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CHAPTER 1. Introduction

1.1 General Introduction

This thesis is a collection of 5 papers discussing solutions to several open problems
in Protein-Protein Interaction (PPI) networks with the aid of Knowledge Discovery.
PPI networks are usually represented as undirected graphs, with nodes corresponding
to proteins and edges representing interactions among protein pairs. A Large amount
of available PPI data and noise within it has made the knowledge discovery process
a necessary central part for the network analysis. We define Knowledge Discovery as
a process of extracting informative knowledge from the huge amount of data. Much
success has been achieved when the input data is represented as a set of independent
instances and their attributes. But, in the context of PPI networks, there is interesting
knowledge to be mined from the relationships between instances (proteins). The
resulting research area is called “Graph Mining”. Here, the input data is modeled as
a graph and the output could be any type of knowledge. In this thesis, we propose
several graph mining algorithms to examine structural characteristics of PPI networks
and link them to the information useful for biologists, such as function or disease.

This chapter consists of two main sections. In the first section, we discuss the
knowledge discovery process and its high-level subprocesses. In the second section,
we discuss the area of PPI networks, its open problems and our proposed methods
for solving them.

1.2 Knowledge Discovery Process

As a quote from John Naisbitt: “We are drowning in information but starved for
knowledge” indicates, the amount of data available in different aspects of life increases
every second and the task to mine data and extract useful knowledge becomes more
and more challenging. The main goal of the knowledge discovery process is to extract
informative knowledge from a large amount of data in a human understandable struc-
ture. Considering the whole knowledge discovery process as a system which takes a
certain type of data as input and produces informative knowledge as output, Figure
1.1 shows three main subprocesses of the whole system. The first subprocess is called
“Data Pre-Processing” which takes raw input data and outputs the cleaned version of
the data. The second subprocess is called “Machine Learning” and its main task is to
extract potential informative patterns from the cleaned data. The last subprocess is
called “Data Post-Processing”; it validates and evaluates the extracted patterns. We
will discuss each of these subprocesses in more details in the following sections.

1.2.1 Input Data

Before discussing the details of the different knowledge discovery subprocesses, we
briefly introduce some basic concepts about the Input Data we deal with in this thesis.
We model the PPI network as a graph G(V, E), where V is a set of nodes (proteins
in our context) and E is a set of edges (interactions in our context) connecting pairs

2



1.2. Knowledge Discovery Process

Input Data

Data
Pre-Processing

Cleaning, Transformation,
Feature Selection etc.,

Cleaned
Relevant Data

Informative
Patterns

Machine Learning

Pattern Recognition, Classification,
Clustering etc.,

Data
Post-Processing

Pattern Validation and Evaluation

Ranked Patterns/

Labeled Data

Figure 1.1: Three main subprocesses of the whole knowledge discovery process. The
first subprocess is called “Data Pre-Processing” which takes raw input data and output
the cleaned version of the data. The second subprocess is called “Machine Learning”
and its main task is to extract potential informative patterns from the cleaned data.
The last subprocess is called “Data Post-Processing” and validates and evaluates the
extracted patterns.
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Figure 1.2: A simple graph G(6,7) and some of its graph-based features. We use
these features to describe graph nodes.

of nodes. Assuming a and b are two arbitrary nodes in the graph G(V, E), we define
the following graph-based features:

e Degree(a): Number of edges a is connected with.

e Path(a — b): Sequence of nodes starting with node a and ending with node b,
such that there is an edge between each two subsequent nodes of sequence.

e Length(Path(a — b)): Number of edges in the Path(a — b).

e Distance(a,b): Length of the shortest path between a and b.

In the following parts, we use these features to describe nodes. Figure 1.2 shows
a simple graph G(6,7) in addition to some of its graph-based features.

1.2.2 Data Pre-Processing

In the knowledge discovery process, input data may contain noisy and irrelevant data
that should be cleaned before further analysis of the data (garbage in, garbage out).
The main goal of Data Pre-Processing is to prepare a final training set for the machine
learning algorithms and that may include cleaning, transformation, feature selection
etc. Number of the features equals to the size of the graph (|V]). For example, in
feature Path(a — b), a is a node to describe and then, for each different node b we
have different feature Path(a — b). So, we need feature selection algorithms to select
useful and informative node b and then, describe node a based on them.

Due to the large and noisy nature of the PPI network, a natural way to reduce the
dimensionality is using a feature selection method to filter out the least interesting
features. Next, we will discuss two feature selection methods Chi-square and Anova
(Analysis of variance) for this purpose.

4



1.2. Knowledge Discovery Process

F=0|F=1 Total
C=0 a b a+b
=1 c d c+d

a—+c b+d | a+b+c+d

Table 1.1: The contingency table of a binary feature F' w.r.t. a binary class variable
C. a, b, ¢, and d count the number of times F' and C have the corresponding value.
The x? value of F w.r.t. C is derived from this.

Chi-Square Feature Selection

An often used measure for determining the relevance of a binary feature F' for a class
variable C' is the x? score which is defined by Liu et al. [69] as follows:

2 (ad—bc)? x (a+b+c+d)
X T @ ner o+ date) (1.1)

where a, b, ¢ and d are defined by the contingency table in Table 1.1.

Anova-based Feature Selection

The Anova-inspired selection measure (briefly, Anova) is defined as follows. Let P
be the set of input cases labeled as class C, and P~ the set of input cases not labeled
as such. For each input case g, we introduce a feature dg4; In the context of PPI
networks, dq(p) denotes the shortest-path distance between p and ¢ (viewed here as
a feature of p). We consider for each ¢ the mean and variance of d,(p), taken over all
C-related and non-C-related p:

wp = Do) )
my = W (13)
vart = Zpepjz(jff]imw L4)
var; = Zpeplgfl(p_)l_m‘;)g (1.5)

Seeing P™ and P~ as two groups of input cases, the following formula compares
the variance between groups to the variance within groups (as it is used for relative
ranking only, constant factors are dropped):

(my —my )” (1.6)
- Uar;r +varg '



CHAPTER 1. Introduction

A high A, means that d, varies little within groups and/or much between groups,
which indicates that d, has high predictive power for the group. Features d, can
be ranked according to A,, and the top-k features selected as actual features to be
included in the description of all proteins.

1.2.3 Machine Learning

Machine Learning is a subfield of Artificial Intelligence in which the main goal is to
learn knowledge through experience. Tom Mitchel in his book [79] defines the “ability
to learn” as follows: A computer program is said to learn from experience E with
respect to some class of tasks T' and performance measure P, if its performance at
tasks in 7', as measured by P, improves with experience E.

Based on the problem definition and the type of training data (whether it is labeled
or unlabeled), we focus on two high level main machine learning tasks: Supervised
learning and Unsupervised learning. An output of supervised learner is a classifier
that has the ability to predict the correct label for any valid input data while an
unsupervised learner tries to infer hidden structure among unlabeled data. In this
thesis, we deal with different annotating problems of PPI networks and accordingly,
our final goal is to propose a supervised learner. Next, we discuss briefly about some
classifiers that we use in this thesis.

Naive Bayes Classifier

In the category of probabilistic classifiers, the naive Bayes classifier is the simple
classifier which applies 'Bayes Theorem’ by assuming independency among features.
The probability model for this classifier is a conditional model P(C|Fy,..., F,) over a
dependent class variable C, conditional on several feature variables F; through F,,. If
the number of features n becomes large or feature F; can take large number of values,
then basing this model on probability tables may not be feasible. We reformulate the
model using Bayes’ Theorem shown in Formula 1.7.

p(F‘l7 PN ,Fn)
In Formula 1.7, only the numerator of fraction is dependent to class variable C' and
denominator is practically constant. Now, by applying the conditional independency

assumption among different features shown in Formula 1.8 we can express the model
as Formula 1.9.

p(C|Fy, ... Fy) = (1.7)

p(F|C, Fy) = p(Fi|C) (1.8)

(1.9)
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Figure 1.3: The process of building the simple decision tree classifier based on 4 input
graph data annotated with three class labels: class A, class B and class C. Considering
each graph G(V, E) with node set V' and edge set E, the features of the decision tree
classifier would be whether an edge v; — v; € F or not. The Figure is taken from
[20].

where H is a scaling factor dependent only on F, ..., F,.

Decision Tree Classifier

This classifier uses a tree-like structure to predict the label of the data. In the tree-like
structure, leaves are class labels and branches represent conjunctions of features that
lead to those class labels. A decision tree can be constructed by recursively splitting
the training set into subsets based on the feature value. At each step, the feature
that most reduces the uncertainty about the class in each partition, is selected and is
used as a split. The recursion is completed when all elements of the subset at a node
have the same label value, or when splitting no longer adds value to the predictions.
Figure 1.3 shows the process of building the simple decision tree classifier based on
4 input graph data categorized with three class labels: class A, class B and class C.
Considering each graph G(V, E') shown in Figure 1.3 with node set V' and edge set E,
the features of the decision tree classifier would be whether an edge v; — v; € E or
not. As Figure 1.3 shows, the most discriminative edge is a — a which classifies class
C from classes A and B.
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First Second o
Input Layer Hidden Hidden utput Layer
Layer Layer

Figure 1.4: A simple feedforward Artificial Neural Network with two hidden layers.

Artificial Neural Networks

A simple and still efficient way of solving a complex problem is through using the
divide and conquer strategy which solves a problem by breaking the complex problems
into smaller (and still the same type as the original problem) subproblems. Then,
recursively solve the simple subproblems and integrate the solutions. Networks can
be used for this strategy where each node acts as a computational unit (i.e., receive
input data, process it and generate output data) and the network connections show the
information flow and the way different computational units integrate their outputs.

One type of network models the nodes based on the structural and functional
aspects of biological neurons. They are called Artificial Neural Networks (ANNS).
ANNSs can be used for both supervised and unsupervised learning. The performance
of ANN mainly depends on the following parameters:

e Network Connectivity: How different nodes interconnect with each other.
e Learning Process: How to update the weights of the interconnections.

e Activation Function: How to convert a neuron’s weighted input to its output
activation.

Figure 1.4 shows a simple neural network with two hidden layers. Networks such
as the one shown in Figure 1.4 are commonly called feedforward network, because
their graph is a directed acyclic graph. Networks with cycles are commonly called
recurrent.
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Actual Value

Positive Negative

. Positive TP FP
Predicted

Value

Negative | £y ™

Figure 1.5: Definition of True Positive (TP), False Positive (FP), False Negative (FN)
and True Negative (TN) in a binary classification.

1.2.4 Data Post-Processing

The extracted informative patterns could be further processed. We could evaluate the
patterns, simplify, visualize, interpret and incorporate them into an existing system.
In this section, we discuss different evaluation measures/techniques that we use for
evaluating our methods.

Precision, Recall and Fmeasure

In this thesis, we evaluate our predictions according to Precision, Recall and Fmeasure
as follows:

. tp
Precision = 1.10
tp+ fp (1.10)
t
Recall = b (1.11)
tp+ fn
Frneasure — 2 x Precision x Recall (1.12)

Precision + Recall
where tp, fp and fn denote the number of true positives, false positives, and false
negatives, respectively and are defined in Figure 1.5.
Different Cross Validation Techniques

We need a technique to show how well the learned model from the training data will
perform on future independent data. In k-fold cross validation, we partition the input
data into k folds and then, use one fold for validating the model and the remaining
k — 1 folds for training the algorithm. We repeat this process k times, with each of

9



CHAPTER 1. Introduction

the k folds used exactly once as the validation data. Finally, we average the k results
from the folds to produce a single estimation. In this thesis, we mostly assume k& = 10
for evaluating our methods.

One particular case of cross validation techniques is leave-one-out cross validation
(LOOCYV), where we consider a single instance from the input data as a validation
data, and the remaining instances as the training data. We repeat this process for
each instance in the input data and we average the N (= number of the examined
instances) results to produce a single estimation.

One special case of LOOCYV is to find a rank of some previously selected instances
relative to 99 randomly selected instances as follows:

1. We select 99 instances randomly from the input data (randSet).
2. For each previously selected instance psi

(a) We build the trainSet by excluding the {psi UrandSet}.

(b) We train the prediction method M with ¢rainSet and then, we apply M
to rank psi relative to the 99 randomly selected isntances (rank(psi)). M
should return small rank values for more relevant input instances.

3. We repeat steps 1 to 2b, 10 times and we calculate the average rank of each psi
over different iterations (avg(rank(psi))).

1.2.5 Knowledge Discovery Tool: WEKA

For each knowledge discovery subprocess Data Pre-Processing, Machine Learning and
Data Post-Processing shown in Figure 1.1, there are hundreds of possible methods and
algorithms available in the literature. Instead of implementing those techniques from
scratch, we can benefit from the use of free, Java-based open source, off-the-shelf
tool WEKA [127] (Waikato Environment for Knowledge Analysis). WEKA contains
a collection of state-of-the-art algorithms and tools for each high-level subprocess
of knowledge discovery shown in Figure 1.1, in addition to an easy graphical user
interface for those functionalities. Table 1.2 shows a brief list of WEKA’s capabilities
for each subprocess.

1.3 PPI Network and Its Open Problems

In recent years, much effort has been invested in the construction of protein-protein
interaction (PPI) networks [118]. Much can be learned from the analysis of such net-
works with respect to the metabolic and signalling processes present in an organism,
and the knowledge gained can also be prospectively employed e.g. to the task of pro-
tein function prediction [78, 98, 18, 111, 121, 119, 57, 13], identification of functional
modules [71], interaction prediction [48, 129], identification of disease candidate genes
[27, 109, 26, 58, 106, 37, 87, 130, 132] and drug targets [104, 81|, according to an
analysis of the resulting network [72].

10



1.8. PPI Network and Its Open Problems

Pre-Processing Change data formats (e.g., From nominal to binary etc),
Feature selection (e.g., Chi-square,

Principle Component Analysis (PCA), Information gain etc),
Discretize data etc.

Machine Learning | Naive Bayes, Support Vector Machine (SVM),
K Nearest Neighbors (KNN), Tree-based classifiers
(ID3, J48 and Random Forest), EM Clustering, Apriori, etc.

Post-Processing | k-fold cross validation, Cost sensitive evaluation, Visualization
and etc.

Table 1.2: Very brief list of WEKA'’s capabilities in each knowledge discovery sub-
process shown in Figure 1.1.

In the following sections, first, we introduce three types of datasets that we use in
this thesis. Second, we describe some open problems of PPI networks and finally, we
discuss our proposed methods for each open problem.

1.3.1 Data Set

We consider a PPI network as an undirected annotated graph (P, E, Ap, Ap) where
P is a set of proteins, E C P x P is a set of interactions between these proteins,
and A\ and Ap are so-called annotation functions; for each p, Ar and Ap denote the
additional information we have about p. In this work, we assume that Ap(p) simply
lists all the biological functions that are associated with p; we call it the function set
(or function vector) of p, and denote it F'S(p). Ap(p) lists all the diseases/cancers
that protein p is involved in; we call it the disease list of p and denote it dizList(p).
According to these annotation information, we consider three categories of datasets:
PPI datasets, Function datasets and Cancer/Disease datasets.

PPI Datasets

This category of datasets describes the proteins and the way different proteins interact
with each other. We use two types of PPI networks: S. cerevisiae datasets and Human
datasets. Tables 1.3 shows the number of proteins and number of interactions for each
PPI network used in this thesis.

The Milenkovic et al. [77] data set is the union of three human PPI datasets:
HPRD [91], BIOGRID [116] and the dataset used by Radivojac et al. [97]. When
we say “union”, we mean that the new network contains all the nodes and edges
(proteins and interactions) found in either of these networks. The aim of merging
these three datasets was to obtain as complete a human PPI network as possible,
i.e., a network that covers with its edges as many proteins in the human proteome
as possible. Milenkovic et al. [77] provide details on the construction of the union
network.

11



CHAPTER 1. Introduction

Dataset Type | Name Proteins Count | Interactions Count
S. cerevisiae | DIP-Core [25] 2,388 4,400
S. cerevisiae | VonMering [123] 2,708 22,000
S. cerevisiae | Krogan [59] 2,708 14,246
S. cerevisiae | MIPS [76] 7,928 44,514
Human Milenkovic et al. [77] 10,282 47,303

Table 1.3: PPI networks used in this thesis.

Function Datasets

This category of datasets describes the functional annotation of each protein in the
PPI network. We use different function datasets for S. cerevisiae and Human datasets.

The protein function annotation for S. cerevisiae PPI networks are obtained from
the Yeast Genome Repository [39]. In this dataset, functions can be described in
different levels of detail. For example, two functions 11.02.01 (rRNA synthesis) and
11.02.03 (mRNA synthesis) are considered the same up to the second function level

(i.e.,

11.02 = RNA synthesis), but not on deeper levels. Figure 1.6 shows high level

categories of this dataset.

Functional Category

01
0z
10
11
12
14
16
18
20
30
32
34
k1.
40
4
42
43

METABOLISM

ENERGY

CELL CYCLE AND DNA PROCESSING

TRANSCRIPTION

PROTEIN SYNTHESIS

PROTEIN FATE (folding, modification, destination)

PROTEIN WITH BINDING FUMCTION OR COFACTOR REQUIREMENT (structural or catalytic)
REGULATION OF METABOLISM AND PROTEIN FUNCTION

CELLULAR TRANSPORT, TRANSPORT FACILITIES AND TRANSPORT ROUTES
CELLULAR COMMUNICATION/SIGNAL TRANSDUCTION MECHANISM

CELL RESCUE, DEFENSE AND VIRULENCE

INTERACTION WITH THE ENVIRONMENT

TRANSPOSABLE ELEMENTS, VIRAL AND PLASMID PROTEINS

CELL FATE

DEVELOPMENT (Systemic)

BIOGENESIS OF CELLULAR COMPONENTS

CELL TYPE DIFFERENTIATION

Figure 1.6: MIPS high level function categories.

We annotate the proteins in the Human PPI datasets based on Gene Ontology
(GO) [36]. GO unifies the representation of gene and gene product attributes by

12



1.8. PPI Network and Its Open Problems

introducing three ontology domains: Cellular Components, Molecular Functions and
Biological Process. Figure 1.7 shows part of the Gene Ontology domains.

bindin
G0:0005488

receptor activity
G0:0004872

menbrane
G0: 0016020

cell killing
GO:0001906

cell
GO:0005623

cellular process
G0:0009987

cell part

G0:0040007 60:0044464 | 60:0005215

| transporter activity

molecular_function
€0:0003674

biological_process cellular_component
60:0008150 60:0005575

Figure 1.7: Part of the Gene Ontology domains.

Cancer /Disease Datasets

We denote as “known cancer proteins” the set of proteins implicated in cancer that is
available from the following databases: Cancer Gene Database [23], Cancer Genome
Project-the Cancer Gene Census [95], GeneCards [32] and Kyoto Encyclopedia of
Genes and Genomes [83]. Similarly, proteins in Online Mendelian Inheritance in Man
[47] are annotated as “disease-related proteins”.

1.3.2 Predicting the Functions of Proteins in PPI Networks

Some of the proteins in PPI networks are annotated with biological functions. The
task of function prediction in a PPI network is trying to predict the functions of
unannotated proteins based on the information available in the PPI network. In
Figure 1.8, the color of each protein shows the protein’s functional annotations and
the main target is to predict the colors of white proteins in this network. As we
discussed in section 1.3.1 , we use four PPI datasets: DIP-Core, VonMering, Krogan
and MIPS and the functional dataset Yeast Genome Repository [39] for this task. We
discuss our proposed methods for this problem in chapters 2 and 3 of this thesis.

In chapter 2, we predict functions from relative position of proteins in the PPI
network.

e First, we classify the previous methods on protein’s function prediction into
Inductive and Transductive methods. We define inductive approaches as model-
based approaches which construct a model (a mathematical function) to map
a description of a protein onto its function. On the other hand, we define
transductive approaches as non-model based methods which immediately make
predictions for the proteins in the PPI network without going through the inter-
mediate stage of constructing a model. We compare characteristics of inductive
and transductive methods and we conclude that using inductive methods have
more advantages comparing to using transductive methods.

13
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Figure 1.8: Predicting the functions of proteins in PPI network. The color of each
protein shows protein’s functional annotations and the main target is to predict the
colors of white proteins based on the information available in the network.

e Second, we introduce an inductive approach that uses a global protein descrip-
tion for the task of function prediction in PPI networks as follows: Assume
that there are n nodes in the network, identified through numbers 1 to n. Each
node is then described by an n-dimensional vector. The ¢’th component in the
vector of a node v gives the length of the shortest path in the graph between
v and node . A potential disadvantage of this method is that in large graphs,
one gets very high-dimensional descriptions, and not all learners handle learn-
ing from high-dimensional spaces well. It is possible, however, to reduce the
dimensionality of the vector by only retaining the shortest-path distance to a
few “important” nodes. This essentially represents a feature selection problem.
A node i is important if the shortest-path distance of some node v to i is likely

14
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to be relevant for v’s classification. We use the Anova measure (discussed in
section 1.2.2) for selecting the “important” nodes in the PPI network.

e Third, given the input data and a particular function to predict, any standard
machine learning tool can be used to build a model that predicts from a node’s
description, whether the node has a particular function or not. We compare
several methods, as available in the WEKA data mining toolbox [127], namely
decision trees (J48), Random Forests (RF), an instance based learner (IBk),
Naive Bayes, radial basis function networks, Support Vector Machine (libSVM),
Classification via Regression (CVR) and Voting Feature Intervals (VFI), with
each other and we observe that Random Forests are our best candidate for
learning from the given type of data, and we use this method in the remaining
experiments.

e Fourth, we compare the performance of this system with that of Majority Rule
(MR) [111], a transductive learner. MR simply assigns to a protein the k func-
tions that occur most frequently among its neighbors (with &k a parameter). We
see that, over the four datasets, RF has higher precision (11% higher in aver-
age) but smaller Recall (10% smaller in average). RF and MR perform almost
similarly with respect to Fmeasure. RF tends to have higher scores (+6%) with
respect to AUC.

e Fifth, we investigate the effect of the Anova-based node selection criterion on
predictive performance: Does a reduction of the number of important nodes in-
crease or decrease the predictive performance, and is there a clear optimum with
respect to the number of important nodes that should be selected? We notice
that for most of the functions, selecting 50-70 important proteins is enough to
obtain good classification results. Beyond this area, there is usually no major
improvement in performance.

e Sixth, we investigate whether our method also classifies proteins accurately on
more detailed MIPS function levels. We examine up to five different function
levels and for each level compare our method with Majority Rule. The high-
est improvement is observed for function level 2, when our method has more
than 8% higher Fmeasure value, on average, for the DIP-Core and VonMering
datasets. The difference is smallest for very general (level 1) or very specific
(level 5) function prediction.

In chapter 3, we predict functions from information about the functions of proteins
it interacts with.

e First, we categorize the previous methods into structural based and non-structural
based methods. Structural based methods rely on the local or global structure
of the PPI network and do not use information about the functions of other
nodes to predict the functions of a particular protein. Methods that do use
such information form a non-structural category. A prototypical example is the

15
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Majority Rule (MR) approach [111]. A common drawback of the second cate-
gory of approaches is that they rely solely on the assumption that neighboring
proteins tend to have the same functions. It is not unreasonable to assume
that proteins with one particular function tend to interact with proteins with
specific other functions. We call such functions “collaborative” functions. We
assume that a biological process is a complex aggregation of many individual
protein functions, in which topologically close proteins have collaborative, but
not necessarily the same, functions. We define collaborative functions as pairs
of functions that frequently interface with each other in different interacting
proteins.

e Second, we propose a Reinforcement Based Collaborative Function Prediction
(RBCFP) that increases the collaboration value of two functions if they interface
with each other in two sides of one interaction and decreases the collaboration
value if just one of the functions occurs on either side of an interaction. After
calculating the collaboration value for each pairs of functions in the PPI network,
at prediction time, this method ranks candidate functions based on how well
they collaborate with the neighborhood of unclassified protein.

e Third, we propose a Self Organizing Map (SOM) based collaborative function
prediction that has a one-layered network with as many inputs as there are
functions in the PPI network, and equally many output neurons. Each input is
connected to each output. After training the SOM, the network takes as input
the functions occurring in a protein’s neighborhood, and outputs information
about the protein’s functions.

e Fourth, we compare our collaboration-based methods (RBCFP and SOM) with
similarity-based methods using leave-one-out cross validation (discussed in sec-
tion 1.2.4) in five different function levels. We observe that collaboration based
methods predict functions more accurately than similarity based methods. As
we consider more detailed function levels, the difference between their perfor-
mance increases.

1.3.3 Predicting Cancer-related Proteins in PPI networks

Some of the proteins in PPI networks are annotated as being involved in cancer
(cancer-related proteins). The task of predicting cancer-related proteins is trying to
predict which other proteins in the PPI network are most likely involved in cancer.

As we discussed in section 1.3.1 , we use Human PPI and Gene Ontology datasets
for this task. We discuss our proposed methods for this problem in chapters 4 and 5
of this thesis.

In chapter 4, we predict cancer-related proteins from functional and structural
information in the PPI network.

e First, we discuss two types of previous methods: guilt-by-proximity and feature-
based methods. Methods classified in “guilt-by-proximity” category are based on

16
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the assumption that genes that directly interact, or, more generally, lie close to
each other in the network, are more likely to be involved in the same diseases (as
argued by, e.g., Gandhi et al. [31]). The methods vary based on how they define
proximity. In “feature-based” methods, each individual protein is described by
means of a fixed set of features such as protein degree, protein length, protein
GO annotations etc. Next, using machine learning methods, a model is learned
that links some of these features to cancer-relatedness. Figure 1.9 shows the
general procedure of feature-based methods. We compare characteristics of
guilt-by-proximity and feature-based categories and we conclude that feature-
based approaches have a number of advantages over proximity-based approaches
with respect to flexibility and data integration.

GO Protein Naive Logistic
Annotation Length Baye Regression

Apply Machine

Learning Method | Cancer-related Proteins

Protein Description >

Distance
to Other
Proteins

Protein
Degree

Clustering
Algorithms

Figure 1.9: The general procedure of feature-based approaches for predicting cancer-
related proteins. In the first step, we describe each proteins based on some features
(e.g., protein degree, protein length, protein GO annotations and its shortest path dis-
tance to some other proteins in the network). In the second step, we apply a machine
learning method (e.g., Naive Bayes, logistic regression, support vector machine and
classification by clustering) to the proteins descriptions. In the last step, we evaluate
the newly predicted cancer-related proteins.

e Second, we assume that GO annotations of proteins are often incomplete, and
by collecting GO information from the neighbors of a protein p, we may get
more information about p itself. This argument is backed up by the fact that
GO annotations of proteins can often be predicted well from the GO annotations
of their neighbors; see, e.g., [111, 99]. However, this is not the only effect; there
is also a direct relationship between a protein’s involvement in cancer and the
GO annotations of the proteins it interacts with. We propose a new type of
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functional feature that considers the functions of proteins interacting with the
target protein (rather than the protein itself).

Third, we propose a new type of structural features which considers the relative
position of the target protein with respect to specific other proteins selected
according to the Anova (discussed in section 1.2.2) based measure.

Fourth, by applying literature mining to the most discriminative functional
and structural features, we succeed to find the biological relevance for all the
proposed features.

Fifth, we describe the proteins in PPI network based on network contextual
information (Functional and Structural features) and then, we apply the naive
Bayes classifier for the prediction task. We observe that a simple and efficient
machine learning method (here Naive Bayes) that uses a combination of func-
tional information about the neighbors and shortest-path distance to specific
proteins, predicts cancer-related proteins with higher accuracy than any previ-
ous PPI-based methods.

Sixth, we analyze a list of 20 genes predicted to be involved in cancer by our
method, but not annotated in this manner in our training dataset, and we find
that virtually all of them (at least 18 out of 20) could be linked to cancer
in scientific publications. So, not only our classification results improve upon
previous methods, but that also our ’false’ positive predictions could in many
cases be verified to be linked to cancer in more recent literature.

In chapter 5, we predict cancer-related proteins by combining Gene Ontology

annotations with information contained in the topology of a PPI network.
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e First, we discuss standard machine learning approaches [77, 29, 66, 30] for the

task of predicting cancer-related proteins in PPI networks. We observe that
these methods typically use a feature-based representation of proteins as input,
and their success depends strongly on the relevance of the selected features.
Figure 1.9 shows the general procedure of feature-based methods .In earlier
work it has been shown that the Gene Ontology (GO) annotations of a protein
have high relevance. Accordingly, several authors [29, 66] propose to use the
x2-based feature selection method discussed in section 1.2.2 to select the most
relevant GO terms.

Second, we observe that selecting individual discriminative functions based on
the original x? formula does not consider the network topology and the way
different functions interact with each other in the network. For example, inde-
pendent of how four proteins shown in Figure 1.10 interact with each other, the
x? value of each function is same. We believe that for the task of predicting
cancer-related proteins, it is possible that a function f; does not correlate itself
with cancer-involvement, but when a protein with function f; interacts with a



1.8. PPI Network and Its Open Problems

protein with function f;, this interaction may be an indication of the former
protein being involved in a cancer. So, we propose a interaction-based feature
selection for predicting cancer-related proteins in PPI networks.

Network 1 Network 2 Network 3 Network 4

Figure 1.10: Independent of how four proteins Py, P>, P3 and P, interact with each
other, the x? value of each function f; € F'S is same.

e Third, we compare our proposed interaction based feature selection with individual-
based feature selection with respect to Femasure and we observe that interaction
based feature selection outperforms the individual-based method with 7.8%, on
average, with respect to Fmeasure.

1.3.4 Predicting Disease-related Proteins in PPI network

In chapter 6, we predict disease-related proteins from information in the relationships
among different diseases.

e First, we notice that in almost all the previous methods, prediction accuracy
depends directly on the initial disease-related proteins, which we refer to as seed
proteins. As the initial seed proteins of each disease suffer from several "False
Negative’ cases (i.e., disease-related proteins which are not annotated as being
involved in disease), dependency of previous methods to the incomplete seed
proteins is the main drawback of these methods.

e Second, we propose an informative Human Disease Network (HDN) in which
each node is a disease and each weighted edge shows a relationship between two
diseases. Each directed edge d; — d; between two diseases d; and d; in the
HDN, shows how much seed proteins of disease d; are predictable based on the
information in the seed proteins of disease d; using a given prediction method
M. Although our proposed approach for building the HDN is very general
and any prediction method M could be used, the quality of the resulting HDN
still depends on the prediction method M. We will discuss some recommended
prediction methods in the next step.

e Third, we analyze different Structural (using Anova measure and Random Walk)
and Functional (using x? and interactive-x? as in chapter 5) prediction methods
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and we conclude that a hybrid method which considers both structural and
functional information in the PPI network is the best method for building the
HDN.

Fourth, we build the HDN based on 20 diseases (Alzheimer ,Amyotrophic, Ane-
mia, Breast cancer, Cataract, Charcot-marie-tooth, Colorectal cancer, Deaf-
ness, Diabets, Dystonia, Ehlers-danlos, Epilepsy, Emolytic-anemia, Long QT
Syndrome, Lymphoma, Mental-retardation, Parkinson, Usher-syndrome, Xero-
derma, Zellweger) and we show that the resulting HDN is biologically meaning-
ful. There are 380 (20 x 19) possible edges in the original HDN. We prune the
HDN by sorting the edges based on their weight descendingly and then, keeping
the 38 (10% of the original HDN) highest-weighted edges. Figure 1.11 shows

the pruned HDN. For each edge (d;) rank, (d;), Figure 1.11 shows the rank of
the relationship between two diseases d; and d; among all the 380 disease pairs.

The highest-ranking found relationship is (dea fness) ER (usher syndrome).

ze]lwe er_syndrome
myn[mphlc lateral _sclerosis

usher_syndrome

ﬁ il
!'

Figure 1.11: Pruned Human Disease Network by keeping only 38 (10% of the original
HDN) high-ranked relationships among different diseases. The best found relationship

is (deafness) ER (usher syndrome).
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e Fifth, we cluster the HDN and we augment the seed proteins of diseases based

on the cluster they belong to. Finally, we predict disease-related proteins based
on the augmented version of seed proteins. Literature mining of the newly found
disease-related proteins proved the usefulness of using our proposed HDN for
predicting disease-related proteins.
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1.3.5 Conclusions

In the context of the PPI networks, noisy nature of the networks, high-deminsionality
and incompleteness of initial annotation information are potential problems for any
knowledges discovery method. To overcome the first two problems, we proposed dif-
ferent feature selection methods using Anova (Analysis of variance) and interaction-
based chi-square. To conquer the problem of incompleteness of initial annotation
information we proposed a new type of network called Human Disease Network
(HDN). We also converted the “Homophily” assumption behind the function pre-
diction methods to “Selective Heterophily” assumption by introducing collaborative
functions. There is a “Conclusions” chapter in this thesis which discusses our main
contributions in more details.
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Chapter 2

Predicting Proteins Functions Using
Network Global Information

Based on

Hossein Rahmani, Hendrik Blockeel and Andreas Bender, "Predicting the func-
tions of proteins in PPI networks from global information", JMLR: Workshop and
Conference Proceedings, International Workshop on Machine Learning in Systems
Biology, Ljubljana, Slovenia, 5-6 September 2009, volume 8, pages 82-97, 2010.
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CHAPTER 2. Predicting Proteins Functions Using Network Global Information

2.1 abstract

In this work we present a novel approach to predict the function of proteins in protein-
protein interaction (PPI) networks. We classify existing approaches into inductive and
transductive approaches, and into local and global approaches. As of yet, among the
group of inductive approaches, only local ones have been proposed for protein function
prediction. We here introduce a protein description formalism that also includes global
information, namely information that locates a protein relative to specific important
proteins in the network. We analyze the effect on function prediction accuracy of se-
lecting a different number of important proteins. With around 70 important proteins,
even in large graphs, our method makes good and stable predictions. Furthermore,
we investigate whether our method also classifies proteins accurately on more de-
tailed function levels. We examined up to five different function levels. The method
is benchmarked on four datasets where we found classification performance accord-
ing to F-measure values indeed improves by 9 percent over the benchmark methods
employed.

2.2 Introduction

In recent years, much effort has been invested in the construction of protein-protein
interaction (PPI) networks [118]. Much can be learned from the analysis of such net-
works with respect to the metabolic and signalling processes present in an organism,
and the knowledge gained can also be prospectively employed e.g. to predict which
proteins are suitable drug targets, according to an analysis of the resulting network
[72]. One particular machine learning task that has been considered is predicting the
functions of proteins in the network.

A variety of methods have been proposed for predicting the classes of proteins.
On a high level we can distinguish two types of approaches, namely inductive and
transductive ones. Inductive learning approaches, also called model-based approaches,
construct a model (a mathematical function) that maps a description of a protein
onto its functions. Transductive approaches, on the other hand, immediately make
predictions for the proteins in the network, without going through the intermediate
stage of constructing a model that can be used afterwards for making predictions.
The difference between these two will be described more formally in the next section.

Transductive approaches are often “global”: information on the whole network is
taken into account when making predictions. The inductive approaches that have
been used until now are typically local, in the sense that the description of a protein
(from which its labels are to be predicted) contains information about the local neigh-
borhood of the protein, not about the network as a whole. This is not an inherent
property of inductive approaches, though; one might just as well try to construct a
description that contains global information. Accordingly, in this paper we explore
the usefulness of one particular kind of global information for the task of protein
function prediction, namely the relative position of a protein with respect to specific

24



2.3. Problem Statement

other proteins.

This paper is structured as follows. In Section 2 we define the learning problem
formally. In Section 3 we briefly review approaches that have been proposed before
to solve this problem. In Section 4 we present a new inductive learning approach; we
do not present any new learning algorithms but a new description format of proteins,
which contains global rather than local information. In Section 5 we empirically
evaluate the performance of several learning algorithms when using this format, and,
as a control experiment, compare this performance to that of a previously proposed
approach. We present our conclusions in Section 6.

2.3 Problem Statement

Mathematically, PPI networks can be represented as graphs, and the problem we
consider is that of predicting the labels of nodes in this graph.

Consider an undirected graph G with node set V' and edge set E, where each node
v € V is annotated with a description d(v) € D and, optionally, a label I(v) € L. We
assume that there exists a “true” labelling function A from which [ is a sample, that
is, I(v) = A(v) where [(v) is defined.

In transductive learning, the task is to predict the label of all the nodes. That
is, given the graph G = (V, E,d, 1), with [ a partial function, the task is to construct
a completed version G’ = (V, E,d,l’) with I’ a complete function that is consistent
with { where I(v) is defined.

In practice, there is an additional constraint that I’ should approximate A. This is
imposed by some optimization criterion o, the exact form of which expresses assump-
tions about A. For instance, o could express that nodes that are directly connected
to each other tend to have similar labels by stating that the number of {vy,v2} edges
where {'(v1) # I'(v2) should be minimal. The assumptions made about A are called
the bias of the transductive learner.

In inductive learning, the task is to learn a function f : D — L that maps a
node description d(v) onto its label I(v). That is, given G = (V, E,d, 1), we need to
construct f : D — L such that f(d(v)) = l(v) when I(v) is defined, and f is defined
for all elements of D. Note that f differs from [ in that it maps D, not V', onto L.
This implies, for instance, that it can also make predictions for a node v that was not
in the origi