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SECOND VARIATION OF ZHANG’S λ-INVARIANT ON THE

MODULI SPACE OF CURVES

ROBIN DE JONG

Abstract. We compute the second variation of the λ-invariant, recently in-
troduced by S. Zhang, on the complex moduli space Mg of curves of genus
g ≥ 2, using work of N. Kawazumi. As a result we prove that (8g + 4)λ
is equal, up to a constant, to the β-invariant introduced some time ago by
R. Hain and D. Reed. We deduce some consequences; for example we calcu-
late the λ-invariant for each hyperelliptic curve, expressing it in terms of the
Petersson norm of the discriminant modular form.

1. Introduction

Recently, independently S. Zhang [27] and N. Kawazumi [16] introduced a new
interesting real-valued function ϕ on the moduli space Mg of complex curves of
genus g ≥ 2. Its value at a curve [X ] ∈ Mg is given as follows. Let H0(X,ωX)
be the space of holomorphic differentials on X , equipped with the hermitian inner
product

(1.1) (α, β) 7→
i

2

∫

X

α ∧ β .

Choose an orthonormal basis (η1, . . . , ηg) of H
0(X,ωX), and put:

µX =
i

2g

g
∑

k=1

ηk ∧ ηk .

Note that µX is a volume form on X , independent of the chosen basis; in fact, µX

can be identified with the pullback, along any Abel-Jacobi map, of a translation
invariant (1, 1)-form on the jacobian of X . Let ∆Ar be the Laplacian on L2(X,µX)
determined by setting

∂∂

πi
f = ∆Ar(f) · µX ,

and let (φℓ)
∞
ℓ=0 be an orthonormal basis of real eigenfunctions of ∆Ar, with eigen-

values 0 = λ0 < λ1 ≤ λ2 ≤ . . ..

Definition 1.1. (S. Zhang, N. Kawazumi) We define the ϕ-invariant ϕ(X) of X
to be the real number

ϕ(X) =
∑

ℓ>0

2

λℓ

g
∑

m,n=1

∣

∣

∣

∣

∫

X

φℓ · ηm ∧ ηn

∣

∣

∣

∣

2

.
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2 ROBIN DE JONG

It is not difficult to check that ϕ(X) is indeed an invariant of X .
One important reason for studying ϕ is its significance in number theory, discov-

ered by Zhang. Briefly, with it it can be shown that the Bogomolov conjecture (for
curves over number fields) follows naturally from a standard conjecture of Hodge
index type of Gillet-Soulé (we briefly recall this relationship in Section 2 below).
In order to see this implication, one uses that the ϕ-invariant is strictly positive.
Indeed, the ϕ-invariant can only vanish if each ηm ∧ ηn is perpendicular to all φℓ.
This would imply that each ηm ∧ ηn is proportional to µX , but that is not the case
under our assumption that g ≥ 2 (cf. [27], Remark after Proposition 2.5.3).

In view of its ramifications in number theory, it is of interest to try to study fur-
ther properties of ϕ in detail. A first important step is in the work [16] of Kawazumi.
The main theorem in [16] furnishes an expression for the second variation of ϕ on
Mg, connecting ϕ with certain canonical 2-forms over the universal curve Cg over
Mg associated (following work of S. Morita) to the standard representation H of
Sp2g(Z), its third exterior power ∧3H , and the ‘primitive part’ ∧3H/H of the lat-

ter. Here H is seen as a subrepresentation of ∧3H by wedging with the standard
polarization form in ∧2H .

In this paper we will use Kawazumi’s result to establish some new properties of
ϕ. More precisely: we determine its behavior in a neighbourhood of the bound-
ary of Mg in the Deligne-Mumford compactification Mg, and we calculate ϕ for
hyperelliptic curves.

In order to establish these results, it turns out to be convenient to consider the
following variant of ϕ, also introduced in [27].

Definition 1.2. (Zhang) Let δF on Mg be Faltings’s delta-invariant from [4], and
put δ = δF − 4g log(2π). We define the λ-invariant to be the real-valued function

(1.2) λ =
g − 1

6(2g + 1)
ϕ+

1

12
δ

on Mg.

Our main result in this paper is that (8g + 4)λ can be directly related to the
function β on Mg, introduced by R. Hain and D. Reed around ten years ago [9].
This β-invariant is defined as follows. Let J (∧3H/H) be the Griffiths intermediate

jacobian fibration over Mg associated to ∧3H/H , and let B̂ be the pullback, along
the graph of the canonical polarization, of the standard Gm-biextension line bundle
on J (∧3H/H)× ˇJ (∧3H/H). The holomorphic line bundle B̂ comes with a natural
hermitian metric ‖ · ‖

B̂
. Let ν : Mg → J (∧3H/H) be the normal function that

maps each curve X to the point in the intermediate jacobian of ∧3H1(X)/H1(X)
associated, by the Griffiths Abel-Jacobi map, to the Ceresa cycle X − X− in the
jacobian of X .

By a result of Morita one has ν∗B̂ ∼= L⊗8g+4, where L = detRπ∗ω is the deter-
minant of the Hodge bundle on Mg. The isomorphism is unique up to a non-zero
scalar, as the only invertible holomorphic functions on Mg are scalars. Denote
by ‖ · ‖biext a metric on L⊗8g+4 that one obtains by pulling back ‖ · ‖

B̂
along ν,

and transporting it to L⊗8g+4 using a Morita isomorphism. Denote by ‖ · ‖Hdg the
metric on L⊗8g+4 induced by the Hodge metric (1.1) on L.

The Hain-Reed β-invariant [9] is given by the ratio of these two metrics.
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Definition 1.3. (R. Hain, D. Reed) We define the β-invariant on Mg to be the
real-valued function

β = log

(

‖ · ‖biext
‖ · ‖Hdg

)

.

Note that the β-invariant is only defined up to an additive constant on Mg.
Our main result is

Theorem 1.4. The equality (8g + 4)λ = β holds, up to a constant depending only
on g.

The proof essentially boils down to a comparison of the second variations on Mg

of left and right hand side. Let ωHR be the first Chern form of (L, ‖ · ‖
1/(8g+4)
biext ) and

let ωHdg be that of (L, ‖ · ‖
1/(8g+4)
Hdg ). Then the differential equation

∂∂

πi
β = (8g + 4)(ωHR − ωHdg)

holds on Mg. With this, Theorem 1.4 will follow from

Theorem 1.5. The second variation of Zhang’s λ-invariant over Mg satisfies

∂∂

πi
λ = ωHR − ωHdg .

Our proof of Theorem 1.5 will be based on Kawazumi’s calculation of the sec-
ond variation of ϕ referred to above. Thus, by equation (1.2), our contribution is
essentially to find a convenient expression for the second variation of the Faltings
delta-invariant over Mg.

Theorem 1.4 allows us to determine the asymptotic behavior of ϕ along the
boundary components of the Deligne-Mumford compactification Mg. This now
follows immediately from earlier results: in [9] the asymptotic behavior of β is
computed, and for the Faltings delta-invariant δF , this was done by J. Jorgenson
[14] and R. Wentworth [22], independently. Combining these results using equation
(1.2) we obtain

Corollary 1.6. Let X → D be a proper family of stable curves of genus g ≥ 2 over
the unit disk. Assume that X is smooth and that Xt is smooth for t 6= 0.

• If X0 is irreducible with only one node, then

ϕ(Xt) ∼ −
g − 1

6g
log |t|

as t→ 0.
• If X0 is reducible with one node and its components have genera i and g− i
then

ϕ(Xt) ∼ −
2i(g − i)

g
log |t|

as t→ 0.

Here, if f, g are two functions on the punctured unit disk, the notation f ∼ g
denotes that f − g is bounded as t → 0. The corollary implies that ϕ is a ‘Weil
function’ on Mg (see [14], Section 6 for a discussion). It would be very interesting
to know whether ϕ is also a Morse function on Mg, and if so, whether its behavior
at its critical points can be effectively analyzed.
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Our next result concerns the calculation of the λ- and ϕ-invariant of a hyperel-
liptic curve. Over the hyperelliptic locus in genus g ≥ 2 one can make the metric
‖ · ‖Hdg fairly explicit, using the discriminant modular form ∆g (see Section 6 for
details). The metric ‖ · ‖HR turns out to be constant over the hyperelliptic locus.
Putting these facts together one is led to the following theorem.

Theorem 1.7. Let ‖∆g‖ be the Petersson norm of ∆g and let n =
(

2g
g+1

)

. Then

on the hyperelliptic locus in genus g, the λ-invariant is given, up to a constant
depending only on g, by

(8g + 4)nλ = −(8g + 4)ng log(2π)− g log ‖∆g‖ .

By using a recent result due to K. Yamaki [24] we will prove that the constant
implied by the theorem actually vanishes.

Corollary 1.8. On the hyperelliptic locus in genus g, the ϕ-invariant is given by

(2g − 2)nϕ = −8(2g + 1)ng log(2π)− 3g log ‖∆g‖ − (2g + 1)n δF ,

where δF is Faltings’s delta-invariant.

The result of Yamaki and the above corollary together confirm a conjecture about
the value of ϕ for hyperelliptic curves put forward in [13].

2. Number theoretic context

Before we start, we would like to explain briefly the role played by ϕ in number
theory. We refer to [27] for a more detailed exposition and proofs. This section can
be read independently of the others.

Let k be a number field, and let X be a smooth, projective and geometrically
connected curve of genus g ≥ 2 with semistable reduction over k. Then the function
ϕ gives rise to real invariants associated to each archimedean place v of k, by
considering the base change of X along v. As is explained in [27], one also has a ϕ-
invariant associated to each non-archimedean place of k. In this case, the definition
of ϕ is in terms of the combinatorics of the semistable reduction graph of X at v.
This ‘finite’ ϕ-invariant vanishes at places v of good reduction.

Now let ξ be a k-rational point of Pic1X such that (2g − 2)ξ is the class of
a canonical divisor on X . Let ∆ξ in CH2(X3) be the modified diagonal cycle in
X3 associated to ξ as defined by B. Gross and C. Schoen in [5]. We call ∆ξ a
canonical Gross-Schoen cycle on X3. It turns out that the invariant ϕ occurs as
a local contribution in a formula relating the self-intersection 〈∆ξ,∆ξ〉 (defined in
[5]) of ∆ξ to the admissible self-intersection of the relative dualizing sheaf (ω, ω)a
(defined in [25]) of X . More precisely, we have that the formula

(2.1) (ω, ω)a =
2g − 2

2g + 1

(

〈∆ξ,∆ξ〉+
∑

v

ϕ(Xv) logNv

)

holds. Here the sum is taken over all places v of k. The Nv are certain canonical
local factors, and we have written Xv for X ⊗ kv. This formula is in fact the main
result of [27].

The significance of formula (2.1) is that it sheds a new light on the strict posi-
tivity of (ω, ω)a (ex-Bogomolov conjecture, proved in the nineties by E. Ullmo [21]
and Zhang [26]). First of all, the self-intersection of the canonical Gross-Schoen
cycle 〈∆ξ,∆ξ〉 should be non-negative by a standard conjecture (of Hodge index
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type) of Gillet-Soulé (cf. [27], Section 2.4). Next, if v is non-archimedean, the
invariant ϕ(Xv) is non-negative. This follows from a result of Z. Cinkir [2]. Fi-
nally, for archimedean places v, the value ϕ(Xv) is positive, as explained in the
Introduction. These remarks together show that Gillet-Soulé’s standard conjecture
naturally implies the strict positivity of (ω, ω)a, via equation (2.1).

Actually, Cinkir in [2], Theorem 2.11 proves the following conjecture of Zhang
from [27]: for the non-archimedean ϕ-invariant there exists a lower bound

(2.2) ϕ(Xv) ≥ c(g) δ0 +

[g/2]
∑

i=1

2i(g − i)

g
δi

where for each i = 0, . . . , [g/2] the invariant δi denotes the number of singular
points in the special fiber of Xv such that the local normalization of that fiber at x
is connected if i = 0 or a disjoint union of two curves of genera i and g − i if i > 0,
and where c(g) is a positive constant depending only on g. In fact, one can take
c(g) = g−1

6g if the reduction graph at v is ‘elementary’ in the sense that every edge is

included in at most one cycle (the latter fact was already proved by Zhang in [27]).
From (2.2) it is then clear that in particular the number ϕ(Xv) is non-negative.
Note that one might view our Corollary 1.6 as an archimedean analogue of Cinkir’s
result; the asymptotics moreover have similar shapes.

To finish this section we remark that by [27], Section 1.4 there exists a natural
non-archimedean analogue of the λ-invariant as well. By an application of the
Noether formula for semistable arithmetic surfaces [4] [18], equation (2.1) translates
into the formula

(2.3) deg detRπ∗ω =
g − 1

6(2g + 1)
〈∆ξ,∆ξ〉+

∑

v

λ(Xv) logNv .

It follows that the local λ-invariants serve to connect the self-intersection of the
Gross-Schoen cycle with the (non-normalized) stable Faltings height deg detRπ∗ω
of X over k (cf. [27], equation (1.4.2)).

3. Preliminaries

In this section we review some notions and results from the papers [8] and [9] by
Hain and Reed. We follow these sources quite closely, the most important difference
being that we will usually work on the level of differential forms rather than on the
level of cohomology classes.

As is customary, we view the moduli spaces Ag and Mg of principally polarized
complex abelian varieties and of smooth projective complex curves, respectively, as
orbifolds. Let (VZ, Q : ∧2VZ → Z(−n)) be a polarized integral Hodge structure of
odd weight n = −2i+1 and let GSp2g → GSp(VZ, Q) be an algebraic representation,
together with a lift of the structure morphism S → GSp(VR, Q), where S is the
Deligne torus, to GSp2g,R. Let (VZ,Q) be the corresponding variation of polarized
Hodge structures over Ag. We denote by J (VZ) the Griffiths intermediate jacobian
fibration over Ag associated to VZ. Thus, if VA is the fiber of the local system
VZ at the point A of Ag, the fiber of J (VZ) at A is the complex torus J(VA) =
(VA ⊗ C)/(F−i+1(VA ⊗ C) + ImVA). The holomorphic tangent bundle of J(VA) is
equipped with a canonical hermitian inner product derived from Q. This hermitian
inner product determines a translation-invariant global 2-form on J(VA).
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Proposition 3.1. There exists a unique 2-form wV on J (VZ) such that the re-
striction of w to each fiber over Ag is the translation-invariant form associated to
Q, and such that the restriction of w along the zero-section is trivial.

Proof. This is in [9], Section 5. �

We also mention the following result. Suppose that VZ has weight −1. From [6],
Section 3 we recall that the (standard Gm-) biextension line bundle B associated
to VZ is the set of isomorphism classes of mixed Hodge structures whose weight
graded quotients are isomorphic to Z, VZ and Z(1). It has a natural projection to

the product J(VZ)× ˇJ(VZ) where J(VZ) = ExtH(Z, VZ) is the Griffiths intermediate
jacobian of VZ, given by M 7→ (M/W−2M,W−1M). This projection equips B with

the structure of a line bundle over J(VZ)× ˇJ(VZ). The polarization of VZ furnishes

a canonical morphism λ : J(VZ) → ˇJ(VZ). By pulling back along (id, λ) one obtains

from B a line bundle B̂ over J(VZ). By abuse of language we refer to B̂ as the
biextension line bundle over J(VZ). Proposition 7.3 of [9] then states the following.

Proposition 3.2. Suppose that VZ is a variation of polarized Hodge structures of
weight −1 over Ag. Let B̂ be the biextension line bundle over J (VZ), obtained

by applying the above construction to each of the fibers of J (VZ). Then B̂ has a

canonical hermitian metric. The first Chern form of B̂ with this metric is equal to
2wV .

We will be mainly concerned with the cases where VZ is equal to either H , ∧3H
or ∧3H/H , where H = H1(X,Z) is the first homology group of a compact Riemann
surface X of genus g ≥ 2. The polarization is given by the standard intersection
form QH = (, ) on H . Note that the form QH identifies H with its dual. The
Hodge structure H is mapped into ∧3H by sending x to x ∧ ζ, where ζ in ∧2H is
the dual of QH .

The polarizations on the Hodge structures ∧3H and ∧3H/H are given explicitly
as follows (cf. [9], p. 204). The form Q∧3H on ∧3H sends

(x1 ∧ x2 ∧ x3, y1 ∧ y2 ∧ y3) 7→ det(xi, yj) .

Next, one has a contraction map c : ∧3H → H , defined by

(3.1) x ∧ y ∧ z 7→ (x, y)z + (y, z)x+ (z, x)y .

One may verify that the composite H → ∧3H → H induced by c and ∧ζ is equal
to (g − 1) times the identity. Denote the projection ∧3H → ∧3H/H by p. The
projection p has a canonical splitting j (after tensoring with Q), defined by

p(x ∧ y ∧ z) 7→ x ∧ y ∧ z − ζ ∧ c(x ∧ y ∧ z)/(g − 1) .

With these definitions, the form Q∧3H/H on ∧3H/H is given by

(u, v) 7→ (g − 1)Q∧3H(j(u), j(v)) .

We denote by wH , w∧3H and w∧3H/H the 2-forms on the Griffiths intermediate

jacobian fibrations J (H), J (∧3H) and J (∧3H/H) over Ag whose existence is
asserted by Proposition 3.1. Note that J (H) is just the universal abelian variety
over Ag.

Proposition 3.3. On J (∧3H), the equality of 2-forms

(g − 1)w∧3H = c∗wH + p∗w∧3H/H
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holds.

Proof. According to [8], Proposition 18 we have (g− 1)Q∧3H = c∗QH +p∗Q∧3H/H .
We obtain the result by taking the associated canonical 2-forms. �

Let π : Cg → Mg be the universal curve over Mg, viewed as an orbifold. As is
explained in [8], Introduction we have a commutative diagram

J (H)

Cg

π

��

κ

99sssssssssss µ //

ν

%%KKKKK
KKKK

KK J (∧3H)

c

OO

p

��

��

J (∧3H/H)

��
Mg // Ag .

Here κ is the map sending a pair (X, x) where X is a curve and x is a point on
X to the class of (2g − 2)x − ωX in the jacobian J of X . The map µ is called
the ‘pointed harmonic volume’ (introduced by B. Harris, cf. [10]) and sends a pair
(X, x) to the point associated, by the Griffiths Abel-Jacobi map, to the Ceresa
cycle at x, i.e. the (homologically trivial) cycle in J given as Xx −X−

x where Xx

is the curve X embedded in J using x and X−
x = [−1]∗Xx. The map ν is called

the ‘harmonic volume’ and is just defined as the composite of µ with the map
p : J (∧3H) → J (∧3H/H) induced by the projection ∧3H → ∧3H/H . The map ν
factors over Mg, hence defines a Griffiths normal function Mg → J (∧3H/H) that
we shall also denote by ν.

It will be useful to pass from Mg, Cg and J (H) to the level-2 moduli orbifolds
Mg[2], Cg[2] and J (H)[2]; see for example [7], Section 7.4 for precise definitions.
The orbifold Mg[2] can be endowed with a universal theta characteristic α, i.e. a

consistent choice of an element α ∈ Picg−1X for each curve X such that 2α is the
canonical divisor class. We consider the map

jα : Cg[2] −→ J (H)[2]

given by sending (X, x) to the class of (g − 1)x − α on the jacobian J of X . Note
that κ = 2jα.

Let eJ be the 2-form

(3.2) eJ = −
1

2g(2g + 1)
(2 κ∗wH + 3µ∗w∧3H)

over Cg. By a result of Morita [19] (see also [8], Theorem 6) this 2-form represents

the class of ω−1
Cg/Mg

in H2(Cg,Q), where ωCg/Mg
is the relative dualizing sheaf of

Cg over Mg. Recall from the Introduction that we have a 2-form ωHR on Mg by

taking the pullback, along ν, of the first Chern form of (B̂, ‖ · ‖
B̂
), and dividing by

8g + 4.

Proposition 3.4. Over Cg[2], we have an equality

j∗αwH = −
g(g − 1)

2
eJ −

3

2
ωHR
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of 2-forms.

Proof. Upon replacing H1(X,Z) by H1(X,Z(−1)) one views the variation of Hodge
structures overAg determined by ∧3H/H to be one of weight−1 (cf. [9], Section 4).

Proposition 3.2 gives that the first Chern form of (B̂, ‖·‖
B̂
) equals 2w∧3H/H so that

ν∗w∧3H/H = (4g + 2)ωHR .

Proposition 3.3 then yields

(g − 1)µ∗w∧3H = κ∗wH + (4g + 2)ωHR .

Combining this equality with the definition of eJ we find

κ∗wH = −2g(g − 1)eJ − 6ωHR

(cf. [8], Theorem 1). On the other hand we have [2]∗wH = 4wH , which follows
from the fact that wH restricts to a translation-invariant (1, 1)-form in each fiber,
and κ = 2jα which together give

κ∗wH = 4j∗α(wH) .

The proposition follows. �

4. Kawazumi’s result

In this section we state Kawazumi’s result on the second variation of the ϕ-
invariant on Mg. His result expresses the second variation of ϕ in terms of the
differential form eJ on Cg, introduced above, and a second differential form eA on
Cg which we introduce next.

Let X be a compact Riemann surface of genus g ≥ 2. From [1] we obtain that
the line bundle O(∆) on X × X , where ∆ is the diagonal, comes equipped with
a natural hermitian metric given by ‖1‖(x, y) = G(x, y), where G is the Arakelov
Green’s function. Fixing x on X , the function G(x, ·) is determined by the set of
equations

∂∂

πi
logG(x, ·) = µX − δx ,

∫

X

logG(x, y)µX(y) = 0 .

By demanding that the adjunction (residue) isomorphism

O(−∆)|∆ → ωX

where ωX is the holomorphic cotangent bundle to X should be an isometry we
obtain a canonical hermitian metric ‖ ·‖Ar on ωX . Globalizing this construction we
obtain a canonical hermitian metric ‖·‖Ar on ωCg/Mg

. Denote by eA the first Chern

form of the dual metric on ω−1
Cg/Mg

. Kawazumi’s theorem is then the following.

Theorem 4.1. (Kawazumi [16]) On Cg, the differential equation

eA − eJ =
1

2g(2g + 1)

∂∂

πi
ϕ

is satisfied.

Actually the main result of [16] reads

eA − eJ =
−2i

2g(2g + 1)
∂∂ ag .
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One verifies directly that the function ag as defined in the Introduction of [16] is
equal to 1

2πϕ, and that the 2-form eA on Cg as defined in [16] is the one defined

above. We would like to explain that the 2-form eJ defined in (3.2) is equal to the
2-form called eJ in [16]. The latter is written (cf. Definition (3.10) in [16]) as

eJ = −
1

2g(2g + 1)
(M1 +M2)(η

⊗2
1 ) ,

where the following notation is used. Let HZ be the local system over Ag associated
to H and consider the derived local systems HR = HZ ⊗R and HC = HZ ⊗C over
Ag and Mg. We use the same notation to denote their pullbacks on Cg. Note
that when pulled back along Cg, the intermediate jacobian fibration J (∧3H) can
be seen as a torus bundle over Cg with fiber ∧3H ⊗ (R/Z). Both M1,M2 are real
forms in Hom(∧2(∧3HC),C), hence global 2-forms on J (∧3H), coinciding with the
forms C1, C2 from [19]. By the discussion in Remark 20 of [8] we can therefore write
M1 = 2c∗wH and M2 = 3w∧3H on J (∧3H) where c : ∧3H → H is the contraction
map (3.1). The section η⊗2

1 of the local system ∧2(∧3HC) over Cg is the one induced
by the section η1 = η′1 + η′1 of the local system ∧3HC where, as is explained in the
introduction to [16], the section η′1 of ∧3HR is the first variation of the pointed
harmonic volume µ : Cg → J (∧3H). We obtain M1(η

⊗2
1 ) = 2µ∗c∗wH = 2κ∗wH

and M2(η
⊗2
1 ) = 3µ∗w∧3H and the equality of Kawazumi’s eJ with the one in (3.2)

follows.

5. Proof of the main theorem

In this section we prove Theorems 1.4 and 1.5. Let δF be the Faltings delta-
invariant on Mg (see [4], p. 402 for its definition). A convenient expression for its
second variation is given by the following proposition.

Proposition 5.1. Over Cg[2], we have an equality

j∗αwH = −
g(g − 1)

2
eA −

3

2
ωHdg −

1

8

∂∂

πi
δF

of 2-forms.

Proof. We refer to [4], p. 413 for the first half of this proof. On J (H)[2] we have
a universal theta divisor Θα. When restricted to the jacobian J of a curve X ,
the divisor Θα is equal to the image of the canonical theta divisor on Picg−1X
under the isomorphism Picg−1X → J defined by x 7→ x − α. Further, the orbifold
J (H)[2] can be written as a quotient of the analytic variety Cg×Hg where Hg is the
Siegel upper half space of complex symmetric g-by-g matrices with positive definite
imaginary part. When pulled back to Cg × Hg, for a suitable choice of universal
theta characteristic the divisor Θα can be given analytically by Riemann’s standard
theta function θ. As a result, the line bundle O(Θα) on J (H)[2] comes equipped
with a natural hermitian metric; the norm of θ in this metric is given by

‖θ‖ = (det Im τ)1/4 exp(−π ty (Im τ)−1 y)|θ(z, τ)|

where z = x + iy is in Cg and τ is in Hg. With this metric, the first Chern form
w0 of O(Θα) equals

(5.1) w0 = wH +
1

2
ωHdg
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(cf. [8], Proposition 2). Now as is explained in [8], Section 3 there exists a canonical
isomorphism

j∗αO(Θα) −→ ω⊗g(g−1)/2 ⊗ L−1

of line bundles over Cg[2], given by sending j∗αθ to a suitable Wronskian differential.
By Lemma 3.2 of [11] the norm of this isomorphism is equal to exp(δF /8), when
L is equipped with the Hodge metric given by (1.1), and ω is equipped with the
Arakelov metric ‖ · ‖Ar. By taking first Chern forms we find

j∗αw0 = −
g(g − 1)

2
eA − ωHdg −

1

8

∂∂

πi
δF .

We obtain the proposition by inserting (5.1). �

From Propositions 3.4 and 5.1 we infer that

(5.2)
g(g − 1)

2

(

eA − eJ
)

= −
1

8

∂∂

πi
δF +

3

2
ωHR −

3

2
ωHdg .

By combining this equation with Kawazumi’s result Theorem 4.1 and equation (1.2)
we obtain Theorem 1.5.

Proof of Theorem 1.4. Theorem 1.4 follows from Theorem 1.5 once one knows that
the only pluriharmonic functions on Mg are constants. But this follows from the
fact that Mg allows a surjection from Teichmüller space in genus g, which is con-
tractible, and the fact that the only invertible holomorphic functions on Mg are
constants (cf. [9], Lemma 2.1). �

Remark 5.1. A shorter and perhaps more natural proof of Theorem 1.4 (and hence
of its corollaries) would be possible once one knows how to carry through some
of the arguments in [27] in terms of line bundles on a suitable level cover M′

g

of Mg. For example, one would like to interpret Zhang’s result (2.1) as stating,
among other things, that there exists a line bundle 〈∆ξ,∆ξ〉 on M′

g, together with

a canonical isomorphism 〈∆ξ,∆ξ〉
⊗2g−2 → 〈ω, ω〉⊗2g+1 of norm exp(−(2g − 2)ϕ)

over M′
g, where 〈ω, ω〉 is Deligne’s pairing of the relative dualizing sheaf ω with

itself. We will return to these matters in a future paper.

6. Hyperelliptic curves

In this section we prove Theorem 1.7. Let Hg be the orbifold moduli space of
complex hyperelliptic curves of genus g ≥ 2. We start by reviewing the construction
of the discriminant modular form ∆g on Hg. It generalizes the usual discriminant
modular form of weight 12 in the theory of moduli of elliptic curves.

Let n =
(

2g
g+1

)

and r =
(

2g+1
g+1

)

. Let Hg again be the Siegel upper half-space of

symmetric complex g × g-matrices with positive definite imaginary part. For z in
Cg (viewed as a column vector), a matrix τ in Hg and η, η′ in 1

2Z
g we define the

(classical) theta function with characteristic η = [ η
′

η′′
] to be

θ[η](z, τ) =
∑

n∈Zg

exp(πit(n+ η′)τ(n+ η′) + 2πit(n+ η′)(z + η′′)) .
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For any subset S of {1, 2, . . . , 2g+1} we define a theta characteristic ηS as follows:
let

η2k−1 =
[

t(0 , ... , 0 , 1

2
, 0 , ... , 0)

t( 1

2
, ... , 1

2
, 0 , 0 , ... , 0)

]

, 1 ≤ k ≤ g + 1 ,

η2k =
[

t(0 , ... , 0 , 1

2
, 0 , ... , 0)

t( 1

2
, ... , 1

2
, 1

2
, 0 , ... , 0)

]

, 1 ≤ k ≤ g ,

where each time the non-zero entry in the top row occurs in the k-th position.
Then we put ηS =

∑

k∈S ηk where the sum is taken modulo 1. Let T be the set of
subsets of {1, 2, . . . , 2g + 1} of cardinality g + 1. Write U = {1, 3, . . . , 2g + 1} and
let ◦ denote the symmetric difference. The discriminant modular form ∆g is then
defined to be the function

∆g(τ) = 2−(4g+4)n
∏

T∈T

θ[ηT◦U ](0, τ)
8

on Hg. It follows from results in [17], Section 3 that the function ∆g is a modular
form on the congruence subgroup Γg(2) = {γ ∈ Sp(2g,Z)|γ ≡ I2g mod 2} of weight
4r.

Now let τ in Hg be the period matrix of a complex hyperelliptic curve X of
genus g marked with a canonical basis of homology determined by an ordering of
the set of Weierstrass points on X (see [20], Chapter IIIa, §5). We put ‖∆g‖(τ) =
(det Im τ)2r |∆g(τ)|. Then for a given hyperelliptic curve [X ] ∈ Hg the value of
‖∆g‖(τ) on a period matrix on a canonical basis associated to X does not depend
on the choice of such a matrix. We find that ‖∆g‖ is a well-defined real-valued
function on Hg.

We remark that Hg extends as a moduli stack of hyperelliptic curves over Z.
Further, there exists an up to sign unique global trivializing section Λ of the line
bundle L⊗8g+4 over Hg that extends as a trivializing section of L⊗8g+4 over Z (cf.
[12], Proposition 3.1). It is possible to give an explicit formula for ‖Λ‖Hdg over Hg

in terms of ‖∆g‖.

Proposition 6.1. Let Λ be the (up to sign unique) global trivializing section of
L⊗8g+4 over Z. Then the formula

‖Λ‖nHdg = (2π)4g
2r‖∆g‖

g

holds.

Proof. For this we refer to the proof of Theorem 8.2 in [12]. �

For the biextension metric onHg we have the following result (cf. [9], Proposition
6.7).

Proposition 6.2. The metric ‖ · ‖biext restricted to the trivial line bundle L⊗8g+4

over Hg is a constant metric.

Proof. The Ceresa cycle is zero for any hyperelliptic curve X . Indeed, when X
is embedded into its jacobian using a Weierstrass point, the involution [−1] on
the jacobian restricts to the hyperelliptic involution on X . Further, at zero the
biextension line bundle B̂ restricts canonically to C with its standard euclidean
metric. �

It follows that β = − log ‖Λ‖Hdg, up to a constant. From Theorem 1.4 we then
deduce

(8g + 4)λ = − log ‖Λ‖Hdg ,
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up to a constant. Upon applying Proposition 6.1 one then obtains

(8g + 4)nλ = −4g2r log(2π)− g log ‖∆g‖ = −(8g + 4)ng log(2π)− g log ‖∆g‖ ,

up to a constant, and Theorem 1.7 is proven.
Using a recent result of K. Yamaki [24] it is possible to actually compute the

constant implied by Theorem 1.7. Let X be a hyperelliptic curve of genus g ≥ 2
with semi-stable reduction over a non-archimedean local field k. Let ε be Zhang’s
epsilon-invariant of X (cf. [27], Section 1.2). Define the invariant ψ as

ψ = ε+
2g − 2

2g + 1
ϕ .

Let X be the special fiber of a regular semistable model ofX over the ring of integers
of k. We say that a double point x of X is of type 0 if the local normalization of
X at x is connected. We say that x is of type i, where i = 1, . . . , [g/2], if the local
normalization of X at x is the disjoint union of a curve of genus i and a curve of
genus g − i. Let ι be the involution on X induced by the hyperelliptic involution
on X . Let x be a double point of type 0 on X . If x is fixed by ι, we say that x is of
subtype 0. If x is not fixed by ι, the local normalization of X at {x, ι(x)} consists of
two connected components, of genus j and g− j− 1, say, where 1 ≤ j ≤ [(g− 1)/2].
In this case we say that the pair {x, ι(x)} is of subtype j. Let ξ0 be the number of
double points of subtype 0, let ξj for j = 1, . . . , [(g−1)/2] be the number of pairs of
double points of subtype j, and let δi for i = 1, . . . , [g/2] be the number of double
points of type i. Equality (1.2.5) and Theorem 3.5 of [24] imply that

ψ =
g − 1

2g + 1
ξ0 +

[(g−1)/2]
∑

j=1

6j(g − j − 1) + 2g − 2

2g + 1
ξj +

[g/2]
∑

i=1

(

12i(g − i)

2g + 1
− 1

)

δi .

By [27], Section 1.4 the non-archimedean λ-invariant is given by

λ =
g − 1

6(2g + 1)
ϕ+

1

12
(ε+ δ) =

1

12
(ψ + δ) .

Here δ denotes the total number of singular points in the fiber at v. We obtain

(8g + 4)λ = gξ0 +

[(g−1)/2]
∑

j=1

2(j + 1)(g − j)ξj +

[g/2]
∑

i=1

4i(g − i)δi .

By the local Cornalba-Harris equality [3] [15] [23] this simplifies to

(8g + 4)λ = − log ‖Λ‖

where now the right hand side denotes the order of vanishing of Λ along the closed
point of the spectrum of the ring of integers of k. Now take a hyperelliptic curve X
of genus g over Q. As Λ furnishes a non-zero section of the Hodge bundle detRπ∗ω
we have the formula

(8g + 4) deg detRπ∗ω = −
∑

v

log ‖Λ‖v logNv

for the (non-normalized) stable Faltings height of X over a finite field extension
of Q where X acquires semi-stable reduction. By equation (2.3) and the known
vanishing of 〈∆ξ,∆ξ〉 in the hyperelliptic case (cf. Section 4 of [5]), one obtains
that the constant implied by Theorem 1.7 actually vanishes.
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