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CHAPTER 1. Introduction

1.1 General Introduction

This thesis is a collection of 5 papers discussing solutions to several open problems
in Protein-Protein Interaction (PPI) networks with the aid of Knowledge Discovery.
PPI networks are usually represented as undirected graphs, with nodes corresponding
to proteins and edges representing interactions among protein pairs. A Large amount
of available PPI data and noise within it has made the knowledge discovery process
a necessary central part for the network analysis. We define Knowledge Discovery as
a process of extracting informative knowledge from the huge amount of data. Much
success has been achieved when the input data is represented as a set of independent
instances and their attributes. But, in the context of PPI networks, there is interesting
knowledge to be mined from the relationships between instances (proteins). The
resulting research area is called “Graph Mining”. Here, the input data is modeled as
a graph and the output could be any type of knowledge. In this thesis, we propose
several graph mining algorithms to examine structural characteristics of PPI networks
and link them to the information useful for biologists, such as function or disease.

This chapter consists of two main sections. In the first section, we discuss the
knowledge discovery process and its high-level subprocesses. In the second section,
we discuss the area of PPI networks, its open problems and our proposed methods
for solving them.

1.2 Knowledge Discovery Process

As a quote from John Naisbitt: “We are drowning in information but starved for
knowledge” indicates, the amount of data available in different aspects of life increases
every second and the task to mine data and extract useful knowledge becomes more
and more challenging. The main goal of the knowledge discovery process is to extract
informative knowledge from a large amount of data in a human understandable struc-
ture. Considering the whole knowledge discovery process as a system which takes a
certain type of data as input and produces informative knowledge as output, Figure
1.1 shows three main subprocesses of the whole system. The first subprocess is called
“Data Pre-Processing” which takes raw input data and outputs the cleaned version of
the data. The second subprocess is called “Machine Learning” and its main task is to
extract potential informative patterns from the cleaned data. The last subprocess is
called “Data Post-Processing”; it validates and evaluates the extracted patterns. We
will discuss each of these subprocesses in more details in the following sections.

1.2.1 Input Data

Before discussing the details of the different knowledge discovery subprocesses, we
briefly introduce some basic concepts about the Input Data we deal with in this thesis.
We model the PPI network as a graph G(V,E), where V is a set of nodes (proteins
in our context) and E is a set of edges (interactions in our context) connecting pairs

2



1.2. Knowledge Discovery Process

Figure 1.1: Three main subprocesses of the whole knowledge discovery process. The
first subprocess is called “Data Pre-Processing” which takes raw input data and output
the cleaned version of the data. The second subprocess is called “Machine Learning”
and its main task is to extract potential informative patterns from the cleaned data.
The last subprocess is called “Data Post-Processing” and validates and evaluates the
extracted patterns.
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CHAPTER 1. Introduction

Figure 1.2: A simple graph G(6, 7) and some of its graph-based features. We use
these features to describe graph nodes.

of nodes. Assuming a and b are two arbitrary nodes in the graph G(V,E), we define
the following graph-based features:

• Degree(a): Number of edges a is connected with.

• Path(a→ b): Sequence of nodes starting with node a and ending with node b,
such that there is an edge between each two subsequent nodes of sequence.

• Length(Path(a→ b)): Number of edges in the Path(a→ b).

• Distance(a, b): Length of the shortest path between a and b.

In the following parts, we use these features to describe nodes. Figure 1.2 shows
a simple graph G(6, 7) in addition to some of its graph-based features.

1.2.2 Data Pre-Processing

In the knowledge discovery process, input data may contain noisy and irrelevant data
that should be cleaned before further analysis of the data (garbage in, garbage out).
The main goal of Data Pre-Processing is to prepare a final training set for the machine
learning algorithms and that may include cleaning, transformation, feature selection
etc. Number of the features equals to the size of the graph (|V |). For example, in
feature Path(a → b), a is a node to describe and then, for each different node b we
have different feature Path(a→ b). So, we need feature selection algorithms to select
useful and informative node b and then, describe node a based on them.

Due to the large and noisy nature of the PPI network, a natural way to reduce the
dimensionality is using a feature selection method to filter out the least interesting
features. Next, we will discuss two feature selection methods Chi-square and Anova
(Analysis of variance) for this purpose.

4



1.2. Knowledge Discovery Process

F = 0 F = 1 Total
C = 0 a b a+ b
C = 1 c d c+ d

a+ c b+ d a+ b+ c+ d

Table 1.1: The contingency table of a binary feature F w.r.t. a binary class variable
C. a, b, c, and d count the number of times F and C have the corresponding value.
The χ2 value of F w.r.t. C is derived from this.

Chi-Square Feature Selection

An often used measure for determining the relevance of a binary feature F for a class
variable C is the χ2 score which is defined by Liu et al. [69] as follows:

χ2 =
(ad− bc)2 ∗ (a+ b+ c+ d)
(a+ b)(c+ d)(b+ d)(a+ c)

, (1.1)

where a, b, c and d are defined by the contingency table in Table 1.1.

Anova-based Feature Selection

The Anova-inspired selection measure (briefly, Anova) is defined as follows. Let P+

be the set of input cases labeled as class C, and P− the set of input cases not labeled
as such. For each input case q, we introduce a feature dq; In the context of PPI
networks, dq(p) denotes the shortest-path distance between p and q (viewed here as
a feature of p). We consider for each q the mean and variance of dq(p), taken over all
C-related and non-C-related p:

m+
q =

∑
p∈P+ dq(p)
|P+|

(1.2)

m−q =

∑
p∈P− dq(p)
|P−|

(1.3)

var+q =

∑
p∈P+(dq(p)−m+

q )2

|P+| − 1
(1.4)

var−q =

∑
p∈P−(dq(p)−m−q )2

|P−| − 1
(1.5)

Seeing P+ and P− as two groups of input cases, the following formula compares
the variance between groups to the variance within groups (as it is used for relative
ranking only, constant factors are dropped):

Aq =
(m+

q −m−q )2

var+q + var−q
(1.6)

5



CHAPTER 1. Introduction

A high Aq means that dq varies little within groups and/or much between groups,
which indicates that dq has high predictive power for the group. Features dq can
be ranked according to Aq, and the top-k features selected as actual features to be
included in the description of all proteins.

1.2.3 Machine Learning
Machine Learning is a subfield of Artificial Intelligence in which the main goal is to
learn knowledge through experience. Tom Mitchel in his book [79] defines the “ability
to learn” as follows: A computer program is said to learn from experience E with
respect to some class of tasks T and performance measure P , if its performance at
tasks in T , as measured by P , improves with experience E.

Based on the problem definition and the type of training data (whether it is labeled
or unlabeled), we focus on two high level main machine learning tasks: Supervised
learning and Unsupervised learning. An output of supervised learner is a classifier
that has the ability to predict the correct label for any valid input data while an
unsupervised learner tries to infer hidden structure among unlabeled data. In this
thesis, we deal with different annotating problems of PPI networks and accordingly,
our final goal is to propose a supervised learner. Next, we discuss briefly about some
classifiers that we use in this thesis.

Naive Bayes Classifier

In the category of probabilistic classifiers, the naive Bayes classifier is the simple
classifier which applies ’Bayes Theorem’ by assuming independency among features.
The probability model for this classifier is a conditional model P (C|F1, . . . , Fn) over a
dependent class variable C, conditional on several feature variables F1 through Fn. If
the number of features n becomes large or feature Fi can take large number of values,
then basing this model on probability tables may not be feasible. We reformulate the
model using Bayes’ Theorem shown in Formula 1.7.

p(C|F1, . . . , Fn) =
p(C)p(F1, . . . , Fn|C)

p(F1, . . . , Fn)
(1.7)

In Formula 1.7, only the numerator of fraction is dependent to class variable C and
denominator is practically constant. Now, by applying the conditional independency
assumption among different features shown in Formula 1.8 we can express the model
as Formula 1.9.

p(Fi|C,Fj) = p(Fi|C) (1.8)

p(C|F1, . . . , Fn) =
1
H
p(C)p(F1|C)p(F2|C,F1) . . . p(Fn|C,F1, F2, F3, ...Fn−1)

=
1
H
p(C)

n∏
i=1

p(Fi|C)
(1.9)

6



1.2. Knowledge Discovery Process

Figure 1.3: The process of building the simple decision tree classifier based on 4 input
graph data annotated with three class labels: class A, class B and class C. Considering
each graph G(V,E) with node set V and edge set E, the features of the decision tree
classifier would be whether an edge vi → vj ∈ E or not. The Figure is taken from
[20].

where H is a scaling factor dependent only on F1, . . . , Fn.

Decision Tree Classifier

This classifier uses a tree-like structure to predict the label of the data. In the tree-like
structure, leaves are class labels and branches represent conjunctions of features that
lead to those class labels. A decision tree can be constructed by recursively splitting
the training set into subsets based on the feature value. At each step, the feature
that most reduces the uncertainty about the class in each partition, is selected and is
used as a split. The recursion is completed when all elements of the subset at a node
have the same label value, or when splitting no longer adds value to the predictions.
Figure 1.3 shows the process of building the simple decision tree classifier based on
4 input graph data categorized with three class labels: class A, class B and class C.
Considering each graph G(V,E) shown in Figure 1.3 with node set V and edge set E,
the features of the decision tree classifier would be whether an edge vi → vj ∈ E or
not. As Figure 1.3 shows, the most discriminative edge is a→ a which classifies class
C from classes A and B.

7



CHAPTER 1. Introduction

Figure 1.4: A simple feedforward Artificial Neural Network with two hidden layers.

Artificial Neural Networks

A simple and still efficient way of solving a complex problem is through using the
divide and conquer strategy which solves a problem by breaking the complex problems
into smaller (and still the same type as the original problem) subproblems. Then,
recursively solve the simple subproblems and integrate the solutions. Networks can
be used for this strategy where each node acts as a computational unit (i.e., receive
input data, process it and generate output data) and the network connections show the
information flow and the way different computational units integrate their outputs.

One type of network models the nodes based on the structural and functional
aspects of biological neurons. They are called Artificial Neural Networks (ANNs).
ANNs can be used for both supervised and unsupervised learning. The performance
of ANN mainly depends on the following parameters:

• Network Connectivity: How different nodes interconnect with each other.

• Learning Process: How to update the weights of the interconnections.

• Activation Function: How to convert a neuron’s weighted input to its output
activation.

Figure 1.4 shows a simple neural network with two hidden layers. Networks such
as the one shown in Figure 1.4 are commonly called feedforward network, because
their graph is a directed acyclic graph. Networks with cycles are commonly called
recurrent.

8



1.2. Knowledge Discovery Process

Figure 1.5: Definition of True Positive (TP), False Positive (FP), False Negative (FN)
and True Negative (TN) in a binary classification.

1.2.4 Data Post-Processing
The extracted informative patterns could be further processed. We could evaluate the
patterns, simplify, visualize, interpret and incorporate them into an existing system.
In this section, we discuss different evaluation measures/techniques that we use for
evaluating our methods.

Precision, Recall and Fmeasure

In this thesis, we evaluate our predictions according to Precision, Recall and Fmeasure
as follows:

Precision =
tp

tp+ fp
(1.10)

Recall =
tp

tp+ fn
(1.11)

Fmeasure =
2 ∗ Precision ∗Recall
Precision+Recall

(1.12)

where tp, fp and fn denote the number of true positives, false positives, and false
negatives, respectively and are defined in Figure 1.5.

Different Cross Validation Techniques

We need a technique to show how well the learned model from the training data will
perform on future independent data. In k-fold cross validation, we partition the input
data into k folds and then, use one fold for validating the model and the remaining
k − 1 folds for training the algorithm. We repeat this process k times, with each of

9
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the k folds used exactly once as the validation data. Finally, we average the k results
from the folds to produce a single estimation. In this thesis, we mostly assume k = 10
for evaluating our methods.

One particular case of cross validation techniques is leave-one-out cross validation
(LOOCV), where we consider a single instance from the input data as a validation
data, and the remaining instances as the training data. We repeat this process for
each instance in the input data and we average the N (= number of the examined
instances) results to produce a single estimation.

One special case of LOOCV is to find a rank of some previously selected instances
relative to 99 randomly selected instances as follows:

1. We select 99 instances randomly from the input data (randSet).

2. For each previously selected instance psi

(a) We build the trainSet by excluding the {psi ∪ randSet}.
(b) We train the prediction method M with trainSet and then, we apply M

to rank psi relative to the 99 randomly selected isntances (rank(psi)). M
should return small rank values for more relevant input instances.

3. We repeat steps 1 to 2b, 10 times and we calculate the average rank of each psi
over different iterations (avg(rank(psi))).

1.2.5 Knowledge Discovery Tool: WEKA
For each knowledge discovery subprocess Data Pre-Processing, Machine Learning and
Data Post-Processing shown in Figure 1.1, there are hundreds of possible methods and
algorithms available in the literature. Instead of implementing those techniques from
scratch, we can benefit from the use of free, Java-based open source, off-the-shelf
tool WEKA [127] (Waikato Environment for Knowledge Analysis). WEKA contains
a collection of state-of-the-art algorithms and tools for each high-level subprocess
of knowledge discovery shown in Figure 1.1, in addition to an easy graphical user
interface for those functionalities. Table 1.2 shows a brief list of WEKA’s capabilities
for each subprocess.

1.3 PPI Network and Its Open Problems
In recent years, much effort has been invested in the construction of protein-protein
interaction (PPI) networks [118]. Much can be learned from the analysis of such net-
works with respect to the metabolic and signalling processes present in an organism,
and the knowledge gained can also be prospectively employed e.g. to the task of pro-
tein function prediction [78, 98, 18, 111, 121, 119, 57, 13], identification of functional
modules [71], interaction prediction [48, 129], identification of disease candidate genes
[27, 109, 26, 58, 106, 37, 87, 130, 132] and drug targets [104, 81], according to an
analysis of the resulting network [72].

10



1.3. PPI Network and Its Open Problems

Pre-Processing Change data formats (e.g., From nominal to binary etc),
Feature selection (e.g., Chi-square,
Principle Component Analysis (PCA), Information gain etc),
Discretize data etc.

Machine Learning Naive Bayes, Support Vector Machine (SVM),
K Nearest Neighbors (KNN), Tree-based classifiers
(ID3, J48 and Random Forest), EM Clustering, Apriori, etc.

Post-Processing k-fold cross validation, Cost sensitive evaluation, Visualization
and etc.

Table 1.2: Very brief list of WEKA’s capabilities in each knowledge discovery sub-
process shown in Figure 1.1.

In the following sections, first, we introduce three types of datasets that we use in
this thesis. Second, we describe some open problems of PPI networks and finally, we
discuss our proposed methods for each open problem.

1.3.1 Data Set

We consider a PPI network as an undirected annotated graph (P,E, λF , λD) where
P is a set of proteins, E ⊆ P × P is a set of interactions between these proteins,
and λF and λD are so-called annotation functions; for each p, λF and λD denote the
additional information we have about p. In this work, we assume that λF (p) simply
lists all the biological functions that are associated with p; we call it the function set
(or function vector) of p, and denote it FS(p). λD(p) lists all the diseases/cancers
that protein p is involved in; we call it the disease list of p and denote it dizList(p).
According to these annotation information, we consider three categories of datasets:
PPI datasets, Function datasets and Cancer/Disease datasets.

PPI Datasets

This category of datasets describes the proteins and the way different proteins interact
with each other. We use two types of PPI networks: S. cerevisiae datasets and Human
datasets. Tables 1.3 shows the number of proteins and number of interactions for each
PPI network used in this thesis.

The Milenkovic et al. [77] data set is the union of three human PPI datasets:
HPRD [91], BIOGRID [116] and the dataset used by Radivojac et al. [97]. When
we say “union”, we mean that the new network contains all the nodes and edges
(proteins and interactions) found in either of these networks. The aim of merging
these three datasets was to obtain as complete a human PPI network as possible,
i.e., a network that covers with its edges as many proteins in the human proteome
as possible. Milenkovic et al. [77] provide details on the construction of the union
network.
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Dataset Type Name Proteins Count Interactions Count
S. cerevisiae DIP-Core [25] 2,388 4,400
S. cerevisiae VonMering [123] 2,708 22,000
S. cerevisiae Krogan [59] 2,708 14,246
S. cerevisiae MIPS [76] 7,928 44,514
Human Milenkovic et al. [77] 10,282 47,303

Table 1.3: PPI networks used in this thesis.

Function Datasets

This category of datasets describes the functional annotation of each protein in the
PPI network. We use different function datasets for S. cerevisiae and Human datasets.

The protein function annotation for S. cerevisiae PPI networks are obtained from
the Yeast Genome Repository [39]. In this dataset, functions can be described in
different levels of detail. For example, two functions 11.02.01 (rRNA synthesis) and
11.02.03 (mRNA synthesis) are considered the same up to the second function level
(i.e., 11.02 = RNA synthesis), but not on deeper levels. Figure 1.6 shows high level
categories of this dataset.

Figure 1.6: MIPS high level function categories.

We annotate the proteins in the Human PPI datasets based on Gene Ontology
(GO) [36]. GO unifies the representation of gene and gene product attributes by
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introducing three ontology domains: Cellular Components, Molecular Functions and
Biological Process. Figure 1.7 shows part of the Gene Ontology domains.

Figure 1.7: Part of the Gene Ontology domains.

Cancer/Disease Datasets

We denote as “known cancer proteins” the set of proteins implicated in cancer that is
available from the following databases: Cancer Gene Database [23], Cancer Genome
Project-the Cancer Gene Census [95], GeneCards [32] and Kyoto Encyclopedia of
Genes and Genomes [83]. Similarly, proteins in Online Mendelian Inheritance in Man
[47] are annotated as “disease-related proteins”.

1.3.2 Predicting the Functions of Proteins in PPI Networks

Some of the proteins in PPI networks are annotated with biological functions. The
task of function prediction in a PPI network is trying to predict the functions of
unannotated proteins based on the information available in the PPI network. In
Figure 1.8, the color of each protein shows the protein’s functional annotations and
the main target is to predict the colors of white proteins in this network. As we
discussed in section 1.3.1 , we use four PPI datasets: DIP-Core, VonMering, Krogan
and MIPS and the functional dataset Yeast Genome Repository [39] for this task. We
discuss our proposed methods for this problem in chapters 2 and 3 of this thesis.

In chapter 2, we predict functions from relative position of proteins in the PPI
network.

• First, we classify the previous methods on protein’s function prediction into
Inductive and Transductive methods. We define inductive approaches as model-
based approaches which construct a model (a mathematical function) to map
a description of a protein onto its function. On the other hand, we define
transductive approaches as non-model based methods which immediately make
predictions for the proteins in the PPI network without going through the inter-
mediate stage of constructing a model. We compare characteristics of inductive
and transductive methods and we conclude that using inductive methods have
more advantages comparing to using transductive methods.

13



CHAPTER 1. Introduction

Figure 1.8: Predicting the functions of proteins in PPI network. The color of each
protein shows protein’s functional annotations and the main target is to predict the
colors of white proteins based on the information available in the network.

• Second, we introduce an inductive approach that uses a global protein descrip-
tion for the task of function prediction in PPI networks as follows: Assume
that there are n nodes in the network, identified through numbers 1 to n. Each
node is then described by an n-dimensional vector. The i’th component in the
vector of a node v gives the length of the shortest path in the graph between
v and node i. A potential disadvantage of this method is that in large graphs,
one gets very high-dimensional descriptions, and not all learners handle learn-
ing from high-dimensional spaces well. It is possible, however, to reduce the
dimensionality of the vector by only retaining the shortest-path distance to a
few “important” nodes. This essentially represents a feature selection problem.
A node i is important if the shortest-path distance of some node v to i is likely

14



1.3. PPI Network and Its Open Problems

to be relevant for v’s classification. We use the Anova measure (discussed in
section 1.2.2) for selecting the “important” nodes in the PPI network.

• Third, given the input data and a particular function to predict, any standard
machine learning tool can be used to build a model that predicts from a node’s
description, whether the node has a particular function or not. We compare
several methods, as available in the WEKA data mining toolbox [127], namely
decision trees (J48), Random Forests (RF), an instance based learner (IBk),
Naive Bayes, radial basis function networks, Support Vector Machine (libSVM),
Classification via Regression (CVR) and Voting Feature Intervals (VFI), with
each other and we observe that Random Forests are our best candidate for
learning from the given type of data, and we use this method in the remaining
experiments.

• Fourth, we compare the performance of this system with that of Majority Rule
(MR) [111], a transductive learner. MR simply assigns to a protein the k func-
tions that occur most frequently among its neighbors (with k a parameter). We
see that, over the four datasets, RF has higher precision (11% higher in aver-
age) but smaller Recall (10% smaller in average). RF and MR perform almost
similarly with respect to Fmeasure. RF tends to have higher scores (+6%) with
respect to AUC.

• Fifth, we investigate the effect of the Anova-based node selection criterion on
predictive performance: Does a reduction of the number of important nodes in-
crease or decrease the predictive performance, and is there a clear optimum with
respect to the number of important nodes that should be selected? We notice
that for most of the functions, selecting 50-70 important proteins is enough to
obtain good classification results. Beyond this area, there is usually no major
improvement in performance.

• Sixth, we investigate whether our method also classifies proteins accurately on
more detailed MIPS function levels. We examine up to five different function
levels and for each level compare our method with Majority Rule. The high-
est improvement is observed for function level 2, when our method has more
than 8% higher Fmeasure value, on average, for the DIP-Core and VonMering
datasets. The difference is smallest for very general (level 1) or very specific
(level 5) function prediction.

In chapter 3, we predict functions from information about the functions of proteins
it interacts with.

• First, we categorize the previous methods into structural based and non-structural
based methods. Structural based methods rely on the local or global structure
of the PPI network and do not use information about the functions of other
nodes to predict the functions of a particular protein. Methods that do use
such information form a non-structural category. A prototypical example is the
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Majority Rule (MR) approach [111]. A common drawback of the second cate-
gory of approaches is that they rely solely on the assumption that neighboring
proteins tend to have the same functions. It is not unreasonable to assume
that proteins with one particular function tend to interact with proteins with
specific other functions. We call such functions “collaborative” functions. We
assume that a biological process is a complex aggregation of many individual
protein functions, in which topologically close proteins have collaborative, but
not necessarily the same, functions. We define collaborative functions as pairs
of functions that frequently interface with each other in different interacting
proteins.

• Second, we propose a Reinforcement Based Collaborative Function Prediction
(RBCFP) that increases the collaboration value of two functions if they interface
with each other in two sides of one interaction and decreases the collaboration
value if just one of the functions occurs on either side of an interaction. After
calculating the collaboration value for each pairs of functions in the PPI network,
at prediction time, this method ranks candidate functions based on how well
they collaborate with the neighborhood of unclassified protein.

• Third, we propose a Self Organizing Map (SOM) based collaborative function
prediction that has a one-layered network with as many inputs as there are
functions in the PPI network, and equally many output neurons. Each input is
connected to each output. After training the SOM, the network takes as input
the functions occurring in a protein’s neighborhood, and outputs information
about the protein’s functions.

• Fourth, we compare our collaboration-based methods (RBCFP and SOM) with
similarity-based methods using leave-one-out cross validation (discussed in sec-
tion 1.2.4) in five different function levels. We observe that collaboration based
methods predict functions more accurately than similarity based methods. As
we consider more detailed function levels, the difference between their perfor-
mance increases.

1.3.3 Predicting Cancer-related Proteins in PPI networks
Some of the proteins in PPI networks are annotated as being involved in cancer
(cancer-related proteins). The task of predicting cancer-related proteins is trying to
predict which other proteins in the PPI network are most likely involved in cancer.

As we discussed in section 1.3.1 , we use Human PPI and Gene Ontology datasets
for this task. We discuss our proposed methods for this problem in chapters 4 and 5
of this thesis.

In chapter 4, we predict cancer-related proteins from functional and structural
information in the PPI network.

• First, we discuss two types of previous methods: guilt-by-proximity and feature-
based methods. Methods classified in “guilt-by-proximity” category are based on
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the assumption that genes that directly interact, or, more generally, lie close to
each other in the network, are more likely to be involved in the same diseases (as
argued by, e.g., Gandhi et al. [31]). The methods vary based on how they define
proximity. In “feature-based” methods, each individual protein is described by
means of a fixed set of features such as protein degree, protein length, protein
GO annotations etc. Next, using machine learning methods, a model is learned
that links some of these features to cancer-relatedness. Figure 1.9 shows the
general procedure of feature-based methods. We compare characteristics of
guilt-by-proximity and feature-based categories and we conclude that feature-
based approaches have a number of advantages over proximity-based approaches
with respect to flexibility and data integration.

Figure 1.9: The general procedure of feature-based approaches for predicting cancer-
related proteins. In the first step, we describe each proteins based on some features
(e.g., protein degree, protein length, protein GO annotations and its shortest path dis-
tance to some other proteins in the network). In the second step, we apply a machine
learning method (e.g., Naive Bayes, logistic regression, support vector machine and
classification by clustering) to the proteins descriptions. In the last step, we evaluate
the newly predicted cancer-related proteins.

• Second, we assume that GO annotations of proteins are often incomplete, and
by collecting GO information from the neighbors of a protein p, we may get
more information about p itself. This argument is backed up by the fact that
GO annotations of proteins can often be predicted well from the GO annotations
of their neighbors; see, e.g., [111, 99]. However, this is not the only effect; there
is also a direct relationship between a protein’s involvement in cancer and the
GO annotations of the proteins it interacts with. We propose a new type of
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functional feature that considers the functions of proteins interacting with the
target protein (rather than the protein itself).

• Third, we propose a new type of structural features which considers the relative
position of the target protein with respect to specific other proteins selected
according to the Anova (discussed in section 1.2.2) based measure.

• Fourth, by applying literature mining to the most discriminative functional
and structural features, we succeed to find the biological relevance for all the
proposed features.

• Fifth, we describe the proteins in PPI network based on network contextual
information (Functional and Structural features) and then, we apply the naive
Bayes classifier for the prediction task. We observe that a simple and efficient
machine learning method (here Naive Bayes) that uses a combination of func-
tional information about the neighbors and shortest-path distance to specific
proteins, predicts cancer-related proteins with higher accuracy than any previ-
ous PPI-based methods.

• Sixth, we analyze a list of 20 genes predicted to be involved in cancer by our
method, but not annotated in this manner in our training dataset, and we find
that virtually all of them (at least 18 out of 20) could be linked to cancer
in scientific publications. So, not only our classification results improve upon
previous methods, but that also our ’false’ positive predictions could in many
cases be verified to be linked to cancer in more recent literature.

In chapter 5, we predict cancer-related proteins by combining Gene Ontology
annotations with information contained in the topology of a PPI network.

• First, we discuss standard machine learning approaches [77, 29, 66, 30] for the
task of predicting cancer-related proteins in PPI networks. We observe that
these methods typically use a feature-based representation of proteins as input,
and their success depends strongly on the relevance of the selected features.
Figure 1.9 shows the general procedure of feature-based methods .In earlier
work it has been shown that the Gene Ontology (GO) annotations of a protein
have high relevance. Accordingly, several authors [29, 66] propose to use the
χ2-based feature selection method discussed in section 1.2.2 to select the most
relevant GO terms.

• Second, we observe that selecting individual discriminative functions based on
the original χ2 formula does not consider the network topology and the way
different functions interact with each other in the network. For example, inde-
pendent of how four proteins shown in Figure 1.10 interact with each other, the
χ2 value of each function is same. We believe that for the task of predicting
cancer-related proteins, it is possible that a function fi does not correlate itself
with cancer-involvement, but when a protein with function fi interacts with a
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protein with function fj , this interaction may be an indication of the former
protein being involved in a cancer. So, we propose a interaction-based feature
selection for predicting cancer-related proteins in PPI networks.

Figure 1.10: Independent of how four proteins P1, P2, P3 and P4 interact with each
other, the χ2 value of each function fi ∈ FS is same.

• Third, we compare our proposed interaction based feature selection with individual-
based feature selection with respect to Femasure and we observe that interaction
based feature selection outperforms the individual-based method with 7.8%, on
average, with respect to Fmeasure.

1.3.4 Predicting Disease-related Proteins in PPI network
In chapter 6, we predict disease-related proteins from information in the relationships
among different diseases.

• First, we notice that in almost all the previous methods, prediction accuracy
depends directly on the initial disease-related proteins, which we refer to as seed
proteins. As the initial seed proteins of each disease suffer from several ’False
Negative’ cases (i.e., disease-related proteins which are not annotated as being
involved in disease), dependency of previous methods to the incomplete seed
proteins is the main drawback of these methods.

• Second, we propose an informative Human Disease Network (HDN) in which
each node is a disease and each weighted edge shows a relationship between two
diseases. Each directed edge di → dj between two diseases di and dj in the
HDN, shows how much seed proteins of disease dj are predictable based on the
information in the seed proteins of disease di using a given prediction method
M . Although our proposed approach for building the HDN is very general
and any prediction method M could be used, the quality of the resulting HDN
still depends on the prediction method M . We will discuss some recommended
prediction methods in the next step.

• Third, we analyze different Structural (using Anova measure and RandomWalk)
and Functional (using χ2 and interactive-χ2 as in chapter 5) prediction methods
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and we conclude that a hybrid method which considers both structural and
functional information in the PPI network is the best method for building the
HDN.

• Fourth, we build the HDN based on 20 diseases (Alzheimer ,Amyotrophic, Ane-
mia, Breast cancer, Cataract, Charcot-marie-tooth, Colorectal cancer, Deaf-
ness, Diabets, Dystonia, Ehlers-danlos, Epilepsy, Emolytic-anemia, Long QT
Syndrome, Lymphoma, Mental-retardation, Parkinson, Usher-syndrome, Xero-
derma, Zellweger) and we show that the resulting HDN is biologically meaning-
ful. There are 380 (20× 19) possible edges in the original HDN. We prune the
HDN by sorting the edges based on their weight descendingly and then, keeping
the 38 (10% of the original HDN) highest-weighted edges. Figure 1.11 shows
the pruned HDN. For each edge (di)

rank−−−→ (dj), Figure 1.11 shows the rank of
the relationship between two diseases di and dj among all the 380 disease pairs.
The highest-ranking found relationship is (deafness) 1−→ (usher syndrome).
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Figure 1.11: Pruned Human Disease Network by keeping only 38 (10% of the original
HDN) high-ranked relationships among different diseases. The best found relationship
is (deafness) 1−→ (usher syndrome).

• Fifth, we cluster the HDN and we augment the seed proteins of diseases based
on the cluster they belong to. Finally, we predict disease-related proteins based
on the augmented version of seed proteins. Literature mining of the newly found
disease-related proteins proved the usefulness of using our proposed HDN for
predicting disease-related proteins.
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1.3.5 Conclusions
In the context of the PPI networks, noisy nature of the networks, high-deminsionality
and incompleteness of initial annotation information are potential problems for any
knowledges discovery method. To overcome the first two problems, we proposed dif-
ferent feature selection methods using Anova (Analysis of variance) and interaction-
based chi-square. To conquer the problem of incompleteness of initial annotation
information we proposed a new type of network called Human Disease Network
(HDN). We also converted the “Homophily” assumption behind the function pre-
diction methods to “Selective Heterophily” assumption by introducing collaborative
functions. There is a “Conclusions” chapter in this thesis which discusses our main
contributions in more details.

21





Chapter 2
Predicting Proteins Functions Using

Network Global Information

Based on

Hossein Rahmani, Hendrik Blockeel and Andreas Bender, "Predicting the func-
tions of proteins in PPI networks from global information", JMLR: Workshop and
Conference Proceedings, International Workshop on Machine Learning in Systems
Biology, Ljubljana, Slovenia, 5-6 September 2009, volume 8, pages 82-97, 2010.
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2.1 abstract

In this work we present a novel approach to predict the function of proteins in protein-
protein interaction (PPI) networks. We classify existing approaches into inductive and
transductive approaches, and into local and global approaches. As of yet, among the
group of inductive approaches, only local ones have been proposed for protein function
prediction. We here introduce a protein description formalism that also includes global
information, namely information that locates a protein relative to specific important
proteins in the network. We analyze the effect on function prediction accuracy of se-
lecting a different number of important proteins. With around 70 important proteins,
even in large graphs, our method makes good and stable predictions. Furthermore,
we investigate whether our method also classifies proteins accurately on more de-
tailed function levels. We examined up to five different function levels. The method
is benchmarked on four datasets where we found classification performance accord-
ing to F-measure values indeed improves by 9 percent over the benchmark methods
employed.

2.2 Introduction

In recent years, much effort has been invested in the construction of protein-protein
interaction (PPI) networks [118]. Much can be learned from the analysis of such net-
works with respect to the metabolic and signalling processes present in an organism,
and the knowledge gained can also be prospectively employed e.g. to predict which
proteins are suitable drug targets, according to an analysis of the resulting network
[72]. One particular machine learning task that has been considered is predicting the
functions of proteins in the network.

A variety of methods have been proposed for predicting the classes of proteins.
On a high level we can distinguish two types of approaches, namely inductive and
transductive ones. Inductive learning approaches, also called model-based approaches,
construct a model (a mathematical function) that maps a description of a protein
onto its functions. Transductive approaches, on the other hand, immediately make
predictions for the proteins in the network, without going through the intermediate
stage of constructing a model that can be used afterwards for making predictions.
The difference between these two will be described more formally in the next section.

Transductive approaches are often “global”: information on the whole network is
taken into account when making predictions. The inductive approaches that have
been used until now are typically local, in the sense that the description of a protein
(from which its labels are to be predicted) contains information about the local neigh-
borhood of the protein, not about the network as a whole. This is not an inherent
property of inductive approaches, though; one might just as well try to construct a
description that contains global information. Accordingly, in this paper we explore
the usefulness of one particular kind of global information for the task of protein
function prediction, namely the relative position of a protein with respect to specific
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other proteins.
This paper is structured as follows. In Section 2 we define the learning problem

formally. In Section 3 we briefly review approaches that have been proposed before
to solve this problem. In Section 4 we present a new inductive learning approach; we
do not present any new learning algorithms but a new description format of proteins,
which contains global rather than local information. In Section 5 we empirically
evaluate the performance of several learning algorithms when using this format, and,
as a control experiment, compare this performance to that of a previously proposed
approach. We present our conclusions in Section 6.

2.3 Problem Statement

Mathematically, PPI networks can be represented as graphs, and the problem we
consider is that of predicting the labels of nodes in this graph.

Consider an undirected graph G with node set V and edge set E, where each node
v ∈ V is annotated with a description d(v) ∈ D and, optionally, a label l(v) ∈ L. We
assume that there exists a “true” labelling function λ from which l is a sample, that
is, l(v) = λ(v) where l(v) is defined.

In transductive learning, the task is to predict the label of all the nodes. That
is, given the graph G = (V,E, d, l), with l a partial function, the task is to construct
a completed version G′ = (V,E, d, l′) with l′ a complete function that is consistent
with l where l(v) is defined.

In practice, there is an additional constraint that l′ should approximate λ. This is
imposed by some optimization criterion o, the exact form of which expresses assump-
tions about λ. For instance, o could express that nodes that are directly connected
to each other tend to have similar labels by stating that the number of {v1, v2} edges
where l′(v1) 6= l′(v2) should be minimal. The assumptions made about λ are called
the bias of the transductive learner.

In inductive learning, the task is to learn a function f : D → L that maps a
node description d(v) onto its label l(v). That is, given G = (V,E, d, l), we need to
construct f : D → L such that f(d(v)) = l(v) when l(v) is defined, and f is defined
for all elements of D. Note that f differs from l in that it maps D, not V , onto L.
This implies, for instance, that it can also make predictions for a node v that was not
in the original network, as long as d(v) is known.

Besides the bias expressed by the optimization criterion o (which may still be
present), there is now also a bias imposed by the choice of D: whenever two different
nodes have the same description, they are assumed to have the same labels: d(v1) =
d(v2) ⇒ λ(v1) = λ(v2). Additionally, the learning algorithm used to learn f has
its own inductive bias [79]: given exactly the same inputs, two different learning
algorithms may learn different functions f , according to assumptions they make about
the likely shape of f .

Thus we have three types of bias. Transductive learners have a transductive bias,
which is implied by the choice of the optimization criterion o. Inductive learners have
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a description bias, imposed by the choice of d, as well as an inductive bias, imposed by
the choice of the learning algorithm that is used to learn f from (d(v), l(v)) pairs. In
this paper we will explore for one particular description function d wether it represents
a suitable description bias.

In the context of protein function prediction in PPI networks, the nodes v are
proteins; the descriptions d(v) can be any description of the protein that can be
derived from the network structure (where no additional information, such as the
protein structure, is assumed to be available; we assume we learn from the network
structure only); the labels l(v) are sets of protein functions.

Note that many proteins have more than one function [102]; this is why a node
label can be any set of functions. Most off-the-shelf machine learning techniques can
only learn classifiers that predict a single value, not a set of values. The fact that
node labels are sets may seem to form a problem in this respect. To remedy this
situation, if we have n possible functions, the task of predicting a subset of these
functions can easily be transformed into n single-function prediction tasks: for each
possible function a binary classification task is then constructed where nodes are to
be assigned the class true or false depending on whether the protein has that function
or not. This is the setting we will focus on in this paper.

2.4 Related work

Among transductive approaches to the protein function prediction problem, the Ma-
jority Rule approach has a prominent role [111]. This method assigns to a protein
those functions that occur most frequently among its neighbors (typically a fixed num-
ber of functions is predicted, for instance, the three most frequently occurring func-
tions in the neighborhood). One problem with this approach is that it only considers
neighbors of which the function is already known, ignoring all others. To address this
problem, global optimization-based function prediction methods have been proposed.
Any probable function assignment to the whole set of unclassified proteins is given a
score, counting the number of interacting pairs of nodes with no common function;
the function assignment with the lowest value will be the best assignment [121, 119].

Another improvement over the original implementation was made by observing
higher-level interactions [18]. Level k interaction between two proteins means that
there is a path of length k between them in the network. Proteins that have both
a direct interaction and shared level-2 interaction partners have turned out to be
more similar to each other (i.e. having same functions). Taking this further, one can
make the assumption that in dense regions (subgraphs with many edges, relative to
the number of nodes) most nodes have similar functions. This has led to clustering
approaches which first cluster the networks (with clusters corresponding to dense
regions), and subsequently predict the function of unclassified proteins based on the
cluster they belong to [57, 13].

Among the inductive approaches, Milenkovic and Przulj’s (2008) graphlet-based
approach has been used in the area of protein function predictions. The node descrip-
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tion d(v) that is built here, in their terminology the “signature vector”, describes the
local neighborhood of the node in terms of so-called graphlets, small graph structures
as a part of which each node occurs. Most other inductive approaches use similar
signatures. Typical for them is that they describe only the local structure of the
network near the node to be predicted, however remote changes in the network do
not influence the signature at all.

2.5 A global description of proteins

In this work we will now introduce an inductive approach that uses global node
descriptions to the area of protein-protein interactions; that is, any change (e.g.,
addition or removal of an edge) in the network, wherever it occurs, may influence a
node’s description. Our hypothesis is that the inclusion of additional information will
improve the function prediction of unknown nodes which will be investigated in the
following in detail.

We describe a node as follows. Assume that there are n nodes in the network,
identified through numbers 1 to n. Each node is then described by an n-dimensional
vector. The i’th component in the vector of a node v gives the length of the shortest
path in the graph between v and node i.

It has been hypothesized before that shortest-path distances are relevant in PPI
network analysis; for instance, [103] cluster nodes based on shortest-path distance
profiles. As of yet, however, such shortest-path distances have not been considered in
the context of inductive learning of protein function predictors which is the rationale
behind the current work.

A potential disadvantage of this method is that in large graphs, one gets very high-
dimensional descriptions, and not all learners handle learning from high-dimensional
spaces well. It is possible, however, to reduce the dimensionality of the vector by
only retaining the shortest-path distance to a few “important” nodes. This essentially
represents a feature selection problem. A node i is important if the shortest-path
distance of some node v to i is likely to be relevant for v’s classification. If the feature
fi denotes the shortest path distance to node i, one possible measure of the relevance
of fi for the label of a node (which is a set of functions) is the following.

For each function j, let Gj be the set of all proteins that have that function
j. Let Meank∈Gj

(fik) be the average fi value take over all proteins k in Gj , and
V ark∈Gj (fik) the variance of the fi value take over all proteins k in Gj . The following
formula, inspired by ANOVA (analysis of variance), gives an indication of how relevant
fi is for the function set as a whole:

∀pi ∈ P ;Ai =
V arj [Meank∈Gj

(fik)]
Meanj [V ark∈Gj

(fik)]
(2.1)

where P is the set of all proteins in the network and F contains all possible
functions. V arj and Meanj denote the Variance and Mean operators taken over all
values of j. A high Ai denotes a high relevance of feature fi. Figure 2.1 shows the
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intuitive representation of formula 2.1. Imagine there are three functions F1, F2 and
F3 in the network. First, we put the proteins having the same function in the same
group and forming the G1, G2 and G3 groups. Second, in order to calculate the
ANOVA value of each protein Pi in the network, we find the shortest path distance
of the protein Pi to all the members of each group (i.e., fij). Finally, we calculate the
average and variance of different fij in each function group Gj .

Figure 2.1: Intuitive representation of formula 2.1.

To illustrate this measure, figure 2.2 shows two different scenarios. In the first
scenario, all three averages and all three variances are equal. If the X axis shows the
value of shortest path distance to protein Pi, then we can not predict one specific
function based on the shortest path distance to the protein Pi . So, protein Pi

does not discriminate different functions in this scenario and is not an “important"
protein. In the second scenario, the values of variances are equal but average values
are different. In this scenario, if the shortest path distance of one protein to protein Pi

is smaller than µ1 or bigger than µ3 then we predict function F1 or F3 for that protein
respectively. If the shortest path distance is between µ1 and µ3 then we predict the
function F2 for that protein. In the second scenario, protein Pi discriminates different
functions so we could use it as an important protein.

In the following, we will empirically determine whether the shortest-path distances
to all, or a few particular, nodes are indeed informative with respect to a protein’s
functions by evaluating the performance of the method on a benchmark dataset.

2.6 Experiments
We performed four consecutive experiments.

1. We evaluated the potential of the proposed protein description for protein func-
tion prediction by assessing multiple learning systems and finding the learning
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Figure 2.2: Discriminative protein versus non-discriminative protein.

system whose inductive bias best fits our dataset. This step was made to alle-
viate the risk of concluding that the description is unsuitable, when the cause
for bad results is in fact a poor choice of learner.

2. We compared the performance of this system with that of Majority Rule [111],
a transductive learner.1

3. We investigated the effect of the ANOVA-based node selection criterion on pre-
dictive performance: Does a reduction of the number of important nodes in-
crease or decrease the predictive performance, and is there a clear optimum
with respect to the number of important nodes that should be selected?

4. While these experiments focused on prediction of functions on the highest level
of the functional hierarchy, we check whether our method also yields good pre-
dictive accuracy at lower levels.

We evaluate predictive performance using the following measures: area under
the ROC curve (AUC) [96], precision, recall, and F-measure. We do not include
predictive accuracy (percentage of predictions that are correct) because for several
function prediction tasks, the class distribution is highly skewed (e.g., 1% of the
protein has that function, 99% does not), and in such cases predictive accuracy (the
percentage of predictions that is correct) does not carry much information. AUC and
precision/recall are much more robust to skewed class distributions.

2.6.1 Datasets
We apply our method to four S. cerevisiae PPI networks: DIP-Core [25], VonMer-
ing [123], Krogan [59] and MIPS [76], which contain 4400, 22000, 14246 and 44514
interactions among 2388, 1401, 2708 and 7928 proteins respectively. We consider 17
high level functions for evaluating our function predictors. Figure 2.3 shows high level
MIPS function categories with their corresponding function number.

1Majority Rule was selected for its ease of implementation, and because it is still a regularly used
reference method.

29



CHAPTER 2. Predicting Proteins Functions Using Network Global Information

Figure 2.3: MIPS high level function categories.

2.6.2 Comparison of Learners

Given the input data and a particular function to predict, any standard machine learn-
ing tool can be used to build a model that predicts from a node’s description, whether
the node has a particular function or not. We have experimented with several meth-
ods, as available in the Weka data mining toolbox [127], namely decision trees (J48),
random forests, an instance based learner (IBk), Naive Bayes, radial basis function
networks, Support Vector Machine (libSVM), Classification via Regression (CVR) and
Voting Feature Intervals (VFI). We examined three kernel functions namely polyno-
mial, radial basis and sigmoid kernels in the libSVM method, and select the kernel
which gives the highest AUC value among the three types of kernel function. These
methods were chosen to be representative for a broad range of machine learning meth-
ods. This comparative evaluation was made on the DIP-Core data set. The results
are shown in Figure 2.4. Looking at average AUC over the functions to be predicted,
we see that Random Forests score best (AUC = 0.7), with IBk a close second (0.67).
These averages may seem close, but when we look at individual labels, we see that
there is only one win and one draw for IBk, and 15 losses, compared to RF. This
shows that the difference, while small, is significant.

It is interesting to see that RF performs best among all learners in 13 out of 17
cases, and the 4 cases where it does not are all characterized by a high class skew.
(Figure 2.5 visualises this.) This is, in hindsight, not surprising: Random Forests
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are ensembles of decision trees, and these are known to perform less well on highly
skewed class distributions. In our case, however, while most datasets have a strong
class skew, for the large majority of them this is not problematic.

Figure 2.4: Comparison of different machine learning methods on the DIP-Core
Dataset.

Figure 2.5: Percentage of positive instances in cases where RF does / does not perform
best among all learners. The graph shows that whether RF performs best is strongly
related to class skew.

We have concluded from the above results that Random Forests are our best
candidate for learning from the given type of data, and we have used this method in
the remaining experiments.

2.6.3 Comparison with a transductive method

We next compared Random Forests and Majority Rule in predicting the proteins’
functions in four datasets DIP-Core, VonMering, Krogan and MIPS. Firstly, we se-
lected 700 nodes based on the ANOVA Measure. Then, we found the shortest path
of each protein to those selected proteins. We used this information as the input
for Weka and calculated the average Precision, Recall, F-measure and AUC for each
function class in a 10-fold cross validation. Figure 2.6 compares the average precision,
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Figure 2.6: Average precision of MR and RF in four datasets.

over all classes, of Majority Rule (MR) and Random Forests (RF). Figure 2.7 simi-
larly compares the recall of MR and RF, and Figure 2.8 the F-measures. We see that,
over the four datasets, RF has higher precision (11% higher in average) but smaller
Recall (10% smaller in average). RF and MR perform almost similarly with respect
to F-measure. The AUCs are compared in Figure 2.9 ; again, RF tends to have higher
scores (+6%).

Figure 2.7: Average recall of MR and RF in four datasets.
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Figure 2.8: Average F-measure of MR and RF in four datasets.

2.6.4 Different Number of Important Proteins
Furthermore, we investigated the effect of selecting a different number of important
proteins on the classification metrics. We selected the 1, 2, 3, 4, 5, 6, 7, 8, 9, 10,
20, 30, 40, 50, 60, 70, 80, 90, 100, 200 and 300 most important proteins according
to Equation 2.1. For each number n, we created a dataset where each protein in the
network is described using its distance to the n most important proteins. We trained
a random forest from that dataset and recorded its precision, recall, F-measure and
AUC; these numbers are finally plotted against n. For each combination of function
and dataset this gives a separate curve.

The shape of the curves is qualitatively very similar in all cases. Figures 2.10–2.13
show a few representative cases. In general, we observe the following behavior:

• When the number of important proteins is limited to less than 10, this typically
yields bad predictive performance. Even though in a few cases the curves already
start increasing in this area, they do not reach their maximum.

• In the area of 10-50 important proteins, there is usually a major improvement
in all four metrics.

• For most of the functions, selecting 50-70 important proteins is enough to obtain
good classification results. Beyond this area, there is usually no major improve-
ment in performance. Nevertheless, in a small number of cases, as visible in
Figures 2.10 and 2.13, the performance keeps increasing significantly when the
number of important proteins is raised to 300.

We did not systematically increase the number of important proteins beyond 300
because of computational complexity reasons. (Weka’s random forest learning method
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Figure 2.9: Average AUC of MR and RF in four datasets.

is relatively slow for datasets of this size; the fact that it needs to be run for each sepa-
rate function and dataset, and that each time a ten fold cross-validation is performed,
makes it necessary to limit the number of datasets on which it is run.) Nevertheless,
our results show that in the large majority of cases a reduction of the number of
important proteins to a relatively small number (50-70) is possible without predictive
performance suffering too much from this. To really maximize predictive performance,
however, experimenting with a larger number of important proteins may be useful.

Looking at the Figures 2.10–2.13, we further notice that the effect of the number
of important proteins is much more pronounced for the F-measure than for the AUC.
In fact, in several cases there is no clearly perceivable trend in the AUC metric: even
though in general AUC tends to go up with increasing F-measure, in some cases it
remains relatively constant, and random variations are relatively large compared to
the systematic variation. Figure 2.14 illustrates this clearly. Thus, from the point
of view of comparing the quality of different models, the F-measure seems a more
dependable metric than AUC.

Comparison with Random Selection

The above experiments show that it is possible to reduce the number of important
nodes significantly without predictive performance suffering too much, but they do
not answer the question whether this is because our ANOVA-based selection method
performs well, or because any small number of “important" nodes would simply give us
enough information, no matter how we define “important". To answer this question,
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Figure 2.10: Function F-10 in VonMering dataset. Selecting less than 10 important
proteins is not enough for discriminating proteins with different function.

we compared our ANOVA-based selection method to random selection (i.e. simply
choosing n proteins at random and describing other proteins by their distances to
these proteins).

We compared the F-measures obtained when using the ANOVA-based and random
selection criteria for eleven different numbers of important proteins: 10, 20, 30, 40,
50, 60, 70, 80, 90, 100, 300. Since random selection yields different results depending
on the random choices made, and this influenced the F-measure quite a bit, for each
number of important proteins we ran the random selection based method 20 times
and reported average F-measure.

Figure 2.15 compares the ANOVA based selection method with random selection,
evaluated according to the F-measure metric, in the DIP-Core dataset. If the number
of important proteins is less than 20 or over 100, then there is no big difference between
these two methods, however between 20 and 100 selected proteins the ANOVA-based
selection method clearly improves upon random selection. This result suggests that
when the protein description is very detailed (distances to many other proteins are
given), it does not matter what these other proteins are, and when it is very coarse
(distances to very few other proteins are given), there is not enough information in
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Figure 2.11: Function F-10 in DIP-Core dataset. Major improvement happens when
the number of important proteins is between 10 to 50 proteins.

these distances, regardless of whether the important proteins are selected at random or
according to the ANOVA criterion. However, in between these extremes, our ANOVA
criterion clearly selects proteins with a higher information content than randomly
selected proteins.

2.6.5 Function Levels

Proteins’ functions have hierarchical structures. As we discussed in the section 2.6.1,
we only consider high level MIPS functions. For example, two functions 11.02.01
(rRNA synthesis) and 11.02.03 (mRNA synthesis) are considered similar up to the
second function level (i.e. 11.02 =RNA synthesis), but not on deeper levels. In this
section, we investigate whether our method also classifies proteins accurately on more
detailed levels. We examine up to five different function levels and for each level
compare our method with Majority Rule.

Figure 2.16 compares the F-measure obtained by Majority Rule and our method
on the DIP-Core and VonMering datasets, for five different function levels 1–5, where
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Figure 2.12: Function F-14 in DIP-Core dataset. Uniform metrics’ values after se-
lecting 50 important proteins.

1 is the level we used in our earlier experiments. Figure 2.17 visualizes the difference
in F-measures between both approaches. The highest improvement is observed for
function level 2, when our method has more than 8% higher F-measure value, on
average, for the DIP-Core and VonMering datasets. The difference is smallest for
very general (level 1) or very specific (level 5) function prediction.

2.7 Conclusions
To summarize, we have firstly classified existing methods for the prediction of node
properties in a network into transductive and inductive methods. This distinction
provides insight into potential strengths and weaknesses of the methods, particularly
in terms of learning bias. Inductive learning methods make different assumptions
about the true labeling function than transductive methods, which guided our choice
of algorithm employed in this work. Secondly, we observed that existing inductive
learning methods for predicting protein functions in PPI networks use local informa-
tion, while the use of global information for such methods has as of yet remained
unexplored. Accordingly, we have, thirdly, introduced a node description formalism
that has not been used previously for protein function prediction and which takes
global information into account. Together with this node description formalism we
have introduced and evaluated a method for reducing the number of features needed
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Figure 2.13: Function F-20 in DIP-Core dataset. This is an example of a case where
classification accuracy may keep improving when increasing the number of important
proteins beyond 300.

for the description. We analyzed the effect of selecting a different number of impor-
tant proteins on the classification metrics. We found that, for most of the functions,
selecting 50–70 important proteins is enough to obtain good classification results. Be-
yond this area, there is usually no major improvement in performance. Furthermore,
we investigate whether our method also classifies proteins accurately on more detailed
levels. We examine up to five different function levels. On four benchmark datasets,
DIP-Core, VonMering, Krogan and MIPS, we have shown that a standard learner
using this formalism outperforms the benchmark Majority Rule approach according
to Precision, F-measure and AUC and, hence, that our description formalism is in-
formative with respect to the prediction of a protein’s functions from its location in
the PPI network.

In the future, a more extensive comparison with other learners would be war-
ranted. It would also be interesting to determine to what extent the information in
our global protein description is complementary to that used in other (local inductive,
or transductive) approaches. The reason is that when several predictors exploit differ-
ent information when making their predictions, they can typically be combined into
a single composite predictor that performs better than each individual one. Finally,
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Figure 2.14: Function F-16 in the Krogan dataset. The AUC is more or less constant
when varying the number of important proteins, whereas the F-measure shows a clear
increase.

while we have focused here on models that predict a single class at a time, there exist
a few methods that predict multiple classes simultaneously [9]. Hence, it would be
useful to investigate to what extent these classifiers yield better predictions than the
single-label prediction approach presented here.
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Figure 2.15: Average F-measure obtained with Random Forests using the ANOVA-
based feature selection, versus using random selection, in the DIP-Core dataset.
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(a) DIP-Core

(b) VonMering

Figure 2.16: Average F-measure of MR and RF for different function levels in DIP-
Core and VonMering datasets.
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(a) DIP-Core

(b) VonMering

Figure 2.17: Difference of RF and MR based on F-measure in five function levels in
DIP-Core and VonMering datasets.
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3.1 abstract

The cellular metabolism of a living organism is among the most complex systems that
man is currently trying to understand. Part of it is described by so-called protein-
protein interaction (PPI) networks, and much effort is spent on analyzing these net-
works. In particular, there has been much interest in predicting certain properties
of nodes in the network (in this case, proteins) from the other information in the
network. In this paper, we are concerned with predicting a protein’s functions. Many
approaches to this problem exist. Among the approaches that predict a protein’s
functions purely from its environment in the network, many are based on the as-
sumption that neighboring proteins tend to have the same functions. In this work we
generalize this assumption: we assume that certain neighboring proteins tend to have
“collaborative”, but not necessarily the same, functions. We propose a few methods
that work under this new assumption. These methods yield better results than those
previously considered, with improvements in F-measure ranging from 3% to 17%.
This shows that the commonly made assumption of homophily in the network (or
“guilt by association”), while useful, is not necessarily the best one can make. The
assumption of collaborativeness is a useful generalization of it; it is operational (one
can easily define methods that rely on it) and can lead to better results.

3.2 Introduction

In recent years, much effort has been invested in the construction of protein-protein
interaction (PPI) networks [118]. Much can be learned from the analysis of such net-
works with respect to the metabolic and signalling processes present in an organism,
and the knowledge gained can also be prospectively employed e.g. to predict which
proteins are suitable drug targets, according to an analysis of the resulting network
[72]. One particular machine learning task that has been considered is predicting the
functions of proteins in the network.

A variety of methods have been proposed for predicting the functions of proteins.
A large class of them relies on the assumption that interacting proteins tend to have
the same functions (this is sometimes called “guilt by association”; it is also related
to the notion of homophily, often used in other areas). In this paper we investigate a
generalized version of this notion. We rely on the fact that topologically close proteins
tend to have collaborative functions, not necessarily the same functions. We define
collaborative functions as pairs of functions that frequently interface with each other
in different interacting proteins. In this way, the assumption becomes somewhat
tautological (this definition of collaborative functions implies that the assumption
cannot be wrong), but the question remains whether one can, through analysis of PPI
networks, correctly identify collaborative functions, and how much gain in predictive
accuracy can be obtained by this.

We propose two methods that predict protein functions based on function collab-
oration. The first method calculates the collaboration value of two functions using an
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iterative reinforcement strategy; the second method adopts an artificial neural net-
work for this purpose. We perform a comprehensive set of experiments that reveal a
significant improvement of F-measure values compared to existing methods.

The rest of paper is organized as follows. Section 2 briefly reviews approaches
that have been proposed before to solve this problem. We present the proposed
collaboration-based methods in Section 3, and evaluate them in Section 4. Section 5
contains our conclusions.

3.3 Related work

Various approaches have been proposed for determining the protein functions in
PPI networks. A first category contains what we could call structure-based meth-
ods. These rely on the local or global structure of the PPI network. For instance,
Milenkovic et al. [78] describe the local structure around a node by listing for a fixed
set of small graph structures (“graphlets”) whether the node is part of such a graphlet
or not. Rahmani et al. [98] describe nodes by indicating their position in the network
relative to specific important proteins in the network, thus introducing information
about the global graph structure.

The above methods do not use information about the functions of other nodes to
predict the functions of a particular protein. Methods that do use such information
form a second category. A prototypical example is the Majority Rule approach [111].
This method simply assigns to a protein the k functions that occur most frequently
among its neighbors (with k a parameter). One problem with this approach is that it
only considers neighbors of which the function is already known, ignoring all others.
This has been alleviated by introducing global optimization-based methods; these try
to find global function assignments such that the number of interacting pairs of nodes
without any function in common is minimal [121, 119]. Another improvement over the
original Majority Rule method consists of taking a wider neighborhood into account
[18]. Level k interaction between two proteins means that there is a path of length
k between them in the network. Proteins that have both a direct interaction and
shared level-2 interaction partners have been found more likely to share functions [18].
Taking this further, one can make the assumption that in dense regions (subgraphs
with many edges, relative to the number of nodes) most nodes have similar functions.
This has led to Functional Clustering approaches, which cluster the network (with
clusters corresponding to dense regions), and subsequently predict the functions of
unclassified proteins based on the cluster they belong to [57, 13].

A common drawback of the second category of approaches is that they rely solely
on the assumption that neighboring proteins tend to have the same functions. It is not
unreasonable to assume that proteins with one particular function tend to interact
with proteins with specific other functions. We call such functions “collaborative”
functions. Pertinent questions are: can we discover such collaborative functions, and
once we know which functions tend to collaborate, can we use this information to
obtain better predictions? The methods we propose next, try to do exactly this.
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3.4 Two collaboration-based methods

We propose two different methods. Each of them relies on the assumption that
interacting proteins tend to have collaborative functions. They try to estimate from
the network which functions often collaborate and, next, try to predict unknown
functions of proteins using this information.

In the first method, first we extract the collaborative function pairs from the whole
network. Then, in order to make prediction for an unclassified protein, we extract
the candidate functions based on position of the protein in the network. Finally,
we calculate the score of each candidate function. High score candidate functions
are those which collaborate more with the neighborhood of unclassified protein. The
second method adopts a neural network for modeling the function collaboration in
PPI networks.

We use the following notation and terminology. The PPI network is represented
by protein set P and interaction set E. Each epq ∈ E shows an interaction between
two proteins p ∈ P and q ∈ P . Let F be the set of all the functions that occur in
the PPI network. Each classified protein p ∈ P is annotated with an |F |-dimensional
vector FSp that indicates the functions of this protein: FSp(fi) is 1 if fi ∈ F is a
function of protein p, and 0 otherwise. FSp can also be seen as the set of all functions
fi for which FSp(fi) = 1. Similarly, the |F |-dimensional vector NBp describes how
often each function occurs in the neighborhood of protein p. NBp(fi) = n means that
among all the proteins in the neighborhood of p, n have function fi. The neighborhood
of p is defined as all proteins that interact with p.

3.4.1 A Reinforcement Based Function Predictor

Consider the Majority Rule method. This method considers as candidate functions
(functions that might be assigned to a protein) all the functions that occur in its
neighborhood, and ranks them according to their frequency in that neighborhood
(the most frequent ones will eventually be assigned).

Our method differs in two ways. First, we consider extensions of Majority Rule’s
candidate functions strategy. Instead of only considering functions in the direct neigh-
borhood as candidates, we can also consider functions that occur at a distance at most
k from the protein. We consider k = 1, 2, 3, 4 and call these strategies First-FL (First
function level, this is Majority Rule’s original candidate strategy), Second-FL, Third-
FL and Fourth-FL. Finally, the All-FL strategy considers all functions as candidate
functions.

The second difference is that our method ranks functions according a “function
collaboration strength” value, which is computed through iterative reinforcement,
as follows. Let FuncColV al(fi, fj) denote the strength of collaboration between
functions fi and fj . We consider each classified protein p ∈ P in turn. If function
fj occurs in the neighborhood of protein p (i.e., NBp(fj) > 0) then we increase the
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collaboration value between fj and all the functions in FSp:

∀fi ∈ FSp : FuncColV al(fi, fj)+=
NBp(fj) ∗R
support(fj)

If NBp(fj) = 0, we decrease the collaboration value between function fj and all the
functions belonging to FSp:

∀fi ∈ FSp : FuncColV al(fi, fj)−=
P

support(fj)

support(fj) is the total number of times that function fj appears on the side of an
edge epq in the network. R and P are "Reward" and "Punish" coefficients determined
by the user.

Formula (3.1) assigns a collaboration score to each candidate function fc:

Score(fc) =
∑
∀fj∈F

NBp(fj) ∗ FuncColV al(fj , fc) (3.1)

High score candidate function(s) collaborate better with the functions observed in the
neighborhood of p and are more likely to be predicted as p’s functions.

We call the above method “Reinforcement based collaborative function prediction”
(RBCFP), as it is based on reinforcing collaboration values between functions as they
are observed.

3.4.2 SOM Based Function Predictor

The second approach presented in this work employs an artificial neural network,
and is inspired by self-organizing maps (SOMs). From the PPI network, a SOM is
constructed as follows. We make a one-layered network with as many inputs as there
are functions in the PPI network, and equally many output neurons. Each input is
connected to each output. The network is trained as follows. All weights are initialized
to zero. Next, the training procedure iterates multiple times over all proteins in the
PPI network. Given a protein p with function vector FSp and neighborhood vector
NBp, the network’s input vector is set to NBp, and for each j for which FSp(fj) = 1,
the weights of the j’th output neuron are adapted as follows:

Wij,New = Wi,j,Current + LR ∗ (NBp(j)−Wi,j,Current) (3.2)

where Wij is the weight of the connection from input i to output j, and LR (learning
rate) is a parameter. Intuitively, this update rule makes the weight vector W.j of
output j gradually converge to a vector that is representative for the NB vectors of
all proteins that have fj as one of their functions. Once the network has been trained,
predictions will be made by comparing the NB vector of a new protein q to the weight
vectors of the outputs corresponding to candidate functions, and predicting the k

47



CHAPTER 3. Predicting Proteins Functions Using Collaborative Functions

functions for which the weight vector is closest to NBq (using Euclidean distance),
with k a parameter determined by the user.

Normally, in a SOM, the weights of the winner neurons (the output neurons whose
weights are closest to the input) and that of neurons close to them in the SOM lattice
are adjusted towards the input vector. The difference with our method is that our
learning method is supervised: we consider as “winner neurons” all output neurons
corresponding to the functions of the protein. As usual in SOMs, the magnitude of
the weight update decreases with time and with distance from the winner neuron.
Here, we take some new parameters into consideration which are LearningRate(LR),
DecreasingLearningRate(DecLR) and TerminateCriteria(TC) parameters. LR
determines how strongly the weights are pulled toward the input vector, and DecLR
determines how much LR decreases with each iteration. TC determines when the
training phase of SOM terminates: it indicates the minimum amount of change re-
quired in one iteration; when there is less change, the training procedure stops.

Algorithm 3.4.1 summarizes the Training phase of the SOM method.�

�

�




Algorithm 3.4.1: SOM Training Phase(LR,DecLR, TC)

procedure SOM-Training(LR,DecLR, TC)
maxChangeInNetworkWeights← 0;
repeat

for each classified protein p ∈ P

do



build NBp

for each fi ∈ F
do inputNeuron(i) = NBp(fi)

for each fj ∈ FSp

do
{
apply Formula (3.2).
update maxChangeInNetworkWeights

LR← LR ∗DecLR
until (maxChangeInNetworkWeights < TC)

3.5 Experiments

3.5.1 Dataset and Annotation Data

We apply our method to three S. cerevisiae PPI networks: DIP-Core [25], VonMering
[123] and Krogan [59] which contain 4400, 22000 and 14246 interactions among 2388,
1401 and 2708 proteins respectively. The protein function annotation for S. cerevisiae
PPI networks were obtained from the Yeast Genome Repository [39]. Functions can
be described in different levels of detail. For example, two functions 11.02.01 (rRNA
synthesis) and 11.02.03 (mRNA synthesis) are considered the same up to the second
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Figure 3.1: Effects of tuning the “Candidate function strategy" parameter, the “De-
creasing Learning Rate”, and the “Termination Criteria” of SOM network in Krogan
Dataset. Second-FL with DecLR=0.9 and TC=10 produces the best result on Krogan.

function level (i.e., 11.02 = RNA synthesis), but not on deeper levels. The function
hierarchy we use contains five different levels, which we will refer to as F-L-i. Thus,
for each dataset, five different versions can be produced, one for each function level.

3.5.2 Parameter Tuning

Our methods have parameters for which good values need to be found. Parameters
can be tuned by trying out different values, and keeping the one that performed best.
Obviously, such tuning carries a risk of overestimating the performance of the tuned
method, when it is evaluated on the same dataset for which it was tuned. To counter
this effect, we tuned our methods on the Krogan dataset labeled with F-L-1 functions
(the most general level of functions in the function hierarchy), and evaluated them
with the same parameter values on the other datasets; results for DIP-Core and Von
Mering are therefore unbiased. Conversely, for the Krogan dataset, we used parameter
settings tuned on DIP-Core. This way, all the results are unbiased.

We tuned the parameters manually, using the following simple and non-exhaustive
strategy. Parameters were tuned one at a time. After finding the best value for
one parameter, it was fixed and other parameters were tuned using that value. For
parameters not yet fixed when tuning a parameter p, we tried multiple settings and
chose a value for p that appeared to work well on average. With this approach, the
order in which the parameters are tuned can in principle influence the outcome, but
we found this influence to be very small in practice.

Fig. 3.1 shows the effects of the consecutive tuning of the different parameters.
The best value for “Candidate function strategy" parameter is Second-FL; using this
value we found a best DecLR value of 0.9, and using these two values we found an
optimum for TC at 10. For LR the default setting of 1 was used.

“Candidate function strategy” = Second-FL, R = 1 and P = 2 turns out to be the
best parameter setting for the RBCFP method.
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Figure 3.2: F-measures obtained by the new collaboration-based methods (SOM and
RBCFP), compared to existing similarity-based methods (MR and FC) at five differ-
ent function levels, for the Krogan, DIP-Core, and VonMering datasets. On all levels,
collaboration based methods predict functions more accurately than similarity based
methods.

3.5.3 Comparison to previous methods

In this section, we compare our collaboration-based methods (RBCFP and SOM) with
similarity-based methods (Majority Rule and Functional Clustering) on the Krogan,
VonMering and DIP-Core datasets, using average F-measure as the evaluation crite-
rion. We perform a leave-on-out cross-validation, leaving out one protein at a time
and predicting its functions from the remaining data. For each protein, we predict a
fixed number of functions, namely three; this is exactly what was done in the Majority
Rule approach we compare to, so our results are maximally comparable. In the pro-
posed methods, we use the parameter values tuned in the previous section. Majority
Rule (MR) selects the three most frequently occurring functions in the neighborhood
of the protein in the network. Functional clustering (FC) methods differ mainly in
their cluster detection technique. Once a cluster is obtained simple methods are usu-
ally used for function prediction within the cluster. In our evaluation, we use the
clusters from [39] (which were manually constructed by human experts).

Fig. 3.2 compares collaboration-based and similarity-based methods on the Kro-
gan, DIP-Core and VonMering datasets respectively. F-L-i refers to the i’th function
level in the function hierarchy. We compare the methods on five different function
levels.

In all three datasets, collaboration based methods predict functions more accu-
rately than similarity based methods. As we consider more detailed function levels,
the difference between their performance increases. In order to have a general idea
about the performance of two method types in different function levels, we take the
average of F-measure difference between collaboration based methods and similarity
based methods in three datasets. Fig. 3.3 shows the average F-measure difference be-
tween two method types. For general function descriptions (first and second function
levels), collaboration based methods outperform the similarity based methods with
some 4 percent. For more specific function descriptions, for example function level 5,
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Figure 3.3: Difference in F-measure between the best collaboration-based and the
best similarity-based method, averaged over three datasets, for five function levels.
The difference increases as we consider more detailed function levels.

the performance difference between two methods increases up to 17 percent.

3.5.4 Extending Majority Rule

We identified the notion of collaboration-based prediction (as supposed to similarity-
based prediction) as the main difference between our new methods and the ones we
compare with. However, in the comparison with Majority Rule, there is another
difference: while Majority Rule assigns only functions from the direct neighborhood
to a protein, we found that using candidate functions from a wider neighborhood
(including neighbors of neighbors) was advantageous. This raises the question whether
majority rule can also be improved by making it consider a wider neighborhood.

We tested this by extending the Majority Rule so that it can consider not only
direct neighbors, but also neighbors at distance 2 or 3. We refer to these versions
as MR(NB-Li). Fig. 3.4 shows the effect of considering a wider neighborhood in
Majority Rule in the three datasets Krogan, VonMering and DIP-Core. There is no
improvement in the Krogan and VonMering datasets, and only a small improvement
(1%) in DIP-Core, for MR(NB-L2). This confirms that the improved predictions of
our methods are due to using the new collaboration-based scores, and not simply to
considering functions from a wider neighborhood.

3.6 Conclusion
To our knowledge, this is the first study that considers function collaboration for the
task of function prediction in PPI networks. The underlying assumption behind our
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Figure 3.4: Extending Majority Rule by considering other function neighborhood
levels. NB-Li represents the 1-, 2- or 3-neighborhood of the protein.

approach is that a biological process is a complex aggregation of many individual
protein functions, in which topologically close proteins have collaborative, but not
necessarily the same, functions. We define collaborative functions as pairs of functions
that frequently interface with each other in different interacting proteins.

We have proposed two methods based on this assumption. The first method
rewards the collaboration value of two functions if they interface with each other in
two sides of one interaction and punishes the collaboration value if just one of the
functions occurs on either side of an interaction. At prediction time, this method
ranks candidate functions based on how well they collaborate with the neighborhood
of unclassified protein. The second method uses a neural network based method for
the task of function prediction. The network takes as input the functions occurring
in a protein’s neighborhood, and outputs information about the protein’s functions.

We selected two methods, Majority Rule and Functional Clustering, as represen-
tatives of the similarity based approaches. We compared our collaboration based
methods with them on three interaction datasets: Krogan, DIP-Core and VonMer-
ing. We examined up to five different function levels and we found classification
performance according to F-measure values indeed improved, sometimes by up to 17
percent, over the benchmark methods employed. Regarding the relative performance
of the proposed methods, their classification performances are similar in the high
level function levels but the RBCFP method outperforms the SOM method in more
detailed function levels.

Our results confirm that the notion of collaborativeness of functions, rather than
similarity, is useful for the task of predicting the functions of proteins. The information
about which functions collaborate, can be extracted easily from a PPI network, and
using that information leads to improved predictive accuracy.

These results may well apply in other domains, outside PPI networks. The notion
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of homophily is well-known in network analysis; it states that similar nodes are more
likely to be linked together. The notion of collaborativeness, in this context, could
also be described as “selective heterophily”. It remains to be seen to what extent this
notion may lead to better predictive results in other types of networks.
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4.1 Abstract

Protein-Protein Interaction (PPI) networks have been widely used for the task of
predicting proteins involved in cancer. Previous research has shown that functional
information about the protein for which a prediction is made, proximity to specific
other proteins in the PPI network, as well as local network structure are informative
features in this respect. In this work, we introduce two new types of input features,
reflecting additional information: (1) Functional Context: the functions of proteins
interacting with the target protein (rather than the protein itself); and (2) Structural
Context: the relative position of the target protein with respect to specific other
proteins selected according to a novel ANOVA (analysis of variance) based measure.
We also introduce a selection strategy to pinpoint the most informative features.
Results show that the proposed feature types and feature selection strategy yield
informative features. A standard machine learning method (Naive Bayes) that uses
the features proposed here outperforms the current state-of-the-art methods by more
than 5% with respect to F-measure. In addition, manual inspection confirms the
biological relevance of the top-ranked features.

4.2 Introduction

In recent years, much effort has been invested in the construction of protein-protein
interaction (PPI) networks [118]. Much can be learned from the analysis of such net-
works with respect to the metabolic and signalling processes present in an organism,
and the knowledge gained can also be prospectively employed e.g. to the task of pro-
tein function prediction [78, 98, 111, 121, 119, 57, 13, 18], identification of functional
modules [71], interaction prediction [48, 129], identification of disease candidate genes
[106, 37, 132, 87] and drug targets [104, 81], according to an analysis of the resulting
network [72].

Wu et al. [130] present an excellent overview of multiple methods for detecting
proteins involved in cancer or disease. Among the different methods discussed in [130],
“guilt-by-proximity” methods are well known. Methods classified in this category are
based on the assumption that genes that directly interact, or, more generally, lie close
to each other in the network, are more likely to be involved in the same diseases (as
argued by, e.g., Gandhi et al. [31]). The methods vary based on how they define
proximity: Some methods consider only direct neighbors to be in the proximity (e.g.,
[87, 3]), some quantify proximity of two proteins using the length of the shortest-
path between them, some compute a “Global Distance Measure” that also takes into
account how many paths there are between the two proteins, and how long these are;
an example is the approach by Chen et al. [16], who use a PageRank based model for
this.

While the basic guilt-by-proximity methods require that certain nodes in the net-
work are already known to be involved in the disease under study, Wu et al. also
discuss methods that rely on proximity to nodes known to be involved in other, simi-
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lar diseases. Wu et al. define de novo methods as methods that can predict nodes to
be involved in a particular disease even if no other nodes in the network are known
to be involved in it.

The methods discussed by Wu et al. mostly rely on notions of proximity (to genes
known to be disease-related) from the area of graph analysis. An entirely different type
of approaches are those that rely on feature-based descriptions. There, each individual
protein is described by means of a fixed set of features. Next, using machine learning
methods, a model is learned that links some of these features to disease-relatedness.
In the context of predicting involvement in cancer, examples of feature-based methods
include Milenkovic et al.[77], Furney et al. [29] and Li et al. [66]. Milenkovic et al.
[77] characterize a protein using a “signature vector” that describes the local network
structure around the node in terms of so-called graphlets, small fixed graph structures
in which the node occurs. By applying a series of clustering methods, they show
that protein that are involved in cancer have similar “topological signatures”, which
distinguish them from other proteins, and these nodes need not be close to each other
in the network. Furney et al. [29] use the Gene Ontology annotations of a protein as
features, as well as a number of other properties; they use a chi-square-based selection
criterion to select the likely most relevant features, then apply Naive Bayes. Li et al.
[66] compare three classifiers: SVM, Naive Bayes and logistic regression and they find
that the SVM classifier on average performed slightly better than the Naive Bayes and
logistic regression methods, and that among SVMs using different types of features
individually, including GO annotations as features gives the best performance, while
sequence and conservation features have relatively weak predictive power.

When learning from PPI networks, feature-based approaches have a number of
advantages over proximity-based approaches. First, defining the problem in a ma-
chine learning setting gives access to a wide range of machine learning techniques,
making this type of approaches very flexible. Second, data integration is more easily
achieved: one can easily define additional features for proteins, possibly using back-
ground information (i.e., information external to the PPI network) for this. Third,
these method are inductive: they do not yield predictions, but a model for making
predictions. This is interesting in terms of Wu et al.’s definition of de novo methods.
Information about disease genes is needed when constructing the model, but not when
applying it, so the model can be applied to other PPI networks, or in other areas of
the same PPI network. Finally, inductive methods can yield interpretable models,
which may by themselves yield new insights.

A difficulty with feature-based methods, however, is that the quality of the learned
model depends on the features used. When the input data is a PPI network, the main
challenge is to find features with good predictive power that can be computed from
this network. The approaches mentioned above all do this in some way. In this
work, we propose two new types of input features, reflecting additional information
that can be extracted from a PPI network: (1) Functional Context: the functions
of proteins interacting with the target protein (rather than the protein itself); (2)
Structural Context: the relative position of the target protein with respect to specific
other proteins selected according to a novel ANOVA (analysis of variance) based
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measure. We show that these features have good predictive power. It is not our goal
to compare different machine learning algorithms; we restrict ourselves to the Naive
Bayes classifier. The performance of the method might be optimized by using another
learning method, but we expect the difference to be small (see also Li et al. [66]).
Our main claim lies in the usefulness of the new features.

4.3 Methods

4.3.1 Formal Definition

We consider a PPI network as an undirected annotated graph (P,E, λ) where P is a
set of proteins, E ⊆ P × P is a set of interactions between these proteins, and λ is a
so-called annotation function; for each p, λ(p) denotes the additional information we
have about p (for instance, its GO annotations). In this work, we assume that λ(p)
simply lists all the GO functions that are associated with p; we call it the function
set (or function vector) of p, and denote it FS(p). If F = {f1, f2, . . . , fn} is the set
of all the functions in the network, then FS(p) is an |F |-dimensional binary vector;
the i’th component of FS(p), denoted FSi(p), is 1 if function fi is associated with p,
and 0 otherwise. We will also write fi ∈ FS(p) to denote FSi(p) = 1.

4.3.2 Protein Description Based on Functional Context

Given a protein p, we define the interactor set of p, denoted IS(p), as the set of
proteins it interacts with, i.e., IS(p) = {q|(p, q) ∈ E}. Besides the function vector of
p itself, we also define the “interacting function counts” vector IFC(p) as the number
of interacting proteins that are annotated with that function.

IFC(p) =
∑

q∈IS(p)

FS(q) (4.1)

Note that, while methods for predicting involvement in cancer have considered
GO annotations of proteins as predictive features (e.g., [29, 66]), no methods up till
now have considered GO annotations of the neighbors of those proteins at the same
time. That is, for predicting involvement in cancer of a protein p, the FS(p) vector
has been considered as a predictive feature, but the vector IFC(p) has not. One may
wonder what the advantage is of using GO annotations of related proteins, rather
than the protein itself. One argument is that GO annotations are often incomplete,
and by collecting GO information from the neighbors of a protein p, we may get
more information about p itself. This argument is backed up by the fact that GO
annotations of proteins can often be predicted well from the GO annotations of their
neighbors; see, e.g., [111, 99]. However, as we will show, this is not the only effect;
there is also a direct relationship between a protein’s involvement in cancer and the
GO annotations of the proteins it interacts with.
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We will refer to the information in FS(p) and IFC(p) as the functional context of
p. We experimentally compare two different versions of this functional context: using
FS(p) only as input vector (i.e., ignoring the information in the neighborhood of p),
and using the sum of FS(p) and IFC(p) as input vector (thus taking into account
functional information about the neighborhood of p, including p itself). We call these
two approaches FS and FS + IFC, respectively.

As defined above, the FS(p) and IFC(p) vectors have high dimensionality; the
number of components equals the number of functions in the Gene Ontology. A
natural way to reduce this dimensionality is using a feature selection method to filter
out the least interesting features (functions, in this case). An often used measure for
determining the relevance of a binary feature F for a class variable C is the χ2 score,
defined as follows:

χ2 =
(ad− bc)2 ∗ (a+ b+ c+ d)
(a+ b)(c+ d)(b+ d)(a+ c)

(4.2)

where a, b, c and d are defined by the contingency table in Table 4.1.

Table 4.1: The contingency table of a binary feature F w.r.t. a binary class
variable C

F = 0 F = 1 total
C=0 a b a+b
C=1 c d c+d

a+c b+d a+b+c+d

a, b, c, and d count the number of times F and C have the corresponding value. The
χ2 value of F w.r.t. C is derived from this.

In our case, the class variable C indicates whether a protein p is involved in cancer
or not, and the binary feature F indicates whether a particular component of FS(p)
or FS(p) + IFC(p) is zero (F = 0) or not (F = 1).

Apart from allowing us to reduce the dimensionality of the vectors describing a
protein p, the χ2 measure also ranks functions from highly relevant (for predicting
involvement in cancer) to less relevant.

4.3.3 Protein Description Based on Structural Context

Besides the functional context of a protein, defined before, we will also consider its
so-called structural context. This structural context relates to the relative position of
p in the network.

Several methods discussed in Wu et al. [130] describe each protein p based on the
shortest-path distance of p to some previously known cancer/disease proteins. We
refer to this category of methods as “distanceToCancer” methods (DisToCancer).

Alternatively, we can describe a protein’s position relative to other proteins than
only cancer-related ones. Rahmani et al. [98] proposed a relevance measure for
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proteins that is inspired by statistical ANOVA (analysis of variance), and showed that
shortest-path distance to a relatively small number of proteins (selected according to
the ANOVA-based measure) is informative for the task of function prediction in the
PPI networks. Since the ANOVA method works well for function prediction, it is
natural to check whether it also gives good results for the task of predicting cancer-
related proteins, and this is one of the purposes of the current study. We therefore
propose the use of similar features for predicting proteins involved in cancer.

The ANOVA-inspired selection measure (briefly, ANOVA) is defined as follows.
Let P+ be the set of proteins labeled as being involved in cancer, and P− the set
of proteins not labeled as such. For each protein q, we introduce a feature dq; dq(p)
denotes the shortest-path distance between p and q (viewed here as a feature of p).
We consider for each q the mean and variance of dq(p), taken over all cancer-related
and non-cancer-related p:

m+
q =

∑
p∈P+ dq(p)
|P+|

(4.3)

m−q =

∑
p∈P− dq(p)
|P−|

(4.4)

var+q =

∑
p∈P+(dq(p)−m+

q )2

|P+| − 1
(4.5)

var−q =

∑
p∈P−(dq(p)−m−q )2

|P−| − 1
(4.6)

Seeing P+ and P− as two groups of proteins, the following formula compares the
variance between groups to the variance within groups (as it is used for relative
ranking only, constant factors are dropped):

Aq =
(m+

q −m−q )2

var+q + var−q
(4.7)

A high Aq means that dq varies little within groups and/or much between groups,
which indicates that dq has high predictive power for the group. Features dq can
be ranked according to Aq, and the top-k features selected as actual features to be
included in the description of all proteins. We will call the category of methods
that use these features DisToAnova methods, or DisToAnova(k) when referring to a
particular setting for the parameter k.

Finally, we can combine the information in the DisToCancer and DisToAnova
descriptors; we do this by first filtering the proteins, retaining only those known to be
involved in cancer, and ranking these according to the Anova criterion. This combined
version is referred to as DisToCancerAnova.
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4.3.4 Protein Description Based on Functional and Structural
Context

This refers to protein descriptions that include both information from functional and
structural context. The input consists of the FS+IFC vector concatenated with the
DisTo(Cancer/Anova/CancerAnova) vector.

4.4 Results

4.4.1 Dataset
We evaluate our methods on the dataset used by Milenkovic et al. [77]. This dataset is
the union of three human PPI datasets: HPRD [91], BIOGRID [116] and the dataset
used by Radivojac et al. [97]. When we say “union”, we mean that the new network
contains all the nodes and edges (proteins and interactions) found in either of these
networks. The aim of merging these three datasets was to obtain as complete a human
PPI network as possible, i.e., a network that covers with its edges as many proteins
in the human proteome as possible. We denote as “known cancer genes” the set of
genes implicated in cancer that is available from the following databases: Cancer Gene
Database [23], Cancer Genome Project-the Cancer Gene Census [95], GeneCards [32]
Kyoto Encyclopedia of Genes and Genomes [83] and Online Mendelian Inheritance
in Man [47]. Some statistical information is shown in Table 4.2. We have chosen to
evaluate our methods on this dataset to make a precise quantitative comparison to
their graphlet-based method possible.

Table 4.2: Statistical information of union of three human PPI datasets: HPRD [91],
BIOGRID [116] and Radivojac et al. [97]

Number of Proteins 10,282
Average Degree 9.201
Min Degree 1
Max Degree 272
Number of Cancer Genes 939

While the dataset employed here is of high quality, as it is based on large and
widely employed datasets, it should be kept in mind that it is not trivial (or in the
narrow sense probably even impossible) to define it in a flawless fashion. One of
the limitations lies in the role of ’genes involved in cancer’ - cancers are different, so
while a gene may play a role in one cancer, it might play no role at all in another
one. Also, there are spatial and temporal conditions involved in the annotation we
do not include here. On the other hand, a limitation lies in the construction of the
interactome we define in our dataset. Again, temporal conditions are excluded, and
likely many interactions have not been identified in experiment yet; hence our dataset
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likely contains a substantial number of missing annotations (while likely also false
positive interactions are included due to experimental noise and errors). Nonetheless,
the dataset employed here is as good as we can do currently both in size and quality;
and, in particular, it has been employed in related studies before, which enables us
to perform benchmark experiments in a comparative manner by utilizing it.

This dataset determines uniquely the network structure, and therefore the values
of all features, used in our experiments. The actual datasets we use differ only with
respect to what features are included.

4.4.2 Biological Interpretation of the Most Relevant Func-
tions

The number of different functions occurring in our human dataset is 9833; this is
also the dimensionality of FS and IFC if no dimensionality reduction is used. As
mentioned before, we can use a χ2-based feature selection method to reduce this
number; at the same time, this technique ranks functions according to how relevant
they are for prediction of cancer involvement.

Most Relevant Functions in FS

Tables 4.3, 4.4 and 4.5 show the 20 highest ranked functions. As the Gene Ontology
actually uses three domains (biological function, molecular function, cellular compo-
nent), we have separated the functions according to their domain.

Searching the most relevant functions in the cancer literature proved the use-
fulness of chi-square for detecting these functions. For example, based on cancer
literature, function “GO:0008284” is involved in various cancers: “Breast Cancer”,
“Prostate Cancer” and “Lung Cancer”. Besides using the statistic to select a limited
number of features, we can also use it to inspect the top-ranked functions, which can
be used both as a soundness check (are the functions that we expect to be relevant
indeed highly ranked?) and as a method for discovering potentially new information
(when there are unexpected functions among the top-ranked ones).

Many of the biological functions contained in Table 4.3 are obviously related to
cancer, such as GO:0008284, the Positive regulation of cell proliferation, which is
a synonym for uncontrolled cell growth, as are positions 3, 5 and 10 in the list
(GO:0045944 Positive regulation of transcription from RNA polymerase, GO:0006355
Regulation of transcription, DNA-dependent and GO:0045941 Positive regulation of
transcription). Similarly, position 4 (GO:0008285 Negative regulation of cell prolifer-
ation) has an obvious connection to cancer; where positive stimulation of cell growth
can stimulate tumor growth, an inhibition of the negative regulatory elements will
have the very same effect. Fibroblasts are involved in wound healing, a process not
taking place properly in cancerous settings [50]. We can also find biological processes
linked to small molecules in the list, at positions 6 and 7, namely GO:0014070 Re-
sponse to organic cyclic substance and GO:0042493 Response to drug. It is known
that many carcinogenic substances such as benzo[a]pyren, or even smaller molecules
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Table 4.3: Most discriminative functions from Biological Process based on
FS method
Index Function Short Info chi-square p-value
1 GO:0008284 Positive regulation of cell proliferation 163.02 <0.0001
2 GO:0008543 Fibroblast growth factor receptor

signaling pathway 105.80 <0.0001
3 GO:0045944 Positive regulation of transcription

from RNA polymerase
II promote 99.65 <0.0001

4 GO:0008285 Negative regulation of cell proliferation 71.40 <0.0001
5 GO:0006355 Regulation of transcription,

DNA-dependent 69.84 <0.0001
6 GO:0014070 Response to organic cyclic compound 69.76 <0.0001
7 GO:0042493 Response to drug 69.18 <0.0001
8 GO:0043434 Response to peptide hormone stimulus 67.09 <0.0001
9 GO:0001658 Branching involved in ureteric

bud morphogenesis 64.91 <0.0001
10 GO:0045941 Positive regulation of transcription 64.89 <0.0001
11 GO:0007050 Cell cycle arrest 62.73 <0.0001
12 GO:0001656 Metanephros development 62.07 <0.0001
13 GO:0032355 Response to estradiol stimulus 59.99 <0.0001

Table 4.4: Most discriminative functions from Molecular Function based on
FS method
Index Function Short Info chi-square p-value
1 GO:0016563 Transcription activator activity 88.85 <0.0001
2 GO:0004713 Protein tyrosine kinase activity 84.60 <0.0001
3 GO:0003700 Sequence-specific DNA binding

transcription factor activity 83.11 <0.0001
4 GO:0005515 Protein binding 82.88 <0.0001
5 GO:0004716 Receptor signaling protein tyrosine

kinase activity 68.76 <0.0001
6 GO:0043565 Sequence-specific DNA binding 67.69 <0.0001

such as benzene, are linked to cancer risk. Unfortunately, one of the limitations of the
GO terms is their low selectivity; hence the term ’response to drug’ remains rather
vague. Positions 9 and 12, GO:0001658 Branching involved in ureteric bud morpho-
genesis and GO:0001656 Metanephros development, are both linked to growth factors,
and hence in turn to the development of cancers.

Molecular functions returned as significantly enriched among cancer genes, listed
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Table 4.5: Most discriminative function from Cellular Component based on
FS method
Index Function Short Info chi-square p-value
1 GO:0005634 A membrane-bounded organelle of

eukaryotic cells in which
chromosomesare housed and replicated. 99.76 <0.0001

in Table 4.4, frequently refer to transcription factor (position 1) and kinase activity
(positions 2 and 5). On the other hand, the cellular component category was less
revealing, only listing one significantly enriched category related to cancer genes -
the nucleus (where increased transcription takes place, leading to uncontrolled cell
growth). Unfortunately, the GO term employed is too general to draw more detailed
conclusions from this analysis.

Most Relevant Functions in FS + IFC

18 out of 20 functions with the highest χ2, calculated based on the FS+IFC method,
belong to the Biological Process ontology and are listed in Table 4.6. As is apparent
from Table 4.6 (when compared to Table 4.3, which results from the use of the FS
method), very different discriminative GO terms from the Biological Process ontology
are retrieved. Many biological processes retrieved by this method seem to be more
specific, such as GO:0043491 at position 1, naming the protein kinase B signaling
cascade as involved in cancerogenesis (which is known from literature [12]). It is
interesting that now also secondary processes known to be relevant for cancerogene-
sis and, in particular, cancer growth and the formation of metastases, are captured
(which was not the case by purely applying the FS method), such as at position
6 (GO:0001525) for the formation of blood vessels essential for the rapid growth of
cancerogenous tissue, and at position 12 (GO:0030335) with respect to cell migra-
tion, important for the formation of metastases. Also novel in the list are biological
processes related to insulin and the insulin-like growth factor receptor (IGFR), at
positions 2 (GO:0048009) and 5 (GO:0032869). This is supported by literature, as
insulin has been linked to pancreatic cancer development [28], while the literature
regarding insulin-like growth factor receptor is still inconclusive [19, 88]. Still, due to
their apparent role in cell proliferation, it is certainly a possibilty that IGFRs play a
role in the development of at least some cancer subtypes.

As shown in Table 4.6, chi-square values when calculated based on FS+ IFC are
greater than the chi-square values when we use the FS method for the calculation,
illustrating how our additional annotations add information to the feature selection
step; P-values of all the highly ranked functions are < 0.0001 which is very significant.

Overall, from the discussion above, it becomes apparent that the FS + IFC
method, as proposed in this work, is able to retrieve significantly different biologi-
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cal processes, compared to using the FS method; thus it adds to the information
that can be gained from the same set of data. Hence, we suggest it to be a worth-
while method to be employed in the analysis of signaling networks, as shown in this
particular case study.

Table 4.6: Most discriminative functions from Biological Process based on
FS + IFC method
Index Function Short Info chi-square p-value
1 GO:0043491 Protein kinase B signaling cascade 280.70 <0.0001
2 GO:0048009 Insulin-like growth factor receptor

signaling pathway 231.72 <0.0001
3 GO:0008284 Positive regulation of cell proliferation 223.62 <0.0001
4 GO:0034097 Response to cytokine stimulus 223.05 <0.0001
5 GO:0032869 Cellular response to insulin stimulus 218.56 <0.0001
6 GO:0001525 Angiogenesis 213.14 <0.0001
7 GO:0043066 Negative regulation of apoptosis 211.77 <0.0001
8 GO:0001701 In utero embryonic development 208.366 <0.0001
9 GO:0009887 Organ morphogenesis 207.71 <0.0001
10 GO:0042493 Response to drug 205.81 <0.0001
11 GO:0030097 Hemopoiesis 202.45 <0.0001
12 GO:0030335 Positive regulation of cell migration 202.38 <0.0001
13 GO:0051091 Positive regulation of sequence-specific

DNA binding transcription factor activity 194.37 <0.0001
14 GO:0046326 Positive regulation of glucose import 194.13 <0.0001
15 GO:0043627 Response to estrogen stimulus 192.34 <0.0001
16 GO:0044419 Interspecies interaction between organisms 191.29 <0.0001
17 GO:0014070 Response to organic cyclic compound 189.94 <0.0001
18 GO:0045944 Positive regulation of transcription from

RNA polymerase II promoter 189.32 <0.0001

4.4.3 Biological Interpretation of the Most Discriminative Pro-
teins

Our dataset contains 10,282 proteins. The DisToAnova method uses the ANOVA
measure to select the most relevant among these. More detailed information could be
obtained from an ANOVA analysis of the most relevant proteins among the full set of
10,282 proteins. Table 4.7 shows the 10 proteins with the highest ANOVA measure.

Zinc finger protein (ZNF467) is known to be upregulated in a variety of breast
cancers; however usually its close link with BRCA1 has been seen as the reason for its
causal relation with cancers [56]. STATIP1 is involved in histone H3 and H4 acety-
lation and its interactions with STAT3 and JAK1/2 - which are all involved in cell
growth and differentiation processes - have been documented in literature [22]. JUNB
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has been documented as a proto-oncogene and IL22 (along with its subunit IL22RA2)
is involved in Stat3 phosphorylation [15]. FGFR4 (fibroblast growth factor receptor
4) is associated with cancer nearly by definition (and in alignment with fibroblasts
being identified earlier in the context of biological functions). The chemokine ligand
1 receptor, CCL1, has been implicated in cancer before and also it has been sug-
gested as a therapeutic target in this context [45]. Platelet derived growth factor
C (PDGFC) is part of the PDGFR-alpha signalling pathway and the influence of
PDGFR expression on metastatic behaviour has been well documented [126]. STAT1
is involved in cell growth processes [133], hence its appearance in this list is reasonable.
C20ORF185 is an interesting case in that it is annotated as possibly being involved
in recognizing/binding specific classes of odorants or serving as a defence mechanism
by removing pathogenic microorganisms from the mucosa [24]. On the other hand,
its recommended name is the “Long palate, lung and nasal epithelium carcinoma-
associated protein 3 precursor”, rendering its inclusion in the list of proteins most
involved in cancer reasonable.

Table 4.7: Most discriminative proteins based on ANOVA measure
Index Protein Name Official Full Name
1 ZNF467 Zinc finger protein 467
2 STATIP1 Elongator complex protein 2
3 JUNB Transcription factor jun-B
4 IL22RA2 Interleukin-22 receptor subunit alpha-2
5 FGFR4 Fibroblast growth factor receptor 4
6 CCL1 Cyclin associated with protein kinase Kin28p
7 PDGFC Platelet-derived growth factor C
8 IL22 Interleukin 22
9 STAT1 Signal transducer and activator of transcription

1-alpha/beta
10 C20ORF185 Long palate, lung and nasal epithelium

carcinoma-associated protein 3

4.4.4 Comparing Different Contextual Methods
We divided the dataset into a training set containing 90%, and a test set containing the
remaining 10%, of the proteins for the selection of contextual method and tuning. For
the final evaluation we use 10-fold cross validation. Features were selected according
to the above-mentioned χ2 and ANOVA methods; in both cases only the training
set was used to rank features according to relevance. We have varied the number
of features (functions for functional context methods, proteins for structural context
methods) from low to high, in order to investigate the effect of this parameter on
predictive performance.
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With each method, we predict the cancer-relatedness of the nodes in the test set
using our various methods, and evaluate the predictions according to Recall, Precision
and F-measure:

Precision =
tp

tp+ fp
(4.8)

Recall =
tp

tp+ fn
(4.9)

F −measure =
2 ∗ Precision ∗Recall
Precision+Recall

(4.10)

where proteins involved in cancer are considered as the positive class, and tp, fp and
fn denote the number of true positives, false positives, and false negatives, respec-
tively.

Figure 4.1 shows the evaluation metrics for two functional context methods FS
and FS + IFC in different function counts: 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 20, 30,
40, 50, 60, 70, 80, 90, 100, 200, 300, 400, 500 with respect to F-measure, Precision
and Recall. Independent from the function count, the FS + IFC method always
outperforms the FS method with respect to F-measure and this proves our assumption
about the usefulness of considering the whole functional context of proteins (not just
the functions of the protein itself but also those of its neighbors) for predicting the
proteins involved in cancer. The best obtained F-measure with FS is 29% while the
best obtained F-measure for FS + IFC is 37% in one case and 35% in three cases.

These results show that considering the functional annotation of the neighbors
allows for more accurate prediction of which genes are involved in cancer. Since
it was already known that the functional annotation of a protein’s neighbors can
be used to predict the protein’s own functions [111, 99], and that the protein’s own
functions are relevant for its involvement in cancer [29, 66], one might wonder to what
extent our results are simply a consequence of these two facts. We can test this by
enriching proteins in the PPI network with predicted GO annotations (predicted from
the GO annotations of their neighbors), and next applying the FS method. We tested
this by using a Majority Rule method [111] for enriching the GO annotations of the
proteins, in two different ways. In the first approach, we perform function prediction
for each protein p which |FS(p)| = 0 (reasoning that if a protein is not annotated
with any functions, it is likely that its functions are simply not known), while in the
second, less conservative, approach, we extend the function set of each protein p with
|FS(p)| < 10 to a total of ten functions. In the notation employed here, the || operator
returns the size of the function set of protein p, with 10 being the average function
count of proteins in our dataset before applying the Majority Rule method. We
call the enriching approaches “Unclassified” and “Extended”, respectively. Figure 4.2
compares the FS and FS + IFC methods with their “Unclassified” and “Extended”
versions, and we can see that there is no major difference between the original methods
employed, compared to their respective functionally enriched versions. This confirms
that the functions of neighboring proteins directly influence disease-relatedness; the
influence cannot be explained by the relationship between the functions of neighboring
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Figure 4.1: Comparing different Functional Context methods. The FS+IFC method
always outperforms the FS method with respect to F-measure.
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proteins on the one hand, and between a protein’s own functions and involvement in
disease on the other hand.

Figure 4.3 compares three structural context methods disToCancer, disToAnova
and disToCancerAnova in different protein counts: 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 20, 30,
40, 50, 60, 70, 80, 90, 100, 200, 300, 400, 500 with respect to F-measure, Precision
and Recall. (As disToCancer has no natural criterion for selecting a subset of cancer-
related proteins, proteins were selected randomly in this case, to arrive at comparable
counts.) It turns out that, in order to get reasonable F-measure results, selecting
less than 30 proteins is enough in the structural context methods. With respect to
F-measure, methods using ANOVA for selecting the important proteins almost always
outperform the method that selects previously known cancer-related proteins.

In Figure 4.4, we show the result of integrating the functional context method FS+
IFC with any one of the three structural context methods, disToAnova, disToCancer
and disToCancerAnova. We vary the number of analyzed functions from 5 to 30, and
the number of analyzed proteins from 1 to 40. The integration of FS + IFC with
disToAnova slightly outperforms the other two integrated methods. Although it may
seem that applying the ANOVAmethod results in only small numerical improvements,
Figure 4.4 shows that its integration with the functional annotation of the proteins
consistently results in improved results with respect to F-measure values. Compared
to functional and structural context methods, the integrated method gives rise to
more cases (17 out of 52 in (FS + IFC)-DisToCancerAnova, as opposed to 0 out of
52 in FS + IFC) with F-measure over 35% (and up to 39% in one case).

4.4.5 Comparing with Previous Methods

Milenkovic et al. [77] have evaluated their method using a leave-one-out cross valida-
tion and report an F-measure of 24%. They compare this result to that of Aragues
et al. [3], who use information from heterogeneous data sources: (i) Protein Protein
Interaction networks, (ii) differential expression data, (iii) structural and functional
properties of cancer genes; Aragues et al. report an F-measure of 18.15% for their
method. Further, we will compare our results to the method of Furney et al. [29]. As
Furney et al. reported results on another dataset, to obtain more comparable results
we have implemented their method by selecting 100 functions based on the chi-square
value, describing each protein based on those selected functions, and using the Weka
machine learning system to apply Naive-Bayes for predicting the proteins involved in
cancer.

Our method uses as parameters the number of functions and proteins to be se-
lected by the feature selection method. To optimize these parameters, we divided
the human dataset into three parts: 80% for training the model with a particular
parameter setting; 10% for tuning the different parameters (that is, models trained
with particular parameter values are tested on this 10% and the parameter settings
that perform optimally here will be used for the final evaluation), and 10% for evalu-
ating the model; note that this last 10% was not involved in the training in any way.
Table 4.8 shows the optimal parameter settings for each method.
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Figure 4.2: Comparing different Functional Context methods with their enriched func-
tional versions. There is no major difference between the original methods employed,
compared to their respective functionally enriched versions.
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Figure 4.3: Comparing different Structural Context methods. With respect to F-
measure, methods using ANOVA for selecting the important proteins almost always
outperform the method which selects the previously known cancer-related proteins.
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Figure 4.5 compares all the proposed methods with each other using 10-fold cross
validation. The method (FS+IFC)-DisToCancerAnova which considers network con-
textual information outperforms all other proposed methods.

Table 4.8: Tuning result of each method
Method Name Best Feature Count F-measure in Test Set
FS 90 Functions 28
FS + IFC 100 Functions 34
disToAnova 10 Proteins 28
disToCancer 10 Proteins 29
disToCancerAnova 10 Proteins 30
(FS + IFC)-DisToCancer 10 Functions and 4 Proteins 35
(FS + IFC)-DisToAnova 10 Functions and 5 Proteins 37
(FS + IFC)-DisToCancerAnova 10 Functions and 9 Proteins 37

Figure 4.6 compares our best proposed method with previous methods using 10-
fold cross validation. The method (FS+IFC)-DisToCancerAnova which considers
network contextual information outperforms the previous methods (Furney et al. [29],
Aragues et al. [3] and Milenkovic et al. [77]), by 5%, 13% and 8%, respectively, with
respect to F-measure.

4.4.6 Random Feature Selection

We showed that the ANOVA method for selection of proteins and the chi-square
based feature selection work well. A conclusion might be that the feature-selection
methods work, and that it is indeed the case that some functions, or some proteins,
have a higher predictive power than others. To test whether this is really the case,
we compare these feature selection methods with random selection of proteins or
functions. In order to evaluate the Random versions of the proposed methods, we did
the following:

1. We chose K features randomly.

2. We used the selected method M to describe each protein in the test set based
on the randomly selected features. We called the new method: M -Random.

3. We applied the naive Bayes classifier to calculate the F-measure values.

4. We repeated the steps 1 to 3 fifty times, and report the average of the F-measure
values.

We assignK = 100 andK = 10 for the functional and the structural context meth-
ods, respectively. Figure 4.7 compares our proposed methods with their corresponding
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Figure 4.4: Comparing different Integrated methods. Comparing to functional and
structural context methods, the integrated method gives rise to more cases (17 out of
52 in (FS + IFC)-DisToCancerAnova, as opposed to 0 out of 52 in FS + IFC) with
F-measure over 35% (and up to 39% in one case).
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Figure 4.5: Comparison of all the proposed methods with each other. The method
(FS+IFC)-DisToCancerAnova which considers network contextual information out-
performs all other proposed methods.

Figure 4.6: Comparing with previous methods. The method (FS+IFC)-
DisToCancerAnova which considers network contextual information outperforms the
previous methods (Furney et al. [29], Aragues et al. [3] and Milenkovic et al. [77]),
by 5%, 13% and 8%, respectively, with respect to F-measure.
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Random versions. It turns out that the feature selection algorithms outperform ran-
dom selection in all cases, with F-measure improvements from 5% (for disToCancer,
which also selects randomly but only among proteins known to be cancer-related) up
to 26% (for FS).

Figure 4.7: Comparing different proposed methods with their corresponding Random
versions. The feature selection algorithm does not matter very much for the disTo-
Cancer method, with 5% improvement in F-measure over the Random version, but it
matters a lot for the FS method, with 26% improvement in F-measure comparing to
the Random version.

4.4.7 Capacity Identification of New Cancer-Related Proteins
The following steps were performed for predicting new cancer-related proteins:

1. A new training set was built containing all the proteins annotated as being
involved in cancer (positive set) in addition to 500 randomly selected proteins
(negative set).

2. A test set was built containing all the remaining proteins in the network.

3. 100 functional features were selected based on the FS + IFC method.

4. 10 structural features were selected based on the ANOVA method.

5. Train set and test set were described based on the selected features.

6. The naive Bayes classifier was applied for ranking the proteins in the test set.
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7. CiteXplore[68] was used to search for the high-ranked candidate proteins in the
literature.

Table 4.9 lists the highly ranked newly identified cancer-related proteins. Given
that, since the compilation of our dataset, novel literature linking genes to diseases
(such as, in this case, cancer) have been identified, we attempted to find literature
evidence for our novel gene-cancer links. As evident from Table 4.9, we found such
evidence in a surprising number of at least 18 of the 20 highest-ranking genes that
were not annotated in this way in the training dataset.

As can be seen, the majority of genes is now associated with breast cancer (14
out of 20), which is likely due to the fact that genotyping is currently routinely per-
formed in this cancer type due to the different personalized treatment options avail-
able. The three genes with the least current literature information linking them to
cancer are CORO2A (coronin, actin binding protein, 2A), DAZ1 (deleted in azoosper-
mia 1) and CRSP7 (cofactor required for Sp1 transcriptional activation, subunit 7,
70kDa; now MED26, mediator complex subunit 26). However, CORO2A is involved
in cell cycle progression which makes its link to cancer at least plausible. DAZ1 is
involved in spermatogenesis, and it is hypothesized to bind to the 3’UTR of mR-
NAs to regulate their translation. While involvement of this gene in adult cancers
is probably not the case, a link to regulation and cell cycle progression is also given
here. Likewise, CRSP7/MED26 is a cofactor required for transcriptional activation of
RNA polymerase-II dependent genes - hence, while unspecific, the link of the highest
ranked genes with respect to their involvement in cancer gives a consistent link to
transcriptional and, more general, cell cycle regulation events.

Overall, we were able to find literature evidence for most genes predicted to be
involved in cancer, but not annotated in this manner in our training dataset. This
underlines the quickly-evolving knowledge in the molecular biology field, but it also
gives us more confidence that we are prospectively able to identify cancer-related
genes with the approach described in the current work.

4.5 Discussion

Previous work on predicting disease-related proteins based on PPI networks has
mostly focused on the functional information about the protein for which a predic-
tion is made, or proximity of known disease-related genes in the PPI network. Several
methods have been described that take into account more general features related to
the graph structure, with good results. In this article, we introduce two new types
of features, reflecting additional information: (1) the functions of proteins interacting
with the target protein; (2) the relative position of the target protein with respect to
specific other proteins, as measured by shortest-path distance. Our results indicate
that:

1. Functions of proteins interacting with the target protein are informative: they
offer additional information over the functions of the target protein itself. This
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Table 4.9: Capacity Identification of New Cancer-Related Proteins
Index Protein Cancer Types Identified in CiteXplore References
1 ITGAV Breast Cancer [11, 42]
2 CTNND2 Cervical, Prostate, Urinary Bladder [70, 125, 46]
3 CORO2A — —
4 SMAD1 Breast, Colon, Lung, Prostate, Rectal, Renal cell [62, 86, 67]
5 RPS6KB1 Breast, Colon or Rectal ovarian [114, 90, 64]
6 VIL2 Breast and Prostate [93, 110]
7 FST Breast, Gastric, Lung, Prostate, Stomach, Thyroid [85, 10, 108]
8 HSP90AA1 Gastric, Lung [14, 115]
9 PPP2CA Breast, Colon, Lung, Prostate [7, 4, 128]
10 SUMO1 Breast, Lung, Prostate [41, 80, 55]
11 SKP1A Esophageal [84]
12 EIF4EBP1 Breast, Colon, Head, Neck, Ovarian, Prostate [135, 107, 5]
13 DAZ1 — —
14 CRSP7 — —
15 TGFB3 Breast,Colon, Prostate, Pancreatic [112, 34, 63]
16 FHL2 Breast, Colon, Gastrointestinal, Liver, Prostate [40, 82, 131]
17 TLN1 Breast, Prostate [61, 94, 105]
18 GFI1B Breast, Gastric, leukemia, Ovarian [53, 134, 74]
19 IGFBP7 Breast, Cervical, Colorectal, leukemia, Liver,

Lung, Neck, Thyroid carcinogenesis [17, 44, 33]
20 COL4A2 Breast, Gastric, Lung, Pancreatic [113, 8, 43]

is visible both in the expert interpretation of the results and in the predictive
accuracy of the method.

2. A relatively small number of GO functions suffices to obtain maximal predictive
accuracy.

3. Shortest-path distances to selected fixed proteins in the network are relevant,
even more relevant than shortest-path distances to other disease-related pro-
teins;

4. A small number of such fixed proteins (10, in our experiments) is sufficient to
obtain good predictive power;

5. The χ2 and ANOVA measures for selecting relevant functions, respectively pro-
teins, yield interpretable results.

6. A simple and efficient machine learning method (here Naive Bayes) that uses
a combination of functional information about the neighbors and shortest-path
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distance to specific proteins, predicts cancer-related proteins with higher accu-
racy than any previous PPI-based methods.

7. What is particularly remarkable of the current work is that not only our classifi-
cation results improve upon previous methods, but that also our ’false’ positive
predictions could in many cases be verified to be linked to cancer in more recent
literature. Namely, we analyzed a list of 20 newly found cancer-related proteins
that were identified by our method, and we find that virtually all of them (at
least 18 out of 20) could be linked to cancer in scientific publications.

We concluded from this that the proposed features are informative for predicting
cancer-related proteins as they increase the accuracy of predictive models and have a
biological interpretation.

4.6 Acknowledgments
This research is funded by the Dutch Science Foundation (NWO) through VIDI grant
639.022.605. The authors thank Tijana Milenkovic for her cooperation.

78



Chapter 5
Predicting Cancer-Related Proteins using

Interaction-based Features

Based on

Hossein Rahmani, Hendrik Blockeel and Andreas Bender: Interaction-based fea-
ture selection for predicting cancer-related proteins in protein-protein interaction net-
works. In: Proceedings Fifth International Workshop on Machine Learning in System
Biology (2011)

79



CHAPTER 5. Predicting Cancer-Related Proteins using Interaction-based Features

5.1 Introduction

The task of predicting in a protein-protein-interaction (PPI) network which proteins
are involved in certain diseases, such as cancer, has received a significant amount
of attention in the literature [29, 66]. Multiple approaches haven been proposed,
some based on graph algorithms, some on standard machine learning approaches.
Machine learning approaches such as Milenkovic et al.[77], Furney et al. [29], Li
et al. [66], Furney et al. [30] and Kar et al. [52] typically use a feature-based
representation of proteins as input, and their success depends strongly on the relevance
of the selected features. In earlier work it has been shown that the Gene Ontology
(GO) annotations of a protein have high relevance. For instance, Li et al. [66]
found predictive performance to depend only slightly on the chosen machine learning
method, but strongly on the chosen features, and among many features considered,
GO annotations turned out to be particularly important.

In previous work, when a protein p is to be classified as disease-related or not, the
GO annotations used for that prediction are usually those of p itself. In this paper,
we present a new type of GO-based features. These features are based not on the
GO annotation (“function”) of a single protein, but on pairs of functions that occur
on both sides of an edge in the PPI network. We call them interaction-based features.

5.2 Interaction-based feature selection

A PPI network is a graph where nodes are proteins and an edge between two nodes
indicates that those two proteins are known to interact. In our application, proteins
in the training set are also labeled as cancer-related or not (supervised learning).
Additionally, each protein p is annotated with a vector FS(p) that indicates the
functions that p has according to the Gene Ontology. Let F = {f1, . . . , f|F |} be the
set of all functions in GO. FS(p) is then an |F |-dimensional vector with FSi(p) = 1
if protein p has function fi, and FSi(p) = 0 otherwise.

Several authors [29, 66] propose to use a χ2-based feature selection method to
select the most relevant GO terms. Let C and C̄ be the set of proteins that are
cancer-related (C) or not (C̄), and let, for each fi, Pi be the set of proteins annotated
with fi and P̄i the set of proteins not annotated with it. With a = |C∩Pi|, b = |C∩P̄i|,
c = |C̄ ∩ Pi| and d = |C̄ ∩ P̄i|, we have

χ2(fi) =
(ad− bc)2 ∗ (a+ b+ c+ d)
(a+ b)(c+ d)(b+ d)(a+ c)

(5.1)

Selecting individual discriminative functions based on equation 5.1 does not con-
sider the network topology and the way different functions interact with each other
in the network. Recent approach by Rahmani et al. [99] showed that considering
Collaborative Functions: Pairs of functions that frequently interface with each other
in different interacting proteins, improves the prediction of proteins functions. For
the task of predicting cancer-related proteins, it is not impossible that a function fi
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does not correlate itself with cancer-involvement, but when a protein with function
fi interacts with a protein with function fj , this interaction may be an indication of
the former protein being involved in a cancer.

To be able to take into account the information in the interactions, we here define
new features fij . These do not describe nodes, but directed edges between nodes.
Although edges in a PPI network are undirected, we can see them as pairs of directed
edges. A directed edge p → q is considered positive if p is a cancer-related protein,
and negative otherwise. By definition, fij(p→ q) = 1 if FSi(p) = 1 and FSj(q) = 1,
and 0 otherwise. If C is the set of positive edges, C̄ the set of negative edges, and for
each feature fij , Pij is the set of edges for which fij = 1 and P̄ij is the set of edges for
which fij = 0, then the χ2 value of fij can be defined exactly as above (substituting
fij and Pij for fi and Pi in the formulas for a, b, c, d and χ2). Intuitively, an fij with
high χ2-value is relevant for the class of the protein on the i-side.

The fij features describe edges, but we need instead features that describe pro-
teins. Therefore, we define features Fij as follows: Fij(p) =

∑
q fij(p → q) if

FSi(p) = 1, and Fij(p) = −1 otherwise. Note that by introducing −1 as a sepa-
rate value indicating that FSi(p) = 0, each Fij encodes implicitly the corresponding
fi feature.

In this work we compare how well cancer-involvement can be predicted from: (1)
a limited number of fi features, when those features are selected according to their χ2

value as defined above, and (2) the same number of Fij features, when those features
are selected according to the following score, which combines the overall relevance of
fi, fj , and fij :

score(Fij) = χ2(fi) + χ2(fj) + χ2(fij).

In the following we will call the fi individual-based features, and the Fij interaction-
based features.

5.3 Results
We evaluate our methods on the dataset used by Milenkovic et al. [77]. This dataset is
the union of three human PPI datasets: HPRD [91], BIOGRID [116] and the dataset
used by Radivojac et al. [97]. Milenkovic et al. provide details on the construction
of the integrated network; some statistical information is shown in Table 5.1.

We divided the dataset into a training set containing 90%, and a test set containing
the remaining 10%, of the proteins. We used information in the train set to select the
K(= 100, 200, 300, 400, 500) highest scoring individual-based, respectively interaction-
based, features. Then, we described each protein in the test set based on the selected
features and finally, we applied the Naive Bayes classifier for predicting cancer-related
proteins.

Figure 5.1 compares our interaction-based features with the individual-based fea-
tures with respect to the Fmeasure, Precision and Recall metrics. Our proposed
method outperforms the individual-based method with 7.8%, on average, with re-
spect to Fmeasure. This confirms our assumption about the usefulness of considering
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Number of proteins 10,282
Average Degree 9.201
Min Degree 1
Max Degree 272
Number of Cancer Genes 939

Table 5.1: Statistical information of union of three human PPI datasets: HPRD [91],
BIOGRID [116] and Radivojac et al. [97].

network interactions in feature selection. Table 5.2 lists five high-ranked function
pairs; it shows that the functions in these pairs are not necessarily among the highest
ranking functions with respect to their own χ2.

(a) Fmeasure (b) Precision (c) Recall

Figure 5.1: Comparing interaction-based feature selection with protein-based feature
selection with respect to the Fmeasure, Precision and Recall metrics. Interaction-
based feature selection outperforms the protein-based method with 7.8%, on average,
with respect to Fmeasure.

What is interesting about Table 5.2 is that terms from two of the ontologies used,
namely ‘Molecular Function’ as well as ‘Biological Process’, are selected using our
feature selection method. This is the case both for pairs of terms from the same
ontology, as well as for pairs of terms taken from both ontologies. More explicitly,
GO terms 5515 and 3700 relate to ‘protein amino acid binding’ and ‘DNA binding
transcription factor activity’, and are hence related to cellular replication (first entry
in Table 5.2). Subsequent entries have slightly different character though, such as
relating protein binding (GO term 5515) to events such as signal transduction (GO
term 7165), and they are hence alerting to the particular kinds of proteins that are
often involved in cancer, namely kinases (such as EGFR) involved in a large number
of signaling processes in the cell. It is interesting that GO terms 60571, and also 1823
and 1656 are returned by our analysis, the former relating to ‘morphogenesis of an
epithelial fold’, and the latter two to different stages of kidney development. Hence,
some of the terms returned can also be seen as tissue-specific as well as organ-specific,
and in this way a more subtle differentiation of ontology annotations can be achieved
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fi fj Rank(χ2(fi)) Rank(χ2(fj)) Rank(score(fi, fj))
GO-0005515 GO-0003700 5 6 1
GO-0005515 GO-0007165 5 46 2
GO-0060571 GO-0001656 175 17 3
GO-0060571 GO-0001823 175 105 4
GO-0060571 GO-0050768 175 170 5

Table 5.2: Five high-score interactive function pairs. Function members of interactive
pairs are not necessarily among the functions with high chi-score value.

than by using single terms alone.

5.4 Conclusions
Earlier work showed that Gene Ontology annotations of a protein are relevant for
predicting whether it is involved in cancer. In this work we have shown that predic-
tive accuracy can be improved significantly by combining this information with the
information contained in the topology of a PPI network. Although the combination
of GO-based features and features based on network topology has been considered
before, the idea of attributing GO-based features to edges, rather than nodes, is
novel, and is shown here to substantially improve predictive accuracy, and to identify
functional interactions for which the involved functions would not normally be found
relevant by themselves.
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6.1 abstract

Identification of novel proteins likely involved in diseases is an important issue in
the area of computational biology. Protein-Protein Interaction (PPI) networks have
been widely used for the task of predicting proteins involved in diseases. Previous
methods assume to have a set of proteins which are previously known to be involved
in disease (i.e., seed proteins) and then, they try to extend the seed proteins by
predicting new disease-related proteins. While the initial seed proteins of each disease
is incomplete and suffers from ’False Negative’ cases, dependency of previous methods
to the incomplete seed proteins is the main drawback of these methods. In this paper,
we reduce the number of False Negative cases in the initial seed proteins of 20 analyzed
diseases by proposing an informative Human Disease Network (HDN) considering
both functional and structural information in the PPI network. After building a
biologically meaningful HDN, we cluster the HDN nodes based on the connectivity
and then, we augment the seed proteins of each disease based on the cluster it belongs
to. Finally, we predict new disease-related proteins based on augmented seed proteins.
Literature mining of newly predicted proteins proved the usefulness of the proposed
HDN.

6.2 Introduction

In recent years, much effort has been invested in the construction of protein-protein
interaction (PPI) networks [118]. Much can be learned from the analysis of such
networks with respect to the metabolic and signalling processes present in an or-
ganism, and the knowledge gained can also be prospectively employed e.g., for the
task of protein function prediction [78, 98, 18], identification of functional mod-
ules [71], interaction prediction [48, 129], identification of disease candidate genes
[27, 109, 26, 58, 106, 37, 87, 130, 132] and drug targets [104, 81], according to an
analysis of the resulting network [72].

Wu et al. [130] present an excellent overview of multiple methods for detecting
proteins involved in disease or cancer. Among the different methods discussed in [130],
“guilt-by-proximity” methods are well known. Methods classified in this category are
based on the assumption that genes that directly interact, or, more generally, lie close
to each other in the network, are more likely to be involved in the same diseases (as
argued by, e.g., Gandhi et al. [31]). The methods vary based on how they define
proximity: Some methods consider only direct neighbors to be in the proximity (e.g.,
[87, 3]), some quantify proximity of two proteins using the length of the shortest-
path between them, some compute a “Global Distance Measure” that also takes into
account how many paths there are between the two proteins, and how long these are;
an example is the approach by Chen et al. [16], who use a PageRank based model for
this.

The methods discussed by Wu et al. [130] mostly rely on notions of proximity
(to genes known to be disease-related) from the area of graph analysis. An entirely
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different type of approaches are those that rely on feature-based descriptions [132, 77,
29, 66]. There, each individual protein is described by means of a fixed set of features.
Next, using machine learning methods, a model is learned that links some of these
features to disease-relatedness.

In almost all the discussed methods, prediction accuracy depends directly on the
initial disease-related proteins, which we refer to as seed proteins. While the initial
seed proteins of each disease suffers from several ’False Negative’ cases (i.e., disease-
related proteins which are not annotated as being involved in disease), dependency
of previous methods to the incomplete seed proteins is the main drawback of these
methods. In this paper, first, we propose an informative Human Disease Network
(HDN) considering both functional and structural information in the PPI network.
Second, we cluster the HDN nodes based on connectivity. Third, we augment the
seed proteins of each disease based on the cluster it belongs to. Fourth, we predict
new disease-related proteins based on augmented seed proteins. Finally, we analyze
the literature to prove the usefulness of the proposed HDN.

6.3 Methods

6.3.1 Formal Definition

We consider a PPI network as an undirected annotated graph (P,E, λF , λD) where P
is a set of proteins, E ⊆ P ×P is a set of interactions between these proteins, and λF

and λD are so-called annotation functions; for each p, λF and λD denote the additional
information we have about p. In this work, we assume that λF (p) simply lists all the
GO functions that are associated with p; we call it the function set (or function vector)
of p, and denote it FS(p). λD(p) lists all the diseases that protein p is involved in;
we call it the disease list of p and denote it dizList(p). If D = {diz1, diz2, . . . , dizm}
is the list of m analyzed diseases in our paper, then dizListi(p) = 1 if p is involved
in dizi and 0 otherwise. We also define seed proteins SP (dizi) as the set of proteins
involved in disease dizi (dizi ∈ dizList(p)⇔ p ∈ SP (dizi)).

6.3.2 Human Disease Network

We consider a Human Disease Network (HDN) as a directed graphHDN(D,R) where
D is a set of diseases and R ⊆ D ×D is a set of directed relationships between these
diseases. We build our proposed HDN as follows: For each disease di ∈ D:

1. We build testSet as a union of the seed proteins of each disease dk ∈ D where
k 6= i.
testSet =

⋃
dk∈D and k 6=i SP (dk)

2. We consider the remaining proteins in P as trainSet. We assume the seed
proteins SP (di) as positive cases and the remaining proteins in the trainSet as
negative cases.
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3. We choose a prediction method M , we train M with trainSet and then, we use
methodM to calculate the prediction-value PV (p) for each protein p ∈ testSet.
M will return high PV values for more relevant disease-related proteins.

4. We repeat step 3 , 10 times and we calculate the average prediction-value of
each protein p ∈ testSet (APV(p)).

5. For each disease dj ∈ D(j 6= i), we add a directed edge di → dj in HDN based
on Formula 6.1.

weight(di → dj) =

∑
∀p∈SP (dj)

APV (p)

|SP (dj)|
(6.1)

In Formula 6.1, the || operator returns the number of seed proteins of disease
dj .

The resulting HDN is the directed fully-connected network in which each node
is a disease and each weighted edge shows a relationship between two diseases. In
order to focus on the most important relationships in HDN, we prune the network by
keeping only the highest-ranked edges.

Although our proposed approach for building HDN is very general and any predic-
tion method M could be used in step 3 of building HDN, the quality of the resulted
HDN still depends on the prediction methodM . We next discuss some recommended
prediction methods.

6.3.3 Recommended Prediction Methods
In this section, we discuss about three categories of methods used for predicting
proteins involved in diseases. Structural methods predict proteins involved in diseases
based on the topological location of the proteins in the PPI network while functional
methods use the functional annotation of the proteins for the prediction. Hybrid
methods take both structural and functional information into account.

Structural Category: Random Walk based Method (ST-RW)

Berger et al. [6] assume that disease-related proteins fall closer on average to the seed
proteins than they do on average to the rest of the network. They calculate the score
of each protein pj in the network based on Formula 6.2 and then, select high-scoring
proteins as disease-related proteins.

scores(pj) =

P
i∈C′ Tij

|C′| −
P

i∈C Tij

|C|P
i Tij

|C|+|C′|

(6.2)

In Formula 6.2, Tij is the average number of steps a random walker takes to walk
from a specified node i to another specified node j, C is the set of seed proteins and
C ′ is the set of all other proteins in the network. In the rest of this paper, we refer
to this method as ST-RW.
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Structural Category: ANOVA based Method (ST-Anova)

Rahmani et al. [98] proposed a relevance measure for proteins that is inspired by
statistical ANOVA (analysis of variance), and showed that shortest-path distance to a
relatively small number of proteins (selected according to the ANOVA-based measure)
is informative for the task of function prediction in the PPI network. Since the
ANOVA method works well for function prediction, it is natural to check whether it
also gives good results for the task of predicting disease-related proteins. We therefore
propose the use of similar features for predicting proteins involved in disease.

The ANOVA-inspired selection measure (briefly, ANOVA) is defined as follows.
Let P+ be the set of proteins labeled as being involved in disease diz, and P− the set
of proteins not labeled as such. For each protein q, we introduce a feature dq; dq(p)
denotes the shortest-path distance between p and q (viewed here as a feature of p).
We consider for each q the mean and variance of dq(p), taken over all diz-related (m+

q

and var+q respectively) and non-diz-related p (m−q and var−q respectively).

m+
q =

∑
p∈P+ dq(p)
|P+|

(6.3)

m−q =

∑
p∈P− dq(p)
|P−|

(6.4)

var+q =

∑
p∈P+(dq(p)−m+

q )2

|P+| − 1
(6.5)

var−q =

∑
p∈P−(dq(p)−m−q )2

|P−| − 1
(6.6)

Seeing P+ and P− as two groups of proteins, the following formula compares the
variance between groups to the variance within groups (as it is used for relative
ranking only, constant factors are dropped):

Aq =
(m+

q −m−q )2

var+q + var−q
(6.7)

A high Aq means that dq varies little within groups and/or much between groups,
which indicates that dq has high predictive power for the group. Features dq can
be ranked according to Aq, and the top-k features selected as actual features to be
included in the description of all proteins. In the end, we apply the naive Bayes
classifier to the proteins descriptions for predicting diz-related proteins. In the rest
of this paper, we refer to this method as ST-Anova.

Functional Category: Individual based Method (Func-Indiv)

In this method, first, we use a χ2-based feature selection method to select the most
relevant individual functions. Let D and D̄ be the set of proteins that are disease-
related (D) or not (D̄), and let, for each function fi, Pi be the set of proteins annotated
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Table 6.1: List of the 4 different hybrid methods considering structural and functional
information in the network.

Structural Method Functional Method Hybrid Method
ST-RW Func-Indiv RW-Indiv
ST-RW Func-Collab RW-Collab

ST-Anova Func-Indiv Anova-Indiv
ST-Anova Func-Collab Anova-collab

with fi and P̄i the set of proteins not annotated with it. With a = |D∩Pi|, b = |D∩P̄i|,
c = |D̄ ∩ Pi| and d = |D̄ ∩ P̄i|, we have

χ2(fi) =
(ad− bc)2 ∗ (a+ b+ c+ d)
(a+ b)(c+ d)(b+ d)(a+ c)

(6.8)

We calculate the chi-square of each individual function fi in the network. Then, we
describe each protein pj in the network based on the high-scored individual functions.
In the end, we apply the naive Bayes classifier for predicting disease-related proteins.
In the rest of this paper, we refer to this method as Func-Indiv.

Functional Category: Collaboration based Method (Func-Collab)

Selecting individual discriminative functions based on χ2(fi) does not consider the
network topology and the way different functions interact with each other in the net-
work. Rahmani et al. [100] showed that for the task of predicting cancer-related pro-
teins, it is possible that a function fi does not correlate itself with cancer-involvement,
but interaction of the same function with some function fj does correlate with the
former protein being involved in a cancer. Rahmani et al. [100] proposed a new way
of calculating the χ2 of the function pairs in the PPI network. They select high-
ranked collaborative function pairs and then, they describe the proteins based on the
high-ranked function pairs. In the end, they applied the naive Bayes classifier for
predicting the proteins involved in cancer. In the rest of this paper, we refer to this
method as Func-Collab.

Hybrid Category: Integrating Functional and Structural Information

Structural-based and functional-based methods can be combined into hybrid methods
as shown in Table 6.1. The hybrid method is calculated as follows:

scoreh(p) = norm(scores(p)) + norm(scoref (p)) (6.9)

In Formula 6.9, scores(p) and scoref (p) show disease-relatedness score of p us-
ing Structural (ST-RW and ST-Anova) and Functional (Func-Indiv and Func-Collab)
methods, respectively. In order to avoid a bias toward either of these categories,
we use Formula 6.10 to normalize the disease-relatedness scores. In Formula 6.10,
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min(x) and max(x) return minimum and maximum values taken over all values of x,
respectively.

norm(xi) =
xi −min(x)

max(x)−min(x)
(6.10)

6.4 Empirical Results

6.4.1 Dataset

We applied our method for building HDN to the PPI network used by Milenkovic
et al. [77]. This dataset is the union of three human PPI datasets: HPRD [91],
BIOGRID [116] and the dataset used by Radivojac et al. [97] and contains 47, 303
physical interactions among 10, 282 proteins. When we say “union”, we mean that
the new network contains all the nodes and edges (proteins and interactions) found
in either of these networks. The aim of merging these three datasets was to obtain as
complete a human PPI network as possible, i.e., a network that covers with its edges
as many proteins in the human proteome as possible. Milenkovic et al. [77] provide
details on the construction of the integrated network.

Table 6.2 shows the list of 20 different diseases analyzed in this paper in addition
to the number of proteins involved in each disease (seed count).

6.4.2 Comparing Recommended Prediction Methods

In this section, we use the following leave-one-out cross validation to compare the
different prediction methods discussed in section 6.3.3:

For each disease di ∈ D:

1. We select 99 proteins randomly from the PPI network (randSet).

2. For each seed proteins pi ∈ SP (di)

(a) We build the trainSet by excluding the {pi ∪ randSet}.
(b) We apply different prediction methods M to rank pi relative to the 99

randomly selected proteins (rank(pi)). M should return small rank values
for more relevant disease-related proteins.

3. We repeat steps 1 to 2b, 10 times and we calculate the average rank of each
pi ∈ SP (di) over different iterations (avg(rank(pi))).

Figure 6.1 compares the discussed prediction methods for the 20 different diseases
shown in Table 6.2 with respect to overall rank of seed proteins among 99 randomly
selected proteins (Formula 6.11). RW-Indiv achieves the best overall performance,
compared to the other methods, and is therefore a good candidate method for building
HDN.
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Table 6.2: List of the 20 different diseases analyzed in this paper.
Disease ID Disease Name Seed Count

D-1 Alzheimer 7
D-2 Amyotrophic 4
D-3 Anemia 36
D-4 Breast Cancer 21
D-5 Cataract 14
D-6 Charcot-marie-tooth 11
D-7 Colorectal-cancer 20
D-8 Deafness 28
D-9 Diabets 23
D-10 Dystonia 5
D-11 Ehlers-danlos 7
D-12 Emolytic-anemia 11
D-13 Epilepsy 11
D-14 Long QT Syndrome 13
D-15 Lymphoma 27
D-16 Mental-retardation 19
D-17 Parkinson 8
D-18 Usher-syndrome 5
D-19 Xeroderma 10
D-20 Zellweger 8

overallRank(di) =

∑
pi∈SP (di)

avg(rank(pi))

|SP (di)|
(6.11)

For each discussed method M , Table 6.3 shows the set of diseases for which M
produces the best result. It is clear that Func-Indiv and RW-Indiv are overall the
best performing methods.

Figure 6.2 compares the three best methods, ST-RW, Func-Indiv and RW-Indiv, to
each other for each disease. The figure shows that, for those diseases where Func-Indiv
scores best (e.g., D-6, D-11 and D-19), it is only slightly better than the second-best
method, whereas in those cases where it is not best, the difference with the best
method can be large (e.g., D-3, D-7, D-15, D-16). RW-Indiv, on the other hand,
never differs much with the best method, making it it the most stable method for
predicting disease-related proteins in PPI networks.

Figure 6.3 compares all methods on six different diseases where neither Func-Indiv
nor RW-Indiv achieves the best overall performance. Although RW-Indiv is not the
best method for any of these, Figure 6.3 shows that on average it ranks second, with
a very small difference compared to the best method.
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Figure 6.1: Average rank of seed proteins in 20 different diseases shown in Table 6.2.
RW-Indiv achieves the best overall performance comparing to the other methods and
is therefore a good candidate method for building HDN.

Table 6.3: Set of diseases in which each method produces the best result.
Method M Set of diseases which M

produces the best results Count
ST-RW D15, D16 2

ST-Anova D7 1
Func-Indiv D2, D5, D6, D8, D11, D13, D19 7
Func-Collab D18 1
RW-Indiv D1, D3, D9, D10, D12, D14, D20 7
RW-Collab – 0
Anova-Indiv D4, D17 2
Anova-Collab – 0

6.4.3 Informative Human Disease Network

We choose the RW-Indiv prediction method to build our proposed HDN for 20 different
diseases shown in Table 6.2. There are 380(20 × 19) possible edges in the original
HDN. We prune HDN by sorting the edges based on their weight descendingly and
then, keeping the 38 (10% of original HDN) highest-weighted edges. Figure 6.4 shows
the pruned HDN. For each edge (di)

rank−−−→ (dj), Figure 6.4 shows the rank of the
relationship between two diseases di and dj among all the 380 disease pairs. The
highest-ranking found relationship is (deafness) 1−→ (usher syndrome). Analyzing
the literature, we found biological evidence for most of the relationships shown in
Figure 6.4.

Goh et al. [38] propose a simple method for building undirected Human Disease
Network. They connect two diseases di and dj in the network if there is at least one
gene that implicated in both. We applied the Goh et al. [38] to our disease dataset and
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Figure 6.2: Comparing ST-RW, Func-Indiv and RW-Indiv methods with each other
with respect to average rank of seed proteins in 20 different diseases shown in table
6.2.

Figure 6.3: Comparing different prediction methods in 6 different diseases in which
neither Func-Indiv nor RW-Indiv achieves the best overall performance. According
to the average rank column , RW-Indiv is the second best method for these diseases
with a very small difference with the best method.

the resulted HDN is shown on Figure 6.5. For each edge (di)↔ (dj), Figure 6.5 shows
the number of proteins involved in both diseases di and dj (|SP (di) ∩ SP (dj)|). The
best found relationship is (anemia)↔ (emolytic anemia). Comparing our proposed
HDN (Figure 6.4) with the disease network discussed by Goh et al. [38] (Figure 6.5),
we observe that our HDN is more informative than the network proposed by Goh et
al. [38].
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Figure 6.4: Pruned Human Disease Network by keeping only 38 (10% of original
HDN) high-ranked relationships among different diseases. The best found relationship
is (deafness) 1−→ (usher syndrome).
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Figure 6.5: Human Disease Network based on the common proteins (Proposed by
Goh et al. [38]). Edge’s weight shows the number of common proteins between two
related diseases.

6.4.4 Biological Interpretation of the Pruned HDN

We will now briefly discuss the biological significance of the observed findings. The
highest ranked connection (1.) between deafness and Usher’s Syndrome is appar-
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ent, given the latter is an inherited form of deafness. The link between Deafness
and Ehlers-Danlos syndrome however may be attributed also to misdiagnosis of joint
laxity, given that the combination of this observation with deafness is more likely
to be correctly classified as Stickler syndrome [65]. Epilepsy and Dystonia are both
characterized by seizures, and given the proximity of both terms in the Figure also a
mechanistic connection between both disorders can be elucidated. Interesting is the
relationship of Long QT Syndrome (LQTS) to both Dystonia and Epilepsy, which
hints at the importance of ion channels being important in all of those cases. On
the other hand, Anyotrophic Lateral Sclerosis (ALS) is more related to Parkinson’s
disease (but neither epilepsy nor dystonia), hinting at fundamentally different mecha-
nisms behind those, on the surface similar, disorders characterized by seizures. Apart
from this seizure-cluster, also various cancer variations are found to be closely related,
namely Xeroderma Pigmentosum (leading to sensitivity to UV light), breast cancer,
lymphomas and colorectal cancer. What is interesting is the close link of ALS with
the cluster of cancers, since indeed it is assumed that ALS, as a motor neuron disease,
may represent a particular case of paraneoplastic encephalomyelitis [122].

6.4.5 Predicting Disease-Related Proteins using the Pruned
HDN

In the context of involvement in disease, one main drawback of previous methods is
their dependency on a list of seed proteins which is likely incomplete. In this section,
we use our proposed HDN for augmenting the seed proteins of different diseases as
follows: First, we cluster the pruned HDN into n clusters C1 . . . Cn based on the
network connectivity. Second, we augment the seed proteins of each disease member
di of cluster Cj by unioning the seed proteins of all the disease members of cluster
Cj (di ∈ Cj ⇒ Aug(SP (di)) = ∪dk∈Cj

SP (dk)). Aug(SP (di)) is the augmented list
of seed proteins of disease di. Third, we use a hybrid prediction method RW-Indiv
for predicting new proteins involved in the disease. Table 6.4, Table 6.5, Table 6.6
and Table 6.7 show the four clusters extracted from the pruned HDN shown in Figure
6.4 in addition to the 10 highest-ranked proteins predicted for each cluster. The first
cluster, covering Alzheimer and Ehler-Danlos syndrome, covers both known and po-
tential novel protein targets to treat those diseases. In case of Alzheimer’s, BACE2,
HSD17B10 and TM2D1 have been implicated in literature before, while COL5A3,
which encodes one of the fibrillar collagens, has been established to be involved in
Ehler-Danlos syndrome. On the other hand, genes (and proteins) not explicitly asso-
ciated with those diseases are TGBF2, THBS1 and SPON1, all of which are known to
be involved in cell-to-cell interactions, cell-to-matrix interactions, and cell adhesion,
respectively. In particular SPON1 can readily be understood to be of importance,
given its involvement of attachment of neuron cells and neurite outgrowth.

Similar results covering both established and novel genes are observed for the
second cluster, with LQTS, Epilepsy and Dystonia. Dopamine levels and epilepsy
have been linked for a long time (DRD1, DRD3 and DRD4; [117] Dystonia) and they
are of practical relevance for treatment. The KCNQ4 ion channel on the other hand
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Table 6.4: 10 highest-ranked proteins predicted for cluster 1 = {Alzheimer, ehler-
danlos}.

Index Protein Symbol Full Protein Name
1 COL5A3 Collagen, type V, alpha 3
2 THBS1 Thrombospondin 1
3 TGFB2 Transforming growth factor, beta 2
4 COL5A2 Collagen, type V, alpha 2
5 PDGFA Platelet-derived growth factor alpha polypeptide
6 SPON1 Spondin 1, extracellular matrix protein
7 HSD17B10 Hydroxysteroid (17-beta) dehydrogenase 10
8 HADH2 Hydroxysteroid (17-beta) dehydrogenase 10
9 BACE2 Beta-site APP-cleaving enzyme 2
10 TM2D1 TM2 domain containing 1

has been previously linked with Long QT Syndrom (LQTS). What is interesting, with
potential practial implications, is the importance of ALG10 in this cluster, which gates
rat ether-a-go-go (the human homolog of the hERG channel involved in LQTS) and
which might hence also play an important role in human. No explicit involvement of
the EPM2AIP1 gene, encoding laforin, has been described in literature yet; however,
our analysis makes a rather strong disease implication for the three diseases present
in this cluster.

The third cluster of neoplastic diseases, covering Xeroderma pigmentosum, breast
cancer, lymphoma and colorectal cancer gives relatively little surprises, with agree-
ment on MSH3 and MSH6 which are both involved in DNA repair, on the APC
tumor suppressor protein, and the RELA oncogene (which bings to the NF kappa b
transcription factor with known involvement in cancerogenesis).

The fourth and final disease cluster, of Zellweger syndrome, ALS, and Usher’s
Syndrome, involves the myosins MYO6, MYO3A and MYO15A which are all known
to be involved either in hearing loss or, in the latter case, the actin organization in
the hair cells of the cochlea. What is apparent is the link of this set of disorders
to the peroxisome, which has been established for this disease cluster before (the
involvement of PEX7 and PEX12 which are involved in the assembly of peroxisomes is
characteristic, but also ABCD1 is involved in fatty acid transport into the peroxisome,
and PXMP3 is involved in its biogenesis). The potentially most surprising gene
located in this disease cluster is SIRT3, which is known to be involved in epigenetic
silencing and which has been characterized as a potential antineoplastic target - given
its prominent role in this analysis, it might hence also play a role for drug treatments
of this set of diseases in the future.
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Table 6.5: 10 highest-ranked proteins predicted for cluster 2 = {LQTS, Epilepsy,
Dystonia}.

Index Protein Symbol Full protein Name
1 DRD4 Dopamine receptor D4
2 DRD3 Dopamine receptor D3
3 DRD1 Dopamine receptor D1
4 ALG10B Asparagine-linked glycosylation 10,

alpha-1,2-glucosyltransferase homolog B (yeast)
5 KCR1 A membrane Protein That Facilitates

Functional Expression of Non-inactivating K+
Currents Associates with Rat EAG
Voltage-dependent K+Channels

6 EPM2AIP1 EPM2A (laforin) interacting protein 1
7 KCNQ4 Potassium voltage-gated channel,

KQT-like subfamily, member 4
8 TOR1B Torsin family 1, member B (torsin B)
9 HSPC163 –
10 GCHFR GTP cyclohydrolase I feedback regulator

Table 6.6: 10 highest-ranked proteins predicted for cluster 3 = {xeroderma-
pigmentosum, breast-cancer-leon, lymphoma, colorectal-cancer}.

Index Protein Symbol Protein Full Name
1 MSH6 MutS homolog 6 (E. coli)
2 MSH3 MutS homolog 3 (E. coli)
3 APC Adenomatous polyposis coli
4 RELA V-rel reticuloendotheliosis viral oncogene

homolog A (avian)
5 TGFBR1 Ransforming growth factor, beta receptor 1
6 PTK2B PTK2B protein tyrosine kinase 2 beta
7 HIPK2 Homeodomain interacting protein kinase 2
8 RPS6KB1 Ribosomal protein S6 kinase, 70kDa, polypeptide 1
9 TGFB1 Transforming growth factor, beta 1
10 ERBB2 V-erb-b2 erythroblastic leukemia viral oncogene

homolog 2, neuro/glioblastoma derived oncogene
homolog (avian)

6.4.6 Case Study: Long QT Syndrome

In this section, we examine Long QT Syndrome (LQTS) in more details. According
to [120], LQTS is a disorder of the heart’s electrical activity which can cause sudden,
uncontrollable, dangerous arrhythmias in response to exercise or stress. Table 6.8
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Table 6.7: 10 highest-ranked proteins predicted for cluster 4 = {zellweger-syndrome,
amyotrophic-lateral-slecrosis, usher-syndrome}.

Index Protein Symbol Protein Full Name
1 MYO15A Myosin XVA
2 MYO3A Myosin IIIA
3 MYO6 Myosin VI
4 DDO D-aspartate oxidase
5 PEX12 Peroxisomal biogenesis factor 12
6 PEX7 Peroxisomal biogenesis factor 7
7 PXMP3 Peroxisomal membrane protein 3
8 SIRT3 Sirtuin 3
9 AGXT Alanine-glyoxylate aminotransferase
10 ABCD1 ATP-bindende cassette, sub-familie D (ALD), lid 1

Table 6.8: Proteins associated with the Long QT Syndrome. The data is taken from
Berger et. al.[6].
Index Protein sybmbol Full Protein name
1 KCNQ1 Potassium voltage-gated channel, KQT-like subfamily,

member 1
2 KCNH2 Potassium voltage-gated channel, subfamily

H (eag-related), member 2
3 SCN5A Sodium channel, voltage-gated, type V, alpha subunit
4 ANK2 Ankyrin 2, neurona l
5 KCNE1 Potassium voltage-gated channel, Isk-related family,

member 1
6 KCNE2 Potassium voltage-gated channel, Isk-related family,

member 2
7 KCNJ2 Potassium inwardly-rectifying channel, subfamily J,

member 2
8 CACNA1C Calcium channel, voltage-dependent, L type, alpha

1C subunit
9 CAV3 Caveolin 3
10 SCN4B Sodium channel, voltage-gated, type IV, beta
11 AKAP9 A kinase (PRKA) anchor protein (yotiao) 9
12 SNTA1 Syntrophin, alpha 1
13 ALG10 Asparagine-linked glycosylation 10 homolog

(yeast, alpha-1,2-glucosyltransferase)

shows the set of proteins involved in LQTS.
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Table 6.9: 10 most discriminative functions according to χ2(fi) (Formula 6.8).
Index Function Short Description
1 GO:0008016 Regulation of heart contraction
2 GO:0060307 Regulation of ventricular cardiomyocyte

membrane repolarization
3 GO:0060299 Regulation of heart contraction
4 GO:0002095 Caveolar macromolecular signaling complex
5 GO:0014819 Regulation of skeletal muscle contraction
6 GO:0031579 Membrane raft organization
7 GO:0033292 T-tubule organization
8 GO:0005251 Delayed rectifier potassium channel activity
9 GO:0005244 Voltage-gated ion channel activity
10 GO:0008015 Blood circulation

Most Relevant Features for Long QT Syndrome

The number of different functions occurring in our human dataset is 9833; this is also
the dimensionality of the Func-Indiv method if no dimensionality reduction is used.
As we discussed in section 6.3.3, we can use a χ2-based feature selection methods to
reduce this number; at the same time, this techniques rank functions according to
how relevant they are for prediction of disease relatedness.

Table 6.9 shows the ten most discriminant individual functions obtained. It can
be seen that the top three GO annotations are explicitly related to cardiac action
potential (regulation of heart contraction, regulation of ventricular cardiomyocyte
membrane repolarization and negative regulation of sarcomere organization). Posi-
tions 4 and 5 are concerning caveolar signaling (which is also very prominent in the
heart) and regulation of skeletal muscle contraction, alluding to the fact that muscle
contraction in the skeleton and in the heart is goverened by related processes. Mem-
brane rafts (as well as caveolae) are important for cardiac ion channel function as
has been found before, [73] which is also correctly identified in Table 6.9. T-tubule
organization, while not immediately apparent, has been linked to a ’new paradigm’
for human arrhythmias recently [2]. It is interesting that explicit potassium and ion
channel activity are appearing only low in this list, along with the broad term of blood
circulation. Hence, overall it can be said that the most discriminative functions are
overall meaningful, with specific functions appearing at the top, biologically derived
functions (raft organization, T-tubule organization) in the middle, and general terms
at the bottom of the terms derived from the analysis.

Our dataset contains 10,282 proteins. The Anova based method uses the ANOVA
measure to select the most relevant among these. More detailed information could be
obtained from an ANOVA analysis of the most relevant proteins among the full set
of 10,282 proteins. Table 6.10 now shows the ten proteins with the highest ANOVA
measure obtained using our analysis. Interestingly, no ion channel has been most
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Table 6.10: 10 most discriminative proteins according to Anova (Formula 6.7).
Index Protein Short Description
1 NDUFS6 NADH dehydrogenase [ubiquinone] iron-sulfur protein 6,

mitochondrial
2 KCNH1 Potassium voltage-gated channel subfamily H member 1
3 KCNH5 Potassium voltage-gated channel, subfamily H (eag-related),

member 5
4 KCNF1 Potassium voltage-gated channel subfamily F member 1
5 AKAP6 A-kinase anchor protein 6
6 ALG10B Asparagine-linked glycosylation 10, alpha-1,2-glucosyltransferase

homolog B
7 KCR1 A membrane Protein That Facilitates Functional Expression of

Non-inactivating K+ Currents Associates with Rat EAG
Voltage-dependent K+Channels

8 KCNE1 Potassium voltage-gated channel subfamily E member 1
9 KCNH2 potassium voltage-gated channel, subfamily H (eag-related),

member 2
10 KCNE2 Potassium voltage-gated channel subfamily E member 2

signficiant, but the NADH dehydrogenase NDUFS6. It has been found that HDUSF6
knockouts cause mitochondrial complex I deficieny [54], causing various cardiac prob-
lems such as reduced systolic function and cardiac output. On the one hand, this
might relate to a functional relationship between diseases; on the other hand it might
indicate imperfect diagnosis, hence confusing different underlying disease biology. The
six Potassium channels listed can be understood to be involved in direct polarization
and depolarization of the cardiac action potential; however the three remaining pro-
teins, namely AKAP6, ALG10B and KCR1 deserve particular attention here. AKAP6
(also called mAKAP) anchors Protein Kinase A to RYR2 which is able to generate
Ca2+ ’sparks’ due to simultaneous activation within a certain neighborhood radius
[124], and hence importance to the cardiac action potential and deviations thereof.
ALG10B (also known as KCR1) is interestingly thought to be able to reduce KCNH2
sensitivity to proarrhythmic drug blockade which may be due to glycosylation of this
potasssium channel [60, 92], hence our method was able to not only identify protein
directly involved in causing LQTS, but also modifer proteins such as AKAP6 and
ALG10B.

Predicting Disease-Related Proteins using Individual method RW-Indiv

The following steps were performed for predicting new LQTS-related proteins:

1. A new trainSet was built containing all the proteins annotated as being involved
in LQTS (positive set) in addition to 100 randomly selected proteins (negative
set).
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2. A testSet was built containing all the remaining proteins in the network.

3. The RW-indiv method was used to rank the proteins in the testset.

Table 6.11 lists the highest ranked newly identified LQTS-related genes. In agree-
ment with expections, many of the genes identified are (as hERG itself) voltage-
gated Potassium channels; however also Sodium channels (SNC4A), Calcium channels
(CACNB3 and CACNA1A) and solute carriers (SLC8A1) appear in the list. This is
in agreement with the known proteins involved in the regulation of cardiac action
potential, which are known to involve all three types of ions. KCNJ8 seems to be
involved in cardiovascular sudden death at least in mouse models [51], indicating that
while focusing on LQTS is of high practical relevance in today’s drug development
environment, one can in turn also assume that other ion channels involved in drug
adverse reactions are currently not receiving sufficient attention. SLC8A1, as a sodi-
um/calcium exchanger, is known to be involved in regulating action potential as well
[1], though it is not easy to find a specific link to the QT interval prolongation in
this case. SCN4A mutations have bene found to be insignificant under standard con-
ditions, but become relevant in patients treated with LQ-inducing drugs [89]. This
finding is interesting since it appears also synergistic adverse relations between genes
and LQTS syndrome can be identified using our network approach. One of the potas-
sium channels newly identified to be involved in cardiac action potential regulation
(and, hence, with potential LQTS liability) is KCJN12 [49], which is indeed thought
to be invovled in providing the cardiac inward rectifier current (IK1). A similar obser-
vation can be made regarding KCNA1, where it is thought that a brain-driven cardiac
dysfunction can be made responsible for sudden death syndrome in epilespy patients
[35]. Mutations in CACNA1 are classified as ’LQTS8’ and, while rare, have been
shown to be linked to LQTS [75]. Hence, overall we can find associations between
the genes identified here and LQTS in many cases - and, interestingly, often they
are dependent on the particular genetic or drug treatment conditions of the patients
(such as in case of SCN4A and KCNA1).

6.5 Compare individual and network based predic-
tion for LQTS

Considerable differences are apparent from the proteins included in the cluster in-
cluding LQTS along with Epilespy and Dystonia (Table 6.5), and the prediction of
LQTS-related proteins (Table 6.11). The receptors identified in Table 6.5 are on the
one hand G-Protein Coupled Receptors (GPCRs) such as the Dopamine D1, D3 and
D4 receptor subtypes identified with the highest rank in the disease cluster. The only
ion channel selected is KCNQ4, which has been linked to deafness [21]; however, only
related potassium channels appear to have been linked to LQTS until this stage. On
the other hand, KCR1 (ALG10B), which is though to modulate sensititvity to drugs
causing LQTS, also appears in this list (as well as in Table 6.10, in the list of most
significant proteins according to ANOVA-based selection). On the other hand, Table
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Table 6.11: Newly identified LQTS-related proteins by applying RW-Indiv method to
the original seed proteins.
index Gene-Name Short Description
1 KCNH1 Potassium voltage-gated channel, subfamily H (eag-related),

member 1
2 KCNH5 Potassium voltage-gated channel, subfamily H (eag-related),

member 5
3 KCNJ8 Potassium inwardly-rectifying channel, subfamily J,

member 8
4 SLC8A1 Solute carrier family 8 (sodium/calcium exchanger),

member 1
5 SCN4A Sodium channel, voltage-gated, type IV, alpha subunit
6 KCNJ4 Potassium inwardly-rectifying channel, subfamily J,

member 4
7 CACNB3 Calcium channel, voltage-dependent, beta 3 subunit
8 KCNJ12 Potassium inwardly-rectifying channel, subfamily J,

member 12
9 KCNA1 potassium voltage-gated channel, shaker-related subfamily,

member 1 (episodic ataxia with myokymia)
10 CACNA1A Calcium channel, voltage-dependent, P/Q type,

alpha 1A subunit

6.11 is very much dominated by the different subtypes of voltage-gated potassium
channels, which occupy 6 out of the 10 positions when RW-indiv is applied to the
selection of novel proteins, with the remaining genes selected being ion channels or
exchangers of sodium and/or calcium ions. Hence, it can be seen that both methods
arrive at a very different selection of genes involved in the disease cluster, as well as
the identification of novel disease genes using the RW-Indiv method. Combined with
the fact that very disease relevant genes were identified in Table 6.11 (as discussed
above), we believe that this illustrates the performance of the method implemented
in this work.

6.6 Conclusions
Prediction accuracy of almost all the previous work on predicting disease-related
proteins depends directly on the initial disease-related proteins (seed proteins). While
the initial seed proteins of each disease suffers from several ’False Negative’ cases,
dependency of previous methods on the incomplete seed proteins is the main drawback
of these methods.

In this article, we reduced the number of the False Negative cases in the initial
seed proteins by proposing informative Human Disease Network (HDN). We ana-
lyzed different Structural and Functional prediction methods and we concluded that
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a hybrid method which considers both Structural and Functional information in the
PPI network is the best method for building the HDN. We built a HDN based on
20 diseases and we showed that resulting HDN is biologically meaningful. Then, we
clustered HDN and we augmented the seed proteins of diseases based on the cluster
they belong to. Finally, we predicted disease-related proteins based on the augmented
version of seed proteins. Literature mining of the newly found disease-related pro-
teins proved the usefulness of using our proposed HDN for predicting disease-related
proteins.
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7.1 Introduction

In the previous chapters of this thesis, we presented several approaches for advancing
the state-of-the-art for a number of the tasks in the Protein-Protein Interaction (PPI)
networks. In this final chapter, we discuss our main contributions and possible future
trends for each open problem of PPI networks.

7.2 Shortest-Path Distance and Anova-based Feature
Selection

We modeled the PPI network as a graph G(V,E), where V is a set of nodes (proteins
in our context) and E is a set of edges (interactions in our context) connecting pairs
of nodes. Shortest-path distance is a simple and still powerful feature when the input
data is modeled as a graph. In the context of PPI networks, this type of feature has
been used for network clustering before. In chapters 2 and 4, we proposed to use this
type of feature for predicting annotation information of proteins in the PPI networks.
A general predicting procedure was as follows: First, we described the proteins based
on their shortest-path distance to specific, automatically selected, other proteins in
the PPI network. Second, we apply machine learning for the prediction task.

Noisy nature of PPI networks and high-dimensional description vectors in large
graphs are potential problems of this general predicting procedure. We proposed
to reduce the noise and dimensionality in the description vectors by only retaining
the shortest-path distance to a few “important” nodes. We defined node i as an
“important” node, if the shortest-path distance of some node v to i is likely to be
relevant for v’s classification. We applied the Anova measure to select the important
proteins in the PPI networks. We used shortest-path distance as a predictive feature
and the Anova measure as a feature selection strategy in chapters 2 and 4 of this
thesis. In both cases, the empirical results proved the usefulness of the proposed
features.

7.3 Collaborative Functions

One of the main open problems of PPI networks is to predict the functional annota-
tion of proteins in the network. Most of the previous methods predict the proteins’
functions based on guilt-by-association and here, we call it Similarity Assumption:
Interacting proteins tend to have the similar functions. In chapter 3 of this the-
sis, we considered a biological process as an aggregation of each individual protein’s
functions. So, we assumed that topologically close proteins tend to have collabora-
tive functions and not necessarily similar functions (Collaboration Assumption). We
defined “collaborative functions” as pairs of functions that frequently interface with
each other in different interacting proteins. To our knowledge, this was the first study
that considered the collaboration assumption for the task of function prediction in
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PPI networks. The information about which functions collaborate, can be extracted
easily from a PPI network, and using that information leads to improved predictive
accuracy. We proposed two methods for this purpose: The first method calculates
the collaboration value of two functions based on an iterative reinforcement strategy.
The second method adopts an artificial neural network. Empirical results confirmed
that the notion of collaborativeness of functions, rather than similarity, is useful for
the task of predicting the functions of proteins.

As a future works, we may apply this idea to other domains, outside PPI networks.
The notion of homophily is well-known in network analysis; it states that similar nodes
are more likely to be linked together. The notion of collaborativeness, in this context,
could also be described as “selective heterophily”. It remains to be seen to what extent
this notion may lead to better predictive results in other types of networks.

7.4 Network Contextual Information

PPI networks have been widely used for the task of predicting proteins involved in
cancer. When the input data is a PPI network, the main challenge is to find fea-
tures with good predictive power that can be computed from this network. Previous
machine learning based methods have mostly focused on the functional information
about the protein for which a prediction is made, or proximity of known cancer-related
genes in the PPI network. In chapter 4 of this thesis, we proposed the following two
types of input features and we showed that these features have good predictive power.

1. Functional Context: While previous methods have considered GO annotations
of proteins as predictive features, no methods up till now have considered GO
annotations of the neighbors of those proteins at the same time. One advantage
of using GO annotations of the neighbors for the prediction task is that GO
annotations are often incomplete, and by collecting GO information from the
neighbors of a protein p, we may get more information about p itself. This
argument is backed up by the fact that GO annotations of proteins can often
be predicted well from the GO annotations of their neighbors. However, this
is not the only effect; there is also a direct relationship between a protein’s
involvement in cancer and the GO annotations of the proteins it interacts with.

2. Structural Context: This context relates to the relative position of proteins in
the network. Several previous methods described each protein p based on the
shortest-path distance of p to some previously known cancer/disease proteins.
Alternatively, we could describe a protein’s position relative to other proteins
than only cancer-related ones. In this thesis, we proposed a relevance measure
for proteins that is inspired by statistical Anova, and showed that shortest-
path distance to a relatively small number of proteins (selected according to the
Anova-based measure) is informative for the task of predicting cancer-related
proteins in the PPI networks.
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Empirical results proved that the proposed network contextual information (func-
tional and structural contexts) of a protein in a PPI network, offer additional in-
formation regarding the possible involvement of a protein in cancer. These features
increase the accuracy of predictive models and have a biological interpretation.

7.5 Interaction-based Chi-square
The task of predicting in a PPI network which proteins are involved in cancer has
received a significant amount of attention in the literature. Several approaches have
been proposed based on machine learning methods. Their success depends on two
main parameters: First, feature representation of the proteins and second, choosing
the right machine learning method. The previous methods studied these two param-
eters and found that the quality of the prediction results depends only slightly on
the chosen machine learning method, but strongly on the chosen features, and after
considering different protein’s features individually, Gene Ontology (GO) annotations
turned out to be particularly important. Several authors proposed to use a χ2-based
feature selection method to select the most relevant GO terms.

Selecting individual discriminative functions based on original χ2 does not consider
the network topology and the way different functions interact with each other in
the network. For the task of predicting cancer-related proteins, it is possible that
a function fi does not correlate itself with cancer-involvement, but when a protein
with function fi interacts with a protein with function fj , this interaction may be
an indication of the former protein being involved in a cancer. In chapter 5 of this
thesis, we proposed a new method, “Interaction-based Chi-square”, to combine the
GO annotations of proteins with the information contained in the topology of a PPI
network for the feature selection task. Empirical results show that our proposed
interactive features are biologically meaningful and improve the prediction accuracy
of these systems.

7.6 Informative Human Disease Network
Identification of novel proteins likely involved in diseases is an important issue in the
area of computational biology. Previous methods assumed to have a set of proteins
which are previously known to be involved in disease (i.e., seed proteins) and then,
they try to extend the seed proteins by predicting new disease-related proteins. In
almost all the discussed methods, prediction accuracy depends directly on the initial
seed proteins. While the initial seed proteins of each disease suffers from several
’False Negative’ cases (i.e., disease-related proteins which are not annotated as being
involved in disease), dependency of previous methods to the incomplete seed proteins
is the main drawback of these methods.

In chapter 6 of this thesis, we reduced the number of False Negative cases in the
initial seed proteins by proposing an informative Human Disease Network (HDN). We
analyzed different Structural and Functional prediction methods and we concluded
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that a hybrid method which considers both structural and functional information in
the PPI network is the best method for building the HDN. We built a HDN based on
20 diseases and we showed that it is biologically meaningful. Then, we clustered the
HDN and we augmented the seed proteins of diseases based on the cluster they belong
to. Finally, we predicted disease-related proteins based on the augmented version of
seed proteins. Literature mining of the newly found disease-related proteins proved
the usefulness of our proposed HDN for predicting disease-related proteins.

7.7 Future Works
As a future works, we could apply our contributions to other domains, outside PPI
networks. For example, Rahmani et al., [101] predicted the social tags in the graph of
annotated web pages based on the “selective heterophily” notion discussed in chapter
3. They observed that this idea improves the prediction accuracy. We could also use
our proposed HDN for a hypothesis generation about diseases’ drug targets.
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Summary

The main goal of this thesis is mining annotated graphs. We chose Protein-Protein
Interaction (PPI) networks as a specific graph domain to apply our methods. We
modeled the PPI network as a graph where each node is a protein and each edge is
a physical interaction between two proteins. There are different types of annotation
information for each protein in the PPI network. “Functional annotation” states the
biological functions of proteins in the PPI network and “disease/cancer relatedness
annotation” indicates if one protein is involved in disease/cancer or not. We worked
on these prediction tasks to improve the annotation information of proteins in the
PPI network.

The task of function prediction in the PPI network is trying to predict the func-
tions of un-annotated proteins based on the information in the network. We proposed
two approaches for this task. In the first approach, we used shortest-path distances
among different proteins as protein description features and Anova (Analysis of vari-
ance) as a feature selection method for reducing the noise and dimensionality in the
description vectors. Then, we applied machine learning for the prediction task. In
the second approach, we introduced novel functional features that indicate so-called
“Collaborative Functions”: Pairs of functions that frequently interface with each other
in different interacting proteins. Most of the previous methods predict the proteins’
functions based on guilt-by-association: Interacting proteins tend to have similar
functions. We proposed two methods to extract collaborative functions from the PPI
network. The first method calculates the collaboration value of two functions based
on an iterative reinforcement strategy. The second method adopts an artificial neural
network. Empirical results confirmed that the notion of collaborativeness of functions,
rather than similarity, is useful for the task of predicting the functions of proteins.

The task of predicting cancer-related proteins in the PPI network is trying to
predict the new proteins involved in cancer. We generalized the previous methods as
a two-steps algorithm. First, they select some features based on the training data to
describe the proteins in the test data. Second, they apply machine learning meth-
ods to the description features in order to predict the new cancer-related proteins.
Empirical results show that prediction accuracy depends more on the discriminative
features rather than the machine learning methods and among different features ap-
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plied individually, biological functions seems to be the most discriminative features.
We proposed two approaches to select the novel features from the PPI network. In
the first approach, we considered functional and structural contexts of proteins in
the PPI network using the Anova measure and the chi-square method. In the second
approach, we proposed a new method, “Interaction-based Chi-square”, to combine
the functional annotations of proteins with the information contained in the topology
of a PPI network for the feature selection task. Empirical results showed that our
proposed feature selection approaches are biologically meaningful and improve the
prediction accuracy of these systems.

The task of predicting disease-related proteins in PPI network is an important
issue in the area of computational biology. Previous methods assume to have a set
of proteins which are previously known to be involved in disease (i.e., seed proteins)
and then, they try to extend the seed proteins by predicting new disease-related
proteins. While the initial seed proteins of each disease is incomplete and suffers from
’False Negative’ cases (i.e., disease-related proteins which are not annotated as being
involved in disease), dependency of previous methods on the incomplete seed proteins
is the main drawback of these methods. We proposed an informative Human Disease
Network (HDN) considering both functional and structural information in the PPI
network to reduce the number of False Negative cases in the initial seed proteins
of 20 analyzed diseases. Literature mining of newly predicted proteins proved the
usefulness of the proposed HDN.



Samenvatting

Dit proefschrift beschrijft onderzoek op het gebied van datamining in geannoteerde
grafen. Wij kozen Proteïne-Proteïne-Interactie (PPI) netwerken als domein om onze
methodes op toe te passen. Het PPI-netwerk werd gemodelleerd als een graaf waarbij
elke knoop een proteïne is en elke tak staat voor een fysieke interactie tussen twee
proteïnes. Er zijn verschillende soorten informatie waarmee elk proteïne in het PPI-
netwerk geannoteerd is. De "functionele annotatie" geeft de biologische functies van
de proteïnes in het PPI-netwerk en de "ziekte/kanker gerelateerde annotatie" geeft
aan of een proteïne bij een ziekte of kanker betrokken is. We probeerden deze anno-
taties te voorspellen met als doel de informatie over proteïnes in het PPI-netwerk te
verbeteren.

De taak van het voorspellen van functies in het PPI-netwerk slaat op het voor-
spellen van functies van niet-geannoteerde proteïnes met behulp van de informatie
in het netwerk. Hiervoor worden twee manieren voorgesteld. Bij de eerste manier
gebruikten we kortste-pad afstanden tussen verschillende proteïnes als beschrijvende
eigenschappen van de proteïnes, en variantie-analyse als selectiemethode om de ruis en
de dimensionaliteit van de vectoren te verminderen. Daarna pasten we hier machinaal
leren op toe om de eigenschappen voor de niet-geannoteerde proteïnes te voorspellen.
Bij de tweede manier introduceerden we nieuwe functionele eigenschappen die de zo-
genaamde “Samenwerkende Functies” aangeven. Deze samenwerkende functies zijn
paren functies die vaak samen voorkomen bij proteïnes waartussen een fysieke inter-
actie bestaat. De meeste van de al bestaande methodes voorspellen de functies van
de proteïnes door middel van guilt-by-association, waarbij er vanuit wordt gegaan
dat proteïnes waartussen een interactie bestaat geneigd zijn om dezelfde functies te
hebben. Wij onderzochten twee methodes om de samenwerkende functies uit het
PPI-netwerk te halen. De eerste methode berekent de samenwerkingswaarde van
twee functies door middel van een iteratieve versterkingsstrategie. De tweede meth-
ode gebruikt een kunstmatig neuraal netwerk. Empirisch onderzoek bevestigt dat het
concept van samenwerkende functies beter werkt voor het voorspellen van functies
van proteïnes, dan het concept dat proteïnes waartussen een interactie bestaat vaak
dezelfde functies hebben.

Bij het voorspellen van aan kanker gerelateerde proteïnes in het PPI-netwerk wordt
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gezocht naar nieuwe proteïnes die waarschijnlijk betrokken zijn bij het veroorzaken
van kanker. We beschouwen reeds bestaande methodes als een tweestaps-algoritme.
Bij de eerste stap worden aan de hand van de trainingsdata enkele eigenschappen
geselecteerd die de proteïnes in de test data moeten beschrijven. Daarna wordt
machinaal leren toegepast op deze eigenschappen om zo te voorspellen welke pro-
teïnes aan kanker gerelateerd zijn. Empirisch onderzoek heeft aangetoond dat de
kwaliteit van de voorspelling meer wordt bepaald door de beschrijvende eigenschap-
pen waaruit geleerd wordt, dan door de gebruikte methode van machinaal leren. Als
deze verschillende eigenschappen onafhankelijk van elkaar worden bekeken, lijken de
biologische functies het beste te werken. Wij bedachten twee manieren om nieuwe
eigenschappen te selecteren uit het PPI-netwerk. Bij de eerste manier wordt de func-
tionele en structurele context van proteïnes bekeken met behulp van variantie-analyse
en de χ-kwadraat methode. De tweede manier bestaat uit een geheel nieuwe meth-
ode, “Interactiegebaseerde chi-kwadraat”, die de functionele annotaties van proteïnes
combineert met de informatie die genesteld zit in de topologie van een PPI-netwerk,
om zo de juiste eigenschappen te selecteren. Empirisch onderzoek heeft aangetoond
dat onze manieren om eigenschappen te selecteren een duidelijke biologische betekenis
hebben en ervoor zorgen dat het systeem betere voorspellingen doet.

Het voorspellen van aan ziekte gerelateerde proteïnes in het PPI-netwerk is een
belangrijk onderzoeksgebied binnen de computationele biologie. Eerdere methodes
gaan uit van een verzameling proteïnes waarvan al bekend is dat zij gerelateerd zijn
aan deze ziekte (zogenaamde bronproteïnes), en vervolgens wordt geprobeerd deze
verzameling uit te breiden door van andere proteïnes te voorspellen of deze ook aan
die ziekte gerelateerd zijn. De initiële verzamelingen van bronproteïnes voor een ziekte
zijn onvolledig: er zijn zo goed als zeker valse negatieven. Dit heeft een nadelige in-
vloed op de resultaten bekomen met de vermelde methoden. Wij creëerden een nieuw
“Human Disease Network” (HDN), een netwerk dat verbanden legt tussen ziekten,
met behulp van zowel functionele als structurele informatie van het PPI-netwerk, dit
om het aantal valse negatieven in de initiële verzameling bronproteïnes te vermin-
deren voor 20 verschillende ziektes. Met behulp van literatuuronderzoek van nieuw
voorspelde proteïnes, is bewezen dat het door ons gecreëerde HDN zeer bruikbaar is.
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