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Existence of a bending rigidity for a hard-sphere liquid near a curved hard wall:
Validity of the Hadwiger theorem
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In the context of Rosenfeld’s fundamental measure theory, we show that the bending rigidity is not equal to
zero for a hard-sphere fluid in contact with a curved hard wall. The implication is that the Hadwiger theorem does
not hold in this case and the surface free energy is given by the Helfrich expansion instead. The value obtained
for the bending rigidity (i) is an order of magnitude smaller than the bending constant associated with Gaussian
curvature, (ii) changes sign as a function of the fluid volume fraction, and (iii) is independent of the choice of the
location of the hard wall.
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I. INTRODUCTION

The Helfrich free energy [1] has proven to be an invaluable
starting point in the description of the surface properties of
complex surfaces such as membranes or surfactant systems
[2,3]. It is the most general form for the surface (or excess)
free energy of an isotropic surface expanded to second order
in the surface’s curvature:

�H =
∫

dA

[
σ − δσJ + k

2
J 2 + k̄K + · · ·

]
, (1)

where J =1/R1 + 1/R2 is the total curvature, K = 1/(R1R2)
is the Gaussian curvature, and R1,R2 are the principal radii
of curvature at a certain point on the surface. The expansion
defines four curvature coefficients: σ , the surface tension of
the planar interface; δ, the Tolman length [4]; k, the bending
rigidity; and k̄, the rigidity constant associated with Gaussian
curvature. The original expression proposed by Helfrich [1]
features the radius of spontaneous curvature R0 as the linear
curvature term (δσ → 2k/R0 [5,6]), but in honor of Tolman,
who was the first to consider curvature corrections to the
surface tension [4], we use the notation in Eq. (1).

Recently, an alternative description to replace the Helfrich
free energy in certain situations was put forward by König
et al. [7,8] based on the implications of the Hadwiger theorem
[9,10]. The Hadwiger theorem states that any functional
of a system that is translationally invariant, additive, and
continuous can be written as a linear combination of the
four Minkowski functionals: volume, surface area, and the
integrated total and Gaussian curvatures [10]. The implication
is that, as an alternative to Eq. (1), the surface free energy can
be written as

�Hadwiger =
∫

dA[σ − δσJ + k̄K]. (2)

Comparing the two expressions for the free energy in Eqs. (1)
and (2), we are led to the following two implications of the
Hadwiger theorem:

(i) The bending rigidity constant is zero.
(ii) Higher-order curvature terms, represented by the dots

in Eq. (1), are absent.
The question now is for which systems are the conditions

of the Hadwiger theorem fulfilled so that the bending rigidity
and higher-order curvature terms are all strictly zero? It

was suggested that for a hard-sphere fluid in contact with a
hard, structureless wall, the Hadwiger theorem should hold
and Eq. (2) is a complete expression for its surface free
energy [7,8]. The evidence for this suggestion is based on a
numerical analysis [7,8,11] of the free energy in spherical and
cylindrical geometry using Rosenfeld’s fundamental measure
theory (FMT) [12,13], showing that the bending rigidity is
zero within numerical accuracy. To understand the basis for
this result in more detail, we consider surfaces for which the
curvatures J and K are constant. The Helfrich free energy per
unit area is then given by

�H/A ≡ σ (J,K) = σ − δσJ + k

2
J 2 + k̄K + · · · . (3)

For a spherically or cylindrically shaped surface with radius
R, this expansion then takes the form

σs(R) = σ − 2δσ

R
+ (2k + k̄)

R2
+ · · · (sphere), (4)

σc(R) = σ − δσ

R
+ k

2R2
+ · · · (cylinder). (5)

Note that only the combination 2k + k̄ appears in the expres-
sion for the surface tension of the spherical interface, so that
the conclusion whether k is identically zero or not can be made
only from an analysis of the cylindrical system. Next to the
curvature-dependent surface tension, one may also investigate
the curvature dependence of the wall densityρW. According to
the wall theorem, the wall density of a fluid in contact with
an infinitely hard, planar wall is related to the bulk pressure p

through an ideal gas law [14,15]:

kBTρW = p. (6)

The wall theorem can be generalized to a spherically shaped
hard wall [15–17] or to a more generally shaped hard wall with
(constant) curvatures J and K [18]:

kBTρW(J,K) = p + σJ − 2δσK − k

2
J 3 + 2kJK + · · · .

(7)

Note that a term proportional to J 2 is absent in the expression
above [19]. For a spherically or cylindrically shaped surface,
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this expansion takes the form

kBTρW
s (R) = p + 2σ

R
− 2δσ

R2
+ · · · (sphere), (8)

kBTρW
c (R) = p + σ

R
− k

2R3
+ · · · (cylinder), (9)

where the dots represent terms of O(1/R4), which indicates
that the term proportional to 1/R3 is absent in the expansion
of the spherical interface. The corresponding term in the
expansion of the cylindrical interface is related to the bending
rigidity, thus supplying a second route to the determination of
its value. Note that these expressions are valid only when the
radius R is defined via the wall density ρW ≡ ρ(r = R+).

In this article, we revisit the analysis by König et al. [7,8] for
a hard-sphere fluid in contact with a hard wall. Using the exact
same theoretical model as in Refs. [7,8,11], i.e., FMT [12,13],
we show in Sec. II that a detailed numerical analysis yields
a bending rigidity that is not equal to zero, but is an order of
magnitude smaller than the rigidity constant associated with
Gaussian curvature. Consistent values for k are obtained from
the analysis of the radius dependence of the surface tension,
Eq. (5), as well as from the analysis of the radius dependence
of the wall density, Eq. (9).

As a further consistency test, we perform a systematic
expansion of the FMT free energy to second order in the
curvature for the spherical and cylindrical interface in Sec. III.
This expansion is analogous to a similar expansion for the
liquid-vapor interface [20]. It is shown that the resulting
expressions for σ , δ, and k̄ are all in terms of the fluid density
profile of the planar interface, ρ0(z), whereas the expression
for the bending rigidity k features the leading-order curvature
correction to the density profile, ρ1(z). The values obtained
for σ , δσ , and the combination 2k + k̄ using these expressions
are all consistent with the results of König et al. [7,8] and
those by Bryk et al. [11]. The value obtained for the bending
rigidity is not zero and is consistent with the two values
obtained from the radius-dependent surface tension and wall
density. Furthermore, it is in qualitative agreement with recent
molecular-dynamics (MD) simulations by Laird et al. [21],
who determined the curvature-dependent surface tension of a
fluid near a hard wall by Gibbs-Cahn integration [21,22].

II. FUNDAMENTAL MEASURE THEORY

In this section, we discuss Rosenfeld’s fundamental mea-
sure theory [12] as it is applied specifically to a one-component
fluid consisting of spherical particles with a diameter d. The
free energy is then the following functional of the fluid density
ρ(�r) [12,13]:

�[ρ]

kBT
=

∫
d�r

[
ρ ln(ρ) − ρ − μ

kBT
ρ + Vext(�r)

kBT
ρ + φ

]
,

(10)

where μ is the chemical potential and where the external
field Vext(�r) is used to express the presence of the hard wall.
For spherically shaped fluid particles, the free-energy density

φ = φ(n2,n3,�nV ) is explicitly given by

φ = 1

πd2

[
−n2 ln(1 − n3) + d2

(
n2

2 − |�nV|2)
2(1 − n3)

+ d2
(
n3

2 − 3n2 |�nV|2)
24(1 − n3)2

]
. (11)

The three densities nα(�r) (α = 2,3,V ) are different convolu-
tions of the fluid density

nα(�r1) =
∫

d�r2ρ(�r2)wα(�r1 − �r2), (12)

where the weight functions wα(�r) are explicitly given by [13]

w2(�r) = δ

(
d

2
− r

)
, w3(�r) = 	

(
d

2
− r

)
, and

(13)

�wV(�r) = �r
r
δ

(
d

2
− r

)
.

The Euler-Lagrange equation that minimizes the free energy
in Eq. (10) is given by

μ

kBT
= ln(ρ) + Vext(�r)

kBT
+

∑
α

∫
d�r2

∂φ

∂nα(�r2)
wα(�r2 − �r1).

(14)

Note that the Euler-Lagrange equation features wα(�r2 − �r1)
and not wα(�r1 − �r2) as in Eq. (12) [13].

For a uniform system, we have that n2 = 6η/d, n3 = η, and
�nV = 0, with the volume fraction defined as η ≡ (π/6)ρd3.
The Euler-Lagrange equation in Eq. (14) then becomes

μ

kBT
= ln(ρ) − ln(1 − η) + η(14 − 13η + 5η2)

2(1 − η)3
. (15)

Using the expression for the chemical potential above, the bulk
pressure is obtained from � = −pV giving the Percus-Yevick
equation of state:

d3p

kBT
= 6η(1 + η + η2)

π (1 − η)3
. (16)

We mention that a refinement of FMT was recently proposed
[23] to yield the more accurate Carnahan-Starling equation of
state [24] instead of Eq. (16). It is expected that results do not
depend sensitively on this refinement.

Next, we consider the implementation of FMT in three
different geometries: the planar, spherical, and cylindrical
interface.

A. Planar interface

In planar geometry, we can simplify the expressions for
nα(�r)=nα(z), where z is the coordinate normal to the interface,
as

nα(z1) =
∫

dz2ρ(z2)w0
α(z1 − z2), (17)
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where the weight functions w0
α(z) are explicitly given by

w0
2(z) = πd	

(
d

2
− |z|

)
,

w0
3(z) = π

(
d2

4
− z2

)
	

(
d

2
− |z|

)
, (18)

w0
V(z) = 2πz	

(
d

2
− |z|

)
,

and where �nV(�r)=nV(z)ẑ. The Euler-Lagrange equation in
Eq. (14) simplifies in planar geometry to

μ

kBT
= ln(ρ) + Vext(z1)

kBT
+

∑
α

∫
dz2

∂φ

∂nα(z2)
w0

α(z2 − z1).

(19)

The external field mimics the presence of a hard wall for z < 0,
i.e., Vext(z) = ∞ when z < 0 and zero otherwise, so that the
density ρ(z) = 0 for z < 0. The surface tension is the surface
free energy per unit area [σ = (� + pV )/A [25]]:

σ

kBT
=

∫ ∞

−d/2
dz

[
ρ ln(ρ) − ρ − μ

kBT
ρ + φ + p

kBT
	(z)

]
,

(20)

where the lower integration reflects the fact that φ and the
convoluted densities nα(z) are zero only when z<−d/2.

B. Spherical interface

In spherical geometry, the densities nα(�r) = nα(r), with r

the radial distance, are

n2(r1) =
∫

dr2

(
r2

r1

)
ρ(r2)ws

2(r1 − r2),

n3(r1) =
∫

dr2

(
r2

r1

)
ρ(r2)ws

3(r1 − r2),

(21)

nV(r1) =
∫

dr2

(
r2

r1

)
ρ(r2)ws

V(r1 − r2)

+ 1

r1

∫
dr2

(
r2

r1

)
ρ(r2)ws

3(r1 − r2),

where the weight functions are equal to those in planar
geometry [Eq. (18)]:

ws
2(r1 − r2) = πd 	

(
d

2
− |r1 − r2|

)
,

ws
3(r1 − r2) = π

(
d2

4
− (r1 − r2)2

)
	

(
d

2
− |r1 − r2|

)
, (22)

ws
V(r1 − r2) = 2π (r1 − r2)	

(
d

2
− |r1 − r2|

)
,

and where �nV(�r) = nV(r)r̂ . The Euler-Lagrange equation in
Eq. (14) now reduces to

μ

kBT
= ln(ρ) + Vext(r1)

kBT
+

∑
α

∫
dr2

(
r2

r1

)
∂φ

∂nα(r2)

×ws
α(r2 − r1) + 1

r1

∫
dr2

∂φ

∂nV(r2)
ws

3(r2 − r1).

(23)

Again, the external field mimics the presence of a hard wall,
i.e., Vext(r) = ∞ when r < R, which serves to define the
location of the radius R of the spherically shaped hard wall.
The surface tension now becomes

σs(R)

kBT
=

∫ ∞

R−d/2
dr

(
r

R

)2

×
[
ρ ln(ρ) − ρ − μ

kBT
ρ + φ + p

kBT
	(r − R)

]
.

(24)

C. Cylindrical interface

In cylindrical geometry, the densities nα(�r) = nα(r), with
r the radial distance to the cylinder axis, reduce to

n2(r1) =
∫

dr2

(
r2

r1

)1/2

ρ(r2)wc
2(r1,r2),

n3(r1) =
∫

dr2

(
r2

r1

)1/2

ρ(r2)wc
3(r1,r2),

(25)

nV(r1) =
∫

dr2

(
r2

r1

)1/2

ρ(r2)wc
V(r1,r2)

+ 1

2r1

∫
dr2

(
r2

r1

)1/2

ρ(r2)wc
3′(r1,r2),

where the weight functions are given by

wc
2(r1,r2) = 2dK(β)	

(
d

2
− |r2 − r1|

)
,

wc
3(r1,r2) = 16r1r2[E(β) + (β2 − 1)K(β)]

×	

(
d

2
− |r2 − r1|

)
, (26)

wc
3′ (r1,r2) = 16r1r2[K(β) − E(β)]	

(
d

2
− |r2 − r1|

)
,

wc
V(r1,r2) = 4(r1 − r2)K(β)	

(
d

2
− |r2 − r1|

)
,

where �nV(�r) = nV(r)r̂ and where K(β) and E(β) are complete
elliptic integrals of the first and second kind, respectively [26].
The argument of the elliptic functions is defined as β2 ≡
[d2/4 − (r2 − r1)2]/(4r1r2). Note that the weight functions
in the cylindrical case are functions of the radial distances
r1 and r2 separately and not only the difference r1 − r2. The
Euler-Lagrange equation in Eq. (14) in cylindrical geometry
reduces to

μ

kBT
= ln(ρ) + Vext(r1)

kBT
+

∑
α

∫
dr2

(
r2

r1

)1/2
∂φ

∂nα(r2)

×wc
α(r2,r1) + 1

2r1

∫
dr2

(
r1

r2

)1/2
∂φ

∂nV(r2)
wc

3′(r2,r1).

(27)

Again, the external field mimics the presence of a hard wall
for r <R. The surface tension in cylindrical geometry is given
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by

σc(R)

kBT
=

∫ ∞

R−d/2
dr

(
r

R

)

×
[
ρ ln(ρ) − ρ − μ

kBT
ρ + φ + p

kBT
	(r − R)

]
.

(28)

The procedure to evaluate σs(R) and σc(R) is now as
follows. For a certain fixed value of the fluid volume fraction
η, the corresponding chemical potential and pressure are
determined from Eqs. (15) and (16). Next, a value for the
radius R is chosen and the Euler-Lagrange equation in Eq. (23)
or Eq. (27) is solved numerically to obtain the density profile
ρ(r) (for details, see the excellent review on FMT by Roth in
[13]). The density profile thus obtained then directly provides
the wall density ρW ≡ ρ(r = R+) and the radius-dependent
surface tension by evaluating the integral in Eq. (24) or
Eq. (28). Finally, the curvature coefficients are obtained from a
fit of the surface tension and wall density plotted as a function
of 1/R and comparing with the expansion in Eqs. (4) and (5)
or Eqs. (8) and (9). The fit is carried out by varying the
reciprocal radius from 0 to 0.1 in steps of 0.01 in units of
1/d. The resulting 11 data points are then fitted (least-square)
to polynomials in 1/R of progressing order starting from a
quadratic polynomial to a polynomial of order 7. It is verified
that the coefficients in the fit level off with the variation used
as an indication of the numerical error.

For the spherical interface, the polynomial fit of σs(R)
provides values for the coefficients σ , δσ , and the combination
2k + k̄. The results are listed for three fluid volume fractions
in Table I.

The values for σ and δσ obtained from the polynomial fit
of the wall density are, within error, equal to those listed in the
table.

For the cylindrical interface, the polynomial fit of σc(R)
again provides values for the coefficients σ and δσ (which are
consistent with the results in Table I), but the coefficient of
the 1/R2 term now yields values for the rigidity constant k.
These values are not equal to zero within numerical accuracy
and are listed separately in Table II. Also listed are the values
obtained from the polynomial fit of the wall density. Already
it is noted that these two approaches are consistent and lead
to the conclusion that the bending rigidity is not equal to zero
for this system. To further corroborate this result, we consider
a third approach in the next section.

TABLE II. Numerical values for the bending rigidity k (in units of
kBT ) for three values of the volume fraction η. The bending rigidity
is determined in three different ways: by an analysis of the radius
dependence of the surface tension of a cylindrical interface, the radius
dependence of the fluid wall density of a cylindrical interface, and by
a direct evaluation of the expression in Eq. (39).

Bending rigidity k determined via:

η σc(R) ρW
c (R) Eq. (39)

0.10 0.000 415 172 0.000 415 165 0.000 415 171
0.20 0.000 742 60 0.000 742 51 0.000 742 54
0.30 − 0.000 685 − 0.000 615 − 0.000 619

III. CURVATURE EXPANSION

In this section, we expand the free energy of the spherical
and cylindrical surface systematically to second order in
1/R. The analysis is outlined explicitly for the spherical
interface—the analysis of the cylindrical interface is more or
less analogous, but we indicate where it differs from that of
the sphere.

A. Spherical interface

All quantities are expanded to second order in the curvature.
In particular, the expansion of the density ρs(r) reads

ρs(r) = ρ0(z) + ρ1(z)

R
+ ρ2(z)

R2
+ · · · , (29)

where z≡r − R. The coefficients in the curvature expansion
of the density are determined from the curvature expansion of
the Euler-Lagrange equation in Eq. (23). The result is that the
(planar) density profile ρ0(z) is determined from Eq. (19), and
ρ1(z) follows from solving

0 = ρ1(z1)

ρ0(z1)
+

∑
α,β

∫
dz2

∂2φ0

∂n0
α(z2)∂n0

β(z2)
n1

β(z1)w0
α(z2 − z1)

+
∑

α

∫
dz2

∂φ0

∂nα(z2)
z12w

0
α(z2 − z1)

+
∫

dz2
∂φ0

∂nV(z2)
w0

3(z2 − z1), (30)

where φ0 = φ({n0
α}) and where we have defined z12 ≡ z2 − z1.

As we show below, it turns out that for the evaluation of the
curvature coefficients, it is sufficient to obtain the density
profiles ρ0(z) and ρ1(z) only. Using the expanded density
profile, we can then determine the coefficients in the expansion

TABLE I. Numerical values for the surface tension σ (in units of kBT/d2), Tolman length δσ (in units of kBT/d), and the combination
2k + k̄ (in units of kBT ) for three values of the volume fraction η. These values are determined from an analysis of the radius dependence of
the surface tension of a spherical interface and by a direct evaluation of the expression in Eqs. (33)–(35).

σ δσ 2k + k̄

η Eq. (33) σs(R) Eq. (34) σs(R) Eq. (35)

0.10 − 0.022 097 8 − 0.001 309 41 − 0.001 309 41 0.000 428 974 0.000 428 971
0.20 − 0.139 451 6 − 0.014 812 − 0.014 811 − 0.001 420 5 − 0.001 420 7
0.30 − 0.512 482 − 0.073 21 − 0.073 18 − 0.0161 − 0.0161

022401-4



EXISTENCE OF A BENDING RIGIDITY FOR A HARD- . . . PHYSICAL REVIEW E 87, 022401 (2013)

of ns
α(r):

ns
α(r) = n0

α(z) + n1
α(z)

R
+ n2

α(z)

R2
+ · · · , (31)

where n0
α(z) is given by Eq. (17) and n1

α(z) can be calculated
from

n1
2(z1) =

∫
dz2[ρ1(z2) + z12ρ0(z2)]w0

2(z1 − z2),

n1
3(z1) =

∫
dz2[ρ1(z2) + z12ρ0(z2)]w0

3(z1 − z2),

n1
V(z1) =

∫
dz2

{
[ρ1(z2) + z12ρ0(z2)]w0

3(z1 − z2)

+ ρ0(z2) w0
3(z1 − z2)

}
. (32)

Again, the evaluation of n2
α(z) turns out not to be necessary.

The expansions for ρs(r) and ns
α(r) are inserted into the

expression for the surface tension in Eq. (24). Making a
systematic expansion to second order in 1/R, using the
Euler-Lagrange equations in Eqs. (19) and (30), one ultimately
obtains expressions for the curvature coefficients by comparing
to the curvature expansion in Eq. (4). For the surface tension
of the planar interface, the result in Eq. (20) is recovered:

σ

kBT
=

∫ ∞

−d/2
dz

[
ρ0 ln(ρ0) − ρ0 − μ

kBT
ρ0 + φ0 + p

kBT
	(z)

]
. (33)

For the Tolman length, one obtains

δσ

kBT
= −

∫ ∞

−d/2
dz z

[
ρ0 ln(ρ0) − ρ0 − μ

kBT
ρ0 + φ0 + p

kBT
	(z)

]
− 1

2

∑
α

∫ ∞

−d/2
dz1

∫ ∞

0
dz2

∂φ0

∂n0
α(z1)

ρ0(z2)z12w
0
α(z1 − z2)

− 1

2

∫ ∞

−d/2
dz1

∫ ∞

0
dz2

∂φ0

∂n0
V(z1)

ρ0(z2)w0
3(z1 − z2). (34)

For the combination 2k + k̄, one finds

2k + k̄

kBT
=

∫ ∞

−d/2
dz z2

[
ρ0 ln(ρ0) − ρ0 − μ

kBT
ρ0 + φ0 + p

kBT
	(z)

]
+

∑
α

∫ ∞

−d/2
dz1

∫ ∞

0
dz2z1

∂φ0

∂n0
α(z1)

ρ0(z2)z12w
0
α(z1 − z2)

− 1

2

∑
α

∫ ∞

−d/2
dz1

∫ ∞

0
dz2

∂φ0

∂n0
α(z1)

ρ1(z2)z12w
0
α(z1 − z2)

+ 1

2

∑
α,β

∫ ∞

−d/2
dz1

∫ ∞

0
dz2

∂2φ0

∂n0
α(z1)∂n0

β(z1)
n1

β(z1)ρ0(z2)z12w
0
α(z1 − z2)

+ 1

2

∑
β

∫ ∞

−d/2
dz1

∫ ∞

0
dz2

∂2φ0

∂n0
V(z1)∂n0

β(z1)
n1

β(z1)ρ0(z2)w0
3(z1 − z2)

+ 1

2

∫ ∞

−d/2
dz1

∫ ∞

0
dz2

∂φ0

∂n0
V(z1)

ρ1(z2)w0
3(z1 − z2) +

∫ ∞

−d/2
dz1

∫ ∞

0
dz2

∂φ0

∂n0
V(z1)

ρ0(z2)z2w
0
3(z1 − z2). (35)

By solving the density profile ρ0(z) from Eq. (19) and ρ1(z)
from Eq. (30), these coefficients can all be evaluated directly
without having to determine the full radius-dependent surface
tension as a function of 1/R. It is therefore no surprise that
this route to the evaluation of the curvature coefficients is
much more convenient. To compare our results to the results
by Bryk et al. listed in their Table I [11], we need to take care
of the fact that in their analysis the location of the radius is
defined according to the location of the “actual surface” which
accounts for the fact that the molecule’s center of mass is half
a diameter away from the surface when it interacts with the
hard wall, Ractual = R − d/2. The curvature coefficients are
then shifted according to the following transformation:

(σ )R−d/2 = σ + pd

2
, (δσ )R−d/2 = δσ − pd2

8
− σd

2
,

(2k + k̄)R−d/2 = 2k + k̄ + pd3

24
+ σd2

4
− δσd. (36)

The form of these transformations is derived by shifting the
location of the z = 0 plane by a distance d/2 in the expressions
in Eqs. (33)–(35).

The results for σ , δσ , and the combination 2k + k̄ are
plotted in Fig. 1 as the solid lines. Also shown in Fig. 1 are the
calculations from Bryk et al. [11] (circular symbols), computer
simulation results by Laird et al. [21,22] (square symbols), and
scaled particle theory (SPT) [27] (dashed lines), for which the
expressions read

σd2

kBT
= 3η(2 + η)

2π (1 − η)2
,

δσd

kBT
= − 3η

4π (1 − η)
, (SPT) (37)

2k + k̄

kBT
= − 1

4π
ln(1 − η).
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From the results in Fig. 1 it is concluded that the curvature
coefficients calculated using Eqs. (33)–(35) are consistent with
those obtained by Bryk et al. [11], although there seems to be
some small discrepancy for the combination 2k + k̄ at larger
volume fractions. We will come back to this point in Sec. IV.

B. Cylindrical interface

The analysis for the cylindrical interface is more or less
analogous to that of the spherical interface, with one notable
difference being that the weight functions wc

α(r1,r2) in Eq. (26)
also need to be expanded in 1/R:

wc
2(r1,r2) = w0

2(z1 − z2)

(
1 + d2/4 − z2

12

16R2
+ · · ·

)
, wc

3(r1,r2) = w0
3(z1 − z2)

(
1 + d2/4 − z2

12

32R2
+ · · ·

)
,

(38)

wc
3′(r1,r2) = w0

3(z1 − z2)

(
1 + 3

(
d2/4 − z2

12

)
32R2

+ · · ·
)

, wc
V(r1,r2) = w0

V(z1 − z2)

(
1 + d2/4 − z2

12

16R2
+ · · ·

)
.

Following the same procedure as for the spherical interface, the expressions for σ and δσ in Eqs. (33) and (34) are recovered,
and one obtains as an expression for the bending rigidity k:

k

kBT
= −1

4

∑
α

∫ ∞

−d/2
dz1

∫ ∞

0
dz2

∂φ0

∂n0
α(z1)

ρ1(z2)z12w
0
α(z1 − z2)

+ 1

4

∑
α,β

∫ ∞

−d/2
dz1

∫ ∞

0
dz2

∂2φ0

∂n0
α(z1)∂n0

β(z1)
n1

β(z1)ρ0(z2)z12w
0
α(z1 − z2)

+ 1

4

∑
β

∫ ∞

−d/2
dz1

∫ ∞

0
dz2

∂2φ0

∂n0
V(z1)∂n0

β(z1)
n1

β(z1)ρ0(z2)w0
3(z1 − z2)

+ 1

8

∑
α

∫ ∞

−d/2
dz1

∫ ∞

0
dz2

∂φ0

∂n0
α(z1)

ρ0(z2)

(
d2

4
− 3z2

12

)
w0

α(z1 − z2)

− 1

16

∫ ∞

−d/2
dz1

∫ ∞

0
dz2

∂φ0

∂n0
3(z1)

ρ0(z2)

(
d2

4
− z2

12

)
w0

3(z1 − z2)

+ 1

4

∫ ∞

−d/2
dz1

∫ ∞

0
dz2

∂φ0

∂n0
V(z1)

ρ1(z2)w0
3(z1 − z2) + 1

2

∫ ∞

−d/2
dz1

∫ ∞

0
dz2

∂φ0

∂n0
V(z1)

ρ0(z2)z12w
0
3(z1 − z2), (39)

where ρ1(z) and n1
α(z) are the same as in the spherical analysis. It is noteworthy that since no reference to the location of the

z = 0 plane is made in this expression, the bending rigidity is independent of the choice for the location of the radius R, i.e.,
(k)R−d/2 = k. In this respect, the bending rigidity is a much more inherent property of the interface in question. The result of the
evaluation of the bending rigidity using Eq. (39) is shown as the solid line in Fig. 2. The open circles and crosses are the previous
results for k listed in Table II. Also shown are very recent computer simulation results by Laird et al. [21] (solid circles).

Figure 2 is the main result of this article. It shows that the bending rigidity is definitively not equal to zero in the context of
FMT theory for a hard-sphere fluid near a hard wall and the Hadwiger theorem does not apply in this case. We have shown this
via three more or less independent approaches which agree within numerical accuracy with each other. A further corroboration
of this result are the computer simulation results by Laird et al. [21]; although the agreement is not quantitative, the shape of the
volume fraction dependence of k is strikingly similar.

Finally, we would like to mention that by combining the expressions in Eqs. (35) and (39), an expression for the rigidity
constant associated with Gaussian curvature may be obtained:

k̄

kBT
=

∫ ∞

−d/2
dz z2

[
ρ0 ln(ρ0) − ρ0 − μ

kBT
ρ0 + φ0 + p

kBT
	(z)

]
+

∑
α

∫ ∞

−d/2
dz1

∫ ∞

0
dz2z1

∂φ0

∂n0
α(z1)

ρ0(z2)z12w
0
α(z1 − z2)

+
∫ ∞

−d/2
dz1

∫ ∞

0
dz2z1

∂φ0

∂n0
V(z1)

ρ0(z2)w0
3(z1 − z2) − 1

4

∑
α

∫ ∞

−d/2
dz1

∫ ∞

0
dz2

∂φ0

∂n0
α(z1)

ρ0(z2)

(
d2

4
− 3z2

12

)
w0

α(z1 − z2)

+ 1

8

∫ ∞

−d/2
dz1

∫ ∞

0
dz2

∂φ0

∂n0
3(z1)

ρ0(z2)

(
d2

4
− z2

12

)
w0

3(z1 − z2). (40)
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0
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1

σ

0 0.1 0.2 0.3η

-0.15

-0.10

-0.05

0.00
δσ

0 0.1 0.2 0.3η
0

0.01

0.02

0.03

2k+k-

FIG. 1. Various curvature coefficients as a function of the fluid
volume fraction: (a) surface tension σ (in units of kBT/d2), (b) Tolman
length δσ (in units of kBT/d), and (c) the combination 2k + k̄ (in units
of kBT ). The drawn lines are the results calculated using Eqs. (33)–
(35), transformed according to Eq. (36) so that the radius is defined
as that of the “actual surface.” Circular symbols are results from Bryk
et al. [11], square symbols are the computer simulation results by
Laird et al. [21,22], and the dashed line is the SPT result in Eq. (37).

Note that k̄ can be evaluated from the properties of the
planar interface only, a result that is consistent with similar
expressions for the liquid-vapor interface [20].

IV. DISCUSSION

We have shown that the bending rigidity is not equal to
zero in the context of FMT theory for a hard-sphere fluid near
a hard wall and that the Hadwiger theorem does not apply
in this case. Evidence for this conclusion is shown in Fig. 2,
where the results of three independent approaches are shown
to agree within numerical accuracy. It is noteworthy that the
bending rigidity changes sign from positive to negative as a
function of increasing fluid volume fraction. It is smaller than
the rigidity constant associated with Gaussian rigidity roughly
by an order of magnitude.

0 0.1 0.2 0.3η
-0.002

-0.001

0

0.001

0.002

k

FIG. 2. Bending rigidity k (in units of kBT ) as a function of the
fluid volume fraction. The drawn line is the result calculated from
Eq. (39); open circles and crosses are the previous results listed in
Table II; solid circles are the computer simulation results by Laird
et al. [21].

The reduced magnitude of k may certainly be partly
responsible for the fact that in a previous analysis [7] it was
hard to distinguish it from zero. Another possible source for
the discrepancy may be due to a different fit procedure used to
extract the curvature coefficients from the radius dependence
of the surface tension and wall density. A comparison between
our analysis and the analysis in Refs. [7,8,11] shows that while
numerical results for σs(R) agree to within a high degree of
accuracy [28], the difference in fit procedure leads to a fitted
value for 2k + k̄ that may differ by as much as 10% [see
Fig. 1(c)]. One may very well speculate that the difference in
fit procedure used may also have consequences for the fitted
value obtained for k.

The question now remains, what is the underlying physics
of the Hadwiger theorem? The Hadwiger theorem is not merely
some abstract notion from mathematics, and one should be able
to understand more microscopically when the conditions (i.e.,
additivity) that lead to it are fulfilled. To address this question,
let us consider the general form of the mean-field expressions
for the surface tension in spherical [Eq. (24)] and cylindrical
geometry [Eq. (28)] [29]:

σs(R) =
∫

dr

(
r

R

)2


s(r), σc(R) =
∫

dr

(
r

R

)

c(r),

(41)

where 
(r) depends on the distribution of the fluid density
ρ(r) in the interfacial region and may be referred to as the
excess free-energy density or (the negative of) the excess
lateral pressure [29].

Now, if it is assumed that the lateral pressure is independent
of R, i.e., 
(r) = 
0(z), then the only radius dependence in
Eq. (41) is due to the geometric factors (r/R)2 and (r/R).
Therefore, we immediately conclude from Eq. (41) that

σ =
∫

dz 
0(z), δσ = −
∫

dz z
0(z),
(42)

k̄ =
∫

dz z2
0(z),

and the bending rigidity k is zero. Furthermore, all the higher-
order terms in the expansion in 1/R are absent. (It was Helfrich
himself who derived these “geometrical expressions” in terms
of progressing moments of the excess lateral pressure [30].)
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These results correspond precisely to the predictions of the
Hadwiger theorem so that we may conclude that the Hadwiger
theorem corresponds to the following statement:

Hadwiger theorem ⇐⇒ 
(r) = 
0(z). (43)

This means that the Hadwiger theorem applies when the fluid
molecules do not rearrange themselves when the curvature
of the interface is changed. Certainly, theoretical models
may be constructed in which such a rearrangement does not
occur, but in general this is certainly not the case. To explore
this curvature dependence, we expand 
s(r) for a spherical
interface in 1/R:


s(r) = 
0(z) + 
1(z)

R
+ · · · . (44)

Szleifer and co-workers [31] already showed that the bending
rigidity k is then expressed as

k = 1

2

∫
dz z
1(z), (45)

which explicitly demonstrates the conclusion that k results
from the (possible) rearrangement of molecules when the
curvature of the interface is changed. An example of such a
rearrangement of molecules as described by the density profile
ρ1(z) is shown in Fig. 3 for η = 0.3.

Now, one could argue that the vanishing of the bending
rigidity is simply a matter of length scale [7]. The length scale
associated with the molecular rearrangement due to curvature
is the width of the interfacial region ξ , which is small compared
any to macroscopic length scale unless the system is critical

0 1 2 3z
-1

0

1

2
ρ(z)

ρ

ρ0

1

FIG. 3. Density profiles ρ0(z) (in units of 1/d3) and ρ1(z) (in units
of 1/d2) as a function of z (in units of d) for η = 0.3. The values
at z = 0 correspond to the pressure ρ0(0+) = p/kBT and (twice) the
surface tension ρ1(0+) = 2σ/kBT ; cf. Eq. (8).

[25] or when a macroscopic wetting layer is present [32–34].
However, the same argument would apply to all the curvature
coefficients, and in particular to the rigidity constant associated
with Gaussian curvature which scales similarly to the bending
rigidity.
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