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Effects of disorder on Coulomb-assisted braiding of Majorana zero modes
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Majorana zero modes in networks of one-dimensional topological superconductors obey non-Abelian braiding
statistics. Braiding manipulations can be realized by controlling Coulomb couplings in hybrid Majorana-transmon
devices. However, strong disorder may induce accidental Majorana modes, which are expected to have detrimental
effects on braiding statistics. Nevertheless, we show that the Coulomb-assisted braiding protocol is efficiently
realized also in the presence of accidental modes. The errors occurring during the braiding cycle are small if
the couplings of the computational Majorana modes to the accidental ones are much weaker than the maximum
Coulomb coupling.
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I. INTRODUCTION

Majorana zero modes appear at domain walls between
the topologically distinct phases that characterize one-
dimensional superconductors.1 The search for these quasi-
particles is motivated by their non-Abelian statistics2–6 and
the perspective they offer in quantum computation.7,8 The
topologically nontrivial phase can be realized with the help
of an effective p-wave pairing in a spin-orbit coupled
nanowire, proximity coupled to a superconductor,9,10 and first
signatures of Majorana modes have been reported in these
setups.11,12 Other systems supporting Majorana modes include
the edge of quantum spin Hall insulators13,14 and chains of
magnetic atoms,15–20 with recent experimental progress in both
directions.21–23 After the first proposals for braiding protocols
in nanowire networks,5,8,24–27 there is a need for a detailed
analysis of the limitations which might hinder the braiding
operation28–31 or cause decoherence of Majorana qubits.32–38

According to Anderson’s theorem, electrostatic disorder
has little influence in s-wave superconductors,39 but in
unconventional superconductors it can induce subgap states
at arbitrarily low energies.40 Indeed, electrostatic disorder
is an unavoidable feature in experimental setups, and con-
sequently much attention has been devoted to its impact on
Majoranas.40–57 Importantly, Majorana end modes are found
to be surprisingly robust against strong disorder despite the
presence of localized low-energy bound states.55

It is therefore important to investigate what happens to
their non-Abelian statistics in the presence of disorder. To
understand the potential problem, let us consider a disorder
potential inducing two weakly coupled accidental Majorana
modes, pinned to a particular location within the wire.58

When a domain wall binding a computational Majorana moves
towards an accidental one, the two modes couple strongly and
disappear into the continuum of states above the energy gap
(see Fig. 1). This fusion event leads to a loss of the information
stored in the computational Majoranas.

Non-Abelian Majorana statistics can also be demon-
strated using superconducting circuits8,26,59 implementing
an interaction-based braiding protocol.60,61 In these hybrid
Majorana-transmon qubit devices, the braiding and readout
protocols are realized by controlling Coulomb couplings
between the Majoranas. In this paper, we show that these
protocols are efficiently realized even in the presence of

disorder. We identify the dangerous physical processes and
show that the braiding errors are small if the couplings of the
computational Majoranas to the accidental modes are much
weaker than the maximum Coulomb coupling, leaving a large
parameter space available for a braiding experiment.

The structure of the paper is as follows. We start in Sec. II
by shortly reviewing the transmon circuit for the Coulomb-
assisted braiding protocol, which was introduced in Ref. 8, and
by presenting an effective model for the setup which captures
the presence of disorder in the nanowries. In Sec. III we study
numerically the time evolution of the system during the flux-
controlled protocol, and evaluate the effects of disorder on
the braiding as well as on the initialization and measurement.
To better streamline the presentation of results, we include
some of the material as Appendixes. We conclude with a few
remarks in Sec. IV.

II. BRAIDING PROTOCOL IN THE PRESENCE
OF DISORDER

To demonstrate non-Abelian statistics it is necessary to read
out a topological qubit, described by the parity of two Majo-
ranas �A and �B , and to braid one of them, �B , with another
one, �C . This task can be performed in a minimal fashion
using a π -shaped nanowire network in a transmon circuit,
following a flux-controlled braiding protocol.8 Although we
consider Majoranas at the ends of nanowires, our results are
applicable also to quantum spin Hall systems, where circuits
can be constructed by using constrictions.14

The circuit for braiding and readout is shown in
Fig. 2, and involves nanowires forming a π -shaped net-
work hosting six computational Majoranas, �A, �B ,...,
�F . The couplings between them can be controlled via
the flux-dependence of the Josephson energy, EJ,k(�k) =
EJ,k(0) cos(e�k/h̄), of each superconducting island, k.
The charging energies EC,k of the islands result in
Coulomb couplings �k(�k) between the Majoranas,
which, for EJ,k(�k) � EC,k , have an exponential depen-
dence �k(�k) ∝ exp

( − √
8EJ,k(�k)/EC,k

)
(Refs. 26, 59),

which allows to turn them on (�k = �max) and off (�k =
�min) with fluxes. A nondemolition readout of the topological
qubit is possible because the plasma frequency of the transmon
formed by the bus and ground islands (see Fig. 2) can be
tuned close to the resonance frequency of the transmission line
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FIG. 1. (Color online) Detrimental effect of accidental Majorana
modes (red) on a braiding manipulation. When a domain wall binding
a computational Majorana mode (blue) approaches an accidental
mode, these two Majoranas are fused. Quantum information is lost
and the braiding protocol may proceed in a faulty manner, involving
another accidental Majorana.

resonator. Once the magnetic flux �0 is turned on, the coupling
between photons and the transmon qubit renormalizes the
resonance frequency of the cavity, so that it is conditioned
on the fermion parity of �A and �B (Refs. 8, 59). On the
other hand, the Majorana modes �B and �C can be braided
with the help of ancillas �E and �F , by varying the Coulomb
couplings �k along a specific type of closed path26 (see Fig. 3).
The corresponding operation on the topological qubit is U =
exp(isπσx/4) (Ref. 4), where s describes the braiding chirality.

As we already pointed out, strong disorder induces acciden-
tal low-energy bound states in unconventional superconduc-
tors. These states can be described using Majorana operators
γk,n, where k labels the island and n the accidental Majorana
modes within it. We assume that neighboring Majoranas
interact with random couplings. In particular, the accidental
Majoranas closest to the end of each wire are coupled to the
corresponding � end modes with couplings εk1 and εk2 (see
Fig. 2). Unlike in the clean case, the Coulomb interaction
involves the total fermion parity of each island, so braiding

FIG. 2. (Color online) Transmon circuit for demonstration of
non-Abelian statistics (Ref. 8). Two large superconducting islands
(bus and ground) are used in the readout of the topological qubit
and three smaller superconducting islands are needed for braiding.
The nanowires form a π -shaped circuit hosting six computational
Majoranas, �A, �B ,..., �F . A strong disorder can induce accidental
Majorana modes γk,n, where k labels the island and n the accidental
Majorana mode within the island. These accidental modes are coupled
to each other with couplings δk,n, and the accidental Majoranas closest
to the end of the wires are coupled to the corresponding end states
with εk1 and εk2.

(a) (b)

FIG. 3. (Color online) Two possible paths of variations of
Coulomb couplings resulting in braiding of Majorana zero modes �B

and �C . The braiding errors caused by the accidental modes depend
on the braiding path (see Fig. 4).

should be performed by controlling many-body interactions
between Majoranas, instead of the simple pairwise ones
considered in Refs. 8, 26. Similarly, the measurement is now
sensitive to the total fermion parity of the bus island.

During the braiding procedure we set �0 = 0 so that the
charging energy of the bus island can be neglected. The low-
energy Hamiltonian is

Hbr = HC + Hδ + Hε, (1)

HC = i�1�B
1�E + i�2�E
2�F + i�3�E
3�C, (2)

Hδ = i
∑
k,n

δk,n γk,nγk,n+1, (3)

Hε = iεb1�Aγb,1 + iεg1�Bγg,1 + iε11�Bγ1,1 + iε21�Eγ2,1

+ iε31�Eγ3,1 + iεb2γb,Nb
�B + iεg2γg,Ng

�D

+ iε12γ1,N1�E + iε22γ2,N2�F + iε32γ3,N3�C, (4)

where HC describes the Coulomb couplings between the
Majoranas, and Hδ , Hε describe the tunnel couplings of the
accidental Majoranas to each other and to the computational
ones, respectively. We have denoted the total parity of the ac-
cidental Majoranas in island k with 
k = e−iπNk/4 ∏Nk

n=1 γk,n.
If Hε = 0, then [Hbr,
k] = 0, which means that the

computational and accidental Majoranas form two decoupled
quantum systems. In a sector of the eigenstates of 
k with
eigenvalues pk , HC({pk}) = ip1�1�B�E + ip2�2�E�F +
ip3�3�E�C , which was considered by the authors of Refs. 8
and 26. The Hilbert space is divided into ground and excited
state manifolds, separated by an energy 2E0, where E0 =√

�2
1 + �2

2 + �2
3 � �max. Because the braiding is performed

adiabatically with respect to �max, the transitions between
these manifolds can be neglected and the time-evolution
operator within each parity sector is

U0({pk},panc) = eis({pk},panc)πσx/4
∏

i

Uint,i({pk},panc), (5)

where Uint,i({pk},panc) describes the internal time evolution
of the accidental Majoranas in island i, s({pk},panc) denote
chiralities of the braiding in different sectors of the Hilbert
space, and panc is the parity of the ancillas �E and �F .

We now assume that the measurement projects the system to
an eigenstate of total parity on the bus islandP = −i�A
b�B .
(The requirements for a successful measurement are analyzed
below.) The protocol for demonstrating non-Abelian Majo-
rana statistics consists of a measurement P followed by n

braiding cycles, after which the parity is measured again.
The probability of observing a parity flip after n consecutive
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braidings, pflip(n), is dictated by the Majorana statistics. For
clean wires the sequence of probabilities is pflip = 1/2,1,1/2,0
for n = 1,2,3,4, and it repeats itself periodically for larger
values of n (Ref. 8). Given Eq. (5), the sequence is independent
of the accidental Majoranas and the initial state of the
ancillas as long as Hε = 0. Thus, the only limitations in
this case are quasiparticle poisoning and inelastic relaxation
processes.62

III. ANALYSIS OF THE BRAIDING PROTOCOL ERRORS.

A. Effects of disorder on the braiding cycle

The interaction Hε between computational and accidental
Majoranas may lead to fermion parity exchanges, giving rise
to braiding errors. We assume that these coupling constants
satisfy εk1,εk2 � �max, which allows to choose the braiding
speed so that εk1,εk2 � �0 � �max, where the energy scale
�0 = h̄/T0 is determined by the duration T0 of one segment
of the braiding cycle in Fig. 3. Thus, we can calculate the
unperturbed time-evolution operator U0(t) in each parity sector
using the adiabatic approximation and consider the effect of
Hε perturbatively. The total time-evolution operator for one
braiding cycle can be written as

U = U0 +
∑

k

[
εk1

�0
δUk1 + εk2

�0
δUk2

]
, (6)

where U0 is the unperturbed time evolution, which in different
parity sectors is described by Eq. (5), and δUk1,2 are corrections
which can in principle be computed for an arbitrary disordered
wire. These corrections couple the different parity sectors and
can result in braiding errors.

Next, we analyze in detail the case where each nanowire
contains a single pair of accidental Majorana modes, which
are coupled to each other by δ. This allows to identify the
fundamental mechanisms of errors, which are present also in
nanowires with many accidental Majorana modes.

We first note that the couplings εb1 and εg2 have no effect
on the braiding protocol within the lowest-order perturbation
theory. We characterize the errors caused by other couplings by
calculating the matrix norms ||δUki ||2 (Ref. 63), which depend
on δ and act as effective prefactors of εki/�0 in Eq. (6). Based
on symmetry arguments, we find that ||δUb2||2 = ||δUg1||2,
||δU11||2 = ||δU22||2 = ||δU32||2 and ||δU12||2 = ||δU31||2 (see
Appendix A). This leaves four different cases, which are
plotted in Figs. 4(a) to (d) and 4(e) to (h) for the two paths of
Figs. 3(a) and 3(b), respectively. The errors show peaks when
accidental Majorana fermions are either uncoupled (δ ≈ 0)
or the energy of their bound state is in resonance with the
energy gap between the ground and excited state manifolds
(δ ≈ E0). The peak appearing close to δ = 0 is extremely
narrow for both paths, but the resonance at δ ≈ �max is
strongly path dependent. For the circular path, shown in
Fig. 3(a), E0 is constant during the whole braiding cycle
resulting in a narrow resonance peak at δ ≈ �max. On the
other hand, for the path shown in Fig. 3(b), E0 varies between
[�max,

√
2�max] during the braiding cycle so that the resonance

peak spreads over a wide range of δ. In the case of the
circular path it is possible to obtain closed form analytic
solutions for δUki . Away from the peaks where ||δUki ||2 ∼ 1,

they vanish asymptotically as ∼ Max
[
�0/δ,�0/

∣∣�max ± δ
∣∣]

or faster (see Appendix B). We have verified the validity
of the perturbation theory for εki/�0 < 0.1 by numerically
calculating the full time-evolution operator. We also point out
that the assumption that the couplings δk,n and εki are time
independent is not essential. Our qualitative findings are valid
also if these couplings are changing adiabatically in time due
to the variations of the Coulomb couplings.

With increasing disorder, more low-energy subgap states
will appear in the energy spectrum. For an increased number
of accidental bound states, the braiding errors as a function of
�max will contain several peaks, appearing whenever an energy
of the accidental Majoranas is in resonance with E0. This
means that it becomes more and more difficult to avoid errors
by properly choosing �max. At the same time, the accidental
modes will appear closer to the ends of the wires, increasing
the couplings εki , which control the heights of the peaks in
the braiding errors. As this coupling becomes comparable
to the maximum Coulomb coupling, εki ∼ �max, one can no
longer choose a �0 such that the braiding process is adiabatic
with respect to the Coulomb coupling and nonadiabatic with
respect to εki . At this point, the non-Abelian statistics is not
observable anymore. An interesting theoretical question is
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FIG. 4. (Color online) Errors occurring during the braiding cycle
can be estimated by εki ||δUki ||2/�0 [Eq. (6)], with four different
types of corrections ||δUki ||2, which are plotted as a function
of δ. These corrections, related to the two adiabatic cycles of
Fig. 3(a),(b), are shown in panels (a)–(d) and (e)–(h), respectively.
The insets show magnifications of the peaks around δ = 0. Away
from the peaks the errors are efficiently suppressed. In all panels
�max = 500�0.
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whether this breakdown of the non-Abelian statistics happens
in conjunction with a disorder-induced topological transition
to a trivial phase of the nanowire, or whether it precedes it. We
note that, in our model, the braiding process can in principle
be optimized by choosing the coupling �max in such a way
that it is comparable to the topological gap, �max ∼ Egap. In
this case, non-Abelian statistics becomes unobservable when
εki ∼ Egap, so that the critical disorder strength is comparable
to the critical disorder strength inducing the topological phase
transition. However, our model is strictly speaking a low-
energy effective theory, which is only valid in the nontrivial
phase, and therefore it cannot be used for a detailed quantitative
description of the breakdown of the non-Abelian braiding
statistics and the topological phase transition happening at
large disorder.

B. Effect of disorder on initialization and readout

Errors can arise not only during the braiding cycle, but
also during the readout, performed through a measurement
of the fermion parity P = −i�A
b�B of the bus island. The
Hamiltonian describing the interaction of the transmon qubit
and the cavity is8

Hro = h̄ω0a
†a + h̄g(τ+a + τ−a†) + τz

(
1
2h̄0 + �+P

)
+�−P + Hb(εbn,δb,n,m) + iε11�Bγ11 + iδγ11γ12.

(7)

The first line describes the photons with bare resonance
frequency ω0 and the interaction with the transmon qubit
with a coupling constant g. Here 0 is the transmon plasma
frequency, Pauli matrices τx,y,z act on the transmon qubit and
τ± = (τx ± iτy)/2. The term proportional toP arises due to the
Coulomb coupling,8 and the Hamiltonian Hb defines the tunnel
couplings of the Majoranas inside the bus island. The last two
terms describe the coupling of the computational Majorana
�B to an accidental pair of modes outside the bus island. We
assume that the transmission line resonator is operated in the
dispersive regime, where (n + 1)g2 � δω2, with n the number
of photons in the cavity and δω = 0 − ω0.

Without accidental Majoranas, the Hamiltonian (7) pro-
duces a parity-dependent resonance frequency of the cav-
ity ωeff(P) = ω0 + τz g2(δω + 2P�+/h̄)−1, which allows to
measure the topological qubit.8,59 As before, we consider
perturbative corrections caused by the couplings between com-
putational and accidental Majoranas. The term Hb conserves
the parity P and therefore it does not modify ωeff within the
lowest-order perturbation theory. The presence of the external
coupling ε11 implies that the measurement eigenstates of
the renormalized cavity frequency no longer have a definite
parity P , but can be written in a form ψ = √

1 − ε2|P, . . .〉 +
ε| − P, . . .〉, where away from resonances the measurement
error vanishes as ε ∼ ε11/

(
�+ − �− − |δ|). This scaling is

in agreement with the expected parity flow to the accidental
Majorana modes. Close to the resonances �+ − �− ≈ |δ| the
parity flow will be limited by the finite measurement time tM
so that the errors are ∼ε11tM/h̄. Therefore, the conditions for
successful measurement coincide with the requirements for
small braiding errors.

IV. SUMMARY

We have shown that the Coulomb-assisted braiding protocol
is realizable also in the presence of disorder-induced accidental
bound states, and that the braiding errors are small if the cou-
pling of the computational Majoranas to the accidental states
is much weaker than the maximum Coulomb coupling. A few
remarks are in order concerning the experimental relevance of
our results. First, the requirement of weak coupling between
the computational and accidental Majorana modes coincides
with the definition of the topological phase in disordered
systems, and therefore based on the findings in Ref. 55, we
expect that there is a large parameter space available for
braiding the Majorana fermions. Second, the low-energy states
in the wires can in principle be characterized using spatially
resolved scanning tunneling microscopy23 or by coupling to
microwaves.64–67 Because braiding errors depend strongly on
the energies of the accidental modes, they can be systemat-
ically decreased by controlling these energies with the help
of Zeeman fields or gate voltages. Finally, we point out that
our results are relevant also in the case of clean wires because
they allow to simplify the experimental setup by replacing the
π -shaped network of Ref. 8 with two spatially separated T

junctions. In this case, two additional Majorana quasiparticles
are intentionally created, which influence the braiding the same
way as the accidental Majoranas considered here. However, in
clean wires the additional Majoranas are automatically weakly
coupled to the computational ones if the wires are sufficiently
long, leading to negligible braiding errors.
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APPENDIX A: SYMMETRY RELATIONS FOR
THE BRAIDING ERRORS

When the couplings between the accidental and the com-
putational Majoranas is much smaller than the maximum
Coulomb coupling, their effects can be treated independently.
In the following we analyze each of the ten terms in Hε

and show that there are only four independent terms which
contribute to errors during the braiding cycle.

Since the Coulomb Hamiltonian HC commutes with both
iεb1�Aγb,1, as well as iεg2γg,Ng

�D , it is clear that these
terms cannot cause errors during the braiding cycle. Their
counterparts, iεb2γb,Nb

�B and iεg1�Bγg,1, involve accidental
Majoranas outiside the braiding T junction and do cause
errors, as shown in Fig. 4. Furthermore, these errors are
identical, ||δUb2||2 = ||δUg1||2, because they are only related
by a relabeling of the accidental Majorana indices.

Out of the six remaining terms, only three contribute in an
independent fashion. To make this apparent, we will consider
the case where there are only two accidental Majoranas in
the braiding T junction, which we label γ1 and γ2 for ease
of notation. They may be placed in any of the three islands,
and connected to any of the computational Majoranas. The six

155435-4



EFFECTS OF DISORDER ON COULOMB-ASSISTED . . . PHYSICAL REVIEW B 88, 155435 (2013)

resulting Hamiltonians read as follows:

H11 = �1�Bγ1γ2�E + i�2�E�F + i�3�E�C

+ iδγ1γ2 + iε�Bγ1, (A1)

H12 = �1�Bγ1γ2�E + i�2�E�F + i�3�E�C

+ iδγ1γ2 + iεγ2�E, (A2)

H21 = i�1�B�E + �2�Eγ1γ2�F + i�3�E�C

+ iδγ1γ2 + iε�Eγ1, (A3)

H22 = i�1�B�E + �2�Eγ1γ2�F + i�3�E�C

+ iδγ1γ2 + iεγ2�F , (A4)

H31 = i�1�B�E + i�2�E�F + �3�Eγ1γ2�C

+ iδγ1γ2 + iε�Eγ1, (A5)

H32 = i�1�B�E + i�2�E�F + �3�Eγ1γ2�C

+ iδγ1γ2 + iεγ2�C. (A6)

Following Bravyi and Kitaev,68 we write a representation
of the six Majorana operators as

�B = σ0 ⊗ σ0 ⊗ σx, (A7)

�C = σ0 ⊗ σ0 ⊗ σy, (A8)

�E = σ0 ⊗ σx ⊗ σz, (A9)

�F = σ0 ⊗ σy ⊗ σz, (A10)

γ1 = σx ⊗ σz ⊗ σz, (A11)

γ2 = σy ⊗ σz ⊗ σz, (A12)

where σi are the Pauli matrices and ⊗ denotes the Kronecker
product.

The three Hamiltonians containing a coupling of an
accidental Majorana to �B , �F , or �C are identical up to
unitary transformations, and therefore lead to identical errors
||δU11||2 = ||δU22||2 = ||δU32||2. The unitary transformations
are

H11 = U12H22U
†
12, H11 = U13H32U

†
13, (A13)

with

U12 =
(

σz ⊗ σz 0

0 σx ⊗ σx

)
, (A14)

U13 =
(

σz ⊗ σz 0

0 σz ⊗ σ0

)
. (A15)

The Hamiltonians H12 and H31 can also be related by a unitary
transformation, provided that one interchanges �1 and �3,

H12 = Ũ13H31(�1 ↔ �3)Ũ †
13 , (A16)

where

Ũ13 = 1√
2

(
iσ0 ⊗ (σx + σy) 0

0 σ0 ⊗ (σx + σy)

)
. (A17)

Since replacing �1 with �3 and vice versa amounts to
performing the braiding cycle in a time-reversed order (see
Fig. 3), these two Hamiltonians produce identical errors
||δU12||2 = ||δU31||2.

Such a transformation also exists for H12 and H21, but
involves replacing �1 ↔ �2, which changes the braiding path,
and therefore leads to different errors, as shown in Fig. 4.

APPENDIX B: ANALYTICAL SOLUTIONS FOR
THE BRAIDING ERRORS

To calculate the four independent corrections ||δUki ||2, we
write the total time-evolution operator as U (t) = U0(t)Ũ (t),
where U0(t) is the time-evolution operator for Hε = 0 and Ũ

describes the lowest-order correction caused by Hε . We as-
sume that �0 � �max, so that the unperturbed time-evolution
operator U0(t) for the computational Majoranas in each parity
sector can be calculated using the adiabatic approximation.
The lowest-order correction Ũ can be found using the equation

Ũ (t) = 1 − i

h̄

∫ t

0
dt1U

†
0 (t1)HεU0(t1). (B1)

In this way we obtain that the total time-evolution operator
for one braiding cycle is given by Eq. (6), where U0 is the
unperturbed time evolution, which in different parity sectors
is described by Eq. (5), and δUk1 and δUk2 are corrections,
which can be solved by calculating the integral in Eq. (B1).

For the circular braiding path [Fig. 3(a)] with one pair of
accidental Majoranas in each island, the integral in Eq. (B1)
can be computed exactly, resulting in closed-form analytic
solutions for δUki . Although the full expressions are not very
insightful, they allow us to determine how the braiding error
estimates, εki ||δUki ||2/�0, vanish asymptotically far away
from the resonant peaks in Fig. 4. We obtain

||δU12||2
= Max

[
π | cos(2δ/�0)|

4δ2/�2
0

,

× | cos (3(δ ± �max)/�0) ± sin (3(δ ± �max)/�0)|√
2|δ ± �max|/�0

]
,

(B2)

||δU11||2 = | sin(3δ/�0)|
|δ/�0| , (B3)

||δU21||2 = Max

[ | sin(3δ/�0)|
|δ/�0| ,

π | cos (3(δ ± �max)/�0)|
4(δ ± �max)2/�2

0

]
(B4)

and

||δUb2||2 = Max

[√
1 ± sin(6δ/�0)√

2|δ/�0|
,

× π | cos (2(δ ± �max)/�0)|
4(δ ± �max)2/�2

0

]
. (B5)
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