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Samenvatting 
 
Dit proefschrift combineert het gebruik van standaard bioinformatica analyses met de 

ontwikkeling van nieuwe computationele technieken om de evolutie en genetische diversiteit 

van picornavirussen en nidovirussen te bestuderen. Het integreert twee onderzoekslijnen - 

genetica gebaseerde virus classificatie en evolutionaire dynamiek van gen lengte - en richt 

zich op de onthulling van overeenkomsten in de biologie van deze en andere RNA virussen 

en op de ondersteuning van toegepast onderzoek in de virologie.  

Hoofdstuk 1 introduceert basiskennis over RNA virus diversiteit, virus classificatie 

en standaard bioinformatica technieken die worden gebruikt in dit proefschrift. In hoofdstuk 

2 wordt een nieuwe kwantitatieve methode voor de hiërarchische classificatie van virussen 

door paarsgewijze genetische divergentie, genaamd DEmARC, beschreven en rigoureus 

geëvalueerd in een basisstudie van picornavirussen. DEmARC wordt toegepast in elke van 

de andere hoofdstukken, ofwel door de belangrijkste resultaten te produceren (hoofdstuk 3 

en 4) of voor het maken van datasets die representatief zijn voor een veel grotere groep van 

virussen (hoofdstuk 5, 6 en 7). In Hoofdstuk 3 blijkt DEmARC het opvallend eens te zijn 

met de officiële ICTV taxonomie van picornavirussen die wordt geproduceerd door 

gezamenlijke inspanningen van deskundige virologen en die regelmatig verfijnd wordt met 

behulp van verschillende kenmerken van virussen. Een paar opmerkelijke biologische 

verschillen en afwijkingen van de twee onderliggende classificatie benaderingen worden 

uiteengezet. In hoofdstuk 4 wordt DEmARC voor het eerst gebruikt in een uitgebreide-

familie-analyse om te helpen bij de indeling van de eerste nidovirussen die geïsoleerd zijn 

uit insecten (zie ook hoofdstuk 5). Deze virussen, genaamd mesonivirussen, bleken een 

aparte soort en vormen een nieuwe nidovirus familie. Hoofdstuk 5 rapporteert over de 

ontdekking van een mesonivirus en haar onderscheidende genetische eigenschappen, met 

speciale nadruk op de genetische divergentie en de ongewone grootte van het genoom. 

Deze resultaten maakten de weg vrij om een model formeel te introduceren dat replicatie 

nauwkeurigheid, grootte van het genoom en genetische complexiteit verenigt; een grote 

beperkingen in de evolutie van RNA virussen. In hoofdstuk 6 wordt dit model 

geconfronteerd met nidovirussen die genomen van extreme grootte geëvolueerd hebben. 

De gerapporteerde bevindingen tonen aan dat genomische architectuur een kritische factor 

vormt in de expansie van nidovirus genomen en mogelijk de waargenomen genoom limiet 

voor de hedendaagse RNA virussen kan bepalen. Hoofdstuk 7 beoordeelt onze huidige 

kennis van de evolutie van de picornavirus eiwitten. Zoals voor nidovirussen, de afwijking 

van genetische elementen wordt geanalyseerd in de context van de sequentie en grootte. 

Uit deze bevindingen blijkt dat er een negatieve correlatie van sequentie behoud en de 

grootte variatie van picornavirus eiwitten bestaat. Hoofdstuk 8 sluit dit proefschrift af door 

het bespreken van zijn bevindingen en implicaties voor toekomstig onderzoek. 
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Outline of this thesis 
 
This thesis combines the use of standard bioinformatics analyses with the development of 

new computational techniques to study the evolution and genetic diversity of picornaviruses 

and nidoviruses. It integrates two lines of research – genetics-based virus classification and 

evolutionary dynamics of gene length – and aims at unveiling commonalities in the biology 

of these and other RNA viruses as well as assisting applied research in virology. 

Chapter 1 introduces basic knowledge about RNA virus diversity, current virus 

classification efforts, and standard bioinformatics techniques utilized in this thesis. In 

chapter 2 a novel, quantitative framework for hierarchical classification of viruses by 

pairwise genetic divergence, named DEmARC, is described and evaluated rigorously with 

respect to various key parameters in a proof-of-principle study of picornaviruses. DEmARC 

is employed in any of the other research chapters either to produce main results (chapter 3 

and 4) or for the preparation of datasets that are representative for a much larger bunch of 

viruses (chapter 5, 6 and 7). In chapter 3 DEmARC is shown to agree strikingly on the 

official ICTV taxonomy of picornaviruses which is produced by cooperative efforts of expert 

virologists who refine and update it periodically using various virus characteristics. A few 

biologically notable discrepancies as well as differences of the two underlying classification 

approaches are outlined. In chapter 4 DEmARC is used, for the first time, in a multi-family 

analysis to assist the classification of the first nidoviruses isolated from insects (see also 

chapter 5). These viruses, named mesoniviruses, were found to form a single species 

prototyping a novel nidovirus family. Chapter 5 reports on the discovery of one mesonivirus 

and its distinctive genetic properties in relation to other nidoviruses, with special emphasis 

placed on genetic divergence and the genome size of this virus which is unique among 

nidoviruses. The reported findings paved the way to formally introduce a model that unites 

replication fidelity, genome size and genetic complexity, major constraints in the evolution of 

RNA viruses. In chapter 6 this model is contrasted with nidoviruses which evolved genomes 

of extreme size, thereby exceeding limits on the abovementioned constraints observed by 

other RNA viruses. The reported findings reveal that genomic architecture constitutes a 

critical factor in the expansion of nidovirus genomes and may determine the genome size 

limit observed for contemporary RNA viruses. Chapter 7 reviews our current knowledge of 

the evolution of the picornavirus proteome. Like for nidoviruses, the divergence of genetic 

elements is analyzed in the context of sequence and size. The findings reveal a negative 

correlation of sequence conservation and size variation of picornavirus proteins. Finally, 

chapter 8 concludes this thesis by discussing its findings and outlining implications for 

future research. 
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RNA virus diversity in a nutshell 
 

One of the most fundamental characteristics of RNA viruses is genetic variation. It originates 

from different sources which include (i) mutation (misincorporation of nucleotides during 

genome copying), (ii) duplication of genome regions (e.g. genes) followed by subsequent 

diversification, (iii) acquisition of foreign genetic material, (iv) loss of genetic material, and (v) 

overprinting (opening of an alternative, possibly overlapping reading frame)34,252. The 

underlying molecular processes act on different scales and may have profoundly different 

impacts on the virus affected. 

At the lowermost level, genetic variation in RNA viruses is observed within single-

host infections where a cloud of potentially beneficial mutations is formed and maintained. 

The cloud sequences can be thought of representing a fitness landscape – sequences with 

slightly lower or higher fitness – which allows the virus to quickly respond to environmental 

changes during infection. What is obtained by genome sequencing is a so-called master 

sequence which basically represents a consensus over the cloud. Interestingly, when 

infecting a new individual with the same virus, essentially the same cloud is formed which 

suggests that the sequences, linked by mutational coupling, act as one entity which is 

targeted as a whole by evolutionary selection43. This prompted researchers to refer to it as 

Quasispecies110,131,132,471. However, others are reluctant to accept the applicability of this 

concept to RNA viruses219,237. Regardless of this debate, it is apparent that genetic variation 

naturally increases on higher levels, e.g. when distinct viruses diverge gradually during 

evolution, eventually erasing any detectable homology. The reason for this high sequence 

variability of RNA viruses is the extreme error rate of their RNA-dependent polymerases, 

which introduce roughly one mutation per 10,000 nt copied117,121. In contrast to their cellular 

counterparts with an error rate that is orders of magnitude lower, polymerases of RNA 

viruses lack a proofreading-repair functionality (with one possible exception, see below).  

Besides mutation, the second major source of genetic variation in RNA viruses is 

recombination. Recombination is thought to be guided by the level of local sequence 

similarity of the participant nucleic acid molecules492 and, hence, is predominantly observed 

between closely related viruses. As a result, a recombinant genome in which homologous 

parts have been exchanged between the parents is produced (homologous recombination), 

potentially causing several substitutions in one go with respect to either parent. A 

prerequisite for homologous recombination to take place is co-infection of the same cell. It is 

worth mentioning that, while representing a source of innovation on a small scale, 

homologous recombination limits sequence divergence on a large scale (evolutionary time 

scale) by both the propagation of beneficial substitutions throughout a population of closely 

related viruses and the removal of deleterious mutations305. Moreover, recombination may 

also happen with remotely related viruses or the host transcriptome, and as a result new 

genes or other functional elements are integrated into the recipient viral genome (non-

homologous recombination). In contrast to the mechanism of recombination in the host 
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genome which works through breakage and rejoining of DNA strands80,251, it is generally 

accepted that that of most RNA viruses is characterized by template switching of the viral 

polymerase during replication6,260,329. 

With increasing genetic divergence, RNA virus diversity is also observed at the 

level of the proteome. A hallmark of RNA viruses and viruses in general is that they do not 

encode ribosomes and are thus condemned to parasitize host cells for protein synthesis. 

However, they express various other types of proteins. The only recurrent theme here is that 

all bona fide RNA viruses encode at least one virion protein as well as a polymerase, for 

genome dissemination and replication, respectively. The polymerase can be of different type 

depending on the mechanism of mRNA production (see next section). Its core component, 

the palm subdomain, which is crucial for catalysis, is structurally conserved across RNA 

viruses184,367. Many but not all RNA viruses express one or several proteinases which are 

utilized either for cleavage of viral polyproteins or to interact with the host environment173. 

RNA virus proteinases are grouped, on the basis of sequence similarity, into the 

chymotrypsin-related and papain-related superfamilies and proteases of unknown type. The 

chymotrypsin-related superfamily is further divided into the 3C-like family (named after the 

picornavirus proteinase encoded in the 3C genome region) and the CP-like family (named 

after the alphavirus capsid protein)175. Another type of enzyme frequently found in the RNA 

virus proteome is a helicase, characterized by containing a NTP-binding sequence pattern. It 

provides an activity – the unwinding of dsRNA or base-paired ssRNA – that is crucial to 

many genetic processes like replication, expression or recombination177. RNA virus 

helicases are grouped, on the basis of sequence similarity, into three superfamilies, two of 

which also include cellular proteins175,177. Besides these widespread enzymes, various other 

types of proteins are employed by RNA viruses including, for instance, ribonucleases, 

methyltransferases, phosphatases or membrane-associated proteins73,96,128,150,174,376. 

Notably, many RNA virus-encoded proteins have so far not been characterized functionally, 

partially due to the lack of any apparent similarity with cellular counterparts. Owing to the 

limited coding capacity of RNA viruses most of their proteins are multifunctional, but, at the 

same time, there is a certain division of labor between the enzymes7. 

More fundamentally, RNA virus diversity is observed at the level of the genome. 

RNA viruses vary in employing one of three possible genome types – double stranded 

(dsRNA viruses), single-stranded negative sense (ssRNA- viruses) or single-stranded 

positive sense (ssRNA+ viruses and RNA retroviruses). The latter represents by far the most 

abundant genome type and outnumbers by around fivefold each of the other two25. What’s 

more, RNA virus genomes show a considerable variability in size174. Despite being limited to 

relatively small sizes compared to cellular organisms and most DNA viruses, RNA virus 

genomes still range from approximately 2 to 32 kb with an average of about 10 kb. Larger 

genomes are supposed to result in a so-called error catastrophe caused by too many 

deleterious mutations that would accumulate during the error-prone copying of RNA 

genomes216. Yet, the diversity of RNA genome sizes is striking and it was proposed that the 
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acquisition of specific enzymes that refined the rudimentary viral replication machinery 

empowered some RNA viruses to undergo major evolutionary transitions accompanied with 

an enlargement of the genome beyond the size of the acquired gene174. 

Last but not least, there is variation among RNA viruses from an economic and 

medical perspective. Most RNA viruses have rather mild effects on their hosts, which makes 

sense from an evolutionary perspective because the virus should avoid compromising its 

means of existence. However, there are also numerous viral pathogens that present serious 

threats to health care and economy. Examples are influenza A virus, measles virus, 

rinderpest virus or ebolavirus (ssRNA-), as well as rotaviruses and bluetongue virus 

(dsRNA). The most abundant viruses with a significant impact on society, however, are 

those with ssRNA+ genomes and include poliovirus, foot-and-mouth disease virus, tobacco 

mosaic virus, hepatitis C virus, yellow fever virus, dengue fever virus, noroviruses, or severe 

acute respiratory syndrome (SARS) coronavirus, to name only few. The focus of this thesis 

lies mainly, but not exclusively, on picorna- and nidoviruses.  

Picornaviruses are among the most extensively studied and best characterized 

viruses. The first human virus (poliovirus) and the first animal virus (foot-and-mouth disease 

virus) to be discovered are picornaviruses. They employ small, non-enveloped virions and a 

ssRNA+ genome of around 6.5-9 kb length (Fig. 1A). The genome directly acts as an mRNA 

to encode (with few exceptions) a single polyprotein that is cleaved into a dozen or so 

mature proteins480. Among these viral proteins are three to four virion proteins, a superfamily 

3 helicase with putative activity (denoted 2C in Fig. 1A), a chymotrypsin-related proteinase 

(3C), a RNA-dependent RNA polymerase (RdRp; 3D), and several other proteins that are 

deployed mainly to interact with the host environment. Picornaviruses can cause various, 

mostly acute diseases in animals and humans including poliomyelitis, foot-and-mouth 

disease, common cold, gastroenteritis, hepatitis, meningitis, myocarditis and uveitis130. 

Picornavirus studies contributed crucially to the general understanding of various aspects of 

(viral and cellular) molecular biology and virus-host interactions7.  

Also nidoviruses are known to infect only animals and to employ a ssRNA+ 

genome. They often cause fatal diseases like SARS in humans, feline infectious peritonitis 

in cats or infectious bronchitis of chickens and yellow head disease of prawns in livestock. 

Nidoviruses differ tremendously from picornaviruses in many aspects. The genome is 

organized in multiple ORFs (Fig. 1B), of which the biggest two are expressed directly from 

the genomic RNA58 involving a ribosomal frameshifting event56. The other, smaller ORFs, 

whose number vary between three429 to twelve432, are expressed from subgenomic mRNAs 

that are synthesized by discontinuous extension during subgenome-length minus-strand 

synthesis408. Only three enzymes are common to all nidoviruses which are a chymotrypsin-

related 3C-like proteinase (3CLpro), a superfamily 1 helicase (HEL1), and a RdRp. The 

nidoviral 3CLpro and RdRp show detectable sequence similarity to their homologs in 

picornaviruses175,184,433.  
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Figure 1. Genomic organization of picorna- and nidoviruses. The ssRNA+ genomes of poliovirus (A) and SARS 

coronavirus (B) are shown in 5’-to-3’ direction and drawn to different scales. ORFs are depicted as bold rectangles and 

5’ and 3’ untranslated regions as horizontal lines. The ORF expression mechanisms for (poly)protein production are 

indicated by grey background shading, and a selected set of protein functions is highlighted by coloring. An equal color 

does not necessarily imply sequence homology. (A) The genome of most picornaviruses expresses a single 

polyprotein that is cleaved into mature products by one or several viral proteinases. Picornaviruses other than 

poliovirus may differ in the polyprotein regions 2A and 3B and may additionally encode one or several leader proteins 

upstream of VP4. (B) The nidovirus genome encodes multiple, potentially overlapping ORFs in all three reading frames 

(-1, 0, +1). Using the 5’-proximal ORFs 1a and 1b two large polyproteins, pp1a and pp1ab, are expressed. The 

production of the latter involves a -1 ribosomal frameshifting event. The 3’-proximal ORFs are expressed via multiple 

subgenomic mRNAs to produce virion and accessory proteins. Only three enzymes - chymotrypsin-related 3C-like 

proteinase (3CLpro), RNA-dependent RNA polymerase (RdRp) and superfamily 1 helicase (HEL1) - are conserved 

across nidoviruses. Other highlighted proteins include: papain-related proteinase (PL2), exoribonuclease (ExoN), N7-

methyltransferase (NMT), uridylate-specific endoribonuclease (NendoU), 2’O-methyltransferase (OMT), spike protein 

(S), envelope protein (E), matrix protein (M), and nucleocapsid protein (N). 
 

Other proteins encoded by some nidoviruses have diverse functionalities including endo- 

and exoribonuclease, methyltransferase or phosphatase activities174 that are rarely or never 

observed outside this virus group. The extraordinary genetic complexity of nidoviruses is 

reflected in their large genomes whose sizes are well above that of the average RNA virus 

genome. The smallest nidovirus genome is approximately 12.5 kb in size whereas the 

largest ones reach almost 32 kb which, in fact, makes them the largest RNA genomes 

known to date. Interestingly, nidovirus genomes of sizes above 20 kb are uniquely 

associated with the expression of a special enzyme, a 3’-to-5’ exoribonuclease of the DEDD 

superfamily. This enzyme was suggested to improve the fidelity of RNA replication432, a role 

which is supported by three independent lines of evidence. First, it is distantly related in 

sequence to a cellular proofreading enzyme. Second, the gene encoding the 

exoribonuclease is genetically segregated with genes that encode key enzymes of the 

nidovirus replication complex. And third, its functional activity was shown for mouse hepatitis 
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virus124 and SARS coronavirus123. The extreme genome size and complex proteome 

composition make nidoviruses an exciting model to study the relation of genome size and 

mutation rate in RNA viruses174 and, potentially, in biology in general. 

 

Whys and wherefores of virus classification 
 

Having in mind that tremendous diversity of RNA viruses briefly outlined in the previous 

section (as well as that of their DNA cousins), it comes not as a surprise that scientists 

aimed to structure the Virosphere ever since these infectious agents came to the fore in 

science at the end of the 19th century30,233,301. In order to do so, a classification has to be 

devised which, as a basic principle, groups together similar objects in a biologically 

meaningful way. A classification relies on one or several distinctive characteristics which are 

often referred to as demarcation criteria. 

 One such criterion is the mode of viral mRNA production. It is related to 

the viral genome type and defines a coarse-grained classification that consists of seven 

virus classes23. Three of them are formed by viruses with DNA genomes that produce 

mRNA either by direct transcription of the genome (dsDNA viruses), by involving the 

formation of a double-stranded intermediate (ssDNA), or by first filling their gapped genomes 

using reverse transcription (dsDNA with RNA intermediate). The remaining four virus 

classes employ RNA genomes that serve as a template for mRNA synthesis (dsRNA and 

ssRNA-), directly act as mRNA (ssRNA+), or require a DNA intermediate which is integrated 

into the host genome to subsequently undergo the cellular transcription process 

(retroviruses). The ssRNA+ genome type is by far the most abundant and outnumbers 

around fivefold each of the other types374. Since this classification scheme ignores most 

variety observed for viruses, it is suitable only for very general purposes. 

 The most widely used form of virus classification, as with cellular organisms, is 

taxonomy. Virus taxonomy presents a hierarchical system which comprises the ranks, from 

top to bottom, order, family, subfamily, genus, and species257. The two most crucial layers 

here are the family and species ranks due to different reasons. A family is used for grouping 

together viruses that share some rather general properties which uniquely discriminate them 

from other families. For each virus family there is a group of specialized virologists who 

propose, update or revise taxonomic entities largely independently for that particular family. 

These so-called virus study groups operate under the direction of the International 

Committee on Taxonomy of Viruses (ICTV) which, in turn, is administered by the Virology 

Division of the International Union of Microbiological Societies. The ICTV is the (only) official 

body with the legitimation to approve taxonomic assignments of viruses. According to the 

latest taxonomy release in 2012, 94 virus families are currently recognized by the ICTV257. 

Virus species, on the other hand, are the basic taxonomic entities373 and imply highly similar 

virus phenotypes. They are defined as “a polythetic class of viruses that constitute a 

replicating lineage and occupy a particular ecological niche”257. With other words, for virus 
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species demarcation it is taken into consideration a broad range of characteristics, including 

genetic and phenotypic properties, each of which is shared by some but not necessarily all 

members of the species – a form of consensus decision. Currently, 2475 different virus 

species are recognized by the ICTV257. The ICTV offers an extremely powerful and flexible 

framework for virus classification which can accommodate any virus diversity. However, this 

comes with the costs of a substantial amount of scientists’ labor time and a relatively lengthy 

decision process. Names of ICTV-defined taxa are written in italics to discriminate them from 

virus strains or isolates. 

 The expert-based ICTV classification framework might approach its logistic 

limitations in the near future due to the rapid increase of newly described viral genome 

sequences358 (Fig.2). Consequently, ICTV study groups increasingly explore the usability of 

genetic data for decision making in virus taxonomy264. Moreover, several research groups 

proposed a purely genetic-based classification for a virus family or genus (see Introduction 

in chapter 2). They thereby exploited the fact that genome sequencing greatly outpaces all 

other types of virus characterization and produces high-quality data which is most suitable 

for quantitative analysis. A recurrent theme in these analyses is the utilization of a so-called 

pairwise distance distribution formed by genetic distances between all pairs of viruses under 

consideration. Often, the percentage of sequence identity is used as a measure of pairwise 

distance. With this sequence-based approach a classification is derived by partitioning the 

pairwise distance distribution into intra-rank (e.g. intra-species) and inter-rank regions. For 

example, all distances below a certain threshold are attributed to viruses from the same 

species and those above the threshold to virus pairs from different species. In doing so, it is 

assumed that there exist common factors that result in the separation of taxonomic ranks on 

a genetic level. The crucial challenge which remains is to define the number and position of 

distance thresholds. Preferably, this should be done in an objective manner which, however, 

is a goal not aimed at by current approaches.  

 

RNA virus classification makes a difference 
 

RNA virus classification efforts brought some insightful findings with great impact on 

virology. Perhaps one of the most illustrative examples is the picornavirus species Human 

enterovirus C263 which includes the major human pathogen poliovirus (PV) as well as eleven 

serotypes of the rather benign C-cluster coxsackie A viruses (CCAVs). Initially, PV and 

CCAVs were classified as two separate species436. Largely due to sequence-based 

phylogenetic analyses, it was found that the genetic similarity of PV and CCAVs is large 

enough to form a single species238,263. In line with that are recombinants between PV and 

CCAVs that have been identified in the field and are mostly vaccine-dervied21,59,390. These 

findings have great implications for the Global Polio Eradication Initiative238, a campaign to 

eradicate poliovirus from our planet which was initiated in 1988 but still did not succeed 

globally112, and it is unclear if it ever will331.  
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Figure 2. Non-linear increase in the number of ssRNA+ viruses with sequenced genomes. The accumulation of 

complete genome sequences in the VRL and PAT divisions of GenBank during the last one and a half decade is 

shown for selected ssRNA+ virus groups (see legend). Genome sequences have been obtained and grouped using 

the HAYGENS tool423. 

 

Another example for the potential value a virus classification can have is the species 

Theilovirus263 that was initially thought to infect only rodents206,343,449. Later, phylogenetically 

closely related viruses have been isolated from humans and it was shown that the rodent 

and human lineages are genetically similar enough to be members of the same species, 

basing on the comparison with other picornavirus species161,299. This indicates that a virus 

species is not bound to infect a single host species, a finding supported by phylogenetic 

analyses of other virus families262. 

Furthermore, from a more technical perspective, a virus classification provides 

means for the reduction of a dataset in size in order to perform certain resource-consuming 

analyses. For phylogeny reconstruction (see next section), for instance, it is often necessary 

to chose representatives from a much larger set of viral sequences. Depending on the 

evolutionary scale of the analysis, virus species may present a meaningful and objective 

choice. In the case of picornaviruses, it allows for decreasing the dataset of available 

complete genomes by more than one order of magnitude from hundreds of sequences to a 

few dozen species. As a second effect, such a virus selection per species partially corrects 

for the inherent sampling bias of a dataset which can be enormous and is caused by the 

difference in medical or economical importance of the viruses. Foot-and-mouth disease virus 

(FMDV)109,265 for example, one of the most economically important and best studied RNA 

viruses, shows the highest sampling among all picornavirus species with a few hundred 
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complete genomes available, whereas other species of that family, like Seneca Valley virus 

(SVV)197, are represented only by a single sequence. 

 

Bioinformatics meets virology 
 

All bioinformatics analyses utilized in this thesis depend in one way or another on 

sequencing data which is accessible from public databases like GenBank/RefSeq36. In 

virology this type of information presents an invaluable and virtually infinite resource 

nowadays (Fig.2), however, one should keep in mind that it comes with certain challenges 

due to the nature of viruses and their elevated rate of introducing sequence innovations. 

Various bioinformatics techniques are available that can withstand or at least account for 

theses challenges, some of which have been utilized in one or several of the following 

chapters. They are briefly discussed below. 

A commonly used tool to compare related biological sequences is a multiple sequence 

alignment. It is typically built by maximizing the similarity among the sequences, which 

involves the introduction of gaps at sequence positions that are not conserved. These gap 

positions predict insertion/deletion (indel) events that have happened during evolution, 

whereas non-gap positions infer common ancestry (homology) of the respective sequence 

residues. For an alignment of highly diverged sequences, like that of a typical evolutionary 

study of RNA viruses, it is common to partition it into conserved regions, so-called blocks, 

and poorly conserved parts18,65. The latter are prone to contain alignment artifacts due to an 

elevated substitution and/or indel rate in these regions, and, hence, may need to be 

discarded from subsequent analyses. Multiple sequence alignments build the foundation for 

many other types of bioinformatics analyses. For example, they can be converted to profiles, 

which are statistical models and capture for each alignment column the degree of 

conservation and the likelihood to observe a certain residue or gap. One type of profiles are 

profile HMMs125,273,434 which operate inside a probabilistic framework and are particularly 

suitable for the detection of remote sequence homology. A profile HMM can be compared to 

other HMMs or used to search for motifs in a single sequence. 

Another approach to detect or support remote homology, especially when sequence 

divergence erased most similarity, is structure predictions, which can be applied to both 

RNA and protein sequences. In the case of RNA, the folding that results in the minimal free 

energy is considered biologically most meaningful and desirable. A folding is defined by 

basepairing interactions (stems) and unpaired regions (loops), and may include 

pseudoknots (interaction of two or more stem-loop structures). Pseudoknots and other 

structural elements are often found in UTRs of RNA viruses57,389. For protein sequences, 

three basic secondary structure elements are distinguished – alpha helices, beta sheets, 

and loops. During prediction, each sequence residue is assigned to one of these three 

states, thereby taking into account physiochemical properties of the amino acids, for 
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instances hydrophobicity. Protein secondary structure predication can be combined with 

profile searches (see above) to improve the sensitivity of the latter434. 

Assuming that sequence homology is still detectable, a widely used approach to infer 

the relatedness of a set of sequences is phylogeny reconstruction. Typically starting from a 

multiple alignment, it results in an evolutionary tree that represents order and degree of 

sequence divergence. The tree can be in unrooted or rooted form depending on the 

availability of additional information, often brought by an outgroup (a sister lineage related to 

the sequences of interest). Importantly, certain assumptions have to be met in order to 

obtain meaningful results from phylogenetic analyses. It includes common ancestry of the 

sequences under consideration, neutrality of the vast majority of molecular changes256, and 

adequate approximation of the true substitution patterns by the evolutionary model used275. 

There are several frameworks for phylogeny reconstruction, one of which is distance 

methods. Here, for each pair of sequences an evolutionary distance is computed and the 

relationships among these values are used to gradually group the sequences starting with 

the most closely related pair. Another popular and speedy technique is Maximum Parsimony 

(MP), which takes a greedy approach by seeking to find the tree that would result in the 

least number of substitutions throughout the phylogeny122,152,201. Maximum Likelihood (ML) 

is one of the most powerful reconstruction techniques, as being a probabilistic 

framework66,145. Under a specific substitution model, ML identifies the tree that maximizes 

the likelihood to observe the given set of sequences. Importantly, the distances between 

sequences, so-called branch lengths, are a parameter of the method and are thus optimized 

together with the branching order, the topology. Finally, there is Bayesian methods which 

are related to ML381. They allow for the incorporation of external knowledge, so-called priors. 

Prior knowledge could be, for instance, a known substitution rate or the monophyly of a 

subset of sequences. Furthermore, Bayesian methods provide confidence intervals for every 

parameter estimated, which represents a major advantage over the other methods. ML and 

Bayesian frameworks are considered more sophisticated and hence were favored 

throughout this thesis. 

 As indicated in the FMDV-SVV example above (see previous section), sampling 

bias is a common problem in sequence-based bioinformatics. In certain situations it may 

distort or even obscure signals in the data. Fortunately, such effects can be circumvented or 

at least diminished by using sequence weights. As a consequence, the sequences 

contribute unequally to the results, with most unique sequences having the highest impact. 

There are several approaches how to calculate these weights157,209,472. 

 One of many situations where sequence weights can be of high value is regression 

analysis. For instance, it could be of interest to determine if there is any relation between 

two parameters shared by all sequences of a dataset (a naive example would be sequence 

length compared to G+C content). Regression analysis is a general statistical technique to 

model the relationship between a dependent variable and one or more independent 

variables. Such a relation, if any exists, can be of linear or non-linear nature and is often 
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referred to as correlation. Once a correlation has been established, regression analysis can 

be used to make predictions for new data points (e.g. new sequences). It is important to 

note that correlation does not necessarily imply causation. For example, since the middle of 

the last century, both atmospheric CO2 level and obesity level increased strongly. Though, 

one might not infer that atmospheric CO2 causes obesity. Instead, these two parameters 

could be linked by an increase in car sales. 

 

Scientific questions 
 

The first part of this thesis is devoted to RNA virus classification in an evolutionary context. 

Specifically, it is asked whether viruses of a family can be classified objectively and 

accurately by basing solely on genome sequences, the footprint of evolution, and whether 

this approach can be extended to multi-family analyses. It is further explored whether such a 

classification can deliver novel insight into constraints on genetic diversity in RNA viruses 

and what benefit for applied research in virology it can provide. 

The second part is devoted to the analysis of gene and genome size change during 

RNA virus evolution. It is asked whether there are factors other than the fidelity of replication 

that limit genetic size in RNA viruses, what principal proteins are involved in the control of 

genetic size, and whether size change is linked to the accumulation of mutations. Moreover, 

it is sought to unravel biological factors that drove the emergence of the largest known RNA 

genomes employed by nidoviruses. 
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Abstract 
 

The recent advent of genome sequences as the only source available to classify many 

newly discovered viruses challenges the development of virus taxonomy by expert 

virologists who traditionally rely on extensive virus characterization. In this proof-of-principle 

study, we address this issue by presenting a computational approach (DEmARC) to classify 

viruses of a family into groups at hierarchical levels using a sole criterion—intervirus genetic 

divergence. To quantify genetic divergence, we used pairwise evolutionary distances 

(PEDs) estimated by maximum likelihood inference on a multiple alignment of family-wide 

conserved proteins. PEDs were calculated for all virus pairs, and the resulting distribution 

was modeled via a mixture of probability density functions. The model enables the 

quantitative inference of regions of distance discontinuity in the family-wide PED distribution, 

which define the levels of hierarchy. For each level, a limit on genetic divergence, below 

which two viruses join the same group, was objectively selected among a set of candidates 

by minimizing violations of intragroup PEDs to the limit. In a case study, we applied the 

procedure to hundreds of genome sequences of picornaviruses and extensively evaluated it 

by modulating four key parameters. It was found that the genetics-based classification 

largely tolerates variations in virus sampling and multiple alignment construction but is 

affected by the choice of protein and the measure of genetic divergence. In an 

accompanying paper283, we analyze the substantial insight gained with the genetics-based 

classification approach by comparing it with the expert-based picornavirus taxonomy. 
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Introduction 
 

Viruses form a large class of biological entities of extreme diversity107. Unlike cellular 

organisms, they share neither a single common gene nor any other universally conserved 

trait that can be used to infer their phylogeny. This comes along with profound 

consequences and has resulted in a distributed approach to virus taxonomy adapted by the 

virological community. It is developed and advanced by independent study groups (SGs) on 

different viruses (see below) that operate under the auspices of the International Committee 

on Taxonomy of Viruses (ICTV)143,257. Virus taxonomy recognizes five hierarchically 

arranged ranks: order, family, subfamily, genus, and species (in ascending order of 

intervirus similarity). Only a relatively small subset of viruses is classified in subfamilies 

and/or orders, while the use of other ranks is most common. 

The traditional development of virus taxonomy by SGs has been challenged by a 

growing gap between virus discovery and virus characterization. In this respect, genome 

sequences have been increasingly explored by practitioners. This line of research is driven 

by several developments. Essentially, all known viruses have their genomes sequenced 

largely due to the significant advances in sequencing techniques and the associated fall of 

costs over the last few years36,410. For a growing number of viruses, the genome sequence 

is the first and often the only information available (for a review, see references 88,97,127). 

Successful incorporation of these viruses into the taxonomy framework through genome-

based analyses has stimulated practice and research in extending this effort to all viruses, 

including those whose phenotypes have been probed. To recognize a taxon and/or classify 

a virus, it is common to seek a monophyletic group in a tree whose viruses could preferably 

be distinguished from other viruses by the possession of a unique molecular characteristic 

(marker) that thus can serve as a criterion for classification257. 

Another complementary approach that is steadily growing in popularity is so-called 

pairwise sequence comparisons (pasc)422. This approach utilizes a frequency distribution of 

pairwise sequence divergence between viruses to identify ranks and taxa (Fig. 1). 

Recognizing its broad utility in virology, a Web-based implementation of pasc, called 

appropriately PASC, was launched at the National Center for Biotechnology Information 

(NCBI)24. Over the years, and mostly during the last decade, pasc has been used to 

propose, update, or revise the taxonomy of several virus families or 

genera1,2,17,38,94,142,162,309,317,413,422,496. 

The current practice in pasc applications has three aspects in common. First, 

researchers typically seek to build a hierarchical classification with an a priori-defined 

number of levels that match usually the species and genus ranks of taxonomy. This 

approach normally guarantees a solution, but complexities of intervirus relations may remain 

not fully explored. Second, classification levels are delineated by imposing thresholds on the 

limits of intragroup genetic similarities at each level. How these thresholds are identified 

remains largely a matter of expert decision that places the thresholds outside a statistical 
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framework and casts uncertainty about their validity. Third, observed identity percentages 

are commonly used for virus comparison. Their calculation is technically straightforward and 

fast. However, the applicability of this measure to data sets with considerable genetic 

divergence may be compromised by saturation effects that are linked to multiple 

substitutions at a site293. Since RNA viruses are known for the extremely high mutation rates 

of their polymerases117,121,473, pairwise identity percentages may indeed misrepresent the 

actual distances between the viruses. In addition to the above-mentioned common 

elements, pasc applications vary in respect to a number of parameters. The identity values 

may be calculated for either nucleotide or deduced amino acid sequences and be compiled 

on either pairwise or multiple sequence alignments. In some studies, only single 

genes/proteins were used, whereas others analyzed either multiple (concatenated) 

genes/proteins or complete genomes. How these specific choices and commonalities of the 

various pasc applications affect the end result remains a largely unexplored territory. This 

may be of relatively small concern as long as pasc results remain one of several 

characteristics in decision-making in virus taxonomy. However, with the current trend to 

follow the results of pasc-based analyses, its practice and quality may soon become 

dominant factors in taxonomy without having been evaluated properly. 

In this study, we aimed at exploring the utility of genome sequences to devise a 

virus classification objectively, consistently, and fully. To this end, we have developed an 

approach for partitioning the genetic diversity of a virus family within a hierarchically 

organized framework. The developed approach provides quantitative support for both the 

delineated classification levels and the inferred taxa by devising the number and values of 

thresholds on intragroup genetic divergence at each level in a rational and family-wide 

manner. We named it DEmARC, which stands for “DivErsity pArtitioning by hieRarchical 

Clustering” and refers to the English word “demarcation.” We extensively tested DEmARC 

on the proteome of the Picornaviridae182, one of the most diverse and well-studied RNA 

virus families130,415 with numerous species that has been developed by one of the most 

active SGs264,265,435. The picornavirus genome is a single-stranded positive-sense RNA 

(ssRNA+) with a single open reading frame that encodes a polyprotein313,346 flanked by two 

untranslated regions, 5′-UTR and 3′-UTR481. The consistency and stability of the obtained 

results were evaluated by analyzing various data set derivatives which were compiled by 

varying the amount and/or the diversity of the input data, the alignment construction method, 

the measure of pairwise similarity, or a combination of parameters. In an accompanying 

paper283, we analyze implications of the developed genetics-based classification for 

fundamental and applied research, through its comparison with virus phylogeny and 

taxonomy. 
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Figure 1. Grouping viruses based on thresholds in the distribution of pairwise genetic divergence. Shown is a 

fictitious example involving eight viruses that illustrates the relation between the selection of a threshold in the 

distribution of intervirus genetic divergence and the accompanied change in virus grouping. (A to D) An undirected 

graph representation is used to show viruses (black dots), virus groups (gray ovals), and pairwise genetic divergence 

between viruses of the same group (colored lines). Groups are defined as connected components of the graph which 

are formed by connecting those virus pairs (blue edges) whose divergence does not exceed a given threshold. Some 

intragroup divergence values may exceed the threshold (violations; purple edges). (E to H) The same data as on top, 

now shown as a frequency distribution (histogram) of genetic divergence between all virus pairs with four different 

divergence thresholds (dashed vertical line). Intragroup divergence values obeying a threshold are shown in blue, and 

those violating it are shown in purple. Intergroup divergence is in white. (A and E) A trivial clustering in which the 

number of virus groups equals the number of viruses. No pairwise divergence values are utilized. (D and H) The 

second trivial clustering in which all viruses join a single virus group. All pairwise divergence values are utilized. (B and 

F) A nontrivial clustering consisting of three virus groups for which eight intragroup divergence values obey the 

threshold and three violate it. (C and G) Another nontrivial clustering consisting of two virus groups for which only a 

single intragroup divergence value violates the threshold. Typically, the choice of a threshold is subjective in current 

practice. In this study, we show (see Materials and Methods) that the violating divergence values (F and G) can be 

used to define a cost for an applied divergence threshold, and we apply this measure to rank thresholds. Accordingly, 

thresholds resulting in a lower cost are favored, which makes the clustering in C superior to that in B. This simplified 

example illustrates how a classification at a single level is derived (the trivial solutions in A and D are not considered). 

As detailed in Materials and Methods, the approach outlined above can be separately applied to multiple divergence 

thresholds (each at a different location in the distribution), which would result in a hierarchical classification of the 

viruses. 

 

 

Materials and Methods 
 

Virus sequences and multiple alignments. Complete genome sequences for 1,234 

picornaviruses available on 15 April 2010 at the National Center for Biotechnology 

Information GenBank/RefSeq36 databases were downloaded using HAYGENS423 into the 

Viralis platform183. A multiple-amino-acid alignment of the polyproteins was produced using 

the Muscle program version 3.52126, and poorly conserved columns were further manually 
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refined. The alignment construction was constrained by domain borders, most of which were 

delimited by known and predicted cleavage sites that are recognized by viral proteases in 

the polyprotein313. 

 

Data sets. In our study we used several data sets that are described below. Each data set 

has four characteristics: viruses, protein or genome region, alignment, and pairwise 

distances. We produced a family-wide data set that was treated as the main data set (M-

2010) for the purpose of this study. It included regions of the polyprotein-wide alignment 

covering the family-wide conserved capsid proteins 1B, 1C, 1D (also known as VP2, VP3, 

and VP1, respectively) and the nonstructural proteins 2C, 3C, and 3D of 1,234 

picornaviruses. Other genome regions were excluded from M-2010 due to the following 

reasons: (i) a protein is not conserved across the family (L*, L, 1A, 2A), (ii) a genome region 

was implicated in interspecies recombination (5′-UTR, 1A, 2A), or (iii) no confident alignment 

was obtained due to poor sequence conservation (2B, 3A, 3B, 3′-UTR). After discarding 

alignment columns that contained incomplete, termination, or nonspecified codons in one or 

more underlying nucleotide sequences, a final alignment of 2,446-amino-acid (aa) positions 

was derived. It was used to calculate pairwise evolutionary distances (PEDs) (see below) 

between all virus pairs. 

To test the consistency and stability of results obtained for the main data set, in 

total 20 derivatives of M-2010, to which we refer as evaluation data sets (Table 1), were 

compiled by modulating one or several of the following four parameters: (i) genome 

region(s) selected for analysis, (ii) virus sequence sampling, (iii) alignment construction 

method, and (iv) measure of genetic divergence. 

First, we extracted and concatenated blocks from the M-2010 alignment (with a 

lower limit of five and no upper limit on block width) that represent most informative 

alignment regions (evaluation data set E-Blocks) using BAGG18,65,443. These blocks 

constitute regions of highest alignment quality/accuracy and account for ~63% alignment 

positions of the main data set. Second, we produced an M-2010 alignment derivative that 

included only the three capsid proteins (E-Capsid; ~51% alignment positions of the main 

data set). Third, 11 derivatives of the M-2010 alignment differing in respect to selection of 

viruses and/or proteins were compiled (E-G1 to E-G11). They represent either genus-like 

clusters or monophyletic sets of clusters (according to the phylogenetic analysis of M-2010) 

that include all domains conserved in the respective viruses of a data set. Fourth, three 

derivatives of the M-2010 alignment accounting for picornavirus sequences sampled up to a 

certain date were derived. The sampling dates used were 2, 4, and 6 years back in time and 

comprised, respectively, 685 (56% of sequences of the main data set; E-2008), 427 (35%; 

E-2006), and 181 (15%; E-2004) sequences. Fifth, we compiled two derivatives of the M-

2010 alignment in which all protein domains were separately realigned without manual 

refinement using either the Muscle version 3.52126 or ClustalW version 2.0.12452 program (E-

Muscle and E-Clustal, respectively).  
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For all the evaluation alignments mentioned above PEDs were estimated. Sixth, we 

calculated pairwise uncorrected distances (PUDs) on the M-2010 alignment (E-PUD). 

Seventh, we calculated PUDs using all pairwise, genome-wide nucleotide alignments to 

emulate the PASC approach (E-PASC). 

 

Estimation of pairwise distances. The metric used for classification is a measure of 

distance assigned to virus pairs, which was calculated based on a multiple-amino-acid 

alignment of respective virus sequences. To correct for multiple substitutions at the same 

sequence position, PED values were estimated by applying an maximum likelihood (ML) 

approach as implemented in the Tree-Puzzle program version 5.2412. The WAG amino acid 

substitution matrix478 was used. PED values were compiled for the main and all but two 

evaluation data sets and analyzed in the same framework outlined below. For E-PUD and E-

PASC data sets, PUDs were calculated. We note that any other type of pairwise distance 

measure could be utilized in the proposed framework as well. Consequently and unless 

otherwise stated, procedures utilizing PEDs that are described below were also applied to 

PUDs in this study. For brevity, PUDs will be mentioned only in places where the PUD and 

PED utilizations differ. 

 

The DEmARC approach in a nutshell. We have developed a computational procedure for 

hierarchical classification of a set of viruses based on their PED values. A hierarchical 

classification is characterized by two major properties: (i) a number of levels that define the 

hierarchy and (ii) a number of clusters at each level that group the viruses unambiguously. 

These two characteristics are addressed by two steps in the developed procedure. At the 

first stage, the number of and support for levels in the hierarchical classification are 

determined by locating regions of discontinuity in the frequency distribution of PED values 

between all possible virus pairs. This is done by partitioning the distribution using a mixture 

of probability density functions. At the second stage, for each classification level a distance 

threshold within the respective region of discontinuity is identified. Such a threshold 

represents an upper limit on intragroup genetic divergence (measured by PEDs) at a level 

below which a virus pair is classified within the same cluster of that level. In the next two 

sections, the two stages of the procedure are explained in more detail. 

 

DEmARC stage 1: locating regions of discontinuity in the pairwise distance 

distribution that define levels of a classification hierarchy. To identify regions of 

discontinuity in a PED distribution, we fitted a normal mixture model to the data. The fitted 

mixture model was subsequently used to assign a probability to each unique PED score that 

it originated from the underlying PED distribution. Consecutive PEDs with sufficiently low 

probabilities define a candidate region of distance discontinuity.  
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Figure 2. Optimal bin number for the picornavirus-wide pairwise distance distribution. Shown is the χ2 

goodness-of-fit measure for approximating the picornavirus-wide PED distribution with normal probability densities 

using different bin sizes. Ten to 1,000 bins were tested, and the measure was normalized to a common scale of (0, 1). 

In the main analysis, a bin size of 0.01 (gray line) was used, which resulted in a significant fit with a χ2 of 7.38 under a 

critical value of 117.0 with n − p − 1 = 155 degrees of freedom, α = 0.01. 

 

The fitting (see below) was optimized by evaluating different bin sizes. For the M-2010 data 

set, the fit fluctuated sharply for large bin sizes and gradually converged to a steady state for 

bin sizes of <0.03 (Fig. 2). We used a bin size of 0.01 in all analyses. 

To fit the mixture model, we first determined peaks in the PED distribution as 

positions with a frequency higher than those of the two adjacent PEDs. The entire PED 

distribution was then approximated by simultaneously fitting weighted probability densities to 

all determined peaks as well as to the background (noise). To do so, we utilized an 

expectation maximization (EM) approach adopted from reference 101 with the following three 

modifications: (i) normal instead of log-normal distributions were used, (ii) all peak 

components of the mixture were allowed to have separate variances, and (iii) the 

background component was modeled via a uniform distribution only. The normal mixture 

model (M) is defined by 





K

k
kk dfwdM

1

)()(     (1) 

with fk being the probability density function that approximates component k for (k = 1,…,K − 

1)-determined peak components and the background component, component weights 

w1,…,wK (such that they sum to 1), and pairwise distance d. The parameters of the 

distribution functions and the weights are estimated from the data by EM. 

The deviation of the normal mixture model from the data was assessed using the 

following formula: 
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with Oi and Ei being the observed and estimated frequencies (densities), respectively, of 

distance values di, and b being the number of histogram bins. It was compared to the critical 

value of the chi-square distribution with n − p − 1 degrees of freedom at a confidence level 

of 0.01 for n discrete distances and P = 3 · (K − 1) + 1 estimated parameters (mean, 

variance, and weight of each peak component plus weight of the background component). 

The fit was significant for all data sets (α = 0.01). 

The goodness-of-fit (GOF) of the mixture model to the data was assessed using 

the following formula: 

b
GOF

2

1


     (3) 

After fitting, a threshold support measure (TSM) was compiled for each (unique) PED value 

according to the following formula: 

 





1

1
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k
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with Fk being the value of the cumulative distribution function for peak component k. Due to 

the nature of the normal cumulative function, which has a value of 0.5 at the distribution 

mean, we introduced the factor 2 to ensure that the TSM theoretically can be 0 at the lowest 

point. Peaks in the TSM distribution were used to define candidate regions of distance 

discontinuity, which were ranked according to their TSM values. The top-ranked candidates 

define the levels of a classification hierarchy. 

 

DEmARC stage 2: identification of distance thresholds that delimit level boundaries. 

At the second stage, we sought to determine a distance threshold for each classification 

level. To this end, all PEDs inside the respective region of distance discontinuity (between 

adjacent local minima in the TSM distribution; see above) were probed. For each probed 

threshold, single linkage clustering (SLC) was applied to group viruses into clusters. 

According to SLC, each virus is separated from at least one other virus in the cluster by a 

distance that is below the applied distance threshold. Consequently, some PEDs may 

exceed the threshold, collectively referred to as violating PEDs. The total extent of such 

violations across all clusters was summarized to define a cost for the probed distance 

threshold. This so-called clustering cost (CC) was calculated as follows: 
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   (5) 

for inferred clusters c = 1,…,C, intragroup distance values dc, and distance threshold value t. 

The CC is a simplification of the modification cost defined in reference 483, the computation 

of which turned out to be prohibitively expensive for data set sizes of this study. In the ideal 

case, when there are no violating PEDs, CC is zero; otherwise, CC is >0. For each 
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classification level, the optimal threshold among all probed candidates was determined by 

selecting the one with minimum cost. 

 

Quantification of the quality of clusters. For each cluster of an inferred classification, we 

quantified its quality as the fraction of intragroup pairwise distances not exceeding the 

distance threshold of the respective level, to which we refer as cluster quality (cq). A cluster 

is considered complete if the cq value was 1 and incomplete otherwise (0 < cq < 1). 

Comparison of classifications. The classification for M-2010 was compared separately to 

those obtained for each evaluation data set at each inferred classification level. The fraction 

of matching clusters in the compared classifications was quantified using the following 

measure, to which we refer as clustering accordance (CA): 

ZXY

X
CA


         (6) 

with X being the number of common clusters (those with identical virus compositions) in the 

two classifications, and Y and Z the number of clusters which are unique to the classification 

for M-2010 and an evaluation data set, respectively. In each comparison, only the subset of 

viruses common to both data sets was considered. Identical classifications result in CA 

values of 1; otherwise, CA is <1. 

 

Implementation details. The DEmARC framework was implemented using custom Perl359 

and R377 scripts. A complete analysis of the M-2010 data set, excluding alignment building, 

took about 4 h 30 min on a Linux machine with 4 central processing units (CPUs), 2660 

MHz, and 4 GB RAM. 

 

Results 
 

GENETIC classification of picornaviruses: distance measure, levels, and thresholds. 

Using an ML approach, PED values were compiled for all pairs of the 1,234 picornavirus 

sequences in the main alignment data set M-2010 (n, ~760,000). These distances are 

evolutionary based (an evolutionary model is involved in the calculation) and corrected for 

multiple substitutions at the same sequence position. An effect of this correction is already 

evident at distances above 0.1 in a steadily growing deviation from the linear relation 

between PED and PUD distributions calculated for this data set (Fig. 3). When PUDs 

approach ~0.8, PEDs already reach ~2.2, outpacing the former by more than an order of 

magnitude at this and greater divergence. A PED frequency distribution is multimodal, 

revealing a number of peaks separated by areas of low frequency in the pairwise distance 

range of 0 to 2.78 (in units of average number of substitutions per site) (Fig. 4A). Peaks 

correspond to dominant distances among various virus pairs, and their heights are affected 

by virus sampling bias. Consequently, peaks in the distribution should not be discarded 

solely based on their relatively minor size/height. 
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Figure 3. Corrected versus uncorrected picornavirus-wide pairwise distances. Plotted is corrected pairwise 

evolutionary distance (PED) versus pairwise uncorrected distance (PUD) for the M-2010 data set. For intermediate and 

large distances, a saturation of PUD values is observed, as they do not account for the total amount of evolutionary 

work happened, e.g., for multiple substitutions at the same sequence position. Points on the dashed line (diagonal) 

have equal PED and PUD values. 

 

 

By fitting a normal mixture model to the picornavirus PED distribution and 

calculating TSM values along the PED range (see Materials and Methods), three most 

strongly supported regions of discontinuity were identified (Fig. 4). The highest TSM was 

assigned to the region at the intermediate distance of around 1.2 (TSM of 76.1), followed by 

the ones at the low distance of 0.43 (39.0) and the intermediate distance of 0.93 (14.2) (Fig. 

4A). The next best region, not considered in this study, had a substantially lower support 

with a TSM of 6.5. 

Next, we sought to identify an optimal distance threshold within each of the three 

regions of discontinuity determined above. To this end, PEDs within a region were probed 

as potential distance thresholds, and a cost was assigned to each of them using the CC 

measure (see Materials and Methods). This cost function showed multiple local minima 

within a region of discontinuity, each following a change in the underlying number of clusters 

(Fig. 4B to D). The candidate with the minimal cost was selected as the optimal threshold of 

a region, although we noted that the cost value of the next best candidate could be only 

slightly worse. We found that in the three regions of discontinuity the PEDs with optimal CC  
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Figure 4. Picornavirus-wide pairwise distance distribution and distance thresholds for partitioning. (A) 

Frequency distribution of ~760,000 PED values is shown for the M-2010 data set. In a first stage (see inset), peaks in 

the distribution were approximated using a mixture of normal distributions (red curves) together with an estimation of 

noise (purple horizontal line), with a goodness-of-fit of 0.972 (see Materials and Methods). For discrete distances along 

the distance range, TSM values (green bins) are shown. This measure is proportional to the probability of a particular 

distance not to be originated from one of the peak distributions. Consecutive distances with high TSM values provide 

candidate regions of distance discontinuity which can be used for partitioning the distribution and to infer levels of the 

hierarchical classification. In a second stage (B to D, top), distance threshold candidates within each region of 

discontinuity were probed in order to identify the threshold that minimizes the cumulative disagreement, the clustering 

cost (CC), of the potential clusters to the threshold. The change in the number of inferred clusters during this 

optimization is shown (B to D, bottom). The PED with the highest TSM score may differ from that with optimal CC 

(dashed vertical lines and arrows in blue). For the four top-ranked thresholds (including the trivial one at maximum 

distance), the number of inferred clusters is indicated above the black horizontal bars in A. The bars delimit respective 

intragroup distance ranges. The pairwise distance scale reflects the estimated number of amino acid substitutions per 

site on average. 
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Table 2. Quality of classification levels and accordance of classifications built for the main (M-2010) and evaluation   

(E-x) datasets. 

 Species  Genus  Supergenus 

Data seta No. CCb CAc  No. CCb CAc  No. CCb CAc 

M-2010 38 5.54 1  16 0.16 1  11 0.20 1 

E-Blocks 39 0.70 0.925  16 0.71 1  10 0 0.750 

E-Capsid 37 4.82 0.630  14 0 0.667  9 12.78 0.667 

E-G1d 17 1.63 1  2 0 1  1 - - 

E-G2d 1 - -  1 - -  1 - - 

E-G3d 2 0 1  2 - -  1 - - 

E-G4d 2 0 1  1 - -  1 - - 

E-G5d 3 0 1  2 0 1  1 - - 

E-G6d 3 0 1  1 - -  1 - - 

E-G7d 3 0 1  2 0 1  1 - - 

E-G8d 1 - -  1 - -  1 - - 

E-G9d 4 0 1  1 - -  1 - - 

E-G10d 4 0 1  3 0 1  3 - - 

E-G11d 12 0 1  7 0 1  5 0 1 

E-2008d 24 0.13 0.885  12 0 1  10 0 1 

E-2006d 18 0 1  9 0 1  7 0 1 

E-2004d 16 0 1  8 0 1  7 0 1 

E-Muscle 39 7.65 0.925  16 0.41 1  11 0 1 

E-Clustal 39 5.43 0.925  16 0.03 1  11 0 1 

E-PASC 36 3.82 0.762  16 23.16 0.684  0 - 0 

E-PUD 38 6.40 1  16 3.06 1  10 0.27 0.750 
a See Table 1 for details on evaluation data sets. 
b Shown is the clustering cost (CC) representing the cumulative disagreement of all clusters at a level; a value of 0 

represents absolute (optimal) agreement due to perfect separation of all clusters (see Materials and Methods for 

details). 
c Shown is a clustering accordance (CA) value of a classification relative to the main data set; a value of 1 represents 

identical classifications (see Materials and Methods for details). 
d This data set has only a fraction of viruses presented in M-2010. Consequently, CA values reflect the agreement 

between two data sets in respect to this virus subset. 

-, not shown for trivial clusterings formed by a single taxon. 

 

values do not match those with highest TMS values but rather are located in their vicinity 

(Fig. 4B to D; Table 2). The optimal thresholds (in the order from left to right in the PED 

distribution) and the number of clusters they determine were as follows: 0.37 (38 clusters), 

0.905 (16), and 1.161 (11) (Fig. 4B to D). By applying these three thresholds to the 

picornavirus genetic diversity, we derive a hierarchical classification with three levels 

(species, genus, and supergenus) which we refer to as the “GENETIC classification” (Fig. 

4A)283. 

 

Consistency and stability of the GENETIC classification. Using the CC and CA 

measures (see Materials and Methods), we proceeded to evaluate the consistency and 

stability of the GENETIC classification by analyzing 20 alignment derivatives which were 

produced by varying the amount and/or diversity of the input data, the alignment 

construction method, the measure of pairwise similarity, or a combination of two parameters. 
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In many instances, we observed high quality (CC equal or close to zero), while agreement 

varied considerably (0 ≤ CA ≤ 1) (Table 2). 

In the first evaluation test, we analyzed a possible impact of weakly conserved 

protein residues on the virus classification. To this end, protein residues that formed ~37% 

of the alignment columns in M-2010 with the lowest conservation scores18,65 were removed 

from the analysis (E-Blocks data set) (Table 1; Fig. 5A). Compared to M-2010, the E-Blocks 

classification showed one difference on the species level (CA = 0.925): recently discovered 

porcine kobuviruses formed a species separate from Bovine kobuvirus. On the genus level, 

perfect agreement between the two classifications (CA = 1) was observed, while on the 

supergenus level an expansion of the Cardiovirus/Senecavirus supergenus with cosaviruses 

was evident (CA = 0.750) (Tables 2 and 3). For both levels at which a disagreement was 

observed, E-Blocks outranked M-2010 in respect to the classification quality by CC: 0.70 

versus 5.54 (species) and 0 versus 0.20 (supergenus), respectively. 

 

 

 
 

Figure 5. Impact of weakly conserved alignment regions and selection of capsid proteins on the GENETIC 

classification. Frequency distributions of �760,000 PED values formed by 1,234 picornaviruses are shown for the 

following evaluation data sets: a data set containing only highly conserved alignment regions (blocks) of the main data 

set (A), and a data set containing only the three capsid proteins 1B, 1C, and 1D (B). The goodness-of-fit values are 

0.987 and 0.992, respectively. For details see Materials and Methods and Fig. 4. 
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In the second evaluation test, we analyzed the dependence of the classification on the 

choice of proteins. We compared results for M-2010 with those obtained for a data set using 

the three main capsid proteins (1BCD; E-Capsid), which are often regarded as representing 

picornaviruses. An outstanding support (TSM = 19.3, CC = 0) was observed only for the 

genus level, while these values for species (5.7, 4.82) and supergenus (5.5, 12.78) levels 

were considerably worse, and they were on par with the support value (8.7, 7.4) for another 

level below species (Fig. 5B; Table 2). The classification produced for E-Capsid differed 

from the M-2010 classification in a number of aspects and showed the lowest agreement 

among all PED-based evaluation data sets. On the species level, several clusters from 

different genera were affected (CA = 0.630). They include Human rhinovirus A (HRV-A; 

accepted otherwise separated HRV-Aβ), Human rhinovirus C (HRV-C; one instead of three 

clusters), Foot-and-mouth disease virus (FMDV; split into two), porcine/bovine kobuviruses 

(split into two), and Human enterovirus A (accepted a virus that was otherwise classified 

with simian enterovirus B [SiEV-B]). At the genus level, 14 instead of 16 genera were 

observed (CA = 0.667): Hepatovirus and Tremovirus314 as well as Kobuvirus and 

saliviruses298, respectively, were united. At the supergenus level, 9 rather than 11 clusters 

were identified (CA = 0.667): the supergenus Cardiovirus/Senecavirus was expanded by the 

inclusion of Erbovirus and cosaviruses (Tables 2 and 3). 

In the third evaluation test, we analyzed a combined impact of protein selection and 

sequence diversity on the virus classification. To this end, we scrutinized 11 virus data sets 

that were formed by viruses representing supergenus clusters according to the M-2010 

classification (from E-G1 to E-G9) or monophyletic clades comprising several (super)genera 

(E-G10, 4 species; E-G11, 12 species) (Table 1; Fig. 6 and 7). For each of these 11 data 

sets, all cluster-wide conserved domains were included in the respective alignments. E-G1, 

for instance, includes the same set of entero- and sapeloviruses found in M-2010, but the 

two data sets differ considerably in terms of protein composition. Species classifications 

obtained for each of the analyzed evaluation data sets perfectly matched (CA = 1) that of M-

2010 (Table 2). 

In the fourth evaluation test, we analyzed the dependence of the GENETIC 

classification on sequence sampling by analyzing virus data sets available at three time 

points in the past: the years 2008 (E-2008), 2006 (E-2006), and 2004 (E-2004) (Table 1; Fig. 

8). Together with M-2010, these data sets encompass a variation in virus sampling in the 

range of 181 to 1,234 sequences that was analyzed in this study. On the genus and 

supergenus levels, perfect agreement among classifications for M-2010 and the three 

evaluation data sets was observed. Naturally, these comparisons involved only a subset of 

viruses of M-2010 that was available at a specific time point in the past. At the species level, 

only a single difference was evident: for E-2008, the clusters HRV-Cα and HRV-Cβ were 

united (CA = 0.885) (Tables 2 and 3), resulting in two instead of three (for M-2010) species-

like clusters for viruses jointly classified as Human rhinovirus C in the current taxonomy. 
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Figure 6. Reproducibility of the GENETIC classification on the species level, part one. Frequency distributions of 

PED values are shown for supergenera G1 to G5 of the main data set (A to E) or a combination of three supergenera 

(F). PED values were compiled based on alignments covering all cluster-wide conserved domains (Table 1). Viruses 

currently not recognized by the ICTV are marked with asterisks. (E) An alternative threshold is indicated which would 

result in four instead of three species clusters (dashed line and names). The goodness of fit is in the range from 0.751 

to 0.965. For details, see Materials and Methods and Fig. 4. 

 
 
In the fifth evaluation test, we assessed an impact of alignment construction on the virus 

classification, using the E-Muscle and E-Clustal evaluation data sets (Table 1; Fig. 9A, B). 

The GENETIC classification of both evaluation data sets matched that of M-2010 on the 

genus and supergenus levels and showed a single common deviation at the species level 

(CA = 0.925), which involved bovine and porcine kobuviruses, a mismatch already observed 

for E-Blocks (Tables 2 and 3). 
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Figure 7. Reproducibility of the GENETIC classification on the species level, part two. Frequency distributions of 

PED values are shown for supergenera G6 to G9 of the main data set (A to D) or a combination of five supergenera 

(E). PED values were compiled based on alignments covering all cluster-wide conserved domains (Table 1). Viruses 

currently not recognized by the ICTV are marked with asterisks. (D) No fitting of probability densities could be obtained 

due to an insufficient number of sequences (n = 9). The goodness of fit is in the range from 0.751 to 0.965. For details, 

see Materials and Methods and Fig. 4. 

 

 

In the sixth evaluation test, we analyzed the impact of the sole choice of distance 

measure, PED (M-2010) versus PUD (E-PUD), on the GENETIC classification (Fig. 9C). 

The only difference was that the supergenus Cardiovirus/Senecavirus merged with the 

genus formed by cosaviruses for E-PUD (CA = 0.750) (Tables 2 and 3). 

In the seventh evaluation test, we compiled pairwise, genome-wide nucleotide 

alignments to calculate PUDs in order to emulate the PASC application24, the standard tool 

at NCBI. A classification for the resulting data set, E-PASC, was derived (Fig. 9D) by using 

DEmARC. Its comparison to that of M-2010 reveals most drastic differences. On the species 

level (CA = 0.762), the E-PASC classification has Human rhinovirus A and HRV-Aβ united 
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Figure 8. Impact of virus sampling on the GENETIC classification. Frequency distributions of PED values are 

shown for evaluation data sets formed by picornaviruses sampled until 2 years (A), 4 years (B), and 6 years (C) ago 

with respect to the sampling time of the main data set. The goodness-of-fit values are 0.973, 0.978, and 0.953, 

respectively. For details, see Materials and Methods and Fig. 4. 

 

 

 

Human rhinovirus C viruses forming a single cluster, and porcine kobuviruses forming a 

cluster separate from Bovine kobuvirus. On the genus level (CA = 0.684), the avian 

sapelovirus formed a cluster separate from other sapeloviruses and saliviruses joined with 

Kobuvirus, which are recognized as a supergenus cluster in the M-2010 classification. 

Furthermore, the supergenus level was not recovered in the E-PASC classification (CA = 0). 

Each of the above deviations concerns clusters whose median or extreme PED value is in 

the immediate vicinity of a threshold in the M-2010 classification (data not shown), indicating 

that the recovery of such clusters is most sensitive to the choice of key parameters, the 

default values of which differ between PASC and DEmARC. 
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Figure 9. Impact of alignment construction and incorporation of PASC elements into the DEmARC framework 

on the GENETIC classification. Frequency distributions of ~760,000 PED or PUD values formed by 1,234 

picornaviruses are shown for the following evaluation data sets: PEDs were calculated using the main data set that 

was automatically realigned without manual intervention using Muscle (A) and ClustalW (B), PUDs were calculated 

using the main data set (C), and PASC-based genome-wide PUDs were calculated (D). The goodness-of-fit values are 

0.982, 0.993, 0.865, and 0.956, respectively. For details, see Materials and Methods and Fig. 4. 

 

 

Accommodation of virus sampling bias by the GENETIC classification. It is generally 

acknowledged that the current sampling of the picornavirus diversity is limited and 

biased182,293. This variation is illustrated spectacularly for viruses of the M-2010 data set: 

82% of the least populated species account for only 18% of the viral genomes (Fig. 10A). 

The lack of correlation between the sampling size and the cluster completeness of species 

attests to the tolerance of the GENETIC classification to this variation. The sampling 

unevenness is also evident when calculating the skewness on the distribution of number of 

sequences per cluster at each level. (Skewness is a measure of asymmetry of a distribution 

which is positive or negative when a distribution is right-tailed or left-tailed, respectively, and 

zero when it is symmetric). It was 2.51 (for species), 2.99 (genera), and 2.32 (supergenera). 

In contrast, the unevenness of frequency distributions of taxa at higher classification levels—

species among genera and genera among supergenera—is progressively diminishing (Fig. 

10B and C). 
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Figure 10. Sampling size of taxa and completeness of species in the GENETIC classification. (A) Shown is a 

binary square matrix of 1,234 viruses derived from the M-2010 PED matrix. Virus pairs whose PED does not exceed 

the species distance threshold are shown as black dots that form 38 species-specific squares along the matrix 

diagonal; other pairs are in white. Viruses along both coordinates are grouped by species, and species are ordered by 

descending virus sampling size. Note that no black dots are observed outside the squares, which is expected in 

classifications by SLC. For the most-populated clusters, their names and the number of sampled sequences are 

shown. Zoom-ins and quality values (cq) which are <1 are provided in brackets for three species for which some PEDs 

(depicted as empty spaces within black squares) exceeded the threshold (incomplete clusters). For all other clusters, 

the cq value was 1. (B) Shown is a binary square matrix of 38 species that form 16 genus-specific squares along the 

matrix diagonal. Species pairs from the same genus are in black, others in white. Species along both coordinates are 

grouped by genus, and genera are ordered by descending species sampling size. All genera are shown as if they were 

complete, despite the fact that the cluster formed by Enterovirus has a cq of only 0.9998. For the most-populated 

clusters, their identity and the number of sampled species are indicated. (C) Shown is a binary square matrix of 16 

genera that form 11 supergenus-specific squares along the matrix diagonal. Genus pairs from the same supergenus 

are in black, others in white. Genera along both coordinates are grouped by supergenus, and supergenera are ordered 

by descending genus sampling size. All supergenera are shown as if they were complete, despite the fact that the 

cluster formed by Enterovirus/Sapelovirus has a cq of only 0.9975. The number of sampled genera is indicated for the 

largest cluster. 
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Discussion 
 

Here we present a quantitative, evolutionary-based framework (DEmARC) for computational 

partitioning of the genetic diversity of a virus family with the dual goal of revealing its internal 

structure and building a rational genetics-based virus classification. Applying DEmARC to 

hundreds of genome sequences of picornaviruses, we produced the GENETIC classification 

of the family Picornaviridae that was largely tolerant to the choice of virus sampling and 

alignment construction method, parameters that are of particular importance for taxonomy. 

In the accompanying paper (see reference 283), we show that this classification closely 

approximates the expert-based taxonomy of the family, while providing a basis for biological 

interpretations not available in the current taxonomy framework. 

 

DEmARC framework: choices, novelties, and challenges. Below we discuss choices, 

novelties and challenges of the DEmARC framework (Table 4) that concern (i) input data, (ii) 

alignment-building procedure, (iii) measure of genetic divergence, (iv) decision-making in 

virus clustering, and (v) classification robustness. 

 

(i) Input data. We chose amino acid over nucleotide sequences, since proteins accept 

fewer replacements than polynucleotide sequences, which is of particular importance in 

analyses of RNA viruses, including picornaviruses, due to their extraordinarily high mutation 

rates117,121,211,404. In the picornavirus protein data set, viruses are separated by PEDs that 

already amount up to 2.8 replacements per position on average in the conserved proteins. 

We were interested to include as many genome positions as possible in the 

analysis upon reasoning that the more genome positions, the more authentic an obtained 

classification. Since many positions contribute to the classification, expanding their number 

in a data set may moderate or even negate effects caused by across site rate variation due 

to mutation and local recombination. Technically, the choice is limited to orthologous genes 

and their products that are known to diverge by vertical descend in the entire data set. In our 

study, we analyzed all orthologous proteins conserved across all viruses in the data set182. 

They account for ~80% of the entire picornavirus proteome for M-2010 and even larger 

shares in the evaluation data sets E-G1 to E-G11. This approach can be contrasted with a 

practice to restrict the analysis to single gene/protein, e.g., references 1,38,309; commonly a 

structural protein is used (see, for example, references 17,24,309,339,422,496). In our study, we 

observed that the number of clusters in M-2010 compared to E-Capsid was somewhat larger 

for all three levels (Table 2). This observation indicates that phylogenetic signals in the 

conserved capsid and replicase proteins can produce a cumulative effect, further supporting 

their combined use in the picornavirus taxonomy264. 

To produce a GENETIC classification, we typically utilized PED values that are 

products of an evolutionary inference. In evolutionary analyses involving multiple genes or 

proteins (like in this study), it is common to evaluate and exclude the contribution of 

recombination. If a portion of a genome has originated through recombination while another 
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part evolved only by mutation, evolutionary inferences for the combined data set would be 

biologically misleading. Unfortunately, the scale of recombination in our data set (M-2010) 

remained uncharacterized, since its size (1,234 sequences, 2,446 alignment positions) is too 

large to apply available tools for the identification of recombination events139,271,311. 

Nevertheless, there are several reasons to believe that recombination was limited and 

accommodated by the classification. We excluded from our analysis (M-2010) three regions, 

5′-UTR, VP4, and 2A, for which interspecies recombination has been reported405,425. Outside 

these regions, recombination was reported exclusively for closely related viruses of the 

same species, although few viruses were characterized in this respect21,39,59,238,292-

294,390,405,425,428,501. These intraspecies recombination events are not expected to be 

detrimental for our analysis since, following taxonomy, it was not concerned with virus 

clustering below the species level. Furthermore, the GENETIC classification does recover 

the ICTV-defined species structure, with most species obeying the family-wide limit on 

intragroup genetic divergence (Fig. 10A)283. The latter observation implies that 

recombination between viruses of M-2010 must be restricted within the species boundaries 

for genes encoding the most conserved proteins. This notion is further supported by the 

excellent agreement between classifications obtained for M-2010 and the evaluation data 

sets (E-G1 and E-G10) representing different subsets of the family (Table 2). Such an 

agreement is not expected if recombination acts across genus boundaries. Based on these 

observations, we conclude that any interspecies recombination in family-wide conserved 

proteins, if it had happened, must have been (very) limited and hence does not affect the 

reliability of the inferred classification. 

 

 
Table 4. Comparison of pairwise distance-based classification approaches of this study, the standard tool at NCBI, and 

other studiesa. 

 Parameter for indicated classification approach 

Aspect DEmARC M-2010 PASC Others 

Genome regions included 
all family-wide conserved 
proteins 

complete genomes 
single genes/proteins, 
their combinations 

Sequence type aa nt aa and/or nt  

Alignment multiple pairwise multiple, pairwise 

Distance measure corrected uncorrected uncorrected, corrected 

No. of taxonomic levels data derived a priori defined a priori defined 

Threshold determinationb objective subjective subjective 

a Classifications are indicated as follows: DEmARC M-2010, this study; PASC, the standard tool at NCBI; others, other 

studies 
b It is indicated how thresholds for partitioning of the distance distribution are determined: using either an objective, 

data-driven approach (objective) or by other means, including rough, subjective placement and missing description 

(subjective).
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(ii) Alignment-building procedure. We calculated pairwise distances based on a multiple 

alignment, which compared to widely used pairwise alignments1,2,24,94, is expected to 

improve the reconstruction accuracy of orthologous relationships of sequence 

residues147,191. Surprisingly, the choice of method for obtaining a multiple sequence 

alignment was not as critical as might be expected. The use of either Clustal- or Muscle-

based alignments or a manually curated alignment, which were different in the number of 

gaps and their distribution (Table 1), had little impact on the GENETIC classification (Table 

2), a finding which readily permits (automated) reproduction of results. 

 

(iii) Measure of genetic divergence. We made use of a distance measure that is 

evolutionary based and corrects for multiple substitutions at the same sequence site. It can 

be calculated with publicly available tools, for instance Tree-Puzzle412, as used in this study. 

Indeed, we observed a nonlinear relationship between PUD and PED values (Fig. 3). As a 

result, virus pairs that occupy the 2nd half in the PED distribution are found in the last 20% 

of the distribution of PUDs (Fig. 9C, compare results for M-2010 in Fig. 4 and E-PUD). This 

relative compression of large distances may result in a relatively lower resolution of distant 

relationships that could affect the delineation of higher-order taxonomic levels (subfamily for 

instance) in future analyses of this and other virus families. When PUDs were combined with 

the use of pairwise nucleotide alignments (E-PASC data set), the supergenus level was 

already not recoverable (Fig. 9D). 

We note that it would be worth exploring the use of patristic distances instead of 

PEDs. The patristic distance between two viruses is defined as the amount of substitutions 

since they shared a common ancestor in evolution, and thus a phylogenetic tree is involved 

in its calculation. The reconstruction of such a tree in practice, using sophisticated methods 

(maximum likelihood or Bayesian), however, turned out to be computationally very 

expensive for the data sets analyzed in this study and hence was not pursued. 

 

(iv) Decision-making in virus clustering. In prior virus classification studies, researchers 

were commonly concerned with the placement of demarcation criteria by following ranks and 

taxa already established by the respective ICTV study group. The framework developed in 

this study operates without following an a priori-defined number of taxonomic ranks, since it 

seeks to unravel the intrinsic hierarchical structure embodied in the data. This is achieved in 

a quantitative manner by searching for regions with strongest support for discontinuity in the 

PED distribution. The selection of these regions controls the number of levels and their 

hierarchy. We acknowledge, however, that this selection is yet to be placed in a statistical 

framework. For the picornavirus data set, the three top-ranked regions considerably 

outranked all other candidates (Fig. 4), making their selection relatively straightforward. This 

might not be the case for other virus families with relatively poor virus sampling, and it was 

observed upon the analysis of E-G5 (Fig. 6E). Additional research will be necessary to 

further improve this part of the framework. 
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The subsequent delineation of a demarcation threshold on intragroup genetic 

divergence at each classification level is done in a fully objective manner by locally restricted 

cost optimization. The approach seeks to minimize the global disagreement across all 

clusters at a level. We note that all violations (PEDs exceeding the distance threshold) are 

weighted equally independent of the size of the respective cluster or the number of other 

intragroup PEDs that obey the threshold. Future research is needed to scrutinize more 

sophisticated cost functions and their possible impact on decision-making. Besides, we 

chose to derive clusters using SLC, which implies that it is sufficient for a virus to be similar 

enough to a single other virus of a cluster in order to be classified within that cluster. From a 

biological perspective, this seems to be more meaningful than the opposite approach—

complete linkage clustering (CLC)—where no intragroup violations are allowed but clusters 

may overlap (intergroup divergence below the distance threshold). Nevertheless, we tested 

the impact of CLC on M-2010 and found that it was small, with only one difference at the 

species level (clade C rhinoviruses are grouped in two instead of three clusters) and one at 

the supergenus level (cosaviruses are grouped with Cardiovirus/Senecavirus) (unpublished 

observation). Most importantly, however, in either case a consistent demarcation criterion is 

imposed on all clusters of a level regardless of the virus sampling sizes and diversities, 

parameters which strongly shape decision-making in traditional virus taxonomy. To our 

knowledge, the threshold identification in DEmARC presents the first application of a 

rigorous approach to the problem (Table 4). 

 

(v) Classification robustness. One of the grand challenges in developing an objective 

classification of a virus family is the lack of a positive control that may serve as a gold 

standard. It could be argued that the expert-based ICTV taxonomy should be used as the 

ultimate standard, and we do compare the GENETIC classification with the taxonomy of 

picornaviruses283. This comparison is informative and, if experts recognize merits of the 

GENETIC classification, it could prompt a revision of taxonomy. It is because of the prospect 

of such a revision that the picornavirus taxonomy may not be regarded as a scientifically 

valid gold standard for the GENETIC classification. In this context, we may not know how 

close the GENETIC classification is to its ultimate standard that remains unknown. 

Consequently, ranking alternative classifications by quality estimates using objective 

measures like CC remains the most practical way to evaluate the performance of the 

developed approach. In this study, we selected the M-2010-based classification as the 

standard using different considerations discussed elsewhere in this paper. However, we 

noticed that the E-Blocks-based classification outranked the M-2010-based one under the 

CC criterion at the two levels of hierarchy at which they deviate (Table 2). The observed 

differences between these two classifications were only few and minor, all involving 

problematic virus clusters. This situation may change with the expansion of the number of 

genomes analyzed in the future, and alignments processed with BAGG, e.g., E-Blocks, may 

prove to be superior to those unprocessed, e.g., M-2010, in virus classification. This 
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development would be in line with the acknowledged positive effect of purging multiple 

alignments from poorly conserved columns on phylogeny reconstruction443. We also note 

that the E-Blocks-based classification shows considerable support for a fourth level of 

hierarchy above the supergenus level (Fig. 5A). This indicates that switching from 

unprocessed to block-based alignments could be associated with additional large-scale 

consequences for taxonomy. 

 

General conclusions. During the last decade, genome sequences have emerged as the 

primary and principal characteristic for all known viruses. The flood of genome sequences 

overwhelmed the traditional decision process designed to classify viruses. We here have 

introduced a consistent and objective framework that addresses this challenge in a proof-of-

principle study using the family Picornaviridae. We thereby follow a parallel development in 

taxonomic studies of cellular organisms where recent advancements are increasingly 

brought by the analysis of molecular data, jointly summarized under the label “DNA 

barcoding” 64,204. The produced genome-based partitioning of the picornavirus genetic 

diversity could assist the ICTV in decision-making and be used to improve the connection 

between virus taxonomy and fundamental and applied research283. Technically, DEmARC 

can be fed with partial genomes, the analysis of which may be valuable for taxonomy or 

other purposes, although this is yet to be explored. We started to seek benefits of the 

developed computational framework in analyses of other (RNA) virus families, and the 

DEmARC-mediated taxonomy of coronaviruses has recently been approved by ICTV90. 
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Abstract 
 

Virus taxonomy has received little attention from the research community despite its broad 

relevance. In an accompanying paper282, we have introduced a quantitative approach to 

hierarchically classify viruses of a family using pairwise evolutionary distances (PEDs) as a 

measure of genetic divergence. When applied to the six most conserved proteins of the 

Picornaviridae, it clustered 1,234 genome sequences in groups at three hierarchical levels 

(to which we refer as the “GENETIC classification”). In this study, we compare the GENETIC 

classification with the expert-based picornavirus taxonomy and outline differences in the 

underlying frameworks regarding the relation of virus groups and genetic diversity that 

represent, respectively, the structure and content of a classification. To facilitate the 

analysis, we introduce two novel diagrams. The first connects the genetic diversity of taxa to 

both the PED distribution and the phylogeny of picornaviruses. The second depicts a 

classification and the accommodated genetic diversity in a standardized manner. Generally, 

we found striking agreement between the two classifications on species and genus taxa. A 

few disagreements concern the species Human rhinovirus A and Human rhinovirus C and 

the genus Aphthovirus, which were split in the GENETIC classification. Furthermore, we 

propose a new supergenus level and universal, level-specific PED thresholds, not reached 

yet by many taxa. Since the species threshold is approached mostly by taxa with large 

sampling sizes and those infecting multiple hosts, it may represent an upper limit on 

divergence, beyond which homologous recombination in the six most conserved genes 

between two picornaviruses might not give viable progeny. 
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Introduction 
 

Research in virology relies on virus taxonomy for providing a unified intellectual and practical 

framework for analysis, generalization, and knowledge dissemination. Despite its broad 

relevance, taxonomy has received relatively little attention from the research community. 

Virus taxonomy is developed under the direction of the Committee on Taxonomy of Viruses 

(ICTV) and recognizes five hierarchically arranged ranks: order, family, subfamily, genus, 

and species (in ascending order of intervirus similarity), with order and subfamily levels 

being used less commonly. Virus species are of principal importance373, and for their 

demarcation the so-called polythetic species concept29,465 is applied. Accordingly, viruses 

are recognized as single species if they share a broad range of characteristics while 

constituting a replicating lineage that occupies a particular ecological niche259,466. These 

characteristics, so-called demarcation criteria, are devised for each genus separately and 

are revised periodically143,257. To ensure that each virus is classified, they are allowed to 

vary greatly between and even within families, with no single unifying property being sought 

after (for a review, see reference 467). Consequently, virus species are operational units that 

are delimited at the genus level. They can be contrasted to biological species that are 

commonly defined by shared gene pools and reproductive isolation. The lack of a mandatory 

common denominator of virus species casts uncertainty over the interpretation and 

generalization of results obtained across different genera. 

We are interested in exploring the wealth of genomic information for improving the 

foundation of virus taxonomy. For this purpose, we used the family Picornaviridae as a case 

study. Picornaviruses form one of the largest and most actively studied virus families, with 

many human and societally important pathogens, whose number is steadily growing130,415. 

They employ a single-stranded RNA genome of positive sense (ssRNA+) with lengths in the 

range of 6,500 to 9,000 nucleotides of which about 90% encode a single polyprotein that is 

co- and posttranslationally cleaved into 11 to 13 mature proteins313. In total, six proteins, 

three of the capsid module (1B, 1C, and 1D, known also as VP2, VP3, and VP1), and three 

of the replicase module (2C, 3C, and 3D) are conserved family-wide to form the backbone of 

the genetic plan182. Other proteins may be specific for different subsets of picornaviruses. 

Particularly, proteins known as L and 2A come in a large variety of molecular forms182,264 

most of which were implicated in functions that secure virus propagation in the host7. The 

open reading frame that encodes the polyprotein346 is flanked by the two untranslated 

regions, 5′-UTR and 3′-UTR. The 5′-UTR includes a highly structured internal ribosomal 

entry site (IRES) which is known to exist in five different molecular forms, from type I to type 

IV441,481. The expert-based classification (the ICTV taxonomy) of the Picornaviridae devised 

by the Picornavirus Study Group (PSG), recognizes 28 species distributed among 12 genera 

and no subfamilies264. A growing number of picornaviruses either is tentatively classified in 

provisional taxa or remains unclassified. The PSG uses a complex set of rules to devise 

taxa and classify viruses. All genera form compact monophylogenetic clusters in separate 
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trees of the conserved proteins as well as the capsid and replicative modules, respectively. 

The polyprotein sequences of viruses in different genera differ by at least 58% amino acid 

(aa) residue identity263,435. For genera that include multiple species (Enterovirus, 

Cardiovirus, Aphthovirus, Parechovirus, Kobuvirus, Sapelovirus), demarcation criteria that 

separate the species have been developed by the PSG. Most commonly, they define lower 

limits of pairwise amino acid identity in the polyprotein and its two parts, the capsid and 

replicative modules. Additionally, the criteria may include restrictions on genome 

organization, genome base composition (G+C), host range, host cell receptor variety, and 

compatibility in processes that underlie the replicative cycle. Some taxa may be 

distinguished by the presence of a molecular marker that could be an L and/or a 2A 

protein182,239, the type of IRES205,481, the genome position of internal cis-replicative element 

(CRE) directing the VPg synthesis81,438, or a combination thereof. For genera that include a 

single species (Hepatovirus, Erbovirus, Teschovirus, Senecavirus, Tremovirus, 

Avihepatovirus), no species demarcation criteria have been developed due to the lack of 

sufficient diversity in the available virus sampling. 

In an accompanying paper282, we have introduced a quantitative approach for 

partitioning the genetic diversity of a virus family to build a hierarchical classification, which 

we named DEmARC (“DivErsity pArtitioning by hieRarchical Clustering”). In contrast to the 

framework of virus taxonomy, DEmARC uses a sole demarcation criterion—intervirus 

genetic divergence. When applying DEmARC to the family Picornaviridae, it clustered 1,234 

genome sequences in groups at three hierarchical levels (the GENETIC classification). In 

this study, two of the three inferred levels in the GENETIC classification were found to 

correspond most closely to the species and genus ranks recognized by ICTV264. A few 

deviations from the ICTV taxonomy concern assignments for the genus Aphthovirus264,295 

and species Human rhinovirus A and C19,427. The third level has no counterpart in the current 

taxonomy. Furthermore, we found the family-wide conserved proteins to have almost 

universally accumulated fewer substitutions in viruses of the same species than in those 

belonging to different species, suggesting that picornavirus species are genetically 

separated. This also indicates that objective discrimination between the genetic divergence 

within a taxon (intragroup) and that between taxa (intergroup) is attainable. Finally, we 

outline conceptual differences between the frameworks that underlie the two classifications. 

These differences concern the relation of genetic diversity, the content of a genetics-based 

classification, and virus groups representing its structure. To facilitate the comparison, we 

introduce two novel diagrams that (i) illustrate the connection of the new approach 

developed in this study to conventional phylogenetic analysis already used in taxonomy and 

(ii) depict the classification and the associated genetic diversity in a standardized manner. 
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Materials and Methods 
 

Virus sequences, multiple alignment, and distance estimation. Complete genome 

sequences for 1,234 picornaviruses available on 15 April 2010 at the National Center for 

Biotechnology Information GenBank/RefSeq36 databases were downloaded using 

HAYGENS423 into the Viralis platform183. A concatenated multiple-amino-acid alignment 

covering the family-wide conserved capsid proteins 1B, 1C, 1D and the nonstructural 

proteins 2C, 3C, and 3D of the 1,234 picornaviruses (Fig. 1) was produced using the 

MUSCLE program version 3.52126, and poorly conserved columns were further manually 

refined. The alignment subsequently facilitated the calculation of pairwise evolutionary 

distances (PEDs) using a maximum likelihood (ML) approach66,145, as implemented in the 

Tree-Puzzle program version 5.2412. The WAG amino acid substitution matrix478 was 

applied. PEDs serve as a measure of intervirus genetic divergence. 

 

Phylogeny reconstruction. Bayesian posterior probability trees were compiled utilizing the 

Beast software version 1.4.7119. Bayesian Markov chain Monte Carlo (MCMC) chains (2 

independent runs per data set) were run for 4 million steps (10% burning, sampled every 

100 generations) under the WAG amino acid substitution matrix478. The substitution rate 

heterogeneity among alignment sites was allowed as modeled via a gamma distribution with 

4 categories. The uncorrelated relaxed molecular clock approach (log-normal distribution)118 

was used, as it was strongly favored over the strict molecular clock (log Bayes factor of 

56.7) and the relaxed molecular clock approach with exponential distribution (log Bayes 

factor of 14.6). The convergence of runs was verified using Tracer version 1.4120. ML trees 

were compiled utilizing the PhyML software version 3.0196. The WAG amino acid substitution 

matrix was applied, and substitution rate heterogeneity among sites (4 categories) was 

allowed. Support values for internal nodes were obtained using the nonparametric bootstrap 

method with 1,000 replicates or through Shimodaira-Hasegawa (SH)-like approximate 

likelihood ratio tests. 

 

 

 
 
Figure 1. Picornavirus genome organization. The organization of the picornavirus genome is shown on the example 

of Porcine sapelovirus. Products derived after cleavage of the encoded polyprotein are indicated by rectangles and 

names. They include structural proteins (dark gray background) forming virus particles, nonstructural/accessory 

proteins (light gray) involved in replication and expression, and the leader protein (white), which is not found in all 

picornaviruses. The horizontal bars below highlight the six proteins conserved across the family. A concatenated, 

picornavirus-wide multiple alignment of these six proteins forms the data set of this study. 
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Genetics-based virus classification. We have developed DEmARC, a quantitative 

procedure for hierarchical classification of a virus family based on intervirus genetic 

divergence282. It has been evaluated extensively for consistency and stability with respect to 

key parameters including the amount and/or diversity of the input data, the alignment 

construction method, and the measure of intervirus divergence. For brevity, we refer to the 

DEmARC-mediated picornavirus classification as the GENETIC classification. 

 

Measures of quality. In the accompanying paper282, we have introduced a cost measure to 

determine a threshold on intragroup genetic divergence at each classification level in a 

quantitative way. This cost is calculated as the cumulative violation of intragroup PED values 

to the respective threshold among all taxa of the level (see reference 282 for details). Hence, 

this cost, which is a nonnegative real number, is used as a quality measure for a 

classification level—the lower the cost the higher the quality. Furthermore, analogs of the 

cost measure can be calculated for both a taxon and a single virus by summarizing over the 

respective violating PED values. 

Another measure of the quality of a taxon is the fraction of intraspecifc pairwise 

distances not exceeding the distance threshold of the respective level, to which we refer as 

cluster quality (cq). A taxon is considered complete if the cq value is 1 and incomplete 

otherwise (0 < cq < 1). 

 

 

Results and Discussion 
 

Phylogeny, PED distribution, and classification of picornaviruses. Our data set 

included 1,234 genome sequences from picornaviruses whose taxonomic position at the 

start of this study was either already established as described above or remained provisional 

or uncertain due to the considerable time involved in taxa assignments264. Using a 

concatenated multiple alignment of six conserved proteins of a representative set of 38 

picornaviruses, we reconstructed a phylogenetic tree under both an ML and a Bayesian 

framework. The two trees had a matching topology and included monophyletic branches 

corresponding to the taxa recognized by ICTV (Fig. 2, black tree branches and names). The 

phylogeny additionally comprised a number of new branches of different lengths 

accommodating a large number of relatively recently identified picornaviruses. We 

concluded that the alignment used in our study contains information compatible with 

taxonomy. Hence, we used this alignment as input for DEmARC in order to devise the 

GENETIC classification of picornaviruses282. We identified three statistically most strongly 

supported positions of discontinuity (thresholds) in the picornavirus PED distribution that we 

assigned as defining species, genus, and supergenus levels of the classification. 
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Figure 2. Phylogeny and GENETIC classification of the Picornaviridae. Shown is a maximum likelihood phylogeny 

of 38 picornaviruses representing species diversity based on the family-wide conserved proteins 1B, 1C, 1D, 2C, 3C, 

and 3D. A Bayesian analysis resulted in an identical tree topology (data not shown). The part of the tree representing 

the ICTV-defined 28 species and 12 genera is drawn in black, and provisional or currently not recognized taxa are in 

gray. Clusters equivalent to ICTV genera are highlighted by colored ovals. A split of Aphthovirus according to the 

GENETIC classification is indicated (white line). Genera with identical coloring unite to in total 11 supergenera 

identified in this study. The viruses shown represent the following species (italics) or species-like clusters according to 

the GENETIC classification: Porcine sapelovirus (PSV), Simian sapelovirus (SiSV), Avian sapelovirus (AvSV), Human 

rhinovirus A (HRV-A), human rhinovirus Aβ (HRV-Aβ), Human rhinovirus B (HRV-B), human rhinovirus Cα (HRV-Cα), 

human rhinovirus Cβ (HRV-Cβ), human rhinovirus Cγ (HRV-Cγ), Human enterovirus A (HEV-A), Human enterovirus B 

(HEV-B), Human enterovirus C (HEV-C), Human enterovirus D (HEV-D), Simian enterovirus A (SiEV-A), Simian 

enterovirus B (SiEV-B), Porcine enterovirus B (PEV-B), Bovine enterovirus (BEV), Bovine kobuvirus (BKoV), Aichi 

virus (AiV), Salivirus A (SaliV-A), Human parechovirus (HPeV), Ljungan virus (LjV), Duck hepatitis A virus (DuHV), 

Aquamavirus A (AqV-A), Hepatitis A virus (HAV), Avian encephalomyelitis virus (AvEMV), Foot-and-mouth disease 

virus (FMDV), Bovine rhinitis B virus (BRBV), Equine rhinitis A virus (ERAV), Equine rhinitis B virus (ERBV), 

Theilovirus (TMEV), Encephalomyocarditis virus (EMCV), Seneca Valley virus (SVV), human cosavirus A (CosaV-A), 

human cosavirus B (CosaV-B), human cosavirus D (CosaV-D), human cosavirus E (CosaV-E), Porcine teschovirus 

(PTeV). Numbers at branch points provide support values from 1,000 nonparametric bootstraps. The scale bar 

represents 0.5 amino acid substitutions per site on average. 
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Below, we compare the GENETIC classification and the ICTV taxonomy at each of 

these levels separately. To facilitate the comparison, we devised a special plot (Fig. 3A, 

middle), which connects the phylogeny (Fig. 3A, left) and the PED distribution (Fig. 3A, 

bottom right) that are used in taxonomy and DEmARC, respectively. The plot (Fig. 3A, 

middle) presents a two-dimensional partitioning of the intervirus genetic diversity. It reveals 

an association of a taxon in the tree and a range in the PED distribution that belongs to one 

of the three levels of the GENETIC classification. Thus, the phylogeny and the PED 

distribution represent complementary projections of the intervirus genetic diversity that, 

when combined, reveal the most critical characteristics utilized in taxonomy. The availability 

of this plot empowers the reader with a tool to inspect the foundations and analyze the 

implications of the proposed classification. 

 

GENETIC classification versus ICTV taxonomy: species level. At the species level, the 

principal level in taxonomy, the GENETIC classification includes 38 clusters. Twenty-seven 

of them correspond one-to-one to species of the ICTV taxonomy435, three clusters 

encompass a single species (Human rhinovirus C; HRV-C), and eight clusters comprise 

recently discovered viruses that were not yet formally classified at the start of the study. 

HRV-C was split in three species-like clusters provisionally named Human rhinovirus Cα 

(HRV-Cα), Human rhinovirus Cβ (HRV-Cβ), and Human rhinovirus Cγ (HRV-Cγ) (Fig. 2 and 

3A; Table 1). 

The 27 clusters corresponding to the recognized species include already classified 

viruses and some accommodate also recently discovered viruses, including simian 

enteroviruses joining Human enterovirus A and B (HEV-A and HEV-B, respectively)340,342, 

Saffold virus grouping with Theilovirus45,77,241,299, possum enterovirus joining Bovine 

enterovirus497, and porcine kobuvirus being classified with Bovine kobuvirus386 (Table 1). 

With the exception of Theilovirus, the host range of these species was expanded as a result 

of this virus update. A recent phylogenetic study of RNA viruses from three families and two 

genera other than the Picornaviridae revealed that host switching by virus species is more 

frequent than previously thought262. 

The eight clusters encompassing exclusively novel viruses include the following: 

cosaviruses (4 clusters; CosaV-A, CosaV-B, CosaV-C, CosaV-D)221,249, seal picornavirus (1 

cluster; AqV-A)250,264, human klasse- and saliviruses (hereafter referred to as saliviruses) (1 

cluster; SaliV-A)190,222, rhinoviruses close to but separated from Human rhinovirus A, HRV-A 

(1 cluster; provisionally named Human rhinovirus Aβ, HRV-Aβ)81,349,351, and simian 

enteroviruses not belonging to Simian enterovirus A (1 cluster; SiEV-B)338,340,342 (Table 1). 

There seems to be a good match between the GENETIC classification assignments listed 

above and those that are in the pipeline for approval by ICTV263,264. 

Thirty-two out of 38 species include more than one sequence (nonsingleton). Few 

of these determine the PED range of all 38 species clusters, which is defined as 

“intraspecies” genetic divergence (Fig. 3A). 
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Figure 3. Intragroup genetic divergence and species sampling size. (A) Box-and-whisker graphs were used to plot 

distributions of distances between viruses from the same species (orange), between viruses from different species but 

the same genus (blue), and between viruses from different genera but the same supergenus (purple). The boxes span 

from the first to the third quartile and include the median (bold line), and the whiskers (dashed lines) extend to the 

extreme values. For name abbreviations, see the Fig. 2 legend; numbers in brackets correspond to the number of 

sequences per species; open and filled diamonds indicate single and multiple host species range, respectively. Genera 

and supergenera constituting only one species are not shown. The corresponding first half of the PED distribution (see 

reference 282) is depicted below. Phylogenetic relationships of the 38 picornavirus species are shown by the cladogram 

to the left (following the topology in Fig. 2) with intragenus relations collapsed. Colored shapes indicate those taxa that 

contribute to intragroup distances to the right. Species and genera currently not recognized by ICTV are marked with 

asterisks, and discrepancies between the ICTV taxonomy and the GENETIC classification (not caused by recently 

discovered viruses) are highlighted in red. (B) The relationship between sampling size and maximum intragroup 

genetic divergence is shown for each species. 
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Table 1. Differences between GENETIC classification and ICTV taxonomy on the species level. 

 Difference 

Virusa Typeb ICTVc GENETICd Qualitye 

Simian picornavirus 17 new - HEV-B 1 

Simian picornavirus 13 new - HEV-A 1 

Simian enterovirus SV19, SV43 new - HEV-A 1 

Saffold virus new - TheiloV 1 

Possum enterovirus W1, W6 new - BEV 1 

Seal picornavirus type 1 new - AqV-A* - 

Simian enterovirus N125, N203, SV6 new - SiEV-B* 1 

Enterovirus 103 isolate POo-1 new - SiEV-B* 1 

Human cosavirus A1, A2 new - CosV-A* 1 

Human cosavirus B new - CosV-B* - 

Human cosavirus D new - CosV-C* - 

Human cosavirus E new - CosV-D* - 

Salivirus NG-J1, Human klassevirus 1 new - SaliV-A* 1 

Porcine kobuvirus S-1-HUN, K-30-HUN new - BKoV 0.833 

Human rhinovirus VR-1118, VR-1155, VR-1301 new - HRV-Aβ* 1 

Human rhinovirus C 026, NY-074, NAT001, QPM mm HRV-C HRV-Cα* 1 

Human rhinovirus C 025 mm HRV-C HRV-Cβ* - 

Human rhinovirus C N4, N10, NAT045 mm HRV-C HRV-Cγ* 0.500 
a Shown is the Definition field value in the Genbank annotation of one or several viruses. 
b A virus was not available or assigned to a tentative species  at time of the ICTV release (new); a mismatch was 

observed between the ICTV taxonomy and GENETIC classification (mm). 
c It is shown to which species the virus is classified in the ICTV taxonomy; -, not available at the time. 
d It is shown to which species the virus was assigned in the GENETIC classification; new species proposed by the 

GENETIC-classification are indicated using asterisks. For species abbreviations, see Fig. 2 legend. 
e The proportion of intraspecies PED values not exceeding the species distance threshold; -, for clusters with less than 

3 viruses. 

 

 

Virus sampling for the 38 species varied considerably in a range of 1 (six species) to 260 

(Foot-and-mouth disease virus [FMDV]) sequences (Fig. 3). The corresponding intragroup 

PED ranges (distances between virus pairs belonging to a single species) differed ~10-fold 

among the species with more than one nonidentical sequences, with maxima varying from 

0.04 (avian encephalomyelitis virus [AvEMV]) to 0.41 (HRV-A) (Fig. 3A). All except three 

species clusters were complete (each intragroup PED is below the species distance 

threshold) (Fig. 3A) (see reference 282). The three incomplete species clusters included 

viruses that belong to HRV-A (96 viruses in total and 14 viruses define pairs with larger-

than-threshold distances), Bovine kobuvirus (4 and 1), and the proposed species-like cluster 

HRV-Cγ (4 and 2) (Table 2; Fig. 4). In these species, respectively, 3.6%, 16.7% and 50% of 

intragroup PEDs exceeded the species threshold (Table 1; Fig. 3A). Combined, they 

account for less than 0.19% (175 out of 93,857) of all intragroup PED values at this level. 

One of these, Bovine kobuvirus was split in two clusters that observe the threshold and are 

host restricted in our analysis of three evaluation data sets282. This splitting would be in line 

with the original proposal by the authors who identified the porcine kobuvirus386. 
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Table 2. Violations to a distance threshold in the GENETIC classification. 

Accession no. Virusa Threshold Violationsb Costc 

FJ445152 Human rhinovirus 71, ATCC VR-1181 Species 33 0.902 

FJ445136 Human rhinovirus 51, ATCC VR-1161 Species 17 0.770 

GQ415052 Human rhinovirus A, hrv-A101-v1 Species 16 0.707 

FJ445147 Human rhinovirus 65, ATCC VR-1175 Species 14 0.577 

FJ445156 Human rhinovirus 80, ATCC VR-1190 species 14 0.431 

GQ415051 Human rhinovirus A, hrv-A101 Species 13 0.434 

FJ445120 Human rhinovirus 20, ATCC VR-1130 Species 13 0.393 

DQ473507 Human rhinovirus 53 Species 11 0.285 

FJ445150 Human rhinovirus 68, ATCC VR-1178 Species 11 0.187 

DQ473508 Human rhinovirus 28 Species 10 0.255 

DQ473506 Human rhinovirus 46 Species 6 0.154 

FJ445183 Human rhinovirus 78, ATCC VR-1188 Species 6 0.149 

EF173418 Human rhinovirus 78 Species 6 0.130 

DQ473497 Human rhinovirus 23 Species 1 0.003 

NC_009996 Human rhinovirus C Species 2 0.100 

EF077280 Human rhinovirus NAT045 Species 1 0.049 

NC_004421 Bovine kobuvirus Species 1 0.011 

AF119795 Enterovirus 71, TW/2272/98 Genus 21 0.157 

NC_006553 Avian sapelovirus Supergenus 7 0.195 
a Definition field value in the Genbank annotation; viruses of the same taxon are separated from others by an empty 

row. Only the minimal subset of violating viruses sufficient to explain all violating PEDs are listed. 
b Number of PEDs exceeding the respective distance threshold. 
c Cumulative value of the disagreement of a virus to the respective distance threshold; calculated as the virus-specific 

clustering cost (see reference 282) using the threshold as a unit. 

 

 

GENETIC classification versus ICTV taxonomy: rhinoviruses. Why do the GENETIC 

classification and the ICTV taxonomy differ so profoundly in respect to HRV-C while 

agreeing on the virus composition of all other species? Specifics of both HRV-C evolution 

and the two classification frameworks could play a role. The genetic diversity of these 

viruses in capsid (1A, also known as VP4, and 1D proteins) and nonstructural (3D) regions 

was previously reported to exceed those of other rhinoviruses318,427. In the 1D protein, this 

difference is smallest, and the entire HRV-C diversity was considered to be below the 

species diver-gence limit, paving the way for the recognition of HRV-C as a single species. 

We have also observed HRV-C viruses to form a single species-like cluster in the DEmARC-

mediated classification using the major capsid proteins only282. However, in the analysis of 

the data set comprising the six family-wide conserved proteins, the observed maximum 

divergence of HRV-C considerably exceeded that of its most diverged subset (HRV-Cγ) and 

the family-wide species demarcation threshold: 0.424, 0.392, and 0.37, respectively. This 

was likely due to an accumulated effect of compatible phylogenetic signals from both the 

structural and the nonstructural proteins (Fig. 4 and data not shown). The virus divergence 

in HRV-C is so high that even half of intragroup distances in HRV-Cγ exceed the species 

threshold (Fig. 3A; Table 1). This low support for the HRV-Cγ species (Table 1), which is the 

lowest overall and only one of three below 100%, is even more striking given that the virus 
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sampling in this provisional species and the two HRV-C sister taxa is very limited (one to 

four available genome sequences per cluster). Thus, it remains plausible that with the 

accumulation of sequenced genomes in the future, HRV-Cγ will be split further, increasing 

the number of provisional HRV-C species to at least four compared to the one currently 

recognized. Each of these species corresponds to a separate major lineage in the HRV-C 

phylogeny318 (Fig. 4). 

Furthermore, the GENETIC classification proposes the recognition of another 

potentially new rhinovirus species (HRV-Aβ). It is formed by three viruses and corresponds 

to the recently identified “clade D” rhinoviruses351 (known otherwise as the cluster HRV-

A281) that is a sister group to the species HRV-A (Fig. 4). Altogether, our analysis suggests 

that at least six (rather than three) human rhinovirus species may exist. Testing this more 

complex species structure in human rhinoviruses could facilitate research into the molecular 

basis of the observed clinical heterogeneity of rhinovirus infections in humans19,234,349. 

 

GENETIC classification and recognition of virus species as biological entities. We 

have found that viruses belonging to a single species are usually separated by less than 

~0.4 replacements per residue on average in the six most conserved proteins, while this 

distance is commonly exceeded in virus pairs representing different species (Fig. 3B). 

Furthermore, we observed a dependence of the largest intragroup genetic divergence 

(maximum intragroup PED) on the sampling size (number of viruses) in the 38 species: with 

increasing sampling size, a species' maximum genetic divergence tends to approach the 

species distance threshold (Fig. 3B). Accordingly, the 11 species that constitute the upper 

~25% of the maximum PED range are enriched with highly sampled species. Additionally, 

host range may be another parameter of relevance to the genetic divergence of species: the 

upper ~25% of the maximum PED range is also enriched with species that infect multiple 

hosts (five out of six species of this kind) (Fig. 3B). This correlation is sensible biologically, 

since host switching is expected to be accompanied with accelerated virus evolution. 

The above-mentioned correlations involve species that belong to four genera, 

indicating that they may be applicable to all picornavirus species. If so, we may expect that 

with a sufficient increase of the species sampling size, the maximum divergence of all 

species in the Picornaviridae will approach the species threshold. This would indicate that 

the intragroup genetic divergence of species is constrained similarly in different lineages. 

Alternatively, some currently undersampled lineages could accommodate a smaller natural 

diversity due to either stricter constraints or being a “young” species. For instance, Hepatitis 

A virus with its relatively large sampling size and two hosts (Fig. 3B) has an unusually small 

maximum genetic divergence (see also reference 31). Thus, it remains possible that the 

inferred species threshold represents an upper limit on the maximum intragroup genetic 

divergence but that the actual limit may be smaller in some picornavirus species. Likewise, 

we may not exclude that viruses in some species may diverge above the threshold. This 

might happen due to position-specific variations of replacements in the six conserved 
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proteins or involvement of virus lineages that are in the transition to the establishment of 

separate species. The virus diversity known in taxonomy as the species Human rhinovirus A 

and Human rhinovirus C (Fig. 4) could represent such cases. Also, it is important to stress 

that the species distance threshold represents an average of over 2,446 positions in six 

conserved proteins282 indicating that (lineage-specific) variations of maximum divergence for 

different proteins are likely (see below and also references 293,425). Further characterization 

of the natural diversity of picornavirus species, including the surveillance of novel hosts, 

could address this important aspect of the species delimitation in the GENETIC 

classification. 

The existence of a species threshold on intragroup genetic divergence must be 

rationalized mechanistically. It may be a manifestation of speciation due to changes 

accumulated in either conserved proteins or other elements encoded in the picornavirus 

genome. To discuss the alternatives, it is important to recall that the divergence is a net 

result of contributions from several sources, including mutation and homologous 

recombination. Although both promote diversity increase, they act in opposite directions 

concerning progeny divergence: on average, the progeny of two lineages diverged by 

mutation will be more separated than their parents, while those generated through 

homologous recombination of parents will be closer to each other than to their parents305. In 

other words, recombination limits the maximum genetic divergence in an asexual population; 

without it, the population will evolve into separate, more distantly related lineages after a 

sufficient time. 

The inferred species threshold reflects the maximum amount of accumulated 

genetic differences in the six conserved proteins between two picornaviruses that remains 

compatible with the viability of progeny produced by homologous recombination, as argued 

below. The frequency of homologous recombination depends on the extent of base pairing, 

with intratypic recombination being most common260,456. Two picornaviruses that are 

separated by a distance approaching the species threshold would retain only relatively small 

stretches of identical orthologous residues in their genome because the threshold is so high; 

the lack of extensive base pairing should impede homologous recombination. Even if 

recombination happens between these viruses, the resulting chimeric progeny will be viable 

only if the recombinant proteins, which all are essential for virus reproduction, remain 

functional. The protein functionality depends on the intra- and interprotein compatibility of 

lineage-specific mutations that have been accumulated since the divergence of these 

viruses. The mutation spectrum is restricted by so-called epistatic interactions between 

different protein positions420, making mutations outside this spectrum incompatible with the 

protein functioning. As two viruses diverge, they will approach the species distance 

threshold beyond which accumulated mutations may become incompatible with progeny 

viability in any combination that could be generated in the recombinants. In this framework, 

the existence of the species threshold reflects the genetic separation of species. This model 

could be probed in experiments on virus chimeras involving the conserved backbone  
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Figure 4. Phylogeny of rhinoviruses. Shown is an ML phylogeny for 140 rhinoviruses based on the family-wide 

conserved proteins 1B, 1C, 1D, 2C, 3C, and 3D. SH-like support values are shown for basal branching events. Species 

taxa recognized by the GENETIC classification are indicated (see also the Fig. 2 legend). A minimal set of viruses 

sufficient to explain all violating PEDs that exceed the species distance threshold are highlighted by gray dots (see 

Table 2 for details on involved viruses). The scale bar represents 0.1 amino acid substitutions per site on average. 

 

 

proteins. It is predicted that intra- but not interspecies chimeras must be viable. Results 

compatible with this model are available for Human enterovirus C235,238. The viability of 

chimeric progeny may be determined not only by the distance between parents but also by 

the origins of combined parts238, indicating that both reciprocal chimeras must be 

characterized. 

In the alternative model, other elements outside of the conserved proteins could be 

implicated in the control of speciation. These elements include L and 2A proteins, which 

exist in a large variety of molecular forms in picornaviruses7,182,264, or CRE, whose location 

in the genome varies tremendously among picornaviruses81,156,163,182,313,464,485,486, or other 

elements located in the 5′ and 3′ noncoding regions438,481. For a number of picornaviruses, 

the viability of interspecies chimera carrying a noncognate version of either L364 and 2A 

protein303 or CRE464 and IRES304,481 was demonstrated experimentally. Also, several 

picornaviruses with deleted L proteins were found to be viable266,365, which is in line with 

their accessory “security” role in virus replication7. Thus, picornaviruses could accept “gene 

flow” from other species in the case of elements that are not conserved family-wide. 

Consequently, an acquisition or loss or relocation of a nonconserved element by a 
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picornavirus in vivo seems plausible. Furthermore, it is conceivable that such a newly 

acquired element might confer a function that would allow the virus to explore a new niche, 

eventually leading to its reproductive isolation from other lineages; in other words, it would 

trigger speciation. However, this model does not provide a mechanistic explanation for the 

species genetic threshold other than that of the first model (see above). 

Thus, in our opinion, nonconserved and conserved elements of the picornavirus 

genome may play distinct roles in speciation. The clear-cut relation between the species 

delimitation and the discontinuity in the intervirus genetic distance distribution lends support 

to the notion that picornavirus species are biological entities rather than merely operational 

units. 

 

GENETIC classification versus ICTV taxonomy: genus level. The GENETIC 

classification includes a genus level comprising 16 clusters. Eleven of them match ICTV 

genera, two clusters encompass a single genus (Aphthovirus), and three clusters comprise 

recently discovered viruses (Fig. 2 and 3A). The genus Aphthovirus was split into two 

clusters that are formed by the single species Equine rhinitis A virus (ERAV)295 and the two 

species Foot-and-mouth disease virus109,265 and Bovine rhinitis B virus (BRBV)215, 

respectively. The minimum PED of 1.03 between viruses of these two clusters is 

considerably larger than the genus distance threshold of 0.905 and comparable to those 

between the closest virus pairs of other sister genera, e.g., Senecavirus and Cardiovirus or 

Enterovirus and Sapelovirus. In fact, the distance range between viruses of these two 

clusters fits in the limits of the next rank (supergenus) that is considered below. This result 

was also reproduced in classifications of two evaluation data sets282 in which these viruses 

are present but which differed in respect to genome region and virus selection, respectively. 

We note that an L protein variety with a papain-like fold and proteolytic activity that is 

associated with this monophyletic virus group264 could be considered a molecular marker of 

a larger group that also includes the sister genus Erbovirus295,484. Thus, there is a strong 

support for splitting the genus Aphthovirus into two genera in future revisions of taxonomy. 

The three genus clusters that are formed by recently discovered viruses include 

cosaviruses (4 species), seal picornavirus (1 species), and saliviruses (1 species). All genus 

clusters were complete with the exception of Enterovirus (Fig. 3A) resulting in less than 

0.02% (21 out of 152,194) of intragroup PED values that exceed the genus threshold (Table 

2), all involving a single sequence of enterovirus 71 (GenBank accession number, 

AF119795) from HEV-A. Seven out of 16 genera are nonsingletons. Few of these determine 

the genus-specific PED range, which is defined as “interspecies intragenus” genetic 

divergence (Fig. 3A). 

 

GENETIC classification versus ICTV taxonomy: recognition of the new hierarchical 

level supergenus. The GENETIC classification recognizes an additional rank—provisionally 

called supergenus—that has no counterpart in virus taxonomy. The threshold support for 
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this level is the strongest overall282, indicating that it may reflect a clustering that is 

genetically and evolutionary sensible. At this level, we observed five nonsingleton 

supergenera that included more than one genus. They included viruses from 28 species and 

10 genera. Four of these supergenera represented unions of, respectively, Enterovirus with 

Sapelovirus, Cardiovirus with Senecavirus, Hepatovirus with Tremovirus, and Kobuvirus with 

the cluster formed by recently discovered saliviruses (Fig. 2 and 3A). The fifth nonsingleton 

supergenus corresponds to the genus Aphthovirus in the ICTV taxonomy, which is split in 

two genera in the GENETIC classification (see above). The other six supergenera 

accommodate singleton genera, including 10 species in total. Four of these supergenera, 

Avihepatovirus, Erbovirus, Parechovirus, and Teschovirus, include only a single ICTV 

genus. Two supergenera are formed by recently discovered cosaviruses and seal 

picornavirus, respectively. All supergenus clusters are complete with the exception of the 

Enterovirus/Sapelovirus union (Fig. 3A), resulting in less than 0.25% (7 out of 2,814) of 

intragroup PED values that exceed the supergenus threshold (Table 2), all involving a single 

sequence of avian sapelovirus (RefSeq accession NC_006553) from AvSV. The five 

nonsingleton supergenera determine the supergenus-specific PED range, which is defined 

as “interspecies intergenus intrasupergenus” genetic divergence (Fig. 3A). 

 

Multimodality of PED distribution and evolution of picornaviruses. To our knowledge, 

there is nothing in evolutionary theory that would predict the multimodality of the PED 

distribution of conserved proteins for a virus family. However, once observed, it requires an 

(evolutionary) explanation. The model of virus speciation outlined above may explain the 

existence of PED discontinuity in which the species threshold resides. This threshold is 

expected to limit intragroup but not intergroup genetic divergence of lineages once they 

have crossed the threshold. This biological reasoning seems not to be applicable to other 

areas of PED discontinuity that are associated with the genus and supergenus thresholds. 

One plausible explanation for these discontinuities is that they could reflect large-scale 

changes in the rates of birth and death that might have happened across all virus lineages. 

Cellular life forms are known to have gone through alternating periods of both mass birth 

and death across lineages382,416. If ancestral (picorna)viruses followed their hosts, 

alternating peaks and valleys in their PED distribution would reflect periods characterized 

predominantly by virus speciation and extinction, respectively. Thus, the genus and 

supergenus levels determined in this study would correspond to two major waves of 

speciation that are separated by two waves of extinction in the evolution of picornaviruses, 

possibly reflecting changes in the environment. 

 

GENETIC classification and taxonomy of picornaviruses: two different perspectives 

on known and unknown virus diversities. As shown above, there is striking agreement 

between the GENETIC classification and the ICTV taxonomy435 of the Picornaviridae at the 

species and genus levels, with notable differences concerning the recognition of only few 
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taxa. The observed match is nontrivial467, since the underlying decision-making frameworks 

seek to satisfy different criteria. To fully reveal an impact of these criteria in the two 

frameworks, which are either exclusively (DEmARC) or predominantly (ICTV) genetics 

based, we sought to characterize their effect on partitioning the virus diversity, the primary 

target of classification and an important subject of research in virology. To this end, we have 

developed a circular diagram for presenting the classification of a virus family in a graphical 

form (Fig. 5). It depicts the proportions of the intervirus genetic divergence that is partitioned 

and not partitioned by a classification, respectively. The circle radius is defined by the PED 

range observed in the family, with intervirus genetic divergence increasing linearly from the 

perimeter (PED of zero) toward the center of the circle (maximum observed PED). Taxa are 

shown as boxes with heights (in radial dimension) that correspond to the PED range of the 

respective classification level. Species form the most external layer, followed by the genus 

layer, and—for the GENETIC classification—the supergenus layer residing closest toward 

the circle center. Within each taxon, the PED range that has been sampled and not sampled 

is colored according to the coloring scheme for classification ranks (Fig. 3) using bright and 

soft colors, respectively. The PED range that has not been partitioned (yet) by a 

classification (inner part of the circle) is in white. 

To facilitate an unbiased comparison of the genetic foundations of both frameworks 

involving as many taxa as possible, the ICTV taxonomy in Fig. 5 was required to follow the 

GENETIC classification by accepting all taxa containing new viruses and those two 

(Aphthovirus and Human rhinovirus C) that were classified differently. As a result, the 

taxonomy and the GENETIC classification match each other in relation to the virus sampling 

per taxon (Fig. 5A and B, the most external layer) and the species and genus structure. At 

the species level, the PSG applies demarcation criteria that are genus specific and 

determined by the maximum observed intragroup genetic divergence among all sampled 

species of the genus. As a consequence, the limit on intragroup genetic divergence of 

species varies tremendously between genera. Accordingly, in the ICTV diagram only 

species of the same genus have equal heights (Fig. 5A, compare taxa 11.x with 12.x); for 

species that comprise a single virus, the height is nil (no pair is available to produce a PED; 

for instance, taxon 16.1 in Fig. 5A). At the genus level, the PSG does not provide 

demarcation criteria for the quantification of maximum intragroup genetic divergence and 

each genus is demarcated separately, usually by means of standard phylogenetic analyses. 

To reflect this approach, we represented genera as boxes whose heights correspond to the 

maximum observed intragroup genetic divergence (Fig. 5A). For genera comprising a single 

species the height, is nil (see for instance taxon 15.1 in Fig. 5A). In contrast, in the DEmARC 

diagram (Fig. 5B), all species, genus, or supergenus taxa have uniform, level-specific 

heights, since in this framework family-wide limits on intragroup genetic divergence are 

devised (compare for instance taxa 10.1 and 11.1 in Fig. 5B). 

As a consequence of the utilization of family-wide demarcation thresholds, the 

DEmARC framework, compared to that of ICTV, partitions a larger share of the total PED 
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space (compare the sizes of white areas in Fig. 5A and B). Additionally, DEmARC unravels 

the intragroup genetic divergence ranges that might have been reached but remain to be 

described for most taxa (Fig. 5B, soft-colored areas). Such predictions are not available in 

the ICTV framework. The diagrams also reveal that most distant relations of viruses in the 

Picornaviridae remain totally unstructured (Fig. 5A and B, white central area). In the 

DEmARC framework, this area is smaller because it is partially partitioned by supergenera. 

It could be partitioned further if the subfamily level is introduced282. 

 

 
 
Figure 5. Taxonomy diagram and comparison of classification frameworks. Shown is a taxonomy diagram for a 

classification under the ICTV framework (A) and under the DEmARC framework (B). For simplicity, the GENETIC 

classification is visualized in both cases and supergenera are omitted for ICTV. Intervirus genetic divergence (as PED) 

increases linearly (arrow) from the perimeter (PED of zero) toward the center of the circle (maximum PED of 2.78). 

Applied distance thresholds are shown as black dots and the delimited taxa as rectangle-like shapes. Taxa are filled 

using the coloring scheme from Fig. 3; the three basic colors represent the species (orange), genus (blue), and 

supergenus (purple) levels. Each color exists in two shadings that highlight the limit on intragroup genetic divergence 

according to a distance threshold (soft shading) and the maximum observed intragroup genetic divergence (bright 

shading) of a taxon. Outside the circle, the relative density of virus sampling per species is shown as gray shadings 

from low (light) to high (dark) sampling, which is in the range of 1 (least sampled species) to 260 (most sampled 

species). For simplicity, species identities are indicated via a binary system where the first number and the second 

number represent the genus and the species, respectively, as defined in the common legend below the circles. (A) 

ICTV treats each genus independently (different heights of genus shapes) and species must conform to genus-specific 

distance thresholds (equal heights of species shapes only within the same genus). (B) In the DEmARC framework, 

taxa are treated equally at each level and they must conform to family-wide distance thresholds (equal, level-specific 

heights of taxon shapes). The space inside taxon shapes colored in soft shading highlights the genetic diversity that 

may be missed by the current picornavirus sampling, when assuming a universal, level-wide threshold that limits the 

actual diversity of each taxon. 
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Concluding remarks. In a field lacking a gold standard, the striking agreement between the 

GENETIC classification and the expert-based taxonomy263,435 of the Picornaviridae could be 

seen as a cross-validation for both. Of principal importance is that the observed agreement 

implies that genomes may contain necessary and sufficient information to build a 

(picorna)virus taxonomy by using an approach282 that employs a sole (rather than polythetic) 

demarcation criterion. There are additional benefits of the single criterion: its utilization 

provides consistency across all taxa, defines expected divergence ranges for poorly 

sampled taxa, reveals problematic taxa, and makes taxonomy fully genetics based. We 

expect the latter to facilitate the interaction between taxonomy and fundamental and applied 

research. Genetically delimited taxa could be readily targeted for recognition by virus 

diagnostics. Furthermore, the validity of the species threshold could be probed in 

experiments involving homologous recombinants in the backbone genes as well as through 

characterization of the natural virus diversity in already established and newly identified 

picornavirus species. Biological foundations of other, higher-rank thresholds could also be 

addressed. These advancements, combined with the application of DEmARC to other virus 

families, could bring virus taxonomy into the mainstream of research and pave the way to 

ultimately unite it with the taxonomy of cellular life forms. 
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Abstract 
 

Recently, two independent surveillance studies in Côte d’Ivoire and Vietnam, respectively, 

led to the discovery of two mosquito-borne viruses, Cavally virus and Nam Dinh virus, with 

genome and proteome properties typical for viruses of the order Nidovirales. Using a state-

of- the-art approach, we show that the two insect nidoviruses are (i) sufficiently different from 

other nidoviruses to represent a new virus family, and (ii) related to each other closely 

enough to be placed in the same virus species. We propose to name this new family 

Mesoniviridae. Meso is derived from the Greek word ‘‘mesos’’ (in English ‘‘in the middle’’) 

and refers to the distinctive genome size of these insect nidoviruses, which is intermediate 

between that of the families Arteriviridae and Coronaviridae, while ni is an abbreviation for 

‘‘nido’’. A taxonomic proposal to establish the new family Mesoniviridae, genus 

Alphamesonivirus, and species Alphamesonivirus 1 has been approved for consideration by 

the Executive Committee of the ICTV. 
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The order Nidovirales91 includes positive-sense singlestranded RNA (ssRNA+) viruses of 

three families: Arteriviridae140 (12.7–15.7-kb genomes; ‘‘small-sized nidoviruses’’), 

Coronaviridae90 and Roniviridae85 (26.3–31.7 kb; the last two families are jointly referred to 

as ‘‘large-sized nidoviruses’’)174. All other known ssRNA+ viruses have genome sizes below 

20 kb. Recently, two closely related viruses, Cavally virus (CAVV) and Nam Dinh virus 

(NDiV), were discovered by two independent groups of researchers in Côte d’Ivoire in 2004 

and in Vietnam in 2002, respectively336,500. CAVV was isolated from various mosquito 

species belonging to the genera Culex, Aedes, Anopheles and Uranotaenia500. It was most 

frequently found in Culex species, especially Culex nebulosus. Except for Culex 

quinquefasciatus, which circulates worldwide, the other mosquito species are endemic to 

Africa. NDiV was isolated from Culex vishnui, which is endemic to Asia, and Culex 

tritaeniorhynchus, which circulates in Asia and Africa336, and there are indications that it may 

infect more mosquito species (Nga, unpublished data). Analysis of abundance patterns of 39 

CAVV isolates in different habitat types along an anthropogenic disturbance gradient has 

indicated an increase in virus prevalence from natural to modified habitat types243. A 

significantly higher prevalence was found especially in human settlements. Analysis of 

habitat-specific virus diversity and ancestral state reconstruction demonstrated an origin of 

CAVV in a pristine rainforest with subsequent spread into agriculture and human 

settlements500. Notably, it was shown for the first time that virus diversity decreased and 

prevalence increased during the process of emergence from a pristine rainforest habitat into 

surrounding areas of less host biodiversity due to anthropogenic modification500. Both 

viruses were propagated in Aedes albopictus cells and characterized using different 

techniques. A number of common properties place CAVV and NDiV in the order Nidovirales. 

These properties include (i) the genome organization with multiple open reading frames 

(ORFs), (ii) the predicted proteomes (Fig. 1), (iii) the production of enveloped, spherical 

virions, and (iv) the synthesis of genome-length and subgenome-length viral RNAs in 

infected cells336,500. Particularly, the two viruses were found to encode key molecular 

markers characteristic of all nidoviruses: a 3C-like main protease (3CLpro, also known as 

Mpro) flanked by two transmembrane (tM) domains encoded in replicase ORF1a, as well as 

an RNA-dependent RNA polymerase (RdRp) and a combination of a Zn-binding module 

(Zm) fused with a superfamily 1 helicase (HEL1) encoded in ORF1b. As in other nidovirus 

genomes, ORFs 1a and 1b were found to overlap by a few nucleotides in both CAVV and 

NDiV. The ORF1a/1b overlap region includes a putative -1 ribosomal frameshift site (RFS) 

that is expected to direct the translation of ORF1b by a fraction of the ribosomes that start 

translation at the ORF1a initiation codon. Thus, a frameshift just upstream of the ORF1a 

termination codon mediates the production of a C-terminally extended polyprotein jointly 

encoded by ORF1a and ORF1b. Combined, these markers form the characteristic nidovirus 

constellation: tM-3CLpro-tM_RFS_RdRp_Zm-HEL1 (Fig. 1)91,174. Likewise, virion proteins 

are encoded in ORFs that are located downstream of ORF1b and expressed from a set of 

subgenomic mRNAs.  
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Figure 1. Genome organization of mesoniviruses. The coding and 5’- and 3’-untranslated regions of the genome 

are represented, respectively, by the outer rectangle and horizontal lines. ORFs are shown as open rectangles and are 

arranged in three reading frames (-1, 0, +1) relative to that of ORF1a. ORF1a- and ORF1b-encoded protein domains 

identified by bioinformatics analysis (see ref. 336) are highlighted in grey. The predicted location of -1 ribosomal 

frameshift signals are indicated by a black dot. The genome organization is shown for NDiV but is virtually identical to 

that of CAVV except for the reading frame of some ORFs (see Table 1). 

 

 

No similarities were found between the (putative) structural proteins of CAVV and NDiV and 

those of other nidoviruses336,500. The most distinctive molecular characteristic of CAVV and 

NDiV, however, is the ~20-kb genome size, that is intermediate between the size ranges of 

small-sized and large-sized nidovirus genomes. Consequently, each of the two viruses has 

been proposed to prototype a new nidovirus family336,500. 

In this study, we compared the genomes of CAVV (GenBank accession number 

HM746600) and NDiV (GenBank accession number DQ458789) to assess their relationship 

and use this insight for taxonomic classification of these viruses. To date, only very limited 

biological information is available for CAVV and NDiV (see above), and in general, biological 

properties may be affected profoundly by a few changes in the genome. In view of these 

considerations and in line with the accepted taxonomic approach to viruses of the family 

Coronaviridae90, comparative sequence analysis was considered the most reliable basis for 

classification. The overall similarity between the CAVV and NDiV genomes was found to be 

strikingly high: nearly identical sizes (20,187 and 20,192 nt, respectively), conservation of 

ORFs with sequence identities ranging from 87.8 to 96.1% at the amino acid level and from 

88.3 to 93.7% at the nucleotide level (Table 1). Given this high similarity, prior assignments 

of domains and genetic signals were cross-checked to produce a unified description. 

There was complete agreement between the two studies336,500 on the mapping of 

all nidovirus-wide conserved domains in CAVV and NDiV, as well as on the identification of 

GGAUUUU as a plausible slippery sequence in RFS (see above). Additionally, our analysis 

showed that the NDiV-based assignment336 of 3’-to-5’ exoribonuclease (ExoN) and 2’-O-

methyltransferase (OMT), two replicative domains characteristic for large-sized 

nidoviruses174, and N7-methyltransferase (NMT)73 in ORF1b extends to CAVV. Likewise, 

CAVV may lack a uridylate-specific endonuclease (NendoU), as has previously been 

observed for NDiV336. The synthesis of subgenomic RNAs from which ORFs 2a to 4 are 

predicted to be expressed appears to be controlled by transcription-regulating sequences 

(TRSs)136,353,408 identified upstream of ORF2a/2b, ORF3a and ORF4 (collectively designated 
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as body TRSs). Other putative TRSs were identified downstream of the leader region 

located at the 5’-end of the viral genome336,500. Unique among nidoviruses, NDiV and CAVV 

may use different leader TRSs during the synthesis of different subgenomic RNAs, although 

further analysis is required to clarify the basis for some discrepancies between the TRS 

assignment in NDiV and CAVV. Also, it remains to be shown why the high sequence 

conservation of virion proteins of the two viruses (Table 1) was not manifested in the 

morphology observed upon EM analysis of virus particles336,500. In this respect, it may be 

relevant that Zirkel et al.500 noticed two types of particles in CAVV-infected cells, one of 

which carried club-shaped surface projections compatible with viral glycoproteins. This latter 

type of particles was also observed in infected cell culture supernatant. Ultimately, the origin 

of the particles of both types, and their relationship to the particles isolated from the medium 

of NDiV-infected C6/36 cells by Nga et al.336 should be revealed by future research efforts. 

Furthermore, we evaluated the phylogenetic position of CAVV and NDiV in relation 

to other nidoviruses. We conducted a phylogenetic analysis as described in ref. 336. The 

study indicates that CAVV and NDiV consistently, albeit very distantly, cluster with viruses of 

the family Roniviridae, the only other known nidoviruses infecting invertebrates (Fig. 2). 

Quantitatively, this Bayesian posterior probability phylogeny illustrates that CAVV and NDiV 

form a deeply rooted lineage in the nidovirus tree with an evolutionary divergence from other 

nidoviruses comparable to that separating viruses of the families Coronaviridae and 

Roniviridae (Fig. 2). Together, these characteristics of CAVV and NDiV (insect host, 

intermediate genome size, deeply rooted phylogenetic lineage) provide a compelling basis 

for the creation of a new nidovirus family. We propose to name this new family 

Mesoniviridae, where meso is derived from the Greek word ‘‘mesos’’ (in English ‘‘middle’’ or 

‘‘in the middle’’) and refers to a key distinctive characteristic of these viruses, namely their 

intermediate-sized genomes. The second component of the acronym, ni, refers to 

nidoviruses, as has been done previously for roniviruses84 and bafiniviruses414. 

 

 
Table 1. Comparison of ORFs in the genome of NDiV and CAVV. 

 Length [nt]  Framea Identity [%]b  

 NDiV CAVV  NDiV CAVV nt aa Predicted protein 

ORF1a 7509 7497  0 0 88.3 90.0 Polyprotein 1a 

ORF1b 7587 7587  -1 -1 92.6 96.1 1b part of polyprotein 1ab 

ORF2a 2697 2700  -1 -1 90.7 87.5 Spike 

ORF2b 636 642  +1 +1 88.8 90.2 Nucleocapsid 

ORF3a 474 474  -1 +1 91.1 93.0 Membrane 

ORF3b 348 348  0 -1 93.7 90.5 Membrane 

ORF4 135 147  +1 -1 89.9 87.8 Unknown 

 

ORF designations according to Table 2 in ref. 500 
a Reading frame relative to that of ORF1a 
b Pairwise nucleotide (nt) and amino acid (aa) sequence identity between NDiV and CAVV 
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Figure 2. Phylogenetic position of CAVV and NDiV. To infer phylogenetic relationships of Nam Dinh virus isolate 

02VN178 (NDiV), Cavally virus isolate C79 (CAVV) (arrow) and other nidoviruses, a partially constrained tree was 

calculated using a concatenated alignment of the three nidovirus-wide conserved domains and a set of viruses 

representing currently recognized species. The alignment was produced with Muscle version 3.52126 in the Viralis 

platform183, and the phylogenetic analysis was performed using BEAST version 1.4.7119. For further details, see ref. 336. 

Numbers indicate posterior probability support values (on a scale from 0 to 1); all internal nodes for which no support 

value is provided have been fixed in the analysis based on prior analyses of nidovirus subsets (data not shown). The 

scale bars represent the average number of substitutions per amino acid position. The tree was rooted on the 

arterivirus branch. Virus names and GenBank/Refseq accession numbers: lactate dehydrogenase- elevating virus 

(LDV; U15146), porcine respiratory and reproductive syndrome virus European type (PRRSV-LV; M96262), porcine 

respiratory and reproductive syndrome virus North American type (PRRSV-NA; AF176348), simian hemorrhagic fever 

virus (SHFV; NC_003092), equine arteritis virus (EAV; AY349167), Nam Dinh virus (NDiV; DQ458789), Cavally virus 

(CAVV; HM746600), gill-associated virus (GAV; AF227196), yellow head virus (YHV; EU487200), human coronavirus 

HKU1 (HCoV-HKU1; AY884001), human coronavirus OC43 (HCoV-OC43; AY585228), mouse hepatitis virus (MHV; 

AY700211), Pipistrellus bat coronavirus HKU5 (Pi-BatCoV-HKU5; EF065509), Tylonycteris bat coronavirus HKU4 (Ty-

BatCoV-HKU4; EF065505), Rousettus bat coronavirus HKU9 (Ro-BatCoV-HKU9; EF065513), SARS coronavirus 

(SARS-HCoV; AY345988), feline coronavirus (FCoV; NC_007025), Miniopterus bat coronavirus 1A (Mi-BatCoV-1A; 

NC_010437), Miniopterus bat coronavirus HKU8 (Mi-BatCoV-HKU8; NC_010438), porcine epidemic diarrhoea virus 

(PEDV; NC_003436), Scotophilus bat coronavirus 512 (Sc-BatCoV-512; DQ648858), human coronavirus NL63 

(HCoV-NL63; DQ445911), human coronavirus 229E (HCoV-229E; NC_002645), Rhinolophus bat coronavirus HKU2 

(Rh-BatCoV-HKU2; NC_009988), beluga whale coronavirus SW1 (BWCoV; EU111742), avian infectious bronchitis 

virus (IBV; NC_001451), equine torovirus (EToV; X52374), bovine torovirus (BToV; NC_007447), white bream virus 

(WBV; NC_008516). 
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Next, we sought to establish species demarcation criteria to decide whether CAVV 

and NDiV prototype separate species or belong to a single species. Commonly, this 

question cannot be answered (reliably) on the basis of only two full genome sequences and 

otherwise very limited biological data. To solve this dilemma, we exploited information 

available for other nidoviruses in our analysis. In order to evaluate the genetic similarity 

between CAVV and NDiV in the context of sequence divergence of lineages representing 

previously established nidovirus species, we applied a state-of-the-art framework for a 

genetics-based classification282. This recently introduced classification approach has been 

shown to recover and refine the taxonomy of picornaviruses283, and it was also used to 

revise the taxonomy of coronaviruses extensively (Lauber & Gorbalenya, in preparation)90. 

In addition to CAVV and NDiV, a representative set of 152 large-sized nidoviruses was 

included in the analysis. Two sets of proteins were used: the first included proteins 

conserved in all nidoviruses (3CLpro, RdRp, HEL1) (dataset D1), while the second set 

additionally included ExoN and OMT, which are conserved in large-sized nidoviruses and 

CAVV/NDiV (dataset D2). For both datasets a concatenated, multiple amino acid alignment 

was produced, which formed the basis for compiling pairwise evolutionary distances (PEDs) 

between all pairs of viruses (Fig. 3ab; for details see ref. 282). It was found that the PED 

separating CAVV and NDiV is within the range of intra-species virus divergence in the 

families Coronaviridae and Roniviridae for both datasets (Fig. 3cd). Specifically, CAVV and 

NDiV show a distance (0.016 and 0.029 for D1 and D2, respectively) that is below the 

genetic divergence of members of several established nidovirus species (maximum of 0.032 

and 0.037 for D1 and D2, respectively). For both datasets, these viruses include gill-

associated virus and yellow head virus (species Gill-associated virus, family Roniviridae)85 

and the coronaviruses feline coronavirus, transmissible gastroenteritis virus, and porcine 

respiratory coronavirus (species Alphacoronavirus 1), IBV (species Avian coronavirus), 

murine hepatitis virus (species Murine coronavirus), and Rousettus bat coronavirus HKU9 

(species Rousettus bat coronavirus HKU9)90. For the dataset comprising the three nidovirus-

wide conserved proteins (Fig. 3ac), Miniopterus bat coronavirus 1 also showed a maximum 

genetic divergence exceeding that of the CAVV-NDiV pair. Together, these observations 

show that CAVV and NDiV belong to the same species, representing a single genus in the 

family. We propose to name this genus Alphamesonivirus and the species Alphamesonivirus 

1, thereby following a naming convention recently applied to the subfamily Coronavirinae90, 

which is expected to facilitate the accommodation of future expansions of the family. A 

taxonomic proposal for family, genus, and species recognition has been available on-line at 

the ICTV website (http://talk.ictvonline.org/files/proposals/taxonomy_proposals_ 

invertebrate1/ m/default.aspx) since August 2011. It has been approved by the chairs of the 

ICTV Arteriviridae, Coronaviridae, and Roniviridae Study Groups and the Executive 

Committee of the ICTV, and will be considered again at the next EC-ICTV meeting, to be 

held in Leuven, Belgium, in July 2012. 
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Figure 3. Evolutionary distance between CAVV and NDiV in relation to intra-species genetic divergence in 

large-sized nidoviruses. Multiple amino acid alignments for 154 nidoviruses with large genomes (all major nidovirus 

lineages except arteriviruses) comprising three nidovirus-wide conserved protein domains (a, c) or five domains 

conserved in all large-sized nidoviruses (b, d) were used to compile pairwise evolutionary distances (PEDs) between 

all virus pairs. These distances are shown as frequency distributions (a, b), and zoom-ins on small distances are 

provided (c, d). The PED between CAVV and NDiV (indicated by the arrow) is well within the intra-species distance 

range of other nidoviruses. Several currently recognized nidovirus species show a maximum genetic divergence larger 

than that of the CAVV-NDiV pair (see text). 

 

 

The recognition of CAVV and NDiV as a single virus species can be contrasted 

with the detection of these viruses in many mosquito host species and their spread to 

different continents (Africa and Asia, respectively)336,500. The underlying mechanisms of this 

broad dispersal are unknown but might include the crossing of the host species barrier 

rather than virus-host cospeciation. Further research, including the characterization of 

biological properties of CAVV and NDiV and the extension of surveillance studies to other 

regions of the world, is needed to understand the ecology, host tropism and medical and/or 

economic relevance of mesoniviruses. 
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Abstract 
 

Nidoviruses with large genomes (26.3–31.7 kb; ‘large nidoviruses’), including Coronaviridae 

and Roniviridae, are the most complex positive-sense single-stranded RNA (ssRNA+) 

viruses. Based on genome size, they are far separated from all other ssRNA+ viruses 

(below 19.6 kb), including the distantly related Arteriviridae (12.7–15.7 kb; ‘small 

nidoviruses’). Exceptionally for ssRNA+ viruses, large nidoviruses encode a 3′-

5′exoribonuclease (ExoN) that was implicated in controlling RNA replication fidelity. Its 

acquisition may have given rise to the ancestor of large nidoviruses, a hypothesis for which 

we here provide evolutionary support using comparative genomics involving the newly 

discovered first insect-borne nidovirus. This Nam Dinh virus (NDiV), named after a 

Vietnamese province, was isolated from mosquitoes and is yet to be linked to any pathology. 

The genome of this enveloped 60–80 nm virus is 20,192 nt and has a nidovirus-like 

polycistronic organization including two large, partially overlapping open reading frames 

(ORF) 1a and 1b followed by several smaller 3′-proximal ORFs. Peptide sequencing 

assigned three virion proteins to ORFs 2a, 2b, and 3, which are expressed from two 3′-

coterminal subgenomic RNAs. The NDiV ORF1a/ORF1b frameshifting signal and various 

replicative proteins were tentatively mapped to canonical positions in the nidovirus genome. 

They include six nidovirus-wide conserved replicase domains, as well as the ExoN and 2′-O-

methyltransferase that are specific to large nidoviruses. NDiV ORF1b also encodes a 

putative N7-methyltransferase, identified in a subset of large nidoviruses, but not the 

uridylate-specific endonuclease that – in deviation from the current paradigm - is present 

exclusively in the currently known vertebrate nidoviruses. Rooted phylogenetic inference by 

Bayesian and Maximum Likelihood methods indicates that NDiV clusters with roniviruses 

and that its branch diverged from large nidoviruses early after they split from small 

nidoviruses. Together these characteristics identify NDiV as the prototype of a new nidovirus 

family and a missing link in the transition from small to large nidoviruses. 
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Author Summary 
 

Research in virology is driven towards the characterization of a limited number of 

socioeconomically important pathogens, mostly those infecting humans. Yet, 

characterization of other viruses may advance our understanding of these topical pathogens 

and the fundamentals of virology. Here we describe the discovery of a virus of unknown 

clinical relevance that has many remarkable features. The virus was coined Nam Dinh virus 

(NDiV) after a Vietnamese province. It is a mosquito-borne virus with a 20.2 kilobase 

genome, the largest among non-segmented single-stranded RNA viruses of insects. 

Employing bioinformatics tools, we show that NDiV prototypes a new family and is a missing 

evolutionary link connecting the distantly related nidoviruses with small and large genomes, 

including important and diverse pathogens such as porcine respiratory and reproductive 

syndrome virus (~15-kilobase genome) and SARS coronavirus (~30 kilobases), respectively. 

NDiV and large nidoviruses form a phylogenetic cluster and share a set of core replicative 

enzymes. They exclusively encode an exoribonuclease that presumably controls replication 

fidelity. Its acquisition may have promoted the emergence of viruses with single-stranded 

RNA genomes larger than ~20 kilobases. This study highlights the benefits of broad virus 

discovery efforts for fundamental and applied research. 

 

 

Introduction 
 

Viruses employing positive-sense, single-stranded RNA genomes (ssRNA+) form the most 

abundant class and its members are known to infect all types of hosts except Archaea. They 

have evolved genome sizes in the range of ~3.0 to 31.6 kb (Fig. 1). This size range is the 

largest among those of the different classes of RNA viruses, although it is small compared to 

those of DNA viruses and cellular organisms. These profound genome size differences 

between RNA and DNA life forms are inversely correlated with mutation rates, which are 

highest in RNA viruses, thought due to the lack of proofreading during replication117,236,404. 

Recently, the molecular basis of the relation between RNA virus genome sizes and 

mutation rates has been revisited in studies of nidoviruses with large genomes (“large 

nidoviruses”). These viruses, with genomes of 26.3 to 31.6 kb, include the Coronaviridae 

and Roniviridae families and are at the upper end of the RNA virus genome size range174. 

They are uniquely separated from other ssRNA+ viruses (3.0–19.6 kb genomes), including 

the distantly related Arteriviridae family (12.7–15.7 kb genomes; “small nidoviruses”) with 

which they form the order Nidovirales174,316,360. The order includes five major lineages of 

viruses that infect vertebrate and invertebrate hosts. Their complex genetic architecture 

includes multiple open reading frames (ORFs) that are expressed by region-specific 

mechanisms. The first two regions are formed by the two 5′-most and partially overlapping 

ORFs, ORF1a and ORF1b, which are translated from the genomic RNA to produce 
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polyproteins 1a (pp1a) and pp1ab. The expression level of ORF1b is downregulated relative 

to that of ORF1a by the use of the ORF1a/1b ribosomal frameshifting signal54,366. Both pp1a 

and pp1ab are autoproteolytically processed by ORF1a-encoded proteases to yield 

numerous products that control genome expression and replication498. The third, 3′-located 

region of the nidovirus genome includes multiple smaller ORFs (3′ORFs), although the 

number of these ORFs varies considerably among nidoviruses. These genes are expressed 

from 3′-coterminal subgenomic mRNAs to produce the structural proteins incorporated into 

the enveloped nidovirus particles and, optionally, other proteins modulating virus-host 

interactions53,136,353,408. With the exception of a few nidoviruses, the subgenomic and 

genomic mRNAs are also 5′-coterminal. A mechanism of discontinuous negative-stranded 

RNA synthesis, yielding the templates for subgenomic mRNA production, is thought to 

control this mosaic structure of nidovirus mRNAs. The synthesis of subgenome-length 

negative stranded RNAs is guided by short transcription-regulating sequences (TRSs) – 

located in the common “leader sequence” (near the genomic 5′ end) and in each “mRNA 

body” (upstream of the expressed ORFs) - that share a conserved core sequence and flank 

the genome region that is not present in the respective subgenomic mRNAs. 

The nidovirus ORF1b encodes key replicative enzymes whose number and type 

vary between the major nidovirus lineages. They invariably include an RNA-dependent RNA 

polymerase (RdRp) and a superfamily 1 helicase (HEL1)169, which are most common in 

other RNA viruses, and several other RNA-processing enzymes that are either unique to 

nidoviruses (uridylate-specific endonuclease (NendoU) and 3′-to-5′exoribonuclease (ExoN)) 

or rarely found outside nidoviruses (2′-O-methyltransferase (OMT);174). Among these 

enzymes, the ExoN domain has properties that are most relevant for understanding the 

relation between genome size and mutation rate in RNA viruses. 

Bioinformatics-based analysis originally identified the ExoN domain only in the 

genomes of large nidoviruses and mapped it in the vicinity of HEL1, a key replicative 

enzyme432. It also revealed a distant relationship between ExoN and a cellular DNA-

proofreading enzyme. Based on these observations, nidoviruses were proposed to have 

acquired ExoN to control the replication fidelity of their expanding genome432. The enzymatic 

activities of ExoN were subsequently verified and detailed in biochemical studies72,323. 

Likewise, and in line with the expectations, ExoN-inactivating mutations were shown to 

decrease RNA replication fidelity by ~15–20 fold in two coronaviruses, mouse hepatitis virus 

(MHV) and SARS coronavirus (SARS-CoV), while only modestly affecting virus 

viability123,124. These results strongly support a critical role of ExoN in the control of 

replication fidelity of large nidoviruses, although more mechanistic insight is clearly required 

before the current paradigm connecting RNA virus mutation rates and genome size control 

could be definitively revised to include proof-reading during the replication of large RNA 

genomes99. 

Major advancements toward this goal are expected to come from studies of the 

structure and function of ExoN, which aim to elucidate the molecular mechanism of its 
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action. In addition, genomics studies could contribute to this quest by providing insights into 

the role of ExoN in RNA virus evolution. Accordingly, if ExoN was acquired to ensure the 

expansion of RNA genomes beyond a certain size, we may expect (i) a genome size 

threshold that separates RNA viruses with and without ExoN; (ii) all nidoviruses with 

genome sizes above this threshold to encode ExoN; and (iii) no other domain than ExoN to 

correlate, functionally and phyletically, with genome size control in large nidoviruses. 

In this respect, the characterization of nidoviruses with a genome size in the gap 

that currently separates small and large nidoviruses should, in theory, be particularly 

insightful. However, whether these viruses actually exist has thus far remained an open 

question. Three considerations suggest that if nidoviruses with intermediate-sized genomes 

ever evolved they may already have gone extinct. First, it is recognized that the evolution of 

RNA viruses is characterized by a high birth-death rate and the extinction of numerous virus 

lineages, resulting in the fast turnover of species217. Secondly, the genome size gap 

between large nidoviruses and all other known ssRNA+ viruses has existed without 

exception since genome sequencing began in the 1980s. As of the late 1980s, this gap has 

been bordered by closteroviruses (from the bottom) and nidoviruses (from the top) (Fig. 1). 

Likewise and thirdly, all nidovirus genomes sequenced to date have sizes that are similar to 

either IBV (27,600 nt)49 or EAV (12,700 nt)98, which were the first fully sequenced 

coronavirus and arterivirus genomes, respectively. The evident under-representation of RNA 

viruses with relatively large genomes is even more striking in the light of the continuous flow 

of newly identified ssRNA+ viruses with smaller genome sizes32 (Fig. 1). 

In sharp contrast to these considerations and prior observations, we here report the 

discovery of a nidovirus with a genome size that is intermediate between those of small and 

large nidoviruses. This elusive and precious evolutionary link is an insect-borne virus with 

the largest ssRNA+ genome for any insect virus known to date. Comparative genome 

analyses involving this newly identified virus provide evolutionary evidence for the 

acquisition of the ExoN domain by a nidovirus (ancestor) with a genome size in the range of 

~16–20 kb. This range appears to define the size limit for the expansion of ssRNA+ virus 

genomes, which may be achieved in evolution without the recruitment of a specialized 

enzyme that controls replication fidelity. Furthermore, we found that two other replicative 

enzymes, N7-methyltransferase (NMT) and NendoU, are not encoded by toroviruses and 

invertebrate nidoviruses, respectively, indicating that they may contribute “optional activities” 

for the nidovirus replication machinery. Together our results highlight the broad benefits of 

virus discovery efforts applied to mosquitoes. 
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Figure 1. Distribution of positive-sense single-stranded RNA virus genome sizes. The Coronaviridae is split into 

the corona- and toro-/bafinivirus groups. Prefix Nido- and Picorna- are for Nidovirales and Picornavirales, respectively. 

Group specific box-whisker plots are aligned along the X-axis by their medians (bold line) normalized to zero. The box 

spans from the first to third quartile; the whiskers (dashed lines) are <1.5 times the inter-quartile range; outliers are 

circles. Families/groups are ranked by median genome size along Y-axis. Genome size ranges are colored by semi-

circles: nidoviruses (dark orange), other classified (dark grey) and unclassified viruses (light grey). Three non-

overlapping zones regarding the presence of the exoribonuclease (ExoN) are highlighted in the genome size 

distribution (from top to bottom): ExoN-encoding large nidoviruses and NDiV (light green); in-between not-sampled size 

zone (white); ExoN-lacking ssRNA+ viruses (light blue). 
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Results 
 

Virus field study. In Vietnam, between 2,000 and 3,000 cases of acute encephalitis 

syndrome (AES) are reported annually, of which about 40% are confirmed to be associated 

with Japanese encephalitis virus (JEV). The etiological agent(s) in the other 60% of cases 

remains unknown335, but they share demographic characteristics and seasonality with the 

JEV cases. Hence, the involvement of other arboviruses in non-JE AES was postulated and 

the virus described in this paper was identified in search of such pathogens, which may 

infect both humans and mosquitoes. 

During continued JEV surveillance between September 2001 and December 2003, 

359 pools containing one of six mosquito species (see Materials and Methods) were 

collected indoors in Northern and Central Vietnam at one- to three-month intervals. The 

study areas included Hanoi and other cities located in the provinces of Ha Nam 

(Chuyenngoan, Mocbac), Ha Tay (Catque, Phuman and Chuongmy), Nam Dinh, and Quang 

Binh (Fig. 2). The majority of Catque inhabitants are farmers who cultivate rice in watered 

paddy fields and raise pigs. Phuman and Quangbinh, however, are highlands. 

 

 

 
 
Figure 2. Map of the Vietnam provinces, where mosquito surveillance was conducted between 2001 and 2003. 
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Discovery of the first mosquito-borne nidovirus having an intermediate genome size. 

Mosquito pools were tested for the presence of viruses using infection of different cell lines 

as a read-out assay. Homogenates that were prepared from some pools containing Culex 

tritaeniorhynchus and Culex gelidus induced cytopathic effects in the C6/36 mosquito cell 

line. Most of these were attributed to JEV (24 different strains; data not shown), but for 10 

specimens a routine laboratory screening for JEV and other circulating flaviviruses (such as 

Dengue and West Nile viruses) by RT-PCR and/or serology yielded negative results. 

Subsequently, infected culture fluid (ICF) from cells infected with unknown agents 

were analyzed by electron microscopy, which revealed an enveloped virus with a diameter 

of 60–80 nm (Fig. 3A). This virus was named Nam Dinh virus (NDiV), after the geographic 

locality of its first apparent isolation, although this origin could not be confirmed later on. 

However, for historical reasons, this name was retained for all subsequent isolates, and the 

analysis of one of those (02VN178) is described here. NDiV was identified in four mosquito 

pools, two from Culex vishnui and two from Culex tritaeniorhynchus, collected in two other 

provinces of Vietnam (Table 1). PCR amplification using virus-specific primers to an ORF1b 

region (see below) was employed to verify the presence of NDiV in the mosquito samples, 

but to date no other insects have been probed for the presence of the virus. It also remains 

to be investigated whether NDiV causes disease in susceptible hosts and whether it may 

infect humans. 

Purified NDiV was used for virion protein analysis (Fig. 3B) and genome 

sequencing (Fig. S1; Materials and Methods). In silico translation of the unsegmented, 

20,192 nt-long NDiV genome (GenBank accession number DQ458789) indicated that it 

contained at least six ORFs: ORF1a (nt 361–7869), ORF1b (7830–15635), ORF2a (15660–

18356), ORF2b (15674–16309), ORF3 (18402–18875) and ORF4 (18754–19101) (Fig. 3D). 

The region encompassing ORFs 3 and 4 also contains a few smaller potential ORFs. The 

coding region of the genome is flanked by a 5′-untranslated region (UTR) (1–360) and a 3′-

UTR (19102–20192), with the latter being followed by a poly(A) tail. The 5′-UTR includes two 

AUG codons indicating that translation initiation for ORF1a/ORF1b is likely mediated by 

another mechanism than ribosomal scanning. Three pairs of ORFs (1a–1b, 2a–2b, and 3–4) 

overlap to variable degrees; particularly, ORF1b overlaps ORF1a in the −1 frame (Fig. 3D; 

see also below). Overall, these results showed that NDiV is an insect-borne ssRNA+ virus 

with the largest genome known so far - twice the size of the next largest one, which is the 

genome of the Iflavirus Brevicoryne brassicae picorna-like virus400 (Fig. 1). 

The NDiV genome organization most closely resembles that of nidoviruses, the 

only group of ssRNA+ viruses that includes representatives with genomes larger than that of 

NDiV. This putative relationship was subsequently verified in experimental and 

bioinformatics analyses of the function and expression of the 3′-ORFs region and in 

bioinformatics analyses of ORF1a and ORF1b, as described below. The latter studies also 

provided insights into the evolution and molecular biology of other nidoviruses. 
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Figure 3. NDiV characteristics. (A) Electron micrograph of negatively stained NDiV virions. (B) SDS-PAGE analysis 

of NDiV virion proteins. (C) Detection of NDiV genomic (mRNA1) and subgenomic mRNAs (mRNAs 2 and 3) by 

Northern blot hybridization analysis of total intracellular RNA from virus-infected cells, using a radiolabeled probe 

complementary to the 3′end of the NDiV genome. (D) NDiV genome organization and expression. Open reading 

frames (ORFs) are represented by open rectangles and ORF1a- and ORF1b-encoded protein domains identified by 

bioinformatics analyses (see Table 2) are highlighted in grey. Peptide sequences of virion proteins were determined as 

described in the Materials and Methods section and mapped to the products of ORFs 2a, 2b, and 3 (bottom-right). N-

terminal protein sequences are indicated by (*), other peptide sequences indicate inner sequences. The actual 

molecular size of the ORF2a product (approximately 77 KDa in SDS-PAGE in B) is considerably shorter than the 

calculated size (102 KDa), suggesting that p2a may be post-translationally proteolytically processed or that its 

translation starts at another AUG codon in the ORF. Two pairs of conserved potential TRSs – for sg mRNAs 2 and 3, 

respectively - were identified in the NDiV genome and aligned (bottom-left), with each pair consisting of a putative 

leader TRS in the 5′-UTR and a body TRS in the 3′-proximal region of the genome. Between these TRS pairs, eight 

and three positions include complete match (*) and nucleotide overlap (:), respectively. 
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Table 1. Mosquito pools collected in Vietnam from which NDiV was isolated. 

poola location month Species quantityb 

02VN009  Ha Tay   Mar  Culex vishnui 25  

02VN018  Quang Binh  Mar  Culex vishnui 170  

02VN178  Quang Binh  Aug  Culex tritaeniorhynchus 102  

02VN180  Quang Binh  Aug  Culex tritaeniorhynchus 83  
a 359 mosquito pools were collected between Sep. 2001-Dec.2003. The four pools listed in the table were collected in 

2002 and infected also with Banna virus. 
b number of mosquitoes in each pool. 

 

 

Function and expression of the 3′-ORFs region. Three virion proteins, p2a, p2b, and p3, 

were assigned to ORFs 2a, 2b, and 3, respectively, by peptide sequencing analysis (Fig. 

3D). No significant similarity was found between these ORFs of NDiV and proteins of other 

origin in BLAST-mediated searches11. The p2b protein is highly hydrophilic and enriched 

with proline (7.5%) and acidic residues (17.8%), and – relative to other virion proteins – with 

basic residues (7.9%) making it a potential nucleocapsid (N) protein. The p2a and p3 

proteins, and the putative protein encoded in ORF4 (p4) contain, respectively, six, two, and 

two stretches of hydrophobic residues indicative of transmembrane helices (Fig. S2). These 

proteins also include, respectively, twelve, two, and three potential N-linked glycosylation 

signals (NXS/T), and fifteen, six, and four cysteine residues that might form disulfide bridges 

at locations flanked by hydrophobic regions. These characteristics are typical for 

glycoproteins of other RNA viruses. Based on size considerations, the largest protein, p2a, 

might be an equivalent of the spike (S) protein, while p3 and/or p4 might be a smaller 

glycoprotein and an equivalent of the membrane (M) protein of nidoviruses. 

We also asked whether NDiV resembles other nidoviruses in using subgenomic 

mRNAs for expressing the 3′-end ORFs located downstream of ORF1b. First, we attempted 

to identify potential TRS motifs in the viral genome sequence, which were expected to reside 

in the 5′-UTR as well as in the regions immediately upstream of ORF2a, 3, and 4. Although 

no common repeats larger than six nucleotides were identified in these four areas, we 

noticed the presence of two pairs of near-perfect repeats: the first pair located in the 5′-UTR 

(nt 26–40 of the genome) and the region upstream of ORF3 (14 out of 15 residues are 

identical), and the second pair encompassing nt 125–137 of the 5′-UTR and a sequence 

immediately upstream of ORF2a/2b (12 out of 13 residues are identical) (Fig. 3D). The two 

pairs share from ~43 to 52% pair-wise sequence identity in an alignment containing a single 

gap (Fig. 3D), and no other repeats of comparable or larger size were found in the analyzed 

areas. The locations and sizes of these repeats suggest they are TRS signals, although no 

candidate TRS was identified immediately upstream of ORF4; to our knowledge, the use of 

two alternative leader TRSs has not been observed in other nidoviruses thus far. These 

observations suggested that NDiV uses at least two subgenomic mRNAs for the expression 

of the 3′-located ORFs and that these mRNAs have 5′-terminal sequences of different size in 

common with the viral genome. 
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Figure 4. ORF1a/ORF1b ribosomal frameshifting in the NDiV genome. (A) The nucleotide alignment around the 

open reading frame (ORF) 1a/1b ribosomal −1 frameshift (RFS) in 28 nidovirus species. The alignment column marked 

with an arrow indicates the RFS position and precedes a nucleotide which is read twice, as the third nucleotide of an 

ORF1a codon and the first coding nucleotide of ORF1b, respectively. In NDiV this residue is predicted to be located at 

genome position 7851. Numbers flanking the alignment indicate genomic positions. (B) RFS position in the 

ORF1a/ORF1b overlap of nidoviruses. The RFS position in selected nidoviruses is plotted as distances between RFS 

and termination codons flanking ORF1b and ORF1a from upstream and downstream, respectively. In NDiV, the 

predicted RFS (filled triangle) and all other candidate positions are located on black line in the 40 nt ORF1a/ORF1b 

overlap. (C and D) RNA secondary structure of sequence fragments around of the ORF1a/ORF1b overlap in NDiV and 

Red clover necrotic mosaic virus (RCNMV) as predicted by pknotsRG385. The putative slippery sequences are in red 

(see also A). The predicted stem loop in RCNMV closely matches the one presented in 253. 
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To verify this model, we used a P32-labelled probe complementary to the 3′-end of 

the NDiV genome in a Northern blot hybridization with total RNA isolated from NDiV–

infected C6/36 cells (see Materials and Methods; Table S2, and Fig. 3C). This analysis 

revealed three prominent RNA species with apparent sizes of about 20, 4.5, and 1.8 kb, 

which match those expected for the genomic RNA and two subgenomic RNAs, mRNA2 (to 

express ORF2a and ORF2b) and mRNA3 (for ORF3 and possibly ORF4), respectively. We 

also observed a set of less abundant bands in the 0.9–1.1-kb size range, whose origin(s) 

and relevance remain to be established. 

 

ORF1a/ORF1b ribosomal frameshift signal. Nidoviral ORF1a/ORF1b −1 ribosomal 

frameshifting (RFS) is controlled by a “slippery sequence” and a stem-loop or pseudoknot 

RNA structure immediately downstream54. RFS is conserved in nidoviruses and this property 

is widely used for computational mapping of its determinants in newly sequenced genomes. 

We followed this approach to map potential RFS signals in the NDiV genome (Fig. 4). The 

40-nt NDiV ORF1a/ORF1b overlap region was found to have the best match (GGAUUUU) 

with the slippery sequence (AAAUUUU) of invertebrate roniviruses83, which deviates 

considerably from the pattern (XXXYYYZ) conserved in vertebrate nidoviruses (Fig. 4A). No 

appreciated similarity with the latter motif was found in the NDiV ORF1a/ORF1b overlap 

region. The distances separating the NDiV putative RFS from the termination codons 

flanking the ORF1a/ORF1b overlap are within the range found in large nidoviruses, while 

being out of the distance range to the ORF1a stop codon of small nidoviruses (Fig. 4B). 

According to the analysis of a 190-nt sequence - which starts within the NDiV 

ORF1a/ORF1b overlap - with Mfold502 and pknotsRG385, the predicted slippery sequence is 

followed by a complex stem-loop structure; no pseudoknots, unless forced, are predicted in 

this region (Fig. 4C). The slippery sequence, distance to the downstream RNA secondary 

structure, and predicted fold resemble those of Red clover necrotic mosaic virus (RCNMV), 

a ssRNA+ plant virus of the family Tombusviridae253,254  (Fig. 4C–D). These results identified 

the critical elements of the putative NDiV RFS as being most unique among those described 

for members of the order Nidovirales. 

 

Nidovirus-wide conserved domains: TM, 3CLpro, RdRp, Zm-HEL1, and NendoU. 

Nidoviruses are distinguished from other RNA viruses by a constellation of 7 conserved 

domains having the order TM2-3CLpro-TM3-RdRp-Zm-HEL1-NendoU, with the first three 

being encoded in ORF1a and the remaining four in ORF1b. TM2 and TM3 are 

transmembrane domains, Zm is a Zn-cluster binding domain fused with HEL1, and 3CLpro 

is a 3C-like protease174 (however see below). Since NDiV was found to be very distantly 

related to the other nidoviruses known to date, sequence-based functional characterization 

presented a considerable technical challenge. In comparative sequence analysis, profile-

based methods that employ multiple sequence alignments are known to achieve the best 

signal-to-noise ratios11,151,191. They have been the methods of choice for establishing remote 
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relations in biology, also in our prior studies of nidoviruses179,210,229,432. In this study we used 

profile vs. sequence and profile vs. profile searches as implemented in HMMer and 

HHsearch, respectively, for general comparisons. To prepare profiles, we selected 

representatives of small and large nidoviruses, and also three subsets of large nidoviruses 

(coronaviruses, toro/bafiniviruses, and roniviruses). Using profile-based searches we 

identified counterparts (orthologs) of nidovirus-wide conserved enzymatic domains in the 

NDiV pp1ab. For the identification of TM2 and TM3, predictions of transmembrane helices 

by TMpred were used. 

Six out of the seven nidovirus-wide conserved protein domains, TM2-3CLpro-TM3-

RdRp-Zm-HEL1, were mapped in the canonical position and order in the NDiV ORF1a/1b 

sequence (Table 2). Three of these putative NDiV domains, 3CLpro13,498, RdRp445, and 

HEL1418 are enzymes conserved in all nidoviruses169. They have counterparts of all invariant 

and highly conserved residues implicated in catalysis in other nidoviruses, a finding 

indicative of the functionality of these proteins in NDiV. 

Like its orthologs in corona- and roniviruses, the NDiV 3CLpro is predicted to 

employ a catalytic His-Cys dyad. Its substrate-binding site is predicted to include a 

conserved His residue which was implicated in controlling the P1 specificity for Glu/Gln 

residues in other viruses, a hallmark of 3C/3CLpros185. Surprisingly, despite this finding, no 

candidate cleavage sites with the characteristic 3CLpro-specific signatures could be 

identified in the NDiV pp1a/1ab. Consequently, the sizes of all NDiV replicative domains 

described in this paper (Table 2) are based on the hit sizes in profile searches and are 

subject to future refinement. Collectively, these results strongly indicate that NDiV encodes 

all nidovirus-wide conserved replicase domains except for NendoU (Figure 3D; see also 

below), thus supporting the classification of NDiV as a nidovirus. 

 

Conserved domains common to large nidoviruses: ExoN and OMT. All large 

nidoviruses express an ExoN323 of the DEDD superfamily, which is not found in other 

ssRNA+ viruses, and an OMT51,96 of the RrmJ family, that is not present in arteriviruses432. 

The presence of these domains therefore discriminates large from small nidoviruses. Using 

profile searches in the ORF1b-encoded part of pp1ab, homologs of these two enzymes were 

identified in the NDiV genome (Table 2). Using an ExoN multiple sequence alignment of 

NDiV and large nidoviruses, the conserved motifs I, II, and III, including the catalytic 

residues (two Asp and one Glu), as well as the ExoN-specific Zn-finger module were 

identified in the NDiV ortholog (Fig. 5A). Furthermore, the NDiV ExoN shows an insertion 

whose size and position correspond to those of the second Zn-finger-like module that is 

exclusively found in roniviruses. However, unlike the ronivirus domain, NDiV appears to lack 

His/Cys residues potentially involved in Zn-binding. According to a multiple sequence 

alignment of nidovirus OMTs (Fig. 5B), the putative NDiV OMT contains motifs X, IV, VI and 

VIII, encompassing residues of the catalytic KDKE tetrad, as well as motif I involved in 
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binding of the methyl donor96. These data imply that NDiV ORF1b encodes functional ExoN 

and OMT domains (Fig. 3D), which are both typical of large nidoviruses. 

 

Nidovirus- and large nidovirus-specific domains absent in some lineages: NendoU 

and NMT. NDiV ORF1b includes a ~750-nt region that is flanked by the upstream ExoN and 

downstream OMT domains and was expected to encode a NendoU domain41,232,333,387, given 

its presence at this locus in all nidoviruses known so far414,432. Surprisingly, however, profile 

searches of nidovirus NendoUs revealed no significant hits in the corresponding region of 

the NDiV sequence (E-values>9.5). This observation prompted us to re-examine the 

NendoU assignment in other nidoviruses, including the invertebrate roniviruses432. Using 

profile-sequence and profile-profile comparisons mediated by HMMer and HHsearch, 

respectively, NendoU counterparts were readily identified in all corona-, toro/bafini-, and 

arteriviruses (E-values<10−4), but not in roniviruses (E-values>4.5). We therefore conclude 

that, unlike other (vertebrate) nidoviruses, the invertebrate NDiV and roniviruses do not 

encode a NendoU domain (Fig. 3D). 

We proceeded to analyze this genomic region flanked by ExoN and OMT in 

invertebrate nidoviruses in more detail. First, using a ronivirus profile vs. NDiV pp1ab 

sequence comparison, we found that these domains are moderately similar to each other 

(E-value = 0.18), suggesting a weak conservation of a common function in these newly 

recognized orthologous domains of NDiV and roniviruses. Their alignment was converted 

into a profile with which we screened all domains of our in-house nidovirus profile database 

(see Materials and Methods). Remarkably, the only significant hit (E-value<10−4) was 

recorded against the coronavirus NMT profile (Table 2). For comparison, its similarities with 

NendoU profiles of corona-, toro/bafini- or arteriviruses were not significant (E-value>1.5). 

These data indicate that NDiV and roniviruses may encode an NMT domain that is flanked 

by ExoN and OMT. 

The coronavirus NMT domain was originally mapped to the C-terminal half of 

nsp1451,73. The corresponding domain in toro/bafiniviruses has a much smaller size (80 aa 

vs. 200 aa). According to our analysis, it has no significant similarity with the NMT of 

coronaviruses, or the newly recognized putative NMT of roniviruses and NDiV. Based on 

these observations, we generated an alignment of the NMT domains of corona- and 

roniviruses and NDiV (Fig. 5C) in order to search for remote cellular homologs. The N-

terminal part of the nidovirus NMT includes a conserved methyl donor binding site (motif I), 

according to the prior assignment for coronavirus NMTs. In line with this observation, a weak 

hit between nidovirus NMTs and a cellular guanine N7-methyltransferase involving the motif 

I region was detected in this study. In their C-terminal part, nidovirus NMTs uniquely include 

four conserved Cys/His residues indicative of a Zn-binding site that may be part of a 

separate domain (Fig. 5C). 
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Figure 5. Alignments of ExoN, OMT and NMT domains of NDiV and other nidoviruses. Alignments were compiled 

utilizing the Muscle program followed by manual inspection. Pictures by JalView474 and residues are colored according 

to degree of conservation. Numbers above a column indicate its absolute position in the alignment (start = 1); numbers 

to the left and to the right of the alignment represent positions in the genome. Selected conserved sequence motifs are 

highlighted with black bars and roman numbers. (A) In the exonuclease (ExoN) alignment, three motifs are part of the 

catalytic centre; the domain includes two putative zinc fingers, specific either for roniviruses or for all nidoviruses and 

highlighted by, respectively, red and green asterisks. (B) In the 2′-O-methyltransferase (OMT) alignment, motifs X, IV, 

VI and VIII include residues of the catalytic tetrad (KDKE, marked with green asterisks) and motif I is involved in 

binding of the methyl donor96. (C) Protein secondary structure predictions by Psipred240 for the profiles of N7-

methyltransferase (NMT) from 3 NDiV/roniviruses (pred1) and 17 coronaviruses (pred2) and corresponding confidence 

values (conf1, conf2) were added above the alignment. Only 3 coronaviruses, representing alpha- (HCoV NL63), beta- 

(SARS-CoV) and gammacoronaviruses (IBV), are shown that results in several empty alignment columns. The black 

bar on top is a region including the methyl-donor binding site (motif I, delineated by 73) that gave a hit with a functionally 

similar site of a cellular guanine N7-methyltransferase (fungus Encephalitozoon cuniculi) upon HHsearch of the SCOP 

database328 (data not shown). Green asterisks, conserved Cys/His residues that may form a zinc finger. 

 

 

Collectively these results established a mosaic domain relationship in the pp1ab 

area flanked by ExoN and OMT domains for large nidoviruses and NDiV. In this genomic 

region coronaviruses encode both NMT and NendoU domains, while other viruses encode 

either NendoU (toro/bafiniviruses) or NMT (roniviruses and NDiV). 

 

Phylogenetic analysis of NDiV and other nidoviruses: challenges and approach. Next, 

we proceeded to determine the phylogenetic position of NDiV among nidoviruses. The 

phylogeny was inferred using Bayesian posterior probability trees for a concatenated 

alignment of three enzymes, 3CLpro, RdRp, and HEL1, that are conserved in all nidoviruses 

(see Materials and Methods). In line with the current nidovirus taxonomy and genomic 

data83,162,170,414, this analysis consistently identified the four known major lineages (arteri-, 

roni-, corona-, and toro/bafiniviruses), as well as a new one represented by NDiV, as the 

most deeply rooted branches. Our initial attempts to resolve the relationship among the five 

lineages produced uncertain results. To address this challenge, we adopted a step-wise 

approach starting from the analysis of close intra-group relationships in the most abundantly 

sampled subfamily, Coronavirinae, and the family Arteriviridae, and finishing with an 

analysis of the most distant inter-(sub)family relationships between the five major lineages. 

Prior to the nidovirus-wide phylogenetic analysis, the affinity of arteri-, roni-, and 

toro/bafiniviruses to the subfamily Coronavirinae was evaluated through a profile-based 

analysis involving conserved domains (see Supplementary Text S1 and Table S1). The 

obtained results confirmed that the strongest sequence affinity exists between corona- and 

toro/bafiniviruses, which was evident for the 6 out 8 domains that are conserved between 

coronaviruses and one or more of the other lineages. The HEL1 was the only domain for 

which an alternative strongest affinity – between corona- and roniviruses – was 

documented. 
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Figure 6. Phylogeny of nidoviruses. To infer phylogenetic relationships between NDiV and other nidoviruses partially 

constrained trees were calculated using either a concatenated alignment of the three nidovirus-wide conserved 

domains (A and B) or one nidovirus-wide conserved domain (C and D). For all trees, internal nodes without support 

value that were fixed prior to the analysis are marked with *, otherwise, numbers indicate posterior probability support 

values (at the scale from 0 to 1) obtained in either (sub)family- or order-wide analyses (grey and black, respectively). 

The tree scale bars represent number of substitutions per amino acid position on average. (A) and (B), trees with the 

constrained topology in which coronaviruses and toro-/bafiniviruses were either fixed as sister clades or not, 

respectively. Shown are trees for the original alignment which were similar to those obtained for the alignment 

derivative in which least conserved columns were removed (see Materials and Methods). The trees were rooted on the 

arterivirus branch. (C) and (D), trees based on conserved HEL1 and RdRp domains, respectively, and including a 

domain-specific outgroup as described in Materials and Methods. The sister position of coronaviruses and toro-

/bafiniviruses was not fixed. For virus listing see trees in A and B. Support values for the outgroup branching in a 

Maximum-Likelihood analysis with 1000 non-parametric bootstraps, which resulted in an identical topology, is shown 

below posterior probability support values in both trees. Support values for internal branching within the Coronavirinae 

subfamily and the Arteriviridae family are omitted for clarity. The outgroup placement on the arterivirus branch in these 

analyses was used to root trees in A and B. 

 

 

Unrooted nidovirus phylogeny. The affinity established above was incorporated as prior 

knowledge in the nidovirus-wide phylogenetic analysis in order to improve the resolution of 

the most distant relationships. Accordingly, two alternative reconstructions were conducted 

with the clustering of toro/bafiniviruses and coronaviruses being either fixed or not. When 

the clustering was not fixed, roniviruses were found to be closest to coronaviruses (Fig. 6A). 
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This topology indicated that the HEL1 sequence affinity dominated over that of the RdRp 

(Table S1) in the concatenated 3CLpro-RdRp-HEL1 alignment. An alternative nidovirus 

phylogeny was inferred when the clustering of coronaviruses and toro/bafiniviruses was 

fixed prior to the inference (Fig. 6B). Importantly, in both trees, NDiV was consistently albeit 

relatively distantly clustered with roniviruses, indicating that this grouping does not depend 

on the choice of tree-building parameters and is likely genuine. 

 

Rooting of nidovirus phylogeny. To infer the direction of nidovirus evolution, we sought to 

root the nidovirus phylogeny using an outgroup approach. Neither other viruses nor cellular 

organisms encode the domain constellation that is conserved in nidoviruses, precluding an 

expansion of the original nidovirus dataset with outgroup sequences to root the tree. This 

prompted us to split the domain constellation and perform separate analyses of the evolution 

of the two most conserved nidovirus protein domains, RdRp and HEL1, which are also 

among the most conserved in ssRNA+ viruses (Fig. 6C–D). Prior to the analysis, major 

clades comprising coronaviruses, toro-/bafiniviruses, roniviruses, and arteriviruses, and an 

outgroup were each fixed to be monophyletic. 

For the HEL1 tree (Fig. 6C), the part of the alignment covering the most conserved 

region from motif I to motif VI (see 175) was used. Representatives of rubiviruses, 

betatetraviruses, omegatetraviruses, and hepeviruses were used as an outgroup. The 

resulting topology closely resembles that of the relaxed nidovirus phylogeny (Fig. 6A), in 

which vertebrate coronaviruses and invertebrate nidoviruses are sister clades, thus 

confirming that it is dominated by the HEL1-related component. 

For the RdRp tree (Fig. 6D), an alignment of the most conserved RdRp region 

delimited by motifs G and E (see 184) was used. Representatives of three divergent 

picornaviruses (an enterovirus, a parechovirus, and a hepatovirus) were used as an 

outgroup. The resulting topology matches that of the constrained nidovirus phylogeny (Fig. 

6B), in which the grouping of corona- and toro-/bafiniviruses was forced, and could thus be 

considered RdRp-like. 

Despite somewhat incongruent topologies in the two protein-specific phylogenies, 

in both cases the outgroups are consistently placed at the branch leading to arteriviruses, 

thus separating small- from large- and intermediate-size viruses in nidovirus evolution. The 

support for the positioning of the outgroups in the RdRp and HEL1 trees by Bayesian/ML 

estimates (0.69/522 and 0.48/990, respectively) is relatively low and/or varied in analyses by 

two methods, possibly due to the very large evolutionary distances separating the major 

virus groups, including the outgroups. We used the rooting on the arterivirus branch to root 

the nidovirus tree that was inferred using a concatenated alignment of three domains (Fig. 

6A–B). 

According to this analysis, small nidoviruses are separated from other nidoviruses, 

and NDiV is monophyletic with roniviruses in a separate clade of invertebrate nidoviruses, 

which clusters with the group formed by corona- and toro/bafiniviruses. NDiV and 
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roniviruses are separated by a large evolutionary distance indicating that NDiV likely is the 

prototype of a separate family. The topology of the tree in Fig. 6B is compatible with a 

scenario in which genome size change during nidovirus evolution was dominated by 

expansion, with contemporary nidoviruses representing different stages in the transition from 

small to large ssRNA+ genomes. 

 

 

Discussion 
 

We describe the discovery of an insect-borne ssRNA+ virus, called NDiV, possessing a 

genome organization, virion properties, mRNAs, and putative proteome characteristics that 

place it in the order Nidovirales. In phylogenetic and protein domain analyses NDiV 

consistently, albeit relatively distantly, clustered with viruses of the family Roniviridae, which 

seems to make sense biologically given that both infect invertebrate hosts. Although the 

NDiV classification as the first insect nidovirus is beyond doubt, its characterization was only 

just initiated in this study. NDiV is likely to possess unique properties concerning, for 

example, the leader-body junctions of its sg mRNAs and the cleavage sites recognized by 

its 3CLpro, which both require further characterization. 

The principal biological significance of the discovery of NDiV is in the intermediate 

position this virus occupies between small and large nidoviruses in the genome size 

distribution observed for ssRNA+ viruses. Prior to this study, the existence of currently 

circulating nidoviruses with genome sizes within this gap was even highly uncertain (see 

Introduction). Together small and large nidoviruses cover the upper ~19 kb (~66%) of the 

entire ssRNA+ genome size range and are separated by ~10 kb (32%). The very existence 

of NDiV validates the previously established evolutionary relationship between the remotely 

related arteriviruses and coronaviruses that have very different genome sizes98. 

Characterization of arteri- and coronaviruses by comparative genomics has been 

instrumental in defining the common and unique features of members of the order 

Nidovirales169, and has guided the delineation of potential targets for antiviral drug design183. 

The inclusion of NiDV in this analysis yields additional and novel insights with 

implications for nidoviruses and other RNA viruses at large. It allowed us to revise and 

expand the assignment for two replicative enzymes of nidoviruses – NendoU and NMT. 

Prior to this study, the former was considered to be a genetic marker of nidoviruses432. Still, 

its (universal) function in the replication cycle of (vertebrate) nidoviruses has remained 

enigmatic, despite steady progress in the biochemical, structural, and genetic 

characterization of this enzyme in arteri- and coronaviruses40-42,194,232,242,248,333,370,387. Our 

analysis showed that invertebrate roniviruses and NDiV do not encode a NendoU domain 

implying that, contrary to the current paradigm, the utilization of this enzyme in replication 

may be restricted by the host organism. Surprisingly, and in contrast to the case of NendoU, 

invertebrate nidoviruses were found to encode a putative NMT, whose ortholog was 
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previously identified in SARS-CoV and shown to be conserved in the subfamily 

Coronavirinae51,73. Our observation indicates that certain aspect(s) of the nidovirus 

replicative cycle that are controlled by the NMT domain could be similar in coronaviruses 

and invertebrate nidoviruses, but not toro/bafiniviruses which are otherwise closer to 

coronaviruses. Collectively, our insights into the phyletic distribution of NendoU and NMT 

reveal a modularity of some of the major subunits of the replication apparatus in large 

nidoviruses, which must be rationalized in future mechanistic studies and taken into account 

in drug development efforts. 

Although the NDiV genome size is intermediate between those of small and large 

nidoviruses, NDiV most closely resembles large nidoviruses in properties that are not 

universally conserved in the order. Particularly, NDiV does not encode a homolog of the 

replicative protein of unknown function (nsp12) that is exclusively conserved in 

arteriviruses169 and it has a set of three replicative enzymes, OMT, NMT, and ExoN, 

encoded in large but not in small nidoviruses. These three enzymes are encoded in ORF1b, 

downstream of the RFS (Fig. 3D and Fig. 4) and in the vicinity of the two key enzymes for 

RNA synthesis, RdRp and HEL1, with their expression level being downregulated relative to 

that of the ORF1a-encoded subunits. 

Despite these common properties, the two methyltranferases (OMT and NMT) 

differ from ExoN in their relation to genome size. Particularly, OMTs are known to be also 

encoded by flaviviruses128 whose genome size of ~10 kb is average for RNA viruses, while 

the NMT domain was found to be lacking in a subset of large nidoviruses represented by 

toro-/bafiniviruses (this study). Furthermore, an N-methyltransferase function, albeit 

associated with a domain seemingly unrelated to the NMT domain of nidoviruses, was 

identified in the large Alphavirus-like supergroup of ssRNA+ viruses, whose members have 

genome sizes from ~7,000 to 19.500 nt9,321,396. ssRNA+ viruses use methyltransferases to 

modify the 5′-end of their mRNAs (cap structure), which was recently found to be essential in 

the control of translation and innate immunity89,503. It is not clear whether the use of 

methyltransferases may provide particular benefits for genome size control and/or promote 

genome expansion, although the involvement of OMT in other modifications than 5′-end 

capping was previously proposed for large nidoviruses432. 

In contrast to the case of the methyltransferases, the link between ExoN and 

genome size control in nidoviruses is supported by accumulating evidence obtained from 

different hypothesis-driven genetic studies99,174. First, ExoN is exclusively found in a 

phylogenetically compact cluster of ssRNA+ viruses with large genome sizes. Second, 

cellular homologs of ExoN control the fidelity of replication in DNA-based life forms and are 

essential to maintain these large genomes. Third, ExoN active site mutants in MHV and 

SARS-CoV showed a stable phenotype characterized by a clearly enhanced mutation rate 

and nearly wild-type progeny yields. 

The identification of the ExoN-encoding NDiV further strengthens the case for the 

direct involvement of ExoN acquisition in genome size expansion. First, because of its 
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distant relation to any known virus and its insect host range that is a novelty for nidoviruses, 

NDiV provides an essentially independent verification for the association of ExoN with RNA 

viruses employing large genomes. 

Second, it increases our confidence that no other domain is associated with large 

genome sizes in nidoviruses as strongly as ExoN is. The existence of such a domain is 

unlikely but it cannot be formally excluded because the entire proteomes of nidoviruses are 

yet to be fully described. However, our confidence about the lack of this alternative domain 

grows with the decrease of difference between genome sizes of nidoviruses containing and 

lacking ExoN: the smaller this difference the less capacity remains to encode an additional 

domain. With the identification of NDiV, this genome size gap decreased from ~10.6 kb to 

~4.5 kb, the largest drop since this gap could have been recognized (~14.9 kb in 1991) (Fig. 

S3). 

Third, following the discovery of NDiV, only ~0.8 kb remains of the other genome 

size gap of ~7 kb that previously separated the ExoN-containing nidoviruses from all other 

ssRNA+ viruses (Fig. 1). Thus, a major step has been made towards a more precise 

definition of the RNA genome size limit above which the recruitment of a specialized enzyme 

for replication fidelity control may be a prerequisite. According to a custom binomial test (see 

Materials and Methods), the probability to observe the association of ExoN and large 

ssRNA+ genome size by chance may be 10−6 or lower. The genome size threshold of ~20 

kb, as defined by NDiV and a closterovirus106, which has the largest genome size among 

ssRNA+ viruses other than nidoviruses, is also valid for unsegmented RNA viruses of other 

classes, all of which do not employ an ExoN in their replicative machinery217. 

The fixation of the ExoN domain in nidovirus genomes may be rationalized in the 

framework of a unidirectional triangular relationship that includes complexity, replication 

fidelity (mutation rate), and genome size131 (Fig. 7). In RNA viruses, the low fidelity of 

replication severely restricts the size of their genomes, which can encode only relatively 

simple replication complexes that, hence, suffice to support low-fidelity replication33,217. This 

low-state trap is known as the “Eigen paradox”. Accordingly, a transition from the “low” to the 

“high” state may not be accomplished by changing only one element of the triangle, e.g. 

improving replication fidelity, since such a change would not be compatible with the “low” 

state of the other two elements131,218. The exclusive presence of ExoN in ssRNA+ viruses 

above 20 kb supports the logic of the Eigen paradox131. It also shows how the paradox could 

be solved with a single evolutionary advancement, the acquisition of ExoN, which may have 

relieved the constraints on all three elements of the triangular relationship (Fig. 7), providing 

a lasting benefit to the virus lineage that acquired ExoN. This advancement may have been 

accompanied by an immediate fitness gain. Accordingly, the ExoN acquisition could have 

provided the ancestral virus with improved control over the fidelity of its replication and the 

mutation spectrum (quasispecies structure) of its progeny107,133, which may have facilitated 

virus adaptation to the environment99,285. Alternatively, ExoN could have been acquired in an 

evolutionarily neutral event. Through subsequent mutation this enzyme might have gained 
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beneficial properties for the ancestral virus and its progeny. The functional and structural 

characterization of known nidoviruses and yet-to-be identified viruses in the genome size 

range around that of NDiV will be required to clarify this key aspect in the transition from 

small to large nidoviruses. 

The acquisition of ExoN by an ancestral nidovirus must have produced viable 

progeny but it remains unknown whether, besides ExoN, any additional properties of the 

ancestral nidovirus were critical for genome expansion, as was speculated elsewhere432. 

Recently an exoribonuclease was identified in the ssRNA- arenaviruses, which have 

genome sizes below 10 kb202,376. Unlike nidoviruses, arenaviruses employ the 

exoribonuclease as a domain of their nucleocapsid protein that, accordingly, mediates a 

non-replicative function. In line with these differences, the nidovirus ExoN and the 

arenavirus exoribonuclease do not share specific sequence affinity (CL and AEG, 

unpublished data), indicating that both are likely to have been acquired from independent 

sources and were integrated into different genetic settings to perform different functions. 

 

 
 
Figure 7. The Eigen trap and a model of nidoviral escape by ExoN acquisition. The scheme depicts the 

unidirectional relationship between replication fidelity, genome size, and complexity. The vector of variation for the 

dimensions defined by the three elements of the relationship is shown in a simplified form. The position of RNA viruses 

in the inner triangular space (Eigen trap) and the proposed effect of ExoN acquisition in nidoviruses on this position are 

indicated. This is a color version of the original Figure 7 of this publication; DOI:10.1371/journal.ppat.1002215.g007. 
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NDiV may be the first but likely not the last nidovirus identified in mosquitoes243. 

Systematic probing of these and other insects could lead to the discovery of new 

nidoviruses, and characterization of those with genomes in the size range between small 

and large nidoviruses could be particularly insightful. As presented in this study, benefits of 

these advancements could be multifold and provide a foundation for both fundamental and 

applied research on newly discovered and already known viruses. 

 

 

Materials and Methods 
 

Mosquitoes handling for virus isolation. During continued surveillance for JEV in Vietnam 

between September 2001 and December 2003, 24,097 female mosquitoes belonging to six 

different Culex species (Culex tritaeniorhynchus, Culex gelidus, Culex vishnui, Culex fusco, 

Culex pseudo, and Culex quinquefaciatus) were collected. They were divided into 359 pools, 

each containing a single mosquito species and handled with utmost care following the 

appropriate biosafety measures. For the digestion of blood meals, the samples were kept in 

5% glucose for two weeks at room temperature and a humidity of ~90%. The most abundant 

species was Culex tritaeniorhynchus (10,194 mosquitoes accounting for a 42.3% share), 

followed by Culex gelidus (6,199, 25.7%), Culex vishnui (3,780, 15.7%), Culex 

quinquefaciatus (2868, 11.9%), with the remaining species ranging from 0.3%–4.1%. 

Mosquito pools were stored at −70 C prior to processing for virus isolation. 

 

Virus propagation in cell cultures. Four cell lines were used to isolate viruses, but NDiV 

was evident only in samples from Aedes albopictus C6/36 cells grown at 28 C in Eagle's 

Minimum Essential Medium (EMEM) containing 10% fetal calf serum (FCS) and 0.2 mM 

non-essential amino acids228. Pooled mosquitoes were washed three times in sterile 

phosphate-buffered saline (PBS, pH 7.2) containing 1000 g/ml each of penicillin and 

streptomycin, followed by rinsing with antibiotics-free PBS. The homogenates were prepared 

by triturating the mosquitoes in 2%-FCS-EMEM with subsequent centrifugation at 2,000 g 

for 10 min. The suspensions were filtered (0.22 nm Millipore, USA) and applied to C6/36 

cells, which were monitored daily for cytopathic effects, also after three blind passages. The 

cell death, probably due to apoptosis, was indeed observed upon NDiV infection. The ICF 

were clarified by centrifugation at 2,000 g for 10 min. 

 

Genome cloning and sequencing. The nucleic acid was extracted from the purified NDiV 

virus particles using phenol-chloroform extraction. It migrated as a single band in agarose 

gel electrophoresis, which was sensitive to RNase but not DNAse treatment, indicative of an 

RNA virus genome. Accordingly, reverse transcriptase (RT) was used to amplify parts of the 

NDiV genome by Random Arbitrary Primers-PCR (RAP-PCR) in order to initiate sequence 

analysis. Cassette primers (C1 and C2) coupled to random hexamers (Hx) were employed. 
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Following synthesis of first and second cDNA strands with C1Hx and C2Hx primers, 

respectively, PCR amplification was performed using the cassette primers C1 and C2 as per 

the standard protocol475. Three amplicons of different sizes, which were specific for the 

virus-containing samples, were then cloned in the pCR2.1-TOPO vector (TOPO TA Cloning 

Kit, Invitrogen) according to the manufacturer's instructions. The sequence of the first cloned 

fragment (referred to as “index clone”) was determined by Big Dye Terminator Cycle 

Sequencing using M13 forward and reverse primers in an ABI 310 or 3100 automated DNA 

sequencer (Applied Biosystems). The cloned region of the genome was extended by ‘gene 

walking’ using primers based on previously obtained sequence information (Table S2). 

To sequence the genomic region upstream of the index clone, the following 

amplification strategy was used, involving two DNA fragments called double-stranded (ds) 

cDNA and anchor DNA. To produce ds cDNA, viral genomic RNA was mixed with 10 mM 

dNTP mix and 2 pmol of 15-mer gene-specific primers (NDiV-RACE492-477RP, NDiV-

RACE302-288RPB and NDiV-RACE435-420RPC) (Fig. S1A, Table S2). 

An anchor DNA was synthesized by PCR that amplified a specific fragment of 

pUC19, including its multiple cloning site (Fig. S1B). Both, the ds viral cDNA and PCR 

product obtained from pUC19 (anchor) were digested by several restriction enzymes whose 

sites are present in the pUC19 multiple cloning site (BamHI, EcoRI, KpnI, HindIII, ScaI, and 

PstI). The digested pUC19 PCR products were then purified using the QIAXII gel purification 

kit (Qiagen) in order to collect the longer DNA fragments. The digested viral cDNAs were 

also purified by filtration using Micropure-EZ (Millipore) and Microcon YM-100 (Millipore) to 

remove enzymes and buffers. In a next step, the purified cDNAs and anchor DNAs were 

mixed and ligated using T4 DNA Ligase (TaKaRa). The unknown region of viral cDNA was 

then amplified by semi-nested PCR using LA-taq (TaKaRa), two viral gene specific primers 

and one pUC19 primer (Table S2) as shown in Fig. S1C. The reaction process included an 

initial denaturation at 96°C for 5 min, 35 cycles at 96°C for 30 sec, 53°C for 30 sec, and 

72°C for 7 min, and a final extension at 72°C for 10 min. 

The known viral genome sequence was further extended by long RT-PCR which 

resulted in an 8 kb fragment with a 68-nucleotide polyA tail representing the 3′-end of the 

NDiV genome. The GeneRacer™ Kit (Invitrogen) was used to sequence the 5′-end of the 

NDiV's genome. 

The NDiV origin of newly obtained sequences was further validated by probing 

different samples with a primer pair designed against the index clone. This pair of primers 

recognized NDiV isolates, but not JE and dengue viruses (flaviviruses) or SARS-coronavirus 

(Coronavirus). These results indicated that NDiV is a novel mosquito virus. 

 

RNA probe generation for Northern blotting analysis. Specific primers encompassing 

NDiV nts 19,733 and 20,126 (including 2 Adenines of the poly (A) tail), respectively, were 

designed (Table S2). The generated PCR product was purified using the Qiaex II gel 

extraction kit (500) (Qiagen) following the manufacturer's instructions. The purified PCR 
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product was then ligated to a 3.5 kb plasmid (PCR-XL-TOPO) using the TOPO XL PCR 

cloning kit (Invitrogen, applying the TA rule based on the Taq polymerase's capacity of 

adding an extra A at the 3′ end of each DNA chain of a PCR product) as per the 

manufacturer's indications. Heat shock transformation into One Shot Top 10 chemically 

competent cells (Invitrogen) was carried out and the transformed cells were incubated in 

SOC medium at 37 C for 2 hrs. After that, the E. coli cells were cultured in 50 µg/ml 

containing LB plates overnight and the positive clones were subsequently cultured in LB 

broth at 37 C overnight. The plasmid alkaline extraction was done using the QIAprep spin 

Miniprep kit (Qiagen) as the manufacturer indicated. As a next step, verification of the probe 

orientation was carried out by nucleotide sequencing. Finally, transcription of the cloned 

DNA sequences was done to generate the RNA probe (in both sense and reverse 

orientations). The RNA probe was then labeled with 32P by using the AmpliScribe T7 High 

Yield Transcription Kit (EPICENTRE Biotechnologies) following the company's instructions. 

 

Northern blotting. To investigate the possibility that NDiV generates set of 3′-coterminal 

sub-genomic mRNA's during its replication, Aedes albopictus C6/36 cells were infected with 

NDiV. Three to four days after infection intracellular poly (A)-containing RNA from mock-

infected and NDiV-infected cells was prepared using Dynabeads oligo(dT)25 (Dynal Biotech) 

as per the manufacturer's instructions. RNA was separated on a glyoxal-based agarose gel 

system and blotted on a positively charged nylon membrane (BrightStar-Plus membrane). 

The mRNA bands were then hybridized with an α-32P-multiprime-labeled RNA probe specific 

for NDiV at 65°C overnight (see above RNA probe generation). The membrane was then 

washed with low and high stringency wash solutions and the RNAs were analyzed by 

autoradiography. All reagents for mRNA separation, transfer and hybridization (with the 

exception of the RNA probe) were provided with the NorthernMax-Gly Kit (Ambion). The 

manufacturer's instructions were followed. A 0.5–10 Kb RNA Ladder (Invitrogen) was used 

as a marker set to calculate apparent molecular mass of the analyzed bands. 

 

Electron microscopy of virions. For electron microscopy, virus was concentrated from ICF 

by centrifugation at 12,000 g for 30 min at 4 C, after which 6.6% polyethylene glycol 6000 

and 2.2% NaCl were added to the supernatant. After stirring for 1 h at 4 C and centrifugation 

at 12,000 g for 1 h, the supernatant was discarded. The virus-containing pellet was 

dissolved in saline-Tris-EDTA buffer, sedimented at 250,000 g for 1 h and resuspended a 

second time. The concentrated virus was negatively stained with 1% sodium 

phosphotungstic acid, pH 6.0, and examined at 100 KV using a transmission electron 

microscope (JEM-100CX, JEOL, Japan)203. 

 

Sequencing of virion peptides. Virions were purified in a 15–50% sucrose density gradient 

using an SW32Ti rotor (Beckman Coulter, Inc., Fullerton,CA) at 20,000 rpm for 12–16 h at 

4°C. Gradient fractions were analyzed by 16% SDS-polyacrylamide gel electrophoresis and 
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Coomassie Brilliant Blue G staining (Fig. 2B). Protein bands were excised and either directly 

sequenced by automated Edman degradation (Applied Biosystems model 491cLC) or 

digested with lysylendopeptidase prior to HPLC purification and sequencing. 

 

Bioinformatics databases. Genome sizes of ssRNA+ viruses were retrieved from the NCBI 

Viral Genome Resource25. GenBank, version 178.037, Pfam database, version 24.0151, 

SCOP70, version 1.75328, and an in-house nidovirus domain profile database183,432 updated 

in this study were used to identify putative functional domains encoded by the NDiV 

genome. Representatives of the nidovirus species defined according to 

(http://www.ictvonline.org/virusTaxonomy.asp?version=2009) plus NDiV, whose taxonomical 

status remains provisional, were used as detailed in Table S3. Species names of 

coronaviruses were taken from ICTV proposal 2008.085-122V.U that was approved by ICTV 

in 2009. Fields after the “_” sign in virus abbreviations represents sampling year or period. 

 

Basic bioinformatics analyses. The NDiV ORFs were compared with sequence databases 

using psi-BLAST11, HMMer 2.3.2125, TMpred213, or HHsearch434. Protein secondary structure 

predicted by Psipred240 was included in the HHsearch-mediated profile searches. RNA 

secondary structure analysis was conducted using Mfold502 and pknotsRG385. MUSCLE126 

was used to produce alignments of nidovirus proteins that were manually refined in poorly 

conserved regions. Alignment derivatives, with the least conserved columns removed65, 

were prepared using BAGG18 and were used for profile searches and phylogenetic 

analyses. Alignments were prepared for publication using JalView474. To compile and plot 

most graphs and conduct statistical analyses we used the R package377. 

 

Identification of TRS candidates. Using the de novo repeat detection program 

RepeatScout372 a library of perfect repeats with unit sizes ranging from four to the maximum 

observed size of 16 was compiled for the NDiV genome sequence. The library was filtered 

to retain repeats of different types according to the following constraints applied to each type 

separately: (i) one repeat copy must be located upstream of ORF1a, and (ii) another one 

must reside within the 300 nt region immediately upstream of either ORF2a, ORF3, or 

ORF4. Each set of the retrieved repeats was subsequently analyzed for conservation by 

alignment that included flanking regions of 20 nt at each side. The longest repeats with 

highest similarity were considered TRS candidates. 

 

Profile-based similarity searches. To map major nidovirus replicative proteins to pp1ab of 

NDiV we applied alignment-based methods. Multiple sequence alignments represent a 

general tool to infer both common ancestry (orthology) of residues for several related 

sequences (these residues form a fully occupied alignment column) and identify 

insertion/deletion events (corresponding to alignment columns containing gaps in selected 

sequences). Multiple alignments can be converted into profiles, which are statistical models 
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that capture the degree of conservation and the likelihood to observe a certain residue or 

gap in each alignment column. One type of profiles are profile Hidden Markov Models 

(HMMs)273 that are particularly suitable for searching for remotely related sequences (like 

NDiV which presumably represents a new virus family) in a probabilistic framework. They 

are implemented, for example, in the programs HMMer and HHsearch which were utilized in 

this study. A profile HMM can be compared to other HMMs or used to search for motifs in a 

single sequence. Due to the high degree of divergence of nidovirus sequences, we used 

alignments of amino acid sequences and profiles derived from these alignments to probe 

relation between proteins in this study. 

 

Phylogenetic analyses. Phylogenetic analyses were performed as described previously490. 

Bayesian posterior probability trees were compiled utilizing BEAST119 under the WAG amino 

acid substitution matrix478 using Tracer120 to verify convergence. For the nidovirus-wide 

analysis, whose sampling is detailed Table S3, we used a concatenated alignment of 

3CLpro, RdRp, and HEL1 including 910 aa positions and its derivative of 604 aa positions, 

from which least conserved columns were removed. In this analysis, the uncorrelated 

relaxed molecular clock approach (lognormal distribution)118 was used as it was favored165 

over the strict molecular clock (log10 Bayes factor of 13.6) and equal to the relaxed 

molecular clock approach with exponential distribution (log10 Bayes Factor of 0.0). Selected 

internal nodes were fixed using results of separate analyses of subsets of nidoviruses. For 

phylogenetic analysis of the subfamily Coronavirinae and the family Arteriviridae, we used 

respective datasets incorporating between one and three sequences per species and 

including concatenated alignments of ORF1ab domains that are conserved in each of these 

groups. The datasets included 35 and 10 sequences for corona- and arteriviruses and 

consisted of 2302- and 2882-aa alignment positions, respectively. The topologies of these 

trees closely follow those published170. They were used to fix internal nodes in corona- and 

arterivirus clusters in the subsequent nidovirus-wide phylogenetic analysis. The exception 

was the basal nodes corresponding to the grouping of the Alpha-, Beta-, and 

Gammacoronavirus genera and the root of arteriviruses (EAV or SHFV), which were left 

unfixed. Maximum Likelihood trees were compiled utilizing the PhyML software196. The WAG 

amino acid substitution matrix and rate heterogeneity among sites (8 categories) were 

applied and support values for internal nodes were obtained using the non-parametric 

bootstrap method with 1000 replicates. Trees were rooted using domain-specific outgroups: 

for RdRp, three picornavirus representatives (accession numbers: NC_001489, NC_001897, 

NC_002058); for HEL1, four rubi-/ tetra-/ hepevirus representatives (NC_001545, 

NC_001990, NC_005898, NC_001434). 

 

Association of ExoN and large genome sizes. We sought to statistically define a genome 

size threshold that separates ExoN-containing from ExoN-lacking ssRNA+ viruses. To this 

end, we developed a custom test employing the binomial probability function and including 
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all 43 virus groups displayed in Fig. 1. These groups consist of thousands of viruses that are 

believed to have emerged from a common ancestor, implying that they are not independent. 

Their dependence varies in virus pairs but, generally, for each virus pair is inversely 

proportional to the pair-wise evolutionary distance. To account for the dependence of these 

sequences in our test is technically challenging. To circumvent this problem, we have 

created a derivative of the virus dataset in which each virus family/group is represented by a 

single virus, in total 43 viruses. We considered the sequences of these representatives to be 

essentially independent due to the (extremely) large divergence that is observed, even in the 

most conserved genes (e.g. see Fig. 6), the lack of recognizable similarity in other genes, 

and the accompanied gene loss and gain. 

For a given genome size threshold, ssRNA+ viruses were partitioned into two 

groups (below and above that threshold) and the value of the binomial density function was 

calculated for both groups using information on the presence or absence of ExoN. The final 

probability of the test is the product of the binomial probabilities for the two groups. We used 

a binomial success probability of 4/43 since four out of the 43 ssRNA+ virus lineages (NDiV, 

toro-/bafiniviruses, coronaviruses, and roniviruses) employ ExoN. The test was applied to 

each possible threshold separating two unique ssRNA+ genome sizes, in total – 42 

thresholds. The threshold of ~20 kb, between the genome sizes of NDiV and 

closteroviruses, gave the lowest probability to observe the ExoN association by chance. We 

consider the obtained value (10−6) as an underestimate of the true probability that should be 

calculated by taking into account the sequence dependence and all viruses in the 43 groups, 

which without exception conform to the ExoN distribution observed in the selected virus 

representatives used now. 

 

Accession numbers. RefSeq accession numbers of proteins referred to in the text for a 

selection of prototype nidoviruses are: 3C-like proteinase (EAV: NP_705584, SARS-CoV: 

NP_828863, WBV: YP_803213, GAV: YP_001661453), RNA-dependent RNA polymerase 

(EAV: NP_705590, SARS-CoV: NP_828869, WBV: YP_803213, GAV: YP_001661452), 

superfamily 1 helicase (EAV: NP_705591, SARS-CoV: NP_828870, WBV: YP_803213, 

GAV: YP_001661452), exoribonuclease (SARS-CoV: NP_828871, WBV: YP_803213), N7-

methyltransferase (SARS-CoV: NP_828871), uridylate-specific endonuclease (EAV: 

NP_705592, SARS-CoV: NP_828872, WBV: YP_803213) and 2′-O-methyltransferase 

(SARS-CoV: NP_828873, WBV: YP_803213). 
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Figure S1. Cloning and sequencing details. (A) To obtain RT-PCR products containing unknown NDiV sequences 

upstream of the previously sequenced region of the genome the following was done: cDNAs of the NDiV RNA were 

converted into ds cDNAs, which were digested by restriction enzymes and subsequently ligated to an anchor DNA 

using those existing restriction sites. For a detailed explanation of each procedure please read the “Genome cloning 

and sequencing” section of Materials and Methods. (B) Semi-nested PCR was conducted for the anchored ds cDNA of 

NDiV using one pUC19 specific sense primer (primer pUC119-scaI208 was used for the ScaI-digested sample and 

primer pUC19-EcoRI227 was used for the samples digested with all the other restriction enzymes) and two reverse 

gene-specific primers (GSPs) of NDiV for each experiment. The PCR products contained the unknown sequence 

between GSP and anchor. This process was repeated eight times, and this protocol allowed us to read a total of 7164 

bp. The name of each restriction enzyme is followed by its position written in brackets as explained below. NDiV-

RACE117-99R1>NDiV-RACE74-54R2 means “primer for first PCR>primer for nested PCR”. 878 bp>836 bp means 

“size of the first PCR>size for the nested PCR”. If 1, 2, or 3 asterisks are in brackets, non-specific cuts took place with 

the following details: (*) non-specific cut and ligation occurred at 4433 bp; (**) non-specific anchoring at 513 bp; (***) In 

the eighth step, anchor DNA of BamHI and HindIII attached to same location, and it was suggested that reverse 

transcription stopped there. The GeneRacer (TM) Kit (Invitrogen) was used to read the remaining 205 bp toward the 5′-

end of genomic RNA. 
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Figure S2. Hydrophobicity plots and secondary structure predictions for (presumed) NDiV structural proteins. 

Hydrophobicity was calculated using TMpred for the pp1a replicase precursor (ORF1a; A) that served as a control for 

four (putative) virion proteins p2a (ORF2a; B), p2b (ORF2b; C), p3 (ORF3; D) and p4 (ORF4; E). Horizontal dashed 

lines depict the threshold (value of 500) for significant association with transmembrane helices. On top of the plots for 

the structural proteins, Jpred-mediated secondary structure predictions are shown. Predicted alpha helices and beta 

strands are highlighted in red and green, respectively. 
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Figure S3. Association of ExoN with large nidovirus genomes and progress in nidovirus genomics. At the X 

axis, a timeline of nidovirus genome sequencing is plotted. It starts in 1991 when the first pair of genome sequences 

for both small and large nidoviruses, arterivirus (EAV) and coronavirus (IBV), respectively, became available. The 

genome size difference (gap) between these viruses was ~14.9 kb. All subsequent time points were selected because 

new nidoviruses with either larger (for small nidoviruses) or smaller (for large nidoviruses) genomes were released in 

these years. (For the purpose of this analysis, NDiV was treated as a large nidovirus). As a result, the genome size 

gap shrunk, in total six times since 1991 (three times in 1993). Currently, the gap that remains is ~4.5 kb (the 

arterivirus SHFV vs. NDiV). Large nidoviruses are assumed to have acquired a unique genomic region during the 

expansion of their genome. It includes ExoN and OMT, and some other genes, like the NMT that is found in some 

large nidoviruses. This region may also include additional domains, due to the thus far incomplete characterization of 

the nidovirus proteome; they might include one or more with the phyletic distribution characteristic of ExoN and OMT. 

Understandably, as the genome size gap between large and small nidoviruses has been shrinking due to the discovery 

of new nidoviruses, the probability that such genes exist is decreasing. Likewise, the share of the size of the ExoN and 

OMT domains in the total genome size gap could be considered a measure of confidence for the role of these genes in 

nidovirus genome expansion. At the Y axis, the growth of this share is plotted; it gradually increased from ~12% in 

1991 (EAV vs. IBV) to ~35% in 2011 (SHFV vs. NDiV). By far the biggest increase (~17%), and hence the largest gain 

in support for the role of ExoN in nidovirus genome expansion, was achieved by the sequence analysis of the NDiV 

genome. The above numbers outline a trend and this analysis should not be confused with a probabilistic framework. 
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Table S1. Affinity of corona- and toro-/bafinivirusesa.  

 
targetc coronavirus 

protein profileb coronad toro/bafini roni arteri 

ADRP e-105 e-25 330 34 

PL2pro e-126 40 110 160 

3CLpro e-244 24 88 43 

primase e-152 4 27 200 

RdRp ~0 e-14 0.004 0.079 

HEL1 e-227 e-6 e-13 0.81 

ExoN e-244 0.008 0.62 38 

NMT e-204 22 13 46 

NendoU e-133 e-4 23 e-4 

OMT e-245 e-8 0.29 57 

Se ~0 0.005 100 240 

M e-158 1 990 12 

E e-37 56f 250 11 

N e-247 12000 7000 2800 
 

a HMMer profile searches (global profile against local sequence) were used to determine closest nidovirus relatives of 
a selection of proteins expressed by coronaviruses. E-values are based on a database size of 12000 according to the 
size of the Pfam (version 24.0, October 2009). The best hit against the profile of the coronavirus protein alignment is 
indicated in italic and unique, significant (E-value <= 1) best hits against toro-/bafini- or roniviruses in bold 

b a profile of an alignment containing 17 coronavirus species was used. ADRP, ADP-ribose-1''-phosphatase; PL2pro, 
papain-like proteinase 2; 3CLpro, 3C-like proteinase; RdRp, RNA-dependent RNA polymerase; HEL1, superfamily 1 
helicase; ExoN, 3’-to-5’exoribonuclease; NMT, N7-methyltransferase; NendoU, uridylate-specific endonuclease;  OMT, 
2’-O-methyltransferase.  
c numbers represent E-values of a HMMer search against the coronavirus protein profile   
d E-values of hits against coronaviruses itself are shown for comparison 
e only the C-terminal part of the coronavirus S protein alignment (S2) was used as a profile 
f hit is against the torovirus M protein 
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Table S2. Primers used to sequence the 5’-end of the NDiV genome. 
 
Primer Sequence Application 

NDiV-RACE492-477RP AAATCCAAAGGGTGCT cDNA generation 

NDiV-RACE117-99R1 GCGTTCAAAATAGCCAAGT Semi-nested PCR 

NDiV-RACE74-54R2 TAGTAATAGCCTTCAGGATCG Semi-nested PCR 

NDiV-EcoRI1-204R20 ATCGAGTGTGTCTGGAGTAG Semi-nested PCR 

NDiV-EcoRI1-175R20 TCAAATAGCGTACGAGTTCA Semi-nested PCR 

NDiV-HindIII1-288R20 AAGATGATGGAGCTAAGGAT Semi-nested PCR 

NDiV-HindIII1-302R20 TGTGGGGGATTGTAAAGATG Semi-nested PCR 

NDiV-EcoRI2-127R20 GGATGTAAGCTGATATGTGG Semi-nested PCR 

NDiV-EcoRI2-194R20 TTTGTTTAGTTCCGTGTCGT Semi-nested PCR 

NDiV-ScaI2-108R20 TGTGAAATTGAGGGGTTTGA Semi-nested PCR 

NDiV-ScaI2-147R20 ATTAGAGGGTTAATGGCAAC Semi-nested PCR 

NDiV-RACE302-288RPB AGAAGCCCCTTACCA cDNA generation 

NDiV-KpnI2-078R20 CTGGTGCAGACGTACGGAAT Semi-nested PCR 

NDiV-KpnI2-155R20 TTAGGTAGTTTGGTCGTTGT Semi-nested PCR 

NDiV-RACE435-420RPC TCGCTTACTGCTTTCT cDNA generation 

NDiV-ScaI3-122R19 GAAAAATGTTTAGGCGAGA Semi-nested PCR 

NDiV-ScaI3-092R20 GCAAAAACTGGTGTTTGATA Semi-nested PCR 

pUC19-EcoRI227 ACAGATGCGTAAGGAGAAAA Semi-nested PCR 

pUC19-ScaI208 AACGCTGGTGAAAGTAAAAG Semi-nested PCR 

pUC19-HindIII062 TATGCTTCCGGCTCGTATGT Anchor 

pUC19-ScaI078 AGTAAGTTGGCCGCAGTGT Anchor 

NDiVpolyA-R TTACCTGTAATGCCAAGCGC Northern blot* 

NDiV19733-F CGCCTGTAAGAGAGATTGTA Northern blot* 
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Table S3. Genome sequences of a representative set of the Nidovirus species. 
 
species namea virus abbreviationb (sub)family acc. number 

Nam Dinh virus NDiV_01-03 - - 

Gill-associated virus GAV_96 Ronivirus AF227196 

Yellow head virus YHV_98 Ronivirus EU487200 

White bream virus WBV-DF24_00 Torovirus NC_008516 

Equine torovirus EToV-Berne_72 Torovirus X52374 

Bovine torovirus BToV-Breda1_79 Torovirus NC_007447 

Human coronavirus 229E HCoV-229E_65 Coronavirus NC_002645 

Human coronavirus NL63 HCoV-NL63_02 Coronavirus DQ445911 

Miniopterus bat coronavirus 1 Mi-BatCoV-1A_05 Coronavirus NC_010437 

Rhinolophus bat coronavirus HKU2 Rh-BatCoV-HKU2_06 Coronavirus NC_009988 

Miniopterus bat coronavirus HKU8 Mi-BatCoV-HKU8_05 Coronavirus NC_010438 

Scotophilus bat coronavirus 512 Sc-BatCoV-512_05 Coronavirus DQ648858 

Porcine epidemic diarrhoea virus PEDV-CV777_77 Coronavirus NC_003436 

Geselavirus FCoV_79 Coronavirus NC_007025 

SARS-related coronavirus SARS-HCoV_03 Coronavirus AY345988 

Tylonycteris bat coronavirus HKU4 Ty-BatCoV-HKU4_04 Coronavirus EF065505 

Pipistrellus bat coronavirus HKU5 Pi-BatCoV-HKU5_04 Coronavirus EF065509 

Rousettus bat coronavirus HKU9 Ro-BatCoV-HKU9_05 Coronavirus EF065513 

Human coronavirus HKU1 HCoV-HKU1_04 Coronavirus AY884001 

Betacoronavirus 1 HCoV-OC43_67 Coronavirus AY585228 

Murine coronavirus MHV-A59_59 Coronavirus AY700211 

Avian coronavirus IBV-Beaud_35 Coronavirus NC_001451 

Beluga whale coronavirus SW1 BWCoV-SW1_06 Coronavirus EU111742 

Equine arteritis virus EAV-CW_96 Arterivirus AY349167 

Simian hemorrhagic fever virus SHFV_64 Arterivirus NC_003092 

Lactate dehydrogenase-elevating virus LDV-P_71 Arterivirus U15146 

Porcine respiratory and reproductive syndrome virus, 

North American type 
PRRSV-NA_95 Arterivirus AF176348 

Porcine respiratory and reproductive syndrome virus, 

European type 
PRRSV-LV_91 Arterivirus M96262 

 
a species names of coronaviruses taken from ICTV proposal 2008.085-122V.U that was approved by ICTV in 2009. 
b field after the “_” sign represents sampling year or period 
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Text S1. Sequence similarity-based clustering of corona- and toroviruses. 

 

There is a consensus in the field that coronaviruses and toro/bafiniviruses are nidoviral 

sister lineages. This relationship has been codified in nidovirus taxonomy with these two 

groups of viruses forming the two subfamilies in the family Coronaviridae. Yet, prior 

phylogenetic analyses using either RdRp or HEL1 were not as conclusive about this 

clustering162, which prompted us to verify it using an alternative approach. We sought to use 

similarity of domains that are conserved in the subfamily Coronavirinae and (partly) shared 

with other nidoviruses to rank toro/bafiniviruses, roniviruses and arteriviruses in relation to 

the subfamily Coronavirinae. We compiled HMMER profiles for 14 protein domains of 17 

coronaviruses, representing replicative proteins (10 domains: ADP-ribose-1''-phosphatase 

(ADRP), papain-like proteinase 2 (PL2pro), 3CLpro, primase, RdRp, HEL1, ExoN, NMT, 

NendoU and OMT) and virion proteins (4 domains: S, M, E and N) that together account for 

~45% of the ~29kb genome. They were compared in the global profile vs. local sequence 

mode against products of all ORFs encoded by a representative set of nidoviruses.  

The obtained E-values of the top hits for four phylogenetic groups, corona-, 

toro/bafini-, roni, and arteriviruses were compared for each protein domain (Table S1). Eight 

domains (6 replicative and 2 virion domains) produced significant hits outside coronaviruses: 

all 8 with toro/bafiniviruses, and 4 different domains with, separately, roniviruses and 

arteriviruses. Based on the best hit E-values, toro/bafiniviruses were ranked the top for 6 

domains (ADRP, RdRp, ExoN, OMT, S, and M), shared the top spot for one domain with 

arteriviruses (NendoU) and were ranked second after roniviruses for the HEL1 domain. 

According to another analysis that is presented in Fig. 5C, corona- and roniviruses but not 

toroviruses also share an NMT domain. However, this conservation was too remote to be 

identified by the HMMER-based analysis and it was not included in Table S1. Regardless of 

considerations involving the NMT domain, the presented results confirm a special sequence 

affinity between coronaviruses and toro/bafiniviruses among nidoviruses. 
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Abstract 
 

Small genome sizes of RNA viruses (2 to 32kb) have been linked to the high mutation rate 

during RNA replication that is thought to lack proof-reading. This paradigm is now being 

reviewed owing to the discovery of a 3’-to-5’exoribonuclease (ExoN) in nidoviruses, a 

monophyletic group of viruses with non-segmented, single-stranded RNA genomes of 

positive polarity and conserved genome architecture. The ExoN, homolog of a canonical 

DNA proof-reading enzyme, is exclusively encoded by nidoviruses with genomes larger than 

20 kb. All other known non-segmented RNA viruses employ smaller genomes. Here we use 

evolutionary analyses to show that the two- to three-fold expansion of the nidovirus genome 

was accompanied by a vast amount of replacements in conserved proteins at the scale 

observed in the Tree of life. To unravel common patterns of such genetically diverse viruses, 

we exploited functional conservation of the nidovirus genome architecture. This conservation 

allowed us to partition each genome into five spatially collinear regions in an alignment-free 

manner. Each genomic region was analyzed for its contribution to genome size change 

under both linear and non-linear conditions. The non-linear model statistically outperformed 

the linear one and captured >92% of data variation. Accordingly, individual nidoviruses were 

found to have reached different points on a common expansion trajectory dominated by 

three consecutive, region-specific size increases. Our findings indicate a hierarchical relation 

between the three involved genome regions that are distinguished by expression 

mechanism. In the order of size increase these regions predominantly control genome 

replication, genome expression, and virus dissemination, respectively. In contrast to the 

observed directionality in the evolutionary dimension these fundamental biological 

processes cooperate bi-directionally on a functional level in the virus life cycle. Collectively, 

our findings suggest that genome architecture and the associated division of labor control 

genome size and may set its limits in RNA viruses. 
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Author Summary 
 

RNA viruses include many major pathogens. Virus adaptation to their hosts is facilitated by 

fast mutation and constrained by small genome sizes, which are both due to the extremely 

high error rate of viral polymerases. Using an innovative computational approach we now 

provide evidence for additional forces that may control genome size and, consequently, 

affect virus adaptation to the host. We analyzed nidoviruses, a monophyletic group of 

viruses that populate the upper ~60% of the RNA virus genome size scale, evolved a 

conserved genomic architecture, and infect vertebrate and inverterbrate species. They 

include viruses with the largest known RNA genomes that exclusively encode a 3’-to-

5’exoribonuclease, homolog of a canonical DNA proof-reading enzyme, which improves the 

replication fidelity. We show that the evolutionary space explored by these viruses exceeds 

that of the Tree of life for comparable protein datasets, although the time-scale of nidovirus 

evolution remains unknown. Extant nidoviruses with different genome sizes reached 

particular points on a common non-linear genome expansion trajectory. This trajectory may 

be shaped by the division of labor between open reading frames that predominantly control 

genome replication, genome expression, and virus dissemination, respectively. Ultimately, 

genomic architecture may determine the observed limit of genome size in contemporary 

RNA viruses. 

 

 

Introduction 
 

Genome size is a net result of evolution driven by the environment, mutation, and the 

genetics of the organism308,442. Particularly, mutation rate is a powerful evolutionary factor116. 

The relation between mutation rate and genome size is inversely proportional for a range of 

life forms from viroids to viruses to bacteria, and it is slightly positive for eukaryotes, 

suggestive a causative link155,307,431. The genome size of RNA viruses is restricted to a range 

of ~2-to-32 kb that corresponds to a very narrow band on the genome size scale from 1 kb 

to 10 Mb at which genome size increase is strongly correlated with mutation rate 

decrease404. This restricted genome size range of RNA viruses is believed to be a 

consequence of the lack of proof-reading factors resulting in a low fidelity of RNA 

replication220,439. In the above relation, mutation rate and proof-reading serve as a proxy for 

replication fidelity and genetic complexity, respectively. When combined, replication fidelity, 

genome size and genetic complexity form the unidirectional triangular relation that was 

postulated to lock these characteristics in low states in primitive self-replicating molecules131. 

The applicability of this trapping, known as the “Eigen paradox” 276, was also extended to 

RNA viruses217. Recent studies of the order Nidovirales, a large group of RNA viruses 

including those with the largest known genomes, provided strong support for the triangular 

relation and, unexpectedly, revealed a way of how the Eigen paradox could have been 
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solved by these viruses336,432. These advances established nidoviruses as a prime model for 

studying genome size evolution in RNA viruses.  

The order Nidovirales unites viruses with enveloped virions and non-segmented 

single-stranded RNA genomes of positive polarity (ssRNA+), whose replication is mediated 

by cognate RNA-depended RNA polymerase (RdRp)91,360. The order includes four families - 

the Arteriviridae and Coronaviridae (including vertebrate, mostly mammal viruses), and the 

Roniviridae and provisional Mesoniviridae (invertebrate viruses). The unusually broad 12.7-

to-31.7 kb genome size range of this monophyletic group of viruses includes the largest 

known RNA genomes that are employed by viruses from the families Roniviridae (~26 kb)85 

and Coronaviridae (from 26.3 to 31.7 kb)90, collectively coined large-sized nidoviruses174. 

Viruses from the Arteriviridae (with 12.7-to-15.7 kb genome range)140 and the recently 

identified Mesoniviridae (20.2 kb)284 are considered small-sized and intermediate-sized 

nidoviruses, respectively. Nidoviruses share a conserved genomic architecture with multiple 

open reading frames (ORFs) that are flanked by two untranslated regions 

(UTRs)49,84,98,336,500. The two 5’-most ORFs 1a and 1b overlap by a few dozen nucleotides 

and are translated directly from the genomic RNA to produce polyproteins 1a (pp1a) and 

pp1ab, the latter involving a -1 ribosomal frameshift (RFS) event55,366. The pp1a and pp1ab 

are autoproteolytically processed to non-structural proteins (nsp), from nsp1 to nsp12 in 

arteriviruses and from nsp1 to nsp16 in coronaviruses (reviewed in 498). They encode most 

components of the membrane-bound replication-transcription complex (RTC)100,421,462 that 

mediates genome replication and the synthesis of subgenomic RNAs (known also as 

transcription)409,450. ORF1a encodes proteases for processing of pp1a and pp1ab (reviewed 

in 498), trans-membrane domains/proteins (TM1, TM2 and TM3) anchoring the RTC22,200 and 

numerous poorly characterized proteins. ORF1b encodes core enzymes of the RTC (see 

below). Other ORFs, whose number varies considerably among nidoviruses, are located 

immediately downstream of ORF1b and are expressed from 3’-coterminal subgenomic 

mRNAs (hereafter collectively referred to as 3’ORFs)408. They encode virion and, optionally, 

so-called “accessory proteins” (reviewed in 53,136,316).  

In addition to the genome architecture, nidoviruses share also an array (synteny) of 

6 replicative protein domains. Three domains – an ORF1a-encoded protease with 

chymotrypsin-like fold (3C-like protease, 3CLpro) 13,27,179, an ORF1b-encoded RdRp75,179,445 

and a superfamily 1 helicase (HEL1)178,212,417,419 that may form a part or entire protein 

released from pp1a/pp1ab – represent the most conserved enzymes (reviewed in 169). For 

other proteins, a relationship may be established only for some lineages, mostly due to poor 

sequence similarity. Two tightly correlated properties separate large-sized and intermediate-

sized nidoviruses from all other ssRNA+ viruses that form several dozens of families and 

hundreds species: the genome size exceeding 20 kb and the encoding of a RNA 3’-to-

5’exoribonuclease (ExoN)336. The latter enzyme is distantly related to a DNA proofreading 

enzyme, and it is genetically segregated and expressed with RdRp and HEL1323,432. Based 

on these properties ExoN was implicated in improving the fidelity of RNA virus replication. 
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This hypothesis is strongly supported by an excessive accumulation of mutations in ExoN-

defective mutants of two coronaviruses, mouse hepatitis virus124 and severe acute 

respiratory syndrome coronavirus (SARS-CoV)123 (for review see 99), and the identification of 

the RNA 3’-end mismatch excision activity in the SARS-CoV nsp10/nsp14 complex52. In all 

likelihood, the on-going characterization of ExoN is expected to reveal the molecular 

mechanisms that control the fidelity of replication. Regardless of its details, the ExoN 

acquisition provides the most plausible explanation for the solving of the Eigen paradox with 

a single evolutionary event that likely liberated the ExoN-encoding nidoviruses for genome 

expansions beyond the limit observed by other non-segmented ssRNA+ viruses174,336. 

In this study we sought to gain insight into events that led to the emergence of the 

ExoN-encoding ancestor and for further expansion of the nidovirus genome to sizes 

threefold the average RNA virus genome size, hereafter referred to as the nidovirus genome 

expansion (NGE). We show that comparative sequence analysis of nidovirus families are 

complicated by huge evolutionary distances, at the scale of the Tree of life (ToL), that 

separate the most conserved proteins. To address this challenge, we exploited functional 

conservations in the genome architecture that could be established across the nidovirus 

genome in an alignment-free manner. Consequently we partitioned the genome into five 

spatially collinear regions. By employing a statistical framework we revealed non-linear, 

consecutive expansions of the three differentially expressed coding regions (ORF1a, 

ORF1b, 3’ORFs) that account for 95-99% of the genome. Importantly, these regions 

predominantly control, respectively, genome replication, genome expression, and virus 

dissemination, during the virus life cycle. The observed dynamics unveil an evolutionary 

pathway that accommodated both an enormous accumulation of mutations and virus 

adaptation to different host species. Our results also indicate that genome architecture and 

the associated division of labor control the expansion of RNA virus genomes and, contrary 

to the current paradigm exclusively focusing on replication fidelity, may determine the 

observed limit on RNA virus genome size. 

 

 

Results 
 

The scales of per-residue evolutionary change in nidoviruses and the Tree of life are 

comparable. Nidoviruses have evolved genomes in a size range that accounts for the upper 

~60% of the entire RNA virus genome size scale and includes the largest RNA genomes336. 

How much did it take to produce this unprecedented innovation in the RNA virus world? This 

question could be addressed in two evolutionary dimensions: time and amount of 

substitutions. Due to both the lack of fossil records and the high viral mutation rate, the time 

scale of distant relations of RNA viruses remains technically difficult to study. Hence, we 

sought to estimate the amount of accumulated replacements in conserved nidovirus proteins 



 
 
 
 
 
 
 
 

124  
 CHAPTER 6 

 

 

and to put it into a biological perspective by comparing it with that accumulated by proteins 

of cellular species in the ToL.  

To this end, we used a rooted phylogeny for a set of 28 nidovirus representatives 

(Table S1), which is based on a multiple alignment of nidovirus-wide conserved protein 

regions in the 3CLpro, the RdRp and the HEL1, as described previously336. The 28 

representatives cover the acknowledged species diversity of nidoviruses with completely 

sequenced genomes85,90,140,284 and include two additional viruses. For the arterivirus species 

Porcine reproductive and respiratory syndrome virus we selected two viruses representing 

the European and North American types, respectively, because we observed an unusually 

high divergence of these lineages; for the ronivirus species Gill-associated virus we selected 

two viruses representing the genotypes gill-associated virus and yellow head virus, 

respectively, because these viruses showed a genetic distance comparable to that of some 

coronavirus species (CL & AEG, in preparation). The nidovirus-wide phylogenetic analysis 

consistently identified the five major lineages: subfamilies Coronavirinae and Torovirinae, 

and families Arteriviridae, Roniviridae and Mesoniviridae. The root was placed at the branch 

leading to arteriviruses (Fig. 1A) according to outgroup analyses336. Accordingly, 

arteriviruses with genome sizes of 12.7 to 15.7 kb are separated in the tree from other 

nidoviruses with larger genomes (20.2-31.7 kb). 

We compared the evolutionary space explored by nidoviruses, measured in 

number of substitutions per site in conserved proteins, with that of a single-copy protein 

dataset representing the ToL50 (Fig. 1B). Using a common normalized scale of [0,1], 

comparison of the viral and cellular trees and associated pairwise distance distributions 

revealed that the distances between cellular proteins (0.05-0.45 range) cover less than half 

the scale of those separating nidovirus proteins. (Fig. 1C). Unlike cellular species, 

nidoviruses form few compact clusters, which are very distantly related. The distances 

between nidovirus proteins are unevenly distributed: intragroup distances between 

nidoviruses forming major lineages are in the 0.0-0.25 range, while intergroup distances 

between nidoviruses that belong to different lineages are in the 0.55-1.0 range. The 

distances separating the intermediate-sized mesonivirus from other nidoviruses tend to be 

most equidistant, accounting for ~15% of all distances in the 0.55-0.85 range. 

 

The scale of nidovirus genome size change is proportional to the amount of 

substitutions in the most conserved proteins. To explore the relation of genome size 

change and the accumulation of substitutions, we plotted pairwise evolutionary distances 

(PED) separating the most conserved replicative proteins (Y axis) versus genome size 

difference (X axis) for all pairs of nidoviruses in our dataset (Fig. 2). It should be noted that 

the observed genome size difference may serve only as a low estimate for the actual 

genome size change, since it does not account for (expansion or shrinkage) events that 

happened in parallel between two viruses since their divergence. The obtained 378 values  
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Figure 1. Phylogeny of nidoviruses in comparison to the Tree of life (ToL). Bayesian phylogenies of nidoviruses 

(A) and ToL (B) are drawn to a common scale of 0.1 amino acid substitutions per position. Major lineages are indicated 

by vertical bars and names; arteri: Arteriviridae, mesoni: Mesoniviridae, roni: Roniviridae, toro: Torovirinae, corona: 

Coronavirinae. Rooting was according to either (A) domain-specific outgroups336 or (B) as described50. Posterior 

probability support values and fixed basal branch points (*) are indicated. The nidovirus and ToL alignments include, 

respectively, three enzymes and 56 single-gene protein families, 604 and 3336 columns, 2.95% and 2.8% gaps. For 

further details on the nidovirus tree see336. (C) Distributions of pair-wise distances for nidovirus and cellular single-copy 

conserved proteins according to the phylogenies in (A) and (B). The combined set of distances was normalized relative 

to the largest distance that was set to one. 
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are distributed highly unevenly, occupying the upper left triangle of the plot. Using 

phylogenetic considerations, four clusters could be recognized in the plot. Genetic variation 

within four major virus groups with more than one species (arteri-, corona-, roni-, and 

toroviruses) is confined to a compact cluster I in the left bottom corner (X range: 0.033-4.521 

kb, Y range: 0.051-1.401). Values quantifying genetic divergence between major lineages 

are partitioned in three clusters taking in account genome sizes: large-sized vs. large-sized 

nidoviruses (cluster II, X: 0.002-5.433 kb, Y: 3.197-4.292), intermediate-sized vs. other 

lineages (cluster III, X: 4.475-11.494 kb, Y: 2.896-4.553), and small-sized vs. large-sized 

nidoviruses (cluster IV, X: 10.536-18.978 kb, Y: 4.159-5.088). Points in the clusters I, III and 

IV are indicative of a positive proportional relation between genome size change and the 

accumulation of replacements. The off-diagonal location of the cluster II can be reconciled 

with this interpretation under a (reasonable) assumption that the three lineages of large-

sized nidoviruses expanded their genomes independently and considerably since diverging 

from the most recent common ancestor (MRCA). This positive relation is also most strongly 

supported by the lack of points in the bottom-right corner of the plot (large difference in 

genome size; small genetic divergence). Overall, this analysis indicates that a considerable 

change in genome size in nidoviruses could have been accomplished only over large 

evolutionary distances in the most conserved proteins.  

 

 

 
Figure 2. Relationship of evolutionary distance to genome size change in nidoviruses. Evolutionary distance 

(average number of substitutions per amino acid position in the conserved proteins) in relation to difference in genome 

size is shown for each pair (n=378) of the 28 nidovirus species. Points are colored according to pairs of major clades 

shown in Fig. 1A. The number of comparisons for each pair of clades is indicated by numbers in brackets. Points were 

grouped into clusters I (intra-lineage comparisons), II (large- vs. large-sized inter-lineage comparisons), III 

(intermediate-sized vs. others) and IV (small- vs. large-sized). 
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Only a fraction of genome size change may be linked to domain gain and loss. Next, 

we asked whether genome size change could be linked to domain gain and loss. We 

analyzed the phylogenetic distribution of protein domains that were found to be conserved in 

one or more of the five major nidovirus lineages336. Ancestral state parsimonious 

reconstruction was performed for the following proteins: ORF1b-encoded ExoN, N7-

methyltransferase (NMT)73, nidovirus-specific endoribonuclease (NendoU)232,333, 2’-O-

methyltransferase (OMT)95,96, ronivirus-specific domain (RsD) (this study, see legend to Fig. 

S1), and ORF1a-encoded ADP-ribose-1''-phosphatase (ADRP)129,375,402. This analysis 

revealed that domain gain and loss have accompanied the NGE (Fig. S1 and Table S2). 

Particularly, genetically segregated ExoN, OMT and NMT (Fig. 3) were acquired in a yet-to-

be determined order in the critical transition from small-sized to intermediate-sized nidovirus 

genomes. However, the combined size of these domains336 accounts only for a fraction 

(49.7%) of the size difference (4,475 nt) between genomes of Nam Dinh virus (NDiV; 20,192 

nt) and Simian hemorrhagic fever virus (SHFV), which has the largest known arterivirus 

genome (15,717 nt). The fraction that could be assigned to these and the three other protein 

domains is even smaller in other pairs of viruses representing different major nidovirus 

lineages (CL, AEG unpublished data). This analysis is also complicated by the uncertainty 

about the genome sizes of nidovirus ancestors that acquired or lost domains.  

 

 

 
 

Figure 3. Genomic organization and expression, and key domains of four nidoviruses. The coding regions are 

partitioned into ORF1a (yellow), ORF1b (violet) and the 3’ORFs (blue), which also differ in expression mechanism as 

indicated on top. Black squares, ribosomal frameshifting sites. Within ORFs (white rectangles), colored patterns 

highlight domains identified in: all nidoviruses [TM2, TM3, 3CLpro, RdRp, and Zn-cluster binding domain fused with 

HEL1 (ZmHEL1)461 - light and dark blue], large nidoviruses (ExoN, OMT - orange), certain clades (NMT, NendoU - red; 

ronivirus-specific domain (RsD) - light green; arterivirus-specific domain (AsD)- dark green). Genomic organizations 

are shown for Beluga whale coronavirus SW1 (corona), gill-associated virus (roni), Nam Dinh virus (mesoni), and 

porcine respiratory and reproductive syndrome virus North American type (arteri). 
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The nidovirus genome can be partitioned according to functional conservations in 

genome architecture. In order to gain further insight in the NGE dynamics, we had to 

analyze large genome areas in which homology signals are not recoverable in the currently 

available dataset because of both the extreme divergence of distant nidoviruses and a 

relatively poor virus sampling (Fig. 1). To address this challenge, we have developed an 

approach that establishes and exploits relationships between nidovirus genomes on grounds 

other than sequence homology. To this end, we partitioned the nidovirus genome according 

to functional conservations in the genome architecture, using results for few characterized 

nidoviruses and bioinformatics-based analysis for most other viruses (reviewed in 174). With 

this approach, the genomes of all nidoviruses can be consistently partitioned in an 

alignment-free manner into five regions in the order from the 5’- to 3’-end: 5’-UTR, ORF1a, 

ORF1b, 3’ORFs, and 3’-UTR (Fig. 3). The 5’-UTR and 3’-UTR flank the ORFs area and 

account for <5% of the genome size in nidoviruses. The borders of the three ORF regions 

that overlap by few nucleotides in some or all nidoviruses were defined as follows: ORF1a: 

from ORF1a initiation codon to RFS signal, ORF1b: from RFS signal to ORF1b termination 

codon, and 3’ORFs: from ORF1b termination codon to the termination codon of the ORF 

that adjoins the 3’UTR.  

It is noteworthy that the three ORF regions are of similar size but differ in 

expression mechanism (Fig. 3 top). Specifically, ORF1a is the first to be expressed by 

translation of the incoming virion RNA and, additionally, it encodes 3CLpro that mediates the 

release of mature proteins from the polyproteins pp1a and pp1ab. The expression of 

ORF1b, that follows, depends on the ORF1a region in three different ways: (i) the utilization 

of ribosomes that started translation on the ORF1a initiation codon; (ii) the use of the 

ORF1a/ORF1b RFS signal located upstream of the ORF1a termination codon; and (iii) the 

ORF1a-encoded 3CLpro. Finally, the expression of the 3’ORFs depends on products of the 

ORF1a and ORF1b to form the functional RTC for synthesizing subgenomic mRNAs that are 

translated to produce 3’ORF-encoded proteins408. Thus, ORF1a is the dominant region 

directly and indirectly controlling the expression of the entire genome.  

 

The nidovirus genome expanded unevenly across three major coding regions. We 

then asked about how the different regions contributed to the genome expansion. We 

initially noted that the intermediate position of the mesonivirus between the two other 

nidovirus groups is observed only in genome but not region-specific size comparisons (Fig. 

4). In the latter, the mesonivirus clusters with either small-sized (ORF1a and 3’ORFs) or 

large-sized (ORF1b) nidoviruses. This non-uniform position of the mesonivirus relative to 

other nidoviruses is indicative of a non-linear relationship between the size change of the 

complete genome and its various regions during the NGE. Accordingly, when fitting 

weighted linear regressions separately to the six datasets formed by nidoviruses with small 

and large genomes for three regions, support for a linear relationship was found only for the  
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Figure 4. Nidovirus genome and region size differences. Shown are size distributions of genomes (left part) and 

the three genome coding parts ORF1a, ORF1b and 3’ORFs (right part) for five small-sized arterivirus species (small), 

22 large-sized nidovirus species (large) and one intermediate-sized mesonivirus species (interm.). The distributions are 

represented by box-and-whisker graphs, where the box spans from the first to the third quartile and includes the 

median (bold line). The whiskers extend (dashed lines) to the extreme values. 

 

 

3’ORF dataset of large nidoviruses; for all other regions a linear relationship was not 

statistically significant (Fig. S2). These results prompted us to evaluate linear as well as non-

linear regression models applied to a dataset including all known nidovirus species (n=28) 

(Fig. 5). Two non-linear models were employed: third order monotone splines and a double-

logistic regression. In the monotone splines, two parameters – the number and position of 

knots – determine the regression fit. We identified values for both parameters that result in 

the best fit (Fig. S3). 

Using weighted r2 values, we observed that the splines model captures 92.9-96.1% 

of the data variation for the three ORF regions. This was a 5-22% gain in the fit compared to 

the linear model (75.9-90.8%) (Fig. 5). This gain was considered statistically significant 

(α=0.05) in two F-tests, a specially designed and standard one, as well as in the LV-test for 

every ORF region (p=0.018 or better) and, particularly, their combination (p=6.2e-5 or better) 

(Table 1). The splines model also significantly outperforms the double-logistic model 

(p=0.0011) (Table 1). These results established that the nidovirus genome expanded in a 

non-linear and region-specific fashion. 

 

The three major coding regions expanded consecutively. Since each region expanded 

non-linearly during the NGE, so must the entire genome. Revealing its dynamic was our 

next goal. To this end, we analyzed the contribution of each of the five genomic regions to 

the overall genome size increase under the three models (Fig. 6 and Fig. S4). The top-

ranked splines model (Table 1) predicts a cyclic pattern of overlapping wavelike increases of 

sizes for the three coding regions (the 5’ and 3’UTR account only for a negligibly minor 

increase that is limited to small nidoviruses). Each of the three coding regions was found to  
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Figure 5. Relationship of sizes of three major coding regions and genome size in the nidovirus evolution. For 

28 nidoviruses representing species diversity, absolute sizes of 3’ORFs (A), ORF1a (B), and ORF1b (C) are plotted 

against the size of the genome. Different symbols were used to group the viruses into five major phylogenetic lineages 

(see inlet in A). Results of weighted linear, double-logistic and 3rd order monotone splines380 regression analyses are 

depicted. The three regression models (see inlet in C) fit the data with weighted r2 values of 0.908 (linear), 0.948 

(double-logistic) and 0.961 (splines) for ORF1a, 0.759, 0.900 and 0.929 for ORF1b, and 0.829, 0.950 and 0.955 for 

3’ORFs. For fit comparison of regression models see Table 1. 
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Table 1. Comparison of regression models. 

comparisona testb regression statisticsc 

model A model B  ORF1a ORF1b 3’ORFs total 

linear splines F 0.0180* 0.0009* 0.0003* 5.2e-9* 
linear splines Fperm 0.0008* 0.0028* <1.0e-6*d 1.0e-6* 
       

linear splines LV 0.0029* 0.0055* 0.0036* 6.2e-6* 
linear dlog LV 0.0011* 0.0100* 0.0024* 6.5e-6* 
dlog splines LV 0.0240* 0.0002* 0.20706 1.1e-3* 

a linear regression model (linear); double-logistic regression model (dlog); 3rd order monotone splines regression 

model (splines) 
b standard weighted F test (F); permutation F test (Fperm); a weighted version of a test to compare non-nested 

regression models (LV) as described in 286 
c shown is the probability that model A (null hypothesis) fits the data better than model B (alternative hypothesis); 

asterisks highlight significant values to reject the null in favor of the alternative hypothesis using a confidence level of 

0.05; probabilities are calculated separately for ORF1a, ORF1b, 3’ORFs as well as the complete model combining the 

three coding plus the two UTR regions (total) 
d non of the 1 million permutations resulted in an F larger than that of the non-permuted dataset 

 

 

have been increased at different stages during the NGE (Fig. 6). A cycle involves expanding 

predominantly and consecutively the ORF1b, ORF1a and 3’ORFs region. One complete 

cycle flanked by two partial cycles are predicted to have occurred during the NGE from 

small-sized to large-sized nidoviruses. The complete cycle encompasses almost the entire 

genome size range of nidoviruses, starting from 12.7 kb and ending at 31.7 kb. The 

dominance of an ORF region in the increase of genome size was characterized by two 

parameters: a genome size range (X axis in Fig. 6) in which the contribution of a region 

accounts for a >50% share of the total increase, and by the maximal share it attains in the 

NGE (Y axis in Fig. 6). For three major regions these numbers are: ORF1b, dominance in 

the 15.8-19.3 kb range with 72.7% maximal contribution at genome size 17.6 kb; ORF1a, 

19.6-25.9 kb and 83.0% at 22.4 kb; 3’ORFs, 26-31.7 kb and 89.8% at 29.4 kb (Fig. 6). 

Mesonivirus and roniviruses seem to have been “frozen” after the first (ORF1b) and second 

(ORF1a) wave, respectively. The third wave (3’ORFs) was due to the genome expansion of 

coronaviruses and, to a lesser extent, toroviruses (compare virus genome sizes on top with 

wave positions in Fig. 6). 

Furthermore, the shapes of the three waves differ. The first one (ORF1b) is most 

symmetrical and it starts and ends at almost zero contribution to the genome change. This 

indicates that the ORF1b expansion is exceptionally constrained, which is in line with 

extremely narrow size ranges of ORF1b in arteri- and coronaviruses (with mean±s.d. of 

4362±86 and 8071±50 nt, respectively; Fig. 4 and Fig. 6). The second wave (ORF1a) is 

tailed at the upper end and is connected to the ORF1a wave from the prior cycle. This ORF 

seems to have a relatively high baseline contribution (~20%) to the genome size change up 

to the range of coronaviruses. The third wave (3’ORFs) is most asymmetrical (incomplete),  
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Figure 6. Region-specific, wavelike dynamics of the nidovirus genome expansions. Relative contributions of the 

genome regions ORF1a, ORF1b, 3’ORFs, 5’UTR and 3’UTR to the increase in genome size are calculated according 

to the splines regression and plotted on top of each other and against their sum=1. Solid horizontal lines and vertical 

bars on top: genome size ranges and samplings for nidovirus lineages indicated by names. Dotted lines: topology of 

major nidovirus branches. Selected domains gained (ExoN, OMT, NMT, RsD and ADRP, circles) and lost (NendoU 

and NMT, diamonds) are colored according to ORF in which they are encoded. See also Fig. 3, Fig. S1 and text. 

 

 

as it only slightly decreases from its peak toward the largest nidovirus genome size at which 

this region remains the dominant contributor (~77%). 

One partial cycle, preceding the complete one, is observed inside the genome size 

range of arteriviruses and involves the consecutive expansions of ORF1a and 3’ORFs, 

respectively. Also the main, but still very limited contributions of 5’- and 3’-UTRs (<6%) are 

observed here. The start of another incomplete cycle, involving the expansion of ORF1b and 

overlapping with the complete cycle, is observed within the upper end of coronavirus 

genome sizes. 

 

 

Discussion 
 

In this study we provide, for the first time, a quantitative insight into the large-scale 

evolutionary dynamics of genome expansion in RNA viruses. We analyzed nidoviruses, a 

monophyletic group of RNA viruses that populate the upper ~60% of the RNA virus genome 

size scale and include viruses with the largest known RNA genomes. Nidoviruses infect a 

broad range of different hosts including vertebrate and inverterbrate species and we now 

show that the evolutionary space explored by these viruses exceeds that of the ToL for 

comparable protein datasets. We exploited functional conservation in the genome 



 
 
 
 
 
 
 
 

 133 
The footprint of genome architecture  

 

  

architecture in nidoviruses to partition their genomes in five spatially collinear regions. Using 

a complex statistical framework we reconstructed a non-linear trajectory of region-specific 

size increase that captured >92% of data variation. This trajectory may be shaped by the 

division of labor442 between ORFs that predominantly control genome replication, genome 

expression, and virus dissemination, respectively. Combined, our results reveal that the 

genomic architecture severely constrains the NGE. Ultimately, it may determine the 

observed limit of genome size in contemporary RNA viruses. 

 

Nidoviruses offer the best model for studying the control of RNA genome size. 

Genome size evolution in RNA viruses, unlike that of DNA-based life forms, has received 

relatively little attention from the research community. Several reasons may have 

contributed to this development. The narrow one-order range of small genome sizes that is 

compatible with the documented extremely high mutation rate404 might have been perceived 

as evidence for the lack of meaningful genome size dynamics in RNA viruses. Even if there 

was any dynamics, its reconstruction could be considered challenging if not impossible to 

address, since evolutionary signals between distant lineages deteriorate profoundly due to 

the high mutation rate220,489. Consequently, the genome size increase in RNA viruses has so 

far been associated only with two trends to our knowledge: a concomitant increase of the 

average size of replicative proteins33 and a reduction of genome compression measured by 

gene overlap34.  

In this respect, nidoviruses, which are often regarded an “exception” among RNA 

viruses33,217, offer some unique opportunities for studying the evolution of RNA genome size. 

The genome size of nidoviruses is from ~20-to-200% larger than the “average” 10 kb RNA 

virus genome. Since nidoviruses form a monophyletic group and show a relatively large 

protein domain complexity, evolutionary analyses could be pursued.  

Our results show that it took a considerable amount of evolutionary work in the 

most conserved proteins before a noticeable expansion of the nidovirus genome could be 

detected (Fig. 2). (In other, less conserved proteins the substitution rate is expected to be 

(much) larger). That relation is in line with an observation that nucleotide substitutions are on 

average four times more common than insertions/deletions in RNA viruses404. Whether this 

genome size increase also improves virus fitness and could determine the direction of 

evolution remains to be answered. In this respect we notice that viruses with larger 

genomes, compared to their small-sized cousins, could be expected to employ a more 

sophisticated repertoire of proteins for interacting with the host. It is also apparent that large-

sized nidoviruses, unlike RNA viruses with smaller genomes, may afford both the acquisition 

and loss of an ORF as a matter of genome variation. Indeed, SARS-CoV adaptation to 

human and palm civets was accompanied with a large deletion in the ORF8-ORF10 area193, 

and ORF gain/loss was documented in the recent evolution of other coronaviruses68,302 (for 

review see 170). Thus, large genomes could provide nidoviruses with an expanded toolkit to 

adapt upon crossing species barriers and to explore new niches in established hosts.  
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Inferring dynamics of genome size expansion in nidoviruses: viruses and protein 

domains. In our prior studies we already produced an unexpected insight into the control of 

genome size by identifying the ExoN domain in large-sized nidoviruses432, a discovery that 

challenged a major paradigm of RNA virus biology - the universal lack of proof-reading 

during replication220,439. While this paradigm revision is getting support from experimental 

research52,123,124,323, the recent discovery of a nidovirus in mosquitos, the mesonivirus NDiV, 

with a genome size in-between those of small-sized and large-sized nidoviruses, led to the 

proposal that 20 kb could be the genome size limit for non-segmented RNA viruses lacking 

ExoN (and proof-reading by implication)336. 

The identification of the 20 kb threshold poses questions about how nidoviruses 

have arrived at this threshold, crossed it, and expanded their genomes further. For 

addressing these questions we analyzed the entire ~19 kb genome size variation of 

nidoviruses (from 12.7 to 31.7 kb). We noted that only the lower ~20% and the upper ~30% 

of this range was sampled before the NDiV discovery. With the NDiV identification the ~50% 

non-sampled gap was split roughly in two halves, indicating that this sequence may provide 

a maximal information gain for analysis of the NGE (see also Fig. S2 in 336). Indeed, an 

exceptionally large information value of the mesonivirus to this study is evident in many 

analyses (Figs. 3-6). On the other hand, the relatively strong impact of this single virus on 

the results may warrant an additional scrutiny to ensure the validity of conclusions. To this 

end, we list below other observations, in addition to the strong statistical significance (Table 

1), that support the wavelike dynamics of the NGE. First of all, we note that a virus closely 

related to NDiV (called Cavally virus) was independently identified in a parallel study500. Both 

viruses share all properties that are critical for this study, including the size of genome and 

ORFs as well as the assignment of protein domains284. Second, these two mesoniviruses 

and the very distant roniviruses with large genomes form a monophyletic group (Fig. 1). This 

clustering correlates with common (molecular) properties, including the infection of 

invertebrate hosts and the lack of the NendoU domain, which distinguish mesoni- and 

roniviruses from other nidoviruses (Fig. S1) and could be expected to apply to other yet-to-

be identified viruses of this group as well. Third, even if we restrict our analysis to small- and 

large-sized nidoviruses, differences between the size range of genomes and the three ORF 

regions are already apparent (Fig. 4). Particularly striking are the extremely constrained 

sizes of ORF1b in both arteriviruses and coronaviruses as well as an exceptionally large 

size range of 3’ORFs in large-sized nidoviruses. These constraints contribute prominently to 

the first and third wave, respectively, of the major cycle of the NGE (Fig. 6). Thus, the 

described dynamics of the region-specific genome size increase reflects properties of both 

mesoniviruses and other nidoviruses, and is expected to sustain upon future updates of 

virus sampling.  

The available poor virus sampling limits the resolution of our reconstruction 

analysis of domain gain/loss during the NGE. For instance, the critically important 

acquisition of ExoN seems to be tightly correlated with those of two replicative 
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methyltransferases, NMT and OMT (Fig. S1). The fact that NMT and ExoN are adjacent 

domains in a single protein in coronaviruses (nsp14) and OMT resides nearby (nsp16) in 

pp1ab suggests a link between these domains and indicates that NMT and ExoN might have 

been acquired in a single event. Furthermore, NMT and OMT were shown to be essential for 

cap formation at the 5’-end of coronavirus mRNAs73,95,96, with the OMT-mediated 

modification being important for the control of innate immunity503. These enzymes are yet to 

be characterized in other large-sized nidoviruses, and this characterization must reconcile 

the apparent lack of NMT in toroviruses336 with its essential role in coronaviruses73.  

The ExoN acquisition is a hallmark of the first wave in the NGE because it is 

expected to have improved the replication fidelity and, thus, made further genome 

enlargements feasible. In contrast, no domain acquisition with a comparably strong 

biological rational could be identified for the second wave. Two aspects, both contrasting the 

first and second wave, are important to notice here. Firstly, while the first wave seems to 

reflect the genome expansion in a single ancestral lineage that might have given rise to all 

intermediate- and large-sized nidoviruses (founding event), the second wave is likely to 

encompass the expansions in several lineages that happened in parallel (Fig. S1b). 

Secondly, evolutionary relations of proteins in ORF1a (underlying the second wave) are not 

as extensively documented as those for ORF1b (underlying the first wave), since ORF1a 

proteins in nidoviruses have diverged far greater. Hence, the domain gain/loss description 

for the second wave is even less complete than that for the first wave. Most notable is the 

acquisition of ADRP (formerly X domain 180) which seems to be part of the second wave in 

large-sized vertebrate nidoviruses (Fig. 6). This domain belongs to the macrodomain protein 

family with poorly understood function and a broad phyletic distribution in viruses and 

cellular organisms357. The ADRP was shown to have ADP-ribose-1''-phosphatase activity375, 

bind poly-ADP-ribose129, and its inactivation affected cytokine production in coronavirus-

infected cells137. It was proposed to regulate RNA replication432 and coronavirus 

pathogenesis137, but its physiological function remains to be established. Unlike the first and 

second wave, the third one encompasses changes that predominantly happened during the 

radiation of a subfamily (Coronavirinae) rather than several families (Fig. 6); they are being 

analyzed in a separate study (CL & AEG, in preparation). Improved virus sampling in the 

future, especially in the genome size range around 20 kb, could be critical for the description 

of domain gain/loss in ORF1a and its refinement in ORF1b during the NGE (Fig. S1).  

 

Genome architecture and division of labor may control dynamics of genome size 

expansion in nidoviruses. To analyze the dynamics of the NGE we exploited regional 

conservation of the expression mechanisms of ORFs in the nidovirus genome. This 

conservation has no parallel in the cellular world given the enormous accumulation of 

mutations it accommodated. It was established by combining results of comparative 

sequence analysis with those obtained by experimental characterization of few selected 

nidoviruses, mostly representing artriviruses and coronaviruses, the two polar groups in the 
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genome size dimension. Like with homology, functional considerations – in this case the 

roles of protein products in the viral life cycle and the order of ORF expression – were 

invoked to rationalize the observed conservation. Based on the available data, it could be 

argued that ORF1b, ORF1a, and 3’ORFs play predominant roles in genome replication, 

genome expression, and virus dissemination, respectively, in all nidoviruses. These three 

processes are essential for every virus and they form the backbone of the nidovirus life cycle 

(Fig. 7, bottom)360. ORF1b encodes the principal enzymes of RNA synthesis, e.g. RdRp, 

ORF1a controls the expression of all other ORFs by several mechanisms (see above), and 

the 3’ORFs encode the components of virus particles that are the principal vehicles of 

genome dissemination. The regional association of this dominant control of genome 

replication, genome expression, and virus dissemination may reflect the division of labor 

between the three non-overlapping coding regions of the genome in the nidovirus life cycle.  

The cooperation between products of ORF1b, ORF1a, and 3’-ORFs is bidirectional 

in the nidovirus life cycle since the functioning of each region is critical for the two other 

regions. In contrast, the dynamics of genome expansion links these regions in the order 

ORF1b->ORF1a->3’ORFs (Fig. 7 top). It implies a predominantly unidirectional causative 

chain of regional expansion during the NGE that suggests a hierarchy of the three 

underlying biological processes. The association of the first wave of domain acquisitions 

with ORF1b attests for the universally critical role of replicative enzymes in the NGE beyond 

the 20 kb threshold that is observed by other ssRNA+ viruses (for discussion see 336). 

Regardless in which order the OMT, NMT and ExoN loci were acquired, their products must 

have been adapted to the RTC whose enzymatic core is believed to be formed by ORF1b-

encoded proteins169,418,445. Other, less conserved RTC components are encoded in 

ORF1a96,200,229,371,409,491. It is known that proteins encoded in ORF1a and ORF1b interact in 

coronaviruses230,352,409 and some of these interactions, e.g. between nsp10 and nsp14 or 

nsp16, were shown to be essential for functioning of the ORF1b-encoded enzymes 

involved51,52,74. Accordingly, the RTC, already enlarged with the newly acquired ORF1b-

encoded subunits, could have triggered and/or sustained expansion of ORF1a. Additionally, 

it may be prompted by the need to adapt the expression mechanisms for polyproteins 1a 

and 1ab, which were already increased in size and complexity in the ORF1b-encoded part. 

The final wave of expansion involving the 3’ORFs may be triggered by the need to adapt 

virus particles for accommodating the expanded genome337. During the NGE, a part of the 

newly acquired genetic material may have been adapted to facilitate both virus-host 

interactions187,224,246,494 and inter-region coordination for the benefit of the processes they 

control and the life cycle334. For instance, in arteriviruses the ORF1a-encoded nsp1 is 

essential for subgenomic mRNA synthesis and virion biogenesis332,454,455 and a role in 

transcription was proposed for an ORF1a-encoded domain of nsp3 in coronaviruses210. 

Thus, factors encoded by ORF1a and ORF1b might constrain the NGE by controlling the 

expression of the 3’ORFs region and/or the functioning of its products. This would explain 

why the 3’ORFs expansion could not have been possible before the expansion of ORF1a  
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Figure 7. Hierarchy and cooperation in the nidovirus genome expansions. Functional and evolutionary relations 

between the three major coding regions of the nidovirus genome are depicted. For a brief description on the 

relationship between these three coding regions and the processes they dominate in the nidovirus life cycle, see text. 

 

 

and ORF1b. By similar reasoning, an extremely tight control of the ORF1b size (Fig. 4) may 

set the ultimate size limit to the NGE. Finally, we note that the expansion order of the three 

coding regions matches their ranking according to sequence conservation, which is evident 

in the regional distribution of the nidovirus conserved domains (Figs. 2 and 3). This 

conservation is inversely proportional to the amount of accumulated substitutions, although 

quantitative characterization of the latter aspect is yet to be systematically documented. 

Genome changes due to regional-specific expansion and residue substitution may affect 

each other, and both may contribute to virus adaptation to the host. 

 

Concluding Remarks and Implications. It is broadly acknowledged that extremely high 

mutation rates and large population sizes allow RNA viruses to explore an enormous 

evolutionary space and to adapt to their host33,107. Yet the low fidelity of replication also 

confines their evolution within a narrow genome size range that must affect their adaptation. 

Above, we presented evidence for a new source of constrains of genome expansion in RNA 

viruses by analyzing nidoviruses which include viruses with improved replication fidelity. In 

our analysis conserved genome architecture and the associated division of labor emerged 

as potentially powerful forces for selecting new genes and target genome regions during 

genome expansion. Importantly, the major diversification of nidoviruses by genome 

expansion must have started at some early point after the acquisition of ExoN336. From that 

point nidoviruses expanded their genomes in parallel in an increasing number of lineages, 

each of which may have acquired different domains in a same region. Extant nidoviruses of 

major lineages have very different genome sizes which we found to correspond to particular 



 
 
 
 
 
 
 
 

138  
 CHAPTER 6 

 

 

points on the common region-specific genome expansion trajectory. The entire nidovirus 

(genome size) diversity may serve as a snapshot of different stages of the NGE. For viruses 

with largest genomes those with smaller genomes represent stages that they have passed 

in the NGE. For smaller genomes those with the larger ones represent stages that they have 

not reached in the NGE. It seems that the host may play a role in this process since ExoN-

encoding nidoviruses that infect invertebrate are at the low side of genome size. For yet-to-

be described nidoviruses, the genome expansion model can predict sizes of three coding 

regions by knowing only the genome size. The mechanistic basis of this fundamental 

relation can be probed by comparative structure-function analyses that should also advance 

the development of nidovirus-based vectors and rational measures of virus control. Thus, 

the wavelike dynamics model links virus discovery to basic research and its various 

applications.  

This study indicates that genome size in RNA viruses may be restricted by the 

genome architecture in addition to the low fidelity of replication. Ultimately, these constraints 

may determine the upper limit of the RNA virus genome size. The reported data point to an 

important evolutionary asymmetry during genome expansion, which concerns the relation 

between proteins controlling genome replication, expression, and dissemination, and may 

be relevant beyond the viruses analyzed here. 

 

 

Methods 
 

Datasets. A dataset of nidoviruses representing species diversity from the three established 

and a newly proposed virus family was used (Table S1). A multiple alignment of nidovirus-

wide conserved protein domains (28 species, 3 protein families, 604 aa alignment positions, 

2.95% gap content) as described previously336 formed the basis of all phylogenetic 

analyses. To put the scale of the nidovirus evolution into an independent perspective, we 

compared it with a cellular dataset previously used to reconstruct the Tree of Life, for which 

a concatenated alignment of single-copy proteins was used (30 species, 56 protein families, 

3336 aa alignment positions, 2.8% gap content)50. The proteins used in the nidoviral and 

cellular datasets are the most conserved in their group and, as such, could be considered 

roughly equivalent and suitable for the purpose of this comparative analysis. 

 

Phylogenetic analyses. Rooted phylogenetic reconstructions by Bayesian posterior 

probability trees utilizing BEAST119 under the WAG amino acid substitution matrix478 and 

relaxed molecular clock (lognormal distribution)118 were performed as described 

previously336. Evolutionary pairwise distances were calculated from the tree branches. A 

maximum parsimony reconstruction of the ancestral nidovirus protein domain states at 

internal nodes of the nidovirus tree was conducted using PAML4 487. The quality of ancestral 

reconstructions was assessed by accuracy values provided by PAML4. To correct for non-
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independence of the sequences146 we assigned relative weights to the 28 nidovirus species 

by using position-based sequence weights209 that were calculated on the alignment 

submitted for phylogeny reconstruction. The weights were normalized to sum up to one and 

were used in regression analyses (see below). The sequence weights varied ~7 fold from 

0.017 to 0.116. NDiV, which represents mesoniviruses, showed the largest weight of 0.116 

that was distantly followed by those of the bafinivirus White bream virus (WBV; 0.075) and 

roniviruses (0.06 each); coronaviruses, making up the best-sampled clade, were assigned 

the lowest weights (0.017 to 0.028 each). 

 

Statistical analysis of genome size change in nidoviruses. The genome of each 

nidoviruses was consistently partitioned into five genomic regions according to external 

knowledge (see Results). To model the contribution of each genomic region to the total 

genome size change, we conducted weighted regression analyses (size of a genomic region 

on size of the genome) using three models – a linear and two non-linear ones. Position-

based sequence weights were used and a confidence level of α=0.05 was applied in all 

analyses. The combined contributions of all genomic regions to the genome size change 

must obviously sum up to 100%. To satisfy this common constraint, in each analysis, 

regression functions were fitted simultaneously to sizes of the genomic regions by 

minimizing the residual sum of squares, thereby constraining the sum of all slopes to be not 

larger than one. The linear model assumes a constant contribution of each genomic region 

during evolution which was modeled via linear regions. 

In the first non-linear model we applied third order monotone splines with 

equidistant knots380. We chose splines because of their flexibility and generality (we don’t 

rely on a specific regression function). The monotonicity constraint was enforced to avoid 

overfitting which was observed otherwise, and third order functions were chosen to obtain 

smooth, second-order derivatives. We explored the dependence of the performance of the 

splines model on variations in two critical parameters, the number of knots and the start 

position of the first knot. These two parameters define a knot configuration and determine a 

partitioning of the data into bins. In the first test we evaluated five different configurations 

generating from three to seven knots. Configurations using eight or more knots resulted in 

some bins being empty and were therefore not considered. For each number of knots the 

position of the first knot and the knot distance were determined as resulting in that 

configuration for which the data points are distributed most uniformly among the resulting 

bins. The exception was the 3-knot configuration, in which the position of the second knot 

was selected as the intermediate position in the observed genome size range (22.2kb). Only 

configurations with equidistant knots were considered. All probed splines models were 

evaluated by goodness-of-fit values (weighted version of the coefficient of determination r2). 

In the second test we evaluated the model dependence on the position of the first knot by 

considering all positions that do not result in empty bins for the optimal number of knots 

determined using the approach described above. 
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As another non-linear model we used a 7-parameter double-logistic regression 

function that mimics the splines model and more readily allows for biological interpretations. 

Since double-logistic regressions did not converge for the 5’- and 3’-UTRs, linear functions 

were used for these two genome regions instead. 

Linear (null hypothesis) and splines (alternative hypothesis) regression models 

were compared using standard weighted F-statistics and a specially designed permutation 

test (see below). To exclude overfitting as the cause of support of the more complex models, 

we utilized a more sophisticated framework (LV-Test) for the comparison of non-nested 

regression models (linear vs. double-logistic and splines vs. double-logistic) as detailed in 
286. The test was further modified to include weighted residuals according to virus sequence 

weights that account for sequence dependence. 

Since our null hypothesis (linear model) is at the boundaries of the parameter 

space, we developed a permutation test to further compare the linear and splines models. 

To this end, genome region sizes were transformed to proportions (region size divided by 

genome size), randomly permuted relative to genome sizes, and transformed back to 

absolute values. These transformations are compatible with the constraints of the null 

hypothesis and the requirement that region sizes have to sum to genome sizes. Weights 

were not permuted. The linear and splines models were fit to the permuted datasets and F-

statistics were calculated as for the original dataset. The p-value of the test is the fraction of 

F-statistics of permuted datasets that are larger than the F of the original dataset. It was 

calculated using 1,000,000 permutations that were randomly sampled out of ~1029 possible 

permutations. 

Finally, we analyzed the contribution of each genome region to the total change in 

genome size under the three regression models. The contribution of each region according 

to a model was calculated as the ratio of change in region size to change in genome size 

(first derivative of the regression function) along the nidovirus genome size scale. These 

region-specific contributions were combined in a single plot for visualization purposes. 

To conduct all statistical analyses and to visualize the results we used the R 

package377. 

 

Accession numbers. Accession numbers of virus genomes utilized in the study are shown 

in Table S1. 
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Table S1. Nidovirus representatives. 

 

virus virus abbreviationa (sub)family accessionb 

Nam Dinh virus NDiV_01-03 Mesoniviridae DQ458789  

Gill-associated virus GAV_96 Roniviridae AF227196 

Yellow head virus YHV_98 Roniviridae EU487200 

White bream virus WBV-DF24_00 Torovirinae NC_008516 

Equine torovirus EToV-Berne_72 Torovirinae X52374 

Bovine torovirus BToV-Breda1_79 Torovirinae NC_007447 

Human coronavirus 229E HCoV-229E_65 Coronavirinae NC_002645 

Human coronavirus NL63 HCoV-NL63_02 Coronavirinae DQ445911 

Miniopterus bat coronavirus 1 Mi-BatCoV-1A_05 Coronavirinae NC_010437 

Rhinolophus bat coronavirus HKU2 Rh-BatCoV-HKU2_06 Coronavirinae NC_009988 

Miniopterus bat coronavirus HKU8 Mi-BatCoV-HKU8_05 Coronavirinae NC_010438 

Scotophilus bat coronavirus 512 Sc-BatCoV-512_05 Coronavirinae DQ648858 

Porcine epidemic diarrhoea virus PEDV-CV777_77 Coronavirinae NC_003436 

Feline coronavirus FCoV_79 Coronavirinae NC_007025 

SARS coronavirus SARS-HCoV_03 Coronavirinae AY345988 

Tylonycteris bat coronavirus HKU4 Ty-BatCoV-HKU4_04 Coronavirinae EF065505 

Pipistrellus bat coronavirus HKU5 Pi-BatCoV-HKU5_04 Coronavirinae EF065509 

Rousettus bat coronavirus HKU9 Ro-BatCoV-HKU9_05 Coronavirinae EF065513 

Human coronavirus HKU1 HCoV-HKU1_04 Coronavirinae AY884001 

Human coronavirus OC43 HCoV-OC43_67 Coronavirinae AY585228 

Mouse hepatitis virus MHV-A59_59 Coronavirinae AY700211 

Infectious bronchitis virus IBV-Beaud_35 Coronavirinae NC_001451 

Beluga whale coronavirus SW1 BWCoV-SW1_06 Coronavirinae EU111742 

Equine arteritis virus EAV-CW_96 Arteriviridae AY349167 

Simian hemorrhagic fever virus SHFV_64 Arteriviridae NC_003092 

Lactate dehydrogenase-elevating virus LDV-P_71 Arteriviridae U15146 

Porcine respiratory and reproductive 

syndrome virus, North American type 

PRRSV-NA_95 Arteriviridae AF176348 

Porcine respiratory and reproductive 

syndrome virus, European type 

PRRSV-LV_91 Arteriviridae M96262 

a acronym of virus name joined (“_”) with sampling year or period for this virus 
b Genbank/Refseq accession number 
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Table S2. Nidovirus ancestral protein domain reconstruction. 

 
ancestral nodea protein domainb 

 NendoU ExoN OMT NMT ADRP RsD 

nido (root) 1 1.000 0 0.576 0 0.576 0 0.645 0 1.000 0 1.000 

arteri 1 1.000 0 1.000 0 1.000 0 1.000 0 1.000 0 1.000 

large nido+mesoni 1 1.000 1 1.000 1 1.000 1 0.836 0 1.000 0 1.000 

mesoni+roni 0 1.000 1 1.000 1 1.000 1 1.000 0 1.000 0 1.000 

roni 0 1.000 1 1.000 1 1.000 1 1.000 0 1.000 1 1.000 

corona+toro 1 1.000 1 1.000 1 1.000 1 0.836 1 1.000 0 1.000 

toro 1 1.000 1 1.000 1 1.000 0 1.000 1 1.000 0 1.000 

corona 1 1.000 1 1.000 1 1.000 1 1.000 1 1.000 0 1.000 

a abbreviations: nidoviruses (nido), large and intermediate size nidoviruses (large nido), roniviruses (roni), 

mesoniviruses (mesoni), toro-/bafiniviruses (toro), coronaviruses (corona), arteriviruses (arteri). 
b shown are the reconstructed state (presence, 1, or absence, 0) and its accuracy by decimal numbers in the range of 

[0.500-1.000]) at the respective ancestral node for six domains in a maximum parsimony analysis using PAML. 
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Figure S1. Gain and loss of selected ORF1a/ORF1b domains found in subsets of nidoviruses. (A) Distribution of 

six selected domains identified in ORF1a (one) and ORF1b (five) conserved in subsets of 28 nidovirus species (right 

part). One of the ORF1b-encoded domains (RsD) was identified in this study by inspection of the pp1b alignment as a 

ronivirus-specific insertion (163 aa) that is located between the conserved RdRp and ZmHEL1 domains (see Fig. 3). 

Colors indicate a domain’s ORF location (purple for ORF1b, yellow for ORF1a). The left part shows predicted gain 

(circles colored according to its ORF location) and loss (colored diamonds) events at internal branches of the nidovirus 

phylogeny336. Nidovirus ancestral domain compositions were reconstructed utilizing a maximum parsimony analysis 

implemented in PAML4. Support values are shown in Table S2. (B) The nidovirus phylogeny was mapped on the 

genome size scale (dotted lines). Individual genome sizes of 28 nidovirus species are shown by vertical dashes and 

the size range within major lineages by horizontal solid lines. Internal nodes in the tree were arbitrarily placed at half 

the distance of adjacent branching events connecting two lineages while observing the original topology of the 

phylogeny. Predicted domain gain/loss events are highlighted as in (A). 
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Figure S2. Clade-specific relationship of sizes of three major coding regions and genome size in the nidovirus 

evolution. For 28 nidoviruses representing species diversity, absolute sizes of 3’ORFs (A), ORF1a (B), and ORF1b 

(C) are plotted against the size of the genome. Different symbols were used to group the viruses into five major 

phylogenetic lineages (see inlet in A). Results of weighted linear regression analyses for small-sized (arteri) and large-

sized nidoviruses (corona, toro/bafini, roni) are depicted. Regressions with a slope significantly different from zero are 

shown in black, non-significant ones in grey. The linear regressions fit the data with p=0.11, r2=0.62 (arteri) and 

p=0.45, r2=0.03 (corona, toro/bafini, roni) for ORF1a, p=0.33, r2=0.31 and p=0.1, r2=0.13 for ORF1b, and p=0.21, 

r2=0.45 and p=6e-11, r2=0.89 for 3’ORFs. The only significant correlation was observed for 3’ORFs of nidoviruses with 

large genomes (A) where the regression line showed a slope of 0.84 (±0.07 s.e.). 
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Figure S3. Sensitivity of the splines regression model to the number of knots and the position of the first knot. 

Shown are goodness-of-fit in form of weighted r2 values (A-C, G-I) and sensitivity on the resulting regression curve (D-

F, J-L) for different number of knots in the range of 3 to 7 (A-F) and different positions of the first knot (G-L) for the 

3’ORFs, ORF1a and ORF1b genome regions. The best fit was obtained for the 7-knot configuration for all three 

regions (A-C). Hence, the 7-knot configuration was selected as the optimal one. We have also calculated a difference 

between other splines models compared to the optimal knot number by calculating the absolute difference of the 

regression curves of two configurations normalized to the size range of observed values (e.g. size ranges of ORF1a, 

ORF1b or 3’ORFs). This difference was in the range of 1-7% and increased with decreasing knot number in all three 

regions (D-F); it could be viewed as the loss of fit relative to the 7-knot configuration. Also, we calculated the model 

dependence on the position of the first knot by evaluating all positions that do not result in empty bins for the 7-knot 

configuration, which was found to be in the range from 11.4 to 12.0 kb (G-I). There was virtually no dependence of the 

position of the first knot and the goodness-of-fit (G-L); we selected the position that is closest to the minimal genome 

size. The knot number (k=7) and position of the first knot (at 12kb resulting in a knot distance of 3.7kb) used in the 

main calculation are indicated by green vertical lines. 
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Figure S4. Modeling contribution of ORF1a, ORF1b, 3’ORFs, 5’UTR and 3’UTR to the nidovirus genome 

expansion. Relative contributions of ORF1a (yellow), ORF1b (purple), 3’ORFs (blue), and 5’ and 3’UTR (black) to the 

increase in genome size are plotted on top of each other and against their sum=1 (grey) for the linear (A), the splines 

(B) and the double-logistc (C) regression model. Relative size contributions were calculated based on the regression 

curves fitted to the five genome parts for a dataset of 28 nidoviruses representing species diversity. Solid horizontal 

lines and vertical bars on top: genome size ranges and virus samplings for arteri-, corona-, toro-/bafini-, roni- and 

mesoniviruses. Under the linear model (which was statistically rejected in favor of the non-linear models), the 

contribution of each region to the genome size change is constant by definition. The ORF1a region accounts for most 

change (46.3%), followed by 3’ORFs (30.2%), ORF1b (21.3%), 5’UTR (1.3%) and 3’UTR (0.8%). In contrast, the 

splines and double-logistic models predict a cyclic pattern of overlapping wave-like increases of sizes for the three 

ORFs regions, with maximal contributions of 72.7%, 83.0% and 89.8% for ORF1b, ORF1a and 3’ORFs, respectively 

(see also main text). Highly similar cyclic and wave-like patterns of region expansions are predicted by the double-

logistic model that mostly differs in the amplitude and range of waves compared to those of the splines model. These 

similarities suggest that the double-logistic model might be an approximation of the monotone splines model facilitating 

biologically meaningful interpretations. 
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Introduction 
 

Picornavirus proteins are involved in all stages of the virus life cycle, from the virus entry into 

the cell and uncoating, to genome translation and replication, to encapsidation of the newly 

synthesized genomes and virion release from the cell5,378 (see 346). They interact with each 

other and virus RNAs as well as with cellular proteins, polynucleotides, and membrane 

components in performing their functions to produce virus and secure its spread outside the 

cell. Each protein adopts a variation of a common or unique fold and plays a particular role 

in a carefully orchestrated interplay for the virus to proliferate. Our understanding of the 

intricacies of this molecular machinery comes from studies involving functional and structural 

dissections of a few picornaviruses. Additional picornaviruses, whose number is growing, 

have been only poorly characterized, and the even much greater picornavirus diversity 

remains totally unexplored. For most of the known picornaviruses, genomes have been 

sequenced, enabling insight through comparative genomics. What is found to be conserved 

in sequences of all picornaviruses tends to be functionally and genetically essential in 

viruses that are studied in detail, implying a largely universal role for a conserved element in 

the picornavirus life cycle. Likewise, poorly conserved proteins tend to be dispensable in 

experiments and are involved in processes that modulate, often in a host-dependent 

manner, the picornavirus life cycle, which is driven by the key and most conserved proteins. 

This connection between functional, structural, and evolutionary dimensions forms a rational 

framework for model building in picornavirus research and serves for the dissemination of 

accumulated knowledge, both for established and for newly sequenced picornaviruses. 

From a broad evolutionary perspective, picornaviruses form a phylogenetically 

compact family of viruses that infect vertebrates. Thousands of picornaviruses isolated so 

far can be grouped into 28 monophyletic lineages recognized as separate species and that 

are further grouped in 13 clusters taxonomically known as genera (Fig. 1)258. (The above 

numbers are not definitive, as most recently described picornaviruses may form additional 

species and prototype novel genera249,250,386; many more may come to light in the future469 

[see 264].) Picornaviruses in a single species have limited sequence variability and always 

share a common protein set. Viruses that belong to different genera may typically be 

distinguished by the presence of one or more unique proteins (molecular markers); within a 

genus only a few species have such a distinction. 

Picornaviruses employ a variant of a genetic plan common for a vast group of 

positive-stranded RNA viruses infecting also plants and invertebrates and known as the 

Picornavirales order287. The picornavirus genetic plan includes a single open reading frame 

(ORF) that occupies ~90% of the 6.7- to 8.8-kb genome480. It is flanked by the 5′ and 3′ 

untranslated regions (UTRs) that regulate translation and replication of the genome. The 

ORF includes 9 to 13 domains arranged in a conserved order and synthesized as a single 

polyprotein that is autoproteolytically processed to mature products. Three major virion 

(capsid) proteins, VP2 (1B), VP3 (1C), and VP1 (1D), are encoded in the N-terminal part of 
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the polyprotein. They are followed by proteins controlling replication and expression of the 

genome, 2B, 2C, 3A, 3B, 3C, and 3D, all listed in the order from the N to C terminus. 

Immediately upstream of 1B, some picornaviruses encode a small (minor) capsid protein 

VP4 (1A), a leader (L) protein and, in a single cardiovirus species (typified by Theiler’s 

mouse encephalomyelitis virus [TMEV]), a second L protein in an alternative reading frame 

(L*). Likewise, downstream of 1D, a 2A protein is commonly encoded. L, L*, and 2A proteins 

are implicated in virus-host interactions (see 264,346,482 for a more detailed account of the 

picornavirus genome organization, encoded proteins, and infectious cycle). 

 

 

 
 

Figure 1. Phylogenetic tree of the Picornaviridae family. A phylogeny of 28 picornaviruses representing species 

diversity is shown. The maximum- likelihood tree is based on a multiple alignment of RdRps and was compiled using 

the PhyML program under the WAG amino acid substitution matrix and rate heterogeneity among sites (gamma 

distribution with four categories)196,478. A Bayesian reconstruction utilizing the BEAST software resulted in an identical 

topology. Numbers at branching points indicate bootstrap support values from 1,000 replicates. The scale of evolution 

in average number of amino acid substitutions per position is shown by the bar. The tree was rooted according to a 

separate phylogenetic analysis using nidovirus RdRps as an outgroup (data not shown). Picornavirus genera are 

indicated to the right of the phylogeny. For picornavirus species the presence of L and 2A proteins in polyproteins is 

depicted using rectangles of different shades. The widths of the rectangles are scaled proportionally to the size of L 

and 2A proteins. Homologous proteins are coded as described for Fig. 2, below. The viruses included are: HAV, avian 

encephalomyelitis virus (AvEMV), HPeV, LjV, DuHV AP, SealPV, porcine teschovirus (PTeV), FMDV SAT 2, ERAV, 

Theiler’s-like virus of rats (TheiloV), encephalomyocarditis virus (EMCV), Seneca Valley virus (SVV), EERBV1, Aichi 

virus (AiV), bovine kobuvirus (BKoV), avian sapelovirus (DuPV), porcine sapelovirus (PEV-A), simian picornavirus 1 

(SiPV), bovine enterovirus (BEV), simian enterovirus A (SiEV), HRV 30 (HRV-A), HRV-C, HRV-B, HEV-C, HEV-D, 

HEV 71 (HEV-A), HEV-B, and porcine enterovirus B (PEV-B).  
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In this chapter we briefly review our current understanding of the origin and 

evolutionary dynamic of the picornavirus proteome. There is a large body of literature on 

protein evolution recorded during picornavirus outbreaks and on picornavirus passaging in 

cells and animals in the absence or presence of a selective factor, e.g., a drug. These 

changes are limited in scale and restricted in time and can be defined as 

microevolution107,108, which is outside the scope of this chapter (see 111,470 for further 

information). The evolution of picornavirus proteins is reviewed in reference 192. Many 

concepts summarized and formulated in that review remain timely and are entertained 

below. The review can also serve as a reference point to observe advancements 

accomplished over the last 10 years. Discussions of evolution of all or some picornavirus 

proteins can be found in a number of other reviews5,107,499. 

 

 

Defining domain diversity in the picornavirus proteome 
 

Before discussing picornavirus proteins, it is useful to recall that they were originally named 

without regard to evolutionary considerations, which is a common framework in 

contemporary studies. Accordingly, names were assigned to proteins based on either their 

electrophoretic mobility on gels (e.g., VP1 to VP4 for capsid proteins)440 or by using a 

rational, genetically based nomenclature that divided the ORF into four consecutive 

nonoverlapping parts (L and 1 to 3), which were further split into 12 loci (L, 1A to 1D, 2A to 

2C, and 3A to 3D)398. When comparative genomics of picornaviruses enabled evolutionary 

inferences, no large conflict was apparent between protein names and evolutionary 

relationships. The sole exceptions were the L and 2A proteins, which were found to belong 

to multiple protein families. To distinguish between evolutionarily unrelated L and 2A 

proteins in this chapter, each unique protein variant is assigned a number that follows either 

L or 2A. In total, six different Ls (from L1 to L6) and seven 2As (from 2A1 to 2A7) are 

currently recognized (Fig. 2) (unpublished data). They may be known under different names 

in other publications. The recognized varieties of L and 2A proteins are in no way definitive 

descriptions of the natural diversity of these proteins, whose full spectra may never be fully 

accounted as long as the picornavirus discovery effort is not extended to cover all vertebrate 

species. 

The diversity of picornavirus proteins can be discussed and rationalized in the 

context of the picornavirus phylogeny (Fig. 1), the positions of respective genes on the 

genome (Fig. 2), and protein structures and their functions in virus reproduction. All these 

aspects are discussed in detail separately in many chapters in this book (mainly 
115,261,264,291,313,346,397,463,482). Here we will outline different properties of picornavirus proteins 

for the sake of defining their diversity before discussing the proteome evolution in some 

detail. A summary of the picornavirus proteome is given in Table 1. 
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Figure 2. Polyprotein layout characteristics of genera or species of the Picornaviridae family. Genomic 

organizations for 17 picornaviruses of 13 genera are shown, describing all variants of the polyprotein domain 

architecture found for the Picornaviridae by 2009. The organizations were aligned at the 2B-2C border and are ranked 

in order of descending genome size. Mature proteins are depicted as different shaded rectangles (with the exception of 

2A3 and 2A4 [NPGP] in cardioviruses, which are released as a fused product from the polyprotein), and UTRs are 

shown as solid horizontal lines. The identity of proteins can be determined using the legend at the bottom. Borders of 

proteins were identified using protein annotations for the most-well-characterized viruses, which were then applied to a 

family-wide polyprotein alignment, generated by using Muscle and curated manually with support of the Viralis software 

platform (Gorbalenya, unpublished). For the sake of this comparison, a region between a leader protein (where it is 

present) or the initiator codon (leaderless viruses) and 1B (VP2) was considered as 1A (VP4) in all viruses, although it 

is not produced in some viruses. For a discussion of the complexities of VP4 evolution, see the text. For TMEV two 

reading frames are shown (from top to bottom: 0 and +1 with respect to the start of the most upstream open reading 

frame), as it encodes an additional protein (L*) in the +1 frame.  

 

 

Comparisons of polyproteins of picornaviruses have identified 1B, 1C, 1D, 2B, 2C, 

3A, 3B, 3C, and 3D proteins in all picornaviruses sequenced to date. Conservation varies 

markedly between these functionally and structurally diverse proteins (see below). Other 

proteins, L, L*, 1A, and 2A, are not universally present in all picornaviruses. All proteins can 

be loosely placed in four groups based on functional and evolutionary considerations. 

The first group comprises four capsid proteins, three of which, 1B, 1C, and 1D, 

have adopted different versions of an eight-stranded antiparallel β-barrel fold, dubbed a jelly 

roll394. Among RNA and DNA viruses of different families, this fold is most commonly used to 

build icosahedral capsids with different triangular numbers399. Picornaviruses use pseudo-T3 

virion architectures214,393. This fold is also employed by cellular proteins87,394. The 

picornavirus capsid may include a small 1A (VP4) protein encoded upstream of 1B that is 
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involved in the interaction with the encapsidated RNA. The N-terminal myristoylation signal 

GXXXS/T is common in VP4 of many picornaviruses78,310,312,355 whose apparent 

conservation is otherwise very limited345 (Gorbalenya, unpublished). Also, in some 

picornaviruses, e.g., human parechovirus (HPeV)437, Ljungan virus (LjV)239, and duck 

hepatovirus type 1 (DuHV)103,459, no 1A (VP4) protein has been identified. 

The second group includes the 2C, 3C, and 3D proteins, all of which are key 

enzymes controlling replication and expression of the picornavirus genome; also, there is 

the 3B (VPg) protein, which is a substrate of 3D. 

2C is a multifunctional protein involved in replication, membrane biogenesis, and 

virion uncoating. Bioinformatics-based analysis identified three domains in the 2C protein. 

Two α/α domains flank an ATP-binding/ATPase domain, adopting a variation of the α/β 

Rossmann fold, which is ubiquitous in the protein world446,457. The central ATPase domain 

belongs to the so-called helicase superfamily III (Hel SF3)181. It is characterized by three 

sequence motifs, A, B, and C, which are associated with enzymatic activities, ATPase, and 

presumably, helicase. Besides 2C of picornaviruses, the Hel SF3 includes (2C-like) proteins 

encoded by other viruses of the Picornavirales order, a few other single-stranded RNA 

(ssRNA) positive-strand viruses (ssRNA+), and small DNA viruses, as well as proteins of 

cellular origin. The Hel SF3 is related to a vast group of proteins known as the AAA+ 

ATPase superfamily, which adopt a ringshaped oligomer fold and are involved in myriad 

cellular processes138. The very N terminus of the N-terminal α/α domain of 2C was 

recognized as an amphipathic α-helix that may form a separate subdomain mediating 

interaction of 2C with membranes354. Its distant counterpart was identified in the N terminus 

of the unrelated NS5/NS5a proteins of flaviviruses, another ssRNA+ family447. 

3C is a cysteine proteinase, acting as the major enzyme mediating polyprotein 

proteolytic processing. It adopts the 12-stranded antiparallel two-β-barrel fold conserved in 

cellular serine proteases, with chymotrypsin as the prototype (reviewed in reference 430). 

Many ssRNA+ viruses encode homologs (orthologs) of 3C protease, often known as 3C-like 

proteinases185,401. 

3D is the RNA-dependent RNA polymerase (RdRp) that mediates genome 

replication. It is related to a number of template-dependent polynucleotide polymerases, 

including RdRps of other RNA viruses, reverse transcriptases of viral and cellular origins, 

and DNA-dependent DNA polymerases148,199,451. These enzymes include a (palm) 

subdomain that adopts an RRM-like fold conserved among a number of functionally different 

proteins, including ribosomal proteins L7/L12 and S6, as well as the U1A splicing factor199. 

3D is a primer-dependent RdRp that uridylates a very small 3B (VPg) protein to initiate RNA 

synthesis (356; reviewed in reference 149). Functional counterparts of 3B have been identified 

in other ssRNA+ virus families in the Picornavirales order and also outside of the order287,324. 

They share no recognizable sequence similarity with 3B. 
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A third group is formed by two proteins, 2B and 3A, that flank 2C in the polyprotein. 

Both mediate interactions with membranes to anchor the replicative complex (see 261,397,463). 

They universally include a region enriched with hydrophobic amino acid residues that is the 

most characteristic sequence feature of these proteins92,477, which are otherwise poorly 

conserved (see below and Fig. 3). 

The L and 2A proteins form a fourth group. As was already mentioned, they are 

distinguished among picornavirus proteins for their unparalleled diversity of molecular forms. 

Seven 2A and six L proteins have been recognized in viruses of the established and 

provisional picornavirus species so far392 (Fig. 1) (see 264,346). It must be also noted that one 

virus, duck picornavirus (DuPV) of the Sapelovirus genus460, may encode no 2A protein 

according to our analysis (Gorbalenya, unpublished). The L1 protein, which is a papain-like 

proteinase195 encoded by three species of aphtho- and erboviruses, is the only L protein that 

has homologs encoded by other viruses and cellular organisms180. Other varieties of the L 

protein are encoded by genes found only in a single species, indicative of their recent origin. 

It is common to treat these de novo genes as belonging to ORFans, genes with no apparent 

homologs outside a restricted phylogenetic range due to their unique origin or fast 

evolution424. Interestingly, four molecular forms of L proteins have characteristic sequence 

signatures suggestive of Zn fingers (70; Gorbalenya, unpublished). 

Some evolutionary characteristics of the 2A polypeptides parallel those of the L 

proteins, although important differences are also evident. 

First of all, the 2A domain repertoire is dominated by proteins that have homologs 

outside picornaviruses rather than de novo proteins (Table 1). It includes only two ORFans, 

2A3 and 2A2, in three species comprising two cardioviruses and hepatitis A virus (HAV), 

respectively. There are five molecular forms of 2A which have homologs outside the 

picornavirus family. 2A1, known as 2A cysteine chymotrypsin-like proteinase28,46, is 

conserved in all 10 species of enteroviruses and two sapeloviruses. 2A6, originally 

designated as the Hbox-NC protein family226, is a putative acyltransferase with a permuted 

papain-like fold14,168 conserved in seven picornavirus species of one provisional and four 

established genera. 2A4, known otherwise - after the conserved sequence signature - as the 

NPGP or EXNPGP protein family113,348, mediates polyprotein processing by a unique 

cotranslational mechanism114. It was identified in 10 species of eight genera. 2A5 and 2A7 

are both putative GTPases, based on similarities to characterized cellular homologs; each 

was identified in a single picornavirus species103,250,255,459. 

Second, it was discovered that the 2A region can be multicistronic and 

accommodate up to three unrelated genes in a picornavirus. Recognized first in LjV239, 

multidomain 2A organizations were later described in the newly discovered DuHV103,255,459 

and seal picornavirus type 1 (SealPV)250. In these three viruses each 2A protein may be 

released from the polyprotein as a separate protein moiety. In hindsight, a multicistronic 

organization of the 2A locus can also be recognized in two species of cardioviruses that are 

prototypes for the genus (Fig. 2). In these viruses, the 2A locus accommodates the 2A3 and 
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2A4 varieties that, unlike other 2A combinations, are expressed as a fused protein, known 

as cardiovirus 2A (G protein)171. Interestingly, 2A4 is part of all four known multicistronic 2A 

loci, although its relative position in the locus varies between LjV, DuHV, SealPV (5′-end 

proximal), and cardioviruses (3′-end proximal) (Fig. 2).  

 

 

Recognizing protein conservation in the proteome 
 

When discussing proteins of picornaviruses it is common, as has already been done in this 

chapter, to invoke protein conservation. There is a general consensus that 3D and 2C are 

the most conserved, 2A and L proteins are the least conserved, and all other proteins are 

distributed in between350. This notion is based on experience with comparative sequence 

and phylogenetic analyses of many researchers, as well as on some quantitative 

measurements, mostly restricted to closely related picornaviruses63,225,351 or genera. 

Importantly, conservation may mean different things to different people. For instance, the 

mere fact that a protein is found in all picornaviruses could be considered sufficient to treat it 

as conservative, while the lack of a protein in one or more picornaviruses could lead to the 

opposite conclusion. Figures 1 and 2 compare the distributions of all protein varieties among 

picornavirus species in a systematic way to reveal ubiquitous (conserved) and 

lineagespecific (nonconserved) proteins. 

Another way to look at protein conservation is through sequence motifs (or 

characteristic signatures or patterns) whose size, uniqueness, and number can be linked to 

the underlying sequence conservation. Sequence motifs represent a simplified description of 

regional position-specific variation in sequence alignments produced to maximize similarity 

of proteins35,227. Clusters of alignment positions with no or highly restricted variations are 

selected to define motifs; in proteins the respective amino acid residues may form active 

sites of enzymes and/or encompass structurally important elements. The link between motifs 

and sequence variations can be exploited in a systematic analysis of conservation in 

picornaviruses. Position-specific amino acid residue variations along the polyprotein can be 

plotted by utilizing a polyprotein-wide sequence alignment produced for different subsets of 

picornaviruses59,345,350. We have plotted position-specific similarities in polyproteins of the 

entire Picornaviridae family (Fig. 3). In this plot, regions of high similarity form peaks, which 

are separated by valleys corresponding to relatively low similarities. This profile is evidently 

informative only for loci encoding proteins found in all picornaviruses (ubiquitous proteins). 

For the L and 2A regions, accommodating multiple unrelated molecular forms, the similarity 

profile is mostly not informative (flat line) due to gap dominance in the majority of sequences 

in these regions of the polyprotein alignment. To reveal sequence conservation in these 

regions, similarity profiles can be plotted for separate 2A and L protein families represented 

by two or more sequences (Fig. 3, inserts). These separately built profiles are useful for 

assessing variations in a protein family but cannot be used for cross-comparisons between 
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different varieties of 2A and L proteins that are encoded by nonidentical subsets of 

picornavirus species. 

Peaks in the polyprotein similarity plot correspond to motifs60,184. They can be used 

for verifying and expanding the motif assignments made in studies with limited sequence 

diversity and sampling. For instance, in 3Dpol, the A, B, C, E, F, and G motifs184 that form 

the active site and reside predominantly in the palm subdomain occupy most of the major 

peaks. They match, in some cases with a deviation, the motifs assigned or used in earlier 

studies245,268,367. In 3Cpro, the four peaks correspond to sequence elements, including three 

catalytic residues, H, D/E, and C, and a major substrate-binding site (SB), containing the 

GXH signature28,173. Likewise, the A, B, and C motifs of the Hel SF3181 comprise most of the 

large multipeak area of the 2C protein. Distinct peaks are also evident in several other 

proteins, most prominently in three capsid proteins, 1B, 1C, and 1D345, as well as 3B (a Y 

peak comprising the G/AXYXG signature centered around the uridylated Tyr residue)175,411. 

 

 

 

 
 

Figure 3. Polyprotein conservation of the Picornaviridae family. A plot of the conservation along the polyprotein 

alignment of 13 picornaviruses representing genus diversity is shown. The normalized similarity measure was compiled 

using the Bio3d package in R under the Blosum62 substitution matrix and a sliding window size of 10 amino acid 

positions188,377. The mean similarity of the polyprotein is indicated by the dashed horizontal line. On top, the positions of 

single protein alignments are highlighted by black rectangles and names with the same nomenclature as used for Fig. 

2. For L and 2A proteins the positions of alignments for the different protein families (see also Table 1) are shown by 

grey vertical lines. The grey inserts represent separate conservation plots for the different L and 2A proteins that are 

expressed by at least two virus species. The following conserved sequence motifs are indicated at peaks of the 

similarity measure: NPGP cleavage motif in 2A4; 2C helicase motifs A, B, and C; 3B conserved Tyr (Y) nucleotidylated 

during priming in RNA synthesis; 3C protease catalytic His (H) and Cys (C), noncatalytic Asp/Glu (D/E) residues, and a 

substrate- binding motif (SB); 3D polymerase motifs A, B, C, E, F, and G.  
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Similarity peaks can be used to rank proteins according to their conservation. For 

instance, using the height of the tallest peak as a criterion (Fig. 3), the six most conserved 

proteins would be ranked in the order 3D, 2C, 3C, 1B, 1C, and 1D. Since proteins differ in 

size as well as numbers and shapes of similarity peaks, another measure of amino acid 

similarity that takes all these variables into account could be most inclusive. We designed 

such a measure and have called it a normalized similarity (Lauber and Gorbalenya, 

unpublished). It is calculated by adding up the similarities over all alignment positions of a 

genetic region or protein and dividing the obtained value by the number of alignment 

positions in the region or protein. This measure can be viewed as an integral indicator of 

protein conservation for a region or protein. According to this measure, five proteins, in 

descending order, 3D, 2C, 1C, 1B, and 3C, are the most conserved and form a separate 

group in the plot (Fig. 4). This ranking is close to that drawn from using the heights of the 

tallest peaks (see above). It is correlated with the key role of the five domains in the control 

of genome replication, expression, and encapsidation. Remarkably, these five proteins, 

compared to other proteins, are also distinguished by having the most restricted size 

variation (Fig. 4). These observations show that the evolution of key proteins of 

picornaviruses is most constrained in two dimensions that defined variation of amino acid 

sites and protein size, respectively. Mechanistically, constraints must have been imposed on 

accepting nonsynonymous replacements and in-frame insertion or deletions in these 

proteins. 

 

 

Sources and mechanisms of innovation in the evolution of 

picornavirus proteins 
 

The discussion above shows that replacement, insertion, and deletion of amino acid 

residues may fully account for the entire variation of the five most conserved picornavirus 

proteins. Excluding the N-terminal helix of 2C, discussed separately below, this notion is 

also supported by the lack of mosaic relationships between these and other proteins. Two 

processes, mutation and homologous recombination, have been shown to be involved in 

generating these changes in the most conserved proteins. Mutation is produced as a result 

of nucleotide misincorporation mediated by the RdRp during replication that may be 

translated in local changes in the protein (see 111,470). In contrast, homologous 

recombination, in which virus progeny are generated by two parents that exchange 

homologous parts (see 6,426), may affect a relatively large genome region encoding one or 

more proteins. Homologous recombination may require extensive base pairing to occur, 

which would restrict it to closely related viruses. Accordingly, homologous recombination has 

been implicated in generating intraspecies protein diversity, while mutation is a mechanism 

operating with no apparent phylogenetic or taxonomic barriers (see also 6,111,426,470). 
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Figure 4. Protein conservation in the Picornaviridae family. For each of the different picornavirus proteins the 

mean normalized similarity (see Fig. 3 and text) is plotted against the length deviation, where the latter was compiled 

as the standard deviation divided by the mean length. For the main figure (in black), lengths of protein regions L, 1A, 

1B, 1C, 1D, 2A, 2B, 2C, 3A, 3B, 3C, and 3D were used (allowing lengths of 0 in cases of absent proteins), whereas 

lengths in the inset plot (grey) are based on mature proteins (absent proteins were not counted). The same data set 

used for Fig. 3 was used here.  

 

 

These processes contribute to the evolution of all proteins, regardless of the level 

of protein conservation4. They can also facilitate the proteome expansion by accepting 

nucleotide substitutions that open an additional region for reading by ribosomes. All ORFans 

identified in the L region of different picornaviruses could have emerged through converting 

a part of the 5′ UTR adjacent to the polyprotein ORF into the coding locus by mutation. Thus 

this conversion may not necessarily be accompanied by the loss of the original function, 

implying that the converted region could combine two roles: the original one as part of the 5′ 

UTR and a newly acquired role as a polyprotein domain. This region in picornaviruses is 

known to carry few essential RNA signals, as it typically separates the highly structured 

internal ribosome entry site from the initiator codon located downstream8 (see 313). Evidence 

for functional overlap of the 5′ UTR with the polyprotein ORF has also been reported for 

other viruses495. The reverse scenario—loss of an L protein due to mutation and/or 

nonhomologous recombination—seems to be equally plausible. The genetically engineered 

deletion of the L gene was largely tolerated by foot-and-mouth disease virus (FMDV)365 and 

TMEV266. Also, an FMDV-based chimera carrying a noncognate L protein from Theiler 
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murine encephalomyelitis virus (TMEV) was found to be viable364. The loss of the L gene 

could have accompanied the emergence of the ancestor of leaderless enteroviruses, whose 

phylogenetic neighborhood includes exclusively Lcontaining lineages comprising seven 

genera (Fig. 1). 

Another way of expanding the proteome without accompanying genome expansion 

is to open an alternative reading frame to the polyprotein ORF. Due to its redundancy, the 

genetic code can be used to maintain two or more ORFs in a genomic region (overlapping 

ORFs) at the expense of restricting varieties of codons used in the overlapping ORFs. The 

mutation process leading to the emergence of such alternative ORFs is called 

overprinting252. It is relatively common in RNA viruses, which evolve under tight constraints 

imposed on the genome size expansion by low-fidelity replication34. Overprinting is believed 

to generate de novo genes that, like many L genes discussed above, belong to ORFans424. 

The emergence of the L* gene, overlapping with the L gene and found exclusively in a 

subset of viruses of the TMEV species71,267, was likely via overprinting. In line with the above 

hypothesis, the naturally leaderless poliovirus was artificially converted with few 

replacements in the 5′ UTR into a viable mutant carrying an L* gene overlapping with the 

polyprotein ORF361. On the other hand, it has been speculated that some varieties of 2A 

proteins found in many viruses could have evolved from ancestors encoded in alternative 

ORFs that may be of ancient origin192. 

The origin and evolution of the least-conserved proteins may also involve 

nonhomologous recombination (see 6,426), which is a process of generating recombinant 

virus progeny by two parents that share no extensive homology. One parent, which could be 

called “minor,” contributes a nonhomologous gene to incorporate it as an insertion in the 

progeny genome most similar to the other, major, parent. A minor parent may be of cellular 

or viral origin, and it serves as an external unrelated source of genetic variability for progeny 

of the major partner. Special cases of nonhomologous recombination are gene duplication 

and loss in progeny of a single parent. In the case of gene duplication, a genetic locus is 

repeatedly copied, while gene loss is a result of skipping a genetic locus from copying; both 

are considered to be aberrations of template-mediated replication in picornaviruses. From 

the evolutionary point of view, gene duplication and loss can be considered an expansion of 

genetic variation by using the cognate template in an aberrant way. 

As evident from the extreme sequence diversity of 2B and 3A proteins (Fig. 3), their 

evolution seems considerably less constrained than that of the most conserved proteins. 

Relatively high rates of mutation fixation and homologous recombination may fully account 

for generating this diversity, which does not include clearly recognizable unrelated molecular 

forms, like those found in L and 2A proteins. 

Similar reasoning can be applied to explain the diversity of 1A (VP4) proteins. In 

this framework, picornaviruses with no identified VP4 could have evolved highly divergent 

variants of this protein that are covalently fused to the downstream 1B protein. Because they 

possess deviant properties, such variants may have eluded identification by bioinformatics 
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analyses and in structural studies. Indeed, picornaviruses, which are known to lack 1A, have 

a 1B that is N-terminally extended (Gorbalenya, unpublished). Alternatively, the above 

correlation could be fortuitous, and 1A might have been lost in the evolution of some 

picornaviruses. 

Next to the most conserved proteins at the amino acid conservation scale is the 

capsid 1D protein (Fig. 4). Compared to its more conserved 1B and 1C paralogs, 1D is most 

exposed in virions, which allows it to interact with antibodies and receptors; this exposure 

could be a major reason for its evolution being less constrained26. Several picornaviruses, 

e.g., FMDV and strains of human enterovirus B species, have evolved, likely independently, 

a receptor-binding RGD signal in different places of the C-terminal region of 

1D26,48,208,315,468,479. Given the small size of this signal and its nonessential role in the 

replicative cycle, it could have originated by mutation. Alternatively, a nonhomologous 

recombination with an unknown cellular or viral protein employing the RGD tripeptide might 

have been involved. These scenarios are not mutually exclusive, and both might have 

contributed to the diversity of the RGD-containing proteins in picornaviruses166. 

Nonhomologous recombination can be invoked as the most likely mechanism 

responsible for the origin of picornavirus proteins with limited phyletic distribution among 

picornaviruses that have either paralogs in picornaviruses or homologs of other, virus or 

cellular, origins. This list includes L1, 2A1, 2A5, 2A7, and 3B proteins (Table 1). The L1, 

2A5, and 2A7 proteins have distant homologs outside the Picornaviridae family, indicating 

that external, yet-to-be identified sources were used as templates to incorporate ancestors 

of these three proteins into picornaviruses. While this interpretation may not be 

substantiated any further at the moment, the entire scenario of using a cellular sequence as 

a source of an innovation for a picornavirus finds strong support in an experimental study. 

Analysis of revertants of a mutant of poliovirus with severely decreased efficiency of 

proteolytic processing at the 3C-3D cleavage site identified a viable isolate carrying a short 

segment of rRNA incorporated in the viral genome in the vicinity of the original mutation69. 

This normally noncoding RNA encoded an in-frame amino acid sequence that apparently 

suppressed the effect of the original mutation, indicating positive selection as a driving force 

for the insertion to be fixed. 

Some picornavirus species appear to have also been able to expand their 

proteome without using external templates for new genes. It was proposed that 2A1 evolved 

by duplication of the most conserved 3C protein in the ancestor of enteroviruses46,238. Both 

these proteins are prototypes of the only two known lineages of unique cysteine proteinases 

with a chymotrypsin-like fold10,362. Sequence and tertiary structure similarities between 2A1 

and 3C are rather remote. Accordingly, highly conserved 2A1 proteins of the enterovirus 

genus lack two of six β-strands in the N-terminal β-barrel that are otherwise conserved in 3C 

and other structurally related proteases362,430. These and other differences between 2A1 and 

3C proteases, including emergence of a unique Zn-binding site in 2A1362,488, could be 

attributed to extensive divergent evolution following a duplication event. This interpretation is 
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now supported by the discovery of sapeloviruses274,341,460 (see also 264), forming a sister 

phylogenetic group to enteroviruses and encoding 2A1 proteins comparable with 3C 

proteases in size and lacking a Zn-binding site (Gorbalenya, unpublished) (Fig. 1 and 2). 

Likewise, duplication was implicated in generating three tandem copies of 3B in 

FMDV, an aphthovirus141, and two copies of 3B in the newly described SealPV, a 

phocavirus250 (Gorbalenya, unpublished). These viruses are separated by a relatively large 

evolutionary distance, populated with several picornaviruses employing a single VPg (Fig. 1 

and 2). The most parsimonious explanation for this phylogenetic pattern is that VPg 

duplication must have happened independently in the two picornavirus lineages, thus 

representing a rare case of parallel protein evolution. It is worth mentioning that the only 

currently known erbovirus, equine rhinitis virus B (ERBV; originally called ERV-2), encodes a 

3B that is flanked from the N and C termini by sequences remotely resembling 3B484 

(Gorbalenya, unpublished). The upstream sequence was even coined a “pseudo-VPg”484, 

and both may be remnants of the original 3B duplications that remained fused with the 

flanking proteins, 3A and 3C. If this were the case, the evolutionary history of 3B (VPg) 

triplication would be more complex than if it was restricted only to the FMDV species. In 

particular, the 3B triplication may have occurred either independently in the ERBV and 

FMDV lineages or in a more recent common ancestor of these viruses. In the latter scenario, 

the fate of the three 3Bs must be very different in the three descending species, ERBV, 

ERAV, and FMDV, that form a phylogenetically compact cluster (Fig. 1). Two of the three 

VPgs must have been either lost or deteriorated in ERAV and ERBV, while all three copies 

of VPg are present in FMDV. In this context, it is also interesting that dicistroviruses, a family 

of insect viruses resembling picornaviruses, include viruses that may employ different 

numbers of VPg330. 

The origin of the N-terminal amphipathic helix of 2C is another case open to 

different evolutionary interpretations. This helix is apparently conserved across all 

picornaviruses, yet its variety encoded by enteroviruses is most similar to the N-terminal 

amphipathic α-helix of NS5a protein, unrelated to 2C, that is encoded by HCV of the 

Flaviviridae family447. Interestingly, the HCV NS5a helix sequence affinity to the enterovirus 

2C α-helix is comparable to that of its ortholog in NS5a of most related pestiviruses. This 

unusual pattern of conservation indicates that most similar varieties of α-helices of 2C and 

NS5A operate under common evolutionary constraints, while they are fused to unrelated 

proteins. These α-helices could have emerged independently in two families, being a case of 

convergent evolution, or they could be paralogs that emerged from a common ancestor, one 

by descent and another by nonhomologous recombination447. 

Besides expansion, gene loss could have also contributed to generating the 

proteome diversity in picornaviruses. Gene loss along with repeated introduction of a protein 

variety may be invoked for explaining phylogenetic discontinuity of the presence of the 

protein variety in picornaviruses. For instance, in the monophyletic enteroviruses and 

sapeloviruses (Fig. 1), avian sapelovirus is the only species among 13 identified so far that 
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has no 2A1 protein (or other 2A variant) encoded (Gorbalenya, unpublished). The most 

parsimonious explanation for this anomaly is that 2A1 was lost in an ancestor of this lineage 

through nonhomologous recombination. More complex scenarios must be drawn to 

accommodate the evolution of 2A4306 and 2A6 proteins, each confined to two overlapping 

and phylogenetically separate subsets of picornaviruses (Fig. 1). One of these subsets 

comprises a phylogenetically compact cluster that is basal in the picornavirus tree and 

formed by four viruses of three genera, phoca- , avihepato-, and parechoviruses. Only one 

virus in this cluster, SealPV of phocaviruses and HPeV of parechoviruses, lacks either 2A6 

or 2A4, respectively, indicative of a protein loss. In the sister lineage of this virus cluster that 

is formed by the remaining 10 genera, these proteins may have been lost repeatedly 

(Lauber and Gorbalenya, unpublished). 

 

 

A distant evolutionary perspective on the picornavirus proteome 
 

Above, we discussed the composition and evolutionary dynamic of the picornavirus 

proteome. With a large subset of proteins present in all picornaviruses, could we say, from a 

protein perspective, that they define what picornaviruses are? 

To answer this question, the picornavirus proteome must be scrutinized in a 

broader evolutionary context of diverse viruses, collectively known as picorna-like viruses, 

which resemble picornaviruses in more than one aspect20,154,160,270. Over the last decade the 

number of these viruses has been steadily growing, and a subset of them most similar to 

picornaviruses is now taxonomically recognized as the Picornavirales order287. The latter is 

composed of seven families, including picornaviruses, and a number of unclassified viruses. 

As its name suggests, the order was coined after the picornaviruses, which were considered 

prototypic in the order. For the sake of this review it is important to note that all these viruses 

have proteomes that include counterparts for all ubiquitous picornavirus proteins and, in a 

few viruses, also a 2A variant (Fig. 5). These viruses are extremely diverse, and many have 

a genomic organization that differs from that of picornaviruses. For instance, clusters of 

capsid and replicative proteins, known as the capsid and replicative modules, respectively, 

are found on separate RNAs in most viruses of the plant Secoviridae family or in the 

permuted order relative to that of picornaviruses in the insect Dicistroviridae and unicellular 

organism Marnaviridae families20,154,269,279,444. On the other hand, the protein backbones of 

polyproteins of viruses in the families of Picornaviridae and Iflaviridae158,231,280,344,400 and 

Sequivirus and Waikavirus genera of the Secoviridae family383,384 are colinear. Viruses of the 

latter two virus families infect invertebrates and plants, respectively. 

Because of the genomic colinearity and host range specifics, these families might 

be considered “picornaviruses” of invertebrates and plants, respectively. Practically, these 

genomic colinearities indicate that none of the proteins may serve as a molecular marker of 

the Picornaviridae family. To discriminate picornaviruses from iflaviruses and sequiviruses at 
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the sequence level, one needs to examine protein motifs. Two signatures can be noted in 

this respect. First, the picornavirus 3B is distinguished from VPgs of the ifla- and 

sequiviruses through the usage of Tyr versus Ser for nucleotidylation. Second, VP4 (when it 

is produced) is located upstream of VP2 and VP3 in picornaviruses and iflaviruses, 

respectively300. A more systematic comparative analysis might identify additional sequence 

characteristics specific to each of these three families. 

The data discussed above indicate that the picornavirus genetic plan, with its 

polyprotein domain backbone, was born (long) before the emergence of the first ancestral 

picornavirus. It is not known whether the picornavirus genetic plan was the ancestral one or 

if it was derived from one of two closely related plans with either a permuted order of capsid 

and replicative modules or a bisegmented virus. The physical separation of the capside and 

replicative protein modules in bisegmented viruses of two picornavirus-like lineages implies 

that the coupling of these modules could be constrained less than that in picornaviruses. In 

this respect, it could be relevant that the polyprotein of caliciviruses includes a picornavirus-

like replicative module that is fused with the capsid protein, which includes only one full copy 

of the jelly roll domain189. This simpler capside module’s organization may have predated 

that of picornaviruses, for which expansion by a jelly roll domain triplication would be a 

relatively recent event. Consequently, the replicative module domain organization must be 

older than that of the capside module. These types of scenarios, involving comparative 

genomics of very distant virus families, can be tested in phylogenetic inference analyses, in 

which the direction of evolution is independently defined, a formidable challenge in virus 

evolution research. The scenarios could be also provide insights for back-rolling the early 

evolution of the replicative module of picornaviruses. Although these exercises may seem to 

be of remote relevance to understanding picornavirus proteome evolution, a link could be 

there. Some 25 years ago, several types of imperfect tandem repeats of several sizes with a 

common denominator of 11 running across the 2C-3D protein region of poliovirus 

polyprotein were uncovered167,172. They were interpreted as vestiges of a primordial 

multistep amplification process that gave rise to the proteins of the 2C-3D region. This 

scenario implies a concerted evolution of the three major ancient proteins, 2C, 3C, and 3D, 

of the replicative module, starting from the primordial stage of life. In this framework, 

picornaviruses may be seen as direct descendants of the ancestral self-replicating module. 

If this link between entities separated by a huge evolutionary distance is real, then it must 

manifest in functioning proteins as it does in the genome text. Verifying this link was beyond 

the realm of possibilities when the periodicity was discovered. Let’s hope that future 

technical advancements and our understanding of the picornavirus proteome will make this 

testing approachable. 
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Figure 5. Conservation and diversity of genetic plans of the order Picornavirales. Genomic organizations for 

seven viruses are shown (similar to Fig. 2) and represent polyprotein layouts of families of the Picornavirales. Different 

shapes and shades were used to highlight protein families found in all or several virus families. Borders of proteins 

were identified using the GenBank annotation where available. Otherwise, positions were estimated utilizing homology 

searches (HMMer) against profiles of the picornavirus proteins125. The viruses included are Strawberry latent ringspot 

virus (Sadwavirus), Maize chlorotic dwarf virus (Sequivirus), Patchouli mild mosaic virus (Comovirus), Deformed wing 

virus (Iflavirus), Kashmir bee virus (Dicistrovirus), Heterosigma akashiwo RNA virus (Marnavirus), and 

encephalomyocarditis virus (Picornavirus). For Sadwavirus and Comovirus the two RNA segments are shown.  

 

 

Concluding remarks 
 

Since the time of a previous review on the evolution of the picornavirus proteome192, 

considerable advancements have been made with sampling of the picornavirus genomic 

space. This multiteam endeavor has tripled the number of known picornavirus species and 

doubled the number of genera. Analysis of the emerged, and still growing, large body of 

information has confirmed previously uncovered trends and generated new insights into 

protein evolution. Chiefly, the interplay between the concerted evolution of the backbone, 

mostly ancient, genes descending from the ancestral picornavirus and the modular evolution 

of L and 2A genes is evident in old and new picornavirus lineages. A previously identified 

diverse repertoire of proteins encoded by the L and 2A loci keeps steadily expanding, 

revealing new functional partners of the most conserved picornavirus proteins. Gene 

duplication, overprinting, loss, and horizontal acquisition from cellular and viral genes were 

reaffirmed to shape the picornavirus proteome, likely through nonhomologous 

recombination. It is also now apparent that parallel (convergent) emergence of a protein (3B) 

may have contributed to picornavirus evolution. Also, it was recognized for the first time that 

the 2A locus could be multicistronic, encoding two or three proteins. 

The fast-accumulating knowledge about the genomic diversity of picornaviruses is 

most critical for current and future analytical efforts. We may expect to see a shift from 

cataloging the protein diversity to comprehending molecular details of how the proteome has 

evolved and what forces and restraints operated behind and operate now in different 
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lineages. For instance, we know surprisingly little about the identities of genes that served 

as sources of major innovation in the diversification of the picornavirus proteome. Identifying 

these sources could provide insights also for understanding the molecular environment in 

which picornaviruses replicate and the modus operandi of the replicase machinery. Protein 

evolution must also be considered in the context of genomic evolution, including its RNA 

signals in the coding and noncoding regions. Indeed, picornaviruses have accommodated 

large-scale evolution in the UTRs205 and cis-acting RNA elements in the ORF164,486. It should 

not come as a surprise if evolution of the picornavirus RNA and proteome turns out to be 

coupled. The emergence of diverse ORFans in the L region of the genome may be an 

example of this dynamic relationship. 

Although picornaviruses are commonly considered to be vertebrate viruses, the 

verified host range of picornaviruses is confined to a few mammals and birds. Extending the 

virus discovery effort to other vertebrate species should fill a huge gap in our knowledge and 

bring multifold benefits, including improved understanding of protein evolution. We could 

learn how the host constrains proteome diversity and its evolution and how the proteome 

evolutionary dynamics is shaped in different lineages. The latter should include the entire 

diversity range from species to genera to families and to orders. With comprehensive host 

coverage, the contemporary protein universe of picornaviruses may be revealed. This could 

(and should) facilitate reconstructing its past, in time and space, and predicting future trends, 

both of which would contribute to our understanding of the fundamentals of picornaviruses. 

These exercises could also be equally insightful for developing innovative strategies to 

control picornavirus infections, defining targets for antivirus drugs82 (see 93), and improving 

designs of picornavirus-based vectors16,493. 
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Uncovering barriers to genetic divergence of RNA viruses 
 

When searching the public sequence database GenBank/RefSeq36 using the keyword ‘virus’ 

roughly 1.8 million nucleotide entries (April 2012) show up. Perhaps not surprisingly, a large 

fraction is contributed by human immunodeficiency virus 1, influenza A virus and hepatitis C 

virus due to their high medical relevance and outstanding efforts to study theses pathogens. 

However, this wealth of genetic data also involves a great many other viruses both known 

and unknown ones, the latter mostly represented by so-called genomic survey sequences 

from metagenomics studies. On the one hand this development allows us to study the 

genetic diversity and evolution of viruses in unprecedented detail, but, on the other hand, it 

increasingly challenges virus taxonomy since other types of virus characterization normally 

cannot keep up with the pace set by genome sequencing. Hence, it is tempting to consider 

genome sequences as the ultimate source of information to be utilized in virus taxonomy, a 

notion which is supported by additional facts. First, they bring highly accurate knowledge 

due to the low sequencing error rates which generally fall well below 1%476. Second, 

sequencing is fast and relatively cheap nowadays278 as evermore efficient techniques are 

being developed395. Third, genome sequences are easy to digitize and compare, readily 

enabling quantitative analyses. And last but not least, the use of nucleotide sequences as 

carriers of genetic information and heredity presents a universal property common to all 

biological entities on earth. 

In this thesis, a computational approach (DEmARC) for virus classification basing 

solely on genome sequences was developed (see chapter 2). It involves the calculation of 

genetic distances between all pairs of viruses considered and the partitioning of the resulting 

distance distribution to delimit both the levels and the taxa of a hierarchical classification. 

This methodology is, however, not new to virus taxonomy and can be traced back as far as 

1988 when Shukla and Ward conducted a groundbreaking study in which they classified 

various potyvirus strains using only coat protein sequences422. The approach was adapted 

later in taxonomic studies to classify viruses of various families and genome types including 

picornaviruses67,339, caliciviruses413,496, geminiviruses142, coronaviruses90,162, potyviruses2, 

fexiviruses1, papillomaviruses38,94, poxviruses290, rotaviruses317, and hantaviruses309. 

Furthermore, the use of divergence thresholds of genes or sets of genes for assisting virus 

classification is becoming common practice in virus taxonomy257. There is, however, no 

consensus on key parameters of the method among the different studies, which includes (i) 

what genome regions to include, (ii) what sequence type – nt or aa – to use, (iii) what type of 

alignments – pairwise or multiple – to compile, and (iv) what measure of sequence similarity 

– uncorrected percentage identities or distances that correct for multiple substitutions at the 

same site – to calculate. DEmARC-based results from this thesis (see chapter 2) suggest 

that a classification basing on a multiple alignment of all proteins conserved across all 

viruses considered is most consistent and stable, although this finding needs to be verified 

for other virus families. Furthermore, the use of evolutionary-based corrected distances, 
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despite having little impact on low levels (e.g. species), should be favored over uncorrected 

distances since the latter show poor resolution at higher levels (e.g. subfamily) due to the 

accumulation of multiple substitutions at the same sequence site117,121. A similar trend was 

observed in the DEmARC-based analysis of corona- and toro-/bafiniviruses (Lauber and 

Gorbalenya, in preparation). The resulting classification already formed the basis to revise 

the taxonomy of the family Coronaviridae, which involved the introduction of two subfamilies 

(formed by coronaviruses and toro-/bafiniviruses, respectively), the recognition of five 

genera (formed by group 1, group 2, group 3 coronaviruses, toroviruses, and bafiniviruses, 

respectively), and the revision of several coronavirus species accompanied with an 

expansion of the host range90. 

Recently, the PASC tool24, promoted by NCBI, has emerged as the standard for 

pairwise-distance-based virus classification and was utilized in several of the studies 

mentioned above. A main objective of PASC is the speedy classification of newly identified 

viruses with sequenced genomes. To do so, PASC depends on pre-established 

classifications, usually brought by the ICTV taxonomy, for roughly 50 families or floating 

genera. A new virus is classified using thresholds on its similarity to taxa in the respective 

pre-established classification. Importantly, these demarcation thresholds have been defined 

a priori as the lowest intra-level (for instance intra-species) similarity observed across virus 

pairs in the pre-established classification. Exactly this approach, however, presents a 

potential pitfall of the method since no valid golden standard classification is available for 

any virus family, due to the intrinsic lack of fossil data in virology. Hence, PASC is suitable 

for initial classification of newly identified viruses if an advanced taxonomy of the respective 

family/genus is available, but may produce unreliable results in other cases. Only few 

studies tried to approach the problem of threshold determination objectively, not depending 

of any pre-existing classification. Matthijnssens et al.317, for example, selected the threshold 

at which the ratio of intergroup to intragroup sequence identities dropped below one. 

Unfortunately, the basis for this choice was neither explained in detail nor evaluated 

rigorously. As shown in this thesis, DEmARC enables the user to measure the support for 

both the demarcation thresholds and the inferred taxa in a quantitative manner, thus 

allowing for an objective selection of thresholds and resulting virus groupings. This 

discriminates the approach from any previous study in virus taxonomy. 

Importantly, DEmARC can serve not only pure classification purposes but also the 

prediction of biological properties of the analyzed viruses and the inferred virus taxa (see 

chapter 3). Intuitively, a newly identified virus classified as belonging to a known virus 

species is expected to show phenotypic properties similar to that of other viruses in the 

species, a prediction which is also available through traditional virus taxonomy. Yet, the 

predictive power of a DEmARC-based classification extends to non-traditional projections, 

due to the fact that virus taxa of the same level are delimited objectively by applying the 

same criterion (a demarcation threshold on genetic divergence) universally to all viruses at 

hand. One such prediction concerns the natural genetic diversity of a taxon, that might be 
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heavily underestimated by the current virus sampling, but which can be predicted by utilizing 

information from other, well-sampled taxa of the same level. Hence, DEmARC offers the 

means to identify those taxa on which to focus future virus discovery efforts in order to 

obtain a comprehensive picture of the natural genetic diversity of the virus family/genus 

under consideration. Notably, the predicted genetic diversity of a taxon presents only an 

upper limit of the actual natural diversity. For instance the moderately sampled picornavirus 

species Hepatitis A virus144,263 (around 50 available complete genome sequences between 

1993 and 2010) shows a relatively low genetic diversity (see Fig. 3 in chapter 3), which may 

be due to the unusually low evolutionary rate exhibited by these viruses198,326,403. From a 

more fundamental perspective, the presence of peaks and valleys in the pairwise distance 

distribution, like those seen for the well-sampled family Picornaviridae, may provide an 

insight into commonalities across viral lineages during evolution. Specifically, the observed 

distance discontinuities at and above the genus level and the distance peaks separated by 

these discontinuities could be explained by periods of, respectively, mass extinction and 

mass speciation of viral lineages, possibly reflecting large-scale changes in the environment 

that had a bearing on their hosts. Here, distance discontinuity is defined as a distance range 

with zero or marginal frequency below a certain noise level.  

It should be noted that there is a long-lasting dispute on the use of pairwise 

distances as a single criterion for classifying viruses467. This dispute is largely linked to the 

question whether virus species, forming the basic level in virus taxonomy373, are real 

biological entities44,259,322 or simply constructs in our mind466 developed for the convenience 

of biologists. If the former is true then certain biological properties, which could be used to 

discriminate between virus species, are expected to exist. In the case of eukaryotic 

organisms, for which it is generally accepted that species are evolving biological entities86, 

such properties usually include genetic incompatibilities between species that result in 

separated gene pools. It is tempting to apply this biological species concept, originally 

introduced by Dobzhansky in 1937 104, to viruses, although its validity is questioned for 

organisms that reproduce asexually207. Nevertheless, as shown in this thesis, virus clusters 

(of the lowest level) can be delimited genetically at the family level (see chapter 3) or even 

across related families (see chapter 4) through distance discontinuity in the conserved 

proteins. This distance discontinuity, which is the result of inter-virus distances being 

generally lower inside a cluster than between clusters, is nontrivial and could be explained 

by only two causes (when assuming that the calculated distances adequately estimate the 

real genetic distances; technical causes, like certain bias in the estimation of pairwise 

distances, are most likely not the reason for the observed distance discontinuity because 

these causes would be expected to mask rather than produce such signals). First, the 

distance discontinuity could be due to insufficient sampling of both the number and the 

diversity of the analyzed sequences. If this is not the case, as presumably for the family 

Picornaviridae with its numerous species distributed over a dozen or so genera263 and 

sampled by more than 1200 sequences, the observed distance discontinuity is likely due to 
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biological factors enforcing constraints that limit the divergence of viruses of the same but 

not of different clusters. In the latter context, it could be argued that the delineated virus 

clusters correspond to biological species. A plausible factor of speciation could be the action 

of homologous recombination if restricted to viruses of the same species, and this was 

already suggested for picornaviruses305. In this way, homologous recombination could 

resemble the exchange of genetic material during (ordinary) sexual reproduction, thereby 

setting a barrier to genetic divergence and, consequently, to speciation, whereas viruses 

from different species continue to diverge by mutation. If true, not only would it provide a 

biological foundation for the recognition of virus species as real, evolving entities but also 

should it pin medical relevance to species238,453. This would have great implications for many 

branches of virology including virus diagnostics, antiviral research, and epidemiological 

studies.  

 

Uncovering barriers to gene length in RNA viruses 
 

Comparative sequence analysis in virology is usually concerned with genetic variation 

(nucleotide or amino acid differences among the compared sequences) and its utilization for 

making biological inferences like structural predictions, functional predictions for a sequence 

or specific sequence residues, or reconstructing the evolutionary history of the sequences. 

There is, however, a second dimension that receives little attention so far: the length of 

genetic sequences (in number of nt or aa). This includes both the total size of a viral 

genome and the size of genome regions encoding functional elements, for instance proteins. 

It is generally acknowledged that the genome size of RNA viruses is strongly constrained as 

a result of (i) the low fidelity of their polymerases216 which would drive larger genomes into 

an ‘error catastrophe’61,134, (ii) the selection for high replication speed33,135, and (iii) the 

relative inflexibility in expanding the virions of viruses with icosahedral capsids in order to 

accommodate larger genomes76. Hence, RNA virus genome sizes are in the range from two 

to 32 kb with an average of about 10 kb (Fig. 1). When counting only the size of the largest 

genome segment (single RNA molecule) nidoviruses with genomes above 20 kb, which 

comprise coronaviruses, toro-/bafiniviruses, roniviruses, and mesoniviruses, outcompete all 

other known RNA viruses. Still, and this also applies to nidoviruses, all genes of an RNA 

virus must be compressed into a confined genomic space. As a consequence, genome 

regions often show multiple functions, which is achieved, for instance, through overlapping 

ORFs174,272 or the encoding of RNA regulatory elements inside a protein-coding gene319. As 

would be expected, ORF overlap was found to be largest for viruses with the smallest 

genomes and vice versa34.  
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Figure 1. Genome sizes of RNA viruses and the relation to genome segmentation, and helicase and 

exoribonuclease expression. Shown are beanplots247 of genome sizes for all known families or floating genera of 

viruses with ssRNA+, ssRNA-, and dsRNA genomes and retroviruses. Sizes were extracted from the Viral Genomes 

Resource at NCBI25 (March 2012). A bean (black shape) shows the density distribution of individual genome sizes 

(white vertical bars) for a virus group. The median genome size per group is indicated by black vertical bars and was 

used for sorting. Additional information is shown next to virus group names: some (open square) or all (filled square) 

viruses have segmented genomes; expression of a helicase (diamond); expression of an exoribonuclease (triangle); / 

not applicable. Note that retroviruses don’t encode a helicase due to specifics in their replication cycle244. The joint 

distribution of all RNA virus genome sizes and all sizes of the largest genome segment are shown, respectively, as a 

light-gray and a dark-gray bean in the background. The average RNA virus genome size is indicated by the gray 

vertical line. Ideas adapted from 174 and 175. 
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The exceptionally large genomes of nidoviruses, which exceed about threefold the 

average size of a ssRNA+ genome, uniquely encode a 3’-5’ exoribonuclease (Fig. 1). It was 

proposed that this enzyme improves the otherwise low fidelity of RNA virus replication432, 

and allowed a subset of nidoviruses to overcome a genome size threshold of about 20 kb 

(see chapter 5). Furthermore, a second threshold of about 8 kb set by astroviruses seems to 

be associated with the expression of a protein with NTP-binding motif indicative of a 

helicase (Fig. 1). This strong correlation was already noticed before176 and it was proposed 

that the helicase acquisition allowed the enlargement of RNA virus genomes above the 

observed threshold174. The helicase expression seems to also be associated with the size of 

the largest genome segment of dsRNA viruses but not with retrovirus and ssRNA- virus 

genomes (Fig. 1). The latter observation indicates that the unwinding of long stretches of 

duplex RNA (for instance during replication and transcription), which is the expected primary 

function of a viral helicase, could be achieved through unconventional mechanisms244, or, 

alternatively, the formation of such dsRNA structures would need to be prevented in the first 

place. Notably, other protein domains, besides the exoribonuclease and helicase, do not 

show a strong association with genome size in RNA viruses175. 

Yet, theses findings show, at least in the case of dsRNA and ssRNA+ viruses, that 

the expression of RNA-processing enzymes with specific functions allows some RNA 

viruses to employ larger genomes than those that lack these enzymes, which results in a 

considerable variety of genomic sizes. This is contrary to the prevailing perception that RNA 

viruses are simply limited in genome size with essentially no variability (concerning both the 

whole genome and distinct genetic elements within the genome) which would be worth a 

detailed analysis. In fact, different genome regions (e.g. genes) might be constrained 

differently depending on the encoded function. It was shown, for instance, that the gene 

length of polymerases, but not of nucleocapsids, increases with increasing genome size 

among RNA viruses, and the authors link this size increase of the protein to an improved 

replication fidelity33. Beyond these large-scale analyses, however, little research on specifics 

about the regulation of gene length during RNA virus evolution is available. 

In this thesis, size constraints on genes or gene sets were analyzed at the scale of 

a virus family or multiple related families. In the case of the family Picornaviridae a striking 

negative correlation between sequence conservation and size variation of viral proteins was 

observed. Specifically, the sizes of the six proteins conserved in sequence across 

picornaviruses (three capsid proteins plus helicase, proteinase, and polymerase) proved to 

be constrained most strongly (see chapter 7). The polymerase, for instance, shows the 

highest sequence conservation and varies in size among known picornaviruses by not more 

than 40 aa, which is about 8% of its total 460 aa, with a dispersion of only eight aa (data not 

shown). On the one hand, this is not surprising since the most conserved proteins are 

essential to the virus and, thus, their function must be retained during evolution. These six 

picornavirus proteins control the three main steps in the virus life cycle – genome replication, 

genome expression, and encapsidation. On the other hand, the apparent barrier to size 
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variation of the conserved proteins is nontrivial given that these proteins accepted as much 

as three replacements per residue (on average) when comparing the most distant 

picornavirus pair (see chapter 2). This shows that evolutionary constraints on picornavirus 

proteins act not only in the dimension of aa substitutions but also in a second one, the size 

of these proteins, by limiting the amount of insertions and deletions. These fundamental 

findings were supported by a similar analysis of nidoviruses, in which the sizes of key 

replicative enzymes (those encoded in ORF1b) within a family were found to be most 

strongly constrained as well (see chapter 6). Moreover, the combined set of these ORF1b-

encoded proteins expanded first in the transition from small nidovirus genomes of at most 16 

kb (resembled by contemporary arteriviruses) to large genomes of at least 20 kb (mesoni-, 

roni-, toro-, and coronaviruses). Specifically, the abovementioned exonuclease and two 

methyltransferases have been inserted in ORF1b73,432. This supports the dominant role of 

replicative proteins in the control of gene/genome length during RNA virus evolution. 

However, a second stage of expansion (from 20 to 26 kb) predominantly involved ORF1a, 

indicating that another, still illusive factor was acquired that allowed some nidoviruses to 

expand their genomes even further. Only after this second stage, the third main genome 

region – the 3’-proximal ORFs (3’ORFs) – expanded through the acquisition of genes with 

diverse, often unknown functions that may vary even between closely related nidoviruses174. 

In summary, these findings suggest a functional hierarchy of the three genome regions 

(ORF1b, ORF1a, and 3’ORFs) in the control of gene and genome size during evolution. 

Importantly, the three regions are characterized not only by different expression 

mechanisms which results in unequal molecular amounts of protein products, but also by 

different degrees of genetic divergence (proteins encoded in ORF1b and 3’ORFs show the 

highest and lowest sequence conservation, respectively). It should be noted that this 

hierarchical model defines universal constraints that have acted independently and 

simultaneously on each nidovirus lineage during evolution. Contemporary nidoviruses may 

have reached different points on the trajectory of genome expansion. Arteriviruses, for 

example, seem to be unable to overcome a barrier to genome size at around 16 kb due to 

missing factors in ORF1b that includes the exonuclease, whereas mesoniviruses, frozen in a 

stage of intermediate genome size of around 20 kb, are lacking a different factor predicted to 

be located in ORF1a. 

Besides bringing important fundamental insights, the relationship of sequence 

conservation and size variation has immediate practical implications. For instance, it could 

provide guidance for key decisions in genetic engineering experiments, as it predicts where 

the insertion of the gene of interest will likely compromise the virus (namely in ORF1b) and 

where it will not (3’ORFs and, possibly, ORF1a). Nidoviruses at different points of the 

genome expansion trajectory may differ in this respect. An analogous reasoning can be 

applied to the L and 2A regions of the picornavirus genome, which show a large diversity of 

encoded proteins and, consequently, the largest tolerance of size variation (see chapter 7). 

Moreover, this relation and the resulting practical implications can be extended to the level 
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of a single gene/protein, as shown in a recent study of poliovirus, where it was found that the 

insertion of short nucleotide stretches is only tolerated at gene regions of low sequence 

conservation448. These insertions could be used for tagging specific proteins in order to 

purify the protein or associated protein complexes from infected cells, or to visualize the 

location and dynamics of a protein over time. 

 

Future prospects 
 

Genetics-based classification by DEmARC offers the means to modeling the evolution of the 

genetic diversity of the viruses under consideration. Like any model that approximates 

nature, it is limited by certain simplifications. One such simplification is presented by the 

substitution model used to estimate pairwise genetic distances. For protein sequences it is 

common practice to utilize aa substitution rate matrices that are pre-compiled empirically on 

specific protein training sets. Because of the extreme mutation rates of RNA viruses, the 

WAG substitution matrix was preferred in this thesis, since it is (i) estimated by ML and (ii) 

based on a large variety of protein families478. However, it may be worth exploring the 

impact of mores sophisticated matrices, possibly trimmed to RNA virus sequences, if 

available in the future. Such a matrix already brought valuable insight into the evolution of 

reverse transcriptases in retroviruses, but was highly specific to the analysis of this particular 

protein102. Furthermore, allowing for heterogeneity of the substitution rate across viral 

lineages, which is currently prohibited in practice by its high computational costs, may fit the 

evolution of the viruses at hand more adequately, especially when certain lineages show an 

elevated rate, like suggested for human rhinoviruses318,427. Another data-related aspect, the 

impact of which could be explored, is the additional sequence variation that is accumulated 

during propagating the viruses in cell culture before sequencing. This concerns perhaps the 

majority of viral sequences from public databases, but its scale is expected to be limited 

and, thus, should not have an effect on the demarcation threshold of the species or higher 

levels. Future research efforts should also involve scrutinizing other classification 

approaches that rely on genetic sequences. Among them are phylogeny-based techniques 

like the branching index223, which can be used to infer statistically whether a query 

sequence clusters with a known clade in the tree, and a method that determines an increase 

of the branching rate in the tree to define the species boundary368. The latter study is from 

the field of DNA barcoding, a recently emerged line of research that aims at genetics-based 

taxonomy of cellular organisms64,204. Most of these methods204,289,379,406 face similar 

limitations like their counterparts in virus classification, including the dependency on a 

golden standard320, as well as additional challenges owing to the large sizes of cellular 

genomes64. Nevertheless, genetics-based RNA virus classification should not continue to 

ignore such parallel developments. Finally, future studies should be devoted to the analysis 

of viruses from other families/orders including those that don’t have ssRNA+ genomes, and 

there are promising preliminary results for mononegaviruses, which have ssRNA- genomes 
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(Lauber and Gorbalenya, data not shown and 281). Such large-scale analyses could help not 

only to validate the DEmARC approach but also to address important biological questions 

and, possibly, to reveal commonalities between virus families or orders. It could be asked, 

for instance, whether the DEmARC approach can be generally adopted for the recognition of 

genotypes of a virus species, much like it was done for human entero- and 

rhinoviruses339,427, and whether these genotypes correspond to serotypes277,288,407. Further 

research in this direction is under way (Gorbalenya, personal communication). Moreover, 

the time of emergence of virus species from different families could be estimated using 

state-of-the-art tools119, and analyzed in the context of fossil records of their hosts, in order 

to understand the dynamics of alternative processes like virus-host cospeciation and 

crossing of the host species barrier. What’s more, the hypothesis that virus species are real 

biological entities that maintain a common gene pool by means of homologous 

recombination could be probed experimentally238. If it turns out to be true, it can only be 

explained by bringing a selective advantage for a virus species. Recently, it was shown that 

coevolution with a bacterial pathogen selects for sexual reproduction in Caenorhabditis 

elegans (which can also reproduce through self-fertilization)327, and it could be speculated 

that a similar reasoning can be applied to the pathogen, in which case sexual reproduction 

would be defined more generally as the exchange of genetic material during replication, for 

instance by homologous recombination in the case of virus species. Moreover, the 

applicability of the biological species concept to asexual organisms is further supported by a 

recent study of stains of an archaeon that were found to form two persistently coexisting 

groups that exhibit high levels of homologous gene flow within each group and decreasing 

rates between groups in nature, indicative of ongoing sympatric speciation62. 

A proper classification of the viruses of interest is a prerequisite for many studies in 

virology by providing the units for which to measure the desired properties. This includes the 

analysis of sequence divergence and size variation of genetic elements, the second major 

topic of this thesis, in which the units were formed by species or genera of the same or 

closely related families. Future studies should be devoted to the analysis of additional 

families in order to verify the observed correlation (that genome size differences between 

relatively closely related viruses are the result of expanding or shrinking genomic regions 

poorly conserved in sequence) beyond picorna- and nidoviruses. Moreover, further insights 

into the emergence of the largest known RNA genomes employed by nidoviruses might be 

gained by including viruses not belonging to the order. In this respect it would be natural to 

consider barna-, sobemo-, luteo- and astroviruses174 since they show the same genomic 

organization (ORF1a, ORF1b, 3’ORFs) but have much smaller genomes than nidoviruses 

(Fig. 1). Equally important would be a broader coverage of the natural diversity within the 

order Nidovirales, especially in the genome size range between arteri- and roniviruses which 

is currently represented only by the two mesoniviruses. This may also help to determine the 

additional factor(s), predicted to be located in ORF1a, which allowed roni-, toro- and 

coronaviruses to expand their genomes beyond that of mesoniviruses. Such analyses could 
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finally help to determine the ultimate upper limit of the RNA (virus) genome size, which, in 

turn, would contribute to our understanding of fundamental evolutionary processes like the 

proposed transition from RNA- to DNA-based life forms153,159. 
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