Cover Page

Universiteit Leiden

The handle http://hdl.handle.net/1887/20298 holds various files of this Leiden University dissertation.

Author: Ghisaidoobe, Amar Bharatbhusun Thaterpal

Title: Versatile diamondoids: applications in bioorganic chemistry

Issue Date: 2012-12-18

Versatile Diamondoids

Applications in Bioorganic Chemistry

Amar B.T. Ghisaidoobe

Versatile

A new look at old stuff: Reactivity of Trityl ethers towards Appel salts

Amar B.T. Ghisaidoobe

Diamondoids: Applications in Bioorganic Chemistry

Dedicated to: Erica Wenker, Bart van Ommen, Anne Geert Volbeda, Jos Poolman, Nuria Roda Monsalves; Daan van der Es, Geoffroy Gential and Casper Remmerswaal

protection of primary alcohol functinalities The triphenylmethyl (trityl) protective group for

Figure 1: Triphenylmethyl ether (1) and Appel salt (2).

$$\begin{array}{c|c} & & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & \\ & & & \\$$

methods for its mild introduction and cleavage. reaction conditions has led to the development of chemistry,1 the stability of the trityl group towards a variety of Since its pioneering application in classical carbohydrate different

Oriyama et al. (2003) reported a one-step conversion of trithyl ethers to the corresponding acetates utilizing 1.2 equiv. of acylbromides.² In 2006, Tsoukala et al. reported the of trityl ethers

corresponding bromides utilizing two equivalents Here, we report a one-step conversion of trityl ethers to the of the Appel

> Scheme 2: Serendipitous discovery of a one-step conversion of triphenylmethyl ether 3 by Appel salt 2 CH₂Cl₂ (0.1 M) 0 °C, 1h 2 eq. PPh₃ 2 eq. CBr₄

Scheme 4: Postulated mechanism for the one-step conversion **₽** of trityl ethers with Appel salt

> ethers was examined. To explore the scope of this direct conversion, a row of trityl The trityl ethers were reacted under

\ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \	0. > ОТп	0 0000	Bno OMe	₩ BnO OTrt	S BnO OTrt	X0~00Tп	РМВО	тнро	Starting Compound	Since Ber concerned about
_	64	90	73	80	75	81	complex mixture	complex mixture	Yield (%)	

In conclusion, we have demonstrated the use of Appel salt 2 in the conversion of trityl ethers towards their corresponding bromides. This direct conversion has the potential to shorten

This work was supported by NWO, Mozaiek grant.