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We construct d ¼ 1 sigma models of the Wess-Zumino type on the SUðnj1Þ=UðnÞ fermionic cosets.

Such models can be regarded as a specific supersymmetric generalization (with a target space supersym-

metry) of the classical Landau model, when a charged particle possesses only fermionic coordinates. We

consider both classical and quantum models, and we prove the unitarity of the quantum model by

introducing the metric operator on the Hilbert space of the quantum states, such that all their norms

become positive definite. It is remarkable that the quantum n ¼ 2 model exhibits hidden SUð2j2Þ
symmetry. We also discuss the planar limit of these models. The Hilbert space in the planar n ¼ 2

case is shown to carry SUð2j2Þ symmetry which is different from that of the SUð2j1Þ=Uð1Þ model.

DOI: 10.1103/PhysRevD.87.025026 PACS numbers: 11.30.Pb, 12.60.Jv, 03.65.�w, 03.65.Aa

I. INTRODUCTION

The renowned Landau model [1] describes a charged
nonrelativistic particle moving on a two-dimensional
Euclidean plane R2 � ðz; �zÞ under the influence of a uni-
form magnetic field which is orthogonal to the plane. Its
simplest generalization to a curved manifold is the Haldane
model [2], describing a charged particle on the two-sphere
S2 � SUð2Þ=Uð1Þ in the field of a Dirac monopole located
at the center. These models are exactly solvable, on both
the classical and the quantum levels. They can be inter-
preted as one-dimensional nonlinear sigma models with
the Wess-Zumino (WZ) terms. For instance, the Haldane
model is described by the d ¼ 1 SUð2Þ=Uð1Þ sigma model
action with the Uð1Þ WZ term.

There are two different approaches to supersymmetrizing
this bosonic system. One is based on a worldline supersym-
metry (see, e.g., Ref. [3]), while the other deals with a target-
space supersymmetry. The latter option corresponds to
extending the bosonic manifolds to supermanifolds by add-
ing extra fermionic target coordinates. These supermani-
folds are identified with cosets of some supergroups, so
the relevant invariant actions describe d ¼ 1 WZ sigma
models on supergroups. Since supergroups possess a wider
set of cosets as compared to their bosonic subgroups, there
are several nonequivalent super-Landau models associated
with the same supergroup. A minimal superextension of
SUð2Þ is the supergroup SUð2j1Þ involving the bosonic
subgroupUð2Þ ¼ SUð2Þ �Uð1Þ and a doublet of fermionic
generators.1 It possesses a few different cosets, each giving
rise to some super-Landau d ¼ 1 sigma model. The
SUð2Þ=Uð1Þ model can be promoted either to a model on
the ð2j2Þ-dimensional supersphere SUð2j1Þ=Uð1j1Þ [4,5] or

to a model on the ð2j4Þ-dimensional superflag manifold
SUð2j1Þ=½Uð1Þ �Uð1Þ� [5,6]. Both models are exactly
solvable, like their bosonic prototypes, and exhibit further
interesting properties [5]. For instance, for some special
relations between the coefficients of the corresponding
WZ terms they prove to be quantum-mechanically equiva-
lent to each other. Another surprising feature of these
models is that, contrary to the standard lore, the presence
of noncanonical fermionic kinetic terms bilinear in time
derivative in their actions does not necessarily lead, upon
quantization, to ghost states with negative norms; all norms
can be made positive definite by modifying the inner prod-
uct on the Hilbert space.
The supergroup SUð2j1Þ also possesses the pure odd

supercoset SUð2j1Þ=Uð2Þ of the dimension ð0j4Þ. The
Landau-type quantum sigma models on the odd cosets
SUðnj1Þ=UðnÞ of the dimension ð0j2nÞ, with the pure
WZ term as the action, were studied in Ref. [7] (see also
Ref. [4]). The relevant Hilbert spaces studied there involve
only single (vacuum) states associated with the lowest
Landau levels (LLLs). These LLL states reveal interesting
SUðnj1Þ representation content.
There remained a problem of finding out the complete

sigma model actions on the supercoset SUðnj1Þ=UðnÞ,
such that they contain both the WZ term and the term
bilinear in the coset Cartan forms [i.e., the one-dimensional
pullback of the Killing form on SUðnj1Þ=UðnÞ], and of
exploring the relevant quantum mechanics. The basic aim
of the present paper is to fill this gap. It is worth noting
that sigma models with the supergroup target spaces have
attracted a lot of attention over the last few years, in
particular because of their intimate relation to superbranes
(see, e.g., Refs. [8–10]). This increasing interest is one of
the main motivations of our study.
The paper is organized as follows. In Sec. II, we con-

struct the SUðnj1Þ invariant action for this model, using the
d ¼ 1 version of the universal gauge approach which can
be traced back to the construction of the two-dimensional
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bosonic CPn sigma model actions in Ref. [11]. The same
general approach works nicely in some other cases elabo-
rated as instructive examples in the Appendix [Landau-
type models on the bosonic coset SUðnþ 1Þ=UðnÞ � CPn

and the supersphere SUð2j1Þ=Uð1j1Þ � CPð1j1Þ]. In Sec. III
we construct the corresponding Hamiltonian and SUðnj1Þ
Noether charges, in both the classical and the quantum
cases. In Sec. IV we present the complete set of eigenfunc-
tions of the Hamiltonian and compute its spectrum. The
salient feature of the quantum case is that the number of
Landau level (LL) states is finite and equal to nþ 1. We
discuss the SUð2j1Þ representation assignment of the full
set of states in the n ¼ 2 case by computing, in particular,
the eigenvalues of the SUð2j1ÞCasimir operators. In Sec. V
we compute the norms of the LL states and find that for
some values of the WZ term strength �, there are states
with negative and/or zero norms, like in other super-
Landau models. In Sec. VI we give a more detailed treat-
ment of the n ¼ 2 case. We present the explicit form of
the metric operator which allows one to make all norms
positive definite. At each LL, the quantum states are found
to form short multiplets of some hidden SUð2j2Þ symmetry
which is an extension of the original SUð2j1Þ symmetry
(the phenomenon of such an enhancement of SUð2j1Þ to
SUð2j2Þ at the quantum level was earlier revealed in the
superflag Landau model [5]). In Sec. VII we study the
planar limit of the odd-coset Landau models. We show,
in particular, that the Hilbert space for n ¼ 2 also carries
some extended SUð2j2Þ symmetry. We finish with conclu-
sions and outlook in Sec. VIII.

II. SUðnj1Þ=UðnÞ ACTION FROM Uð1Þ GAUGING

The supergroup SUðnj1Þ can be defined as the set of
linear transformations of the nþ 1-component multiplet
ðz; �iÞ (i ¼ 1; 2; . . . n), such that they preserve its norm

z�z� � � �� ¼ inv: (2.1)

Here, the components z, �z are Grassmann even, while �i, ��i
are Grassmann odd. Hereafter, � � �� ¼ � �� � � ¼ �i ��i. The
fermionic transformations are

��z ¼ � � ��; ��i ¼ �iz; (2.2)

where �i, ��i are Grassmann-odd parameters. The variables
�i transform in the fundamental representation of the group
UðnÞ. These UðnÞ transformations are contained in the
closure of (2.2).

Now we are going to show how, starting from this
linear SUðnj1Þ multiplet, one can construct a nonlinear
d ¼ 1 WZ sigma model action associated with the odd
ð0j2nÞ-dimensional coset SUðnj1Þ=UðnÞ.

We startwith the following SUðnj1Þ invariant Lagrangian:
L ¼ rz �r �zþ �r �� �r� þ 2�A; (2.3)

where

r ¼ @t � iA; �r ¼ @t þ iA: (2.4)

The auxiliary gauge fieldAðtÞ ensures the invariance of the
Lagrangian (2.3) under the Uð1Þ gauge transformations:

�z ¼ i�z; ��i ¼ i��i; �A ¼ _�: (2.5)

The last term in (2.3) is the Fayet-Iliopoulos (FI) term; it is
invariant under (2.5) up to a total time derivative. The gauge
fieldAðtÞ is a SUðnj1Þ singlet; gauge transformations (2.5)
commute with the rigid SUðnj1Þ ones.
As the next steps, we impose the SUðnj1Þ invariant

constraint on the variables z, �i

z�z� � � �� ¼ 1; (2.6)

choose the Uð1Þ gauge
z ¼ �z � � (2.7)

and, using (2.6), express � in terms of the fermionic
variables,

� ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ � � ��

q
: (2.8)

Finally, the auxiliary field A can be eliminated by its
algebraic equation of motion:

A ¼ � 1

2
½2�þ ið �� � _� � _�� � �Þ�: (2.9)

Upon substituting all of this back into the Lagrangian (2.3),
the latter takes the form

L ¼ _�� � _� þ 2þ � � ��

4ð1þ � � ��Þ ½ð
_� � ��Þ2 þ ð� � _��Þ2�

� � � ��

2ð1þ � � ��Þ ð
_� � ��Þð� � _��Þ þ i�ð _� � �� � � � _��Þ:

(2.10)

This Lagrangian is invariant, up to a total time deriva-
tive, under the following purely fermionic nonlinear real-
ization of the odd SUðnj1Þ transformations:

��i ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ � � ��

q
�i þ �i

2
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ � � ��

p ð �� � � þ � � ��Þ: (2.11)

It precisely coincides with the one considered in Ref. [7].
This realization follows from (2.2) by taking into account
the gauge (2.7), the constraint (2.6), and the necessity to
accompany the original SUðnj1Þ transformations by the
compensating gauge transformations (2.5) with

� ¼ � i

2
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ � � ��

p ð �� � � þ � � ��Þ

in order to preserve the gauge (2.7). The Lagrangian
(2.10) describes the d ¼ 1 WZ sigma model on the odd
coset SUðnj1Þ=UðnÞ, with the d ¼ 1 fields �i and ��i
(2n real fermionic variables) being the coset parameters.
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The number of independent variables was reduced from
the (nþ 1) complex ones z, �i to n such variables �i by
imposing the constraint (2.6) and choosing the gauge (2.7).
In this aspect, the method we applied is quite similar to the
gauge approach to the construction of the bosonic d ¼ 2
CPn sigma models in Ref. [11]. It is worth pointing out that
our d ¼ 1 gauging procedure automatically yields not only
the standard sigma model part of the Lagrangian but also the
WZ termwith the strength 2�.2 In the ‘‘parent’’ linear sigma
model action (2.3), this constant appears as a strength of
the FI term. In Ref. [7], only the WZ term in (2.10) was
considered. Such truncated Lagrangian can be treated as
the large � limit of (2.10).

In what follows, it will be convenient to deal with the
coset coordinates �i related to �i by

�i ¼ �iffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ � � ��

p (2.12)

and possessing the simple holomorphic transformation law

��i ¼ �i þ ð �� � �Þ�i: (2.13)

In terms of �i, the Lagrangian (2.10) is rewritten as

L ¼
_�� � _�

1� � � ��
þ ð _�� � �Þð _� � ��Þ

ð1� � � ��Þ2 � i�
�� � _�� _�� � �
1� � � ��

: (2.14)

The odd SUðnj1Þ transformations may be expressed in
terms of the fermionic SUðnj1Þ generators Qi, Q

yj:

�� ¼ ½ð�QÞ þ ð ��QyÞ��; (2.15)

where Qi and Qyi ¼ ðQiÞy satisfy the relations

fQi;Qjg ¼ 0; fQyi; Qyjg ¼ 0; (2.16)

fQi;Q
yjg ¼

�
Jji � �j

i

1

n
Jkk

�
þ �j

iB: (2.17)

Here Jji � 1
n �

j
iJ

k
k � ~Jij are the SUðnÞ generators, and B

is the generator of the Uð1Þ transformation. They consti-
tute the bosonic ‘‘body’’ UðnÞ of the supergroup SUðnj1Þ.
In the realization on the variables �i, ��k, these generators
are

Jji ¼ ��i

@

@ ��j

� �j @

@�i ; B ¼
�
1

n
� 1

�
Jkk: (2.18)

The explicit expressions for the conserved Noether
supercharges corresponding to the odd SUðnj1Þ transfor-
mations are

Qi ¼ ��i þ ��ið �� � ��Þ � i� ��i; (2.19)

Qyi ¼ ��i þ �ið� � �Þ þ i��i: (2.20)

Here, �i ¼ @L=@ _�i and ��i ¼ @L=@ _��i are the momenta
canonically conjugate to the fields�i and ��i. The correspond-
ing conserved UðnÞ generators Jij and B are expressed as

Jji ¼ ��i ��
j � �j�i;

B ¼
�
1

n
� 1

�
ð ��i ��

i � �i�iÞ þ constant;

(2.21)

where a constant in B (the central charge) will be fixed in
the quantum model by requiring the generators to close on
the suð2j1Þ algebra as in (2.16) and (2.17).

III. QUANTIZATION

A. Hamiltonian formulation

To quantize the classical SUðnj1Þ=UðnÞ coset model
constructed in the previous section, we have to build its
Hamiltonian formulation. First of all, it is convenient to
rewrite the Lagrangian (2.14) in a geometric way, in terms
of the metric on the coset space SUðnj1Þ=UðnÞ and the
external gauge potentials given on this manifold. The
corresponding Hamiltonian will have the form convenient
for quantization, and it will be easy to find its spectrum.
We can write down the metric on the SUðnj1Þ=UðnÞ

coset parametrized by �i coordinates, using the Kähler
potential

K ¼ lnð1� � � ��Þ: (3.1)

The metric is given by

gij ¼ @j@
�iK ¼ �i

j

1� � � ��
� �i ��j

ð1� � � ��Þ2 : (3.2)

Also, we define the gauge connections

Ai¼�i@iK¼ i
��i

1�� � ��;
�Ai¼ i@

�i K¼ i
�i

1�� � ��: (3.3)

Note that �Ai ¼ �ðAiÞ. The inverse metric is given by

ðg�1Þij ¼ ð1� � � ��Þð�i
j þ �i ��jÞ: (3.4)

In terms of these quantities, the Lagrangian (2.14) can be
written as

L ¼ gij
_��i
_�j þ �ð _�iAi þ _��i

�AiÞ: (3.5)

The momenta canonically conjugate to the variables �i

and ��i are

�i¼ @L

@ _�i
¼�gki

_��kþ�Ai; ��i¼ @L

@ _��i

¼gik
_�kþ� �Ai: (3.6)

Then the Hamiltonian is given by

H ¼ ðg�1Þijð ��j � � �AjÞð�i � �AiÞ: (3.7)

Using the anticommutativity of the Grassmann varia-
bles, we rewrite the Hamiltonian in the form2See the Appendix for further examples.
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H ¼ 1

2
ðg�1Þij½ ��j � � �Aj; �i � �Ai�; (3.8)

and perform canonical quantization in the coordinate
representation by replacing

�i ! �i@i; ��i ! �i@
�i: (3.9)

As a result, we obtain the quantum Hamiltonian

H ¼ 1

2
ðg�1Þij½rð�Þ

i ;rð�Þ �j�; (3.10)

where we have introduced

rð�Þ
i ¼@iþ � ��i

1��� ��; rð�Þ �j¼@
�jþ ��j

1��� ��: (3.11)

These ‘‘semicovariant’’ derivatives satisfy the following
anticommutation relations:3

frð�Þ
i ;rð�Þ

j g ¼ 0;

frð�Þ�i;rð�Þ �jg ¼ 0;

frð�Þ
i ;rð�0Þ �jg ¼ ð�þ �0Þgji :

(3.12)

Using them, we can rewrite the Hamiltonian (3.10) in the
convenient equivalent form:

H ¼ ðg�1Þijrð�Þ
i rð�Þ �j � �n � H0 � �n: (3.13)

For what follows, it will be useful to write H0 explicitly:

H0¼ð1��� ��Þð@i@�iþ�i �� �j@i@
�jÞþ�ð1��� ��Þð ��i@

�i��j@jÞ
��2�� ��þ�n: (3.14)

The Hamiltonian is Hermitian with respect to the appro-
priate inner product (see below).

B. Quantum SUðnj1Þ generators
The quantum SUðnj1Þ generators can be obtained from

the classical expressions (2.19), (2.20), and (2.21):

Qi ¼ �@i þ ��i
��j@

�j þ � ��i;

Qyi ¼ �@
�i � �i�j@j þ ��i;

(3.15)

Jji ¼ ��i

@

@ ��j

� �j @

@�i � ~Jji þ
1

n
�j
iJ

k
k;

F ¼
�
1

n
� 1

�
Jkk � 2�;

(3.16)

where we properly fixed the ordering ambiguities, based on
the same reasonings as in Ref. [7]. A constant in the

expression for the Noether charge B [see (2.21)] was fixed
to be �2� and the resulting operator was denoted F in
order to have the suðnj1Þ algebra (2.16) and (2.17) in the
quantum case:

fQi;Qjg ¼ 0; fQyi; Qyjg ¼ 0; (3.17)

fQi;Q
yjg ¼ ~Jji þ �j

iF: (3.18)

Using the explicit form (3.14) ofH0, it is straightforward to
check that the SUðnj1Þ generators (3.15) and (3.16) indeed
commute with the Hamiltonian.
For further use, we explicitly present the generators in

the n ¼ 2 case. The corresponding Landau model pos-
sesses the eight-parameter symmetry supergroup SUð2j1Þ.
We define

� ¼ Q1; Q ¼ Q2: (3.19)

Then the full set of the SUð2j1Þ generators as differential
operators acting on the manifold with the odd coordinates
ð�i; ��iÞ, i ¼ 1, 2, is given by the expressions

Q ¼ �@2 þ ��2
��1@

�1 þ � ��2; (3.20)

� ¼ �@1 þ ��1
��2@

�2 þ � ��1; (3.21)

Jþ ¼ i ��2@
�1 � i�1@2; (3.22)

J� ¼ i�2@1 � i ��1@
�2; (3.23)

J3 ¼ 1

2
ð�1@1 � �2@2 � ��1@

�1 þ ��2@
�2Þ; (3.24)

F ¼ 1

2
ð�1@1 þ �2@2 � ��1@

�1 � ��2@
�2Þ � 2�: (3.25)

The corresponding nonvanishing (anti)commutation rela-
tions read

½Jþ; J�� ¼ 2J3; ½J3; J�� ¼ �J�; (3.26)

½Jþ;�� ¼ iQ; ½J�; Q� ¼ �i�;

½J3;�� ¼ � 1

2
�; ½J3; Q� ¼ 1

2
Q;

½F;�� ¼ � 1

2
�; ½F;Q� ¼ � 1

2
Q;

(3.27)

½J�;�y� ¼ iQy; ½Jþ; Qy� ¼ �i�y;

½J3;�y� ¼ 1

2
�y; ½J3; Qy� ¼ � 1

2
Qy;

½F;�y� ¼ 1

2
�y; ½F;Qy� ¼ 1

2
Qy;

(3.28)

3The semicovariant derivatives are essentially complex, in
accordance with the fact that the wave superfunctions are com-
plex. Under the complex conjugation, they are transformed as

ðrð�Þ
i ;rð�Þ �jÞ ) �ðrð��Þ�i;rð��Þ

j Þ, when acting, respectively, on

Grassmann-odd or Grassmann-even superfunctions.
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f�;�yg ¼ �J3 þ F; fQ;Qyg ¼ J3 þ F;

f�; Qyg ¼ iJ�; f�y; Qg ¼ �iJþ:
(3.29)

The quadratic Casimir operator of the superalgebra
suð2j1Þ,

C2 ¼ � 1

2
fJþ; J�g � J23 þ F2 þ 1

2
½Q;Qy� þ 1

2
½�;�y�;

(3.30)

is related to the Hamiltonian of the n ¼ 2 model as

C2 ¼ H þ 4�2 ¼ H0 � 2�þ 4�2: (3.31)

One can also define a third-order Casimir operator:

C3 ¼ i

2
Jþ½Qy;�� � i

2
½�y; Q�J� þ 1

2
J3ð½Q;Qy�

� ½�;�y�Þ � 1

2
Fð½�;�y� þ ½Q;Qy�Þ þ 2C2F

��y��QQy: (3.32)

In the n ¼ 2 model it can be represented as

C3 ¼ 6�H0 þ 2�ð2�� 1Þð4�� 1Þ: (3.33)

IV. THE ENERGY SPECTRUM AND
WAVE FUNCTIONS

In this section we turn to the study of the quantum
SUðnj1Þ=UðnÞ model. We construct the complete set of
the wave superfunctions and find the corresponding energy
levels. We also obtain the realization of the SUðnj1Þ
symmetry group on the wave superfunctions.

A. The spectrum

In this subsection we construct the complete set of wave
superfunctions for the SUðnÞ singlet sector of the full space
of quantum states. The corresponding superfunctions carry
no external SUðnÞ indices, but possess the fixed B charge
�2� � 0, in accord with the explicit structure of the
quantum generators (3.15) and (3.16). Possible wave func-
tions with nonzero external SUðnÞ spins form a subspace
orthogonal to the SUðnÞ singlet one with respect to the
inner product to be defined below. A similar situation
occurs in the case of super-Landau models associated
with the supersphere SUð2j1Þ=Uð1j1Þ [5], where one can
consider only those wave functions which are singlets of
the semisimple part SUð1j1Þ � Uð1j1Þ.

To proceed, we will need two important properties:

ðg�1Þij½rð�Þ
i ; gjk� ¼

ð1� nÞ ��k

1� � � ��
(4.1)

and

rð�Þ
½i ðgjk��Þ ¼ gj½krðkþ2Þ

i� �; (4.2)

where � is an arbitrary superfunction, � ¼ �ð�; ��Þ, and
square brackets denote antisymmetrization of indices
(with the factor 1=n!). These relations can be proved using
the definitions (3.2) and (3.11).
We will deal with the shifted Hamiltonian H0 defined

in (3.13). The lowest (vacuum) Landau level wave function
�0 corresponds to the zero eigenvalue of H

0 and is defined
by the same chirality condition as in Ref. [7]:

rð�Þ �j�0 ¼ 0 ! �0 ¼ 1

ð1� � � ��Þ� �0ð�Þ; (4.3)

where the analytic wave function is defined by the
expansion

�0ð�Þ ¼ c0 þ �ic0i þ � � � þ �i1 � � ��inc0i1���in : (4.4)

The wave superfunctions corresponding to the excited
Landau levels are constructed by the covariant derivatives

rð�0Þ acting on the chiral superfunctions. The latter should
carry the appropriate external SUðnÞ indices in order to
ensure the full wave functions to be SUðnÞ singlets.
The first LL wave superfunction is defined as

�1 ¼ rð�þ1�nÞ
k �k; (4.5)

where �k is the chiral superfunction in the fundamental
representation of UðnÞ:

rð�Þ �j�k ¼ 0 ! �k ¼ 1

ð1� � � ��Þ� �
kð�Þ: (4.6)

Using (4.1), it is easy to check that�1 is the eigenfunction
of H0,

H0�1 ¼ ð2�þ 1� nÞ�1: (4.7)

The second LL wave superfunction is defined by

�2 ¼ rð�þ1�nÞ
i rð�þ3�nÞ

k �½ik�; (4.8)

where �½ik� is a chiral superfield [it is expressed through

the holomorphic reduced wave superfunction �½ik�ð�Þ in
the same way as in (4.3) and (4.6)]. The reason why the
chiral superfunctions should belong to the irreducibleUðnÞ
representations constructed by antisymmetrizing the indi-
ces in the fundamental representation will be explained in
the next subsection.
Using (4.1) and (4.2), one may verify that

H0�2 ¼ 2ð2�þ 2� nÞ�2: (4.9)

In the n ¼ 2 case, when the indices take values 1 and 2, it is
the last level in the spectrum, because no nonzero higher-
rank antisymmetric tensors can be defined.
For the same reason, in the general case of an

n-dimensional model, the spectrum terminates at the level
‘ ¼ n, so we are left with the finite set of n excited states.
The wave superfunction for the ‘th LL is given by the
expression
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�‘ ¼ rð�þ1�nÞ
m1

rð�þ3�nÞ
m2

� � � rð�þ2‘�1�nÞ
m‘

�½m1m2���m‘�;

(4.10)

where the reduced wave superfunction�½m1m2���m‘� is chiral:

�½m1m2���m‘� ¼ 1

ð1� � � ��Þ��
½m1m2���m‘�ð�Þ: (4.11)

The corresponding energy eigenvalue is

E‘ ¼ ‘ð‘� nþ 2�Þ: (4.12)

Sometimes it is convenient to use the equivalent representa-
tion for �‘:

�‘ :¼ 1

ð1� � � ��Þ� �̂‘;

�̂‘ ¼ rð2�þ1�nÞ
m1

rð2�þ3�nÞ
m2

� � � rð2�þ2‘�1�nÞ
m‘

�½m1m2���m‘�:

(4.13)

It is natural to require that the energies of the excited
Landau levels are not negative and exceed (or at least are
not less than) the energy of LLL. Therefore, in what
follows we will consider only the options when the WZ
term strength is restricted to the values

� 	 ðn� 1Þ=2: (4.14)

The obtained set of nþ 1 chiral superfunctions captures
the whole spectrum of the model in the SUðnÞ singlet sector.
To prove this, we should check that any SUðnÞ singlet
superfunction can be expressed as a linear superposition of
the wave superfunctions of nþ 1 Landau levels. The total
number of independent functions of n complex Grassmann
variables is equal to 22n. The total number of independent
coefficients in the �i expansion of a holomorphic super-
function corresponding to the level ‘ is 2nðnlÞ. Different
levels possess independent wave superfunctions. So the total
number of independent coefficients is

2n
Xn
‘¼0

n

l

 !
¼ 22n: (4.15)

Thus, the constructed set of wave superfunctions indeed
spans the full SUðnÞ singlet Hilbert space.

In the remainder of this subsection we will briefly
discuss the case with � < 0. Consider, instead of the
H0 eigenvalues (4.12), those of the full Hamiltonian
H ¼ H0 � �n:

E‘ ) E‘ ¼ ‘ð‘� nþ 2�Þ � �n: (4.16)

Now we assume that � ¼ �j�j and redefine the level
number ‘ as

‘ ¼ �‘0 þ n: (4.17)

In terms of ‘0, the spectrum (4.16) for � < 0 becomes

Eð�<0Þ
‘0 ¼ ‘0ð‘0 � nþ 2j�jÞ � j�jn: (4.18)

This formula coincides with that for � > 0,

Eð�>0Þ
‘ ¼ ‘ð‘� nþ 2j�jÞ � j�jn; (4.19)

modulo the substitution‘ ! ‘0. Thus, for� < 0, the tower of
the LL states is reversed: the highest LLwith ‘ ¼ n becomes
the LLLwith ‘0 ¼ 0, while the LLLwith ‘ ¼ 0 becomes the
highest LL with ‘0 ¼ n. In order to have, in both cases, the
excited LL energies not less than the LLL energy, one needs
to impose the following general condition:

j�j 	 ðn� 1Þ=2: (4.20)

The � < 0 LLL wave superfunction ~�‘0¼0 :¼ �‘¼n can
be checked to satisfy the antichirality condition4

rð�Þ
j

~�‘0¼0 ¼ 0 ! ~�‘0¼0 ¼ ð1� � � ��Þ�j�j�0ð ��Þ; (4.21)

whereas all other ones, up to ~�‘0¼n :¼ �‘¼0, are obtained
through the successive action of the proper antiholomor-
phic covariant derivatives on the antichiral superfunctions

ð1� � � ��Þ�j�j �½i1...i‘0 �ð ��Þ. Passing to the complex-

conjugate set of the wave superfunctions, ~�‘0 ! ~�?
‘0 takes

us back to the holomorphic representation, i.e., to the same
picture as in the � > 0 case (with replacing � ! j�j every-
where). Thus, without loss of generality, we can basically
limit our study to the � > 0 option.

B. Transformation properties

The SUðnj1Þ transformation law of the wave function for
any LL,

��ð�; ��Þ ¼ ð� �Qþ �� �QyÞ�ð�; ��Þ; (4.22)

is fully specified by the form of the quantum supercharges:

Qi ¼ �@i þ ��i
��j@

�j þ � ��i; (4.23)

Qyi ¼ �@
�i � �i�j@j þ ��i: (4.24)

The bosonic transformations are contained in the closure of
these odd ones.
Sometimes it is more convenient to deal with the equiva-

lent passive form of the same SUðnj1Þ transformation:

�
�ð�; ��Þ ’ �0ð�0; ��0Þ ��ð�; ��Þ
¼ �ð� � ��þ �� � �Þ�ð�; ��Þ: (4.25)

4The proof of this property is rather tricky. One rewrites rð�Þ
i

as rð�Þ
i ¼ @i þ �Bi, Bi ¼ ��i=ð1� � � ��Þ, and repeatedly uses

the identity @kBi ¼ BkBi to represent the product of n covariant

derivatives in �̂‘¼n [Eq. (4.13)], as a differential operator in @i of
the nth order, with the coefficients being monomials in Bk. To

show that rð2�Þ
i �̂‘¼n ¼ 0, one has to take into account the total

antisymmetry in the indices m1 . . .mn and to make use of the
proper cyclic identities.
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Note that this transformation law indicates that the wave
superfunctions cannot be real unless � ¼ 0.

Given the transformation law of the full wave super-
function for the level ‘, one can restore the transformation
rules of the reduced chiral superfunctions defined in the
previous subsection. To this end, one should take into
account the ‘‘passive’’ transformation properties of the
semicovariant derivatives

�
rð�0Þ
j ¼ �ð �� � �Þrð�0Þ

j þ ��j�
irð�0Þ

i þ �0 ��j;

�
rð�0Þ �j ¼ ð� � ��Þrð�0Þ �j � �j ��irð�0Þ�i þ �0�j:
(4.26)

Then we consider the transformation law of some chiral
wave function �i1���i‘ with ‘ 	 2 and require that the
corresponding transformation of�‘ is given by the passive
form of (4.22), i.e., by (4.25). We find, first, that �i1���i‘
should necessarily be fully antisymmetric in its SUðnÞ
indices, �i1���i‘ ¼ �½i1���i‘�, and second, that the transfor-

mation law of �½i1���i‘� should be

�
�½i1���i‘� ¼ �ð� � ��Þ�½i1���i‘� þ ð�þ ‘Þð �� � �Þ�½i1���i‘�

þ �i1 ��j�
½j���i‘� þ � � � þ �i‘ ��j�

½i1���i‘�1j�:

(4.27)

The chirality conditions are automatically covariant. For
the first LL function �i, we have the same transformation
law; for the SUðnÞ singlet LLL function �0, the UðnÞ
rotation terms are obviously absent and the transformation
law coincides with (4.25). For the holomorphic wave
superfunction

�½i1���i‘�ð�Þ ¼ ð1� � � ��Þ��½i1���i‘� (4.28)

the weight factors are properly combined in such a way that
the holomorphy property is preserved:

�
�½i1���i‘�ð�Þ ¼ ð2�þ ‘Þð �� � �Þ�½i1���i‘�ð�Þ þ � � � ; (4.29)

where ‘‘dots’’ stand for the holomorphic UðnÞ rotations,
which are the same as in (4.27). This transformation law is
valid for any ‘ 	 0.

C. n¼2

Here we consider in more detail the n ¼ 2 case, which
corresponds to the SUð2j1Þ=Uð2Þ model. In this case we
can lower and raise the SUð2Þ indices with the help of
skew-symmetric symbols,

"ik; "
ik; "ik"kj ¼ �i

j; "12 ¼ "21 ¼ 1: (4.30)

The holomorphic LLL superfunction�0ð�Þ has the follow-
ing � expansion:

�0ð�Þ ¼ c0 þ �ic0i þ
1

2
�i1�i2"i1i2c1; (4.31)

where c0 and c1 are SUð2Þ singlets. From the transforma-
tion law

��0 ¼ 2�ð �� � �Þ�0 � ½�i þ ð �� � �Þ�i�@i�0; (4.32)

we derive the following transformations of the component
wave functions:

�c0 ¼ ��ic0i ; �c0i ¼ �2� ��ic
0 � �ic1;

�c1 ¼ ð2�� 1Þ ��kc0k:
(4.33)

Here, the complex conjugation rule for �i is

ð�iÞ
 ¼ ��i; ð�iÞ
 ¼ � ��i: (4.34)

Next, we consider the first-level wave superfunction:

�½k�ð�Þ ¼ c½k� þ �jc½k�j þ 1

2
�j1�j2"j1j2c

½k�
2 : (4.35)

It transforms according to the rule

��½k� ¼ ð2�þ 1Þð �� � �Þ�½k� þ �k ��i�
½i�

� ½�i þ ð �� � �Þ�i�@i�½k�; (4.36)

which implies the following component transformation
laws:

�c½k� ¼ ��ic½k�i ;

�c½k�j ¼ ��jc
½k�
2 � ð2�þ 1Þ ��jc½k� þ �k

j ��ic
½i�;

�c½k�2 ¼ "kj ��ic
½i�
j þ 2� ��jc½k�j :

(4.37)

Finally, consider the second-level wave superfunction:

�½k1k2�ð�Þ ¼ c½k1k2� þ �jc½k1k2�j þ �j1�j2c½k1k2�j1j2
: (4.38)

Introducing

A¼ "i1i2c
½i1i2�; B¼ "k1k2"i1i2c

½i1i2�
k1k2

; Fk ¼ "i1i2c
½i1i2�
k ;

(4.39)

we find

�A ¼ ��kFk; �B ¼ �2� ��kFk;

�Fk ¼ �kB� ð1þ 2�Þ ��kA:
(4.40)

Note that these transformations can be brought precisely
into the form (4.33) after redefinition B ! �B, 2� !
2�� 1. This means that the ‘ ¼ 0 and ‘ ¼ 2 wave super-
functions constitute isomorphic SUð2j1Þ multiplets.
It is appropriate here to give the relevant values of the

suð2j1Þ Casimirs C2 and C3 defined in (3.31) and (3.33).
The eigenvalues of the Casimir operators on the LLL

state are

C2 ¼ 2�ð2�� 1Þ; C3 ¼ 2�ð2�� 1Þð4�� 1Þ: (4.41)

On the first LL, the Casimir operators become

C2 ¼ ð2�þ 1Þð2�� 1Þ; C3 ¼ 4�ð2�� 1Þð2�þ 1Þ:
(4.42)

Finally, their eigenvalues on the second level are
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C2 ¼ 2�ð2�þ1Þ; C3 ¼ 2�ð2�þ1Þð4�þ1Þ: (4.43)

Note that the replacement 2� ! 2�� 1 in (4.43) yields
just (4.41), in accord with the remark after Eqs. (4.40).

The spectrum of Casimir operators for the finite-
dimensional representations of SUð2j1Þ was studied in
Refs. [12,13]. These representations are characterized by
some positive number � (‘‘highest weight’’) which can be a
half-integer or an integer and an arbitrary additional real
number 	 which is related to the eigenvalues of the gen-
erator F (‘‘baryon charge’’). The values (4.41), (4.42), and
(4.43) can be uniformly written in the generic form given in
Ref. [12] as

C2¼ð	2��2Þ; C3¼2	ð	2��2Þ¼2	C2; (4.44)

with

LLL: � ¼ 1

2
; 	 ¼ 4�� 1

2
; (4.45)

LLL: � ¼ 1; 	 ¼ 2�; (4.46)

2ndLL: � ¼ 1

2
; 	 ¼ 4�þ 1

2
: (4.47)

Note that our C2 and C3 were defined to have the opposite
sign of those in Refs. [12,13] and C3 also differs by the
factor 2. We also took into account that � 	 1=2 in our
case. The isospins and F charges of the component wave
functions are expressed through the appropriate quantum
numbers � and 	 in full agreement with the general for-
mulas of Ref. [12].

At � > 1=2, we deal with what is called ‘‘typical’’
SUð2j1Þ representations (both Casimirs are nonzero); at
the special value � ¼ 1=2, both Casimirs are zero for the
LLL and first LL multiplets. So in this case the latter belong
to the so-called ‘‘atypical’’ SUð2j1Þ representations. In
accord with the consideration in Ref. [13], they are not
completely irreducible: they contain invariant subspaces,
the quotients over which, in turn, yield some further irre-
ducible representations. As is seen from the transformation
properties (4.33) and (4.37), at 2� ¼ 1 the component c1 of

�0 is SUð2j1Þ singlet and the subset ðc½k�k ; c½k�2 Þ in �1 also

forms a closed SUð2j1Þ multiplet.
In the alternative � < 0 case, the eigenvalues of the

quadratic Casimir are

C2 ¼ 2j�jð2j�jþ 1Þ; ‘¼ 0 ð‘0 ¼ 2Þ;
C2 ¼ ð2j�j� 1Þð2j�jþ 1Þ; ‘¼ 1 ð‘0 ¼ 1Þ;
C2 ¼ 2j�jð2j�j� 1Þ; ‘¼ 2 ð‘0 ¼ 0Þ:

(4.48)

These values are not negative for j�j 	 1=2, in accord with
the general condition (4.20).

V. SUðnj1Þ INVARIANT NORMS

A. General case

The SUðnj1Þ invariant Berezin integral is defined as [7]Z
d
 ¼

Z
d
0½1� ð� � ��Þ�n�1; (5.1)

where Z
d
0 ¼

Y
@i@

�i: (5.2)

Using this integration measure, we can define the inner
product on the Hilbert space of wave superfunctions:

h�j�i ¼
Z

d
�?�: (5.3)

It is manifestly SUðnj1Þ invariant, taking into account
the invariance of the measure d
 and the fact that the
weight factor in the general transformation law (4.25) is
imaginary.
To express the norms in terms of the reduced chiral

superfunctions �½k1���kn�, defined in (4.10), we will need
the following rule of integration by parts for two super-
functions, � and �:Z

d
�ðrð�Þ
k �Þ?

¼ ð�1ÞPð�ÞþPð�Þ Z d
ðrð�þn�1Þ �k�Þ�?; (5.4)

where Pð�Þ and Pð�Þ are Grassmann parities of the super-
functions. We will also employ the identity

rð�þ2Þ½�igk�j ¼ g½kj rð�Þ �j�: (5.5)

Using these rules, together with the anticommutation
relations (3.12), and the antichirality condition

r�ð�Þ
j ð�½k1���kn�Þ
 ¼ 0;

one can express the norm of the full wave superfunction�‘

for the ‘th LL in terms of the chiral wave functions as

jj�‘jj2 ¼ ‘!ð2�� nþ 2‘� 1Þ!
ð2�� nþ ‘� 1Þ!

�
Z

d
gm1

i1
� � � gm‘

i‘
ð�½m1���m‘�Þ?�½i1���i‘�: (5.6)

It is also straightforward to show that the wave superfunc-
tions associated with different Landau levels are mutually
orthogonal.

Expressing �½k1���kn� through holomorphic wave func-
tions by Eq. (4.28),

�½k1���kn� ¼ ð1� � � ��Þ���½k1���kn�ð�Þ;
one can perform the � integration in (5.6) and obtain
the norms written in terms of the coefficients in the �
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expansion of the�½k1���kn�ð�Þ. As an illustration, we present
this final form of the norm of the LLL wave superfunction,
with the � expansion defined in (4.4):

jj�0jj2¼ð�1ÞnXn
k¼0

n�2��1

k

 !
k!ðn�kÞ! �c0i1���in�kc0i1���in�k

:

(5.7)

In the next subsection, as an instructive example, we will
give the explicit expressions for norms of all three LLL
states of the n ¼ 2 model.

As should be clear from the expression (5.7), there are
values of � for which the squared norms are negative; the
same is true for the norms of higher LLs. This situation is
typical for quantum-mechanical systems with Grassmann-
odd target-space coordinates [7]. In the next section, we
analyze this issue in some detail on the n ¼ 2 example.
The way to make all norms positive definite is to modify
the inner product by introducing some metric operator on
the Hilbert space (like in all other known examples of super-
Landau models). This operator proves to be especially
simple in the planar limit (Sec. VII).

B. Norms for the SUð2j1Þ=Uð2Þ model

Here we specialize to the n ¼ 2 case and present the
explicit expressions for the ‘‘naive’’ norms, using the
general formulas of the previous subsection.

The norm of the vacuum wave superfunction is given by

jj�0jj2 ¼ �c1c1 þ ð1� 2�Þ �c0ic0i þ 2�ð2�� 1Þ �c0c0; (5.8)

where the component wave functions were defined in (4.31).
The first excited level is described by the wave superfunc-
tion with the norm

jj�1jj2 ¼ ð2�� 1Þ½ð2�þ 1Þð2�� 1Þ �c½k�c½k�
þ ð1� 2�Þ �ci½k�c½k�i � �ck½k�c

½i�
i þ �c2½k�c

½k�
2 �: (5.9)

The second-level wave superfunction has the norm

jj�2jj2 ¼ 2�ð2�þ 1Þ½2�ð2�þ 1Þ �AAþ �BB� 2� �FkFk�:
(5.10)

It is straightforward to check that these norms are in-
variant under the transformations (4.33), (4.34), (4.35),
(4.36), (4.37), (4.38), (4.39), and (4.40). Also, we observe
that these norms are not positive definite. In the next
section, we will see in detail how this unwanted property
can be cured. At 2� ¼ 1 there are zero norms for the LLL
and the first LL wave functions. In this case, it is natural to
define the physical Hilbert space as a quotient over the
subspace of zero-norm states, so it is spanned by the LLL
SUð2j1Þ singlet ‘‘wave function’’ c1 and four wave func-
tions ðA;B; FkÞ of the second LL.

VI. UNITARY NORMS FOR n¼ 2 AND HIDDEN
SUð2j2Þ SYMMETRY

A. Redefining the inner product

All norms for the case n ¼ 2 can be made positive by
modifying the inner product in the Hilbert space, like in the
cases worked out in [5]:

hh�j�ii ¼
Z

d
�?G�; (6.1)

where G is a metric operator on Hilbert space. As was
already mentioned in Sec. VIA, we will consider only the
case j�j 	 1=2, because only in this case are the energies
of the excited Landau levels non-negative. For the case
� 	 1=2, we choose the metric operator to be

G ¼ 1� 4ð2Fþ 4�þ ‘Þ þ 2ð2Fþ 4�þ ‘Þ2: (6.2)

It satisfies the conditions

G2 ¼ 1; ½H;G� ¼ 0; (6.3)

which mean that the metric operator just alters the sign in
front of all negative terms in the expressions for the norms
of the wave superfunctions. Accordingly, the positive
norms of the wave superfunctions are given by

jj�0jj2 ¼ �c1c1 þ ð2�� 1Þ �c0ic0i þ 2�ð2�� 1Þ �c0c0;
jj�1jj2 ¼ ð2�� 1Þ½ð2�þ 1Þð2�� 1Þ �c½k�c½k�

þ ð2�� 1Þ �ci½k�c½k�i þ �ck½k�c
½i�
i þ �c2½k�c

½k�
2 �;

jj�2jj2 ¼ 2�ð2�þ 1Þ½2�ð2�þ 1Þ �AAþ �BBþ 2� �FkFk�:
(6.4)

With � ¼ 1=2, the norms become

jj�0jj2 ¼ �c1c1; jj�1jj2 ¼ 0;

jj�2jj2 ¼ 2�ð2�þ 1Þ½2�ð2�þ 1Þ �AAþ �BBþ 2� �FkFk�:
(6.5)

As was already mentioned, the Hilbert space in this special
case, obtained as a quotient over the zero-norm states,
involves only two physical states, one corresponding to
LLL with unbroken SUð2j1Þ symmetry and another one
corresponding to the second LL.
Now, let O be some operator that commutes with the

Hamiltonian, and hence, generates some symmetry of the
model, and let Oy be its Hermitian conjugated operator
with respect to the naive inner product (5.3). Then its
Hermitian conjugate with respect to the ‘‘improved’’ prod-
uct (6.1) is given by

Oz � GOyG ¼ Oy þG½Oy; G�: (6.6)

To find a new conjugation for the SUð2j1Þ generators, we
need to know their realization on the analytic wave func-
tions �ð�Þ:
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� ¼ �@1;

�y ¼ ��1�2@2 þ �1

�
2�þ ‘

2
� B̂3

�
� �2B̂þ;

Q ¼ �@2;

Qy ¼ ��2�1@1 þ �2

�
2�þ ‘

2
þ B̂3

�
� �1B̂�;

Jþ ¼ �i�1@2 þ iB̂þ; J� ¼ i�2@1 � iB̂�;

J3 ¼ 1

2
ð�1@1 � �2@2Þ � B̂3;

F ¼ 1

2
ð�1@1 þ �2@2 � 4�� ‘Þ:

(6.7)

The matrix parts B̂ of the SUð2Þ generators satisfy, on their
own, the suð2Þ commutation relations,

½B̂þ; B̂�� ¼ �2B̂3; ½B̂3; B̂�� ¼ �B̂�: (6.8)

They can take nonvanishing values only when applied to

the first-level analytic wave functions �½k� which form a
doublet with respect to the external index:

B̂þ�½2� ¼�½1�; B̂þ�½1� ¼ 0; B̂��½1� ¼ �½2�;

B̂��½2� ¼ 0; B̂3�
½1� ¼ 1

2
�½1�; B̂3�

½2� ¼ �1

2
�½2�:

(6.9)

In the holomorphic realization, the differential ‘‘metric’’
operator G defined in (6.2) takes the form

Gan ¼ 1� 2�i@i þ 4�1�2@2@1

¼ ð1� 2�1@1Þð1� 2�2@2Þ: (6.10)

One can check that Gan anticommutes with the super-
charges and commutes with the bosonic SUð2Þ �Uð1Þ
generators. Owing to these properties, we find

Qz ¼ �Qy; �z ¼ ��y: (6.11)

In Ref. [5], there was given a general definition of
supercharge that commutes with G:

~O ¼ Oþ 1

2
½G;O�G: (6.12)

However, in the model under consideration, it identically
vanishes. So one cannot define a modified suð2j1Þ super-
algebra which would commute with the operator G.
Therefore, the suð2j1Þ transformation properties of the
component wave functions are slightly changed after pass-
ing to the new Hermitian conjugation.

The odd SUð2j1Þ transformations are now generated by

�� � ð�Qþ ��QzÞ�; (6.13)

giving rise to the following modified transformation prop-
erties of the component wave functions:

�c0 ¼ ��ic0i ;

�c0i ¼ 2� ��ic
0 � �ic1;

�c1 ¼ �ð2�� 1Þ ��kc0k;
(6.14)

�c½k� ¼ ��ic½k�i ;

�c½k�j ¼ ��jc
½k�
2 þ ð2�þ 1Þ ��jc½k� � �k

j ��ic
½i�;

�c½k�2 ¼ �"kj ��ic
½i�
j � 2� ��jc½k�j ;

(6.15)

�A ¼ ��kFk; �B ¼ �2� ��kFk;

�Fk ¼ �kB� ð1þ 2�Þ ��kA:
(6.16)

These transformations are similar to (4.33), (4.37), and
(4.40), the difference being the opposite sign before the
terms with ��i. The modified norms (6.4) are invariant just
under these transformations. The set of the group gener-
ators is now Q, �, Qz, �z, F, J�, J3. The quadratic
Casimir operator for them is

C2 ¼ � 1

2
fJþ; J�g � J23 þ F2 � 1

2
½Q;Qz� � 1

2
½�;�z�:

(6.17)

It is related to the Hamiltonian by the same Eq. (3.31) and
so takes the same values (4.41), (4.42), and (4.43) on the LL
wave superfunctions [the same is true for the 3d order
Casimir (3.33)]. In particular, for � ¼ 1=2, Casimir opera-
tors vanish for the LLL and the first LL superfunctions,
implying that these levels carry atypical representations of
SUð2j1Þ. It is worthwhile to note that, although the suð2j1Þ
algebra (3.26), (3.27), (3.28), and (3.29) changes its
form after the replacement Qy, �y ! �Qz, ��z, the
original form can be restored by passing [in the SUð2Þ
covariant notation (3.17) and (3.18)] to the new generators
~Qi ¼ ��ikQ

zk, ~Qzi ¼ �ikQk, ~F ¼ �F.

B. SUð2j2Þ symmetry

It was shown in Ref. [5] that the quantum Hilbert space of
the superflag Landau model carries hidden SUð2j2Þ sym-
metry which is, in a sense, an analog of the hidden worldline
N ¼ 2 supersymmetry of the superplane Landau model
[14,15]. It turns out that this phenomenon of enhancing the
original SUð2j1Þ symmetry to SUð2j2Þ at the quantum level
persists as well in the considered odd-coset super-Landau
model. Belowwe assume that � > 1=2, i.e., that the Casimir
operators are nonvanishing for all three LLs.
Because of the anticommutation property fG;�g ¼

fG;�yg ¼ fG;Qg ¼ fG;Qyg ¼ 0, the method of defining
hidden supersymmetries applied in Ref. [5] is not directly
applicable to the present case. In particular, just due to this
property, the supercharges commuting with G and defined
by the general formula (6.12) are identically vanishing.
Yet, we can achieve our goal, though in a distinct way.
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We define

�G � 1

2
½�; G� ¼ �G; �z

G � ��zG;

QG � 1

2
½Q;G� ¼ QG; Qz

G � �QzG:
(6.18)

These operators can be used to generate the second
SUð2Þ algebra5 as

J� � 1

2
ffiffiffiffiffiffi
C2

p fQ;�Gg ¼ � 1

2
ffiffiffiffiffiffi
C2

p f�; QGg ¼ 1ffiffiffiffiffiffi
C2

p Q�G;

Jþ � 1

2
ffiffiffiffiffiffi
C2

p f�z
G;Q

zg ¼ � 1

2
ffiffiffiffiffiffi
C2

p fQz
G;�

zg

¼ 1ffiffiffiffiffiffi
C2

p �zQzG; J 3 ¼ 1

2
½Jþ;J��: (6.19)

The Casimir operator C2 was defined in (3.31). Thus, we
have two distinct SUð2Þ algebras

½Jþ; J�� ¼ 2J3; ½J3; J�� ¼ �J�;

½Jþ;J�� ¼ 2J 3; ½J 3;J�� ¼ �J�;
(6.20)

which can be checked to commute with each other.
Explicitly, in the holomorphic realization, these generators
read

Jþ ¼ J12 ¼ �1@2 � B̂þ; J� ¼ J21 ¼ �2@1 � B̂�;

J3 ¼ J11 ¼ �J22 ¼
1

2
ð�1@1 � �2@2Þ � B̂3; (6.21)

Jþ ¼ J 2
1 ¼

ffiffiffiffiffiffi
C2

p
�1�2; J� ¼ J 1

2 ¼
1ffiffiffiffiffiffi
C2

p @2@1;

J 3 ¼ J 1
1 ¼ �J 2

2 ¼
1

2
ð�1@1 þ �2@2 � 1Þ: (6.22)

Remember that the SUð2Þ matrix operators B̂ are
nonvanishing only at the first LL (‘ ¼ 1) and are zero
for other levels. Then we can define the supercharges
Sai ði ¼ 1; 2; a ¼ 1; 2Þ which are doublets with respect to
either of two SUð2Þ groups:

S11 ¼ �; S21 � ½�;Jþ�;
S12 ¼ Q; S22 � ½Q;Jþ�;

(6.23)

�Sia :¼ ðSai Þz: (6.24)

Explicitly, these supercharges are

S11 ¼ �@1; S21 ¼ � ffiffiffiffiffiffi
C2

p
�2;

S12 ¼ �@2; S22 ¼ þ ffiffiffiffiffiffi
C2

p
�1;

(6.25)

�S11 ¼ �1�2@2 � �1

�
2�þ ‘

2
� B̂3

�
þ �2B̂þ;

�S21 ¼ �2�1@1 � �2

�
2�þ ‘

2
þ B̂3

�
þ �1B̂�;

ffiffiffiffiffiffi
C2

p
�S12 ¼ þð1� �1@1Þ@2 �

�
2�þ ‘

2
� B̂3

�
@2 � B̂þ@1;

ffiffiffiffiffiffi
C2

p
�S22 ¼ �ð1� �2@2Þ@1 þ

�
2�þ ‘

2
þ B̂3

�
@1 þ B̂�@2:

(6.26)

It is straightforward to check that they satisfy the (anti)
commutation relations of the superalgebra suð2j2Þ with
three central charges:

fSai ; �Sjbg ¼ �a
bJ

j
i � �j

iJ
a
b þ �a

b�
j
i

�
2�þ ‘

2
� 1

2

�
;

fSai ; Sbj g ¼ "ij"
ab

ffiffiffiffiffiffi
C2

p
;

f �Sia; �Sjbg ¼ "ij"ab
ffiffiffiffiffiffi
C2

p
;

½Sai ;J c
b� ¼ �a

bS
c
i �

1

2
�c
bS

a
i ;

½Sai ; Jjk� ¼ �j
iS

a
k �

1

2
�j
kS

a
i :

(6.27)

As an example, let us give how this SUð2j2Þ symmetry
is realized on the LLL (i.e., ‘ ¼ 0) wave functions. We
denote �i, ��i as the parameters associated with the extra
pair of fermionic generators, i.e., with S2i ,

�Si2. Then the
additional transformations are

�c0 ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2�� 1

p
ffiffiffiffiffiffi
2�

p ��ic0i ; �c1 ¼ �
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ð2�� 1Þð2�Þ

p
�kc0k;

�c0i ¼ �
ffiffiffiffiffiffi
2�

p
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2�� 1

p ��ic1 �
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffið2�� 1Þð2�Þp

�ic
0: (6.28)

It is easy to check that they leave invariant the norm jj�0jj
in (6.4). Their bracket with the SUð2j1Þ transformations
(6.14) produces the second SUð2Þ, with respect to which c0
and c1 form a doublet. The remaining components c0i are
singlets of the second SUð2Þ. It is also easy to find the
realization of the � transformations on the ‘ ¼ 1 and ‘ ¼ 2
wave function multiplets.
According to Ref. [16] (see also Ref. [17]), the central

charges can be combined into the three-vector ~C as

~Cð‘Þ ¼ ð2�þ ‘=2� 1=2;
ffiffiffiffiffiffiffiffiffiffiffiffi
C2ð‘Þ

q
;
ffiffiffiffiffiffiffiffiffiffiffiffi
C2ð‘Þ

q
Þ � ðC;P;KÞ:

(6.29)

5Due to the anticommutativity of the metric operatorG with�
and Q (and its commutativity with bosonic generators) the
operators �G, �

z
G and QG, Q

z
G form the same suð2j1Þ algebra

as �, �z and Q, Qz themselves, but they do not produce any
obvious closed structure together with the latter. This feature is
in contrast with the construction in Ref. [5], where just the
generators �G, �

z
G and QG, Q

z
G extend suð2j1Þ to suð2j2Þ.
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The norm of ~C defined as ~C2 ¼ C2 � PK is invariant under
the soð1; 2Þ outer automorphisms of the suð2j2Þ superalge-
bra (6.27) [16]. Exploiting this soð1; 2Þ freedom, one can

cast ~C in the form

~C ¼ ðZ; 0; 0Þ; (6.30)

where

Z ¼ 1

2
for ‘ ¼ 0; 2; and Z ¼ 1 for ‘ ¼ 1: (6.31)

Explicitly, the soð1; 2Þ rotated supercharges for all three
levels are

~Sai ¼ ffiffiffiffiffiffi
2�

p
Sai �

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2�� 1

p
"ab"ij �S

j
b; ‘ ¼ 0;

~Sai ¼ ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2�þ 1

p
Sai �

ffiffiffiffiffiffi
2�

p
"ab"ij �S

j
b; ‘ ¼ 2;

~Sai ¼ 1ffiffiffi
2

p ½ ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2�þ 1

p
Sai �

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2�� 1

p
"ab"ij �S

j
b�; ‘ ¼ 1:

(6.32)

In the new frame (6.30) and (6.32) the (anti)commutation
relations of suð2j2Þ become

f~Sai ; ~�Sjbg ¼ �a
bJ

j
i � �j

iJ
a
b þ Z�a

b�
j
i ; f~Sai ; ~Sbj g ¼ 0;

f~�Sia; ~�Sjbg ¼ 0; ½~Sai ;J c
b� ¼ �a

b
~Sci �

1

2
�c
b
~Sai ;

½~Sai ; Jjk� ¼ �j
i
~Sak �

1

2
�j
k
~Sai :

(6.33)

With respect to the redefined suð2j2Þ generators, the
transformations of the LLL supermultiplet take the form

�c0 ¼ ��ic0iffiffiffiffiffiffi
2�

p ;

�c0i ¼
ffiffiffiffiffiffi
2�

p
��ic

0 � !ic1ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2�� 1

p ;

�c1 ¼ � ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2�� 1

p
�!kc0k;

(6.34)

where �!i, !i and �
i, ��i are the parameters associated with

the supercharges ~S1i ,
~�S
i
1 and ~S2i ,

~�S
i
2.

As the final topic of this section, we indicate which
SUð2j2Þ multiplets the wave functions form for different
values of ‘.

In general, irreps of SUð2j2Þ are characterized by the
triple [16]

hm; n; ~Ci; (6.35)

where the non-negative integers m, n are Dynkin labels of
subalgebra suð2Þ � suð2Þ (in the considered case, they are
twice the external isospins of the wave superfunctions) and
~C represents three central charges. The special case is the
‘‘short’’ irreps, with

hm; n; ~Ci; ~C2 ¼ 1

4
ðmþ nþ 1Þ2: (6.36)

It turns out that our wave superfunction multiplets belong
just to this restricted class of the suð2j2Þ representations.
At the levels ‘ ¼ 0 and ‘ ¼ 2, the suð2j2Þ algebra has

the central charge Z ¼ 1=2. Hence, the relevant wave
superfunctions encompass the 2j2 multiplets characterized
by the triple

h0; 0; ~Ci; ~C2 ¼ Z2 ¼ 1

4
: (6.37)

This option corresponds to the fundamental representa-
tions of suð2j2Þ.
At the level ‘ ¼ 1, the wave superfunction multiplet

comprises four bosonic and four fermionic components,
with the central charge Z ¼ 1. It is characterized by the
triple

h1; 0; ~Ci; ~C2 ¼ Z2 ¼ 1: (6.38)

With respect to the bosonic subalgebra suð2Þ � suð2Þ, the
bosonic components of the ‘ ¼ 1 supermultiplet are in
ð0; 0Þ � ð1; 0Þ, while the fermionic ones are in ð1=2; 1=2Þ.
This means that, with respect to the first SUð2Þ, the bosonic
fields are split into the singlet cþ and the triplet c½2�1 , c½1�2

c�, where

cþ ¼ 1

2
ðc½1�1 þ c½2�2 Þ; c� ¼ 1

2
ðc½1�1 � c½2�2 Þ:

With respect to the second SUð2Þ, all of these components
are just singlets. The fermionic components constitute
doublets with respect to both SUð2Þ groups. To be more

precise, either of c½k� and c½k�2 is a doublet of the first SUð2Þ
acting on the index ½k�, while another SUð2Þ combines
them both into its doublet (irrespective of the value of ½k�).
Let us briefly address the case � < 0. With the condition

� <�1=2 taken into account, the norms (5.8) and (5.10)
are positive, while the first-level norm (5.9) is negative (we
leave aside the degenerate case j�j ¼ 1=2). The metric
operator chosen in the form

G ¼ 1þ 8�2 � 2H2

1� 4�2
(6.39)

has the eigenvalues

G ¼ ð�1Þ‘; (6.40)

and so makes all norms positive definite. The implications
of this metric operator radically differ from those of G for
� > 1=2. In particular, it commutes with all symmetry
generators and so does not affect their Hermitian conju-
gation properties. Thus, as opposed to the � > 0 case, it
cannot be directly employed for construction of the
SUð2j2Þ generators acting in the relevant Hilbert space.
Nevertheless, the unitary norms for � < 0 are still invari-
ant under the appropriately defined SUð2j2Þ symmetry.
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The corresponding generators are obtained by making the
substitutions

�¼j�j; ‘¼n�‘0; Sai ¼�a
i ;

�Sia ¼� ��i
a (6.41)

in the definitions (6.25) and (6.26). The suð2j2Þ superalgebra
which these generators form is slightly different from the
one defined by the relations (6.27) pertinent to the � > 0
case. In the basic anticommutator, the two sets of the bosonic
SUð2Þ generators, JJi and J a

b, switch their places, and in

the central charge one should replace � ! j�j, ‘ ! ‘0. The
three-vector ~C defined in (6.29) preserves its form modulo
these substitutions.

A different treatment of the � < 0 case is based on the
consideration in the end of Sec. IVA. The LLL wave

superfunction is defined as ~�‘0¼0 :¼ �‘¼2. It satisfies
the antichirality condition

rð�Þ
j

~�‘0¼0 ¼ rð�Þ
j rð��1Þ

i rð�þ1Þ
k �½ik� ¼ 0 ! ~�‘0¼0

¼ ð1� � � ��Þ�j�j �~�0ð ��Þ: (6.42)

Passing to the complex conjugate set of the wave super-

functions, i.e., ~�‘0 ! ~�?
‘0 ,

~�?
‘0¼0 ¼ ð1� � � ��Þ�j�j ~�0ð�Þ,

reduces the � < 0 case to the already studied � > 0 one.
The relevant SUð2j1Þ generators are obtained just through
the replacement � ! j�j in the � > 0 expressions, and the
passive form of the supertransformation of the wave super-
functions mimics (4.25)

�
 ~�?ð�; ��Þ ¼ j�jð� � ��þ �� � �Þ ~�?ð�; ��Þ: (6.43)

Thus, the structure of the quantum Hilbert space in the
� < 0 case is the same as for � > 0. For the ‘‘physical’’
values � <�1=2, the metric operator G making all norms
positive definite is of the same form as in (6.2), up to the
substitutions � ! j�j and ‘ ! ‘0. The hidden SUð2j2Þ
symmetry generators leaving invariant the unitary norms
are obtained from (6.25) and (6.26) through the same
substitutions.

VII. THE PLANAR LIMIT

In this section, we consider the planar limit of the
SUðnj1Þ=UðnÞ coset model.

We introduce a scale parameter r, rescale the odd vari-
ables and the time coordinate in the action corresponding
to the Lagrangian (2.14) as

� ! �=r; t ! t=r2; � ! �r2; (7.1)

and then send r ! 1. The Lagrangian (2.14) goes over to

L ¼ � _�i _��i þ i�ð _�i ��i þ _��i�
iÞ: (7.2)

This is equivalent to the following redefinition of the
Kähler superpotential:

K ¼ r2 log

�
1� � � ��

r2

�
: (7.3)

In the planar limit K becomes � � ��, and the target metric
and gauge connections read

gij ¼ @j@
�iK ¼ �i

j; (7.4)

Ai ¼ �i@iK ¼ i ��i; �Ai ¼ i@
�iK ¼ i�i: (7.5)

The Hamiltonian is rescaled as

Hð�; ��; �Þ ! 1=r2Hð�=r; ��=r; �r2Þ (7.6)

and in the planar limit becomes

H ¼ rð�Þ
i rð�Þ�i � �n :¼ H0 � �n; (7.7)

where now

rð�Þ
i ¼ @i þ � ��i; rð�Þ�i ¼ @

�i þ ��i: (7.8)

The covariant derivatives obey the anticommutation relation

frð�Þ
i ;rð�Þ �jg ¼ 2��j

i : (7.9)

The Lagrangian (7.2) enjoys the symmetry under odd
magnetic translations with the generators

Qi ¼ �@i þ � ��i; Qyi ¼ �@
�i þ ��i;

fQi;Q
ykg ¼ �2��k

i ; fQi;Qkg ¼ 0; (7.10)

as well as a symmetry under UðnÞ rotations of the coordi-
nates �i, which define ‘‘R symmetry’’ of the superalgebra
(7.10). The full symmetry structure is an obvious contraction
of the superalgebra suðnj1Þ. The spinor generators form just
an extendedN ¼ n, d ¼ 1 Poincaré superalgebra, with the
central charge�2� in place of the Hamiltonian appearing in
the standard extended supersymmetric mechanics models
(see, e.g., Ref. [18]). The Hamiltonian (7.7) admits the
Sugawara-type representation

H ¼ QiQ
yi � 2�Fþ �n; (7.11)

where F ¼ �i@i � ��i@
�i is the Uð1Þ generator. After putting

�î ¼ 0, î ¼ 1; . . . n� 1, and replacing � ! ��, for the
remaining fermionic variable �n, the Lagrangian (7.2) is
reduced to that of the ‘‘toy’’ fermionic Landau model of
Refs. [14,19]. Also note that (7.2), up to some redefinitions,
in the n ¼ 2 case, coincides with the pure fermionic trun-
cation of the Lagrangian of N ¼ 4 super-Landau model
recently constructed in Ref. [20].
Let us sketch some salient features of the quantum

theory. For simplicity, we will mainly concentrate on the
case with � > 0.
The ground state wave superfunction is defined by the

chirality condition rð�Þ�i�0 ¼ 0, which amounts to express-
ing this superfunction through the holomorphic function

�0 ¼ e��� ���0ð�Þ: (7.12)
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The higher LL wave superfunctions are obtained as

�‘ ¼ rð�Þ
i1

� � � rð�Þ
i‘
�½i1���i‘�;

�½i1���i‘� ¼ e��� ���½i1���i‘�ð�Þ;
(7.13)

with the energy of the ‘th Landau level being E‘ ¼ 2�‘.
This formula for E‘ can be directly reproduced from (4.12),
making rescaling (7.6) in (4.12) and taking the planar limit
r ! 1. Note that the exponential prefactors in (7.12) and
(7.13) can be regarded as the r ! 1 limit of the prefactor

in (4.3), (4.6), and (4.11): ð1� r�2� � ��Þ��r2 ! e��� ��.
The invariant norm is defined by

jj�jj2 ¼
Z

d
0�
?�; (7.14)

where
R
d
0 ¼

Q
@i@

�i. Using the anticommutation rela-

tion (7.9), it is straightforward to compute the norm of the
‘th-level wave superfunction:

jj�‘jj2 ¼ ‘!ð2�Þ‘
Z

d
0�
?
½i1���i‘��

½i1���i‘�

¼ ‘!ð2�Þ‘
Z

d
0e
2��� ���?

½i1���i‘��
½i1���i‘�: (7.15)

This integral is obviously not positive definite, for both
� > 0 and � < 0. To make all norms positive, we should
redefine the inner product:

hh�j�ii ¼
Z

d
�?G�: (7.16)

The metric operator G is defined as

ð1Þ G ¼ ð1� 2m̂1Þ . . . ð1� 2m̂nÞ; for � > 0; (7.17)

ð2Þ G ¼ ð1� 2n̂1Þ . . . ð1� 2n̂nÞ; for � < 0: (7.18)

Here

m̂i ¼rð�Þ
i rð�Þ�i

2�
þð�i@i� ��i@

�iÞ; n̂i ¼�rð�Þ
i rð�Þ�i

2j�j ; (7.19)

and no summation over the index i is assumed.
The operator G anticommutes with the supercharges for

� > 0,

fQi;Gg ¼ 0; fQyi; Gg ¼ 0; (7.20)

and commutes with them for � < 0. Note that, within our
conventions, just the latter option corresponds to the toy
SUð1j1Þ invariant fermionic Landau model considered in
Refs. [14,19]. The relevant metric operator is the n ¼ 1
case of (7.18). The alternative choice of �, with the metric
operator being the n ¼ 1 case of (7.17), was not addressed
in these papers.

Though in the notation (7.17) and (7.18) covariance with
respect to the UðnÞ R symmetry is not manifest, one can
check that the operators G commute with UðnÞ generators.
For instance, in the n ¼ 2 case and for � < 0, the metric

operator G can be rewritten in the manifestly Uð2Þ cova-
riant form as G ¼ 1þ 1

2 j�j�2H02 þ 2j�j�1H0. This opera-
tor can be obtained as the planar r ! 1 limit of the metric
operator (6.39), in which �i and � are rescaled according to
(7.1). Upon truncation to n ¼ 1, we find that H02 !
�2j�jH0 and G ! 1þ j�j�1H0. This G is the metric
operator of the fermionic model of Refs. [14,19].
Finally, let us illustrate the general consideration by the

example of the positive norm for the LLL wave function in
the n ¼ 2 case with � > 0:

jj�0jj2 ¼ �c1c1 þ 2� �c0ic0i þ ð2�Þ2 �c0c0: (7.21)

The coefficients in the �i expansion of the holomorphic LLL
superfunction �0ð�Þ were defined precisely as in (4.31).

A. Symmetries of the quantum planar n ¼ 2 model

The superplane Landau models obtained as a large
radius limit of the SUð2j1Þ=Uð1j1Þ supersphere or the
SUð2j1Þ=½Uð1Þ �Uð1Þ� superflag Landau models respect
the worldline N ¼ 2 supersymmetry which emerges as a
contraction of the appropriate extensions of SUð2j1Þ, real-
ized in the Hilbert space of the quantum curved models [5].
In the planar limit, no worldline supersymmetry appears

in the n ¼ 2 odd-coset model. To see what kind of algebraic
structure is recovered in this limit from the suð2j2Þ gener-
ators defined in Sec. VIB, we should make, in all odd
generators (6.25) and (6.26), the rescaling of �, ��, � accord-
ing to (7.1) and multiply them by the additional factor 1=r,
while no such factor is needed in the case of the bosonic
generators (6.21) and (6.22) (it is enough to make the
rescaling of the odd variables and � in them). Keeping in
mind that, to the leading order,

ffiffiffiffiffiffi
C2

p ¼ 2�r2 þ � � � for any
level ‘, it is easy to check that in the limit r ! 1, all odd
SUð2j2Þ generators become either @i or 2��i (modulo
signs), which are just the generators Qi or Qyi in the
holomorphic representation, with the only nonvanishing
anticommutator fQ;Qyg, as is given in (7.10) (for n ¼ 2).
Thus, no new fermionic generators appear in this limit. The
bosonic generators (6.21) retain their form and define the
SUð2Þ R-symmetry group of the flat n ¼ 2 superalgebra
(7.10). The extra SUð2Þ generators (6.22) also retain their
form, modulo the substitution

ffiffiffiffiffiffi
C2

p ! 2�. They generate
the second R-symmetry SUð2Þ group of the flat n ¼ 2
superalgebra, such that the generatorsQi andQ

yi are mixed
under this SUð2Þ.
Surprisingly, it is still possible, at least for the choice of

� > 0, to show that the space of quantum states of the
n ¼ 2 fermionic planar Landau model exhibits SUð2j2Þ
symmetry.
For � > 0, the Hermitian conjugates of the supercharges

Qi are given by

Qzi � GQyiG ¼ �Qyi; i ¼ 1; 2: (7.22)

The metric operator can be used to construct another pair
of the supercharges:
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ðQGÞi � 1

2
½Qi;G� ¼ QiG ¼ �GQi: (7.23)

These two pairs can be combined into the complex quartet

supercharges Ŝai as

Ŝ11 ¼ 1

2
ð2�Þ�1

2ð1þGÞQ1;

Ŝ21 ¼ � 1

2
ð2�Þ�1

2ð1þGÞQz2;

Ŝ12 ¼
1

2
ð2�Þ�1

2ð1þGÞQ2;

Ŝ22 ¼ 1

2
ð2�Þ�1

2ð1þGÞQz1:

(7.24)

These supercharges together with their conjugates Ŝzia
satisfy just the (anti)commutation relations (6.33) of the
superalgebra suð2j2Þ, with Z ¼ 1=2 and the SUð2Þ gener-
ators ðĴ�; Ĵ3Þ, ðĴ�; Ĵ 3Þ defined as

Ĵþ ¼ ð2�Þ�1Qz1Q2; Ĵ� ¼ ð2�Þ�1Qz2Q1;

Ĵ3 ¼ 1

2
ðm̂1 � m̂2Þ; Ĵþ ¼ ð2�Þ�1Qz1Qz2;

Ĵ� ¼ ð2�Þ�1Q2Q1; Ĵ 3 ¼ � 1

2
ð1� m̂1 � m̂2Þ:

(7.25)

It is instructive to rewrite the first set of the SUð2Þ
generators in the covariant form

Ĵij ¼
1

4�

�
½Qzi; Qj� � 1

2
�i
j½Qzk; Qk�

�
; Ĵþ ¼ Ĵ12;

Ĵ� ¼ Ĵ21; Ĵ3 ¼ Ĵ11 ¼ �Ĵ22: (7.26)

We see that they do not coincide with the generators of
the R-symmetry SUð2Þ: in the holomorphic basis, with
Qi ¼ �@i, Q

zi ¼ �2��i, one has

Ĵij ¼ �i@j � 1

2
�i
j�

k@k; (7.27)

which should be compared with the R-symmetry SUð2Þ
generators (6.21) in the same basis (their form is preserved
upon passing to the planar limit). The difference is the

absence of the matrix parts B̂ in (7.27) for any level ‘ as
compared to the generators (6.21) which necessarily include

the B̂ parts for ‘ ¼ 1. Nevertheless, the positive norms are
invariant under both of these SUð2Þ symmetries separately.
The R-symmetry SUð2Þ can be interpreted as one of the
outer automorphisms of the considered suð2j2Þ superalge-
bra: it uniformly rotates the doublet indices i, j, k of the

fermionic generators Ŝai and the bosonic generators Ĵij.

As for the second set of SUð2Þ generators in (7.25), they
coincide with those of the second R-symmetry group
SUð2Þ and have, in the holomorphic basis, the same form
as in (6.22), up to the substitution

ffiffiffiffiffiffi
C2

p ! 2�.
Note that the pair of generators ðQGÞi ¼ QiG, ðQGÞzi ¼

�QziG form the same flat algebra fQG;Q
z
Gg ¼ 2� as the

pair Qi, Qzi. Their crossing anticommutators produce

the suð2Þ generators (7.25). The fermionic generators Q,
QG and their conjugates just fix another basis in the odd
sector (7.24) of the suð2j2Þ superalgebra (this basis was
employed, e.g., in Ref. [20]).
The LLL and the second LL wave superfunctions belong

to the short representation of this suð2j2Þ
h0; 0; ~Ci; (7.28)

with ~C ¼ ð1=2; 0; 0Þ. The first level is described by the
direct sum of such representations:

h0; 0; ~Ci � h0; 0; ~Ci: (7.29)

VIII. SUMMARYAND OUTLOOK

In this paper, we continued the study of super-Landau
models associated with the supergroup SUðnj1Þ. This
study was initiated in Refs. [4,7] for an arbitrary n and
further performed in more detail for n ¼ 2 in Ref. [5,6].
We constructed the model on the pure odd coset
SUðnj1Þ=UðnÞ as a generalization of the consideration
of Ref. [4], which dealt only with the lowest Landau level
sector of such a model. An important peculiarity of this
model is the finite number nþ 1 of Landau levels in the
sector spanned by the wave superfunctions with the van-
ishing external SUðnÞ ‘‘spin.’’ We presented the action of
the model, as well as its quantum Hamiltonian, for an
arbitrary n, found the energy spectrum, and defined the
relevant wave superfunctions. For the particular case of
n ¼ 2, we showed that the space of quantum states of the
model reveals hidden SUð2j2Þ symmetry: at each Landau
level ‘ ¼ 0, 1, 2, the relevant wave superfunctions con-
stitute ‘‘short’’ SUð2j2Þ multiplets. Like in other super-
Landau models, the Hilbert space for any n includes the
states the norms of which are not positive definite; for
n ¼ 2, we gave the explicit form of the metric operator
which modifies the inner product in such a way that the
norms of all states become non-negative, thus demon-
strating that the model is unitary. Such operator is
expected to exist for any n. We also studied the planar
limit of the SUðnj1Þ=UðnÞmodels. In this limit, the super-
algebra suðnj1Þ converts into a superalgebra which is
isomorphic to n-extended d ¼ 1 Poincaré superalgebra,
with a central charge playing the role of the d ¼ 1
Hamiltonian. We presented, for an arbitrary n, the explicit
form of the metric operator ensuring the norms of all
quantum states to be non-negative. For n ¼ 2, we find
out that the Hilbert space for all three levels carries a
dynamical hidden SUð2j2Þ symmetry, like in the SUð2j1Þ
model, though these two SUð2j2Þ symmetries are realized
in entirely different ways.
Our consideration shows that the appearance of the hid-

den SUð2j2Þ symmetries in the superflag and supersphere
Landau models based on the supercosets SUð2j1Þ=½Uð1Þ �
Uð1Þ� and SUð2j1Þ=Uð1j1Þ [5] is not accidental: the same
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phenomenon persists in the Landau model on the pure odd
supercoset SUð2j1Þ=Uð2Þ. Moreover, the planar limit of
this model also surprisingly exhibits SUð2j2Þ symmetry on
the quantum states (as a substitute of the worldline N ¼ 2
supersymmetry of the planar limits of the superflag and
supersphere models [14,15]). It would be interesting to
inquire whether the Hilbert spaces of the odd-coset
Landau models with n > 2 and their planar limits admit
any extended hidden symmetry.

The presence of hidden SUð2j2Þ symmetry in the quan-
tum SUð2j1Þ Landau models [or some other symmetries of
the similar kind in the case of Landau models based on
further extensions of SUð2j1Þ] suggests the possible rela-
tion of this class of models to such integrable systems as
the suð2j2Þ or suð3j2Þ spin chain models and, finally, to
N ¼ 4, d ¼ 4 super-Yang-Mills theory and string theory
(see, e.g., Refs. [10,16,17,21]). It would be also interesting
to retrieve the super-Landau models via dimensional
reduction from some higher-dimensional sigma models
with the supergroup target spaces.

Regarding possible physical applications of the odd-coset
Landau models, we would like to express a hope that the
latter (or their analogs associated with other supergroups)
could be relevant to the description of the quantum Hall
effect and its spin extensions [22–24]. In a sense, the quan-
tum fermionic Landau model could be regarded as a sort of
‘‘parent model’’ for those associated with other SUðnj1Þ
supercosets. This is based on the following reasonings. The
maximal linearly realized symmetry of the SUðnj1Þ=UðnÞ
model is UðnÞ, and we could couple the fermionic coset
variables to some UðnÞ ‘‘matter’’ multiplets while preserv-
ing the full nonlinear SUðnj1Þ symmetry, following the
general recipes of the nonlinear realizations theory. With
adding the properUðnÞ [and SUðnj1Þ] invariant potentials to
the action, we could hope to trigger the spontaneous break-
ing of UðnÞ down to a smaller symmetryH � UðnÞ, so that
the original fermionic variables, together with the bosonic
UðnÞ=H ones, parametrize some ‘‘mixed’’ fermionic-
bosonic supercosets SUðnj1Þ=H. For instance, the superflag
SUð2j1Þ=½Uð1Þ �Uð1Þ� model could be recovered through
the spontaneous breaking pattern Uð2Þ ! H ¼ Uð1Þ �
Uð1Þ. The presence of additional bosonic ‘‘sigma fields’’
in such extended models as compared to the pure coset
SUðnj1Þ=H case, with nontrivial potential terms, could
drastically change the quantum properties of these models.
The relevant d ¼ 1 supercoset models should follow from
the extended models in the ‘‘long-wave’’ limit, in the same
way as the higher-dimensional nonlinear sigma models
follow from the linear ones.
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APPENDIX: ONE-DIMENSIONAL SIGMA
MODELS FROM GAUGING

In thisAppendix, we demonstrate how the invariant d ¼ 1
actions of some other Landau-type models can be recovered
by the gauge method of Sec. II.

1. Landau model on the supersphere SUð2j1Þ=Uð1j1Þ
The superspherical Landau model describes a motion of

a charged particle on the supersphere SUð2j1Þ=Uð1j1Þ
parametrized by one complex even and one complex odd
coordinates [5].
Consider the set consisting of two complex bosonic

fields ui, i ¼ 1, 2, and of one complex fermionic field �
which form a fundamental representation of SUð2j1Þ. The
SUð2j1Þ transformations are defined as a group of linear
transformations leaving invariant the following bilinear
form:

u1 �u1 þ u2 �u2 þ � �� ¼ inv: (A1)

As the first step, we impose the manifestly SUð2j1Þ
covariant constraint

u1 �u1 þ u2 �u2 þ � �� ¼ 1; (A2)

from which we eliminate ju1j as

ju1j ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1� u2 �u2 � � ��

q
: (A3)

As the second step, we gauge the Uð1Þ symmetry which
acts as a multiplication of the fields ðui; �Þ by the common
phase and commutes with SUð2j1Þ. The sigma-model-type
action, which is invariant under both SUð2j1Þ and gauge
Uð1Þ symmetries, is given by

L ¼ rui �r �ui þr� �r ��þ2�A; (A4)

where we have introduced the covariant derivatives r ¼
@t � iA, �r ¼ @t þ iA involving the nonpropagating
Uð1Þ gauge field, AðtÞ, and added the Fayet-Iliopoulos
term for the gauge field ��.
The local Uð1Þ invariance allows us to gauge away a

phase of u1 and thus to make u1 real. In this gauge,

u1 ¼ ju1j ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1� u2 �u2 � � ��

q
;

and we are left with the complex bosonic and fermionic
fields u2 and � as the only independent degrees of freedom.
The field AðtÞ enters (A4) without derivatives, so we can
eliminate it by its algebraic equation of motion:

AðtÞ ¼ i

2
ðu � _�u� _u � �uþ � _��� _� ���2�Þ: (A5)

It is also convenient to pass to the new independent
variables, Grassmann-even zðtÞ and Grassmann-odd �ðtÞ,
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ðu2; �Þ ! ðz; �Þ; u2 ¼ zffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ z�zþ � ��

p ;

� ¼ �ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ z�zþ � ��

p :
(A6)

Then the Lagrangian (A4), with AðtÞ being expressed in
terms of z, � by (A5) and (A6), can be written as

L ¼ g �BA
_ZA _�Z

B þ �ð _ZAAA þ _�Z
B
A �BÞ; (A7)

where gauge connections are AA ¼ �i@AK, A �A ¼ i@ �AK,
K ¼ lnð1þ z�zþ � ��Þ, and the metric on the supersphere is

g�zz ¼ 1þ � ��

ð1þ z�zþ � ��Þ2 ; g�z� ¼ � z ��

ð1þ z�zÞ2 ; (A8)

g ��z ¼
� �z

ð1þ z�zÞ2 ; g ��� ¼
1

1þ z�z
: (A9)

The metric can be concisely written as g �BA ¼ @ �B@AK,
i.e., the function Kðz; �z; �; ��Þ is the corresponding super
Kähler potential. The Lagrangian (A7) coincides with the
one found in Ref. [5] by a different method. It should be
pointed out that the WZ term in (A7) originates from the FI
term in the original gauge action (A4), like in the odd-coset
sigma model Lagrangian (2.14) and (3.5), (3.5).

2. Landau model on SUðnÞ=Uðn� 1Þ
Our second example is the purely bosonic extended

Landau-type model on the coset space SUðnÞ=Uðn� 1Þ,
which is a generalization of the S2 � CP1 Haldane
model [2].

Consider bosonic multiplet u�ðtÞ, � ¼ 1; . . . ; n in the
fundamental representation of the SUðnÞ. This group acts
on these d ¼ 1 fields as

�u� ¼ ��
	u

	; ð��
	Þ ¼ ��	

�; ��
� ¼ 0: (A10)

Impose the SUðnÞ invariant constraint
�u�u

� ¼ 1 (A11)

and define the SUðnÞ invariant Lagrangian
L ¼ �r �u�ru� þ 2�A: (A12)

Here the auxiliary gauge fieldAðtÞ ensures the local Uð1Þ
invariance of (A12), the corresponding gauge-covariant

derivatives being defined as r ¼ @t � iA and �r ¼ @t þ
iA. As in other examples, we may eliminate AðtÞ by its
algebraic equation of motion,

A ¼ i

2
ð _�u�u� � �u� _u� þ 2i�Þ: (A13)

We can also make use of the local Uð1Þ invariance to
choose the u1 field as real. Then, making use of the con-
straint (A11), this field can be expressed through the
remaining ones as

u1 ¼ ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1� �uau

a
p

:

The natural realization of the SUðnÞ group as a group of
left shifts on the coset space SUðnÞ=Uðn� 1Þ is in terms of
the complex coordinates za, a ¼ 1; . . . ; n� 1, with the
holomorphic SUðnÞ transformations:

�za ¼ �a
1 þ �a

bz
b � �1

1z
a � �1

bz
azb: (A14)

Coordinates with such a transformation law correspond to
the realization of the coset space SUðnÞ=Uðn� 1Þ as the
complex projective space CPn. The connection between
the new coordinates za and the old coordinates u� is as
follows:

ua ¼ zaffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ za �za

p ; (A15)

and therefore

u1 ¼ 1ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ za �za

p : (A16)

In terms of the new coordinates, after substituting the
expression (A13) for AðtÞ back to the Lagrangian (A12),
the latter takes the form

L ¼ _za _�za
1þ zb �zb

� _za �zaz
b _�zb

ð1þ zc �zcÞ2
� i�

_za �za � za _�za
1þ zb �zb

: (A17)

In the n ¼ 2 case, it is reduced to the Lagrangian of the
Haldane model, whereas for n ¼ 3 it is the Lagrangian
used in Ref. [25] for description of a variant of the four-
dimensional quantum Hall effect. Note that the coefficient
in front of the Uð1Þ WZ term in (A17) comes from the FI
term in (A12), like in other examples.
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