
Journal of Modern Mathematics Frontier Volume 2 Issue 4, December 2013                                                                 www.sjmmf.org 
doi: 10.14355/jmmf.2013.0204.01 

111 

On Association Coefficients, Correction for 
Chance, and Correction for Maximum Value 
Matthijs J. Warrens 

Institute of Psychology, Leiden University 
Wassenaarseweg 52, 2333 AK Leiden, Netherlands 
warrens@fsw.leidenuniv.nl 
 
Abstract 

This paper studied correction for chance and correction for 
maximum value as functions on a space of association 
coefficients. Various properties of both functions are 
presented. It is shown that the two functions commute 
under composition; and that the composed function maps a 
coefficient and all its linear transformations given the 
marginal totals to the same coefficient. The results presented 
in the paper have generalized various results from the 
literature. 
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Introduction 

Association coefficients are important tools in data 
analysis and classification that are used to quantify the 
degree of association between variables (Zegers 1986a, 
Albatineh et al. 2006). Individual coefficients can be 
used for summarizing parts of a research study, while 
matrices of association coefficients can be used as 
input for multivariate data analysis techniques like, 
component analysis and cluster analysis (Gower 1966, 
Gower and Legendre 1986). Well-known examples of 
association coefficients are Pearson's product-moment 
correlation to measure the linear dependence between 
two continuous variables, the Hubert-Arabie adjusted 
Rand index for comparing partitions of two different 
clustering algorithms (Hubert and Arabie 1985, 
Steinley 2004, Warrens 2008a), and Cohen's kappa for 
measuring the degree of inter-rater agreement on a 
categorical scale (Cohen 1960; Bloch and Kraemer 1989; 
Warrens 2010). 

Association coefficients may satisfy certain 
requirements. Various requirements for coefficients 
have been discussed in Popping (1983), Zegers (1986b) 
and Warrens (2008b). Since the choice of an association 
coefficient should always be considered in the context 
of the data-analytic problem at hand (Gower and 

Legende 1986) the requirements can be used as 
guidelines to select the most appropriate association 
coefficients. However, it may happen that a coefficient 
does not satisfy a certain requirement. For these 
coefficients, corrections have been proposed in the 
literature. A correction transforms one coefficient into 
a new coefficient, which then satisfies the desideratum 
associated with the correction. In this paper, two such 
corrections are studied as functions on a space of 
association coefficients, namely correction for chance, 
and correction for maximum value. 

The paper is organized as follows. In Section 2 a 
coefficient space is defined. This space will be the 
domain of the correction for chance function and the 
correction for maximum value function. The 
coefficients in this paper are association coefficients 
that summarize the information in a contingency table. 
Although the correction for chance function has also 
been used with association coefficients from other 
data-analytic contexts, correction for maximum value 
has been studied primarily with coefficients for 
contingency tables. In Section 3 the correction for 
chance function is defined and some of its properties 
are presented. In Section 4 the correction for maximum 
value function and some of its properties are defined. 
In Section 5 it is shown that the two functions 
commute; and that the composed function maps a 
coefficient and all its linear transformations given the 
marginal totals to a unique fixed point of the function. 
In Section 6 it is shown that the correction for chance 
function and the correction for maximum value 
function, together with the identity function and their 
composition, form a commutative idempotent monoid. 
Section 7 contains a conclusion. 

The correction for chance function has been studied by 
other authors (Albatineh et al. 2006, Warrens 2008b, 
2008c, 2011, 2013). All these studies were limited to 
coefficients that belong to a specific family of linear 
transformations. In this paper, we presented several 
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new results, and also showed that the results in 
Albatineh et al. (2006) and Warrens (2008b, 2008c, 2013) 
hold under more general circumstances. 

Association Coefficients 

In this section, the coefficient space for the correction 
for chance function and the correction for maximum 
value function are defined. In addition, a variety of 
examples of association coefficients from the literature 
are presented. 

A Coefficient Space 

Let �𝑝𝑝𝑖𝑖𝑖𝑖 � be a contingency table or matrix of size 𝑘𝑘 × ℓ 
where 𝑘𝑘, ℓ ≥ 2. It is assumed that the elements of �𝑝𝑝𝑖𝑖𝑖𝑖 � 
are non-negative, that is, 𝑝𝑝𝑖𝑖𝑖𝑖 ≥ 0 for all 𝑖𝑖, 𝑖𝑖, and that the 
elements of 𝑝𝑝𝑖𝑖𝑖𝑖  sum to unity. These requirements 
ensure that the elements 𝑝𝑝𝑖𝑖𝑖𝑖  are relative frequencies. 
The quantities 

𝑝𝑝𝑖𝑖+ = �𝑝𝑝𝑖𝑖𝑖𝑖

ℓ

𝑖𝑖=1

 and  𝑝𝑝+𝑖𝑖 = �𝑝𝑝𝑖𝑖𝑖𝑖

𝑘𝑘

𝑖𝑖=1

 

will be called the marginal totals of the table �𝑝𝑝𝑖𝑖𝑖𝑖 �. For 
fixed 𝑘𝑘 and ℓ, consider the set 

 𝑀𝑀 = ��𝑝𝑝𝑖𝑖𝑖𝑖 �𝑘𝑘×ℓ
�𝑝𝑝𝑖𝑖𝑖𝑖 ≥ 0 for all 𝑖𝑖, 𝑖𝑖;�𝑝𝑝𝑖𝑖𝑖𝑖

𝑖𝑖 ,𝑖𝑖

= 1�.      (1) 

The set 𝑀𝑀  consists of all contingency tables of size 
𝑘𝑘 × ℓ with non-negative elements that sum to unity. In 
the context of contingency tables, an association 
coefficient is a function that assigns to each 
contingency table a real number. Thus, a coefficient 
𝐴𝐴:𝑀𝑀 → ℝ  is a map from the domain 𝑀𝑀  to the real 
numbers ℝ . For many association coefficients, the 
codomain is either the closed interval [0,1]  or the 
interval [−1,1]. Let 𝐷𝐷 = {𝐴𝐴:𝑀𝑀 → ℝ} denote the set of 
all association coefficients from 𝑀𝑀 to ℝ. The coefficient 
space 𝐷𝐷 will be the domain of the correction for chance 
function defined in Section 3 and the correction for 
maximum value function defined in Section 4. In the 
following subsections, several examples of 𝑀𝑀  and 
associated elements of 𝐷𝐷  from the literature are 
available.  

Coefficients for 2×2 Tables 

Many experimental and research studies can be 
summarized by a contingency table of size 2 × 2 
(Gower and Legendre 1986, Baulieu 1989, Warrens 
2008b, 2008c). This type of table is usually a cross-
classification of two binary variables. An example 
from epidemiology is a reliability study. In a reliability 
study two observers each rate the same sample of 
subjects on the presence or absence of a trait or a 

disease (Fleiss 1975, Bloch and Kraemer 1989). In this 
case, 𝑀𝑀 is given by 

 𝑀𝑀 = ��
𝑝𝑝11 𝑝𝑝12
𝑝𝑝21 𝑝𝑝22

� �𝑝𝑝11 + 𝑝𝑝12 + 𝑝𝑝21 + 𝑝𝑝22 = 1�.  

Example 1. A well-known association coefficient for 
2 × 2 tables is the phi coefficient 

 𝜑𝜑 =
𝑝𝑝11𝑝𝑝22 − 𝑝𝑝12𝑝𝑝21

�𝑝𝑝1+𝑝𝑝2+𝑝𝑝+1𝑝𝑝+2
 (2) 

which is the formula of Pearson's product-moment 
correlation coefficient for two binary variables. 
Pearson's correlation is widely used as a measure of 
linear dependence between two variables. 

Example 2. Another example is 

 𝐻𝐻 =
𝑝𝑝11𝑝𝑝22 − 𝑝𝑝12𝑝𝑝21

𝑚𝑚𝑖𝑖𝑖𝑖{𝑝𝑝1+𝑝𝑝+2,𝑝𝑝+1𝑝𝑝2+}. (3) 

This coefficient has been discussed in Johnson (1945), 
but it is better known as Loevinger's 𝐻𝐻  (Loevinger 
1947, 1948). It is an important statistic in Mokken scale 
analysis, a methodology that may be used to select a 
subset of binary test items that are sensitive to the 
same underlying dimension (Sijtsma and Molenaar 
2002). Coefficient𝜑𝜑  can only be equal to 1 if 𝑝𝑝1+ =
𝑝𝑝+1 = 1/2 , whereas coefficient 𝐻𝐻  can attain its 
maximum value of unity regardless of the marginal 
totals. 

Coefficients for k×k Tables 

In biomedical and behavioral sciences, it is not 
uncommon to have a research study in which the 
variables of interest have three or more nominal 
(unordered) categories. The categories are usually 
defined beforehand and an experiment may result in 
two nominal variables with identical categories. An 
example from developmental psychology is a study in 
which two coders classify the solution strategies that 
children use when solving arithmetic problems. In this 
case, the contingency table is a cross-classification of 
size 𝑘𝑘 × 𝑘𝑘 of the two nominal variables. The set 𝑀𝑀 is 
given by 

 𝑀𝑀 = ��𝑝𝑝𝑖𝑖𝑖𝑖 �𝑘𝑘×𝑘𝑘
�𝑝𝑝𝑖𝑖𝑖𝑖 ≥ 0 for all 𝑖𝑖, 𝑖𝑖;�𝑝𝑝𝑖𝑖𝑖𝑖

𝑖𝑖 ,𝑖𝑖

= 1�.  

Example 3. The proportion 𝑝𝑝𝑖𝑖𝑖𝑖  on the main diagonal of 
a square contingency table reflects how often the two 
coders agree on category 𝑖𝑖 , or, how often the two 
variables have category 𝑖𝑖  in the same position. A 
straightforward coefficient for summarizing 
agreement is the so-called overall agreement 

 𝑂𝑂 = �𝑝𝑝𝑖𝑖𝑖𝑖
𝑖𝑖

.                                         (4) 

Example 4. The most widely used coefficient in 
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biomedical and behavioral science research for 
summarizing inter-rater agreement on a nominal scale 
is Cohen's kappa (Cohen 1960, Hanley 1987, Maclure 
and Willett 1987, Hsu and Field 2003, Warrens 2008a, 
2010). The statistic is given by 

 𝜅𝜅 =
∑ (𝑝𝑝𝑖𝑖𝑖𝑖 − 𝑝𝑝𝑖𝑖+𝑝𝑝+𝑖𝑖)𝑖𝑖

1 − ∑ 𝑝𝑝𝑖𝑖+𝑝𝑝+𝑖𝑖𝑖𝑖
.                                    (5) 

Unlike the overall agreement 𝑂𝑂 , Cohen's kappa 
corrects for agreement that may occur due to chance 
alone. Kappa has value unity if there is perfect 
agreement, and zero value under statistical 
independence. 

Example 5. A coefficient commonly used in content 
analysis research is Scott's pi (Scott 1955, Krippendorff 
2004a, 2004b). The statistic is defined as 

 𝜋𝜋 =
∑ �𝑝𝑝𝑖𝑖𝑖𝑖 − 1

4(𝑝𝑝𝑖𝑖+ + 𝑝𝑝+𝑖𝑖)2�𝑖𝑖

1 − 1
4 ∑ (𝑝𝑝𝑖𝑖+ + 𝑝𝑝+𝑖𝑖)2

𝑖𝑖
.                             (6) 

Like Cohen's kappa, Scott's pi corrects for agreement 
that may occur due to chance alone. The correction is 
based on different distributional assumptions (see 
example 10 below). 

Example 6. A fourth example is the coefficient 

 𝐻𝐻 =
∑ (𝑝𝑝𝑖𝑖𝑖𝑖 − 𝑝𝑝𝑖𝑖+𝑝𝑝+𝑖𝑖)𝑖𝑖

∑ (𝑚𝑚𝑖𝑖𝑖𝑖{𝑝𝑝𝑖𝑖+,𝑝𝑝+𝑖𝑖} − 𝑝𝑝𝑖𝑖+𝑝𝑝+𝑖𝑖)𝑖𝑖
.                     (7) 

This coefficient has been discussed in Cohen (1960), 
Brennan and Prediger (1981) and Popping (1983). 
Coefficient (7) generalizes coefficient (3) to the case of 
three or more nominal categories. Coefficient 𝜅𝜅  can 
only be equal to 1 if 𝑝𝑝𝑖𝑖+ = 𝑝𝑝+𝑖𝑖  for all 𝑖𝑖, that is, if the 
marginal distributions of the two variables are 
identical. Coefficient 𝐻𝐻 can attain its maximum value 
of unity regardless of the marginal totals. 

Cluster Validation Coefficients 

In cluster analysis, one is often interested in 
comparing two partitions of the same set of objects or 
data points from different clustering algorithms 
(Steinley 2004, Albatineh et al. 2006, Albatineh and 
Niewiadomska-Bugaj 2011). In this case, each variable 
may have different categories. The cluster validation 
situation closely matches an experiment where two 
observers each rate the same group of objects using 
different nominal categories (Hubert 1977, Janson and 
Vegelius 1982, Popping 1983).  

In cluster analysis, the contingency table �𝑝𝑝𝑖𝑖𝑖𝑖 �  is 
usually called a matching table, and the cell 𝑝𝑝𝑖𝑖𝑖𝑖  reflects 
the number of objects placed in cluster 𝑖𝑖  (𝑖𝑖 = 1, … , 𝑘𝑘) 
by the first clustering method and in cluster 𝑖𝑖 (𝑖𝑖 =
1, … , ℓ) by the second method. Association coefficients 

that summarize the information in a matching table 
usually compare the number of object pairs placed in 
the same cluster to the number of object pairs placed 
in different clusters. There is a formal relationship 
between these coefficients and association coefficients 
for 2 × 2 tables. Let 𝛼𝛼 be the proportion of object pairs 
placed in the same cluster according to both clustering 
methods, 𝛽𝛽 (𝛾𝛾) be the proportion of object pairs placed 
in the same cluster according to one method but not 
the other method, and 𝛿𝛿 be the proportion of object 
pairs not in the same cluster according to either of the 
methods. The full expressions of 𝛼𝛼, 𝛽𝛽, 𝛾𝛾 and 𝛿𝛿 in terms 
of binomial coefficients can be found in Albatineh et al. 
(2006), Albatineh and Niewiadomska-Bugaj (2011) and 
Warrens (2008a). The re-parameterisation is given by 
𝛼𝛼 = 𝑝𝑝11, 𝛽𝛽 = 𝑝𝑝12, 𝛾𝛾 = 𝑝𝑝21 and 𝛿𝛿 =  𝑝𝑝22. 

Example 7. For some time, the standard tool in cluster 
analysis for summarizing a matching table was the so-
called Rand index (Rand 1971), which is defined as 

 𝑅𝑅 =
𝛼𝛼 + 𝛿𝛿

𝛼𝛼 + 𝛽𝛽 + 𝛾𝛾 + 𝛿𝛿
= 𝛼𝛼 + 𝛿𝛿.                       (8) 

Coefficient 𝑅𝑅  compares the number of object pairs 
placed in the same cluster and in different clusters 
according to both clustering methods, to the total 
number of object pairs. In the context of 2 × 2 tables, 
this coefficient is called the overall agreement, also 
known as the simple matching coefficient (Sokal and 
Michener 1958). In the context of summarizing 
agreement between two coders that used different 
nominal categories, the Rand index is equivalent to the 
coefficient proposed in Brennan and Light (1974). 
Example 8. Morey and Agresti (1985) and Hubert and 
Arabie (1985) argued that the Rand index should be 
corrected for agreement between the clustering 
methods due to chance. Nowadays, a standard tool for 
comparing two partitions of the same objects or data 
points by two different clustering methods is the 
Hubert-Arabie adjusted Rand index (Hubert and 
Arabie 1985, Steinley 2004). Warrens (2008a) showed 
that in terms of 𝛼𝛼, 𝛽𝛽, 𝛾𝛾 and 𝛿𝛿 the adjusted Rand index 
can be written as 

 𝐴𝐴𝑅𝑅 =
2(𝛼𝛼𝛿𝛿 − 𝛽𝛽𝛾𝛾)

(𝛼𝛼 + 𝛽𝛽)(𝛼𝛼 + 𝛾𝛾) + (𝛽𝛽 + 𝛿𝛿)(𝛾𝛾 + 𝛿𝛿)
.                 (9) 

In the context of 2 × 2 tables coefficient,𝐴𝐴𝑅𝑅  is also 
known as Cohen's kappa (Warrens 2008a).  

Linear Transformations 

Albatineh et al. (2006) introduced the idea of studying 
correction for chance for a whole family of validation 
coefficients simultaneously, and studied coefficients 
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that are linear in ∑ 𝑖𝑖𝑖𝑖𝑖𝑖2𝑖𝑖 ,𝑖𝑖 , where 𝑖𝑖𝑖𝑖𝑖𝑖  is the number of 
objects placed in cluster 𝑖𝑖  according to the first 
clustering method and in cluster 𝑖𝑖  according to the 
second clustering method. Following Albatineh et al. 
(2006), Warrens (2008b, 2008c, 2011) studied a family 
of association coefficients for 2 × 2 tables that have a 
form 𝜆𝜆 + 𝜇𝜇(𝑝𝑝11 + 𝑝𝑝22) , where 𝑝𝑝11 + 𝑝𝑝22  is the overall 
agreement and 𝜆𝜆 = 𝜆𝜆(𝑝𝑝1+,𝑝𝑝2+,𝑝𝑝+1,𝑝𝑝+2) and 𝜇𝜇 = 𝜇𝜇 =
(𝑝𝑝1+,𝑝𝑝2+,𝑝𝑝+1,𝑝𝑝+2) are functions of the marginal totals. 
Lemma 1 shows that if one coefficient is linear in a 
second coefficient given the marginal totals, then the 
second coefficient is also linear in the first coefficient.  

Lemma 1. Let 𝐴𝐴,𝐵𝐵 𝜖𝜖 𝐷𝐷 and suppose 𝐵𝐵 = 𝜆𝜆 + 𝜇𝜇𝐴𝐴 where 
𝜆𝜆  and 𝜇𝜇  are functions of the marginal totals. Then 
𝐴𝐴 = 𝜆𝜆∗ + 𝜇𝜇∗𝐵𝐵 where 

𝜆𝜆∗ = −
𝜆𝜆
𝜇𝜇

  and  𝜇𝜇∗ =
1
𝜇𝜇

. 

Since 𝜆𝜆 and 𝜇𝜇 are functions of the marginal totals, and 
𝜆𝜆∗ and 𝜇𝜇∗ are ratios of 𝜆𝜆 and 𝜇𝜇, it follows that 𝜆𝜆∗ and 𝜇𝜇∗ 
in Lemma 1 are also functions of the marginal totals. 

Example 9. The phi coefficient 𝜑𝜑 (Example 1) can be 
written as 𝜆𝜆 + 𝜇𝜇𝑂𝑂 = 𝜆𝜆 + 𝜇𝜇(𝑝𝑝11 + 𝑝𝑝22) where 

𝜆𝜆 =
−𝑝𝑝1+𝑝𝑝+1 − 𝑝𝑝2+𝑝𝑝+2

2�𝑝𝑝1+𝑝𝑝2+𝑝𝑝+1𝑝𝑝+2
 and  𝜇𝜇 =

1
2�𝑝𝑝1+𝑝𝑝2+𝑝𝑝+1𝑝𝑝+2

. 

Vice versa, the overall agreement 𝑂𝑂 can be written as 
𝜆𝜆∗ + 𝜇𝜇∗𝜑𝜑 where  

𝜆𝜆∗ = 𝑝𝑝1+𝑝𝑝+1+𝑝𝑝2+𝑝𝑝+2 and  𝜇𝜇∗ = 2�𝑝𝑝1+𝑝𝑝2+𝑝𝑝+1𝑝𝑝+2. 

Correction for Chance 

In this section, the correction for chance function is 
defined and studied. In several data-analytic contexts, 
it is desirable that the theoretical value of an 
association coefficient is zero if the two variables are 
statistically independent (Popping 1983, Zegers 1986a). 
The adjusted Rand index and Cohen's kappa each 
have zero value under independence, but the 
proportion of overall agreement does not. If a measure 
does not have zero value under statistical 
independence, it may be corrected for association due 
to chance (Fleiss 1975, Krippendorff 1987, Albatineh et 
al. 2006, Warrens 2008b). Let 𝐸𝐸(𝐴𝐴) denote the value of 
coefficient 𝐴𝐴under chance conditionally upon fixed 
marginal totals, and 𝑀𝑀(𝐴𝐴)  denote the overall 
maximum value of coefficient 𝐴𝐴. It is assumed that the 
chance process is such that the expectation 𝐸𝐸(𝐴𝐴)  is 
only a function of the marginal totals. Furthermore, for 
many association coefficients from the literature we 
have 𝑀𝑀(𝐴𝐴) = 1. The correction for chance function is 
defined as 

𝑐𝑐:𝐷𝐷 → 𝐷𝐷,𝐴𝐴 ↦
𝐴𝐴 − 𝐸𝐸(𝐴𝐴)

𝑀𝑀(𝐴𝐴) − 𝐸𝐸(𝐴𝐴)
, 

or simplied 

 𝑐𝑐(𝐴𝐴) =
𝐴𝐴 − 𝐸𝐸(𝐴𝐴)

𝑀𝑀(𝐴𝐴) − 𝐸𝐸(𝐴𝐴)
.                         (10) 

The numerator of (10) is the difference between 𝐴𝐴 and 
𝐸𝐸(𝐴𝐴) , whereas the denominator of (10) is the 
maximum possible value of the numerator. It is 
assumed that 𝑀𝑀(𝐴𝐴)  is greater than 𝐸𝐸(𝐴𝐴)  to avoid 
indeterminate cases. Different distributional assump-
tions lead to different definitions of the expectation 
𝐸𝐸(𝐴𝐴), and thus different versions of the function 𝑐𝑐. For 
cluster validation coefficients, two distributional 
assumptions have been discussed in Albatineh et al. 
(2006) and Albatineh and Niewiadomska-Bugaj (2011). 
Example 10 considers two assumptions for coefficients 
for 𝑘𝑘 × 𝑘𝑘 tables. 

Example 10. Consider the overall agreement 𝑂𝑂 
(Example 3). Suppose that �𝑝𝑝𝑖𝑖𝑖𝑖 � is a product of chance 
concerning two different frequency distributions, one 
for the row categories and the otherfor the column 
categories (Krippendorff 1987, Warrens 2010). In this 
case we have 

 𝐸𝐸(𝑂𝑂) = �𝐸𝐸(𝑝𝑝𝑖𝑖𝑖𝑖)
𝑖𝑖

= �𝑝𝑝𝑖𝑖+𝑝𝑝+𝑖𝑖
𝑖𝑖

.                       (11) 

Expectation (11) is the value of 𝑂𝑂  under statistical 
independence. Using 𝑂𝑂, 𝑀𝑀(𝑂𝑂) = 1 and 𝐸𝐸(𝑂𝑂) in (11) in 
(10), we obtain Cohen's kappa (Example 4). 
Alternatively, it may be assumed that the frequency 
distribution underlying the row and column 
categories is the same for the rows and columns (Scott 
1955, Krippendorff 1987). We have, for example,  

 𝐸𝐸(𝑂𝑂) = �𝐸𝐸(𝑝𝑝𝑖𝑖𝑖𝑖)
𝑖𝑖

= � �
𝑝𝑝𝑖𝑖+ + 𝑝𝑝+𝑖𝑖

2
�

2

𝑖𝑖
.              (12) 

Using 𝑂𝑂, 𝑀𝑀(𝑂𝑂) = 1 and 𝐸𝐸(𝑂𝑂)in (12) in (10), we obtain 
Scott's pi (Example 5). 

The function 𝑐𝑐 in (10) has been applied to association 
coefficients for metric scales (Zegers 1986a, 1986b), 
coefficients for inter-rater agreement (Zegers 1991, 
Warrens 2010) and coefficients of cluster validation 
(Albatineh et al. 2006, Albatineh and Niewiadomska-
Bugaj 2011). It has been demonstrated by many 
authors that association coefficients may become 
equivalent after correction (10) (Fleiss 1975, Zegers 
1986b, Albatineh et al. 2006, Warrens 2008b, 2008c, 
2011). These relations show how various association 
coefficients from the literature are related, and usually 
provide new ways to interpret the chance-corrected 
association coefficients. 

In the remainder of this section, we study the function 
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𝑐𝑐 in the context of the general coefficient space. In the 
results below, we do not assume a specific form for the 
expectation 𝐸𝐸(𝐴𝐴). The following lemmas provide some 
specific conditions for two coefficients to coincide after 
correction for chance. If a result generalizes an existing 
result in the literature, the latter result is explicitly 
mentioned. 

Let 𝐴𝐴 be a coefficient, and 𝑎𝑎 and 𝑏𝑏 ≠ 0 be real numbers. 
Lemma 2 shows that 𝐴𝐴 and the linear transformation 
𝑎𝑎 + 𝑏𝑏𝐴𝐴 coincide after correction for chance. The lemma 
generalizes Proposition 2 in Warrens (2008b). 

Lemma 2. Let 𝐴𝐴 𝜖𝜖 𝐷𝐷 and 𝐵𝐵 = 𝑎𝑎 + 𝑏𝑏𝐴𝐴, where 𝑎𝑎, 𝑏𝑏 𝜖𝜖 ℝ are 
constants with 𝑏𝑏 ≠ 0. Then 𝑐𝑐(𝐴𝐴) = 𝑐𝑐(𝐵𝐵). 

Proof: The definition of 𝑐𝑐(𝐴𝐴) is presented in (10). Since 
𝑎𝑎  and 𝑏𝑏  are constants, we have 𝐸𝐸(𝐵𝐵) = 𝐸𝐸(𝑎𝑎 + 𝑏𝑏𝐴𝐴) =
𝑎𝑎 + 𝑏𝑏𝐸𝐸(𝐴𝐴) and 𝑀𝑀(𝐵𝐵) = 𝑀𝑀(𝑎𝑎 + 𝑏𝑏𝐴𝐴) = 𝑎𝑎 + 𝑏𝑏𝑀𝑀(𝐴𝐴). Hence, 
we have 

𝑐𝑐(𝐵𝐵) =
𝑎𝑎 + 𝑏𝑏𝐴𝐴 − 𝑎𝑎 − 𝑏𝑏𝐸𝐸(𝐴𝐴)

𝑎𝑎 + 𝑏𝑏𝑀𝑀(𝐴𝐴) − 𝑎𝑎 − 𝑏𝑏𝐸𝐸(𝐴𝐴) =
𝐴𝐴 − 𝐸𝐸(𝐴𝐴)

𝑀𝑀(𝐴𝐴) − 𝐸𝐸(𝐴𝐴) = 𝑐𝑐(𝐴𝐴). 

■ 

Example 11. For a fixed number of categories 𝑘𝑘, the 
coefficient given by 

 𝑆𝑆 =
𝑂𝑂 − 1

𝑘𝑘

1 − 1
𝑘𝑘

= −
1

𝑘𝑘 − 1
+

𝑘𝑘
𝑘𝑘 − 1

𝑂𝑂,                    (13) 

is a linear transformation of the overall agreement 𝑂𝑂 
(Warrens 2012). Coefficient 𝑆𝑆 first proposed in Bennett 
et al. (1954), is equivalent to coefficient 𝐶𝐶 in Janson and 
Vegelius (1979, p. 260) and coefficient RE proposed in 
Janes (1979). In Brennan and Prediger (1981) 
coefficient 𝑆𝑆  is denoted by 𝜅𝜅𝑖𝑖 . Since 𝑀𝑀(𝑂𝑂) = 1  it 
follows from Lemma 2 that 

𝑐𝑐(𝑂𝑂) = 𝑐𝑐(𝑆𝑆) =
𝑂𝑂 − 𝐸𝐸(𝑂𝑂)
1 − 𝐸𝐸(𝑂𝑂). 

Lemma 3 considers a condition for the equivalence of 
a coefficient 𝐴𝐴 and a linear transformation of 𝐴𝐴. 

Lemma 3. Let 𝐴𝐴 𝜖𝜖 𝐷𝐷  and 𝐵𝐵 = 𝜆𝜆 + 𝜇𝜇𝐴𝐴 , where 𝜆𝜆  and 
𝜇𝜇 ≠ 0 are functions of the marginal totals. Then𝑐𝑐(𝐴𝐴) =
𝑐𝑐(𝐵𝐵) ⟺𝑀𝑀(𝐵𝐵) = 𝜆𝜆 + 𝜇𝜇𝑀𝑀(𝐴𝐴). 

Proof: Since 𝐸𝐸(𝜆𝜆 + 𝜇𝜇𝐴𝐴) = 𝜆𝜆 + 𝜇𝜇𝐸𝐸(𝐴𝐴), we have 

𝑐𝑐(𝐴𝐴) = 𝑐𝑐(𝐵𝐵) ⟺
𝐴𝐴− 𝐸𝐸(𝐴𝐴)

𝑀𝑀(𝐴𝐴) − 𝐸𝐸(𝐴𝐴) =
𝜆𝜆 + 𝜇𝜇𝐴𝐴 − 𝜆𝜆 − 𝜇𝜇𝐸𝐸(𝐴𝐴)
𝑀𝑀(𝐵𝐵) − 𝜆𝜆 − 𝜇𝜇𝐸𝐸(𝐴𝐴)  

⟺
1

𝑀𝑀(𝐴𝐴) − 𝐸𝐸(𝐴𝐴) =
𝜇𝜇

𝑀𝑀(𝐵𝐵) − 𝜆𝜆 − 𝜇𝜇𝐸𝐸(𝐴𝐴) 

⟺𝑀𝑀(𝐵𝐵) = 𝜆𝜆 + 𝜇𝜇𝑀𝑀(𝐴𝐴). 
■ 

A consequence of Lemma 3 is that two linear 
transformations of a coefficient 𝐴𝐴 coincide if they have 
the same ratio 

 
𝑀𝑀(𝐵𝐵) − 𝜆𝜆

𝜇𝜇
.                                 (14) 

Corollary 4 generalizes a result in Albatineh et al. 
(2006). 

Corollary 4. Let 𝐴𝐴 𝜖𝜖 𝐷𝐷  and 𝐵𝐵1 = 𝜆𝜆1 + 𝜇𝜇1𝐴𝐴  and 𝐵𝐵2 =
𝜆𝜆2 + 𝜇𝜇2𝐴𝐴 where 𝜆𝜆1 , 𝜆𝜆2 , 𝜇𝜇1 ≠ 0and 𝜇𝜇2 ≠ 0 are functions 
of the marginal totals. Then 

𝑐𝑐(𝐵𝐵1) = 𝑐𝑐(𝐵𝐵2) ⟺
𝑀𝑀(𝐵𝐵1) − 𝜆𝜆1

𝜇𝜇1
=
𝑀𝑀(𝐵𝐵2) − 𝜆𝜆2

𝜇𝜇2
. 

Example 12. For the overall agreement 𝑂𝑂 (Example 3) 
we have 𝑀𝑀(𝑂𝑂) = 1. Thus, ratio (14) is given by 

𝑀𝑀(𝑂𝑂) − 𝜆𝜆𝑂𝑂
𝜇𝜇𝑂𝑂

= 1. 

We can write Cohen's kappa (Example 4) as 𝜅𝜅 = 𝜆𝜆𝜅𝜅 +
𝜇𝜇𝜅𝜅𝑂𝑂 where 

𝜆𝜆𝜅𝜅 =
−∑ 𝑝𝑝𝑖𝑖+𝑝𝑝+𝑖𝑖𝑖𝑖

1 −∑ 𝑝𝑝𝑖𝑖+𝑝𝑝+𝑖𝑖𝑖𝑖
 and  𝜇𝜇𝜅𝜅 =

1
1 − ∑ 𝑝𝑝𝑖𝑖+𝑝𝑝+𝑖𝑖𝑖𝑖

. 

Furthermore, since 𝑀𝑀(𝜅𝜅) = 1, ratio (14) 

𝑀𝑀(𝜅𝜅) − 𝜆𝜆𝜅𝜅
𝜇𝜇𝜅𝜅

= 1 −� 𝑝𝑝𝑖𝑖+𝑝𝑝+𝑖𝑖
𝑖𝑖

+ �𝑝𝑝𝑖𝑖+𝑝𝑝+𝑖𝑖
𝑖𝑖

= 1. 

We can write Scott's pi (Example 5) as 𝜋𝜋 = 𝜆𝜆𝜋𝜋 + 𝜇𝜇𝜋𝜋𝑂𝑂 
where 

𝜆𝜆𝜋𝜋 =
−∑ 1

4(𝑝𝑝𝑖𝑖+ + 𝑝𝑝+𝑖𝑖)2
𝑖𝑖

1 − 1
4 ∑ (𝑝𝑝𝑖𝑖+ + 𝑝𝑝+𝑖𝑖)2

𝑖𝑖
 and  𝜇𝜇𝜋𝜋 =

1
1 − 1

4 ∑ (𝑝𝑝𝑖𝑖+ + 𝑝𝑝+𝑖𝑖)2
𝑖𝑖

. 

Furthermore, since 𝑀𝑀(𝜋𝜋) = 1, ratio (14) 

𝑀𝑀(𝜋𝜋) − 𝜆𝜆𝜋𝜋
𝜇𝜇𝜋𝜋

= 1. 

It then follows from Corollary 4, together with 
Example 11, that 𝑂𝑂,𝑆𝑆, 𝜅𝜅 and 𝜋𝜋 coincide after correction 
for chance. 

Lemma 5 shows that if two coefficients coincide after 
correction for chance, then the chance-corrected sum 
of the coefficients is identical to the individual chance-
corrected coefficients. Lemma 5 generalizes Theorem 1 
in Warrens (2008b). 

Lemma 5. Let 𝐴𝐴,𝐵𝐵 𝜖𝜖 𝐷𝐷with 𝑐𝑐(𝐴𝐴) = 𝑐𝑐(𝐵𝐵) . Then 𝑐𝑐(𝐴𝐴 +
𝐵𝐵) = 𝑐𝑐(𝐴𝐴) = 𝑐𝑐(𝐵𝐵). 

Proof: Since 𝐸𝐸 and𝑀𝑀 are linear operators, we have 

𝑐𝑐(𝐴𝐴 + 𝐵𝐵) =
𝐴𝐴 + 𝐵𝐵 − 𝐸𝐸(𝐴𝐴) − 𝐸𝐸(𝐵𝐵)

𝑀𝑀(𝐴𝐴) + 𝑀𝑀(𝐵𝐵) − 𝐸𝐸(𝐴𝐴) − 𝐸𝐸(𝐵𝐵)
. 

Furthermore, using (10), we have the identities 
𝐴𝐴 − 𝐸𝐸(𝐴𝐴) = [𝑀𝑀(𝐴𝐴) − 𝐸𝐸(𝐴𝐴)]𝑐𝑐(𝐴𝐴) 
𝐵𝐵 − 𝐸𝐸(𝐵𝐵) = [𝑀𝑀(𝐵𝐵) − 𝐸𝐸(𝐵𝐵)]𝑐𝑐(𝐵𝐵). 

Hence, 𝑐𝑐(𝐴𝐴 + 𝐵𝐵) is equal to 

 
[𝑀𝑀(𝐴𝐴) − 𝐸𝐸(𝐴𝐴)]𝑐𝑐(𝐴𝐴) + [𝑀𝑀(𝐵𝐵) − 𝐸𝐸(𝐵𝐵)]𝑐𝑐(𝐵𝐵)

𝑀𝑀(𝐴𝐴) − 𝐸𝐸(𝐴𝐴) + 𝑀𝑀(𝐵𝐵) − 𝐸𝐸(𝐵𝐵)
.    (15) 
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Since 𝑀𝑀(𝐴𝐴) is greater than 𝐸𝐸(𝐴𝐴), the quantity 𝑀𝑀(𝐴𝐴) −
𝐸𝐸(𝐴𝐴) is positive. Equation (15) shows that 𝑐𝑐(𝐴𝐴 + 𝐵𝐵) is a 
weighted average of 𝑐𝑐(𝐴𝐴) and 𝑐𝑐(𝐵𝐵) with positive 
weights 𝑀𝑀(𝐴𝐴) − 𝐸𝐸(𝐴𝐴) and 𝑀𝑀(𝐵𝐵) − 𝐸𝐸(𝐵𝐵) . Since 𝑐𝑐(𝐴𝐴) =
𝑐𝑐(𝐵𝐵), (15) can be written as 

𝑐𝑐(𝐴𝐴 + 𝐵𝐵) =
[𝑀𝑀(𝐴𝐴) − 𝐸𝐸(𝐴𝐴) + 𝑀𝑀(𝐵𝐵) − 𝐸𝐸(𝐵𝐵)]𝑐𝑐(𝐴𝐴)

𝑀𝑀(𝐴𝐴) − 𝐸𝐸(𝐴𝐴) + 𝑀𝑀(𝐵𝐵) − 𝐸𝐸(𝐵𝐵) = 𝑐𝑐(𝐴𝐴). 

■ 

The correction for chance function (10) defines a 
relation on 𝐷𝐷. Two coefficients 𝐴𝐴 and 𝐵𝐵 may be called 
equivalent with respect to 𝑐𝑐 , denoted by 𝐴𝐴~𝐵𝐵 , if 
𝑐𝑐(𝐴𝐴) = 𝑐𝑐(𝐵𝐵) . It can be verified that ~ defines an 
equivalence relation on 𝐷𝐷. For two coefficients 𝐴𝐴 and 𝐵𝐵 
we usually have 𝑐𝑐(𝐴𝐴 + 𝐵𝐵) ≠ 𝑐𝑐(𝐴𝐴) + 𝑐𝑐(𝐵𝐵) . Thus, in 
general, 𝑐𝑐 is not a linear map. 

Correction for Maximum Value 

For many association coefficients, the maximal 
attainable value is restricted by the marginal totals of 
the contingency table. For example, the phi coefficient 
(Example 1) can only be equal to 1 if 𝑝𝑝1+ = 𝑝𝑝+1 = 1/2. 
In the literature, it has been suggested to replace the 
phi coefficient by the ratio phi/phimax, where phimax 
is the maximum value of the phi coefficient given the 
marginal probabilities. A detailed review of the 
phi/phimax literature is presented in Davenport and 
El-Sanhurry (1991).  

It may be desirable that an association coefficient has 
maximum value unity regardless of the marginal 
distributions. An example of a coefficient with this 
property is coefficient 𝐻𝐻  (Examples 2 and 6). For 
association coefficients that do not possess this 
property, the following correction has been suggested 
(Warrens 2008b). Let 𝑚𝑚(𝐴𝐴) denote the maximum value 
of coefficient 𝐴𝐴  given the marginal totals. The 
correction for maximum value function is defined as 

𝑑𝑑:𝐷𝐷 → 𝐷𝐷,𝐴𝐴 ↦
𝐴𝐴

𝑚𝑚(𝐴𝐴), 

or simplied 

 𝑑𝑑(𝐴𝐴) =
𝐴𝐴

𝑚𝑚(𝐴𝐴).                                 (16) 

Note that we have the inequality 𝑚𝑚(𝐴𝐴) ≤ 𝑀𝑀(𝐴𝐴). 

Example 13. Suppose �𝑝𝑝𝑖𝑖𝑖𝑖 � is a cross-classification of 
two nominal variables with identical categories. The 
value of the diagonal element 𝑝𝑝𝑖𝑖𝑖𝑖  cannot exceed the 
minimum of 𝑝𝑝𝑖𝑖+ and 𝑝𝑝+𝑖𝑖 . The maximum value of the 
overall agreement 𝑂𝑂 (Example 3) is thus restricted by 
the marginal totals. Its maximum value given the 
marginal totals is 

 𝑚𝑚(𝑂𝑂) = �𝑚𝑚𝑖𝑖𝑖𝑖{𝑝𝑝𝑖𝑖+,𝑝𝑝𝑖𝑖+}
𝑖𝑖

.                               (17) 

Using 𝑂𝑂  and 𝑚𝑚(𝑂𝑂)  in the correction for maximum 
value function (16) we obtain 

𝑑𝑑(𝑂𝑂) =
∑ 𝑝𝑝𝑖𝑖𝑖𝑖𝑖𝑖

∑ 𝑚𝑚𝑖𝑖𝑖𝑖{𝑝𝑝𝑖𝑖+,𝑝𝑝𝑖𝑖+}𝑖𝑖
. 

Example 14. Using (17) the maximum value of Cohen's 
kappa given the marginal totals is 

𝑚𝑚(𝜅𝜅) =
∑ (𝑚𝑚𝑖𝑖𝑖𝑖{𝑝𝑝𝑖𝑖+,𝑝𝑝𝑖𝑖+} − 𝑝𝑝𝑖𝑖+𝑝𝑝+𝑖𝑖)𝑖𝑖

1 − ∑ 𝑝𝑝𝑖𝑖+𝑝𝑝+𝑖𝑖𝑖𝑖
. 

Using 𝜅𝜅  and 𝑚𝑚(𝜅𝜅)  in the correction for maximum 
value function (16), we obtain coefficient 𝐻𝐻 in (7). 

In the remainder of this section, the function 𝑑𝑑 in the 
context of the general coefficient space is studied. The 
following lemmas provide some specific conditions for 
two coefficients to coincide after correction for 
maximum value. 

Let 𝐴𝐴  be a coefficient, 𝜆𝜆  a function of the marginal 
totals, and let 𝐵𝐵 = 𝜆𝜆𝐴𝐴 . Lemma 6 shows that 𝐴𝐴  and 
𝐵𝐵 coincide after correction for maximum value. 

Lemma 6. Let 𝐴𝐴 𝜖𝜖 𝐷𝐷  and 𝐵𝐵 = 𝜆𝜆𝐴𝐴 , where 𝜆𝜆 ≠ 0 is a 
function of the marginal totals. Then 𝑑𝑑(𝐴𝐴) = 𝑑𝑑(𝐵𝐵). 

Proof: The formula for 𝑑𝑑(𝐴𝐴) is presented in equation 
(16). To determine 𝑚𝑚(𝐵𝐵)it may be assumed that the 
marginal totals are given. We have 𝑚𝑚(𝐵𝐵) = 𝑚𝑚(𝜆𝜆𝐴𝐴) =
𝜆𝜆𝑚𝑚(𝐴𝐴). Hence, 

𝑑𝑑(𝐵𝐵) =
𝜆𝜆𝐴𝐴

𝜆𝜆𝑚𝑚(𝐴𝐴)
= 𝑑𝑑(𝐴𝐴). 

■ 

Lemma 7 shows that if two coefficients coincide after 
correction for maximum value, then the corrected sum 
of the coefficients is identical to the individual 
corrected coefficients. 

Lemma 7. Let 𝐴𝐴,𝐵𝐵 𝜖𝜖 𝐷𝐷 with 𝑑𝑑(𝐴𝐴) = 𝑑𝑑(𝐵𝐵). Then  
𝑑𝑑(𝐴𝐴 + 𝐵𝐵) = 𝑑𝑑(𝐴𝐴) = 𝑑𝑑(𝐵𝐵). 

Proof: Since 𝑚𝑚 is a linear operator we have 

𝑑𝑑(𝐴𝐴 + 𝐵𝐵) =
𝐴𝐴 + 𝐵𝐵

𝑚𝑚(𝐴𝐴) + 𝑚𝑚(𝐵𝐵). 

Furthermore, using (16), we have the identities𝐴𝐴 =
𝑚𝑚(𝐴𝐴)𝑑𝑑(𝐴𝐴) and 𝐵𝐵 = 𝑚𝑚(𝐵𝐵)𝑑𝑑(𝐵𝐵). Hence,  

 𝑑𝑑(𝐴𝐴 + 𝐵𝐵) =
𝑚𝑚(𝐴𝐴)𝑑𝑑(𝐴𝐴) + 𝑚𝑚(𝐵𝐵)𝑑𝑑(𝐵𝐵)

𝑚𝑚(𝐴𝐴) + 𝑚𝑚(𝐵𝐵) .               (18) 

The right-hand side of (18) shows that 𝑑𝑑(𝐴𝐴 + 𝐵𝐵) is a 
weighted average of 𝑑𝑑(𝐴𝐴)  and 𝑑𝑑(𝐵𝐵)  with positive 
weights 𝑚𝑚(𝐴𝐴) and 𝑚𝑚(𝐵𝐵). Since 𝑑𝑑(𝐴𝐴) = 𝑑𝑑(𝐵𝐵), (18) can 
be written as 

𝑑𝑑(𝐴𝐴 + 𝐵𝐵) =
[𝑚𝑚(𝐴𝐴) + 𝑚𝑚(𝐵𝐵)]𝑑𝑑(𝐴𝐴)

𝑚𝑚(𝐴𝐴) + 𝑚𝑚(𝐵𝐵) = 𝑑𝑑(𝐴𝐴). 

■ 

The correction for maximum value function (16) 
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defines a relation on 𝐷𝐷. Two coefficients 𝐴𝐴 and 𝐵𝐵 may 
be called equivalent with respect to 𝑑𝑑 if 𝑑𝑑(𝐴𝐴) = 𝑑𝑑(𝐵𝐵). It 
can be verified that this defines an equivalence 
relation on 𝐷𝐷. 

Commutative Functions 

In this section, the composition of the correction for 
chance function (10) and the correction for maximum 
value function (16) are studied. If a coefficient is first 
corrected for maximum value and then corrected for 
chance, the composition 𝑐𝑐 ∘ 𝑑𝑑 = 𝑐𝑐𝑑𝑑  is taken into 
consideration. If we first correct for chance and then 
for maximum value, we have the composition 
𝑑𝑑 ∘ 𝑐𝑐 = 𝑑𝑑𝑐𝑐 . Theorem 8 shows that the two 
compositions are equivalent. In other words, the 
functions 𝑐𝑐 and 𝑑𝑑 commute. 

Theorem 8. 𝑐𝑐𝑑𝑑 = 𝑑𝑑𝑐𝑐. 

Proof: Let 𝐴𝐴 𝜖𝜖 𝐷𝐷. 𝐸𝐸(𝐴𝐴) and 𝑚𝑚(𝐴𝐴) are determined. Both 
quantities require that the marginal totals are given. 
Hence, let the marginal totals be fixed. We first 
determine the expression of (𝑑𝑑 ∘ 𝑐𝑐)(𝐴𝐴) = 𝑑𝑑𝑐𝑐(𝐴𝐴) . The 
formula for 𝑐𝑐(𝐴𝐴)  is given in (10). Since 𝐸𝐸(𝐴𝐴)  is a 
function of the marginal totals, and since the marginal 
totals are fixed, 𝐸𝐸(𝐴𝐴) is fixed. Furthermore, 𝑀𝑀(𝐴𝐴) is a 
real constant. Hence, 

 𝑚𝑚(𝑐𝑐(𝐴𝐴)) =
𝑚𝑚(𝐴𝐴) − 𝐸𝐸(𝐴𝐴)
𝑀𝑀(𝐴𝐴) − 𝐸𝐸(𝐴𝐴)

.                            (19) 

Dividing (10) by (19) we obtain 

 𝑑𝑑�𝑐𝑐(𝐴𝐴)� =
𝑐𝑐(𝐴𝐴)

𝑚𝑚(𝑐𝑐(𝐴𝐴))
=

𝐴𝐴 − 𝐸𝐸(𝐴𝐴)
𝑚𝑚(𝐴𝐴) − 𝐸𝐸(𝐴𝐴)

.                  (20) 

Next, we determine an expression for (𝑐𝑐 ∘ 𝑑𝑑)(𝐴𝐴) =
𝑐𝑐𝑑𝑑(𝐴𝐴). Since 𝑚𝑚(𝐴𝐴) is fixed with fixed marginals, we 
have 

 𝐸𝐸(𝑑𝑑(𝐴𝐴)) =
𝐸𝐸(𝐴𝐴)
𝑚𝑚(𝐴𝐴)

.                                    (21) 

Furthermore, by definition of (16) we have 

 𝑀𝑀�𝑑𝑑(𝐴𝐴)� = 𝑀𝑀�
𝐴𝐴

𝑚𝑚(𝐴𝐴)� = 1.                      (22) 

Using (21) and (22) in (10), and multiplying all terms 
of the result by 𝑚𝑚(𝐴𝐴), we obtain 

 𝑐𝑐�𝑑𝑑(𝐴𝐴)� =
𝐴𝐴 − 𝐸𝐸(𝐴𝐴)

𝑚𝑚(𝐴𝐴) − 𝐸𝐸(𝐴𝐴)
.                        (23) 

Since the right-hand sides of (20) and (23) are identical, 
we have 𝑑𝑑�𝑐𝑐(𝐴𝐴)� = 𝑐𝑐�𝑑𝑑(𝐴𝐴)�.■ 

Theorem 8 shows that after correction for chance and 
maximum value coefficient 𝐴𝐴  has a form (20)=(23), 
regardless of the order in which the corrections are 
applied. It turns out that formula (20)=(23) has another 
interesting property. Theorem 9 shows that any linear 

transformation 𝜆𝜆 + 𝜇𝜇𝐴𝐴 of a coefficient 𝐴𝐴, where 𝜆𝜆 and 𝜇𝜇 
are functions of the marginal totals, coincide with 𝐴𝐴 
after correction for both chance and maximum value. 
In other words, the function 𝑐𝑐𝑑𝑑 maps a coefficient 𝐴𝐴 
and all its linear transformations to the same 
coefficient. Theorem 9 generalizes the main result in 
Warrens (2008c). 

Theorem 9. Let 𝐴𝐴 𝜖𝜖 𝐷𝐷 and let 𝐵𝐵 = 𝜆𝜆 + 𝜇𝜇𝐴𝐴, where 𝜆𝜆 and 
𝜇𝜇 ≠ 0  are functions of the marginal totals. Then 
𝑐𝑐𝑑𝑑(𝐴𝐴) = 𝑐𝑐𝑑𝑑(𝐵𝐵). 

Proof: Since both 𝐸𝐸(𝐵𝐵)  and 𝑚𝑚(𝐵𝐵) need to be 
determined, it may be assumed that the marginal 
totals are fixed. Then 𝐸𝐸(𝐵𝐵) = 𝜆𝜆 + 𝜇𝜇𝐸𝐸(𝐴𝐴)  and 𝑚𝑚(𝐵𝐵) =
𝜆𝜆 + 𝜇𝜇𝑚𝑚(𝐴𝐴) and it follows that 

𝑐𝑐𝑑𝑑(𝐵𝐵) =
𝜆𝜆 + 𝜇𝜇𝐴𝐴 − 𝜆𝜆 − 𝜇𝜇𝐸𝐸(𝐴𝐴)

𝜆𝜆 + 𝜇𝜇𝑚𝑚(𝐴𝐴) − 𝜆𝜆 − 𝜇𝜇𝐸𝐸(𝐴𝐴)
= 𝑐𝑐𝑑𝑑(𝐴𝐴). 

■ 

Example 15. For the overall agreement 𝑂𝑂 (Example 3) 
the quantity 𝑚𝑚(𝑂𝑂)  is given in (17). It follows from 
Theorem 9 that any linear transformation 𝜆𝜆 + 𝜇𝜇𝑂𝑂 of 𝑂𝑂, 
where 𝜆𝜆 and 𝜇𝜇 ≠ 0 are functions of the marginal totals, 
becomes 

 
𝑂𝑂 − 𝐸𝐸(𝑂𝑂)

∑ 𝑚𝑚𝑖𝑖𝑖𝑖{𝑝𝑝𝑖𝑖+,𝑝𝑝𝑖𝑖+}𝑖𝑖 − 𝐸𝐸(𝑂𝑂)
,                       (24) 

after correction for chance and maximum value. Using 
𝐸𝐸(𝑂𝑂) in (11) in (24) we obtain coefficient 𝐻𝐻 (Example 6). 

An Idempotent Commutative Monoid 

Theorem 8 from the previous section shows that the 
functions 𝑐𝑐  and 𝑑𝑑  commute under composition. The 
identity function on 𝐷𝐷 is given by 1:𝐷𝐷 → 𝐷𝐷,𝐴𝐴 ↦ 𝐴𝐴. The 
functions 𝑐𝑐, 𝑑𝑑 and 𝑐𝑐𝑑𝑑 also commute with the identity. 
In this section, we investigate the algebraic structure of 
the set {1, 𝑐𝑐,𝑑𝑑, 𝑐𝑐𝑑𝑑} under composition. Lemmas 10, 11 
and 12 show that the functions 𝑐𝑐 , 𝑑𝑑  and 𝑐𝑐𝑑𝑑 are 
idempotent. 

Lemma 10. 𝑐𝑐2 = 𝑐𝑐 

Proof: Since 𝑀𝑀(𝐴𝐴)  is a real number and 𝐸𝐸(𝐴𝐴)  a 
function of the marginal totals, we have 

𝐸𝐸(𝑐𝑐(𝐴𝐴)) =
𝐸𝐸(𝐴𝐴) − 𝐸𝐸(𝐴𝐴)
𝑀𝑀(𝐴𝐴) − 𝐸𝐸(𝐴𝐴)

= 0. 

By definition of (10) it is held that 𝑀𝑀(𝑐𝑐(𝐴𝐴)) = 1. Hence, 
we have 

𝑐𝑐(𝑐𝑐(𝐴𝐴)) =
𝑐𝑐(𝐴𝐴) − 0

1 − 0
= 𝑐𝑐(𝐴𝐴). 

■ 

Lemma 11. 𝑑𝑑2 = 𝑑𝑑 

Proof: Since 𝑚𝑚�𝑑𝑑(𝐴𝐴)� = 1 by definition of (16), we 
have 
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𝑑𝑑(𝑑𝑑(𝐴𝐴)) =
𝐴𝐴

𝑚𝑚(𝐴𝐴) = 𝑑𝑑(𝐴𝐴). 

■ 

Lemma 12. (𝑐𝑐𝑑𝑑)2 = 𝑐𝑐𝑑𝑑 

Proof: Since 𝑐𝑐𝑑𝑑 = 𝑑𝑑𝑐𝑐  (Theorem 8), 𝑐𝑐2 = 𝑐𝑐  and 𝑑𝑑2 = 𝑑𝑑 , 
we have 𝑐𝑐𝑑𝑑𝑐𝑐𝑑𝑑 = 𝑐𝑐2𝑑𝑑2 = 𝑐𝑐𝑑𝑑. ■ 

Using Theorem 8 and Lemmas 10, 11 and 12, we can 
construct the multiplication table of the set {1, 𝑐𝑐,𝑑𝑑, 𝑐𝑐𝑑𝑑}. 

Corollary 13. The multiplication table of {1, 𝑐𝑐,𝑑𝑑, 𝑐𝑐𝑑𝑑} is 
given by 

 1 𝑐𝑐 𝑑𝑑 𝑐𝑐𝑑𝑑 
1 1 𝑐𝑐 𝑑𝑑 𝑐𝑐𝑑𝑑 
𝑐𝑐 𝑐𝑐 𝑐𝑐 𝑐𝑐𝑑𝑑 𝑐𝑐𝑑𝑑 
𝑑𝑑 𝑑𝑑 𝑐𝑐𝑑𝑑 𝑑𝑑 𝑐𝑐𝑑𝑑 
𝑐𝑐𝑑𝑑 𝑐𝑐𝑑𝑑 𝑐𝑐𝑑𝑑 𝑐𝑐𝑑𝑑 𝑐𝑐𝑑𝑑 

It follows from the above multiplication table that the 
set {1, 𝑐𝑐,𝑑𝑑, 𝑐𝑐𝑑𝑑} is closed under multiplication 
(composition), is associative, and has an identity 
element. Hence, the set is a monoid. Since all elements 
commute and are idempotent, the set is a idempotent 
commutative monoid. In other words, {1, 𝑐𝑐,𝑑𝑑, 𝑐𝑐𝑑𝑑} is a 
bounded semilattice. Note that the function 𝑐𝑐𝑑𝑑 acts as 
an absorbing element or zero element. Let 𝑅𝑅 = ℤ\2ℤ be 
the ring of integers modulo 2. The set {1, 𝑐𝑐,𝑑𝑑, 𝑐𝑐𝑑𝑑} is 
isomorphic to 𝑅𝑅2 with multiplication component wise, 
where1 ↦ (1,1), 𝑐𝑐 ↦ (1,0), 𝑑𝑑 ↦ (0,1) and 𝑐𝑐𝑑𝑑 ↦ (0,0). 

Conclusions 

In this paper, we have studied correction for chance 
and correction for maximum value as functions on a 
space of association coefficients. Various properties of 
both functions were presented. It was shown that the 
two functions commute under composition. Thus, if 
we want to correct a coefficient for chance and for 
maximum value, the result does not depend on the 
order in which the corrections are applied; and that if 
we correct for both chance and maximum value then a 
coefficient and all its linear transformations given the 
marginal totals are mapped to the same coefficient. In 
other words, if all linear transformations given the 
marginal totals of a particular coefficient that has zero 
value under independence are considered, then there 
is precisely one linear transformation that has 
maximum unity regardless of the marginal totals and 
zero value under independence. Finally, it was shown 
that the correction for chance function and the 
correction for maximum value function, together with 
the identity function and their composition, form a 
commutative idempotent monoid. 
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