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Abstract. We present a theoretical analysis of the standing wave patterns in
scanning tunneling microscope (STM) images, which occur around surface point
defects. We consider arbitrary dispersion relations for the surface states and
calculate the conductance for a system containing a small-size tunnel contact
and a surface impurity. We find rigorous theoretical relations between the
interference patterns in the real-space STM images, their Fourier transforms and
the Fermi contours of two-dimensional electrons. We propose a new method for
reconstructing Fermi contours of surface electron states, directly from the real-
space STM images around isolated surface defects.
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1. Introduction

Images obtained by scanning tunneling microscope (STM) on flat metal surfaces commonly
display standing waves related to electron scattering by surface steps and single defects [1] (for
a review see [2, 3]). The physical origin of the interference patterns in the constant-current STM
images is the same as that of Friedel oscillations in the electron local density of states (LDOS) in
the vicinity of a scatterer [4]. It is due to quantum interference between incident electron waves
and waves scattered by the defects. Study of the standing wave pattern provides information on
the defect itself and on the host metal. From the images the Fermi surface contours (FC) for two-
dimensional (2D) surface states [2, 3, 5–12] and bulk Fermi surfaces can be studied [13–17].

Let us consider the question of the nature of the contour that we see in a real-space
STM image. Can it be interpreted directly as the FC or some contour related to it? For
isotropic (circular) FC the answer is obvious—the period of the conductance oscillations
1r = 2π/2κF = const is set by twice the 2D Fermi wave vector, 2κF. In the case of an
anisotropic dispersion relation in real space the electrons move in the direction given by their
velocity vκ , which need not be parallel to the wave vector κ . We expect that, similar to the
problem of subsurface defects in the bulk [13, 14], the period of the real-space oscillatory
pattern is 1r = 2π/2κFn0, where n0 is the 2D unit vector pointing from the defect to the
position of the tip apex and κF is the Fermi wave vector, the magnitude of which depends
on its direction. Thus, in the STM image we observe a curve shaped by the projection of the
wave vector κF on the normal to the FC. In the case of large anisotropy this contour may be
very different from the FC itself. In [2, 3, 5–12] Fourier transforms (FT) of STM images of
wave patterns around surface point defects were interpreted as FC. We are not aware of any
rigorous mathematical justification of this procedure. Is there another way of reconstructing
the true FC from real-space STM images? The answer to this question is the main aim of this
paper.

The STM theory used most frequently by experimentalists is the approach of Tersoff
and Hamann [18]. Their theoretical analysis of the tunnel current is based on Bardeen’s
approximation [19], in which a tunneling matrix element is calculated using the decay of the
wave functions of the two individual (isolated) electrodes inside the barrier. For the STM tip
they adopt a model of angle-independent wave functions and the surface states are described
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by Bloch wave functions, which decay exponentially inside the tunnel barrier. Tersoff and
Hamann [18] found that the STM conductance is directly proportional to the electron LDOS
ρ(r) at a point r = r0, at the position of the contact. In the same spirit, the influence on the
STM conductance of adatoms or defects embedded into the sample surface is usually described
by their influence on the 2D LDOS. This was used, for example, to explain the observation of
a ‘quantum mirage’ in ‘quantum corrals’ [20] in terms of a free-electron approximation, and
for the interpretation of the anisotropic standing Bloch waves observed on Be surfaces [3, 10].
In spite of the large number of theoretical works dealing with STM theory (for a review see
[21, 22]), a number of questions about the theoretical description of anisotropic standing wave
patterns in STM images remain poorly described.

The main new points of present paper are: (i) in an approximation of free electrons with an
arbitrary anisotropic dispersion law the quantum electron tunneling through a small contact into
Shockley-like 2D surface states is considered theoretically. In the framework of a model of an
inhomogeneous δ-like tunnel barrier, [23, 24], we obtain analytical formulas for the conductance
G of the contact in the presence of a single defect incorporated in the sample surface. (ii) We
formulate a rigorous mathematical procedure for the FC reconstruction from real-space images
of conductance oscillations around surface point-like defects in terms of a support function of a
plane curve (see e.g. [27]).

The organization of this paper is as follows. The model that we use to describe the contact
and the basic equations are presented in section 2. In section 3 the differential conductance
is found on the basis of a calculation of the probability current density through the contact.
Section 4 presents the mathematical procedure of reconstruction of FC in the momentum space
from the real-space image. In section 5 we conclude by discussing the possibilities for exploiting
these theoretical results for interpretation of STM experiments. In appendix A the method for
obtaining a solution of the Schrödinger equation is described, and in appendix B we find the
asymptote of the 2D electron Green’s function for large values of the coordinates, which is
necessary to describe the conductance oscillations at large distances between the tip and the
defect.

2. Model of the system and basic equations

The STM tip and a conducting surface form an atomic size tunnel contact. The STM
image is obtained from the height profile while maintaining the tunnel current I constant,
or from the differential conductance G = dI/dV ) measured as a function of the lateral
coordinates. Such dependences are a kind of electronic ‘map’ of the surface, thereby they
show a variety of defects situated on the metal’s surface (adsorbed and embedded impurities,
steps, etc) We focus our attention on studying the shape of contours of oscillatory patterns
around a single point defect. These concentric contours centered on the defect (see figure 1)
are minima and maxima of the oscillatory dependence of the conductance on the lateral
coordinates.

In [24] it was proposed to model the STM experiments by an inhomogeneous infinitely thin
tunnel barrier. The important simplification offered by this model is the replacement of the three-
dimensional inhomogeneous tunnel barrier in a real experimental configuration by a 2D one. In
the present paper we use this model to describe the interference pattern around a point defect
resulting from electron surface states having an anisotropic FC. Instead of a description by
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Figure 1. Schematic setup for measurements with a STM. A standing wave
pattern arising around a single impurity on the surface is shown.

Figure 2. Illustration of the model used for the description of STM tunneling
into the surface states. The blue colored region of the interface at z = 0 separates
the tip (lower half) from the sample (upper half). In the center of the interface
at the point r = 0 a region is shown having maximal probability of electron
tunneling, which models a contact of characteristic radius a. At the point r =(
ρ0, z0

)
a point-like defect is situated. Arrows schematically show semiclassical

trajectories of electrons, for the bulk states in the half-space z < 0, and for the
surface electrons at z > 0.

means of simple Bloch waves we consider quasiparticles [25] for conduction electrons having
arbitrary dispersion relations.

The model that we consider is presented in figure 2. Two conducting half-spaces are
separated by an infinitely thin insulating interface at z = 0, the potential barrier U (r) in the plane
of which we describe by Dirac delta function U (r)= U0 f (ρ)δ(z). A dimensionless function
f (ρ) describes a barrier inhomogeneity in the plane ρ = (x, y). This inhomogeneity simulates
the STM tip and provides the path for electron tunneling through a bounded region of scale
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a . λF (a is the characteristic radius of the contact, λF is the electron Fermi wavelength), i.e.
the function f (ρ) must have the property

f (ρ)=

{
∼ 1, ρ . a,

→ ∞, ρ � a.
(1)

Simple examples of such a function are f (ρ)= exp(ρ2/a2) and 1/ f (ρ)=2(a − ρ), where
2(x) is the Heaviside step function. The latter function corresponds to a model with a circular
orifice of radius a in an otherwise impenetrable interface.

Shockley-like surface states are included in the model by means of a surface potential
Vsur(z) in the half-space z > 0. The potential Vsur(z) and the barrier at z = 0 form a quantum
well which localizes electrons near the surface. A specific form of the function Vsur(z) is not
important for us. It is enough to assume that Vsur(z) is an analytic monotonic function such
that it permits the existence of one and only one surface state in the region z > 0 below the
Fermi energy εF. The surface state localization length l is assumed to be much larger than the
characteristic contact diameter, a � l.

A single point-like defect is placed at a point r0 = (ρ0, z0 > 0) in the vicinity of the
interface at z = 0. The electron scattering by the defect we describe by a short-range potential
D(r)= gD0(r − r0) localized within a region of characteristic radius rD, and in the half-space
z > 0, around the point r0 = (ρ0, z0), where g is the constant measuring the strength of the
electron interaction with the defect. It satisfies the normalization condition∫

∞

−∞

drD0(r − r0)= 1. (2)

We do not specify the concrete form of the potential D(r). The specific form affects the
amplitude and phase of the conductance oscillations but it does not change their period, which
is the main subject of interest for us. We assume the following general properties for this
function: (i) the potential is repulsive and electron bound states near the defect are absent; (ii)
the constant of interaction g in the potential D(r) is small such that Born’s approximation for
waves scattered by the defect is applicable; (iii) the effective radius rD of the potential D(r) is
small enough κFrD � 1 for the scattering to be described in the s-wave approximation. All of
the listed conditions can be easily satisfied in experiments.

In order to obtain an analytical solution of the Schrödinger equation and calculate the
electric current in what follows we use a simplified model for the anisotropic dispersion law
ε(k) for the charge carriers

ε(k)= ε2D(κ)+
h̄2k2

z

2mz
, (3)

where κ is the 2D electron wave vector in the plane of interface, ε2D(κ) is an arbitrary function
describing the energy spectrum of the surface states and mz is the effective mass characterizing
the electron motion along the normal to the interface.

The wave function ψ satisfies the Schrödinger equation(
ε2D

(
h̄∂

i∂ρ

)
+
}2∂2

2mz∂z2

)
ψ(r)+ [ε− U (r)− D(r)− Vsur(z)2(z)]ψ(r)= 0 (4)
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with ε the electron energy. At the interface z = 0 the function ψ(r) satisfies the boundary
conditions for continuity of the wave function

ψ(ρ,+0)= ψ(ρ,−0) (5)

and jump of its derivative

ψ ′

z(ρ,+0)−ψ ′

z(ρ,−0)=
2mzU0

h̄2 f (ρ)ψ(ρ, 0) (6)

and the condition for the decay of the surface state wave function in the classically forbidden
region

ψ(ρ, z → ∞)→ 0. (7)

For z → −∞ the solution ψ(r) of equation (4) must describe waves emanating from the
contact [13]

ψ(|r| → ∞, z < 0)∼
exp (iknr)

r
, (8)

where n is a unit vector directed along the velocity vector vk = ∂ε(k)/∂k.
In order to calculate the tunnel current at small applied voltage V (eV � εF) we must find

the wave function ψtr(ρ, z) for electrons transmitted through the tunnel barrier. By means of
this function the density of current flow and the total current in the system can be calculated. At
zero temperature it is enough to consider one direction of tunneling. For definiteness we select
the sign of the voltage such that the tunneling occurs from the surface states at z > 0 into the
bulk states at z < 0 (see figure 3). The total current I can be found by the integration over the
wave vectors κ of the surface states and integration over coordinate ρ in the plane z = const 6= 0
in the half-space z < 0

I= −
e2h̄L x L y V

2π 2mz

∫
∞

−∞

dκ

∫
∞

−∞

dρIm

[
ψ∗

tr(ρ, z)
∂

∂z
ψtr(ρ, z)

]
∂ fF(ε)

∂ε
. (9)

Here L x,y is the size of the sample in the corresponding direction.
The procedure for the solution of the Schrödinger equation (4) with boundary

conditions (5)–(8) is presented in appendix A, where the wave functionψtr(ρ, z) (A.17) is found.

3. Standing wave pattern in the conductance of a small contact

Obviously, in the case of small applied bias which we consider in this work, |eV | � εF, with
εF the Fermi energy, the conductance G = I/V does not depend on the direction of the current.
Substituting the wave function ψtr(ρ, z) (A.17) in equation (9) after some integrations we find

G =
e2h̄5

∣∣χ ′

0z(+0)
∣∣2

32π 4m3
zU

2
0

∫
∞

−∞

∫
∞

−∞

dρ ′

f (ρ ′)

dρ ′′

f (ρ ′′)

∫
∞

0
dκ ′k ′

z2
(
εF − ε2D

(
κ ′

))
cos

[
κ ′

(
ρ ′

− ρ ′′
)]

×

∫
∞

0
dκ · δ (εF − ε2D(κ)− ε0)

[
cos

[
κ

(
ρ ′

− ρ ′′
)]
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Figure 3. Illustration of the occupied energy bands near the interface. The
applied bias eV makes it possible for the electrons to tunnel from surface states
into bulk states of the STM tip.

+2g
∫

∞

−∞

dρ ′′′

∫
∞

−∞

dz′′′D0

(
ρ ′′′

− ρ0, z′′′
− z0

) ∣∣χ0

(
z′′′

)∣∣2

× cos
[
κ

(
ρ ′

− ρ ′′′
)]

ReG+
2D

(
ρ ′

− ρ ′′′
; εF − ε0

)]
. (10)

Further calculations require explicit expressions for the functions f (ρ) and D0(ρ − ρ0, z − z0).
The integral formula (10) can be simplified for contacts of small radius a and in the limit
of a short range rD of the scattering potential. If κFa � 1 and κFrD � 1, where κF =
1
h̄

√
2mz(εF − ε0) , all functions in (10) under the integrals, except f (ρ) and D0(ρ − ρ0, z − z0),

can be taken at the points ρ ′
= ρ ′′

= 0, ρ ′′′
= ρ0, which simplifies (10) to

G = G0

[
1 +

2̃g

(2π h̄)2 ρ2D(εF − ε0)
ReG+

2D

(
ρ0; εF − ε0

) ∮
εF−ε0=ε2D(κ)

dlκ
vκ

cos κρ0

]
. (11)

Here

G0 =
e2h̄5

∣∣χ ′

0z(+0)
∣∣2

8m3
zU

2
0

S2
effρ2D(εF − ε0)�(εF) (12)

is the conductance of a tunnel point contact between the surface states, unperturbed by defects,
and the bulk states of the tip. Further,

ρ2D(ε)=
2

(2π h̄)2

∮
ε=ε2D(κ)

dlκ
vκ

(13)
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is the 2D density of states, where the integration is carried out over the arc length lκ of the
constant-energy contour, vκ = |∂ε2D(κ)/h̄∂κ | is the absolute value of the 2D velocity vector

�(ε)=

√
2mz

h̄

∫ ε

0
dε′

√
ε− ε′ρ2D(ε

′), (14)

Seff =

∫
∞

−∞

dρ

f (ρ)
(15)

is the effective area of the contact, and

g̃ = g
∫

∞

−∞

dρ

∫
∞

0
dzD0(ρ, z − z0) |χ0(z)|

2 (16)

is the effective constant of interaction with the defect for the electrons belonging to the surface
states.

For large distances between the contact and the defect, κFρ0 � 1, equation (11) can be
reduced by using an asymptotic expression for the Green function, see (B.15) in appendix B.
The asymptotic form for κFρ0 � 1 of the integral over lκ in equation (11) is the real part of
equation (B.3). Under the assumptions listed above the formula for the oscillatory part of the
conductance takes the form

Gosc(ρ0)

G0
= g̃

sgnK (κ) cos(2κρ0)

2ρ2D(ε)h̄
2v2

κ |K (κ)| ρ0

∣∣∣∣
κ=κ(εF−ε0,φ0)

, (17)

where φ0 satisfies the stationary phase condition (B.8) for ρ = ρ0. We emphasize that the
result (17) is valid if κFa � 1 κFrD � 1 and κFρ0 � 1. For example, in actual STM experiments
for surface states of Cu (111) [1] the Fermi wave vector is κF ' 0.2 Å−1, while a and rD are of
atomic size a ' rD ' 1 Å. The period of real-space conductance oscillations is 1ρ0 ' π/κF '

15 Å and the distance over which these oscillations are observable reaches ρ0 ' 100 Å.Note that
the asymptotic form (17) can be used to describe experimental data with satisfactory accuracy,
with the less strict requirements of a and rD smaller than the Fermi wavelength λF = 2π/κF,
and κFρ0 > 1.

In [26] the expression for the conductance (10) has been found for the special case of
an elliptic Fermi surface for the surface charge carriers. Within that model the conductance
oscillations Gosc can be evaluated correctly in a wider interval of values for κFρ0, including
κFρ0 . 1 (but ρ0 � a, rD). A comparison of that result with the asymptotic formula (17) for an
elliptic Fermi contour shows that the relative error in the period of oscillations1ρ0 determined,
as an example, as the distance between the third and fourth maxima in the dependence
Gosc(ρ0) (17) is about a few per cent.

4. Reconstruction of the Fermi contour from real-space scanning tunneling microscope
images

Above we have shown that for large distances between the contact and the defect the period of
the oscillations in the conductance is defined by the function κ(εF, φ0)ρ0. Taking into account
that according to equation (B.8) in the stationary phase point κ = κ(ε, φ0) the vector ρ0 is
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Figure 4. Geometric relations between the coordinates κx(φ) and κy(φ) of
the parametrically defined convex curve and the support function h(φ) and its
derivatives ḣ(φ), ḧ(φ) with respect to the angle φ, the radius of curvature R(φ),
and the normal vector nκ at the point κ(φ). AB is the tangent to the curve in the
point κ(φ).

parallel to the electron velocity, ρ0 ‖ vκ(εF, φ0), i.e.

κ(εF, φ0)ρ0 = κnκρ0 = h(εF, φ0)ρ0, (18)

where vκ/vκ = nκ is the unit vector normal to the contour of constant energy ε2D(q)= εF − ε0

in the point defined by wave vector κ .

By definition h(φ)= κnκ > 0, the distance of the tangent from the origin, is the support
function for a convex plane curve [27]. In figure 4 we illustrate the geometrical relation between
the curve and its support function. For known h(φ) and its first and second derivatives, ḣ(φ) and
ḧ(φ), the convex plane curve is given by the parametric equations [27]

κx(φ)= h(φ) cosφ− ḣ(φ) sinφ, (19)

κy(φ)= h(φ) sinφ + ḣ(φ) cosφ (20)

and the radius of curvature R(φ) is

R(φ)= h(φ)+ ḧ(φ). (21)

The curvature is K (φ)= 1/R(φ).Obviously, for a circle |κ | is constant and the support function
coincides with the circle radius, h = κ.

Maxima and minima in the oscillatory dependence of the conductance are the curves
of constant phase of the oscillatory functions in equation (17), 2h(φ0)ρ0 = const, and visible
contours are defined by the function

ρ0(φ0)=
const

2h(φ0)
. (22)
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Thus, equations (19), (20) and (22), in principle, offer the possibility of FC reconstruction from
the real-space images. For a non-convex contour ρ0(φ0) (22) may be separated on parts having a
constant sign of curvature and for each of them the above described procedure of reconstruction
can be applied.

In order to answer the question what contour is obtained from the FT F(q) of an STM
image, we analyze equation (17). Although (17) is strictly valid only for κFρ0 � 1 in the region
κFρ0 > 1 the difference of the true period1ρ0 of the oscillations from the value1ρ0 = π/h(φ0)

is small, as mentioned for an elliptic Fermi contour above. Performing the FT we find

(2π)2 F(q)=

∫
∞

0
dρρ

∫ 2π

0
dφ

cos(2h(φ)ρ)

ρ
exp(iQ(φ)ρ) (23)

=
π

2

[
1

2ḣ(φ1)− Q̇(φ1)
+

1

2ḣ(φ2)+ Q̇(φ2)

]
− i

∫ 2π

0
dφ

Q(φ)

Q2(φ)− 4h2(φ)
,

where

Q(φ)= (qx cosφ + qy sinφ) (24)

and φ1,2 = φ1,2(qx , qy) are the solutions of the equations

2h(φ1,2)= ±Q(φ1,2). (25)

The function F(q) (24) has a singularity when

2ḣ(φ1,2)= ±Q̇(φ1,2). (26)

From equations (19) and (20) it follows that for κx and κy belonging to a contour of constant
energy

κx cosφ + κy sinφ = h(φ) > 0, (27)

κx sinφ− κy cosφ = −ḣ(φ). (28)

It is easy to see that simultaneous fulfillment of the conditions (25) and (26) at φ = φ1 is
equivalent to equations (27) and (28), which are the parametric equations of the constant energy
contour, i.e. the FT gives the doubled FC of the surface state electrons. The solution φ = φ2 of
the second equation corresponds to the reflection symmetry point −q =(−qx ,−qy) of the 2D
Fermi surface.

Figure 4(a) illustrates the standing wave pattern in the conductance G(ρ0) (17) around
the defect for a model FC, which we take to be a convex curve described by the support
function [29]

h(φ)= k0(cos2 2φ + 8). (29)

In the absence of spin–orbit interaction the 2D Fermi surface has a center of symmetry
ε(κ)= ε(−κ) and also the contour described by the support function h(φ) (29) acquires this
property, h(φ)= h(φ +π). The parametric equations of the curve in figure 4 can be easily
found from equations (19) and (20). Figure 4(b) shows the difference between the true form
of the curve and its support function.

The relation between contours of constant phase ρ0 = const/2h(φ) in the oscillatory
pattern of the conductance (17) in figure 5(a) and the FC in figure 5(b), can be understood
as follows [13]. For an anisotropic FC the surface electrons move along the direction of the
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Figure 5. (a) Interference pattern in the conductance G as obtained from
equation (17) resulting from scattering of the electrons by a surface defect. The
coordinates ρx0 and ρy0 are given in units of 1/k0. The support function is given
by equation (29). (b) Plots of the Fermi contour (solid), its support function h
(short-dashed) and 1/h (long-dashed) with κx and κy in units of k0.

velocity vector vκ , which need not generally be parallel to the wave vector κ . The standing
wave at any point of the STM image is defined by the velocity directed from the contact to the
defect. For parts of the FC having a small curvature (illustrated by the point α in figure 5(b)) all
electrons for different κ in this region have similar velocities. In real space together they form a
narrow electron beam and contribute to only a small sector of the STM image. Conversely, for
electrons belonging to small parts of the FC having a large curvature (illustrated by the point β
in figure 5), a small change of the angle φ (and consequently a small change of k(φ)) results in
a large change in the direction of the velocity. Such small parts of the FC define large sectors in
the interference pattern. We emphasize that, despite the resemblance, the contours of constant
phase in G(ρ0) are not just rotated Fermi contours.

5. Conclusion

In summary, we have investigated the conductance of a small-size tunnel contact for the case
of electron tunneling from surface states into bulk states of the ‘tip’. Electron scattering by a
single surface defect is taken into account. For an arbitrary shape of the Fermi contour of the
2D surface states, an asymptotically exact formula for the STM conductance is obtained, in
the limit of a high tunnel barrier and large distances between the contact and the defect. The
relation between the standing wave pattern in the conductance and the geometry of 2D Fermi
contour is analyzed. We show that the real-space STM image does not show the Fermi surface
directly, but gives the contours of the inverse support function 1/h of the 2D Fermi contour.
A rigorous mathematical procedure for the FC reconstruction from the real-space STM images
is described.
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Today STM imaging has become a new method of fermiology. By using FT scanning
tunneling spectroscopy the FC may be found from the standing wave pattern of the electrons
near the Fermi energy, caused by defects in the surface. To establish a correspondence between
the observed contours and the actual FC, various theoretical approaches have been proposed (for
a review of experimental and theoretical results on this subject see [3]). However, in some cases
(see e.g. figure 2 in [7]) such a correspondence is not obvious. We propose another approach,
which was very fruitful in bulk metal physics [25]—experimental results are compared with
theoretical formulas obtained for arbitrary Fermi surfaces—i.e. the inverse problem of the Fermi
surface reconstruction from the experimental data must be solved. The formulas obtained in this
papers for oscillations of the conductance of the tunnel point contact around point-like surface
defects and the procedure of the FC reconstruction directly from real-space STM image is a
more rigorous alternative to the FT of STM images.

Appendix A. Solution of the Schrödinger equation

We search for the solution of equation (4) corresponding to electron tunneling from the surface
states at z > 0 into the bulk states in the half-space z < 0. Hereinafter we follow the procedure
for finding the wave function of transmitted electrons ψtr(ρ, z) in the limits U0 → ∞, g → 0
that was proposed in [23, 24]. The wave function of surface states ψsur(ρ, z) at z > 0 we search
as a sum

ψsur(r)' ϕ0sur(r)+
1

U0
ϕ1sur(r), (A.1)

where the second term is a small perturbation of surface state due to finite probability of
tunneling through the contact. In approximation to zeroth order in 1/U0 the electrons cannot
tunnel through the barrier and the function ϕ0sur(r) satisfies the zero boundary condition

ϕ0sur(ρ, z = 0)= 0. (A.2)

The wave function of transmitted electrons ψtr(ρ, z) is not zero to first order in 1/U0

ψtr(r)'
1

U0
ϕ1tr(r). (A.3)

Substituting equations (A.1) and (A.3) in the boundary conditions (5), (6) and equating the terms
of the same order in 1/U0 we obtain the boundary conditions

ϕ1sur(ρ,+0)= ϕ1tr(ρ,−0), (A.4)

∂

∂z
ϕ0sur(ρ, z)

∣∣∣∣
z=0

=
2mz

h̄2 f (ρ)ϕ1tr(ρ, 0). (A.5)

The function ϕ0sur(ρ, z)will be found in linear approximation in the constant g. The unperturbed
wave function (in the zeroth approximation in 1/U0 and g) ϕ00sur(ρ, z) can be easily found

ϕ00sur(ρ, z)=
1√

L x L y

eiκρχ0(z). (A.6)
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In equation (A.6) L x ' L y are the lateral sizes of the interface (L x,y → ∞), and χ0(z) is the
solution to the equation

}2

2mz

∂2χ0(z)

∂z2
+ (ε0 − Vsur(z))χ0(z)= 0, z > 0 (A.7)

subject to the boundary conditions and normalization condition

χ0(0)= 0, χ0(z → ∞)→ 0, (A.8)∫
∞

0
dz |χ0(z)|

2
= 1,

respectively. We will assume that at ε 6 εF only one discrete quantum state ε0 is filled in
the surface potential well (see figure 2). The solution ϕ00sur(r) of (A.6) describes the wave
function of the surface states near an ideal impermeable interface. The correction to the wave
function (A.6) linear in the constant g can be expressed by means of the Green’s function
G+(r, r′

; ε) of the unperturbed surface states [13] in the field of the potential Vsur(z) near the
impenetrable interface.

To leading order in the constant g the functions ψ1(r) and ϕ1(r) can be written as

ϕ0sur(r)= ϕ00sur(r)+ϕ00sur(r0)g
∫

dr′D(r′
− r0)G

+(r, r′
; ε). (A.9)

The retarded Green’s function of the surface states is given by

G+(r, r′
; ε)= χ0(z)χ

∗

0 (z
′)G+

2D(ρ − ρ ′
; ε− ε0) (A.10)

with

G+
2D(ρ; ε)=

1

(2π)2

∫
∞

−∞

d2q
eiqρ

ε− ε2D(q)+ i0
. (A.11)

The wave function for the electrons that are transmitted through the barrier ψtr(r) can be found
along the lines described in [23, 24]. Taking the FT of the unknown function ψtr(r) in the half-
space z < 0 (figure 2)

ψtr(ρ, z)=

∫
∞

−∞

dκ ′ eiκ ′ρ8(κ ′, z) (A.12)

and substituting this in the Schrödinger equation(
ε2D

(
h̄∂

i∂ρ

)
+
}2∂2

2mz∂z2

)
ψtr(r)+ εψtr(r)= 0, z < 0 (A.13)

we find for the Fourier component 8(κ ′, z) a solution corresponding to a propagating wave
along the z direction

8(κ ′, z)=8(κ ′, 0) exp
(
−ik ′

zz
)
, z 6 0 (A.14)

with k ′

z =
√

2mz(ε− ε2D(κ ′))/h̄. In order to obtain the waves diverging from the contact and to
satisfy the boundary condition (8) we must take Im k ′

z < 0 at ε2D(κ
′) > ε. From the simplified
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boundary condition (A.5), with known wave function ϕ0sur(r) (A.6) to zeroth approximation in
the constant g, one can find the function ϕ1tr(ρ, 0) in the plane of interface z = 0. Relation (A.9)
gives us ϕ1tr(ρ, 0) to first approximation in the small constant g,

ϕ1tr(ρ, 0)= −
h̄2

2mz f (ρ)
√

L x L y

eiκρχ ′

0z(+0)

[
1 + g

∫
∞

−∞

dρ ′

∫
∞

0
dz′D0(ρ

′
− ρ0, z′)

∣∣χ0(z
′)
∣∣2

×eiκρ′

G+
2D

(
ρ − ρ−

′
; ε− ε0

) ]
. (A.15)

The inverse FT allows us to express 8(κ ′, 0) in terms of the known function ϕ(ρ, 0)

8(κ ′, 0)=
1

(2π)2

∫
∞

−∞

dρ ′ e−iκ ′ρ′

ϕ(ρ ′, 0) (A.16)

and we finally obtain the wave function for the transmitted electrons

ψtr(ρ, z)=
1

(2π)2U0

∫
∞

−∞

dρ ′

∫
∞

−∞

dκ ′ϕ1tr(ρ
′, 0) eiκ ′(ρ−ρ−

′)−ik′
z |z|, (A.17)

where ϕ1tr(ρ
′, 0) is given by equation (A.15).

Appendix B. Asymptotes for ρ → ∞ of the Green function G+
2D(ρ; ε) of two-dimensional

electrons with an arbitrary Fermi contour

After replacing the integration over the 2D vector q by integrations over the energy ε′
= ε2D(q)

and over the arc length lq of the constant energy contour, equation (A.11) takes the form

G+
2D(ρ; ε)=

1

(2π)2

∫
∞

0

3(ε′, ρ)dε′

ε− ε′ + i0
, (B.1)

where

3(ε′, ρ)=

∮
ε′=ε2D(q)

dlq

h̄vq
eiqρ (B.2)

and vq = |∂ε2D(q)/h̄∂q| is the absolute value of the 2D velocity vector. For ρ → ∞ the integral
in equation (B.2) can by calculated asymptotically by using the stationary phase method (see
e.g. [28]). Let us parameterize the curve ε2D(q)= ε′ by using the angle φ in the qxqy-plane
as a parameter, qx,y = qx,y(ε

′, φ). The element of arc length dlq can then be expressed as

dlq =

√
q̇2

x + q̇2
y dφ and we obtain

3as(ε
′, ρ)'

1

h̄vq

√
2π

(
q̇2

x + q̇2
y

)∣∣q̈xρx + q̈yρy

∣∣ exp

[
iqρ +

π i

4
sgn

(
q̈xρx + q̈yρy

)]∣∣∣∣
φ=φst

+ O

(
1

ρ

)
, (B.3)

where the dot over a function denotes differentiation with respect to φ. The stationary phase
point φ = φst(ε

′) is defined by the equation

q̇xρx + q̇yρy|φ=φst = 0. (B.4)
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Note that the total derivative of the energy ε2D(q)= ε with respect to φ is equal to zero because
this energy is the same for all directions φ of the vector q,

ε̇2D(q)= h̄vx q̇x + h̄vyq̇y = 0. (B.5)

Equation (B.5) provides a relation between the derivatives q̇x,y and the components of the
velocity vx,y. Introducing the curvature K (q) of the constant energy contour ε2D(q)= ε′

K(q)=
q̈yq̇x − q̈x q̇y(
q̇2

x + q̇2
y

)3/2 , (B.6)

equations (B.3) and (B.4) can be rewritten in the form

3as(ε
′, ρ)'

√
2π

exp
[
iqρ + π i

4 sgnK(q)
]

h̄vq
√
ρ |K(q)|

∣∣∣∣∣
q=qst

+ O

(
1

ρ

)
(B.7)

and

vx

vy

∣∣∣∣
q=qst

=
ρx

ρy
, (B.8)

where qst = (qx(φst), qy(φst)). The equality (B.8) is satisfied when the velocity vqst is parallel
or antiparallel to the vector ρ. We choose the solution of equation (B.8) with vqst ‖ρ that
corresponds to the outgoing waves. Generally, for arbitrarily complicated (non-convex) constant
energy contours there can be many solutions q(s)st (s = 1, 2, . . .) and in equation (B.7) one must
sum over all of them.

In order to calculate the integral over ε′ in equation (B.1) we consider the integral JC along
the closed contour C shown in figure B.1,

JC =
1

(2π)3/2
lim

R→∞

∫
C

3as(ε
′, ρ)dε′

ε− ε′ + i0
. (B.9)

There is only one pole ε = ε′ + i0 inside C and this integral is equal to

JC = lim
R→∞

{∫ R

0
+

∫
CR

+
∫ 0

iR
dε′

}
= 2π i3as(ε, ρ). (B.10)

The first integral in (B.10) for R → ∞ is the desired integral in equation (B.1). The second
integral along the arc CR vanishes for R → ∞ if Re(iqρ) < 0 in the first quadrant of the plane
of the complex variable ε′

= ε1 + iε2. The third integral in (B.10) along the complex axis iε2

rapidly decreases with increasing distance ρ, more rapidly than the first one because of the
exponential dependence of the integrand.

The last two statements can be proven explicitly for an isotropic dispersion law of 2D
charge carriers. For a circular contour of constant energy ε = (h̄κ)2/2m, ε′

= (h̄q ′)2/2m,
v = h̄q ′/m, K (q)= 1/q ′, qstρ = q ′ρ. Replacing the integration over ε′ by integration over
q ′ we obtain

JC = lim
R→∞

{∫ R

0
+

∫
CR

+
∫ 0

iR
dq ′

}
=

m

π h̄2√ρ

∫
C

√
q ′ dq ′

κ2 − q ′2 + i0
exp

[
iq ′ρ +

π i

4

]
. (B.11)
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Figure B.1. Contour of integration used in equations (B.9) and (B.11). The black
dot shows the position of the pole of the integrand.

For the integral (B.11) we use the same contour as for integral (B.9) (see figure B.1). Let us
replace the integration variable q ′ in the second integral along the circle quarter CR by q ′

= Reiχ .

Then it is easy to estimate the absolute value of the integral as∣∣∣∣∫
CR

√
q ′ dq ′

κ2 − q ′2 + i0
exp

[
iq ′ρ +

π i

4

]∣∣∣∣< 1
√

R

∫ π/2

0
dχe−Rρ sinχ (B.12)

<
1

√
R

∫ π/2

0
dχ e−2Rρχ/π

=
π

2ρR3/2

(
1 − e−Rρ

)
→

R→∞

0.

After substituting ξ = −iq ′ the third integral along the imaginary axis takes the form

lim
R→∞

1
√
ρ

∫ 0

iR

√
q ′ dq ′

κ2 − q ′2 + i0
exp

[
iq ′ρ +

π i

4

]
=

1
√
ρ

∫
∞

0

√
ξ e−ξρ dξ

κ2 + ξ 2

=
π

√
κρ

[
cos κρ

(
1 − 2C

(√
κρ

))
+ sin κρ

(
1 − 2S

(√
κρ

))]
−→
ρ→∞

√
π

2κ2ρ2
+ O

(
1

ρ3

)
, (B.13)

where C(z) and S(z) are the Fresnel integrals{
C(z)
S(z)

}
=

√
2

π

∫ z

0
dt

{
cos t2

sin t2

}
. (B.14)

Finally we obtain the following asymptotic expression for the Green function:

G+
2D(ρ; ε)'

i
√

2π

exp
[
iqρ + π i

4 sgnK (q)
]

h̄vq
√
ρ |K (q)|

∣∣∣∣∣
q=qst(ε,φst)

, ρ → ∞. (B.15)
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