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  Chapter 1 

1. General introduction 

The identification of the molecular genetic basis is crucial for the definitive diagnosis of 

individuals with congenital malformations and inherited diseases and for the risk evaluation in 

relatives. Currently, molecular genetic diagnosis depends on the recognition of distinctive 

clinical features (syndrome), on linking the syndrome to a known underlying defect, and on the 

availability of a laboratory that offers the diagnostic test for the particular gene(s) of interest (1-

2). 

In the majority of cases, one sequences the gene(s) of interest to look for genetic variation that 

can explain the clinical phenotype. Various techniques are available for targeted sequencing, for 

example, conventional Sanger sequencing (3) and Next Generation Sequencing (NGS) (4-8). 

Sanger sequencing is the gold standard for diagnostic analysis of single candidate genes. Most 

diagnostic DNA laboratories worldwide use this method for the identification of disease causing 

mutations. Although DNA testing by Sanger sequencing is useful for most Mendelian diseases, 

its use is still hampered by limited throughput and high cost. However, one can enhance the 

speed and reduce the cost by using any one of several pre-sequencing screening methods for 

DNA fragment analysis (9-12). One can then sequence only those fragments that contain the 

variants. We have described the various pre-sequencing methods in Chapter 2. Among these, 

High Resolution Melting Curve Analysis (HR-MCA) offers a cost efficient, fast and convenient 

method for assessing the presence of variants in a diagnostic setting (13).  

However, when there are too many samples and /or too many possible candidate genes to be 

tested in patients with genetically heterogeneous disorders, this combined technology (HR-MCA 

followed by Sanger sequencing) becomes time consuming, labour intensive and inefficient. For 

these diseases, such as,  cardiomyopathies (14), retinitis pigmentosa (15), deafness (16), Noonan 

syndrome (17), one can use NGS to search  for gene mutations. NGS circumvents the bottleneck 
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by interrogating all candidate genes or genomic regions of interest simultaneously (4-7). It is 

useful for sequencing DNA on a massive-scale, even an entire human genome (8, 18-21). The 

problem is that Whole Genome Sequencing (WGS) is very time consuming for many 

applications and is likely to remain prohibitively expensive for some time. However, a number of 

methods are now available to select targeted regions for sequencing in a more cost and time 

efficient manner (22). Such methods, described collectively as genome capture or genome 

enrichment technologies, include PCR- based methods (long range PCR or multiplexed short 

PCR) (23, 24), capture by hybridization (on–array and in–solution) (25-29), and capture by 

circularization (30).  

The aim of the work reported in this thesis was to optimize, test and apply different new 

molecular techniques, which include HR-MCA, targeted sequencing and exome enrichment 

followed by NGS. The purpose of this was to facilitate the detection of disease causing mutations 

in several disorders with suspected Mendelian inheritance, to speed up the identification of 

disease genes and to provide a systematic tool for classifying previously intractable genetic 

diseases. 

We review a number of the above-mentioned new techniques below. We also present several 

technical approaches for detecting candidate pathogenic variants in different Mendelian 

disorders. 

 1.1 High Resolution – Melting Curve Analysis (HR-MCA)  

The introduction of the Sanger sequencing method over 30 years ago marked a milestone in the 

history of genetic analysis. It quickly became indispensable for basic biological research and in 

various applied fields, such as biotechnology, diagnosis and forensic biology. The key principle 

of this methodology is to utilize dideoxynucleotide triphosphates as DNA chain terminators and 

to use specifically labelled nucleotides to read a DNA template during DNA synthesis (3). 

A series of technical modifications and innovations have slowly improved the accuracy and 

efficiency of the Sanger method and have finally led to the development of automated Sanger 

sequencing (31-34). The automated Sanger method became the method of choice for DNA 

sequencing and has dominated the field for almost two decades. During this time, the capacity of 
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the Sanger method has become so enhanced that it can read up-to 1000 base pairs per sequencing 

reaction (34).    

Sanger sequencing of single candidate genes for a given disease is useful for diagnosis if 

minimal locus heterogeneity and distinctive clinical symptoms exist. However, the high cost of 

sequencing and the rarity of many conditions still hampers the application of this method to  

many Mendelian disorders. The number of clinical situations where results of testing for DNA 

mutations has implications for the management and treatment of patients is increasing. The 

already overburdened laboratories with serious financial constraints have to deal with the 

growing demand for rapid turnaround time. Therefore, one needs cost-effective techniques that 

are  simple to perform, and which show high sensitivity and specificity. HR-MCA has been 

attracting more and more attention among analytical nucleic acid techniques in recent years. It is 

a simple, powerful and robust post-PCR analysis method for scanning of variants and for 

genotyping (13).  

HR-MCA is based on a melting (dissociation) curve and does not require sample processing after 

PCR. This technology was made possible by the recent advances in real-time PCR 

instrumentation (that allows for highly controlled temperature transitions and data acquisition) 

and by the availability of improved double-stranded DNA (dsDNA)–binding saturation dyes and 

hardware and software to monitor and analyze the melting. These advances allow accurate 

detection of sequence variations based on melting analysis. The advantage here is that one does 

not need to use labelled probes and not all amplicons need to be sequenced (35-37). The 

fluorescent binding dyes, known as intercalating dyes, do not inhibit PCR. They have a high 

fluorescence when bound to dsDNA and low fluorescence in the unbound state (13). HR-MCA is 

done after PCR amplification of the region of interest in the presence of a dsDNA dye.   The 

amplicons are warmed up and the fluorescence data is collected at 55–95°C at a temperature 

transition rate of 0.1 °C/s and 200 data points/°C (Idaho Technology Inc., Salt Lake City, UT). 

Specific PCR amplification of the intended targets is critical, requires careful design of primers, 

the correct length of the PCR product and optimal number of cycles.  

At the beginning of the HR-MCA, there is a high level of fluorescence in the sample, but as the 

sample is heated up and the dsDNA melts into single strands, the dye is released resulting in a 
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change in fluorescence. The fluorescence reduces as the number of double stranded DNA 

fragments decrease (35, 36, 38). A camera in the machine monitors this process and the machine 

plots the data in a graph known as a melting curve that represents the level of fluorescence and 

the temperature (Idaho Technology Inc., Salt Lake City, UT). The fluorescence signal is plotted 

against the temperature and the fluorescence data that is generated is assessed, based on the 

shape of the melting curve or on the melting temperature (Tm) (38, 39). The highest rate of 

decrease of the fluorescence signal occurs at the melting temperature (Tm) of the DNA 

amplicon. The Tm is the temperature at which 50% of the DNA sample is double stranded and 

the other 50% is single stranded. In general, the Tm is higher when DNA fragments are long 

and/or have a high GC content (40). The fluorescence data collected during the HR-MCA ranges 

from pre-melt (initial fluorescence) to post-melt (final fluorescence) signals.  The raw data is 

first normalized by selecting the pre-melt and post-melt regions for each primer set, onto a 0 to 

100% scale (Figure 1A) before plotting the HR -MCA curves. The temperature is then shifted in 

order to reduce the well-to-well variations. The amplicons with heterozygous variants can then 

be separated from the wild type and this is visible in the distinct shapes of the  melting curves  

(Figure 1B) (38-40).  

To visualize normalized data, difference plots can be generated (Figure 1 C) by subtracting the 

curves of the samples that are analysed from a reference curve.  The machine automatically 

clusters samples with similar melting curves/genotypes into groups. So the distinct shape of the 

melting curve, the derivative plot, and/or the difference plot can be used for amplicon analysis 

(Idaho Technology Inc., Salt Lake City, UT). Amplicons that amplify poorly will have low 

fluorescence and should not be analyzed further.  

The melting temperature of an amplicon at which the double DNA strands separate is predictable 

and depends on the sequence of the DNA bases. This allows one to compare different samples, 

which should give the same shaped melting curve, for the same amplicon. However, if one of the 

selected samples has  variant in the amplified DNA sequence, it will alter the melting curve 

profile. In diploid organisms, which have two alleles, there are three possibilities for a given 

variant: both alleles contain the variant (homozygote variant), either allele has the variant 

(heterozygote), neither allele contains a variant (homozygous wild type). 



11	  	  

One can distinguish between homozygous samples by a shift in the Tm, and between 

heterozygous samples by changes in the shape of the melting curve (13, 41, 42). However, not all 

homozygotes can be readily distinguished; homozygous or hemizygous variants can easily be 

missed due to subtle differences between some variants. The standard solution to overcome this 

problem is to mix patient DNA with wild-type DNA in order to generate heteroduplexes.  

 
A                                                              B 

 

C 

 

 

Figure 1. Amplicon melting analysis of exon 17 of 

the dystrophin gene showing wild type (gray), 

heterozygous (green and red), and homozygous 

(blue) variants. (A) Normalized melting curve (B) 

shifted melting curve (C) difference curve. 

 

 

The melting profile of a PCR product depends on its GC content, its length and its sequence (39). 

Short PCR products normally melt in a single transition while longer PCR products often melt in 

multiple transitions corresponding to melting domains of different stability. 
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The HR-MCA method is simple and flexible, has minimal requirement for optimization and has 

superb specificity and sensitivity. For this reason it is used by a wide range of disciplines for a 

variety of applications such as DNA methylation analysis (43-45),  genetic mapping (46), species 

identification (47), HLA compatibility typing (48), genotyping and mutation detection; the last of 

these is discussed in detail in the following section. 

1. 1.1 Genotyping and mutation detection  

It is important to determine differences in the genetic make-up (genotyping) for the study of 

genes and gene variants associated with disease. HR-MCA was first used as a genotyping 

technique (13). However, in most cases, the shape of an HR-MCA curve in itself is not sufficient 

to type a specific variant (40); moreover, the type of  base change, the presence of a homozygous 

and/or a non-pathogenic variant (common variants) may complicate the interpretation of the 

melting profiles. Either adding an unlabeled probe (49, 50) or sequencing the fragment can solve 

the problem. Unlabeled probes are around 30 base pairs in length and are blocked at their 3´-end 

to prevent extension. An excess amount of the strand complementary to the probe is produced by 

asymmetric PCR (1:5 or 1:10 ratio). Unlabeled probes can be designed to match either the 

variant or wild type sequence. Data can be viewed by using the derivative plot: if two melting 

regions are visible, the allele that is complementary to the probe will show a single peak at the 

highest temperature, whereas other alleles will produce a peak at lower temperatures. Typically, 

heterozygotes will display two peaks representing the two alleles (39, 51). 

Hundreds of variants in many genes that are associated with genetic diseases, with autosomal 

recessive, autosomal dominant or X-linked inheritance, have been examined; more than 60 

different genes have been analyzed using HR-MCA (35, 39, 51-61). 

In Chapter 2 of this thesis, we show the successful application of HR-MCA as a pre-sequencing 

screening method. We have optimized and validated the HR-MCA method and used it in 

combination with dsDNA dye LCGreen Plus to scan all coding exons and the exon/intron 

junctions and to genotype frequently found variants in the largest known human gene to date, the 

DMD gene. Mutations in the DMD gene can cause Duchenne and Becker muscular dystrophy 

(DMD). We found that amplicons up to 600 base pairs and more can be used for HR-MCA but 

the technique is more sensitive when shorter fragments, that result in melting profiles with no 
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more than two melting domains are tested. In addition, we found that HR-MCA is capable of 

distinguishing amplicons that differ by a single base pair. Therefore, we can use it to detect 

single nucleotide substitutions and small deletions and duplications. HR-MCA is a highly 

reliable and a quick method for mutation scanning and genotyping. It is now ready for routine 

diagnostic use on patients with Duchenne or Becker muscular dystrophy and on female carriers.  

1.2 Next generation sequencing (NGS)  

The ability to read the sequence of bases that comprise polynucleotide molecules such as DNA 

has had an enormous impact on biological and medical research. Sanger sequencing is the gold 

standard sequencing technology since 1977 (3). It has led to a number of monumental 

accomplishments, including the completion of the human genome sequence (62). However, the 

limited throughput of Sanger sequencing makes it expensive, laborious and time consuming, and 

therefore unsuitable for large-scale sequencing projects. The advent of Next-Generation 

Sequencing (NGS) technologies in 2005 has changed the paradigm of DNA sequencing and has 

opened fascinating new opportunities in biomedicine (4-6). NGS technologies have made it 

possible to process hundreds of thousands to millions of DNA templates in parallel. This results 

in a high throughput (gigabase) scale and low cost per base (6, 7). The cost of DNA sequencing 

keeps reducing due to rapid innovations in sequencing technology. The inexpensive production 

of huge amounts of sequence data is the main advantage of NGS over the Sanger sequencing 

method. 

NGS uses a number of different technologies that have appeared since 2005. In several NGS 

methods, fragmented genomic DNA ligated to universal adaptors amplifies into PCR colonies.  

Each colony has many copies of the same fragment, and some NGS methods can sequence all of 

them in parallel, whereas other NGS methods read single DNA sequences. Older NGS 

technologies read sequences from one end while newer platforms allow for paired-end sequences 

(4-8). Once the NGS produces a sequence, the sequenced data is mapped to a reference genome, 

such as the human reference genome, which provides the basis for all subsequent steps of data 

analysis. Several NGS platforms are now available on the market and among them, the Roche/ 

454, Illumina (Genome Analyzer/ Hiseq), and the Life Technologies SOLiD System are the 
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commercially dominant ones. Table 1 shows a summary and a comparison between these three 

different platforms. 

Table 1. A summary and a comparison between three NGS platforms. 

Companies  Roche GS FLX  Illumina-Solexa  Life Technologies  
Company homepage  http://www.454.com  www.illumina.com  http://www.appliedbio

systems.com  
Platforms  GS FLX Titanium, GS 20  HiSeq 2000, Genome 

Analyzer II (GA II),  
ABI SOLiD, SOLiD 4  

Solexa platform  
Sample requirements  1 µg for shotgun library, 5 

µg for paired end  
<1 µg for single or 
paired-end  

<2 µg for shotgun 
library, 5–20 µg for 
paired end,  

duraton of library 
prep/feature 
generation (days)  

3–4  2  2–4  

Method of feature 
generation  

Bead-based/emulsion PCR  Isothermal bridge PCR 
amplification on flow 
cell surface  

Bead-based/emulsion 
PCR  

Chemistry  Pyrosequencing 
(sequencing-by-synthesis 
with pyrophosphate)  

Reversible Dye 
Terminators  

Sequencing by 
ligation  

Reads per run  1 million  up to 3 billion  1.2 to 1.4 billion  
Raw accuracy  99.99%  98%  99.99%  
Read length  700 bases  50 to 250 bp bases  50+35 or 50+50 bp  
Sequencing run time  10-24 hours  1 to 10 days (based on 

the sequencer)  
6 days  

References  63-67  68-70  66, 67, 71  
 

In a relatively short time, NGS technologies have revolutionized the research on the human 

genome. They have been applied  to genomic sequences, the trancriptome (RNA seq) and 

chromatin immunoprecipitation in combination with DNA microarray (ChIP- chip) or 

sequencing (ChIP-seq) (72-98).  

In the following sections, we address the important features and applications of NGS for whole-

genome and targeted re-sequencing. 

1.2.1 Whole-genome and targeted re-sequencing  

The most common use of NGS platforms has been re-sequencing (99).  The introduction of these 

technologies has made it possible for some laboratories to sequence an entire human genome. 
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Several completely sequenced human genomes have been published so far, for example:  human 

genome sequences of the well known James D. Watson and of an African, a Chinese and two 

Korean individuals (18, 19, 100- 102). Sequencing whole human genomes will lead to a deeper 

understanding of the full spectrum of genetic variation. It will also throw some light on the role 

of genetic variation in phenotypic variation and disease susceptibility. However, the cost and 

capacity required for whole genome sequencing (WGS) is still significant. Routine sequencing of 

large numbers of whole human genomes is not yet feasible. Nevertheless, we expect that it will 

become routine in the near future.  For the time being, for time and cost effectiveness, we have to 

select and enrich genomic regions of interest before sequencing.  Moreover, the resulting data 

from target-enrichment methods is significantly less cumbersome to analyze. Thus, for some 

projects, the sequencing of large numbers of samples after targeted enrichment provides more 

answers to biological questions than the sequencing of the whole genomes of fewer individuals. 

Several methods to target specific areas in the genome prior to NGS have been developed (86). 

In general, there are three categories: PCR based methods (103- 105), capture-by-circularization 

(106-108) and capture-by-hybridization (25, 27, 28, 109). 

1.2.1.1 PCR 

For over 20 years, PCR has been the most widely used pre-sequencing technique for sample 

preparation, as it is compatible with Sanger sequencing (3).  PCR is also potentially well suited 

for NGS platforms, but to make full use of the high throughput, a large number of amplicons or 

samples must be pooled and sequenced together. However, multiplex PCR is difficult to perform 

since simultaneous use of many primer pairs can lead to differential amplification, formation of 

primer dimmers and to high rates of mispriming events (110, 111). Some amplicons may even 

fail to amplify. In addition, the length of amplicons that can be generated by long range PCR is 

limited (111, 112).  

In our experience, working with very long PCR fragments tends to be laborious, time consuming 

and expensive. This is because each individual PCR has to be optimized, with a maximum length 

of 11 kilobases, in order to make amplification as efficient as possible. Theoretically, you can 

design primers for long range PCR for all desired targets. However, in practice, not all reactions 

will yield a PCR product. This can also  be a problem when  amplifying fragments with a low 
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DNA integrity. Furthermore, the presence of SNPs in the primer annealing regions may lead to 

amplification of only one allele. These problems can be overcome by redesigning and optimizing 

the primer, and using a combination of short and long range PCR. After PCR amplification, the 

concentration of uniplex PCR products should be normalized to avoid sequencing one dominant 

PCR product from one sample or amplicon above all others. Only then, can one pool the PCR 

products before sequencing. The RainStorm method circumvents many of the  problems of the 

standard PCR–based approach. RainDance Technologies have developed this method  

(http://www.raindancetechnologies.com), which involves the use of emulsion PCR (70). 

1.2.1.2 Capture-by-circularization 

Molecular Inversion Probe (MIP) belongs to the category of molecular techniques that capture 

sequences by circularization.  MIPs were initially developed for multiplex target detection and 

SNP genotyping (113, 114).  In this technique, single-stranded oligonucleotide molecule (probe) 

consists of two target complementary arms separated by a linker region (one or two sequence 

tags and two amplification primers common to all MIPs). This assay is performed in three steps: 

hybridization of probes to the target sequences, circularization of bounded MIPs by ligase and 

amplification using common primers. The main advantages of capture-by-circularization with 

MIPs are reproducibility and high specificity with high levels of multiplexing (at least 300,000 

independent targets). It can be applied directly to genomic DNA, which needs low amounts of 

starting material. Moreover, MIP amplification products can be directly sequenced by NGS (22, 

107, 108).  

1.2.1.3 Capture-by-hybridization (Hybridize capture)  

Capture-by-hybridization can selectively target any specific area in the genome, such as genes of 

interest, linkage regions, whole chromosomes (X-exome) and all exons (exome sequencing) (22, 

115). This approach relies on the hybridization of fragmented genomic DNA libraries to a 

complex mixture of capture probes.  The capture probes may potentially be in solution (28) or 

fixed to a solid matrix such as a microbead or a glass surface (on array) (25, 26). This method 

has clear advantages over other methods that are based on the extension or ligation by an 

enzyme. These include the possibility of greater degree of multiplexing and potentially higher 

tolerance for polymorphisms that overlap with the present capture probes (22). 
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In the on-array capture methodology, total genomic DNA is fragmented and applied to the 

probes; non-bound fragments are removed by washing after hybridization. The hybridized DNA 

fragments are then eluted and enriched for sequencing (25) (Figure 2). Roche/NimbleGen was 

the first to adapt this technique. They provide different types of microarrays with different 

capture size varying from 5 Mb to 34 Mb on a single array, with different numbers of probes 

with lengths ranging from 60 to 90 basepairs. Agilent also offers commercial kits implementing 

this technology. 

In our hands, on-array target enrichment of large targeted regions showed several advantages 

over PCR methods: it is quicker, cheaper and less laborious. However, there are also 

disadvantages: working with large numbers of samples is not feasible, because arrays that are 

hybridized at the same time must also be eluted together and a single person cannot perform 

more than 20 arrays per day. Working with arrays requires expensive equipment such as a 

hybridization station. In addition, irrespective of whether the on-array capture experiment is for 

100 kb or an entire exome, a large amount of input DNA is needed (10–20 µg) to start a library 

preparation.  

In Chapter 3, we describe custom high-density microarrays (NimbleGen) to enrich exons and 

intron-exon junctions of 112 distinct genes potentially involved in mental retardation and 

congenital malformation, which were sequenced on the Illumina analyzer (Solexa). Our results 

show that this methodology offers a versatile tool for successfully selecting sequences of interest 

from the total human genome. In addition, we have discussed a number of advantages and 

disadvantages characteristics of this methodology. To overcome many of the disadvantages, 

Agilent, NimbleGen, and other companies have developed an in-solution-based target 

enrichment. In-solution capture is similar to the on-array capture method, but the probes in this 

technology are biotinylated (DNA or RNA bait) and not attached to a solid support. 

 Many different methods have been described for targeted  hybrid capture but only a few have 

been extended  to capture the whole human exome (exome sequencing) 

(http://www.illumina.com/products/truseq_exome_enrichment_kit.ilmn,  

http://www.genomics.agilent.com/,http://www.nimblegen.com/exomev3launcheq/) 
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1.2.1.3.1 Exome sequencing (ES) 

 Elucidation of the genetic basis of rare and common human diseases is the main goal of genetics 

and molecular biology. To date, causal variants for about 3,000 different Mendelian disorders 

have been identified (Online Mendelian Inheritance in Man OMIM, 

http://www.ncbi.nlm.nih.gov/omim) (116, 117).  

In the past two decades, linkage studies followed by positional cloning and homozygosity 

mapping have been very successful in identifying causal mutations for Mendelian disorders (118, 

119) due to a perfect segregation pattern of the causal variant with the disorder. However, these 

traditional methods are not suitable for studying all Mendelian disorders. Several factors limit the 

power of these methods such as, availability of patients for investigation, small number of cases 

or families (extremely rare Mendelian disorders), sporadic cases where variants have arisen de 

novo during meiosis, reduced penetrance and locus heterogeneity (117).  

Exome sequencing encompasses 1% of the genome and includes 180,000 exons from more than 

20,000 genes. It has become the main tool for studying the genetic causes of Mendelian disorders 

and of sporadic cases in which traditional methods have failed (120-123). Even when the 

traditional methods are expected to succeed, ES provides a tool for accelerating the discovery of 

disease genes (124). In Chapter 5, we have shown that  we were able to rapidly identify a 

missense mutation and a splice site mutation in TPP1, which causes the autosomal recessive 

spinocerebellar ataxia type 7 (SCAR7), by ES of only one patient. 

 ES starts with random shearing of genomic DNA and flanking the library fragments by adaptors. 

Next, the library is enriched for sequences corresponding to exons either by in-solution or on–

array hybridization capture. After that, the fragments are hybridized to the probes in the presence 

of blocking oligonucleotides.  The recovered hybridized fragments are then enriched by PCR 

amplification, and this is followed by NGS (Agilent sureselect/ Roche/Nimblegen) (Figure 2). 

For sample indexing, barcodes can be introduced during the initial library construction or during 

post-PCR capture amplification (28). After NGS, data mapping and analysis of candidate 

variants are performed. At the Human and Clinical Genetics Center in Leiden, we have built a 

data analysis pipeline, which automatically maps the data to the reference genome, retrieves 
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sequence variants, checks their presence in known databases (e.g. dbSNP, 1000 genome) and 

predicts the potential consequences at the level of protein translation. 

 

Figure 2. On- array and in-solution hybrid capture protocol.  

At least three vendors (Agilent, Illumina and Nimblegen) offer in-solution whole exome capture 

kits. There are technical differences between them: for instance, Agilent uses RNA probes while 

Illumina and Nimblegen use DNA probes. These kits also differ in the definition of the exome 

(fraction of the genome targeted). We found the performance of exome kits from Agilent and 

Nimblegen (34 Mb) to be largely equivalent (see Table 2); each is scalable in 96-well plates by 

using a thermal cycler with no need for special equipment. 
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Table 2. The performance of whole exome kits from Agilent and Nimblegen (34 Mb). 

 Agilent Sure Select  NimbleGen  

# bases covered by baits (target base)  33,149,893  31,389,337  
# bases covered by reads  32,878,642  31,233,008  
% target base covered by reads  99.18%  99.50%  
Average (base coverage) for the target  30.32x  29.97x  
# consecutive-bait regions (CBR)  150,742  164,191  
% CBR not covered by reads  1.18%  0.61%  
% CBR max(base_coverage) < 5x  1.60%  1.09%  
% CBR avg(base_coverage) >= 10x  86.09%  85.63%  
% CBR avg(base_coverage) >= 20x  60.53%  60.74%  
% CBR min(base_coverage) >= 20x  19.29%  20.96%  

Despite the fundamental limitation of the current ES technology, which does not cover non-

coding regions, it is a powerful strategy for discovering genes that underlie Mendelian disorders. 

This is for two reasons: First, large fractions of rare protein-altering variants, which are predicted 

to be deleterious, are located in exons (22); second, the price of ES is lower than that of 

sequencing an entire human genome.  

 Many proof-of-concept studies using ES to identify new disease genes for Mendelian disorders 

(125, 126) have been carried out in the past two years. There are an increasing number of 

successful studies that have found pathogenic variants of different diseases. More than 100 genes 

have been identified by ES in several Mendelian disorders with dominant, recessive and X-

linked inheritance (Table 3), and this number is expected to increase.  
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Table 3. Overview of Mendelian disease genes identified by NGS, based on Rabbani et al. (2012). 
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Miller syndrome AR DHODH                        127 
Autoimmune lymphoproliferative syndrome AR FADD                            128 
Nonsyndromic hearing loss AR GPSM2                         124 
Combined hypolipidemia AR ANGPTL3                     129 
Perrault syndrome AR HSD17B4                     130 
Complex I deficiency AR ACAD9                          131 
Hyperphosphatasia mental retardation syndrome AR PIGV                              132 
Sensenbrenner syndrome AR WDR35                         133 
Cerebral cortical malformations AR WDR62                         134 
3MC syndrome AR MASP1                              135 
Kabuki syndrome AD MLL2                                 121 
Schinzel–Giedion syndrome AD SETBP1                              136 
Spinocerebellar ataxia AD TGM6                                 137 
Terminal osseous dysplasia XLD FLNA                                 

  
138 

Nonsyndromic mental retardation AR TECR         139 
Retinitis pigmentosa AR DHDDS     140 
Osteogenesisimperfecta AR SERPINF1 141 
Skeletal dysplasia AR POP1        142 
Combined malonic and methylmalonicaciduria AR ACSF3       143 
Amelogenesis AR FAM20A   144 
Chondrodysplasia and abnormal joint development AR IMPAD1    145 
Progeroid syndrome AR BANF1       146 
Infantile mitochondrial cardiomyopathy AR AARS2       147 
Heterotaxy AR SHROOM3  148 
Mosaic variegated aneuploidy syndrome AR CEP57          149 
Hypomyelinatingleukoencephalopathy AR POLR3A, POLR3B  150 
Spastic ataxia-neuropathy syndrome AR AFG3L2  151 
Dilated cardiomyopathy AR GATAD1  152 
Gonadal dysgenesis AR PSMC3IP  153 
Autosomal recessive progressive external ophthalmoplegia AR RRM2B   154 
Knobloch syndrome AR ADAMTS18  155 
Spinocerebellar ataxia with psychomotor retardation AR SYT14       156 
Adams–Oliver syndrome AR DOCK6      157 
Steroid-resistant nephrotic syndrome AR MYO1E, NEIL1 158 
Complex bilateral occipital cortical gyration abnormalities AR LAMC3 159 
Intellectual disability AR AP4S1, AP4B1, AP4E1 160 
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Hypertrophic cardiomyopathy AR MRPL3 161 
Retinitis pigmentosa AR MAK 162 
3M syndrome AR CCDC8 163 
Seckel syndrome AR CEP152 164 
ADK deficiency AR ADK 165 
Nephronophthisis-like nephropathy AR WDR19 166 
Psuedo–Sjögren–Larsson syndrome AR ELOVL4 167 
Idiopathic infantile hypercalcemia AR CYP24A1 168 
EMARDD AR MEGF10 169 
Gray platelet syndrome AR NBEAL2 170 
Immunodeficiency, centromeric instability and facial 
anomalies 

AR ZBTB24 171 

Leber congenital amaurosis AR KCNJ13 172 
Hereditary spastic paraparesis AR KIF1A 173 
Ohdo syndrome AD KAT6B 174 
Paroxysmal kinesigenicdyskinesias AD PRRT2 175 
Hajdu–Cheney syndrome AD NOTCH2 176 
Bohring–Opitz syndrome AD ASXL1 177 
Hereditary diffuse leukoencephalopathy with spheroids AD CSF1R 178 
Spondyloepimetaphyseal dysplasia AD KIF22 179 
Adult neuronal ceroid-lipofuscinosis AD DNAJC5 180 
KBG syndrome AD ANKRD11 181 
Dendritic cell, monocyte, B and NK lymphoid deficiency AD GATA-2 182 
Late-onset Parkinson’s disease AD VPS35 183 
Sensory neuropathy with dementia and hearing loss AD DNMT1 184 
Dilated cardiomyopathy AD BAG3 185 
High myopia AD ZNF644 186 
Autosomal dominant retinitis pigmentosa AD RPE65 187 
Charcot–Marie–Tooth disease AD DYNC1H1 188 
Hereditary hypotrichosis simplex AD RPL21 189 
Geleophysic and acromicric dysplasia AD FBN1 190 
Myhre syndrome AD SMAD4 191 
Leucoencephalopathy XLR MCT8 192 
Split hand and foot malformation AR DLX5 193 
Global eye developmental defects AR ATOH7 194 
Primary hypertrophic osteoarthropathy AR SLCO2A1 195 
Bartsocas–Papas Syndrome AR RIPK4 196 
Familial aplastic anemia AR MPL 197 
Peeling skin syndrome AR CHST8 198 
Sengers syndrome AR AGK 199 
Hypertension AR/AD KLHL3, CUL3 200 
Weaver syndrome AD EZH2 201 
Genitopatellar syndrome AD KAT6B 202 
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Hypothyroidism AD THRA 203 
Floating–Harbor syndrome AD SRCAP 204 
Hereditary spastic paraplegia type 12 AD RTN2 205 
Microcephaly associated with lymphedema AD KIF11 206 
Congenital disorders of glycosylation (CDG) AR DDOST 207 
Congenital mirror movements AD RAD51 208 
Mandibulofacialdysostosis with microcephaly AD EFTUD2 209 
Limb-girdle muscular dystrophy AD DNAJB6 210 
Congenital stationary night blindness AR GPR179 211 
Autosomal recessive primary microcephaly AR CEP135 212 
Aplastic anemia and myelodysplasia AD SRP72 213 
Acrodysostosis AD PDE4D 214 
Olmsted syndrome AD TRPV3 215 
Familial diarrhea AR GUCY2C 216 
Nager syndrome AD SF3B4 217 
Infantile cerebellar retinal degeneration AR ACO2 218 
Coffin–Siris syndrome AD ARID1B  219 
Joubert syndrome AR C5ORF42 220 
Cerebroretinal microcephaly with calcifications and cysts AR CTC1 221 
Kohlschutter–Tonz Syndrome AR ROGDI 222 
UV-sensitive syndrome AR UVSSA 223 
Pulmonary arterial hypertension AD CAV1 224 

 

In Chapters 4-7, we have shown several examples of successful application of ES for detecting 

pathogenic mutations in various diseases. Moreover, ES has been used for detecting somatic 

mutations in tumours (225). The strength of ES in both research and as a diagnostic tool is 

becoming increasingly evident. It is used to find pathogenic mutations and to confirm the clinical 

diagnosis. ES can also be used as a genetic screening method to determine the carrier status of an 

individual, with respect to mutations that cause a particular autosomal recessive disorder (125, 

126, 226).  The diagnostic application of ES has been demonstrated by several examples (126, 

225). However, a number of technical factors are still challenging for which ES requires further 

optimization and standardization.  It is likely that ES, at least for the time being, will coexist with 

other NGS-based strategies, namely the targeted NGS and WGS in molecular diagnostics.  

Although, the total cost of WGS is much higher for the present, it is expected to become much 

more affordable soon (227). Obviously, one approach does not fit all different diagnostic 

applications and one needs to select the best approach based on available resources. For example, 
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a targeted NGS or ES approach is suitable for detecting mutations in disorders with genetic 

heterogeneity. Similarly, the diagnosis of X-linked disorders would require an NGS approach 

targeting the genes located on the X chromosome. We have used X-exome sequencing in two 

affected individuals from two unrelated families to detect the pathogenic mutation (c.5217G>A) 

in FLNA causing the X-linked Terminal Osseous Dysplasia (TOD) (Chapter 4). For other 

diseases such as mental retardation and congenital malformations, which are often due to copy 

number variations (CNV) or small mutations, the first step is to apply ES. Failure of ES to 

identify the causative genetic defect would suggest a possible extragenic location of the 

pathogenic mutation. WGS could then be used to detect deep intronic mutations or variants in 

remote regulatory elements. The advantage of WGS is that it does not require 30× or more 

coverage; so, sequencing of paired-end or mate-pair libraries with sufficient coverage across the 

genome is enough to identify CNVs, small mutations and chromosomal rearrangements. 

Recently, a cryptic fusion oncogene in acute promyelocytic leukemia was identified by WGS 

(228).  

Definitive genetic diagnosis for a particular Mendelian disease cannot be established based on 

only one newly identified variant; for that, additional cases are required. However, it may be 

difficult to find additional cases in rare disorders to validate the potential candidate mutation. In 

that case, one has to perform functional studies of the putative pathological variant to confirm the 

pathogenicity. This method should be considered when the mutated gene has a key role in a well-

defined molecular pathology of a certain disease. Indeed, the discovery of pathogenic variants 

and candidate genes responsible for different Mendelian disorders will help in understanding the 

function of the gene and the related biological pathways underlying health and disease. For 

example, we discovered that pathogenic variants in the SMCHD1 (Structural Maintenance of 

Chromosomes Flexible Hinge Domain containing 1) gene responsible for Facioscapulohumeral 

Dystrophy type 2 (FSHD2) act as epigenetic modifiers of the D4Z4. This has provided new 

insights into the possible role  of SMCHD1 mutations in modifying the epigenetic repression of 

other genomic regions (Chapter 7). 

In summary, the widespread availability of NGS technologies and the ever evolving field of gene 

sequencing is changing the approach to detecting genes, which cause Mendelian diseases as well 

as those responsible for complex traits. In particular, ES is expediting the detection of genes for 
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Mendelian diseases and the detection of mutations because of a rapid and straightforward 

laboratory workflow. Thousands of variants are identified per individual genome by NGS but 

only one or two of these variants may explain the Mendelian disease. Therefore, the 

interpretation of variants has become the new challenge. The number of variants that are 

identified in ES varies depending on the exome kit used, the NGS platform and the algorithms 

used for data mapping, and variant calling; this number can be huge. The following are, 

therefore, crucial for the identification of disease genes: prioritization of the variants, use of 

suitable bioinformatics tools and automated variants annotation algorithms, and the 

characterization of the functional impact of variants. It is expected that in due course standards 

and guidelines for ES or WGS will be established. The new technologies are therefore likely to 

become the most commonly used tools for the detection of genes for Mendelian diseases as well 

as for other diseases in the coming years. 
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Abstract 

Duchenne/Becker muscular dystrophy (DMD/BMD) is caused by large deletions or duplications 

in two-thirds of the cases. The remaining one-third DMD patients have small mutations in the 

DMD gene. Screening for such small mutations is a daunting and costly task. High resolution 

melting curve analysis (HR-MCA) followed by sequencing for amplicons with altered melting 

profiles can be used to scan DNA for small alterations. We first validated the technique as 

screening procedure for the DMD gene and then screened a group of unrelated 22 DMD/BMD 

patients and 11 females. We managed to identify all previously found mutations by means of 

HR-MCA, which provided its validation. Furthermore, 17 different pathogenic mutations were 

found in the screening group, of which 10 were novel. Our results provide validation of HR-

MCA as a powerful and inexpensive pre-sequencing scanning method. This technology is now 

ready for routine diagnostic use on DMD/BMD patients and female carriers. 
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Introduction 

Duchenne muscular dystrophy (DMD) is a fatal neuromuscular disorder, characterized by rapidly 

progressive muscle weakness and wasting. DMD is one of the most common types of muscular 

dystrophy, with an incidence of one in 3500 newborn boys [1]. The onset of symptoms is 

generally before the age of 5. Affected individuals are confined to a wheelchair before the age of 

12 and usually die in the course of the second or third decade, due to respiratory or heart failure 

[2]. 

Becker muscular dystrophy (BMD) shows a milder phenotype and is less common, with an 

incidence of 1:20,000 newborn males. BMD is characterized by delayed onset of muscle 

weakness and clinical symptoms. Many BMD patients remain ambulant later in life and have a 

longer life span than DMD patients [2]. 

DMD and BMD are allelic X-linked recessive diseases, caused by mutations in one of the largest 

human genes known to date, the DMD gene, which is distributed over about 2.4 million base 

pairs [3]. The vast majority of affected individuals are boys. However, a few affected females 

have been reported, in whom the disease was associated with a translocation with a breakpoint 

within Xp21 locus [4] or due to skewed X-inactivation, in which the majority of muscle cells 

used the mutated DMD gene, while the normal gene is inactivated through non-random X-

inactivation [5]. 

The DMD gene has 79 exons [6], coding for a 14 kb mRNA transcript. The 427 kDa cytoskeletal 

dystrophin protein is localized to the cytoplasmic face of the sarcolemma [7]. Dystrophin protein 

is an important component of the dystrophin–glycoprotein complex that stabilizes the membrane 

of striated muscle. The absence of dystrophin leads to sarcolemmal fragility, muscle weakness, 

and eventually muscle degeneration [8]. 

The extremely large size of the dystrophin gene makes it vulnerable to structural changes. Many 

pathogenic mutations have been reported among DMD patients; 60% of these mutations are 

intragenic deletions ranging from one to several exons, and 5–10% are duplications [3]. The 

remaining one-third of sequence changes are mutations at the nucleotide level [3, 9]. 

There is a hypothesis known as the reading frame rule. It predicts that deletions or duplications, 
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which shift the reading frame of dystrophin messenger RNA, produce premature, truncated, 

nonfunctional protein and cause the severe DMD phenotype. On the other hand, BMD is caused 

by inframe deletions/duplications, which allow the generation of partially functional, internally 

deleted or duplicated protein. The reading frame hypothesis holds true for over 92% of all DMD 

and BMD patients [10]. 

The great majority of deletions and duplications cluster in a minor and a major hot spot within 

the DMD gene. The first one spans exons 2–20, while the second, major one spans exons 45–53 

[3] and [11]. These mutations can be detected by a variety of methods including Southern 

blotting [11], multiplex PCR [12] and [13], multiplex amplifiable probe hybridization (MAPH) 

[14], and recently multiplex ligation-dependent probe amplification (MLPA). The last allows fast 

and reliable detection of deletions and duplications throughout the DMD gene [15]. 

A number of scanning methodologies have been developed to enhance small pathogenic 

mutation detection in patients without detectable large deletions and duplications. These methods 

include denaturing gradient gel electrophoresis (DGGE) [16], denaturing high performance 

liquid chromatography (dHPLC) [17], single strand conformation polymorphism analysis 

(SSCP) [18], fluorescent multiplex conformation sensitive capillary electrophoresis (FM-CSCE) 

[19], direct sequencing [20], and the protein truncation test (PTT) [21], each with its particular 

advantages and disadvantages. 

The first aim of our study was to evaluate the HR-MCA as a mutation scanning method in the 

DMD gene and to minimize the cost of mutation scanning. The second was to implement an 

effective and convenient diagnostic strategy in BMD/DMD patients and carriers to detect small 

mutations. 

Materials and methods 

Patients  

HR-MCA was performed on a group of 22 patients (12 DMD and 10 BMD) and a group of 11 

females: five obligate carriers, five possible carriers (mothers and sisters of isolated DMD 

patients) and one young symptomatic female in whom cytogenetic analysis had excluded a 

translocation with a breakpoint in Xp21. All 12 patients suspected of suffering from DMD 
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exhibited severe phenotypes and elevated serum CK levels. DMD phenotype was confirmed by 

absence of dystrophin using immunohistochemical analysis in eight cases, in one case only 

reduced expression of dystrophin was observed and in three no muscle biopsy had been taken. 

The diagnosis of BMD was based on clinical criteria and elevated serum CK levels. No muscle 

biopsy had been taken from the majority of BMD-like patients (7 out of 10). Reduced dystrophin 

expression on Western blot was detected in one case and a weak patchy dystrophin pattern on 

muscle sections was observed in the other two. Genomic DNA was isolated from peripheral 

blood by standard procedures [22]. Large deletions and duplications in the DMD gene had been 

previously excluded by MLPA in all cases. 

Validation 

In order to determine the efficiency of HR-MCA for mutation scanning, we tested 40 

heterozygous and 34 hemizygous variants in 45 different amplicons. These samples were 

selected from previous studies. In order to enhance heteroduplex formation for hemizygous 

variants, each hemizygous variant was tested in three ways: without mixing with wild type DNA, 

mixing with other male genomic wild type DNA before PCR amplification and post-PCR mixing 

with other male wild type PCR product. 

Primers 

Sequencing primers with M13 tails were designed previously by using primer 3 software 

(http://frodo.wi.mit.edu/cgi-bin/primer3/primer3.cgi). All 79 exons and adjacent intron/exon 

junctions were amplified and optimized for high resolution melting curve analysis. To maximize 

the sensitivity of the technique, exons 3, 23, 48, 53, 61, 67, 68, 76, and 79, which had three 

melting domains, were split into multiple amplicons. In addition, new primers were designed for 

exon 19, with smaller fragment size to avoid having three melting domains and exon 65, which 

failed to give a PCR product. 

All new primers were designed using either primer 3 or light scanner primer design software 

(Idaho Technology). To predict the number of melting domains, these primers were tested using 

the melting program (version 1.0; INGENY International BV, Goes, The Netherlands). In 10 

amplicons, 19, 3-GC, 61A, 61B, 68A, 68B, 79B2, 79C2, 79D1 and 79D2, a short GC stretch was 
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added to avoid three melting domains. The total number of amplicons was 96 (Supplementary 

Table 1). 

Probes 

We designed unlabeled probes (incorporating a 3′ phosphate in order to prevent polymerase 

extension) that perfectly match the five most frequent variants in five different exons of the 

DMD gene. The probe sequences, annealing temperatures and primer ratios for genotyping are 

shown in Table 1. 

Table 1: Sequences and PCR conditions for five different probes. 
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17 CTGAAGTCTTTCGAGCAATGTCTGACC 61 1 to 5 55 c.1993 -37T>G 

37 AAACTTGATGGCAAACCACGGTGAC 61 1 to 10 55 c.5234G>A 

48b AGAAGGACCATTTGACGTTAAGGTAGG 61 1 to 5 55 c.7096C>A 

54 GCATTCATAAAAGGTATGAATTATATTAT 61 1 to 5 55 c.8027+11C>T 

66 CAGATGTAAGTCGTGTATACTAATGCTG 61 1 to 5 55 c.9649 +15T>C 

	  

PCR  

PCR was performed in 96-well, non-transparent plates (ABgene) in 10 µl total volume with: 

1 × PCR buffer (Roche), 2 mΜ MgCl2, 2 mΜ dNTPs, 3 pmol of each primer, 1 × LCGreen Plus 

(Idaho Technology), 0.5 U of fast start Taq DNA polymerase (Roche) and 20 ng of DNA 

template. All PCR wells were covered with 15 µl of mineral oil (Sigma), and centrifuged at 

2500 RPM for 1 min before PCR. 

PCR was carried out in a gradient cycler (Bio-RAD). The thermo-cycling protocol was as 

follows: 10 min at 95 °C, 40 cycles of 20 s at 95 °C, 30 s at the annealing temperature, 40 s at 

72 °C, and 5 min at 72 °C. In order to promote heteroduplex formation, samples were 
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denaturated by heating to 95 °C for 1 min and cooling down to 15 °C in the thermo-cycler before 

HR-MCA. 

Asymmetric PCR 

Asymmetric PCR was performed whenever unlabeled probes were used. Primer asymmetry 

ratios of 1:5 to 1:10 produced sufficient single stranded product for probe annealing (see Table 

1). PCR reactions were performed as described above with some minor modifications as follows: 

1 pmol of the forward primer, 5 or 10 pmol of the reverse primer (see Table 1), and 5 pmol of 

each unlabeled probe. The thermo-cycling protocol was done as described above but with 55 

cycles and an annealing temperature of 61 °C. 

Post PCR mixing 

Samples from hemizygous males were mixed post-PCR. After successful PCR amplification, 

which was tested by a light scanner (Idaho Technology), post-PCR mixing was performed 

between amplicons of two different non-related male patients. As males have only one X-

chromosome, mixing is necessary to ensure that heteroduplex formation can occur. Post-PCR 

mixing was done as follows: 

Ten microliters of PCR product from each patient was covered with 15 µl of mineral oil (Sigma), 

centrifuged at 2500 RPM for 1 min, heated to 95 °C for 5 min and cooled down to 15 °C before 

HR-MCA. 

Melting analysis 

After PCR, the plates were imaged in a 96-well Light Scanner (Idaho Technology). The 

fluorescence data were collected from 65 to 98 °C for the amplicon scanning, and from 55 to 

98 °C for the unlabeled probe genotyping at a temperature transition rate of 0.1 °C/s. Melting 

curves were analyzed by using the commercial light scanner software on the high sensitivity 

setting as previously described [23], [24] and [25]. After exponential background subtraction, 

fluorescence data were normalized between 0% and 100%. Slight temperature errors or buffer 

differences between wells or runs were corrected by temperature shifting in regions of low 

fluorescence and high temperature (2–5% normalized fluorescence). This facilitated clustering of 
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curves for heterozygous samples. Difference plots of normalized and temperature overlaid curves 

were obtained by subtracting the fluorescence values of each curve from the mean reference 

values, which were defined as the most popular genotype (wild type). 

Sequencing 

Since HR-MCA is a non-destructive method, all amplicons that produced abnormal melting 

profiles were sequenced from the original PCR reactions for female carrier samples. All altered 

male patient amplicons were confirmed by sequencing of independent PCR products. PCR was 

performed in MicroAmp reaction tubes (Applied Biosystems) in 25 µl total volumes containing: 

10 × commercial PCR buffer or 5 × STR buffer which contains (0.5 M (NH4)2SO4, 0.5 M Tris–

HCL, pH 8.8, 1 M MgCl2, 10 mΜ EDTA, 14 M β-mercapto-ethanol, and ultra-pure water), 1.5–

3 mΜ MgCl2 (Supplementary Table 2), 2.5 mΜ dNTPs, 2.5 pmol each primer, 1 U of Taq DNA 

polymerase (Promega) and 200 ng of DNA template. PCR was carried out in a Biometra T-

Professional (Westburg). The thermo-cycling protocol was as follows: 5 min at 95 °C, 35 cycles 

of 20 s at 95 °C, 30 s at 55 °C, 30 s at 72 °C, and 5 min at 72 °C. After amplification, the PCR 

products were purified by the AMPure PCR purifications system using solid-phase paramagnetic 

bead technology (Agencourt). Sequencing was performed in both sense and antisense direction 

using uniform BigDye (Terminator v3.1 sequencing reactions, Applied Biosystems) with PAGE 

purified M13F (−21M13) or M13R (M13REV) sequencing primer. Sequencing reactions were 

then purified using a column filtration procedure (DTR V3 96-wells plates, Edge Biosystems) 

and final analysis was done using the ABI 3730 [26]. After electrophoresis, data processing was 

automated using SeqScape 2.1.1 software (ABI). Base calls with quality values below QV = 25 

were checked manually. The primer sequences (with M13 tail) that were used for amplification 

of DMD amplicons are shown in (Supplementary Table 3). 

Results 

Data from the HR-MCA 

-Validation 

DNA samples from patients or female carriers with known sequence changes, were used to 

optimize parameters for HR-MCA mutation scanning. Scanning for variants relies on differences 
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in the melting curve profile, which are most apparent in difference plots. The most common 

genotype, wild type, was selected as a reference to form the baseline, while the variant samples 

showed clearly distinctive melting curves. 

We could not detect the different known sequence variants in exons 3, 23, 48, 53 and 79B. All of 

these fragments had three melting domains that could mask the presence of the variants. 

Therefore, new primer sets were designed for all fragments with three melting domains, to 

reduce the number of melting domains per fragment. Our data show that this approach enhanced 

the resolution of HR-MCA. 

The initial testing correctly identified all 40 heterozygous and 24/34 hemizygous variants. The 

remaining 10 hemizygous variants were detected only after post-PCR mixing with wild type 

male DNA, an example is shown in Fig. 1A and B. Panel A shows exon 16 with one aberrant 

melting profile for a heterozygous variant (c.1961T > C) from a female sample and no aberrant 

melt profile for the male sample. Whereas panel B shows the result for the same exon after post-

PCR mixing for the males samples, with two aberrant melt profiles, which represent the 

heterozygous (c.1961T > C) and the hemizygous (c.1869C > T) variants. 

In several exons there was clustering of different sequence variations, which were readily 

distinguishable from each other and from the wild type, showing different melting curves. 

Variants could also be distinguished in homozygous and heterozygous form. In exon 53, the 

abnormal curve produced by the same sequence variant (c.7728T > C) in homozygous form 

differs from that caused by heteroduplex formation in the heterozygous form (Fig. 1C). 

In order to reduce the burden of sequencing, five unlabeled probes were designed to identify 

frequently found (see Table 2) variants (c.1993-37T > G, c.5234G > A, c.7096C > A, 

c.8027 + 11C > T, c.9649 + 15T > C) in amplicons 17, 37, 48b, 54, and 66, respectively. We 

successfully detected both heterozygous and homozygous–hemizygous variants. All three 

possible genotypes within the tested samples set were recognized by a single unlabeled probe. A 

perfectly matched probe-target hybrid had a higher Tm than the mismatched ones. Heterozygous 

amplicons, on the other hand, showed two peaks with two different temperatures representing 
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both genotypes, this is exemplified by sequence variant (c.5234G > A) in exon 37 (Fig. 2A and 

B). 

 

Fig. 1. Temperature shifted (left) and subtractive difference plots (right) of wild type and variants. (A and 

B) Exon 16, on (A) only the heterozygous variant from female sample is detected, while in (B) the 

hemizygous variant is only detected after post-PCR mixing. (C) The different melting curve profiles for 

the same variant in heterozygous and homozygous state. 

A 

B 

CC 
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Fig. 2. (A and B) Common DMD gene variants in exon 37 detected by genotyping with unlabeled probes. 
(A) Both the amplicon and probe area of exon 37. (B) The enlargement of the probe area. 

-Patient screening group 

After validation of the scanning method, we tested the group of 22 (BMD, DMD) patients and 11 

females. Amplicons with abnormal melting curves were sequenced to determine the changed 

variant. Five different heterozygous pathogenic mutations were detected directly within the 

female group. Furthermore, seven out of 12 hemizygous pathogenic mutations were found in 

male patients. Five out of 12 hemizygous pathogenic mutations (c.187-2A > G, c.3097_3098del, 

c.3603 + 2T > A, c.5771_5772del, c.6611dup) were detected only after post-PCR mixing, 

because they showed an altered fluorescence curve compared to the wild type profile. 

The only deletion/insertion mutation (c.597_614delinsCTAGTTTC), in exon 7 in a DMD male 

patient, was detected directly without post-PCR mixing (Fig. 3A). However, the abnormal curve 

produced by the same hemizygous mutation became clearer after post-PCR mixing (Fig. 3B). 

The results of genotyping our patients and carriers show that there is a great advantage of having 

oligonucleotide probes corresponding to the frequently occurring variants, because it reduces the 

number of sequencing reactions (Table 2). 
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Fig. 3. Temperature shifted (left) and subtractive difference plots (right) of wild type and a mutation in 

exon 7. (A) Exon 7 from a male patient without post-PCR mixing; the deletion/insertion mutation can be 

detected. (B) The post-PCR mixing of the same exon, that produces a different and clearer melting curve. 

Data from sequencing analysis  

In total, 17 different pathogenic mutations were detected in 33 cases (12 DMD, 10 BMD and 11 

female carriers) of which 10 were novel (Table 3). Most mutations were identified in obligate 

carriers (4/5) and DMD patients (10/12). Mutations were identified in all eight DMD patients 

with absence of dystrophin in the muscle tissue. A mutation was also found in two patients from 

whom no muscle tissue was available. No mutation was found in the other two, one of whom had 

reduced dystrophin expression. Seven of the 10 mutations in the DMD patients were novel (see 

Table 3). 
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Table 2. variants detected by HR-MCA and sequencing in BMD/DMD patients and carriers. 

Exon DNA change Protein Frequency/Remarks 

3 c.94-9dupT  4⁄33 
3 c.186+35A>T  1⁄33 
6 c.530+19C>T  once +patho 
9 c.832-18_832-17delinsGA  once +patho 

14 c.1635A>G  3⁄33 
14 c.1704+51T>C  3⁄33 
17 c.2168 +13T>C  1⁄33 
17 c.1993-37T>G  23⁄33 
21 c.2645G>A p.Gly882Asp 12⁄33 
23 c.3021G>A  1⁄33 
25 c.3406A>T p.Thr1136Ser 1⁄33 
27 c.3734C>T p.Thr1245Ile once +patho 
31 c.4234-13A>G  2⁄33 
33 c.4519-34T>A  once +patho 
34 c.4675 -53G>T  2⁄33 
37 c.5234G>A p.Arg1745His 19⁄33 
43 c.6290+27T>A  2⁄33 
44 c.6291-115G>A  5⁄33 
45 c.6463C>T p.Arg2155Trp3/33 3⁄33 
48 c.6913-114A>T  Once 

48b c.7096C>A p.Gln2366Lys 27⁄33 
49 c.7200+53C>G  11⁄33 
53 c.7728T>C  8⁄33 
54 c.8027+13T>G  once +patho 
54 c.8027+11C>T  14⁄33 
59 c.8762A>G p.His2921Arg once +patho 
59 c.8810A>G p.Gln2937Arg 3⁄33 
64 c.9361+138T>C  7⁄33 
66 c.9649+15T>C  28/33 
75 c.10789C>T  2⁄33 
75 c.10797+42C>G  1⁄33 
79 c.*477_*484del  2⁄33 
79 c.*491_*492dupCA  6⁄33 
79 c.*1051_*1052ins  1⁄33 
79 c.*1447A>G   1⁄33 

 
- + patho, when a variant is found in combination with a pathogenic mutation. 
- All variants in bold were detected by HR-MCA/ probes.                                                                                 
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Table 3. Pathogenic mutations found in BMD/DMD patients and carriers. 
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21 BMD male 4 c.187-2A>G  No (27) Reduced 

17 DMD male 7 c.597_614delinsC
TAGTTTC 

p.Phe200X Yes Absent 

8 DMD male 15 c.1721G>A p.Trp574X Yes ND 

24 DMD male 22 c.2929C>T p.Gln977X Yes ND 

9 DMD male 23 c.3097_3098del p.Ser1033LeufsX5 Yes Absent 

16 DMD male 23 c.3151C>T p.Arg1051X No (27) Absent 

23 obligate 
carrier 

female 26 c.3516G>A p.Trp1172X Yes ND 

26 DMD male 26 c.3603+2T>A p.Lys1201_Arg120
2insX25 

No (27) Absent 

5 BMD male 34 c.4845+1G>A  Yes ND 

12 obligate 
carrier 

female 40 c.5697del p.Lys1899AsnfsX2 No (27) ND 

31 DMD male 41 c.5771_5772del p.Glu1924GlyfsX7 No (27) Absent 

10 DMD male 44 c.6291-1G>T  Yes Absent 

30 DMD male 45 c.6611dup p.Arg2205GlufsX1
8 

Yes Absent 

11 obligate 
carrier 

female 51 c.7538dup p.Lys2514GlufsX3
4 

Yes ND 

18 symptomatic 
carrier 

female 58 c.8641del p.Leu2881X Yes Mosaic 

1 DMD male 67 c.9807+1G>C  No (27) Absent 

34 obligate 
carrier 

female 70 c.10141C>T p.Arg3381X No (27) ND 

ND, not done.  
IHC, immunohistochemistry. 
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In three cases splice-site mutations were found: two of these (c.3603 + 2T > A; c.9807 + 1G > C) 

have been described before in DMD patients [27]. One novel mutation (c.6291-1G > T) in the 

splice-site of exon 44 was predicted to skip exon 44 thereby shifting the reading frame of the 

DMD gene. Two mutations were found among 10 patients suspected of having BMD based on 

clinical symptoms. In a 33-year-old BMD patient from a large BMD family with six patients, a 

novel splice-site mutation of exon 34 was found (c.4845 + 1G > A) predicting an “in-frame” skip 

of exon 34 in this family. The second mutation was found in a 10-year-old sporadic BMD patient 

with reduced dystrophin levels on a Western blot. A splice-site mutation of exon 4 (c.187-

2A > G) was identified, which is likely to skip (in-frame) exon 4. The same mutation has been 

reported before in a BMD patient [27]. No mutation was detected in the remaining eight BMD 

cases. So, it is possible that these patients are suffering from other types of muscular dystrophy 

such as LGMD. Most of the BMD-like patients are sporadic except for one family in which 

recent haplotyping showed that X-linked inheritance is unlikely. A novel heterozygous 

frameshift mutation was detected in a young symptomatic female (c.8641delC; 

p.Leu2881ArgfsX13), who appeared to be a DMD carrier, and in whom previous cytogenetic 

analysis had excluded a translocation in band Xp21. A mutation was identified in four out of five 

obligate carriers of this study: two frameshift mutations, one of which is novel (c.7538dupA; 

p.Lys2514GlufsX34), and two nonsense mutations, one of which is novel (c.3516G > A; 

p.Trp1172X). However, no mutation was identified in any of the five possible DMD carriers. In 

addition to these mutations we identified 30 different variants. All of these have been reported 

before [27] and are shown in Table 2. 

Discussion  

HR-MCA in combination with dsDNA dye LCGreen Plus was used to scan the DMD gene and 

to genotype frequent variants. LCGreen Plus dye does not inhibit Taq polymerase and can be 

used at a concentration that will saturate newly synthesized double stranded DNA during PCR. 

Saturating all the available double stranded sites is a critical characteristic that eliminates the 

potential for a dye molecule to redistribute during the melting process of the PCR product. 

Another advantage is that because the dye is added to the PCR before amplification, no further 

processing or labeling of primers is required. 
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For HR-MCA one needs to pay careful attention to the design of the primers as mutation 

detection is easier when there are only one or two melting domains. We found that breaking up 

exons with three melting domains into multiple fragments allowed the detection of all variants 

that were tested. This is exemplified by exon 23 in which the two variants (c.2994T > A) and 

(c.3059C > G) were not observed initially before breaking up the exons. We also manipulated 

the melting by adding a GC stretch (7–11 bp) to 10 primers in order to avoid three melting 

domains and to maximize the sensitivity of the technique. 

After optimizing the various parameters, all 40 heterozygous and 24 out of 34 of the hemizygous 

variants that were located anywhere between two primers could be detected. Although the 

majority of the X-linked hemizygous variants were detected directly, 10 of the hemizygous 

variants were missed, indicating that post-PCR-mixing from two non-related patients is needed 

to ensure heteroduplex formation and mutation detection. To avoid the risk that a variant would 

be missed using this approach because two patients may carry the same variant in the DMD 

gene, post-PCR mixing between patient sample and a non-affected male control sample would 

remove this risk. Post-PCR mixing is preferred because pre-PCR mixing requires an accurate 

quantification of DNA [28], and non amplification of one of the fragments could lead to false 

negative results. 

All amplicons with abnormal melting profiles were sequenced, as there is no distinction between 

polymorphisms and pathogenic mutations. To avoid part of the sequencing, five most frequent 

variants throughout the DMD gene were genotyped by HR-MCA. All three possible genotypes 

within the tested sample set were recognized by a single unlabeled probe. In addition unexpected 

sequence variants under the probe could be detected. Use of unlabeled probes conveniently 

eliminates the need for expensive fluorescent labeled probes [29]. 

There have been numerous methods employed to detect small mutations in the DMD gene, such 

as DGGE [16], dHPLC [17], SSCP [18], FM-CSCE [19], PTT [21] and sequencing [20]. All of 

these technologies require post-PCR processing and separation on a gel or another matrix, which 

makes these techniques laborious and time consuming, as compared to HR-MCA, which is fast 

and has minimal post-PCR processing requirements. We conclude from our data that HR-MCA 

is at least as sensitive as DGGE, dHPLC and FM-CSCE. However, a comparative study has 
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recently shown that HR-MCA has higher sensitivity and specificity than dHPLC [30]. Moreover, 

all fragments analyzed by dHPLC need to be run under different denaturing conditions to 

maximize the mutation detection. 

HR-MCA has an advantage over the DGGE method. DGGE requires considerable effort to 

design and optimize, making it more labor-intensive than HR-MCA for routine diagnostic use. 

HR-MCA is a mutation scanning technique that requires accurate PCR amplification with normal 

unlabeled primers, whereas the FM-CSCE method needs the fluorophore labeling of one primer 

for each pair of primers. However, the major advantage of the FM-CSCE method is that nearly 

all mutation types can be detected simultaneously [19], whereas HR-MCA is suitable for the 

detection of only small mutations. For a complete mutation scanning strategy, HR-MCA should 

be combined with other methods such as MLPA [15]. 

The HR-MCA method makes mutation detection cost effective as it significantly reduces the 

amount of sequencing that needs to be performed. Furthermore, HR-MCA is a non-destructive 

and high throughput method for mutation scanning and genotyping, that can analyze 96 or 384 

samples per run, and is thus exquisitely suitable for the screening of large multi-exonic genes, 

like the DMD gene. 

As compared to RNA based methods, such as PTT, our HR-MCA technique is less laborious and 

less time consuming. PTT requires isolation of RNA, preferably from muscle tissue, which is not 

always available from affected patients. Although isolation of dystrophin mRNA is also possible 

from lymphocytes, the yield is very low [16]. Furthermore, only truncating mutations can be 

detected by PTT, whereas HR-MCA is able to detect all sequence changes, missense mutations, 

silent mutations, single nucleotide polymorphism (SNP’s) and variations of unknown 

significance. 

After sequencing of amplicons with abnormal melting profiles, about 83% of small mutations 

could be identified in our population suspected of suffering from DMD. It is very likely that a 

higher percentage of mutations would have been found if DMD had been confirmed in all cases 

by dystrophin analysis of muscle tissue. In two of the DMD-like cases in which no mutations 

were found, it seems plausible that other types of muscular dystrophies were involved. The fact 
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that no mutations were found in the majority of BMD-like patients (8/10), suggests that there is a 

large clinical overlap between BMD and other types of muscular dystrophy such as LGMD. It is, 

therefore, recommended that immunobiochemical analysis of muscle tissue be performed in 

patients suspected of having BMD before screening for small mutations. HR-MCA has been 

shown to be a quick and sensitive technique for further screening for small mutations in cases 

where dystrophin is absent or reduced in muscle tissue. An explanation for cases where no small 

mutation is found may be that the mutation is located either deep in an intron or in a regulatory 

region. Pathogenic mutations were found in four of the five obligate carrier females (80%). 

Determination of the carrier status is important for prenatal diagnosis, genetic counseling and 

prevention of the disease. It is possible that in the only family without a mutation, DMD is 

caused by a mutation deep in one of the introns activating cryptic exons or by a mutation in the 

promoter area of the DMD gene. 

The majority of mutations that were identified were novel (60%), and were scattered throughout 

the gene. There were six different nonsense mutations which resulted in a truncated, 

nonfunctional protein, six different frame shift mutations and five changes that are expected to 

affect the splicing. All these 17 pathogenic mutations that were detected are unique to each 

family. 

In conclusion, HR-MCA was found to be a highly reliable and quick method for mutation 

scanning and genotyping, requiring only direct analysis of the PCR reaction with a simple 

instrument. This technique offers many advantages over other techniques, and is a welcome 

addition to the screening strategy of laboratories involved in the diagnostic service for Duchenne 

and Becker muscular dystrophy. 
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Supplementary	  data:	  

Supplementary	  Table	  1	  Sequences	  of	  primers,	  annealing	  temperatures	  and	  fragment	  sizes	  for	  HR-‐MCA.	  

Amplicon	  
Number	  

Primer	  sequences	  	   Fragment	  
size	  	  

	  Annealing	  
temp.	  	  

	  	  
DMDEX01-‐F	   TGTAAAACGACGGCCAGTGCAGGTCCTGGAATTTGA	   405	   61Cº	  
DMDEX01-‐R	   CAGGAAACAGCTATGACCCAAACTAAACGTTATGCCACA	   	   	  
DMDEX02-‐F	   TGTAAAACGACGGCCAGTCACTAACACATCATAATGG	   269	   61Cº	  
DMDEX02-‐R	   CAGGAAACAGCTATGACCGATACACAGGTACATAGTC	   	   	  
DMDEX03	  A-‐F	   TGTAAAACGACGGCCAGTTCATCCGTCATCTTCGGCAGATTAA	   176	   61Cº	  
DMDEX03	  A-‐R	   CAGGAAACAGCTATGACCCAGGCGGTAGAGTAtgccaaatgaaaatca	   	   	  
DMDEX03B-‐F	   TCTTCAGTGACCTACAGGATGG	   184	   64Cº	  
DMDEX03B-‐R	   CGCCCGCCGtgctgtttcaatcagtacctagtca	   	   	  
DMDEX04-‐F	   TGTAAAACGACGGCCAGTTTGTCGGTCTCTCTGCTGGTCAGTG	   233	   60Cº	  
DMDEX04-‐R	   CAGGAAACAGCTATGACCCCAAAGCCCTCACTCAAAC	   	   	  
DMDEX05-‐F	   TGTAAAACGACGGCCAGTCAACTAGGCATTTGGTCTC	   261	   61Cº	  
DMDEX05-‐R	   CAGGAAACAGCTATGACCTTGTTTCACACGTCAAGGG	   	   	  
DMDEX06-‐F	   TGTAAAACGACGGCCAGTTGGTTCTTGCTCAAGGAATG	   335	   61Cº	  
DMDEX06-‐R	   CAGGAAACAGCTATGACCTGGGGAAAAATATGTCATCAG	   	   	  
DMDEX07-‐F	   TGTAAAACGACGGCCAGTCTATGGGCATTGGTTGTC	   296	   60Cº	  
DMDEX07-‐R	   CAGGAAACAGCTATGACCAAAAGCAGTGGTAGTCCAG	   	   	  
DMDEX08-‐F	   TGTAAAACGACGGCCAGTTCGTCTTCCTTTAACTTTG	   343	   61Cº	  
DMDEX08-‐R	   CAGGAAACAGCTATGACCTCTTGAATAGTAGCTGTCC	   	   	  
DMDEX09-‐F	   TGTAAAACGACGGCCAGTTCTATCCACTCCCCCAAACC	   318	   61Cº	  
DMDEX09-‐R	   CAGGAAACAGCTATGACCAACAAACCAGCTCTTCAC	   	   	  
DMDEX10-‐F	   CGACGTTGTAAAACGACGGCCAGTGGAACAATCTGCAAAGAC	   350	   61Cº	  
DMDEX10-‐R	   CAGGAAACAGCTATGACCAAAGGATGACTTGCCATTATAAC	   	   	  
DMDEX11-‐F	   TGTAAAACGACGGCCAGTCAAATAAAACTCAAAACCACACC	   337	   61Cº	  
DMDEX11-‐R	   CAGGAAACAGCTATGACCCTTCCAAAACTTGTTAGTCTTC	   	   	  
DMDEX12-‐F	   TGTAAAACGACGGCCAGTCTTTCAAAGAGGTCATAATAGG	   305	   61Cº	  
DMDEX12-‐R	   CAGGAAACAGCTATGACCCATCTGTGTTACTGTGTATAGG	   	   	  
DMDEX13-‐F	   TGTAAAACGACGGCCAGTGCAAATCATTTCAACACAC	   387	   60Cº	  
DMDEX13-‐R	   CAGGAAACAGCTATGACCTCTTTAAATCACAGCACTTC	   	   	  
DMDEX14-‐15-‐
F	  

TGTAAAACGACGGCCAGTTGGCAAATTATTCATGCCATT	   548	   63Cº	  

DMDEX14-‐15-‐
R	  

CAGGAAACAGCTATGACCTGATCCAAGCAAAAATAAACATT	   	   	  

DMDEX16-‐F	   TGTAAAACGACGGCCAGTATGCAACCCAGGCTTATTC	   286	   61Cº	  
DMDEX16-‐R	   CAGGAAACAGCTATGACCCTGTAGCATGATAATTGGTATCAC	   	   	  
DMDEX17-‐F	   TGTAAAACGACGGCCAGTTTTTCCTTTGCCACTCCAAG	   362	   61Cº	  
DMDEX17-‐R	   CAGGAAACAGCTATGACCCACCACCAACAAAACTGCTG	   	   	  
DMDEX18-‐F	   CGACGTTGTAAAACGACGGCCAGTTGTCAGGCAGGAGTCTCAgat	   339	   63Cº	  
DMDEX18-‐R	   CAGGAAACAGCTATGACCCGGAGTTTACAAGCAGCACA	   	   	  
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DMDEX19-‐F	   TGTAAAACGACGGCCAGT	  gattcacgtgataagctgacaga	   286	   63Cº	  
DMDEX19-‐R	   CAGGAAACAGCTATGACCCGCCCGCCGCGCttcagctgataaatatgaacc

tatgt	  
	   	  

DMDEX20-‐F	   TGTAAAACGACGGCCAGTTGGCTTTCAGATCATTTCTTTC	   393	   61Cº	  
DMDEX20-‐R	   CAGGAAACAGCTATGACCAAATACCTATTGATTATGCTCC	   	   	  
DMDEX21-‐F	   TGTAAAACGACGGCCAGTGCAAAATGTAATGTATGCAAAG	   355	   63Cº	  
DMDEX21-‐R	   CAGGAAACAGCTATGACCATGTTAGTACCTTCTGGATTTC	   	   	  
DMDEX22-‐F	   TGTAAAACGACGGCCAGTAGGAAAACATGGCAAAGTGTG	   370	   63Cº	  
DMDEX22-‐R	   CAGGAAACAGCTATGACCTGCTCAATGGGCAAACTACC	   	   	  
DMDEX23	  A-‐F	   TGTAAAACGACGGCCAGTACTCATCAATTATTAttcatcaattagggt	   126	   61Cº	  
DMDEX23	  A-‐R	   CAGGAAACAGCTATGACCCATCTCTTTCACAGTGGTGC	   	   	  
DMDEX23	  B-‐F	   TGTAAAACGACGGCCAGTAGCAACAAAGTGGCCTATAC	   135	   61Cº	  
DMDEX23	  B-‐F	   CAGGAAACAGCTATGACCGCTGGGAGGAGAGCTTC	   	   	  
DMDEX23	  C-‐F	   TGTAAAACGACGGCCAGTTTGAAGAAATTGAGGGACGC	   175	   61Cº	  
DMDEX23C-‐R	   CAGGAAACAGCTATGACCCTTTACAGTTTACAGTGTATcgttagg	   	   	  
DMDEX24-‐F	   TGTAAAACGACGGCCAGTTTGGGCCTGTGTTTAGACATA	   327	   63Cº	  
DMDEX24-‐R	   CAGGAAACAGCTATGACCAAATCCACCCCAGCTGTAAAA	   	   	  
DMDEX25-‐F	   TGTAAAACGACGGCCAGTTGTGGCAGTAATTTTTTTCAG	   296	   61Cº	  
DMDEX25-‐R	   CAGGAAACAGCTATGACCAGGAAATCTTAGTTAAGTACG	   	   	  
DMDEX26-‐F	   TGTAAAACGACGGCCAGTTGAGTGTATCTGATCCCCATGA	   438	   61Cº	  
DMDEX26-‐R	   CAGGAAACAGCTATGACCTGTTGCATTTCTTTCTTTTTC	   	   	  
DMDEX27-‐F	   TGTAAAACGACGGCCAGTTGGGATGTTGTGAGAAAGAA	   365	   63Cº	  
DMDEX27-‐R	   CAGGAAACAGCTATGACCTGACCATGTATTGACATATCATTGA	   	   	  
DMDEX28-‐F	   TGTAAAACGACGGCCAGTGAAGTTTTAATAATGAAATGGCaaaa	   311	   61Cº	  
DMDEX28-‐R	   CAGGAAACAGCTATGACCTGACCTCTTTTAATACTGCATAT	   	   	  
DMDEX29-‐F	   TGTAAAACGACGGCCAGTCCAATGTATTTAGAAAAAAAAGGAG	   279	   63Cº	  
DMDEX29-‐R	   CAGGAAACAGCTATGACCGCAAATTAGATTAAAGAGAtttttCAC	   	   	  
DMDEX30-‐F	   TGTAAAACGACGGCCAGTTACAGAAAAGCTATCAAGAG	   297	   61Cº	  
DMDEX30-‐R	   CAGGAAACAGCTATGACCAAAAACAAAAGAATGGAAGC	   	   	  
DMDEX31-‐F	   TGTAAAACGACGGCCAGTATGGTAGAGGTGGTTGAGGA	   296	   61Cº	  
DMDEX31-‐R	   CAGGAAACAGCTATGACCTATAATGCCCAACGAAAACA	   	   	  
DMDEX32-‐F	   TGTAAAACGACGGCCAGTCAGTTATTGTTTGAAAGGCAAA	   322	   61Cº	  
DMDEX32-‐R	   CAGGAAACAGCTATGACCCTTCTTAATGAGGAAAGTCAAGG	   	   	  
DMDEX33-‐F	   CGACGTTGTAAAACGACGGCCAGTTGGAATAGCAATTAAGGG	   393	   60Cº	  
DMDEX33-‐R	   CAGGAAACAGCTATGACCGCTAAGACTCTAATCATAC	   	   	  
DMDEX34-‐F	   TGTAAAACGACGGCCAGTCAGAAATATAAAAGTTCCaaataagtg	   374	   61Cº	  
DMDEX34-‐R	   CAGGAAACAGCTATGACCCATGTTAATACTTCCTTACAAAATC	   	   	  
DMDEX35-‐F	   TGTAAAACGACGGCCAGTCCGTTTCATAAGCATTAAATC	   307	   61Cº	  
DMDEX35-‐R	   CAGGAAACAGCTATGACCAGCTTCTAGCCTTTTCTC	   	   	  
DMDEX36-‐F	   CGACGTTGTAAAACGACGGCCAGTTGTCTAACCAATAATGCcatg	   257	   64Cº	  
DMDEX36-‐R	   CAGGAAACAGCTATGACCCTGGTGTACAATTTGGACA	   	   	  
DMDEX37-‐F	   CGACGTTGTAAAACGACGGCCAGTCTTTCTCACTCTTCTCGctcac	   377	   61Cº	  
DMDEX37-‐R	   CAGGAAACAGCTATGACCTTCGCAAGAGACCATTTAGCAC	   	   	  
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DMDEX38-‐F	   TGTAAAACGACGGCCAGTTTTAGCAACAGGAGGTTGAA	   267	   64Cº	  
DMDEX38-‐R	   CAGGAAACAGCTATGACCTTCTTTCCAAATATTTATTTCCACT	   	   	  
DMDEX39-‐F	   TGTAAAACGACGGCCAGTCTCTGTTAACAATGTACAGCTTTTT	   365	   64Cº	  
DMDEX39-‐R	   CAGGAAACAGCTATGACCAAAAACCACAGGCAAGGTAT	   	   	  
DMDEX40-‐F	   TGTAAAACGACGGCCAGTTACAAAAAGATGAGGGAC	   387	   61Cº	  
DMDEX40-‐R	   CAGGAAACAGCTATGACCAATAGAAACAAGAACATCAAC	   	   	  
DMDEX41-‐F	   TGTAAAACGACGGCCAGTGTTAGCTAACTGCCCTGGGccctgtattg	   311	   61Cº	  
DMDEX41-‐R	   CAGGAAACAGCTATGACCTAGAGTAGTAGTTGCaaacacatacgtgg	   	   	  
DMDEX42-‐F	   TGTAAAACGACGGCCAGTATGGAGGAGGTTTCACTGTT	   408	   61Cº	  
DMDEX42-‐R	   CAGGAAACAGCTATGACCCCATGTGAAAGTCAAAATGC	   	   	  
DMDEX43-‐F	   TGTAAAACGACGGCCAGTTTTCTATAGACAGCTAATTCATTTTT	   287	   63Cº	  
DMDEX43-‐R	   CAGGAAACAGCTATGACCACAGTTCCCTGAAAACAAATC	   	   	  
DMDEX44-‐F	   TGTAAAACGACGGCCAGTGTTACTTGAAACTAAACTCTGCaaatg	   444	   61Cº	  
DMDEX44-‐R	   CAGGAAACAGCTATGACCACAACAACAGTCAAAAGTAAtttccatc	   	   	  
DMDEX45-‐F	   TGTAAAACGACGGCCAGTTTCTTTGCCAGTACAACTGC	   357	   61Cº	  
DMDEX45-‐R	   CAGGAAACAGCTATGACCTCTGCTAAAATGTTTTCATTCC	   	   	  
DMDEX46-‐F	   TGTAAAACGACGGCCAGTCCAGTTTGCATTAACAAATAGtttgag	   409	   64Cº	  
DMDEX46-‐R	   CAGGAAACAGCTATGACCAGGGTTAAGAAGAAATAAAgttgtgag	   	   	  
DMDEX47-‐F	   TGTAAAACGACGGCCAGTTGATAGACTAATCAATAGaagcaaagac	   399	   61Cº	  
DMDEX47-‐R	   CAGGAAACAGCTATGACCAACAAAACAAAACAACAATccacatacc	   	   	  
DMDEX48	  A-‐F	   TGTAAAACGACGGCCAGTTTTGGCTTATGCCTTGAGAAT	   175	   61Cº	  
DMDEX48	  A-‐R	   CAGGAAACAGCTATGACCATAACCACAGCAGCAGATG	   	   	  
DMDEX48	  B-‐F	   TGTAAAACGACGGCCAGTGCTTGAAGACCTTGAAGAGC	   185	   61Cº	  
DMDEX48	  B-‐R	   CAGGAAACAGCTATGACCAAATGAGAAAATTCAGTGATATTGCC	   	   	  
DMDEX49-‐F	   TGTAAAACGACGGCCAGTGTGCCCTTATGTACCAGGCAGAAATTG	   475	   61Cº	  
DMDEX49-‐R	   CAGGAAACAGCTATGACCGCAATGACTCGTTAATAGCCTTAAGAT

C	  
	   	  

DMDEX50-‐F	   TGTAAAACGACGGCCAGTCACCAAATGGATTAAGATGTTCATGAA
T	  

307	   64Cº	  

DMDEX50-‐R	   CAGGAAACAGCTATGACCTCTCTCTCACCCAGTCATCACTTCATA
G	  

	   	  

DMDEX51-‐F	   TGTAAAACGACGGCCAGTGAAATTGGCTCTTTAGCTTGTGTTTC	   424	   64Cº	  
DMDEX51-‐R	   CAGGAAACAGCTATGACCGGAGAGTAAAGTGATTGGTGGAAAATC	   	   	  
DMDEX52-‐F	   TGTAAAACGACGGCCAGTGTGTTTTGGCTGGTCTCACA	   298	   63Cº	  
DMDEX52-‐R	   CAGGAAACAGCTATGACCCATGCATCTTGCTTTGTGTGT	   	   	  
DMDEX53	  A-‐F	   TGTAAAACGACGGCCAGTAAGAATCCTGTTGTTCATCATCCTAGC	   252	   64Cº	  
DMDEX53	  A-‐R	   CAGGAAACAGCTATGACC	  CCAGCCATTGTGTTGAATCCTTTAAC	  	  	   	   	  
DMDEX53	  B-‐F	   TGTAAAACGACGGCCAGT	  AGTACAAGAACACCTTCAGAACCG	   278	   64Cº	  
DMDEX53	  B-‐R	   CAGGAAACAGCTATGACCactttacattaaacatcattaaattacaatctatgg	   	   	  
DMDEX54-‐F	   CGACGTTGTAAAACGACGGCCAGTGTATTCTGACCTGAGGATTC	   378	   61Cº	  
DMDEX54-‐R	   CAGGAAACAGCTATGACCCATGGTCCATCCAGTTTC	   	   	  
DMDEX55-‐F	   TGTAAAACGACGGCCAGTAATTTAGTTCCTCCATCTTTCTCT	   445	   61Cº	  
DMDEX55-‐R	   CAGGAAACAGCTATGACCAAATACATCAGGCTGTATAAAAGC	   	   	  
DMDEX56-‐F	   TGTAAAACGACGGCCAGTATTCTGCACATATTCTTCTTCCTGC	   353	   63Cº	  
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DMDEX56-‐R	   CAGGAAACAGCTATGACCGGATGATTTACGTAGACATGTGAG	   	   	  
DMDEX57-‐F	   TGTAAAACGACGGCCAGTCAATGGAATTGTTAGAATCATCA	   320	   63Cº	  
DMDEX57-‐R	   CAGGAAACAGCTATGACCCACTGGATTACTATGTGCTTAACAT	   	   	  
DMDEX58-‐F	   TGTAAAACGACGGCCAGTTTTTGAGAAGAATGCCACAAGCC	   315	   63Cº	  
DMDEX58-‐R	   CAGGAAACAGCTATGACCAAAATATGAGAGCTATCCAGACCC	   	   	  
DMDEX59-‐F	   TGTAAAACGACGGCCAGTAAAGAATGTGGCCTAAAACC	   433	   64Cº	  
DMDEX59-‐R	   CAGGAAACAGCTATGACCTTGTGGGAAGATAACACTGC	   	   	  
DMDEX60-‐F	   TGTAAAACGACGGCCAGTTAAATATTCTCATCTTCCAATTTGC	   267	   63Cº	  
DMDEX60-‐R	   CAGGAAACAGCTATGACCTTACTGTAACAAAGGACAACAATG	   	   	  
DMDEX61A-‐F	   TGTAAAACGACGGCCAGTCGCCCGCCGCttgctttagtgttctcagtcttgg	   169	   63Cº	  
DMDEX61A-‐R	   CAGGAAACAGCTATGACCAAAGTCCCTGTGGGCTTCAT	   	   	  
DMDEX61B-‐F	   TGTAAAACGACGGCCAGTCGTCGAGGACCGAGTCAG	   210	   63Cº	  
DMDEX61B-‐R	   CAGGAAACAGCTATGACCCGCCCGCCGCcaggatgatttatgcttctactgc	   	   	  
DMDEX62-‐F	   TGTAAAACGACGGCCAGTTAATGTTGTCTTTCCTGTTTGCG	   221	   63Cº	  
DMDEX62-‐R	   CAGGAAACAGCTATGACCATACAGGTTAGTCACAATAAATGC	   	   	  
DMDEX63-‐F	   TGTAAAACGACGGCCAGTTACTCATTGTAAATGCTAAAGTC	   229	   63Cº	  
DMDEX63-‐R	   CAGGAAACAGCTATGACCTAGCAAGTAACTTTCACACTGC	   	   	  
DMDEX64-‐F	   TGTAAAACGACGGCCAGTTTCTGATGGAATAACAAATGCT	   322	   61Cº	  
DMDEX64-‐R	   CAGGAAACAGCTATGACCCATTCTAGGCAAACTCTAGGC	   	   	  
DMDEX65-‐F	   TGTAAAACGACGGCCAGTagtgtggttcacgtttggt	   386	   64Cº	  
DMDEX65-‐R	   CAGGAAACAGCTATGACCtgtacgctaagcctcctgtg	   	   	  
DMDEX66-‐F	   TGTAAAACGACGGCCAGTGTCAGTAATTGTTTTCTGCTTTG	   246	   61Cº	  
DMDEX66-‐R	   CAGGAAACAGCTATGACCATAAGAACAGTCTGTCATTTCCC	   	   	  
DMDEX67	  A-‐F	   TGTAAAACGACGGCCAGTTCAGGTTCTGCTGGCATC	   172	   60Cº	  
DMDEX67	  A-‐R	   CAGGAAACAGCTATGACCTGCAACTTCACCCAACTGTC	   	   	  
DMDEX67	  B-‐F	   TGTAAAACGACGGCCAGTGCCTCCTTCTGCATGATT	   187	   61Cº	  
DMDEX67	  B-‐R	   CAGGAAACAGCTATGACCAGAAAACGAAGCTCTGTGG	   	   	  
DMDEX68	  A-‐F	   TGTAAAACGACGGCCAGTCGCCCGCCcagcctagctttgcaaccat	   249	   61Cº	  
DMDEX68	  A-‐R	   CAGGAAACAGCTATGACCACTGGGGTTCCAGTCTCATC	   	   	  
DMDEX68	  B-‐F	   TGTAAAACGACGGCCAGTAGCGGCCCTCTTCCTAGACT	   236	   61Cº	  
DMDEX68	  B-‐R	   CAGGAAACAGCTATGACCCGCCCGC	  taacagcaactggcacagga	   	   	  
DMDEX69-‐F	   TGTAAAACGACGGCCAGTGAACGTGGTAGAAGGTTTATTAAA	   267	   61Cº	  
DMDEX69-‐R	   CAGGAAACAGCTATGACCCTAACTCTCACGTCAGGCTG	   	   	  
DMDEX70-‐F	   TGTAAAACGACGGCCAGTTGGTCATTAGTTTTGAAATCATC	   273	   63Cº	  
DMDEX70-‐R	   CAGGAAACAGCTATGACCCATCAAACAAGAGTGTGTTCTG	   	   	  
DMDEX71-‐F	   TGTAAAACGACGGCCAGTGGCTGAGTTTGCGTGTGTCT	   174	   61Cº	  
DMDEX71-‐R	   CAGGAAACAGCTATGACCGAGCGAATGTGTTGGTGGTA	   	   	  
DMDEX72-‐F	   TGTAAAACGACGGCCAGTAAGCATTCTAGGCCATGTGT	   261	   61Cº	  
DMDEX72-‐R	   CAGGAAACAGCTATGACCGGTTAGCTTTCCTTGGTTAGTT	   	   	  
DMDEX73-‐F	   TGTAAAACGACGGCCAGTACGTCACATAAGTTTTAATGAGC	   238	   63Cº	  
DMDEX73-‐R	   CAGGAAACAGCTATGACCATGCTAATTCCTATATCCTGTGC	   	   	  
DMDEX74-‐F	   TGTAAAACGACGGCCAGTATAAGGGGGGGAAAAAAC	   290	   63Cº	  
DMDEX74-‐R	   CAGGAAACAGCTATGACCTGCAAGTGTATGCACTCTG	   	   	  
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DMDEX75-‐F	   TGTAAAACGACGGCCAGTTCTTTTTTACTTTTTTGATGC	   380	   60Cº	  
DMDEX75-‐R	   CAGGAAACAGCTATGACCAGTGCTCTCTGAGGTTTAG	   	   	  
DMDEX76	  A-‐F	   TGTAAAACGACGGCCAGTacaatctttgggagggcttc	   231	   63Cº	  
DMDEX76	  A-‐R	   CAGGAAACAGCTATGACCCTGACTGCTGTCGGACCTCT	   	   	  
DMDEX76	  B-‐F	   TGTAAAACGACGGCCAGTCACAACGGTGTCCTCTCCTT	   216	   63Cº	  
DMDEX76	  B-‐R	   CAGGAAACAGCTATGACCttcagtggctccctgatacc	   	   	  
DMDEX77-‐F	   TGTAAAACGACGGCCAGTTAATCATGGCCCTTTAATATCTG	   306	   63Cº	  
DMDEX77-‐R	   CAGGAAACAGCTATGACCGATACTGCGTGTTGGCTTCC	   	   	  
DMDEX78-‐F	   TGTAAAACGACGGCCAGTTTCTGATATCTCTGCCTCTTCC	   267	   61Cº	  
DMDEX78-‐R	   CAGGAAACAGCTATGACCCATGAGCTGCAAGTGGAGAGG	   	   	  
DMDEX79	  A-‐F	   TGTAAAACGACGGCCAGTAGAGTGATGCTATCTATCTGCAC	   385	   61Cº	  
DMDEX79	  A-‐R	   CAGGAAACAGCTATGACCTGCATAGACGTGTAAAACCTGCC	   	   	  
DMDEX79B	  1	  –
F	  

TGTAAAACGACGGCCAGTTTGTGAAGGGTAGTGGTATTATACTG	   323	   60Cº	  

DMDEX79B	  1	  –
R	  

CAGGAAACAGCTATGACCTGCCTCAAAGTTTTGTGTGTG	   	   	  

DMDEX79B	  2	  –
F	  

TGTAAAACGACGGCCAGTCGCCCGCCGAACGCATTTTGGGTTGTT
T	  

284	   60Cº	  

DMDEX79B	  2	  –
R	  

CAGGAAACAGCTATGACCTCAAATGAGCAGTGTGTAGTAGTCA	   	   	  

DMDEX79C1-‐F	   TGTAAAACGACGGCCAGTCTTCCTCTACCACCACACCAA	   242	   60Cº	  
DMDEX79	  C1-‐
R	  

CAGGAAACAGCTATGACCAAGCAGGTAAGCCTGGATGA	   	   	  

DMDEX79	  C2-‐
F	  

TGTAAAACGACGGCCAGTTGTTCATGTCACATCCTAATAGAAA	   309	   60Cº	  

DMDEX79	  C2-‐
R	  

CAGGAAACAGCTATGACCCGCCCGCCGTAGCAGCAGGAAGCTGAA
TG	  

	   	  

DMDEX79D	  1	  –
F	  

TGTAAAACGACGGCCAGTCGCCCGCCGCGAGTAATCGGTTGGTTG
Gttga	  

265	   60Cº	  

DMDEX79D	  1	  	  
-‐R	  

CAGGAAACAGCTATGACC	  TCCTTCACTTAAAGAGTGGCCTA	   	   	  

DMDEX79D	  2	  –
F	  

TGTAAAACGACGGCCAGTGCTGGAGGGCTATGGATTC	   280	   60Cº	  

DMDEX79D	  2	  –
R	  

CAGGAAACAGCTATGACCCGCCCGCCGTCACAAATGTGATGGGGC
TA	  

	   	  

DMDEX79E	  –F	   TGTAAAACGACGGCCAGTAATAAACTTTGGGAAAAGGTG	   536	   64Cº	  
DMDEX79E	  –R	   CAGGAAACAGCTATGACCGAAGCCGTGTTTGATGTTAAT	   	   	  
DMDEX79F-‐F	   TGTAAAACGACGGCCAGTGAGAGTGGGCTGACATCAA	   532	   61Cº	  
DMDEX79F-‐R	   CAGGAAACAGCTATGACCTCACTCCAGAGCTAATGTGTCT	   	   	  
DMDEX79G-‐F	   TGTAAAACGACGGCCAGTAGTAAGTTTCATTCTAAAATCAGAGG	   531	   61Cº	  
DMDEX79G-‐R	   CAGGAAACAGCTATGACCGTGTTTTCACTGTCTTTCTGGA	   	  	   	  	  
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Supplementary	  Table	  2	  Exon	  (fragment)	  number,	  PCR	  buffers	  and	  MgCl2	  concentrations	  for	  sequencing.	  	  

Fragment # Buffer system  MgCl2 

5,22,48,53 10x AT(Applied Biosystems) 1.5mΜ 

4,6,7,8,9,10,12,13, 16,17,18,19,20,21, 25,26,29,30 ,32, 
35, 36, 37,38,39,40,41,42,44, 45,46,47,49,50,51,54, 
55,58,59,60,61,62,64,66,68,69,72,73, 75,76,77,79A,79G 

10x ST (Promega) 1.5mΜ 

1,2,23,24,31,33,34,43, 56,57,71,74 10x ST (Promega) 3 mΜ 

3,11,27,28,63,65,67,70,78,79B,79C,79D,79F 5x STR (LDGA) 1.5 mΜ 

14/15,52 5x STR (LDGA) 3 mΜ 

LDGA: Laboratory of Diagnostic Genome Analysis 
 
Supplementary	  Table	  3	  Primer	  sequences	  (with	  M13	  tail)	  that	  were	  used	  for	  the	  amplification	  of	  DMD	  
amplicons	  for	  sequencing.	  

Amplicon	  number	   Primer	  sequences	  	  

DMDEX01-‐F4	   TGTAAAACGACGGCCAGTGCAGGTCCTGGAATTTGA	  
DMDEX01-‐R4	   CAGGAAACAGCTATGACCCAAACTAAACGTTATGCCACA	  
DMDEX02-‐F5	   TGTAAAACGACGGCCAGTCACTAACACATCATAATGG	  
DMDEX02-‐R2	   CAGGAAACAGCTATGACCGATACACAGGTACATAGTC	  
DMDEX03-‐F5	   TGTAAAACGACGGCCAGTTCATCCGTCATCTTCGGCAGATTAA	  
DMDEX03-‐R4	   CAGGAAACAGCTATGACCCAGGCGGTAGAGTATGCCAAATGAAAATCA	  
DMDEX04-‐F3	   TGTAAAACGACGGCCAGTTTGTCGGTCTCTCTGCTGGTCAGTG	  
DMDEX04-‐R2	   CAGGAAACAGCTATGACCCCAAAGCCCTCACTCAAAC	  
DMDEX05-‐F3	   TGTAAAACGACGGCCAGTCAACTAGGCATTTGGTCTC	  
DMDEX05-‐R3	   CAGGAAACAGCTATGACCTTGTTTCACACGTCAAGGG	  
DMDEX06-‐F6	   TGTAAAACGACGGCCAGTTGGTTCTTGCTCAAGGAATG	  
DMDEX06-‐R6	   CAGGAAACAGCTATGACCTGGGGAAAAATATGTCATCAG	  
DMDEX07-‐F3	   TGTAAAACGACGGCCAGTCTATGGGCATTGGTTGTC	  
DMDEX07-‐R3	   CAGGAAACAGCTATGACCAAAAGCAGTGGTAGTCCAG	  
DMDEX08-‐F5	   TGTAAAACGACGGCCAGTTCGTCTTCCTTTAACTTTG	  
DMDEX08-‐R5	   CAGGAAACAGCTATGACCTCTTGAATAGTAGCTGTCC	  
DMDEX09-‐F4	   TGTAAAACGACGGCCAGTTCTATCCACTCCCCCAAACC	  
DMDEX09-‐R4	   CAGGAAACAGCTATGACCAACAAACCAGCTCTTCAC	  
DMDEX10-‐F1	   CGACGTTGTAAAACGACGGCCAGTGGAACAATCTGCAAAGAC	  
DMDEX10-‐R1	   CAGGAAACAGCTATGACCAAAGGATGACTTGCCATTATAAC	  
DMDEX11-‐F5	   TGTAAAACGACGGCCAGTCAAATAAAACTCAAAACCACACC	  
DMDEX11-‐R3	   CAGGAAACAGCTATGACCCTTCCAAAACTTGTTAGTCTTC	  
DMDEX12-‐F2	   TGTAAAACGACGGCCAGTCTTTCAAAGAGGTCATAATAGG	  
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DMDEX12-‐R2	   CAGGAAACAGCTATGACCCATCTGTGTTACTGTGTATAGG	  
DMDEX13-‐F3	   TGTAAAACGACGGCCAGTGCAAATCATTTCAACACAC	  
DMDEX13-‐R3	   CAGGAAACAGCTATGACCTCTTTAAATCACAGCACTTC	  
DMDEX14-‐F2	   TGTAAAACGACGGCCAGTTGGCAAATTATTCATGCCATT	  
DMDEX14-‐R2	   CAGGAAACAGCTATGACCTGATCCAAGCAAAAATAAACATT	  
DMDEX16-‐F3	   TGTAAAACGACGGCCAGTATGCAACCCAGGCTTATTC	  
DMDEX16-‐R3	   CAGGAAACAGCTATGACCCTGTAGCATGATAATTGGTATCAC	  
DMDEX17-‐F6	   TGTAAAACGACGGCCAGTTTTTCCTTTGCCACTCCAAG	  
DMDEX17-‐R4	   CAGGAAACAGCTATGACCCACCACCAACAAAACTGCTG	  
DMDEX18-‐F1	   CGACGTTGTAAAACGACGGCCAGTTGTCAGGCAGGAGTCTCAGAT	  
DMDEX18-‐R1	   CAGGAAACAGCTATGACCCGGAGTTTACAAGCAGCACA	  
DMDEX19-‐F4	   TGTAAAACGACGGCCAGTGATGGCAAAAGTGTTGAGAAAAAGTC	  
DMDEX19-‐R4	   CAGGAAACAGCTATGACCTTCTACCACATCCCATTTTCTTCCA	  
DMDEX20-‐F2	   TGTAAAACGACGGCCAGTTGGCTTTCAGATCATTTCTTTC	  
DMDEX20-‐R2	   CAGGAAACAGCTATGACCAAATACCTATTGATTATGCTCC	  
DMDEX21-‐F3	   TGTAAAACGACGGCCAGTGCAAAATGTAATGTATGCAAAG	  
DMDEX21-‐R3	   CAGGAAACAGCTATGACCATGTTAGTACCTTCTGGATTTC	  
DMDEX22-‐F2	   TGTAAAACGACGGCCAGTAGGAAAACATGGCAAAGTGTG	  
DMDEX22-‐R2	   CAGGAAACAGCTATGACCTGCTCAATGGGCAAACTACC	  
DMDEX23-‐F3	   TGTAAAACGACGGCCAGTTCATCTACTTTGTTTACATGTTTGAA	  
DMDEX23-‐R3	   CAGGAAACAGCTATGACCACAGTGTATCGTTAGGGAAAAA	  
DMDEX24-‐F4	   TGTAAAACGACGGCCAGTTTGGGCCTGTGTTTAGACATA	  
DMDEX24-‐R3	   CAGGAAACAGCTATGACCAAATCCACCCCAGCTGTAAAA	  
DMDEX25-‐F2	   TGTAAAACGACGGCCAGTTGTGGCAGTAATTTTTTTCAG	  
DMDEX25-‐R2	   CAGGAAACAGCTATGACCAGGAAATCTTAGTTAAGTACG	  
DMDEX26-‐F3	   TGTAAAACGACGGCCAGTTGAGTGTATCTGATCCCCATGA	  
DMDEX26-‐R1	   CAGGAAACAGCTATGACCTGTTGCATTTCTTTCTTTTTC	  
DMDEX27-‐F2	   TGTAAAACGACGGCCAGTTGGGATGTTGTGAGAAAGAA	  
DMDEX27-‐R4	   CAGGAAACAGCTATGACCTGACCATGTATTGACATATCATTGA	  
DMDEX28-‐F2	   TGTAAAACGACGGCCAGTGAAGTTTTAATAATGAAATGGCAAAA	  
DMDEX28-‐R3	   CAGGAAACAGCTATGACCTGACCTCTTTTAATACTGCATAT	  
DMDEX29-‐F4	   TGTAAAACGACGGCCAGTCCAATGTATTTAGAAAAAAAAGGAG	  
DMDEX29-‐R5	   CAGGAAACAGCTATGACCGCAAATTAGATTAAAGAGATTTTTCAC	  
DMDEX30-‐F4	   TGTAAAACGACGGCCAGTTACAGAAAAGCTATCAAGAG	  
DMDEX30-‐R3	   CAGGAAACAGCTATGACCAAAAACAAAAGAATGGAAGC	  
DMDEX31-‐F2	   TGTAAAACGACGGCCAGTATGGTAGAGGTGGTTGAGGA	  
DMDEX31-‐R2	   CAGGAAACAGCTATGACCTATAATGCCCAACGAAAACA	  
DMDEX32-‐F2	   TGTAAAACGACGGCCAGTCAGTTATTGTTTGAAAGGCAAA	  
DMDEX32-‐R2	   CAGGAAACAGCTATGACCCTTCTTAATGAGGAAAGTCAAGG	  
DMDEX33-‐F1	   CGACGTTGTAAAACGACGGCCAGTTGGAATAGCAATTAAGGG	  
DMDEX33-‐R1	   CAGGAAACAGCTATGACCGCTAAGACTCTAATCATAC	  
DMDEX34-‐F3	   TGTAAAACGACGGCCAGTCAGAAATATAAAAGTTCCAAATAAGTG	  
DMDEX34-‐R3	   CAGGAAACAGCTATGACCCATGTTAATACTTCCTTACAAAATC	  
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DMDEX35-‐F2	   TGTAAAACGACGGCCAGTCCGTTTCATAAGCATTAAATC	  
DMDEX35-‐R3	   CAGGAAACAGCTATGACCAGCTTCTAGCCTTTTCTC	  
DMDEX36-‐F1	   CGACGTTGTAAAACGACGGCCAGTTGTCTAACCAATAATGCCATG	  
DMDEX36-‐R1	   CAGGAAACAGCTATGACCCTGGTGTACAATTTGGACA	  
DMDEX37-‐F1	   CGACGTTGTAAAACGACGGCCAGTCTTTCTCACTCTTCTCGCTCAC	  
DMDEX37-‐R1	   CAGGAAACAGCTATGACCTTCGCAAGAGACCATTTAGCAC	  
DMDEX38-‐F3	   TGTAAAACGACGGCCAGTTTTAGCAACAGGAGGTTGAA	  
DMDEX38-‐R3	   CAGGAAACAGCTATGACCTTCTTTCCAAATATTTATTTCCACT	  
DMDEX39-‐F3	   TGTAAAACGACGGCCAGTCTCTGTTAACAATGTACAGCTTTTT	  
DMDEX39-‐R3	   CAGGAAACAGCTATGACCAAAAACCACAGGCAAGGTAT	  
DMDEX40-‐F2	   TGTAAAACGACGGCCAGTTACAAAAAGATGAGGGAC	  
DMDEX40-‐R2	   CAGGAAACAGCTATGACCAATAGAAACAAGAACATCAAC	  
DMDEX41-‐F2	   TGTAAAACGACGGCCAGTGTTAGCTAACTGCCCTGGGCCCTGTATTG	  
DMDEX41-‐R2	   CAGGAAACAGCTATGACCTAGAGTAGTAGTTGCAAACACATACGTGG	  
DMDEX42-‐F3	   TGTAAAACGACGGCCAGTATGGAGGAGGTTTCACTGTT	  
DMDEX42-‐R3	   CAGGAAACAGCTATGACCCCATGTGAAAGTCAAAATGC	  
DMDEX43-‐F6	   TGTAAAACGACGGCCAGTTTTCTATAGACAGCTAATTCATTTTT	  
DMDEX43-‐R6	   CAGGAAACAGCTATGACCACAGTTCCCTGAAAACAAATC	  
DMDEX44-‐F5	   TGTAAAACGACGGCCAGTGTTACTTGAAACTAAACTCTGCAAATG	  
DMDEX44-‐R2	   CAGGAAACAGCTATGACCACAACAACAGTCAAAAGTAATTTCCATC	  
DMDEX45-‐F5	   TGTAAAACGACGGCCAGTTTCTTTGCCAGTACAACTGC	  
DMDEX45-‐R4	   CAGGAAACAGCTATGACCTCTGCTAAAATGTTTTCATTCC	  
DMDEX46-‐F4	   TGTAAAACGACGGCCAGTCCAGTTTGCATTAACAAATAGTTTGAG	  
DMDEX46-‐R4	   CAGGAAACAGCTATGACCAGGGTTAAGAAGAAATAAAGTTGTGAG	  
DMDEX47-‐F4	   TGTAAAACGACGGCCAGTTGATAGACTAATCAATAGAAGCAAAGAC	  
DMDEX47-‐R4	   CAGGAAACAGCTATGACCAACAAAACAAAACAACAATCCACATACC	  
DMDEX48-‐F4	   TGTAAAACGACGGCCAGTTTGAATACATTGGTTAAATCCCAACATG	  
DMDEX48-‐R4	   CAGGAAACAGCTATGACCCCTGAATAAAGTCTTCCTTACCACAC	  
DMDEX49-‐F4	   TGTAAAACGACGGCCAGTGTGCCCTTATGTACCAGGCAGAAATTG	  
DMDEX49-‐R4	   CAGGAAACAGCTATGACCGCAATGACTCGTTAATAGCCTTAAGATC	  
DMDEX50-‐F3	   TGTAAAACGACGGCCAGTCACCAAATGGATTAAGATGTTCATGAAT	  
DMDEX50-‐R2	   CAGGAAACAGCTATGACCTCTCTCTCACCCAGTCATCACTTCATAG	  
DMDEX51-‐F3	   TGTAAAACGACGGCCAGTGAAATTGGCTCTTTAGCTTGTGTTTC	  
DMDEX51-‐R3	   CAGGAAACAGCTATGACCGGAGAGTAAAGTGATTGGTGGAAAATC	  
DMDEX52-‐F4	   TGTAAAACGACGGCCAGTGTGTTTTGGCTGGTCTCACA	  
DMDEX52-‐R4	   CAGGAAACAGCTATGACCCATGCATCTTGCTTTGTGTGT	  
DMDEX53-‐F3	   TGTAAAACGACGGCCAGTTCCTCCAGACTAGCATTTAC	  
DMDEX53-‐R3	   CAGGAAACAGCTATGACCTTAGCCTGGGTGACAGTG	  
DMDEX54-‐F2	   CGACGTTGTAAAACGACGGCCAGTGTATTCTGACCTGAGGATTC	  
DMDEX54-‐R2	   CAGGAAACAGCTATGACCCATGGTCCATCCAGTTTC	  
DMDEX55-‐F3	   TGTAAAACGACGGCCAGTAATTTAGTTCCTCCATCTTTCTCT	  
DMDEX55-‐R7	   CAGGAAACAGCTATGACCAAATACATCAGGCTGTATAAAAGC	  
DMDEX56-‐F2	   TGTAAAACGACGGCCAGTATTCTGCACATATTCTTCTTCCTGC	  
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DMDEX56-‐R2	   CAGGAAACAGCTATGACCGGATGATTTACGTAGACATGTGAG	  
DMDEX57-‐F2	   TGTAAAACGACGGCCAGTCAATGGAATTGTTAGAATCATCA	  
DMDEX57-‐R2	   CAGGAAACAGCTATGACCCACTGGATTACTATGTGCTTAACAT	  
DMDEX58-‐F4	   TGTAAAACGACGGCCAGTTTTTGAGAAGAATGCCACAAGCC	  
DMDEX58-‐R4	   CAGGAAACAGCTATGACCAAAATATGAGAGCTATCCAGACCC	  
DMDEX59-‐F6	   TGTAAAACGACGGCCAGTAAAGAATGTGGCCTAAAACC	  
DMDEX59-‐R6	   CAGGAAACAGCTATGACCTTGTGGGAAGATAACACTGC	  
DMDEX60-‐F3	   TGTAAAACGACGGCCAGTTAAATATTCTCATCTTCCAATTTGC	  
DMDEX60-‐R3	   CAGGAAACAGCTATGACCTTACTGTAACAAAGGACAACAATG	  
DMDEX61-‐F3	   TGTAAAACGACGGCCAGTCATTGTTTTAATTGTTCCTCATT	  
DMDEX61-‐R3	   CAGGAAACAGCTATGACCTTCAACTCTTAATTCTTTTGTTTTT	  
DMDEX62-‐F4	   TGTAAAACGACGGCCAGTTAATGTTGTCTTTCCTGTTTGCG	  
DMDEX62-‐R4	   CAGGAAACAGCTATGACCATACAGGTTAGTCACAATAAATGC	  
DMDEX63-‐F3	   TGTAAAACGACGGCCAGTTACTCATTGTAAATGCTAAAGTC	  
DMDEX63-‐R3	   CAGGAAACAGCTATGACCTAGCAAGTAACTTTCACACTGC	  
DMDEX64-‐F2	   TGTAAAACGACGGCCAGTTTCTGATGGAATAACAAATGCT	  
DMDEX64-‐R2	   CAGGAAACAGCTATGACCCATTCTAGGCAAACTCTAGGC	  
DMDEX65-‐F4	   TGTAAAACGACGGCCAGTGGTTTTACTCTTTGAGTCATTTGT	  
DMDEX65-‐R4	   CAGGAAACAGCTATGACCTACGCTAAGCCTCCTGTGAC	  
DMDEX66-‐F5	   TGTAAAACGACGGCCAGTGTCAGTAATTGTTTTCTGCTTTG	  
DMDEX66-‐R3	   CAGGAAACAGCTATGACCATAAGAACAGTCTGTCATTTCCC	  
DMDEX67-‐F3	   TGTAAAACGACGGCCAGTGAAGTAACCCCACTCTGTGGAA	  
DMDEX67-‐R2	   CAGGAAACAGCTATGACCAAACGAAGCTCTGTGGGTTT	  
DMDEX68-‐F1	   TGTAAAACGACGGCCAGTTAATCGAACTGATATACACCTCC	  
DMDEX68-‐R1	   CAGGAAACAGCTATGACCACTAACAGCAACTGGCACAGG	  
DMDEX69-‐F3	   TGTAAAACGACGGCCAGTGAACGTGGTAGAAGGTTTATTAAA	  
DMDEX69-‐R3	   CAGGAAACAGCTATGACCCTAACTCTCACGTCAGGCTG	  
DMDEX70-‐F3	   TGTAAAACGACGGCCAGTTGGTCATTAGTTTTGAAATCATC	  
DMDEX70-‐R3	   CAGGAAACAGCTATGACCCATCAAACAAGAGTGTGTTCTG	  
DMDEX71-‐F5	   TGTAAAACGACGGCCAGTGGCTGAGTTTGCGTGTGTCT	  
DMDEX71-‐R3	   CAGGAAACAGCTATGACCGAGCGAATGTGTTGGTGGTA	  
DMDEX72-‐F3	   TGTAAAACGACGGCCAGTAAGCATTCTAGGCCATGTGT	  
DMDEX72-‐R3	   CAGGAAACAGCTATGACCGGTTAGCTTTCCTTGGTTAGTT	  
DMDEX73-‐F2	   TGTAAAACGACGGCCAGTACGTCACATAAGTTTTAATGAGC	  
DMDEX73-‐R2	   CAGGAAACAGCTATGACCATGCTAATTCCTATATCCTGTGC	  
DMDEX74-‐F1	   TGTAAAACGACGGCCAGTATAAGGGGGGGAAAAAAC	  
DMDEX74-‐R1	   CAGGAAACAGCTATGACCTGCAAGTGTATGCACTCTG	  
DMDEX75-‐F1	   TGTAAAACGACGGCCAGTTCTTTTTTACTTTTTTGATGC	  
DMDEX75-‐R1	   CAGGAAACAGCTATGACCAGTGCTCTCTGAGGTTTAG	  
DMDEX76-‐F4	   TGTAAAACGACGGCCAGTGGGTCAAAATTTATGAGTCCTG	  
DMDEX76-‐R3	   CAGGAAACAGCTATGACCTTCATGTCCCTGTAATACGACT	  
DMDEX77-‐F1	   TGTAAAACGACGGCCAGTTAATCATGGCCCTTTAATATCTG	  
DMDEX77-‐R1	   CAGGAAACAGCTATGACCGATACTGCGTGTTGGCTTCC	  
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DMDEX78-‐F2	   TGTAAAACGACGGCCAGTTTCTGATATCTCTGCCTCTTCC	  
DMDEX78-‐R3	   CAGGAAACAGCTATGACCCATGAGCTGCAAGTGGAGAGG	  
DMDEX79-‐F2	   TGTAAAACGACGGCCAGTAGAGTGATGCTATCTATCTGCAC	  
DMDEX79-‐R2	   CAGGAAACAGCTATGACCTGCATAGACGTGTAAAACCTGCC	  
DMDEX79-‐F3	   TGTAAAACGACGGCCAGTATTTTTGTGAAGGGTAGTGGT	  
DMDEX79-‐R3	   CAGGAAACAGCTATGACCGAAAAAGTCAGTCTATAGAAATTCG	  
DMDEX79-‐F4	   TGTAAAACGACGGCCAGTCCACCACACCAAATGACTAC	  
DMDEX79-‐R4	   CAGGAAACAGCTATGACCATCTAAATCGTGGCATTGCT	  
DMDEX79-‐F5	   TGTAAAACGACGGCCAGTAGTAATCGGTTGGTTGGTTG	  
DMDEX79-‐R5	   CAGGAAACAGCTATGACCAACACAGTTCATGGGCTTCT	  
DMDEX79-‐F6	   TGTAAAACGACGGCCAGTAATAAACTTTGGGAAAAGGTG	  
DMDEX79-‐R6	   CAGGAAACAGCTATGACCGAAGCCGTGTTTGATGTTAAT	  
DMDEX79-‐F7	   TGTAAAACGACGGCCAGTGAGAGTGGGCTGACATCAA	  
DMDEX79-‐R7	   CAGGAAACAGCTATGACCTCACTCCAGAGCTAATGTGTCT	  
DMDEX79-‐F8	   TGTAAAACGACGGCCAGTAGTAAGTTTCATTCTAAAATCAGAGG	  
DMDEX79-‐R8	   CAGGAAACAGCTATGACCGTGTTTTCACTGTCTTTCTGGA	  
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Chapter 3 
Experiences with array-based sequence capture; toward clinical applications  

Rowida Almomani, Jaap van der Heijden, Yavuz Ariyurek, Yuching Lai, Egbert Bakker, Michiel 
van Galen, Martijn H Breuning and Johan T den Dunnen 

Eur J Hum Genet. 2011; 19: 50–55. 
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Abstract  

Although sequencing of a human genome gradually becomes an option, zooming in on the 

region of interest remains attractive and cost saving. We performed array-based sequence capture 

using 385K Roche NimbleGen, Inc. arrays to zoom in on the protein-coding and immediate 

intron-flanking sequences of 112 genes, potentially involved in mental retardation and congenital 

malformation. Captured material was sequenced using Illumina technology. A data analysis 

pipeline was built that detects sequence variants, positions them in relation to the gene, checks 

for presence in databases (eg, db single-nucleotide polymorphism (SNP)) and predicts the 

potential consequences at the level of RNA splicing and protein translation. In the samples 

analyzed, all known variants were reliably detected, including pathogenic variants from control 

cases and SNPs derived from array experiments. Although overall coverage varied considerably, 

it was reproducible per region and facilitated the detection of large deletions and duplications 

(copy number variations), including a partial deletion in the B3GALTL gene from a patient 

sample. For ultimate diagnostic application, overall results need to be improved. Future arrays 

should contain probes from both DNA strands, and to obtain a more even coverage, one could 

add fewer probes from densely and more probes from sparsely covered regions. 

Introduction 

For many years, the amplification of target sequences by PCR, followed by Sanger sequencing, 

has been the gold standard for screening of variants in terms of both read length and accuracy of 

sequencing.1 However, when it comes to conditions with highly heterogeneous etiology, a large 

number of different genes need to be screened for mutations. In such cases, gathering 

information becomes laborious, expensive and time-consuming. There are many examples of 

diseases that can be caused by mutations in many different genes, including mental retardation 

(MR),2 Charcot–Marie–Tooth disease,3 cardiomyopathy,4 retinitis pigmentosa,5 autism,6 hearing 

loss7 and congenital disorders of glycosylation.8 Extensive resequencing of many disease-

associated genes is required to explore, at the sequence and structural level, the genomic 

variation that might be involved in causing such diseases. 

Several next-generation sequencing (NGS) platforms are now available and they have allowed 

the sequencing and analysis of large numbers of genes in one experiment,9, 10, 11 and are able to 
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generate a massive amount of sequence data and have considerably reduced the cost of DNA 

sequencing.12 However, although NGS platforms have enormously increased throughput and 

have permitted whole-genome sequencing, high cost still prevents routine whole human genome 

resequencing projects. Therefore, zooming in on the region of interest is an attractive option. In 

addition, it circumvents the problem of identifying variants in genes for which the analyses were 

not intended (with associated ethical problems). 

Microarray-based genomic selection combined with massively parallel high-throughput 

sequencing is the method of choice to analyze large numbers of genes in a more comprehensive 

and cost-effective manner.13, 14, 15 We have used custom high-density microarrays (Roche 

NimbleGen, Inc., Madison, WI, USA) for the enrichment of 112 distinct genes potentially 

involved in MR and congenital malformation, followed by sequencing on the Illumina Genome 

Analyzer I platform (Illumina, San Diego, CA, USA). 

The first aim of our study was to apply and validate the array-based enrichment method as an 

efficient and convenient strategy to capture any desired portion of the human genome. The 

second aim was to accelerate the detection of sequence and copy number variations (CNV) in the 

selected candidate genes with lower costs, especially for the genes that are potentially involved 

in MR. 

Materials and methods 

Sample selection and validation 

Six DNA samples were used in this study, including two controls containing known pathogenic 

variants. Sample S-2 contains a known MECP2 (OMIM 300005) pathogenic point mutation 

(c.538C>T); the second sample, patient S-6, carries a large deletion spanning exons 8–15 in one 

allele and a splice site mutation (c.660+1G) at the other allele of the B3GALTL (OMIM 610308) 

gene. 

The other four DNA samples were from patients with MR with an unknown cause. Single-

nucleotide polymorphism (SNP) array data were available for two samples: S-7 with 250K Nsp 

Affymetrix and S-5 with 317K Illumina data. We used these data to validate the sequences 
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obtained after capture-array and Illumina sequencing. Causative large deletions and duplications 

had been previously excluded by SNP array testing in S-3, S-5, S-7 and S-8. 

Exon array design 

Microarrays with 385K probe capacity (Roche NimbleGen, Inc.) were used to capture all exons, 

the splice site and the immediately adjacent intron sequence of 112 human genes. On the basis of 

searches in OMIM and literature, we selected 112 human genes known to cause MR, either as 

part of a known syndrome or in isolation (Supplementary Table 1). Primary sequence data from 

all exons were extracted from NCBI's genome (Build 36). Microarrays were designed by Roche 

NimbleGen, Inc. with long oligonucleotide probes (54–99 nucleotides) that span each target 

region, overlapped and shifted on an average of seven bases.13 The oligonucleotides were 

designed to achieve isothermal hybridization across the arrays capturing one strand only. All 

highly repetitive regions were excluded from the probe selection in order to avoid nonspecific 

capturing of genomic regions. Using all criteria listed, for 2% of the target sequences, no capture 

probe could be designed (note that, theoretically, these sequences can be covered partly through 

capture from directly flanking unique sequences). Four of the arrays were reused at least twice. 

Genomic DNA library preparation and target capture 

The methods used for target capture, enrichments and elution followed previously described 

protocols with slight modifications (Roche NimbleGen, Inc.).16 Genomic DNA (20–10 µg) was 

fragmented using a nebulizer or Bioruptor according to instructions from the manufacturer to 

yield fragments from 250–1000 bp (nebulization) or 250–600 bp (Bioruptor). Adapter 

oligonucleotides from Illumina (single reads) were ligated to the ends. After the ligation was 

completed, successful adapter ligation was confirmed by PCR. The DNA-adapter ligated 

fragments were then hybridized to the sequence capture microarray for 65 h. After hybridization 

and washing, the DNA fragments bound to the array were eluted, using 300 µl of the elution 

buffer (Qiagen, Valencia, CA, USA) on each array. A gasket (Agilent) was applied and placed 

on the thermal elution device (homemade) for 20 min at 95°C. We repeated this process once by 

adding 200 µl of elution buffer (Qiagen). DNA from each eluted sample was enriched by 18-

cycle PCR using a high-fidelity polymerase and a single primer pair corresponding to the 

Illumina adapters ligated earlier. 
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Check enrichments by qPCR 

To verify successful hybridization capture, we performed qPCR (quantitative PCR) on DNA 

samples (S-2, S-3, S-5, S-7, S-6 and S-8) before and after array enrichment. The primers 

amplified five loci from MBL2, DMD and BRCA1 (100 bp) as negative controls (no capture 

probes on the array) and four loci from MECP2, CREBBP and NSD1 genes as positive controls 

(capture probes on the array) (Supplementary Table 2). All primers for qPCR were designed 

using Primer 3 (http://frodo.wi.mit.edu/). 

The qPCR assays were performed in triplicate in the Lightcycler using 384-well plates (Roche 

NimbleGen, Inc.) in 10 µl total volume: 5 µl of 2 × SYBR Green master Rox (Roche 

NimbleGen, Inc.), 0.25 µl of each primer (10 pmol/µl), 2 µl of DNA template and 2.5 µl of 

ultrapure water. The thermo-cycling protocol was carried out as follows: 10 min at 95°C, 45 

cycles of 10 s at 95°C, 30 s at 60°C, 20 s at 72°C and 5 min at 72°C, followed by melting curve 

analysis in order to determine the specific and nonspecific amplified products and other artifacts 

that might interfere with CP values. To calculate the relative fold enrichment of the targeted 

regions, we compared amplification of the positive versus negative controls. The relative fold 

enrichment, R, was calculated using the values of ΔCP (ie, the difference between average CP of 

non-captured and average CP of captured samples) according to R=EN, where E is the efficiency 

of the qPCR assay for a particular amplicon and N=ΔCP (crossing point). 

DNA Sequencing 

The eluted enriched DNA fragments were sequenced using the Illumina GAI platform at the 

Leiden Genome Technology Center (LGTC). Single-end sequencing of 36 or 50 nucleotides was 

performed following the instructions of the manufacturer. 

Reads mapping and data analysis 

Sequence read mapping was carried out by ELAND and ELAND-extended programs, which 

were a part of the Illumina GAI data analysis package. Only reads of high-quality scores were 

mapped to the human reference genome (NCBI, BUILD 36.2), allowing up to two mismatches. 

We created different Perl scripts to extract and process data from the ELAND files. Coverage 

was calculated at the target level (gene–exons), the nucleotide level and at the per probe region. 
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SNP calling was performed by searching for nucleotides discordant with the reference genome 

with a base call quality score of 30 (99.9% base call accuracy), a read depth of 8 or greater and 

the variant allele larger than 30% of the total coverage. Thereafter, all variants were checked for 

their presence in known databases, for example, dbSNP. Perl scripts were designed to predict the 

potential consequences at the level of RNA splicing and protein translation on the basis of 

Ensemble v.51. Furthermore, we designed a Perl script to facilitate detection of small 

deletions/insertions (up to three nucleotides). All Perl scripts are available on request. 

Sanger sequencing 

A total of 21 variants detected by Illumina GAI analyzer were selected and confirmed by Sanger 

sequencing using the standard Sanger sequencing protocol at the Leiden Genome Technology 

Center (LGTC). The primer sequences (with M13 tail) used are shown in Supplementary Table 

3. 

Results 

The methodology used starts with fragmentation of the genomic DNA. Linker and primer 

addition can then be performed either before or after array-capture target enrichment. To 

facilitate limited amplification of the expected low-yield array elution, we decided to perform 

full Illumina sample preparation before array capture. Initially, experiments were conducted 

using 20 µg genomic DNA, later we reduced this to 10 µg. We used qPCR, comparing targeted 

(four positive controls) and non-targeted regions (five negative controls), to check successful 

array enrichment and to estimate the fold enrichment obtained (see Supplementary Tables 4 and 

5 for examples). As enrichment varies significantly from locus to locus, we tested multiple loci 

to obtain an accurate estimate. Samples in which qPCR did not indicate clear enrichment (>100 

× ) were discarded. The ultimate enrichments achieved varied from experiment to experiment 

with a tendency to increase over time, indicating that lab experience is an important aspect of the 

array capture technology. As the fold enrichments determined by qPCR correlate positively with  
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Figure 1 Detection of sequence variants. A total of 32 nucleotide NGS reads (top, sequence mismatches 

in red) aligned with the genomic reference sequence (bottom). The center of the alignment shows a 

variant present in the heterozygous state. ' × n' behind the read indicates how many identical reads were 

obtained. 

the average sequence depth obtained, we conclude that qPCR provides an effective and cost-

saving check for successful enrichment (examples are listed in Supplementary Tables 4 and 5). 

Sequence data 

The custom arrays used contained 112 different human genes that are known to be or potentially 

involved in MR and congenital malformation. Samples were run on one channel of the Illumina 

GAI. For sequence analysis, we used only those QC-filtered reads that map back uniquely to the 

reference sequence (M0) or with one or two mismatches (M1, M2) (Figure 1). Using these 

settings, 85–92% of the targeted nucleotides were covered by at least eight reads (Table 1) and 

94–98% by at least one read (note that for 2% of the targeted sequences, no probe could be 

designed, see M&M). Effectively, this means that for 78% of the targeted sequences on the 

array, coverage was sufficient (>20 × ) to detect any variants that were present. 
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Table 1 Sequence summary results of the different array-capture experiments performed 
Abbreviations: F, female; M, male; MM# reads, number of reads with # mismatches to the reference 
sequence; QC, quality control. 
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S-‐2,	  F	   6.744	   4.804	   2.428	   1.359	   691	   378	   138	   87.11	   6.22	   50	   No	  

S-‐3,	  M	   7.305	   5.354	   2.176	   1.225	   618	   333	   100	   90.71	   4.49	   50	   No	  

S-‐5,	  M	   10.43	   7.237	   5.576	   4.935	   499	   142	   120	   92.42	   2.09	   32	   No	  

S-‐7,	  M	   15.771	   6.112	   4.719	   3.885	   638	   196	   100	   91.13	   2.7	   32	   No	  

S-‐6,	  M	   12.154	   6.575	   6.575	   5.914	   486	   174	   99	   99.24	   7.08	   32	  
Yes,	  2nd	  
time	  

S-‐8,	  F	   11.077	   3.531	   3.531	   2.301	   736	   485	   44	   85.38	   4.43	   49	  
Yes,	  3rd	  
time	  

	  

Two of the samples had been previously analyzed using SNP arrays. The region selected using 

the capture array included 67 different SNPs that had been present on the SNP arrays. We 

observed a perfect agreement (100%) between array-based SNP calls and those obtained using 

NGS (67/67 variants) (Supplementary Table 6). 

To determine our ability to detect pathogenic mutations, we included one sample from a female 

patient (S-2) harboring a dominant pathogenic point mutation in the MECP2 gene, (c.538C>T) 

on the X chromosome. Our results clearly detected the change in the heterozygous state 

(Supplementary Table 7). Similarly, we detected a homozygous change in the B3GALTL gene in 

a Peter's Plus patient (c.660+1G>A, Supplementary Table 7, see below). 

We next selected 21 variants detected in samples S-2, S-3, S-5, S-7 and S-8 and checked these by 

traditional Sanger sequencing. We were able to confirm 21 of the 21 variants, including their 

status being homozygous or heterozygous (Supplementary Table 7). The analysis of the variants 

found in all 112 genes of the patients did not reveal a clear cause of their MR Supplementary 

Table 8 and 9. 
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CNV 

Changes that cannot be easily detected using the sequence itself include deletions and 

duplications (CNVs). However, such variants can be expected to yield quantitative changes in 

coverage. To determine whether overall coverage can be used to detect quantitative changes, we 

first analyzed the 39 genes located on the X chromosome. Indeed, when coverage was 

normalized using autosomal genes (Figure 2a), samples from females showed a clearly higher X-

chromosome coverage compared with male samples (Figure 2b). Furthermore, as expected, the 

gene on the Y chromosome (NLGN4Y) gave no coverage in the female sample (Figure 2b). To 

determine the sensitivity of our method for detecting smaller CNVs, we carefully analyzed a 

sample from a compound heterozygous patient (S-6) carrying a partial deletion (exons 8–15) and 

a splice site mutation (c.660+1G>A, intron 8) in the B3GALTL gene. The splice site mutation 

was evident as no wild-type sequence was present. The presence of a deletion emerged as, 

compared with other samples, we observed a significantly lower average coverage for the 

B3GALTL gene (53 × versus 155 ×, 150 ×, 140 × ) (Figure 2c). In addition, although the splice 

site mutation in exon 8 was detected in the 'homozygous' state (similar to all nine variants 

downstream), we observed variants in the first exons (1–7) also in heterozygous state 

(Supplementary Table 10). These data show that not only have we obtained an excellent 

specificity of the capture process but we have also been able to distinguish between male and 

female samples. 
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Figure 2 Average coverage obtained for different genes in four different samples. (a) Shows average 

coverage of 69 autosomal genes from four different samples. (b) Shows average coverage of 39 genes 

located on X and one gene (NLGN4Y) located on the Y chromosome; a female sample exhibited an 

absence of hybridization on the captured array, with no coverage in the regions corresponding to the 

NLGN4Y. The female sample shows a higher average coverage per gene for all genes located on X-

chromosome compared with male samples. (c) Lower average coverage of B3GALTL gene in a male 

patient sample with a known large deletion compared with three wild-type male samples. (d) Coverage 

per nucleotide/position for the whole B3GALTL gene: the patient sample shows lower coverage for the 

second half (exons 8–15) compared with wild type samples. del=deletion, wt=wild type. 

Discussion 

Array-based genomic selection offers several advantages for large-scale targeted DNA isolation 

over other approaches such as PCR-based methods (long-range PCR or multiplexed short 

PCR),17, 18, 19 selector technology20, 21 and BACs technology.22 PCR-based methods become 
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laborious, time-consuming and costly if hundreds to thousands of regions (exons) need to be 

amplified, especially if all the sequences are required. Furthermore, when PCRs are multiplexed, 

it becomes difficult to check successful amplification per fragment, the chance of obtaining 

artifacts increases and equimolar loading before sequencing becomes very difficult. New 

approaches for massive individual PCR have been introduced recently23 but experiences with 

these are still limiting. Selector technology20, 21 seems attractive but it largely depends on proper 

in-house probe design, and experience thus far is very limited. Successful genomic selection 

using BACs has been demonstrated but has several limitations. As a BAC is the unit of selection, 

multiple BACs are required to isolate discontinuous regions of interest. 

In this study, we have tested array-based sequence capture to determine the sequence of 112 

genes potentially involved in MR. We show that array-based sequence capture technology is an 

efficient, quick and reliable method for the parallel sequencing of a range of genes of interest. 

Known variants (array-based calls) for 67 SNPs matched perfectly with those obtained using 

NGS Supplementary Table 6. Two positive controls with known pathogenic changes in the 

MECP2 gene (sample S-2) and B3GALTL gene (sample S-6) were readily detected. In addition, 

21/21 selected variants found in the five samples analyzed could be confirmed using Sanger 

sequencing (Supplementary Table 7). Sequence coverage of the nucleotide of interest is critical 

for reliably detecting sequence changes. If coverage is too low, both false positives (caused by 

sequence errors) and false negatives (if only one allele from a heterozygous sample is observed) 

will occur. 

The coverage we obtained differs significantly not only between targeted genomic regions 

(genes) but also between different samples (Supplementary Table 1, Figure 2a). As the overall 

methodology is rather complex, particularly the collection of the hybridized array-enriched DNA 

sequences, the difference between samples is most probably influenced by technical factors such 

as variations in hybridization, washing conditions and potential reuse of the capture array. 

Furthermore, coverage is influenced by array design, including probe sequence (melting 

temperature, GC content), probe density and spacing (Supplementary Table 1). Our data show 

that AT-rich regions (>55%), regions with an overall low probe density (<3) and small exons (on 

average 90 bp) yield a low coverage, which also varies significantly between experiments. For a 

second-generation capture array, the results obtained could be used to change the probe density, 
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that is, decreased in well-covered and increased in low-covered regions. Our data show that 

longer reads (50 bp) improve accuracy and selectivity of read mapping to the reference genome, 

which influenced the SNP calling by having less false positives and slightly better coverage. 

As CNVs (deletions/duplications) are a significant cause in the etiology of MR,24 we tested the 

feasibility of detecting large CNVs using array capture and NGS. Our results indicate that, if 

coverage is sufficiently high, array capture can also be used to detect such quantitative changes. 

Our array contained one gene from the Y chromosome that gave no coverage in females (Figure 

2b), whereas the 39 X-linked genes when compared with the 69 autosomal genes yielded overall 

50% lower coverage in male samples (Figure 2b). Another example derives from a sample 

containing a partial B3GALTL gene deletion on one allele (exons 8–15) and a splice site mutation 

on the other allele (c.660+1G>A). Although coverage over the entire gene seems reduced 

(experimental variation/coincidence), coverage for the second half of the gene clearly drops 

below that of normal (Figure 2d). An algorithm for detecting local deviations from the average 

coverage is currently under development. 

Regarding probe design (performed by Roche NimbleGen, Inc.), it should be noted that all array 

probes are from one strand (coding DNA strand) and thus DNA molecules from only the non-

coding strand are captured. This has several consequences. First, the sequence obtained is from 

one strand only, whereas for diagnostic applications, quality assurance requires that sequences be 

obtained in forward and reverse orientation. Sequencing this one strand in both directions is 

partly fooling oneself. Second, we observed that the sequences obtained relative to the array 

probes extend in a 5′ but not in a 3′ direction. The most probable cause for the latter is steric 

hindrance during array hybridization, preventing non-hybridizing tails at the surface side of the 

array. When capture probes are attached with their 3′ ends, this has consequences for probe 

design at the edges of the targeted regions; on the 5′ side, coverage will be significantly better 

than on the 3′ side. Both effects could be overcome simply by reversing the probe sequence of 

every other nucleotide on the array. Theoretically, this would also mean that the overall yield of 

enriched DNA would double, as both strands from the sample will be captured. 

To save costs, we have reused the arrays up to three times by hybridizing different samples. The 

danger of this approach is of course contamination, if hybridized DNA from a previous 
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experiment is not eluted completely. Indeed, in some experiments, we observed low-level 

contamination, for example, through heterozygous calls from X-chromosome sequences in male 

samples. It should be noted, however that cross-contamination can be easily controlled when 

samples containing differently tagged linkers are used in subsequent experiments. 

Using the current design, low coverage was obtained mainly at the edges of the regions targeted, 

especially the 3′ side (see above), that is, direct gene flanking or intronic regions. Although 

coverage varied widely, 78% of all regions targeted and present on the array were covered 

effectively by the sequence obtained. Note that there is a clear correlation between fragment size 

of the genomic DNA used and the coverage, the larger the fragment size used the lower the 

target coverage achieved, as more flanking DNA is captured. Especially for array-based capture, 

because of the steric hindrance described, this effect will be significant near the array-attached 

end of a probe-targeted region. Assuming that second-generation capture arrays will be more 

effective (ie, complete and with even coverage) and sequence power will improve further, it 

should soon be possible to sequence-tag, mix and simultaneously analyze different samples in 

one experiment, giving a significant cost reduction. 

Recently in-solution capture was presented as an alternative to array-based capture.25 Besides 

advantages of simplicity, a reduced workload and a potential for automation, when attempted, in-

solution capture will not show the effect of steric hindrance we observed. However, capturing 

both strands would be complicated by the fact that capture probes will hybridize with each other. 

Initial experiences in our lab with in-solution capture were successful and for future projects we 

will change to this approach. 

Overall, we conclude that array-based sequence capture followed by NGS offers a versatile tool 

for successfully selecting sequences of interest from a total human genome. The approach will be 

especially helpful in speeding up the identification of the pathogenic mutation(s) in diseases in 

which the genomic region to be scanned is large. Our results indicate that the methodology can 

still be improved, in particular, with respect to probe design, obtaining a more even coverage of 

the targeted regions. On the basis of initial experiences and publications, we expect that array 

capture will be quickly replaced by in-solution capture. Ultimately, the cost of this approach is 
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determined by the minimal coverage, which in turn determines the sensitivity required for the 

detection of potential sequence variants. 
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Supplementary data: 
 
Supplementary Table 1 Average coverage for all selected genes for six different samples. S-2, S-8, are 
female samples while the rest are male samples. All genes with bold have low GC or /and low probe 
density. Columns in bold represent data from re-used arrays. 
 
Gene	  Name	   Chromosome	  

location	  	  
S_6	   S_2	   S_3	   S_5	   S_7	   S_8	  

ACSL4	   X	   37.58	   66.24	   37.68	   45.04	   55.24	   32.2	  

AFF2	   X	   81.6	   152.41	   72.51	   89.61	   92.34	   57.94	  

AGTR2	   X	   66.93	   115.49	   66.91	   71.58	   96.6	   48.06	  

ALG1	   16	   55.84	   61.43	   62.68	   79.63	   46.89	   21.58	  

ALG12	   22	   147.22	   176.4	   164.69	   203.65	   85.58	   41.45	  

ALG2	   9	   163.81	   147.3	   139.8	   180.21	   186.49	   54.07	  

ALG6	   1	   80.79	   59.33	   84.49	   99.93	   129.98	   37.87	  

ALG8	   11	   105.88	   113.45	   118.26	   140.59	   136.9	   48.35	  

ALG9	   11	   121.78	   137.43	   129.53	   158.8	   143.43	   52.15	  

AMMECR1	   X	   64.75	   118.66	   60.42	   70.6	   83.18	   49.71	  

ARHGEF6	   X	   71.53	   139.8	   71.27	   84.35	   82.22	   56.31	  

ARX	   X	   47.8	   78.39	   35.73	   61.96	   20.88	   23.93	  

ASPM	   1	   117.55	   100.77	   124.26	   136.38	   180.53	   52.79	  

B3GALTL	   13	   58.33	   96.4	   114.61	   130.66	   155.11	   40.4	  

B4GALT1	   9	   167.08	   193.19	   159.43	   195.85	   144.86	   52.82	  

BBS1	   11	   142.78	   153.75	   138.72	   183.65	   107.54	   41.16	  

BBS10	   12	   136.27	   116.27	   121.91	   148.89	   186.85	   49.54	  

BBS12	   4	   191.59	   149.38	   141.62	   216.64	   235.1	   71.96	  

BBS2	   16	   135.96	   139.07	   143.86	   167.26	   155.66	   52.06	  

BBS7	   4	   87.54	   78.35	   88.24	   107.63	   132.32	   40.22	  

BRWD3	   X	   57.78	   95.96	   56.43	   68.09	   72.16	   47.02	  

CA2	   8	   111	   102.69	   108.39	   133.41	   126	   42.57	  

CC2D1A	   19	   117.69	   140.17	   130.99	   158.96	   66.25	   29.97	  
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CDK5RAP2	   9	   153.43	   162.19	   163.23	   187.89	   146.64	   58.83	  

CDKL5	   X	   75.99	   165.03	   73.1	   88.4	   70.16	   54.41	  

CENPJ	   13	   138.59	   133.45	   141.94	   164.93	   176.59	   54.91	  

COG7	   16	   135.39	   176.24	   163.72	   186.49	   111.66	   51.73	  

CRBN	   3	   108.94	   86.16	   109.99	   128.55	   152.04	   38.71	  

CREBBP	   16	   153.08	   180.96	   159.75	   182.66	   109.2	   48.82	  

CUL4B	   X	   36.41	   68.41	   40.24	   47.46	   49.6	   34.64	  

DHCR7	   11	   171.56	   183.15	   163.11	   234.75	   106.68	   50.25	  

DLG3	   X	   69.9	   153.26	   75.57	   86.07	   57.36	   47.41	  

DNMT3B	   20	   118.41	   129.94	   130.4	   156.44	   95.96	   36.4	  

DPAGT1	   11	   193.16	   245.7	   207.64	   239.34	   156.49	   63.91	  

DPM1	   20	   97.19	   95.5	   99.55	   127.71	   125.07	   45.49	  

DYRK1A	   21	   138.62	   140.82	   139.63	   158.83	   171.06	   55.53	  

EP300	   22	   172.71	   171.73	   155.09	   197	   138.73	   49.63	  

ERCC8	   5	   103.87	   97.76	   117.7	   132.83	   146.93	   48	  

FGFR3	   4	   91.04	   104.19	   100.77	   134.5	   53.29	   25.78	  

FKTN	   9	   94.39	   99.05	   116.64	   125.17	   128.33	   43.87	  

FMR1	   X	   43.64	   80.63	   48.33	   54.48	   68.83	   42.42	  

FOXP2	   7	   116.96	   118.59	   120.86	   150.1	   134.51	   46.95	  

FTSJ1	   X	   84.3	   162.65	   71.18	   105.87	   67.19	   50.11	  

GDI1	   X	   81.34	   177.75	   88.1	   102.05	   52.92	   47.42	  

GLI3	   7	   170.51	   229.96	   193.16	   214.24	   119.51	   57.33	  

GRIA3	   X	   68.43	   143.32	   68.85	   81.17	   76.74	   56.3	  

GRIK2	   6	   141.74	   140.26	   138.97	   164.42	   157.43	   59.8	  

HRAS	   11	   110.45	   119.66	   109.32	   148.37	   50.77	   26.55	  

HSD17B10	   X	   108.3	   232.65	   105.43	   126.58	   76.49	   58.98	  

IL1RAPL1	   X	   75.14	   135.02	   64.74	   79.09	   81.97	   56.15	  

JAG1	   20	   153.84	   149.33	   143.06	   177.83	   134.17	   48.77	  
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JARID1C	   X	   78.79	   166.5	   75.9	   98.34	   55.94	   40.82	  

KRAS	   12	   37.5	   27.35	   38.21	   55.47	   74.39	   14.28	  

L1CAM	   X	   83.47	   194.58	   92.76	   104.82	   46.23	   44.07	  

MAOA	   X	   72.42	   146.33	   78.53	   85.28	   89.76	   57.2	  

MCPH1	   8	   116.95	   137.58	   132.3	   150.93	   134.11	   50.26	  

MECP2	   X	   90.3	   202.17	   83.87	   98.16	   70.25	   55.29	  

MED12	   X	   87.01	   185.32	   90.93	   109.51	   70.96	   53.62	  

MGAT2	   14	   128.29	   137.63	   126.84	   151.21	   129.3	   43.37	  

MPDU1	   17	   191.91	   201.65	   178.4	   210.59	   143.1	   54.87	  

MPI	   15	   208.85	   238.66	   216.49	   254.72	   147.26	   62.87	  

MYCN	   2	   94.44	   97.38	   78.66	   117.71	   65.2	   25.33	  

NF1	   17	   81.22	   82.78	   89.34	   103.68	   103.15	   35.33	  

NLGN3	   X	   92.27	   193.94	   83.89	   107.85	   60.81	   48.03	  

NLGN4X	   X	   43.01	   76.28	   37.59	   50.9	   54.92	   28.06	  

NLGN4Y	   Y	   38.17	   0	   37.83	   49.38	   59.67	   0	  

NSD1	   5	   184.55	   222.02	   187.13	   208.31	   179.62	   72.56	  

NUFIP1	   13	   7.36	   7.19	   11.08	   18.4	   21.56	   3.08	  

OPHN1	   X	   74.32	   150.2	   72.16	   85.18	   77.89	   54.7	  

PAFAH1B1	   17	   113.96	   109.42	   118.84	   136.76	   160.18	   42.43	  

PAFAH1B3	   19	   162.95	   185.67	   166.94	   229.95	   92.43	   43.41	  

PAK3	   X	   54.5	   115.72	   60.31	   64.4	   64.17	   46.98	  

PHF6	   X	   57.49	   96.99	   57.08	   65.4	   87.77	   47.64	  

PHF8	   X	   83.55	   188.65	   87.66	   98.96	   67.6	   57.96	  

PMM2	   16	   130.66	   146.18	   130.15	   162.48	   104.29	   40.29	  

POMT1	   9	   146.51	   180.39	   171.95	   201.25	   108.67	   47.81	  

PQBP1	   X	   100.71	   240.55	   99.96	   127.36	   56.04	   52.63	  

PRPS1	   X	   26.32	   61.85	   35.36	   44.24	   38.85	   23.34	  

PRSS12	   4	   152.22	   154.55	   139.87	   171.21	   143.31	   52.15	  
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PTPN11	   12	   10.42	   9.97	   13.07	   20.86	   18.3	   3.7	  

RAB3GAP2	   1	   116	   116.02	   120.94	   136.63	   151.15	   47.11	  

RAF1	   3	   147.08	   180.38	   158.42	   182.34	   130.38	   54.88	  

RAI1	   17	   144.02	   152.31	   124.16	   173.36	   70.74	   31.93	  

REST	   4	   158.76	   178.87	   150.5	   185	   161.32	   55.18	  

RNF135	   17	   121.02	   101.12	   88.77	   145.5	   117.24	   43.3	  

RPS6KA3	   X	   60.25	   117.99	   60.92	   70.45	   83.05	   47.97	  

SATB2	   2	   139.83	   150.23	   142.16	   164.9	   156.18	   54.62	  

SCN8A	   12	   170.77	   187.94	   171.23	   209.05	   162.32	   63.16	  

SHANK3	   22	   92.14	   96.03	   87.73	   128.76	   40.77	   23.37	  

SHROOM4	   X	   84.92	   199.93	   92.8	   102.24	   73.7	   59.54	  

SIL1	   5	   167.93	   176.09	   153.93	   219	   117.45	   52.09	  

SLC16A2	   X	   95.29	   191.86	   89.71	   102.77	   75.19	   56.68	  

SLC35A1	   6	   94.52	   86.78	   105.94	   118.68	   130.38	   42.01	  

SLC35C1	   11	   181.41	   178.83	   157.21	   220.06	   118.75	   46.87	  

SLC6A8	   X	   6.11	   11.01	   6.31	   14.48	   6.55	   2.61	  

SNRPN	   15	   69.64	   85.84	   93.84	   113.43	   89.68	   31.19	  

SOS1	   2	   113.1	   114.37	   125.16	   130.21	   145.75	   48.56	  

SOX3	   X	   59.69	   118.15	   46.04	   64.87	   29.19	   31.19	  

SUZ12	   17	   71.62	   67.57	   74.81	   86.36	   123.04	   34.85	  

TCF4	   18	   107.87	   120.1	   130.09	   145.84	   113.73	   43.27	  

TSC1	   9	   191.94	   211.41	   191.59	   218.62	   185.63	   65.81	  

TSC2	   16	   139.23	   161.14	   155.1	   205.55	   78.3	   40.38	  

TSPAN7	   X	   76.43	   153.85	   81.13	   94.13	   82.21	   52.58	  

UBE2A	   X	   58.21	   96.51	   60.21	   68.49	   87.91	   44.96	  

UBE3A	   15	   57.82	   51	   53.43	   72.9	   89.32	   23.11	  

UPF3B	   X	   38.43	   67.6	   39.57	   48.28	   52.12	   31.34	  

WHSC1	   4	   149.14	   168.67	   150.08	   181.19	   130.69	   51.42	  
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WHSC2	   4	   107.28	   117.25	   102.2	   142.55	   57.45	   28.88	  

ZFHX1B	   2	   105.2	   112.69	   110.64	   124.93	   125.11	   39.93	  

ZNF41	   X	   80.14	   161.3	   80.93	   96.93	   91.05	   55.53	  

ZNF674	   X	   3.54	   11.65	   9.41	   11.36	   8.58	   3.15	  

ZNF81	   X	   80.94	   115.7	   62.7	   89.15	   98.13	   59.43	  

 
 
Supplementary	   Table	   2	   Primer	   sequences	   used	   for	   quantitative	   PCR	   (qPCR)	   to	   determine	   successful	  
target	  enrichment.	  Genes	   in	  bold	  have	  capture	  probes	  on	   the	  array	   (positive	  controls),	   the	  others	  are	  
negative	  controls.	  

Gene name Target  Forward primer  Reverse primer  

MECP2  Exon 1 CACCAGTTCCTGCTTTGATGT CCCTAACATCCCAGCTACCAT 

CREBBP Exon 4  CACAAGTCCATTTGGACAGC GTTGACCATGCTCTGTTTGC 

 CREBBP Exon 5  CAGTGGGAATTGTACCCACAC GAGCATGAAGCAGTAGAACCAG 

NSD1  Exon 7 GTGAAGAGGAAAGCCTTCTAGC AGAACTGGAGGCTCTTCTTTGG 

MBL2 Exon 1 CCTGTTTCCATCACTCCCTCT CACTGCAGGGCAGGTCTTTT 

 MBL2 Exon 4 AAGTGAAGGCCTTGTGTGTCA AAGGCTTCCTCCTTGATGAGAT 

BRCA1  Exon 10  CCCTTTGAGAGTGGAAGTGACA CTGGGCTCCATTTAGACCTGA 

DMD Exon 20 TGCCAGTTGCTAAGTGAGAGAC GCAGTAGTTGTCATCTGCTCCA 

 DMD Exon 51 GGAAACTGCCATCTCCAAAC CCAGTCGGTAAGTTCTGTCCA 

	  

Supplementary Table 3 Primer sequences (with M13 tail) used for amplification of targets for Sanger 
sequencing. 

 
Gene	  
name	  

Target	  	   Forward	  primer	  	   Reverse	  primer	  	  

DHCR7	   exon4	   TGTAAAACGAcggccagctcccacacagagcctcttagg	   CAGGAAACAGCTATgacccccagacaaatggaaggactac	  

MED12	   exon	  6	   TGTAAAACGACGGCcagcccagttgtggttctcttcatc	   CAGGAAACAGCTATGACCaggggaccctgctctaacattt	  

	  ALG6	  	   exon	  6	   TGTAAAACgacggccagctgggttcattgttgtaggtactg	   CAGGAAACAGCTATGACCcttttccccaaacaaacacc	  

SCN8A	   exon	  17	   TGTAAAACGACggccaggtctgtcacgtgaagtccattg	   CAGGAAACAGCTATGACCctgtttctaggctgggaccttac	  
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B4GALT1	   	  exon	  2	   TGTAAAACGACggccagagtcctgtggcctgctaacttct	   CAGGAAACAGCTATGACCgtctgtgaaatcactccccttc	  

B3GALTL	   exon	  5	   TGTAAAACGACGGCCAGagtagtcaattcatacttatc
Ttttcgg	  

CAGGAAACAGCTATGACCtgaggaaaaccacaccctct	  

B3GALTL	   exon	  6	   TGTAAAACGACGGCCAGTtgccattctgtgtacccttc	   CAGGAAACAGCTATGACCtggctcattataagctctgtcc	  

B3GALTL	   exon	  9	   TGTAAAACGACGGCCAGTtgtgttctgctttcccttga	   CAGGAAACAGCTATGACCagaatcagcagaagcccaaa	  

B3GALTL	   exon	  10	   TGTAAAACGACGGCCagtatgccggaaatatgtttggt	   CAGGAAACAGCTATGACCttgaaatggtgcaatgagga	  

B3GALTL	   exon	  13	   TGTAAAAcgacgggcagtcagagtgggatgtaagaacca	   CAGGAAACAGCTATGACCtcccagtgccagagacctac	  

B3GALTL	   exon	  15	   TGTAAAACGACGGCCAGTggtagtgaagtaaagcag
tccactt	  

CAGGAAACAGCTATGACCaagtcaggaagcacccaatg	  

NSD1	   exon	  23	   TGTAAAACGACGGCCAGAACCTCCTGCTGACA
CCAAC	  

CAGGAAACAGCTATGACCTGGGAACTGAGGTTTT
CTCC	  

NSD1	   exon	  17	   TGTAAAACGACGGCCAGTagcattggtcgatttttgtg	   CAGGAAACAGCTATGACCgcccggctatttctgatctt	  

NSD1	   exon	  5	   TGTAAACGACGGCCAGTAACCTCGTAAGCGCA
TGAAC	  

CAGGAAACAGCTATGACCgggaaaagggcttctggtaa	  

TSC1	   exon	  23	   TGTAAAACGACGGCCAGCCTAACCCCCTCTCA
TTTACCT	  

CAGGAAACAGCTATGACCGGGACAAAACCAGACT
TACCTG	  

RAB3GAP2	   exon	  35	   TGTAAAACGACGGCCAGTTACAGAGTAGCAGC
ACTGGAAAG	  

CAGGAAACAGCTATGACCCCAAGTTTCTTTGACT
AGCCTCCT	  

EP300	   exon	  31	   TGTAAAACGACGGCCAGGACTCAGCACCGATA
ACTCAGACT	  

CAGGAAACAGCTATGACCCGGCTACTGCACAGTT
CTTATG	  

CENPJ	   exon	  16	   TGTAAAACGACggccaggtacaaacttgctccaccctct	   CAGGAAACAGCTATGACCcaggtgtcacactgagtggttt	  

	  

Supplementary	  Table	  4	  qPCR	  fold-‐enrichment	  values	  for	  four	  targets	  from	  different	  samples.	  

Sample /sex Amplicon  

Name 

PCR 
efficien
cy 

Delta 
-CP  

qPCR  fold 
enrichment 

% Average  
coverage per 
target 

Coverage 
per 
nucleotide 
in all 
targets 

Coverage 
for all 
exons 

S-2 (female ) MECP2 amplicon 1 1.98 9.26 558 203 128 119 

S-2 (female ) CREBBP amplicon 4 1.8 9.9 336 182   

S-2 (female ) CREBBP amplicon 5 1.79 10.39 428 182   

S-2 (female ) NSD1 amplicon 7 1.84 9.51 328 222   

S-8 (female) MECP2 amplicon 1 1.98 8.37 304 56 44 41 
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S-8 (female) CREBBP amplicon 4 1.8 8.56 153 49   

S-8 (female) CREBBP amplicon 5 1.79 8.64 153 49   

S-8 (female) NSD1 amplicon 7 1.84 7.95 127 73   

S-5 (male) MECP2 amplicon 1 1.98 10.23 1000 99 120 111 

S-5 (male) CREBBP amplicon 4 1.8 11.5 862 184   

S-5 (male) CREBBP amplicon 5 1.79 11.35 741 184   

S-5 (male) NSD1 amplicon 7 1.84 10.59 637 208   

S-6 (male) MECP2 amplicon 1 1.98 9.82 819 91 100 92 

S-6 (male) CREBBP amplicon 4 1.8 11.2 723 154   

S-6 (male) CREBBP amplicon 5 1.79 10.5 452 154   

S-6 (male) NSD1 amplicon 7 1.84 9.87 411 184   

	  

Supplementary	   Table	   5	   CP	   values	   for	   non-‐targeted	   regions	   (negative	   controls)	   before	   and	  after	   array	  
enrichment.	  	  

Sample 
ID 

CP value ( negative targets) 
before capture 

CP value ( negative 
targets) after capture 

Delta-CP value 

 MBL2 amplicon 1 MBL2 amplicon 1  

S-2 26 39 -13 

S-8 26 38 -12 

S-5 28 31 -3 

S-6 26 31 -5 

 MBL2 amplicon 4 MBL2 amplicon 4  

S-2 25 36 -11 

S-8 26 27 -1 

S-5 26 29 -3 

S-6 25 37 -12 

 BRCA1 amplicon 10 BRCA1 amplicon 10  

S-2 26 36 -10 
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S-8 26 40 -14 

S-5 26 40 -14 

S-6 27 40 -13 

 DMD amplicon 10 DMD amplicon 10  

S-2 25 40 -15 

S-8 26 39 -13 

S-5 27 32 -5 

S-6 26 31 -5 

 DMD amplicon 20 DMD amplicon 20  

S-2 25 40 -15 

S-8 26 28 -2 

S-5 27 32 -5 

S-6 28 40 -12 

 
 
Supplementary	  Table	  6	  Single	  nucleotide	  polymorphism	  (SNPs)	  detected	  by	  Illumina	  sequencing	  and	  
confirmed	  by	  SNP	  array	  data	  from	  two	  patients.	  
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S-‐7	   chr22_48683439	   ALG12	   rs1321	   exon	  	   A	   AG	   AG	   93	   45	   48	  

S-‐7	   chrX_147856958	   AFF2	   rs16994895	   Intron	   T	   GG	   GG	   95	   0	   95	  

S-‐7	   chrX_147887801	   AFF2	   rs6641482	   exon	  	   A	   GG	   GG	   66	   0	   66	  

S-‐7	   chr4_123883877	   BBS12	   rs13135766	   exon	  	   G	   GC	   GC	   156	   84	   72	  

S-‐7	   chr13_30749059	   B3GALTL	   rs1409373	   Intron	   A	   GG	   GG	   77	   0	   77	  

S-‐7	   chr13_30803641	   B3GALTL	   rs912603	  	   exon	  	   G	   GA	   GA	   153	   73	   80	  

S-‐7	   chr3_3167927	   	  CRBN	  	   rs1620675	   Intron	   T	   GG	   GG	   66	   0	   66	  

S-‐7	   chr9_122348097	   CDK5RAP2	   rs10739564	   Intron	   T	   CC	   CC	   56	   0	   56	  
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S-‐7	   chr9_122370634	   CDK5RAP2	   rs4837782	   Intron	   T	   CC	   CC	   145	   0	   145	  

S-‐7	   chr9_122209539	   CDK5RAP2	   rs2282168	   Intron	   C	   GG	   GG	   59	   0	   59	  

S-‐7	   chr22_39867180	   EP300	   rs6002267	   Intron	   G	   TT	   TT	   206	   0	   206	  

S-‐7	   chr22_39844101	   EP300	   rs4822005	   Intron	   G	   AA	   AA	   16	   0	   16	  

S-‐7	   chrX_53244068	   JARID1C	   rs2182285	   Intron	   A	   GG	   GG	   11	   0	   11	  

S-‐7	   chr12_25253819	   KRAS	   rs712	  	   exon	  	   A	   AC	   AC	   27	   15	   12	  

S-‐7	   chrX_28717690	   IL1RAPL1	   rs12690144	   Intron	   T	   CC	   CC	   20	   0	   20	  

S-‐7	   chrX_28717669	   IL1RAPL1	   rs6526807	   Intron	   A	   GG	   GG	   35	   0	   35	  

S-‐7	   chr8_6290433	   MCPH1	   rs2584	   exon	  	   G	   GA	   GA	   166	   72	   94	  

S-‐7	   chrX_70269142	   MED12	   rs10521349	   Intron	   T	   CC	   CC	   49	   0	   49	  

S-‐7	   chr13_44422083	   NUFIP1	   rs1175384	   Intron	   A	   CC	   CC	   151	   77	   74	  

S-‐7	   chr9_133371932	   POMT1	   rs10448341	   Intron	   G	   AA	   AA	   19	   0	   19	  

S-‐7	   chr3_12601516	   RAF1	   rs3729931	   Intron	   G	   GA	   GA	   112	   50	   62	  

S-‐7	   chr5_138484893	   SIL1	   rs11750382	   Intron	   G	   GA	   GA	   100	   49	   51	  

S-‐7	   chr5_138385110	   SIL1	   rs3749665	   Intron	   A	   AG	   AG	   37	   23	   14	  

S-‐7	   chr5_138414758	   SIL1	   rs3828600	   Intron	   C	   CA	   CA	   153	   74	   79	  

S-‐7	   chr2_199953490	   SATB2	   rs1348813	   Intron	   C	   CG	   CG	   154	   72	   82	  

S-‐7	   chr12_50449589	   SCN8A	   rs303809	   Intron	   G	   CC	   CC	   108	   0	   108	  

S-‐7	   chr12_50449515	   SCN8A	   rs303810	   Intron	   A	   GG	   GG	   174	   0	   174	  

S-‐7	   chr12_50469752	   SCN8A	   rs303816	   Intron	   C	   TT	   TT	   20	   0	   20	  

S-‐5	   chr1_195337065	   ASPM	   rs3762271	   Exon	   A	   AC	   AC	   143	   60	   83	  

S-‐5	   chr2_144878372	   ZEB2	   rs13009259	   Intron	   G	   AA	   AA	   25	   12	   13	  

S-‐5	   chr2_199845853	   SATB2	   rs2881208	   Intron	   T	   CC	   CC	   30	   0	   30	  

S-‐5	   chr4_57492171	   REST	   rs3796529	   Intron	   G	   AG	   AG	   148	   80	   68	  

S-‐5	   chr7_42054747	   GLI3	   rs846266	   Exon	   A	   GG	   GG	   222	   0	   221	  

S-‐5	   chr9_122211576	   CDK5RAP2	   rs2297454	   Intron	   A	   AG	   AG	   42	   24	   18	  

S-‐5	   chr9_133375257	   POMT1	   rs2296949	   Exon	   A	   GG	   GG	   311	   0	   311	  

S-‐5	   chr9_122211576	   CDK5RAP2	   rs2297454	   Intron	   T	   TC	   TC	   42	   18	   24	  
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S-‐5	   chr9_134760121	   TSC1	   rs2809243	   Exon	   G	   AA	   AA	   153	   0	   153	  

S-‐5	   chr11_45789511	   SLC35C1	   rs1139266	   Exon	   G	   AA	   AA	   133	   0	   133	  

S-‐5	   chr11_66010661	   DPP3	   rs11550299	   Exon	   C	   AC	   AC	   114	   53	   61	  

S-‐5	   chr11_66028718	   DPP3	   rs1671063	   Exon	   A	   GG	   GG	   109	   0	   109	  

S-‐5	   chr11_66028813	   DPP3	   rs2305535	   Exon	   G	   AG	   AG	   227	   113	   114	  

S-‐5	   chr11_66038671	   BBS1	   rs2298806	   Exon	   G	   AG	   AG	   210	   106	   104	  

S-‐5	   chr11_66053939	   BBS1	   rs3816492	   Exon	   C	   CT	   CT	   194	   98	   96	  

S-‐5	   chr11_111229343	   ALG9	   rs10502151	   Exon	   G	   AG	   AG	   115	   57	   58	  

S-‐5	   chr12_25251108	   KRAS	   rs13096	   Exon	   A	   AG	   AG	   53	   27	   26	  

S-‐5	   chr12_50450056	   SCN8A	   rs303808	   Intron	   G	   AG	   AG	   198	   108	   94	  

S-‐5	   chr12_50470538	   SCN8A	   rs303815	   Exon	   A	   AG	   AG	   115	   47	   68	  

S-‐5	   chr13_30789746	   B3GALTL	   rs1041073	   Exon	   G	   AA	   AA	   135	   0	   135	  

S-‐5	   chr16_8849319	   PMM2	   rs2075827	   Exon	   A	   CC	   CC	   210	   0	   210	  

S-‐5	   chr17_7431901	   MPDU1	   rs4227	   Exon	   C	   AA	   AA	   229	   0	   229	  

S-‐5	   chr17_17637480	   RAI1	   rs11649804	   Exon	   C	   CA	   CA	   237	   130	   107	  

S-‐5	   chr18_51282486	   TCF4	   rs3760600	   Intron	   C	   AC	   AC	   50	   28	   22	  

S-‐5	   chr19_13890269	   CC2D1A	   rs2305776	   Intron	   A	   AC	   AC	   21	   11	   10	  

S-‐5	   chr20_10566574	   JAG1	   rs8708	   Exon	   A	   GG	   GG	   201	   0	   201	  

S-‐5	   chr20_10568275	   JAG1	   rs1051421	   Exon	   C	   CT	   CT	   164	   83	   81	  

S-‐5	   chr20_10581313	   JAG1	   rs6040055	   Intron	   A	   AG	   AG	   206	   98	   108	  

S-‐5	   chr20_30860197	   DNMT3B	   rs2424932	   Exon	   A	   GG	   GG	   94	   0	   94	  

S-‐5	   chr20_48986311	   DPM1	   rs2294902	   Intron	   A	   GG	   GG	   63	   0	   63	  

S-‐5	   chr22_49480384	   SHANK3	   rs13055562	   Intron	   G	   AG	   AG	   106	   45	   61	  

S-‐5	   chrX_5820574	   NLGN4X	   rs3810686	   Exon	   G	   AA	   AA	   62	   0	   62	  

S-‐5	   chrX_47212055	   ZNF41	   rs5905607	   Exon	   T	   GG	   GG	   114	   0	   114	  

S-‐5	   chrX_53980349	   PHF8	   rs7892782	   Exon	   T	   CC	   CC	   45	   0	   45	  

S-‐5	   chrX_54036020	   PHF8	   rs7061449	   Intron	   C	   TT	   TT	   140	   0	   140	  

S-‐5	   chrX_69590536	   DLG3	   rs2274309	   Intron	   T	   CC	   CC	   36	   0	   36	  
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S-‐5	   chrX_69640819	   DLG3	   rs1044422	   Exon	   G	   AA	   AA	   125	   0	   125	  

S-‐5	   chrX_118853103	   UPF3B	   rs2239963	   Intron	   A	   CC	   CC	   74	   0	   74	  

S-‐5	   chrX_152945374	   MECP2	   rs2734647	   Exon	   T	   CC	   CC	   105	   0	   105	  

	  

Supplementary	  Table	  7	  Different	  variants	  detected	  by	  Illumina	  sequencing	  and	  confirmed	  by	  Sanger	  
Sequencing	  	  
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S-2 30748989 B3GALTL Intron G AA c.850+81G>A 17 0 17 AA 
S-2 30789746 B3GALTL Exon G AA c.1108G>A 21 0 21 AA 
S-2 30801834 B3GALTL UTR G TT c.*29G>T 94 0 94 TT 
S-2 30719240 B3GALTL Intron C CT c.347+4C>T 19 5 14 CT 
S-2 30801841 B3GALTL UTR A GA *36A>G 38 50 88 GA 
S-2 30789743 B3GALTL Exon G GA c.1105G>A 11 3 8 GA 
S-2 176571910 NSD1 Intron C CG c.3796+108C>G 41 18 23 CG 
S-2 176570797 NSD1 Exon C CG c.2791C>G 66 28 38 CG 
S-2 176653878 NSD1 Exon G GC c.6903G>C 71 33 38 GC 
S-2 152949971 MECP2 Exon C CT c.538C>T 34 12 22 CT 
S-3 30748989 B3GALTL Intron G AA c.850+81G>A 23 0 23 AA 
S-3 30719256 B3GALTL Intron C GG c.347+20C>G 15 0 15 GG 
S-3 30789746 B3GALTL  Exon G AA c.1108G>A 32 0 32 AA 
S-3 30801834 B3GALTL UTR G TT c.*29G>T 93 0 93 TT 
S-5 30719256 B3GALTL Intron C CG c.347+20C>G 113 33 80 CG 
S-5 30719992 B3GALTL Exon T CC c.348T>C 13 0 13 CC 
S-5 30748989 B3GALTL Intron G AA c.850+81G>A 93 0 93 AA 
S-5 30789746 B3GALTL Exon G AA c.1108G>A 135 0 135 AA 
S-5 30801834 B3GALTL UTR G TT c.*29G>T 261 0 261 TT 
s-5 30801841 B3GALTL UTR A AG c.*36A>G 156 33 123 GA 
s-5 30719240 B3GALTL Intron C CT c.347+4C>T 107 31 76 CT 
S-5 176571910 NSD1 Intron C GG c.3796+108C>G 99 0 99 GG 
S-6 30741415 B3GALTL Intron G AA c.660+1G>A 27 0 27 AA 
S-7 30719256 B3GALTL Intron C CG c.347+20C>G 120 56 64 CG 
S-7 30801841 B3GALTL UTR A GA c.*36A>G 160 83 77 GA 
S-7 30719992 B3GALTL Exon T CC c.348T>C 17 0 17 CC 
S-7 30746823 B3GALTL Intron A AG c.780+58A>G 218 94 124 AG 
S-7 30748989 B3GALTL Intron G GA c.850+81G>A 168 84 84 AG 
S-7 30789746 B3GALTL Exon G GA c.1108G>A 66 23 43 GA 
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S-7 30801834 B3GALTL UTR G TG c.*29G>T 131 74 57 TG 
S-7 33125238 B4GALT1 Exon C CT c.597C>T 67 31 36 CT 
S-7 63644620  ALG6  Exon T CT c.391T>C 146 85 61 CT 
S-7 70832913 DHCR7 Intron G AG c.99-4G>A 92 51 41 AG 
S-7 70257894 MED12 Intron A CC c.736-8A>C 45 0 45 CC 
S-7 50449090 SCN8A Exon C CT c.3076C>T 125 57 68 CT 
S-7 134761154 TSC1 UTR T del T c.*289delT  52   52 c.*289delT 

S-7 218389523 RAB3GAP
2 UTR  

insA
AC 

c.*866+827insAA
C  44  0  

c.*866+827i
nsAAC 

S-7 39904953 EP300 UTR 
C
A
A 

del 
CAA *47_*49del  38  0  38 *47_*49del 

S-7 24356236 CENPJ Intron 
C
A
A 

del 
CAA 

c.3704_15delCA
A  44  0  44 c.3704_15de

lCAA 

S-7 176653878 NSD1 Exon G GC c.6903G>C 129 57 72 GC 
S-7 176571910 NSD1 Intron C GG c.3796+108C>G 109 0 109 GG 
S-8 30748989 B3GALTL Intron G AA c.850+81G>A 9 0 9 AA 
S-8 30801834 B3GALTL UTR G TT c.*29G>T 43 0 43 TT 
S-8 30719240 B3GALTL Intron C TT c.347+4C>T 30 0 30 TT 

 

Supplementary	  Table	  8	  Number	  of	  variants	  detected	  in	  six	  different	  samples	  in	  UTR	  and	  introns.	  

Patient ID  Variants in introns  Variants in untranslated region  

S-2  188  77  
S-3  171  64  
S-5  279  107  
S-7  245  76  
S-6  363  103  
S-8  136  81  
	  

Supplementary	  Table	  9	  All	  variants	  detected	  in	  exons	  in	  six	  different	  samples	  (S-‐2,	  S-‐3,	  S-‐5,	  S-‐6,	  S-‐7,	  S-‐8).	  

Chromosome position  Gene name  Variant type  Variant  SNP ID  

chrX_147842900  AFF2  Silent  c.1488G>A  rs12011040  
chr22_48687480  ALG12  Silent  c.885A>G  rs8135963  
chr1_195337438  ASPM  Silent  c.7566A>G  rs1412640  
chr1_195358160  ASPM  Silent  c.3579T>A  rs4915337  
chr1_195360653  ASPM  Silent  c.3138G>A  rs6676084  
chr1_195379156  ASPM  Silent  c.849C>T  rs6677082  
chr1_195337330  ASPM  Silent  c.7674C>T  rs41308365  
chr1_195339043  ASPM  Silent  c.5961A>G  rs41310925  
chr1_195340555  ASPM  Silent  c.4449A>G  rs2878749  
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chr1_195375569  ASPM  Silent  c.1977T>C  rs17550662  
chr1_195337399  ASPM  Silent  c.7605G>A  rs10922162  
chr13_30801679  B3GALTL  Silent  c.1371A>G   
chr13_30719992  B3GALTL  Silent  c.348T>C  rs4943266  
chr9_33125238  B4GALT1  Silent  c.597C>T  rs1065765  
chr4_123883877  BBS12  Silent  c.1380G>C  rs13135766  
chr4_123883907  BBS12  Silent  c.1410C>T  rs13135445  
chr4_123884369  BBS12  Silent  c.1872A>G  rs13102440  
chr4_123883559  BBS12  Silent  c.1062G>C  rs34296401  
chr4_123883697  BBS12  Silent  c.1200G>A  rs309371  
chr4_123883706  BBS12  Silent  c.1209G>A  rs17006092  
chr4_123883895  BBS12  Silent  c.1398C>T  rs2292493  
chr8_86576655  CA2  Silent  c.562T>C  rs703  
chr19_13891689  CC2D1A  Silent  c.1281T>C  rs10410239  
chr9_122202874  CDK5RAP2  Silent  c.5418C>T  rs3739822  
chr9_122222023  CDK5RAP2  Silent  c.4041G>A  rs6478475  
chr9_122260650  CDK5RAP2  Silent  c.2274T>C  rs2501727  
chr9_122202874  CDK5RAP2  Silent  c.5418C>T  rs3739822  
chr13_24364955  CENPJ  Silent  c.3042A>G  rs3742165  
chr16_3717837  CREBBP  Silent  c.7212A>G  rs55916120  
chr11_70824339  DHCR7  Silent  c.1158T>C  rs760241  
chr11_70830109  DHCR7  Silent  c.438T>C  rs949177  
chr11_70832801  DHCR7  Silent  c.207T>C  rs1790334  
chr11_70832819  DHCR7  Silent  c.189G>A  rs1044482  
chr11_70832777  DHCR7  Silent  c.231C>T  rs4316537  
chr11_70824225  DHCR7  Silent  c.1272C>T  rs909217  
chr20_30850008  DNMT3B  Silent  c.1572T>C  rs6058891  
chr20_30850110  DNMT3B  Silent  c.1674T>C  rs2424922  
chr11_118484236  DPAGT1  silent  c.16A>G  rs6589717  
chr22_39880985  EP300  silent  c.3183T>A  rs20552  
chr22_39903214  EP300  silent  c.5553T>C   
chr5_60236422  ERCC8  silent  c.435T>C  rs4647100  
chr4_1777692  FGFR3  silent  c.1959G>A  rs7688609  
chr4_1773502  FGFR3  silent  c.882T>C  rs2234909  
chr7_41971125  GLI3  silent  c.4071C>T  rs34089404  
chr7_41972361  GLI3  silent  c.2835G>C  rs61758978  
chr7_42046290  GLI3  silent  c.900C>T  rs35961850  
chr7_42054757  GLI3  silent  c.537C>T  rs3898405  
chrX_122364958  GRIA3  silent  c.1200T>C  rs502434  
chr6_102610010  GRIK2  silent  c.2424G>A  rs2227283  
chr11_524242  HRAS  silent  c.81T>C  rs12628  
chr20_10568275  JAG1  silent  c.3528C>T  rs1051421  
chr20_10568386  JAG1  silent  c.3417T>C  rs1051419  
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chr20_10581237  JAG1  silent  c.765C>T  rs1131695  
chr20_10573804  JAG1  silent  c.2214A>C  rs1801140  
chr20_10585057  JAG1  silent  c.744A>G  rs10485741  
chr20_10601469  JAG1  silent  c.267G>A  rs1051415  
chr20_10587222  JAG1  silent  c.588C>T  rs1801138  
chr12_25259729  KRAS  silent  c.483G>A  rs4362222  
chr12_25254044  KRAS  silent  c.519T>C  rs1137282  
chrX_43475980  MAOA  silent  c.891G>T  rs6323  
chrX_43488335  MAOA  silent  c.1410T>C  rs1137070  
chr8_6290433  MCPH1  silent  c.1782G>A  rs2584  
chr8_6466586  MCPH1  silent  c.2418C>A  rs2912016  
chr8_6259807  MCPH1  silent  c.228G>T  rs2305022  
chr8_6466394  MCPH1  silent  c.2226C>T  rs2912010  
chrX_70266672  MED12  silent  c.3930A>C  rs5030619  
chrX_70277813  MED12  silent  c.6276G>A   
chr15_72976983  MPI  silent  c.1131A>G  rs1130741  
chr17_26577611  NF1  silent  c.2034G>A  rs2285892  
chr17_26532901  NF1  silent  c.702G>A  rs1801052  
chr17_26507234  NF1  silent  c.168C>T  rs17881168  
chr5_176569488  NSD1  silent  c.675C>T  rs1363405  
chr5_176569755  NSD1  silent  c.1749G>A  rs3733874  
chr5_176653804  NSD1  silent  c.6829T>C  rs28580074  
chr5_176653878  NSD1  silent  c.6903G>C  rs11740250  

chr9_133377309  POMT1  silent  c.1113C>T  rs3739494  

chr9_133385395  POMT1  silent  c.1758G>A  rs34954751  

chrX_48644671  PQBP1  silent  c.510G>A   
chr4_119422614  PRSS12  silent  c.2553A>C   
chr4_119456796  PRSS12  silent  c.1281G>A  rs2292597  

chr1_218397295  RAB3GAP2  silent  c.3495G>A  rs11547779  
chr17_17638979  RAI1  silent  c.1992G>A  rs8067439  
chr17_17637824  RAI1  silent  c.837G>A  rs11078398  

chr4_57471795  REST  silent  c.234G>T  rs61748752  
chr4_57492946  REST  silent  c.3165G>A  rs2227901  
chr17_26322577  RNF135  silent  c.360G>T  rs7224960  
chrX_20114382  RPS6KA3  silent  c.798C>A  rs12009120  
chr12_50367232  SCN8A  silent  c.576C>T  rs4761829  
chr12_50470538  SCN8A  silent  c.4509T>C  rs303815  
chr12_50487009  SCN8A  silent  c.5472C>A  rs60637  
chrX_50367414  SHROOM4  silent  c.3468A>G  rs3747282  
chr5_138484714  SIL1  silent  c.153A>G  rs3088052  
chr18_51046529  TCF4  silent  c.1941A>G  rs8766  
chr9_134762538  TSC1  silent  c.2829C>T  rs4962081  
chr9_134772042  TSC1  silent  c.1335A>G  rs7862221  
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chr16_2078585  TSC2  silent  c.5397G>C  rs1051771  
chr16_2076341  TSC2  silent  c.4809C>T   
chr16_2078270  TSC2  silent  c.5202T>C  rs1748  
chr16_2074493  TSC2  silent  c.4269G>A  rs45438898  
chrX_147856140  AFF2  missense  c.3040G>A   
chr22_48683892  ALG12  missense  c.1177A>G  rs3922872  
chr1_63654140  ALG6  missense  c.911C>T  rs4630153  
chr1_63644620  ALG6  missense  c.391T>C  rs35383149  
chr11_77501439  ALG8  missense  c.803G>A  rs61995925  
chr11_111229343  ALG9  missense  c.352G>A  rs10502151  
chr1_195337524  ASPM  missense  c.7480T>C  rs964201  
chr1_195327709  ASPM  missense  c.9395T>G  rs36004306  
chr1_195337065  ASPM  missense  c.7939C>A  rs3762271  
chr1_195337320  ASPM  missense  c.7684A>G  rs41310927  
chr1_195339155  ASPM  missense  c.5849C>T   
chr13_30789743  B3GALTL  missense  c.1105G>A  rs34638481  
chr13_30789746  B3GALTL  missense  c.1108G>A  rs1041073  
chr11_66038671  BBS1  missense  c.378G>A  rs2298806  
chr12_75264280  BBS10  missense  c.1616C>T  rs35676114  
chr4_123883654  BBS12  missense  c.1157G>A  rs309370  
chr4_123883896  BBS12  missense  c.1399G>A  rs13135778  
chr16_55106002  BBS2  missense  c.209G>A  rs4784677  
chr16_55102676  BBS2  missense  c.367A>G  rs11373  
chrX_79830225  BRWD3  missense  c.3863A>G  rs3122407  
chr19_13899791  CC2D1A  missense  c.2402C>T  rs2305777  
chr19_13891753  CC2D1A  missense  c.1345G>A   
chr9_122210554  CDK5RAP2  missense  c.4618G>C  rs4837768  
chr9_122330857  CDK5RAP2  missense  c.865G>C  rs4836822  
chr9_122245733  CDK5RAP2  missense  c.3134G>C  rs3780679  
chr9_122245802  CDK5RAP2  missense  c.3065G>A  rs34523498  
chr13_24377541  CENPJ  missense  c.2635T>G  rs17402892  
chr13_24384911  CENPJ  missense  c.253C>A  rs9511510  
chrX_69582011  DLG3  missense   c.235G>A  
chr11_118472968  DPAGT1  missense  c.1177A>G  rs643788  
chr11_66010661  DPP3  missense  c.435G>T  rs11550299  
chr11_66028813  DPP3  missense  c.2033G>A  rs2305535  
chr22_39877954  EP300  missense  c.2989A>G  rs20551  
chr9_107406555  FKTN  missense  c.608G>A  rs34787999  
chr9_107437316  FKTN  missense  c.1336A>G  rs41313301  
chrX_106733095  FRMPD3  missense  c.5269C>G   
chrX_106733134  FRMPD3  missense  c.5308C>G   
chr7_42054747  GLI3  missense  c.547A>G  rs846266  
chr7_41972203  GLI3  missense  c.2993C>T  rs929387  
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chr20_10570501  JAG1  missense  c.2612C>G  rs35761929  
chr8_6283958  MCPH1  missense  c.513G>T  rs2442513  
chr8_6289591  MCPH1  missense  c.940G>C  rs930557  
chr8_6289826  MCPH1  missense  c.1175A>G  rs2515569  
chr8_6466450  MCPH1  missense  c.2282C>T  rs1057090  
chr8_6487952  MCPH1  missense  c.2482C>T  rs1057091  

chr8_6325714  MCPH1  missense  c.2045C>A  rs12674488  
chr17_7431534  MPDU1  missense  c.685G>A  rs10852891  
chr2_15999836  MYCN  missense  c.199T>G   
chr17_26725232  NF1  missense  c.8453C>A   
chr5_176569846  NSD1  missense  c.1840G>T  rs3733875  
chr5_176570182  NSD1  missense  c.2176T>C  rs28932178  
chr5_176570797  NSD1  missense  c.2791C>G   
chr13_44461464  NUFIP1  missense  c.108C>G  rs1140993  
chrX_67569473  OPHN1  missense  c.115G>A  rs41303733  
chr9_133375257  POMT1  missense  c.752A>G  rs2296949  
chr9_133376602  POMT1  missense  c.979G>A  rs4740164  
chr4_119422669  PRSS12  missense  c.2498G>A  rs17594503  
chr4_119422617  PRSS12  missense  c.2550T>G   
chr4_119493160  PRSS12  missense  c.164G>C  rs13119545  
chr1_218391338  RAB3GAP2  missense  c.4060A>G  rs59190330  
chr1_218397828  RAB3GAP2  missense  c.3275G>C  rs2289189  
chr17_17637256  RAI1  missense  c.269G>C  rs3803763  
chr17_17637480  RAI1  missense  c.493C>A  rs11649804  
chr17_17639523  RAI1  missense  c.2536T>G   
chr17_17647830  RAI1  missense  c.5601T>C  rs3818717  
chr17_17641713  RAI1  missense  c.4726C>T   
chr4_57492171  REST  missense  c.2390C>T  rs3796529  
chr4_57491857  REST  missense  c.2076G>T  rs2227902  
chr17_26322430  RNF135  missense  c.213C>G  rs7225888  
chr17_26322539  RNF135  missense  c.322T>C  rs7211440  
chr12_50401628  SCN8A  missense  c.1667T>G   
chr12_50401630  SCN8A  missense  c.1669T>C   
chr12_50449090  SCN8A  missense  c.3076C>T   
chrX_73558294  SLC16A2  missense  c.319T>C  rs6647476  
chr15_22770605  SNRPN  missense  c.694T>C  rs705  
chr9_134761574  TSC1  missense  c.3364G>A   
chr9_134776725  TSC1  missense  c.965T>C  rs1073123  
chrX_152949971  MECP2  nonsense  c.538C>T    
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Supplementary	  Table	  10	  	  All	  variants	  detected	  in	  B3GALTL	  gene	  in	  sample	  S-‐6.	  Variants	  at	  the	  first	  exons	  
(1-‐7)	  can	  be	  heterozygous	  or	  homozygous	  while	  all	  variants	  at	  the	  rest	  of	  the	  gene	  (8-‐15)	  have	  only	  a	  
homozygous	  genotype.	  

Chromosome 
position 

location  Ref. 
sequence  

observed  
genotype Illumina 

Wt Variant Mutation 

chr13_30694969 intron 2 G CC 0 41 c.121-120G>C 

chr13_30719240 intron 5 C CT 59 42 c.347+4C>T 

chr13_30719469 intron 5 A GG 0 9 c.347+233A>G 

chr13_30719992 exon  6 T> CC 0 11 c.348T>C 

chr13_30733375 intron 7 G GA 33 32 c.596+156G>A 

chr13_30741415 intron 8 G AA 0 27 c.660+1G>A 

chr13_30746535 intron 8 G AA 0 37 c.661-111G>A 

chr13_30741664 intron 8 A GG 0 14 c.660+250A>G 

chr13_30746823 intron 9 A GG 0 91 c.780+58A>G 

chr13_30748714 intron 9 G CC 0 10 c.781-125G>C 

chr13_30749059 intron 10 A GG 0 43 c.850+151A>G 

chr13_30758769 intron 11 G CC 0 9 c.965-88G>C 

chr13_30757039 intron 11 T AA 0 23 c.964+141T>A 

chr13_30759059 intron 12 G AA 0 37 c.1064+103G>A 

chr13_30789561 intron 12 T CC 0 13 c.1065-142T>C 
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Abstract  

Terminal osseous dysplasia (TOD) is an X-linked dominant male-lethal disease characterized by 

skeletal dysplasia of the limbs, pigmentary defects of the skin, and recurrent digital fibroma with 

onset in female infancy. After performing X-exome capture and sequencing, we identified a 

mutation at the last nucleotide of exon 31 of the FLNA gene as the most likely cause of the 

disease. The variant c.5217G>A was found in six unrelated cases (three families and three 

sporadic cases) and was not found in 400 control X chromosomes, pilot data from the 1000 

Genomes Project, or the FLNA gene variant database. In the families, the variant segregated with 

the disease, and it was transmitted four times from a mildly affected mother to a more seriously 

affected daughter. We show that, because of nonrandom X chromosome inactivation, the mutant 

allele was not expressed in patient fibroblasts. RNA expression of the mutant allele was detected 

only in cultured fibroma cells obtained from 15-year-old surgically removed material. The 

variant activates a cryptic splice site, removing the last 48 nucleotides from exon 31. At the 

protein level, this results in a loss of 16 amino acids (p.Val1724_Thr1739del), predicted to 

remove a sequence at the surface of filamin repeat 15. Our data show that TOD is caused by this 

single recurrent mutation in the FLNA gene. 

Main text 

Terminal osseous dysplasia (MIM 300244) is a rare condition, characterized by terminal skeletal 

dysplasia, pigmentary defects of the skin, and recurrent digital fibromata during infancy. It has 

been described as a male-lethal X-linked dominant disease in the previously reported families 

and cases.1 Linkage studies mapped the mutation to Xq27.3-q28.2 However, no disease-causing 

gene had been discovered. 

In the present study, we examined terminal osseous dysplasia (TOD) in three families and three 

sporadic case individuals (patients 1, 2, and 3 described by Horii,3 Drut,4 and Breuning5). The 

Dutch family (Figure 1A, family 1) and Italian family (Figure 1A, family 2) have been described 

before (Breuning5 and Baroncini6). The third family (Figure 1A, family 3) has not been reported 

before and is nonconsanguineous and of Israeli Arab origin. All patients, a mother and her two 

daughters, have normal cognitive development. The mother (3I:2) suffers from chronic mild 

obstructive lung disease and vitamin B12 deficiency. Since her childhood, she has had multiple 
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minor surgeries to remove small skin lesions from her hands and legs. On clinical examination at 

the age of 25 yrs, her head circumference was 54 cm (25%–50%), her height was 170 cm (75%–

90%), and her arm span was 171 cm. Her right hand showed brachydactyly of digit III-V, a short 

fingernail on digitus IV, and lateral deviation of the fifth digit. On her left hand, there was lateral 

deviation of the fourth digit, with a small lesion on the lateral aspect of the distal phalanx, and 

clinodactyly of the fifth digit (Figure 1B). Her right foot showed a short and highly implanted 

fourth digit. There was bilateral widening of the distal portion of the second–fifth digits. She had 

no gingival extra frenulum and no pterygium. A skeletal X-ray survey revealed unilateral 

flattening of her vertebral bodies at L1-L3, secondary right scoliosis, and wedging of her L1 

vertebral body. Her daughter (3II:4) underwent surgery at 2 mo of age to remove small skin 

lesions from her hands, feet, and gingiva. On clinical examination at the age of 3 yrs, she had a 

head circumference of 48 cm (25%–50%), a height of 85 cm (< 3%), and a weight of 11.1 kg (< 

3%). She showed hypertelorism—interpupillary distance of 5.4cm (> 97%), a right epicanthal 

fold, a normal palate, an upper and lower accessory frenulum (Figure 1C), a short neck, and a 

short thorax. Despite earlier surgery, she had bilateral skin lesions on her second and fifth digits 

and bilateral clinodactyly of the fifth digit (Figure 1D). Her feet showed a lesion in her third toes 

and thickening of the nail of the fifth toes bilaterally. A skeletal X-ray survey revealed bilateral 

lytic lesions in the proximal humerus and the proximal femur, as well as multiple soft-tissue 

lesions in her feet and hands. The youngest daughter (3II:5) was born with multiple lesions on 

her hands and feet, including bilateral camptodactyly of the third digit, and bilateral overriding of 

the fourth toe. Echocardiogram at birth showed persistent foramen ovale. On clinical 

examination at the age of 6 mo, her head circumference was 42 cm (25%–50%), her height was 

58.8 cm (< 3%), and her weight was 5.1 kg (< 3%). She has mild hypertelorism, three brownish 

pigmented spots of different sizes (3 mm to 1.5 cm) in her right temporal groove, mild 

retrognathia, a right upper accessory frenulum, a cleft palate, a short neck, and a short thorax. 

She has a bilateral axillary pterygium (Figure 1E), which is more severe on the right side. 

Bilaterally, there is limited extension of her elbows, with normal supination and pronation of her 

hands. In her right hand (Figure 1F), she had multiple skin lesions on her second–fifth digits, 

clinodactyly and lateral deviation of her second and third digits, and a narrow fifth digit with an 

absent distal crease. Her left hand showed skin lesions on her second-fourth digits. Her second 

digit was narrow and laterally deviated. There was camptodactyly of the third-fifth digits, 
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brachydactyly and clinodactyly of the fifth digit, and absence of a distal crease. In her feet, she 

had bilateral plantar pits. The right foot has distal broadening of the second-fifth toe and 

brachydactyly of the second and third toe accompanied by syndactyly. There was overriding of 

the third and fourth toe. On her left foot, the second-fifth toes were distally broad. She had a 

overlapping of the second and fourth toes over her third toe, brachydactyly of the third toe that 

was proximally implanted. A skeletal X-ray survey revealed bilateral lytic lesions of the 

proximal humerus, lytic lesions of the left proximal femur, and multiple soft-tissue lesions. She 

had underdeveloped tarsal bones in her feet. The phenotypes from different patients are 

summarized in Table 1. 

 

Figure 1 The Pedigrees and the Phenotype of Family 3. (A) The pedigrees investigated in this study. In 
family 3, XCI patterns show the silencing of the X chromosome that carries the mutant allele. (B) The 
hands of 3I:2. (C) Multiple frenula of 3II:4. (D) The right hand of 3II:4. She has clinodactyly and digital 
fibroma. (E) The right axillary pterygium of 3II:5. (F) The right hand of 3II:5. 
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Table 1 Clinical features of the patients studied in this report 

 1II:4 1III:6 2II:4 2III:5 3I:2 3II:4 3 II:5 Patient 1 Patient 2 Patient 3 

Origin 
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Age at Onset 

 

 1 mo 3 mo  7 mo  2 mo birth 3 mo  4 mo 

 

Pigmentary Skin Anomalies 

 

Face + + − +   + + + + 

Scalp −       − + − 

 

Fibromatosis 

 

Digital fibromas + + − + + + + + + + 

 

Limbs and Skeletal System 

 

Synadactyly − − − +  + + − − − 

Brachydactyly +  − + +  + +   

Clinodactyly   − + + + +    

Camptodactyly    +   +    

Metacarpal 
disorganization 

+ + − +    + + + 

Metatarsal + + − +   + + + + 
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disorganization 

Limb long bones 
anomalies 

− + − + − + + + + + 

Articular 
abnormalities 

+ + − +    + + + 

 

Facial Features 

 

Cleft palate − − − −  − + − −  

Upslanting 
palpebral fissures 

−  − +    +   

Hypertelorism/Tel
ecanthus 

+  − −  + + +   

Epicanthic folds −  − +  +  +   

Coloboma of Iris − + − −    − − − 

Flat/depressed 
nasal tip 

− + − −    + −  

Thick 
lips/Prominent 

+  − +       

 

Lower Lip 

 

Papillomata − − −       − 

Multiple frenula   + + −      

Preauricular pits 
and tags 

+       −   

mo:	  month	  

DNA of patients and family members were extracted from peripheral blood (families 1, 2, and 

3), buccal cells (patient 1), or paraffin-embedded tissue (patients 2 and 3). Two probands (1II:4 

and 2III:5) of the Dutch and the Italian families were tested with the X-exome target-enrichment 

methodology (SureSelect, Agilent) and next-generation sequencing (Illumina Genome Analyzer 

II). The methods used for sequence capture, enrichment, and elution followed instructions and 

protocols provided by the manufacturers (SureSelect, Agilent) with a little modification. In brief, 
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500 ng of DNA was fragmented (Bioruptor, Diagenode) according to manufacturer's instructions 

to yield fragments from 200 to 300 bp. Paired-end adaptor oligonucleotides from Illumina were 

added to both ends. The DNA-adaptor-ligated fragments were then hybridized to 250 ng of 

SureSelect X chromosome oligo capture library (SureSelect, Agilent) for 14 hr. After 

hybridization, washing, and elution, the elute was amplified to create sufficient DNA template 

for downstream applications. The eluted-enriched DNA fragments were sequenced with the 

Illumina technology platform. We prepared the paired-end flow cell on the supplied cluster 

station, following the instructions of the manufacturer. 

The reads were aligned to the reference human genome (hg 18, NCBI build 36.2) by Bowtie7 

(Table S1, available online). Substitution-variant calling was performed by searching for 

positions where a variant nucleotide was present in more than 30% of the reads. After removing 

substitutions present with high frequency in dbSNP, the variants located in the previously 

identified TOD linkage interval, Xq27.3-q28, were listed in Table 2. From these variants, 

c.5217G>A, the only variant shared by the two patients, in the FLNA gene was selected for 

further study for the following reasons: (1) c.5217G>A, the last nucleotide of exon 31, was 

predicted to affect splicing by Human Splicing Finder.8 The score of the splicing donor site 

dropped from 91.2 to 80.63, indicating that the wild-type site may not function as usual. (2) 

Mutations in FLNA have been reported to be involved in diseases showing a partial phenotypic 

overlap with TOD.9 

Sanger sequencing results confirmed the presence of c.5217G>A (Figure 2A) and c.5850T>C 

(Figure 2B) in all affected cases (1II:4 and 1III:6) in family 1, as well as c.5686+84A>G found 

in an intron but not in an unaffected individual (1I:2). Further evidence came from the analysis 

of the Italian family, in whom affected cases (2II:4 and 2III:5) carry exactly the same variant, 

c.5217G>A, together with another exonic variant, c.5814C>T. Unfortunately, we did not have 

access to material from both parents and therefore could not determine whether the mutations 

occurred de novo. Notably, families 1 and 2 had two distinct variants adjacent to the c.5217G>A 

mutation, making a close and common ancestor highly unlikely. Finally, upon analysis of a third 

TOD family and three unrelated sporadic cases, we identified exactly the same c.5217G>A 

variant again in all patients, but not in unaffected family members (1I:2, 3I:1, and 3II:3). 
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Table 2 List of all exonic variants with low frequency in the European population in Xq27.3-Xq28 

HGVS name Gene Predicted 

Function 

Predicted Protein 

Change 

1II:4 2III:5  

NM_002025.2:c.1653A>G AFF2 Silent p.(=) - +  

NM_001183.4:c.*461A>C ATP6AP1 3' UTR p.(=) - +  

NM_001009932.1:c.364G>A DNASE1L1 Silent p.(=) + -  

NM_001110556.1:c.5217G>A FLNA Silent p.(=) + +  

NM_001110556.1:c.5814C>T FLNA Silent  p.(=) - + rs2070825, high 

frequency in a group 

of multiple population 

NM_001110556.1:c.5850T>C FLNA Silent p.(=) + - Doesn’t segragate 

with phenotype 

NM_004961.3:c.186G>A GABRE Silent  p.(=) + -  

NM_005342.2:c.166G>C HMGB3 Missense p.(Glu56Gln) - +  

NM_005367.4:c.888A>G MAGEA12 Silent p.(=) - +  

NM_005362.3:c.455G>T MAGEA6 Missense p.(Ser152Ile) + - Repetitive region 

NM_005365.4:c.92C>A MAGEA9 missense p.(Pro31His) + - Repetitive region 

NM_001170944.1:c.468C>T PNMA6B Silent p.(=) + -  

NM_005629.3:c.324A>G SLC6A8 Silent p.(=) - +  

NM_032539.2:c.1002T>C SLITRK2 Silent p.(=) - +  

NM_032539.2:c.309G>A SLITRK2 Silent p.(=) - +  

NM_001009615.1:c.240C>A SPANXN2 Silent p.(=) + -  

NM_014370.2:c.1014G>A SRPK3 Silent p.(=) + -  

NM_006280.1:c.430G>A SSR4 Missense  p.(Gly144Arg) + -  

*all the HGVS numbers were generated using longest isoforms if multiple transcripts exist. 
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Figure 2 Genomic Structure and Mutation Analysis of FLNA. (A) c.5217G>A was confirmed by Sanger 
sequencing in all of the patients. The unaffected family members and controls carry the homozygous 
normal allele. (B) The sequence of c.5850T>C in family 1. (C) FLNA is located in Xq28, the target region 
of linkage analysis. c.5217G>A alters the last nucleotide of exon 31 of FLNA. 

Variant c.5217G>A affects the last nucleotide of exon 31 of the FLNA gene (Figure 2C). At the 

protein level, it is not predicted to change the encoded amino acid, but as the last nucleotide of an 

exon, it may affect splicing.10–12 RNA was isolated from cultured fibroblasts of arm skin from 

1III:6, removed during a recent orthopaedic procedure under general anesthesia with informed 

consent. Cells were cultured in standard medium for human fibroblasts (Dulbecco's modified 

Eagle's medium with 10% FBS, 1% penicillin/streptomycin, 1% glucose, 1% glutamax) with 5% 

CO2 in 37°C. RNA was extracted with the RNeasy Mini Kit (QIAGEN). cDNA was synthesized 

from 500 ng of total RNA by RevertAid RNaseH-M-MuLV reverse transcriptase in a total 

volume of 20 µl according to the protocol provided by the supplier (MBI-Fermentas). Target 

regions were amplified by RT-PCR with the use of the primers listed in Table S2. The products 

were evaluated with the Bioanalyzer 2100 DNA chip 1000 (Agilent), according to the 

manufacturer's instructions. RNA from patient fibroblasts showed only normal transcripts, both 
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transcripts 1 (NM_01456) and 2 (NM_001110556) differing by insertion of the 24 bp exon 30 in 

transcript 2. Although transcript 1 has been reported as the predominant transcript in controls,13 

we detected about equal expression levels in controls (Figure 3B, lanes 2–4 and 8) and higher 

expression of transcript 2 in patient fibroblasts (Figure 3B, lane 1). Both bands were isolated 

from the agarose gel by the Qiaquick Gel Extraction Kit (QIAGEN) and analyzed by Sanger 

sequencing. Interestingly, we detected no expression of the mutant allele. This could be due to 

nonsense-mediated decay14 and/or skewed X chromosome inactivation (XCI). To test the first 

possibility, the fibroblasts were treated with cycloheximide15 for 4.5 hr followed by RNA 

analysis using the same procedures as those for RNA from untreated cells. The mutant allele was 

still absent in RNA from cycloheximide treated cells. XCI was analyzed with the Androgen 

Receptor (AR) assay.16 The assay showed random XCI in 1I:2 versus 100% XCI of the mutant 

chromosome in patient 1II:4 (patient 1III:6 was uninformative), indicating that the mutant allele 

was inactivated. 

Fifteen years ago, at the age of 1 yr, patient 1III:6 had fibroma tissue from the fifth digits of both 

hands and the fifth toe of the left foot surgically removed and stored in liquid nitrogen. We 

cultured these cells and analyzed RNA. In the fibroma cells, we observed two sets of two bands 

(Figure 3B, lanes 5–7), indicating altered splicing. One set had the same length as that observed 

in normal fibroblasts (Figure 3A, transcripts 1 and 2), and the other set was shorter (Figure 3A, 

transcripts 3 and 4, faint from RNA of a tumor in left fifth finger and toe; Figure 3B, lanes 6 and 

7). Note that the fibroma always contains a mixture of tumor and normal stroma cells. Sequence 

analysis showed a deletion removing the last 48 nucleotides of exon 31 (Figure 3C), resulting in 

a deletion of 16 amino acids. 

To facilitate clinical diagnostics of FLNA gene mutations, we have established a web-based 

FLNA gene variant database using the LOVD software.17 In this publicly available database, we 

have collected all variants reported in the literature thus far (83 in total; see FLNA mutation 

database), including the variants described here. The c.5217G>A variant detected in TOD 

patients has not been described before; it is listed neither in dbSNP nor in the pilot study 1 of the 

1000 Genomes Project. Finally, over 400 chromosomes have been sequenced and the mutant 

allele was not found (data not shown). 
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Figure 3 Detection of Alternative Splicing and 3D Protein Model. (A) Diagram of four FLNA transcripts 
in fibroma cells: transcripts 1 and 2, which carry the 48 bp deletion at the end of exon 31, as well as the 
normal transcripts 3 and 4. (B) RT-PCR result from Agilent 2100 Bioanalyzer. Lane 1 is the product of 
the fibroblasts of 1III:6, which has a predominant longer isoform. Lanes 2–4 and 8 are four control human 
fibroblasts. Lanes 5–7 show RT-PCR products that were obtained from fibroma cells of 1III:6, the normal 
bands from two FLNA isoforms, and two extra shorter bands, which are faint in lane 6 (left fifth finger) 
and lane 7 (fifth toe of the left foot), whereas lane 5 (right fifth finger) shows four dark bands. (C) Sanger 
sequencing results of c.5858T>C and c.5217G>A in fibroblast and fibroma cells of 1III:6. (D) The 3D 
model of FLNA domain 15. The deleted 16 amino acids are marked in gray. Beta strands are marked in 
red. Green represents a turn. Yellow indicates a 3/10 helix. Random coils are colored in cyan. 

Mutations in FLNA have been reported to cause a wide range of developmental malformations in 

the brain, bones, limbs, heart,18 and other organs19 in human,9 including periventricular 

heterotopia (PVNH [MIM 300049])20–24 and otopalatodigital (OPD) spectrum disorders,25 which 

include otopalatodigital syndrome type 1 (MIM 311300)26–28 and type 2 (MIM 304120),26,29 

frontometaphyseal dysplasia (MIM 305620),26,30,31 and Melnick-Needles syndrome (OMIM 

309350).26,27 Although each of the OPD spectrum disorders are characterized by specific clinical 

symptoms, there clearly is a clinical overlap with TOD, including a generalized bone dysplasia 

that includes craniofacial anomalies and anomalies in digits and long bones.9,32 Interestingly, the 

most conspicuous symptoms of TOD patients are skeletal dysplasia of the limbs and recurrent 

digital fibroma, suggesting a significant role of the FLNA mutation in the TOD phenotype. 
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The FLNA gene encodes a cytoskeletal protein, filamin A, which crosslinks actin filaments into 

an orthogonal network and links these to the cell membrane. Within the cytoskeleton, filamin A 

also mediates functions relating to cell signaling, transcription, and development.33 Filamin A 

consists of two calponin homology sequences (CH1 and CH2) at the N terminus and connects 

with 24 immunoglobin-like filamin repeats, divided by two hinges, one between repeats 15 and 

16 and one between repeats 23 and 24. To check the stability of filamin A in patient cells, protein 

was extracted from both fibroblast and fibroma cells. Immunoblot was performed with the use of 

mouse human filamin A monoclonal antibody, MAB1680, from Millipore. No difference in 

molecular weight or quantity was observed. The difference of 18 amino acids was likely too 

small to be distinguished by immunoblot. The c.5217G>A mutation is located in a highly 

conserved position at the DNA level, across a wide range of vertebrate and invertebrate species 

except rodent, and found in all ten affected patients from six different unrelated families. In 

addition, the mutation introduced abnormal splicing in fibroma cells. At the protein level, 

c.5217G>A encodes the second-to-last amino acid of repeat 15, which is immediately adjacent to 

hinge 1. Recent studies demonstrated repeats 9–15 contain an F-actin binding domain necessary 

for high avidity F-actin binding.34 Hinge 1 plays an important part in maintaining the viscoelastic 

properties of actin networks.35 Moreover, this region interacts with many binding partners, such 

as TRAF1, TRAF2,36 CaR extracellular Ca2+ receptor,37 and FAP52.38 Because no crystal 

structure has yet been described for this region, the crystal structure of repeat 15 in filamin 

B(PDB file 2 dmb), which shows the highest identity (58%) with this region of interest, was used 

as a template for building a 3D model (Figure 3D). The model was built with the use of the 

WHAT IF and YASARA twinset.39 Repeat 15 consists of two beta sheets. The in-frame deletion 

causes the removal of the top of a beta strand in the middle of one beta sheet, and of two beta 

strands at the side of that sheet (gray part of Figure 3D). These residues are likely to form some 

kind of beta strand-like structure and to substantially alter the structure of the highly conserved 

tertiary structure of filamin repeat 15. Furthermore, this structure will affect the residues 

following the beta sheet and linking repeat 15 to hinge 1. Although there is no way to predict 

what will happen to those linking residues, we believe it will affect the overall conformation of 

the protein and likely influence the interaction between filamin A and other molecules. 

The precise mechanism of TOD remains unclear. However, like other X-linked diseases, XCI 

might be a key component of how the disease develops. The developmental role of FLNA is 
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borne out by the presence of the skeletal and skin malformations at birth. Multiple fibroma on 

digits begins to occur in the first years, and fibromas spontaneously stop by the age of five. 

Skewed XCI is known to vary in different tissues and to correlate with age under the pressure of 

secondary selection.40 Several mechanisms may contribute to the skewing, including stochastic 

effects, a selective growth advantage of the cell that carries either the mutated or the normal 

allele (secondary cell selection), and genetic processes yielding preferential inactivation of 

specific alleles. Primarily the XCI choice is random, but during cell proliferation, either in all 

cells or in a tissue specific manner, cells that carry an active mutated allele may have a 

significant disadvantage, are gradually lost or selected against, and are thus less represented in 

the adult female.41 Disorders caused by defects in the FLNA gene often show a skewed XCI 

pattern,26 suggesting that cells need normal filamin to survive. Several studies in TOD families 

showed that patients had skewed XCI, while unaffected individuals had random inactivation.1,6 

We examined the XCI pattern in family 1 (1I:2, 1II:4, and 1III:6) and family 3 (3I:2, 3II:3, 3II:4, 

and 3II:5; Figure 1A) by AR assay. Apart from the uninformative patient 1III:6, all of the other 

patients—1II:4, 3I:2, 3II:4, and 3II:5—showed extremely skewed XCI (0/100%), whereas the 

normal family member 1I:2 showed random XCI (30/70%), as did 3II:3 (50/50%). Because there 

was no mutant allele detectable in the RNA of normal fibroblast, we deduced that 1III:6 also had 

100% skewed XCI with the preferential inactivation of the mutant allele. We tested the XCI of 

2II:4 and 2III:5, and both showed 100% skewing.6 2II:4 was interpreted by the authors as 

unaffected. However, we assume that 2II:4 is a carrier of TOD, given that she has only mild 

manifestations (multiple frenula in the mouth). She probably has skewed XCI at a very early 

stage. Local XCI patterns may influence the severity of the phenotype of carrier females and are 

also associated with selective female survival in male-lethal, X-linked, dominant disorders. 

Taken together, these data suggest that TOD is caused by a unique variant, c.5217G>A 

(p.Val1724_Thr1739del), in the FLNA gene. The variant is not found in other databases, has not 

been seen in other patients with pathogenic FLNA variants, segregates with the disease, and is 

located in Xq28, where the potential mutated gene causing this disorder was mapped previously. 

The mutation was found in six unrelated families. It will affect splicing, and it causes a deletion 

of 16 amino acids at the protein level. The missing region in the filamin A protein is 

hypothesized to affect or prevent the interaction of filamin A with other proteins. 
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Supplementary	  data	  	  

Supplementary	  Table	  S1	  Overview	  of	  the	  data	  generated	  by	  GAII	  

 1II:4 2III:5 

Run  Paired-end  Paired-end 

Total reads 36,010,190 28,960,586 

Read F 18,005,095 14,480,293 

Read R 18,005,095 14,480,293 

Aligned reads 33,054,043 18.948,705 

Aligned in pair 30,018,244 11,012,526 

Read length 51 51 

	  

Supplementary	  Table	  S2	  FLNA	  primer	  list	  	  

Location	   Primer	  sequences	  (5’-‐3’)	   Size	  (bp)	  

Exon	  31-‐32	  
DNA	  (blood,	  buccal	  
cells)	  

F:GTCATCTGTGTGCGCTTTGG	  
222	  

R:AGCTGCTGAGACCGTAGAGG	  

Exon	  31	  
DNA	  (paraffin	  
embedded	  tissue)	  

F:GGGCAAATACGTCATCTGTGT	  
104	  

R:agacacccctgctgacctac	  

Exon	  29-‐32	   RNA	  
F:CCTGGGCGTAGGTGTACTGT	   416 (short 

isoform) 
440	  (long	  isoform)	  R:CATCAAGTACGGTGGTGACG	  

Exon	  35-‐37	   DNA,	  RNA	  
F:ACATACGCATGGAGTCGTCA	   577	  (DNA)	  

294	  (RNA)	  R:TCAACTGTGGCCATGTCACT	  
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Supplementary	  Figure	  S3	  2100	  bioanalyzer	  traces	  of	  RT-‐PCR	  on	  c.5217G>A	  from	  lane1	  to	  8.	  The	  peak	  
around	  15bp	  is	  the	  lower	  ladder	  and	  the	  signal	  round	  1500bp	  is	  the	  upper	  ladder.	  
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Abstract  

Spinocerebellar ataxias are phenotypically, neuropathologically and genetically heterogeneous. 

The locus of autosomal recessive spinocerebellar ataxia type 7 (SCAR7) was previously linked 

to chromosome band 11p15. We have identified TPP1 as the causative gene for SCAR7 by 

exome sequencing. A missense and a splice site variant in TPP1, cosegregating with the disease, 

were found in a previously described SCAR7 family and also in another patient with a SCAR7 

phenotype. TPP1, encoding the tripeptidyl peptidase 1 enzyme, is known as the causative gene 

for neuronal ceroid lipofuscinosis disease 2 (CLN2). CLN2 is characterized by epilepsy, loss of 

vision, ataxia and a rapidly progressive course, leading to early death. SCAR7 patients showed 

ataxia and low activity of tripeptidyl peptidase 1, but no ophthalmologic abnormalities or 

epilepsy. Also, the slowly progressive evolution of the disease until old age and absence of ultra 

structural curvilinear profiles is different from the known CLN2 phenotypes.  

Our findings now expand the phenotypes related to TPP1-variants to SCAR7. In spite of the 

limited sample size and measurements a putative genotype-phenotype correlation may be drawn: 

we hypothesize that loss of function variants abolishing TPP1 enzyme activity lead to CLN2, 

while variants that diminish TPP1 enzyme activity lead to SCAR7. 
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Introduction 

Spinocerebellar ataxias are phenotypically, neuropathologically and genetically heterogeneous, 

with over 50 genes and loci associated with genetic forms of spinocerebellar ataxias (Matilla-

Duenas, 2012; Vermeer, et al., 2011). The inheritance of the disease can be either autosomal 

dominant, autosomal recessive, X-linked or mitochondrial. Due to genetic heterogeneity of the 

the hereditary ataxias, it is time and money consuming to check all known genes by Sanger 

sequencing (Sailer and Houlden, 2012). Recently developed genomic techniques, such as exome 

sequencing that targets only the coding portion of the genome, offer an alternative strategy to 

rapidly sequence all genes in a comprehensive manner and its utility has been demonstrated in 

more diagnostic settings (Sailer, et al., 2012).  

Breedveld et al. previously reported a unique Dutch family with a childhood onset, slowly 

progressive autosomal recessive spinocerebellar ataxia, referred to as SCAR7 (OMIM 609207) 

and distinguished from other recessive ataxia types (Suppl. Table S1) by locus, onset and/or 

clinical findings. A genome-wide linkage study mapped the causative gene on a 5.9 cM region 

on chromosome band 11p15, which contains more than 200 genes. No obvious candidate gene 

could be assigned, as genes for ataxia mostly have different functions and features (Breedveld, et 

al., 2004). 

Here we report the results of exome sequencing in the Dutch family revealing disease-causing 

variants in the TPP1 gene (OMIM 607998), encoding the lysosomal enzyme tripeptidyl 

peptidase 1. 

Homozygous or compound heterozygous variants in TPP1 usually lead to neuronal ceroid 

lipofuscinosis 2 disease (CLN2; OMIM 204500) (Williams and Mole, 2012), a 

neurodegenerative disorder generally characterized by onset at 2-4 years of age with seizures, 

ataxia and a progressive cognitive and motor dysfunction, and visual impairment later in the 

course of the disease, followed by death at the end of the first decade or beginning of the second 

(Santavuori, 1988; Williams, et al., 1999). Our findings expand the phenotypes of TPP1 

mutations (Kousi, et al., 2012) to SCAR7. 
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Materials & Methods 

Patients 

The clinical data of the original Dutch sib ship (pedigree family A, Figure 1A) have been 

reported previously (Breedveld, et al., 2004). In summary, patients of family A, suffer from a 

childhood-onset spinocerebellar ataxia with pyramidal signs and posterior column involvement 

and a postural tremor, without other (non-) neurological features. Neuroimaging shows atrophy 

of cerebellum, vermis, pons, and medulla oblongata.  

Patient B-II.1 (Figure 1B), a 51 year-old woman reported an onset of symptoms with diplopia at 

age 18. Two years later, subtle gait changes occurred. At the age of 28 years, she was diagnosed 

with cerebellar atrophy. Symptoms have been very slowly progressive since then; she still walks 

unsupported, although with occasional falls. She volunteered some loss of dexterity, mild speech 

and swallowing difficulties, and urinary urgency. Family history was negative and there was no 

consanguinity known in the parents. On examination, we observed normal cognitive functions; 

square-wave jerks, jerky pursuit, and hypermetric saccades; cerebellar dysarthria; mild proximal 

leg muscle weakness; no extrapyramidal features; very mild gait and appendicular ataxia; clear 

hyperreflexia with ankle jerk clonus; equivocal plantar responses; and normal sensory 

examination. MRI showed diffuse cerebellar atrophy (Figure 2). Full ophthalmologic evaluation 

was completely normal. Negative or normal outcomes were obtained for molecular genetic 

testing of various SCA genes (1, 2, 3, 6, 7, 12, 13, 14, and 17), APTX, SETX, FXN, SACS, 

SPG7, and ANO10, as well as measurements of creatine kinase level, alpha-fetoprotein, 

vitamins, and acanthocytes, and lysosomal enzymes. However, increased activity of plasma 

chitotriosidase as a marker for lysosomal disorders (280 nmol/h/ml, reference <160) and 

decreased TPP1 activity was noted. The phenotype, TPP1 enzyme activity and TPP1 mutations 

of these SCAR7 and other Dutch CLN2 patients (C-O) and relatives are described in Table 1.  

All patients in this study provided informed consent for DNA studies, and for diagnostic 

procedures. 
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Exome sequencing  

Genomic DNA from patients and relatives from family A was extracted from peripheral blood 

using the salt precipitation method (PUREGENE, QIAGEN). Exome sequencing was performed 

on patient A.III-2 using the SureSelect 50Mb exome capture kit (Agilent) following the 

manufacturer’s protocol. The captured fragments were subsequently sequenced by Illumina 

HiSeq as previously described (Santen, et al., 2012), paired end mode. Read length is 100bp.  

The raw Fastq files were aligned by bwa-0.5.9 (Li and Durbin, 2009). SAM/BAM files were 

manipulated by Samtools-0.1.10 (Li, et al., 2009) and Picard-1.57. Variations were called by 

GATK (McKenna, et al., 2010). The output vcf file was annotated by uploading to SeattleSeq 

134 (http://snp.gs.washington.edu/SeattleSeqAnnotation134/). The responsible gene for 

autosomal recessive ataxia was mapped in a 5.9 cM linkage interval (4.5 Mb), so only variants in 

this region were considered as candidates. 

 

 

Figure 1. (A) Pedigree of family A and (B) family B with autosomal recessive spinocerebellar ataxia 

(SCAR7). Patients are marked with black symbols, unaffected relatives with open symbols. TPP1 

genotypes are shown below individuals (open bars indicate normal allele, black bars indicate alleles with 

c.509-1G>C, grey bars represent alleles with c.1397T>G). Genotype analysis shows co-segregation of 

variants with disease.  

* =exome sequencing performed;  → =RNA analysis performed.  
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Figure 2. MRI of the brain of patient B. Sagittal T1-

weighted (top) and transversal T2-weighted (bottom) 

show diffuse cerebellar atrophy. 

Sanger sequencing 

Sanger sequencing was applied to confirm the 

finding of exome sequencing and cosegregation of 

the variations in family A. PCR was performed by 

using Phire Hot Start II DNA polymerase 

(Finnzyme) following the official protocol. Primers 

used in PCR reactions are shown in Supp. Table S2. 

PCR products were first purified by QIAquick PCR 

purification kit (QIAGEN), subsequently mixed 

with 25pmol of either forward or reverse primers 

and sequenced.  

For family B, the coding region and flanking intron 

sequences of the TPP1 gene were examined by 

Sanger sequencing in a diagnostic setting, using 

standard procedures (The protocol and the primer 

sequences are available upon request). 

 

RNA analysis 

Leucocyte RNA from affected compound heterozygous patients (A.III-2, A.III-3), unaffected 

c.509-1G>C carriers (A.III-4, A.III-8), and unaffected c.1397T>G carriers (A.III-5, A.III-7) was 

isolated from blood using RNABEE following the official protocol. cDNA synthesis and RT-

PCR was performed as previously described (Sun, et al., 2010). The primer sequences are listed 

in Supp. Table S2. The RT-PCR products were examined by 2% agarose gel, and followed by 

Sanger sequencing. 



141	  	  

TPP1 enzyme activity assay 

Enzyme activity of tripeptidyl peptidase 1 was assayed in leucocytes and fibroblasts of SCAR7 

patients via the determination of fluorescent 7-amino-4 methylcoumarin, released from the 

substrate Ala-Ala-Phe 7-amido-4-methylcoumarin by incubation in cell homogenates as 

described previously (Van Diggelen, et al., 2001). Also TPP1 activity in leucoytes of SCAR7 

carriers was measured. The TPP1 enzyme activity of B-II.1 was tested in Radboud University 

Nijmegen Medical Centre (normal range: 37-209 nmol/h/mg protein), while family A and other 

CLN2 samples (C-O) are analyzed in Erasmus Medical Center, with the normal range, 125-340 

nmol/h/mg protein. 

EM study 

Fibroblasts from one of the patients of family A-III.2 and patient B-II.1 were fixed in glutaric-

aldehyde, postfixated with osmium tetroxide and embedded in Epon (Hexion Specialty 

Chemicals, Inc, Danbury, Connecticut) and examined by electron microscopy. 

Results 

Exome sequencing reveals candidate variants 

Exome sequencing was performed to target protein coding sequences in the human genome for 

potential disease-causing variants. An overview of the data obtained is listed in Supp. Table S3. 

Only variants inside the 5.9 cM linkage interval (from D11S4088 to D11S1331, genomic 

location: chr11.hg19:g.2,754,951-7,292,210) were analyzed. If the variant allele frequency in the 

NHLBI ESP exomes (http://evs.gs.washington.edu/EVS/) was larger than 5%, the variant was 

removed from the candidate list. We then selected stop-gain, stop-loss, missense, splice site, 

frameshift and in-frame coding indel variants and concordance with autosomal recessive 

inheritance (i.e. homozygous or compound heterozygous variants in one gene). Variants in three 

genes, C11orf40, TPP1 and DCHS1 (Table 2), fulfilled these criteria. However, C11orf40 and 

DCHS1, located on the same allele, showed no co-segregation with the disease, they were 

excluded.. Thus, the only candidate gene left was TPP1, encoding the lysosomal serine protease 

with tripeptidyl-peptidase 1 activity. Two TPP1 variants, a splice site variant, c.509-1G>C and a 

missense variant, c.1397T>G, p.(Val466Gly) (Figure 3A), co-segegrated with the disease (Figure 
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1A). Later, identical variants in the TPP1 gene were found in a sporadic patient B, in whom 

TPP1 variant analysis was requested because of the low TPP1 enzyme activity, obtained through 

the diagnostic work-up. Analysis of the TPP1 closest homologs in other species (Figure 3B) 

showed that the Val466 residue is highly conserved during evolution, suggesting a functional 

role for this amino acid, and a deleterious effect for the predicted Val466Gly change (SIFT: 

deleterious, Polyphen: possibly damaging). Since both patients carried identical disease-causing 

variants we considered the possibility of the presence of founder alleles. Genealogical studies 

showed no close relation between the two families. Sanger sequencing of six closely linked 

variants (five of which are low frequent) covering the OR56A3, TPP1 and DCHS1 (Supp. Table 

S4) shows the presence of two haplotypes in patients of family A, one allele T-C-C-A-T, 

includes c.1397T>G and the other C-A-G-G-C, includes c.509-1G>C. They differ with the 

genotypes of patient B.II-1 at the two outer variants g.5968589C>T and g.6662466C>T, giving a 

maximal length of shared haplotype of 700 kb. The two families are not closely related, since the 

length is small. However, this does not exclude the variants derive from a common ancestor in 

the Dutch population. The results of molecular TPP1 testing of patients from family A, patient 

B-II.1 and Dutch CLN2 patients (C-O) are summarized in Table 1. 
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Table 1. TPP1 enzyme activity, TPP1 mutations and phenotype of patients from family A, B and other 
Dutch patients (C-O) 

 1nd  = not done. 2 this sample was tested in Nijmegen; other samples in Rotterdam. 
 

Table 2. The candidate variant list 

Gene Chromosome  Position Reference 
base 

Sample 
genotype 

HGVS nomenclature Function 
GVS 

TPP1 11 6636430 A A/C NM_000391.3:c.1397T>G Missense 
TPP1 11 6638385 C C/G NM_000391.3:c.509-1G>C splice-3 
DCHS1 11 6645264 G A/G NM_003737.2:c.7643C>T Missense 
DCHS1 11 6662466 C C/T NM_003737.2:c.379G>A Missense 
C11orf40 11 4594558 - -/G NM_144663.1:c.286_287insC Frameshift 
C11orf40 11 4598956 C C/T NM_144663.1:c.95G>A Nonsense 
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A-III.2 16 7.2 c.509-1G>C/ 
c.1397T>G 

splice defect/ 
p.Val466Gly 

no SCAR7 childhood no/ (55) 4 sibs  
SCAR7 

A-III.3 8 nd1 c.509-1G>C/ 
c.1397T>G 

splice defect/ 
p.Val466Gly 

 SCAR7 childhood no/ (59) 4 sibs, 
SCAR7 

A-III.6 18 nd c.509-1G>C/ 
c.1397T>G 

splice defect/ 
p.Val466Gly 

 SCAR7 childhood no/ (66) 4 sibs, 
SCAR7 

A-III.9 Nd  nd c.509-1G>C/ 
c.1397T>G 

splice defect/ 
p.Val466Gly 

 SCAR7 childhood 68 4 sibs, 
SCAR7 

A-
III.10 

32 nd c.509-1G>C/ 
c.1397T>G 

splice defect/ 
p.Val466Gly 

 SCAR7 childhood no/ (73) 4 sibs, 
SCAR7 

B-II.1 4.0-
13.02 

nd c.509-1G>C/ 
c.1397T>G 

splice defect/ 
p.Val466Gly 

no SCAR7 18yr no (51) No 

C 2.16 0 c.509 -1G>C/ 
c.509 -1G>C 

splice defect/splice defect  CLN2 3 yr no (13) 1 sib, 
CLN2 

D 3.19 nd nd nd  CLN2 4.5 yr 23 No 

E1 21.6 0.7-1.1 c.509 -1G>C/ 
c.509 -1G>C 

splice defect/splice defect  CLN2 3.5 yr 11 1 sib, 
CLN2 

E2 3.73 nd c.509 -1G>C/ 
c.509 -1G>C 

splice defect/splice defect  CLN2 3 yr no (14) 1 sib, 
CLN2 

F 3.88- 
9.04 

nd nd nd  CLN2 4 yr 8 No 

G 4.8- 5.14 0.4 c.509-1G>C/ 
c.622C>T 

splice defect/p.Arg208X  CLN2 1.5 yr no (11) No 

H 5.18 nd nd nd  CLN2 4 yr no (6) No 

I 10.1- 
10.8 

nd c.622C>T/ 
c.1266G>C 

p.Arg208X/p.Gln422His  CLN2 4 yr no (9) No 

L 15.4 nd nd nd  CLN2 4 yr 12 No 

M 24.6- 
32.3 

0.3 c.509-1G>C/ 
c.622C>T 

splice defect/p.Arg208X yes CLN2 3 yr 8 No 

N 25.6- 
33.1 

nd c.509-1G>C/ 
c.622C>T 

splice defect/p.Arg208X  CLN2 1.5 yr no (7) No 

O1 27.7 nd c.225A>G/ 
c.622C>T 

splice defect/p.Arg208X yes CLN2 3 yr 10 1 sib, 
CLN2 

O2 23.5 1.5 c.225A>G/ 
c.622C>T 

splice defect/p.Arg208X yes CLN2 3 yr no (17) 1 sib, 
CLN2 
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RNA test 

The consequences of the splice site variant c.509-1G>C were studied by RT-PCR analysis of 

leucocyte RNA from patients in family A. Besides the expected normal fragment of 550 bp, a 

longer band (697 bp) was observed in the heterozygous carriers (Figure 3C). The bands were 

isolated from the agarose gel, and Sanger sequencing revealed that intron 5 was retained in the 

longer RNA fragment (r.[508_509ins508+1_509-1;509-1g>c]), indicating inactivation of the 

splice site by the c.509-1G>C change. The insertion of intron 5 caused a premature termination 

of translation 29 amino acids (p.Val170Glyfs*29).downstream of the splice site. Only one band 

was found for the RT-PCR around the c.1397T>G variant, indicating it had no effect on RNA 

processing (Figure 3D). The variant allele is therefore “active” and likely generating a 

p.Val466Gly missense variant at protein level. 

TPP1 enzyme activity 

TPP1 enzyme activity in leucocytes and fibroblasts of SCAR7 patients of family A, patient B-

II.1 and several Dutch CLN2 patients (C-O) is described in Table 1. In all affected individuals, 

deficient activity of tripeptidyl peptidase 1 was found. There is however considerable overlap in 

enzyme activity in leucocytes from CLN2 and SCAR7 patients. For the affected individuals in 

family A, residual activity in leucocytes varied from 8 to 32 nmol/h/mg protein. The mean 

residual activity is 15% of the lowest control in family A and 10% in patient B-II.1 (4 nmol/h/mg 

protein). For CLN2 patients (C-O) the mean residual activity in leucocytes was 9% of the lowest 

control (2.16-23.5 nmol/h/mg protein), almost comparable with the SCAR7 patients. In 

fibroblasts however, this difference is more substantial with a residual enzyme activity of 0.4% 

of the lowest control in CLN2 patients and of 5% in patient A-III.2 (Table 1) from family A. The 

mean TPP1 activity in leucocytes of carriers with the splice site variant, c.509-1G>C was 132 

nmol/h/mg protein and 139 nmol/h/mg protein in carriers with the missense variant, c.1397T>G, 

both as expected within the normal range (data not shown, but available upon request). 

Electron microscopy 

Electron microscopy of a skin biopsy tissue of one of the patients of family A (A-III.2) did not 

show the typical curvilinear profiles seen in patients with a typical CLN2 phenotype but some 
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granular osmiophilic deposits (GROD) and fingerprint profiles were noticed (Supp. Figure S1). 

Electron microscopy of a skin biopsy tissue of patient B-II.1 was normal; in particular there were 

no changes compatible with neuronal ceroid lipofuscinosis. 

Figure 3. TPP1 gene structure, variant analysis by Sanger sequencing and RT-PCR results. (A) TPP1 
gene structure with c.509-1G>C variant in exon 5 and c.1397T>G variant in exon 11 (top). Sanger 
sequencing confirmation of the two variants in patient sample compared to control (bottom). (B) 
Alignment of TPP1 protein homologs. The amino acid Valine (V) at position 466, replaced by the 
missense variant in family A and patient B is highly conserved in species and highlighted in a rectangle 
(C) RT-PCR products from affected patients III-3, III-2 with compound heterozygous variants (c.509-
1G>C, c.1397T>G) (lanes 3 and 6), un-affected III-4, III-8 (c.509-1G>C carriers) (lanes 7 and 4), 
unaffected III-5, III-7 (c.1397T>G carriers) (lanes 2 and 5), controls (lanes 8 and 9), and a blank (lane 10) 
analyzed in 2% agarose gel. Lane 1 size standard (Smartladder, Eurogentec). A longer band is observed in 
all heterozygous carriers of c.509-1G>C. (D) The Sanger sequencing result of c.1397T>G from RT-PCR, 
the variant is a true missense change.	  
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Discussion	  

Exome sequencing in family A and Sanger sequencing, as part of a diagnostic workup in patient 

B-II.1, showed these compound heterozygous variants in TPP1 as the cause of SCAR7. Defects 

in TPP1 have previously been linked to CLN2. In the majority of cases, the age of onset of 

CLN2 is late infantile, between 2 to 4 years. It can also be infantile with onset before the age of 1 

year (Ju, et al., 2002; Simonati, et al., 2000) or even juvenile, with disease onset between 6 and 

10 years and a more protracted course (Bessa, et al., 2008; Elleder, et al., 2008; Hartikainen, et 

al., 1999; Kohan, et al., 2009; Sleat, et al., 1999; Wisniewski, et al., 1999). Developmental 

studies of TPP1 distribution in human brain and visceral organs, showed that the enzyme is not 

expressed in the developing neurons of the human fetus (Kida, et al., 2001; Kurachi, et al., 2001; 

Oka, et al., 1998). It appears in the neurons of the central nervous system at the age of 5 months 

and expression increases gradually to reach stable levels at the age of 3 years. This finding may 

explain why CLN2 and SCAR7 do not start in the early beginning of life. 

The lipopigment pattern seen most often in CLN2 consists of curvilinear profiles, detectable by 

electron microscopy, in various cell types. There is a relationship between TPP1 mutations, 

TPP1 activity, and curvilinear profiles (Mole, et al., 2005; Sleat, et al., 1999). In SCAR7 patients 

A.III-2 and B.II-1, however, the skin biopsy showed no curvilinear profiles. In CLN2 with a later 

onset and more protracted course, curvilinear profiles are not the only ultrastructural features 

found, also fingerprint profiles and GROD may appear (Wisniewski, et al., 1999). The skin 

biopsy of A.III-3 showed some GROD and fingerprint profiles, but no ultra structural features 

were found in patient B.II-1. It is suggested that there is a spectrum of ultra structural features in 

diseases caused by mutations in TPP1, ranging from curvilinear profiles in classic CLN2, mixed 

ultra structural features consisting of curvilinear- and fingerprint profiles and GROD in CLN2 

with a late onset and protracted course, to only some GROD and fingerprint profiles or even 

absence of ultra structural features in SCAR7. Ultra structural findings show a correlation with 

the severity and course of the phenotype due to TPP1 deficiency, as was also shown before in 

mice (Sleat, et al., 2008).  

The TPP1 gene is composed of 13 exons. It encodes a member of the sedolisin family of serine 

proteases, tripeptidyl peptidase 1, mainly expressed in the lysosome and melanosome. The 

protease cleaves the N-terminal tripeptides from substrates, and it has a weak endopeptidase 
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activity. It is synthesized as a catalytically-inactive enzyme which is activated and auto-

proteolyzed upon acidification. The TPP1 protein starts with a 19 amino acid signal peptide (Lin, 

et al., 2001; Sleat, et al., 1997) and a pro peptide of 176 amino acids, which will be removed in 

the mature form. The last part of the protein consists of the 368 amino acid tripeptidyl-peptidase 

1 chain. The majority of the mutations in TPP1 are located in the tripeptidyl-peptidase 1 domain, 

while only three mutations are localized in the propeptide domain, and none in signal peptide 

section. However, in the general population (data derived from the 1000 Genomes Project and 

GoNL project, including 500 unrelated Dutch individuals), the number of variations in 

propeptide domain and tripeptidyl-peptidase 1 chain is comparable (Supp. Table S5). This 

suggests that the propeptide section is more tolerant to variation, possibly due to the fact that this 

part of the protein is removed from the mature form and therefore may not have a significant 

effect on the function of the protein. The low variation in the signal peptide indicates the 

significance of that part of the protein. Without a recognizable signal peptide, the protein will not 

reach its destination nor will it be cleaved, and its function will probably be lost.  

To facilitate genotype – phenotype studies, we examined the TPP1 database, summarizing all 

variants published in the literature (http://www.ucl.ac.uk/ncl/cln2.shtml, date August 14, 2012). 

The mutations reported so far in relation to TPP1, including missense, nonsense, insertion, 

deletion, splice site, were scattered throughout the whole gene. Several mutations are recurrent, 

such as the stop codon p.(Arg208*), a splice site variant c.509-1G>C, which is present in 

patients of family A and B, and a Newfoundland founder variant p.(Gly284Val) (Ju, et al., 2002). 

The missense mutation found in patients of family A and patient B.II-1, c.1397T>G, Val466Gly, 

was not reported before, but showed conservation in evolution and is located in the peptidase 

region of the protein.  

Genotype – phenotype relations in the neuronal ceroid lipofuscinoses have been reviewed and 

tested in Chinese hamster cells (Kousi, et al., 2012; Mole, et al., 2005; Walus, et al., 2010). A 

loss of TPP1 function will cause the CLN2-late infantile, which means the TPP1 enzyme activity 

will be extremely reduced or absent. By examining the variant spectrum of TPP1, some variants 

will evidently truncate the protein, while some missense and in-frame insertion or deletion 

variants are observed to impair enzyme function of the protein. We have summarized the TPP1 

genotype with at least one missense variant reported in the literature in Supp. Table S6, and link 
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the experimental data (Guhaniyogi, et al., 2009; Lin and Lobel, 2001; Pal, et al., 2009; Walus, et 

al., 2010) and prediction tools (Desmet, et al., 2009) to elucidate the potential effect of those 

mutations. The majority of variants clearly inactivate the gene by creating an early stop of 

translation by introducing either a nonsense, or a frameshift variant. Some mutations, like 

c.1266G>C and c.380G>A, are located near the splice sites, and may therefore alter splicing and 

disrupt the reading frame (Chao, et al., 2010; Sun, et al., 2010). Other variants are predicted to 

generate a new splice site by Human Splicing Finder (Desmet, et al., 2009) 

(http://www.umd.be/HSF/, date July 06, 2012). For those mutations, it is worthwhile to study 

RNA to verify the predicted truncating effect. Another category of variant are those located 

within the active site of the protein (c.827A>T (Kohan, et al., 2009), c.1424C>T (Sleat, et al., 

1999)), so even a minor change might affect the function of the protein significantly.  

In patients of family A and patient B-II.1, RNA analysis of the splice site variant c.509-1G>C, 

showed that retention of intron 5 in the reading frame generates a premature stop codon, leading 

to haplo-insufficiency through nonsense mediated decay. For the amino acid changes from 

Valine to Glycine, unlike other CLN2 “missense” mutations, prediction tools do not show that it 

will produce a severe splicing alteration (HSF), indicating the protein product translated from 

this allele might still work actively.  

Although there is considerable overlap in mean enzyme activity in leucocytes from CLN2 (9%) 

and SCAR7 patients (10-15%), in fibroblasts it differs about a factor 10 (0.4% in CLN2 patients 

and 5% in SCAR7 patient A.III-2), although the number of patients studied is very small (Table 

1). The low activity in blood and especially in fibroblasts give an indication of the overall TPP1 

enzyme activity in the central nervous system. Sleat et al showed in CLN2 mutant mice that low 

TPP1 levels attenuated disease. Compound heterozygosity for a null allele and a presumed 

hypomorphic p.Arg447His missense variant resulted in a later onset and a protracted disease 

with survival into the third or fourth decade of life. Mice homozygous for this hypomorphic 

mutation, showed locomotor deficits at a later age, with a slower disease progression, compared 

to homozygous null allele mutated mice and compound heterozygote mice and also showed a 

greatly extended life span, approaching that of normal mice. The brains of these mice showed 

approximately 3% of normal TPP1 activity compared to homozygous null allele mutated mice 

expressing 0.2% of normal levels (Sleat, et al., 2008). A semantic data mining approach 
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comparing model organism and clinical phenotype data (Chen, et al., 2012) identified this 

homozygous TPP1 hypomorphic mouse as the 25th best match for SCAR7 out of the 25,141 

mouse models annotated at MGI (Damian Smedley, personal communication). The mouse model 

shows the clinical features through the presence of ataxia, Purkinje cell degeneration, 

neurodegeneration, tremor, and audiogenic seizures, which highly resemble the SCAR7 

phenotype. 

We infer the following genotype – phenotype correlation: loss of function variants abolishing 

TPP1 enzyme activity lead to CLN2, while variants that diminish TPP1 enzyme activity lead to 

SCAR7 (Table 3). Therapeutic approaches, causing a small increase in TPP1 enzyme activity in 

brain, might change the course of the disease and extend the lifespan of CLN2 patients by 

pushing them towards a more SCAR7-like phenotype, but higher levels will be required to cure 

the disease. Further investigations are needed to confirm this hypothesis.  

Table 3. The phenotypes and genotypes of patients with TPP1 mutations 

 CLN2, late infantile  CLN2, juvenile  SCAR7  
General  very severely affected  less severely affected  mild phenotype and protracted 

course  
Age of onset  2-4 years  10-Jun  childhood or teenage  
Age of death  5-15 years  > 12-40 years  > 60 years  
Clinical 
findings  

seizures, dementia, 
visual loss, ataxia and 
cerebral atrophy  

seizures, dementia, visual 
loss, ataxia and/or cerebral 
atrophy, protracted course  

Cerebellar ataxia, pyramidal 
signs, deep sensory loss, 
cerebellar atrophy  

TPP1 enzyme 
activity  

extremely low or none  residual or very low  Residual  

Ultrastructural 
features (EM)  

curvilinear bodies  curvilinear 
bodies/GROD/fingerprint 
profiles  

some GROD/fingerprint 
profiles/none  

Alleles  null/null  null/partial affected  null/minor modification  

To conclude, SCAR7 is caused by compound heterozygous variants in TPP1. The genetic 

background of cerebellar ataxias are even more heterogeneous than the neuronal ceroid 

lipofuscinoses with a still growing number of subtypes and we here add TPP1 to the list of genes 

implicated in the autosomal recessive ataxias. The phenotype associated with TPP1 variants is 

expanded now by an autosomal recessive form of slowly progressive cerebellar ataxia. 

Diagnostic work-up for unexplained spinocerebellar ataxias should thus include analysis of TPP1 

enzyme activity, particularly if the family history or the age of onset is suggestive of an 
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autosomal recessive disorder. Other features that could suggest TPP1 mutations, i.e. CNL2 

features such as visual regression, epilepsy or curvilinear profiles in a skin biopsy, can be absent. 

This finding again illustrates the sometimes unexpected clinical spectrum of variants in known 

genes. We will encounter this phenomenon with increasing frequency using new techniques such 

as whole exome sequencing. 
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Supplementary  Figure 1. Electron microscopy of a skin biopsy tissue of patient A.III-2 which shows 
granular osmiophilic deposits (GROD) and fingerprint profiles. The magnification of EM image was 
20,000 times. 
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Supplementary. Table S1. SCAR types 

SCAR  Locus  Gene   Clinical findings other than spinocerebellar ataxia  
1  9q34.13  SETX  onset 10-25 yr, progressive, ocular apraxia, axonal neuropathy, tremor, 

pyramidal signs, elevated AFP  
2  9q34-qter  ?  congenital, ID, small head, cataracts, pyramidal signs, intention tremor, 

short stature  
3  6p23-p21  ?  early-onset, hearing impairment, optic atrophy  
4  1p36  ?  onset 3rd decade, progressive, pyramidal signs, myoclonic jerks, 

fasciculations, impaired joint position sense  
5  15q25.3  ZNF592  Congenital, severe psychomotor retardation, short stature, pyramidal 

signs, microcephaly, optic atrophy, speech defect, abnormal osmiophilic 
pattern of skin vessels (CAMOS)  

6  20q11-
q13  

?  onset in infancy, nonprogressive; delayed motor and speech 
development,  no ID, hypotonia, pes planus  

7  11p15  TPP1  childhood-onset, slowly progressive  
8  6q25.1-

q25.2  
SYNE1  late-onset, slow progression  

9  1q42.13  ADCK3  childhood onset, progressive, cerebellar atrophy, seizures, 
developmental delay, hyperlactatemia  

10  3p22.1  ANO10  onset teenage-young adulthood, hyperreflexia, nystagmus, atrophy 
lower limbs with fasciculations tortuosity of the conjunctival vessels, 
ID, pes cavus  

11  1q32.2  SYT14  onset 6th decade, progressive, ID  
12  16q21-

q23  
?  onset early-childhood, generalized seizures, delayed psychomotor 

development, ID  
13  6q24.3  GRM1  onset infancy, slowly progressive, ID with poor or absent speech, 

hyperreflexia, eye movement abnormalities  
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Supplementary Table S2. Primer list 

Primer  Sequence (5’-3’)  DNA/RNA  
DCHS2_ex21_F  GTCAGCTGCAGCCACTGTTA  DNA  
DCHS2_ex21_R  TGTGGCTGTGACTGAAGACC  DNA  
DCHS2_ex2_F  GGTGCCAAAAGCTGTATGCT  DNA  
DCHS2_ex2_R  TGCAGATTGATGAGGAGCAG  DNA  
TPP1_ex11_F  AGGGGTTCTAGGTGCAAGGT  DNA  
TPP1_ex11_R  CCAGGAACCTTTCCTCATCA  DNA  
TPP1_ex5-6_F  TGTTATTGCTGGTGCCAGAG  DNA  
TPP1_ex5-6_R  CAGGGATGCTCAGAGGTAGC  DNA  
NOP56_ex11_F  AAGGAGTCCTCAGAGCACCA  DNA  
NOP56_ex11_R  CCACTGTGAAACACGACCAC  DNA  
TPP1_RNA_ex5_F2  GTCTCACCTTTGCCCTGAGA  RNA  
TPP1_RNA_ex6_R2  AGGAACTGGGCACAGGCTT  RNA  
TPP1_RNA_ex11_F  CTGATGGCTACTGGGTGGTC  RNA  
TPP1_RNA_ex12-13_R  AGCCACGGGTTACATCAAAG  RNA  
 

Supplementary Table S3. The overview of the exome sequencing 

Patient  A III-2  
total reads  77479996  
Read 1  38739998  
read length 1 (nt)  100  
Read 2  38739998  
read length 2 (nt)  100  
aligned reads  75802233  
PCT_aligned_reads  97.83%  
properly paired  74211004  
PCT_properly_paired  95.78%  
PERCENT_DUPLICATION  34.65%  
MEAN_BAIT_COVERAGE  48.930747  
PCT_TARGET_BASES_10X  86.41%  
PCT_SELECTED_BASES  82.89%  
FOLD_ENRICHMENT  38.026774  
ZERO_CVG_TARGETS_PCT  4.39%  
FOLD_80_BASE_PENALTY  2.825506  
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Supplementary Table S4. The genotype of six variants around the TPP1 mutations, and the inferred 
haplotypes in family A 

Gene  OR56A
3  

TPP1  TPP1  TPP1  DCHS1  DCHS1  

Variation in  c.13C>T  c.1542A>T  c.1397T>G  c.509-
1G>C  

c.7643C>T  c.379G>A  
Transcript  
Genomic  

g.
59

68
58

9C
>T

 

g.
66

36
10

6T
>A

 

g.
66

36
43

0A
>C

 

g.
66

38
38

5C
>G

 

g.
66

45
26

4G
>A

 

g.
66

62
46

6C
>T

 

 Location  

A.III-2  C/T  T/A  A/C  C/G  G/A  C/T  
A.III-3  C/T    A/C  C/G  G/A  C/T  
A.III-6      A/C  C/G      
A.III-10      A/C  C/G      
A.III-9      A/C  C/G      
A.III-1  C/C    A/A  C/C  G/G  C/C  
A.III-8  C/C    A/A  C/G  G/G  C/C  
A.III-7  C/T    A/C  C/C  G/A  C/T  
A.III-5  C/T    A/C  C/C  G/A  C/T  
A.IV-1  C/C    A/A  C/C  G/G  C/C  
A.III-11  C/C    A/A  C/G  G/G  C/C  
A.II-1      A/A  C/C      
A.III-4      A/A  C/G      
B.II-1  C/C  T/A  A/C  C/G  G/A  C/C  
B.I-1  C/C  T/A  A/C  C/C  G/A  C/C  
Haplotype allele 1 
in patients of 
family A  

T    C  C  A  T  

haplotype allele 2 
in patients of 
family A  

C    A  G  G  C  
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Supplementary Table S5. The variants found in normal populations 

 1000 Genomes   GoNL  

 Nonsynonymous Missense Nonsynonymous Missense 

Signal peptide 1 0 0 1 

Propeptide 4 6 0 3 

Protease 4 6 5 2 

	  

Supplementary Table S6. Reported genotypes in TPP1 with at least one missense, inframe change or 
intronic variant and information from literatures and prediction tools. When the phenotype is not 
available, the background is marked grey. Here CLN2=CLN2, late infantile, JNCL=CLN2, juvenile, 
INCL= CLN2, infantile. SD = splice donor site, SA = splice acceptor site, BS = splice branch site, HSF = 
predicted by Human Splicing Finder. 
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c.225A>G, 
p.(Gln75Gln) 

Propeptide c.509-1G>C CLN2 Splice defect 
according to 
the article 
(prediction) 

        Sleat 
1999 

c.225A>G, 
p.(Gln75Gln) 

Propeptide c.1678_1679d
elCT, 
p.(Leu560Thr
fs*47) 

NA Splice defect 
according to 
the article 
(prediction) 

        Kousi 
2012 

c.184T>A, 
p.(Ser62Thr) 

Propeptide ? NA HSF- new BS         Kousi 
2012 

c.229G>A, 
p.(Gly77Arg) 

Propeptide c.509-1G>C CLN2 Last 
nucleotide of 
exon 3 

1 PA 4.5   Sleat 
1999 

c.229G>A, 
p.(Gly77Arg) 

Propeptide c.640C>T, 
p.(Gln214*) 

CLN2 Last 
nucleotide of 
exon 3 

1 PA 4.5   Kousi 
2012 

c.229G>A, 
p.(Gly77Arg) 

Propeptide c.790C>T, 
p.(Gln264*) 

CLN2 Last 
nucleotide of  
exon 3 

1 PA 4.5   Kousi 
2012 
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c.229G>A, 
p.(Gly77Arg) 

Propeptide c.1062del, 
p.(Leu355Serf
s*72) 

CLN2 Last 
nucleotide of 
exon 3 

1 PA 4.5   Kousi 
2012 

c.299A>G, 
p.(Gln100Arg) 

Propeptide c.1266+5G>A NA HSF-enhancer 
interrupted  

        Kousi 
2012 

c.1266+5G>A tripeptidyl-
peptidase 1 
chain 

c.299A>G, 
p.(Gln100Arg
) 

NA HSF- broken 
+new SD 

        Kousi 
2012 

c.380G>A, 
p.(Arg127Gln) 

Propeptide c.380G>A, 
p.(Arg127Gln
) 

NA Last 
nucleotide of 
exon 4 

43.6 N 1.7 NA, 
surface 
exposure 

Kousi 
2012 

c.380G>A, 
p.(Arg127Gln) 

Propeptide c.622C>T, 
p.(Arg208*) 

CLN2 Last 
nucleotide of 
exon 4 

43.6 N 1.7 NA, 
surface 
expo-sure 

Steinfel
d 2002 

c.380G>A, 
p.(Arg127Gln) 

Propeptide c.509-1G>C CLN2 Last 
nucleotide of 
exon 4 

43.6 N 1.7 NA, 
surface 
exposure 

Zhong 
2000 

c.380G>A, 
p.(Arg127Gln) 

Propeptide ? NA Last 
nucleotide 

 of exon 4 

43.6 N 1.7 NA, 
surface 
exposure 

Kousi 
2012 

c.381-17_-4del Propeptide c.229G>T, 
p.(Gly77*) 

CLN2 HSF-SA 

Broken 

        Chang 
2012 

c.457T>C, 
p.(Ser153Pro) 

Propeptide ? NA, 
JNCL 

  NA NA NA   Cillaud 
1999; 
Mole 
2001 

c.524G>A, 
p.(Arg175His) 

Propeptide ? NA HSF-enhancer 
interrupted  

        Kousi 
2012 

c.605C>T, 
p.(Pro202Leu) 

Tripeptidyl-
peptidase 1 
chain 

? NA    0 A 6.5, 
homodimer of 
proenzyme 

  Mole 
2001 

c.616C>T, 
p.(Arg206Cys) 

Tripeptidyl-
peptidase 1 
chain 

? NA   0.7 A 2.3   Mole 
2001 

c.616C>T, 
p.(Arg206Cys) 

Tripeptidyl-
peptidase 1 
chain 

c.616C>T, 
p.(Arg206Cys
) 

CLN2   0.7 A 2.3   Tessa 
2000 

c.617G>A, 
p.(Arg206His) 

Tripeptidyl-
peptidase 1 
chain 

? NA HSF-SD 
Enhancer 
disrupted  

        Kousi 
2012 
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c.625T>C, 
p.(Tyr209His) 

Tripeptidyl-
peptidase 1 
chain 

c.625T>C, 
p.(Tyr209His) 

NA  HSF- new BS         Kousi 
2012 

c.646G>A, 
p.(Val216Met) 

Tripeptidyl-
peptidase 1 
chain 

c.1551+1G>A CLN2 HSF-SD 
broken 
Enhancer 
disrupted 

NA NA NA   Wang 
2011 

c.650G>T, 
p.(Gly217Val) 

Tripeptidyl-
peptidase 1 
chain 

c.640C>T, 
p.(Gln214*) 

CLN2  HSF-SD 
broken 

NA NA NA   Chang 
2012 

c.797G>A, 
p.(Arg266Gln) 

Tripeptidyl-
peptidase 1 
chain 

c.1015C>T, 
p.(Arg339Gln
) 

NA HSF-new SA NA NA NA   Kousi 
2012 

c.827A>T, 
p.(Asp276Val) 

Tripeptidyl-
peptidase 1 
chain 

c.827A>T, 
p.(Asp276Val
) 

CLN2   NA NA NA Active site Kohan 
2009 

c.827A>T, 
p.(Asp276Val) 

Tripeptidyl-
peptidase 1 
chain 

c.622C>T, 
p.(Arg208*) 

CLN2   NA NA NA Active site Kohan 
2009 

c.829G>A, 
p.(Val277Met) 

Tripeptidyl-
peptidase 1 
chain 

? CLN2   0 PA 6.8, 
homodimer of 
proenzyme 

Might 
affect 
active site 

Ju 2002 

c.833A>C, 
p.(Gln278Pro) 

Tripeptidyl-
peptidase 1 
chain 

? CLN2 HSF- SA 
broken disrupt 
an alpha- 
helix 

NA NA NA Might 
affect 
active site 

Ju 2002 

c.843G>T, 
p.(Met281Ile) 

Tripeptidyl-
peptidase 1 
chain 

? NA HSF-SD 
broken 

        Kousi 
2012 

c.851G>T, 
p.(Gly284Val) 

Tripeptidyl-
peptidase 1 
chain 

c.509-1G>C CLN2 HSF-SD 
broken, 
enhancer 
disrupted  

0.4 A 3.9, 
homodimer of 
proenzyme 

  Zhong 
2000; Ju 
2002 

c.851G>T, 
p.(Gly284Val) 

Tripeptidyl-
peptidase 1 
chain 

c.622C>T, 
p.(Arg208*) 

CLN2  HSF- SD 
broken 

0.4 A 3.9, 
homodimer of 
proenzyme 

  Ju 2002 

c.851G>T, 
p.(Gly284Val) 

Tripeptidyl-
peptidase 1 
chain 

c.851G>T, 
p.(Gly284Val) 

CLN2 HSF- SD 
broken 

0.4 A 3.9   Ju 2002 

c.851G>T, 
p.(Gly284Val) 

Tripeptidyl-
peptidase 1 
chain 

? CLN2 HSF- SD 
broken 

0.4 A 3.9, 
homodimer of 
proenzyme 

  Ju 2002 
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c.851G>T, 
p.(Gly284Val) 

Tripeptidyl-
peptidase 1 
chain 

Uncharacteris
ed 1bp 
deletion in 
exon 7 

CLN2 HSF- SD 
broken 

0.4 A 3.9, 
homodimer of 
proenzyme 

  Ju 2002 

c.857A>G, 
p.(Asn286Ser) 

Tripeptidyl-
peptidase 1 
chain 

c.857A>G, 
p.(Asn286Ser) 

CLN2 HSF-new SA 0 PA 3.1, 
homodimer of 
proenzyme 

Loss N-
linkd 
glycos-
ylation, 
surface 
exposure 

Steinfel
d 2002 

c.860T>A, 
p.(Ile287Asn) 

Tripeptidyl-
peptidase 1 
chain 

? NA   0.1 PA 3.8, 
homodimer of 
proenzyme 

  Sleat 
1999 

c.887-10A>G Tripeptidyl-
peptidase 1 
chain 

c.196C>T,  
p.(Gln66*)/c.
89+4A>G 

JNCL, 
milder 
than 
CLN2 

New SA  by 
RT-PCR, 9 nt 
inserted 
between 
c.886_887ins
AAAATCCA
G 

NA NA NA NA Kohan 
2009  

c.887-10A>G, 
p.(Gly296delinsG
luAsnProGly) 

Tripeptidyl-
peptidase 1 
chain 

c.887-10A>G, 
p.(Gly296deli
nsGluAsnPro
Gly) 

JNCL, 
much 
milder 
than 
CLN2 

New SA by 
RT-PCR, 9 nt 
inserted 
between 
c.886_887ins
AAAATCCA
G 

NA NA NA NA Bessa 
2008 

c.887-18A>G, 
p.(Gly296delinsG
lyLysLysLysAsn
PoGly) 

Tripeptidyl-
peptidase 1 
chain 

c.509-1G>C CLN2 Splice defect 
according to 
the article 
(prediction) 

        Sleat 
1999 

c.984_986del, 
p.(Asp328del) 

Tripeptidyl-
peptidase 1 
chain 

? NA splice site, 
according to 
the article 
HSF-enhancer 
dirupted  

        Kousi 
2012 

c.987_989delinsC
TC, 
p.(Glu329_Asp33
0delinsAspSer) 

Tripeptidyl-
peptidase 1 
chain 

? NA  HSF-SA 
broken 

NA NA NA NA Kousi 
2012 

c.1015C>T, 
p.(Arg339Gln) 

Tripeptidyl-
peptidase 1 
chain 

c.797G>A, 
p.(Arg266Gln
) 

NA  HSF-new SA         Kousi 
2012 

c.797G>A, 
p.(Arg266Gln) 

Tripeptidyl-
peptidase 1 

c.1015C>T, 
p.(Arg339Gln

NA HSF-new SA         Kousi 
2012 
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chain ) 

c.1015C>T, 
p.(Arg339Gln) 

Tripeptidyl-
peptidase 1 
chain 

? NA HSF-new SA          Kousi 
2012 

c.1027G>A, 
p.(Glu343Lys) 

Tripeptidyl-
peptidase 1 
chain 

c.1027G>A, 
p.(Glu343Lys
) 

CLN2   0 A ND   Sleat 
1999 

c.1057A>C, 
p.(Thr353Pro) 

Tripeptidyl-
peptidase 1 
chain 

c.509-1G>C CLN2
  

  NA NA NA   Steinfel
d 2002 

c.1064T>C, 
p.(Leu355Pro) 

Tripeptidyl-
peptidase 1 
chain 

? NA   NA NA NA   Hofman
n 2002, 
Kousi 
2012 

c.1093T>C, 
p.(Cys365Arg) 

Tripeptidyl-
peptidase 1 
chain 

c.1595dupA, 
p.(Glu534Prof
s*74) 

CLN2 HSF-SD 
broken 

0 PA 7.8 Loss of 
disulfide-
bond, 
surface 
exposure 

Sleat 
1999 

c.1094G>A, 
p.(Cys365Tyr) 

Tripeptidyl-
peptidase 1 
chain 

c.509-1G>C CLN2 HSF-SD 
broken 

NA NA NA Loss of 
disulfide 
bond 

Sleat 
1999 

c.1094G>A, 
p.(Cys365Tyr) 

Tripeptidyl-
peptidase 1 
chain 

c.1094G>A, 
p.(Cys365Tyr
) 

CLN2 HSF-SD 
broken 

NA NA NA Loss of 
disulfide 
bond 

Sleat 
1999 

c.1094G>A, 
p.(Cys365Tyr) 

Tripeptidyl-
peptidase 1 
chain 

c.1361C>A, 
p(Ala454Glu) 

CLN2 HSF-SD 
broken 

NA NA NA Loss of 
disulfide 
bond 

Sleat 
1999 

c.1094G>A, 
p.(Cys365Tyr) 

Tripeptidyl-
peptidase 1 
chain 

c.1525C>T, 
p.(Gln509X) 

NA HSF-SD 
broken 

NA NA NA   Kousi 
2012 

c.1094G>A, 
p.(Cys365Tyr) 

Tripeptidyl-
peptidase 1 
chain 

? NA HSF-SD 
broken 

NA NA NA   Kousi 
2012 

c.1146C>G, 
p.(Ser382Arg) 

Tripeptidyl-
peptidase 1 
chain 

c.887-10A>G NA first 
nucleotide of 
exon 10 

        Kousi 
2012 

c.1154T>A, 
p.(Val385Asp) 

Tripeptidyl-
peptidase 1 
chain 

c.622C>T, 
p.(Arg208*) 

CLN2 HSF-SD 
broken 

NA NA NA   Sleat 
1999 
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c.1166G>A, 
p.(Gly389Glu) + 
c.299A>G, 
p.(Gln100Arg) 

Tripeptidyl-
peptidase 1 
chain 

c.1166G>A, 
p.(Gly389Glu
) + c.299A>G, 
p.(Gln100Arg
) 

CLN2 HSF-SD 
broken; two 
homozygous 
missense 
mutations 

NA NA NA   Sleat 
1999 

c.1266G>C, 
p.(Gln422His) 

Tripeptidyl-
peptidase 1 
chain 

c.622C>T, 
p.(Arg208*) 

CLN2
, NA 

Last 
nucleotide of 
exon 10 

0 PA 5.1   Sleat 
1999; 
Kousi 
2012 

c.1266G>C, 
p.(Gln422His) 

Tripeptidyl-
peptidase 1 
chain 

c.509-1G>C CLN2 Last 
nucleotide of 
exon 10 

0 PA 5.1   Sleat 
1999; 
Steinfel
d 2002 

c.1266G>C, 
p.(Gln422His) 

Tripeptidyl-
peptidase 1 
chain 

c.1266G>C, 
p.(Gln422His) 

CLN2 Last 
nucleotide of 
exon 10 

0 PA 5.1   Sleat 
1999 

c.1269G>C, 
p.(Glu423Asp) 

Tripeptidyl-
peptidase 1 
chain 

? CLN2 Third 
nucleotide of 
exon 11 

NA NA NA   Sleat 
2001 

c.1284G>T, 
p.(Lys428Asn) 

Tripeptidyl-
peptidase 1 
chain 

c.509-1G>C CLN2 HSF-SA 
broken 

NA NA NA   Zhong 
2000 , 
Ju 2002 

c.1340G>A, 
p.(Arg447His) 

Tripeptidyl-
peptidase 1 
chain 

c.622C>T, 
p.(Arg208*) 

JNCL   1.8 PA 7.1   Wisnie
wski 
1999; 
Sleat 
1999 

c.1340G>A, 
p.(Arg447His) 

Tripeptidyl-
peptidase 1 
chain 

c.509-1G>C JNCL   1.8 PA 7.1   Wisnie
wski 
1999; 
Sleat 
1999 

c.1343C>T, 
p.(Ala448Val); 
c.1501G>T, 
p.(Gly501Cys) 

Tripeptidyl-
peptidase 1 
chain 

c.622C>T, 
p.(Arg208*) 

NA           Kousi 
2012 

c.1358C>T, 
p.(Ala453Val) 

Tripeptidyl-
peptidase 1 
chain 

c.311T>A, 
p.(Leu104*) 

CLN2 HSF-new SD NA NA NA   Kohan 
2009 

c.1417G>A, 
p.(Gly473Arg) 

Tripeptidyl-
peptidase 1 
chain 

p.(Ser62Glyfs
*25) 

CLN2 HSF-  new 
SA, SD 
broken 

NA NA NA Disturb 
catalytic 
activity 

Lam 
2001 

c.1417G>A, Tripeptidyl-
peptidase 1 

c.622C>T, CLN2 HSF-  new 
SA, SD 

NA NA NA Disturb 
catalytic 

Zhong 
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p.(Gly473Arg) chain p.(Arg208*) broken activity 2000 

c.1424C>T, 
p.(Ser475Leu) 

Tripeptidyl-
peptidase 1 
chain 

c.509-1G>C CLN2
, NA 

Second last 
nucleotide of 
exon 11 

0 N 1.2 Active 
site, 
surface 
exposure, 
impair 
processing 

Sleat 
1999; 
Kousi 
2012 

c.1424C>T, 
p.(Ser475Leu) 

Tripeptidyl-
peptidase 1 
chain 

c.622C>T, 
p.(Arg208*) 

NA Second last 
nucleotide of 
exon 11 

0 N 1.2 Active 
site, 
surface 
exposure 

Kousi 
2012 

c.1424C>T, 
p.(Ser475Leu) 

Tripeptidyl-
peptidase 1 
chain 

c.1424C>T, 
p.(Ser475Leu) 

NA Second last 
nucleotide of 
exon 11 

0 N 1.2 Active 
site, 
surface 
exposure 

Kousi 
2012 

c.1424C>T, 
p.(Ser475Leu) 

Tripeptidyl-
peptidase 1 
chain 

? NA Second last 
nucleotide of 
exon 11 

0 N 1.2 Active 
site, 
surface 
exposure 

Kousi 
2012 

c.1439T>G, 
p.(Val480Gly) 

Tripeptidyl-
peptidase 1 
chain 

c.622C>T, 
p.(Arg208*) 

JNCL   NA NA NA   Elleder 
2008 

c.1439T>G, 
p.(Val480Gly) 

Tripeptidyl-
peptidase 1 
chain 

? NA   NA NA NA   Elleder 
2008 

c.1442T>G, 
p.(Phe481Cys) 

Tripeptidyl-
peptidase 1 
chain 

c.851G>T, 
p.(Gly284Val) 

INCL HSF- new SD NA NA NA   Ju 2002 

c.1444G>C, 
p.(Gly482Arg) 

Tripeptidyl-
peptidase 1 
chain 

c.1444G>C, 
p.(Gly482Arg
) 

NA HSF-SD 
broken 

NA NA NA   Kousi 
2009 

c.1551+5_1551+
6delinsTA 

Tripeptidyl-
peptidase 1 
chain 

c.622C>T, 
p.(Arg208*) 

NA Splice defect 
according to 
the article 

        Kousi 
2012 

c.1551+5_1551+
6delinsTA 

Tripeptidyl-
peptidase 1 
chain 

c.1551+5_155
1+6delinsTA 

NA Splice defect 
according to 
the article 

        Kousi 
2012 

c.1397T>G, 
p.(Val466Gly) 

Tripeptidyl-
peptidase 1 
chain 

c.509-1G>C SCAR
7 

          This 
study 

 
1 % of wild type TPP1 
2 unit = hr, wild type TPP1 : 1.9 hr 
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Abstract  

Chudley–McCullough syndrome (CMS) is characterized by profound sensorineural hearing loss 

and brain anomalies. Variants in GPSM2 have recently been reported as a cause of CMS by 

Doherty et al. In this study we have performed exome sequencing of three CMS patients from 

two unrelated families from the same Dutch village. We identified one homozygous frameshift 

GPSM2 variants c.1473delG in all patients. We show that this variant arises from a shared, rare 

haplotype. Since the c.1473delG variant was found in Mennonite settlers, it likely originated in 

Europe. To support DNA diagnostics, we established an LOVD database for GPSM2 containing 

all variants thus far described. 

Introduction  

Chudley–McCullough syndrome (CMS) is characterized by profound congenital sensorineural 

hearing loss associated with (partial) agenesis of the corpus callosum, colpocephaly (enlargement 

of the occipital horns), hydrocephaly, and other brain abnormalities such as arachnoid cysts, gray 

matter hetero- topia, and cortical dysplasia [Ostergaard et al., 2004]. This syndrome was first 

recognized in a brother and sister by Chudley et al. [1997]. Based on affected sibs of both sexes 

from phenotypically normal parents the syndrome was assumed to be an autosomal recessive 

trait. Subsequent reports have supported this assumption, describing parental consanguinity or 

origin from a small community [Chudley et al., 1997]. 

Patients with CMS may either be hearing or deaf at birth. However, hearing loss is always 

profound by the age of 3 years [Hendriks et al., 1999; Lemire and Stoeber, 2000; Welch et al., 

2003; Ostergaard et al., 2004; Matteucci et al., 2006]. It is has been suggested that some cases of 

CMS may not be detected because the hydrocephalus does not progress and is compensated 

[Welch et al., 2003]. 

Inactivating mutations in the GPSM2 gene have been linked to both autosomal recessive non-

syndromic (DFNB82) and syndromic hearing loss. Doherty et al. [2012] recently linked 

inactivating mutations in GPSM2 to CMS. They successfully applied exome sequencing in 

conjunction with homozygosity mapping to identify four deleterious mutations (c.1473delG 

(c.1471delG in Doherty et al.), c.742delC (c.741delC in Doherty et al.), c.1661C>A and 
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c.1062þ1G>T) in affected individuals with CMS from eight fam- ilies. In this study, two other 

families with CMS were investigated; the same c.1473delG variant in three patients from two 

unrelated Dutch families was identified. Together, the c.742delC and c.1473delG founder 

mutations seem to be a frequent cause of CMS, as they are observed in homozygous form in 8/10 

families reported thus far, and in heterozygous form in an additional family. In the present study 

we confirm that mutations in GPSM2 gene are responsible for CMS and show that at least a part 

of the CMS cases are due to a founder effect. 

Materials and Methods  

Patients  

In our clinic we had three CMS patients in two different families (Fig. 1). In the first family, 

described previously by Hendriks et al. [1999], two affected sisters had a combination of 

congenital sensorineural hearing loss, partial agenesis of the corpus callosum, arachnoid cyst, 

and hydrocephalus. They had normal development and no distinctive physical anomalies. Their 

parents were non- consanguineous but originated from the same Dutch village, were 

phenotypically normal and both had normal hearing and no brain abnormalities. Hendriks et al. 

postulated that the two affected sibs may have had a different syndrome than that described by 

Chudley et al. Welch et al. later commented that the two affected girls most likely had CMS 

[Hendriks et al., 1999; Welch et al., 2003]. Recently the two sisters were re-examined at the age 

of 17 and 25 years, respectively, and had normal intelligence. 

The second family included a single affected patient who was born after an uneventful 

pregnancy. A structural ultrasound study at a gestational age of 20 weeks did not show 

abnormalities. During pelvic examination at labor a hydrocephalus was suspected and a 

subsequent ultrasound revealed ventriculomegaly and cesarean section was performed. The 

patient was born at term. Postnatal brain imaging (MRI) revealed colpocephaly, agenesis of the 

corpus callosum, heterotopia, an interhemispheric cyst at the dorsum of the third ventricle, 

polymicrogyria of frontal lobes and cerebellar dysgenesis. The patient was also diagnosed with 

severe sensorineu- ral hearing loss (no response at 90 dB). She had a normal develop- ment at the 

age of 2 years except for her delay in speech development. After she received a cochlear implant 

at the age of 2 years and 4 months, there was an improvement in hearing (30 –40 dB hearing 
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level) and in active vocabulary. The family historywas unremarkable. Physical findings were 

normal (head circum- ference: +2 SDS). 

Metabolic and DNA analysis of several genes related to hearing loss (GJB2, GJB6, SLC26A4 

gene) or brain anomalies (GPR56 gene) did not result in an obvious cause for the malformations. 

Based on the presence of these rather specific clinical findings, the patient was diagnosed as 

having CMS. 

 

Figure 1. Pedigrees of the two families with Chudley-McCullough syndrome. Black symbols: affected 
patients. +/+: homozygous for the c.1473delG variant; +/-: heterozygous for the c.1473delG variant. 

Exome Sequencing 

As the gene for CMS was not yet identified at the time of this investigation, we have applied 

exome sequencing to resolve the genetic basis of CMS in these two families. We sequenced the 

exomes of the sibs from family one and the sporadic patient from family two. Whole exome 

capture was performed using Agilent’s 50 Mb Sure- select exome capture kit following 

instructions provided by the manufacturers (SureSelect, Agilent). In brief, 3 mg of DNA was 

fragmented (Covaris) to yield fragments of 300–400 bp. Paired- end adaptors with index from 

Illumina were added to both ends. The DNA-adaptor-ligated fragments were then hybridized to 

250 ng of SureSelect whole exome probes capture library (SureSelect, Agilent) for 30h. After 

capture, a qPCR assay was done to calculate the relative fold-enrichment prior for sequencing. 

The eluted-enriched DNA fragments were sequenced using the Hiseq 2000 platform (Illumina). 

BWA [Li and Durbin, 2009] was used to map the data to human genome build 37 (hg19), and 
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GATK tools [McKenna et al., 2010] were used to perform the data analysis with minor modifi- 

cations described elsewhere [Santen et al., 2012]. 

Sanger Sequencing 

PCR was done by using Phire Hot Start II DNA polymerase following the official protocol. 

Primers used in PCR reactions are available upon request. After PCR, fragments were first 

purified by QIAquick PCR purification kit (Qiagen), then mixed with 10 pmol of the forward or 

reverse primers and sequenced by the Applied Biosystems 96-capillary (3730XL system). 

Results 

Using the GATK sequence analysis pipeline, we identified 26,487 possibly shared variants in the 

two siblings and 22,901 variants in the sporadic patient located in the exons and exon/intron 

junctions. After filtering to exclude all known variants in databases (dbSNP135, 1000 Genomes 

Project, and the in-house database) 278 and 181 variants remained, respectively. Furthermore, 

filtering for recessive inheritance left only a homozygous single base pair deletion in GPSM2 

which causes a frameshift and a premature stop (NM_013296.4:c.1473delG, p.Phe492SerfsX5). 

This variant was confirmed in all patients and in heterozygous form in their parents by Sanger 

sequencing.  

Since both of our families came from the same small Dutch village and shared the same 

homozygous variant, we used the exome data to reveal a possible link between the two families. 

We found two other rare homozygous variants shared by all three patients, both of which within 

0.5 Mbp of the GPSM2 variant (g.109477462G>C;	   NM_015127.3(CLCC1):c.1336C>G;	  

p.Pro446Ala and g.109909853A>C;	  NM_002959.5(SORT1):c.440+177T>G). To further define 

the size of the haplotype, we looked at high quality calls of known SNPs in this genomic region 

and found that the region of homozygous SNPs shared by all three patients is flanked by 

rs6672483 and rs333967 (Fig. 2), indicating that the maximal size of the shared haplotype is 2.2 

Mb. The shared genotype for the two sisters spans 14.7 Mb (Fig. 2). The sporadic patient has a 

homozygous stretch of 19 Mb (Fig. 2). None of the three rare variants shared by the three 

patients was identified in the Genome of the Netherlands (consisting of 250 completely 

sequenced trios, 500 independent genomes, www.nlgenome.nl). The g.109477462G>C variant 
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was found in 0.2% of the subjects with European ancestry sequenced in the National Heart, 

Lung, and Blood Institute Grand Opportunity Exome Sequencing Project (NHLBI GO ESP).  

We further investigated whether the distant relation of the three patients was reflected by the 

mitochondrial DNA (i.e. the maternal line). We found 19 positions with variants on the 

mitochondrial DNA covered at least 10x in all of the subjects. There was a 100% concordance 

between the two sisters and only one position in which the sporadic patient differed. We 

compared the concordance with three other Dutch patients from different projects and found a 

much lower concordance in those patients (44-55%).  

To support DNA diagnostic studies we established a Leiden Open Variation Database (LOVD) 

for GPSM2 containing all variants that have been published thus far (www.LOVD.nl/GPSM2).  

 

Figure 2. Representation of the haplotype information around the GPSM2 mutation. The three vertical 
gray lines represent the rare homozygous variants shared by all three patients in GPSM2, CLCC1 and 
SORT1, respectively. The dotted line represents the homozygous stretch shared by all three patients (2.2 
Mb). The striped line represents the stretch where the two sisters share the same genotype (14.7 Mb). The 
continuous line represents the homozygous stretch for the sporadic patient (19 Mb). 

Discussion 

GPSM2 was linked to autosomal recessive non-syndromic hearing loss DFNB82 by Walsh et al, 

who described the successful application of exome sequencing in conjunction with 

homozygosity mapping to identify a nonsense variant in GPSM2 (c.379C>T;p.Arg127*) [Walsh 

et al., 2010]. Subsequently, Yariz et al. [2012] reported a second truncating variant in GPSM2 
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(c.1684C>T;p.Q562*) by autozygosity mapping followed by candidate gene analysis in a 

consanguineous Turkish family with nonsyndromic hearing loss. While preparing this 

manuscript, Doherty et al. [2012] reported the identification of variants in GPSM2 as a cause of 

CMS. They identified the c.1473delG variant in patients from Mennonite ancestry (reported as 

c.1471delG) [Doherty et al., 2012]. The authors hypothesize that it is from European origin, 

which we can now confirm. The size we computed for the common haplotype was 2.2 Mb, 

which is smaller but in the same order of magnitude as the 2.9 Mb haplotype observed in the 

Mennonite families [Doherty et al., 2012]. Since none of the variants was present in the database 

of the Genome of The Netherlands, and one of the variants was present in a low frequency in the 

Exome Variant Server (NHLBI GO ESP), we conclude that this haplotype is very rare, and 

represents a founder haplotype in the village of origin. This is further strengthened by the 

mitochondrial data, which shows that the two families are related in the maternal line, and by the 

fact that we have identified another unrelated family with the same homozygous mutation from 

this village (data not shown). 

We have created a variant database (www.LOVD.nl/GPSM2) for GPSM2. The value of this 

database is in enhanced interpretation for diagnostic use, but also facilitates comparison between 

studies. The c.1473delG variant that we identified was erroneously annotated as c.1471delG in 

Doherty et al., 2012. The creation of a database which checks for HGVS nomenclature partly 

resolves such differences between papers. 

GPSM2 (the G protein signaling modulator 2) also known as LGN and Pins, contains 14 exons, 

and spans 55,073 bp on chromosome 1p13.3. It encodes a 684 amino acid protein. GPSM2 has 6 

transcripts according to the Ensembl database, ranging in size from 571 to 3310 bp.  The GPSM2 

protein is widely expressed [Blumer et al., 2002]. However, highest expression is seen during 

embryonic development. Its functional role relates to cell polarity and spindle orientation, for 

example, in cells of the developing cerebral cortex in mice [discussed by Doherty et al., 2012]. 

The protein is comprised of seven N-terminal tetratricopeptide (TPR) motifs, a linker domain, 

and four C-terminal (GoLoco) motifs which are involved in guanine nucleotide exchange [Du et 

al., 2001; Johnston et al., 2009; Willard et al., 2008]. The 1 bp deletion in exon 13 locates within 

the C-terminal GoLoco motif and creates a frame shift starting at codon Phe492 and ends in a 

stop codon four positions downstream, leading to a functional absence of the GPSM2 protein.  
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Our results confirm that inactivating mutations in GPSM2 cause Chudley McCollough 

syndrome. The c.1473delG mutation in GPSM2 associated with CMS appears to be an ancient 

founder mutation brought to North America by Mennonite settlers originating from Western 

Europe. Together, the c.742delC and c.1473delG founder mutations seem to be a frequent cause 

of CMS. Future work will need to show if an ascertainment bias has inflated the importance of 

these mutations. 
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Abstract 

 Facioscapulohumeral dystrophy (FSHD) is characterized by chromatin relaxation of the D4Z4 

macrosatellite array on chromosome 4 and expression of the D4Z4-encoded DUX4 gene in 

skeletal muscle. The more common form, autosomal dominant FSHD1, is caused by contraction 

of the D4Z4 array, whereas the genetic determinants and inheritance of D4Z4 array contraction–

independent FSHD2 are unclear. Here, we show that mutations in SMCHD1 (encoding structural 

maintenance of chromosomes flexible hinge domain containing 1) on chromosome 18 reduce 

SMCHD1 protein levels and segregate with genome-wide D4Z4 CpG hypomethylation in human 

kindreds. FSHD2 occurs in individuals who inherited both the SMCHD1 mutation and a normal-

sized D4Z4 array on a chromosome 4 haplotype permissive for DUX4 expression. Reducing 

SMCHD1 levels in skeletal muscle results in D4Z4 contraction–independent DUX4 expression. 

Our study identifies SMCHD1 as an epigenetic modifier of the D4Z4 metastable epiallele and as 

a causal genetic determinant of FSHD2 and possibly other human diseases subject to epigenetic 

regulation. 

Main 

FSHD (MIM 158900) is clinically characterized by the initial onset of facial and upper-extremity 

muscle weakness that is often asymmetric and progresses to involve both upper and lower 

extremities1. FSHD1 and FSHD2 are phenotypically indistinguishable, and both are associated 

with DNA hypomethylation and decreased repressive heterochromatin at the D4Z4 

macrosatellite array, which we collectively refer to as chromatin relaxation2, 3, 4, 5, 6, 7, 8 

(Supplementary Fig. 1). Each D4Z4 unit encodes a copy of the DUX4 retrogene (encoding 

double homeobox 4)9, 10, 11, 12, 13, a transcription factor expressed in the germ line that is 

epigenetically repressed in somatic tissues. D4Z4 chromatin relaxation in FSHD results in 

inefficient epigenetic repression of DUX4 and a variegated pattern of DUX4 protein expression 

in a subset of skeletal muscle nuclei14 (Supplementary Fig. 1). Ectopic expression of DUX4 in 

skeletal muscle activates the expression of stem cell and germline genes15, and, when 

overexpressed in somatic cells, DUX4 can ultimately lead to cell death12, 16, 17, 18, 19, 20. Chromatin 

relaxation in FSHD1 is associated with contraction of the array to 1–10 D4Z4 repeat units and 

has a dominant inheritance pattern linked to the contracted array. In FSHD2, chromatin 
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relaxation is independent of the size of the D4Z4 array and occurs at both chromosome 4 D4Z4 

arrays and at the highly homologous arrays on chromosome 10 (Supplementary Fig. 1)2, 7, 8, 21, 22. 

D4Z4 chromatin relaxation must occur on a specific chromosome 4 haplotype to cause FSHD1 

and FSHD2. This haplotype contains a polyadenylation signal to stabilize DUX4 mRNA in 

skeletal muscle13, 23, 24, 25, 26, 27. Chromosomes 4 and 10 that lack this polyadenylation signal do 

not produce DUX4 protein; consequently, D4Z4 chromatin relaxation and transcriptional 

derepression on these nonpermissive haplotypes does not lead to disease. Because chromatin 

relaxation occurs at D4Z4 repeats on both chromosomes 4 and 10 in FSHD2, we sought to 

determine whether an inherited defect in a modifier of D4Z4 repeat–mediated epigenetic 

repression might cause FSHD2 when combined with an FSHD-permissive DUX4 allele. 

To quantify D4Z4 chromatin relaxation, we determined the percentage of CpG methylation on 

the basis of measurements following cleavage with the methylation-sensitive FseI endonuclease, 

in an assay that averaged the percentage of D4Z4 methylation on both alleles of chromosomes 4 

and 10 in a cohort of 72 controls, 93 individuals with FSHD1 and 53 individuals with FSHD2. In 

FSHD2-affected individuals, D4Z4 methylation was at least 2 s.d. below the average levels in 

the general population (44% ± 10% for the general population and 11 ± 5% for individuals with 

FSHD2; Fig. 1a, Supplementary Fig. 2 and Supplementary Note). Using a stringent methylation 

threshold of <25%, we discovered that, in some kindreds identified by a proband with FSHD2, 

D4Z4 hypomethylation segregated in a pattern consistent with autosomal dominant inheritance 

that was not linked to the chromosome 4 or 10 D4Z4 array haplotype (Fig. 1b). In these kindreds, 

individuals with FSHD2 inherited both the hypomethylation trait and the FSHD-permissive 

chromosome 4 haplotype with the DUX4 polyadenylation signal, suggesting that two 

independently segregating loci cause and determine the penetrance of FSHD2. 

To identify the locus controlling the D4Z4 hypomethylation trait, we performed whole-exome 

sequencing28 of 14 individuals in 7 unrelated families with FSHD2: 5 with dominant segregation 

of the hypomethylation trait and 2 with sporadic hypomethylation and FSHD2. Detailed genetic 

analysis of the repeat lengths and haplotypes did not provide evidence of non-paternity in these 

families (Fig. 1b). Families were stratified according to the criterion that the D4Z4 methylation 

level had to be <25%, not as a result of contracted repeats on chromosomes 4 and 10 
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(Supplementary Table 1 and Supplementary Note). We identified rare and potentially pathogenic 

mutations in the SMCHD1 gene (encoding structural maintenance of chromosomes flexible 

hinge domain containing 1) in all individuals with D4Z4 hypomethylation, with the exception of 

members of one family (Rf854; Table 1). These mutations were not present in public (dbSNP132 

and the 1000 Genomes Project) or in house databases or in family members with normal D4Z4 

methylation levels. 

We confirmed the presence of these mutations by Sanger sequencing and included 12 additional 

unrelated families with FSHD2 from whom DNA or RNA was available. We identified 

heterozygous out-of-frame deletions, heterozygous splice-site mutations and heterozygous 

missense mutations in SMCHD1 in 15 out of 19 families (79%; Fig. 1b, Table 1 and 

Supplementary Fig. 3). We also confirmed that the splice-site mutations altered normal 

SMCHD1 mRNA by excluding exons and introducing the usage of cryptic splice sites 

(Supplementary Fig. 4a,b). 
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Figure 1 D4Z4 methylation test and families with FSHD2. (a) FseI methylation levels in 72 control, 93 
FSHD1 and 53 FSHD2 genomic DNA samples. Error bars, s.d. *P < 0.005. (b) Pedigrees of families with 
FSHD2. For each individual, the subject ID, FseI-detected methylation level (%) and presence (SMC, 
gray) or absence (CTR, white) of a SMCHD1 mutation is indicated (upper box). Also indicated in the 
lower two boxes are the lengths of both D4Z4 arrays on chromosomes 4 in units. Permissive alleles, 
typically A alleles defined on the basis of a polymorphism distal to the repeat (24), are indicated by gray 
boxes. B alleles, which are nonpermissive (42), are indicated by white boxes. Some less common 
subtypes of the A allele are considered to be nonpermissive (41); these are marked with # and colored 
white (Rf399 and Rf739). Note the independent segregation of D4Z4 hypomethylation and FSHD-
permissive alleles. Only in those individuals in whom a permissive allele combines with D4Z4 
hypomethylation (<25%) was FSHD diagnosed, whereas individuals with D4Z4 hypomethylation 
carrying nonpermissive alleles were unaffected by FSHD. Individuals selected for whole-exome 
sequencing (upper seven pedigrees) are indicated by asterisks. SMC# indicates a coding synonymous 
SNP identified in Rf854. A key for the symbols is included. 
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Table 1 SMCHD1 mutations identified 
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Maternal 
Rf742 

Missense  M1  Exon 9  g.2697047A>G  c.1058A>G  p.Tyr353Cys  _ 

Unknown 
Rf1033 

Deletion  D1  Exon 
10  

g.2697999_269
8003del  

c.1302_130
6del  

p.Tyr434*  WT + mutant  

transcriptg  

De novo 
Rf739  

Missense  M2  Exon 
11  

g.2700630G>C  c.1436G>C  p.Arg479Pro  WT + mutant 

 transcriptg  

De novo 
Rf300  

Missense  M3  Exon 
12  

g.2700743T>C  c.1474T>C  p.Cys492Arg  WT + mutant 

 transcript  

Paternal 
Rf393 

Deletion  D2  Exon 
12  

g.2700875_270
0875del  

c.1608del  p.Asp537Ilefs
*10  

WT + mutant  

transcriptg  

Unknown 
Rf696 

5′ splice 
site  

S1  Intron
12  

g.2701019A>G  c.1647+103
A>G  

 WT + skipped 
exon 12g  + 
cryptic 
splicing of 
exon12g 

Maternal 
Rf399 

Missense  M4  Exon 
16  

g.2707565C>T  c.2068C>T  p.Pro690Ser  WT + mutant 

 Transcript 

Unknown 
Rf268  

5′ splice 
site  

S2  Exon 
20  

g.2722661G>A  c.2603G>A  p.Ser868Asn  _ 

De novo 
Rf844  

5′ splice 
site  

S3  Intron 
25  

g.2732488_273
2492de  

c.3274_327
6+2del  

 WT + skipped 
exon 25 + 
cryptic 
splicing of 
exon 25 

Maternal 
Rf874 

5′ splice 
site  

S3  Intron 
25  

g.2732488_273
2492del  

c.3274_327
6+2del  

 _ 

Paternal Synonym CS  Exon g.2739448T>Af  c.3444T>A  p.Pro1148Pro  WT + mutant 
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Rf854  ous  27  transcript  

Paternal 
Rf649  

5′ splice 
site  

S4  Intron 
29  

g.2743927G>A  c.3801+1G
>A  

 WT + cryptic 
splicing 

Unknown 
Rf676  

5′ splice 
site  

S4  Intron 
29  

g.2743927G>A  c.3801+1G
>A  

 _ 

Paternal 
Rf1014  

5′ splice 
site  

S5  Exon 
36  

g.2762234G>A  c.4566G>A  p.Thr1522Thr  WT + skipped 
exon 36  

Maternal 
Rf392  

5′ splice 
site  

S5  Exon 
36  

g.2762234G>A  c.4566G>A  p.Thr1522Thr  WT + skipped 
exon 36  + 
cryptic 
splicing of 
exon 36 

Unknown 
Rf683 

Missense  M5  Exon 
37  

g.2763729T>C  c.4661T>C  p.Phe1554Ser  WT + mutant 
transcript  

–, no RNA available; WT, wild type. aThe position of each mutation is shown according to mutation 

number (Nr) in supplementary Figure 3. bExon number is based on Ensembl transcript 

ENST00000320876. cGenomic position is based on hg19. dTranscript position is based on NM_015295.2. 
cProtein position is based on NP_056110.2. fPresent at frequency of 0.0055 in 1000 Genomes Project data. 
gDisrupts ORF. 

Because heterozygous SMCHD1 mutations cosegregated with D4Z4 hypomethylation in families 

with FSHD2 or occurred de novo in individuals with sporadic hypomethylation and FSHD2 (Fig. 

1b), we considered SMCHD1 haploinsufficiency to be a candidate disease mechanism, 

particularly because many of the mutations were predicted to affect production of the full-length 

protein. Indeed, fibroblasts from individuals with FSHD2 who had nonsynonymous or splice-site 

mutations in SMCHD1 expressed substantially lower amounts of SMCHD1 protein relative to 

control individuals (Fig. 2a). We found normal levels of SMCHD1 protein in the individual with 

FSHD2 with hypomethylated D4Z4 in family Rf854 who did not have an SMCHD1 mutation 

(Fig. 2a), suggesting that FSHD2 in this family has a genetic cause other than SMCHD1 

haploinsufficiency. Finally, chromatin immunoprecipitation (ChIP) showed the presence of 

SMCHD1 on the D4Z4 array and detected lower levels of this association in individuals with 

FSHD2 who had SMCHD1 mutations (Fig. 2b). Taken together, these results support 
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haploinsufficiency of SMCHD1 as a cause of D4Z4 hypomethylation in unrelated kindreds with 

FSHD2.  

 

Figure 2 Families with FSHD2 with SMCHD1 mutations. 
a) Protein blot analysis of fibroblast cultures from six controls (C) and eight individuals carrying a 
SMCHD1 mutation (S). Sample identifiers refer to the pedigrees in Figure 1b, and S6 denotes the 
individual with FSHD2 with only a synonymous coding SNP. (b) The results of ChIP analysis showing 
binding of SMCHD1 to D4Z4 arrays but not to GAPDH (left) and weaker binding of SMCHD1 to D4Z4 
arrays in individual 2305 with FSHD2 from family Rf683 (right). Error bars, ± 1 s.d. from duplicate 
experiments. IgG, immunoglubulin G. 

FSHD is characterized by low-level variegated expression of DUX4 in skeletal muscle. 

Therefore, we assessed DUX4 expression in skeletal muscle cells from control individuals after 

decreasing SMCHD1 levels by RNA interference (Fig. 3a,b). We detected no DUX4 mRNA in 

primary myotubes from an unaffected individual with a normal-sized and methylated D4Z4 array 

on the FSHD-permissive DUX4 polyadenlated haplotype. In contrast, DUX4 was 

transcriptionally activated in these myotubes (Fig. 3c) when SMCHD1 transcripts and protein 

amounts were reduced to <50% of normal. We observed a variegated pattern of DUX4 protein 

expression in myotubes in all samples with adequate SMCHD1 knockdown (Fig. 3d); this pattern 

was similar to that seen in myotubes from individuals with FSHD2. Cells expressing a scrambled 

or ineffective short hairpin RNA (shRNA) did not express DUX4 (Fig. 3, control and 4059). 
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To show that the SMCHD1 splice-site mutations identified in individuals with FSHD2 result in 

DUX4 expression, we manipulated SMCHD1 pre-mRNA splicing in skeletal muscle cells using 

antisense oligonucleotides directed against exon 29 or 36. These antisense oligonucleotides 

caused skipping of SMCHD1 exon 29 or 36 at rates comparable to those detected in some 

individuals with FSHD2 and resulted in transcription of DUX4 (Fig. 3e,f). Thus, SMCHD1 

activity is necessary for the somatic repression of DUX4, and reduction of this activity results in 

D4Z4 arrays that express DUX4 when an FSHD-permissive DUX4 haplotype is present, with a 

pattern of variegated expression similar to that observed in FSHD1 and FSHD2 myotube 

cultures. 

SMCHD1 belongs to the SMC gene superfamily that regulates chromatin repression in many 

different organisms, mediating the silencing of mating loci in yeast29, dosage compensation in 

Caenorhabditis elegans30, 31, position effect variegation in Drosophila melanogaster32 and RNA-

directed DNA methylation in Arabidopsis thaliana33. SMCHD1 was first identified in a mouse 

mutagenesis screen for modifiers of the variegated expression of a multicopy transgene34. Gene 

targeting confirmed that Smchd1 was necessary for hypermethylation of a subset of CpG islands 

associated with X-chromosome inactivation, and continued association of the Smchd1 protein 

with the inactive X chromosome suggested its continuous requirement in maintaining X-

chromosome inactivation35, 36. Our observations paint a similar picture of the role of SMCHD1 

and the D4Z4 arrays: SMCHD1 is necessary for D4Z4 hypermethylation, SMCHD1 remains 

associated with the D4Z4 array in skeletal muscle cells, and its continuous expression is required 

to maintain array silencing. It will be interesting to examine individuals with SMCHD1 

mutations for subclinical abnormalities in X-chromosome inactivation. 

 

 



184	  	  

 

Figure 3 SMCHD1 haploinsufficiency results in DUX4 expression in normal human myoblasts. 
a,b) shRNAs against different regions of SMCHD1 are effective in reducing the production of SMCHD1 
in normal human primary myoblasts at the RNA and protein levels. Numbers below the graph and the gel 
lanes indicate the regions within the SMCHD1 transcript that are homologous to the indicated shRNAs. 
(a) SMCHD1 mRNA levels were measured by quantitative RT-PCR and normalized to RPP30 transcript 
levels in a multiplexed reaction. Normalized SMCHD1 levels are shown as a percentage of the levels 
found in the same cells treated with a vector expressing a scrambled sequence. Error bars, s.d. of the mean 
for three separate reactions. (b) Protein blot of protein samples from the cultures in a normalized to 
tubulin. (c) Semiquantitative RT-PCR analysis of DUX4 in cells deficient in SMCHD1. GAPDH was 
amplified to confirm RNA integrity. (d) Examples of DUX4 immunoreactive nuclei observed in 
myotubes where SMCHD1 levels were reduced using shRNA 4103 or 6051. Myotubes are shown with 
nuclei labeled with DAPI (blue) and stained for DUX4 (red). GFP fluorescence produced from the 
lentivirus vector expressing the shRNAs is also shown. Scale bars, 50 µm. (e,f) Antisense 
oligonucleotide–mediated exon skipping of SMCHD1 exons 36 and 29 in normal human myoblasts 2333 
and 2435. Cells were treated with antisense oligonucleotides designed to reproduce this skipping, and 
primers homologous to flanking exons (shown above each gel) were used to evaluate the proportion of 
transcripts with skipped exons. DUX4 expression from the same cells is shown below each panel of 
SMCHD1 exon analysis. Results are also shown for myotube RNA from affected individuals in both 
families with the mutations. (e) An 184-bp fragment is produced when exon 36 is skipped. (f) An 124-bp 
fragment is produced when exon 29 is skipped. *, low DUX4 expression levels consistent with inefficient 
SMCHD1 exon skipping. An antisense oligonucleotide targeting exon 50 of the DMD gene (encoding 
dystrophin) was used as a negative control. 
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The Smchd1 mutation was originally called the Momme D1 locus (encoding modifiers of murine 

metastable epialleles D1)34. The term metastable epiallele has been applied to genes that show 

variable expression because of probabilistic determinants of epigenetic repression37. An example 

of a metastable epiallele in mice is the Avy locus (encoding agouti viable yellow); coat colors of 

isogenic mice vary on the basis of the epigenetic state of a retrotransposon integrated near the A 

promoter38. SmcHD1 is a modifier of metastable epialleles, as Smchd1 haploinsufficiency results 

in higher penetrance of agouti expression34. In the case of FSHD, lower levels of SMCHD1 

resulted in lower D4Z4 CpG methylation and variegated expression of DUX4 in myonuclei. In 

both FSHD1 and FSHD2, the penetrance is incomplete, and the presentation is often asymmetric. 

Out of the 26 individuals with hypomethylation at D4Z4 with a SMCHD1 mutation and carrying 

a permissive D4Z4 haplotype, 5 (19%) are asymptomatic (Supplementary Table 2). This 

proportion of clinically unaffected carriers is notably similar to that observed in FSHD1 (ref. 39), 

although a recent publication corroborates an earlier observation that non-penetrance may be 

much more frequent40, 41. Thus, both features are consistent with FSHD being a metastable 

epiallele–linked disease. Our demonstration that independently variable modifiers of D4Z4 

chromatin relaxation (repeat size in FSHD1 and SMCHD1 activity in FSHD2) modulate the 

variegated expression of DUX4 suggests that DUX4 should be regarded as a metastable epiallele 

causing phenotypic variation in humans. 

The disease mechanisms of FSHD1 and FSHD2 converge at the level of D4Z4 chromatin 

relaxation and the variegated expression of DUX4 (refs. 14,15). Both FSHD1 and FSHD2 require 

inheritance of two independent genetic variations: a version of the DUX4 gene with a 

polyadenylation signal and a second genetic variant that results in D4Z4 chromatin relaxation. 

For FSHD1, the genetic variant associated with chromatin relaxation involves contraction of the 

D4Z4 array and is therefore transmitted as a dominant trait. For FSHD2, mutations in SMCHD1, 

which is on chromosome 18, segregate independently from the FSHD-permissive DUX4 allele 

on chromosome 4 and result in a digenic inheritance pattern in affected kindreds. Considering 

the variable clinical severity and asymmetric disease presentation, as well as the families with 

FSHD2 without SMCHD1 mutations, it is likely that other modifier loci will be identified that 

affect D4Z4 chromatin structure. SMCHD1 mutations could also modify the penetrance of 

FSHD1. Finally, many other human diseases show variable penetrance that might be related to 
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epigenetic control. Our findings establish the possibility that SMCHD1 mutations may modify 

the epigenetic repression of other genomic regions and the penetrance of other human diseases. 

Study subjects and samples. 

Forty-one individuals with FSHD2 were selected on the basis of published clinical and molecular 

criteria5, 7, 43, 44 and because they had D4Z4 methylation levels of <25% (Supplementary Table 

1). Assessment of the FSHD phenotype was performed by experienced neurologists. Initial 

testing was performed using pulsed-field gel electrophoresis and hybridization of Southern blots 

with P13E-11, A and B probes, and SSLP length was determined using an ABI Prism 3100 

Genetic Analyzer41, 45, 46 according to protocols at the Fields Center at the University of 

Rochester for FSHD Research website (see URLs). Forty of the affected individuals had D4Z4 

array sizes of >10 units on both copies of chromosome 4, ruling out diagnosis with FSHD1. One 

affected individual had two contracted alleles on chromosome 10, possibly explaining the low 

D4Z4 methylation observed for this subject, and was therefore excluded from further studies. Of 

the 39 remaining affected families, we had sufficient family information for 13 suggesting 

dominant inheritance of D4Z4 hypomethylation, whereas the hypomethylation seemed to have 

occurred de novo in 7 affected individuals (Fig. 1b). For exome sequencing, we selected five 

families with a dominant inheritance pattern and two with de novo hypomethylation in the 

affected individual. In total, 14 individuals from these families were analyzed by exome 

sequencing. All participants provided written consent, and the institutional review boards (IRBs) 

of participating institutes approved all studies. 

D4Z4 methylation analysis. 

Genomic DNA was double digested with EcoRI and BglII overnight at 37 °C, and cleaved DNA 

was purified using PCR extraction columns (Supplementary Note). Purified DNA digested with 

EcoRI and BglII was digested with FseI for 4 h, separated by size on 0.8% agarose gels, 

transferred to a nylon membrane (Hybond XL, Amersham) by Southern blotting and probed 

using the p13E-11 radiolabeled probe22. Probe signals were quantified using a phosphorimager 

and ImageQuant software. The signal from the 4,061-bp fragment was divided by the total 

amount of hybridizing fragments at 4,061 bp (methylated) and 3,387 bp (unmethylated) to give 
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the percentage of methylated FseI sites within the most proximal D4Z4 unit (Supplementary 

Note). 

Exome definition, array design and target masking. 

We targeted all protein-coding regions as defined by RefSeq 36.3. Entries were filtered for (i) 

CDS as the feature type, (ii) transcript name starting with 'NM_' or '-', (iii) reference as the 

group_label and (iv) not being on an unplaced contig (for example, 17|NT_113931.1). 

Overlapping coordinates were collapsed for a total of 31,922,798 bases over 186,040 

discontiguous regions. A single custom array (Agilent, 1 million features, array–comparative 

genomic hybridization (aCGH) format) was designed to have probes over these coordinates as 

previously described, except that the maximum melting temperature (Tm) was raised to 73 °C. 

The mappable exome was also determined as previously described, instead using the RefSeq 

36.3 exome definition. After masking for 'unmappable' regions, 30,923,460 bases remained as 

the mappable target. 

Targeted capture and massively parallel sequencing. 

Genomic DNA was extracted from peripheral blood lymphocytes using standard protocols. DNA 

(5 µg) from each of the eight individuals was used for construction of a shotgun sequencing 

library as described previously, using paired-end adaptors for sequencing on an Illumina 

Genome Analyzer IIx (GAIIx). Each shotgun library was hybridized to an array for target 

enrichment, which was followed by washing, elution and additional amplification. Enriched 

libraries were then sequenced on a GAIIx to generate either single-end or paired-end reads. 

Read mapping and variant analysis. 

Reads were mapped and processed largely as previously described. In brief, reads were quality 

recalibrated using Eland and then aligned to the reference human genome (hg19) using MAQ. 

When reads with the same start site and orientation were filtered, paired-end reads were treated 

as separate single-end reads; this method is overly conservative, and, hence, the actual coverage 

of the exomes was higher than reported here. Sequence calls were performed using MAQ, and 

these calls were filtered to coordinates with ≥8× coverage and consensus quality of ≥20. 
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Insertions and/or deletions (indels) affecting coding sequences were identified as previously 

described, but we used phaster instead of cross_match and MAQ. Specifically, unmapped reads 

from MAQ were aligned to the reference sequence using phaster (version 1.100122a) with the 

parameters -max_ins:21 -max_del:21 -gapextend_ins:-1 -gapextend_del:-1 -

match_report_type:1. Reads were then filtered for those with at most two substitutions and one 

indel. Reads that mapped to the negative strand were reverse complemented and, together with 

the other filtered reads, were remapped using the same parameters to reduce ambiguity in the 

called indel positions. These reads were then filtered for (i) having a single indel more than 3 bp 

from the ends and (ii) having no other substitutions in the read. Putative indels were then called 

per individual if they were supported by at least two filtered reads that started from different 

positions. An indel reference was generated as previously described, and all the reads from each 

individual were mapped back to this reference using phaster with default settings and -

match_report_type:1. Indel genotypes were called as previously described. 

To determine whether the variants were novel, sequence calls were compared against our 

previously reported exome data for 1,200 individuals and the 1000 Genomes Project database 

and dbSNP. Annotations of variants were made on the basis of information in the NCBI and 

UCSC databases using an in house server (SeattleSeq Annotation). Loss-of-function variants 

were defined as nonsense mutations (introduction of a premature stop codon) or frameshift 

indels. For each variant, we also generated constraint scores, as implemented in genomic 

evolutionary rate profiling (GERP). 

Ranking of candidate genes. 

Candidate genes were ranked by summation of variant scores calculated by counting the total 

number of nonsense and nonsynonymous variants across the FSHD2 exomes. 

Mutation validation. 

Sanger sequencing of PCR amplicons (LGTC, Leiden, Netherlands) from genomic DNA was 

used to confirm the presence and identity of mutations in SMCHD1 that were initially detected 

via exome sequencing and to screen each mutation in the affected and unaffected family 

members in families with FSHD2. 
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Cells and culture conditions 

Primary human myoblasts were obtained through the Fields Center. Biopsies were obtained after 

obtaining full consent with an IRB-approved protocol. Consents included the possibility of 

exome sequencing and sharing of samples with other investigators. Normal human myoblasts 

were grown on dishes coated with 0.01% calf skin collagen (Sigma-Aldrich) in F10 medium 

(Invitrogen) supplemented with 20% FBS, 100 U/ml penicillin and 100 µg/ml streptomycin, 4 

µg/ml human basic fibroblast growth factor (bFGF) (Invitrogen) and 1 µM dexamethasone 

(Sigma-Aldrich) in a humidified atmosphere containing 5% CO2 at 37 °C13. Transduction of 

human myoblasts with retroviral vectors was accomplished by seeding cells at a density of 5 × 

104 cells/cm2 on day −1. On day 0, the medium was changed, and cells were incubated with 

vector preparations and polybrene (4 µg/ml; Sigma-Aldrich). After 2–4 h, the medium was 

replaced with fresh medium, and cells were cultured and split at ~75% confluence to prevent 

differentiation. Human myoblasts transduced with pGIPZ shRNA expression vectors were 

selected with puromycin (0.5 µg/ml). Differentiation was induced using F10 medium 

supplemented with 1% horse serum and ITS supplement (insulin 0.1%, 0.000067% sodium 

selenite, 0.055% transferrin; Invitrogen). 

Fibroblasts obtained from individuals with FSHD2 and their family members were cultured in 

DMEM/F-12 medium supplemented with 20% heat-inactivated FBS, 1% penicillin-

streptomycin, 10 mM HEPES and 1 mM sodium pyruvate (all from Invitrogen). 

RNA extraction and cDNA synthesis. 

Total RNA was extracted using the Qiagen miRNeasy Mini isolation kit with DNase I treatment. 

The RNA concentration was determined on an ND-1000 spectrophotometer (Thermo-Scientific), 

and RNA quality was analyzed with an RNA 6000 Nanochip Labchip on an Agilent 2100 

Bioanalyzer (Agilent Technologies Netherlands). cDNA was synthesized from 2 µg of total RNA 

using random hexamer primers (Fermentas) and the RevertAid H Minus M-MuLV First Strand 

kit (Fermentas Life Sciences) according to the manufacturer's instructions. After completion of 

cDNA synthesis, 30 µl of water was added to an end volume of 50 µl. 

Semiquantitative RNA analysis and sequencing of SMCHD1 mutations. 
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Splicing alterations were analyzed by RT-PCR using different primer sets covering the exons 

surrounding the possible splice-site mutation. Subsequently, PCR fragments generated from 

control samples and individuals heterozygous for SMCHD1 mutations were analyzed on 1.5–2% 

agarose gels. Fragments were separated by size on agarose gels, purified and analyzed by Sanger 

sequencing (LGTC). 

Allelic expression analysis of missense mutations (wild-type versus mutant alleles) was carried 

out with Sanger sequencing (LGTC) by comparison of the nucleotide peak heights of the wild-

type and mutant alleles. 

DUX4 mRNA levels were analyzed in duplicate by RT-PCR using the SYBR Green QPCR 

master mix kit (Stratagene) on a MyiQ (Bio-Rad), running an initial denaturation step at 95 °C 

for 6 min followed by 40 cycles of 10 s at 95 °C and 30 s at 60 °C (35 cycles for the DUX4 RT-

PCR samples shown in Fig. 3e,f). All PCR products were analyzed on a 2% agarose gel. 

Expression levels were corrected by those of GAPDH and GUSB, constitutively expressed 

standards for cDNA input, and the relative steady-state RNA levels of the genes of interest were 

calculated by a previously described method47. All primers were designed using Primer3 

software, and sequences are provided in Supplementary Table 3. 

ChIP assays. 

Chromatin was prepared from myoblast cell lines fixed with 1% formaldehyde according to a 

published protocol48. Control and FSHD2 myoblasts carried a comparable total number D4Z4 

repeat units on permissive and nonpermissive chromosomes. We incubated 60 µg of chromatin 

with the different antibodies. Every sample was independently studied twice. Antibodies against 

SMCHD1 (ab31865) and histone H3 (ab1791) were purchased from Abcam. Normal rabbit 

serum was used to measure unspecific binding of proteins to beads. Immunopurified DNA was 

quantified with the D4Z4 Q-PCR primer pair8, and quantitative PCR measurements were 

performed with the CFX96 Real-Time PCR Detection System using iQ SYBRR Green 

Supermix. Relative enrichment values were calculated by dividing the ChIP values obtained with 

the antibodies to SMCHD1 or IgG by the ChIP values obtained with the antibodies to histone 

H3. 
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Antisense-mediated exon skipping. 

Antisense oligonucleotides for SMCHD1 exons 29 (29AON5) and 36 (36AON1) were designed 

on the basis of the guidelines for DMD exons (Supplementary Table 3)49. All antisense 

oligonucleotides target exon-intern sequences, consist of 2′-O-methyl RNA with a full-length 

phosphorothioate backbone and were manufactured by Eurogentec. Human control myoblasts 

were seeded in 6-well plates or 6-cm dishes at a density of approximately 1 × 104 cells/cm2 and 

were cultured for 2 d. Myotubes were obtained by growing myoblasts at 70% confluence for 4 d 

in differentiation medium (DMEM (with glucose, L-glutamine and pyruvate) supplemented with 

2% horse serum). Cells were transfected with 250 nM concentrations of antisense 

oligonucleotides 4 h after the differentiation medium was added, using 2.5 µl of 

polyethyleneimine (MBI-Fermentas) per microgram of antisense oligonucleotide according to 

the manufacturer's instructions. A FAM-labeled antisense oligonucleotide targeting exon 50 of 

the DMD gene was used to confirm the efficiency of transfection and exon skipping. Primers 

flanking the targeted exons were used to study splicing of the SMCHD1 and DMD genes. 

Knockdown of SMCHD1 mRNA in normal human myoblasts. 

SMCHD1 transcripts were targeted for degradation using lentiviral vectors expressing shRNAs 

from a CMV promoter linked to a puromycin selection cassette controlled by an internal 

ribosome entry site (IRES). Five different pGIPZ vectors (Open Biosystems) were purchased, 

and each was tested in normal human myoblasts for the effect on SMCHD1 transcripts by 

quantitative PCR, immunofluorescence signal intensity and protein blot analysis. 

Antibodies, immunofluorescence and protein blotting. 

Immunofluorescence for human DUX4 was performed using a rabbit monoclonal antibody 

specific to its C terminus (Epitomics, E5-5), as previously described15. Immunoreactivity was 

detected with a mouse Alexa Fluor 594–conjugated secondary antibody to rabbit (Molecular 

Probes; 1:1,000 dilution). 

For protein blotting, fibroblast or myoblast lysates were separated by 7.5% SDS-PAGE and 

transferred to PVDF membrane. SMCHD1 protein was detected using a commercially available 

rabbit polyclonal antibody (Sigma-Aldrich, HPA039441; 1:250 dilution), and the reference 
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protein tubulin was detected with a commercially available mouse monoclonal antibody (Sigma, 

T6199; 1:2,000 dilution). Bound antibodies were detected with a horseradish peroxidase (HRP)-

conjugated donkey secondary antibody to rabbit (Pierce, 31458; 1:5,000 dilution) and an IRDye 

800CW–conjugated goat secondary antibody to mouse (Westburg, 926-32210; 1:5,000 dilution), 

respectively. 
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Supplementary Note 

Genomic DNA isolated from peripheral blood lymphocytes from a large panel of controls, 

sporadic patients with FSHD and FSHD families were included in this study after obtaining 

informed consent. The clinical diagnosis of FSHD was based on a standardized clinical form 

made available through the Fields Center: http://www.urmc.rochester.edu/fields-center/). For all 

individuals we performed a detailed genotyping, including D4Z4 repeat array length and 

chromosomal background analysis of chromosomes 4q and 10q. 

The observation that in FSHD1 patients D4Z4 hypomethylation is restricted to the disease allele 

while in FSHD2 patients the repeats on all four chromosomes are affected provides a unique 

opportunity to develop a more sensitive and specific diagnostic test for FSHD2. Rather than 

separating the chromosome 4-derived fragments from the chromosome 10-derived fragments by 

using restriction enzyme BlnI, as done before 
1, 2, a collective measurement of D4Z4 methylation 

on both chromosomes 4 and 10 should yield a more sensitive and specific diagnostic test for 

FSHD2. From our previous tests involving three methylation-sensitive restriction enzymes, FseI 

was shown to be the most informative enzyme1, 2. Therefore, we redesigned the FseI D4Z4 

methylation test so that it interrogates all four alleles simultaneously by omitting BlnI from the 

digestion (Supplementary Fig. 1). Previously, we showed that the FseI methylation value of the 

first D4Z4 unit in controls is ~50% on both chromosomes 4q1,2. The average FseI methylation 

level of the first unit in pathogenic chromosomes 4 in FSHD1 patients (n=21) was shown to be 

20%3, while in FSHD2 patients we found for both chromosomes 4 on average a value of 13% 

(n=32)4. While in controls and FSHD1 patients we would expect (near-) normal methylation 

values (as in FSHD1 the hypomethylation signal from the disease allele would be diluted 3x by 

the normal methylation levels of the normal chromosome 4 and chromosomes 10), in FSHD2 

patients we would expect to see profound hypomethylation. As the activity of restriction 

enzymes is sensitive to salt or protein impurities in the gDNA we introduced an extra DNA 

clean-up step preceding digestion with FseI (Supplementary Fig. 1a). This extraction column-

based purification step can also be applied to gDNA embedded in agarose plugs and to samples 

with low gDNA concentrations. Upon digesting with BglII a 4061 bp fragment is released (M in 

Supplementary Fig. 1c) while digesting with FseI yields a fragment of 3387 bp when the 

restriction site is unmethylated (U in Supplementary Fig. 1c). The previously used enzyme BlnI 
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to separate chromosomes 4 (white) from chromosomes 10 (black) is also shown. To validate the 

modified methylation test, we re-analyzed the same gDNA samples from a previous study4. 

While we obtained nearly identical average methylation levels in all three populations analyzed, 

the modified methylation test clearly improves discrimination between FSHD1 and FSHD2 by 

reducing the error bars particularly in FSHD1 patients (Supplementary Fig. 1d). Supplementary 

Fig. 1b shows a typical example of the D4Z4 methylation analysis on a de novo FSHD2 patient 

and his unaffected family members. The FSHD2 patient has comparable methylation levels (%) 

to her unaffected mother who carries a non-permissive alleles (NP) only. The unaffected father 

has significant lower methylation levels than mother and daughter as quantified by fragment 

intensities. 

Supplementary Table 1 Selection criteria used to prioritize FSHD2 families for whole exome 
sequencing. 

Criteria  Number of Families  
FseI Methylation <25%  41  
Both chromosome 4q D4Z4 arrays > 10 units  40  
Not more than one chromosome 10q D4Z4 array <11 units  39  
Inheritance Pattern:  	  

Dominant inheritance  13  
de novo D4Z4 hypomethylation  7  
Unknown (not informative)  19  
Maximum D4Z4 methylation at FseI site in patients was set at 25%. We excluded families in which one 
of the individuals with D4Z4 methylation <25% had a D4Z4 repeat array of <10 units on a permissive 
allele or more than one array of <10 units. Families were further categorized according to the inheritance 
pattern of D4Z4 hypomethylation. 

Supplementary Table 2 Information on unaffected SMCHD1 heterozygotes with a permissive D4Z4 
haplotype. 

Family  Individual  Gender  age  FseI  Units  
Rf392   102  F  54  17  50U  
Rf393   101  M  75  11  89U  
Rf393  206  F  42  11  18U  
Rf393  302  F  27  19  20U  
Rf393  305  M  34  21  20U  
Indicated are family ID, individual ID, gender, age, FseI methylation level and D4Z4 array size in units 
(U) of smallest permissive allele. 
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Supplementary Table 3 Sequences primers and antisense oligo nucleotides used in this study 

Primers for analysis SMCHD1 splicing at exons 12, 25, 29 and 36  
Name  Sequence (5' to 3') position SMCHD1  
exon 10F  5'-TGA TCC ATG CTT TCC ATC AA-3'  NM015295_1512F  
exon 13R  5'-CCT TCA GCC ACA AAG CAA AT-3'  NM015295_1882R  
exon 24F  5'-TCT GGA ACC AGT ATT TTA ACA GGA-3'  NM015295_3151F  
exon 26R  5'-TTG CAC ATC AGG AAG CAG AC-3'  NM015295_3518R  
exon 28F  5'-CTG GGG TTG GAC TTG ATA GC-3'  NM015295_3779F  
exon 30R  5'-GGT GCT GGA TTA TCC CAC TG-3'  NM015295_4070R  
exon 35F  5'-TCC AGT TTG GTT TTA TGA TGG A-3'  NM015295_4574F  
exon 37R  5'-TTC ACG AAG GGG AAT TCA AG-3'  NM015295_4889R  
qPCR primers  

	   	  Name  Sequence (5' to 3') position SMCHD1  
SMCHD1_F (exon 47F)  5’- CGA CAG ATT GTC CAG TTC CTC-3’  NM015295_6125F  
SMCHD1_R (exon 48R) 5’- CCA ATG GCC TCT TCT CTC TG-3’ NM015295_6225R  
DUX4RT-F2  5’-CCC AGG TAC CAG CAG ACC-3’ 

	  DUX4-pLAMR4  5’-TCC AGG AGA TGT AAC TCT AAT CCA-3’  
hGAPDHFw  5’-AGC ACA TCG CTC AGA CAC-3’  

	  hGAPDHRev  5’-GCC CAA TAC GAC CAA ATC C-3’  
	  qPCR GUS fw  5’-CTC ATT TGG AAT TTT GCC GAT T-3'  
	  qPCR GUS rev  5’-CCG AGT GAA GAT CCC CTT TTT A-3'  
	  ChIP primers  

	   	  Name  Sequence (5' to 3') 
	  DUX4 ChIP F  5'-CCG CGTC CGT CCG TGA AA-3' 
	  DUX4 ChIP R  5'-TCC GTC GCC GTC CTC GTC-3' 
	  GAPDH ChIP F  5'-CTG AGC AGT CCG GTG TCA CTA C-3'  
	  GAPDH ChIP R  5'-GAG GAC TTT GGG AAC GAC TGA G-3'  
	  Antisense oligo nucleotide  
	  Name  Sequence (5' to 3') position  

29AON5  5’-GUC CAG AAA UUA GUU GCA CUC-3’  exon 29 SMCHD1  
36AON1  5’-GAU UAG GCA GGA CUU CAA CU-3’  exon 36 SMCHD1  
h50AON2  5’-(6FAM)-GGC UGC UUU GCC CUC-3’  exon 50 DMD  
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Supplementary Figure 1 Schematic of the FSHD locus. Different combinations of D4Z4 chromatin 
relaxation are shown with the associated chromosomal context and patient phenotype. The D4Z4 array is 
shown as a series of white triangles on chromosome 4. The homologous array on chromosome 10 is 
depicted in grey. The FSHD permissive 4qA, and FSHD non-permissive 10q and 4qB haplotypes are 
depicted as white and light grey boxes, respectively. (a) In the normal condition, D4Z4 arrays of >10 
units are densely CpG methylated (black dots) on all four chromosomes. (b) FSHD1 is associated with 
D4Z4 array contraction-dependent D4Z4 hypomethylation and DUX4 expression from the deleted 
chromosome having a FSHD-permissive 4qA haplotype. Permissive 4qA haplotypes have a DUX4 
polyadenylation signal (pA) distal to the last unit of the D4Z4 array. This pA signal results in stabilization 
of DUX4 mRNA. Contraction-dependent chromatin relaxation on non-permissive haplotypes (4qB or 
10q) do not cause disease, because they lack this DUX4 pA signal. In FSHD1, D4Z4 hypomethylation is 
restricted to the contracted array. FSHD2 is caused by D4Z4 array contraction-independent chromatin 
relaxation of a D4Z4 locus with a permissive haplotype. In this case all four D4Z4 arrays are 
hypomethylated, and the hypomethylation phenotype can segregate independently of the permissive 4q 
haplotype within a family. Thus, family members who inherit the hypomethylation phenotype without a 
permissive haplotype do not develop FSHD2 (CONTROL). Chromosome 10 arrays are not depicted. (c) 
D4Z4 chromatin relaxation leads to a variegated production of the DUX4 protein in a subset of FSHD1 
and FSHD2 myonuclei (black). 
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Supplementary Figure 2  Design and results of the D4Z4 methylation test.  

(a) Overview of methylation analysis method. (b) Example of methylation analysis in an FSHD2 family. 
Methylated (M) and unmethylated (UM) D4Z4 fragments are indicated. Below each lane the methylation 
value is indicated in %. Y indicates cross hybridizing Y fragment. The hypomethylated mother in this 
family is not affected in the absence of a permissive haplotype. (c) Schematic of methylation test showing 
the p13E-11 probe region at the proximal end of the D4Z4 repeat array and the expected D4Z4 fragment 
sizes upon digestion with restriction enzymes EcoRI, BglII and FseI (EcoRI sites are not shown as they 
are outside the indicated area and the enzyme is only used for additional fragmentation of the gDNA). 
The position of the chromosome 10q-specific restriction enzyme BlnI (black bottom half) that was 
previously used for the chromosomes 4q only methylation analysis is indicated. (d) Schematic of FseI 
methylation analysis for both chromosomes 4 (old method; left panel)4 and chromosomes 4 and 10 (new 
method; right panel). Bar diagram of average methylation levels in controls (N=17), FSHD1 patients 
(N=22) and FSHD2 patients (N=33) obtained by the old method (left panel) and same samples by new 
method (right panel). Error bar represents standard deviation. FSHD2 patients are significantly 
hypomethylated by this test compared to controls and FSHD1 patients (*: p<0.005). Note that FSHD1 
patients have methylation levels in between controls (normal methylation at all 4 alleles) and FSHD2 
(hypomethylation at all 4 alleles) due to the presence of one hypomethylated allele. 
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Supplementary Figure 3 Schematic of the human SMCHD1 gene. All exons are indicated with boxes. 
Information about the SMCHD1 protein domains and Hinge antibody epitope is also given. mutations 
identified in this study are documented with their (predicted) consequences. The position of the 5 ’ and 3 ’ 
splice sites with respect to the coding frame is also indicated. Mutations that result in a frameshift are 
indicated by an asterisk. 
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Supplementary Figure 4 Examples of methylation analysis and alternative splicing in SMCHD1 
heterozygotes (a) Pedigrees of sporadic (left panel) and familial (right panel) FSHD2 kindreds. 
Methylation analysis of the FseI site in D4Z4 shows the degree of methylation (left panels). SMCHD1 
mRNA analysis in SMCHD1 heterozygotes and controls (C1-2) shows exon skipping or cryptic splice 
site usage (right panels). (b) RT- PCR analysis of SMCHD1 RNA in controls (C) and individuals 
heterozygous for SMCHD1 splice site mutations in families Rf696, Rf392 and Rf1014. RT-PCR products 
were sequence verified. Schematics of alternative splice events are shown on top and primers used to 
determine splicing are indicated with arrows. The splicing changes in family Rf696 can also be observed 
at lower frequency in the controls indicating that this variant shifts the balance (compare unspliced 
product with spliced products). 
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Examples of methylation analysis and alternative splicing in SMCHD1 heterozygotes

(a) Pedigrees of sporadic (left panel) and familial (right panel) FSHD2 kindreds. Methylation analysis of 

the FseI site in D4Z4 shows the degree of methylation (left panels). SMCHD1 mRNA analysis in SMCHD1

heterozygotes and controls (C1-2) shows exon skipping or cryptic splice site usage (right panels). (b) RT-

PCR analysis of SMCHD1 RNA in controls (C) and individuals heterozygous for SMCHD1 splice site 

mutations in families Rf696, Rf392 and Rf1014. RT-PCR products were sequence verified. Schematics of 

alternative splice events are shown on top and primers used to determine splicing are indicated with 

arrows. The splicing changes in family Rf696 can also be observed at lower frequency in the controls 

indicating that this variant shifts the balance (compare unspliced product with spliced products).
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Chapter 8 
General discussion 

Molecular confirmation of a clinical diagnosis of an inherited disease or of congenital 

malformations is of paramount importance for patients and their families. It is the conclusion of 

the differential diagnostic process, and provides information on the prognosis, in some cases on 

the therapeutic options, and on the recurrence risk. The cycle of new emerging analytical 

techniques, the identification of genetic defects and genes, followed by further improvement in 

molecular diagnosis, is turning with an increasing speed and is contributing to better patient care 

and management. 

Currently, targeted sequencing of gene (s) of interest is the preferred approach for searching for 

small pathogenic mutations. Several techniques are available for targeted sequencing, for 

example, conventional Sanger sequencing (1) and the Next Generation Sequencing (NGS) (2-4). 

Since its development, the Sanger sequencing method has gradually become the gold standard 

for clinical molecular diagnostics, because of its accuracy in detecting small genetic variants. 

Sanger sequencing is often combined with other techniques in order to reduce the cost (5-9). We 

have implemented High Resolution Melting Curve Analysis (HR-MCA) to screen the entire 

coding sequence of the DMD gene to select fragments for sequencing. This process was quite 

straightforward, we used a gradient PCR-cycler to quickly determine the most optimal annealing 

temperature for PCR primers and to determine the number of melting domains for each 

amplicon. Although large amplicons (more than 600bp) and amplicons with more than three 

melting domains can be used for HR-MCA, the sensitivity is reduced and the risk of false 

positives is higher. To solve this problem we divided these amplicons into multiple fragments. 

HR-MCA requires neither specific skills nor special changes in the laboratory. It is a simple PCR 

combined with a saturation dye such as LCGreen. A potentially weak point of HR-MCA is that 
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homozygous or hemizygous variants may not be detected.  We have, therefore, used post-PCR 

sample mixing to generate hetero-duplexes in all male patients with DMD/BMD. We have 

tested, validated, and adopted this technology for screening the DMD gene in patients as well as 

in female carriers in the Laboratory for Diagnostic Genome Analysis (LDGA) of the Department 

of Clinical Genetics in Leiden (chapter 2).  

The diagnosis of monogenic genetic disorders, which depends on the size and  complexity of the 

gene investigated, usually has a reasonable turnaround time with this combined strategy (HR-

MCA followed by Sanger sequencing). However, when there are too many samples and/or too 

many possible candidate genes to be tested, this approach is time consuming, labour intensive 

and inefficient. Moreover, this method can be difficult or impossible to use in cases where no 

specific syndrome can be diagnosed, because of atypical or mild clinical features, and one cannot 

limit the number of candidate genes. Therefore, alternative strategies are needed to reduce time 

and cost for testing large numbers or even all of the genes.  

NGS, which can currently access the primary structure of the entire genome of an individual 

(10), is likely to become a popular strategy to detect genetic variations that underlie human 

diseases. This is the ultimate goal but for the time being, because of the complexity of 

information and high costs, it is necessary to select and enrich particular genomic regions of 

interest before sequencing (11, 12).  

We have tested long range PCR and capture by hybridization (on–array and in–solution). Long 

range PCR is potentially well suited for NGS platforms, but in practice, working with very long 

PCR fragments tends to be laborious, time consuming, and expensive. Each individual PCR of a 

given fragment with specific primers must be first tested and optimized. Also, not all reactions  

give the desired specific PCR products. Moreover, DNA with impurities or partial degradation 

does not amplify.  

To overcome these problems, we have used the capture by hybridization methods (on–array and 

in–solution) (12-16). In principle, both the on–array and the in–solution hybridization work in 

the same way. We first hybridized the fragmented genomic DNA with common adapters to 

oligonucleotide probes in order to capture the target sequences. We then amplified the captured 

materials, tested the fold enrichment by quantitative PCR (qPCR) and performed NGS. We 
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found that qPCR is a crucial step to check successful enrichment as well as to estimate the fold-

enrichment obtained for both on–array and in–solution capture methods. It offers a reliable, 

quick, and cheap check prior to NGS and in our hands all tested samples in which qPCR did not 

indicate a clear enrichment, results of sequencing were poor, indicating that these samples should 

not be included for further analysis (chapter 3).  

Although on–array and in–solution share many similarities, there are several differences that 

make the in-solution method preferable. For instance, the amount of input DNA required by the 

in-solution method (around 500ng -1µg) is much less than that required by the on-array 

methodology, which  requires at least 10µg. For this reason the in-solution method is cheaper, is 

easier to work with and can be used on samples where it is difficult to obtain sufficient amount 

of DNA. The in-solution method shows also other advantages over the on–array platform.  The 

in–solution methodology is less laborious and less time consuming, does not require special 

equipment in the laboratory, is highly scalable and can be automated. The on- array capture 

method, on the other hand, requires lab-experience and expensive equipment such as a 

hybridization station and an elution apparatus. It is also difficult to automate.  

The in-solution capture by hybridization is the ideal method to enrich any desired fragment in the 

genome. Most Mendelian disorders are caused by exonic or exon/intron junctions variants that 

alter the amino acid sequence of the affected gene. An exome represents only about 1% a of the 

human genome (17, 18). However, 85% of disease-related mutations found so far are located in 

the protein-coding regions (18). In classical strategies for identifying disease-associated 

mutations, homozygosity mapping or linkage analysis is performed by studying genetically 

related family members (19, 20). In informative families, candidate regions containing the 

disease gene may be narrowed down to a specific region. One can then systematically sequence 

the candidate region. Targeted enrichment, Exome Sequencing (ES) and NGS have brought new 

ways of addressing monogenic disorders (Mendelian disorders), because of their large capacity 

and unbiased survey of the sequenced region (21, 22). Previous linkage studies had mapped the 

potential mutated gene causing the X-linked dominant, male lethal disorder, Terminal Osseous 

Dysplasia (TOD), to Xq27.3-q28 (23). We used the linkage data to narrow down the candidate 

region and performed X exome sequencing in two unrelated patients (chapter 4).  Furthermore, 

we used the linkage data to filter and select only the heterozygous variants located in the 
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previously identified TOD linkage interval. With this strategy we were able to identify  

c.5217G>A as the only heterozygous variant shared by the two patients in one gene, the FLNA 

gene, which causes the disease.  

Another example of using the linkage data to narrow down the candidate region is in autosomal 

recessive spinocerebellar ataxia 7 which is linked to chromosome 11p15 (SCAR7) (24) (chapter 

5). We investigated the entire coding sequence of this region. By selecting only a single affected 

individual for ES to obtain sequencing data, we could reduce the number of candidate genes to 

two (TPP1 and DCHS1 genes), for straightforward follow-up by Sanger sequencing. We found 

that the disease was caused by one splice variant and one missense variant in the TPP1 gene. 

Classical strategies can not be applied in many rare diseases where samples from large families 

is not available. In addition, a disease locus is not known in many syndromes with congenital 

malformations and/or intellectual disability. In all these cases an unbiased approach is required, 

for which ES is the best choice for the moment. The usefulness  of ES for identifying causal 

variants for inherited disorders (recessive and dominant) is well established and many groups 

have identified the causative variants for a large number of Mendelian disorders (25, 26). 

Uncovering genetic defects that underlie different human disorders is one of the most obvious 

applications of ES. Moreover, ES has opened up new avenues towards understanding the 

mechanisms that underlie specific molecular pathogenesis of genetic disease. For example, we 

discovered that mutations in the gene SMCHD1 (Structural Maintenance of Chromosomes 

flexible Hinge Domain containing 1) act as an epigenetic modifier of the D4Z4 metastable 

epiallele and thus cause the disease FacioScapuloHumeral Dystrophy type 2 (FSHD2) (chapter 

7). Epigenetics refers to heritable changes in gene expression that are not caused by changes in 

DNA sequence and which play a major role in a variety of normal cellular processes. Key 

players in epigenetic control are DNA methylation and histone modifications (27). Disruption of 

either of these systems that contribute to epigenetic alterations can cause abnormal activation or 

silencing of genes and is known to result in various diseases states (27, 28).  Thus, ES has 

provided a better understanding of the pathogenetic mechanism underlying FSHD2 where 

reducing SMCHD1 levels in skeletal muscle results in contraction-independent DUX4 expression.  
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 However, there are growing pains as we move forward with these new technologies. A key 

challenge is the interpretation of the enormous number of variants and the ability to identify 

disease-related alleles among the background of millions of neutral variants, polymorphisms, and 

sequencing errors, while in many cases we are not even sure whether a single pathogenic variant 

or a combination of several variants are causing disease. Several different strategies are available 

for filtering the variants found among the large numbers of sequences, and selecting the possible 

causal alleles (29). The number of candidate variants that are filtered depends on several factors 

such as: the  mode of inheritance of a trait, the availability of  a linkage or homozyosity mapping 

data, the degree of locus heterogeneity for a given  trait,  the availability of samples from patients 

with the same phenotype and the presence of a proper bioinformatics analysis pipeline for exome 

data.  

With each type of disease the most crucial step is to define the character of variants to be 

prioritized. When looking for a gene causing a rare autosomal recessive disorder, candidate 

genes must show either homozygous or compound heterozygous variants. With ES one can 

identify, on average, 30,000-40,000 variants in an individual exome that are different from the 

reference genomic sequence. It has been reported that, on average, each genome has around 165 

homozygous protein truncating or stop loss variants in different genes, involved in several 

pathways (30)  and around 300-400 variants are predicted to alter protein structure (31). 

Depending on the ethnic background of the sequenced proband, most of these variants (>95%) 

are known to be polymorphisms in the human population and can be found in databases such as 

dbSNP (32), the 1000 genomes (31), and in-house exome databases. Based on the assumption 

that variants with high frequency in the population are not likely to be pathogenic, these are 

filtered out before any further analysis. Furthermore, variants that are computationally predicted 

to be benign and non-pathogenic are removed. We have applied this strategy to detect the 

pathogenic mutation causing Chudley McCullough Syndrome (CMS) (Chapter 6). We 

sequenced affected individuals with the CMS phenotype from two unrelated families. After 

following the above-mentioned filtering steps and selecting for variants present in one gene, we 

were able to detect one homozygous frameshift mutation in GPSM2 as a possible cause for CMS. 

However, this strategy can miss the pathogenic variants in certain cases. For instance, if the 

causative variant is located in a poorly covered exon in one or several sequenced individuals, the 

candidate gene will be falsely removed from the list. Also, in heterogeneous disorders the real 
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gene may be removed by this strategy, if only a minority of the patients show a mutation, 

because several different genes are involved (33). 

It is known that the interpretation of missense variants is challenging because a change of an 

amino acid in a long peptide chain in itself is not necessarily meaningful. The change may be 

entirely harmless or it may obliterate the function of the protein.  There are several approaches to 

obtain evidence for the pathogenicity of missense variants. If, for example, a variant, identified 

using GERP, PhyloP or PhastCons scores, affects an amino acid position that is evolutionary 

highly conserved, it is more likely to be pathogenic. We have shown in chapter 4 that even an 

apparently neutral variant can alter splicing and in that way become pathogenic. The fact that the 

different computational algorithms currently in use to asses DNA and protein variants can lead to 

false positive, or false negative predictions is borne out by the fact that the FLNA mutation 

leading to TOD was overlooked by other authors  (34) (chapter 4).  

Although many studies have shown the successful application of ES for finding causative disease 

genes (26), it is difficult to know how often this method leads to negative results because results 

that fail to identify the pathogenic variant are rarely reported.  ES is not a panacea for all genetic 

problems and moreover has limitations similar to other molecular technologies. From our 

experience we find that not every ES experiment results in the identification of a novel disease 

gene. We were able to solve nine out of 16 (56%) cases for which we tried to find the disease 

causing genes with ES.  Several technical and/or analytical factors may play a role in the failure 

of gene discovery: 1) Our knowledge of all truly protein-coding exons in the human genome is 

still uncertain, so all current capture kits target only exons that have been identified until now but 

all parts of the genome that we do not recognize as functional are not included. 2) It is possible 

that some or all exons of the causative gene are not included in the target kit due to failure of the 

probe design. 3) There may be insufficient coverage of the region that contains the pathogenic 

mutation. This is because the efficiency of capture probes differs considerably and not all 

templates are sequenced as effectively. 4) It is possible that the causal variant is well covered but 

is inaccurately mapped because of miss-mapped reads or errors in the alignment. 5) The causal 

mutation is located in non-coding sequences (deep intronic) or in distal regulatory elements. 6) 

Our understanding of the genome and the exons is limited and we are unable to interrogate many 

variants that may be important for controlling gene transcription or splicing. 7) Current practice 
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shows clear limitation of exome sequencing for the detection of CNVs, which represent an 

important cause of Mendelian disorders. 8) It may be difficult to discriminate the causal alleles 

from the neutral alleles due to genetic heterogeneity of the disorder. If, for example, one gene 

accounts for only a small fraction of the sequenced cases (depending on the sample size), no 

single gene will be shared between all cases and at the same time many other genes may have 

shared neutral variants. 9) Possible non-genetic causes of the disorder can lead to failure of gene 

discovery. 

In conclusion, although ES has several limitations, it is revolutionizing the discovery of 

Mendelian diseases. Identifying the genetic alteration underlying phenotypic variation is of 

particular biological and medical interest. The unbiased ES identifies variants in all known genes 

simultaneously and allows systematic analysis of all coding exons from individual samples and 

families. This approach is providing significant insights into the genetic causes of Mendelian 

diseases and the role of rare variants in healthy individuals as well as individuals with genetic 

diseases. It provides more accurate genotype-phenotype correlations and will improve clinical 

diagnosis, family counselling and potential future therapeutic intervention. Our studies and many 

others, show promising results for the development of new technologies for clinical applications. 

Continuous innovation and improvement of methods and techniques for sequencing, the rapid 

reduction of cost, the improvement of tools for bioinformatics data analysis, and the improved 

methods and algorithms for the interpretation of variants will make NGS the preferred approach 

for clinical diagnosis. However, for the time being, during this early phase, it is a difficult 

undertaking to confidently pinpoint the causal genetic change. Once large numbers of DNA 

variants have been collected, and well documented worldwide, and effective pipelines for data 

analysis are in place, this diagnostic approach will become routine and we can expect that many 

genetic abnormalities will be resolved. The adaptation of targeted capture and/or ES followed by 

NGS in clinical diagnostics has begun and it is very likely that ES, and if not whole genome 

sequencing, will have significant impact in the clinical setting for diagnosis of genetic diseases in 

the near future. 
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Summary  

The work presented in this thesis describes the development and application of new techniques 

for detecting small variations (mutations) in genomic DNA that underlie various disorders. These 

techniques include High Resolution Melting Curve Analysis (HR-MCA) followed by Sanger 

sequencing, targeted, X-exome and whole exome capture followed by Next Generation 

Sequencing (NGS). 

Chapter 2 describes the use and implementation of HR-MCA followed by Sanger sequencing as 

a pre-sequencing routine diagnostic scanning method for all exons and exon-intron junctions of 

the DMD gene. After validating the technique, we screened a group of 22 unrelated DMD/BMD 

patients and 11 females in which deletions and duplications of the gene had been excluded. 

Seventeen different pathogenic mutations were found in the screened group, of which ten were 

novel. Our results show that HR-MCA is a powerful and inexpensive diagnostic pre-sequencing 

scanning method to detect small mutations in BMD/DMD patients and carriers.  

In chapter 3 we describe the application of array-based sequence capture (385K NimbleGen 

arrays) to enrich the exons and immediate intron flanking sequences of 112 genes, which are 

potentially involved in mental retardation and congenital malformation. Captured material was 

sequenced using Illumina technology and a data analysis pipeline was built. Our data show that: 

1) An array-based sequence capture followed by Illumina sequencing, offers a versatile tool for 

successfully selecting sequences of interest from a total human genome. 2) All known variants 

were reliably detected. 3) Although overall coverage varied considerably, it was reproducible per 

region and facilitated the detection of large deletions and duplications (CNVs), including a 

partial deletion in the B3GALTL gene from a patient sample. 4) There is room for improvement 

of the methodology for ultimate diagnostic application, in particular with respect to array design 

that can obtain a more even coverage of the targeted regions.  

In chapter 4, we performed X-exome capture followed by Illumina (Genome Analyzer II ) 

sequencing in two probands from  Dutch and Italian families with Terminal  Osseous Dysplasia 

(TOD). TOD is an X-linked dominant male-lethal disease, characterized by terminal skeletal 

dysplasia, pigmentary defects of the skin, and recurrent digital fibroma during infancy. Previous 

linkage studies have mapped the disease-causing gene to Xq27.3-q28. After analyzing the data, 
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we identified a silent variant at the last nucleotide of exon 31 of the FLNA gene in both patients. 

The same variant c.5217G>A was also found in another four unrelated cases but not in 400 

control X chromosomes, the 1000 Genomes, or in the database for FLNA gene variants. In 

families, this variant co-segregated with the disease. Our data show that due to nonrandom X 

chromosome inactivation, the mutant allele was not expressed in patient fibroblasts. RNA 

expression of the mutant allele was detected only in cultured fibroma cells obtained from 

material that had been surgically removed 15 years ago. The variant activates a cryptic splice 

site, removing the last 48 nucleotides from exon 31. At the protein level, this results in a loss of 

16 amino acids (p.Val1724_Thr1739del), predicted to remove a sequence at the surface of 

filamin repeat 15. Our data show that TOD is caused by single unique recurrent mutation in the 

FLNA gene. 

In chapter 5, we have used whole exome sequencing to identify pathogenic mutations causing 

autosomal recessive Spinocerebellar ataxia type 7 (SCAR7). The locus of SCAR7 has been 

linked to chromosome band 11p15. We have now identified the causative gene for SCAR7 by 

exome sequencing in the index family. One missense and one splice site mutation were found in 

the TPP1 gene which co-segregated with the disease. The same mutations were found in an 

unrelated patient with a similar phenotype. Affected individuals showed low activity of 

tripeptidyl peptidase1, the protein coded by TPP1, the gene known to cause the infantile form of 

Neuronal Ceroid Lipofuscinosis (CLN2). However, the patients that we studied had none of the 

findings that are characteristic for CLN2: epilepsy, ophthalmic abnormalities, curvilinear bodies 

in the skin biopsy tissue. Also, the slow progressive evolution of the disease until old age of the 

patients is clearly different from the relentless progression in infancy known for CLN2.  

In chapter 6, we studied the genetic cause of Chudley-McCullough Syndrome (CMS). We 

sequenced the exomes of three patients with CMS from two unrelated Dutch families from the 

same village and identified the same homozygous frameshift GPSM2 variant c.1473delG in all 

patients.  This variant was confirmed by Sanger sequencing in all affected patients and in a 

heterozygous form in their parents. We have shown that this variant arises from a shared, rare 

haplotype. Our data confirm the recent finding of Doherty et al., who reported GPSM2 variants 

as a cause of CMS. The c.1473delG mutation in GPSM2 associated with CMS appears to be an 

ancient founder mutation brought to North America by early Mennonite settlers originating from 
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Western Europe. Furthermore, we have established an LOVD database for GPSM2 containing all 

variants thus far described. 

In chapter 7, we describe the successful application of whole exome sequencing for finding the 

genetic cause of Faciocapulohumeral dystrophy type 2 (FSHD2).  FSHD is the third most 

common myopathy, which is characterized by progressive and irreversible weakness of the 

facial, shoulder and upper arm muscles. In the majority of cases, the FSHD type 1 (FSHD1) is 

caused by contraction of the D4Z4 repeat array on a specific permissive allele on chromosome 4. 

This leads to local chromatin relaxation and stable expression of the D4Z4-encoded DUX4 

retrogene in skeletal muscle. In FSHD2, the myopathy results from chromatin relaxation and 

stable DUX4 expression but without D4Z4 array contraction. To determine the genetic cause of 

FSHD2 and to identify the locus controlling the D4Z4 hypomethylation, we performed whole 

exome sequencing of twelve individuals from seven unrelated FSHD2 families: Five with 

dominant segregation of the hypomethylation and two with sporadic hypomethylation.  Different 

mutations in SMCHD1 (Structural Maintenance of Chromosomes flexible Hinge domain 

containing 1) were identified in all affected individuals except in one family. We used Sanger 

sequencing to confirm the presence of these mutations and included 12 additional unrelated 

families with FSHD2 from whom DNA or RNA was available. We identified heterozygous out-

of-frame deletions, heterozygous missense, and splice-site mutations in SMCHD1 in 15/19 

(79%) families. Mutations in SMCHD1 substantially reduce the SMCHD1 protein levels in 

skeletal muscle, which leads to contraction-independent DUX4 expression. Furthermore, we 

found that mutations in SMCHD1, which is on chromosome 18, segregates independently of the 

FSHD-permissive DUX4 allele on chromosome 4. This results in a digenic inheritance pattern in 

affected individuals. FSHD2 occurs exclusively in individuals who inherit both the SMCHD1 

mutation and a normal-sized D4Z4 array on a chromosome 4 haplotype permissive for DUX4 

expression. This showed that SMCHD1 is an epigenetic modifier of the D4Z4 metastable 

epiallele and is a key genetic determinant of FSHD2 disorder. 

Finally in chapter 8 we have discussed the pros and cons of all the techniques that we have 

presented in this thesis. These methods have made a significant contribution to accurate 

molecular diagnosis and to quick identification of disease causing genes. 
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Nederlandse samenvatting	  

Dit proefschrift beschrijft de ontwikkeling en toepassing van nieuwe technieken voor het 

detecteren van kleine variaties (mutaties) in genomisch DNA. Deze technieken zijn: 

• Smeltcurve analyse met hoge resolutie (High Resolution Melting Curve Analyse (HR-MCA) als 

pre-sequencing techniek gevolgd Sanger sequencing 

• Gerichte verrijking van exonen op het X chromosoom en alle exonen in het genoom (whole 

exome) gevolgd door “Next Generation Sequencing” (NGS). 

Hoofdstuk 2 beschrijft het toepassen en de implementatie van HR-MCA en Sanger sequencing 

als een efficiënte diagnostische voorscreeningsmethode voor het opsporen van kleine mutaties in 

alle exonen en exon-intron overgangen van het DMD (Duchenne Muscular Dystrophy) gen. Na 

de validatie van de techniek, werd het DNA onderzocht van 22 onafhankelijke DMD/BMD 

patiënten en 11 vrouwen bij wie eerder deleties en duplicaties in het DMD gen waren 

uitgesloten. Zeventien verschillende pathogene mutaties werden in deze groep gevonden, 

waarvan er tien nieuw waren ontstaan. De resultaten tonen aan dat HR-MCA een krachtige en 

goedkope diagnostische pre-sequencing-techniek is om kleine mutaties te detecteren in het DMD 

gen van patiënten en dragers.  

In hoofdstuk 3 beschrijven we het verrijken van stukjes DNA sequenties met behulp van micro-

arrays (385K NimbleGen arrays) om de exonen en de flankerende intron gebieden te kunnen 

sequencen van 112 genen, die mogelijk betrokken zijn bij mentale retardatie en aangeboren 

afwijkingen. De sequentie van het geselecteerde materiaal werd bepaald met behulp van 

Illumina-technologie en een data-analyse pijplijn werd gebouwd. Onze gegevens tonen aan dat:  

• ten eerste, het verrijken van DNA sequenties met micro-arrays gevolgd door Illumina sequencing 

een effectief hulpmiddel is om belangrijke sequenties uit het menselijk genoom te selecteren;  

• ten tweede alle bekende varianten met succes werden gedetecteerd; 

• ten derde, alhoewel de totale ‘coverage’ aanzienlijk varieerde, de resultaten per regio 

reproduceerbaar waren en het de detectie van grote deleties en duplicaties (Copy Number 
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Variants) vergemakkelijkte, waaronder het opsporen van een gedeeltelijke deletie in het 

B3GALTL gen in een patiënten monster.  

Voor de uiteindelijke diagnostische toepassing, kan de methode nog worden verbeterd, met name 

met betrekking tot het array ontwerp teneinde een meer gelijkmatige coverage van de te 

onderzoeken gebieden te verkrijgen. 

In hoofdstuk 4, wordt X-exome capture beschreven, gevolgd door Illumina (Genome Analyzer 

II) sequencing bij twee index patiënten uit een Nederlands en een Italiaans gezin met Terminal 

Osseous Dysplasia (TOD). TOD is een X-gebonden dominante mannelijk-lethale ziekte, die 

wordt gekenmerkt door terminale skeletdysplasie, pigment afwijkingen, hypoplasie van de huid 

en regelmatig terugkerende digitale fibromen tijdens de kinderjaren. Eerdere koppelingsstudies 

met markers op het X chromosoom plaatsten het ziekte-veroorzakende gen in band Xq27.3-q28. 

Met behulp van data analyse werd een “stille” variant in het laatste nucleotide in exon 31 van het 

gen FLNA geïdentificeerd in beide patiënten. Dezelfde variant c.5217G>A werd ook gevonden 

in vier andere niet verwante patiënten en werd niet gevonden in 400 controle X-chromosomen, 

de 1000 genomen en de FLNA gen variant database. De variant co-segregeerde met ziekte in 

deze families. Onze gegevens laten zien dat door non-random X chromosoom inactivatie, het 

mutante allel niet tot expressie komt in de fibroblasten van een patiënt. RNA expressie van het 

mutante allel werd alleen gedetecteerd in gekweekte cellen van een chirurgisch verwijderd 

fibroma van een 3-jarig patiëntje, dat 15 jaar was bewaard. De variant activeert een cryptische 

splicings site waardoor de laatste 48 nucleotiden van exon 31 worden verwijderd. Op 

eiwitniveau, resulteert dit in een verlies van 16 aminozuren (p.Val1724_Thr1739del) en naar 

verwachting de deletie van een sequentie op het oppervlak van filamine repeat 15. Onze 

gegevens tonen aan dat TOD wordt veroorzaakt door een enkele, unieke, herhaald nieuw 

ontstane mutatie in het FLNA gen. 

Hoofdstuk 5 bespreekt whole exome sequencing om pathogene mutaties te identificeren die het 

autosomaal recessieve Spino Cerebellaire Ataxie type 7 (SCAR7) veroorzaken. Het SCAR7 

locus werd eerder gemapt op chromosoom 11p15. We hebben nu het oorzakelijke gen voor 

SCAR7 geïdentificeerd middels exome sequencing in de familie van de de index patiënt. Twee 

verschillende mutaties, een missense en een splice-site mutatie werden gevonden in het TPP1 
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gen dat co-segregeert met de ziekte. Dezelfde mutaties werden gedetecteerd in een niet verwante 

andere patiënt met een vergelijkbaar fenotype. De patiënten toonden een lage activiteit van 

tripeptidyl peptidase-1, het eiwit dat wordt gecodeerd door TPP1. Het is al langer bekend dat 

volledige inactivering van dit gen de infantiele vorm van Neuronale Ceroid Lipofuscinosis 

(CLN2) veroorzaakt. De patiënten hadden geen epilepsie, geen oog afwijkingen, noch hadden zij 

curviliniaire lichaampjes bij elektronenmicroscopisch onderzoek van een huidbiopt, die 

karakteristiek zijn voor CLN2. Het langzaam progressieve beloop van de ziekte tot op oudere 

leeftijd is duidelijk anders dan de snelle en gestadige achteruitgang in de kinderjaren die 

kenmerkend is voor CLN2. 

Hoofdstuk 6  beschrijft het sequencen van de exomen van drie patiënten met Chudley 

McCullough Syndroom (CMS) uit twee niet verwante Nederlandse gezinnen uit hetzelfde dorp. 

We identificeerden bij alle drie de patiënten dezelfde homozygote frameshift variant c.1473delG 

in het GPSM2 gen. Deze variant werd middels Sanger sequencing homozygoot in de patiënten 

en in heterozygote vorm in hun ouders aangetoond. We laten zien dat deze variant is ontstaan in 

een gemeenschappelijk, zeldzaam haplotype. Onze gegevens bevestigen de recente bevinding 

van Doherty en co-autheurs, die varianten in GPSM2 als oorzaak voor CMS beschrijven. De 

c.1473delG mutatie in GPSM2, die is geassocieerd met CMS, lijkt afkomstig van een 

gemeenschappelijke voorouder en is waarschijnlijk door mennonieten (doopsgezinde kolonisten) 

vanuit West-Europa naar Noord Amerika gebracht. Wij hebben tevens een Leiden Open source 

Variant Database (LOVD) voor het GPSM2 gen opgezet met alle tot dusver bekende varianten. 

In hoofdstuk 7 beschrijven we de succesvolle toepassing van whole exome sequencing bij het 

zoeken naar de genetische oorzaak van Facioscapulohumerale dystrofie type 2. FSHD is na 

spinale spieratrofie en de spierziekte van Duchenne de derde meest voorkomende myopathie, die 

wordt gekenmerkt door geleidelijk toenemende zwakte van de spieren in het gelaat, de schouder 

en de bovenarm spieren. In de meeste gevallen wordt FSHD veroorzaakt door samentrekking van 

de D4Z4 repeat op een allel gelegen op chromosoom 4 (FSHD1). Dit leidt tot een lokale 

verandering van de chromatinestructuur en stabiele expressie van het door D4Z4 gecodeerde 

DUX4 retrogen in skeletspieren. In andere gevallen komt de myopathie eveneens tot stand door 

chromatine verandering en stabiele DUX4 expressie, maar zonder de contractie van de D4Z4 

repeat (FSHD2). Om de genetische oorzaak van FSHD2  en het locus dat verantwoordelijk is 
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voor de D4Z4 hypomethylatie te identificeren, werd whole exome sequencing uitgevoerd bij 

twaalf personen uit zeven onafhankelijke FSHD2 families: vijf met dominant overervende 

hypomethylatie en twee met sporadische hypomethylatie. Verschillende mutaties in het 

SMCHD1 gen (structural maintenance of chromosomes flexible hinge domain containing 1) 

werden met uitzondering van één patiënt in alle aangedane individuen geïdentificeerd. We 

hebben Sanger sequencing gebruikt om de aanwezigheid van deze mutaties te bevestigen. En we 

hebben 12 aanvullende niet-verwante families met FSHD2 waarvan DNA of RNA beschikbaar 

was. We identificeerden in 15 van de 19 (79%) families heterozygote frameshift deleties, 

heterozygote missense en splice-site mutaties in SMCHD1.Mutaties in SMCHD1 verminderen in 

grote mate het SMCHD1 eiwitgehalte in de skeletspieren met als gevolg algehele 

hypomethylatie, hetgeen leidt tot DUX4 expressie onafhankelijk van de contractie van de D4Z4 

repeat. Daarnaast werd duidelijk dat mutaties in SMCHD1, dat is gelegen op chromosoom 18, 

onafhankelijk van het FSHD-permissieve DUX4 allel op chromosoom 4 wordt doorgegeven in 

een familie. Dit resulteert in een digeen overervingspatroon bij de aangedane personen. FSHD2 

ontstaat uitsluitend bij personen die zowel de SMCHD1 mutatie als een normale grootte van de 

D4Z4 repeat geërfd hebben op een chromosoom 4 haplotype permissief voor DUX4 expressie. 

Dus SMCHD1 is een epigenetische modifier van het D4Z4 metastabiele epi-allel en een 

belangrijke genetische determinant van FSHD2. 

In hoofdstuk 8 worden de voors en tegens van de verschillende hierboven beschreven technieken 

besproken en komen we tot de conclusie dat de nieuwste technieken ons steeds sneller en beter in 

staat stellen de oorzakelijke genen voor ziekten op te sporen en moleculaire diagnoses te stellen. 
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