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1 Introduction

1.1 Background and outline of the introduction

1.1.1 Background

Random walks in random environments have been an active subject of research in the mathe-
matics and physics literature for over 40 years. They are random walks whose transition kernels
or rates are themselves random and may evolve in time in a stochastic manner. They model
the motion of a “tracer particle” in a disordered medium, called a random environment, which
can be static if it stays constant in time, or dynamic if it evolves in time. These cases reflect,
respectively, situations where changes in the medium take place at a much larger time scale than
displacements of the tracer (static case), and situations where these time scales are comparable
(dynamic case). Examples are a photon in an amorphous solid, or a contaminant particle in a
turbulent fluid. We could ask whether, depending on the statistical properties of the medium,
the tracer particle behaves ballistically, and whether its fluctuations are diffusive. The subject
of this thesis is the analysis of the asymptotic behaviour of random walks in dynamic random
environments from a mathematical standpoint.

1.1.2 Outline of the introduction

In Section 1.2, we define the class of models and state the main questions that will be discussed
in this thesis. Section 1.3 contains a brief historical overview of random walk in static and
dynamic random environment, with emphasis on results that are relevant for our discussion. A
description of the remaining chapters is given in Section 1.4.

1.2 Model and questions

In this section, we setup our notation, define our model and state the main questions that we
will discuss.

1.2.1 Random walk in dynamic random environment

The role of the random environment will be taken by a Feller process ξ = (ξt)t≥0 on the product
space Ω := EZd , where d ∈ N and E is a Polish space. We call the random environment static
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1 Introduction

if ξt = ξ0 ∀ t ≥ 0, and we call it dynamic otherwise. Endow Ω with the space-shift operators
(θx)x∈Zd defined by

(θxη) (y) := η(x+ y), η ∈ Ω, x, y ∈ Zd. (1.2.1)

Conditionally on ξ, the random walk in random environment, denoted by W = (Wt)t≥0, is a
Markov process on Zd with rates as follows. Let

π : Ω× Zd → [0,∞) (1.2.2)

be a given measurable function. Then the rate at time t for the random walk to jump to x+ z
given that Wt = x is equal to π(θxξt, z). In a dynamic random environment, this gives rise to a
time-inhomogeneous Markov process.

Discrete-time models can be defined analogously by taking π to be transition probabilities
(i.e. π(η, z) ∈ [0, 1] and

∑
z∈Zd π(η, z) = 1 for µ-a.e. η), and letting W jump at integer times. In

this case, the random environment ξ may evolve in continuous or discrete time.

We will denote by Pzη the joint law of ξ and W when ξ0 = η ∈ Ω and W0 = z ∈ Zd, omitting
the superscript when z = 0. We assume that ξ is translation-invariant, i.e.,

Pη (θxξt ∈ ·) = Pθxη (ξt ∈ ·) ∀ η ∈ Ω, x ∈ Zd, (1.2.3)

and that there exists a translation-invariant probability measure µ on Ω that is an equilibrium
for ξ. Then, under the probability measure Pµ given by

Pµ(·) :=

∫
Ω

Pη(·)µ(dη), (1.2.4)

the distribution of ξ is invariant w.r.t. space-time shifts.

The random walk W is said to have bounded jumps if there exists a deterministic finite set
J ⊂ Zd such that

π(η, x) = 0 ∀ x /∈ J for µ-a.e. η. (1.2.5)

The majority of the models studied in the literature are of this type. Unless explicitly stated
otherwise, in the following we will always assume that W has bounded jumps. A particular case
is that of nearest-neighbour jumps, i.e., J = {x ∈ Zd : ‖x‖ = 1}.

Another important notion is ellipticity : the model is called elliptic if there exists a basis (ei)
d
i=1

of Zd such that
π(η,±ei) > 0 for i ∈ {1, . . . , d}, for µ-a.e. η. (1.2.6)

It is called uniformly elliptic if there exists a δ ∈ (0, 1) such that, for µ-a.e. η,

π(η, x) ≤ δ−1 ∀ x ∈ Zd,
π(η,±ei) ≥ δ ∀ i ∈ {1, . . . , d}. (1.2.7)

A particular case is when E is finite (e.g. E = {0, 1}) and π(η, x) > 0 if and only if x ∈ {±ei : i =
1, . . . , d}.
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1.2 Model and questions

An important tool that appears recurrently in the literature is the process ξ̄ = (ξ̄t)t≥0 of the
environment as seen from the random walk (ESRW), defined by

ξ̄ := θWtξt. (1.2.8)

When ξ is translation-invariant, ξ̄ is a Markov process. Many questions about the model can be
formulated in terms of the ESRW.

In the following, we will write RWRE to abbreviate “random walk in static random environ-
ment” and RWDRE to abbreviate “random walk in dynamic random environment”.

1.2.2 Questions

The main objective is to understand the asymptotic behaviour of Wt as t → ∞. For example,
we seek criteria for recurrence/transience, laws of large numbers, large deviation principles and
estimates, as well as central limit theorems or other scaling limits. These questions come in
two flavours: quenched and annealed. The difference is the law w.r.t. which W satisfies a given
property. The annealed law is the law of W under Pµ, while the quenched law is the law of W
under Pµ(· | ξ), i.e., conditional on ξ. An annealed property is one that holds for W under Pµ,
while a quenched property is one that holds under Pµ(· | ξ) for Pµ-a.e. ξ.

The random walk W is called transient if

lim
t→∞
‖Wt‖ =∞ Pµ-a.s. (1.2.9)

and is called recurrent if, for every x ∈ Zd,

Pµ (∃ t > 0: Wt = x) = 1. (1.2.10)

It is not difficult to see that (1.2.10) implies that each site of Zd is visited infinitely often by W ;
this follows from the fact that the law of θWtξt under Pµ is, for each t ≥ 0, absolutely continuous
w.r.t. µ.

We say that W satisfies a strong law of large numbers (SLLN) if there exists a w ∈ Rd, called
the velocity of the random walk (or, alternatively, speed in one dimension), such that

lim
t→∞

t−1Wt = w Pµ-a.s. (1.2.11)

Note that transience, recurrence and the SLLN require no distinction between annealed and
quenched laws. If large deviation bounds of the type

lim sup
t→∞

t−1 logPµ
(
t−1Wt /∈ (w − ε, w + ε)

)
< 0 ∀ ε > 0 (1.2.12)

are available, then (1.2.11) holds by the Borel-Cantelli lemma.
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1 Introduction

We say that W satisfies the annealed large deviation principle (LDP) in Rd, with rate function
Ha : Rd → [0,∞] if

lim sup
t→∞

t−1 logPµ
(
t−1Wt ∈ F

)
≤ − infx∈F Ha(x) ∀ closed F ⊂ Rd,

lim inf
t→∞

t−1 logPµ
(
t−1Wt ∈ G

)
≥ − infx∈GHa(x) ∀ open G ⊂ Rd.

(1.2.13)

Analogously, W satisfies the quenched LDP if (1.2.13) holds with Pµ(· | ξ) in place of Pµ, and Ha

replaced by a (in general, different) rate function Hq that is deterministic, i.e., does not depend
on ξ. Usual requirements for rate functions are lower semi-continuity and compact level sets. In
many cases they are also finite and convex.

Finally, we say that W satisfies the functional central limit theorem (FCLT) if there exists a
constant σ2 ∈ (0,∞) (the limiting variance) such that(

Wnt − ntw
n1/2σ

)
t≥0

=⇒ B as n→∞, (1.2.14)

where B is standard Brownian motion and =⇒ denotes weak convergence in Skorohod space. The
FCLT is called quenched or annealed depending on which law is considered for W . In contrast
to the LDP (where annealed and quenched rate functions may differ), a quenched FCLT with
variance σ2 implies the annealed FCLT with the same variance.

Models admitting limits other than Gaussian and with different spatial and temporal scalings
will be mentioned in Section 1.3.

1.3 History and discussion

In this section we give a brief overview of the literature on random walks in static and dynamic
random environments. The exposition will be far from complete, as we focus on results relevant
for our subsequent discussion. For more information on RWRE we refer the reader to the lecture
notes of Sznitman [77, 78] and Zeitouni [83, 84], and for RWDRE to the PhD thesis of Avena [3].

1.3.1 Static random environment

In this section, all models are in discrete time and have bounded or nearest-neighbour jumps.

One dimension

Models of RWRE have been around since the late 1960’s, when they appeared as toy models
for DNA replication (see e.g. Chernov [26]). A mathematical treatment of the one-dimensional
model in the i.i.d. setting (i.e., when µ is a product measure) was given by Solomon [73], who
proved, among other results, a criterion for transience/recurrence and a SLLN. The model has
some surprising features: for example, depending on the parameters, the RWRE can have speed
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1.3 History and discussion

zero but still be transient, which is impossible for random processes with stationary increments
(see Kesten [48]). Furthermore, according to the formula provided by Solomon, the speed of the
RWRE is smaller than the speed of a homogeneous random walk whose transition probabilities
are given by the average of π over µ. These slow-down phenomena are related to the presence of
traps, i.e., regions in the lattice where the random walk spends a long time because the random
environment gives the random walk a drift towards the center of the region.

The slow-down can be noticed also at the level of large deviations. For example, it was shown
by Greven and den Hollander [40] for the i.i.d. setting that, when the speed w is positive, the
quenched rate function has a flat piece (i.e., is equal to zero) in the interval [0, w]. This means
that deviations to travel at speeds slower than typical are not exponentially costly.

Another interesting feature of RWRE is the possibility to have both diffusive and non-diffusive
scaling limits, as was shown by Kesten, Kozlov and Spitzer [53] in the transient case, and Sinai
[72] in the recurrent case, both under the annealed law. The latter case is particularly dramatic:
the random walk is so slow that its position after n steps scales as (log n)2 as n→∞.

One-dimensional RWRE is by now very well understood. As examples of additional results,
we mention:

- extensions to ergodic random environments, i.e., when µ is invariant and ergodic w.r.t.
space-shifts (recurrence vs. transience criteria and SLLNs by Alili [2];
quenched, annealed and functional LDPs by Comets, Gantert and Zeitouni [28]);

- precise identification of the law of annealed scaling limits in the i.i.d. setting (recurrent
case by Golosov [39] and Kesten [49]; transient case by Enriquez, Sabot and Zindy [36]).

Two and more dimensions

Much is known also in dimensions two and higher, but the picture is far less complete. For
example, even in the i.i.d. uniformly elliptic setting there is still no complete characterization of
transience vs. recurrence (see, however, Peres, Popov and Sousi [64] for a quite general transience
criterion), and the SLLN has only been proven under additional restrictions, except for d = 2
(see Sznitman and Zerner [79] and Zerner [85]).

One such class of restrictions are ballisticity conditions, which ensure that the random walk
has a strong drift in some direction. For example, one may require the model to be non-nestling,
meaning that the random walk has a minimum drift in a certain direction independently of
the random environment. The nestling case is more challenging, because the random walk can
become “trapped”, as in the one-dimensional case, in large regions of the random environment
where the random walk is pushed towards the center.

Two ballisticity conditions formulated for the nestling case are Kalikow’s condition [47] and
Sznitman’s (T ′) condition [76]. The first of these concerns the drift of a certain “coarse-grained”
auxiliary chain, while the second requires stretched-exponential decay of certain slab exit prob-
abilities under the annealed measure. Recently, Berger, Drewitz and Ramirez [13] proved a
polynomial criterion for ballisticity that is equivalent to condition (T ′). In the i.i.d. uniformly
elliptic setting, Kalikow’s condition implies condition (T ′), which in turn implies the SLLN, the
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1 Introduction

annealed FCLT, and large deviation estimates (see Sznitman [74, 75]).

The requirement of i.i.d. random environment can be substituted by suitable mixing condi-
tions. For example, Rassoul-Agha [65] proved a SLLN assuming Kalikow’s condition combined
with a strong mixing condition named after Dobrushin and Shlosman. His proof uses the ESRW
process, in this case given by (θWnξ0)n∈N0 . A similar SLLN was proven by Comets and Zeitouni
[29], again requiring Kalikow’s condition but introducing the weaker condition of “φ-mixing on
`-cones”, which amounts, roughly speaking, to the requirement that the states of the random
environment inside a cone aligned with a vector ` are asymptotically independent of the states
across a distant hyperplane that is perpendicular to `. Their proof relies on the construction of
regeneration times. In [30], the same authors prove a CLT under a modified mixing condition
involving multiple cones.

Among the host of additional results available, we mention only a few:

- quenched FCLT for i.i.d. random environments under transience and moment assumptions
by Rassoul-Agha and Seppäläinen [67];

- quenched FCLT for balanced ergodic random environments by Guo and Zeitouni [42] and
Lawler [55];

- quenched LPD in the ergodic setting and annealed LPD in the i.i.d. setting by Varadhan
[80].

1.3.2 Dynamic random environment

In this section, most of the random walk models are again in discrete time, while the evolution
of the random environment can be in discrete or continuous time.

Comparison with static random environment

As a model for phenomena with comparable time scales for the random environment and the
random walk, RWDRE has a motivation of its own. Nevertheless, the comparison with RWRE
is natural and interesting. For example, by considering time as an additional dimension, one can
view RWDRE in dimension d as a special case of RWRE in dimension d + 1, with the random
walk transient and the random environment Markovian in the time direction. Therefore, for a
fixed dimension, one could hope to obtain more detailed information for RWDRE, at least in
some cases.

Another motivation for comparison comes from the “slow-down phenomena” mentioned in
Section 1.3.1. As noted there, the “anomalous behaviour” of RWRE in one dimension is related
to the occurrence of traps that, in a dynamic random environment, would not stay fixed in time
but would eventually disappear. Is this enough to restore the “ordinary behaviour” (i.e., ballistic
or diffusive) of the random walk? One would expect that when the dynamics of the environment
is fast enough this will indeed be the case, while when it is slow enough some “anomaly” will
survive.
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1.3 History and discussion

Currently, these questions can be only partially answered, mostly by identifying situations
where regular diffusive and/or ballistic behaviour occurs. This includes, as we will see, dynamic
random environments with fast enough and uniform mixing, as well as a few examples outside
this class. In contrast, a random walk considered by Avena, den Hollander and Redig [5] on the
simple symmetric exclusion process was shown to exhibit slow-down at the level of annealed large
deviations, and simulations of the same model by Avena and Thomann [8] suggest non-diffusive
behaviour depending on parameters. Other examples of RWDRE with anomalous behaviour
can be constructed (Völlering [81]). However, no general criteria to decide whether this happens
or not have been found yet. In fact, even for some classical and well-studied dynamic random
environments (e.g. the exclusion process) the behaviour is still wide open, so there is a lot to be
done.

Brief history of the model

One of the first models in dynamic random environment was introduced by Madras [61] in
1986. In this model, the random environment is i.i.d. in space and Markovian in time, and the
random walk is a deterministic functional of the random environment. In particular, the model
is non-elliptic. He obtained recurrence/transience criteria, a SLLN and an annealed FCLT.

In 1992, Boldrighini, Ignatyuk, Malyshev and Pellegrinotti [16] introduced a model of RW-
DRE, for which they proved a CLT under different assumptions. Their model has mutual inter-
actions, i.e., the evolution of the random environment is influenced by the random walk. Since
then, RWDRE models have been intensively studied in different settings, falling mostly into one
of the following two categories:

1. Independent in time, where the random environment is resampled after each time unit.
Under the annealed measure, the random walk is homogeneous, so the focus is on quenched
results. The quenched FCLT was studied e.g. by Bérard [11], Boldrighini, Minlos and
Pellegrinotti [19, 21, 23], Joseph and Rassoul-Agha [46], and Rassoul-Agha and Seppäläinen
[66]. The quenched LDP was treated by Yilmaz [82].

2. Independent in space and Markovian in time, where the random environment consists
of identically distributed Markov processes, evolving independently at each site of Zd.
The SLLN and both quenched and annealed FCLTs were considered e.g. by Boldrighini,
Minlos and Pellegrinotti [20, 22], Bandyophadyay and Zeitouni [9], and Dolgopyat and
Liverani [33, 34]. Boldrighini, Minlos, Nardi and Pellegrinotti [17, 18] studied the decay of
correlations for the ESRW process.

Cases where the random environment has correlations in both space and time have been con-
sidered only recently. Dolgopyat, Keller and Liverani [32] obtained a SLLN and a quenched CLT
for random environments with strong space-time mixing under absolute-continuity assumptions
on the equilibrium of the ESRW process. A quenched FCLT was also obtained by Bricmont
and Kupiainen [24] for random walks that depend weakly on the random environment, under
an assumption that implies exponential mixing of the random environment. The latter is not
assumed to be Markovian.
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1 Introduction

Avena, den Hollander and Redig [6] considered random environments consisting of interacting
particle systems (IPS) with state space E = {0, 1} (see Liggett [57]). The transition rates π for
this model are defined as follows:

π(η, x) =


αη(0) + β [1− η(0)] if x = 1,
βη(0) + α [1− η(0)] if x = −1,
0 otherwise,

(1.3.1)

where α, β ∈ (0,∞). Hereafter we will refer to this model as the (α, β)-model. In [6], the authors
prove, among other results, a SLLN under a milder mixing condition called cone-mixing. This
condition, and the ensuing proof strategy using regeneration times, is an adaptation of the “φ-
mixing on cones” condition used by Comets and Zeitouni [29] in the static setting. It requires,
roughly speaking, that the states of the random environment inside a space-time cone opening
upwards in time depend weakly on the initial configuration when the time coordinate of the tip
of the cone is very large.

(0, 0)

(0, t)

-

Zd × [0,∞)

Ct(m)

time

space

slope m

Figure 1.1: The cone defined in (1.3.2).

To define this condition more precisely (in one dimension), for t ≥ 0 and m > 0, let

Ct(m) := {(x, s) ∈ Z× [t,∞) : |x| ≤ m(s− t)} (1.3.2)

be the cone with tip at (0, t) and slope m (see Figure 1.1), and put

Ct(m) := σ {ξs(x) : (x, s) ∈ Ct(m)} . (1.3.3)

Then the cone-mixing condition holds if, for any slope m, there exists a function Φ(t) satisfying
limt→∞Φ(t) = 0 such that, for all non-negative f measurable in Ct(m),

|Eη[f ]− Eµ [f ]| ≤ Φ(t)‖f‖∞ for µ-a.e. η. (1.3.4)

No assumptions on the speed of decay of Φ(t) are required. Note, however, that cone-mixing is a
uniform mixing condition; this is crucial for the implementation of the regeneration strategy. An
annealed FCLT was later obtained in [3] in the same setting, under a stricter condition involving
multiple cones.
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1.4 Overview of the thesis

The SLLN and annealed FCLT were obtained also by Redig and Völlering [70] in a fairly
general setup, not requiring e.g. E to be finite or W to have bounded jumps and assuming
instead moment and regularity conditions on π. Also this work requires conditions that ensure
uniform and fast enough mixing of the random environment (polynomial with a high enough
degree). These conditions are formulated in terms of coupling between different realizations
of the random environment. For example, a mixing condition that implies the SLLN is the
existence, for any η, ζ ∈ Ω, of a strong Markovian coupling P̂η,ζ of two copies ξ1 and ξ2 of the
random environment, starting respectively from η and ζ, such that∫ ∞

0

td sup
η,ζ∈Ω

Êη,ζ
[
dist

(
ξ1
t (0), ξ2

t (0)
)]
dt <∞, (1.3.5)

where dist(·, ·) is the distance in the Polish space E. Extra conditions are required to obtain
the FCLT. The approach in [70] is to study the ESRW process, for which unique ergodicity is
proven with control of the speed of relaxation towards equilibrium. This also yields information
about how the limiting velocity and the limiting variance depend on π.

Apart from general results such as the quenched LDP (see Avena, den Hollander and Redig [5],
Campos, Drewitz, Ramirez, Rassoul-Agha and Seppäläinen [25], and Rassoul-Agha, Seppäläinen
and Yilmaz [69]), the annealed LDP for one-dimensional attractive spin systems (Avena, den
Hollander and Redig [5]), and a recent transience criterion (Peres, Popov and Sousi [64]), very
little is known for random environments that are not uniformly mixing. Some results are available
in specific cases. One example is [43], where an approximate law of large numbers is obtained
when the random environment is a Poisson system of independent simple random walks. Another
example is [15], where a SLLN and both quenched and annealed FCLTs are obtained for a
random walk in the “backbone” of supercritical oriented percolation. Three of the four remaining
chapters of this thesis (Chapters 3–5) are dedicated to RWDREs without uniform mixing. Their
contents are described in Section 1.4.

1.4 Overview of the thesis

We give here an overview of Chapters 2–5 of the thesis from the perspective of the previous
discussion.

1.4.1 Chapter 2: Law of large numbers for non-elliptic random walks
in dynamic random environment

The setup in this chapter is slightly different from the one described in Section 1.2. The reason
is that its motivation comes from a non-elliptic model with rates that can be infinite. More
precisely, we are interested in analysing the (α, β)-model of [6] in the limit as α ↑ ∞ and
β ↓ 0, which we call the (∞, 0)-model. In this limit, the random walk is almost a deterministic
functional of the random environment, being in particular non-elliptic. Using a new uniform
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mixing condition called conditional cone-mixing, we are able to generalize the regeneration-time
argument of [6] and obtain a SLLN in a general setup that includes the (∞, 0)-model, the (α, β)-
model, as well as various other models in one or more dimensions. Convergence in Lp, p ≥ 1,
and a ballisticity criterion are obtained for the (∞, 0)-model in two classes of examples, namely:
spin-flip systems with bounded flip rates that are either in the M < ε regime (see Liggett [57])
or have small enough ratio of maximal/minimum flip rates.

This chapter is based on a paper with Frank den Hollander and Vladas Sidoravicius [45], which
has been accepted for publication in Stochastic Processes and their Applications.

1.4.2 Chapter 3: Transient random walk in symmetric exclusion:
limit theorems and an Einstein relation

In this chapter, the random environment is given by a one-dimensional simple symmetric exclu-
sion process (SSEP). This is the IPS on Z with state space E = {0, 1} whose generator L acts
on real bounded cylinder functions f as

Lf(η) :=
∑
x,y∈Z
x∼y

[f(ηx,y)− f(η)] , η ∈ {0, 1}Z, (1.4.1)

where x ∼ y means that x and y are nearest-neighbours and ηx,y is the configuration obtained
from η by interchanging the states at x and y. The interpretation is that particles move in-
dependently on the lattice, except for a hard-core repulsion (the exclusion interaction), which
prevents them to jump to a site that is already occupied. We take the initial configuration to be
distributed as a Bernoulli product measure with density ρ ∈ [0, 1], denoted by νρ. The measures
{νρ : ρ ∈ [0, 1]} are known to be the only extremal invariant measures for ξ. Due to conservation
of particles, the SSEP has (relatively) slow and non-uniform mixing, and as such it does not
fall into any of the categories treated previously.

We consider a nearest-neighbour model with transition rates given by

π(η, x) =


α1η(0) + α0 [1− η(0)] if x = 1,
β1η(0) + β0 [1− η(0)] if x = −1,
0 otherwise,

(1.4.2)

where αi, βi ∈ (0,∞), i ∈ {0, 1}. Under the strong drift assumption

α1 ∧ α0 − β1 ∨ β0 > 1, (1.4.3)

we prove a SLLN, an annealed FCLT, as well as large deviation bounds. The method uses
regeneration times, obtained and controlled with the help of (1.4.3). The basic idea is that the
random walk is moving so fast that it very quickly “leaves behind” the information accumulated
in its past.

Regarding the RWDRE as a perturbation of a homogeneous random walk, we also obtain a
so-called Einstein relation between the linear response of the speed to the perturbation and the
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1.4 Overview of the thesis

unperturbed variance, in the limit when the perturbation is very weak. This is an example of a
fluctuation-dissipation theorem in statistical physics.

This chapter is based on a paper with Luca Avena and Florian Völlering [7], which has been
submitted.

1.4.3 Chapter 4: Scaling of a random walk on a supercritical contact
process

In this chapter we study another example of an IPS on {0, 1}Z exhibiting non-uniform mixing,
namely, the contact process in the supercritical phase. This is the translation-invariant Feller
process whose local transition rates at a site x ∈ Z, given that the current configuration is
η ∈ {0, 1}Z, are given by

1→ 0 at rate 1,
0→ 1 at rate λ [η(x+ 1) + η(x− 1)] ,

(1.4.4)

where λ ∈ (0,∞) is called the infection parameter. We interpret the states of ξ by saying that
a site x is infected at time t if ξt(x) = 1, and is healthy otherwise. In words, (1.4.4) means that
infected sites heal spontaneously at rate 1, while healthy sites get infected at a rate proportional
to the number of infected neighbours; the proportionality constant is the infection parameter λ.

This random environment exhibits a phase transition: there exists a critical infection param-
eter λc ∈ (0,∞) such that if λ ≤ λc, then the only equilibrium for ξ is the measure concentrated
on the configuration with all sites healthy, while if λ > λc, then there exists a unique non-trivial
equilibrium νλ that is invariant and ergodic under space-shifts, and assigns positive density to
the set of infected sites. In this regime, there is also a characteristic infection propagation speed
ι(λ) > 0, which is the asymptotic speed of the rightmost infected site when ξ is started from a
configuration that is all infected to the left of the origin and all healthy to the right of the origin.

Noting that long stretches of healthy sites have positive probability under νλ, it is not hard to
see that the contact process is not uniformly mixing when λ > λc, as the typical time required for
an infection to reach the center of such a stretch is linear in the length of the stretch. Therefore,
also the supercritical contact process is not covered by previous results, even though it mixes
exponentially fast when starting from configurations with enough infections.

We consider jump rates as in (1.4.2) under the following restrictions:

α0 + β0 = α1 + β1 =: γ > 0 (1.4.5)

and

v0 ≤ v1 where vi := αi − βi, i ∈ {0, 1}, (1.4.6)

i.e., the total jump rate is constant and equal to γ everywhere, while the local drift is larger on
infections than on healthy sites. The latter assumption is made w.l.o.g. as the contact process
is invariant under reflection through the origin.

11
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Under (1.4.5)–(1.4.6), we obtain a SLLN and some properties of the speed. The proof consists
of two parts: a subadditivity argument when ξ starts from all sites infected, and a coupling
between the latter law and Pνλ . Under the additional restriction that

ι(λ) > |v0| ∨ |v1|, (1.4.7)

i.e., the infection propagates faster than the maximum absolute speed at which the random walk
can move, we construct regeneration times that allow us to prove an annealed FCLT and an
annealed LDP, as well as continuity of the speed and the limiting variance as functions of λ.

This chapter is based on a paper with Frank den Hollander [44], which has been submitted.

1.4.4 Chapter 5: Non-trivial linear bounds for a random walk driven
by a simple symmetric exclusion process

In this chapter, we revisit the random walk on the one-dimensional SSEP. We take the jump rates
to be as in (1.4.2) but drop the strong drift assumption (1.4.3), assuming instead (1.4.5)–(1.4.6)
as in Chapter 4. The proof of the SLLN in this setting is still an open challenge.

We propose instead a much simpler question: Can the random walk travel, even along a
subsequence of times, at one of the extremal speeds v0 or v1? In other words, is it possible that
lim inft→∞ t

−1Wt = v0 or lim supt→∞ t
−1Wt = v1? This is equivalent to the question of whether

the random walk spends a negligible amount of time on top of particles or holes. Using a
renormalization technique due to Kesten and Sidoravicius [50], we perform a multiscale analysis
of the SSEP that allows us to answer this question in the negative.

12



2 Law of large numbers for non-elliptic
random walks in dynamic random
environments

This chapter is based on a paper with Frank den Hollander and Vladas Sidoravicius.

Abstract

We prove a law of large numbers for a class of Zd-valued random walks in dynamic random
environments, including non-elliptic examples. We assume for the random environment a mixing
property called conditional cone-mixing and that the random walk tends to stay inside wide
enough space-time cones. The proof is based on a generalization of a regeneration scheme
developed by Comets and Zeitouni [29] for static random environments and adapted by Avena,
den Hollander and Redig [6] to dynamic random environments. A number of one-dimensional
examples are given. In some cases, the sign of the speed can be determined.

Acknowledgment. The authors are grateful to Luca Avena, Frank Redig and Florian Völlering
for fruitful discussions.

MSC 2010. Primary 60K37; Secondary 60F15, 82C22.
Key words and phrases. Random walk, dynamic random environment, non-elliptic, conditional
cone-mixing, regeneration, law of large numbers.

2.1 Introduction

2.1.1 Background

Random walk in random environment (RWRE) has been an active area of research for more
than three decades. Informally, RWRE’s are random walks in discrete or continuous space-time
whose transition kernels or transition rates are not fixed but are random themselves, constituting
a random environment. Typically, the law of the random environment is taken to be translation
invariant. Once a realization of the random environment is fixed, we say that the law of the
random walk is quenched. Under the quenched law, the random walk is Markovian but not
translation invariant. It is also interesting to consider the quenched law averaged over the law of
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2 Law of large numbers for non-elliptic random walks in dynamic random environments

the random environment, which is called the annealed law. Under the annealed law, the random
walk is not Markovian but translation invariant. For an overview on RWRE, we refer the reader
to Zeitouni [83, 84], Sznitman [77, 78], and references therein.

In the past decade, several models have been considered in which the random environment
itself evolves in time. These are referred to as random walk in dynamic random environment
(RWDRE). By viewing time as an additional spatial dimension, RWDRE can be seen as a
special case of RWRE, and as such it inherits the difficulties present in RWRE in dimensions
two or higher. However, RWDRE can be harder than RWRE because it is an interpolation
between RWRE and homogeneous random walk, which arise as limits when the dynamics is
slow, respectively, fast. For a list of mathematical papers dealing with RWDRE, we refer the
reader to Avena, den Hollander and Redig [5]. Most of the literature on RWDRE is restricted
to situations in which the space-time correlations of the random environment are either absent
or rapidly decaying.

One paper in which a milder space-time mixing property is considered is Avena, den Hollander
and Redig [6], where a law of large numbers (LLN) is derived for a class of one-dimensional
RWDRE’s in which the role of the random environment is taken by an interacting particle
system (IPS) with configuration space

Ω := {0, 1}Z. (2.1.1)

x− 1 x x+ 1
0
-�
βα

x− 1 x x+ 1
1
-�
αβ

Figure 2.1: Jump rates of the (α, β)-walk on top of a hole (= 0), respectively, a particle (= 1).

In their paper, the random walk starts at 0 and has transition rates as in Fig. 2.1: on a hole
(i.e., on a 0) the random walk has rate α to jump one unit to the left and rate β to jump one
unit to the right, while on a particle (i.e., on a 1) the rates are reversed (w.l.o.g. it may be
assumed that 0 < β < α < ∞, so that the random walk has a drift to the left on holes and a
drift to the right on particles). Hereafter, we will refer to this model as the (α, β)-model. The
LLN is proved under the assumption that the IPS satisfies a space-time mixing property called
cone-mixing (see Fig. 2.2), which means that the states inside a space-time cone are almost
independent of the states in a space plane far below this cone. The proof uses a regeneration
scheme originally developed by Comets and Zeitouni [29] for RWRE and adapted to deal with
RWDRE. This proof can be easily extended to Zd, d ≥ 2, with the appropriate corresponding
notion of cone-mixing.
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-

-

q
space-time cone

time

spacespace plane

Figure 2.2: Cone-mixing property: asymptotic independence of states inside a space-time cone
from states inside a space plane.

2.1.2 Elliptic vs. non-elliptic

The original motivation for the present paper was to study the (α, β)-model in the limit as
α →∞ and β ↓ 0. In this limit, which we will refer to as the (∞, 0)-model, the walk is almost
a deterministic functional of the IPS; in particular, it is non-elliptic. The challenge was to
find a way to deal with the lack of ellipticity. As we will see in Section 2.3, our set-up will
be rather general and will include the (α, β)-model, the (∞, 0)-model, as well as various other
models. Examples of papers that deal with non-elliptic (actually, deterministic) RW(D)RE’s
are Madras [61] and Matic [63], where a recurrence vs. transience criterion, respectively, a large
deviation principle are derived.

In the RW(D)RE literature, ellipticity assumptions play an important role. In the static case,
RWRE in Zd, d ≥ 1, is called elliptic when, almost surely w.r.t. the random environment, all
the rates are finite and there is a basis {ei}1≤i≤d of Zd such that the rate to go from x to
x + ei is positive for 1 ≤ i ≤ d. It is called uniformly elliptic when these rates are bounded
away from infinity, respectively, bounded away from zero. In [29], in order to take advantage
of the mixing property assumed on the random environment, it is important to have uniform
ellipticity not necessarily in all directions, but in at least one direction in which the random walk
is transient. One way to state this “uniform directional ellipticity” in a way that encompasses
also the dynamic setting is to require the existence of a deterministic time T > 0 and a vector
e ∈ Zd such that the quenched probability for the random walk to displace itself along e during
time T is uniformly positive for almost every realization of the random environment. This is
satisfied by the (α, β)-model for e = 0 and any T > 0. This model is also transient (indeed,
non-nestling) in the time direction, which enables the use of the cone-mixing property of [6].
In the case of the (∞, 0)-model, however, there are in general no such T and e. For example,
when the random environment is a spin-flip system with bounded flip rates, any fixed space-time
position has positive probability of being unreachable by the random walk. For all such models,
the approach in [6] fails.

In the present paper, in order to deal with the possible lack of ellipticity we require a different
space-time mixing property for the dynamic random environment, which we call conditional cone-
mixing. Moreover, as in [29] and [6], we must require the random walk to have a tendency to stay
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2 Law of large numbers for non-elliptic random walks in dynamic random environments

inside space-time cones. Under these assumptions, we are able to set up a regeneration scheme
and prove a LLN. Our result includes the LLN for the (α, β)-model in [6], the (∞, 0)-model for
at least two subclasses of IPS’s that we will exhibit, as well as models that are intermediate,
in the sense that they are neither uniformly elliptic in any direction, nor deterministic as the
(∞, 0)-model.

2.1.3 Outline

The rest of the paper is organized as follows. In Section 2.2 we discuss, still informally, the (∞, 0)-
model and the regeneration strategy. This section serves as a motivation for the formal definition
in Section 2.3 of the class of models we are after, which is based on three structural assumptions.
Section 2.4 contains the statement of our LLN under four hypotheses, and a description of two
classes of one-dimensional IPS’s that satisfy these hypotheses for the (∞, 0)-model, namely,
spin-flip systems with bounded flip rates that either are in Liggett’s M < ε regime, or have finite
range and a small enough ratio of maximal/minimal flip rates. Section 2.5 contains preparation
material, given in a general context, that is used in the proof of the LLN given in Section 2.6.
In Section 2.7 we verify our hypotheses for the two classes of IPS’s described in Section 2.4. We
also obtain a criterion to determine the sign of the speed in the LLN, via a comparison with
independent spin-flip systems. Finally, in Section 2.8, we discuss how to adapt the proofs in
Section 2.7 to other models, namely, generalizations of the (α, β)-model and the (∞, 0)-model,
and mixtures thereof. We also give an example where our hypotheses fail. The examples in our
paper are all one-dimensional, even though our LLN is valid in Zd, d ≥ 1.

2.2 Motivation

2.2.1 The (∞, 0)-model

Let
ξ := (ξt)t≥0 with ξt :=

(
ξt(x)

)
x∈Z (2.2.1)

be a càdlàg Markov process on Ω. We will interpret ξ by saying that at time t site x contains
either a hole (ξt(x) = 0) or a particle (ξt(x) = 1). Typical examples are interacting particle
systems on Ω, such as independent spin-flips and simple exclusion.

Suppose that we run the (α, β)-model on ξ with 0 < β � 1� α <∞. Then the behavior of
the random walk is as follows. Suppose that ξ0(0) = 1 and that the walk starts at 0. The walk
rapidly moves to the first hole on its right, typically before any of the particles it encounters
manages to flip to a hole. When it arrives at the hole, the walk starts to rapidly jump back and
forth between the hole and the particle to the left of the hole: we say that it sits in a trap. If
ξ0(0) = 0 instead, then the walk rapidly moves to the first particle on its left, where it starts to
rapidly jump back and forth in a trap. In both cases, before moving away from the trap, the
walk typically waits until one or both of the sites in the trap flip. If only one site flips, then the
walk typically moves in the direction of the flip until it hits a next trap, etc. If both sites flip
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simultaneously, then the probability for the walk to sit at either of these sites is close to 1
2
, and

hence it leaves the trap in a direction that is close to being determined by an independent fair
coin.

The limiting dynamics when α → ∞ and β ↓ 0 can be obtained from the above description
by removing the words “rapidly, “typically” and “close to”. Except for the extra Bernoulli(1

2
)

random variables needed to decide in which direction to go to when both sites in a trap flip
simultaneously, the walk up to time t is a deterministic functional of (ξs)0≤s≤t. In particular,
if ξ changes only by single-site flips, then apart from the first jump the walk is completely
deterministic. Since the walk spends all of its time in traps where it jumps back and forth
between a hole and a particle, we may imagine that it lives on the edges of Z. We implement
this observation by associating with each edge its left-most site, i.e., we say that the walk is at x
when we actually mean that it is jumping back and forth between x and x+ 1. See Figure 2.3.

0

t

0

Wt

r

r

Z

Figure 2.3: The vertical lines represent the presence of particles. The dotted line is the path of the
(∞, 0)-walk.

Let
W := (Wt)t≥0 (2.2.2)

denote the random walk path. By the description above, W is càdlàg and

Wt is a function of
(
(ξs)0≤s≤t, Y

)
, (2.2.3)

where Y is a sequence of i.i.d. Bernoulli(1
2
) random variables independent of ξ. Note that W

also has the following three properties:

(1) For any fixed time s, the increment Ws+t −Ws is found by applying the same function in
(2.2.3) to the environment shifted in space and time by (Ws, s) and an independent copy
of Y ; in particular, the pair (Wt, ξt) is Markovian.

(2) Given that W stays inside a space-time cone until time t, (Ws)0≤s≤t is a functional only of
Y and of the states in ξ up to time t inside a slightly larger cone, obtained by by adding
all neighboring sites to the right.

(3) Each jump of the path follows the same mechanism as the first jump, i.e., Wt −Wt− is
computed using the same rules as those for W0 but applied to the environment shifted in
space and time by (Wt−, t).

The reason for emphasizing these properties will become clearer in Section 2.2.2.
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time
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Figure 2.4: Regeneration at time τ .

2.2.2 Regeneration

The cone-mixing property that is assumed in [6] to prove the LLN for the (α, β)-model can
be loosely described as the requirement that all the states of the IPS inside a space-time cone
opening upwards depend weakly on the states inside a space plane far below the tip (recall
Fig. 2.2). Let us give a rough idea of how this property can lead to regeneration. Consider the
event that the walk stands still for a long time. Since the jump times of the walk are independent
of the IPS, so is this event. During this pause, the environment around the walk is allowed to
mix, which by the cone-mixing property means that by the end of the pause all the states inside
a cone with a tip at the space-time position of the walk are almost independent of the past of the
walk. If thereafter the walk stays confined to the cone, then its future increments will be almost
independent of its past, and so we get an approximate regeneration. Since in the (α, β)-model
there is a uniformly positive probability for the walk to stay inside a space-time cone with a
large enough inclination, we see that this regeneration strategy can indeed be made to work.
See Figure 2.4.

For the actual proof of the LLN in [6], cone-mixing must be more carefully defined. For
technical reasons, there must be some uniformity in the decay of correlations between events in
the space-time cone and in the space plane. This uniformity holds, for instance, for any spin-flip
system in the M < ε regime (Liggett [57], Section I.3), but not for the exclusion process or the
supercritical contact process. Therefore the approach outlined above works for the first IPS, but
not for the other two.

There are three properties of the (α, β)-model that make the above heuristics plausible. First,
to be able to apply the cone-mixing property relative to the space-time position of the walk, it
is important that the pair (IPS,walk) is Markovian and that the law of the environment as seen
from the walk at any time is comparable to the initial law. Second, there is a uniformly positive
probability for the walk to stand still for a long time and afterwards stay inside a space-time
cone. Third, once the walk stays inside a space-time cone, its increments depend on the IPS only
through the states inside that cone. Let us compare these observations with what happens in
the (∞, 0)-model. Property (1) from Section 2.2.1 gives us the Markov property, while property
(2) gives us the measurability inside cones. As we will see, when the environment is translation-
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invariant, property (3) implies absolute continuity of the law of the environment as seen from
the walk at any positive time with respect to its counterpart at time zero. Therefore, as long
as we can make sure that the walk has a tendency to stay inside space-time cones (which is
reasonable when we are looking for a LLN), the main difference is that the event of standing still
for a long time is not independent of the environment, but rather is a deterministic functional
of the environment. Consequently, it is not at all clear whether cone-mixing is enough to allow
for regeneration. On the other hand, the event of standing still is local, since it only depends on
the states of the two neighboring sites of the trap where the walk is pausing. For many IPS’s,
the observation of a local event will not affect the weak dependence between states that are far
away in space-time. Hence, if such IPS’s are cone-mixing, then states inside a space-time cone
remain almost independent of the initial configuration even when we condition on seeing a trap
for a long time.

Thus, under suitable assumptions, the event “standing still for a long time” is a candidate to
induce regeneration. In the (α, β)-model this event does not depend on the environment whereas
in the (∞, 0)-model it is a deterministic functional of the environment. If we put the (α, β)-model
in the form (2.2.3) by taking for Y two independent Poisson processes with rates α and β, then
we can restate the previous sentence by saying that in the (α, β)-model the regeneration-inducing
event depends only on Y , while in the (∞, 0)-model it depends only on ξ. We may therefore
imagine that, also for other models of the type (2.2.3) and that share properties (1)–(3), it will
be possible to find more general regeneration-inducing events that depend on both ξ and Y in
a non-trivial manner. This motivates our setup in Section 2.3.

2.3 Model setting

So far we have mostly been discussing RWDRE driven by an IPS. However, there are convenient
constructions of IPS’s on richer state spaces (such as graphical representations) that can facil-
itate the construction of the regeneration-inducing events mentioned in Section 2.2.2. We will
therefore allow for more general Markov processes to represent the dynamic random environment
ξ. Notation is set up in Section 2.3.1. Section 2.3.2 contains the three structural assumptions
that define the class of models we will consider.

2.3.1 Notation and setup

Let N = {1, 2, . . .} be the set of natural numbers, and N0 := N ∪ {0}. Let E be a Polish space
and ξ := (ξt)t≥0 a Markov process with state space EZd where d ∈ N. Let Y := (Yn)n∈N be an
i.i.d. sequence of random elements independent of ξ. For I ⊂ [0,∞), abbreviate ξI := (ξu)u∈I ,
and analogously for Y . The joint law of ξ and Y when ξ0 = η ∈ EZd will be denoted by Pη. For
n ∈ N, put Yn := σ(Y[1,n]). Let F0 := σ(ξ0) and, for t > 0, Ft := σ(ξ[0,t]) ∨ Ydte.

For t ≥ 0 and x ∈ Zd, let θt and θx be the time-shift and space-shift operators given by

θt(ξ, Y ) :=
(
(ξt+s)s≥0, (Ybtc+n)n∈N

)
, θx(ξ, Y ) :=

(
(θxξt)t≥0, (Yn)n∈N

)
, (2.3.1)
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where θxξt(y) = ξt(x+ y). In the sequel, whether θ is a time-shift or a space-shift operator will
always be clear from the index.

We assume that ξ is translation-invariant, i.e., θxξ has under Pη the same distribution as ξ
under Pθxη. We also assume the existence of a (not necessarily unique) translation-invariant
equilibrium distribution µ for ξ, and write Pµ(·) :=

∫
µ(dη)Pη(·) to denote the joint law of ξ

and Y when ξ0 is drawn from µ.

The random walk will be denoted by W = (Wt)t≥0, and we will write ξ̄ := (ξ̄t)t≥0 to denote
the environment process as seen from W , i.e., ξ̄t := θWtξt. Let µ̄t denote the law of ξ̄t under Pµ.
We abbreviate µ̄ := µ̄0. Note that µ̄ = µ when Pµ(W0 = 0) = 1.

For m > 0 and R ∈ N0, define the R-enlarged m-cone by

CR(m) :=
{

(x, t) ∈ Zd × [0,∞) : ‖x‖ ≤ mt+R
}
, (2.3.2)

where ‖ · ‖ is the L1 norm. Let CR,t(m) be the σ-algebras generated by the states of ξ up to
time t inside CR(m).

2.3.2 Structural assumptions

We will assume that W is random translation of a random walk starting at 0. More precisely,
we assume that Z = (Zt)t≥0 is a càdlàg F -adapted Zd-valued process with Z0 = 0 Pµ̄-a.s. such
that

Wt = W0 + θW0Zt ∀ t ≥ 0. (2.3.3)

We also assume that W0 ∈ Zd and depends on ξ and Y only through ξ0, i.e.,

Pµ(W0 = x | F∞) = Pµ(W0 = x | ξ0) a.s. ∀ x ∈ Zd. (2.3.4)

Under these assumptions, (Wt −W0)t≥0 has under Pµ the same distribution as Z under Pµ̄. In
what follows we make three structural assumptions on Z:

(A1) (Additivity)
For all n ∈ N,

(Zt+n − Zn)t≥0 = θZnθnZ Pµ̄-a.s. (2.3.5)

(A2) (Locality)
For m > 0, let Dm := {‖Zt‖ ≤ mt ∀ t ≥ 0}. Then there exists R ∈ N0 such that, ∀ m > 0,
both Dm and (1DmZt)t≥0 are measurable w.r.t. CR,∞(m) ∨ Y∞.

(A3) (Homogeneity of jumps)
For all n ∈ N and x ∈ Zd,

Pµ̄
(
Zn − Zn− = x | ξ[0,n], Z[0,n)

)
= PθZn−ξn

(
W0 = x

)
Pµ̄-a.s. (2.3.6)

These properties are analogues of properties (1)–(3) of the (∞, 0)-model mentioned in Sec-
tion 2.2.1, with the difference that we only require them to hold at integer times; this will be
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enough as our proof relies on integer-valued regeneration times. We also assume the ‘extra ran-
domness’ Y to be split independently among time intervals of length 1; for example, in the case
of the (∞, 0)-model, each Yn would not be a Bernoulli(1

2
) random variable but a whole sequence

of such variables instead. This is discussed in detail in Section 2.7.1.

Another remark: assumption (A3) might seem strange since many random walk models have no
deterministic jumps, which is indeed the case for the examples described in Section 2.4. Note
however that, in this case, (A3) severely restricts W0, implying W0 = 0 a.s. when ξ is started
from θZn−ξn. Furthermore, our main theorem (Theorem 2.4.1 below) is not restricted to this
situation and includes also cases with deterministic jumps. For example, one could modify the
(∞, 0)-walk to jump exactly at integer times. Additional examples with deterministic jumps are
described in item 4 of Section 2.8. The relevance of assumption (A3) is in showing that the law
of the environment as seen by the RW after any jump is absolutely continuous w.r.t. the law
after the first jump; this is done in Lemma 2.6.1 below.

2.4 Main results

Theorems 2.4.1 and 2.4.2 below are the main results of our paper. Theorem 2.4.1 in Section 2.4.1
is our LLN. Theorem 2.4.2 in Section 2.4.2 verifies the hypotheses in this LLN for the (∞, 0)-
model in two classes of one-dimensional IPS’s. For these classes some more information is
available, namely, convergence in Lp, p ≥ 1, and a criterion to determine the sign of the speed.

2.4.1 Law of large numbers

In order to develop a regeneration scheme for a random walk subject to assumptions (A1)–(A3)
based on the heuristics discussed in Section 2.2.2, we need suitable regeneration inducing events.
In the four hypotheses stated below, these events appear as a sequence (ΓL)L∈N such that, for a
certain fixed m ∈ (0,∞) and R as in (A2), ΓL ∈ CR,L(m) ∨ YL for all L ∈ N.

(H1) (Determinacy)
On ΓL, Zt = 0 for all t ∈ [0, L] Pµ̄-a.s.

(H2) (Non-degeneracy)
For L large enough, there exists a γL > 0 such that Pη(ΓL) ≥ γL for µ̄-a.e. η.

(H3) (Cone constraints)
Let S := inf{t > 0: ‖Zt‖ > mt}. Then there exist a ∈ (1,∞), κL ∈ (0, 1] and ψL ∈ [0,∞)
such that, for L large enough and µ̄-a.e. η,

(1) Pη(θLS =∞ | ΓL) ≥ κL,

(2) Eη
[
1{θLS<∞} (θLS)a | ΓL

]
≤ ψaL.

(2.4.1)

(H4) (Conditional cone-mixing)
There exists a sequence of non-negative numbers (ΦL)L∈N satisfying
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2 Law of large numbers for non-elliptic random walks in dynamic random environments

limL→∞ κ
−1
L ΦL = 0 such that, for L large enough and for µ̄-a.e. η,

|Eη (θLf | ΓL)− Eµ̄(θLf | ΓL)| ≤ ΦL ‖f‖∞ ∀ f ∈ CR,∞(m), f ≥ 0. (2.4.2)

We are now ready to state our LLN.

Theorem 2.4.1. Under assumptions (A1)–(A3) and hypotheses (H1)–(H4), there exists a w ∈
Rd such that

lim
t→∞

t−1Wt = w Pµ − a.s. (2.4.3)

Remark 1: Hypothesis (H4) above without the conditioning on ΓL in (2.4.2) and with constant
κL is the same as the cone-mixing condition used by Avena, den Hollander and Redig [6]. There,
W0 = 0 Pµ-a.s., so that µ̄ = µ.

Remark 2: Theorem 2.4.1 provides no information about the value of w, not even its sign
when d = 1. Understanding the dependence of w on model parameters is in general a highly
non-trivial problem.

2.4.2 Examples

We next describe two classes of one-dimensional IPS’s for which the (∞, 0)-model satisfies hy-
potheses (H1)–(H4). Further details will be given in Section 2.7. In both classes, ξ is a spin-flip
system in Ω = {0, 1}Z with bounded and translation-invariant single-site flip rates. We may
assume that the flip rates at the origin are of the form

c(η) =

{
c0 + λ0p0(η) if η(0) = 1,
c1 + λ1p1(η) if η(0) = 0,

η ∈ Ω, (2.4.4)

for some ci, λi ≥ 0 and pi : Ω→ [0, 1], i = 0, 1.

Example 1: c(·) is in the M < ε regime (see Liggett [57], Section I.3).

Example 2: p(·) has finite range and (λ0 + λ1)/(c0 + c1) < λc, where λc is the critical infection
rate of the one-dimensional contact process with the same range.

Theorem 2.4.2. Consider the (∞, 0)-model. Suppose that ξ is a spin-flip system with flip rates
given by (2.4.4). Then for Examples 1 and 2 there exist a version of ξ and events ΓL ∈ CR,L(m)∨
YL, L ∈ N, satisfying hypotheses (H1)–(H4). Furthermore, the convergence in Theorem 2.4.1
holds also in Lp for all p ≥ 1, and

w ≥ c0+λ0

c1+c0+λ0
(c1 − c0 − λ0) if c1 ≥ c0 + λ0,

w ≤ − c1+λ1

c0+c1+λ1
(c0 − c1 − λ1) if c0 ≥ c1 + λ1.

(2.4.5)
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For independent spin-flip systems (i.e., when λ0 = λ1 = 0), (2.4.5) shows that w is positive,
zero or negative when the density c1/(c0 + c1) is, respectively, larger than, equal to or smaller
than 1

2
. The criterion for other ξ is obtained by comparison with independent spin-flip systems.

We expect hypotheses (H1)–(H4) to hold for a very large class of IPS’s and walks. For each
choice of IPS and walk, the verification of hypotheses (H1)–(H4) constitutes a separate problem.
Typically, (H1)–(H2) are immediate, (H3) requires some work, while (H4) is hard.

Additional models will be discussed in Section 2.8. We will consider generalizations of the
(α, β)-model and the (∞, 0)-model, namely, internal noise models and pattern models, as well as
mixtures of them. The verification of (H1)–(H4) will be analogous to the two examples discussed
above and will not be carried out in detail.

This concludes the motivation and the statement of our main results. The remainder of the
paper will be devoted to the proofs of Theorems 2.4.1 and 2.4.2, with the exception of Section 2.8,
which contains additional examples and remarks.

2.5 Preparation

The aim of this section is to prove two propositions (Propositions 2.5.2 and 2.5.4 below) that
will be needed in Section 2.6 to prove the LLN. In Section 2.5.1 we deal with approximate laws
of large numbers for general discrete- or continuous-time random walks in Rd. In Section 2.5.2
we specialize to additive functionals of a Markov chain whose transition kernel satisfies a certain
absolute-continuity property.

2.5.1 Approximate law of large numbers

This section contains two fundamental facts that are the basis of our proof of the LLN. They
deal with the notion of an approximate law of large numbers.

Definition 2.5.1. Let W = (Wt)t≥0 be a random process in Rd with t ∈ N0 or t ∈ [0,∞).
For ε ≥ 0 and v ∈ Rd, we say that W has an ε-approximate asymptotic velocity v, written
W ∈ AV (ε, v), if

lim sup
t→∞

∥∥∥∥Wt

t
− v
∥∥∥∥ ≤ ε a.s. (2.5.1)

We take ‖ · ‖ to be the L1-norm. A simple observation is that W a.s. has an asymptotic velocity
if and only if for every ε > 0 there exists a vε ∈ Rd such that W ∈ AV (ε, vε). In this case
limε↓0 vε exists and is equal to the asymptotic velocity.

First key proposition: skeleton approximate velocity

The following proposition gives conditions under which an approximate velocity for the process
observed along a random sequence of times implies an approximate velocity for the full process.
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2 Law of large numbers for non-elliptic random walks in dynamic random environments

Proposition 2.5.2. Let W be as in Definition 2.5.1. Set τ0 := 0, let (τk)k∈N be an increasing
sequence of random times in (0,∞) (or N) with limk→∞ τk =∞ a.s. and put Xk := (Wτk , τk) ∈
Rd+1, k ∈ N0. Suppose that the following hold:
(i) There exists an m > 0 such that

lim sup
k→∞

sup
s∈(τk,τk+1]

∥∥∥∥Ws −Wτk

s− τk

∥∥∥∥ ≤ m a.s. (2.5.2)

(ii) There exist v ∈ Rd, u > 0 and ε ≥ 0 such that X ∈ AV (ε, (v, u)).
Then W ∈ AV ((3m+ 1)ε/u, v/u).

Proof. First, let us check that (i) implies

lim sup
t→∞

‖Wt‖
t
≤ m a.s. (2.5.3)

Suppose that

lim sup
k→∞

sup
s>τk

∥∥∥∥Ws −Wτk

s− τk

∥∥∥∥ ≤ m a.s. (2.5.4)

Since, for every k and t > τk,∥∥∥∥Wt

t

∥∥∥∥ ≤ ‖Wτk‖
t

+

∥∥∥∥Wt −Wτk

t− τk

∥∥∥∥ ∣∣∣1− τk
t

∣∣∣ ≤ ‖Wτk‖
t

+ sup
s>τk

∥∥∥∥Ws −Wτk

s− τk

∥∥∥∥ ∣∣∣1− τk
t

∣∣∣ , (2.5.5)

(2.5.3) follows from (2.5.4) by letting t→∞ followed by k →∞.

To check (2.5.4), define, for k ∈ N0 and l ∈ N,

m(k, l) := sup
s∈(τk,τk+l]

∥∥∥∥Ws −Wτk

s− τk

∥∥∥∥ and m(k,∞) := sup
s>τk

∥∥∥∥Ws −Wτk

s− τk

∥∥∥∥ = lim
l→∞

m(k, l). (2.5.6)

Using the fact that (x1 + x2)/(y1 + y2) ≤ (x1/y1) ∨ (x2/y2) for all x1, x2 ∈ R and y1, y2 > 0, we
can prove by induction that

m(k, l) ≤ max{m(k, 1), . . . ,m(k + l − 1, 1)}, l ∈ N. (2.5.7)

Fix ε > 0. By (i), a.s. there exists a kε such that m(k, 1) ≤ m + ε for k > kε. By (2.5.7), the
same is true for m(k, l) for all l ∈ N, and therefore also for m(k,∞). Since ε is arbitrary, (2.5.4)
follows.

Let us now proceed with the proof of the proposition. Assumption (ii) implies that, a.s.,

lim sup
k→∞

∥∥∥∥Wτk

k
− v
∥∥∥∥ ≤ ε and lim sup

k→∞

∣∣∣τk
k
− u
∣∣∣ ≤ ε. (2.5.8)

For t ≥ 0, let kt be the (random) non-negative integer such that

τkt ≤ t < τkt+1. (2.5.9)
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Since τ1 <∞ a.s., kt > 0 for large enough t. From (2.5.8) and (2.5.9) we deduce that

lim sup
t→∞

∣∣∣∣ tkt − u
∣∣∣∣ ≤ ε and so lim sup

t→∞

∣∣∣∣ tkt − τkt
kt

∣∣∣∣ ≤ 2ε. (2.5.10)

For t large enough we may write∥∥∥∥uWt

t
− v
∥∥∥∥ ≤‖Wt‖

t

∣∣∣∣u− t

kt

∣∣∣∣+

∥∥∥∥Wt −Wτkt

kt

∥∥∥∥+

∥∥∥∥Wτkt

kt
− v
∥∥∥∥

≤‖Wt‖
t

∣∣∣∣u− t

kt

∣∣∣∣+ sup
s∈(τkt ,τkt+1]

∥∥∥∥Ws −Wτkt

s− τkt

∥∥∥∥ ∣∣∣∣t− τktkt

∣∣∣∣+

∥∥∥∥Wτkt

kt
− v
∥∥∥∥ , (2.5.11)

from which we obtain the conclusion by taking the limsup as t→∞ in (2.5.11), using (i), (2.5.3),
(2.5.8) and (2.5.10), and then dividing by u.

Conditions for the skeleton to have an approximate velocity

The following lemma states sufficient conditions for a discrete-time process to have an approxi-
mate velocity. It will be used in the proof of Proposition 2.5.4 below.

Lemma 2.5.3. Let X = (Xk)k∈N0 be a sequence of random vectors in Rd with joint law P such
that P (X0 = 0) = 1. Suppose that there exist a probability measure Q on Rd and numbers
φ ∈ [0, 1), a > 1, K > 0 with

∫
Rd ‖x‖

aQ(dx) ≤ Ka, such that, P -a.s. for all k ∈ N0,
(i) |P (Xk+1 −Xk ∈ A | X0, . . . , Xk)−Q(A)| ≤ φ for all A measurable;
(ii) E[‖Xk+1 −Xk‖a|X0, . . . , Xk] ≤ Ka.
Then

lim sup
n→∞

∥∥∥∥Xn

n
− v
∥∥∥∥ ≤ 2Kφ(a−1)/a P -a.s., (2.5.12)

where v =
∫
Rd xQ(dx). In other words, X ∈ AV (2Kφ(a−1)/a, v).

Proof. The proof is an adaptation of the proof of Lemma 3.13 in [29]; we include it here for
completeness. With regular conditional probabilities, we can, using (i), couple P and Q⊗N0

according to a standard splitting representation (see e.g. Berbee [10]). More precisely, on an
enlarged probability space we can construct random variables

(∆k, Vk, Rk)k∈N (2.5.13)

such that

(1) (∆k)k∈N is an i.i.d. sequence of Bernoulli(φ) random variables.

(2) (Vk)k∈N is an i.i.d. sequence of random vectors with law Q.

(3) (∆l)l≥k is independent of (∆l, Vl, Rl)0≤l<k, Rk.

(4) Setting X̂0 := 0 and, for k ∈ N0, X̂k+1 − X̂k := (1 − ∆k)Vk + ∆kRk, then X̂ is equal in
distribution to X.
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2 Law of large numbers for non-elliptic random walks in dynamic random environments

(5) Setting Gk := σ(∆l, Vl, Rl : 0 ≤ l ≤ k), then E[f(Vk) | Gk−1] is measurable w.r.t. σ(X̂l : 0 ≤
l ≤ k − 1) for any Borel nonnegative function f .

Using (4), we may write

Xn

n
d
=

X̂n

n
=

1

n

n∑
k=1

Vk −
1

n

n∑
k=1

∆kVk +
1

n

n∑
k=1

∆kRk. (2.5.14)

As n→∞, the first term on the r.h.s. converges a.s. to v by the LLN for i.i.d. random variables.
By Hölder’s inequality, the norm of the second term is at most(

1

n

n∑
k=1

∆k

)(a−1)/a(
1

n

n∑
k=1

‖Vk‖a
)1/a

, (2.5.15)

which, by (1) and (2), converges a.s. as n→∞ to

φ(a−1)/a

(∫
Rd
‖x‖aQ(dx)

)1/a

≤ Kφ(a−1)/a. (2.5.16)

To control the third term, put R∗k := E[Rk | Gk−1]. Since ‖∆kRk‖ ≤ ‖X̂k+1 − X̂k‖, using (1),
(3), (4), (5) and (ii), we get

φE[‖Rk‖a | Gk−1] = E[∆k‖Rk‖a | Gk−1] ≤ E[‖X̂k+1 − X̂k‖a | Gk−1] ≤ Ka. (2.5.17)

Combining (2.5.17) with Jensen’s inequality, we obtain

‖R∗k‖ ≤ E
[
‖Rk‖a | Gk−1

]1/a ≤ K

φ1/a
, (2.5.18)

so that ∥∥∥∥∥ 1

n

n∑
k=1

∆kR
∗
k

∥∥∥∥∥ ≤ K

φ1/a

(
1

n

n∑
k=1

∆k

)
−−−→
n→∞

Kφ(a−1)/a. (2.5.19)

Now fix y ∈ Rd and put

My
n :=

n∑
k=1

∆k

k
〈Rk −R∗k, y〉. (2.5.20)

where 〈·, ·〉 denotes the usual inner product. Then (My
n)n∈N0 is a (Gn)n∈N0-martingale whose

quadratic variation is

〈My〉n =
n∑
k=1

∆k

k2
〈Rk −R∗k, y〉2. (2.5.21)

By the Burkholder-Gundy inequality and (2.5.17–2.5.18), we have

E

[
sup
n∈N
|My

n |a∧2

]
≤ C E

[
〈My〉(a∧2)/2

∞
]

≤ C E

[
∞∑
k=1

∆k

ka∧2
|〈Rk −R∗k, y〉|

a∧2

]
≤ C ‖y‖a∧2Ka∧2,

(2.5.22)
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where C is a positive constant that may change after each inequality. This implies that My
n is

uniformly integrable and therefore converges a.s. as n→∞. Kronecker’s lemma then gives

lim
n→∞

1

n

n∑
k=1

∆k〈Rk −R∗k, y〉 = 0 a.s. (2.5.23)

Since y is arbitrary, this in turn implies that

lim
n→∞

1

n

n∑
k=1

∆k(Rk −R∗k) = 0 a.s. (2.5.24)

Therefore, by (2.5.19) and (2.5.24), the limsup of the norm of the last term in the r.h.s. of
(2.5.14) is also bounded by Kφ(a−1)/a, which finishes the proof.

2.5.2 Additive functionals of a discrete-time Markov chain

Notation

Let X = (Xn)n∈N0 be a time-homogeneous Markov chain in the canonical space equipped with
the time-shift operators (θn)n∈N0 . For n ≥ 1, put Fn := σ(X[1,n]) (note that X0 /∈ F∞) and let
Pχ denote the law of (Xn)n∈N0 when X0 = χ. Fix an initial measure ν and suppose that, for any
nonnegative f ∈ F∞,

Pν(EXn [f ] ∈ ·)� Pν(EX0 [f ] ∈ ·), (2.5.25)

where Pν :=
∫
ν(dχ)Pχ.

Let Z = (Zn)n∈N0 be a Zd-valued F -adapted process that is an additive functional of (Xn)n∈N,
i.e., Z0 = 0 and, for any k ∈ N0,

(Zk+n − Zk)n∈N0 = θkZ Pν-a.s. (2.5.26)

We are interested in finding random times (τk)k∈N0 such that (Zτk , τk)k∈N0 satisfies the hy-
potheses of Lemma 2.5.3. In the Markovian setting it makes sense to look for τk of the form

τ0 = 0, τk+1 = τk + θτkτ, k ∈ N0, (2.5.27)

where τ is a random time.

Condition (i) of Lemma 2.5.3 is a “decoupling condition”. It states that the law of an increment
of the process depends weakly on the previous increments. Such a condition can be enforced
by the occurrence of a “decoupling event” under which the increments of (Zτk , τk)k∈N0 lose
dependence. In this setting, τ is a time at which the decoupling event is observed.
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2 Law of large numbers for non-elliptic random walks in dynamic random environments

Second key proposition: approximate regeneration times

Proposition 2.5.4 below is a consequence of Lemma 2.5.3 and is the main result of this section.
It will be used together with Proposition 2.5.2 to prove the LLN in Section 2.6. It gives a way to
construct τ when the decoupling event can be detected by “probing the future” with a stopping
time.

For a random variable T taking values in N0 ∪ {∞}, we define the image of T by IT := {n ∈
N : Pν(T = n) > 0}, and its closure under addition by ĪT := {n ∈ N : ∃ l ∈ N, i1, . . . , il ∈
IT : n = i1 + · · ·+ il}. Note that IT = ∅ if and only if T ∈ {0,∞} a.s.

Proposition 2.5.4. Let T be a stopping time for the filtration F taking values in N∪{∞}. Put
D := {T =∞} and suppose that the following properties hold:
(i) For every n ∈ ĪT there exists a Dn ∈ Fn such that

D ∩ θnD = Dn ∩ θnD Pν-a.s.

(ii) There exist numbers ρ ∈ (0, 1], a > 1, C > 0, m > 0 and φ ∈ [0, 1) such that, Pν-a.s.,

(a) PX0 (D) ≥ ρ,
(b) EX0

[
1{T <∞}T a

]
≤ Ca,

(c) On D, ‖Zt‖ ≤ mt for all t ∈ N0,
(d) ∀ f ≥ 0 measurable,∣∣EX0

[
f(Z, (θnT )n∈ĪT ) | D

]
− Eν

[
f(Z, (θnT )n∈ĪT ) | D

]∣∣ ≤ φ‖f‖∞.

Then there exists a random time τ ∈ F∞ taking values in N such that, setting τk as in (2.5.27)
and Xk := (Zτk , τk), then X ∈ AV (ε, (v, u)) where (v, u) = Eν [(Zτ , τ) | D], u > 0 and ε =
12(m+ 1)uφ(a−1)/a.

Two further propositions

In order to prove Proposition 2.5.4, we will need two further propositions (Propositions 2.5.5
and 2.5.6 below).

Proposition 2.5.5. Let τ be a random time measurable w.r.t. F∞ taking values in N. Put τk
as in (2.5.27) and Xk := (Zτk , τk). Suppose that there exists an event D ∈ F∞ such that the
following hold Pν-a.s.:
(i) For n ∈ Iτ , there exist events Hn and Dn ∈ Fn such that

(a) {τ = n} = Hn ∩ θnD,
(b) D ∩ θnD = Dn ∩ θnD.

(2.5.28)

(ii) There exist φ ∈ [0, 1), K > 0 and a > 1 such that, on {PX0(D) > 0},

(a) EX0 [‖X1‖a|D] ≤ Ka,
(b) |PX0 (X1 ∈ A|D)− Pν (X1 ∈ A|D)| ≤ φ ∀A measurable.

(2.5.29)

Then X ∈ AV
(
ε, (v, u)

)
, where ε = 2Kφ(a−1)/a and (v, u) := Eν [X1|D].
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Proof. Since τ < ∞, by (i)(a) and (2.5.25) we must have Pν(D) > 0. Let Fτk be the σ-algebra
of the events B ∈ F∞ such that, for all n ∈ N, there exists Bn ∈ Fn with B ∩ {τk = n} =
Bn ∩ {τk = n}. We will show that, Pν-a.s., for all k ∈ N,

Eν [‖θτkX1‖a|Fτk ] ≤ Ka (2.5.30)

and

|Pν (θτkX1 ∈ A|Fτk)− Pν(X1 ∈ A|D)| ≤ φ ∀A measurable. (2.5.31)

Then, setting Q(·) := Pν(X1 ∈ ·|D) and noting that θτkX1 = Xk+1 − Xk and Xj ∈ Fτk for all
0 ≤ j ≤ k, we will be able to conclude since (2.5.30–2.5.31) and (ii)(a) imply that the conditions
of Lemma 2.5.3 are all satisfied.

To prove (2.5.30–2.5.31), first note that, using (i), one can verify by induction that (i)(a) holds
also for τk, i.e., for every n ∈ Iτk there exists Hk,n ∈ Fn such that

{τk = n} = Hk,n ∩ θnD Pν-a.s. (2.5.32)

Take B ∈ Fτk and a measurable nonnegative function f , and write

Eν [1Bθτkf(X1)] =
∑
n∈Iτk

Eν
[
1B∩{τk=n}θnf(X1)

]
=
∑
n∈Iτk

Eν
[
1Bn∩Hk,nθn

(
1Df(X1)

)]
=
∑
n∈Iτk

Eν
[
1Bn∩Hk,nPXn(D)EXn [f(X1)|D]

]
. (2.5.33)

Noting that Pν(B) =
∑

n∈Iτk
Eν
[
1Bn∩Hk,nPXn(D)

]
, obtain (2.5.30) by taking f(x) = ‖x‖a and

using (ii)(a) together with (2.5.25). For (2.5.31), choose f = 1A, subtract Pν(B)Eν [f(X1)|D]
from (2.5.33) and use (ii)(b).

Proposition 2.5.6. Let T be a stopping time as in Proposition 2.5.4 and suppose that conditions
(ii)(a) and (ii)(b) of that proposition are satisfied. Define a sequence of stopping times (Tk)k∈N0

as follows. Put T0 = 0 and, for k ∈ N0,

Tk+1 :=

{
∞ if Tk =∞
Tk + θTkT otherwise.

(2.5.34)

Put

N := inf{k ∈ N0 : Tk <∞ and Tk+1 =∞}. (2.5.35)

Then N <∞ a.s. and there exists a constant κ = κ(a, ρ) ∈ (0,∞) such that, Pν-a.s.,

EX0 [T aN ] ≤ (κC)a. (2.5.36)

Furthermore, ITN ⊂ ĪT .

29



2 Law of large numbers for non-elliptic random walks in dynamic random environments

Proof. First, let us check that
PX0(N ≥ n) ≤ (1− ρ)n. (2.5.37)

Indeed, N ≥ n if and only if Tn <∞, so that, for k ∈ N0,

PX0(Tk+1 <∞) = EX0

[
1{Tk<∞}PXTk (T <∞)

]
≤ (1− ρ)PX0(Tk <∞), (2.5.38)

where we use (ii)(a) and the fact that (2.5.25) holds also with a stopping time in place of n.
Clearly, (2.5.37) follows from (2.5.38) by induction. In particular, N <∞ a.s.

From (2.5.34) we see that, for 0 ≤ k ≤ n,

Tn = Tk + θTkTn−k on {Tk <∞}. (2.5.39)

Using (ii)(a) and (b), with the help of (2.5.25) again, we can a.s. estimate, for 0 ≤ k < n,

EX0

[
1{Tn<∞} |Tk+1 − Tk|a

]
= EX0

[
1{Tk+1<∞} |Tk+1 − Tk|a PXTk+1

(Tn−k−1 <∞)
]

≤ (1− ρ)n−k−1EX0

[
1{Tk<∞,θTkT <∞}θTkT

a
]

= (1− ρ)n−k−1EX0

[
1{Tk<∞}EXTk

[
1{T <∞}T a

]]
≤ (1− ρ)n−k−1CaPX0(Tk <∞)

≤ (1− ρ)n−1Ca. (2.5.40)

Now write

TN =
N−1∑
k=0

Tk+1 − Tk. (2.5.41)

By Jensen’s inequality,

T aN ≤ Na−1

N−1∑
k=0

|Tk+1 − Tk|a (2.5.42)

so that, by (2.5.40),

EX0 [T aN ] ≤
∞∑
n=1

na−1

n−1∑
k=0

EX0

[
1{N=n} |Tk+1 − Tk|a

]
≤ Ca

∞∑
n=1

na(1− ρ)n−1 a.s. (2.5.43)

and (2.5.36) follows by taking κ = (
∑∞

n=1 n
a(1− ρ)n−1)

1/a
.

As for the claim that ITN ⊂ ĪT , write, for n ∈ N,

{TN = n} =
∞∑
k=1

{Tk = n,N = k} (2.5.44)

to see that ITN ⊂
⋃∞
k=1 ITk . Using (2.5.34), we can verify by induction that, for each k ∈ N,

ITk ⊂ {n ∈ N : ∃ i1, . . . , ik ∈ IT : n = i1 + · · ·+ ik} ⊂ ĪT , and the claim follows.
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2.5 Preparation

Proof of Proposition 2.5.4

We can now combine Propositions 2.5.5 and 2.5.6 to prove Proposition 2.5.4.

Proof. In the following we will refer to the hypotheses of Proposition 2.5.5 with the prefix P.
For example, P(i)(a) denotes hypothesis (i)(a) in that proposition. The hypotheses in Proposi-
tion 2.5.4 will be referred to without a prefix. Since the hypotheses of Proposition 2.5.6 are a
subset of those of Proposition 2.5.4, the conclusions of the former are valid.

We will show that, if τ := t0 + θt0TN for a suitable t0 ∈ N, then τ satisfies the hypotheses of
Proposition 2.5.5 for a suitable K. There are two cases. If IT = ∅, then TN ≡ 0. Choosing t0 = 1,
we basically fall in the context of Lemma 2.5.3. P(i)(a) and P(i)(b) are trivial, (ii)(c) implies
that P(ii)(a) holds with K = (m+1), while P(ii)(b) follows immediately from (ii)(d). Therefore,
we may suppose that IT 6= ∅ and put ι := min IT ∈ N. Let Ĉ := 1 ∨ (κC) and t0 := ιdĈρ−1/ae.
We will show that τ satisfies the hypotheses of Proposition 2.5.5 with K = 6ι(m+ 1)Ĉρ−1/a.

P(i)(a): First we show that this property is true for TN . Indeed,

{TN = n} =
∑
k∈N0

{N = k, Tk = n} =
∑
k∈N0

{Tk = n, θnT =∞} (2.5.45)

= θnD ∩

( ⋃
k∈N0

{Tk = n}

)
, (2.5.46)

and Ĥn :=
⋃
k∈N0
{Tk = n} ∈ Fn since the Tk’s are all stopping times. Now we observe that

{τ = n} = θt0{TN = n− t0}, so we can take Hn := ∅ if n < t0 and Hn := θt0Ĥn−t0 otherwise.

P(i)(b): By (i), it suffices to show that Iτ ⊂ ĪT . Since t0 ∈ ĪT (as an integer multiple of ι), this
follows from the definition of τ and the last conclusion of Proposition 2.5.6.

P(ii)(a): By (ii)(c), ‖X1‖a = (‖Zτ‖+ τ)a ≤ ((m+ 1)τ)a on D. Therefore, we just need to show
that

EX0 [τa|D] ≤ (6ιĈ)a/ρ. (2.5.47)

Now, τa ≤ 2a−1 (ta0 + θt0T
a
N) and, by Proposition 2.5.6 and (2.5.25),

EX0 [θt0T
a
N ] = EX0

[
EXt0 [T aN ]

]
≤ Ĉa. (2.5.48)

Using (ii)(a), we obtain
EX0 [θt0T

a
N |D] ≤ Ĉa/ρ. (2.5.49)

Since t0 ≤ 2ιĈρ−1/a and ι ≥ 1, (2.5.47) follows.

P(ii)(b): Let S = (Sn)n∈ĪT with Sn := θnT . By (ii)(d), it is enough to show that X1 = (Zτ , τ) ∈
σ(Z, S) a.s.. Since Zτ =

∑∞
n=0 1{τ=n}Zn ∈ σ(Z, τ), it suffices to show that τ ∈ σ(S) a.s. Using

the definition of the Tk’s, we verify by induction that each Tk is a.s. measurable in σ(S). Since
N ∈ σ((Tk)k∈N0), both N and TN are also a.s. in σ(S). Therefore, a.s. τ ∈ σ(θt0S) ⊂ σ(S).
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2 Law of large numbers for non-elliptic random walks in dynamic random environments

With all hypotheses verified, Proposition 2.5.5 implies that X ∈ AV (ε̂, (v, u)), where (v, u) =
Eν [X1|D] and ε̂ = 2Kφ(a−1)/a. To conclude, observe that u = Eν [τ |D] ≥ t0 ≥ ιĈρ−1/a > 0, so
that K = 6(m + 1)ιĈρ−1/a ≤ 6(m + 1)u. Therefore, ε̂ ≤ ε and the proposition follows. In the
case IT = ∅, we conclude similarly since u = 1 and K = (m+ 1).

2.6 Proof of the law of large numbers

In this section we show how to put the model defined in Section 2.3 in the context of Section 2.5,
and we prove Theorem 2.4.1 using Propositions 2.5.2 and 2.5.4.

2.6.1 Two further lemmas

Before we start, we first derive two lemmas (Lemmas 2.6.1 and 2.6.2 below) that will be needed
in Section 2.6.2. The first lemma relates the laws of the environment as seen from Wn and from
W0. The second lemma is an extension of the conditional cone-mixing property for functions
that depend also on Y .

Lemma 2.6.1. µ̄n � µ̄ for all n ∈ N.

Proof. For t ≥ 0, let µ̄t− denote the law of θWt−ξt under Pµ. First we will show that µ̄t− � µ.
This is a consequence of the fact that µ is translation-invariant equilibrium, and remains true
if we replace Wt− by any random variable taking values in Zd. Indeed, if µ(A) = 0 then
Pµ(θxξt ∈ A) = 0 for every x ∈ Zd, so

µ̄t−(A) = Pµ(θWt−ξt ∈ A) =
∑
x∈Zd

Pµ(Wt− = x, θxξt ∈ A) = 0. (2.6.1)

Now take n ∈ N and let gn := dµ̄n−
dµ

. For any measurable f ≥ 0,

Eµ [f(θWnξn)] = Eµ̄ [f(θZnξn)] =
∑
x∈Zd

Eµ̄
[
1{Zn−Zn−=x}f(θxθZn−ξn)

]
=
∑
x∈Zd

Eµ̄
[
PθZn−ξn(W0 = x)f(θxθZn−ξn)

]
=
∑
x∈Zd

Eµ
[
PθWn−ξn(W0 = x)f(θxθWn−ξn)

]
=
∑
x∈Zd

Eµ [gn(ξ0)Pξ0(W0 = x)f(θxξ0)]

=
∑
x∈Zd

Eµ
[
gn(ξ0)1{W0=x}f(θxξ0)

]
= Eµ [gn(ξ0)f(θW0ξ0)] (2.6.2)

where, for the second equality, we use (A3).
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2.6 Proof of the law of large numbers

Lemma 2.6.2. For L large enough and for all nonnegative f ∈ CR,∞(m) ∨ Y∞,

|Eη [θLf | ΓL]− Eµ̄[θLf | ΓL]| ≤ ΦL‖f‖∞ for µ̄-a.e. η. (2.6.3)

Proof. Put fy(η) = f(η, y) and abbreviate Y (L) = (Yk)k>L. Then θLf = θLfY (L) . Since ΓL
depends on Y only through (Yk)k≤L, we have

Eη[θLf 1ΓL | Y (L)] = Eη
[
θLf(·) 1ΓL

]
◦ (Y (L)), (2.6.4)

and (2.6.3) follows from (H4) applied to fy.

2.6.2 Proof of Theorem 2.4.1

Proof. Extend ξ and Z for times t ∈ [−1, 0] by taking them constant in this interval, and let Y0

be a copy of Y1 independent of F∞. Put

X0 :=
(
ξ[−1,0], Z[−1,0], Y0

)
,

Xn+1 :=
(
θZnξ[n,n+1], (Zt+n − Zn)0≤t≤1, Yn+1

)
, n ∈ N0.

(2.6.5)

Then (Xn)n∈N0 is a time-homogeneous Markov chain; to avoid confusion, we will denote its time-
shift operator by θ̄n. Note that Fn = Fn ∀ n ∈ N ∪ {∞} and that, for functions f ∈ F∞,
θ̄nf = θZnθnf ∀ n ∈ N0.

Fix L ∈ N large enough and put

TL := L+ 1ΓLdθLSe. (2.6.6)

By (2.3.5) and since ΓL ∈ FL and Z is F -adapted, TL is an F -stopping time and (Zn)n∈N0 is
an additive functional of (Xn)n∈N as in Section 2.5.2.

Next, we will verify (2.5.25) for X and the hypotheses of Proposition 2.5.4 for Z and TL under
Pµ̄. These hypotheses will be referred to with the prefix P. The notation here is consistent in
the sense that parameters in Section 2.3 are named according to their role in Section 2.5; the
presence/absence of a subscript L indicates whether the parameter depends on L or not.

(2.5.25): Noting that, for nonnegative f ∈ F∞ and n ∈ N0,

EXn [f ] = EθZnξn [f ] Pµ̄-a.s., (2.6.7)

this follows from Lemma 2.6.1 and (2.3.3–2.3.4).

P(i): We will find Dn for n ≥ L. This is enough, since both ITL and ĪTL are subsets of [L,∞)∩N.
Using (A1) and (H1), we may write

D = ΓL ∩ {‖Zt+L‖ ≤ mt ∀ t ≥ 0},
θ̄nD = θ̄nΓL ∩ {‖Zt+n+L − Zn‖ ≤ mt ∀ t ≥ 0}. (2.6.8)
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2 Law of large numbers for non-elliptic random walks in dynamic random environments

Intersecting the two above events, we get

D ∩ θ̄nD = ΓL ∩ {‖Zt‖ ≤ mt ∀ t ∈ [0, n]} ∩ θ̄nD, (2.6.9)

i.e., P(i) holds with Dn := ΓL ∩ {‖Zt‖ ≤ mt ∀ t ∈ [0, n]} ∈ Fn for n ≥ L.

For the remaining items, note that, by (2.6.7), the distribution of (Z, TL) under PX0 is Pµ̄-a.s.
the same as under Pξ0 .

P(ii)(a): Since {TL =∞} = {θLS =∞} ∩ ΓL, we get from (H2) and (H3)(1) that, Pµ̄-a.s.,

Pξ0 (TL =∞) = Pξ0 (θLS =∞ | ΓL)Pξ0(ΓL) ≥ κLγL > 0, (2.6.10)

so that we can take ρL := κLγL.

P(ii)(b): By the definition of TL, we have

T aL 1{TL<∞} = La1ΓcL
+ (L+ dθLSe)a 1ΓL∩{θLS<∞}

≤ La1ΓcL
+ (L+ 1 + θLS)a 1ΓL∩{θLS<∞}

≤ 2a−1(L+ 1)a + 2a−1
(
(θLS)a1{θLS<∞}

)
1ΓL . (2.6.11)

Therefore, by (H3)(2), we get

Eξ0
[
T aL 1{TL<∞}

]
≤ 2a((L+ 1)a + (1 ∨ ψL)a) ≤ [2(L+ 1 + 1 ∨ ψL)]a Pµ̄-a.s., (2.6.12)

so that we can take CL := 2(L+ 1 + 1 ∨ ψL).

P(ii)(c): This follows from (H1) and the definition of S.

P(ii)(d): First note that, for any n ∈ ĪTL , θ̄nTL ∈ σ(Z, θ̄nΓL). Since n ≥ L, on {TL = ∞} =

ΓL∩{θLS =∞}, Z, θ̄nΓL and {θLS =∞} are all measurable in θL(CR,∞(m)∨Y∞); this follows
from (A2), (H1) and the assumptions on ΓL. Noting that, for any two probability measures ν1,
ν2 and an event A,

‖ν1(· | A)− ν2(· | A)‖TV ≤ 2
‖ν1 − ν2‖TV
ν1(A) ∨ ν2(A)

(2.6.13)

where ‖ · ‖TV stands for total variation distance, we see that P(ii)(d) follows from Lemma 2.6.2
and (H3)(1) with φL := 2ΦL/κL → 0 as L→∞ by (H4).

Thus, for large enough L, we can conclude by Proposition 2.5.4 that there exists a sequence
of times (τk)k∈N0 with limk→∞ τk =∞ a.s. such that

(Zτk , τk)k∈N0 ∈ AV (εL, (vL, uL)),

where
vL = Eµ̄[Zτ1|D],
uL = Eµ̄[τ1|D] > 0,

εL = 12(m+ 1)uLφ
(a−1)/a
L .

(2.6.14)
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2.7 Verification of the examples for the (∞, 0)-model

From (2.6.14) and P(ii)(c), Proposition 2.5.2 implies that Z ∈ AV (δL, wL), where

wL = vL/uL,

δL = (3m+ 1)12(m+ 1)φ
(a−1)/a
L .

(2.6.15)

By (H4), limL→∞ δL = 0. As was observed after Definition 2.5.1, this implies that w :=
limL→∞wL exists and that limt→∞ t

−1Zt = w Pµ̄-a.s., which, by (2.3.3–2.3.4), implies the same
for W , Pµ-a.s.

We have at this point finished the proof of our LLN. In the following sections, we will look at
examples that satisfy (H1)–(H4). Section 2.7 is devoted to the (∞, 0)-model for two classes of
one-dimensional spin-flip systems. In Section 2.8 we discuss three additional models where the
hypotheses are satisfied, and one where they are not.

2.7 Verification of the examples for the (∞, 0)-model

In this Section we give the proof of Theorem 2.4.2. We begin with a proper definition of the
(∞, 0)-model in Section 2.7.1, where we identify Z and W0 of Section 2.3.2. In Section 2.7.2, we
first define suitable versions of spin-flip systems with bounded rates. After checking assumptions
(A1)–(A3), we define events ΓL satisfying (H1) and (H2) for which we then verify (H3). We also
derive uniform integrability properties of t−1Wt which are the key for convergence in Lp once we
have the LLN. In Sections 2.7.3 and 2.7.4, we specialize to particular constructions in order to
prove (H4), which is the hardest of the four hypotheses. Section 2.7.5 is devoted to proving a
criterion for positive or negative speed.

2.7.1 Definition of the model

Assume that ξ is a càdlàg process with state space E := {0, 1}Z. We will define the walk W in
several steps, and a monotonicity property will follow.

Identification of Z and W0

First, let Tr+ = Tr+(η) and Tr− = Tr−(η) denote the locations of the closest traps to the right
and to the left of the origin in the configuration η ∈ E, i.e.,

Tr+(η) := inf{x ∈ N0 : η(x) = 1, η(x+ 1) = 0},
T r−(η) := sup{x ∈ −N0 : η(x) = 1, η(x+ 1) = 0}, (2.7.1)

with the convention that inf ∅ =∞ and sup ∅ = −∞. For i, j ∈ {0, 1}, abbreviate 〈i, j〉 := {η ∈
E : η(0) = i, η(1) = j}. Let Ē := 〈1, 0〉, i.e., the set of all the configurations with a trap at the
origin.
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2 Law of large numbers for non-elliptic random walks in dynamic random environments

Next, we define the functional J that gives the jumps in W . For b ∈ {0, 1} and η ∈ E, let

J(η, b) := Tr+
(
1〈1,1〉 + b1〈0,1〉

)
+ Tr−

(
1〈0,0〉 + (1− b)1〈0,1〉

)
, (2.7.2)

i.e., J is equal to either the left or the right trap, depending on the configuration around the
origin. In the case of an inverted trap (〈0, 1〉), the direction of the jump is decided by the value
of b. Observe that J = Tr+ = Tr− = 0 when η ∈ Ē, independently of the value of b.

Let b0 be a Bernoulli(1
2
) random variable independent of ξ and set

W0 = X0 := J(ξ0, b0). (2.7.3)

Now let (bn,k)n,k∈N be a double-indexed i.i.d. sequence of Bernoulli(1
2
) r.v.’s independent of (ξ, b0).

Put τ0 := 0 and, for k ≥ 0,

τk+1 :=

{
∞
inf {t > τk : (ξt(Xk), ξt(Xk + 1)) 6= (1, 0)}

if |Xk| =∞,
otherwise,

Xk+1 :=

{
Xk

Xk + J
(
θXkξτk , bdτk+1e,k+1

) if τk+1 =∞,
otherwise.

(2.7.4)

Since ξ is càdlàg, for any k ∈ N0 we either have τk =∞ or τk+1 > τk. We define (Wt)t≥0 as the
path that jumps Xk+1 −Xk at time τk+1 and is constant between jumps, i.e.,

Wt :=
∞∑
k=0

1{τk≤t<τk+1}Xk. (2.7.5)

With this definition, it is clear that Wt is càdlàg and, by (2.7.3–2.7.4),

Wn+t −Wn = θWnθnWt on {Wn <∞} ∀ n ∈ N0, t ≥ 0. (2.7.6)

Therefore, defining Z by
Zt := 1{ξ0∈Ē}Wt, t ≥ 0, (2.7.7)

we get Wt = W0 + θW0Zt on {W0 <∞} since, in this case, θW0ξ0 ∈ Ē, and W0 = 0 on Ē.

Monotonicity

The following monotonicity property will be helpful in checking (H3). In order to state it, we
first endow both E and D([0,∞), E) with the usual partial ordering, i.e., for η1, η2 ∈ E, η1 ≤ η2

means that η1(x) ≤ η2(x) for all x ∈ Z, while, for ξ(1), ξ(2) ∈ D([0,∞), E), ξ(1) ≤ ξ(2) means that

ξ
(1)
t ≤ ξ

(2)
t for all t ≥ 0.

Lemma 2.7.1. Fix a realization of b0 and (bn,k)n,k∈N. If ξ(1) ≤ ξ(2), then

Wt

(
ξ(1), b0, (bn,k)n,k∈N

)
≤ Wt

(
ξ(2), b0, (bn,k)n,k∈N

)
(2.7.8)

for all t ≥ 0.

Proof. This is a straightforward consequence of the definition. We need only to understand what
happens when the two walks separate and, at such moments, the second walk is always to the
right of the first.
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2.7 Verification of the examples for the (∞, 0)-model

2.7.2 Spin-flip systems with bounded flip rates

Dynamic random environment

From now on we will take ξ to be a single-site spin-flip system with translation-invariant and
bounded flip rates. We may assume that the rates at the origin are of the form

c(η) =

{
c0 + λ0p0(η) when η(0) = 1,
c1 + λ1p1(η) when η(0) = 0,

(2.7.9)

where ci, λi > 0 and pi ∈ [0, 1]. We assume the existence conditions of Liggett [57], Chapter I,
which in our setting amounts to the additional requirement that c(·) has finite triple norm. This
is automatically satisfied in the M < ε regime or when c(·) has finite range.

From (2.7.9), we see that the IPS is stochastically dominated by the system ξ+ with rates

c+(η) =

{
c0 when η(0) = 1,

c1 + λ1 when η(0) = 0,
(2.7.10)

while it stochastically dominates the system ξ− with rates

c−(η) =

{
c0 + λ0 when η(0) = 1,
c1 when η(0) = 0.

(2.7.11)

These are the rates of two independent spin-flip systems with respective densities ρ+ := (c1 +
λ1)/λ+ and ρ− := c1/λ

− where λ+ := c0 + c1 + λ1 and λ− := c0 + λ0 + c1. Consequently, any
equilibrium for ξ is stochastically dominated by νρ+ and dominates νρ− , where νρ is a Bernoulli
product measure with density ρ.

We will take as the dynamic random environment the triple Ξ := (ξ−, ξ, ξ+) starting from the
same initial configuration and coupled together via the basic (or Vasershtein) coupling, which
implements the stochastic ordering as an a.s. partial ordering. More precisely, Ξ is the IPS with
state space E3 whose rates are translation invariant and at the origin are given schematically by
(the configuration of the middle coordinate is η),

(000) →


(111) c1,
(011) c(η)− c1,
(001) c1 + λ1 − c(η),

(001) →


(111) c1,
(011) c(η)− c1,
(000) c0,

(011) →


(111) c1,
(000) c0,
(001) c(η)− c0,

(111) →


(000) c0,
(001) c(η)− c0,
(011) c0 + λ0 − c(η).

(2.7.12)
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2 Law of large numbers for non-elliptic random walks in dynamic random environments

Verification of (A1)–(A3)

Under our assumptions, limk→∞ τk = ∞ and X0 < ∞ Pµ-a.s., as ξ has bounded flip rates per
site and µ dominates and is dominated by non-trivial product measures. By induction, Xk <∞
a.s. for every k ∈ N as well, since the law of θXk−1

ξτk is absolutely continuous w.r.t. µ, which can
be verified by approximating τk from above by times taking values in a countable set. Therefore,
Wt is finite for all t ≥ 0.

Set Yn := (bn,k)k∈N. Then Z is F -adapted as it is independent of b0. (A1) follows by (2.7.6)
and (2.7.7), and (A3) follows either from the recursive construction (2.7.4) or by noting that Z
has no deterministic jumps and θZnθnW0 = 0. To verify (A2), note that {J = x} depends on η
only through (η(y))y∈{0∧x,...,0∨x+1} so we may take R = 1.

Definition of ΓL and verification of (H1)–(H3)

Using Ξ, we can define the events ΓL by

ΓL :=
{
ξ±t (x) = ξ±0 (x) ∀ t ∈ [0, L], x = 0, 1

}
. (2.7.13)

Then ΓL ∈ C1,L(m) for any m > 0. When ξ±0 ∈ Ē, ΓL implies that there is a trap at the
origin between times 0 and L; since µ̄(Ē) = 1, (H1) holds. The probability of ΓL is positive and
depends on Ξ0 only through the states at 0 and 1, so (H2) is also satisfied.

In order to verify (H3), we will take advantage of Lemma 2.7.1 and the stochastic domination
in Ξ to define two auxiliary processes H± = (H±t )t≥0 which we can control and which will bound
Z. This will also allow us to deduce uniform integrability properties.

In the following we will suppose that ξ±0 ∈ Ē. Let G0 = U0 := 0 and, for k ≥ 0,

Uk+1 := inf
{
t > Uk : ξ+

t (Gk + 1) = 1
}
,

Gk+1 := Gk + Tr+
(
θGkξ

+
Uk+1

)
(2.7.14)

and put

H+
t :=

∞∑
k=0

1{Uk≤t<Uk+1}Gk+1. (2.7.15)

Define H− analogously, using Tr− and ξ− instead and switching 1’s to 0’s in (2.7.14). Then
H+ (H−) is the process that, observing ξ+ (ξ−) , waits to the left of a hole (on a particle) until
it flips to a particle (hole), and then jumps to the right (left) to the next trap. Therefore, by
Lemma 2.7.1 and the definition of Z, H−t ≤ Zt ≤ H+

t ∀ t ≥ 0. Note that H+ depends only on
(ξ+(x))x≥1, and analogously for H−.

In the following, we will write Z≤x := Z ∩ (−∞, x] and analogously for Z≥x.
Lemma 2.7.2. Fix ρ∗ ∈ (0, ρ−] and ρ∗ ∈ [ρ+, 1). There exist m, a, ψ∗ ∈ (0,∞) and κ∗ ∈ (0, 1),
depending on ρ∗, ρ

∗ and λ±, such that, for any probability measure ν̄ on Ē that stochastically
dominates νρ∗ on Z≤−1 and is dominated by νρ∗ on Z≥2,

(a) sup
t≥1

Eν̄
[
ea(t

−1|H±t |)
]
≤ ψ∗ (2.7.16)
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2.7 Verification of the examples for the (∞, 0)-model

and, setting

S± := inf{t > 0: |H±t | > mt}, Ŝ± := sup{t > 0: |H±t | > mt}, (2.7.17)

then
(b) Pν̄ (S± =∞) ≥ κ∗,

(c) Eν̄
[
eaŜ

±
]
≤ ψ∗.

(2.7.18)

Before proving this lemma, let us see how it leads to (H3). We will show that there exist
m, a, ψ ∈ (0,∞) and κ ∈ (0, 1) such that, for all L ≥ 1 and η ∈ Ē,

Pη (θLS =∞ | ΓL) ≥ κ (2.7.19)

and
Eη
[
ea(θLS)1{θLS<∞} | ΓL

]
≤ ψ, (2.7.20)

which clearly imply (H3).

Let us verify (2.7.19). First note that θLS ≥ θL(S+∧S−), and that the latter is nonincreasing
in (η(x))x≥2 and nondecreasing in (η(x))x≤−1. Therefore we may assume that η = η01 which is
the configuration in Ē with all 0’s on Z≤−1 and all 1’s on Z≥2. In this case, ξ−L is distributed as
νρL0 on Z≤−1 and ξ+

L as νρL1 on Z≥2, where ρL0 = ρ−(1 − e−λ−L) and ρL1 = ρ+ + e−λ
+L(1 − ρ+).

Furthermore, on ΓL, ξ±L ∈ Ē.

Let now m, a, ψ∗ and κ∗ as in Lemma 2.7.2 for ρ∗ := ρ1
0 and ρ∗ := ρ1

1, and let ν̄L be the
distribution of η̄L ∈ Ē given by ξ−L on Z≤−1 and ξ+

L on Z≥2. Noting that η̄L is independent of ΓL
and that S+ and S− are independent, we use the previous observations, the Markov property
and Lemma 2.7.2(b) to write

Pη (θLS =∞ | ΓL) ≥ Pη01

(
θL(S+ ∧ S−) =∞ | ΓL

)
= Eη01

[
1ΓLPη̄L

(
S+ ∧ S− =∞

)]
Pη01 (ΓL)−1

= Pν̄L
(
S+ =∞

)
Pν̄L

(
S− =∞

)
≥ κ2

∗ ∈ (0, 1), (2.7.21)

and we may take κ := κ2
∗. For (2.7.20), note now that, when finite, θLS < θL(Ŝ+ ∨ Ŝ−) and the

latter is nondecreasing in (η(x))x≥2 and nonincreasing in (η(x))x≤−1. Therefore we may again
assume η = η01 and write, using Lemma 2.7.2(c),

Eη
[
θL
(
eaS1{S=∞}

)
| ΓL

]
≤ Eη01

[
θLe

a(Ŝ++Ŝ−) | ΓL
]

= Eν̄L
[
eaŜ

+
]
Eν̄L

[
eaŜ

−
]
≤ ψ2

∗ ∈ (0,∞), (2.7.22)

and we can take ψ := ψ2
∗. All that is left to do is to prove Lemma 2.7.2.

Proof of Lemma 2.7.2. By symmetry, it is enough to prove (a)–(c) for H+. Since H+, S+ and

Ŝ+ are monotone, we may assume that ξ+ has rates λ+ρ∗ to flip from holes to particles and

39



2 Law of large numbers for non-elliptic random walks in dynamic random environments

λ+(1 − ρ∗) from particles to holes and starts from νρ∗ , which is the equilibrium measure. In
this case, the increments Gk+1−Gk are i.i.d. Geom(1− ρ∗), and Uk+1−Uk are i.i.d. Exp(λ+ρ∗),
independent from (Gk)k∈N0 . Therefore, H+ is a càdlàg Lévy process and H+

1 has an exponential
moment, so (a) promptly follows. Moreover, H+ satisfies a large deviation estimate of the type

Pνρ∗
(
∃ s > t such that H+

s > ms
)
≤ K1e

−K2t for all t > 0, (2.7.23)

where m, K1 and K2 are functions of (ρ∗, λ+), which proves (c). In particular, Ŝ+ < ∞ a.s.,
which implies that Pνρ∗ (H+

s ≤ m(s+ n∗) ∀ s ≥ 0) ≥ 1
2

for some n∗ large enough; then

Pνρ∗
(
S+ =∞

)
≥ Pνρ∗

(
H+
n∗ = 0, H+

n∗+s −H+
n∗ ≤ m(s+ n∗) ∀ s ≥ 0

)
= Pνρ∗

(
H+
n∗ = 0

)
Pνρ∗

(
H+
s ≤ m(s+ n∗) ∀ s ≥ 0

)
=: κ∗ > 0, (2.7.24)

proving (b).

Uniform integrability

The following corollary implies that, for systems given by (2.7.9), (t−1|Wt|p)t≥1 is uniformly
integrable for any p ≥ 1, so that, whenever we have a LLN, the convergence holds also in Lp.

Corollary 2.7.3. Let ξ be a spin-flip system with rates as in (2.7.9), starting from equilibrium.
Then (t−1Wt)t≥1 is bounded in Lp for all p ≥ 1.

Proof. The claim for Z under Pµ̄ follows from Lemma 2.7.2(a) by noting that µ̄ stochastically
dominates νρ− on Z≤−1 and is dominated by νρ+ on Z≥2; this can be verified noting that W0 ≥ 0
corresponds to finding particles to the left of W0, and W0 ≤ 0 to holes to its right. The same
for W follows from (2.3.3–2.3.4) since W0 has exponential moments under Pµ.

We still need to verify (H4). This will be done in Sections 2.7.3 and 2.7.4 below. As κ in
(2.7.19) could be taken independently of L for (H3), we only need limL→∞ΦL = 0 in (H4).

2.7.3 Example 1: M < ε

We recall the definition of M and ε for a translation-invariant spin-flip system:

M :=
∑
x 6=0

sup
η
|c(ηx)− c(η)| , (2.7.25)

ε := inf
η

{
c(η) + c(η0)

}
, (2.7.26)

where ηx is the configuration obtained from η by flipping the x-coordinate.
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Mixing for ξ

If ξ is in the M < ε regime, then there is exponential decay of space-time correlations (see
Liggett [57], Section I.3). In fact, if ξ, ξ′ are two copies starting from initial configurations η,
η′ and coupled according to the Vasershtein coupling, then, as was shown in Maes and Shlos-
man [62], the following estimate holds uniformly in x ∈ Z and in the initial configurations:

Pη,η′ (ξt(x) 6= ξ′t(x)) ≤ e−(ε−M)t. (2.7.27)

Since the system has uniformly bounded flip rates, it follows that there exist constants K1, K2 ∈
(0,∞), independent of x ∈ Z and of the initial configurations, such that

Pη,η′ (∃ s > t s.t. ξs(x) 6= ξ′s(x)) ≤ K1e
−K2t. (2.7.28)

For A ⊂ Z× R+ measurable, let Discr(A) be the event in which there is a discrepancy between
ξ and ξ′ in A, i.e., Discr(A) := {∃ (x, t) ∈ A : ξt(x) 6= ξ′t(x)}. Recall the definition of CR(m) in
Section 2.3.1, and let CR,t(m) := CR(m)∩Z× [0, t]. From (2.7.28) we deduce that, for any fixed
m > 0 and R ∈ N0, there exist (possibly different) constants K1, K2 ∈ (0,∞) such that

Pη,η′
(
Discr (CR(m) \ CR,t(m))

)
≤ K1e

−K2t. (2.7.29)

Mixing for Ξ

Bounds of the same type as (2.7.27)–(2.7.29) hold for ξ±, since M = 0 and ε > 0 for independent
spin-flips. Therefore, in order to have such bounds for the triple Ξ, we need only couple a pair Ξ,
Ξ′ in such a way that each coordinate is coupled with its primed counterpart by the Vasershtein
coupling. A set of coupling rates for Ξ, Ξ′ that accomplishes this goal is given in (2.9.1), in
Appendix 2.9. Redefining Discr(A) := {∃ (x, t) ∈ A : Ξt(x) 6= Ξ′t(x)}, by the previous results we
see that (2.7.29) still holds for this coupling, with possibly different constants. As a consequence,
we get the following lemma.

Lemma 2.7.4. Define d(η, η′) :=
∑

x∈Z 1{η(x)6=η′(x)}2
−|x|−1. For any m > 0 and R ∈ N0,

lim
d(Ξ0,Ξ′0)→0

PΞ0,Ξ′0

(
Discr(CR(m))

)
= 0. (2.7.30)

Proof. For any t > 0, we may split Discr(CR(m)) = Discr(CR,t(m)) ∪ Discr(CR(m) \ CR,t(m)),
so that

Pη,η′
(
Discr(CR(m))

)
≤ Pη,η′

(
Discr(CR,t(m))

)
+ Pη,η′

(
Discr(CR(m) \ CR,t(m))

)
. (2.7.31)

Fix ε > 0. By (2.7.29), for t large enough the second term in (2.7.31) is smaller than ε uniformly
in η, η′. For this fixed t, the first term goes to zero as d(η, η′) → 0, since CR,t(m) is contained
in a finite space-time box and the coupling in (2.9.1) is Feller with uniformly bounded total
flip rates per site. (Note that the metric d generates the product topology, under which the
configuration space is compact.) Therefore lim supd(η,η′)→0 Pη,η′ (Discr(CR(m))) ≤ ε. Since ε is
arbitrary, (2.7.30) follows.
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2 Law of large numbers for non-elliptic random walks in dynamic random environments

Conditional mixing

Next, we define an auxiliary process Ξ̄ that, for each L, has the law of Ξ conditioned on ΓL up to

time L. We restrict to initial configurations η ∈ Ē. In this case, Ξ̄ is a process on
(
{0, 1}Z\{0,1}

)3

with rates that are equal to those of Ξ, evaluated with a trap at the origin. More precisely, for
η̄ ∈ {0, 1}Z\{0,1}, denote by (η̄)1,0 the configuration in {0, 1}Z that is equal to η̄ in Z \ {0, 1} and
has a trap at the origin. Then set C̄x(η̄) := Cx((η̄)1,0), where C̄x are the rates of Ξ̄ and Cx the
rates of Ξ at a site x ∈ Z. Observe that the latter depend only on the middle configuration η,
and not on η±. These rates give the correct law for Ξ̄ because Ξ conditioned on ΓL is Markovian
up to time L. Indeed, the probability of ΓL does not depend on η (for η ∈ Ē) and, for s < L,
ΓL = Γs ∩ θsΓL−s. Thus, the rates follow by uniqueness. Observe that they are no longer
translation-invariant.

Two copies of the process Ξ̄ can be coupled analogously to Ξ by restricting the rates in (2.9.1)
to Ē. Since each coordinate of Ξ̄ has similar properties as the corresponding coordinate in Ξ
(i.e., ξ̄± are independent spin-flip systems and ξ̄ is in the M < ε regime), it satisfies an estimate
of the type

P̄η,η′ (Discr([−t, t]× {t})) ≤ K1e
−K2t ∀ η, η′ ∈ Ē, (2.7.32)

for appropriate constants K1, K2 ∈ (0,∞). From this estimate we see that d(Ξ̄t, Ξ̄
′
t) → 0 in

probability as t→∞, uniformly in the initial configurations. By Lemma 2.7.4, this is also true
for P(Ξ̄t)1,0,(Ξ̄′t)1,0

(Discr(CR(m))). Since the latter is bounded, the convergence holds in L1 as well,
uniformly in η, η′.

Proof of (H4)

Let f be a bounded function measurable in CR,∞(m) and estimate

|Eη [θLf | ΓL]− Eη′ [θLf | ΓL]| ≤ 2‖f‖∞Pη,η′
(
θLDiscr(CR(m)) | ΓL

)
≤ 2‖f‖∞ sup

η,η′
Ēη,η′

[
P(Ξ̄L)1,0,(Ξ̄′L)1,0

(Discr(CR(m)))
]
, (2.7.33)

where Ē denotes expectation under the (coupled) law of Ξ̄. Therefore (H4) follows with

ΦL := 2 sup
η,η′

Ēη,η′
[
P(Ξ̄L)1,0,(Ξ̄′L)1,0

(Discr(CR(m)))
]
, (2.7.34)

which converges to zero as L→∞ by the previous discussion. This is enough since κL could be
taken constant in the verification of (H3)(1), as we saw in (2.7.19).

2.7.4 Example 2: subcritical dependence spread

In this section, we suppose that the rates c(η) have a finite range of dependence r ∈ N0. In this
case, the system can be constructed via a graphical representation as follows.
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Graphical representation

For each x ∈ Z, let Ijt (x) and Λj
t(x) be independent Poisson processes with rates cj and λj

respectively, where j = 0, 1. At each event of Ijt (x), put a j-cross on the corresponding space-
time point. At each event of Λj(x), put two j-arrows pointing at x, one from each side, extending
over the whole range of dependence. Start with an arbitrary initial configuration ξ0 ∈ {0, 1}Z.
Then obtain the subsequent states ξt(x) from ξ0 and the Poisson processes by, at each j-cross,
choosing the next state at site x to be j and, at each j-arrow pair, choosing the next state to be
j if an independent Bernoulli(pj(θxξs)) trial succeeds, where s is the time of the j-arrow event.
This algorithm is well defined since, because of the finite range, up to each fixed positive time
it can a.s. be performed locally.

Any collection of processes with the same range and with rates of the form (2.7.9) with ci,
λi fixed (i = 0, 1) can be coupled together via this representation by fixing additionally for
each site x a sequence (Un(x))n∈N of independent Uniform[0, 1] random variables to evaluate
the Bernoulli trials at j-arrow events. In particular, ξ± can be coupled together with ξ in the
graphical representation by noting that, for ξ−, p0 ≡ 1 and p1 ≡ 0 and the opposite is true for
ξ+. For example, ξ− is the process obtained by ignoring all 1-arrows and using all 0-arrows.
This gives the same coupling as the one given by the rates (2.7.12). In particular, we see that
in this setting the events ΓL are given by (when ξ0 ∈ Ē)

ΓL :=
{
I0
L(0) = Λ0

L(0) = I1
L(1) = Λ1

L(1) = 0
}
. (2.7.35)

Coupling with a contact process

We will couple Ξ with a contact process ζ = (ζt)t≥0 in the following way. We keep all Pois-
son events and start with a configuration ζ0 ∈ {i, h}Z, where i stands for “infected” and h for
“healthy”. We then interpret every cross as a recovery, and every arrow pair as infection trans-
mission from any infected site within a neighborhood of radius r to the site the arrows point to.
This gives rise to a ‘threshold contact process’ (TCP), i.e., a process with transitions at a site x
given by

i→ h with rate c0 + c1,
h→ i with rate (λ0 + λ1)1{∃ infected site within range r of x}.

(2.7.36)

In the graphical representation for ξ, we can interpret crosses as moments of memory loss and ar-
rows as propagation of influence from the neighbors. Therefore, looking at the pair (Ξt(x), ζt(x)),
we can interpret the second coordinate being healthy as the first coordinate being independent
of the initial configuration.

Proposition 2.7.5. Let i represent the configuration with all sites infected, and let Ξ0, Ξ′0 ∈ E3.
Couple Ξ, Ξ′ and ζ by fixing a realization of all crosses, arrows and uniform random variables,
where Ξ and Ξ′ are obtained from the respective initial configurations and ζ is started from i.
Then a.s. Ξt(x) = Ξ′t(x) for all t > 0 and x ∈ Z such that ζt(x) = h.

Proof. Fix t > 0 and x ∈ Z. With all Poisson and Uniform random variables fixed, an algorithm
to find the state at (x, t), simultaneously for any collection of systems of type (2.7.9) with fixed
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2 Law of large numbers for non-elliptic random walks in dynamic random environments

ci, λi and finite range r from their respective initial configurations runs as follows. Find the first
Poisson event before t at site x. If it is a j-cross, then the state is j. If it is a j-arrow, then
to decide the state we must evaluate pj and, therefore, we must first take note of the states at
this time at each site within range r of x, including x itself. In order to do so, we restart the
algorithm for each of these sites. This process ends when time 0 or a cross is reached along every
possible path from (x, t) to Z × {0} that uses arrows (transversed in the direction opposite to
which they point) and vertical lines. In particular, if along each of these paths time 0 is never
reached, then the state at (x, t) does not change when we change the initial configuration. On
the other hand, time 0 is not reached if and only if every path ends in a cross, which is exactly
the description of the event {ζt(x) = h}.

Cone-mixing in the subcritical regime

The process (ζt)t≥0 is stochastically dominated by a standard (linear) contact process (LCP) with
the same range and rates. Therefore, if the LCP is subcritical, i.e., if λ := (λ0+λ1)/(c0+c1) < λc
where λc is the critical parameter for the corresponding LCP, then the TCP will die out as well.
Moreover, we have the following lemma:

Lemma 2.7.6. Let At be the set of infected sites at time t. If λ < λc, then there exist positive
constants K1, K2, K3, K4 such that

Pi
(
∃ s > t : As ∩ [−K1e

K2s, K1e
K2s] 6= ∅

)
≤ K3e

−K4t. (2.7.37)

Proof. This is a straightforward consequence of Proposition 1.1 in Aizenman-Jung [1].

According to Lemma 2.7.6, the infection disappears exponentially fast around the origin. For
r = 1, a proof can be found in Liggett [57], Chapter VI, but it relies strongly on the nearest-
neighbor nature of the interaction.

Let us now prove cone-mixing for ξ when the rates are subcritical. Pick a cone Ct with
any inclination and tip at time t, and let Ht := {all sites inside Ct are healthy}. This event is
independent of ξ0 and, because of Lemma 2.7.6, has large probability if t is large. Furthermore, by
Proposition 2.7.5, on Ht the states of ξ in Ct are equal to a random variable that is independent
ξ0, which implies the cone-mixing property.

Proof of (H4)

In order to prove the conditional cone-mixing property, we couple the conditioned process to a
conditioned contact process as follows. First, let

Γ̃L :=
{
IjL(i) = Λj

L(i) = 0: j, i ∈ {0, 1}
}
. (2.7.38)
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Proposition 2.7.7. Let î represent the configuration with all sites infected except for {0, 1},
which are healthy. Let Ξ0, Ξ′0 ∈ Ē3. Couple Ξ, Ξ′ conditioned on ΓL and ζ conditioned on Γ̃L by
fixing a realization of all crosses, arrows and uniform random variables as in Proposition 2.7.5
and starting, respectively, from Ξ0, Ξ′0 and î, but, for Ξ and Ξ′, remove the Poisson events that
characterize ΓL and, for ζ, remove all Poisson events up to time L at sites 0 and 1, which
characterizes Γ̃L. Then a.s. Ξt(x) = Ξ′t(x) for all t > 0 and x ∈ Z such that ζt(x) = h.

Proof. On ΓL, the states at sites 0 and 1 are fixed for time [0, L]. Therefore, in order to determine
the state at (x, t), we need not extend paths that touch {0, 1} × [0, L]: when every path from
(x, t) either ends in a cross or touches {0, 1} × [0, L], the state at (x, t) does not change when
the initial configuration is changed in Z \ {0, 1}. But this is precisely the characterization of
{ηt(x) = h} on Γ̃L when started from î.

The proof of (H4) is finished by noting that (ηt)t≥0 starting from î and conditioned on Γ̃L is
stochastically dominated by (ηt)t≥0 starting from i. Therefore, by Lemma 2.7.6, the “dependence
infection” still dies out exponentially fast, and we conclude as for the unconditioned cone-mixing.

2.7.5 The sign of the speed

For independent spin flips, we are able to characterize with the help of a coupling argument the
regimes in which the speed is positive, zero or negative. By the stochastic domination described
in Section 2.7.2, this gives us a criterion for positive (or negative) speed in the two classes
addressed in Sections 2.7.3 and 2.7.4 above.

Lipschitz property of the speed for independent spin-flip systems

Let ξ be an independent spin-flip system with rates d0 and d1 to flip to holes and particles, respec-
tively. Since it fits both classes of IPS considered in Sections 2.7.3 and 2.7.4, by Theorem 2.4.1
there exists a w(d0, d1) ∈ R that is the a.s. speed of the (∞, 0)-walk in this environment. This
speed has the following local Lipschitz property.

Lemma 2.7.8. Let d0, d1, δ > 0. Then

w(d0, d1 + δ)− w(d0, d1) ≥ d0

d0 + d1

δ. (2.7.39)

Proof. Our proof strategy is based on the proof of Theorem 2.24, Chapter VI in [57]. Construct ξ
from a graphical representation by taking, for each site x ∈ Z, two independent Poisson processes
N i(x) with rates di, i = 0, 1, with each event of N i representing a flip to state i. For a fixed
δ > 0, a second system ξδ with rates d0 and d1 + δ can be coupled to ξ by starting from a
configuration ξδ0 ≥ ξ0 and adding to each site x an independent Poisson process N δ(x) with rate
δ, whose events also represent flips to particles, but only for ξδ. Let us denote by W and W δ
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the walks in these respective environments. Under this coupling, ξ ≤ ξδ, so, by monotonicity,
Wt ≤ W δ

t for all t ≥ 0 as well. We aim to prove that

Eµδ
[
W δ
t

]
− Eµ [Wt] ≥

d0

d0 + d1

δt, (2.7.40)

where µ and µδ are the equilibria of the respective systems. From this the conclusion will follow
after dividing by t and letting t→∞.

Define a third walk W ∗ that is allowed to use one and only one event of N δ. More precisely,
let S be the first time when there is an event of N δ at WS + 1. Take W ∗ equal to W on [0, S)
and, for times ≥ S, let W ∗ evolve by the same rules as W but adding a particle at WS + 1 at
time S, and using no more N δ events. By construction, we have Wt ≤ W ∗

t ≤ W δ
t ∀ t ≥ 0.

Let η1 := θWS
ξS ∈ Ē and η2 := (η1)1 be the configurations around WS and W ∗

S−, respectively.
Then

Eµδ
[
W δ
t

]
− Eµ [Wt] ≥ Eµ [W ∗

t −Wt, S ≤ t] ≥ Eµ [W ∗
t −Wt, S ≤ t, η1(2) = 0]

= Eµ
[
Eη1,η2

[
W 2
t−S −W 1

t−S
]
, η1(2) = 0, S ≤ t

]
, (2.7.41)

where W i, i = 1, 2 are copies of W starting from ηi and coupled via the graphical representation.
We claim that, if η1(2) = 0,

Eη1,η2

[
W 2
s −W 1

s

]
≥ 1 ∀ s ≥ 0. (2.7.42)

Indeed, we will argue that the difference W 2
s −W 1

s can only decrease when we flip all states of
η1, η2 on Z≤−1 to particles and on Z≥2 to holes; but after doing these operations, we find that
W 2 has the same distribution as W 1 + 1, which gives (2.7.42). It is enough to consider a single
x > 2. Let τ := inf{t > 0: N0

t (x) + N1
t (x) > 0} ∧ s, and put T := inf{t > 0: W 1

t = x − 1}.
There are two cases: either T > τ or not. In the first case, W 1

s remains constant if we set
η1,2(x) = 0, while W 2

s does not increase. In the second case, if η1,2(x) = 0, then W 1
T = W 2

T ; but
then they must remain equal thereafter since, for them to meet, the state at site 1 must have
flipped, and therefore they see the same configuration in the environment at time T . Hence, in
this case, W 2

s −W 1
s = 0 which is the minimum value, and our claim follows.

From (2.7.41) and (2.7.42) we get

Eµδ
[
W δ
t

]
− Eµ [Wt] ≥ Pµ (η1(2) = 0, S ≤ t) . (2.7.43)

Consider the event {η1(2) = 0}. There are two possible situations: either at time S the site
WS + 2 was not yet visited by W , in which case η1(2) is still in equilibrium, or it was. In the
latter case, let s be the time of the last visit to this site before S. By geometrical constraints,
at time s only a hole could have been observed at this site, so the probability that its state at
time S is a hole is larger than at equilibrium, which is d0/(d0 + d1). In other words,

Pµ
(
η1(2) = 0 | S,W[0,S]

)
≥ d0

d0 + d1

, (2.7.44)
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which, together with (2.7.43) and the fact that S has distribution Exp(δ), gives us

Eµδ
[
W δ
t

]
− Eµ [Wt] ≥

d0

d0 + d1

(
1− eδt

)
. (2.7.45)

Since δ is arbitrary, we may repeat the argument for systems with rates d1 + (k/n)δ, n ∈ N and
k = 0, 1, . . . , n, to obtain

Eµδ
[
W δ
t

]
− Eµ [Wt] ≥

d0

d0 + d1

n
(
1− eδt/n

)
, (2.7.46)

and we get (2.7.40) by letting n→∞.

Sign of the speed

If d0 = d1, then w = 0, since by symmetry Wt = −Wt in distribution. Hence we can summarize
as follows.

Corollary 2.7.9. For an independent spin-flip system with rates d0 and d1,

w ≥ d0

d0+d1
(d1 − d0) if d1 > d0,

w = 0 if d1 = d0,

w ≤ − d1

d0+d1
(d0 − d1) if d1 < d0.

(2.7.47)

Applying this result to the systems ξ± of Section 2.7.2, we obtain the following.

Proposition 2.7.10. Let W be the random walk for the (∞, 0)-model in a spin-flip system with
rates given by (2.7.9). Then, Pµ-a.s.,

lim inft→∞ t
−1Wt ≥ c0+λ0

c1+c0+λ0
(c1 − c0 − λ0) if c1 ≥ c0 + λ0,

lim supt→∞ t
−1Wt ≤ − c1+λ1

c0+c1+λ1
(c0 − c1 − λ1) if c0 ≥ c1 + λ1.

(2.7.48)

This concludes the proof of Theorem 2.4.2 and the discussion of our two classes of IPS’s for
the (∞, 0)-model. In Section 2.8 we give additional examples and discuss some limitations of
our setting.

2.8 Other examples

We describe here three types of examples that satisfy our hypotheses: generalizations of the
(α, β)-model and of the (∞, 0)-model, and mixed models. We also discuss an example that is
beyond the reach of our setting.
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2 Law of large numbers for non-elliptic random walks in dynamic random environments

1. Internal noise models. For x ∈ Z \ {0} and η ∈ E, let πx(η) be functions with a finite
range of dependence R. These are the rates to jump x from the position of the walk. Let
πx := supη πx(η) and suppose that, for some u > 0,∑

x∈Z\{0}

eu|x|πx <∞. (2.8.1)

This implies that also

Π :=
∑

x∈Z\{0}

πx <∞. (2.8.2)

The walk starts at the origin, and waits an independent Exponential(Π) time τ until it jumps
to x with probability πx(ξτ )/Π. These probabilities do not necessarily sum up to one, so the
walk may well stay at the origin. The subsequent jumps are obtained analogously, with ξτ
substituted by the environment around the walk at the time of the attempted jump. It is clear
that (A1)–(A3) hold. The walk has a bounded probability of standing still independently of the
environment, and its jumps have an exponential tail. We take

ΓL := {τ > L}. (2.8.3)

By defining an auxiliary walk (Ht)t≥0 that also tries to jump at time τ , but only to sites x > 0
with probability πx/Π, we see that Wt ≤ Ht and that Ht has properties analogous to the process
defined in the proof of Lemma 2.7.2. Therefore, (H1)–(H3) are always satisfied for this model.
Since ΓL is independent of ξ, (H4) is the (unconditional) cone-mixing property. Observe that
W0 = 0, so that µ̄ = µ. Therefore the LLN for this model holds in both examples discussed in
Section 2.7, and also for the IPS’s for which cone-mixing was shown in Avena, den Hollander
and Redig [6]. The (α, β)-model is an internal noise model with R = 0 (the rates depend only
on the state of the site where the walker is) and πx(η) = 0, except for x = ±1, for which
π1(1) = α = π−1(0) and π1(0) = β = π−1(1).

2. Pattern models. Take ℵ to be a finite sequence of 0’s and 1’s, which we call a pattern,
and let R be the length of this sequence. Take the environment ξ to be of the same type used
to define the (∞, 0)-walk. Let q : {0, 1}R \ {ℵ} → [0, 1]. The pattern walk is defined similarly
as the (∞, 0)-walk, with the trap being substituted by the pattern, and a Bernoulli(q) random
variable being used to decide whether the walk jumps to the right or to the left. More precisely,
let ϑ = (ξ0(0), . . . , ξ0(R − 1)). If ϑ = ℵ, then we set W0 = 0, otherwise we sample b0 as an
independent Bernoulli(q(ϑ)) trial. If b0 = 1, then W0 is set to be the starting position of the
first occurrence of ℵ in ξ0 to the right of the origin, while if b0 = 0, then the first occurrence
of ℵ to the left of the origin is taken instead. Then the walk waits at this position until the
configuration of one of the R states to its right changes, at which time the procedure to find
the jump is repeated with the environment as seen from W0. Subsequent jumps are obtained
analogously. The (∞, 0)-model is a pattern model with ℵ := (1, 0), q(1, 1) := 1, q(0, 0) := 0 and
q(0, 1) := 1/2.

For spin-flip systems given by (2.7.9), the pattern walk is defined and finite for all times, no
matter what ℵ is, the reasoning being exactly the same as for the (∞, 0)-walk. Also, it may be
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analogously defined so as to satisfy assumptions (A1)–(A3). Defining the events ΓL as

ΓL :=
{
ξ±s (j) = ξ±0 (j) ∀ s ∈ [0, L] and j ∈ {0, . . . , R− 1}

}
, (2.8.4)

we may indeed, by completely analogous arguments, reobtain all the results of Section 2.7, so
that hypotheses (H1)–(H4) hold and, therefore, the LLN as well.

3. Pattern models with extra jumps. Examples of models that fall into our setting and for
which the events ΓL depend non-trivially both on ξ and Y can be constructed by taking a pattern
model and adding noise in the form of non-zero jump rates while sitting on the pattern. More
precisely, add to Y an independent Poisson process N with positive rate and let W jump also at
events of N but with the same jump mechanism, i.e., choosing the sign of the jump according
to the result of a Bernoulli(q) random variable, and the displacement using the pattern. Taking
ΓL := ΓℵL ∩ {NL = 0}, where ΓℵL is the corresponding event for the pattern model, we may
check that, for the two examples of dynamic random environments considered in Theorem 2.4.2,
(A1)–(A3) and (H1)–(H4) are all verified.

4. Mixtures of pattern and internal noise models. Another class of models with nontrivial
dependence structure for the regeneration-inducing events can be constructed as follows. Let
W 0 be an internal noise model and W 1 a pattern model (with or without extra jumps) on
the same random environment ξ and let Y i, i ∈ {0, 1}, be the corresponding random elements
associated to each model. Let X = (X)n∈N be a sequence of i.i.d. Bernoulli(p) random variables
independent of all the rest, where p ∈ (0, 1). Then the mixture is the model for which the
dynamics associated to i ∈ {0, 1} are applied in the time interval [n− 1, n) when Xn = i. Note
that this model will have deterministic jumps.

Letting Y := (Y 0, Y 1, X) where Y i is the corresponding random element associated to the
model i, it is easily checked that this model indeed falls into our setting.

Choosing
ΓL := Γ1

L ∩ {Xk = 1, k = 1, . . . , L} (2.8.5)

where Γ1
L is the corresponding event for the pattern model, it is not hard to verify, using the

results of Section 2.7, that, for the two classes of random environments considered in Theo-
rem 2.4.2, the mixed model satisfies (A1)–(A3) and (H1)–(H4).

An open example. We will close with an example of a model that does not satisfy the
hypotheses of our LLN (in dynamic random environments given by spin-flip systems). When
ξ(0) = j, let Cj be the cluster of j’s around the origin. Define jump rates for the walk as follows:

π1(η) =

{
|C1| if η(0) = 1,
|C0|−1 if η(0) = 0,

π−1(η) =

{
|C0| if η(0) = 0,
|C1|−1 if η(0) = 1.

(2.8.6)

Even though this looks like a fairly natural model, it does not satisfy (A2). It also will not
satisfy (H1) and (H2) together for any reasonable random environment, which is actually the
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2 Law of large numbers for non-elliptic random walks in dynamic random environments

hardest obstacle. The problem is that, while we are able to transport a.s. properties of the
equilibrium measure to the measure of the environment as seen from the walk, we cannot control
the distortion in events of positive measure. Thus, even if ΓL has positive probability at time
zero, there is no a priori guarantee that it will have an appreciable probability from the point of
view of the walk at later times. Because of this, we cannot implement our regeneration strategy,
and our proof of the LLN breaks down.
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2.9 Appendix: coupling rates

Here we give the rates for a coupling between Ξ and Ξ′, mentioned in Section 2.7.3, such that
corresponding pairs of coordinates are distributed according to the Vasershtein coupling. Let
η, η′ be the state of the middle coordinates ξ and ξ′; the states outside the origin of the other
coordinates play no role. Then the flip rates at the origin are given schematically by

(000)(000) →


(111)(111) c1,
(011)(011) c(η) ∧ c(η′)− c1,
(011)(001) c(η)− c(η) ∧ c(η′),
(001)(011) c(η′)− c(η) ∧ c(η′),
(001)(001) c1 + λ1 − c(η) ∨ c(η′),

(001)(001) →


(111)(111) c1,
(011)(011) c(η) ∧ c(η′)− c1,
(011)(001) c(η)− c(η) ∧ c(η′),
(001)(011) c(η′)− c(η) ∧ c(η′),
(000)(000) c0,

(001)(011) →


(111)(111) c1,
(011)(011) c(η)− c1,
(001)(001) c(η′)− c0,
(000)(000) c0,

(000)(001) →



(111)(111) c1,
(011)(011) c(η) ∧ c(η′)− c1,
(011)(001) c(η)− c(η) ∧ c(η′),
(001)(011) c(η′)− c(η) ∧ c(η′),
(001)(001) c1 + λ1 − c(η) ∨ c(η′),
(000)(000) c0,

(000)(011) →


(111)(111) c1,
(011)(011) c(η)− c1,
(001)(011) c1 + λ1 − c(η),
(000)(000) c0,
(000)(001) c(η′)− c0,

(000)(111) →



(111)(111) c1,
(011)(111) c(η)− c1,
(001)(111) c1 + λ1 − c(η),
(000)(000) c0,
(000)(001) c(η′)− c0,
(000)(011) c0 + λ0 − c(η′).

(2.9.1)

The other transitions, starting from

(111)(111), (011)(011), (011)(001), (111)(011), (111)(001) and (111)(000), (2.9.2)

can be obtained from the ones in (2.9.1) by symmetry, by exchanging the roles of η/η′ or of
particles/holes.
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3 Transient random walk in symmetric
exclusion: limit theorems and an
Einstein relation

This chapter is based on a paper with Luca Avena and Florian Völlering.

Abstract

We consider a one-dimensional simple symmetric exclusion process in equilibrium as a dynamic
random environment for a nearest-neighbor random walk that on occupied/vacant sites has two
different local drifts to the right. We obtain a LLN, a functional CLT and large deviation
bounds for the random walk under the annealed measure by means of a renewal argument. We
also obtain an Einstein relation under a suitable perturbation. A brief discussion on the topic
of random walks in slowly mixing dynamic random environments is presented.

Acknowledgement. The authors are grateful to Frank den Hollander and Vladas Sidoravicius for
fruitful discussions.

MSC 2010. Primary 60K37; Secondary 60Fxx, 82C22.
Key words and phrases. Random walk, dynamic random environment, exclusion process, law of
large numbers, central limit theorem, Einstein relation, regeneration times.

3.1 Introduction: model, results and motivation

3.1.1 The model

Let
ξ = (ξt)t≥0 with ξt =

(
ξt(x)

)
x∈Z (3.1.1)

be a càdlàg Markov process with state space Ω = {0, 1}Z. We say that at time t the site x is
occupied by a particle if ξt(x) = 1 and is vacant or, alternatively, occupied by a hole, if ξt(x) = 0.
For η ∈ Ω, we write P η to denote the law of ξ starting from ξ0 = η, and denote by

P µ(·) =

∫
Ω

P η(·)µ(dη) (3.1.2)

the law of ξ when ξ0 is drawn from a probability measure µ on Ω.
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3 Transient random walk in symmetric exclusion: limit theorems and an Einstein relation

Having fixed a realization of ξ, let
W = (Wt)t≥0 (3.1.3)

be the Random Walk (RW) that starts from 0 and has local transition rates

x→ x+ 1 at rate α1 ξt(x) + α0 [1− ξt(x)],

x→ x− 1 at rate β1 ξt(x) + β0 [1− ξt(x)],
(3.1.4)

where
α0, α1, β0, β1 ∈ (0,∞), (3.1.5)

i.e., on occupied (resp. vacant) sites the random walk jumps to the right at rate α1 and to the
left at rate β1 (resp. α0 and β0). We write P ξ

W to denote the law of W when ξ is fixed and, for
an initial measure µ,

Pµ(·) =

∫
P ξ
W (·)P µ(dξ) (3.1.6)

to denote the law of W averaged over ξ. We refer to P ξ
W as the quenched law and to Pµ as the

annealed law.

We are interested in studying the RW W when ξ is a one-dimensional Simple Symmetric
Exclusion Process (SSEP), i.e., an Interacting Particle System (IPS) (see [57]) whose generator
L acts on a real cylinder function f as

(Lf)(η) =
∑
x,y∈Z
x∼y

[f(ηxy)− f(η)] , η ∈ Ω, (3.1.7)

where the sum runs over unordered pairs of neighboring sites in Z, and ηxy is the configuration
obtained from η by interchanging the states at sites x and y. For any ρ ∈ (0, 1), the Bernoulli
product measure with density ρ, which we denote by νρ, is an ergodic measure for the SSEP
([57], Theorem VIII.1.44).

We will assume that
α0 ∧ α1 − β0 ∨ β1 > 1. (3.1.8)

Condition (3.1.8) implies that the local drifts on occupied and vacant sites, α1− β1 and α0− β0

respectively, are both bigger than 1. Thus the RW is not only transient, but travels faster than
local information can spread in the SSEP. This is a strong property which is key to our argument;
it allows us, roughly speaking, to overcome the slow mixing in time of the SSEP with the good
mixing in space of νρ, giving rise to a regenerative structure for the random walk.

3.1.2 Results

In the three theorems below we fix ρ ∈ [0, 1] and assume (3.1.5), (3.1.8).

Theorem 3.1.1. (Law of large numbers)

There exists v ≥ α0 ∧ α1 − β0 ∨ β1 > 1 such that

lim
t→∞

Wt

t
= v Pνρ-a.s. and in Lp ∀ p ≥ 1. (3.1.9)
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Theorem 3.1.2. (Annealed large deviations)

For any ε > 0,
lim sup
t→∞

t−1 logPνρ(|Wt − tv| ≥ tε) < 0. (3.1.10)

Theorem 3.1.3. (Annealed functional central limit theorem)

There exists σ ∈ (0,∞) such that, under Pνρ,(
Wnt − ntv√

n

)
t≥0

⇒ σB (3.1.11)

where B is a standard Brownian motion.

For the next result, we interpret the model of Section 3.1.1 as a perturbation of a homogeneous
RW. We regard the exclusion process as an oscillating random field which interacts weakly with
the RW, affecting its asymptotic speed. The Einstein relation then says that the rate of change
of the speed when the interaction is very weak is given by the diffusion coefficient of the unper-
turbed walk. This is a form of the fluctuation-dissipation theorem from statistical physics, which
concerns the response of thermodynamical systems to small external perturbations, connecting
it with spontaneous fluctuations of the system. As references we mention [31, 37, 54].

Theorem 3.1.4. (Einstein Relation)
Fix α, β > 0 with α − β > 1. Let λ ∈ (0,∞) be the perturbation strength, and fix interaction
constants F0, F1 ∈ R with F0 + F1 = 1. Let the perturbed rates be given by:

α0 = α exp

{
F0

λ

1− ρ
+ o(λ)

}
, β0 = β exp

{
−F0

λ

1− ρ
+ o(λ)

}
,

α1 = α exp

{
F1
λ

ρ
+ o(λ)

}
, β1 = β exp

{
−F1

λ

ρ
+ o(λ)

}
.

(3.1.12)

When λ is small enough, (3.1.8) is satisfied. For such λ, let v(λ) be the speed as in (3.1.9). Then

lim
λ↓0

v(λ)− v(0)

λ
= α + β. (3.1.13)

The rest of the paper is organized as follows. In Section 3.1.3, we present a brief introduction
to RW in static and dynamic Random Environment (RE), and discuss slowly mixing dynamic
REs. In Section 3.2, we construct a particular version of our model. Section 3.3 is the core of
the paper; there we develop a regeneration scheme that is used in Section 3.4 to prove Theorems
3.1.1–3.1.4.

3.1.3 Motivation

Random Walks in Random Environments (RWRE) on Zd are RWs whose transition probabilities
or rates depend on a random field (static case) or on a random process (dynamic case) which
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3 Transient random walk in symmetric exclusion: limit theorems and an Einstein relation

is called a random environment. They model the motion of a particle in an inhomogeneous
medium.

RWs in static REs have been an intensive research area since the 1970’s (see e.g. [73]). One-
dimensional models are well understood. In particular, recurrence vs. transience criteria, LLNs
and CLTs have been derived, as well as quenched and annealed LDPs. In higher dimensions
the picture is much less complete, but several results are available for RWs that are transient in
some direction. In particular, LLNs and CLTs for i.i.d. REs ([79, 74, 75, 67]) and for uniformly
(fast) mixing REs ([29, 30, 65]) have been obtained under ballisticity conditions. See [77, 83, 84]
for an overview.

By considering time as an additional dimension, one can view RWs in dynamic REs in di-
mension d as RWs in static REs in dimension d + 1 which are transient in the time direction
(see e.g. [6]). Thus there are results analogous to the static, transient case. In particular, LLNs
and CLTs have been obtained when the dynamic RE has either no correlations in space and/or
time, or has uniform and fast mixing, where ‘fast’ means either exponential or (more recently)
polynomial with a high enough degree. A few references are: [6, 9, 11, 21, 23, 24, 45, 32, 46, 70].
Further references can be found in [3, 5].

Very little is known for dynamics with slow and/or non-uniform mixing (e.g. exclusion, su-
percritical contact, and zero-range processes), apart from recent LLNs for specific cases ([44],
[43]). A special interest in studying RW in slowly mixing dynamic REs comes from the static,
one-dimensional case, where unusual asymptotic behavior can be observed. More specifically,
there are regimes exhibiting transience with zero speed ([73]), non-diffusivity ([53, 72]) and
subexponential decay of the probability of travelling at speeds slower than typical ([28, 40]).
Such phenomena do not occur in dynamic RE with fast mixing (as discussed in the previous
paragraph), but one would expect them to persist when the dynamics are slow enough. Indeed,
for a RW in the SSEP with symmetric drifts on holes/particles (i.e., dropping (3.1.8) and taking
α0 = β1, β0 = α1), it was shown in [5] that the cost for travelling with zero speed is subexponen-
tial; furthermore, simulation results ([8]) suggest the existence of non-diffusive regimes. Thus
the SSEP, being a natural example where mixing is both slow and non-uniform due to particle
conservation, is an interesting and challenging choice of dynamic RE.

In the present paper, we study the RW in the SSEP under the additional assumption of
a strong spatial drift (3.1.8), which significantly facilitates the analysis. We believe that the
regeneration strategy developed in Section 3.3 could be adapted to other dynamic REs (for
instance, asymmetric exclusion processes or a Poissonian field of independent RWs) under similar
drift assumptions.

3.2 Construction of the model

In this section we construct particular versions of the random walk and of the exclusion pro-
cess, and introduce the notion of marked agents. The resulting Lemma 3.2.1 plays a key role
throughout the paper.
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3.2.1 Coupling with the minimal walker

We will construct the RW W defined in (3.1.3) from four independent Poisson processes and the
RE. This is valid in any dynamic RE given by a two-state IPS.

Let the following set of Poissonian clocks be given, each independent of all the other variables:

N+ = (N+
t )t≥0 with rate α0 ∧ α1,

N− = (N−t )t≥0 with rate β0 ∧ β1,

N̂+ = (N̂+
t )t≥0 with rate α0 ∨ α1 − α0 ∧ α1,

N̂− = (N̂−t )t≥0 with rate β0 ∨ β1 − β0 ∧ β1.

(3.2.1)

Now define W by the following rules:

1. W jumps only when one of the Poisson clocks ring;

2. When N+ rings, W jumps to the right; when N− rings, W jumps to the left;

3. When N̂+ rings, W jumps to the right if the state j at its position is such that αj = α0∨α1.

When N̂− rings, W jumps to the left if βj = β0 ∨ β1. Otherwise, W stays still.

In this construction, W is a function of (N±, N̂±, ξ) and depends on the environment only

through the states it sees when N̂+ or N̂− ring.

Let M = (Mt)t≥0 be defined by

Mt := N+
t −N−t − N̂−t . (3.2.2)

By construction, for any t ≥ s ≥ 0,

Mt −Ms ≤ Wt −Ws, (3.2.3)

and we are thus justified to call M the minimal walker.

Let
Nt := N+

t +N−t + N̂+
t + N̂−t (3.2.4)

be the number of attempted jumps before time t and

N̂t := N̂+
t + N̂−t (3.2.5)

the number of times before time t when the random walk observes the environment. Note that,
by construction,

|Wt −Ws| ≤ Nt −Ns ∀ t ≥ s ≥ 0. (3.2.6)

As a consequence, for all p ≥ 1, there is a C(p) ∈ (0,∞) such that

sup
η∈Ω

Eη[|Wt|p] ≤ C(p)tp. (3.2.7)

Therefore, by uniform integrability, as soon as a LLN holds, convergence in Lp, p ≥ 1, will follow
as well.
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3.2.2 Graphical representation

The SSEP can be constructed from a graphical representation as follows. Let

I = (I(x))x∈Z (3.2.8)

be a collection of i.i.d. Poisson processes with rate 1. Draw the events of I(x) on Z× [0,∞) as
arrows between the points x and x + 1. Then, for each t > 0 and x ∈ Z, there exists (a.s.) a
unique path in Z× [0,∞) starting at (x, t) and ending in Z× {0} going downwards in time but
forced to cross any arrows it encounters; see Figure 3.1. Denote by γt(x) ∈ Z the end position
of this path. The process γ = (γt)t≥0 is called the interchange process. On the other hand, for

↔
↔

↔

↔

↔

↔

↔

↔

γt(x)

x

0

t

Zr

r

Figure 3.1: Graphical representation. The dotted lines represent events of I. The thick lines mark the
path of the agent γt(x).

each t ≥ 0 and x ∈ Z, there is a unique y in Z such that γt(y) = x; denote by

γ−1 = (γ−1
t )t≥0 (3.2.9)

the process such that γ−1
t (x) = y.

We interpret these processes by saying that there are agents on the lattice, named after their
initial positions, who move around by exchanging places with their neighbors at events of I.
Then γ−1

t (x) is the position at time t of agent x and γt(x) is the agent who at time t is at
position x.

The SSEP ξ = (ξt)t≥0 starting from a configuration η ∈ Ω = {0, 1}Z is obtained from γ by
putting

ξt(x) := η(γt(x)), x ∈ Z. (3.2.10)

The description under the ‘agent interpretation’ is that we assign at time 0 to each agent x a
state η(x) and declare the state of the exclusion process at a space time position (x, t) to be the
state of the agent who is there.

We will call P̃ the joint law of (N+, N−, N̂+, N̂−, I). For simplicity of notation, we redefine Pµ
as the joint law of (N+, N−, N̂+, N̂−, I) and η when the latter is distributed as µ, i.e., Pµ = µ×P̃ .
Then ξ as defined in (3.2.10) is under Pµ indeed distributed as a SSEP started from µ.
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3.2 Construction of the model

3.2.3 Marked agents

In our proof, regeneration comes as a consequence of the fact that, even though the environment
is slowly mixing, the environment perceived by the walker is fast mixing in some sense. The
idea is that, since W has a strong drift and the information spread is limited, the dependence
on the observed environment is left behind very fast. In the exclusion process, this dependence
is carried by the agents of the interchange process whom the RW meets; we will therefore keep
track of them via the following time-increasing set of marked agents :

At :=
⋃

0<s≤t
N̂s− 6=N̂s

{γs(Ws−)} . (3.2.11)

In words, At consists of all the agents x ∈ Z whose states the walker observes up to time t. Set
also

Rt := sup
x∈At

γ−1
t (x), (3.2.12)

i.e., Rt is the position of the rightmost marked agent at time t. As usual we take sup ∅ = −∞.

An important observation is that the walker depends on the initial configuration only through
the states of the agents in At. More precisely, W is adapted to the filtration G = (Gt)t≥0 given
by

Gt := σ((N±s , N̂
±
s , Is)0≤s≤t, At, (η(x))x∈At). (3.2.13)

Moreover, as the next lemma shows, a consequence of the i.i.d. structure and exchangeability of
νρ is that the states of the agents who are not in At are still, given Gt, distributed as under νρ.

Lemma 3.2.1. For any t ≥ 0 and x1, . . . xn ∈ Z,

Eνρ

[
n∏
i=1

ξt(xi)

∣∣∣∣Gt
]

= ρn a.s. on {γt(x1), ..., γt(xn) /∈ At}. (3.2.14)

Moreover, (3.2.14) is still valid when t is replaced with a finite G-stopping time.

Proof. From the definition of At it follows that, for A ⊂ Z,

{At = A} ∈ σ((N±s , N̂
±
s , Is)0≤s≤t, (η(x))x∈A). (3.2.15)

With (3.2.15) we can verify by summing over A that, for any x1, ..., xn ∈ Z,

Eνρ

[
n∏
i=1

η(xi)

∣∣∣∣Gt
]

= ρn a.s. on the set {x1, ..., xn /∈ At}. (3.2.16)

The summation is justified because At is a finite set. Since γ is G-adapted and ξt(x) = η(γt(x)),
(3.2.14) follows. The extension to a G-stopping time is done by approximating it from above by
stopping times taking values in a countable set (to which (3.2.14) easily extends) and then using
the right-continuity of At and ξt.
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3 Transient random walk in symmetric exclusion: limit theorems and an Einstein relation

3.3 Regeneration

In this section we will develop a regenerative structure for the path of the RW W . Let us first
give an informal description of the regeneration strategy. Since W is travelling fast to the right,
there will be moments, called trial times, when the RW has left behind all agents previously
met. At these times, it may ‘try to regenerate’, and we say that it succeeds if afterwards it never
meets those agents again. In case it does not succeed, we wait for the moment when it meets
an agent from the past, which we call a failure time, and repeat the procedure by waiting for
the next trial time. Summarizing, the regeneration strategy consists of two steps: waiting for a
trial time when there is a chance for the walker to forget its past, and then checking whether it
succeeds or fails in its regeneration attempt. These steps are repeated until the walker succeeds,
which will eventually happen by the strong drift assumption (3.1.8).

We proceed to formalize the regeneration scheme, beginning with the trial times. Let (Tt)t≥0

be the family of G-stopping times defined by:

Tt := inf
{
s ≥ Jt : Ws > Rs

}
. (3.3.1)

where Jt := inf{s ≥ t : Nt 6= Ns} is the time of the next possible jump after time t. The previous
discussion justifies calling Tt the first trial time after time t. From the definition it is clear that
they are indeed G-stopping times. Note that, a.s., Tt > t.

In order to define the failure times, first let, for t ≥ 0, x ∈ Z,

Y t(x) = (Y t
s (x))s≥t (3.3.2)

be the path starting at time t from x and jumping to the right across the arrows of the process
I in (3.2.8); see Figure 3.2. Then (Y t

t+u(x)− x)u≥0 is a Poisson process with rate 1.

↔

↔

↔

↔

↔

↔

↔

↔

↔

↔

↔

↔

t

s

x

Y t
s (x)

r

r

Z

Figure 3.2: As in Figure 3.1, the dotted lines are events of I. The path Y t(x) starts at x and goes
upwards in time and to the right across the arrows.

Now let (Ft)t≥0 be the family of G-stopping times defined by

Ft := inf{s > t : Ws ≤ Y t
s (Wt − 1)}. (3.3.3)
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3.3 Regeneration

As usual we take inf ∅ = ∞. We call Ft the first failure time after time t. The Ft’s are smaller
than the failure times informally discussed in the beginning of the section. Indeed, agents to the
left of Wt at time t can never cross Y t(Wt − 1), as can be seen on the graphical representation.
In particular, if Ft =∞, then W will after time t never meet such agents again.

In the following lemma we obtain exponential moment bounds for the trial times Tt, showing
in particular that they are a.s. finite.

Lemma 3.3.1. For every a > 0, there exists b1 ∈ (0,∞) such that, for all t ≥ 0,

Eνρ [eb1(Tt−t)|Gt] ≤ (1 + a) ea(Rt−Wt)+ Pνρ-a.s. (3.3.4)

Proof. Let

Ỹ t = Y t(Rt ∨Wt) (3.3.5)

be the Poisson path starting at time t from the position Rt ∨Wt.

Define Ht := inf{s > t : Ms −Mt +Wt > Ỹ t
s }. Let us check that

Tt ≤ Ht ∨ Jt. (3.3.6)

Indeed, if WJt > Ỹ t
Jt

(which can happen only if Rt ≤ Wt), then Tt = Jt. Suppose now that

WJt ≤ Ỹ t
Jt

. Recall the definition of γ−1 in (3.2.9). By geometrical constraints, if γ−1
s (x) ≤ Ỹ t

s

for some s ≥ t, then this will also hold for all future times. In particular, agents marked by W
before it crosses Ỹ t will never be able to cross Ỹ t themselves. This implies that Tt is smaller
than the first time after t when W is to the right of Ỹ t, which is in turn smaller than Ht by
(3.2.3).

Since M is independent of I, (Mt+u−Mt−(Ỹ t
t+u−Rt∨Wt))u≥0 is under Pνρ(·|Gt) a continuous-

time RW starting from 0 that has a positive drift by (3.1.8). Furthermore, Ht − t is the first
time when it hits (Rt −Wt)

+ + 1. Now, if Tx is the first time when a continuous-time RW with
drift d > 0 hits a site x > 0, then supx≥1 (Tx − 2x/d)+ has an exponential moment, which can
be taken arbitrarily close to 1. Therefore, by (3.3.6), (3.3.4) holds for b1 sufficiently small.

For t ≥ 0, denote by W (t) the increments of the walk after time t, that is,

W (t)
u := Wt+u −Wt. (3.3.7)

The next lemma shows that the second step of the regeneration strategy indeed works.

Lemma 3.3.2. For each t ≥ 0,

Pνρ
(
Ft =∞,W (t) ∈ · | Gt

)
= Pνρ (Γ,W ∈ ·) a.s. on {Rt < Wt}, (3.3.8)

where Γ := {F0 =∞}.
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3 Transient random walk in symmetric exclusion: limit theorems and an Einstein relation

Proof. First note that

η 7→ Pη (Γ,W ∈ ·) does not depend on (η(x))x<0. (3.3.9)

This can be verified using the graphical representation. Indeed, the agents x < 0 can never cross
Y 0(−1). Therefore, on Γ, none of them ever meets W , i.e., At ∩ (Z \ N0) = ∅ for all t. On the
other hand, Γ is itself measurable in σ(W, I); since W is adapted to G, (3.3.9) follows.

Now, letting ξ̄t(·) := ξt(Wt + ·), we can write

Pνρ
(
Rt < Wt, Ft =∞,W (t) ∈ · | Gt

)
= Eνρ

[
1{Rt<Wt}Pξ̄t (Γ,W ∈ ·) | Gt

]
= 1{Rt<Wt}Pνρ (Γ,W ∈ ·) , (3.3.10)

where the first equality holds by the Markov property and translation-invariance of the graphical
representation and the second is justified since, by (3.3.9), Pξ̄t (Γ,W ∈ ·) is a function only of
(ξ̄t(x))x≥0, whose distribution under Pνρ(·|Gt) is, by Lemma 3.2.1, a.s. equal to νρ when Rt < Wt.

Before proceeding we make a simple but nonetheless important remark:

Remark 3.3.3. Replacing t in Tt and Ft with a finite G-stopping time still yields a stopping
time, and Lemmas 3.3.1–3.3.2 (as well as Lemmas 3.3.5 and 3.3.6 below) remain true with a
finite stopping time in place of t.

Remark 3.3.3 is justified by right-continuity as in the proof of Lemma 3.2.1. Recall also that a
stopping time multiplied by the indicator function of the set where it is finite is again a stopping
time.

We are now in shape to prove our main result.

Theorem 3.3.4. There exists a Pνρ-a.s. positive and finite random time τ such that, Pνρ-a.s.,

Pνρ
(

(Wτ+s −Wτ )s≥0 ∈ ·
∣∣∣ τ, (Ws)s≤τ

)
= Pνρ

(
W ∈ ·

∣∣∣Γ); (3.3.11)

Pνρ
(

(Wτ+s −Wτ )s≥0 ∈ ·
∣∣∣Γ, τ, (Ws)s≤τ

)
= Pνρ

(
W ∈ ·

∣∣∣Γ). (3.3.12)

Proof. We will obtain the regeneration time τ with the help of an increasing sequence (Un)n∈N0

of G-stopping times in [0,∞], which will be defined using Tt and Ft. We will throughout the
proof tacitly use Remark 3.3.3.

Set U0 := 0. Supposing that for some n ≥ 0, (Uk)k≤2n are all defined, let

U2n+1 :=

{
∞ if U2n =∞
TU2n otherwise,

U2(n+1) :=

{
∞ if U2n+1 =∞
FU2n+1 otherwise.

(3.3.13)
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3.3 Regeneration

Then (Un)n∈N0 is an increasing sequence of G-stopping times. Now define

K = inf{n ∈ N0 : U2n+1 <∞, FU2n+1 =∞} ∈ [0,∞], (3.3.14)

i.e., 2K + 1 is the first index before the sequence U hits infinity.

Set κ := Pνρ(Γ). Then κ > 0 since W dominates M and M − Y 0(−1) has a positive drift. By
Lemma 3.3.2,

Pνρ (K ≥ n) = (1− κ)n ∀ n ∈ N0. (3.3.15)

In particular, K <∞ Pνρ-a.s. and we can define

τ := U2K+1 <∞ Pνρ-a.s. (3.3.16)

Since Pνρ(·|Γ)� Pνρ , τ is a.s. well-defined and finite also under Pνρ(·|Γ).

We will now proceed to verify (3.3.11). Define Gτ as the sigma-algebra of the events B such
that, for all n ∈ N0, there exist Bn ∈ GU2n+1 such that B ∩{K = n} = Bn ∩{K = n}. Note that
τ and (Ws)s≤τ are measurable in Gτ .

Take f ≥ 0 measurable, B ∈ Gτ , and write

Eνρ
[
1Bf(W (τ))

]
=
∞∑
n=0

Eνρ
[
1Bn1{K=n}f(W (U2n+1))

]
=
∞∑
n=0

Eνρ
[
1Bn1{U2n+1<∞,FU2n+1

=∞}f(W (U2n+1))
]

=
∞∑
n=0

Eνρ
[
1Bn1{U2n+1<∞}Eνρ

[
1{FU2n+1

=∞}f(W (U2n+1))
∣∣∣GU2n+1

]]
.

When U2n+1 <∞, RU2n+1 < WU2n+1 so, by Lemma 3.3.2, the last line equals

Eνρ [f(W )1Γ]
∞∑
n=0

Eνρ
[
1Bn1{U2n+1<∞}

]
= Eνρ [f(W ) | Γ]

∞∑
n=0

Eνρ
[
1Bn1{U2n+1<∞}

]
Pνρ(Γ)

which, by Lemma 3.3.2 again, is equal to

Eνρ [f(W ) |Γ]
∞∑
n=0

Eνρ
[
1Bn1{U2n+1<∞}Pνρ

(
FU2n+1 =∞

∣∣GU2n+1

)]
= Eνρ [f(W ) | Γ]

∞∑
n=0

Pνρ (Bn, K = n)

= Eνρ [f(W ) | Γ]Pνρ(B). (3.3.17)
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3 Transient random walk in symmetric exclusion: limit theorems and an Einstein relation

This proves (3.3.11). To finish the proof, note that Γ ∈ Gτ since, for any t ≥ 0,

Γ ∩ {Ft =∞} = {Ws > Y 0
s (−1) ∀ s ≤ t} ∩ {Ft =∞}. (3.3.18)

So (3.3.12) follows by applying (3.3.17) to B ∩ Γ in place of B.

In Proposition 3.3.7 below, we will show that τ and Wτ have exponential moments. For its
proof, we will need the following two lemmas.

Lemma 3.3.5. For all ε > 0, there exists a1 ∈ (0,∞) such that, for all t ≥ 0,

Eνρ
[
1{Ft<∞}e

a1(Ft−t) | Gt
]
≤ 1 + ε Pνρ-a.s. (3.3.19)

Proof. Let
Dt := sup{s > t;Ms −Mt +Wt ≤ Y t

s (Wt − 1)}. (3.3.20)

If Ft < ∞, then Ft ≤ Dt because, when finite, Ft is smaller than the last time s > t when
Ws ≤ Y t

s (Wt−1), which is in turn smaller than Dt by (3.2.3). On the other hand, (Mt+u−Mt+
Wt− Y t

t+u(Wt− 1))u≥0 is under Pνρ(·|Gt) a continuous-time RW with positive drift starting at 1.
Since Dt − t is the last time when this random walk is less or equal to 0, (3.3.19) follows.

Lemma 3.3.6. For all ε > 0, there exists a2 ∈ (0,∞) such that, for all t ≥ 0,

Eνρ
[
1{Ft<∞}e

a2(RFt−WFt )
+ | Gt

]
≤ 1 + ε Pνρ-a.s. on {Rt < Wt}. (3.3.21)

Proof. Take Dt as in (3.3.20) and recall that, when finite, Ft ≤ Dt. Let χt := Wt + NDt − Nt

and consider Y t(χt) (see (3.3.2)). If Rt < Wt, then RFt ≤ Y t
Ft

(χt) and so

RFt −WFt ≤ Y t
Dt(χt)− χt +NDt −Nt + 1. (3.3.22)

Now (3.3.21) follows by noting that, even though χt is not in Gt, it is independent of (Y t
t+u(χt)−

χt)u≥0 (as they depend on disjoint regions of the graphical representation), so that the latter is
still a Poisson process under Pνρ(·|Gt).

Proposition 3.3.7. There exists b ∈ (0,∞) such that

Eνρ [ebτ ], Eνρ [ebNτ ] <∞, (3.3.23)

the same being true under Pνρ(·|Γ).

Proof. The last sentence follows from (3.3.23) and κ = Pνρ(Γ) > 0. Since N is a Poisson process,
it is enough prove to that τ has exponential moments under Pνρ . To this end, let ε > 0 such
that (1 + ε)2(1− κ) < 1. Take a ∈ (0, ε) such that, for all t ≥ 0,

Eνρ
[
1{Ft<∞}e

a(Ft−t)+a(RFt−WFt )
+ | Gt

]
≤ 1 + ε Pνρ-a.s. on {Rt < Wt}. (3.3.24)
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3.3 Regeneration

Such a exists by Lemmas 3.3.5 and 3.3.6 and an application of Hölder’s inequality. For this a,
take b1 as in Lemma 3.3.1 and let b := (a ∧ b1)/2. Now fix n ≥ 1 and estimate, recalling that
RU2n−1 < WU2n−1 when U2n−1 <∞,

Eνρ
[
1{U2n<∞}e

2bU2n+1
]

= Eνρ
[
1{U2n<∞}e

2bU2nEνρ
[
e2b(TU2n

−U2n) | GU2n

]]
≤ (1 + a)Eνρ

[
1{U2n<∞}e

2bU2n+a(RU2n
−WU2n

)+
]

= (1 + a)Eνρ

{
1{U2n−2<∞}e

2bU2n−1

× Eνρ

[
1{FU2n−1

<∞}e
2b(FU2n−1

−U2n−1)+a

(
RFU2n−1

−WFU2n−1

)+

| GU2n−1

]}
≤ (1 + ε)2Eνρ

[
1{U2(n−1)<∞}e

2bU2(n−1)+1

]
.

By induction, we get

Eνρ
[
1{U2n<∞}e

2bU2n+1
]
≤ (1 + ε)2n+1. (3.3.25)

To conclude, use Hölder’s inequality and (3.3.15) to write:

Eνρ
[
ebτ
]

=
∑∞

n=0 Eνρ
[
1{K=n}e

bU2n+1
]

=
∑∞

n=0 Eνρ
[
1{K=n}1{U2n<∞}e

bU2n+1
]

≤
∑∞

n=0 Pνρ (K = n)
1
2 Eνρ

[
1{U2n<∞}e

2bU2n+1
] 1

2

≤
√

1 + ε
∑∞

n=0

(√
(1− κ)(1 + ε)2

)n
<∞.

Finally, due to Theorem 3.3.4, we can construct a sequence of i.i.d. regeneration times.

Theorem 3.3.8. By enlarging the probability space, one can assume the existence of a sequence
(τn)n∈N of random times with τ1 := τ and such that, setting Sn :=

∑n
i=1 τi,(

τn+1,
(
W (Sn)
s

)
0≤s≤τn+1

)
n∈N

(3.3.26)

is under Pνρ an i.i.d. sequence which is independent from (τ, (Ws)0≤s≤τ ), each of its terms being
distributed as (τ, (Ws)0≤s≤τ ) under Pνρ(·|Γ).

Proof. A version of W with the claimed properties can be constructed on a product space using
Theorem 3.3.4, as is standard for “delayed regenerative processes” (see e.g. [71]). This version
can be assumed to be the one constructed in Section 3.2.1 again by a standard coupling argument.
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3 Transient random walk in symmetric exclusion: limit theorems and an Einstein relation

3.4 Limit theorems

As a fruit of the regenerative structure constructed in Section 3.3, we now obtain the asymptotic
results stated in Section 3.1.2.

3.4.1 Proofs of Theorems 3.1.1 — 3.1.3

Let us collect some useful facts. First of all, by Theorem 3.3.8, Proposition 3.3.7 and (3.2.6),(
sup

s∈[0,τn+1]

∣∣W (Sn)
s

∣∣)
n∈N0

have a uniform exponential moment. (3.4.1)

Furthermore, again by Theorem 3.3.8 and Proposition 3.3.7,

lim
n→∞

Sn
n

= Eνρ [τ |Γ] and lim
n→∞

WSn

n
= Eνρ [Wτ |Γ] Pνρ-a.s. (3.4.2)

For t ≥ 0, let kt be the random integer such that

Skt ≤ t < Skt+1. (3.4.3)

Then a.s. limt→∞ t
−1kt = Eνρ [τ |Γ]−1. Thus the candidate velocity for W is

v :=
Eνρ [Wτ |Γ]

Eνρ [τ |Γ]
. (3.4.4)

Proof of Theorems 3.1.1 and 3.1.2. We first prove (3.1.10). From Theorem 3.3.8 and Proposi-
tion 3.3.7 we obtain LDP’s for both Sn and WSn with rate functions which are only zero at
Eνρ [τ |Γ] and Eνρ [Wτ |Γ], respectively. Since kt is the inverse of Sn, it also satisfies a LDP with
a rate function which is zero only at Eνρ [τ |Γ]−1 (see [38]). Fix ε > 0. From the LDP’s for
WSn and kt, we get exponential decay of Pνρ

(
|t−1WSkt

− v| ≥ ε
)
, while the same is obtained for

Pνρ
(
|Wt −WSkt

| ≥ εt
)

from (3.4.1) and the LDP for kt. From this, (3.1.10) is readily obtained,
and the LLN follows by the Borel-Cantelli lemma. By (3.2.3), v ≥ α0 ∧ α1 − β0 ∨ β1 > 1.
Convergence in Lp follows from (3.2.7).

Proof of Theorem 3.1.3. Let σ̂2 be the variance of Wτ under Pνρ(·|Γ) which is finite due to
(3.3.23) and positive since Wτ is not a.s. constant. For the process (WSk)k∈N, a functional CLT
with variance σ̂2 holds since, by Theorem 3.3.8 and (3.3.23), the assumptions of the Donsker-
Prohorov invariance principle are satisfied. With a random time change argument as in Section
17 of [14], we obtain for (WSkt

)t≥0 a functional CLT with variance σ2 = σ̂2Eνρ [τ |Γ]−1. To extend
it to W , note that

lim
n→∞

n−1/2 sup
t≤T

∣∣Wnt −WSknt

∣∣ = 0 Pνρ-a.s. for any T > 0. (3.4.5)

This follows from Theorem 3.3.8, (3.4.1) and the LDP for kt (mentioned in the previous proof),
and implies that the Skorohod distance between diffusive rescalings of W and (WSkt

)t≥0 goes to
zero almost surely as n→∞.
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3.4 Limit theorems

3.4.2 Einstein relation: proof of Theorem 3.1.4

We first show how the speed v is related to the observed density of particles, and that the latter
approaches the density of the environment as λ ↓ 0.

Proposition 3.4.1. The limit

ρ̂(λ) = lim
t→∞

1

t

∫ t

0

Eνρ [ξs(Ws)] ds (3.4.6)

exists and satisfies

v(λ) = [α1(λ)− β1(λ)] ρ̂(λ) + [α0(λ)− β0(λ)] [1− ρ̂(λ)] , (3.4.7)

lim
γ↓0

ρ̂(λ) = ρ. (3.4.8)

Proof. Since W is Markovian under the quenched measure,

Wt −
∫ t

0

(α1 − β1)ξs(Ws) + (α0 − β0)(1− ξs(Ws))ds (3.4.9)

is a martingale under P ξ
W for a.e. ξ. Hence by Theorem 3.1.1 the limit in (3.4.6) exists and

satisfies (3.4.7). We proceed to prove (3.4.8). Write∫ t

0

Eνρ [ξs (Ws)] ds =

∫ t

0

Pνρ (γs(Ws) ∈ As, ξs(Ws) = 1) ds

+

∫ t

0

Pνρ (γs(Ws) /∈ As, ξs(Ws) = 1) ds.

The first term is bounded by

Lt := Eνρ
[∫ t

0

1{γs(Ws)∈As}ds

]
, (3.4.10)

the expected time spent by the walker on marked agents up to time t. For the second term, we
use Lemma 3.2.1:∫ t

0

Pνρ (γs(Ws) /∈ As, ξs(Ws) = 1) ds =

∫ t

0

Eνρ
[
1{γs(Ws)/∈As}Eνρ [ξs (Ws) | Gs]

]
ds

= ρ

∫ t

0

Pνρ (γs(Ws) /∈ As) ds = ρ (t− Lt) .

Hence ∣∣∣∣∫ t

0

Eνρ [ξs(Ws)] ds− ρt
∣∣∣∣ ≤ Lt. (3.4.11)

In order to bound Lt, consider the total time that the walker spends on top of a single marked
agent x. If t is the time when this agent is marked, the agent will never cross to the right of
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3 Transient random walk in symmetric exclusion: limit theorems and an Einstein relation

Y t(γ−1
t (x)). On the other hand, after time t, W will never be to the left of M −Mt + γ−1

t (x)−
1. Hence the time spent on the marked agent x is bounded by the total time during which
Y t(γ−1

t (x)) is to the right of M −Mt + γ−1
t (x). Writing tx = inf{t ≥ 0 : x ∈ At}, we get

Lt ≤
∑
x∈Z

Eνρ
[
1{tx<t}

∫ ∞
tx

1{Y txs (γ−1
tx

(x))>Ms−Mtx+γ−1
tx

(x)}ds

]
= Eνρ [|At|]Eνρ

[∫ ∞
0

1{Y 0
s (0)>Ms}ds

]
. (3.4.12)

When λ is small enough, (3.1.8) is satisfied, and the term with the integral in (3.4.12) is uniformly
bounded by some constant C ∈ (0,∞). On the other hand, the number of marked agents |At|
is bounded by N̂t, so finally we have∣∣∣∣∫ t

0

Eνρ [ξs(Ws)] ds− ρt
∣∣∣∣ ≤ Lt ≤ tC

(
|α1(λ)− α0(λ)|+ |β1(λ)− β0(λ)|

)
,

proving (3.4.8).

Proof of Theorem 3.1.4. Write

v(λ)− v(0)

λ
=

(α1(λ)− β1(λ))− (α1(0)− β1(0))

λ
ρ̂(λ)

+ (α1(0)− β1(0))
ρ̂(λ)− ρ̂(0)

λ

+
(α0(λ)− β0(λ))− (α0(0)− β0(0))

λ
(1− ρ̂(λ))

+ (α0(0)− β0(0))
(1− ρ̂(λ))− (1− ρ̂(0))

λ

=
(α1(λ)− β1(λ))− (α1(0)− β1(0))

λ
ρ̂(λ)

+
(α0(λ)− β0(λ))− (α0(0)− β0(0))

λ
(1− ρ̂(λ)).

Now take the limit as λ ↓ 0 and use (3.4.8) to get

v′(0) =

(
α
F1

ρ
+ β

F1

ρ

)
ρ+

(
α

F0

1− ρ
+ β

F0

1− ρ

)
(1− ρ)

= (α + β)(F1 + F0) = α + β.
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4 Scaling of a random walk on a
supercritical contact process

This chapter is based on a paper with Frank den Hollander.

Abstract

A proof is provided of a strong law of large numbers for a one-dimensional random walk in
a dynamic random environment given by a supercritical contact process in equilibrium. The
proof is based on a coupling argument that traces the space-time cones containing the infection
clusters generated by single infections and uses that the random walk eventually gets trapped
inside the union of these cones. For the case where the local drifts of the random walk are smaller
than the speed at which infection clusters grow, the random walk eventually gets trapped inside
a single cone. This in turn leads to the existence of regeneration times at which the random
walk forgets its past. The latter are used to prove a functional central limit theorem and a large
deviation principle.

The qualitative dependence of the speed, the volatility and the rate function on the infection
parameter is investigated, and some open problems are mentioned.

MSC 2000. Primary 60F15, 60K35, 60K37; Secondary 82B41, 82C22, 82C44.
Key words and phrases. Random walk, dynamic random environment, contact process, strong
law of large numbers, functional central limit theorem, large deviation principle, space-time
cones, clusters of infections, coupling, regeneration times.

4.1 Introduction

4.1.1 Background, motivation and outline

Background. A random walk in a dynamic random environment on Zd, d ≥ 1, is a random
process where a “particle” makes random jumps with transition rates that depend on its location
and themselves evolve with time. A typical example is when the dynamic random environment
is given by an interacting particle system

ξ = (ξt)t≥0 with ξt = {ξt(x) : x ∈ Zd} ∈ Ω, (4.1.1)
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4 Scaling of a random walk on a supercritical contact process

where Ω is the configuration space, and ξ0 is typically drawn from equilibrium. In the case where
Ω = {0, 1}Zd , the configurations can be thought of as consisting of “particles” and “holes”. Given
ξ, run a random walk W = (Wt)t≥0 on Zd that jumps at a fixed rate, but uses different transition
kernels on a particle and on a hole. The key question is: What are the scaling properties of W
and how do these properties depend on the law of ξ?

The literature on random walks in dynamic random environments is still modest (for a recent
overview, see Avena [3], Chapter 1). In Avena, den Hollander and Redig [6] a strong law of
large numbers (SLLN) was proved for a class of interacting particle systems satisfying a mild
space-time mixing condition, called cone-mixing. Roughly speaking, this is the requirement that
for every m > 0 all states inside the space-time cone (see Fig. 4.1)

CONEt :=
{

(x, s) ∈ Zd × [t,∞) : ‖x‖ ≤ m(s− t)
}
, (4.1.2)

are conditionally independent of the states at time zero in the limit as t → ∞. The proof of
the SLLN uses a regeneration-time argument. Under a cone-mixing condition involving multiple
cones, a functional central limit theorem (FCLT) can be derived as well, and under monotonicity
conditions also a large deviation principle (LDP).

(0, 0)

(0, t)

-

Zd × [0,∞)

CONEt

time

space

slope m

Figure 4.1: The cone defined in (4.1.2).

Many interacting particle systems are cone-mixing, including spin-flip systems with spin-flip
rates that are weakly dependent on the configuration, e.g. the stochastic Ising model above
the critical temperature. However, also many interacting particle systems are not cone-mixing,
including independent simple random walks, the exclusion process, the contact process and the
voter model. Indeed, these systems have slowly decaying space-time correlations. For instance,
in the exclusion process particles are conserved and cannot sit on top of each other. Therefore,
if at time zero there are particles everywhere in the box [−t2, t2]∩Zd, then these particles form a
“large traffic jam around the origin”. This traffic jam will survive up to time t with a probability
tending to 1 as t → ∞, and will therefore affect the states near the tip of CONEt. Similarly,
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4.1 Introduction

in the contact process, if at time zero there are no infections in the box [−t2, t2] ∩ Zd, then no
infections will be seen near the tip of CONEt as well.

Motivation. Several attempts have been made to extend the SLLN to interacting particle
systems that are not cone-mixing, with partial success. Examples include: independent simple
random walks (den Hollander, Kesten and Sidoravicius [43]) and the exclusion process (Avena,
dos Santos and Völlering [7], Avena [4]). The present paper considers the supercritical contact
process. We exploit the graphical representation, which allows us to simultaneously couple all
realizations of the contact process starting from different initial configurations. This coupling
in turn allows us to first prove the SLLN when the initial configuration is “all infected” (with
the help of a subadditivity argument), and then show that the same result holds when the
initial configuration is drawn from equilibrium. The main idea is to use the coupling to show
that configurations agree in large space-time cones containing the infection clusters generated
by single infections and that the random walk eventually gets trapped inside the union of these
cones.

Under the assumption that the local drifts of the random walk are smaller than the speed at
which infection clusters grow, the random walk eventually gets trapped inside a single cone. We
show that this implies the existence of regeneration times at which the random walk “forgets its
past”. The latter in turn allow us to prove the FCLT and the LDP.

It is typically difficult to obtain information about the speed in the SLLN, the volatility in
the FCLT and the rate function in the LDP. In general, these are non-trivial functions of the
parameters in the model, a situation that is well known from the literature on random walks in
static random environments (for overviews, see Sznitman [77] and Zeitouni [83]). The reason is
that these quantities depend on the environment process (i.e., the process of environments as
seen from the location of the walk), which is typically hard to analyze. For the supercritical
contact process we are able to derive a few qualitative properties as a function of the infection
parameter, but it remains a challenge to obtain a full quantitative description.

A model of a random walk on the infinite cluster of supercritical oriented percolation (the
discrete-time analogue of the contact process) is treated in Birkner, Černý, Depperschmidt and
Gantert [15], where a SLLN and a quenched and annealed CLT are obtained. This model can be
viewed as a random walk in a dynamic random environment, but it has non-elliptic transition
probabilities different from the ones we consider here, because the random walk is confined to
the infinite cluster.

Outline. In Section 4.1.2 we define the model. In Section 4.1.3 we state our main results: two
theorems claiming the SLLN, the FCLT and the LDP under appropriate conditions on the model
parameters. In Section 4.1.4 we mention some open problems. The proofs of the theorems are
given in Sections 4.3 and 4.5, respectively, Section 4.6. Sections 4.2 and 4.4 contain preparatory
work.
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4 Scaling of a random walk on a supercritical contact process

4.1.2 Model

In this paper we consider the case where the dynamic random environment is the one-dimensional
linear contact process ξ = (ξt)t≥0, i.e., the spin-flip system on Ω := {0, 1}Z with local transition
rates given by

η → ηx with rate

{
1 if η(x) = 1,
λ {η(x− 1) + η(x+ 1)} if η(x) = 0,

(4.1.3)

where λ ∈ (0,∞) and ηx is defined by ηx(y) := η(y) for y 6= x, ηx(x) := 1− η(x). We call a site
infected when its state is 1, and healthy when its state is 0. See Liggett [57], Chapter VI, for
proper definitions.

The empty configuration 0 ∈ Ω, given by 0(x) = 0 for all x ∈ Z, is an absorbing state for ξ,
while the full configuration 1 ∈ Ω, given by 1(x) = 1 for all x ∈ Z, evolves towards an equilibrium
measure νλ that is stationary and ergodic under space-shifts. There is a critical threshold
λc ∈ (0,∞) such that: (1) for λ ∈ (0, λc], νλ = δ0; (2) for λ ∈ (λc,∞), ρλ := νλ(η(0) = 1) > 0. In
the latter case, δ0 and νλ are the only equilibrium measures. It is known that νλ has exponentially
decaying correlations, and that λ 7→ ρλ is continuous and non-decreasing with limλ→∞ ρλ = 1.

Fixed a realization of ξ, we define the random walk W := (Wt)t≥0 as the time-inhomogeneous
Markov process on Z that, given Wt = x, jumps to

x+ 1 at rate α1ξt(x) + α0 [1− ξt(x)] ,
x− 1 at rate β1ξt(x) + β0 [1− ξt(x)] ,

(4.1.4)

where αi, βi ∈ (0,∞), i = 0, 1. We assume that

α0 + β0 = α1 + β1 =: γ, (4.1.5)

and that
v1 > v0 with v1 := α1 − β1 and v0 := α0 − β0, (4.1.6)

i.e., the jump rate is constant and equal to γ everywhere, while the drift to the right is larger
on infected sites than on healthy sites. Observe that the assumption in (4.1.6) is made without
loss of generality: since the contact process is invariant under reflection in the origin, −W has
the same law as W with inverted jump rates.

4.1.3 Theorems

Let Pνλ denote the joint law of W and ξ when the latter is started from νλ. Our SLLN reads as
follows.

Theorem 4.1.1. Suppose that (4.1.5–4.1.6) hold.
(a) For every λ ∈ (λc,∞) there exists a v(λ) ∈ [v0, v1] such that

lim
t→∞

t−1Wt = v(λ) Pνλ-a.s. and in Lp, p ≥ 1. (4.1.7)

(b) The function λ 7→ v(λ) is non-decreasing and right-continuous on (λc,∞), with v(λ) ∈
(v0, v1) for all λ ∈ (λc,∞) and limλ→∞ v(λ) = v1.
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We note in passing that if λ ∈ (0, λc), then ξt agrees with 0 on an interval that grows expo-
nentially fast in t (Liggett [57], Chapter VI), and so it is trivial to deduce that W satisfies the
SLLN with v(λ) = v0.

A FCLT and an LDP hold under an additional restriction, namely, λ ∈ (λW ,∞) with

λW := inf
{
λ ∈ (λc,∞) : |v0| ∨ |v1| < ι(λ)

}
. (4.1.8)

Here, λ 7→ ι(λ) is the infection propagation speed (see (4.2.4) in Section 4.2.1), which is known
to be continuous, strictly positive and strictly increasing on (λc,∞), with limλ↓λc ι(λ) = 0 and
limλ→∞ ι(λ) =∞.

Theorem 4.1.2. Suppose that (4.1.5–4.1.6) hold.
(a) For every λ ∈ (λW ,∞) there exists a σ(λ) ∈ (0,∞) such that, under Pνλ,(

Wnt − v(λ)nt

σ(λ)
√
n

)
t≥0

=⇒ (Bt)t≥0 as n→∞, (4.1.9)

where B is standard Brownian motion and =⇒ denotes weak convergence in path space.
(b) The functions λ 7→ v(λ) and λ 7→ σ(λ) are continuous on (λW ,∞).
(c) For every λ ∈ (λW ,∞), (t−1Wt)t>0 under Pνλ satisfies the large deviation principle on R
with a finite and convex rate function that has a unique zero at v(λ).

The intuitive reason why the rate function has a unique zero is that deviations of the empirical
speed in the: (i) upward direction require a density of infected sites larger than ρλ, which is costly
because infections become healthy independently of the states at the other sites; (ii) downward
direction require a density of infected sites smaller than ρλ, which is costly because infection
clusters grow at a linear speed and rapidly fill up healthy intervals everywhere.

4.1.4 Discussion

1. It is natural to expect that λ 7→ v(λ) is continuous and strictly increasing on (λc,∞) with
limλ↓λc v(λ) = v0. Fig. 4.2 shows a qualitative plot of the speed in that setting. If 0 ∈ (v0, v1),
then there is a critical threshold λ∗ ∈ (λc,∞) at which the speed changes sign. It is natural to
ask whether λ 7→ v(λ) is concave on (λc,∞) and Lipshitz at λc.

2. We know that W is transient when v(λ) 6= 0. Is W recurrent when v(λ) = 0?

3. We expect (4.1.8) to be redundant. Moreover, we expect that for every λ ∈ (λc,∞) the
environment process (i.e., the process of environments as seen from the location of the random
walk) has a unique and non-trivial equilibrium measure that is absolutely continuous with respect
to νλ.

4. Theorems 4.1.1–4.1.2 can presumably be extended to Zd with d ≥ 2. Also in higher dimensions
single infections create infection clusters that grow at a linear speed (i.e., asymptotically form

73



4 Scaling of a random walk on a supercritical contact process

0

v(λ)

λ
λc

λ∗

v1

v0

t

Figure 4.2: Qualitative plot of λ 7→ v(λ) when 0 ∈ (v0, v1).

a ball with a linearly growing radius). The construction of the regeneration times when λ ∈
(λW ,∞), with λW the analogue of (4.1.8), is straightforward.

5. It would be interesting to extend Theorems 4.1.1–4.1.2 to multi-type contact processes. On
each type i the random walk has transition rates αi, βi such that αi +βi = γ for all i. As long as
the dynamics is monotone and i 7→ vi is non-decreasing, many of the arguments in the present
paper carry over.

4.2 Construction

In Section 4.2.1 we construct the contact process, in Section 4.2.2 the random walk on top of
the contact process.

4.2.1 Contact process

A càdlàg version of the contact process can be constructed from a graphical representation in the
following standard fashion. Let := (H(x))x∈Z and I := (I(x))x∈Z be two independent collections
of i.i.d. Poisson processes with rates 1 and λ, respectively. On Z × [0,∞), draw the events of
H(x) as crosses over x and the events of I(x) as two-sided arrows between x and x + 1 (see
Fig. 4.3).

(The standard graphical representation uses Poisson processes of one-sided arrows to the right
and to the left on every time line, each with rate λ. This gives the same dynamics.)

For x, y ∈ Z and 0 ≤ s ≤ t, we say that (x, s) and (y, t) are connected, written (x, s)↔ (y, t),
if and only if there exists a nearest-neighbor path in Z× [0,∞) starting at (x, s) and ending at
(y, t), going either upwards in time or sideways in space across arrows without hitting crosses.
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Figure 4.3: Graphical representation. The crosses are events of H and the arrows are events of I.
The thick lines cover the region that is infected when the initial configuration has a single
infection at the origin.

For x ∈ Z, we define the cluster of x at time t by

Ct(x) :=
{
y ∈ Z : (x, 0)↔ (y, t)

}
. (4.2.1)

For example, in Fig. 4.3, Ct(0) = {−2,−1, 1, 2} and Ct(2) = ∅. Note that Ct(x) is a function of
H and I.

For a fixed initial configuration η, we declare ξt(y) = 1 if there exists an x such that y ∈ Ct(x)
and η(x) = 1, and we declare ξt(y) = 0 otherwise. Then ξ is adapted to the filtration

Ft := σ
(
ξ0, (Hs, Is)s∈[0,t]

)
. (4.2.2)

This construction allows us to simultaneously couple copies of the contact process starting from
all configurations η ∈ Ω. In the following we will write ξ(η) and ξt(η)(x) when we want to
exhibit that the initial configuration is η.

We note two consequences of the graphical construction, stated in Lemmas 4.2.1–4.2.3 below.
The first is the monotonicity of η 7→ ξ(η), the second concerns the state of the sites surrounded
by the cluster of an infected site. The notation η ≤ η′ stands for η(x) ≤ η′(x) for all x ∈ Z.

Lemma 4.2.1. If η ≤ η′, then ξt(η) ≤ ξt(η
′) for all t ≥ 0.

Proof. Immediate from the definition of ξt in terms of η and (Ct(x))x∈Z.

For x ∈ Z, define the left-most and the right-most site influenced by site x at time t as

Lt(x) := inf Ct(x),
Rt(x) := supCt(x),

(4.2.3)

where inf ∅ = ∞ and sup ∅ = −∞. By symmetry, for any t ≥ 0, Rt(x) − x and x − Lt(x) have
the same distribution, independently of x.
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4 Scaling of a random walk on a supercritical contact process

Lemma 4.2.2. Fix x ∈ Z and t ≥ 0. If Ct(x) 6= ∅ and y ∈ [Lt(x), Rt(x)]∩Z, then η 7→ ξt(η)(y)
is constant on {η ∈ Ω: η(x) = 1}.

Proof. It suffices to show that, under the conditions stated, ξt(η)(y) = 1 if and only if y ∈ Ct(x).
The ‘if’ part is obvious. For the ‘only if’ part, note that if there is a z 6= x such that (z, 0)↔ (y, t),
then any path realizing the connection must cross a path connecting (x, 0) to either (Rt(x), t)
or (Lt(x), t), so that (x, 0)↔ (y, t) as well.

If ξ0 = 1x, then Rt(x) and Lt(x) are, respectively, the right-most and the left-most infections
present at time t. In particular, in this case the infection survives for all times if and only if
Rt(x) − Lt(x) ≥ 0 for all t ≥ 0. For λ ∈ (λc,∞) it is well known that, given ξ0 = 10, the
infection survives with positive probability and there exists a constant ι = ι(λ) > 0 such that,
conditionally on survival,

lim
t→∞

t−1Rt(0) = ι ξ-a.s. (4.2.4)

4.2.2 Random walk on top of contact process

Under assumptions (4.1.5–4.1.6), the random walk W can be constructed as follows. Let N :=
(Nt)t≥0 be a Poisson process with rate γ. Denote by J := (Jk)k∈N0 its generalized inverse, i.e.,
J0 = 0 and (Jk+1 − Jk)k∈N0 are i.i.d. EXP(γ) random variables. Let U := (Uk)k∈N be an i.i.d.
sequence of UNIF([0, 1]) random variables, independent of N . Set S0 := 0 and, recursively for
k ∈ N0,

Sk+1 := Sk + 2
(
1{0≤Uk+1≤α0/γ} + ξJk+1

(Sk)1{α0/γ<Uk+1≤α1/γ}
)
− 1, (4.2.5)

i.e., Sk+1 = Sk + 1 with probability αi/γ and Sk+1 = Sk − 1 with probability βi/γ = 1 − αi/γ
when ξJk+1

(Sk) = i, for i = 0, 1 (recall that α0 < α1 by (4.1.5–4.1.6)). Setting

Wt := SNt , (4.2.6)

we can use the right-continuity of ξ to verify that W indeed is a Markov process with the correct
jump rates.

A useful property of the above construction is that it is monotone in the environment, in the
following sense. For two dynamic random environments ξ and ξ′, we say that ξ ≤ ξ′ when ξt ≤ ξ′t
for all t ≥ 0. Writing W = W (ξ) in the previous construction (i.e., exhibiting W as a function
of ξ), it is clear from (4.2.5) that

ξ ≤ ξ′ =⇒ Wt(ξ) ≤ Wt(ξ
′) ∀ t ≥ 0. (4.2.7)

We denote by

Gt := Ft ∨ σ
(
(Ns)s∈[0,t], (Uk)1≤k≤Nt

)
(4.2.8)

the filtration generated by all the random variables that are used to define the contact process
ξ and the random walk W .
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4.3 Proof of the law of large numbers

4.3 Proof of the law of large numbers

Theorem 4.1.1(a) is proved in two steps. In Section 4.3.1 we use subadditivity to prove the
SLLN when ξ starts from δ1. In Section 4.3.2 we couple two copies of ξ starting from νλ and δ1,
transfer the SLLN, and show that the speed is the same.

In the following, for a random process X = (Xt)t∈I with I = R or I = Z, we write

X[0,t] := (Xs)s∈[0,t]∩I . (4.3.1)

4.3.1 Starting from the full configuration: subadditivity

Since η ≤ 1 for all η ∈ Ω, it follows from (4.2.7) and Lemma 4.2.1 that Wt(ξ(η)) ≤ Wt(ξ(1))
for all t ≥ 0. Therefore, if in the graphical construction we replace ξs by 1 at any given time s,
then the new increments after time s lie to the right of the old increments after time s, and are
independent of the increments before time s. This leads us to a subadditivity argument, which
we now formalize.

For n ∈ N0, let

H(n) =
(
H

(n)
t (x)

)
t≥0,x∈Z :=

(
Ht+n(x+Wn)−Hn(x+Wn)

)
t≥0,x∈Z,

I(n) =
(
I

(n)
t (x)

)
t≥0,x∈Z :=

(
It+n(x+Wn)− In(x+Wn)

)
t≥0,x∈Z,

N (n) =
(
N

(n)
t

)
t≥0

:=
(
Nt+n −Nn

)
t≥0
,

U (n) =
(
U

(n)
k

)
k∈N :=

(
Uk+Nn

)
k∈N.

(4.3.2)

Then, for any n ∈ N0, (H(n), I(n), N (n), U (n)) has the same distribution as (H, I,N, U) and is
independent of

H
(j)
[0,n−j], I

(j)
[0,n−j], N

(j)
[0,n−j], U

(j)

[1,N
(j)
n−j ]

, 0 ≤ j ≤ n− 1. (4.3.3)

Abbreviate ξ = ξ(η,H, I) and W = W (ξ,N, U). For n ∈ N0, let

ξ(n) := ξ(1, H(n), I(n)),
W (n) := W (ξ(n), N (n), U (n)),

(4.3.4)

and define the double-indexed sequence

Xm,n := W
(m)
n−m, n,m ∈ N0, n ≥ m. (4.3.5)

Lemma 4.3.1. The following properties hold:
(i) For all n,m ∈ N0, n ≥ m: X0,n ≤ X0,m +Xm,n.
(ii) For all n ∈ N0: (Xn,n+k)k∈N0 has the same distribution as (X0,k)k∈N0.
(iii) For all k ∈ N: (Xnk,(n+1)k)n∈N0 is i.i.d.
(iv) supn∈N Eδ1 [n−1|X0,n|] <∞.
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4 Scaling of a random walk on a supercritical contact process

Proof. (i) Fix n,m ∈ N0, n ≥ m and define ξ̂ := ξ(η̂, H(m), I(m)), where η̂(x) = ξm(x + Wm).
This is the contact process after time m as seen from Wm. Note that X0,n−X0,m = Wn−Wm =

Wn−m(ξ̂, N (m), U (m)). Since η̂ ≤ 1, it follows from (4.2.7) and Lemma 4.2.1 that the latter is

≤ Wn−m(ξ(m), N (m), U (m)) = W
(m)
n−m.

(ii) Immediate from the construction.

(iii) By definition, Xnk,(n+1)k = Wk(ξ
(nk), N (nk), U (nk)). For each t ≥ 0, Wt(ξ,N, U) is by con-

struction a function of N[0,t], U[1,Nt] and ξ[0,t], which in turn is a function of H[0,t], I[0,t] and η.
Therefore Xnk,(n+1)k is equal to a (fixed) function of

H
(nk)
[0,k] , I

(nk)
[0,k] , N

(nk)
[0,k] , U

(nk)

[1,N
(nk)
(n+1)k

]
, (4.3.6)

which are jointly i.i.d. in n (when k is fixed).

(iv) This follows from the fact that |Wt| ≤ Nt.

Lemma 4.3.1 allows us to prove the SLLN when ξ starts from δ1.

Proposition 4.3.2. Let
v(λ) := inf

n∈N
Eδ1
[
n−1Wn

]
. (4.3.7)

Then
lim
t→∞

t−1Wt = v(λ) Pδ1-a.s. and in Lp, p ≥ 1. (4.3.8)

Proof. Conditions (i)–(iv) in Lemma 4.3.1 allow us to apply the subbaditive ergodic theorem
of Liggett [58] (see also Liggett [57], Theorem VI.2.6) to the sequence (X0,n)n∈N0 = (Wn)n∈N0 ,
which gives limn→∞ n

−1Wn = v Pδ1-a.s. Via a standard argument this can subsequently be
extended to (t−1Wt)t≥0 by using that, for any n ∈ N0,

sup
s∈[0,1]

|Wn+s −Wn| ≤ Nn+1 −Nn, (4.3.9)

which implies that limt→∞ t
−1|Wt−Wbtc| = 0 Pδ1-a.s. The convergence also holds in Lp, because

|Wt| ≤ Nt and so (t−p|Wt|p)t≥1 is uniformly integrable for any p ≥ 1.

4.3.2 Starting from equilibrium: coupling

In this section we show that two copies of the contact process starting from νλ and δ1 and coupled
via the graphical representation are with a large probability equal inside space-time cones with
tips at large times. Since the random walk eventually gets trapped inside a dense union of such
cones, this will be enough to transfer the result of Proposition 4.3.2 from Pδ1 to Pνλ , with the
same velocity v(λ), and will complete the proof of Theorem 4.1.1(a).

For m, r > 0 and t ≥ 0, let

Vm,r(t) :=
{

(x, s) ∈ Z× [t,∞) : |x| ≤ r ∨m(s− t)
}
, (4.3.10)
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4.3 Proof of the law of large numbers

i.e., Vm,r(t) is the union of the cylinder [−r, r]∩Z× [t,∞) and the cone with tip at (0, t) opening
upwards in space-time with inclination m (recall (4.1.2)).

Let η be distributed according to νλ, and let ξ(1) := ξ(η), ξ(2) := ξ(1), i.e., take ξ(1) and ξ(2) to
be copies of the contact process constructed from the same graphical representation and initial
configurations η and 1, respectively. Denote by P the joint distribution of all random variables
needed to define ξ(1), ξ(2) and W , i.e., P is the product of the distributions of η, H, I, N and U .

Lemma 4.3.3. For any m, r > 0,

lim
T→∞

P
(
∃ (x, t) ∈ Vm,r(T ) : ξ

(1)
t (x) 6= ξ

(2)
t (x)

)
= 0. (4.3.11)

Before proving Lemma 4.3.3, we show how it leads to Theorem 4.1.1(a).

Proof of Theorem 4.1.1(a). Fix ε > 0. Let D1
T (r) := {NT+t −NT ≤ r ∨ 2γt ∀ t ≥ 0}. Since

limt→∞ t
−1Nt = γ a.s. and (NT+t −NT )t≥0 is equal in distribution to N , there exists an r0 > 0

such that
P
(
D1
T (r0)

)
≥ 1− 1

2
ε ∀T > 0. (4.3.12)

Let D2
T := {ξ(1)

t (x) = ξ
(2)
t (x) ∀ (x, t) ∈ V2γ,r0(T )} and DT := D1

T (r0) ∩ D2
T . By (4.3.12) and

Lemma 4.3.3, there exists a T0 > 0 large enough such that

P(DT0) > 1− ε. (4.3.13)

Let Γ0 := {NT0 = 0}, which has positive probability and is independent of ξ(i), i = 1, 2. Let

W (i) := W (ξ(i)), i = 1, 2. Note that W (1) = W (2) on Γ0 ∩ DT0 . Since limt→∞ t
−1W

(2)
t = v(λ)

P-a.s., we therefore get

P
(

lim
t→∞

t−1(W
(1)
t+T0
−W (1)

T0
) = v

∣∣∣ Γ0

)
≥ 1− ε. (4.3.14)

However, because νλ is an equilibrium and W
(1)
T0

= 0 on Γ0, (W
(1)
t+T0
−W (1)

T0
)t≥0 has under P(· | Γ0)

the same distribution as W under Pνλ , so the SLLN is obtained by letting ε ↓ 0. Convergence in
Lp, p ≥ 1, follows as in the proof of Proposition 4.3.2.

Proof of Lemma 4.3.3. Denote by P the joint law of η, H and I. The law of (ξ(1), ξ(2)) is
the same under P or P. We can regard P as a law on the product space(

{0, 1} ×D(N0, [0,∞))2
)Z

= {0, 1}Z ×
(
D(N0, [0,∞))2

)Z
. (4.3.15)

P is shift-ergodic because it is the product of probability measures that are shift-ergodic, namely,
νλ and the distributions of H and I. Let

Λx :=
{
η(x) = 1, (x− Lt(x)) ∧ (Rt(x)− x) ≥ b(ι/2)tc ∀ t ≥ 0

}
, (4.3.16)
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4 Scaling of a random walk on a supercritical contact process

i.e., the event that x generates a “wide-spread infection” (moving at speed at least half the
typical asymptotic speed ι). Since Λx is a translation of Λ0, we have

lim
n→∞

1

n

n∑
x=1

1Λx = P (Λ0) =: % > 0 P -a.s., (4.3.17)

where the last inequality is justified by (4.2.4) and local modifications of the graphical represen-
tation.

Next, for n ∈ N, define Zn by the equation

Zn∑
x=1

1Λx = n. (4.3.18)

Then we also have

lim
n→∞

Zn
n

= %−1 P -a.s. (4.3.19)

(Zn)n∈N marks the positions of wide-spread infections to the right of the origin, i.e., x > 0
such that Λx occurs. Equation (4.3.19) means that these wide-spread infections are not too
far apart. Extending the definition of Zn to the negative integers, we obtain analogously that
limn→∞ n

−1(−Z−n) = %−1 P -a.s. Let Z := ∪n∈N{Zn, Z−n} and

S :=
{

(y, t) ∈ Z× [2/ι,∞) : ∃x ∈ Z such that |y − x| ≤ (ι/2)t− 1
}
. (4.3.20)

Then S is the union of cones of inclination angle ι/2 with tips at (2/ι, z) with z ∈ Z (see
Fig. 4.4). We call S the safe region. This is justified by the following fact, whose proof is a
direct consequence of Lemma 4.2.2.

Lemma 4.3.4. If (x, t) ∈ S, then ξ
(1)
t (x) = ξ

(2)
t (x).

r r r r
Z−2 Z−1 0 Z1 Z2

0

6

time

Z

S

Figure 4.4: Cones have inclination angle ι/2. The safe region S lies above the thick lines.

By Lemma 4.3.4, it is enough to prove that S contains Vm,r(t) with a large probability when
t is large. Instead, we will prove that, for any m > 0,

Vm,0(0) ∩ Sc is a bounded subset of Z× [0,∞) P -a.s. (4.3.21)
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4.4 More on the contact process

This will also be enough, because it implies that Vm,r(t) ⊂ S for large t, P -a.s. for any r > 0,

Now, Sc is contained in the union of space-time “houses” (unions of triangles and rectangles)
with base at time 0. The tips of the houses to the right of 0 form a sequence with spatial
coordinates 1

2
(Zn+1 + Zn) and temporal coordinates (Zn+1 − Zn + 2)/ι, n ∈ N. By (4.3.19), the

ratio of temporal/spatial coordinates tends to 0 as n → ∞, so that only finitely many tips can
be inside Vm,0(0). The same is true for the tips of the houses to the left of 0. Therefore Vm,0(0)
touches only finitely many houses, which proves (4.3.21).

4.4 More on the contact process

In this section we collect some additional facts about the contact process on Z that will be
needed in the remainder of the paper. The proofs rely on geometric observations that will also
illuminate the proof strategies developed in Sections 4.5–4.6.

In the following we will use the notation

Z≤x := Z ∩ (−∞, x] (4.4.1)

and analogously for Z≥x.

Stochastic domination. We start with a useful alternative construction of the equilibrium
νλ. Let η(x) := 1{Ct(x)6=∅ ∀ t≥0}. Then, by the graphical representation, η has distribution νλ.
This follows from duality (see Liggett [57], Chapter VI). We can also graphically construct the
contact process starting from νλ: extend the graphical representation to negative times, and
declare ξt(x) = 1 if and only if for all 0 ≤ s ≤ t there exists a y such that (y, s)↔ (x, t), i.e., if
and only if there exists an infinite infection path going backwards in time from (x, t).

Let ν̄λ denote the restriction of νλ to Z≤−1. Abusing notation, we will write the same symbol
to denote the measure on Ω that is the product of ν̄λ with the measure concentrated on all sites
healthy to the right of −1. Using the alternative construction above, we can prove that the
restriction of νλ(· | η(0) = 1) to Z≤−1 is stochastically larger than ν̄λ. In the following, we will
focus on a similar result for the distribution of ξt to the left of certain infection paths.

For $[0,t] a nearest-neighbor càdlàg path with values in Z, let

R̄$
t := σ

(
(ξ0(x))x≥$0

, (Hs(x), Is(x))s∈[0,t],x≥$s

)
. (4.4.2)

Suppose that π[0,t] is a random path of the same type, with the following properties:

(p1) ξ0(π0) = 1 a.s. and (πs, s)↔ (πu, u) for all s, u ∈ [0, t].

(p2) π is F -adapted and {πs ≥ $s ∀ s ∈ [0, t]} ∈ R̄$
t for all deterministic paths $.

We call π a random infection path (see Fig. 4.5), a name that is justified by (p1). Property (p2)
means that π is causal and that, when we discover it, we leave the graphical representation to
its left untouched. For such π, let

Rπ
t := σ

(
π, (ξ0(x))x≥π0

, (Hs(x), Is(x))s∈[0,t],x≥πs

)
. (4.4.3)
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4 Scaling of a random walk on a supercritical contact process

Note that, since π is an infection path, also (ξs(x))x≥πs ∈ Rπ
t for each s ∈ [0, t] (see the proof of

Lemma 4.2.2). We have the following stochastic domination result.

Lemma 4.4.1. For any random infection path π[0,t] as above, the law of ξt(· + πt + 1) under
Pν̄λ(· | Rπ

t ) is stochastically larger than ν̄λ.

Proof. Construct Pν̄λ from a graphical representation on Z × R as outlined above by adding
healing events on (x, 0) for each x ∈ Z≥0. Extend π to negative times by making it equal to
the right-most infinite infection path going backwards in time from (π0, 0). (Such a path exists
because ξ0(π0) = 1.) We may check that the resulting path still has properties (p1) and (p2).
Extend also Rπ

t to include negative times.

Next, regard H and I as Poisson point processes on subsets of Z× R. Let (see Fig. 4.5)

D :=
{

(x, s) ∈ Z× R : s > t or πs > x
}
. (4.4.4)

6time

spaceπ0

πt
t

0

D
Dc

Figure 4.5: The thick line represents the random infection path π. The dashed lines represent other
infection paths.

Given Rπ
t , by (p2) H and I are still Poisson point processes with the same densities on D.

This can be justified first for π taking values in a countable set and then for general π using
right-continuity.

With this observation we can couple Pνλ to Pν̄λ(· | Rπ
t ) in the following way. Draw independent

Poisson point processes Ĥ, Î on Dc. Take ξ̂ to be the contact process obtained by using H, I on
D and Ĥ, Î on Dc. Then ξ̂ is distributed as the contact process under Pνλ , and is independent

of Rπ
t . Furthermore, ξt(x) ≥ ξ̂t(x) for all x < πt. Indeed, if ξt(x) = 1, then infinite infection

paths going backwards in time must either stay inside D or cross π, so that, by (p1), ξt(x) = 1
as well.

Remark 4.4.2. In Lemma 4.4.1, we may replace t by a finite stopping time T w.r.t. the filtration
F , as long as the event in (p2) is replaced by {T ≤ t, πs ≥ $s ∀ s ∈ [0, T ]} and we add T to
Rπ
T . We may also enlarge all filtrations by adding information that is independent of ξ0, H, I,

in particular, N[0,t] and U[1,Nt] (recall Section 4.2.2).
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4.5 Properties of the speed

Infection range. Lemma 4.4.3 below concerns the positions of wide-spread infections. For
δ ∈ (0, ι) and x ∈ Z, let Wδ

x := {(z, t) ∈ Z × [0,∞) : (ι − δ)t − 1 < z − x ≤ (ι + δ)t} be
a wedge between two lines of inclination ι − δ and ι + δ. Set Cδ

t (x) := {y ∈ Z : (y, t) ↔
(x, 0) via a path contained in Wδ

x}, and

Zδ(x) := sup
{
z ∈ Z<x : ξ0(z) = 1, Cδ

t (z) 6= ∅ ∀ t ≥ 0
}
, (4.4.5)

i.e., the first infected site to the left of x that spreads its infection forever inside a wedge.

Lemma 4.4.3. If λ ∈ (λc,∞) then |Zδ(x) − x| has exponential moments under Pν̄λ for every
δ ∈ (0, ι), uniformly in x ∈ Z≤0.

Proof. We will use the fact that, for any λ ∈ (λc,∞), νλ stochastically dominates a non-trivial
Bernoulli product measure µλ. This follows from Liggett and Steif [60], Theorem 1.2, Durrett
and Schonmann [35], Theorem 1, and van den Berg, Häggström and Kahn [12], Theorem 3.5.
Since Zδ(x) is monotone in ξ0, it is therefore enough to prove the statement under Pµλ . We may
also assume x = 0, as Zδ(x) does not depend on (ξ0(z))z≥x.

Construct a sequence of pairs (Zn, Tn)n∈N0 as follows. Set Z0 = T0 := 0 and, recursively for
n ∈ N0,

Zn+1 :=

{
Zn
sup{z < Zn − d(ι+ δ)Tne : ξ0(z) = 1}

if Tn =∞,
otherwise,

Tn+1 :=

{
∞
inf{t > 0: Cδ

t (Zn+1) = ∅}
if Tn =∞,
otherwise.

(4.4.6)

Conditionally on Tn < ∞, ∆n+1 := Zn+1 − Zn + d(ι + δ)Tne and Tn+1 are independent of
(Zk, Tk)

n
k=1 and distributed as (Z1,T1). This is because the region of the graphical representation

plus initial configuration on which Tn+1 and ∆n+1 depend is disjoint from the region on which
the previous random variables depend. Since µλ is a non-trivial product measure, |Z1| has expo-
nential moments. Noting that T1 is independent of Z1 we conclude, using standard facts about
the contact process (see Liggett [57], Chapter VI, Theorem 2.2, Corollary 3.22 and Theorem
3.23), that Pµλ(T1 = ∞) > 0 and that, conditionally on T1 < ∞, T1 has exponential moments.
Defining the random index

K := inf{n ∈ N : Tn =∞} (4.4.7)

whose distribution is GEO(Pµλ(T1 = ∞)), we see that |Zδ(0)| ≤ |ZK |. Taking a > 0 such
that Eµλ [ea(|Z1|+d(ι+δ)T1e) | T1 < ∞] < 1/Pµ(T1 < ∞), we get after a short calculation that
Eµλ [1{K=n}e

a|Zn|] decays exponentially in n.

4.5 Properties of the speed

In this section we prove Theorem 4.1.1(b).
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4 Scaling of a random walk on a supercritical contact process

For each n ∈ N, Wn depends on ξ in a finite space-time region. Therefore λ 7→ Eδ1 [n−1Wn]
is continuous (see Liggett [59], Part I). Since, by monotonicity, the latter is non-decreasing, it
follows from (4.3.7) that λ 7→ v(λ) is right-continuous and non-decreasing.

It remains to show that v(λ) ∈ (v0, v1) and limλ→∞ v(λ) = v1. This will be done in Sec-
tions 4.5.1–4.5.2 below. These properties come from the fact that the random walk spends
positive fractions of its time on top of infected sites and on top of healthy sites. To keep track
of this, define N i

t := #{n ∈ N : ξJn(WJn−1) = i}, i ∈ {0, 1}. Recalling the construction of W in
Section 4.2.2, we may write

Wt = S0
N0
t

+ S1
N1
t
, (4.5.1)

where Sin, i = 0, 1, are discrete-time homogeneous random walks that jump to the right with
probability αi/γ and to the left with probability βi/γ. From this representation we immediately
get the following.

Lemma 4.5.1.
lim inf
t→∞

t−1Wt = v0 + (v1 − v0) lim inf
t→∞

(γt)−1N1
t ,

lim sup
t→∞

t−1Wt = v1 − (v1 − v0) lim inf
t→∞

(γt)−1N0
t .

(4.5.2)

Lemma 4.5.1 is valid for any dynamic random environment, even without a SLLN for W . But
(4.5.2) shows that a SLLN for W holds with speed v if and only if a SLLN holds for N1 with
limit γρeff , where ρeff := (v− v0)/(v1− v0) is the effective density of 1’s seen by W . Thus, v > v0

and v < v1 are equivalent to, respectively, ρeff > 0 and ρeff < 1.

4.5.1 Proof of v(λ) < v1

In the contact process, infected sites heal spontaneously. Therefore it is easier to find 0’s than
1’s. For this reason, it is easier to prove that W often jumps from healthy sites than from
infected sites.

Proof. For k ∈ N, let Yk := ξJk(WJk−1
), and note that {Yk+1 = 0} contains all configurations

that between times Jk and Jk+1 have a cross at site WJk and no arrows between WJk and
its nearest-neighbors, i.e., such that the events HJk+1

(WJk) − HJk(WJk) ≥ 1 and IJk+1
(WJk) −

IJk(WJk) = IJk+1
(WJk − 1)− IJk(WJk − 1) = 0 occur. The probability of the latter events given

σ{(Jk, ξs,Ws)0≤s≤Jk} is constant in k and equal to p := γ/(γ + 2λ)(1 + γ + 2λ). Therefore
the sequence (Yk)k∈N is stochastically dominated by a sequence of i.i.d. BERN(1 − p) random
variables, which implies that lim inft→∞ t

−1N0
t ≥ γp > 0, so that v(λ) < v1 by Lemma 4.5.1.

4.5.2 Proof of v(λ) > v0 and limλ→∞ v(λ) = v1

This is the harder part of the proof. We will need results from Section 4.4. In the following we
will assume that v0 ≤ 0. The case v0 > 0 can be treated analogously.
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4.5 Properties of the speed

Let us start with an informal description of the argument. The idea is that there are “waves of
infection” coming from ±∞ from which the random walk cannot escape. When v0 ≤ 0, we can
concentrate on the waves coming from the left, represented schematically in Fig. 4.6. Each time
the random walk hits a new wave, there is an infection path starting from its current location
and going backwards in time entirely to the left of the random walk path. By Lemma 4.4.1, at
this time the law of ξ to the left of the random walk has an appreciable density, which means that
there are new waves coming in from locations not very far to the left. On the other hand, any
infections to the right of the random walk can be ignored, since they only push it to the right.
But doing so makes the random walk behave as a homogeneous random walk with a non-positive
drift, meaning that it does not take the random walk long to hit the next infection wave. Since
at each collision there is a fixed probability for the random walk to jump while sitting on an
infection, v(λ) > v0 will follow from Lemma 4.5.1. With some care in the computations we also
get the limit for large λ.

Figure 4.6: The dashed lines represent infection waves. The thick line represents the path of W .

Proof. Using the graphical representation, we will construct, on a larger probability space, a
second random walk Ŵ coupled to W in such a way that Ŵt ≤ Wt for all t ≥ 0 and that Ŵ has
a speed with the desired properties. Let

V1 := inf{t > 0: ξt(Wt) = 1}. (4.5.3)

Note that V1 has exponential moments under Pν̄λ by Lemma 4.4.3 and the fact that v0 ≤ 0. Let

τ1 := inf
{
t > V1 : Wt 6= WV1 or Ht(WV1) > HV1(WV1)

}
, (4.5.4)

i.e., τ1 is the first time after time V1 at which either W jumps or there is a healing event at the
position of the random walk. Note that τ1 is a stopping time w.r.t. the filtration G and that,
given GV1 , τ1 − V1 has distribution EXP(1 + γ).

We will construct a sequence (W (n), τn)n∈N with the following properties:

(A1) W
(n+1)
t ≤ W

(n)
τn+t −W

(n)
τn for all t ≥ 0;

(A2) (W (n), τn) is distributed as (W, τ1) under Pν̄λ ;

(A3) (W
(n)
[0,τn], τn)n∈N is i.i.d.;

(A4) If v̂(λ) := Eν̄λ [Wτ1 ]/Eν̄λ [τ1], then v̂(λ) > v0 and limλ→∞ v̂(λ) = v1.
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4 Scaling of a random walk on a supercritical contact process

Once we have this sequence, we can put T0 := 0, Tn :=
∑n

k=1 τk for n ∈ N, and

Ŵt :=
n∑
k=1

W (k)
τk

+W
(n+1)
t−Tn for Tn ≤ t < Tn+1. (4.5.5)

By (A1), Ŵt ≤ W
(1)
t for all t ≥ 0. By (A2), the latter is distributed as W under Pν̄λ , which by

monotonicity is stochastically smaller than W under Pνλ . By (A3), limn→∞ T
−1
n ŴTn = v̂(λ), and

so the claim follows from (A4). Thus, it remains to construct the sequence (W (n), τn)n∈N with
properties (A1)–(A4).

To do so, we draw ξ0 from ν̄λ, let ξ(1) := ξ, W (1) := W , define τ1 as above, and note the
following.

Lemma 4.5.2. Under Pν̄λ(· | τ1,W[0,τ1]), the law of ξτ1(·+Wτ1) is stochastically larger than ν̄λ.

Proof. Since ξV1(WV1) = 1, there exists a right-most path π[0,V1] connecting (WV1 , V1) to Z≤−1 ×
{0}. Extend π to [V1, τ1] by making it constant and equal to WV1 on this time interval. Since
πs ≤ Ws for all 0 ≤ s < τ1, we have (τ1,W[0,τ1]) ∈ Rπ

τ1
∨ σ(N[0,τ1], U[1,Nτ1 ]). Note that π

is not an infection path, but only because of a possible healing event at time τ1, which does
not affect (ξτ1(x + WV1))x≤−1. Therefore, by Lemma 4.4.1, the distribution of the latter given
(τ1,W[0,τ1]) is stochastically larger than ν̄λ. Using this observation and noting that Wτ1 6= WV1

if and only if ξτ1(WV1) = 1, we can verify that the claim holds for each possible outcome of
Wτ1 −WV1 ∈ {0,±1}.

By Lemma 4.5.2, there exists a configuration ξ
(2)
0 distributed as ν̄λ, independent of (τ1,W[0,τ1])

and stochastically smaller than ξ
(1)
τ1 (· + Wτ1). We may now define ξ(2) by using the events of

the graphical representation that lie above time τ1 with the origin shifted to Wτ1 , using ξ
(2)
0

as starting configuration. We may then define W (2) and τ2 from ξ(2), (Nt+τ1 − Nτ1)t≥0 and

(Uk)k>Nτ1 . With this coupling, clearly W
(2)
t ≤ W

(1)
τ1+t −W

(1)
τ1 for all t ≥ 0. Furthermore, since

ξ
(2)
0 is independent of (τ1,W[0,τ1]), the distribution of ξ

(2)
τ2 (·+W

(2)
τ2 ) given (W

(i)
[0,τi]

, τi)i=1,2 depends
only on the random variables with i = 2 and hence, by Lemma 4.5.2, is again stochastically
larger than ν̄λ.

We may therefore repeat the argument. More precisely, suppose by induction that we have
defined ξ(k), W (k) and τk for k = 1, . . . , n and n ≥ 2, in such a way that:

(B1) W
(k+1)
t ≤ W

(k)
τn+t −W

(n)
τn for all t ≥ 0 and k = 1 . . . n− 1;

(B2) (W (k), τk) is distributed as (W, τ1) under Pν̄λ for all k = 1, . . . , n;

(B3) (W
(k)
[0,τk], τk)

n
k=1 is i.i.d.;

(B4) The law of ξ(n)(·+W
(n)
τn ) given (W

(k)
[0,τk], τk)

n
k=1 is stochastically larger than ν̄λ.

Then we proceed as before: there exists a configuration ξ
(n+1)
0 distributed as ν̄λ, stochastically

smaller than ξ(n)(· + W
(n)
τn ) and independent of (W

(k)
[0,τk], τk)

n
k=1, from which we obtain ξ(n+1),
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4.6 Regeneration, central limit theorem and large deviations

W (n+1) and τn+1, and we prove (B1)–(B4) like in the case n = 2. This settles the existence of
the sequence (W (n), τn)n∈N. All that is left to show is that v̂(λ) > v0 and limλ→∞ v̂(λ) = v1.

Note that Lemma 4.5.1 is valid also for Ŵ , and write N̂1
t to denote the number of jumps that

Ŵ takes on infected sites. Then N̂1
Tn

has distribution BINOM(n, γ/(1 + γ)), and by standard
arguments we obtain

lim
t→∞

t−1N̂1
t =

γ

(1 + γ)Eν̄λ [τ1]
> 0, (4.5.6)

which proves v̂(λ) > v0. Furthermore, we claim that limλ→∞ Eν̄λ [V1] = 0. Indeed, V1 is non-
increasing in λ and, since limλ→∞ ρλ = 1 (recall Section 4.1.2), it is not hard to see that V1

converges in probability to zero as λ → ∞. Therefore limλ→∞ Eν̄λ [τ1] = 1/(1 + γ), and so
limλ→∞ v̂(λ) = v1.

4.6 Regeneration, central limit theorem and large

deviations

The proof of Theorem 4.1.2 depends on the construction of regeneration times, i.e., times at which
the random walk forgets its past. This construction will be carried out in Section 4.6.1 and is
based on two propositions (Propositions 4.6.1–4.6.2 below), which are proved in Sections 4.6.2–
4.6.3. At the end of Section 4.6.1 we will see that these propositions imply Theorem 4.1.2(a,c).
The proof of Theorem 4.1.2(b) is deferred to Section 4.6.4.

4.6.1 Regeneration times

If the infection propagation speed ι = ι(λ) is larger than |v0|∨ |v1|, the maximum absolute speed
at which the random walk can move, then each time W finds itself on an infected site it can
become “trapped” forever in an infection cluster generated by this site alone. In that case, by
Lemma 4.2.2, the future increments of W become independent of its past. The issue is therefore
to find enough moments when W sits on an infection. This can be dealt with in a way similar
to what was done in the proof of v(λ) > v0 in Section 4.5.2.

Hitting, failure and trial times. In order to build the regeneration structure, we first need
to extend some definitions related to clusters and right-most infections. For s ≥ t and x ∈ Z, let

Ct,s(x) :=
{
y ∈ Z : (x, t)↔ (y, s)

}
(4.6.1)

and
Rt,s(x) := supCt,s(x), Lt,s(x) := inf Ct,s(x). (4.6.2)

Furthermore, let
rt,s(x) := sup

y<x
ξt(y)=1

Rt,s(y), (4.6.3)
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4 Scaling of a random walk on a supercritical contact process

i.e., the right-most infection at time s that comes from Z≤x−1 × {t}.
For t ≥ 0 and z ∈ Z, let

Vt(z) := inf
{
s > t : Ws = rt,s(z)

}
(4.6.4)

be the first time after time t at which W meets the right-most infection coming from Z≤z−1. We
will call this the z-wave hitting time after t. It is not hard to see that Vt(z) < ∞ Pνλ-a.s. for
any t and z ≤ Wt. Indeed, at any time t there is an infected site x < z whose infection survives
forever, and in this case lims→∞ s

−1Rt,s(x) = ι > |v0| ∨ |v1|. Therefore there must be an s > t
for which Rt,s(x) = Ws. By right-continuity, Pνλ(Vt(z) <∞ ∀ z ≤ Wt, t ≥ 0) = 1 as well.

Now define the first failure time after time t by (see Fig. 4.8)

Ft := inf
{
s > t : Ws /∈ [Lt,s(Wt), Rt,s(Wt)]

}
, (4.6.5)

i.e., the first time after time t when W exits the region surrounded by the cluster of (Wt, t).
To keep track of the space-time region on which the failure time depends, define, for t ≥ 0 and
x ∈ Z,

(Yt,s(x))s≥t (4.6.6)

as the process with values in Z that starts at time t at site x and jumps down by following
the infection arrows to the left in the graphical representation (see Fig. 4.7). Then, given Gt,
(x− Yt,t+s(x))s≥0 is a Poisson process with rate λ.
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Figure 4.7: Yt,s(x) starts at x and goes upwards and to the left across the arrows of the graphical
representation.

With the above observations we can define the trial time after a failure time (see Fig. 4.8):

Tt :=

{
∞ if Ft =∞,
VFt(Yt,Ft(Wt)) otherwise.

(4.6.7)

i.e., Tt is the Yt,Ft(Wt)-wave time after time Ft when the latter is finite. This wave ensures “good
conditions” at the trial time, meaning an appreciable density of infections to the left of W .
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-

6
time

spaceWt

Tt

Ft

t

Figure 4.8: A failure time Ft and a trial time Tt after time t. The dashed lines represent infection
paths. The thick line represents the path of W .

Regeneration times. We can now define our regeneration time τ . First let

T1 := V0(0) (4.6.8)

and, under the assumption that T1, . . . , Tk, k ∈ N, are all defined, let

Tk+1 :=

{
∞ if Tk =∞,
TTk otherwise.

(4.6.9)

Note that the Tk’s are stopping times w.r.t. the filtration G. Finally, put

K := inf
{
k ∈ N : Tk <∞, Tk+1 =∞

}
, (4.6.10)

and let
τ := TK . (4.6.11)

Note that K < ∞ a.s. since, at any trial time, the probability for the next failure time to
be infinite is uniformly bounded from below. We will prove in Sections 4.6.2–4.6.3 that τ is a
regeneration time and has exponential moments. This is stated in the following two propositions.

Proposition 4.6.1. The distribution of (Wt+τ −Wτ )t≥0 under both Pνλ(· | τ,W[0,τ ]) and Pνλ(· |
Γ, τ,W[0,τ ]) is the same as that of W under Pνλ(· | Γ), where

Γ := {ξ0(0) = 1, F0 =∞}. (4.6.12)

Proposition 4.6.2. τ and |Wτ | have exponential moments under both Pνλ and Pνλ(· | Γ), uni-
formly in λ ∈ [λ−, λ+] for any fixed λ−, λ+ ∈ (λW ,∞).

These two propositions imply the LLN and Theorem 4.1.2(a), with

v(λ) =
Eνλ [Wτ | Γ]

Eνλ [τ | Γ]
, σ(λ)2 =

Eνλ [(Wτ )
2 | Γ]− Eνλ [Wτ | Γ]2

Eνλ [τ | Γ]
. (4.6.13)
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4 Scaling of a random walk on a supercritical contact process

They also imply that

lim sup
t→∞

1

t
logPνλ

(
t−1Wt /∈ (v − ε, v + ε)

)
< 0 ∀ ε > 0. (4.6.14)

For a proof of these facts, the reader can follow word-by-word the arguments given in Avena,
dos Santos and Völlering [7], Theorem 3.8 and Section 4.1 (which do not require (4.1.5)–(4.1.6)).

Theorem 4.1.2(c) follows from (4.6.14) and the partial LDP proven in Avena, den Hollander
and Redig [5] for attractive spin-flip systems (including the contact process). Here, partial
means that the LDP is shown to hold outside a possible interval where the rate function is
zero. However, (4.6.14) precisely precludes the presence of such an interval. (See Glynn and
Whitt [38], Theorem 3, for more details.)

The proof of Theorem 4.1.2(b) is deferred to Section 4.6.4.

4.6.2 Proof of Proposition 4.6.1

We first show that the regeneration strategy indeed makes sense.

Lemma 4.6.3. For all t ≥ 0,

Pνλ
(
Ft =∞, (Ws+t −Wt)s≥0 ∈ · | Gt

)
= P10 (Γ0,W ∈ · ) a.s. on {ξt(Wt) = 1}, (4.6.15)

where Γ0 := {F0 =∞}. The same is true for a finite stopping time w.r.t. G replacing t.

Proof. First note that Pη(Γ0,W ∈ ·) = P10(Γ0,W ∈ ·) for any η with η(0) = 1. This follows from
Lemma 4.2.2 because, on Γ0, W depends on ξ only through {ξt(x) : t ≥ 0, x ∈ [Lt(0), Rt(0)]},
and Γ0 does not depend on ξ0. Now, letting ξ̂t(·) := ξt(·+Wt), we can write (recall (4.6.5))

Pνλ
(
ξt(Wt) = 1, Ft =∞, (Ws+t −Wt)s≥0 ∈ · | Gt

)
= Eνλ

[
ξt(Wt)Pξ̂t(Γ0,W ∈ · ) | Gt

]
= ξt(Wt)P10(Γ0,W ∈ · ), (4.6.16)

where the first equality is justified by the Markov property and the translation invariance of the
graphical representation. To extend the result to stopping times we can use the strong Markov
property of (ξ,W ).

With the help of Lemma 4.6.3 we are ready to prove Proposition 4.6.1.

Proof. We will closely follow the proof of Theorem 3.4 in [7]. Let Gτ be the σ-algebra of all events
B such that, for all n ∈ N0, there exists a Bn ∈ GTn such that B ∩ {K = n} = Bn ∩ {K = n}.
Note that τ and W[0,τ ] are in Gτ .
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4.6 Regeneration, central limit theorem and large deviations

In the following, we abreviate W (t) := (Ws+t −Wt)s≥0. Pick f bounded and measurable,
B ∈ Gτ , and write (recall (4.6.9))

Eνλ
[
1Bf(W (τ))

]
=
∑
n∈N0

Eνλ
[
1Bn1{K=n}f(W (Tn))

]
=
∑
n∈N0

Eνλ
[
1Bn1{Tn<∞} Eνλ

[
1{FTn=∞}f(W (Tn))

∣∣GTn] ]. (4.6.17)

Since ξTn(WTn) = 1 on {Tn <∞}, by Lemma 4.6.3 the last line of (4.6.17) equals

E10 [f(W )1Γ0 ]
∑
n∈N0

Eνλ
[
1Bn1{Tn<∞}

]
= E10 [f(W ) | Γ0]

∑
n∈N0

Eνλ
[
1Bn1{Tn<∞}

]
P10(Γ0),

(4.6.18)

which, again by Lemma 4.6.3, equals

E10 [f(W ) | Γ0]
∑
n∈N0

Eνλ
[
1Bn1{Tn<∞}Pνλ (FTn =∞|GTn)

]
= E10 [f(W ) | Γ0]

∑
n∈N0

Pνλ (Bn, K = n)

= E10 [f(W ) | Γ0]Pνλ(B)

= Eνλ [f(W ) | Γ]Pνλ(B),

(4.6.19)

where the last equality is, one more time, justified by Lemma 4.6.3. This proves the claim under
Pνλ .

To extend the claim to Pνλ(· | Γ), note that Γ ∈ Gτ since

Γ ∩ {K = n} =
{
ξ0(0) = 1,Ws ∈ [Ls(0), Rs(0)] ∀ s ∈ [0, Tn]

}
∩ {K = n}, (4.6.20)

and apply (4.6.19) to B ∩ Γ instead of B.

4.6.3 Proof of Proposition 4.6.2

Exponential moments. We first show that T0 has exponential moments when it is finite,
uniformly for λ in compact sets. Fix λ−, λ+ ∈ (λW ,∞).

Lemma 4.6.4. For every λ ∈ [λ−, λ+] and ε > 0 there exists an a = a(λ−, λ+, ε) > 0 such that,
for any probability measure µ stochastically larger than ν̄λ,

(a) Eµ
[
1{T0<∞}e

aT0
]
≤ 1 + ε.

(b) Eµ
[
eaV0(0)

]
≤ 1 + ε.

(4.6.21)
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4 Scaling of a random walk on a supercritical contact process

Proof. We couple systems with infection rates λ−, λ and λ+ starting, respectively, from ν̄λ− , µ
and 1, by coupling their initial configurations and their infection events monotonically. Denote
their joint law by P. In what follows, we will refer to these systems by their rates and we will
use a superscript to indicate on which system a random variable depends.

We will bound T01{T0<∞} = T01{F0<∞} by a time D0 that depends only on systems λ± and
has exponential moments under P. We start by bounding F01{F0<∞} by a variable D1 depending
only on system λ−. Let

rt := sup
x∈Z≤0

Rt(x), lt := inf
x∈Z≥0

Lt(x). (4.6.22)

Then rt is the same as r0,t(0) in (4.6.3) when all sites in Z≤0 are infected, and analogously for
lt. Furthermore, Rt(0), Lt(0) are equal to rt, lt while Ct(0) 6= ∅: this can be seen by using the
graphical representation (see e.g. Liggett [57] Chapter VI, Theorem 2.2). Therefore

F0 = inf{t ≥ 0: rt < Wt or lt > Wt}. (4.6.23)

Let m := 1
2
(ι(λ−) + |v0| ∨ |v1|). Take homogeneous random walks X i jumping at rates αi,βi,

i ∈ {0, 1}, independent of ξ and coupled to W in such a way that X0
t ≤ Wt ≤ X1

t for all t ≥ 0.
Set

D1a := sup
{
t ≥ 0: l

λ−
t ≥ −mt or r

λ−
t ≤ mt

}
,

D1b := sup
{
t ≥ 0: |X0

t | ∨ |X1
t | > mt

}
.

(4.6.24)

Then D1a depends only on system λ− and has exponential moments by known large deviation
bounds for rt (see Liggett [57] Chapter VI, Corollary 3.22), while D1b is independent of ξ and has
exponential moments by standard large deviation bounds for X0 and X1. Noting that rt and lt
are monotone, we can take D1 := D1a ∨D1b, which does not depend on the initial configuration.

Set δ := 1
2
(ι(λ−)−m), x0 := Y

λ+

0,D1
(0)− d(ι(λ+) + δ)D1e and note, using the graphical repre-

sentation, that ∆0 := x0 − Zλ−
δ (x0) is independent of x0, where Zδ(x) is as in (4.4.5). Then

D0 :=
∆0 + |x0|+ 1

ι(λ−)− δ −m
= 4

∆0 + |x0|+ 1

ι(λ−)− |v0| ∨ |v1|
(4.6.25)

depends only on λ−, λ+ and has exponential moments under P by Lemma 4.4.3. It is easy
to check that D0 is the intersection time of the line of inclination ι(λ−) − δ passing through

(Z
λ−
δ (x0) − 1, 0) and the line of inclination m passing through the origin. Since system λ has

more infections than system λ− and D0 ≥ D1, we have T01{T0<∞} ≤ D0, which proves (a). For
(b), we can bound V0(0) analogously, taking x0 = 0 instead.

Infections at trial times. We next show that at trial times there are more infections to the
left of the random walk than under ν̄λ.

Lemma 4.6.5. For all n ∈ N, on the event {Tn < ∞} the law of ξTn( · + WTn) under Pνλ(· |
T[1,n],W[0,Tn]) a.s. is stochastically larger than ν̄λ.
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4.6 Regeneration, central limit theorem and large deviations

Proof. Suppose that n ≥ 2 (the case n = 1 is simpler). Using the definition of Tn, we can show
by induction that, if Tn <∞, then there exist infection paths connecting (WTn , Tn) to Z≤−1×{0}
and never touching the paths Y Tk(WTk), k = 1, . . . , n−1, or the region to the right of W . Take π
to be the right-most of these infection paths. Then π is a random infection path with properties
(p1) and (p2), and

(T[1,n],W[0,Tn]) ∈ Rπ
Tn ∨ σ

(
N[0,Tn], U[1,NTn ]

)
. (4.6.26)

Therefore the result follows from Lemma 4.4.1.

Conclusion. We are now ready to prove Proposition 4.6.2.

Proof. Let
κ := P10(Γ0). (4.6.27)

By Lemma 4.6.3, Pνλ(Γ) = κρλ ≥ κρλ− by monotonicity (recall the definition of ρλ from Sec-
tion 4.1.2). Also, there exists a κ− > 0 such that κ ≥ κ− for any λ ≥ λ−: we can take κ− to be
the probability that X0 and X1 in the proof of Lemma 4.6.4 never cross L(0) or R(0) in system
λ−. Therefore it is enough to prove the claim for Pνλ . Since |W | is dominated by N , which is
Poisson process independent of ξ, we only need to worry about τ .

For ε > 0 such that (1+ε)(1−κ−) < 1, take a > 0 as in Lemma 4.6.4. On the event {Tn <∞},
let ξ̂n := ξTn( · + WTn) and note that, given GTn , Tn+1 − Tn is distributed as T0 under Pξ̂n . By

Lemma 4.6.5, the law of ξ̂n under Pνλ( · | T[1,n],W[0,Tn]) is stochastically larger than ν̄λ, and we
get from Lemma 4.6.4 that

Eνλ
[
1{Tn+1<∞}e

a(Tn+1−Tn) | T[1,n],W[0,Tn]

]
= Eνλ

[
Eξ̂n

[
1{T0<∞}e

aT0
]
| T[1,n],W[0,Tn]

]
≤ 1 + ε.

(4.6.28)

Using this bound, estimate

Eνλ
[
1{Tn+1<∞}e

aTn+1
]

= Eνλ
[
1{Tn<∞}e

aTnEνλ
[
1{Tn+1<∞}e

a(Tn+1−Tn) | Tn
] ]

≤ (1 + ε)Eνλ
[
1{Tn<∞}e

aTn
]
,

(4.6.29)

so that, by induction,
Eνλ

[
1{Tn<∞}e

aTn
]
≤ (1 + ε)n. (4.6.30)

Using Lemma 4.6.3, write, for n ∈ N,

Pνλ (K ≥ n+ 1) = Pνλ (Tn <∞, FTn <∞) = (1− κ)Pνλ (K ≥ n) (4.6.31)

to note that K has distribution GEO(κ). To conclude, use (4.6.30)–(4.6.31) to write

Eνλ
[
e
a
2
τ
]

=
∑

n∈N Eνλ
[
1{K=n}e

a
2
Tn
]

=
∑

n∈N Eνλ
[
1{K=n}1{Tn<∞}e

a
2
Tn
]

≤
∑

n∈N Pνλ (K = n)
1
2 Eνλ

[
1{Tn<∞}e

aTn
] 1

2

≤ (1− κ−)−
1
2

∑
n∈N

(√
(1− κ−)(1 + ε)

)n
<∞,

(4.6.32)

where in the second line we use the Cauchy-Schwarz inequality.
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4 Scaling of a random walk on a supercritical contact process

4.6.4 Continuity of the speed and the volatility

Given λ− ≤ λ+ in (λW ,∞) and (λn)n∈N, λ∗ ∈ [λ−, λ+] such that either λn ↑ λ∗ or λn ↓
λ∗ as n → ∞, we can simultaneously construct systems with infection rates (λn)n∈N, λ∗ and
λ±, starting from equilibrium, with a single graphical representation in the standard fashion,
taking a monotone sequence of Poisson processes for infection events and coupling the initial
configurations monotonically. For n ∈ N∪{∗,+,−}, denote by Λn := (ξn0 , H, I

n, N, U) the system
with infection rate λn, and by P their joint law. In the following, we will use a superscript n to
indicate functionals of Λn.

In view of (4.6.13) and Proposition 4.6.2, in order to prove convergence of v(λn) and σ(λn)
it is enough to prove convergence in distribution of Γn and of (W n

τn , τ
n)1Γn . The main step to

achieve this will be to approximate relevant random variables with uniformly large probability
by random variables depending on bounded regions of the graphical representation.

Note that, by monotonicity and continuity of λ 7→ ρλ (see Liggett [57] Chapter VI, Theorem
1.6),

lim
n→∞

ξn0 (x) = ξ∗0(x) ∀ x ∈ Z P-a.s. (4.6.33)

Recall the definitions of F0, Tk and K in (4.6.5), (4.6.8)–(4.6.9) and (4.6.10), respectively. For
n ∈ N ∪ {∗} and k ∈ N, let

Γnk :=
{
ξn0 (0) = 1,W n

s ∈ [Lns (0), Rn
s (0)] ∀ s ∈ [0, T nk ] ∩ R

}
, (4.6.34)

so that Γn = Γnk on {Kn = k} as in (4.6.20).

Proposition 4.6.6. For every k ∈ N, (W n
T nk
, T nk ,1Γnk

)1{T nk <∞}, 1{T nk <∞} and 1{Fn0 <∞} converge
in probability as n→∞ to the corresponding functionals of Λ∗.

Proof. We first show that, for every fixed T ∈ (0,∞),

(W n
T nk
, T nk ,1Γnk

)1{T nk ≤T}, 1{T nk ≤T}, 1{Fn0 ≤T}, (4.6.35)

converge a.s. as n → ∞ to the corresponding functionals of Λ∗. To that end, let Ȳt,s(x) be the
increasing analogue of Yt,s(x) in (4.6.6), starting from x but jumping across the arrows of I to
the right. Let Z̄δ(x), analogously to Zδ(x) in (4.4.5), be the first infected site to the right of
x whose infection spreads inside a wedge between lines of inclination −(ι + δ) and −(ι − δ).
Take δ := ι(λ−)/2, set y := Y +

0,T (−NT ) and z := Z−δ (y − d(ι(λ−) + δ)T e). Analogously, put

y := Ȳ +
0,T (NT ) and z := Z̄−δ (y + d(ι(λ−) + δ)T e).

Now observe that, for any n ∈ N ∪ {∗}, all random variables in (4.6.35) depend on Λn only
in the space-time box B := [z, z] × [0, T ]. Indeed, for any 0 ≤ t ≤ s ≤ T , we have Lnt,s(W

n
t ) ≥

Y n
t,s(W

n
t ) ≥ y− and Rn

t,s(W
n
t ) ≤ y+, so that {F n

t ≤ s} depends on Λn only inside [y, y] × [0, T ].
Also, there are infection paths from time 0 to time T inside [z, y) and (y, z]. Therefore the states
of ξn inside [y, y] × [0, T ] depend on Λn only in B (see the proof of Lemma 4.2.2). The same
is true for {T nt ≤ s}, since any infection path needed to discover T nt can be taken inside B.
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4.6 Regeneration, central limit theorem and large deviations

Therefore, by (4.6.33) (and since the graphical representation is a.s. eventually constant inside
bounded space-time regions), the claim after (4.6.35) follows.

To conclude note that, because Tk1{Tk<∞} ≤ τ and F01{F0<∞} ≤ T01{T0<∞},

lim
T→∞

sup
n∈N∪{∗}

P
(
T < T nk <∞ or T < F n

0 <∞
)

= 0 (4.6.36)

by Proposition 4.6.2 and Lemma 4.6.4, which implies that, for large T , the random variables in
the statement are equal to the ones in (4.6.35) with uniformly large probability.

Corollary 4.6.7. Let κn be as in (4.6.27). Then limn→∞ κ
n = κ∗ and Kn converges in distri-

bution to K∗.

Proof. This follows directly from Proposition 4.6.6 and the definition of κ since, by (4.6.31), Kn

is a geometric random variable with parameter κn.

With these results we can conclude the proof of Theorem 4.1.2(c).

Proof. Let f be a bounded measurable function. For k ∈ N, write

E
[
f(W n

τn , τ
n)1Γn1{Kn=k}

]
= E

[
f
(
W n
T nk
, T nk

)
1Γnk

1{
T nk <∞,FT nk =∞

}]
= κn E

[
f
(
W n
T nk
, T nk

)
1Γnk

1{T nk <∞}
]

n→∞−−−→ κ∗E
[
f
(
W ∗
T ∗k
, T ∗k

)
1Γ∗k

1{T ∗k <∞}
]

= E
[
f(W ∗

τ∗ , τ
∗)1Γ∗1{K∗=k}

]
,

(4.6.37)

where for the second and the third equality we use Lemma 4.6.3 and the strong Markov property,
and for the convergence we use Proposition 4.6.6 and Corollary 4.6.7. Therefore

|E [f(W n
τn , τ

n)1Γn ]− E [f(W ∗
τ∗ , τ

∗)1Γ∗ ]|
≤ ‖f‖∞

{
P(Kn > M) +P(K∗ > M)

}
+

M∑
k=1

∣∣E [f(W n
τn , τ

n)1Γn1{Kn=k}
]
− E

[
f(W ∗

τ∗ , τ
∗)1Γ∗1{K∗=k}

]∣∣ , (4.6.38)

and we conclude by taking n→∞, using Corollary 4.6.7 and (4.6.37), and taking M →∞.
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5 Non-trivial linear bounds for a
random walk driven by a simple
symmetric exclusion process

Abstract

Non-trivial linear bounds are obtained for the displacement of a random walk in a dynamic
random environment given by a one-dimensional simple symmetric exclusion process in equi-
librium. The proof uses an adaptation of multiscale renormalization methods of Kesten and
Sidoravicius [50].

MSC 2000. Primary 60F15, 60K35, 60K37; Secondary 82B41, 82C22, 82C44.
Key words and phrases. Random walk, dynamic random environment, exclusion process, linear
bounds, multiscale analysis, percolation.

5.1 Introduction, results and motivation

5.1.1 Setup

In this chapter, we discuss linear scaling properties of a random walk in a dynamic random
environment (RWDRE), where the role of the random environment is taken by a one-dimensional
simple symmetric exclusion process (SSEP). The latter is the càdlàg Markov process ξ = (ξt)t≥0

with state space E := {0, 1}Z whose infinitesimal generator L acts on bounded local functions
f in the following manner:

(Lf) (η) :=
∑
x∈Z

f(ηx,x+1)− f(η) (5.1.1)

where η ∈ {0, 1}Z and ηx,y is defined by

ηx,y(z) =


η(x) if z = y;
η(y) if z = x;
η(z) otherwise.

(5.1.2)

For a detailed description, we refer the reader to Liggett [57], Chapter VIII. We say that the
site x is occupied by a particle at time t if ξt(x) = 1 and is vacant (alternatively, occupied by a
hole) if ξt(0) = 0.
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5 Non-trivial linear bounds for a random walk driven by a simple symmetric exclusion process

For a fixed realization of ξ, the random walk in dynamic random environment W = (Wt)t≥0

is the time-inhomogeneous Markov process that starts at 0 and, given that Wt = x, jumps to

x+ 1 with rate α1ξt(x) + α0 [1− ξt(x)] ,
x− 1 with rate β1ξt(x) + β0 [1− ξt(x)] ,

(5.1.3)

where αi, βi ∈ (0,∞), i ∈ {0, 1}. We will assume that

α0 + β0 = α1 + β1 =: γ (5.1.4)

and
v1 > v0 with v0 := α0 − β0 and v1 := α1 − β1, (5.1.5)

i.e., the total jump rate is constant and equal to γ, and the local drift is larger on particles than
on holes. The latter is made w.l.o.g., since the SSEP is invariant under reflection through the
origin. We will denote by Pη the joint law of W and ξ when ξ0 = η. We will draw ξ0 from a
Bernoulli product measure νρ with ρ ∈ (0, 1); these are known to be the only non-trivial extremal
invariant measures for the SSEP.

While many results for RWDRE have been obtained in the past few years for random environ-
ments exhibiting uniform and fast enough mixing (see e.g. Avena [3], as well as the introduction
to this thesis), very little is known when the random environment mixes in a non-uniform way,
as happens in the SSEP. For example, there are still no general laws of large numbers available
for such cases. In particular, for the model described here, the law of large numbers has only
been proven under the restriction that v1 > v0 > 1 (see Avena, dos Santos and Völlering [7]).
Another recent result is the paper by den Hollander, Kesten and Sidoravicius [43], where an
approximate law of large numbers is proven when the random environment is a high-density
Poisson field of independent random walks.

5.1.2 Main result

It is easy to see, with a coupling argument, that W lies between two homogeneous random walks
with drifts v0 and v1. In particular, any subsequential limit of t−1Wt as t → ∞ lies in the
interval [v0, v1]. But would it be possible, even along a subsequence, for W to travel at one of
the extremal speeds? For the case of the SSEP, the following theorem answers this question in
the negative.

Theorem 5.1.1. For any ρ ∈ (0, 1), there exist v−, v+ ∈ (v0, v1) such that

v− ≤ lim inf
t→∞

t−1Wt ≤ lim sup
t→∞

t−1Wt ≤ v+ Pνρ-a.s. (5.1.6)

While this result is “intuitively obvious”, it does not seem a trivial fact to prove. For dynamic
random environments consisting of single-site spin-flips with bounded flip rates, there is a simple
proof strategy since particles and holes can be found locally “around” the random walk. For
the supercritical contact process, the proof by den Hollander and dos Santos [44] that W cannot
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travel with speed v0 is already non-trivial and relies on model-specific features. The proof
of Theorem 5.1.1 given here is based on the multiscale analysis scheme put forth by Kesten
in Sidoravicius [50], and seems exceedingly heavy for such a simple fact. It has however the
advantage of being easier to generalize; while several technical facts are verified here specifically
for the SSEP, the overall proof strategy should work in much greater generality. For example,
the analogous result for the supercritical contact process can be reobtained with this approach.

5.1.3 Essential enhancements

Our question can also be formulated in terms of essential enhancements, in analogy with per-
colation theory (see e.g. Grimmett [41], Chapter 3). From this point of view, W is seen as a
perturbation of a homogeneous random walk with drift v0, and ρ is the intensity of the perturba-
tion. The question then becomes: is this perturbation, for any ρ > 0, an “essential enhancement”
in the sense that it changes the linear scaling of W?

Let us look at what can happen for random walks in static one-dimensional random environ-
ments. For these models, there are criteria for recurrence/transience as well as laws of large
numbers proven under very general assumptions (see e.g. Zeitouni [83]). If v0 = 0 < v1, then the
random walk is always transient to the right in any ergodic random environment with a positive
density of particles. But random walks in static random environments can exhibit slow-down
phenomena; for example, there are regimes where the random walk can be transient to the right
with zero speed. In the case of i.i.d. static random environments, the latter can only happen
when v0 < 0 < v1. Therefore, if v0 = 0 < v1, then the perturbation given by a static i.i.d.
random environment is always an essential enhancement, as long as the density of 1’s is positive.

Consider, however, the following example of a stationary and ergodic static random environ-
ment with positive particle density that does not result in an essential enhancement. Let L be
an N-valued random variable with finite first moment but infinite second moment. Partition Z
into intervals in a translation-invariant way such that the length of each interval is independent
and distributed as L. Let η be obtained by coloring each interval with 1’s or 0’s according to
independent fair coin tosses. On top of this static random environment, put a random walk
with β0 = α0 = 1/2, β1 = 0 and α1 = 1. As discussed above, this random walk is transient to
the right; therefore, it eventually reaches a point where there is an interval full of 1’s to its left
(into which it cannot backtrack) and an interval to its right whose law is still independent of
the past. In other words, the times when W crosses the boundary between an interval full of 1’s
and the next interval are regeneration times. This observation allows us to calculate the speed
of W as the ratio between the expectation of L and the expected time required by W to cross
one interval, given that the interval to the left is occupied. The latter turns out to be infinite, so
that W has speed 0 = v0. Therefore, in this example the random environment is not an essential
enhancement, despite having particle density equal to 1/2.
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5.1.4 Outline

The rest of this chapter is organized as follows. In Section 5.2, we construct particular versions
of the SSEP and of the random walk. In Section 5.3, we give the proof of Theorem 5.1.1 with
the help of a proposition (Proposition 5.3.1 below) concerning rarefied and turbulent regions in
the SSEP. In Section 5.4, we lay out the basic tools that will be used to prove Proposition 5.3.1
in Section 5.5, where all constructions and estimates specific to the SSEP are carried out.

5.2 Construction of the model

In Section 5.2.1 we construct the SSEP and, in Section 5.2.2, the random walk on top of the
SSEP.

5.2.1 Graphical construction of the SSEP

It will be convenient to have a graphical construction of the SSEP including negative times. Let
E be the set of edges of Z, i.e., all unordered pairs of neighbouring sites, and let A = (Ae)e∈E be
a collection of independent Poisson point processes on R with intensity 1. Draw each event of
Ae in space-time as an arrow between the two sites connected by e. This gives rise to a system
of random paths in Z× R as follows. For each (x, t) ∈ Z× R, there exists a.s. a unique doubly
infinite right-continuous path that goes either vertically in time or (forcibly) across arrows of A.
For s ∈ R, let ζts(x) denote the position of this path at time s.
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ζts(x)

x

t

s

Z

Figure 5.1: Graphical representation. The arrows represent events of A. The thick lines mark the path
ζts(x).

Given η ∈ {0, 1}Z, we will define the SSEP ξ = (ξt)t∈R by

ξt(x) := η(ζt0(x)), (5.2.1)

i.e., a space-time point (x, t) is occupied if and only if the path going through it hits an occupied
site at time 0. If we take η to be distributed as νρ, ρ ∈ (0, 1), then we may check that this
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construction indeed results in a stationary process with the correct distribution. To verify this,
we only need to note that ξt(x) = ξs(ζ

t
s(x)) for any s, t ∈ R and that, by the product structure

and exchangeability of νρ, ξs is independent of A.

5.2.2 The random walk on top of the SSEP

We next give a particular construction of the random walk model described in the introduction.
Take a Poisson process N = (Nt)t≥0 with rate γ and two sequences J1 = (J1

k )k∈N and J0 =
(J0
k )k∈N of i.i.d. {−1,+1}-valued random variables taking the value +1 with probability α1/γ

and α0/γ , respectively. These random variables are taken such that ξ,N, J1, J0 are jointly
independent.

The random walk W is a functional of (ξ,N, J1, J0) obtained as follows. We set W0 := 0. At
a time t > 0, W jumps if and only if N jumps, and the increment is given by Wt −Wt− = J iNt ,
where i = ξt(Wt−) is the state of the exclusion process at the position of W just before the jump.

Setting
N1
t := #{t ∈ [0, t] : Wt 6= Wt− and ξt(Wt−) = 1},

N0
t := #{t ∈ [0, t] : Wt 6= Wt− and ξt(Wt−) = 0}, (5.2.2)

then N0
t +N1

t = Nt and we see that W has the following representation:

Wt = S1
N1
t

+ S0
N0
t

(5.2.3)

where (Sin)n∈N0 , i ∈ {0, 1}, are discrete-time simple random walks that jump to the right with
probability αi/γ. From this we immediately get

lim inft→∞ t
−1Wt = v0 + (v1 − v0) lim inft→∞(γt)−1N1

t ,
lim supt→∞ t

−1Wt = v1 − (v1 − v0) lim inft→∞(γt)−1N0
t .

(5.2.4)

5.3 Proof of the main theorem

Since the holes of a SSEP under Pνρ have the same distribution as the particles of a SSEP under
Pν1−ρ , we may w.l.o.g. restrict ourselves to proving the statement for the lim inf in (5.1.6).

The main idea in the proof of Theorem 5.1.1 is that, because the jump rates are positive
and bounded, the random walk can spend time on top of particles whenever it is in a region
of the environment that is not too rough, namely, neither too rarefied nor too turbulent. A
rarefied region is one where the density of the environment is atypically low. A turbulent region
is one where the environment is moving atypically fast. It is of course not possible to control
such deviations of the environment in all space and time simultaneously, but, as we will see
in Proposition 5.3.1 below, it is possible to show that, in most of the regions accessible to the
random walk, the environment cannot deviate too much from its typical behaviour.

In Section 5.3.1 we state Proposition 5.3.1. In Section 5.3.2, we use this proposition to prove
Theorem 5.1.1. The proof of Proposition 5.3.1 is given in Section 5.5.
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5 Non-trivial linear bounds for a random walk driven by a simple symmetric exclusion process

5.3.1 Rarefied and turbulent regions

For r ∈ N, let ωr ≤ ∆r ∈ N and ρr, εr ∈ (0, 1) be given parameters. Let

Br(k, s) := [k, k + ∆r)× [s, s+ ∆r), k, s ∈ ∆rZ, (5.3.1)

be blocks in Rd with side length ∆r, called r-blocks. For x ∈ Z and t ∈ R, we write

Σx
r (ξt) :=

∑
y∈[x,x+ωr)

ξt(y) (5.3.2)

to denote the number of particles present in [x, x+ωr) at time t. We call a set A ⊂ R2 r-rarefied
if there exists (x, t) ∈ Z2 with [x, x + ωr) × {t} ⊂ A and such that Σx

r (ξt) < ρrωr. We call A
r-turbulent if there exists (x, t) ∈ A ∩ Z2 and s ∈ (0, εr) such that ξt+s(x) 6= ξt(x).

For ` ∈ (0,∞), let

W` := {all paths in R2 starting at 0 which are continuous,

piecewise C1, and have length at most `}, (5.3.3)

and put
Φr
r(`) := supw∈W`

#{r-rarefied r-blocks intersected by w},
Φt
r(`) := supw∈W`

#{r-turbulent r-blocks intersected by w}. (5.3.4)

The key ingredient in the proof of Theorem 5.1.1 is the following proposition.

Proposition 5.3.1. For any ρ ∈ (0, 1), there exist (∆r, ωr, ρr, εr)r∈N as above such that, Pνρ-a.s.,

(a) limr→∞ lim sup`→∞ `
−1∆2

rΦ
r
r(`) = 0,

(b) limr→∞ lim sup`→∞ `
−1∆2

rΦ
t
r(`) = 0.

(5.3.5)

Part (a) will be proved using a multiscale renormalization scheme developed by Kesten and
Sidoravicius (see [50]; we also borrow some ideas from [51]). Very little adaptation will be
necessary, and some simplifications are possible in our setting. For completeness, we include all
the details. The proof of part (b) uses a similar strategy, but is much simpler.

To simplify the exposition, we present the proof in dimension one only. There are no technical
issues to extend it to higher dimensions. Small complications arise in the proof of Lemma 5.5.2
below, but they can be dealt with straightforwardly.

5.3.2 Proof of Theorem 5.1.1

Proof. Fix ρ ∈ (0, 1) and recall the definition of N1 in (5.2.2). By (5.2.4), it is enough to prove
the existence of a δ0 > 0 such that

lim inf
t→∞

t−1N1
t ≥ δ0 Pνρ-a.s. (5.3.6)
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Regard (Ws)s∈[0,t] as a path in R2 and denote its length by `t = t + Nt. Recall that N is a
Poisson process with rate γ > 0, independent of ξ. Using Proposition 5.3.1, fix `∗ ∈ (1,∞) and
r∗ ∈ N such that

∆2
r∗

{
Φr
r∗(`) + Φt

r∗(`)
}
≤ `

2(1 + γ)
Pνρ-a.s. ∀ ` ≥ `∗. (5.3.7)

Let B∗t (W ) be the unique r∗-block containing the spacetime point (Wt, t). We call B∗t (W )
rough if it is either r∗-rarified or turbulent, and call it smooth otherwise. For t ≥ 0, let

Θ∗t (W ) :=

btc∑
s=0

1{B∗s (W ) is rough} (5.3.8)

denote the total number of integer times between 0 and t at which W is inside a rough block.
Since W can spend at most ∆r∗ time units in each rough block, if t ≥ `∗, then by (5.3.7) we
have

Θ∗t (W ) ≤ ∆r∗

{
Φr
r∗(`t) + Φt

r∗(`t)
}

≤ 1

∆r∗

`t
2(1 + γ)

≤ `t
2(1 + γ)

Pνρ-a.s. (5.3.9)

For s ∈ N0, let
Ys+1 := 1{N1

s+1>N
1
s }. (5.3.10)

Note that N1
s+1 > N1

s if and only if W jumps at least once from a particle in the time interval
(s, s + 1]. Since W has uniformly positive jump rates, for any s ≥ 0, r ∈ N, ε > 0 and
j ∈ [Ws − r,Ws + r],

Pνρ
(
W jumps once from j in the time interval (s, s+ ε) | (Wu)u∈[0,s], ξ

)
≥ δ (5.3.11)

for some δ = δ(r, ε) > 0. Therefore, if B∗s (W ) is smooth, then

Pνρ
(
Ys+1 = 1 | (Wu)u∈[0,s], ξ

)
≥ δ∗ := δ(r∗, εr∗) (5.3.12)

since there is at time s at least one particle in [Ws − r∗,Ws + r∗] that does not move before
time s+ εr∗ . Therefore we can couple Y with an i.i.d. sequence (Ỹs)s∈N of Bernoulli(δ∗) random
variables such that Ys+1 ≥ Ỹs+1 if B∗s (W ) is smooth.

Using these observations, we can write, for t ≥ `∗,

t−1N1
t ≥ t−1

btc∑
s=1

Ys ≥ t−1
∑

s∈[1,t]∩N :

B∗s−1(W ) is smooth

Ỹs

≥
(
btc −Θ∗t (W )

t

)
#

{
s∈[1,t]∩N :

B∗s−1(W )is smooth

}−1 ∑
s∈[1,t]∩N :

B∗s−1(W ) is smooth

Ỹs. (5.3.13)

By (5.3.9), the lim inf as t → ∞ of the term in parentheses in the r.h.s. of (5.3.13) is at least
1/2. The remaining term converges to δ∗, since the number of integer times s in [1, t] for which
B∗s−1(W ) is smooth is unbounded. Thus (5.3.6) holds with δ0 = δ∗/2.
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5.4 Block percolation and partitioned systems

In this section we present a percolation result, Proposition 5.4.3 below, which will play an
important role in the proof of Proposition 5.3.1 in Section 5.5.

5.4.1 Percolative systems

Fix d ∈ N \ {1} and ∆ ∈ (0,∞). For k = (k1, . . . , kd) ∈ ∆Zd, let

B∆(k) :=
d∏
i=1

[ki, ki + ∆) (5.4.1)

be the block in Rd of side length ∆ with lower-left corner at k. A collection of random variables

Υ = (Υ(k))k∈∆Zd , Υ(k) ∈ {0, 1} for each k ∈ ∆Zd, (5.4.2)

is called call a percolative system (PS) with scale ∆. We interpret Υ by saying that a block
B∆(k) is open if Υ(k) = 1, and closed otherwise. See Figure 5.2.

We aim to bound the number of open blocks that intersect paths of a certain fixed length in
Rd. For ` ∈ (0,∞), let, analogously to (5.3.3),

W` := {all paths in Rd starting at 0 which are continuous,

piecewise C1, and have length at most `}. (5.4.3)

R2

∆{

Figure 5.2: Block percolation in R2. Gray blocks are open. The curve represents a path in W`.

For w ∈ W`, put

ψ(w) := #{k ∈ ∆Zd : w intersects B∆(k) and Υ(k) = 1} (5.4.4)

and let
Ψ(`) := sup

w∈W`

ψ(w). (5.4.5)
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In order to control Ψ(`), we need to restrict the class of allowed percolative systems. We will
call a PS Υ homogeneous with parameter p ∈ (0, 1) if Υ(k) has distribution Bernoulli(p) for each
k ∈ ∆Zd. We call it (finitely) partitioned if there exists a finite partition P of ∆Zd such that,
for each I ∈ P ,

(Υ(k))k∈I are jointly independent. (5.4.6)

In other words, Υ is partitioned if its dependence graph has a finite chromatic number. In that
case, we let |P| := #P . In the following, we use the abbreviation p-PPS for “homogeneous
partitioned percolative system with parameter p”.

5.4.2 Key lemma

The following lemma is the key to the proof of Proposition 5.4.3 below.

Lemma 5.4.1. There exist constants c1, c2 ∈ (0,∞) depending on d only such that, for any
percolative system Υ with scale ∆ that is stochastically dominated by a p-PPS with partition P,

P

(
Ψ(`) > |P|c1

θ`

∆

)
≤ |P|e−c2(

θ`
∆
−1) for any θ ∈ [p

1
d , 1]. (5.4.7)

Our proof of Lemma 5.4.1 is an adaptation of the proof of Lemma 8 in [50]. It is based on
geometric constraints of Rd and an application of Bernstein’s inequality, which we recall for the
case of i.i.d. bounded random variables.

Lemma 5.4.2. (Bernstein’s inequality) Suppose that (Xi)i∈N is an i.i.d. sequence of a.s. bounded
random variables with joint law P . Then

P

(
n∑
i=1

Xi − EXi > x

)
≤ e

−x
2

(
‖X1‖∞+

nV ar(X1)
x

)−1

. (5.4.8)

For a proof of Lemma 5.4.2, see e.g. Chow and Teicher [27], Exercise 4.3.14.

Proof of Lemma 5.4.1. There exist K1, K2 ∈ N, depending on d only, with the following prop-
erties. For any ` and ∆, the total number of ∆-blocks intersecting any path in W` is at most
K1d`/∆e and, for any n and ∆, the number of connected subsets of Rd that are unions of ex-
actly n ∆-blocks and contain the origin is at most eK2n. We will show that (5.4.7) holds with
c2 := 2dK1K2 and c1 := 16c2.

Since Ψ(`) does not decrease if additional ∆-blocks are opened, we may suppose that Υ is a
p-PPS with partition P . Let

L := dθ−1e, N := K1d`/(L∆)e. (5.4.9)

As discussed in the first paragraph, N is an upper bound for the number of L∆-blocks intersected
by any path inW`. If `/(L∆) < 1

2
, then θ`/∆ < 1 and (5.4.7) holds trivially. Therefore, we may

assume that `/(L∆) ≥ 1
2
, in which case N ≤ 3K1`/(L∆). Letting

C N
L := {connected subsets of Rd containing the origin

that are the union of N distinct L∆-blocks}, (5.4.10)
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we can estimate, for x > 0,

P (∃ w ∈ W` : ψ(w) > x) ≤
∑
C∈CNL

P (∃ w ∈ W`, w ⊂ C : ψ(w) > x)

≤
∑
C∈CNL

P (#{open ∆-blocks in C} > x) . (5.4.11)

To estimate for a fixed C ∈ C N
L the corresponding term in (5.4.11), we use the partition.

P (#{open ∆-blocks in C} > x) ≤
∑
I∈P

P

(
#{open ∆-blocks in C ∩ I} > x

|P|

)
≤ |P|P

(
Bin(NLd, p) >

x

|P|

)
, (5.4.12)

where Bin(NLd, p) is a Binomial random variable and (5.4.12) is justified by (5.4.6) and the fact
that each C ∈ C N

L is the union of exactly NLd ∆-blocks. By the definition of L and our choice
of c1, we can check that pNLd < 1

2
c1θ`/∆. Therefore, substituting x in (5.4.12) by |P|c1θ`/∆

and applying Bernstein’s inequality (5.4.8), we obtain

P

(
#{open ∆-blocks in C} > |P|c1

θ`

∆

)
≤ |P| exp

(
−c1θ`

8∆

)
. (5.4.13)

Since N ≤ 3K1`/(L∆) ≤ 3K1`θ/∆, we have K2N < c2θ`/∆. Hence, combining (5.4.11) and
(5.4.13), we get

P

(
Ψ(`) > |P|c1

θ`

∆

)
≤ |P|eK2N−2c2

θ`
∆ ≤ |P|e−c2

θ`
∆ . (5.4.14)

5.4.3 Sequences of percolative systems

The following proposition concerns sequences of percolative systems, and will be used in Sec-
tion 5.5 in the proof of Proposition 5.3.1.

Proposition 5.4.3. Let (Υr)r∈N be a sequence of percolative systems in Rd with scales ∆r,
defined jointly in the same probability space through an arbitrary coupling. Suppose that, for
each r ∈ N, Υr is stochastically dominated by a pr-PPS with partition Pr such that the following
hold:

(i) lim supr→∞ |Pr| <∞.
(ii) m := lim supr→∞ r

−1 log(∆r) <∞.
(iii) M := − lim supr→∞ r

−1 log(pr) > md.
(5.4.15)

Then, for any κ ∈ (0, (md)−1),

lim
n→∞

lim sup
`→∞

1

`

bκ log(`)c∑
r=n

∆d
rΨr(`) = 0 a.s. (5.4.16)
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where Ψr(`) is defined for Υr as in (5.4.4)–(5.4.5).

Proof. Let 0 < ε < 1
2
(1/κ−md) and put θr := d

√
pr ∨ e−br with b = m(d− 1) + ε. By (i), there

exists K1 ∈ (0,∞) such that supr |Pr| ≤ K1 and, by (ii), there exist K2 ∈ (0,∞) and r0 ∈ N
such that ∆r ≤ K2e

(m+ε)r whenever r ≥ r0. Hence, by Lemma 5.4.1,

P

(
∃ r0 ≤ r ≤ bκ log(`)c : Ψr(`) > K1c1`

θr
∆r

)
≤ K1κ log(`)ec2 exp

(
−c2`

`−κb

K2`κ(m+ε)

)
= K1κ log(`)ec2 exp

(
−c2`

a

K2

)
, (5.4.17)

where a := 1− κ(m+ ε+ b) > 0 by our choice of ε and b. Thus, (5.4.17) is summable in `. By
the Borel-Cantelli lemma, a.s. for n ≥ r0 and ` large enough we may estimate

1

`

bκ log(`)c∑
r=n

∆d
rΨr(`) ≤ K1c1

bκ log(`)c∑
r=n

∆d−1
r θr. (5.4.18)

By (ii)-(iii) and the definition of θr, ∆d−1
r θr is summable in r. Therefore (5.4.16) follows by first

letting `→∞ and then n→∞.

5.5 Multiscale analysis

Section 5.5.1 contains the proof of Proposition 5.3.1(a), Section 5.5.2 the proof of Proposi-
tion 5.3.1(b).

Most of the work is concentrated in Section 5.5.1, where the renormalization scheme for rarefied
blocks is defined and analyzed using the results from Section 5.4. Central to this work are
estimates for systems of independent simple random walks, stated in Lemma 5.5.3 below, which
are used for comparison with the system of holes of the SSEP via a result due to Liggett. These
estimates are used to control a recursive formula that, roughly speaking, transfers properties
from larger to smaller scales, allowing us to deduce microscopic properties from mesoscopic and
macroscopic properties.

In Section 5.5.2, a similar approach is used to analyze turbulent blocks from the point of view
of Section 5.4. There the construction and estimates are much simpler.

5.5.1 Proof of Proposition 5.3.1(a)

Bad blocks

Fix ρ− ∈ (0, ρ), let N0 ∈ N be large enough such that

ρ̄∞ :=
∞∏
r=1

(1−N−r/40 ) ≥ 1− ρ− =: ρ̄+ (5.5.1)
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5 Non-trivial linear bounds for a random walk driven by a simple symmetric exclusion process

and put

ρ̄r :=
r∏

k=1

(1−N−k/40 ). (5.5.2)

Set

ωr := N r
0 , ∆r := N6r

0 and ρr := 1− ρ̄r. (5.5.3)

The parameters εr will be defined in Section 5.5.2. Set also ρ̄ := 1 − ρ and, for η ∈ {0, 1}Z,
define η̄ by

η̄(x) := 1− η(x). (5.5.4)

In the following, we will also need r-superblocks, defined as

Br(k, s) := [k − 5∆r, k + 6∆r)× [s− 2∆r, s+ ∆r), k, s ∈ ∆rZ. (5.5.5)

We call the r-block Br(k, s) bad if Br(k, s) is r-rarefied. Thus, any r-rarefied r-block is bad.
We call r-dense any set in R2 that is not r-rarefied.

Lemma 5.5.1. For any κ > 0, Pνρ-a.s. there exists a (random) `0 ∈ (0,∞) such that, if ` ≥ `0,
no bad r-blocks with r ≥ bκ log(`)c intersect [−`, `]2.

Proof. Since the product Bernoulli measure νρ is a translation-invariant equilibrium, for any
r ∈ N, x ∈ Z and t ∈ R, we have

Pνρ (Σx
r (ξt) < ρrωr) ≤ Pνρ (Σx

r (ξt) < ρ−ωr)

= P (Bin(ωr, ρ)− ρωr < −(ρ− ρ−)ωr) ≤ e−εωr , (5.5.6)

where Bin(ωr, ρ) is a Binomial random variable and ε > 0. The last step can be justified e.g. by
using Bernstein’s inequality (5.4.2). Therefore, for any (k, s) ∈ ∆rZ2,

Pνρ (Br(k, s) is bad) ≤
∑

(x,t)∈Br(k,s)∩Z2

Pνρ (Σx
r (ξt) < ρrωr)

≤ 33∆2
re
−εωr ≤ Ce−

ε
2
Nr

0 (5.5.7)

for some C ∈ (0,∞). Since at most (2`+ 1)2 r-blocks intersect [−`, `]2, we can estimate

Pνρ
(
∃ r > κ log(`) and a bad r-block intersecting [−`, `]2

)
≤ C(2`+ 1)2

∞∑
r=bk log(`)c

e−
ε
2
Nr

0 (5.5.8)

which is summable in `, and so the claim follows by the Borel-Cantelli lemma.
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5.5 Multiscale analysis

Locally spoiled blocks

For (k, s) ∈ ∆rZ2, let

Br(k, s) := [k −∆r, k + 2∆r)× [s−∆r, s+ ∆r) (5.5.9)

be the neighbourhood of the r-block Br(k, s), and let

Λr(k, s) := [k − 5∆r, k + 6∆r)× {s− 2∆r} (5.5.10)

be the base of the r-superblock Br(k, s). Define also Vk
r := [k − 5∆r, k + 6∆r) ⊂ Z, so that

Λr(k, s) = Vk
r × {s− 2∆r}. See Figure 5.3. We also need the interior of Br(k, s),

B̊r(k, s) := [k − 5∆r + 1, k + 6∆r − 1)× [s− 2∆r, s+ ∆r), (5.5.11)

and, for (x, t) ∈ Br+1(k, s),

Σ̂k,s
r (x, t) := #{all particles of the SSEP in [x, x+ ωr)× {t} that

stayed in B̊r+1(k, s) during the time interval [s− 2∆r+1, t]}. (5.5.12)

?

-

6

�

s

k

∆r{

Br(k, s)

Br(k, s)

Br(k, s)

Λr(k, s)

time

space

Figure 5.3: Relative position of Br(k, s), Br(k, s), Br(k, s) and Λr(k, s).

A block Br+1(k, s) is called locally spoiled if Λr+1(k, s) is (r + 1)-dense but there is a point

(x, t) such that [x, x + ωr) × {t} ⊂ Br(k, s) and Σ̂k,s
r (x, t) < ρrωr. Being locally spoiled means

that, in the scale ∆r+1, the (r + 1)-block “has good conditions”, meaning that the base of its
(r + 1)-superblock is (r + 1)-dense, but nonetheless there are not enough particles transfered
locally (i.e., inside Br+1(k, s)) to ensure that in the finer scale ∆r the neighbourhood Br+1(k, s)
is r-dense (which would in turn guarantee that Br+1(k, s) contains no bad r-blocks). We will see
below that, with our choice of parameters, being locally spoiled is an extremely unlikely event.

Define a percolative system Υr with scale ∆r by

Υr(k, s) := 1{Br(k,s) is locally spoiled}, (5.5.13)

109



5 Non-trivial linear bounds for a random walk driven by a simple symmetric exclusion process

and, for each a = (a1, a2) ∈ Br(0, 2∆r) ∩∆rZ2, let

Ia := {(z1, z2) ∈ ∆Z2 : z1 ≡ a1 (mod 11) and z2 ≡ a2 (mod 3)}. (5.5.14)

Then
Pr := {Ia : a ∈ Br(0, 2∆r) ∩∆rZ2} (5.5.15)

is a partition of ∆rZ2 with |Pr| = 33.

Lemma 5.5.2. For all large enough r ∈ N, Υr is stochastically dominated by a pr-PPS with
partition Pr, where pr tends to 0 super-exponentially fast as r →∞.

The proof of Lemma 5.5.2 requires quite a bit of work, including estimates for systems of
simple random walks for comparison with the SSEP. Therefore, we postpone it to Section 5.5.1,
and show first how it is used to prove Proposition 5.3.1(a).

Proof of Proposition 5.3.1(a)

Proof. Let

Φb
r (`) := supw∈W`

#{bad r-blocks that intersect w},
Ψls
r (`) := supw∈W`

#{locally spoiled r-blocks that intersect w}. (5.5.16)

Since Φr
r(`) ≤ Φb

r (`), it is enough to prove that

lim
r→∞

lim sup
`→∞

`−1∆2
rΦ

b
r (`) = 0. (5.5.17)

We claim that, for all r ∈ N,

Φb
r (`) ≤ N12

0 Φb
r+1(`) +N12

0 Ψls
r+1(`). (5.5.18)

Indeed, if an r-block is bad, then the unique (r + 1)-block containing it is either bad or locally
spoiled, and the number of r-blocks inside any given (r+ 1)-block is equal to N12

0 . By induction
we get, for R ≥ r + 1,

∆2
rΦ

b
r (`) ≤ ∆2

RΦb
R(`) +

R∑
n=r+1

∆2
nΨls

n(`). (5.5.19)

For κ ∈ (0, (12 log(N0))−1), take `0 as in Lemma 5.5.1 and R = bκ log(`)c. Then, for ` ≥ `0, we
may estimate

1

`
∆2
rΦ

b
r (`) ≤

1

`

bκ log(`)c∑
n=r+1

∆2
nΨls

n(`), (5.5.20)

and so (5.5.17) follows from Lemma 5.5.2 and Proposition 5.4.3.

The rest of this section is dedicated to the proof of Lemma 5.5.2. In Section 5.5.1 we derive
some estimates for systems of independent simple random walks. These are used in Lemma 5.5.4
below for comparison with the system of holes of the SSEP. The latter lemma is used in Sec-
tion 5.5.1 to prove Lemma 5.5.2.
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5.5 Multiscale analysis

Estimates for systems of independent random walks

It will be useful to compare the system ξ̄ of the holes of the exclusion process with a system of
independent simple random walks, which we define next.

Let (Sz)z∈Z be a collection of independent simple random walks on Z, with Sz0 = z for each
z ∈ Z. For η ∈ {0, 1}Z, define the process ξ◦ = (ξ◦t )t≥0 by

ξ◦t (x) :=
∑
z∈Z

η(z)1{Szt =x}, (x, t) ∈ Z× [0,∞). (5.5.21)

The interpretation is that, if we launch from each site z with η(z) = 1 an independent simple
random walk, then ξ◦t (x) is the number of random walks present at the site x at time t.

The following lemma states two estimates for Σx
r (ξ
◦
t ), where [x, x+ωr)×{t} ⊂ Br+1(0, 2∆r+1).

The first gives a bound on its exponential moments in terms of its first moment, while the second
gives a bound on the first moment in terms of density properties of the initial configuration in
the (r + 1)-scale.

Lemma 5.5.3. Let η ∈ {0, 1}Z and ξ◦ = (ξ◦t )t≥0 be a system of independent SRWs, as discussed
above, starting from η̄ (recall (5.5.4)). Then the following hold:

(i) For any λ > 0, x ∈ Z and t ≥ 0,

Eη̄ [exp(λΣx
r (ξ
◦
t ))] ≤ exp

{
(eλ − 1)Eη̄ [Σx

r (ξ
◦
t )]
}
. (5.5.22)

(ii) For large enough r ∈ N and any (x, t) ∈ Br+1(0, 2∆r+1),

Eη̄ [Σx
r (ξ
◦
t )] ≤ 1 + ρ̄r+1ωr if Λr+1(0, 2∆r+1) is (r + 1)-dense, (5.5.23)

i.e.,
∑

y∈[x,x+ωr+1) η(y) ≥ ρr+1ωr+1 ∀ x ∈ Z s.t. [x, x+ ωr+1)× {0} ⊂ Λr+1(0, 2∆r+1).

Proof. (i) Using (5.5.21), we may write

Eη̄ [exp(λΣx
r (ξ
◦
t ))] =

∏
z∈Z

E
[
eλη̄(z)1{Szt ∈[x,x+ωr)}

]
=
∏
z∈Z

{
η̄(z)(eλ − 1)P (Szt ∈ [x, x+ ωr)) + 1

}
≤
∏
z∈Z

exp
(
η̄(z)(eλ − 1)P (Szt ∈ [x, x+ ωr))

)
= exp

{
(eλ − 1)Eη̄ [Σx

r (ξ
◦
t )]
}
. (5.5.24)

(ii) We recall two basic results for one-dimensional simple random walk: there exist K1, K2 ∈
(0,∞) such that

P
(
|S0
t | > 2

√
t log t

)
≤ K1e

−K2(log t)2

, t ≥ 1, (5.5.25)
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5 Non-trivial linear bounds for a random walk driven by a simple symmetric exclusion process

and

|P (Syt = z1)− P (Syt = z2) | ≤ K1
|z1 − z2|

t
, y, z1, z2 ∈ Z, t ≥ 1. (5.5.26)

The first of these can be verified e.g. with the help of Bernstein’s inequality (5.4.2); for the
second, see e.g. Lawler and Limic [56], Theorem 2.3.5.

To simplify the notation, in the following we omit the coordinates (0, 2∆r+1) of the sets
involved. Let kt := d2

√
t log(t)/ωr+1e and put Axt := [x − ktωr+1, x + (kt + 1)ωr+1). Since

(x, t) ∈ Br+1, we have Axt × {0} ⊂ Λr+1. Write

Eη̄ [Σx
r (ξ
◦
t )] =

∑
z∈Z

η̄(z)P (Szt ∈ [x, x+ ωr))

≤
∑
z /∈Axt

P (Szt ∈ [x, x+ ωr)) +
∑
z∈Axt

η̄(z)P (Szt ∈ [x, x+ ωr)) . (5.5.27)

The first term in the r.h.s. of (5.5.27) can be estimated by∑
y∈[x,x+ωr)

P (Syt /∈ Axt ) ≤ ωrP
(
|St| > 2

√
t log t

)
≤ K1ωre

−K2(log ∆r+1)2 ≤ 1

2
(5.5.28)

for r large enough, where we use (5.5.25) and the fact that t ≥ ∆r+1. Decompose Axt into disjoint
intervals I1, . . . , In with length exactly ωr+1, and let zi ∈ Ii be the maximizer of z 7→ P (Szt ∈
[x, x+ ωr)) in Ii. Then the second term in (5.5.27) is at most

n∑
i=1

∑
z∈Ii

η̄(z)P (Szit ∈ [x, x+ ωr)) ≤ ρ̄r+1ωr+1

n∑
i=1

P (Szit ∈ [x, x+ ωr))

= ρ̄r+1

n∑
i=1

∑
z∈Ii

P (Szit ∈ [x, x+ ωr)) . (5.5.29)

The last double sum in the r.h.s. of (5.5.29) is bounded by∑
z∈Axt

P (Szt ∈ [x, x+ ωr)) +
∑

y∈[x,x+ωr)

n∑
i=1

∑
z∈Ii

|P (Szit = y)− P (Szt = y) |. (5.5.30)

The first term in (5.5.30) can be estimated by∑
y∈[x,x+ωr)

P (Syt ∈ Axt ) ≤ ωr, (5.5.31)

and, via (5.5.26), the second term in (5.5.30) by

ωr|Axt |K1
ωr+1

t
≤ 4K1

ωrωr+1 log(t)√
t

+ 3K1

ωrω
2
r+1

t

≤ 4K1

N r−1
0

{
log(3N

6(r+1)
0 ) +

1

N2r−1
0

}
≤ 1

2
(5.5.32)

for large enough r, where for the second inequality we use that ∆r+1 ≤ t ≤ 3∆r+1. Now (5.5.23)
follows by combining (5.5.27)–(5.5.32) since ρ̄r+1 ≤ 1.
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Proof of Lemma 5.5.2

In this section we give the proof of Lemma 5.5.2. The first step is to compare ξ̄ with a system
of independent simple random walks and use the estimates of Lemma 5.5.3 to show that, if
Λr+1(k, s) is (r + 1)-dense, then it is extremely unlikely for Br+1(k, s) to be r-rarefied. This
will also imply that the probability to have a locally spoiled Br+1(k, s) is extremely low, since
particles in the SSEP, with large probability, do not travel very large distances in a short time.
This is the content of Lemma 5.5.4 below.

We will need the following σ-algebras:

F sr := σ
(
ξt : t ∈ (−∞, s− 2∆r]

)
, r ∈ N, s ∈ ∆rZ. (5.5.33)

Lemma 5.5.4. There exist C1, C2 ∈ (0,∞) such that, for all r ∈ N large enough, (k, s) ∈ ∆r+1Z2

and (x, t) ∈ Br+1(k, s) ∩ Z2, if Λr+1(k, s) is (r + 1)-dense, then

Pνρ
(

Σ̂k,s
r (s, t) < ρrωr | F sr+1

)
≤ C1e

−C2
√
ωr . (5.5.34)

Proof. By translation invariance and the Markov property, it is enough to prove (5.5.34) for
(k, s) = (0, 2∆r+1) and under Pη for an arbitrary η ∈ {0, 1}Z, under the assumption that
Λr+1(0, 2∆r+1) is (r + 1)-dense. We will first do this for Σx

r (ξt).

We claim that, for any η ∈ {0, 1}Z and λ > 0,

Eη [exp(λΣx
r (ξt))] ≤ Eη [exp(λΣx

r (ξ
◦
t ))] (5.5.35)

where ξ◦ is a system of independent simple random walks as in Lemma 5.5.3. This can be
justified using a result due to Liggett [57], Chapter VIII, Proposition 1.7, by noting that, for any
n ∈ N, the function (y1, . . . , yn) 7→ expλ

∑n
i=1 1[x,x+ωr)(yi) is symmetric and positive definite.

Liggett’s result only applies to initial configurations with finitely many particles, but, since
Σx
r (ξt) is monotone in η, (5.5.35) follows by the monotone convergence theorem.

Since ξ̄ under Pη has the same distribution as ξ under Pη̄, we have, by Markov’s inequality,
(5.5.35) and Lemma 5.5.3, that, for any λ > 0 and r large enough,

Pη (Σx
r (ξt) < ρrωr) = Pη̄ (Σx

r (ξt) > ρ̄rωr) (5.5.36)

≤ exp
{(
eλ − 1

)
(1 + ρ̄r+1ωr)− λρ̄rωr

}
= ee

λ−1 exp ρ̄rωr

{(
eλ − 1

) ρ̄r+1

ρ̄r
− λ
}
. (5.5.37)

Using eλ − 1 ≤ λeλ and the definition of ρ̄r, we see that the term in brackets in the r.h.s. of
(5.5.36) is at most λeλ(λ− ω−1/4

r ). Choosing λ = 1
2
ω
−1/4
r , we obtain

Pη (Σx
r (ξt) < ρrωr) ≤ e

√
e−1 exp−

ρ̄+

√
e
√
ωr

4
= C̃1e

−C̃2
√
ωr . (5.5.38)

To obtain (5.5.38) for Σ̂r(x, t) in place of Σx
r (ξt) (with possibly different constants), we will argue

that the two are equal with a uniformly large probability.

113



5 Non-trivial linear bounds for a random walk driven by a simple symmetric exclusion process

To that effect, let (y−t )t≥0 denote the path starting at time 0 from the point y−0 := −5∆r+1

that goes upwards in time and (forcibly) jumps across any arrows of the graphical represen-
tation to the right. Likewise, let (y+

t )t≥0 denote the path that starts at y+
0 := 6∆r+1 − 1

and follows the arrows of the graphical representation to the left. We see that, on the event
A := {y−, y+ do not hit Br+1}, no particles can move from outside Br+1 into Br+1. In particular,

Σ̂r(x, t) = Σx
r (ξt) on A if [x, x + ωr) × {t} ⊂ Br+1. On the other hand, y−t − y−0 and y+

0 − y+
t

are both distributed as a rate 1 Poisson process, and are independent of ξ0; therefore, because
of the shape chosen for Br+1, we have

Pη(A) ≥ 1− Ce−ε∆r+1 (5.5.39)

for some C, ε ∈ (0,∞), which completes the proof.

Proof of Lemma 5.5.2. If Λr+1(k, s) is (r + 1)-dense, then we may use (5.5.34) to estimate

Pνρ
(
Υr+1(k, s) = 1 | F sr+1

)
≤

∑
(x,t)∈Br+1(k,s)∩Z2

Pνρ
(

Σ̂k,s
r (s, t) < ρrωr | Fk,sr+1

)
≤ C16∆2

r+1e
−C2
√
ωr =: pr+1, (5.5.40)

which decays super-exponentially fast in r; in particular, pr+1 < 1 for large enough r. Since
Υr+1(k, s) = 0 if Λr+1(k, s) is (r + 1)-rarefied, (5.5.40) holds Pνρ-a.s..

To conclude, fix a ∈ Br+1(0, 2∆r+1) and note that, by the definition of being locally spoiled,
Υr+1(k, s) only depends on ξs−2∆r+1 and on the graphical representation inside Br+1(k, s). There-
fore, for fixed s, the collection (

Υr+1(k, s)
)
k : (k,s)∈Ia

(5.5.41)

is jointly independent under Pνρ(· | F sr+1). Thus, by ordering any sequence (ki, si) ∈ Ia, i =
1, . . . , n, such that si ≤ sj if i ≤ j, we see that, by (5.5.40), (Υr+1(ki, si))

n
i=1 can be progressively

coupled in a monotone way to n independent Bernoulli(pr+1) random variables.

5.5.2 Proof of Proposition 5.3.1(b)

In this section, we use the same proof strategy as in Section 5.5.1, but the arguments will be
technically much simpler.

Set εr := e−∆r . We call a point (x, t) ∈ Z×R r-stuck if both Poissonian clocks in the graphical
representation that lie to the right and to the left of x fail to ring between times t and t+ εr. A
subset of Z×R is called r-stuck if all its points with integer coordinates are r-stuck. Note that
r-turbulent blocks are not r-stuck.

Let Υns
r (k, s) := 1{Br(k,s) is not r-stuck}. Set Iodd := {(x, t) ∈ ∆rZ2 : x∆−1

r is odd}, Ieven :=
{(x, t) ∈ ∆rZ2 : x∆−1

r is even} and Pns
r := {Iodd, Ieven}.

Lemma 5.5.5. Υns
r is stochastically dominated by a p̃r-PPS with partition Pns

r , where p̃r decays
super-exponentially fast in r.
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Proof. By the definition of being r-stuck, we have

Pνρ ((x, t) is r-stuck) = e−2εr . (5.5.42)

Therefore, for any (k, s) ∈ ∆rZ2,

Pνρ (Br(k, s) is not r-stuck) ≤ ∆2
r(1− e−2εr) ≤ 2∆2

re
−∆r , (5.5.43)

i.e., for each (k, s), Υns
r (k, s) is stochastically dominated by a Bernoulli(p̃r) random variable,

where p̃r := 2∆2
re
−∆r decays super-exponentially fast in r. Note that Υns

r (k, s) only depends on
the graphical representation inside Br(k, s)∪{y1, y2}× [s−2∆r, s+∆r], where y1 := k−5∆r−1
and y2 := k + 6∆r are the sites on the spatial boundary of Br(k, s). Therefore (Υns

r (k, s))(k,s)∈I
are jointly independent if I ∈ {Iodd, Ieven}, which finishes the proof.

Proof of Proposition 5.3.1(b). Let

Φns
r (`) := sup

w∈W`

#{r-blocks which intersect w and are not r-stuck}. (5.5.44)

Since Φt
r(`) ≤ Φns

r (`), it is enough to prove that

lim
r→∞

lim sup
`→∞

`−1∆2
rΦ

ns
r (`) = 0. (5.5.45)

But, for κ ∈ (0, (6 log(N0))−1) and r ≤ bκ log(`)c,

1

`
∆2
rΦ

ns
r (`) ≤ 1

`

bκ log(`)c∑
k=r

∆2
kΦ

ns
k (`), (5.5.46)

so (5.5.45) follows from Lemma 5.5.5 and Proposition 5.4.3.
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[68] F. Rassoul-Agha and T. Seppäläinen, Process-level quenched large deviations for random
walk in random environment, Ann. Inst. H. Poincar Probab. Statist. 47 (2011) 214–242.
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Samenvatting

Stochastische wandelingen in stochastische omgevingen in Zd fungeren als modellen voor de
beweging van een deeltje in een wanordelijk materiaal, dat een stochastische omgeving wordt ge-
noemd. De stochastische wandeling is een Markovproces met overgangsintensiteiten die afhanke-
lijk zijn van de stochastische omgeving. Het model wordt statisch genoemd als de stochastische
omgeving constant in de tijd is, en dynamisch als die in de tijd evolueert. Gewoonlijk is de
stochastische omgeving translatie-invariant en in evenwicht. Zulke modellen behoren tot het
grotere onderzoeksgebied van wanordelijke systemen, en zijn sinds begin jaren zeventig uitgebreid
bestudeerd in de natuurkunde en wiskunde literatuur. Het doel is om de schalingseigenschappen
van de stochastische wandeling te begrijpen. Dit proefschrift concentreert zich op de analyse
van stochastische wandelingen in dynamische stochastische omgevingen.

Het statische een-dimensionale model is goed begrepen. Criteria voor terugkerend of voorbij-
gaand gedrag, wetten van grote aantallen, grote afwijkingen principes en schalingslimieten zijn
beschikbaar. Er is ook veel bekend in meer dimensies, hoewel daar het beeld veel minder volledig
is. Een belangrijk open probleem is de karakterisering van ballistisch gedrag van de stochastis-
che wandeling (d.w.z., niet-nul asymptotische snelheid) voor algemene klassen van stochastische
omgevingen.

Reeds in één dimensie vertoont het statische model een rijk gedrag, met kenmerken die
heel anders zijn dan die van homogene stochastische wandelingen. Bijvoorbeeld, de stochastis-
che wandeling kan voorbijgaand zijn met snelheid nul, en kan niet-diffusieve schalingslimieten
hebben. Zulke eigenschappen hangen nauw samen met de aanwezigheid van zogeheten vallen in
de stochastische omgeving, d.w.z., gebieden waar de stochastische wandeling een zeer lange tijd
doorbrengt. Dit verschaft een natuurlijke motivatie voor het dynamische model in één dimen-
sie: aangezien vallen in een dynamische omgeving uiteindelijk verdwijnen, rijst de vraag wat er
gebeurt met de kenmerken hierboven beschreven. Zullen die de dynamica overleven of zullen ze
verdwijnen? Hoe zal de conclusie afhangen van de snelheid and van het type gekozen dynamica?
Deze vragen zijn tot nu toe slechts gedeeltelijk beantwoord. Inderdaad heeft het dynamische
model nog slechts een korte geschiedenis. De meeste resultaten in de literatuur veronderstellen
dat de dynamische stochastische omgeving Markov in de tijd is, met uniforme en voldoend snelle
mengingseigenschappen, en tonen standaardgedrag aan voor de stochastische wandeling.

De hoofdstukken van dit proefschrift zijn als volgt georganiseerd. Hoofdstuk 1 bevat een
gedetailleerde inleiding. Hoofdstuk 2 beschrijft de wet van grote aantallen voor bepaalde klassen
van stochastische wandelingen in dynamische stochastische omgevingen in Zd, d ∈ N, inclusief
enkele niet-elliptische gevallen (d.w.z, waar de overgangsintensiteiten van de stochastische wan-
deling willekeurig dicht bij nul of oneindig kunnen zijn). De hypothesen bevatten een uniforme
mengingsconditie genaamd conditional cone-mixing, en andere condities noodzakelijk om de tijd
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te controleren, die de stochastische wandeling in grote ruimte-tijdkegels doorbrengt. Het hoofd-
model dat behandeld wordt is het (∞, 0)-model, dat een bijna deterministische functie van de
stochastische omgeving is.

In Hoofdstuk 3 nemen we als dynamische stochastische omgeving het naaste-buren sym-
metrische exclusieproces in één dimensie. Deze dynamica is uitdagend omdat hij geen snelle
of uniforme menging heeft. Voor onze analyse veronderstellen we een sterke drift-conditie, wat
betekent dat de stochastische wandeling altijd naar rechts beweegt met een voldoend grote snel-
heid. Hierdoor kunnen we de langzame en niet-uniforme menging van de stochastische omgeving
overwinnen en een wet van grote aantallen, een invariantie-principe, grote-afwijking grenzen, en
ook een zogenoemde Einstein relatie voor de stochastische wandeling bewijzen door middel van
een vernieuwingsargument.

In Hoofdstuk 4 bestuderen we nog een voorbeeld van dynamische stochastische omgeving
zonder uniforme menging, namelijk, het superkritische contactproces in één dimensie. Mono-
toniciteitseigenschappen, plus snelle convergentie van dit proces naar zijn grootste invariante
kansverdeling als het vanuit een volle configuratie begint, laten het toe een wet van grote aan-
talen voor de stochastische wandeling te bewijzen in de gehele superkritische fase. Als bovendien
de stochastische wandeling langzaam genoeg is ten opzichte van de infectiesnelheid, dan kun-
nen we een vernieuwingstructuur opbouwen om een invariantie-principe voor de stochastische
wandeling te bewijzen, evenals de continüıteit van de asymptotische snelheid en variantie met
betrekking tot de infectiesnelheid.

In Hoofdstuk 5 beschouwen we opnieuw het (naaste-buren en symmetrische) exclusieproces,
dit keer zonder de sterke drift veronderstelling. In dit geval is de wet van grote aantallen
voor de stochastische wandeling nog niet bewezen. We richten ons op een eenvoudiger vraag,
namelijk, of de minimale/maximale lineaire (in de tijd) verplaatsingen van de stochastische
wandeling gelijk kunnen zijn aan de overeenkomstige snelheden van de samenstellende homogene
stochastische wandelingen die worden gebruikt om het model te definiëren. Met behulp van een
multi-schaalanalyse van het exclusieproces kunnen we een negatief antwoord op deze vraag geven.
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