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Abstract

Dissonance curves are the starting point for an investigation into a psychoacoustically informed 
harmony. The main research hypothesis, harmonic duality, proposes an understanding of  harmony  
as consisting of  two independent but intertwined aspects operating simultaneously, proportionality  
and linear pitch distance. The former is related to intervallic characters, the latter to ‘high’, ‘low’,  
‘bright’ and ‘dark’, therefore to timbre. The ideas and outcomes of  this study proceed from the  
development of  tools for algorithmic composition which extract pitch materials from sound signals,  
analyzing them according to their timbral and harmonic properties, and putting them into motion 
through diverse rhythmic and textural procedures. The tools, the music making and the reflections  
derived from their use offer fertile ideas for the generation of  instrumental scores, electroacoustic  
soundscapes and interactive live-electronic systems.

This exploration of  contemporary harmony begins with a review of  scientific accounts of  pitch  
perception  read  through  the  lens  of  harmonic  duality.  To  restore  it  from the  ossified  rules  of  
conservatory harmony it also delves into Greek harmonics and Pythagoreanism. Describing the  
development  and  musical  uses  of  the  algorithmic  tools,  the  research  puts  forward  several  
compositional  strategies  that  connect  the  timbral  qualities  of  sounds  to  compositional  pitch 
materials.  Atonality  and the modernist  turn are also visited in order to  attest  to  the becoming  
continuous  of  compositional  materials  during  the  twentieth  century  and  to  make  a  call  for  a  
renewed attention to proportions  and discrete elements.  This  leads to  a detailed practice-based  
compositional account of  harmonic space, a mathematical structure that gives away information 
about interval ratios. Other approaches to pitch materials are also explored, both stemming from  
the author’s work (‘harmonic fields’) and from several pioneers in the field, to conclude with some 
speculations on what harmony can mean in more abstract and general terms beyond music. 

1



Table of  contents

Acknowledgements 4

Introduction 5

Preliminary considerations 7

Chapter 1 Harmonic Duality 10

1.1 Harmony and its duality  10

1.2 Pitch Perception  12

1.2.1. What is pitch?  13

1.2.2. Theories of  pitch perception  15

1.2.3. Neurobiological studies of  pitch from the bottom up  20

1.2.4. Pitch height and chroma  22

1.2.5. Top-down psychological studies of  pitch  23

1.2.6. Pitch research in relation to harmony, melody and timbre  25

1.2.7. Infrapitch and rhythm  27

1.2.8. Concluding remarks  31

1.3 Greek Harmonics  34

1.3.1. The two schools of  harmonics  34

1.3.2. Pythagorean tuning systems  37

1.3.3. Consonance and dissonance  39

1.3.4. Dynamis  42

1.3.5. Corollary: Dynamis, the horizontal core of  harmony  44

1.3.6. Numbers and perception: Pythagoreanism  45

1.3.7. Concluding remarks  49

Chapter 2 Timbral Harmony  52

2.1 Dissonance Curves  52

2.1.1. Dissonance curves from a compositional perspective  52

2.1.2. Dissonance curves in relation to my musical research  55

2.1.3. The psychoacoustics behind dissonance curves  60

2.1.4. Consonance and dissonance theories  65

2.2 Timbral atonality  69

2.2.1. Timbral relevance  69

2.2.2. Modernism  71

2.2.3. Diagonalization  72

2



2.2.4. Timbral microtonality 76

2.2.5 Continuous forms 78

Chapter 3 Proportional Harmony 81

3.1 Harmonic Space 81

3.1.1. The harmonic lattice 82

3.1.2. Harmonic qualias, hues 85

3.1.3. Commas 87

3.1.4. Tuning tolerance 90

3.1.5. Harmonic metrics, rationalization 92

3.1.6. Visualizations, navigation 97

3.2 Harmonic Fields 104

3.2.1. Stochastic uses of  pitch sets 104

3.2.2. Navigating the field 108 

3.2.3 The field in terms of  form; structure and morphology 110

Chapter 4 Practical and Speculative Harmony 115

4.1 Some harmonic strategies 115

4.1.1. Harmonic logics of  Tenney, Barlow, Johnston, Novaro and Wilson 115 

4.1.2 Some of  my approaches to harmonic space 119

4.1.2.1. rolita pa modelo (2007) 119

4.1.2.2. ‘strings’ (2007) and Ahí estése (2011) 120

4.1.2.3. Blank Space (2009) 122

4.1.2.4. Chamba de um acorde (2011) 124

4.1.2.5. Future directions 125

4.2 Loose ends, speculative harmony 128

4.2.1. What is harmony? Metaphysics, Noise 128

Conclusions 134

References 136

Glossary 142

Summary 157

Curriculum Vitae 159

Samenvatting 160

Appendix I 163

Appendix II 164

Appendix III 166

3



Acknowledgements

There are many people involved in the support, inspiration and accompaniment during these years  
of  working on this subject. I would first like to express my gratefulness to my parents Ana Lau and  
Jack Lach who, beyond the obvious fact that without them this would have never been possible,  
provided all kinds support at many levels, from the most earthly to the most elevated.

All my gratitude to my advisors Prof. Frans de Ruiter, who despite the fact that this topic lies quite  
far from his expertise, has provided continued backing and very detailed readings, criticism and  
useful  suggestions.  Prof.  Clarence  Barlow  has  been  a  central  figure  behind  this  endeavor  
contributing some of  the main ideas and inspiration behind the project. I also appreciate very much  
the time he invested in helping me as well as for his generosity, good company and friendship. I am  
also indebted very much to M.M. Paul Berg’s  assistance.  Even though it  has  happened mostly  
through  long  distance  collaboration,  it  has  been  crucial,  both  because  of  his  unflinching  and  
continued support as well as for the very detailed readings, criticisms and suggestions he has given,  
both in panoramic and in detailed ways.

The course of  this research also includes a lot help from people associated with the docARTES  
program: Dr. Marcel Cobussen, Dr. Henk Borgdorff  as well as Peter Dejans and all the people at  
Orpheus Institute. Very influential have been the people that I have been involved with musically,  
either  by  playing,  collaborating  or  instigating  the  pieces  I  wrote  during  this  period:  Ezequiel 
Menalled and ensemble Modelo 62,  Paul Craenen, Cathy Van Eck, Tom Pauwels, Matthias Koole, 
Dr.  Godfried-Willem Raes  and everyone at  Logos  Foundation,  Tomma Wessel,  Daniel  Pastene,  
Lisselotte Sels, Gabi Sultana, Alberto Novello,  Ensamble 3  (Fernando Domínguez, Salvador Torre, 
Mauricio Nader) and Manuel Rocha. 

There is also the indirect but no less important contribution provided by friends who accompanied  
me during my three years in Ghent, namely Annemie Vandecandelaere and Bendik Hagerup, as  
well as friends in The Hague such as Diego Espinosa, José García Rodríguez, Juan Parra, Henry  
Vega and Jasna Velickovic. Additionally, even though his involvement goes back to the period before  
this research was begun, the encouragement and inspiration provided by my teacher Gilius van  
Bergeijk has been present all along. My first year in Ghent also included some pre-doctoral training  
on psychoacoustics and I am very grateful for the knowledge and help provided by Dr. Marc Leman  
at the Institute of  Psychoacoustics and Electronic Music.

I would also like to mention people in Mexico who have indirectly but decisively helped, on the one  
hand Rodrigo Sigal and Javier Álvarez who set me up in Morelia and whose way of  working has  
taught me a lot.  Mirta Fabris’s counsel on doing a doctorate has also been decisive. Finally, my 
brothers  Pablo  and  Luis  Lach  as  well  as  Mariana  Rodríguez  and  Úrsula  Pruneda,  whose 
nourishment has been decisive. There are many friends and colleagues and students who listened,  
commented, accompanied and provided ideas, I would like to acknowledge them but the list would  
be too long, so they will be thanked in person.

I dedicate this work to my nephews Julián and Emiliano as well as to the memory of  Rita Guerrero  
whose example of  living and making music I will always strive to reach.

4



Introduction

“If we are not to be faced eventually with the splitting apart of the art of music into an art of  
pitched sound and a separate art of non-pitched sounds, we must greatly refine our understanding  
of  pitch relationships.  Such understanding must  be not  only  theoretical  (intellectual)  but  also  
practical  (audible  by  ear  in  actual  musical  compositions).  The  relations  between  component  
pitches of very complex sounds include a great many with which our traditional pitch system is  
powerless to deal. We are, therefore, accustomed to hear, more and more, relationships which  
demand a more comprehensive vocabulary of pitch intervals than we now have.” (Ben Johnston,  
Proportionality and Expanded Musical Pitch Relationships1).

This study will search for the qualities that lie at the heart of  diverse types of  sounds in terms of  
their  periodicities  and  spectral  properties  in  order  to  extend  and  build  upon  them  at  several  
temporal levels. The point of  departure is a compositional practice influenced and augmented by  
perceptual theories of  sound, with the aim of  providing schemes for creating and manipulating  
musical ingredients, mostly from the perspective of  pitch. Much of  it has been done with computer  
assistance, understood as a laboratory for experimentation and development, using it to generate,  
classify  and  understand  these  materials,  investigating  their  relations  to  the  methods that  set  them 
moving in time and into musical  forms. I am interested in algorithmic composition and harmonic 
discovery.

Much  of  the  work  stems  from  the  implementation  and  use  of  ‘dissonance  curves’.  Based  on  
psychoacoustic  models  of  cochlear  pitch  processing  and  the  phenomenon  of  roughness,  they  
provide pitch sets that are perceptually attuned to timbral aspects of  sound objects, intervals that are  
concordant – compatible – with spectral qualities  of  sounds. They started out as a curiosity, as  
something I wanted to listen to, but have become the stepping stone from which to delve more  
deeply  into  harmony,  raising  questions  into  what  can  be  understood  of  it  nowadays,  beyond  
psychoacoustics. Apart from supplying ample materials for composing, they are also a departure 
point for a reflexive consideration of  microtonality and harmony in general. The materials they  
produce are analyzed and understood from the standpoint of  the main hypothesis of  the research:  
harmonic duality, or the fact that harmony has two facets embedded within it, one of  linear pitch  
distance and another of  proportionality. Linear pitch distance is associated with ‘high’, ‘low’, ‘dark’  
and ‘bright, that is, with the timbral character of  the sounds that carry the pitch; proportionality is  
associated with the perceptual qualities of  intervals, their identities and relations. Even though it is  
possible  to  switch  between  both  types  of  pitch  representations  (one  is  the  inverse  logarithmic  
function  of  the  other),  each  pertains  to  a  different  musical  realm,  conveying  quite  different  
information. We will go into much more detail regarding the properties and features of  the duality  
and its entwinement as we go along. 

The process of  this research is speculative or experimental in the sense that the theorization and the  
musical  work  are  not  separate  but  intertwined.  The  questions  posed  spring  from  the  musical  
involvement at the same time as they are used to produce unforeseen music. The intermediate goals 
are local in scope: advancing to the next stage in the creative process from the standpoint of  the  
previous  step.  Theorization  is  done  for  the  purpose  of  understanding  and  hypothesizing  new  
approaches that permit this process of  experimentation to continue. The objective is to theorize the 
knowledge gained through my compositional/musical experience and be able to share it.

Not all of  my music has to do with perception, but this interest has inspired a style of  composing  
within my works and provided a toolbox and repository of  materials,  yielding compositions that 

1 Johnston, B. (2006 [1966]). Proportionality and Expanded Musical Pitch Relations. In B. Gilmore (Ed.), Maximum 
Clarity and Other Writings on Music. Chicago: University of  Chicago Press, 35.
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make use of  a wide range of  tunings, some of  them related to timbres. The search for a ‘timbral  
grammar’  is  made  in  the  interest  of  making  harmony  include  any  sound  whatsoever.  It  has  
electronically synthesized chords, timbres and textures from harmonic structures, through what I  
call ‘dissonance chorales’ and procedures which might resemble a ‘granular harmony’ of  sorts. It  
has  also  provided  strategies  for  manipulating  abstract  pitch  materials  relating  them  to  metric  
rhythms and formal proportions, as well as traversing ‘harmonic fields’ in which textures derive from 
the statistics of  continuously changing harmonic potentials.

Regarding this written thesis, it is not meant to be a finished theory nor a a closed system. Its main  
characteristic is to present harmonic and compositional subjects from the viewpoint of  harmonic  
duality. The presentation exhibits the exploration and inquiry itself, probing into some depth into  
the topics, even if  there is a tendency to wander off  from time to time from the main narrative,  
pointing to issues which haven’t been explored but which are felt to be relevant from the standpoint  
of  the inquiry. It is a recounting of  the investigation rather than a book about harmony, not meant  
to be a clean and synthetic account of  its results.

The investigation process resembles landing in the midst of  things and then departing in different  
directions, sometimes to come back again to the same topics from other angles. Conversely, some 
preoccupations,  such as the form-rhythm-pitch analogies surface frequently in different sections.  
Another  symptom found in  this  writing  is  that  of  jumping  around a  few perspectives  (history,  
composition  theory,  a  bit  of  philosophy  and  mathematics)  in  a  brief  amount  of  space.  The 
perspectives provide complementary accounts that are compositionally fruitful, even if  this is not  
always completely  explicit.  Being a personal assessment  on harmony,  it  does  not  pretend to be  
unique or all-embracing, as there are many others approaches to it. It is also not axiomatic, even if  
harmony, through its connection to arithmetics, sometimes gives the feeling of  being so. Instead it  
has a number of  equally valid entry points and I find it difficult to disconnect the parts between  
each other or to choose a narrative that can avoid jumping forward, so the structuring is sort of 
‘vertical’, in a way.

Notwithstanding these considerations, the writing is structured similarly as the duality researched:  
the first chapter delves into it, the second and third ones probe, respectively, into each of  the two  
facets,  while  the  fourth  and  last  one  deals  with  compositional  approaches  and  pieces,  also  to  
conclude with speculative considerations as well as an attempt to define harmony  out from these  
discoveries. Each chapter is itself  structured in two parts, both having a different register of  thought  
from each other.

Chapter  1 delves  quite  extensively  into pitch  and pitch perception models  extracting,  from the  
phenomena that science investigates, compositional possibilities and a characterization of  harmonic  
duality. The second part on Greek harmonics is meant to clean the slate for a harmony not so  
loaded  by  theories  from recent  centuries,  paying  attention  on  the  duality  that  stems  from the  
different theories as well as exhibiting how it also derives from a horizontal, melodic conception. It  
also provides an assessment of  the duality vis a vis the psychoacoustic approach and concludes by  
reflecting on the meaning of  Pythagoreansim from today’s perspective.

Chapter  2  begins  by  describing  the  compositional  uses  of  dissonance  curves,  showing  the  
connection they provide between spectra, consonance and harmony. Afterwards I concentrate on 
their psychoacoustic basis and the kind of  consonance and dissonance conception they imply in  
order to better understand the timbral facet of  harmonic duality. The second part of  the chapter  
reviews some twentieth century approaches to pitch, especially atonality and some of  its descendant  
techniques,  showing  how  it  has  become  pervaded  by  an  increasing  timbral  relevance.  This  
characterization is done in order to make a case for the incorporation of  proportionality into the  
current situation and this  is  why the section touches on topics such as modernism, spectralism,  
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timbral microtonality and fluid or continuous forms. 

Chapter 3 delves into proportional harmony by exploring in some detail the language of  ratios,  
harmonic space, commas, tuning tolerance and harmonic metrics. The first section ends by giving  
an illustrative demonstration of  how I work with these notions in my computer aided approach. The 
second part  of  the chapter presents my development of  ‘harmonic fields’,  their workings,  some  
musical results and further consequences regarding harmonic duality and how it also applies to  
forms. 

Chapter 4 takes a more panoramic approach. It begins by reviewing the harmonic strategies of  
other composers and harmonic developers of  the last century, later to describe some of  my own as  
applied in the pieces written for this doctorate. The second part points to further developments and  
topics that depart a bit from the main research but that open up to future or unfinished pursuits.  
There is a section on verticality as a static conception of  time that springs from harmonic thinking, 
pointing  towards  what  I  will  develop after  this  research  regarding  harmonic  objects  and  their  
quadruple constitution. To conclude I have a section that presents a bundle of  possible definitions  
and denotations of  harmony after what has been developed during the research.

Preliminary considerations

This  project  seeks  to  rehabilitate  a  concept  of  harmony compatible with present-day practices,  
conceived not in normative terms of  rules and prohibitions (as it is normally taught in conservatory  
textbooks), but instead considered in an experimental sense, as an open space for the discovery and  
treatment of  sonorities. At the same time as it constructs a theory of  harmony that recounts my  
musical approaches, it is also meant to provide notions which are as general and neutral as possible  
– i.e., separate from my own uses.

It is my contention that harmony, preliminarily defined as musical relations that correspond to the 
perceptual qualities of   pitch intervals, cannot be accounted solely by naturalistic approaches that  
try to explain it in terms of  causal relations between sound waves and the human mind. Neither can  
it be understood (or more precisely, dismissed as a problem) in terms of  cultural conventions: there  
are aspects of  sounds which do not depend on conditioning, even though conditioning plays a role  
further along the way in the development of  aesthetic approaches to those features. It is a mixture  
of  both: the two poles of  culture and nature (conditioning and sensation) are never separate until  
theorized or ‘purified’ as such, otherwise they are always intermingled.

Moreover,  the theoretical  elements  I  draw from have a  distinct  and particular  slant  and flavor.  
Owing much to some twentieth century schools of  composition, this approach will not disown them. 
Influenced by parametric thinking, which comes down from serialism, it also has a strong influence  
from american experimentalism, as well as from electroacoustic and computer music. There is also  
the  influence  of  specific  composers:  James  Tenney,  Clarence  Barlow,  Ben  Johnston,  Karlheinz  
Stockhausen, Iannis Xenakis and John Cage, to name the ones that stand out  most and whose ideas  
and arguments in relation to the subject we will get to know further along the way.

Historically, most thinking on harmony by past traditions took music to be more than just an art  
form, connected with the cosmos at large, with metaphysical order and in relation to mathematics.  
This kind of  thinking began to diminish around the seventeenth century, when the concerns began  
to transition from metaphysical towards physical groundings of  sound and music. If  I want to argue 
for  incorporating  elements  from  these  previous  traditions  it  is  because  I  do  not  see  them  as  
incompatible  with  experimentalism  and  the  search  for  novelty.  The  enterprise  should  not  be  
understood as conservative or nostalgic, but as pertinent to present concerns, as timeless ideas that  
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are appropriated from one world to another, indifferent to the world in which they first appeared,  
capable of  providing inspiration and answers to existing issues. In this sense, experimentation is  
neither a break with some anachronistic past nor defined in opposition to it. The use of  past ideas  
should not be seen as an exercise in collage of  bits and pieces from throughout history, but as the  
contemporary relevance of  mixing heterogeneous epochs and ideas. The organization of  these ideas  
is to be done in the present,  as elements of  our own time and from the standpoint of  current  
problematics2.

Since the time of  my doctoral studies and throughout the readings in philosophy and musicology  
that  have  led  to  this  dissertation,  I  have  felt  that  there  is  an  atmosphere  of  uneasiness  about  
harmony in music as it implies, in a condensed way of  putting it, some sort of  ‘bad metaphysics’, in  
the sense of  generalized essences of  an idealized world, and in the long run some kind of  social  
domination between those who know and construct it  and those who don’t,  ultimately silencing  
dissent and creativity. Harmony is considered as having ‘pseudoscientfic’ aspirations, as part of  a  
positivistic, nostalgic, institutionalized music theory whose pretensions are ultimately illusions. Even 
though these terms may sound a bit far-fetched or caricatured, they are in fact taken from Susan  
McClary3, and it is important that I mention this anti-systematic viewpoint as the backdrop to my 
position  before  delving  into  the topic,  even if  by  now it  is  falling  more and more out  of  the  
mainstream discourse on music.

Jacques Attali, theorist of  the social construction of  musical codes and forerunner of  some of  these  
positions has likely been read too literally or taken to relativistic extremes. I find his idea of  harmony 
as  a  social  order  which is  disrupted by the noise  of  new social  codes  very compelling  (though  
derivative to the core of  this project). In any case, my contention is that it still makes sense to talk in 
terms which have been devalued by these approaches: rhythms, pitch, meters, harmony, and so on,  
albeit in the current context of  indeterminate, generative, textural music. 

The question is not how knowledge produces and exerts its power, authorizing who speaks. What  
this  research  pursues  is  not  only  how  harmony  and  harmonic  objects  (intervals,  scales,  their  
qualitative characters, spectra, timbres, textures etc) are  known, but what they  are, even if  it is not 
possible to define them fully . Music has a certain autonomy over the many domains with which it  
crosses  paths.  The  different  fields  of  knowledge  that  revolve  around  musical  objects  are  all  
translations, not complete renditions of  them. An object is always more than any account, theory, 
use or any other kind of  translation of  it, none ever exhausting its reality, though all of  them provide  
diverse points of  view as to what it is. A bit like the Indian story of  the elephant and the blind men,  
who each touch a different part of  the elephant and give diverse, conflicting accounts of  it. Objects 
cannot  be  exhausted  by  the  dimension  of  social  construction  inherent  to  them,  nor  is  this  
construction an alienating feature meant to oppress or deceive. Instead it is just one aspect of  objects  
(a very important one): their relationships. The other aspect is their individuality, not reducible to  
their  relation  to  other  objects  (ourselves  humans  included)  or  to  some  deeper  hidden layer  of  
reality4.  This shows the reasons behind the  multi  perspectival approach, the goal of  which  is to 

2 This viewpoint on ‘nature vs culture’ comes from Bruno Latour. See Latour, B. (1993). We Have Never Been Modern, 
Harvard: Harvard University Press. The concept of  eternal, transworldy truths is Alain Badiou’s. A concise 
expounding of  this notions appears in Badiou, A. (2011). Second Manifesto for Philosophy. Cambridge: Polity Press, 20-
25.

3 McClary, S. (1985). Afterword. In Attali, J., Noise. The political economy of  music. Minneapolis: Minnesota University 
Press, 149-158. If  I choose her as the example of  postmodern attacks on music theory it is because I actually like her 
writings and agree with many of  her ideas. I also find Attali’s book influential and inspiring. This posture nonetheless 
has become institutionalized and, in order to make its point, has gone to the other extreme of  classifying everything 
in music as arising in culture and power struggles. The attribution of  an illusory nature to music theory, comes from 
Kramer, L. (1992). The Musicology of  the Future. Repercussions, Spring Issue, 9: “From a postmodernist perspective, 
music as it has been conceived of  by musicology simply does not exist.”

4 Here I follow Graham Harman whose ‘object-oriented’ philosophy has been a source of  encouragement for my 
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construct an amazement for harmony not only as a human creation but also having implications 
beyond us, which is why Pythagoreanism is also invoked. 

Ben Johnston warns us in the epigraph that opens this introduction about the dangers of  splitting  
music composition into two irreconcilable camps of  ‘sound-based’ and ‘note-based’ composition (to  
put it in todays terms). This text was written 45 years ago, and the splitting that he fears has already  
happened. Much electroacoustic and acousmatic music, not to say sound art, noise and other such 
genres  that  lie  outside  the  concert  situation  generally  define  themselves  in  opposition  to  
conventional,  conservative,  conservatory  note-based  music.  What  I  want  is  to  refine  our  
understanding of  pitch in order not to reduce it, but to integrate it to the practices of  sound-based  
art without throwing the baby and the bathtub along with it or, what is the same, without confusing  
the art of  composition with the saturation of  its own procedures and probably also with its current  
means of  production, but to tackle it  straight where it  hurts  the most:  precisely in the age old  
department of  pitch and harmony.

To close this  introduction, a lucid quote from Johnston captures and summarizes the spirit  and  
general direction of  this endeavor:

“To establish connection between the known and rational and familiar, on the one hand, and the  
unknown and irrational and unpredictable on the other, requires subjecting them to the same  
measure. Proportionality is such a common measure, if we bear in mind the modifying principles  
of variation and approximation. It is not incompatible with other modes of organization, such as  
serial ordering. It applies with equal effectiveness to formal, rhythmic, and pitch organization. It 
can be realized best by ear, in the case of pitch; by kinesthetic perception, in the case of rhythm; 
and by intuitive timing, in the case of formal divisions. Yet it is capable of intellectual formulation  
and manipulation. Most important of all, such a technique reestablishes a connection which has  
been broken, a connection with ancient and worldwide traditions of aesthetic order.” 5

position, subtly permeating this thesis even if  it is not dealt with directly. In any case we will encounter him again 
later on. See Harman, G. (2005). Guerilla Metaphysics. Chicago: Open Court and Harman, G. (2011). The Quadruple  
Object. Winchester: Zero Books.

5 Johnston, B. (2006 [1963]). Scalar Order as a Compositional Resource. In B. Gilmore (Ed.), Maximum Clarity and  
Other Writings on Music, 29. Emphasis added.
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Chapter 1 

Harmonic Duality

1.1 Harmony and its duality

“Music is in fact not without ambiguity – especially since the Renaissance – because it is at once  
the intellectual love of an order and a measure beyond the senses, and an affective pleasure that  
derives from bodily vibrations. Furthermore, it  is at once the horizontal melody that  endlessly  
develops all of its lines in extension, and the vertical harmony that establishes the inner spiritual  
unity or the summit, but it is impossible to know where the one ends and the other begins.” (Gilles  
Deleuze, The Fold: Leibniz and the Baroque6). 

“Music charms us,  although its  beauty only consists  in the harmonies of  numbers and in the  
reckoning  of  the  beats  or  vibrations  of  sounding  bodies,  which  meet  at  certain  intervals,  
reckonings of which we are not conscious and which the soul nevertheless does make.” (Godfried  
W. Leibniz, Principles of Nature and of Grace, §177)

As  the  above  quotes  suggest  (the  first  being  a  comment  on  the  second)  from  a  metaphysical  
viewpoint,  musical  harmony consists  of  two separate  aspects.  One is  not  directly  perceived,  ‘a  
measure  beyond  the  senses’,  while  the  other  is  affective  and  sensual.  They  both  make  up  its  
ambiguously interwoven horizontal and vertical dimensions and this chapter will be dedicated to 
exploring this embroilment, which I refer to as harmonic duality.

These two aspects are normally subsumed under the term of  harmony: one, its  proportional  facet, 
involves rational relationships, concerns fundamental pitches and disregards timbre and register; the  
other one, which we will call its  timbral aspect, involves sensation and acoustic constitution. Their 
embroilment and interrelationships are such that none is able to subsist without the other. It is rather  
the perspective created by putting them musically in context what makes one of  them stand out. In 
this measure, both facets are active in different degrees in various musics and their thresholds and  
contexts that produce their mixtures or separations can be composed. 

The idea of  a  harmony polarized between two limits  will  be the guiding thread and principal  
hypothesis of  this inquiry. Although this split will be shown to have been present in the debates  
between  empirical  and  mathematical  harmonists  in  ancient  Greece,  it  has  not  been  explicitly  
thematized as such. Either it is a question of  one aspect dominating or substituting the other, or they  
are conflated without distinction. In any case, the distinction happens with some recent composers,  
such  as  James  Tenney,  Ben  Johnston  or  Clarence  Barlow,  although  only  in  a  fleeting  and  
unsystematic way, so that this research will take their ideas as a starting point in order to develop on 
their properties and consequences. This duality, with each of  its poles in turn oscillating between  
two limits – those of  consonance and dissonance in the case of  the timbral pole and harmonicity  
and inharmonicity in the case of  proportion – makes for a fourfold structure of  antipodes. This will  
be the structuring figure in the development of  further topics later in the study. It is proposed as  
means by which to think pitch and harmonic relations in the development of  compositions and 

6 Deleuze, G. (1993). The Fold: Leibniz and the Baroque. Minneapolis: University of  Minnesota Press, 128-129. 
7 Leibniz, G. W. (1908). Principles of  Nature and Grace. In The Philosophical Works of  Leibniz. New Haven: The Tuttle, 

Morehouse and Taylor Company, 306. 
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compositional materials. Only secondarily can it be applied to pertain or embrace other musical  
activities, as it is developed not only from a practice but also with an aim of  understanding models  
and spaces that are directly relevant to a specific way of  composing – that of  making algorithmic  
environments for composition. Within a necessarily limited scope and context they are also related  
to other musics and to auditory perception in general, although this is to be understood only as one  
factor  out  of  many  that  are  operative  when  describing  these  more  general  aspects.  It  can  
nevertheless  aid  or  serve as  a  specific  analytical  tool  for  some of  these  applications  because  it  
theorizes the relationships between quantitative and qualitative aspects of  harmonic materials as  
well  as  proposing  some basic  computational  tools  that  might  render  these  ideas  useful  beyond  
composition.

Apart from compositional  experience and intuition,  there is  evidence for this  duality in various  
approaches for conceiving intervallic qualities. The analysis in this chapter will be based on two 
sources testifying to this duality: Greek harmonics and psychoacoustics. The debate between Greek  
harmonists around the distinction between pitch distance and proportion started by Aristoxenus  
traverses many centuries of  music theoretical thinking. Although in a simplified way we might call  
Aristoxenus a ‘timbralist’  and Pythagoreans ‘proportionalists’,  this  too easy characterization can 
miss the fact that both sides include some aspects of  the other; I would rather say they supplement  
one another and together allow us to form a wider perspective on this duality.  The longstanding 
theoretical  conflict  between  proportion  and  spectrum  derives  from  two  orientations  towards 
intervallic qualities that emerge as different approaches to the problem of  explaining consonance  
and dissonance or  the perception of  pitch and timbre.  These approaches  have parallels  to  the  
distinction between the continuous and discrete in mathematics, having on the one hand arithmetics  
and the Pythagoreans and Aristoxenus and geometry on the side of  the continuum. It is through a 
musical  perspective  that  correspondences  are  found  between  sounding  qualities  and  these  
mathematical domains. Whole number ratios are related to periodic sounds and intervals, while a  
continuum of  pitch and the infinitesimal gradations of  timbre can be conceived as happening in a  
continuous line or space.

The  dichotomy  between  harmonists  is  analogous  to  the  one  in  pitch  perception  models  from 
auditory science, namely, temporal and spatial models. The former relate to periodicity analysis of  
waveforms and refer to pitch-chroma, while the spatial ones involve pattern recognition in spectra 
obtained from the physiological filtering in the basilar membrane of  the inner ear, and refer to  
pitch-height or distance. These models map subjective attributes to independent mechanisms taking 
place throughout the auditory pathway, beginning as early as the cochlea, and taking a complex and 
crisscrossing course through progressively higher-order auditory stages that end up projected into  
different cortical areas. The survey we are about to take is meant not only to describe what is known  
about pitch perception, but will serve to extract from the theories their mappings enough details to  
better characterize the duality. As we will also discuss, it not only pertains to the level of  intervals  
and chords, or to the current sounding qualities, but is also inherited to higher levels or time frames  
than those of  an immediate sounding present. Although the discussion of  the different ‘harmonic  
levels’ will take place later on, we will already see in this section some ways in which properties of  
this harmonic duality are inherited not only to musical harmony as it is normally understood, but  
also, though in a limited way, to rhythm and form.
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1.2 Pitch Perception

“[P]itch is held to be duplex in nature. Two pitch-like qualities are distinguished. They are given  
various  pairs  of  names by various  authors:  tone height  and tone chroma,  ordinary  pitch and  
chroma, [spectral] pitch and quality, pitch and tonality, etc.”8

The  two  main  types  of  pitch  perception  models  explain  in  terms  of  time-based  processes  –  
periodicity analysis of  waveforms and the counting of  pulses – and spatial processes – recognition of  
spectra by means of  patterns. Both mechanisms are active in our perception and complement each  
other, pitch-chroma providing a basis for presenting acoustic patterns that do not depend on the 
particular sound source, and pitch height providing a basis for segregation of  sound objects into  
streams in order to separate sources.

Pitch models are approximations that explain aspects of  the world, in this case that of  psychological  
auditory experience. The models are not only rated or judged according to their capacity to explain  
many sometimes contradicting phenomena, but also as to how useful and compelling they are to the  
different  approaches  and  disciplines  that  participate  in  their  construction  –  be  they  acoustics,  
audiology,  neurology,  musicology,  psychology,  etc.  They are also marked by their  statistical  and 
indirect  approach.  Some  account  for  resulting  effects  rather  than  mechanisms,  while  other 
approaches begin with physiology and neurology, providing results which are difficult to compare  
and combine with the other approaches,  attesting to the difficulty involved in bringing the two  
directions  together  and  somehow  meeting  halfway9.  There  are  many  gaps  in  the  scientific 
comprehension of  pitch recognition.

On the other hand, these models explain a lot and have been withstanding falsifiability for many  
decades,  being  constantly  refined and put  to  work  in  usable  applications  as  well  as  becoming  
stronger in their ability to account for ever more detailed and diverse classes of  stimuli. The fact that  
they mostly translate emergent psychological effects rather than explaining all the complex steps  
happening along the way, gives them a economical structure that in many cases agrees better with  
intuition or introspection than with brute force causality.

Induction and deduction  are the basis for physics and mathematics, while the study of  perception  
deals with transduction, defined as the conversion of  one form of  energy to another. In physiology  
this  means  the  conversion  of  one  form  of  stimuli  to  another,  wherein  a  physical  stimulus  is  
converted into action potentials in neurons, transmitted along axons towards the central nervous 
system where it is integrated. A transducer is an object that mediates between two other objects, the  
input carrying information that molds the energy of  the medium with a specific form10. Transduction 
resembles  modulation in signal  processing,  where a  usually  high frequency  carrier  waveform is  
modulated by another signal containing the information to be transmitted through it (like in radio  
transmission, but also in analogy to the modulation of  a note with vibrato or tremolo by a musician). 
The energy in the transducer is the carrier wave, the information it carries is the modulator. From  
the ‘point of  view’ of  the transducer, both the incoming energy (the specific form given to the  
carrier) as well as the outgoing energy is information, while from the perspective of  the transduced  
information, the transducer becomes transparent, as it could be replaced by any other transducer.  
The information is independent of  the medium in which it travels manifesting the physicalness of  

8 Licklider, J. C. R. (1951). A duplex theory of  pitch perception. Experientia, VII(4), 128. 
9 Cheveigné, A.  (2005). Pitch Perception Models. In Plack, C., Oxenham, A., Fay, R., and Popper, A., (Eds.). Pitch.  

Neural Coding and Perception. New York, Springer, 169-233.
10 These ideas are taken from Timothy Morton. See Morton, T. (2011, May 26). Transduction [weblog]. Last retrieved 

April 15, 2012, from:  http://ecologywithoutnature.blogspot.com/2011/05/transduction.html
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this information, too often taken to be more ideal than physical.

We will get acquainted with the various transductions involved in pitch perception, but what this  
short consideration suggests is that pitch not only relates to properties of  the vibrating objects that  
produce  the  sensation,  but  some  aspects  of  it  are  themselves  created  by  the  very  process  of  
translation,  carrying  with  it  information  about  this  transduction.  Information  and  medium, 
transducer and transduced, participate in its formation and characterization, in a double structure  
similar to what pitch transmits, which is both itself  as a distinct perceptual quality and traces of  
information about the source that produced it.

1.2.1 What is pitch?

‘A regular periodic pattern dominates a pitched sound’11

Pitch is a perplexing aspect of  auditory perception, consisting in a distinct set of  qualia that stand out 
clearly  from other aspects  of  auditory experience.  These independent but  related attributes  are  
grouped under  the  term ‘pitch’,  but  can  and should  be  distinguished  in  order  to  characterize  
harmonic duality and seek strategies for traversing these aspects in composition.

Pitch is defined as the perceptual correlate of  frequency12. Because some of  its features are induced 
by the perceptual process itself, this does not imply a one to one correspondence. Not all perceptions  
correspond to the physical stimuli and there is a fault tolerance mechanism which compensates for  
‘deficient’  stimuli  by  completing  and  rounding  them  off.  Pitch  can  also  be  understood  as  a 
psychophysical  magnitude  correlated  closely  to  the  periodicity  of  waveforms  while  being  
simultaneously  blended with the timbre of  the sounding source.  These timbral  features  can be  
thought of  as peripheral periodicities within that main periodicity, distinguishing between the main  
repetition period and those ‘inner’, faster ones constituting the partials.

In the 4th century B.C. Aristoxenus distinguished between pitch in general, topos, the space in which 
high and low notes are located, and tasis, the ‘pitching’ of  this space by the melodic voice, indicating 
that there are two senses in which we can talk about melodic pitch, a continuous one and another in  
which  this  continuum  is  pierced  at  certain  points  of  stability.  This  ‘pitching’  is  a  ‘steady 
motionlessness of  the voice’, a resting place where the melodic motion stops within pitch space,  
therefore a locus within the continuum, indicating a calibration, in melody, of  this space.13

Aristoxenus proposed an empirical account which can be considered phenomenological before its  
time. This is relevant in order to understand pitch as a perceptual category not reducible to natural  
processes. Pitch (as is also the case of  many musical categories) commences as a perceptual fact that  
is prior to any scientific conception. Experience provides the ‘what’, psychoacoustics the ‘how’. Still,  
the musical priority belongs to the ‘what’.

Pitch, then, is not one dimensional magnitude but a mixture of  several features. A way to tease out  
these other aspects is to limit the stimuli to the most elemental sounds. Sine waves are considered  
elemental sounds with respect to pitch, and it is only with these types of  sounds that we can say that  
frequency and pitch actually coincide, so maybe the best and most stringent definition of  pitch  
should limit it to the perception of  sine waves and leave other aspects of  it to other terms (such as  
tone).

The modern definition of  pitch is similar to the one given by Arabic music theorist Safi al-Din (13 th 

11 Johnston, B. Scalar Order as a Compositional Resource, 12. 
12 American Standards Association. (1960). Acoustical Terminology S1.  New York: American Standards Association.
13 Barker, A. (2007). The Science of  Harmonics in classical Greece. Cambridge: Cambridge University Press, 146-149.
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century): “a sound for which one can measure the excess of  gravity or acuity with respect to another  
sound.” The ANSI (American National Standards Institute) definition is: “that auditory attribute of  
sound according to which sounds can be ordered on a scale from low to high.” It could be written  
more specifically as ‘that auditory attribute in terms of  which sine tones can be ordered on the low-
high  dimension’14,  but  this  is  useful  for  research  rather  than  musical  purposes  because  other  
attributes associated with pitch are left orphaned and ‘tone’ or ‘complex sound’ become insufficient 
terms for sounds which don’t have a single or clear pitch but have scalable attributes.

Pitch should then be related to the repetition rate of  the waveform rather than to frequency. This  
repetition rate is equivalent to the periodicity envelope, the recurring amplitude pattern resulting  
from the overall energy of  all the components of  a sound. This periodicity envelope, being the rate  
common to all or the most prominent partials components of  a tone, does not necessarily coincide  
with the frequency of  the lowest component. Only when sine and complex tones have the same  
repetition rate can we say that pitch and frequency are equivalent.

A broader definition of  pitch is given by J. F. Schouten (1940): ‘The pitch ascribed to a complex  
sound is the pitch of  that component to which the attention, either by virtue of  its loudness or of  its  
contrast with former sounds is strongest drawn. Therefore the pitch of  a complex sound may be  
different depending upon the circumstances under which it is heard.’ 15 Pitch is induced or ascribed 
from composite sensations as well as embedded within other sounds.

This link between pitch and periodicity will be connected further on to harmony and rhythm:

‘Nature abounds with periodic phenomena: from the motion of  a swing to the oscillations of  
atoms, from the chirping of a grasshopper to the orbits of the heavenly bodies. And our terrestrial  
bodies, too, participate in this universal minuet—from the heart beat and circadian rhythms to  
monthly and even longer cycles.

Of course, nothing in nature is exactly periodic. All motion has a beginning and an end, so that, in  
the mathematical sense, strict periodicity does not exist in the real world. Nevertheless, periodicity  
has proved to be a supremely useful concept in elucidating underlying laws and mechanisms in  
many fields.’16

Periodic phenomena being so ubiquitous, pitch has evolved as a mechanism for detecting periodicity  
in an environment. Because strict periodicity does not exist, being delimited in time and always  
accompanied by some sort of  noise, the mechanism is tolerant of  this divergence. Pitch perception  
consists both in the factoring and rounding off  of  (near) periodicity from an auditory scene as well as  
in the segregation of  sources from this scene. If  periodicity is understood as an invariance with  
respect to translations in time, then we can see that periodicity gives rise to discreteness, puncturing  
holes in the time continuum by bringing about units through repetition. From this logic, another  
way of  describing this double function of  pitch with respect to unities would be: to discretize the  
world and to detect simultaneities. Both these functions are related to harmonic duality: periodicity  
detection corresponding to, and likely (partly) responsible for, the harmonic or proportional facet,  
while the task of  stream segregation relates to the enmeshment of  pitch and timbre, and many  
composite harmonic configurations inherit the properties of  this more general function.

Pitch  perception  can  therefore  be  seen  as  involved  in  two  somewhat  inverse  functions:  the  
segregation and the unification of  sound components, both simultaneous as well as sequentially.  
Stream separation is a continuous process, while bundling of  elements into individually identifiable  
impressions accounts for discreteness. This integrating aspect might condense inner modulations,  

14 Terhardt, E. (2001, May 8). Definition of  Pitch. Retrieved from 
http://www.mmk.ei.tum.de/persons/ter/top/defpitch.html

15 Schouten, J. F. (1940). The residue, a new component in subjective sound analysis. Proceedings of  the Dutch Royal 
Academy of  Sciences, 43 (361).

16 Schroeder, M. (1990). Fractals, Chaos, Power Laws. New York, W H Freeman and Company, 1.
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transients or otherwise timewise separate components into unitary perceptions. Harmonic duality  
maps to this polarity: integration into units and differentiation of  streams, the former serving the  
purpose  of  identifying  proportionality  (relations  between  units,  happening  in  a  independent  
dimension from that of  high and low pitch distance), while the latter is of  use in the identification of  
separate sound colors and sources (for which pitch distance is of  great help).

In a sense pitch is perhaps the most distinct qualia in auditory perception – and for that matter, also  
with respect to other sensory modalities – in that its qualitative seemingness, the way it appears as an 
experience, permits a hugely gradated and finely tuned immediate apprehension that differentiates  
itself  in a  measuredly way. Pitch provides a reproducible, memorizable figure for identifying and 
comparing  relative  (but  sometimes  even  ‘absolute’)  stimuli,  capturing  relations  in  a  qualitative,  
immediate manner. Intervallic hearing, which in a sense is equivalent to ‘pitch to the second degree’,  
the quality of  two (or more) pitches, provides and even finer spectrum or graded scale for which to  
single  out  periodicities,  this  time  not  in  the  sense  of  high  and  low  but  as  highly  identifiable  
‘characters’ that, with a bit of  training, can be immediately apprehended.

1.2.2 Theories of  pitch perception

‘Historically, theories of pitch were often theories of hearing [...] It is conceivable that pitch grew  
out of a mechanism that evolved for other purposes, for example to segregate sources, or to factor  
redundancy  within  an  acoustic  scene.  The  ‘wetware’  used  for  pitch  certainly  serves  other  
functions,  and  thus  advances  in  understanding  pitch  benefit  our  knowledge  of  hearing  in  
general.’17

The science of  pitch was inaugurated by Greek Pythagoreans. Archytas (4th century B.C.) proposed 
the first known psychophysical account of  sounds and their perception, attributing for each pitch a  
different speed in the propagation of  vibrations, instead of  what is now known to be a different  
frequency, the speed of  propagation being independent of  pitch. This issue was not settled until the 
seventeenth  century,  when  the  quantitative  dependance  between  pitch  and  frequency  was  
established  by  Marin  Mersenne  (1636)  and  Galileo  Galilei  (1638).  Later  on  Joseph-Guichard  
DuVerney  (1693)  established  the  first  resonance  theory  which  suggested  a  ‘tonotopic’  
(correspondence of  pitch height  to  spatial  distance)  projection to the brain,  followed by Joseph  
Sauveur’s (1701) observation that a string could vibrate simultaneously at several harmonics (coining 
the terms ‘fundamental’ and ‘harmonics’). Later on, theories explaining superimposed vibrations on  
a  string  were  developed  by  various  mathematicians  (Taylor,  Bernoulli,  d’Alembert),  but  it  was  
Leonhardt  Euler  who  condensed  these  ideas  with  the  concept  of  linearity,  which  implies  the  
principle  of  superposition  (that  these  partial  waves  propagate  independently  and that  the total  
sound  at  each  point  corresponds  to  their  sum).  The  thinking  of  vibrations  as  sums  of  more  
fundamental ones, with their periods at integer submultiples of  the longest period lead to Joseph  
Fourier’s theorem (1822), which proves that the sum can be expressed as a set amplitudes and phases  
and that this sum is unique.

Nowadays two quantities related to pitch are distinguished: what is called spectral pitch, usually  
denoted as  fLOCUS and periodicity pitch, or F0. August Seebeck, who first utilized acoustic sirens in 
auditory research, presented observations (1841) suggesting that a pitch sensation was determined 
not only by the fundamental, but also by other higher partials, even to the point of  having acoustic  
signals  that  could elicit  a  pitch without  possessing a  fundamental  partial  at  that  frequency.  He  
concluded that pitch corresponds to the period of  the overall periodicity. A battle ensued with Georg  
Ohm, for whom the ear performs a Fourier analysis of  signals into their partial components from 

17 Chevaigné, op. cit., 221. Most of  this section is structured around the topics dealt with in this article. 
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which  pitch  is  determined  by  the  frequency  of  the  spectral  fundamental.  Ohm’s  dismissal  of  
Seebeck was to cause many future misunderstandings, delaying the development of  non spectral  
theories. This spectral theory was based on his law (1843) which extended the principle of  linear  
superposition to the sensory domain. Hermann von Helmholtz (1863) refined and developed it,  
explaining how the process happens in the cochlea. If  a complex sound is composed of  sinusoids,  
the sensation itself  can also be decomposed into simple sensory components. He also stated that: (1)  
only vibrations with a nonzero fundamental evoke a pitch related to that period; (2) other partials  
may evoke additional pitches; (3) relative partial amplitudes affect timbre but not pitch; and (4),  
relative phases of  partials affect neither quality nor pitch. He proposed a model according to which  
the cochlea (and specifically the basilar membrane inside it) behaves like a bank of  resonators, to be  
proved physiologically  by  Georg  von Béckésy’s  (1928)  discovery  of  the  process  of  transduction  
happening in the inner ear, later refined by Plomp and Levelt’s (1965) critical band model18.

This history surveys the basics of  what is now called place theory, also known as pattern matching. It 
consists in estimating pitch based on a spectral analysis of  the provoking stimulus through patterns  
formed by the spacing and amplitudes  of  its  partials.  It  is  spatial  for it  follows the tonotopical  
metaphor in the way it  was proposed by Helmholtz,  suggesting that pitch is  perceived through 
‘conscious  inference’  as  each nerve attached to the spatially  arranged resonators  in  the cochlea 
carries with it ‘specific nervous energies’, each representing a different quality of  pitch.

Nowadays the cochlea has been thoroughly studied and is indeed considered a tonotopic transducer,  
but  there  are  more  aspects  to  this.  The  basilar  membrane  inside  it  transduces  the  vibrations  
transmitted  from  the  timpani  by  moving  inside  a  liquid  spiral  chamber  and  transmitting  its  
vibrations to the hair cells disposed along the spiral and associated with nerve fibers that respond to  
specific  frequencies19.  There  is  still  a  heated  debate  as  to  what  kind  of  vibrations  the  basilar  
membrane undergoes. Béckésy’s model is that of  a traveling wave; the problem with it is that, being  
a serial phenomenon, it does not allocate frequency to place along the cochlear duct. Resonance  
models, on the other hand, account for tonotopy through parallel vibrations. It may be that what 
stimulates the basilar membrane and the cells has to do with a combination of  traveling waves, 
resonance, plus an active amplification scheme where the outer hair cells compensate and change  
the physical properties of  the system20.

The cochlea is an active and non-linear system. Active, because in addition to receiving acoustic  
energy, it also has a ‘regenerative’, ‘undamping’ mechanism which adds energy to the very signal it  
is trying to detect, effecting a ‘sharpening’ of  the resonance required for the transduction, in order  
to  change  its  tuning  characteristics  and  resolution.  The  outer  hair  cells,  through  chemical, 
mechanical and electrical interaction with the basilar and tectorial membranes, change their and 
the liquid’s physical properties, producing a negative damping that injects energy into the system,  
under control from the central nervous system.

The cochlea  is  non-linear  because  it  distorts  the  incoming  signal,  producing  signals  which are  
byproducts of  its functioning, such as combination tones and spontaneous subjective pure tones  

18 We will discuss in the next chapter Plomp, R & Levelt, W. (1965). Tonal Consonance and the Critical Bandwidth. 
Journal of  the Acoustical Society of  America, 38(4), 548-560, from which the model for dissonance curves derives. 

19 There are inner hair cells which do the actual transduction and outer hair cells which account for compensatory 
processes within the cochlea. Also, as an interesting fact, it happens that auditory hair cells are the only plant cells in 
the mammal body, or at least the only ones having the characteristic of  being pressurized like plant cells. See for 
example, Baylor Collegue of  Medicine. Outer Hair Cell is Pressurized. Last retrieved May 21, 2011, from 
http://www.bcm.edu/oto/index.cfm?pmid=15267

20 This heated debate happened between Alain de Chevaigné, Martin Braun, Richard Lyon and others at the Auditory 
Mailing List http://lists.mcgill.ca/archives/auditory.html started March 2, 2010 and continuing until February 
2011.
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known as  otoacoustic  emissions21.  Another  nonlinear  characteristic  is  that  it  behaves  differently 
according to frequency. Recent modeling of  the basilar membrane has been achieved through a  
cascading filter bank, so-called gammatone filters22. The proponents of  this model contend that one 
of  the  main  functions  of  the  cochlea,  arguably  more  important  than frequency  filtering,  is  to  
compress the enormous range of  amplitude variations in sound we are capable of  hearing into a  
more manageable dynamic range that can be transmitted through the nervous impulses transduced  
by the inner hair cells. This compression is frequency dependent and highly non-linear, compressing  
the input dynamic range by up to six orders of  magnitude. Inner hair cells can only transduce  
around 60 dB, so to explain the 120 to 140 dB of  dynamic range perception in humans (able to  
detect differences in amplitude of  up to 14 orders of  magnitude!), the outer hair cells have been  
shown to reduce this range by compressing another 60 dB23. Given that the frequency resolution of 
the cochlea is somewhat broad, most of  the auditory filtering occurs at higher neural processing  
centers in the brain, lending additional support to dynamic compression as the main function of  the  
cochlea.  These details  regarding  the cochlea can help understand the discussion of  dissonance  
curves we will have in the next chapter, as they are offshoots of  basilar membrane models.

For Ohm and Helmholtz, the pitch sensation was straightforwardly the lowest partial. As we know,  
this does not hold for many kinds of  stimuli, for which other more refined algorithms have been  
proposed. They may estimate pitch from the spacing of  the partials,  from loudness patterns, or  
through sums of  subharmonics  of  the partials.  A same pitch can be evoked by widely varying  
spectra, including those without a fundamental, as in Ernst Terhardt’s model (1974), where specific  
loudness patterns are the basis for a derived virtual pitch ‘gestalt’, inducing a pitch from partials  
other than the fundamental, distinguishing ‘spectral’ from ‘virtual’ partials24. Virtual pitch is related 
to  what  he  calls  analytic  listening,  a  learned  mode  of  listening  distinguished  from the  innate,  
synthetic  listening  where  Ohm’s  law  follows.  Pattern  matching  models  thus  require  a  learning  
process and the existence some sort of  internally stored templates to which the input is compared.  
The fact that a string behaves like a pattern-matcher makes for possible mechanisms for which no 
learning is required, though. Furthermore, a string operates directly on the waveform, not on a  
spectral pattern, so the Fourier decomposition might not even be needed.

Temporal theories of  pitch were brought back to life by Schouten (1938) when he showed many  
instances where F0 was not the fundamental partial. His said that a ‘residue’ pitch is responsible for  
the overall  periodicity.  This  residue arises  from the combination of  high,  unresolved partials  –  
partials  too high and close together  to be separately  distinguished and processed in the basilar  
membrane – and is present even when a masking noise obstructs the fundamental frequency. Later  
on it was found that those residues were not limited to unresolved partials but also included the  
resolved partials, meaning that the residue emerged from the sound as a whole.

Time models assume that the ear ‘counts’ vibrations instead of  guiding itself  by the metaphor of  
calibrated resonators. Contrary to place models, in time based ones it is only possible to suppose that  

21 “Otoacoustic emissions are small sounds caused by motion of  the eardrum in response to vibrations from deep 
within the cochlea. The healthy cochlea creates internal vibrations whenever it processes sound. Impaired cochleae 
usually do not. Some healthy ears even produce sound spontaneously as internal sounds are processed and 
amplified.”, from Kemp, D. Understanding and Using Otoacoustic Emissions. Last retrieved May 31, 2011, from 
http://www.est-med.com/OAE/understanding-using_OAE von Kemp.pdf. This phenomenon is mostly of  interest 
in audiology and hearing impairment research. 

22 Lyon, R., Katsiamis, A. & Drakakis, E. (2010). History and Future of  Auditory Filter Models. IEEE International 
Symposium on Circuits and Systems (ISCAS), 3809-3812.

23 Lyon, R., Katsiamis, A. & Drakakis, E. (2007). Practical Gammatone-Like Filters for Auditory Processing. EURASIP 
Journal on Audio, Speech, and Music Processing, Article ID 63685, 2.

24 My implementation of  dissonance curves includes a derivation of  this model that calculates virtual pitches from a 
spectrum. It is used to accompany the intervals produced by the dissonance curves as it combines with them very 
well. More in Chapter 2. 
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the counting takes place in the brain, not in the cochlea. In time theory, which has its roots in the  
Pythagoreans and Boethius, the behavior of  a string is a guiding metaphor, as it can make many  
sounds, one sound encompassing others but coming to the ear integrated in the unity of  a single  
pitch.  Here  the  elementary  components  of  sounds  are  not  partials  (sine  waves)  but  discrete  
‘phonons’:  percussions  or  pulses.  Galileo’s  account  of  consonance  explains  it  in  terms  of  
commensurability, as the blending of  two simultaneous sounds due to the proportionality of  their pulse  
trains. This is related to the harmonic metrics we will discuss in Chapter 3. 

Joseph Licklider (1951)25 first put forth the theory of  autocorrelation, the main model behind time 
theories. A measure of  self-similarity across time, it reveals the close relationship between periodicity  
and self-similarity, and as a concept it can also be used to describe and explain musical phenomena  
at  several  time  scales.  Autocorrelation  (AC)  proceeds  after  cochlear  filtering  and  hair  cell  
transduction, happening as an analysis of  trains of  nerve impulses. It is a two dimensional pattern  
with the axes of  CF, characteristic frequency, and lag time,  !. The delayed and direct signals are 
multiplied and the result is summed up, so that for lag times corresponding to the period of  the 
signal the sum will be maximal. There are also peaks at time intervals related to the sub periodicity  
of  the  signal,  such  as  harmonic  partials,  which  also  contribute  to  the  main  peak.  Licklider  
speculated that neural circuits in the lower centers of  the auditory system can perform the three  
operations  necessary  for  AC:  delay,  multiplication  and  temporal  integration.  The  neural  
arrangement happens in two dimensions: the frequency projection from the cochlea and delayed  
versions of  these projections. At another further network, this matrix of  information is summed and  
integrated  for  the  sought  period  to  emerge.  AC has  affinities  with  pulse  counting  theories  of  
consonance: “when the frequencies of  two sounds, either sinusoidal or complex, bear to each other  
the ratio of  two small integers, their autocorrelation functions have common peaks.”26

AC  requires  accounting  for  the  low  firing  rates  of  neurons  which  max  out  at  around  300 
spikes/second for which the so-called ‘volley theory’ explains firing rates higher than this limit 27. 
Time based  processing has a different frequency range of  operation than place mechanisms, the  
former limited with respect to the latter in high frequency resolution, while the latter is limited with  
respect to the former in the low regions, for which time processes can go below the usual cochlear  
pitch range at 16-30 Hz, all the way down into the infrapitch regions. Both models overlap within  
30-2500 Hz, where most musical  activity happens. The breakdown of  time mechanisms occurs  
between 3.5 and 5 kHz, coinciding with the limit of  melodic pitch and intervallic recognizability.

AC  is  a  computational  model,  borrowed  from  mathematics,  of  which  there  have  been  many  
variations and refinements, some better equipped that others to predict empirical behaviors. They  
are usually called Auditory Image Models. The string metaphor can be seen as belonging to the AC  
model family as it is in essence a delay line that feeds back into itself. AC, the string and pattern  
matching are closely related, their difference lying in their temporal resolution. At each instant, AC  
reflects a relatively short interval of  its input, the string metaphor reflects the past waveform over  
much  longer  time  intervals.  Other  AC models  capture  regularity  over  longer  periods  and  are  
‘subharmonic’ counterparts to ‘harmonic’ pattern matching schemes, showing strong connections 
between AC and pattern matching, with the concept of  the string as an analogy bridging both. Sine  
waves are elementary in place models, in time models they behave just like any other signal.

Both temporal  and place models  require a  temporal  integration mechanism to account for  the  
continuity heard in sounds despite them consisting in trains of  pulses or waves following each other.  
This integration must be limited for the perception of  trills and other fast modulating articulations  

25 Licklider, J. C. R., op. cit., 127-134.
26 Ibid., 131.
27 See Plack, C. & Oxenham, A. (2005). The Psychophysics of  Pitch. In  Pitch. Neural Coding and Perception.  New York, 

Springer, 12.
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not to become smeared. It  is also subject to an inherent tradeoff  in wave phenomena between  
frequency and time, where the accuracy of  frequency determination depends on a sufficiently large  
time window for the analysis, and the larger this window, the coarser the time resolution. Dennis  
Gabor’s formula28 (1945), derived from the uncertainty principle in quantum mechanics, says that:

"f  " "t ≧ k

The product of  the uncertainties in frequency and time is always larger than a positive constant.  
Time and frequency cannot be simultaneously defined in an exact way, there always remains an  
uncertainty. Increasing the accuracy of  one quantity increases the inaccuracy of  the other and vice  
versa.  This  has  consequences  for  thinking  perceptual  boundaries,  and  some  topics  related  to  
harmony also relate to this inequality, its constant k determining those borderlands which, if  crossed, 
cause sonic forms to experiment a ‘perceptual phase change’, a change in their properties by which  
they pass from one uniform perceptual state into another with different emergent characteristics  
(and this might either happen abruptly or gradually).  In the case we are dealing with now, it is  
pertinent to the transition between pulses and pitch, or to fluctuations belonging to the ‘zone of  
articulation’ such as vibrato and tremolo which, when speeded up sufficiently, are conflated into the  
timbral modulations within a tone. This boundary can be called the rhythm-pitch boundary. Its  
‘integration zone’ has a boundary beginning at around 50 ms (20 Hz) for its lower threshold, with a  
higher one lying around 10-15 ms (66-100 Hz), although this upper bound is more of  a grey zone,  
much more difficult to determine.  Within this region, pitch is not yet fully fused into a unit apart  
from  its  sonic  components29.  There  are  several  layers  of  temporal  integration  simultaneously 
embedded on top of  each other, an insight relevant also to the fact that harmony involves different  
time scales, something which will be dealt with during the course of  this study.

Several kinds of  temporal integration have been incorporated into AC models. They involve two  
kinds of  frequencies: those arriving from the cochlea, which are subject to the uncertainty relation,  
and those produced by the synchronization of  neural circuits to the periodicity of  incoming waves  
from the cochlea (‘phase locking’),  determined with arbitrary accuracy. They allow transients to  
reset the integration process, avoiding integrating for longer than necessary.  These facts suggest a 
combination of  time and place models. 

There has been no way to eliminate either time or place models as they both explain, in their most  
current versions, many kinds of  inputs and predict most kinds of  behaviors. To a great extent they  
are found to be complementary. Licklider proposed a ‘duplex’ theory which included a learned  
neural network to integrate them. There is still strong support for a two mechanism hypothesis, its  
main drawback being the lack of  parsimony in conceiving two mechanisms instead of  one (plus a  
possible third mechanism to integrate the two). Place processing adapts well to resolved harmonics,  
while time processing handles unresolved ones. Despite the evidence for both mechanisms and the  
fact  that  they  provide  a  better  fit  to  empirical  behaviors,  a  two  mechanism  hypothesis  also  
compounds the difficulties of  both.

As for this research and my position as composer, evaluating this double mechanism hypothesis from 
the  standpoint  of  music  and harmony  shows  that  the  problem should  not  be  limited  to  pitch  
perception on its own, but that it may be revealed more clearly in musical and particularly harmonic  
situations. A concept of  a ‘single’ pitch is  already a reduction, as pitch always happens beyond  
laboratory conditions within an auditory environment, rarely unaccompanied by other pitched and  
non pitches sounds. Nevertheless, a compositional hypothesis such as harmonic duality, derived by  
awareness, introspection and experience gathered by exposure and handling of  musical materials,  

28 Gabor, D. (1946). Theory of  Communication. Journal of  the IEEE, 93(26), 429 – 441.
29 More details in Warren, R. (2008). Auditory Perception. An Analysis and Synthesis. Cambridge: Cambridge University 

Press.
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can provide support for the fact that two parallel, supplementary processes are active because they  
have corresponding affinities with each of  the harmonic facets and are likewise entangled with each  
other. The perspective of  composition can’t directly intervene in advancing these multidisciplinary  
models, although it could suggest targets and situations on which the models can be experimentally  
tested, helping to challenge and refine them through the elucidation of  the qualities and properties  
of  harmonic duality. In this way, harmonic duality not only takes some of  its features from pitch  
perception models, but can also give and suggest some ideas back to auditory science.

1.2.3 Neurobiological studies of  pitch from the bottom-up

Parallel pathways are followed by the signal transduced by the cochlea in its way from the auditory  
nerve to  the auditory cortex,  each matching the properties  of  time and place based processes.  
Piecewise neurological descriptions, where each step increases the complexity and time frame of  the  
perceptual  process  is  what  cognitive  psychologists  call  a  ‘bottom-up’  description,  experiences 
understood in terms of  smaller processes that accumulate into emergent contents of  consciousness.  
They are ‘data-driven’, proceeding from the sensory towards the cognitive. In contrast, ‘top-down’ 
strategies  refer to  approaches  that  explain in terms of  higher  level  qualia or learned ‘schemas’, 
expectations or concepts which are analyzed into subsystems of  ‘black-box’ components (where it is  
foremost to know their effects rather than their functioning) interacting all the way down towards  
physiological sense mechanisms.

Bottom-up  and  top-down  processes  are  simultaneously  involved  in  perception,  though  their  
terminating points are hard to conciliate. High level concepts or expectations mediate upon the data  
acquisition  process.  Also,  most  lower  level  features  have  been  quite  well  studied,  but  as  the  
descriptions progress up through the auditory pathway from the brain stem towards the auditory  
cortex,  the  gaps  in  understanding  become  larger  and  less  detailed.  As  the  processing  ascends  
through the auditory pathway, it involves more subsystems and larger time windows, becoming more 
contextualized and imbricated with memory and learning.  The information in the brain is  not  
processed  sequentially  but  works  in  a  massively  parallel  way,  accounting  for  the  fact  that  the  
coordination between relatively slow data processing units can produce relatively fast reactions for  
complex stimuli.

From the top-down perspective,  psychometric  studies  have shown the mathematical  spaces  that  
describe  subjective  qualities  related to  pitch,  intervals  and tonality.  These  models  are  a  sort  of  
‘average’ or overall outcome of  the many interactions taking place physio- and psychologically. The  
evidence  for  a  combined  temporal/place  operation  given  by  bottom-up  descriptions  is  
complemented  by  the  top-down  methods  with  the  insight  that  pitch  requires  more  than  one  
dimension to be accounted for in subjective terms. Both methods provide a wider picture for the  
duality of  pitch perception and its consequent supervention on harmonic situations.

The bottom-up description of  auditory processing in the brain goes, in a simplified way, as follows:  
once the auditory information has been transduced into the auditory nerve, it proceeds to several  
auditory centers in the brain stem. The first one is the Cochlear Nucleus, where several kinds of  
neurons specialize in detecting onsets of  tones, patterns of  peaks or the ending segments of  stimuli,  
information which will  be further processed when projected higher up in the auditory pathway.  
Other neural circuits perform more complex roles, such as decodification of  amplitude modulations  
in  the  signal.  Various  types  of  amplitude  modulations  are  relevant  for  pitch  processing,  the  
periodicity  envelope  being  an  amplitude  variation  resulting  from  the  overall  effect  of  many  
interacting partial components. 

Temporal  autocorrelation  has  been  neurologically  explained  through  delayed  and  undelayed  
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responses of  neural networks to the periodicity carrying envelopes of  a signal. Two neural circuits,  
an oscillator and an integrator, are synchronized to the signal envelope, producing an output signal  
when they coincide. This signal corresponds  to integer multiples of  the carrier waveform in the 
amplitude modulated signal. This model (supplemented with ‘volley principle’ mentioned earlier)  
can account for the temporal codification of  periodicities up to 1 kHz and even higher (up to 3-5  
kHz). Many of  these circuits running in parallel are necessary to cover the known spectral and 
temporal ranges of  hearing30.

The next station where axons from the Cochlear Nucleus end up is a crucial auditory structure  
called the Inferior Colliculus (IC)31, the main center of  tone perception. Its central nucleus has an 
arrangement  of  neural  nets  where  the  temporal  information  concerning  periodic  signals  
(synchronized spikes in nerve fibers) is transformed into a spatial representation (a neural map). This  
is the station where the ‘high’ and ‘low’ spatial attributes of  pitch arise out of  temporal periodicity  
information. It is also the processing center where the constitution of  the auditory filters and critical  
bandwidths  is  achieved.  Its  tonotopic  structure  enhances  and alters  the  cochlear  tuning  curves  
through a further filtering performed by neurons tuned to specific frequencies.

This three dimensional matrix consists of  around 30-40 laminae of  around 30x50 neurons each.  
One axis (the one with 30 neurons) codifies tonotopy, the frequencies of  the spectral content of  the 
signal arriving from the basilar membrane. The second axis (of  around 50 neurons) corresponds to  
periodotopy, arriving from the temporal analysis performed in the Cochlear Nucleus. Periodotopy lies  
orthogonal to tonotopy and has a range of  variation of  around five octaves for each column of  
constant characteristic frequency CF, in some cases going all the way down to 10 Hz, and going up 
to a  fourth of  the CF. Periodotopy is  also known as ‘best  modulation frequency’,  indicating its  
derivation from the amplitude demodulation having been performed lower down the pathway. Both  
characteristic and modulation frequencies can be thought in terms of  amplitude modulation, as  
carrier  and  modulator.  Perception  mechanisms  concurrently  codify  both  periodic  and  timbral  
features of  sounds and these modulations cover a span that goes from the rate at which musical  
articulations happen (such as tremolo and other changes in the amplitude envelope related to onsets  
and release portions of  sounds) all the way up to the ‘inner’ modulations in the timbre (roughness  
and timbral effects related to AM such as spectral brightness – as in the electronic music technique  
of  ring modulation).

A 500 Hz tone with an amplitude modulation of  50 Hz will activate not only the neuron tuned to  
detect 20 ms, but also a neuron tuned to 100 Hz (10 ms) because 20 ms is a multiple of  10 ms, as  
well as one tuned to 200 Hz (5 ms). A neuron tuned to 6-2/3 ms (150 Hz) will also be activated, but 
to a lesser extent because dividing by 3 may result in a weaker coincidence as, belonging to a prime 
number power other than 2, it might involve a longer neural path. These responses behave more  
like comb filters than band pass filters in that one period provokes not one but a whole series of  
firings. Of  all these firings that project higher up into the auditory cortex, their sum and integral will  
be maximal at the point of  highest coincidences, thereby concluding the process of  autocorrelation  
through neural networks with a robust pitch estimation.

Higher up from the IC,  information processing in the cortex  is  linked to short  and long term 
memory.  Schemas32 arise  in  connection  with  long  term  memory:  functional  organizations  of 

30 Langner, G. (1997). Temporal Processing of  Pitch in the Auditory System. Journal of  New Music Research, 20, 118-125.
31 La., small posterior hill. Most functions in the auditory system pass through this important and relatively large nucleus, 

which also includes multi sensory connections related to visual, tactile and olfactory pathways. 
32 “Cognitive psychologists attempt to specify, through the interpretation of  statistical data obtained from experiments, 

how the mind works. And they often express that working in terms of  “mental structures” and “mental processes.” In 
his book on memory, Sir Frederic Bartlett (1886–1969) had introduced this distinction to explain how the memory of 
a story is first encoded (a process) into a schema (a structure), and then subsequently decoded (another process) as a 
recollection that may depart in significant ways from the original experience.” Gjerdingen, R. (2002). The 
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neurons that codify structured information, developing characteristic  responses to environmental  
stimuli. They arise through three types of  mechanisms: projection, self-organization and association.  
Projection, as with tonotopy, is the result of  a strict order in the wiring between neural centers,  
maintaining these structures from the periphery up to the highest cortical areas. Self-organization  
has been the focus of  computer simulations on how higher level response functions arise out of  the  
activation patterns of  simple neural networks exposed to musical stimuli.  This is how structures  
resembling  torus-like  spaces  have  been  found  in  simulations  regarding  pitch  and  tonality.  
Association is less close to perception and more an attribute of  higher cognitive functions, linking,  
relating and unifying diverse modes of  information processing (such as sense modalities) into higher  
level structures, also involving the imagination.

With  respect  to  music,  brain  scanning  techniques  have  shown  some  general  functions  of  the  
auditory cortex33. The primary auditory cortex identifies basic musical featured such as pitch and  
intensity,  the  secondary  cortex  deals  with  melodic,  harmonic  and rhythmic  patterns,  while  the 
tertiary auditory cortex is  thought  to  integrate these  patterns  into an overall  perception of  the  
music. These three functions correspond to the three main time scales in music (sound materials,  
mid size phrases/textures and large scale forms).

1.2.4 Pitch height and chroma 

Pitch height has ‘low’ and ‘high’ as its main attributes, carrying also within itself  timbral aspects  
such as spectral  envelope (defining source,  instrumental  family and register).  Pitch chroma, also  
called ‘pitch tonality’ or ‘tonal quality’, refers to periodicity pitch as well as to the musical categories  
of  pitch classes, which are independent of  register and timbre. It is specified as the quality that  
makes a pitch different from others inside an octave, such as the fact that all C’s, C#’s, D’s, etc., in  
different octaves possess a  qualia of  their own. The fact that melodies can be transposed to any 
arbitrary pitch shows that chroma happens not in relation to absolute, but to  relative  pitch, hence 
concerning intervallic qualities (‘octave’, ‘fifth’ or ‘seventh’) rather than absolute pitches. In relative  
hearing it is meaningless to refer to a ‘G-sharpness’, but nevertheless chroma is usually understood  
as the ‘colors’ through which pitch perception traverses a ‘registerless’ octave, a conception which is  
very different from the usual experience of  listening to melodic ‘characters’ as functions within a  
harmonic or scalar context (such as tonic, mediant, dominant, leading note, etc). These aspects are  
not distinguished by the concept of  chroma, rendering this concept less useful for harmony as one  
might have expected.

Both pitch dimensions are represented by a helical image where chromas spiral around a circle  
which is stretched upward like a spring by the height dimension, each circle completing a cycle at  
the  octaves34.  Compounding  the  problem with  the  definition  of  chroma  is  the  fact  that  most  
researchers assume only 12 chromas per octave, picturing the circle as equally spaced, conflating a  
proportional with a logarithmic conception. It’s as if  at each semitone a new chroma would appear,  
which is not the way musical intervals behave. This mistake is linked to an uncritical inheritance of  
a much simplified functional music theory. The loci in the pitch distance line (or octave equivalent  
circle for that matter) where proportions arise corresponds to an irregularly spaced grid related to  
the stacking of  divisions by whole numbers. Moreover, it is known since antiquity that there exist  

Psychology of  Music. In Christensen, T. (Ed.), The Cambridge History of  Western Music Theory. Cambridge: Cambridge 
University Press, 971-972.

33 Abbot, A. (2002). Neurobiology: Music, maestro, please! Nature, 416, 12-14.
34 This model comes from Roger Shepard, who in the 1960’s developed it from ideas going back to Drobisch (1846) 

and Révész (1913). See Shepard, R. (1964). Circularity in Judgements of  Relative Pitch, Journal of  the Acoustical Society 
of  America, 136(3), 2346–2353. See also Figure 1. 
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much more than 12 intervals in an octave, and even in the case of  twelve note equal temperament  
the same interval can have different functions depending on its context, each function related to a  
different intervallic identity.

Of  interest for our discussion are studies whose aim has been to map the subjective dimensions of  
pitch height and chroma in the auditory cortex35. Each feature is independently varied by means of 
synthetic probe tones. These variations are made in order to perform functional magnetic resonance  
imaging mappings of  the brain responses of  test subjects. The analyses of  these images, both for the  
group of  subjects as a whole and for individuals, have shown that temporal and spatial extraction  
processes  map to distinct  regions  of  the secondary auditory cortex,  reflecting the psychological  
findings of  the two component subjective pitch. There is a region in Heschl’s gyrus in the secondary  
auditory cortex  which deals  with  both height  and chroma;  sections  anterior  to  the gyrus  were  
activated by changes in chroma-only test tones, while sections posterior to the gyrus corresponded to  
height-only tones. This latter area is known to be specialized in the segregation of  multiple sound  
objects  from an  auditory  scene  (timbral  identification of  sources),  while  the  areas  activated  by  
chroma have been shown to relate to melodic processing as well as to the extraction of  prosody in  
speech. Chroma processing relates to the extraction of  “coherent information streams that can be  
analyzed independently of  the specific sound source”36, alluding to the abstract nature of  pure pitch 
patterns devoid of  timbre from which melodies are constituted, generally proceeding from a single  
source. This is a more useful conception of  chroma, one which alludes to the ‘pitching’ of  melodic  
space more than to colors. The results also suggest a connection between prosody and melody.

By encompassing its material and perceptual principles, the theorization of  harmony can benefit  
from these traits of  tensions and entanglements. Here we see that both harmonic dimensions are  
related to dualities such as multiplicity/unity, source/pattern, value/character, and so on. They play  
themselves out in different but parallel ways, and to greater or lesser degrees at several levels of  
organization, ranging from the levels of  timbre, pitch, melody, chords, tonal and metric fields, and 
even higher up to formal levels such as sections, movements and pieces as a whole.

1.2.5 Top-down psychological studies of  pitch  

Psychometrics  and  other  empirical  techniques  from music  psychology  have  provided  the  main 
source of  knowledge for top-down descriptions. The literature on the subject is large and outside the  
topic of  our present research, so we’ll focus only on aspects that pertain to the multi dimensional  
character of  pitch perception in order to link them to harmonic duality and harmonic space.

Apart from the aforementioned chroma and height spiral proposed by Shepard, Carol Krumhansl 37 
has arrived at so-called probe tone ratings of  contextual pitch. Listeners were asked to rate how well  
a single tone fitted against a fixed tonal background (scales, chord cadences or small pieces), varying  
the tone over the whole chromatic range for each rating. The statistics agreed quite well with the  
ratings  of  consonance  having  been proposed by  some music  theories,  especially  in  the  case  of  
listeners with a musical background. Intervallic sizes were seen to be less important than their tonal  
function,  implying  that  context  and  tonal  hierarchies  have  influence  beyond  the  perception  of  
intervals in isolation, and that invariant structures are abstracted at the level of  tonal centers or keys  

35 Warren, J. D., Uppenkamp S., Patterson, R. D., Griffiths, T. D. (2003). Separating pitch chroma and pitch height in 
the human brain. Proceedings National Academy of  Sciences, 100, 10038–10042.

36 Ibid., 10042.
37 Krumhansl, C., Kessler, E. (1982). Tracing the Dynamic Changes in Perceived Tonal Organization in Spatial 

Representation of  Musical Keys. Psychological Review, 89(4), 334-368 and Krumhansl, C. (2004). The Cognition of 
Tonality – as We Know it Today. Journal of  New Music Research, 33(3), 253-268.
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beyond the immediate setting of  single notes and chords.

These probe-tone profiles were measured for major and minor tonalities and then compared by  
correlating  all  major-major,  major-minor  and  minor-major  key  pairs  to  arrive  at  an  ‘interkey’  
distance  matrix.  This  matrix  was  subjected  to  a  multidimensional  scaling  analysis,  a  statistical 
technique  for  interpreting  psychological  data  which  produces  spatial  representations  based  on  
distance  metrics.  What  obtained was  a  four  dimensional  solution construed  as  a  toroidal  map  
depicted as two circles, one of  fifths and the other of  thirds, together with corresponding relative  
and parallel minor and major tonalities, which are represented by the variables  " and  ! as the 
angular rotation along each circle in the torus (see Figure 1,  B). This map, obtained independently 
from music theory, is similar to the harmonic space that we will discuss in Chapter 3, as well as to 
Hugo Riemann’s tone maps or Arnold Schoenberg’s regions chart. As has already been delineated 
previously,  my criticism here is  that  these  kinds  of  studies  want  to  prove aspects  of  functional  
tonality and twelve tone equal temperament from a psychological point of  view by way of  studies  
which secretly assume the very theories they want to prove, especially because the simple examples  
given to the test subjects are derived from these theories. In this case though, the researchers are  
aware of  this limitation and do not make claims outside cadential equal-tempered music and what is  
interesting for us is that these visualizations show to how a more generalized kind of  harmonic space 
can arise as a mental schema.

Through  ‘cognitive  modeling’,  Leman  &  Carreras38 computer  simulated  a  perceptual  learning 
system  whose  input  is  acoustic  data.  It  implements  inner  ear  filtering  and  dynamic  range  
compression,  neural  firing  patterns  and periodicity  analysis  by  autocorrelation,  together  with  a  
second  cognition  module  based  on  a  self-organizing  network  which,  after  learning  by  self-
organization,  yields  a  schema of  tone  center  perception as  is  thought  to  be carried by  neural  
networks in the brain. Afterwords, it is tested with musical sequences in a similar way to the probe  
tone ratings, but as a computer simulation, producing results that fit very well with the psychological  
studies (see Figure 1, D & E).

Probe tones relate to the Aristoxenian concept of  dynamis, to be dealt with in the next section. They 
also relate to the statistical weights of  pitch sets that are part  of  the development of  stochastic  
harmonic fields (elucidated in Chapter 3). Other memory and patterning processes  in pitch sets, 
such as Markov chains, which add orderings to the probabilities of  each interval, can be layered on 
top and understood in relation to probe tone ratings: as potentials or probabilities that structure  
pitch at a level beyond the immediate intervallic time frame, a level lying between the note, the  
motive and reaching out towards the phrase.

38 Leman, M. (1997). The Convergence Paradigm, Ecological Modeling, and Context-Dependent Pitch Perception. 
Journal of  New Music Research, 26,133-153. Also see Leman, M. and Carreras, F. (1997). Schema and Gestalt: Testing 
the Hypothesis of  Psychoneural Isomorphism by Computer Simulation, in M. Leman (Ed.), Music, Gestalt and 
Computing, Berlin: Springer, 144-168.
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Figure 1. A) Shepard’s helical pitch structure. (From Warren et al., 2003.) B) Toroidal  
map from multidimensional analysis of  interkey probe tone profiles. (From Krumhansl, 
1982.) The dimensions are closed in on themselves, so that they wrap around at the 
edges  to  form a  torus,  as  can  be  seen  in  C).  D)  Self-organizing map  derived  from  
Leman’s cognitive model. E) Probe tone ratings (for experts, intermediate and novices) 
for major chords in the key of  C, plus computer simulations arrived at from the previous  
mapping. (From Leman & Carreras, 1997.)

1.2.6 Pitch research in relation to harmony, melody and timbre

In  the  past,  research  into  pitch  was  guided  mostly  by  musical  considerations  but  nowadays  it  
encompasses a much wider field of  sonic phenomena. After having run through the workings of  
pitch perception models, now it is of  interest to see how they relate back to musical topics. We will  
do this in relation with harmonic duality and also to sum up some of  the distinctions and findings  
that have been made up to this point.

No  pitch  model  explains  nor  predicts  octave  equivalence.  It  is  neither  an  assumption  nor  an 
emergent  property  of  the  models.  Why,  then,  is  it  one  of  the  most  striking  features  of  pitch  
perception? Moreover, it seems to be an exclusively auditory phenomenon having no equivalent in  
other sense modalities – to consider musical tone color as relating to visual color and frequency  
leads to the conflicting fact there are no visual octave relations 39. There is physiological evidence of 
laminae with octave architecture in the Inferior Colliculus and in the next station in the auditory  
pathway, the Mediate Geniculate Body in the thalamus, which seem to process pitch classes within  
each lamina. Both the basilar membrane and the tonotopic/periodotopic maps in the IC behave as  
approximately logarithmic transducers, especially for higher frequencies. Ernst Weber’s law states  

39 Visual perception does occur within a span of  slightly less than an octave (from 390 to 770 trillion Hz), although the 
main difference between the two senses has to do with superposition. In audio, superposed frequencies are perceived 
as increasing in quantity from single to multiple, whereas visually, color frequency superposition results in different 
hues of  single colors. The analogous visual percept of  pitch would more likely be the direction of  incident light rays, 
as they strike different regions of  the retina in a transduction similar to that of  the basilar membrane. See Roederer, 
J. (2008). Physics and Psychophysics of  Music, Berlin: Springer, 174 and its footnote.
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that  most  senses  transduce  physical  stimuli  logarithmically,  meaning  in  this  case  that  a  double 
amount of  physical intensity would correspond to a single step increase in sensation. Putting aside  
the fact that transducers follow the law only approximately, physically there would be no reason to  
expect its exponent to be exactly the integer 2. Many sensory transductions have been measured,  
none of  them having an integer constant40.  Its  prominence could arise not because octaves are 
special  to perception, but conversely,  that is,  because the acoustic structure of  octaves produces  
singular perceptual effects. Being the only interval where the partials of  the upper tone match all the  
frequencies of  the lower tone could mean that octaves require less operations for the pitch processor,  
and hence stand out from other intervals. It seems that both motivations must be operative and that  
some perceptual mechanisms might have evolved as adaptations to the specific makeup of  octaves.

Similar relations of  equivalence can also exist within other intervallic spans, the most fundamental  
being  those  with  prime  factors  other  than  2,  such  as  3,  5,  7,  etc.,  (quintal,  tertial,  septimal  
equivalences), but it’s possible to conceive other intervals than those. There are many problems,  
however, in making compositional materials out of  these new equivalences, firstly, because octave  
equivalence is stronger and will mask and interfere with the ‘chromas’ within the other fundamental  
intervals, so appropriate musical contexts have to be devised in order for these different relationships  
to stand out; secondly, because many of  these ‘chromas’, say, within a twelfth (3) or tenth plus octave  
(5), happen to be the same than those within an octave, making the differentiation more difficult;  
thirdly, obtaining these chromas is not a trivial question, they don’t arise unavoidably, but have to be  
generated by some process of  division (by proportional – harmonic or arithmetic – or continuous –  
geometric  –  means)41,  and  this  does  not  in  any  way  guarantee  that  these  ‘chromas’  will  be 
experienced as belonging in any way to their generator. The case of  7 as a generator seems to be  
promising, and I will discuss in due course some strategies for making some kind of  perceptible  
septimal equivalence pitch sets.

Another topic of  pitch perception of  interest to harmony is that of  dynamic pitch, as it happens in  
speech as well as with glissandos. It poses big challenges to pitch models, whose design is based on  
stationary pitch. It can conceivably arise through different mechanisms from static pitch, and it has 
been  hypothesized  that  stable  pitch  could  even  arise  from dynamic  pitch  mechanisms.  It  also  
involves  the  question  of  how  much  frequency  modulation  the  pitch  mechanism  is  capable  of  
tracking and to what extent frequency modulation might be transformed into amplitude modulation  
in  the  extraction  process.  Regarding  harmonic  duality,  dynamic  pitch  belongs  to  the  timbral 
dimension as it lacks a fixed periodicity. Whatever the pitch gradient detection mechanism might  
consist  in,  it  most  likely  interacts  with  periodicity  processors,  so  depending  on the  situation,  a  
constantly  moving  pitch  might  make  the  entwinement  of  the  two  aspects  give  way  to  the 
domination of  the spectral facet or provide space for a combination of  both42.

40 E. H. Weber’s psychophysical law, ‘the size of  a just noticeable difference is proportional to the stimulus intensity’, 
1834, was furthered by G. T. Fechner, ‘S = k log I + C; S = sensory magnitude, I = stimulus intensity, k and C = 
constants’, 1860, later refined by J. A. F. Plateau, ‘equal stimulus ratios produce equal sensation ratios’, S = k In; 
sensory magnitude = a constant times a stimulus intensity to the power of  n, 1872. This began to be measurable in 
practice until the 1930’s, giving way to the first subjective scales (Fletcher-Mundson curves for loudness, mel scale of 
pitch, and many others). Stanley Stevens later generalized the law, measuring many sensory conditions (heat, color, 
intensity, taste, smell, cold, tactility, etc, as well as auditory pitch and loudness, 1950’s). He does not encounter any 
integer proportionality constants. (Information gathered from Warren, op. cit, 108-109 and Weber-Fechner Law. In 
Wikipedia. Last retrieved November 16, 2012, from http://en.wikipedia.org/wiki/Weber-Fechner_law

41 To be discussed in the following section on Greek harmonics. The best known example of  a tuning and scale which 
has a different module than an octave is the Bohlen-Pierce scale, which divides the ‘tritave’ (twelfth) geometrically 
into 13 equal divisions.

42 James Tenney’s glissando pieces, starting from For Ann (rising) (1969), pertain to the ambiguity between chroma and 
pitch height as embodied in Shepard tones. In Koan for String Quartet (1984), discrete periodicities are made to 
stand out from within the continuum.
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A further issue related to pitch, even more associated to musical composition, is the blurring of  
timbre and pitch, or more precisely, the situations that bring out multiple pitches within timbre, in  
connection  to  what  is  called  ‘multiple  pitch’  in  auditory  research.  It  is  interesting  to  conceive 
timbral variations in terms of  pitch, contemplating a territory that lies between a steady single pitch 
(a sine tone) and very fast frequency fluctuations of  that pitch producing different kinds of  noise,  
depending on the speed and span of  the variations. The realms in this continuum extend from  
simple  to  more  or  less  complex  overtone  structures,  transmuting  into  ever  more  inharmonic  
dispositions of  partials, reaching out all the way up to saturated and unstable overtones, of  which  
there are a large amount of  varieties and densities culminating in the full range fluctuations of  white  
noise43. The territory within these poles where the perception of  pitch transitions from single to  
multiple lies more or less where partials become inharmonic and begin to fluctuate, before their  
density and speed surpasses certain perceptible complexity. Perceptually, this threshold is dependent  
on loudness, involves context, requires time and usually implies an analytic mode of  listening. When  
it  does  happen  (for  instance  after  a  sustained and  somewhat  loud beating  of  a  tam-tam or  a  
triangle44), recognition can easily transmute between a timbre with pitch and multiple pitches within 
timbre, depending on various factors, some physical (related to the properties of  the sound emitting  
materials  as  well  as  the  movement  of  waves  within  the  acoustic  space),  some  psychoacoustic 
(involving thresholds of  fusion/separation of  partials) and some mental (dependent on modes of  
attention).  The  zone  that  hovers  above  single  timbre  and  multiple  pitch  is  interesting  for  
composition inasmuch as its delineates regions of  ambiguity and separation between periodicity and  
spectrum. Compositional mediation can amplify, zoom-in, break/attract, slow down/accelerate, or 
accentuate/soften these timbral components.

We should finally also mention a distinction made between a source of  excitation and a filtering-
resonance system. Timbre has  several  facets  in  relation to pitch:  up-down height  (register)  and  
spectral constitution. They are named pitch-height and tone-height, and pertain to the spectral fine  
structure (the relative amplitudes and distances between the partials) and the spectral envelope of  a  
sound (its global spectral profile), respectively. Both can be independently varied as when a vowel is  
changed in pitch, changing the fine structure (the excitation pattern) but not the resonance regions  
(the formants); inversely, one can change the vowel but not the pitch, varying only the tone-height.  
This source-filter model shows two dimensions operative within timbre, discerning between source  
recognition (related both to excitation and filter), variations of  timbre within a single source (related  
mostly to filter), differences between families of  sources (wind, string, percussion, etc) and internal  
range of  tessituras (reliant on the excitation mechanism)45.

1.2.7 Infrapitch and rhythm

Even though this larger section is mainly concerned with pitch in relation to harmony, an important  
aim in  this  study  is  to  show how harmony  can be  conceived  at  several  time  scales  and what  
properties and differences it has in each domain. We will  open up the discussion of  the rhythmic 
realm in its relation to harmony by pursuing some of  these links.

43 This line of  thought comes from Clarence Barlow’s ISIS synthesis method. See Barlow, C. (2005). ISIS, an 
alternative approach to sound waves. Royal Conservatory, The Hague.

44 I can think of  some compositions which take as a point of  departure the phenomenon of  multiple pitch in its 
relation to timbre, beginning with LaMonte Young’s Composition 1960 #1 (a very long drone of  a perfect fifth), 
through Tenney’s Having never written a note for percussion (1971, a very long tam-tam crescendo-diminuendo) and Alvin 
Lucier’s Silver Streetcar for the Orchestra (1988, for triangle, also producing moving hyperbolic interference patterns in 
space).

45 See Patterson, R. D., et al. (2010). The Perception of  Family and Register in Musical Tones. In M. Riess, R. Fay and 
A. Popper (Eds.), Music Perception. New York: Springer, 13-50.
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Some features of  pitch spill outside its normal range of  operation, mapping aspects of  harmonic  
duality into other perceptual registers. There are studies which have thrown insights into the ranges 
of  operation of  the two aspects and mechanisms of  pitch perception, charting their registers and  
showing how periodicity  analysis  works  well  below the range of  hearing  in  the cochlea and is  
connected  to  the  zone  of  rhythm  and  articulation46.  ‘Repeating  Frozen  Noise’  (RFN)  tones, 
consisting  of  iterated  repetitions  of  white  noise  segments,  have  been  used  to  probe  into  the  
infrapitch regions. They are generalized periodic stimuli: their periodicity can lie below the audible  
range but still have audible overtones; deriving from noise, their partials have uncorrelated random  
amplitudes and phases, not restricted in their waveform or spectrum; they also possess a rich timbral  
quality.  At  infrapitch  periods,  the  close  spacing  of  these  partials  means  that  they  are  always  
unresolved  by  the  basilar  membrane,  mapping  their  pitch  periodotopically  while  projecting  a  
‘pitchless’ timbre tonotopically. Each different noise sample will have a different but rich timbral  
quality. 

These noise segments can be heard as global percepts of  iterance over a range of  around 15 octaves,  
from 0.5 Hz to around 8 kHz (see Figure 2). Above that, all harmonics lie beyond the range of  
hearing,  so the tones become indistinguishable from sine waves.  Below that they have a timbre 
which, due to the spacing of  partials becomes especially rich below 1000 Hz. Below 100 Hz, it  
begins to have a hissing component, being a continuous percept from 100 to 70 Hz and a pulsed 
one from 70 to 20 Hz. According to their features and qualities, the 5 octaves in the infrapitch range  
(20 to 0.5 Hz)  have been divided into high and low ranges.  Periodicities  from 4 to 20 Hz are 
reminiscent  of  machines,  lacking  discrete  component  events,  their  quality  described  as  
‘motoboating’; the low range (4 to 0.5 Hz) have been described as ‘whooshing’. High range periods  
correspond in time scale to phonemes, the low range corresponds to syllables and words. Periods  
higher than 2 s do produce iterance percepts, although they are broken into limited portions of  the  
waveform. Even so, periods can be detected for up to 20 s. They apply well into the musical range  
of  melodic phrases and small scale form.

For most part of  the hearing range, place and time mechanisms overlap, precisely where music  
happens: between 20-40 and 3-5,000 Hz. In this region proportion and timbre are entangled. Place  
perception spans from the limit of  low pitch up to the end of  the hearing range, the highest octave  
belonging exclusively to timbre (labelled ‘amelodic’). Time perception comprises periodicity below  
the auditory range of  cochlear perception, encompassing both rhythm and pitch and involving two  
mechanisms within its operation. One, pertaining to unresolved harmonics, spans from infrapitch  
up to around 2,5 kHz, the limit  of  unresolved harmonics,  using the mechanism for periodicity  
detection (‘complex pattern’) of  periodotopic activation of  neurons in the inferior colliculus. The  
second mechanism, based upon resolved harmonics, involves phase locking in the cochlear nucleus  
lower along the pathway.

Beyond the laboratory, extra cochlear aspects of  periodicity perception also incorporate other sense 
modalities  belonging  more  to  the body than to  the head and ear,  such as  proprioception and  
kinesthesia47, as it happens in a situation of  a collective of  musicians  synchronizing to a common 
rhythm (the fine tuning of  their articulations to some groove), realized more through the body than  
the ear, by means of  low frequency resonance.

46 Warren, R. (2008). Auditory Perception. An analysis and synthesis. Cambridge: Cambridge University Press, 82-91. 
47 Proprioception is “the sense that indicates whether the body is moving with the required effort, as well as where the 

various parts of  the body are located in relation to each other.” Proprioception. In Wikipedia. Last retrieved 
September 12, 2012, from http://en.wikipedia.org/wiki/Proprioception. It involves muscle memory, equilibrium, 
balance and position and is also conveyed by internal organs such as bowels. Kinesthesia refers more exclusively to 
bodily perception of  (self) movement. Many internal organs resonate to low frequency sound waves and serve as 
sensors by transmitting their movements to the cerebellum, where the signals are integrated.
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Figure 2. The iterance continuum. 15 octaves over which global percepts can be heard 
for repeated segments of  noise. The upper portion of  the figure describes perceptual 
characteristics; transitions between the given qualities are gradual, category boundaries  
shown at the approximate positions along with their neurological mechanisms. (From 
Warren, R. 2004).

Rhythm  entails  periodicities  of  acoustic  patterns  that  correspond  to  slowed  down  versions  of  
intervallic proportions, meaning that there is a quality of  consonance or dissonance to rhythmic  
patterns. Understood as infrapitch analogues of  pitch-range phenomena, harmonic concepts can 
pertain to the rhythmic domain, though the parallelism is not straightforward since each domain has 
its  own  specificities.  Rhythmic  consonance  should  be  more  sensitive  to  the  complexities  of  
periodicities  involved,  as  is  the case  with quintuplets,  which are already quite  more difficult  to  
‘digest’ (to use a term from Clarence Barlow) than their analogues in the pitch range (corresponding  
to thirds). Another difference is that phase phenomena are crucial and inherent to rhythm, while in  
pitch they are mostly inaudible (or blend as part of  the timbre but are not relevant proportionally).  
Phase plays an important role in metric accents and other kinds of  rhythmic displacements. Rhythm 
is made of  pulses, concerning onsets more than continuations.

With  the  aid  of  mathematical  graph  theory,  Justin  London48 analyses  the  psychological  spaces 
corresponding to pitch and rhythm, showing them to be topologically different and arguing that  
pitch and rhythm phenomena do not correspond isomorphically to each other. Perceptual phase  
transitions ensue different emergent properties for objects in each realm, so more than trying to  
ensure isomorphic relations, what these spaces reveal are key differences between the two domains.  
Pitch properties have structures similar to Riemann Tonnetz and the psychological spaces we have 
reviewed, while ‘metric spaces’ have disconnected graphs that are non-planar (their edges cross) as  
well as highly dependent on tempo, changing the limits and perceptibility properties of  each metric  
graph as a function of  tempo. Tonal spaces, on the other hand, are planar (no crossings between  
nodes and edges) and independent of  the tonic, showing how, for pitch, there is no ‘tempo’: all  
pitches behave in an ‘absolute’ way with respect to their inner rhythmic constituents (see Figure 3).  
Perceptual phase transitions are categorical borderlands that register changes belonging to different  

48 London, J. (2002). Some Non-Isomorphisms between Pitch and Time. Journal of  Music Theory, 46(1/2), 127-151.
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qualitative realms, each with its own properties, despite there being a continuity in the physical  
processes grounding them. The same types of  phenomena are recognized differently at both sides of  
the  borders,  making  for  autonomous  attributes  in  each  realm.  This  continuum  generates  a 
perceptual  discontinuum  that  all  the  same  inherits,  transforms  and  disregards  some  of  these  
properties.

Figure 3. Difference in graph properties between a tone network representation (left) and 
a metric representation (right). (from London, 2002). 

At the pitch/pulse boundary of  around 16-20 Hz temporal integration breaks down, so around it  
lies  the zone of  disconnection between sound elements.  These discrete sound elements become  
pulses, acoustically different from the integrated sound they were part of. I have the impression that  
there could be a perceptual analogue to the physical phenomena of  acoustic impedance 49. As is the 
case  in the resonance of  tubes  in  the physics  of  wind instruments,  there happen two types  of  
impedance: bipolar and unipolar. Crossing a boundary results in a change from a bipolar towards a  
unipolar condition, from alternate current impedance (positive-negative air displacement) in pitch-
integrated waves, to direct current impedance (from no displacement to maximum displacement) in  
the differentiated individual pulses of  the rhythmic realm. Each rhythmic element might contain a  
timbre inside each pulse, but in another sense it is just a DC pulse, an on-off  switch. Rhythm and  
meter  are  composed  of  patterns  of  these  on-off  elements,  beyond  the  actual  sounds  that  fill  
them(which are  themselves  AC:  bipolar  and integrated).  This  AC/DC boundary  thus  marks  a  
distinction within melody between its horizontal (DC) patterns and the vertical (AC) timbres that  
make up its notes. More research needs to be done with respect to this topic because even if  this  
transition is not happening acoustically but only perceptually, it provides an interesting way in which  
to conceive a crucial difference between pitch and rhythm.

Notwithstanding their differences, there are some important similarities between pitch and rhythm,  

49 “Acoustic impedance Z is the ratio of  the acoustic pressure p, measured in Pascals, to the acoustic volume flow, 
measured in cubic metres per second.” Specific acoustic impedance z “is an intensive property of  a medium. We can 
specify the z of  air or of  water. The acoustic impedance Z is the property of  a particular area and medium: we can 
discuss for example the Z of  a particular duct. Z usually varies strongly when you change the frequency. The acoustic 
impedance at a particular frequency indicates how much sound pressure is generated by a given acoustic flow at that 
frequency.” Additionally, “DC (direct current) means constant or slowly varying current. AC (alternating current) 
means any current in which the movement is alternating backwards and forwards (oscillating) with no overall 
motion. AC is more interesting because the impedance can vary with the frequency of  oscillation of  the current.”. 
Taken from Wolfe, J. (2010). What is acoustic impedance and why is it important? Last retrieved June 12, 2011, from 
http://www.phys.unsw.edu.au/jw/z.html
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conducive to an analysis of  rhythm in terms of  harmony and pitch as well as the other way around.  
Rhythm shares the same perceptual mechanism as pitch periodicity, but lacks the spectral one. We  
can nevertheless speak of  the timbral and proportional aspects of  rhythm, although ‘timbral’ in this  
sense would have a different connotation than with pitch. By  omitting or binding (slurring) some of 
its constituent pulses, simple rhythmic relationships can become fluid, blurring their periodicities  
and  appearing  more  complex  and  ‘floating’,  incorporating  elements  of  noise  within  rhythmic  
intervallic proportions50. The ‘irrational’, slurred rhythms and cloud-like formations archetypal of 
atonal modernism, are perceived as unit-free, and can be therefore be considered ‘timbral’ in that  
they seem more like a flux than a pattern.

Another sense in which there is a timbral or continuous facet to proportional rhythms lies in the way  
metric  patterns  are  articulated.  The  proportional  facet  deals  with  rhythmic  layers  in  terms  of  
relationships and numeric ratios, even if  these ratios are not exact in performance: there is tolerance  
with respect to rhythmic phenomena, even more sensitive in its effects than in the pitch domain,  
maybe because of  the higher allowance given by the slower speed at which this happens. ‘Groove’,  
the systematic displacement of  rhythmic positions,  can be understood in a  harmonic light as a 
timbral tolerance acting on proportional patterns, as they are still inferred as being exact, even if  
conveyed through this distorted medium. This special, sensitive and not easily describable musical  
feature can provide varied ‘colorings’ or ‘enhancements’ to the same pattern, a crucial aspect of  
many  musical  styles.  Once  a  groove  fails  to  convey  the  rhythmic  pattern  it  belongs  to  by  
transgressing its tolerance limits, it  stops being a groove to a pattern, becoming instead another  
pattern.

Rhythm relates to multiples and divisors of  its pulses much like pitch, and analogies such as tempo  
octaves and other rhythmic partials (subdivision or multiplication by 2, 3, 5 etc.) make a lot of  sense,  
with augmentation/diminution of  patterns being an octave equivalence of  sorts.  This  concerns  
rhythm’s  vertical,  multiplicative  dimension,  in  contrast  to  its  horizontal,  additive  dimension (its  
metric sense). There are also pitch range analogues of  rhythm, as with early consonance/dissonance  
theories, which were stated in rhythmic terms. Accents and other phase phenomena in rhythm also  
relate to spectral features when accelerated up to pitch speed. T he concept that best bridges the 
similarities between the two domains is also the string and resonance is the term that best applies to 
both harmony and rhythm. We will also see further on that some of  these aspects also inherit to  
higher levels  of  composition, such as larger sequences, sections,  and forms, as there are formal  
analogues to rhythmic and harmonic phenomena, although their appearance is also altered with  
respect to their original realms, though sharing properties which are still related to harmonic duality.

1.2.8 Concluding remarks

The  pitch  related  qualias which  we  have  been  surveying,  such  as  chroma,  timbre,  and  their  
supervenient properties of  harmonicity and consonance are established principally on a subcortical  
level of  auditory processing (from the ear to the brain stem). Notwithstanding the role of  cognitive  
top-down processing, as well as the various modes of  attention, it is psychoacoustic constraints that  
for the most part determine the harmonic properties of  compositional materials. These constraints  
provide the starting points  for a  perceptually  informed (and computationally  assisted)  harmonic  
research from which the potentials and possible functionalities arising out of  these materials are  
experimented with, in order to build and tryout, in practice, the methods or ‘logics’ that are the  
consequences and extensions of  these harmonic properties into the wider scale of  musical forms.  
This is done in rapport with a a theorization that picks up from these findings in order to generalize  
and systematize them, serving as a platform for the formulation and speculation of  strategies to be  
put again to the test, leading again back into the first stage. This cycle of  musical experimentation  

50 As mentioned in Stockhausen, K. (1957) ...How Time Passes... (C. Cardew, Trans., 1959). Die Riehe, 3, 29. 
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consists of  trials and examinations, reflections and modifications, jumping back and forth between 
the levels of  praxis and theory, intermingled with evaluations, analysis, intuitions and serendipities  
that lead as much to interesting discoveries as to dead ends. Its repeating form resembles more a  
spiral than a circle, opening up with each new turn in ways that are quite similar to intervallic  
spirals, never returning to the same interval twice.

As can be seen after laying the ground in this section for establishing the psychoacoustic aspects of  
pitch, the crux of  this research hinges on compositional materials,  although the main focus will  
revolve around methods for incorporating these materials into a musical structure, discovering and  
inventing the ‘logics’ that can set these ‘onto-logics’ into motion. Around the second half  of  the  
twentieth century arose what is now a more or less established line of  thought that considers three  
levels  of  composition,  namely  material,  method  and  form,  as  set  out  by  some  important  
experimental composers51.  We could now say that with respect to our harmonic research, sonic  
materials function, as it were, ontologically, in the sense that they define basic musical entities. This  
is not ontology in the strict philosophical sense, as the term is used to denote the basic constituents  
or objects used for composition as seen from a perceptual perspective; not as the inherent being of  
any generalized musical material whatsoever, but only in relation to their ‘perceptual being’, and it is  
in this sense that this project subscribes to a ‘perceptual ontology’ of  sorts. These materials are also  
ontological in the sense that they lie ‘outside time’ (Xenakis), as their properties are considered in  
isolation from their musical disposition, as is the case of  intervals, scales, probabilities, dissonance  
metrics, rhythmic patterns, etc.

The next compositional level, that of  method or logic, focuses on the coherence and consistency of  
these sonic entities, their relations and motions ‘inside time’, that is to say, in a musical context. This  
is where most of  the fun happens in compositional research, where theorization is put to use. If  this  
chapter serves to set the stage for the characterization of  harmonic materials, then it will be in the  
other chapters that the development of  relations and logics between them shall take place. 

Regarding the third level  of  what Tenney calls  ‘aesthetic  experience’,  we could mention that it  
revolves around the musical dramaturgy of  a work. It involves relations of  relations, or structures  
and forms, and we will try to see how far some harmonic concepts can be extended to this level of  
scale. It also involves extra-musical considerations, be they the kind of  experience that is intended  
for a piece, or, in more contemporary terms, the kinds of  narratives, connections, causalities (or lack  
thereof) that string together the musical forms contained in a work, also in sonic situations that lack  
directionality, as with non-narrative forms. They are also extra-musical in the sense of  pertaining to  
ideas beyond music  itself,  be they inspired by other artistic  disciplines,  political  or social  issues,  
myths, maths, specific circumstances of  a piece or installation, and many other etc’s. This is the level  
in which thought invests matter, being in close rapport with the level of  compositional logics, as it  
defines,  selects  and  alters  these  logics  according  to  an  overriding  aesthetic  design,  concept  or  
dramaturgy.  The three levels  influence each other in different and complex ways  (in a  manner  
reminiscent  of  ‘bottom-up’  and ‘top-down’  processes),  and behind these  considerations  lies  the  
intention to keep the theorization of  materials as indifferent as possible to their aesthetic uses in  
order to take full advantage of  their behaviors, leaving open the prospect of  materials influencing  
and suggesting dramaturgies or, conversely, knowing when aesthetic decisions require us to ignore or  
modify the way the qualities of  these materials are put to use.

We can escape the danger of  falling prey to the dispute between ‘nature’ and ‘culture’, or between  
‘cultural conventions’ and ‘biological determinism’ by having a clear idea of  where and how the  

51 These concepts begin with Arnold Schoenberg, but I’m thinking more on the formulations by John Cage, who 
focused more on the first two categories (and divided form into structure and form), and also others such as Iannis 
Xenakis and Karlheinz Stockhausen. This approach is quite independent of  aesthetic school, though they are all 
share an interest in systematic composition.
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levels of  imbrication of  these aspects stand and by keeping a healthy dose of  skepticism for those  
approaches that might reduce musical entities to either of  the two extremes. It is important to be  
able to ‘modulate’ all the given and inherited materials and arbitrarily bend them into whatever  
direction is required by the compositional decisions. It is also as important to be able to listen and  
pay attention to the materials, letting them kick back and have their say, not serving only to be  
meddled with. The neurobiological basis of  harmonic structures assists by delineating some of  their  
material  characteristics,  with the intention that they remain aesthetically neutral.  However their 
characteristics are used, their main requirement is for them to open up paths for compositional  
speculation and experimentation.

Having said all  this, it may sound paradoxical to say that the psychological aspect of  pitch and 
harmonic materials is not even be that important after all. I do not claim that harmonic materials  
arise exclusively in the human mind. Beyond psychology or biology, some of  these properties are  
inherent to the sound emitting objects themselves, to the acoustic waves or to the numbers lying  
behind the definition of  their patterns. Some proportional aspects of  these materials lie beyond  
psychology, and involving, as we will see in the next section regarding aisthesis, not only sensation but 
also intellection. The cognitive approach to the study of  consciousness  focuses on efficient causes,  
when, as we will see, it is the other kinds of  Aristotelian causes that are as or even more important  
for music, precisely the causes that lie outside temporality (formal and material cause). .

Our survey of  the psychological  and cognitive processes  responsible for pitch and lying behind  
harmony has been done not to reduce harmonic materials to biological processes, but to find in all  
these loosely connected bunches of  facts evidence for and a characterization of  harmonic duality in  
order to map out possibilities to be exploited in algorithmic composition. As we will  see in the  
following section, harmonic duality can be characterized from a very different point of  view, that of  
Greek harmonics, and both readings, the biological and the historical-metaphysical help to delineate  
and  underpin  a  harmony  much  more  robust  and  interesting  than  if  it  came  from  a  single  
perspective. What’s more, and I see it as an advantage, these accounts are supplementary and do not  
correspond easily to each other, each involving a quite different register of  thought.
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 1.3 Greek Harmonics

The duality of  harmony can be traced back to the Greek harmonists by journeying through some  
of  their ideas in the interest of  differentiating and characterizing its attributes. The excursion also  
serves  to  introduce  and  discuss  many  elements  and  concepts  that  a  renewed  and  present  day  
harmony  needs  to  incorporate.  A  rereading  of  Greek  theory  can  help  unmuddle,  restore  and  
reinterpret ideas masked or ignored by conservatory harmony as a result of  layers accumulated over  
the centuries. Being historical, the review is nonetheless focused from a present perspective with a  
view  on  opening  up  new  compositional  possibilities.  A  reevaluation  of  some  implications  of  
Pythagoreanism, much underestimated in our times, concludes the section.

The science of  harmonics52 (harmonké) was a companion to the sciences of  rhythmics and metrics 
whose task was together to classify and describe the regular and repeated patterns of  form and  
structure underlying the diversity of  melodic, rhythmic or metric sequences in music. Metrics deals  
with  patterns  formed  by  lengths  of  syllables  in  verse,  rhythmics  with  patterns  within  which  
sequences  of  long  and  short  syllables  are  divided  and  grouped  into  repeated  structures,  and  
harmonics with the structures underlying melody (melos).  The harmonists  set  out to identify the 
varieties  of  scales  and tuning systems which could be reckoned as musical,  a  task  that implied 
finding  quantitive  representations  for  intervals  and  melodies,  classifying  scales  and  their  
transformations, and seeking underlying fundamental principles behind these structures. Questions  
such as their rooting in human culture or in something independent of  humans, or in mathematics,  
as well as the status of  their applicability beyond the musical sphere were the kind of  issues raised  
and discussed by harmonists. As such, it was a full blown science in the sense of  a discipline to  
discover  and demonstrate  a  body of  truths,  regardless  of  whether  they could be assimilated to  
mathematical sciences or to the ‘sciences of  nature’ (physiologia). Needless to say, this is very much in 
sync with our project.

1.3.1 The two schools of  harmonics

The  two  main  doctrines  within  harmonics  are  the  mathematical  and  empirical.  They  are 
fundamentally and irreconcilably opposed in their premises, methods, and aims. The first group is  
epitomized by Pythagoras, even though there are only second hand accounts of  him. Instead there  
are many Pythagorean scholars, some more mathematical, more philosophical or metaphysical than 
others, some more practical and linked to musical practice. Their basic premise is that there is a  
strong  connection  between  pitch  intervals  and  whole  numbers,  the  account  ranging  from 
straightforward  correlations  up  to  outright  cosmological  accounts.  The  earliest  mathematical 
harmonist of  whom there are surviving fragments of  text is Philolalus, whose ideas fall into the  
metaphysical  kind,  identifying  the  structure  of  the  cosmos  with  the  proportions  of  the  main  
concords  inside  the  octave  and describing  the  world  as  a  harmony (harmozein,  ‘to  fit  together’) 
between the unlimited (continua) and the limited (which set limits through shapes and other discrete  
structures). Beyond its philosophical aims, it already gives us an initial and generalized definition of  

52 Most of  the information here comes from Barker, A. (2007).  The Science of  Harmonics in classical Greece. Cambridge: 
Cambridge University Press, and from Crocker, R. (1964). Pythagorean Mathematics and Music. The Journal of  Art  
Criticism, 22(2 and 3). There is no intention of  providing an overview of  Greek music or music theory, but to give 
most of  the relevant information pertaining to harmonic duality. Other sources are Chalmers, J. (1992), Divisions of 
the Tetrachord. Lebanon, NH: Frog Peak, and a bit of  Partch, H. (1974). Genesis of  a Music. New York: Da Capo Press. 
Other sources shall be mentioned when discussed.
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harmony:  the  fitting  together  of  disparate  elements  as  well  the  tension  between  continua  and  
discontinua: a musical scale is the limiting of  the continuum of  sound by ratios 53. Plato follows this 
line of  reasoning in the Timaeus, portraying the Demiurge and the creation of  the World Soul from 
principles stemming from harmonic science, though they are put to use in a purely metaphysical  
way,  beyond any musical  reality.  Devoid of  sensory considerations,  concords  and discords  were  
properties of  numbers, having no relation to actual sounding tones.

Of  the other Pythagoreans, Archytas is far more interesting for us as he takes a route that correlates  
numbers, interval ratios, sounds as heard, music as practiced, and physical accounts of  sounds. He  
provides what is perhaps the first example of  psychophysics, inaugurating musical science. Later  
harmonists,  the most  significant  living between the fifth and the third centuries  B.C.,  included  
Aristotle, who concentrated on metaphysics, and later on Euclid, who tried to systematize earlier  
systems to the greatest extent possible. Ptolemy’s approach, in the second century A.D., summed up 
the most relevant developments of  mathematical harmonics along with empirical backing while  
furthering the music of  the spheres in connection with his astronomical interests.

On the side of  the empirical harmonists the important figure is Aristoxenus, whose treatise Elementa 
Harmonica is the largest and most complete extant treatise on empirical harmonics (and of  any kind 
of  harmonics for that matter) of  that era, providing much information regarding his school and the  
critiques leveled against mathematical (and other empirical) harmonists. His purpose is to make of  
empirical harmonics a science as rigorous and systematic in method as mathematical harmonics (he  
was a student of  Aristotle and took cue from his account of  what good science should be), despite  
the fact that their aims and procedures were incompatible.

The main characteristic of  empirical harmonics is its emphasis on music as heard and the ear as the 
ultimate judge of  musical materials. Instead of  measuring intervals with discrete ratios, Aristoxenus  
measures  them in  terms  of  distances  in  a  continuous  linear  space.  Instead  of  associating  the  
consonance of  an interval to the arithmetic properties of  ratios, he took their consonances and  
magnitudes as given facts. Since intervals could be slightly mistuned but still perceived as belonging  
to the same intervallic category, this was taken to mean that even the principal concords of  the scale  
had  a  narrow  range  of  variation.  Notes  exist  as  points  along  the  continuum enclosed  within  
tolerance ranges. This is the first instance of  the crucial concept of  harmonic tolerance.

Instead of  taking sides with one point of  view or the other, what we want is to sort out various  
themes that traverse harmonic duality because they stand out from the approaches and theories of  
both schools – even though each doctrine has certain dependencies on the other and does not map  
cleanly into each side of  the duality. What I have referred to as the proportional aspect of  harmony  
is connected with mathematical, while the timbral attribute is connected with empirical harmonics. 
Furthermore, the opposite poles of  the discrete and the continuous are associated, respectively, with  
ratios  and  pitch  distances,  and  each  connected  with  a  mathematical  science,  arithmetics  and 
geometry.

Harmonic duality may be seen in the light of  these couples. I call  timbral  the continuous aspect 
because it has to do with sensation, with intervals perceived as actual  sounding qualities  (which is a 
definition of  ‘timbre’), continuously variable and in a state of  flux. Proportionality, on the other  
hand,  is  independent  of  the timbre with  which it  is  instantiated,  lying ‘behind’  and exceeding  
sensory  qualities.  Proportionality  is  a  pattern  inferred from the  actual  sounds,  being  more  like  
platonic  eidos,  in the sense of  pure Forms detached from their sensory presentation, not directly  

53 This is probably the earliest definition of  musical harmony we find Greeks harmonics, and it is noteworthy to point 
out its resonances with contemporary thought in order to construct of  a concept of  harmony fit for our times. Thus, 
Philolalus  could  be  paraphrased  in  Deleuzian/Badiouian  terms  as:  incompossible  elements  coexisting  in  a 
‘disjunctive synthesis’. See Badiou, A. (2000). Deleuze: the clamor of  Being. Minneapolis: Minnesota University Press, 44 
and 58.
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accessible to  hearing.  They are not,  however,  eternal  Ideas  preexisting and separate from their  
presentation, but rather, to use an Aristotelian concept,  substantial forms, that is to say, intelligible 
rather than sensible. These eide are the essential patterns indwelling at the core of  sense objects, after  
their accidental or inessential qualities have been subtracted by reason, but they are not separate  
from their individual instantiation. A ratio (logos) is the  definition pattern or  form of  an interval, the 
word logos being synonymous with all three of  these notions, as well as with ‘speech’, ‘discourse’ and  
‘reason’, depending on the context.

We never encounter the harmonic aspect in isolation, devoid of  timbre, not even if  the interval is  
made out of  sine waves, as they still have a timbral quality. These timbral qualities are the medium  
through  which  harmonic  pattens  are  encountered.  A  harmonic  pattern  or  form always  comes  
sensually attached with timbre. Timbre is the sensual medium for these patterns which are alluded  
from it.

One  fundamental  difference  between  the  two  schools  concerns  measurement.  The  empirical  
approach seeks to find the minimum interval which can serve as a unit of  measurement for others  
(called a diesis). The search for this ‘just noticeable difference’ of  pitch was pursued by Aristoxenus  
through  comparing  two  closely  tuned  strings  until  the  difference  between them was  no longer  
distinguishable. From this small interval springs the analysis of  tunings and scales (composed out of  
genos, and forming systema). Aristoxenus achieved his analysis and divisions of  the tetrachord (which 
has the size of  a fourth, a diatessaron) inside a grid of  30 steps, corresponding to a sixth of  a semitone.

Ratios,  on  the  other  hand,  not  being  directly  accessible  to  hearing,  represent  either  relations  
between lengths of  strings or pipes, or correspond to aspects of  the physical events that cause the  
perceptions. Being indirect to perception, they are arrived at through reflection and observation by  
means of  measuring devices like the monochord. Aristoxenus’ criticism of  mathematical harmonics 
was aimed not at  denying the existence of  ratios and the phenomena they explain but at  their  
relevance to the study of  music and to harmonic science. Contrary to this view, our research finds it 
important to maintain a flow of  information between the accounts given by both domains in a way  
similar to Aristotle, for whom empirical harmonics provides the facts while mathematical harmonics  
– which works in a different domain – provides the principles from which these facts are explained  
and  demonstrated.  This  resonates  with  our  experimental  approach  to  harmony  in  relation  to  
sciences  of  perception  and  mathematics,  which  in  my  opinion  is  compositionally  the  most  
productive.

Concerning  units  of  measurement,  it  is  paradoxical  that  the  basic  ratio  from  which  other 
proportions derive is the octave, 2/1, which is not a small interval. Aristotle tried to find these units  
of  measurement to no avail, precisely because it is the smaller ratios which are derived from the  
octave, but not the other way around; also because most ratios – the ones that matter – cannot be  
divided into equal parts, so there cannot be a fundamental  measure that adds up to them. We can  
also think of  units of  harmonic ratios – units of  harmony or harmonemes – as corresponding to the 
prime  numbers  that  factorize  their  terms,  or  the  prime  numbers  that  constitute  the  axes  of  
harmonic lattices, but that is an extrapolation only present in latent form in Greek harmonics.

Empirical accounts describe facts about music and musical perception. They provide information  
which cannot be proved from a mathematical perspective. The fact that the octave, fourth and fifth  
are consonant is primary and cannot be demonstrated from arithmetic alone, not following from  
any mathematical  theorem.  Once this  consonance is  acknowledged as  an  irreducible  fact,  it  is  
relatively  easy  to  correlate  it  with  properties  of  numbers  and  ratios  –  Euclid  actually  tried,  
unsuccessfully, to prove consonance from mathematics alone. The mathematical approach, on the 
other  hand,  once  the  connection  between  arithmetics  and  music  has  been  made,  can  provide  
explanations  and reveal  underlying patterns  for  some more complex and derivative  facts,  some  
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theorems  of  numbers  having  relevant  consequences  for  music.  This  shows,  however,  that  the  
mathematical approach, when its aim is not completely metaphysical, actually requires an empirical 
departure point, a ‘sensory axiom’. The empirical  route, by the way, is not a purely qualitative  
discipline, but one that seeks out quantities from which the notation of  melodic sequences and thus  
the classification of  scales and tunings is made possible. These quantities, consisting of  half, quarter,  
third, sixth or full tones will provide the idea on which temperaments will be based much later on,  
although Greek music had no need for them. Both approaches, even though irreconcilable in spirit,  
provide complementary information that feeds into each other.

1.3.2 Pythagorean tuning systems

Mathematical  harmonics  provides  a  connection between  qualitative  attributes  of  sensation  and 
properties of  numbers. It explains the ‘how’ of  consonance and dissonance (as we saw, it cannot  
explain the ‘why’ of  it)  by relating properties  of  numbers and ratios with sounding qualities  in  
formal terms, which is how Pythagorean harmonists classified ratios. They had six categories: equal,  
multiple, epimore, epimere, multiple epimore and multiple epimere. Equal ratios are those whose terms are 
the same (unison in musical parlance), multiple are those whose terms are multiple of  each other  
(2/1, 3/1, 4/1, etc, forming overtone series); epimores are those whose difference between terms is 1  
(3/2, 4/3, 5/4, 6/5, etc, also known as ‘superparticular’ ratios) and epimeres those whose difference is 
not a portion of  the smaller term – in epimores 1 is a part of  both numbers and the mark of  their  
difference – but  some more complex part,  or  rather  ‘parts’.  Relative to  today’s  overtone series,  
multiple ratios occur between a fundamental and its overtones; epimores happen between successive 
adjacent overtones and  epimeres between non adjacent ones. This classification, together with the 
precedence given to ratios with small numbers provides the hierarchies with which to organize the  
qualities of  intervals. This hierarchy has fallen into disuse by now, but I find no intrinsic objection to  
reject it as a possible harmonic classification among others.

Pythagorean  music  theory  originates  before  Pythagoras  with  Near-Eastern  civilizations  such  as 
Babylonians and Egyptians. A distinction should be made between the well known Pythagorean  
tuning (based solely on multiples of  perfect fifths, thus limited to numbers with prime factors not  
larger than 3, or ‘3-limit’) and Pythagorean music theory, as the latter is not restricted to the former,  
which is more a theoretical construct than a derivation from musical practice. The tunings and  
theory used in Greek music come from the Sumerians,  who based their number system on the  
number 60 and its divisors, corresponding to scale intervals and correlated to their main deities. In  
this mythological framework, numbers had, in connection to the attributes and powers of  the gods,  
important qualitative properties. Pythagorean arithmetics also classified numbers according to their  
qualities (square, triangular, cubic, oblong, etc) and not just their size. The prime factors of  60, {2,  
3,  5},  form 5-limit  intervals,  3-limit  Pythagorean  tuning  not  corresponding  to  ancient  musical  
practice. Whence, the divisor set (the set of  all numbers that divide another) of  60 can be considered  
the seed of  most heptatonic scales.

Early  Pythagoreans  found  their  scalar  unit  in  the  tone  9/8,  which  appears  among  the  main  
consonances as the measure of  their difference: that between two fifths and an octave, an octave and  
two fourths, and as the space separating the fourth and fifth within the octave. The Pythagorean  
tetrachord can be seen as two 9/8 tones and their residue with respect to the fourth which is the  
limma  (‘remnant’),  256/243 (a  step  of  around 90¢).  This  parsimonious  method of  dividing  the 
octave, as five tones plus a limma, is one that was adopted in the West up to the Middle Ages:

“It uses the principles inherent in the beginning of the integer series more economically than any  
other. For if we reflect on the matter, we see that in some sense the fourth itself is a limma, left over 
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from the projection of the fifth back into the octave. The fifth, in its own way, is a limma, left over 
from the projection of the octave forward into the twelfth (3/1). Only the octave seems to remain  
aloof from this process, being generated in some more mysterious way directly from the womb of  
unity itself.”54

The  Pythagorean  harmoneme  was,  for  practical  purposes,  9/8,  though  it  is  clear  that  the  only 
irreducibly given interval not deducible mathematically is the octave, which in my contention has  
more reasons to be considered an ‘atomic’ constituent of  proportional harmony, though not the only 
one.

Of  the Pythagoreans, it was Archytas who took on a different and novel route by dividing intervals  
according  to  mathematical  means,  namely  the  geometric,  arithmetic  and  harmonic,  which  he 
introduces for the first time into theory55.  The geometric mean is  the simplest,  used to test  the 
equality of  ratios. However, it deals mostly with continuous proportions  not expressible as whole 
number ratios (as they are alogos, irrational), and cannot be applied to consonances (epimoric ratios). It 
is correctly named as it belongs to the continuous constructions of  geometry. The arithmetic mean  
may have arisen from purely numerical considerations, but it is in harmonic science where it shows  
its  usefulness,  as  it  permits  the  division  of  consonances.  Its  drawback,  however,  was  dividing  
intervals ‘the wrong way around’, with the larger one at the bottom, inducing Archytas’ search for a  
‘subcontrary’ mean, also called  harmonic  because of  the solution it provides to a musical problem. 
Taken  together  there  is  a  symmetry  between  the  three:  the  arithmetic  and  harmonic  means 
gradually approximate, as their terms grow, the geometric mean, one from above and the other from 
below. They divide the first multiple proportion, 1:2, the octave, by considering it as the multiple-
multiple 6:12. The arithmetic mean yields 9 because 12 - 9 = 9 - 6; the series 6:9:12, equal to 2:3:4,  
gives a fifth and a fourth. The harmonic mean, a relationship between ratios instead of  a difference  
between their terms, yields 8 because (12 - 8)/(8 - 6) = 12/6;  this 6:8:12 series is the same as 3:4:6, a  
fourth and a fifth. Taking both means together as 6:8:9:12 we can see the 9/8 tone in between the  
divisions. This is the most important construction in Pythagorean mathematical harmonics, the one 
that provides Plato with his cosmogony and which Richard Crocker calls the harmony.

Archytas then applied this process once more to both the fifth and the fourth, yielding a sequence of  
epimores  which  sorted  become: 1:2,  2:3,  3:4,  4:5,  5:6,  6:7,  7:8  and  8:9.  This  is  not  merely  a 
mathematical exercise, but the starting point for a correlation with the way musicians tuned their  
instruments by, for instance, tuning slightly off  from a ditone 81/64 to a ‘sweeter’ 80/64 = 5/4 by  
what is called the ‘method of  concordance’, in which the ear is the judge. He adapted mathematics  
to musical practice as it  was impossible to measure these ratios by ear,  so they were arrived at 
through a combination of  mathematics and musical skills, adapting these ratios to the given genera  
of  his time, which meant producing, by addition or subtraction, other intervals needed to adjust  
these deduced ones to the different tetrachords.  Some of  these derivative intervals are the 28/27 
third tone, the 36/35 quarter tone, the semitone 16/15, the 32/27 Pythagorean minor third and a  
very strange 243/224, close to a neutral second of  141¢. They don’t mean much by themselves until 
we consider the constructions within the pentachord formed with a note a whole tone below the  
tetrachord,  as  John Chalmers  suggests,  revealing important  intervals  that  appear between these  
degrees, such as the 6/5 and 5/4 thirds, the notable 7/6 (a subminor third, 266 ¢ in size which was 
ubiquitous enough to deserve a name of  its own, ekbole), the 9/7 (a supermajor third, the difference 
between the fourth and a third tone) as well as the large whole tone 8/7.

54 Crocker, R., op. cit., 197. 
55 In today’s terms: Geometric mean: (a-b)/(b-c) = a/b = b/c; ac = b2. Arithmetic mean: (a-b)/(b-c) = a/a = b/b = c/c; a  

+ c = 2b.  Harmonic or subcontrary mean: (a-b)/(b-c) = a/c, 1/a+1/c = 2/b; b = 2ac/(a+c). From Chalmers, J., 
Divisions of  the Tetrachord, 29. Crocker gives a detailed and fascinating account of  these means in the second of  his 
aforementioned articles.
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Figure 4. Archytean intervals within an enharmonic pentachord. (From Chalmers, 1992.)

His constructions are subtle, not merely theoretical but derived in conjunction with a keen sense for  
musical practice and the perception of  intervals.

“Archytas’ work opened the way for richer and more detailed explorations of ... abstract  patterns  
of  order,  most  notably  by  turning  the  spot-light  on  the  special  status  of  epimoric  ratios,  by  
demonstrating techniques for manipulating them in the construction of harmonic divisions, by  
proving these ratios’ resistance to equal division, by his classification and definition of the three  
‘musical means’ and by his deployment of these means in his analysis of attunements. ... [H]is  
studies in physical acoustics point also to a scientific interest in sound and pitch themselves, and  
reinforce the impression given by his tetrachordal divisions that he was concerned, much more  
directly than earlier Pythagoreans, with the domain of the audible for its own sake.” 56 

“Archytas is interested in the numbers by which phenomenal things are known and of  which they  
give signs.”57 This again resonates strongly with the aims and procedures of  the present project. He 
is a paradigmatic harmonist58, combining mathematical and empirical approaches, as well as an 
interest in physics and the correlations between the domains. Archytean intervals diverge sharply  
from 3-limit tunings, going as far as  7-limit and including some non-epimoric ones as well. These 
ratios are more complex and rare than most intervals used nowadays, some of  them still presenting  
problems as to their use. Through Boethius’ reading of  Pythagorean music theory, medieval theories  
and the practice of  plainchant became anchored to 3-limit tunings. Ptolemaic 5-limit tuning, which 
accounts for the heptatonic modes of  Greek music, remained in use in secular and folk musics, to be  
recovered  in  the  practice  of  vocal  polyphony  since  the  14th century  and  given  theoretical 
legitimation, within a Neoplatonic framework, until the 16th century, in Gioseffo Zarlino’s senario. He 
proceeded by dividing the fifth with harmonic and arithmetic means, this time interpreted as chords  
with 5/4 major and 6/5 minor thirds, hence authorizing major and minor chords as the harmonic  
units of  tonal harmonic practices.

1.3.3 Consonance and Dissonance

This is an initial discussion into one of  the most intricate topics within harmonic theory. It will now  

56 Barker, op. cit., 306.
57 Huffman, C. (2005). Archytas of  Tarentum. Cambridge: Cambridge University Press, 424.  
58 Furthermore, he was, amongst other things, prince, warrior, mathematician (with long lasting contributions to the 

field of  physical mechanics) and a teacher of  Plato (for whom he served as a model of  the ‘philosopher king’). Ibid.
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revolve  around  harmonic  duality  and  Greek  music  theory,  in  section  2.1.4  it  will  involve  the  
psychoacoustics and psychology of  the late nineteenth and early twentieth century, and in section  
3.1.5 it will revolve around harmonic metrics.

We  should  recognize,  as  James  Tenney  makes  us  aware,  that  there  are  at  least  five  ways  of  
conceiving consonance and dissonance in the history of  Western music 59. Each conception can span 
different  styles  and  genres  as  it  refers  more  to  the  underlying  assumptions  behind  the  
consonance/dissonance distinction than to the aesthetic attitudes toward them, as these can vary  
considerably within each conception. They can also be coextensive,  operating simultaneously in 
different  musics  of  a  single  historical  period.  The  one  relevant  for  the  Greeks,  the  horizontal  
conception, is still in use today in many sorts of  heterophonic and tonal melodic music.

For  the  Greeks,  symphona  and  diaphona (concordance/discordance)  were  understood  melodically, 
employed to discern ‘degrees of  affinity, agreement, similarity or relatedness between pitches sounding 
successively’60. Harmonia is the attunement of  strings to a scale and concordance/discordance refers  
to relatedness between tones. Both empirical and mathematical harmonists set a sharp cutoff  point 
in demarcating the line between  sym-  and  dia-phona, allowing only  octaves,  fourths  and fifths  as 
consonances. For mathematical harmonists its was required that a ratio be epimore and that its terms 
lie within the tetraktys of  integers 1 to 4. This restriction entailed that only 2/1, 3/2, and 4/3 could  
qualify as consonances, when it was clear that some consonant intervals, particularly 8/3, an octave 
plus a fourth, would have to be considered, but not perceived as dissonant. Greek theorists swept this  
aporia  under  the  carpet  until  Ptolomy solved  it  with  a  law  stating  that  octave  compounds  of  
consonances are themselves consonant. This further evidences the octavicity of  harmonic relations,  
the octave being a harmoneme under which other relationships are confined.

The problem with 8/3 also points to the fact that consonance and dissonance can be conceived  
either as a continuum of  gradations or as being antinomic, in a binary opposition, where an interval  
belongs either to one category or the other. The former grasp suggests a coloristic approach to  
intervallic use and choice, abounding in gradations of  hues, suitable for transitional purposes, the  
actual sounding qualities of  intervals being the main focus of  attention, however broad the possible  
logics constructed upon these materials might be. This is timbral conception, pertaining (but not  
limited) to late nineteenth and early twentieth century composition.  It  lies  behind Schoenberg’s  
concept of  the emancipation of  dissonance, which describes the harmonic situation at his time and  
place: there is no absolute dissonance but rather a spectrum of  ‘sonances’ to which the ear must  
accustom  itself  as  they  progress  further  towards  unexplored  areas.  By  the  combination  and  
compounding of  even a few intervals together one can plainly see that a high number of  potential  
sonance levels arise from this conception. These levels are closely connected to matters of  voicings,  
registers,  dynamics  and sound source.  This  type of  harmony encompasses  aspects  of  Tenney’s  
CDC-2 – vertical,  polyphonic – and CDC-5 – timbral, psychoacoustic – conceptions,  including 
various degrees of  fusion between proportionality and sound for its own sake.

The second conception, on the other hand, is governed by contrast. Consonance/dissonance can be  
the cause of  both melodic and harmonic movement by means of  tensions and resolutions, as in  
CDC-4, functional tonality, or can be an effect resulting from movement, as in counterpoint, CDC-
3. A decision has to be made as to where to draw the line between the two poles, and this alters the  
resulting logics that set the materials into motion. It is less attached to sensory considerations than to  
functional  and contextual  ones,  as  notes  can be treated as  dissonant  without  actually  sounding  
dissonant. This is the case when a note in functional tonality does not belong to either the prime,  

59 Tenney, J. (1988). A History of  Consonance and Dissonance. New York: Excelsior Music Publishing. He proposes five 
Consonance/Dissonance Concepts, labelled neutrally as CDC 1-5. These notions can be succinctly described as 
melodic, polyphonic (or vertical), contrapuntal, functional and timbral (or psychoacoustic).

60 Ibid., 4.
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third or fifth of  a triad but nevertheless forms a consonance with the fundamental root (sixth chords  
for example, or a six-four major chord which is considered dissonant without being aurally so). This  
kind of  proportional harmony is less dependent on the sounds which populate its intervals, leading  
to the consideration of  widely different chords as belonging to the same harmonic category, as is the  
case with triadic inversions, or when a fundamental is implied but not sounded.

In  terms  of  harmonic  duality,  the  terms  ‘consonance’  and  ‘dissonance’  refer  to  the  timbral  
dimension. This aspect depends on spectral constitution, perceptual salience of  the components  
(their  degree  of  fusion,  called  tonalness),  and  the  interaction  between  partials  which  produces 
psychoacoustic roughness (or sensory dissonance). On the other hand, the terms ‘harmonicity’ and  
‘inharmonicity’ refer to the proportional feature which is independent of  spectrum, only pertaining,  
as  it  were,  to  the  fundamentals  that  carry  the  interval  and  thus,  to  the  commensurability  or  
simplicity  of  the numbers  defining  their  ratio,  as  is  the  case  with  time based pitch  perception  
theories61. Historically there has not been much of  a distinction between these two senses and some  
aspects of  both have been conflated together in different ways. In the case of  the Greeks, they were  
mostly referring to harmonicity, but they also discussed consonance in relation to two simultaneous  
sounds and the occurrence of  fusion between them, involving the timbral aspect.

The following is list of  factors involved in the harmonicity/consonance of  an interval.  Some of  
these factors involve both attributes, some only one, but for now they mainly concern harmonicity  
more than consonance. They are: 

" The  form of  an interval’s ratio. The dividing line is  drawn between  epimore and non-
epimores;

" The magnitude  of  the  pitch  distance (a  timbral  consideration always  present  within 
proportionality). For pure sounds (sine waves), intervals larger than a critical band are 
more  consonant,  but  with  complex  timbres  it  depends  on  the  interaction  between  
partials;

" The independence of  an interval’s harmonicity with respect to register, which is the same 
as saying that octave compounds of  intervals retain their harmonicity (Ptolemy’s law);

" The ‘simplicity’ of  the numbers involved in its ratio:

" Considerations based on the ordinal index of  a number, i.e. its size, such as their  
inclusion in the tetraktys for the early Pythagoreans, or within {1..5} for Ptolemy;

" Consideration of  the prime factors of  the terms in a ratio, a concept which we do not 
find in the Greeks although it is clearly a corollary of  Greek harmonics and math;

" The melodic/harmonic function of  an interval in context: the way intervals follow and 
precede each other, along with their function within a scale (their dynamis);

" The metric weight or rhythmic accentuation of  an interval;

" The  ‘aesthetic  attitude’  or  compositional/cultural  conventions  towards  an  interval’s  
sonority.  Perceptual  qualities  can  be  ignored  or  pursued  in  different  and  arbitrary  
directions.  This  consideration  stems  from  the  point  of  view  of  twentieth  century 
composition, but has been present in all kinds of  musics and epochs.

There is no doubt to the fact that epimore ratios posses a special quality. They are easier to tune by 
ear, as it happens with acoustic instruments, where non-epimores lack a special resonance that epimores 
do possess. Archytas’ theorem proves that epimores have no integer geometric mean, that is, that they 
cannot be divided into halves. This is in direct conflict with the Aristoxenian practice that divides  

61 What ‘simple’ and ‘commensurable’ mean is not so obvious and will be developed in section 3.1.5.
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any pitch distance  by  half  (or  any  other  part)  without  difficulty  by  considering  them as  linear  
distances. We can now make sense of  this apparent contradiction by distinguishing each procedure  
as referring to a different and independent dimension of  harmony. Proportionally it makes no sense  
to talk about the middle point of  an interval (half  an octave, say) as they are unitary characters. It is  
also absurd to talk of  an interval not expressible as a ratio, as would be the strict case with any  
interval of  equal temperament, excluding octaves. On the other hand, notes can be placed wherever  
we  want  in  the  pitch-distance  continuum,  but  they  only  acquire  harmonic  meaning  by  being 
understood as tolerably close to a proportion. The size of  this tolerance depends on harmonicity as  
well as the function of  the intervals in context. Thus, there are intervals whose function is timbral,  
when they do not refer to a harmonic context  (as  in the case of  ornamentation,  transposition,  
register changing, doublings, and so on) and intervals that function proportionally, independently of  
register and timbre and which do not have to be exactly tuned to function as such.

There is also the issue of  complementarity or inversion. An interval can be complemented modulo  
another interval, the most common case being inversion modulo octaves. A ratio is reflected in its 
opposite direction and then octave transposed back to its original register. For instance, the 5/4  
major third reflects into a 4/5, which when moved up an octave gives 8/5, a minor sixth. The  
proportional harmonicity of  complements is maintained but its timbral aspect of  height changes, so  
the resulting consonance perception will diminish or increase depending on the simplicity of  the  
new interval with respect to the first as well as its pitch distance. Intervals other than octaves can also  
serve as moduli, but as with the case of  non-octave related equivalences, their use has to be clearly  
constructed with an appropriate context.

The symmetry stemming from interval complementarity is a fundamental harmonic feature. These 
symmetric properties can be applied to whole intervallic systems, as an arbitrary pitch set is only  
‘complete’ when all its intervals have complements, making the set a mathematical group under the  
operation of  intervallic addition, where every interval has an inverse and there is a neutral element,  
1/1. Much like overtone and undertone series, o-tonalities and u-tonalities in Harry Partch, the  
quadrants in harmonic space and the relation between arithmetic and harmonic means (which tend  
towards the geometric mean), inversion is a harmonic feature that forms symmetric clusters around 
intervallic classes. It is likewise expressed inside an interval by the property of  standing either ‘up’ or  
‘down’, that is to say, of  the two notes that compose it, which of  them has the most weight and feels  
like the root. If  it is the lower note, then the interval is standing up, otherwise it is ‘upside down’.  
There  is  an  intriguing  interrelation between the  topics  of  complementarity,  symmetry  and the  
tendency from above and below towards logarithmicity, the linear pitch distance embodied by the  
geometric mean and approximated asymptotically by the integer means. Logarithmicity is a way to 
fit or compress more information into a limited space. It is the final limit tendency of  periodicity, a  
tendency achieved from above and below. Together, periodicity and logarithmicity form a dialectic  
which lies at the heart of  the thinking about harmonic duality.

1.3.4 Dynamis

Dynamis is  a  technical  term found in  Aristoxenus’  Elementa  Harmonica referring  to  the ability  of 
intervals to follow each other and the ways in which this happens. It is a relational potential inherent  
in notes,  independent  of  their  intervallic  size.  Melodic  function (dynamis)  is  a  higher  perceptual 
concept in harmonic science that is encountered through hearing (akoe) and thought (dianoia) over the 
course  of  a  melody.  This  incorporation  of  thought  and  perception  is  referred  to  as  aisthesis: 
perception sensitive to musical meanings of  notes and intervals in various contexts.

The  Greek  word  dynamis has  several  meanings,  all  of  them  useful  for  elucidating  harmonic 
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properties: it is most literally potential, or capacities in potentia, powers obtained through relations; it 
is also movement, dynamics as the capacity to produce (melodic) movement or change; finally, it is  
translated from Aristoxenus, who refers to it as one of  the non-quantitative discriminations found in  
harmonic  science,  as  function.  This  function  is  independent  of  interval  sizes  since  melodic  
characters can remain stable while the magnitude of  the intervals that instantiate them can vary 
(within limits). The concept is closely connected to the Greek genera, and it is valuable that we pay 
them a short visit.

We have seen that the octave is  the fundamental  interval  from which harmonic and arithmetic  
means are used to divide it and produce other concords, namely the fourth and the fifth. Proceeding  
a step further, each of  these intervals can in turn be divided. The fifth produces harmonic intervals  
(4:5 and 5:6, as mentioned above) while the fourth produces melodic ones (7:8 and 6:7, which are  
not used harmonically but melodically). This suggests that the fourth is a primary unit from which  
to generate melodic divisions. Dividing it with an ‘infix’, a semitone or a tone, it produces 3 tones,  
giving rise to pentatonic scales when two of  these structures are conjoined within an octave (for  
instance, dividing the fourth A-d to form A-c-d and then adding the complementary fourth e-g-a to  
complete the scale A-c-d-e-g-a). Adding another infix to fill-in the wide interval produces a 4 note  
tetrachord which yields heptatonic scales. As with the Pythagorean harmonic derivation of  intervals, 
we can make sense of  melodic intervals as spanning from divisions of  larger, stable ones.

Tetrachords are the building blocks of  scales, consisting of  two tetrachords, either conjunct (a-d-g)  
or disjunct (a-d and e-a,  separated by a tone and forming an octave).  The notes bounding the  
tetrachords are fixed, forming the scalar structural framework. Changes in the positions of  the two  
movable  notes  inside  tetrachords  determine  their  genera,  which are  of  three  types:  diatonic, 
chromatic and enharmonic. Each genos has different variations or ‘shades’ in tuning (chroai, such as 
‘soft’, ‘tense’, ‘tonic’ and ‘even’). Diatonic has no interval smaller than a semitone or larger than a  
tone, but chromatic and enharmonic have crowded intervals at the bottom and larger ones at the  
top. Intervals in all genera are unequal in magnitude, and the fact that Aristoxenus divided the fourth  
equally into 30 steps does not imply the common reading according to which this idea anticipates  
equal  temperament:  there  is  no  place  for  equal  intervallic  spacing  in  Greek  music,  equal  
temperament arising out of  different musical problems, namely modulation in just intonation for  
keyboard and fretted instruments. Aristoxenus’ divisions are theoretical means of  measuring and  
classifying the unequally spaced intervals of  his time, and never did he refer to the actual stacking of  
more than two or three equal intervals together62.

Enharmonic was considered the principal genera by Aristoxenus (its meaning was to be in tune, a  
harmonia,  although already by his time it was falling in disuse and was alluded to as ‘old style’).  
Chromatic is a deviation from enharmonic (chroma meaning coloring) and diatonic was initially only 
used in certain regions, but in time this changed and ended up dominating the music in Roman  
times, later inherited to Europe. Using the letters q, s, t, x, and d to stand for quartertone, semitone, 
tone, three semitones (trihemitone) and ditone, their basic structures are the following:

enharmonic: q, q, d 

62 An example of  this misunderstanding can be seen in Xenakis, I. (1985). Music composition treks. In C. Roads (Ed.), 
Composers and the Computer. Los Altos, CA: W. Kaufmann, and Xenakis, I. (1992). Formalized Music: Thought and  
Mathematics in Composition. Stuyvesant, NY: Pendragon Music Press, 182. He claims that Aristoxenus ‘invents, in 
theory, a complete, equally tempered chromatic scale with the twelfth of  a tone as the modulus (step).’ Moreover, his 
terminology designates Pythagorean theory as geometric and Aristoxenian as additive. This because adding 
proportions is a multiplicative operation, while distances become additive through their logarithmicization. His 
terminology is founded upon an operational, algebraic, viewpoint, not on the correlation between music theory and 
the two main fields of  mathematics, as in our case (the former related to arithmetic, the latter to geometry). More 
than an inconsistency it is a difference in terminology.
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chromatic: s, s, x (Aristoxenus called this shade ‘intense’)

diatonic: s, t, t (also  ‘intense’)

There are more variations on each genos  depending on how some of  the intervals are defined for  
each shade, a change in one of  them evidently modifying the others. The intervals, once defined in 
one of  the possible shades cannot be further divided: they are incomposite, no matter how large. A 
tetrachord is characterized by its largest interval: enharmonic is distinguished by  the incomposite 
ditone (construed by Archytas as a 5/4 but without tertial implications, used as a melodic step, not as 
a harmonic jump; other rationalizations including 81/64 – the Pythagorean ditone – and the unusual  
19/15); chromatic is characterized by some variety of  trihemitone (regarded as 32/27, 6/5 or 7/6);  
and the diatonic by a tone, which could be different from the disjunction tone (interpreted as 10/8,  
9/8, 8/7, and even 7/6).

Melodic  functions  appear  when  each  note  in  a  tetrachord  is  identified  as  carrying  a  specific  
behavior. Because several interval sizes are shared by different genera, this recognition depends on  
function, not size. Notes are not just pitches, in the sense of  only occupying a position within a  
system, but functions acquired through their relational roles within that structure. A ‘route’ (hodos, 
the root word for ‘method’) is a progression, a specific melodic formula reminiscent of  melodic  
patterns that form part of  the structure of  hindu raags and arabic maquam. It refers to the possible 
movements melodic successions can take when traveling between stable pitches, defining the features  
of  intervallic progressions, where each note has the potential to influence future alternatives that  
depend on a wider pattern of  relationships beyond the previous, current and following note. It is not  
just a fixed point in the structure, but something with its own ‘power’ or dynamic properties which  
impel the melody to move forward.

1.3.5 Corollary. Dynamis: the horizontal core of  harmony

Harmonic and melodic tensions (the propensities to move) are not limited to the intrinsic properties  
of  chords  and notes,  but  result  from context.  Differences  between genera  were comprehended  
through aisthesis: through hearing and thought, which also means through training, and this is where  
cultural schemata play a role in the organization of  these contexts. Harmonists were interested in  
explaining the nature (physis) of  melos, not the conventions built on these structures. Greek  systema 
were not given phenomena but constructions created by theoreticians, so the question centered on  
why these systems and not others reproduced the melodic roles taken by the notes. The rules of  
melodic progression are not just arbitrary but stem from the features of  pitch that produce melodies  
and determine the scales. This is the reason why  dynamis is a non-quantitative aspect of  melos: an 
interval is not to be defined by a magnitude but by a  character present to the ear. This is one of 
Aristoxenus’ greatest contributions to harmonic science and was to be taken on by harmonists of  
every  persuasion:  it  belongs  both  to  the  proportional  and  to  the  timbral  facets  of  harmony.  
Proportional  (although harmonic seems to be the better  term here)  in the sense that  it  defines  
characters and roles, potentials spanning beyond immediate sonic qualities, defining structures at  
larger time frames, one level of  organization above intervals and notes in isolation. Some roles can  
belong to the timbral sphere (ephemeral, ornamental and coloristic roles, tensions aiming towards  
goals  –  the ‘leading  note  effect’,  –  etc),  while  some are  harmonic  (stabilities,  goals,  the  use  of  
intervals larger than fourths, pivot notes that can change function in modulation and so on).

Potential  for movement is  a  significant  feature of  harmony and  melos is  its  operating principle, 
whether it is movement that produces tension (as in contrapuntal conceptions of  consonance and  
dissonance, Tenney’s CDC-3) or tension that produces movement (as in functional tonality, CDC-4).  
In  this  way,  context,  progression and potential  are  properly  harmonic  roles,  expressed  through  
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melody whether it is explicit or merely implied, which is another important lesson to be taken from  
dynamis.  A scale is not a neutral structure, it involves not just a collection of  notes or intervals but  
also  specific  and conditional  comportments.  If  scales  are  associated with colors  or  moods,  this 
functional  conception  plays  a  salient  role  in  defining  those  higher  level  features  by  involving  
characters, routes and functions. These roles determine the tension and movement from which a  
melody is said to imply a harmony and from which a verticality induces a melody.

With ratios we are dealing not so much with magnitude as with qualitative attributes, so magnitude  
belongs  to  the  timbral  aspect  and  character  to  proportion.  There  is  no  such  irresolvable  
incompatibility  between  the  mathematical  and  the  empirical  approach:  they  describe  different  
aspects  of  music,  each  having  advantages  and  disadvantages  over  the  other  in  different  
circumstances, but without overlap or contradiction. It is similar to the way in which harmonic 
duality  plays  itself  out,  as  an intertwining or  entanglement,  always  in  tension,  no aspect  being  
independent of  the other. Their paradoxical relationship can be turned into a concept.

From this  perspective,  we  must  also  distinguish  in  intervals  the  difference  in  function between  
commas,  alterations,  steps,  and  leaps63.  A  comma  changes  the  tuning  of  an  interval  without 
changing its scale degree, as it happens when an interval is tuned in accordance with one set of  
fundamental intervals rather than another (as when a third is tuned according to fifths as opposed to  
pure thirds, for example). An alteration does not alter the degree but changes its mode or quality  
into that of  another genera, as in the case of  a change from minor to neutral to major within a  
degree. A step is an adjacent change of  scale degree, independent of  its size (in enharmonic it could  
range from a quarter tone to a  ditone).  A leap is  a  non-adjacent change of  degree.  Moreover,  
inversion can be considered an operation upon these roles, altering their properties in interesting  
ways: intervals larger than a fourth can be inverted to fall within the fourth, so that their roles are  
related to the smaller versions with additional characteristics brought by size and direction.

Functions within the tetrachord could also be related to posterior functional harmony such as  tonic-
dominant, supertonic-submediant, mediant-leading-tone and subdominant-tonic, but the difference 
is  that  these  are  harmonic  properties  of  chords  constructed  on  these  scale  degrees  while  the  
functions  we’re  discussing  are  eminently  horizontal.  Modulatory  harmony  takes  dynamis  a  step 
further to higher levels of  organization by applying it to chords progressions and, even further, to  
tonalities.

1.3.6 Numbers and perception: Pythagoreanism

‘There  is  no  difference  between  composing  music  and  thinking  about  the  stars’  (Karlheinz  
Stockhausen64)

The mathematics issuing from arithmetic and harmonic means are by no means trivial, even if  their  
initial musical application might seem a bit innocent. The harmonic mean, discovered as a result of  
musical  problems,  shows that  musical  phenomena testify  to  patterns  lying beyond the auditory  
realm, providing departure points for mathematics, and not the other way around, as the relation  
between music and mathematics is usually understood65. The discoveries of  Pythagoreans have since 

63 For more on this topic, refer to the discussion in Lekkas, D. (1999). The Rationale for Ratios and the Greek 
Experience. In C. Barlow (Ed.), The Ratio Book. Cologne: Feedback Papers 23, 24-43.  

64 Taken from the documentary film Tuning In, by Robin Maconie, 1983. Last retrieved August 13, 2012, from 
http://www.youtube.com/watch?v=qGnkZnm9MPw

65 ‘[Around 500 B.C.,] music gives a marvelous thrust to number theory and geometry [...] Music theory highlights the 
discovery of  the isomorphism between the logarithms (musical intervals) and exponentials (string lengths) more than 
15 centuries before their discovery in mathematics; also a premonition of  group theory is suggested by Aristoxenos.’, 
Xenakis, I., Music Composition Treks, 171-192.
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taken a life of  their own, integer harmonic means providing further inroads into puzzling and deep  
number-theoretic insights. Numbers with integer harmonic means are quite rare and from them  
derive harmonic divisor numbers, positive integers whose divisors have an integer harmonic mean – 
they are non trivial, the first few being 1, 6, 28, 140, 270, 496, 672, 1638, 2970, 6200, 8128, 8190, 
possessing  interesting number-theoretic  properties66.  Euler  proved that  there are infinitely  many 
primes  –  a  result  having  been proved through  reductio  ad  absurdum  by  Euclid  – with  the  aid  of 
reciprocals of  harmonic series. This resulted in Riemann’s zeta function which gives clues to the  
distribution  of  the  primes  over  the  integers,  providing  insights  into  the  relation  between  the  
continuous and the discrete as well as their relation to periodicity, which, as we saw, lies at the heart  
of  pitch67.  The related prime number theorem states  that  x/ln(x) (a  real  number divided by its 
natural logarithm) approximates !(x) (the number of  primes smaller than x) as x approaches infinity, 
connecting primes (integers) and logarithms (reals) in a single expression.

Simple questions related to integers and arithmetic (counting, addition and multiplication) lead quite  
quickly to the frontiers of  knowledge. Perception arrives very early to the shores, but knowledge also  
gets there quite fast, either to extremely complex mathematics or simply to questions that nobody,  
not even the best mathematicians know how to answer.

It would be quite far fetched to try to read these results back into music, but it nevertheless manifests  
that the notion of  harmonic duality, giving evidence of  the polarity between the continuous and the 
discrete  intrinsic to musical phenomena, an hypothesis not resulting from cultural conventions, is  
closely involved with a long tradition of  thinking about the opposition between integers and the  
reals,  the  mathematical  dialectic  between  arithmetic  and geometry.  These  mathematical  results 
attest to a deep link between the two aspects on which auditory harmonic perception rests, even if  
these connections lie far beyond the direct field of  apprehension.

Music (perception, theory and practice) offers awareness of  these mathematical structures. Better  
still,  it  can  convey  some mathematical  ideas  as phenomena.  The  connection  happens  through 
aisthesis: not only as immediate sensation but requiring thought and reflection for its recognition.  
Aisthesis captures only the lowest confines of  these numerical traits, but it is exposed to their whole  
‘frequency range’, not isolated from their full ramifications, which could also re-fold back into the  
aisthetical spectrum. Discussion of  Pythagorean topics at least refreshes (or resuscitates) the problem  
of  the relation between mathematics and music, indicating that the issues at stake are intricate,  
complex  and  quite  relevant  today.  Musical  phenomena  are  caught  between  continuity  and 
discreteness,  sharing  forms  and properties  with numbers  and ratios,  communicating  to  and fro  
between abstract ideas of  order, pattern, relationality and the empirical regions of  ‘tone color’,  
intervallic character, degree of  dissonance, potential, movement, rhythm and other musical  qualias 
known through sensory experience. Musical questions open up to issues bearing on the nature of  
numbers and their relation to the empirical  universe (or,  which is  the same, of  mathematics to  
physics),  as  well  as  the  relations  of  the  latter  back  into  music.  This  is  all  closely  related  to  
Pythagorean science, which incorporates mathematics, philosophy, natural science and music. Music 
understood not simply as an art form among others, but also as a gateway, a sensory entry into and  
between these disciplines.

Though  arithmetic  has  very  little  relevance  in  today’s  mathematics,  it  still  has  contemporary  

66 They are a recent discovery. See the online lecture notes by Goto, T. On Ore’s harmonic numbers [PDF document]. 
Last retrieved May 18, 2011, from http://www.ma.noda.tus.ac.jp/u/tg/files/uts.pdf

67 The zeta function can be expressed as series of  periodic functions: “A physicist will think of  a sum of  periodic 
functions as a superposition of  waves, a vibration or sound. This is what the physicist Sir Michael Berry meant by 
‘we can give a one-line nontechnical statement of  the Riemann hypothesis: The primes have music in them.’” 
Webpage of  Jeffrey Stopple: Stopple, J. (n.d.). Riemann's Explicit Formula. Last retrieved May 12, 2011, from 
http://www.math.ucsb.edu/~stopple/explicit.html
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relevance  is  in  musical  harmony.  The  relation  between  qualitative  and  quantitative  aspects  of 
numbers in and through music is a good reason to glance back at Pythagoreanism. Pythagoreans  
noticed that operations on numbers applied to natural phenomena, conceptualizing this as ‘reality is  
structured by number’, a kind of  mathematical empiricism. This came to an end with Hypassus,  
who discovered quantities  exceeding numbers as they were understood then:  the diagonal  of  a  
square of  size 1, the area of  a circle, the golden ratio, all being alogos. These irrationals found their 
intervallic equivalence in Aristoxenian dieses (the diagonal of  the unit square, $2, corresponds to the 
tempered tritone).  Contemporary mathematicians  had the tools  (extraction of  square and cube 
roots) to compute the string lengths for tempered scales. Aristoxenian dieses are equivalent to taking  
3 geometric means (square roots) and 2 cubic roots to the octave68. The Greek musical system did 
not require temperament nor logarithms. Unless we acknowledge music as emerging solely within  
the  mind,  rational  intervals  have  more  musical  primacy  than  the  otherwise  more  practical 
logarithmic intervallic divisions, which are closer to sensation, approximating but not replacing their  
musical meanings.

This Pythagorean catastrophe leads to Aristotelian instrumentalism, where sublunary phenomena 
are subject to degradation, as opposed to the celestial realm, where exact mathematical relationships 
still  hold:  beauty  was  not  terrestrial  but  cosmic.  Kepler  reunited  both  realms  under  a  single  
mathematical physics, renewing the Pythagorean dream. Music, particularly harmonics, was crucial  
to this dream, figuring prominently as a model for the universe in the thought of  many of  the  
involved thinkers up to the Renaissance. The quadrivium of  sciences inaugurated  avant la lettre by 
Archytas set music side by side with mathematics – divided into the discrete/continuous twofold of  
arithmetics and geometry – and astronomy – with which it shared its cosmological perfection. The  
music of  the spheres was a realm for contemplation and amazement: a correspondence between the  
structure of  the heavens, that of  music (particularly the proportions determining consonance and  
dissonance) and the human soul. Microcosm and macrocosm were in accord, mediated through 
music through sympathetic resonance.

Newton’s decomposition of  planetary orbits into terrestrial linear movements ruined the separation  
between cosmos and earth, displacing it into an intra-terrestrial one between nature and culture.  
Sound  is  now  understood  within  the  domain  of  the  laws  of  motion  and  not  as  a  separate  
phenomenal  field,  and the theory of  sound propagation is  founded on Newton’s  model  of  the  
harmonic oscillator (the pendulum) which was inspired by harmonic science, later loosing its musical  
derivation and taking on an independent history as a mathematical abstraction which would serve 
physics  a  great  deal.  Since the Enlightenment,  harmonics  lost  its  importance as  an intellectual  
model in a transition that began with Galileo and Mersenne and went all the way up to Helmholtz,  
whose aim was explaining the consonance of  simple ratios, the Pythagorean problem par excellence, 
from a sensory instead of  a formal standpoint – effecting a change from a proportional to a timbral  
explanation. Music theory’s foundations underwent an ‘empirical turn’, speculation being replaced  
by  physical  and  physio-psychological  explanations.  Furthermore,  after  Kant’s  suspension  of  
metaphysics as dogmatic and naïve, speculation lost whatever impetus it had left. When all that is 
permitted or possible to talk about is the conditions of  access for subjective experiences, and not  
things in themselves, which are confused as grounded objectively instead of  subjectively, reasoning  
in  music  turns  toward  the  perceptual.  As  the  human  subject  becomes  the  new  center  of  the  
universe, the aim of  theorizing about music is transformed from that of  gaining knowledge about  
music in general to that analyzing individual compositions.

The qualitative aspects of  numbers have gradually been lost since those days, regarded as they are  
in purely  quantitative terms and leading to a  ‘quantocentrism’ which cedes  the monopoly over  

68 Dividing an octave into 72 equal steps: 72 is 23 " 32,, equivalent to taking 3 square and 2 cubic roots to 2.
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numeric  qualities  to  new  age  numerology69.  Mathew  Watkins70 proposes  that  to  recover  these 
qualitative aspects without loosing some kind of  verifiable support implies seriously studying number  
theory, ‘because as far as I’m concerned, that is numerology – you’re looking at the properties of  
integers and if  you study it to a certain depth it takes you into the realms of  what you could only call  
the mystical or uncanny, where cracks seem to open in your normal understanding of  reality.’ 71 
Music, though rarely mentioned in relation to this topic, provides one of  the most direct instances  
of  the qualitativeness of  numbers, and in this sense harmony can be considered an audible interface  
between these realms.

‘Although number is widely considered as a mental construct, at the same time it manifests directly  
in the world of matter: when you consider a quartz crystal or a five-petalled wildflower, it’s hard to  
deny there’s an essential “sixness” or “fiveness” there. So, number itself is a bridge of sorts between  
psyche and matter.’72

Philosophy was in closer contact with music in its Greek origins. These numeric qualities are audible  
proportionally, both as intervals and durational distributions: ‘twoness’ is one of  its basic attributes,  
relating  to  octave  equivalence  and  interval  classes,  as  well  as  basic  rhythmic  binary  divisions;  
‘threeness’ has to do with fifths and fourths, hemiolas and sesquialtera; ‘fiveness’ with thirds, sixths;  
and so on, each being a distinctive and easily recognizable audible  qualia. Moreover, from purely 
harmonic considerations, we should discern in ‘sixness’ a combination of  ‘threeness’ and ‘twoness’:  
the fact that composite numbers adopt and combine the qualities  of  their  prime factors, which  
become of  prime-ary importance not only to arithmetic, as in the Greek Fundamental Theorem of  
Arithmetic73, but also to harmony. They are the atomic constituents of  proportional intervals, their  
formal causes or ‘definition patterns’. If  according to Aristotle the formal cause of  the octave is 2/1,  
then 2 is the main content or the interval’s quality. In something more complex like 15/8 (a major  
seventh), its formal causes would be 2, 3, and 5 (the 2 compounded 3 times) 74. Another issue is how 
high in the prime series can human auditory aisthesis encompass. Some say up to 7, some up to 13 
and  higher:  this  contemporary  debate  will  have  to  be  waged  with  musical  rather  than  purely  
theoretical hypotheses.

‘Pythagoreanism’  can  refer  to  many  schools  and  eras  beginning  with  early  Pythagoreans,  split  
between the acusmatici –   a mystical, non-scientific tradition based on the aurally revealed word of 
Pythagoras, emphasizing ethical precepts for living ascetically – and the  mathêmatici –  referring to 
rational Pythagorean science: mathematicians and natural philosophers, culminating with Archytas. 

69 I am correcting this paragraph on 11/11/11 and cannot believe all the vacuous frenzy around such a fortuitous date. 
While all this complacency takes place, yesterday the Western Black Rhinoceros was declared extinct. Many of 
today’s superstitions pass unexamined (at times with awful consequences, as the news shows) while the depth and 
subtlety of  reasoning behind some of  the most influential models of  the universe in history tends to be lost and 
considered unsophisticated belief  compared to our current ‘advanced’ knowledge.

70 Watkins, M. (2006). Prime evolution (interview). Collapse, 1, 93-189.
71 Ibid. 166-7.
72 Ibid, 183.
73 Proven by Euclid, the Fundamental Theorem of  Arithmetic ‘states that any integer greater than 1 can be written as 

a unique product (up to ordering of  the factors) of  prime numbers.’ That these factorizations exist is evident, that 
they are unique is not so trivial. Extended to harmony it implies that every interval is determined by a unique 
combination of  fundamental intervals. Fundamental Theorem of  Arithmetic (2010). In Wikipedia. Last retrieved 
November 16, 2010, from http://en.wikipedia.org/wiki/  Fundamental_theorem_of_arithmetic  

74 ‘“Cause” means (1) that from which, as immanent material, a thing comes into being, e.g. the bronze is the cause of 
the statue and the silver of  the saucer, and so are the classes which include these. (2) the form or pattern, i.e. the definition 
of  the essence, and the classes which include these (e.g. the ratio 2:1 and number in general are the causes of  the octave), and the parts  
included in the definition. (3) That from which the change or the resting from change first begins; e.g. the adviser is a 
cause of  the action, and the father a cause of  the child, and in general the maker a cause of  the thing made and the 
change-producing of  the changing. (4) The end, i.e. that for the sake of  which a thing is ...’, Aristotle. (1996). 
Metaphysics. In J. Barnes (Ed.), The Complete Works of  Aristotle. Princeton, NJ: Princeton University Press, Book V. §2 
(1013a). Emphasis added.
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Pythagoreanism is also attributed to other thinkers and schools who assimilate and transform some 
of  their chief  ideas such as the dyad of  the limited and unlimited and the correlation between the  
ideal and empirical realms. Plato and Aristotle are examples, as well as Aristoxenus, who provides  
the earliest direct account of  their theories, having lived under Archytas’ rule. The unification and  
creation of  a canonic tradition was pursued by the Neopythagoreans of  later centuries (Porphyry,  
Iamblichus) and carried further by medieval neoplatonists (Boethuis, Nichomacus) all the way up to  
the  Renaissance  (Copernicus,  Zarlino,  Kepler,  Galileo)  and  the  Baroque  (Euler,  Leibniz).  Even  
today, ‘many modern scientists accept the basic tenet that knowledge of  the natural world is to be  
expressed in mathematical formulae, which is rightly regarded as a central Pythagorean thesis, since 
it  was  first  rigorously  formulated  by  the  Pythagoreans  Philolaus  and  Archytas  and  may,  in  a  
rudimentary form, go back to Pythagoras himself.’75

Recovering this scientific, philosophical and mathematical strand is central for us, not dismissing it 
as numerological mysticism (or superstition) nor as a highly innovative but easily surpassable idea.  
This  would miss  the subtlety,  importance and permanence of  some of  these discoveries,  which  
stretch beyond the possible interpretations and uses given to them. It refers more to the structure of 
these ideas rather than their content. In fact, we can state in the same vein that harmony is both  
discovered and created (and composition an act of  observation more than just authorship).  The 
model of  the string is still in use and provides one of  the most tangible links between the discrete,  
the continuous, the mathematical and the physical, as well as supplying the link between place and  
time theories in pitch perception models. Moreover, probably the principal characteristic of  this  
Pythagoreanism is  the gesture ‘number is  a  bridge between psyche and matter’  more than the  
regularly  acknowledged  ‘being  is  number’.  It  is  with  Archytas  then,  that  the  inspiration  for  a  
renewed Pythagoreanism must be found, where perception and empirical observation are coupled  
with  deduction  and  logical  rigor.  The  ‘pitching’  of  melodic  space,  as  Aristoxenus  named  the  
puncturing of  the pitch continuum with stable pitches, is discovered by induction from observation. 
Through this abstraction, an ‘astonishing orderliness’76 is uncovered, attesting to a physis, a nature or 
essence of  melos. An orderliness revealing patterns of  rational numbers.

1.3.7 Concluding remarks

The Romantic nature-culture pair that ensued from the Enlightenment is replaced by a modern  
symbol of  history as a non-human, non-natural force driving an impersonal process 77. Modernity 
shifts  the focus  from the human strife with nature towards indifferent forces,  and in music  this  
involves turning our ears from self-expression towards receptivity, abstraction, aloof  forms, as well as  
all kinds of  things ‘out there’78. This very contemporary concept of  attuning to all sorts of  entities is 
implied by Pythagoreanism and consists in paying attention to the structure of  what surrounds us. It 

75 Pythagoreanism. (2010). In Stanford Enciclopedia of  Philosophy. Last retrieved November 13, 2011, from 
http://plato.stanford.edu/entries/pythagoreanism

76 Aristoxenus as quoted in a discussion of  this topic in Barker, op. cit. 150.
77 These ‘symbols’ of  history (cosmos-earth, nature-culture, history) are acquired from a translated preview of  Quentin 

Meillassoux’s yet unpublished Divine Inexistence, in Harman, G. (2011). Quentin Meillassoux. Philosophy in the Making.  
Edinburg: Edinburgh University Press.

78 In this vein, the avant-garde serialists of  the 1950’s (Eimert, Stockhausen, Pousseur, etc) are also weird heirs to 
Pythagoreanism, mostly due to their absolute and anti-language approach to music. Nevertheless, if  there is any 
paradigmatic Pythagorean composer inspiring this research it is Iannis Xenakis (even if  his approach to pitch is 
highly Aristoxenian). If  we make sense of  Pythagoreanism as in the Renaissance, as a conjunction of  music, 
philosophy, mathematics, poetry as well as the common origin of  arts, then is not he a most Renaissance figure who 
conjoins heart, mind, science and philosophy, adapting it to the needs of  his own time? He is perhaps the greatest 
emancipator of  the continuum in music which is a point of  departure for our advocating a reassessment of 
discreteness and proportionality.
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should not be understood either in a mimetic nor positivistic sense of  mechanical knowledge or as  
an optimistic-progressive metaphor, but instead as something to probe or dig into, to be reckoned in  
its full uncanniness. According to Graham Harman’s metaphysics of  objects79, essences, although 
having been considered either elsewhere (outside this world) or non-existent, are in fact in objects,  
yet withdrawn: they are not simply present. They are somehow like substantial forms in relation to  
proportions: definition patterns that establish objects as autonomous realities that emerge over and  
above their constituent parts as well as being independent of  their outward relations. An object’s  
relation to other objects siphons some of  their withdrawn qualities creating a sensual, phenomenal  
realm in the object that makes contact with another, though the object itself  is never exhausted by  
these relations,  always holding some novelty in reserve (its  withdrawn,  noumenal realm).  These  
qualities are highly singular, not ‘bare particulars’, each imbued in the unique style of  its object, not  
being pale specters of  ideal ones (a 3/2 is the 3/2 of  the timbre that instantiated it, not a chimerical  
interval whose timbre is a deficient approximation of  an ideal one). For that matter, these essences  
are not indestructible nor preexist the object. There is more inside the object than outside it. As we  
will see with more detail further on in defining proportional and timbral aspects of  harmony in  
relation to rhythm and form, in this static model space and time are emergent features of  objects  
and we are fundamentally embedded in an infinite regress of  objects, not in a meaningful, blissful  
way, but in an uncanny, expressionist, Lovecraftian, disturbed manner. It is not matter which is at  
the service of  subjectivity, but a matter of  subjectivity caught inside the strangeness of  other entities.

This suggests an aesthetic stance of  attuning to musical and sonic phenomena, instead of  trying  
heroically to dominate them (which would fall into the Romantic attitude). This position leads to  
sincerely (instead of  ironically) approach all kinds of  objects for translation into music and sonic  
forms, seeking some of  their hidden harmonies. The task calls for the sonification of  the formal as  
well  as  the  empirical  worlds,  rendering  entities  into  sound,  as  well  as  proceeding  from sounds  
towards abstract entities.

One aim of  this research has been to give back to harmony its speculative and arithmetic dimension  
without disregarding but even emphasizing the developments made after the study of  music and  
harmony changed from having a metaphysical towards a physical and subjective grounding. Many 
concepts of  Greek harmonics can be incorporated and used in a contemporary harmony, chiefly by  
admitting melos as one of  its pivotal aspects, a structuring and motion producing device established  
through the relationality of  tones. Other notions  such as division by means, atomic constituents, 
tetrachordal  (and other  moduli)  divisions,  functional  conceptions,  etc.,  can be further extended,  
inviting us to recuperate long forgotten intervals, with ideas about possible generative and relational  
strategies to deal with them. The demarcation between the proportional and timbral  aspects  of  
Greek  harmonics  as  well  as  the  detailed  delineation  of  melodic  consonance/dissonance  also  
provides a refreshing perspective on these issues, which have been clouded by layers of  sedimented  
theories covering them up throughout the centuries.  Finally, its metaphysical  perspective can be 
transposed today by rethinking the question of  numbers in relation to perception, of  mathematics in  
relation to music and of  music in relation to structural aspects of  reality. 

Attuning, contemplating, ceding control, receptivity: to reinterpret ideas from the past as part of  the  
construction of  the future and in order to have the largest possible present.

If  the first section on pitch perception ended by delineating a perceptual ontology of  sorts,  this  
section has tried to identify a link between perception and arithmetic, but this time perception is  
linked with a  phenomenological  first  person perspective and the arithmetical  with the  aisthetical 
deduction of  the formal causes behind these perceptions. The arithmetic standpoint is a kind of  
‘formal ontology’ for harmony, while the phenomenological attitude belongs to its precondition, its  

79 The main books where I draw these ideas from are Guerilla Metaphysics and The Quadruple Object.
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‘axiomatic’ starting point. What must now be brought forward is the connection of  these in the  
direction of  a properly musical ontology, not dependent on neither arithmetic nor perception, lying  
at a certain distance from them, but in constant tension and correspondence.
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Chapter 2 

Timbral Harmony

2.1 Dissonance Curves

2.1.1 Dissonance curves from a compositional perspective

‘[T]o attune noises does not mean to detract from all their irregular movements and vibrations in  
time and intensity, but rather to give gradation and tone to the most strongly predominant of these  
vibrations.’ (Luigi Russolo, The Art of Noise.80) 

Dissonance curves  have been the driving impetus  of  this  research,  being a  practical  and fertile  
means to produce microtonal intervals out of  spectra with the aid of  the computer. These spectra  
can proceed either from empirical sounds as well as from abstract mathematics. Overall, their basis  
corresponds  to  timbral  principles  of  harmony,  namely  the  phenomenon  of  psychoacoustic  
roughness,  though by  the  fact  that  they  also  produce  coincidences  with  proportional  intervals,  
working with them leads to thinking the relation between spectrum and proportionality. The use of  
the generated intervals, of  which there are a great variety, has induced conceiving ways of  sorting,  
classifying, filtering, partitioning and deploying these intervallic sets. It has also implied working out  
their relationships with the sounds that generate them as well as extracting differentiated harmonic  
areas inherent in each of  them.

This set of  algorithmic composition tools has been developed as en extension library, DissonanceLib, 
for the composition and sound synthesis programming language SuperCollider81. We’ll review below in 
some detail the psychoacoustics behind them, stemming from Helmholtz up to Plomp and Levelt  
and a bit beyond, but its more important first to understand them in compositional rather than  
scientific terms. The following considerations characterize and summarize these aspects.

Dissonance curves indicate how certain timbral characteristics of  sound behave when transposed.  
They provide a profile conveying the transpositions at which a sound is most sensory-consonant with  
itself. They display the behavior of  a spectrum, within a determined intervallic span, according to  
roughness.

Their  implementation takes  as  an  input  a  set  of  partials  (frequencies  and amplitudes),  and an  
intervallic  range  in  which  to  do  the  analysis.  Their  output  is  a  pitch  set82 of  frequency  ratios 
corresponding to the intervals  at  which the dissonance profile reaches a local minimum. These  
minima correspond to intervals  at  which the original partials  are less rough with respect to the  
transposed partials.

80 Russolo, L. (1913). The Art of  Noise. Unpaginated. Last retrieved February 2, 2012, from 
http://120years.net/machines/futurist/art_of_noise.html

81 They are available as an extension (a ‘quark’) for SuperCollider, a programming language for audio synthesis and 
algorithmic composition. McCartney, J. (2002-2012). SuperCollider (version 3.4-3.6) [software]. Available from 
http://supercollider.sourceforge.net/ Its documentation details the many functions and procedures for composing 
developed during this research some of  which we don't have space to cover here. The reader is therefore directed to 
the help files contained in DissonanceLib.

82 A pitch-set is a raw collection of  intervals, not yet a scale, lacking a melodic or functional structure, being ‘dynamis-
less’.
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Within the intervallic scope of  their analysis, dissonance curves relate compound tones to frequency  
ratios. The peaks and valleys of  their silhouettes occur at ratios that frequently lie within tolerance  
from well known proportions. These intervals coincide with proportionality from the point of  view  
of  timbre. A good example of  this happens when inputting harmonic series and obtaining just (or  
extended-just) intonation intervals (see Figure 1).

 

 

Figure 1. Dissonance curve derived from a mathematical spectrum, that of  a sawtooth 
wave, over the range of  a little more than an octave. The proportions obtained through  
rationalization are shown beneath each local minima; they correspond to intervals from 
just- or extended just-intonation. The spectrum is shown above the curve, frequency and 
amplitude have been converted into the subjective psychoacoustic scales of  barks  and 
sones. The figure was made from information generated with DissonanceLib.

The intervallic sets produced by the outputs of  dissonance curves have the attribute of  ‘cooperating’  
with  their  source  spectrum.  They  can  be  described  as  ‘coherent’,  ‘compatible’,  ‘concordant’,  
‘consonant’, ‘minimally rough’, and other similar qualities, for that particular spectrum. No single 
term is able to describe the type of  auditory sensations they produce, though all of  them give good  
indications of  their features, which vary also according to their settings in a musical context (see  
Figure 2). 

Some of  the intervals produced coincide with the partials of  the spectrum while others are different,  
some arising from combinations of  partials (as when, for example, partials 6 and 7 in an overtone 
series produce the interval 7/6, not corresponding to a partial), and others from intervallic inversion  
(as when a 4/3, an interval not contained in overtone series, is produced as an inversion of  the third  
overtone). There are intervals of  other kinds as well, not easily typified according to they way they  
arise. They depend both  on the sweeping interval over which the curve is made  and the relative 
amplitudes of  the partials. The range over which dissonance curves are calculated is usually quite  
different from the ambit of  the spectrum.

Dissonance curve analysis can be done between the spectra of  two different sounds. However, most  
of  the present research has been done by analyzing spectra from single sounds, mainly because this  
approach  is  very  fertile  and  with  two  spectra  the  interpretation  of  the  results  is  not  so  
straightforward. The pitch sets resulting from the analysis of  two spectra correspond to intervals for  
which the timbral compatibility between the two sounds is maximal, producing inter-timbral pitch  
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sets and opening the way for future endeavors. 

 

Figure 2. Dissonance curve obtained from an empirical spectrum, that of  the vowel ‘ee’  
(see its spectrum on the inner box). The ambit of  the curve ranges from the sub-octave 
to two octaves and a fifth above the unison. Known intervals from just intonation can be  
seen,  as  well  as  others  that  are  quite  rare,  whose  function  is  more  timbral  than 
harmonic.

Interpreted as scales, the generated pitch sets have irregular microtonal structures, not repeating  
patterns  within  octave  or  other  equivalents.  Their  behavior  varies  with  register  and  at  high  
transpositions increases the sensory consonance of  the intervals as their spacings become widened  
(as  in  rightmost  half  of  Figure 2).  Ranges  below  1.0  yield  intervallic  inversions  resembling 
subharmonics with a similar timbral behavior. 

In my implementation each interval in the set is represented as a distance in cents, a frequency ratio 
(a decimal number), an integer ratio (rationalized proportions, approximated to significant harmonic 
intervals), and as vectors within harmonic space. Additionally, each interval stores its roughness and  
calculates its harmonic measure83. For 7-limit configurations, a harmonic function is derived84.

The intervallic  sets  can be  deployed in  timbral  and proportional  ways,  which is  why  they  are  
furthermore partitioned into timbral  and harmonic subsets.  Not  having yet discussed harmonic  
space, it is still worthy of  mentioning that the latter sets are usually confined to small regions near  
the origin, while the former lie farther out from the center. Different roles can be assigned to the  
separated interval sets, based on their characteristics:

" Timbral intervals, holding a close spectral relationship with the source sound are prone  
to be deployed in fluid and ephemeral roles, associated with time scales ranging from the  
micro temporal to the psychological present. They can be used as granular particles or as 
colorings and enhancements enveloping concrete sounds, as well as for electronic sound  

83 We are now only panoramically reviewing these topics, which will be discussed in detail in the first section of 
Chapter 3. Harmonic measures quantify the harmonicity of  proportions. There a various measures such as 
harmonicity (Barlow), harmonic distance (Tenney) and gradus suavitatis (Euler). Each produces a distinctive sonority.

84 The functions are sub- and dominant, sub- and mediant, sub- and septimal in an extrapolation of  Hugo Riemann’s 
ideas. Implemented from Wohl G. (2005). Algebra of  Tonal Functions. Last retrieved December 2011, from 
http://sonantometry.blogspot.mx/2007_05_01_archive.html
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synthesis or emulations with acoustic instruments.

" Harmonic intervals fall  within certain compact zones in harmonic space, I  call  these 
zones  ‘islands’  because  they  contain  autonomous  harmonic  worlds.  Each  island  is  
coupled to a specific temperament in equal divisions of  the octave that approximates it  
and, by treating the proportions as degrees, allows for transformations, modulations and  
combinatory  operations  to  be  performed  on  them.  Harmonic  intervals  are  also 
compatible with the source spectrum but in less  immediate,  more abstract  or formal  
ways,  suggesting  longer  time  frames  than  timbral  intervals.  They  can  function  as  
fundamentals, pedals, drones, notes, chords and larger textures/progressions.

" Other partitioning schemes are available,  such as  separating the pitch sets  according 
highest prime number, yielding subsets arranged according to combinations of  primary  
intervals. Its is also possible to filter intervals lying within a certain harmonicity span or  
according to their absolute roughness.

Another  way  do  deal  with  pitch  sets  is  to  extract  their  intrinsic  harmonic  areas,  for  which  a  
‘stochastic harmonic field’ is constructed. A harmonic metric is interpreted as the probabilities for 
choosing each interval, and this can be varied by scaling the probabilities according to the field’s  
‘strength’. This permits generating textures with fine-grained transitions between different harmonic  
zones (between tonal, atonal and ‘anti-tonal’). The details of  this important aspect of  my research  
will be put forward in section 3.2. 

Further psychoacoustic models have been used in conjunction with dissonance curves. By providing  
conversions  between  different  subjective  scales  (bark,  ERB,  mel,  for  pitch;  phones and  sones for 
loudness85),  DissonanceLib  permits to fine tune the generation of  the curves. Additionally a ‘pitch  
salience’ model allows compensation by masking and virtual pitch. The latter is a subharmonic  
(greatest common divisor) of  the main partials and provides a pitch lying in the lowest register of  
hearing, usually different from the spectral fundamental, which combines very well with the pitch  
sets derived from the curves86.

2.1.2 Dissonance curves in relation to my musical research

‘The thread of time has knots all along it ... Reality does not stop flickering around our abstract  
reference  points.  Time,  with  its  small  quanta  twinkles  and  sparks.’  (Gaston  Bachelard,  The 
Dialectic of Duration87)

This is a first of  two sections on my musical research, here providing a chronological overview of  
the compositional  work involving dissonance curves by focusing more on the programs, general  
approaches and paradigm involved, rather than on individual pieces, which will be the concern and  
development of  section 4.1. 

The outcomes of  this research have consisted in sound experiments, sketches, tryouts and pieces.  
The compositions are for instruments with and without real time or fixed electroacoustics and have 
sprung from the algorithmic composition tools developed to experiment with materials generated by  
dissonance curves. The first version of  dissonance curves, their minimal implementation, obtained  
intervals out from their local minima. Further versions added more sophisticated intervallic analyses  

85 Scaling amplitudes of  the partials according to equal loudness contours.
86 Masking, virtual pitch and salience derived from Parncutt, R. (1994). Applying Psychoacoustics in Composition: 

‘Harmonic’ Progressions of  ‘Nonharmonic’ Sonorities. Perspectives of  New Music, 32(2).
87 Bachelard, G. (2000). The Dialectic of  Duration, Manchester: Clinamen, 81.
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such  as  rationalization,  representation  in  harmonic  space,  timbral/harmonic  partitions, 
visualizations and the establishment of  their harmonic fields. Major developments have gone hand 
in hand with compositions, in turn accompanied by sketches and preliminary experiments. This  
thesis is the theoretical upshot of  the questions raised in practice, but it was also used as a source of  
speculations  and  experimentations  with  which  to  further  the  practice.  Experimentation  in  this  
research is  meant not only in the sense of  John Cage,  i.e. music,  the outcome of  which is not  
foreseen,  but  also  in  the  sense  of  experimental  science,  where  one  experiment  leads  to  new  
questions,  hypothesis,  tests,  surprises,  evaluations  and thus  to  further  experimental  cycles,  never  
quite reaching a conclusive ending but opening up to new musical experiences.

The first piece after the research began was a piece for solo harpsichord based on recursive pitch  
structures, which ‘modulate’ further away from the initial configurations in accordance with the level 
of  recursion88. This was just before dissonance curves, however. The first composition to spring from  
them involved a single pitch set derived from a mathematical spectrum (the sawtooth wave of  Figure  
1). The piece transitions between different combinations of  these intervals, filtering them according  
to harmonic measures89.

Later on, the work focused on following and enveloping the source sounds as they change in time  
with what I call ‘dissonance chorales’: chordal and other textural accompaniments adhering to the 
surface of  concrete sounds, usually happening at a fast pace. Each pitch set can be treated either as  
a chord or as a texture. It was the upshot of  developing the program Dissophonos, built atop the basic 
tools. It permits spotting regions of  a sound files to extract and listen to dissonance curves at those  
points. This enables making ‘dissonance chorales’ out these selections: pitch sets corresponding to  
the spectra at those moments. The maximum number of  selectable points in the sound is limited by  
the resolution of  the spectral analysis, varying from around 8 to 20 per second, which is quite dense  
in terms of  the requirements of  the synthesis engine to render the textures, implying non-real time  
work. The chorales can be saved to disk to be retrieved and used later, allowing different kinds of  
electronic ‘orchestrations’ and accompaniments to the source sounds. They are saved as collections  
of  dissonance curves, sometimes containing many thousands of  them.

The  experiments  produced  by  this  program  have  also  led  to  a  classificatory  typology  of  the 
outcomes  of  dissonance  curves  according  to  the  source  spectra  (whether  it  is  mathematical, 
empirical,  instrumental,  phonetic,  varieties  of  randomness  and  noise  –  such  as  the  already 
mentioned ‘frozen noise’,  –  and so on).  The groupings  tend to highlight  the kinds  of  intervals  
characterizing these sounds. The classification has not been pursued in an extensive nor controlled  
manner as it falls outside the aims of  my compositional approach. What it has done, though, is  
provide a connection between acousmatics and harmony, showing that one way of  using dissonance 
curves is through a ‘harmonie concrète’ of  sorts, providing a timbral (concrète or sonic) logic to harmony 
while  conversely  complementing  ‘sound-object  solfège’  with  proportionality  and  other  harmonic 
resources: timbral harmony, on the one hand, as well as the harmony within timbre (‘harmonic  
timbres’) on the other.

The next important step was the real-time implementation of  dissonance curves, entailing that the  
curves were to be triggered manually at certain moments, instead of  being continuously generated.  
This is because of  the amount of  calculations needed as well as (mainly) because the work that can  
be realized by a single pitch set requires enough time to be musically interesting. These pitch sets  
extracted from the sounding audio input are deployed as different types of  electronic textures. Each  
texture can run for a while on the same pitch set, to be replaced by a new pitch set when triggered  
anew,  transitioning  either  smoothly  or  abruptly  between  the  two  sets.  Another  possibility  is  to  

88 discrete infinity (2006) for harpsichord. The piece was almost abandoned due to circumstances, but later finished in 
2008. It has not yet been performed. 

89 rolita pa Modelo (2007), for ensemble (Fl, B. Cl, Trp, Hrp, Guit, Vln, Vlc, DB). Written for ensemble Modelo62.   
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change the type of  texture (both in terms of  layers, rhythmic patterns, timbres, tempos) with every  
change in dissonance pitch set. These alternatives imply dealing aesthetically with the pace at which  
to deploy these harmonic textures and the kinds of  interactions and feedback between a performer  
(or the audience in an installation) and the textures. One of  the main aims of  my interactive piece  
for guitarist and computer is to have the performer imitate the computer in an acousmatic manner,  
playing his instrument by reacting not only to pitch but to the whole timbral environment, giving  
rise to gestures and sonic aggregates which are used by the computer to further imitate her/him  
producing further textures built  on dissonance pitch sets from his input, engaging in a timbral-
imitative feedback loop90.

Instead of  treating pitch sets as chords or groups of  pitches with which to lay a shroud over other  
sounds, relating and constantly varying the intervals according to the sonic context, the following 
phase of  the research concentrated on wresting different qualities from single pitch sets, uncovering  
their ‘internal’,  rather than ‘external’,  consistency (as was the case with dissonance chorales),  in  
accordance with their harmonic properties. From this idea the harmonic fields generator program,  
Harmonic Fields Forever, was developed. It  creates gradual, almost imperceptible transitions through 
the space of  configurations brought forward by these interval sets. It uses a lesser amount, though  
more  complex  and larger,  pitch  sets,  usually  just  one,  distributed over  longer  periods  of  time,  
providing ways to delimit and explore their regions and modes. The principal parameter, the field’s  
strength, variable between zero (all intervals equally probable) and one (harmonic intervals more  
probable),  produces a continuum of  differing pitch configurations ranging from atonal to tonal.  
When the strength is reversed to reach minus one, priority is given to the least harmonic pitches,  
yielding a zone which I call antitonal, for being relatively harmonic between the chosen intervals but  
highly inharmonic with respect to the overall fundamental. The program can work in two modes:  
‘tonic’, which relativizes the probabilities with respect to every pitch in the set, providing a distinct  
modes, and ‘atonic’, which uses the probabilities of  all the modes, making each new chosen pitch  
the tonic with which to choose the next one. There is a striking difference in sound between these  
two types of  strategies91.

These approaches can be summarized as follows:

" Composing with a wide range of  tunings related to timbres

! Using  higher  than 5-limit  intervals  with  aid  of  a  timbral  logic.  This  implies  
paying attention to the connection between intervals and the sounds from which  
they are obtained. 

! Acousmatic harmony:  extending  and  complementing  ‘sound-object  solfège’ by 
providing harmonic analyses to spectral materials. Harmony consisting in levels 
of  ‘sonance’ instead of  poles of  consonance/dissonance. 

90 ‘strings’ (2007) for guitarist, speakers and computer, an open, improvisatory piece composed around the principle of 
computer-performer feedback. It was made in collaboration with guitarist Tom Pauwels and varies quite a lot 
between performers (it has also been played with Matthias Koone in 2008 and Carlos Iturralde in 2010). It was part 
of  the project A Search for reNoise with composers Paul Craenen and Cathy van Eck in the Transit Festival in Leuven, 
2007. More recently a derivation of  this program has been used to create the sound installation Ahí estése (2011) for 
computer, microphone and multichannel setup, as part of  electronic arts festival Transitio MX in Mexico City, 2011.  
More details in Chapter 4. 

91 This will be explored in detail in section 3.2, here it is mentioned in relation to dissonance curves, but it also includes 
the ability to work with pitch sets derived by means other than the curves. This program has been used to generate 
the Logos Sessions (the first batch in 2008, the second in 2009), algorithmic improvisations with harmonic fields 
performed with the musical automata of  Logos Institute in Ghent. It is also the basis for Circular Limit (2008) for bass 
recorder and electronics, written for recorder player Tomma Wessel, as well as for electroacoustic textures used in 
several other projects.
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! To provide the tuning and harmonic characteristics of  soundscapes: their virtual,  
spectral, dissonance pitches and their representation and separation into intervals  
sets in harmonic space from which diverse deployment strategies can be built.

" Synthesis of  dissonance chords, timbres and textures

! ‘Dissonance chorales’: the harmonization of  recorded sounds.

! ‘Granular  harmony’,  harmonie  concrète:  when  the  pace  of  the  chorales  is  fast 
enough to become granular and follows the transients, formants, and other fast  
fluctuations with its fast textures.

" Real-time analysis-synthesis

! The pace at which to change the dissonance textures: how much work can be 
accomplished by each one and the speed at which timbral changes in the source 
surpass the congruence of  its harmonic background in an interactive situation.

! Harmonic feedback between the player and the computer, both responding to  
each other.

! The harmonization of  a sonic environment (and its social interaction).

" Harmonic fields

! Choosing the notes of  a pitch set according to probabilities correlated with the  
harmonic measure of  the intervals.

! Extraction of  sonority regions within a single pitch set.

Theorization and research intersect with the compositional work. They come after the music has led 
to new questions and findings (or lack thereof !), but also have a retrospective effect of  opening up  
new speculative possibilities to try out and incorporate into the cycle. For instance, the hypothesis of 
this study, namely harmonic duality, is a consequence of  working with dissonance curves. At the 
same time it  has  informed their  development to  the point  of  becoming a  concept  that  almost  
outweighs their original purpose. A review of  Greek harmonics also infuses the musical work with  
new hypotheses and tools (arithmetic functions from Pythagorean harmonists such as  katapyknosis, 
musical means, and others have been implemented and used), understanding and acknowledging  
their subtle and (almost forgotten) ideas that seem to shine brightly in light of  today’s harmonic  
situation. This has led the compositions less towards materials derived from empirical spectrums and  
more towards abstract harmonic structures, also deployed at the scales of  rhythm and form. These  
approaches are to be mentioned in section 4.1 None of  this could have been suspected when I  
started implementing the curves at the end of  2006.

Another  influential  development  related  to  dissonance  curves  was  the  development  in  2009  of  
‘polyrhythmia’, a collaboration with sonologist and physicist Alberto Novello. An algorithm that 
connects at various time scales elements from rhythm, pitch and form, it is basically a rhythmic 
acceleration  steady-state  deceleration process in several layers that interprets rhythm spectrally! !  
as  the stratifying of  simultaneous periodicities.  This  is  equivalent to a spectrum: each partial  is  
regarded as  periodically  repeating  at  a  certain  phase  shift;  any  kind of  metric  rhythm can be  
reproduced this  was  if  enough partials  (rhythmic  elements)  are present92.  From out  of  a  single 

92 A similar spectral approach to rhythm, though not involving accelerated/decelerated transitions between steady 
states  has been developed by Sorensen, A. (2010). Oscillating Rhythms [webpage]. Last retrieved November 3, 
2012, from http://www.acid.net.au/indexb565.html?option=com_content&task=view&id=99&Itemid=164

58

http://www.acid.net.au/indexb565.html?option=com_content&task=view&id=99&Itemid=164


spectrum (say, from a 4-5-6-7 polyrhythm harmonically equivalent to a natural seventh chord) it  
transitions from vertical chords into that rhythm by accelerating/decelerating each element at a  
precise rate so that it falls into place in the ‘steady’ section, later to be decelerated so that they all fall  
together at the end. The process can be applied at several speeds and densities and together with  
pitches spawned by dissonance curves93.

The effect of  this process when used together with pitches is that of  polyrhythmic cannons. Their  
time scale can be varied drastically, so the process can take from around several minutes to fractions  
of  a second, also transitioning between the levels as an acceleration into a steady state can be further  
accelerated into another steady state at  a  succeeding time scale,  and so on (and conversely  for  
decelerations).  This  is  the  starting  point  for  the  electroacoustic  multichannel  piece  done  in  
collaboration,  putting  these ideas  in  motion.  It  stems  from the dissonance analysis  of  a  sound  
recording. The pitches are used to reconstruct the sound as a chords of  bandpass regions of  the  
sound, which begin their canonic process of  separating pitch and rhythm-wise into a long process in  
which the pitches transition into sine waves, then up a time scale into ring-modulation, then up  
another rung into FM, then (already very fast) into complex spectra and finally into very condensed  
accelerations  with  impulses.  This  middle  section  is  a  sort  of  free  plateau  where  anything  can 
happen,  after  which  the  process  is  repeated  in  reverse  manner,  decelerating  towards  the  
reconstruction of  the sound at the end (Figure 3). 

Figure  3.  Above:  a  graphic  representation  of  how  a  rhythm  is  conceived  spectrally 
showing  the  periodicity  and  phase  of  each  component.  Middle:  a  simplified 
representation of  the polyrhythmic process in three layers, from synchronized chords to 
steady-state rhythm (‘Regular Rhythm’) and back. Below: schema of  the piece Clinamen, 
going from sound recording, through bandpass filtering in the first acceleration, then 

93 For more details on this algorithm, see Lach J. S. & Novello, A. (2010). Musical Scene Analysis: Applying the Laws 
of  Stream Segregation to Music. Ideas Sónicas/Sonic Ideas, 2(2), 20-27. The algorithm was initailly used in Blank Space, 
but the piece stemming from this collaboration where it is developed further is Clinamen (2011), 4 channel 
electroacoustic soundtrack, composed jointly. More in Chapter 4. 
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sine waves, ring-modulation (in the second acceleration), FM, FM-feedback, noise and 
impulses. The middle section uses PM – phase modulation – and free elements and then 
the process is reversed. It transitions from sample to 1D (one dimensional sines), texture,  
noise and impulse (‘zero dimensional’). Figures courtesy of  Alberto Novello. 

From 2009 onwards, there have not been many new developments to the basic tools of  DissonanceLib  
– though debugging and documentation has continued – nor to the larger programs developed on  
top of  them. The concentration has been more on composing – which in my case involves quite a 
lot of  programming, –  using more or less the same tools although applying them differently and in  
different combinations and methods. It has also involved reading theory, be it on Greek harmonics  
or more philosophical materials. The theory has given me ways to ground and give coherence to the  
whole  undertaking,  finding  in  some philosophical  readings  ideas  that  authorized  me to  take  a 
formalistic and Pythagorean approach that goes a bit against the generally anti-harmonic and anti-
essentialist ideas of  the time, but with an understanding of  the dangers and traps involved. Even  
though the thesis does not tackle these topics directly, they inform it and even some sections (the  
critical  and speculative  ones)  have been written  on the  basis  of,  for  example,  Alain  Badiou or  
Graham Harman.

2.1.3 The psychoacoustics behind dissonance curves

Dissonance curves go back to the psychoacoustics of  Hermann von Helmholtz, in his book Die Lehre  
von den Tonempfindungen of  1862, which in its expanded translation by Alexander Ellis, On the Sensations  
of  Tone as a Psychological basis for Music  of  1885, is one the few scientific books from the nineteenth 
century which is still being published and read in the twenty-first 94. As has been shown, they are 
based on roughness, a dynamic fluctuation (‘intermittence’ as described by Helmholtz) caused by the  
interference between the amplitudes of  two periodic sounds.  At slow speeds they are known as  
beatings, at intermediate speeds as tremolos. When their rate is faster than sixteen times a second  
they produce a continuous and irregular vibration accompanied by a low tone; this is referred to as  
roughness. Helmholtz believed he had found in roughness the physical, as opposed to metaphysical  
or number-theoretic, solution to the millenary problem of  how consonance and dissonance emerge  
and can be measured. Even though beats and tremolos are acoustic phenomena, roughness is a  
mainly  psychoacoustic  one,  influenced by sensorial  distortions  rather  than existing solely  in  the  
intermittence of  the acoustic waves. We now realize that he discovered the main aspect of  ‘sensory  
dissonance’, which is also influenced by the nearness of  the partials in a sound to a harmonic series  
(something known as tonalness). Sensory dissonance is one of  the main components of  what we have 
been referring to as the timbral aspect of  harmony.

Helmholtz’s theory of  hearing models the ear as a bank of  resonators. As we already saw, this is the  
basis for spatial hearing theories, which are physiological, in contrast to temporal theories, which are 
psychological, happening higher up along the auditory pathway in the mid brain and cortex. Most  
recent spatial theories are refinements upon Helmholtz. His model pictured the transduction in the  
cochlea as resonating tubes (or strings, but the stress was given to the tubes) inside the organ of  
Corti. In was in the 1930’s that Georg von Bekèsy discovered the basilar membrane which actually  
performs it. The other main discovery pertaining to roughness and dissonance curves is the ‘critical  
bandwidth’  (Fletcher,  1940’s).  In  the  1960’s  Greenwood  related  the  bandwidth  to  roughness 95, 

94 Helmholtz, H. (1960). On the Sensations of  Tone as a Psychological basis for the Theory of  Music (A. Ellis, Trans.). New York: 
Dover. (Original work published in 1862).

95 Greenwood, D. (1961). Auditory masking and the critical band. Journal of  the Acoustical Society of  America, 33, 484–501.
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afterward Zwicker and Stevens provided a psychophysical unit calibrated to it, the bark, and Plomp 
and Levelt provided a model to calculate the total roughness for compound tones96.

The critical bandwidth is the area of  the membrane within which partials mask and interfere with  
each other, producing roughness. The speed of  fluctuations between two components reaches a  
maximum beyond which the sensation of  roughness declines. Helmholtz measured this maximum 
speed to be of  around 33 Hz for 100 Hz tones, acknowledging that this speed varies with register:  
‘as  we ascend the rapidity  will  increase but  the character  of  the sensation remain unaltered’ 97. 
Plomp and Levelt linked this behavior to the critical band:

‘Helmholtz’s theory, stating that the degree of dissonance is determined by the roughness of rapid  
beats, may be maintained. However, a modification has to be made in the sense that minimal and  
maximal roughness of intervals are not independent of the mean frequency of the interval [its  
register]. A better hypothesis seems to be that they are related to critical bandwidth, with the rule  
of thumb that maximal tonal dissonance is produced by intervals subtending 25% of the critical  
bandwidth, and the maximal tonal [sensory] consonance is reached for interval widths of 100% of  
the critical bandwidth. In all experiments in which the critical bands have been investigated, the  
width of this band represents the frequency-difference limit over which simple tones cooperate. So  
it is not surprising that roughness appears only for tones at a frequency distance not exceeding the  
critical bandwidth.’98

They obtain a weighting function over the critical bandwidth, a best-fitting curve  approximating  
the results of  psychometric studies of  subjective judgements scores for the ‘pleasantness’ of  intervals  
(Figure  4, left).  With  this  weighting  curve  it  becomes  possible  to  measure  the  dissonance  of  
compound tones, since it allows to account for the influence of  higher component partials and not  
only their fundamentals. It is assumed that dissonance behaves linearly: the total dissonance is the  
sum of  dissonances of  each pair of  adjacent partials.  ‘Though these presuppositions are rather  
speculative, they are not unreasonable as a first approximation, and may be justified for illustrating  
how, for complex-tone intervals, consonance depends on frequency and frequency ratio’ 99 In this 
conclusion lies a link to proportionality, justifying linearity in the sake of  arriving at ratios – which  
explain consonance – and thus allowing the study of  their relationship with spectra. Furthermore, 
by being based on empirical cognitive subjective data, the model not only captures a physiological  
function but  also carries  with it  the effects  of  psychological  mechanisms involved higher  up in  
perception.

96 Plomp, R., Levelt, W. (1965). Tonal Consonance and the Critical Bandwidth.”, Journal of  the Acoustical Society of 
America, Vol. 38(4), 548-560.

97 Helmholtz, Ibid., 171. 
98 Ibid., 554-555. The terminology we have been using is presented in brackets to make the relevance of  the passage to 

our discussion clearer. The terms are equivalent.
99 Ibid., 555. 
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Figure 4. Left, top: a plot of  the results from psychometric consonance judgement tests.  
Left, bottom: the weighting curve after fitting, averaging and calibrating the empirical  
data to a critical  bandwidth. Notice how consonance reaches a minimum at around  
0.25. Right: a dissonance curve made from a spectrum of  6 partials, the first harmonic  
spectrum fixed at 250 Hz, the second one varied between a bit less than 250 Hz and a  
bit more than 500 Hz. The vertical lines are equal tempered semitones. Note that the  
vertical axis is inverted with respect to my implementation, but that is only a result of  
the visualization. (The three graphics are taken from Plomp & Levelt, 1966).

There are two psychoacoustic (also called ‘subjective’) units calibrated to the basilar membrane, the  
bark and the ERB. The former are useful for pitch related features, while the latter are better suited  
for loudness models (for calculating the effect of  masking, the other auditory function that critical  
band  models  explain)100.  A  bark is  equivalent  to  a  critical  band  in  pitch,  1/4th of  a  bark 
corresponding to 25% of  the curve. Musically, this interval corresponds, for most of  the hearing  
range, to a minor third. This fact shows one of  the reasons why this interval is the limit between  
melodic  and  harmonic  intervals,  between  ‘steps’  and  ‘jumps’:  below  the  critical  band,  partials  
interact,  so  intervals  smaller  than a  minor  third are rough when sounded together;  above this  
threshold partials produce less roughness and are therefore better suited for vertical arrangements.

A dissonance curve is calculated by measuring the contribution of  roughness between all pairs of  
partials for a compound tone. This makes for a single point in the curve. Measuring a spectrum  
against a transposition of  itself  (optionally against the transposition of  another spectrum) gives the  
roughness for that particular transposition. Sweeping the transposition interval in the manner of  a  
glissando (by using small steps in practice), and calculating the total roughness at each transposition  
level, we obtain a dissonance curve (Figure 4, right, shows Plomp and Levelt’s dissonance curve).

Going back to Helmholtz one last time, it is remarkable that he and Ellis were able to calculate and 
draw a dissonance curve for a violin tone before any of  the developments related to the basilar  
membrane  or  critical  bands  had  been  made.  The  equations  they  use,  based  on  sympathetic  

100 They arise from different methods of  measuring the critical bandwidth. ERB stands for Equivalent Rectangular 
Bandwidth. DissonanceLib implements both scales, using ERB for masking compensation and barks for dissonance 
calculations. 
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vibrations  of  resonators  in  the organ of  Corti,  are quite  convoluted because their  assumptions  
lacked this evidence. It implied some judicious simplifications together with speculation regarding  
the shape of  the weighting curve. The curves themselves were drawn separately for different pairs of  
partials and later superimposed in the drawing. I cannot fail to be impressed by these drawings. It is  
first rate science, a reason why this book continues to be influential 150 years after its first edition101.

Figure 5. A dissonance curve made by Helmholtz a century before Plomp and Levelt 
(from Helmholtz, 1960, [1862]). 

Dissonance curves have been quite studied and used ever since the ones calculated manually by  
Plomp  and  Levelt.  Later  developments  related  to  them  involve  the  work  of  Kameoka  and  
Kuriyagawa (1968)102, a quantitative model of  ‘dissonance intensity’ based on the same premises as 
Plomp  and  Levelt  but  from  different  empirical  data,  and  Richard  Parncutt  (1976),  who  
approximated the weighting curve mathematically with an exponential function.

Plomp and Levelt’s dissonance curve was calculated without taking into account the interactions  
between  all  partials,  only  between  adjacent  ones,  as  well  as  not  considering  their  amplitudes.  
Clarence  Barlow’s  approach,  probably  the  earliest  compositional  use  of  dissonance  curves  
incorporated both interactions between partials and amplitudes. It is part of  the research behind the  
piece "oğluotobüsi!letmesi (1978), using them to calculate the roughness for all the notes of  a piano.  
Instead of  obtaining intervals, as is the case with my approach, these measurements were employed  
to calibrate the priority formulas used to generate the notes of  the piece. The parameters influenced  
were ‘melodic smoothness’, harmonic (or ‘tonal’) priority and harmonic ‘cohesion’. This research 
would later  be incorporated into the algorithmic composition program  Autobusk.  Another use is 
made in his program Dissonometer, used to calculate the total roughness of  chords for a given timbre.  
This  is  the inverse  of  the approach taken by this  research:  my aim is  to  obtain intervals  from 
timbres, while his is to obtain roughness from intervals in conjunction with timbres103.

Other  compositional  uses  include  the  implementations  of  Wendy Carlos  and William Sethares  
(1980s). Sethares  provides  the  most  comprehensive  study  on  them  to  date,  delving  into  their  
mathematical properties and their relation to the source spectra104.

101 Helmholtz, Ibid., Figs. 60 A and 60 B, 193, as well as the technical explanation by Ellis in Appendix XV, 415-421. 
102 Kameoka, A. & Kuriyagawa, M. (1969). Consonance theory, part II: Consonance of  complex tones and its 

computation method. Journal of  the Acoustical Society of  America, 45(6), 1460-1469. 
103 Barlow, C. (1981). Bus Journey to Parametron. Cologne: Feedback Papers 21-23, 55-70. Also see Barlow, C. (2012). On 

Musiquantics. University of  Mainz: Musikwissenschaftliches Institut Der Johannes Gutenberg Universität.
104 Sethares, W. (1999). Tuning, Timbre, Spectrum, Scale. Berlin: Springer. Also, Carlos, W. (1987). Tuning at the crossroads. 

Computer Music Journal, 11(1), 29- 43. A very clear, thorough and updated account is  given in Benson, D. (2008). 
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Sensory dissonance and timbre in relation to music correspond to what Tenney designates as CDC-
5 in his review of  consonance and dissonance conceptions (1988)105. It is a a distinct mode harmony, 
stemming from Helmholtz, relating to orchestration, to timbral combinations of  instruments in their  
relation to harmony, prevalent in the music of  the nineteenth century but actually pertaining and  
embracing much music of  the twentieth. It is especially relevant in electroacoustic music and, as we 
will see in the following section, is also connected to atonality and many modernist approaches to  
pitch. 

My  implementation  was  initially  based  on  Sethares.  However,  his  uses  a  formula  in  terms  of  
frequency and amplitude. On recommendation by Barlow, I  adapted the code to use Parncutt’s  
approximation, adjusted to psychoacoustic units. It has the advantage of  giving finer grained results  
and is a bit faster to calculate106. Had I stopped there, it would not have been too different from  
Sethares’ research, which is restricted to finding the intervals for the local minima of  the curves and  
using them as scales for playing back the timbres that generated them (in 1990s sampler-sequencer  
style).  As  mentioned,  my implementation furthers  this  by  rationalizing  the intervals  to  find the  
closest and most harmonic whole number ratios. Their harmonic metrics are calculated and made  
into pitch sets representing the intervals in harmonic space and partitioning them into harmonic  
and timbral  subsets.  The calculations  for  constructing  inter-harmonicity  matrixes  for  harmonic  
fields are also a unique part of  my implementation.

Other contemporary implementations of  dissonance curves that I know of  (the list does not pretend  
to  be  exhaustive)  are  those  by  Alexander  Porres  and  Charles  Céleste  Hutchins.  The  former  
implements them more with a focus on sound synthesis/re-synthesis and spectral modeling than  
algorithmic  composition,  as  well  as  incorporating  other  psychoacoustic  theories107.  The  latter 
implements dissonance curves with an emphasis on FM synthesis spectra, and is also available as an  
extension for  SuperCollider called  TuningLib. Also for  SuperCollider, Nick Collins has developed a unit 
generator, SensoryDissonance, which calculates the instantaneous total roughness for an input sound. It  
does not, however, transpose or obtain intervals from the data, so it is not a complete dissonance  
curve analysis108.

Notable is the similarity between dissonance curves and other methods for measuring consonance,  
such  as  Harry  Patch’s  qualitative  ‘one-footed  bride’  (1940’s)  as  well  as  Paul  Erlich’s  harmonic 
entropy109. This concept is combined with dissonance curves in the work of  Georg Hadju’s and his  
program Djster, which incorporates these ideas into to a version for Max/MSP of  Barlow’s Autobusk  
program110. 

To end on a speculative note, dissonance curves may be considered as a sort of  autocorrelation of  
spectra in the frequency domain. Recall that in autocorrelation a signal is delayed many times and 
summed up, the result exhibiting its periodicities. Frequency-wise we substitute partials for signal  

Music, a Mathematical Offering. Chapter 4, 139-144. Last retrived March 30, 2012, from 
http://www.abdn.ac.uk/~mth192/html/maths-music.html

105 Tenney, J. (1988). A History of  Consonance and Dissonance. New York: Excelsior Music Publishing.
106 Dissonance measure, D, for a pair of  partials is:  

P is the Parncutt approximation of  the weighting curve: 
s1, s2 and bk1, bk2 are the intensities and frequencies of  the partials in sones and barks respectively. See Appendix I for 
a more detailed explanation of  the implementation. 

107 Porres, A. (2011). Dissonance Model Toolbox in Pure Data. Review of  the International Meeting of  Music, Sound and Art  
(EIMAS, 2011). Last retrieved February 19, 2012, from 
http://www.ufjf.br/anais_eimas/files/2012/02/Dissonance-Model-Toolbox-in-Pure-Data-Alexandre-Torres-
Porres.pdf

108 See http://doc.sccode.org/Classes/SensoryDissonance.html     Last retrieved November 3, 2012. 
109 Erlich, P., Monzo, J. (2004). On harmonic entropy. In J. Monzo (Ed.), Enciclopedia of  Tuning. Last retrieved March 30, 

2012, from http://www.sonic-arts.org/td/erlich/entropy.htm
110 Hadju, G. (2011). DJSter [software]. Last retrieved August 3, 2012, from http://djster.georghajdu.de/extras/tonality
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and transposition for delay, while the summing is quite similar (the weightings being just a particular  
kind of  integration). The minima obtained exhibit spectral periodicities, resonances within a space 
modeled after the physical/psychological properties of  a membrane. What is interesting is that the  
‘space’ or medium defined by the model can be detached from its empirical background to become  
an abstract mathematical space in which the peaks corresponding to minimal roughness are seen as  
tendencies toward ‘basins of  attraction’ associated with periodic or quasi-periodic behavior, as in  
mathematical theories of  dynamical systems (even if  this case is static). In this sense the peaks, which 
connect  proportions  and  spectra,  may  be  thought  of  as  singularities.  According  to  Manuel  
DeLanda, singularities are mechanism-independent, defining the objective structure of  a space of  
possibilities (minima, maxima, inflection points) which does not depend on the material substratum. 
It will have to be seen up to what point this is the case for dissonance curves and if  their emergent  
properties are independent of  the properties of  the weighting curve. It is interesting to conceive that  
simple  frequency  ratios  could  arise  independently  from  these  weighting  measures  and  their  
underlying  physical  layers,  and  that  therefore  their  ‘coincidences’  with  just  intervals  are  not  
dependent on physiological properties but could arise in transduction systems quite different from  
humans111.

2.1.4 Consonance and dissonance theories

This section could have been excluded from the chapter as it repeats some topic that have been seen  
before. However, in the spirit of  laying out my findings with respect to consonance and dissonance  
and to further the discussion began in the section on Greek harmonics I will provide a comparative  
listing of  current accounts of  consonance and dissonance, from the standpoint of  harmonic duality.  
It will take advantage of  what we have seen until now to also briefly discuss and account for the  
cultural contexts of  harmony. The section is also meant to bridge the discussion into the second part  
of  this chapter, involving a historical and aesthetic account of  twentieth century musical modernism  
with respect to timbral harmony. Although the listing is not exhaustive, it is  more or less the way  
musical science stood at the beginning of  the century, after a wave of  research had taken place,  
probably as a response to Helmholtz.  The listing will  provide the main topics,  proponents  and  
features of  each conception112.

i. Proportions. A line of  thinking that spans from the Pythagoreans up to Galileo, Leibniz,  
Euler, and Theodore Lipps113 at the beginning of  the twentieth century. Proportional  
consonance corresponds to harmonicity, distinguishing it from the timbral sort.
" Intervals are understood as frequency ratios, relationships between fundamentals or  

pulse counts.
" Corresponds to discrete mathematics and to time-based pitch perception: to particles  

rather than waves.
" As discussed in the previous section on consonance, harmonicity in ratios depends on 

the  properties  of  the  numbers  involved,  leading  to  harmonic  measures.  Greeks  
required small numbers within the tetraktys. Euler provided the connection with prime 

111 DeLanda, M. (2011). Emergence, Causality and Realism. In Bryant L., Srnicek, N., Harman, G. (Eds.), The 
Speculative Turn. Melbourne: re.press, 381-392.

112 The structure and some of  the content for this list stems from Sethares,Tuning, Timbre, Spectrum, Scale. 
113 Lipps, T. (1995). Consonance and Dissonance in Music. (W. Thomson, Trans.). San Marino, CA: Everett Books. (Original 

work published in 1905). He offers detailed critiques of  all the previous theories con consonance: Helmholtz, 
Stumpf, Krüger, Wundt and Meyer, proposing his own time-based ‘Tone Rhythm’ theory, close to Galileo’s 
commensurability extended to include simultaneous sounds as well as melodic successions.
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numbers, implying that divisibility is more fundamental than magnitude. From his  
gradus suavitatis function springs Clarence Barlow’s harmonic measure.

" With proportionality the concept of  tolerance is needed to avoid shameful aporias: a  
slightly mistuned consonance would correspond to ratios with enormous numbers,  
implying  a  huge  inharmonicity,  which  is  clearly  not  the  case.  Considering  a 
proportion as  referential  to a small zone around it in pitch distance space avoids the 
problem. We’ll delve into the factors involved in intervallic ‘rationalization’ in the  
next chapter.

ii. Relationship between harmonics. The theories of  Jean Philippe Rameau and William 
Wundt.
" A naturalist account: tonal harmony as deriving from Nature.
" An extrapolation of  the harmonic series to consonance: coinciding harmonics are 

the basis for melodic intervals.
" Corps sonore:  an idealized overtone series. The tenets of  spectral music extend this  

further.
" Its main problem as a theory is its failure to account minor chords, the subdominant  

function or any other structures that require intervallic inversion. It relies too closely  
to just intonation (i.e. it does not take tolerance into account) and hence is usually  
limited to a single fundamental, leaving modulation unaccounted for. It also has to 
impose an arbitrary limit on the series in its analysis and ignores the role of  prime 
numbers. It is a timbral conception. 

iii. Beats between partials. Helmholtz.
" A physiological conception.
" Leads to sensory dissonance, composed of  roughness and tonalness.
" Tenney  identifies  it  as  timbral  consonance/dissonance,  CDC-5.  The  main 

component for timbral harmony. 
" It has 3 main consequences:

! individual tones have intrinsic dissonances
! consonance and dissonance depend not only on relations between fundamentals  

but also on their spectral structure
! consonance and dissonance stand in a continuum of  gradations (sonance  levels) 

instead of  being polarities (in contrast to CDC-4, functional tonality)
" Of  all  consonance  theories  this  one  deals  both  with  harmonic  and  inharmonic 

sounds.

iv. Difference tones. Felix Krueger. 
" Difference tones were made famous in the XVII century by Guiseppe Tartini and  

studied by Helmholtz. They are ‘ghost’ tones arising from  non-linear processes in 
auditory perception. The most relevant ones are difference and summation tones,  
corresponding to the sum and difference of  the frequencies of  two tones lying near  
each other. They need to be quite loud to be noticeable.

" A psychoacoustic notion.
" The  order  and  complexity  of  difference  tones  serves  to  determine  consonance  

hierarchies.
" Dissonance is proportional to the number of  distinct difference tones in an interval.
" A strong argument against this conception is that because they are weaker than other  
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psychoacoustic  byproducts  such as virtual  pitch or roughness,  their  effect  is  quite  
limited to account for consonance.

" On the  other  hand  they  are  compositionally  very  useful  for  creating  interesting  
harmonies (as in Tenney’s Koan for string quartet, for example, where a glissando is 
harmonized  with  difference  and  summation  tones)  or  as  a  source  of  interesting  
psychoacoustics illusions (such as Barlow’s Until for piccolo). 

v. Fusion. Carl Stumpf.
" Happens when a plurality of  tones form a unity or whole for consciousness.
" A phenomenological  conception which is  kind of  Aristoxenian and also  close  to 

medieval notions of  consonance as ‘sounding as a single tone’.
" Only given qualities can be the basis for consonance, what Tenney identifies as CDC-

2.
" Takes into account deviations from exact tunings and stresses the independence of  

consonance from timbre, loudness and register: roughness cannot account for the  
consonance and dissonance of  sine waves, since it would imply that any intervals  
surpassing  the  critical  bandwidth  would  be  equally  consonant.  In  this  sense  this  
conception embraces aspects of  proportionality (intervallic qualities of  fundamentals)  
and timbrality (sensation as a whole).

" Its main drawback is that there is no method for defining fusion in an unambiguous 
or quantifiable way. There are no simple physical correlates for it.

" There is a connection that links Helmholtz with theorists who belong to the school of  
empirical psychology of  Franz Brentano, the teacher of  Stumpf, Husserl and Freud,  
himself  a student of  Wundt. Some of  the most important theories of  experience and  
consciousness  of  the  twentieth  century  (psychoanalysis,  phenomenology,  gestalt),  
stem from this school.

vi. Virtual Pitch. Terhardt, Parncutt.
" This  conception is  much  more  recent.  It  is  also  timbral,  derived and related  to  

Helmholtz and place theories.
" Tonalness as a measure of  how a sound’s partials deviate from a harmonic template, 

harmonic  entropy (Paul  Erlich)  as  a  measure  of  this  deviation,  quantifying  the 
uncertainty involved in interpreting intervals in terms of  simple integer ratios.

vii. Cultural criteria. Norman Cazden (1940’s)114.
" To consider that natural laws lie behind consonance implies that the foundations of  

music and art are static, universal and deterministic, from which no possible changes  
in music can be conceivable.

" It  leads  to  Pythagorean number magic  and the mystery of  the ‘harmony of  the 
spheres’.

" Musical  metaphysics  consists  in  a  series  of  domains  that  go  from  the  acoustic  
waveform, physiology of  hearing and psychology of  perception. All of  these theories  
assume an essentialist error: proportions are made eternal & mystic ‘noumena’, of  
the ‘psychological consonance of  tonal isolates’, alluding to the laboratory conditions  
of  psychoacoustics and empirical psychology. All of  these theories diverge in their  
predictions and hierarchical orderings of  consonance (something we regard positively 

114 Cazden, N. (1945). Musical Consonance and Dissonance: a Cultural Criterion. The Journal of  Aesthetics and Art 
Criticism, 4(1), 3-11. 
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instead of  a sign of  contradiction). The problem of  accounting for minor harmonies 
immerses theorists into gymnastics reminiscent of  Ptolomy’s epicycles in astronomy 
to justify what is just a question of  cultural ‘taste’.

" Against this reductionism, he proposes much more context and learning. Context:  
expectancy, movement in an harmonic structure over a certain time frame. Culture: 
common response acquired by individuals and determined by a cultural area. The  
science of  consonance and dissonance is  social,  not  natural:  history,  conventions,  
language, comparative musical systems (with other cultures), etc. Our position in this  
study is  that they are neither natural nor cultural  objects but hybrids of  both, at  
different  levels  of  scale,  each  level  possessing  its  own  mixtures  and  properties  
irreducible to other levels (a standpoint informed by Bruno Latour).

" For Cazden, harmony has nothing to do with intervallic qualities but with movement 
and resolution in relation with other intervals and chords (that is, to Tenney’s CDC-
4, functional harmony), so although he does acknowledge that intervallic qualities of  
“fifthness” and “major-thirdness” exist, he does not consider harmony as happening 
at  this  level.  There is  nothing ‘natural’  about  resolution,  it  is  based  exclusively on 
cultural conventional rules.

" Atonality is a proof  that culturally made arbitrary rules different from traditional  
tonality are possible, showing how intervals can be liberated from being mediators 
into ends in themselves, therefore leading into a timbral CDC-5 conception of  sorts  
(as  the next  section will  detail).  Nevertheless,  it  is  not   easy to  invent  new tonal  
systems without falling back into subsets of  functional or modal (poly)tonality. O ne 
cannot just posit an arbitrary way of  resolving dissonances (such as interchanging 
fifths  with  tritones)  while  speculating  that  culture  will  eventually  and  in  ideal  
circumstances catch up. This has not happened in atonality, and I don’t think it will  
ever happen because its not even the point of  atonal music. Cultural conventions are 
not that arbitrary after all as they are bounded and conditioned by perception.

This study holds that all these constituents are not exclusive but in fact complementary or adjacent.  
The preceding discussion takes into consideration more recent ideas such as Tenney’s consonance-
dissonance conceptions, levels of  scale, tolerance and harmonic duality. The problem with Cazden  
is not only that he assumes functional harmony as the only possible harmony, as happens with a lot  
of  later empirical musicology, but that he does not provide much insight into these cultural codes  
themselves.  Cultural aspects operate in different ways at different levels,  determining less at  the  
smaller  scales  of  harmony,  rhythm  and  timbre,  where  perceptual  factors  predominate,  but  
increasingly influencing larger levels of  scale, from phrases to pieces, from methods to performance  
situations, then to ouvres, styles, artistic movements and even higher epochs. It is here where Jaques  
Attali’s type of  analyses provide better tools to deal with the emergence of  styles and the social  
codes embedded within music.  He interprets harmony as the power relations that maintain the  
consensus of  a society, every person fitting into an allotted role. Noise, on the contrary, harbors  
subversion and dissent.  Music  mirrors  social  reality  by  coding  its  relations,  controlling  but  also  
predicting future social organizations because, being immaterial, it explores the range of  possibilities  
of  social codes faster than material reality can. Harmony and dissonance: order and disorder. The  
harmony of  an epoch embodies a syntax, opposed by another syntax which then becomes noise to  
the previous one: ‘What is noise to the old order is harmony to the new.’115.

115 Attali, J. (1985). Noise. The political economy of  music. Minnesota: University of  Minnesota Press, 35.
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2.2 Timbral Atonality 

2.2.1 Timbral relevance

“[T]he  rejection of  the idea that  noise,  ‘randomness’  and ultracomplex pitch are  the primary  
frontiers of avant-garde exploration. [… C]omplexity arrived at as perceptible order rather than as  
seeming disorder. […] We must learn to differentiate sharply between complexity due to large  
numbers  and  complexity  which  delineates  subtlety  of  relationship.”  (Ben  Johnston,  Rational  
Structure in Music116)

There  has  been  a  growing  emphasis  on  the  timbral  aspect  of  harmony  during  the  course  of  
twentieth century composition. Methods for the organization of  pitch relationships as well as the  
involvement of  materials, rhythms and forms all play a role in creating this overall effect. Today  
there is a situation where pitch, surpassed by its allegiance to timbre, has lost much structural force,  
its power to convey restricted to distances, spectrum and profiles. This section will briefly trace this  
development in order to make a case for the (re)incorporation of  proportionality into the current  
harmonic  situation.  With  this  increasing  relevance  of  timbre  in  harmony,  pitch  has  become  
absorbed by timbre, while timbres themselves tend towards sonic complexity instead of  periodicity,  
escaping the isolation of  traditional notes. This is in fact one of  the greatest achievements in the  
music of  the last decades, not itself  problematic. However, in most instrumental and electroacoustic  
music it has reached a point of  saturation, an overt complexity-disorder unable to transgress its own 
limits,  which  in  the  extreme  case  exhausts  the  configurational  options  and  effects  a  sense  of  
immobility, deadlock, global predictability (‘it sounds the same’). Having become commonplace and 
prevalent in different ways in many independent aesthetics, approaches and discourses, its capacity  
to create new musical experiences is worn-out. A possible way out of  this condition has to do with  
recuperating discreteness in general as well as the use of  more subtle pitch relations in particular,  
which is what the opening quote by Johnston refers to. 

Many techniques in atonal and electroacoustic music deal with pitch relationships solely in terms of  
pitch-distance.  Atonal  series,  being the first  methods for  organizing pitch to be based on equal  
temperament,  are  solely  distance-based,  ‘pitch  classes’  not  taking  into  consideration  intervallic  
qualities  such  as  consonance  and  dissonance,  nor  the  combination  of  primary  intervals  that  
constitute them, both aspects involving relations other than a mere number of  steps. Pitch-class  
theory deals with the combinatoric and permutational possibilities of  interval sets, opening up new  
alternatives for organizing sounds according to criteria external to their perceptual attributes 117. In a 
sense it is much too abstract on its own for dealing with harmony. On the other hand, maybe it is  
not  abstract  enough, in the sense that  harmonic  aisthesis and the whole numbers that  compose 
proportions are arrived at indirectly from perception, alluded through the intellect, therefore lying at  
a higher level of  abstraction than sets of  distances, while still being immanent to the materials 118. 
Proportions  are  further  removed from sensory  concreteness  than pitch  classes  even though still  
connected  to  their  qualities.  Despite  the  fact  that  permutations  are  discrete  operations  over  
individual notes, in terms of  pitch relations they underline continuous timbral characteristics.

116  Johnston, B. (2006 [1976]). Rational Structure in Music. In B. Gilmore (Ed.), Maximum Clarity and other writings on  
Music, Chicago: University of  Chicago Press, 62.

117  As noticed by Milton Babbitt, tonality is related to combinations while atonality to permutations, because in the 
latter the whole set of  intervals is used, no repetition is allowed and order is important. When these two constraints 
are dispensed with as in later atonality and pitch-class theory, it all boils down to combinatorics.   

118  ‘Categorial intuition’ is the term used by Husserl to denote these indirect allusions and is a sort of  twentieth 
century conception of  Greek aisthesis. Proportionality is related to eidetic qualities, which are not directly present to 
perception, in contrast to the direct sensation of  timbre.
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Ben  Johnston  reckons  that  ‘[s]erial  technique  is  only  an  interim  solution’119 by  discussing  the 
differences between the four psychophysical scales of  audible order of  Stanley Stevens 120: nominal 
(distinguishing only sameness and difference, as with ABA forms), ordinal (relative ordering scales  
such as  pp,  mf,  ff),  interval  (ordering  upon a  basic  degree of  increment,  the semitone in  equal  
temperament  or  pulses  in  simple  metric  rhythms)  and  ratio  scales  (as  in  proportionality,  both  
rhythmic and harmonic). Each scale of  order includes the previous ones, adding one more degree  
of  refinement. Atonality and pitch-distance correspond to scales of  ordering which lack the subtletly  
of  complexity of  ratio scales.

Equal  division  of  the  octave  is  not  the  only  path  to  timbrality,  the  other  road is  through  the  
harmonic series. Since the XVII century when Mersenne introduced the concept, it has become a  
metaphor to explain the way many just and tonal structures arise and relate. However, the harmonic  
series  (embracing all numbers and giving them equal importance)  is the limit case of  any overtone 
structure whatsoever, the partials lying in space of  continuum variations. Proportions are relations  
that  happen  exclusively  between  fundamentals,  not  regarding  any  higher  partials  and  being  
therefore ‘registerless’. As mentioned, overtone series also fail to explain intervallic inversion and do  
not involve modulation. Characteristic of  timbral settings is the way the notes are laid out according 
to register and in the case of  overtone series, the way the spacing between them becomes smaller  
and smaller. For this reason the music of  French spectralists is even more timbral than the serial  
music from which it originates. Many of  these works are an extension of  the serial style through the  
use of  spectral overtones. Exciting and original as some of  these pieces were (for example, Grisey’s  
early works), they are nevertheless a step further into timbral use of  pitch: the consequences of  the  
materials are developed timbrally, not harmonically. Furthermore,  the fact that they use quarter  
tones to approximate the overtones (where only the 11th partial can be said to be close to a quarter  
tone) evidences a lack of  regard for proportionality.

We can extrapolate this even further to see how noise in music is an amplification of  a tendency to  
overflow the spectral space. ‘Noise in a purely physical sense is a form of  dissonance pushed to the  
extreme’121.  The consonance/dissonance axis  is  replaced by one of  sound/noise.  A symptom of 
timbrality is apparent when sonic actions, gesture and movement acquire a meaning that overrules  
the specificity of  the pitches used to convey them. It also means a concern for sonority for its own  
sake, detached from the relational potential inherent in the sonic aggregates, their reference to a  
system or syntax at a larger scale which lies over and above their individual properties. Timbral  
relevance also pertains to time frames other than pitch, such as ‘floating’ ametric rhythms, dynamic  
processes of  form, complexity and saturation, or any developments that produce impressions of  
continuity and flux in different sonic attributes at different levels of  scale.

There is a pervasive fixation on fluidity in theoretical discourse on music. To give an example, I  
recently read the manifesto for the launch of  a new highly theory-laden publication on experimental  
music and sound art, Tacet122. This text purports to avoid seeking meaning in music, instead wanting  
to delve in modalities and forms of  creativity by distinguishing four types of  ‘discursive movements’  
that resonate and associate among each other: flux, afflux, influx and reflux. I am disappointed to 
not find room for any kind of  stasis, solidity or individuality in these categories: fluctuation and 
change, smoothness and flow, uninterrupted and seamless time and discourse being all that can be  
accounted for by their cutting edge analyses123.

119 Johnston, B. (2006 [1963]). Scalar Order as a Compositional Resource. Maximum Clarity and Other Writings on Music, 
29.

120 Stevens, S. S. (1946). On the Theory of  Scales of  Measurement. Science, 103(2684), 677-680.
121 Saariaho, K. (1987). Timbre and harmony: interpolations of  timbral structures. Contemporary Music Review, 1, 94.
122 Tacet. Experimental Music Review.  Last retrieved August 19, 2012, from http://www.tacet.eu
123 I infer from the title of  their publication an allusion to the score of  Cage’s 4’33’’, their undertaking being made in 

alliance with post-Cagean consequences. A study on its own would be necessary in order to deal with the 
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Electroacoustic methods and theories don’t  fare much better either:  the harmonic properties  of  
materials  being  the  collateral  effect  of  treating  pitch  as  part  of  the  ‘sonic  object’.  
Spectromorphology  treats  pitch  relations  and  their  qualitative  aspects  solely  as  profiles  and 
movements  within pitch-distance.  In fact,  even much properly  harmonic music  of  the late XX 
century (say, post-tonality, and minimalism) does not go much beyond the harmonic procedures of  
the early modernist period such as extended and poly-tonality and other extensions of  chromatic  
equal tempered harmony. They explore new facets of  already established harmonic logics but do  
not delve into new harmonic territory.

None  of  the  musical  techniques  mentioned  above  can  evade  proportionality  completely.  The 
enmeshment of  both aspects of  harmony does not permit the full elimination of  one of  them. What  
happens is that timbral harmonies traverse proportionality in an inadvertent, coincidental manner.  
Compositional  harmonic  (proportional)  control  becomes  involuntary,  as  intervallic  qualities  are 
limited in their logic to a ‘timbral causality’ that eludes inter-relationships between components.  
Proportionality is present even in ultra-complex pitch configurations, but becomes fortuitous if  not  
acknowledged as such. Avoiding proportionality is not the same as ignoring it. A sound aggregate,  
from a chord to more complex configurations of  pitches and rhythms/textures, can be considered in  
timbral or proportional terms, or as a combination of  both, the effects being different in each case.  
They can be regarded as independent sonic entities, in their relationality (between their internal  
components or towards other external aggregates),  or taking into account both their horizontal,  
dynamic aspects, as well as their vertical, static ones.

2.2.2 Modernism

‘Modernity is a qualitative, not a chronological category’124

We may interpret  Modernism in  music  as  dealing,  both  technically  and aesthetically,  with  the  
‘unfinished business’ of  Romanticism. The process of  increasing timbral relevance in contemporary  
music can be understood as resulting from the reorganization taking place during Romanticism to 
the stable thematic and harmonic structures of  Classicism towards dynamic and modulating forms.  
As  distinct  classical  themes  become  more  and  more  transitional  from  Beethoven  onwards,  
development  enters  every  aspect  of  form.  Discontinuous  Classicism  becomes  continuous  in  
Romanticism,  continuing this  tendency in Modernism. The scope of  development,  the scale at  
which changes take place in the materials, as when, for example, modulation is incorporated into  
themes themselves or the boundary between theme and transition is blurred, leads, if  taken to the  
limit  (the  limit  when  the  scope  of  development  collapses  into  a  single  note),  to  atonality  and  
Klangfarbenmelodie.  Atonality  (especially  the  early  ‘free’  period  of  the  Second  Viennese  School)  
amounts  to  chromatic  modulation  at  (almost)  every  note,  modulation  also  embracing 
instrumentation, timbre incorporated into harmony. 12-tone harmony is the point where timbre  
and harmony touch: each note is its own harmonic center and each timbre a note.

In  later  dodecaphonic  atonality,  especially  with  the elimination of  thematicism in  Webern,  the 
process reaches its culmination with the decontextualization of  dissonances which were once held  
together as tonal aggregates but are now isolated or ‘frozen’. Motifs and themes are crystalized into  
musical  objects,  their  temporality  focused  on  the  present  moment.  What  was  once  ornament  
(dissonant excerpts in tonality lying within a frame of  preparation and resolution) is now detached  
as  a  sonority  for  its  own sake,  passing  from background to surface,  from exception to primary  

dichotomy continuity/discontinuity in Cage. In any case, I think 4’33’’ has been interpreted way too easily towards 
the first pole disregarding its potential for allowing to think discrete individuals in ‘any sound whatsoever’.

124 Adorno, T. (1974). Minima Moralia. London: Verso, 218.
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content.

Webern  counteracts  the  increasing  drive  towards  the  fluxing  of  musical  materials  running 
throughout  the  century.  His  case  inaugurates  a  parallel  though  far  less  widespread practice  of  
freezing the material, of  rendering static ‘instants of  eternity’. His is an discontinuous approach to  
atonality, where the ephemerality of  Schoenberg’s fluid atonality is turned into a tension between a  
veiled  cantus  firmus  stemming  from  the  Grundgestalt  of  the  row  and  the  isolation  of  intervallic 
configurations  into  absolute  sonorities.  This  immobility  is  made  possible  through  surrounding  
silences and timbral kaleidoscopes, both of  which help to fracture the auditory streaming. On the  
other hand, the tension with the guiding horizontal thread of  the melos imparts a drive to the static 
aggregates,  providing  an  overall  formal  directionality.  Webern  has  not  so  much  to  do  with  
dissonance as  with inharmonicity,  while  Schoenberg  was looking  for  maximum dissonance and 
achieved atonality along the way.

In this second period of  atonality, the case of  Edgar Varèse is also quite paradigmatic, and I think  
he and Webern stand at the antipodes of  the two main approaches to atonality: those of  flux and 
stasis. In Varèse there is a flooding of  partials and sonic fluctuations, a maximization and saturation 
of  sound components. Masses become the main focus of  the music; texture, contrast and opposition  
guiding  the  flow.  Sweeping  torrents  of  sound  materials  clash  into  one  another,  alchemically  
transmuting into other meteorological sonic forces. As with Webern, each layer consists of  sonorities  
‘for themselves’ in the sense that they don’t acquire meaning through their outward relationships,  
even though in this  case they are dynamic sonic layers  in constant  change instead of  carefully  
isolated aggregates. Each layer has its own drive or tendency, a different kind of  melos than that of 
Webern, even more timbral and immanent. Varèse’s universe is also a culmination of  nineteenth 
century  processes,  more  related  to  orchestration  and  the  expansion,  in  range  and  kind,  of  all  
varieties  of  sonic features.  It  consummates the assimilation of  pitch within timbre, incorporates  
continuous  pitch (sirens,  ondes  martenot)  and deals  with a  timbral  consonance and dissonance  
comprising roughness rather than proportion.

Atonality cannot be a general sonic category. Without deflecting the discussion into details, we must  
distinguish  between  different  types  of  atonality:  ‘proportional’,  ‘intervallic’  atonality  (Webern),  
fluxified atonality (Schoenberg), quasi-tonal (Berg), sonorous, massive (Varèse), aleatoric (the Cage 
of  chance music), the very distinctive one of  late Nono, almost proportional, the beautiful atonality  
of  mid to  late  Feldman (close  to  Webern’s  in  my opinion,  but  with  very  different  results),  the  
extreme complexity in pitch of  Ferneyhough, the concrete instrumental atonality of  Lachenmann,  
spectral atonality, and so on.  

2.2.3 Diagonalization

Alain Badiou has analyzed the irruption of  creativity of  the  fin de siècle in a way that can aid to 
elucidate this becoming-continuous125. He considers atonality the ‘truth’ of  tonality, its blind spot or 
‘evental  site’.  There  is  an  intensification  of  elements  which,  once  having  been  relegated  to 
decorative functions, having possessed a minimum (or small) degree of  existence, develop to possess  
a maximum intensity. What was previously hidden and not considered an aesthetic form on its own,  
turns into what makes new forms possible.

The notion of  ‘diagonalization’, interpreted from the mathematics of  Georg Cantor and set theory,  

125 Badiou, A. (2006). Being and Event. London: Continuum. This is a condensed account of  what can be useful for us of 
Badiou in terms of  timbral relevance. It is mostly drawn from meditation 31, (pp. 327-343) of  Being and Event, 
though it is imbued with a more general understanding of  his philosophy and complemented by the analysis he 
makes of  the music of  this era found in Badiou, A. (2009). Scholium: a Musical Variant of  the Metaphysics of  the 
Subject. In Logics of  Worlds. London: Continuum, 79-89.
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gives insights into this process. Atonality traverses or diagonalizes functional tonality, both by making 
visible its historically contingent facet as a system of  conventions, as well as by subtracting itself  
from it.  The situation in which this  happens is  the expressive crisis  of  Western Europe’s  music  
during the late XIX century. There is a language (a knowledge), namely functional, chromatic, triadic, 
equal tempered modulatory harmony. The crisis is an inadequacy of  this language to serve as a  
vehicle for artistic expression, having become formulaic and not able to convey a reality that had  
changed beyond the culture that gave birth to it, and this includes new subjective experiences as well  
as  many social  and technological  changes  which we need not  delve into.  The saturation of  an  
artistic  system and epoch leads  to  academicism,  textbook rules,  to  prescriptive  and proscriptive 
conditions of  what can and cannot be considered form.

This  crisis  of  language suffused all  the arts,  but  it  was  music,  considered the purest  and most  
abstract of  them all, the one which held the promise of  finding a new language adequate for its  
times. What came out, instead of  a single global language, was a  multiplicity of  ‘local’,  private 
languages that are part of  the very creation of  art: the composability of  music’s own infrastructure,  
what  before  was  conventionally  given.  Composers,  through  aesthetic  ‘operators’  (experiments, 
intuitions, deductions, connections, syntheses, crossbreedings, etc), enquire over the ‘determinants’  
(components)  of  the  situation,  encountering  ‘holes’  in  its  knowledge:  materials,  methods  and  
aesthetic effects which are unnameable in terms of  the worn-out language. Some of  these  enquiries 
intersect with elements from the old world of  harmonic tonality, but others avoid them. These latter  
ones  are  contradictory elements  in  this  old world,  as  is  the case  with arbitrary  pitch relations,  
melodic  structures  that  breach  thematicism,  rhythmic  structures  breaking  out  from  metric 
periodicity and the avoidance of  arc-like developmental or narrative-rhetorical forms.

For Badiou, a truth (we need not delve into the intricacies of  this concept) is a process, a procedure  
of  inquiries gathering elements of  the situation into a (generic126)  subset that both contains and 
evades its knowledge. For every determinant of  the situation, this truth contains at least an enquiry  
which avoids it: (1) it is unnamable from the resources of  the old language, (2) it is subtracted from  
its  rules  and  (3)  is  indiscernible  in  the  sense  that  it  just  is in  the  situation,  referring  not  to 
representation (knowledge) but to presentation, to belonging as such, therefore rejoining the entire  
situation. Truths are radiographies of  sorts of  their world. They are ‘true’, though not in the sense  
of  being logically necessary but historical and contingent, even though they are subject to being  
recommenced in other epochs, thus being in this sense eternal. It is in this sense that atonality is the  
truth of  tonality, its other face. This truth is constituted by the works that express the counter-effect  
to tonality, the ones that pass through some of  its determinants while also avoiding others, weaving  
through them a diagonal, traversing its knowledge while simultaneously escaping it. Atonality is a  
solution  to  the  antagonism  already  contained  within  harmonic  tonality,  a  harmonization  of 
dissonance.

Chromatic functional tonality really ‘happened’ or was fulfilled only in atonality (like when it is said  
that  the 60s only really happened in the 70s).  It  is  not an accident  that Schoenberg wrote his  
Harmonielehre at the same time when he found his way out of  tonality, signaling that the theorization 
of  the previous period was only possible when the beginning of  a new configuration was taking  
place. Other systematic theorizations of  functional tonality come from the same period (Heinrich  
Schenker, Hugo Riemann), just when the tonal world had been transversalized by atonality. The 
Romantics didn’t understand their technique in the same terms as we do after the fact. It was only  

126 This is a complex and central aspect of  Badiou’s system (taken from the mathematics of  Paul Cohen): though we 
will not enter into details here, enough is to say that not just any subset of  the situation constitutes a truth, only 
generic subsets: infinite sets that traverse the whole situation, both its knowledge and what subtracts itself  from it. 
Because truths are infinite, they are only completed ‘at the limit’, something not possible in practice. See meditation 
31 of  Being and Event. 
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possible to theorize them from the point of  view of  their epoch having reached a limit. According to  
Badiou, 

“there is  no contemporary understanding of  the classical  style  and its  becoming-romantic,  no  
eternal and therefore current truth of the musical subject initiated by the Haydn-event, which does  
not  pass  through  an  incorporation  into  the  serial  sequence,  and  therefore  into  the  subject  
commonly named ‘contemporary music’.”127

This ultimately refers to an event, the other of  Badiou’s main concepts: what can retrospectively be 
seen as an irruption of  novelty. He calls it the ‘Schoenberg-event’, but that is only a name for an  
effort that involved many other composers who found their own particular solutions to the same  
crisis, such as Reger, Strauss, Mahler, Berg, Webern (in Vienna, the main site where this took place)  
or Satie,  Debussy,  Stravinsky,  Scriabin,  Bartok,  Ives,  Busoni,  Carrillo,  Cowell,  etc,  elsewhere,  to 
name but a few. There are revolutionaries, reactionaries and conservatives involved: both the spirit  
of  renovation, destruction and nostalgia for the old world are present. Their contributions should  
not be effaced by the name ‘Schoenberg’ as it stands for a musical situation which had multiple lines  
of  attack  and correspondingly  varied solutions,  some of  which contributed to  other  aspects  of  
modernism than Schoenberg’s mostly pitch-oriented approach.

There  is  a  trace of  this  event,  essentially  a  proposition  which  serves  as  an  imperative:  ‘an 
organization of  sound may exist which is capable of  defining a musical universe on a basis which is  
entirely subtracted from classical tonality’. This is accompanied by a body of  pieces that compose this 
new universe, say, pieces since the  Trois Sarabandes  of  Satie (1886),  towards Schoenberg’s  first  to 
second period works (his second String Quartet being a renowned example of  the transition from  
tonality to atonality occurring within a single work),  Le Sacre, Mahler, Debussy, Futurism, etc. This 
body constitutes a subject, not a person, but an artistic movement: ‘contemporary music’.

This truth was unknown for those who began it, and, because it didn’t seem clear at the time that  
what they were doing was in fact the creation of  a new configuration, it shows why many of  them 
defected to more reactive or conservative styles after the great rush of  creativity was over in the  
years following the Great War.  The new configuration established itself  but also became full  of  
contradictions. From here on, only a few courageous musicians took on the full logical consequences  
of  the discoveries (Webern, Varèse, Cowell, Ives, Bartok, Revueltas, Antheil, Messiaen, early to mid 
Cage, and more, each with different degrees of  faithfulness, systematicity and success). In any case,  
some of  the deepest assumptions of  Romanticism are preserved at the core of  Modernism, such as  
the conception of  instrumental music as autonomous and absolute, the need to innovate at all costs,  
as well as the singularity of  each work.

What  is  to  be  done  today?  We  are  still  under  the  ‘Schoenberg-event’,  even  if  it  has  been  
complemented by the most likely ‘Cage-event’ (‘composing with any sound whatsoever’, ‘silence as a  
metaphor’, the beauty in contingency, etc), as well as contaminated by other kinds and attitudes  
towards music  making (especially importing influences from popular musics)128.  The situation of 
atonality has become similar to late XIX century: academic and prohibitive instead of  faithful to the  
evental trace of  ‘ways of  organizing materials other than harmonic tonality’, which is open to more  
approaches than the purely equal tempered, combinatoric one. True, some of  the best routes have  
been taken in the direction of  noise and timbres which cannot be easily inscribed into existing  
theory.  There are many parallel  roads open for exploring the yet  unexhausted potential  of  the  
statement that inaugurated contemporary music even if  the designation ‘contemporary music’ is  
even  more  problematic  nowadays  that  it  was  then.  Minimalism  is  a  also  continuation  of  the  

127 Badiou, Logics of  Worlds, 85.
128 Composer Michael Pisaro pursues Badiou’s conception of  truth, event and its consequences for art, expanding it in 

terms of  new music by exploring the ‘Cage-event’. See Pisaro, M. (2006). Eleven Theses on the State of  New 
Music. Last retrieved March 3, 2012, from http://www.timescraper.de/pisaro/mp11theses.pdf
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Schoenberg event, even if  at a level of  counter-effect to the serial sequence, a movement which  
provided  a  fresh  air  to  atonality’s  academization,  addressing  the  audibility  of  process  without  
sacrificing pitch and rhythmic complexity. It now suffers, though, from saturation through too much 
exposure the same problem of  institutionalization.

We strive for an organization that brings arbitrariness of  order and perceptual intuition together,  
both quantitative and qualitatively. To go past atonality as a generic description or as the negation  
of  tonality  into  the  awareness  of  various  and  singular  atonalities,  a  profusion  of  regions  of  
differentiated  sonances  (distinguishing  cons/dis-sonance  from  in-/harmonicity)  within  a  larger 
harmonic field that embraces both. The recognition and means to arrive at more nuanced and 
subtle constitutions of  timbre/pitch combinations at the scales of  timbre-harmony-rhythm-texture 
and form, confronting the objects at each level, obeying their characteristics as irreducible to other  
higher or lower levels, without loosing concern for their articulations and interrelations. There is a  
pervasive emphasis today on a generic atonality a sort of  ‘greyish-goo’ that is the pervasive default  
for many configurations in today’s composition. There is too much emphasis on concreteness and 
‘embodiment’, all of  them related to timbral pitch. Atonality is a region of  harmony and not its  
contradiction.

We  seek  to  restore  the  ‘rights  of  the  abstract’  to  its  proper  place:  attention  to  harmonic  
proportionality and timbral perception welded together in reciprocal supplementation, an aggregate  
that  combines  the  advantages  of  both  into  one  hypothesis.  Attention  to  synthesis  and  
experimentation in addition to analysis and axiomatization. From atonality to a-tonality (using the 
resources  of  both  matheme  and  poeme)129,  leading  towards  tonal  multiplicity:  the  multiple 
composition  of  tonalities,  tunings  and  the  assemblage  of  qualitative,  heterogeneous,  
continuities/discontinuities.

Badiou makes reference to ‘atonic worlds’, those in which there are no ‘points’ (a technical term)  
which compels decisions to be made that can change the situation. Although he is referring mainly  
to  parliamentary  democracies,  where  everything  is  organized  and  guaranteed,  but  there  is  no  
possibility of  making decisions that can transform the structural inequalities, it does have an analogy  
with music: atonality is the absence of  points, a situation where the concern for the distinctiveness  
of  intervals is gradually lost. It is like a state of  equilibrium where the forces cancel each other’s  
effects, a democracy of  intervals excluding notes that can act as quilting points. What we seek is to  
define atonality as a region within a larger field where tonality and antitonality are also operative 
and there is a continuum of  gradations between the three states, as we will se in the next chapter.

This review of  the Badiou’s conception of  change and truth in art is not only meant as historical  
and philosophical, but is meant to link many topics related to timbral harmony and the becoming  
continuous of  musical materials. The set theory from where this interpretation is derived is the one  
that formalized the continuum in mathematics. Cantor’s diagonal argument (1891)130 is a method 
for finding irrational numbers out of  the densely packed rationals. Dense because for every pair of  
ratios, no matter how close together, there is always a ratio sitting between them, and therefore an  

129 “I have always conceived truth as a random course or as a kind of  escapade, posterior to the event and free of  any 
external law, such that the resources of  narration are required simultaneously with those of  mathematization for its 
comprehension. There is a constant circulation from fiction to argument, from image to formula, from poem to 
matheme.” Badiou, A. (2000). Deleuze: the clamor of  Being, 57. Elsewhere, and against too much concreteness (what I 
associate with timbrality), Badiou argues about supporting the “real rights of  the abstract [... ] what there is of 
conceptual stability in the order of  theory, of  formal equilibrium in the order of  art, amorous consistency in the 
existential order, and organization in the political”, Ibid., 99.

130 There are many references for this topic, but I especially recommend an accessible, ludic and insightful account in 
Gardner, M. (1989). Aleph-null and Aleph-one. Chapter 3 of  Mathematic Carnival. Washington: The Mathematical 
Association of  America, 27-40. Also see Cantor’s Diagonal Proof  [webpage]. Last retrieved March 3, 2012, from 
http://www.mathpages.com/home/kmath371.htm
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infinity of  others in even the tiniest interval. In diagonalization, an infinite set of  rational numbers  
within an interval (say, between 0 and 1) is listed as digits in their decimal (or binary) representation.  
For each number, a digit in the diagonal (the first digit of  the first number, the second of  the second,  
and so to infinity, hence the name), is changed. The number resulting from this thought experiment  
will differ from each of  the numbers on the list in at least one digit. It lies inside the interval but does 
not belong to the list: it escapes the rationals (it is ‘uncountable’). There are many more numbers  
like this one than the infinity of  rationals from where they detach, marking the discovery a new kind  
of  infinity, the ‘power’ (or ‘cardinality’) of  the continuum, larger that the classical infinite of  the  
natural, countable numbers. This is the first formal account of  the mathematical continuum, the  
gesture that completed the real numbers.

Badiou  reads  this  into  explaining  paradigm  shifts  in  the  arts,  sciences,  politics  and  personal  
experiences (love). What we have surveyed not only shows a detailed process of  how paradigm shifts  
happen in art but, more importantly, exhibits the infrastructure behind the becoming continuous of  
musical materials, what we have associated as the fluid movement of  kaleidoscopic contours in the  
materials.  The  formalization  of  mathematical  continuity  ‘fills  the  gaps’  lying  between  the 
proportional grids by weaving through them, ‘touching’ while also eluding them. To understand the  
continuum as a saturation of  discreteness leads to a parallel perspective on musical atonality: filling  
the space left open by harmonic tonality, subtracting itself  from proportional grids (both rhythm-  
and pitch-wise)  to  occupy  an intermediate  smooth space  which is  only  arrived at  after  having  
traversed these proportions.

2.2.4 Timbral microtonality

“[T]here’s  something absolutely fascinating about a straight line.  Rays of  sunlight can be seen  
when looked at through clouds. The rays of sun which converge near the ground are, in reality,  
parallels. A laser’s beam line is something absolute, the line of a mason’s edge is also absolute. The  
straight line, therefore, exists in nature. But as an intellectual entity, it’s most fascinating from the  
point of view of speed, direction, and also continuity. From the point of view of continuity, it’s  
impossible to imagine anything simpler than a straight line.” (Xenakis, Arts/Sciences: Alloys 131)

There is a lineage of  work concerning schemes of  other than 12 equal divisions of  the octave. In the 
early decades of  the 20th century we have the pioneering cases of  Julián Carrillo proposing his  
‘thirteenth sound’132, dividing the octave 96 times (into sixteenths of  a tone), as well as Alois Hába 
who proposed quarter tone (and later sixth and fifth tone) tunings. These approaches are timbral,  
limited to degree and pitch-distance, without conscious control over harmonic meaning, and, as a  
result,  instead  of  increasing  the  transparency  of  the  intervals,  produces  an  effect  of  out-of-
tuneness133.  This  is  witnessed  by  some  of  Carrillo’s  compositions  which  have  a  character  of 
improvisatory exploration over new materials. Hába’s music is the first example of  dodecaphonism 
extended  to  smaller  intervallic  divisions.  These  approaches  are  contrasted  to  the  proportional  
microtonalities of  Augusto Novaro (1930’s),  Joseph Yasser (1920-30’s)  and Harry Partch (1940’s)  
who started from the premise of  ratios, acknowledging their proportions as more fundamental than  
distances.

131 Xenakis, I. (1985). Arts/Sciences: Alloys. New York: Pendragon Press, 75. 
132 The thirteen in the name usually refers metaphorically to ‘more than twelve tones’. Like most twentieth century 

pioneers in microtonality, he experimented and tried out many different tunings. Nonetheless it is said that what set 
in motion his endeavor was the experience of  listening to13th harmonic around 1895. See Nieto, V. (2008). Escuela 
del continuo en México. Perspectiva Interdisciplinaria de la Música, 2, 66.

133 ‘[T]his creates a sort of  soup in which the peas loose their potential individuality, causing everything to sound more 
or less out of  tune’, Barlow, C., Bus Journey to Parametron, 2. 
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Novaro’s approach is interesting in that he discovered how pitch-distance temperaments relate and  
draw  their  harmonic  meaning  from  proportional  sources134.  Without  thematizing  harmonic 
tolerance explicitly, he found how certain equal divisions approximate harmonic proportions better  
than  others,  showing  how  they  help  to  solve  the  practical  problem  of  tuning  instruments  to  
unequally  spaced  just  ratios.  The  approached  intervals  nevertheless  derive  their  properties  
proportionally (it has no proportional or intervallic meaning to talk about an interval of  400 cents, 
but to speak of  5/4, 9/7, 32/25, 14/11 or 81/64, all of  which lie tolerably close to 400 but have  
distinct  harmonic  meanings).  This  made  him  commend the  importance  of  the  12  note  equal  
temperament as a great solution instead of  just condemning it outright, as Partch did, for whom no 
compromise with temperament was possible. Harmonic duality clarifies the apparent contradiction 
of  the two approaches because it separates continuous pitch from the proportional intervals and  
points to their interrelations. Novaro  discovered the main equal divisions of  the octave that are 
usable in terms of  proportionality: 12, 19, 22, 31, 41 and 53. There is also Aristoxenus’ 72 divisions  
per octave,  even though its original purpose was to measure and not to approximate harmonic  
systems135.  Dividing  the octave  differently  has  no  special  proportional  meaning.  Some of  those  
intervals do lie close to proportions, but as whole systems they do not provide any harmonic use  
beyond the use of  arbitrary ‘timbral  grids’.  As we saw earlier,  Aristoxenus sowed the seeds for  
harmonic tolerance, but the concept did not develop fully until Barlow in the late 1970s and Tenney  
and in the 1980s (with some important contributions from Fokker in the 1960s). Novaro found out  
this divisions by trial and error, now there have been many ways to graph the harmonic properties  
of  different equal divisions to see peaks that stand out at those particular divisions. 

As we mentioned regarding the French spectralists, atonalities involving quarter tones (after Hába I  
can think of  evident cases of  Boulez and Ferneyhough) are even more timbral than twelve tone  
ones. Quarter tones provide a different sounding atonality to the twelve tone serialism which was  
becoming saturated in the second half  of  the century, an atonality further removed from any kind  
of  organized proportionality. Needless to say, the aleatoric use of  pitch takes this tendency even  
further. There is also the rejection of  providing clearly identifiable intervals in the cases of  those  
styles whose ideal is to arrive at ultracomplex pitch relations, which ultimately turn out to be even 
more out-of-focus (tune) than ordinary tempered intervals. Ben Johnston’s approach in his first two 
string quartets is the opposite: he rationalizes just intervals from out of  his series, regaining the  
proportionality of  atonal aggregates, paying attention to the context surrounding the intervals and  
hence going beyond the limitation of  12 intervals of  tempered atonality, opening toward a just-
intoned atonality, with a very acute sense of  intervallic colors, a verily proportional atonality.

Xenakis’ approach to pitch began as a furthering of  Varèse’s. Beyond his trademark glissandi and  
the stochastic use of  pitch in the early works, his later microtonality based on sieves is the first  
revitalization  and  direct  tackling  of  Aristoxenian  ideas  in  the  century.  They  are  inspired  by  
Messiaen’s modes of  limited transpositions and Byzantine music structures, in amalgamation with 
set theory. Congruence classes act as sieves (filters, masks) which, applied to grids of  equal pitch  
distance, provide formal mechanisms allowing the creation of  a proliferating variety of  asymmetric  
scalar configurations. These procedures still have lots of  untapped potential, offering a path to what  
he referred to as a ‘general harmony’136. Sieves are more modular and comprehensive than other 
approaches to equal octave divisions, and, being based on arithmetic and combinatoric properties of  
linear  spaces,  are  ‘faithful  to  the  medium’  of  pitch-height.  In  conjunction  with  intervallic  
rationalization  that  gives  proportional  meaning  to  these  pitch  sets,  they  are  a  rich  source  of 
microtonal materials.

134 Novaro, A. (1951). Sistema Natural de la Música. Mexico City: Author’s Edition (The work was written in the1930s). 
An english translation is available at http://www.anaphoria.com/novaro.html Last retrieved March 29, 2012.

135 They will be discussed in the following chapter.
136 Xenakis, I. (1992). Formalized Music: Thought and Mathematics in Composition, 182.
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Xenakis assesses atonality, by placing an emphasis on what he refers to as the  in-time  ordering of 
elements in detriment to a ‘degradation’ of  outside-time structures.137 This interpretation concurs with 
the viewpoint expressed in this section, in which we have identified much of  this music as stressing  
movement over structure. We identify structure in terms of  discrete, proportional terms, what is  
ultimately  a  reference  to  harmony,  not  in  the  sense  of  tonal  harmony,  but  to  outside-time  
abstraction: order, symmetry, reversibility, all which cannot strictly happen in time. They do happen, 
though, by way of  implication, through memory and aisthesis, which is what we have been stressing 
regarding the mode in which many of  these architectures are conveyed. Much of  twentieth century  
music’s stress on continuous variation, including much of  Xenakis’ own – and this should not be  
understood as  an  attack,  but  as  acknowledging  its  importance  and influence  –  overrides  other  
categories of  musical thought, leading to the aspiration or imperative to attain a sort of  ‘state of  
flux’, the embodiment, of  a complex sensorial intricateness. We will talk more on topics relating to  
outside of  time in chapter 4,  when we deal with ‘the time of  qualities’  or the inversion of  the  
primacy of  time to the primacy of  qualitative features of  sounds, each with its own time, the time it  
needs to unfold its characteristics, instead of  considering time as just a blank blackboard over which  
sounds are inscribed.

It is a bit puzzling that all these discrete methods (combinatorics) over disjunct materials (degrees of  
scales, partials in spectra) can be on the side of  the continuum, but our analysis has been conducted  
from the perspective of  pitch relations, where things do not quite map into discontinuity but into  
linearity, even if  proportionality is casually traversed in certain cases. Nonetheless, this also happens  
at  scales  other  than those of  pitch relations,  where continuity  can be  the  resultant  of  discrete  
elements138. This review does not advocate against noise, timbral complexity and pitch-distance, but 
seeks to draw some kind of  structure and abstraction from them, to move the fluid rhetoric toward  
relational units as well as attention to the ‘prominent vibrations’ that Luigi Russolo – a proponent of  
noise if  anyone – mentions. As Xenakis puts it: 

‘[T]he listener doesn’t stay at the lower level of the specimen’s microscopically individual  
event, and he perceives noise as a macroscopically individual whole; in other words as  
something possessing regularity, an order!’139

2.2.5 Continuous forms

Having seen how continuity is achieved via a filling-in of  the gaps of  a harmonic grid, we can turn 
to its  statistical  aspect,  discerning it  in  terms of  the distribution of  the elements  involved. The  
timbral use of  pitch can be seen as the dissolution of  hierarchies that give equal prominence to the  
newfound materials. There is an ‘atonalization’ of  all aspects and scales of  musical composition, 
from  Schoenberg’s  tone  rows  towards  the  egalitarian  use  of  the  ‘phase  space’  (space  of  
configurations) defined by the combinatory potentials of  all composable aspects of  sound. The usual  
designation for these composable aspects is parameters and they constitute a space of  configurations 
wherein all possible musical states are virtually contained.

The tendency of  forms to become continuous begins with the equally distributive use of  discrete  

137 “[I]t is necessary to distinguish structures, architectures and sound organisms from their temporal manifestations. It 
is therefore necessary to take ‘snapshots’, to make series of  tomographies over time, to compare them and bring to 
light their relations and architectures and vice versa. [...] [F]undamental outside-time architecture [...] has been 
thwarted by the temporal architectures of  modern (post-medieval) polyphonic music. These systems, including those  
of  serial music, are still a somewhat confused magma of  temporal and outside-time structures, for no one has yet 
thought of  unravelling them.”, Ibid., 192-3. Emphasis added.

138 “One may produce continuity with either continuous or discontinuous elements”, Ibid., 9. 
139 Xenakis, I. Arts/Sciences: Alloys, 78. 
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elements  (pitch  in  dodecaphony,  timbre  as  instrumentation  in  Varèse,  early  Cage’s  gamuts  of 
aggregates, non-pulsed rhythm, and so on). This tendency intensifies and expands, especially during  
the second rush of  creativity after the Second World War, to include a smearing of  the intervals  
lying between these elements, broadening them into fuzzy areas instead of  simple units, producing  
an impression of  continuous degrees of  intensity. All aspects of  composition begin to resemble the  
dynamic aspect of  loudness. This is epitomized by Stockhausen’s agenda of  ‘using all components  
of  any given number of  elements, ... with equal importance and try[ing] to find an equidistant scale  
so that certain steps are no larger than others. It’s a spiritual and democratic attitude towards the 
world.’  A serial,  quantitative, idea of  the 1950s continued and extended in the 60s to embrace  
qualitative features of  musical materials.

This  attitude  has  expanded  the  resources  of  composition  enormously,  embracing  ever  more  
nuanced and diverse aspects of  sound amenable to being composed, which is the same as saying  
that these sonic aspects are susceptible of  being invested with all kinds of  forms, many coming from  
extramusical provenances, mainly concerned with the counterpointing of  unbroken lines in parallel 
aspects of  sound. This happens at several levels of  scale. The material level (the medium of  music, the 
site of  so  much innovation during the century),  is  carried over  into the larger  formal areas  of  
sequences, textures, sections and whole pieces. This multidimensional counterpoint of  continuous  
parameters  seeks  to  attain  some kind of  what  Julio  Estrada  has  named ‘macro-timbre’ 140 as  a 
resultant of  these interactions. The search is for the emergence of  something which is beyond the  
sum of  the parts, the mixture, interaction and con-fusion stemming from the interface of  all these  
features, comprising several levels of  materials, from small vibratos to performative actions. 

At formal levels, the rendering continuous of  materials leads to what Tenney has called ergodic forms 
(similar but more general  than Stockhausen’s  momente  form):  forms which result  from the many 
possible egalitarian ways of  traversing and covering the phase space of  its parameters, not giving  
any  areas  more  preference  than  others  (statistically  speaking),  producing  the  illusion  of  an  
‘heterogeneous yet continuous’ music.

From a  spectral  perspective  this  process  of  filling-in  the  multidimensional  phase  space  can  be  
graphically portrayed. A spectrum graph represents discrete elements as lines, the height of  which  
are proportional to their probability of  occurrence. In dodecaphony this ‘amplitude’ has the same  
height for all  the elements involved. What makes for the specific sonority of  each piece is their  
ordering.  Later  on,  serialization  embraces  rhythm  (indirectly  through  duration),  dynamics,  
instrumentation, register, spatial movement, etc, opening the way for the full parametrization of  
composition in the 50s, the parameters of  which can be defined by the composer as any sonic,  
musical or structural feature prone to be manipulated and composed. This ‘parametrization’ not  
only applies to the serialists but also to aleatoric and stochastic composition: to Cage, Xenakis, et al.

Spectrally, this interrelation of  parameters can be seen a broadening of  the discrete lines to become 
spectral bands, whose probabilities now are not only defined by their heights, but also by their width,  
turning from lengths more and more into areas broadening out from the elements as originally  
defined,  filling  the  space  that  separates  those  elements.  This  tendency  can be  radicalized even  
further,  as  in  many  noise  musics,  going  from the  reinventions  of  instrumental  techniques  and 
unusual  sonorities  in Lachenmann  all  the way up to industrial noise musics in which the sonic  
spectrum  is  saturated  by  giving  the  impression  of  covering  all  possible  sonic  states.  These  
approaches flatten the spectrum of  the constituent musical ingredients, widening the noise bands  
into  flat  horizontal  lines  that  comprise  the  whole  range  of  conceivable  combinations  of  sonic  
materials. This is analogous to white noise, whose energy is uniformly distributed over the whole  
frequency spectrum. It is described by the height and the slope of  this line (in case of  a slope it  

140 Nieto, V., “Escuela del continuo en México”, 66.
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represents some variety of  colored noise), which at the time scale we are dealing with corresponds to  
the formal, procedural and material possibilities of  a compositional phase space being traversed in a  
uniform, egalitarian manner.

This tendency progressively transitions from points to lines to areas, thereby involving what in chaos  
theory  are  called  ‘attractors’:  multi-dimensional  complex  forms  determined  by  the  space  of  
compositional parameters. This use of  compositional space produces a ‘flooding’, in the sense used  
by  Stockhausen  of  flooding  a  space  with  sound,  but  referring  to  a  compositional  space  of  
combinatorial possibilities, abolishing discreteness even while involving discontinuous elements. The  
overall effect is an impression of  heterogeneous continua, projecting the space of  composition into a  
plane  where  any  position  is  potentially  equal  in  importance  as  any  other.  This  is  the  logical  
conclusion of  atonality taken to all aspects and scales of  composition.
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Chapter 3

Proportional Harmony

3.1 Harmonic Space 

‘Cage has always emphasized the multidimensional character of sound-space, with pitch as just  
one of its dimensions. This is perfectly consistent with current acoustical definitions of pitch, in  
which — like its physical correlate, frequency — it is conceived as a one-dimensional continuum  
running from low to high. But our perception of relations between pitches is more complicated  
than this. The phenomenon of “octave-equivalence,” for example, cannot be represented on such  
a one-dimensional continuum, and octave-equivalence is just one of several specifically harmonic  
relations between pitches — i.e. relations other than merely “higher” or “lower.” This suggests that  
the single acoustical variable, frequency, must give rise to more than one dimension in sound-
space — that the “space” of pitch perception is itself  multidimensional. This multidimensional  
space of  pitch-perception will  be  called harmonic  space.’  (James  Tenney,  John Cage and the  
Theory of Harmony141).

This chapter will deal with the proportional facet of  harmony, delving into some of  its technical  
particulars. The aim is to comprehend the way in which harmonic space and ratios behave in order  
to expand on the possibilities afforded by these ideas and show how music can and has been made  
taking proportionality into account. As a way to exemplify, this will be done with a focus on my 
implementations of  these concepts in DissonanceLib.

Harry Partch called for a retrieval of  the harmonic aspect of  intervals to compensate for the limited  
variety  engendered  by  twelve  tone  equal  temperament.  He  called  ‘the  language  of  ratios’  the  
concern for the properties of  intervals and the whole numbers constituting the ratios. It is important  
to combine information from both ratio and size representations: distance, as Aristoxenus debated,  
takes  place  in  a  linear  space,  its  elementary  units  are  calculated  additively  and  it  corresponds  
sensibly to musical intuition; in contrast, the multiplicative nature of  ratios makes them harder to  
calculate, they need to be reduced to their most compact form and do not convey any inkling as to  
their intervallic size. Ratios can also be a source of  confusion as a result of  there being so many of  
them close to any single point in pitch-distance space, entailing interpretation: there are several  
candidate ratios for any single pitch height and the choice depends on several factors and context.  
What ratios convey are the types and complexities of  pitch relations, and this can be understood as  
taking place in a multidimensional integer lattice involving ‘fundamental intervals’ which are linked  
to prime numbers.

The first representation of  tonal relations relating chords and keys in more than one dimension was  
first  proposed by  Leonhard Euler.  It  was  later  called  Tonnetz –  tone-network  –  by  Arthur  von 
Oettingen in the second half  of  the nineteenth century, a grid of  parallel horizontal and vertical  
lines that intersect at nodal points representing tonal relations between third and fifth related chords  
and keys, a feature called forth by the contemporary use of  mediant relations in composition, taken  
later on by Hugo Riemann in his  Tonnetze  of  1913 and since used extensively by his followers. A 
similar approach that refers mainly to tonalities and large scale form can be seen in Schoenberg’s  

141 Tenney, J. (1984). John Cage and the Theory of  Harmony. In Garland, P. (Ed.), Soundings 13: The Music of  James  
Tenney. Santa Fe, NM: Soundings Press, 55-83. Also available at www.plainsound.org/pdfs/JC&ToH.pdf Last 
retrieved May 15th, 2012.
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‘regions  chart’ in  his  Structural  Functions  of  Harmony  (1930s).  In a  different  vein,  Alexander Ellis 
introduced the harmonic duodene and duodenarium in his appendices to Helmholtz’s On the Sensations of  
Tone142.  This  concept  is  closer  to  intervals  than  to  tonalities,  to  the  time  frame  of  immediate 
perception rather than contextual functions, not being based on tempered cycles but on just rational 
relationships and combined with pitch distance information.

Other composers and scientists have also made use of  this lattice. In composition, I think it is best  
developed in the work of  the usual suspects we have come to meet: Johnston, Barlow and Tenney.  
The latter develops the topic from a compositionally insightful way of  opening up experimental  
possibilities143, basing it on John Cage, who despite having disliked harmony in the sense of  a priori 
(that is, logical and arbitrary) thinking upon sounds, opens the way for the rediscovery of  a harmony  
apt  for  ‘composition  with  any  possible  sound’,  simple  and  complex,  capable  of  dissolving  the  
opposition between sound and note based composition. A harmony which is in accord to the nature 
of  sound and perception, related to an ultimately parametric view (parallel with serialism, Xenakis)  
of  what Cage referred to as the ‘total sound space’144.

Harmonic space is but one aspect of  this total sound space, helpful for classifying and grasping the  
proliferation of  new and unusual intervals brought by dissonance curves. Beyond their use as merely 
novel or strange materials it links some of their qualitative, harmonic, aspects in quantitative ways: 
not all the features of  an interval are quantified, only the fundamental harmonic ‘hues’ and their  
harmonicity is linked to harmonic space, while their timbral sensoriality is disregarded. Analyses in 
harmonic space are an aid in the development of  strategies for creating, traversing and deploying  
interval collections. It does not impose a determined order nor set a limit to the possibilities, but  
provides  assessments  as  to  what  results  under  given sets  of  conditions,  showing  approaches  to  
general problems rather than a constraining and narrowing down to proscribing rules.

We will be learning the language of  ratios along the way as we pay a visit to harmonic space.

3.1.1 The harmonic lattice

“Starting from an original pitch level, by adding and subtracting fundamental pitch intervals, an  
infinite variety of musical notes will be produced. For fundamental intervals I shall take the octave,  
representing the harmonic frequency ratio 2/1, the perfect fifth with the ratio 3/2, the perfect major  
third, ratio 5/4, and the concordant perfect seventh, ratio 7/4.

By common general agreement all  notes differing by an arbitrary number of  octaves only, are  
considered as unison, and as one and the same note. Thus we are left with only a threefold variety  
of notes. A note will be defined by the numbers, positive or negative, of the respective intervals  
constituting the note. It is quite natural to visualize these three numbers by coordinates in a lattice,  
thus making a harmonic note lattice. The nearest part around the origin (0,0,0) will comprise 3 3 = 
27 notes.” (Adriaan Fokker,  Unison vectors and periodicity blocks in the three-dimensional (3-5-

142 Duodenes are built upon on chords and scales, extending them to encompass intervallic regions which aid in the 
creation of  new chords and modulations for playing a just harmonium called ‘the Harmonical’. The duodenarium, on 
the other hand, is closer to the harmonic space we are discussing in that it generalizes duodenes. It is limited to two-
dimensional representations, with extra primary notes inhabiting its corners. See Helmholtz, On the Sensations of  
Tone, Appendix XX, Section E, Articles 11- 26, 461-466.

143 Tenney, J. John Cage and the Theory of  Harmony.
144 Deserving another study, it would be very interesting to appraise the notion of  ‘total sound space’ in light of  the 

non-All and inaccessible closure of  worlds in Alain Badiou’s set-theoretical ontology according to which there is no 
set of  all sets, so the dissemination and totalization of  the parts of  this sound space is inexhaustible and sound 
holds a limitless reservoir of  novelty. See Badiou, A., Logics of  Worlds, Book IV, Section 1 and 3: 306-310 and 331-
335.

82



7-)harmonic lattice of notes145)

Fundamental intervals, comprising prime numbers, are to intervallic listening what primary colors  
are to visual sensation, that is, the elementary building blocks of  harmony, harmonemes, chiefly at the 
time  scale  of  intervals  and  chords  rather  than  that  of  texture  and  form.  Primes  have  been 
mentioned much in the literature, especially for the purpose of  filtering and classifying intervals in a  
system (such as 3-limit, 7-limit146), or to define the axes of  the multidimensional space. Fokker, from 
a purely mathematical viewpoint, isolates and defines primary intervals, but does not allude to their  
qualities.  This  linkage has  mainly  happened from a compositional  perspective  with  Partch  and  
particularly Johnston. Most empirical studies focus more on tonal contexts than on the psychological 
or  intersubjective  link  between  prime  numbers  and  their  perceptual  seemingness  in  auditory  
perception147.  From a compositional  perspective,  however,  the connection is  phenomenologically 
quite evident and here we have a small but decisive point where composition can suggest targets for  
music cognition.

The  positions  and  relative  distances  of  ratios  represented  in  a  multidimensional  space  of  the  
harmonic lattice reveal their harmonic information: mixtures of  fundamental intervals, harmonicity  
and relations  to  other  intervals  –  their  derivation  or  ‘function’.  The bases  that  form the  axes  
comprise the first n primes. An interval is expressed as an n-tuple of  exponents of  the prime bases,  
corresponding to the combination of  fundamental intervals in its constitution. Positive exponents  
denote the amount of  accumulation of  that fundamental interval in the upward direction, while  
negative ones refer to inversion, i.e., towards the low end. These factors engender the numerator  
and denominator of  the ratio.

The following list illustrates this in a 5-limit space, with a base {2,3,5}:

<0, 0, 0> = 20 · 30 · 50 = 1 = 1/1 unison;
<-1, 1, 0> =  2-1 · 31 · 50 = 3/2 = 3/2 fifth, an octave lower than the third harmonic;
<1, 1, -1> =  21 · 31 · 5-1 = (2x3)/5 = 6/5 minor third: a third lower than a fifth;
<-5, 2, 1> =  2-5 · 32 · 51 = (32x5)/25 = 45/32 tritone: a third up from a ninth (two fifths);
<6, -2, -1> =  26 · 3-2 · 5-1 = 26/(32x5) = 64/45 tritone: a third below a seventh (two fourths);
<-4, 4, -1> =  2-4 · 34 · 5-1 = 34/(24x5) = 81/80 syntonic comma: difference between 4 fifths and a third.

It is useful to ignore octaves to understand how composite intervals derive from combinations of  
primes  higher  than  2.  By  abstracting  register  other  fundamental  intervals  are  isolated.  As  the  
example of  the syntonic comma shows, it is conceptually easier to grasp this interval as the difference 
between two ways of  arriving at the third diatonic degree: one through four fifths (degrees V  II→  

 VI  III) and the other directly through a single just third. The complete calculation is (81/64) /→ →  
5/4 = 324/320 = 81/80, but by having skipped the octaves and followed the degree routes, we  
arrived qualitatively without the need of  calculations. In another example,  25/24 is easily identified 
as two major thirds (52 = 25) upward and a fifth downward (24 = 3 x 23, throwing out the 2s we see 

145 Fokker, A. (1969). Unison vectors and periodicity blocks in the three-dimensional (3-5-7-)harmonic lattice of  notes., 
Koninklijke Nederlandse Akademie van Wetenschappen, Proceedings 72(3), 1. Last retrieved November 14, 2010, from 
http://www.huygens-fokker.org/docs/fokkerpb.html

146 These nomenclature comes from Harry Partch, but in his and other studies who use the term there is no clear 
distinction between primes and composite odd numbers, such as 7-limit and 9-limit.

147 A psychological study that links quanta and qualia in pitch perception, although devoted mostly to tonal contexts 
rather than individual intervals, is Krumhansl, C. (1990). Cognitive Foundations of  Musical Pitch. New York: Oxford 
University Press, Chapter 5, 111-137. Also, Sethares, op. cit., Chapter 5, lists many sources of  empirical studies 
related to this topic, although it is focused more on roughness and dissonance than proportionality and 
harmonicity. However, what I have not seen is an empirical research that explicitly considers prime numbers as the 
basis for harmonic ‘chromas; or, as I call them, fundamental intervals.
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the 3 representing the fifth), a route which in terms of  diatonic degrees is III  VI  II.→ →
I agree with Fokker that fundamental intervals should be considered as lying within the octave: 3 is a  
3/2 fifth and not a twelfth (as overtone 3), the same holding for 5 and 5/4, 7 and 7/4, and so on.  
The  fundamental  numbers  behind  fundamental  intervals  are  nonetheless  the  primes  themselves, 
{2,3,5,7,11...}.  However practical octave reduction is, it is a ‘common agreement’, and we should 
not take it for granted in all situations. The fact that it is the strongest of  all harmonic relations  
masking other less strong equivalences does not make it absolute. As shown in the previous chapter  
with dissonance curves, many of  the pitch sets I use span many octaves (mostly in unsymmetrical 
patterns)  and  no  assumptions  are  made  regarding  intervals  related  by  octaves,  so  that  their  
differences in register, polarity and harmonicity (which are close but not equal) can be accounted for.

Ratios and harmonic coordinates do not give an indication of  their pitch-distance, which needs a  
projection from the lattice into logarithmic pitch-distance space. Still, we can get a rough sense of  
the interval’s type and size by its degree derivation. In the above 5-limit list, it is clear that the first  
tritone, a third above a major second, is an augmented fourth. The other tritone is a third below a  
minor seventh,  a  diminished fifth.  It  does  not  tell  us  (except  for  the unison),  their  exact  sizes,  
however, which in cents are: 590 and 610.

The HarmonicVector class in DissonanceLib represents a ratio in harmonic space and calculates all its 
other features. For example, the code: HarmonicVector.from([45,32]);  results in  !

HarmonicVector( [ -5, 2, 1 ], 45/32, [ 2, 1 ], 45/32, 590.22¢, 2DM)

Displaying148 coordinates, ratio, octave-reduced coordinates and ratio (the two being the same here),  
distance,  and  function  (the  code  designates  D/d  =  dominant/subdominant,  M/m  = 
mediant/submediant, and S/s = septimal/subseptimal, in this case showing two dominants plus a  
mediant).

For the sake of  clarity and to give a more complex (septimal) example:
[[20,7],[7,5], [21,32], [28,15]].asHvector;

→ HarmonicVector( [ 1, 0, 1, -1 ], 20/7, [ 0, 1, -1 ], 10/7, 617.49¢, Ms)
HarmonicVector( [ 0, 0, -1, 1 ], 7/5, [ 0, -1, 1 ], 7/5, 582.51¢, mS)
HarmonicVector( [ -4, 1, 0, 1 ], 21/32, [ 1, 0, 1 ], 21/16, 470.78¢, DS)
HarmonicVector( [ 2, -1, -1, 1 ], 28/15, [ -1, -1, 1 ], 28/15, 1080.56¢, dmS)

Non-octave reduced ratios  (20/7,  21/32)  are  also  represented in  reduced form.  It  is  from this  
reduced  form  that  their  size  and  function  are  derived,  so  all  the  information  is  available.  
Additionally, there is a function that returns the names of  the intervals from a database obtained  
from  the  Huygens-Fokker  foundation149,  yielding:  (1)  Euler’s  tritone,  (2)  septimal  or  Huygens’  
tritone/Bohlen-Pierce fourth,  (3) narrow fourth  (which, as its function – DS – implies, can be understood 
more easily as the harmonic seventh of  the dominant), and (4) grave major seventh (which as degree is 
more precisely a diminished octave: dmS indicating that we go down a fifth to IV, then down a third to  
II, and then up a seventh to VIII, which, by its size of  1081¢ turns out to be quite diminished)150.

148 They are displayed here in the SuperCollider language format. Numbers within brackets represent collections of 
numbers, in this case representing interval coordinates in harmonic space. The following example shows collections 
of  collections, representing interval ratios ([7,5] represents 7/5). This is for reasons of  consistency within the 
language and because they are usually used not for display but for calculation purposes. 

149 Compiled by Manuel Op de Coul, it is available at http://www.huygens-fokker.org/docs/intervals.html Last 
accessed April 22, 2012.

150 With the exception of  a some historiacal names, the nomenclature of  the Huygens/Fokker intervals is derived 
through a quite consistent method explained in Keenan, D. (1999). A note on the naming of  musical intervals. Last 
retrieved April 12, 2012, from http://www.dkeenan.com/Music/IntervalNaming.htm. It deals very well with the 
distinction between subminor, minor, neutral, major, and supermajor intervals (which differ to a certain extent between 
intervals that admit major and minor varieties – thirds, seconds and their inversions – and those that admit perfect 
or just varieties – unison, fourths and inversions). The problem is that it does not take function into account so it 
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Harmonic  vectors  can  be  added,  subtracted,  and  exponentiated,  their  attributes  calculated 
automatically,  hence  facilitating  harmonic  arithmetic.  Adding  and subtracting  intervals  involves 
moving through the coordinates in the lattice and is equivalent of  to multiplying or dividing the  
ratios. Exponentiation means compounding an interval as many times as the exponent. Together,  
these operations provide a harmonic calculator useful for combining, extending, finding remainders,  
sizes and functions for ratios. Their help file in DissonanceLib gives several examples, some of  them 
taken form the article by Fokker. For instance, they were of  crucial aid in finding the microtonal  
accidentals for the table in Appendix II. We will see more in-depth examples where they are put to  
use in section 3.1.6. 

3.1.2 Harmonic qualias, hues

In the spirit of  the Archytean Pythagoreanism that sustains this study, we will now pursue the link 
provided by musical harmony between the qualitative and the quantitative aspects of  sound, digging 
a  bit  into  the  qualitative  aspect  of  the  prime  numbers  behind  harmonic  intervals.  This  
phenomenology of  auditory numbers is inserted in the midst of  the discussion of  quantitative topics  
of  harmonic space, intended to not lose a compositional perspective, before we delve further into  
the more arithmetically dense topics of  commas, tolerance and harmonic metrics.

Ben  Johnston gives a qualitative assessment of  the axes in the harmonic lattice151. He designates the 
first dimension as ‘cyclic’ since it produces the repetition of  pitch classes. Assuming the possibility of  
intervallic equivalences other than octaves, this axis refers to smallest prime involved. The next axis  
will  be ‘tonal’,  in  analogy  to dominant/subdominant  relations.  Further  axes  will  be ‘modal’  in  
reference to major/minor modes provided by thirds. Sevenths and elevenths offer further modal  
hues.

Aside from their function as bases of  the lattice, Johnston had previously proposed the following  
‘psychoacoustic meanings’ of  fundamental intervals152:

2  recurrence, repetition, cycle;→
3  polarity, gravity, root-five or tonic-dominant; →
5  major/minor coloration: mode; →
7  contributes  to a  sense of  ‘centralized stability’  to  a  4:5:6:7 chord, suspending the  →
dominant-tonic  polarity  as  well  as  providing  consonant  tritones,  sevenths  and  seconds  
(7/5-10/7, 7/4, 8/7);
11   ambiguity,  neutrality  (lying  a  quarter-tone  between  a  fourth  and  a  tritone  and  →
producing neutral intervals)

There is a lot of  compositional discernment to these descriptions, characterizing chief  harmonic 
features through the mediation of  subjective metaphors. Harry Partch, once his teacher, had already  
given an account of  qualities of  intervals in his 11-limit, 43-note system. For him intervals that  
comprise a given degree share the same quality, so that emotion is shared, for example, by thirds all  
the way from the 435¢ supermajor 9/7, down through 14/11 and 5/4 major, the neutral 11/9,  

does not distinguish diatonic degrees, as we have just shown. ‘Intervals can have more than one name’, something 
which is true for pitch distances and involves tolerance, but is not true when dealing with the nomenclature of 
definite ratios. According to this scheme, a 7/5 can be either a fifth or a fourth, which is not correct. I have not yet 
developed an algorithm to do the naming automatically, though it should not be too difficult to implement in a 
future version of  DissonanceLib. See also Appendix III where a list of  septimal intervals is investigated and their 
names compared between my functional nomenclature and the one in the Huygens/Fokker list.

151 Johnston, B. (2006 [1971]). Tonality Regained, Maximum Clarity, 46-47.
152 Johnston, B. Scalar order as a Compositional Resource, Ibid., 27-28.
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minor 6/5, 32/27, to the 266¢ subminor 7/6 ekbole. The confusion is compounded because he does  
not account for divisibility but only for the size of  the numbers involved. He puts forward the quality  
of  ‘power’ to unisons, octaves, fifths and fourths (all the perfect intervals); ‘suspense’ to tritones (close  
to ambiguity); ‘emotion’ to 3rds and 6ths; and ‘approach’ to seconds. I think the latter pertains to a  
more horizontal rather than vertical qualia since it is not connected to the numbers that determine  
some of  these degrees153.

I had taken some notes on the auditory qualias of  primes before reading Johnston’s seminal articles,  
which  were  a  relatively  late  discovery  (2011,  my  assessments  were  done  in  2010).  The  first  
discrepancy is the importance I placed on interval inversion and its lack of  quality-wise symmetry.  
Not only is a fifth upward different than a fifth downward (and in my experience this is exacerbated  
with thirds and even more with sevenths), but their octave reductions which place them in the same  
direction but different size (such as 3/2 with 4/3 or 2/3 and 3/4) and polarity, make this even more  
clear:  a  fourth  and  a  fifth,  although  sharing  some  similar  characteristics,  are  quite  different  
qualitatively and functionally. Furthermore, the accumulation of  a fundamental interval changes its  
quality quite drastically, except in the case of  octaves, which is why I give 2 a quality of  neutrality,  
not in the sense of  a ‘neutral  third’,  but in the sense of  ‘transparency’,  producing register and  
closing harmony on itself  (which is why it is close to Johnston’s notion of  cycle). The distinction  
between 3 and 32 or 3-2 shows that ninths, seconds and sevenths are quite different in quality from 
fifths. Seconds are not directly produced by any of  the first primes (except if  we take into account  
the inverted seventh: 8/7, 231¢, but it does not correspond to any commonly used versions of  the  
major second). It is not the same to consider the 9/8 second as the fifth of  the fifth than to regard it  
directly. Maybe this is why steps are usually deemed melodic rather than harmonic (even while  
considering  harmonic  relations  as  also  occurring  horizontally).  Their  harmonic  use  stems  from 
octave reductions of  ninths and sevenths (9/8, 16/9), their function being mostly (sub)dominant of  
other degrees (9/8 is the dominant of  3/2, 16/9 the subdominant of  4/3) and not an independent  
function in itself. Johnston’s account and general approach stays within close chains of  relationships,  
considering dominant-tonic chains, but not direct relations between the tonic and double or triple  
subdominants or dominants. Direct seconds are disconnected in the lattice by more than a single  
step in any direction from their tonics, making them more inharmonic and difficult to establish as  
tonally independent sonorities, in contrast to mediant and dominant functions which are adjacent.

In  my  ‘psychoacoustic’  assessment  I  distinguish  between  a  prime  number  in  its  upward  and  
downward direction and in its combination with other fundamental intervals:

3  stability; up: openness; down: attraction;→
5  a very ‘colored’ interval; up: stands out and is connected with motion (maybe associated→  
with Partch’s e-motion?); down: even more mobile (as minor 6th) but with quite a different qualia; 
together with 3 it gives the minor 3 and major 6 which share the poignancy but are darker (up)  
and brighter (down); combined with 7 it yields stable tritones; 

7   gloomy,  uncanny;  up:  stable  seventh,  very distinct  color;  down:  unstable,  large second;→  
stable tritones and an unstable third (7/6). There is a connection with ‘blue notes’ in blues and  
jazz, connoted as sad or painful: seventh, tritone and minor third (which is used as augmented  
ninth  against  a  major  third),  corresponding  to  the  combinations  of  seven  with  2,  3  and 5,  
respectively: 7/4, 7/6, 10/7 & 7/5. They function as stabilities, not requiring resolution;

153  Instead of  primes, Partch bases his system on intervallic ‘identities’ – octave reduced odd numbers. Although I 
think his music was not a full consequent experimentation upon his discoveries and some of  his concepts are not 
quite correct, his influence as the microtonal pioneer of  the twentieth century is considerable. One aspect of  his 
work that my research assumes as central is the emphasis on intervallic inversion as a fundamental harmonic 
feature. He calls it by the terms of  symmetry, dualities, and over- and under-tonalities, arriving at at ‘tonality 
diamonds’, which comprise upper and lower components of  fundamentals.
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11  ‘tritoneness’, ambiguity, due to the schizoid nature of  tritones, which in octave equivalent→  
systems are the pivot intervals under which intervallic inversion occurs, owing to the fact that 
they can be arrived at in many symmetric ways.

The higher we go up the prime ladder, the more fragile, singular and uncommon the harmonic hues  
become. Considering, as we do, prime intervals as lying within an octave, their series does not follow 
any predictable order in terms of  distance: the series of  octave, fifth and third make it seem like the  
intervals  are  getting  smaller,  but  then  seventh  and  fourth-plus-a-quarter-tone  (11 th)  break  the 
pattern.  The  thirteenth  is  a  very  strange  interval,  close  to  a  neutral  sixth  (841¢),  with  a  very  
distinguishable somber tone, even though its harmonicity is quite low to allow easy manipulation.  
Primes 17 and 19 have the characteristic of  lying very close to the tempered minor ninth (or minor  
second) and the minor third, respectively. Even if  their perceptibility as such is very low, they don’t  
really contribute to new hues because they lie too close to intervals derived from combinations of  
lower primes.

To add a few more overtones to the discussion, we must mention that Johnston, with reference to  
LaMonte Young’s work, also describes intervals in terms of  number symbolism 154: 

2  ‘repetition of  the same thing on another scale of  magnitude’; cycle;→
3  stability and strength;→
5  (human) emotions;→
7  ‘could be said to symbolize sexuality’ and has relation to blues music;→
11  androgyny as a symbol;→
13  death or at least the ‘emotions commonly associated with the possibility of  death’ → (he 
makes very effective use of  prime 13 in his 5th String Quartet by isolating and pursuing its 
connotation with death).

Beyond single intervals, the most common harmonic situations involve combinations of  them. A  
major triad can then be considered in the lattice as a structural point of  stability for mixtures of  {2,  
3,  5},  which  in  its  most  compact  (closed)  form  gives  a  major  triad  in  root  position.  This  is 
symmetrical with respect to intervallic inversion, thus also extending to minor chords. These chordal  
structures can be seen as invariant shapes within the lattice that can be translated, rotated and scaled 
in size to yield other related sonorities, so their geometric structure can serve to generate related but  
distinct harmonic sonorities. Johnston’s starting point for his approach is rooted in traditional triadic 
and chordal harmony but generalized to chords with n notes (n-ads), where each note in the chord 
comprises a step (in any direction) in each of  the axes of  the lattice, beginning with the cyclic, then  
the tonal and continuing with the modal ones. If  the direction in the modal axes is negative the  
resulting chords contain ‘minor’ ingredients.

3.1.3 Commas

As has been seen in passing, a comma is a small interval measuring the difference between two notes 
close enough to be considered unisonous. These very similar intervals (in our previous example 5/4  
and 81/64) are reached through different paths in the lattice, which is the same as saying that they  
are composed of  independent mixtures of  fundamental intervals. Commas result from the fact that  
powers  of  different  primes are never  equal to  each other,  so  two separate constitutions  cannot  
coincide. The most ancient and well known example arises with 2 and 3 and the fact that 27 ≃ (3/2)12 

(128  ≃ 129.7463),  their  ratio  being  1.01364  =  23.46¢,  the  Pythagorean  comma,  a  difference  

154  Johnston, B. (2006 [1995]). Regarding LaMonte Young.  Maximum Clarity, 251-258. 
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resulting from arriving at almost the same note by following either 12 fifths or seven octaves. More  
generally, the aim is to find two exponents such that (2/1) n  ≃ (3/2)m and it turns out that the first n,m 
pairs following {7, 12} correspond to well known divisions of  the octave: {41, 24} and {53, 31}.  
They make for ‘ultra-chromatic’ tunings (41 and 53) which contain ‘ultra-diatonic’ scales (24 and 
31).

Many kinds of  commas exist, some famous, some not quite so, some really obscure, all of  them 
involving independent routes to near-enough unisons. The way I refer to them is by the primes  
involved in each separate route, so the Pythagorean comma we’ve just seen is an example of  a 2-3  
comma,  the  other  pairs  being  also  2-3  commas  of  higher  order.  Commas  pertain  to  any 
combination of  tuples of  primes.

To elucidate with examples, in the 3-limit lattice the Pythagorean comma is the difference between  
12 fifths <0,12> and the origin <0,0>, equal to 312/219 = 531441/524288. The syntonic comma which 
we met earlier lies between four fifths <4,0> and a single third <0,1> in 5-limit, octave reduced space.  
Subtracting the latter from the former gives <4,-1> = 81/80 = 21.51¢. In a 7-limit space, a triple  
seventh <0,0,3> (343/256, 506¢) is practically in unison with a single fifth downwards <-1,0,0> (4/3,  
498¢), their difference being <1,0,3> (1029/1024, 8.4¢). An example involving three primes (a 3-5-7  
comma): <2,2,0> (225/128, 977¢) and <0,0,1> (7/4, 969¢) differ by <2,2,-1> (225/224, 7.7¢); two fifths  
and two thirds (functionally 2D2M, V  II  IV+  VI+, an augmented sixth) lie very close to a! ! !  
minor seventh (VII-).

Johnston devised microtonal tuning notations based on commas. Marc Sabat and Wolfgang von 
Schweinitz have developed the idea further with their ‘Helmholtz-Ellis’ notation 155. Special symbols 
(derived as much as possible from historical practice) specify some of  the commas that turn intervals  
from 3-limit  Pythagorean  tuning  to  other  prime interval  combinations.  No  symbol  (or  natural  
accidentals) implies this base tuning, and there are symbols for syntonic (3 to 5), septimal (64/63, the 
difference between 16/9 and 7/4, a (2, 3, 7)-based comma), 11, 13, 17, 19, 23 up to prime 61 (most  
of  them being  too  high for  being  effectively  perceived in my opinion).  All  symbols  have  their  
corresponding inverted sign and there are special signs for equal temperament and cent deviations  
from it, useful for inharmonic tunings.

The coordinates of  the two near-unison intervals  usually lie quite far away in harmonic space,  
showing how they are different routes to similar intervals. Fokker connected these coordinates with  
vectors, realizing that placing these ‘unison vectors’ one after the other (summing them) results in  
further  near-unisons.  Unison vectors  delimit  regions  in  the lattice  in  which equivalent  intervals  
repeat themselves, producing a periodic tiling of  the lattice in the vector’s direction. By using three  
appropriately chosen unison vectors, three-dimensional blocks of  periodicities (parallelepipeds) are  
formed.

‘The whole lattice will be divided in countless periodicity blocks, each of them representing in a way the  
whole of the lattice. Obviously there is a considerable economy in handling the finite number of notes  
within a periodicity block instead of the numberless notes of the complete lattice.’ 156

According to the choice of  these vectors, blocks of  varying sizes will be produced. Choosing them is  
not trivial,  but Fokker found several  sets  of  vectors both in two dimensional (5-limit)  and three  
dimensional (7-limit) spaces157, forming blocks that contain 12, 19, 22, 31, 41 and 53 notes. These 
blocks correspond to the most well known tempered approximations of  proportional intervals: 31,  
41 and 53 arise once again, the discrepancy between 22 and the 24 we found previously probably  

155 http://adagio.calarts.edu/~msabat/ms/pdfs/notation.pdf   Last Retrieved May 27, 2012. 
156 Fokker, Ibid., 3, in the pdf  version. The diagrams in this article illustrate this concept quite clearly.
157 Let us not forget that he assumes octave equivalence, so that 7-limit is three- instead of  four-dimensional. The 

vectors lie orthogonally to each other and together involve commas relating to the three main primes.  Intervals 
inside different periodicity blocks differ by one (or several) of  these commas. 
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having to do with rounding and the centering in the lattice of  these parallelepipeds. As we saw last  
chapter, these are the principal equal divisions of  the octave that best correspond to approximations  
of  proportional systems. What we have now seen is how these numbers emerge by recourse to the  
lattice.  Though  the  task  is  not  trivial,  there  should  exist  unison  vectors  for  the  only  famous  
approximation  that  is  missing,  the  Aristoxenian 72  divisions.  There  should  also  be  vectors  for  
producing these divisions in four-dimensional 11-limit space (Fokker provides a single set of  vectors  
for this one). We have also seen that the two best approximations for 7-limit intervals, 53 and 31,  
stand in a relation analogous to chromatic and diatonic (12 and 7), explaining why 53 is probably 
the most accurate approximation of  all (although this will definitely depend on the particular system 
and aims chosen), the comma that defines it spanning only 3.61¢ and containing within it the next 
to best approximation (31) as its ultra-diatonic subset158.

Within each block is contained a complete harmonic world; I have called them ‘islands’ since they  
enclose  these  domains.  They  have  been  implemented  to  deal  with  pitch  sets  arising  out  of  
dissonance curves. Dissonance curves produce irregular geometries within harmonic space (refer to  
Figures 2 and 3 of  section 3.1.6 for an illustration). Periodicity blocks can be used to partition these 
intervals into harmonic and timbral subsets according to whether they lie or not within the central  
block. The intervals obtained from the curves lying inside a block can specify scalar structures within  
the tuning system implied by the block, providing specific patterns within 12, 19, 22, 31, 41 or 53  
divisions of  the octave. The intervals that lie outside the block can be esteemed alien to the main  
harmonic realm and given different (timbral) behaviors. How these partitions are to be interpreted is  
a compositional decision: I have mostly used this distinction to ‘orchestrate’ them. Chords made out  
of  dissonance  curves  can be  rendered with  different  timbres  in  order  to  distinguish  the  closer  
periodicities of  the harmonic subsets to the more distant ones of  timbral subsets, for example, or by  
giving  each  subset  a  different  rate  of  movement  (timbral  intervals  usually  moving  faster  than  
harmonic ones, but there is no reason why these behaviors have to be preestablished).

The separation of  pitch sets coming out from dissonance curves into timbral and harmonic islands  
does not alter or round off  the intervals themselves, it just serves to classify them. Alternatively they  
can be mapped into the tempered approximations implied by the periodicity blocks. In this case the  
intervals lying in parallel blocks, differing from intervals in the central island by a comma, may be  
considered equivalent and transposed back into the central block. This option opens the way for  
treating them as degrees of  these systems instead of  only as ratios, allowing to transpose, invert and  
modulate  the  intervallic  geometries  to  other  degrees.  An advantage  with  these  approximations  
(which can be used only for working out materials  but applied to the actual  non-approximated  
intervals) is that scales and modes are more readily visible in terms of  pitch distance degrees, also  
opening the way for operating with them combinatorially, something which is not so straightforward 
when dealing with ratio representations. 

The PitchSet class in DissonanceLib is a collection of  HarmonicVectors that are partitioned into timbral 
and harmonic subsets. To give a simple example, consider the following four-note septimal chord:
PitchSet.with([[1,1],[7,6],[3,2],[7,4]])
→ Harmonic Set[ 1/1, 7/4, 3/2 ]

Timbral Set[ 7/6 ]

This example uses the default unison vector set (12 divisions of  the octave in 7-limit space), and we  
can see that intervals with negative exponents of  3 (7/6 contains a fifth below 1/1) are situated  

158 The comma derives from the fact that (3/2)53  (2/1)≃ 31. 353/281 = 
19383245667680019896796723/19342813113834066795298816 = 3.16¢ (also known as Mercator’s comma). 
Additionally, the size of  53rd division of  the octave is 22.64¢, lying between the syntonic (21.5¢) and the Pythagorean 
(23.46¢) commas, probably explaining (or at least illustrating) why many of  its intervallic combinations approximate 
some harmonic intervals so well.
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outside the block. Changing to a larger block does not necessarily solve this:
PitchSet.with([[1,1],[7,6],[3,2],[7,4]], PitchSet.unisons.dim3.et31[1]) 
→ Harmonic Set[ 1/1, 7/4, 3/2 ]

Timbral Set[ 7/6 ]

The unison vector is set for 31 divisions of  the octave, but the block is still centered to the ‘right’ of  
1/1 in the axis of  fifths. Several options are available for each equal division 159, and it turns out in 
this case that the third one gives us a block centered to cover the whole chord:
PitchSet.with([[1,1],[7,6],[3,2],[7,4]], PitchSet.unisons.dim3.et31[3]) 
→ Harmonic Set[ 7/4, 3/2, 1/1, 7/6 ]

Timbral Set[  ]

All  intervals  have been now been included inside the island. This  example is  not  yet  musically  
meaningful,  as we still  need to know what to do with the intervals,  or if  we want to use these  
intervals against others in a larger system. Usually much larger pitch sets are used and the choice of  
an appropriate block is  related to the musical  task,  being quite different for electronic  than for  
instrumental  performance.  I  have  used  them  mostly  in  electronic  ‘dissonance’  chorales  that  
accompany sound field recordings as well as in real-time computer interaction with instruments or  
as an installation (more will be said about the strategies and pieces later on).

To approximate into temperaments, the method asETdegrees returns the equivalent degrees in equal 
temperament (the default is 53 in 7-limit space160), thus posting the following for the first example:

TET: 53
Harmonic Ratios: 1/1, 3/2, 7/4
Harmonic Degrees: [ 0, 31, 42 ]
Timbral Ratios: 7/6
Timbral Degrees: [ 11 ]

This shows how harmonic ratios map to degrees 0, 31 and 42 in 53ET, while the other interval  
maps to degree 11. We will follow a more thorough and contextual example that encompasses these  
topics in section 3.1.6.

3.1.4 Tuning tolerance 

‘[G]enerally,  by  some  numbers  that  the  tones  are  expressed  by,  if  the  proportions  are  too  
complicated,  the  ear  will  substitute  a  close  approximation  that  is  simpler.  Thus  the  heard  
proportions are different than the true, and it is from them that we must judge the true harmony  
and not from the actual numbers.’ 

‘Our hearing is accustomed to taking all proportions that differ very little from uncomplicated  
ratios as such. The simpler the proportion, the more sensitive our hearing is to noticing small  
aberrations. This is the reason why we can hardly stand any deviation in octaves; we intend that all  
octaves be exact and that they do not differ at all from doubling.’ (Leonhard Euler, Conjecture on  
the Reason for some Dissonances Generally Heard in Music161)

159 These alternatives are defined by the sets of  unison vectors, spanning several approximations in 2 and 3 
dimensions, with a single alternative for 4 (11-limit) dimensions. In this example there are 3 possibilities associated 
with 31ET in 7-limit space. They are accessed as a dictionary, PitchSet.unisons, from which further keys give access 
to the matrices or sets of  vectors that define the block. The first codifies the dimension (dim3 in this example), then 
the number of  divisions per octave (et31), and finally one of  the possible alternatives. This is all documented in the 
software.

160 These approximations are commonly referred to as n-(T)ET – (tone) equal temperament – or n-EDO (equal 
divisions of  the octave).

161 Euler, L. (1766). Conjecture on the Reason for some Dissonances Generally Heard in Music. ( J. A. Scaramazza, Trans. From 
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Aristoxenos  understands  the  fault-tolerance mechanism in  pitch  perception as  narrow nodes  in  
pitch-distance space inside of  which intervals preserve their identity. This mechanism is responsible  
for many musical phenomena, including out-of-tune renditions of  songs when singing in the shower,  
making temperaments feasible and allowing nuanced tuning around notes. Disregarding tolerance  
in proportionality would imply that slightly mistuned consonances would have to be represented by  
very big ratios, entailing very high inharmonicities, which is clearly not the case.

Tolerance permits this distortion, perceptually ‘rounding off ’ to the nearest and strongest harmonic  
ratio, the amount resulting from the difference in tuning between the nominal and the actual ratio  
becoming  its  timbral  coloration  or  residual  clangtint. This  coloration  involves  the  presence  of 
beatings between spectral components, but is also present within the fundamentals themselves, as if  
this phenomenon could pertain only to sine waves abstracted out from the actual spectral surface. 
This variance separating the correct (true) ratio and the actual (heard) deviation imposes the timbral  
facet of  harmony upon proportionality, twisting and blurring it.

The mechanism for tolerance, its intervening factors and ranges are not well understood yet. Its  
range is inversely proportional to the harmonic complexity of  a ratio – a harmonic interval has a 
smaller tolerance range than an inharmonic one, an octave is very sensitive to deviations, whereas a  
tritone much less so, – but there is still no way of  knowing how to quantifiably measure this, maybe  
another target of  study for music cognition suggested by composition.

Due to tolerance the same note may have more than one function or identity. In equal temperament  
there happen cases where the harmonic meaning of  a note changes depending on the preceding  
and  following  ones,  implicating  a  horizontal  aspect  on  the  time  axis,  as  well  as  metric  stress. 
Temperament benefits from these ambiguities by approximating proportional scales of  unequally  
spaced intervals into equal or near equal steps where some sharps and flats are fused into single  
enharmonic notes. In minor tonalities, for example, the interval between the leading note below the  
tonic  (15/16)  and  the  minor  third  (6/5)  is  a  diminished  fourth  (32/25,  427¢) 162.  In  standard 
temperament both this interval and the major third (5/4, 386¢) are conflated into a single 400¢ third 
that can acquire either role while sounding the same. The difference between both intervals is large,  
41¢ (larger than the 16¢ deviation of  minor thirds in 12-ET), showing that the span of  tolerance is  
not fixed. One could assume that within the major mode this diminished fourth does not arise, so  
the  tolerance  range  is  stricter.  We  see  this  happening  in  the  various  meantone  and  well-
temperaments, each of  which is better adapted to certain tasks and styles than others.

Tolerance  depends  also  on  attention,  experience,  stylistic  attributes  and musical  education.  Yet  
another  factor  that  intervenes  is  the verticality  of  the intervals  in  question:  an  unaccompanied  
melody has wider tolerance than when it is held together to other simultaneous notes. Arriving at a  
quantitative  relation  for  tolerance  would  require  isolating  and  abstracting  these  contextual  
considerations, something which complicates the task, maybe rending the formula difficult to apply  
in real  world situations.  All  the same,  it  would be interesting  to  pursue this  as  it  might  reveal  
unknown details

In his study on the harmonic lattice Tenney adds a few points that are relevant here. He talks about 
the  ‘activation’ of  nodes  in  the lattice,  which require  saliency and stability  of  pitch as  well  as  
sufficient time. The activated points persist after the sounds have ended as a result of  some kind of  
psychological resonance. This is interesting compositionally,  suggesting that inharmonic intervals 
may require more time to activate than harmonic ones, inverting the usual priority of  durations  

Conjecture sur la raison de quelques dissonances generalement recues dans la musique). Mathematics Department, Rowan 
University, §9 and 12. Available at http://www.math.dartmouth.edu/~euler/docs/translations/E314.pdf. Last 
retrieved November 15, 2010.

162 A well known example occurs in Fugue #4 in C sharp minor of  J. S. Bach’s Well Tempered Clavier BWV 849: C#, 
B#, E, D#. The diminished fourth lies between B# and E. 
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given  to  harmonic  notes,  inversely  connecting  duration  with  proportionality.  Their  persistency  
manifests a limit to the speed at which harmonies can be processed (the more harmonic the longer  
they take to deactivate). Another topic he mentions is what he calls ‘harmonic containment cones’, a 
way to visualize the lattice as a timbral spectrum, as if  the activation required enough points in the  
‘cone’ (corresponding to its harmonic partials seen as projected into harmonic space). The more 
points it has, the clearer the sense of  fundamental and the less time required for its activation. It  
integrates timbre into tone and harmony, actual timbre stemming from the relative amplitude of  the  
individual  partials;  when the points  are contiguous either in pitch or harmonic space,  they are  
perceived as unitary and not as separate components163.

In  harmonic  tolerance  the  two  facets  of  harmony  touch  each  other  and  for  composition  this  
suggests clues for composing the duality itself: transitions, mixtures and separations between timbral  
and  harmonic  materials  and  logics.  In  tolerance  also  lies  the  key  for  simplifying  and  making 
instrumental writing practical. Contrary to the aim of  many proponents of  just intonation, who I 
think are too attached to exact tunings and neglect tolerance, it is possible to write microtonal music  
without having to exactly tune every interval. To extract a proportional logic to intervals means we 
can manipulate them with that logic without their tuning being just. This is why standard equal  
temperament can be used with other kind of  harmonic priorities and stabilities than the usual ones,  
provided the tolerance analysis and the right context are accounted for, as when the harmonic logic  
involved is quite different from usual tonal-atonal sonorities (timbral logics like the ones derived  
from dissonance chorales are a good example, they can be used with standard temperament without  
loosing much of  their logic and consistency, despite missing the sonority of  some of  the strangest  
intervals). Dissonance pitch sets can also be understood proportionally without their tuning being  
changed. The harmonic discretization of  the pitch continuum that produces nodes within which the  
identity of  a string interval is maintained, masks the strange, eerie sounds of  higher primes lying  
inside them. One way to make these fragile and unusual sonorities stand out in stable or functional  
ways is to avoid some of  these strong intervals, or to remove a prime axis (as in LaMonte Young’s 
Well Tuned Piano where intervals based on 5 are excised in order for 7-based intervals to emerge),  
making room in pitch space and avoiding ambiguity in harmonic space. Mixing these intervals with 
lower primes in order to form harmonic ‘regions’ of  relative harmonicity can also anchor them 
functionally,  reducing their  ambivalence and their  conflation into the  clangtint of  simpler  ratios. 
Another  factor  involves  duration  (and  therefore  rhythm,  articulation,  meter,  etc):  the  more  
inharmonic an interval, the more time it needs to be activated, showing that formal levels above the  
immediate sonorities of  these ‘regions’ are also involved. These differentiations in harmonic space  
contribute to reduce the tolerance range, increasing the focus that allows these intervals to stand out  
on their own.164 

3.1.5 Harmonic metrics, rationalization

Euler’s work on music culminates a strand in the lineage of  Pythagorean harmonists, spanning such 
figures as Galileo –  commensurability  and the origin of  ‘pulse counting’ or ‘coincidence’ theories –, 
Kepler –  harmonia mundi, – Descartes –  mathesis universalis, the communication of  proportions from 
sense to intellection, – Mersenne – the theory of  simultaneous vibrations in strings and the ensuing  
harmonic series, – and Leibniz, whose famous phrase ‘music is a hidden arithmetical exercise of  the  

163 Tenney,  John Cage and the Theory of  Harmony, 29-35.
164 The subject of  tuning tolerance is also developed, particularly with regard to simultaneous tuning systems, in 

Mogini, F. (2000). Alternative Tuning Systems (Master’s thesis, Lansdown Centre for Electronic Arts, Middlesex 
University, 2000). 
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spirit unconscious of  enumeration’165 had much influence on Euler, as acknowledged in his Tentamen 
novae theoriae musicae166 (written at age 24 in 1731), where he introduced the Gradus Suavitatis function 
and offered the first multidimensional representation of  intervals.

As we have seen, the main premise behind this Greek lineage is that there exists a relation, involving  
numbers,  between  intervals  and  their  translation  by  perception,  between  their  primary  and  
secondary qualities, as it  were. Primary are qualities of  an object in itself  (in this case a sound  
complex  or  an  interval),  independent  from  its  relation  to  perceivers,  being  quantitative  and  
mathematizable: extension, length, weight, frequency, etc; secondary qualities are effects of  these  
features upon the senses, not located in the object: colors, smells, tastes, pitch, harmonic qualias, and  
so  on.  The Pythagorean hypothesis  attempts  to  provide an explicit  relation between these two  
realms, to link quanta and qualia through arithmetics, the senses and intellection: qualities of  sound 
carry a proportional structure. This structure is elucidated through  aisthesis  and is the source (the 
‘formal cause’ in Aristotelian terms) of  its specific hue: proportions describe a physical feature of  the  
object which stands in correlation to its subjective properties, to ‘harmonicity in the first person’, as  
it were. It is the formal aspect of  this structure that constitutes its definition pattern: a non-accidental  
quality of  the interval arrived at by abstracting its eidetic core out from the enclosing timbral surface. 
As the ‘remainder’ of  this reduction, the contingent timbral features that envelop the  eidos  of  the 
interval account for its accidental qualities. In harmonic terms, timbre and proportion complement  
each other, each pertaining to different kinds of  qualities.

Euler offered an explicit account of  this process, the arithmetical operations underlying perceptual  
translation,  clarifying  what  is  understood  by  the  complexity  of  a  ratio  from  the  metaphysical  
perspective  of  order  and  perfection  with  regard  to  music:  the  formal  causes  behind  ‘musical  
pleasure’. Helmholtz later contrasted his position by stating that according to Euler, 

‘the human mind perceives commensurable ratios as such, according to our method, it perceives 
only the physical effects of these ratios, namely the continuous or intermittent sensation of the  
auditory nerves,’167 

shifting the explanation to efficient causes (which happen sequentially in time) and ignoring the  
indirect allusion of  aisthesis taking place after the fact in intellection. It is not that numbers come to  
mind when listening to proportions, but that proportional relations have a ‘sound’ of  their own and  
the audible realm leads to the discovery of  these relations. We should therefore distinguish between  
auditory  and  calculating  numbers,  the  former  being  alluded,  formal,  and  eidetic:  they  are 
‘perceivable’  only  indirectly.  Eidetic  or  essential  qualities  are  what  is  left  over  after  accidental 
qualities are stripped off  from an interval in categorial intuition, also known in phenomenology as  
eidetic variation; in the case of  musical harmony, aisthesis is the name we have given to this process168.

Instead of  musical harmony giving a glimpse of  metaphysical harmony, it is  metaphysics which 
comes to the service of  music perception. After Euler, arithmetic-based speculative harmony would  
have to wait until Augusto Novaro and Ervin Wilson in the 20th century for inventions/discoveries 
that would pursue the Pythagorean hypothesis further, opening up new possibilities. It is interesting  
that  these  two  figures  are  neither  mathematicians,  philosophers  nor  exactly  composers,  their  
unorthodox approach isolated from most of  the main musical currents of  such an Aristoxenian  

165 ‘Musica est exercitium arithmeticae occultum nescientis se numerare animi.’ Appears in a letter (1712) to Christian Goldbach in 
Leibniz, G.W. (1734). Epistolae ad diversos (Chr. Kortholt, Ed.). Leipzig, p. 240ff.

166 Euler, L. (1739).  Tentamen novae theoriae musicae.  St. Petersburg: Ex typographia Academiae scientiarvm. See also 
Bailhace, P.  (1997). Music Translated into Mathematics: Leonhard Euler. Last retrieved November 15, 2010, from 
http://sonic-arts.org/monzo/euler/euler-en.htm#T2

167 Helmholtz, On the Sensations of  Tone, 231.
168 For a more thorough discussion of  eidetic qualities and allusion, refer to Harman, G. (2011). The Quadruple Object. 

Winchester: Zero Books, Chapter 2, 20-34.
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century.

Euler related consonance with order and this with arithmetic divisibility rather than sheer numeric  
size. Divisibility implies that there is more to coincidence theories than just the period it takes for  
pulses to fall back in sync with one another, outweighing the sizes of  the numbers involved. Partch  
was intrigued by the fact that 9/8 is more consonant than 8/7169. Coincidence theories would imply 
that the latter should have a shorter period of  coincidence than the former (56 against 72), but when 
it  comes to  measuring complexity,  the coincidences  of  periods  must  refer  to  the factors  of  the  
numbers: 7 is more inharmonic than 9 because 9 = 32. The compounding of  threes does not suffice 
to overcome the incommensurability of  a single period of  seven. But by how much? How can this  
be quantified? Euler came up with a formula involving the factors of  the numbers in the interval.  
For any natural number a, expressed as a product of  prime powers,

its Gradus Suavitatis (degree of  ‘softness’ or ‘sweetness’) is defined as:

The measure of  a prime is itself. For composites, the measure is the sum of  each of  its primes  
compounded as many times as its exponent. The influence of  each prime in the sum is one less than  
the prime itself. One is added at the end to the sum so that unity does not yield zero and primes  
engender their own value. The  gradus function of  a ratio is the  gradus of  the combined factors of 
numerator and denominator. Symbolically, for a ratio a/b, its gradus is:

The  weights  of  the  first  primes  are  {1,2,4,6,10,12,16},  showing  an  increasing  difficulty  of  
comprehension for each new fundamental interval. The function, though, does not discriminate, for 
instance, between a 3 compounded twice and a 2 compounded thrice, so different intervals can yield  
the same measure.

Gradus suavitatis can be applied to chords, scales and tunings, something very useful compositionally.  
It is calculated by expressing all the intervals as belonging to a harmonic series and taking the gradus 
function of  their least common multiple:  

A dominant seventh chord {1/1, 5/4, 3/2, 16/9} is equivalent to harmonics {36,45,54,64} 170, their 
least common multiple being 8640 and its gradus 17. By exchanging a 9/5 for the 16/9 seventh, the 
harmonics become {20,25,30,36}, their lcm 900, gradus 15. By changing 64 to 63 in the first series, 
Euler reduced the chord to {4,5,6,7}, lcm 420,  gradus  15, making a case for the natural seventh. 
However, it yields the same measure as the chord with the 9/5, not telling them apart despite their  
difference being as large as 35¢, so a more nuanced measure is required171.

Other harmonic measures have been devised by composers in the last decades. One is Barlow’s  
harmonicity (H), the other Tenney’s harmonic distance (Hd). The first is close to Euler’s but refined so that 
no two intervals yield the same measure. It  is rooted in the psychological ‘indigestibility’ of  whole 

169 Partch, Genesis of  a Music, 150. The heading is telling: ‘Enigma of  the Multiple-Number Ratio’. 
170 There are functions in DissonanceLib that convert from ratios to harmonics and vice versa. They are documented in 

the ‘number extras’ help file. 
171 It is also clear that they are different kinds sevenths. 9/5 has a function of  2Dm, 16/9, 2d, and 7/4, S. The two 

former ones are related by being double dominants or sub-dominants, and are usually considered tensions 
requiring resolution, while the latter should be deemed as a separate function, a subminor instead o a minor 
seventh. See the comparative table of  sevenths provided in Appendix I. 
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numbers. Having been deduced from a musical perspective, it was later found to be consistent with  
studies that classify the psychological effects of  numbers according to their complexity, magnitude 
and whether they are prime/composite and even/odd.172 For a number expressible as a product of 
prime powers173,

its indigestibility is:

Notice the similarly to the gradus function in that there is a sum of  primes subtracted by one and 
compounded by their exponent, though in this case the weight is squared and the compounding is  
divided by the prime itself, thus preventing equal measures for different numbers 174. This makes for 
more nuanced degrees, the difficulty in perceiving each prime increasing by

instead of   p – 1. The weights for primes up to 13 are {0.5, 1.333, 3.2, 5.143, 9.091, 11.077}. They 
have a higher slope than the gradus function, both behaving in approximately linear ways, but with 
sharper discrimination in this case. The 2 at the outset of  the formula is a normalization factor so  
that unity gives zero and octaves (powers of  2) yield a natural number series.

The  Harmonicity  of  a  ratio is  the reciprocal of  the sum (instead of  product as in  gradus)  of  the 
indigestibilities of  the numerator and denominator. Additionally, the sign of  the difference between  
the indigestibility  of  denominator  and numerator  indicates  the polarity  of  the interval.  For an  
interval P/Q it is: 

The harmonicity of  the unison is infinite175, an octave yields 1 and continues to decrease with intervals 
of  higher complexity. For the purposes of  measuring the relative strength of  intervals polarity can  
be  ignored,  Barlow  calls  this  absolute  value  harmonic  intensity.  He  also  provides  a  measure  for 
intervallic systems, named specific harmonicity, more complex than Euler’s, pertaining to combinatorics 
and indigestibility, about which I will say a bit more below.

The second harmonic measure, Tenney’s harmonic distance, is based on the harmonic lattice, on the 
number of  ‘blocks’ or steps to be traversed through the shortest possible path between intervals.  
These steps are first projected from harmonic into pitch-distance space or into pitch-class space,  
which is  a lower dimensional  collapsing of  some of  the axes,  as  happens in the case of  octave  
reduced  lattices.  These  projections  are  logarithmic,  so  harmonic  distance is  proportional  to  the 
logarithms. The measure for a reduced ratio a/b is:  

172 Barlow, C. (1980). Bus Journey to Parametron. Cologne: Feedback Papers, 21-23, 21-23. This formula was obtained 
‘experimentally’, meaning intuitively and through trial and error out of  the premises of  Euler’s totient function, as 
well as gradus, and later compared to the psychological complexity tests.

173 I have decided to preserve the notation of  each author so even though the nomenclature changes slightly, it means 
the same thing as in Euler’s formulation: the decomposition of  a number into a sum of  prime powers.

174 In practice I’ve found that there is a case of  coincidence: 27 and 256 have the same indigestibility. This causes the 
rare interval 256/27 to yield a harmonicity of  zero, crashing the software or giving wrong results on rare occasions. 

175 In the software this is handled by converting infinite (or ‘not-a-number’) to 2, which is higher than the harmonicity 
of  any other interval.
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The proportionality constant  k and the logarithm base x are used to scale the formula. When the 
constant is 1 and the base of  the logarithm is 2, the metric can be said to be in octaves, as they yield  
integer series. The size of  the rungs for each prime axis are proportional to the logarithm of  the  
prime, accounting for the decreasing influence of  higher primes, but in this case following a convex  
curve, meaning that the differentiation is sharp at first but becomes less acute as the primes increase.  
It  differentiates  differently  than  Barlow’s  harmonicity. For  instance,  5/4  and  9/8  are  inversely 
regarded by both metrics; for Hd, 5/4 is more harmonic than 9/8, lying one rather than two steps 
away from 1/1, while for  harmonicity  two threes do not overcome the complexity of  a  single 5. 
Moreover,  Hd  regards  7/4  as  more  harmonic  than  9/8,  suggesting  that  its  weighting  curve  is  
probably a bit too gentle with respect to perception. As far as I can tell, it should not be easy at all  
for music cognitivists to empirically measure how the difficulty in perceiving the prime intervals  
increases. The indispensability measure benefits from having been correlated to studies of  visual and  
intuitive assessments of  numbers, though more detailed auditory evaluations should be pursued.  
The following tabulation compares the way the three metrics hierarchize a just-chromatic scale as  
well as a scale made with septimal intervals:

H 1/1 2/1 3/2 4/3 9/8 5/4 5/3 8/5 6/5 9/5 15/8 16/15 45/32

Hd 1/1 2/1 3/2 4/3 5/3 5/4 6/5 8/5 9/5 9/8 15/8 16/15 45/32

gS 1/1 2/1 3/2 4/3 5/4 5/3 9/8 6/5 8/5 9/5 15/8 16/15 45/32

H 1/1 2/1 7/4 8/7 7/6 12/7 9/7 14/9 7/5 21/16 10/7 27/14 49/48

Hd 1/1 2/1 7/4 7/5 7/6 8/7 9/7 10/7 12/7 14/9 21/16 27/14 49/48

gS 1/1 2/1 7/4 8/7 7/6 9/7 7/5 12/7 10/7 14/9 21/16 27/14 49/48

Table 1. Comparison between the orderings provided by harmonicity (H), harmonic distance  
(Hd) and  gradus suavitatis  (gS) for a just-chromatic (above) and a septimal scale (below). 
The colored intervals in gS yield the same measure and are placed in order of  size. At  
the bottom of  each ordering is shown where all metrics agree (red) and differ (gray). In 
the bottom example (in light gray) a series of  inverted and forward intervals of  7 follow 
a numeric  series  from 4  to  12  (the  11  is  missing  by  design),  revealing the  stepwise  
character of  Hd.

The three measures are built into DissonanceLib and beyond their theoretical adequacy all produce 
different sonorities that are musically fruitful. Other possible measures can be added, such as the  
criteria used in ancient Greece, Erv Wilson’s complexity function, Paul Erlich’s harmonic entropy 
(proportional to Tenney’s Hd), or any arbitrary mathematical function operating on ratios176.

In terms of  scales and chords, harmonic distance does not distinguish between permutations of  sets of  
intervals while harmonicity fails to distinguish intervallic retrogrades (a,b,c from c,b,a).

We discussed last chapter that ratios are harmonically more fundamental than distances in the sense  

176 Chapter 5 of  John Chalmers’ Division of  the Tetrachord gives a detailed account of  many kinds of  metrics and 
classification schemes used to analyze and characterize tetrachords. 
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that they provide distances with an intervallic characterization, function and harmonicity measure,  
and that failure to consider this fact leads to confusions in harmonic theory. We also referred to  
distances as providing fertile means of  generating materials (i.e.,  Xenakis’ sieves).  To cross from  
ratios to distances is straightforward using logarithms, but to traverse the opposite direction, from 
distances to ratios, is not so trivial. Points in pitch space are harmonically neutral until they they are  
given meaning, with many ratios lying close to any point, their choice depending on criteria which  
vary according to the task.

Rationalization is the name given by Barlow to this process. It involves tolerance, metrics, context, 
an implied harmonic system or aim and, in the last instance, educated choices. He draws a list of  
candidate ratios lying close to the sought pitch distance. This list is generated by a combination of  
the prime powers in the harmonic space coordinates, excluding those that lie outside the tolerance  
range  and those  whose  harmonicity  value  is  below a  predefined minimum. He came up with  a  
formula, implemented in DissonanceLib, which calculates the highest prime powers below which the 
generated intervals are guaranteed to have a minimum harmonic intensity. Once this list is obtained, 
the  intervals  inside  the  tolerance  range  are  damped  with  a  Gaussian  curve  in  order  to  give  
prominence to intervals lying near the middle of  the range and those with high  harmonicity. The 
alternatives are then chosen according to the task and context at hand. If  the rationalization is done  
to a set of  pitches then specific harmonicity is used to aid in the selection of  the strongest candidate sets  
out of  the many combinatorial constellations that arise177.

DissonanceLib takes  a  simplified  approach  to  rationalization  by  reading  from tables  of  intervals  
generated using Barlow’s combinatorial method as implemented in his JST program 178. The choice 
does not involve a Gaussian damping curve, but is instead made by picking the interval with highest 
harmonic intensity within the given tolerance range. The implementation could be refined in the 
future to include the damping, but this is not a pressing need as it produces adequate musical results.

3.1.6 Visualizations, navigation

“Geometry is the art of reasoning well from badly drawn figures.” (Henri Poincaré179)

We can proceed at this point with a practical discussion into the topics seen so far. Even though it is  
used for building more complex systems, DissonanceLib can also be used as a harmonic calculator of 
sorts, in the style of  interactive sessions in interpreted computer languages such as  SuperCollider. I 
have  written  a  few  pieces  based  on  the  information  provided  by  these  sessions,  basing  the  
composition process on paper and pencil elaborations of  intervallic tables, analyses and graphic  
visualizations  calculated  with  the  library.  The point  of  this  section  is  to  further,  converge  and  
elucidate the musical usefulness of  the ideas presented so far.

The  HarmonicVector and  PitchSet classes  have just  been presented,  while dissonance curves  were 
reviewed in  the  previous  chapter.  The  central  class  in  DissonanceLib is  the  Dissonance class  that 

177 Barlow, C. (1987). Two Essays on Theory. Computer Music Journal, 11(1), 47-53. This process is also explained in 
detail in Barlow, C. (2012). On Musiquantics. University of  Mainz: Musikwissenschaftliches Institut Der Johannes 
Gutenberg Universität. Also see Gräf, A. (2002). Musical Scale Rationalization – a graph-theoretic approach. 
Bereich Musikinformatik & Medientechnik, 45.

178 Barlow C. (1986-2002). Autobusk [software]. Last retrieved May 23, 2012, from http://www.musikwissenschaft.uni-
mainz.de/Autobusk . The program calculates all the combinations of  primes that produce intervals more harmonic 
than a specified minimum. Five tables are included in DissonanceLib, according to their minimum harmonicity. They 
are made from minimums of  0.03, 0.035, 0.04, 0.045 and 0.05, each spanning 9 octaves above and below unison. 
Other values are also possible, but these ones are practical for most applications. 

179 Quoted without attribution by Stillwell, J, translator, in his introduction to Poincaré, H. (2009). Papers on Topology. (J. 
Stillwell, Trans.). Last retrieved June 10, 2012, from www.maths.ed.ac.uk/~aar/papers/poincare2009.pdf.
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calculates the curves to produce a PitchSet made up of  HarmonicVectors. Once a dissonance curve has 
been calculated from a spectrum, a scale is obtained from the frequency ratios of  its local minima  
(in decimal, floating-point numbers). These frequency ratios are then converted into cents and given  
a  first  preliminary  crude  approximation  into  ratios180.  Afterwards  a  proper  rationalization  is 
performed (the one just discussed, involving tolerance, a harmonic metric and a filtering of  the  
candidate intervals – eliminating ones above a certain numeric size or limiting the prime numbers  
involved).  The harmonic  metric  of  the  resulting  ratios  is  calculated  and  a  PitchSet  generated, 
partitioning the intervals into timbral and harmonic subsets, each interval in the subset represented  
as a HarmonicVector. Lets follow this with an example. The code,
a = Dissonance.make([100, 200, 300, 500, 800, 1300], [32, 20, 15, 13, 10, 7.5], 0.249, 4.01);

makes a Dissonance object (stored in variable ‘a’) from an invented mathematical spectrum consisting 
of  an array of  frequencies (I chose a Fibonacci sequence of  frequencies that yields both common  
and strange intervals) and an array of  loudnesses in sones. The last two arguments correspond to the 
range of  the analysis, namely (a bit more than) two octaves below and two above unison. The output  
is:

Dissonance( 25/76, 36/95, 1/2, 13/21, 2/3, 73/87, 1/1, 72/55, 3/2, 8/5, 101/62, 5/3, 2/1, 5/2, 13/5, 8/3, 
3/1, 181/51, 4/1 ),

showing the first crude approximation of  ratios for the curve. In terms of  harmony, we see that  
some intervals are a bit strange, that is, they are not common, and their routes and combinations of  
primary intervals do not make much harmonic sense, especially 36/95, 73/87, 72/55, 101/62 and 
181/54 (73, 101 and 181 being extremely high primes, beyond human harmonic perception). A plot  
of  the dissonance curve shows how these intervals were obtained:

a.plot !

We can appreciate the many minima and the clear low roughness peaks corresponding to  octaves  
and fifths at frequency ratios 1, 2, 3 and 4. For a full rationalization we type:
a.harmonicAnalysis(12, \harmonicity, \size, 64, PitchSet.unisons.dim3.et12[2]);

 → Dissonance( 21/64, 8/21, 1/2, 28/45, 2/3, 5/6, 1/1, 21/16, 3/2, 8/5, 18/11, 5/3, 2/1, 5/2, 13/5, 8/3, 
3/1, 32/9, 4/1 )

The first argument to the function is the tolerance range, in cents (above and below each pitch, i.e.,  
± 12¢); the second is the metric (could also be \harmonicDistance or \gradusSuavitatis), the third is the 
type of  filtering (either \size or \prime) of  the candidate intervals, followed by the maximum size or 

180 This is done through the Farey fractions algorithm for converting floating point numbers to ratios.  It is integrated 
into SuperCollider (after a proposal I made to its mailing list around 2005), with some added ‘hacks’ (i.e., changes 
made to the code to use it beyond its original purpose) made in order to handle rounding errors that are inherent 
to the floating point mathematics of  computers for the correct harmonic interpretation of  periodic decimals (so 
that, for instance, 0.333 is interpreted as 1/3 and not as 333/1000).
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maximum prime allowed to pass; finally the unison set used for partitioning. We can check out the  
pitch set that is created as an attribute of  the  Dissonance object, displaying its timbral/harmonic 
partitions:
a.pitchSet
→ Harmonic Set[ 21/64, 2/1, 1/2, 1/1, 3/1, 8/5, 4/1, 21/16, 5/2, 3/2 ]
Timbral Set[ 8/3, 32/9, 2/3, 13/5, 28/45, 18/11, 8/21, 5/6, 5/3 ]

Before continuing with the partitions, let us take a look at the rationalization, observing that the  
ratios now make more harmonic sense: 73/87 is replaced by a common 5/6, for instance; 101/62 
by 18/11, 72/55 by 21/16, and so on. Say we want to avoid using high primes such as 13 and 11,  
limiting ourselves to prime 7:
a.harmonicAnalysis(12, \harmonicity, \prime, 7, PitchSet.unisons.dim3.et12[2]);

 → Dissonance( 21/64, 8/21, 1/2, 28/45, 2/3, 5/6, 1/1, 21/16, 3/2, 8/5, 81/50, 5/3, 2/1, 5/2, 70/27, 8/3, 
3/1, 32/9, 4/1 )

It is a good idea to broaden the tolerance range in order to allow intervals further apart from the  
original distances to become candidates and be able to pass through:
a.harmonicAnalysis(19, \harmonicity, \prime, 7, PitchSet.unisons.dim3.et12[2]);

 ! Dissonance( 21/64, 3/8, 1/2, 5/8, 2/3, 5/6, 1/1, 21/16, 3/2, 8/5, 81/50, 5/3, 2/1, 5/2, 21/8, 8/3, 3/1, 
32/9, 4/1 )

It is after a tolerance range of  ±19¢ that we find replacements such as 8/21  3/8, 28/45  5/8,→ →  
70/27  21/8 that make more harmonic sense (smaller numbers, lower primes, closer harmonic→  
functions). There is no general formula for finding the optimal compromise between tolerance and  
numeric limits to obtain automatic results. This example shows how the process involves musical  
aims,  trial,  error  and  educated  choice,  as  there  is  no  single  method to  obtain  optimal  results,  
depending as they do on musical purpose.

To illustrate a concrete musical purpose, let us see how we can adapt these pitch materials to be  
performed on a piano, involving further approximations determined by the tuning constraints of  the  
instrument. First of  all, the sevens must be filtered out since the 12ET of  the piano corresponds well  
with intervals up to 5-limit. Tolerance should then be increased to allow simpler 5-limit intervals to  
be included, even if  they lie a bit further away from the pitches we are approximating. By trial and  
error,  it  is  found that simpler ratios appear around ±23¢,  a tolerance of  close to a quarter  of  a 
semitone:
a.harmonicAnalysis(23, \harmonicity, \prime, 5, PitchSet.unisons.dim2.et12[2]);

 → Dissonance( 1/3, 3/8, 1/2, 5/8, 2/3, 5/6, 1/1, 320/243, 3/2, 8/5, 81/50, 5/3, 2/1, 5/2, 125/48, 8/3, 
3/1, 32/9, 4/1 )

The three natural sevenths of  the dominant have been replaced: 21/64  1/3, a fourth; 21/8 → → 
125/48, an augmented third (plus an octave); 21/16  320/243, a grave fourth (function: 5dM, 5→  
fifths downward to a Pythagorean minor second 256/243 and then up a major third, 477 ¢). This 
happens because these intervals are not really related by octaves but come from approximations to  
different distances yielded by the dissonance analysis, in this case 466¢. The other strange intervals 
remaining are 81/50, stemming from an original distance of  844¢, almost a neutral sixth or a 13th 

partial, having been rationalized previously as a 18/11. These intervals will not be able to be correctly  
approached by the piano, suggesting other instruments or electroacoustics for the job (this would of  
course depend on the setting of  the music, if  the piece were for solo piano, these intervals would not be  
able to be included).

Notice  that  the  unison  set  is  2-dimensional  (5-limit)  and  fit  for  a  12-note  periodicity  block.  The  
corresponding pitch set is partitioned as follows:

Harmonic Set[ 2/1, 3/2, 5/8, 3/1, 3/8, 1/1, 8/5, 4/1, 5/2, 1/2 ]
Timbral Set[ 320/243, 81/50, 8/3, 2/3, 32/9, 125/48, 1/3, 5/3, 5/6 ]
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We can also seek the corresponding 12ET degrees closest to the intervals in the pitch set: 
a.pitchSet.asETdegrees(12,5)

 → 12-TET
Harmonic Ratios: 3/8, 1/2, 5/8, 1/1, 3/2, 8/5, 2/1, 5/2, 3/1, 4/1
Harmonic Degrees: [ 7, 0, 4, 0, 7, 8, 0, 4, 7, 0 ]
Timbral Ratios: 1/3, 2/3, 5/6, 320/243, 81/50, 5/3, 125/48, 8/3, 32/9
Timbral Degrees: [ 5, 5, 9, 5, 8, 9, 5, 5, 10 ]

This function takes a n-TET argument and a prime limit, returning the corresponding degrees for  
each partition.  The harmonic  ratios  are  the common intervals  approximated by  temperament: 
unison, major third, fifth and minor sixth. Most of  the timbral ones are also common: 4/3, 5/3,  
16/9 (as octave reduced identities). The three strange ones, however are conflated into the perfect  
fourth (320/243 and 125/48) and the minor sixth (81/50), being the ones that cannot be adequately  
supported by the piano. Using 31ET would solve these ambiguities as no same degrees are shared  
between different intervals:

31-TET
Harmonic Ratios: 3/8, 1/2, 5/8, 1/1, 3/2, 8/5, 2/1, 5/2, 3/1, 4/1
Harmonic Degrees: [ 18, 0, 10, 0, 18, 21, 0, 10, 18, 0 ]
Timbral Ratios: 1/3, 2/3, 5/6, 320/243, 81/50, 5/3, 125/48, 8/3, 32/9
Timbral Degrees: [ 13, 13, 23, 12, 22, 23, 12, 13, 26 ]

Returning  to  the 12ET example,  the  combination of  timbral  and harmonic  sets  yields  a  total 
{0,4,5,7,8,9,10} degree set, with a suggested ‘division of  labor’ between {0,4,7,8} and {5,8,9,10}. 
Figure 1 displays this in musical notation, in octave reduced versions and according to the registers  
yielded from the dissonance curve.  It  also separates  the prime mixtures  to  show some possible  
treatments and notations.

Figure  1.  Transcription of  the  pitch  set  example into the  piano together  with prime 
interval separations in 5- and 7-limit approximations and their corresponding notations.

To display the intervals in a pitch set in various useful representations, for example to aid in the  
transcription to musical notation in the above figure, the code: a.pitchSet.asScale, produces:
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Complete (absolute): 1/3, 3/8, 1/2, 5/8, 2/3, 5/6, 1/1, 320/243, 3/2, 8/5, 81/50, 5/3, 2/1, 5/2, 125/48, 
8/3, 3/1, 32/9, 4/1 Size: 19
Complete (adjacency): 1/3, 9/8, 4/3, 5/4, 16/15, 5/4, 6/5, 320/243, 729/640, 16/15, 81/80, 250/243, 
6/5, 5/4, 25/24, 128/125, 9/8, 32/27, 9/8
Complete (cents): [ -1902, -1698, -1200, -814, -702, -316, 0, 477, 702, 814, 835, 884, 1200, 1586, 1657, 
1698, 1902, 2196, 2400 ]
Reduced: 1/1, 5/4, 125/96, 320/243, 4/3, 3/2, 8/5, 81/50, 5/3, 16/9 Size: 10
Reduced (adjacency): 1/1, 5/4, 25/24, 2048/2025, 81/80, 9/8, 16/15, 81/80, 250/243, 16/15
Notes: [ [ D3, -2 ], [ E3, 2 ], [ A3, 0 ], [ Db4, -14 ], [ D4, -2 ], [ Gb4, -16 ], [ A4, 0 ], [ D5, -23 ], [ E5, 2 ], [ F5, 
14 ], [ F5, 35 ], [ Gb5, -16 ], [ A5, 0 ], [ Db6, -14 ], [ D6, -43 ], [ D6, -2 ], [ E6, 2 ], [ G6, -4 ], [ A6, 0 ] ]
Harmonic Set[ 1/1, 3/2, 1/2, 81/50, 3/8, 3/1, 4/1, 8/5, 2/1 ]
Timbral Set[ 125/48, 32/9, 5/8, 5/3, 5/6, 8/3, 2/3, 320/243, 5/2, 1/3 ]

We see adjacency (the intervals lying between each interval) and absolute (intervals with respect to  
the  unison)  versions  of  the  pitch  set  (‘complete’  meaning  the  conjunction  of  the  timbral  and  
harmonic subsets),  both in ratios  and as  distances.  We also see octave reduced representations,  
helpful for isolating the different distinct hues outside their register. Finally, the pitch set in terms of  
note names displayed with their cent deviations from 12 tone equal temperament.

To visualize the pitch set in harmonic space: a.pitchSet.plotHarmonicSpace, yields the graph shown in 
Figure 2. 

Figure 2.  Plot of  the pitch set in 2-3-5 space. Each axis is labelled with its generating  
number, octaves go from left to right, fifths from front to back and thirds from top to 
bottom181.

Visualization makes it is easy to spot harmonic features as well as routes and combinations: we can  
spot the mainland and some of  its islands. There are the solitary and far away intervals (the three  
aforementioned timbral ratios) as well as two close and less lonely islands, one with 3/8 and 5/8, the  

181 The visualization was made assisted by the gnuplot program, integrated into SuperCollider/DissonanceLib. 
http://www.gnuplot.info/     Last retrieved May 26th, 2012.
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other, symmetrical to this one, with 8/3 and 8/5. It is also apparent that the mainland pitch set  
forms an irregular geometry within its periodicity block. By this I mean that it does not use up all  
the lattice points contained inside the periodicity block, therefore defining a scalar structure within  
this  tuning.  All  of  these  features  can  be  used  compositionally,  adapted  and  dependent  to  the  
principle behind the music to be made. It is clear, though, that the mainland should be of  central  
importance harmonically and that the different islands can gravitate around, against, or towards it. I 
will give some examples further below regarding how some of  my pieces have tackled some of  these  
structures.

A problem with the previous visualization is that the three dimensions are difficult to grasp and pitch 
sets  with  more  intervallic  dimensions  cannot  be  displayed.  To  circumvent  these  problems,  a  
visualization technique known as ‘multidimensional scaling analysis’, first applied to harmony by 
Barlow in 2001, is used182. I have tried implementing it directly into DissonanceLib without having full 
success, but it is easy to export the data into a format appropriate for one of  the many open source  
programs available for this purpose. The following code writes a text file to be used as input to a  
visualization program:183 a.pitchSet.makeMDSfile("/Users/jsl/plotPitchSet.txt"); →

Figure 3. A way to visualize pitch sets, especially when their harmonic spaces have more  
than 3 dimensions, is through multidimensional scaling, a statistical technique that collapses 
multiple dimensions into lower dimensional projections (for our purposes the projections 
are performed into a bidimensional plane), preserving the relative distances between the 
elements. The axes in the graphic are in arbitrary units. Relative distances, aggregates  

182 This is a very well known procedure in statistics, with a large body of  literature describing different approaches and 
applications. While working on my homemade implementation (abandoned for being too complex for reinventing 
the wheel, but left at a point close to working), I read a good short introduction: Groenen, P., van de Velden, M. 
(2004). Multidimensional Scaling. Econometric Institute Report, 15. 
http://publishing.eur.nl/ir/repub/asset/1274/ei200415.pdf Last retrieved March 9, 2010.

183 The program is called Orange, based on the programming language Python. http://orange.biolab.si/ Last retrieved 
April 21st 2012.
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and intervallic zones can be observed, as well as symmetries by inversion (between 5/8 
and 8/5, for example).

The dimensions  (which in this  case  do not  exceed 3)  are collapsed into the plane,  the relative  
distance between intervals preserved, allowing a clear view of  their positions and possibilities of  
deployment. Apparent are the relations between octaves (much more clear than in the 3D plot), as  
in 1/2, 1/1, 2/1 and 4/1 or between 1/3, 2/3 and 8/3, etc. We can also see a direction of  3s (fifths)  
vertically  and  a  direction of  5s  (thirds)  horizontally.  Depending  on the  criteria  determined by  
compositional  intention,  different  islands  could  be  drawn  around  interval  clusters,  taking  into  
account their symmetric properties, relative distances, and so on. Chords could be made only of  
members of  single islands or, in contrast, be made by combining intervals from each of  the different  
islands (which would likely produce more spicy, inharmonic sonorities). The transitions between the  
chords can follow a geometric logic drawn from the plot or, by contrast, follow a combinatorial route  
(all the possible combinations of  inter-island-intervals, for instance). We could also have the piano  
play notes from the large islands and another sound source surround and interfere with it using the  
timbral notes. There is no doubt that these outer intervals could likely acquire a special role, one  
which could even be central to the principle behind the music.

Besides  these  considerations,  the  pitch  set  can  also  be  separated  according  to  its  mixtures  of  
fundamental intervals: a.pitchSet.separateIntoPrimes ! 

List[ [ [ 1, 2 ], [ 2, 1 ], [ 4, 1 ] ], [ [ 1, 3 ], [ 3, 8 ], [ 2, 3 ], [ 3, 2 ], [ 8, 3 ], [ 3, 1 ], [ 32, 9 ] ], [ [ 5, 8 ], [ 5, 6 ], 
[ 320, 243 ], [ 8, 5 ], [ 81, 50 ], [ 5, 3 ], [ 5, 2 ], [ 125, 48 ] ] ]

This output indicates that the set has been partitioned into the subsets {1/2, 2/1, 4/1}, which only  
involve a 2; {1/3, 3/8, 2/3, 3/2, 8/3, 3/1, 32/9}, involving 2 and 3; and {5/8, 5/6, 320/243, 8/5,  
81/50, 5/3, 5/2, 125/48}, which are combinations of  2, 3 and 5. This suggests other ways of  
combining and deploying the intervals. Cases of  pitch sets whose prime limit is higher that 5 yield  
separations with more interesting possibilities.

The example we have been following is a relatively simple one, used to expound the applications  
and theory behind this research. In Appendix III a detailed intervallic analysis of  a septimal pitch  
set  is  offered  that  includes  coordinates,  functions,  53ET  approximations  and  accidentals,  
classifications, and visualization of  its regions with both  mds  and harmonic lattice diagrams. It is 
built  from the logic of  the coordinates in harmonic space and is  meant as a  research into the  
practical use of  septimal harmonies and ways of  realizing them with instruments.
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3.2 Harmonic Fields 

3.2.1 Stochastic uses of  pitch sets

After having reviewed the theory and some practice behind harmonic space, metrics, dissonance  
pitch  sets  and  rationalization,  this  section  will  take  us  to  the  other  principal  approach  and  
application of  dissonance curves, one much more linked to algorithmic composition, taking us even 
further away from conventional uses of  pitches into a terrain shared with stochastics and textural  
composition. As in our discussion of  the second half  of  Chapter 2, where we advanced the idea of  
combining  textural  and  timbral  composition  with  a  renewed  focus  on  discreteness  and 
proportionality,  this  approach  combines  some  of  the  most  forward  developments  of  twentieth  
century composition together with an emphasis on harmonic properties of  intervals. It is here, I  
think, that many new findings pertaining to my research are situated.

As much as harmonic metrics184 are useful for analytical purposes such as measuring and classifying 
intervals, they can also be made the starting point for the synthesis of  harmonic materials. Metrics  
can be interpreted as the probability of  occurrence of  an interval in a weighted random choice: the  
more harmonic (or inharmonic) an interval, the more likely it is to be elected. A harmonic field is  
created  when  the  probabilities  themselves  are  varied  in  intensity  to  delimit  shades  of  distinct  
sonority. These choices can be made both in sequence or vertically to form chordal aggregates and  
this can also be made to vary, creating a shifting distribution of  densities of  a granular, textural sort.  
This statistical approach is consubstantial with the medium of  computer aided composition and  
suitable for large pitch sets such as those generated by dissonance analysis, extracting their various  
intrinsic  harmonic zones  and modulating between them. Changing among different  sets  is  also  
possible, analogous to ‘extrinsic’ rather than ‘intrinsic’ modulation.

Harmonic fields are constructed by calculating an inter-interval matrix containing the ratios formed 
between all pairs of  notes in a pitch set. From out of  this matrix another one with harmonicities is  
computed (which can correspond to any metric, not just Barlow’s harmonicity). This matrix is scaled 
to vary the discriminating ability of  the probabilities, so that at its maximum (or minimum) very few  
different  intervals  are  chosen.  The scaling  factor  of  the probabilities,  the  field’s  ‘strength’,  is  a 
continuous parameter ranging from -1.0 to 1.0, demarcating three principal zones: at zero all notes  
have the same likelihood of  being chosen (its ‘atonal’ region, even if  the pitches consist of  tonal  
collections),  between  zero  and  one,  more  and  more  harmonic  notes  are  chosen  (‘tonal’),  and  
between zero and minus one an increasing amount of  inharmonic intervals are selected (I call this  
zone ‘antitonal’: the intervals tend to be harmonic between themselves but inharmonic with respect  
to the global unison185). The field created by these variations of  strength (which can be as slow and  
imperceptible as wanted) can be understood both in the sense of  a force field of  attraction and that  
of  a plane whose territories can be traversed.

The matrix’s data can be interpreted in two manners: by using one column of  the matrix at a time,  
the ‘tonic’  mode relativizes the probabilities  with respect to a single pitch of  the set,  providing  

184 Harmonicity and harmonic distance are not only distance functions but also metrics in the mathematical sense of  the 
term: they are always positive, zero only if  the points they measure are the same, symmetrical: d(x, y) = d(y, x), and 
satisfy the triangle inequality: d(x, z) ! d(x, y) + d(y, z). The consequences of  this are not relevant for this topic, so 
this clarification boils down to hair splitting. 

185 The probabilities for antitonality are read from an inverse weight matrix which is calculated from the rankings of 
the harmonic metric. The formula to convert ranks to weights is:  the ranking having been 
calculated from the metric (the ‘priority of  election’ for an interval) is added an offset and then taken to the power 
of  pwr (by default add is 1 and pwr 15). The higher the power, there higher the difference in probability between 
harmonic and inharmonic intervals.
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different ‘modal’ sonorities (as many as there are pitches in the set); the ‘atonic’ mode, in contrast,  
uses the whole matrix at a time: each chosen interval becomes the new tonic from which the next  
interval is to be chosen. Each strategy produces distinct sonorities. Tonic mode allows modulations  
between different tonics within which the whole range of  variations in strength is available. Atonic  
mode makes for a wider availability of  pitches at each strength position, fluctuating a little even at  
the poles, where the tonic mode tends towards steadiness186.  It also differs with the tonic mode in 
that it has no center of  gravity, no tonic, which is why ‘back to back’ changes between the two  
modes offer forceful contrasts in sonority (as exemplified in many of  my Logos improvisations).  See 
the following Figure 5 for a visualization of  the probability matrices.

Figure 5. In the lower area of  the figure a visualization of  the harmonicity matrix for an  
intervallic set of  around 60 pitches can be seen. The axes on the plane represent indices  
for these pitches, the elevation of  a point in the plane showing the harmonicity between 
two intervals, regarded as a probability. The central diagonal is rendered as zero so that  
the  whole  matrix  can  be  seen,  because  otherwise  it  would  block  the  view  as  the 
intersection of  intervals with themselves yield 1/1 and thus the highest  harmonicity. 
This rendering of  zero for the diagonal is for visualization purposes only, not happening  
in the actual matrix used for choosing notes. 

The ‘tonic’ mode uses a transversal cut of  the matrix (a column) corresponding to a  
‘tonic’, while the ‘atonic’ mode uses the whole matrix. In the upper left area is shown  
one of  such transversal cuts, corresponding to the modal zone of  1/1. The figure is  
based on graphics rendered by DissonanceLib (the lower one with gnuplot, the upper one 

186 Technically, the atonic mode is made possible by applying a Markov analysis of  order 1 to the matrix and 
navigating it by scaling the Markov probabilities. These probabilities pair the likeliness of  notes to follow each 
other, making them behave as though they had a bit of  memory. The choices made have some history and the 
pairings depend on the specific harmonic relations in a pitch set. I have not yet been able to devise how to make 
Markov analyses of  orders higher than one, something which would be suitable for linking the choices to a broader 
history and hence to a longer range of  sonorities.
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with the graphic system of  SuperCollider). 

Calculating the matrices for the pitch set takes quite a lot of  computation (at least 5 matrices have to  
be calculated, for a large pitch set this can become a bottleneck in real-time situations), which is why  
it is not performed automatically after a pitch set is derived from a dissonance curve. The following  
code generates the matrix of  the previous figure, made out of  a large pitch set in a dissonance object  
saved to disk:
d = Dissonance.load("even_harmonics_[16,4_oct].dis"); //load a large set
d.pitchSet.makeProbMatrix(15,1);

The arguments follow the formula shown in footnote 186. The first one is the power factor that  
contrasts the probabilities in proportion to the harmonic metric, so a high value will make very few 
intervals likely, while lower values will permit more pitches at the poles (tonal and antitonal) of  the  
field. The other number is an offset adjustment, usually left in its default value of  1. To plot the field  
(as in the lower portion of  the previous figure): d.pitchSet.plotHarmonicField;

Notes are thought of  in terms of  grains and this is where the other parameters intervene in the  
harmonic  field  generator,  coupling  themselves  in  various  reconfigurable  ways.  Control  of  the  
textures  is  done  through  vertical  density  (number  of  ‘voices’  or  monophonic  streams),  tempo,  
articulation,  accents  and  timbre  controls.  Strength,  mode  and  tonic  supply  the  pitches  while  
durations provide the rate at which they are chosen. If  no specific duration pattern is provided, a  
single value is  repeated.  Together with the arpeggiation parameters,  providing a minimum and 
maximum range of  random dispersion, it spreads the notes to range from vertical chords to clouds.  
With more complex durational patterns, the variety of  textural possibilities become quite enlarged.

All these parameters can be changed in real time, making the generator an interactive music system.  
The program can generate either electronic sounds or MIDI notes to be played by other sound  
generating  devices  or  used  for  transcription.  In  the  case  of  electronic  synthesis,  the  timbral  
constitution of  the particles, as well as their duration and the density with which they are unfolded  
have an effect on the types of  aggregates produced. When the density is high and the notes are  
short,  they tend toward fusion, coalescing into timbral  streams. I  call  these ‘harmonic timbres’, 
because of  their continuously changing harmonic logic. At low densities and with larger particle  
sizes, the aggregates tend toward fission, being heard as textures with separate components. They  
are  stochastic  harmonic  textures  in  their  sonority  and  logic,  but  could  also  be  called  ‘timbral  
harmonies’ if  they possess a relation to the empirical sound from which they derive, as in dissonance  
chorales mentioned in Chapter 2 and earlier in this chapter. From the premises of  harmonic duality,  
the harmonic field can be visualized as the intersection of  a tonal-antitonal axis, one of  consonance-
dissonance and a third, textural one, of  fission-fusion. (See Figure 6)
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Figure  6.  Schematic  diagram  of  the  zones  in  harmonic  fields.  The  horizontal  axis  
concerns harmonicity (proportional harmony), the vertical sensory dissonance (timbral 
harmony) and the suggested third dimension the axis of  ‘aggregateness’ of  fusion/fission  
of  the sonic particles. This field is navigated indirectly on the basis of  the parameters of  
the harmonic fields generator.

This figure not only pertains to the harmonic fields generator, but could be also understood as a  
diagram that encompasses the kind of  harmony we have been theorizing about all along this study.  
We see its dual aspects as the two main vertical and horizontal axes, each with its own antipodes  
(consonance/dissonance,  harmonicity/inharmonicity).  Furthermore,  there  is  the  ‘aggregateness’ 
axis of  texture relating to the distribution in time of  the sounds, within its poles of  fission and fusion.  
Depending  on its  harmonic,  timbral  and textural  properties,  one  could  picture  many  kinds  of  
harmonies and music as lying within different areas of  the diagram187. To the left of  the atonal 
center lie the antitonal quadrants (one consisting of  consonant, the other of  dissonant timbres), the  
music of  which has yet to be produced. Some of  my pieces have ventured into this territory, but it is  
mostly still unknown. Moreover, I think most interesting is to combine musical materials along the  
four  quadrants  as  well  as  conceiving  both  continuous  (barely  perceptible)  as  well  as  abrupt,  
discontinuous, transitions between the different areas.

187 For example, one could say that most tonal music played with timbres which are close to the harmonic series (that 
is, most ‘classical’ Western music played with orchestral instruments) lies along the upper right quadrant, the more 
dissonant and rough in its orchestrations, the more it will move towards the lower quadrant and to the left (say, 
something like Varèse or Schoenberg). Dissonant, inharmonic music such as industrial noise would lie in areas 
along the lower right quadrant. I will refrain from pursuing these musical comparisons further, as they have been 
made mainly in order to illustrate the ideas behind this diagram. 
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3.2.2 Navigating the field

The program’s principal parameter, its strength, is used to traverse the antitonal-tonal axis – with  
the added facet of  tonic and atonic modes – but the other axes are navigated indirectly. The sensory  
dissonance axis depends on timbral constitution and cannot be traversed straightforwardly because  
sensory dissonance and timbre depend on many sonic dimensions. Even if  we abstract out attack  
portions of  sounds, the ‘stable’ portions of  the spectra cannot produce a one-to-one correlation with  
roughness,  influenced as  they  are by  non-linear  interactions  between partials,  as  we saw when  
studying  dissonance  curves.  However,  materials  derived  from  the  curves  contain  information 
regarding the roughness measure of  each interval, so even if  their deployment in the harmonic field  
has an oblique effect on their perception, they can be ordered according to this information. Also,  
timbral partitions in pitch sets are to be considered closer to the dissonant pole than harmonic ones.  
It is easy to make and classify sounds that belong to certain relative regions in this axis (harmonic 
spectra tend towards consonance and their dissonance is increased by shifting some of  the spectral  
components towards to 25% of  a  bark). Even so, what is most difficult is to modulate continuous 
timbral transitions between the two poles.

The aggregation dimension involves tempo, particle size and articulation. The fission or fusion of  
the particles depends on many factors, one of  them being their harmonicity. Inharmonic/dissonant  
notes are less prone to fusion than harmonic/consonant ones. In any case, from a certain speed  
onwards, the particles tend to aggregate into textures that continuously change according to their  
position in the field. The program is able reach tempos higher than 1000 beats per minute, putting  
into motion grain particles of  very small size and yielding granular harmonies.

Rhythm  is  the  most  independent  variable  in  the  harmonic  fields  generator.  Various  kinds  of  
rhythmic logics or ‘patterns’ can be supplied to the program, as it is well-suited for ‘plugging’ code  
into the part of  the program that generates the durations, also having access to the information 
contained in the pitch set as well as to the notes currently being played. In this way the rhythmic  
logic can be coupled to the harmonic behavior. One approach has been to make duration congruent  
with the pitch ratios  à la Henry Cowell  and Stockhausen.  Durations  can also be based on the 
fundamental primes of  the ratios, as well as being filtered, transposed and inverted (simpler ratios  
have more complex durations and vice versa). Another strategy is to couple duration to harmonicity 
(longer/shorter according to the individual notes’ harmonic measure) or to the strength parameter.  
They can also be independent from the harmonic state but linked to timbre or dynamics.  The  
arpeggiation (‘strum’) controls give an added flexibility to these textures, compacting or rarefying 
them. Any arbitrary rhythmic pattern can be supplied and there is  a control  for accenting/de-
accenting notes according to their harmonicity, something which gives the textures a metric quality. 
Various  simultaneous  streams  can be  generated,  each with  its  own rhythmic  patterns,  timbres,  
densities, etc, but all coordinated by the strength of  the harmonic field.

The harmonic field generator, Harmonic Fields Forever, is built atop the Dissonance and PitchSet objects 
as an application that generates patterns in stochastic harmonic fields, coupling and controlling the  
interaction  between  its  parameters.  The  arbitrary  coupling  between  controls  is  also  done  by 
‘plugging’ code where their behavior is defined. The first piece composed with this program was  
Circular Limit (2008), for amplified bass recorder and live electronics, based on a single dissonance  
pitch set obtained from a recording of  a low G tone of  the instrument. The first half  of  the piece  
presents  the material  with a  ‘tonic’  logic,  generating melodic sequences  that  traverse the tonal-
antitonal  axis  of  each  of  the  possible  modes  constituted  by  the  pitch  set.  The  computer  part  
accompanies  the recorder  by generating  in real  time the same kind of  harmonic journeys  but  
providing a wider ambitus of  notes, polyphony and timbres, deployed in various vertical/horizontal 
combinations. A harmonic journey was improvised and transcribed for every modal degree, making 
for eight sections which were are interspersed with ‘timbral interludes’  making use of  extended  
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recorder techniques and intensified by computer processing of  the instrument (through vocoders  
tuned to the dissonance pitch set). In contrast, the second part of  the piece is a navigation through  
the field in ‘atonic’ mode, transitioning slowly from the tonal to the antitonal poles. The computer  
and the recorder  are allied by having the former  generate  in  real  time bass  lines  and chordal  
accompaniments for the latter.

Following this piece, the next music done with the program consisted in ‘algorithmic improvisations’  
with the musical automats of  the Logos Foundation (in two weeks of  sessions taking part in 2008 and 
2009). Many possibilities and extensions to the program were pursued in an improvisatory manner,  
taking advantage of  the possibilities offered by plugging code to reconfigure the systems behavior  
and made according to the musical requirements of  the moment, as part of  a day’s development.  
Due to the nature of  these live coding sessions, where many portions of  code are replaced and  
transformed  on  the  spot  making  impractical  to  reconstruct  the  strategies  after  the  fact,  many 
developments did not leave a compositional trace apart from the music produced by them at the  
moment.

Simultaneous independent layers were pursued (sometimes a different one for each automat), new  
pitch sets developed (adapted to the instruments, especially the quarter tone organ and xylophone)  
and partitioned – timbral/proportional, according to prime mixtures, by register or by harmonicity  
regions – allotting them to different instruments, each with its own independent rhythmic behavior.  
Each automat can be coupled to a separate pitch set and harmonic field, or it can be part of  a 
global shared field. The interactions that occurred produced interesting and unforeseen effects, as  
when opposing fields against each other, one being the antitonality of  the other – I called these  
contrasting pitch sets ‘nemeses’ – or proceeding from different pitch sets.

Many of  the textural and instrumental variations in density were controlled by way of  dynamic 
thresholds  depending  on  the  disparity  between  accented  and  non-accented  notes  (themselves  
dependent on strength and harmonicity, with antitonal inversions too) when crossed by the offset  
parameter,  permitting  only  certain  notes  to  pass  through  and  diversifying  the  textures  and 
instrumentations. The generator also has a variable tempo which goes from 10 to around 720 beats  
per  minute.  Nowadays,  with  computers  running  faster,  it  should  be  possible  to  go  even faster,  
although the nature of  the MIDI control of  the automats, this is already close to the mechanical  
limits of  the instruments.

These algorithmic improvisations were made both through discovery and by controlling variables,  
many things emerging interactively, the music not traceable back to what was done. I gathered many 
hours of  material, including at least an hour of  improvisations that function as complete pieces, as  
well as many fragments to be used for other purposes. The generator has since also been useful for  
generating sections of  either electronic soundscapes or instrumental score by transcribing the output  
of  the field generator into notation programs.  More details regarding these and other harmonic 
strategies pursued in my pieces will be given in the next chapter.
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Figure 7. A display of  the harmonic field generator showing its main controls and some 
visualizations. The generator has 8 controls (seen as knobs) that control the harmonic  
field  parameters  (the  strength  of  the  field,  the  number  of  simultaneous  streams), 
dynamic  couplings  (accent,  offset),  generic  timbre  parameters  (affecting  the  sounds  
synthesized, but not relevant when the output is MIDI) and arpeggiation limits (strum0 
and strum1, lower and upper random bounds for the dispersion of  the particles). The  
upper buttons serve to play/stop the generator, change the output from MIDI/synthesis, 
the type of  patterns, modal degree and kind of  synthetic timbre. Below are the controls 
for visualization and in the lowest section the tempo and the parameters to generate 
dissonance  curves  from  the  sound  input.  Above  the  generator  we  can  see  the 
probabilities  relating  to  the  current  modal  tonic  (which  is  7/4).  Next  to  it  is  the  
dissonance curve from which the pitch set is derived. The dark window with white text  
at  the  left  displays  the  intervals  currently  being  generated.  There  are  also  two 
visualizations, one for harmonic space (below the text window) and another showing the 
probability matrix (to the right of  the screen). Both visualizations are of  the same kind  
as the ones shown in previous figures.

3.2.3 The field in terms of  form: structure and morphology

“Durational proportionality exists on a note-to-note scale, on a beat-to-beat scale (since beats have  
proportions other than equality), an a measure-to-measure scale, on a phrase-to-phrase scale, on a  
section-to-section scale and even on a movement-to-movement scale” (Ben Johnston, Scalar Order 
as a compositional resource188)

The examination of  harmonic fields leaves us at the shores of  the topic of  form in relation to  
harmony. Tenney, incorporating ideas from Gestalt and phenomenology into music, discussed form  

188 Johnston, B. Scalar Order as a compositional resource, Maximum Clarity, 15.
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as comprising the facets of  structure and morphology189. Morphology is the variation in time of  an 
attribute of  sound expressed as  contours or profiles (‘forms’),  while structure corresponds to both 
vertical  and horizontal  relations between sound configurations.  Shapes and structures bring forth 
relationships between parts and wholes,  implying a series of  forms (in both senses of  the term)  
embedded at  many levels  of  scale.  These scales  comprise  three principal  musical  ‘zones’  (each  
possibly containing several levels): that of  ‘materials’ (the basic ingredients and textural elements),  
‘methods’ (or what I would term ‘logics’, larger scale relations between those primary organizations)  
and ‘aesthetic experience’, what is properly regarded as form (the processes, concepts or narratives  
that happen at the level of  large scale sections or complete pieces).

Each zone could  be  seen as  a  perceptual  phase  transition,  encompassing  a  regime of  musical  
perception with its own characteristics. The larger the forms, the more memory and differentiation,  
rather than perception and integration, are involved. There can also be sub-element nano-forms  
and even longer times scales pertaining to the collective, historical, and cultural levels of  situations,  
concerts, styles, genres and epochs, but that is not relevant here.

One of  the aims of  this study is to expand this conception of  form and blend it with notions derived  
from  harmonic  duality.  The  morphological  aspect  involves  continuous  phenomena  while  
relationships between discrete parts and wholes are involved in structure. As in harmonic duality,  
these two aspects  are intertwined.  This  analogy in not merely  coincidental  but shows how this  
tension is carried out at all levels of  embedding. Harmony as usually understood happens at the  
time  scale  of  ‘materials’,  timbre  being  understood  as  micro-temporal  continuous  changes,  
proportion corresponding to discontinuity between pitch relations formed out of  the timbral flux.

We have seen in Chapter 1 how some tensions in harmony are ‘inherited’ to the level of  rhythm,  
how some harmonic principles operate within it, correlating with its continuous and  proportional  
aspects  (even if  they are qualitatively different,  not perceived nor behaving in the same way as  
pitch). These perceptual discontinuities are founded upon continuous physical processes. I propose  
to  interpret  Dennis  Gabor’s  uncertainty  principle,  originally  created  for  understanding  
communication of  information, as applying to perception: the constant k in his formula %f   %⋅ t " k 
delimiting phase transitions at specific thresholds of  pitch and time. The dualities we are discussing  
(harmonic duality and Tenney’s morphologhical/structural duet) map to this formula: f  corresponds 
to morphology and  t  to structure, meaning that within a perceptual regime, morphological and 
structural intervals are integrated into units larger than a minimum size, a size determined by the  
regime’s constant k. A consistency of  behavior is contained within the bounds of  the minimum size  
and those that define the minimum size of  the following phase transition (perhaps with a grey area  
between them).

It is productive to think some aspects of  rhythm in terms of  dissonance/consonance while pitch can 
be thought of  in terms of  pulsations, recurrence, accents and syncopation. We are trying to extend  
the notion of  harmony to encompass the various time frames of  sequences, sections and large scale  
forms,  harmony  understood  as  a  concern  for  relationships  in  abstract  terms  of 
continuity/discontinuity, flux/stasis, multiplicity/unity, source/pattern, and so on, each with its own 
poles corresponding to order/disorder, coherence/incoherence, stability/instability, fission/fusion,  
homogeneity/heterogeneity, similarity/dissimilarity, and so on.

Tenney’s approach is also interesting in that it accounts for form and content as being constituted  
out of  the same perceptual phenomena but at different scales: forms at one level are the content for  
the next one, not differing in their fundamental makeup. Forms are not ontologically different from  

189 Tenney,  J. (1969). Form in 20th century music. Last retrieved May 29. 2012, from 
http://www.plainsound.org/pdfs/Form.pdf. He also deals with this topic in his longer study Tenney, J. (1986 
[1964/1975]). META/HODOS and META Meta/Hodos. Lebanon NH: Frog Peak. 
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contents (materials), but forms at one level emerge as contents at the next, from which new forms  
(contours or profiles) are manifested, to be integrated into contents at the following level. Timbre at  
one level is the contours of  partials and (micro) sound fluctuations, at the next is the content for the  
forms  and  relationships  between  pitches.  These  embeddings  continue  through  higher  levels  
pertaining to phrases, motifs, textures, sections, and so on. 

From this standpoint we can imagine a two-axis graph for form similar to the one of  harmonic 
fields. Vertically it represents morphological conditions, horizontally, structural relations. The poles  
of  the axes would then have an analogy to consonance/dissonance, as mentioned above: a degree  
of  similarity/dissimilarity between shapes, or the heterogeneity/homogeneity (or any other measure  
of  variety) between structural parts. Two Tenney associates have pursued further his research into  
form by offering insightful work on each of  its two aspects. Larry Polansky, with his morphological  
metrics190, provides many methods to measure the similarity/dissimilarity between profiles at any 
level of  scale. Michael Winter applies this to structure, furnishing techniques to estimate the degree  
of  randomness  in  structural  relations,  offering  ideas  (stemming  from  the  mathematics  of  
computation) of  what is to be considered a minimal description of  a structure as applied to musical  
logics191.

A fully developed investigation into this type of  formal harmony is outside the scope of  this work.  
What we wish is to draw out connections for further study, to point at how the notion of  harmony  
can be extended further into form while also passing back into (pitch- or rhythm- based) harmony  
some aspects of  form. Each level behaves according to its own specific laws, patterns not translating  
identically  between levels,  emerging  as  different  kinds  of  forms  and contents  when transposed.  
Stockhausen’s idea of  transposing one level directly (isomorphically) into another is not enough: the  
change in properties of  each regime must be taken into account. The point is not to make a strict  
parallel,  but to show some invariant abstract  connections, not pertaining to content (to ‘musical  
objects’),  but  to  formal  relations as such (to correspondences  between these objects).  Each level  
brings with it its own content, itself  emerging from forms on a lower level of  scale, and there is no  
level that acquires more importance because of  being smaller and more ‘fundamental’ or for being  
larger and more conceptual or cultural. Each level is as genuine as any other and possesses its own 
logic and characteristics192.

One way to understand harmony is not as pre-established, a-priori relations, but as the concern for 
types  of  relations  as  such, as in  one of  its  original  Greek meanings,  where harmony is  meant as 
‘interlocking’.

Anyway, now that we have made the connection, it must be completed. In addition to morphology  
and structure, Tenney talks about an additional factor that determines form: that of  statistics or  
‘state’, the average behavior in time of  the sonic configurations, their density (vertical, horizontal),  
size, range, which corresponds to the aggregation dimension we have already discussed. This brings  
about the possibility of  accounting for layers of  texture and simultaneity (heterophony, holophony –  
in the sense of  various kinds of  simultaneous textural streams and their relations). Texture and its  
relation to harmony and form is a very interesting subject, left for future undertakings. Here we only  
a hint at the territories it opens up.

This work is mainly in the service of  composition, so these abstract, relational spaces are meant to  

190 Polansky, L. (1996). Morphological Metrics. Journal of  New Music Research, 25(4), 289-368.
191 Winter, M. (2010). Structural Metrics: An Epistemology (Doctoral dissertation, University of  California, Santa Barbara, 

2010). 
192 Still, clangs have a perceptual priority as the main aural gestalts as they pertain to the perceptual present. They are 

called ‘strong gestalts’. My point, though, is that no level is more fundamental in the sense that it produces or 
explains the others. See Miraglia, R. (1995). Influences of  Phenomenology: James Tenney’s Theory. Axiomates, 2, 
273-308.
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be useful not so much as analysis tools, but for synthetic purposes, for compositional approaches to  
relationships at several levels of  scale.  Figure 8  schematizes these perceptual regimes in harmonic, 
formal and perceptual terms, mapping a span of  around 22 octaves within which these forms and  
contents reside193. 

Figure 8. Formal and rhythmic analogues of  harmony. The first horizontal line is the 
time scale expressed as frequency of  vibration in Hertz and octaves. The second line 
displays harmonic analogues: from spectra (timbre) at right towards the separation into  
notes, chords, meters and tonalities. Below they are shown in terms of  musical materials,  
from compositional technique toward pitch, from form to dissonance, also presented in  
terms  of  Tenney’s  formal  regions:  element,  clang,  sequence  and  piece.  Below  that,  
regimes of  perception are shown, from cochlear hearing to proprioception and memory. 
Toward the right correspond processes of  integration, to the left, of  differentiation.

To conclude, I designate the main levels and their formal/musical regimes with respect to harmony 
as follows. This incorporates Tenney’s levels together with harmonic duality to arrive at terms which 
appoint the levels according to their continuous/timbral and proportional/discontinuous aspects:

timbre proportion 

material sonos eidos

method morphe logos

form drama nomos

In  terms  of  proportion  (discreteness)  and  timbre  (continuity),  at  the  micro level  of  materials  I 
propose  the  terms  sonos and  eidos,  the  latter  having  been  discussed  as  the  formal  causes  of  

193 Curtis Roads develops the topic of  the times scales of  music in depth. See Roads, C. (2001). Microsound. Cambridge 
Massachusetts: The MIT Press, 1-42.
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proportions in sound, the former belonging to the sounding, sensory aspect. At the  meso  level of 
‘method’ (rhythm, textures, clangs) they become morphe (shape, profile) and logos (‘pattern’ or logic), 
the  former  being  the  continuous  aspect  of  form and the latter  the  way the smaller  forms  are  
structured at the  meso  level. At the largest level of  form is the continuous  drama (or lack thereof, 
which is also a kind of  neutral drama or anti-narrative) together with  nomos  (law) the (apparent) 
principle governing the aesthetic experience of  the piece. This might seem as an arbitrary game  
conjoining Greek words with continuity/discontinuity and the levels. I agree that these points may  
not further the science of  musicology very much, but for the aim of  synthesizing and composing, I  
think  it  can  provide  useful  points  of  reference  that  hold  a  harmonic  perspective  at  different  
hierarchies  of  perception.  Future work will  expand them to incorporate  the Aristotelian causes  
together with object-oriented philosophy so that they are for now only part of  a further-reaching  
research into abstract properties of  dual harmony at different levels of  scale. For further details,  
consult the terms in the glossary.
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Chapter 4 

Practical and speculative harmony

4.1 Some harmonic strategies

4.1.1 Harmonic logics of  Tenney, Barlow, Johnston, Novaro and Wilson

Having presented most of  the research done so far by visiting harmonic space and the language of  
proportionality seen under the hypothesis of  harmonic duality, we can take a more panoramic view  
that  pushes  into  compositional  territory  by  reviewing  and  pursuing  some  tuning,  system  and 
navigation strategies.

When it  comes to microtonality,  Tenney, like most composers belonging to the tradition of  the 
American Mavericks (Ives, Partch, Harrison, Johnston, Young would be also included here, other  
experimentalists are not so relevant for harmonic microtonality) accepts, as it were by decree, higher  
primes as harmonically assimilable. This is partly because of  an experimental acceptance of  sonic  
speculations,  each departure point suggesting further experimentation and pieces.  On the other  
hand, by pursuing different harmonic approaches throughout his oeuvre, we see various tendencies in 
setting materials into motion, with several extents and perspectives that depend on aesthetic effect.  
He uses pitch systems based on subsets of  harmonic series which could be called ‘spectral’ in that 
they engage in chains of  fundamentals and tend towards timbral outcomes (Clang,  Quintext,  Spectral  
Canon for Conlon Nancarrow, the series of  Harmonia). Combined with his minimalist, anti-narrative, 
perceptual aesthetic that slowly reveals austere ideas and patterns, it makes a music which quite  
different from the French spectral movement of  those same years. He  also works with difference 
tones as generators of  harmony in Koan for String Quartet, a harmonization of  a long, slow glissando, 
that weaves proportional (micro) harmonies together with a pitch-distance logic, falling in and out 
of  harmonicity as the different nodes in pitch space are traversed: similar to the rhythmic in and out  
of  phasing of  early Steve Reich’s  Piano Phase  but rendered in the harmonic domain. Other logics 
include the use of  harmonic means in  Critical  Band,  a long, sustained and slow transition from 
unison,  beatings,  roughness  and timbral towards  proportional  harmony  made  possible  through 
harmonic divisions: as the interval of  division grows larger the timbral/proportional borderline is  
crossed at the critical bandwidth, when the timbral mixtures clarify into proportional stabilities. The  
last approach is that of  different  routes for crossing through harmonic spaces (Bridge, Changes: 64 
Studies for 6 Harps, the series of  Spectra, Arbor Vitae), all of  these quite complex algorithmic works that 
bring together his interests in gestalt theory, ergodic form and harmony194. It is in these last category 
of  works that he takes tolerance more into account.

His harmonic aesthetic  can be divided into two strands:  that which tends towards  consonance,  
limiting  the  proliferation  of  primes  (the  Harmonia,  for  instance)  and  that  which  is  highly 
experimental,  privileging  inharmonicity  and  high  primes  (Spectra,  Bridge,  Changes,  Arbor  Vitae,  or 

194 This is not an exhaustive list of  works nor an attempt to characterize of  all of  Tenney’s music. I am leaving much 
his output aside (such as his percussion, processual or equal tempered pieces), mentioning only the pieces which I 
think are important for delineating harmonic materials and logics. For more details on his microtonal music I 
recommend Wannamaker, R. (2008). The Spectral Music of  James Tenney. Contemporary Music Review, 27(1), 91-
130. For details on all his music previous to the early 80’s, see Polansky, L. (1983). The Early Works of  James Tenney. In 
Soundings, 13, 119 – 297. Last retrieved June 7, 2012, from 
http://eamusic.dartmouth.edu/~larry/published_articles/tenney_monograph_soundings/index.html
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Critical Band which transitions between the two aesthetics). Changes is particularly interesting in that 
he explores the harmonic space of  72-ET parametrically, in a stochastic spirit, following an ergodic  
logic195 in harmonic space, a logic which is also taken over to the time scale of  texture and sequence,  
pursuing sound configurations based in terms of  temporal, dynamic and vertical densities, all in a  
state of  continuous transition made possible by algorithmic interpolation between discrete states.  
The constraints and textural guidelines are supplied by an hexagram corresponding to each study,  
the aim being to achieve a maximum of  variety of  parametric states within a multi-level ‘holarchy’  
and a multi layer approach (some studies are ‘monophonic’ some ‘polyphonic’). The harmonic logic  
also has an additional modal comportment that includes various tonics and limits the pitches at a  
time to scalar subsets of  72-ET196.

Elsewhere he proposes algorithms to build compact configurations in harmonic space through a  
growth path incorporating pitches that minimally increase the total harmonic distances of  the set.  
This  follows  a  crystallographic  metaphor,  some  sort  of  chemical  logic  of  least  increase.  The 
approach of  Arbor Vitae is an organic metaphor of  descent (usually he rises) from the high branches  
of  a  large tree (as  high as harmonic 1300, octave reduced) all  the way down to the root.  The  
branchings consist of  the harmonic series of  each new prime, and they connect between themselves  
through the coinciding primes which are both roots of  their branch and harmonics of  some lower  
branch forming a mesh which, when the angles between primes are accommodated to be less than  
ninety degrees, looks very much like an arborescent structure. Locally, the branches and their leaves  
are harmonic amongst themselves though the higher they are in the tree, the more inharmonic they  
are to the main trunk and lower branches, something very similar to what happens with regards to 
antitonality in my applications.  

The case of  Ben Johnston is  quite different  as  he evolves from a just-intoned atonality passing  
through different phases of  harmonic and stylistic experimentation. The main pieces I refer to are  
the  string  quartets,  perhaps  his  main  playground  for  microtonal  development.  His  approaches  
almost always involve some use of  variation technique in which the very tuning or fundaments of  
the harmonic materials are varied. The fourth quartet is a series of  variations on a folk tune, each  
variation involving different tunings together with the rhythmic and metric analogies of  these ratios.  
The fifth is also a variation on tunings and a folk melody but this time with a focus on the 13 th 

harmonic, sometimes juxtaposing different tunings against each other and effectively conveying the  
sonorities of  the thirteenth harmonic as stabilities, even if  very alien ones. His middle quartets, 6-8,  
explore further into unknown territory, being the most daring, especially the 7th which has been  
called the ‘Mount Everest’ of  string quartets197 (the first recording of  it will come out around 2013, 
so I cannot comment on it yet). The 6th is a sort of  expressionist quasi-atonal world in what seems 
like 11 or 13-limit intonation in a style reminiscent of  early modernism, Silvestre Revueltas and Béla 
Bartok come to my mind. Quartets 9 and 10 on the other hand explore a speculative style that  
imagines what Classical music might have been had it not taken the 12-ET route, instead exploring  
extended chromatic  harmonies.  These  spring  from his  theoretical  research into  ultra-chromatic  
spaces in the lattice, in which the small patches that define common tonality are expanded so that  
modulation  can  encompass  more  chords  and  tonalities  than  usual.  Ultra-chromaticism  can  be  
extended  in  several  dimensions,  starting  with  5-limit,  in  which  classical  Western  harmony  is  
expanded without  introducing  sonorities  related to  alien  primes  but  by  building  chords  on the  

195 Ergodic behavior is, according to Tenney, a statistically homogeneous distribution of  a sonic parameter over some 
structural time frame. In this case it means a constrained random movement through harmonic space. See his 
article on Form: Tenney, J. “Form In 20th century music”, http://www.plainsound.org/pdfs/Form.pdf Last 
retrieved May 29th 2012. 

196 Tenney, J.  (1987). About ‘Changes: Sixty-four Studies for Six Harps’. Perspectives of  New Music, 25(1/2), 64-87.
197 See Gann, K. (2010). The Mount Everest of  String Quartets. [weblog]. Last retrieved June 6, 2012, from 

http://www.artsjournal.com/postclassic/2010/03/the_mount_everest_of_string_qu.html
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intermediate degrees and exploring tonalities not reachable in 12 ET. The other, more experimental  
approach  includes  both  this  expansion  as  well  as  the  introduction  of  new  primes.  Johnston’s  
strategies are more proportional than timbral, rarely using relations which involve a separation of  
steps  in  the  lattice,  instead  following  close-knit  chains  of  relationships  and  without  avoiding  
traditional  connotations  but  pursuing  them  into  unknown  territory.  Theoretically  he  makes  a  
distinction between melodic and harmonic uses of  harmony in order to produce scalar frameworks  
that are made simultaneously in harmonic- and distance-space by filling in each diatonic degree  
with  prime-limited  mixtures  of  intervals  and  doing  this  symmetrically  within  intervallic 
equivalences. He does not distinguish between  consonance and harmonicity, his duality being more  
a horizontal/vertical rather than a timbral/proportional one198.

Clarence Barlow’s approaches are quite varied although not pursued for more than a single piece or  
groups of  pieces normally. His timbral logics have reached into phonetics, with  Im Januar am Nil 
(1984) being the one where he follows this path to the fullest extent, making musical patterns out of  
phonetic  spectra.  This  has  been  taken  further  towards  what  he  calls  ‘synthstrumentation’  and 
‘spectastics’. The former is the use of  spectral information used for instrumentation, some kind of  
electronic synthesis with acoustic instruments – as in the case of  Im Januar am Nil, but there are quite 
a few other pieces involved, such as  Septima de Facto (2007) and sections of  his widely embracing 
orchestra  piece  Orchidea  Ordinaria (1986).  The  latter  method  is  the  use  of  spectra  as  statistical 
probabilities for composing granular textural behaviors (used in conjunction with the other method).  
Other timbral approaches can be appreciated, as in Approximating ! (2007), an electronic piece made 
out of  a single overtone series in square waves, where the amplitude of  each of  its ten partials  
changes according to the ‘Newton approximation algorithm’ for obtaining the digits of  #, creating a 
static harmony with an extremely fast  internal  movement that  slows down into a  stable timbre 
(taking  76  minutes  to  come  to  a  standstill).  His  proportional  developments  include  long, 
imperceptible transitions within an harmonic field, such as the different versions of  Until (1975-78), 
each  consisting  of  a  melody  against  a  drone  which  slowly  changes  from  being  consonant  to 
dissonant, with an almost unnoticeable effect, the version for piccolo having an additional behavior  
of  creating  psychoacoustic  difference  tones  with  the  sine  wave  drone.  His  most  intricate 
developments  include  modal  stochastic  fields  (Cogluotobusisletmesi),  from  which  his  algorithmic 
generator program  Autobusk  stems and where metric and tonal fields are coupled together, to be 
varied and traversed in continuous and imperceptible amounts. He also delves into what we could  
call ‘hybrid’ harmonies that consist of  manipulations of  harmonic effects of  various cultures and  
styles (such as the mixture of  Clementi,  Schumann and Ravel in  1981  (1981), the Western and 
Indian logics of  Ludus Ragalis (1974-2006), or a  study of  septimal blues harmony in otodeblu (1997). 

Augusto Novaro is one of  the pioneers of  microtonality, following Julián Carrillo’s footsteps but  
eventually taking a  proportional  route that precedes and differs  quite a lot  from that of  Harry  
Partch. As recounted in the introduction to his self-published book  Sistema Natural de la Música199 
which wraps up into a systematic treatise many years of  research, he discovered/invented, after the  
deception of  having unsuccessfully experimented with equal intervallic divisions, a musically fruitful  
arithmetic method of  intervallic  division. He names the smaller of  the numbers of  a co-prime 
ratio200 the fundamental, the larger co-fundamental numbers, building from them arithmetic series that 
divide any interval into any number of  ratios, all within whole number arithmetic. He then finds  
reciprocal series, corresponding to inversion and to harmonic (as opposed to arithmetic) means.  
Together with transposition of  these scalar/chordal structures (called gradual series) a wealth of  

198 Johnston, B. (2006 [1976]). Rational Structure in Music, Maximum Clarity, 62-76.
199 Novaro, A, Sistema Natural de la Música, Mexico City: Author’s Edition, 1951.
200 ‘Co-prime’ is just the mathematical jargon meaning that the numerator and denominator of  a ratio have no factors 

in common, they are prime amongst themselves. It is what we have called a reduced ratio, meaning its terms 
cannot be further factorized.
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combinations that produce scales and chords is made available (complex series, which combine the  
four kinds of  series).

The first part of  Novaro’s book investigates his arithmetic series, turning afterward to geometric  
series (logarithms) that lead him to investigate tolerance and approximations to just and unequally  
spaced intervals. His visualizations revolve around logarithmic spirals, from which he developed the  
resonance chambers for his  novaro clave  microtonal piano.  The second part of  the book concerns 
practical music or ways to perform and approximate these discoveries as well as the instruments  
invented for this purpose, such as the ‘acoustic boxes’ made to experiment with 15, 19, 22, 31 and  
34 divisions per octave. 53 ET has a dedicated section that explores all of  its intervals (the fifty third  
root of  two is very close to a 81/80, a bit less so to the 64/63 seventh comma, and a bit more than  
the Pythagorean comma, showing perhaps why this temperament approximates so well many 3, 5, 7 
and even some 11 and 13-limit ratios). This temperament is studied in a diatonic manner, having up  
to 8 levels of  sharps and flats between each degree. Since Archytas’ harmonic means there have 
been no developments in harmonic theory concerning arithmetic ways for generating of  intervals.  
Novaro does not take Archytas as his departure point though. As far as it goes, and as it is common  
in harmony, he came up through independent  a priori  deductions after years of  tribulations which 
almost  led  to  him  abandoning  music.  The  series  are  implemented  in  Dissonance  Lib,  providing 
departure points for some current compositions I am pursuing201. 

In terms of  innovation in the proportional realm and the harmonic lattice, Ervin Wilson holds a  
prominent place, and I think his ideas will take some years to be assimilated and pursued, as he is  
not completely a composer, instead balancing between a theorist and an inventor of  tuning systems.  
His logics are arithmetical, exploring patterns and numeric structures lying close to the confines of  
number  theory  and  diophantine  equations  (‘pairs’  and  ‘triplets’).  These  arithmetic  discoveries  
include inventions such as ‘moments of  symmetry’, ‘combination product sets’ and ‘co-prime grids’.  
The latter are interesting because they embrace several kinds of  arithmetic series: the ‘lambdoma’  
which is a form of  Farey series, as well as the Pierce, Fibonacci and the Novaro series. These grids  
are made through the combinations of  co-prime numbers found through triangular and rhomboid  
graphical structures out of  which musical ratios are derived. Wilson acknowledges his indebtedness  
to Novaro and Joseph Yasser, concluding his investigation into the grids with a beautifully weird 
Pythagorean metaphor: ‘An Hyperdimensional co-prime pattern fills the paradisal infinitude’202.

His arithmetic structures are expressed in geometrical ways, forming subsets of  the harmonic lattice 
that represent primes and connections between consonant intervals with different angles, forming  
projections of  hyper cubes, hexagons and other figures, some of  which have been used as templates  
for  microtonal  keyboards.  He  names  them  hexanies,  eikosanies,  stellate  harmonies,  diamonds,  
mandalas, spirals, scale trees, zig-zag patterns and even more203. He combines both arithmetic and 
geometric logics and offers an epistemology of  pitch in which he talks about three levels of  musical  

201 His series rapidly grown into high dimensions in harmonic space, not being prime limited, so in terms of  the lattice 
they are a bit complex to follow. Beyond the scope of  this thesis I am laying the ground for an article researching 
how his series relate to the classical Greek means and katapyknosis as well as how they comport in harmonic space. 
As is the case with arithmetics, apparently trivial constructions give rise to complex structures which can be 
musically fertile.

202 Wilson, E. (2000). Pecan Tree Patterns, in a Nut-Shell. [PDF photocopies of  author’s research]. Last retrieved June 
6, 2012, from http://www.anaphoria.com/peach.pdf I will leave to the reader any interpretation or link regarding 
this phrase that I could not help including even if  it does not follow from the argument.

203 Most of  his research consists of  pencil and paper sketches of  his discoveries, as well as letters to prominent 
microtonalists. His disciples are taught in the way of  an oral tradition so he has not published any systematic books. 
Most of  his letters papers and letters reside in http://www.anaphoria.com/wilson.html Last retrieved June 8, 2012, 
but more information (including explanations for lay people) can be obtained at http://www.thesonicsky.com     Last 
retrieved April 5, 2012, and the integration of  his theories into wider  microtonal research is found in the 
Xenharmonic wiki: http://xenharmonic.wikispaces.com Last retrieved June 8, 2012.
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abstraction. The first corresponds to musical reality and feeling (most music),  the second to the  
theories, rules and methods behind musical reality, while the third is the ‘master set of  ingredients’  
in which developments of  the infrastructure of  music, the amplification of  its gene pool, takes place:  
tuning systems, microtonality. He also mentions a mystical fourth level beyond the whole number  
grids he develops, a ‘skylight’ level of  the creative act, inseparable from perception, where musical  
systems become dynamic.

4.1.2 Some of  my approaches to harmonic space 

Furthering the descriptions of  approaches to dissonance curves delineated in section 2.1.2, I would  
like to focus now on harmonic strategies and the pieces composed during this research. Here the  
topics intermix as the ordering is done with regard to individual pieces and not to the chronology of  
the research topics. Some span from the theory, some provided a platform for theorizing, some both,  
but it is difficult to tell because of  the intricate nature of  the research. The review will not be a full  
description of  the pieces, but will be centered mainly on their harmonic workings. I have already  
delved into some detail on Clinamen in section 2.1.2 and Circular Limit and the Logos sessions in 3.2.2. 
In this section I will talk about four more pieces plus a bit of  what lies ahead at the moment of  
writing.

4.1.2.1 rolita pa modelo (2007)

Generally I  work by inventing a tuning or harmonic modus operandi,  then devising a logic  or  
navigation scheme in order to either discover what may happen through that logic, or mix it with  
and be loyal to a  drama/affect/concept overriding the work.  My first  probings into dissonance 
curves were of  the first kind, in the piece rolita pa modelo (2007) for chamber ensemble. It is based on 
a rather static single pitch set derived from a mathematical spectrum (a sawtooth wave) 204. This set 
was traversed through random weighted choices, producing different subsets of  the set through the  
harmonicity windows through which it was filtered. These windows work like ‘tendency masks’ (a  
term  coined  by  composer  Gottfried  Michael  Koenig)  that  let  through  only  intervals  within  a  
minimum and maximum harmonicity threshold. These thresholds continuously change during the 
piece. The work adapts to the 8 piece ensemble by approximating to 12ET for most instruments  
with a few important notes of  the set intoned outside ET (relatives of  partial 11 played in quarter  
tones in the flute and 7th harmonic related sonorities  obtained by retuning a few of  the harp’s  
strings). Most of  the algorithmic generation was used to create the soloist harp part, which was later  
enhanced,  embellished  or  counterpointed  with  the  other  instruments,  with  various  functions  
assigned  to  different  sections  of  the  ensemble.  The  guitar,  for  example,  plays  the  role  of  
commentator to the harp, the other instruments generally support it by extending with resonances  
and furnishing it with decorations. Throughout the piece there are some interludes that interrupt  
the process, where the instruments emancipate from their assigned roles and the harmonies become  
transposed and more complex, resting in crucial chords that are required to be played in exact  
microtonal tuning. Here instruments other than the flute and harp also play microtones.

The general consistency I was looking for in the piece was to arrive at a polyphony that is a by-
product of  texture (of  notes chosen randomly within the harmonicity limits) and not the usual way,  

204 The pitch set comprises 3 octaves upon a fundamental G3: 1/2, 8/15, 5/9, 3/5, 5/8, 2/3, 31/45, 7/10, 11/15, 
3/4, 7/9, 4/5, 5/6, 13/15, 7/8, 8/9, 9/10 (lowest octave), 1/1, 11/10, 10/9, 9/8, 7/6, 6/5, 5/4, 13/10, 4/3, 
11/8, 7/5, 13/9, 3/2, 14/9, 8/5, 13/8, 5/3, 7/4, 16/9, 9/5, 11/6, 15/8 (central octave), 2/1, 13/6, 11/5, 9/4, 
7/3, 12/5, 5/2, 13/5, 8/3, 11/4, 14/5, 3/1, 16/5, 13/4, 10/3, 7/2, 11/3, 15/4, 4/1 (upper octave). They are 
more or less common just scales with extended clusterings of  intervals around the thirds, tritones, sixths and 
sevenths.
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where texture is a result stemming from fixed polyphonic assignments. In this way the density of 
voices and their vertical/horizontal relationships change constantly between independent, chordal  
and timbral (supporting) roles. I like to listen to it as if  it were an immersion into a single resonance  
(with some added intermezzos) from different sonic perspectives.

4.1.2.2 ‘strings’ (2007) and Ahí estése (2011)

The next project done that same year involved the real time triggering of  dissonance curve materials  
for the piece ‘strings’, for guitarist, speakers and live electronics. Most of  the technical work involved 
‘fine tuning’ the interactive music system in order to obtain a perceptually clear link between what  
was played by the guitar (or any other kind of  input) and the resulting chords and textures generated  
by  the  computer.  This  meant  finding  optimal  windows  for  the  spectral  analysis  to  be  further  
processed by extracting the highest partials and deciding which of  them was to be considered the  
fundamental. There is also a separate pitch detection running in parallel in order to compare with  
the spectral fundamental and because having both options is useful as they produce different results.  
It is from the most prominent partials, usually between 8 and 10 of  them, as well as from the overall  
amplitude and the fundamental, that the curves are calculated. After that, they are rationalized and  
their  harmonicities  calculated.  The timing aspect is  crucial  as  the curves take a few seconds to  
calculate and make their effects heard (this was in 2007, now with faster computers this time has  
gone down by at least a factor of  10).

Once the dissonance curve pitch sets are obtained, several kinds of  textures are built upon them,  
some being simple chords, some with moving layers, others involving scalar canons, random textures  
as well as several combinations of  these. They are made with synthetic timbres, mostly based on 
derivations of  sine waves and filtered noise. A single texture combines several timbres in various  
layers.  The musical  interaction is  based on a feedback process  of  ‘acousmatic imitation’ between 
performer and computer, the former deciding the moments of  mimesis by triggering the curves and  
textures with a foot pedal. The reaction to the computer is through a global mode of  listening,  
embracing not only pitch but pertaining also to timbre and texture. The resulting actions consist not  
only of  notes, but also sounds aggregates (‘clangs’) called for by the sonorous context. The score has  
instructions which refer the musician to follow or go against the computer, so that the resulting  
sounds blend and ‘concord’ with the electronic textures or contrast and stand against them. It is an  
interaction with the computer through  écoute réduite, as it  could be said that the machine listening 
implied by dissonance curves is of  this kind. The interaction process is improvisatory but not an  
improvisation:  the  performer  is  not  supposed  to  ‘jam’  but  to  stay  closely  connected  with  the  
sounding environment and be open to wherever this process might take him/her and the computer.  
The causal relationships have to follow the timbral setting in connected chains of  sonorities where  
spectra and pitch are the main centers of  action. The piece uses timbral harmony almost exclusively. 

On top of  this feedback process, the structuring of  the piece is carried out by means of  a graphic  
score that states the general guidelines for each of  the six panels that comprise a performance:  
articulation, texture, pitch, dynamics and ‘style’ – such as ‘cantus firmus’, ‘bailey-esque’ (Derek Bailey 
type gestures), ‘Mississippi delta blues’, and others. The guitar has a microphone in the neck, with 
which computer controlled feedback is produced when it approaches any of  several speakers placed  
over the performance space. This begins to happen in the last third of  the piece. Its overall principle  
is  a  change  in  focus  from ‘micro’  pitch-timbral  responses  of  the  beginning,  gradually  growing  
towards ‘meso’  gestural  textures,  eventually making the guitar player play with his  whole torso,  
moving the guitar neck around the speakers and provoking feedback to be interacted with through  
movement. In the last two panels the process continues its movement outwards to the ‘macro’, when 
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the performer walking around the space, producing feedback with the extra speakers in the room.  
The piece deals with a gradual change of  attention from micro-time and spatial aspects of  timbre  
towards the macro aspects of  performance and space, passing through the middle phases of  texture  
and instrumental gesture. It ends with the guitar player walking out of  the room or falling still and  
quietly back in the center of  the speaker arrangements. The tuning of  the folk guitar (acoustic  
guitar with steel strings) is based on a dissonance curve of  a low D2 string: 1/2, 1/1, 14/5, 13/4,  
7/4 and 5/2. Many extended techniques are called for (though suggested by the performers, one of  
the reasons why the piece is quite different at every performance and with different guitar players),  
including the use of  e-bow and bottleneck.

The interaction includes a role and a score for a computer performer (me), controlling the scope of  
the behavior of  the computer for each panel. It permits some room to modify the textures and the  
feedback section, so there is an extra layer of  direction over what is happening. The piece has been  
played with several speaker configurations and with three different guitar players: Tom Pauwels,  
Matthias Koone and Carlos Iturralde.

Last year, I had the opportunity to present a modified and updated version of  this system as an  
installation. Many improvements were made to the machine listening strategies (beginning with the  
fact that my laptop now is around 8 times faster) permitting more analysis and less time between  
triggering and the sounding of  the textures. The main change in the system, however, was that it is  
now triggered automatically by amplitude thresholds. The installation is called Ahí estése which is a 
reference to  aisthesis  with a very Mexican way of  saying ‘stay put’.  The allusion to  aisthesis is  a 
metaphor for the ‘sensory ether’ where perception occurs, as the analysis extracts and puts into  
motion the harmonic qualities  inherent  in  sounds in the same way as  intellection (noesis)  infers 
abstract forms (eide) from sensory data.

The intention is to harmonize an environment with which the audience can interact. The setting is  
with quadraphonic speakers in the corners of  a space and a microphone in the middle. There are  
several behaviors programmed into the system, akin to the textures in  ‘strings’ but covering more 
possibilities and layers. The dissonance curve analysis goes further than before, including harmonic  
space partitions and virtual pitch, so every texture has 3 strata of  ‘orchestrations’,  each possibly  
comprising  more  than  one  layer:  a  timbral  one,  a  harmonic  one,  and  another  with  a  virtual  
fundamental (usually very low and derived from a virtual pitch algorithm). The thresholds act both  
in time and amplitude, so that only long enough sounds cause triggers, making the computer screen  
flash like a camera to notify the users that a ‘sound photograph’ has been taken. The thresholds  
automatically change their  values slightly,  so occasionally relatively quiet  sounds can trigger the  
analysis, sometimes only louder and longer ones. It is also designed to be triggered by itself  every so  
often: the sounding textures will provoke a trigger, keeping the sonic results in variable constant  
change even when no interaction from the audience is happening.

The behaviors/textures also include a wider range of  variability than in  ‘strings’: tempos, timbres, 
rhythmic  arrangements,  ‘orchestrations’,  along  with  spatialization.  The  behaviors  are  quite 
contrasted between each other. For example, one of  the behaviors produces canons of  harmonic  
intervals in ways inspired from (but not sounding like) Tenney’s  Spectral Canon for Conlon Nancarrow, 
the canons making circles around the quadraphonic field and accompanied by fast swirling sparks of  
high timbral  intervals  and a  slow drone in the virtual  pitch  stratum. Another  behavior  is  very  
rhythmical and staccato, providing several layers of  tuplets derived from the intervallic proportions.  
Each layer has its own comportment, usually at a different time scale from the others. In some  
behaviors the tempos change automatically, in others they are fixed. 

The  installation  contemplates  interventions  by  musicians  and  sound artists  to  incite  and make 
tangible the sonic potential of  the system. They have been barely tapped upon as the installation  
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was presented during  a  limited amount of  time.  These interventions  are  planned as  controlled  
improvisation sessions guided by open schemes and using some microtonal and timbral strategies to  
drive the system. There is also a plan to present it in a larger space which has 21 speakers around  
and above the room. The idea is to position the intervals in the room according to their coordinates  
in harmonic space, rendering the proportions spatially.

4.1.2.3 Blank Space (2009)

Many topics discussed in this research concur in this piece. It includes dissonance pitch sets chorales,  
partitions and granular harmony together with the polyrhythmia algorithm discussed in Section 2.1.2 
regarding Clinamen, here used for the first time (still in an old and buggy version, as it was one of  its  
first compositional tryouts). It is for clarinet, piano and  soundscape.

Material is derived from a sound recording in order to structure many aspects of  the piece, such as  
the harmonies, rhythms and form. I decided to use sounds relating to war, at first wanting them to  
relate  to  Mexico’s  president’s  insane  and  brutal  ‘war  on  drugs’  –  by  now,  after  some  80,000  
estimated deaths, he does not call it ‘war’ but ‘struggle’, but in late 2008 he still did, – but after not  
finding sonic examples that could be specific to it, I delved into the by then stereotypical Iraq war –  
for which I  had already done a piece in 2004, – which is why the piece begins with an Iraqui  
Assyrian funeral  chant.  By the beginning of  2009 however,  when the piece was underway,  the  
bombing of  civilians in Gaza overtook everything else and it is from this conflict that the rest of  the  
sound material is taken.

The score was generated algorithmically. The first part is based on the moving canons produced by  
the accelerations/decelerations in several voices of  the polyrhythmia algorithm. The beginning section 
proceeds like regular contemporary music: abstract, ‘interesting’ gestures and rhythms over a wide  
ambitus in both instruments, accompanied by rhythmic layers of  synthetic electronic sounds. The 
pitches derived from the Assyrian chant which introduces the section follow naturally from it. The  
polyrhythmia steady state rhythm is a 4 to 3 polyrhythm in 4 voices; it begins with vertical chords that  
begin to diagonalize,  producing shifts  and melodic fragments that gradually fall  into the steady  
rhythm; afterward the process is inverted, taking about as much time to fall back again into vertical  
sync (each component process lasts about a 45 seconds). The whole process is repeated twice but  
because of  the changing pitches and the way the different coincidences where transcribed, it turns  
into a quite different variation. The textures are produced when coupling the rhythmic process with  
the pitches, which are selected from variable harmonicity windows (tendency masks), as in rolita pa  
modelo.  The  texture  was  transcribed  freely  for  the  two  instruments,  writing  manually  in  an 
improvisatory manner over the generated textures, like ‘connecting the dots’ between the isolated  
abstract notes generated by the algorithm or as with a star map, looking for melodic and harmonic  
coincidences  or  interesting  interactions  between  the  instruments,  varying  the  articulations  and  
dynamics at will in the interest of  creating a layer of  musicality upon the ‘dry’ algorithmic process.

At a certain stage, after having been a good example of  well behaved contemporary music, the 
music steps out of  itself  at the same time as the world and reality enter into it. As this reality is  
related to events that happened at the time of  composition, they where not completely chosen. First  
there is an electronic transition from the last chords of  the polyrhythmia process that begin with the 
Assyrian voice but turn into a mixture of  chords and voices, finally to emerge as the voice of  Israeli  
Foreign Minister, Tzivi Livni saying ‘we are going to change reality’. It is at this point that the piece  
goes astray and several episodes ensue where the piano and soundtrack harmonize sound recordings  
of  voices and bombs by way of  solos separated by electronic chords. The voices are taken from  
statements by Livni relating to ‘reality’ and the minimization of  civilian casualties. The dissonance  
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textures  are  transcribed  for  the  piano  and  electronics  in  several  different  ways  and  rates  
simultaneously,  going  up  to  granular  speeds  by  the  fourth  interlude,  the  harmonization  of  an  
explosion turned into an angry piano solo (whose performance in the recording done in 2012 by  
pianist Gabi Sultana is particularly stunning). The harmonizations include all features of  dissonance  
harmony: partitions, virtual pitch, textures at several times scales and granular harmony. Together,  
piano and electronics make for multilayered dissonance chorales which follow the contours and 
inner  harmonies  of  the  voice  recordings,  sometimes  even  harmonizing  the  very  noise  of  the  
recording medium (highly compressed audio downloaded from the internet).  In the case of  the  
bomb, the electronics make a chorale out of  the piano solo, in a way making for a dissonance  
chorale of  the second order: one made of  the piano which itself  is  a texture derived from the  
kaboom205.

Afterwards the clarinet makes a solo accompanied by a recording I found of  the bombing of  a  
school that took place in those days. Here I used the polyrhythmia procedure in a different way, one 
which still holds promising possibilities. The core rhythm/spectrum which is fed to the algorithm is  
a transcription of  the Assyrian chant fragment, here pitch and rhythm are specified together. It is  
then deployed melodically, instead of  polyphonically: the several layers that comprise the canonic  
acceleration/deceleration  are  conflated  into  a  single  voice,  producing  a  beautiful  ornamented  
melody which feels like variations on the archetype and hands a middle eastern kind of  flavor to  
it206. It begins with the phrase/cell, wonders around for a while, arrives in the middle at the melody  
again to vary differently till the end of  the process, where it falls again into vertical chords where the  
piano resumes. During this clarinet solo, the horrible soundscape begins to include a chorale made  
out of  harmonies derived from the bomb of  the piano solo, which lead to the ending chorale. It is a  
somewhat tonal chorale, the analysis having extracted the core periodicities from the noise of  the  
bomb, most of  them used by the instruments in equal temperament. The electronics have two layers  
made out of  timbral and harmonic subsets, providing both types of  microtonal pitches, making for a  
harmony that is both tonal and close to the center of  harmonic space but also has outer orbiting  
constellations at various speeds with timbral components. Even the harmonic pitches sound at the  
same time congruent with the chords and are a bit outside normal tuning, making for a mixture  
which I find compelling.

After some performances I  decided to include a voice into the ending chorale,  feeling that  the  
political nature of  the piece was a bit drowned in the musical process. It consists of  a computer  
generated voice speaking quotes from architect and theorist Eyal Weizman, relating to the ‘blanking 
out’ of  civilian populations and the policies of  war207. The title of  the piece is itself  taken from a 
mention by Joseph Conrad of  ‘the blankest of  all blank spaces’ when referring to the disastrous  
colonization of  Congo by the Belgian King Leopold II in the late XIX century.  The title is also 
related to philosopher and political theorist Bolívar Echevarría’s concept of  ‘whiteness’ (‘ blanquitud’): 
‘Whiteness  is  a  concept  than  can  serve  to  explain  the  reasons  for  selective  genocide  in  the  
contemporary world: why do we deliver certain populations to sacrifice, why do we condemn them 
to die.’208

205 Dissonance analyses of  several orders are an interesting future avenue for research: generating a texture from 
dissonance curves and then making an analysis of  that texture to produce yet another one, and so on. It would 
produce always changing but related textures and harmonies within a clearly perceivable process. 

206 The uses of  polyrhythmia where ‘quantized’ to sixteenth notes for this piece. In Clinamen (2011), as discussed in section 
2.1.2, the process is deployed ‘as is’, with a much more refined formula for the tempo changes and in many more 
voices (more than twenty as opposed to four at the beginning of  this piece and about 7-8 in the melodic rendering 
we are discussing now).

207 Weizman, E. (2010). Political Plastic (Interview). Collapse, VI, Falmouth: Urbanomic, 257-303. The quotes I took 
are ‘lesser evil’, ‘tolerated sin’, ‘violence itself  legislates’, ‘how much will still be tolerable’, ‘not by the victims, of 
course, but by others who are watching’, ‘moderation of  harm’, ‘the magic number was 30’. 

208 Echevarría, B. (2010). Occidente, Modernidad y Capitalismo (interview by Carlos Oliva Mendoza, in Spanish). La 
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It is a piece I like a lot, quite unlike anything else I have written and, at the same time, a piece I feel  
quite uncomfortable with, very exposed and touching delicate matters. It has an aura of  prayer or  
some kind of  supplication, something I never noticed during its making, probably due of  the solemn  
subject matter and also because chorales, be them of  any speed and kind, tend towards this kind of  
music. 

4.1.2.4 Chamba de um acorde (2011)

This piece pursues my interest in the relation between pitch and duration. This time a pitch set is  
constructed that does not derive from dissonance analysis but from mathematical curiosity. Working 
in this  piece  is  where I  came up with  the method to  separate  a  pitch  set  into  its  mixtures  of  
fundamental intervals, entailing collecting mixtures for each prime and its combinations with all the  
lower primes. Hence, octaves will form a set, mixtures of  2s and 3s another one, 5 combined with 3s  
and 2s, 7s with 5,3,2, and so on. The pitches were generated through arithmetic series from primes  
up to 11, limiting their size to 36:
2, 4, 6, 8, 10, 12, 14, 16, 18, 20, 22, 24, 26, 28, 30, 32, 34, 36
3, 6, 9, 12, 15, 18, 21, 24, 27, 30, 33, 36
5, 10, 15, 20, 25, 30, 35
7, 14, 21, 28, 35
11, 22, 33

With duplicates removed and sorted, it looks like this: 
2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 14, 15, 16, 18, 20, 21, 22, 24, 25, 26, 27, 28, 30, 32, 33, 34, 35, 36

Converted to ratios:
1/1, 3/2, 2/1, 5/2, 3/1, 7/2, 4/1, 9/2, 5/1, 11/2, 6/1, 7/1, 15/2, 8/1, 9/1, 10/1, 21/2, 11/1, 12/1, 25/2, 13/1, 27/2,  
14/1, 15/1, 16/1, 33/2, 17/1, 35/2, 18/1

Octave reduced (useful for showing distinct harmonic hues, with rounded cent values below): 
1/1, 33/32, 17/16, 35/32, 9/8, 5/4, 21/16, 11/8, 3/2, 25/16, 13/8, 27/16, 7/4, 15/8
0, 53, 105, 155, 204, 386, 471, 551, 702, 773, 841, 906, 969, 1088

The unreduced pitch set is then separated into prime mixtures and affixed to a fundamental of  A1,  
55  Hz,  displayed here  ordered by  their  highest  prime in  the  mix  (left),  note  names  with  cent  
deviations from equal temperament, and as ratios (below each note):
2:  A2, 0 A3, 0 A4, 0 A5, 0

2/1 4/1 8/1 16/1

3:  E2, 2 E3, 2 B3, 4 E4, 2 B4, 4 E5, 2 F#5, 6 B5, 4
3/2 3/1 9/2 6/1 9/1 12/1 27/2 18/1

5:  C#3,-14 C#4,-14 G#4,-12 C#5,-14 F5,-27 G#5-12
5/2 5/1 15/2 10/1 25/2 15/1

7:  G3,-31 G4,-31 D5,-29  G5,-31 B5,-45
7/2 7/1 21/2 14/1 35/2

11: Eb4,-49 Eb5,-49 Bb5-47
11/2 11/1 33/2

13: F5, 41
13/1

17: A#5, 5
17/1

Up to here the material was calculated with the computer in interactive sessions such as the one  
described in section 3.1.6.  Once the premises  were decided on,  most  of  the piece was written  

Jornada Semanal, 805. Last retrieved August 5, 2012, from http://www.jornada.unam.mx/2010/08/08/sem-
carlos.html. My translation.
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spontaneously, in the way of  an improvisation over its materials, in about a week (in contrast, the  
piano solo and the transition to the end took almost a month). This idea is to distribute the pitches  
among the instruments, setting them into proportional rhythmic grids, making the piece a set of  
variations upon these subsets and their instrumental and rhythmic allotments. The duration of  each  
variation was determined in part with the falling in sync of  the rhythmic phases, but also having to  
do with trying to extend each panel as much as I felt was plausible before the setting exhausted itself.

The distribution of  pitches allocates 2s and 3s together, the 5s by themselves and the higher ones  
being packed together in various manners. During most of  the piece, the intervals are approximated  
to equal temperament which means that the more complex ones get conflated into pitches shared by  
other ratios. There are breaks in the rhythmic process, though, when the instruments play vertical  
arrangements and the flute and clarinet are asked to play exact pitches. This means the higher,  
difficult to perceive primes (11, 13, 17) rear out their heads from time to time. I was seeking for a  
harmony at the same time static (in the sense of  non modulating) but also colorful, neither tonal nor  
atonal. I found that the premises for the writing opened up to fruitful discoveries instead of  wearing  
themselves out quickly.

The rhythmic assumption was to ‘transpose’ the rhythmic analogies so that 2s and 3s are played in  
rhythmic multiples of  twos, 5s are in triplets and higher intervals in quintuplets. This because I think  
(and argued in  section 1.2.7)  that  rhythm is  more  sensitive  to  periodicities  than  pitch,  so  it  is  
reasonable to play the intervals in simpler rhythmic relationships than their literal counterparts, one  
step below, as it were: 3 goes to 2, 5 to 3, and 7 and higher to 5, retaining the rhythmic complexity  
from getting too complex. The piece is fixed most of  the time on 3:4:5 rhythms (together with  
‘octave’ transpositions of  them) in diverse settings, which meant incorporating metric modulations 
to diversify the speeds and relationships. The pitch contours result from patterns of  permutations  
together with accents and grouping that produce conflicts  between the additive meters and the 
multiplicative rhythmic grids, as when 7/8 meters collide with 5 against 3 multiplicative relations.  
Most of  these processes tend toward staccato textures, sprinkled with long contrasting tones.

Once it was felt that several possibilities had been used, I wrote a piano cadenza consisting of  three  
variations  that  incorporate  many  of  the  previous  configurations  within  a  single  instrument.  It  
increases  in  intensity,  leading to the entrance of  the trio  in  a  section of  10:3:2 rhythms in the 
maximum density and difficulty whose culmination leads to the last large section of  the piece where  
repetitions of  periodic cells in 3:4:5, deployed against a 4/4 bar, are gradually infected with silence,  
this  leading to the ending section where chordal  islands  are formed out of  the remains  of  the  
process.  Chords and bits  of  the rhythms that survive the eruption of  silence form isolated and  
progressively  sparser  textures.  This  section  was  aided  by  algorithmic  calculations  for  the 
introduction of  silences into a the process, letting the holes suggest the formation of  these islands as  
if  by overlays or masks intersecting the inexorable rhythms. 

Chamba is a polyphony of  cycles and combinations of  periodicities, producing an effect analogous to 
various bicycle wheels spinning at different speeds and interfering with each other, a sort of  auditory  
equivalent of  a visual  moiré pattern, a bit like the way Galileo explains commensurability as the 
conjunction of  different but related cycles. The writing of  this piece broke a spell of  almost a year in 
which I lost many of  my reasons to write music. The title alludes to Antonio Carlos Jobim’s Samba de 
uma nota, but in Mexican Spanish ‘chamba’ means ‘work’ or ‘labor’ and its about a chord instead of 
a note.

4.1.2.5 Future directions

I am sure this research will bear most of  its compositional fruit after the period in which it was  
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realized. Now that I am about to conclude this thesis I would like to mention some of  the ideas I  
have  for  a  piece  that  will  sum up and pursue  further  some  of  these  findings,  intended  to  be  
performed as part of  the graduation.

The planned piece is for ensemble  Modelo 62  and is intended as a piece in multiple parts,  each 
exploring a different but related idea or a similar idea in a different form. I have been pondering on  
how to set up a different relation between the score and the performance, to include more open  
settings that can produce multiple results within a single specified material, logic and form instead of  
fixed  notations.  I  want  to  specify  pitch  sets  and  temporalities  that  are  subject  to  decisions  in  
performance that can unfold the harmonic aggregates, with a view on providing multiple ways of  
interaction  within  the  ensemble.  The tunings  must  be  quite  different  and  subject  to  idiomatic  
adaptations,  pursuing,  for example,  scordaturas and extended techniques but also involving equal 
temperament and mixtures of  approaches. The various kinds of  rules will determine the character  
of  the music, which can change according to different options for the rules, so that they can together  
make series of  pieces or sections. For example, the relation between duration and harmonicity, as in  
Tenney’s notion of  ‘activation of  nodes’ in harmonic space, can be established so that far away  
intervals have long durations and low loudnesses while harmonic intervals become short and loud;  
inverting this relation (producing relations which are more ‘conventional’) can produce interesting  
variations/contrasts within a piece or between pieces. There are other possible variations on this  
single idea.

During a recent course I was involved in which Michael Pisaro gave a lecture on his music, I was  
stimulated by an idea present in some of  his pieces in which sound field recordings are ‘framed’ with  
sine  waves  of  random frequencies.  The  effect  is  that  they  always  tend  to  coincide  with  some 
components in the sound field, or that there is at least a tendency to make the relation in the listener.  
This made me think that the connection between random, fortuitous pitches and specific harmonies  
can be established in an effective way, opening prospects for approaching harmony simultaneously  
in timbral and proportional ways. This can be coupled with a tendency towards sparse textures,  
where there is not so much activity but a space where there is enough information to bring the  
listener in, contrasting the usual tendency of  composers (like me!) to anxiously fill every moment in  
the music with ‘exciting’ events. The inclination is to have few but requisite sounds in order to  
pursue a different approach to the deployment of  pitches, seeking the subtle complexity that Ben  
Johnston talks about not only in the intervals themselves but also between them and in relation to  
their background, a kind of  harmony that summons the listener instead of  emitting a great deal of  
sound waves  and information. Complexity  as seduction or  allurement instead of  pouncing and  
oversupply. The ending section of  Chamba de um acorde already moved toward this situation, which I 
want to pursue further: rarefied textures, rhythmic structures framed through overlays that result in  
textural islands surrounded by silence or other types of  framings. I want to take this further both in  
terms  of  diaphanous  configurations  as  well  as  divergent  processes  either  towards  
densification/sparseness  or  without  going  anywhere,  simply  retaining  aloof  states  of  affairs  
(ergodicity, in Tenney’s terms).

The rules and procedures that govern these processes can be inspired by some methods of  Cage’s  
school for setting materials into motion, but in a way that does not seem forced, but that arises, one 
may say, ‘organically’ from out of  my musical approach and style of  composing. For this, I think 
Christian Wolff  and Earl Brown’s notations and strategies can be of  more aid than Cage himself.  
Only time will tell what will come of  this, and this is an example where the thesis will leave off  into  
new musical territory, one which will be still  included in the doctoral research but which, in all  
probability, will bear fruits further along the way, jointly with newer approaches to pitch, harmony,  
texture and form.

The harmonic strategies that are glimpsed are:
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" Vectorial  (i.e,  based  on  the  coordinates  of  the  harmonic  lattice),  functional,  
approaches for generating and moving within harmonic space, by using, for example,  
chains  and  combinations  of  functions:  chords  with  tonic,  dominant,  mediant, 
seventh, elevenths, each of  which can move its coordinate forward or backward in  
harmonic space, thus producing varieties of  chords, all of  which are close to each  
other, closely connected, and at the same time being complex and with a consistent  
sonority. The ensemble setting can be done by giving musician or sections a single  
harmonic function in which to concentrate their  performance,  each moving in a 
single axis  of  harmonic space instead of  embracing many complex intervals  at a  
time.

" A Novarian approach using his series of  divisions to densify harmonic intervals, from 
large to small ones (or the other way around), abstractly generated and probably in  
combination with computer interaction, for example, by putting musicians ‘inside’ a  
varied version of  my sound installation Ahí estése, with different behaviors customized 
for the purpose, where the intervals played by the musicians serve as provocateurs that 
direct the process. Any interval can be divided into any number of  parts, with and 
without reciprocal intervals, producing varied chords and pitch sets from which to 
choose relationships.  The crux of  the matter  is  to  devise  a  logic  to  the way the  
divisions are realized: which intervals are divided, into how many parts, and in which 
order, something which has to be determined by experimenting with them. 

" 53ET  investigations  such  as  the  one  shown  in  Appendix  III,  from  which  large 
partitioned pitch sets will be the starting point for setting up processes from which the  
ensemble will perform over rule based open structures. This temperament has many  
seven based intervals, together with a few interesting eleven based ones plus many of  
the usual known ones in five limit.  They will  be organized proportionally around 
fundamental  intervals  as  well  as  in  pitch  distance  space.  There  is  the  idea  of  
specifying the open pitch gamuts to be played depending on specific rules that take  
into  account  the  microtonal  possibilities  of  each  instrument.  I  want  to  also  add 
rhythmic gamuts to the pitch partitions, giving each pitch region a corresponding 
temporal grid and letting the instrumentalists handle the connections. A conductor  
could give a common pulse but that is not completely necessary because the clouds  
and textures that may ensue need not be synced to a common pulse, and this may 
function even more flexibly and musically than in a completely specified written out  
form. A bit like the way the coincidences between sine waves and sound fields happen  
but in the domain of  note aggregates. 

" Partitions: musicians will play gamuts taken from many kinds of  subsets obtained by  
partitioning the previously mentioned pitch generation schemes. I can also think of 
‘meteor  clouds’  of  timbral,  distant  intervals,  generated  by  the  computer  and  set  
against the ensemble’s textures.

" Twofold harmony: the two aspects of  harmonic duality being composed against each 
other. A melody with a pitch distance space logic (say thirds or quarter tones in equal  
temperament) against proportional configurations, opposing two instrumental groups 
and producing a hybrid result which is thought as complementary in the sense that  
many unforeseen connections will happen between both harmonic worlds, leaving  
that aspect partially open so that interesting connection can take place.
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Furthermore, I will compose a dissonance soundscape to be played in a concert in a few months  
from now, in which sound field recordings will be accompanied by electronic materials derived from  
dissonance analysis. I will try to make the resulting textures quite different in timbre and texture  
from the dissonance chorales I have been pursuing until now.

4.2 Loose ends, speculative harmony

To conclude, this section will define and discuss a contemporary meaning of  harmony. It is after  
having traversed the more practical and compositional research that it is pertinent to speculate in a  
panoramic manner, both to conclude and produce insights, opening up to other perspectives and  
future involvements while connecting some of  the ideas about harmony that have been discussed in  
the previous chapters.

4.2.1 What is harmony? Metaphysics, Noise

’The  world is  not  respectable;  it  is  mortal,  tormented,  confused,  deluded forever,  but  is  shot  
through with beauty, with love, with glints of courage and laughter: and in these, the spirit blooms  
timidly and struggles to the light among the thorns.’ (George Santayana 209)

Harmony is not an originally musical and technical term, stemming instead from philosophy. It is 
interesting to contrast and confront the practical, auditory and musical ideas regarding harmony 
with those pertaining to conceptual issues that reach beyond music. The above quote could refer to  
harmony as the extraction of  beauty from chaos, as the attention paid to exceptional things in a  
world  filled  with  difficulties  and  sufferings.  Having  an  ethical  character,  it  could  be  translated  
metaphorically into sonic terms and related to the quote by Luigi Russolo which opens Chapter 2,  
which I interpret as referring to the harmony associated with dissonance curves that ‘attunes’ to the  
most  prominent  vibrations  in  noise210.  This  attuning  is  not  a  detraction  from  ‘the  irregular 
movements and vibrations in time and intensity’, but a process of  revealing its ‘gradation(s) and  
tone(s)’. It is not turning away from the mortal, tormented world, but accepting and including it  
through selection. Attention not only to its more prominent ‘glints of  beauty’, but also a concern for  
the relation between confusion and laughter, delusion and courage. Beauty as the contrast between  
elements of  the world and not as a necessary or preexisting model. The ‘light among the thorns’ is  
not  predefined  and  could  be  defined  very  differently  depending  on  the  perspective.  The  way  
harmony  has  been  examined  throughout  this  work,  with  dissonance  curves,  spectra  and 
rationalization, implies that noise is not its opposite. Their difference is not of  kind but of  degree: of  
ranges of  gradations and inclusions. In fact, noise is a too general and problematic term that I prefer 
to replace by (sonic) ‘complexity’, connecting more easily to a harmony that comprises simplicity  
and  complexity.  This  is  already  from the  outset  one  of  the  main  premises  behind  this  study.  

209 This quote was taken from a posting by a close friend of  mine. I have not found the original book in which it was 
published, but it can be found here: http://thinkexist.com/quotation/the-world-is-not-respectable-it-is-
mortal/347861.html Last retrieved August 17th 2012. 

210 Russolo, The Art of  Noise. Here is it again, for reference: ‘[T]o attune noises does not mean to detract from all their 
irregular movements and vibrations in time and intensity, but rather to give gradation and tone to the most strongly 
predominant of  these vibrations.’
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Harmony not as an retraction from chaos but as the concern for seeking forms within and through 
complexity, the separation and dissection of  its qualities, as in the case of  the timbral  sonances we 
have encountered. Furthermore, harmony embraces the opposites of  dissonance and consonance, it  
is  not the subordination of  order to disorder or of  dissonance to consonance. Moreover, taking  
harmonic  duality  into  account,  with  each  of  its  two  aspects  possessing  its  own  polarities 
(consonance/dissonance;  harmonicity/inharmonicity),  reveals  a  field  that  encompasses  atonality, 
high dissonance and antitonality as harmonic  regions  not exterior or contrary to  consonant  and 
harmonic zones.

If  harmony touches on aspects of  beauty, order and chaos (logos-alogos), continuity and discreteness, 
relationality and the connection between the micro to the macro, it is because since its Pythagorean  
inception it has always had a metaphysical dimension. Harmos means joining, harmonious denotes 
interlocking,  concerning  the  relationality  of  the  elements  involved  more  than  the  elements  
themselves.  Another  Pythagorean sort  of  figure is  Leibniz,  defining  universal  harmony both as  
‘diversity compensated by identity’ and as ‘identity compensated by diversity’ 211, emphasizing that 
both variety and unity must be operative: ‘there is greater harmony when there is greater diversity,  
which nonetheless is reduced to identity. (For there cannot be grades in identity, but in variety)’ 212. 
This  is  the  metaphysical  question  of  whole/part,  or  unity/multiplicity,  very  close  to  the  way  
harmonic  duality  has  been  elucidated,  unity  corresponding  to  proportional  pitch  ( logos) and 
multiplicity (variety) to linear continuous pitch-timbre (alogos). On the musical/auditory side of  our 
research this leads to the question raised by Tenney regarding Cage: ‘Under what conditions will a 
multiplicity of  elementary acoustic signals be perceived as a “single sound”?’213 

Late in his life Cage became sympathetic to the idea of  harmony, albeit one of  an anarchic type,  
embracing both ‘legal’ and ‘non-legal’ harmony. He states that ‘the simple togetherness of  art – I mean 
of  sounds – produces harmony. That harmony means that there are several sounds ... being noticed 
at the same time, hmm? It’s quite impossible not to have harmony, hmm?’214, also to add a few 
paragraphs later (in relation to Giacinto Scelsi, but still referring to harmony) that it is ‘sameness  
and difference as being together’. This is close to Leibniz’s definition above, although I believe that  
the  two aspects  Cage  mentions  (coexistence  of  diversity  of  elements  and the  relation between  
sameness and difference) should be managed separately as two different characteristics. Harmony  
includes but is not exhausted by coexistence. The relation between sameness and difference (identity  
and diversity) can imply relations that are not necessarily vertical nor adjacent in time. Some of  the  
consequences that have been extracted from this study, especially those concerning proportionality,  
suggest  that  vertical  coexistence  is  not  enough,  that  there  also  exists  an  overall  (even  if  local)  
measure or reference, an interlocking, that puts the elements into relation, into ‘being together’: a  
unity that makes a whole more than the sum of  its parts.

Cage’s idea of  an anarchic harmony arising as the coexistence, through chance encounters, between 
diverse  elements,  focuses  on  the  workings  and  relations  of  collectives  (of  sounds,  but  also  of  
persons), resonating with Cage’s approach of  optimistically affirming aesthetic forms as models for 
collective life. That in this kind of  anarchic harmony it would be ‘quite impossible not to have  
harmony’ should be understood, in my opinion, not as an ‘anything goes’ stance (quite the opposite  
to the Cagean approach), but as the idea of  an inclusive harmony we have just considered, one  
embracing the entire field of  sound and which cannot be opposed to a ‘non harmony’. The problem  
with accepting any possible combination of  sounds as well as means of  producing and giving them 

211 Stated in his Elements of  Natural Law. I have taken the quote from Mercer, C. (2004). Leibniz’s Metaphysics: Its Origins  
and Developments. Cambridge: Cambridge University Press, 214. 

212 Ibid.
213 Tenney, John Cage and the Theory of  Harmony, 15.
214 Cage, J., Retallack, J. (1996). Musicage: Cage Muses on Words, Art, Music. Hanover: Wesleyan University Press, 108-

109. 
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continuity resides not the possibilities it opens up but the fact that it obliterates any distinctions,  
erasing the harmonic regions. It could insinuate, for example, that any collective undertaking could  
be  equally  valid,  and I  don’t  feel  Cage  meant  this  by  saying  that  it  is  impossible  not  to  have  
harmony. For Cage there was a right spirit for doing things, with careful disciplined actions and  
against ‘improvisation’, ‘intention’, ‘mind’, ‘ego’, etc, giving preference instead to very specific types  
of  sounds and their combinations throughout his work. These constraints delineate a field and an  
aesthetic posture, a style with which it is so easy to identify Cage’s music despite its diversity and  
indeterminacy. What is significant to my position is to consider a harmony which, within this all-
embracing situation (which, of  course, includes silence), does not ignore the properties of  sounds  
and therefore makes possible the distinction and inquiry of  its various zones, placing them in relief  
against each other.

This  directly  leads  to  Tenney’s  definition  of  harmony,  one  motivated  by  Cage  but  developed  
perceptually, a definition which has been a basic premise throughout this study:

‘We can now define harmony as that aspect of musical perception which depends on harmonic  
relations between pitches — i.e. relations other than “higher” or “lower” . Thus defined, “harmony” 
will  still  include all  of  those things  it  now includes  — the “vertical  aspect  of  music,”  chord-  
structure, etc. — but it is no longer limited to these, and it is certainly not limited to the “materials  
and procedures of the diatonic/triadic tonal system . . .” It would, for example, also include pitch-
relations manifested in a purely melodic or monophonic situation, and — by this definition —  
nearly all music will be found to involve harmony in some way (not just Western “part-music”). In  
addition, the model of harmonic space outlined here suggests an important “first principle” for a  
new theory of harmony — that there is some (set of) specifically harmonic relation(s) between any  
two salient and relatively stable pitches.’215

These ‘specifically harmonic relations between pitches’ give rise to the examination of  harmonic  
space  and  also  extend  harmony  from  vertical  into  horizontal  correspondences  not  requiring  
simultaneity, an aspect that Cage’s conception does not explicitly tackle. A melody can be regarded 
both outside of  time, as structure, as well as inside time, as a flow and distribution of  this structure.  
Simultaneity and horizontality have an intimate relationship, the vertical induces the horizontal and  
vice versa.  Harmony has the capacity  to go beyond the single sonority and is  able to produce  
systems  of  relations,  comprising  multiple  sonorities  beyond the  actual  sounding  present.  These  
connections correspond to the traditional term of  tonality (antitonalities being not their opposite or 
negation but the far side of  harmonic tonalities). In terms of  harmonic duality, we could name the  
horizontal aspect, as in Chapter 1, the DC (direct current) feature of  harmony in that it consists of  
pulses,  on-off  switches (‘unity’)  inside of  which vertical  AC components (bipolar waves,  chords,  
timbres) happen (‘diversity’).

For Barlow, ‘harmony is the study of  that which is intervallically intended or at least understood’ 216, 
a definition which accommodates anarchic harmony as long as it is listened to as a relationship of 
intervallic  characters,  thus  pertaining  more  to  harmonicity  than  to  consonance.  Both  of  these 
previous definitions pertain to compositional and musical characteristics of  harmony, and it is from  
these premises that the formal, structural and metaphysical aspects have been examined. I have  
arrived at  a  Pythagorean account  of  harmony,  namely  that  there  is  a  connection,  in  hearing,  
between whole numbers and intervallic characters, from musical questions which eventually lead to  
abstract ideas that go beyond music, the perspective of  musician/composer being always the site  
from which other external notions are connected. Because it does not evade the lines of  reasoning  
behind the models of  the universe that have been put forward by this long standing tradition, this  
route avoids many of  the caricatured and superstitious accounts which surround us to this day and  
which have given such a bad reputation to the serious efforts of  so many proportionalists throughout  

215 Tenney, John Cage and the Theory of  Harmony, 34-35. Emphasis in the original.
216 Barlow, Musiquantics, 20. 
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history.

There  is  a  metaphor  for  harmony  we  could  call  ‘chemical’  or  ‘synthetic’:  putting  together  of  
elements into something which is qualitatively different from their mere gathering. Chemically this  
corresponds to a solution rather than a physical suspension. The latter pertains more to textures and  
aggregates which do not coalesce into a new substance, while the former is a mixture different from  
the aggregation of  its parts, as is the case with timbre, which is more than the breakup into its  
partial components. This synthetic, as opposed to analytic, feature relates to harmonic duality by  
showing how both of  its facets share the unifying and splitting forces that make possible the various  
kinds of  musical objects at various levels of  scale.

From the above considerations, I venture a definition of  harmony of  my own:

Harmony is an sonic assemblage mixing concrete and abstract elements that produces a result which is  
greater than the sum of  its parts and which produces (and requires) time while also giving the illusion of  
space.

Harmony must be assembled, it is not pre-given: ‘harmony is a result, not a guiding principle’ 217. The 
arithmetic correlations of  harmony do not exhaust it and cannot make of  it sets of  a priori rules that 
legalize or prohibit certain configurations over others. Harmony must be discovered. As we saw, it  
cannot be purely  deduced, but needs to have an empirical  axiom to get  started.  Secondly,  this  
produces something which is qualitatively different from the mere aggregation of  its components  
and  this  is  what  produces  a  specific  temporality  and  a  spatiality.  It  is  not  necessary  to  have 
multichannel arrays of  speakers and sophisticated spatialization (all so unassumingly prevalent in  
electroacoustic circles) to give the illusion of  movement and spatiality: this can already be done with  
pitch alone, a property that is usually not considered in thinking the spatiality of  sound. Temporality  
is also intimately linked to harmony: not only does pitch and pitch relations require time but they  
also produce an experiential  sense of  it  at  various  levels,  including sometimes an ‘out  of  time’  
sensation that directs the listener outside the situation where the music is happening.

Harmony is not a happy-ending complacency that resolves conflicts by pointing us to a higher sense  
of  agreement or peace (as in the German name for harmony which is  Eintracht). It is the joining 
(harmos) as well the splitting and tearing apart, keeping in touch with the emancipation of  noise  
brought forward by atonality and modernism. It implies beauty, but not necessarily past beauty,  
instead inviting us to extend the notion of  beauty. Neither nostalgia (origin) nor ultimate purpose  
(eschatology). By not positing any entity as a explanation or ground for all else closure is avoided, so  
origin and ultimate fate are not relevant. The harmony I seek is a coexistence between the real and  
the ideal. Both cannot be purely a priori realms but imperatives to discover the novelty in sonic (and 
other kinds of) objects. There is no higher goal or meaning: harmony is not global, but local, not a  
harmony of  the whole disseminating into its  parts,  but the relation of  parts  with wholes in an  
indefinite interlocking of  embeddedness with no end in sight (therefore it is not holistic), including in  
the system all its ‘symptoms’, antagonisms, and inconsistencies, as integral parts of  it.

We should then maybe talk about a ‘post-established harmony’218, the pre-established harmony of 
Leibniz being an axiomatic (or divine) agreement between sense and thought, world and experience,  
real and ideal, the condition that permits this world to be ‘the best of  all possible worlds’. Instead of  
taking the lead from a postulated agreement, the sought harmony must be invented and discovered 
in a concern for patterns and relations at all levels. Speculative harmony: in a mirror ( speculum). To 
find harmony in randomness as well as building ergodic harmonies thorough an exploration of  the  
space of  possibilities of  its materials: harmony characterized by complexity.

217 Harman, G. (2009). Prince of  Networks: Bruno Latour and Metaphysics. Melbourne: re.press, 21. 
218 Ibid., 21.
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To recognize that there is a specific musical relation between relatively stable pitches and whole  
numbers (‘harmonic relations’, or the Pythagorean focal point of  our research), implies that there  
are specific features to musical perception; that music possesses its own autonomous rules (auto-nomos: 
having its own law). This goes against postmodern musicology which states that music is made up 
entirely of  (social/cultural) conventions, as I discussed briefly in the introduction, but it does not  
imply that music  is  ‘absolute’  (that it  is  the only art  that transcends this  world) in the sense of  
Schopenhauer/Wagner. Music is always in communication with other arts as well as the sciences,  
feeding from both of  them. However, it  should also acknowledge, greet and respond to its own  
properties. Music reaches into art and science, but should also remain aloof  from them, its functions  
and context far exceeding those of  art and science (for example ritual, dance, trance, resonance –  
different  from the  mimesis  of  art  –,  healing,  forgetting,  accompanying,  etc).  Its  distance  from  
language is also one of  its main sources of  its individuality. In some occasions it has became too 
close  to  art,  in  others,  to  science.  It  should  not  forget  its  own  traits  and  back  and  forth  
communication  and  transmission  of  information  with  the  other  disciplines.  Harmony  is  a  
specifically musical phenomenon. Even though it has a connection to science (mainly arithmetics, as  
we have seen) and art (to broader aesthetic principles), its roots lie in musical and sonic principles.  
This should be acknowledged and maybe shared with other sonic practices which lack a concern for  
pitch relations, more frequently out of  unawareness and because of  the traditional connotations of  
harmony, than for a lack of  interest in the possibilities that can be opened up.

To conclude by going  back to the beginning  of  this  section,  a  few words  about  harmony and  
contemporary chaos and numbers.  According to the philosophy of  Quentin Meillassoux, which is  
complex and in which I cannot (and do not need to) delve into here, randomness is subject to the  
same (meta) law as everything else. It is not noise and randomness (as with many theorists of  noise  
who think noise music takes us to the uncanny realms) which convey a glimpse of  the contingent,  
but rather proportionality. Randomness is not the opposite of  order. It is not different in kind, but in  
degree. According to his posture on randomness and probability, what is important is not what is  
likely but what is  interesting. Harmonic analogies (proportions) become a Symbol amidst chaos of 
what is worthy of  grabbing on to, the ‘light among the thorns’ that Santayana refers to in the quote 
above. He argues that Being is contingent, that everything could change at any moment for no 
reason whatsoever, so that the laws of  nature fall  into the same contingency as everything else,  
randomness being as much a law as any deterministic law219. It is in the way he questions the way 
that mathematics can capture something absolute about being, independent of  human thought (a  
Pythagorean question), that he arrives at these considerations. What I’m relating to harmony is the  
way it implies the precariousness of  whole numbers and proportions , which become small islands in 
the midst of  an extended field of  chaos.

The philosophical implications of  harmony considered in relation to the psychoacoustically and 

219 Meillassoux, Q. (2008). After Finitude. An Essay on the Necessity of  Contingency. R. Brassier, Trans. London: Continuum. 
The topic is developed closer to art and music in the dialogue Meillassoux, Q., Hecker, F., Mackay, R. (2010).  Chez 
Meillassoux, Paris, 22.7.2010. Falmouth: Urbanomic Documents. Last retrieved August 18, 2012, from 
http://www.urbanomic.com/archives/Documents-1.pdf. He says: “Randomness means laws. There are laws of 
randomness, calculations of  randomness. It’s a way of  calculating, that’s all. And so it’s just a particular mode of 
the existence of  physical laws. It’s a way of  anticipating, it’s absolutely regular, in fact. So, the problem is, if  you 
break laws which are structurally random, you can’t find yourself  again in randomness, it is not the same 
phenomenon. But it’s very difficult to show this. The problem is that maybe, by examining the way that artists try 
to show randomness, to make it felt, what did they do exactly? We have something that is ‘random’, how can we 
break this? How can I break into this lawful randomness in a way that is other than random? The difficulty is 
there.” Elsewhere, he adds: “[D]etermination and randomness, they are the same. So, at the beginning, for 
example, you could show it as an opposition, but progressively you see that it is just ‘quoted‘ inside something else. 
The challenge would be to surprise a musician or an artist of  randomness: he thought he was exploring the world 
of  the random, but now he sees that random is just a quotation”.
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arithmetically informed approach that has been studied can serve to expand and give it a wider  
compositional  assessment.  The  various  perspectives  make  sense  of  what  has  been  previously  
explored, pointing towards new lines of  thought that reach beyond the purely technical, sonic and  
musical, pointing abstractly and aesthetically to ideas to be pursued later both compositionally and  
theoretically.
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Conclusions

I hope this research is valuable to others. It provides many perspectives, some of  them left open for  
the readers themselves to link.

I think that this thesis contributes with 5 main points:

" An argument for microtonal harmony useful beyond microtonal specialists

" To put Tenney’s and Barlow’s ideas on the map a bit more

" Acknowledge the tools that psychoacoustic and cognitive research can bring to music as  
well as a critique of  some of  their approaches: psychologism – everything happens in the  
brain, something I argued is not completely defendable for intervallic ratios –  and the  
fact that they use traditional theory – equal temperament, functional harmony – in order  
to prove it in a circular way. I think composition can suggest research which is less based 
on existing theories and can actually open up to new insights.

" To show my artistic research process. It embraces experimental music understood as:

! Cage: music whose outcome is unforeseen

! Tenney: one experiment leads to the next one, as in the sciences

! Me: experimental in the sense that it might be able to make contributions to the field  
for others to expand, beyond my specific applications of  the ideas and through music

" To be able to use this theorization of  harmony and recollection of  information regarding 
its uses, history, metaphysics, etc., in order to make more music. Both in my case and 
hopefully for others too.  Concerning me, and as already mentioned, there are many 
avenues left open to pursue: Augusto Novaro, Erv Wilson, object-oriented metaphysics,  
further  developments  to  DissonanceLib,  to  name the  ones  that  stand out  most  at  the 
moment.

On the other hands, I should mention my specific contributions in order to differentiate them  
from the ideas of  Barlow and Tenney which are very close to my approach. Regarding harmonic  
duality, my point of  departure has been Barlow, although hints of  this duality are also present in  
the writings of  Johnston and Tenney. What I have done is to delve into the details of  this two  
features in order to extract and detail the many nuances behind them, characterizing each side  
and  showing  how  they  intertwine.  The  different  functions  that  derive  from  this  are  not  
immediately obvious nor do they map neatly into each side of  the duality. The functions were  
described both through the evidence provided by the psychoacoustic foundations of  pitch and its  
neurological perceptual path, as well as through the historical route that connects present day 
concerns  with  Greek  harmonics,  both  in  their  mathematical  and  empirical,  almost 
phenomenological,  approach.  I  have  found  lots  of  detailed  substantiation  for  renewing  a  
harmony from a broader perspective than is usually the case, even if  this has not led to a full-
blown and systematic theory. Another outcome to this extension of  the senses in which harmony 
can be compositionally dealt with has been relating it  at various levels of  scale as well  as  in  
abstract terms such as discreteness/continuity, flux/stasis, and so on. I think this work opens up 
further investigation and compositional uses of  these ideas, some of  which are still not completely 
formulated  and  developed,  especially  those  that  required  the  more  abstract  uses  of  object-
orientation and multilevel duality (eidos-sonos, logos-morphe, nomos-drama) and which will be pursued 
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more fully in the future.

Perhaps where my approach diverges mostly from the aforementioned composers is in that much 
of  the theoretical development has been done through my implementation and use of  dissonance  
curves. These curves are analyses of  timbral and continuous features of  pitch, and the fact that  
they lead to and intersect with proportionality gives a very specific slant to my examination of  
harmonic topics. Harmonic duality has been developed from this departure point, intersecting  
with the compositional process. Harmonic space has been approached from the practical and 
algorithmic  requirements  of  analyzing  the wide variety  of  intervals  produced by  dissonance  
curves  in  conjunction  with  instrumental  and  computer  generated  music.  Applications  of  
dissonance curves such as dissonance chorales and the derived pieces have also benefitted from 
the multilevel considerations of  harmony and have proven to be quite particular to my research,  
unrelated  to  the  usual  spectral  routes  of  relating  features  of  sound to  electronic  resynthesis  
methods.

Regarding  harmonic  space,  most  of  the  ideas  were  already  there,  but  my  specific  way  of 
implementing them brings independent approaches such as functional representations, degrees,  
tempered  approximations,  nomenclature  and  correct  use  of  accidentals,  together,  also  
incorporating visualizations and pursuing strategies for navigating the pitch sets. I also put quite  
more emphasis than any of  the treated authors in the importance of  prime numbers in harmony  
as well as using this notion to produce separations and mixtures of  pitch sets in composition. For 
all  that,  I  think  more  could  have  been written  regarding  adaptations  and transcriptions  for  
instrumental settings, although this has been accomplished through some of  the compositions  
and some traces of  it are attested in section 3.1.6 and Appendix III.

Another independent line of  inquiry was the development of  harmonic fields, even though it  
shares  some  premises  with  Barlow’s  methods  in  his  software  Autobusk,  that  is,  to  regard 
harmonicity as a basis for the statistical selection of  pitches. Nevertheless, my implementation is  
more textural than his metric approach, and, as a consequence of  initially having been based on  
dissonance  pitch  sets,  has  led  to  new areas  discovered through the  musical  and algorithmic  
development, notably the region of  antitonality, a genuine contribution of  this study (more a  
discovery than an invention) as well as the ‘atonic’ mode of  selection, which has a sound very  
much of  its own. The fact that it is based on a real time programming environment has also 
guided it towards live interactive behaviors and electronic sound synthesis, installations as well as  
algorithmic improvisations with live coding.

The  section  on  Pythagoreanism  was  meant  to  give  emphasis  to  a  line  of  thinking  that  is  
enormously influential throughout Western history and has fallen into relative obscurity in recent  
times. I consider that the use and understanding of  pitch ratios in music is very important and  
this approach cannot afford to ignore the ideas stemming from this tradition. This is where some 
ideas from Archytas, Galileo, Kepler, Leibniz and Euler, among others, have resonated with my 
investigations. Finally, the other theoretical section that deals with harmony in different registers  
of  thought than the purely technical  and compositional mode is the review of  atonality and 
modernism as a liberation of  continuous forms at many levels, especially concentrating of  how 
the musical materials could be understood as filling the gaps of  discrete structures. This makes an  
analogy with the mathematical continuum in order to show how most contemporary music today 
is saturated with continuous forms at all levels, suggesting that proportionality and discreteness  
should be reassessed and re-approached from within this situation.

Much more is still to be pursued, both on a technical as well as a conceptual/aesthetic level, and  
I hope this work has been an important stepping stone in my development as a composer, more a  
beginning than a conclusion, the herald of  much more music, theory and software to come.
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Glossary

‘algorithmic improvisation’

As with ‘algorithmic composition’, I use this phrase to refer to improvisations 
conducted with the aid of  algorithmic tools, such as the Logos sessions I did with 
the harmonic fields generator.  

accidental/essential qualities

Aristotelian  terms  that  denote  the  difference  in  an  object  between  the  
properties it must have to remain what it is (essential) and those contingent ones  
that  arise  from its  relations  to  other  objects  in  its  environment (accidental).  
Used in object-oriented thought and applicable to harmony as the difference  
between the  harmonic  and timbral  qualities  of  an interval:  the  former  are  
essential, while the latter are accidental. 

aggregation/aggregateness

In my conception of  harmonic fields, it refers to the axis of  agglomeration, the 
textural distribution in time of  the elements, lying between the poles of  ‘fusion’  
and ‘fission’,  that is,  when the elements coalesce or segregate depending on  
their  size,  speed,  density  and  harmonic  properties  (consonance  and 
harmonicity). See Figure 6 in section 3.2.1. 

aisthesis ‘Aesthesis’ in Greek means perception. Aristoxenos, in his discussion of  dynamis, 
refers to  aisthesis in music: hearing (akoe) complemented with thought (dianoia). 
The difference between simple hearing and this way of  ‘perceiving’ is that it  
requires  training  and  involves  discrimination:  a  sensitivity  to  the  musical  
meaning of  notes and intervals in context. This term is taken by this study to  
clarify that the proportional meaning of  intervals requires both perception and  
intellection, that ratios do not appear directly in consciousness but nevertheless  
exist as ‘formal causes’. See also Aristotelian causes.

alogos An irrational number, a quantity for which no ratio exists. It could also pertain 
in the realm of  musical form to the absence of  perceivable logic at the mid-
level  of  method,  suggesting  an  ergodic/aleatoric  kind  of  behavior.  See 
ergodic.

antitonality In my conception of  harmonic fields it is the region where inharmonic intervals 
are more probable than harmonic ones (the left half  of  the harmonic fields  
diagram  of  Figure  6  in  section  3.2.1).  Antitonal  configurations  may  often 
contain local harmonic relations, as the intervals are inharmonic with respect to 
1/1 but may be more closely related between themselves.

Aristotelian causes

It seems like harmony and music would benefit a lot from understanding some 
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of  its objects in terms of  the four Aristotelian causes. For a start, they provide  
the best approach to explaining how intervallic ratios ‘arise’ as formal instead 
of  efficient causes (as if  science would be able to explain the moment in the  
neuronal  pathway  where  a  whole  number  ratio  emerges,  the  ‘ideal’  arising  
somewhere or at some point in time in the brain). Formal causes are inferred 
from perception but do belong to the sensation itself.  Here is  where object-
oriented philosophy could  benefit  a  speculative  harmony,  as  presented in  a  
embryonic outline in the last Appendix. The two temporal causes (efficient and 
final) govern upon perceptual qualities while the spatial, mereological, causes  
(formal  and  material)  are  involved  in  the  objects  themselves,  outside  their  
relations  to  perceivers.  This  is  only  the  initial  work  on  what  I  feel  to  be 
interesting prospects for the future. See also footnote 74, page 46. 

autocorrelation

The principal model behind time-based pitch perception theories, proposed by  
Joseph Licklider in the 1950s. A mathematical tool for finding periodic patterns 
in  signals  by  measuring  their  self-similarity  across  time.  It  is  the  cross-
correlation of  a signal with itself  as a function of  time and it is believed to  
happen neurologically in the auditory centers of  the mid brain and projected  
upwards into the cortex.

bark, sone Psychoacoustic units calibrated to the psychological responses of  of  pitch and 
loudness: critical bandwidth for barks, and equal loudness contours for sones. 

bottom-up, top-down

Two approaches to description used in cognitive science. The former builds up  
from individual components to ever more complex and larger scale systems.  
The latter begins from high level ‘cognitive’ experiences and explains them as  
the  conjunction  of  smaller  ‘black  box’  components.  Though  it  would  be 
desirable for them to ‘meet in the middle’, that does not happen and there are  
many gaps between the two descriptions. In music composition one could say it  
has mainly been approached from the bottom up: from small cells and motives  
that build up to larger works. Iannis Xenakis, with his use of  graph paper in the  
early 1950s, is probably the first composer to conceive a piece simultaneously  
from the macro to the micro and from the micro to the macro. 

bpm Acronym for beats per minute. A term used for metronome markings. 

CDC, Consonance/Dissonance Conception

James Tenney’s  Consonance/Dissonance Conceptions,  as expounded in  A History of  
‘Consonance’  and  ‘Dissonance’.  They  refer  not  to  theories  of  consonance  and 
dissonance but to the underlying conceptions behind the terms, each being able  
to accommodate various theories styles and epochs within it. They are: 

CDC-1 Melodic. The relatedness or ability to directly tune melodic 
pitches.

CDC-2 Dyadic or ‘fusion’, as in early polyphony, based on the 
sonorous character of  simultaneous dyads, the way pitches 
tend to fuse into a single percept. 

CDC-3 Contrapuntal. An operational conception related to the 
rules of  counterpoint and the relation between the bass and 
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other voices. Melodic and textural clarity is central.

 CDC-4 Functional. Based on the idea individual tones being 
consonant or dissonant with respect to the root of  a triad, 
not necessarily connected to their sonorous quality of  the 
interval. 

CDC-5 Timbral. Pertains to any sound or aggregates and depends 
on roughness and the perceptual qualities of  the spectrum. 

clang In James Tenney’s theory of  Gestalt forms it refers to the primary aural Gestalt, a 
configuration (can be a note, motive, chord or aggregate) that is perceived as a 
primary  musical  unit.  It  is  a  ‘strong’  Gestalt,  in  contrast  to  elements  (smaller 
subordinate parts  of  a  clang)  and  sequences  (larger configurations made up of 
clangs).

clangtint A term I use to refer to the residual timbre that results from the slight mistuning  
(within tolerance) of  an interval from its exact proportional tuning. It is the 
tonal shading of  a proportion, its timbral-harmonic attribute.

comma: syntonic, Pythagorean

Commas are intervals that result from tuning an interval in two different ways,  
arrived  at  from separate  combinations  of  fundamental  intervals.  The  most  
famous  ones  are  the  syntonic  (also  called  the  chromatic  diesis or  comma of 
Didymus)  which is  the  difference between a  just  5/4 third and Pythagorean  
major  third  (or  ditone)  81/64.  This  difference  is  81/80,  21.5¢.  The 
Pythagorean comma is the difference between 12 pure fifths and 7 octaves, the  
difference being  531441/524288 which is 23.46¢. There a many other commas  
related to different combinations of  primes. See section 3.1.3. 

commas, alterations, steps, and leaps 

A comma changes the tuning of  an interval without changing its scale degree,  
(the interval is tuned in accordance with one set of  fundamental intervals rather  
than another). An alteration does not alter the degree but changes its mode or  
quality (major, minor, just, augmented, etc). A step is an adjacent change of  
scale degree, independent of  its size. A leap is a non-adjacent change of  degree.  

commensurability

The proportional, time-based, theory of  consonance according to which the 
different  numbers  that  compose  a  ratio  are  commensurable  to  each  other.  
Thinking intervals as pulse trains, it means that the sooner they fall back in sync 
the more commensurability they will be. Galileo Galilei proposed the first full  
theory of  commensurability as the conjunction of  different but related cycles.  
Leonhard  Euler  was  to  further  refine  it  in  stating  that  what  is  of  most 
importance is  the divisibility  (factorization,  therefore prime numbers)  rather  
than the sheer size of  the numbers involved. 

critical bandwidth

The  frequency  interval  within  which  sine  waves  interact  inside  the  basilar  
membrane in the cochlea. It is of  different sizes according to the register of  
hearing, being more than an octave in size in the lowest range and less than a 
second in the highest. For most of  the hearing range it lies between a subminor  
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7/6  and  a  minor  6/5  third.  It  determines  the  limits  of  roughness  (whose  
maximum is reached at 1/4th  of  the bandwidth) and masking. It is also the 
limit between melodic (steps) and harmonic (leaps) intervals. 

diagonalization Georg  Cantor’s  method  for  finding  irrational  numbers  out  from  series  of  
densely  packed  rational  numbers  by  traversing  their  them  diagonally  and 
changing a digit of  each number’s decimal or binary representation to arrive at  
a number not representable as a rational but contained within the interval. It  
formalizes the continuum in mathematics and discovers a new infinity that lies  
beyond the denumerable one of  the whole numbers (and rationals). See section  
2.2.3.

diatessaron A perfect fourth 4/3, the principal interval that engenders melodic harmony.  
The main interval of  division in Greek music theory.

diesis A small  interval  that alters  other intervals  into their  chromatic  counterpart. 
Dieses can be minor, major, septimal, undecimal, etc. It has had many meanings 
in tuning theory but in pitch distance space it refers to the Aristoxenian diesis, 
the thirtieth part of  a fourth, corresponding to a sixth of  a tempered semitone  
or 16 2/3 ¢.

difference tones Discovered by  Giuseppe Tartini  in  the  seventeenth  century  and studied  by  
Hermann  von  Helmholtz,  they  are  tones  arising  from  two  closely  spaced 
pitches, usually in a high register which are produced by non linearities in the  
perception  mechanism.  They  are  of  several  kinds  and  orders,  the  most  
common being the summation and difference between the frequencies of  the  
tones. They have been used to explain consonance and dissonance and can be  
used  in  composition  as  as  harmonic  generators,  as  in  the  case  of  James 
Tenney’s Koan for String Quartet, where they are used to harmonize a continuous 
glissando.  

diminished, just, augmented

The possible varieties that ‘perfect’ intervals such as unison, fourth, fifth and 
octave can have according  to their  size.  See  subminor, minor, neutral, 
major, supermajor. 

dissonance chorales, dissonance chords and textures

The  names  I  give  to  the  generation  of  harmonic  textures  derived  from 
dissonance curves. Usually refers to recorded soundscapes that are harmonized  
at various rates through this kind of  analysis. 

DissonanceLib The collection of  tools I have developed during the research and available as a  
Quark for the SuperCollider programming language for sound synthesis and 
algorithmic  composition.  Its  main  classes  are  Dissonance,  PitchSet, 
HarmonicVector  and some others,  plus  extensions  for  using and converting 
psychoacoustic units as well as the implementation of  some historical harmonic 
functions (means, katapyknosis, Novaro series, and other utilities). It is available  
from within SuperCollider and comes with documentation. 

Dissophonos The program built in  SuperCollider, atop DissonanceLib, for analyzing sound files 
with dissonance curves. See dissonance chorales. 

drama Of  the terms I use to describe harmonic duality at different time scales, drama 
corresponds to the timbral/continuous aspect of  large scale form. It is named 
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thus because its Greek meaning (‘action’) is in agreement with the way a piece 
progresses as a narrative, not necessarily a directional narrative, as it could be 
constituted  by  an  ergodic  distribution  of  lower  level  forms,  without  any 
expected progression. In this extended sense, it refers to the causality of  musical  
forms at the time scale where memory and extended attention are operative.  
This level is made up of  lower level objects: continuous profiles (see morphe). 
Its proportional counterpart is  nomos,  the ‘law’ or ‘logic’ behind structural 
aspect of  large scale form. 

dynamis/melos The  horizontal  aspect  of  harmony.  The  melodic  character  of  an  interval,  
depending more on context and scalar function than on its absolute size. An  
interval’s potential for movement.

eidos/eidetic A essential quality of  an object, in contrast to its accidental qualities. In object  
oriented metaphysics it is a ‘submerged’ quality: it can only be alluded through 
categorial  intuition  (aisthesis),  but  not  directly  perceived.  In  the  case  of  a  
harmonic object it is its ratio, its formal cause. It is the relation between the real  
sound and the ideal ratio, the process whereby they are related and formalized.

Eidos  also  is  used  in  this  research  to  refer  to  the  proportional  aspect  of  
harmonic  duality  at  the  time  scale  of  small  scale  materials.  The  term 
corresponds to the manner in which the proportionality of  pitch intervals is  
encountered  in  perception,  that  is,  submerged  within  the  sensory  aspect  
(sonos)  of  the  interval,  alluded  indirectly  by  means  of  ‘intellection’  
(Aristoxenos)  or  categorial  intuition  (phenomenology,  also  know  as  eidetic 
variation), as described in the previous paragraph. 

ekbole The name given in Greek harmonics to the subminor third of  7/6, 266¢. 

epimore/epimere

Terms referring to whether an interval is super proportional or not. The main 
criteria for consonance in Greek theory.

ergodic A term used by James Tenney in his article ‘Form in 20 th century music’ to 
describe forms where the compositional space of  possibilities is explored in a  
statistically homogeneous manner. It can pertain to various or only to a single 
sonic variable, both in wide ranges and in limited spans, to sections as well as 
whole pieces. One way to detect ergodic forms is when ‘everything is changing  
but  everything stays the same’ (with respect  to some sonic  parameter).  The 
temporality of  ergodic forms tends to be static, without direction.  

fundamental interval, fundamental number

Fundamental intervals derive from the sonic qualities of  prime numbers. They  
are like the primary hues of  harmony, from which other combined intervals  
derive.  I  call  it  fundamental  interval  when it  is  octave reduced,  but  refer  to 
fundamental numbers in their non octave reduced form (i.e., fundamental number 
3 is taken as fundamental interval 3/2).

Fundamental Theorem of  Arithmetic

Every  whole  number  is  decomposable  into  a  unique  sum of  prime powers  
(Euclid). This translates into harmony as the decomposition of  an interval into  
fundamental ones defined by prime numbers. 
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genos The different  kinds  of  tetrachordal  structures  upon which Greek scales  are  
built. There are three main kinds, diatonic, chromatic and enharmonic, each 
with several variations or shades named chroai. 

granular harmony

The name I use to refer to harmony which goes very fast, at granular speeds.  
Dissonance  chorales  can  be  of  this  type  and  it  also  related  to  the 
aggregateness axis in harmonic fields. 

harmoneme The  term  used  in  this  study  to  refer  to  the  building  blocks  or  units  of  
proportional harmony. The timbral aspect of  harmony has small distances as  
its basic constituents, such as Aristoxenian dieses or ‘just noticeable differences’. 
Instead, harmonic units are not small intervals but larger ones than get divided.  
In  this  study  these  units  are  held  to  be  the  prime  numbers  that  factorize  
harmonic ratios and constitute the axes of  harmonic space. The octave is one 
of  these harmonemes, but also fifths (twelfths) and thirds (two octaves plus a third)  
are fundamental intervals that provide primary harmonic hues. 

harmonic arithmetic

Operations  concerning  musical  ratios.  The  most  basic  and  common  are 
addition  and  subtraction  (corresponding  to  multiplication/division  of 
fractions),  but  can  also  include  exponentiation,  octave  reduction,  and 
factorization. Harmonic means,  katapyknosis  and Augusto Novaro’s series 
could  also  be  said  to  be  more  complex  kinds  of  operations  in  harmonic  
arithmetic. The class HarmonicVector in DissonanceLib allows to perform these 
operations on harmonic proportions.  They can be thought of  as arithmetic  
operations in the field of  rational numbers and also as movements within the  
harmonic lattice where they are represented. 

Harmonic duality

The main hypothesis of  this research, though which all other topics related to 
harmony are considered. In a nutshell it deems musical harmony as having two 
aspects, a proportional, properly harmonic one, related to intervallic qualities  
and  stabilities,  and  a  linear,  distance-based  one  related  to  timbre  and 
continuous pitch. Both are intertwined and always present to various degrees in  
different musical contexts. Their separations can be composed and a concern  
for  this  duality  can help explain and untangle  many harmonic topics,  both 
historical and current. 

harmonic function: dominant/mediant/septimal

Any ratio can be given a harmonic function that derives from the fundamental 
intervals  that  compose  it,  usually  ignoring  octaves.  These  functions  have 
inverses (sub-dominant, sub-mediant, etc) that correspond to accumulation of  
that  interval  in the negative direction in the harmonic lattice.  For example, 
3D2mS denotes a triple dominant, double submediant and single septimal. This  
interval  (with  no  direct  musical  use,  only  given  to  illustrate  the  point)  
corresponds to 33*7/52 = 189/25; octave reduced it is 189/100 (1102.06¢). 

harmonic hues

The  perceptual  harmonic  qualities  of  fundamental  intervals  and  their  
combinations. See section 3.1.2. 
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harmonic metric

A distance function for harmonic proportions that gives a measure of  their 
harmonicity.  There are various possible harmonic metrics,  the most  studied 
and interesting for this research are Leonhard Euler’s Gradus Suavitatis, Clarence 
Barlow’s harmonicity  and James Tenney’s  Harmonic Distance.  They are metrics in 
the mathematical sense: they are non-negative, d(x, y)  " 0; if  zero, it implies 
that the two intervals are the same: d(x, y) = 0 # x = y; they are symmetric: 
d(x, y) = d(y, x); they satisfy the triangle inequality: d(x, z) ! d(x, y) + d(y, z). See 
section 3.1.5. 

HarmonicFieldsForever

The  program  built  atop  DissonanceLib  in  SuperCollider for  generating  and 
exploring stochastic harmonic fields. See section 3.2. 

harmonicity/inharmonicity – consonance/dissonance

In  harmonic  duality,  harmonicity/inharmonicity  refer  to  proportional 
agreement or dissimilarity, while the terms consonance/dissonance refer to the 
timbral aspect of  harmony, where they denote sensory consonance/dissonance 
(roughness and the nearness of  the partials to harmonic series or tonalness). 

harmonics (harmoniké)

The science of  harmonic in classical Greece was companion to the sciences of 
rhythmics  and metrics  whose task was  together  to  classify  and describe the 
regular and repeated patterns of  form and structure underlying the diversity of  
melodic, rhythmic or metric sequences in music. In particular, harmonics dealt 
with the structures underlying melody (melos). It set out to identify the varieties 
of  scales  and  tuning  systems  which  could  be  reckoned  as  musical,  seeking 
quantitive representations for intervals and melodies, classifying scales and their  
transformations,  and  searching  for  the  underlying  principles  behind  these  
structures. Questions such as their rooting in human culture or in something 
independent  of  humans,  or  in  mathematics,  as  well  as  the  status  of  their  
applicability  beyond the  musical  sphere  were  the  kind of  issues  raised  and  
discussed by harmonists. As such, it was a full blown science in the sense of  a  
discipline to discover and demonstrate a body of  truths, regardless of  whether  
they could be assimilated to mathematical sciences or to the ‘sciences of  nature’ 
(physiologia). There are two main schools of  harmonics, the mathematical and 
the  empirical,  the  former  associated  with  Pythagoras  and  the  latter  with 
Aristoxenus. 

HarmonicVector

A class in DissonanceLib that represents intervals as coordinates in the harmonic 
lattice, both as they are and in octave reduction, together with their ratio and 
functional representations. It also allows for harmonic arithmetic.

holophony A term that  describes  a  kind of  musical  texture  in  which various  kinds  of  
simultaneous  textural  streams  coexist.  It  is  a  generalization  of  monophony, 
polyphony, homophony, heterophony as it encompasses combinations of  them. 
Can be said to pertain to many musics (especially electroacoustic) of  the 20 th 

century.
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hypate, parhypate, lichanos and mese

The names of  the identities of  notes in the central tetrachord in Greek music. 

infrapitch Refers to perception of  iterance below cochlear pitch. Only periodotopic pitch 
detection is involved, rather than a combination of  periodicity and tonotopy. 
It ranges from below 2 Hz to between 16 and 20 Hz which corresponds to the  
periods of  clangs, melodic phrases and low to mid scale forms. 

inside- /outside-time structures

Terms used by Iannis  Xenakis  to  distinguish between sonic  objects  in  their  
abstract form (outside time: scales, durations) and their musical deployment in  
time (rhythms, chords, timbres, sonic transformations).

inter-interval matrix

A matrix  which contains all  the intervals  that happen between each of  the 
intervals in a pitch set (it is actually a half-matrix). Harmonic fields are built on 
top of  this matrix by taking its harmonic metric, then ranking the values and 
converting them into probabilities. The intervals are chosen from out of  this  
last matrix. See section 3.2. 

katapyknosis A procedure for the densification of  intervals by dividing them into successively  
smaller dieses, either in pitch-distance space (Aristoxenos) or by producing series 
of  smaller and more complex ratios (Pythagoreans). DissonanceLib has functions 
for performing the Pythagorean version of  katapyknosis on ratios. 

klangfarbenmelodie

Tone color melody. When the scope of  development in late Romantic music 
collapses into a single note at its modernist limit in the  Second Viennese School, 
collapsing  of  harmonic  modulation  to  the  note  level,  embracing 
instrumentation and timbre.  The heart  of  timbral  modernist  harmony.  See  
section 2.2.2.

limma An interval which is a remnant of  two others. A type of  comma. It arose with 
Pythagoreans as the difference between two 9/8 whole tones (81/64), and a  
fourth 4/3. Their difference is  the Pythagorean limma, 256/243 = 90.22¢.

logarithmicity/proportionality

Logarithmicity is the linear pitch distance embodied by the geometric mean 
and  approximated  asymptotically  by  the  integer  means  (arithmetic  and 
harmonic). Logarithmicity is a way to fit or compress more information into a 
limited space. It is the final limit tendency of  periodicity, a tendency achieved  
from above and below. Together, periodicity and logarithmicity form a dialectic 
which lies at the heart of  harmonic duality. See also musical means.

logos Definition pattern: form of  an interval. Also translates from Greek as ‘reason’,  
‘speech’, ‘discourse’. 

The term is also used to define the proportional aspect of  harmonic duality at  
the mid-level time scale of  ‘method’, the way basic constituents (elements and 
clangs) are structured. Referring to the  ‘pattern’ in which these smaller scale 
forms  are  set  in  time,  it  denotes  ‘structure’  as  well  as  ‘logic’.  Its  timbral 
counterpart  is  morphe  and  it  is  constituted  by  smaller  scale  eidos: 
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proportional materials (intervals, rhythmic elements, smaller scale structures).

Markov analysis A statistical  technique  introduced  for  the  first  time  by  Iannis  Xenakis  into 
composition. A musical (or other kind of) structure is analyzed into states whose  
probability of  transition represent patterns behind this structure. It can then be  
‘navigated’  by  means  of  random  choices  weighted  by  the  transition 
probabilities. They are used in harmonic fields to produce the ‘atonic’ mode,  
where each new interval becomes the new tonic from which to choose the next  
interval. See section 3.2.

mathesis universalis

A model of  the universe in which reality is amenable to being mathematized. It  
can be said to be Pythagorean in spirit,  although it  arose in Europe in the 
middle ages. It is also name given by René Descartes to the communication of 
proportions from sense to intellection. 

melos See dynamis.

mereology ‘Mereology is the theory of  parthood relations: of  the relations of  part to whole  
and  the  relations  of  part  to  part  within  a  whole.’,  (Stanford  Encyclopedia  of  
Philosophy, http://plato.stanford.edu/entries/mereology).

MIDI Acronym  for  Musical  Instrument  Digital  Interface.  A  technology  from  the 
1980s for transmitting information between electronic instruments. It is now 
used only as a legacy protocol. In this research it was used in the algorithmic 
improvisations  with  the  harmonic  fields  generator  to  control  the  musical 
automatons  of  the  Logos  Institute in  Ghent.  It  is  also  used  sometimes  to 
transcribe the algorithmic output of  SuperCollider into musical notation. 

morphe A term referring to the timbral aspect of  form at the time scale of  mid-level  
features  (phrases,  sequences,  small  sections).  Is  called  like  this  because  it  
corresponds to the morphological  aspect  of  continuous profiles,  not only  in 
pitch  but  in  other  sonic  parameters.  It  is  what  Tenney  refers  to  as  the  
morphological aspect of  form and it is at this mid-level that this emerges most  
clearly. Its proportional counterpart is logos, a term which among other things 
translates as ‘pattern’ thereby denoting ‘structure’ as well as ‘logic’. Morphe is  
constituted by smaller scale sonos, or sounding ‘elements’ and ‘clangs’. 

multi-dimensional scaling analysis (mds)

A statistical technique for visualizing data in many dimensions into two or three 
which are easier to analyze.  It  takes any distance metric (such as harmonic 
metrics) preserving as much as possible in its dimensional reduction the relative  
distances between the elements in the data. It is useful for envisaging harmonic  
spaces of  more than two dimensions. 

musical means: geometric, arithmetic &  harmonic

The three main ways of  dividing intervals used in antiquity. For two intervals a 
and c, their mean b can be geometric, when a/b = b/c; arithmetic, when a – b = 
b – c; or harmonic,  when (a – b)/a = (b –  c)/c.  The geometric  mean gives 
irrational  means  for  most  intervals,  while  the  arithmetic  and harmonic  are 
integer means which ‘surround’ the geometric, one from above and the other  
from below. The geometric mean of  1 and 2 (an octave) gives a tritone, the  
square root of  2; the arithmetic mean is a fifth 3/2 and the harmonic mean is a  
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fourth  4/3.  It  is  believed  that  the  geometric  and  arithmetic  means  where  
discovered before the Pythagoreans, probably stemming from Babylonia, while  
Archytas,  during  the  fourth century  BC.  is  assumed to  have developed the  
harmonic (or subcontrary) mean. See also logarithmicity/proportionality.

n-ads A generalization of  a dyad or triad to include chords of  n notes. 

n-EDO, n-TET, n-ET

Acronyms for n-Equal Division of  the Octave, n-Tone Equal Temperament or 
n-Equal Temperament, the division of  the octave into n steps of  equal size. 

n-limit tuning

A tuning whose ratios contain no prime factors higher than n.

nomos The term denoting the proportional aspect of  harmonic duality at the time  
scale of  large scale form. Its counterpart is drama. Its Greek meaning is ‘law’ 
and it is used in here to designate the orders which belong to a piece as a whole,  
not  so  much to  its  narrative  and causal  chains  of  musical  forms  (which is 
mainly what  drama refers to), but, as it belongs to the structural (proportional)  
aspect, it characterizes the underlying principle of  a piece. Its is made up of  
smaller scale logoi, that is, of  ‘patterns’ and smaller scale structures. 

n-tuple A term used in mathematics to refer to a sequence or group of  n elements.

octave equivalence

The strongest of  harmonic relations, the fact that notes separated an by octaves  
tend to  sound as  ‘the  same’.  It  is  evident  and simple  yet  also  startling  on 
subsequent consideration. Many harmonic relations are enclosed within octave 
equivalence.

octave reduction The operation of  disregarding octaves in harmonic analysis. By convention and 
simplicity it entails displacing a ratio into the octave that lies between 1 and 2. 

parametric composition/ parametrization / parameter / variable

A  kind  of  composition  that  flourishes  from  the  1950s  onwards  in  which 
different  aspects  of  sound (‘parameters’  or  ‘variables’)  become amenable  to  
composition. It usually refers to serialism, although it also involves composers  
such as Iannis Xenakis in his formalization of  music (and his introduction into 
music of  density and other statistical parameters) as well as John Cage, whose 
‘total  sound space’ conceives  composition  as  happening  in  a  space  that 
encompasses  the  whole  of  possible  musical  variables.  Today  it  is  native  to 
algorithmic and computer aided composition. 

periodicity block/harmonic islands

A concept introduced by Adriaan Fokker to delimit in harmonic space blocks or 
parallelepipeds inside of  which a complete harmonic world (or ‘island’ as I call  
it)  is  contained.  There  are  many  kinds  of  periodicity  blocks  in  various 
dimensions, obtained by choosing the commas or equivalences between unisons 
(‘unison-vectors’) which delimit their borders. They are used in DissonanceLib to 
find best approximations of  ratios into different kinds of  temperaments as well  
as  to  separate  intervals  according  to  their  harmonic  and  timbral  functions 
depending on whether they lie inside or outside a specific block. 
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periodotopy The spatial arrangement of  periodicity happening in the Inferior Colliculus  (IC) 
in the mid brain and stemming from the temporal periodicity analysis of  the  
signal  performed  in  the  Cochlear  Nucleus.  Both  tonotopy and  periodotopy are 
integrated into a three dimensional network structure in the IC.

pitch The perceptual property that allows ordering sounds on a frequency related  
scale.  A definition which this  study adheres  to is  the one by J.  F.  Schouten 
(1930s): ‘The pitch ascribed to a complex sound is the pitch of  that component 
to which the attention, either by virtue of  its loudness or of  its contrast with  
former sounds is strongest drawn. Therefore the pitch of  a complex sound may  
be different depending upon the circumstances under which it is heard.’

pitch chroma, pitch height

Terms used in psychology to distinguish the two main attributes of  intervals:  
chroma refers  to  their  ‘color’  or  character,  height  to  their  continuous pitch 
distance. Used by Roger Shepard for his helical pitch model. See section 1.2.4  
for a description and commentary on these advantages and limitations of  these  
concepts in their relation to harmonic duality. 

PitchSet A  class  in  DissonanceLib  that  is  a  collection  of  HarmonicVectors  that  are 
partitioned into timbral and harmonic subsets. It is also the basis on which to  
calculate a harmonic field. See section 3.1.6. 

polarity (of  an interval)

Which of  the notes of  a dyadic interval seems to be its root. If  it is the lower  
note then the interval has a positive polarity, otherwise a negative one. In the  
case of  a fifth, the lower note seems to have the most weight, which is why it  
has positive polarity. Its inverse, the fourth has negative polarity as the upper  
note  feels  as  its  root.  Clarence  Barlow  has  researched  into  this  feature,  
incorporating it into his harmonic measure, harmonicity. 

Polyrhythmia The  name of  an  algorithm developed  together  with  my  colleague  Alberto  
Novello for the segregation and amalgamation of  rhythms. A base rhythm is 
input  in  spectral  terms,  understood  as  the  stratification  of  simultaneous 
periodicities (each with its own phase and period). The algorithm consists of  a 
rhythmic acceleration  steady-state  deceleration process in as many layers! !  
as the specified rhythm, transitioning between 3 fixed states: simultaneity of  the 
rhythmic elements, the rhythm itself  and back to simultaneity. The transitions  
between these states  are  made by means of  accelerations  and decelerations 
happening at a specific rate and in parallel for each ‘rhythmic partial’, so that  
each  one  falls  smoothly  into  place  in  each  of  the  terminating  states.  This  
algorithm is used in various of  my  LogosSessions  improvisations, in  Blank Space 
and in the piece composed jointly with Alberto, Clinamen. See section 2.1.2 and 
4.1.2.3.

primary/secondary qualities

A  term  used  in  classical  philosophy  (coined  by  John  Locke)  to  distinguish 
between those qualities which belong to the object (extension, weight, solidity,  
motion,  number,  figure)  and those which pertain to  the object  as  perceived 
(color, taste, smell and sound – including pitch and other attributes).
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Pythagoreanism, acusmatici, mathêmatici

There are two strands of  Pythagoreanism, the mystical and the scientific. The  
former lead an ascetic religious life while the latter are scientists concerned with 
the  relation  between  mathematics,  physics  and  music.  Archytas  is  the 
prominent  figure  of  the  latter  group,  an sort  of  unsung hero  of  harmonic  
science that this study wishes to canonize.

qualia A term used in philosophy to denote the experience of  a quality. An individual,  
subjective, conscious experience. ‘The way things seem’. 

rationalization The conversion into ratios of  pitch sets  given in terms of  pitch-distance.  It 
involves  tuning  tolerance,  harmonic  metrics,  context,  an  implied 
harmonic system or aim and, in the last instance, educated choices. See section 
3.1.5. 

sensory dissonance/roughness

Roughness is  an auditory sensation produced by amplitude fluctuations that 
occur due to constructive and destructive interference of  sound waves. At low 
speeds the phenomenon manifests itself  as beatings, at higher speeds as tremolo  
and when it is faster than around 16 cycles per second, as roughness. Helmholtz  
first  researched  the  principles  behind  dissonance  perception  as  amplitude  
fluctuations  generated  by  spectral  components  of  sound.  It  is  mostly  a 
psychoacoustic phenomenon happening in the basilar membrane, dependent  
on the alignments of  partials with respect to the critical bandwidth. It is now 
referred to as sensory dissonance to distinguish it from other kinds of  conceptions 
and, beside roughness, also involves the closeness of  the spectrum to harmonic  
overtones, an aspect which is called tonalness.  See section 2.1.3. 

sonance When consonance/dissonance (or harmonicity/inharmonicity)  are conceived 
as a continuum of  gradations instead of  being in antinomic relation. It involves 
a spectrum of  ‘sonances’, or degrees of  relative sonance (instead of  absolute  
con/dis-sonance).  This  approach is  characteristic  of  late  19th and early  20th 

century  music’s  coloristic  approach  to  harmony.  It  is  a  mainly  timbral 
approach, based in gradations of  hues with a focus on the sounding qualities of  
intervals.  This  type of  harmony encompasses aspects  of  Tenney’s  CDC-2 – 
vertical,  polyphonic  – and CDC-5 – timbral,  psychoacoustic  –  conceptions, 
including various degrees of  fusion between proportionality and sound for its  
own sake. See section 1.3.3 and 2.2.

sonos A term used to describe the timbral aspect of  harmonic duality at the small  
scale level of  material. Counterpart to the proporional eidos, which represents 
the way intervallic proportions emerge (indirectly),  sonos  refers to the sensory 
and  directly  timbral  aspect  of  intervals:  their  spectra,  and  direct  sounding  
qualities. Even though there is no direct Greek word  sonos, it is used here to 
refer to the sounding facet of  intervals.

spectral/periodicity/virtual pitch

Spectral pitch derives from the actual components of  a sound in perception,  
usually referring to the lowest component F0. Periodicity pitch is ascribed from 
the global envelope created by the components in a sound and may be different  
from the spectral pitch. Virtual pitch is ascribed or induced by perception from 
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the spectral pitches  in some spatial  models.  This  virtual pitch is  a common 
harmonic of  the partials in the spectrum.

stochastic harmonic field

The name I give to the method for generating intervals from a pitch set using  
the harmonic metrics of  its intervals as probabilities with which to choose the 
intervals. It creates gradual, almost imperceptible transitions through the space 
of  configurations  contained in  the pitch set.  Its  main  parameter,  the field’s 
strength,  is  variable  between  zero  (all  intervals  equally  probable)  and  one  
(harmonic intervals more probable), producing a continuum of  differing pitch  
configurations ranging from atonal to tonal. When the strength is reversed to 
reach minus one, priority is given to the least harmonic pitches, yielding a zone  
which  I  call  antitonal, for  being  relatively  harmonic  between  the  chosen 
intervals but highly inharmonic with respect to the overall fundamental. The  
generator can work in two modes: ‘tonic’,  which relativizes the probabilities 
with respect to a single pitch in the set, providing a distinct modes, and ‘atonic’,  
which uses the the probabilities  of  all  the modes,  making each new chosen 
pitch the tonic with which to choose the next one. See section 3.2. 

stochastic, stochastic music 

A name given to non-deterministic processes. Introduced into composition by 
Iannis  Xenakis  who  used  different  kinds  of  mathematical  models,  such  as  
continuous  probabilities,  laws  of  thermodynamics,  the  Poisson  law,  Markov 
chains and others to compose music he called ‘stochastic’. James Tenney also  
defines  some of  his  music  as stochastic,  but in  a sense of  a  constrained or  
directed random process. The term comes the Greek stochos, meaning ‘aim’ or 
‘target’: ‘a good image for the kind of  textures that can arise is the pattern of  
hits  on a target.  They’re clustered around a certain region, and within that  
region they are random, but they’re not all over the place.’*

subminor, minor, neutral, major, supermajor

The possible varieties that intervals such as seconds, thirds and their inverses  
(sevenths and sixths) can have, depending on their size. See diminished, just, 
augmented.

SuperCollider A  programming  language  for  electronic  sound  synthesis  and  algorithmic 
composition from the late 1990s and early 2000s. Programmed originally by 
James  McCartney,  it  is  now  a  widely  used  open  source  project  used  for 
composing,  sound  art,  installations  and  science  research.  DissonanceLib  is 
available as library of  functions that extends SuperCollider. It can be installed into 
it  as  part  of  its  built  in  ‘quarks’  system  for  managing  extensions.  http 
supercollider.sourceforge.net/ 

symphona/diaphona

Consonance/dissonance  in  the  sense  of  Greek  harmonics  (a  melodic 
conception, corresponding to Tenney’s CDC-1).

systema A continuous sequence of  tetrachords makes a system, usually a two octave 
scale inhabiting no particular pitch range. 

* Tenney, J. (1984). James Tenney in conversation with Udo Kasemets, Tina Pearson and Gordon Monahan. 
MusicWorks, 27(Spring), 10. 
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‘the language of  ratios’

A phrase given by Harry Partch that refers to the recovering of  the harmonic  
properties of  intervals in terms of  proportions rather than in terms of  their  
pitch distance to compensate for the limited variety engendered by twelve tone 
equal temperament.

tonic and atonic modes

In the  harmonic fields generator there are two ways of  choosing intervals. 
Tonic  reads the probabilities as relative to a pitch of  the set, which becomes a  
sort of  modal ‘tonic’. ‘Atonic’ mode, by contrast makes every chosen interval  
the new tonic. Both modes sound very distinctive. See section 3.2. 

‘total sound-space’

The name given by John Cage to the perceptual ‘space’ where music exists. It  
encompasses  all  possible  variations  on ‘characteristics’  (or  ‘determinants’)  of 
sound.  ‘The  situation  made  available  by  these  [tape-recording]  means  is  
essentially a total sound-space, the limits of  which are ear- determined only, the  
position  of  a  particular  sound  in  this  space  being  the  result  of  five  
determinants: frequency or pitch, amplitude or loudness, overtone structure or  
timbre, duration, and morphology (how the sound begins, goes on, and dies  
away). By the alteration of  any one of  these determinants, the position of  the 
sound in sound-space changes. Any sound at any point in this total sound-space 
can move to become a sound at any other point . . . musical action or existence 
can occur at any point or along any line or curve . . . in total sound-space’ ** 
These  determinants,  ‘variables’  or  ‘parameters’  constitute  the  ‘dimensions’  
(Tenney) of  this space. See also parametric composition.

tonotopy The arrangement of  frequencies according to spatial distance, as happens in  
the basilar membrane and its neural projection upwards towards the auditory 
centers in the mid brain and higher. See also periodotopy. 

transduction In psychology it means the transmission or transformation of  something from 
one form, place or concept to another. In physiology it is the conversion of  one  
stimulus from one form or medium to another. 

tuning tolerance

A  phenomenon  of  fundamental  harmonic  importance.  A  fault-tolerance 
mechanism  in  pitch  perception  that  permits  the  identity  of  an  interval  to  
withstand deviations from its exact tuning. It produces narrow nodes in pitch-
distance space inside of  which intervals preserve their character. Disregarding 
tolerance in proportionality  would imply that slightly mistuned consonances 
would  have  to  be  represented  by  very  big  ratios,  entailing  very  high  
inharmonicities,  which  is  clearly  not  what  happens.  Tolerance  permits  this  
distortion, perceptually ‘rounding off ’ to the nearest and strongest harmonic  
ratio, the amount resulting from the difference in tuning between the nominal  
and the actual ratio becoming its timbral coloration or residual clangtint. 

ultra-chromatic/ ultra-diatonic

Names given by Ben Johnston to the extension of  harmonic materials in the 

** Cage,  J. (1961). Experimental Music. In Silence. Middletown, CT: Wesleyan University Press, 9. 
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harmonic  lattice,  either  by  encompassing  larger  areas  within  the  same 
dimensions, such as extending classical Western 5-limit tuning to new far away 
regions not reachable with temperament, or by extending the dimensions of  the 
lattice itself, that is, by introducing new fundamental intervals. The distinction 
between ultra-chromatic and ultra-diatonic can also be understood as in the  
cases of  53ET being the chromatic set of  31ET, in the same way as diatonic  
scales are subsets of  12ET. 

vocoder An analysis-synthesis  system used to  codify  speech,  originally  developed for  
telephone communications but with many uses in electronic music synthesis. It  
analyses a the amplitudes of  a signal according to a filter bank and uses these 
amplitudes to pass another signal through it. This widely used technique was  
part of  my piece  Circular Limit  for bass recorder and electronics. See section 
3.2.2. 
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Summary

This research delves into contemporary approaches to musical harmony on the basis of  algorithmic  
composition tools  derived from psychoacoustics  and microtonality.  As an artistic,  practice based 
research,  it  entails  a  cycle  that  involves  programming,  experimentation,  composition  and 
theorization.  The  experimentation  itself  comprises  findings,  reflections,  tests,  modifications,  
speculations, intuitions, surprises, and so on, successively. Which paths will produce the most fruitful  
findings cannot be determined in advance, leading as much to interesting discoveries as to dead  
ends. What is sought is to discern and comprehend some aspects of  the pitch materials produced by  
the tools through notions such as harmonic duality, harmonic space and harmonic fields, ideas that provide 
resources for discovering new harmonic possibilities.

The written thesis is one of  the outcomes of  this research. It presents not only finished results but  
also  bears  witness  to  the  way  the  research  was  conducted,  showing  the  findings  as  they  are  
encountered  and  reflecting  the  way  they  mold  and  influence  the  main  research  subject  and  
questions.  It  begins  by  postulating  the  hypothesis  of  ‘harmonic  duality’,  according  to  which  
harmonic materials in music have an intertwined, double aspect: one relating to the character of  
pitch intervals,  their proportionality,  and the other pertaining to the high, low, dark and bright  
character of  the pitches and sound qualities that comprise these intervals, their timbral facet. The  
first chapter sets the stage for understanding what this hypothesis means and how its two sides are  
embroiled. First it describes the hypothesis and the way it surfaces from a compositional practice,  
subsequently setting out to explore and read the topics of  pitch perception and Greek harmonics in  
light of  this duality, detailing and expounding its features and the way its facets are entangled while  
providing  it  with  evidence  and  support.  The  chapter  ends  by  revisiting  Pythagoreanism in  an  
attempt to recover some of  its landmark ideas in relation to musical microtonal harmony, especially  
the ones involving the relation between number and perception and between the micro and the  
macro.

Most of  the work has concentrated on compositional uses of  dissonance curves, algorithmic devices 
that relate timbres to harmonic intervals, extracting microtonal pitch materials from sound spectra  
and analyzing them according to their timbral and harmonic properties. Putting them into motion 
through different rhythmic and textural procedures, these materials have been used to compose  
varied kinds of  electronic and instrumental music, another principal outcome of  this research. The  
analysis of  the generated intervals has led to the study of  their arithmetic features, interpreting them  
in ‘harmonic space’, a mathematical structure that helps characterize their properties and measure  
their harmonicity, ranking and separating pitch sets into distinct regions and contributing to the  
development of  strategies for their deployment.  The use of  harmonic metrics  also leads to the  
notion of  ‘harmonic fields’, the algorithmic generation of  pitches through probabilities. This leads  
to the third main outcome of  this research, encapsulating many of  these compositional experiments  
in computer programs and a code library of  extensions for the composition and sound synthesis  
programming language SuperCollider.

Chapter 2 studies the timbral aspect of  harmony. First it delves into the compositional description  
and uses of  dissonance curves, also exploring the science behind them and some of  their musical  
uses. A small section serves to wrap up most historical notions of  consonance and dissonance in  
order to show their compositional possibilities. The second half  of  the chapter is an appraisal of  
twentieth century music in relation to pitch and the increasing emphasis that has been given to the  
timbral  aspect  of  harmony,  in  close  connection  to  the  way  that  compositional  materials  have 
become ever more continuous at various time scales. It reads these uses from various styles and  
schools of  compositions in an attempt to describe the current compositional situation with respect to  
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harmony and to suggest the incorporation of  discrete elements and pitch proportions back into  
harmonic practices.

Chapter  3  inquires  into  the  details  of  proportional  harmony,  employing  ideas  from  several  
composers and theorists (Harry Partch, Ben Johnston, James Tenney, Clarence Barlow as well as  
Leonhard Euler and Adriaan Fokker) in order to treat some technical topics that involve pitch ratios:  
harmonic space, intervallic hues and fundamental intervals, commas, intervallic tolerance, harmonic 
metrics, visualization and some practical uses of  the algorithmic tools developed by the author. The 
second  section  details  the  development  of  harmonic  fields,  the  probabilistic  generation  of  
continuously varying harmonic textures, wrapping up many of  the topics having been traversed 
during the study. It ends with some considerations on how harmony can be conceived in relation to  
form at various time scales.

Finally, Chapter 4 gives a recount of  harmonic strategies used by the principal composers that have 
influenced this investigation (again, Tenney, Barlow and Johnston, additionally, Augusto Novaro and 
Ervin Wilson). Its second part explores the harmonic strategies behind some of  the author’s own  
compositions, showing how they fit into the research at large, sometimes emerging from it, while at  
other times altering the research as a consequence of  the findings and experiences gathered in the  
music making process. The second half  of  the chapter closes the whole endeavor by discussing some 
of  the speculative meanings of  harmony and how they might produce insights that reach beyond  
what has been examined in the research. There is a consideration of  noise in relation to harmony  
and a brief  dissection of  John Cage’s notion of  it. Some philosophical reflections of  harmony follow,  
considering it as a coexistence of  diverse elements and also as the relation between sameness and  
difference.  After  proposing  an  abstract  definition  of  my  own,  the  dissertation  ends  by  shortly  
touching  on  randomness  and the  extraction of  simple,  small  whole  numbers,  from within  the  
complexity of  the world.

The  many  terms  stemming  from  disparate  sources  and  disciplines  (perceptual,  mathematical,  
musical,  philosophical) that have been either gathered or proposed during the study are given a  
separate treatment in the glossary, converging in a distilled section that isolates them as different  
notions that relate to harmony. Three appendixes follow, the first describing the technical details for  
the implementation of  dissonance curves,  the second showing a comparative table of  sevenths,  
displaying the nuances involved in composing with seventh based intervals, and a third one showing  
the results of  an investigation into an extended pitch set. This inquiry has been used as a stepping  
stone to compose one of  the last pieces for this research, showing many timbral and proportional  
properties of  these intervals: their nomenclature, accidentals, tempered approximations, degrees and 
functions, coupled with visualizations in harmonic space and a few examples of  how they are used  
in instrumental writing.
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Samenvatting

Het onderhavige onderzoek gaat diep in op de aktuele benadering van de rol van harmonie in de  
muziek  op  basis  van  algoritmische  componeermethoden  en  -materialen  ontleend  aan  de 
psychoakoestiek  en  de  microtonaliteit.  Als  onderzoek  in  de  kunsten  toont  het  een  cyclus  van  
programmeren, experimenteren, componeren en theorievorming. Het experimentele gedeelte zelf  
omvat  achtereenvolgens  bevindingen,  reflecties,  proefcomposities,  aanpassingen,  beschouwingen,  
ingevingen, verrassingen, enz. Welke strategieën de meest vruchtbare bevindingen zouden opleveren  
kon  onmogelijk  van  tevoren  worden  bepaald,  hetgeen  tot  zowel  interessante  ontdekkingen  als  
doodlopende  wegen  heeft  geleid.  Het  doel  was  enkele  aspecten  te  kunnen  onderscheiden  en  
begrijpen van het compositorisch materiaal door middel van begrippen als harmonisch dualisme,  
harmonische ruimte en harmonische velden, begrippen die als hulpmiddel kunnen dienen bij het  
ontdekken van nieuwe harmonische mogelijkheden. 

Dit  proefschrift  vormt  een  van  de  resultaten  van  dit  onderzoek.  Het  presenteert  niet  alleen  
eindresultaten,  maar  getuigt  tevens  van  de  wijze  waarop  het  onderzoek  is  uitgevoerd  door  de  
bevindingen te presenteren in het stadium waarin zij zich voordeden en door te laten zien hoe zij  
vorm gaven aan en invloed uitoefenden op het voornaamste onderzoeksobject en de belangrijkste  
onderzoeksvragen. Het proefschrift begint met het stellen van de hypothese van het ‘harmonisch  
dualisme’,  inhoudende  dat  er  binnen  het  harmonisch  materiaal  in  muziek  twee  met  elkaar  
verstrengelde aspecten aanwezig zijn: het ene betreft de aard van de intervallen tussen toonhoogten  
en hun onderlinge verhoudingen, het andere aspect heeft betrekking op de hoge, lage, donkere dan  
wel heldere aard van tonen en geluidseigenschappen waaruit die intervallen zijn opgebouwd, d.w.z.  
het aspect van hun klankkleur. Het eerste hoofdstuk bereidt de weg om te komen tot inzicht in de  
betekenis van deze hypothese en in hoezeer de twee aspecten met elkaar zijn verweven. Het opent  
met een beschrijving van de hypothese en hoe deze aan de praktijk van het componeren ontspringt,  
en onderzoekt vervolgens het dualisme van de thema’s toonhoogteperceptie en de harmonieleer van  
het  oude  Griekenland  met  een  gedetailleerde  uiteenzetting  van  de  kenmerken  daarvan  en  de  
onlosmakelijke verknoping van al hun facetten, gestaafd met ondersteunend bewijsmateriaal. Aan  
het slot van het hoofdstuk wordt teruggekeerd naar de leer van Pythagoras in een poging enkele van  
diens baanbrekende ideeën inzake microtonale harmonie in ere te herstellen, met name die met  
betrekking tot de relatie tussen getal en perceptie en tussen micro en macro.

Het onderzoek was grotendeels  gericht op het componeren met algoritmische hulpmiddelen die  
klankkleuren koppelen aan intervallen in de harmonische context, die microtonaal toonmateriaal uit  
geluidsspectra halen en deze analyseren aan de hand van harmonische en klankkleureigenschappen.  
Dit materiaal, in beweging gezet via verschillende procedures ten aanzien van ritmiek en tekstuur,  
werd  gebruikt  voor  het  componeren  van  uiteenlopende  soorten  elektronische  en  instrumentale  
muziek, hetgeen een ander belangrijk resultaat vormt van het onderzoek. Analyse van de aldus  
gegenereerde intervallen heeft geleid tot bestudering van de rekenkundige karakteristieken daarvan,  
door middel van interpretatie in de ‘harmonische ruimte’, een wiskundige model dat ondersteuning  
biedt  bij  het  karakteriseren  van  de  kenmerken  van  deze  intervallen  en  het  meten  van  hun  
harmoniciteit,  waarbij  toonreeksen  worden  gerangschikt  en  onderscheiden  in  afzonderlijke 
gebieden, en een bijdrage wordt geleverd aan de ontwikkeling van strategieën voor het gebruik  
daarvan. Het gebruik van harmonische metriek leidt daarnaast tot het begrip ‘harmonische velden’,  
het algoritmisch genereren van tonen op basis van waarschijnlijkheidsberekening. Dit heeft geleid  
tot  een  derde  hoofdresultaat  van  het  onderzoek:  het  opslaan  van  een  groot  aantal  van  deze  
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compositie-experimenten  in  computerprogramma’s  en  het  creëren  van   een  code  library  met  
extensies voor SuperCollider, de programmeertaal voor componeren en geluidssynthese.

In hoofdstuk 2 wordt het klankkleuraspect van harmonie bestudeerd. Eerst wordt ingegaan op de  
beschrijving  en  toepassingen  van  ‘dissonance  curves’  voor  het  componeren,  waarbij  tevens  de  
achterliggende  technologie  en  enkele  muzikale  toepassingen  worden  onderzocht.  In  een  korte  
paragraaf  wordt een samenvatting gegeven van de meeste historische ideeën over consonantie en  
dissonantie teneinde de mogelijkheden daarvan bij het componeren te belichten. De tweede helft  
van het hoofdstuk bevat een beoordeling van de twintigste-eeuwse muziek in relatie tot toonhoogte  
in combinatie met de toenemende nadruk die daarbij  werd gelegd op het klankkleuraspect van  
harmonie, in nauwe samenhang met de wijze waarop het basismateriaal van de componist in de  
loop van de tijd steeds meer continuïteit liet zien. Het behandelt het gebruik ervan in verschillende  
compositiestijlen en -scholen in een poging de huidige situatie in het componeren te beschrijven met  
name ten aanzien van het gebruik van harmonie, met de suggestie eventuele onsamenhangende  
elementen en toonhoogteverhoudingen weer te integreren in een harmonische praktijk.

In hoofdstuk 3 wordt gedetailleerd ingegaan op proportionele harmonie aan de hand van de ideeën  
van een aantal componisten en theoretici (Harry Partch, Ben Johnston, James Tenney, Clarence  
Barlow alsmede Leonhard Euler en Adriaan Fokker) met het oog op de behandeling van een aantal  
technische thema’s op terrein van toonhoogteverhoudingen: harmonische ruimte, intervalkleuringen  
en  basisintervallen,  komma’s,  intervaltolerantie,  harmonische  metriek,  visualisering  en  enkele  
praktische  toepassingen  van  de  door  de  auteur  ontwikkelde  algoritmische  gereedschappen.  De  
tweede  paragraaf  bevat  een  gedetailleerde  behandeling  van  de  ontwikkeling  van  harmonische  
velden,  de  probabilistische  generatie  van  zich  voortdurend  wijzigende  harmonische  texturen,  
gevolgd door een samenvatting van de thema’s die in de loop van het onderzoek aan de orde zijn  
gekomen.  Het  hoofdstuk  besluit  met  enkele  beschouwingen  over  hoe  harmonie  op  diverse  
momenten kan worden bezien in relatie tot vorm. 

Tot besluit wordt in hoofdstuk 4 een opsomming gegeven van de harmonische strategieën die zijn  
gehanteerd door de componisten die in belangrijke mate van invloed zijn geweest op dit onderzoek  
(wederom Tenney, Barlow en Johnston, en daarnaast ook Augusto Novaro en Ervin Wilson). Het  
tweede deel van dit hoofdstuk onderzoekt de harmonische strategieën die ten grondslag lagen aan  
enkele  composities  van de auteur,  waarbij  wordt  aangegeven welke plaats  deze innemen in het  
onderzoek. Soms zijn zij voortgekomen uit het onderzoek, terwijl zij in andere gevallen leidden tot  
wijziging in de richting van het onderzoek als gevolg van de bevindingen en ervaringen die werden  
opgedaan  tijdens  het  scheppingsproces.  De  tweede  helft  van  het  hoofdstuk  besluit  met  een  
bespreking van enkele van de speculatieve betekenissen van harmonie en hoe die inzichten zouden  
kunnen  opleveren  die  verder  reiken  dan  hetgeen  in  dit  onderzoek  is  bestudeerd.  Er  is  een  
beschouwing over geluid (‘noise’) in relatie tot harmonie en een korte analyse van de opvatting van  
John Cage over dat begrip. Dan volgen enkele filosofische bespiegelingen over harmonie, waarbij  
deze wordt gezien als een samen-zijn van ongelijksoortige elementen en ook als de relatie tussen  
overeenkomst en verschil. Na een voorstel voor een eigen abstracte definitie ervan besluit ik het  
proefschrift met een korte bespreking van de toepassing van toevalstechnieken en het ontlenen van  
eenvoudige, kleine gehele getallen aan de complexiteit van de wereld.

De vele termen – afkomstig uit diverse bronnen en disciplines (perceptueel, wiskundig, muzikaal,  
filosofisch) – die in de loop van het onderzoek zijn vergaard dan wel naar boven zijn gekomen  
worden apart behandeld in een termenlijst,  die een soort bijlage vormt waarin de verschillende  
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manieren waarop men harmonie kan bezien separaat zijn beschreven. Dan volgen drie bijlagen. De  
eerste bevat de technische gegevens voor de toepassing van ‘dissonance curves’; de tweede toont een  
vergelijkende  tabel  van  septiemen,  waarin  de  kleine  verschillen  zijn  te  zien  die  spelen  bij  het  
componeren met op septiemen gebaseerde intervallen;  en de derde toont de resultaten van het  
onderzoek  naar  een uitgebreide  ‘pitch  set’.  Dit  onderzoek  is  gebruikt  als  springplank  voor  het  
componeren  van  een  van  mijn  laatste  stukken,  en  toont  de  vele  klankkleur-  en  
verhoudingskarakteristieken van de desbetreffende intervallen: hun nomenclatuur, verhogingen en  
verlagingen, subtiele benaderingen van hun ‘temperatuur’, toontrappen en functies, gekoppeld aan  
visualiseringen in de ‘harmonische ruimte’ en enkele voorbeelden hoe daarvan gebruik kan worden  
gemaakt bij het schrijven van instrumentale muziek.
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Appendix I Technical details of  the implementation of  
dissonance curves.

At first, the code for dissonance curves in  DissonanceLib  was based in  Sethares, whose formula is 
expressed in terms of  frequencies and amplitudes. By recommendation of  Barlow, I adapted the  
code with Parncutt’s mathematical approximation to Plomp and Levelt’s weighting curve, which is 
adjusted  to  psychoacoustic  units.  It  has  the  advantage  of  giving  results  with  a  slightly  higher  
resolution  as  well  as  being  around 30% faster  to  calculate.  Both  formulas  are  selectable,  with  
Parncutt as the default. His approximation of  the Plomp and Levelt weighting curve is:

Exponential curve whose maximum is attained at 1/4. 

From this the dissonance measure D for a pair of  partials is derived:

Where 
 

is a partial with a pitch bk in barks and amplitude s in sones.

The curve is calculated by measuring the dissonance D for every pair of  partials between the fixed 
spectrum and the transposed one. Depending on its application, usually 6 to 10 partials are required  
for a spectrum. The sum of  the individual measures between all partials gives the total roughness for  
that transposition, which represents one point on the curve:

Total roughness for transposition t: the sum of  D for all pairs of

partials pj against transposed partials t· pk  (j,k between 2 and n)

To obtain the whole curve the total roughness is calculated for each of  the transposition intervals  
within the analysis range, sweeping the transposition in small steps, usually of  a hundredth of  an  
octave. In set notation:

The curve is the set of  all RT in the interval [t0, t1]

A fair amount of  calculations are required to obtain a curve: if  we use 6 partials inside the range of  
an octave, D will need to be executed some 6 x 6 x 100 = 3600 times. After this the minima in the  
curve  are  detected  and  the  intervals  rationalized  (comparing  with  interval  tables  of  around  a  
thousand intervals in an octave and picking the one with highest harmonicity within the tolerance  
range). From this point the harmonicities of  the rationalized interval are calculated and then the  
intervals are collected as pitch sets which represent each interval as harmonic vectors in harmonic  
space, also partitioning them into harmonic and timbral subsets.

For real time uses, a fast Fourier analysis (FFT) of  the input signal must be performed (usually with  
windows of  4096 or more samples to have a high frequency resolution).  Once the spectrum is  
obtained (by triggering of  some sort, either manually or automatically), the most prominent partials  
are selected and converted to  barks and sones  (with the option of  compensating the amplitudes for 
masking) before the curve is calculated. From the time the curves where implemented up to now  
computers have become faster, so with  SuperCollider  (version 3.5) and a 3 year old laptop, a curve 
made out of  8 partials and the range of  an octave does not take to calculate and rationalize more 
than 0.05 seconds.
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Appendix II Comparative table of  sevenths 

! 16/9 9/5 7/4 25/14 225/128 11/6 64/35 98/55 125/72

¢ 996 1018 969 1004 977 1049 1045 1000 955

V <4,-2> <0,2,-1> <-2,0,0,1> <-1,0,2-1> <-7,2,2> <-1,-1,0,0,1> <6,0,-1,-1> <1,0,-1,2,-1> <-3,-2,3>

polarity - - + + + + - - +

" 0.107 0.085 0.081 0.042 0.039 0.045 0.044 0.021 0.036

gS 9 9 9 16 20 14 17 28 20

Hd 4.97 3.807 3.332 5.858 10.268 4.19 7.714 8.592 9.105

mag 4.472 2.236 2.236 2.45 7.55 1.732 6.164 2.646 4.69

smooth 3 5 7 7 5 11 7 11 5

hues 2-3 3-5 2-7 2-5-7 2-3-5 2-3-11 2-5-7 2-5-7-11 2-3-5

function 2d 2Dm S 2Ms 2D2M dE ms m2Se 2d3M

double subdominant submediant of  
double dominant

septimal subseptimal of  
double mediant

double mediant of  
double dominant

eleventh of  the 
subdominant

subseptimal of  
submediant

eleventh of  double  
septimal of  
submediant

Triple mediant  
of  double  

subdominant

name Pythagorean minor 7th Just minor 7th Harmonic 7th Middle minor 7th Augmented 6th Undecimal 
neutral 7th 

Septimal neutral 7th Quasi-equal
minor 7th

Classic Augmented 
6th

! = Ratio; ¢ = distance in cents; V = coordinate in the lattice; polarity = +/-;  = harmonic intensity " (absolute value of  harmonicity); gS = gradus suavitatis; Hd = 
harmonic distance; mag = Euclidean distance to 1/1; smooth = highest prime limit; hues = prime mixtures; function and name.

Partch argues for replacing the dissonant 9/5 for the consonant 7/4. He thinks one can postulate 7 by decree, in the same way that 5 was postulated to  
replace Pythagorean thirds, going even further to declare 11 as a veritable interval (going beyond ‘9’). (‘The problem of  7’ section in Partch, op. cit. p. 119). 
On the other hand, he acknowledges that ‘the importance of  an identity in tonality decreases as its number increases’ (p. 126) requiring more exact  
intonation. 

Barlow (Bus Journey To Parametron, p. 20) argues that 7/4 has a different function that a dominant seventh, because this would imply that the seventh over  
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the dominant degree (in the tonality of  C, the note F in the chord G-B-D-F) would be a 21/16 instead of  a 4/3, also citing Johannes Fritsch, who in 
“The Tonality of  Harry Partch”, says “[t]hat the number seven really belongs to ‘speculative harmony’ and not to our triadic-based musical practice can be 
readily seen in our inability to sing 7-based intervals, even though they are to be found in every string instrument and in several wind instruments, as  
well as in important spectral formants in speech and in instrumental timbre”.

Johnston also corroborates, 4:5:6:7 is not a dominant chord, it is stable, thus another kind of  harmonic object than 4:5:6 plus either a 16/9 or a 9/5.  
Comparatively, 7/4 and 9/5 are not distinguished by gS and regarded inversely by Hd – for which 7/4 is slightly more harmonic than 9/5 –  and H – 
whose reverse difference is even smaller. This despite the very different connotations of  both intervals and their 35 ¢ difference in distance. 

Regarding the other intervals in the table it is clear that most of  them belong to other functions: augmented sixths,  neutral sevenths (11/6 and 64/35  
being quite close in terms of  H, for which the complexity of  function almost matches the complexity of  the number 11, both also being very close in 
distance). They are followed by a middle minor 7th, 25/14 and two very distant and functionally complex 98/55 (the one regarded lowest by the gS and 
H) and 125/72. For Hd, the most harmonically complex correspond to augmented sixths. These last intervals are included to show how far they are 
from each other and from the functions usually associated with that region of  pitch distance space (the semitone spanning from 950 to 1050).

These considerations can be seen in the multi dimensional scaling 
analysis (made using harmonicity as a metric). Of  the three main minor 
sevenths discussed, it is clear that 9/5 and 16/9 are of  inverse polarity 
(lying symmetrically around 1/1), the latter being the closest. 7/4 has an 
altogether different character and position. All the other candidates lie 
quite far, the distinction between neutral sevenths (11/6 and 64/35) 
being also their symmetric inversion.
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!1 = 3, !2 = 5, !3 = 7;  exponents of  the axes in harmonic 
space, h = the maximum value a coordinate can take.
The number of  intervals arising from combinations of  each 
h is: h0 = 1, h1 = 6, h2 = 18, h3 = 38. Total number = 63. 
N = fundamental number;  R = Ratio (octave reduced); 
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interval of  interest which lies very close and could replace the main 
one (blue)

f = function: D/d, dominant, M/m, mediant, S/s, septimal; 
g = diatonic degree;  acc = accidental (in Helmholtz-Ellis notation)
H = harmonicity; Hd = harmonic distance;
tmp = an alternative  interval conflated by 53ET (black) or an 
interval of  interest which lies very close and could replace the main 
one (blue)

f = function: D/d, dominant, M/m, mediant, S/s, septimal; 
g = diatonic degree;  acc = accidental (in Helmholtz-Ellis notation)
H = harmonicity; Hd = harmonic distance;
tmp = an alternative  interval conflated by 53ET (black) or an 
interval of  interest which lies very close and could replace the main 
one (blue)

f = function: D/d, dominant, M/m, mediant, S/s, septimal; 
g = diatonic degree;  acc = accidental (in Helmholtz-Ellis notation)
H = harmonicity; Hd = harmonic distance;
tmp = an alternative  interval conflated by 53ET (black) or an 
interval of  interest which lies very close and could replace the main 
one (blue)

h !1 !2 !3 N R ¢ k f g acc H Hd tmp !"#$

0 0 0 0 1 1/1 0 0 T I n 
fund
amen
tal 
numb
er;  
R = 
Rat
io;  
¢ 
= 

cent
s;     
f = 
func
tion
; g 
= 
deg
ree
;  
acc 
= 
acc
iden

! " ! unison

1 -1 0 0 1/3 4/3 498 22 d IV n 
fun
dam
ent
al 
num
ber
;  

R = 
Rat
io;  
¢ 
= 
cen
ts;     
f = 
fun
cti
on; 
g = 
deg
ree
;  
acc 

-0.214 3.585 343/256 perfect four

0 -1 0 1/5 8/5 814 36 m VI f -0.106 5.322 - minor sixth

0 0 -1 1/7 8/7 231 10 s II > -0.075 5.807 - major second

0 0 1 7 7/4 969 43 S VIIm <e 0.081 4.807
225/128
256/147 harmonic seventh

0 1 0 5 5/4 386 17 M III m 0.119 4.322 - major third

1 0 0 3 3/2 702 31 D V n 
fund
amen
tal 
numb
er;  
R = 
Rat
io;  
¢ 
= 

cent
s;     
f = 
func
tion
; g 
= 
deg

0.273 2.585 512/343 perfect fifth

2 -2 0 0 1/9 16/9 996 44 2d VII e -0.107 7.17 25/14 minor seventh 

-1 -1 0 1/15 16/15 112 5 dm II oe -0.077 7.907 15/14 minor second

-1 0 -1 1/21 32/21 729 32 ds V < -0.055 9.392 75/49 wide fifth (septimal) 

-1 0 1 7/3 7/6 266 12 dS III <e 0.072 5.392 75/64 septimal minor third

-1 1 0 5/3 5/3 884 39 dM VI m 0.11 3.907 - major sixth

0 -2 0 1/25 32/25 427 19 2m IV G -0.056 9.644 9/7 diminished fourth

0 -1 -1 1/35 64/35 1044 46 ms VIIn >o -0.044 11.13 11/6 neutral seventh

0 -1 1 7/5 7/5 583 26 mS V <f 0.06 5.129 45/32 septimal tritone (diminished fifth)

0 0 -2 1/49 64/49 462 20 2s III . -0.038 11.61 13/10 septatonic major third

0 0 2 49 49/32 737 33 2S VI , 0.039 10.61 20/13 septimal minor sixth

0 1 -1 5/7 10/7 618 27 Ms IV+ >! -0.057 6.129 64/45 septimal tritone (augmented fourth)

0 1 1 35 35/32 155 7 MS IIn <m 0.046 10.13 12/11 septimal neutral second

0 2 0 25 25/16 773 34 2M V+ t 0.06 8.644
14/9 
11/7 augmented fifth

1 -1 0 3/5 6/5 316 14 Dm III f -0.099 4.91 - minor third

1 0 -1 3/7 12/7 933 41 Ds VI > -0.067 6.392 128/75 septimal major sixth

1 0 1 21 21/16 471 21 DS IV  < 0.059 8.392 64/49 septimal narrow fourth

1 1 0 15 15/8 1088 48 DM VII m 0.083 6.907 28/15 major seventh

2 0 0 9 9/8 204 9 2D II n 
fun

0.12 6.17 28/25 major whole tone

Appendix III   Research into a septimal pitch set 
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h !1 !2 !3 N R ¢ k f g acc H Hd tmp !"#$
3 -3 0 0 1/27 32/27 294 13 3d IIIm e -0.077 9.755 13/11 Pythagorean minor third

-2 -1 0 1/45 64/45 610 27 2dm V-  f -0.056 11.492 10/7 2nd tritone (just diminished fifth)

-2 0 -1 1/63 64/63 27 1 2ds ' > -0.046 11.977
49/48
81/80

Arquitas' comma (7-3 comma)

-2 0 1 7/9 14/9 765 34 2dS VIm  < 0.06 6.977
25/16
11/7

septimal minor sixth

-2 1 0 5/9 10/9 182 8 2dM II o 0.079 6.492 - minor whole tone

-1 -2 0 1/75 128/75 925 41 d2m VII- ! -0.045 13.229 12/7 diminished seventh

-1 -1 -1 1/105 128/105 343 15 dms IIIn >f -0.038 13.714 11/9 septimal neutral third

-1 -1 1 7/15 28/15 1081 48 dmS VII <o 0.047 8.714 15/8 grave major seventh

-1 1 -2 1/147 256/147 960 42 d2s VI æ -0.032 15.2 7/4
225/128

[doubly septimal large sixth]

-1 0 2 49/3 49/48 36 2 d2S IIm å" 0.037 11.2 128/125
slendro diesis, 1/6-tone (72-3-1 diesis), 

{subminor second}

-1 1 -1 5/21 40/21 1116 49 dMs VII >m -0.045 9.714
243/128
21/11 acute major seventh 

-1 1 1 35/3 35/24 653 29 dMS Vsd <# 0.045 9.714
256/175

16/11 septimal semi-diminished fifth

-1 2 0 25/3 25/24 71 3 d2M I+ $ 0.054 9.229 256/245
classic chromatic semitone, minor chroma

{augmented unison}

0 -3 0 1/125 128/125 41 2 3m diesis q -0.038 13.966 49/48 minor diesis, diesis {unison}

0 -2 -1 1/175 256/175 659 29 2ms V- >% -0.032 15.451
35/24
16/11

{septimal diminished fifth}

0 -2 1 7/25 28/25 196 9 2mS III- <G -0.04 9.451 9/8 middle second {septimal diminished third}

0 -1 -2 1/245 256/245 76 3 m2s limma Qo -0.029 15.937 25/24 {7-2-5-1 limma (a syntonic + 2 septimal commas) }

0 -1 2 49/5 49/40 351 16 m2S IV- Od 0.033 10.937
11/9
21/17

larger approximation to neutral third
{double septimal diminished fourth}

0 0 -3 1/343 512/343 694 31 3s IV+ Q>v -0.025 17.422 3/2
3 septatones or septatonic fifth [large triple 

septatonic augmented fourth} **

0 0 3 343 343/256 506 22 3S IV ,<" 0.026 16.422 4/3 {triple septatonic diminished fifth}

0 1 -2 5/49 80/49 849 37 M2s VIn .# -0.032 11.937
105/64
18/11

(double septimal) 
smaller approximation to neutral sixth

0 1 2 245 245/128 1124 50 M2S VIII- ,& 0.029 14.937 48/25 {septimal diminished octave}

0 2 -1 25/7 25/14 1004 44 2Ms VI+ >$ 0.042 8.451 16/9 middle minor seventh {septimal augmented sixth}

0 2 1 175 175/128 541 24 2MS IV+ <$ 0.033 14.451
48/35
11/8

{septimal semi augmented fourth}

0 3 0 125 125/64 1159 51 3M VII+ k 0.04 12.966
96/49
35/18
49/25

classic augmented seventh, octave - minor diesis
{triple tertial octave}

1 -2 0 3/25 48/25 1129 50 D2m VIII- ' -0.051 10.229 245/128 classic diminished octave

1 -1 -1 3/35 48/35 547 24 Dms IV+ >o -0.043 10.714
175/128

11/8 septimal semi-augmented fourth

1 -1 1 21/5 21/20 84 4 DmS IIm <f 0.047 8.714 22/21 (septimal) minor semitone

1 0 -2 3/49 96/49 1164 51 D2s VII+ Q -0.035 12.2 125/64 {double septatonic large seventh}

1 0 2 147 147/128 240 11 D2S III- O 0.033 14.2 8/7 {double septatonic diminished third}

1 1 -1 15/7 15/14 119 5 DMs I+ >( -0.049 7.714 16/15 [augmented unison] major diatonic semitone

1 1 1 105 105/64 857 38 DMS VIn <m 0.039 12.714
80/49
18/11

septimal neutral sixth

1 2 0 75 75/64 275 12 D2M II+ t 0.047 12.229 7/6 classic augmented second

2 -1 0 9/5 9/5 1018 45 2Dm VIIm  f -0.085 5.492 - just minor seventh

2 0 -1 9/7 9/7 435 19 2Ds III > -0.064 5.977 32/25 septimal major third

2 0 1 63 63/32 1173 52 2DS VIII  < 0.048 10.977 160/81 octave minus septimal comma

2 1 0 45 45/32 590 26 2DM IV+ u 0.06 10.492 7/5 diatonic tritone

3 0 0 27 27/16 905 40 3D VI n 

funda

0.083 8.755 22/13 Pythagorean major sixth
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Multidimensional scaling of  the septimal pitch set 

MDS based on Barlow’s harmonicity

MDS based on Tenney’s harmonic distance
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The above table lists the properties of  every interval of  a septimal pitch set generated from coordinates in harmonic space. 
The intervals are listed according to their maximum coordinate in each of  the main intervallic axes (the h), ordered by 
their combination of  coordinates in harmonic space (the !’s).  N is the fundamental number(s) behind the ratio (the 
mixtures of  prime intervals, disregarding octaves), R (ratio) is the octave reduced proportion. ¢ is the interval’s pitch 
distance in cents, k gives the approximation of  the interval in 53 equal temperament,  f is its harmonic function (T = 
tonic, D/d = dominant/subdominant, M/m = mediant/submediant, and S/s = septimal/subseptimal); g is the interval’s 
diatonic degree, acc is the interval’s Helmholtz-Ellis accidental corresponding to that degree. H and Hd harmonicity and 
harmonic distance. tmp shows other interesting interval ratios lying close to that interval; when the ratio is in blue, it 
means that a higher prime ratio (of  11 or 13) of  interest could also be used; when the ratio is black, it means that another 
ratio from the pitch set is conflated into the same 53ET degree as the current one. Finally the last column shows the 
interval’s name, first according to the Huygens-Fokker nomenclature, and, in cases where the name does not appear in that 
list or differs from its proper scale degree and function, the name it should have, based on its harmonic properties, is shown 
in curly brackets.

Below the table, two figures show multidimensional scaling analyses based on harmonicity and harmonic distance, giving a 
visual glimpse of  the positions of  the intervals in harmonic space. 

The research has been the departure point for the final piece written for Ensamble Modelo 62. The pitch set has been 
adapted based on the microtonal possibilities of  the ensemble, which involves scordaturas and special positions for the 
string instruments and guitar, or special fingerings for the flute. Piano and clarinet play for the most part 3-limit intervals 
which do not require retuning. For these idiomatic reasons as well as the fact that many intervals lie very closely together, 
the pitch set was reduced to a more practical and musically useful one. It is shown below, ordering the intervals  in pitch 
distance space, separated into subsets of  prime partitions (2,3,5 and 7-limit). 

Also shown in the page that follows below is an example of  the scordatura for the strings. It corresponds to the fourth 
string of  the violin, violoncello and contrabass, showing the retuning and positions of  nodes positions required to obtain 
many of  the sought intervals, especially 7- and 5-based ones (1/7 and 1/5 to be precise). The harmonics and pressed 
positions correspond to multiples and relatives of  the open string tuning with respect to the global fundamental of  A 440 
Hz. This is shown for the purpose of  exeplifying how the intervals were deployed in a practical composition. The 
explanation for the musicians is also shown.

&

2-Limit

Fundamental = A4 = 440 Hz

j
1/1                          2/1    

j
9/8        32/27      4/3       3/2       27/16     16/9  
204            294          498         702          906          996       cents
+4

3-Limit

-6 -2

+2 +6

-4

&

5-Limit

16/15       10/9         6/5         5/4         25/16     8/5        5/3       9/5           15/8

+12

112            182            316          386            773           814         884        1018            1088    cents    

!
-18

m +16o
-14

u
-27

t +14o
-16

u +18 o
-12

"

&

7-Limit

64/63     21/20     35/32       8/7    7/6     128/105     9/7      21/16    7/5  

+27>
27            84           155           231     267          343            435        471        583          cents

-16

<f
-45

<m +31>
-33

< +43>o +35>v +62

-29

<
-17

<f

&
   10/7     35/24   32/21   14/9    105/64   12/7      7/4     64/35    40/21    63/32

 617       653         729        765       857           933         969       1045        1116       1173    cents
+17>" +53<# +29<

-35

<
-43

<" +33>v
-31

< +45>o
-19

>"
-27

<

w w œn œn œn œn œ# œn

œ œ œ œ œ œ œ œ œ

œ œ œ œ œ œ œ œ œ

œ œ œ œ œ œ œ œ œ œ
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Each staff  corresponds to a string and its natural harmonics, grouped according to their overtone number (2=octaves, 
3=fifths, 5=major thirds, 7=harmonic sevenths). In addition to the nodes for playing these natural harmonics, it also 
indicates notes which are played at the position of  the nodes but which are to be pressed in order to produce real notes 
corresponding to harmonic ratios. 

At the left of  the staff  is the string number and its scordatura. One of  each of  the instruments' strings is detuned to 
correspond to some harmonic or subharmonic of  A440, which is the fundamental for the whole piece. The strings which do 
not need scordatura are labelled with a small cent deviation (-4 cents for G, !2 for D, +2 for E, 0 cents for A). They do not 
need to be exactly retuned (although it is recommended), for the deviations are too small to be noticeable. However, the 
strings to be detuned by more than 4 cents are shown with a box around their label. The double bass’ 4th string (E) is tuned 
up 114 cents to a F +14¢ which corresponds to the fifth subharmonic; the cello’s fourth is moved down 112 cents to a B -12¢ 
which is the seventh subharmonic, and the violin’s third string is moved down 114 cents to a C# -14¢ which is the fifth 
harmonic. 

Each staff  has an upper ossia that shows the resulting sound as well as the harmonic proportion with respect to A440. The 
accidentals are based on the Helmholtz Ellis notation (adagio.calarts.edu/~msabat/ms/pdfs/notation.pdf) which has special 
symbols for syntonic commas (small arrows for 5-Limit intervals) and septimal commas (7-limit with a symbol similar to a 7 
and an inverted 7). Above or below each note is a small number indicating the cent deviation from the closest equal tempered 
note. 

The lower staff  shows how the notes are to be played, starting with the open string and including both the nodes for natural 
harmonics as well as the notes that sound when these nodes are fully pressed to produce notes at that position (this is labelled 
with ‘pressed node’). These notes correspond to a whole number division of  the string and therefore to harmonic ratios over 
the string’s fundamental. There is a small number which labels the node number, a small cipher next to the diamond notes in 
the divisions of  5 and 7. Together with the fact that most of  these strings are themselves harmonic ratios of  the A440 
fundamental, it allows a way of  tuning many far away ratios of  A440 with high accuracy and a relatively low difficulty in 
finding their positions in the fingerboard. 

This is a table for composing as well as for rehearsing how to play these notes. In two cases (the Vlc and CB 4th string), 
harmonics go up to the 9th. An electronic tuner is recommended for testing the factibility of  these notes. 

The last page contains the pitch set for the whole piece. The intervals are in the middle octave (between 1/1 and 2/1) and 
arranged, first according to their prime intervals (2, 3, 5 and 7) and within each grupo according to their pitch distance. This 
pitch set is for reference showing the intervals for the whole piece as well as their distance in cents with respect with A440. 
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