 127.4, 127.2 (CHarom), 99.6 (C-1’), 98.2 (C-1), 80.3 (C-3), 79.6 

(C-2), 77.4 (C-3’), 77.4 (C-4), 75.2, 73.6, 73.4 (CH2 Bn), 73.4 (C-5’), 71.9 (CH2 Bn), 69.1 (C-5), 68.6 (C-6), 68.1 

(C-4’), 61.6 (C-2’), 55.3 (OMe), 52.5 (CH3 CO2Me), 20.6 (CH3 Ac); 13C-GATED (100 MHz, CDCl3) δ 99.6 

(JC1’,H1’ = 155 Hz, C-1’), 98.2 (JC1,H1 = 164 Hz, C-1); HRMS [M+Na]+ calcd for C44H49N3O12Na 834.32084, found 

834.32131. 

 

2,3,4-Tri-O-benzyl-6-O-(9-fluorenylmethoxycarbonyl)-1-O-(N-phenyl-trifluoroacetimidoyl)-αααα-D-glucopyra-

noside (33). A solution of 2,3,4-tri-O-benzyl-α/β-D-glucopyranose67 (3.0 g, 6.66 mmol) 

and N-phenyl trifluoroacetimidoyl chloride65 (2.02 mL, 13.3 mmol) in acetone (60 mL) 

was treated with K2CO3 (1.11 g, 7.99 mmol) at room temperature for 48 h. The mixture 

was diluted with EtOAc (60 mL) and H2O (60 mL), the phases were separated and the 

organic fractions were washed with sat. aq. NaCl (2x). The aqueous layers were 

extracted with EtOAc and the combined organic layers were dried over Na2SO4 and concentrated in vacuo. The 

O

BnO

BnO
BnO

O

FmocO

CF3

NPh



 Chapter 3 

 

58 

residue was dissolved in dry DCM (60 mL) and pyridine (5.4 mL, 66.6 mmol) and 9-fluorenylmethyl 

chloroformate (3.45 g, 13.3 mmol) were added. After 40 min TLC analysis indicated complete conversion of the 

starting material after which the mixture was partitioned between EtOAc and H2O. The organic layer was washed 

with sat. aq. NaCl (3x), dried over Na2SO4, concentrated in vacuo and purified using flash column 

chromatography (silica gel, 8% EtOAc in PE) to obtain the title compound as a colorless oil (Yield: 4.66 g, 5.52 

mmol, 83%). TLC: Rf 0.41 (PE/EtOAc, 6/1, v/v); [α]D
20 +30.5 (c 1, DCM); IR (neat, cm-1): 727, 907, 1082, 1747; 

1H NMR (CDCl3, 400 MHz, HH-COSY, HSQC): δ 7.70 (dd, 2H, J = 0.9, 7.5 Hz, CHarom Fmoc), 7.59 (d, 1H, J = 

7.5 Hz, CHarom Fmoc), 7.56 (d, 1H, J = 7.4 Hz, CHarom Fmoc), 7.18-7.37 (m, 20H, CHarom), 7.03 (app t, 2H, J = 7.6 

Hz, CHarom NPh), 6.86 (d, 2H, J = 7.7 Hz, CHarom NPh), 5.64 (bs, 1H, H-1), 4.92 (d, 1H, J = 11.1 Hz, CHH Bn), 

4.78-4.86 (m, 3H, CH2 Bn), 4.75 (d, 1H, J = 11.0 Hz, CHH Bn), 4.56 (d, 1H, J = 10.9 Hz, CHH Bn), 4.33-4.43 

(m, 3H, CH2 Fmoc, H-6), 4.26 (dd, 1H, J = 4.3, 11.6 Hz, H-6), 4.12 (t, 1H, J = 7.3 Hz, CH Fmoc), 3.56-3.73 (m, 

3H, H-3, H-4, H-5), 3.48 (bs, 1H, H-2); 13C-APT NMR (CDCl3, 100 MHz, HSQC): δ 154.7 (C=O Fmoc), 143.3, 

143.2, 143.1, 141.1 (Cq Fmoc, NPh), 138.1, 137.5, 137.4 (Cq Bn), 128.4, 128.3, 128.0, 127.9, 127.8, 127.7, 127.6, 

127.1, 125.0, 124.7, 119.9, 119.2 (CHarom), 116.0 (q, J = 284 Hz, CF3), 96.8 (C-1), 84.2, 80.6, 76.6 (C-3, C-4, C-

5), 75.5, 74.9 (CH2 Bn), 73.4 (C-2), 69.9 (CH2 Fmoc), 65.9 (C-6), 46.6 (CH Fmoc); 13C-GATED (CDCl3, 100 

MHz): δ 96.8 (JC1,H1 = 167 Hz, C-1); HRMS: [M(hemiacetal)+Na]+ calcd for C42H40O8Na 695.26154, found 

695.26167. 

 

Methyl (phenyl-4-O-[2,3,4-tri-O-benzyl-6-O-{9-fluorenylmethoxycarbonyl}-αααα-D-gluco-pyranosyl]-2-azido-3-

O-benzyl-2-deoxy-1-thio-ββββ-D-mannopyranosyl uronate) (34). Imidate 33 

(1.70 g, 2.02 mmol) and acceptor 14 (1.89 g, 1.5 mmol) were together co-

evaporated with dry toluene (2x). Et2O (40 mL, dried over 4Å MS prior to use) 

was added and the mixture was cooled to -35ºC. TfOH (40 µL, 0.45 mmol) was 

added and the mixture was allowed to warm to -15ºC over 90 min. Then pyridine (1 mL) was added, the mixture 

was diluted with EtOAc and washed with sat. aq. NaCl (2x). The organic layer was dried over Na2SO4, 

concentrated in vacuo and purified using column chromatography (silica gel, 20% EtOAc in PE) to yield the title 

compound as a white foam (1.44 g, 1.35 mmol, 90%). TLC: Rf 0.47 (PE/EtOAc, 3/1, v/v); [α]D
20 +34.4 (c 1, 

DCM); IR (neat, cm-1): 725, 905, 1070, 1452, 1747, 2110; 1H NMR (CDCl3, 400 MHz, HH-COSY, HSQC): δ 

7.74 (d, 2H, J = 7.5 Hz, CHarom), 7.60 (dd, 2H, J = 7.5, 11.1 Hz, CHarom), 7.00-7.50 (m, 29H, CHarom), 5.31 (d, 1H, 

J = 3.4 Hz, H-1’), 4.97 (d, 1H, J = 10.8 Hz, CHH Bn), 4.89 (d, 1H, J = 10.9 Hz, CHH Bn), 4.83 (d, 1H, J = 10.8 

Hz, CHH Bn), 4.72 (d, 1H, J = 0.9 Hz, H-1), 4.69 (d, 2H, J = 6.4 Hz, CH2 Bn), 4.57-4.63 (m, 3H, CHH Bn, CH2 

Bn), 4.32-4.46 (m, 5H, H-4, H-6, H-6, CH2 Fmoc), 4.23 (t, 1H, J = 7.2 Hz, CH Fmoc), 4.05 (d, 1H, J = 2.5 Hz, H-

2), 3.94 (t, 1H, J = 9.2 Hz, H-3’), 3.86 (d, 1H, J = 9.4 Hz, H-5), 3.76 (dd, 1H, J = 3.6, 9.1 Hz, H-3), 3.73 (s, 3H, 

CH3 CO2Me), 3.65-3.72 (m, 1H, H-5’), 3.58-3.64 (m, 1H, H-4’), 3.52 (dd, 1H, J = 3.5, 9.8 Hz, H-2’); 13C NMR 

(CDCl3, 100 MHz, HSQC): δ 167.4 (C=O CO2Me), 154.9 (C=O Fmoc), 143.4, 143.1, 141.2 (Cq Fmoc), 138.4, 

137.9, 137.2 (Cq Bn), 133.9 (Cq SPh), 131.0, 128.5, 128.3, 127.9, 127.8, 127.6, 127.1, 125.1, 125.0, 120.0 

(CHarom), 98.5 (C-1’), 86.6 (C-1), 81.3 (C-3, C-3’), 79.7 (C-2’), 79.1 (C-5), 76.7 (C-4’), 75.5, 75.1 (CH2 Bn), 74.8 

(C-4), 73.0, 72.9 (CH2 Bn), 69.8 (CH2 Fmoc), 69.7 (C-5’), 65.8 (C-6’), 63.2 (C-2), 52.8 (CH3 CO2Me), 46.6 (CH 

Fmoc); 13C-GATED (100 MHz, CDCl3): δ 98.5 (JC1,H1 = 172 Hz, C-1’), 86.6 (JC1,H1 = 154 Hz, C-1); HRMS: 

[M+Na]+ calcd for C62H59N3O12SNa 1092.37117, found 1092.37178. 

 

Methyl 6-O-(methyl 4-O-[2,3,4-tri-O-benzyl-6-O-{9-fluorenylmethoxycarbonyl}-αααα-D-glucopyranosyl]-2-

azido-3-O-benzyl-2-deoxy-ββββ-D-mannopyranosyl uronate)-2,3,4-tri-

O-benzyl-αααα-D-glucopyranoside (37). Disaccharide 34 (123 mg, 0.12 

mmol), Ph2SO (30 mg, 0.15 mmol) and TTBP (71 mg, 0.29 mmol) 

were together co-evaporated with dry toluene (2x), then dissolved in 

freshly distilled DCM (2.3 mL) and cooled to -65 ºC. Tf2O (25 µL, 

0.15 mmol) was added and the mixture was warmed to -55º C during 

15 min. The reaction was cooled back to -60 ºC and a solution of 

acceptor 24 (80 mg, 0.17 mmol, co-evaporated twice with dry toluene prior to use) in dist. DCM (1 mL) was 

slowly added. The mixture was warmed to -40 ºC in 1 h, quenched with pyridine (0.2 mL), diluted with EtOAc 

(20 mL) and washed with sat. aq. NaCl (2 x 30 mL). The organic fraction was dried over Na2SO4, concentrated in 
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vacuo and purified by passing the residue through a column of Sephadex LH-20 (eluted with DCM/MeOH, 1/1, 

v/v) followed by column chromatography (silica gel, 25% EtOAc in PE) to afford the title compound as a 

colorless oil (107 mg, 75 µmol, 65%). TLC: Rf 0.47 (PE/EtOAc, 2/1, v/v); [α]D
20 +39.8 (c 1, DCM); IR (neat, cm-

1): 698, 739, 1028, 1072, 1257, 1749, 2110, 2910; 1H NMR (CDCl3, 400 MHz, HH-COSY, HSQC): δ 7.74 (d, 2H, 

J = 7.5 Hz, CHarom Fmoc), 7.60 (t,2H, J = 8.6 Hz, CHarom Fmoc), 7.10-7.50 (m, 39H, CHarom), 5.28 (d, 1H, J = 3.5 

Hz, H-1”), 4.99 (d, 1H, J = 10.8 Hz, CHH Bn), 4.98 (d, 1H, J = 10.9 Hz, CHH Bn), 4.88 (d, 1H, J = 10.9 Hz, 

CHH Bn), 4.80-4.86 (m, 3H, CHH Bn, CH2 Bn), 4.77 (d, 2H, J = 11.9 Hz, CHH Bn, CHH Bn), 4.47-4.70 (m, 7H, 

CH2 Bn, H-1), 4.26-4.45 (m, 6H, H-1’, H-4’, H-6”, H-6”, CH2 Fmoc), 4.23 (t, 1H, J = 7.3 Hz, CH Fmoc), 4.04-

4.10 (m, 1H, H-6), 3.98 (t, 1H, J = 9.2 Hz, H-3), 3.93 (t, 1H, J = 9.3 Hz, H-3”), 3.83 (d, 1H, J = 8.6 Hz, H-5’), 

3.73-3.80 (m, 1H, H-5), 3.65-3.73 (m, 1H, H-5”), 3.68 (s, 3H, CH3 CO2Me), 3.56-3.65 (m, 3H, H-2’, H-3’, H-4”), 

3.52 (dd, 1H, J = 3.5, 9.8 Hz, H-2”), 3.38-3.50 (m, 2H, H-2, H-6), 3.32 (t, 1H, J = 9.4 Hz, H-4), 3.28 (s, 3H, CH3 

OMe); 13C NMR (CDCl3, 100 MHz, HSQC): δ 168.0 (C=O CO2Me), 154.9 (C=O Fmoc), 143.4, 143.2, 141.2 (Cq 

Fmoc), 138.7, 138.5, 138.2, 138.1, 137.9, 137.9, 137.5 (Cq Bn), 127.1-128.5 (CHaromBn), 125.2, 125.1, 120.0 

(CHarom Fmoc), 99.8 (C-1’), 98.1 (C-1”), 97.7 (C-1), 82.0 (C-3), 81.3 (C-3”), 79.9 (C-2), 79.6 (C-2”), 78.7 (C-4”), 

77.6 (C-4), 76.8 (C-3’), 75.7, 75.6 (CH2 Bn), 75.2 (C-5’), 75.1, 74.7 (CH2 Bn), 74.4 (C-4’), 73.3, 72.9, 72.2 (CH2 

Bn), 69.9 (CH2 Fmoc), 69.7 (C-5), 69.6 (C-5”), 68.7 (C-6), 65.9 (C-6”), 60.7 (C-2’), 55.0 (OMe), 52.7 (CH3 

CO2Me), 46.7 (CH Fmoc); 13C-GATED (CDCl3, 100 MHz): δ 99.8 (JC1’,H1’ = 162 Hz, C-1’), 98.2 (JC1”,H1” = 170Hz, 

C-1”), 97.7 (JC1,H1 = 164 Hz, C-1); HRMS: [M+Na]+ calcd for C84H85N3O18Na 1446.57203, found 1446.57310. 

 

Methyl 6-O-(methyl 4-O-[2,3,4-tri-O-benzyl-αααα-D-glucopyranosyl]-2-azido-3-O-benzyl-2-deoxy-ββββ-D-manno-

pyranosyl uronate)-2,3,4-tri-O-benzyl-αααα-D-glucopyranoside (38). A 

solution of compound 37 (1.26 g, 0.89 mmol) in THF (18 mL) was 

cooled to 0 ºC under an argon atmosphere. TBAF (1M sln in THF, 89 

µL, 89 µmol) was added and the reaction was stirred at +4 ºC for 24 h. 

The mixture was quenched with sat. aq. NaHCO3, diluted with EtOAc, 

washed with sat. aq. NaCl (2x), dried over Na2SO4 and concentrated in 

vacuo. Purification using flash column chromatography (silica gel, 

50% EtOAc in PE) afforded the title product as a colorless oil (Yield: 1.0 g, 0.87 mmol, 98%). TLC: Rf 0.50 

(PE/EtOAc, 1/1, v/v); [α]D
20 +42.5 (c 1, DCM); IR (neat, cm-1): 696, 729, 1026, 1069, 1751, 2110, 2882; 1H NMR 

(CDCl3, 400 MHz, HH-COSY, HSQC): δ 7.20-7.40 (m, 35H, CHarom), 5.19 (d, 1H, J = 3.6 Hz, H-1”), 4.98 (d, 1H, 

J = 10.2 Hz, CHH Bn), 4.96 (d, 1H, J = 9.3 Hz, CHH Bn), 4.85-4.90 (m, 3H, CHH Bn, CH2 Bn), 4.80 (d, 1H, J = 

11.0 Hz, CHH Bn), 4.76 (d, 1H, J = 12.1 Hz, CHH Bn), 4.57-4.70 (m, 6H, CH2 Bn), 4.54 (s, 1H, H-1), 4.76 (d, 

1H, J = 12.1 Hz, CHH Bn), 4.28 (s, 1H, H-1’), 4.28 (t, 1H, J = 8.4 Hz, H-4’), 4.04-4.13 (m, 1H, H-6), 3.99 (t, 1H, 

J = 9.2 Hz, H-3), 3.91 (t, 1H, J = 9.2 Hz, H-3”), 3.83 (d, 1H, J = 8.7 Hz, H-5’), 3.73-3.80 (m, 2H, H-5, H-6”), 3.68 

(s, 3H, CH3 CO2Me), 3.64 (bd, 2H, J= 3.4 Hz, H-2’, H-6”), 3.59 (dd, 1H, J = 3.6, 8.5 Hz, H-3’), 3.40-3.56 (m, 5H, 

H-2, H-2”, H-4”, H-5”, H-6), 3.34 (t, 1H, J = 9.4 Hz, H-4), 3.29 (s, 3H, CH3 OMe), 1.97 (bs, 1H, 6”-OH); 13C 

NMR (CDCl3, 100 MHz, HSQC): δ 168.1 (C=O CO2Me), 138.5, 138.4, 138.1, 138.0, 137.9, 137.8, 137.4 (Cq Bn), 

128.3, 128.2, 128.0, 127.9, 127.8, 127.7, 127.6, 127.4 (CHarom), 99.7 (C-1’), 97.8 (C-1), 97.6 (C-1”), 81.9 (C-3”), 

81.1 (C-3), 79.8, 79.6 (C-2, C-2”), 78.7 (C-3’), 77.4 (C-4), 77.1 (C-4”), 75.6, 75.4 (CH2 Bn), 75.2 (C-5’), 74.9, 

74.5 (CH2 Bn), 73.9 (C-4’), 73.2, 72.9, 72.3 (CH2 Bn), 72.0 (C-5”), 69.5 (C-5), 68.6 (C-6), 61.4 (C-6”), 60.9 (C-

2’), 54.9 (OMe), 52.5 (CH3 CO2Me); 13C-GATED (100 MHz, CDCl3): δ 99.7 (JC1’,H1’= 160 Hz, C-1’), 97.8 (JC1,H1 

= 169 Hz, C-1), 97.6 (JC1”,H1”= 167 Hz, C-1”); HRMS: [M+Na]+ calcd for C69H75N3O16Na 1224.50395, found 

1224.50511. 

 

Methyl 6-O-(methyl 4-O-[6-O-{methyl 4-O-(2,3,4-tri-O-benzyl-6-O-[9-fluorenylmethoxycarbonyl]-αααα-D-glu-

copyranosyl)-2-azido-3-O-benzyl-2-deoxy-ββββ-D-mannopyra-

nosyl uronate}-2,3,4-tri-O-benzyl-αααα-D-glucopyranosyl]-2-

azido-3-O-benzyl-2-deoxy-ββββ-D-mannopyranosyl uronate)-

2,3,4-tri-O-benzyl-αααα-D-glucopyranoside (39). Disaccharide 

34 (214 mg, 0.2 mmol), Ph2SO (53 mg, 0.26 mmol) and TTBP 

(124 mg, 0.5 mmol) were together co-evaporated with dry 

toluene (2x), then dissolved in freshly distilled DCM (2.3 mL) 
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and cooled to -70ºC. Tf2O (37 µL, 0.22 mmol) was added and the reaction was allowed to warm to -60ºC in 30 

min, then cooled to -80ºC and a solution of acceptor 38 (172 mg, 0.14 mmol, co-evaporated twice with dry toluene 

prior to use) in dist. DCM (1 mL) was slowly added. The reaction was allowed to stir at -80 ºC overnight 

(cryostat). Then pyridine (0.2 mL) was added, the mixture was diluted with EtOAc, washed with sat. aq. NaCl 

(2x), dried over Na2SO4, concentrated in vacuo and purified by passing the residue through a column of Sephadex 

LH-20 (eluted with DCM/MeOH, 1/1, v/v) yielding the title compound as a white foam (200 mg, 92 µmol, 65%). 

TLC: Rf 0.26 (PE/EtOAc, 2/1, v/v); [α]D
20 +36.4 (c 1, DCM); IR (neat, cm-1): 696, 727, 907, 1028, 1258, 1452, 

1749, 2110; 1H NMR (CDCl3, 400 MHz, HH-COSY, HSQC): δ 7.74 (d, 2H, J = 7.6 Hz, CHarom), 7.60 (dd, 2H, J = 

7.5, 10.8 Hz, CHarom), 7.19-7.40 (m, 59H, CHarom), 5.35 (d, 1H, J = 3.5 Hz, H-1Glc), 5.21 (d, 1H, J = 3.5 Hz, H-

1Glc), 4.99 (d, 1H, J = 11.1 Hz, CHH Bn), 4.98 (d, 1H, J = 10.9 Hz, CHH Bn), 4.96 (d, 1H, J = 12.2 Hz, CHH Bn), 

4.88 (d, 1H, J = 10.7 Hz, CHH Bn), 4.74-4.86 (m, 7H, CH2 Bn), 4.49-4.72 (m, 12H, CH2 Bn, H-1Glc), 4.26-4.44 

(m, 8H, H-1Man, H-1Man, H-4Man, H-4Man, H-6Glc, H-6Glc, CH2 Fmoc), 4.23 (t, 1H, J = 7.5 Hz, CH Fmoc), 4.10 (d, 

1H, J = 9.4 Hz, H-6Glc), 3.98 (t, 2H, J = 8.8 Hz, H-3Glc, H-6Glc), 3.87-3.94 (m, 2H, H-3Glc, H-3Glc), 3.85 (d, 1H, J = 

8.2 Hz, H-5Man), 3.82 (m, 1H, H-2Man), 3.79 (d, 1H, J = 9.3 Hz, H-5Man), 3.72-3.77 (m, 1H, H-5Glc), 3.69 (s, 3H, 

CH3 CO2Me), 3.64 (bs, 5H, H-3Man, H-5Glc, CH3 CO2Me), 3.54-3.62 (m, 5H, H-2Man, H-3Man, H-4Glc, H-5Glc, H-

6Glc), 3.50 (dd, 1H, J = 3.7, 10.0 Hz, H-2Glc), 3.37-3.49 (m, 4H, H-2Glc, H-2Glc, H-4Glc, H-6Glc), 3.32 (t, 1H, J = 9.6 

Hz, H-4Glc), 3.26 (CH3 OMe); 13C NMR (CDCl3, 100 MHz, HSQC): δ 168.2, 168.0 (C=O CO2Me), 154.9 (C=O 

Fmoc), 143.4, 143.2, 141.2, 141.2 (Cq Fmoc), 138.6, 138.5, 138.5, 138.4, 138.2, 138.0, 138.0, 137.9, 137.9, 137.5, 

137.4 (Cq Bn), 128.4, 128.3, 127.8, 127.7, 127.5, 127.3, 127.1 (CHarom), 125.2, 125.1, 119.9 (CHarom Fmoc), 99.7, 

99.7 (C-1Man), 97.9, 97.7, 97.7 (C-1Glc), 82.0, 81.4, 81.3 (C-3Glc), 79.9, 79.6 (C-2Glc), 79.4, 79.4 (C-2Glc, C-3Man), 

78.6 (C-3Man), 77.7 (C-4Glc), 76.9, 76.7 (C-4Glc), 75.7, 75.5, 75.4 (CH2 Bn), 75.3 (C-5Man), 75.0 (CH2 Bn), 74.9 (C-

5Man), 74.7, 74.7 (CH2 Bn), 74.0, 73.6 (C-4Man), 73.3, 73.1, 72.7, 72.1, 71.8 (CH2 Bn), 70.9 (C-5Glc), 69.8 (CH2 

Fmoc), 69.6, 69.5 (C-5Glc), 68.7, 67.6, 65.8 (C-6Glc), 60.8, 60.3 (C-2Man), 55.0 (OMe), 52.6, 52.6 (CH3 CO2Me), 

46.6 (CH Fmoc); 13C-HMBC (150 MHz, CDCl3): δ 99.7 (JC1,H1 = 161 Hz, C-1Man), 99.7 (JC1,H1 = 160 Hz, C-1Man), 

97.9 JC1,H1 = 171 Hz, C-1Glc), 97.7 (JC1,H1 = 171 Hz, C-1Glc), 97.7 (JC1,H1 = 168 Hz, C-1Glc); HRMS: [M+NH4]
+ calcd 

for C125H132N7O28 2179.91484, found 2179.91016. 

 

Methyl 6-O-(methyl 4-O-[6-O-{methyl 4-O-(2,3,4-tri-O-benzyl-αααα-D-glucopyranosyl)-2-azido-3-O-benzyl-2-

deoxy-ββββ-D-mannopyranosyl uronate}-2,3,4-tri-O-benzyl-αααα-D-

glucopyranosyl]-2-azido-3-O-benzyl-2-deoxy-ββββ-D-mannopyra-

nosyl uronate)-2,3,4-tri-O-benzyl-αααα-D-glucopyranoside (40). A 

solution of compound 39 (133 mg, 62 µmol) in dry pyridine (1.3 

mL) was treated with Et3N (0.13 mL, 0.9 mmol) at RT. After 3 h 

TLC analysis indicated complete consumption of the starting 

material and the reaction was diluted with EtOAc (10 mL), washed 

with sat. aq. NaCl (2x), dried over Na2SO4 and concentrated in vacuo. Purification using flash column 

chromatography (silica gel, 50% EtOAc in PE) afforded the title compound as a colorless oil (106 mg, 55 µmol, 

89%). TLC: Rf 0.73 (PE/EtOAc, 1/1, v/v); [α]D
20 +35.9 (c 1, DCM); IR (neat, cm-1): 696, 733, 1026, 1070, 1751, 

2108, 2880; 1H NMR (CDCl3, 400 MHz, HH-COSY, HSQC): δ 7.19-7.37 (m, 55H, CHarom), 5.24 (d, 1H, J = 3.6 

Hz, H-1Glc), 5.21 (d, 1H, J = 3.5 Hz, H-1Glc), 4.98 (d, 1H, J = 7.4 Hz, CHH Bn), 4.96 (d, 1H, J = 7.5 Hz, CHH Bn), 

4.74-4.89 (m, 7H, CH2 Bn), 4.70 (d, 1H, J = 12.0 Hz, CHH Bn), 4.54-4.68 (m, 10H, CH2 Bn), 4.49-4.54 (m, 3H, 

CH2 Bn, H-1Glc), 4.34 (s, 1H, H-1Man), 4.21-4.30 (m, 2H, H-4Man, H-4Man), 4.24 (s, 1H, H-1Man), 4.10 (dd, 1H, J = 

1.1, 10.4 Hz, H-6Glc), 3.98 (bt, 2H, J = 9.1 Hz, H-3Glc, H-6Glc), 3.90 (bt, 2H, J = 9.5 Hz, H-3Glc, H-3Glc), 3.85 (d, 

1H, J = 8.2 Hz, H-5Man), 3.79 (bd, 2H, J = 9.2 Hz, H-2Man, H-5Man), 3.73-3.76 (m, 2H, H-5Glc, H-6Glc-OH), 3.69 (s, 

3H, CH3 CO2Me), 3.64 (s, 3H, CH3 CO2Me), 3.54-3.63 (m, 6H, H-2Man, H-3Man, H-3ManH-5Glc, H-6Glc-OH, H-6Glc), 

3.38-3.49 (m, 7H, H-2Glc, H-2Glc, H-2Glc, H-4Glc, H-4Glc, H-5Glc, H-6Glc), 3.32 (t, 1H, J = 9.4 Hz, H-4Glc), 3.26 (s, 3H, 

CH3 OMe), 1.93 (s, 1H, 6-OHGlc); 
13C NMR (CDCl3, 100 MHz, HSQC): δ 168.2 (C=O CO2Me), 138.6, 138.5, 

138.5, 138.3, 138.1, 138.1, 138.0, 138.0, 137.9, 137.5, 137.4 (Cq Bn), 128.4, 128.3, 128.0, 127.9, 127.8, 127.7, 

127.6, 127.5, 127.3 (CHarom), 99.7, 99.7 (C-1Man), 97.7, 97.6 (C-1Glc), 82.0, 81.4, 81.2 (C-3Glc), 79.8 (C-2Glc), 79.6, 

79.5, 79.4 (C-2Glc, C-2Glc, C-3Man), 78.6 (C-3Man), 77.7, 77.1, 76.8 (C-4Glc), 75.7, 75.5, 75.5 (CH2 Bn), 75.4 (C-

5Man), 75.0 (CH2 Bn), 74.9 (C-5Man), 74.7, 74.7 (CH2 Bn), 73.7, 73.5 (C-4Man), 73.3, 73.1, 72.8, 72.1, 72.1 (CH2 

Bn), 72.0, 70.9 (C-5Glc), 68.7, 67.6 (C-6Glc), 61.6 (C-6Glc-OH), 61.1, 60.3 (C-2Man), 55.0 (OMe), 52.7, 52.6 (CH3 
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CO2Me); 13C-HMBC (100 MHz, CDCl3): δ99.7 (JC1,H1 = 160 Hz, C-1Man), 99.7 (JC1,H1 = 160 Hz, C-1Man), 97.7 

(JC1,H1 = 168 Hz, C-1Glc), 97.7 (JC1,H1 = 170 Hz, C-1Glc), 97.6 (JC1,H1 = 170 Hz, C-1Glc); HRMS: [M+NH4]
+ calcd for 

C110H122N7O26 1956.84340, found 1956.84289. 

 

Methyl 6-O-(methyl 4-O-[6-O-{methyl 4-O-(6-O-[methyl 4-O{2,3,4-tri-O-benzyl-6-O-(9-fluorenylmethoxy-

carbonyl)-αααα-D-glucopyranosyl}-2-azido-3-O-benzyl-2-

deoxy-ββββ-D-mannopyranosyl uronate]-2,3,4-tri-O-benzyl-αααα-

D-glucopyranosyl)-2-azido-3-O-benzyl-2-deoxy-ββββ-D-manno-

pyranosyl uronate}-2,3,4-tri-O-benzyl-αααα-D-glucopyranosyl]-

2-azido-3-O-benzyl-2-deoxy-ββββ-D-mannopyranosyl uronate)-

2,3,4-tri-O-benzyl-αααα-D-glucopyranoside (41). Disaccharide 

34 (230 mg, 0.22 mmol), Ph2SO (43 mg, 0.22 mmol) and TTBP 

(53 mg, 0.22 mmol) were together co-evaporated with dry toluene (2x), then dissolved in freshly distilled DCM 

(1.4 mL) and cooled to -70ºC. Tf2O (35 µL, 0.21 mmol) was added and the reaction was allowed to warm to -55ºC 

in 15 min, then cooled to -80ºC and a solution of acceptor 40 (139 mg, 72 µmol, co-evaporated twice with dry 

toluene prior to use) in dist. DCM (1 mL) was slowly added. The reaction was allowed to stir at -80 ºC over 2 

nights (cryostat). Then pyridine (0.02 mL) was added, the mixture was diluted with EtOAc, washed with sat. aq. 

NaCl (2x), dried over Na2SO4, concentrated in vacuo and purified by passing the residue through a column of 

Sephadex LH-20 (eluted with DCM/MeOH, 1/1, v/v) and subsequent flash column chromatography (silica gel, 

33% EtOAc in PE) yielding the title compound as a colorless oil (Yield: 47 mg, 16.4 µmol, 23%). Acceptor 20 

was recovered in 40%. TLC: Rf 0.37 (PE/EtOAc, 2/1, v/v); [α]D
20 +33.6 (c 1, DCM); IR (neat, cm-1): 698, 739, 

1028, 1072, 1749, 2108, 2956; 1H NMR (CDCl3, 400 MHz, HH-COSY, HSQC, tentatively assigned based on 1H 

NMR of compound 39): δ 7.76 (d, 2H, J = 7.5 Hz, CHarom), 7.62 (dd, 2H, J = 7.5, 11.4 Hz, CHarom), 7.20-7.43 (m, 

79H, CHarom), 5.38 (d, 1H, J = 3.5 Hz, H-1Glc), 5.33 (d, 1H, J = 3.4 Hz, H-1Glc), 5.22 (d, 1H, J = 3.4 Hz, H-1Glc), 

5.01 (d, 1H, J = 10.8 Hz, CHH Bn), 4.99 (d, 1H, J = 10.6 Hz, CHH Bn), 4.97 (d, 1H, J = 10.8 Hz, CHH Bn), 4.75-

4.92 (m, 10H, CH2 Bn), 4.58-4.72 (m, 15H, CH2 Bn), 4.50-4.58 (m, 3H, CH2 Bn, H-1Glc), 4.32-4.45 (m, 7H, H-

1Man, H-6Glc,H-6Glc,H-6Glc,H-6Glc, CH2 Fmoc), 4.22-4.32 (m, 6H, H-1Man, H-1Man, H-4Man, H-4Man, H-4Man, CH 

Fmoc), 4.11 (d, 1H, J = 9.8 Hz, H-6Glc), 3.90 (t, 2H, J = 9.1 Hz, H-3Glc, H-6Glc), 3.82-3.95 (m, 4H, H-3Glc, H-3Glc, 

H-3Glc, H-5Man), 3.73-3.82 (m, 5H, H-2Man, H-2Man, H-5Glc, H-5Man, H-5Man), 3.71 (s, 3H, CH3 CO2Me), 3.70 (s, 3H, 

CH3 CO2Me), 3.64 (s, 3H, CH3 CO2Me), 3.55-3.63 (m, 7H, H-2Man, H-3Man, H-3Man, H-3Man, H-4Glc, H-5Glc, H-6Glc), 

3.39-3.55 (m, 8H, H-2Glc, H-2Glc, H-2Glc, H-2Glc, H-4Glc, H-4Glc, H-5Glc, H-6Glc), 3.33 (t, 1H, J = 9.4 Hz, H-4Glc), 3.27 

(s, 3H, CH3 OMe); 13C-APT NMR (CDCl3, 100 MHz, HSQC, tentatively assigned based on 13C NMR of 

compound 39): δ 168.2, 168.2, 168.0 (C=O CO2Me), 154.9 (C=O Fmoc), 143.5, 143.2, 141.2, 141.2 (Cq Fmoc), 

138.6, 138.6, 138.5, 138.5, 138.4, 138.2, 138.0, 138.0, 138.0, 137.9, 137.5, 137.5, 137.4 (Cq Bn), 128.4, 127.9, 

127.8, 127.7, 127.6, 127.5, 127.4, 127.3, 127.2, 127.1 (CHarom), 125.2, 125.1, 120.0 (CHarom Fmoc), 99.8, 99.7, 

99.7 (C-1Man), 97.9, 97.8, 97.7, 97.5 (C-1Glc), 82.0, 81.4, 81.3 (C-3Glc), 79.8, 79.6, 79.5, 79.4, 78.6 (C-2Glc, C-3Man), 

77.7, 77.2, 76.9, 76.8 (C-4Glc), 75.7, 75.6, 75.5, 75.4 (CH2 Bn), 75.3, 75.2 (C-5Man), 75.1 (CH2 Bn), 75.0 (C-5Man), 

74.7, 74.7, 74.6 (CH2 Bn), 74.0, 73.6 (C-4Man), 73.4 (CH2 Bn), 73.3 (C-4Man), 73.1, 72.8, 72.7, 72.1, 71.9, 71.7 

(CH2 Bn), 70.9, 70.8 (C-5Glc), 69.9 (CH2 Fmoc), 69.6, 69.5 (C-5Glc), 68.7, 67.6, 67.6, 65.9 (C-6Glc), 60.9, 60.7, 60.3 

(C-2Man), 55.0 (OMe), 52.7, 52.7, 52.6 (CH3 CO2Me), 46.7 (CH Fmoc); 13C-HMBC (150 MHz, CDCl3): δ99.8 

(JC1,H1 = 161 Hz, C-1Man), 99.7 (JC1,H1 = 161 Hz, C-1Man), 99.7 (JC1,H1 = 161 Hz, C-1Man), 97.9 (JC1,H1 = 172 Hz, C-

1Glc), 97.8 (JC1,H1 = 170 Hz, C-1Glc), 97.7 (JC1,H1 = 169 Hz, C-1Glc), 97.5 (JC1,H1 = 171 Hz, C-1Glc); HRMS: [M+Na]+ 

calcd for C166H171N9O38Na 2922.16508, found 2922.15435. 

 

Methyl 6-O-(methyl 4-O-[6-O-{methyl 4-O-(6-O-{methyl 4-O-[2,3,4-tri-O-benzyl-αααα-D-glucopyranosyl]-2-

azido-3-O-benzyl-2-deoxy-ββββ-D-mannopyranosyl uronate}-2,3,4-

tri-O-benzyl-αααα-D-glucopyranosyl)-2-azido-3-O-benzyl-2-deoxy-

ββββ-D-mannopyranosyl uronate}-2,3,4-tri-O-benzyl-αααα-D-glucopy-

ranosyl]-2-azido-3-O-benzyl-2-deoxy-ββββ-D-mannopyranosyl uro-

nate)-2,3,4-tri-O-benzyl-αααα-D-glucopyranoside (42). Compound 

41 (48 mg, 16.5 µmol) was dissolved in dry pyridine (1 mL), 

followed by the addition of Et3N (8 µL, 54 µmol) and the resulting 
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solution was stirred at RT overnight. The mixture was diluted with EtOAc and washed with sat. aq. NaCl (3x). 

The combined aqueous layers were extracted with EtOAc and the combined organic layers were dried over 

Na2SO4, filtered and concentrated in vacuo. Purification using flash column chromatography (silica gel, 40% 

EtOAc in PE) yielded the title compound as a colorless oil (Yield: 35 mg, 13 µmol, 78%). TLC: Rf 0.30 

(PE/EtOAc, 3/2, v/v); [α]D
20 +35.6 (c 1, DCM); IR (neat, cm-1): 698, 1028, 1072, 1751, 2108, 2954; 1H NMR 

(CDCl3, 400 MHz, HH-COSY, HSQC): δ 7.20-7.37 (m, 75H, CHarom), 5.31 (d, 1H, J = 3.4 Hz, H-1Glc), 5.24 (d, 

1H, J = 3.5 Hz, H-1Glc), 5.20 (d, 1H, J = 3.4 Hz, H-1Glc), 4.98 (d, 1H, J = 10.7 Hz, CHH Bn), 4.96 (d, 2H, J = 10.8 

Hz, CHH Bn), 4.87 (d, 2H, J = 10.8 Hz, CHH Bn), 4.79-4.84 (m, 4H, CH2 Bn), 4.77 (d, 2H, J = 11.8 Hz, CHH 

Bn), 4.53-4.69 (m, 16H, CH2 Bn), 4.49-4.53 (m, 4H, CH2 Bn, H-1Glc), 4.33 (s, 1H, H-1Man), 4.27 (s, 1H, H-1Man), 

4.22-4.27 (m, 3H, H-4Man, H-4Man, H-4Man), 4.21 (s, 1H, H-1Man), 4.09 (d, 1H, J = 9.4 Hz, H-6Glc), 3.88-4.01 (m, 

6H, H-3Glc, H-3Glc, H-3Glc, H-3Glc, H-6Glc, H-6Glc), 3.84 (d, 1H, J = 8.2 Hz, H-5Man), 3.71-3.82 (m, 6H, H-2Man, H-

2Man, H-5Man, H-5Man, H-5Glc, H-6Glc), 3.69 (s, 3H, CH3 CO2Me), 3.67 (s, 3H, CH3 CO2Me), 3.63 (bs, 4H, H-6Glc, 

CH3 CO2Me), 3.54-3.62 (m, 7H, H-2Man, H-3Man, H-3Man, H-3Man, H-5Glc, H-6Glc, H-6Glc), 3.38-3.53 (m, 10H, H-2Glc, 

H-2Glc, H-2Glc, H-2Glc, H-4Glc, H-4Glc, H-4Glc, H-5Glc, H-5Glc, H-6Glc), 3.32 (t, 1H, J = 9.4 Hz, H-4Glc), 3.25 (s, 3H, 

CH3 OMe), 1.91 (bs, 1H, 6-OHGlc); 
13C-APT NMR (CDCl3, 100 MHz, HSQC): δ 168.2, 168.2 (C=O CO2Me), 

138.6, 138.6, 138.6, 138.5, 138.5, 138.4, 138.2, 138.1, 138.0, 138.0, 137.9 137.6, 137.5 137.4 (Cq Bn), 128.5, 

128.4, 128.3, 128.1, 128.0, 127.9, 127.8, 127.7, 127.6, 127.5, 127.4 127.3 (CHarom), 99.8, 99.7 99.7 (C-1Man), 97.8, 

97.7, 97.7, 97.5 (C-1Glc), 82.0, 81.4, 81.2 (C-3Glc), 79.9, 79.6, 79.6, 79.5, 79.4 (C-2Glc, C-3Man), 78.6 (C-3Man), 77.7, 

77.2, 77.2, 76.9 (C-4Glc), 75.7, 75.5, 75.6 (CH2 Bn), 75.4, 75.2 (C-5Man), 75.0 (CH2 Bn), 75.0 (C-5Man), 74.7, 74.7, 

74.6 (CH2 Bn), 73.8, 73.6 (C-4Man), 73.4 (CH2 Bn), 73.3 (C-4Man), 73.1, 72.9, 72.1 (CH2 Bn), 72.0 (C-5Glc), 71.8 

(CH2 Bn), 70.9, 70.7, 69.7 (C-5Glc), 68.7, 67.6, 67.6, 61.6 (C-6Glc), 61.1, 60.7, 60.3 (C-2Man), 55.0 (OMe), 52.7, 

52.7 (CH3 CO2Me); 13C-HMBC (150 MHz, CDCl3): δ99.8 (JC1,H1 = 162 Hz, C-1Man), 99.7 (JC1,H1 = 161 Hz, C-1Man), 

99.7 (JC1,H1 = 160 Hz, C-1Man), 97.8 (JC1,H1 = 170 Hz, C-1Glc), 97.7 (JC1,H1 = 171 Hz, C-1Glc), 97.7 (JC1,H1 = 168 Hz, 

C-1Glc), 97.5 (JC1,H1 = 172 Hz, C-1Glc); HRMS: [M+NH4]
+ calcd for C151H165N10O36 2695.14160, found 2695.13146. 

 

General procedure for the KOOH-mediated saponification. A mixture of KOH and H2O2 was freshly 

prepared: aq. KOH (0.5 M, 4.86 mL, 2.5 mmol) was added to H2O2 (50 wt% in H2O, 0.28 mL, 5 mmol). A 

solution of the methyl uronate (1 eq) in THF (0.05 M) was cooled to 0 ºC and the KOH-H2O2 solution was 

dropwise added. The resulting mixture was stirred at RT until full conversion of the starting material was 

indicated by TLC analysis. When an emulsion was observed, THF was dropwise added to obtain a clear solution. 

The reaction was quenched by the addition of 1M HCl until pH ~ 6. Subsequently the mixture was partitioned 

between EtOAc and H2O, the organic layer was washed with sat. aq. NaCl (2x), dried over Na2SO4 and 

concentrated in vacuo. The product was obtained after passing the residue through a column of Sephadex LH-20 

(eluted with DCM/MeOH, 1/1, v/v) to remove any eliminated side products. 

 

Methyl 6-O-(4-O-[2,3,4-tri-O-benzyl-αααα-D-glucopyranosyl]-2-azido-3-O-benzyl-2-deoxy-ββββ-D-mannopyranosyl 

uronate)-2,3,4-tri-O-benzyl-αααα-D-glucopyranoside (43). Compound 

38 (76 mg, 63 µmol) was saponified using the general procedure (0.25 

mL KOH-H2O2 solution) to produce the title compound as a colorless 

oil (Yield: 63 mg, 53 µmol, 85%). TLC: Rf0.38 (PE/EtOAc, 1/3, v/v + 

1% AcOH); [α]D
20 +30.6 (c 1, DCM); IR (neat, cm-1): 698, 1028, 1070, 

1736, 2110, 2854, 2923; 1H NMR (CDCl3, 400 MHz, HH-COSY, 

HSQC): δ 7.18-7.36 (m, 35H, CHarom), 5.10 (d, 1H, J = 3.5 Hz, H-1”), 

4.97 (d, 1H, J = 10.9 Hz, CHH Bn), 4.96 (d, 1H, J = 10.9 Hz, CHH Bn), 4.82-4.87 (m, 2H, CH2 Bn), 4.74-4.80 

(m, 3H, CH2 Bn), 4.68 (d, 1H, J = 11.9 Hz, CHH Bn), 4.57-4.63 (m, 4H, CH2 Bn), 4.52-4.57 (m, 3H, CH2 Bn, H-

1), 4.47 (d, 1H, J = 11.4 Hz, CHH Bn), 4.42 (s, 1H, H-1’), 4.33 (t, 1H, J = 7.0 Hz, H-4’), 3.89-4.02 (m, 4H, H-3, 

H-3”, H-5’, H-6), 3.81 (app d, 1H, J = 10.2 Hz, H-6”), 3.70-3.76 (m, 2H, H-5, H-5”), 3.59-3.67 (m, 4H, H-2’, H-

3’, H-6, H-6”), 3.43-3.52 (m, 3H, H-2, H-2”, H-4”), 3.37 (t, 1H, J = 9.4 Hz, H-4), 3.28 (s, 3H, CH3 OMe); 13C-

APT NMR (CDCl3, 100 MHz, HSQC): δ 171.0 (C=O CO2H), 138.6, 138.5, 138.1, 137.9, 137,9, 137.8, 137.3 (Cq 

Bn), 128.4, 128.3, 128.1, 128.0, 127.9, 127.8, 127.7, 127.5 (CHarom), 99.7 (C-1’), 98.4 (C-1”), 97.8 (C-1), 81.8, 

81.2 (C-3, C-3”), 79.8, 79.7 (C-2, C-2”), 77.4, 77.2, 77.1 (C-3’, C-4, C-4”),75.7 (C-5’), 75.6, 75.5 (CH2 Bn), 75.4 

(C-4’), 75.1, 74.6 (CH2 Bn), 73.3, 73.0, 72.6 (CH2 Bn), 72.0 (C-5”), 69.4 (C-5), 69.2 (C-6), 61.4 (C-6”), 59.9 (C-
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2’), 55.2 (OMe); 13C-GATED (CDCl3, 100 MHz): δ 99.7 (JC1,H1 = 163 Hz, C-1’), 98.4 (JC1,H1 = 171 Hz, C-1”), 97.8 

(JC1,H1 = 170 Hz, C-1); HRMS: [M+NH4]
+ calcd for C68H77N4O16 1205.53291, found 1205.53387. 

 

Methyl 6-O-(4-O-[6-O-{4-O-(2,3,4-tri-O-benzyl-αααα-D-glucopyranosyl)-2-azido-3-O-benzyl-2-deoxy-ββββ-D-

mannopyranosyl uronate}-2,3,4-tri-O-benzyl-αααα-D-glucopyrano-

syl]-2-azido-3-O-benzyl-2-deoxy-ββββ-D-mannopyranosyl uro-

nate)-2,3,4-tri-O-benzyl-αααα-D-glucopyranoside (44). Compound 

40 (116 mg, 60 µmol) was saponified using the general procedure 

(0.36 mL KOH-H2O2 solution) to yield the title compound as a 

colorless oil (Yield: 96 mg, 50 µmol, 83%). TLC: Rf 0.60 

(PE/EtOAc, 1/3, v/v + 5% AcOH); [α]D
20+35.9 (c 1, DCM); IR 

(neat, cm-1): 696, 731, 1026, 1067, 1742, 2108, 2955; 1H NMR (CDCl3, 400 MHz, HH-COSY, HSQC): δ 7.10-

7.38 (m, 55H, CHarom), 5.37 (s, 1H, H-1Glc), 5.19 (s, 1H, H-1Glc), 4.90-4.99 (m, 3H, CH2 Bn), 4.73-4.85 (m, 7H, 

CH2 Bn), 4.43-4.68 (m, 14H, CH2 Bn, H-1Glc, H-1Man), 4.36-4.42 (m, 1H, H-4Man), 4.33 (s, 1H, H-1Man), 4.25-4.32 

(m, 1H, H-4Man), 4.05 (app d, 1H, J = 6.5 Hz, H-5Man), 3.82-3.43 (m, 9H, H-3Glc, H-3Glc, H-3Glc, H-5Glc, H-5Glc, H-

5Glc, H-5Man, H-6Glc, H-6Glc), 3.70-3.76 (m, 2H, H-6Glc, H-6Glc), 3.63-3.67 (m, 1H, H-3Man), 3.52-3.63 (m, 5H, H-

2Man, H-2Man, H-3Man, H-6Glc, H-6Glc), 3.41-3.52 (m, 4H, H-2Glc, H-2Glc, H-2Glc, H-4Glc), 3.33-3.37 (m, 1H, H-4Glc), 

3.28 (bs, 4H, H-4Glc, CH3 OMe); 13C NMR (CDCl3, 150 MHz, HSQC): δ 172.0, 169.7 (C=O CO2H), 138.6, 138.5, 

138.2, 138.1, 138.0, 137.4, 137.4 (Cq Bn), 128.4, 128.3, 128.2, 128.0, 127.9, 127.8, 127.7, 127.6, 127.4 (CHarom), 

99.8, 99.5 (C-1Man), 98.7, 97.7, 97.7 (C-1Glc), 81.9, 81.3 (C-3Glc), 79.8, 79.7, 79.7 (C-2Glc), 78.1, 77.9, 77.2, 75.6, 

75.5, 75.4, 74.9, 74.6, 74.6, 74.3, 73.3, 73.1, 72.8, 72.7, 72.0, 71.7, 70.2, 69.5, 69.0, 68.4 (CH2 Bn, C-4Glc, C-5Glc, 

C-3Man, C-4Man, C-5Man), 63.9 (C-6Glc), 61.8 (C-6Glc), 60.3, 59.7 (C-2Man), 55.1 (OMe); 13C-HMBC (CDCl3,150 

MHz): δ99.8 (JC1,H1 = 162 Hz, C-1Man), 99.57 (JC1,H1 = 163 Hz, C-1Man), 98.7 (JC1,H1 = 169 Hz, C-1Glc), 97.7 (JC1,H1 = 

173 Hz, C-1Glc), 97.7 (JC1,H1 = 169 Hz, C-1Glc); HRMS: [M+NH4]
+ calcd for C108H118N7O26 1929.8155, found 

1929.8157. 

 

Methyl 6-O-(4-O-[6-O-{4-O-(6-O-{4-O-[2,3,4-tri-O-benzyl-αααα-D-glucopyranosyl]-2-azido-3-O-benzyl-2-deoxy-

ββββ-D-mannopyranosyl uronate}-2,3,4-tri-O-benzyl-αααα-D-glucopy-

ranosyl)-2-azido-3-O-benzyl-2-deoxy-ββββ-D-mannopyranosyl uro-

nate}-2,3,4-tri-O-benzyl-αααα-D-glucopyranosyl]-2-azido-3-O-ben-

zyl-2-deoxy-ββββ-D-mannopyranosyl uronate)-2,3,4-tri-O-benzyl-

αααα-D-glucopyranoside (45). Compound 42 (35 mg, 13 µmol) was 

saponified using the general procedure (0.2 mL KOH-H2O2 

solution) to yield the title compound as a colorless oil (Yield: 29 

mg, 10.8 µmol, 83%). The presence of three uronic acid moieties resulted in such broadening of the NMR signals 

that accurate assignment was impossible, however the disappearance of the CO2Me-signals was confirmed. TLC: 

Rf 0.65 (PE/EtOAc, 1/3, v/v + 5% AcOH); IR (neat, cm-1): 698, 1028, 1607, 2112, 3414; HRMS: [M+NH4]
+ calcd 

for C148H159N10O36 2653.0946, found 2653.0844. 

 

Methyl 6-O-(4-O-[αααα-D-glucopyranosyl]-2-deoxy-ββββ-D-mannopyranosylurono-6,2-lactam)-αααα-D-glucopyrano-

side (47). Compound 43 (13.7 mg, 11.6 µmol) was dissolved in 

pyridine/H2O (2 mL, 3/1, v/v) and the resulting solution was purged 

with H2S for 10 min at RT. The 3-necked flask was stoppered and 

stirred overnight. Then the solution was again purged with H2S for 10 

min and stirred overnight, after which time the mixture was transferred 

with toluene/EtOAc, concentrated in vacuo and co-concentrated with 

toluene (3x) to remove any traces of pyridine/H2O. Product 32 was 

used crude in the next reaction step. Analytical data are reported for the crude lactam intermediate 46: IR (neat, 

cm-1): 698, 1028, 1070, 1454, 1705, 2855, 2922; 1H NMR (CDCl3, 400 MHz, HH-COSY, HSQC): δ 6.34 (bs, 1H, 

NH), 4.89 (m, 1H, H-1), 4.55 (m, 1H, H-1”), 4.54 (m, 1H, H-1’); 13C NMR (CDCl3, 150 MHz, HSQC): δ 175.6 

(C=O NHCO), 98.4 (C-1), 97.7 (C-1”), 97.1 (C-1’), 54.5 (C-2’); 13C-HMBC (CDCl3, 150 MHz): δ98.4 (JC1,H1 = 

166 Hz, C-1), 97.7 (JC1,H1 = 169 Hz, C-1”), 97.1 (JC1,H1 = 173 Hz, C-1’);HRMS: [M+NH4]
+ calcd for C68H73N1O15 
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1161.53185, found 1161.53286. Compound 46 was co-evaporated with toluene (2x) and transferred to a 3-necked 

flask using freshly distilled THF (3 mL). t-BuOH (30 µL) was added and the solution was cooled to -60 ºC. A 

piece of Na was added and liquid NH3 (~ 5 mL) was collected. When the blue color disappeared an extra piece of 

Na was added. The blue solution was stirred at -50 ºC for 15 min and quenched with AcOH. After evaporation of 

the NH3 the solution was transferred with H2O and concentrated in vacuo. Purification using gel filtration (HW-

40, eluted with NH4HCO3) afforded the title compound as a white solid (Yield: 4.2 mg, 8.1 µmol, 70% over two 

steps). 1H NMR (D2O, 600 MHz, T = 290K, HH-COSY, HSQC): δ 5.14 (d, 1H, J = 0.7 Hz, H-1’), 5.08 (d, 1H, J = 

3.8 Hz, H-1”), 4.71 (d, 1H, J = 3.8 Hz, H-1), 4.44 (d, 1H, J = 1.5 Hz, H-5’), 4.01 (d, 1H, J = 11.1 Hz, H-6), 3.92 

(s, 2H, H-2’, H-3’), 3.69-3.82 (m, 6H, H-4’, H-5, H-5”, H-6, H-6”, H-6”), 3.67 (t, 1H, J = 9.6 Hz, H-3”), 3.58 (t, 

1H, J = 9.4 Hz, H-3), 3.52 (dd, 1H, J = 3.8, 9.9 Hz, H-2”), 3.49 (dd, 1H, J = 3.8 Hz, H-2), 3.38 (t, 1H, J = 9.5 Hz, 

H-4”), 3.33 (s, 3H, OMe), 3.28 (t, 1H, J = 9.4 Hz, H-4); 13C-APT NMR (D2O, 150 MHz, T = 290K, HSQC): 

δ 173.0 (C=O CONH), 100.0 (C-1), 99.3 (C-1”), 98.7 (C-1’), 81.9 (C-4’), 76.0 (C-5’), 73.8 (C-3), 73.6 (C-3”), 

73.2 (C-5”), 72.1 (C-2”), 72.0 (C-2), 71.5 (C-5), 71.2 (C-3’), 70.6 (C-4), 70.1 (C-4”), 68.6 (C-6), 61.1 (C-6”), 56.7 

(C-2’), 55.8 (OMe); 13C-HMBC (D2O, 150 MHz, T = 290K): δ 100.0 (JC1,H1 = 170 Hz, C-1), 99.3 (JC1,H1 = 170 Hz, 

C-1”), 98.7 (JC1,H1 = 175 Hz, C-1’);68,69,70 HRMS: [M+NH4]
+ calcd for C19H35N2O15 531.20319, found 531.20313. 

 

General procedure for the Birch reduction and subsequent acetylation. THF was distilled over 

Na/benzophenone prior to use. A three-necked 50-ml roundbottom flask was equipped with a cooling-condenser (-

40 ºC) and a bubbler and charged with a solution of the oligosaccharide (1 eq) in THF (0.1 M). A glass stir bar and 

t-BuOH (16 eq) were added and the mixture was cooled to -65 ºC. A small piece of sodium was added and liquid 

ammonia was collected (1-2 mL) by passing ammonia gas through the system. Extra sodium was added until the 

solution remained dark blue in color. The resulting mixture was stirred for 30 min while the temperature was kept 

below -40 ºC, then quenched with sat. aq. NH4Cl (~ 1 mL) and warmed to RT. After evaporation of the ammonia, 

the mixture was concentrated in vacuo and desalted using size-exclusion chromatography (HW40, eluted with 

Et3NHOAc). The crude zwitterionic oligosaccharide was re-dissolved in H2O/THF (0.01 M, 10/1, v/v). Ac2O (5 eq 

per free amine) was added and the pH was adjusted to ~9 by the addition of solid NaHCO3. After stirring for 1h, 

the mixture was neutralized by the addition of 1M HCl. After concentration in vacuo the crude product was 

purified by size-exclusion chromatography (HW40, eluted with Et3NHOAc). 

 

Methyl 6-O-(4-O-[αααα-D-glucopyranosyl]-2-acetamido-2-deoxy-ββββ-D-mannopyranosyl uronate)-αααα-D-glucopyra-

noside (51). Compound 43 (99 mg, 84 µmol) was deprotected using the 

general protocol for Birch reduction and subsequent acetylation to yield 

compound 51 as a white amorphous solid (Yield: 24.2 mg, 36 µmol, 

43%). IR (neat, cm-1): 619, 1132, 1406, 1558, 2340, 3298; 1H NMR 

(D2O, 600 MHz, T = 288K, HH-COSY, HSQC): δ 5.34 (d, 1H, J = 3.9 

Hz, H-1”), 4.75 (s, 1H, H-1’), 4.68 (d, 1H, J = 3.7 Hz, H-1), 4.39 (d, 1H, 

J = 4.1 Hz, H-2’), 4.04 (d, 1H, J = 10.2 Hz, H-6), 4.00 (dd, 1H, J = 4.3, 9.6 Hz, H-3’), 3.81 (t, 1H, J = 9.6 Hz, H-

4’), 3.66-3.74 (m, 5H, H-5, H-5’, H-6, H-6”, H-6”), 3.58-3.63 (m, 2H, H-3”, H-5”), 3.56 (t, 1H, J = 9.4 Hz, H-3), 

3.46 (dd, 1H, J = 3.8, 9.8 Hz, H-2), 3.42 (dd, 1H, J = 3.9, 9.9 Hz, H-2”), 3.33 (t, 1H, J = 9.8 Hz, H-4”), 3.31 (s, 

3H, CH3 OMe), 3.29 (t, 1H, J = 9.4 Hz, H-4), 2.00 (s, 3H, CH3 NHAc); 13C-APT NMR (D2O, 150 MHz, T = 

288K, HSQC): δ 176.4, 176.2 (C=O NHAc, CO2H), 100.5 (C-1’), 99.9 (C-1), 99.1 (C-1”), 78.0 (C-5’), 74.4 (C-

4’), 73.8 (C-3), 73.5 (C-3”), 73.3 (C-3’), 72.5 (C-5”), 72.4 (C-2”), 72.0 (C-2), 71.1 (C-5), 70.3 (C-4), 69.9 (C-4”), 

69.6 (C-6), 60.7 (C-6”), 55.7 (OMe), 54.4 (C-2’), 22.8 (CH3 NHAc); 13C-HMBC (D2O, 150 MHz, T = 288K): 

δ100.5 (JC1,H1 = 163 Hz, C-1’), 99.9 (JC1,H1 = 170 Hz, C-1), 99.1 (JC1,H1 = 173 Hz, C-1”); HRMS: [M+H]+ calcd for 

C21H36NO17 574.1978, found 574.1975. 

 

Methyl 6-O-(4-O-[6-O-{4-O-(αααα-D-glucopyranosyl)-2-acetamido-2-deoxy-ββββ-D-mannopyra-nosyl uronate}-αααα-

D-glucopyranosyl]-2-acetamido-2-deoxy-ββββ-D-mannopyranosyl 

uronate)-αααα-D-glucopyranoside (52). Compound 44 (63 mg, 33 

µmol) was deprotected using the general protocol for Birch 

reduction and subsequent acetylation to yield compound 52 as a 

white amorphous solid (Yield: 13.2 mg, 11.4 µmol, 35%). IR (neat, O
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cm-1): 1034, 1369, 1603, 3285; 1H NMR (D2O, 600 MHz, T = 280K, HH-COSY, HSQC): δ 5.34 (d, 1H, J = 3.8 

Hz, H-1Glc), 5.30 (d, 1H, J = 3.7 Hz, H-1Glc), 4.77 (s, 2H, H-1Man, H-1Man), 4.68 (d, 1H, J = 3.6 Hz, H-1Glc), 4.38-

4.43 (m, 2H, H-2Man, H-2Man), 4.04 (d, 1H, J = 10.7 Hz, H-6Glc), 3.99-4.02 (m, 2H, H-3Man, H-3Man), 3.93 (d, 1H, J 

= 10.8 Hz, H-6Glc), 3.78-3.85 (m, 5H, H-4Man, H-4Man, H-5Man, H-5Man, H-6Glc), 3.65-3.75 (m, 4H, H-5Glc, H-6Glc, H-

6Glc, H-6Glc), 3.60-3.65 (m, 1H, H-5Glc), 3.53-3.60 (m, 4H, H-3Glc, H-3Glc, H-3Glc, H-5Glc), 3.45 (dd, 1H, J = 3.8, 9.9 

Hz, H-2Glc), 3.42 (dd, 1H, J = 3.9, 10.0 Hz, H-2Glc), 3.38 (dd, 1H, J = 4.2, 9.7 Hz, H-2Glc), 3.31-3.37 (m, 2H, H-

4Glc, H-4Glc), 3.30 (s, 3H, CH3 OMe), 3.28 (t, 1H, J = 9.5 Hz, H-4Glc), 2.01 (s, 3H, CH3 NHAc), 2.00 (s, 3H, CH3 

NHAc); 13C-APT NMR (D2O, 150 MHz, T = 280K, HSQC): δ 176.2, 176.2, 175.6, 175.2 (C=O NHAc, CO2H), 

100.5, 100.5 (C-1Man), 99.8, 99.2, 99.2 (C-1Glc), 77.0, 76.9 (C-5Man), 74.4, 74.3 (C-4Man), 73.7, 73.3, 73.2 (C-3Glc), 

73.0, 73.0 (C-3Man), 72.5 (C-5Glc), 72.2, 72.1, 71.9 (C-2Glc), 71.5, 71.0 (C-5Glc), 70.1, 69.7 (C-4Glc), 69.6 (C-6Glc), 

69.3 (C-4Glc), 68.7, 60.5 (C-6Glc), 55.6 (OMe), 54.1, 54.1 (C-2Man), 22.8, 22.7 (CH3 NHAc); 13C-HMBC (D2O, 150 

MHz, T = 280K): δ100.5 (JC1,H1 = 163 Hz, C-1Man), 100.5 (JC1,H1 = 163 Hz, C-1Man), 99.8 (JC1,H1 = 171 Hz, C-1Glc), 

99.2 (JC1,H1 = 176 Hz, C-1Glc), 99.2 (JC1,H1 = 174 Hz, C-1); HRMS: [M+H]+ calcd for C35H57N2O28 953.30924, 

found 953.31039. 

 

Methyl 6-O-(4-O-[6-O-{4-O-(6-O-[4-O-{αααα-D-glucopyranosyl}-2-acetamido-2-deoxy-ββββ-D-mannopyranosyl 

uronate]-αααα-D-glucopyranosyl)-2-acetamido-2-deoxy-ββββ-D-man-

nopyranosyl uronate}-αααα-D-glucopyranosyl]-2-acetamido-2-

deoxy-ββββ-D-mannopyranosyl uronate)-αααα-D-glucopyranoside 

(53). Compound 45 (32 mg, 12 µmol) was deprotected using the 

general protocol for Birch reduction and subsequent acetylation to 

yield compound 53 as a white amorphous solid (Yield: 2.8 mg, 1.7 

µmol, 14%). 1H NMR (D2O, 600 MHz, T = 280K, HH-COSY, 

HSQC): δ 5.35 (d, 1H, J = 3.9 Hz, H-1Glc), 5.33 (d, 1H, J = 4.1 Hz, H-1Glc), 5.32 (d, 1H, J = 4.1 Hz, H-1Glc), 4.75 

(s, 1H, H-1Man), 4.73 (s, 2H, H-1Man, H-1Man), 4.67 (d, 1H, J = 3.7 Hz, H-1Glc), 4.35-4.40 (m, 3H, H-2Man, H-2Man, 

H-2Man), 3.96-4.05 (m, 4H, H-3Man, H-3Man, H-3Man, H-6Glc), 3.87-3.93 (m, 2H, H-6Glc, H-6Glc), 3.83-3.87 (m, 2H, H-

6Glc, H-6Glc), 3.76-3.87 (m, 3H, H-4Man, H-4Man, H-4Man), 3.63-3.75 (m, 9H, H-5Man, H-5Man, H-5Man, H-5Glc, H-5Glc, 

H-5Glc, H-6Glc, H-6Glc, H-6Glc), 3.53-3.63 (m, 5H, H-3Glc, H-3Glc, H-3Glc, H-3Glc, H-5Glc), 3.43-3.47 (m, 2H, H-2Glc, 

H-2Glc), 3.40 (dd, 1H, J = 4.0, 10.0 Hz, H-2Glc), 3.34-3.39 (m, 3H, H-2Glc, H-4Glc, H-4Glc), 3.31-3.33 (m, 1H, H-

4Glc), 3.30 (s, 3H, CH3 OMe), 3.28 (t, 1H, J = 9.5 Hz, H-4Glc), 2.00 (s, 6H, CH3 NHAc), 1.99 (s, 3H, CH3 NHAc); 
13C-APT NMR (D2O, 150 MHz, T = 280K, HSQC): δ 176.4, 176.3, 176.3, 176.2, 176.2 (C=O NHAc, CO2H), 

100.5, 100.4 (C-1Man), 99.8 (C-1Glc), 98.9, 98.9, 98.8 (C-1Glc), 77.9, 77.8, 77.8 (C-5Man), 74.1, 73.9, 73.9 (C-4Man), 

73.7, 73.4, 73.3, 73.2 (C-3Man, C-3Glc), 72.3 (C-5Glc), 72.3, 72.2, 71.9 (C-2Glc), 71.3, 71.3, 71.0 (C-5Glc), 70.1, 69.8 

(C-4Glc), 69.5 (C-6Glc), 69.2, 69.1 (C-4Glc), 68.6, 68.6, 60.5 (C-6Glc), 55.6 (OMe), 54.5, 54.4, 54.4 (C-2Man), 22.8, 

22.7, 22.7 (CH3 NHAc); HRMS: [M+Na]+ calcd for C49H77N3O39Na 1354.4026, found 1354.4035. 
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Stereoselective Synthesis of 2,3-Diamino-

2,3-dideoxy β-Mannopyranosyl Uronates 

 
 

 

 

 

 

 

Introduction 

Glycosylations of mannuronic acid ester donors, such as 1 (Figure 1), proceed with a very 

high degree of β-selectivity.
1
 While a non-participating (benzyl) protecting group at C-2 is 

essential to allow for 1,2-cis stereoselectivity, an azide functionality can also be 

accommodated at this position with retention of β-stereoselectivity (such as compound 3 in 

Figure 1, see also Chapter 3). It can be postulated that the observed β-selectivity is the 

result of the SN2-like reaction of an intermediate α-triflate (2), in line with the seminal 

work of Crich and co-workers on 4,6-O-benzylidene directed β-mannosylations.
2
 In this 

scenario, the electron-withdrawing carboxylic ester at C-5 serves to stabilize the anomeric 

triflate with respect to the oxacarbenium-triflate ion pair to allow for a β-selective 

displacement reaction. As described in Chapters 2 and 3, examination of the activation of a 

series of 2-azido-2-deoxy mannuronic acid ester donors, including thiomannoside 3, 

revealed that indeed an anomeric triflate was formed from these donors and that it exists as 

a mixture of 
4
C1 and 

1
C4 conformers, 4 and 4* respectively, in which the latter species, 

having an equatorially positioned triflate, surprisingly prevailed.
3
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Figure 1. Mannopyranosyl uronic esters described in Chapters 2 and 3 

 

 

 

 

 

Although these studies showed the intermediacy of an anomeric triflate species, the fact 

that this triflate species prefers to adopt an “inverted” chair conformation lends support to 

an alternative mechanistic rationale, which invokes the 
3
H4 mannuronic acid ester 

oxacarbenium ion 5 as the product-forming intermediate (Figure 1).
4
 In line with the 

detailed studies of Woerpel and co-workers on the stereochemical alkylation of 

oxacarbenium ions,
5
 this intermediate is preferentially attacked by an incoming nucleophile 

from the β-face, explaining the observed β-selectivity. It was reasoned that the C-5 

carboxylate was at the basis of this unusual conformational behavior. It also became 

apparent that the introduction of the C-2 azide functionality in 3 did not significantly alter 

the β-selectivity of the glycosylation reaction with respect to the glycosylations of its C-2 

benzyloxy counterpart 1.
3b

 Notably, this contrasts with the 4,6-O-benzylidene β-

mannosylation system in which the selectivity has been shown to be sensitive to the nature 

of the C-2 substituent.
6
 An example is found in the work of Litjens et al., who revealed that 

condensations involving 2-azido-2-deoxy-4,6-O-benzylidene mannosyl donors proceed 

somewhat less β-selective than couplings of its C-2-O-benzyl counterpart.
7
 

 

To further investigate the influence of different substitution patterns on glycosylations of 

mannosyl and mannuronic acid ester donors, this Chapter presents the results of a study of 

2,3-diazido-2,3-dideoxy mannopyranosyl
8

 and mannopyranosyl uronate donors. 2,3-

Diacetamido-2,3-dideoxy mannopyranosyl uronates are found in various bacterial capsular 

polysaccharides,
9
 in which they are usually linked in a β-fashion to the next sugar residue. 

An efficient route of synthesis towards these rare bacterial carbohydrates can help to 

elucidate their role in biology and immunology. The stereoselective assembly of the 

tetrasaccharide repeating unit of the capsular polysaccharide of B. stearothermophilus,
10

 

containing two 2,3-diacetamido-2,3-dideoxy-β-mannopyranosyl uronates (48, Scheme 2) is 

also described in this Chapter. 

 

Results and Discussion 

Three types of 2,3-diazido mannosyl donors were investigated, the 4,6-di-O-acetyl 

mannosides 6αααα and 6ββββ, the 4,6-O-benzylidene mannoside 7, and the mannuronic acid esters 

8αααα and 8ββββ (Scheme 1). The first two donors were selected because electron-withdrawing 
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groups, such as an O-acetate on C-4 and C-6 of a 2-azido mannosyl donor, have been 

shown to provide β-selective condensation reactions, depending on the nature of the 

acceptor used.
11

 More recently, Kim and co-workers reported on the stereodirecting effect 

of electron-withdrawing groups at C-3, C-4 and C-6 in mannosylations.
12

 Donors 6, 7 and 8 

were synthesized as depicted in Scheme 1. Key intermediate 13 was obtained following an 

adaptation of the procedure described by Guthrie and Murphy.
13

 Starting from 4,6-O-

benzylidene-protected methyl glucoside 9,
 14

 double methanesulfonylation towards 

compound 10 and subsequent epoxidation using potassium hydroxide in THF/MeOH 

resulted in crystalline compound 11 in 62% over two steps. Selective trans-diaxial opening 

of the epoxide with sodium azide in DMF at elevated temperature gave 2-azido-2-deoxy-

altropyranoside 12 in 93%. 

 

Scheme 1. Synthesis of donors 6-8 

 

Reagents and conditions: a) MsCl, pyridine; b) KOH, THF/MeOH (11: 62% over two steps); c) NaN3, NH4Cl, 

DMSO, 80 ºC (12: 93%); d) i. Tf2O, pyridine; ii. NaN3, NH4Cl, DMF, 80 ºC (13: 75%); e) H2SO4, Ac2O (14: 

98%); f) PhSH, BF3•Et2O, DCE, 50 ºC (6αααα: 24%, 6ββββ: 58%); g) NaOMe, MeOH (15αααα: 100%, 15ββββ: 98%); h) 

PhCH(OMe)2, p-TsOH, MeCN (7: 69%). i) i. TEMPO, BAIB, DCM/H2O; ii. MeI, K2CO3, DMF (16αααα: 76%); j) 

Ac2O, pyridine (8αααα: 91%, 8ββββ: 100%); k) i. TEMPO, BAIB, EtOAc/H2O; ii. MeI, K2CO3, DMF (16ββββ: 91%). 
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Subsequent triflation of C3-OH and SN2 substitution with NaN3 in DMF at 80 ºC resulted 

in diazido-containing mannopyranoside 13 via inversion of configuration at C-3.
15

 In one 

step the benzylidene and anomeric methyl function were hydrolyzed with concomitant 

acetylation of the liberated alcohols to afford compound 14 as an anomeric mixture (α : β = 

5 : 1). Treatment of compound 14 with PhSH and BF3•Et2O in DCE at 50 ºC resulted in α-

thio donor 6αααα (24%) and β-thio donor 6ββββ (58%), which were readily separated. Subsequent 

deacetylation under Zemplén conditions gave diols 15αααα/ββββ. Crystalline benzylidene donor 7 

was obtained from diol 15ββββ using benzaldehyde dimethylacetal and a catalytic amount of p-

TsOH in 69% yield. To obtain the mannuronic acid donors 8αααα/ββββ, diols 15αααα/ββββ were 

subjected to regio- and chemoselective oxidation at C-6 using the TEMPO/BAIB reagent 

combination.
16,17

 From diol 15αααα, compound 16αααα was obtained in 76% yield after oxidation 

and ensuing methylation. Under similar conditions diol 15ββββ was transformed into 16β β β β in a 

somewhat lower yield (50%). Changing the organic solvent of the biphasic oxidation 

mixture from dichloromethane to ethyl acetate, in which the crystalline 15ββββ proved to be 

better soluble, led to an increased yield (91%) of compound 16ββββ. Methyl mannuronates 

16αααα and 16ββββ were acetylated using Ac2O in pyridine to give donors 8αααα and 8ββββ.  

 

With the five donors 6αααα/ββββ, 7 and 8αααα/ββββ in hand, the investigation of their activation using 

low-temperature NMR experiments was commenced. Upon treatment of diacyl donor 6ββββ 

with Ph2SO and Tf2O
18,19

 in DCM-d2 at -80 ºC, α-triflate 17 was rapidly formed (Figure 2). 

This species proved to be stable to +10 ºC. α-Configured donor 6αααα provided the same 

triflate, but required a higher temperature for complete activation (-40 ºC). Using the same 

activatior system,
20

 benzylidene donor 7 was rapidly transformed at -80 ºC into α-triflate 

18, which was stable up to 0 ºC. Similarly, β-diazidomannuronic acid donor 8ββββ was 

completely transformed into the corresponding anomeric triflate 19 at -80 ºC. In analogy to 

the mono-azido mannuronic acid triflate 4, this species exists as a mixture of 
4
C1 and 

1
C4 

conformers (
4
C1 : 

1
C4 ~ 4.5 : 1). Decomposition of this triflate started around -10 ºC, 

making this species the least stable of the three diazido mannosidic triflates, in contrast to 

what could be expected based on the electron-withdrawing capacity of the different 

functional groups. The result is in line however, with the relatively low decomposition 

temperatures for mannuronic acid triflates 2 and 4 as depicted in Figure 2.
3
 From the 

decomposition temperatures of the three different mannuronates, 2, 4 and 19, it is clear that 

the extra C-3 azide group in 19 has a stabilizing effect, as expected on the basis of its 

electron-withdrawing capacity (F-value ~ 0.48).
21

 The last donor in the series, α-

mannuronic acid 8αααα, required a significantly higher temperature (-10 ºC) for complete 

activation than its β-configured counterpart. As in the case of the mono-azido mannuronic 

acid 3, the temperature required for complete activation of the α-isomer 8αααα matched the 

decomposition temperature of the anomeric triflate.  
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Figure 2. Overview of mannopyranosyl triflates, and fragments of the 1H NMR spectra of the conformational 

mixtures of 2/2*, 4/4*, and 19/19* at -80 ºC 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Next, β-thio donors 6ββββ, 7 and 8ββββ were surveyed in a set of glycosylation reactions with 

primary acceptor 20 and secondary acceptors 21 and 22. To this end, the donors were pre-

activated (Ph2SO-Tf2O) for 20 minutes at -80 ºC before the addition of the acceptor 

alcohols and warming to 0 ºC. The results of the condensations are summarized in Table 1. 

As can be seen from entries 1-3, the condensations with diacetyl diazido mannoside 6ββββ 

proceeded with very little selectivity. Entries 4-6 show that the benzylidene donor 7 is 
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considerably α-selective. Clearly, these results oppose the results obtained with 2,3-di-O-

benzyl benzylidene mannose.
2
 As described above, 2-azido-3-O-benzyl-4,6-O-benzylidene 

mannosyl donors were found to be moderately β-selective.
22

 More recently Crich and co-

workers have reported on the condensations of an α-S-phenyl 3-azido-2-O-benzyl-4,6-O-

alkylidene mannopyranosyl donor,
23

 which also proceed with moderate β-selectivity. The 

substitution of a single O-benzyl group for an azide functionality thus already causes a drop 

in selectivity. The introduction of two azides leads to further erosion of β-selectivity 

providing moderate α-selectivity in two of the three cases studied here.  

 

Table 1. Glycosylation study of donors 6ββββ, 7 and 8ββββ    

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Conditions: Donor 6ββββ or 7, Tf2O (1.3 eq), Ph2SO (1.3 eq), TTBP (2.5 eq), DCM (0.05) at -80 ºC, then add 

acceptor (1.5 eq). Donor 8ββββ, Tf2O (1.3 eq), Ph2SO (1.3 eq), TTBP (2.5 eq), DCM (0.05) at -80 → -60 ºC, then add 

acceptor (1.5 eq). 

 

Crich and co-workers have rationalized the erosion of β-selectivity, observed with small 

substituents at the C-2 or C-3 position, through the observation that formation of the 

benzylidene mannosyl 
4
H3 oxacarbenium ion from the corresponding α-triflate proceeds 

with concomitant compression of the R2-C2-C3-R3 torsion angle, which is easier if the 

substituents R2 and R3 are smaller.
6a, 24

 The diazido case studied here supports this 

mechanistic rationale: the presence of the two small azides (A-value ~ 0.45-0.62 

kcal/mol)
25

 allows the mannosyl triflate to readily collapse into the α-selective 
4
H3 

oxacarbenium ion (32, Figure 3). It should be noted that the electron-withdrawing effect of 

the azide does not counterbalance this steric effect, which has also been found for C-3-O-

benzyl-C-2-fluoro- and C-2-O-benzyl-C-3-fluoro benzylidene mannosides.
6a

 A similar 

Entry Donor Acceptor Product Ratio α : β  Yield (%) 

1 

 

20 23 1 : 1 75 

2 21 24 2 : 1 45 

3 22 25 2.5 : 1 66 
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rationale can account for the poor selectivity obtained with donor 6ββββ. Furthermore, Kim 

and co-workers have argued that participation of a remote C-6-O-acetate can also account 

for the formation of α-linked products from otherwise benzylated mannosides.
12

 In the 

research described here, such a mechanism cannot be excluded to contribute to the 

formation of the α-mannosides.  

Entries 7-9 show that the three diazido mannuronate disaccharides 29, 30 and 31 were all 

formed in a β-selective fashion. Secondary alcohol 21 gave the poorest selectivity and yield 

in the series, which parallels the results of condensations of this acceptor with other 

mannuronate donors (see Chapter 3).
3a

 Introduction of two azides on the mannuronic acid 

core thus has little influence on the selectivity of the mannuronic acid type donors, in 

contrast to the other two types of donors studied here. A possible explanation for this 

observation can be found in the preferred conformation of the mannuronate oxacarbenium 

ions, in which the C-5 carboxylic acid ester prefers to occupy a pseudo-axial position (as in 

5, Figure 1), making the 
3
H4 oxacarbenium ion 33 energetically favored over its 

4
H3 

counterpart 34 (Figure 3). Nucleophilic attack at the 
3
H4 oxacarbenium ion leads to the 

preferential formation of the β-product. Woerpel and co-workers have established that an 

azido group follows the preference of an O-alkyl substituent to occupy an axial orientation 

in an oxacarbenium ion intermediate.
5a

 The relative stabilities of the diazidomannuronic 

acid 
3
H4 and 

4
H3 oxacarbenium ions 33 and 34, thus mirror those of the 2,3-di-O-benzyl 

mannuronic acid, making the former favored over the latter and providing a positive 

contribution to the formation of the β-linked product. The same line of reasoning can be 

applied to the occurrence of a product-forming “exploded” transition state (35) in which the 

triflate dissociates from the diazido mannuronic acid core leading to partial oxacarbenium 

ion character at C-1, which is best accommodated in a 
3
H4-like conformation. Although it 

could be reasoned that installment of two azides and the C-5 carboxylic acid ester would 

provide a highly disarmed donor, which would be difficult to activate, the yields obtained 

in the condensations of donor 8ββββ with alcohols 20 and 22 clearly show this not to be the 

case: the donors are activated rapidly at temperatures as low as -80 ºC to provide reactive 

glycosylating species. The conformational behavior of the mannuronates could be at the 

basis of this unexpected reactivity.
26

  

 

Figure 3. 2,3-Diazido oxacarbenium ions 

Having established that the diazido mannuronic acid donor 8ββββ is the donor of choice for the 
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(1→],
9
 was selected as a synthetic target (Figure 4). This all-cis linked oligosaccharide 

features two β-linked diacetamino mannuronic acids in addition to an α-glucose and an α-

glucosamine moiety.  

 

Figure 4. Target structure as identified from B. stearothermophilus 

 

 

 

 

 

 

Tetrasaccharide 48 (Scheme 2), having an aminopentanol spacer at its reducing end, can be 

constructed from three building blocks: reducing end glucosamine 40, glucose-mannuronic 

acid disaccharide 42 and terminal mannuronic acid 45. This approach was based on the use 

of the central disaccharide 43 because this type of disaccharide performed well in the 

construction of Micrococcus luteus oliogomers, composed of repeating [→6)-α-D-Glcp-

(1→4)-β-D-ManpNAcA-(1→] units (see Chapter 3). The synthesis of these building blocks 

and the full assembly of the tetrasaccharide are depicted in Scheme 2. The synthesis of 

acceptor 40 started from hemiacetal 36,
27 a,b

 which was transformed into N-phenyl 

trifluoroacetimidate 37
27c

 in 96% yield. The stereoselective condensation of this donor with 

N-(benzyl)-benzyloxycarbonyl-5-aminopentanol required some optimization. When a 

mixture of 37 and the acceptor in DCM was treated with a catalytic amount of TfOH at 0 

ºC, compound 38 was formed as an anomeric mixture, with a slight preference for the α-

anomer. The addition of thiophene to the reaction mixture, as prescribed by Boons et al.
28

 

to enhance the α-selectivity, did not result in a better selectivity. By using diethyl ether
29

 as 

the solvent and lowering the reaction temperature to -40 ºC, the stereoselectivity of the 

reaction was enhanced to provide product 38 in 77% yield and a 7 : 1 anomeric ratio. 

Separation of the two anomers was troublesome at this stage and therefore 38 was 

transformed into alcohol 40 by subsequent deacetylation and silylidene protection. After 

this sequence of reactions pure α-configured acceptor 40 could be isolated in 76% yield. 

Disaccharide 42 was constructed using 6-O-Fmoc protected glucose imidate donor 41 and 

S-phenyl diazido mannuronic acid 16ββββ using conditions previously established for the α-

selective condensation of 41 and the monoazido mannuronic acid counterpart of 16ββββ (see 

Chapter 3).
3b,30

 Key disaccharide 42 was obtained in excellent yield as a single anomer. 

Next, dimer 42 and glucosamine 40 were fused using Ph2SO-Tf2O pre-activation conditions 

in the absence of any base to prevent undesired Fmoc cleavage. All-cis linked trisaccharide 

43 was obtained in near quantitative yield as a single diastereomer, highlighting the apt 

glycosylating capacity of the diazido mannuronic acid donor. Liberation of the 6”-OH 

under mild basic conditions then set the stage for the final coupling, in which the 

trisaccharide acceptor 44 was condensed with C-4-O-TBS protected diazido mannuronic 

acid 45, obtained from 16ββββ by treatment with TBSOTf and Et3N in 88% yield. The 

stereochemical outcome of this reaction did not pose any problems, but to obtain a 
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profitable yield some experimentation was required. After trying different reaction 

temperatures and times, the best conditions (reaction at -30 ºC overnight with a slight 

excess of acceptor 44) provided the fully protected tetrasaccharide 46 in 74% yield. It is of 

interest to note that the replacement of the electron withdrawing C-4 O-acetyl in 8ββββ by the 

less electron-poor TBS-ether in 45 does not adversely affect the β-selectivity of the diazido 

mannuronic acid donor.
31

 

 

Scheme 2. Construction of tetrasaccharide 48 

 

Reagents and conditions: a) CF3C(NPh)Cl, K2CO3, acetone/H2O (96%, α : β = 1.4 : 1); b) N-(benzyl)-

benzyloxycarbonyl-5-aminopentanol, TfOH (cat.), Et2O, -40 → -10 ºC (77%, α : β = 7 : 1); c) NaOMe, MeOH 

(quant.); d) (tBu)2Si(OTf)2, DMF (76%); e) 41, 16ββββ, TfOH (cat.), Et2O, -40 → -10 ºC (96%); f) 42, Ph2SO, Tf2O, 

DCM, -80 → -60 ºC, then 40, -80 → -10 ºC (99%); g) Et3N, pyridine (94%); h) TBSOTf, Et3N, DCM, 88%; i) 43, 

Ph2SO, Tf2O, TTBP, DCM, -80 ºC, then 44, -30 ºC overnight, (74%); j) i. TBAF, HOAc (96%); ii. TBAF, HOAc 

(75%); k) KOH, H2O2, THF, H2O; l) i. Zn, AcOH, THF; ii. Ac2O, NaHCO3, THF, H2O; m) H2, Pd/C, H2O, THF, 

HCl (20%). 

 

Deprotection of the tetrasaccharide started with the removal of the silyl groups. It was 

found that the silylidene group could be removed without affecting the C-4”’-O-TBS 

ether.
32

 In fact, removal of this latter silyl ether was extremely sluggish and deprotection of 
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the C-4”’-OH required 72 hours for completion. The carboxylic acid esters were saponified 

using KOOH in H2O/THF to provide the diacid. Initially, Birch conditions were applied to 

simultaneously reduce the five azide groups, the benzyl ethers and the benzylcarbonate 

functionality. Unfortunately this led to partial fragmentation of the tetrasaccharide through 

cleavage of the β-mannuronic acid bonds, a side reaction also observed in the synthesis of 

M. luteus [→6)-α-D-Glcp-(1→4)-β-D-ManpNAcA-(1→]n oligomers. Therefore a stepwise 

reduction procedure was attempted, in which first the five azides were reduced using zinc 

in acetic acid,
33

 followed by aqueous acetylation of the liberated amines. Removal of the 

benzyl ethers and benzyloxycarbonyl group by treatment with H2 over Pd/C in the presence 

of aqueous HCl completed the synthesis of the target tetrasaccharide. The fully deprotected 

tetramer 48 was purified by HPLC and isolated in 20% overall yield. 

 

Conclusion 

Three different 2,3-diazido-2,3-dideoxy mannosylating agents were evaluated for their 

potential to provide β-mannosidic bonds: the 4,6-di-O-acetyl- and 4,6-O-benzylidene-2,3-

diazido-2,3-dideoxy mannopyranosyl donors proved to be rather unselective or slightly α-

selective. In contrast, 2,3-diazido-2,3-dideoxy mannuronic acid esters provided the desired 

β-linked product with good selectivity. The observed differences in stereochemical 

outcome could suggest that different mechanistic pathways take place: the 4,6-di-O-acetyl- 

and 4,6-O-benzylidene systems react through an α-selective 
4
H3-oxacarbenium ion-type 

intermediate (or corresponding transition state), while the reactions of the mannuronate 

donors involve a transition state with 
3
H4 oxacarbenium ion-like character. The profitable 

β-mannosylating properties of the diazidomannuronates were exploited in the 

stereoselective synthesis of an all-cis linked Bacillus stearothermophilus tetrasaccharide, 

featuring two β-mannuronic acid linkages. It is expected that the methodology described 

here can be readily applied in the synthesis of diamino mannuronic acid containing 

polysaccharides of different bacteria,
34

 such as Bordetella pertussis, Pseudomonas 

aeruginosa, and Neisseria meningitides. 

 

Experimental Section 

General procedure for the low-temperature NMR experiments. A mixture of the donor (30 µmol) and Ph2SO 

(39 µmol)20 was co-evaporated with toluene (2x). The residue was dissolved in DCM-d2 (0.6 mL) and transferred 

to an NMR tube under an argon atmosphere. The tube was stoppered and sealed. The NMR magnet was cooled to 

-80 ºC, locked and shimmed. In an acetone bath (-80 ºC) the sample was treated with Tf2O (39 µmol), shaken 

thrice and placed back in the NMR magnet. The first 1H spectrum was immediately recorded. Further temperature 

changes were executed depending on the spectra recorded, but always with multiples of 10 ºC.  

 

General procedure for the Ph2SO/Tf2O-mediated glycosylations. A mixture of the donor (1 equiv), Ph2SO (1.3 

equiv), and TTBP (2.5 equiv) was coevaporated twice with toluene. While the mixture was under an argon 

atmosphere, freshly distilled DCM (0.05 M) was added, followed by the addition of activated molecular sieves (3 

Å). The resulting mixture was stirred for 30 min at room temperature and cooled to the activation temperature. 

Tf2O (1.3 equiv) was added in one portion, and the activation progress was monitored by TLC analysis. In the case 

of uronic acid donor 8ββββ, the temperature was raised to -60 ºC in 20 mins, and cooled back to -80 ºC. Then a 

solution of the acceptor (0.3-0.5 M in DCM) was slowly added via the wall of the flask. The mixture was allowed 
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to warm to 0 ºC, after which Et3N or pyridine was added to quench the reaction. Aqueous work-up, passage of the 

residue through a column of Sephadex LH-20 (eluted with DCM/MeOH, 1/1, v/v), and purification using flash 

column chromatography (silica gel) gave the coupled product. 

 

Phenyl 4,6-di-O-acetyl-2,3-diazido-2,3-dideoxy-1-thio-αααα/ββββ-D-mannopyranoside (6αααα/6ββββ). Compound 14 (0.39 

g, 1.08 mmol) and PhSH (0.13 mL, 1.25 mmol) were dissolved in DCE (5.65 mL), 

followed by the addition of BF3•Et2O (0.28 mL, 2.26 mmol) and the solution was heated to 

50 ºC (5 h). Sat. aq. NaHCO3 was added and the mixture was diluted with EtOAc. The 

organic layer was washed with H2O (2x). Purification using column chromatography (silica 

gel, 20% EtOAc in PE for the α-anomer, 25% EtOAc in PE for the β-anomer) yielded the 

pure anomers 6αααα and 6ββββ as off-white amorphous solids (Yield: 0.36 g, 0.89 mmol, 82%, α : 

β = 1 : 2.4). TLC: Rf α-anomer 0.50, β-anomer 0.34 (PE/EtOAc, 2/1, v/v); Spectroscopic data for the α-anomer: 

[α]D
20 +110.0 (c 1, DCM); IR (neat, cm-1): 1034, 1227, 1728, 2106; 1H NMR (CDCl3, 400 MHz, HH-COSY, 

HSQC): δ 7.45-7.51 (m, 2H, CHarom), 7.32-7.36 (m, 3H, CHarom), 5.54 (d, 1H, J = 1.0 Hz, H-1), 5.31 (t, 1H, J = 9.9 

Hz, H-4), 4.44 (ddd, 1H, J = 2.4, 5.6, 9.8 Hz, H-5), 4.23 (dd, 1H, J = 5.6, 12.3 Hz, H-6), 4.16 (dd, 1H, J = 1.3, 3.5 

Hz, H-2), 4.09 (dd, 1H, J = 2.4, 12.3 Hz, H-6), 4.00 (dd, 1H, J = 3.5, 10.0 Hz, H-3), 2.16 (s, 3H, CH3 Ac), 2.05 (s, 

3H, CH3 Ac); 13C-APT NMR (CDCl3, 100 MHz, HSQC): δ 170.3, 169.2 (C=O Ac), 131.9 (Cq SPh), 131.9, 129.1, 

128.2 (CHarom), 85.5 (C-1), 69.4 (C-5), 67.2 (C-4), 63.3 (C-2), 62.0 (C-6), 60.7 (C-3), 20.4, 20.4 (CH3 Ac); 13C-

GATED (CDCl3, 100 MHz): δ 85.5 (JC1,H1 = 169 Hz, C-1); HRMS: [M+NH4]
+ calcd for C16H22N7O5S 424.13976, 

found 424.13994. Spectroscopic data for the β-anomer: [α]D
20 +14.4 (c 1, DCM); IR (neat, cm-1): 1034, 1211, 

1736, 2106; 1H NMR (CDCl3, 400 MHz, HH-COSY, HSQC): δ 7.50-7.55 (m, 2H, CHarom), 7.30-7.34 (m, 3H, 

CHarom), 5.27 (t, 1H, J = 10.0 Hz, H-4), 4.83 (d, 1H, J = 1.4 Hz, H-1), 4.21 (dd, 1H, J = 6.1, 12.2 Hz, H-6), 4.13-

4.17 (m, 2H, H-2, H-6), 3.80 (dd, 1H, J = 3.7, 10.0 Hz, H-3), 3.60 (ddd, 1H, J = 2.8, 6.0, 9.6 Hz, H-5), 2.13 (s, 3H, 

CH3 Ac), 2.08 (s, 3H, CH3 Ac); 13C-APT NMR (CDCl3, 100 MHz, HSQC): δ 170.0, 169.2 (C=O Ac), 132.9 (Cq 

SPh), 131.1, 128.8, 127.7 (CHarom), 86.1 (C-1), 76.3 (C-5), 66.8 (C-4), 64.0 (C-2), 63.8 (C-3), 62.2 (C-6), 20.2, 

20.2 (CH3 Ac); 13C-GATED (CDCl3, 100 MHz): δ 86.1 (JC1,H1 = 155 Hz, C-1); HRMS: [M+NH4]
+ calcd for 

C16H22N7O5S 424.13976, found 424.13984. 

 

Phenyl 2,3-diazido-4,6-O-benzylidene-2,3-dideoxy-1-thio-ββββ-D-mannopyranoside (7). To a solution of 

compound 15ββββ (0.38 g, 1.18 mmol) in dry acetonitrile (9 mL) were added PhCH(OMe)2 

(0.33 mL, 2.2 mmol) and p-TsOH (cat). The resulting solution was stirred overnight at 

RT, followed by the addition of Et3N until pH ~ neutral. EtOAc was added and the 

solution was washed with sat. aq. NaCl (2x), dried over Na2SO4 and concentrated in vacuo. The title compound 

was obtained by crystallization from EtOAc/PE as white fluffy crystals (Yield: 0.33 g, 0.81 mmol, 69%). TLC: Rf 

0.52 (PE/EtOAc, 4/1, v/v); [α]D
20 +34.4 (c 1, DCM); Melting point: 178-180 ºC; IR (neat, cm-1): 696, 978, 1078, 

1096, 1263, 2099, 2151; 1H NMR (CDCl3, 400 MHz, HH-COSY, HSQC): δ 7.44-7.53 (m, 4H, CHarom), 7.31-7.42 

(m, 6H, CHarom), 5.66 (s, 1H, CH Ph), 4.90 (s, 1H, H-1), 4.35 (dd, 1H, J = 4.9, 10.6 Hz, H-6), 4.09-4.20 (m, 2H, H-

2, H-4), 3.87-3.96 (m, 2H, H-3, H-6), 3.47 (dt, 1H, J = 4.9, 9.5, 9.7 Hz, H-5); 13C-APT NMR (CDCl3, 100 MHz, 

HSQC): δ 136.6 (Cq Ph), 133.2 (Cq SPh), 132.0, 129.3, 129.1, 128.3, 125.8 (CHarom), 101.6 (CH Ph), 87.5 (C-1), 

76.9 (C-4), 72.0 (C-5), 68.3 (C-6), 64.9 (C-2), 63.1 (C-3); 13C-GATED (CDCl3, 100 MHz): δ 87.5 (JC1,H1 = 157 

Hz, C-1); HRMS: [M+H]+ calcd for C19H19N6O3S 411.12339, found 411.12343. 

 

Methyl (phenyl 4-O-acetyl-2,3-diazido-2,3-dideoxy-1-thio-αααα-D-mannopyranosyl uronate) (8αααα). Compound 

16αααα (0.24 g, 0.69 mmol) was treated with Ac2O/pyridine (6 mL, 1/3, v/v) until TLC analysis 

indicated complete consumption of the starting material. The mixture was diluted with EtOAc, 

washed with H2O and sat. aq. NaCl, dried over Na2SO4 and concentrated in vacuo. 

Purification using flash column chromatography (silica gel, 25% EtOAc in PE) yielded the title compound as 

yellowish oil (Yield: 0.25 g, 0.62 mmol, 91%). TLC: Rf 0.43 (PE/EtOAc, 3/1, v/v); [α]D
20 +70.6 (c 1, DCM); IR 

(neat, cm-1): 748, 1049, 1211, 1751, 2106; 1H NMR (CDCl3, 400 MHz, HH-COSY, HSQC): δ 7.53-7.58 (m, 2H, 

CHarom), 7.30-7.36 (m, 3H, CHarom), 5.55 (d, 1H, J = 5.1 Hz, H-1), 5.42 (t, 1H, J = 6.8 Hz, H-4), 4.65 (d, 1H, J = 

6.5 Hz, H-5), 4.06 (dd, 1H, J = 3.4, 7.4 Hz, H-3), 4.00 (dd, 1H, J = 3.6, 4.9 Hz, H-2), 3.76 (s, 3H, CH3 CO2Me), 

2.12 (s, 3H, CH3 Ac); 13C-APT NMR (CDCl3, 100 MHz, HSQC): δ 169.1, 167.3 (C=O Ac, CO2Me), 131.9 
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(CHarom), 131.5 (Cq SPh) 129.0, 128.1 (CHarom), 83.8 (C-1), 71.3 (C-5), 68.4 (C-4), 60.7 (C-2), 60.1 (C-3), 52.6 

(CH3 CO2Me), 20.4 (CH3 Ac); 13C-GATED (CDCl3, 100 MHz): δ 83.8 (JC1,H1 = 168 Hz, C-1); HRMS: [M+Na]+ 

calcd for C15H16N6O5SNa 415.07951, found 415.07942. 

 

Methyl (phenyl 4-O-acetyl-2,3-diazido-2,3-dideoxy-1-thio-ββββ-D-mannopyranosyl uronate) (8ββββ). Compound 

16ββββ (0.26 g, 0.74 mmol) was treated with Ac2O/pyridine (6 mL, 1/3, v/v) until TLC analysis 

indicated complete consumption of the starting material. The mixture was diluted with 

EtOAc, washed with H2O and sat. aq. NaCl, dried over Na2SO4 and concentrated in vacuo. 

Purification using flash column chromatography (silica gel, 50% EtOAc in PE) yielded the title compound as a 

yellowish solid (Yield: 0.29 g, 0.74 mmol, quant.). TLC: Rf 0.31 (PE/EtOAc, 3/1, v/v); [α]D
20 +19.8 (c 1, DCM); 

IR (neat, cm-1): 1049, 1219, 1751, 2106; 1H NMR (CDCl3, 400 MHz, HH-COSY, HSQC): δ 7.44-7.48 (m, 2H, 

CHarom), 7.26-7.32 (m, 3H, CHarom), 5.33 (t, 1H, J = 10.0 Hz, H-4), 5.00 (d, 1H, J = 1.3 Hz, H-1), 4.26 (dd, 1H, J = 

1.1, 3.6 Hz, H-2), 4.05 (dd, 1H, J = 3.4, 10.3 Hz, H-3), 4.03 (d, 1H, J = 9.9 Hz, H-5), 3.69 (s, 3H, CH3 CO2Me), 

2.06 (s, 3H, CH3 Ac); 13C-APT NMR (CDCl3, 100 MHz, HSQC): δ 169.2, 166.7 (C=O Ac, CO2Me), 132.8 (Cq 

SPh), 131.4, 129.0, 128.0 (CHarom), 86.6 (C-1), 76.3 (C-5), 67.6 (C-4), 64.0 (C-2), 63.4 (C-3), 52.6 (CH3 CO2Me), 

20.2 (CH3 Ac); 13C-GATED (CDCl3, 100 MHz): δ 86.6 (JC1,H1 = 156 Hz, C-1); HRMS: [M+NH4]
+ calcd for 

C15H20N7O5S 410.12411, found 410.12400. 

 

Methyl 4,6-O-benzylidene-2,3-di-O-methanesulfonyl-αααα-D-glucopyranoside (10). Compound 914 (17.4 g, 61.7 

mmol) was dissolved in pyridine (123 mL) and methanesulfonyl chloride (14.4 mL, 186 

mmol) was drop-wise added. The mixture was stirred overnight and subsequently diluted 

with EtOAc and H2O. The layers were separated and the organic fraction was washed with 

sat. aq. NaCl (2x), dried over Na2SO4 and concentrated in vacuo. Crude compound 10 was used in the next 

reaction step without further purification. A fraction was crystallized for analytical purposes. Spectroscopic data 

were in accord with those previously reported.35 TLC: Rf 0.74 (DCM/acetone, 10/1, v/v); 1H NMR (CDCl3, 400 

MHz, HH-COSY, HSQC): δ 7.41-7.48 (m, 2H, CHarom), 7.35-7.40 (m, 3H, CHarom), 5.56 (s, 1H, CH Ph), 5.09 (t, 

1H, J = 9.6 Hz, H-3), 5.03 (d, 1H, J = 3.7 Hz, H-1), 4.63 (dd, 1H, J = 3.7, 9.6 Hz, H-2), 4.34 (dd, 1H, J = 4.8, 10.4 

Hz, H-6), 3.94 (td, 1H, J = 4.8, 9.8, 9.9 Hz, H-5), 3.79 (t, 1H, J = 10.4 Hz, H-6), 3.74 (t, 1H, J = 9.5 Hz, H-4), 

3.49 (s, 3H, OMe), 3.17 (s, 3H, CH3 Ms), 2.97 (s, 3H, CH3 Ms); 13C-APT NMR (CDCl3, 100 MHz, HSQC): 

δ 136.2 (Cq Ph), 129.5, 128.4, 126.0 (CHarom), 101.9 (CH Ph), 98.78 (C-1), 78.9 (C-4), 77.1 (C-3), 75.8 (C-2), 68.6 

(C-6), 62.2 (C-5), 56.0 (OMe), 38.9, 38.7 (CH3 Ms); HRMS: [M+Na]+ calcd for C16H22O10S2Na 461.05466, found 

461.05430. 

 

Methyl 2,3-anhydro-4,6-O-benzylidene-αααα-D-allopyranoside (11). Crude compound 10 (~ 62 mmol) was 

dissolved in THF/MeOH (500 mL, 2/3, v/v) followed by the addition of KOH (10.5 g, 187 

mmol). The mixture was refluxed at 70 ºC overnight. Then H2O was added and the mixture 

was diluted with EtOAc, the organic fraction was separated and washed with H2O (3x), 

dried over Na2SO4 and concentrated in vacuo. Crystallization (EtOAc/PE) yielded the title compound as a white 

fluffy solid (Yield: 10.2 g, 39.5 mmol, 62% over two steps). Spectroscopic data were in accord with those 

previously reported.36 TLC: Rf 0.56 (PE/EtOAc, 2/3, v/v); 1H NMR (CDCl3, 400 MHz, HH-COSY, HSQC): δ 

7.47-7.52 (m, 2H, CHarom), 7.35-7.40 (m, 3H, CHarom), 5.57 (s, 1H, CH Ph), 4.89 (d, 1H, J = 2.8 Hz, H-1), 4.24 

(dd, 1H, J = 5.0, 10.2 Hz, H-6), 4.05-4.12 (m, 1H, H-5), 3.95 (dd, 1H, J = 1.0, 9.1 Hz, H-4), 3.68 (t, 1H, J = 10.3 

Hz, H-6), 3.52 (d, 1H, J = 4.3 Hz, H-3), 3.49 (dd, 1H, J = 2.8, 4.3 Hz, H-2), 3.47 (s, 3H, OMe); 13C-APT NMR 

(CDCl3, 100 MHz, HSQC): δ 137.1 (Cq Ph), 129.2, 128.3, 126.3 (CHarom), 102.7 (CH Ph), 95.3 (C-1), 77.9 (C-4), 

68.9 (C-6), 60.0 (C-5), 55.8 (OMe), 53.1 (C-2), 50.7 (C-3); HRMS: [M+H]+ calcd for C14H17O5 265.10705, found 

265.10718. 

 

Methyl 2-azido-4,6-O-benzylidene-2-deoxy-αααα-D-altropyranoside (12). Compound 11 (13.6 g, 52 mmol) was 

dissolved in DMSO (260 mL), followed by the addition of NaN3 (10.1 g, 155 mmol) and 

NH4Cl (24.9 g, 466 mmol). The mixture was heated overnight at 80 ºC and subsequently 

diluted with EtOAc, washed with sat. aq. NaCl (3x), dried over Na2SO4 and concentrated in 

vacuo. Purification using flash column chromatography (silica gel, 50% EtOAc in PE) 
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yielded the title compound as a colorless oil (Yield: 14.8 g, 48.4 mmol, 93%). TLC: Rf 0.51 (PE/EtOAc, 2/3, v/v); 

[α]D
20 +68.9 (c 1, DCM); IR (neat, cm-1): 1042, 1242, 1736, 2106; 1H NMR (CDCl3, 400 MHz, HH-COSY, 

HSQC): δ 7.45-7.51 (m, 2H, CHarom), 7.29-7.38 (m, 3H, CHarom), 5.57 (s, 1H, CH Ph), 4.63 (s, 1H, H-1), 4.28 (dd, 

1H, J = 5.2, 10.2 Hz, H-6), 4.16 (td, 1H, J = 5.2, 10.0, 10.0 Hz, H-5), 4.03 (s, 1H, H-3), 3.76-3.81 (m, 2H, H-2, H-

4), 3.75 (t, 1H, J = 10.3 Hz, H-6), 3.37 (s, 3H, OMe), 3.14 (bs, 1H, 3-OH); 13C-APT NMR (CDCl3, 100 MHz, 

HSQC): δ 136.9 (Cq Ph), 128.9, 128.0, 126.0 (CHarom), 101.9 (CH Ph), 99.1 (C-1), 75.7 (C-4), 68.7 (C-6), 67.1 (C-

3), 61.6 (C-2), 57.8 (C-5), 55.5 (OMe); 13C-GATED (CDCl3, 100 MHz): δ 99.1 (JC1,H1 = 171 Hz, C-1); HRMS: 

[M+H]+ calcd for C14H18N3O5 308.12410, found 308.12414. 

 

Methyl 2,3-diazido-4,6-O-benzylidene-2,3-dideoxy-αααα-D-mannopyranoside (13). A solution of compound 12 

(14.85 g, 48.4 mmol) in DCE (340 mL) was treated with pyridine (91 mL, 1.13 mol) and 

Tf2O (18.9 mL, 112.5 mmol). The reaction was stirred for 30 min, followed by the addition 

of H2O to quench. The mixture was diluted with DCM, washed with H2O (3x), dried over 

Na2SO4 and concentrated in the presence of toluene (2x). The crude triflate (~48 mmol) 

was dissolved in DMF (110 mL). NaN3 (18.7 g, 288 mmol) and NH4Cl (9.0 g, 168 mmol) were added and the 

mixture was heated overnight at 80 ºC. EtOAc and H2O were added and the layers were separated. The organic 

phase was washed with H2O (2x), dried over Na2SO4 and concentrated in vacuo. Purification using column 

chromatography (silica gel, 50% EtOAc in PE) furnished the title compound as a white amorphous solid (Yield: 

12.1 g, 36.3 mmol, 75%). TLC: Rf 0.75 (PE/EtOAc, 4/1, v/v); [α]D
20 +94.0 (c 1, DCM); IR (neat, cm-1): 1041, 

1735, 2106, 2931; 1H NMR (CDCl3, 400 MHz, HH-COSY, HSQC): δ 7.47-7.52 (m, 2H, CHarom), 7.35-7.41 (m, 

3H, CHarom), 5.65 (s, 1H, CH Ph), 4.71 (d, 1H, J = 1.4 Hz, H-1), 4.29 (dd, 1H, J = 10.6, 16.2 Hz, H-6), 4.14 (dd, 

1H, J = 3.6, 10.2 Hz, H-3), 4.05 (dt, 1H, J = 1.6, 10.2 Hz, H-4), 3.90 (dd, 1H, J = 1.4, 3.6 Hz, H-2), 3.82-3.85 (m, 

2H, H-5, H-6), 3.40 (s, 3H, OMe); 13C-APT NMR (CDCl3, 100 MHz, HSQC): δ 136.8 (Cq), 129.0, 128.3, 125.8 

(CHarom), 101.6 (CH Ph), 99.3 (C-1), 77.5 (C-4), 68.7 (C-6), 63.8 (C-5), 62.7 (C-2), 59.2 (C-3), 55.2 (OMe); 

HRMS: [M+H]+ calcd for C14H17N6O4 333.13058, found 333.13036. 

 

Acetyl 4,6-di-O-acetyl-2,3-diazido-2,3-dideoxy-αααα/ββββ-D-mannopyranoside (14). Compound 13 (20.7 mmol) was 

dissolved in Ac2O (35 mL) and treated with H2SO4 (0.3 mL) at 0 ºC for 2 h. The mixture was 

diluted with EtOAc and quenched with sat. aq. NaHCO3. The organic fraction was washed 

with H2O and sat. aq. NaCl (2x). Purification using flash column chromatography (silica gel, 

50% EtOAc in PE) furnished the title compound as a brownish oil (Yield: 7.3 g, 20.5 mmol, 98%, α : β = 5 : 1). 

TLC: Rf 0.45 (PE/EtOAc, 1/1, v/v); IR (neat, cm-1): 1211, 1735, 2106; 1H NMR (CDCl3, 400 MHz, HH-COSY, 

HSQC): δ 6.12 (d, 1H, J = 1.6 Hz, H-1α), 5.85 (d, 0.2H, J = 0.9 Hz, H-1β), 5.33 (t, 1H, J = 10.1 Hz, H-4α), 5.21 

(t, 0.2H, J = 9.9 Hz, H-4β), 4.22-4.27 (m, 0.2H, H-6β), 4.20 (dd, 1H, J = 4.6, 12.5 Hz, H-6α), 4.11 (d, 0.2H, J = 

2.3 Hz, H-2β), 4.07-4.14 (m, 1.2H, H-6α, H-6β), 4.05-4.07 (m, 1H, H-3α), 3.95-4.00 (m, 2H, H-2α, H-5α), 3.73-

3.80 (m, 0.4H, H-3β, H-5β), 2.20 (s, 0.6H, CH3 Ac-β), 2.17 (s, 3H, CH3 Ac-α), 2.15 (s, 3H, CH3 Ac-α), 2.13 (s, 

0.6H, CH3 Ac-β), 2.09 (s, 3H, CH3 Ac-α); 13C-APT NMR (CDCl3, 100 MHz, HSQC): δ 170.3, 169.1, 169.1, 

168.1, 167.9 (C=O Ac), 91.5 (C-1β), 90.6 (C-1α), 73.5 (C-5β), 70.4 (C-5α), 66.2 (C-4α), 65.7 (C-4β), 61.7 (C-

2β), 61.5 (C-6α, C-6β), 61.3 (C-3β), 60.9 (C-2α), 59.8 (C-3α), 20.5, 20.4, 20.3, 20.3, 20.3 (CH3 Ac); 13C-GATED 

(CDCl3, 100 MHz): δ 91.5 (JC1,H1 = 162 Hz, C-1β), 90.6 (JC1,H1 = 175 Hz, C-1α); HRMS: [M+Na]+ calcd for 

C12H16N6O7Na 379.09727, found 379.09719. 

 

Phenyl 2,3-diazido-2,3-dideoxy-1-thio-αααα-D-mannopyranoside (15αααα). Compound 6αααα (0.78 g, 2.0 mmol) was 

suspended in MeOH (10 mL) and treated with NaOMe (39 mg, 0.72 mmol) for 2 h. The mixture 

was neutralized by the addition of Amberlite-H+, filtered and reduced in volume. The residue 

was taken up in EtOAc, washed with sat. aq. NaCl (2x), dried over Na2SO4 and concentrated in 

vacuo. The product was obtained as a yellow oil (Yield: 0.65 g, 2.0 mmol, quant.). TLC: Rf 0.16 

(PE/EtOAc, 2/1, v/v); [α]D
20 +72.1 (c 1, DCM); IR (neat, cm-1): 727, 905, 1065, 2102, 3337; 1H NMR (CDCl3, 

400 MHz, HH-COSY, HSQC): δ 7.42-7.46 (m, 2H, CHarom), 7.29-7.35 (m, 3H, CHarom), 5.46 (s, 1H, H-1), 4.36 

(bs, 1H, 4-OH), 4.05-4.15 (m, 3H, H-2, H-4, H-5), 3.86-3.92 (m, 2H, H-3, H-6), 3.79 (dd, 1H, J = 1.3, 12.3 Hz, H-

6), 3.04 (bs, 1H, 6-OH); 13C-APT NMR (CDCl3, 100 MHz, HSQC): δ 132.4 (Cq SPh), 132.1, 129.2, 128.2 
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(CHarom), 86.1 (C-1), 73.3 (C-4), 66.4 (C-5), 63.8 (C-2), 62.9 (C-3), 61.3 (C-6); 13C-GATED (CDCl3, 100 MHz): δ 

86.1 (JC1,H1 = 168 Hz, C-1); HRMS: [M+NH4]
+ calcd for C12H18N7O3S 340.11863, found 340.11869. 

 

Phenyl 2,3-diazido-2,3-dideoxy-1-thio-ββββ-D-mannopyranoside (15ββββ). Compound 6ββββ (3.22 g, 7.93 mmol) was 

suspended in MeOH (40 mL) and treated with NaOMe (43 mg, 0.79 mmol) for 1.5 h, after 

which time the mixture was neutralized by the addition of Amberlite-H+, filtered and 

concentrated in vacuo. The title compound was obtained as an off-white fluffy solid (Yield: 

2.50 g, 7.76 mmol, 98%). TLC: Rf 0.39 (PE/EtOAc, 1/1, v/v); [α]D
20 +22.7 (c 1, MeOH); IR (neat, cm-1): 1074, 

2104, 3211, 3366; 1H NMR (CDCl3, 400 MHz, HH-COSY, HSQC): δ 7.45-7.50 (m, 2H, CHarom), 7.30-7.37 (m, 

3H, CHarom), 4.87 (s, 1H, H-1), 4.10 (d, 1H, J = 3.3 Hz, H-2), 4.06 (t, 1H, J = 9.7 Hz, H-4), 3.90 (dd, 1H, J = 3.2, 

12.3 Hz, H-6), 3.84 (dd, 1H, J = 4.0, 12.2 Hz, H-6), 3.69 (dd, 1H, J = 3.5, 9.9 Hz, H-3), 3.30-3.36 (m, 1H, H-5), 

1.39 (bs, 2H, 4-OH, 6-OH); 13C-APT NMR (CDCl3, 100 MHz, HSQC): δ 133.4 (Cq SPh), 131.2, 129.1, 127.9 

(CHarom), 86.4 (C-1), 80.9 (C-5), 66.2 (C-3), 65.6 (C-4), 64.7 (C-2), 61.3 (C-6); 13C-GATED (CDCl3, 100 MHz): δ 

86.4 (JC1,H1 = 155 Hz, C-1); HRMS: [M+Na]+ calcd for C12H14N6O3SNa 345.07403, found 345.07380. 

 

Methyl (phenyl 2,3-diazido-2,3-deoxy-1-thio-αααα-D-mannopyranosyl uronate) (16αααα). Diol 15αααα (0.37 g, 1.15 

mmol) was dissolved in DCM (4 mL) and H2O (2 mL) was added. The mixture was cooled to 0 

ºC, followed by the addition of TEMPO (36 mg, 0.23 mmol) and BAIB (0.93 g, 2.88 mmol). 

The resulting emulsion was stirred at RT for 1.5 h. The reaction was quenched by the addition 

of sat. aq. Na2S2O3 and the organic layer was washed with sat. aq. NaCl (2x), dried over MgSO4 

and concentrated in vacuo. The crude product was dissolved in dry DMF (10 mL) and treated with MeI (0.2 mL, 

3.45 mmol) and K2CO3 (0.48 g, 3.45 mmol) at RT overnight. The mixture was diluted with EtOAc and H2O, the 

organic layer was washed with sat. aq. NaCl (2x), dried over MgSO4 and concentrated in vacuo. Purification using 

flash column chromatography (silica gel, 25% EtOAc in PE) gave the title compound as a yellowish oil (Yield: 

0.29 g, 0.82 mmol, 71%). TLC: Rf 0.70 (PE/EtOAc, 1/1, v/v); [α]D
20 +86.4 (c 1, DCM); IR (neat, cm-1): 727, 1078, 

1250, 1439, 1734, 2102, 3487; 1H NMR (CDCl3, 400 MHz, HH-COSY, HSQC): δ 7.47-7.52 (m, 2H, CHarom), 

7.28-7.36 (m, 3H, CHarom), 5.50 (d, 1H, J = 1.3 Hz, H-1), 4.71 (d, 1H, J = 9.1 Hz, H-5), 4.26 (t, 1H, J = 9.0 Hz, H-

4), 4.09 (s, 1H, H-2), 3.91 (dd, 1H, J = 3.4, 9.4 Hz, H-3), 3.81 (s, 3H, CH3 CO2Me), 3.68 (d, 1H, J = 1.9 Hz, 4-

OH); 13C-APT NMR (CDCl3, 100 MHz, HSQC): δ 170.0 (C=O CO2Me), 132.1 (Cq SPh), 132.0, 129.2, 128.3 

(CHarom), 86.2 (C-1), 71.6 (C-5), 68.2 (C-4), 62.7 (C-2), 61.7 (C-3), 52.9 (CH3 CO2Me); 13C-GATED (CDCl3, 100 

MHz): δ 86.2 (JC1,H1 = 169 Hz, C-1); HRMS: [M+NH4]
+ calcd for C13H18N7O4S 368.11355, found 368.11356. 

 

Methyl (phenyl 2,3-diazido-2,3-dideoxy-1-thio-ββββ-D-mannopyranosyl uronate) (16ββββ). Diol 15ββββ (0.51 g, 1.58 

mmol) was dissolved in EtOAc (6 mL) and H2O (3 mL) was added. The mixture was cooled 

to 0 ºC, followed by the addition of TEMPO (50 mg, 0.32 mmol) and BAIB (1.27 g, 3.95 

mmol). The resulting emulsion was stirred at RT for 1 h. The reaction was quenched by the 

addition of sat. aq. Na2S2O3 and the organic layer was washed with sat. aq. NaCl (2x), dried over MgSO4 and 

concentrated in vacuo. The crude product was dissolved in dry DMF (9 mL) and treated with MeI (0.3 mL, 4.74 

mmol) and K2CO3 (0.66 g, 4.74 mmol) at RT overnight. The mixture was diluted with EtOAc and H2O, the 

organic layer was washed with sat. aq. NaCl (2x), dried over MgSO4 and concentrated in vacuo. Purification using 

flash column chromatography (silica gel, 33% EtOAc in PE) gave the title compound as an off-white solid (Yield: 

0.50 g, 1.43 mmol, 91%). TLC: Rf 0.29 (PE/EtOAc, 2/1, v/v); [α]D
20 -13.8 (c 1, DCM); IR (neat, cm-1): 1034, 

1265, 1288, 1736, 2106, 3741; 1H NMR (CDCl3, 400 MHz, HH-COSY, HSQC): δ 7.49-7.55 (m, 2H, CHarom), 

7.28-7.36 (m, 3H, CHarom), 4.84 (s, 1H, H-1), 4.22 (t, 1H, J = 9.6 Hz, H-4), 4.08 (d, 1H, J = 2.9 Hz, H-2), 3.81-

3.86 (m, 4H, H-5, CH3 CO2Me), 3.72 (dd, 1H, J = 3.5, 9.7 Hz, H-3), 3.60 (bs, 1H, 4-OH); 13C-APT NMR (CDCl3, 

100 MHz, HSQC): δ 169.2 (C=O CO2Me), 133.1 (Cq SPh), 131.8, 129.1, 128.2 (CHarom), 87.2 (C-1), 77.8 (C-5), 

67.7 (C-4), 65.2 (C-3), 63.8 (C-2), 53.0 (CH3 CO2Me); 13C-GATED (CDCl3, 100 MHz): δ 87.2 (JC1,H1 = 155 Hz, 

C-1); HRMS: [M+Na]+ calcd for C13H14N6O4SNa 373.06894, found 373.06854. 
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Methyl 6-O-(4,6-di-O-acetyl-2,3-diazido-2,3-dideoxy-αααα/ββββ-D-mannopyranosyl)-2,3,4-tri-O-benzyl-αααα-D-gluco-

pyranoside (23). Donor 6ββββ and acceptor 20 were condensed using the general 

protocol for Ph2SO/Tf2O-mediated glycosylations to yield disaccharide 23 (Yield: 

75%, α : β = 1 : 1). TLC: Rf α 0.44, β 0.15 (toluene/EtOAc, 2/3, v/v); IR (neat, cm-

1): 1042, 1227, 1744, 2098, 2924; Spectroscopic data for the α-anomer: 1H NMR 

(CDCl3, 400 MHz, HH-COSY, HSQC): δ 7.24-7.40 (m, 15H, CHarom), 5.22 (t, 1H, 

J = 10.0 Hz, H-4’), 5.02 (d, 1H, J = 10.8 Hz, CHH Bn), 4.98 (d, 1H, J = 11.6 Hz, CHH Bn), 4.89 (d, 1H, J = 1.0 

Hz, H-1’), 4.80 (d, 1H, J = 10.6 Hz, CHH Bn), 4.80 (d, 1H, J = 12.5 Hz, CHH Bn), 4.69 (d, 1H, J = 12.1 Hz, CHH 

Bn), 4.60 (d, 1H, J = 3.0 Hz, H-1), 4.59 (d, 1H, J = 12.0 Hz, CHH Bn), 3.98-4.06 (m, 2H, H-3, H-6’), 3.96 (dd, 

1H, J = 2.4, 12.4 Hz, H-6’), 3.82-3.90 (m, 3H, H-2’, H-3’, H-6), 3.73-3.78 (m, 2H, H-5, H-5’), 3.65 (dd, 1H, J = 

1.6, 11.2 Hz, H-6), 3.52 (dd, 1H, J = 3.6, 9.6 Hz, H-2), 3.46 (t, 1H, J = 9.2 Hz, H-4), 3.38 (s, 3H, OMe), 2.09 (s, 

3H, CH3 Ac), 2.02 (s, 3H, CH3 Ac); 13C-APT NMR (CDCl3, 100 MHz, HSQC): δ 170.6, 169.3 (C=O Ac), 138.4, 

138.0, 137.9 (Cq Bn), 128.5, 128.4, 128.0, 127.4 (CHarom), 97.9 (C-1), 97.7 (C-1’), 82.0 (C-3), 79.9 (C-2), 77.2 (C-

4), 75.8, 74.7, 73.3 (CH2 Bn), 69.5, 68.7 (C-5, C-5’), 66.8 (C-4’), 66.5 (C-6), 62.1 (C-2’), 61.9 (C-6’), 60.3 (C-3’), 

55.3 (OMe), 20.6, 20.6 (CH3 Ac); 13C-GATED (CDCl3, 100 MHz): δ 97.9 (JC1,H1 = 163 Hz, C-1), 97.7 (JC1,H1 = 173 

Hz, C-1’); Spectroscopic data for the β-anomer: 1H NMR (CDCl3, 400 MHz, HH-COSY, HSQC): δ 7.25-7.39 (m, 

15H, CHarom), 5.12 (t, 1H, J = 9.9 Hz, H-4’), 5.00 (d, 1H, J = 10.9 Hz, CHH Bn), 4.88 (d, 1H, J = 11.6 Hz, CHH 

Bn), 4.81 (d, 1H, J = 10.8 Hz, CHH Bn), 4.79 (d, 1H, J = 12.0 Hz, CHH Bn), 4.64 (d, 1H, J = 12.0 Hz, CHH Bn), 

4.59 (d, 1H, J = 11.7 Hz, CHH Bn), 4.56 (d, 1H, J = 3.5 Hz, H-1), 4.33 (s, 1H, H-1’), 4.20 (dd, 1H, J = 5.2, 12.3 

Hz, H-6’), 4.06-4.14 (m, 2H, H-6, H-6’), 4.02 (t, 1H, J = 9.2 Hz, H-3), 3.83 (ddd, 1H, J = 1.4, 5.7, 9.7 Hz, H-5), 

3.71 (d, 1H, J = 3.3 Hz, H-2’), 3.53 (dd, 1H, J = 5.9, 10.4 Hz, H-6), 3.49 (dd, 1H, J = 3.5, 9.7 Hz, H-2), 3.43-3.47 

(m, 1H, H-5’), 3.35-3.41 (m, 5H, H-3’, H-4, OMe), 2.10 (s, 3H, CH3 Ac), 2.03 (s, 3H, CH3 Ac); 13C-APT NMR 

(CDCl3, 100 MHz, HSQC): δ 170.7, 169.2 (C=O Ac), 138.6, 138.4, 138.0 (Cq Bn), 128.4, 128.1, 128.0, 127.9, 

127.8, 127.6 (CHarom), 100.3 (C-1’), 97.9 (C-1), 82.0 (C-3), 79.9 (C-2), 77.3 (C-4), 75.7, 74.5, 73.4 (CH2 Bn), 73.0 

(C-5’), 69.5 (C-5), 68.8 (C-6), 66.7 (C-4’), 62.5 (C-2’), 62.3 (C-6’), 61.4 (C-3’), 55.2 (OMe), 20.7, 20.6 (CH3 Ac); 
13C-GATED (CDCl3, 100 MHz): δ 100.3 (JC1,H1 = 156 Hz, C-1’), 97.9 (JC1,H1 = 162 Hz, C-1); HRMS: [M+Na]+ 

calcd for C38H44N6O11Na 783.29603, found 783.29585. 

 

Methyl 4-O-(4,6-di-O-acetyl-2,3-diazido-2,3-dideoxy-αααα/ββββ-D-mannopyranosyl)-2,3,6-tri-O-benzyl-αααα-D-gluco-

pyranoside (24). Donor 6ββββ and acceptor 21 were condensed using the general 

protocol for Ph2SO/Tf2O-mediated glycosylations to yield disaccharide 24 (Yield: 

45%, α : β = 2 : 1). TLC: Rf 0.24, 0.38 (PE/EtOAc, 2/1, v/v); IR (neat, cm-1): 

1042, 1234, 1744, 2106, 2924; Spectroscopic data for the α-anomer: 1H NMR 

(CDCl3, 400 MHz, HH-COSY, HSQC): δ 7.25-7.41 (m, 15H, CHarom), 5.19 (t, 1H, 

J = 10.0 Hz, H-4’), 5.15 (d, 1H, J = 1.7 Hz, H-1’), 5.11 (d, 1H, J = 11.5 Hz, CHH Bn), 4.74 (d, 1H, J = 12.0 Hz, 

CHH Bn), 4.58-4.65 (m, 4H, CH2 Bn, H-1), 4.51 (d, 1H, J = 12.0 Hz, CHH Bn), 4.03 (dd, 1H, J = 4.6, 12.3 Hz, H-

6’), 3.92 (t, 1H, J = 9.1 Hz, H-3), 3.77-3.87 (m, 3H, H-3’, H-5’, H-6’), 3.73-3.77 (m, 1H, H-5), 3.71 (t, 1H, J = 8.7 

Hz, H-4), 3.65-3.68 (m, 2H, H-6), 3.55 (dd, 1H, J = 3.5, 9.6 Hz, H-2), 3.50 (dd, 1H, J = 1.9, 3.3 Hz, H-2’), 3.41 (s, 

3H, OMe), 2.10 (s, 3H, CH3 Ac), 2.03 (s, 3H, CH3 Ac); 13C-APT NMR (CDCl3, 100 MHz, HSQC): δ 170.6, 169.3 

(C=O Ac), 138.0, 137.8, 137.6 (Cq Bn), 128.7, 128.5, 128.4, 128.1, 128.0, 127.7, 127.5 (CHarom), 99.5 (C-1’), 97.7 

(C-1), 80.9 (C-3), 80.3 (C-2), 77.8 (C-4), 75.5, 73.5, 73.2 (CH2 Bn), 69.5, 69.4 (C-5, C-5’), 69.0 (C-6), 67.0 (C-

4’), 62.1 (C-6’), 62.0 (C-2’), 60.3 (C-3’), 55.4 (OMe), 20.7, 20.6 (CH3 Ac); 13C-GATED (CDCl3, 100 MHz): δ 

99.5 (JC1,H1 = 171 Hz, C-1’), 97.7 (JC1,H1 = 163 Hz, C-1); Spectroscopic data for the β-anomer: 1H NMR (CDCl3, 

400 MHz, HH-COSY, HSQC): δ 7.26-7.42 (m, 15H, CHarom), 5.06 (t, 1H, J = 10.0 Hz, H-4’), 4.99 (d, 1H, J = 11.3 

Hz, CHH Bn), 4.86 (d, 1H, J = 11.3 Hz, CHH Bn), 4.77 (d, 1H, J = 12.3 Hz, CHH Bn), 4.74 (d, 1H, J = 13.2 Hz, 

CHH Bn), 4.58-4.63 (m, 2H, CHH Bn, H-1), 4.54 (d, 1H, J = 1.1 Hz, H-1’), 4.39 (d, 1H, J = 12.1 Hz, CHH Bn), 

4.02 (dd, 1H, J = 4.3, 12.4 Hz, H-6’), 3.91 (t, 1H, J = 8.8 Hz, H-3), 3.89 (t, 1H, J = 8.8 Hz, H-4), 3.80 (dd, 1H, J = 

2.6, 12.4 Hz, H-6’), 3.72-3.77 (m, 2H, H-5, H-6), 3.61-3.65 (m, 1H, H-6), 3.51 (dd, 1H, J = 3.6, 9.1 Hz, H-2), 3.38 

(s, 3H, OMe), 3.37 (dd, 1H, J = 0.7, 3.4 Hz, H-2’), 3.16 (ddd, 1H, J = 2.6, 4.2, 9.7 Hz, H-5’), 2.94 (dd, 1H, J = 

3.5, 10.2 Hz, H-3’), 2.08 (s, 3H, CH3 Ac), 1.97 (s, 3H, CH3 Ac); 13C-APT NMR (CDCl3, 100 MHz, HSQC): δ 

170.6, 169.1 (C=O Ac), 139.2, 128.0, 137.5 (Cq Bn), 128.7, 128.6, 128.4, 128.2, 128.1, 127.9, 127.3 (CHarom), 

100.1 (C-1’), 98.2 (C-1), 80.0 (C-3), 79.2 (C-2), 77.7 (C-4), 74.9, 73.7, 73.4 (CH2 Bn), 72.9 (C-5’), 69.3 (C-5), 
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68.1 (C-6), 66.2 (C-4’), 62.6 (C-2’), 61.8 (C-6’), 61.5 (C-3’), 55.4 (OMe), 20.7, 20.6 (CH3 Ac); 13C-GATED 

(CDCl3, 100 MHz): δ 100.1 (JC1,H1 = 155 Hz, C-1’), 98.2 (JC1,H1 = 164 Hz, C-1); HRMS: [M+Na]+ calcd for 

C38H44N6O11Na 783.29603, found 783.29586. 

 

p-Methoxyphenyl 3-O-(4,6-di-O-acetyl-2,3-diazido-2,3-dideoxy-αααα/ββββ-D-mannopyranosyl)-2-O-benzyl-4,6-O-

benzylidene-ββββ-D-galactopyranoside (25). Donor 6ββββ and acceptor 22 were 

condensed using the general protocol for Ph2SO/Tf2O-mediated 

glycosylations to yield disaccharide 25 (Yield: 66%, α : β = 2.5 : 1). TLC: 

Rf α 0.75, β 0.50 (toluene/EtOAc, 1/1, v/v); IR (neat, cm-1): 1049, 1219, 

1504 1744, 2106, 2924, 3742; Spectroscopic data for the α-anomer: 1H 

NMR (CDCl3, 400 MHz, HH-COSY, HSQC): δ 7.52-7.56 (m, 2H, CHarom), 7.39-7.43 (m, 3H, CHarom), 7.30-7.36 

(m, 5H, CHarom), 7.06 (d, 2H, J = 9.1 Hz, CHarom), 6.83 (d, 1H, J = 9.1 Hz, CHarom), 5.57 (s, 1H, CH Ph), 5.24 (t, 

1H, J = 10.1 Hz, H-4’), 5.08 (d, 1H, J = 11.0 Hz, CHH Bn), 5.02 (d, 1H, J = 1.1 Hz, H-1’), 4.90 (d, 1H, J = 7.7 

Hz, H-1), 4.73 (d, 1H, J = 11.1 Hz, CHH Bn), 4.37 (dd, 1H, J = 1.2, 12.4 Hz, H-6), 4.30 (d, 1H, J = 3.5 Hz, H-4), 

4.02-4.11 (m, 3H, H-2, H-5’, H-6), 3.94 (dd, 1H, J = 2.4, 12.6 Hz, H-6’), 3.82-3.92 (m, 4H, H-2’, H-3, H-3’, H-

6’), 3.77 (s, 3H, OMe), 3.47 (s, 1H, H-5), 2.06 (s, 3H, CH3 Ac), 2.03 (s, 3H, CH3 Ac); 13C-APT NMR (CDCl3, 100 

MHz, HSQC): δ 170.6, 169.3 (C=O Ac), 155.5, 151.3, 138.0, 137.4 (Cq Ph, Bn), 129.2, 128.4, 128.2, 128.1, 127.9, 

126.3, 118.8, 114.5 (CHarom), 103.4 (C-1), 101.1 (CH Ph), 93.2 (C-1’), 76.2 (C-2), 75.1 (CH2 Bn), 74.0 (C-3), 71.1 

(C-4), 69.1 (C-6), 68.6 (C-5’), 66.6 (C-4’), 66.2 (C-5), 62.0 (C-2’), 61.5 (C-6’), 60.5 (C-3’), 55.6 (OMe), 20.7, 

20.6 (CH3 Ac); 13C-GATED (CDCl3, 100 MHz): δ 103.4 (JC1,H1 = 159 Hz, C-1), 93.2 (JC1,H1 = 171 Hz, C-1’); 

HRMS: [M+Na]+ calcd for C37H40N6O12Na 783.25964, found 783.25923. 

 

Methyl 6-O-(2,3-diazido-4,6-O-benzylidene-2,3-dideoxy-αααα/ββββ-D-mannopyranosyl)-2,3,4-tri-O-benzyl-αααα-D-

glucopyranoside (26). Donor 7 and acceptor 20 were condensed using the 

general protocol for Ph2SO/Tf2O-mediated glycosylations to yield disaccharide 

26 (Yield: 79%, α : β = 3 : 1). TLC: Rf 0.65 (PE/EtOAc, 2/1, v/v); IR (neat, cm-

1): 698, 743, 1030, 1067, 1072, 2106; Spectroscopic data for the α-anomer: 1H 

NMR (CDCl3, 400 MHz, HH-COSY, HSQC): δ 7.43-7.49 (m, 2H, CHarom), 

7.25-7.40 (m, 18H, CHarom), 5.62 (s, 1H, CH Ph), 5.01 (d, 1H, J = 10.8 Hz, CHH Bn), 4.95 (d, 1H, J = 11.1 Hz, 

CHH Bn), 4.77-4.84 (m, 3H, CH2 Bn, H-1’), 4.68 (d, 1H, J = 12.1 Hz, CHH Bn), 4.60 (d, 1H, J = 11.1 Hz, CHH 

Bn), 4.59 (d, 1H, J = 3.5 Hz, H-1), 4.17 (dd, 1H, J = 3.2, 8.8 Hz, H-6’), 3.98-4.05 (m, 3H, H-3, H-3’, H-4’), 3.85 

(d, 1H, J = 2.8 Hz, H-2’), 3.71-3.83 (m, 4H, H-5, H-5’, H-6, H-6’), 3.63 (dd, 1H, J = 1.5, 11.3 Hz, H-6), 3.52 (dd, 

1H, J = 3.5, 9.6 Hz, H-2), 3.46 (t, 1H, J = 9.4 Hz, H-4), 3.37 (s, 3H, OMe); 13C-APT NMR (CDCl3, 100 MHz, 

HSQC): δ 138.5, 137.9, 137.8, 136.8 (Cq), 129.0, 128.5, 128.4, 128.2, 128.0, 127.9, 127.8, 127.7, 125.8 (CHarom), 

101.6 (CH Ph), 98.6 (C-1’), 97.9 (C-1), 82.0 (C-3), 79.9 (C-2), 77.5 (C-4’), 77.1 (C-4), 75.7, 74.9, 73.3 (CH2 Bn), 

69.6 (C-5), 68.5 (C-6’), 66.5 (C-6), 64.1 (C-5’), 62.6 (C-2’), 59.1 (C-3’), 55.3 (OMe); 13C-GATED (CDCl3, 100 

MHz): δ 98.6 (JC1,H1 = 174 Hz, C-1’), 97.9 (JC1,H1 = 171 Hz, C-1); HRMS: [M+NH4]
+ calcd for C41H48N7O9 

782.35080, found 782.35125. 

 

Methyl 4-O-(2,3-diazido-4,6-O-benzylidene-2,3-dideoxy-αααα/ββββ-D-mannopyranosyl)-2,3,6-tri-O-benzyl-αααα-D-

glucopyranoside (27). Donor 7 and acceptor 21 were condensed using the 

general protocol for Ph2SO/Tf2O-mediated glycosylations to yield disaccharide 

27 (Yield: 66%, α : β = 5 : 1). TLC: Rf 0.40 (PE/EtOAc, 3/1, v/v); IR (neat, 

cm-1): 698, 737, 1028, 1047, 1096, 2106, 2928; Spectroscopic data for the α-

anomer: 1H NMR (CDCl3, 400 MHz, HH-COSY, HSQC): δ 7.44-7.49 (m, 2H, 

CHarom), 7.23-7.41 (m, 18H, CHarom), 5.59 (s, 1H, CH Ph), 5.16 (s, 1H, H-1’), 5.11 (d, 1H, J = 11.4 Hz, CHH Bn), 

4.74 (d, 1H, J = 12.1 Hz, CHH Bn), 4.60-4.68 (m, 3H, CHH Bn, CHH Bn, H-1), 4.57 (d, 1H, J = 12.0 Hz, CHH 

Bn), 4.52 (d, 1H, J = 11.9 Hz, CHH Bn), 4.05 (dd, 1H, J = 4.7, 10.3 Hz, H-6’), 3.98-4.01 (m, 2H, H-3’, H-4’), 

3.94 (t, 1H, J = 9.1 Hz, H-3), 3.80-3.86 (m, 1H, H-5’), 3.79 (t, 1H, J = 9.2 Hz, H-4), 3.63-3.74 (m, 4H, H-5, H-6, 

H-6, H-6’), 3.53-3.58 (m, 2H, H-2, H-2’), 3.39 (s, 3H, OMe); 13C-APT NMR (CDCl3, 100 MHz, HSQC): δ 138.1, 

137.7, 136.9 (Cq), 129.0, 128.9, 128.8, 128.7, 128.5, 128.3, 128.2, 128.1, 128.0, 127.6, 127.0, 125.8 (CHarom), 

101.6 (CH Ph), 100.0 (C-1’), 97.7 (C-1), 81.2 (C-3), 80.3 (C-2), 77.3 (C-4’), 76.7 (C-4), 75.5, 73.6, 73.2 (CH2 
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Bn), 69.4 (C-5), 68.8, 68.5 (C-6, C-6’), 64.8 (C-5’), 62.6 (C-2’), 59.2 (C-3’), 55.4 (OMe); 13C-GATED (CDCl3, 

100 MHz): δ 100.0 (JC1,H1 = 176 Hz, C-1’), 97.7 (JC1,H1 = 167 Hz); HRMS: [M+NH4]
+ calcd for C41H48N7O9 

782.35080, found 782.35123. 

 

p-Methoxyphenyl 3-O-(2,3-diazido-4,6-O-benzylidene-2,3-dideoxy-αααα/ββββ-D-mannopyranosyl)-2-O-benzyl-4,6-

O-benzylidene-ββββ-D-galactopyranoside (28). Donor 7 and acceptor 22 

were condensed using the general protocol for Ph2SO/Tf2O-mediated 

glycosylations to yield disaccharide 28 (Yield: 81%, α : β = 1 : 1). 

TLC: Rf 0.44 (PE/EtOAc, 2/1, v/v); IR (neat, cm-1): 696, 729, 1057, 

1078, 1219, 1506, 2104; 1H NMR (CDCl3, 400 MHz, HH-COSY, 

HSQC): δ 7.51-7.60 (m, 4H, CHarom), 7.32-7.48 (m, 26H, CHarom), 7.06 (d, 4H, J = 9.0 Hz, CHarom), 6.80-6.85 (m, 

4H, CHarom), 5.61 (s, 1H, CH Ph-α), 5.59 (s, 1H, CH Ph-β), 5.56 (s, 1H, CH Ph-α), 5.55 (s, 1H, CH Ph-β), 5.10 (d, 

1H, J = 11.5 Hz, CHH Bn-β), 4.98 (s, 1H, H-1’α), 4.98 (d, 1H, J = 10.8 Hz, CHH Bn-α), 4.93 (s, 1H, H-1’β), 4.90 

(d, 1H, J = 7.8 Hz, H-1), 4.90 (d, 1H, J = 7.7 Hz, H-1), 4.79 (d, 1H, J = 10.9 Hz, CHH Bn-α), 4.67 (d, 1H, J = 

11.6 Hz, CHH Bn-β), 4.36 (dd, 2H, J = 3.4, 12.2 Hz, H-6α, H-6β), 4.26-4.32 (m, 3H, H-4α, H-4β, H-6’β), 4.00-

4.22 (m, 8H, H-2α, H-2β, H-3’α, H-4’α, H-5’α, H-6α, H-6β, H-6’β), 3.81-3.90 (m, 5H, H-2’α, H-3α, H-3β, H-

4’β, H-6’α), 3.73-3.78 (m, 7H, H-6’α, CH3 OMe-α, CH3 OMe-β), 3.51 (s, 1H, H-5), 3.46 (s, 1H, H-5), 3.30 (d, 

1H, J = 3.5 Hz, H-2’β), 3.23-3.27 (m, 1H, H-5’β), 3.21 (dd, 1H, J = 3.6, 10.1 Hz, H-3’β); 13C-APT NMR (CDCl3, 

100 MHz, HSQC): δ 155.4, 155.4, 151.3, 138.5, 137.8, 137.6, 137.4, 137.0, 136.5 (Cq), 129.2, 129.1, 129.0, 128.9, 

128.8, 128.7, 128.6, 128.3, 128.1, 127.9, 126.3, 126.2, 126.0, 125.8, 125.3, 118.9, 118.7, 114.5, 114.4 (CHarom), 

103.4, 103.2 (C-1α, C-1β), 101.6, 101.5, 101.4 (C-1’β, CH Ph, CH Ph), 101.1, 100.5 (CH Ph), 93.8 (C-1’α), 79.1 

(C-2), 77.5 (C-4’α), 77.2, 76.7 (C-3), 76.2 (C-2), 75.6 (C-4), 75.5, 75.5 (CH2 Bn), 73.8 (C-4’β), 70.9 (C-4), 69.1, 

68.8 (C-6), 68.4, 68.3 (C-6’α, C-6’β), 68.0 (C-5’β), 66.6, 66.1 (C-5α, C-5β), 63.9 (C-5’α), 62.5, 62.4 (C-2’α, C-

2’β), 60.3 (C-3’β), 59.1 (C-3’α), 55.6 (OMe); 13C-HMBC (CDCl3, 100 MHz): δ 103.4 (JC1,H1 = 161 Hz, C-1), 

103.2 (JC1,H1 = 159 Hz, C-1), 101.4 (JC1,H1 = 164 Hz, C-1’β), 93.8 (JC1,H1 = 171 Hz, C-1’α); HRMS: [M+NH4]
+ 

calcd for C40H44N7O10 782.31442, found 782.31459. 

 

Methyl 6-O-(methyl 4-O-acetyl-2,3-diazido-2,3-dideoxy-αααα/ββββ-D-mannopyranosyl uronate)-2,3,4-tri-O-benzyl-

αααα-D-glucopyranoside (29). Donor 8ββββ and acceptor 20 were condensed using the 

general protocol for Ph2SO/Tf2O-mediated glycosylations to yield disaccharide 29 

(Yield: 94%, α : β = 1 : 5.5). TLC: Rf α 0.55, β 0.45 (toluene/EtOAc, 3/1, v/v); IR 

(neat, cm-1): 1065, 1751,2106, 2916; Spectroscopic data for the β-anomer: 1H 

NMR (CDCl3, 400 MHz, HH-COSY, HSQC): δ 7.26-7.38 (m, 15H, CHarom), 5.24 

(t, 1H, J = 9.8 Hz, H-4’), 5.00 (d, 1H, J = 10.9 Hz, CHH Bn), 4.87 (d, 1H, J = 11.7 Hz, CHH Bn), 4.81 (d, 1H, J = 

10.9 Hz, CHH Bn), 4.78 (d, 1H, J = 12.0 Hz, CHH Bn), 4.64 (d, 1H, J = 12.1 Hz, CHH Bn), 4.58 (d, 1H, J = 11.7 

Hz, CHH Bn), 4.55 (d, 1H, J = 3.5 Hz, H-1), 4.34 (s, 1H, H-1’), 4.08-4.13 (m, 1H, H-6), 4.01 (t, 1H, J = 9.2 Hz, 

H-3), 3.77-3.84 (m, 1H, H-5), 3.79 (d, 1H, J = 9.6 Hz, H-5’), 3.73 (s, 3H, CH3 CO2Me), 3.71 (d, 1H, J = 3.5 Hz, 

H-2’), 3.46-3.53 (m, 2H, H-3’, H-6), 3.45 (dd, 1H, J = 3.6, 10.2 Hz, H-2), 3.36 (t, 1H, J = 9.2 Hz, H-4), 3.35 (s, 

3H, OMe), 2.08 (s, 3H, CH3 Ac); 13C-APT NMR (CDCl3, 100 MHz, HSQC): δ 169.1, 166.8 (C=O Ac, CO2Me), 

138.6, 138.3, 138.0 (Cq Bn), 128.4, 128.3, 128.1, 128.0, 127.9, 127.7, 127.6 (CHarom), 100.2 (C-1’), 97.8 (C-1), 

81.9 (C-3), 79.9 (C-2), 77.2 (C-4), 75.7, 74.5 (CH2 Bn), 73.7 (C-5 or C-5’), 73.4 (CH2 Bn), 69.4 (C-5 or C-5’), 

68.9 (C-6), 67.4 (C-4’), 62.2 (C-2’), 60.9 (C-3’), 55.1 (OMe), 52.8 (CH3 CO2Me), 20.5 (CH3 Ac); 13C-GATED 

(CDCl3, 100 MHz): δ 100.2 (JC1,H1 = 159 Hz, C-1’), 97.8 (JC1,H1 = 172 Hz, C-1); HRMS: [M+Na]+ calcd for 

C37H42N6O11Na 769.28038, found 769.28029. 

 

Methyl 4-O-(methyl 4-O-acetyl-2,3-diazido-2,3-dideoxy-αααα/ββββ-D-mannopyranosyl uronate)-2,3,6-tri-O-benzyl-

αααα-D-glucopyranoside (30). Donor 8ββββ and acceptor 21 were condensed using the 

general protocol for Ph2SO/Tf2O-mediated glycosylations to yield disaccharide 30 

(Yield: 49%, α : β = 1 : 3.5). TLC: Rf 0.27, 0.38 (PE/EtOAc, 2/1, v/v); IR (neat, 

cm-1): 1041, 1751, 2106, 2924; Spectroscopic data for the β-anomer: 1H NMR 

(CDCl3, 400 MHz, HH-COSY, HSQC): δ 7.22-7.45 (m, 15H, CHarom), 5.10 (t, 1H, J = 10.0 Hz, H-4’), 5.02 (d, 1H, 
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J = 11.4 Hz, CHH Bn), 4.84 (d, 1H, J = 11.4 Hz, CHH Bn), 4.78 (d, 1H, J = 12.1 Hz, CHH Bn), 4.72 (d, 1H, J = 

12.1 Hz, CHH Bn), 4.60 (d, 1H, J = 3.7 Hz, H-1), 4.57 (d, 1H, J = 12.2 Hz, CHH Bn), 4.53 (d, 1H, J = 0.9 Hz, H-

1’), 4.36 (d, 1H, J = 12.1 Hz, CHH Bn), 3.93 (t, 1H, J = 9.0 Hz, H-3), 3.87 (t, 1H, J = 9.2 Hz, H-4), 3.72-3.77 (m, 

2H, H-5, H-6), 3.62 (dd, 1H, J = 2.2, 10.8 Hz, H-6), 3.49-3.53 (m, 5H, H-2, H-5’, CH3 CO2Me), 3.38 (s, 3H, 

OMe), 3.27 (dd, 1H, J = 0.4, 3.3 Hz, H-2’), 2.98 (dd, 1H, J = 3.4, 10.2 Hz, H-3’), 2.07 (s, 3H, CH3 Ac); 13C-APT 

NMR (CDCl3, 100 MHz, HSQC): δ 169.2, 166.6 (C=O Ac, CO2Me), 139.3, 138.0, 137.6 (Cq Bn), 128.8, 128.7, 

128.4, 128.1, 127.8, 127.3, 127.1 (CHarom), 100.2 (C-1’), 98.2 (C-1), 80.0 (C-4), 79.3 (C-2), 78.4 (C-3), 75.0 (CH2 

Bn), 73.8 (C-5’), 73.7, 73.4 (CH2 Bn), 68.9 (C-5), 68.0 (C-6), 67.4 (C-4’), 62.5 (C-2’), 60.9 (C-3’), 55.4 (OMe), 

52.6 (CH3 CO2Me), 20.5 (CH3 Ac); 13C-GATED (CDCl3, 100 MHz): δ 100.2 (JC1,H1 = 159 Hz, C-1’), 98.2 (JC1,H1 = 

168 Hz, C-1); Spectroscopic data for the α-anomer: 1H NMR (CDCl3, 400 MHz, HH-COSY, HSQC): δ 7.28-7.40 

(m, 15H, CHarom), 5.40 (d, 1H, J = 3.3 Hz, H-1’), 5.29 (t, 1H, J = 8.2 Hz, H-4’), 5.11 (d, 1H, J = 11.3 Hz, CHH 

Bn), 4.74 (d, 1H, J = 11.9 Hz, CHH Bn), 4.69 (d, 1H, J = 11.2 Hz, CHH Bn), 4.61-4.65 (m, 2H, CHH Bn, H-1), 

4.55 (d, 1H, J = 11.8 Hz, CHH Bn), 4.48 (d, 1H, J = 11.8 Hz, CHH Bn), 4.24 (d, 1H, J = 7.9 Hz, H-5’), 3.97 (t, 

1H, J = 9.1 Hz, H-3), 3.93 (dd, 1H, J = 3.5, 8.6 Hz, H-3’), 3.87 (t, 1H, J = 9.3 Hz, H-4), 3.65-3.77 (m, 3H, H-5, H-

6), 3.59 (s, 3H, CH3 CO2Me), 3.55-3.57 (m, 1H, H-2), 3.52 (t, 1H, J = 3.4 Hz, H-2’), 3.39 (s, 3H, OMe), 2.09 (s, 

3H, CH3 Ac); HRMS: [M+Na]+ calcd for C37H42N6O11Na 769.28038, found 769.28022. 

 

p-Methoxyphenyl 3-O-(methyl 4-O-acetyl-2,3-diazido-2,3-dideoxy-αααα/ββββ-D-mannopyranosyl uronate)-2-O-

benzyl-4,6-O-benzylidene-ββββ-D-galactopyranoside (31). Donor 8ββββ and 

acceptor 22 were condensed using the general protocol for Ph2SO/Tf2O-

mediated glycosylations to yield disaccharide 31 (Yield: 89%, α : β = 1 : 

7.5). TLC: Rf α 0.55, β 0.45 (toluene/EtOAc, 2/1, v/v); IR (neat, cm-1): 

1057, 1219, 1504, 1751, 2106; Spectroscopic data for the β-anomer: 1H 

NMR (CDCl3, 400 MHz, HH-COSY, HSQC): δ 7.52-7.56 (m, 2H, CHarom), 7.28-7.44 (m, 8H, CHarom), 7.06 (d, 

2H, J = 9.1 Hz,CHarom), 6.83 (d, 1H, J = 9.1 Hz, CHarom), 5.59 (s, 1H, CH Ph), 5.13 (t, 1H, J = 10.0 Hz, H-4’), 5.09 

(d, 1H, J = 11.6 Hz, CHH Bn), 4.87-4.89 (m, 2H, H-1, H-1’), 4.66 (d, 1H, J = 11.6 Hz, CHH Bn), 4.32-4.38 (m, 

2H, H-4, H-6), 4.18 (dd, 1H, J = 7.8, 9.9 Hz, H-2), 4.07 (dd, 1H, J = 1.4, 12.4 Hz, H-6), 3.88 (dd, 1H, J = 3.5, 9.9 

Hz, H-3), 3.78 (s, 3H, OMe), 3.72 (s, 3H, CH3 CO2Me), 3.69 (d, 1H, J = 9.7 Hz, H-5’), 3.50 (s, 1H, H-5), 3.32 (d, 

1H, J = 3.3 Hz, H-2’) 3.02 (dd, 1H, J = 3.5, 10.2 Hz, H-3’), 2.07 (s, 3H, CH3 Ac); 13C-APT NMR (CDCl3, 100 

MHz, HSQC): δ 169.2, 166.9 (C=O Ac, CO2Me), 155.3, 151.3, 138.6, 137.6 (Cq Ph, Bn), 128.7, 128.6, 128.3, 

128.2, 127.8, 126.3, 126.2, 118.5, 114.4 (CHarom), 103.0 (C-1), 100.6 (C-1’), 100.4 (CH Ph), 79.2 (C-2), 77.0 (C-

3), 75.4 (CH2 Bn), 75.4 (C-4), 73.5 (C-5’), 68.7 (C-6), 67.4 (C-4’), 66.5 (C-5), 61.6 (C-2’), 61.0 (C-3’), 55.5 

(OMe), 52.8 (CH3 CO2Me), 22.4 (CH3 Ac); 13C-GATED (CDCl3, 100 MHz): δ 103.0 (JC1,H1 = 158 Hz, C-1), 100.6 

(JC1,H1 = 161 Hz, C-1’); HRMS: [M+Na]+ calcd for C36H38N6O12Na 769.24399, found 769.24405. 

 

3,4,6-Tri-O-acetyl-2-azido-2-deoxy-1-O-(N-phenyl-trifluoroacetimidoyl)-αααα/ββββ-D-glucopyranoside (37). 

Compound 36
27a,b (0.95 g, 2.87 mmol) was dissolved in acetone (25 mL), followed by 

the addition of N-phenyl trifluoroacetimidoyl chloride37 (0.87 mL, 5.73 mmol), K2CO3 

(0.48 g, 3.44 mmol) and H2O (1 mL). After stirring for 1.5 h at RT the mixture was 

diluted with EtOAc, the organic layer was washed with sat. aq. NaCl (2x), dried over Na2SO4 and concentrated in 

vacuo. Purification using flash column chromatography (silica gel, 33% EtOAc in PE) yielded the title product as 

a yellowish oil (Yield: 1.38 g, 2.76 mmol, 96%, α : β = 1.4 : 1). TLC: Rf 0.65 (PE/EtOAc, 2/1, v/v); IR (neat, cm-

1): 727, 907, 1209, 1747, 2114; 1H NMR (CDCl3, 400 MHz, HH-COSY, HSQC, T = 328K): δ 7.27-7.33 (m, 4.8H, 

CHarom), 7.09-7.15 (m, 2.4H, CHarom), 6.82-6.87 (m, 4.8H, CHarom), 6.43 (d, 1.4H, J = 2.6 Hz, H-1α), 5.59 (d, 1H, J 

= 8.2 Hz, H-1β), 5.48 (t, 1.4H, J = 9.9 Hz, H-3α), 5.11 (t, 1.4H, J = 9.7 Hz, H-4α), 5.00-5.08 (m, 2H, H-3β, H-

4β), 4.21-4.30 (m, 2.4H, H-6α, H-6β), 4.07-4.14 (m, 3.8H, H-5α, H-6α, H-6β), 3.69-3.76 (m, 2.4H, H-2α, H-2β), 

3.63-3.69 (m, 1H, H-5β), 2.09 (s, 4.2H, CH3 Ac-α), 2.08 (s, 3H, CH3 Ac-β), 2.06 (s, 4.2H, CH3 Ac-α), 2.04 (s, 

7.2H, CH3 Ac-α, CH3 Ac-β), 1.99 (s, 3H, CH3 Ac-β); 13C-APT NMR (CDCl3, 100 MHz, HSQC): δ 170.0, 169.9, 

169.4, 169.4, 169.2, 169.1 (C=O Ac), 142.6 (Cq Ph), 128.6, 124.4, 118.9, 118.8 (CHarom), 115.6 (q, J = 284 Hz, 

CF3), 155.5 (q, J = 283 Hz, CF3), 94.9 (C-1β), 92.8 (C-1α), 72.3, 72.1 (C-4), 70.2, 69.8 (C-3, C-5), 67.5, 67.5 (C-

3, C-5), 62.4 (C-2), 61.1 (C-6, C-6), 60.1 (C-2), 20.1, 20.1, 20.5, 20.0 (CH3 Ac); HRMS: [M(hemiacetal)+Na]+ 

calcd for C12H17N3O8Na 354.09079, found 354.09059. 
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N-(Benzyl)-benzyloxycarbonyl-5-aminopentyl O-3,4,6-tri-O-acetyl-2-azido-2-deoxy-αααα/β/β/β/β-D-glucopyranoside 

(38). Donor 37 (0.52 g, 1.04 mmol) and N-(benzyl)-benzyloxycarbonyl-5-

aminopentanol (0.51 g, 1.56 mmol) were together co-evaporated with toluene (2x), 

dissolved in dry Et2O (21 mL) and stirred on activated MS for 30 mins at RT. The 

solution was cooled to -40 ºC and TfOH (18 µL, 0.21 mmol) was added. The mixture 

was allowed to warm to -10 ºC in 1 h followed by the addition of Et3N (0.1 mL). EtOAc was added and the 

organic phase was washed with sat. aq. NaCl (2x), dried over Na2SO4 and concentrated in vacuo. The residue was 

dissolved in pyridine (6 mL) and treated with Ac2O (2 mL) for 2 h, followed by the addition of EtOAc. The 

solution was washed with sat. aq. NaCl (2x), dried over Na2SO4 and concentrated in vacuo. Purification using 

flash column chromatography (silica gel, 50% EtOAc in PE) gave the title compound as a yellowish oil (Yield: 

0.64 g, 0.99 mmol, 95%, α : β = 7.4 : 1). TLC: Rf 0.41 (PE/EtOAc, 3/2, v/v); IR (neat, cm-1): 698, 1030, 1219, 

1694, 1746, 2108, 2922; Spectroscopic data for the α-anomer: 1H NMR (CDCl3, 400 MHz, HH-COSY, HSQC): δ 

7.13-7.40 (m, 10H, CHarom), 5.47 (t, 1H, J = 9.9 Hz, H-3), 5.18 (d, 2H, J = 13.1 Hz, CH2 Z), 5.04 (t, 1H, J = 9.8 

Hz, H-4), 4.93 (d, 1H, J = 12.0 H, H-1), 4.50 (bs, 2H, CH2 Bn), 4.28 (dd, 1H, J = 3.5, 12.2 Hz, H-6), 4.06 (d, 1H, 

J = 12.5 Hz, H-6), 3.94-4.02 (m, 1H, H-5), 3.60-3.75 (m, 1H, CH2), 3.35-3.50 (m, 1H, CH2), 3.26 (dd, 1H, J = 3.5, 

10.6 Hz, H-2), 3.18-3.30 (m, 2H, CH2), 2.08 (s, 3H, CH3 Ac), 2.07 (s, 3H, CH3 Ac), 2.03 (s, 3H, CH3 Ac), 1.45-

1.70 (m, 4H, CH2), 1.24-1.42 (m, 2H, CH2); 
13C-APT NMR (CDCl3, 100 MHz, HSQC): δ 170.2, 169.7, 169.3 

(C=O Ac), 156.1 (d, J = 50Hz, C=O Z), 137.7 (Cq Z), 136.6 (d, J = 10 Hz, Cq Bn), 128.3, 127.6, 127.0 (CHarom), 

97.5 (C-1), 70.0 (C-3), 68.3 (C-4), 68.3 (CH2), 67.3 (C-5), 66.8 (CH2 Z), 61.6 (C-6), 60.5 (C-2), 50.1 (d, J = 32 

Hz, CH2 Bn), 46.3 (d, J = 91 Hz, CH2), 28.7 (CH2), 27.3 (d, J = 48 Hz, CH2), 23.0 (CH2), 20.4, 20.3 (CH3 Ac); 
13C-GATED (CDCl3, 100 MHz): δ 97.5 (JC1,H1 = 171 Hz, C-1); Diagnostic peak for the β-anomer: 13C-APT NMR 

(CDCl3, 100 MHz, HSQC): δ 101.7 (C-1); HRMS: [M+Na]+ calcd for C32H40N4O10Na 663.26366, found 

663.26356. 

 

N-(Benzyl)-benzyloxycarbonyl-5-aminopentyl O-2-azido-2-deoxy-αααα-D-glucopyranoside (39). Compound 38 

(0.64 g, 0.99 mmol) was dissolved in MeOH (10 mL) and treated with NaOMe (cat.) for 4 

h until full consumption of the starting material was indicated by TLC analysis. The 

mixture was neutralized by the addition of Amberlite-H+, filtered and concentrated in 

vacuo. The title compound was used in the next reaction step without further purification. 

TLC: Rf 0.18 (PE/EtOAc, 1/3, v/v); IR (neat, cm-1): 1028, 1682, 2106, 2930, 3552; Spectroscopic data for the α-

anomer: 1H NMR (MeOH-d4, 400 MHz, HH-COSY, HSQC): δ 7.64-7.71 (m, 2H, CHarom), 7.08-7.33 (m, 8H, 

CHarom), 5.10 (d, 1H, J = 17.1 Hz, CH2 Z), 4.80 (bs, 1H, H-1), 4.43 (bs, 2H, CH2 Bn), 3.85 (t, 1H, J = 9.5 Hz, H-

3), 3.77 (d, 1H, J = 11.9 Hz, H-6), 3.69 (dd, 1H, J = 5.0, 11.9 Hz, H-6), 3.49-3.64 (m, 2H, H-5, CH2), 3.36 (t, 1H, 

J = 9.3 Hz, H-4), 3.25-3.32 (m, 1H, CH2), 3.12-3.24 (m, 2H, CH2), 3.02 (dd, 1H, J = 2.9, 10.4 Hz, H-2), 1.39-1.60 

(m, 4H, CH2), 1.20-1.38 (m, 2H, CH2); 
13C-APT NMR (MeOH-d4, 100 MHz, HSQC): δ 157.8 (d, J = 53 Hz, C=O 

Z), 138.7 (d, J = 9 Hz, Cq Z), 137.5 (d, J = 11 Hz, Cq Bn), 129.3, 128.6, 128.4, 128.1, 128.0 (CHarom), 99.0 (C-1), 

73.3 (C-5), 72.1 (C-3), 71.7 (C-4), 68.5, 68.2 (CH2, CH2 Z), 64.0 (C-2), 62.1 (C-6), 51.2 (d, J = 19 Hz, CH2 Bn), 

47.6 (d, J = 88 Hz, CH2), 29.8 (CH2), 28.4 (d, J = 46 Hz, CH2), 24.1 (CH2); Diagnostic peak for the β-anomer: 13C-

APT NMR (MeOH-d4, 100 MHz, HSQC): δ 102.9 (C-1); HRMS: [M+Na]+ calcd for C26H34N4O7Na 537.23197, 

found 537.23153. 

 

N-(Benzyl)-benzyloxycarbonyl-5-aminopentyl O-2-azido-4,6-O-di-tert-butylsilylidene-2-deoxy-αααα-D-gluco-

pyranoside (40). Compound 39 (0.52 mmol) was co-evaporated with toluene (2x) 

and dissolved in dry DMF (5 mL) under an argon atmosphere. The solution was 

cooled to -40 ºC and di-tert-butylsilyl-bistriflate (0.19 mL, 0.6 mmol) was drop-wise 

added. The reaction was stirred for 1.5 h, followed by the addition of pyridine (0.2 

mL). The mixture was diluted with EtOAc, washed with sat. aq. NaCl (2x), dried 

over Na2SO4, filtered and concentrated in vacuo. Purification using flash column chromatography (silica gel, 14% 

EtOAc in PE) gave the title compound as a colorless oil (Yield: 0.26 g, 0.39 mmol, 76%). TLC: Rf 0.64 

(PE/EtOAc, 3/1, v/v); [α]D
20 +52.2 (c 1, DCM); IR (neat, cm-1): 827, 1088, 1688, 2108, 2858, 2934, 3429; 1H 

NMR (CDCl3, 400 MHz, HH-COSY, HSQC, T = 328K): δ 7.16-7.34 (m, 10H, CHarom), 5.17 (s, 2H, CH2 Z), 4.75 

(d, 1H, J = 3.4 Hz, H-1), 4.48 (s, 2H, CH2 Bn), 4.07 (dd, 1H, J = 4.6, 9.6 Hz, H-6), 3.97 (dd, 1H, J = 8.6, 10.1 Hz, 
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H-3), 4.83 (t, 1H, J = 10.0 Hz, H-6), 3.75 (ddd, 1H, J = 4.5, 9.4, 9.4 Hz, H-5), 3.65 (t, 1H, J = 8.8 Hz, H-4), 3.57-

3.63 (m, 1H, CH2), 3.36-3.44 (m, 1H, CH2), 3.18-3.27 (m, 2H, CH2), 3.14 (dd, 1H, J = 3.6, 10.2 Hz, H-2), 2.85 

(bs, 1H, 3-OH), 1.48-1.62 (m, 4H, CH2), 1.25-1.38 (m, 2H, CH2), 1.06 (s, 9H, CH3 tBu), 0.99 (s, 9H, CH3 tBu); 
13C-APT NMR (CDCl3, 100 MHz, HSQC): δ 156.3 (d, J = 48 Hz, C=O Z), 137.7, 136.7 (Cq Bn), 128.4, 128.3, 

127.8, 127.7, 127.1 (CHarom), 98.0 (C-1), 77.9 (C-4), 71.3 (C-3), 68.1 (CH2), 67.0 (CH2 Z), 66.3 (C-6), 66.0 (C-5), 

62.1 (C-2), 50.3 (d, J = 30 Hz, CH2 Bn), 46.5 (d, J = 95 Hz, CH2), 28.9, 27.7 (CH2), 27.3, 26.8 (CH3 tBu), 23.3 

(CH2), 22.5, 19.8 (Cq tBu); HRMS: [M+Na]+ calcd for C34H50N4O7SiNa 677.33410, found 677.33397. 

 

Methyl (phenyl 4-O-[2,3,4-tri-O-benzyl-6-O-{9-fluorenylmethoxycarbonyl}-αααα-D-glucopyranosyl]-2,3-

diazido-2,3-dideoxy-1-thio-ββββ-D-mannopyranosyl uronate) (42). Imidate 41
3b 

(0.55 g, 0.65 mmol) and acceptor 16ββββ (0.18 g, 0.5 mmol) were together co-

evaporated with dry toluene (2x). Et2O (13 mL, dried over 4Å MS prior to use) 

was added and the mixture was cooled to -40 ºC. TfOH (9 µL, 0.1 mmol) was 

added and the mixture was allowed to warm to -10 ºC. Then pyridine (0.1 mL) was added, the mixture was diluted 

with EtOAc and washed with sat. aq. NaCl (2x). The organic layer was dried over Na2SO4, concentrated in vacuo 

and purified using column chromatography (silica gel, 20% EtOAc in PE) to yield the title compound as a 

colorless oil (Yield: 0.48 g, 0.48 mmol, 96%). TLC: Rf 0.54 (PE/EtOAc, 3/1, v/v); [α]D
20 +36.6 (c 1, DCM); IR 

(neat, cm-1): 696, 737, 1070, 1252, 1744, 2106; 1H NMR (CDCl3, 400 MHz, HH-COSY, HSQC): δ 7.75 (d, 2H, J 

= 7.6 Hz, CHarom), 7.59 (dd, 2H, J = 7.6, 11.1 Hz, CHarom), 7.20-7.45 (m, 24H, CHarom), 5.00 (d, 1H, J = 3.9 Hz, H-

1’), 4.99 (d, 1H, J = 11.4 Hz, CHH Bn), 4.89 (d, 1H, J = 4.89 Hz, CHH Bn), 4.67-4.81 (m, 4H, CHH Bn, CH2 Bn, 

H-1), 4.57 (d, 1H, J = 10.8 Hz, CHH Bn), 4.33-4.44 (m, 3H, CH2 Fmoc, H-6’), 4.30 (dd, 1H, J = 2.5, 11.9 Hz, H-

6’), 4.22 (t, 1H, J = 7.3 Hz, CH Fmoc), 4.12-4.17 (m, 2H, H-2, H-4), 3.94 (t, 1H, J = 9.4 Hz, H-3’), 3.80 (d, 1H, J 

= 9.4 Hz, H-5), 3.72-3.77 (m, 4H, H-5’, CH3 CO2Me), 3.70 (dd, 1H, J = 3.5, 9.8 Hz, H-3), 3.60 (t, 1H, J = 9.5 Hz, 

H-4’), 3.52 (dd, 1H, J = 3.3, 9.8 Hz, H-2’); 13C-APT NMR (CDCl3, 100 MHz, HSQC): δ 166.7 (C=O CO2Me), 

154.8 (C=O Fmoc), 143.3, 143.1, 141.1 (Cq Fmoc), 138.5, 137.9, 137.8 (Cq Bn), 133.2 (Cq SPh), 131.3, 129.2, 

128.3, 127.9, 127.8, 127.6, 127.1, 125.0, 125.0, 119.9 (CHarom), 99.6 (C-1’), 87.3 (C-1), 81.0 (C-3’), 79.9, 79.9 (C-

2’, C-5),76.5, 76.3 (C-4, C-4’), 75.5, 75.1, 73.5 (CH2 Bn), 70.1 (C-5’), 69.7 (CH2 Fmoc), 65.8 (C-3), 65.7 (C-6’), 

64.4 (C-2), 52.9 (CH3 CO2Me), 46.6 (CH Fmoc); 13C-GATED (CDCl3, 100 MHz): δ 99.6 (JC1,H1 = 172 Hz, C-1’), 

87.3 (JC1,H1 = 155 Hz, C-1); HRMS: [M+Na]+ calcd for C55H52N6O11SNa 1027.33070, found 1027.33138. 

 

N-(Benzyl)-benzyloxycarbonyl-5-aminopentyl O-(methyl 4-O-[2,3,4-tri-O-benzyl-6-O-{9-fluorenylmethoxy-

carbonyl}-αααα-D-glucopyranosyl]-2,3-diazido-2,3-dideoxy-ββββ-

D-mannopyranosyl uronate)-2-azido-4,6-O-di-tert-butyl-

silylidene-2-deoxy-αααα-D-glucopyranoside (43). Compound 42 

(0.29 g, 0.29 mmol) and Ph2SO (70 mg, 0.35 mmol) were 

together co-evaporated with toluene (2x). Freshly distilled 

DCM (5.8 mL) and activated molecular sieves (3Å) were added under an argon atmosphere and the resulting 

mixture was stirred at RT for 20 min, followed by cooling to -80 ºC. Tf2O (59 µl, 0.35 mmol) was added and the 

mixture was allowed to warm to -60 ºC in 15 min. After cooling back to -80 ºC, a solution of compound 40 (0.26 

g, 0.39 mmol) in DCM (2 mL) was added. The reaction was warmed to -10 ºC in 4h, after which time pyridine 

(0.2 mL) was added. The mixture was diluted with EtOAc, washed with sat. aq. NaCl (2x), dried over Na2SO4, 

filtered and concentrated in vacuo. Purification by size-exclusion chromatography (Sephadex LH-20, eluted with 

DCM/MeOH, 1/1, v/v) gave the title compound as a colorless oil (Yield: 0.45 g, 0.29 mmol, >98%). TLC: Rf 0.36 

(PE/EtOAc, 3/1, v/v); [α]D
20 +30.8 (c 1, DCM); IR (neat, cm-1): 698, 739, 1043, 1072, 1094, 1256, 1697, 1749, 

2108, 2934; 1H NMR (CDCl3, 400 MHz, HH-COSY, HSQC, T = 328K): δ 7.71 (d, 2H, J = 7.6 Hz, CHarom), 7.57 

(t, 2H, J = 7.6 Hz, CHarom), 7.18-7.40 (m, 29H, CHarom), 5.17 (s, 2H, CH2 Z), 5.09 (d, 1H, J = 3.1 Hz, H-1”), 4.97 

(d, 1H, J = 11.1 Hz, CHH Bn), 4.92 (s, 1H, H-1’), 4.87 (d, 1H, J = 10.9 Hz, CHH Bn), 4.78 (d, 2H, J = 11.4 Hz, 

H-1, CHH Bn), 4.70-4.75 (m, 2H, CH2 Bn), 4.58 (d, 1H, J = 10.9 Hz, CHH Bn), 4.49 (s, 2H, CH2 Bn), 4.35-4.42 

(m, 3H, H-6”, CH2 Fmoc), 4.31 (dd, 1H, J = 2.1, 11.8 Hz, H-6”), 4.21 (t, 1H, J = 7.5 Hz, CH Fmoc), 4.16 (t, 1H, J 

= 9.4 Hz, H-4’), 4.01-4.08 (m, 2H, H-2’, H-6), 3.89-3.96 (m, 2H, H-3, H-3”), 3.78-3.89 (m, 3H, H-4, H-5’, H-6), 

3.69-3.78 (m, 2H, H-5, H-5”), 3.67 (s, 3H, CH3 CO2Me), 3.55-3.62 (m, 2H, H-4”, CHH CH2), 3.48-3.54 (m, 2H, 

H-2”, H-3’), 3.36-3.45 (m, 1H, CHH CH2), 3.27 (dd, 1H, J = 3.4, 10.1 Hz, H-2), 3.20-3.26 (m, 2H, CH2), 1.48-
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1.64 (m, 4H, CH2), 1.26-1.38 (m, 2H, CH2), 1.04 (s, 9H, CH3 tBu), 0.97 (s, 9H, CH3 tBu); 13C-APT NMR (CDCl3, 

100 MHz, HSQC): δ 166.9 (C=O CO2Me), 156.3 (d, J = 50 Hz, C=O Z), 154.8 (C=O Fmoc), 143.3, 143.1, 141.1, 

141.1 (Cq Fmoc), 138.5, 137.8, 137.8, 137.7 (Cq Bn), 136.7 (d, J = 17 Hz, Cq Bn), 128.4, 128.3, 128.2, 127.9, 

127.8, 127.7, 127.5, 127.2, 127.0 (CHarom), 125.0, 124.9, 119.9 (CHarom Fmoc), 101.0 (C-1’), 99.1 (C-1”), 97.4 (C-

1), 80.9 (C-3”), 79.7 (C-2”), 79.4 (C-3), 76.7 (C-5’), 76.4 (C-4”), 76.0 (C-4), 75.5 (C-4’), 75.4, 75.0, 73.3 (CH2 

Bn), 69.9 (C-5”), 69.7 (CH2 Fmoc), 68.1 (CH2), 67.0 (CH2 Z), 66.6 (C-5), 66.3 (C-6), 65.6 (C-6”), 63.4 (C-3’), 

62.6 (C-2’), 62.5 (C-2), 52.6 (CH3 CO2Me), 50.3 (d, J = 24 Hz, CH2 Bn), 46.6 (CH Fmoc), 46.4 (d, J = 109 Hz, 

CH2), 28.8 (CH2), 27.5 (d, J = 33 Hz, CH2), 27.2, 26.8 (CH3 tBu), 23.3 (CH2), 22.5, 19.7 (Cq tBu); 13C-GATED 

(CDCl3, 100 MHz): δ 101.0 (JC1,H1 = 158 Hz, C-1’), 99.1 (JC1,H1 = 170 Hz, C-1”), 97.4 (JC1,H1 = 170 Hz, C-1); 

HRMS: [M+NH4]
+ calcd for C83H100N11O18Si 1566.70116, found 1566.70311. 

 

N-(Benzyl)-benzyloxycarbonyl-5-aminopentyl O-(methyl 4-O-[2,3,4-tri-O-benzyl-αααα-D-glucopyranosyl]-2,3-

diazido-2,3-dideoxy-ββββ-D-mannopyranosyl uronate)-2-azido-

4,6-O-di-tert-butylsilylidene-2-deoxy-αααα-D-glucopyranoside 

(44). Compound 43 (0.39 g, 0.25 mmol) was dissolved in 

pyridine (5 mL) and treated with triethylamine (0.53 mL, 3.79 

mmol) for 3 h, followed by addition of EtOAc. The organic 

phase was washed with H2O (1x) and sat. aq. NaCl (2x), dried over Na2SO4, filtered and concentrated in vacuo. 

Purification using flash column chromatography (silica gel, 33% EtOAc in PE) furnished the title compound as a 

colorless oil (Yield: 0.32 g, 0.24 mmol, 94%). TLC: Rf 0.36 (PE/EtOAc, 2/1, v/v); [α]D
20 +18.8 (c 1, DCM); IR 

(neat, cm-1): 1028, 1072, 1686, 1751, 2108, 2858, 2934; 1H NMR (CDCl3, 400 MHz, HH-COSY, HSQC, T = 

328K): δ 7.18-7.40 (m, 25H, CHarom), 5.17 (s, 2H, CH2 Z), 5.00 (d, 1H, J = 3.4 Hz, H-1”), 4.93 (d, 1H, J = 11.2 

Hz, CHH Bn), 4.91 (d, 1H, J = 0.8 Hz, H-1’), 4.84 (d, 1H, J = 11.1 Hz, CHH Bn), 4.81 (d, 1H, J = 3.3 Hz, H-1), 

4.77 (d, 1H, J = 11.2 Hz, CHH Bn), 4.71 (s, 2H, CH2 Bn), 4.60 (d, 1H, J = 11.2 Hz, CHH Bn), 4.50 (bs, 2H, CH2 

Bn), 4.14 (t, 1H, J = 9.4 Hz, H-4’), 4.05 (dd, 1H, J = 4.6, 9.8 Hz, H-6), 4.02 (d, 1H, J = 3.1 Hz, H-2’), 3.78-3.93 

(m, 5H, H-3, H-3”, H-5’, H-5”, H-6), 3.70-3.78 (m, 2H, H-5, H-6”), 3.66 (s, 3H, CH3 CO2Me), 3.55-3.64 (m, 3H, 

H-4, H-6”, CHH CH2), 3.53 (dd, 1H, J = 3.3, 9.7 Hz, H-3’), 3.35-3.47 (m, 3H, H-2”, H-4”, CHH CH2), 3.28 (dd, 

1H, J = 3.5, 10.0 Hz, H-2), 3.20-3.27 (m, 2H, CH2), 2.02 (bs, 1H, 6”-OH), 1.48-1.63 (m, 4H, CH2), 1.25-1.38 (m, 

2H, CH2), 1.04 (s, 9H, CH3 tBu), 0.97 (s, 9H, CH3 tBu); 13C-APT NMR (CDCl3, 100 MHz, HSQC): δ 167.1 (C=O 

CO2Me), 156.2 (d, J = 53 Hz, C=O Z), 138.5, 137.9, 137.7 (Cq Bn), 136.6 (d, J = 17 Hz, Cq Bn), 128.4, 128.3, 

128.2, 127.8, 127.6, 127.4, 127.1, 127.0 (CHarom), 100.9 (C-1’), 98.7 (C-1”), 97.3 (C-1), 80.8 (C-3”), 79.7 (C-2”), 

79.4 (C-3), 77.2 (C-4”), 76.8 (C-5’), 75.9 (C-5”), 75.4 (CH2 Bn), 74.9 (C-4’), 74.9, 73.3 (CH2 Bn), 72.6 (C-4), 

68.0 (CH2), 67.0 (CH2 Z), 66.5 (C-5), 66.3 (C-6), 63.1 (C-3’), 62.5 (C-2’), 62.4 (C-2), 61.4 (C-6”), 52.5 (CH3 

CO2Me), 50.2 (d, J = 25 Hz, CH2 Bn), 46.4 (d, J = 108 Hz, CH2), 28.8 (CH2), 27.4 (d, J = 34 Hz, CH2), 27.1, 26.8 

(CH3 tBu), 23.2 (d, J = 11 Hz, CH2), 22.4, 19.6 (Cq tBu); 13C-GATED (CDCl3, 100 MHz): δ 100.9 (JC1,H1 = 160 

Hz, C-1’), 98.7 (JC1,H1 = 169 Hz, C-1”), 97.3 (JC1,H1 = 170 Hz, C-1); HRMS: [M+Na]+ calcd forC68H86N10O16SiNa 

1349.58847, found 1349.58962. 

 

Methyl (phenyl 2,3-diazido-4-O-tert-butyldimethylsilyl-2,3-dideoxy-1-thio-ββββ-D-mannopyranosyl uronate) 

(45). Compound 16ββββ (0.35 g, 1.0 mmol) was dissolved in dry DCM (20 mL) and cooled to 

0 ºC, followed by the addition of Et3N (0.84 mL, 6 mmol) and TBS-OTf (0.45 mL, 2 

mmol). The resulting solution was stirred overnight at RT. Sat. aq. NaHCO3 was added and 

the mixture was diluted with EtOAc. The organic fraction was separated, washed with sat. aq. NaCl (2x), dried 

over Na2SO4 and concentrated in vacuo. Purification using flash column chromatography (silica gel, 10% EtOAc 

in PE) yielded the title compound as amorphous white solids (Yield: 0.41 g, 0.88 mmol, 88%). TLC: Rf 0.67 

(PE/EtOAc, 4/1, v/v); [α]D
20 -10.6 (c 1, DCM); IR (neat, cm-1): 827, 1057, 1441, 1742, 2106, 2927; 1H NMR 

(CDCl3, 400 MHz, HH-COSY, HSQC): δ 7.38-7.43 (m, 2H, CHarom), 7.24-7.30 (m, 3H, CHarom), 4.87 (s, 1H, H-1), 

4.20 (d, 1H, J = 3.2 Hz, H-2), 4.04 (t, 1H, J = 9.3 Hz, H-4), 3.78 (d, 1H, J = 9.2 Hz, H-5), 3.73 (s, 3H, CH3 

CO2Me), 3.56 (dd, 1H, J = 3.5, 9.5 Hz, H-3), 0.83 (s, 9H, CH3 tBu), 0.18 (s, 3H, CH3 Me), 0.01 (s, 3H, CH3 Me); 
13C-APT NMR (CDCl3, 100 MHz, HSQC): δ 167.3 (C=O CO2Me), 133.4 (Cq SPh), 131.2, 129.1, 127.9 (CHarom), 

87.2 (C-1), 80.8 (C-5), 68.1 (C-3), 67.6 (C-2), 64.8 (C-4), 52.4 (CH3 CO2Me), 25.5 (CH3 tBu), 17.8 (Cq tBu), -4.8, 
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-5.3 (CH3 Me); 13C-GATED (CDCl3, 100 MHz): δ 87.2 (JC1,H1 = 155 Hz, C-1); HRMS: [M+NH4]
+ calcd for 

C19H32N7O4SSi 482.20003, found 482.20002. 

 

N-(Benzyl)-benzyloxycarbonyl-5-aminopentyl 3-O-(methyl 4-O-[6-O-{methyl 2,3-diazido-4-O-tert-butyldi-

methylsilyl-2,3-dideoxy-ββββ-D-mannopyranosyl 

uronate}-2,3,4-tri-O-benzyl-αααα-D-glucopyrano-

syl]-2,3-diazido-2,3-dideoxy-ββββ-D-mannopyran-

osyl uronate)-2-azido-4,6-O-di-tert-butylsilyli-

dene-2-deoxy-αααα-D-glucopyranoside (46). 

Compound 45 (30 mg, 65 µmol), Ph2SO (13 mg, 

65 µmol) and TTBP (32 mg, 130 µmol) were together co-evaporated with toluene (2x). Freshly distilled DCM 

(1.5 mL) and activated molecular sieves (3Å) were added under an argon atmosphere and the resulting mixture 

was stirred at RT for 20 min, followed by cooling to -80 ºC. Tf2O (11 µl, 65 µmol) was added and the mixture was 

stirred at -80 ºC for 20 min. Then a solution of compound 44 (95 mg, 71 µmol) in DCM (1 mL) was added. The 

reaction was stirred overnight at -30 ºC and subsequently warmed to -10 ºC, followed by the addition of 

triethylamine (0.1 mL). The mixture was diluted with EtOAc, washed with sat. aq. NaCl (2x), dried over Na2SO4, 

filtered and concentrated in vacuo. Purification by flash column chromatography (silica gel, 20% EtOAc in PE) 

and subsequent size-exclusion chromatography (Sephadex LH-20, eluted with DCM/MeOH, 1/1, v/v) to remove 

hydrolyzed donor gave the title compound as a colorless oil (Yield: 81 mg, 48 µmol, 74%). TLC: Rf 0.33 

(PE/EtOAc, 4/1, v/v); [α]D
20 +10.9 (c 1, DCM); IR (neat, cm-1): 696, 727, 907, 1692, 1751, 2106, 2931; 1H NMR 

(CDCl3, 400 MHz, HH-COSY, HSQC, T = 328K, tentatively assigned based on 1H NMR of compound 44): δ 

7.13-7.36 (m, 25H, CHarom), 5.15 (s, 2H, CH2 Z), 5.02 (d, 1H, J = 3.4 Hz, H-1”), 4.92 (d, 1H, J = 11.2 Hz, CHH 

Bn), 4.87 (s, 1H, H-1’), 4.76-4.83 (m, 2H, H-1,CHH Bn), 4.72 (d, 1H, J = 11.2 Hz, CHH Bn), 4.63-4.69 (m, 2H, 

CH2 Bn),4.58 (d, 1H, J = 11.8 Hz, CHH Bn), 4.47 (s, 2H, CH2 Bn), 4.32 (s, 1H, H-1”’), 4.07 (t, 1H, J = 9.5 Hz, H-

4’), 3.96-4.03 (m, 2H, H-2’, H-6), 3.89-3.96 (m, 2H, H-4”’, H-6”), 3.75-3.89 (m, 5H, H-3, H-3”, H-5’, H-5”, H-6), 

3.65-3.75 (m, 5H, H-2”’, H-5, CH3 CO2Me), 3.54-3.64 (m, 7H, H-4, H-5”’, H-6”, CH2, CH3 CO2Me), 3.43-3.48 

(m, 2H, H-3’, H-4”), 3.35-3.42 (m, 2H, H-2”, CH2), 3.26 (dd, 1H, J = 3.6, 9.9 Hz, H-2), 3.17-3.24 (m, 2H, CH2), 

3.12 (dd, 1H, J = 3.5, 9.5 Hz, H-3”’), 1.46-1.63 (m, 4H, CH2), 1.25-1.37 (m, 2H, CH2), 1.01 (s, 9H, CH3 tBu), 0.94 

(s, 9H, CH3 tBu), 0.83 (s, 9H, CH3 tBu), 0.14 (s, 3H, CH3 Me), -0.03 (s, 3H, CH3 Me); 13C-APT NMR (CDCl3, 

100 MHz, HSQC, tentatively assigned based on 13C-APT NMR of compound 44): δ 167.7, 167.0 (C=O CO2Me), 

156.3 (d, J = 53 Hz, C=O Z), 138.6, 138.5, 137.9, 137.8 (Cq Bn), 136.7 (d, J = 18 Hz, Cq Bn), 128.3, 127.9, 127.8, 

127.7, 127.5, 127.1 (CHarom), 101.0 (C-1’), 100.0 (C-1”’), 98.8 (C-1”), 97.4 (C-1), 81.1 (C-3”), 79.6 (C-2”, C-3), 

77.5 (C-5”’), 76.9 (C-5”), 76.0, 75.9 (C-4”, C-5’), 75.3 (CH2 Bn), 74.7 (C-4’), 74.4, 73.4 (CH2 Bn), 70.9 (C-4), 

68.2 (CH2), 67.7 (C-4”’), 67.2, 67.1 (C-6”, CH2 Z), 66.6 (C-5), 66.4 (C-6), 64.9 (C-3”’), 63.3 (C-3’), 62.7 (C-2’), 

62.5, 62.4 (C-2, C-2”’), 52.7, 52.3 (CH3 CO2Me), 50.3 (d, J = 26 Hz, CH2 Bn), 46.5 (d, J = 107 Hz, CH2), 28.9 (d, 

J = 7 Hz, CH2), 27.5 (d, J = 35 Hz, CH2), 27.2, 26.9, 25.5 (CH3 tBu), 23.3 (d, J = 10 Hz, CH2), 22.5, 19.7, 17.9 (Cq 

tBu), -4.7, -5.3 (CH3 Me); 13C-GATED (CDCl3, 100 MHz): δ 101.0 (JC1,H1 = 157 Hz, C-1’), 100.0 (JC1,H1 = 160 Hz, 

C-1”’), 98.8 (JC1,H1 = 168 Hz, C-1”), 97.4 (JC1,H1 = 169 Hz, C-1); HRMS: [M+NH4]
+ calcd for C81H112N17O20Si2 

1698.78026, found 1698.78165. 

 

N-(Benzyl)-benzyloxycarbonyl-5-aminopentyl 3-O-(methyl 4-O-[6-O-{methyl 2,3-diazido-2,3-dideoxy-ββββ-D-

mannopyranosyl uronate}-2,3,4-tri-O-benzyl-αααα-D-

glucopyranosyl]-2,3-diazido-2,3-dideoxy-ββββ-D-

mannopyranosyl uronate)-2-azido-2-deoxy-αααα-D-

glucopyranoside (47). A solution of compound 46 

(69 mg, 41 µmol) in THF (1 mL) was cooled to 0 ºC 

and treated with acetic acid (9 µL, 0.16 mmol) and 

tetrabutylammonium fluoride (1 M in THF, 82 µL, 82 µmol). The resulting solution was stirred for 3 h, followed 

by the addition of H2O and EtOAc. The organic phase was washed with sat. aq. NaCl (2x), dried over Na2SO4, 

concentrated in vacuo and purified using flash column chromatography (silica gel, 50% EtOAc in PE) to yield the 

4’”-OTBS protected intermediate as a colorless oil (Yield: 60 mg, 39 µmol, 96%). Spectroscopic data is reported 

for the 4’”-OTBS protected intermediate. TLC: Rf 0.44 (PE/EtOAc, 1/1, v/v); 1H NMR (CDCl3, 400 MHz, HH-
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COSY, HSQC, T = 328K): δ 7.19-7.41 (m, 25H, CHarom), 5.20 (s, 2H, CH2 Z), 5.06 (d, 1H, J = 3.3 Hz, H-1”), 4.97 

(d, 1H, J = 11.1 Hz, CHH Bn), 4.83-4.93 (m, 3H, CHH Bn, H-1, H-1’), 4.78 (d, 1H, J = 11.3 Hz,CHH Bn), 4.75 

(d, 1H, J = 11.9 Hz, CHH Bn), 4.69 (d, 1H, J = 11.7 Hz, CHH Bn), 4.63 (d, 1H, J = 11.8 Hz , CHH Bn), 4.52 (s, 

2H, CH2 Bn), 4.33 (s, 1H, H-1’”), 4.16 (t, 1H, J = 8.7 Hz, H-4’), 4.10 (d, 1H, J = 1.2 Hz, H-2’), 4.05 (d, 1H, J = 

8.4 Hz, H-5’), 3.85-4.02 (m, 4H, H-3, H-3”, H-6, H-6”), 3.77-3.82 (m, 1H, H-6), 3.74 (s, 6H, CH3 CO2Me), 3.54-

3.72 (m, 9H, H-2’”, H-3’, H-4, H-4’”, H-5, H-5”, H-5’”, H-6”, CH2), 3.40-3.50 (m, 3H, H-2”, H-4”, CH2), 3.37 

(dd, 1H, J = 3.4, 10.2 Hz, H-2), 3.28 (bt, 2H, J = 5.6 Hz, CH2), 3.17 (dd, 1H, J = 3.5, 9.5 Hz, H-3’”), 1.52-1.68 

(m, 4H, CH2), 1.32-1.40 (m, 2H, CH2), 0.88 (s, 9H, CH3 tBu), 0.20 (s, 3H, CH3 Me), 0.02 (s, 3H, CH3 Me); 13C-

APT NMR (CDCl3, 100 MHz, HSQC): δ 167.7, 167.2 (C=O CO2Me), 156.4 (d, J = 50 Hz, C=O Z), 138.5, 138.4, 

137.9, 137.8 (Cq), 136.7 (d, J = 23 Hz, Cq Bn), 128.5, 128.5, 128.3, 128.2, 128.0, 127.9, 127.8, 127.6, 127.2 

(CHarom), 100.6 (C-1’), 100.2 (C-1’”), 98.2 (C-1”), 97.0 (C-1), 83.8 (C-3), 81.1 (C-3”), 79.7 (C-2”), 77.5 (C-5’”), 

76.2 (C-5’), 75.8 (C-4”), 75.4, 74.5 (CH2 Bn), 74.1 (C-4’), 73.5 (CH2 Bn), 71.3, 71.0 (C-4, C-5”), 69.6 (C-5), 67.9 

(CH2), 67.7 (C-4’”), 67.4 (C-6”), 67.1 (CH2 Z), 64.9 (C-3’”), 62.7 (C-3’), 62.4 (C-2’”), 62.4 (C-6), 62.1, 62.0 (C-

2, C-2’), 53.2, 52.4 (CH3 CO2Me), 50.3 (d, J = 20 Hz, CH2 Bn), 46.4 (d, J = 111 Hz, CH2), 28.8 (CH2), 28.0 (d, J 

= 51 Hz, CH2), 25.5 (CH3 tBu), 23.2 (CH2), 17.9 (Cq tBu), -4.7, -5.2 (CH3 Me); 13C-GATED (CDCl3, 100 MHz): 

δ 100.6 (JC1,H1 = 162 Hz, C-1’), 100.2 (JC1,H1 = 160 Hz, C-1’”), 98.2 (JC1,H1 = 171 Hz, C-1”), 97.0 (JC1,H1 = 169 Hz, 

C-1). The 4’”-OTBS protected intermediate (84 mg, 55 µmol) was dissolved in THF (0.5 mL) and treated with 

acetic acid (13 µL, 0.22 mmol) and tetrabutylammonium fluoride (1 M sln in THF, 0.17 mL, 0.17 mmol) at 0 ºC. 

The resulting mixture was stirred at RT for 2 days, after which time H2O and EtOAc were added. The organic 

phase was washed with sat. aq. NaCl (2x), dried over Na2SO4 and concentrated in vacuo. Purification using flash 

column chromatography (silica gel, 75% EtOAc in PE) yielded the title compound as a colorless foam (Yield: 60 

mg, 42 µmol, 75%). TLC: Rf 0.31 (PE/EtOAc, 1/2, v/v); [α]D
20 +28.1 (c 1, DCM); IR (neat, cm-1): 698, 731, 1028, 

1070, 1683, 1749, 2102, 2927, 3495; 1H NMR (CDCl3, 400 MHz, HH-COSY, HSQC, T = 328K): δ 7.14-7.39 (m, 

25H, CHarom), 5.17 (s, 2H, CH2 Z), 5.07 (d, 1H, J = 3.4 Hz, H-1”), 4.95 (d, 1H, J = 11.1 Hz, CHH Bn), 4.89 (d, 

1H, J = 0.9 Hz, H-1’), 4.83-4.87 (m, 2H, CHH Bn, H-1), 4.76 (d, 1H, J = 11.2 Hz, CHH Bn), 4.73 (d, 1H, J = 11.9 

Hz, CHH Bn), 4.67 (d, 1H, J = 11.8 Hz, CHH Bn), 4.60 (d, 1H, J = 11.8 Hz, CHH Bn), 4.50 (s, 2H, CH2 Bn), 4.31 

(s, 1H, H-1”’), 4.16 (t, 1H, J = 8.6 Hz, H-4’), 4.06-4.10 (m, 2H, H-2’, H-5’), 4.02 (t, 1H, J = 9.5 Hz, H-4”’), 3.96-

4.01 (m, 1H, H-6”), 3.83-3.95 (m, 3H, H-3, H-3”, H-6), 3.77-3.80 (m, 4H, H-6, CH3 CO2Me), 3.75 (s, 3H, CH3 

CO2Me), 3.63-3.72 (m, 5H, H-2”’, H-5, H-5”, H-5”’, H-6”), 3.53-3.62 (m, 3H, H-3’, H-4, CH2), 3.38-3.47 (m, 3H, 

H-2”, H-4”, CH2), 3.35 (dd, 1H, J = 3.4, 7.1 Hz, H-2), 3.33 (dd, 1H, J = 3.3, 6.7 Hz, H-3”’), 3.26 (bt, 2H, J = 5.7 

Hz, CH2), 1.52-1.65 (m, 4H, CH2), 1.30-1.40 (m, 2H, CH2); 
13C-APT NMR (CDCl3, 100 MHz, HSQC, tentatively 

assigned based on 13C-APT NMR of compound 46): δ 169.4, 167.5 (C=O CO2Me), 156.5 (d, J = 50 Hz, C=O Z), 

138.5, 138.4, 137.9, 137.8 (Cq Bn), 136.7 (d, J = 31 Hz, Cq Bn), 128.5, 128.4, 128.1, 128.0, 127.9, 127.8, 127.6 

(CHarom), 100.6 (C-1’), 100.1 (C-1”’), 98.2 (C-1”), 97.0 (C-1), 83.7 (C-3), 81.2 (C-3”), 79.6 (C-2”), 76.1 (C-4”, C-

5’), 75.5 (CH2 Bn), 74.8 (C-5’”), 74.5 (CH2 Bn), 73.9 (C-4’), 73.6 (CH2 Bn), 71.0 (C-5, C-5”), 69.7 (C-4), 68.0 

(C-6”), 67.8 (d, J = 9 Hz, CH2), 67.4 (C-4’”), 67.2 (CH2 Z), 62.7 (C-3’), 62.5 (C-6), 62.4 (C-3’”), 62.2 (C-2, C-3’), 

61.9 (C-2’, C-2”’), 53.2, 52.8 (CH3 CO2Me), 50.3 (d, J = 18 Hz, CH2 Bn), 46.5 (d, J = 114 Hz, CH2), 28.9 (CH2), 

27.5 (d, J = 50 Hz, CH2), 23.2 (CH2); 
13C-GATED (CDCl3, 100 MHz): δ 100.6 (JC1,H1 = 162 Hz, C-1’), 100.1 

(JC1,H1 = 159 Hz, H-1”’), 98.2 (JC1,H1 = 166 Hz, C-1”), 97.0 (JC1,H1 = 169 Hz, C-1); HRMS: [M+NH4]
+ calcd for 

C67H82N17O20 1444.59165, found 1444.59310. 

 

5-Aminopentyl 3-O-(4-O-[6-O-{2,3-di-N-acetamido-2,3-dideoxy-ββββ-D-mannopyranosyl uronate}-αααα-D-

glucopyranosyl]-2,3-di-N-acetamido-2,3-dideoxy-

ββββ-D-mannopyranosyl uronate)-2-N-acetamido-2-

deoxy-αααα-D-glucopyranoside (48). Compound 47 (85 

mg, 60 µmol) was dissolved in THF (1 mL) and 

treated with a freshly prepared solution of aq. KOOH 

(0.36 mL, 0.5 M, KOH : H2O2 = 1 : 2) at 0 ºC. The 

resulting solution was stirred at +4 ºC overnight, after 

which time the mixture was neutralized by the addition of 1 M aq. HCl (pH~7). EtOAc was added and the organic 

phase was washed with sat. aq. NaCl (2x). The combined aqueous layers were extracted with EtOAc (1x) and the 

organic fractions were together dried over Na2SO4 and concentrated in vacuo to give the crude di-acid as a 
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colorless oil (Yield: 83 mg, 59 µmol). TLC: Rf 0.09 (EtOAc/MeOH, 9/1, v/v + 1% AcOH); [α]D
20 +42.0 (c 0.2, 

DCM); IR (neat, cm-1): 698, 735, 1028, 1072, 1605, 1694, 2106, 2924, 3437; The presence of two uronic acid 

moieties resulted in such broadening of the NMR signals that accurate assignment was impossible, however the 

disappearance of the CO2Me-signals was confirmed. HRMS: [M+H]+ calcd for C65H75N16O20 1399.53380, found 

1399.53576. The crude di-acid (~83 mg) was dissolved in THF/acetic acid (6 mL, 4/1, v/v) and treated with zinc 

dust (0.29 g, 4.43 mmol) overnight. Full conversion to the free amine-containing product was verified using LC-

MS (Rt: 6.91 min, 10% → 90% B in C). The mixture was subsequently filtrated over a Whatmann filter-

containing glass-filter funnel using DCM/MeOH and the filtrate was concentrated in vacuo. The residue was 

dissolved in THF/H2O (4 mL, 1/1) and the mixture was basicified by the addition of solid NaHCO3 (pH > 8). 

Acetic anhydride (0.11 mL, 1.18 mmol) was added and the reaction was allowed to stir at RT until LC-MS 

analysis indicated complete conversion to the penta-N-acetamido intermediate (Rt: 9.00 min, 10% → 90% B in C). 

The mixture was diluted with DCM, washed with sat. aq. NaCl (1x), dried over Na2SO4 and concentrated in 

vacuo. The residue was dissolved in THF/H2O (4 mL, 1/1) and treated with 0.45 M aq. KOH (0.13 mL) to remove 

any O-acetyls. The mixture was then acidified by the addition of 1 M aq. HCl (pH < 5) and purged with argon. 

Palladium on activated charcoal (10 w%, ~ 20 mg) was added and the resulting suspension was consecutively 

purged with argon and H2 (g). The mixture was allowed to stir at RT under a blanket of H2. When analysis by LC-

MS indicated no further conversion to the product, extra palladium black was added and H2 was again applied. 

Subsequently the mixture was filtered through a Whatmann filter-containing glass-filter funnel, neutralized by the 

addition of sat. aq. NaHCO3 and concentrated in vacuo. Purification using HPLC (Develosil column, gradient 2% 

→ 8% B) and lyophilization resulted in the title compound as a white fluffy solid (Yield: 12 mg, 12 µmol, 20% 

over five steps). 1H NMR (D2O, 600 MHz, HH-COSY, HSQC, T = 313K): δ 5.25 (d, 1H, J = 3.5 Hz, H-1”), 5.09 

(s, 1H, H-1Man), 5.04 (s, 1H, H-1Man), 4.97 (d, 1H, J = 3.0 Hz, H-1), 4.63 (d, 1H, J = 2.3 Hz, H-2Man), 4.42-4.47 (m, 

2H, H-2Man, H-3Man), 4.22 (dd, 1H, J = 3.5, 10.6 Hz, H-3Man), 4.12-4.18 (m, 2H, H-2, H-6”), 4.04-4.08 (m, 3H, H-

4Man, H-5Man, H-6”), 3.97-4.04 (m, 3H, H-3, H-5Man, H-6), 3.88-3.95 (m, 2H, H-5”, H-6), 3.79-3.87 (m, 3H, H-4Man, 

H-5, CHH O-CH2), 3.74 (t, 1H, J = 10.7 Hz, H-3”), 3.70 (t, 1H, J = 9.5 Hz, H-4), 3.63-3.67 (m, 1H, CHH O-CH2), 

3.59 (t, 1H, J = 9.6 Hz, H-4”), 3.53 (dd, 1H, J = 3.6, 9.8 Hz, H-2”), 3.17 (t, 2H, J = 7.4 Hz, CH2-NH2), 2.21 (s, 3H, 

CH3 Ac), 2.21 (s, 3H, CH3 Ac), 2.19 (s, 3H, CH3 Ac), 2.11 (s, 3H, CH3 Ac), 2.09 (s, 3H, CH3 Ac), 1.74-1.88 (m, 

4H, CH2), 1.56-1.67 (m, 2H, CH2); 
13C-APT NMR (D2O, 150 MHz, HSQC): δ 176.7, 176.1, 175.7, 175.7, 175.4, 

175.2, 175.1 (C=O Ac, COOH), 100.8 (C-1Man), 100.5 (C-1Man), 99.5 (C-1”), 97.9 (C-1), 82.2 (C-3), 79.5 (C-5Man, 

C-5Man), 73.5 (C-3”), 72.7 (C-5), 72.4 (C-4Man), 72.2 (C-2”), 71.8 (C-5”), 69.6 (C-4), 69.5 (C-4”), 68.7 (C-6”), 68.6 

(O-CH2) 67.5 (C-4Man), 61.5 (C-6), 54.5 (C-3Man), 54.4 (C-3Man), 53.3 (C-2), 52.6 (C-2Man), 51.9 (C-2Man), 40.4 

(CH2-NH2), 29.1, 27.5, 23.5 (CH2), 22.9, 22.8, 22.7 (CH3 Ac); 13C-HMBC (D2O, 150 MHz): δ 100.8 (JC1,H1 = 162 

Hz, C-1Man), 100.5 (JC1,H1 = 164 Hz, C-1Man), 99.5 (JC1,H1 = 171 Hz, C-1”), 97.9 (JC1,H1 = 172 Hz, C-1); HRMS: 

[M+H]+ calcd for C39H65N6O23 985.40956, found 985.41023. 
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Introduction 

The substituents on a glycosyl donor have a decisive effect on its reactivity in glycosylation 

reactions.
1
 As first recognized by Paulsen and co-workers, electron-withdrawing groups on 

the carbohydrate core retard the formation of (partial) positive charge at the anomeric 

center, thereby slowing down the rate of hydrolysis and/or glycosylation.
2
 This observation 

is formulated in the “armed-disarmed concept”, introduced by Fraser-Reid, in which 

benzylated (armed) glycosyl donors can be selectively activated (and coupled) to acylated 

(disarmed) glycosyl donors.
3
 Subsequently the “armed-disarmed concept” has evolved into 

a system in which glycosyl donor reactivity is regarded to be a continuum.
4
 To gain better 

insight into the (relative) reactivity of a glycosyl donor, the groups of Ley
5
 and Wong

6
 have 

quantified the reactivity of a large number of thioglycosyl donors and shown that the 

reactivity of a given donor is a function of the nature of the mono- (or oligo-) saccharide at 

hand, and the nature and position of the substituents.
7
 Recently, Bols and co-workers have 

shown that “super-armed” donors can be conceived by forcing the carbohydrate ring 

substituents in pseudo-axial orientations, making the electronegative substituents less 

deactivating.
8
 In general, uronic acid donors, i.e. glycosyl pyranosides of which the C-6 is 
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oxidized to a carboxylic acid function, are regarded to be amongst the most unreactive 

donors by virtue of the electron-withdrawing nature of the appended carboxylic acid ester 

functionality (F-valueCOOMe = 0.34; F-valueCH2OH = 0.03).
9,10

 The previous Chapters deal 

with the activation and glycosylation behavior of a series of diversely substituted 

mannuronic acid donors, including mono- and di-azido mannuronic acids.
11 

It was found 

that these donors are readily activated to provide glycosylating species, which reacted in a 

stereoselective manner to provide β-mannosidic linkages. Besides the stereoselectivity of 

these reactions, the reactivity of the donors studied was remarkable. The latter became 

apparent in detailed NMR experiments to study the formation of anomeric triflates by the 

sulfonium ion mediated pre-activation of mannuronic acid donors. 2,3-Di-O-benzyl 

mannuronate donor 1 was rapidly activated using Ph2SO-Tf2O at low temperature (-80 ºC) 

to give mannosyl triflate 2 which could be used as a glycosylating species at the same low 

temperature (Figure 1).
11a

 Analogous results were obtained for the mono- and di-azido 

mannuronates 3 and 5, which contain, in addition to the “disarming” C-5 carboxylate, 

electron-withdrawing azide functionalities at C-2/3 (F-valueN3 = 0.48).
10

 Triflates 4 and 6 

were rapidly formed at -80 ºC from their respective donors, and shown to be apt 

glycosylating species.
11bc,12

 In addition, the decomposition temperatures of triflates 2, 4 and 

6 proved to be unexpectedly low, as indicated in Figure 1. For comparison, the 

decomposition temperatures of per-O-methyl mannosyl triflate 7,
13

 4,6-O-benzylidene-2,3-

di-O-methyl mannosyl triflate 8,
13

 and 6,6,6-trifluoro mannosyl triflate 9
14

 (F-valueCF3 = 

0.38)
10

 are -30 ºC, -10 ºC, and +10 ºC, respectively. Thus, the reactivity of the mannuronate 

donors and the stability of the intermediate triflates do not match the expectations. To gain 

more insight into the reactivity of mannopyranosyl uronic acid donors,
15

 their relative 

reactivity with respect to their non-oxidized counterparts was investigated, and is presented 

in this Chapter. 

 

Figure 1. Previously studied mannuronic acid donors and mannosyl triflates 

 

 

 

 

 

 

 

 

 

 

 

 

 
 

 

(*) Triflates 2, 4 and 6 exist as a conformational 4C1/
1C4 mixture11 

O

OBn

BnO
AcO

SPh

MeO2C
O

N3

BnO
AcO

SPh

MeO2C

O

OMe

MeO

OTf

O
O

Ph

O

OBn

BnO
AcO

OTf

MeO2C
O

N3

BnO
AcO

OTf

MeO2C

Tdecomp ~ -40 oC

Tdecomp > -10 oC

1

2 (*)

Tdecomp ~ -40 oC

O
N3

N3

AcO

OTf

MeO2C

Tdecomp ~ -10 oC

O

N3

N3

AcO
SPh

MeO2C

3

4 (*)

5

6 (*)

O

OMe

MeO

OTf

MeO

MeO

Tdecomp ~ -30 oC Tdecomp ~ +10 oC

7 8 9

O

OTf

OBn
BnO

F3C
BnO



Mannopyranosyl Uronic Acid Donor Reactivity  

 

97 

Results and Discussion 

The most extensive donor reactivity study to date has been reported by Wong and co-

workers, who quantified the reactivity of more than a hundred S-tolyl glycosides.
6
 In their 

experimental set-up, relative reactivity values (RRVs) were established in competition 

experiments in which two donors were forced to compete for a limited amount of 

NIS/TfOH as the stoichiometric promoter in the presence of excess acceptor (MeOH). 

Although the kinetics of halonium-mediated thioglycoside activation are complex and not 

fully understood,
16, 17 ,18

 it is generally assumed that formation of an intermediate with 

oxacarbenium ion character from the charged thioglycoside is the rate-determining step in 

these reactions. To establish the relative donor reactivity of a series of mannopyranosyl 

uronic acids and mannopyranoside reference donors, a set of S-tolyl mannosides was 

selected in combination with the NIS/TfOH promoter system, staying close to the system 

devised by Wong and co-workers.
6
 The donors used in this study are depicted in Figure 2 

and include a set of α-configured mannosides (10αααα, 11αααα and 12αααα), a set of the analogous 

β-configured donors (10ββββ, 11ββββ and 12ββββ), three C-2-azido mannosides (10N, 11N and 12N) 

and 2,3-diazido- and 2-fluoro mannuronic acid, 5 (Figure 1) and 12F, respectively. Methyl 

2,3,4-tri-O-benzyl-α-D-glucopyranoside 13 was selected as a model acceptor glycoside. In 

a general experimental set-up to probe glycosylation efficiency in a competitive manner, 

every glycosylation reaction employed two donors (A and B), NIS, a catalytic amount of 

TfOH and the acceptor in a molar ratio of 1 : 1 : 1 : 0.1 : 3. All condensations were 

performed under standardized conditions (0.05 M of donor in methylene chloride, -40 ºC to 

RT). The crude product mixtures were purified by size exclusion chromatography to isolate 

the disaccharide fraction and the relative ratios of the formed disaccharides were 

determined by NMR spectroscopy. The results of the competition experiments are 

summarized in Tables 1-3.
19,20

 

 
Figure 2. Donors and acceptor used in this study 
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Table 1. Results of the competing α-thio donors in glycosylation with 13 

 

Entry Donor A Donor B Product ratio donor A : B a Yield (%) 

1 10αααα 11αααα 76 : 24 84 

2 10αααα 12αααα 97 : 3 55 

3 11αααα 12αααα 84 : 16 67 

a Product ratio was determined by NMR of the disaccharide mixtures. The disaccharides were predominantly 

obtained as the β-anomers (see Experimental Section) 

 

From the series of reactions using the α-donors (Table 1) it became apparent that the 4,6-

di-O-acetyl donor 10αααα is the most reactive of the three α-donors surveyed, followed by the 

4,6-benzylidene mannoside 11αααα, with the mannuronic acid 12αααα being the least reactive. 

Apparently, the combined torsional
21

 and electronic disarming effect of the benzylidene 

function in 11αααα, which locks the C-6-O-substituent in the tg conformation,
22

 renders this 

mannoside less reactive than mannosyl donor 10αααα,    having two electron-withdrawing acyl 

functions. The strong electron-withdrawing effect of the C-5 carboxylic acid ester in 12αααα 

makes the mannuronate donor approximately 30 and 5 times less reactive than donor 10αααα 

and 11αααα, respectively. Interestingly, for the β-series (Table 2) the reactivity order is 

changed and mannuronic acid donor 12ββββ is 7 times more reactive than benzylidene donor 

11ββββ. In this series, diacyl donor 10ββββ is only twice as reactive as mannuronic acid 12ββββ. For 

the 2-azido series an analogous trend is seen (Table 2, entries 4-6). Diacyl donor 10N is 

more reactive than mannuronic acid 12N, which in turn outcompetes benzylidene donor 

11N.  

 

Table 2. Results of the competing β-thio donors in glycosylation with 13 

 

Entry Donor A Donor B Product ratio donor A : B a Yield (%) 

1 10ββββ 11ββββ 88 : 12 99 

2 10ββββ 12ββββ 66 : 33 97 

3 11ββββ 12ββββ 13 : 87 88 

4 10N 11N 89 : 11 60 

5 10N 12N 66 : 33 68 

6 11N 12N 18 : 82 45 

7 12ββββ 12N 99 : 1 99 

8 1 12F 94 : 6 99 

9 3 5 99 : 1 83 
a Product ratio was determined by NMR of the disaccharide mixtures. The disaccharides were predominantly 

obtained as the β-anomers (see Experimental Section) 
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To assess the reactivity of the 2,3-diazido and 2-fluoro mannuronates 5 and 12F, these 

donors were competed with 3 and 1 respectively, showing that the azide and fluorine 

substituent are equally disarming as expected on the basis of their similar F-value (0.48 vs 

0.45). The introduction of two azides leads to a less reactive donor (Table 2, entry 9), in 

line with expectations. 

 

To verify the unexpectedly high reactivity of the β-mannuronic acid 12ββββ, this donor was 

made to compete with α-benzylidene mannoside 11αααα, resulting in the predominant 

formation of the mannuronic acid disaccharide (Table 3, entry 1). 2-Azidomannuronic acid 

12N also outcompeted α-configured 11αααα, confirming the high reactivity of the β-anomer 

(Table 3, entry 2). It was previously established that there is a substantial difference 

between the reactivity of α- and β-anomeric mannuronic acid donors.
11b,c

 For example, 

donor 3 and 5 (Figure 1) can be readily activated at -80 ºC, whereas their α-configured 

counterparts require -40 ºC and -10 ºC for complete activation. This reactivity difference 

was established here in a direct competition experiment of 12αααα and 12ββββ with acceptor 13 

(Table 3, entry 3). Since both donors lead to the same product, we determined the ratio of 

unreacted donors after the reaction, revealing that 9 times more α-donor 12αααα than β-donor 

12ββββ remained in the mixture. In a similar experiment involving donors 10αααα and 10ββββ, the 

reactivity difference between the anomers of the “non-oxidized” mannosyl donor 10 was 

shown to be smaller; after the coupling reaction the unreacted α- and β-donors were 

recovered in a 61 : 39 ratio (Table 3, entry 4).  

 

Table 3. Results of the competing α-thio versus β-thio donors in glycosylation with 13 

 

Entry Donor A Donor B Product ratio donor A : B a Yield (%) 

1 11αααα 12ββββ 4 : 96 94 

2 11αααα 12N 20 : 80 18 

3 12αααα 12ββββ 89 : 11b 66 

4 10αααα 10ββββ 61 : 39b 43 

5 12ββββ 14 45 : 55 65 

a Product ratio was determined by NMR of the disaccharide mixtures. The disaccharides were predominantly 

obtained as the β-anomers, except for the disaccharide derived from donor 14; b Ratio of recovered donors. 

 

From the results described above it is clear that the β-mannuronic acid donors are reactive 

glycosyl donors.
23

 Wong and co-workers have previously established that donor 11αααα has an 

RRV of 315, on a scale in which the per-O-acetylated α-S-tolyl mannose donor has a 

relative reactivity of 1, and perbenzylated α-S-tolyl mannoside (14) an RRV of 5238.
24

 The 

result recorded in entry 1 of Table 3 (competition between 11αααα and 12ββββ) indicates that the 

reactivity of mannuronic acid donor 12ββββ is actually of the same order of magnitude as the 

reactivity of the “armed” perbenzylated α-mannoside 14. This was confirmed in an 
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experiment in which 12ββββ was made to compete with perbenzylated donor 14 (Table 3, entry 

5). The disaccharides formed from donors 12ββββ and 14 were obtained in a 45 : 55 ratio, 

revealing the similar reactivity of both donors.  

 

When the mechanism of activation as proposed in Scheme 1 is considered, the 

unexpectedly high reactivity of 12ββββ may result from the fact that the β-mannuronic acid 

donor can relatively easily access the 
3
H4-oxacarbenium ion 16.

25,26
 This oxacarbenium ion 

is relatively stable since it positions all its substituents in favorable orientations on the 

mannosyl half chair. Woerpel and co-workers have shown that the substituents at C-3 and 

C-4 prefer to occupy pseudo-axial positions in the mannosyl oxacarbenium ion,
25

 in line 

with various studies that axial substituents are less disarming than equatorial substituents.
27

 

They also established that the C-2 substituent has a slight preference for a pseudo-

equatorial position. It was reported by Codée et al. that the C-5 carboxylic acid has a strong 

preference for a pseudo-axial position in an oxacarbenium ion intermediate.
25c, 28

 As 

depicted in Scheme 1, reaction of donor 12ββββ with NIS and TfOH leads to the reversible 

formation of “charged” mannoside 15ββββ. After the mannosyl ring flips to the 
1
C4 

conformation, the phenylsulfenyl iodide aglycone can be expelled by the ring oxygen lone 

pair in an antiperiplanar fashion
29

 to produce the favorable 
3
H4-oxacarbenium ion 16. 

Benzylidene donor 11 cannot access this favorable oxacarbenium ion conformation and is 

therefore less reactive. The lower reactivity of the α-anomer 12α α α α can also be accounted for 

using the oxacarbenium ion conformers 16 and 18. After reaction of α-anomer 12αααα with 

NIS/TfOH, the antiperiplanar expulsion of the charged aglycone from 
4
C1 mannoside 17αααα 

leads to the formation of the higher energy 
4
H3-oxacarbenium ion 18, making this a less 

favorable process than the formation of 16 from 12ββββ.
30

  

 

Scheme 1. Proposed reaction mechanism for the formation of oxacarbenium ions 16 and 18 

 

Conclusion 

To summarize, the relative reactivities of a series of mannuronic acid donors are 

determined and it is revealed that β-(S)-tolyl mannuronic acids are relatively reactive 

donors. The high reactivity of these donors contrasts the common perception that uronic 

acid donors are unreactive glycosylating agents because of the electron-withdrawing nature 

of the C-5 carboxylic acid ester function. It is postulated that the high reactivity of the β-
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mannuronic acids originates from the formation of a relatively favorable 
3
H4-oxacarbenium 

ion-like intermediate. The excellent β-selectivity obtained in glycosylations using various 

mannuronic acid donors can originate (in part) from this oxacarbenium ion, or a species 

with substantial oxacarbenium ion character. The high reactivity of the β-mannuronic acid 

donors lends support to this mechanism. The relatively high reactivity of the mannuronic 

acid donors opens the way to combine these donors in armed-disarmed coupling strategies 

using non-oxidized thioglycosides as the less reactive coupling partner.  

 

Experimental Section 

General procedure for the NIS/TfOH-mediated competition reaction. In a 25-mL roundbottom flask were 

donor A (0.1 mmol, 1 eq), donor B (1 eq) and acceptor 13 (3 eq) together co-evaporated with toluene (2x). Freshly 

distilled DCM (4 mL, donor concentration 0.05 M), a teflon stirrer bar and activated molecular sieves were added 

and the mixture was stirred under argon for 30 mins at RT. NIS (1 eq) was added and the mixture was cooled to    

-40 ºC. TfOH (0.1 eq, 0.1 mL of a 0.1 M stock solution in distilled DCM) was added and the mixture was allowed 

to warm to 0 ºC in ~3 h. Triethylamine (0.1 mL) was added and the mixture was diluted with EtOAc, washed with 

sat. aq. Na2S2O3 (1x) and sat. aq. NaCl (2x), dried over Na2SO4 and concentrated in vacuo. Elution over a 

Sephadex column (LH-20, DCM/MeOH, 1/1, v/v) enabled isolation of the disaccharide products and the 

monosaccharide rests, which were both analysed with NMR spectroscopy. The yield of the disaccharide fraction 

was determined. 

 

Synthesis of α-donors 10αααα-12αααα and 14 

  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Tolyl 2,3,4,6-tetra-O-acetyl-1-thio-αααα-D-mannopyranoside (19). 1,2,3,4,6-Penta-O-acetyl-α/β-D-manno-

pyranoside (19.5 g, 50 mmol) was dissolved in DCM (250 mL) and p-thiocresol (6.21 g, 50 

mmol) was added. The mixture was cooled to 0 ºC, followed by the addition of BF3•Et2O 

(12.7 mL, 100 mmol). The mixture was stirred for 72 h at RT, after which time sat. aq. 

NaHCO3 and solid NaHCO3 were added to neutralize the mixture. The layers were separated 

and the aqueous layer was extracted with DCM (1x). The combined organics were dried over MgSO4 and 

concentrated in vacuo. The residue was purified by flash column chromatography (silica gel, 30% EtOAc in PE) 

to give the title compound as a yellow oil (Yield: 16.4 g, 37.1 mmol, 74%).The analytical data were in full accord 

with those reported previously.6a TLC: Rf 0.47 (PE/EtOAc, 3/7, v/v).  
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Tolyl 2,3-di-O-benzyl-4,6-O-benzylidene-1-thio-αααα-D-mannopyranoside (11αααα). Compound 19 (16.3 g, 37.0 

mmol) was suspended in MeOH (370 mL) and treated with NaOMe (cat.) overnight at RT. 

The mixture was neutralized using AcOH and concentrated in vacuo. The residue was co-

evaporated with toluene (3x) to give crude tetra-ol 20, which was subsequently dissolved 

in MeCN (370 mL). The resulting solution was cooled to 0 ºC, followed by the addition of 

PhCH(OMe)2 (5.7 mL, 37.0 mmol) and p-TsOH•H2O (cat.). The mixture was allowed to stir at RT for 72 h, 

neutralized by the addition of Et3N and the formed crystals were filtered off to yield the benzylidene-protected 

intermediate as an off-white solid. 1H NMR (CDCl3, 400 MHz, HH-COSY, HSQC): δ 7.48-7.55 (m, 2H, CHarom), 

7.34-7.42 (m, 5H, CHarom), 7.14 (d, 2H, J = 8.2 Hz, CHarom), 5.58 (s, 1H, CH Ph), 5.51 (s, 1H, H-1), 4.36 (ddd, 1H, 

J = 4.8, 9.7, 9.8 Hz, H-5), 4.30 (d, 1H, J = 3.2 Hz, H-2), 4.23 (dd, 1H, J = 4.8, 10.4 Hz, H-3), 4.13 (dd, 1H, J = 

3.3, 9.5 Hz, H-6), 4.00 (t, 1H, J = 9.5 Hz, H-6), 3.83 (t, 1H, J = 10.3 Hz, H-4), 2.87 (bs, 1H, 2-OH), 2.78 (bs, 1H, 

3-OH), 2.34 (s, 3H, CH3 STol). A solution of the benzylidene-protected intermediate (7.83 g, 20.9 mmol) in DMF 

(100 mL) was cooled to 0 ºC, followed by the addition of benzyl bromide (6.0 mL, 50.4 mmol) and NaH (60% 

dispersion in mineral oil, 1.94 g, 50.4 mmol). The mixture was stirred at RT overnight, after which time the 

reaction was quenched by the addition of MeOH. The solution was reduced in volume, diluted with Et2O and 

washed with H2O and sat. aq. NaCl. The organic fraction was dried over MgSO4 and concentrated in vacuo. 

Purification using flash column chromatography (silica gel, 10% EtOAc in PE) gave the title compound as a 

colorless oil (Yield: 10.2 g, 18.4 mmol, 50% over three steps). TLC: Rf 0.40 (PE/EtOAc, 9/1, v/v); [α]D
20 +98.0 (c 

1, DCM); IR (neat, cm-1): 696, 731, 907, 1090, 1373, 1454, 1492; 1H NMR (CDCl3, 400 MHz, HH-COSY, 

HSQC): δ 7.52 (dd, 2H, J = 1.7, 7.7 Hz, CHarom), 7.24-7.41 (m, 15H, CHarom), 7.10 (d, 2H, J = 8.0 Hz, CHarom), 

5.64 (s, 1H, CH Ph), 5.44 (d, 1H, J = 1.2 Hz, H-1), 4.81 (d, 1H, J = 12.2 Hz, CHH Bn), 4.72 (d, 1H, J = 12.6 Hz, 

CHH Bn), 4.69 (d, 1H, J = 12.7 Hz, CHH Bn), 4.65 (d, 1H, J = 12.2 Hz, CHH Bn), 4.26-4.34 (m, 2H, H-4, H-5), 

4.22 (dd, 1H, J = 4.0, 10.2 Hz, H-6), 4.03 (dd, 1H, J = 1.3, 3.2 Hz, H-2), 3.97 (dd, 1H, J = 3.2, 9.6 Hz, H-3), 3.88 

(t, 1H, J = 9.9 Hz, H-6), 2.33 (s, 3H, CH3 STol); 13C-APT NMR (CDCl3, 100 MHz, HSQC): δ 138.3, 137.7, 137.7, 

137.5 (Cq), 132.1, 129.8, 128.7, 128.3, 128.1, 128.0, 127.9, 127.7, 127.5, 127.4, 126.0 (CHarom), 101.3 (CH Ph), 

87.3 (C-1), 79.0 (C-4), 77.9 (C-2), 76.1 (C-3), 72.9, 72.8 (CH2 Bn), 68.4 (C-6), 65.3 (C-5), 21.0 (CH3 STol); 13C-

GATED (CDCl3, 100 MHz): δ 87.3 (JC1,H1 = 166 Hz, C-1); HRMS: [M+H]+ calcd for C34H35O5S 555.21997, found 

555.22016. 

 

Tolyl 2,3-di-O-benzyl-1-thio-αααα-D-mannopyranoside (21). Compound 11αααα (10.2 g, 18.4 mmol) was suspended 

in MeOH (185 mL) and a catalytic amount of p-TsOH•H2O was added until the acidity of the 

mixture reached pH<7. The resulting mixture was stirred overnight, followed by the addition 

of Et3N until pH>7. The solvent was evaporated and the residue was purified using flash 

column chromatography (silica gel, 55% EtOAc in PE) to yield the title compound as a 

yellowish solid (Yield: 8.57 g, 18.4 mmol, >98%). TLC: Rf 0.31 (PE/EtOAc, 2/1, v/v); [α]D
20 +51.3 (c 0.6, DCM); 

IR (neat, cm-1): 696, 731, 1018, 1074, 1101, 1454, 1492, 3435; 1H NMR (CDCl3, 400 MHz, HH-COSY, HSQC): 

δ 7.26-7.38 (m, 12H, CHarom), 7.11 (d, 2H, J = 7.9 Hz, CHarom), 5.47 (d, 1H, J = 1.4 Hz, H-1), 4.65 (d, 1H, J = 12.2 

Hz, CHH Bn), 4.56 (d, 1H, J = 11.7 Hz, CHH Bn), 4.54 (d, 1H, J = 12.2 Hz, CHH Bn), 4.47 (d, 1H, J = 11.7 Hz, 

CHH Bn), 4.06-4.15 (m, 2H, H-4, H-5), 3.99 (dd, 1H, J = 1.5, 3.0 Hz, H-2), 3.86 (dd, 1H, J = 2.8, 11.7 Hz, H-6), 

3.81 (dd, 1H, J = 4.4, 11.8 Hz, H-6), 3.69 (dd, 1H, J = 3.0, 9.1 Hz, H-3), 2.73 (bs, 1H, 4-OH), 2.33 (s, 3H, CH3 

STol), 2.14 (bs, 6-OH); 13C-APT NMR (CDCl3, 100 MHz, HSQC): δ 138.0, 137.6, 137.6 (Cq), 132.4 (CHarom), 

129.9 (Cq STol),129.9, 128.5, 128.4, 128.0, 127.9, 127.8 (CHarom), 86.3 (C-1), 79.5 (C-3), 75.3 (C-2), 73.1 (C-4), 

72.1, 71.6 (CH2 Bn), 67.2 (C-5), 62.6 (C-6), 21.1 (CH3 STol); HRMS: [M+NH4]
+ calcd for C27H34NO5S 

484.21522, found 484.21496. 

 

Tolyl 4,6-di-O-acetyl-2,3-di-O-benzyl-1-thio-αααα-D-mannopyranoside (10αααα). Compound 21 (2.80 g, 6.0 mmol) 

was dissolved in pyridine (30 mL), the resulting solution was cooled to 0 ºC and treated with 

Ac2O (2.65 mL, 24 mmol) overnight while allowing the temperature to reach ambient. The 

reaction was halted by the addition of MeOH (20 mL) and the solvents were evaporated. The 

residue was taken up in EtOAc and washed with aq. HCl (1M), sat. aq. NaHCO3 and sat. aq. 

NaCl. The organic layer was dried over MgSO4 and concentrated in vacuo. The title compound was obtained by 

purification using flash column chromatography (silica gel, 20% EtOAc in PE) as a yellowish oil (Yield: 2.87 g, 

O
OBn

BnO

STol

O
O

Ph

O
OBn

BnO
HO

HO

STol

O
OBn

BnO
AcO

AcO

STol



Mannopyranosyl Uronic Acid Donor Reactivity  

 

103 

5.21 mmol, 87%). TLC: Rf 0.50 (PE/EtOAc, 3/1, v/v); [α]D
20 +54.3 (c 1, DCM); IR (neat, cm-1): 696, 727, 1223, 

1367, 1740; 1H NMR (CDCl3, 400 MHz, HH-COSY, HSQC): δ 7.24-7.36 (m, 12H, CHarom), 7.10 (d, 2H, J = 8.0 

Hz, CHarom), 5.51 (d, 1H, J = 1.5 Hz, H-1), 5.44 (t, 1H, J = 9.8 Hz, H-4), 4.69 (d, 1H, J = 12.4 Hz, CHH Bn), 4.63 

(d, 1H, J = 12.4 Hz, CHH Bn), 4.56 (d, 1H, J = 12.2 Hz, CHH Bn), 4.45 (d, 1H, J = 12.2 Hz, CHH Bn), 4.35 (ddd, 

1H, J = 2.2, 6.0, 8.4 Hz, H-5), 4.24 (dd, 1H, J = 6.1, 12.1 Hz, H-6), 4.12 (dd, 1H, J = 2.2, 12.1 Hz, H-6), 3.98 (dd, 

1H, J = 1.9, 2.7 Hz, H-2), 3.78 (dd, 1H, J = 3.0, 9.6 Hz, H-3), 2.32 (s, 3H, CH3 STol), 2.04 (s, 3H, CH3 Ac), 2.03 

(s, 3H, CH3 Ac); 13C-APT NMR (CDCl3, 100 MHz, HSQC): δ 170.6, 169.6 (C=O Ac), 137.8, 137.7, 137.6 (Cq), 

132.0, 129.8 (CHarom), 129.7 (Cq STol), 128.3, 128.2, 127.8, 127.7, 127.6, 127.5 (CHarom), 86.0 (C-1), 76.8 (C-3), 

75.3 (C-2), 72.0, 71.6 (CH2 Bn), 69.7 (C-5), 67.9 (C-4), 62.8 (C-6), 21.0 (CH3 STol), 20.8, 20.7 (CH3 Ac); 13C-

GATED (CDCl3, 100 MHz): δ 86.0 (JC1,H1 = 166 Hz, C-1); HRMS: [M+NH4]
+ calcd for C31H34NO7S 568.23635, 

found 568.23638. 

 

Methyl (tolyl 4-O-acetyl-2,3-di-O-benzyl-1-thio-αααα-D-mannopyranosyl uronate) (12αααα). Compound 21 (5.21 g, 

11.18 mmol) was dissolved in DCM/H2O (110 mL, 2/1, v/v), the mixture was cooled to 0 ºC and 

treated with TEMPO (0.35 g, 2.24 mmol) and BAIB (8.94 g, 27.94 mmol). The mixture was 

allowed to warm to RT, followed by the addition of sat. aq. Na2S2O3. The layers were separated 

and the organic fraction was dried over MgSO4 and concentrated in vacuo. The uronic acid 

intermediate was purified using flash column chromatography (silica gel, 30% EtOAc in PE + 1% AcOH) and 

then dissolved in DMF (46 mL), followed by the addition of MeI (2.30 mL, 37.0 mmol) and K2CO3 (7.67 g, 55.5 

mmol). The mixture was allowed to stir at RT overnight, diluted with Et2O and washed with H2O (2x) and sat. aq. 

NaCl. The organics were dried over MgSO4, concentrated in vacuo and the crude methyl ester 22 was directly 

dissolved in pyridine (37 mL), the resulting solution was cooled to 0 ºC and treated with Ac2O (1.39 mL, 14.8 

mmol) overnight while allowing the temperature to reach ambient. The reaction was halted by the addition of 

MeOH (20 mL) and the solvents were evaporated. The residue was taken up in EtOAc and washed with aq. HCl 

(1M), sat. aq. NaHCO3 and sat. aq. NaCl. The organic layer was dried over MgSO4 and concentrated in vacuo. 

The title compound was obtained by purification using flash column chromatography (silica gel, 25% EtOAc in 

PE) as an off-white solid (Yield: 3.96 g, 7.19 mmol, 64% over three steps). TLC: Rf 0.26 (PE/EtOAc, 4/1, v/v); 

[α]D
20 +44.0 (c 1, DCM); IR (neat, cm-1): 696, 1018, 1026, 1045, 1107, 1121, 1225, 1749; 1H NMR (CDCl3, 400 

MHz, HH-COSY, HSQC): δ 7.46 (d, 2H, J = 7.7 Hz, CHarom), 7.23-7.33 (m, 10H, CHarom), 7.10 (d, 2H, J = 8.0 Hz, 

CHarom), 5.71 (d, 1H, J = 6.7 Hz, H-1), 5.56 (dd, 1H, J = 5.0, 6.1 Hz, H-4), 4.62 (d, 1H, J = 11.9 Hz, CHH Bn), 

4.53-4.57 (m, 3H, CH2 Bn, H-5), 4.50 (d, 1H, J =11.9 Hz, CHH Bn), 3.80 (dd, 1H, J = 2.8, 6.2 Hz, H-3), 3.75 (d, 

1H, J = 5.3 Hz, H-2), 3.59 (s, 3H, CH3 CO2Me), 2.31 (s, 3H, CH3 STol), 2.02 (s, 3H, CH3 Ac); 13C-APT NMR 

(CDCl3, 100 MHz, HSQC): δ 169.5, 168.3 (C=O Ac, CO2Me), 137.4, 137.3, 137.2 (Cq), 131.4 (CHarom), 129.6 (Cq 

STol), 129.5, 128.2, 127.9, 127.7, 127.7 (CHarom), 83.4 (C-1), 73.8 (C-2, C-3), 72.5 (C-5), 72.2 (CH2 Bn), 69.3 (C-

4), 52.2 (CH3 CO2Me), 21.0 (CH3 STol), 20.7 (CH3 Ac); 13C-GATED (CDCl3, 100 MHz): δ 83.4 (JC1,H1 = 163 Hz, 

C-1); HRMS: [M+NH4]
+ calcd for C30H36NO7S 554.22070, found 554.22046. NB: the chemical shift of C-1 was 

deduced from the HSQC cross coupling with H-1 since there was no signal apparent in the 13C-APT spectrum. 

 

Tolyl 2,3,4,6-tetra-O-benzyl-1-thio-αααα-D-mannopyranoside (14). Crude tetra-ol 20 (3.44 g, ~12 mmol) was 

dissolved in DMF (60 mL) and the solution was cooled to 0 ºC. Benzyl bromide (6.41 mL, 54 

mmol) and NaH (60% dispersion in mineral oil, 1.81 g, 54 mmol) were added and the 

mixture was stirred at RT overnight. The reaction was quenched by the addition of MeOH, 

the mixture was reduced in volume and taken up in Et2O. The organic phase was washed with 

H2O and sat. aq. NaCl, dried over MgSO4 and evaporated to dryness in vacuo. The title compound was purified 

using flash column chromatography (silica gel, 10% EtOAc in PE) and obtained as a yellowish oil (Yield: 4.91 g, 

7.80 mmol, 65%). Spectroscopic data were in accord with those reported previously.24 TLC: Rf 0.34 (PE/EtOAc, 

9/1, v/v). 
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Synthesis of β-donors 10ββββ-12ββββ 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Tolyl 2,3,4,6-tetra-O-acetyl-1-thio-ββββ-D-mannopyranoside (23). 1,2,3,4,6-Penta-O-acetyl-α/β-D-manno-

pyranoside (195 g, 500 mmol) was dissolved in AcOH (200 mL) and the resulting mixture 

was cooled to 0 ºC, followed by the addition of HBr (33 wt% in AcOH, 237 mL, 1.35 mol). 

The reaction was stirred at RT for 3 h after which time the mixture was poured in ice-water. 

The crude bromide was extracted using EtOAc (2 x 500 mL) and the combined organic fractions were washed 

with sat. aq. NaHCO3, dried over MgSO4 and concentrated in vacuo. A solution of the anomeric bromide (∼500 

mmol) and p-thiocresol (65.2 g, 525 mmol) in DMF (1 L) was cooled to 0 ºC and NaH (60% dispersion in mineral 

oil, 21.0 g, 525 mmol) was added. The mixture was stirred until full consumption of the bromide (Rf 0.53 in 

PE/EtOAc, 7/3, v/v) was observed using TLC analysis and subsequently quenched by the addition of aq. HCl 

(0.02 M). The product was extracted with Et2O and the combined organic layers were dried over MgSO4 and 

concentrated in vacuo. Crystallization using EtOAc/PE gave the title compound as white crystals (Yield: 186 g, 

422 mmol, 84%). The analytical data were in full accord with those reported previously. 31  TLC: Rf 0.50 

(toluene/EtOAc, 7/3, v/v). 

 

Tolyl 2,3-di-O-benzyl-4,6-O-benzylidene-1-thio-ββββ-D-mannopyranoside (11ββββ). Compound 23 (186 g, 422 

mmol) was suspended in MeOH (1.5 L) and NaOMe (cat.) was added. The reaction was 

allowed to stir overnight at RT, after which time AcOH was added to neutralize the 

mixture (pH<7) and the solvents were evaporated. The tetra-ol intermediate 24 was 

crystallized from EtOAc/PE and used directly in the next reaction step (Yield: 111.0 g, 388 mmol, 78%). 

Compound 24 (28.6 g, 100 mmol) was dissolved in pyridine (500 mL), the resulting solution was cooled to 0 ºC 

and TMSCl (63.5 mL, 500 mmol) was added. Full consumption of the starting material (Rf 0.35 in MeOH/EtOAc, 

1/20, v/v) was indicated by TLC analysis, and Et2O and H2O were added. The layers were separated and the 

aqueous phase was extracted with Et2O. The combined organic layers were dried over MgSO4, concentrated in 

vacuo and co-evaporated with toluene. The per-silylated intermediate was used directly in the next reaction step. 

The crude intermediate (∼100 mmol) was dissolved in dry DCM (500 mL) under an argon atmosphere and the 

solution was cooled to -80 ºC. PhCH(OMe)2 (10.7 mL, 105 mmol) and TMSOTf (2.7 mL, 15 mmol) were added 

and the reaction was stirred at -80 ºC, followed by the addition of NaOMe (11.6 g, 215 mmol) and MeOH (20 

mL). The mixture was allowed to warm to RT and Amberlite-H+ was added to neutralize. The solution was 

filtered off and concentrated in vacuo. The benzylidene-intermediate was crystallized from EtOAc (18.1 g, 48.3 

mmol) and directly dissolved in DMF (250 mL) and the resulting solution was cooled to 0 ºC, followed by the 

addition of benzyl bromide (13.8 mL, 116.0 mmol) and NaH (60% dispersion in mineral oil, 3.9 g, 116.0 mmol). 

The mixture was stirred overnight at RT, after which time MeOH was added to quench the reaction. The mixture 

was reduced in volume and taken up in Et2O, the organic phase was washed with H2O and sat. aq. NaCl, dried 

over MgSO4 and concentrated in vacuo. The title compound was purified using flash column chromatography 

(silica gel, 15% EtOAc in PE) and obtained as a white solid (Yield: 18.8 g, 33.9 mmol, 34% over three steps). 

TLC: Rf 0.50 (PE/EtOAc, 7/1, v/v); [α]D
20 -34.4 (c 1, DCM); IR (neat, cm-1): 696, 733, 1028, 1087, 1456, 1494, 

2864; 1H NMR (CDCl3, 400 MHz, HH-COSY, HSQC): δ 7.44-7.51 (m, 4H, CHarom), 7.22-7.38 (m, 13H, CHarom), 
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7.06 (d, 2H, J = 7.9 Hz, CHarom), 5.57 (s, 1H, CH Ph ), 5.08 (d, 1H, J = 11.1 Hz, CHH Bn), 4.85 (d, 1H, J = 12.3 

Hz, CHH Bn), 4.83 (d, 1H, J = 11.1 Hz, CHH Bn), 4.74 (s, 1H, H-1), 4.69 (d, 1H, J = 12.3 Hz, CHH Bn), 4.27 (t, 

1H, J = 9.6 Hz, H-4), 4.25 (dd, 1H, J = 5.3, 10.2 Hz, H-6), 4.12 (d, 1H, J = 2.1 Hz, H-2), 3.89 (t, 1H, J = 10.3 Hz, 

H-6), 3.67 (dd, 1H, J = 2.9, 9.8 Hz, H-3), 3.32 (ddd, 1H, J = 4.9, 9.7, 9.7 Hz, H-5), 2.28 (s, 3H, CH3 STol); 13C-

APT NMR (CDCl3, 100 MHz, HSQC): δ 138.2, 137.8, 137.4 (Cq), 131.5 (CHarom), 131.1 (Cq STol), 129.6, 128.7, 

128.5, 128.2, 128.0, 127.6, 127.5, 127.4, 125.9 (CHarom), 101.2 (CH Ph), 89.2 (C-1), 79.7 (C-3), 78.8, 78.5 (C-2, 

C-4), 75.7, 73.0 (CH2 Bn), 71.4 (C-5), 68.3 (C-6), 20.9 (CH3 STol); 13C-GATED (CDCl3, 100 MHz): δ 89.2(JC1,H1 

= 154 Hz, C-1); HRMS: [M+NH4]
+ calcd for C34H38NO5S 572.24652, found 572.24605. 

 

Tolyl 2,3-di-O-benzyl-1-thio-ββββ-D-mannopyranoside (25). Compound 11ββββ (13.7 g, 24.7 mmol) was suspended in 

MeOH (250 mL) and p-TsOH•H2O (cat.) was added until the mixture was acidic. The 

reaction was allowed to stir overnight at RT and subsequently quenched by the addition of 

Et3N (until pH>7). The solvents were evaporated and the title compound was obtained by 

flash column chromatography (silica gel, 45% EtOAc in PE) as a yellowish glass (Yield: 11.0 g, 23.5 mmol, 

95%). TLC: Rf 0.37 (PE/EtOAc, 1/1, v/v); [α]D
20 -62.1 (c 1, DCM); IR (neat, cm-1): 696, 733, 1026, 1067, 1121, 

3352; 1H NMR (CDCl3, 400 MHz, HH-COSY, HSQC): δ 7.43 (d, 2H, J = 7.6 Hz, CHarom), 7.25-7.36 (m, 10H, 

CHarom), 7.07 (d, 2H, J = 8.0 Hz, CHarom), 4.94 (d, 1H, J = 11.3 Hz, CHH Bn), 4.79 (d, 1H, J = 11.3 Hz, CHH Bn), 

4.72 (s, 1H, H-1), 4.68 (d, 1H, J = 11.8 Hz, CHH Bn), 4.56 (d, 1H, J = 13.1 Hz, CHH Bn), 4.10 (d, 1H, J = 2.5 

Hz, H-2), 4.03 (t, 1H, J = 9.5 Hz, H-4), 3.85 (dd, 1H, J = 3.0, 11.8 Hz, H-6), 3.77 (dd, 1H, J = 5.4, 11.8 Hz, H-6), 

3.41 (dd, 1H, J = 2.6, 9.5 Hz, H-3), 3.27 (ddd, 1H, J = 3.6, 5.3, 9.2 Hz, H-5), 3.03 (bs, 1H, OH), 2.64 (bs, 1H, 

OH), 2.29 (s, 3H, CH3 STol); 13C-APT NMR (CDCl3, 100 MHz, HSQC): δ 137.9, 137.5 (Cq), 131.3 (CHarom), 

131.1 (Cq STol), 129.7, 128.6, 128.3, 128.2, 128.0, 127.7 (CHarom), 88.2 (C-1), 83.5 (C-3), 80.0 (C-5), 76.6 (C-2), 

75.1, 72.1 (CH2 Bn), 67.4 (C-4), 62.9 (C-6), 21.0 (CH3 STol); HRMS: [M+NH4]
+ calcd for C27H34NO5S 

484.21522, found 484.21504. 

 

Tolyl 4,6-di-O-acetyl-2,3-di-O-benzyl-1-thio-ββββ-D-mannopyranoside (10ββββ). A solution of compound 25 (2.33 g, 

5 mmol) in pyridine (25 mL) was cooled to 0 ºC, followed by the addition of Ac2O (2.21 

mL, 20 mmol). The resulting reaction was allowed to stir overnight at RT, followed by the 

addition of MeOH to quench. The solvents were evaporated, the residue was diluted with 

EtOAc and washed with aq. HCl (1 M), sat. aq. NaHCO3 and sat. aq. NaCl. The organic phase was dried over 

MgSO4, concentrated in vacuo and purified using flash column chromatography (silica gel, 20% EtOAc in PE). 

The title compound was obtained as a yellowish oil (Yield: 1.34 g, 3.13 mmol, 63%). TLC: Rf 0.53 (PE/EtOAc, 

3/1, v/v); [α]D
20 -76.4 (c 1, DCM); IR (neat, cm-1): 696, 735, 1055, 1231, 1366, 1742; 1H NMR (CDCl3, 400 MHz, 

HH-COSY, HSQC): δ 7.44 (d, 2H, J = 7.2 Hz, CHarom), 7.40 (d, 2H, J = 8.1 Hz, CHarom), 7.20-7.35 (m, 8H, 

CHarom), 7.05 (d, 2H, J = 8.0 Hz, CHarom), 5.41 (t, 1H, J = 9.8 Hz, H-4), 4.99 (d, 1H, J = 11.5 Hz, CHH Bn), 4.79 

(d, 1H, J = 11.5 Hz, CHH Bn), 4.65 (s, 1H, H-1), 4.63 (d, 1H, J = 12.2 Hz, CHH Bn), 4.49 (d, 1H, J = 12.2 Hz, 

CHH Bn), 4.22 (dd, 1H, J = 6.9, 12.0 Hz, H-6), 4.11-4.16 (m, 2H, H-2, H-6), 3.55 (dd, 1H, J = 2.7, 9.6 Hz, H-3), 

3.49-3.54 (m, 1H, H-5), 2.28 (s, 3H, CH3 STol), 2.01 (s, 3H, CH3 Ac), 1.97 (s, 3H, CH3 Ac); 13C-APT NMR 

(CDCl3, 100 MHz, HSQC): δ 170.3, 169.4 (C=O Ac), 137.6, 137.3, 137.2 (Cq), 131.2 (CHarom), 131.1 (Cq STol), 

129.3, 128.1, 128.0, 127.8, 127.6, 127.3, 127.2 (CHarom), 87.8 (C-1), 80.7 (C-3), 76.3, 76.1 (C-2, C-5), 74.6, 71.9 

(CH2 Bn), 67.9 (C-4), 63.1 (C-6), 20.8, 20.5, 20.4 (CH3 STol, Ac); 13C-GATED (CDCl3, 100 MHz): δ 87.8 (JC1,H1= 

152 Hz, C-1); HRMS: [M+NH4]
+ calcd for C31H38NO7S 568.23635, found 568.23621. 

 

Methyl (tolyl 4-O-acetyl-2,3-di-O-benzyl-1-thio-ββββ-D-mannopyranosyl uronate) (12ββββ). Diol 25 (2.33 g, 5.0 

mmol) was dissolved in DCM (34 mL) and H2O (15 mL) was added. The emulsion was 

cooled to 0 ºC, followed by the addition of TEMPO (0.16 g, 1.0 mmol) and BAIB (4.0 g, 

12.5 mmol). The mixture was stirred vigorously and allowed to reach RT, after which time 

the reaction was quenched by the addition of sat. aq. Na2S2O3. The mixture was diluted with DCM and H2O and 

the layers were separated. The organic phase was dried over MgSO4, concentrated in vacuo and purified using 

flash column chromatography (silica gel, 25% EtOAc in PE +1% AcOH). The uronic acid intermediate was 

dissolved in DMF (12 mL) and MeI (0.6 mL, 2.42 mmol) and K2CO3 (2.0 g, 14.5 mmol) were subsequently 

added. The resulting suspension was stirred overnight at RT, diluted with Et2O and washed with H2O. The organic 
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layer was washed with sat. aq. NaCl, dried over MgSO4 and concentrated in vacuo, The crude methyl uronate 26 

was directly dissolved in pyridine (10 mL), the solution was cooled to 0 ºC and treated with Ac2O (0.46 mL, 4.13 

mmol). The mixture was stirred overnight at RT, after which time the reaction was quenched by the addition of 

MeOH. The solvents were evaporated and the residue was diluted with EtOAc, washed with HCl (1 M), sat. aq. 

NaHCO3 and sat. aq. NaCl, dried over MgSO4 and concentrated in vacuo. The title compound was acquired by 

flash column chromatography (silica gel, 25% EtOAc in PE) as an off-white solid (Yield: 0.94 g, 1.75 mmol, 35% 

over three steps). TLC: Rf 0.63 (PE/EtOAc, 3/2, v/v); [α]D
20 -86.8 (c 1, DCM); IR (neat, cm-1): 694, 729, 1236, 

1736, 1749; 1H NMR (CDCl3, 400 MHz, HH-COSY, HSQC): δ 7.46 (d, 2H, J = 7.2 Hz, CHarom), 7.38 (d, 2H, J = 

8.1 Hz, CHarom), 7.28-7.37 (m, 8H, CHarom), 7.09 (d, 2H, J = 8.0 Hz, CHarom), 5.60 (t, 1H, J = 9.6 Hz, H-4), 5.01 (d, 

1H, J = 11.6 Hz, CHH Bn), 4.85 (d, 1H, J = 11.6 Hz, CHH Bn), 4.70 (s, 1H, H-1), 4.66 (d, 1H, J = 12.2 Hz, CHH 

Bn), 4.56 (d, 1H, J = 12.2 Hz, CHH Bn), 4.14 (d, 1H, J = 2.2 Hz, H-2), 3.84 (d, 1H, J = 9.6 Hz, H-5), 3.73 (s, 3H, 

CH3 CO2Me), 3.58 (dd, 1H, J = 2.8, 9.7 Hz, H-3), 2.32 (s, 3H, CH3 STol), 2.00 (s, 3H, CH3 Ac); 13C-APT NMR 

(CDCl3, 100 MHz, HSQC): δ 169.5, 167.6 (C=O Ac, CO2Me), 137.7, 137.6, 137.5 (Cq), 131.7 (CHarom), 131.0 (Cq 

STol), 129.7, 128.4, 128.1, 127.8, 127.6, 127.5 (CHarom), 88.9 (C-1), 80.3 (C-3), 77.0 (C-5), 76.2 (C-2), 74.8, 72.4 

(CH2 Bn), 68.7 (C-4), 52.5 (CH3 CO2Me), 21.0, 20.7 (CH3 STol, Ac); 13C-GATED (CDCl3, 100 MHz): δ 88.9 

(JC1,H1 = 152 Hz, C-1); HRMS: [M+NH4]
+ calcd for C30H36NO7S 554.22070, found 554.22070. 

 

Synthesis of the 2-azido-2-deoxy mannose derivatives 10N-12N 

Tolyl 4,6-di-O-acetyl-2-azido-3-O-benzyl-2-deoxy-1-thio-ββββ-D-mannopyranoside (10N). 1,4,6-Tri-O-acetyl-2-

azido-3-O-benzyl-2-deoxy-α/β-D-mannopyranoside 27
11b (9.33 g, 22.1 mmol) was 

dissolved in dry DCE (110 mL), followed by the addition of p-thiocresol (3.02 g, 24.3 

mmol) and BF3•Et2O (5.49 mL, 44.2 mmol). The resulting mixture was stirred at 35 ºC for 

2 h, after which time the mixture was diluted with EtOAc and quenched by the addition of sat. aq. NaHCO3. The 

organic layer was isolated, dried over MgSO4 and concentrated in vacuo. Purification using flash column 

chromatography (silica gel, 25% EtOAc in PE) yielded the title compound as a yellowish solid (Yield: 4.34 g, 9.0 

mmol, 41%), next to the α-fused product (Yield: 2.56 g, 5.3 mmol, 24%). TLC: Rf 0.43 (PE/EtOAc, 2/1, v/v); 

[α]D
20-15.1 (c 1, DCM); IR (neat, cm-1): 1045, 1086, 1231, 1368, 1744, 2106; 1H NMR (CDCl3, 400 MHz, HH-

COSY, HSQC): δ 7.40 (d, 2H, J = 8.1 Hz, CHarom), 7.27-7.35 (m, 5H, CHarom), 7.10 (d, 2H, J = 8.0 Hz, CHarom), 

5.27 (t, 1H, J = 9.8 Hz, H-4), 4.71 (d, 1H, J = 12.2 Hz, CHH Bn), 4.66 (d, 1H, J = 1.1 Hz, H-1), 4.57 (d, 1H, J = 

12.2 Hz, CHH Bn), 4.09, 4.21 (m, 3H, H-2, H-6), 3.71 (dd, 1H, J = 3.8, 9.5 Hz, H-3), 3.48 (ddd, 1H, J = 2.8, 6.5, 

6.5 Hz, H-5), 2.33 (s, 3H, CH3 STol), 2.06 (s, 3H, CH3 Ac), 2.00 (s, 3H, CH3 Ac); 13C-APT NMR (CDCl3, 100 

MHz, HSQC): δ 170.6, 169.4 (C=O Ac), 138.1, 136.9 (Cq), 132.0 (CHarom), 130.1 (Cq STol), 129.7, 128.5, 128.1, 

127.7 (CHarom), 86.1 (C-1), 79.6 (C-3), 76.4 (C-5), 72.1 (CH2 Bn), 67.4 (C-4), 62.9 (C-2), 62.8 (C-6), 21.0 (CH3 

STol), 20.7, 20.7 (CH3 Ac); 13C-GATED (CDCl3, 100 MHz): δ 86.1 (JC1,H1 = 154 Hz, C-1); HRMS: [M+NH4]
+ 

calcd for C24H31N4O6S 503.19588, found 503.19563. 

 

Tolyl 2-azido-3-O-benzyl-2-deoxy-1-thio-ββββ-D-mannopyranoside (28). Compound 10N (1.50 g, 3.10 mmol) was 

dissolved in MeOH/DCM (30 mL, 1/1, v/v) and treated with NaOMe (40 mg, 0.74 mmol) 

for 2 days. The mixture was neutralized by the addition of Amberlite-H+, filtrated and 

concentrated in vacuo. Purification using flash column chromatography (silica gel, 66% 

EtOAc in PE) yielded compound 28 as a colorless oil (Yield: 1.22 g, 3.05 mmol, 98%). TLC: Rf 0.35 (PE/EtOAc, 

1/1, v/v); [α]D
20 -37.3 (c 1, DCM); IR (neat, cm-1): 698, 737, 808, 1016, 1069, 1267, 2104, 3343; 1H NMR (CDCl3, 

400 MHz, HH-COSY, HSQC): δ 7.27-7.39 (m, 7H, CHarom), 7.10 (d, 2H, J = 8.0 Hz, CHarom), 4.77 (d, 1H, J = 

11.6 Hz, CHH Bn), 4.70 (s, 1H, H-1), 4.64 (d, 1H, J = 11.6 Hz, CHH Bn), 4.13 (d, 1H, J = 3.4 Hz, H-2), 3.95 (t, 
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1H, J = 9.4 Hz, H-4), 3.86 (dd, 1H, J = 3.3, 12.0 Hz, H-6), 3.78 (dd, 1H, J = 5.0, 12.1 Hz, H-6), 3.58 (dd, 1H, J = 

3.6, 9.2 Hz, H-3), 3.26 (ddd, 1H, J = 4.0, 4.9, 4.9, H-5), 2.85 (bs, 2H, 4-OH, 6-OH), 2.32 (s, 3H, CH3 STol); 13C-

APT NMR (CDCl3, 100 MHz, HSQC): δ 137.4, 137.1 (Cq), 131.0 (CHarom), 130.0 (Cq STol), 129.5, 128.2, 127.7, 

127.6 (CHarom), 85.4 (C-1), 81.9 (C-3), 79.7 (C-5), 72.3 (CH2 Bn), 66.1 (C-4), 62.9 (C-2), 61.6 (C-6), 20.7 (CH3 

STol); 13C-GATED (CDCl3, 100 MHz): δ 85.4 (JC1,H1 = 154 Hz, C-1); HRMS: [M+Na]+ calcd for C20H23N3O4SNa 

424.13015, found 424.12954. 

 

Tolyl 2-azido-3-O-benzyl-4,6-O-benzylidene-2-deoxy-1-thio-ββββ-D-mannopyranoside (11N). Compound 28 

(0.79 g, 2.0 mmol) was dissolved in MeCN (10 mL), followed by the addition of 

PhCH(OMe)2 (0.32 mL, 2.2 mmol) and p-TsOH•H2O (37 mg, 0.2 mmol). The resulting 

solution was stirred for 2 days. The mixture was neutralized with Et3N, diluted with 

EtOAc and washed with H2O (3x). The organic phase was dried over MgSO4 and concentrated in vacuo. The title 

compound was obtained by crystallization from EtOAc/PE as white fluffy crystals (Yield: 0.77 g, 1.6 mmol, 

81%). TLC: Rf 0.85 (PE/EtOAc, 2/1, v/v); [α]D
20 +7.4 (c 1, DCM); IR (neat, cm-1): 696, 733, 1069, 1086, 1098, 

1269, 2102; 1H NMR (CDCl3, 400 MHz, HH-COSY, HSQC): δ 7.43-7.50 (m, 2H, CHarom), 7.25-7.41 (m, 10H, 

CHarom), 7.11 (d, 2H, J = 8.0 Hz, CHarom), 5.60 (s, 1H, CH Ph), 4.89 (d, 1H, J = 12.3 Hz, CHH Bn), 4.75 (d, 1H, J 

= 11.9 Hz, CHH Bn), 4.74 (d, 1H, J = 1.4 Hz, H-1), 4.27 (dd, 1H, J = 4.9, 10.5 Hz, H-6), 4.20 (dd, 1H, J = 1.2, 3.6 

Hz, H-2), 4.15 (t, 1H, J = 9.5 Hz, H-4), 3.87 (t, 1H, J = 10.3 Hz, H-6) 3.83 (dd, 1H, J = 3.7, 9.6 Hz, H-3), 3.33 

(ddd, 1H, J = 4.9, 9.8, 9.8 Hz, H-5), 2.33 (s, 3H, CH3 STol); 13C-APT NMR (CDCl3, 100 MHz, HSQC): δ 138.2, 

137.6, 137.2 (Cq), 132.1 (CHarom), 130.0 (Cq STol), 129.8, 128.9, 128.4, 128.2, 127.9, 127.5, 125.9 (CHarom), 101.4 

(CH Ph), 87.1 (C-1), 78.4, 78.3 (C-3, C-4), 73.1 (CH2 Bn), 71.4 (C-5), 68.2 (C-6), 64.7 (C-2), 21.1 (CH3 STol); 
13C-GATED (CDCl3, 100 MHz): δ 87.1 (JC1,H1= 156 Hz, C-1); HRMS: [M+NH4]

+ calcd for C27H31N4O4S 

507.20605, found 507.20552. 

 

Methyl (tolyl 4-O-acetyl-2-azido-3-O-benzyl-2-deoxy-1-thio-ββββ-D-mannopyranosyl uronate) (12N). Compound 

28 (0.89 g, 2.23 mmol) was dissolved in DCM/H2O (15 mL, 2/1, v/v), the mixture was 

cooled to 0 ºC and treated with TEMPO (70 mg, 0.45 mmol) and BAIB (1.80 g, 5.58 mmol) 

for 2 h. Sat. aq. Na2S2O3 was added, the mixture was diluted with EtOAc and the organic 

phase was washed with H2O (2x) and sat. aq. NaCl (1x), dried over MgSO4 and concentrated in vacuo. The crude 

residue was then dissolved in dry DMF (15 mL), followed by the addition of MeI (0.42 mL, 6.69 mmol) and 

K2CO3 (0.93 g, 6.69 mmol). The mixture was allowed to stir at RT for 1.5 h, diluted with EtOAc and washed with 

H2O (2x) and sat. aq. NaCl. The organics were dried over MgSO4, concentrated in vacuo and the methyl uronate 

29 was isolated using flash column chromatography (silica gel, 25% EtOAc in PE). Spectroscopic data are 

reported for compound 29: 1H NMR (CDCl3, 400 MHz, HH-COSY, HSQC): δ 7.28-7.43 (m, 7H, CHarom), 7.11 (d, 

2H, J = 8.0 Hz, CHarom), 4.81 (d, 1H, J = 12.3 Hz, CHH Bn), 4.78 (d, 1H, J = 12.4 Hz, CHH Bn), 4.67 (s, 1H, H-

1), 4.23 (t, 1H, J = 9.4 Hz, H-4), 4.12 (d, 1H, J = 3.3 Hz, H-2), 3.81 (s, 3H, CH3 CO2Me), 3.72 (d, 1H, J = 9.7 Hz, 

H-5), 3.62 (dd, 1H, J = 3.7, 9.2 Hz, H-3), 3.19 (bs, 1H, 4-OH), 2.33 (s, 3H, CH3 STol); 13C-APT NMR (CDCl3, 

100 MHz, HSQC): δ 169.2 (C=O CO2Me), 138.2, 137.3 (Cq), 132.1 (CHarom), 129.9 (Cq STol), 129.8, 128.6, 128.1, 

127.8 (CHarom), 86.9 (C-1), 81.1 (C-3), 87.0 (C-5), 73.0 (CH2 Bn), 68.1 (C-4), 63.0 (C-2), 52.7 (CH3 CO2Me), 21.0 

(CH3 STol); 13C-GATED (CDCl3, 100 MHz): δ 86.9 (JC1,H1 = 155 Hz, C-1). Compound 29 (0.66 g, 1.5 mmol) was 

treated with pyridine/Ac2O (8 mL, 3/1, v/v) for 1.5 h. The mixture was diluted with EtOAc, washed with H2O 

(3x), dried over MgSO4 and concentrated in vacuo to yield the title compound as a white amorphous solid (Yield: 

0.72 g, 1.5 mmol, 67% over three steps). TLC: Rf 0.55 (PE/EtOAc, 2/1, v/v); [α]D
20 -34.8 (c 1, DCM); IR (neat, 

cm-1): 731, 1051, 1088, 1225, 1747, 2106; 1H NMR (CDCl3, 400 MHz, HH-COSY, HSQC): δ 7.30-7.40 (m, 7H, 

CHarom), 7.11 (d, 2H, J = 8.0 Hz, CHarom), 5.43 (t, 1H, J = 9.7 Hz, H-4), 4.72 (d, 1H, J = 12.2 Hz, CHH Bn), 4.67 

(s, 1H, H-1), 4.64 (d, 1H, J = 12.2 Hz, CHH Bn), 4.18 (d, 1H, J = 3.2 Hz, H-2), 3.79 (d, 1H, J = 9.9 Hz, H-5), 

3.74-3.77 (m, 1H, H-3), 3.73 (s, 3H, CH3 CO2Me), 2.33 (s, 3H, CH3 STol), 2.01 (s, 3H, CH3 Ac); 13C-APT NMR 

(CDCl3, 100 MHz, HSQC): δ 169.3, 167.2 (C=O Ac, CO2Me), 138.3, 136.9 (Cq), 132.2, 129.8 (CHarom), 129.8 (Cq 

STol), 128.6, 128.2, 127.8 (CHarom), 86.7 (C-1), 79.0 (C-3), 76.9 (C-5), 72.5 (CH2 Bn), 68.2 (C-4), 63.0 (C-2), 52.7 

(CH3 CO2Me), 21.1 (CH3 STol), 20.6 (CH3 Ac); 13C-GATED (CDCl3, 100 MHz): δ 86.7 (JC1,H1 = 155 Hz, C-1); 

HRMS: [M+NH4]
+ calcd for C23H29N4O6S 489.18023, found 489.17981. 
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Synthesis of the 2-deoxy-2-fluoro mannuronate 12F 

 

 

 

 

 

 

 

 

 

 

Phenyl 3,4,6-tri-O-acetyl-2-deoxy-2-fluoro-1-thio-ββββ-D-mannopyranoside (32). A solution of compound 30
32 

(5.64 g, 16.1 mmol) in DCM (10.7 mL) was cooled to 0 ºC and HBr (33 wt% in AcOH, 

14.5 mL, 80.5 mmol) was added. The resulting mixture was stirred at RT for 5 h, after 

which time the mixture was poured into ice-water. EtOAc was added and the organic phase 

was washed with sat. aq. NaHCO3 and sat. aq. NaCl, dried over MgSO4 and concentrated in vacuo. The crude 

bromide 31 was used in the next reaction step without further purification. TLC: Rf 0.64 (PE/EtOAc, 7/3, v/v). 

Bromide 31 (~9.0 mmol) was dissolved in DMF (18 mL) and PhSH (0.97 mL, 9.53 mmol) was added. The 

mixture was cooled to 0 ºC, followed by the addition of NaH (60% dispersion in mineral oil, 0.32 g, 9.53 mmol). 

The reaction was stirred overnight at RT, after which time aq. HCl (0.02 M) was added. The mixture was diluted 

with Et2O and H2O, the organic phase was washed with sat. aq. NaCl (3x), dried over MgSO4 and concentrated in 

vacuo. Purification using flash column chromatography (silica gel, 33% EtOAc in PE) yielded the title compound 

as a colored oil (Yield: 2.53 g, 6.31 mmol, 70% over two steps). TLC: Rf 0.17 (PE/EtOAc, 3/1, v/v); [α]D
20 -110.0 

(c 0.74, DCM); IR (neat, cm-1): 1051, 1221, 1368, 1740; 1H NMR (CDCl3, 400 MHz, HH-COSY, HSQC): δ 7.51-

7.57 (m, 2H, CHarom), 7.29-7.35 (m, 3H, CHarom), 5.38 (t, 1H, J = 10.0 Hz, H-4), 5.08 (dd, 1H, J = 2.5, 49.8 Hz, H-

2), 4.99 (ddd, 1H, J = 2.7, 9.9, 27.6 Hz, H-3), 4.87 (d, 1H, J = 26.6 Hz, H-1), 4.28 (dd, 1H, J = 6.0, 12.2 Hz, H-6), 

4.18 (dd, 1H, J = 2.3, 12.2 Hz, H-6), 3.71 (ddd, 1H, J = 2.5, 6.3, 6.5 Hz, H-5), 2.12 (s, 3H, CH3 Ac), 2.09 (s, 3H, 

CH3 Ac), 2.05 (s, 3H, CH3 Ac); 13C-APT NMR (CDCl3, 100 MHz, HSQC): δ 170.6, 170.2, 169.3 (C=O Ac), 

133.1 (Cq), 131.9, 129.1, 128.1 (CHarom), 88.9 (d, J = 186 Hz, C-2), 85.2 (d, J = 18 Hz, C-1), 76.2 (C-5), 72.3 (d, J 

= 18 Hz, C-3), 65.5 (C-4), 62.5 (C-6), 20.7, 20.6, 20.6 (CH3 Ac); 13C-GATED (CDCl3, 100 MHz): δ 85.2 (JC1,H1 = 

151 Hz, C-1); HRMS: [M+Na]+ calcd for C18H21FO7SNa 423.08842, found 423.08802. 

 

Methyl (phenyl 4-O-acetyl-3-O-benzyl-2-deoxy-2-fluoro-1-thio-ββββ-D-mannopyranosyl uronate) (12F). 

Compound 32 (2.53 g, 6.31 mmol) was suspended in MeOH and treated with NaOMe (30 

mg, 0.63 mmol) at RT overnight. The reaction was quenched by the addition of Amberlite-

H+ till pH~7 and the solvents were evaporated. Crude triol 33 (∼5.2 mmol) was then 

dissolved in DMF (50 mL), followed by the addition of PhCH(OMe)2 (1.17 mL, 7.77 mmol) and p-TsOH•H2O 

(cat.) and the resulting solution was stirred at RT overnight. The reaction was neutralized by the addition of Et3N 

and the mixture was reduced in volume. The residue was taken up in Et2O/EtOAc and washed with H2O (2x) and 

sat. aq. NaCl. The organic phase was dried over MgSO4, concentrated in vacuo and the benzylidene-protected 

intermediate 34 was obtained by crystallization (EtOAc/PE). A solution of compound 34 (∼3.53 mmol) in DMF 

(18 mL) was cooled to 0 ºC and subsequently benzyl bromide (0.84 mL, 7.05 mmol) and NaH (60% dispersion in 

mineral oil, 0.28 g, 7.05 mmol) were added. The reaction was stirred at RT for 4 h, followed by the addition of 

MeOH. The mixture was reduced in volume and the residue was dissolved in EtOAc and washed with H2O (2x) 

and sat. aq. NaCl. The organic phase was dried over MgSO4, concentrated in vacuo and purified using flash 

column chromatography (silica gel, 20% EtOAc in PE) to yield compound 35 as a white solid (Yield: 1.51 g, 3.34 

mmol, 53% over three steps). Spectroscopic data are reported for compound 35: TLC: Rf 0.63 (PE/EtOAc, 4/1, 

v/v); 1H NMR (CDCl3, 400 MHz, HH-COSY, HSQC): δ 7.46-7.51 (m, 4H, CHarom), 7.26-7.41 (m, 11H, CHarom), 

5.64 (s, 1H, CH Ph), 5.02 (dd, 1H, J = 2.7, 48.5 Hz, H-2), 4.87 (d, 1H, J = 12.9 Hz, CHH Bn), 4.85 (d, 1H, J = 

27.9 Hz, H-1), 4.78 (d, 1H, J = 12.3 Hz, CHH Bn), 4.35 (dd, 1H, J = 4.9, 10.6 Hz, H-6), 4.19 (dt, 1H, J = 1.5, 9.8 

Hz, H-4), 3.92 (t, 1H, J = 10.3 Hz, H-6), 3.70 (ddd, 1H, J = 2.7, 9.9, 26.0 Hz, H-3), 3.45 (ddd, 1H, J = 5.0, 9.7, 9.7 

Hz, H-5); 13C-APT NMR (CDCl3, 100 MHz, HSQC): δ 137.5, 137.2 (Cq), 133.5 (Cq SPh), 131.5, 129.1, 129.0, 
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128.5, 128.2, 128.0, 127.9, 126.0 (CHarom), 101.6 (CH Ph), 90.5 (d, J = 186 Hz, C-2), 86.4 (d, J = 19 Hz, C-1), 

77.9 (C-4), 76.3 (d, J = 17 Hz, C-3), 72.7 (CH2 Bn), 71.3 (C-5), 68.3 (C-6); 13C-GATED (CDCl3, 100 MHz): 

δ 86.4 (JC1,H1 = 155 Hz, C-1). Compound 35 (1.46 g, 3.22 mmol) was suspended in MeOH and p-TsOH•H2O was 

added until the mixture was acidic (pH<5). The reaction was allowed to stir overnight, after which time Et3N was 

added to quench to reaction. The solvents were evaporated and compound 36 was purified using flash column 

chromatography (silica gel, 30% PE in EtOAc) and obtained as a colored oil (Yield: 0.98 g, 2.67 mmol, 83%). 

Spectroscopic data are reported for compound 36: TLC: Rf 0.25 (PE/EtOAc, 1/1, v/v); 1H NMR (CDCl3/MeOD, 

400 MHz, HH-COSY, HSQC): δ 7.47 (d, 2H, J = 8.0 Hz, CHarom), 7.26-7.41 (m, 8H, CHarom), 4.99 (dd, 1H, J = 

2.3, 49.7 Hz, H-2), 4.85 (d, 1H, J = 27.6 Hz, H-1), 4.80 (d, 1H, J = 12.4 Hz, CHH Bn), 4.71 (d, 1H, J = 11.7 Hz, 

CHH Bn), 3.96 (t, 1H, J = 9.6 Hz, H-4), 3.90 (dd, 1H, J = 2.8, 12.3 Hz, H-6), 3.81 (dd, 1H, J = 4.7, 12.3 Hz, H-6), 

3.42-3.53 (m, 1H, H-3), 3.32-3.39 (m, 1H, H-5); 13C-APT NMR (CDCl3, 100 MHz, HSQC): δ 137.2 (Cq), 133.5 

(Cq SPh), 130.7, 129.0, 128.4, 128.0, 127.8, 127.6 (CHarom), 88.8 (d, J = 184 Hz, C-2), 85.0 (d, J = 18 Hz, C-1), 

80.2 (d, J = 18 Hz, C-3), 80.2 (C-5), 71.9 (CH2 Bn), 65.9 (C-4), 61.7 (C-6); HRMS: [M+NH4]
+ calcd for 

C19H25FNO4S 382.14828, found 382.14863. Diol 36 (0.98 g, 2.67 mmol) was dissolved in EtOAc (18 mL) and 

H2O (8 mL) was added. The mixture was cooled to 0 ºC, followed by the addition of TEMPO (80 mg, 0.53 mmol) 

and BAIB (2.15 g, 6.68 mmol). The mixture was allowed to stir at RT for 5 h, after which time sat. aq. Na2S2O3 

was added. The organic phase was separated and washed with sat. aq. NaCl, dried over MgSO4 and concentrated 

in vacuo. The crude uronic acid was then dissolved in DMF (13 mL) and treated with MeI (0.5 mL, 8.0 mmol) and 

K2CO3 (1.11 g, 8.0 mmol) at RT overnight. The mixture was diluted with EtOAc and H2O, the organic layer was 

washed with H2O and sat. aq. NaCl, dried over MgSO4 and concentrated in vacuo. Purification using flash column 

chromatography (silica gel, 40% EtOAc in PE) afforded the methyl ester intermediate 37 as a yellow oil. 

Spectroscopic data are reported for compound 37: 1H NMR (CDCl3, 400 MHz, HH-COSY, HSQC): δ 7.45-7.51 

(m, 2H, CHarom), 7.24-7.35 (m, 8H, CHarom), 4.94 (dd, 1H, J = 2.6, 49.3 Hz, H-2), 4.76 (d, 1H, J = 12.0 Hz, CHH 

Bn), 4.75 (d, 1H, J = 27.0 Hz, H-1), 4.70 (d, 1H, J = 12.0 Hz, CHH Bn), 4.23 (t, 1H, J = 9.6 Hz, H-4), 3.81 (d, 1H, 

J = 9.7 Hz, H-5), 3.78 (s, 3H, CH3 CO2Me), 3.46 (ddd, 1H, J = 2.6, 9.5, 27.8 Hz, H-3), 3.38 (bs, 1H, 4-OH); 13C-

APT NMR (CDCl3, 100 MHz, HSQC): δ 168.8 (C=O CO2Me), 137.2 (Cq), 133.4 (Cq SPh), 131.1, 129.0, 128.4, 

127.9, 127.7 (CHarom), 88.4 (d, J = 186 Hz, C-2), 85.8 (d, J = 18 Hz, C-1), 79.0 (d, J = 18 Hz, C-3), 77.9 (C-5), 

72.0 (CH2 Bn), 67.6 (C-4), 52.7 (CH3 CO2Me); 13C-GATED (CDCl3, 100 MHz): δ 85.8 (JC1,H1 = 152 Hz, C-1). 

Methyl uronate 37 (0.99 g, 2.52 mmol) was dissolved in pyridine (25 mL) and treated with Ac2O (0.47 mL, 5.0 

mmol) at RT overnight. The reaction was quenched by the addition of MeOH, the solvents were evaporated and 

the residue was dissolved in EtOAc and washed with H2O and sat. aq. NaCl. The organic phase was dried over 

MgSO4, concentrated in vacuo and purified using flash column chromatography (silica gel, 40% EtOAc in PE) to 

yield the title compound as an off-white solid (Yield: 1.03 g, 2.37 mmol, 89% over three steps). TLC: Rf 0.69 

(PE/EtOAc, 1/1, v/v); [α]D
20 -118.0 (c 1, DCM); IR (neat, cm-1): 692, 741, 1059, 1227, 1748; 1H NMR (CDCl3, 

400 MHz, HH-COSY, HSQC): δ 7.44-7.48 (m, 2H, CHarom), 7.24-7.33 (m, 8H, CHarom), 5.46 (t, 1H, J = 9.9 Hz, H-

4), 5.06 (dd, 1H, J = 2.5, 49.1 Hz, H-2), 4.86 (d, 1H, J = 26.6 Hz, H-1), 4.74 (d, 1H, J = 12.3 Hz, CHH Bn), 4.61 

(d, 1H, J = 12.3 Hz, CHH Bn), 3.94 (d, 1H, J = 9.9 Hz, H-5), 3.69 (ddd, 1H, J = 2.7, 9.8, 27.1 Hz, H-3), 3.68 (s, 

3H, CH3 CO2Me), 1.99 (s, 3H, CH3 Ac); 13C-APT NMR (CDCl3, 100 MHz, HSQC): δ 169.3, 167.0 (C=O Ac, 

CO2Me), 137.0 (Cq), 133.1 (Cq SPh), 131.2, 128.9, 128.3, 127.8, 127.4 (CHarom), 88.2 (d, J = 186 Hz, C-2), 85.5 (d, 

J = 18 Hz, C-1), 77.1 (d, J = 18 Hz, C-3), 76.2 (C-5), 71.7 (CH2 Bn), 67.6 (C-4), 52.5 (CH3 CO2Me), 20.4 (CH3 

Ac); 13C-GATED (CDCl3, 100 MHz): δ 85.5 (JC1,H1= 154 Hz, C-1); HRMS: [M+NH4]
+ calcd for C20H27FNO4S 

396.16393, found 396.16399. 

 

Methyl 2,3,4-tri-O-benzyl-6-O-(4,6-di-O-acetyl-2,3-di-O-benzyl-α/βα/βα/βα/β-D-mannopyranosyl)-αααα-D-glucopyrano-

side (38). Disaccharide 38 was produced as an anomeric mixutre (α : β = 1 : 3). 

TLC: Rf α 0.60, β 0.23 (PE/EtOAc, 2/1, v/v); IR (neat, cm-1): 696, 733, 1028, 

1047, 1238, 1742; Spectroscopic data are reported for the major isomer (β): 1H 

NMR (CDCl3, 400 MHz, HH-COSY, HSQC): δ 7.15-7.42 (m, 25H, CHarom), 5.33 

(t, 1H, J = 9.7 Hz, H-4’), 5.02 (d, 1H, J = 10.9 Hz, CHH Bn), 4.89 (d, 1H, J = 12.6 

Hz, CHH Bn), 4.74-4.86 (m, 4H, CH2 Bn), 4.67 (d, 1H, J = 12.2 Hz, CHH Bn), 

4.58 (d, 1H, J = 3.4 Hz, H-1), 4.51 (d, 1H, J = 11.3 Hz, CHH Bn), 4.48 (d, 1H, J = 12.0 Hz, CHH Bn), 4.31 (d, 

1H, J = 12.3 Hz, CHH Bn), 4.22 (dd, 1H, J = 5.8, 12.1 Hz, H-6’), 4.11-4.17 (m, 3H, H-1’, H-6, H-6’), 4.02 (t, 1H, 
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J = 9.3 Hz, H-3), 3.77-3.84 (m, 1H, H-5), 3.72 (d, 1H, J = 2.8 Hz, H-2’), 3.51 (dd, 1H, J = 3.5, 9.7 Hz, H-2), 3.43-

3.47 (m, 2H, H-5’, H-6), 3.42 (t, 1H, J = 9.6 Hz, H-4), 3.34-3.36 (m, 1H, H-3’), 3.33 (s, 3H, OMe), 2.02 (s, 3H, 

CH3 Ac), 2.01 (s, 3H, CH3 Ac); 13C-APT NMR (CDCl3, 100 MHz, HSQC): δ 170.9, 169.6 (C=O Ac), 138.7, 

138.3, 138.2, 137.9, 137.7 (Cq), 128.4, 128.3, 128.2, 128.1, 128.0, 127.9, 127.7, 127.6, 127.4, 127.3, 127.2 

(CHarom), 101.4 (C-1’), 97.7 (C-1), 82.0 (C-3), 79.7 (C-2), 78.8 (C-3’), 77.6 (C-4), 75.7, 74.7, 73.5, 73.3 (CH2 Bn), 

72.8 (C-2’), 72.5 (C-5’), 71.2 (CH2 Bn), 69.6 (C-5), 68.4 (C-6), 68.2 (C-4’), 63.2 (C-6’), 55.0 (OMe), 20.9, 20.8 

(CH3 Ac); 13C-GATED (CDCl3, 100 MHz): δ 101.4 (JC1,H1 = 152 Hz, C-1’), 97.7 (JC1,H1 = 167 Hz, C-1); HRMS: 

[M+Na]+ calcd for C52H58O13Na 913.37696, found 913.37718. 

 

Methyl 2,3,4-tri-O-benzyl-6-O-(2,3-di-O-benzyl-4,6-O-benzylidene-α/βα/βα/βα/β-D-mannopyranosyl)-αααα-D-glucopyra-

noside (39). Disaccharide 39 was produced as an anomeric mixutre (α : β = 1 : 

8.3). Spectroscopic data were in accord with those reported previously.33  

 

 

 

 

Methyl 2,3,4-tri-O-benzyl-6-O-(methyl 4-O-acetyl-2,3-di-O-benzyl-ββββ-D-mannopyranosyl uronate)-αααα-D-gluco-

pyranoside (40). Disaccharide 40 was produced as the purely β-fused product. 

Spectroscopic data were in accord with those reported previously.34  

 

 

 

 

Methyl 2,3,4-tri-O-benzyl-6-O-(4,6-di-O-acetyl-2-azido-3-O-benzyl-2-deoxy-α/βα/βα/βα/β-D-mannopyranosyl)-αααα-D-

glucopyranoside (41). Disaccharide 41 was produced as an anomeric mixture (α : 

β = 1 : 5.9). Spectroscopic data were in accord with those reported previously.35  

 

 

 

 

Methyl 2,3,4-tri-O-benzyl-6-O-(2-azido-3-O-benzyl-4,6-O-benzylidene-2-deoxy-α/βα/βα/βα/β-D-mannopyranosyl)-αααα-D-

glucopyranoside (42). Disaccharide 42 was produced as an anomeric mixture 

(α : β = 1 : 3). Spectroscopic data were in accord with those reported 

previously.36  

 

 

 

Methyl 2,3,4-tri-O-benzyl-6-O-(methyl 4-O-acetyl-2-azido-3-O-benzyl-2-deoxy-αααα/β/β/β/β-D-mannopyranosyl uro-

nate)-αααα-D-glucopyranoside (43). Disaccharide 43 was produced as an anomeric 

mixture (α : β = 1 : 7). Spectroscopic data were in accord with those reported 

previously.11a  

 

 

 

Methyl 2,3,4-tri-O-benzyl-6-O-(methyl 4-O-acetyl-2,3-diazido-2,3-dideoxy-α/βα/βα/βα/β-D-mannopyranosyl uronate)-

αααα-D-glucopyranoside (44). Disaccharide 44 was produced as an anomeric mixture 

(α : β = 1 : 5.5). Spectroscopic data were in accord with those reported 

previously.11c  
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Methyl 2,3,4-tri-O-benzyl-6-O-(methyl 4-O-acetyl-3-O-benzyl-2-deoxy-2-fluoro-α/βα/βα/βα/β-D-mannopyranosyl uro-

nate)-αααα-D-glucopyranoside (45). Disaccharide 45 was produced as an anomeric 

mixture (α : β = 1 : 5). TLC: Rf α 0.43, β 0.25 (PE/EtOAc, 2/1 , v/v); IR (neat, cm-

1): 738.7, 1028, 1051, 1094, 1229, 1751, 2924; Spectroscopic data are reported for 

the major isomer (β): 1H NMR (CDCl3, 400 MHz, HH-COSY, HSQC): δ 7.28-

7.40 (m, 20H, CHarom), 5.39 (t, 1H, J = 9.6 Hz, H-4’), 4.99 (d, 1H, J = 10.8 Hz, 

CHH Bn), 4.86 (d, 1H, J = 11.5 Hz, CHH Bn), 4.75-4.83 (m, 2H, CH2 Bn), 4.52-

4.72 (m, 6H, CH2 Bn, H-1, H-2’), 4.16 (d, 1H, J = 17.0 Hz, H-1’), 4.09 (dd, 1H, J = 1.8, 10.8 Hz, H-6), 3.99 (t, 

1H, J = 9.2 Hz, H-3), 3.75-3.81 (m, 2H, H-5, H-5’), 3.70 (s, 3H, CH3 CO2Me), 3.39-3.56 (m, 4H, H-2, H-3’, H-4, 

H-6), 3.32 (s, 3H, OMe), 2.04 (s, 3H, CH3 Ac); 13C-APT NMR (CDCl3, 100 MHz, HSQC): δ 169.3, 167.3 (C=O 

Ac, CO2Me), 138.7, 138.4, 138.0, 137.2 (Cq), 128.5, 128.4, 128.3, 128.1, 128.0, 127.9, 127.8, 127.7, 127.6 

(CHarom), 98.8 (d, J = 16 Hz, C-1’), 97.8 (C-1), 86.1 (d, J = 190 Hz, C-2’), 82.1 (C-3), 79.8 (C-2), 77.4 (C-4), 76.1 

(d, J = 17 Hz, C-3’), 75.7, 74.6, 73.4 (CH2 Bn), 73.2 (C-5’), 71.7 (CH2 Bn), 69.6 (C-5), 68.7 (C-6), 68.3 (C-4’), 

55.1 (OMe), 52.7 (CH3 CO2Me), 20.7 (CH3 Ac); 13C-GATED (CDCl3, 100 MHz): δ 98.8 (JC1,H1= 156 Hz, C-1’), 

97.8 (JC1,H1= 162 Hz, C-1); HRMS: [M+Na]+ calcd for C44H49FO12Na 811.31003, found 811.31011. 

 

Methyl 2,3,4-tri-O-benzyl-6-O-(2,3,4,6-tetra-O-benzyl-α/βα/βα/βα/β-D-mannopyranosyl)-αααα-D-glucopyranoside (46). 

Disaccharide 46 was produced as an anomeric mixture (α : β = 1 : 2). The 

analytical data of the title compound have been reported previously.25c  
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Automated Solid-phase Synthesis: 

β-Mannuronic Acid Alginates 

 

 

 

 
 

 

 

 

 

 

Introduction 

Poly-β-(1,4)-mannuronic acid (mannuronic acid alginate, Scheme 1, A) is a major 

component of the cell wall of various algae.
1
 It also represents the exopolysaccharide of 

Pseudomonas aeruginosa,
2,3

 an opportunistic, nosocomial gram-negative bacterium, which 

poses a serious health threat to immunocompromized patients, causing respiratory system 

infections, bacteremia, and a variety of systemic infections. In nature, alginates are found 

of up to thousands of residues in length, but small mannuronic acid oligomers have been 

shown to have Toll-like receptor 2 and 4-mediated immunomodulatory activity.
4
 

To enable the study of the antigenicity and immunomodulatory effects of mannuronic acid 

alginates, samples of well-defined lengths are needed. Synthetic carbohydrate chemistry 

has the potential to meet this demand, and polymer-supported chemistry would be ideally 
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suited to generate biopolymer structures. However, while (automated) solid-phase synthesis 

is common practice in peptide and nucleotide chemistry,
5
 its application in carbohydrate 

chemistry is still in its infancy. The principal reasons for this backlog are the difficulties 

presented by 1) the creation of a new stereocenter upon the union of two saccharides 

through the formation of a glycosidic linkage, and 2) the use of building blocks that are not 

commercially available but have to be acquired through multistep syntheses and vary 

greatly in reactivity.  

Over the past forty years,
6

 many glycosyl donors have been used for solid-phase 

oligosaccharide synthesis (SPOS), including glycosyl halides,
7

 glycosyl sulfoxides,
8
 

glycals,
9

 thioglycosides,
10

 glycosyl imidates,
11

 glycosyl phosphates,
12

 n-pentenyl 

glycosides,
13

 and combinations of the above.
14

 Although these precedents demonstrate the 

feasibility of SPOS, (automated) solid-supported glycosylation technology has been met 

with skepticism due to the large amount of building blocks needed to ensure high coupling 

efficiency, the restriction to the formation of 1,2-trans linkages, and the tedious analysis 

and purification steps required for longer carbohydrate fragments. 

 

Scheme 1. Target structure β-(1,4)-mannuronic acid alginate (A), which is synthesized using mannuronic acid 

building blocks B 

 

 

 

 

It is not until recently that mannuronic alginates have been successfully synthesized in 

solution, both using non-oxidized donors entailing post-glycosylation oxidation of the C-6 

hydroxyl,
15

 and using oxidized mannuronic acid donors.
16

 These strategies yielded 

trisaccharidic fragments. The use of mannuronic acid donors was taken one step further by 

Codée et al. in the synthesis of a pentamannuronate.
17

 Excellent β-selectivity was revealed 

with the use of mannuronic acid donors, equipped with non-participating groups at C-2 and 

C-3 (Scheme 1, B). As described in Chapters 2-5, the stereoselectivity of these donors was 

rather general and did not significantly depend on the nature of the acceptor, or the 

substitution pattern of the donor.
18

 Because of the repetitive nature of the target structures, 

an automated solid-phase synthesis approach can be more efficient for the assembly of a 

library of larger mannuronic acid alginate fragments. The success of this approach clearly 

hinges on the efficient construction of the β-mannuronic acid bonds, which have to be 

introduced in high yield and in a stereoselective manner to prevent the formation of 

inseparable (anomeric) mixtures.  

 

This Chapter describes the first automated solid-phase assembly of mannuronic acid 

alginate oligomers, featuring up to twelve 1,2-cis-mannosidic linkages. The structures were 

constructed using a second-generation automated oligosaccharide synthesizer,
19,20

 whose 

set-up and technology were further developed and optimized to ensure a high degree of 

reproducibility. The stereoselective formation of the β-mannosidic linkages was secured 

through the use of mannuronic acid donors. The use of the synthesizer allowed for rapid 
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access to target structures that could not be obtained using solution-phase chemistry, in 

quantities that are not only sufficient to cater for biological experiments but also to 

facilitate verification of the structural integrity of the compounds using 
1
H and 

13
C NMR 

techniques. 

 

Results and Discussion 

 

Automated oligosaccharide synthesis instrument. The instrument used to develop the 

automated glycosylation methodology described in this Chapter is a second-generation 

synthesizer (depicted in Figures 1 and 2).
19

 The instrument is centralized around the 

reaction vessel (RV), which is a double-jacketed glass reaction vessel with a volume of 

approximately 10 mL, equipped with a 5-way screw cap at the top, and a frit at the bottom 

(Figure 2). The screw cap holds three tubes for reagent addition, one inlet for washing 

solvents, and one argon outlet. The 4-way solenoid valve manifold at the bottom of the RV 

allows for strong and weak purging of argon, and contains the tubes to both the collector 

vessel and the general waste. A cryostat circulates thermostatic fluids through the double 

jacket.  

 

Figure 1. Overview picture of the automated synthesizer instrument (see Appendix 3 for a colored picture) 

Legend: 1) personal computer, 2) controller, 3) syringe pump, 4) 5-mL ‘reservoir’ loops, 5) solenoid valves, 6) 

reaction vessel, 7) building block vessels, 8) rotary valves, 9) reagent vessels, 10) wash solvent bottles, 11) gas 

manifold, 12) cryostat. 
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The whole synthesizer system is maintained under an argon atmosphere operated by a gas 
manifold. It uses two modes for solvent addition, which are 1) a syringe-pump-driven mode 
for accurate addition of small volumes (Figure 2, left part of schematic drawing), and 2) a 
solenoid valve-driven mode for dispensing larger volumes using an argon overpressure 
(Figure 2, right part of schematic drawing). A controller serves as a mediator between the 
electro-mechanical parts and a personal computer. It coordinates the syringe pump, the 
solenoid valves and the cryostat.  
To prevent any reagent solution to enter the syringe pump, a 5-mL ‘reservoir’-loop is 
introduced between the syringe pump and the rotary valve (Figure 1).21 The addition of 
washing solvents is performed by opening the valve, which connects the appropriate 
solvent bottle with the RV for a certain time span to allow the argon pressure-mediated 
cannulation of the solvent into the RV. To agitate the resin and solutions in the RV, a 
strong or weak argon overpressure can be applied from the bottom of the RV.  
 
Figure 2. Picture and schematic drawing of the reaction vessel (see Appendix 3 for a colored picture) 

 

 
Legend: 1) 5-way screw cap, 2) double-jacketed glass reaction vessel, 3) porous glass filter, 4) 4-way solenoid 
valve manifold, 5) tube to collector vessel, 6) two tubes for strong and weak purging with argon gas, 7) line to the 
general waste. 

 
Building block. Since pre-activation of thio donors is not (yet) possible on the synthesizer 
and the nature of the linker prohibits the use of soft electrophiles (vide infra) required for 
the activation of thioglycosides, N-phenyl trifluoroacetimidate22 donor 3, which can be 
activated by a catalytic amount of Lewis or Brønsted acid, was selected as key building 
block (Scheme 2). As a temporary protecting group at the C-4-OH of building block 3 a 
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levulinoyl ester was installed, because this can be selectively cleaved under near neutral 

conditions, without touching the methyl esters or causing epimerization or β-elimination. 

Donor 3 was obtained in multigram quantities from known thiomannoside 1 as depicted in 

Scheme 2. 

 

Scheme 2. Synthesis of donor 3 from compound 1 

 

 

 

 

 

 

Reagents and conditions: a) NIS, TFA, DCM/H2O (88%); b) CF3C(NPh)Cl, K2CO3, acetone/H2O (86%). 

 

Activation study of the building block. A detailed understanding of activation and 

reactivity of a glycosyl donor has great value in developing a synthetic protocol. Therefore 

the pre-activation of donor 3 was investigated in a low-temperature NMR experiment 

(Scheme 3). Donor 3 was dissolved in DCM-d2 and treated with a slight excess of TfOH at 

-80 ºC. The donor was rapidly consumed to provide a conformational mixture of two 

anomeric α-triflates 4a and 4b, as previously established for the corresponding thiophenyl 

donor (4a : 4b ~ 1 : 1.3, see also Chapter 2).
23

  

 

Scheme 3. Investigation into the activation of glycosylating agent 3 using low-temperature NMR spectroscopy 

 

 

 

 

 

 

 

 

The excess of TfOH in this experiment proved to be too acidic for the intermediate triflate 

4, resulting in degradation of the mixture. As a comparison, when the corresponding 

thiophenyl donor, having a C4-OAc function, was activated using ‘neutral’ conditions 

(Ph2SO-Tf2O), the same anomeric triflate was produced. Under these conditions the 

temperature of decomposition of triflate 4 was determined to be -40 ºC (Chapter 2). As 

described in Chapter 5, this relatively low decomposition temperature provides an 

indication of the reactivity of the donors at hand, which were shown to be more reactive 

than one would expect based on the presence of the electron-withdrawing C-5 carboxylic 

acid ester moiety.
24
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Optimization of the automated synthesis. Next, the imidate chemistry was investigated 

on solid support using the automated synthesizer. Merrifield resin
25

 was functionalized with 

a butenediol linker (loading: 0.34 mmol/g), which allows cleavage of the products from the 

solid support through cross metathesis with ethylene.
12a

 First, the various parameters in the 

coupling and deprotection steps were optimized.  

In a first attempt using standard conditions (Scheme 4), the RV was charged with resin 5 

and donor 3 (2 x 5 eq)
26

 was coupled under the agency of a catalytic amount of TMSOTf 

(0.2 eq with respect to donor 3) at 0 ºC. If successful, this relatively high glycosylation 

temperature would demand less cryostat power and shorter waiting times in the automated 

synthesis runs. However, cleavage of a sample of the resin by cross metathesis with 

ethylene using Grubbs’ 1
st
 generation pre-catalyst gave a 1 : 3 mixture of anomeric 

diastereomers of monosaccharide 6. Although the β-product was predominantly formed, 

the stereoselectivity was clearly insufficient to be used in the assembly of larger oligomers. 

Therefore, the temperature of the glycosylation reaction was lowered to approach the 

decomposition temperature of the intermediate triflate (-40 ºC).
27

 This resulted in the 

exclusive formation of the β-linked product 6, as judged by 
1
H NMR spectroscopy of the 

sample mixture that was cleaved from the resin. For the removal of the C-4-O-levulinoyl 

ester optimal conditions were found in the use of H2NNH2•HOAc (2 x 10 eq) in a mixture 

of pyridine/AcOH (4/1 v/v) at slightly elevated temperature (+40 ºC).  

 

Scheme 4. System used for optimization reactions 

 

Then the coupling efficiency in terms of monomer to dimer conversion was optimized. It 

was found that glycosylating with two coupling cycles of donor 1 (5 eq) and TMSOTf as a 

promotor led to a conversion of ~ 80% of product 7. Changing to a protocol in which TfOH 

was used as activator and the coupling cycle was repeated three times with 3 equivalents of 

3 led to a significantly better conversion (>95%). The reaction mixture was drained from 

the vessel and collected after every coupling step. From the combined mixtures, unreacted 

donor 1 could be retrieved in ~20% per coupling step. Using these optimized conditions, 

the automated syntheses were conducted to generate tetrasaccharide 8, octasaccharide 9, 

and dodecasaccharide 10 (Scheme 5).  

 

Alginate construction. In a generalized procedure (Table 1), the reaction vessel of the 

synthesizer was charged with resin 5 (100 mg, 34 µmol), and this was subjected to the 

number of coupling-deprotection cycles as programmed. After the final deprotection step, 

the resin was collected, the products were released from the resin by olefin metathesis 

(Grubbs’ 1
st
 generation, ethylene, reacting overnight at RT) and the crude mixture was 

analyzed by LC-MS and NMR spectroscopy.  
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Scheme 5. Automated solid-phase assembly of mannuronic acid alginates 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Reagents and conditions: 1) donor 3 (3 eq), TfOH (0.6 eq), DCM, -40 ºC, 45 min, repeated three times; 2) 

H2NNH2•HOAc (10 eq), pyr/AcOH, +40 ºC, 10 min, repeated two times; 3) Grubbs’ 1st generation, ethylene, 

DCM, RT, overnight. 

 

Table 1. Coupling/deprotection cycle 

Protocol # Cycles Description Time (min) Temperature 

D 1 Washing with THF/hexane, THF, DCM  RT 

E 3 Coupling (3 eq donor, 0.3 eq TfOH) 45 -40 ºC 

D 1 Washing with THF/hexane, THF, DCM  RT 

F 2 Deblock (10 eq hydrazine acetate) 10 + 40 ºC 

G 1 
Washing with DMF, DCM, THF/hexane, 

AcOH/THF, THF 
 RT 

 

As can be estimated from the ELSD trace of the LC chromatogram (see Figure 3, top), the 

crude reaction mixture of the tetramer synthesis contained ~92% of the desired product 8, 

next to a minor amount of the deletion sequence trisaccharide, indicating that the coupling 

efficiency was as high as 98% per coupling cycle. Importantly, the NMR spectra of the 

crude cleavage mixture showed that the coupling reactions had proceeded with excellent 

stereoselectivity. The relatively high chemical shifts of the anomeric signals in the 
13

C APT 

spectrum (δ = 100.5, 102.3 and 102.5 ppm) are indicative of β-mannosidic linkages. 

Furthermore, the heteronuclear one bond C1-H1 coupling constants (JC1-H1 ~ 156-158 Hz) 

unambiguously ascertained the installation of the 1,2-cis-linkages. The construction of 
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longer fragments proceeded equally well. The automated solid-phase synthesis of octamer 

9 led to a crude product mixture containing ~ 57% of the desired product (Figure 3, 

middle), which equals an average efficiency of 93% per coupling cycle. Dodecamer 10 

made up ~ 42% of the crude reaction mixture obtained after 12 repetitive coupling-

deprotection cycles as indicated by LC-MS (Figure 3, bottom), again representing 93% 

efficiency per cycle.
28

  

 

Figure 3. ELSD traces of tetrasaccharide 8 (top), octasaccharide 9 (middle), and dodecasaccharide 10 (bottom) 

 

C4 column, 50 → 90% B, Rt (tetra) = 

8.8 min, Rt (tri) = 7.0 min 

 

 

 

 

 

C4 column, 70 → 95% B, Rt (octa) = 

10.7 min, Rt (hepta) = 9.7 min, Rt (hexa) 

= 8.3 min, Rt (penta) = 6.6 min 

 

 

 

diphenyl column, 70 → 95% B, Rt 

(dodeca) = 11.4 min, Rt (undeca) = 10.9 

min, Rt (deca) = 10.4 min, Rt (nona) = 9.8 

min, Rt (octa) = 9.0 min, Rt (hepta) = 7.7 

min 

 

 

Interestingly, the 
1
H and 

13
C-APT spectra of the crude product mixtures obtained from the 

octamer and dodecamer assemblies are remarkably similar to the spectrum obtained for the 

tetrasaccharide product mixture and only differ in the intensity of the signals belonging to 

the internal mannuronic acid residues (Figure 4). This indicates that the structures of the 

oligomers are very regular, and therefore that the glycosidic bonds have been introduced 

with excellent stereoselectivity.  

 

The target oligomers were isolated and purified using RP-HPLC after saponification of the 

product mixtures (KOH, THF/H2O), since this resulted in a better base-line separation 

between the product and its deletion sequences than in the fully protected compounds 

(compare Figures 3 and 5).
29

 In this way tetramer 11 was obtained in 24 mg, octamer 12 in 

20 mg, and dodecamer 13 in 17 mg. These isolated amounts of mannuronates correspond to 

overall yields of 47% for tetramannuronate 11 (8 on-resin steps), 16% for octamannuronate 

12 (16 on-resin steps), and 11% for dodecamannuronate 13 (24 on-resin steps). During the 

purification of the oligomers the deletion sequences were also obtained in good purity. 

These numbers approach a yield of >90% per chemical step. Global deprotection of the 

partially protected oligomers was accomplished by hydrogenolysis over Pd/C in 

THF/H2O/t-BuOH to provide the target tetramer 14, octamer 15 and dodecamer 16 in 

excellent yields and multi-milligram quantities (Scheme 5). 
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Figure 4. Fragments of 1H (left) and 13C-APT (right) NMR spectra of crude tetramanuronate 8 (top), 

octamannuronate 9 (middle), and dodecamannuronate 10 (bottom) after cleavage from the resin 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 5. ELSD traces of semi-protected tetrasaccharide 11 (top), octasaccharide 12 (middle), and 

dodecasaccharide 13 (bottom) before purification 

 

 

C4 column, 50 → 90% B, Rt (tetra) = 

5.8 min, Rt (tri) = 4.2 min 

 

 

 

 

 

C4 column, 50 → 90% B, Rt (octa) = 

9.3 min, Rt (hepta) = 8.6 min, Rt (hexa) 

= 7.9 min, Rt (penta) = 6.9 min 

 

 

 

 

C4 column, 70 → 95% B, Rt (dodeca) 

= 7.8 min, Rt (undeca) = 7.2 min, Rt 

(deca) = 6.6 min, Rt (nona) = 5.8 min 
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Conclusion 

In conclusion, the automated synthesis of mannuronic acid alginates featuring up to twelve 

1,2-cis-mannosidic bonds was accomplished using a second-generation oligosaccharide 

synthesizer. It has been shown that the synthesizer is capable of delivering oligosaccharides 

of a length difficult to obtain by solution-phase techniques. Importantly, the multi-

milligram quantities of the compounds delivered by the machine are not only sufficient for 

biological experients but also enable the full structural characterization of the compounds 

by 
1
H and 

13
C NMR experiments. Key to the assembly of the oligomannuronates has been 

the use of a mannuronic acid donor, in combination with the detailed knowledge of its 

reactivity, to allow for stereocontrol in the introduction of the 1,2-cis-mannosidic linkages, 

which have long been recognized as one of the most difficult glycosidic linkages to 

construct. Together with the recent advances in the stereoselective construction of 1,2-cis-

glucosidic and -galactosidic linkages,
30

 this represents an important step forwards towards 

routine automated solid-phase oligosaccharides assembly. For the generation of libraries of 

oligosaccharides built up from repetitive elements, such as described here, automated solid-

phase assembly can become an important and powerful tool.  

 

Experimental Section 

Methyl (4-O-levulinoyl-2,3-di-O-benzyl-α/βα/βα/βα/β-D-mannopyranosyl uronate) (2). A solution of compound 1 (0.74 

g, 1.28 mmol)16 in DCM/H2O (14.3 mL, 10/1, v/v) was cooled to 0 ºC, followed by the 

addition of N-iodosuccinimide (0.29 g, 1.28 mmol) and trifluoroacetic acid (0.95 mL, 1.28 

mmol). The dark purple emulsion was stirred for 2.5 h after which time sat. aq. Na2S2O3 (25 

mL) was added. The mixture was stirred for 30 min, diluted with EtOAc and the layers were separated. The 

organics were washed with sat. aq. NaHCO3 (2x), dried over Na2SO4 and concentrated in vacuo. Purification by 

flash column chromatography (silica gel, 66% EtOAc in PE) gave the title compound as a yellowish oil (Yield: 

0.55 g, 1.13 mmol, 88%). TLC: Rf 0.23 (PE/EtOAc, 1/1, v/v); IR (neat, cm-1): 696, 725, 907, 1717, 1744, 3421; 1H 

NMR (CDCl3, 400 MHz, HH-COSY, HSQC): δ 7.19-7.33 (m, 10H, CHarom), 5.53 (t, 1H, J = 6.7 Hz, H-4), 5.49 (s, 

1H, H-1), 5.15 (bs, 1H, 1-OH), 4.72 (d, 1H, J = 12.2 Hz, CHH Bn), 4.63 (d, 1H, J = 12.2 Hz, CHH Bn), 4.57 (d, 

1H, J = 12.1 Hz, CHH Bn), 4.52 (d, 1H, J = 12.1 Hz, CHH Bn), 4.45 (d, 1H, J = 6.1 Hz, H-5), 3.93 (dd, 1H, J = 

2.8, 7.0 Hz, H-3), 3.67 (s, 1H, H-2), 3.56 (s, 3H, CH3 CO2Me), 2.65 (t, 2H, J = 6.4 Hz, CH2 Lev), 2.48-2.54 (m, 

2H, CH2 Lev), 2.11 (s, 3H, CH3 Lev); 13C-APT NMR (CDCl3, 100 MHz, HSQC): δ 206.5 (C=O Lev), 171.4, 

168.9 (C=O CO2Me, Lev), 137.8, 137.4 (Cq), 128.0, 127.9, 127.8, 127.4, 127.3, 127.2, 127.1 (CHarom), 92.0 (C-1), 

74.8 (C-2, C-3), 72.3, 71.9 (CH2 Bn), 70.8 (C-5), 69.1 (C-4), 52.0 (CH3 CO2Me), 37.3 (CH2 Lev), 29.4 (CH3 Lev), 

27.5 (CH2 Lev); 13C-GATED (CDCl3, 100 MHz): δ 92.0 (JC1,H1 = 167 Hz, C-1); TLC-MS: m/z = 509.2 (M+Na+). 

 

Methyl (4-O-levulinoyl-2,3-di-O-benzyl-1-O-(N-phenyl-trifluoroacetimidoyl)-α/βα/βα/βα/β-D-mannopyranosyl uro-

nate) (3). Compound 2 (1.21 g, 2.49 mmol) was dissolved in acetone/H2O (26.2 mL, 

20/1, v/v) and the solution was cooled to 0 ºC. N-Phenyl trifluoroacetimidoyl chloride 

(0.56 mL, 3.73 mmol) and potassium carbonate (0.41 g, 2.98 mmol) were added and 

the resulting suspension was stirred overnight at room temperature. The mixture was diluted with EtOAc and H2O, 

the organic layer was collected and washed with sat. aq. NaCl (2x), dried over Na2SO4 and concentrated in vacuo. 

Purification by flash column chromatography (silica gel, 33% EtOAc in PE) yielded the title compound as a 

colorless oil (Yield: 1.42 g, 2.15 mmol, 86%). Analytical data are reported for the major isomer (α). TLC: Rf 0.33 

(PE/EtOAc, 2/1, v/v); IR (neat, cm-1): 694, 733, 1117, 1152, 1206, 1717, 1748; 1H NMR (CDCl3, 400 MHz, HH-

COSY, HSQC): δ 7.24-7.35 (m, 12H, CHarom), 7.11 (t, 1H, J = 7.4 Hz, CH NPh), 6.78 (d, 2H, J = 7.7 Hz, CH 

NPh), 6.45 (bs, 1H, H-1), 5.59 (t, 1H, J = 7.4 Hz, H-4), 4.64-4.72 (m, 2H, CH2 Bn), 4.61 (d, 1H, J = 12.0 Hz, 

CHH Bn), 4.56 (d, 1H, J = 12.1 Hz, CHH Bn), 4.40 (d, 1H, J = 6.9 Hz, H-5), 3.91 (dd, 1H, J = 2.7, 7.6 Hz, H-3), 

O
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BnO
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MeO2C
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3.79 (s, 1H, H-2), 3.66 (s, 3H, CH3 CO2Me), 2.73 (t, 2H, J = 6.4 Hz, CH2 Lev), 2.58 (dd, 2H, J = 6.3, 11.3 Hz, 

CH2 Lev), 2.17 (s, 3H, CH3 Lev); 13C-APT NMR (CDCl3, 100 MHz, HSQC): δ 206.1 (C=O Lev), 171.5, 167.8 

(C=O CO2Me, Lev), 143.1 (Cq NPh), 142.2 (q, J = 36 Hz, C=NPh), 137.3 (Cq), 128.6, 128.3, 128.3, 128.0, 127.9, 

127.8, 127.8 (CHarom), 124.3, 119.3 (CH NPh), 115.8 (q, J = 283 Hz, CF3), 94.1 (C-1), 74.5 (C-3), 72.9, 72.7 (C-2, 

C-5), 72.7 (CH2 Bn), 68.7 (C-4), 52.6 (CH3 CO2Me), 37.6 (CH2 Lev), 29.7 (CH3 Lev), 27.8 (CH2 Lev); 13C-

GATED (CDCl3, 100 MHz): δ 94.1 (JC1,H1 = 177 Hz, C-1); TLC-MS: m/z = 680.0 (M+Na+). 

 

Low-temperature pre-activation of donor 3 using NMR. The donor (39 µmol) was co-evaporated with dry 

toluene (2x), dissolved in DCM-d2 (0.6 mL) and transferred to an NMR tube under an argon atmosphere. At -80 

ºC in an acetone bath TfOH (39 µmol) was added, the sample was transferred to the pre-cooled NMR magnet and 

the first 1H spectrum was immediately recorded. Further temperature changes were executed depending on the 

spectra recorded, but always with multiples of 10 ºC.  

 

Synthesis of butenediol-funcationalized Merrifield polystyrene 

 
A solution of the mono-DMT linker (10.8 g, 27.8 mmol) in anhydrous tetrahydrofuran (200 mL) was cooled to 0 

ºC and KOt-Bu (3.5 g, 27.8 mmol) was added under an inert atmosphere. The reaction mixture was stirred and 

gradually warmed to room temperature over 1 hour. The alkoxide solution was transferred to a 1L flask containing 

1% cross-linked Merrifield’s resin (25 g, 0.74 mmol/g, 18.5 mmol) pre-washed and swollen with anhydrous THF 

(3 x 300mL). To the reaction mixture were added 18-crown-6 (0.49 g, 1.85 mmol) and tetrabutylammonium 

iodide (0.68 g, 1.85 mmol). The reaction mixture was mixed with slow rotation on a rotovap under an inert 

atmosphere for 18 hours. Capping of any unreacted sites was performed by addition of KOMe (12 g, 185 mmol) 

and mixing for an additional 24 hours. After the capping step, the reaction mixture was transferred to a 500 mL 

fritted funnel (medium frit) and the resin was washed with 2 x 400 mL each: MeOH, THF, THF: MeOH (10:1), 

MeOH, THF, THF: iPrOH (10:1), THF and CH2Cl2. Resin was dried in vacuo to a constant weight of 32 g. 

 

 
DMT-functionalized resin (32 g) was loaded into a fritted funnel and washed with 5 x 200 mL 3% trichloroacetic 

acid (w/v in CH2Cl2) with a 5 min reaction time for each wash. The bright orange resin was washed with 3 x 200 

mL each: CH2Cl2, toluene, 10% MeOH/CH2Cl2 and CH2Cl2. The resin was dried in vacuo to a constant weight of 

25 g. 

 

Fmoc functionalization and Fmoc assay (performed in triplicate). Linker functionalized resin (100 mg) was 

suspended in CH2Cl2 (3 mL) and pyridine (60 µL) was added. FMOC-chloroformate (100 mg) was added and the 

reaction mixture was stirred gently overnight. After 18 hours, the resin was washed with 5 mL each alternating 

between MeOH and CH2Cl2. The shrink/swell alternating wash cycle was repeated 4 times. The resin was then 

washed with 3 x 5 mL CH2Cl2 and dried under an N2 stream to a constant weight. The dried resin was treated with 

3.0 mL 20% piperidine in DMF and stirred for 30 min. A 100 µL aliquot of the reaction mixture was diluted to 10 

mL in 20% piperidine/DMF. Absorbance read at: 301 nm.  

Loading calculation: (Extinction coefficient = 7800) 

Loading = [[Abs301/7800] x 0.010L x [3mL/0.1mL] x 1000]/0.1g = Loading in mmol/g 

 

 

Protocols for the automated synthesis 

 

Building block = compound 3 in DCM (0.068 M) 

Activator = trifluoromethanesulfonic acid in DCM (0.07 M) 

Deblock = hydrazine acetate in pyridine/AcOH (4/1, v/v, 0.14 M) 
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The synthesizer’s solvent bottles are filled with commercially acquired solvents, which are pre-dried 24 h before 

use on 4 Å molecular sieves. The solutions containing building block, activator and deblock reagents are freshly 

prepared directly before use with pre-dried solvents. 

 

Protocol A. Agitation of the resin during washing 

After addition of the appropriate solvent (2-4 mL), a gas-flow is applied from the bottom of the reaction vessel 

(RV) for 15 s to agitate the resin suspension, while the pressure is released through the air vents in the cap. Then 

the RV is emptied. 

 

Protocol B. Agitation of the resin during reaction 

After addition of the appropriate solvent (2-4 mL), a gas-flow is applied from the bottom of the RV for 10 s to 

agitate the resin suspension, while the pressure is released through the air vents in the cap. Then the purging is 

halted and the suspension is allowed to settle for 20 s.  

 

Protocol C. Swelling of new resin 

The RV is charged with dry resin. The resin is washed with DCM (3x), alternating THF and hexane (3x), THF 

(1x) and DCM (3x). Every wash step involves protocol A. 

 

Protocol D. Washing of the resin before or after the reaction 

If applicable, the chiller temperature is set to ambient. The pre-swollen resin is washed with alternating THF and 

hexane (3x), followed by THF (1x) and DCM (3x). Every wash step involves protocol A. 

 

Protocol E. Coupling cycle 

The resin is suspended in DCM and agitated for the time needed to prepare the addition of the building block 

solution. Then the RV is emptied. The building block solution (1.5 mL) is added and the temperature is set to -45 

ºC.27 Simultaneously, a pause of 30 min is started. When the temperature of the chiller has reached its target point, 

the activator solution (300 µL) is added. Protocol B is applied during 45 min. Then the RV is emptied and the 

solution is collected in a mixture of DCM/H2O/Et3N (50/5/1, v/v). The resin is washed with DCM (3x) using 

protocol A and the solutes are similarly collected. 

 

Protocol F. Deblock 

The resin is washed with DMF (3x) using protocol A. The deblock solution (2.5 mL) is added and the resin is 

agitated using protocol B for 10 min while the temperature is raised to +40 ºC. Then the RV is emptied into the 

waste. 

 

Protocol G. Washing of the resin after deblock 

The temperature of the chiller is set to ambient. The resin is successively washed with DMF (3x), DCM (3x), 

alternating THF and hexane (6x), 0.01 M AcOH in THF (6x) and THF (3x). Every wash step involves protocol A. 

 

Protocol H. Suspending of the resin for isolation 

The resin is washed with alternating DCM and MeOH (2x), followed by a mixture of DCM/MeOH (7/1, v/v, 2x), 

both employing protocol A. Then a mixture of DCM/MeOH (7/1, v/v) is added, the resin is agitated for 15 s after 

which time the gas-flow was halted and the program was paused. The suspended resin is isolated and this last 

procedure is repeated two times.  

 

Setting up the instrument and controlling solvent addition. To allow for accurately dispensing reagents using 

the syringe pump, the dead volumes of the reagent lines were determined. Using these values, the syringe pump 

was primed to dispense the right amount of reagents into the RV. After the action of withdrawing a solution using 

the syringe pump, a 3-s pause is programmed to allow the solvent to settle in the tube. To take up a second 

solution consecutively in the same line, a 20-µl air bubble is introduced in between to prevent mixing of the 

solvents. After a reagent line is used to add a certain solution, it is cleaned by withdrawing the remaining solvent 

and replacing it with fresh DCM. This extra filling step is introduced to prevent other solutions entering this line 

while it is not used. For the washing solvents, the valve opening times to dispense ~2-4 mL using argon pressure 
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were determined. The resulting volumes were tested carefully, also taking the different viscosities of the solvents 

into account.  

 

Schematic representation of the building block rotary valve (left) in connection with the syringe pump (right) 

 

 
 

Addition of 1.5 mL of building block solution. First, the line between the building block vessel and the valve is 

purged. To this end, the syringe withdraws 4800 µL DCM, followed by a 20-µL argon bubble and 150 µL 

building block solution. Then 500 µL is dispensed into the collector vessel. The valve opens the line to the RV, 

and the syringe withdraws 500 µl to empty the RV line, followed by dispensing all solutions to the waste. Then 

2980 µL DCM is taken up, followed by a 20-µL argon bubble and finally 1500 µl of building block solution. 

Correction for any argon bubble is performed by withdrawing 500 µL fresh DCM, and dispensing 500 µL. The 

flow is reversed and 1650 µL is dispensed to the RV (1.5 mL building block solution + 150 µL dead volume). 

Again reversing the flow withdraws the remaining solution from the RV line, and the total loop is dispensed in the 

waste. Fresh DCM (300 µL) is taken up and used to fill the RV line.  

 

Addition of 300 µL of activator solution. First, the syringe withdraws 4 mL of fresh DCM, followed by a 20-µL 

argon bubble and 480 µL of the activator solution. Then also the RV line is emptied by withdrawing 500 µL, and 

all this is dispensed into the waste. Then 4680 µl DCM is taken up, followed by a 20-µL argon bubble and finally 

300 µL activator solution. The flow stream is reversed and 520 µL is dispensed into the RV (300 µl + 220 µl dead 

volume). Then the RV line is emptied by reversing the flow stream again, and the total loop is emptied into the 

waste. Fresh DCM (300 µL) is taken up and used to fill the RV line.  

 

Addition of 2.5 mL of deblock solution. First, the line connecting the deblock solution to the valve is purged. To 

this end, 1960 µL fresh DCM is taken up, followed by a 20-µL argon bubble, 1 mL DMF,31 a 20-µL argon bubble 

and 1 mL deblock solution. Then the valve is opened towards the RV, and its line is emptied by withdrawing 500 

µL. Then a correction for any bubble is performed by withdrawing DCM (500 µL) and dispensing 500 µL 

(performed twice). The total volume of the loop is dispensed of into the waste. Then 360 µL of fresh DCM is 

withdrawn, followed by a 20-µL argon bubble, 1.5 mL DMF, a 20-µL argon bubble and 2.5 mL deblock solution. 

Again a correction for any bubble is performed by withdrawing DCM (500 µL) and dispensing 500 µL (performed 

twice). Subsequently 2720 µL is dispensed in the RV (2.5 mL deblock solution + 220 µL dead volume), followed 

by reversing the flow stream to empty the RV line (500 µL). First 750 µL is emptied into the waste, and 500 µL 

(DMF) is dispensed in the RV line. The remaining solvents in the loop are dispensed of in the waste. Finally, the 

loop is rinsed by purging with 5 mL of fresh DCM. 
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Automated construction of alginate fragments 8-10. The RV is charged with functionalized Merrifield 

polystyrene (100 mg, 34 µmol) and prepared for the synthesis using protocol C. Then the coupling/deprotection 

cycle as depicted in Table 1 is repeated 4 times to produce tetrasaccharide 8 in 24 h, 8 times to produce 

octasaccharide 9 in 48 h, and 12 times to produce dodecasaccharide 10 in 72 h. After the synthesis is complete, 

protocol H is used to isolate the resin, which is subsequently dried in vacuo overnight. After cleavage from the 

resin, the crude mixtures were subjected to LC-MS analysis, and the ratios of products and deletion sequences 

were calculated from the peak areas as determined from the ELSD trace. ESI-MS analysis of the larger 

oligosaccharide fragments was hampered by their poor ionization, and often mixtures of different charge and 

complexating ions were observed. However, mass spectrometry could be used to identify the peaks observed in 

LC, as reported here. 

 

Tetramannuronic acid ester (8). The dry resin (charged to a 5-mL syringe) was washed with dry DCM (4x), 

suspended in DCM (3 mL) and purged with argon for 5 min. Grubbs’ 1st generation catalyst (~8 mg) was added 

and the resulting purple suspension was consecutively purged with argon and ethylene gas. The mixture was 

allowed to stand at RT overnight. Then the solution was filtered off and the remaining resin was washed with 

DCM (8x). The filtrates were concentrated and passed through a short column (silica gel, eluted with PE/EtOAc). 

After concentration in vacuo, the colored residue was dissolved in DCM (10 mg/ml) and treated with activated 

charcoal (25 mass equivalents) overnight. The suspension was filtered using a Whatman filter-containing 

glassfilter funnel to give the product mixture containing compound 8 as a colorless oil (Yield: 50 mg). Distinct 

NMR signals corresponding to compound 8: 1H NMR (CDCl3, 600 MHz, HH-COSY, HSQC): δ 5.90 (ddd, 1H, J 

= 5.5, 10.7, 16.9 Hz, CH All), 5.29 (d, 1H, J = 17.2 Hz, CH All), 5.20 (d, 1H, J = 10.5 Hz, CH All), 4.16 (t, 1H, J 

= 9.5 Hz, H-4), 4.04 (dd, 1H, J = 6.2, 12.9 Hz, CH2 All), 3.59 (s, 3H, CH3 CO2Me), 3.57 (s, 3H, CH3 CO2Me), 

3.43 (s, 3H, CH3 CO2Me), 3.43 (s, 3H, CH3 CO2Me), 3.27 (dd, 1H, J = 3.0, 9.5 Hz, H-3), 2.93 (bs, 1H, 3”’-OH); 
13C-APT NMR (CDCl3, 150 MHz, HSQC): δ 102.5 (2x C-1), 102.3 (C-1), 100.5 (C-1), 52.3, 52.2, 52.1 (CH3 

CO2Me); HMBC-GATED NMR (CDCl3, 400 MHz): δ 102.5 (JH1,C1 = 156 Hz), 102.3 (JH1,C1 = 158 Hz), 100.5 

(JH1,C1 = 158 Hz). 

 

Octamannuronic acid ester (9). The dry resin (charged to a 5-mL syringe) was washed with dry DCM (4x), 

suspended in DCM (3 mL) and purged with argon for 5 min. Grubbs’ 1st generation catalyst (~8 mg) was added 

and the resulting purple suspension was consecutively purged with argon and ethylene gas. The mixture was 

allowed to stand at RT overnight. Then the solution was filtered off and the remaining resin was washed with 

DCM (8x). The filtrates were concentrated and passed through a short column (silica gel, eluted with PE/EtOAc). 

After concentration in vacuo, the colored residue was dissolved in DCM (10 mg/ml) and treated with activated 

charcoal (25 mass equivalents) overnight. The suspension was filtered using a Whatman filter-containing 

glassfilter funnel to give the product mixture containing compound 9 as a colorless oil (Yield: 81 mg). Distinct 

NMR signals corresponding to compound 9: 1H NMR (CDCl3, 600 MHz, HH-COSY, HSQC): δ 5.89 (dq, 1H, J = 

5.5, 10.7 Hz, CH All), 5.28 (d, 1H, J = 17.2 Hz, CH All), 5.20 (d, 1H, J = 10.5 Hz, CH All), 4.16 (t, 1H, J = 9.5 

Hz, H-4), 4.04 (dd, 1H, J = 6.2, 13.0 Hz, CH2 All), 3.59, 3.56, 3.43, 3.42, 3.39 (CH3 CO2Me), 3.27 (dd, 1H, J = 

2.5, 9.5 Hz, H-3), 2.93 (bs, 1H, 3-OH); 13C-APT NMR (CDCl3, 150 MHz, HSQC): δ 102.5 (3x C-1), 102.5 (3x C-

1), 102.3 (C-1), 100.5 (C-1), 52.3, 52.2, 52.0, 52.0 (CH3 CO2Me); HMBC-GATED NMR (CDCl3, 400 MHz): δ 

102.5 (JH1,C1 = 156 Hz), 102.5 (JH1,C1 = 158 Hz), 102.3 (JH1,C1 = 157 Hz), 100.5 (JH1,C1 = 156 Hz). 

 

Dodecamannuronic acid ester (10). The dry resin (charged to a 5-mL syringe) was washed with dry DCM (4x), 

suspended in DCM (3 mL) and purged with argon for 5 min. Grubbs’ 1st generation catalyst (~8mg) was added 

and the resulting purple suspension was consecutively purged with argon and ethylene gas. The mixture was 

allowed to stand at RT overnight. Then the solution was filtered off and the remaining resin was washed with 

DCM (8x). The filtrates were concentrated and passed through a short column (silica gel, eluted with PE/EtOAc). 

After concentration in vacuo, the colored residue was dissolved in DCM (10 mg/ml) and treated with activated 

charcoal (25 mass equivalents) overnight. The suspension was filtered using a Whatman filter-containing 

glassfilter funnel to give the product mixture containing compound 10 as a colorless oil (Yield: 103 mg). Distinct 

NMR signals corresponding to compound 10: 1H NMR (CDCl3, 600 MHz, HH-COSY, HSQC): δ 5.86-5.93 (m, 

1H, CH All), 5.29 (d, 1H, J = 17.2 Hz, CH All), 5.19 (d, 1H, J = 10.5 Hz, CH All), 4.16 (t, 1H, J = 9.5 Hz, H-4), 

4.03 (dd, 1H, J = 6.2, 12.9 Hz, CH2 All), 3.59, 3.56, 3.43, 3.42, 3.41, 3.39, 3.39, 3.38 (CH3 CO2Me), 3.27 (dd, 1H, 
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J = 2.4, 9.5 Hz, H-3), 3.02 (bs, 1H, 3-OH); 13C-APT NMR (CDCl3, 150 MHz, HSQC): δ 102.4 (3x C-1), 102.4 

(7x C-1), 102.2 (C-1), 100.4 (C-1), 52.2, 52.1, 51.9, 51.9 (CH3 CO2Me); HMBC-GATED NMR (CDCl3, 400 

MHz): δ 102.4 (JH1,C1 = 157 Hz), 102.4 (JH1,C1 = 157 Hz), 102.2 (JH1,C1 = 155 Hz), 100.4 (JH1,C1 = 156 Hz). 

 

Semi-protected tetramannuronic acid (11). Crude compound 8 (50 mg) was dissolved in THF (5 mL) and 

treated with aq. KOH (0.45 M, 1 mL) until 

analysis by LC-MS showed complete 

conversion of the fragments to their 

saponified counterparts (90 mins). The mixture was neutralized by the addition of Amberlite-H+, filtered off and 

concentrated in vacuo. Semi-protected mannuronate 11 was isolated using RP-HPLC purification (C4 column, 

gradient 50 → 56% B, 12 min per run) as a white solid (Yield: 24 mg, 16.1 µmol, 47%). 1H NMR (MeCN-

d3/AcOH-d4, 600 MHz, HH-COSY, HSQC): δ 7.15-7.50 (m, 40H, CHarom), 5.98 (ddd, 1H, J = 5.3, 10.6, 22.2 Hz, 

CH All), 5.34 (dd, 1H, J = 1.5, 17.3 Hz, CH2 All), 5.22 (dd, 1H, J = 1.2, 10.5 Hz, CH2 All), 4.66-4.89 (m, 15H, 4 

x H-1, 8 x CH2 Bn), 4.52-4.66 (m, 5H, CH2 Bn), 4.39 (dd, 1H, J = 4.8, 13.2 Hz, CH2 OAll), 4.24-4.34 (m, 3H), 

4.12 (dd, 1H, J = 5.7, 13.2 Hz, CH2 OAll), 3.93-4.09 (m, 8H), 3.77 (m, 1H), 3.72-3.76 (m, 1H), 3.53-3.60 (m, 1H), 

3.45 (dd, 1H, J = 1.9, 9.3 Hz, H-3); 13C-APT NMR (MeCN-d3/AcOH-d4, 150 MHz, HSQC): δ 172.5, 172.0, 171.6 

(C=O COOH), 139.9, 139.7, 139.6, 139.4, 139.3, 139.2, 139.1, 138.4 (Cq Bn), 135.1 (CH All), 129.5, 129.3, 

129.2, 129.1, 129.0, 128.9, 128.8, 128.7, 128.6, 128.5, 128.4, 128.3 (CHarom), 117.3 (CH2 All), 102.1, 101.8, 101.7, 

101.6, 101.2 (C-1), 81.6, 81.2 (C-3), 79.5, 79.4, 7.9, 77.7, 77.5, 77.3, 77.2, 76.4, 76.1 (CH), 75.5, 75.4 (CH2 Bn), 

75.3 (CH), 75.2, 75.0, 73.7, 73.0, 72.7, 72.6, 72.3 (CH2 Bn), 71.0 (CH2 OAll), 68.7, 68.6 (CH); HMBC-GATED 

(MeCN-d3/AcOH-d4, 600 MHz): δ 101.8 (JC1,H1 = 162 Hz, C-1), 101.7 (JC1,H1 = 160 Hz, C-1), 101.6 (JC1,H1 = 163 

Hz, C-1), 101.2 (JC1,H1 = 160 Hz, C-1); LC-MS: Rt 5.83 min (C4 column, linear gradient 50 → 90% B in 13.5 

min); HRMS: [M+Na]+ calcd for C83H86O25Na 1505.53504, found 1505.53605. 

 

Semi-protected octamannuronic acid (12). 

Crude compound 9 (81 mg) was dissolved in THF (8 mL) and treated with aq. KOH (0.45 M, 1.6 mL) until 

analysis by LC-MS showed complete conversion of the fragments to their saponified counterparts (2 h). The 

mixture was neutralized by the addition of Amberlite-H+, filtered off and concentrated in vacuo. Semi-protected 

mannuronate 12 was isolated using RP-HPLC (C4 column, gradient 60 → 72% B, 12 min per run) as a white solid 

(Yield: 20 mg, 6.9 µmol, 20%). 1H NMR (MeCN-d3/AcOH-d4, 600 MHz, HH-COSY, HSQC): δ 7.15-7.45 (m, 

80H, CHarom), 5.98 (ddd, 1H, J = 5.4, 10.6, 22.2 Hz, CH All), 5.35 (dd, 1H, J = 1.6, 17.3 Hz, CH2 All), 5.22 (dd, 

1H, J = 1.2, 10.6 Hz, CH2 All), 4.53-4.89 (m, 40H, 8 x H-1, 16 x CH2 Bn), 4.39 (dd, 1H, J = 4.9, 13.2 Hz, CH2 

OAll), 4.24-4.35 (m, 7H, 7 x H-4), 4.13 (dd, 1H, J = 5.7, 13.2 Hz, CH2 OAll), 3.93-4.09 (m, 15H, H-4, 7 x H-2, 7 

x H-5), 3.78 (dd, 1H, J = 2.7, 8.9 Hz, H-3), 3.74 (d, J = 9.7 Hz, H-5), 3.60-3.69 (m, 6H, 6 x H-3), 3.45 (dd, 1H, J 

= 2.3, 9.4 Hz, H-3); 13C-APT NMR (MeCN-d3/AcOH-d4, 150 MHz, HSQC): δ 171.3 (C=O COOH), 139.9, 139.7, 

19.4, 139.3 (Cq Bn), 135.1 (CH All), 129.5, 129.3, 129.2, 129.1, 129.0, 128.9, 128.8, 128.7, 128.6, 128.5, 128.4, 

128.3 (CHarom), 117.3 (CH2 All), 101.9, 101.8, 101.7, 101.2 (8 x C-1), 81.6, 79.5, 79.0 (8 x C-3), 77.5, 77.5, 77.4, 

77.3 (7 x C-4), 76.4, 76.3, 76.2 (8 x C-2 or 8 x C-5), 75.5, 75.4 (CH2 Bn), 75.3, 75.2, 75.2 (8 x C-2 or 8 x C5), 

75.0, 73.0, 72.7, 72.6, 72.4, 72.3 (CH2 Bn), 71.0 (CH2 OAll), 68.7 (C-4); HMBC-GATED (MeCN-d3/AcOH-d4, 

600 MHz): δ 101.9 (JC1,H1 = 159 Hz, C-1), 101.7 (JC1,H1 = 162 Hz, C-1), 101.2 (JC1,H1 = 159 Hz, C-1); LC-MS: Rt 

9.06 min (C4 column, linear gradient 50 → 90% B in 13.5 min); HRMS: [M+NH4]
+ calcd for C163H170NO49 

2926.08695, found 2926.08858. 

 

Semi-protected dodecamannuronic acid (13). 

Crude compound 10 (103 mg) was dissolved in THF (10 mL) and treated with aq. KOH (0.45 M, 2 mL) until 

analysis by LC-MS showed complete conversion of the fragments to their saponified counterparts (2.5 h). The 

mixture was neutralized by the addition of Amberlite-H+, filtered off and concentrated in vacuo. Semi-protected 
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mannuronate 13 was isolated using RP-HPLC (C-4 column, gradient 67 → 77% B, 15 min per run) as a white 

solid (Yield: 17 mg, 3.9 µmol, 11%). 1H NMR (MeCN-d3/AcOH-d4, 600 MHz, HH-COSY, HSQC): δ 7.18-7.42 

(m, 120H, CHarom), 5.98 (ddd, 1H, J = 5.4, 10.6, 22.2 Hz, CH All), 5.35 (dd, 1H, J = 1.5, 17.3 Hz, CH2 All), 5.22 

(dd, 1H, J = 1.1, 10.5 Hz, CH2 All), 4.53-4.89 (m, 60H, 12 x H-1, 24 x CH2 Bn), 4.39 (dd, 1H, J = 4.9, 13.2 Hz, 

CH2 OAll), 4.23-4.34 (m, 12H, 12 x H-4), 4.13 (dd, 1H, J = 5.7, 13.2 Hz, CH2 OAll), 3.94-4.09 (m, 24H, 11 x H-

2, 11 x H-5), 3.73-3.78 (m, 2H, H-2, H-5), 3.60-3.71 (m, 11H, 11 x H-3), 3.45 (dd, 1H, J = 2.3, 9.4 Hz, H-3); 13C-

APT NMR (MeCN-d3/AcOH-d4, 150 MHz, HSQC): δ 171.2 (C=O COOH), 139.9, 139.6, 139.3, 139.3 (Cq 

Bn)135.0 (CH All), 129.1, 129.0, 128.9, 128.8, 128.6, 128.5, 128.4, 128.3 (CHarom), 117.3 (CH2 All), 102.0, 101.8, 

101.2 (12 x C-1), 81.5, 79.5, 79.1 (12 x C-3),77.5, 77.4 (11 x C-4), 76.4, 76.4, 76.3, 76.1 (12 x C-2 or 12 x C-5), 

75.5, 75.4 (12 x CH2 Bn), 75.2, 75.1 (12 x C-2 or 12 x C-5), 75.0, 73.0, 72.7, 72.3 (12 x CH2 Bn), 71.0 (CH2 

OAll), 68.6 (C-4); HMBC-GATED (MeCN-d3/AcOH-d4, 600 MHz): δ 102.0 (JC1,H1 = 160 Hz, C-1), 101.8 (JC1,H1 

= 160 Hz, C-1), 101.2 (JC1,H1 = 159 Hz, C-1); LC-MS: Rt 7.31 min (C4 column, linear gradient 70 → 90% B in 

13.5 min); HRMS: [M+2NH4]
+ m/z 2, calcd for C243H254N2O73 2184.81402, found 2184.81368. 

 

Tetramannuronic acid (14). Compound 11 (15 mg, 10.1 µmol) was dissolved in THF/H2O/tBuOH (2.2 mL, 

1/1/0.2, v/v) and the resulting clear 

solution was purged with argon. Pd/C 

(10%, ~10 mg) was added, and the 

suspension was purged with H2 (g) for 

5 min. A H2-filled balloon was applied, and the mixture was stirred at RT. After 24 h, palladium black (~5 mg) 

was added and the resulting mixture was stirred for 72 h. The mixture was filtered through a Whatmann-filter, and 

concentrated in vacuo. Purification using gel filtration (HW-40, eluted with NH4HCO3) and subsequent 

lyophilization afforded the title compound as a white solid (Yield: 7.6 mg, 10.0 µmol, 99%). 1H NMR (D2O, 600 

MHz, HH-COSY, HSQC, T = 288 K): δ 4.70 (s, 1H, H-1), 4.66 (s, 1H, H-1), 4.66 (s, 1H, H-1), 4.64 (s, 1H, H-1), 

3.98-4.03 (m, 3H, 3 x H-2), 3.96 (d, 1H, J = 3.2 Hz, H-2), 3.85-3.92 (m, 3H, 3 x H-4), 3.69-3.85 (m, 9H, 3 x H-3, 

1 x H-4, 4 x H-5, CH2 OPr), 3.63 (dd, 1H, J = 3.2, 9.5 Hz, H-3), 3.56 (dt, 1H, J = 6.8, 9.8 Hz, CH2 OPr), 1.57 (m, 

2H, CH2 Pr), 0.86 (t, 3H, J = 7.5 Hz, CH3 Pr); 13C-APT NMR (D2O, 150 MHz, HSQC, T = 288 K): δ 175.2 (C=O 

COOH), 101.1, 101.0, 101.0, 100.7 (4 x C-1), 79.2, 78.8, 78.7 (3 x C-4), 76.2, 76.1, 75.9, 75.8 (4 x C-5), 73.3 (C-

3), 72.8 (CH2 OPr), 72.4, 72.2, 72.2 (3 x C-3), 71.1, 70.8, 70.7, 70.7 (4 x C-2), 69.0 (C-4), 23.0 (CH2 Pr), 10.5 

(CH3 Pr); HMBC-GATED (D2O, 600 MHz, T = 288 K): δ 101.1 (JC1,H1 = 161 Hz, C-1), 101.0 (JC1,H1 = 161 Hz, C-

1), 100.7 (JC1,H1 = 161 Hz, C-1), 100.7 (JC1,H1 = 161 Hz, C-1); HRMS: [M+Na]+ calcd for C27H40O25Na 787.17509, 

found 787.17533. 

 

Octamannuronic acid (15).  

Compound 12 (20 mg, 6.9 µmol) was dissolved in THF/H2O/tBuOH (3.3 mL, 1/1/0.2, v/v) and the resulting clear 

solution was purged with argon. Pd/C (10%, ~10 mg) was added, and the suspension was purged with H2 (g) for 5 

min. A H2-filled balloon was applied, and the mixture was stirred at RT. After 24 h, palladium black (~5 mg) was 

added and the resulting mixture was stirred for 72 h. The mixture was filtered through a Whatmann-filter, and 

concentrated in vacuo. Purification using gel filtration (HW-40, eluted with NH4HCO3) and subsequent 

lyophilization afforded the title compound as a white solid (Yield: 10.1 mg, 6.9 µmol, 99%). 1H NMR (D2O, 600 

MHz, HH-COSY, HSQC, T = 288 K), tentatively assigned based on the NMR analysis of compound 14: δ 4.69 (s, 

1H, H-1), 4.66 (s, 6H, 6 x H-1), 4.64 (s, 1H, H-1), 3.97-4.03 (m, 7H, 7 x H-2), 3.95 (d, 1H, J = 3.2 Hz, H-2), 3.85-

3.92 (m, 8H, 7 x H-4, H-5), 3.69-3.85 (m, 16H, 7 x H-3, H-4, 7 x H-5, CH2 OPr), 3.63 (dd, 1H, J = 3.1, 9.5 Hz, H-

3), 3.56 (dt, 1H, J = 6.8, 9.8 Hz, CH2 OPr), 1.57 (m, 2H, CH2 Pr), 0.86 (t, 3H, J = 7.4 Hz, CH3 Pr); 13C-APT NMR 

(D2O, 150 MHz, HSQC, T = 288 K), tentatively assigned based on the NMR analysis of compound 14: 

δ 175.3, 175.2, 175.1, 175.0 (C=O COOH), 101.1, 101.0, 100.9, 100.7 (8 x C-1), 79.2, 78.8, 78.7 (7 x C-4), 76.2, 

76.1, 75.9, 75.7 (8 x C-5), 73.3 (C-3), 72.8 (CH2 OPr), 72.4, 72.1 (7 x C-3), 71.1, 70.8, 70.7, 70.6 (8 x C-2), 69.0 

(C-4), 23.0 (CH2 Pr), 10.5 (CH3 Pr); HMBC-GATED (D2O, 600 MHz, T = 288 K): δ 101.1 (JC1,H1 = 162 Hz, C-1), 
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101.0 (JC1,H1 = 161 Hz, C-1), 100.7 (JC1,H1 = 160 Hz, C-1); HRMS: [M+Na]+ calcd for C51H72O49Na 1491.30344, 

found 1491.30466. 

 

Dodecamannuronic acid (16).  

Compound 13 (17 mg, 3.9 µmol) was dissolved in THF/H2O/tBuOH (3.3 mL, 1/1/0.2, v/v) and the resulting clear 

solution was purged with argon. Pd/C (10%, ~10 mg) was added, and the suspension was purged with H2 (g) for 5 

min. A H2-filled balloon was applied, and the mixture was stirred at RT. After 24 h, palladium black (~5 mg) was 

added and the resulting mixture was stirred for 72 h. The mixture was filtered through a Whatmann-filter, and 

concentrated in vacuo. Purification using gel filtration (HW-40, eluted with NH4HCO3) and subsequent 

lyophilization afforded the title compound as a white solid (Yield: 8.0 mg, 3.7 µmol, 95%). 1H NMR (D2O, 600 

MHz, HH-COSY, HSQC, T = 288 K), tentatively assigned based on the NMR analysis of compound 14: δ 4.69 (s, 

1H, H-1), 4.66 (s, 10H, 10 x H-1), 4.64 (s, 1H, H-1), 3.98-4.05 (m, 11H, 11 x H-2), 3.96 (d, 1H, J = 3.2 Hz, H-2), 

3.70-3.94 (m, 36H, 11 x H-3, 12 x H-4, 12 x H-5, CH2 OPr), 3.63 (dd, 1H, J = 3.1, 9.5 Hz, H-3), 3.56 (dt, 1H, J = 

6.8, 9.7 Hz, CH2 OPr), 1.56 (m, 2H, CH2 Pr), 0.85 (t, 1H, J = 7.4 Hz, CH3 Pr); 13C-APT NMR (D2O, 150 MHz, 

HSQC, T = 288 K), tentatively assigned based on the NMR analysis of compound 14: δ 175.1, 174.8 (C=O 

COOH), 101.1, 101.0, 100.7 (12 x C-1), 79.2, 78.8, 78.7 (11 x C-4), 76.2, 76.0, 75.8, 75.9, 75.6 (12 x C-5), 73.3 

(C-3), 72.8 (CH2 OPr), 72.4, 72.1 (11 x C-3), 71.1, 70.7, 70.6 (12 x C-2), 69.0 (C-4), 23.0 (CH2 Pr), 10.5 (CH2 Pr); 

HMBC-GATED (D2O, 600 MHz, T = 288 K): δ 101.0 (JC1,H1 = 162 Hz, C1); HRMS: [M+Na]+ calcd for 

C75H104O73Na 2195.43179, found 2195.43064. 
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Introduction 

Hyaluronic acid (HA) is an anionic polysaccharide belonging to the class of 

glycosaminoglycans (GAGs), and as such is a major constituent of the extracellular matrix 

of mammalian cells.
1
 Next to its stabilizing function in connective tissue, HA plays an 

important role in inflammatory response, cell migration, wound-healing, and cancer 

metastasis.
2

 HA is the major ligand of the CD44 antigen, which is a cell-surface 

glycoprotein involved in cell-cell interactions, cell adhesion and migration.
3
 

Discovered in the 1930s,
4
 HA is a linear polysaccharide composed of tandem disaccharide 

repeating units being [→4)-β-D-GlcpA-(1→3)-β-D-GlcpNAc-(1→] (Figure 1). In nature 

the polysaccharide can be 25,000 repeating units long, and several studies have suggested 
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that its length is of decisive influence on the biological function.
5
 For instance, it was found 

that at least a hexasaccharide fragment was needed for binding to CD44, and that a 

decasaccharide efficiently competed for binding with the natural polysaccharide.
6
 Smaller 

fragments were shown to induce complete and irreversible maturation of human dendritic 

cells through binding to Toll-like receptor 4 (TLR4), thereby activating the innate immune 

system.
7
 These recent findings illustrate the importance of the availability of HA fragments 

of well-defined lengths, and therefore HA has attracted considerable attention from the 

synthetic chemistry community. 

 

Figure 1. Hyaluronic acid (HA) repeating unit [→4)-β-D-GlcpA-(1→3)-β-D-GlcpNAc-(1→] 

 

 

 

 

Many research groups have approached HA synthesis using various strategies,
8
 including 

enzymatic
9

 and chemical methods involving both post-glycosylation
10

 and pre-

glycosylation oxidation approaches,
11

 one-pot procedures, and recently, the first studies 

towards solid-supported syntheses have been described.
12

 

In vivo synthesis of HA is performed by HA synthases in the plasma membrane, making 

use of UDP-sugars.
13,14

 This process can be mimicked synthetically (in vitro) by employing 

hyaluronidases (i.e. hydrolyzing enzymes) as glycosynthases and using activated 

disaccharide building blocks (e.g. fluoroglycosides, oxazolines). In this way, high 

molecular weight HA fragments were synthesized with complete regio- and 

stereoselectivity, albeit without control over the desired lengths.
15

 

Chemical synthesis has provided access to well-defined HA fragments of 2-10 

carbohydrate residues long. A notable synthesis has been reported in 1997 by Blatter and 

Jacquinet, in which an octasaccharide fragment was described using disaccharide block 

couplings (A, Figure 2).
16

 Three consecutive couplings on the reducing end GlcN-GlcA 

disaccharide gave the octasaccharide with average coupling yields of >90%. 

Straightforward global deprotection completed the synthesis of the HA octamer. More 

recently, Huang and co-workers assembled a decasaccharide employing GlcA-GlcN 

disaccharide B (Figure 2),
17

using p-TolSCl/AgOTf as the activator system. This strategy 

produced a decamer after four successive couplings with 71-82% efficiency per step. Nieto 

and co-workers reported on the first attempts towards the solid-phase synthesis of HA 

oligomers, and they assembled a HA dimer from GlcA and GlcN monosaccharide building 

blocks.
12

 

 

Figure 2. Dimeric building blocks described before 

 

 

 

 

 

O

TCAHN

ClAcO O
O

OPh

O

BzO
BzO

MeO2C

O

CCl3

NH

A

TBSO O

OBz
BnO

BnO2C
O

TCAHN

O
O

OPh

STol

B

O

OH
HO

-
OOC

O
O

AcHN

O O
HO

HO



Solid-phase Synthesis of Hyaluronan  

 

133 

This Chapter describes the automated solid-phase synthesis of hepta-, undeca-, and 

pentadecasaccharide fragments of hyaluronic acid, using a combination of mono- and 

disaccharide building blocks on a second-generation carbohydrate synthesizer (see Chapter 

6). The desired oligosaccharides were assembled in 14-28 hours, and the natural HA 

fragments were produced, after an optimized global deprotection sequence, in multi-

milligram quantities. 

 

Results and Discussion 

The repetitive nature of hyaluronic acid makes the assembly of larger oligosaccharide 

fragments via block couplings a very attractive strategy. For the research described in this 

Chapter, disaccharide C (Scheme 1)
18

 was adapted to fit this purpose. Solution-phase 

studies have shown that the thiophenyl analogue of this donor can be effectively used in the 

construction of HA oligomers.
11e

 Key features of donor C include 1) the N-phenyl 

trifluoroacetimidate moiety as anomeric leaving group, because its activation conditions are 

compatible with the linker and resin (see also Chapter 6) and it is not able to rearrange 

under acidic conditions,
19

 2) the use of the 3-OH position of glucosamine as the acceptor 

for elongation after deprotection of the orthogonal levulinoyl group, and 4) the 4,6-O-

silylidene-acetal protecting group as acid-stable protecting group during the acidic 

glycosylations on resin, since the 4,6-O-benzylidene acetal group is more prone to 

hydrolysis under acidic conditions.
11e

 

 

Scheme 1. Disaccharide repeating unit used in this Chapter 

The repeating disaccharide C is prepared from suitably protected glucosamine imidate 

donor D and thioglucuronate acceptor E (Scheme 1). Before the solid-phase assembly was 

undertaken, different protecting groups for the GlcN-amine were investigated (Scheme 2). 

Next to the TCA protecting group (donor 1),
11e

 the trifluoroacetyl (TFA) group in donor 2 

was selected for its similarity to TCA but its mild deprotection conditions.
20

 There is 

relatively little precedence for using the benzyloxycarbonyl (CBz, 3) group in carbohydrate 

chemistry, but this group would allow for cleavage by hydrogenolysis,
20

 and the 2,2,2-

trichlorethoxycarbonyl (Troc, 4) is an attractive protecting group because of its putative 

beneficial effect on donor reactivity.
21

  

 

Glucosamine donors 1-4 were efficiently prepared using a similar four-step reaction 

sequence starting from D-glucosamine hydrochloride, as shown in Scheme 2. In the first 

step the amine protecting group was introduced, after which the product was either isolated 

(7 and 8) or used as a crude mixture in the next reaction step (5 and 6). Regio-selective 

introduction of the silylidene at the C-4 and C-6 positions produced compounds 9-12 in 
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high yields. Subsequently, the N-phenyl trifluoroacetimidoyl functionality was 

regioselectively introduced at the anomeric position (compounds 13-16), and the remaining 

C3-OH was protected with the levulinoyl group to yield donors 1-4.  

 

Scheme 2. Synthesis of glucosamine donors 1-4, disaccharides 18-21, and allyl-glycosides 23-25 

 

Reagents and conditions: a) TCA-Cl, Et3N, MeOH; b) EtOCOCF3, Na2CO3, MeOH; c) Cbz-Cl, Na2CO3, H2O (7: 

90%); d) Troc-Cl, NaHCO3, H2O (8: 69%); e) (t-Bu)2Si(OTf)2, pyridine, DMF, -40 ºC (9: 86% over two steps, 10: 

69% over two steps, 11: 97%, 12: 93%); f) CF3C(NPh)Cl, K2CO3 or Cs2CO3, acetone (13: 98%, 14: 67%, 15: 

70%, 16: 60%); g) LevOH, DIC, DMAP, DCM (1: 82%, 2: 95%, 3: 92%, 4: 79%); h) conditions in Table 1; i) i. 

TfOH, DCM (2x); ii. H2NNH2·HOAc, pyr/AcOH (2x); iii. Grubbs’ 1st catalyst, ethylene, DCM. 

 

The glycosylating properties of donors 1-4 were investigated by reacting the donors with 

glucuronic acid acceptor 17
22

, as summarized in Table 1. TCA-donor 1 glycosylated 

acceptor 17 in good yield (entry 1, Table 1). When TFA-donor 2 was reacted with acceptor 

17 at -20 ºC, poor yields of disaccharide 19 were obtained. Changing the reaction 

temperature to 0 ºC increased the productivity of this coupling (entries 2 and 3, Table 1). 

Interestingly, donor 3 could not be condensed with acceptor 17 (entries 4 and 5, Table 1), 

indicating a donor/acceptor mismatch.
23

 Troc-donor 4 gave the best results when the donor 

was used in excess at higher concentrations (entries 6-8, Table 1). It should be noted that 

while donors 2 and 4 provided disaccharides 19 and 21 in good yields, an extra purification 

step was needed to purify these disaccharides. Analysis of the glycosylation mixture 

revealed that a C2’-C3’-unsaturated disaccharide byproduct was formed, presumably by 

1,2-elimination after activation of the anomeric leaving group, followed by a Ferrier-type 

rearrangement involving nucleophilic attack by acceptor 17 to expel the C3-O-levulinoyl 

group.
24
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Table 1. Glycosylation study with donors 1-4 and glucuronic acid acceptor 17 

Entry Donor 
17 (eq) Activator (eq) Concentration  Temperature Yield 

1 1 0.8 0.05 0.05 M  0 ºC → RT 78% 

2 2 0.8 0.1 0.1 M  -20 ºC 34% 

3 2 0.8 0.1 0.1 M  0 ºC 64% 

4 3 1.3 0.2 0.05 M  0 ºC -a 

5 3 0.8 0.2 0.05 M  0 ºC -a 

6 4 1.3 0.2 0.05 M  0 ºC 22% 

7 4 0.8 0.2 0.05 M  0 ºC 57% 

8 4 0.8 0.1 0.1 M  0 ºC 89% 

a No disaccharide products were observed. 

 

Next, the efficiency of donors 1, 2 and 4 was probed in the glycosylation of the butenediol-

functionalized polystyrene (22, see also Chapter 6), and subsequent release from the resin 

by cross metathesis to provide allyl-glycosides 23-25 (Scheme 2). In a typical experiment, 

the resin was treated twice with imidate donor (5 eq) and TfOH (cat.) in DCM (0.08 M) for 

30 min at 0 ºC, followed by removal of the temporary levulinoyl protecting group using 

hydrazine acetate in pyridine/AcOH for 15 min at 40 ºC (twice). The products were cleaved 

from the resin by cross metathesis (Grubbs’ 1
st
 generation catalyst, ethylene, DCM, 

overnight) and the crude products were analyzed using NMR spectroscopy. Of these, only 

allyl-glycoside 23 was obtained in reasonable purity and yield (>90%). The NMR spectra 

of compound 24 showed very little signals belonging to the actual product, and the spectra 

of product 25 revealed a large amount of byproducts.  

 

From the results in Table 1 and the test couplings with resin 22, TCA-protected 

glucosamine donor 1 emerged as the most productive glucosamine donor and therefore, 

disaccharide 18 was selected to serve as the core of the repetitive building block for the 

automated synthesis of larger oligosaccharide fragments (Scheme 3). To serve this purpose, 

thio-disaccharide 18 was transformed to an imidate donor by hydrolyzing the thio 

functionality (NBS, acetone/H2O) and introducing the imidate moiety on hemiacetal 26. In 

this way, disaccharide donor 27 was produced on multigram scale. 

 

With disaccharide 27 in hand, its behavior in glycosylation of the linker-functionalized 

resin 22 was evaluated. As depicted in Scheme 3 and outlined in Table 2, resin 22 was 

reacted three times with donor 27 (2.7 eq) for 30 min at 0 ºC, followed by deprotection of 

the levulinoyl group. After cross metathesis-mediated release from the resin, analysis of the 

crude product by TLC(-MS) and NMR spectroscopy revealed that, next to desired allyl-

glycoside 28, several byproducts were formed, including products lacking a benzoate 

group, possibly as a result from benzoyl migration from donor to acceptor.
25

 This result 
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indicated that the coupling between the glucuronate donor and the primary allylic alcohol is 

not productive, and cannot be employed as the first coupling in the automated synthesis 

strategy using the butenediol linker system. 

 

Scheme 3. Preparation of disaccharide imidate 27 

 

 

 

 

 

 

 

 

 

 

 

 

 

Reagents and conditions: a) NBS, acetone/H2O (75%); b) CF3C(NPh)Cl, Cs2CO3, acetone (76%); c) i. resin 22, 

TfOH, DCM (3 x 3 eq of 27); ii. H2NNH2·HOAc, pyr/AcOH (2x); iii. Grubbs’ 1st catalyst, ethylene, DCM. 

 

Since allyl-glucosamine 23 was produced efficiently from donor 1 and resin 22, it was 

decided to first couple monosaccharide donor 1 to the resin, followed by disaccharide block 

couplings, as depicted in Scheme 4. This strategy was initially tested in the synthesis of 

trisaccharide 30. Using the coupling/deprotection sequence outlined in Table 2, butenediol-

functionalized Merrifield resin 22 (100 mg, 45 µmol) was coupled with donor 1 under the 

agency of TfOH. Subsequent removal of the levulinoyl protecting group set the stage for a 

similar coupling cycle using disaccharide donor 27, followed by cleavage of the levulinoyl 

group and release from the resin by cross metathesis. The crude trisaccharide was obtained 

in good yield (90%) and the three glycosidic bonds were formed with complete β-

selectivity.  

 

Table 2. Coupling/deprotection cycle  

Protocol* # Cycles Description Time (min) Temperature 

D 1 Washing with THF/hexane, THF, DCM  RT 

E 3 Coupling (2.7 eq donor, 0.33 eq TfOH) 30 0 ºC 

D 1 Washing with THF/hexane, THF, DCM  RT 

F 2 Deblock (7.8 eq hydrazine acetate) 10 + 40 ºC 

G 1 
Washing with DMF, DCM, THF/hexane, 

AcOH/THF, THF 
 RT 

(*) For a detailed protocol description, see the Experimental Section and Chapter 6 

 

The LC trace of the crude trisaccharide is depicted in Figure 3, revealing that product 30 

had been efficiently formed and only a minor byproduct was produced. The trisaccharide 

resides at Rt = 4.63 min (M+Na
+
: m/z = 1366.8), while the peak at Rt = 3.93 min 
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corresponds to the mass of trisaccharide 30, lacking a chlorine atom (M+Na
+
: m/z = 

1332.6). The formation of a dichloroacetyl functionality was corroborated by the presence 

of a singlet at δ = 5.96 ppm in 
1
H NMR, corresponding to the proton of –CHCl2. 

 

Scheme 4. Automated solid-supported synthesis of trimer 30, heptamer 31, undecamer 32, and pentadecamer 33 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 3. LC trace (ELSD) of trisaccharide 30 (linear gradient 70 → 90% B in 13.5 min) 

 

 

 

 

 

 

 

 

In the automated hyaluronic acid synthesis, partial conversion of some of the TCA 

protecting groups to a DCA would significantly hinder characterization and purification of 

the products. In addition, harsher conditions would be required for the removal of the 

DCA-groups at the end of the synthesis. These problems would increase drastically with 

the growing length of the desired oligosaccharides.
26

 It was reasoned that the loss of 

chlorine from the TCA protecting group (to produce an N-dichloroacetyl moiety) could be 

a result of a nucleophilic displacement on the TCA group by a tricyclohexylphosphine 

ligand of the Grubbs’ 1
st
 generation catalyst. To circumvent this side reaction, other 

metathesis catalysts were tried, including Grubbs’ 2
nd

 generation, Grubbs-Hoveyda, and 

Schrock catalysts. Of these, the use of Grubbs’ 2
nd

 generation catalyst made no difference 

to the TCA : DCA ratio, and the Schrock catalyst did not produce any products. 
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Conversely, the Grubbs-Hoveyda catalyst produced a single compound which 

corresponded to the all-TCA product (as judged by LC-MS). However, when this cross 

metathesis was performed on a preparative scale, a low yield of the oligosaccharide was 

obtained suggesting that the Grubbs-Hoveyda-catalyzed metathesis was not productive. In 

a different approach, an azide-containing “decoy” substrate (3-azidopropyl phenoxyacetate) 

was added during the metathesis reaction with Grubbs’ 1
st
 generation to trap the phosphine 

ligand in a Staudinger/aza-Wittig reaction. However these conditions still led to the 

formation of the DCA-amide to some extent. Finally, the addition of an excess of 

trichloroacetamide as a decoy substrate to the metathesis mixture resulted in products with 

unaffected TCA-groups and excellent recovery. 

 

The automated glycosylation procedure, as developed above, was used in the assembly of 

hepta-, undeca-, and pentadecasaccharidic fragments of hyaluronic acid, as depicted in 

Scheme 4. The three syntheses all started off with glycosylating resin 22 with glucosamine 

donor 1 and subsequent Lev-deprotection, followed by three coupling/deprotection cycles 

with disaccharide donor 27 to construct heptasaccharide 31, five coupling/deprotection 

cycles with 27 to construct undecasaccharide 32, and seven coupling/deprotection cycles 

with 27 to construct pentadecasaccharide 33.
27

 The products were cleaved from the solid 

support by cross-metathesis (twice) using Grubbs’ 1
st
 generation catalyst in the presence of 

excess trichloroacetamide, and the crude product mixtures were analyzed using LC-MS and 

NMR spectroscopy. The LC trace of crude heptasaccharide 31 is depicted in Figure 4, and 

reveals that the desired product 31 is the major component (Rt = 10.44 min), while the peak 

at Rt = 5.41 min corresponds to the pentasaccharide fragment (hepta : penta = 80 : 1). 

Crude undecasaccharide 32 and pentadecasaccharide 33 could not be analyzed by reversed-

phase LC-MS because of their high lipophilicity, but mass spectrometry (MALDI) 

confirmed that the desired products were the major component of the cleavage mixtures.  

 

Figure 4. LC trace (ELSD) of crude heptasaccharide 31 (linear gradient 85 → 95% B in 13.5 min) 

 

 

 

 

 

 

 

To create more hydrophilic compounds which would allow HPLC purification, the crude 

hyaluronic acid products were partially deprotected by removal of the silylidene protecting 

groups to give 34-36 (Scheme 5). This transformation allowed reversed-phase LC analysis 

of all three products, as depicted in Figure 5, although the molecular weight of the 11-mer 

(35) and 15-mer (36) exceeded the mass detection limit (> 3000 Da). The semi-protected 

products were purified using RP-HPLC to afford heptasaccharide 34 in 26% over 10 steps 

(~87% per step), undecasaccharide 35 in 32% over 14 steps (~91% per step), and 

pentadecasaccharide 36 in 18% over 18 steps (~92% per step), starting from 45 µmol of 

functionalized resin 22. 

31 
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Scheme 5. Final deprotection towards products 40-42 

 

Reagents and conditions: a) 3HF·Et3N, THF, 2.5 h (34: 26%, 35: 32%, 36: 18%, starting from resin 22); b) aq. 

KOH, THF, 3-4 days (37: 90%, 38: 97%); c) Ac2O, NaHCO3, H2O/THF, 1 h (40: 99%, 41: 70%, 42: 69% over 

two steps). 

 

Figure 5. LC traces of crude heptamer 34 (A) and after HPLC purification (B), crude undecamer 35 (C) and after 

HPLC purification, and crude pentadecamer 36 (E) and after HPLC purification (F) (gradients are reported in the 

Experimental Section) 
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Next, all remaining protecting groups (TCAs, benzoyls, methyl esters) were simultaneously 

removed by treating compounds 34-36 with an excess of aqueous KOH for 3-4 days. 

Zwitterionic products 37-39 were obtained after gel filtration (HW40, eluted with 

NH4OAc) and subsequent lyophilization. While zwitterionic heptasaccharide 37 and 

undecasaccharide 38 dissolved readily in H2O, pentadecasaccharide 39 aggregated under 

neutral conditions, and after addition of aqueous ammonia the compound dissolved.
28

 

Finally, selective acetylation of the free amines under aqueous conditions resulted in 

heptasaccharide 40, undecasaccharide 41, and pentadecasaccharide 42 in multi-milligram 

quantities. To illustrate to repetitiveness of the structures, their respective 
1
H NMR spectra 

are depicted in Figure 6. 

 

Figure 6. Fragments of the 1H NMR spectra of heptasaccharide 40 (top), undecadasaccharide 41 (middle) and 

pentadecasaccharide 42 (bottom) 
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Conclusion 

Using an automated carbohydrate synthesizer together with mono- and disaccharide 

building blocks, hyaluronic acid fragments of up to 15 sugar units were efficiently 

constructed. The attachment of the growing chain to the resin was secured through a β-

glucosamine linkage. A high degree of coupling efficiency was obtained by employing 

imidate chemistry under the agency of catalytic acid, in combination with glucuronic acid 

as the donor moiety for the iterative coupling steps, indicating that unreactive donor 

glycosides, such as uronic acids, are readily coupled in this automated solid-phase 

glycosylation technology. Cleavage from the solid support was optimized to circumvent 

dechlorination of the products, and ensuing global deprotection proceeded uneventfully 

after RP-HPLC purification of the semi-protected intermediates. Hepta-, undeca-, and 

pentadecasaccharide repeats were constructed in multi-milligram quantities, sufficient for 

biological structure-activity relationship studies. This straightforward assembly of a 

member of the glycosaminoglycan family indicates that the automated assembly of other 

members of the GAG family is within reach.  

 

Experimental Section 

 

Protocols for the automated synthesis 

 

Building block 1 = compound 1 in DCM (0.08 M) 

Building block 2 = compound 27 in DCM (0.08 M) 

Activator = trifluoromethanesulfonic acid in DCM (0.05 M) 

Deblock = hydrazine acetate in pyridine/AcOH (4/1, v/v, 0.14 M) 

 

The synthesizer’s solvent bottles are filled with commercially acquired solvents, which are pre-dried 24 h before 

use on 4 Å molecular sieves. The solutions containing building block, activator and deblock reagents are freshly 

prepared directly before use with pre-dried solvents. 

 

Protocol A. Agitation of the resin during washing 

After addition of the appropriate solvent (2-4 mL), a gas-flow is applied from the bottom of the reaction vessel 

(RV) for 15 s to agitate the resin suspension, while the pressure is released through the air vents in the cap. Then 

the RV is emptied. 

 

Protocol B. Agitation of the resin during reaction 

After addition of the appropriate solvent (2-4 mL), a gas-flow is applied from the bottom of the RV for 10 s to 

agitate the resin suspension, while the pressure is released through the air vents in the cap. Then the purging is 

halted and the suspension is allowed to settle for 20 s.  

 

Protocol C. Swelling of new resin 

The RV is charged with dry resin. The resin is washed with DCM (3x), alternating THF and hexane (3x), THF 

(1x) and DCM (3x). Every wash step involves protocol A. 

 

Protocol D. Washing of the resin before or after the reaction 

If applicable, the chiller temperature is set to ambient. The pre-swollen resin is washed with alternating THF and 

hexane (3x), followed by THF (1x) and DCM (3x). Every wash step involves protocol A. 
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Protocol E. Coupling cycle 

The resin is suspended in DCM and agitated for the time needed to prepare the addition of the building block 

solution. Then the RV is emptied. The building block solution (1.5 mL) is added and the temperature is set to -5 

ºC to ensure an actual temperature of 0 ºC in the RV. Simultaneously, a pause of 7 min is started. When the 

temperature of the chiller has reached its target point, the activator solution (300 µL) is added. Protocol B is 

applied during 45 min. Then the RV is emptied and the solution is collected in a mixture of DCM/H2O/Et3N 

(50/5/1, v/v). The resin is washed with DCM (3x) using protocol A and the solutes are similarly collected. 

 

Protocol F. Deblock 

The resin is washed with DMF (3x) using protocol A. The deblock solution (2.5 mL) is added and the resin is 

agitated using protocol B for 10 min while the temperature is raised to +40 ºC. Then the RV is emptied into the 

waste. 

 

Protocol G. Washing of the resin after deblock 

The temperature of the chiller is set to ambient. The resin is successively washed with DMF (3x), DCM (3x), 

alternating THF and hexane (6x), 0.01 M AcOH in THF (6x) and THF (3x). Every wash step involves protocol A. 

 

Protocol H. Suspending the resin for isolation 

The resin is washed with alternating DCM and MeOH (2x), followed by a mixture of DCM/MeOH (7/1, v/v, 2x), 

both employing protocol A. Then a mixture of DCM/MeOH (7/1, v/v) is added, the resin is agitated for 15 s after 

which time the gas-flow was halted and the program was paused. The suspended resin is isolated and this last 

procedure is repeated two times.  

 

4,6-O-Di-tert-butylsilylidene-3-O-levulinoyl-1-O-(N-phenyl-trifluoroacetimidoyl)-2-N-trichloroacetamido-

αααα/ββββ-D-glucopyranoside (1). D-Glucosamine·HCl (43.1 g, 200 mmol) was dissolved 

in MeOH (220 mL), the resulting mixture was cooled to 0 ºC and treated with Et3N 

(83.4 mL, 600 mmol) and trichloroacetyl chloride (24.7 mL, 220 mmol). The 

reaction was allowed to stir for 6 d at RT, after which time the precipitation was 

filtered off. The resulting solution was concentrated in vacuo and purified using flash column chromatography 

(silica gel, 20% MeOH in EtOAc) to give crude compound 5. TLC: Rf 0.73 (EtOAc/MeOH, 4/1, v/v). Crude 

compound 5 (13.7 g, 42.1 mmol) was dissolved in DMF (210 mL) and the mixture was cooled to -40 ºC. Di-tert-

butylsilanediyl-bistriflate (13.2 mL, 40.8 mmol) was drop-wise added. After 1 h, the reaction was quenched by the 

addition of pyridine (10.2 mL, 126 mmol). The mixture was diluted with EtOAc and washed with H2O. The 

organic layer was dried over MgSO4, filtrated and concentrated in vacuo. Purification using flash column 

chromatography (50% EtOAc in PE) yielded compound 9 as an amorphous white solid (Yield: 16.3 g, 35.0 mmol, 

86%). TLC: Rf 0.72 (PE/EtOAc, 3/1, v/v). A solution of 9 (3.75 g, 8.07 mmol) in acetone (81 mL) was cooled to 0 

ºC, followed by the addition of N-phenyl-trifluoroacetimidoyl chloride (1.47 mL, 9.68 mmol) and Cs2CO3 (3.94 g, 

12.1 mmol). The reaction was allowed to stir for 1 h at 0 ºC and RT for 2.5 h. The mixture was filtrated over 

Celite and concentrated in vacuo. Purification by flash column chromatography (14% EtOAc in PE) yielded 

compound 13 as a yellow oil (Yield: 21.2 g, 33.3 mmol, 98%). TLC: Rf 0.84 (PE/EtOAc, 6/1, v/v). Compound 13 

(16.4 g, 25.7 mmol) was dissolved in anhydrous DCM (65 mL) and the mixture was cooled to 0 ºC. Levulinic acid 

(7.3 mL, 72.1 mmol), N,N’-diisopropylcarbodiimide (5.67 mL, 36.1 mmol) and 4-dimethylaminopyridine (0.32 g, 

2.57 mmol) were added. After 2.5 h the reaction mixture was filtrated over Celite, washed with sat. aq. NaHCO3, 

dried with MgSO4 and concentrated in vacuo. Flash column chromatography (25% EtOAc in PE) yielded the title 

compound as a colorless foam (15.5 g, 21.2 mmol, 82%, α >> β). The spectroscopic data are in full accord with 

those reported previously.11e TLC: Rf 0.84 (PE/EtOAc, 4/1, v/v); 1H NMR (CDCl3, 400 MHz, HH-COSY, HSQC): 

δ 7.28 (t, 2H, J = 7.6 Hz, CHarom), 7.14 (d, 1H, J = 7.8 Hz, NH), 7.10 (t, 1H, J = 7.4 Hz, CHarom), 6.78 (d, 2H, J = 

7.7 Hz, CHarom), 6.41 (bs, 1H, H-1), 5.27 (t, 1H, J = 9.9 Hz, H-3), 4.22-4.31 (m, 1H, H-2), 4.15-4.21 (m, 1H, H-6), 

4.05 (t, 1H, J = 8.8 Hz, H-4), 3.89-4.00 (m, 2H, H-5, H-6), 2.73 (t, 2H, J = 6.2 Hz, CH2 Lev), 2.64 (t, 2H, J = 6.8 

Hz, CH2 Lev), 2.14 (s, 3H, CH3 Lev), 1.07 (s, 9H, CH3 tBu), 0.99 (s, 9H, CH3 tBu); 13C-APT NMR (CDCl3, 100 

MHz, HSQC): δ 205.2 (C=O Lev), 173.5 (C=O Lev), 162.0 (C=O TCA), 142.5 (Cq), 128.7, 124.6, 119.0 (CHarom), 

115.8 (q, J = 282 Hz, Cq CF3), 92.7 (C-1), 91.6 (CCl3), 74.0 (C-4), 71.9 (C-3), 68.8 (C-5), 65.9 (C-6), 53.5 (C-2), 
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37.7 (CH2 Lev), 29.4 (CH3 Lev), 27.8 (CH2 Lev), 27.1, 26.6 (CH3 tBu), 22.5, 19.7 (Cq tBu); HRMS: [M+Na]+ 

calcd for C29H38Cl3F3N2O8SiNa 755.13073, found 755.13130. 

 

4,6-O-Di-tert-butylsilylidene-3-O-levulinoyl-1-O-(N-phenyl-trifluoroacetimidoyl)-2-N-trifluoroacetamido-

αααα/ββββ-D-glucopyranoside (2). A solution of D-glucosamine·HCl (10.8 g, 50 mmol) in 

MeOH (200 mL) was treated with Na2CO3 (10.6 g, 100 mmol) and stirred at RT for 

10 min. Subsequently, the mixture was cooled to 0 ºC and ethyl trifluoroacetate (11.9 

mL, 100 mmol) was drop-wise added. The reaction was stirred overnight, and the 

precipitate was collected after filtration. Purification using flash column chromatography (silica gel, 50% MeOH 

in EtOAc) yielded compound 6 as a colored amorphous solid (Yield: ~13.5 g, 49 mmol, crude). TLC: Rf 0.82 

(EtOAc/MeOH, 1/1, v/v). Compound 6 (1.77 g, 5 mmol) was dissolved in DMF (25 mL) and the resulting solution 

was cooled to -30 ºC. Di-tert-butylsilyl-bistriflate (5.7 mL, 17.7 mmol) was drop-wise added, and the mixture was 

allowed to stir for 30 min, after which time the reaction was quenched by the addition of pyridine (4.4 mL, 65.9 

mmol). The mixture was diluted with EtOAc, and washed with H2O. The organic layer was dried over MgSO4 and 

concentrated in vacuo. Purification using flash column chromatography (silica gel, 50% EtOAc in PE) yielded 

compound 10 as a white foam (Yield: 5.20 g, 12.5 mmol, 69%). TLC: Rf 0.52 (PE/EtOAc, 3/1, v/v). A solution of 

compound 10 (1.04 g, 2.5 mmol) in acetone (25 mL) was cooled to 0 ºC, and N-phenyl trifluoroacetimidoyl 

chloride (0.50 mL, 3.30 mmol) and K2CO3 (0.38 g, 2.75 mmol) were added. The reaction was allowed to stir for 1 

h at 0 ºC and at RT overnight. The reaction mixture was filtrated over Celite and concentrated in vacuo. 

Purification by flash column chromatography (silica gel, 9% EtOAc in PE) yielded compound 14 as a colorless oil 

(Yield: 0.99 g, 1.68 mmol, 67%). TLC: Rf 0.88 (PE/EtOAc, 4/1, v/v). Compound 14 (1.05 g, 1.79 mmol) was 

dissolved in anhydrous DCM (4.5 mL) and the mixture was cooled to 0 ºC. Levulinic acid (0.51 mL, 5.0 mmol), 

N,N’-diisopropylcarbodiimide (0.40 mL, 2.5 mmol) and 4-dimethylaminopyridine (0.02 g, 0.18 mmol) were 

added. After 30 min, the reaction mixture was filtrated over Celite, washed with sat. aq. NaHCO3, dried over 

MgSO4 and concentrated in vacuo. Flash column chromatography (silica gel, 17% EtOAc in PE) yielded the title 

compound as a yellowish foam (Yield: 1.17 g, 1.70 mmol, 96%, α >> β). Rf = 0.75 (5:1 PE/EtOAc); IR (neat, cm-

1): 694, 764, 826, 1003, 1084, 1152, 1206, 1314, 1557, 1717, 2864, 3291; 1H NMR (CDCl3, 400 MHz, HH-

COSY, HSQC, T = 328 K): δ 7.31 (t, 2H, J = 7.9 Hz, CHarom), 7.14 (t, 1H, J = 7.5 Hz, CHarom), 6.81 (d, 3H, J = 7.5 

Hz, 2 x CHarom, NH), 6.34 (bs, 1H, H-1), 5.26 (dd, 1H, J = 8.8, 10.7 Hz, H-3), 4.37 (ddd, 1H, J = 3.3, 7.9, 11.2 Hz, 

H-2), 4.18 (dd, 1H, J = 3.7, 9.2 Hz, H-6), 3.89-4.07 (m, 3H, H-4, H-5, H-6), 2.74-2.78 (m, 2H, CH2 Lev), 2.61-

2.66 (m, 2H, CH2 Lev), 2.17 (s, 3H, CH3 Lev), 1.09 (s, 9H, CH3 tBu), 1.02 (s, 9H, CH3 tBu); 13C-APT NMR 

(CDCl3, 100 MHz, HSQC): δ 205.7 (C=O Lev), 173.3 (C=O Lev), 157.4 (q, J = 38 Hz, Cq C=NPh), 142.6 (Cq), 

128.7, 124.6, 119.0 (CHarom), 115.9 (q, J = 284 Hz, Cq CF3),115.4 (q, J = 286 Hz, Cq CF3), 74.3 (C-4 or C-5), 71.5 

(C-3), 68.8 (C-4 or C-5), 65.9 (C-6), 52.1 (C-2), 37.8 (CH2 Lev), 29.2 (CH3 Lev), 27.8 (CH2 Lev), 27.1, 26.5 (CH3 

tBu), 22.4, 19.7 (Cq tBu); HRMS: [M+Na]+ calcd for C29H38F6N2O8SiNa 707.21938, found 707.21844. 

 

2-N-Benzyloxycarbonyl-4,6-O-di-tert-butylsilylidene-3-O-levulinoyl-1-O-(N-phenyl-trifluoroacetimidoyl)-

αααα/ββββ-D-glucopyranoside (3). A solution of D-glucosamine·HCl (10 g, 46.4 mmol) 

and Na2CO3 (8.77 g, 83.5 mmol) in H2O (250 mL) was cooled to 0 ºC. 

Benzylchloroformate (4.9 mL, 34.8 mmol) was drop-wise added, and the mixture 

was allowed to stir for 1 h at 0 ºC, and warmed to RT overnight. The mixture was 

filtrated, the residue was washed with H2O to yield compound 7 as a white solid (Yield: 9.83 g, 31.4 mmol, 90%). 

TLC: Rf 0.86 (EtOAc/MeOH, 9/1, v/v). A solution of compound 7 (2.5 g, 8 mmol) in DMF (40 mL) was cooled to 

-40 ºC. Di-tert-butylsilanediyl-bistriflate (2.51 mL, 7.76 mmol) was drop-wise added. After 30 min, the reaction 

was quenched by the addition of pyridine (1.94 mL, 24 mmol). The mixture was diluted with EtOAc and washed 

with H2O. The organic layer was dried over MgSO4, filtrated and concentrated in vacuo. Purification by flash 

column chromatography (silica gel, 50% EtOAc in PE) yielded compound 11 as a colorless foam (Yield: 3.43g, 

7.56 mmol, 98%). TLC: Rf 0.67 (PE/EtOAc, 2/1, v/v). To a solution of 11 (1.59 g, 3.5 mmol) in acetone (30 mL) 

were added N-phenyl trifluoroacetimidoyl chloride (0.71 mL, 4.69 mmol) and K2CO3 (0.53 g, 3.84 mmol) at 0 ºC. 

The reaction was allowed to stir for 1 h at 0 ºC, and at room temperature overnight. The reaction mixture was 

filtrated over Celite and concentrated in vacuo. Purification by flash column chromatography (silica gel, 11% 

EtOAc in PE) yielded compound 15 as a yellow oil (Yield: 1.58 g, 2.45 mmol, 70 %). TLC: Rf 0.83 (PE/EtOAc, 

2/1, v/v). Compound 15 (1.78 g, 2.85 mmol) was dissolved in anhydrous DCM (7 mL) and cooled to 0 ºC. 
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Levulinic acid (0.81 mL, 7.98 mmol), N,N’-diisopropylcarbodiimide (0.63 mL, 3.98 mmol) and 4-

dimethylaminopyridine (0.034 g, 0.28 mmol) were added at 0 ºC. The reaction was stirred at 0 ºC after which it 

was allowed to warm up to RT. After 1 h the mixture was filtrated over Celite and washed with sat. aq. NaHCO3. 

The organic layer was dried over MgSO4 and concentrated in vacuo. Flash column purification (silica gel, 25% 

EtOAc in PE) yielded the title compound as a yellow oil (Yield: 1.90 g, 2.63 mmol, 92%). TLC: Rf 0.63 

(PE/EtOAc, 3/1, v/v); IR (neat, cm-1): 731, 826, 908, 1005, 1093, 1153, 1207, 1518, 1717, 2860, 2936, 3316; 1H 

NMR (CDCl3, 400 MHz, HH-COSY, HSQC, T = 328 K): δ 7.25-7.41 (m, 7H, CHarom), 7.12 (t, 1H, J = 7.5 Hz, 

CHarom), 6.80 (d, 2H, J = 7.7 Hz, CHarom), 6.25 (bs, 1H, H-1), 5.20 (t, 1H, J = 9.8 Hz, H-3), 5.19 (d, 1H, J = 12.4 

Hz, CHH Bn), 5.14 (d, 1H, J = 12.3 Hz, CHH Bn), 5.03 (d, 1H, J = 6.0 Hz, NH), 4.10-4.20 (m, 2H, H-2, H-6), 

3.88-4.01 (m, 2H, H-4, H-5), 2.67-2.78 (m, 2H, CH2 Lev), 2.56-2.64 (m, 2H, CH2 Lev), 2.16 (s, 3H, CH3 Lev), 

1.09 (s, 9H, CH3 tBu), 1.01 (s, 9H, CH3 tBu); 13C-APT NMR (CDCl3, 100 MHz, HSQC): δ 205.6 (C=O Lev), 

172.8 (C=O Lev), 156.0 (C=O Cbz), 143.0, 136.2 (Cq), 128.8, 128.5, 128.2, 128.2, 124.7, 119.3 (CHarom), 74.8 (C-

4 or C-5), 72.3 (C-3), 68.9 (C-4 or C-5), 67.2 (CH2 Troc), 66.2 (C-6), 53.2 (C-2), 37.9 (CH2 Lev), 29.6 (CH3 Lev), 

28.0 (CH2 Lev), 27.3, 26.7 (CH3 tBu), 22.6, 19.9 (Cq tBu); HRMS: [M+Na]+ calcd for C35H45F3N2O9SiNa 

745.27386, found 745.27403. 

 

4,6-O-Di-tert-butylsilylidene-3-O-levulinoyl-1-O-(N-phenyl-trifluoroacetimidoyl)-2-N-trichloroethoxycarbo-

nyl-αααα/ββββ-D-glucopyranoside (4). To a solution of D-glucosamine·HCl (10 g, 46.4 

mmol) in H2O (100 mL) NaHCO3 (11.6 g, 138 mmol) was added. Then 2,2,2-

trichloroethyl-chloroformate (6.96 mL, 50.6 mmol) was drop-wise added and the 

reaction was stirred overnight at RT. Product 8 was collected after filtration and 

washing with H2O as a white solid (Yield: 11.25 g, 31.7 mmol, 69%). TLC: Rf 0.75 (EtOAc/MeOH, 9/1, v/v). 

Compound 8 (1.77 g, 5 mmol) was dissolved in DMF (8 mL) and the mixture was cooled to -30 ºC. Subsequently, 

di-tert-butylsilanediyl-bistriflate (1.57 mL, 4.85 mmol) was drop-wise added. After 3 h, the reaction was quenched 

by the addition of pyridine (1.27 mL, 15 mmol). The mixture was diluted with EtOAc and washed with H2O. The 

organic layer was dried with MgSO4, filtrated and concentrated in vacuo. Purification by flash column 

chromatography (silica gel, 50% EtOAc in PE) yielded compound 12 as a colorless foam (Yield: 2.25 g, 4.5 

mmol, 93%). TLC: Rf 0.71 (PE/EtOAc, 3/1, v/v). To a solution of compound 12 (1.88 g, 2.8 mmol) in acetone (28 

mL) were added N-phenyl trifluoroacetimidoyl chloride (0.57 mL, 3.76 mmol) and K2CO3 (0.42 g, 3.1 mmol) at 0 

ºC. The reaction was allowed to stir for 1 h at 0 ºC and at RT overnight. The reaction mixture was filtrated over 

Celite and concentrated in vacuo. Purification by flash column chromatography (silica gel, 11% EtOAc in PE) 

yielded compound 16 as a colorless foam (Yield: 1.11 g, 1.66 mmol, 60%). TLC: Rf 0.88 (PE/EtOAc, 4/1, v/v). 

Compound 16 (0.47 g, 0.71 mmol) was dissolved in anhydrous DCM (2 mL) and cooled to 0 ºC. Levulinic acid 

(0.20 mL, 1.98 mmol), N,N’-diisopropylcarbodiimide (0.16 mL, 1.0 mmol) and 4-dimethylaminopyridine (0.01 g, 

0.71 mmol) were added at 0 ºC. The reaction was stirred at 0 ºC for 30 min after which time the mixture was 

filtrated over Celite. The organic phase was washed with sat. aq. NaHCO3, dried over MgSO4 and concentrated in 

vacuo. Flash column chromatography (20% EtOAc in PE) yielded the title compound as a white foam (Yield: 0.43 

g, 0.56 mmol, 79%). TLC: Rf 0.75 (PE/EtOAc, 5/1, v/v); IR (neat, cm-1): 694, 733, 764, 826, 1086, 1155, 1207, 

1312, 1535, 1717, 1744, 2864, 3327; Spectroscopic data are reported for the major (α) isomer: 1H NMR (CDCl3, 

400 MHz, HH-COSY, HSQC): δ 7.30 (t, 2H, J = 7.8 Hz, CHarom), 7.12 (t, 1H, J = 7.5 Hz, CHarom), 6.81 (d, 2H, J = 

7.7 Hz, CHarom), 6.28 (bs, 1H, H-1), 5.42 (d, 1H, J = 9.2 Hz, NH), 5.23 (t, 1H, J = 9.6 Hz, H-3), 4.82 (d, 1H, J = 

12.1 Hz, CHH Troc), 4.75 (d, 1H, J = 12.1 Hz, CHH Troc), 4.15-4.20 (m, 2H, H-2, H-6), 3.85-4.01 (m, 3H, H-4, 

H-5, H-6), 2.72-2.80 (m, 2H, CH2 Lev), 2.59-2.65 (m, 2H, CH2 Lev), 2.17 (s, 3H, CH3 Lev), 1.05 (s, 9H, CH3 

tBu), 0.98 (s, 9H, CH3 tBu); 13C-APT NMR (CDCl3, 100 MHz, HSQC, T = 328 K): δ 205.2 (C=O Lev), 172.9 

(C=O Lev), 154.3 (C=O Troc), 142.9 (Cq), 128.8, 124.7, 119.3 (CHarom), 95.4 (Cq CCl3), 94.5 (C-1), 74.9 (CH2 

Troc), 74.7 (C-4 or C-5), 72.2 (C-3), 69.0 (C-4 or C-5), 66.2 (C-6), 53.7 (C-2), 37.9 (CH2 Lev), 29.5 (CH3 Lev), 

28.0 (CH2 Lev), 27.3, 26.7 (CH3 tBu), 22.6, 19.9 (Cq tBu); HRMS: [M+Na]+ calcd for C30H40Cl3F3N2O9SiNa 

787.13835, found 787.13918. 

 

Methyl (phenyl 2,3-di-O-benoyl-4-[4,6-O-di-tert-butylsilylidene-3-O-levulinoyl-2-N-trichloroacetamido-ββββ-D-

glucopyranosyl]-1-thio-ββββ-D-glucopyranosyl uronate) (18). Spectroscopic 

data are in full accord with those reported previously.18 TLC: Rf 0.54 
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(PE/EtOAc, 3/1, v/v); 1H NMR (CDCl3, 400 MHz, HH-COSY, HSQC): δ 7.92 (t, 4H, J = 7.4 Hz, CHarom), 7.48-

7.55 (m, 2H, CHarom), 7.43-7.48 (m, 2H, CHarom), 7.35-7.41 (m, 4H, CHarom), 7.28-7.33 (m, 3H, CHarom), 6.75 (d, 

1H, J = 9.0 Hz, NH), 5.63 (t, 1H, J = 9.2 Hz, H-3), 5.38 (t, 1H, J = 9.7 Hz, H-2), 4.99 (dd, 1H, J = 9.2, 10.6 Hz, 

H-3’), 4.96 (d, 1H, J = 9.9 Hz, H-1), 4.91 (d, 1H, J = 8.3 Hz, H-1’), 4.22 (t, 1H, J = 9.3 Hz, H-4), 4.11 (d, 1H, J = 

9.7 Hz, H-5), 3.86 (s, 3H, CH3 CO2Me), 3.79-3.85 (m, 1H, H-2’), 3.54 (t, 1H, J = 9.3 Hz, H-4’), 3.43 (dd, 1H, J = 

4.9, 10.4 Hz, H-6’), 3.23 (ddd, 1H, J = 4.9, 9.9, 9.8 Hz, H-5’), 2.68 (t, 2H, J = 7.2 Hz, CH2 Lev), 2.53-2.57 (m, 

3H, H-6’, CH2 Lev), 2.13 (s, 3H, CH3 Lev), 0.87 (s, 9H, CH3 tBu), 0.87 (s, 9H, CH3 tBu); 13C-APT NMR (CDCl3, 

100 MHz, HSQC): δ 205.9 (C=O Lev), 172.4, 168.6, 165.1, 165.0, 161.6 (C=O Lev, Bz, CO2Me, TCA), 133.4, 

133.1, 132.8 (CHarom), 131.7, 129.9 (Cq), 129.8, 129.6, 129.0, 128.4, 128.4 (CHarom), 100.5 (C-1’), 92.4 (Cq CCl3), 

86.9 (C-1), 76.4 (C-4, C-5), 74.4 (C-4’), 74.3 (C-3’), 73.7 (C-3), 70.6 (C-5’), 69.6 (C-2), 64.8 (C-6’), 55.7 (C-2’), 

53.3 (CH3 CO2Me), 38.0 (CH2 Lev), 29.7 (CH3 Lev), 28.0 (CH2 Lev), 27.2, 26.7 (CH3 tBu), 22.4, 19.7 (Cq tBu); 

HRMS: [M+Na]+ calcd for C48H56Cl3NO15SSiNa 1076.20682, found 1076.20849. 

 

Methyl (phenyl 2,3-di-O-benoyl-4-[4,6-O-di-tert-butylsilylidene-3-O-levulinoyl-2-N-trifluoroacetamido-ββββ-D-

glucopyranosyl]-1-thio-ββββ-D-glucopyranosyl uronate) (19). Imidate donor 

2 (0.13 g, 0.195 mmol) and acceptor 17 (73 mg, 0.14 mmol) were together 

co-evaporated with toluene (twice). The residue was dissolved in distilled 

DCM (1.5 mL) and activated molecular sieves (3Å) were added. The 

mixture was stirred for 30 min at RT, followed by cooling to -20 ºC. Triflic acid (1.7 µL, 19.5 µmol) was added 

and the reaction was allowed to stir for 45 min, after which time Et3N was added (0.1 mL). The mixture was 

diluted with EtOAc, washed with sat. aq. NaCl, the organic phase was dried over MgSO4 and concentrated in 

vacuo. Purification using size exclusion chromatography (eluted with DCM/MeOH, 1/1, v/v) and subsequent flash 

column chromatography (silica gel, 20% EtOAc in PE) yielded the title compound as a white amorphous solid 

(Yield: 0.10 g, 0.10 mmol, 71%). TLC: Rf 0.56 (PE/EtOAc, 3/1, v/v); [α]D
20 -12.5 (c 1, DCM); R (neat, cm-1): 708, 

828, 1067, 1165, 1271, 1362, 1559, 1728, 2859, 3327; 1H NMR (CDCl3, 400 MHz, HH-COSY, HSQC): δ 7.90-

7.97 (m, 4H, CHarom), 7.50-7.58 (m, 2H, CHarom), 7.45-7.49 (m, 2H, CHarom), 7.36-7.43 (m, 4H, CHarom), 7.30-7.35 

(m, 3H, CHarom), 6.63 (d, 1H, J = 8.9 Hz, NH), 5.65 (t, 1H, J = 9.2 Hz, H-3), 5.40 (t, 1H, J = 9.8 Hz, H-2), 4.99 (d, 

1H, J = 10.0 Hz, H-1), 4.98 (dd, 1H, J = 9.1, 10.6 Hz, H-3’), 4.85 (d, 1H, J = 8.3 Hz, H-1’), 4.21 (t, 1H, J = 8.8 

Hz, H-4), 4.15 (d, 1H, J = 9.8 Hz, H-5), 3.87-3.91 (m, 1H, H-2’), 3.89 (s, 3H, CH3 CO2Me), 3.58 (t, 1H, J = 9.3 

Hz, H-4’), 3.39 (dd, 1H, J = 4.9, 10.5 Hz, H-6’), 3.21 (ddd, 1H, J = 4.9, 9.9, 9.9 Hz, H-5’), 2.73 (ddd, 2H, J = 3.0, 

6.2, 6.6 Hz, CH2 Lev), 2.52-2.62 (m, 3H, H-6’, CH2 Lev), 2.16 (s, 3H, CH3 Lev), 0.89 (s, 9H, CH3 tBu), 0.88 (s, 

9H, CH3 tBu); 13C-APT NMR (CDCl3, 100 MHz, HSQC): δ 206.1 (C=O Lev), 172.6, 168.6, 165.1, 165.1 (C=O 

Lev, Bz, CO2Me), 157.2 (q, J = 37 Hz, C=O CF3), 133.4, 133.2, 132.7 (CHarom), 131.7 (Cq), 129.9 (CHarom), 129.8 

(Cq), 129.7, 129.1 (CHarom), 129.0 (Cq), 128.5, 128.4 (CHarom), 100.6 (C-1’), 87.0 (C-1), 77.1, 77.0 (C-4, C-5), 74.3 

(C-4’), 74.1 (H-3’), 73.7 (C-3), 70.6 (C-5’), 69.6 (C-2), 64.8 (C-6’), 54.6, 53.3 (C-2’, CH3 CO2Me), 38.1 (CH2 

Lev), 29.6 (CH3 Lev), 28.0 (CH2 Lev), 27.3, 26.7 (CH3 tBu), 22.5, 19.7 (Cq tBu); HRMS: [M+Na]+ calcd for 

C48H56F3NO15SSiNa 1026.29842, found 1026.29885. 

 

Methyl (phenyl 2,3-di-O-benoyl-4-[4,6-O-di-tert-butylsilylidene-3-O-levulinoyl-2-N-trichloroethoxycarbo-

nyl-ββββ-D-glucopyranosyl]-1-thio-ββββ-D-glucopyranosyl uronate) (21). 

Imidate donor 4 (0.13 g, 0.16 mmol) and acceptor 17 (64 mg, 0.13 mmol) 

were together co-evaporated with toluene (twice). The residue was 

dissolved in distilled DCM (1.3 mL) and activated molecular sieves (3Å) 

were added. The mixture was stirred for 30 min at RT, followed by cooling to -20 ºC. Triflic acid (1.5 µL, 16 

µmol) was added and the reaction was allowed to stir for 70 min, after which time Et3N was added (0.1 mL). The 

mixture was diluted with EtOAc, washed with sat. aq. NaCl, the organic phase was dried over MgSO4 and 

concentrated in vacuo. Purification using size exclusion chromatography (eluted with DCM/MeOH, 1/1, v/v) and 

subsequent flash column chromatography (silica gel, 20% EtOAc in PE) yielded the title compound as a white 

amorphous solid (Yield: 0.12 g, 0.11 mmol, 89%). TLC: Rf 0.54 (PE/EtOAc, 3/1, v/v); [α]D
20 -19.5 (c 0.7, DCM); 

IR (neat, cm-1): 708, 826, 1067, 1269, 1732, 2324, 2361, 2936; 1H NMR (CDCl3, 400 MHz, HH-COSY, HSQC): δ 

7.90-7.97 (m, 4H, CHarom), 7.52-7.57 (m, 2H, CHarom), 7.44-7.48 (m, 2H, CHarom), 7.36-7.43 (m, 4H, CHarom), 7.31-

7.36 (m, 3H, CHarom), 5.66 (t, 1H, J = 9.2 Hz, H-3), 5.39 (t, 1H, J = 9.7 Hz, H-2), 5.03 (d, 1H, J = 9.2 Hz, NH), 
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4.98 (d, 1H, J = 10.0 Hz, H-1), 4.94 (t, 1H, J = 10.0 Hz, H-3’), 4.75-4.81 (m, 2H, CH2 Troc), 4.73 (d, 1H, J = 9.2 

Hz, H-1’), 4.25 (t, 1H, J = 9.3 Hz, H-4), 4.15 (d, 1H, J = 9.7 Hz, H-5), 3.55-3.61 (m, 1H, H-2’), 3.54 (t, 1H, J = 

9.3 Hz, H-4’), 3.37 (dd, 1H, J = 4.8, 10.3 Hz, H-6’), 3.17 (ddd, 1H, J = 4.9, 9.9, 9.9 Hz, H-5’), 2.69-2.75 (m, 2H, 

CH2 Lev), 2.64 (t, 1H, J = 10.2 Hz, H-6’), 2.53-2.59 (m, 2H, CH2 Lev), 2.16 (s, 3H, CH3 Lev), 0.89 (s, 9H, CH3 

tBu), 0.87 (s, 9H, CH3 tBu); 13C-APT NMR (CDCl3, 100 MHz, HSQC): δ 206.0 (C=O Lev), 172.4, 168.2, 165.2, 

165.0 (C=O Lev, Bz, CO2Me), 154.1 (C=O CCl3), 133.4, 133.2, 132.8 (CHarom), 131.6 (Cq), 129.9, 129.7, 129.0, 

128.4, 128.4 (CHarom), 101.5 (C-1’), 87.0 (C-1), 77.5, 77.2 (C-4, C-5), 74.6 (CH2 Troc), 74.5 (H-4’), 73.7 (H-3), 

70.4 (C-5’), 69.7 (C-2), 64.9 (C-6’), 55.9 (C-2’), 53.4 (CH3 CO2Me), 38.0 (CH2 Lev), 29.8 (CH3 Lev), 27.9 (CH2 

Lev), 27.3, 26.7 (CH3 tBu), 22.5, 19.7 (Cq tBu); HRMS: [M+Na]+ calcd for C49H58Cl3NO16SSiNa 1106.21739, 

found 1106.21862. 

 

Allyl 4,6-O-di-tert-butylsilylidene-2-N-trichloroacetamido-ββββ-D-glucopyranoside (23). The RV was charged 

with functionalized Merrifield polystyrene 22 (100 mg, 45 µmol) and prepared for 

the synthesis using protocol C. Then the coupling/deprotection cycle as depicted in 

Table 2 was run to couple monosaccharide donor 1. After the synthesis was 

complete, protocol H was used to isolate the resin, which was subsequently dried in 

vacuo overnight. The dry resin (charged to a 5-mL syringe) was washed with dry 

DCM (4x), suspended in DCM (3 mL) and purged with argon for 5 min. Grubbs’ 1st catalyst (~4 mg) was added, 

and the resulting purple suspension was consecutively purged with argon and ethylene gas. The mixture was 

allowed to stand at RT overnight. Then the solution was filtered off and the remaining resin was washed with 

DCM (8x). The combined filtrates were concentrated to give the product mixture containing compound 23 as a 

yellowish amorphous solid (Yield: 22 mg, 43.7 µmol, crude yield). TLC: Rf 0.77 (PE/EtOAc, 5/1, v/v); IR (neat, 

cm-1): 826, 1074, 1697, 2857, 2924, 3314; 1H NMR (CDCl3, 400 MHz, HH-COSY, HSQC): δ 6.96 (d, J = 7.0 Hz, 

NH), 5.85 (ddd, 1H, J = 5.8, 10.6, 16.7 Hz, CH All), 5.28 (dd, 1H, J = 1.6, 17.2 Hz, CH2 All), 5.20 (dd, 1H, J = 

0.8, 10.4 Hz, CH2 All), 4.97 (d, 1H, J = 8.3 Hz, H-1), 4.32 (dd, 1H, J = 5.2, 12.7 Hz, CH2 OAll), 4.20 (dd, 1H, J = 

5.1, 10.2 Hz, H-6), 4.14 (dd, 1H, J = 9.2, 10.0 Hz, H-4), 4.08 (dd, 1H, J = 6.3, 12.8 Hz, CH2 OAll), 3.94 (t, 1H, J = 

10.2 Hz, H-6), 3.71 (t, 1H, J = 9.0 Hz, H-3), 3.42-3.53 (m, 2H, H-2, H-5), 2.87 (bs, 1H, 3-OH), 1.06 (s, 9H, CH3 

tBu), 1.00 (s, 9H, CH3 tBu); 13C-APT NMR (CDCl3, 100 MHz, HSQC): δ 162.1 (C=O TCA), 133.3 (CH All), 

118.3 (CH2 All), 98.7 (C-1), 92.5 (Cq CCl3), 77.9 (C-3), 72.3 (C-4), 70.5 (CH2 OAll), 70.3 (C-5), 66.1 (C-6), 58.7 

(C-2), 27.4, 27.0 (CH3 tBu), 22.7, 19.9 (Cq tBu); HRMS: [M+Na]+ calcd for C19H32Cl3NO6SiNa 526.09567, found 

526.09541. 

 

Methyl (2,3-di-O-benoyl-4-[4,6-O-di-tert-butylsilylidene-3-O-levulinoyl-2-N-trichloroacetamido-ββββ-D-gluco-

pyranosyl]-αααα/ββββ-D-glucopyranose uronate) (26). Compound 18 (11.6 g, 

11.01 mmol) was dissolved in acetone/H2O (55 mL, 3/1, v/v) and treated 

with NBS (5.88 g, 33.02 mmol) at 0 ºC. The mixture was allowed to warm to 

RT during 3 h, after which time the reaction was quenched by addition of sat. 

aq. Na2S2O3. The mixture was diluted with EtOAc, the organic phase was washed with sat. aq. NaHCO3 and sat. 

aq. NaCl, dried over MgSO4 and concentrated in vacuo. Purification using flash column chromatography (silica 

gel, 50% EtOAc in PE) yielded the title compound as a colorless oil (Yield: 8.08 g, 8.41 mmol, 75%, α >> β). 

Spectroscopic data are in full accord with those reported previously.18 TLC: Rf 0.55 (PE/EtOAc, 3/1, v/v); 1H 

NMR (CDCl3, 400 MHz, HH-COSY, HSQC): δ 7.92-7.97 (m, 4H, CHarom), 7.53 (t, 1H, J = 7.4 Hz, CHarom), 7.39 

(t, 3H, J = 7.7 Hz, CHarom), 7.27 (t, 2H, J = 7.8 Hz, CHarom), 6.92 (d, 1H, J = 8.8 Hz, NH), 6.00 (t, 1H, J = 9.7 Hz, 

H-3), 5.69 (bs, 1H, H-1), 5.23 (dd, 1H, J = 3.5, 10.1 Hz, H-2), 5.03 (t, 1H, J = 9.9 Hz, H-3’), 4.95 (d, 1H, J = 8.3 

Hz, H-1’), 4.63 (d, 1H, J = 9.6 Hz, H-5), 4.37 (bs, 1H, 1-OH), 4.21 (t, 1H, J = 9.2 Hz, H-4), 3.80-3.86 (m, 1H, H-

2’), 3.80 (s, 3H, CH3 CO2Me), 3.54 (t, 1H, J = 9.3 Hz, H-4’), 3.48 (dd, 1H, J = 4.9, 10.5 Hz, H-6’), 3.24 (ddd, 1H, 

J = 4.9, 9.8, 9.8 Hz, H-5’), 2.68 (t, 2H, J = 6.9 Hz, CH2 Lev), 2.60-2.65 (m, 1H, H-6’), 2.55 (t, 2H, J = 6.8 Hz, 

CH2 Lev), 2.13 (s, 3H, CH3 Lev), 0.88 (s, 9H, CH3 tBu), 0.86 (s, 9H, CH3 tBu); 13C-APT NMR (CDCl3, 100 MHz, 

HSQC): δ 206.0 (C=O Lev), 172.4, 170.1, 165.9, 165.1, 161.8 (C=O Lev, Bz, CO2Me, TCA), 133.3, 133.0 

(CHarom), 130.0 (Cq), 129.8, 129.5 (CHarom), 128.9 (Cq), 128.3 (CHarom), 100.4 (C-1’), 92.3 (Cq CCl3), 90.4 (C-1), 

76.8 (C-4), 74.4 (C-4’), 74.1 (C-3’), 71.0 (C-2), 70.5 (C-5’), 69.8 (C-3), 69.3 (C-5), 64.9 (C-6’), 55.8 (C-2’), 53.0 
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(CH3 CO2Me), 38.0 (CH2 Lev), 29.6 (CH3 Lev), 27.9 (CH2 Lev), 27.2, 26.7 (CH3 tBu), 22.4, 19.6 (Cq tBu); 

HRMS: [M+Na]+ calcd for C42H52Cl3NO16SiNa 984.19836, found 984.19973. 

 

Methyl (2,3-di-O-benoyl-4-[4,6-O-di-tert-butylsilylidene-3-O-levulinoyl-2-N-trichloroacetamido-ββββ-D-gluco-

pyranosyl]-1-O-(N-phenyl-trifluoroacetimidoyl)-αααα/ββββ-D-glucopyra-

nosyl uronate) (27). A solution of compound 26 (8.08 g, 8.41 mmol) 

in acetone (42 mL) was cooled to 0 ºC and treated with N-phenyl 

trifluoroacetimidoyl chloride (1.33 mL, 10.1 mmol) and Cs2CO3 (4.11 

g, 12.6 mmol). The mixture was stirred overnight at 4 ºC, followed by filtratation of Celite, evaporation of the 

solvents and purification using flash column chromatography (silica gel, 25% EtOAc in PE) to afford compound 

27 as a yellowish oil (Yield: 7.20 g, 6.36 mmol, 76 %, α : β = 2 : 1). Spectroscopic data are in full accord with 

those reported previously.18 TLC: Rf 0.65 (PE/EtOAc, 3/1, v/v); 1H NMR (CDCl3, 400 MHz, HH-COSY, HSQC, 

T = 328 K): δ 7.97 (d, 4H, J = 8.0 Hz, CHarom-α), 7.94 (d, 2H, J = 8.0 Hz, CHarom-β), 7.52 (t, 4H, J = 7.3 Hz, 

CHarom), 7.35-7.44 (m, 6H, CHarom), 7.05-7.15 (m, 3H, CHarom), 7.00 (t, 1H, J = 7.4 Hz, CHarom), 6.74-6.80 (m, 

2.5H, 1 x CHarom, NH-α, NH-β), 6.71 (bs, 1H, H-1α), 6.48 (d, 2H, J = 7.7 Hz, CHarom), 6.19 (d, 0.5H, J = 3.9 Hz, 

H-1β), 5.92 (t, 1H, J = 9.5 Hz, H-3α), 5.70 (t, 0.5Hz, J = 7.9 Hz, H-3β), 5.52-5.56 (m, 0.5H, H-2β), 5.49 (dd, 1H, 

J = 3.5, 10.4 Hz, H-2α), 5.03-5.12 (m, 1.5H, H-3’α, H-3’β), 4.50 (d, 1H, J = 8.3 Hz, H-1’α), 4.95 (d, 0.5H, J = 

8.3 Hz, H-1’β), 4.49 (d, 1H, J = 9.8 Hz, H-5α), 4.44 (t, 0.5H, J = 8.0 Hz, H-4β), 4.37 (t, 1H, J = 9.3 Hz, H-4α), 

4.28 (d, 0.5H, J = 7.5 Hz, H-5β), 3.87 (s, 3H, CH3 CO2Me-α), 3.77 (s, 1.5H, CH3 CO2Me-β), 3.74-3.83 (m, 1.5H, 

H-2’α, H-2’β), 3.50-3.68 (m, 3H, H-4’α, H-4’β, H-6’α, H-6’β), 3.24-3.35 (m, 1.5H, H-5’α, H-5’β), 2.82-2.93 (m, 

1.5H, H-6’α, H-6’β), 2.67 (t, 3H, J = 6.5 Hz, CH2 Lev-α, CH2 Lev-β), 2.57 (t, 3H, J = 6.6 Hz, CH2 Lev-α, CH2 

Lev-β), 2.12 (s, 4.5H, CH3 Lev), 0.91 (s, 13.5H, CH3 tBu), 0.89 (s, 13.5H, CH3 tBu); 13C-APT NMR (CDCl3, 100 

MHz, HSQC, T = 328 K): δ 205.4 (C=O Lev), 172.2, 168.8, 165.0, 164.8, 161.6 (C=O β Lev, Bz, CO2Me, TCA), 

172.1, 168.6, 165.3, 164.9, 161.6 (C=O α Lev, Bz, CO2Me, TCA), 142.9 (Cq-β), 142.7 (Cq-α), 133.6 (CHarom-α), 

133.4, 133.2 (CHarom-β), 133.1 (CHarom-α), 129.9 (Cq), 129.9, 129.8, 129.7 (CHarom), 129.0 (Cq), 128.7, 128.6, 

128.5, 128.4, 128.4, 124.6, 124.5, 119.3, 119.1 (CHarom), 115.9 (q, J = 287 Hz, CF3), 101.0 (C-1’β), 100.1 (C-1’α), 

94.8 (C-1b), 92.5 (Cq CCl3), 92.1 (C-1α), 75.8 (C-4α), 75.7 (C-4β), 74.7 (C-4’α), 74.5 (C-4’β), 74.4 (C-5β), 74.1 

(C-3’β), 74.0 (C-3’α), 71.8 (C-5α), 70.9 (C-3β), 70.8 (C-5’α, C-5’β), 70.7 (C-2β), 70.0 (C-3α), 69.6 (C-2α), 65.2 

(C-6’α, C-6’β), 56.2 (C-2’α), 56.0 (C-2’β), 53.2 (CH3 CO2Me-α), 53.0 (CH3 CO2Me-β), 38.0 (CH2 Lev), 29.5 

(CH3 Lev), 28.1 (CH2 Lev), 27.3, 26.8 (CH3 tBu), 22.4, 19.7 (Cq tBu); HRMS: [M+Na]+ calcd for 

C50H56Cl3F3N2O16SiNa 1155.22795, found 1155.22952. 

 

Allyl 4,6-O-di-tert-butylsilylidene-3-(methyl [2,3-di-O-benzoyl-4-{4,6-O-di-tert-butylsilylidene-2-N-trichloro-

acetamido-ββββ-D-glucopyranosyl}-ββββ-D-glucopyranosyl 

uronate])-2-N-trichloroacetamido-ββββ-D-glucopyranoside 

(30). The RV was charged with functionalized Merrifield 

polystyrene 22 (100 mg, 45 µmol) and prepared for the 

synthesis using protocol C. Then the coupling/deprotection cycle as depicted in Table 2 was run to couple first 

monosaccharide donor 1, followed by the coupling/deprotection cycle with disaccharide donor 27 to produce 

trisaccharide 30 ~7 h. After the synthesis was complete, protocol H was used to isolate the resin, which was 

subsequently dried in vacuo overnight. The dry resin (charged to a 5-mL syringe) was washed with dry DCM (4x), 

suspended in DCM (3 mL) and purged with argon for 5 min. Grubbs’ 1st catalyst (~4 mg) was added, and the 

resulting purple suspension was consecutively purged with argon and ethylene gas. The mixture was allowed to 

stand at RT overnight. Then the solution was filtered off and the remaining resin was washed with DCM (8x). 

This procedure was then repeated, and the combined filtrates were concentrated to give the product mixture 

containing compound 30 as a yellowish amorphous solid (Yield: 55 mg, 40.3 µmol, crude yield). TLC: Rf 0.61 

(PE/EtOAc, 5/1, v/v); IR (neat, cm-1): 826, 1070, 1269, 1719, 2857, 2930; 1H NMR (CDCl3, 400 MHz, HH-

COSY, HSQC): δ 7.89-7.95 (m, 4H, CHarom), 7.52 (dd, 2H, J = 7.6, 16.4 Hz, CHarom), 7.38 (dt, 4H, J = 7.7, 15.3 

Hz, CHarom), 6.99 (d, 1H, J = 7.6 Hz, NH”), 6.85 (d, 1H, J = 7.8 Hz, NH), 5.81 (ddd, 1H, J = 5.8, 11.0, 22.3 Hz, 

CH All), 5.59 (t, 1H, J = 9.2 Hz, H-3’), 5.22-5.30 (m, 3H, H-1’, H-2’, 1 x CH2 All), 5.18 (dd, 1H, J = 1.1, 10.4 Hz, 

CH2 All), 4.97 (d, 1H, J = 8.3 Hz, H-1”), 4.89 (d, 1H, J = 8.3 Hz, H-1), 4.25-4.38 (m, 3H, H-3, H-4’, 1 x CH2 

OAll), 4.10-4.20 (m, 2H, H-5’, H-6), 4.04 (dd, 1H, J = 6.3, 12.9 Hz, CH2 OAll), 3.88-3.96 (m, 2H, H-4, H-6), 3.84 
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(s, 3H, CH3 CO2Me), 3.74 (t, 1H, J = 9.5 Hz, H-3”), 3.40-3.58 (m, 4H, H-2, H-2”, H-5, H-6”), 3.37 (t, 1H, J = 8.9 

Hz, H-4”), 3.21 (ddd, 1H, J = 4.9, 9.8, 9.7 Hz, H-5”), 2.82 (bs, 1H, 3”-OH), 2.61 (t, 1H, J = 10.3 Hz, H-6”), 1.03 

(s, 9H, CH3 tBu), 0.90 (s, 18H, CH3 tBu), 0.86 (s, 9H, CH3 tBu); 13C-APT NMR (CDCl3, 100 MHz, HSQC): 

δ 170.1, 165.7, 165.3, 162.3, 161.8 (C=O Bz, CO2Me, TCA), 133.5, 133.2 (CHarom), 129.9 (Cq), 129.8, 129.7 

(CHarom), 128.9 (Cq), 128.5, 128.4 (CHarom), 118.3 (CH2 All), 99.9 (C-1’, C-1”), 98.6 (C-1), 92.7, 92.5 (2 x Cq 

CCl3), 77.8 (C-3), 77.3 (C-4”), 76.2 (C-4’), 76.0 (C-4), 74.3 (C-4” or C-5’), 74.2 (C-4” or C-5’), 73.7 (C-2’), 71.7 

(C-3’), 70.5 (CH2 OAll), 70.4 (C-5), 70.2 (C-5”), 66.2 (C-6), 65.1 (C-6”), 58.0, 58.0 (C-2, C-2”), 53.1 (CH3 

CO2Me), 27.4, 27.3, 26.9, 26.8 (CH3 tBu), 22.7, 22.5, 19.8 ( 4 x Cq tBu); LC-MS: Rt 4.63 min (C4 column, linear 

gradient 70 → 90% B in 13.5 min); HRMS: [M+Na]+ calcd for C56H76Cl6N2O19Si2Na 1371.25747, found 

1371.25870. 

 

Heptamer (31). The RV was charged with functionalized Merrifield polystyrene 22 (100 mg, 45 µmol) and 

prepared for the synthesis using protocol C. Then the 

coupling/deprotection cycle as depicted in Table 2 was 

run to couple first monosaccharide donor 1, and then 

repeated three times with disaccharide donor 27 to 

produce heptasaccharide 31 in ~14 h. After the synthesis 

was complete, protocol H was used to isolate the resin, which was subsequently dried in vacuo overnight. The dry 

resin (charged to a 5-mL syringe) was washed with dry DCM (4x), suspended in DCM (3 mL) and purged with 

argon for 5 min. Grubbs’ 1st catalyst (~4 mg) and trichloroacetamide (~ 40 mg) were added, and the resulting 

brownish suspension was consecutively purged with argon and ethylene gas. The mixture was allowed to stand at 

RT overnight. Then the solution was filtered off and the remaining resin was washed with DCM (8x). This 

procedure was then repeated, and the combined filtrates were concentrated to give the product mixture containing 

compound 31 as a yellowish amorphous solid (Yield: 96 mg, 31.5 µmol, crude yield). TLC: Rf 0.41 (PE/EtOAc, 

3/1, v/v); Spectroscopic data are reported for the major product: 1H NMR (CDCl3, 600 MHz, HH-COSY, HSQC, 

T = 308 K): δ 7.86-7.95 (m, 12H, CHarom), 7.46-7.58 (m, 6H, CHarom), 7.32-7.45 (m, 12H, CHarom), 7.05-7.15 (m, 

4H, NH), 5.81 (ddd, 1H, J = 5.7, 5.6, 10.9 Hz, CH All), 5.57 (t, 1H, J = 9.2 Hz, H-3GlcA), 5.56 (t, 1H, J = 9.2 Hz, 

H-3GlcA), 5.51 (t, 1H, J = 9.1 Hz, H-3GlcA), 5.36-5.45 (m, 3H, 3 x H-1GlcA), 5.20-5.28 (m, 2H, CH2 All, H-2GlcA), 

5.17 (d, 1H, J = 10.4 Hz, CH2 All), 5.08-5.13 (m, 2H, 2 x H-2GlcA), 5.00 (d, 1H, J = 8.7 Hz, H-1GlcN), 4.98 (d, 1H, J 

= 8.9 Hz, H-1GlcN), 4.95 (d, 1H, J = 8.4 Hz, H-1GlcN), 4.83 (d, 1H, J = 8.3 Hz, H-1GlcN), 4.33-4.40 (m, 3H, 3 x H-

4GlcA), 4.28 (dd, 1H, J = 5.1, 12.9 Hz, CH2 OAll), 4.14-4.20 (m, 3H, 2 x H-5GlcA, H-6GlcN), 4.05-4.14 (m, 3H, 2 x 

H-4GlcN, 1 x H-5GlcA), 4.05 (dd, 1H, J = 6.2, 12.9 Hz, CH2 OAll), 3.90-3.96 (m, 2H, H-4GlcN, H-6GlcN), 3.82 (s, 3H, 

CH3 CO2Me), 3.80 (s, 3H, CH3 CO2Me), 3.78 (s, 3H, CH3 CO2Me), 3.71 (t, 1H, J = 9.6 Hz, H-3GlcN), 3.47-3.66 

(m, 10H, 4 x H-2GlcN, 3 x H-3GlcN, 3 x H-6GlcN), 3.38-3.46 (m, 2H, H-4GlcN, H-5GlcN), 3.15-3.26 (m, 3H, 3 x H-5GlcN), 

2.60-2.69 (m, 3H, 3 x H-6GlcN), 1.03 (s, 9H, CH3 tBu), 0.91 (s, 18H, CH3 tBu), 0.89 (s, 18H, CH3 tBu), 0.85 (s, 9H, 

CH3 tBu), 0.79 (s, 9H, CH3 tBu), 0.77 (s, 9H, CH3 tBu); 13C-APT NMR (CDCl3, 150 MHz, HSQC, T = 308 K): 

δ 171.0, 170.3, 170.1 (C=O CO2Me), 165.9, 165.8, 165.8, 165.4, 165.3, 165.2 (C=O Bz), 162.6, 161.9, 161.6, 

161.5 (C=O TCA), 133.6, 133.4, 133.3, 133.2, 133.0, 133.0 (CH All, CHarom), 130.0, 130.0, 129.9, 129.8 (Cq), 

129.8, 129.7, 129.6, 129.5 (CHarom), 128.9, 128.8, 128.7 (Cq), 128.4, 128.3, 128.3, 128.2, 128.1 (CHarom), 118.0 

(CH2 All), 100.6, 100.2, 100.0, 99.9, 99.6, 99.5, 99.1 (3 x C-1GlcA, 4 x C-1GlcN), 92.7, 92.7, 92.7, 92.6 (Cq CCl3), 

78.7, 78.5, 78.3, 77.7, 76.4, 76.3, 76.1, 76.0, 75.9, 75.8 (3 x C-3GlcN, 3 x C-4GlcA, 4 x C-4GlcN), 75.0, 74.9, 74.8, 

74.7, 74.6, 74.5, 74.2 (3 x C-2GlcA, C-3GlcN, 3 x C-5GlcA), 71.6, 71.5, 71.5 (3 x C-3GlcA), 70.4 (CH2 OAll), 70.3, 70.1, 

69.8, 69.8 (4 x C-5GlcN), 66.1, 65.2, 65.2, 65.1 (4 x C-6GlcN), 57.7, 57.5, 57.1, 56.9 (4 x C-2GlcN), 52.9, 52.7, 52.7 (3 

x CH3 CO2Me), 27.3, 27.2, 27.1, 27.1, 26.9, 26.7, 26.7, 26.6 (24 x CH3 tBu), 22.6, 22.4, 22.4, 19.7, 19.7, 19.5, 

19.5 (8 x Cq tBu); LC-MS: Rt 10.24 min (C4 column, linear gradient 85 → 95% B in 13.5 min); ); MALDI: 

[M+Na]+ calcd for C130H164Cl12N4O45Si4Na 3062.6, found 3063.6. 

 

Undecamer (32). The RV was charged with functionalized Merrifield polystyrene 22 (100 mg, 45 µmol) and 

prepared for the synthesis using protocol C. Then the 

coupling/deprotection cycle as depicted in Table 2 was 

run to couple first monosaccharide donor 1, and then 

repeated five times with disaccharide donor 27 to 

produce undecasaccharide 32 in ~21 h. After the 
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synthesis was complete, protocol H was used to isolate the resin, which was subsequently dried in vacuo 

overnight. The dry resin (charged to a 5-mL syringe) was washed with dry DCM (4x), suspended in DCM (3 mL) 

and purged with argon for 5 min. Grubbs’ 1st catalyst (~4 mg) and trichloroacetamide (~ 40 mg) were added, and 

the resulting brownish suspension was consecutively purged with argon and ethylene gas. The mixture was 

allowed to stand at RT overnight. Then the solution was filtered off and the remaining resin was washed with 

DCM (8x). This procedure was then repeated, and the combined filtrates were concentrated to give the product 

mixture containing compound 32 as a yellowish oil (Yield: 190 mg, 40.1 µmol, crude yield). TLC: Rf 0.21 

(PE/EtOAc, 3/1, v/v); Spectroscopic data are reported for the major product: 1H NMR (CDCl3, 600 MHz, HH-

COSY, HSQC, T = 308 K): δ 7.84-7.98 (m, 20H, CHarom), 7.46-7.60 (m, 10H, CHarom), 7.31-7.45 (m, 20H, 

CHarom), 7.06-7.20 (m, 6H, NH), 5.82 (ddd, 1H, J = 5.7, 10.8, 10.8 Hz, CH All), 5.48-5.60 (m, 5H, 5 x H-3GlcA), 

5.36-5.48 (m, 5H, 5 x H-1GlcA), 5.20-5.28 (m, 2H, H-2GlcA, CH2 All), 5.17 (d, 1H, J = 10.2 Hz, CH2 All), 5.08-5.14 

(m, 4H, 4 x H-2GlcA), 4.97-5.02 (m, 4H, 5 x H-1GlcN), 4.95 (d, 1H, J = 8.2 Hz, H-1GlcN), 4.82 (d, 1H, J = 8.3 Hz, H-

1GlcN), 4.32-4.40 (m, 5H, 5 x H-4GlcA), 4.28 (dd, 1H, J = 5.0, 13.0 Hz, CH2 OAll), 4.02-4.21 (m, 11H, 4 x H-4GlcN, 5 

x H-5GlcA, H-6GlcN, CH2 OAll), 3.89-3.95 (m, 2H, H-4GlcN, H-6GlcN), 3.82 (s, 4H, CH3 CO2Me), 3.80 (s, 4H, CH3 

CO2Me), 3.78 (s, 7H, CH3 CO2Me), 3.72 (t, 1H, J = 9.0 Hz, H-3GlcN), 3.46-3.68 (m, 16H, 6 x H-2GlcN, 5 x H-3GlcN, 

5 x H-6GlcN), 3.38-3.45 (m, 2H, H-4GlcN, H-5GlcN), 3.15-3.25 (m, 5H, 5 x H-5GlcN), 2.59-2.70 (m, 5H, 5 x H-6GlcN), 

1.04 (s, 9H, CH3 tBu), 0.91 (s, 18H, CH3 tBu), 0.89 (s, 36H, CH3 tBu), 0.85 (s, 18H, CH3 tBu), 0.79 (s, 18H, CH3 

tBu), 0.78 (s, 9H, CH3 tBu); 13C-APT NMR (CDCl3, 150 MHz, HSQC, T = 308 K): δ 171.0, 170.4, 170.3, 170.3, 

170.0 (C=O CO2Me), 165.9, 165.7, 165.7, 165.4, 165.2, 165.2 (10 x C=O Bz), 162.6, 161.8, 161.6, 161.5, 161.5 (6 

x C=O TCA), 133.5, 133.3, 133.3, 133.1, 133.0, 132.9 (CH All, CHarom), 130.0, 130.0, 129.9, 129.8 (Cq), 129.8, 

129.7, 129.6, 129.5 (CHarom), 128.9, 128.8, 128.7 (Cq), 128.4, 128.4, 128.3, 128.2 (CHarom), 118.0 (CH2 All), 100.6, 

100.2, 100.2, 100.1, 100.0, 99.9, 99.6, 99.5, 99.1 (5 x C-1GlcA, 6 x C-1GlcN), 92.7, 92.7, 92.6, 92.6 (6 x Cq CCl3), 

78.8, 78.6, 78.5, 78.3, 77.6, 76.4, 76.3, 76.1, 76.0, 75.9, 75.9, 75.8, 75.0, 74.8, 74.7, 74.7, 74.5, 74.2 (…), 71.6, 

71.5, 71.5 (5 x C-3GlcA), 70.4 (CH2 OAll), 70.2, 70.1, 69.8, 69.7 (6 x C-5GlcN), 66.1, 65.2, 65.1, 65.0 (6 x C-6GlcN), 

57.7, 57.4, 57.1, 56.9, 56.9, 56.8 (6 x C-2GlcN), 52.9, 52.7, 52.6 (5 x CH3 CO2Me), 27.3, 27.2, 27.1, 26.8, 26.6, 26.6 

(36 x CH3 tBu), 22.6, 22.4, 22.4, 19.7, 19.6, 19.5, 19.5 (12 x Cq tBu); MALDI: [M+H]+ calcd for 

C204H253Cl18N6O71Si6 4729.9, found 4728.9. 

 

Pentadecamer (33). The RV was charged with functionalized Merrifield polystyrene 22 (100 mg, 45 µmol) and 

prepared for the synthesis using protocol C. Then the 

coupling/deprotection cycle as depicted in Table 2 was 

run to couple first monosaccharide donor 1, and then 

repeated seven times with disaccharide donor 27 to 

produce pentadecasaccharide 33 in ~28 h. After the 

synthesis was complete, protocol H was used to isolate the resin, which was subsequently dried in vacuo 

overnight. The dry resin (charged to a 10-mL syringe) was washed with dry DCM (4x), suspended in DCM (5 

mL) and purged with argon for 5 min. Grubbs’ 1st catalyst (~4 mg) and trichloroacetamide (~ 40 mg) were added, 

and the resulting brownish suspension was consecutively purged with argon and ethylene gas. The mixture was 

allowed to stand at RT overnight. Then the solution was filtered off and the remaining resin was washed with 

DCM (8x). This procedure was then repeated, and the combined filtrates were concentrated to give the product 

mixture containing compound 33 as a yellowish oil (Yield: 255 mg, 39.6 µmol, crude yield). TLC: Rf 0.50 

(PE/EtOAc, 2/1, v/v); Spectroscopic data are reported for the major product: 1H NMR (CDCl3, 600 MHz, HH-

COSY, HSQC, T = 308 K): δ 7.83-7.98 (m, 28H, CHarom), 7.46-7.55 (m, 14H, CHarom), 7.30-7.44 (m, 28H, 

CHarom), 7.08-7.20 (m, 8H, NH), 5.82 (ddd, 1H, J = 5.7, 10.8, 10.8 Hz, CH All), 5.49-5.60 (m, 7H, 7 x H-3GlcA), 

5.36-5.48 (m, 7H, 7 x H-1GlcA), 5.22-5.28 (m, 2H, H-2GlcA, CH2 All), 5.17 (d, 1H, J = 10.3 Hz, CH2 All), 5.07-5.15 

(m, 6H, 6 x H-2GlcA), 4.98-5.04 (m, 6H, 6 x H-1GlcN), 4.96 (d, 1H, J = 8.1 Hz, H-1GlcN), 4.83 (d, 1H, J = 8.1 Hz, H-

1GlcN), 4.32-4.43 (m, 7H, 7 x H-4GlcA), 4.29 (dd, 1H, J = 4.3, 13.1 Hz, CH2 OAll), 4.03-3.22 (m, 15H, 6 x H-4GlcN, 7 

x H-5GlcA, H-6GlcN, CH2 OAll), 3.90-3.97 (m, 2H, H-4GlcN, H-6GlcN), 3.83 (s, 4H, CH3 CO2Me), 3.80 (s, 6H, CH3 

CO2Me), 3.78 (s, 11H, CH3 CO2Me), 3.72 (t, 1H, J = 9.0 Hz, H-3GlcN), 3.48-3.67 (m, 22H, 8 x H-2GlcN, 7 x H-3GlcN, 

7 x H-6GlcN), 3.37-3.46 (m, 2H, H-4GlcN, H-5GlcN), 3.15-3.26 (m, 7H, 7 x H-5GlcN), 2.60-2.70 (m, 7H, 7 x H-6GlcN), 

1.04 (s, 9H, CH3 tBu), 0.91 (s, 27H, CH3 tBu), 0.89 (s, 54H, CH3 tBu), 0.85 (s, 18H, CH3 tBu), 0.79 (s, 27H, CH3 

tBu), 0.78 (s, 9H, CH3 tBu); 13C-APT NMR (CDCl3, 150 MHz, HSQC T = 308 K): δ 171.0, 170.4, 170.4, 170.3, 

170.0 (7 x C=O CO2Me), 165.9, 165.7, 165.6, 165.3, 165.2 (14 x C=O Bz), 162.5, 161.8, 161.5, 161.5 (8 x C=O 
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TCA), 133.5, 133.2, 133.1, 133.0, 132.9 (CH All, CHarom), 129.9, 129.9, 129.8 (Cq), 129.7, 129.7, 129.6, 129.5 

(CHarom), 128.9, 128.8, 128.7, 128.7 (Cq), 128.3, 128.3, 128.2 (CHarom), 117.9 (CH2 All), 100.6, 100.2, 100.0, 99.9, 

99.5, 99.4, 99.1 (7 x C-1GlcA, 8 x C-1GlcN), 92.7, 92.7, 92.6, 92.6, 92.5 (8 x Cq CCl3), 78.7, 78.5, 78.5, 78.3, 77.6, 

76.3, 76.3, 76.1, 76.0, 75.9, 75.8, 75.1, 74.8, 74.7, 74.7, 74.4, 74.2 (…), 71.5, 71.5, 71.4 (7 x C-3GlcA), 70.3 (CH2 

OAll), 70.2, 70.0, 69.7 (8 x C-5GlcN), 66.0, 65.1, 65.1, 65.0 (8 C-6GlcN), 57.7, 57.4, 57.0, 56.8, 56.8 (8 x C-2GlcN), 

52.8, 52.6, 52.6 (7 x CH3 CO2Me), 27.3, 27.1, 27.0, 26.8, 26.6, 26.5 (48 x CH3 tBu), 22.5, 22.3, 19.6, 19.6, 19.5 

(16 x Cq tBu); MALDI: [M+Na]+ calcd for C278H340Cl24N8O97Si8Na 6442.2, found 6441.1. 

 

General procedure for the desilylation. The oligosaccharide was dissolved in dry THF (~ 40 mg per mL) under 

an argon atmosphere, and treated with 3HF·Et3N (3 eq per silyl group) for 2.5 h. The reaction was quenched by the 

addition of sat. aq. NaHCO3, diluted with EtOAc and the organic phase was washed with sat. aq. NaCl. 

Purification using RP-HPLC afforded the semi-protected oligosaccharides. 

 

Heptamer (34). Compound 31 (40 mg, 13.1 µmol, crude) was desilylated using the general procedure to afford 

product 34 after HPLC purification (Yield: 12 mg, 4.8 

µmol, 37%, overall: 26% based on 45 µmol of resin 22). 

TLC: Rf 0.36 (DCM/MeOH, 9/1, v/v); IR (neat, cm-1): 

1028, 1070, 1090, 1269, 1724; 1H NMR (MeCN-d3, 600 

MHz, HH-COSY, HSQC): δ 7.85-7.93 (m, 12H, 

CHarom), 7.57-7.62 (m, 4H, CHarom), 7.53-7.57 (m, 3H, CHarom), 7.41-7.49 (m, 11H, CHarom), 7.36-7.41 (m, 4H, 4 x 

NH), 5.84 (ddd, 1H, J = 5.5, 10.8, 22.5 Hz, CH All), 5.59 (t, 1H, J = 8.2 Hz, H-3GlcA), 5.56 (t, 1H, J = 8.5 Hz, H-

3GlcA), 5.55 (t, 1H, J = 8.3 Hz, H-3GlcA), 5.31 (dd, 1H, J = 7.2, 8.2 Hz, H-2GlcA), 5.26 (dd, 1H, J = 7.1, 8.4 Hz, H-

2GlcA), 5.20-5.23 (m, 2H, H-2GlcA, CH2 All), 5.12 (ddd, 1H, J = 1.3, 3.0, 10.5 Hz, CH2 All), 5.09 (d, 1H, J = 7.0 Hz, 

H-1GlcA), 5.04 (d, 1H, J = 7.0 Hz, H-1GlcA), 5.01 (d, 1H, J = 6.8 Hz, H-1GlcA), 4.69 (d, 1H, J = 8.2 Hz, H-1GlcN), 4.68 

(d, 1H, J = 7.8 Hz, H-1GlcN), 4.67 (d, 1H, J = 7.9 Hz, H-1GlcN), 4.57 (d, 1H, J = 8.4 Hz, H-1GlcN), 4.41-4.49 (m, 3H, 

3 x H-4GlcA), 4.34 (d, 2H, J = 8.3 Hz, 2 x H-5GlcA), 4.30 (d, 1H, J = 8.3 Hz, H-5GlcA), 4.26 (ddt, 1H, J = 1.5, 5.2, 

13.2 Hz, CH2 OAll), 4.03 (ddt, 1H, J = 1.3, 5.8, 13.3 Hz, CH2 OAll), 3.84-3.95 (m, 3H, 3 x H-3GlcN), 3.79-3.82 (m, 

1H, H-6GlcN), 3.78 (s, 3H, CH3 CO2Me), 3.76 (s, 3H, CH3 CO2Me), 3.72 (s, 3H, CH3 CO2Me), 3.66 (dd, 1H, J = 

5.6, 11.8 Hz, H-6GlcN), 3.61 (dd, 1H, J = 9.0, 19.1 Hz, H-2GlcN), 3.40-3.54 (m, 7H, 3 x H-2GlcN, H-3GlcN, H-4GlcN, 2 x 

H-6GlcN), 3.37 (d, 1H, J = 10.9 Hz, H-6GlcN), 3.30 (ddd, 1H, J = 2.6, 5.6, 9.5 Hz, H-5GlcN), 3.17-3.22 (m, 2H, 2 x H-

5GlcN), 3.12 (ddd, 1H, J = 2.9, 6.2, 9.3 Hz, H-5GlcN), 2.89-3.05 (m, 6H, 3 x H-4GlcN, 3 x H-6GlcN); 13C-APT NMR 

(MeCN-d3, 150 MHz, HSQC): δ 169.5, 169.5 (C=O CO2Me), 166.2, 166.1, 166.1, 166.1 (C=O Bz), 163.1, 162.8, 

162.6, 162.6 (C=O TCA), 135.1 (CH All), 134.4, 134.4, 130.9, 130.8 (CHarom), 130.5, 130.5 (Cq), 130.4 (CHarom), 

130.2, 130.1, 130.1 (Cq), 129.5, 129.4, 129.4 (CHarom), 117.5 (CH2 All), 100.9, 100.8, 100.7, 100.7, 100.5 100.3 (3 

x C-1GlcA, 4 x C-1GlcN), 93.7, 93.5, 93.4, 93.4 (Cq CCl3), 83.2, 82.7, 82.5 (3 x C-3GlcN), 77.4, 77.3, 77.2, 77.1 (4 x C-

5GlcN), 75.7, 75.1, 75.0 (3 x C-4GlcA), 74.6, 74.6, 74.6, 74.5 (1 x C-3GlcN, 3 x C-5GlcA), 73.3, 72.9 (3 x C-3GlcA), 

72.6, 72.6, 72.5 (3 x C-2GlcA), 72.2 (C-4GlcN), 70.7 (CH2 OAll), 70.5, 70.5, 70.3 (3 x C-4GlcN), 62.7, 62.6 (4 x C-

6GlcN), 58.8, 57.6, 57.4 (4 x C-2GlcN), 53.9, 53.9, 53.8 (3 x CH3 CO2Me); LC-MS: Rt 9.19 min (C4 column, linear 

gradient 10 → 90% B in 13.5 min); MALDI: [M+Na]+ calcd for C98H100Cl12N4O45Na 2502.2, found 2501.7. 

 

Undecamer (35). Compound 32 (85 mg, 17.9 µmol, crude) was desilylated using the general procedure to afford 

product 35 after HPLC purification (Yield: 25 mg, 6.4 

µmol, 36%, overall: 32% based on 45 µmol of resin 22). 

TLC: Rf 0.39 (DCM/MeOH, 9/1, v/v); IR (neat, cm-1): 

1026, 1069, 1086, 1263, 1724; 1H NMR (MeCN-d3, 600 

MHz, HH-COSY, HSQC): δ 7.85-7.94 (m, 20H, CHarom), 7.52-7.62 (m, 10H, CHarom), 7.35-7.51 (m, 26H, 20 x 

CHarom, 6 x NH), 5.84 (ddd, 1H, J = 5.5, 10.7, 22.6 Hz, CH All), 5.59 (t, 1H, J = 8.2 Hz, H-3GlcA), 5.52-5.57 (m, 

4H, 4 x H-3GlcA), 5.31 (dd, 1H, J = 7.2, 8.1 Hz, H-2GlcA), 5.26 (dd, 1H, J = 7.2, 8.3 Hz, H-2GlcA), 5.20-5.24 (m, 4H, 

3 x H-2GlcA, CH2 All), 5.12 (dd, 1H, J = 1.6, 10.5 Hz, CH2 All), 5.09 (d, 1H, J = 7.1 Hz, H-1GlcA), 5.04 (d, 1H, J = 

7.0 Hz, H-1GlcA), 4.98-5.03 (m, 3H, 3 x H-1GlcA), 4.64-4.70 (m, 5H, 5 x H-1GlcN), 4.57 (d, 1H, J = 8.4 Hz, H-1GlcN), 

4.42-4.49 (m, 5H, 5 x H-4GlcA), 4.34 (d, 2H, J = 8.3 Hz, 2 x H-5GlcA), 4.27-4.32 (m, 3H, 3 x H-5GlcA), 4.26 (ddt, 1H, 

J = 1.4, 5.3, 13.2 Hz, CH2 OAll), 4.03 (dd, 1H, J = 5.8, 13.1 Hz, CH2 OAll), 3.82-3.95 (m, 5H, 5 x H-3GlcN), 3.79-

3.81 (m, 1H, H-6GlcN), 3.77 (s, 3H, CH3 CO2Me), 3.75 (s, 3H, CH3 CO2Me), 3.72 (s, 3H, CH3 CO2Me), 3.71 (s, 
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3H, CH3 CO2Me), 3.71 (s, 3H, CH3 CO2Me), 3.66 (dd, 1H, J = 5.6, 11.8 Hz, H-6GlcN), 3.62 (dd, 1H, J = 9.0, 19.1 

Hz, H-2GlcN), 3.40-3.55 (m, 11H, 5 x H-2GlcN, H-3GlcN, H-4GlcN, 4 x H-6GlcN), 3.37 (d, 1H, J = 9.6 Hz, H-6GlcN), 

3.30 (ddd, 1H, J = 2.4, 5.5, 8.3 Hz, H-5GlcN), 3.14-3.22 (m, 4H, 4 x H-5GlcN), 3.12 (ddd, 1H, J = 3.0, 6.3, 9.3 Hz, H-

5GlcN), 2.90-3.05 (m, 10H, 5 x H-4GlcN, 5 x H-6GlcN); 13C-APT NMR (MeCN-d3, 150 MHz, HSQC): δ 169.5, 169.5 

(C=O CO2Me), 166.2, 166.1, 166.1, 166.1 (C=O Bz), 163.1, 162.8, 162.6, 162.6, 162.5 (C=O TCA), 135.1 (CH 

All), 134.4, 134.4, 130.9, 130.8 (CHarom), 130.5, 130.4 (Cq), 130.4 (CHarom), 130.1, 130.1 (Cq), 129.5, 129.4 

(CHarom), 117.6 (CH2 All), 100.9, 100.8, 100.7, 100.7, 100.5, 100.3 (5 x C-1GlcA, 6 x C-1), 93.6, 93.5, 93.4 (Cq 

CCl3), 83.2, 82.7, 82.5 (5 x C-3GlcN), 77.3, 77.2, 77.1 (6 x C-5GlcN), 75.7, 75.1, 75.0 (5 x C-4GlcA), 74.6, 74.6, 74.5 

(5 x C-5GlcA), 73.3, 72.9, 72.9 (5 x C-3GlcA), 72.6, 72.6, 72.5, 72.2 (5 x C-2GlcA), 70.7 (CH2 OAll), 70.4, 70.4, 70.2 

(6 x C-4GlcN), 62.7, 62.6 (6 x C-6GlcN), 58.8, 57.6, 57.4 (6 x C-2GlcN), 53.9, 53.9, 53.8 (5 x CH3 CO2Me); LC-MS: Rt 

6.30 min (C4 column, linear gradient 50 → 90% B in 13.5 min); ); MALDI: [M+Na]+ calcd for 

C156H156Cl18N6O71Na 3910.3, found 3911.7. 

 

Pentadecamer (36). Compound 33 (255 mg, 39.6 µmol, crude) was desilylated using the general procedure to 

afford product 36 after HPLC purification (Yield: 44 mg, 

8.3 µmol, 18%). TLC: Rf 0.45 (DCM/MeOH, 9/1, v/v); IR 

(neat, cm-1): 1028, 1069, 1090, 1265, 1724; 1H NMR 

(MeCN-d3, 600 MHz, HH-COSY, HSQC): δ 7.82-7.94 (m, 

28H, CHarom), 7.51-7.61 (m, 14H, CHarom), 7.35-7.50 (m, 36H, 28 x CHarom, 8 x NH), 5.84 (ddd, 1H, J = 5.5, 10.8, 

22.6 Hz, CH All), 5.56-5.60 (m, 7H, 7 x H-3GlcA), 5.30 (dd, 1H, J = 7.2, 8.1 Hz, H-2GlcA), 5.26 (dd, 1H, J = 7.2, 8.3 

Hz, H-2GlcA), 5.16-5.24 (m, 6H, 5 x H-2GlcA, CH2 All), 5.12 (ddd, 1H, J = 1.3, 3.0, 10.5 Hz, CH2 All), 5.09 (d, 1H, 

J = 7.1 Hz, H-1GlcA), 5.04 (d, 1H, J = 7.0 Hz, H-1GlcA), 4.97-5.02 (m, 5H, 5 x H-1GlcA), 4.64-4.69 (m, 7H, 7 x H-

1GlcN), 4.57 (d, 1H, J = 8.5 Hz, H-1GlcN), 4.41-4.48 (m, 7H, 7 x H-4GlcA), 4.34 (d, 2H, J = 8.2 Hz, 2 x H-5GlcA), 4.23-

4.31 (m, 7H, 6 x H-5GlcA, CH2 OAll), 4.03 (dd, 1H, J = 5.8, 13.2 Hz, CH2 OAll), 3.79-3.96 (m, 8H, 7 x H-3GlcN, H-

6GlcN), 3.77 (s, 3H, CH3 CO2Me), 3.75 (s, 3H, CH3 CO2Me), 3.69-3.73 (m, 21H, CH3 CO2Me), 3.66 (dd, 1H, J = 

5.7, 11.9 Hz, H-6GlcN), 3.61 (dd, 1H, J = 9.0, 19.1 Hz, H-2GlcN), 3.35-3.55 (m, 16H, 7 x H-2GlcN, H-3GlcN, H-4GlcN, 7 

x H-6GlcN), 3.30 (ddd, 1H, J = 2.3, 5.5, 8.2 Hz, H-5GlcN), 3.14-3.22 (m, 6H, 6 x H-5GlcN), 3.10-3.14 (m, 1H, H-

5GlcN), 2.91-3.05 (m, 14H, 7 x H-4GlcN, 7 x H-6GlcN); 13C-APT NMR (MeCN-d3, 150 MHz, HSQC): δ 169.6, 169.5, 

169.4 (C=O CO2Me), 166.2, 166.1, 166.1, 166.1 (C=O Bz), 163.1, 162.8, 162.7, 162.6, 162.5 (C=O TCA), 135.1 

(CH All), 134.4, 134.4, 130.9 (CHarom), 130.5 (Cq), 130.4 (CHarom), 130.1, 130.1 (Cq), 129.5, 129.4 (CHarom), 117.5 

(CH2 All), 100.9, 100.8, 100.7, 100.5, 100.3 (7 x C-1GlcA, 8 x C-1GlcN), 93.7, 93.5, 93.4 (Cq CCl3), 83.2, 82.8, 82.7, 

82.5, 82.4, 82.3 (8 x C-3GlcN), 77.4, 77.2, 77.1 (8 x C-5GlcN), 75.7, 75.1, 75.0 (7 x C-4GlcA), 74.6, 74.6, 74.5, 74.2 (7 

x C-5GlcA, C-3GlcN), 73.3, 72.9, 72.8 (7 x C-3GlcA), 72.6, 72.5 (7 x C-2GlcA), 72.2 (C-4GlcN), 70.7 (CH2 OAll), 70.5, 

70.4, 70.2 (7 x C-4GlcN), 62.7, 62.7, 62.6 (8 x C-6GlcN), 58.8, 57.6, 57.4 (8 x C-2GlcN), 53.9, 53.9, 53.9 (7 x CH3 

CO2Me); LC-MS: Rt 7.68 min (C4 column, linear gradient 50 → 90% B in 13.5 min); ); MALDI: [M+Na]+ calcd 

for C214H212Cl24N8O97Na 5321.4, found 5321.3. 

 

General procedure for the saponification. A solution of the oligosaccharide in THF (~ 10 mg per mL) was 

cooled to 0 ºC, and treated with aq. KOH (0.5 M, 2 eq per ester protecting group). The ice-bath was removed and 

the resulting solution was stirred at RT overnight. Then a same amount of aq. KOH was again added, and H2O 

was added if the solution was cloudy. The reaction was stirred for another 2-3 days at RT, after which time the 

mixture was neutralized by the addition of AcOH. The mixture was concentrated in vacuo and purified using 

HW40 size-exclusion chromatography (eluted with NH4OAc) to give the zwitterionic oligosaccharide after 

lyophilization. 

 

Heptamer (37). Compound 34 (12 mg, 4.8 µmol) was saponified using the general procedure to yield zwitterionic 

product 37 as a white amorphous solid (Yield: 5.3 mg, 4.3 

µmol, 90%). 1H NMR (D2O, 600 MHz, HH-COSY, 

HSQC, T = 279 K): δ 5.87-5.95 (m, 1H, CH All), 5.33 (dd, 

1H, J =1.2, 17.2 Hz, CH2 All), 5.26 (d, 1H, J = 10.4 Hz, 

CH2 All), 4.69-4.76 (m, 4H, 4 x H-1GlcN), 4.64-4.68 (m, 3H, 3 x H-1GlcA), 4.37 (dd, 1H, J = 5.5, 12.4 Hz, CH2 

OAll), 4.19 (dd, 1H, J = 6.9, 12.4 Hz, CH2 OAll), 3.82-3.95 (m, 10H, H-2GlcN, 2 x H-3GlcN, 3 x H-5GlcA, 4 x H-

6GlcN), 3.61-3.77 (m, 14H, 2 x H-3GlcN, 4 x H-6GlcN), 3.40-3.50 (m, 8H, 3 x H-2GlcA), 3.23 (t, 2H, J = 8.8 Hz, 2 x H-
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2GlcN), 3.16 (t, 1H, J = 9.4 Hz, H-2GlcN), 3.03 (dd, 1H, J = 8.6, 10.5 Hz, H-2GlcN); 13C-APT NMR (D2O, 150 MHz, 

HSQC, T = 279 K): δ 175.6, 175.6 (C=O COOH), 133.4 (CH All), 120.4 (CH2 All), 102.5, 102.4 (3 x C-1GlcA), 

99.5, 98.5 (4 x C-1GlcN), 82.4 (3 x C-5GlcA), 80.5, 80.4, 80.4, 76.9, 76.6, 76.5, 75.3, 75.2, 75.2, 74.7, 73.3, 73.2, 

72.7, 70.1, 68.7, 68.4 (3 x C-2GlcA, 3 x C-3GlcA, 3 x C-4GlcA, 4 x C-3GlcN, 4 x C-4GlcN, 4 x C-5GlcN), 71.5 (CH2 OAll), 

60.9, 60.9, 60.8 (4 x C-6GlcN), 56.4, 55.5, 55.5 (4 x C-2GlcN); HPAEC: Rt 18.73 min (PA-100 column, linear 

gradient 100 → 500 mM NaOAc in 30 min); HRMS: [M+H]+ calcd for C45H75N4O35 1231.42064, found 

1231.42024. 

 

Undecamer (38). Compound 35 (25 mg, 6.4 µmol) was saponified using the general procedure to yield 

zwitterionic product 38 as a white amorphous solid (Yield: 

11.8 mg, 6.2 µmol, 97%). 1H NMR (D2O, 600 MHz, HH-

COSY, HSQC, T = 279 K): δ 5.87-5.94 (m, 1H, CH All), 

5.33 (dd, 1H, J = 1.2, 17.4 Hz, CH2 All), 5.26 (d, 1H, J = 

10.4 Hz, CH2 All), 4.72-4.79 (m, 6H, 6 x H-1GlcN), 4.64-4.70 (m, 5H, 5 x H-1GlcA), 4.37 (dd, 1H, J = 5.5, 12.5 Hz, 

CH2 OAll), 4.19 (dd, 1H, J = 7.0, 12.4 Hz, CH2 OAll), 3.84-3.98 (m, 16H), 3.61-3.77 (m, 22H), 3.41-3.50 (m, 

12H), 3.27 (t, 4H, J = 9.0 Hz, 4 x H-2GlcN), 3.22 (dd, 1H, J = 8.7, 10.4 Hz, H-2GlcN), 3.04 (dd, 1H, J = 8.5, 10.6 Hz, 

H-2GlcN); 13C-APT NMR (D2O, 150 MHz, HSQC, T = 279 K): δ 175.6, 175.6 (C=O COOH), 133.3 (CH All), 

120.5 (CH2 All), 102.2, 102.2, 10.2 (5 x C-1GlcA), 99.4, 99.1, 99.1, 97.8 (6 x C-1GlcN), 81.9, 81.9, 81.7 (5 x C-5GlcA), 

80.4, 80.3, 76.9, 76.6, 76.6, 75.2, 75.2, 75.0, 74.7, 73.3, 73.2, 72.6, 70.1, 68.6, 68.4 (5 x C-2GlcA, 5 x C-3GlcA, 5 x 

C-4GlcA, 6 x C-3GlcN, 6 x C-4GlcN, 6 x C-5GlcN), 71.5 (CH2 OAll), 60.9, 60.9, 60.8 (6 x C-6GlcN), 56.3, 55.4 (6 x C-

2GlcN); HPAEC: Rt 29.47 min (PA-100 column, linear gradient 100 → 500 mM NaOAc in 30 min); HRMS: 

[M+H]+ calcd for C69H113N6O55 1905.62243, found 1905.62519. 

 

Pentadecamer (39). Compound 36 (44 mg, 8.3 µmol) was saponified using the general procedure to yield 

zwitterionic product 39 as a white amorphous solid (Yield: 

24.2 mg, >8.3 µmol). 1H NMR (D2O/NH3, 600 MHz, HH-

COSY, HSQC, T = 279 K): δ 5.86-5.93 (m, 1H, CH All), 

5.31 (d, 1H, J = 17.2 Hz, CH2 All), 5.25 (d, 1H, J = 10.4 

Hz, CH2 All), 4.70-4.79 (m, H, 8 x H-1GlcN), 4.62-4.69 (m, 7H, 7 x H-1GlcA), 4.35 (dd, 1H, J = 5.4, 12.4 Hz, CH2 

OAll), 4.18 (dd, 1H, J = 7.0, 12.4 Hz, CH2 OAll), 3.82-3.98 (m, 22H), 3.59-3.77 (m, 30H), 3.39-3.50 (m, 16H), 

3.26 (t, 6H, J = 9.4 Hz, 6 x H-2GlcN), 3.21 (t, 1H, J = 10.2 Hz, H-2GlcN), 3.02 (t, 1H, J = 9.6 Hz, H-2GlcN); 13C-APT 

NMR (D2O/NH3, 150 MHz, HSQC): δ 175.6, 175.6 (C=O COOH), 133.3 (CH All), 120.5 (CH2 All), 102.3, 102.3, 

102.2, 102.2, 102.2, 102.2 (7 x C-1GlcA), 99.4, 99.3, 99.3, 99.2, 99.2 (8 x C-1GlcN), 82.1, 82.1, 82.1, 82.0 (7 x C-

5GlcA), 80.4, 80.4, 80.3, 76.9, 76.6, 76.5, 75.3, 75.2, 75.1, 74.7, 73.3, 73.3, 72.7, 70.1, 68.6, 68.4 (7 x C-2GlcA, 7 x 

C-3GlcA, 7 x C-4GlcA, 8 x C-3GlcN, 8 x C-4GlcN, 8 x C-5GlcN), 71.5 (CH2 OAll), 61.0, 61.0, 60.9, 60.9, 60.8 (8 x C-

6GlcN), 56.3, 55.4 (8 x C-2GlcN); HPAEC: Rt 21.44 min (PA-100 column, linear gradient 200 → 800 mM NaOAc in 

30 min); HRMS: [M+H]+ calcd for C93H150N8O75 2580.82757, found 2580.82410. 

 

General procedure for the selective acetylation. The oligosaccharide was dissolved in H2O/THF (10/1, v/v, ~ 6 

mg per mL), followed by the addition of Ac2O (5 eq per free amine) and solid NaHCO3 until the pH ~ 8-9. In the 

case of insolubility of the zwitterionic starting material, extra NaHCO3 was added until a clear solution was 

obtained. The reaction was monitored by HPAEC-PAD analysis, and halted by the addition of AcOH until pH ~ 3, 

the solvents were evaporated in vacuo and the product was purified using HW40 size-exclusion chromatography 

(eluted with NH4OAc) to give the N-acetylated oligosaccharide after lyophilization. 

 

Heptamer (40). Zwitterionic compound 37 (3.6 mg, 2.9 µmol) was acetylated using the general procedure to yield 

the title compound as a white amorphous solid (Yield: 

4.1 mg, 2.9 µmol, 99%). 1H NMR (D2O, 600 MHz, 

HH-COSY, HSQC): δ 5.88 (ddt, 1H, J = 5.7, 10.8, 

16.6 Hz, CH All), 5.28 (d, 1H, J = 17.3 Hz, CH2 All), 

5.23 (d, 1H, J = 10.5 Hz, CH2 All), 4.49-4.56 (m, 4H, 

4 x H-1GlcN), 4.42-4.47 (m, 3H, 3 x H-1GlcA), 4.31 (dd, 1H, J = 5.1, 13.2 Hz, CH2 OAll), 4.14 (dd, 1H, J = 6.3, 13.2 
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Hz, CH2 OAll), 3.85-3.93 (m, 4H, 4 x H-6GlcN), 3.79-3.85 (m, 3H, 3 x H-2GlcN), 3.65-3.78 (m, 15H, H-2GlcN, 4 x H-

3GlcN, 3 x H-4GlcA, 3 x H-5GlcA, 4 x H-6GlcN), 3.55 (t, 3H, J = 9.0 Hz, 3 x H-3GlcA), 3.41-3.53 (m, 8H, 4 x H-4GlcN, 4 x 

H-5GlcN), 3.29-3.36 (m, 3H, 3 x H-2GlcA), 2.02 (s, 3H, CH3 NHAc), 2.00 (s, 6H, 2 x CH3 NHAc), 1.99 (s, 3H, CH3 

NHAc); 13C-APT NMR (D2O, 150 MHz, HSQC): δ 175.9, 175.9, 175.7, 175.2, 175.1 (C=O COOH, NHAc), 

134.3 (CH All), 119.2 (CH2 All), 104.2, 104.1 (3 x C-1GlcA), 101.7, 101.6, 101.5, 100.8 (4 x C-1GlcN), 83.6, 83.5, 

83.2 (4 x C-3GlcN), 81.0, 80.9, 80.7 (3 x C-4GlcA), 77.4, 77.3, 77.3 (3 x C-5GlcA), 76.9, 76.4, 76.3 (4 x C-5GlcN), 74.9, 

74.6, 74.5 (3 x C-3GlcA), 73.5, 73.4 (3 x C-2GlcA), 71.5 (CH2 OAll), 70.7, 69.6, 69.4 (4 x C-4GlcN), 61.7, 61.5, 61.5 

(4 x C-6GlcN), 56.4, 55.5, 55.3 (4 x C-2GlcN), 23.5, 23.4, 23.2 (4 x CH3 NHAc); HPAEC: Rt 25.84 min (PA-100 

column, linear gradient 100 → 500 mM NaOAc in 30 min); HRMS: [M+H]+ calcd for C53H83N4O39 1399.46289, 

found 1399.46333. 

 

Undecamer (41). Zwitterionic compound 38 (3.3 mg, 1.7 µmol) was acetylated using the general procedure to 

yield the title compound as a white amorphous solid 

(Yield: 2.6 mg, 1.2 µmol, 70%). 1H NMR (D2O, 600 

MHz, HH-COSY, HSQC): δ 5.87 (ddt, 1H, J = 5.8, 

10.7, 16.8 Hz, CH All), 5.28 (dd, 1H, J = 1.5, 17.3 

Hz, CH2 All), 5.23 (dd, 1H, J = 1.2, 10.8 Hz, CH2 All), 4.49-4.56 (m, 6H, 6 x H-1GlcN), 4.44-4.49 (m, 5H, 5 x H-

1GlcA), 4.31 (dd, 1H, J = 5.1, 13.2 Hz, CH2 OAll), 4.13 (dd, 1H, J = 6.3, 13.2 Hz, CH2 OAll), 3.85-3.92 (m, 6H, 6 x 

H-6GlcN), 3.65-3.84 (m, 29H, 6 x H-2GlcN, 6 x H-3GlcN, 6 x H-4GlcA, 5 x H-5GlcA, 6 x H-6GlcN), 3.55-3.60 (m, 5H, 5 x 

H-3GlcA), 3.42-3.53 (m, 12H, 6 x H-4GlcN, 6 x H-5GlcN)3.30-3.35 (m, 5H, 5 x H-2GlcA), 2.02 (s, 3H, CH3 NHAc), 

1.99 (s, 15H, 5 x CH3 NHAc); 13C-APT NMR (D2O, 150 MHz, HSQC): δ 175.9, 175.7, 174.5, 174.2 (C=O 

COOH, NHAc), 134.3 (CH All), 119.2 (CH2 All), 104.1 (5 x C-1GlcA), 101.8, 101.7, 100.8 (6 x C-1GlcN), 83.4, 83.4 

(6 x C-3GlcN), 81.0, 80.8 (5 x C-4GlcA), 76.9, 76.6, 76.6, 76.4, 76.3 (5 x C-5GlcA, 6 x C-5GlcN), 74.8, 74.6 (5 x C-

3GlcA), 73.3 (5 x C-2GlcA), 71.5 (CH2 OAll), 70.7, 69.6, 69.3 (6 x C-4GlcN), 61.7, 61.5 (6 x C-6GlcN), 56.4, 55.4, 55.3 

(6 x C-2GlcN), 23.4, 23.4, 23.2 (6 x CH3 NHAc); HPAEC: Rt 20.82 min (PA-100 column, linear gradient 200 → 

800 mM NaOAc in 30 min); HRMS: [M+Na]+ calcd for C81H124N6O61Na 2179.66776, found 2179.66868. 

 

Pentadecamer (42). Zwitterionic compound 39 (22 mg, ~ 7.5 µmol) was acetylated using the general procedure 

to yield the title compound as a white amorphous 

solid (Yield: 16.6 mg, 5.7 µmol, 69% over two 

steps). NMR spectra were tentatively assigned based 

on the spectra of compound 41: 1H NMR (D2O, 600 

MHz, HH-COSY, HSQC): δ 5.82 (ddt, 1H, J = 5.8, 

11.1, 16.8 Hz, CH All), 5.23 (d, 1H, J = 17.2 Hz, CH2 All), 5.18 (d, 1H, J = 10.4 Hz, CH2 All), 4.44-4.51 (m, 8H, 

8 x H-1GlcN), 4.36-4.41 (m, 7H, 7 x H-1GlcA), 4.26 (dd, 1H, J = 5.0, 13.1 Hz, CH2 OAll), 4.09 (dd, 1H, J = 6.3, 13.2 

Hz, CH2 OAll), 3.80-3.86 (m, 8H, 8 x H-6GlcN), 3.73-3.78 (m, 7H, 7 x H-2GlcN), 3.59-3.73 (m, 31H, H-2GlcN, 8 x H-

3GlcN, 7 x H-4GlcA, 7 x H-5GlcA, 8 x H-6GlcN), 3.47-3.53 (m, 7H, 7 x H-3GlcA), 3.35-3.47 (m, 26H, 8 x H-4GlcN, 8 x H-

5GlcN), 3.23-3.31 (m, 7H, 7 x H-2GlcA), 1.97 (s, 3H, CH3 NHAc), 1.94 (s, 21H, 7 x CH3 NHAc); 13C-APT NMR 

(D2O, 150 MHz, HSQC): δ 175.8, 175.8, 175.6, 175.1, 175.0 (C=O COOH, NHAc), 134.2 (CH All), 119.2 (CH2 

All), 104.1, 104.1, 104.0 (7 x C-1GlcA), 101.6, 101.5, 101.5, 100.8 (8 x C-1GlcN), 83.5, 83.4, 83.2 (8 x C-3GlcN), 80.9, 

80.9, 80.7 (7 x C-4GlcA), 77.3, 77.2 (7 x C-5GlcA), 76.8, 76.3, 76.3 (8 x C-5GlcN), 74.8, 74.5 (7 x C-3GlcA), 73.4, 73.3 

(7 x C-2GlcA), 71.4 (CH2 OAll), 70.6, 69.5, 69.3 (8 x C-4GlcN), 61.6, 61.4 (8 x C-6GlcN), 56.3, 55.4, 55.2 (8 x C-

2GlcN), 23.4, 23.3, 23.1 (8 x CH3 NHAc); HMBC-GATED (D2O, 600 MHz): δ 104.1 (J = 163.2 Hz, C-1GlcA), 101.4 

(J = 163.8 Hz, C-1GlcN); HPAEC: Rt 27.78 min (PA-100 column, linear gradient 200 → 800 mM NaOAc in 30 

min); HRMS: [M+H]+ calcd for C109H167N8O83 2915.89768, found 2915.90874. 
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A Comparative Study of Activity-based 

Probes for Retaining β-Glucosidases 

 

 

 

 

 

 

 

 

 

Introduction 

Retaining β-glucosidases are hydrolytic enzymes that cleave β-glucosidic bonds with 

retention of the anomeric configuration of the cleaved glucosyl moiety. These enzymes are 

expressed by many different species. In bacteria
1
 and fungi

2
 their main function is to 

degrade short oligosaccharides and cellobiose into glucose. In yeast,
3
 plants

4
 and insects 

they release flavors, toxins and cyanides upon glucoside hydrolysis from the glucosylated 

precursors. In mammals, lysosomal acid β-glucosidase (GBA), also known as 

glucocerebrosidase, is a key enzyme in the degradation of glycosphingolipids. 

Malfunctioning of this enzyme, caused by genetic defects, is at the basis of the lysosomal 

storage disorder called Gaucher’s disease.
5
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Retaining exo-β-glucosidases cleave β-linked glucose residues from the non-reducing end 

of glucoconjugates. In this process, hydrolysis of the glucosidic bond occurs in a two-step 

acid/base-catalyzed
6
 reaction sequence with overall retention of the anomeric configuration 

(Scheme 1).
7
 In the first step, the exocyclic oxygen is protonated and substituted by the 

nucleophilic carboxylate residue present in the enzyme active site through a transition state 

which bears significant oxacarbenium ion character (Scheme 1, A and B)
8
 to yield a 

covalent glucosyl-enzyme adduct (Scheme 1, C).
9
 After expulsion of the aglycone, water 

enters the enzyme active site and the glucosyl-enzyme adduct is hydrolyzed in a reversed 

process (Scheme 1, D and E).  

 

Scheme 1. Proposed mechanism of the hydrolysis reaction of retaining β-glucosides (R = OH, F) 

 

Activity-based protein profiling (ABPP)
10

 of β-glucosidases in complex biological samples 

is an attractive strategy to study their role in biological processes. While ABPP has met 

with quite some success in the protease and esterase fields, glycosidases have proven much 

more resistant to ABPP. The requirements of an activity-based probe (ABP) are a high 

affinity and selectivity for the active site where it can covalently bind to the active enzyme, 

and the possibility to install a reporter group, usually a fluorescent label. Three distinct 

classes of covalent glycosidase inhibitors are known to date.
11

 These are: glucose-derived 

quinone methides (F), 2-deoxy-2-fluoroglucosides (G) and cyclitol epoxides (H), depicted 

in Figure 1. Of these, the quinone methides – although the basis of the first glycosidase 

ABPs reported and able to label recombinant, purified enzymes – are unsuited due to their 

broad reactivity in complex biological samples.
12

  

 

Figure 1. Covalent β-glucosidase inhibitors (R = reporter group) 

 

 

 

 

 

2-Deoxy-2-fluoroglycosides (G) were first reported in 1987 by Withers and co-workers,
13

 

and react with retaining glycosidases in a similar fashion as the natural substrate. The 

fluorine substituent at C-2 destabilizes the oxacarbenium-like transition state (Scheme 1, B 

and D) and as a consequence slows down the formation and hydrolysis of the covalent 

glycosyl-enzyme adduct. The use of a reactive aglycone increases the rate of formation of 

the covalent adduct, leading to the accumulation of this relatively stable inhibitor-enzyme 

complex (Scheme 1, C). A potential disadvantage of the activated 2-deoxy-2-
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fluoroglycosides is that the enzyme-inhibitor adduct is known to hydrolyze slowly. 

Lifetimes ranging from seconds to months have been reported for these complexes and 

cleavage rates increase at pH > 7.
14,15

 Activated fluoroglycosides have been successfully 

converted into ABPs for β-galactosidases,
16

 hexosaminidases,
15

 xylanases and cellulases
17

 

by introducing a reporter group/ligation handle.  

Carba-glycosyl epoxides (H) contain an oxirane amenable to protonation in the active site. 

Subsequent ring-opening by the nucleophilic carboxylate results in covalent and 

irreversible modification of the enzyme. Of the compounds belonging to this class of 

inhibitors, conduritol B epoxide (CBE)
18

 and cyclophellitol
19

 have been most extensively 

studied. In a recent study, the potential of cyclophellitol-based inhibitors in activity-based 

glucosidase profiling was demonstrated (1-3, Figure 2).
20

 These compounds proved to be 

both highly selective and highly potent for the target enzyme, GBA. Using these probes, 

GBA activity was visualized in vitro, in situ and in vivo. Surprisingly, the attachment of 

boron-dipyrromethene (BODIPY) fluorophores at the C-6 position led to a drastically 

improved inhibitory potency towards GBA, while exo-glycosidases in general are highly 

particular towards the nature of the substrate glycoside.  

 

The glucosidase-directed ABPs described in this Chapter are based on the latter two classes 

of compounds (Figure 2), i.e. cyclophellitol- and fluoroglucoside-based probes. A 

comparative study is presented to qualify the efficiency of both classes of inhibitors in 

ABPP technology of β-glucosidases. A set of fluoroglucosides was synthesized, bearing an 

azide or fluorescent (green or red) reporter group at the C-6 position. With respect to the 2-

deoxy-2-fluoroglucosides, both the dinitrophenyl glucosides and fluoroglucosides were 

included, since they are amongst the two most prominent artificial glucosidase substrates of 

this class used in the literature. Both direct and two-step glucosidase ABPs were 

investigated, entailing the installation of the reporter entity (BODIPY fluorophore) either 

prior to or after glucosidase active site labeling.  

 

Figure 2. Probes studied in this Chapter 
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Results and Discussion 

Synthesis of the 2-fluoroglucosides. The synthesis of 2-deoxy-2-fluoro-glucopyranose 

probes 4-9 was based on 2-fluoro-glucopyranoside 10 as starting material (Scheme 2). This 

compound was obtained from 3,4,6-tri-O-acetyl-D-glucal by direct electrophilic 

fluorination with Selectfluor®, as described by Dax et al.
21

 The major drawback of this 

method is that an epimeric mixture is produced of manno/gluco-pyranosides in an almost 

equal ratio. Nonetheless, upon acetylation of the anomeric hydroxyl, 1,3,4,6-tetra-O-acetyl-

2-deoxy-2-fluoro-α/β-D-glucopyranoside 10 could be isolated. To obtain 6-azido-2-fluoro 

glucopyranoside intermediate 17, the anomeric acetyl in 10 was substituted for a bromide 

using HBr/AcOH in DCM, and after aqueous work-up subsequently substituted with an S-

tolyl moiety to yield β-thio compound 12 as a single anomer (83% over two steps). 

Deacetylation using Zemplén conditions resulted in triol 13 in quantitative yield.  

 

Scheme 2. Synthesis of 2-deoxy-2-fluoroglycosyl probes 4-9 

 

Reagents and conditions: a) HBr/AcOH, DCM; b) TolSH, TBAB, aq. KOH, CHCl3 (13: 83% over 2 steps); c) 

NaOMe, MeOH (14: quant.); d) Ts2O, Et3N, dioxane (15: 52%); e) NaN3, DMF, 80 ºC; f) Ac2O, pyridine (17: 

69% over 2 steps); g) NBS, acetone/H2O (18: 86%); h) DAST, DCM (19: 64%); i) NaOMe, MeOH (6: quant.); j) 

2,4-dinitrofluorobenzene, DABCO, DMF (20: 36%); k) AcCl, MeOH (9: 89%); l) BODIPY-alkyne 10, sodium 

ascorbate, CuSO4, DMF (4: 56%, 7: 36%); m) BODIPY-alkyne 21, sodium ascorbate, CuSO4, DMF (5: 21%, 8: 

32%). 

 

When compound 13 was treated with tosyl chloride in pyridine to regioselectively 

introduce a tosyl functionality at C-6, the 6-O-tosylate was isolated as an inseparable 

mixture with a substantial amount of the 6-chloride. Formation of the 6-chloride was 
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circumvented by reacting compound 13 with tosyl anhydride in dioxane to provide 

compound 14 in 52% yield. Subsequent substitution of the tosyl functionality with NaN3 in 

DMF at 80 ºC, followed by acetylation of C-3 and C-4 (Ac2O/pyridine) gave compound 16 

in 69% over two steps. In a first attempt to synthesize β-fluoride compound 6, 

thioglucoside 16 was treated with DAST/NBS in DCM over 3 days to produce solely the α-

fused anomeric fluoride product in 85%. A possible explanation for this high α-selectivity 

is that the activated β-thio functionality is not very prone to expulsion (vide infra) and is 

therefore substituted in an SN2-like manner to produce the α-product. The electron-

withdrawing fluoride at C-2 and the azide at C-6 are believed to cause this unreactivity. To 

obtain key intermediate 17, the anomeric thio functionality was hydrolyzed using 

NIS/TFA/H2O.
22

 Also this reaction was very slow, and the use of excess reagents and a 

long reaction time led to a mixture of the desired hemiacetal product and a diastereomeric 

mixture of β-sulfoxides. Switching of the solvent system from DCM to acetone/H2O 

resulted in practically no conversion of starting compound 16. The use of NBS as the thio 

activator gave a better result, and TLC analysis revealed quick consumption of the starting 

compound (~ 10 min) and formation of the sulfoxides, which were hydrolyzed overnight 

with additional NBS to yield hemiacetal 17 in 86%. When hemiacetal 17 was treated with 

DAST at -45 ºC for 3 h, a mixture of anomeric fluorides was obtained with the β-glycoside 

as the major isomer (α : β = 1 : 4). Deacetylation of 18 using a stoichiometric amount of 

NaOMe resulted in the formation of a substantial amount of the α-O-methyl glucoside by 

direct substitution of the anomeric fluoride functionality. On the other hand, a catalytic 

amount of NaOMe in MeOH yielded compound 6 quantitatively. To produce 2,4-

dinitrophenyl glucoside 9, hemiacetal 17 was treated with 2,4-dinitrofluorobenzene and 

DABCO in DMF. A mixture of anomers was produced of which the β-fused product 19 

could be isolated in 36%. Deacetylation was accomplished under acidic conditions (AcCl 

in MeOH) to yield 9 in 89%. Using the copper-catalyzed click reaction,
23

 6-azido-2-fluoro 

glucoside probes 6 and 9 were conjugated with BODIPY-alkyne 20 (green emission) and 

BODIPY-alkyne 21 (red emission) to provide the four direct probes 4, 5, 7 and 8 (Scheme 

2). The synthesis of cyclophellitol-based ABPs 1-3 is reported elsewhere.
20

 

 

Inhibition studies. First, the inhibitory potential of probes 1-9 for GBA and almond β-

glucosidase were established by determining their apparent IC50 values. To this end, the 

enzymes were pre-incubated with a concentration series of the probe for 30 minutes, 

followed by incubation with the fluorogenic substrate, 4-methylumbelliferyl β-glucoside, 

and measuring of the fluorescence (Table 1).
24

 To study binding of the probes in greater 

detail, kinetic studies were performed. Inhibition of an enzyme by a mechanism-based 

covalent inhibitor can be regarded as a two-step process.
25

 First a non-covalent enzyme-

inhibitor (Michaelis) complex is formed, which then reacts to form a covalent adduct. 

Formation of the initial complex depends on the concentration of both the enzyme and the 

inhibitor. The second step, the glycosylation of the active site, is often rate-limiting, and the 

rate is proportional to the concentration of the Michaelis complex formed. As a result, 

inhibition will be pseudo-first order when the conditions for an experiment are set such that 
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the inhibitor concentration is much greater than the enzyme concentration.
26

 This is the 

case for 2-fluoroglycosyl probes 4-9. Because glucocerebrosidase was rapidly inactivated 

with low concentrations of cyclophellitol-based probes, the enzymatic reaction of probes 1-

3 approached second-order kinetics. Therefore the binding constants of these compounds 

were determined in the presence of substrate using a continuous substrate-based assay 

(Table 1).
20,27

 

 

Table 1. Apparent IC50 and binding constants of the probes for GBA and almond β-glucosidase  

Probe Glucocerebrosidase (GBA) Almond β-glucosidase 

 
IC50  

(µM) 

Ki  

(µM) 

ki 

(min-1) 

ki/Ki  

(mM -1 min-1) 

IC50  

(µM) 

Ki  

(mM) 

ki  

(min-1) 

ki/Ki  

(mM -1 min-1) 

CBE  9.49a 53a 0.217a 4.08a 461 1.70a 0.13a 0.076 

Cyclophellitol  0.15a 0.151a 0.078a 517a 0.29 0.34a 2.38a 7 

1 0.0012a 0.007a 0.127a 18,200a 56.5 0.449 0.207 0.461 

2 0.0019a 0.008a 0.208a 25,960a >1,000 -b -b -b 

3 0.120a 0.044a 0.035a 797a 27 0.518 0.63 1.216 

4 ~785 292 0.012 0.0421 >1,000 -c - c - c 

5 >1,000 -b -b -b >1,000 - c - c - c 

6 1,665 1,990 0.018 0.0092 >10,000 0.51 0.007 0.013 

7 >1,000 - c - c - c >1,000 - c - c - c 

8 >1,000 - c - c - c >1,000 - c - c - c 

9 4,948 859 0.006 0.0070 1,350 1.33 0.062 0.046 

Legend: IC50 = concentration at half-maximum rate of enzyme activity, Ki = binding constant for inhibition, ki = 

maximum rate of inhibition. a Reported literature values.20, 28  b Inhibitors do show time- and concentration-

dependent decrease of activity. However, inhibition does not follow simple pseudo-first order kinetics, 

presumably due to precipitation of the probes at concentrations above 100 µM. c Could not be determined. 

Inhibitors did not show concentration-dependent decrease of activity at the concentrations used.  

 

Comparison of the IC50 values and binding constants (ki/Ki) of the 2-deoxy-2-

fluoroglucopyranoside probes 4-9 with those of the cyclophellitol probes 1-3 revealed that 

the latter scaffold is more potent, in particular for GBA. Direct probes 4 and 5 are at least 

300,000-fold less potent for GBA compared to 1 and 2. Two-step probes 6 and 9 are 

approximately 100,000-fold less potent than 3. A similar trend is observed for inhibition of 

almond β-glucosidase, although the differences are less pronounced (90-fold when 

comparing probes 3 and 6, 25-fold when comparing probes 3 and 9). Interestingly, also the 

nature of the leaving group of the 2-deoxy-2-fluoroglucoside probes influences the potency. 

Fluoroglucoside probes containing an anomeric fluoride leaving group (4-6) are better 

inhibitors of GBA. Almond β-glucosidase revealed a preference for the two-step probe 

equipped with the 2,4-dinitrophenyl leaving group (9).  

It is apparent from Table 1 that the reporter group (BODIPY) has a profound influence on 

inhibition potency, while modification of the C-6 position with the relatively small azido 

group has a marginal effect on the potency for GBA. In comparison with the parent 

compounds, an approximately 2-fold decrease in potency was observed for azide-
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containing compounds 6 and 9 (compared to ki/Ki = 0.020 mM
-1 

min
-1

 for 2FGlcF, and ki/Ki 

= 0.012 mM
-1 

min
-1 

for 2FGlcDNP).
29

 Moreover, compound 3 is equally potent as the 

parent compound cyclophellitol. For almond β-glucosidase, the introduction of the azido 

group had a somewhat larger effect: a 6-fold decrease in potency was observed for probe 3 

when compared to cyclophellitol. This decrease in activity notwithstanding, the 

cyclophellitol-based compounds all outperform the classical retaining β-glucosidase 

inhibitor, CBE.
 28,30

  

The BODIPY-containing compounds (1, 2, 4, 5, 7 and 8) proved to be even poorer 

inhibitors of almond β-glucosidase than the corresponding two-step probes (3, 6 and 9) and 

due to the insolubility of the direct probes, binding constants and IC50 values of the 

majority (2, 4, 5, 7 and 8) could not be determined. The drop in activity is most likely 

caused by impaired binding of these direct probes to the pocket-shaped active site of 

almond β-glucosidase.
31

 A totally different effect was observed for GBA. Whereas the 

bulky reporter group is not tolerated by almond β-glucosidase, it does appear to fit in the 

active site of GBA. In fact, the lipophilic BODIPY has a beneficial effect (35 to 100-fold 

increase) on the inhibitory potency of cyclophellitol probes 1 and 2 when compared to 

cyclophellitol. Incorporation of a BODIPY fluorophore also led to a ~4-fold increase in 

potency of 2-deoxy-2-fluoroglucoside probe 4 for GBA when compared to azide-

containing probe 6. Previously, it has been reported that entry of hydrophobic 

substrates/inhibitors into the enzyme active site is favored due to its hydrophobic surface.
32

 

It is therefore postulated that the increase in inhibitory potential is, at least in part, caused 

by the increased overall hydrophobicity.  

 

Labeling with direct probes. The next objective was to investigate covalent binding of the 

probes to the active site of GBA and almond β-glucosidase using green-fluorescent direct 

probes 1, 4 and 7 and red-fluorescent probes 2, 5 and 8 (Figure 3). To this end, the 

glucosidases were incubated with increasing concentrations of probe for 30 minutes at 37 

ºC, followed by visualization of labeled enzyme using direct in-gel scanning of the 

fluorescence. The cyclophellitol probes (1 and 2) and 2-deoxy-2-fluoroglucosyl fluoride 

probes (4 and 5) labeled GBA in a concentration-dependent fashion (Figures 3A and 3C). 

Saturation of the fluorescent signal was observed at 0.5 µM for the cyclophellitol probes. 

Complete labeling of GBA with 4 and 5 could not be achieved in 30 minutes with the used 

concentrations. 2-Deoxy-2-fluoroglucosyl dinitrophenyl probes 7 and 8 did not show 

significant labeling with the concentrations/labeling time used in this particular experiment. 

Almond β-glucosidase could only be labeled with 1 (Figures 3B and 3D), whereas the other 

BODIPY-probes (2, 4, 5, 7 and 8) revealed no labeling at all. Labeling is concentration-

dependent and saturation of the intensity of the signal was observed at 100 µM. 

Previously, it was revealed by means of heat-denaturing and competition experiments that 

active enzyme is required for labeling with probes 1 and 2.
20

 In an analogous fashion, it 

was validated that labeling by two-step probe 3 and direct probes 4 and 5 was activity-

based. Heat-inactivation of GBA or addition of (non-fluorescent) known inhibitors CBE 

and N-(5-adamantane-1-yl-methoxy-pentyl)-deoxynojirimycin (AMP-DNM)
24

 to the 
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labeling mixture resulted in complete loss of signal, indicating that active enzyme is 

required for labeling (data not shown). 

 

Figure 3. Comparative study of the labeling efficiency of direct probes 1, 4 and 7 (green fluorescent), and 2, 5 and 

8 (red fluorescent) 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Enzyme (panels A and C: recombinant GBA, and panels B and D: almond β-glucosidase) was incubated with the 

indicated amount of direct probe for 30 min, denatured, resolved by SDS-PAGE and visualized by scanning.  

 

The kinetic data obtained for fluoroglucosides 4-9 (Table 1) suggest that these probes 

function as slow inhibitors. This hypothesis was investigated by incubating both GBA and 

almond β-glucosidase with direct probes 4, 5, 7 and 8 for 30 minutes to 6 hours. Analysis 

of the mixtures after slab gel electrophoresis and fluorescent scanning revealed that the 

labeling signal indeed increased over time for glycosyl fluorides 4 and 5 with GBA, while 

DNP-glucosides 7 and 8 showed no binding at all. Using these probes, no labeling of 

almond β-glucosidase was observed, even after prolonged incubation times. 

 

 

Figure 4. Time-dependent direct labeling of the fluoride probes 4 and 5, and 2,4-dinitrophenyl probes 7 and 8  

 

 

 

 

 

 

 

 

 

 

 

Enzyme (left: recombinant GBA, right: almond β-glucosidase) was incubated with the probes for different times, 

denatured, resolved by SDS-PAGE and visualized by scanning.  
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Having revealed that the fluoride probes 4 and 5 label GBA upon longer incubation times 
(6 h), the sensitivity of the fluoroglycoside probes was investigated. For this, decreasing 
amounts of GBA were incubated with probe 4 for 6 h, followed by visualization after in-gel 
scanning of fluorescence. As depicted in Figure 5, probe 4 is able to visualize up to 3 ng of 
GBA enzyme. This is in the same range as cyclophellitol-based probe 1, which labels up to 
1 ng of GBA after 30 min incubation.20 
 
Figure 5. Sensitivity of direct probe 4 
 
 

 
 
 
 
Two-step labeling. While the direct probes require the enzyme to accommodate the 
synthetic visualization handle (vide supra), the methodology of two-step labeling allows 
the use of more natural substrates, bearing only a small handle such as an azide moiety. 
Two-step labeling entails mechanism-based inactivation of the enzyme followed by 
attachment of the visualization handle. To study the applicability of this methodology to 
GBA, azidocyclophellitol 3 was used, being the most potent azide-modified inhibitor of the 
series, for optimization of the ligation reaction. The presence of an azide in the 
cyclophellitol-derived ABP enables both Staudinger-Bertozzi33 and Huisgen [3+2] click34 
bio-orthogonal ligation. To investigate the efficacy of both, a mixture of recombinant, 

purified GBA and bovine serum albumin (BSA) was incubated with compound 3 (10 M) 
for 30 minutes to block the activity of GBA completely. The adduct formed was treated 
with either biotinylated Staudinger-Bertozzi phosphane, or biotin- or BODIPY-derived 
alkynes in the presence of Cu(I). While both ligation methods were used successfully to 
visualize the modified glycosidase, the click reaction in combination with BODIPY-alkyne 
20 gave the strongest signal, despite non-specific labeling of BSA. To reduce this non-
specific labeling, the influence of reaction time, the nature of the reducing agent used to 
generate Cu(I) in situ, and the amounts of sodium dodecylsulfate (SDS), BODIPY-alkyne 
20 and Cu(II)SO4 on the ligation reaction were investigated (see the Experimental Section 
for optimized conditions).  
 
Using the optimized two-step labeling conditions, the labeling efficiency of recombinant, 

purified GBA and almond -glucosidase by the panel of two-step probes 3, 6 and 9 was 
investigated. As depicted in Figure 6, 50 nM of probe 3 was needed to visualize GBA after 
incubation (30 min) and subsequent ligation with BODIPY-alkyne 20 using the optimized 
click reaction conditions (Figure 6A). In contrast, fluoroglucosides 6 and 9 did not label 

GBA significantly under these conditions. Moreover, almond -glucosidase could only be 
labeled with probe 3, whereas probes 6 and 9 did not show significant labeling with the 
concentration and labeling times used in this experiment (Figure 6B). 
 

30 10 3 1 0.3 GBA 
(ng) 
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Figure 6. Labeling of glucosidases using two-step probes 3, 6 and 9 

 

 

 

 

 

 

 

 

Enzyme (panel A: recombinant GBA, and panel B: almond β-glucosidase) was incubated with the indicated 

amount of azide-containing probe. The solution was diluted with acetate buffer (50 mM pH 6, 0.1% SDS or 1% 

SDS) before a mixture of TBTA (10 µL, 2 mM in DMF), BODIPY-alkyne 20 (1 eq. compared to the probe), 1 µL 

CuSO4 (0.1 M), 0.5 µL DTT (0.1 M)) was added followed by incubating for 16 h. The labeled proteins were 

resolved by SDS-PAGE and visualized by scanning of the fluorescence.  

 

To allow fluoroglucoside probes 6 and 9 to label GBA in this two-step labeling experiment, 

a time-dependent essay was executed. GBA and almond β-glucosidase were incubated with 

probe (1-2 mM final concentration) for 30 min to 6 h, followed by ligation with BODIPY-

alkyne 20 using the optimized click reaction conditions. Now time-dependent labeling was 

observed (Figure 7), and probes 6 and 9 both labeled GBA more effectively than almond β-

glucosidase, although a large amount of non-specific labeling was observed. These 

experiments confirm that fluoroglycosides can be used as two-step ABPs, but long 

incubation times are required. 

 

Figure 7. Optimization of the two-step labeling with probes 6 and 9 

 

  

 

 

 

 

 

Conclusion 

In summary, a comparative study is described for the development of activity-based 

glycosidase profiling protocols. Of the two potential scaffolds that can be adapted to 

become glycosidase ABPs, the cyclophellitol-based scaffold is most suited. However, 

complete inhibition of GBA with a 2-deoxy-2-fluoroglycoside probe can be achieved using 

prolonged reaction times and increased concentrations. GBA has the fortuitous property to 

recognize hydrophobic moieties appended to the ABP core, enabling direct labeling of this 

clinically relevant enzyme. Moreover, experiments on isolated enzyme reveal that copper-

catalyzed click ligation is tolerated by the covalent glycosyl-enzyme adduct, allowing 

inhibition with two-step probes prior to attachment of the visualization handle. The two-

step labeling technology can be applied to other glycosidases to expand the field of 

activity-based glycosidase profiling. 
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Experimental Section 

Direct probe 4. Compound 6 (5.8 mg, 27.7 µmol) and BODIPY-alkyne 20 (9.98 mg, 30.4 µmol) were together 

dissolved in DMF (0.5 mL), followed by the addition of sodium 

ascorbate (4.1 µL, 1 M) and copper(II)sulfate (2.7 µL, 1 M). The solution 

was stirred at 45 ºC overnight and extra sodium ascorbate and 

copper(II)sulfate were added. After 2 days, the mixture was concentrated 

in vacuo and purified using flash column chromatography (silica gel, 5% 

MeOH in DCM) to yield the title compound as a bright orange solid 

(Yield: 8.4 mg, 15.6 µmol, 56%). TLC: Rf 0.23 (DCM/MeOH, 9/1, v/v); IR (neat, cm-1): 986, 1202, 1510, 1551, 

2926, 3333; 1H NMR (CDCl3/MeOH-d4, 600 MHz, HH-COSY, HSQC): δ 6.06 (s, 2H, CH pyrrole), 5.26 (ddd, 

1H, J = 3.6, 6.2, 52.6 Hz, H-1), 4.77 (d, 1H, J = 14.1 Hz, H-6), 4.65 (dd, 1H, J = 4.2, 13.9 Hz, H-6), 4.15 (dddd, 

1H, J = 7.9, 8.1, 12.9, 51.6 Hz, H-2), 3.67-3.78 (m, 2H, H-3, H-5), 3.16 (t, 1H, J = 9.1 Hz, H-4), 3.01 (bs, 2H, 

CH2), 2.80 (bs, 2H, CH2), 2.50 (s, 6H, CH3), 2.40 (s, 6H, CH3), 1.93 (bs, 2H, CH2), 1.71 (bs, 2H, CH2); 
13C-APT 

NMR (CDCl3, 125 MHz, HSQC): δ 153.6, 145.8, 140.3, 131.1 (Cq), 121.5 (CHarom), 106.2 (dd, J = 22, 180 Hz, C-

1), 91.4 (dd, J = 20, 155 Hz, C-2), 74.1 (d, J = 4 Hz, C-5), 73.3 (dd, J = 8, 15 Hz, C-3), 69.4 (d, J = 7 Hz, C-4), 

50.7 (C-6), 31.1, 29.4, 29.2, 27.8, 25.0 (CH2), 16.0, 14.0 (CH3); LC/MS: Rt 8.23 (C18 column, linear gradient 10 

→ 90% B in 13.5 min); ESI-MS: m/z = 537.7 (M+H+); HRMS: [M+H]+ calcd for C25H33BF4N5O3 538.26071, 

found 538.26041. 

 

Direct probe 5. Compound 6 (7.6 mg, 36.3 µmol) and BODIPY-alkyne 21 (24.4 mg, 50.3 µmol) were together 

dissolved in DMF (0.5 mL), followed by the addition of 

sodium ascorbate (5.4 µL, 1 M) and copper(II)sulfate (3.6 

µL, 1 M). The solution was stirred at 45 ºC overnight and 

extra sodium ascorbate and copper(II)sulfate were added. 

Then the mixture was concentrated in vacuo and purified 

using HPLC to yield the title compound as a dark blue solid 

(Yield: 9.2 mg, 13.2 µmol, 36%). IR (neat, cm-1): 1067, 1142, 

1468, 1566, 2853, 2920, 3366; 1H NMR (CDCl3/MeOH-d4, 600 MHz, HH-COSY, HSQC): δ 7.83 (d, 4H, J = 8.8 

Hz, CHarom), 7.47 (s, 1H, CH triazole), 7.27 (d, 2H, J = 4.3 Hz, CH pyrrole), 6.94 (d, 4H, J = 8.8 Hz, CHarom), 6.61 

(d, 2H, J = 4.2 Hz, CH pyrrole), 5.27 (ddd, 1H, J = 3.8, 6.5, 52.6 Hz, H-1), 4.75 (dd, 1H, J = 2.3, 14.6 Hz, H-6), 

4.61 (dd, 1H, J = 5.9, 14.6 Hz, H-6), 4.16 (dddd, 1H, J = 7.0, 8.5, 12.8, 51.1 Hz, H-2), 3.85 (s, 6H, OMe), 3.66-

3.77 (m, 2H, H-3, H-5), 3.17 (t, 1H, J = 9.4 Hz, H-4), 2.99 (app t, 2H, J = 7.1 Hz, CH2), 2.79 (t, 2H, J = 6.5 Hz, 

CH2), 1.88 (bs, 4H, CH2); 
13C-APT NMR (CDCl3/MeOH-d4, 125 MHz, HSQC): δ 160.4, 157.5, 147.4, 144.6, 

136.1 (Cq), 130.9, 126.7 (CHarom), 125.1 (Cq), 123.1, 119.9, 113.6 (CHarom), 106.4 (dd, J = 23, 180 Hz, C-1), 91.4 

(dd, J = 21, 154 Hz, C-2), 74.3 (d, J = 4 Hz, C-5), 73.5 (dd, J = 8, 15 Hz, C-3), 69.3 (d, J = 7 Hz, C-4), 55.2 

(OMe), 50.1 (C-6), 33.0, 30.3, 29.6, 25.0 (CH2); LC/MS: Rt 9.30 (C18 column, linear gradient 10 → 90% B in 

13.5 min); ESI-MS: m/z = 693.9 (M+H+). HRMS: [M+H]+ calcd for C35H37BF4N5O5 694.28245, found 694.28199. 

 

6-Azido-2,6-dideoxy-2-fluoro-ββββ-D-glucopyranosyl fluoride (6). Compound 18 (85 mg, 0.29 mmol) was 

dissolved in MeOH (3 mL) and treated with cat. NaOMe (~ 1 mg) for 75 mins at RT. The 

mixture was neutralized with Amberlite-H+, filtrated and concentrated in vacuo. Purification 

using flash column chromatography (silica gel, 66% EtOAc in PE) yielded compound 6 as a 

colorless oil (Yield: 62 mg, 0.29 mmol, 100%). TLC: Rf 0.13 (PE/EtOAc, 2/1, v/v); [α]D
20 +54.8 (c 1, MeOH); IR 

(neat, cm-1): 1005, 1074, 1099, 2106, 3352; 1H NMR (MeOH-d4, 400 MHz, HH-COSY, HSQC): δ 5.39 (ddd, 1H, 

J = 3.5, 6.9, 53.2 Hz, H-1), 4.18 (dddd, 1H, J = 7.0, 8.9, 13.4, 51.6 Hz, H-2), 3.59-3.72 (m, 3H, H-3, H-5, H-6), 

3.94 (dd, 1H, J = 5.1, 12.6 Hz, H-6), 3.43 (t, 1H, J = 9.3 Hz, H-4); 13C-APT NMR (MeOH-d4, 100 MHz, HSQC): 

δ 108.0 (dd, J = 26, 213 Hz, C-1), 93.5 (dd, J = 24, 185 Hz, C-2), 76.7 (d, J = 5 Hz, C-5), 75.1 (dd, J = 10, 18 Hz, 

C-3), 71.1 (d, J = 8 Hz, C-4), 52.2 (C-6); LC: Rt 7.26 (C18 column, linear gradient 10 → 90% B in 13.5 min); 

TLC-MS: m/z = 441.3 (2M+Na+). 
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Direct probe 7. Compound 9 (9.2 mg, 24.6 µmol) and BODIPY-alkyne 20 (10.2 mg, 31.1 µmol) were together 

dissolved in DMF (0.5 mL), followed by the addition of 

sodium ascorbate (3.7 µL, 1 M) and copper(II)sulfate (2.5 

µL, 1 M). The solution was stirred at 45 ºC overnight and 

extra sodium ascorbate and copper(II)sulfate were added. 

After 2 days, the mixture was concentrated in vacuo and 

purified using flash column chromatography (silica gel, 5% 

MeOH in DCM) to yield the title compound as an orange 

solid (Yield: 3.6 mg, 5.1 µmol, 21%). TLC: Rf 0.18 

(CH2Cl2/MeOH, 19/1, v/v); IR (neat, cm-1): 1070, 1200, 1348, 1541, 1609, 2102, 3350; 1H NMR (CDCl3/MeOH-

d4, 600 MHz, HH-COSY, HSQC): δ 8.69 (d, 1H, J = 2.6 Hz, CHarom), 8.27 (dd, 1H, J = 2.6, 9.1 Hz, CHarom), 7.33 

(s, 1H, CH triazole), 6.96 (d, 1H, J = 9.2 Hz, CHarom), 6.05 (s, 1H, CH pyrrole), 5.21 (dd, 1H, J = 2.9, 7.5 Hz, H-

1), 4.83 (dd, 1H, J = 1.3, 14.3 Hz, H-6), 4.43-4.50 (m, 1.5 H, H-2, H-6), 4.37 (t, 0.5H, J = 8.2 Hz, H-2), 3.99 (t, 

1H, J = 7.8 Hz, H-5), 3.81 (dt, 1H, J = 8.9, 15.8 Hz, H-3), 3.33 (t, 1H, J = 9.4 Hz, H-4), 2.93-3.02 (m, 2H, CH2), 

2.74-2.79 (m, 2H, CH2), 2.49 (s, 6H, CH3), 2.37 (bs, 6H, CH3), 1.81-1.94 (m, 2H, CH2), 1.58-1.70 (m, 2H, CH2); 
13C-APT NMR (CDCl3/MeOH-d4, 125 MHz, HSQC): δ 153.4, 145.7, 141.9, 131.2 (Cq), 128.6, 121.3, 117.9 

(CHarom), 98.6 (d, J = 21 Hz, C-1), 90.7 (d, J = 157 Hz, C-2), 74.7 (C-5), 74.4 (d, J = 15 Hz, C-3), 70.2 (d, J = 7 

Hz, C-4), 50.6 (C-6), 31.2, 29.4, 27.9, 25.1 (CH2), 16.2, 14.2 (CH3); LC/MS: Rt 8.94 (C18 column, linear gradient 

10 → 90% B in 13.5 min); ESI-MS: m/z = 701.9 (M+H+); HRMS: [M+H]+ calcd for C31H36BF3N7O8 702.26650, 

found 702.26640. 

 

Direct probe 8. Compound 9 (13.5 mg, 36.0 µmol) and BODIPY-alkyne 21 (35.0 mg, 72 µmol) were together 

dissolved in DMF (1 mL), followed by the 

addition of sodium ascorbate (5.4 µL, 1 M) and 

copper(II)sulfate (3.6 µL, 1 M). The solution was 

stirred at 45 ºC overnight and extra sodium 

ascorbate and copper(II)sulfate were added. After 

2 days, the mixture was concentrated in vacuo and 

purified using HPLC to yield the title compound 

as a blue solid (Yield: 10 mg, 11.6 µmol, 32%). IR (neat, cm-1): 1069, 1142, 1466, 1572, 1684, 2853, 2926, 3395; 
1H NMR (CDCl3/MeOH-d4, 600 MHz, HH-COSY, HSQC): δ 8.69 (d, 1H, J = 2.7 Hz, CHarom), 8.30 (dd, 1H, J = 

2.8, 9.2 Hz, CHarom), 7.81 (d, 4H, J = 8.8 Hz, CHarom), 7.30 (s, 2H, CH triazole), 7.25 (d, 2H, J = 4.3 Hz, CH 

pyrrole), 7.00 (d, 1H, J = 9.3 Hz, CHarom), 6.94 (d, 4H, J = 8.9 Hz, CHarom), 6.60 (d, 2H, J = 4.3 Hz, CH pyrrole), 

5.26 (dd, 1H, J = 3.0, 7.6 Hz, H-1), 4.80 (dd, 1H, J = 2.3, 14.5 Hz, H-6), 4.46 (app dd, 1H, J = 7.9, 14.6 Hz, H-6), 

4.39 (ddd, 1H, J = 7.8, 8.7, 51.0 Hz, H-2), 3.99-4.03 (m, 1H, H-5), 3.77-3.86 (m, 1H, H-3), 3.85 (s, 6H, OMe), 

3.30 (t, 1H, J = 9.4 Hz, H-4), 2.97 (t, 2H, J = 7.2 Hz, CH2), 2.67-2.80 (m, 2H, CH2), 1.80-1.90 (m, 4H, CH2); 
13C-

APT NMR (CDCl3/MeOH-d4, 125 MHz, HSQC): δ 160.4, 157.5, 153.4, 144.5, 141.8, 139.9, 136.0 (Cq),130.8, 

128.6, 126.7 (CHarom), 125.0 (Cq), 123.0, 121.3, 119.9, 117.8, 113.6 (CHarom), 98.4 (d, J = 21 Hz, C-1), 90.7 (d, J = 

157 Hz, C-2), 74.6 (C-5), 74.2 (d, J = 15 Hz, C-3), 70.2 (d, J = 7 Hz, C-4), 55.2 (OMe), 50.5 (C-6), 32.9, 31.8, 

29.2, 25.0 (CH2); LC/MS: Rt 9.90 (C18 column, linear gradient 10 → 90% B in 13.5 min); ESI-MS: m/z = 857.9 

(M+H+). HRMS: [M+H]+ calcd for C41H40BF3N7O10 858.28834, found 858.28884. 

 

2,4-Dinitrophenyl 6-azido-2,6-dideoxy-2-fluoro-ββββ-D-glucopyranoside (9). A solution of compound 19 (33 mg, 

72 µmol) in dry MeOH (1 mL) was treated with acetyl chloride (~4 drops) at RT 

until TLC analysis indicated complete conversion into one product (5 days). The 

mixture was quenched with Et3N till pH ~ neutral, diluted with EtOAc and 

concentrated in vacuo. Purification using flash column chromatography (silica gel, 

75% EtOAc in PE) furnished the title compound as a colorless oil (Yield: 24 mg, 64.2 µmol, 89%). TLC: Rf 0.25 

(PE/EtOAc, 1/2, v/v); [α]D
20 -148.0 (c 0.5, MeOH); IR (neat, cm-1): 1069, 1281, 1348, 1535, 1609, 2104, 3395; 1H 

NMR (MeOH-d4, 400 MHz, HH-COSY, HSQC): δ 8.74 (d, 1H, J = 2.8 Hz, CHarom), 8.50 (dd, 1H, J = 2.8, 9.3 Hz, 

CHarom), 7.66 (d, 1H, J = 9.3 Hz, CHarom), 5.64 (dd, 1H, J = 3.2, 7.5 Hz, H-1), 4.35 (ddd, 1H, J = 7.6, 8.9, 51.3 Hz, 

H-2), 3.71-3.82 (m, 2H, H-3, H-5), 3.60 (dd, 1H, J = 2.3, 13.4 Hz, H-6), 3.49 (dd, 1H, J = 7.0, 13.4 Hz, H-6), 3.42 
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(t, 1H, J = 9.4 Hz, H-4); 13C-APT NMR (MeOH-d4, 100 MHz, HSQC): δ 154.8, 143.2, 141.2 (Cq), 129.8, 122.2, 

118.9 (CHarom), 99.2 (d, J = 25 Hz, C-1), 92.8 (d, J = 187 Hz, C-2), 77.5 (C-5), 75.7 (d, J = 17 Hz, C-3), 71.5 (d, J 

= 8 Hz, C-4), 52.5 (C-6); TLC-MS: m/z = 764.6 (2M+NH4
+). 

 

1,3,4,6-Tetra-O-acetyl-2-deoxy-2-fluoro-α/βα/βα/βα/β-D-glucopyranoside (10). The title compound was synthesized 

according to a procedure described by Priebe et al.35 and the analytical data is in accordance 

to those described. TLC: Rf 0.61 (PE/EtOAc, 1/1, v/v); IR (neat, cm-1): 1036, 1211, 1369, 

1747; 1H NMR (CDCl3, 400 MHz, HH-COSY, HSQC): δ 6.28 (d, 0.78H, J = 3.9 Hz, H-1α), 

5.70 (dd, 1H, J = 3.1, 8.1 Hz, H-1β), 5.40 (dt, 0.78H, J = 9.6, 12.2 Hz, H-3α), 5.29 (dt, 1H, J = 9.3, 14.3 Hz, H-

3β), 4.95 (t, 0.78H, J = 9.9 Hz, H-4α), 4.92 (t, 1H, J = 4.9 Hz, H-4β), 4.55 (ddd, 0.78H, J = 4.0, 9.6, 48.5 Hz, H-

2α), 4.31 (dt, 1H, J = 8.6, 50.9 Hz, H-2β), 4.17 (t, 0.78H, J = 4.7 Hz, H-6α), 4.14 (t, 1H, J = 4.7 Hz, H-6β), 3.88-

4.00 (m, 2.56H, H-5α, H-6α, H-6β), 3.79 (ddd, 1H, J = 2.1, 4.4, 10.1 Hz, H-5β), 2.06 (s, 2.31H, CH3 Ac-α), 2.03 

(s, 3H, CH3 Ac-β), 1.94 (s, 6H, CH3 Ac-β), 1.93 (s, 4.92H, CH3 Ac-α), 1.90 (s, 2.31H, CH3 Ac-α), 1.89 (s, 3H, 

CH3 Ac-β); 13C-APT NMR (CDCl3, 100 MHz, HSQC): δ 170.1, 169.7, 169.4, 169.1, 169.1, 168.4, 168.3 (C=O 

Ac), 90.8 (d, J = 24 Hz, C-1β), 87.9 (d, J = 190 Hz, C-2β), 87.9 (d, J = 22 Hz, C-1α), 85.8 (d, J = 193 Hz, C-2α), 

72.2 (d, J = 19 Hz, C-3β), 72.2 (C-5β), 70.2 (d, J = 19 Hz, C-3α), 69.1 (C-5α), 67.2 (d, J = 7 Hz, C-4β), 67.0 (d, J 

= 7 Hz, C-4α), 61.0 (C-6), 20.4, 20.2, 20.1 (CH3 Ac); HRMS: [M+Na]+ calcd for C14H19FO9Na 373.0905, found 

373.0905. 

 

Tolyl 3,4,6-tri-O-acetyl-2-deoxy-2-fluoro-1-thio-ββββ-D-glucopyranoside (12). A solution of compound 10 (5.2 g, 

14.8 mmol) in dry DCM (10 mL) was cooled to 0 ºC and HBr in AcOH (33 wt%, 12.8 mL, 

74 mmol) was added. The resulting solution was stirred at +4 ºC overnight, after which the 

mixture was poured in ice water, diluted with EtOAc and washed with H2O (2x) and sat. aq. 

NaCl. The combined aqueous layers were extracted with EtOAc and the resulting organic fractions were dried 

over Na2SO4, filtered, concentrated in vacuo and co-evaporated with toluene (3x). The crude product 11 was then 

used in the next reaction step without further purification. (TLC: Rf 0.42 (PE/EtOAc, 2/1, v/v); IR (neat, cm-1): 

729, 1038, 1209, 1367, 1744; 1H NMR (CDCl3, 400 MHz, HH-COSY, HSQC): δ 6.55 (d, 1H, J = 4.3 Hz, H-1), 

5.63 (dt, 1H, J = 9.4, 11.2 Hz, H-3), 5.12 (t, 1H, J = 9.9 Hz, H-4), 4.55 (ddd, 1H, J = 4.3, 9.4, 49.4 Hz, H-2), 4.29-

4.37 (m, 2H, H-5, H-6), 4.10-4.15 (m, 1H, H-6), 2.09 (s, 3H, CH3 Ac), 2.09 (s, 3H, CH3 Ac), 2.06 (s, 3H, CH3 

Ac); 13C-APT NMR (CDCl3, 100 MHz, HSQC): δ 170.1, 169.5, 169.2 (C=O Ac), 86.1 (d, J = 197 Hz, C-2), 85.3 

(d, J = 25 Hz, C-1), 71.9 (C-5), 70.8 (d, J = 19 Hz, C-3), 66.3 (d, J = 7 Hz, C-4), 60.6 (C-6), 20.4, 20.3 (CH3 Ac)). 

The crude bromide (~14.8 mmol) was dissolved in dry CHCl3 (150 mL), p-toluenethiol (2.76 g, 22.2 mmol) and 

TBAB (0.95 g, 2.96 mmol, dissolved in 20 mL H2O) were added and the resulting emulsion was cooled to 0 ºC. 

Subsequently KOH (1.66 g, 29.6 mmol, dissolved in 20 mL H2O) was added during 10 mins and the resulting 

emulsion was vigorously stirred at room temperature overnight. Next the organic layer was separated, washed 

with sat. aq. NaCl, dried over Na2SO4 and concentrated in vacuo. Purification using flash column chromatography 

(silica gel, 33% EtOAc in PE) yielded the title compound as a yellowish oil (Yield: 5.11 g, 12.3 mmol, 83% over 

two steps). TLC: Rf 0.42 (PE/EtOAc, 2/1, v/v); [α]D
20 +7.8 (c 1, DCM); IR (neat, cm-1): 727, 908, 1030, 1217, 

1744; 1H NMR (CDCl3, 400 MHz, HH-COSY, HSQC): δ 7.40 (d, 2H, J = 8.1 Hz, CHarom), 7.08 (d, 2H, J = 7.9 

Hz, CHarom), 5.26 (dt, 1H, J = 9.1, 14.1 Hz, H-3), 4.86 (t, 1H, J = 9.8 Hz, H-4), 4.60 (dd, 1H, J = 1.6, 9.7 Hz, H-1), 

4.10-4.17 (m, 2.5H, H-2, H-6), 4.01 (t, 0.5H, J = 9.2 Hz, H-2), 3.68 (ddd, 1H, J = 3.1, 4.3, 10.1 Hz, H-5), 2.30 (s, 

3H, CH3 STol), 2.01 (s, 3H CH3 Ac), 1.98 (s, 3H, CH3 Ac), 1.96 (s, 3H, CH3 Ac); 13C-APT NMR (CDCl3, 100 

MHz, HSQC): δ 170.2, 169.6, 169.3 (C=O Ac), 138.9 (Cq Tol-CH3), 134.5, 129.5 (CHarom), 125.9 (Cq STol), 86.6 

(d, J = 190 Hz, C-2), 83.8 (d, J = 24 Hz, C-1), 75.4 (C-5), 73.6 (d, J = 20 Hz, C-3), 67.8 (d, J = 7 Hz, C-4), 61.7 

(C-6), 21.0 (CH3 STol), 20.5, 20.4, 20.3 (CH3 Ac); HRMS: [M+Na]+ calcd for C19H23FO7SNa 437.1041, found 

437.1039. 

 

Tolyl 2-deoxy-2-fluoro-1-thio-ββββ-D-glucopyranoside (13). A solution of compound 12 (2.72 g, 6.56 mmol) in dry 

MeOH (50 mL) was treated with NaOMe (1.06 g, 19.7 mmol) for 30 minutes at room 

temperature under an argon atmosphere. The mixture was neutralized with Amberlite-H+, 

filtrated and concentrated in vacuo to yield the crude title compound as a white amorphous 

solid (Yield: quant.). TLC: Rf 0.46 (EtOAc); IR (neat, cm-1): 766, 1009, 1047, 1364, 1614, 3277; 1H NMR 
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(CDCl3/MeOH-d4, 400 MHz, HH-COSY, HSQC): δ 7.45 (d, 2H, J = 8.0 Hz, CHarom), 7.14 (d, 2H, J = 8.0 Hz, 

CHarom), 4.64 (d, 1H, J = 9.6 Hz, H-1), 3.99 (dt, 1H, J = 9.2, 49.7 Hz, H-2), 3.87 (dd, 1H, J = 2.5, 12.2 Hz, H-6), 

3.73 (dd, 1H, J = 4.7, 12.2 Hz, H-6), 3.63-3.70 (m, 1H, H-3), 3.32-3.39 (m, 2H, H-4, H-5), 2.35 (s, 3H, CH3 

STol); 13C-APT NMR (CDCl3/MeOH-d4, 100 MHz, HSQC): δ 138.4 (Cq Tol-CH3), 133.3, 129.5 (CHarom), 127.2 

(Cq STol), 89.5 (d, J = 186 Hz, C-2), 84.5 (d, J = 24 Hz, C-1), 79.9 (C-5), 75.9 (d, J = 18 Hz, C-3), 69.4 (d, J = 8 

Hz, C-4), 61.4 (C-6), 20.7 (CH3 STol); LC: Rt 5.53 (C18 column, linear gradient 10 → 90% B in 13.5 min); TLC-

MS: m/z = 311.1 (M+Na+). 

 

Tolyl 2-deoxy-2-fluoro-1-thio-6-O-(p-toluenesulfonyl)-ββββ-D-glucopyranoside (14). Triol 13 (0.5 g, 1.74 mmol) 

was co-evaporated with dry dioxane (2x) and dissolved in dioxane (10 mL). The mixture was 

cooled to ~10 ºC, Et3N (0.49 mL, 3.48 mmol) was added followed by the portion-wise 

addition of tosyl anhydride (0.62 g, 1.92 mmol). The reaction was stirred overnight at RT and 

subsequently diluted with EtOAc. The organic layer was washed with sat. aq. NaCl (3x), dried over Na2SO4 and 

concentrated in vacuo. Purification using flash column chromatography (silica gel, 66% EtOAc in PE) furnished 

the title compound as a colored oil (Yield: 0.40 g, 0.90 mmol, 52%). TLC: Rf 0.71 (EtOAc); [α]D
20 -2.8 (c 1, 

DCM); IR (neat, cm-1): 729, 1175, 1358, 2924, 3395; 1H NMR (CDCl3, 400 MHz, HH-COSY, HSQC): δ 7.77 (d, 

2H, J = 8.3 Hz, CHarom), 7.32 (d, 2H, J = 8.1 Hz, CHarom), 7.29 (d, 2H, J = 8.2 Hz, CHarom), 7.03 (d, 2H, J = 8.1 Hz, 

CHarom), 4.63 (bs, 2H, 3-OH, 4-OH), 4.50 (d, 1H, J = 9.5 Hz, H-1), 4.29 (d, 1H, J = 9.9 Hz, H-6), 4.21 (dd, 1H, J = 

5.1, 11.0 Hz, H-6), 3.93 (dt, 1H, J = 9.1, 49.7 Hz, H-2), 3.70 (dt, 1H, J = 8.7, 15.4 Hz, H-3), 3.35-3.50 (m, 2H, H-

4, H-5), 2.38 (s, 3H, CH3 Ac), 2.29 (s, 3H, CH3 Ac); 13C-APT NMR (CDCl3, 100 MHz, HSQC): δ 145.0 (Cq Ts-

CH3), 138.4 (Cq Tol-CH3), 133.5 (CHarom), 132.3 (Cq STs), 129.8, 129.7, 129.6, 127.9 (CHarom), 127.2 (Cq STol), 

89.2 (d, J = 186 Hz, C-2), 84.1 (d, J = 24 Hz, C-1), 76.8 (C-5), 76.0 (d, J = 18 Hz, C-3), 69.1 (d, J = 7 Hz, C-4), 

68.6 (C-6), 21.5, 21.0 (CH3 STol, Ts); HRMS: [M+Na]+ calcd for C20H23FO6S2Na 465.0812, found 465.0811. 

 

Tolyl 3,4-di-O-acetyl-6-azido-2,6-dideoxy-2-fluoro-1-thio-ββββ-D-glucopyranoside (16). A solution of compound 

14 (1.59 g, 3.6 mmol) and sodium azide (0.7 g, 10.8 mmol) in DMF (36 mL) was heated at 

80 ºC overnight. The mixture was diluted with EtOAc, washed with sat. aq. NaHCO3 (2x) 

and H2O (2x), dried over Na2SO4 and concentrated in vacuo. The crude azide 15 was used in 

the next step without further purification. TLC: Rf 0.37 (PE/EtOAc, 1/1, v/v); IR (neat, cm-1): 729, 1038, 1067, 

1290, 2102, 3339; 1H NMR (CDCl3, 400 MHz, HH-COSY, HSQC): δ 7.46 (d, 2H, J = 8.1 Hz, CHarom), 7.13 (d, 

2H, J = 8.0 Hz, CHarom), 4.54 (dd, 1H, J = 0.8, 9.6 Hz, H-1), 4.40 (bs, 1H, 3-OH), 4.17 (bs, 1H, 4-OH), 3.95 (dt, 

1H, J = 9.1, 49.6 Hz, H-2), 3.66 (dt, 1H, J = 7.1, 14.6 Hz, H-3), 3.54 (d, 1H, J = 12.1 Hz, H-6), 3.37-3.41 (m, 2H, 

H-4, H-5), 3.34 (d, 1H, J = 13.3 Hz, H-6), 2.33 (s, 3H, CH3 STol); 13C-APT NMR (CDCl3, 100 MHz, HSQC): 

δ 139.1 (Cq Tol-CH3), 134.7, 129.7 (CHarom), 126.0 (Cq STol), 89.2 (d, J = 185 Hz, C-2), 84.1 (d, J = 24 Hz, C-1), 

78.2 (C-5), 76.2 (d, J = 18 Hz, C-3), 69.7 (d, J = 7 Hz, C-4), 51.0 (C-6), 21.1 (CH3 STol). Crude azido compound 

15 (~3.6 mmol) was treated with pyridine/Ac2O (20 mL, 3/1, v/v) at RT overnight. The mixture was diluted with 

EtOAc, washed with sat. aq. NaCl (3x), dried over Na2SO4 and concentrated in vacuo. Purification using flash 

column chromatography (silica gel, 25% EtOAc in PE) yielded the title compound as an amorphous solid (Yield: 

0.98 g, 2.47 mmol, 69% over two steps). TLC: Rf 0.85 (PE/EtOAc, 1/1, v/v); [α]D
20 +37.8 (c 1, DCM); IR (neat, 

cm-1): 729, 907, 1026, 1211, 1749, 2104; 1H NMR (CDCl3, 400 MHz, HH-COSY, HSQC): δ 7.48 (d, 2H, J = 8.0 

Hz, CHarom), 7.15 (d, 2H, J = 7.9 Hz, CHarom), 5.31 (dt, 1H, J = 9.1, 14.1 Hz, H-3), 4.87 (t, 1H, J = 9.7 Hz, H-4), 

4.66 (dd, 1H, J = 1.3, 9.7 Hz, H-1), 4.10 (dt, 1H, J = 9.3, 49.0 Hz, H-2), 3.68 (ddd, 1H, J = 2.6, 5.9, 9.7 Hz, H-5), 

3.37 (dd, 1H, J = 2.5, 13.5 Hz, H-6), 3.26 (dd, 1H, J = 5.9, 13.5 Hz, H-6), 2.36 (s, 3H, CH3 STol), 2.03 (s, 3H, 

CH3 Ac), 2.00 (s, 3H, CH3 Ac); 13C-APT NMR (CDCl3, 100 MHz, HSQC): δ 169.6, 169.2 (C=O Ac), 139.3 (Cq 

Tol-CH3), 135.1, 129.7 (CHarom), 125.1 (Cq STol), 86.4 (d, J = 190 Hz, C-2), 83.7 (d, J = 24 Hz, C-1), 76.6 (C-5), 

73.5 (d, J = 20 Hz, C-3), 68.7 (d, J = 7 Hz, C-4), 50.7 (C-6), 21.0 (CH3 Stol), 20.4, 20.3 (CH3 Ac); HRMS: 

[M+Na]+ calcd for C17H23FNO5SNa 372.1275, found 372.1275. 

 

3,4-Di-O-acetyl-6-azido-2,6-dideoxy-2-fluoro-α/βα/βα/βα/β-D-glucopyranose (17). A solution of compound 16 (0.56 g, 

1.41 mmol) in acetone/H2O (16 mL, 3/1, v/v) was cooled to 0 ºC followed by the addition of 

N-bromosuccinimide (0.75 g, 4.24 mmol). The resulting solution was stirred at +4 ºC 

overnight, after which analysis by TLC showed complete conversion of the starting material 
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into two lower-running products. The addition of extra N-bromosuccinimide (0.75 g, 4.24 mmol) and subsequent 

stirring at 0 ºC for 3 h resulted in full conversion into one spot as judged by TLC analysis. The reaction was 

quenched by the addition of sat. aq. Na2S2O3, diluted with EtOAc and washed with sat. aq. NaCl (3x). The organic 

layers were dried over Na2SO4 and concentrated in vacuo. Purification using flash column chromatography (silica 

gel, 33% EtOAc in PE) yielded the title compound as a colorless oil (Yield: 0.36 g, 1.22 mmol, 86%, α : β = 4 : 

1). TLC: Rf 0.54 (PE/EtOAc, 1/1, v/v); IR (neat, cm-1): 1024, 1213, 1747, 2104, 2924, 3443; 1H NMR (CDCl3, 

400 MHz, HH-COSY, HSQC): δ 5.56 (dt, 1H, J = 9.5, 12.0 Hz, H-3α), 5.48 (t, 1H, J = 3.0 Hz, H-1α), 5.30 (dt, 

0.25H, J = 9.7, 14.0 Hz, H-3β), 4.97 (t, 1H, J = 9.8 Hz, H-4α), 4.88-4.93 (m, 0.25H, H-1β), 4.49 (ddd, 1H, J = 

3.7, 9.6 49.5 Hz, H-2α), 4.34 (dd, 0.13H, J = 7.8, 9.1 Hz, H-2β), 4.15-4.26 (m, 1.13H, H-2β, H-5α), 4.71 (ddd, 

0.25H, J = 3.7, 5.5, 13.6 Hz, H-5β), 3.37 (dd, 1H, J = 2.8, 13.4 Hz, H-6α), 3.33-3.35 (m, 0.5H, H-6β), 3.27 (dd, 

1H, J = 5.8, 13.4 Hz, H-6α), 2.07 (s, 0.75H, CH3 Ac-β), 2.06 (s, 3H, CH3 Ac-α), 2.03 (s, 3H, CH3 Ac-α), 2.03 (s, 

0.75H, CH3 Ac-β); 13C-APT NMR (CDCl3, 100 MHz, HSQC): δ 170.5, 170.0 (C=O Ac), 94.4 (d, J = 23 Hz, C-

1β), 90.3 (d, J = 189 Hz, C-2β), 89.9 (d, J = 26 Hz, C-1α), 87.6 (d, J = 192 Hz, C-2α), 72.9 (C-5β), 72.6 (d, J = 

20 Hz, C-3β), 70.3 (d, J = 19 Hz, C-3α), 69.2 (d, J = 7 Hz, C-4β), 69.1 (d, J = 7 Hz, C-4α), 68.2 (C-5α), 50.7 (C-

6), 20.7 (CH3 Ac-α), 20.6 (CH3 Ac-β), 20.5 (CH3 Ac-α), 20.5 (CH3 Ac-β); HRMS: [M(amine)+H]+ calcd for 

C10H17FNO6 266.10344, found 266.10365. 

 

3,4-Di-O-acetyl-6-azido-2,6-dideoxy-2-fluoro-ββββ-D-glucopyranosyl fluoride (18). Compound 17 (0.18 g, 0.61 

mmol) was dissolved in dry DCM under an argon atmosphere. The solution was cooled to -45 

ºC and treated with DAST (0.19 mL, 1.53 mmol). The mixture was stirred at -45 ºC for 3 h and 

quenched with MeOH (0.5 mL). After warming to RT the mixture was diluted with EtOAc, 

washed with sat. aq. NaCl, dried over Na2SO4 and concentrated in vacuo to yield the crude product as an anomeric 

mixture (α : β = 1 : 4). The anomers were partly separated using flash column chromatography to yield the pure 

title compound as a colorless oil (Yield: 85 mg, 0.29 mmol, 48%). TLC: Rf 0.50 (PE/EtOAc, 2/1, v/v); [α]D
20 

+113.5 (c 1, DCM); IR (neat, cm-1): 1028, 1099, 1207, 1749, 2104; 1H NMR (CDCl3, 400 MHz, HH-COSY, 

HSQC): δ 5.48 (ddd, 1H, J = 3.8, 6.2, 52.0 Hz, H-1), 5.34 (dt, 1H, J = 8.3, 15.4 Hz, H-3), 5.10 (t, 1H, J = 9.3 Hz, 

H-4), 4.50 (dddd, 1H, J = 6.2, 8.0, 11.1, 49.9 Hz, H-2), 3.87 (ddd, 1H, J = 3.3, 5.8, 9.3 Hz, H-5), 3.46 (dd, 1H, J = 

3.2, 13.5 Hz, H-6), 3.41 (dd, 1H, J = 5.8, 13.5 Hz, H-6), 2.10 (s, 3H, CH3 Ac), 2.06 (s, 3H, CH3 Ac); 13C-APT 

NMR (CDCl3, 100 MHz, HSQC): δ 169.7, 169.3 (C=O Ac), 105.7 (dd, J = 27, 218 Hz, C-1), 88.7 (dd, J = 28, 189 

Hz, C-2), 73.0 (d, J = 4 Hz, C-5), 71.3 (dd, J = 9, 21 Hz, C-3), 68.0 (d, J = 7 Hz, C-4), 50.7 (C-6), 20.4, 20.4 (CH3 

Ac); HRMS: [M+Na]+ calcd for C10H13F2N3O5Na 316.07155, found 316.07167. 

 

2,4-Dinitrophenyl 3,4-di-O-acetyl-6-azido-2,6-dideoxy-2-fluoro-ββββ-D-glucopyranoside (19). Compound 17 (58 

mg, 0.20 mmol) was dissolved in dry DMF (3 mL). The mixture was cooled to 0 

ºC and 2,4-dinitrofluorobenzene (56 µL, 0.44 mmol) and DABCO (91 mg, 0.81 

mmol) were added. After 5 h the mixture was diluted with EtOAc, washed with 

sat. aq. NaCl (3x), dried over Na2SO4 and concentrated in vacuo. Purification 

using flash column chromatography (silica gel, 66% EtOAc in PE) yielded the β-fused compound 19 as a 

yellowish oil (Yield: 33 mg, 72 µmol, 36%). TLC: Rf 0.17 (PE/EtOAc, 2/1, v/v); [α]D
20 -88.9 (c 1, DCM); IR 

(neat, cm-1): 1034, 1067, 1229, 1348, 1537, 1609, 1753, 2104; 1H NMR (CDCl3, 400 MHz, HH-COSY, HSQC): 

δ 8.77 (d, 1H, J = 2.7 Hz, CHarom), 8.48 (dd, 1H, J = 2.8, 9.2 Hz, CHarom), 7.45 (d, 1H, J = 9.2 Hz, CHarom), 5.40-

5.50 (m, 2H, H-1, H-3), 5.05 (t, 1H, J = 9.5 Hz, H-4), 4.72 (ddd, 1H, J = 7.2, 8.6, 49.8 Hz, H-2), 3.92 (ddd, 1H, J 

= 2.7, 7.5, 10.0 Hz, H-5), 3.47 (dd, 1H, J = 7.5, 13.5 Hz, H-6), 3.38 (dd, 1H, J = 2.7, 13.5 Hz, H-6), 2.13 (s, 3H, 

CH3 Ac), 2.08 (s, 3H, CH3 Ac); 13C-APT NMR (CDCl3, 100 MHz, HSQC): δ 169.8, 169.4 (C=O Ac), 153.2, 

142.3, 140.1 (Cq), 128.9, 121.7, 117.8 (CHarom), 98.2 (d, J = 25 Hz, C-1), 88.4 (d, J = 192 Hz, C-2), 74.1 (C-5), 

71.6 (d, J = 21 Hz, C-3), 68.5 (d, J = 7 Hz, C-4), 51.0 (C-6), 20.5, 20.5 (CH3 Ac); TLC-MS: m/z = 480.1 (M+Na+). 

 

Determination of the IC50. Prior to determination of the IC50, the enzymes were dissolved in the appropriate 

buffer. The buffer system employed for glucocerebrosidase was a McIlvaine buffer (50 mM citric acid, 100 mM 

Na2HPO4, pH 5.2 containing 0.2% sodium taurocholate, 0.1% Triton X-100). For almond β-glucosidase, 

McIlvaine buffer (50 mM citric acid, 100 mM Na2HPO4, pH 5.0) was used. The inhibitor (1.25 µL in DMSO, 10× 

stock) was added to the enzyme solution (11.25 µL). The solution was incubated at 37 ºC for 30 min followed by 
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incubation with 4MU-β-glucoside (100 µL, 7.5 mM in McIlvaine) at 37 ºC for 20 min. The reaction was quenched 

by the addition of glycine/NaOH (1 mL, 0.3 M, pH 10.6), after which the amount of liberated 4MU was 

determined with a TECAN GENios platereader. IC50 values were obtained by plotting of the residual fluorescence 

versus the concentration (GraphPad Prism 5).  

 

Kinetic studies for 2-deoxy-2-fluoroglycosyl probes 4-9. The time-dependent interaction of inhibitor (I) with 

free β-glucosidase (E) was considered a two-step process. First, the inhibitor rapidly and reversibly forms a 

complex with the enzyme. In the second step the inhibitor reacts with the enzyme thereby transforming the 

reversible enzyme-inhibitor complex [EI] into an irreversible enzyme-inhibitor adduct [EI*]: 

 

 

The equilibrium constant for initial binding (Ki) and the rate-constant (ki) were determined as follows. The enzyme 

was diluted in the appropriate McIlvaine buffer (see above) before it was incubated with varying concentrations of 

the inhibitor. To minimize the effect of denaturation during the reaction, all samples were incubated at 37°C for 

the same amount of time. At different time-intervals, inhibitor was added to the individual samples. After 

incubating for the appropriate time, 4MU-substrate solution was added and the mixture incubated for 20 min. The 

reaction was stopped by the addition of glycine/NaOH (0.3 M, pH 10.6). The activity of the enzyme was 

determined by monitoring the release of 4-methylumbelliferone as was described above for the IC50 values. The 

pseudo-first order rate-constants for the individual probes were established by either non-linear fitting of the 

residual activity using the equation [E]/[E0] = e-k’t or by plotting the logarithm of the residual activity versus the 

time using ln[E]/[E0] = -k’t. Re-plotting the rate-constants versus the concentration allowed determination of the 

Ki and ki values by fitting with the following equation:  

 

 

 

 

Labeling efficiency of the direct probes. GBA (1 µg/µL, 4.5 µL) or almond-glucosidase (1 µg/µL, 5 µL) was 

diluted in 150 mM McIlvaine buffer (445 µL, pH 5.2 for GBA, pH 5.0 for almond β-glucosidase) containing 0.2% 

(w/v) taurocholate, 0.1% (v/v) Triton X-100 and 0.1 µg/µL BSA. The enzyme solution was divided, and 9 µL of 

enzyme mixture was incubated with different concentrations of the probe (1 µL, 10× stock) at 37 ºC for 30 min, 

and subsequently the reaction was quenched by the addition of 4 µL Laemmli buffer (50% (v/v) 1M Tris-HCl, pH 

6.8, 50% (v/v) 100% glycerol, 10% (w/v) DTT, 10% (w/v) SDS, 0.01% (w/v) bromophenol blue), boiled for 4 

min at 100 ºC, and separated by electrophoresis on 7.5% (w/v) SDS-PAGE gel running continuously at 90 V, 

followed by fluorescent scanning. 

 

Time-dependent labeling. GBA (1 µg/µL, 5 µL) or almond-glucosidase (1 µg/µL, 5 µL) was diluted in 150 mM 

McIlvaine buffer (445 µL, pH 5.2 for GBA, pH 5.0 for almond β-glucosidase) containing 0.2% (w/v) 

taurocholate, 0.1% (v/v) Triton X-100 and 0.1 µg/µL BSA. The enzyme solution was divided, and 9 µL of 

enzyme mixture was incubated at 37 ºC for 6 h. Probe (1 µL, 4 and 7: 4 mM, 5 and 8: 1 mM) was added at time 

points 0, 2, 4, 5, and 5.5 h. The reaction was halted by the addition of 4 µL Laemmli buffer (50% (v/v) 1M Tris-

HCl, pH 6.8, 50% (v/v) 100% glycerol, 10% (w/v) DTT, 10% (w/v) SDS, 0.01% (w/v) bromophenol blue), boiled 

for 4 min at 100 ºC, and separated by electrophoresis on 7.5% (w/v) SDS-PAGE gel running continuously at 90 V, 

followed by fluorescent scanning. 

 

Sensitivity of the probes. Decreasing amounts of GBA in McIlvain buffer (9 µL, pH 5.2) containing 0.2% (w/v) 

taurocholate, 0.1% (v/v) Triton X-100 and 0.1 µg/µL BSA, were incubated with the probe 4 (1 µL, 4 mM) for 6 h 

at 37 ºC. The samples were quenched by the addition of of 4 µL Laemmli buffer (50% (v/v) 1M Tris-HCl, pH 6.8, 

50% (v/v) 100% glycerol, 10% (w/v) DTT, 10% (w/v) SDS, 0.01% (w/v) bromophenol blue), boiled for 4 min at 

100 ºC, and separated by electrophoresis on 7.5% (w/v) SDS-PAGE gel running continuously at 90 V, followed 

by fluorescent scanning. 
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Two-step labeling using optimized conditions.  

GBA: To the enzyme (100 ng) dissolved in the appropriate McIlvaine buffer was added probe (1 µL, 10× stock). 

The reaction mixture was incubated at 37ºC for 30 min and subsequently diluted with NaOAc buffer (30 µL, 50 

mM pH 6.0, 0.1% SDS). A fresh mixture of TBTA (10 µL, 2 mM in DMF), CuSO4 (1 µL, 0.1 M in H2O), DTT 

(0.5 µL, 0.1 M in H2O) and BODIPY-alkyne 20 (0.5 µL, 1 eq. compared to probe in MeCN) was prepared, added 

to the enzyme solution and the resulting mixture was incubated overnight at room temperature. The reaction was 

quenched by the addition of 4× sample buffer (15 µL) and loaded on a 7.5% SDS-PAGE gel. The fluorescence 

was measured in the wet gel slabs using the CY2 settings (λex 488, λem 520) on a Typhoon Variable Mode Imager 

(Amersham Biosciences). 

Almond β-glucosidase: To the enzyme (100 ng) dissolved in the appropriate McIlvaine buffer was added probe (1 

µL, 10× stock). The reaction mixture was incubated at 37 ºC for 30 min and subsequently diluted with NaOAc 

buffer (80 µL, 50 mM pH 6.0, 1% SDS). A fresh mixture of TBTA (10 µL, 2 mM in DMF), CuSO4 (1 µL, 0.1 M 

in H2O), DTT (0.5 µL, 0.1 M in H2O) and BODIPY-alkyne 20 (0.5 µL, 1 eq. to probe in MeCN) was prepared, 

added to the enzyme solution and the resulting mixture was incubated overnight at room temperature. The proteins 

were precipitated by the addition of ice-cold acetone (1 mL) followed by incubation at -20 ºC for 20 min and 

centrifugation (16,000× g, 15 min) at 4 ºC. The proteins were resolved and analyzed as described above. 
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Chapter 9 
 

 

2-Deoxy-2-fluoroglucosides as Activity-

based Probes for Retaining  

β-Glucosidases 

 

 

 

 

Introduction 

The study of enzyme activity, and in particular of (retaining) glycosidases, has benefitted 

greatly from the development of activity-based inhibitors, as described in Chapter 8.
1
 There 

it was revealed that cyclophellitol-based probes (A, Figure 1) were much more potent in 

activity-based profiling of acid β-glucosidase (GBA) than 2-deoxy-2-fluoroglucosides (B 

and C, Figure 1). While the fluorine atom is generally regarded to be a good mimic for the 

hydroxyl function at C-2, both in size and in polarity, its high electronegativity has a 

deactivating effect on the probe. To be used as an activity-based probe (ABP), the fluorine 

is most often introduced at the C-2 or C-5 position, the sites closest to the anomeric center, 

to retard glycosidic bond hydrolysis of the covalent enzyme-inhibitor adduct (for 

mechanistic details, see Chapter 8). To enable the glycosylation step to occur, a reactive 

anomeric group, generally a fluoride or nitrophenyl,
2
 is installed. The inherently poorer 

affinity of the fluoroglucoside inhibitors for GBA may be attributed to the lower reactivity 

of the anomeric aglycones, as compared to the epoxide in the cyclitol-based inhibitors, on 

top of the deactivating effect of the fluorine at C-2. Therefore it was hypothesized that the 

2-deoxy-2-fluoride probes could evolve into better inhibitors by tuning the leaving group 

capacity of the anomeric moiety. 

 



 Chapter 9 

 

174 

Figure 1. Overview of retaining glycosidase probes 

 

 

 

 

Together with the development of electron-deprived glycoside probes as glycosidase 

inhibitors by Withers and co-workers in the 1980s, anomeric fluorides were introduced as 

good leaving groups (B).
3
 An important observation was that the anomeric fluoride did not 

need enzymatic protonation to be expelled, allowing the use of such probes for kinetic 

studies with (acid/base) mutant enzymes.
2, 4

 With the increasing and effective use of 

fluoroglycoside probes in research on enzymatic mechanisms and active sites,
5
 the need for 

a chromogenic aglycone arose, which would allow for in situ fluorescence monitoring of 

the inhibition reaction. To this end, anomeric p-nitro- and 2,4-dinitrophenyl ethers (C) were 

installed on various fluoroglycosides and successfully used in activity-based enzymatic 

profiling studies.
6
 

 

Current state-of-the-art in activity-based protein profiling research makes use of one of the 

anomeric leaving groups mentioned above. However, when the design of a suitable ABP is 

approached from a synthetic carbohydrate chemistry viewpoint, several other anomeric 

leaving groups can be considered. Recently, Withers et al. have reported on a comparative 

study using different anomeric phosphates to tailor the specificity and reactivity of 2-

deoxy-2-fluoroglycoside probes for GBA, both as inhibitors and as chaperones.
7
 Increasing 

the lipophilicity of the anomeric phosphate moiety caused a large increase in potency 

towards GBA, supposedly due to resemblance in polarity of the aglycone to the ceramide 

moiety of the natural substrate. 

 

This Chapter describes the comparative survey of a set of 2-deoxy-2-fluoro probes bearing 

different anomeric leaving groups for their inhibitory potential and use in activity-based 

profiling of GBA. These probes were compared to the known anomeric fluoride and 2,4-

dinitrophenyl probes, as described in Chapter 8. The 2-deoxy-2-fluoro carbohydrate core 

was decorated with a BODIPY fluorophore to allow fluorescence evaluation of binding 

efficiency. 

 

Results and Discussion 

The four different anomeric functionalities selected for this comparative study are depicted 

in Figure 2, and include, next to the common fluoride (1) and 2,4-dinitrophenyl (2), the 

anomeric (S)-tolyl 3, diastereomerically pure yet stereomerically unidentified sulfoxides 4 

and 5, N-phenyl trifluoroacetimidate 6, and diphenylphosphate 7. These probes are 

equipped with a green-fluorescent BODIPY using ‘click’ chemistry. 
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Figure 2. BODIPY-functionalized 2-deoxy-2-fluoroglucoside probes 

 

 

 

 

 

 

 

 

 

 

Synthesis of the probes. The stereoselectivity of the electrophilic fluorination of D-glucal 

with Selectfluor® has been shown to depend greatly on the protecting group pattern.
8
 

Whereas the per-acetylated D-glucal roughly produced a 1 : 1 epimeric gluco : manno 

mixture (see Chapter 8), the per-pivaloylated D-glucal 9 revealed a high preference for the 

gluco epimer.
8
 Therefore, this strategy was applied here in the synthesis of probes 3-7 as 

depicted in Scheme 1. Thus, commercially available 3,4,6-tri-O-acetyl-D-glucal was 

deacetylated using Zemplén conditions, and the triol was directly pivaloylated to give 9 in 

60% over two steps. Fluorination using Selectfluor in MeNO2/H2O yielded 66% of the 

gluco epimer 10 after ensuing acetylation and column chromatography. Subsequent 

anomeric bromination (HBr/AcOH) and direct substitution with p-thiocresol using phase-

transfer conditions exclusively gave β-thioglucoside 12 in 96% over two steps. The 

pivaloyl esters were removed by prolonged treatment with NaOMe in MeOH (5 days) to 

produce triol 13. The azido functionality was introduced by selective tosylation of 6-OH 

(Ts-Cl, tetramethylethylenediamine) and substitution with NaN3 while heating at 80 ºC 

overnight to yield product 14 in 63% over two steps. Compound 14 was used in the copper-

catalyzed click reaction with alkyne 8 to produce direct probe 3 in 44% yield. To produce 

probes 4-7, compound 14 was first acetylated and subsequently treated with NBS in 

acetone/H2O. Because it was observed before that the anomeric thio functionality was 

readily oxidized with aqueous NBS (see Chapter 8), these conditions were applied in this 

synthetic scheme. In this way, sulfoxide 15 (mixture of diastereomers on sulfur) was 

obtained in 59% yield, next to hemiacetal byproduct (29%). Removal of the acetyls in 15 

(NaOMe, MeOH) provided compound 16, which was coupled to the BODIPY-moiety to 

produce a diastereomeric mixture of sulfoxides 4/5. Using RP-HPLC the diastereomers 

were separated to give direct probes 4 and 5 in 20% and 18% yield, respectively. Sulfoxide 

16 was efficiently hydrolyzed towards hemiacetal 17 (94%) by treatment with NBS for 3 h. 

To access the more labile anomeric imidate probe 6 and phosphate probe 7, it was decided 

to install the BODIPY-moiety prior to anomeric leaving group introduction. Thus, 

hemiacetal 17 was connected to alkyne 8 under the standardized click conditions to 

produce compound 18 in 53%. Subsequently, an anomeric mixture of N-phenyl 

trifluoroacetimidates was produced under mild basic conditions, which were resolved using 

RP-HPLC (NH4OAc). Subsequent lyophilization afforded the pure β-anomer 6 in 15% and 
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α-anomer 19 in 10%. In a first attempt to obtain anomeric phosphate 7, the anomeric 

mixture of imidates was treated with diphenylphosphoric acid to give immediate and 

quantitative conversion to an anomeric mixture of phosphates. While this mixture was 

separable on RP-HPLC, the β-phosphate 7 did not withstand lyophilization in the presence 

of aqueous NH4OAc. To circumvent this hydrolysis, pure α-imidate 19 was substituted by 

diphenylphosphate in an SN2-like reaction to yield β-phosphate 7, which was purified using 

flash column chromatography and subsequently lyophilized under neutral conditions. 

 

Scheme 1. Synthesis of 2-fluoro β-glucoside probes 3-7 

Reagents and conditions: a) NaOMe, MeOH; b) Piv-Cl, DMAP, pyridine (9: 60% two steps); c) i. Selectfluor®, 

MeNO2/H2O; ii. Ac2O, pyridine, DCM (10: 66%); d) HBr/AcOH, DCM; e) TolSH, TBAB, KOH, CHCl3/H2O (12: 

96%, two steps); f) NaOMe, MeOH (13: quant.); g) i. Ts-Cl, TMEDA, MeCN; ii.NaN3, DMF, 80 ºC (14: 63% 

over two steps); h) BODIPY-alkyne 8, sodium ascorbate, CuSO4, DMF, 80 ºC (3: 44%, 4: 20%, 5: 18%, 18: 53%); 

i) Ac2O, pyridine; j) NBS, acetone/H2O (15: 39% over two steps, 17: 94%); k) NaOMe, MeOH (16: quant.); l) 

CF3C(NPh)Cl, K2CO3, acetone (6: 15%, 19: 10%); m) HOP(O)(OPh)2, DCM (7: 59%).  

 

Biological evaluation. The inhibitory potentials of probes 1-7 for GBA were (re-) 

established by determining their apparent IC50 values (Table 1). This was accomplished by 

incubating recombinant GBA for 30 min with different concentrations of probes 1-7 (1 mM 

to 10 nM), followed by measuring the residual enzymatic activity using the fluorogenic 
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substrate 4-methylumbelliferyl β-D-glucopyranoside. The inhibition curves are shown in 

Figure 3 (left). While fluoride probe 1 inhibited GBA (Figure 3, �), it was not possible to 

determine an IC50 value because the inhibition did not converge to zero. In this experiment, 

2,4-dinitrophenyl probe 2 did not show significant inhibition of GBA, and thioether probe 3 

and sulfoxide probes 4 and 5 all revealed no inhibition of GBA at all.
9,10,11

 In contrast, 

imidate probe 6 blocked all activity at the highest concentrations used (Figure 3, �), and its 

IC50 value was determined to be 5.5 µM, indicating that probe 6 is twice as potent as 

conduritol B epoxide (CBE) for GBA (9.49 µM). Phosphate probe 7 showed some enzyme 

inhibition at lower concentrations than fluoride probe 1, although its IC50 value could not 

be determined accurately (Figure 3, �). 

 

Table 1. Apparent IC50 values 

Probe IC50 (µM) Probe IC50 (µM) 

 

>1000a 

 

5.5 

 

>1000a 

 

>1000a 

 

>1000a 

 

0.0012b 

 

>1000 

 

9.49b 

 

a Using probe concentrations up to 1 mM, no complete inhibition was observed. b Reported literature values.12 

(Note: all BODIPYs in this table are green-fluorescent ) 

 

To prove that the abolished enzyme activity was a result of inhibition of active enzyme via 

a covalent inhibitor-enzyme intermediate, 2 picomol of GBA was incubated with different 

concentrations of probes 1, 2, 6 and 7 for 30 min, followed by separation of the proteins on 

SDS-PAGE and visualization of the enzyme mixture after fluorescent scanning of slab gels. 

As shown in Figure 3 (right), fluorescently labeled enzyme could be observed for probes 1, 

6 and 7, while 2,4-dinitrophenyl probe 2 showed no labeling even at 50 µM. Fluoride probe 

1 could visualize GBA down to 5 µM, the same concentration as phosphate probe 7. The 

apparent IC50 value obtained for imidate probe 6 is reflected in the detection limit and 

fluorescently labeled GBA could be visualized using as little as 500 nM of probe 6. While 

the gel depicted in Figure 3 reveals that imidate probe 6 is not as potent as cyclitol- and 

aziridine-based probes MDW941 and MDW1044 (labeling GBA in the picomolar range), 
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the minimal concentration for labeling is 100-fold lower than the concentration required for 

fluoride probe 1, and not comparable to probe 2 which did not bind at all. 

Having established that probes 1, 6 and 7 bind GBA in a covalent manner, the hypothesis 

of activity-based binding to the active site was validated. To this end, a solution of 

recombinant GBA was pre-incubated with known inhibitors (CBE, cyclophellitol, 

MDW941, and AMP-DNM) or denatured by heating, followed by incubation with probes 

1, 6 and 7 (data not shown). Fluorescent scanning analysis of the slab gels after 

electrophoresis revealed no labeling in all cases, proving that active and intact enzyme is 

needed for labeling. 

 

Figure 3. Inhibition curves and detection limit of fluoride 1 (�), DNP 2 (�), thioether 3 (�), imidate 6 (�), and 

phosphate 7 (�), as compared to the cyclitol (MDW941, �) and aziridine (MDW1044) analogs. Left: inhibition 

curves of GBA. Right: labeling of recombinant GBA (� = imiglucerase labeled with 1nM of MDW933 and 

MDW941) 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Recombinant GBA was incubated with the probe at the indicated concentrations for 60 min, denatured, resolved 

by SDS-PAGE and visualized by scanning.  

 

The results presented above indicate that probes 6 and 7 inhibit GBA in an equal fashion or 

better than fluoride probe 1. This difference may be explained by assuming a different 

inhibitory mechanism. Considering the proposed mechanism of enzymatic hydrolysis (see 

Chapter 8), in which the acid/base residue catalyzes the reaction while the nucleophile 

covalently traps the inhibitor, probes 1, 6 and 7 might display different mechanistic 

requirements. To investigate the intermediacy of the acid/base residue in the processing of 
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these probes, GBA was pre-incubated at different pH values,
13

 followed by labeling with 

either probe 1, 6 or 7 for 30 min at 37 ºC. Analysis of the labeled enzyme using slab gel 

electrophoresis and ensuing fluorescent scanning revealed that the three probes all labeled 

GBA at pH values between 5.0 and 6.0, while imidate probe 6 and, to a higher extent, 

cyclitol-analogue MDW941 also labeled faintly at pH 7.0 (Figure 4). This similarity in pH-

dependent labeling is an indication that probes 1, 6 and 7 at least need active GBA enzyme, 

since the optimal pH for enzyme activity is pH 5.2.
12

 

 

Figure 4. pH-dependent labeling 

 

 

 

 

 

 

 

 

 

 

Recombinant GBA was incubated at the indicated pH for 30 min, followed by incubation with the probe 

(MDW941: 1 nM, 1: 50 µM, 6: 500 nM, 7: 5 µM) for 30 min, denatured, resolved by SDS-PAGE and visualized 

by scanning (� = imiglucerase labeled with 1nM of MDW933 and MDW941). 

 

The requirement of probes 1, 6 and 7 for catalysis by the acid/base residue was evaluated 

using mutant GBA enzyme, in which the glutamic acid residue (E235) was substituted for a 

glycine (E235G) or a glutamine (E235Q). Homogenates of cells over-expressing wild-type 

or mutant mycHis-tagged GBA were incubated with probes 1, 6 and 7 for 2 h and 24 h, 

followed by pull-down of the (labeled) mutant GBA with nickel-agarose beads. As 

displayed in Figure 5 (left), labeling of the wild-type enzyme was observed with all probes 

upon incubation for 2 h. Interestingly, incubation with the probes for 24 h revealed a 

different behavior of the probes (Figure 5, right). Fluoride probe 1 labeled both GBA 

variants with the mutated acid/base residues, while imidate 6 and phosphate 7 were 

incapable of binding the mutant GBA enzymes. Aziridine-based probe MDW1044 

evidently labeled the two mutant enzymes after 2 h, and epoxide-based probe MDW933 

labeled the glutamine-mutant after 24 h incubation. It follows from these results that 

fluoride probe 1 does not require acid/base catalyzed protonation to bind covalently in the 

active site of GBA, similar to the aziridine probe, albeit with a markedly lower labeling 

velocity and decreased affinity considering the concentrations used (MDW933, 

MDW1044: 1 µM, probe 1: 100 µM). On the contrary, the labeling experiment with probes 

6 and 7 confirmed that the presence of the acid/base catalyst was a prerequisite for their 

active binding, analogous to the synthetic activation of imidate and phosphate moieties 

under acidic conditions.
14
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Figure 5. Labeling of wild-type and acid/base mutants of GBA after incubation for 2 hours (left) and 24 hours 

(right) 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Homogenates over-expressing wild-type or mutant GBA were incubated with the probe (MDW1044, MDW933: 1 

µM, 1: 100 µM, 6: 1 µM, 7: 10 µM) for 2 h or 24 h, denatured, either directly resolved by SDS-PAGE or 

subjected to Ni-beads pull-down prior to SDS-PAGE, and visualized by scanning (� = imiglucerase labeled with 

1nM of MDW933 and MDW941). 

 

The ability of probes 1, 6 and 7 to label GBA in living cells was also investigated. To this 

end, confluent human skin fibroblasts were grown in the presence of 1 or 10 µM of the 

fluoroglycoside probes (compared to 1 or 10 nM for MDW933 and MDW1044) for 2 hours 

and 24 hours (see Figure 6 and Appendix 4). After lysis of the cells, the lysates were 

treated with red-fluorescent MDW941 to label any free enzyme. Ensuing slab gel 

electrophoresis and fluorescent scanning provided the pictures in Figure 6A, and the 

quantification of residual labeling is shown in Figure 6B.  

 

Figure 6. Labeling of GBA in human skin fibroblasts using green-fluorescent probes for 2 hours (A) (see 

Appendix 4 for a colored picture), and the percentage of residual labeling by red-fluorescent MDW941 (B) 

 

 

 

 

 

 

 

 

 

 

Confluent fibroblasts were incubated with the probe for 2 h or 24 h and lysed, followed by incubation with 

MDW941 for 30 min. Proteins were denatured, resolved by SDS-PAGE and visualized by scanning (� = 

imiglucerase labeled with 1nM of MDW933 and MDW941). 

A) B) 
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Imidate 6 labeled GBA at a concentration of 1 µM after 2 h (left, green trace), allowing 

49% of residual labeling by MDW941 (left, red trace). After labeling for 24 h, the residual 

labeling decreased to 15%. Incubating with 10 µM of probe 6 for 2 h resulted in complete 

covalent blocking of the enzyme (right, green trace), with only minimal residual labeling 

(6%), which did not decrease further after 24 h. Fluoride probe 1 only showed labeling with 

10 µM, resulting in 70% residual labeling after 2 h, and 26% after 24 h. Phosphate probe 7 

gave a significant amount of residual labeling (71%) after 24 h at the highest concentration 

(10 µM). In this last case, it may be argued whether the phosphate moiety is preserved in 

living cells before it reaches the lysosomal GBA, or that it is attacked by other 

(phosphatase) enzymes, or hydrolyzed.
13

 

 

Conclusion 

In summary, a series of BODIPY-functionalized 2-deoxy-2-fluoro-β-glycosides was 

synthesized, bearing anomeric fluoride, 2,4-dinitrophenyl, (S)-tolyl, (S)R/S-sulfoxide, N-

phenyl trifluoroacetimidate, and diphenylphosphate leaving groups. These compounds were 

tested for their inhibitory potential against glucocerebrosidase (GBA), revealing that only 

imidate probe 6 was able to fully block the enzyme activity, with a lower apparent IC50 

than conduritol B epoxide (CBE). Probe 6 labels GBA as an acitivity-based covalent 

inhibitor, enabling the use of 500 nM to visualize GBA on slab gels. Mutant GBA lacking 

the acid/base catalyst was not labeled by imidate 6, while fluoride probe 1 did reveal 

covalent binding to this mutant enzyme, although at a low kinetic rate. And finally, probe 6 

labeled endogenous GBA in human skin fibroblasts already after 2 h using 1 µM 

concentration. This study thus revealed that novel imidate probe 6 is an excellent candidate 

to probe enzyme activity, and is a mechanism-based inhibitor. Although not as potent as 

cyclitol- or aziridine-based probes, its ease of synthesis regardless of carbohydrate 

configuration renders this probe highly suitable in the design of ABPs targeting other 

retaining glycosidases. 

 

Experimental Section 

Probe 3. Compound 14 (20 mg, 67 µmol) and BODIPY-alkyne 8 (24 mg, 73 µmol) were together dissolved in 

DMF (1.5 mL) and treated with sodium ascorbate (10 µL, 1M 

solution in H2O) and CuSO4 (7 µL, 1M solution in H2O). The 

resulting mixture was stirred at 80 ºC for 2 days, during which time 

the addition of sodium ascorbate and CuSO4 was repeated twice. The 

mixture was allowed to cool to RT and diluted with EtOAc and H2O. 

The organic phase was washed with sat. aq. NaCl, dried over Na2SO4 

and the product was obtained using flash column chromatography (silica gel, 4% MeOH in DCM) followed by 

lyophilization as an orange solid (Yield: 18.8 mg, 29.3 µmol, 44%). TLC: Rf 0.32 (DCM/MeOH, 9/1, v/v); IR 

(neat, cm-1): 894, 1065, 1508, 1551, 3394; 1H NMR (CDCl3/MeOH-d4, 400 MHz, HH-COSY, HSQC): δ 7.26 (d, 

2H, J = 8.0 Hz, CHarom), 7.05 (d, 2H, J = 7.9 Hz, CHarom), 6.06 (s, 2H, CH pyrrole), 4.79 (dd, 1H, J = 2.1, 14.5 Hz, 

H-6), 4.57 (d, 1H, J = 9.3 Hz, H-1), 4.46 (dd, 1H, J = 7.0, 14.5 Hz, H-6), 3.94 (dt, 1H, J = 9.0, 49.6 Hz, H-2), 3.68 

(dt, 1H, J = 7.7, 15.4 Hz, H-3), 3.50-3.60 (m, 1H, H-5), 3.09 (t, 1H, J = 9.4 Hz, H-4), 2.99 (dd, 2H, J = 6.6, 10.1 

Hz, CH2), 2.74 (t, 2H, J = 7.5 Hz, CH2), 2.50 (s, 6H, CH3), 2.39 (s, 6H, CH3), 2.31 (s, 3H, CH3 STol), 1.85-1.94 

(m, 2H, CH2), 1.63-1.71 (m, 2H, CH2); 
13C-APT NMR (CDCl3, 100 MHz, HSQC): δ 153.9, 147.3, 145.8, 140.2, 

O

F
HO

HO
STol

N

NNN

B
N

F
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138.8 (Cq), 133.9 (CHarom), 131.3 (Cq), 129.8 (CHarom), 126.7 (Cq), 123.2 (CH triazole), 121.7 (CH pyrrole), 89.1 

(d, J = 186 Hz, C-2), 84.4 (d, J = 24 Hz, C-1), 77.4 (C-5), 76.0 (d, J = 18 Hz, C-3), 69.9 (d, J = 8 Hz, C-4), 50.5 

(C-6), 31.3, 29.6, 28.0, 25.2 (CH2), 21.2 (CH3STol), 16.4, 14.4 (CH3); LC-MS: Rt 9.22 min (C18 column, linear 

gradient 10 → 90% B in 13.5 min); HRMS: [M+H]+ calcd for C32H40BF3N5O3S 642.28915, found 642.28954. 

 

Probes 4 and 5. Compound 16 (25 mg, 78 µmol) and BODIPY-alkyne 8 (28 mg, 85 µmol) were together dissolved 

in DMF (1 mL) and treated with sodium ascorbate (12 µL, 1M 

solution in H2O) and CuSO4 (8 µL, 1M solution in H2O). The 

resulting mixture was stirred at 80 ºC for 2 days, during which time 

the addition of sodium ascorbate and CuSO4 was repeated twice. 

The mixture was allowed to cool to RT and diluted with EtOAc and 

H2O. The organic phase was washed with sat. aq. NaCl, dried over 

Na2SO4 and the product was isolated using flash column chromatography (silica gel, 10% MeOH in DCM). The 

two diastereomers were separated using RP-HPLC followed by lyophilization to yield 4 (Yield: 10.1 mg, 15.3 

µmol, 20%) and 5 (Yield: 9.5 mg, 14.4 mmol, 18%) both as orange solids. TLC: Rf 0.45 (DCM/MeOH, 8.5/1.5, 

v/v); IR (neat, cm-1): 984, 1080, 1200, 1508, 1551, 3406. Spectroscopic data for product 4: 1H NMR (MeCN-d3, 

600 MHz, HH-COSY, HSQC): δ 7.32 (d, 2H, J = 8.2 Hz, CHarom), 7.16 (d, 2H, J = 7.9 Hz, CHarom), 6.76 (s, 1H, 

CH triazole), 6.08 (bs, 2H, CH pyrrole), 4.57 (d, 1H, J = 14.8 Hz, H-6), 4.47 (dt, 1H, J = 9.3, 50.4 Hz, H-2), 4.14 

(dd, 1H, J = 8.4, 14.8 Hz, H-6), 4.01 (dd, 1H, J = 2.9, 9.7 Hz, H-1), 3.67 (dt, 1H, J = 8.9, 15.5 Hz, H-3), 3.34 (t, 

1H, J = 8.3 Hz, H-5), 3.14 (t, 1H, J = 9.4 Hz, H-4), 2.89 (dddd, 2H, J = 5.0, 12.9, 13.0, 25.2 Hz, CH2), 2.41-2.59 

(m, 2H, CH2), 2.36 (s, 12H, CH3), 2.28 (s, 3H, CH3 STol), 1.64-1.78 (m, 2H, CH2), 1.33-1.52 (m, 2H, CH2); 
13C-

APT NMR (MeCN-d3, 150 MHz, HSQC): δ 148.3, 147.8, 142.7, 136.7 (Cq), 130.8, 126.2, 123.0, 122.6 (CHarom), 

90.7 (d, J = 24 Hz, C-1), 88.6 (d, J = 183 Hz, C-2), 80.5 (C-5), 76.0 (d, J = 17 Hz, C-3), 71.4 (d, J = 8 Hz, C-4), 

51.6 (C-6), 31.8, 30.4, 29.0, 25.8 (CH2), 21.7 (CH3 STol), 16.6, 14.6 (CH3); LC-MS: Rt 7.79 min (C18 column, 

linear gradient 10 → 90% B in 13.5 min); HRMS: [M+Na]+ calcd for C32H39BF3N5O4SNa 680.26601, found 

680.26583. Spectroscopic data for product 5: 1H NMR (MeCN-d3, 600 MHz, HH-COSY, HSQC): δ 7.46 (d, 2H, J 

= 11.7 Hz, CHarom), 7.34 (d, 2H, J = 8.1 Hz, CHarom), 6.17 (bs, 2H, CH pyrrole), 4.73 (dd, 1H, J = 2.1, 14.7 Hz, H-

6), 4.40-4.51 (m, 3H, H-1, H-2, H-6), 3.75 (ddd, 1H, J = 2.1, 7.4, 9.6 Hz, H-5), 3.66-3.69 (m, 1H, H-3), 3.10 (t, 

1H, J = 9.2 Hz, H-4), 3.03-3.07 (m, 2H, CH2), 2.78 (t, 2H, J = 7.3 Hz, CH2), 2.46 (s, 6H, CH3), 2.44 (s, 6H, CH3), 

2.40 (s, 3H, CH3 STol), 1.89-1.95 (m, 2H, CH2), 1.67-1.72 (m, 2H, CH2);
 13C-APT NMR (MeCN-d3, 150 MHz, 

HSQC): δ 130.6, 125.8, 123.7 (CHarom), 122.7 (CH pyrrole), 93.1 (d, J = 24 Hz, C-1), 87.8 (d, J = 185 Hz, C-2), 

79.6 (C-5), 76.2 (d, J = 18 Hz, C-3), 71.1 (d, J = 8 Hz, C-4), 51.4 (C-6), 31.9, 30.5, 29.0, 25.9 (CH2), 20.3 (CH3 

STol), 16.6 (CH3); LC-MS: Rt 8.00 min (C18 column, linear gradient 10 → 90% B in 13.5 min); HRMS: [M+H]+ 

calcd for C32H40BF3N5O4S 658.28407, found 658.28426. 

 

Probe 6. A solution of compound 18 (17 mg, 32 µmol) in acetone (2 mL) was cooled to 0 ºC, followed by the 

addition of N-phenyl trifluoroacetimidoyl chloride (10 µL, 63 

µmol) and K2CO3 (6 mg, 43 µmol). The reaction was stirred at 

RT overnight, after which time the mixture was diluted with 

EtOAc. The organic phase was washed with sat. aq. NaCl, dried 

over Na2SO4 and concentrated in vacuo. Purification using flash 

column chromatography (silica gel, 87% EtOAc in PE) yielded 

an anomeric mixture of imidates. The anomers were separated using RP-HPLC to give β-anomer 6 (Yield: 3.4 mg, 

4.8 µmol, 15%) and α-anomer 19 (Yield: 2.2 mg, 3.0 µmol, 10%) both as orange solids. TLC: Rf 0.64 

(DCM/MeOH, 8.5/1.5, v/v); IR (neat, cm-1): 986, 1082, 1161, 1202, 1510, 1551, 1719, 3383. Spectroscopic data 

for the β anomer 6: 1H NMR (MeCN-d3, 600 MHz, HH-COSY, HSQC, T = 335 K): δ 7.57 (s, 1H, CH triazole), 

7.31 (t, 2H, J = 7.9 Hz, CHarom), 7.14 (t, 1H, J = 7.5 Hz, CHarom), 6.76 (d, 2H, J = 7.5 Hz, CHarom), 6.18 (s, 2H, CH 

pyrrole), 5.68 (bs, 1H, H-1), 4.81 (dd, 1H, J = 1.7, 14.6 Hz, H-6), 4.42 (dd, 1H, J = 8.2, 14.7 Hz, H-6), 4.33 (dt, 

1H, J = 8.4, 51.5 Hz, H-2), 3.72-3.79 (m, 1H, H-3), 3.65-3.72 (m, 1H, H-5), 3.35 (t, 1H, J = 9.3 Hz, H-4), 3.01 (t, 

2H, J = 8.8 Hz, CH2), 2.59-2.71 (m, 2H, CH2), 2.49 (s, 6H, CH3), 2.41 (s, 6H, CH3), 1.78-1.86 (m, 2H, CH2), 1.54-

1.67 (m, 2H, CH2); 
13C-APT NMR (MeCN-d3, 150 MHz, HSQC, T = 330 K): δ  154.9, 148.6, 148.5, 144.5, 142.6 

132.6 (Cq), 130.2, 125.9 (CHarom), 123.5 (CH triazole), 122.9 (CH pyrrole), 120.3 (CHarom), 95.9 (d, J = 25 Hz, C-
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1), 92.3 (d, J = 187 Hz, C-2), 77.0 (C-5), 75.6 (d, J = 17 Hz, C-3), 72.1 (d, J = 8 Hz, C-4), 51.7 (C-6), 32.1, 30.7, 

29.3, 26.1 (CH2), 16.8, 14.8 (CH3); LC-MS: Rt 9.75 min (C18 column, linear gradient 10 → 90% B in 13.5 min); 

HRMS: [M+H]+ calcd for C33H38BF6N6O4 707.29463, found 707.29472. Spectroscopic data for the α anomer 18: 
1H NMR (MeCN-d3, 600 MHz, HH-COSY, HSQC, T = 335 K): δ 7.52 (s, 1H, CH triazole), 7.33 (t, 2H, J = 7.9 

Hz, CHarom), 7.14 (t, 1H, J = 7.5 Hz, CHarom), 6.74 (d, 2H, J = 7.9 Hz, CHarom), 6.29 (bs, 1H, H-1), 6.17 (s, 2H, CH 

pyrrole), 4.75 (dd, 1H, J = 2.1, 14.6 Hz, H-6), 4.41-4.52 (m, 2H, H-2, H-6), 4.03-4.08 (m, 1H, H-5), 3.97 (dt, 1H, 

J = 9.3, 12.9 Hz, H-3), 3.31 (t, 1H, J = 9.6 Hz, H-4), 3.05 (t, 2H, J = 8.6 Hz, CH2), 2.72-2.83 (m, 2H, CH2), 2.48 

(s, 6H, CH3), 2.43 (s, 6H, CH3), 1.85-1.93 (m, 2H, CH2), 1.64-1.74 (m, 2H, CH2); 
13C-APT NMR (MeCN-d3, 150 

MHz, HSQC, T = 330 K): δ  154.6, 148.2, 148.2, 142.4, 132.2 (Cq), 129.8, 125.4 (CHarom), 123.5 (CH triazole), 

122.6 (CH pyrrole), 120.0 (CHarom), 93.7 (C-1), 89.7 (d, J = 190 Hz, C-2), 73.6 (C-5), 72.4 (d, J = 14 Hz, C-3), 

71.6 (d, J = 7 Hz, C-4), 51.4 (C-6), 31.9, 30.4, 29.0, 26.0 (CH2), 16.6, 14.6 (CH3); LC-MS: Rt 9.60 min (C18 

column, linear gradient 10 → 90% B in 13.5 min); HRMS: [M+H]+ calcd for C33H38BF6N6O4 707.29463, found 

707.29459. 

 

Probe 7. α-Imidate 19 (2.2 mg, 3 µmol) was dissolved in dry DCM (1.5 mL) under an argon atmosphere. The 

resulting solution was cooled to 0 ºC and treated with diphenyl 

phosphate (~ 1 mg, 3.5 µmol) for 20 min, after which time the 

reaction was halted by the addition of sat. aq. NaHCO3 (2 mL). 

The mixture was diluted with EtOAc, the organic layer was 

washed with sat. aq. NaCl, dried over Na2SO4 and concentrated in 

vacuo. Purification using flash column chromatography (silica 

gel, 10% MeOH in EtOAc) and subsequent lyophilization afforded the title compound as an orange amorphous 

solid (Yield: 1.4 mg, 1.8 µmol, 59%); TLC: Rf0.22 (EtOAc); IR (neat, cm-1): 974, 1080, 1161, 1202, 1510, 1551, 

2292, 3337; 1H NMR (MeCN-d3, 600 MHz, HH-COSY, HSQC): δ 7.38-7.45 (m, 4H, CHarom), 7.25-7.31 (m, 2H, 

CHarom), 7.20-7.25 (m, 4H, CHarom), 6.17 (s, 2H, CH pyrrole), 5.49 (ddd, 1H, J = 2.7, 7.3, 7.1 Hz, H-1), 4.73 (dd, 

1H, J = 1.8, 14.7 Hz, H-6), 4.45 (dd, 1H, J = 7.5, 14.8 Hz, H-6), 4.20 (dt, 1H, J = 8.4, 51.3 Hz, H-2), 3.83-3.87 

(m, 1H, H-5), 3.70-3.77 (m, 1H, H-3), 3.25 (t, 1H, J = 9.3 Hz, H-4), 2.95-2.99 (m, 2H, CH2), 2.56-2.61 (m, 2H, 

CH2), 2.46 (s, 6H, CH3), 2.39 (s, 6H, CH3), 1.74-1.80 (m, 2H, CH2), 1.57-1.65 (m, 2H, CH2); 
13C-APT NMR 

(MeCN-d3, 150 MHz, HSQC): δ 154.6, 148.3, 148.2, 142.4, 132.2 (Cq), 131.1, 130.1, 126.9, 123.8, 123.6 (CHarom, 

CH triazole), 122.6 (CH pyrrole), 121.1, 121.1 (CHarom), 97.7 (dd, J = 6, 25 Hz, C-1), 92.9 (dd, J = 9, 187 Hz, C-

2), 76.4 (C-5), 74.7 (dd, J = 2, 17 Hz, C-3), 71.3 (d, J = 8 Hz, C-4), 51.1 (C-6), 31.9, 30.4, 28.9, 25.8 (CH2), 16.6, 

14.6 (CH3); 
31P NMR (MeCN-d3, 162 MHz): δ -12.44; LC-MS: Rt 9.44 min (C18 column, linear gradient 10 → 

90% B in 13.5 min); HRMS: [M+H]+ calcd for C37H43BF3N5O7P 768.29398, found 768.29416. 

 

3,4,6-Tri-O-pivaloyl-D-glucal (9). 3,4,6-Tri-O-acetyl-D-glucal (13.6 g, 50.0 mmol) was dissolved in MeOH (500 

mL) and treated with NaOMe (0.27 g, 5 mmol) overnight at RT. The mixture was neutralized by 

the addition of AcOH, and the solvents were evaporated. The residue was repeatedly co-

evaporated with toluene. The crude triol (~24 mmol) was dissolved in pyridine (120 mL) and 

DMAP (cat.) was added. The resulting mixture was cooled to 0 ºC and Piv-Cl (14.5 mL, 117.8 mmol) was added. 

The mixture was stirred overnight at RT, after which time the reaction was halted by the addition of MeOH. The 

solvents were evaporated, the residue was dissolved in EtOAc and washed with H2O and sat. aq. NaCl. The 

organic phase was dried over Na2SO4 and concentrated in vacuo. Purification using flash column chromatography 

(silica gel, 100% PE) yielded the title compound as a colored oil (Yield: 5.77 g, 14.5 mmol, 60% over two steps). 

The spectroscopic data were in full accord with those reported previously.15 1H NMR (CDCl3, 400 MHz, HH-

COSY, HSQC): δ 6.46 (dd, 1H, J = 1.2, 6.2 Hz, H-1), 5.30-5.33 (m, 1H, H-3), 5.28 (dd, 1H, J = 5.9, 7.4 Hz, H-4), 

4.82 (dd, 1H, J = 3.1, 6.2 Hz, H-2), 4.33 (dd, 1H, J = 5.5, 11.7 Hz, H-6), 4.25-4.30 (m, 1H, H-5), 4.21 (dd, 1H, J = 

2.5, 11.7 Hz, H-6), 1.23 (s, 9H, CH3 tBu), 1.19 (s, 9H, CH3 tBu), 1.18 (s, 9H, CH3 tBu); 13C-APT NMR (CDCl3, 

100 MHz, HSQC): δ 178.1, 177.7, 176.5 (C=O Piv), 145.6 (C-1), 99.0 (C-2), 74.1 (C-5), 67.5 (C-3), 66.6 (C-4), 

61.3 (C-6), 38.8, 38.7, 38.7 (Cq tBu), 27.0, 27.0, 27.0 (CH3 tBu). 
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Acetyl 2-deoxy-2-fluoro-3,4,6-tri-O-pivaloyl-ββββ-D-glucopyranoside (10). 3,4,6-Tri-O-pivaloyl-D-glucal 9 (5.77 

g, 14.48 mmol) was dissolved in nitromethane/H2O (60 mL, 5/1, v/v), and Selectfluor (6.16 

g, 17.38 mmol) was portion-wise added at RT. The resulting mixture was stirred for 2 days, 

followed by heating at reflux (95 ºC) for 1 h. The mixture was cooled to RT and 

concentrated in vacuo. The residue was taken up in EtOAc and washed with sat. aq. NaHCO3 (2x) and sat. aq. 

NaCl (2x). The organic phase was dried over Na2SO4 and concentrated in vacuo. The residue was subsequently 

dissolved in DCM (50 mL) and treated with Ac2O (1.6 mL) and pyridine (2.1 mL) overnight. The mixture was 

concentrated in the presence of toluene, and the product was isolated using flash column chromatography (silica 

gel, 9% EtOAc in PE) as a colorless oil (Yield: 4.56 g, 9.56 mmol, 66%, α : β = 1 : 2). The spectroscopic data 

were in full accord with those reported previously.16 TLC: Rf 0.53 (PE/EtOAc, 5/1, v/v);1H NMR (CDCl3, 300 

MHz, HH-COSY, HSQC): δ 6.41 (d, 0.5H, J = 3.8 Hz, H-1α), 5.80 (dd, 1H, J = 3.0, 8.1 Hz, H-1β), 5.59 (dd, 

0.5H, J = 10.0, 21.0 Hz, H-3α), 5.44 (dt, 1H, J = 9.3, 14.2 Hz, H-3β), 5.10-5.18 (m, 0.5H, H-4α), 5.10 (t, 1H, J = 

9.6 Hz, H-4β), 4.65 (ddd, 0.5H, J = 4.0, 9.6, 39.1 Hz, H-2α) 4.44 (dt, 1H, J = 8.2, 17.0 Hz, H-2β), 4.07-4.20 (m, 

3.5H, H-5α, H-6α, H-6β), 3.92 (ddd, 1H, J = 2.5, 4.6, 10.0 Hz, H-5β), 2.20 (s, 1.5H, CH3 Ac-α), 2.17 (s, 3H, CH3 

Ac-β), 1.21 (s, 13.5H, CH3 tBu -α/β), 1.19 (s, 13.5H, CH3 tBu-α/β), 1.18 (s, 4.5H, CH3 tBu-α), 1.16 (3, 9H, CH3 

tBu-β); 13C-APT NMR (CDCl3, 75 MHz, HSQC): δ 177.8, 176.9, 176.4 (C=O Piv), 168.6 (C=O Ac), 91.2 (d, J = 

24 Hz, C-1β), 88.5 (d, J = 191 Hz, C-2β), 88.3 (d, J = 22 Hz, C-1α), 86.6 (d, J = 194 Hz, C-2α), 73.0 (C-5β), 72.1 

(d, J = 19 Hz, C-3β), 70.0 (C-5α), 69.9 (d, J = 19 Hz, C-3α), 66.9 (d, J = 7 Hz, C-4β), 66.5 (d, J = 7 Hz, C-4α), 

61.3 (C-6β), 61.1 (C-6α), 38.7, 38.7 (Cq tBu), 26.9, 26.9 (CH3 tBu), 20.7 (CH3 Ac-α), 20.6 (CH3 Ac-β).  

 

Tolyl 2-deoxy-2-fluoro-3,4,6-tri-O-pivaloyl-1-thio-ββββ-D-glucopyranoside (12). A solution of compound 10 (0.93 

g, 1.97 mmol) in dry DCM (3 mL) was cooled to 0 ºC, and HBr/AcOH (33 wt%, 1.8 mL, 

9.85 mmol) was added. The resulting solution was stirred at RT overnight, after which time 

it was poured in ice-water. The organic phase was diluted with EtOAc, washed with H2O, 

sat. aq. NaHCO3 and sat. aq. NaCl, dried over Na2SO4, and concentrated in vacuo in the presence of toluene. The 

crude anomeric bromide 11 was used in the next reaction without further purification. TLC: Rf 0.80 (PE/EtOAc, 

5/1, v/v); 1H NMR (CDCl3, 400 MHz, HH-COSY, HSQC): δ 6.52 (d, 1H, J = 4.2 Hz, H-1), 5.66 (dt, 1H, J = 9.6, 

20.4 Hz, H-3), 5.15 (t, 1H, J = 10.0 Hz, H-4), 4.49 (ddd, 1H, J = 4.3, 9.4, 49.5 Hz, H-2), 4.32 (dt, 1H, J = 3.2, 10.4 

Hz, H-5), 4.14-4.20 (m, 2H, H-6), 1.21 (s, 9H, CH3 tBu), 1.18 (s, 9H, CH3 tBu), 1.17 (s, 9H, CH3 tBu); 13C-APT 

NMR (CDCl3, 100 MHz, HSQC): δ 177.4, 176.6, 176.1 (C=O Piv), 86.6 (d, J = 194 Hz, C-2), 85.5 (d, J = 21 Hz, 

C-1), 72.5 (C-5), 70.3 (d, J = 18 Hz, C-3), 65.6 (d, J = 7 Hz, C-4), 60.5 (C-6), 38.6, 38.6, 38.6 (Cq tBu), 26.8, 26.8 

(CH3 tBu). A solution of crude bromide 11 (~1.97 mmol) in CHCl3 (20 mL) was cooled to 0 ºC, followed by the 

addition of p-thiocresol (0.37 g, 2.96 mmol) and TBAB (0.13 g, 0.39 mmol, dissolved in 3 mL H2O). A solution 

of KOH (0.22 g, 3.94 mmol) in H2O (3 mL) was drop-wise added, and the reaction was allowed to stir for 2 h. The 

mixture was diluted with EtOAc and washed with sat. aq. NaCl. The organic phase was dried over Na2SO4, and 

the title compound was obtained by flash column chromatography (silica gel, 9% EtOAc in PE) as a colorless oil 

(Yield: 1.02 g, 1.89 mmol, 96% over two steps).TLC: Rf 0.59 (PE/EtOAc, 5/1, v/v); [α]D
20 -2.2 (c 1, DCM); IR 

(neat, cm-1): 1036, 1138, 1726, 1740; 1H NMR (CDCl3, 400 MHz, HH-COSY, HSQC): δ 7.46 (d, 2H, J = 8.0 Hz, 

CHarom), 7.11 (d, 2H, J = 8.0 Hz, CHarom), 5.40 (dt, 1H, J = 9.3, 13.7 Hz, H-3), 4.99 (t, 1H, J = 9.9 Hz, H-4), 4.71 

(d, 1H, J = 9.5 Hz, H-1), 4.04-4.25 (m, 3H, H-2, H-6, H-6), 3.78 (dd, 1H, J = 4.6, 10.1 Hz, H-5), 2.34 (s, 3H, CH3 

STol), 1.21 (s, 3H, CH3 tBu), 1.15 (s, 3H, CH3 tBu), 1.14 (s, 3H, CH3 tBu); 13C-APT NMR (CDCl3, 100 MHz, 

HSQC): δ 177.3, 176.7, 176.0 (C=O Piv), 138.4 (Cq), 133.9, 129.5 (CHarom), 126.6 (Cq), 87.1 (d, J = 190 Hz, C-2), 

84.1 (d, J = 23 Hz, C-1), 75.9 (C-5), 73.1 (d, J = 20 Hz, C-3), 66.7 (d, J = 7 Hz, C-4), 61.5 (C-6), 38.5, 38.4, 38.4 

(Cq tBu), 26.8, 26.7 (CH3 tBu), 20.9 (CH3 STol); HRMS: [M+Na]+ calcd for C28H41FO7SNa 563.24492, found 

563.24459. 

 

Tolyl 2-deoxy-2-fluoro-1-thio-ββββ-D-glucopyranoside (13). A solution of compound 12 (0.84 g, 1.55 mmol) in 

MeOH (20 mL) was treated with NaOMe (cat.) and stirred at RT for 5 days. The mixture was 

quenched by the addition of Amberlite-H+, filtered off and concentrated in vacuo. The 

product was used in the next reaction without further purification. (Yield: 0.45 g, 1.54 mmol, 

quant.). The spectroscopic data were in full accord with those reported previously.17 TLC: Rf 0.46 (EtOAc); IR 

(neat, cm-1): 766, 1009, 1047, 1364, 1614, 3277; 1H NMR (CDCl3/MeOH-d4, 400 MHz, HH-COSY, HSQC): 
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δ 7.45 (d, 2H, J = 8.0 Hz, CHarom), 7.14 (d, 2H, J = 8.0 Hz, CHarom), 4.64 (d, 1H, J = 9.6 Hz, H-1), 3.99 (dt, 1H, J = 

9.2, 49.7 Hz, H-2), 3.87 (dd, 1H, J = 2.5, 12.2 Hz, H-6), 3.73 (dd, 1H, J = 4.7, 12.2 Hz, H-6), 3.63-3.70 (m, 1H, 

H-3), 3.32-3.39 (m, 2H, H-4, H-5), 2.35 (s, 3H, CH3 STol); 13C-APT NMR (CDCl3/MeOH-d4, 100 MHz, HSQC): 

δ 138.4 (Cq Tol-CH3), 133.3, 129.5 (CHarom), 127.2 (Cq STol), 89.5 (d, J = 186 Hz, C-2), 84.5 (d, J = 24 Hz, C-1), 

79.9 (C-5), 75.9 (d, J = 18 Hz, C-3), 69.4 (d, J = 8 Hz, C-4), 61.4 (C-6), 20.7 (CH3 STol); LC: Rt 5.53 (C18 

column, linear gradient 10 → 90% B in 13.5 min); TLC-MS: m/z = 311.1 (M+Na+). 

 

Tolyl 6-azido-2,6-di-deoxy-2-fluoro-1-thio-ββββ-D-glucopyranoside (14). Triol 13 (0.72 g, 2.50 mmol) was co-

evaporated with dry acetonitrile (2x) and dissolved in acetonitrile (25 mL) under an argon 

atmosphere. To the mixture Ts-Cl (0.71 g, 3.75 mmol) and TMEDA (0.57 mL, 3.75 mmol) 

were added. The reaction was stirred for 2 h, after which time the mixture was diluted with 

EtOAc and 1M aq. HCl. The organic phase was washed with sat. aq. NaCl, dried over Na2SO4 and concentrated in 

vacuo. Purification using flash column chromatography (silica gel, 66% EtOAc in PE) furnished the 6-O-tosyl 

intermediate as a colorless oil (Yield: 0.77 g, 1.74 mmol, 70%). A solution of the tosylate (0.77 g, 1.74 mmol) and 

sodium azide (0.34 g, 5.22 mmol) in DMF (17 mL) was heated at 80 ºC overnight. The mixture was diluted with 

EtOAc, washed with sat. aq. NaHCO3 (2x) and H2O (2x), dried over Na2SO4 and concentrated in vacuo. 

Purification using flash column chromatography (silica gel, 66% EtOAc in PE) afforded the title compound as a 

colorless oil (Yield: 0.49 g, 1.56 mmol, 90%). The spectroscopic data were in full accord with those reported 

previously.17 TLC: Rf 0.37 (PE/EtOAc, 1/1, v/v); IR (neat, cm-1): 729, 1038, 1067, 1290, 2102, 3339; 1H NMR 

(CDCl3, 400 MHz, HH-COSY, HSQC): δ 7.46 (d, 2H, J = 8.1 Hz, CHarom), 7.13 (d, 2H, J = 8.0 Hz, CHarom), 4.54 

(dd, 1H, J = 0.8, 9.6 Hz, H-1), 4.40 (bs, 1H, 3-OH), 4.17 (bs, 1H, 4-OH), 3.95 (dt, 1H, J = 9.1, 49.6 Hz, H-2), 3.66 

(dt, 1H, J = 7.1, 14.6 Hz, H-3), 3.54 (d, 1H, J = 12.1 Hz, H-6), 3.37-3.41 (m, 2H, H-4, H-5), 3.34 (d, 1H, J = 13.3 

Hz, H-6), 2.33 (s, 3H, CH3 STol); 13C-APT NMR (CDCl3, 100 MHz, HSQC): δ 139.1 (Cq Tol-CH3), 134.7, 129.7 

(CHarom), 126.0 (Cq STol), 89.2 (d, J = 185 Hz, C-2), 84.1 (d, J = 24 Hz, C-1), 78.2 (C-5), 76.2 (d, J = 18 Hz, C-3), 

69.7 (d, J = 7 Hz, C-4), 51.0 (C-6), 21.1 (CH3 STol). 

 

Tolyl 3,4-di-O-acetyl-6-azido-2,6-dideoxy-1-thio-ββββ-D-glucopyranosyl (S)R/S-oxide (15). Compound 14 (1.13 g, 

3.6 mmol) was treated with pyridine/Ac2O (20 mL, 3/1, v/v) at RT overnight. The mixture 

was diluted with EtOAc, washed with sat. aq. NaCl (3x), dried over Na2SO4 and 

concentrated in vacuo. Purification using flash column chromatography (silica gel, 25% 

EtOAc in PE) yielded the 3,4-O-acetylated intermediate as an amorphous solid (Yield: 0.98 g, 2.47 mmol, 69%). 

A solution of this compound (0.60 g, 1.5 mmol) in acetone/H2O (16 mL, 3/1, v/v) was cooled to 0 ºC and treated 

with NBS (0.80 g, 4.5 mmol) for 40 min, after which time the reaction was quenched by the addition of sat. aq. 

Na2S2O3 (5 mL). The mixture was diluted with EtOAc, washed with H2O and sat. aq. NaCl. The organic layer was 

dried over Na2SO4, concentrated in vacuo and purified using flash column chromatography (silica gel, 66% 

EtOAc in PE) to yield the title compound as a white amorphous solid (Yield: 0.35 g, 0.86 mmol, 57%, A : B = 1.7 

: 1), next to the hydrolyzed product (Yield: 0.13 g, 0.44 mmol, 29%). TLC: Rf 0.22 (PE/EtOAc, 2/1, v/v); IR (neat, 

cm-1): 727, 907, 1026, 1047, 1209, 1227, 1748, 2104; 1H NMR (CDCl3, 400 MHz, HH-COSY, HSQC): δ 7.57 (d, 

1.2H, J = 8.4 Hz, CHarom-B), 7.55 (d, 2H, J = 8.5 Hz, CHarom-A), 7.36 (d, 1.2H, J = 9.6 Hz, CHarom-B), 7.34 (d, 2H, 

J = 8.3 Hz, CHarom-A), 5.30-5.46 (m, 1.6H, H-3A, H-3B), 4.94-5.00 (m, 0.9H, H-2B, H-4B), 4.91 (t, 1H, J = 9.6 

Hz, H-4A), 4.80-4.85 (m, 0.8H, H-2A, H-2B), 4.71 (t, 0.5H, J = 8.9 Hz, H-2A), 4.52 (dd, 1H, J = 3.9, 9.2 Hz, H-

1A), 4.19 (dd, 0.6H, J = 3.1, 9.7 Hz, H-1B), 3.77 (ddd, 1H, J = 3.2, 5.8, 9.8 Hz, H-5A), 3.54 (ddd, 1H, J = 4.2, 

5.3, 9.5 Hz, H-5B), 3.40 (dd, 1H, J = 3.3, 13.9 Hz, H-6A), 3.36 (5.9, 13.8 Hz, H-6A), 3.23-3.28 (m, 1.2H, H-6B), 

2.43 (s, 1.8H, CH3 STol-B), 2.42 (s, 3H, CH3 STol-A), 2.10 (s, 1.8H, CH3 Ac-B), 2.05 (s, 3H, CH3 Ac-A), 2.02 (s, 

3H, CH3 Ac-A), 2.01 (s, 1.8H, CH3 Ac-B); 13C-APT NMR (CDCl3, 100 MHz, HSQC): δ 169.9 (C=O Ac-B), 

169.8, 169.3 (C=O Ac-A), 169.2 (C=O Ac-B), 142.4 (Cq B), 142.4 (Cq A), 134.7 (CqSTol-A), 134.5 (Cq STol-B), 

129.8 (CHarom-B), 129.8 (CHarom-A), 125.2 (CHarom-B), 125.0 (CHarom-A), 92.1 (d, J = 23 Hz, C-1A), 90.1 (d, J = 

23 Hz, C-1B), 85.0 (d, J = 190 Hz, C-2B), 83.9 (d, J = 189 Hz, C-2A), 77.6 (C-5A, C-5B), 73.2 (d, J = 20 Hz, C-

3B), 73.1 (d, J = 20 Hz, C-3A), 68.5 (d, J = 7 Hz, C-4B), 68.2 (d, J = 7 Hz, C-4A), 50.9 (C-6B), 50.7 (C-6A), 21.4 

(CH3 STol-B), 21.4 (CH3 STol-A), 20.5, 20.5, 20.4 (CH3 Ac); HRMS: [M+Na]+ calcd for C17H20FN3O6SNa 

436.09491, found 436.09448. 
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6-Azido-2,6-dideoxy-1-thio-ββββ-D-glucopyranosyl (S)R/S-oxide (16). Compound 15 (65 mg, 0.16 mmol) was 

dissolved in MeOH (2 mL) and treated with NaOMe (cat.) for 90 min. The mixture was 

neutralized by the addition of Amberlite-H+, filtered and concentrated in vacuo. The title 

compound was used in the next reaction without further purification (Yield: quant., A : B = 

1.7 : 1). TLC: Rf 0.18 (PE/EtOAc, 1/3, v/v); IR (neat, cm-1): 1003, 1032, 1065, 1078, 2102, 3333; 1H NMR 

(MeOH-d4, 400 MHz, HH-COSY, HSQC): δ 7.56 (d, 1.2H, J = 8.2 Hz, CHarom-B), 7.55 (d, 2H, J = 8.2 Hz, 

CHarom-A), 7.36 (d, 1.2H, J = 8.4 Hz, CHarom-B), 7.35 (d, 2H, J = 8.1 Hz, CHarom-A), 4.66 (dd, 1H, J = 3.1, 9.3 Hz, 

H-1A), 4.53 (dt, 0.6H, J = 8.9, 50.1 Hz, H-2B), 4.36 (dt, 1H, J = 9.0, 44.7 Hz, H-2A), 4.38-4.45 (m, 0.6H, H-1B), 

3.67-3.76 (m, 0.6H, H-3B), 3.65 (dt, 1H, J = 8.8, 16.4 Hz, H-3A), 3.52-3.57 (m, 2H, H-5A, H-6A), 3.35-3.41 (m, 

1.6H, H-6A, H-6B), 3.25-3.30 (m, 1.8H, H-4B, H-5B, H-6B), 3.21 (t, 1H, J = 9.3 Hz, H-4A), 2.38 (s, 4.8H, CH3 

STol-A, CH3 STol-B); 13C-APT NMR (MeOH-d4, 100 MHz, HSQC): δ 143.8 (Cq A), 143.7 (Cq B), 136.0 (Cq 

STol-A), 135.6 (Cq STol-B), 130.9 (CHarom-B), 130.8 (CHarom-A), 126.6 (CHarom-B), 126.5 (CHarom-A), 93.2 (d, J = 

24 Hz, C-1A), 91.4 (d, J = 24 Hz, C-1B), 88.9 (d, J = 186 Hz, C-2B), 88.4 (d, J = 186 Hz, C-2A), 81.2 (C-5A), 

81.1 (C-5B), 76.8 (d, J = 18 Hz, C-3A), 76.7 (d, J = 17 Hz, C-3B), 71.3 (d, J = 8 Hz, C-4B), 70.9 (d, J = 8 Hz, C-

4A), 52.5 (C-6B), 52.4 (C-6A), 21.5 (CH3 STol-B), 21.5 (CH3 STol-A); HRMS: [M+H]+ calcd for C13H17FN3O4S 

330.09183, found 330.09193. 

 

6-Azido-2,6-dideoxy-2-fluoro-αααα/ββββ-D-glucopyranose (17). A solution of compound 16 (53 mg, 0.16 mmol) in 

acetone/H2O (2 mL, 3/1, v/v) was treated with NBS (85 mg, 0.48 mmol) for 3 h at RT. The 

reaction was quenched by the addition of sat. aq. Na2S2O3 (1 mL) and subsequently diluted 

with EtOAc and H2O. The aqueous phase was extracted with EtOAc (2x), the combined 

organic layers were dried over Na2SO4 and concentrated in vacuo. Purification using flash column 

chromatography (silica gel, 75% EtOAc in PE) yielded the title compound as a colorless oil (Yield: 31 mg, 0.15 

mmol, 94%, α : β = 1 : 1). TLC: Rf 0.35 (PE/EtOAc, 1/3, v/v); IR (neat, cm-1): 816, 1001, 1051, 1177, 1290, 1694, 

1771, 2104, 3329; 1H NMR (MeOH-d4, 300 MHz, HH-COSY, HSQC): δ 5.25 (d, 1H, J = 3.7 Hz, H-1α), 4.68 (dd, 

1H, J = 2.5, 7.7 Hz, H-1β), 4.17 (ddd, 1H, J = 3.7, 9.3, 49.8 Hz, H-2α), 3.78-4.02 (m, 2H, H-2β, H-3α), 3.22-3.60 

(m, 7H, H-3β, H-5α, H-5β, 2 x H-6α, 2 x H-6β); 13C-APT NMR (MeOH-d4, 100 MHz, HSQC): δ 95.8 (d, J = 21 

Hz, C-1β), 94.7 (d, J = 182 Hz, C-2β), 92.0 (d, J = 188 Hz, C-2α), 91.5 (d, J = 22 Hz, C-1α), 76.5 (C-5), 76.2 (d, 

J = 18 Hz, C-3β), 72.7 (d, J = 17 Hz, C-3α), 72.3 (d, J = 8 Hz, C-4), 72.2 (d, J = 8 Hz, C-4), 71.8 (C-5), 52.7, 52.7 

(C-6α, C-6β); TLC-MS: m/z = 230.1 (M+Na+). 

 

BODIPY compound 18. Compound 17 (34 mg, 164 µmol) and BODIPY-alkyne 8 (59 mg, 180 µmol) were 

together dissolved in DMF (1.5 mL) and treated with sodium ascorbate 

(12 µL, 1M solution in H2O) and CuSO4 (8 µL, 1M solution in H2O). 

The resulting mixture was stirred at 80 ºC for 2 days, during which 

time the addition of sodium ascorbate and CuSO4 was repeated twice. 

The mixture was allowed to cool to RT and diluted with EtOAc and 

H2O. The organic phase was washed with sat. aq. NaCl, dried over 

Na2SO4 and the product was obtained using flash column chromatography (silica gel, 15% MeOH in DCM) as an 

orange solid (Yield: 46 mg, 86 µmol, 53%, α : β = 1.1 : 1). TLC: Rf0.59 (DCM/MeOH, 8.5/1.5, v/v); IR (neat, cm-

1): 984, 1061, 1200, 1508, 1551, 3429; 1H NMR (MeOH-d4, 400 MHz, HH-COSY, HSQC): δ 6.09 (s, 2H, CH 

pyrrole), 5.21 (d, 1H, J = 3.7 Hz, H-1α), 4.78 (dd, 0.9H, J = 2.2, 14.4 Hz, H-6β), 4.71 (dd, 1H, J = 2.4, 14.3 Hz, 

H-6α), 4.64 (dd, 0.9H, J = 2.5, 7.8 Hz, H-1β), 4.50 (dd, 1H, J = 7.4, 14.0 Hz, H-6α), 4.47 (dd, 0.9H, J = 7.6, 14.1 

Hz, H-6β), 4.10 (ddd, 1H, J = 3.7, 9.4, 49.8 Hz, H-2α), 4.10 (ddd, 1H, J = 2.4, 7.3, 9.8 Hz, H-5α), 3.79-3.96 (m, 

1.9H, H-2β, H-3α), 3.56-3.67 (m, 1.8H, H-3β, H-5β), 3.15 (t, 0.9H, J = 9.4 Hz, H-4β), 3.09 (t, 1H, J = 9.4 Hz, H-

4α), 2.86-2.94 (m, 3.8H, CH2), 2.72 (t, 3.8H, J = 7.5 Hz, CH2), 2.43 (s, 11.4H, CH3), 2.33 (s, 11.4H, CH3), 1.79-

1.90 (m, 3.8H, CH2), 1.55-1.66 (m, 3.8H, CH2); 
13C-APT NMR (MeOH-d4, 100 MHz, HSQC): δ 154.9, 148.4, 

148.3, 147.9, 142.2, 132.6 (Cq), 124.6 (CH triazole) 122.6 (CH pyrrole), 95.7 (d, J = 23 Hz, C-1β), 94.5 (d, J = 

184 Hz, C-2β), 91.7 (d, J = 187 Hz, C-2α), 91.5 (d, J = 22 Hz, C-1α), 76.0 (d, J = 18 Hz, C-3β), 75.8 (C-5β), 72.6 

(d, J = 17 Hz, C-3α), 72.6 (d, J = 7 Hz, C-4), 72.4 (d, J = 8 Hz, C-4), 71.0 (C-5α), 52.2, 52.1 (C-6α, C-6β), 32.2, 

30.8, 28.9, 25.9 (CH2), 16.4, 14.5 (CH3); ); LC-MS: Rt 6.86 min (C18 column, linear gradient 10 → 90% B in 13.5 

min); HRMS: [M+H]+ calcd for C25H34BF3N5O4 536.26505, found 536.26523. 
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Determination of the IC50. Imiglucerase (12.5 µL, 20 nM) was prepared in 150 mM McIlvaine buffer (pH 5.2) 

containing 0.2% (w/v) taurocholate and 0.1% (v/v) Triton X-100. The enzyme was incubated with a range of 

probe concentrations (12.5 µL, 1 mM to 10 nM final concentration, DMSO) for 30 at 37 ºC. Then 4MUGlc (100 

µL, 3.75 mM) substrate in McIlvaine buffer (pH 5.2) containing 0.2% (w/v) taurocholate, 0.1% (v/v) Triton X-

100, and 0.1% (w/v) BSA was added, and the resulting mixture was incubated for 15 min at 37 ºC. The mixture 

was inactivated with 2.5 mL NaOH-Glycine (300 mM, pH 10.6), followed by measuring of the fluorescence of 

liberated 4MU (λex 366 nm, λem 445 nm). IC50 values were obtained by plotting of the residual fluorescence versus 

the concentration (GraphPad Prism 5). 

 

Detection limit. Imiglucerase (10 µL, 100 nM) was prepared in 150 mM McIlvaine buffer (pH 5.2) containing 

0.2% (w/v) taurocholate and 0.1% (v/v) Triton X-100. The enzyme was incubated with a range of probe 

concentrations (10 µL, 50 µM to 10 nM final concentration, DMSO) for 60 min at 37 ºC. The sample was 

denatured with 5 µL Laemmli buffer (50% (v/v) 1M Tris-HCl, pH 6.8, 50% (v/v) 100% glycerol, 10% (w/v) DTT, 

10% (w/v) SDS, 0.01% (w/v) bromophenol blue), boiled for 4 min at 100 ºC, and separated by electrophoresis on 

7.5% (w/v) SDS-PAGE gel running continuously at 90 V, followed by fluorescent scanning. 

 

Competition for the active site. Imiglucerase (10 µL, 100 nM) was prepared in 150 mM McIlvaine buffer (pH 

5.2) containing 0.2% (w/v) taurocholate and 0.1% (v/v) Triton X-100. The enzyme was pre-incubated with CBE 

(10 µL, 20 mM in H2O), cyclophellitol (10 µL, 2 mM in H2O), MDW941 (10 µL, 2 µM in H2O), or AMP-DNM 

(10 µL, 20 mM in H2O) for 30 min at 37 ºC, or with 10 µL 2% (w/v) SDS and boiled for 4 min at 100 ºC. The pre-

incubated mixtures were labeled with MDW933 (10 µL, 30 nM in H2O), probe 1 (10 µL, 150 µM in H2O), probe 

6 (10 µL, 1.5 µM in H2O), or probe 7 (10 µL, 15 µM in H2O) for 30 min at 37 ºC. The sample was denatured with 

10 µL Laemmli buffer (50% (v/v) 1M Tris-HCl, pH 6.8, 50% (v/v) 100% glycerol, 10% (w/v) DTT, 10% (w/v) 

SDS, 0.01% (w/v) bromophenol blue), boiled for 4 min at 100 ºC, and separated by electrophoresis on 7.5% (w/v) 

SDS-PAGE gel running continuously at 90 V, followed by fluorescent scanning. 

 

pH-dependent labeling. Imiglucerase (10 µL, 10 nM) was prepared in 1.5 mM McIlvaine buffer (pH 5.2) 

containing 0.2% (w/v) taurocholate and 0.1% (v/v) Triton X-100, and incubated with 150 mM McIlvaine buffer of 

pH 2-9 (25 µL), containing 0.2% (w/v) taurocholate and 0.1% (v/v) Triton X-100, for 30 min at 37 ºC. Pre-

incubated enzyme was labeled with MDW941 (5 µL, 8 nM in H2O), probe 1 (5 µL, 400 µM), probe 6 (5 µL, 4 

µM), or probe 7 (5 µL, 40 µM) for 30 min at 37 ºC. The sample was denatured with 10 µL Laemmli buffer (50% 

(v/v) 1M Tris-HCl, pH 6.8, 50% (v/v) 100% glycerol, 10% (w/v) DTT, 10% (w/v) SDS, 0.01% (w/v) 

bromophenol blue), boiled for 4 min at 100 ºC, and separated by electrophoresis on 7.5% (w/v) SDS-PAGE gel 

running continuously at 90 V, followed by fluorescent scanning. 

 

Labeling of mutant GBA. All probe solutions were prepared in 150 mM McIlvaine buffer (pH 5.2) containing 

0.2% (w/v) taurocholate, 0.1% (v/v) Triton X-100, and protease inhibitor cocktail (Roche). Homogenate (20 µL) 

of cos-7 cells overexpressing wild-type and acid/base mutant (E235G and E235Q) GBA was incubated with 

MDW1044 (20 µL, 2 µM), MDW933 (20 µL, 2 µM), probe 1 (20 µL, 200 µM), probe 6 (20 µL, 2 µM), or probe 

7 (20 µL, 20 µM) for either 2 h or 24 h at 37 ºC. The samples were split in two, and one half (20 µL) was directly 

denatured etcetera (vide infra). The labeled homogenate (20 µL) was incubated with Ni-agarose beads (5 µL) and 

native lysis buffer (100 µL, pH 8.0) containing NaCl (300 mM) and imidazole (10 mM) while rotating for 1 h at 4 

ºC. The samples were centrifuged for 3 min at 800 rpm, cleaned with wash buffer (200 µL, pH 8.0) containing 

NaCl (300 mM) and imidazole (20 mM) for 10 min at 4 ºC (repeated 3x). Then the nickel beads were pelleted by 

centrifugation for 10 min at 800 rpm and resuspended in McIlvaine buffer (20 µL, pH 5.2) containing 0.2% (w/v) 

taurocholate, 0.1% (v/v) Triton X-100. The sample was denatured with 10 µL Laemmli buffer (50% (v/v) 1M 

Tris-HCl, pH 6.8, 50% (v/v) 100% glycerol, 10% (w/v) DTT, 10% (w/v) SDS, 0.01% (w/v) bromophenol blue), 

boiled for 4 min at 100 ºC, and separated by electrophoresis on 7.5% (w/v) SDS-PAGE gel running continuously 

at 90 V, followed by fluorescent scanning.  
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Labeling in fibroblasts. Wild-type human skin fibroblasts were grown to confluency (RPMI medium) for 3 days 

and cultured in the presence of MDW933 (0/1/10 nM), MDW1044 (0/1/10 nM), probe 1 (0/1/10 µM), probe 6 

(0/1/10 µM), or probe 7 (0/1/10 µM) (probe solutions in PBS buffer) for 2 or 24 h at 37 ºC. The cells were lysed 

by scraping in KPi buffer (100 µL, 25 mM, pH 6.5) containing 0.1% (v/v) Triton X-100 and protease inhibitor 

cocktail. The protein concentration was determined using a BCA kit (Pierce), and 21 µg (2 h) or 27 µg (24 h) was 

loaded per lane. The homogenates (35 µL) were incubated with MDW941 (5 µL, 800 nM in McIlvaine buffer, pH 

5.2, containing taurocholate, 0.1% (v/v) Triton X-10, and protease inhibitor cocktail) for 30 min at 37 ºC. The 

samples were denatured with 10 µL Laemmli buffer (50% (v/v) 1M Tris-HCl, pH 6.8, 50% (v/v) 100% glycerol, 

10% (w/v) DTT, 10% (w/v) SDS, 0.01% (w/v) bromophenol blue), boiled for 4 min at 100 ºC, and separated by 

electrophoresis on 7.5% (w/v) SDS-PAGE gel running continuously at 90 V, followed by fluorescent scanning. 
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The processes of glycosidic bond formation and destruction are a central theme in 

glycochemistry and glycobiology, and form the basis of the research described in this 

Thesis. Chemical glycosylations and the glycosidase-mediated hydrolysis of 

glycoconjugates have some features in common. In Chapter 1, selected examples are used 

to illustrate the use of electron-deprived carbohydrates in the investigation of the 

mechanistic pathways of the glycosylation reaction and enzymatic hydrolysis reaction, with 

a focus on the identification of covalent reaction intermediates. 

 

In this Chapter the work presented in this Thesis is summarized and categorized in three 

parts: 1) the mechanistic investigations on the reactivity and selectivity of various 

mannuronic acid (ManA) donors leading to the production of bacterial oligosaccharides 

composed of complex monosaccharides (Chapters 2-5, Figure 1), 2) the development of 

automated solid-phase techniques to construct natural oligosaccharides (Chapters 6 and 7, 

Figure 5), and 3) the use and tuning of deactivated fluoroglucosides in activity-based 

profiling of glucosidase enzymes (Chapters 8 and 9, Figure 8). 

 

Summary & Perspectives – Part 1 

In Chapter 2, the pre-activation of 2-O-benzyl and 2-azido-2-deoxy mannuronate donors, 

monitored using low-temperature NMR spectroscopy, is described. This led to the 

discovery of equatorial anomeric α-triflates (Figure 1), where the formation of the axial 

triflate was expected. These counterintuitive intermediates preferentially take up a 
1
C4 chair 

conformation, placing the C-5 methyl ester in an axial position to stabilize the electron-
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depleted anomeric center. In this way, the structure of the triflate intermediate approaches 

the 
3
H4 half chair, which is postulated to be the favored conformation of the mannuronate 

oxacarbenium ion.  

The pre-activation study of 2-azido mannuronates was expanded in Chapter 3, where 

mannosazide methyl uronates bearing various donor functionalities were activated and 

analyzed using low-temperature NMR spectroscopy (Figure 1). The reactive intermediates 

produced from α/β-(S)-phenyl, α/β-N-phenyl trifluoroacetimidate, α-hydroxyl, and α/β-

sulfoxides were detected and in majority identified. Pre-activation and ensuing 

condensation of the β-(S)-phenyl donor with a model glycosyl acceptor proceeded most 

efficiently, and therefore this donor was used in the assembly of tri-, penta-, and 

heptasaccharide fragments of the Micrococcus luteus teichuronic acid, composed of [→6)-

α-D-Glcp-(1→4)-β-D-ManpNAcA-(1→] repeats. 

Chapter 4 evaluates the pre-activation and stereoselectivity of differently protected 2,3-

diazido mannopyranoside donors (Figure 1). This comparative study revealed that the β-

(S)-phenyl 2,3-diazido mannuronate outcompeted the 4,6-di-O-acyl and 4,6-O-benzylidene-

protected β-(S)-phenyl donors in terms of β-selectivity. To illustrate its favorable 

glycosylating properties, the 2,3-diazido mannuronate donor was used to construct the all-

cis linked tetrasaccharide repeating unit from Bacillus stearothermophilus. 

In contrast to the general acceptance that uronic acids are relatively unreactive, the research 

described in Chapters 2-4 indicates that mannuronate donors display an unusually high 

reactivity in glycosylation reactions. This reactivity was qualified in a competitive 

glycosylation experimental set-up, in which two different mannopyranoside donors were 

reacted with a limited amount of activator in the presence of an excess acceptor, as 

described in Chapter 5. In this way, the relative reactivities of various mannopyranosides 

were determined. It was found that α-configured mannuronates were less reactive than the 

non-oxidized analogues (4,6-di-O-acetyl and 4,6-O-benzylidene), while the β-thio 

mannuronate was more reactive than the benzylidene donor. Surprisingly, the β-thio 

mannuronate donor appeared equally reactive as the per-O-benzylated α-thio mannose, 

which is amongst the most armed donors (Figure 1). 

 

Figure 1. Overview of the mechanistic studies presented in Chapter 2-5 

 

The glycosylation reactions involving ManA donors as presented in Chapters 2-5 (Figure 1) 

showed a remarkable high degree of β-selectivity. In an attempt to explain this 

stereoselectivity, discrete carbocation A (Scheme 1) is invoked for the SN1-type reaction, 

and uncharged intermediate B for the SN2-type substitution, where the glycosylation 
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reaction can be regarded as a continuum of mechanisms spanning the range between SN1 

and SN2 as the extremes.
1
  

 

Scheme 1. Continuum between SN1 and SN2 substitution (X = leaving group) 

 

 

 

 

 

 

The observation with low-temperature NMR spectroscopy of a covalent triflate species (B) 

upon pre-activation of the mannuronic acid donors, as described in Chapter 2, suggests an 

SN2-like substitution pathway. This is in direct analogy to the β-stereoselectivity observed 

with 4,6-O-benzylidene-protected mannoside donors, which also produce detectable 

anomeric triflates. However, the conformational preference of mannuronates for the 

unusual 
1
C4 chair conformation (C, Scheme 2), which places the triflate moiety 

equatorially, hints at a reaction pathway with substantial oxacarbenium ion character, since 

the 
3
H4 half chair (E, Scheme 2), preferred by mannosyl cations, closely mimics the 

1
C4 

chair conformation. The introduction of a small azide functionality at C-2 and/or C-3 

(Chapters 3 and 4) has no deleterious effect on the β-stereoselectivity of mannuronate 

donors, in contrast to glycosylation reactions with the analogous 2-azido-2-deoxy-4,6-O-

benzylidene and 3-azido-3-deoxy-4,6-O-benzylidene donors, which show diminished β-

selectivity. Moreover, the unexpected high reactivity of the mannuronic acid donors 

(Chapter 5) indicates that these donors readily produce an oxacarbenium ion intermediate, 

presumably stabilized by the methyl ester (D, Scheme 2). All this considered it is 

rationalized that glycosylations of mannuronic acids most probably occur through an 

asymmetric “exploded” transition state (E, Scheme 2), following an SN2-like pathway with 

significant oxacarbenium ion character, the extent of which is determined by the nature of 

the nucleophile. The anomeric α-triflate and the preferential formation of the 
3
H4 

oxacarbenium ion work in concert in the formation of the 1,2-cis mannuronic ester 

linkages. 

 

Scheme 2. ManA reactive intermediates (X = leaving group) 

 

 

 

 

 

 

Conformational behavior of mannuronates. The research described in Chapters 2-4 

highlights an unforeseen conformational behavior of mannuronates, both in donors and in 

reactive intermediates such as triflates or oxosulfonium triflates. In an attempt to elucidate 

the (stereo)electronic effects underlying this phenomenon, a number of mannuronic acids 
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were compared bearing different anomeric moieties and protecting/functional groups 

(Figure 2). Since the non-oxidized counterparts showed no (detectable) conformational 

preference other that for the 
4
C1 chair, the influence of the uronic acid moiety at C-5 on the 

conformational behavior is decisive.
2 , 3

 Moreover, masking the C-4 hydroxyl with a 

protecting group was essential for the observed ring inversion.  

The preference of a substituent to reside equatorially on a six-membered ring is expressed 

by its A-value.
4,5

 When compounds 1-4 are considered (Figure 2, ASPh = 1.10-1.24 kcal 

mol
-1

, AOCONR = 0.77 kcal mol
-1

, AOH = 0.60-1.04 kcal mol
-1

, ASOMe = 1.20 kcal mol
-1

), it 

appears that the A-values are reflected in the position of the conformational equilibrium, 

which is far towards the 
1
C4 chair side for compounds 1 and 4, where the balance is roughly 

equal for compounds 2 and 3. 

 

Figure 2. Compounds compared in this section (depicted in the predominant chair conformation) 
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The substitution pattern of 1-thio mannuronates 1 and 4 is apparently ‘ideal’ to promote the 

transition to the 
1
C4 chair, since other protecting group decorations on 1-thio donors (5-8, 

Figure 2) promote the chair inversion to a lesser extent. When comparing the coupling 

values (JH1-H2) in the 
1
H NMR spectra of the thio-donors 5-8 it is clear that 4-O-benzyl 

compound 5 resides more in the 
4
C1 chair than its 4-O-acetyl analogue 6. Changing the 

benzyl ether at the C-3 position for an acetyl group does not lead to a different 
4
C1 : 

1
C4 

ratio (compound 7). A similar conformational equilibrium is taken up by diazido compound 

8. When compound 8 is compared to mono-azide compound 1, it appears that the benzyl 

ether at C-3 has a stabilizing contribution to the inverted 
1
C4 chair, presumably by donating 

some electron-density into the methyl ester carbonyl at C-5. To investigate the influence of 

the substituent at the C-2 position on the conformational equilibrium, a set of methyl α-D-

mannuronates having no substituent (9), a benzyl ether (10), an azide (11), and a fluorine 

(12) at C-2 (Figure 2) were analyzed. Based on the vicinal couplings observed between H-1 

and H-2, the azide-containing compound 11 has the largest preference for the 
1
C4 chair 

conformation of the series. In comparison to their SPh counterparts (10 vs 6, 11 vs 1), the 

methyl mannosides have a smaller tendency to change conformation. Whereas the OBn 

group is larger than the azide, the preference of compound 10 to take up a 
1
C4 conformation 

is smaller than for 11. Possibly the stronger electron-withdrawing capacity of the azide 

promotes the flip to the 
1
C4 chair (vide infra). This effect is lost in C-2 fluorinated 

compound 12 (AF = 0.25-0.42 kcal mol
-1

), where other effects appear to prevail. 

 

Next, the effect of the solvent and its polarity 

(expressed in the dielectric constant ε) on the 

conformational equilibrium was investigated. For this, 

methyl mannuronate 11 was selected because of its 

equal distribution of chairs in DCM-d2. As listed in 

Table 1, the ratio of chairs changes moderately on 

going from an apolar solvent such as benzene (more 
1
C4), to a polar solvent such as dimethylsulfoxide 

(more 
4
C1) where the 

4
C1 chair is preferred. While the 

methoxy substituent at C-1 has been shown to favor 

the equatorial position in more polar solvents because of a diminished anomeric effect,
6
 the 

opposite is observed for compound 11. This indicates that the overall polarization of 11 in 

the 
4
C1 is larger than in its 

1
C4 counterpart.

7
  

The most unexpected conformational transition to the 
1
C4 chair was observed upon 

generation of the anomeric triflates of compounds 1 and 6, since the large anomeric effect 

anticipated for electronegative triflate moiety dictates a 
4
C1 chair preference (see Chapter 

2). These results were further investigated by analyzing a set of anomeric triflates using 

low-temperature NMR spectroscopy (13-17, Figure 2). To access the triflates, a mixture of 

the corresponding β-thio donor and Ph2SO in DCM-d2 was cooled to -80 ºC and treated 

with Tf2O. All donors were rapidly consumed to produce the triflates, except for the 2-

deoxy mannuronate, which gave exclusively the 1,2-unsaturated product by β-elimination 

Solvent ε 
3JH1,H2 (Hz) 

C6D6 2.28 5.90 

CDCl3 4.81 5.21 

CD2Cl2 9.08 5.17 

(CD3)2CO 20.7 4.89 

CD3OD 32.6 4.48 

CD3CN 37.5 4.43 

(CD3)2SO 47 4.36 

Table 1.  3JH1,H2 values of compound 11,

measured in different deuterated solvents
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of the anomeric triflate.
8
 The high electronegativity of the triflate moiety (F-valueOTf = 

0.56) together with the good stabilization of the negative charge in the triflate anion render 

the glycosyl triflate bond reasonably ionic in character, resulting in an electron-depleted 

anomeric center.
9
 As argued in Chapter 2, this partial positive charge 

is best accommodated in a 
1
C4 chair conformation. It was already 

established that the 2-azido mannuronic triflate 15 has a higher 

preference for the 
1
C4 chair than its benzyl ether analog 14. This can be explained by a 

stabilizing hyperconjugative effect which is more pronounced with an electronegative 

substituent at C-2. This hypothesis was tested by the generation of the 2-fluoro mannuronic 

triflate 16. Pre-activation of the parent β-thio donor at -80 ºC gave broad signals in the 
1
H 

NMR spectrum, which were only resolved upon warming of the mixture. At -20 ºC 

excellent resolution was obtained, although only one set of signals was visible which 

displayed mean coupling values (Figure 3, top). The low resolution at -80 ºC may be 

attributed to interconversion of the two chairs. This process is not slowed down enough (on 

NMR time-scale) to visualize the conformations separately. Using 
19

F-decoupled 

spectroscopy (Figure 3, bottom) it was possible to determine the vicinal coupling value of 
3
JH1,H2 = 6.4 Hz, indicating that triflate 16 preferentially resides in the 

1
C4 chair, similar to 

its 2-azide analog 15. In line with the trend observed in SPh donors 1, 6 and 8, the addition 

of an extra azide at C-3 leads to a high preference for the 
4
C1 chair (compound 17, Figure 

2). 

 

Figure 3. Fragments of a regular 1H NMR spectrum of anomeric triflate 16 (top), and 19F-decoupled 1H NMR 

spectrum (bottom), measured at -20 ºC 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

During the donor pre-activation studies presented in Chapter 3, oxosulfonium triflate 18 

was produced upon treating hemiacetal donor 3 with Ph2SO and Tf2O (Figure 2). 
1
H NMR 

analysis revealed that compound 18 resides completely in the 
1
C4 chair. In analogy to the 

anomeric triflates, the oxosulfonium triflate moiety renders the anomeric center quite 

electron-positive.  

Finally, anomeric fluorides 19 and 20 were synthesized (Figure 2). Examination of the 
1
H 

NMR spectrum at +20 ºC revealed that β-fluoride 19 completely resides in the 
1
C4 

conformation, in which the anomeric fluoride is placed axially. This result indicates that the 

electronegative fluoride is preferentially accommodated in the axial position, despite the 
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extra destabilizing 1,3-diaxial interaction associated with a β-mannuronate in the 
1
C4 

conformation. Apparently, the 
1
C4 chair is able to accommodate a substituent in the axial 

position, suggesting a similar trajectory for incoming nucleophiles from the β-face. In 

analogy to the other mannosazide methyl uronates, the α-fluoride 20 adopts a mixture of 

chair conformations, however with a preference for the 
4
C1 chair. The fluorides nicely obey 

the anomeric effect, which dictates a strong preference for the axial position with highly 

electronegative substituents. 

In summary, it is clear that many factors are playing in concert to determine a 

mannuronate’s conformational equilibrium, for which the presence of the uronate is the 

main prerequisite. The α-configured mannuronates presented in this section reveal 

conformational flexibility. Bulky group with high A-values are favored in the equatorial 

position, inducing a flip to the 
1
C4 chair for the bulkier α-anomeric groups. Using solvents 

with different polarities, it was shown that for 2-azidomannuronic acid the 
4
C1 

conformation has a larger overall dipole. While the anomeric triflates show some degree of 

flexibility, they have a higher preference for the 
4
C1 chair than their (S)-phenyl 

counterparts.  

 

3-Azido-3-deoxy mannuronate. The survey of behavior in glycosylation reactions of 2-

azido and 2,3-diazido mannuronates presented in Chapters 3 and 4 warrants the 

qualification of the part played by the azido moiety at C-3 alone. In contrast to the 2-

aminomannosides, the 3-amino-3-deoxy mannopyranoside core is non-natural; only a few 

analogues are found in naturally occurring antibiotics and macrolides, such as 3-amino-3,6-

dideoxy mannoside (mycosamine) in amphotericin B (21, Figure 4).
10

 The 3-azido 

mannopyranoside precursor has received some attention from the carbohydrate chemistry 

community. For instance, Marchesan and Macmillan
11

 have enzymatically converted 3-

azido-mannopyranosyl phosphate into GDP-derivative 22 (Figure 4) using GDP-ManPP 

pyrophosphorylase to study its processing by mannosyltransferases. Crich and Xu
12

 have 

investigated the glycosylation of 1-cyano-2-(2-iodophenyl)ethylidene acetal-protected 

thiomannoside 23 (Figure 4). After pre-activation of this donor using the Ph2SO/Tf2O 

reagent combination and subsequent addition of 1-adamantanol as acceptor, the 

glycosylated product was isolated as an anomeric mixture of α : β = 1 : 3.3. This 

stereoselectivity was relatively poor compared to the formation of solely β-fused product 

with the corresponding 2,3-di-O-benzyl-protected thiomannoside.
13

 The loss of selectivity 

was attributed to the small azide moiety, which allows compression of the torsion angle 

between C2-R2 and C3-R3, resulting in erosion of the conformational lock and 

concomitant β-selectivity.
8
 

 

Figure 4. 3-Azido mannoside derivatives (R = macrolide) 
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The robustness of β-configured mannuronate donors, equipped with either one or two 

azides, in glycosylating various acceptors with high β-selectivity inspires the evaluation of 

3-deoxy-3-azido-thiomannuronates 24 and 25 (Figure 4). The 3-azido mannopyranosyl core 

can be synthesized starting from diacetone glucose,
11

 or by oxidation and subsequent 

double Henry (nitro aldol) reaction with nitromethane on methyl α-D-glucopyranoside.
12

 α-

Linked donor 24 is expected to be less reactive than its β-fused counterpart 25, although the 

influence of an electron-donating ether protecting group at C-2, instead of an azide, can 

have a beneficial effect on its reactivity. Moreover, it is interesting to investigate the 

conformational properties of donor 24. When the β-stereoselectivity is pertained for these 

3-azido mannuronates, they can be employed as precursors for 3-acetamido mannuronates, 

and serve as stable mimics of naturally occurring 3-O-acetyl-mannuronate-containing 

alginates (vide infra). 

 

Reactivity study of pre-activated mannoside donors. As revealed in Chapter 5, the 

anomeric configuration of the mannoside donor has a profound influence on its reactivity. 

Activation of thioglycosides by NIS/TfOH is a two-step process involving initial attack of 

the anomeric thio group on the iodonium ion, and subsequent expulsion of the charged 

anomeric leaving group, where the orientation of the anomeric group influences both steps. 

To focus on the actual reactivity of the carbohydrate core, it would be of interest to 

investigate the reactivity of the donors in a pre-activation-based competition reaction 

(Scheme 3).  

 

Scheme 3. Competition reaction between two pre-activated donors 26 and 27 for acceptor 30 

 

In a preliminary experiment, β-thio donors 26 and 27 were mixed, and treated with the 

Tf2O/Ph2SO reagent combination at -60 ºC to produce a mixture of intermediate triflates 28 
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0 ºC in 90 min, the disaccharides were isolated using size-exclusion chromatography. 

Although it was difficult to accurately determine the ratio of disaccharides 31 and 32, the 

NMR spectrum of the disaccharide mixture revealed an approximate ratio of ~ 2 : 1 for 31 : 

32, indicating that the reactivity difference between triflates 28 and 29 is smaller than the 
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the benzylidene-protected analogue 29, which also is reflected in their decomposition 

temperatures (-40 ºC and -10 ºC,
14

 respectively). 

 

Summary & Perspectives – Part 2 

The excellent β-stereoselectivity and reactivity of mannuronic acid donors were exploited 

in the development of the automated synthesis of alginate fragments, as described in 

Chapter 6 (Figure 5) Using a second-generation carbohydrate synthesizer instrument, a 

linker-functionalized polystyrene resin was glycosylated with mannuronic acid imidate 

donors to produce tetra-, octa-, and dodecasaccharide fragments of all-cis fused 

mannuronic acid alginate, with average efficiencies of >93% per coupling cycle. After 

cleavage from the support, separating the target product from deletion sequences using RP-

HPLC and final deprotection, multi-milligram quantities were obtained of the pure alginate 

fragments. 

Another example of the successful application of the automated carbohydrate synthesizer is 

the construction of hyaluronic acid fragments (Chapter 7, Figure 5). It was found that the 

glucosamine-moiety was best accommodated at the linker position. Ensuing disaccharide-

imidate block couplings resulted in the fast construction of hepta-, undeca-, and 

pentadecasaccharide fragments with high efficiency. After HPLC purification and final 

deprotection and N-acetylation, the target products were isolated in high purity and 

quantities. 

 

Figure 5. Overview of the automated syntheses described in Chapter 6 and 7 

 

 

 

 

 

 

Solid-phase construction of alginate analogues. The β-selectivity of the glycosylations of 

the mannuronate imidate building blocks was revealed to be excellent throughout the 

repetitive sequence of the twelve automated coupling steps on solid support. This result 

holds great promise for the use of this synthetic route for analogous (non-)natural 

oligosaccharides, containing β-ManA motifs. For instance, the research described in 

Chapters 2 and 3 revealed excellent β-stereoselectivity of 2-azido mannuronate donors (33, 

Figure 6) in glycosylation with various acceptors. Donor 33 is a synthetic precursor for 2-

acetamidomannuronate, which is a common constituent of bacterial cell wall 

polysaccharides such as the teichuronic acid presented in Chapter 3. Using automated 

solid-phase synthesis, the productivity of the ManN3A-mediated couplings might be 

improved in the construction of higher oligomers. To facilitate quantification of the 

coupling efficiency, a temporary protecting group such as Fmoc can be incorporated in the 

building blocks.
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DMF releases the UV-active fulvene moiety, whose concentration can be measured 

spectrophotometrically. 

The β-(S)-phenyl 2-deoxy-2-fluoromannuronate was found to be equally reactive as the 2-

azido derivative, and also provided disaccharide products with high β-stereoselectivity (α : 

β = 1 : 5, see Chapter 5). Because a fluorine atom is a good mimic of a hydroxyl group, 

donor 34 can be used to construct alginate analogues that can be used to probe alginate 

biosynthesis. 

 

Figure 6. Mannuronate donors to be used in automated oligosaccharide synthesis 

 

 

 

 

 

Recently, it was found that sulfated oligomannuronates inhibit tumor angiogenesis and 

metastasis.
17

 Lengths ranging from 4 to 10 ManA residues (~1300-3600 Da), bearing an 

average of 1.5 sulfate groups per carbohydrate (attached to C-2 and/or C-3), were found to 

actively inhibit heparanase. These oligomannuronates were obtained via semi-synthesis 

from commercially available sodium alginate mixtures. Employing automated alginate 

synthesis would enable rapid production of an alginate library of well-defined lengths to 

perform detailed structure-activity relationship studies. To this end, imidate donors 35 and 

36 (Figure 6) can be used, in which benzyl and naphthyl ether protecting groups can be 

used to allow regioselective sulfation (while attached to the polymer support or in the semi-

protected stage). These building blocks also allow acylation of defined residues to create 

acylated mannuronic acid alginates.
18

  

 

Linker development. While the butenediol linker has proven its worth (Chapters 6 and 7), 

it also poses several limitations to the overall synthesis. First, it excludes the use of soft 

electrophiles as promoters during the glycosylation. Second, the double bond is susceptible 

to hydrogenation if benzyl ethers are the protecting groups of choice, eliminating the 

presence of a functionalizable allyl in the final products. And third, the cleavage conditions 

(Grubbs’ catalyzed cross metathesis) are not compatible with some common carbohydrate 

protecting groups, such as azides
19

 or trichloroacetyls. For these reasons, development of a 

linker with different properties is highly desirable. 

Since most glycosylation reactions are acid-catalyzed, a base-labile linker is deemed most 

suited. With this in mind, the β-eliminating ethylsulfonyl linker 37 was designed, which 

can be immobilized on hydroxymethyl polystyrene 38 (Figure 7). The hydroxyl in linker 37 

can be mono-protected with a DMT to allow loading determination with a DMT assay, and 

it can be coupled to the hydroxyl-functionalized resin using DIC/DMAP. The first uronic 

acid building block can be attached via the carboxylic acid using an esterification reaction 

to give 39, allowing decoration of the anomeric center with a ligation handle such as an 

azide-containing spacer. 
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Figure 7. Base-labile linker 37 and HMP resin 38 

 

Summary & Perspectives – Part 3 

In Chapter 8 deactivated fluoroglucosides were evaluated as activity-based inhibitors of 

retaining β-glucosidases for their use in activity-based protein profiling (ABPP). In a 

comparative study with cyclophellitol-based probes (Figure 8), it was revealed that the 

latter were much more potent. In a direct labeling experiment, only BODIPY-

functionalized 2-fluoroglycosyl fluoride labeled GBA, but high concentrations and long 

incubation times were required. A two-step labeling method was optimized for the azide-

containing cyclophellitol probe, which was used to visualize as little as 1 ng of recombinant 

GBA. Using the optimized conditions, two-step labeling with the fluoroglucosides could be 

achieved after incubation for 6 h. Overall, cyclophellitol-based probes are more suited to 

probe enzyme activity than the common fluoroglucosides. 

The relatively low activity of the fluoroglucosides for retaining β-glucosidases prompted 

the research described in Chapter 9, in which novel fluoroglucoside probes were 

developed featuring different anomeric leaving groups, all bearing a fluorescent reporter 

group (Figure 8). Investigating their IC50 values, detection limits for covalent labeling, pH 

dependency, labeling of mutated enzyme, and in situ labeling in fibroblasts, it was revealed 

that the 2-fluoroglucosyl imidate was a more potent probe for activity-based profiling than 

the glucosyl fluoride. Moreover, the acid/base residue located in the enzyme active site 

proved to be crucial for activity of the imidate probe, revealing a mode of action through 

protonation of the imidate moiety, closely mimicking the natural glycosidase reaction 

pathway. 

 

Figure 8. Overview of the ABPs studied in Chapter 8 and 9 (R1 = azide, BODIPY; R2 = F, DNP) 

 

Analogues of the 2-fluoroglucosyl imidate probe. The high potency towards GBA of the 

novel BODIPY-functionalized 2-fluoroglucosyl imidate probe described in Chapter 9 

inspires its application in two-step labeling. For this methodology, the 6-azido analogue 40 

(Figure 9) is designed, which can covalently bind to the active site of GBA, and visualized 

by attachment of a fluorophore to the azide handle using click chemistry or a Staudinger 

ligation. Lacking the bulky and hydrophobic fluorophore at C-6, probe 40 can also be an 

inhibitor candidate for other β-glucosidases, such as almond β-glucosidase or GBA2. An 

advantage of the imidate probes is that the anomeric imidate moiety can be relatively easily 
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installed at the end of the synthesis, and therefore it can also be readily incorporated on 

other carbohydrate residues, such as galactosides, mannosides, and glucuronic acids to 

study a variety of glycosidases. 

 

Figure 9. Novel probes for activity-based protein profiling (R = azide, BODIPY) 

 

 

 

 

 

 

 

 

5-Fluoroglycoside probes. As described in Chapter 1, 2-fluoroglycoside inhibitors were 

inefficient tools in the study of α-glycosidases, whereas 5-fluoroglycosides do serve as 

potent covalent inhibitors.
20

 This difference in activity may be explained by the fact that 1) 

the fluoride at C-5 is positioned in closer proximity to the endocyclic oxygen, and therefore 

has a larger deactivating effect than when it is positioned at C-2, 2) at C-5, the fluoride 

substitutes a hydrogen instead of an electron-withdrawing hydroxyl leading to overall more 

deactivation, and 3) hydrogen bonding with the hydroxyl at C-2 is important for binding to 

the enzyme active site.
21

 To address these assumptions, 5-fluoroglucosides 41-44 are 

designed which all feature a deactivating fluorine next to the endocyclic oxygen, a 

hydroxyl moiety at C-2 and a leaving group at the anomeric center (Figure 9, fluoride in 41, 

N,O-dimethylhydroxylamine
22

 in 42, S-benzoxazolyl
23

 in 43, and thioimidate
24

 in 44).
25

 

Except for the anomeric fluoride, these moieties are activated by coordination to a Lewis or 

Brønsted acid. The probes can be equipped with either an azide functionality or BODIPY 

fluorophore at the C-6 position.  

 

Transglycosylation of GBA2. β-Glucosidase 2 (GBA2), the non-lysosomal analogue of 

acid β-glucosidase, was identified by Aerts et al. to play a role in glucosylceramide 

metabolism, in a manner similar to GBA.
26

 It is located close to or at the membrane surface 

of mammalian cells, and catalyzes the degradation of glucosylceramide. Interestingly, next 

to its ability to hydrolyze glycosidic bonds, GBA2 was also found to catalyze a 

transglycosylation reaction to produce glucosylcholesterol. To understand this 

transglycosylation process and to identify potential substrates besides cholesterol, 6-

azidoglucoside 45 was developed (Figure 9). Provided that probe 45 acts as a bona fide 

GBA2 substrate, resulting transglycosylated lipids will become decorated with an azide 

reporter group. In a preliminary experiment, probe 45 was successfully used to glycosylate 

cholesteryl-NBD. Subsequent reduction of the azide functionality allows for aqueous 

extraction, purification and analysis of the glucosylcholesterol. Alternatively, the azide may 

be recruited for bioorthogonal chemistry to introduce for instance a fluorophore, in analogy 

to the widely used glyco-engineering protocols developed by Bertozzi and co-workers.
27
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Imidate probe 40 (Figure 9) can potentially be used to accumulate a covalent glycosyl-

enzyme adduct, allowing for characterization of the nucleophilic residue. 

 

Experimental Section 

Methyl (methyl 4-O-acetyl-3-O-benzyl-2-deoxy-αααα-D-glucopyranosyl uronate) (9). Compound 54 (60 mg, 0.2 

mmol) was treated with Ac2O/pyridine (1.2 mL, 1/3, v/v) for 4 h, followed by the addition of 

MeOH and concentration in vacuo in the presence of toluene. Purification of the residue using 

flash column chromatography (silica gel, 33% EtOAc in PE) yielded the title compound as a 

colorless oil (Yield: 63 mg, 0.19 mmol, 93%). TLC: Rf 0.28 (PE/EtOAc, 2/1, v/v); [α]D
20 

+71.8 (c 1, DCM); IR (neat, cm-1): 698, 732, 1047, 1227, 1742; 1H NMR (CDCl3, 400 MHz, HH-COSY, HSQC): 

δ 7.25-7.35 (m, 5H, CHarom), 5.14 (t, 1H, J = 8.1 Hz, H-4), 5.00 (t, 1H, J = 3.3 Hz, H-1), 4.61 (d, 1H, J = 12.0 Hz, 

CHH Bn), 4.55 (d, 1H, J = 12.0 Hz, CHH Bn), 4.27 (d, 1H, J = 8.2 Hz, H-5), 3.92 (ddd, 1H, J = 4.6, 8.0, 9.7 Hz, 

H-3), 3.71 (s, 3H, CH3 CO2Me), 3.40 (s, 3H, OMe), 2.18 (ddd, 1H, J = 3.4, 4.5, 13.3 Hz, H-2), 2.04 (s, 3H, CH3 

Ac), 1.84 (ddd, 1H, J = 3.3, 9.8, 13.2 Hz, H-2); 13C-APT NMR (CDCl3, 100 MHz, HSQC): δ 169.8, 169.0 (C=O 

Ac, CO2Me), 138.0 (Cq), 128.3, 127.6, 127.3 (CHarom), 98.1 (C-1), 73.2 (C-3), 71.6 (CH2 Bn), 70.8 (C-4), 70.2 (C-

5), 55.5 (OMe), 52.5 (CH3 CO2Me), 34.3 (C-2); HRMS: [M+Na]+ calcd for C17H22O7Na 361.12577, found 

361.12551. 

 

Methyl (methyl 4-O-acetyl-2-azido-3-O-benzyl-2-deoxy-αααα-D-glucopyranosyl uronate) (11). A solution of 

methyl 2-azido-3-O-benzyl-4,6-O-benzylidene-2-deoxy-α-D-mannopyranoside (2.0 g, 5 

mmol) in MeOH (50 mL) was treated with p-TsOH•H2O (cat.) for 6 h, followed by the 

addition of Et3N to neutralize the mixture. After removal of the solvent, the product was 

obtained by flash column chromatography (silica gel, 75% EtOAc in PE) as a colorless oil 

(Yield: 1.29 g, 4.16 mmol, 83%). TLC: Rf 0.44 (PE/EtOAc, 1/4, v/v); 1H NMR (CDCl3, 400 MHz, HH-COSY, 

HSQC): δ 7.25-4.38 (m, 5H, CHarom), 4.70 (d, 1H, J = 11.7 Hz, CHH Bn), 4.64 (d, 1H, J = 13.7 Hz, CHH Bn), 

4.62 (s, 1H, H-1), 3.94 (t, 1H, J = 9.1 Hz, H-4), 3.82-3.88 (m, 2H, H-2, H-3), 3.79 (d, 2H, J = 3.5 Hz, H-6), 3.68 

(bs, 1H, OH), 3.53 (dt, 1H, J = 3.5, 9.4 Hz, H-5), 3.29 (s, 3H, OMe), 3.15 (bs, 1H, OH); 13C-APT NMR (CDCl3, 

100 MHz, HSQC): δ 137.5 (Cq), 128.3, 127.8, 127.7 (CHarom), 99.1 (C-1), 79.0 (C-3), 72.3 (CH2 Bn), 72.1 (C-5), 

66.4 (C-4), 61.7 (C-6), 60.5 (C-2), 54.7 (OMe); 13C-GATED (CDCl3, 100 MHz): δ 99.1 (JC1,H1 = 172 Hz, C-1). 

The diol intermediate (1.29 g, 4.16 mmol) was dissolved in DCM/H2O (20 mL, 3/1, v/v) and treated with TEMPO 

(0.13 g, 0.83 mmol) and BAIB (3.35 g, 10.4 mmol) at RT for 6 h, after which time the reaction was quenched by 

the addition of sat. aq. Na2S2O3. The organic phase was washed with sat. aq. NaCl (2x) and the combined aqueous 

layers were extracted with DCM (1x). The organic layers were dried over Na2SO4, concentrated in vacuo, and the 

resulting residue was dissolved in DMF (20 mL). Iodomethane (0.78 mL, 12.5 mmol) and K2CO3 (3.45 g, 25.0 

mmol) were added and the resulting suspension was stirred at RT for 1 h. The mixture was diluted with EtOAc 

and H2O, the organic phase was washed with sat. aq. NaCl (2x), dried over Na2SO4 and concentrated in vacuo. 

Purification using flash column chromatography (silica gel, 25% EtOAc in PE) yielded the methyl ester product 

(Yield: 0.77 g, 2.28 mmol, 55%). TLC: Rf 0.54 (PE/EtOAc, 1/1, v/v); 1H NMR (CDCl3, 400 MHz, HH-COSY, 

HSQC): δ 7.23-7.39 (m, 5H, CHarom), 4.78 (d, 1H, J = 2.5 Hz, H-1), 4.71 (d, 1H, J = 11.8 Hz, CHH Bn), 4.67 (d, 

1H, J = 11.8 Hz, CHH Bn), 4.20 (t, 1H, J = 8.3 Hz, H-4), 4.12 (d, 1H, J = 8.5 Hz, H-5), 3.87 (dd, 1H, J = 3.5, 8.1 

Hz, H-3), 3.82-3.85 (m, 1H, H-2), 3.70 (CH3 CO2Me), 3.60 (bs, 1H, 4-OH), 3.38 (s, 3H, OMe); 13C-APT NMR 

(CDCl3, 100 MHz, HSQC): δ 169.7 (C=O CO2Me), 137.3 (Cq), 128.0, 127.5, 127.3 (CHarom), 99.0 (C-1), 77.7 (C-

3), 72.5 (CH2 Bn), 71.8 (C-5), 67.6 (C-4), 60.0 (C-2), 55.2 (OMe), 52.1 (CH3 CO2Me); 13C-GATED (CDCl3, 100 

MHz): δ 99.0 (JC1,H1 = 169 Hz, C-1). The methyl ester product (0.74 g, 2.2 mmol) was treated with Ac2O/pyridine 

(8 mL, 1/3, v/v) for 6 h. The mixture was diluted with EtOAc, the organic phase was washed with sat. aq. NaCl 

(2x), dried over Na2SO4 and concentrated in vacuo. Purification using flash column chromatography (silica gel, 

17% EtOAc in PE) yielded the title compound as a colorless oil (Yield: 0.81 g, 2.13 mmol, 97%). TLC: Rf 0.41 

(PE/EtOAc, 2/1, v/v); [α]D
20 +68.6 (c 1, DCM); IR (neat, cm-1): 698, 739, 962, 1032, 1053, 1132, 1221, 1744, 

2106; 1H NMR (CDCl3, 400 MHz, HH-COSY, HSQC): δ 7.24-7.39 (m, 5H, CHarom), 5.46 (t, 1H, J = 5.8 Hz, H-4), 

5.05 (d, 1H, J = 5.2 Hz, H-1), 4.65 (d, 1H, J = 11.8 Hz, CHH Bn), 4.61 (d, 1H, J = 11.9 Hz, CHH Bn), 4.36 (d, 

1H, J = 5.1 Hz, H-5), 3.95 (dd, 1H, J = 3.2, 6.2 Hz, H-3), 3.70 (m, 1H, H-2), 3.58 (s, 3H, CH3 CO2Me), 3.51 (s, 
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3H, OMe), 2.05 (s, 3H, CH3 Ac); 13C-APT NMR (CDCl3, 100 MHz, HSQC): δ 169.2, 167.9 (C=O Ac, CO2Me), 

136.7 (Cq), 128.0, 127.5, 127.2 (CHarom), 97.9 (C-1), 75.1 (C-3), 72.4 (CH2 Bn), 71.3 (C-5), 68.0 (C-4), 59.5 (C-2), 

55.9 (OMe), 52.0 (CH3 CO2Me), 20.3 (CH3 Ac); 13C-GATED (CDCl3, 100 MHz): δ 97.9 (JC1,H1 = 170 Hz, C-1); 

HRMS: [M+Na]+ calcd for C17H21N3O7Na 402.12717, found 402.12625. 

 

Methyl (methyl 4-O-acetyl-3-O-benzyl-2-deoxy-2-fluoro-αααα-D-glucopyranosyl uronate) (12). A solution of 

methyl 3-O-benzyl-4,6-O-benzylidene-α-D-glucopyranoside (0.32 g, 0.87 mmol) in DCM (2 

mL) was cooled to 0 ºC. Pyridine (0.19 mL, 2.34 mmol) and Tf2O (0.22 mL, 1.30 mmol) were 

added, and the resulting mixture was stirred for 2.5 h, after which time EtOAc and H2O were 

added. The organic phase was washed with H2O (2x) and sat. aq. NaCl, dried over Na2SO4, 

and concentrated under reduced pressure in the presence of toluene. The residue was taken up in a solution of 

TBAF in THF (1M, 5.19 mL, 5.19 mmol), and the mixture was heated to reflux overnight, after which time it was 

cooled to RT and diluted with EtOAc and H2O. The organic phase was washed with sat. aq. NaCl, dried over 

Na2SO4 and concentrated in vacuo. Purification using flash column chromatography (silica gel, 13% EtOAc in PE) 

gave the 2-fluoro intermediate (Yield: 0.15 g, 0.41 mmol, 47%). TLC: Rf 0.52 (PE/EtOAc, 3/1 v/v); 1H NMR 

(CDCl3, 400 MHz, HH-COSY, HSQC): δ7.46-7.51 (m, 2H, CHarom), 7.24-7.40 (m, 8H, CHarom), 5.61 (s, 1H, CH 

Ph), 4.84 (d, 1H, J = 12.5 Hz, CHH Bn), 4.83 (m, 1H, H-1), 4.73 (dt, 1H, J = 2.0, 48.9 Hz, H-2), 4.73 (d, 1H, J = 

12.2 Hz, CHH Bn), 4.27 (dd, 1H, J = 3.4, 9.2 Hz, H-6), 4.11 (t, 1H, J = 8.6 Hz, H-4), 3.91 (ddd, 1H, J = 2.6, 10.0, 

17.8 Hz, H-3), 3.78-3.85 (m, 2H, H-5, H-6), 3.35 (s, 3H, OMe); 13C-APT NMR (CDCl3, 100 MHz, HSQC): 

δ 137.9, 137.3 (Cq), 128.9, 128.3, 128.1, 127.7, 126.0 (CHarom), 101.5 (CH Ph), 99.2 (d, J = 31 Hz, C-1), 88.1 (d, J 

= 177 Hz, C-2), 78.6 (C-4), 74.0 (d, J = 17 Hz, C-3), 72.9 (CH2 Bn), 68.6 (C-6), 63.6 (C-5), 55.0 (OMe); 13C-

GATED (CDCl3, 100 MHz): δ 99.2 (JC1,H1 = 170 Hz, C-1). A solution of the 2-fluoro intermediate (0.15 g, 0.41 

mmol) in MeOH (4 mL) was treated with p-TsOH•H2O (cat.) overnight, followed by the addition of Et3N to 

neutralize the mixture. After removal of the solvent, the diol product was obtained by flash column 

chromatography (silica gel, 66% EtOAc in PE) as a colorless oil (Yield: 113 mg, 0.40 mmol, 98%). TLC: Rf 0.15 

(PE/EtOAc, 1/1, v/v); 1H NMR (CDCl3, 400 MHz, HH-COSY, HSQC): δ 7.23-7.40 (m, 5H, CHarom), 4.83 (d, 1H, 

J = 7.1 Hz, H-1), 4.73 (d, 1H, J = 11.6 Hz, CHH Bn), 4.67 (m, 1H, H-2), 4.61 (d, 1H, J = 11.6 Hz, CHH Bn), 3.95 

(t, 1H, J = 9.6 Hz, H-4), 3.82 (m, 2H, H-6), 3.67 (m, 1H, H-3), 3.56-3.67 (m, 1H, H-5), 3.35 (s, 3H, OMe), 3.23 

(bs, 1H, OH), 2.69 (bs, 1H, OH); 13C-APT NMR (CDCl3, 100 MHz, HSQC): δ 137.7 (Cq), 128.4, 127.9, 127.8 

(CHarom), 98.5 (d, J = 29 Hz, C-1), 85.9 (d, J = 176 Hz, C-2), 77.9 (d, J = 17 Hz, C-3), 72.0 (C-5), 71.8 (CH2 Bn), 

66.6 (C-4), 62.1 (C-6), 55.0 (OMe); 13C-GATED (CDCl3, 100 MHz): δ 98.5 (JC1,H1 = 169 Hz, C-1). The diol (113 

mg, 0.40 mmol) was dissolved in DCM/H2O (2 mL, 3/1, v/v) and treated with TEMPO (13 mg, 83 µmol) and 

BAIB (0.32 g, 1.0 mmol) at RT for 4 h, after which time the reaction was quenched by the addition of sat. aq. 

Na2S2O3. The organic phase was washed with sat. aq. NaCl (2x) and the combined aqueous layers were extracted 

with DCM (1x). The organic layers were dried over Na2SO4, concentrated in vacuo, and the resulting residue was 

dissolved in DMF (2 mL). Iodomethane (75 µL, 1.2 mmol) and K2CO3 (0.33 g, 2.4 mmol) were added and the 

resulting suspension was stirred at RT for overnight. The mixture was diluted with EtOAc and H2O, the organic 

phase was washed with sat. aq. NaCl (2x), dried over Na2SO4 and concentrated in vacuo. Purification using flash 

column chromatography (silica gel, 33% EtOAc in PE) yielded the methyl ester product (Yield: 84 mg, 0.27 

mmol, 66%). TLC: Rf 0.50 (PE/EtOAc, 1/1, v/v); 1H NMR (CDCl3, 400 MHz, HH-COSY, HSQC): δ 7.28-7.41 

(m, 5H, CHarom), 4.93 (dd, 1H, J = 2.0, 6.9 Hz, H-1), 4.77 (d, 1H, J = 12.0 Hz, CHH Bn), 4.73 (d, 1H, J = 11.9 Hz, 

CHH Bn), 4.67 (dt, 1H, J = 2.3, 49.3 Hz, H-2), 4.20 (t, 1H, J = 9.3 Hz, H-4), 4.12 (d, 1H, J = 9.8 Hz, H-5), 3.82 

(s, 3H, CH3 CO2Me), 3.72 (ddd, 1H, J = 2.5, 9.1, 28.8 Hz, H-3), 3.43 (s, 3H, OMe), 3.05 (d, 1H, J = 1.8 Hz, 4-

OH); 13C-APT NMR (CDCl3, 100 MHz, HSQC): δ 170.2 (C=O CO2Me), 137.7 (Cq), 128.5, 127.9, 127.8 (CHarom), 

98.9 (d, J = 29 Hz, C-1), 86.0 (d, J = 177 Hz, C-2), 76.6 (d, J = 17 Hz, C-3), 72.5 (CH2 Bn), 71.3 (C-5), 68.2 (C-

4), 55.7 (OMe), 52.7 (CH3 CO2Me); 13C-GATED (CDCl3, 100 MHz): δ 98.9 (JC1,H1 = 179 Hz, C-1). The methyl 

ester product (84 mg, 0.27 mmol) was treated with Ac2O/pyridine (1 mL, 1/3, v/v) for 3 h. The mixture was 

quenched by the addition of MeOH, and the solvents were removed under reduced pressure in the presence of 

toluene. Purification using flash column chromatography (silica gel, 25% EtOAc in PE) yielded the title 

compound as a colorless oil (Yield: 93 m g, 0.26 mmol, 97%). TLC: Rf 0.42 (PE/EtOAc, 2/1, v/v); [α]D
20 +52.8 (c 

1, DCM); IR (neat, cm-1): 1026, 1051, 1136, 1225, 1746; 1H NMR (CDCl3, 400 MHz, HH-COSY, HSQC): δ 7.25-

7.38 (m, 5H, CHarom), 5.45 (dt, 1H, J = 1.3, 8.0 Hz, H-4), 5.09 (dd, 1H, J = 4.0, 5.3 Hz, H-1), 4.70 (d, 1H, J = 12.0 
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Hz, CHH Bn), 4.66 (m, 1H, H-2), 4.61 (d, 1H, J = 12.3 Hz, CHH Bn), 4.28 (d, 1H, J = 7.4 Hz, H-5), 3.92 (ddd, 

1H, J = 2.7, 8.1, 22.3 Hz, H-3), 3.68 (s, 3H, CH3 CO2Me), 3.49 (s, 3H, OMe), 2.04 (s, 3H, CH3 Ac); 13C-APT 

NMR (CDCl3, 100 MHz, HSQC): δ 169.5, 168.2 (C=O Ac, CO2Me), 137.3 (Cq), 128.3, 127.8, 127.5 (CHarom), 

98.0 (d, J = 28 Hz, C-1), 86.4 (d, J = 181 Hz, C-2), 74.4 (d, J = 17 Hz, C-3), 72.4 (CH2 Bn), 70.6 (C-5), 68.8 (C-

4), 56.1 (OMe), 52.5 (CH3 CO2Me), 20.6 (CH3 Ac); 13C-GATED (CDCl3, 100 MHz): δ 98.0 (JC1,H1 = 171 Hz, C-

1); HRMS: [M+Na]+ calcd for C17H21FO7Na 379.11635, found 379.11638. 

 

Methyl (4-O-acetyl-2-azido-3-O-benzyl-2-deoxy-1-fluoro-ββββ-D-mannopyranosyl uronate) (19) and methyl (4-

O-acetyl-2-azido-3-O-benzyl-2-deoxy-1-fluoro-αααα-D-mannopyranosyl uronate) (20). 

Compound 1 (92 mg, 0.2 mmol) was co-evaporated with toluene (2x), dissolved in freshly 

distilled DCM (2 mL) under an argon atmosphere and the resulting solution was cooled to -40 

ºC, followed by the addition of DAST (80 µL, 0.6 mmol). After 20 min NBS was added (92 

mg, 0.52 mmol) and the mixture was gradually warmed to +4 ºC and stirred overnight. Then 

the mixture was diluted with EtOAc and H2O, the organic phase was washed with sat. aq. 

NaCl (2x), dried over Na2SO4 and concentrated in vacuo. The anomers were separated using 

flash column chromatography (silica gel, 25% EtOAc in PE for the α-anomer, 33% EtOAc in PE for the β-

anomer) to yield the title compounds as colorless oils (Yield: α-anomer 42 mg, 0.11 mmol, 57%, β-anomer 17 mg, 

47 µmol, 23%). TLC: Rf α 0.45 β 0.27 (PE/EtOAc, 2/1, v/v); Spectroscopic data for the α-anomer: [α]D
20 +65.8 (c 

1, DCM); IR (neat, cm-1): 1175, 1219, 1747, 2110; 1H NMR (CDCl3, 400 MHz, HH-COSY, HSQC): δ 7.30-7.40 

(m, 5H, CHarom), 5.74 (dd, 1H, J = 3.8, 51.2 Hz, H-1), 5.47 (dt, 1H, J = 1.0, 7.7 Hz, H-4), 4.68 (s, 2H, CH2 Bn), 

4.39 (d, 1H, J = 7.5 Hz, H-5), 4.02 (ddd, 1H, J = 2.5, 3.3, 7.8 Hz, H-3), 3.90 (dt, 1H, J = 3.7, 5.6 Hz, H-2), 3.67 (s, 

3H, CH3 CO2Me), 2.07 (s, 3H, CH3 Ac); 13C-APT NMR (CDCl3, 100 MHz, HSQC): δ 169.5, 167.3 (C=O Ac, 

CO2Me), 136.7 (Cq), 128.5, 128.4, 128.2, 127.8 (CHarom), 105.5 (d, J = 219 Hz, C-1), 75.1 (C-3), 73.2 (CH2 Bn), 

72.3 (d, J = 4 Hz, C-5), 67.7 (C-4), 59.5 (d, J = 31 Hz, C-2), 52.8 (CH3 CO2Me), 20.7 (CH3 Ac); 13C-GATED 

(CDCl3, 100 MHz): δ 105.5 (JC1,H1 = 184 Hz, C-1); HRMS: [M+Na]+ calcd for C16H18FN3O6Na 390.10718, found 

390.10749. Spectroscopic data for the β-anomer: [α]D
20 -6.6 (c 0.5, DCM); IR (neat, cm-1): 1092, 1140, 1225, 

1732, 1751, 2119; 1H NMR (CDCl3, 400 MHz, HH-COSY, HSQC): δ 7.34-7.39 (m, 5H, CHarom), 5.90 (dd, 1H, J 

= 2.5, 4.5 Hz, H-4), 5.77 (dd, 1H, J = 2.8, 53.6 Hz, H-1), 4.80 (d, 1H, J = 11.6 Hz, CHH Bn), 4.64 (d, 1H, J = 11.6 

Hz, CHH Bn), 4.43 (d, 1H, J = 2.4 Hz, H-5), 3.98 (t, 1H, J = 3.9 Hz, H-3), 3.60 (s, 3H, CH3 CO2Me), 3.29 (dt, 1H, 

J = 3.1, 25.7 Hz, H-2), 2.12 (s, 3H, CH3 Ac); 13C-APT NMR (CDCl3, 100 MHz, HSQC): δ 169.4, 167.5 (C=O Ac, 

CO2Me), 136.4 (Cq), 128.4, 128.0, 127.8 (CHarom), 105.3 (d, J = 235 Hz, C-1), 73.1 (C-3), 72.3 (CH2 Bn), 71.6 (C-

5), 66.9 (C-4), 54.6 (d, J = 21 Hz, C-2), 52.7 (CH3 CO2Me), 20.9 (CH3 Ac); HRMS: [M+Na]+ calcd for 

C16H18FN3O6Na 390.10718, found 390.10754. 

 

2,4-Di-nitrophenyl 6-azido-6-deoxy-ββββ-D-glucopyranoside (45). A solution of compound 58 (37 mg, 75 µmol) in 

a mixture of dry MeOH (1 mL) and DCM (1 mL) was treated with acetyl chloride 

(~4 drops) for 2 days. The mixture was quenched with Et3N till pH ~ neutral, 

concentrated in vacuo and co-evaporated with toluene. Purification using flash 

column chromatography (silica gel, 86% EtOAc in PE) furnished the title 

compound as an off-white solid (Yield: 17 mg, 46 µmol, 61%). TLC: Rf 0.13 (PE/EtOAc, 1/4, v/v); [α]D
20 -207 (c 

0.2, MeOH); IR (neat, cm-1): 1069, 1281, 1350, 1533, 1609, 2104, 3348; 1H NMR (MeOH-d4, 400 MHz, HH-

COSY, HSQC): δ 8.73 (d, 1H, J = 2.8 Hz, CHarom), 8.49 (dd, 1H, J = 2.8, 9.3 Hz, CHarom), 7.66 (d, 1H, J = 9.4 Hz, 

CHarom), 5.34 (d, 1H, J = 7.5 Hz, H-1), 3.74 (ddd, 1H, J = 2.2, 7.0, 9.4 Hz, H-5), 3.52-3.59 (m, 2H, H-2, H-6), 

3.43-3.51 (m, 2H, H-3, H-6), 3.37 (t, 1H, J = 9.9 Hz, H-4); 13C-APT NMR (MeOH-d4, 100 MHz, HSQC): δ 155.5, 

142.8, 141.1 (Cq), 129.7, 122.2, 118.8 (CHarom), 101.7 (C-1), 77.6, 77.5 (C-3, C-5), 74.4 (C-2), 71.8 (C-4), 52.7 (C-

6); TLC-MS: m/z = 394.2 (M+Na+). 

 

3,4,6-Tri-O-acetyl-2-deoxy-1-thio-ββββ-D-glucopyranoside (46). A solution of 3,4,6-tri-O-acetyl-D-glucal (5.45 g, 

20 mmol) in toluene (40 mL) was purged with dry HCl gas for 1 h, followed by purging 

with argon for 30 min. The solvents were removed under reduced pressure, the residue was 

co-evaporated with toluene and dissolved in toluene (25 mL). Thiophenol (3.1 mL, 30 

mmol) and DiPEA (5.23 mL, 30 mmol) were added and the resulting mixture was stirred overnight. EtOAc was 
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added and the organic phase was washed with sat. aq. NaCl (2x), dried over Na2SO4 and concentrated in vacuo. 

The title compound was obtained after purification using flash column chromatography (silica gel, 20% EtOAc in 

PE) (Yield: 3.55 g, 9.28 mmol, 46%). The spectroscopic data are in accord to those reported previously.8 TLC: Rf 

0.33 (PE/EtOAc, 2/1, v/v); 1H NMR (CDCl3, 400 MHz, HH-COSY, HSQC): δ 7.47-7.52 (m, 2H, CHarom), 7.24-

7.32 (m, 3H, CHarom), 5.04 (ddd, 1H, J = 5.2, 9.6, 20.4 Hz, H-3), 4.95 (t, 1H, J = 9.6 Hz, H-4), 4.83 (dd, 1H, J = 

1.5, 11.8 Hz, H-1 β), 4.25 (dd, 1H, J = 5.6, 12.2 Hz, H-6), 4.13 (dd, 1H, J = 2.1, 12.1 Hz, H-6), 3.66 (ddd, 1H, J = 

2.1, 5.5, 9.5 Hz, H-5), 2.43 (ddd, 1H, J = 1.3, 5.1, 12.5 Hz, H-2), 2.06 (s, 3H, CH3 Ac), 2.02 (s, 3H, CH3 Ac), 2.00 

(s, 3H, CH3 Ac), 1.84 (dd, 1H, J = 11.9, 24.0 Hz, H-2); 13C-APT NMR (CDCl3, 100 MHz, HSQC): δ 170.2, 169.7, 

169.4 (C=O Ac), 132.6 (Cq) 131.8, 128.7, 127.6 (CHarom), 81.5 (C-1), 75.5 (C-5), 71.3 (C-3), 68.5 (C-4), 62.3 (C-

6), 35.9 (C-2), 20.5, 20.4, 20.4 (CH3 Ac); 13C-GATED (CDCl3, 100 MHz): δ 81.5 (JC1,H1 = 155 Hz, C-1). 

 

4,6-O-Benzylidene-2-deoxy-1-thio-ββββ-D-glucopyranoside (47). A solution of compound 46 (3.1 g, 8.11 mmol) in 

MeOH (30 mL) was treated with NaOMe (43 mg, 0.8 mmol) for 2.5 h, followed by 

neutralization with Amberlite-H+. The solvents were removed under reduced pressure 

and the crude triol was used in the next reaction step without further purification. TLC: Rf 0.10 (PE/EtOAc, 1/3, 

v/v). The crude triol (~ 8 mmol) was dissolved in DMF, benzaldehyde dimethyl acetal (1.8 mL, 12 mmol) and p-

TsOH•H2O (0.15 g, 0.8 mmol) were added and the resulting solution was heated at 60 ºC under reduced pressure 

using a rotary evaporator for 3 h. The reaction was quenched by the addition of Et3N (till pH > 7). The solvent was 

removed, the residue was dissolved in Et2O, washed with H2O (3x), dried over Na2SO4 and concentrated in vacuo. 

Crystallization from EtOAc/PE yielded the title compound as a white solid (Yield: 1.5 g, 4.36 mmol, 54%). The 

spectroscopic data are in accord to those reported previously.8 TLC: Rf 0.56 (PE/EtOAc, 2/1, v/v); 1H NMR 

(CDCl3, 400 MHz, HH-COSY, HSQC): δ7.41-7.53 (m, 4H, CHarom), 7.26-7.41 (m, 6H, CHarom), 5.55 (s, 1H, CH 

Ph), 4.90 (dd, 1H, J = 1.5, 11.9 Hz, H-1), 4.33 (dd, 1H, J = 3.6, 10.4 Hz, H-6), 3.89-3.97 (m, 1H, H-3), 3.80 (t, 

1H, J = 9.9 Hz, H-6), 3.40-3.51 (m, 2H, H-4, H-5), 2.40 (ddd, 1H, J = 1.5, 4.9, 13.0 Hz, H-2), 1.85 (dd, 1H, J = 

12.1, 24.2 Hz, H-2); 13C-APT NMR (CDCl3, 100 MHz, HSQC): δ 137.1 (Cq Ph), 133.1 (Cq SPh), 132.0, 129.3, 

129.0, 128.4, 127.8, 126.2 (CHarom), 102.0 (CH Ph), 82.8 (C-1, C-4), 70.4 (C-5), 69.4 (C-3), 68.7 (C-6), 38.6 (C-

2). 

 

3-O-Benzyl-4,6-O-benzylidene-2-deoxy-1-thio-ββββ-D-glucopyranoside (48). Compound 47 (1.38 g, 4.0 mmol) 

was dissolved in dry THF (35 mL) under an argon atmosphere and treated with benzyl 

bromide (0.71 mL, 6.0 mmol) and sodium hydride (60% dispersion in mineral oil, 0.27 

g, 6.8 mmol) overnight. The reaction was quenched by the addition of sat. aq. NH4Cl, the mixture was diluted with 

EtOAc, the organic phase was washed with sat. aq. NaCl, dried over Na2SO4 and concentrated in vacuo. 

Purification using flash column chromatography (silica gel, 9% EtOAc in PE) yielded the title compound as white 

solids (Yield: 1.69 g, 3.89 mmol, 97%). The spectroscopic data are in accord to those reported previously.8 TLC: 

Rf 0.69 (PE/EtOAc, 3/1, v/v); 1H NMR (CDCl3, 400 MHz, HH-COSY, HSQC): δ 7.42-7.50 (m, 4H, CHarom), 7.20-

7.37 (m, 11H, CHarom), 5.55 (s, 1H, CH Ph), 4.79 (dd, 1H, J = 1.8, 11.9 Hz, H-1), 4.77 (d, 1H, J = 12.0 Hz, CHH 

Bn), 4.66 (d, 1H, J = 12.1 Hz, CHH Bn), 4.29 (dd, 1H, J = 4.9, 10.5 Hz, H-6), 3.78 (t, 1H, J = 10.3 Hz, H-6), 3.66-

3.73 (m, 1H, H-3), 3.61-3.66 (m, 1H, H-4), 3.38 (td, 1H, J = 5.0, 9.6, 9.5 Hz, H-5), 2.39 (ddd, 1H, J = 1.7, 4.8, 

13.2 Hz, H-2), 1.85 (dd, 1H, J = 12.3, 23.7 Hz, H-2); 13C-APT NMR (CDCl3, 100 MHz, HSQC): δ 138.2, 137.4 

(Cq Bn, Ph), 133.0 (Cq SPh), 131.7, 128.8, 128.1, 127.5, 125.9 (CHarom), 101.1 (CH Ph), 82.7, 82.6 (C-1, C-4), 

75.4 (C-3), 72.5 (CH2 Bn), 70.6 (C-5), 68.6 (C-6), 37.5 (C-2). 

 

3-O-Benzyl-2-deoxy-1-thio-ββββ-D-glucopyranoside (49). A solution of compound 48 (1.18 g, 2.72 mmol) in 

DCM/MeOH (15 mL, 4/1, v/v) was treated with CSA (64 mg, 0.27 mmol) for 4 d, after 

which time the reaction was quenched by the addition of Et3N. The solvents were removed 

in vacuo and the residue was purified using flash column chromatography (silica gel, 66% 

EtOAc in PE) to give compound 49 (Yield: 0.89 g, 2.57 mmol, 95%). TLC: Rf 0.19 (PE/EtOAc, 2/1, v/v); [α]D
20 -

97.1 (c 1, DCM); IR (neat, cm-1): 687, 696, 733, 1061, 1070, 3266; 1H NMR (CDCl3, 400 MHz, HH-COSY, 

HSQC): δ 7.41 (d, 2H, J = 7.0 Hz, CHarom), 7.16-7.30 (m, 8H, CHarom), 4.70 (dd, 1H, J = 1.6, 11.8 Hz, H-1), 4.62 

(d, 1H, J = 11.8 Hz, CHH Bn), 4.50 (d, 1H, J = 11.8 Hz, CHH Bn), 3.82 (dd, 1H, J = 3.1, 11.9 Hz, H-6), 3.74 (dd, 

1H, J = 4.8, 12.0 Hz, H-6), 3.64 (bs, 1H, OH), 3.52 (t, 1H, J = 9.1 Hz, H-4), 3.40-3.46 (m, 1H, H-3), 3.23-3.28 (m, 
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1H, H-5), 2.97 (bs, 1H, OH), 2.34 (ddd, 1H, J = 1.5, 4.7, 12.6 Hz, H-2), 1.67 (dd, 1H, J = 12.0, 23.6 Hz, H-2); 13C-

APT NMR (CDCl3, 100 MHz, HSQC): δ 137.8 (Cq Bn), 133.6 (Cq SPh), 130.8, 128.8, 128.3, 127.6, 127.5, 127.2 

(CHarom), 81.9 (C-1), 79.5 (C-3), 79.3 (C-5), 71.0 (CH2 Bn), 70.3 (C-4), 62.3 (C-6), 36.0 (C-2); HRMS: [M+Na]+ 

calcd for C19H22O4SNa 369.11310, found 369.11303. 

 

Methyl (4-O-acetyl-3-O-benzyl-2-deoxy-1-thio-ββββ-D-glucopyranosyl uronate) (50). A solution of compound 49 

(0.52 g, 1.5 mmol) in DCM/H2O (7.5 mL, 2/1, v/v) was cooled to 0 ºC and treated with 

TEMPO (47 mg, 0.3 mmol) and BAIB (1.21 g, 3.75 mmol) for 2.5 h. The reaction was 

quenched by the addition of sat. aq. Na2S2O3, the organic layer was washed with sat. aq. NaCl (2x), dried over 

Na2SO4 and concentrated in vacuo. The crude acid intermediate was dissolved in DMF (7.5 mL) and treated with 

iodomethane (0.28 mL, 4.5 mmol) and K2CO3 (0.62 g, 4.5 mmol) overnight. The mixture was diluted with EtOAc 

and H2O, the organic fraction was washed with sat. aq. NaCl, dried over Na2SO4 and concentrated in vacuo. The 

intermediate methyl ester product was obtained by flash column chromatography (silica gel, 25% EtOAc in PE) as 

a yellowish oil (Yield: 0.21 g, 0.55 mmol, 37%). TLC: Rf 0.61 (PE/EtOAc, 1/1, v/v); 1H NMR (CDCl3, 400 MHz, 

HH-COSY, HSQC): δ 7.49 (d, 2H, J = 6.4 Hz, CHarom), 7.23-7.34 (m, 8H, CHarom), 4.74 (dd, 1H, J = 1.2, 11.8 Hz, 

H-1), 4.69 (d, 1H, J = 11.8 Hz, CHH Bn), 4.63 (d, 1H, J = 11.8 Hz, CHH Bn), 3.76-3.82 (m, 5H, H-4, H-5, CH3 

CO2Me), 3.52 (ddd, 1H, J = 4.9, 8.7, 10.4 Hz, H-3), 3.23 (s, 1H, 4-OH), 2.37 (ddd, 1H, J = 1.4, 4.9, 12.9 Hz, H-2), 

1.77 (dd, 1H, J = 12.0, 24.2 Hz, H-2); 13C-APT NMR (CDCl3, 100 MHz, HSQC): δ 169.5 (C=O CO2Me), 137.9 

(Cq Bn), 133.2 (Cq SPh), 11.6, 128.8, 128.4, 127.7, 127.6 (CHarom), 83.1 (C-1), 78.5 (C-3), 78.0 (C-4), 71.7 (CH2 

Bn), 71.6 (C-5), 52.6 (CH3 CO2Me), 36.0 (C-2). The methyl ester product (0.55 mmol) was treated with 

Ac2O/pyridine (4 mL, 1/3, v/v) for 6 h, followed by the addition of MeOH and concentration in vacuo in the 

presence of toluene. Purification of the residue using flash column chromatography (silica gel, 50% EtOAc in PE) 

yielded the title compound as a colorless oil (Yield: 0.21 g, 0.51 mmol, 93%). TLC: Rf 0.75 (PE/EtOAc, 1/1, v/v); 

[α]D
20 -87.4 (c 1, DCM); IR (neat, cm-1): 692, 739, 1024, 1051, 1227, 1742; 1H NMR (CDCl3, 400 MHz, HH-

COSY, HSQC): δ 4.79 (dd, 2H, J = 1.9, 7.5 Hz, CHarom), 7.20-7.35 (m, 8H, CHarom), 5.06 (t, 1H, J = 9.4 Hz, H-4), 

4.74 (dd, 1H, J = 1.7, 11.8 Hz, H-1), 4.62 (d, 1H, J = 12.2 Hz, CHH Bn), 4.50 (d, 1H, J = 12.2 Hz, CHH Bn), 3.87 

(d, 1H, J = 9.8 Hz, H-5), 3.70 (s, 3H, CH3 CO2Me), 3.62-3.68 (m, 1H, H-3), 2.42 (ddd, 1H, J = 1.6, 5.0, 13.0 Hz, 

H-2), 2.00 (s, 3H, CH3 Ac), 1.85 (dd, 1H, J = 11.7, 24.5 Hz, H-2); 13C-APT NMR (CDCl3, 100 MHz, HSQC): 

δ 169.4, 167.6 (C=O Ac, CO2Me), 137.6 (Cq Bn), 132.6 (Cq SPh), 131.9, 128.7, 128.2, 128.0, 127.7, 127.6, 127.2 

(CHarom), 82.4 (C-1), 76.4 (C-5), 76.2 (C-3), 71.2 (CH2 Bn), 71.1 (C-4), 52.4 (CH3 CO2Me), 36.1 (C-2), 20.5 (CH3 

Ac); HRMS: [M+Na]+ calcd for C22H24O6SNa 439.11858, found 439.11798. 

 

Methyl 3-O-benzyl-4,6-O-benzylidene-2-O-[(methylthio)thiocarbonyl]-αααα-D-glucopyranoside (51). Methyl 3-

O-benzyl-4,6-O-benzylidene-α-D-glucopyranoside (1.86 g, 5.0 mmol) was co-evaporated 

with dry dioxane (3x) and subsequently dissolved in dry THF (25 mL) under an argon 

atmosphere. Imidazole (34 mg, 0.5 mmol) and carbon disulfide (1.8 mL, 30 mmol) were 

added. The resulting solution was cooled to 0 ºC and sodium hydride (60% dispersion in 

mineral oil, 0.4 g, 10.0 mmol) was portion-wise added. The mixture was stirred at RT for 3h, followed by the 

addition of iodomethane (0.56 mL, 9 mmol). The mixture was stirred for 30 mins and diluted with EtOAc. The 

organic layer was washed with sat. aq. NaHCO3 (2x), dried over Na2SO4 and concentrated in vacuo. The title 

compound was used in the next reaction step without further purification. TLC: Rf 0.48 (PE/EtOAc, 5/1, v/v); 1H 

NMR (CDCl3, 400 MHz, HH-COSY, HSQC): δ 7.46-7.51 (m, 2H, CHarom), 7.19-7.38 (m, 8H, CHarom), 5.72 (dd, 

1H, J = 3.8, 9.6 Hz, H-2), 5.54 (s, 1H, CH Ph), 5.11 (d, 1H, J = 3.8 Hz, H-1), 4.82 (d, 1H, J = 11.7 Hz, CHH Bn), 

4.74 (d, 1H, J = 11.7 Hz, CHH Bn), 4.27 (dd, 1H, J = 4.7, 10.2 Hz, H-6), 4.19 (t, 1H, J = 9.4 Hz, H-3), 3.87 (td, 

1H, J = 4.7, 9.9, 9.9 Hz, H-5), 3.68-3.76 (m, 2H, H-4, H-6), 3.34 (s, 3H, OMe), 2.51 (s, 3H, SMe); 13C-APT NMR 

(CDCl3, 100 MHz, HSQC): δ 215.8 (C=S), 138.0, 137.1 (Cq), 128.8, 128.0, 127.6, 127.4, 125.9 (CHarom), 101.1 

(CH Ph), 96.7 (C-1), 81.7 (C-4), 80.5 (C-2), 75.7 (C-3), 74.5 (CH2 Bn), 68.6 (C-6), 62.2 (C-5), 55.2 (OMe), 19.1 

(SMe). 

 

Methyl 3-O-benzyl-4,6-O-benzylidene-2-deoxy-αααα-D-glucopyranoside (52). A solution of crude compound 51 (~ 

5 mmol) in toluene (100 mL) was purged with argon for 30 min. Tributylstannyl hydride 

(2.7 mL, 10 mmol) and AIBN (82 mg, 0.5 mmol) were added and the resulting solution 
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was refluxed at 120 ºC for 2 h. The mixture was allowed to cool to RT, followed by partitioning between MeCN 

and hexane. The hexane fraction was extracted with MeCN (3x) and the combined MeCN layers were 

concentrated. Purification using flash column chromatography (silica gel, 17% EtOAc in PE) yielded the title 

compound as a white solid (Yield: 1.51 g, 4.22 mmol, 84% over 2 steps). The spectroscopic data are in accord to 

those reported previously.28 TLC: Rf 0.35 (PE/EtOAc, 5/1, v/v); 1H NMR (CDCl3, 400 MHz, HH-COSY, HSQC): 

δ 7.49 (d, 2H, J = 6.8 Hz, CHarom), 7.15-7.35 (m, 8H, CHarom), 5.54 (s, 1H, CH Ph), 4.78 (d, 1H, J = 12.0 Hz, CHH 

Bn), 4.69 (d, 1H, J = 3.3 Hz, H-1), 4.62 (d, 1H, J = 12.0 Hz, CHH Bn), 4.20 (dd, 1H, J = 4.2, 9.6 Hz, H-6), 3.98 

(ddd, 1H, J = 5.0, 9.2, 11.0 Hz, H-3), 3.75 (dd, 1H, J = 4.2, 9.4 Hz, H-5), 3.69 (t, 1H, J = 10.0 Hz, H-6), 3.63 (t, 

1H, J = 9.0 Hz, H-4), 3.22 (s, 3H, OMe), 2.20 (dd, 1H, J = 5.2, 13.4 Hz, H-2), 1.73 (ddd, 1H, J = 3.0, 10.8, 13.7 

Hz, H-2); 13C-APT NMR (CDCl3, 100 MHz, HSQC): δ 138.5, 137.4 (Cq), 128.5, 128.0, 127.8, 127.2, 127.1, 125.8 

(CHarom), 101.0 (CH Ph), 98.7 (C-1), 83.5 (C-4), 72.5 (C-3), 72.4 (CH2 Bn), 68.7 (C-6), 62.5 (C-5), 54.2 (OMe), 

36.1 (C-2). 

 

Methyl 3-O-benzyl-2-deoxy-αααα-D-glucopyranoside (53). A solution of compound 52 (0.39 g, 1.08 mmol) in 

DCM/MeOH (8 mL, 1/1, v/v) was treated with CSA (cat.) overnight. Triethylamine was added 

till pH ~ neutral, the mixture was reduced in volume and redissolved in EtOAc. The organic 

fraction was washed with sat. aq. NaHCO3, dried over Na2SO4 and concentrated in vacuo. 

Purification using flash column chromatography (silica gel, 25% PE in EtOAc) yielded 

compound 53 (Yield: 0.26 g, 0.97 mmol, 90%). TLC: Rf 0.27 (PE/EtOAc, 1/2, v/v); [α]D
20 +60.3 (c 1, DCM); IR 

(neat, cm-1): 727, 982, 1040, 1055, 3474; 1H NMR (CDCl3, 400 MHz, HH-COSY, HSQC): δ 7.29-7.34 (m, 5H, 

CHarom), 4.75 (d, 1H, J = 2.8 Hz, H-1), 4.61 (d, 1H, J = 11.7 Hz, CHH Bn), 4.53 (d, 1H, J = 11.8 Hz, CHH Bn), 

3.71-3.79 (m, 3H, H-3, H-6), 3.68 (bs, 1H, OH), 3.52-3.58 (m, 2H, H-4, H-5), 3.26 (s, 3H, OMe), 3.16 (bs, 1H, 

OH), 2.19 (dd, 1H, J = 4.8, 12.9 Hz, H-2), 1.56 (dt, 1H, J = 3.6, 12.9 Hz, H-2); 13C-APT NMR (CDCl3, 100 MHz, 

HSQC): δ 138.3 (Cq), 128.2, 127.5 (CHarom), 98.4 (C-1), 76.7 (C-3), 71.4 (C-4 or C-5), 71.2 (CH2 Bn), 70.6 (C4 or 

C-5), 61.9 (C-6), 54.4 (OMe), 34.6 (C-2); HRMS: [M+Na]+ calcd for C14H20O5Na 291.12029, found 291.12024. 

 

Methyl (methyl 3-O-benzyl-2-deoxy-αααα-D-glucopyranosyl uronate) (54). A solution of compound 53 (0.13 g, 

0.5 mmol) in DCM/H2O (3 mL, 2/1, v/v) was cooled to 0 ºC and treated with TEMPO (16 mg, 

0.1 mmol) and BAIB (0.40 g, 1.25 mmol) for 1 h. The reaction was quenched by the addition 

of sat. aq. Na2S2O3, the organic layer was washed with sat. aq. NaCl (2x), dried over Na2SO4 

and concentrated in vacuo. The crude acid intermediate was dissolved in DMF (3 mL) and 

treated with iodomethane (0.1 mL, 1.5 mmol) and K2CO3 (0.21 g, 1.5 mmol) for 50 min. The mixture was diluted 

with EtOAc and H2O, the organic fraction was washed with sat. aq. NaCl, dried over Na2SO4 and concentrated in 

vacuo. The title compound was obtained by flash column chromatography (silica gel, 50% EtOAc in PE) as a 

colorless oil (Yield: 0.12 g, 0.41 mmol, 81%). TLC: Rf 0.41 (PE/EtOAc, 1/1, v/v); [α]D
20 +73.9 (c 1, DCM); IR 

(neat, cm-1): 944, 1045, 1072, 1126, 1748, 3472; 1H NMR (CDCl3, 400 MHz, HH-COSY, HSQC): δ 7.30-7.36 (m, 

5H, CHarom), 4.89 (d, 1H, J = 2.3 Hz, H-1), 4.66 (s, 2H, CH2 Bn), 4.12 (t, 1H, J = 7.5 Hz, H-4), 3.76-3.85 (m, 5H, 

H-3, H-5, CH3 CO2Me), 3.36 (s, 3H, OMe), 3.12 (bs, 1H, 4-OH), 2.21 (dd, 1H, J = 3.1, 13.2 Hz, H-2), 1.65-1.73 

(m, 1H, H-2); 13C-APT NMR (CDCl3, 100 MHz, HSQC): δ 170.8 (C=O CO2Me), 138.3 (Cq), 128.3, 127.6, 127.5 

(CHarom), 98.9 (C-1), 75.6 (C-3), 72.1 (C-4 or C-5), 71.8 (CH2 Bn), 71.0 (C-4 or C-5), 55.0 (OMe), 52.5 (CH3 

CO2Me), 34.4 (C-2); HRMS: [M+Na]+ calcd for C15H20O6Na 319.11521, found 319.11524. 

 

1,2,3,4-Tetra-O-acetyl-6-O-tosyl-αααα/ββββ-D-glucopyranose (55). D-Glucose (18 g, 100 mmol) was suspended in 

pyridine (300 mL) and treated with tosyl chloride (22 g, 115 mmol) overnight. The mixture 

was quenched by the addition of MeOH, diluted with chloroform, and the suspension was 

poured in ice-water. The organic layer was dried over Na2SO4 and concentrated in vacuo. 

The residue was dissolved in pyridine (300 mL) and treated with Ac2O (100 mL, 1.06 mol) for 1 h, followed by 

concentration of the mixture in vacuo. Crystallization from EtOAc/EtOH yielded the title compound as a white 

solid (Yield: 10 g, 19.9 mmol, 20%, α : β = 1 : >10). TLC: Rf 0.23 (PE/EtOAc, 2/1, v/v); mp 197-198 ºC (from 

EtOAc/EtOH); IR (neat, cm-1): 667, 818, 976, 1032, 1082, 1177, 1209, 1742, 1755; Spectroscopic data are 

reported for the major (β) isomer: 1H NMR (CDCl3, 400 MHz, HH-COSY, HSQC): δ 7.77 (d, 2H, J = 8.3 Hz, 

CHarom), 7.35 (d, 2H, J = 8.1 Hz, CHarom), 5.65 (d, 1H, J = 8.2 Hz, H-1), 5.20 (t, 1H, J = 9.4 Hz, H-3), 5.05 (dd, 
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1H, J = 8.3, 9.4 Hz, H-2), 5.05 (t, 1H, J = 9.7 Hz, H-4), 4.15 (dd, 1H, J = 2.9, 11.1 Hz, H-6), 4.11 (dd, 1H, J = 4.4, 

11.2 Hz, H-6), 3.85 (ddd, 1H, J = 3.0, 4.3, 10.0 Hz, H-5), 2.46 (s, 3H, CH3 Ts), 2.09 (s, 3H, CH3 Ac), 2.02 (s, 3H, 

CH3 Ac), 2.00 (s, 3H, CH3 Ac), 1.99 (s, 3H, CH3 Ac); 13C-APT NMR (CDCl3, 100 MHz, HSQC): δ 170.0, 169.2, 

169.0, 168.7 (C=O Ac), 145.1, 132.3 (Cq Ts), 129.8, 128.1 (CHarom), 91.4 (C-1), 72.5 (C-3), 72.0 (C-5), 69.9, 67.8 

(C-2, C-4), 66.6 (C-6), 21.6 (CH3 Ts), 20.7, 20.5, 20.5, 20.4 (CH3 Ac); HRMS: [M+Na]+ calcd for C21H26O12SNa 

525.10372, found 525.10317. 

 

1,2,3,4-Tetra-O-acetyl-6-azido-6-deoxy-αααα/ββββ-D-glucopyranoside (56). A solution of compound 55 (1.5 g, 2.99 

mmol) in DMF (20 mL) was treated with sodium azide (0.58 g, 8.96 mmol) and gradually 

heated to 80 ºC over 3 h. The mixture was diluted with EtOAc, washed with sat. aq. NaCl, 

dried over Na2SO4 and concentrated in vacuo. The title compound was obtained using flash 

column chromatography (silica gel, 33% EtOAc in PE) as a colorless oil (Yield: 0.70 g, 1.87 mmol, 63%, α : β = 

1 : 3). TLC: Rf 0.64 (PE/EtOAc, 1/1, v/v); IR (neat, cm-1): 1032, 1072, 1204, 1748, 2102; 1H NMR (CDCl3, 400 

MHz, HH-COSY, HSQC): δ 6.34 (d, 0.33H, J = 3.6 Hz, H-1α), 5.78 (d, 1H, J = 8.3 Hz, H-1β), 5.47 (t, 0.33H, J = 

9.9 Hz, H-3α), 5.30 (t, 1H, J = 9.5 Hz, H-3β), 5.05-5.16 (m, 2.66H, H-2α, H-2β, H-4α, H-4β), 4.11 (ddd, 0.33H, J 

= 2.7, 5.5, 10.0 Hz, H-5α), 3.86-3.94 (m, 1H, H-5β), 3.44 (dd, 0.33H, J = 2.7, 13.6 Hz, H-1α), 3.38-3.43 (m, 2H, 

2 x H-6β), 3.34 (dd, 0.33H, J = 5.5, 13.6 Hz, H-6α), 2.19 (s, 0.99H, CH3 Ac-α), 2.11 (s, 3H, CH3 Ac-β), 2.06 (s, 

0.99H, CH3 Ac-α), 2.06 (s, 3H, CH3 Ac-β), 2.04 (s, 3.99H, CH3 Ac-α, CH3 Ac-β), 2.02 (s, 0.99H, CH3 Ac-α), 

2.01 (s, 3H, CH3 Ac-β); 13C-APT NMR (CDCl3, 100 MHz, HSQC): δ 169.6, 169.1, 168.9, 168.2 (C=O Ac-α), 

169.5, 168.9, 168.6, 168.3 (C=O Ac-β), 90.9 (C-1β), 88.3 (C-1α), 73.2 (C-5β), 72.0 (C-3β), 70.4 (C-5α), 69.6 (C-

2β), 69.1 (C-3α), 68.6 (C-2α or C-4α), 68.5 (C-4β), 68.4 (C-2α or C-4α), 50.1 (C-6α, C-6β), 20.2, 20.1, 20.0, 

20.0, 19.9, 19.9, 19.8 (CH3 Ac); HRMS: [M+Na]+ calcd for C14H19N3O9Na 396.10135, found 396.10112. 

 

2,3,4-Tri-O-acetyl-6-azido-6-deoxy-αααα/ββββ-D-glucopyranose (57). A solution of compound 56 (115 mg, 0.31 

mmol) and hydrazine acetate (31 mg, 0.34 mmol) in DMF (2 mL) was heated at 55 ºC for 10 

min. The solution was cooled to RT and diluted with EtOAc and H2O. The organic layer was 

washed with 1M aq. HCl and sat. aq. NaCl, dried over Na2SO4 and concentrated in vacuo. 

The crude title compound was used in the next step without further purification (α : β = 2.5 : 1). TLC: Rf 0.42 

(PE/EtOAc, 1/1, v/v); 1H NMR (CDCl3, 400 MHz, HH-COSY, HSQC): δ 5.93 (bs, 1H, 1-OH), 5.55 (t, 1H, J = 9.8 

Hz, H-3α), 5.45 (d, 1H, J = 3.5 Hz, H-1α), 5.22 (t, 0.4H, J = 9.5 Hz, H-3β), 5.02 (t, 0.4H, J = 9.6 Hz, H-4β), 5.01 

(t, 1H, J = 9.7 Hz, H-4α), 4.94 (dd, 0.4H, J = 8.1, 9.6 Hz, H-2), 4.88 (dd, 1H, J = 3.5, 10.2 Hz, H-2α), 4.83 (d, 1H, 

J = 8.0 Hz, H-1β), 4.26 (ddd, 1H, J = 3.1, 6.0, 9.6 Hz, H-5α), 3.73 (m, 0.4H, H-5β), 3.37-3.39 (m, 1.8H, H-6α, 2 x 

H-6β), 3.31 (dd, 1H, J = 5.9, 13.3 Hz, H-6α), 2.08 (s, 3H, CH3 Ac-α), 2.07 (s, 1.2H, CH3 Ac-β), 2.05 (s, 4.2H, 

CH3 Ac-α, CH3 Ac-β), 2.02 (s, 3H, CH3 Ac-α), 2.01 (s, 1.2H, CH3 Ac-β); 13C-APT NMR (CDCl3, 100 MHz, 

HSQC): δ 170.1, 170.0, 169.9, 169.6, 169.4 (C=O Ac), 94.9 (C-1β), 89.6 (C-1α), 72.6, 72.5, 72.4 (C-2β, C-3β, C-

5β), 71.0 (C-2α), 69.6, 69.6 (C-3α, C-4α), 69.3 (C-4β), 67.7 (C-5α), 50.8 (C-6α), 50.7 (C-6β), 20.5, 20.4, 20.4, 

20.4, 20.3 (CH3 Ac); HRMS: [M+NH4]
+ calcd for C12H21N4O8 349.13539, found 349.13534. 

 

2,4-Dinitrophenyl 2,3,4-tri-O-acetyl-6-azido-6-deoxy-ββββ-D-glucopyranoside (58). Crude compound 57 (~0.15 

mmol) was dissolved in dry DMF (2 mL). The mixture was cooled to 0 ºC under 

an argon atmosphere, and 2,4-dinitrofluorobenzene (42 µL, 0.33 mmol) and 

DABCO (67 mg, 0.6 mmol) were added. The mixture was stirred at +4 ºC for 3 h, 

and diluted with EtOAc. The organic layer was washed with sat. aq. NaCl (3x), 

dried over Na2SO4 and concentrated in vacuo. Purification using flash column chromatography (silica gel, 33% 

EtOAc in PE) yielded the β-fused compound 58 as a yellowish solid (Yield: 51 mg, 0.1 mmol, 68% over two 

steps). TLC: Rf 0.40 (PE/EtOAc, 1/1, v/v); [α]D
20 -31.3 (c 0.3, DCM); IR (neat, cm-1): 1036, 1069, 1213, 1234, 

1348, 1537, 1755, 2104; 1H NMR (CDCl3, 400 MHz, HH-COSY, HSQC): δ 8.72 (d, 1H, J = 2.7 Hz, CHarom), 8.47 

(dd, 1H, J = 2.8, 9.2 Hz, CHarom), 7.51 (d, 1H, J = 9.2 Hz, CHarom), 5.29-5.36 (m, 3H, H-1, H-2, H-3), 5.09 (t, 1H, J 

= 9.4 Hz, H-4), 3.88 (ddd, 1H, J = 2.6, 7.8, 10.1 Hz, H-5), 3.50 (dd, 1H, J = 7.7, 13.4 Hz, H-6), 3.39 (dd, 1H, J = 

2.5, 13.4 Hz, H-6), 2.13 (s, 3H, CH3 Ac), 2.08 (s, 3H, CH3 Ac), 2.06 (s, 3H, CH3 Ac); 13C-APT NMR (CDCl3, 100 

MHz, HSQC): δ 170.1, 169.4, 169.0 (C=O Ac), 153.4, 142.4, 140.3 (Cq), 128.8, 121.5, 118.8 (CHarom), 99.4 (C-1), 
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74.2 (C-5), 71.7, 70.2 (C-2, C-3), 68.9 (C-4), 51.2 (C-6), 20.6, 20.5, 20.5 (CH3 Ac); HRMS: [M+Na]+ calcd for 

C18H19N5O12Na 520.09224, found 520.09191. 

 

Footnotes and References 

 

[1]  Bohé, L.; Crich, D. C. R. Chim. 2011, 14, 3-16. 

[2]  In a study on protonation of substituted piperidines, it was shown that a chair conformation is adopted in 

which a methyl carboxylate was placed axially thereby minimizing its destabilizing effect on the developing 

positive charge. a) Jensen, H. H.; Lyngbye, L.; Jensen, A.; Bols, M. Chem. Eur. J. 2002, 8, 1218-1226; b) 

Pedersen, C. M.; Bols, M. Tetrahedron 2005, 61, 115-122. 

[3] Methyl 3,4-di-O-acetyl-D-glucuronal adopted almost exclusively the inverted 5H4 conformation in which 

the methyl carboxylate is placed axially (93% at room temperature). Thiem, J.; Ossowski, P. J. Carbohydr. 

Chem. 1984, 3, 287 - 313. 

[4]  The A-value has been proposed by Winstein and Holness to quantify the preference for the equatorial 

configuration and is defined as –∆G0. Winstein, S.; Holness, N. J. J. Am. Chem. Soc. 1955, 77, 5562-5578. 

[5]  The A-values were adapted from Eliel, E. L.; Wilen, S. H.; Mander, L. N. Stereochemistry of Organic 

Compounds 1994, Wiley-Interscience, p.696 

[6]  Lemieux, R. U.; Pavia, A. A.; Martin, J. C.; Watanabe, K. A. Can. J. Chem. 1969, 47, 4427-4439. 

[7]  The conformer with the largest overall dipole becomes increasingly stabilized on going to solvents with a 

higher dielectrical constant. Juaristi, E.; Cuevas, G. Tetrahedron 1992, 48, 5019-5087. 

[8]  Based on results from Crich et al., the activation was also performed with an excess of Ph2SO to generate 

the oxosulfonium triflate in situ, however this also gave no interpretable spectrum. Crich, D.; Vinogradova, 

O. J. Org. Chem. 2006, 71, 8473-8480. 

[9]  Sulfonium ion analogues of castanospermine are seen to flip to the 1C4 chair conformation, explained 

through the stabilizing electrostatic gauche interactions from the axial oxygen substituents with the positive 

sulfonium ion center. Svansson, L.; Johnston, B. D.; Gu, J.-H.; Patrick, B.; Pinto, B. M. J. Am. Chem. Soc. 

2000, 122, 10769-10775. 

[10] Mechlinski, W.; Schaffner, C. P.; Ganis, P.; Avitabile, G. Tetrahedron Lett. 1970, 11, 3873-3876. 

[11]  Marchesan, S.; Macmillan, D. Chem. Commun. 2008, 4321-4323. 

[12]  Crich, D.; Xu, H. J. Org. Chem. 2007, 72, 5183-5192. 

[13]  Crich, D.; Bowers, A. A. J. Org. Chem. 2006, 71, 3452-3463. 

[14]  The decomposition temperature of triflate 33 was based on the temperature determined for the 2,3-di-O-

methyl-4,6-O-benzylidene analogue. Crich, D.; Sun, S. J. Am. Chem. Soc. 1997, 119, 11217-11223. 

[15]  Kates, A. S.; Albericio, F. Solid-Phase Synthesis: A Practical Guide, Marcel Dekker, New York, 2000. 

[16]  Gude, M.; Ryf, J.; White, P. D. Lett. Peptide Sci. 2002, 9, 203-206. 

[17]  a) Zhao, H.; Liu, H.; Chen, Y.; Xin, X.; Li, J.; Hou, Y.; Zhang, Z.; Zhang, X.; Xie, C.; Geng, M.; Ding, J. 

Cancer Res. 2006, 66, 8779-8787; b) Ma, J.; Xin, X.; Meng, L.; Tong, L.; Lin, L.; Geng, M.; Ding, J. PLoS 

ONE 2008, 3, e3774. 

[18]  a) Pawar, S. N.; Edgar, K. J. Biomacromolecules, 2011, 12, 4095-4103; b) Franklin, M. J.; Ohman, D. E. J. 

Bacteriol. 2002, 184, 3000-3007. 

[19]  Kanemitsu, T.; Seeberger, P. H. Org. Lett. 2008, 5, 4541-4544. 

[20]  See for some selected syntheses of 5-fluoroglycosides: a) Skelton, B. W.; Stick, R. V.; Stubbs, K. A.; 

Watts, A. G.; White, A. H. Aust. J. Chem. 2004, 57, 345-353; b) Wong, A. W.; He, S.; Withers, S. G. Can. 

J. Chem.I 2001, 79, 510-518; c) Stubbs, K. A.; Scaffidi, A.; Debowski, A. W.; Mark, B. L.; Stick, R. V.; 

Vocadlo, D. J. J. Am. Chem. Soc. 2008, 130, 327-335. 

[21]  Zechel, D. L.; Withers, S. G. Acc. Chem. Res. 2000, 33, 11-18. 

[22]  Dasgupta, S.; Nitz, M. J. Org. Chem. 2011, 76, 1918-1921. 

[23]  Demchenko, A. V.; Malysheva, N. N.; De Meo, C. Org. Lett. 2003, 5, 455-458. 

[24]  Lucas-Lopez, C.; Murphy, N.; Zhu, X. Eur. J. Org. Chem. 2008, 4401-4404. 

[25]  Unfortunately, the N-phenyl trifluoroacetimidate leaving group had to be omitted in this design since its 

synthesis requires the hemiacetal as starting material, a precursor in which the 5-fluoride is not 

accommodated. 

[26]  Boot, R. G.; Verhoek, M.; Donker-Koopman, W.; Strijland, A.; van Marle, J.; Overkleeft, H. S.; Wennekes, 

T.; Aerts, J. M. F. G. J. Biol. Chem. 2007, 282, 1305-1312. 

[27]  Sletten, E. M.; Bertozzi, C. R. Acc. Chem. Res. 2011, 44, 666-676. 

[28]  Petráková, E.; Kováč, P.; Glaudemans, C. P. J. Carbohydr. Res. 1992, 233, 101-112. 



Samenvatting  

 

209 

 

 

Samenvatting 

 

‘Over de reactiviteit & selectiviteit van glycosidedonoren  

in glycochemie & glycobiologie’ 

 

Het stereo- en regioselectief invoeren en verbreken van glycosidische bindingen is een 

centraal thema in de glycochemie en glycobiologie. In het inleidende hoofdstuk worden de 

eigenschappen besproken van covalente reactieve intermediairen zoals die voorkomen bij 

een enzymatische glycosidische bandbreuk en de chemische introductie van een 

glycosidische binding. 

In Hoofdstuk 2 wordt de onverwachte ontdekking van een equatoriaal triflaat beschreven, 

zoals gedaan met behulp van NMR spectroscopie bij lage temperatuur. 

Mannuronzuurdonoren met een benzylether of azide-groep op de C-2 positie geven na pre-

activatie een conformationeel mengsel van 
4
C1 en 

1
C4 conformeren, waarbij de laatste de 

voorkeur heeft. Deze onvoorziene conformeer plaatst de anomere groep (triflaat) 

equatoriaal, wat niet strookt met de verwachte invloed van het anomere effect. Een 

mogelijke verklaring voor deze voorkeur is de elektronendeficiëntie van het anomere 

centrum ten gevolge van de elektronenzuigende werking van de triflaat substituent, die 

wordt gecompenseerd door de overige substituenten van de mannosekern, in het bijzonder 

de stabilisatie van de axiale methylester. De 
1
C4 conformatie van het equatoriale anomere 

triflaat leidt bij dissociatie tot een oxacarbenium ion met een 
3
H4 stoel, een conformatie die 

als meest stabiel wordt beschouwd. Deze hypothese wordt bekrachtigd door de 

kristalstructuur van het overeenkomstige lacton, die toont dat dit molecuul de 
3
H4 

conformatie aanneemt. 

De vondst van equatoriale triflaten na pre-activatie van mannuronzuurdonoren leidde het 

onderzoek in zoals beschreven in Hoofstuk 3, waarin 2-azido-mannuronzuren met 

verschillende anomere groepen werden onderzocht op hun gedrag na pre-activatie en in de 

glycosyleringsreactie. De pre-activatie van (S)-phenyl (α/β), N-phenyl trifluoracetimidaat 

(α/β), hydroxyl (α), en sulfoxides (α/β) werd geanalyseerd met behulp van NMR 

spectroscopie bij lage temperatuur. Alleen de thio- en imidaatdonoren vormden het eerder 

gevonden mengsel van triflaten, de hydroxyldonor gaf een relatief stabiel oxosulfonium 

triflaat, terwijl de sulfoxides vooral sulfonium bistriflaten produceerden, naast het 

triflatenmengsel. In de daaropvolgende glycosyleringsreactie werden de thio- en 

imidaatdonoren getest op hun β-stereoselectiviteit, waarbij de β-(S)-phenyldonor niet alleen 

een excellente β-selectiviteit, maar ook een hoge opbrengst gaf. Deze donor is daarna 

gebruikt in de stereoselectieve constructie van tri-, penta- en heptasacharide fragmenten 

gelijkend op het polysacharide gevonden in de teichuronzuren van de Micrococcus luteus 
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bacterie, welke alleen 1,2-cis verbindingen tussen mannuronzuur- en glucose-eenheden 

bevatten. 

Hoofdstuk 4 beschrijft een studie naar 2,3-diazido-mannuronzuurdonoren om deze 

uiteindelijk te gebruiken in de synthese van fragmenten van het capsulaire polysacharide 

van Bacillus stearothermophilus, waarin ze 1,2-cis-gebonden zijn. Met behulp van 

eenzelfde pre-activatie studie als beschreven in de Hoofdstukken 2 en 3 werd aangetoond 

dat de methylester op de C-5 positie, in combinatie met azide functionaliteiten op C-2 en C-

3, een voortreffelijke β-selectiviteit garandeert. Diazidomannosedonoren met 4,6-di-O-

acetyl- en 4,6-O-benzylideen-functies lieten daarentegen een verminderde 

stereoselectiviteit zien. Met behulp van de 2,3-diazido-β-thio-mannuronzuurdonor is 

vervolgens een tetrasacharide repeterende eenheid geconstrueerd, bestaande uit 1,2-cis 

verbonden bouwstenen. 

De goede stereoselectiviteit en hoge opbrengsten behaald in koppelingen met 

mannuronzuurbouwstenen inspireerden tot een kwantificering van de reactiviteit van thio-

mannuronzuurdonoren (α en β) in een één-op-één vergelijk met, onder andere, niet-

geoxideerde mannosebouwstenen (Hoofstuk 5). Hieruit bleek dat de α-gebonden 

mannuronzuurdonor minder reactief was dan zijn niet-geoxideerde analoga (4,6-di-O-

acetyl and 4,6-O-benzylideen), terwijl de β-gebonden mannuronzuurdonor reactiever was 

dan het 4,6-O-benzylideen analogon. Deze β-gebonden mannuronzuurdonor bleek 

uiteindelijk even reactief te zijn als per-O-gebenzyleerd α-thio mannose, een van de meest 

reactieve glycosyldonoren. 

De excellente β-stereoselectiviteit behaald in koppelingsreacties met 

mannuronzuurbouwstenen was het uitgangspunt voor de ontwikkeling van een 

automatische vaste drager synthese procedure van alginaat oligosachariden. In Hoofdstuk 

6 wordt uitgelegd hoe met behulp van een tweede-generatie synthesizer en mannuronzuur 

imidaat-donoren de constructie van alginaat tetra-, octa- and dodecasachariden werd 

bewerkstelligd. Na afsplitsen van de producten van de vaste drager bleken de gewenste 

fragmenten stereoselectief en met hoge efficiëntie te zijn gemaakt. Na verzeping van de 

methylesters werden de halffabrikaten middels RP-HPLC gezuiverd, en na de laatste 

ontscherming werden de natuurlijke oligosachariden verkregen in multi-miligram 

hoeveelheden. 

De automatische procedure werd ook gebruikt voor de synthese van fragmenten van 

hyaluronan, een polymeer bestaande uit 1,2-trans verbonden glucuronzuur- en N-

acetylglucosamine-bouwstenen (Hoofdstuk 7). Met behulp van dimeerbouwstenen werden 

hepta-, undeca- en pentadecasacharide fragmenten gemaakt, en onder geoptimaliseerde 

condities van de vaste drager afgesplitst. Na de eerste ontschermingsstap konden de 

fragmenten met RP-HPLC gezuiverd worden, en de daaropvolgende verzeping en 

acetylering van de vrije amines resulteerde in de isolatie van de natuurlijke hyaluronan 

fragmenten in multi-miligram hoeveelheden. 

In Hoofstuk 8 wordt de synthese en biologische evaluatie beschreven van azide- en 

BODIPY-gefunctionaliseerde 2-deoxy-2-fluorglucosiden als remmers van β-glucosidase 

enzymen. Vergeleken met de recent ontdekte en zeer potente remmer cyclophellitol (ook 
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azide- en BODIPY-gefunctionaliseerd) zijn de fluorglucosiden veel minder krachtige 

remmers. Toch remmen vooral de BODIPY-gelabelde probes wel tijdsafhankelijk, zij het 

bij relatief hoge concentraties en lange incubatietijden. Dit onderzoek toont aan dat de 

cyclophellitol-gebaseerde remmers veel potenter zijn dan de in de glycobiologie 

veelgebruikte fluorglucosiden. 

De lagere potentie van de fluorglucosiden is als uitgangspunt genomen voor het onderzoek 

beschreven in Hoofdstuk 9. De meestgebruikte anomere groepen voor enzymlabeling zijn 

het fluoride en de 2,4-dinitrophenyl, welke vanuit een synthetisch oogpunt niet de beste 

vertrekkende groepen zijn. Om betere remmers te ontwikkelen zijn 2-fluor-6-BODIPY-

glucosiden gemaakt met uit de synthetische chemie bekende vertrekkende groepen op het 

anomere centrum, zoals een (S)-tolyl, sulfoxide, imidaat en fosfaat functionaliteit. Bepaling 

van de IC50 waarden en visualisatie van de covalent gebonden remmer aan 

glucocerebrosidase toonden aan dat de imidaat-probe een activiteits-gerelateerde remmer 

was met de hoogste potentie van deze serie probes. Door gebruik te maken van 

glucocerebrosidasemutanten waarvan het zuur/base residu in de actieve site was vervangen 

kon de noodzaak voor protonering van het imidaat worden aangetoond. Hiermee is de 

imidaat-probe dus een zeer geschikte activiteit-gerelateerde remmer gebleken, en de 

imidaatfunctionaliteit zou gemakkelijk gebruikt kunnen worden om remmers met andere 

pyranoseconfiguraties te maken. 
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Appendix 1 – General experimental procedures 

All chemicals were used as received unless stated otherwise. 
1
H and 

13
C NMR spectra were 

recorded on a Bruker AV-400 (400/100 MHz) and a Bruker DMX-600 (600/150 MHz) 

spectrometer. Chemical shifts (δ) are given in ppm relative to tetramethylsilane as internal 

standard. Coupling constants are given in Hz. All given 
13

C-APT spectra are proton 

decoupled. IR-spectra were recorded on a Shimadzu FTIR-8300. Flash chromatography 

was performed on Fluka silica gel 60 (0.04 – 0.063 mm). TLC-analysis was conducted on 

DC-alufolien (Merck, Kieselgel60, F254) with detection by UV-absorption (254 nm) where 

applicable and by spraying with 20% sulfuric acid in ethanol followed by charring at ~150 

°C or by spraying with a solution of (NH4)6Mo7O24·H2O (25 g/l) and (NH4)4Ce(SO4)4·2H2O 

(10 g/l) in 10% sulfuric acid in water followed by charring at ~150 °C. TLC-MS analysis 

was performed on a Camag TLC-MS Interface combined with an API165 (SCIEX) mass 

spectrometer (eluted with tert-butylmethylether/EtOAc/MeOH, 5/4/1, v/v/v + 0.1% formic 

acid, flow rate 0.1 mL/min). LC-MS analysis was performed on a Jasco 980 HPLC system 

with API165 (SCIEX) ESI-MS and 3300 ELSD detector (Grace). Standard eluens used 

were A: 100% H2O, B: 100% acetonitrile, C: 1% TFA in H2O. Eluens used with acid-

sensitive compounds were A: 100% H2O, B: 100% acetonitrile, C: 100 mM NH4OAc in 

H2O. Columns used were Vidac 214TP C4 column (3 µm, 4.6x50mm, Grace), Vidac 

219TP Diphenyl column (3 µm, 4.6x50mm, Grace), and a Phenomenix Gemini C18 

column (3 µm, 4.6x50mm). All analyses were 13 min, with a flow-rate of 1 ml/min. HPLC 

purification was performed on a preparative LC-MS system (Agilent 1200serie) with an 

Agilent 6130 Quadruple MS detector and an Agilent G1968D active splitter (split ratio = 

927:1; freq. = 1,429 Hz; vol. = 300 nL); the eluents used were A: 0.1% TFA in H2O, B: 

100% acetonitrile, or with acid-sensitive compounds A: 20 mM NH4OAc in H2O, B: 100% 

acetonitrile; the columns used were a Vidac 214TP C4 (5 µm, 10 x 250 mm), a Develosil 

RPAQUEOUS C30 (5 µm, 10 x 250 mm), and a Phenomenix Gemini C18 (5 µm, 10 x 250 

mm), both with a flow rate of 5 ml/min. High-resolution mass spectra were recorded on a 

Thermo Finnigan LTQ Orbitrap equipped with an electrospray ion source in positive mode 

(source voltage 3.5 kV, sheath gas flow 10, capillary temperature 275ºC) with resolution 

R=60.000 at m/z=400 (mass range = 150-4000) and dioctylphtalate (m/z=391.28428) as 

"lock mass". MALDI mass spectra were measured by spotting a mixture of the compound 

(1 mM in EtOAc) on a Big Anchor target plate pre-treated with 2,5-dihydroxybenzoic acid 

matrix (15 mg per 1 mL EtOH, diluted 1 : 1 with 1% aqueous TFA), followed by recording 

on a Bruker microflex LRF mass spectrometer in the positive ion reflectron mode using 

delayed extraction, acquiring at least 500 shots at 60 Hz. Absorption (4MU assay) was 

measured on an LS55 fluorimeter (Perkin Elmer) with λex 366 nm and λem 455 nm. 

Fluorescent scanning of slab gels was performed on a Typhoon Variable Mode Imager (600 

PMT, medium sensitivity, pixel size 200 µm), using λex 488 and λem 520 nm for green 

fluorescent BODIPY dyes, and λex 532 and λem 610 nm for red fluorescent BODIPY dyes. 

The solvents used in the automated oligosaccharide synthesis were dried on molecular 

sieves (4Å) for 24 h. In glycosylation reactions, the donor was co-evaporated with toluene 

prior to use. 



 

217 

Appendix 2 – Colored ball-and-stick model of lactone 4 (Chapter 2)  
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Appendix 3 – Pictures of the automated synthesizer (Chapter 6 and 7) 
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Appendix 4 – Labeling of GBA in fibroblasts (Chapter 9) 
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