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Abstract In this paper, we consider the problem of hard-real-time (HRT) multiprocessor
scheduling of embedded streaming applications modeled as acyclic dataflow graphs. Most
of the hard-real-time scheduling theory for multiprocessor systems assumes independent
periodic or sporadic tasks. Such a simple task model is not directly applicable to dataflow
graphs, where nodes represent actors (i.e., tasks) and edges represent data-dependencies.
The actors in such graphs have data-dependency constraints and do not necessarily con-
form to the periodic or sporadic task models. In this work, we prove that the actors in
acyclic Cyclo-Static Dataflow (CSDF) graphs can be scheduled as periodic tasks. Moreover,
we provide a framework for computing the periodic task parameters (i.e., period and start
time) of each actor, and handling sporadic input streams. Furthermore, we define formally
a class of CSDF graphs called matched input/output (I/O) rates graphs which represents
more than 80 % of streaming applications. We prove that strictly periodic scheduling is ca-
pable of achieving the maximum achievable throughput of an application for matched I/O
rates graphs. Therefore, hard-real-time schedulability analysis can be used to determine the
minimum number of processors needed to schedule matched I/O rates applications while de-
livering the maximum achievable throughput. This can be of great use for system designers
during the Design Space Exploration (DSE) phase.

Keywords Real-time multiprocessor scheduling · Embedded streaming systems

1 Introduction

The ever-increasing complexity of embedded systems realized as Multi-Processor Systems-
on-Chips (MPSoCs) is imposing several challenges on systems designers [18]. Two major
challenges in designing streaming software for embedded MPSoCs are: (1) How to express
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parallelism found in applications efficiently?, and (2) How to allocate the processors to
provide guaranteed services to multiple running applications, together with the ability to
dynamically start/stop applications without affecting other already running applications?

Model-of-Computation (MoC) based design has emerged as a de-facto solution to the
first challenge [10]. In MoC-based design, the application can be modeled as a directed
graph where nodes represent actors (i.e., tasks) and edges represent communication chan-
nels. Different MoCs define different rules and semantics on the computation and com-
munication of the actors. The main benefits of a MoC-based design are the explicit rep-
resentation of important properties in the application (e.g., parallelism) and the enhanced
design-time analyzability of the performance metrics (e.g., throughput). One particular MoC
that is popular in the embedded signal processing systems community is the Cyclo-Static
Dataflow (CSDF) model [5] which extends the well-known Synchronous Data Flow (SDF)
model [15].

Unfortunately, no such de-facto solution exists yet for the second challenge of processor
allocation [23]. For a long time, self-timed scheduling was considered the most appropriate
policy for streaming applications modeled as dataflow graphs [14, 28]. However, the need
to support multiple applications running on a single system without prior knowledge of the
properties of the applications (e.g., required throughput, number of tasks, etc.) at system
design-time is forcing a shift towards run-time scheduling approaches as explained in [13].
Most of the existing run-time scheduling solutions assume applications modeled as task
graphs and provide best-effort or soft-real-time quality-of-service (QoS) [23]. Few run-time
scheduling solutions exist which support applications modeled using a MoC and provide
hard-real-time QoS [4, 11, 20, 21]. However, these solutions either use simple MoCs such
as SDF/PGM graphs or use Time-Division Multiplexing (TDM)/Round-Robin (RR) schedul-
ing. Several algorithms from the hard-real-time multiprocessor scheduling theory [9] can
perform fast admission and scheduling decisions for incoming applications while provid-
ing hard-real-time QoS. Moreover, these algorithms provide temporal isolation which is
the ability to dynamically start/run/stop applications without affecting other already running
applications. However, these algorithms from the hard-real-time multiprocessor scheduling
theory received little attention in the embedded MPSoC community. This is mainly due to
the fact that these algorithms assume independent periodic or sporadic tasks [9]. Such a
simple task model is not directly applicable to modern embedded streaming applications.
This is because a modern streaming application is typically modeled as a directed graph
where nodes represent actors, and edges represent data-dependencies. The actors in such
graphs have data-dependency constraints and do not necessarily conform to the periodic or
sporadic task models.

Therefore, in this paper we investigate the applicability of the hard-real-time scheduling
theory for periodic tasks to streaming applications modeled as acyclic CSDF graphs. In such
graphs, the actors are data-dependent. However, we analytically prove that they (i.e., the
actors) can be scheduled as periodic tasks. As a result, a variety of hard-real-time scheduling
algorithms for periodic tasks can be applied to schedule such applications with a certain
guaranteed throughput. By considering acyclic CSDF graphs, our investigation findings and
proofs are applicable to most streaming applications since it has been shown recently that
around 90 % of streaming applications can be modeled as acyclic SDF graphs [30]. Note
that SDF graphs are a subset of the CSDF graphs we consider in this paper.

1.1 Problem statement

Given a streaming application modeled as an acyclic CSDF graph, determine whether it is
possible to execute the graph actors as periodic tasks. A periodic task τi is defined by a 3-



On the hard-real-time scheduling of embedded streaming applications 223

tuple τi = (Si,Ci, Ti). The interpretation is as follows: τi is invoked at time instants t = Si +
kTi and it has to execute for Ci time-units before time t = Si +(k+1)Ti for all k ∈ N0, where
Si is the start time of τi and Ti is the task period. This scheduling approach is called Strictly
Periodic Scheduling (SPS) [22] to avoid confusion with the term periodic scheduling used in
the dataflow scheduling theory to refer to a repetitive finite sequence of actors invocations.
The sequence is periodic since it is repeated infinitely with a constant period. However,
the individual actors invocations are not guaranteed to be periodic. In the remainder of this
paper, periodic scheduling/schedule refers to strictly periodic scheduling/schedule.

1.2 Paper contributions

Given a streaming application modeled as an acyclic CSDF graph, we analytically prove
that it is possible to execute the graph actors as periodic tasks. Moreover, we present an
analytical framework for computing the periodic task parameters for the actors, that is the
period and the start time, together with the minimum buffer sizes of the communication
channels such that the actors execute as periodic tasks. The proposed framework is also ca-
pable of handling sporadic input streams. Furthermore, we define formally two classes of
CSDF graphs: matched input/output (I/O) rates graphs and mis-matched I/O rates graphs.
Matched I/O rates graphs constitute around 80 % of streaming applications [30]. We prove
that strictly periodic scheduling is capable of delivering the maximum achievable through-
put for matched I/O rates graphs. Applying our approach to matched I/O rates applications
enables using a plethora of schedulability tests developed in the real-time scheduling the-
ory [9] to easily determine the minimum number of processors needed to schedule a set of
applications using a certain algorithm to provide the maximum achievable throughput. This
can be of great use for embedded systems designers during the Design Space Exploration
(DSE) phase.

The remainder of this paper is organized as follows: Sect. 2 gives an overview of the
related work. Section 3 introduces the CSDF model and the considered system model. Sec-
tion 4 presents the proposed analytical framework. Section 5 presents the results of empirical
evaluation of the framework presented in Sect. 4. Finally, Sect. 6 ends the paper with con-
clusions.

2 Related work

Parks and Lee [25] studied the applicability of non-preemptive Rate-Monotonic (RM)
scheduling to dataflow programs modeled as SDF graphs. The main difference compared to
our work is: (1) they considered non-preemptive scheduling. In contrast, we consider only
preemptive scheduling. Non-preemptive scheduling is known to be NP-hard in the strong
sense even for the uniprocessor case [12], and (2) they considered SDF graphs which are a
subset of the more general CSDF graphs.

Goddard [11] studied applying real-time scheduling to dataflow programs modeled using
the Processing Graphs Method (PGM). He used a task model called Rate-Based Execution
(RBE) in which a real-time task τi is characterized by a 4-tuple τi = (xi, yi, di, ci). The
interpretation is as follows: τi executes xi times in time period yi with a relative deadline
di per job release and ci execution time per job release. For a given PGM, he developed
an analysis technique to find the RBE task parameters of each actor and buffer size of each
channel. Thus, his approach is closely related to ours. However, our approach uses CSDF
graphs which are more expressive than PGM graphs in that PGM supports only a constant
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production/consumption rate on edges (same as SDF), whereas CSDF supports varying (but
predefined) production/consumption rates. As a result, the analysis technique in [11] is not
applicable to CSDF graphs.

Bekooij et al. presented a dataflow analysis for embedded real-time multiprocessor sys-
tems [4]. They analyzed the impact of TDM scheduling on applications modeled as SDF
graphs. Moreira et al. have investigated real-time scheduling of dataflow programs mod-
eled as SDF graphs in [20–22]. They formulated a resource allocation heuristic [20] and a
TDM scheduler combined with static allocation policy [21]. Their TDM scheduler improves
the one proposed in [4]. In [22], they proved that it is possible to derive a strictly periodic
schedule for the actors of a cyclic SDF graph iff the periods are greater than or equal to
the maximum cycle mean of the graph. They formulated the conditions on the start times
of the actors in the equivalent Homogeneous SDF (HSDF, [15]) graph in order to enforce a
periodic execution of every actor as a Linear Programming (LP) problem.

Our approach differs from [4, 20–22] in: (1) using the periodic task model which al-
lows applying a variety of proven hard-real-time scheduling algorithms for multiprocessors,
and (2) using the CSDF model which is more expressive than the SDF model.

3 Background

3.1 Cyclo-static dataflow (CSDF)

In [5], the CSDF model is defined as a directed graph G = 〈V,E〉, where V is a set of
actors and E ⊆ V × V is a set of communication channels. Actors represent functions that
transform incoming data streams into outgoing data streams. The communication channels
carry streams of data, and an atomic data object is called a token. A channel eu ∈ E is a first-
in, first-out (FIFO) queue with unbounded capacity, and is defined by a tuple eu = (vi, vj ).
The tuple means that eu is directed from vi (called source) to vj (called destination). The
number of actors in a graph G is denoted by N = |V |. An actor receiving an input stream
of the application is called input actor, and an actor producing an output stream of the
application is called output actor. A path wa�z between actors va and vz is an ordered
sequence of channels defined as wa�z = {(va, vb), (vb, vc), . . . , (vy, vz)}. A path wi�j is
called output path if vi is an input actor and vj is an output actor. W denotes the set of all
output paths in G. In this work, we consider only acyclic CSDF graphs. An acyclic graph G

has a number of levels, denoted by L, which is given by Algorithm 1. The level of an actor
vi ∈ V is denoted by σi . Each actor vi ∈ V is associated with four sets:

1. The successors set, denoted by succ(vi), and given by:

succ(vi) = {
vj ∈ V : ∃eu = (vi, vj ) ∈ E

}
(1)

2. The predecessors set, denoted by prec(vi), and given by:

prec(vi) = {
vj ∈ V : ∃eu = (vj , vi) ∈ E

}
(2)

3. The input channels set, denoted by inp(vi), and given by:

inp(vi) =
{ {eu ∈ E : eu = (vj , vi)}, if σi > 1

The set of channels delivering the input streams to vi if σi = 1
(3)
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4. The output channels set, denoted by out(vi), and given by:

out(vi) =
{ {eu ∈ E : eu = (vi, vj )}, if σi < L

The set of channels carrying the output streams from vi, if σi = L (4)

Algorithm 1 LEVELS(G)

Require: Acyclic CSDF graph G = 〈V,E〉
1: i ← 1
2: while V �= ∅ do
3: Ai ← {vj ∈ V : prec(vj ) = ∅}
4: Zi ← {eu ∈ E : ∃vk ∈ Ai that is the source of eu}
5: V ← V \ Ai

6: E ← E \ Zi

7: i ← i + 1
8: end while
9: L ← i − 1

10: return L disjoint sets A1,A2, . . . ,AL , where
⋃L

i=1 Ai = V

Every actor vj ∈ V has an execution sequence [fj (1), fj (2), . . . , fj (Pj )] of length Pj .
The interpretation of this sequence is: The nth time that actor vj is fired, it executes the
code of function fj (((n − 1) mod Pj ) + 1). Similarly, production and consumption of to-
kens are also sequences of length Pj in CSDF. The token production of actor vj on chan-
nel eu is represented as a sequence of constant integers [xu

j (1), xu
j (2), . . . , xu

j (Pj )]. The nth
time that actor vj is fired, it produces xu

j (((n − 1) mod Pj ) + 1) tokens on channel eu. The
consumption of actor vk is completely analogous; the token consumption of actor vk from
a channel eu is represented as a sequence [yu

k (1), yu
k (2), . . . , yu

k (Pj )]. The firing rule of a
CSDF actor vk is evaluated as “true” for its nth firing iff all its input channels contain at
least yu

k (((n − 1) mod Pj ) + 1) tokens. The total number of tokens produced by actor vj on
channel eu during the first n invocations, denoted by Xu

j (n), is given by Xu
j (n) = ∑n

l=1 xu
j (l).

Similarly, the total number of tokens consumed by actor vk from channel eu during the first
n invocations, denoted by Y u

k (n), is given by Y u
k (n) = ∑n

l=1 yu
k (l).

Example 1 Figure 1 shows a CSDF graph consisting of four actors and four communication
channels. Actor v1 is the input actor with a successors set succ(v1) = {v2, v3}, and v4 is the
output actor with a predecessors set prec(v4) = {v2, v3}. There are two output paths in the
graph: w1 = {(v1, v2), (v2, v4)} and w2 = {(v1, v3), (v3, v4)}. The production sequences are
shown between square brackets at the start of edges (e.g., [5,3,2] for actor v1 on edge e2),
while the consumption sequences are shown between square brackets at the end of the edges
(e.g., [1,3,1] for v3 on e2).

An important property of the CSDF model is its decidability, which is the ability to derive
at compile-time a schedule for the actors. This is formulated in the following definitions and
results from [5].

Definition 1 (Valid static schedule [5]) Given a connected CSDF graph G, a valid static
schedule for G is a finite sequence of actors invocations that can be repeated infinitely on the
incoming sample stream while the amount of data in the buffers remains bounded. A vector
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Fig. 1 Example CSDF graph

q = [q1, q2, . . . , qN ]T , where qj > 0, is a repetition vector of G if each qj represents the
number of invocations of an actor vj in a valid static schedule for G. The repetition vector
of G in which all the elements are relatively prime1 is called the basic repetition vector
of G, denoted by q̇. G is consistent if there exists a repetition vector. If a deadlock-free
schedule can be found, G is said to be live. Both consistency and liveness are required for
the existence of a valid static schedule.

Theorem 1 ([5]) In a CSDF graph G, a repetition vector q = [q1, q2, . . . , qN ]T is given by

q = P · r, with Pjk =
{

Pj , if j = k

0, otherwise
(5)

where r = [r1, r2, . . . , rN ]T is a positive integer solution of the balance equation

Γ · r = 0 (6)

and where the topology matrix Γ ∈ Z
|E|×|V | is defined by

Γuj =
⎧
⎨

⎩

Xu
j (Pj ), if actor vj produces on channel eu

−Y u
j (Pj ), if actor vj consumes from channel eu

0, Otherwise
(7)

Definition 2 For a consistent and live CSDF graph G, an actor iteration is the invocation
of an actor vi ∈ V for qi times, and a graph iteration is the invocation of every actor vi ∈ V

for qi times, where qi ∈ q.

Corollary 1 (From [5]) If a consistent and live CSDF graph G completes n iterations,
where n ∈ N, then the net change to the number of tokens in the buffers of G is zero.

Lemma 1 Any acyclic consistent CSDF graph is live.

Proof Bilsen et al. proved in [5] that a CSDF graph is live iff every cycle in the graph is live.
Equivalently, a CSDF graph deadlocks only if it contains at least one cycle. Thus, absence
of cycles in a CSDF graph implies its liveness. �

1I.e., gcd{q1, q2, . . . , qN } = 1.
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Example 2 For the CSDF graph shown in Fig. 1

Γ =

⎡

⎢⎢
⎣

6 −2 0 0
10 0 −5 0
0 2 0 −3
0 0 5 −5

⎤

⎥⎥
⎦ , r =

⎡

⎢⎢
⎣

1
3
2
2

⎤

⎥⎥
⎦ ,

P =

⎡

⎢⎢
⎣

3 0 0 0
0 1 0 0
0 0 3 0
0 0 0 2

⎤

⎥⎥
⎦ , and q̇ =

⎡

⎢⎢
⎣

3
3
6
4

⎤

⎥⎥
⎦

3.2 System model and scheduling algorithms

In this section, we introduce the system model and the related schedulability results.

3.2.1 System model

A system Ω consists of a set π = {π1,π2, . . . , πm} of m homogeneous processors. The
processors execute a task set τ = {τ1, τ2, . . . , τn} of n periodic tasks, and a task may be
preempted at any time. A periodic task τi ∈ τ is defined by a 4-tuple τi = (Si,Ci, Ti,Di),
where Si ≥ 0 is the start time of τi , Ci > 0 is the worst-case execution time of τi , Ti ≥ Ci

is the task period, and Di , where Ci ≤ Di ≤ Ti , is the relative deadline of τi . A periodic
task τi is invoked (i.e., releases a job) at time instants t = Si + kTi for all k ∈ N0. Upon
invocation, τi executes for Ci time-units. The relative deadline Di is interpreted as follows:
τi has to finish executing its kth invocation before time t = Si + kTi + Di for all k ∈ N0.
If Di = Ti , then τi is said to have implicit-deadline. If Di < Ti , then τi is said to have
constrained-deadline. If all the tasks in a task-set τ have the same start time, then τ is said
to be synchronous. Otherwise, τ is said to be asynchronous.

The utilization of a task τi is Ui = Ci/Ti . For a task set τ , the total utilization of τ is
Usum = ∑

τi∈τ Ui and the maximum utilization factor of τ is Umax = maxτi∈τ Ui .
In the remainder of this paper, a task set τ refers to an asynchronous set of implicit-

deadline periodic tasks. As a result, we refer to a task τi with a 3-tuple τi = (Si,Ci, Ti) by
omitting the implicit deadline Di which is equal to Ti .

3.2.2 Scheduling asynchronous set of implicit deadline periodic tasks

Given a system Ω and a task set τ , a valid schedule is one that allocates a processor to a task
τi ∈ τ for exactly Ci time-units in the interval [Si + kTi, Si + (k + 1)Ti) for all k ∈ N0 with
the restriction that a task may not execute on more than one processor at the same time. A
necessary and sufficient condition for τ to be scheduled on Ω to meet all the deadlines (i.e.,
τ is feasible) is:

Usum ≤ m (8)

The problem of constructing a periodic schedule for τ can be solved using several algo-
rithms [9]. These algorithms differ in the following aspects: (1) Priority Assignment: A task
can have fixed priority, job-fixed priority, or dynamic priority, and (2) Allocation: Based on
whether a task can migrate between processors upon preemption, algorithms are classified
into:
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– Partitioned: Each task is allocated to a processor and no migration is permitted
– Global: Migration is permitted for all tasks
– Hybrid: Hybrid algorithms mix partitioned and global approaches and they can be further

classified to:

1. Semi-partitioned: Most tasks are allocated to processors and few tasks are allowed to
migrate

2. Clustered: Processors are grouped into clusters and the tasks that are allocated to one
cluster are scheduled by a global scheduler

An important property of scheduling algorithms is optimality. A scheduling algorithm
A is said to be optimal iff it can schedule any feasible task set τ on Ω . Several global
and hybrid algorithms were proven optimal for scheduling asynchronous sets of implicit-
deadline periodic tasks (e.g., [2, 3, 8, 16]). The minimum number of processors needed to
schedule τ using an optimal scheduling algorithm, denoted by MOPT, is given by:

MOPT = �Usum (9)

Partitioned algorithms are known to be non-optimal for scheduling implicit-deadline pe-
riodic tasks [7]. However, they have the advantage of not requiring task migration. One
prominent example of partitioned scheduling algorithms is the Partitioned Earliest Deadline
First (P-EDF) algorithm. EDF is known to be optimal for scheduling arbitrary task sets on
a uniprocessor system [6]. In a multiprocessor system, EDF can be combined with differ-
ent processor allocation algorithms (e.g., Bin-packing heuristics such as First-Fit (FF) and
Worst-Fit (WF)). López et al. derived in [17] the worst-case utilization bounds for a task set
τ to be schedulable using P-EDF. These bounds serve as a simple sufficient schedulability
test. Based on these bounds, they derived the minimum number of processors needed to
schedule a task set τ under P-EDF, denoted by MP-EDF:

MP-EDF ≥
{

1, if Usum ≤ 1
min(� n

β
, � (β+1)Usum−1

β
), if Usum > 1,

(10)

where β = �1/Umax�. A task set τ with total utilization Usum and maximum utilization factor
Umax is always guaranteed to be schedulable on MP-EDF processors. Since MP-EDF is derived
based on a sufficient test, it is important to note that τ may be schedulable on less number
of processors. We define MPAR as the minimum number of processors on which τ can be
partitioned assuming bin packing allocation (e.g., First-Fit (FF)) with each set in the partition
having a total utilization of at most 1. MPAR can be expressed as:

MPAR = min{x ∈ N : B is x-partition of τ and Usum ≤ 1 for all y ∈ B} (11)

MPAR is specific to the task set τ for which it is computed. Another task set τ̂ with the
same total utilization and maximum utilization factor as τ might not be schedulable on MPAR

processors due to partitioning issues.

4 Strictly periodic scheduling of acyclic CSDF graphs

This section presents our analytical framework for scheduling the actors in acyclic CSDF
graphs as periodic tasks. The construction it uses arranges the actors forming the CSDF
graph into a set of levels as shown in Sect. 3. All actors belonging to a certain level depend
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directly only on the actors in the previous levels. Then, we derive, for each actor, a period
and start time, and for each channel, a buffer size. These derived parameters ensure that a
strictly periodic schedule can be achieved in the form of a pipelined sequence of invocations
of all the actors in each level.

4.1 Definitions and assumptions

In the remainder of this paper, a graph G refers to an acyclic consistent CSDF graph. We
base our analysis on the following assumptions:

Assumption 1 A graph G has a set I = {I1, I2, . . . , IK} of K sporadic input streams con-
nected to the input actors of G. The set of input streams to an actor vi is denoted by Zi . We
make the following assumptions about the input streams:

1. Zi ∩ Zj = ∅ ∀vi, vj ∈ V .
2. The first samples of all the streams arrive prior to or at the same time when the actors of

G start executing
3. Each input stream Ij is characterized by a minimum inter-arrival time (also called period)

of the samples, denoted by γj . This minimum inter-arrival time is assumed to be equal to
the period of the input actor which receives Ij . This assumption indicates that the inter-
arrival time for input streams can be controlled by the designer to match the periods of
the actors.

Assumption 2 An actor vi consumes its input data immediately when it starts its firing and
produces its output data just before it finishes its firing.

We start with the following definition:

Definition 3 (Execution time vector) For a graph G, an execution time vector μ, where
μ ∈ N

N , represents the worst-case execution times, measured in time-units, of the actors in
G. The worst-case execution time of an actor vj ∈ V is given by

μj = Pj

max
k=1

(
T R ·

∑

el∈inp(vj )

yl
j (k) + T W ·

∑

er∈out(vj )

xr
j (k) + T C

j (k)

)
(12)

where Pj is the length of CSDF firing/production/consumption sequences of actor vj , T R

is the worst-case time needed to read a single token from an input channel, yl
j is the con-

sumption sequence of vj from channel el , T W is the worst-case time needed to write a single
token to an output channel, xr

j is the production sequence of vj into channel er , and T C
j (k)

is the worst-case computation time of vj in firing k.

Let η = maxvi∈V (μiqi) and Q = lcm{q1, q2, . . . , qN } (lcm denotes the least-common-
multiple operator). Now, we give the following definition.

Definition 4 (Matched input/output rates graph) A graph G is said to be matched in-
put/output (I/O) rates graph if and only if

η mod Q = 0 (13)

If (13) does not hold, then G is said to be mis-matched I/O rates graph.
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The concept of matched I/O rates applications was first introduced in [30] as the applica-
tions with low value of Q. However, the authors did not establish exact test for determining
whether an application is matched I/O rates or not. The test in (13) is a novel contribution
of this paper. If η mod Q = 0, then there exists at least a single actor in the graph which is
fully utilizing the processor on which it runs. This, as shown later in Sect. 4.3.3, allows the
graph to achieve optimal throughput. On the other hand, if η mod Q �= 0, then there exist
idle durations in the period of each actor which results in sub-optimal throughput. This is
illustrated later in Example 3 which shows the strictly periodic schedule of a mis-matched
I/O rates application.

Definition 5 (Output path latency) Let wa�z = {(va, vb), . . . , (vy, vz)} be an output path in
a graph G. The latency of wa�z under periodic input streams, denoted by L(wa�z), is the
elapsed time between the start of the first firing of va which produces data to (va, vb) and
the finish of the first firing of vz which consumes data from (vy, vz).

Consequently, we define the maximum latency of G as follows:

Definition 6 (Graph maximum latency) For a graph G, the maximum latency of G under
periodic input streams, denoted by L(G), is given by:

L(G) = max
wi�j ∈W

L(wi�j ) (14)

Definition 7 (Self-timed schedule) A self-timed schedule (STS) is one where all the actors
are fired as soon as their input data are available.

Self-timed scheduling has been shown in [28] to achieve the maximum achievable
throughput and minimum achievable latency of a Homogeneous SDF (HSDF, [15]) graph.
This results extends to CSDF graphs since any CSDF graph can be converted to an equiv-
alent HSDF graph. For acyclic graphs, the STS throughput of an actor vi , denoted by
RSTS(vi), is given by:

RSTS(vi) = qi/η (15)

Definition 8 (Strictly periodic actor) An actor vi ∈ V is strictly periodic iff the time period
between any two consecutive firings is constant.

Definition 9 (Period vector) For a graph G, a period vector λ, where λ ∈ N
N , represents

the periods, measured in time-units, of the actors in G. λj ∈ λ is the period of actor vj ∈ V .
λ is given by the solution to both

q1λ1 = q2λ2 = · · · = qN−1λN−1 = qNλN (16)

and

λ − μ ≥ 0, (17)

where qj ∈ q̇ (the basic repetition vector of G according to Definition 1).

Definition 9 implies that all the actors have the same iteration period. This is captured in
the following definition:
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Definition 10 (Iteration period) For a graph G, the iteration period under strictly periodic
scheduling, denoted by α, is given by

α = qiλi for any vi ∈ V (18)

Now, we prove the existence of a strictly periodic schedule when the input streams are
strictly periodic. An input stream Ij connected to input actor vi is strictly periodic iff the
inter-arrival time between any two consecutive samples is constant. Based on Assump-
tion 1-3, it follows that γj = λi . Later on, we extend the results to handle periodic with
jitter and sporadic input streams.

4.2 Existence of a strictly periodic schedule

Lemma 2 For a graph G, the minimum period vector of G, denoted by λmin, is given by

λmin
i = Q

qi

⌈
η

Q

⌉
for vi ∈ V (19)

.

Proof Equation (16) can be re-written as:

� · λ = 0, (20)

where � ∈ Z
(N−1)×N is given by

�ij =
⎧
⎨

⎩

q1, if j = 1
−qj , if j = i + 1
0, otherwise

(21)

Observe that nullity(�) = 1. Thus, there exists a single vector which forms the basis
of the null-space of �. This vector can be represented by taking any unknown λk as the
free-unknown and expressing the other unknowns in terms of it which results in:

λ = λk[qk/q1, qk/q2, . . . , qk/qN ]T

The minimum λk ∈ N is

λk = lcm{q1, q2, . . . , qN }/qk

Thus, the minimum λ ∈ N that solves (16) is given by

λi = Q/qi for vi ∈ V (22)

Let λ̂ be the solution given by (22). Equations (16) and (17) can be re-written as:

�(cλ̂) = 0 (23)

cλ̂1 ≥ μ1, cλ̂2 ≥ μ2, . . . , cλ̂N ≥ μN (24)

where c ∈ N. Equation (24) can be re-written as:

c ≥ μ1q1/Q, c ≥ μ2q2/Q, . . . , c ≥ μNqN/Q (25)
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Fig. 2 Schedule Π1 time [0, α)[α,2α)[2α,3α)· · · [(L − 1)α, Lα)

levelA1(1) A2(1) A3(1) · · · AL(1)

Fig. 3 Schedule Π2 time [0, α)[α,2α)[2α,3α)· · · [(L − 1)α, Lα)

levelA1(1) A2(1) A3(1) · · · AL(1)

A1(2) A2(2) · · · AL−1(2)

It follows that c must be greater than or equal to maxvi∈V (μiqi)/Q = η/Q. However, η/Q

is not always guaranteed to be an integer. As a result, the value is rounded by taking the
ceiling. It follows that the minimum λ which satisfies both of (16) and (17) is given by

λi = Q/qi�η/Q for vi ∈ V

�

Theorem 2 For any graph G, a periodic schedule Π exists such that every actor vi ∈ V is
strictly periodic with a constant period λi ∈ λmin and every communication channel eu ∈ E

has a bounded buffer capacity.

Proof Recall that in this proof we assume that the input streams to level-1 actors are strictly
periodic with periods equal to the input actors periods. Therefore, it follows that level-1
actors can execute periodically since their input streams are always available when they fire.
By Definition 2, level-1 actors will complete one iteration when they fire qi times, where qi

is the repetition of vi ∈ A1. Assume that level-1 actors start executing at time t = 0. Then,
by time t = α, level-1 actors are guaranteed to finish one iteration. According to Theorem 1,
level-1 actors will also generate enough data such that every actor vk ∈ A2 can execute
qk times (i.e., one iteration) with a period λk . According to (16), firing vk for qk times
with a period λk takes α time-units. Thus, starting level-2 actors at time t = α guarantees
that they can execute periodically with their periods given by Definition 9 for α time-units.
Similarly, by time t = 2α, level-3 actors will have enough data to execute for one iteration.
Thus, starting level-3 actors at time t = 2α guarantees that they can execute periodically
for α time-units. By repeating this over all the L levels, a schedule Π1 (shown in Fig. 2) is
constructed in which all the actors that belong to Ai are started at start time φi given by

φi = (i − 1)α (26)

Aj(k) denotes level-j actors executing their kth iteration. For example, A2(1) denotes
level-2 actors executing their first iteration. At time t = Lα, G completes one iteration. It
is trivial to observe from Π1 that as soon as level-1 actors finish one iteration, they can
immediately start executing the next iteration since their input streams arrive periodically.
If level-1 actors start their second iteration at time t = α, their execution will overlap with
the execution of the level-2 actors. By doing so, level-2 actors can start immediately their
second iteration after finishing their first iteration since they will have all the needed data to
execute one iteration periodically at time t = 2α. This overlapping can be applied to all the
levels to yield the schedule Π2 shown in Fig. 3.

Now, the overlapping can be applied L times on schedule Π1 to yield a schedule ΠL as
shown in Fig. 4.

Starting from time t = Lα, a schedule Π∞ can be constructed as shown in Fig. 5.
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Fig. 4 Schedule ΠL time [0, α)[α,2α)[2α,3α)· · · [(L − 1)α, Lα)

levelA1(1) A2(1) A3(1) · · · AL(1)

A1(2) A2(2) · · · AL−1(2)

A1(3) · · · AL−2(3)

· · · AL−3(4)

· · · · · ·
A1(L)

Fig. 5 Schedule Π∞ time [0, α)[α,2α)[2α,3α)· · · [(L − 1)α, Lα)[Lα, (L + 1)α)· · ·
level A1(1) A2(1) A3(1) · · · AL(1) AL(2) · · ·

A1(2) A2(2) · · · AL−1(2) AL−1(3) · · ·
A1(3) · · · AL−2(3) AL−2(4) · · ·

· · · AL−3(4) AL−3(5) · · ·
· · · · · · · · · · · ·

A1(L) A1(L + 1) · · ·

In schedule Π∞, every actor vi is fired every λi time-unit once it starts. The start time
defined in (26) guarantees that actors in a given level will start only when they have enough
data to execute one iteration in a periodic way. The overlapping guarantees that once the
actors have started, they will always find enough data for executing the next iteration since
their predecessors have already executed one additional iteration. Thus, schedule Π∞ shows
the existence of a periodic schedule of G where every actor vj ∈ V is strictly periodic with
a period equal to λj .

The next step is to prove that Π∞ executes with bounded memory buffers. In Π∞, the
largest delay in consuming the tokens occurs for a channel eu ∈ E connecting a level-1
actor and a level-L actor. This is illustrated in Fig. 5 by observing that the data produced by
iteration-1 of a level-1 source actor will be consumed by iteration-1 of a level-L destination
actor after (L − 1)α time-units. In this case, eu must be able to store at least (L − 1)Xu

1 (q1)

tokens. However, starting from time t = Lα, both of the level-1 and level-L actors execute
in parallel. Thus, we increase the buffer size by Xu

1 (q1) tokens to account for the overlapped
execution. Hence, the total buffer size of eu is LXu

1 (q1) tokens. Similarly, if a level-2 actor,
denoted v2, is connected directly to a level-L actor via channel ev , then ev must be able to
store at least (L − 1)Xv

2(q2) tokens. By repeating this argument over all the different pairs
of levels, it follows that each channel eu ∈ E, connecting a level-i source actor and a level-j
destination actor, where j ≥ i, will store according to schedule Π∞ at most:

bu = (j − i + 1)Xu
k (qk) (27)

tokens, where vk is the level-i actor, and qk ∈ q̇. Thus, an upper bound on the FIFO sizes
exists. �

Example 3 We illustrate Theorem 2 by constructing a periodic schedule for the CSDF graph
shown in Fig. 1. Assume that the CSDF graph has an execution vector μ = [5,2,3,2]T .
Given q̇ = [3,3,6,4]T as computed in Example 2, we use (19) to find λmin = [8,8,4,6]T .
Figure 6 illustrates the periodic schedule of the actors for the first graph iteration. L = 3 and
the levels consist of three sets: A1 = {v1}, A2 = {v2, v3}, and A3 = {v4}. A1 actors start at
time t = 0. Since α = qiλi = 24 for any vi in the graph, A2 actors start at time t = α = 24
and A3 actors start at time t = 2α = 48. Every actor vj in the graph executes for μj time-
units every λj time-units. For example, actor v2 starts at time t = 24 and executes for 2
time-units every 8 time-units.
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Fig. 6 Strictly periodic schedule for the CSDF graph shown in Fig. 1. The x-axis represents the time axis.

4.3 Earliest start times and minimum buffer sizes

Now, we are interested in finding the earliest start times of the actors, and the minimum
buffer sizes of the communication channels that guarantee the existence of a periodic sched-
ule. Minimizing the start times and buffer sizes is crucial since it minimizes the initial re-
sponse time and the memory requirements of the applications modeled as acyclic CSDF
graphs.

4.3.1 Earliest start times

In the proof of Theorem 2, the notion of start time was introduced to denote when the actor
is started on the system. The start time values used in the proof of the theorem were not
the minimum ones. Here, we derive the earliest start times. We start with the following
definitions:

Definition 11 (Cumulative production function) The cumulative production function of ac-
tor vi producing into channel eu during the interval [ts , te), denoted by prd[ts ,te)(vi, eu), is the
sum of the number of tokens produced by vi into eu during the interval [ts , te).

In case of implicit-deadline periodic tasks, prd[ts ,te)(vi, eu) is given by:

prd
[ts ,te)

(vi, eu) =
{

Xu
i (� te−ts

λi
�), if (te − ts) ≥ λi

0, if (te − ts) < λi

(28)

Similarly, we define the cumulative consumption function as follows:

Definition 12 (Cumulative consumption function) The cumulative consumption function of
actor vi consuming from channel eu over the interval [ts , te], denoted by cns[ts ,te](vi, eu), is
the sum of the number of tokens consumed by vi from eu during the interval [ts , te].

Similar to (28), cns[ts ,te](vi, eu) is given by:

cns
[ts ,te]

(vi, eu) =
⎧
⎨

⎩

0, if te < ts
Y u

i (� te−ts
λi

 + 1), if (te − ts) mod λi = 0
Y u

i (� te−ts
λi

), if (te − ts) mod λi �= 0
(29)

Recall that prec(vi) is the predecessors set of actor vi , Y u
i is the consumption sequence

of an actor vi from channel eu, and α is the iteration period. Now, we give the following
lemma:
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Lemma 3 For a graph G, the earliest start time of an actor vj ∈ V , denoted by φj , under a
strictly periodic schedule is given by

φj =
{

0, if prec(vj ) = ∅
max

vi∈prec(vj )
(φi→j ), if prec(vj ) �= ∅ (30)

where

φi→j = min
t∈[0,φi+α]

{
t : prd

[φi ,max(φi ,t)+k)

(vi, eu) ≥ cns
[t,max(φi ,t)+k]

(vj , eu) ∀k = 0,1, . . . , α
}

(31)

Proof Theorem 2 proved that starting a level-k actor vj at a start time

φj = (k − 1)α (32)

guarantees strictly periodic execution of the actor vj . Any start time later than that guaran-
tees also strictly periodic execution since vj will always find enough data to execute in a
strictly periodic way.

Equation (32) can be re-written as:

φj =
{

0, if prec(vj ) = ∅
max

vi∈prec(vj )
(φi) + α, if prec(vj ) �= ∅ (33)

The equivalence follows from observing that a level-k actor, where k > 1, has a level-(k−1)

predecessor. Hence, applying (33) to a level-k actor, where k > 1, yields:

φj = max
(
(k − 2)α, (k − 3)α, . . . ,0

) + α = (k − 1)α

Now, we are interested in starting vj ∈ Ak , where k > 1, earlier. That is:

φj ≤ max
vi∈prec(vj )

(φi) + α (34)

φj has also a lower-bound by observing that an actor vj can not start before the applica-
tion is started. That is:

0 ≤ φj ≤ max
vi∈prec(vj )

(φi) + α ⇒ 0 ≤ φj ≤ max
vi∈prec(vj )

(φi + α) (35)

If we select φj such that

φj = max
vi∈prec(vj )

(φi→j ), φi→j = t̂ , t̂ ∈ [0, φi + α] (36)

then this guarantees that φj also satisfies (35).
In (36), a valid start time candidate φi→j must satisfy extra conditions to guarantee that

the number of produced tokens on edge eu = (vi, vj ) at any time instant t ≥ t̂ is greater
than or equal to the number of consumed tokens at the same instant. To satisfy these extra
conditions, we consider the following two possible cases:

Case I: t̂ ≥ φi . This case is illustrated in Fig. 7. In this case, a valid start time candidate
t̂ must satisfy:

prd
[φi ,t̂+k)

(vi, eu) ≥ cns
[t̂ ,t̂+k]

(vj , eu) ∀k = 0,1, . . . , α (37)
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Fig. 7 Timeline of vi and vj

when t̂ ≥ φi

Fig. 8 Timeline of vi and vj

when t̂ < φi

Satisfying (37) guarantees that vj can fire at times t = t̂ , t̂ + λj , . . . , t̂ + α. Thus, a valid
value of t̂ guarantees that once vj is started, it always finds enough data to fire for one
iteration. As a result, vj executes in a strictly periodic way.

Case II: t̂ < φi . This case is illustrated in Fig. 8. A valid start time candidate t̂ must
satisfy:

prd
[φi ,φi+k)

(vi, eu) ≥ cns
[t̂ ,φi+k]

(vj , eu) ∀k = 0,1, . . . , α (38)

This case occurs when vj consumes zeros tokens during the interval [t̂ , φi]. This is a valid
behavior since the consumption rates sequence can contain zero elements. Since t̂ < φi , it is
sufficient to check the cumulative production and consumption over the interval [φi,φi +α]
since by time t = φi +α both vi and vj are guaranteed to have finished one iteration. Thus, t̂

also guarantees that once vj is started, it always finds enough data to fire. Hence, vj executes
in a strictly periodic way.

Now, we can merge (37) and (38) which results in:

prd
[φi ,max(φi ,t̂)+k)

(vi, eu) ≥ cns
[t̂ ,max(φi ,t̂)+k]

(vj , eu) ∀k = 0,1, . . . , α (39)

Any value of t̂ which satisfies (39) is a valid start time value that guarantees strictly
periodic execution of vj . Since there might be multiple values of t̂ that satisfy (39), we
take the minimum value because it is the earliest start time that guarantees strictly periodic
execution of vj . �

4.3.2 Minimum buffer sizes

Lemma 4 For a graph G, the minimum bounded buffer size bu of a communication channel
eu ∈ E connecting a source actor vi with start time φi , and a destination actor vj with start
time φj , where vi, vj ∈ V , under a strictly periodic schedule is given by

bu =
⎧
⎨

⎩

max
k∈[0,1,...,α]

(prd[φi ,φj +k)(vi, eu) − cns[φj ,φj +k)(vj , eu)), if φi ≤ φj

max
k∈[0,1,...,α]

(prd[φi ,φi+k)(vi, eu) − cns[φj ,φi+k)(vj , eu)), if φi > φj
(40)

Proof Equation (40) tracks the maximum cumulative number of unconsumed tokens in eu

during one iteration for vi and vj . There are two cases:
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Fig. 9 Execution time-lines of
vi and vj when φi ≤ φj

Fig. 10 Execution time-lines of
vi and vj when φi > φj

Case I: φi ≤ φj . In this case, (40) tracks the maximum cumulative number of uncon-
sumed tokens in eu during the time interval [φi,φj + α). Figure 9 illustrates the execution
time-lines of vi and vj when φi ≤ φj . In interval A, vi is actively producing tokens while vj

has not yet started executing. As a result, it is necessary to buffer all the tokens produced in
this interval in order to prevent vi from blocking on writing. Thus, bu must be greater than
or equal to prd[φi ,φj )(vi, eu). Starting from time t = φj , both of vi and vj are executing in
parallel (i.e., overlapped execution). In the proof of Theorem 2, an additional Xu

i (qi) tokens
were added to the buffer size of eu to account for the overlapped execution. However, this
value is a “worst-case” value. The minimum number of tokens that needs to be buffered
is given by the maximum number of unconsumed tokens in eu at any time over the time
interval [φj ,φj + α) (i.e., intervals B and C in Fig. 9). Taking the maximum number of
unconsumed tokens guarantees that vi will always have enough space to write to eu. Thus,
bu is sufficient and minimum for guaranteeing strictly periodic execution of vi and vj in the
time interval [φi,φj +α). At time t = φj +α, both of vi and vj have completed one iteration
and the number of tokens in eu is the same as at time t = φj (Follows from Corollary 1).
Due to the strict periodicity of vi and vj , the pattern shown in Fig. 9 repeats. Thus, bu is also
sufficient and minimum for any t ≥ φj + α.

Case II: φi > φj . Figure 10 illustrates this case. According to Lemma 3, φj can be smaller
than φi iff vi consumes zero tokens in interval A. Therefore, the intervals in which there is
actually production/consumption of tokens are B and C. During interval B , there is over-
lapped execution and bu gives the maximum number of unconsumed tokens in eu during
[φi,φj + α) which guarantees that vi always have enough space to write to eu and vj has
enough data to consume from eu. At time t = φj + α, vj finishes one iteration and interval
C starts. During interval C, vi is producing data to eu while vj is consuming zero tokens.
Therefore, eu has to accommodate all the tokens produced during interval C and bu must
be greater than or equal to prd[φj +α,φi+α](vi, eu). As in Case I, bu is sufficient and minimum
for guaranteeing strictly periodic execution of vi and vj in the interval [φj ,φi + α]. At time
t = φi + α, both of vi and vj have completed one iteration and eu contains a number of to-
kens equal to the number of tokens at time t = φi . Due to the strict periodicity of vi and vj ,
their execution pattern repeats. Thus, bu is also sufficient and minimum for any t ≥ φi +α. �

Theorem 3 For a graph G, let τG be a task set such that τi ∈ τG corresponds to vi ∈ V . τi

is given by:

τi = (φi,μi, λi), (41)
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where φi is the earliest start time of vi given by (30), μi ∈ μ, and λi ∈ λmin is the period given
by (19). τG is schedulable on M processors using any hard-real-time scheduling algorithm
A for asynchronous sets of implicit-deadline periodic tasks if:

1. every edge eu ∈ E has a capacity of at least bu tokens, where bu is given by (40)
2. τG satisfies the schedulability test of A on M processors

Proof Follows from Theorem 2, and Lemmas 3 and 4. �

Example 4 This is an example to illustrate Lemmas 3, 4, and Theorem 3. First, we calculate
the earliest start times and the corresponding minimum buffer sizes for the CSDF graph
shown in Fig. 1. Applying Lemmas 3 and 4 on the CSDF graph results in:

⎡

⎢⎢
⎣

φ1

φ2

φ3

φ4

⎤

⎥⎥
⎦ =

⎡

⎢⎢
⎣

0
8
8

20

⎤

⎥⎥
⎦ and

⎡

⎢⎢
⎣

b1

b2

b3

b4

⎤

⎥⎥
⎦ =

⎡

⎢⎢
⎣

3
5
3
5

⎤

⎥⎥
⎦ ,

where φi denotes the earliest start time of actor vi , and bj denotes the minimum buffer size
of communication channel ej . Given μ and λmin computed in Example 3, we construct a
task set τG = {(0,5,8), (8,2,8), (8,3,4), (20,2,6)}. We compute the minimum number of
required processors to schedule τG according to (9), (10), and (11):

MOPT = �5/8 + 2/8 + 3/4 + 2/6 = �47/24 = 2

MP-EDF = min
{�4/1,⌈(2 × 47/24 − 1)/1

⌉} = 3

MPAR = min
x∈N

{x : B is x-partition of τ and Usum ≤ 1 for all y ∈ B} = 3

τG is schedulable using an optimal scheduling algorithm on 2 processors, and is schedulable
using P-EDF on 3 processors.

4.3.3 Throughput and latency analysis

Now, we analyze the throughput of the graph actors under strictly periodic scheduling and
compare it with the maximum achievable throughput. We also present a formula to compute
the latency for a given CSDF graph under strictly periodic scheduling. We start with the
following definitions:

Definition 13 (Actor throughput) For a graph G, the throughput of actor vi ∈ V under
strictly periodic scheduling, denoted by RSPS(vi), is given by

RSPS(vi) = 1/λi (42)

Definition 14 (Rate-optimal strictly periodic schedule [22]) For a graph G, a strictly peri-
odic schedule that delivers the same throughput as a self-timed schedule for all the actors is
called Rate-Optimal Strictly Periodic Schedule (ROSPS).

Now, we provide the following result.
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Theorem 4 For a matched I/O rates graph G, the maximum achievable throughput of the
graph actors under strictly periodic scheduling is equal to their maximum throughput under
self-timed scheduling.

Proof The maximum achievable throughput under strictly periodic scheduling is the one
obtained when λi = λmin

i . Recall from (19) that

λmin
i = Q

qi

⌈
η

Q

⌉
(43)

Let us re-write η as η = pQ + r , where p = η ÷ Q (÷ is the integer division operator),
and r = η mod Q. Now, (43) can be re-written as

λmin
i =

{
η/qi, if η mod Q = 0
(p + 1)Q/qi, if η mod Q �= 0

(44)

Recall from (15) that

RSTS(vi) = qi/η (45)

Now, recall from Definition 4 that a matched I/O rates graph satisfies the following con-
dition:

η mod Q = 0 (46)

Therefore, the maximum achievable throughput of the actors of a matched I/O rates graph
under strictly periodic scheduling is:

RSPS(vi) = qi/η = RSTS(vi) (47)

�

Equation (44) shows that the throughput under SPS depends solely on the relation-
ship between Q and η. Recall from Definition 3 that the execution time μ used by our
framework is the maximum value over all the actual execution times of the actor. There-
fore, if η mod Q = 0, then RSPS(vi) is exactly the same as RSTS(vi) for SDF graphs and
CSDF graphs where all the firings of an actor vi require the same actual execution time.
If η mod Q �= 0 and/or the actor actual execution time differs per firing, then RSPS(vi) is
lower than RSTS(vi). These findings illustrate that our framework has high potential since it
allows the designer to analytically determine the type of the application (i.e., matched vs.
mis-matched) and accordingly to select the proper scheduler needed to deliver the maximum
achievable throughput.

Now, we prove the following result regarding matched I/O rates applications:

Corollary 2 For a matched I/O rates graph G scheduled using its minimum period vector
λmin, Umax = 1.

Proof Recall from Sect. 3.2.1 that the utilization of a task τi is defined as Ui = Ci/Ti ,
where Ci ≤ Ti . Therefore, the maximum possible value for Ui is when Ci = Ti which leads
to Ui = 1.0. Now, let vm be the actor with the maximum product of actor execution time and
repetition. That is

μmqm = max
vi∈V

(μiqi) = η (48)
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The period of vm is λm given by

λm = Q

qm

⌈
η

Q

⌉
(49)

Now, let us write η as η = pQ + r , where p = η ÷ Q (÷ is the integer division operator),
and r = η mod Q. Then, we can re-write (48) as

λm = Q

qm

⌈
p + r

Q

⌉
(50)

For matched I/O rates applications, r = 0 (see Definition 4). Therefore, (50) can be re-
written as

λm = pQ

qm

(51)

The utilization of vm is Um given by

Um = μm

λm

= μmqm

pQ
(52)

Since r = 0 and η = pQ = μmqm, (52) becomes

Um = η

η
= 1.0 (53)

�

Recall from Sect. 3.2.2 that β = �1/Umax�. It follows from Corollary 2 that β = 1 for
matched I/O rates applications scheduled using their minimum period vectors.

Let φi be the earliest start time of an actor vi ∈ V . Then, according to Definitions 5 and 6,
the graph latency L(G) is given by:

L(G) = max
wi�j ∈W

(
φj + (

gC
j + 1

)
λj − (

φi + gP
i λi

))
(54)

where φj and φi are the earliest start times of the output actor vj and the input actor vi ,
respectively, λj and λi are the periods of vj and vi , and gC

j and gP
i are two constants, such

that for an output path wi�j in which er is the first channel and eu is the last channel, gP
i

and gC
j are given by:

gP
i = min

{
k ∈ N : xr

i (k) > 0
} − 1 (55)

gC
j = min

{
k ∈ N : yu

j (k) > 0
} − 1 (56)

where xr
i and yu

j are production/consumption rates sequences introduced in Sect. 3.

4.4 Handling sporadic input streams

In case the input streams are not strictly periodic, there are several techniques to accommo-
date the aperiodic nature of the streams. We present here some of these techniques.



On the hard-real-time scheduling of embedded streaming applications 241

Fig. 11 Occurrence of the maximum inter-arrival time

4.4.1 De-jitter buffers

In case of periodic with jitter input streams, it is possible to use de-jitter buffers to hide
the effect of jitter. We assume that a jittery input stream Ii starts at time t = t0 and has a
constant inter-arrival time γi equal to the input actor period (see Assumption 1-3) and jitter
bounds [ε−

i , ε+
i ]. The interpretation of the jitter bounds is that the kth sample of the stream

is expected to arrive in the interval [t0 + kγi − ε−
i , t0 + kγi + ε+

i ]. If a sample arrives in the
interval [t0 + kγi − ε−

i , t0 + kγi), then it is called an early sample. On the other hand, if
the sample arrives in the interval (t0 + kγi, t0 + kγi + ε+

i ], then it is called a late sample.
It is trivial to show that early samples do not affect the periodicity of the input actor as the
samples arrive prior to the actor release time. Late samples, however, pose a problem as they
might arrive after an actor is released.

For late samples, it is possible to insert a buffer before each input actor vi receiving a
jittery input stream Ij to hide the effect of jitter. The buffer delays delivering the samples to
the input actor by a certain amount of time, denoted by tbuffer(Ij ). tbuffer(Ij ) has to be com-
puted such that once the input actor is started, it always finds data in the buffer. Assume that
ε−
i and ε+

i ∈ [0, γi], then we can derive the minimum value for tbuffer(Ij ) and the minimum
buffer size. In order to do that, we start with proving the following lemma:

Lemma 5 Let Ij be a jittery input stream with ε−
i , ε+

i ∈ [0, γi]. Then, the maximum inter-
arrival time between any two consecutive samples in Ij , denoted by tMIT(Ij ), satisfies:

tMIT(Ij ) = 3γi (57)

Proof Based on the jitter model, tMIT occurs when the kth sample is early by the maximum
value of jitter (i.e., arrives at time t = kγi − γi ), and the (k + 1) sample is late by the
maximum value of jitter (i.e., arrives at time t = (k+1)γi +γi ). This is illustrated in Fig. 11.

�

Lemma 6 An input actor vi ∈ V is guaranteed to always find an input sample in each of its
input de-jitter buffers if the following holds:

tbuffer(Ij ) ≥ 2γj ∀Ij ∈ Zi (58)

Proof During a time interval (t, t + tMIT(Ij )), vi can fire at most twice. Therefore, it is
necessary to buffer up to 2 samples in order to guarantee that the input actor vi can continue
firing periodically when the samples are separated by tMIT time-units. �

Lemma 7 Let vi be an input actor and Ij be a jittery input stream to vi . Suppose that Ij

starts at time t = t0 and vi starts at time t = t0 + tbuffer(Ij ). The de-jitter buffer must be able
to hold at least 3 samples.
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Proof Suppose that the (k −1) and (k +1) samples arrive late and early, respectively, by the
maximum amount of jitter. This means that they arrive at time t = t0 + kγi . Now, suppose
that the kth sample arrives with no jitter. This means that at time t = t0 + kγi there are 3
samples arriving. Hence, the de-jitter buffer must be able to store them. During the interval
[t0 +kγi, t0 + (k +1)γi), there are no incoming samples and vi processes the (k −1) sample.
At time t = t0 + (k + 1)γi , the (k + 2) sample might arrive which means that there are again
3 samples available to vi . By the periodicity of vi and Ij , the previous pattern can repeat. �

The main advantage of the de-jitter buffer approach is that the actors are still treated and
scheduled as periodic tasks. However, the major disadvantage is the extra delay encountered
by the input stream samples and the extra memory needed for the buffers.

4.4.2 Resource reservation

For sporadic streams in general, we can consider the actors as aperiodic tasks and apply
techniques for aperiodic task scheduling from real-time scheduling theory [6]. One popular
approach is based on using a server task to service the aperiodic tasks. Servers provide
resource reservation guarantees and temporal isolation. Several servers have been proposed
in the literature (e.g., [1, 27]). The advantages of using servers are the enforced isolation
between the tasks, and the ability to support arbitrarily input streams. When using servers,
we can schedule each actor using a server which has an execution budget Cs equal to the
actor execution time and a period Ps equal to the actor’s period.

One particular issue when scheduling the actors using servers is how to generate the
aperiodic task requests. For the CSDF model, the requests can be generated when the firing
rule of an actor is evaluated as “true” (see Sect. 3). Detecting when the firing rule is evaluated
as “true” can be done in the following ways:

1. The underlying operating system (OS) or scheduler has a monitoring mechanism which
polls the buffers to detect when an actor has enough data to fire. Once it detects that an
actor has enough data to fire, it releases an actor job.

2. Modify the actor implementation such that the polling happens within the actor. In this
approach, an actor job is always released at the start of the actor period. When the actor
is activated (i.e., running), it checks its input buffers for data. If enough data is available,
then it executes its function. Otherwise, it exhausts its budget and waits until the next
period. This mechanism is summarized in Fig. 12.

The first approach (i.e., polling by the OS) does not require modifications to the actors’
implementations. However, it requires an additional task which always checks all the buffers.
This task can become a bottleneck if there are many channels. The second approach is better
in terms of scalability and overhead. However, it might cause delays in the processing of the
data.

5 Evaluation results

We evaluate our proposed framework in Sect. 4 by performing an experiment on a set of 19
real-life streaming applications. The objective of the experiment is to compare the through-
put of streaming applications when scheduled using our strictly periodic scheduling to their
maximum achievable throughput obtained via self-timed scheduling. After that, we discuss
the implications of our results from Sect. 4 and the throughput comparison experiment. For
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actor() {

/* can_fire() returns "true" iff the firing rule is "true" */
if (can_fire()) {
read_fifos();

/* Execute the core function of the actor */
execute();

write_fifos();
}
else {
/* wait() exhausts the budget and
puts the task in sleep state until the next period */
wait();
}

}

Fig. 12 Polling within the actor to detect when the actor is eligible to fire

brevity, we refer in the remainder of this section to our strictly periodic scheduling/schedule
as SPS and the self-timed scheduling/schedule as STS.

The streaming applications used in the experiment are real-life streaming applications
coming from different domains (e.g., signal processing, communication, multimedia, etc.).
The benchmarks are described in details in the next section.

5.1 Benchmarks

We collected the benchmarks from several sources. The first source is the StreamIt bench-
mark [30] which contributes 11 streaming applications. The second source is the SDF3

benchmark [29] which contributes 5 streaming applications. The third source is individ-
ual research articles which contain real-life CSDF graphs such as [19, 24, 26]. In total, 19
applications are considered as shown in Table 1. The graphs are a mixture of CSDF and SDF
graphs. The actors execution times of the StreamIt benchmark are specified by its authors
in clock cycles measured on MIT RAW architecture, while the actors execution times of the
SDF3 benchmark are specified for ARM architecture. For the graphs from [24, 26], the au-
thors do not mention explicitly the actors execution times. As a result, we made assumptions
regarding the execution times which are reported below Table 1.

We use the SDF3 tool-set [29] for several purposes during the experiments. SDF3 is a
powerful analysis tool-set which is capable of analyzing CSDF and SDF graphs to check
for consistency errors, compute the repetition vector, compute the maximum achievable
throughput, etc. SDF3 accepts the graphs in XML format. For StreamIt benchmarks, the
StreamIt compiler is capable of exporting an SDF graph representation of the stream pro-
gram. The exported graph is then converted into the XML format required by SDF3. For
the graphs from the research articles, we constructed the XML representation for the CSDF
graphs manually.

5.2 Experiment: throughput and latency comparison

In this experiment, we compare the throughput and latency resulting from our SPS approach
to the maximum achievable throughput and minimum achievable latency of a streaming
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Table 1 Benchmarks used for evaluation

Domain No. Application Source

Signal Processing 1 Multi-channel beamformer [30]

2 Discrete cosine transform (DCT)

3 Fast Fourier transform (FFT) kernel

4 Filterbank for multirate signal processing

5 Time delay equalization (TDE)

Cryptography 6 Data Encryption Standard (DES)

7 Serpent

Sorting 8 Bitonic Parallel Sorting

Video processing 9 MPEG2 video

10 H.263 video decoder [29]

Audio processing 11 MP3 audio decoder

12 CD-to-DAT rate converter (SDF)a [24]

13 CD-to-DAT rate converter (CSDF)

14 Vocoder [30]

Communication 15 Software FM radio with equalizer

16 Data modem [29]

17 Satellite receiver

18 Digital Radio Mondiale receiver [19]

Medical 19 Heart pacemakerb [26]

aWe use two implementations for CD-to-DAT: SDF and CSDF and we refer to them as CD2DAT-S and

CD2DAT-C, respectively. The execution times assumed are μ = [5,2,3,1,4,6]T µs.
bWe assume the following execution times: Motion Est.: 4 µs, Rate Adapt.: 3 µs, Pacer: 5 µs, and EKG: 2 µs.

application. Recall from Definition 7 that the maximum achievable throughput and mini-
mum achievable latency of a streaming application modeled as a CSDF graph are the ones
achieved under self-timed scheduling. In this experiment, we report the throughput for the
output actors (i.e., the actors producing the output streams of the application, see Sect. 3).
For latency, we report the graph maximum latency according to Definition 6. For SPS, we
used the minimum period vector given by Lemma 2. The STS throughput and latency are
computed using the SDF3 tool-set. SDF3 defines RSTS(G) as the graph throughput under
STS, and RSTS(vi) = qiRSTS(G) as the actor throughput. Similarly, LSTS(G) denotes the
graph latency under self-timed scheduling. We use the sdf3analysis tool from SDF3

to compute the throughput and latency for the STS with auto-concurrency disabled and as-
suming unbounded FIFO channel sizes. Computing the throughput is performed using the
throughput algorithm, while latency is computed using the latency(min_st) algorithm.

Now, Table 2 shows the results of comparing the throughput of the output actor for every
application under both STS and SPS schedules. The most important column in the table is
the last column which shows the ratio of the SPS schedule throughput to the STS schedule
throughput (RSPS(vout)/RSTS(vout)), where vout denotes the output actor. We clearly see that
our SPS delivers the same throughput as STS for 16 out of 19 applications. All these 16 ap-
plications are matched I/O rates applications. This result conforms with Theorem 4 proved
in Sect. 4. Only three applications (CD2DAT-(S,C) and Satellite) are mis-matched and have
lower throughput under our SPS. Table 2 confirms also the observation made by the au-
thors in [30] who reported an interesting finding: Neighboring actors often have matched
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Table 2 Results of throughput comparison. vout denotes the output actor

Application q̇out RSTS(vout) η Q RSPS(vout) RSPS(vout)/RSTS(vout)

Beamformer 1 1.97 × 10−4 5076 1 1/5076 1.0

DCT 1 2.1 × 10−5 47616 1 1/47616 1.0

FFT 1 8.31 × 10−5 12032 1 1/12032 1.0

Filterbank 1 8.84 × 10−5 11312 1 1/11312 1.0

TDE 1 2.71 × 10−5 36960 1 1/36960 1.0

DES 1 9.765 × 10−4 1024 1 1/1024 1.0

Serpent 1 2.99 × 10−4 3336 1 1/3336 1.0

Bitonic 1 1.05 × 10−2 95 1 1/95 1.0

MPEG2 1 1.30 × 10−4 7680 1 1/7680 1.0

H.263 1 3.01 × 10−6 332046 594 1/332046 1.0

MP3 2 5.36 × 10−7 3732276 2 1/1866138 1.0

CD2DAT-S 160 1.667 × 10−1 960 23520 1/147 0.04

CD2DAT-C 160 1.361 × 10−1 1176 23520 1/147 0.05

Vocoder 1 1.1 × 10−4 9105 1 1/9105 1.0

FM 1 6.97 × 10−4 1434 1 1/1434 1.0

Modem 1 6.25 × 10−2 16 16 1/16 1.0

Satellite 240 2.27 × 10−1 1056 5280 1/22 0.2

Receiver 288000 4.76 × 10−2 6048000 288000 1/21 1.0

Pacemaker 64 2.0 × 10−1 320 320 1/5 1.0

I/O rates. This reduces the opportunity and impact of advanced scheduling strategies pro-
posed in the literature. According to [30], the advanced scheduling strategies proposed in
the literature (e.g., [28]) are suitable for mis-matched I/O rates applications. Looking into
the results in Table 2, we see that our SPS approach performs very-well for matched I/O
applications.

Figure 13 shows the ratios of the SPS latency (denoted by LSPS(G)) to the STS la-
tency. For all the applications, the average SPS latency is 5× the STS latency. We also see
that the mis-matched applications have large latency which conforms with their sub-optimal
throughput. If we exclude the mis-matched applications, then the average SPS latency is
4x the STS latency. For latency-insensitive applications, this is acceptable as long as they
can be scheduled using SPS to achieve the maximum achievable throughput. For latency-
sensitive applications, reducing the latency can be done by, for example, using the con-
strained deadline model (see Sect. 3.2.1). The constrained deadline model assigns for each
task τi a deadline Di < Ti , where Ti is the task period. For example, the Vocoder applica-
tion has ratio of LSPS(G)/LSTS(G) ≈ 13.5 under the implicit-deadline model. This ratio is
reduced to 1.0 if the deadline of each task is set to its execution time. However, using the
constrained-deadline model requires different schedulability analysis. Therefore, a detailed
treatment of how to reduce the latency is outside the scope of this paper.

5.3 Discussion

Suppose that an engineer wants to design an embedded MPSoC which will run a set of
matched I/O rates streaming applications. How can he/she determine easily the minimum
number of processors needed to schedule the applications to deliver the maximum achiev-
able throughput? Our SPS framework in Sect. 4 provides a very fast and accurate answer,
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Fig. 13 Results of the latency comparison

thanks to Theorems 3 and 4. They allows easy computation of the minimum number of
processors needed by different hard-real-time scheduling algorithms for periodic tasks to
schedule any matched I/O streaming application, modeled as an acyclic CSDF graph, while
guaranteeing the maximum achievable throughput. Figure 14 illustrates the ability to easily
compute the minimum number of processors required to schedule the benchmarks in Table 1
using optimal and partitioned hard-real-time scheduling algorithms for asynchronous sets of
implicit-deadline periodic tasks. For optimal algorithms, the minimum number of processors
is denoted by MOPT and computed using (9). For partitioned algorithms, we choose P-EDF
algorithm combined with First-First (FF) allocation, abbreviated as P-EDF-FF. For P-EDF-
FF, the minimum number of processors is computed using (10) (MP-EDF) and (11) (MPAR).
For matched I/O applications scheduled using the minimum periods obtained by Lemma 2,
Corollary 2 shows that β defined in Sect. 3.2.2 is equal to 1. This implies that for matched
I/O applications, MP-EDF = �2Usum − 1 which is approximately twice as MOPT for large
values of Usum. MPAR provides less resource usage compared to MP-EDF with the restriction
that it is valid only for the specific task set τG for which it is computed. Another task set τ̂G

with the same total utilization and maximum utilization factor as τG may not be schedulable
on MPAR due to the partitioning issues. Comparing MPAR to MOPT, we see that P-EDF-FF
requires in around 44 % of the cases an average of 14 % more processors than an optimal
algorithm due to the bin-packing effects.

Unfortunately, such easy computation as discussed above of the minimum number of
processors is not possible for STS. This is because the minimum number of processors re-
quired by STS, denoted by MSTS, can not be easily computed with equations such as (9),
(10), and (11). Finding MSTS in practice requires Design Space Exploration (DSE) proce-
dures to find the best allocation which delivers the maximum achievable throughput. This
fact shows one more advantage of using our SPS framework compared to using STS in
cases where our SPS gives the same throughput as STS.
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Fig. 14 Number of processors required by an optimal algorithm and P-EDF-FF

6 Conclusions

We prove that the actors of a streaming application, modeled as an acyclic CSDF graph, can
be scheduled as periodic tasks. As a result, a variety of hard-real-time scheduling algorithms
for periodic tasks can be applied to schedule such applications with a certain guaranteed
throughput. We present an analytical framework for computing the periodic task parameters
for the actors together with the minimum channel sizes such that a strictly periodic schedule
exists. We also show how the proposed framework can handle sporadic input streams. We
define formally a class of CSDF graphs called matched I/O rates applications which repre-
sents more than 80 % of streaming applications. We prove that strictly periodic scheduling
is capable of delivering the maximum achievable throughput for matched I/O rates applica-
tions together with the ability to analytically determine the minimum number of processors
needed to schedule the applications.
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