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General introduction
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Cancer genomics

Cancer develops through the acquisition of genomic alterations, i.e. changes in the DNA

sequence and chromosomal numerical content of a cell, such as point mutations, insertions,

deletions, ampli�cations, and translocations. Such alterations may alter protein expres-

sion and/or function of oncogenes�genes promoting cancer�and tumor suppressors�

genes protecting from cancer. Other factors, caused by mechanisms which do not change

the underlying DNA sequence (e.g. DNA methylation and histone modi�cation), may

also alter the expression of genes, and may thereby play a role in cancer as well. As

di�erent biological processes, the so-called hallmarks of cancer (1, 2), need to be deregu-

lated before a cancer can develop, a combination of events is needed to change a normal

cell into a cancerous cell. Cancer is thought to arise through the stepwise acquisition of

such events (3), although it has become clear that di�erent alterations may be caused

by a single event (4, 5), and particularly oncogene-activating translocations seem to be

su�cient for oncogenesis in some types of leukemias, lymphomas, and sarcomas (6).

In cancer genomics, germline and somatic aberrations, i.e. aberrations present in the

germline of the patient and acquired aberrations, are studied in order to identify genes and

biological processes which are important in the development and progression of cancer.

Determining aberrations that are crucial for a cancer cell to survive, identifying defective

tumor suppressors, and identifying biological processes which facilitate tumor progression

is tremendously important for diagnostics and prognostics, and for the identi�cation of

targeted treatments. In the late 1990s, high-throughput methods have been developed

which can be utilized in studying cancer genomics�so-called microarrays. In this thesis,

we have used these high-throughput techniques in order to study high-grade osteosarcoma

genomics, aiming to learn more on osteosarcoma biology, and to identify possible targets

for treatment.

High-grade osteosarcoma

High-grade osteosarcoma is a primary malignant tumor consisting of mesenchymal tumor

cells producing osteoid. The tumor is rare, with an approximate incidence of 5�6 patients

in a population of one million per year. The incidence is higher in adolescents and young

adults, and shows a second peak at middle age (7). Osteosarcoma developing later in adult

life is thought to be partially secondary, and may be caused by previous treatment with

radiation or by an underlying Paget's disease of bone. Males are more often a�ected by

osteosarcoma than females (with a ratio of 3:2). High-grade osteosarcoma most frequently

develops in the long bones of patients, with the metaphysis as the most frequent (91%),

and the diaphysis as the second most frequent site (< 9%). Most often, the tumor

develops in the region around the knee (distal femur and proximal tibia), followed by the

proximal humerus (8). Osteosarcoma is rarely seen in the axial bones of the patient. The
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incidence pattern of osteosarcoma suggests a link between the development of the disease

and growth (9) (this will be further discussed in Chapter 5).

High-grade osteosarcoma is a very aggressive tumor. Patients are usually treated

with several series of neoadjuvant chemotherapy consisting of a combination of di�er-

ent chemotherapeutic drugs, especially cisplatin, doxorubicin, and high-dose methotrex-

ate (8). The tumor is then removed by limb-salvage surgery, although sometimes ampu-

tation is needed. Afterwards, a second series of adjuvant therapy is given to the patient.

Despite this intensive treatment schedule, a signi�cant number of patients die due to

the development of distant metastases, which are most often pulmonary. The tumor

metastasizes in approximately 45% of all patients (10). Overall survival of patients with

resectable metastatic disease is roughly 20% (11). Neoadjuvant treatment was introduced

in the 1970s, and improved overall survival from 10�20% to approximately 60%. However,

except for macrophage-activating and recruiting agents, such as L-MTP-PE (discussed in

Chapter 4 of this thesis), no new treatment options have been developed that can raise

survival signi�cantly. The many caveats and challenges hampering osteosarcoma research,

which might explain why osteosarcoma patients still have no other treatment options, are

discussed in Chapter 2.

Known genes involved in osteosarcomagenesis have essential roles in cell cycle progres-

sion (12). The tumor suppressor TP53, which can induce cell cycle arrest or apoptosis

in response to cellular stress, such as DNA damage, is mutated in approximately 20% of

high-grade osteosarcomas and also often present in regions of copy number loss. MDM2,

which targets the p53 protein for degradation, is ampli�ed in 6�15% of the tumors. TP53

and MDM2 aberrations have been described to be mutually exclusive (13), although in

our dataset, one sample (the osteosarcoma cell line HAL) had copy number loss of TP53

and gain of MDM2. Inactivating somatic mutations of RB1, a negative regulator of the

cell cycle, are also often found in osteosarcoma, and this gene is present in regions of copy

number loss in over 60% of osteosarcomas (14, 15). Other players of the Rb pathway have

been described in osteosarcoma as well, for instance CDKN2A deletions, which present

homozygously and occur in approximately 25% of all patients (16). TP53 and RB1 mu-

tations are not always somatic�a small percentage of osteosarcoma is hereditary, with

mutations present in the germline of patients. The associated hereditary syndromes, Li-

Fraumeni and Retinoblastoma for mutations in TP53 and RB1, respectively, give a strong

predisposition to develop osteosarcoma. A third hereditary syndrome that is thought to

predispose to osteosarcoma is Rothmund-Thomson syndrome, where REQL4, a gene en-

coding for a DNA helicase, is mutated (17), however, in contrast to TP53 and RB1, the

gene is not a frequent target for sporadic mutations in osteosarcoma (18).
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The EuroBoNeT high-grade osteosarcoma database

The aim of this thesis was to study osteosarcomagenesis by bioinformatics analysis of a

high-throughput dataset consisting of microarray data from high-grade osteosarcoma spec-

imens. A relatively large cohort of naïve, preoperative diagnostic osteosarcoma biopsies

was collected as a collaborative e�ort by EuroBoNeT, a European Network of Excellence

for studying primary bone tumors. This clinically well de�ned cohort consisted of samples

from 84 patients. For most of these patients, clinical data were available on patient sex,

age at diagnosis of the primary tumor (in months), tumor location, histological subtype

of the tumor, and response to neoadjuvant chemotherapy (Huvos grade) (19). Follow-up

data (metastasis-free survival and overall survival, measured in months from diagnosis)

was available for 83/84 patients. Clinical characteristics of this cohort can be found in

Table 7.1. In addition to the clinical samples, we used data from two osteosarcoma model

systems�osteosarcoma cell lines (characterized and published by Ottaviano et al. (20))

and xenografts (21), see Table 3.1 for clinical characteristics of the original tumors of

these model systems. The entire osteosarcoma database consisted of data obtained from

three di�erent microarray platforms�genome-wide gene expression data, data obtained

with a kinome screen, and Single Nucleotide Polymorphism (SNP) microarrays. Table 1.1

illustrates the di�erent data types, numbers of osteosarcoma and control samples, and the

di�erent comparative analyses which are described in this thesis. Raw and processed data

are deposited in online databases (22, 23).

Data type mRNA Kinome SNP
Company Illumina PamGene A�ymetrix
Array Human-6 v2.0 Ser/Thr kinase

PamChip
Genome-wide Human
SNP Array 6.0

Software Bioconductor BioNavigator, Genotyping Console,
Bioconductor Nexus Copy Number

OS samples 84 diagnostic biopsies, 2 cell lines 32 diagnostic biopsies,
19 cell lines, 12 cell lines
18 xenografts

Control samples 12 MSC cultures, 12 MSC cultures 27 normal samples
3 osteoblast cultures

Analysis methods LIMMA, pamr LIMMA Cut-o� for aberration
frequency

Comparative Clinical parameters, Tumor vs controls Clinical parameters,
analyses Tumor vs controls Tumor vs controls

Table 1.1: Layout of the high-grade osteosarcoma database. MSC: mesenchymal stem cell.

High-throughput platforms to study osteosarcoma

Genome-wide gene/mRNA expression pro�ling can be performed using RNA isolated from

a sample, such as tumor tissue or a cell culture. Generally, cDNA or cRNA is prepared
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from the RNA and is labeled with a �uorescent dye. This is then hybridized to a microar-

ray chip containing oligonucleotide probes, which are short sequences of DNA, comple-

mentary to most or all speci�c transcripts, capable of binding the labeled cDNA/cRNA.

For measuring genome-wide gene expression, single- and dual channel microarrays are

available. With dual channel microarrays, samples, e.g. paired tumor samples and nor-

mal tissues, can be directly compared on one chip, by labeling the cDNA/cRNA with

two di�erent �uorescent dyes. For the research described in this thesis (Chapters 3�8),

single channel microarrays were used, which means that control samples were hybridized

on di�erent chips. We used Illumina Human-6 v2.0 BeadChips (Illumina, San Diego,

CA). These microarrays contain over 48, 000 probes, of which approximately half are rec-

ognized by well-annotated Reference Sequence (RefSeq) genes (24). Illumina BeadChips

have a special structure: probes are present on beads, which are randomly arranged on

the chip. Every bead type is replicated on each chip with a mean of approximately 35�40

times (25, 26) (see Figure 1.1A). Both the random position and the high amount of repli-

3 µm

5 µm

bead address probe

Illumina

millions of different features

millions of identical
oligonucleotide probes

5 µm

5 µm

1.28 cm

1.28 cmAffymetrixB

A

Figure 1.1: Schematic overview of A, the Illumina BeadChip and B, the A�ymetrix SNP 6.0
array. Figure adapted from Hupé, P., http://commons.wikimedia.org.

cated beads make robust measurements possible (27). The software designed by Illumina

for data analysis, BeadStudio, does not take advantage of the large number of replica-

tions of beads present on these chips. Therefore, various methods have been speci�cally

http://commons.wikimedia.org
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developed for analyzing Illumina BeadChips, such as Bioconductor (28) packages beadar-

ray (27), beadarraySNP (29) (speci�cally for Illumina SNP data), and lumi (30), which

will be described in the next section.

Peptide microarrays can be used for studying kinase activity in a sample. For the

research performed in Chapter 6 of this thesis, we used PamGene R© serine/threonine

(Ser/Thr) PamChips (PamGene, 's-Hertogenbosch, the Netherlands). These chips consist

of porous membranes, which contain 142 di�erent peptides derived from phosphorylation

sites for Ser/Thr kinases of the human proteome. Cell or tissue lysates are supplemented

with ATP and subsequently pumped through these membranes, so that kinases in the

lysates have access to, and can phosphorylate the peptides on the chip. Phosphorylation

is measured over a time span of 30 to 60 minutes by the detection of light emitted by

�uorescently-labeled, phospho-speci�c antibodies. Figure 1.2 gives an overview of the

experimental work�ow of PamGene.

Single Nucleotide Polymorphisms (SNPs) are genetic changes or variations of a single

base pair, which occur in at least 1% of the population (31). SNP microarrays contain so-

called allele-speci�c oligonucleotide probes (Figure 1.1B), which are used to discriminate

between speci�c SNPs in the sample, because of the di�erent binding properties of the

sample DNA, which is again labeled with a �uorescent dye. SNP microarrays can be

employed to genotype a sample, which is used to identify small variations between genomes

(to determine e.g. disease susceptibility), but can also be utilized to infer copy number

aberrations and allelic states of regions in the genome. The SNP microarrays used in

this thesis (Chapters 7�8) are A�ymetrix Genome-Wide Human SNP Array 6.0 chips

(A�ymetrix, Santa Clara, CA). These high-density chips contain over 900, 000 SNPs and

over 900, 000 probes for the detection of copy number variation.

Microarray data preprocessing

The three di�erent platforms described above have in common that, after hybridization of

DNA/cDNA/cRNA to the chip, or after phosphorylation of peptides on the microarray,

a �uorescent signal is emitted, which is measured by a scanner. The image �les that are

returned by the scanner can be utilized for deducing intensity signals and the location

of the speci�c spots/beads. This is usually performed directly by the software provided

by the company which distributes the arrays, and generally overlays a grid and returns

median intensity signals for each spot/bead. Alternatively raw image �les can be analyzed

(for example using beadarray (27)), thereby allowing additional methods of data process-

ing. In the following paragraphs, we will discuss data preprocessing and subsequent data

analysis of data generated with the above described microarray chips.

Preprocessing of microarray data is performed in order to correct for experimental bias

and to reduce the signal to noise ratio. Numerous methods of microarray data prepro-

cessing exist, and speci�c methods may di�er per data type and platform. Preprocessing
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Figure 1.2: Peptides can serve as sub-
strates for kinases present in the sample.
Phosphorylation is detected by �uorescently
labeled phopho-speci�c antibodies (A). The
microarrays consist of a porous ceramic
membrane (B), on which 142 di�erent pep-
tide substrates are present (C). Four ar-
rays are combined into one chip (D). The
phosphorylation reaction occurs by an up
and down movement of the sample solution
through the array, giving the kinases maxi-
mal opportunity to phosphorylate the pep-
tides on each array (E). When the solution
is underneath the array, the CCD camera in
the workstation takes an image of each ar-
ray, which is later used by the software to
generate kinetic data curves (F). The incu-
bation, washing, dispensing of reagents and
imaging of the arrays is done in fully au-
tomated workstations (G). Figure adapted
from PamGene R©.
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of microarray data can be performed using the software provided by the company that

produced the arrays, or can be analyzed with open source programs, such as the statistical

software R (32), for which several packages have been made available in the Bioconduc-

tor (28) framework to speci�cally analyze the raw data of various microarray platforms.

An optional start of preprocessing the raw data is a global or local background sub-

traction step. This can eliminate signals due to nonspeci�c binding, thereby reducing

noise in the data. However, when applying this step, probes of low signal will be dis-

carded, resulting in missing values. Some researchers convert these missing values into

zero expression. Illumina's scanner software, BeadScan, automatically subtracts local

background measures from the foreground intensities to generate bead level text �les�

�les including intensities and location information obtained from the original .ti� �les

produced by the scanner software. These bead level �les can be used for downstream data

analysis. The standard local background subtraction method provided by Illumina results

in a very low estimate of the background, which is thought to be mostly related to the

optical properties of the array surface (33). Additional background subtracting methods

can be applied, such as background normalization in BeadStudio, which subtracts the

mean intensity of negative control beads from the foreground intensities. This method

increases variability, and also introduces a signi�cant number of negative values (33). Es-

pecially for small sample sizes it is crucial to achieve a homogeneous variance, and thus,

as background subtraction introduces additional variation in the data, this may not be

bene�cial for the detection of di�erences between two or more groups (34). Apart from

the local background subtraction by BeadScan (for mRNA expression data), we did not

use other background subtraction methods in the preprocessing of our microarray data.

Data transformation is necessary because of the complicated error structure of mi-

croarray data, which is intensity-dependent and nonlinear (35). Often, a simple log trans-

formation is used, but other methods exist that are milder in transforming signals near

background, which are in�ated by standard log transformations. Examples of such meth-

ods are variance stabilizing normalization (vsn) (36), which both transforms the data and

performs normalization of the data between the di�erent arrays, and variance stabilizing

transformation (vst) (37), a method similar to vsn, speci�cally developed for preprocessing

Illumina BeadChips. vst has been shown to be advantageous over log transformation when

large changes in expression are expected (38, 39). Normalization of the data is applied

to reduce bias that may arise due to di�erences in sample preparation, and production

(batch e�ects) and processing of the arrays. Various normalization methods exist, of which

complete data methods, such as quantile normalization, are preferred over methods that

use a baseline array in order to normalize the data (40). We used vst and robust spline

normalization (rsn), a normalization method speci�cally designed to normalize variance

stabilization transformed data, on mRNA expression data (Chapters 3�8). Transforma-

tion and normalization of peptide chips (Chapter 5) was performed using vsn, while SNP

microarray data were log2 transformed and quantile normalized. SNP microarray data
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(Chapters 7�8) were further corrected for the guanine-cytosine (GC) content, as di�erent

percentages in GC content can cause waviness in the log2 ratio data, which can increase

false positive and false negative segment calls. We used the Regional GC correction

algorithm in Genotyping Console to correct for this waviness (41).

Quality control

A very important microarray data preprocessing step is outlier detection. When correctly

performed, this step can signi�cantly improve data quality and thereby improve the out-

come of the experiment, e.g. the detection of di�erential expression (42, 43). Defective

probes from A�ymetrix chips can be detected and subsequently removed (44). In Illumina

data, spatial artifacts can be detected and removed using BeadArray Subversion of Harsh-

light, or BASH (45). Although the detection of large spatial artifacts may be helpful for

determining whole outlier chips, the BASH algorithm only improves results very mildly.

This can be described to the extremely robust structure of the Illumina BeadChips (tested

for Human-6 and GoldenGate BeadChips, Kuijjer et al., unpublished results). The more

recently developed HumanHT-12 Expression BeadChips contain fewer replicates per bead

type, and this preprocessing step may therefore be valuable for removing outliers in these

newer chips. Other artifacts in Illumina data have been reported, such as particularly

bright beads showing a bleed over e�ect on neighboring beads, raising their associated

values (46). One can adjust for such spatial artifacts by masking a�ected beads using the

beadarray package (27).

Regularly, it is necessary to remove entire chips of poor quality, since such chips can im-

pair overall statistical and biological signi�cance (43). Poor quality chips can be identi�ed

by visually checking the scanner images, the distribution of both raw and normalized data

(e.g. by plotting density plots, boxplots, and MA-plots), and by performing unsupervised

hierarchical clustering or visualizing the data using principal components analysis (PCA,

reducing the data dimensionality to e.g. its �rst two or three principle components). Such

methods can for example be applied using Bioconductor package arrayQualityMetrics (47)

(used for quality control of mRNA and kinome pro�ling in this thesis) or using quality

control functions in the package a�y (48). Another method to control the in�uence of poor

quality chips is assigning weights to all chips, so that arrays of better quality will have

a higher in�uence on the analysis than poor quality arrays (arrayWeights (49)). Such an

approach is, however, not intended to replace a quality check identifying catastrophically

poor quality chips, and these should still be discarded. In a comparative study of remov-

ing poor quality chips with arrayQualityMetrics, assigning arrayWeights to the data, or

applying both methods on the LIMMA analysis described in Chapter 4, we determined

more di�erentially expressed probes at a false-discovery rate (FDR, see next section for

an explanation) of 0.05 without assigning weights, but this depended on the FDR (for

0.05 < FDR ≤ 0.1 arrayWeights or a combination of both methods performed slightly
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better, Kuijjer et al., unpublished results).

In SNP microarray quality control, one can determine the ability of an experiment to

resolve SNP signals into three genotype clusters (AA, AB, BB). The A�ymetrix Genotyp-

ing Console Contrast Quality Control test metric is a measure for this ability (50), and

was used in this thesis (Chapters 7�8). This test uses 10, 000 random SNPs to measure

the di�erence between peaks in the distributions of homozygote genotypes (AA and BB),

and the valleys these distributions share with the heterozygote peak (AB). When this

di�erence approaches zero, the experiment poorly distinguishes between homozygous and

heterozygous genotypes. Such chips should be removed from further data analysis.

Microarray data analysis

After having performed the preprocessing steps necessary for the speci�c type and plat-

form of microarray data, the actual data analysis can be performed.

Unsupervised hierarchical clustering of microarray data may not only be used as a

quality check (as described in the previous section), but can also be applied to detect

di�erent subgroups of samples, which may be associated with a clinical feature. In a

supervised approach, di�erences between groups of samples can be determined using a

moderated t-test, such as the LIMMA analysis (used in this thesis for detection of di�er-

ential expression and phosphorylation) (51). Important to note is that with the testing of

multiple hypotheses, the amount of true null hypotheses that are rejected will increase. In

microarray experiments, often large numbers of probes/peptides are tested for di�erential

expression or phosphorylation, and therefore, an excessive amount of false-positives may

be returned from conventional statistical tests. Hence, a correction for multiple testing

should be performed (42). Examples of such methods are conservative familywise error

rate procedures, such as the Bonferroni method (52), or the less stringent false discovery

rate (FDR) controlling methods, e.g. the Benjamini and Hochberg (53), and Benjamini

and Yekutieli (54) approaches. Other methods use permutations to estimate the FDR,

such as Signi�cant Analysis of Microarrays (SAM) (55).

SNP data is analyzed in a di�erent manner. Genotyping can be performed by speci�c

genotyping algorithms, such as the Birdseed v2 algorithm in Genotyping Console, which

uses unsupervised learning to �t the data, producing genotype calls and returning con�-

dence scores for each SNP (56). Copy number data analysis is performed by comparing

the intensity signals for each marker and each sample against a reference genome, which

usually consists of a set of in-house or publicly available control samples. A cut-o� for

gains and losses is used to determine whether probes are present in a region of ampli�-

cation or deletion (in this thesis, an absolute log2 ratio cut-o� of 0.2, equivalent to an

absolute fold change of approximately 1.15, was used). Using the genotyping information,

calls can also be made for allelic ratios. In Nexus Copy Number software, this is done

by determining the B-allele frequency. Regions on the genome which show LOH will not
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reveal any AB signals (a B-allele frequency of 0.5, at least in theory, if there are no normal

cells present in the tumor tissue). This also makes the identi�cation of allelic imbalance

possible, which, over a genomic region, will show multiple B-allele frequencies in between

0 and 1, depending on the amounts of copy number of each allele.

A drawback in SNP data analysis is that copy number changes are detected relative

to the overall DNA content in the sample (57). In addition, normal cell populations, such

as stromal and in�ammatory cells, and heterogeneity within the tumor itself can further

impede the detection of the true copy number alterations in the tumor cell. In epithelial

tumors, a DNA index can be determined by �ow-sorting tumor cells, which can separate

these from mesenchymal cells, and which can identify subpopulations of tumor cells with

di�erent chromosomal aberrations. To infer true copy numbers and allelic states, the

algorithm lesser allele intensity ratio (LAIR, included in beadarraySNP (29)) integrates

the DNA index in the analysis of SNP data (58). Unfortunately, this approach can not be

applied to SNP data analysis of high-grade osteosarcoma samples, as osteosarcoma is a

mesenchymal tumor for which no speci�c markers are available. However, the amount of

stroma in osteosarcoma is not as extensive as in epithelial tumors, and the percentage of

stroma as determined by the pathologist could in principle be used in order to approximate

the DNA index of these tumors.

SNP microarray data show a high degree of noise, and not all markers re�ect the

true copy number of the region. Segmentation is performed in order to identify the

chromosomal segments with actual copy number aberrations. Most frequently used al-

gorithms for segmentation are Circular binary segmentation (CBS)-based (59) or Hidden

Markov Model (HMM)-based methods. CBS-based methods divide the genome into al-

ways smaller segments until no region can be further segmented, taking into account

a minimum amount of probes per segment. The SNPRank segmentation algorithm in

Nexus Copy Number Software is CBS-based, and ranks log ratio probe values and B-

allele frequencies in a segment. If the distribution of these probe ranks is signi�cantly

di�erent from those of an adjacent segment, the region is segmented out, meaning the

region probably has a di�erent median copy number than that of the adjacent segment.

HMM-based methods, such as the SNP-FASST segmentation algorithm in Nexus Copy

Number software, perform faster than CBS-based methods, but require an estimate of

signal�copy number relationship, as it works with integer copy numbers. Because of the

heterogeneity present in tumor samples, this is probably not an optimal way to segment

tumor data (60). We used SNPRank segmentation to segment the copy number data,

with a minimum of 5 probes per segment. After segmentation, a cut-o� for frequency of

copy number changes can be set, so that the most recurrent alterations will be detected.

One can also speci�cally look for focal or broad events, as is described in Chapter 9 of this

thesis. As with the analysis of other microarray data types, permutations can be used

to determine whether there are signi�cant di�erences in copy number or LOH pro�les of

groups with di�erent features (e.g. in Nexus Copy Number software).



20 Chapter 1

Downstream data analysis

Deducing a biological interpretation from large lists of signi�cant genes may be challeng-

ing, and validation of all signi�cant genes is often very labor intensive. Several methods

have been developed which determine whether speci�c signal transduction pathways, bio-

logical processes, or other groups of genes with similar functions, are a�ected. Genes mak-

ing up such pathways or processes are often taken from public databases, such as the Gene

Ontology (GO) (61) or the Kyoto Encyclopedia of Genes and Genomes (KEGG) (62), or

are available as commercial software, such as Ingenuity Pathways Analysis (IPA, Ingenu-

ity Systems), which is manually curated. The hypergeometric test (a one-tailed Fisher's

exact test) is most often used to obtain information on the enrichment of signi�cant genes

in speci�c pathways or biological processes. This test determines whether there is more

overlap between the list of signi�cant genes and the set of genes of interest (e.g. the

pathway) than would be expected by chance. The hypergeometric test can be applied

on microarray data in IPA (used in Chapter 6) and in the Bioconductor topGO package

(used in Chapters 3 and 7) (63). A disadvantage of this simple test is that it requires a

hard de�nition of signi�cance (e.g. a p-value cut-o�), and discards information on the

exact p-values of the genes tested. The hypergeometric test also assumes independence

of genes, which is not accurately representing the biology of a cell, since the expression

of functionally related genes is often correlated. Because of this assumption, the hyper-

geometric test may understate the true p-values. It is therefore recommended to use a

very low p-value (e.g. 0.001 or lower) as cut-o� for signi�cance when applying this test.

Another problem of the hypergeometric test is that it assumes independence of categories.

GO terms are certainly not independent, as these terms are set up in a hierarchical struc-

ture of nodes, with parent terms representing a broader GO term, and child terms a more

speci�c subset of its parent terms (61, 64). Algorithms which can identify the GO term

which better represents the biological situation (signi�cantly a�ected genes) than other

terms from its neighborhood have been developed, such as the weight algorithm in the

topGO package (63).

A method which takes into account a continuous measure of signi�cance is gene set

enrichment analysis (GSEA) (65). This method ranks genes based on their associated

p-values and subsequently determines an enrichment score based on the rank of the genes

present and not present in a speci�c pathway or category. The signi�cance of this enrich-

ment score is subsequently tested by permuting phenotype labels to determine the null

distribution of the enrichment score.

Another approach to determine which biological pathways are signi�cantly a�ected

is the globaltest (used in Chapter 5). Based on a logistic regression model, this test

determines whether a prespeci�ed group of genes is di�erentially expressed, and thus

tests groups of genes instead of single genes (66). This test is particularly intended for

identifying gene sets for which many genes are associated with a phenotype in a small way.
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Using this approach may be especially fruitful in case no overall di�erential expression

is detected due to small sample sizes, as this approach signi�cantly reduces the multiple

testing problem (67). The globaltest has much more power than self-contained tests (tests

which compare a gene set with its complement), such as the hypergeometric test (68). To

apply the globaltest on GO terms, Goeman et al. also developed a method that preserves

the speci�c graph structure of the Gene Ontology (69). In addition, this algorithm can

be used in combination with follow-up data (67).

A �nal method to extract biological information from lists of signi�cantly a�ected

genes is performing network analysis. Networks are assembled de novo, based on con-

nectivity (e.g. binding or functional properties) between a�ected molecules. In IPA,

networks are assembled using decreasingly connected molecules from the signi�cant genes

in the dataset which is analyzed, and are annotated with functional categories, which are

manually curated. In contrast to pathway analysis, these IPA networks do not have direc-

tionality (but network analysis methods which include directionality between molecules

also exist). We used network analysis to interpret di�erential gene expression between

various histological subtypes of osteosarcoma (Chapter 3).

Supervised learning

Generating a prediction pro�le which can classify tumors based on mRNA expression or

speci�c copy number aberrations may also be used in microarray analysis of a cancer

dataset. Classi�cation may for example help to diagnose a tumor based on its microarray

data pro�le, or may predict event-free or overall survival of patients. Some examples of

supervised learning approaches are nearest shrunken centroids classi�cation (e.g. avail-

able in Bioconductor package pamr (70)), support vector machine (SVM) learning (e.g.

available in R package e1701 (71)), and random forest classi�cation (e.g. available in R

package varSelRF (72)).

In this thesis, we used nearest shrunken centroids classi�cation to develop a classi�er of

the main histological subtype of conventional osteosarcoma. We validated this classi�er

on an independent dataset, and applied it on data obtained from osteosarcoma model

systems (Chapter 3). Nearest centroids classi�cation determines centroids for each class

by dividing average expression of a gene signature by the standard deviation. New samples

are classi�ed to that speci�c class, of which the centroid is closest�in squared distance�

to the expression of the genes in the prediction pro�le. Nearest shrunken centroids is an

adaptation of this method�it shrinks each centroid toward the overall centroid for all

classes by a certain threshold. This shrinkage automatically selects genes and reduces the

e�ect of noisy genes. The pro�le with the lowest prediction error is then selected as the

�nal classi�er. Internal cross-validation, which divides the training set in di�erent parts,

is subsequently used to compute a cross-validated error. This approach, however, leads

to an underestimation of the error rate, as the same data is used to select features and to
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estimate the error rate. An extra external cross-validation step would thus be appropriate,

or, given that there is often only a limited number of samples available for training, the

feature selection (genes to include in the pro�le) should be newly computed for each

separate cross-validation step (73, 74). External cross-validation is performed in order

to correct for over�tting of the data by the model. This can be done on an independent

cross-validation set, or by using methods such as one-leave-out cross-validation (75). Also

regularization may be used to prevent over�tting, but this is not often used in microarray

data analysis, and is therefore beyond the scope of this thesis.

In prediction pro�ling, the way the distance between the actual sample and the class

is calculated may be very di�erent, and this has important consequences for biological

interpretation of the pro�le. In a prediction pro�le where the magnitude (e.g. of gene

expression) is important, Euclidian distance is best used, while correlation (e.g. Pearson

or Spearman) coe�cients are more useful when the way the genes depend on each other,

so the pattern of expression, is important for the speci�c gene list (76). This may be one

of the reasons why the CINSARC pro�le, a gene expression signature which was generated

on sarcomas (77) and which uses Spearman correlation as a measurement for distance, did

not show signi�cant results on our osteosarcoma dataset (centroids for classi�er needed

to be retrained, because we used data of a di�erent platform than the original CINSARC

signature, Kuijjer et al., unpublished results), while the Carter signature (78), which clas-

si�es data based on average expression of genomic instability genes, could predict for

metastasis-free survival in our data (as shown in Chapter 7).

Data integration

As explained in the next chapter, the integration of di�erent data types is particularly

relevant when studying a highly genomically unstable tumor. We used superimposed in-

tegration of mRNA expression and kinome pro�ling data in Chapter 6. This approach

was taken, because kinase activity usually does not have a direct downstream e�ect on

mRNA expression (generally, there are several intermediate molecules which confer sig-

naling), and the other way around. It may therefore be more relevant to determine how

these data complement each other, instead of identifying only overlapping genes.

For integration of copy number and gene expression (Chapters 7�8) data, we identi�ed

genes with aberrations occurring in both data types, as the copy number state of a gene

can have a direct e�ect on its expression. We speci�cally chose to identify cooccurrence

and not correlation of copy number and expression signals, because these signals do not

have to show a linear correlation, i.e. correlation will miss our genes which are also

regulated at other dimensions, such as epigenetics and feedback mechanisms.

A conservative approach was taken�only genes which were signi�cantly di�erentially

expressed between osteosarcoma tumors and presumed osteosarcoma progenitors were

analyzed, and the cut-o� for recurrence was set to 35%. We tested this approach in a
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paired and nonpaired way to determine cooccurrence of copy number aberrations and

di�erential expression in Chapter 7, and used paired analysis of cooccurrence of LOH,

copy number gains, and di�erential expression in Chapter 8.

Aims and outline of this thesis

In this thesis, a systems biology approach to study high-grade osteosarcoma is described.

Chapter 1 starts with an introduction on cancer genomics and high-grade osteosarcoma,

and introduces the EuroBoNeT high-grade osteosarcoma database, on which the research

in the following chapters is based. In addition, di�erent platforms used in this thesis

are described, and di�erent types of high-throughput data analyses are explained (this

chapter).

In Chapter 2, published literature on microarray studies on high-grade osteosarcoma

is reviewed. This review also discusses challenges in high-throughput data analysis of os-

teosarcoma and introduces di�erent model systems which have been used in osteosarcoma

research. In addition, information on di�erent comparative analyses and a rationale for

integrating di�erent data types are given. The review concludes with a section on how

bioinformatics can be translated into functional studies.

The following six chapters of the thesis describe the work which has been performed

to answer di�erent research questions regarding osteosarcoma biology and possible tar-

gets for therapy. Speci�cally, we aimed to study molecular di�erences between clinically

di�erent tumors, such as tumors of di�erent histological subtypes, and of tumors with

di�erent metastasis-free survival pro�les. These research questions are answered in Chap-

ters 3 and 4, respectively. In addition, in Chapter 3, a histological subtype-speci�c gene

expression pro�le is tested on osteosarcoma model systems. High-grade osteosarcoma is

also compared with controls, in order to detect what signal transduction pathways may

be targeted in osteosarcoma to identify potential adjuvant drugs for treatment of this

aggressive tumor (Chapters 5 and 6). Chapter 5 reports on the analysis of gene expres-

sion data, while Chapter 6 determines active pathways based on kinome pro�ling, and

integrates gene expression data with kinome pro�ling results. Finally, we performed in-

tegrative data analysis of SNP and gene expression data, to detect osteosarcoma driver

genes (Chapters 7 and 8). In Chapter 7, copy number aberrations are integrated with

overexpression and downregulation, while in Chapter 8 we speci�cally look at the combi-

nation of Loss of Heterozygosity (LOH), DNA copy number gain, and di�erential mRNA

expression.

In Chapter 9, results described in Chapters 3 to 8 are discussed and future perspectives

for high-throughput data analysis on high-grade osteosarcoma are given. Chapter 10

includes a Dutch summary, Curriculum Vitae, and a list of publications.
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Abstract

High-grade osteosarcoma is an extremely genomically unstable tumor. This, together with

other challenges, such as the heterogeneity within and between tumor samples, and the

rarity of the disease, renders it di�cult to study this tumor on a genome-wide level. Now

that most laboratories change from genome-wide microarray experiments to Next-Gener-

ation Sequencing it is important to discuss the lessons we have learned from microarray

studies. In this review, we discuss the challenges of high-grade osteosarcoma data analy-

sis. We give an overview of microarray studies that have been conducted so far on both

osteosarcoma tissue samples and cell lines. We discuss recent �ndings from integration of

di�erent data types, which is particularly relevant in a tumor with such a complex genomic

pro�le. Finally, we elaborate on the translation of results obtained with bioinformatics

into functional studies, which has lead to valuable �ndings, especially when keeping in

mind that no new therapies with a signi�cant impact on survival have been developed in

the past decades.

Introduction

High-grade osteosarcoma, a rare, genomically complex and unsta-

ble tumor

High-grade osteosarcoma is the most prevalent primary malignant bone tumor. The dis-

ease occurs most often in children and adolescents and is the sixth leading cause of death

in children under the age of 15 years. Notwithstanding, osteosarcoma is a rare disease,

with an incidence of �ve to ten new cases per 1, 000, 000 per year (1, 2). Osteosar-

coma is composed of extremely genomically complex and unstable mesenchymal tumor

cells, generally exhibiting both complex clonal and numerous nonclonal aberrations (1),

which are characterized by the direct production of osteoid (2, 3). The tumor is highly

aggressive, with distant metastases developing in approximately 45% of all patients (4)

although patients are treated with intensive neoadjuvant treatment consisting of high

doses of multiple chemotherapeutic drugs. Better surgery has improved survival slightly

but no other signi�cant improvement has been made since decades, and increasing dose

or the administration of more than three chemotherapeutic regimens does not increase

overall survival (5�7). Hence, new therapeutics are seriously needed. Studying the tumor

biology and pathology in a systematic manner can result in a better understanding of

osteosarcomagenesis and can potentially identify new targets for treatment.
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Caveats and challenges

Several challenges and caveats are encountered when studying a rare, highly genomically

unstable tumor on a genome-wide level. The �rst challenge is apparent when collecting

osteosarcoma tumor samples. Osteosarcoma is a rare disease and therefore often large

interinstitutional e�orts have to be achieved to collect the substantial amount of samples

that is needed for analyses in computational biology. For most purposes, studying os-

teosarcoma pretreatment diagnostic biopsies is preferred over using resection material of

the primary tumor. Presurgery chemotherapy causes substantial necrosis, even in poor

responders, thereby rendering the tissue unsuitable for high quality nucleic acid retrieval.

Moreover, biopsies are more representative of the state of the tumor before any treatment

as chemotherapy changes the distribution of subclones present in the primary tumor, and

can cause clonal evolution (8). Biopsies are taken to establish a histopathological diag-

nosis, and are unfortunately often very small and not always available for research. In

addition, material is often collected retrospectively, which can introduce heterogeneity

owing to, for example, di�erent treatment procedures, unless patients are collected who

have been enrolled in the same clinical trial. Thus, the collection of clinical data and the

grouping of clinical parameters have to be carried out very carefully. For a rare entity

such as osteosarcoma, collaborations are indispensable to collect signi�cant cohorts, an

example of this being the European Network of Excellence EuroBoNeT, in which various

European institutes collaborated to collect a large, homogeneous set of, among other bone

tumors, high-grade osteosarcoma biopsies.

Primary osteosarcoma is subdivided into numerous di�erent low- and high-grade sub-

types (9). In this review, we concentrate on high-grade conventional osteosarcoma, which

is by far the most prevalent variant. Although there is often intratumor heterogeneity,

high-grade conventional osteosarcoma can be grouped into various histological subtypes,

based on the produced extracellular matrix of the tumor (9). Osteoblastic, chondroblastic

and �broblastic osteosarcoma are the most common histological subtypes of high-grade

conventional osteosarcoma. Some correlation of the distinct histological subtypes to spe-

ci�c clinical outcomes has been observed (10, 11) and it may thus be di�cult to collect

a homogeneous set of samples. In fact, often it is not clearly described which exact his-

tological subtypes are used in a speci�c study, and in what percentages these subtypes

are present in the data set. In addition, the subclassi�cation is hindered by the occur-

rence of mixed cases containing two di�erent matrix types. Nonetheless, a concordance

of 98% has been found between the histological subtype of osteosarcoma biopsies and the

corresponding resections (10).

A general problem in studying tumor cell biology is that the true cell of origin is

often not de�ned, rendering it di�cult to select a representative control tissue or control

cells. Osteosarcoma cells are osteoblast-like cells of mesenchymal origin. Of the di�erent

histological subtypes that exist, multiple subtypes can be present within a single tumor.
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Considering the di�erentiation capacity of the mesenchymal stem cell (MSC), this cell

type is the most probable candidate for being the osteosarcoma progenitor (12, 13). It

was recently found that osteosarcoma tumors can be spontaneously formed when mouse

MSCs are transferred into mice (14, 15) and zebra�sh (16, 17). This does, however, not

exclude osteoblasts as putative progenitor cells, as osteoblasts might redi�erentiate into

the primitive osteoblast-like tumor cells of osteosarcoma.

Osteosarcoma models

As collecting fresh frozen osteosarcoma tumor samples can be a challenge, performing

analyses on data derived from osteosarcoma cell lines or xenografts may be a good al-

ternative (17). Osteosarcoma cell lines are frequently used in biological studies, because

they generally grow fast and are easy to maintain in culture and hence osteosarcoma cell

lines are easily available. One caveat of using cell cultures is that slight di�erences in

culture conditions, for example the percentage of cells in the culture dish or �ask, or the

medium that is used, can lead to signi�cant di�erences in protein expression or signal

transduction pathway activities, and these speci�c conditions may di�er per cell line. Us-

ing a large panel of cell lines cultured under standard settings can overcome this problem.

Cell culture may furthermore introduce additional mutations and genomic aberrations in

the cell genome, because of selection based on the in vitro conditions (18), but in general,

cell lines are reported to adequately represent the tumor from which they are derived. In

vitro, they preserve the genetic aberrations of the parent tumor, while acquiring additional

locus-speci�c alterations (19).

A panel of 19 osteosarcoma cell lines was recently characterized genetically by MLPA

on 38 tumor suppressor gene loci (20). A screen for TP53 mutations, MDM2 ampli�-

cation, CDKN2A/B deletion and genomic deletions of 38 additional tumor suppressor

genes was performed on these cell lines. As three cell lines of this panel�HOS, 143B and

MNNG-HOS� have common ancestry, we report the following percentages based on 17

cell lines. Homozygous deletion of the CDKN2A/B locus was detected in 35%, whereas

hemizygous deletion of this locus was found in 24% of osteosarcoma cell lines. An addi-

tional homozygous deletion was found for TP73 in one cell line. Mutation in TP53 was

detected in 41%, whereas MDM2 ampli�cation was detected in 17% of cell lines. These

percentages are higher than those in osteosarcoma tumor tissues that are reported in the

previously published literature (21), which may be explained by an advantage for primary

tumor cells harboring such mutations to be e�ectively immortalized, or by the acquisi-

tion of additional mutations owing to long-term culture. MDM2 ampli�cation and TP53

mutations were mutually exclusive in this cell line panel. This has also been observed

in osteosarcoma tumor data (22). The di�erentiation capacity of this cell line panel has

been determined as well (23). All 19 cell lines were able to di�erentiate toward at least

one of the three tested�osteoblastic, chondroblastic and adipocytic�lineages. Most cell
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lines (14/19) could di�erentiate to at least two lineages, whereas 3/19 cell lines had full

di�erentiation capacity.

In vivo osteosarcoma model systems include transplantation of a human tumor in

mice (24, 25), subcutaneous or orthotopically injections of osteosarcoma cells or late-

passage transformed MSCs into mice (15) or zebra�sh (16). Transgenic mouse models of

osteosarcoma can be developed by overexpression of c-fos (26), or conditional inactivation

of TP53 and RB1 (27). These di�erent models have been shown to resemble osteosarcoma

phenotypically (15, 16, 23�28). For example, subcutaneous and intramuscular injection

of osteosarcoma cells in nude mice resulted in high-grade sarcoma, resembling tumors

which produced osteoid (23) for 8/19 cells from the above-described panel. The in vivo

lineage-speci�c di�erentiation capacity of these cells, however, was limited, re�ecting the

importance of stomal or microenvironmental stimulation for this process.

As with cell lines, xenograft tumor cells may acquire additional changes owing to selec-

tion, and often, xenografts lose matrix after several passages (24). This will probably not

have a signi�cant e�ect on genomic pro�les, but does in�uence expression and methyla-

tion patterns. High-resolution microassay-based array comparative genomic hybridization

(aCGH) including nine osteosarcoma patient�xenograft pairs showed that genomes of hu-

man tumors transplanted into immunode�cient mice, which were repeatedly passaged in

new mice, where comparable to genomes of their tumor of origin, with the acquisition of

only a small number additional signi�cant changes in the xenograft genomes (25). Di�er-

ent microarray studies have shown that osteosarcoma cell lines and xenografts resemble

the primary tumor from which they are derived. Gene expression pro�ling of a subset of

the EuroBoNeT cell line panel, for which the original histological subtype of the primary

tumor was known, and of osteosarcoma xenografts and pretreatment biopsies showed that,

despite the lower amounts of matrix, histological subtypespeci�c mRNA signatures are

retained in these model systems, and therefore may be a useful tool for expression analysis

(Chapter 3, (28)). Despite the similarities between genome and expression pro�les of the

model systems described above and the tumors of origin, the absence (cell lines) or lower

amounts (xenografts) of stromal cells and extracellular matrix, the absence of interaction

with the immune system (cell lines and some xenograft models) and the higher degree

of clonality remain important limitations for studying tumor biology using these model

systems.

Genome wide pro�ling to study osteosarcoma

In the next sections, we describe di�erent methods to analyze speci�c types of microar-

ray data, and give examples of how results from bioinformatics can be translated into

functional studies. This review is not aiming to give a comprehensive overview of all

genome-wide studies on osteosarcoma, but rather illustrates and summarizes the major

�ndings on DNA/RNA microarray reports. A summary of these �ndings is provided in
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Table 2.1. With the purpose to review bioinformatic analyses on osteosarcoma, we only

review studies where at least three samples were included, and only refer to articles where

robust statistical analyses have been applied.

Single platform analyses of osteosarcoma genome-wide

data

Di�erent approaches for single-way analyses

In a typical supervised genome-wide data analysis, signi�cant di�erences, for example

signi�cantly di�erentially expressed genes/miRNAs or di�erential methylation, are deter-

mined between two or more groups of samples. These groups can exist of di�erent clinical

parameters, of tumor samples and their nontumorigenic counterpart or of experimentally

induced and noninduced samples as shown in Figure 2.1. Copy number pro�ling data

are analyzed somewhat di�erently, as copy number pro�les of tumor samples do not nec-

essarily have to be compared to their speci�c nontumorigenic counterparts, but can be

compared to, for example, a public reference set, such as HapMap samples (29). Usually,

a cuto� for frequency is used to determine whether an ampli�cation or deletion is recur-

rently present in a speci�c region. Unsupervised analysis, on the other hand, can give

information on quality of the data, and on whether there are certain subgroups within

the tumor samples that behave di�erently.

Each of these distinct ways to analyze genome-wide data has been applied to high-

grade osteosarcoma data sets. An overview of these di�erent approaches in osteosarcoma

on gene expression, microRNA (miRNA), methylation and copy number data is given

in the following paragraphs. Functional veri�cation of the results obtained with these

studies will be discussed in a later section of this review.

Genome-wide gene expression data, comparison of clinical param-

eters

Comparisons between di�erent clinical subgroups of osteosarcoma have resulted in a pre-

diction pro�le that can classify the main histological subtypes of conventional high-grade

osteosarcoma in biopsy material, but also in cell lines and in osteosarcoma xenografts

(Chapter 3, (28)). Protein interaction networks illustrated that chondroid matrix-associ-

ated proteins were overexpressed in chondroblastic osteosarcoma, whereas NFκB�STAT5

signaling showed higher expression in �broblastic osteosarcoma. The absence of a speci�c

network for osteoblastic osteosarcoma indicates that the features of the main osteoblast-

like cell and of the osteoid matrix are present in tumors of all three main histological

subtypes.
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Figure 2.1: Di�erent supervised comparisons in genome-wide data analysis. Flow chart describ-
ing single-way bioinformatic analyses that are most typically performed on genome-wide data.
For mRNA, miRNA and methylation data analysis, the comparative analysis usually exists of
tumor samples versus nontumorigenic counterparts, of di�erent groups of tumor samples, de�ned
by clinical parameters or samples which are experimentally altered compared to samples which
are not, although tumor samples of a speci�c group are also sometimes compared to a pool of
all samples (not illustrated in this �gure). Copy number data are most often compared to a
reference set, which may be an in-house, or a public reference set, and which does not have to
consist of the nontumorigenic counterpart of the tumor that is studied. Additional comparative
analyses may determine the di�erences between di�erent subgroups within the samples that are
studied. Although for mRNA, miRNA and methylation data, often signi�cant di�erential ex-
pression/methylation is returned by statistical tests, for copy number data researchers mostly
look at frequency of the aberration in the studied groups.
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A second example of a comparison between di�erent clinical parameters is the com-

parison of samples with di�erent outcomes in event-free survival or overall survival. It is

important to note that when designing an analysis for such a study, a uniform set of clini-

cal follow-up parameters should be employed, instead of directly comparing patients with

or without metastases, or patients who are alive or deceased. In one study, di�erential ex-

pression was determined between biopsy material of patients developing metastases within

5 years and patients who did not develop metastases within this time frame. This study

demonstrated that, in osteosarcoma, an expression pro�le associated with macrophages

correlated with better overall survival (Chapter 4, (30)). To identify genes playing a role

in metastasis, comparisons between osteosarcoma cell lines that can or cannot metastasize

upon passaging into mice have also been made. A recent study identi�ed downregulation

of IGFBP5, or insulin-like growth factor binding protein 5, in the metastatic cell line

MG63.2 and in tumors derived from this cell line (31). Interestingly, this gene was also

signi�cantly downregulated in our analysis, comparing osteosarcoma biopsies with control

tissues (32)). Metastasis progression can be studied by comparing metastatic resections

to the primary tumor. This has been performed in one study, where higher expression of

genes involved in immunological processes was detected in the metastasis samples (33).

This may correlate with our �ndings that more CD14+ cells are present in metastatic

lesions than in pretreatment biopsies (30).

Another important clinical parameter that has been studied in human osteosarcoma is

response to chemotherapy, which is predictive for overall survival (34�36). Di�erentially

expressed genes discriminating between good and poor responders to chemotherapy have

been detected by di�erent groups, but with little consensus in the gene lists. Most studies

did not use robust statistics with correction for multiple testing, a shortcoming that is

too often seen in biomedical research (37). When di�erential expression was determined

between poor and good responders in two studies where correction for multiple testing

was applied (Chapter 3, (28), and (32)), no signi�cant genes were detected although

larger sample sizes and homogeneous data sets were used (17 poor vs 8 good responders

in Cleton-Jansen et al. (32) and 36 poor vs 33 good responders in Kuijjer et al. (28)).

Although these sample sizes are not comparable to what is often used for studying less

rare tumor types, the distribution of the nonadjusted p-values did not show any trend

for the lower p-values to be more prevalent (Additional Figure 2.1). This indicates that

in a comparison between two groups no e�ect is detected, and increasing sample size will

not lead to a signi�cant increase in power (38). A major issue with comparing responders

with nonresponders in gene expression analysis is that resistance to chemotherapy may

be caused by the alteration of a single gene. A speci�c gene causing resistance in a subset

of samples will not be picked up by a comparison of responders and nonresponders (39).

In human osteosarcoma xenografts, signi�cant di�erential expression has been detected

between good and poor responders to single chemotherapeutic agents (40). A pitfall of

this study, however, was that the studied sample set included xenografts derived from
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biopsies, resections as well as from metastases. Surviving cells of pretreated tumors are

resistant to chemotherapy. Thus, the di�erences in gene expression between poor and good

responders to these chemotherapeutic agents may actually re�ect an e�ect of presurgery

therapy. It was indeed demonstrated that xenografts of these implanted pretreated tumors

often responded poorly to multiple chemotherapeutic agents (41).

Genome-wide gene expression data, comparison with control tis-

sues

mRNA expression levels in osteosarcoma samples can also be compared to expression

in control tissues. The control tissues that have been used for this purpose are normal

bone, osteoblastoma, osteoblasts, MSCs, or, for example, a pool of di�erent cell lines.

One comparison of high-grade osteosarcoma biopsy specimens with control samples is de-

scribed in Cleton-Jansen et al. (32), who made di�erent comparisons of 25 osteosarcoma

biopsies with �ve osteoblastomas, with �ve MSCs and with �ve osteoblast cultures. Gene

set enrichment detected cell-cycle regulation and DNA replication pathways as the most

signi�cantly a�ected pathways in osteosarcoma. A DNA replication network was also

identi�ed in an analysis of gene expression microarrays of six osteosarcoma biopsies as

compared to one osteoblast culture although a caveat of this study is the small sample

size of the control set (n = 1) (42). A larger set of osteosarcoma biopsies (n = 84) was

compared to 12 MSCs and separately with three osteoblast cultures (Chapter 7, (43)).

Intersection of the di�erentially expressed genes in both analyses identi�ed antigen pro-

cessing and presentation as well as angiogenesis as signi�cantly di�erent between tumor

samples and control cell lines, most probably because of the amount of stroma present in

the tumor samples. In addition, altered apoptosis and signal transduction were detected.

Genome-wide gene expression data, experimentally induced di�er-

ences

We give a �nal example of genome-wide gene expression analyses in osteosarcoma, which is

experimentally induced di�erential expression. This is, for example, reported in the study

by Kansara it et al. (44), who compared a set of �ve human osteosarcoma cells treated with

a demethylating agent to untreated cells, after having shown that demethylating agents

can induce growth arrest and di�erentiation in osteosarcoma. The list of candidate genes

was then �ltered for expression in human osteoblasts and loss of expression in primary

osteosarcomas. This screen identi�edWIF1, a Wnt inhibitory factor, as a candidate tumor

suppressor in osteosarcoma.
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microRNA expression data

Several studies have been published, describing miRNA microarray data analysis on os-

teosarcoma tissues or cell lines as compared to osteoblasts or normal bone, but in most

studies no robust statistics were applied. Jones et al. (45) and Namløs et al. (46) pub-

lished the only miRNA microarray studies in which false discovery rate corrections were

applied. In the article by Jones et al. (45), miRNA expression was compared between

18 osteosarcoma resections or biopsies and 12 normal bone samples, which lead to the

detection of a downregulated tumor suppressive miRNA and of a prometastatic miRNA

(these miRNAs will be discussed in the Integrative analyses section). Namløs et al. (46)

compared miRNA expression in 19 osteosarcoma cell lines with expression in normal bone

(n = 4) and integrated these results with mRNA expression data. Results from this study

will therefore be discussed in the Integrative analyses section. Sarver et al. (47) published

an online accessible Sarcoma miRNA expression database (S-MED), which includes 15

osteosarcoma samples and six normal bone samples.

Genome-wide methylation data

Only three studies have been published so far on genome-wide methylation in high-grade

osteosarcoma (42, 48, 49). These studies describe an integrative analysis with di�erent

data types, without presenting conclusions on speci�c genes, or on results obtained with

gene set enrichment on single-way methylation analyses although Kresse et al. (49) found

overall more hypermethylation in osteosarcoma cell lines than hypomethylation. We will

discuss the results from these studies under the Integrative analysis section of this review.

Genomic copy number data

The genomic instability of high-grade osteosarcoma, which is more pronounced in this

tumor than in many other tumor types, hampers the identi�cation of speci�c genomic

regions. Several array comparative genomic hybridization (aCGH) studies (25, 50�55)

and single-nucleotide polymorphism (SNP) microarray studies (43, 56�59) on osteosar-

coma specimens have been published. Copy number pro�les clearly show that high-grade

osteosarcoma samples are characterized by a high level of aneuploidy, and that there is

heterogeneity between di�erent tumor samples. There is a general consensus about copy

number alterations for some regions, such as gains on chromosome arms 6p, 8q and 17p,

which have been detected by classical karyotyping and conventional CGH as well (2, 60),

but it is di�cult to directly compare studies as the de�nition of a recurrent alteration

varies.

In three separate studies, a focal deletion of the region 3q13.31, which harbors a

putative tumor suppressor gene, LSAMP, was detected (54, 56, 59). siRNA-mediated

silencing of LSAMP promoted proliferation of normal osteoblasts (59), and low expression
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of the gene was associated with poor overall survival in one of these studies (54). Gene

set enrichment on an aCGH study showed an enrichment of ampli�ed genes of the VEGF

signaling pathway of which VEGFA ampli�cation also correlated with poor prognosis,

showing that gene set enrichment on copy number data can identify pathways associated

with tumorigenesis (53).

Copy number pro�les of osteosarcoma cell lines roughly resemble pro�les of tumor

biopsies, but show an increased overall aneuploidy (Kuijjer et al., unpublished data) and

increased expression of genomic instability genes (Chapter 7, (43)). Also, as described

above, genomic pro�les of xenografts are highly similar to primary tumors although some

deviations may occur owing to additional genetic alterations during passaging, or owing

to general tumor progression (25). In some data sets, speci�c copy number alterations

have not been detected for di�erent clinical groups of interest (43) although both a high

degree of genomic alterations and a loss of heterozygosity were found to be associated

with poor event-free survival (43, 58). Yen et al. (56) found that speci�c aberrations

were more frequent in recurrences and metastases than in primary tumors�deletion of

6q14.1-q22.31 and 8p23.2-p12 and ampli�cation of 8q21.12-q24.3 and 17p12�and vice

versa�Xp11.22 gain and 13q31.3 deletion (56).

Integrative analyses

For high-grade osteosarcoma, integration of di�erent data types is of speci�c importance.

Integrative analysis can narrow down the large lists of signi�cantly a�ected genes to a

gene list containing the major tumor driver genes. An integrative approach on copy

number and gene expression data, for example, typically returns a more speci�c list of

driver genes because passenger- and tissue-speci�c genes will be largely eliminated (61).

Di�erent methods exist for the integration of di�erent types of data. Figure 2.2 shows an

overview of direct dependencies between copy number, methylation, miRNA and mRNA

data. Comparison of data can be performed nonpaired or paired, and by determining

Copy
number

miRNA

Methylation

mRNA

Figure 2.2: Flow chart showing direct
dependencies between di�erent data types,
which can be utilized for the interpretation
of integrative analyses. Arrow-headed and
bar-headed lines show positive and negative
in�uences, respectively. DNA copy num-
ber positively a�ects miRNA and mRNA
copies, whereas miRNA expression can cause
downregulation of target mRNAs, and DNA
methylation can inhibit transcription.
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correlation or cooccurrence.

Cooccurring genomic alterations and gene expression changes have been recently de-

termined to identify putative driver genes in high-grade osteosarcoma (Chapter 7, (43)).

A paired integrative analysis of 29 pretreatment biopsies returned a list of 31 genes with

recurrence frequency of at least 35%, which showed an overall signi�cant upregulation as

compared to control cell lines in case of a gain, and downregulation in case of a deletion.

Genes a�ecting genomic stability were overrepresented, which may point to a role of this

process in osteosarcoma. Nonpaired analysis on the same series, but extended with more

cases in both the SNP and the gene expression data sets resulted in a smaller set of sig-

ni�cantly a�ected genes, with substantial overlap with the list of genes detected by the

paired analysis, thereby showing that the paired analysis was more powerful on this data

set. This is especially of interest for the data analysis of osteosarcoma pretreatment biop-

sies because these samples are rare. By performing a paired analysis, fewer samples can

be used. Nonpaired integrative analysis of high-level ampli�cations in 22 osteosarcoma

specimens with gene expression data of eight osteosarcoma xenografts as compared to 19

normal tissue controls identi�ed 43 genes with high-level ampli�cation and overexpression

in osteosarcoma. CCNE1, the gene encoding for cyclin E1, showed correlation of copy

number levels and gene expression in an additional panel of ten osteosarcoma cell lines,

and therefore could play an oncogenic role in osteosarcoma (55).

miRNA expression data can be integrated with mRNA expression data to determine

whether the miRNAs of interest a�ect mRNA expression of their target genes. This is

generally performed by correlation of expression levels, as was performed by Baumhoer

et al., (62) Namløs et al. (46) and Jones et al. (45) (discussed above). The latter sub-

sequently performed pathway analysis on target genes of the detected di�erentially ex-

pressed miRNAs, which illustrated the e�ects of these miRNAs on transcriptional reg-

ulation, cell-cycle control and known cancer signaling pathways (45). In the study by

Namløs et al. (46), cell line miRNA data were integrated with mRNA targets which

were signi�cant in both osteosarcoma pretreatment biopsies and cell lines. Among the

inversely correlated miRNA/mRNA pairs, miRNAs regulating TGFBR2, IRS1, PTEN

and PI3K subunits were detected. Methylation data are also typically integrated with

mRNA expression data to evaluate the e�ect of the methylation on gene expression, but

few studies described two-way comparisons of methylation and mRNA microarray data

in osteosarcoma. Kresse et al. (49) detected hypermethylation and underexpression of

chemokine ligand 5 (CXCL5) by two-way comparison in both osteosarcoma cell lines and

tumor samples.

Integration of more than two di�erent data types is reported by Sadikovic et al. (48) in

two articles, where copy number, methylation and gene expression data were integrated.

In one of these articles, the authors described cooccurrent epigenetic, genomic and gene

expression changes in two osteosarcoma cell lines as compared to an osteoblast culture,

and detected a region of gain on chromosome 8q encompassing the c-MYC oncogene,
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which was also detected in a network analysis, con�rming overexpression and hypomethy-

lation of genes connected to c-MYC. In the second article, the authors used the same

integrative approach to perform a three-way analysis on �ve osteosarcoma pretreatment

biopsies, and to compare gene regulation networks of single-way analyses including more

samples. In this way, a number of candidate genes were characterized, including RUNX2,

a transcription factor involved in osteoblastic di�erentiation (42). A shortcoming of both

studies, however, is that as a control for methylation and mRNA expression in osteosar-

coma, material from only one osteoblastic culture was used. Another integrative analysis

on copy number, methylation and mRNA data reported 350 genes, showing two types

of aberrations (e.g. gain and overexpression, or hypermethylation and underexpression).

This set of genes was enriched in genes with a function in skeletal system development

and extracellular matrix remodeling, such as RUNX2 and DLX5 (49).

Translating bioinformatics into functional studies

Functional validation of candidate genes

Several of the candidate tumor suppressor genes and oncogenes that have been identi-

�ed with microarray studies have been functionally validated. IGFBP5 was signi�cantly

downregulated in metastatic cell lines and derivative tumors as compared to nonmetastatic

cell lines, and also showed lower protein expression in metastatic lesions than in primary

tumor samples of osteosarcoma patients. The e�ects of overexpression or knockdown of

IGFBP5 on cell proliferation, migration, wound healing and invasion con�rmed the role

of this IGF-binding protein in preventing metastasis, which was furthermore validated in

a xenograft model (31).

The candidate tumor suppressor gene WIF1 was found to regulate di�erentiation and

suppress cell growth in vitro. WIF1 knockout mice developed radiation-induced osteosar-

coma earlier than their littermate controls (44). From miRNA expression pro�ling studies,

miR-16 was validated as a tumor suppressive miRNA, whereas miR-27a was validated as

a prometastatic miRNA, using colony formation assays, and wound healing and invasion

assays, respectively. Overexpression of these miRNAs in vivo resulted in smaller tumors

for miR-16, and in higher numbers of pulmonary metastases for miR-27a (45).

Functional validation of pathway activity and enriched gene sets

Pathways important in the development of bone biology have been returned from gene ex-

pression analysis as compared to controls. Genes upstream canonical Wnt signaling were,

for example, found to be downregulated as compared to osteoblasts (32). A subsequent

functional study, where nuclear β-catenin staining was determined on osteosarcoma biop-

sies, and Wnt luciferase activity and mRNA expression of the speci�c downstream Wnt
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target gene Axin2 were measured in cell lines, illustrated that canonical Wnt signaling is

indeed often downregulated in osteosarcoma (63). Loss of canonical Wnt signaling causes

failure to commit to di�erentiation of MSCs, as has been reported in malignant �brous

histiocytoma (also undi�erentiated pleomorphic sarcoma), which could be reprogrammed

by re-establishing Wnt signaling (64). Also in osteosarcoma, reactivation of the Wnt sig-

naling pathway with a GSK3β inhibitor triggered a more di�erentiated phenotype, or a

reduced proliferation capacity, depending on the osteosarcoma cell line (63).

These results seem contradictive to the �nding that WIF1 can inhibit cell growth

and increase di�erentiation in osteosarcoma cells (44). A possible explanation for this

discrepancy is that WIF1 inhibits both canonical and noncanonical Wnt signaling (65),

whereas GSK3β also plays a role in additional signal transduction pathways, such as

NFκB signaling (66). However, the role of Wnt signaling remains contradictory, as this

pathway was recently described to be active in multiple sarcoma subtypes, which also

included osteosarcoma (67). The use of di�erent methods to assess active Wnt signaling

may be the cause for the discrepancies between these studies.

TGF-β/BMP signaling was found to be a�ected in osteosarcoma by pathway analysis

on mRNA expression data. Activity of these pathways was validated by immunohisto-

chemistry of phosphorylated Smad1 and Smad2, and nuclear staining of these intracellular

e�ectors was detected in 70% of all osteosarcoma samples. Cases with very low or ab-

sent phosphorylated Smad2 had worse overall survival. In vitro pathway modulation did

not a�ect proliferation or di�erentiation, but lower TGFβ/BMP activity might a�ect the

prevention of metastasis in these patients (68).

The macrophage signature that was prominent upon comparing mRNA pro�les of

metastatic and nonmetastatic osteosarcoma was con�rmed by qPCR and immunohisto-

chemistry, and it was shown in additional cohorts that the sum of M1 and M2 types of

macrophages was predictive for better overall survival (Chapter 4, (30)). Treating pa-

tients with macrophage-activating agents may reduce metastases of osteosarcoma (69).

This is corroborated by clinical trials in dogs and humans, where treatment with mi-

famurtide, a macrophage-activating agent, has been reported to positively a�ect overall

survival (70, 71).

Conclusions and future directions

In this review, we have presented and discussed the results of studies on high-grade os-

teosarcoma material using bioinformatic analysis on microarray data of three or more

samples. Although studying such a very heterogeneous and genomically unstable tumor

remains challenging, and sample sizes are often small owing to the rarity of the disease,

structured microarray data analysis has provided interesting results and has given fur-

ther insight into the biology and progression of osteosarcoma. This information could

not have been obtained from functional studies only. Studying copy number aberrations,
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di�erential expression, and epigenetics in a genome-wide manner and subsequent integra-

tion leads to new hypotheses regarding tumor development and progression, which can

subsequently be validated in functional studies. This provides a motivation to take the

study of high-grade osteosarcoma to the next level, and to analyze this tumor into fur-

ther detail using Next Generation Sequencing methods, such as whole-genome, exome or

transcriptome sequencing. Whole-genome sequencing has recently been performed in a

study of di�erent cancer types, which showed that a subset of osteosarcomas (three out

of nine) undergo chromothripsis�a single catastrophic genomic instability event, result-

ing in hundreds of genomic rearrangements (72). This may explain the sudden onset of

osteosarcoma and the complexity and heterogeneity of the osteosarcoma genome. Next

Generation Sequencing will provide us with many forms of new information. In addition

to copy number changes, mutations, translocations, unannotated genes, splicing variants,

and so on, can be detected in a high-throughput manner. Transcriptome sequencing ex-

hibits higher sensitivity and increased dynamic range than mRNA expression microarray

data, thereby providing higher power for the detection of di�erential gene expression (73).

Now that the �rst Next Generation Sequencing studies including large numbers of high-

grade osteosarcoma are ongoing or being planned, it is important to re�ect on the previous

genome-wide studies in osteosarcoma. When keeping in mind the lessons we have learned

on study design in microarray data analysis�using a su�cient amount of samples, de�n-

ing homogeneous groups, and analyzing the data with robust statistics�we will be given

new opportunities in unraveling the biology of this complex disease and in providing future

clinical trials with robust data to incorporate into novel therapeutic strategies.
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Additional Figure 2.1: This �gure illustrates a histogram of nonadjusted, moderated p-values
and the empirical cumulative distribution of p-values for the studies of A, Cleton-Jansen et

al. (32) and B, Kuijjer et al. (28), both describing no signi�cant di�erence in mRNA expression
in pretreatment biopsies of patients with poor versus good response to chemotherapy. The �gures
were generated using Bioconductor package SSPA (38).
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Abstract

Background: Conventional high-grade osteosarcoma is a primary malignant bone tumor,

which is most prevalent in adolescence. Survival rates of osteosarcoma patients have not

improved signi�cantly in the last 25 years. Aiming to increase this survival rate, a variety

of model systems are used to study osteosarcomagenesis and to test new therapeutic

agents. Such model systems are typically generated from an osteosarcoma primary tumor,

but undergo many changes due to culturing or interactions with a di�erent host species,

which may result in di�erences in gene expression between primary tumor cells, and tumor

cells from the model system. We aimed to investigate whether gene expression pro�les of

osteosarcoma cell lines and xenografts are still comparable to those of the primary tumor.

Methods: We performed genome-wide mRNA expression pro�ling on osteosarcoma

biopsies (n = 76), cell lines (n = 13), and xenografts (n = 18). Osteosarcoma can be

subdivided into several histological subtypes, of which osteoblastic, chondroblastic, and

�broblastic osteosarcoma are the most frequent ones. Using nearest shrunken centroids

classi�cation, we generated an expression signature that can predict the histological sub-

type of osteosarcoma biopsies.

Results: The expression signature, which consisted of 24 probes encoding for 22 genes,

predicted the histological subtype of osteosarcoma biopsies with a misclassi�cation error

of 15%. Histological subtypes of the two osteosarcoma model systems, i.e. osteosarcoma

cell lines and xenografts, were predicted with similar misclassi�cation error rates (15%

and 11%, respectively).

Conclusions: Based on the preservation of mRNA expression pro�les that are charac-

teristic for the histological subtype we propose that these model systems are representative

for the primary tumor from which they are derived.

Background

Conventional high-grade osteosarcoma is the most frequent primary malignant bone tu-

mor, with a peak occurrence in children and adolescents and a second peak in patients

older than 40 years. It is a highly genetically unstable tumor, of which karyotypes often

show aneuploidy, high level ampli�cation and deletion, and translocations (1). No pre-

cursor lesion is known, although part of the osteosarcomas in patients over 40 years is

secondary, and is induced by radiation, chemicals, or by an underlying history of Paget's

disease of bone (2). The leading cause of death of osteosarcoma patients are distant metas-

tases, which despite aggressive chemotherapy regimens still develop in approximately 45%

of all patients (3). Overall survival of osteosarcoma patients has increased from 10�20%

before the introduction of preoperative chemotherapy in the 1970s, to about 60% (4).

However, survival has reached a plateau, and treating with higher doses of chemotherapy

does not lead to better overall survival (5).
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Osteosarcoma is a heterogeneous tumor type, which can be subdivided into various

subtypes (6). Conventional high-grade osteosarcoma is the most common subtype, and

can be further subdivided in di�erent histological subtypes, of which osteoblastic (50%),

chondroblastic (25%), and �broblastic osteosarcoma (25%) are the most frequent ones.

Other subtypes of conventional high-grade osteosarcoma, such as chondromyxoid �broma-

like, clear cell, epitheliod, sclerosing, and giant cell rich osteosarcoma, are extremely

rare (2). Often, osteosarcoma tissue contains a mixture of morphologically di�ering cell

types, and the classi�cation is based on the most dominant type (7). The three main

histological subtypes have di�erent survival pro�les. Patients with �broblastic osteosar-

coma have a signi�cantly better response to preoperative chemotherapy, which is a known

predictor for improved survival, than do osteoblastic osteosarcoma patients (8). Although

patients with chondroblastic osteosarcoma are relatively poor responders to preoperative

chemotherapy (7, 9), which is probably caused by the impermeability of the chondroid

areas of the tumor, there is a trend for these patients to have better 5-year survival

pro�les (7), but also a higher risk for late relapse (10).

The search for new (targeted) therapies to treat osteosarcoma is ongoing (11). Because

the disease is relatively rare, large e�orts need to be done in order to collect a considerable

amount of patient samples. Moreover, material is usually scarce due to necrosis in resec-

tions of the primary tumor, which is mostly present in tumors of patients who respond

fairly well to neoadjuvant chemotherapy. No necrosis is present in prechemotherapy biop-

sies, but these are often very small and are not readily available for research because they

are needed for diagnosis. Because of these limitations, model systems are widely used to

study osteosarcomagenesis and for preclinical testing of candidate drugs. Osteosarcoma

cell lines, especially SAOS-2 and U-2 OS are frequently used as model systems, remark-

ably not only to study osteosarcoma, but all types of in vitro cell biological processes, as

these cell lines grow fast and are relatively easy to transfect. Recently, the EuroBoNeT

(www.eurobonet.eu) osteosarcoma panel of 19 cell lines was characterized, which allows

us to study osteosarcoma in a high-throughput manner (12). This panel of osteosarcoma

cell lines has been shown to resemble osteosarcoma phenotypically and functionally (13).

Other established model systems include xenografts from primary tumors or osteosar-

coma cell lines in immunode�cient nude mice, which subsequently develop into tumors

resembling osteosarcoma (13�15). Osteosarcomagenesis can also be induced in mice by

radiation or orthotopically implanting chemical carcinogens (16). We have previously

shown that DNA copy number pro�les of xenografts resemble those of the corresponding

primary tumor, although some signi�cant changes for osteosarcoma were observed (15).

Established cancer cell lines are often thought not to be representative for the orig-

inating primary tumor. Since there could have been a selection for their propensity to

grow in culture, they lack interaction with stroma and may have acquired additional mu-

tations in culture (17). Xenografts do have tumor�host interactions, but can lose matrix

as well after several passages. It is not clear whether such changes in matrix composition

www.eurobonet.eu
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of xenografts are caused by the tumor cells, or by changes in mouse stroma (14). Despite

these biological di�erences, model systems are useful for studying signal transduction

pathways important in tumor biology, of which mRNA expression, as measured by qPCR

or using gene expression microarrays, is frequently used as a readout. It is therefore

highly important to determine whether gene expression levels of these model systems are

comparable to those of the corresponding primary tumors, which we aimed to do in this

study. We performed gene expression analysis on a panel of 76 conventional high-grade

osteosarcoma pretreatment biopsies. We set out to recapitulate representative expression

pro�les from primary untreated osteosarcoma biopsies in corresponding models i.e. cell

lines and xenografts. We could demonstrate that both model systems still express genes

that are characteristic for the speci�c histological subtype of the primary tumor. We

therefore endorse that, despite biological di�erences, both xenografts and cell lines are

representative model systems for studying mRNA expression in high-grade osteosarcoma.

Speci�c models may be identi�ed that would be appropriate to use for studies of speci�c

subgroups of osteosarcoma.

Methods

Ethics statement

All biological material was handled in a coded fashion. Ethical guidelines of the indi-

vidual European partners were followed and samples and clinical data were stored in the

EuroBoNet biobank. For xenograft experiments, informed consent and sample collection

were approved by the Ethical Committee of Southern Norway (Project S-06132) and the

Institutional Ethical Committee of Valencia University.

Patients cohorts

Genome-wide expression pro�ling was performed on pretreatment diagnostic biopsies of

76 resectable highgrade osteosarcoma patients from the EuroBoNet consortium (www.

eurobonet.eu). Clinicopathological details of these 76 samples can be found in Table 3.1.

Samples with a main histological subtype (n = 66) were selected for subsequent subtype

analyses. These 66 samples included 50 osteoblastic, 9 chondroblastic, and 7 �broblastic

osteosarcomas. Five additional osteosarcoma biopsies (1 chondroblastic and 4 osteoblas-

tic osteosarcomas), 12 mesenchymal stem cell (MSC) and 3 osteoblast cultures, and 12

chondrosarcoma biopsies were used for validation.

www.eurobonet.eu
www.eurobonet.eu
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Osteosarcoma cell lines

Out of the EuroBoNeT panel of 19 cell lines, 13 cell lines were recorded to belong to a

main histological subtype. This set of 13 cell lines contained 4 cell lines derived from

�broblastic, and 9 cell lines derived from osteoblastic osteosarcomas. The 13 osteosar-

coma cell lines IOR/MOS, IOR/OS10, IOR/OS14, IOR/OS15, IOR/OS18, IOR/OS9,

IOR/SARG, KPD, MG-63, MHM, OHS, OSA, and ZK-58 were maintained in RPMI

1640 (Invitrogen, Carlsbad, CA, USA) supplemented with 10% fetal calf serum and 1%

Penicillin/Streptomycin (Invitrogen) as previously described (12). Clinical details of the

tissue from which these cell lines were derived are shown in Table 3.1 and are described

previously (12).

Osteosarcoma xenografts

The osteosarcoma xenograft model is described in Kresse et al. (15). In short, human

tumors were implanted directly from patient samples and successively passaged subcuta-

neously in nude mice. Eighteen di�erent xenografts were used, of which 3 were derived

from chondroblastic, and 15 from osteoblastic osteosarcomas. Clinical data on primary

tumor samples and xenograft passages that were used are shown in Table 3.1.

Determination of histological subtypes

Histological subtyping was performed by two pathologists (PCWH, EH) on hematoxylin

and eosin (HE) stained slides of all biopsies and of all primary tumors from which the

osteosarcoma cell lines and xenografts were derived. Osteoblastic, chondroblastic, and �-

broblastic osteosarcoma samples were selected for further study. Other subtypes (anaplas-

tic, chondromyxoid �broma-like, �broblastic MFH-like, giant cell rich, pleomorphic, and

sclerosing osteosarcoma) were excluded because these subtypes are rare.

RNA isolation, cDNA synthesis, cRNA ampli�cation, and Illumina

Human-6 v2.0 Expression BeadChip hybridization

Osteosarcoma and xenograft tissue was handled as previously described (18). Osteosar-

coma cell lines were prepared as in Ottaviano et al. (12). RNA isolation, synthesis of

cDNA, cRNA ampli�cation, and hybridization of cRNA onto the Illumina Human-6 v2.0

Expression BeadChips were performed as previously described (18).

Microarray data preprocessing

Microarray data processing and quality control were performed using the statistical lan-

guage R (19) as described previously (18). MIAME-compliant data have been deposited in

the GEO database (www.ncbi.nlm.nih.gov/geo/, accession number GSE30699). High

www.ncbi.nlm.nih.gov/geo/
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correlations between these microarray data and corresponding qPCR results have been

demonstrated previously (18).

Detection of signi�cantly di�erentially expressed genes

We performed LIMMA analyses (20) in order to determine di�erential expression for the

following clinical parameters: sex (52 male vs 24 female), tumor location (36 femur, 10

humerus, 26 �bula/tibia), response to preoperative chemotherapy (36 poor responders, or

Huvos grade 1�2, vs 33 good responders, or Huvos grade 3�4), and histological subtype (an

analysis comparing 50 osteoblastic, 9 chondroblastic, and 7 �broblastic osteosarcomas).

Genes that play a role in metastasis-free survival are described in Buddingh et al. (18).

Probes with Benjamini and Hochberg False discovery rate-adjusted p-values (adjP) < 0.05

were considered to be signi�cantly di�erentially expressed.

Prediction analysis

The gene expression pro�le was generated on the dataset of biopsies using Bioconduc-

tor (21) package pamr (22). Internal cross-validation was performed 50 times. A threshold

was selected where the error rate of the prediction pro�le was minimal. The minimum er-

ror rate was representative of 50 independent simulations. In order to minimize optimiza-

tion bias (23), we validated the pro�le on an independent dataset of osteosarcoma biopsies

(n = 5), containing 1 chondroblastic osteosarcoma and 4 osteoblastic osteosarcomas. In

addition, we applied the pro�le on datasets containing positive controls�mesenchymal

stem cells (MSC, n = 12), osteoblasts (n = 3), and chondrosarcoma biopsies (n = 12,

previously published in (24), GEO accession number GSE12532). We subsequently ap-

plied the validated prediction pro�le to two independent datasets, the �rst consisting of

gene expression data of osteosarcoma cell lines, the second of xenografts. Expression of

the probes that composed the prediction pro�le was veri�ed using a LIMMA analysis,

comparing chondroblastic, �broblastic, and osteoblastic osteosarcoma biopsy samples.

Gene set enrichment

Network analysis was performed using Ingenuity Pathways Analysis (IPA, Ingenuity Sys-

tems, www.ingenuity.com). For both chondroblastic-speci�c and �broblastic-speci�c

analyses, data for all reference sequences containing expression values and FDR-adjusted

p-values were uploaded into the application. Each identi�er was mapped to its corre-

sponding object in Ingenuity's Knowledge Base. An adjP cut-o� of 0.05 was set to select

genes whose expression was signi�cantly di�erentially regulated. The Network Eligible

molecules were overlaid onto a global molecular network developed from information con-

tained in Ingenuity's Knowledge Base. Networks of Network Eligible Molecules were then

www.ingenuity.com
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algorithmically generated based on their connectivity. GO term enrichment was tested us-

ing Bioconductor package topGO (25). Lists of signi�cantly a�ected genes were compared

with all genes eligible for the analysis. GO terms with Fisher's exact p-values < 0.001, as

calculated by the weight algorithm from topGO, were de�ned signi�cant.

Results

Histological subtypes of osteosarcoma biopsies have di�erent gene

expression pro�les

We determined di�erential expression for di�erent clinical parameters. Of all comparisons

of clinical parameters only histological subtypes appeared to give a su�cient number of

di�erentially expressed genes to design a prediction pro�le. LIMMA analyses resulted in

one location-speci�c di�erentially expressed gene: HOXD4, which was overexpressed in

tumors at the humerus versus at �bula/tibia and femur. Between tumors from male and

female patients, 18 genes were signi�cantly di�erentially expressed, all belonging to X- and

Y-chromosome-speci�c genes, which are not considered as representative for osteosarcoma,

yet this �nding validates the analysis. No signi�cantly a�ected genes were returned with

regards to response to preoperative chemotherapy. To determine di�erential expression

between the three main histological subtypes, we excluded all samples with unknown

or rare subtypes. This resulted in a dataset of 66 conventional high-grade osteosarcoma

biopsies with a main histological subtype. Using a LIMMA analysis, we determined 1, 338

signi�cantly di�erentially expressed genes (adjP < 0.05) that were speci�c for a certain

main histological subtype (depicted in a Venn diagram in Figure 3.1). A subtype-speci�c

1
127067

1

1345

26 669

chondro vs fibro vs osteo 

chondro vs fibro

osteo

45332

Figure 3.1: Venn diagram represent-
ing numbers of �broblastic- (green),
chondroblastic- (red), and osteoblastic
(blue)-speci�c di�erentially expressed genes
obtained with LIMMA analysis, considering
chondroblastic versus osteoblastic (chondro
vs osteo), �broblastic versus osteoblastic
(�bro vs osteo), and chondroblastic versus
�broblastic (chondro vs �bro) analyses.
Subtype-speci�c genes are genes that are
either both upregulated or both downreg-
ulated in the subtype of interest in the
di�erent comparisons.

probe was de�ned as a probe that had the same sign of log fold change in both analyses,
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e.g. the probe was upregulated in chondroblastic samples versus osteoblastic, and in

chondroblastic versus �broblastic samples.

Gene set enrichment shows speci�c sets of genes are a�ected in

�broblastic and chondroblastic osteosarcoma

Network analysis using IPA showed that �broblastic osteosarcoma-speci�c networks most-

ly had a role in cellular growth and proliferation, which was also the most signi�cant

biological function as detected by IPA (see Additional File 1 (available online (26)) for all

a�ected networks and biological functions). The most signi�cant network is illustrated in

Additional File 2A (available online (26)) and shows that mRNA of various genes with a

connection to the NF-κB pathway and STAT5A signaling are upregulated in �broblastic

osteosarcoma biopsies, as compared with both osteoblastic and chondroblastic osteosar-

coma. The most signi�cant network speci�c for the chondroblastic subtype consisted of

genes important in skeletal connective tissue development and function (Additional File

2B (available online (26))), and shows that, also on the gene expression level, chondroblas-

tic osteosarcoma is mainly distinguished from osteoblastic and �broblastic osteosarcoma

based on the composition of the extracellular matrix of the tumor (Additional File 1

(available online (26)) shows all a�ected networks and biological functions).

Results from network analysis were con�rmed using topGO, a gene set enrichment

approach analyzing the signi�cance of GO terms in a speci�c dataset. These analyses

resulted in two signi�cant �broblastic speci�c GO terms in osteosarcoma: regulation of

tyrosine phosphorylation of Stat5 protein (GO:0042522, p-value = 4.8 · 10−4) and regu-

lation of survival gene product expression (GO:0045884, p-value = 8.2 · 10−4). Signi�-

cantly di�erentially expressed genes from both GO terms partly overlap the �broblastic

osteosarcoma-speci�c network detected with IPA. Two GO terms were signi�cant in the

chondroblastic-speci�c analysis as well: skeletal system development (GO:0001501), and

extracellular matrix organization (GO:0030198), which strengthen the results found in

the IPA network analyses. GO term subgraphs of the �ve most signi�cant GO terms for

both analyses are shown in Additional File 3 (available online (26)).

Gene set enrichment on genes speci�c for osteoblastic osteosarcoma was not performed,

because only one osteoblastic osteosarcoma-speci�c probe was detected that distinguishes

the osteoblastic subtype from �broblastic and chondroblastic. This probe matches to

UNQ1940, or FAM180A, a protein-coding gene with a yet unknown function.

Generation and validation of the prediction pro�le

Because we could not directly compare subtype-speci�c genes between our di�erent model

systems due to small sample sizes, we generated a pro�le that could predict the histo-

logical subtype of osteosarcoma. The prediction pro�le was generated on 66 high-grade
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conventional osteosarcoma prechemotherapy biopsies, using nearest shrunken centroids

classi�cation. Optimal control of error rate in the prediction pro�le was found at delta

thresholds of 4.9 − 5.1 (Figure 3.2A), where merely 10 out of 66 samples (15%) in the

training set were wrongly assigned to a speci�c histological subtype. This error rate was

A C

B

D

Figure 3.2: A, Illustration of training the pamr prediction pro�le on osteosarcoma biopsies. At
thresholds of 4.9 − 5.1, the misclassi�cation error rate was minimal. B, True versus predicted
values from the nearest shrunken centroid �t. C, Probabilities of each biopsy to belong to any of
the three histological subtypes. Samples are separated (dotted lines) based on their true subtypes.
Cross-validated probabilities for each histological subtype are shown on the y-axis, so that for
every sample three open circles are present (blue, red, and green circles for osteo-, chondro-,
and �broblastic osteosarcoma, respectively). A sample is classi�ed into a speci�c subtype if the
probability to belong to that speci�c subtype is higher than the probabilities to belong to the
other subtypes. D, The FDR plotted against di�erent thresholds of the prediction pro�le. At
a threshold of 5.0, 24 genes are included in the prediction pro�le. These 24 genes have a FDR
< 5%.

representative for a set of 50 simulations, which resulted in error rates between 13.5% and

15%. Subtype-speci�c error rates were 22%, 43%, and 10% for chondroblastic, �broblas-

tic, and osteoblastic subtypes, respectively (Figure 3.2B). Probabilities of each sample to

belong to any of the three histological subtypes are shown in Figure 3.2C. At a threshold

delta of 5.0, the prediction pro�le consisted of 24 probes encoding for 22 genes. All genes
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were below a FDR threshold of 5% (Figure 3.2D). Expression of the 24 probes of the

pro�le were veri�ed in a LIMMA analysis which was corrected for multiple testing. All 24

probes were con�rmed to be signi�cantly di�erentially expressed in the LIMMA analysis

as well. Results from pamr and LIMMA analyses are shown in Table 3.2. A supervised

heatmap depicting expression of the 24 probes in all samples is shown in Additional File 4

(available online (26)). The prediction pro�le was validated at threshold delta of 5.0 in an

independent dataset of osteosarcoma biopsies and positive controls. Histological subtypes

of biopsies had a prediction error of 0% (0/5). Mesenchymal stem cells and osteoblasts

all �tted in the osteoblastic group, while 11/12 chondrosarcoma samples were best cor-

responding to the group of chondroblastic osteosarcoma. The remaining chondrosarcoma

sample was a dedi�erentiated chondrosarcoma and was predicted in the �broblastic group,

probably because of the high amount of spindle cells present in the biopsy. Additional File

5 (available online (26)) shows prediction probabilities for each subtype of these additional

datasets.

A prediction pro�le based on osteosarcoma biopsy data can predict

histological subtypes of cell lines and xenografts

Unsupervised clustering of all biopsies, xenografts, and cell lines demonstrated that

xenografts and cell lines show di�erent overall expression pro�les from most biopsies, and

that there are no subtype-speci�c clusters based on overall expression (Additional File 6

(available online (26))). In order to determine whether histological subtypes of cell lines

and xenografts could be predicted as well with the 24-gene prediction pro�le, we applied

this pro�le to two independent datasets. In the �rst dataset, consisting of osteosarcoma

cell line data, 2 out of 13 samples (15%, Figure 3.3A) were wrongly classi�ed. These

samples were MG63, a cell line derived from a �broblastic osteosarcoma, which was sub-

typed as being osteoblastic, and IOR/OS18, derived from an osteoblastic osteosarcoma,

which was subtyped by the prediction pro�le as a �broblastic osteosarcoma. Interestingly,

HOS, HOS-MNNG, and HOS-143B, all cell lines derived from the HOS cell line, which

is derived from �broblastic and epithelial osteosarcoma and therefore was not added to

our set of 13 osteosarcoma cell lines, were all predicted as �broblastic osteosarcoma (data

not shown). Two out of 18 xenograft samples (11%, Figure 3.3B) were wrongly classi�ed.

One of these samples was OKx, a xenograft derived from a chondroblastic tumor, which

was subtyped as an osteoblastic osteosarcoma. The other sample was KPDx, a xenograft

derived from an osteoblastic tumor, which was subtyped as �broblastic. The KPD cell

line was subtyped rightly as an osteoblastic osteosarcoma.
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A B

Figure 3.3: Probabilities of A, cell lines and B, xenografts to belong to any of the three
histological subtypes. For an explanation of what is represented by these graphs, see Figure 3.2C.

Discussion

In this study, we aimed to compare gene expression pro�les of osteosarcoma biopsies

with cell lines and xenografts, in order to investigate whether these model systems are

representative for the primary tumor. We have determined di�erential gene expression

for di�erent clinical parameters important in high-grade osteosarcoma on a dataset con-

sisting of 76 conventional high-grade osteosarcoma samples. Importantly, pretreatment

biopsies were used instead of resected specimens, because preoperative chemotherapy may

cause tumor necrosis in responsive patients, thus altering gene expression and hampering

the generation of high quality mRNA. We intended to generate a gene expression pro�le

that could not only predict a speci�c clinical parameter in biopsies, but in osteosarcoma

cell lines and xenografts as well. The metastasis/survival pro�le is described previously

and may serve as a tool to predict prognosis and as a target for therapy (18). How-

ever, since most of the genes associated with osteosarcoma metastasis were macrophage

associated, and no stroma or in�ltrate is present in cell lines, this pro�le could not be

applied to osteosarcoma cell lines. We therefore compared gene expression pro�les of

these di�erent sample sets based on other clinical parameters. No signi�cant di�eren-

tially expressed genes were found between poor and good responders to chemotherapy.

Several reports on genome-wide expression pro�ling in osteosarcoma have been published

describing detection of di�erential expression between poor and good responders of preop-

erative chemotherapy (27�30). However, the cohorts used in these studies are all relatively

small (n = 13�30), and, more importantly, the reported p-values were not corrected for

multiple testing in these studies. Remarkably, only two of the genes that were found to

correlate with response to chemotherapy in these studies overlap, and one of these two

genes was upregulated in poor responders in one study, whereas it was upregulated in
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good responders in the other study (27, 30). Another report described di�erential expres-

sion between a metastatic and a nonmetastatic cell line, for which metastatic capacity

correlates with response to chemotherapy (31). In that particular study, four genes out

of 252 were found to overlap with a patient study by Mintz et al. (27). However, the

up- and downregulation of these four genes were not consistent between the two studies.

We clearly show in a large cohort that there are no di�erences between these groups of

patients, as the most signi�cant probe had an adjP of 0.9998. These results are in line

with our previous �ndings obtained by analyzing an osteosarcoma cohort on a di�erent

platform (32). The parameter `histological subtypes' resulted in a considerable number

of di�erentially expressed genes. Our prediction pro�le is not directly applicable to other

platforms, but there is no real need to have a prediction pro�le for primary osteosarcoma

histological subtype, since pathologists are very well able to assess this on an HE-section,

even on a biopsy, with a concordance of 98% between histological subtype of biopsies and

corresponding resections (7). Yet, we here show a quite important use of this pro�le, i.e.

to determine the histological subtype of cell lines and xenografts. In vitro 2-dimensional

growing cells lack extra cellular matrix formation, which is the characteristic feature to

distinguish histological subtypes in high-grade central osteosarcoma.

The gene expression pro�les as detected by analyzing osteosarcoma biopsy data show a

large number of subtype-speci�c di�erentially expressed genes. In particular, �broblastic

osteosarcoma di�ered most from the two other main subtypes. Using gene set enrichment,

we detected a network of genes upregulated in �broblastic osteosarcoma, with a role in

cellular growth and proliferation, and connection to the NF-κB pathway. This may be a

readout of the high cellularity and low matrix composition of �broblastic osteosarcoma in

comparison with osteoblastic and chondroblastic osteosarcoma (2). GO term enrichment

analysis con�rmed these results. These pathways may explain why it is comparatively

easy to culture �broblastic osteosarcoma cells, which also may explain why the percentage

of �broblastic osteosarcoma is relatively high in our cell line dataset (31%, compared to

11% in the biopsy dataset). Next to this link to cellular growth and proliferation, the most

signi�cant network with �broblastic-speci�c upregulated genes showed a connection to the

immune system. GO analysis of the �ve most signi�cant GO terms pointed to involvement

of the immune system as well (GO term GO:0006955, p-value = 3.9 · 10−3, see Additional

File 3 (available online (26)) for GO term subgraphs). Forty-four genes in this GO term

were signi�cant, of which 43 were upregulated in �broblastic osteosarcoma. An elevated

immune response might be the reason why patients with �broblastic osteosarcoma tend to

have better survival pro�les, as a proin�ammatory environment has an important role in

osteosarcoma metastasis-free survival. This pro�le is di�erent from the previously found

macrophage-speci�c pro�le which was associated with better metastasis-free survival of

osteosarcoma patients (18). The overrepresentation of pathways involved in chondrogene-

sis in the chondroblastic pro�le is in line with the high amount of chondroid matrix in this

subtype. We only detected one osteoblastic-speci�c gene, UNQ1940, or FAM180A, with
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a yet unknown function. Since 50 osteoblastic osteosarcoma samples were compared with

only 9 chondroblastic and 7 �broblastic osteosarcoma samples, we suggest that �broblas-

tic and chondroblastic osteosarcoma have speci�c characteristics that distinguishes these

tumors from osteoblastic osteosarcoma, and that the latter does not have such an extra

feature in comparison with chondro- and �broblastic osteosarcoma.

Our histological subtype prediction pro�le consists of 24 probes encoding for 22 genes,

all with a speci�c score which depends on the signi�cance of each gene. The genes that

make up the chondroblastic-speci�c part of this expression pro�le are mostly chondroid

matrixassociated genes, such as ACAN, COL2A1, and MATN4, and are all upregulated

in chondroblastic osteosarcoma. Fibroblastic-speci�c genes that make up the predic-

tion pro�le are up- or downregulated. An example of a gene upregulated in �broblastic

osteosarcoma is NFE2L3, a transcription factor which heterodimerizes with small mus-

culoaponeurotic �brosarcoma factors and for which a protective role was suggested in

hematopoietic malignancies (33). DLX5, a transcription factor involved in bone forma-

tion, is downregulated in �broblastic osteosarcoma, and re�ects the lower amounts of

matrix present in �broblastic osteosarcoma. No known function is yet available for the

two osteoblastic-speci�c genes. The misclassi�cation error of the prediction pro�le in the

training set of biopsies was 15%. Cell lines and xenografts were predicted with misclassi-

�cation errors of 15% and of 11%, respectively. It seems most likely that these prediction

errors are inherent to the error rate of the prediction pro�le, which is also 15%. Thus,

because these misclassi�cation errors are in the same range, we suggest that gene expres-

sion of these model systems is highly similar to gene expression of the tumor from which

they are derived. This is especially of interest for studies in cell lines, since no stroma is

present on which subtyping can be performed, but repeatedly passaged xenografts often

lose stroma as well. Most genes of the prediction pro�le are matrix-associated genes.

Even though these cell lines do not secrete any matrix, and xenografts have diminished

amounts of matrix, we can still detect histological subtype markers on an mRNA level,

and are able to distinguish di�erent histological subtypes of cell lines and xenografts using

this pro�le.

Conclusions

As osteosarcoma xenografts and cell lines still express histological subtype-speci�c mRNAs

that are characteristic of the primary tumor, these model systems are representative for

the primary tumor from which they are derived, and will be useful tools for studying

mRNA expression and pathways important in high-grade osteosarcoma.
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Abstract

Purpose: High-grade osteosarcoma is a malignant primary bone tumor with a peak inci-

dence in adolescence. Overall survival (OS) of patients with resectable metastatic disease

is approximately 20%. The exact mechanisms of development of metastases in osteosar-

coma remain unclear. Most studies focus on tumor cells, but it is increasingly evident

that stroma plays an important role in tumorigenesis and metastasis. We investigated

the development of metastasis by studying tumor cells and their stromal context.

Experimental Design: To identify gene signatures playing a role in metastasis,

we carried out genome-wide gene expression pro�ling on prechemotherapy biopsies of

patients who did (n = 34) and patients who did not (n = 19) develop metastases within

5 years. Immunohistochemistry (IHC) was performed on pretreatment biopsies from 2

additional cohorts (n = 63 and n = 16) and corresponding postchemotherapy resections

and metastases.

Results: A total of 118/132 di�erentially expressed genes were upregulated in pa-

tients without metastases. Remarkably, almost half of these upregulated genes had im-

munological functions, particularly related to macrophages. Macrophage-associated genes

were expressed by in�ltrating cells and not by osteosarcoma cells. Tumor-associated

macrophages (TAM) were quanti�ed with IHC and associated with signi�cantly better

overall survival (OS) in the additional patient cohorts. Osteosarcoma samples contained

both M1- (CD14/HLA-DRα positive) and M2-type TAMs (CD14/CD163 positive and

association with angiogenesis).

Conclusions: In contrast to most other tumor types, TAMs are associated with re-

duced metastasis and improved survival in high-grade osteosarcoma. This study provides

a biological rationale for the adjuvant treatment of high-grade osteosarcoma patients with

macrophage activating agents, such as muramyl tripeptide.

Introduction

High-grade osteosarcoma is a malignant bone tumor characterized by the production of os-

teoid. The highest incidence is in adolescent patients, with a second peak in patients older

than 40 years (1). Despite wide-margin surgery and intensi�cation of chemotherapeutic

treatment, overall survival (OS) rates have reached a plateau at about 60% (2�4). Novel

administration modalities are needed, but data on critical biological mechanisms allowing

the development of novel therapeutic agents are scarce for this relatively rare tumor. In

addition to conventional chemotherapeutic agents, recent trials have explored immunos-

timulatory strategies. The ongoing EURAMOS-1 trial randomizes for treatment with

IFN-α in patients with good histological response to neoadjuvant chemotherapy (5). A

recently published clinical trial has shown improved OS for osteosarcoma patients treated

with the macrophage activating agent muramyl tripeptide (MTP) added to the standard
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chemotherapy regimen (6). However, only limited information on macrophage in�ltration

and activation in osteosarcoma is available (7).

Tumor-associated macrophages (TAM) may promote tumorigenesis through immuno-

suppression, expression of matrix-degrading proteins and support of angiogenesis. In nu-

merous cancer types, high numbers of M2 or `alternatively activated' TAMs are associated

with a worse prognosis (8�13). M2 macrophages have important functions in wound heal-

ing and angiogenesis, express high levels of the immunosuppressive cytokines interleukin

(IL)-10 and TGF-β, and express scavenger receptors such as CD163 (14, 15). `Classical

activation' of macrophages by IFN-γ or microbial products results in polarization toward

M1-type macrophages. M1 macrophages express high levels of proin�ammatory cytokines

such as IL-12, IL-1, and IL-6 and have potent antitumor e�cacy, both by reactive oxygen

species and cytokine-induced cytotoxicity and by induction of natural killer (NK) and

T cell activity (16). Rarely, high numbers of TAMs are associated with better progno-

sis (17, 18). In these cases, TAMs are presumably polarized toward an M1 phenotype,

although macrophage subtypes were not reported in these two studies. Alternatively,

macrophages may directly phagocytose tumor cells, as has been shown in acute myeloid

leukemia (19).

To investigate the role of stroma and stroma�tumor interactions important in metas-

tasis of osteosarcoma, we investigated the development of metastasis by studying tumor

cells and their stromal context. By using genome-wide expression analysis, we showed that

high expression of macrophage-associated genes in pretreatment biopsies was associated

with a lower risk of developing metastases. In addition, we quanti�ed and characterized

TAMs in two independent cohorts, including pretreatment biopsies, postchemotherapy

resections, and metastatic lesions. In contrast to the tumor-supporting role for TAMs in

most epithelial tumor types, higher numbers of in�ltrating TAMs correlated with better

survival in osteosarcoma. Our �ndings suggest that macrophages have direct or indirect

antiosteosarcoma activity and provide a possible explanation for the bene�cial e�ect of

treatment with macrophage activating agents in osteosarcoma.

Materials and methods

Patient cohorts

Genome-wide expression pro�ling was performed on snap-frozen pretreatment diagnostic

biopsies containing viable tumor material of 53 resectable high-grade osteosarcoma pa-

tients from the EuroBoNet consortium (www.eurobonet.eu; cohort 1). For immunohisto-

chemical validation, a tissue microarray containing 145 formalin-�xed para�n-embedded

(FFPE) samples of 88 consecutive high-grade osteosarcoma patients with primary re-

sectable disease (cohort 2) and 29 FFPE samples of a cohort of 20 consecutive high-grade

osteosarcoma patients with resectable disease were used (cohort 3), including material

www.eurobonet.eu
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from pretreatment biopsies, postchemotherapy resections, and metastatic lesions (20).

Clinicopathological details can be found in Supplemental Table S1 (available online (21)).

All biological material was handled in a coded fashion. Ethical guidelines of the indi-

vidual European partners were followed and samples and clinical data were stored in the

EuroBoNet biobank.

Cell lines

The 19 osteosarcoma cell lines 143B, HAL, HOS, IOR/MOS, IOR/OS10, IOR/OS14,

IOR/OS15, IOR/OS18, IOR/OS9, IOR/SARG, KPD, MG-63, MHM, MNNG-HOS, OHS,

OSA, SAOS-2, U-2 OS, and ZK-58 were maintained in RPMI 1640 (Invitrogen) supple-

mented with 10% fetal calf serum and 1% penicillin/streptomycin (Invitrogen) as previ-

ously described (22).

RNA isolation, cDNA synthesis, cRNA ampli�cation, and Illumina

Human-6 v2.0 Expression BeadChip hybridization

Osteosarcoma tissue was snap-frozen in 2-methylbutane (Sigma-Aldrich) and stored at

70◦C. By using a cryostat, 20mm sections from each block were cut and stained with

hematoxylin and eosin to ensure at least 70% tumor content and viability. RNA was

isolated with TRIzol (Invitrogen), followed by RNA cleanup using the QIAGEN Rneasy

mini kit with on-column DNase treatment. RNA quality and concentration were measured

using an Agilent 2100 Bioanalyzer and Nanodrop ND-1000 (Thermo Fisher Scienti�c),

respectively. Synthesis of cDNA, cRNA ampli�cation, and hybridization of cRNA onto

the Illumina Human-6 v2.0 Expression BeadChips was carried out as per manufacturer's

instructions.

Reverse transcriptase quantative PCR

Reverse transcriptase quantative PCR (qPCR) analysis of selected target genes was per-

formed as previously described (23). Each experiment was conducted in duplicate by

using an automated liquid-handling system (Tecan, Genesis RSP 100). Data were nor-

malized by geometric mean expression levels of 3 reference genes, i.e. SRPR, CAPNS1,

and TBP using geNorm (medgen.ugent.be/~jvdesomp/genorm/). Primer sequences can

be found in Supplemental Table S2 (available online (21)).

Enzymatic and �uorescent immunostainings

Enzymatic and �uorescent immunostainings were performed on 4mm sections of FFPE tis-

sue as previously described (20). Details regarding antibodies and procedures can be found

medgen.ugent.be/~jvdesomp/genorm/
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in Supplemental Table S3 (available online (21)). In case of double immunohistochem-

istry (IHC), incubation with anti-CD45 and development with DAB+ (Dako) occurred

�rst, followed by a second antigen retrieval before incubation with either anti-CD163 or

anti-HLA-DRα and development using the alkaline phosphatase substrate Vector Blue

(Vector Labs). In case of double immuno�uorescent (IF) stainings, primary antibodies

were coincubated overnight. As a positive control, normal and formic acid decalci�ed

tonsil was used, and as a negative control, no primary antibody was added. Tissue mi-

croarray slides were scanned using the MIRAX SCAN slide scanner and software (Zeiss,

Mirax 3D Histech). Numbers of positively stained cells and vessels were counted using

ImageJ (National Institutes of Health, Bethesda, MD) and averaged per 0.6mm core. IF

and double IHC images were acquired using a Leica DM4000B microscope �tted with

a CRI Nuance spectral analyzer (Cambridge Research and Instrumentation, Inc.) and

analyzed using the supplied colocalization tool to determine the percentage of single and

double positive pixels per region of interest.

Microarray data analysis

Gene expression data were exported from BeadStudio version 3.1.3.0 (Illumina) in Gene-

Spring probe pro�le format and processed and analyzed using the statistical language

R (24). As Illumina identi�ers are not stable and consistent between di�erent chip ver-

sions, raw oligonucleotide sequences were converted to nuIDs (25). Data were trans-

formed using the variance stabilizing transformation algorithm to take advantage of the

large number of technical replicates available on the Illumina BeadChips (26). Trans-

formed data were normalized using robust spline normalization, an algorithm combining

features of quantile and loess normalization, speci�cally designed to normalize variance-

stabilized data. All microarray data processing was carried out by Bioconductor package

lumi (27, 28). Quality control was performed using Bioconductor package arrayQuality-

Metrics (29). MIAME (minimum information about a microarray experiment) compliant

data have been deposited in the GEO database (www.ncbi.nlm.nih.gov/geo/, accession

number GSE21257).

Statistical analysis

Di�erential expression between patients who did (n = 34) and did not (n = 19) develop

metastases within 5 years from diagnosis of the primary tumor was determined using

linear models for microarray data (LIMMA (30)), applying a Benjamini and Hochberg

false discovery rate-adjusted p-value cuto� of 0.05. Other univariate statistical analyses

were performed using GraphPad Prism Software (version 5.01). Multivariate survival

analyses were carried out according to the Cox proportional hazards model in SPSS

(version 16.0.2). Two-sided p-values < 0.05 were determined to be signi�cant; p-values

between 0.05 and 0.15 were de�ned to be a trend.

www.ncbi.nlm.nih.gov/geo/
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Results

High expression of macrophage-associated genes in osteosarcoma

biopsies of patients who did not develop metastases within 5 years

from diagnosis (cohort 1)

Comparison of genome-wide gene expression in tumors of patients who did and did not

develop metastases within 5 years resulted in 139 signi�cantly di�erentially expressed

(DE) probes, of which 125 corresponded to 118 upregulated and 14 to downregulated

genes in patients who did not develop metastases. A summary of DE genes and detailed

descriptions of all probes can be found in Table 4.1 and Supplemental Table S4 (avail-

able online (21)), respectively. Two DE genes were speci�c for macrophages (CD14 and

MSR1) and 30/132 of the DE genes were associated with macrophage functions such

as antigen processing and presentation (e.g. HLA-DRA and CD74) or pattern recogni-

tion (e.g. TLR4 and NLRP3). Overall, approximately 20% of the upregulated probes

corresponded to genes that were associated with macrophage function and development

and an additional 25% of the upregulated probes corresponded to genes with other im-

munological functions, such as cytokine production and phagocytosis. Four genes were

selected for validation of the microarray data using qPCR: CD14, HLA-DRA, CLEC5A,

and FCGR2A. Expression levels as determined by qPCR correlated well with expression

levels obtained by microarray analysis (Supplemental Figure S1 (available online (21))).

Metastases-free survival curves of the same cohort, generated using median expression

of the probe of interest as a cuto� determining low and high expression, are shown in

Figure 4.1B and Supplemental Figure 2 (available online (21)). Cox proportional hazards

analysis revealed expression of macrophage-associated genes CD14 and HLA-DRA to be

independently associated with metastasis-free survival (Supplemental Table S5 (available

online (21))).
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Macrophage-associated genes are expressed by in�ltrating hema-

topoietic cells and not by tumor cells

The most probable source of expression of the DE macrophage-associated genes was in-

�ltrating immune cells and not osteosarcoma cells. To con�rm this, we performed qPCR

of CD14 and HLA-DRA on osteosarcoma cell lines (n = 19) and biopsies (n = 45, a sub-

set of cohort 1). CD14 and HLA-DRA expression was variable in osteosarcoma biopsies,

but almost undetectable in cell lines. This indicates that these macrophage-associated

genes were not expressed by tumor cells but by in�ltrating cells because only osteosar-

coma biopsies contain macrophage in�ltrate, whereas RNA from cell lines is exclusively

from tumor cells (Figure 4.1A, Mann-Whitney U test p-value < 0.0001). In addition, we

performed double IHC for the hematopoietic cell marker CD45, which is not expressed

by osteosarcoma tumor cells, and the macrophage marker CD163 or the macrophage-

associated protein HLA-DRα (Figure 4.1C). We chose this approach because no reliable

osteosarcoma markers are available (1). Our results con�rmed that in�ltrating hematopoi-

etic cells were the source of the macrophage-associated gene expression levels. Together,

these data show that osteosarcoma tumor cells do not express macrophage-associated

genes, neither in vitro nor in vivo.

Macrophage numbers in osteosarcoma biopsies correlate with CD14

gene expression levels and are positively associated with localized

disease and better outcome (cohorts 2 and 3)

To con�rm the presence of TAMs in osteosarcoma, we stained a tissue microarray contain-

ing 145 samples of 88 patients for the macrophage marker CD14 and counted the number

of positive cells per tissue microarray core (cohort 2; Figure 4.2A). CD14 was chosen as

opposed to CD68 because the latter marker is not expressed by monocytes and often

shows cross-reactivity with mesenchymal tissue (data not shown). Number of CD14-posi-

tive cells per tissue microarray core correlated signi�cantly with CD14 mRNA expression

levels (14 samples overlap with gene expression analysis, Spearman correlation coe�cient

0.64, p-value = 0.01). Similar to the gene expression data, there was a trend for patients

with primary localized disease to have higher numbers of macrophages in pretreatment

diagnostic biopsies than patients with metastatic disease at presentation (mean number

of macrophages per core, 55 vs 27; Mann-Whitney U test p-value = 0.09). Also, patients

with high macrophage counts at diagnosis tended to be less likely to develop metastases

within 5 years (χ2, p-value = 0.13).

We subdivided this cohort into four quartiles based on numbers of CD14-positive cells

to determine the group with the best OS. No signi�cant di�erences were found between

quartiles 2 and 4, but patients belonging to this group had better OS than patients with

low CD14 counts (lowest quartile, or less than 12 CD14-positive cells per tissue array core;
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A B

C

A B

C

Figure 4.1: Macrophage-associated genes are not expressed by osteosarcoma tumor cells. A,
qPCR of osteosarcoma cell lines and biopsies of CD14 and HLA-DRA demonstrating lack of
expression by osteosarcoma cells. Mann-Whitney U test p-value < 0.0001, ∗∗ ∗. B, High expres-
sion of macrophage associated genes was associated with a better metastasis-free survival (cohort
1, Kaplan-Meier curve, p-value obtained by Logrank test, patients with metastasis at diagnosis
have an event at t = 0. These patients are included, because patients who develop metastases
later on may as well have micrometastases at the time of diagnosis). Metastasis-free survival
curves for HLA-DRA, CLEC5A, and FCGR2A can be found in Supplemental Figure S2 (avail-
able online (21)). C, Double immunohistochemical staining of CD163 with the hematopoietic cell
marker CD45 was performed and analyzed using spectral imaging microscopy. The pseudo-IF
image (pseudo-IF) shows CD163-positive cells in red, CD45-positive cells in green, and colocal-
ization of both markers in orange. Lack of expression of CD163 and CD45 on surrounding tumor
cells (dark blue) and some single positive CD45 cells can be noted.
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A

B

Figure 4.2: A, Example of representative stainings of high-grade osteosarcoma with high (left)
versus low (right) levels of macrophage in�ltration (CD14 staining) and vascular density (CD31
staining). B, High numbers of in�ltrating macrophages (left, de�ned as the 3 upper quartiles,
or more than 12 CD14-positive cells per tissue array core) are associated with better OS (right,
Logrank test p-value = 0.02, cohort 2). Q1: lowest quartile, Q2, 3, 4, 3: highest quartiles.
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Figure 4.2B, Logrank test p-value = 0.02). In another cohort of 16 patients, IF staining

of CD14, CD163, and HLA-DRα was performed, again con�rming a potential prognostic

value of high macrophage numbers (cohort 3, Figure 4.3, Logrank test p-value = 0.01,

Supplemental Figure S3 (available online (21))).

Macrophages in osteosarcoma have both M1 and M2 characteris-

tics

To determine the phenotype of macrophages present in osteosarcoma, we performed dou-

ble IHC with CD14 and either the M1-associated marker HLA-DRα or the M2-associated

marker CD163. Not all CD163 and HLA-DR-positive in�ltrating cells expressed CD14

(Figure 4.3A and Supplementary Figure S3A). The total number of macrophages as de-

termined by quantifying CD14-positive macrophages was associated with good survival

(Figure 4.3B), but the phenotype of the macrophages (CD14/CD163 double positive ver-

sus CD14/HLA-DRα double positive) was not (Supplemental Figure S3B (available on-

line (21)); data not shown). Another M2 characteristic is support of angiogenesis. The

number of CD14-positive macrophages correlated with the number of CD31-positive ves-

sels (Figure 4.2A and Figure 4.4), but vascularity did not correlate with prognosis (data

not shown).

Macrophage numbers in diagnostic biopsies may predict histolog-

ical response to chemotherapy and macrophage number increases

following chemotherapy treatment

There was a trend for high macrophage count (highest three quartiles or more than 12

CD14-positive cells per tissue array core) in prechemotherapy diagnostic biopsies of the

primary tumor to predict for good histological response to neoadjuvant chemotherapy

(de�ned as more than 90% nonvital tumor tissue upon �nal resection), since 46% of

patients with high macrophage numbers and 18% of patients with low macrophage num-

bers had a good histological response (cohort 2; χ2 = 0.09). The prognostic bene�t of

macrophage counts in osteosarcoma was not independent of histological response using

Cox proportional hazard analysis. Macrophage numbers were higher in postchemotherapy

resections of the primary tumor than in prechemotherapy biopsies (Supplemental Figure

S4 (available online (21))). Moreover, gene expression analysis showed upregulation of

macrophage-associated probes in postchemotherapy resections (n = 4) as compared with

prechemotherapy biopsies (n = 79, data not shown).
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A

B

Figure 4.3: A, Osteosarcoma samples are in�ltrated with CD14 and CD163 single and double
positive macrophages. Spectral imaging was used to reduce auto�uorescence of osteosarcoma
cells. In the composite image, CD14-positive cells are represented in green, CD163-positive
cells are represented in red, and CD14/CD163 double positive cells are represented in yellow.
Background auto�uorescence of tumor cells is represented in gray. B, In an independent cohort
of 16 patients (cohort 3), high macrophage in�ltration as determined by IF CD14 staining was
associated with signi�cantly improved OS. p-values obtained using Logrank test, cuto� at the
median.
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Figure 4.4: Macrophage in�ltration as de-
termined by CD14-positive cell count cor-
related with vascularity as determined by
CD31-positive vessel count. Data of all os-
teosarcoma samples (pre- and posttreatment
primary tumor and metastatic samples, co-
hort 2) are shown. Q1: lowest quartile, Q2,
3, 4: three highest quartiles. Kruskal-Wallis
test p-value < 0.0001. ∗, Dunn's posttest p-
value < 0.05, ∗ ∗ ∗, Dunn's posttest p-value
< 0.001.

Discussion

OS of high-grade osteosarcoma patients with resectable metastatic disease is poor at about

20% (31). Mechanisms for the development of metastases in osteosarcoma are elusive. To

identify genes that play a role in this process, we performed genome-wide expression

pro�ling on prechemotherapy biopsies of osteosarcoma patients. We compared patients

who developed clinically detectable metastases within 5 years with patients who did not

develop metastases within this time frame (cohort 1). About 20% of genes overexpressed

in patients without metastases were macrophage-associated, whereas an additional 25% of

genes had other immunological functions (e.g. in phagocytosis, complement activation or

cytokine production and response) but could still be attributed to macrophages (Table 1

and Supplemental Table S4 (available online (21))). Thus, in total, almost half of the DE

genes belonged to one speci�c process, i.e. macrophage function. Macrophage-associated

genes were expressed by in�ltrating hematopoietic cells and not by osteosarcoma tumor

cells (Figure 4.1), indicating a possible role for macrophages in preventing metastasis in

osteosarcoma. To con�rm these �ndings, we quanti�ed in�ltrating macrophages in two

additional cohorts (cohorts 2 and 3) and found an association with better OS in both

cohorts.

The antimetastatic e�ect of TAMs in osteosarcoma is remarkable because TAMs sup-

port tumor growth in a substantial number of other cancers, which are mostly tumors of

epithelial origin. For example, macrophages are associated with the angiogenic switch in

breast cancer (32). We �nd an association between macrophage in�ltration and higher

microvessel density, which suggests that the in�ux of macrophages may support certain

aspects of tumor growth in osteosarcoma as well. However, in the case of osteosarcoma,

direct or indirect antitumor activity of macrophages apparently outweighs their possible

tumor-supporting e�ects. Macrophages can alter their phenotype from M2 to M1 and

become the tumor's foe instead of its friend, given the right circumstances (33�35). The
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TAMs that were identi�ed in this study in osteosarcoma had both M1 and M2 character-

istics. The expression of CD163 and the association with angiogenesis are M2 character-

istics (32, 36). Some of the DE genes, such as MSR1 and MS4A6A are speci�c for M2

macrophages in vitro (37). Others, such as the proin�ammatory cytokine IL1B, are more

indicative of an M1 phenotype (16). How macrophages inhibit osteosarcoma metastasis

and whether a balance between M1- and M2-type functions is responsible is unknown.

In a multivariate regression model, the survival bene�t of high TAM numbers was

at least partly dependent on histological response to chemotherapy. Chemotherapy can

cause `immunogenic cell death' of cancer cells, resulting in the release of endogenous

danger signals (38, 39). The binding of these dangerous signals to pattern recognition

receptors on macrophages can skew polarization of M2- to M1-type TAMs. The inter-

action between dying tumor cells and resident TAMs may facilitate clearance or inhibit

outgrowth of metastatic tumor cells. However, patients with localized disease at diagno-

sis tended to have a larger macrophage in�ltrate than patients with metastatic disease at

diagnosis (mean number of macrophages per core 55 vs 27). At this point, patients have

not undergone chemotherapeutic treatment yet and an interaction between chemother-

apy and macrophages can therefore not be responsible for the antimetastatic e�ect of

macrophages. Perhaps, the antimetastatic e�ect of TAMs in these patients is due to the

constitutive presence of macrophages with an M1 phenotype. Alternatively, the presence

of macrophages might be a re�ection of a microenvironment not conducive for metastasis.

Although preliminary analysis of a clinical trial investigating the e�ect of treatment

with the macrophage activating agent MTP yielded con�icting results, subsequent analy-

sis revealed that treatment with MTP improved 6-year OS from 70% to 78% in a cohort of

patients with primary localized disease (6, 40). Similar results were obtained in canine os-

teosarcoma (41). MTP is a synthetic derivative of muramyl dipeptide (MDP), a common

bacterial cell wall component. Muropeptides bind to intracellular pattern recognition re-

ceptors of the nucleotide binding and oligomerization domain (NOD)-like receptor (NLR)

family, expressed by macrophages (42). In our study, 5 genes associated with NLR family

signaling and the associated `in�ammasome' were highly expressed in pretreatment biop-

sies of patients who do not develop metastases. The DE genes NLRP3, NAIP, NLRC4,

and PYCARD are components of the in�ammasome, LYZ is a lysozyme that processes

bacterial cell wall peptidoglycan into MDP, a ubiquitous natural analogue of MTP, and

IL1B is the downstream e�ector cytokine of the in�ammasome pathway. Further research

is needed to clarify whether only patients with high numbers of TAMs bene�t from MTP

treatment, or whether MTP treatment is e�ective regardless of macrophage number or

activation status pretreatment. Also, it is unknown whether treatment with agents pro-

moting macrophage migration or with other macrophage activating agents like toll-like

receptor ligands or IFNs has a similar bene�cial e�ect on outcome.

Previous genome-wide expression pro�ling studies in osteosarcoma focused on identi-

fying genes that predict histological response to neoadjuvant chemotherapy (43�46). As
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a consequence, the importance of macrophages in controlling metastases was not recog-

nized. However, we previously compared gene expression pro�les of osteosarcoma biopsies

and cultured mesenchymal stem cells and determined which genes are expressed by tumor

stroma and not by tumor cells (47). There is a considerable overlap between the stromal

genes identi�ed in our previous study and the macrophage-associated genes identi�ed in

the present study (including HLA class II genes as the most prevalent DE group of genes

and the macrophage-associated genes MSR1, MS4A6A, and FCGR2A).

In conclusion, we showed the presence and clinical signi�cance of TAMs in pretreat-

ment samples of high-grade osteosarcoma. TAMs in osteosarcoma are a heterogeneous cell

population with both M1 antitumor and M2 protumor characteristics. Although the exact

mechanism by which macrophages exert their antimetastatic functions is still unknown,

this study provides an important biological rationale for the treatment of osteosarcoma

patients with macrophage activating agents.
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Abstract

Background: High-grade osteosarcoma is an aggressive tumor most often developing

in the long bones of adolescents, with a second peak in the 5th decade of life. Better

knowledge on cellular signaling in this tumor may identify new possibilities for targeted

treatment.

Methods: We performed gene set analysis on previously published genome-wide gene

expression data of osteosarcoma cell lines (n = 19) and pretreatment biopsies (n = 84).

We characterized overexpression of the insulin-like growth factor receptor (IGF1R) sig-

naling pathways in human osteosarcoma as compared with osteoblasts and with the hy-

pothesized progenitor cells of osteosarcoma�mesenchymal stem cells. This pathway plays

a key role in the growth and development of bone. Since most profound di�erences in

mRNA expression were found at and upstream of the receptor of this pathway, we set

out to inhibit IR/IGF1R using OSI-906, a dual inhibitor for IR/IGF1R, on four osteosar-

coma cell lines. Inhibitory e�ects of this drug were measured by Western blotting and

cell proliferation assays.

Results: OSI-906 had a strong inhibitory e�ect on proliferation of 3 of 4 osteosarcoma

cell lines, with IC50s below 100nM at 72hrs of treatment. Phosphorylation of IRS-1, a di-

rect downstream target of IGF1R signaling, was inhibited in the responsive osteosarcoma

cell lines.

Conclusions: This study provides an in vitro rationale for using IR/IGF1R inhibitors

in preclinical studies of osteosarcoma.

Background

High-grade osteosarcoma is the most prevalent primary malignant bone tumor. The

disease occurs most frequently in children and adolescents at the site where proliferation

is most active, i.e. the metaphysis adjacent to the epiphyseal plate (1). The 5-year

overall survival of osteosarcoma patients has raised from 10�20% to about 60% after

the introduction of preoperative chemotherapy in the 1970s. However, about 45% of all

patients still die because of distant metastasis. No additional treatments have been found

that can increase survival signi�cantly, and administering higher doses of preoperative

chemotherapy does not result in improved outcomes (2, 3). Better knowledge on cellular

signaling in high-grade osteosarcoma may identify new possibilities for targeted treatment

of this highly aggressive tumor.

We have previously described the roles of bone developmental pathways Wnt, TGFβ-

BMP, and Hedgehog signaling in osteosarcoma, but unfortunately so far could not identify

suitable targets for treatment (4, 5). In addition to these signal transduction pathways,

insulin-like growth factor 1 receptor (IGF1R) signaling plays a key role in the growth and

development of bone. Aberrant signaling of this pathway has been implicated in various
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cancer types, among others sarcomas (6, 7). Key players of insulin-like growth factor

(IGF) signaling are the ligands IGF1, IGF2, which are circulating polypeptides that can

be expressed in endocrine, paracrine, and autocrine manners, and the tyrosine kinase

receptor IGF1R, which forms homodimers, or hybrid receptors with the insulin receptor

(IR) (8). IGF1R and IR/IGF1R hybrids are activated by both IGF1 and -2, which trigger

autophosphorylation of IGF1R and subsequent downstream signal transduction. A second

IGF receptor, IGF2R, can bind IGF2, but does not confer intracellular signaling, thereby

diminishing the bioavailability of IGF2 to IGF1R (9). Autophosphorylation of IR/IGF1R

receptors recruits the signaling proteins insulin receptor substrate (IRS) and Src homol-

ogy 2 domain containing transforming protein (Shc) to the cell membrane, which get

phosphorylated and subsequently activate the downstream PI3K/Akt and Ras/Raf/ERK

signaling pathways, both of which are known to be important in cancer. These pathways

ultimately act on several biological processes, such as transcription, proliferation, growth,

and survival (9�11). Interestingly, treatment targeted against IGF1R signaling has shown

to be e�ective in a subset of Ewing sarcoma, another bone tumor that manifests at young

age (12).

The role of the IGF1R pathway in growth has been illustrated in studies of knockout

mice. It was shown that IGF1 null mice are 40% smaller than littermates, while IGF1R

null mice are approximately 55% smaller (13). In dogs, the size of di�erent breeds was

demonstrated to be dependent on IGF1 plasma levels (7). Additionally, a speci�c IGF1

SNP haplotype was described to be common in small breed dogs and nearly absent in

giant breeds (14). Interestingly, large and giant dog breeds are more prone to develop

osteosarcoma (15), which in dogs is biologically very similar to the human disease (16).

Two recent studies on human osteosarcoma suggest a positive correlation between patient

birth weight and height at diagnosis and the development of the disease (17, 18). In-

volvement of some members of IGF1R signaling in osteosarcoma has been described (as

has been reviewed in Kolb et al. (19)), but the activity of this pathway remains to be

determined.

We have analyzed genome-wide gene expression in high-grade osteosarcoma cell lines

and pretreatment biopsies, and observed signi�cantly altered activity of genes involved in

IGF1R signaling when compared to pro�les of mesenchymal stem cells and osteoblasts.

Speci�cally, upstream inhibitors of IGF1R signaling were found to be downregulated in

osteosarcoma, and low expression of these genes correlated with worse event-free sur-

vival. We inhibited IR/IGF1R signaling with the dual IR/IGF1R inhibitor OSI-906.

This showed inhibition of phosphorylation of IRS-1 and of strong inhibition of prolifera-

tion in 3/4 osteosarcoma cell lines. Interestingly, the cell line which could not be inhibited

with OSI-906, 143B, has a KRAS oncogenic transformation, which is a component of the

Ras/Raf/ERK pathway, one of downstream e�ectors of IGF1R signaling. These results

suggest that IR/IGF1R signaling may be an e�ective targeted for treatment of high-grade

osteosarcoma patients.
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Methods

Cell culture

The 19 high-grade osteosarcoma cell lines that were used in this study were characterized

and are described by Ottaviano et al. (20). The 12 mesenchymal stem cell and 3 osteoblast

cultures were previously described (21). MSCs have been previously (22) characterized

through FACS analysis and have been tested for their ability to be committed under

proper conditions towards adipogenesis, chondrogenesis and osteogenesis as described in

Bernardo et al. (23). Osteoblast cultures were derived from MSCs which were treated to

undergo osteogenic di�erentiation. Cell line DNA was short tandem repeat pro�led to

con�rm cell line identity with use of the Cell ID system of Promega (Madison, WI). For

Western blotting experiments, cells were maintained in RPMI 1640 (Invitrogen, Carlsbad,

CA), supplemented with 10% fetal bovine serum (F7524, Sigma-Aldrich, St. Louis, MO)

and 1% glutamax (Gibco 35050, Invitrogen, Carlsbad, CA).

Microarray experiments, preprocessing, and data analysis

For genome-wide gene expression analysis, we used Illumina Human-6 v2.0 BeadChips.

Microarray experiments and data preprocessing are described in Kuijjer et al. (21). Pre-

viously deposited genome-wide gene expression data of mesenchymal stem cells (MSCs)

and osteoblasts can be found in the Gene Expression Ombinus (GEO accession num-

bers GSE28974 and GSE33382, respectively). Data from osteosarcoma cell lines have

been published before (24), but since we normalized and processed all raw data to-

gether, we deposited normalized values in the Gene Expression Omnibus (GEO, accession

number GSE42351, superseries accession GSE42352). Data from the 84 high-grade os-

teosarcoma pretreatment biopsies have been previously published (GEO accession number

GSE33382) (21). Ethical guidelines of the individual European partner institutions were

followed and samples and clinical data were handled in a coded fashion and stored in the

EuroBoNeT biobank. We determined signi�cant di�erential expression between osteosar-

coma cell lines (n = 19) and mesenchymal stem cells (n = 12), and between osteosarcoma

cell lines and osteoblasts (n = 3) using Bioconductor (25) package LIMMA (26) in statis-

tical language R (27). Probes with Benjamini and Hochberg false discovery rate-adjusted

p-values < 0.05 were considered to be signi�cant. Gene set analysis was performed on

KEGG pathways (28) (Release 63.0, July 1, 2012) using R-package globaltest (29). For

each analysis, the top 15 signi�cant KEGG pathways were returned. All returned path-

ways had a Benjamini and Hochberg false-discovery rate-corrected p-value < 1 · 10−5. To

visualize di�erential expression in the IGF1R pathway, we performed Core analyses using

Ingenuity Pathways Analysis (IPA, Ingenuity Systems, www.ingenuity.com).

www.ingenuity.com
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Antibodies and reagents

Rabbit monoclonal and polyclonal antibodies against IGF1R and IRS-1, respectively

(both 1 : 1, 000) were obtained from Cell Signaling (Danvers, MA). Rabbit polyclonal

antibody against phospho-IRS-1 (Y612, 1 : 1, 000) was purchased from Biosource, In-

vitrogen (Carlsbad, CA). A mouse monoclonal antibody against α-tubulin from Abcam

(Cambridge, UK) was used as a loading control (1 : 3, 000). Secondary antibodies (both

1 : 10, 000, BD Transduction Laboratories, Lexington, KY) were horseradish peroxi-

dase (HRP) conjugated polyclonal goat-anti-rabbit IgG for components of the IR/IGF1R

pathway, and HRP conjugated polyclonal goat-anti-mouse for α-tubulin. OSI-906 was

purchased from Selleck Chemicals LLC (Houston, TX).

Western blotting

Osteosarcoma cell lines OHS, KPD, SAOS-2, and 143B were treated with 0.5% DMSO

or with 1µM OSI-906 for 3hrs, and were subsequently lysed using Mammalian Protein

Extraction Reagent (Thermo Scienti�c 78503), to which Halt Phosphatase and Protease

Inhibitor Cocktails (Thermo Scienti�c 78420 and 78418, respectively) were added accord-

ing to the manufacturer's protocol. Concentrations of cell lysates were determined using

the BioRad DC Protein Assay Kit (Biorad, Hercules, CA). Per sample, 20µg of protein

was loaded on SDS-PAGE gels. Lysate of HepG2-A16 cells transfected with IR and stim-

ulated with insulin, containing 10µg of protein, was taken along as a positive control.

Western blotting was performed as described by Schrage et al. (30).

Proliferation assays

OSI-906 was diluted in DMSO and stored at -20◦C. OHS, SAOS-2, KPD, and 143B

cells were plated in 96 wells plates, using 4, 000, 2, 000, 12, 000, and 2, 000 cells per well,

respectively. After 24hrs, OSI-906 was added in triplicate at di�erent concentrations�

0nM, 0.01nM, 0.1nM, 1nM, 10nM, 100nM, 1µM, and 10µM. The inhibitor was incubated

for 72hrs and 96hrs, in di�erent experiments. The results shown are representative results

from at least three independent experiments. Cell proliferation reagent WST-1 (Roche)

was incubated for 2hrs and subsequently measured using a Wallac 1420 VICTOR2 (Perkin

Elmer, Waltham, MA). Data were analyzed in Graphpad Prism 5.0 (www.graphpad.com).

Relative IC50s were calculated using results from the di�erent concentrations up to the

highest dose where toxicity was not yet present.

www.graphpad.com
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Results

Enrichment of IGF1R signaling in high-grade osteosarcoma

Genome-wide gene expression data were of good quality for all cell lines. LIMMA anal-

ysis resulted in 7, 891 probes encoding for di�erentially expressed (DE) genes between

osteosarcoma cell lines and MSCs, and 2, 222 probes encoding for DE genes between os-

teosarcoma cells and osteoblasts. We tested the global expression patterns of KEGG

pathways using globaltest (29) and determined the intersection of the pathways most

signi�cantly di�erent in osteosarcoma cell lines as compared with MSCs, and of osteosar-

coma cell lines as compared with osteoblasts. This approach resulted in �ve signi�cantly

a�ected pathways�insulin signaling pathway, oocyte meiosis, ubiquitin mediated prote-

olysis, progesterone-mediated oocyte maturation, and glycerophospholipid metabolism.

Details of the globaltest are shown in Table 5.1.

KEGG pathway Analysis adjP Statistic Expected Std.dev
Insulin signaling
pathway

OScellvsOB
OScellvsMSC

1.01 · 10−7

3.07 · 10−15
26.34
35.12

4.76
3.33

1.92
1.78

Oocyte meiosis OScellvsOB
OScellvsMSC

2.70 · 10−7

5.04 · 10−16
37.45
53.70

4.76
3.33

2.90
2.84

Ubiquitin mediated
proteolysis

OScellvsOB
OScellvsMSC

3.21 · 10−7

5.04 · 10−16
22.88
37.99

4.76
3.33

1.75
1.89

Progesterone-mediated
oocyte maturation

OScellvsOB
OScellvsMSC

7.16 · 10−7

1.34 · 10−15
34.26
55.35

4.76
3.33

2.71
2.77

Glycerophospholipid
metabolism

OScellvsOB
OScellvsMSC

1.40 · 10−6

2.25 · 10−15
27.13
55.86

4.76
3.33

2.25
2.82

Table 5.1: The top �ve signi�cant pathways with aberrant expression in both osteosarcoma cell
lines versus osteoblasts (OScellvsOB) and osteosarcoma cell lines versus mesenchymal stem cells
(OScellvsMSC). adjP: FDR-adjusted p-value, Statistic: test statistic of the globaltest, Expected:
expected test statistic of the globaltest, Std.dev: standard deviation under the null hypothesis.

IGF1R signaling is involved in three out of the �ve detected KEGG pathways (insulin

signaling pathway, oocyte meiosis, and progesterone-mediated oocyte maturation). In-

terestingly, a globaltest on mRNA expression of previously published pretreatment biop-

sies (21) compared with normal bones (31) also returned insulin signaling as the most

signi�cantly a�ected pathway (data not shown). Notably, there is no speci�c IGF1R sig-

naling pathway in the KEGG database (28). Because of the overrepresentation of IGF1R

signaling, and because of its known role in cancer, we decided to study expression of

members of this pathway in detail.

Di�erentially expressed genes of the IGF1R pathway

To determine which genes have the most speci�c up- or downregulation in osteosarcoma,

we combined lists of signi�cantly di�erentially expressed genes of osteosarcoma cell lines

(n = 19) and a previously published set of osteosarcoma pretreatment biopsies (n = 84,
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GEO accession GSE33382) in comparison with mesenchymal stem cells (n = 12) and

osteoblasts (n = 3) by four-way Venn analysis of all signi�cantly a�ected probes with the

same direction of fold change (upregulated or downregulated in all four analyses). We

identi�ed IGFBP4 and GAS6 as the most downregulated genes in osteosarcoma (average

log fold changes of −4.43 and −4.29, respectively). IGFBP2 was also present in the top 20
results from this four-way analysis. In addition, IGFBP3 and -7 were signi�cantly down-

regulated, and IGF2BP3 was signi�cantly upregulated in three out of the four analyses.

Both IGFBP4 and GAS6 show high variability in expression in osteosarcoma cell lines

and biopsies (Figure 5.1A). Patients whose biopsies had very low expression of these genes
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Figure 5.1: A, Normalized gene expression levels of GAS6 and IGFBP4 in osteosarcoma biop-
sies, cell lines, mesenchymal stem cells (MSCs), and osteoblasts (OB). Expression of both proteins
is considerably higher in the controls (FDR-adjusted p-value < 0.001 for both genes in all four
analyses). B, Kaplan-Meier curves depicting metastasis-free survival in years for 83 high-grade
osteosarcoma patients (for 1/84 patients, we did not have follow-up data available), based on
quartiles of mRNA expression of the genes of interest.

had poor event-free survival pro�les (Logrank test for trend, p-value = 0.01 for IGFBP4

and p-value = 0.04 for GAS6, Figure 5.1B). To visualize mRNA expression of the IGF1R

signaling pathway members, we used Ingenuity Pathways Analysis on LIMMA toptables
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from osteosarcoma cells as compared with mesenchymal stem cells and from osteosarcoma

cells as compared with osteoblasts (Figure 5.2). As can be seen in this �gure, overlap of

di�erentially expressed genes between these analyses was detected upstream of IGF1R.

IGFBP2 IGFBP6
IGFBP3 IGFBP5 IGFBP7

IGFBP4
IGFBP1

Figure 5.2: This �gure shows the IGF1R signaling pathway, with signi�cantly upregulated genes
in red, downregulated genes in green, and genes that did not meet our criteria for signi�cance in
gray. The left part of the symbols shows the analysis of osteosarcoma cell lines as compared with
mesenchymal stem cells, the right part as compared with osteoblasts. Most consensus in gene
expression is found upstream IGF1R signaling, in the expression of the IGF binding proteins.

OSI-906 inhibits phosphorylation of IRS-1

Gene expression levels of IGF1R and IRS-1 were validated at the protein level by Western

blot analysis (data not shown). We used phosphorylated IRS-1 as a readout for IR/IGF1R

signal transduction activity, as IRS-1 is a direct downstream target of these receptors. We

performed Western blot analysis on cell lysates of OHS, KPD, SAOS-2, and 143B, using

antibodies against IRS-1 and phosphorylated IRS-1, before and after treatment with OSI-

906�a selective small molecule dual kinase inhibitor of both IR and IGF1R. An inhibition

of intrinsic IRS-1 phosphorylation at Y612 was detected after treatment with OSI-906 in

all cell lines (Figure 5.3), indicating that this inhibitor could a�ect signaling downstream

IGF1R in osteosarcoma cells.
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Figure 5.3: Western blot of IRS-1 and p-
IRS-1 of lysates of untreated (�) osteosar-
coma cell lines OHS, KPD, SAOS-2, and
143B, and of these cells treated for 3hrs with
1µM of OSI-906 (+).

OSI-906 inhibits proliferation of 3 of 4 osteosarcoma cell lines

In 3 of 4 osteosarcoma cell lines tested, inhibition with OSI-906 was dose-dependent

(Figure 5.4). Except for a toxic response at the maximum dose of 10µM (data not shown),

there was no e�ect on 143B. Because of this toxicity, relative IC50s were determined using

measurements until 1µM. OHS, SAOS-2, and KPD had an IC50 of 25nM, 92nM, and 90nM

at 72hrs, respectively, and of 37nM, 57nM, and 23nM at 96hrs of inhibition, respectively.

At 1µM OSI-906, approximately 60% of proliferation of OHS, SAOS-2, and KPD cells

was inhibited, while 143B proliferation was not inhibited (Figure 5.4).

Discussion

Genome-wide gene expression and subsequent gene set analysis on osteosarcoma cell lines

and biopsies indicated increased insulin-like growth factor signaling in high-grade osteosar-

coma as compared with the hypothesized osteosarcoma progenitors, which is currently the

best control, since there is no benign precursor and no certainty of the normal counterpart

of osteosarcoma. Because IGF1R signaling can be exploited as a therapeutic target, and

osteosarcoma patients are in severe need of new therapies, we examined mRNA expres-

sion of members of this signaling pathway in detail. IGFBP4 and GAS6, which code for

proteins that inhibit IGF1R signaling, showed the highest signi�cant downregulation (log

fold changes < −4) in a four-way analysis, in which osteosarcoma pretreatment biopsies

or cell lines were compared with osteoblastic cultures (n = 3) or MSCs (n = 12). In-

sulin-like growth factor binding proteins (IGFBPs) generally inhibit IGF1R signaling by

competitively binding IGFs, but can under certain circumstances also stimulate IGF1R

signaling (32). IGFBP4 is a negative regulator of IGF signaling in various tissues, in-

cluding bone (33). GAS6, or growth arrest-speci�c 6, was shown to inhibit the growth

promoting e�ects of IGF signaling and to stimulate di�erentiation in the chondrogenic

cell line ATDC5 (34). Both IGFBP4 and GAS6 expression have previously been shown

to be downregulated in osteosarcoma cell lines (IGFBP4 in MG-63 (35), GAS6 in MG-

63 and SAOS-2 cells (36)). Next to GAS6 and IGFBP4, IGFBP2 was also signi�cantly

downregulated in all four analyses, with log fold changes of approximately −3. IGFBP2
generally inhibits IGF action and may play a role in IGF2-induced osteoblast di�erentia-
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Figure 5.4: Osteosarcoma cell lines were inhibited with di�erent concentrations of OSI-906,
for 72 (gray line) or 96 (black line) hours. OHS (A), KPD (B), and SAOS-2 (C) showed a
dose-dependent inhibition, while 143B (D) did not respond to OSI-906.
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tion (33). IGFBP3 was highly downregulated in three out of four analyses, and has been

shown to elicit anticancer e�ects by inhibiting IGF1R signaling in Ewing sarcoma (37).

IGFBP7 activity has not yet been reported in sarcoma, but has been associated with

e.g. hepatocellular carcinoma (38). Interestingly, IGF2BP3 was highly overexpressed in

3 of 4 analyses. This binding protein can bind IGF2 mRNA, thereby probably activating

the translation of IGF2 (39). Overexpression of IGF2BP3 has been reported in several

cancer types (40, 41). Figure 5.2 shows that di�erential expression is most pronounced in

upstream regulators of IGF1R, while downstream components, such as SHC and FOS, are

slightly downregulated, although for most genes this only holds when compared with mes-

enchymal stem cells, and not with osteoblasts. This may be caused by negative feedback

loops, triggered by the active IGF1R signaling pathway. These results suggest that, in

osteosarcoma, the IGF1R signaling pathway can be inhibited at the level of the receptor.

We therefore validated protein levels of IGF1R and of IRS-1, a direct downstream compo-

nent of IGF1R and IR signaling using Western blotting. IGF1R and IRS-1 protein levels

correlated fairly well with mRNA expression levels. Most importantly, phosphorylated

IRS-1, which is a measure for pathway activity, was detected in all four osteosarcoma

cell lines, indicating that IGF1R signaling is active in osteosarcoma, and is possibly reg-

ulated upstream of IGF1R. Accordingly, targeting this receptor may be an e�ective way

to inhibit this pathway.

OSI-906 is a selective small molecule dual kinase inhibitor of both IR and IGF1R (42).

We speci�cally chose to treat osteosarcoma cells with a dual inhibitor, because the in-

sulin receptor can activate the same downstream signaling pathways as IGF1R, therefore

providing cells a way to circumvent single inhibition of IGF1R. This has formerly been

demonstrated in osteoblasts (43) and in Ewing sarcoma cells (44). In fact, this dual

inhibitor has been shown to cause enhanced inhibition of the Akt signaling pathway

when compared with a selective monoclonal antibody against IGF1R, which could inhibit

IR/IGF1R hybrids, but not IR homodimers (45). OSI-906 is currently being tested by

OSI Pharmaceuticals in a Phase III trial in adrenocortical carcinoma and in a Phase I/II

clinical trial in ovarian cancer. Treatment of osteosarcoma cells with OSI-906 at physi-

ological levels leads to decreased phosphorylation of IRS-1 at Y612. Inhibition of IRS-1

at Y612 after treatment with OSI-906 was previously reported by Buck et al. in direct

complementation breast cancer cells for IGF1R-IGF2 and IR(A)-IGF2 (45). Interestingly,

we also detected a small shift in the size of p-IRS-1 on the Western Blot, indicating that

multiple phosphorylation groups are removed after treatment with OSI-906. Surprisingly,

total IRS-1 levels were highest in 143B, and were downregulated after treatment with

OSI-906 in this cell line, although this had no e�ect on cell growth in this line, as opposed

to the three others, which showed low IC50s. Proliferation of 143B was only inhibited

most likely unspeci�cally at high and toxic levels of the drug. The 143B cell line is a

derivative of the osteosarcoma cell line HOS, transformed by a KRAS oncogene. Consti-

tutive activation of the Ras/Raf/ERK pathway can explain why proliferation of this cell
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line cannot be inhibited by OSI-906. Of the cell lines that were responsive to OSI-906,

KPD and OHS showed that treatment of 96hrs was most e�ective, while SAOS-2 already

reached maximum inhibition at 72hrs.

IGF1R signaling has been previously modulated in sarcoma in preclinical and clinical

models. Several phase I and II clinical trials including treatment with IGF1R monoclonal

antibodies are currently being conducted in sarcoma, especially in Ewing sarcoma (an

overview of these trials is given in Olmos et al. (46)). Monoclonal antibodies against

IGF1R have modest activity against Ewing sarcoma, as was observed in a phase I/II study

of �gitumumab (partial response in 14.2% of all subjects) (47) and in a phase II study

using R1507 (complete/partial response rate of 10%) (48). Results of a phase II study

of ganitumab in subjects with Ewing sarcoma and desmoplastic small round cell tumors

were published very recently, and reported clinical bene�t in 17% of all patients (49).

Preclinically, treatment with di�erent monoclonal antibodies against IGFR1 has been

performed in osteosarcoma xenograft models, in which a response was detected in at

least 60% of all cases studied (50�52). However, no objective responses were observed

in phase I trials testing monoclonal antibodies in osteosarcoma (47, 53, 54), although 2

of 3 patients treated with R1507 had prolonged stable disease (53). Clinical data using

dual IGF1R/IR inhibitors osteosarcoma is still very limited (55). Because resistance to

highly speci�c IGF1R inhibitors may develop through IR (44), blocking both IGF1R and

IR with a dual kinase inhibitor will most likely lead to better inhibition of downstream

IRS-1 signaling. We thus expect clinical outcomes to improve for osteosarcoma patients

treated with dual IGF1R/IR inhibitor OSI-906. The e�ects of combination of OSI-906

with chemotherapeutics in osteosarcoma still need to be assessed before such a treatment

can be clinically tested.

Phosphorylated IRS could be used as a biomarker in order to determine whether pa-

tients would respond to IGF1R inhibition. Patients with tumors exhibiting an activating

mutation in downstream pathways will most likely not respond to IGF1R inhibition. Fur-

ther research needs to be performed in order to assess these candidate biomarkers for

response to treatment. The IGF1R pathway acts on several biological mechanisms that

promote tumor progression�mitogenesis, protection from apoptosis, malignant transfor-

mation, and metastasis (6). It is therefore possible that inhibiting these pathways with

a dual IR/IGF1R kinase inhibitor, such as OSI-906, may reduce tumor sizes, as well as

osteosarcoma metastasis, the leading cause of death in these patients.

Conclusions

Using gene set analysis of genome-wide gene expression data of high-grade osteosarcoma

biopsies and cell lines, we detected an overrepresentation of IGF1R signaling. Speci�cally,

di�erent upstream inhibitors of IGF1R signaling, e.g. several IGF binding proteins, were

downregulated. As this indicated the IGF1R receptor as a potential target for treatment
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of osteosarcoma, we set out to inhibit this receptor in four osteosarcoma cell lines. We used

OSI-906, a selective small molecule dual kinase inhibitor of both IR and IGF1R, since

the insulin receptor can activate the same downstream signaling pathways as IGF1R,

thereby providing a way to circumvent single inhibition of IGF1R. Treatment with OSI-

906 resulted in inhibition of phosphorylation of IRS-1 Y612, a direct downstream target

of IGF1R, and in strong inhibition of proliferation in 3 of 4 osteosarcoma cell lines. The

nonresponsive cell line, 143B, has a KRAS oncogenic transformation, and may therefore

not respond to this treatment. In conclusion, we have shown that IGF1R signaling is active

in osteosarcoma, and that dual inhibition of IR/IGF1R inhibits downstream signaling and

proliferation of these cells. Responsiveness to this treatment may be evaluated by Western

blotting against phosphorylated IRS. This study provides an in vitro rationale for using

dual IR/IGF1R inhibitors in preclinical studies of osteosarcoma.
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Abstract

Background: High-grade osteosarcoma is a primary malignant bone tumor mostly occur-

ring in adolescents and young adults, with a second peak at middle age. Overall survival

is approximately 60%, and has not signi�cantly increased since the introduction of neoad-

juvant chemotherapy in the 1970s. The genomic pro�le of high-grade osteosarcoma is

complex and heterogeneous. Integration of di�erent types of genome-wide data may be

advantageous in extracting relevant information from the large number of aberrations

detected in this tumor.

Methods: We analyzed genome-wide gene expression data of osteosarcoma cell lines,

and integrated these data with a kinome screen. Data were analyzed in statistical lan-

guage R, using LIMMA for detection of di�erential expression/phosphorylation. We sub-

sequently used Ingenuity Pathways Analysis to determine deregulated pathways in both

data types.

Results: Gene set enrichment indicated that pathways important in genomic stability

are highly deregulated in these tumors, with many genes showing upregulation, which

could be used as a prognostic marker, and with kinases phosphorylating peptides in

these pathways. Akt and AMPK were identi�ed as active and inactive, respectively.

As these pathways have an opposite role on mTORC1 signaling, we set out to inhibit

Akt with the allosteric Akt inhibitor MK-2206. This resulted in inhibition of proliferation

of osteosarcoma cell lines U-2 OS and HOS, but not of 143B, which harbors a KRAS

oncogenic transformation.

Conclusions: We identi�ed both overexpression and hyperphosphorylation in path-

ways playing a role in genomic stability. Kinome pro�ling identi�ed active Akt signaling,

which could inhibit proliferation in 2/3 osteosarcoma cell lines. This study provides a

rationale for further testing inhibitors of the PI3K/Akt/mTORC1 pathway in preclinical

studies of osteosarcoma.

Background

High-grade osteosarcoma is the most prevalent primary malignant bone tumor. Most

frequently, the long bones of adolescents and young adults are a�ected, with a yearly

incidence of approximately 5 cases per million per year (1). Patients are generally treated

with high doses of neoadjuvant chemotherapy to prevent the outgrowth of micrometas-

tases. In 15�25% of all patients, however, metastatic disease is clinically detectable at

diagnosis and despite the intensive treatment, 45% of all patients develop distant metas-

tases, the leading cause of death of osteosarcoma patients (2, 3). The introduction of

neoadjuvant chemotherapy in the 1970s has increased survival from 10�20% to approxi-

mately 60%. However, survival has reached a plateau, and new treatments are urgently

needed (4�6). Osteosarcoma is an extremely genomically unstable tumor, with karyotypes
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harboring numerous numerical and structural changes (7, 8). In addition, osteosarcoma

genotypes show a considerable degree of heterogeneity, both intra- and intertumoral. Both

the complex genotype and its heterogeneity render it di�cult to determine which genomic

alterations are important in osteosarcomagenesis, as not all alterations may lead to a dif-

ference in mRNA, protein levels, or enzyme activity in the tumor tissue. Integration

of di�erent data types is therefore of particular relevance for studying a heterogeneous

tumor with a complex genomic pro�le such as osteosarcoma. Previously, genomic and

expression data of osteosarcoma pretreatment biopsies have been integrated, in order to

detect highly recurrent osteosarcoma driver genes. The list of driver genes obtained with

this study was enriched in genes playing a role in genomic stability (9). Yet, even though

recurrent driver genes may provide knowledge on what pathways are a�ected that help

tumor cells survive, such driver genes may not always be accessible as targets for treat-

ment. This especially holds for pathways involved in genetic stability, since the damage

is already done.

Oncogenic kinases are often active in tumor cells, and a number of kinases can be phar-

macologically inhibited. Therapies targeting oncogenic kinases have provided promising

results in inhibiting proliferation of cancer cells, and some kinases have been targeted in

preclinical and clinical studies in childhood sarcomas (as reviewed in Wachtel et al. (10)),

e.g. IGF1R and mTOR (11, 12). An unbiased approach to identify active kinases in

cancer is to perform kinome-wide screens. Such screens have previously been e�ectively

used in other types of sarcoma and have led to the detection of speci�c targets for treat-

ment (13, 14). As combining the analysis of di�erent data types using systems biology

approaches can give a more complete impression of the state of a tumor cell, we set out

to integrate genome-wide gene expression data of osteosarcoma cell lines with kinome

pro�ling data. Osteosarcoma cell lines are widely available and have been shown to be

representative for the tumor of origin, both on a genome-wide as on a functional level,

and are therefore a good model to study osteosarcoma preclinically (15, 16). We previ-

ously have performed genome-wide expression analysis on a panel of 19 osteosarcoma cell

lines (17). In the present study, we compared expression pro�les with the di�erent putative

progenitor cells of osteosarcoma�mesenchymal stem cells (MSCs) and osteoblasts�in or-

der to de�ne the common denominator pathways that are deregulated in osteosarcoma.

Pathways with a role in genomic stability appeared to be enriched in overexpressed genes.

By integrating expression data with a serine/threonine (Ser/Thr) kinome screen, we show

that these pathways are enriched in hyperphosphorylation as well, con�rming that ge-

nomic stability is highly deregulated in osteosarcoma, both on a transcriptional level and

on phosphorylation activity.

In order to detect overactive kinases in osteosarcoma, which may be potential targets

for treatment, we identi�ed the most signi�cant pathways in the kinome pro�ling data,

which indicated active PI3K/Akt and inactive AMPK signaling. These pathways play

an opposite role in mTORC1 signaling, with Akt promoting and AMPK inhibiting signal
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transduction (18). We pharmacologically inhibited Akt in osteosarcoma cell lines, which

reduced proliferation of 2/3 cell lines. In summary, this study describes integration of

mRNA and phosphorylation data, and gives a rationale for treatment of osteosarcoma

with inhibitors of the PI3K/Akt pathway.

Methods

Cell culture

Osteosarcoma cell lines were previously characterized and described (17). Human bone-

marrow-derived MSCs were obtained from two osteosarcoma patients, and were char-

acterized and handled as described (19). For kinome pro�ling of osteosarcoma versus

MSCs, cells were cultured in Dulbecco's Modi�ed Eagle Medium (DMEM; Invitrogen,

Carlsbad, CA), supplemented with 10% fetal bovine serum (Greiner Bio-one, Fricken-

hausen, Germany), in order to eliminate di�erences in kinase activity caused by culture

conditions. For inhibition experiments and kinome pro�ling of inhibition experiments,

osteosarcoma cell lines 143B, U-2 OS, and HOS were maintained in RPMI 1640 supple-

mented with 10% fetal calf serum (both from Invitrogen, Carlsbad, CA). The human

pre-B acute lymphoblastic leukemia cell line NALM-6 cell line was kindly provided by

Mw. N. Duinkerken (Department of Hematology, Leiden University Medical Center, the

Netherlands), and was maintained in Iscove's Modi�ed Dulbecco's Medium (IMDM) sup-

plemented with GlutaMAX-1 (Life Technologies, Carlsbad, CA) and 10% fetal bovine

serum (Greiner Bio-one, Frickenhausen, Germany). All cells were regularly tested for

mycoplasm and were genotyped using the Powerplex 1.2 system (Promega, Leiden, the

Netherlands), as described previously (16).

Cell lysates

Kinome pro�ling was performed on osteosarcoma cell lines 143B and U-2 OS and on two

MSCs�MSC001 and MSC006. Cells at 80% con�uence were washed twice with Phosphate

bu�ered Saline and lysed with M-PER Mammalian Extraction Bu�er, supplemented with

Halt Phosphatase Inhibitor Cocktail and EDTA free Halt Protease Inhibitor Cocktail

(Pierce Biotechnology, Rockford, IL), according to the manufacture's protocol. Cells

were incubated on ice for at least 30 minutes before collecting the lysates and centrifuging

these for 15 minutes at 4◦C at > 10, 000 · g. Protein concentration was measured using a

detergent-compatible Protein Assay (Bio-Rad Laboratories, Hercules, CA) according to

the manufacturer's protocol. Samples were snap-frozen and stored at -70◦C.
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Proliferation assays

MK-2206 was dissolved in DMSO at a concentration of 10mM and stored at -20◦C. For

143B, U-2 OS, and HOS, 2, 000, 4, 000, and 2, 000 cells/well respectively, were plated in

a 96-wells plate. NALM-6, a human pre-B acute lymphoblastic leukemia (ALL) cell line,

was included as a positive control, as ALL cell lines have been shown to be highly sensitive

to MK-2206 (20). This cell line grows in suspension and was plated at 50, 000 cells/well.

After 24hrs, MK-2206 was added in triplicate in di�erent concentrations�0nM, 0.5nM,

1nM, 5nM, 10nM, 50nM, 100nM, 500nM, 1µM, 5µM, and 10µM. For 143B and HOS, the

e�ect of concentrations of 2, 3, 4, and 5nM was assessed as well. Cells were grown in

the presence of inhibitor for 120hrs. Cell proliferation was determined by incubating the

cells with reagent WST-1 (Roche, Basel, Switzerland) for 2hrs and subsequently measured

using a Wallac 1420 VICTOR2 (Perkin Elmer, Waltham, MA). Data were analyzed in

Graphpad Prism 5.01 (www.graphpad.com). Relative IC50s were calculated using results

from the di�erent concentrations up to the highest dose where toxicity was not yet present.

The results shown are representative results from at least three independent experiments.

Genome-wide gene expression pro�ling

We analyzed our previously published data of osteosarcoma cell lines (n = 19), MSCs

(n = 12), and osteoblasts (n = 3) (GEO superseries, accession number GSE42352) (9).

Microarray data processing and quality control were performed in the statistical language

R version 2.15 (21) as described previously (22).

Kinome pro�ling

Kinome pro�ling was performed on 1µg of cell lysate on the serine/threonine (Ser/Thr)

Kinase PamChip R©peptide microarrays (PamGene, 's-Hertogenbosch, the Netherlands)

according to the manufacturer's protocol, essentially as described in Hilhorst et al. (23).

This peptide microarray comprises 142 peptide sequences derived from human phospho-

rylation sites. Peptide phosphorylation is detected in time with a mixture of �uorescently

labeled antiphosphoserine/threonine antibodies. We used at least three technical repli-

cates for each MSC line, and four technical replicates for the osteosarcoma cell lines.

Images were taken every 5 minutes, over the course of 60 minutes. Signal quanti�cation

on phosphorylated peptides was performed in BioNavigator software (PamGene Interna-

tional, 's Hertogenbosch, the Netherlands). Subsequently, data were normalized in R (24)

using the vsn package (25). Median signals at 60 minutes of incubation with the cell

lysates were analyzed in Bioconductor (26) package arrayQualityMetrics (27) to identify

poor quality samples, which were removed from further analysis. Technical replicates

of good quality were averaged. To determine whether these data were reproducible, we

analyzed data from di�erent cycles (0, 10, 20, 30, 40, 50, and 60 minutes incubation with

www.graphpad.com
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cell lysates).

In the second kinome pro�ling experiment we compared lysates of untreated cells with

lysates of cells treated with MK-2206. Di�erent treatment durations and concentrations

were used�no treatment, treatment for 5, 30, 180, and 960 minutes with 1µM MK-2206,

and treatment for 180 minutes with 10µM of the drug. Kinome pro�ling was performed as

described above, with the di�erence that we used 1�5 technical replicates per condition.

Of this experiment, we analyzed signals at 30 minutes of incubation with the lysates.

Statistical analyses of microarray data

We performed LIMMA analysis (24) in order to determine di�erential mRNA expres-

sion between osteosarcoma cell lines (n = 19) and control cell lines�MSCs (n = 12)

and osteoblasts (n = 3) and to determine di�erential phosphorylation of peptides on the

PamChip R©microarray between osteosarcoma cell lines (n = 2) and MSCs (n = 2). We

used a Benjamini and Hochberg False Discovery Rate (FDR) of 0.05 as cut-o� for sig-

ni�cance. Kinome pro�ling signals obtained for the di�erent treatment conditions were

analyzed in a paired approach, in which signals from untreated cells were subtracted from

the signals from treated cells. For both kinome pro�ling experiments, we used a cut-o� of

0.1 for the absolute log fold change (logFC). Heatmaps were generated using the function

heatmap.2 of R package gplots.

Pathway analysis

In order to reveal pathways which were signi�cantly a�ected on mRNA levels in osteosar-

coma cell lines, we intersected the toptables obtained by LIMMA analysis of osteosarcoma

cell lines versus MSCs and of osteosarcoma cell lines versus osteoblasts. Gene symbols for

all probes were imported into the software Ingenuity Pathways Analysis (IPA, Ingenuity

Systems, www.ingenuity.com), together with FDR adjusted p-values (adjP) and average

logFCs. Only the gene symbols of probes that were both signi�cantly upregulated or both

signi�cantly downregulated in osteosarcoma cell lines as compared with MSCs and with

OBs (adjP < 0.05) were selected to be considered as signi�cantly di�erentially expressed

in the IPA analysis. For di�erential phosphorylation, we imported the results from the

LIMMA analysis on kinome pro�ling data, with a cut-o� of 0.05 for adjusted p-value

and a cut-o� of 0.1 for logFC. The signi�cance of the association between the data set

and the canonical pathways was measured as described previously (28). Pathways with

adjP < 0.05 were considered to be signi�cantly a�ected. In addition, transcription factor

analyses were performed on gene expression data in IPA in order to predict activated

or inhibited transcription factors based on expression of target genes, returning p-values

(with a cut-o� of 0.05 for signi�cance) and regulation z-scores.

www.ingenuity.com
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Results

Genome-wide gene expression pro�ling of high-grade osteosarcoma

cell lines

We started by comparing gene expression signatures of 19 osteosarcoma cell lines, 12 MSC,

and 3 osteoblast cultures using unsupervised hierarchical clustering. Two separate clusters

were detected�one containing all tumor cell samples and one containing control samples.

Within the control sample cluster, osteoblasts clustered separately from MSCs (data not

shown). LIMMA analysis resulted in 7, 891 probes encoding for di�erentially expressed

(DE) genes between osteosarcoma cell lines and MSCs, and 2, 222 probes encoding for DE

genes between osteosarcoma cells and osteoblasts. Intersecting of these gene lists showed

1, 410 probes that were signi�cant in both analyses, of which 1, 390 were upregulated in

both analyses, or downregulated in both analyses (Figure 6.1). These probes, encoding

for 1, 312 genes, were selected for subsequent pathways analysis, in order to determine

commonly a�ected pathways in osteosarcoma tumor cells.

1390
5465060

20

22960

1421 266

vsMSC vsOB

same sign

Figure 6.1: Venn diagram showing the sig-
ni�cant probes in the analysis of osteosar-
coma cell lines vs MSC (vsMSC) and vs

osteoblasts (vsOB), and the intersection of
these signi�cant probes with the subset of all
probes (both signi�cant and nonsigni�cant)
that shows both up- or both downregulation
in these two analyses (same sign). In total,
1, 410 probes are signi�cant in both analyses,
of which 1, 390 have the same sign of logFC.

Gene expression is altered in pathways regulating genomic stability

Pathway analyses on the 1, 312 di�erentially expressed genes resulted in 17 signi�cantly

a�ected pathways (Figure 6.2). Fourteen out of these 17 pathways play a direct or indirect

role in genomic stability. Unsupervised hierarchical clustering of all cell line data and data

from 84 osteosarcoma biopsies (GEO accession number GSE33382 (9)) was performed on

all DE genes present in these 17 signi�cantly a�ected pathways, which resulted in a cluster

of control cells and biopsies, and larger cluster of osteosarcoma cell lines and biopsies
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Figure 6.2: Stacked bar chart depicting all signi�cantly a�ected pathways as identi�ed by gene
expression pro�ling of osteosarcoma cell lines, showing percentages of downregulated (green),
not signi�cantly altered (gray), and upregulated (red) genes, and genes which were not present
on the microarray (white). The -log(adjP) (-log(B-H) p-value) is plotted in orange, and is above
1.3 for adjP < 0.05.
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(Additional Figure 6.1). Patients whose biopsies had expression pro�les of these pathways

similar to osteosarcoma cell lines showed worse metastasis-free survival than patients

with intermediate expression pro�les, and than patients whose biopsies had expression

pro�les more similar to the control cultures, i.e. nontransformed primary mesenchymal

cell cultures and osteoblast cultures (Logrank test for trend, p-value = 0.049, Figure 6.3).

Transcription factors were predicted to be activated or inhibited based on expression of
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Figure 6.3: Kaplan-Meier metastasis-free
survival analysis on data obtained from pa-
tient biopsies which clustered with osteosar-
coma cell lines, biopsies clustering with con-
trol cell lines, and an intermediate group,
based on gene expression of genes all present
in the 17 signi�cantly a�ected pathways (as
in Additional Figure 6.1). Logrank test for
trend, p-value = 0.049.

target genes are shown in IPA. The most activated transcription factor was MYC, while

the most inactivated transcription factor was TP53.

Kinome pro�ling of osteosarcoma cell lines

To obtain more information on the activity of the pathways which showed aberrant

mRNA expression, we integrated mRNA expression data with data obtained with ki-

nase PamChip R©peptide microarrays. These peptide microarrays were incubated with

lysates of the osteosarcoma cell lines 143B and U-2 OS, and with lysates of two MSC cul-

tures. Kinases present in the cell lysates can, in the presence of ATP, phosphorylate the

peptides present on the microarray, which is detected by �uorescently labeled antibodies.

We compared kinome pro�ling data at di�erent incubation times by intersecting lists of

di�erentially phosphorylated peptides between osteosarcoma cells and MSCs, obtained by

LIMMA analyses, as shown in Figure 6.4. This data analysis demonstrated a large over-

lap in the detected di�erentially phosphorylated peptides, and a build-up of di�erentially

phosphorylated peptides over time. Most peptides showed di�erential phosphorylation

after 20 minutes of incubation with cell lysates. After 60 minutes of incubation on the

peptide microarray, 49 peptides were detected to be signi�cantly di�erentially phospho-

rylated between osteosarcoma cell lines and mesenchymal stem cells. These peptides are

represented in Figure 6.5. As a reference, we performed an unsupervised hierarchical

clustering including all technical replicates (data not shown), which showed that phos-

phorylation of peptides by cell lysates of most technical replicates was comparable.
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Figure 6.4: Comparison of peptide
phosphorylation at di�erent time points.
LIMMA analyses were performed on di�er-
ent time points, ranging from 0 to 60 min-
utes of incubation with cell lysates. Venn
diagrams show overlap of signi�cantly dif-
ferentially phosphorylated peptides between
the consecutive time points.
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Figure 6.5: Supervised clustering of all 49 signi�cantly di�erentially phosphorylated peptides
identi�ed by the comparison of two osteosarcoma cell lines with two MSC cultures. Peptides
are sorted on logFC, from lower phosphorylation to higher phosphorylation in osteosarcoma cell
lines. Orange: higher phosphorylation levels, blue: lower phosphorylation levels.
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Altered phosphorylation in genomic stability pathways

The signi�cance of the 17 pathways that were returned from the pathway analysis on

mRNA expression data was tested on kinome pro�ling results in IPA. In total, 7/17

pathways were signi�cant in kinome pro�ling as well. These seven pathways were a subset

of the 14 pathways with a known role in genomic stability. Most signi�cantly di�erentially

phosphorylated peptides in these seven pathways showed higher phosphorylation levels

in osteosarcoma cell lines (Figure 6.6), indicating that kinases a�ect phosphorylation of

molecules playing a role in genomic stability.

Figure 6.6: Stacked bar chart showing kinome pro�ling pathway analysis on the subset of
pathways which were signi�cant on gene expression pro�ling. Percentages of downregulated
(blue), not signi�cantly altered (gray), and upregulated (orange) genes, and genes which were
not present on the microarray (white) are shown. The -log(adjP) (-log(B-H) p-value) is plotted
in orange, and is above 1.3 for adjP < 0.05.

PI3K/Akt and AMPK signaling in osteosarcoma

Unsupervised pathway analysis on the kinome pro�ling results returned the IPA path-

way PI3K/Akt signaling as the most signi�cantly a�ected pathway in osteosarcoma cells

(Figure 6.7) and the AMPK pathway as second most signi�cantly a�ected pathway.

Speci�cally, molecules directly downstream of Akt showed higher phosphorylation in os-

teosarcoma than in MSCs, while molecules downstream of AMPK showed lower phospho-

rylation levels. As these results indicate that Akt signaling is active in osteosarcoma and

might be driving its high proliferative capacity, we set out to pharmacologically inhibit

Akt using the compound MK-2206.
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Figure 6.7: The Akt signaling pathway in IPA. Blue: signi�cantly lower, orange: signi�cantly
higher phosphorylation in osteosarcoma cell lines, gray, no signi�cant di�erence in phosphoryla-
tion, white: no phosphorylation sites of the particular protein on the PamGene Ser/Thr chip.
Blue lines indicate known downstream phosphorylation by the upstream kinase.
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MK-2206 inhibits proliferation of U-2 OS and HOS, but not of

143B

We inhibited osteosarcoma and control cells for 120hrs with allosteric inhibitor MK-2206.

Inhibition of the positive control leukemia cell line NALM-6, and of osteosarcoma cell

line U-2 OS with MK-2206 was dose-dependent, with IC50s of 0.38µM and 2.5µM, and

maximal responses of 94% and 71%, respectively (Figure 6.8). 143B did not show any
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Figure 6.8: Proliferation of osteosarcoma cell lines was inhibited with di�erent concentrations
of MK-2206, for 120hrs. NALM-6, U-2 OS, and HOS showed a dose-dependent inhibition, while
143B did not respond.

response at concentrations below 5µM. Because 143B exhibits an oncogenic KRAS trans-

formation, we assessed MK-2206 speci�city on the parental cell line of 143B, HOS, which

does not exhibit this transformation. HOS indeed responded similar to U-2 OS, with an

IC50 of 2.6µM and maximal response of 62%.

Di�erent phosphorylation patterns upon treatment with MK-2206

As 143B and U-2 OS showed di�erent sensitivities to MK-2206, we performed a paired

analysis between kinome pro�ling data obtained from lysates of cells, which were treated

with di�erent concentrations of MK-2206, and for di�erent treatment lengths. Overall,

the phosphorylation patterns di�ered between both cell lines, and distances between treat-
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ment options within each cell line were smaller than between the cell lines (Figure 6.9).

We generated a heatmap of di�erential phosphorylation in the paired analysis of treated
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and untreated cells, depicting all peptides of the PamGene chip which are downstream

of PI3K/Akt (Figure 6.10). This �gure shows that the inhibition pattern of MK-2206 is

di�erent in the two osteosarcoma cell lines, suggesting that other upstream kinases may

be a�ected by inhibition of Akt with MK-2206 as well.

Discussion

Osteosarcoma is a highly genomically unstable tumor. The identi�cation of speci�c molec-

ular targets that drive oncogenesis and that might be targets for therapy may thereby be

hampered. Genome-wide gene expression pro�ling of high-grade osteosarcoma cell lines,

in fact, showed an enrichment in di�erential expression in pathways important in ge-

nomic stability (Figure 6.2), with a role in cell cycle and checkpoint regulation (e.g. p53

signaling, G1/S and G2/M checkpoint regulation), DNA damage response (e.g. ATM

signaling, role of BRCA1 in DNA damage response), and purine/pyrimidine metabolism.

Most signi�cantly di�erentially expressed genes in these pathways were upregulated, for

example DNA-PK, BRCA1, and CDC25A. Some downregulated genes were detected as

well, such as CDKN1A, which has an inhibitory role on cell cycle progression, and genes

downstream of TP53 (e.g. THBS1 and SERPINE1, encoding TSP1 and PAI-1, respec-

tively). Interestingly, as shown by unsupervised clustering on expression levels of genes

of these pathways, osteosarcoma pretreatment biopsies can have pro�les more similar to

those of osteosarcoma cell lines, or more similar to pro�les of the control cells. The �rst

is associated with poor, while the latter is associated with good metastasis-free survival.

Expression pro�les can also be of an intermediate type, with intermediate metastasis-free

survival (Additional Figure 6.1, Figure 6.3). This suggests that deregulated genomic sta-

bility is a key driver of osteosarcomagenesis, as was already previously reported (9). IPA
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transcription factor analysis showed that MYC is the most signi�cantly activated (z-score

of 6.294), and TP53 the most signi�cantly inactivated (z-score of -7.660) transcription

factor. Other highly predicted activated transcription factors are e.g. E2F1/2/3, whereas

CDKN2A and RB1 were detected as inactivated. These di�erent genes are known to be

a�ected in osteosarcoma (7, 9, 29). The role of these genes in cell cycle progression further

con�rms the importance of these pathways in osteosarcoma.

As kinome-wide screens have previously led to the detection of speci�c targets for

treatment in other sarcoma types (13, 14), we performed kinome pro�ling of osteosarcoma

cell lysates. Since the pathways that were shown to be signi�cantly a�ected on mRNA

expression mostly contained Ser/Thr kinases, we selected a Ser/Thr peptide microarray�

the Ser/Thr PamChip R©. Pathway analysis on kinome pro�ling data showed that 50% of

the pathways that were signi�cant on gene expression data were also signi�cantly enriched

in di�erential phosphorylation signals (Figure 6.6). All signi�cant peptides were higher

phosphorylated in osteosarcoma cell lines, except for a peptide present in the gene CREB1.

Since most of these peptides showed higher phosphorylation, we expect these pathways

to be highly active, demonstrating higher cell cycling of the tumor cells, and deregulated

responses to DNA damage.

We next determined the most signi�cantly a�ected pathways in the kinome data from

the entire IPA canonical pathways database, and detected deregulation of the PI3K/Akt

and AMPK signaling pathways. Molecules downstream of Akt showed higher phospho-

rylation (Figure 6.7), while downstream of AMPK, lower levels of phosphorylation were

detected. Akt and AMPK act antagonistically to regulate mTOR signaling through in-

hibitory and activating phosphorylation of TSC2, respectively (18). The Akt pathway is

one of the most commonly a�ected pathways in cancer, with active PI3K/Akt signaling

leading to excessive cell growth and proliferation (30, 31). Inhibition of this pathway by

targeting mTOR with agents such as rapamycin is e�ective in some cancer types (32).

In a recent phase II trial in bone and soft tissue sarcomas, inhibition of mTOR with

ridaforolimus resulted in better progression-free survival (12). Inhibiting mTOR can,

however, also activate a strong negative feedback loop from S6K1 to enhance Akt sig-

naling (30, 32). It may, therefore, be more e�ective to inhibit Akt itself. Inhibition of

Akt was recently tested in a panel of xenografts of di�erent pediatric cancers, and was

most e�ective in osteosarcoma, with signi�cant di�erences in event-free survival in 6/6

xenografts (20). In addition, AMPK activators suppress growth of cell lines of various

tumor types (33).

We treated osteosarcoma cell lines with the allosteric Akt inhibitor MK-2206 (Selleck

Chemicals LLC, Houston, TX). Inhibition of proliferation was dose-dependent in U-2 OS

(IC50 = 2.5µM), but not in 143B (Figure 6.8). Important to note is that active Akt

signaling can be detected by kinome pro�ling in this cell line, but this does not neces-

sarily imply that this pathway can also be fully inhibited, for example in the case that

downstream actors in the same pathway cause a survival bene�t for the cell line. As 143B
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is derived from the HOS cell line with a KRAS oncogenic transformation, we determined

inhibitory e�ects of MK-2206 on HOS as well. HOS responded to MK-2206 in a similar

manner as U-2 OS (IC50 = 2.6µM). This suggests that constitutive Ras/Raf/ERK signal-

ing causes insensitivity to inhibition of the Akt pathway to MK-2206. Kinome pro�ling

of cells treated with MK-2206 resulted in di�erent phosphorylation patterns in 143B and

U-2 OS of peptides of molecules in the PI3K/Akt pathway (Figure 6.10). Di�erences be-

tween these cell lines were found in BAD Ser-99, of which phosphorylation was inhibited

after treatment with MK-2206 in the responsive cell line U-2 OS, but stimulated in 143B,

and in BAD Ser-118, where an opposite pattern was detected. BAD Ser-99 is the major

site of Akt phosphorylation, while Ser-118 is the major site of PKA phosphorylation (34).

Opposite patterns were also detected for TP53 Thr-18 and CDKN1A Thr-145/Ser-146,

of which CDKN1A Thr-145 can also be directly phosphorylated by Akt. These results

suggest that activity of other kinases may be a�ected by inhibition of Akt using MK-2206,

or by MK-2206 itself. This depends on the cellular context, as we otherwise would not

have expected to detect any di�erences in a paired analysis for the di�erent conditions in

each cell type.

An important �nding of our studies is that the PI3K/Akt and AMPK signaling path-

ways were detected with kinome pro�ling, while mRNA expression pro�ling did not result

in the identi�cation of these pathways. This suggests that in osteosarcoma, these pathways

are regulated by phosphorylation rather than by transcriptional activity. Gene expression

and protein synthesis imply a long time commitment of a cell to potential activation of

its synthesized proteins. Phosphorylation, on the other hand, provides a very rapid way

to mobilize extra catalytic power for a short time, and allows �ne-tuning of the activation

of a pathway to the needs of a cell. This di�erence in time scale emphasizes the impor-

tance of applying di�erent platforms for the analysis of a complex tumor as high-grade

osteosarcoma.

Conclusions

In summary, this study shows that genomic stability pathways are deregulated on both

mRNA and kinome levels, with most signi�cantly a�ected genes being upregulated and/or

phosphorylated. Akt was detected as most probably overactive in osteosarcoma, as down-

stream peptides were hyperphosphorylated as compared with MSCs. Akt inhibitor MK-

2206 could inhibit 2/3 osteosarcoma cell lines. Based on these results, we conclude that

Akt inhibitors and other drugs inhibiting the PI3K/Akt/mTOR pathway could have an

e�ect on survival of osteosarcoma tumor cells.
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Additional Figure 6.1: Unsupervised hierarchical clustering of osteosarcoma cell line data
(black bars), control cultures (MSC: dark gray bars, osteoblast: light gray bars), and data from
osteosarcoma biopsies (blue bars) on mRNA expression levels of all DE genes present in the 17
signi�cantly a�ected pathways as determined by IPA. The di�erent clusters selected for Kaplan-
Meier analysis are shown in the upper dendrogram in di�erent shades of blue, corresponding to
the legend of Figure 6.3. Red: upregulation, green: downregulation.
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Identi�cation of osteosarcoma driver

genes by integrative analysis of copy

number and gene expression data

This chapter is based on the publication: Kuijjer ML, Rydbeck H, Kresse SH, Buddingh

EP, Lid AB, Roelofs H, Bürger H, Myklebost O, Hogendoorn PCW, Meza-Zepeda LA,

Cleton-Jansen AM. Genes Chromosomes Cancer. 2012 Jul;51(7):696-706
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Abstract

High-grade osteosarcoma is a tumor with a complex genomic pro�le, occurring primarily in

adolescents with a second peak at middle age. The extensive genomic alterations obscure

the identi�cation of genes driving tumorigenesis during osteosarcoma development. To

identify such driver genes, we integrated DNA copy number pro�les (A�ymetrix SNP 6.0)

of 32 diagnostic biopsies with 84 expression pro�les (Illumina Human-6 v2.0) of high-

grade osteosarcoma as compared with its putative progenitor cells, i.e. mesenchymal

stem cells (n = 12) or osteoblasts (n = 3). In addition, we performed paired analyses

between copy number and expression pro�les of a subset of 29 patients for which both

DNA and mRNA pro�les were available. Integrative analyses were performed in Nexus

Copy Number software and statistical language R. Paired analyses were performed on

all probes detecting signi�cantly di�erentially expressed genes in corresponding LIMMA

analyses. For both nonpaired and paired analyses, copy number aberration frequency was

set to > 35%. Nonpaired and paired integrative analyses resulted in 45 and 101 genes,

respectively, which were present in both analyses using di�erent control sets. Paired

analyses detected > 90% of all genes found with the corresponding nonpaired analyses.

Remarkably, approximately twice as many genes as found in the corresponding nonpaired

analyses were detected. A�ected genes were intersected with di�erentially expressed genes

in osteosarcoma cell lines, resulting in 31 new osteosarcoma driver genes. Cell division

related genes, such as MCM4 and LATS2, were overrepresented and genomic instability

was predictive for metastasis-free survival, suggesting that deregulation of the cell cycle

is a driver of osteosarcomagenesis.

Introduction

High-grade osteosarcoma is an aggressive primary bone tumor, which mostly occurs dur-

ing adolescence, with a second peak at middle age, at the metaphysis of long bones. The

tumor is characterized by aberrant production of osteoid matrix and by very complex

karyotypes (1, 2). Since the introduction of DNA microarray technology, recurrent DNA

copy number changes in human osteosarcoma tumor tissues have been identi�ed by com-

parative genomic hybridization (CGH) and high-density single nucleotide polymorphisms

(SNP) microarray analysis. There is a general consensus about gain of chromosome arms

6p, 8q, and 17p, but many additional regions are reported as well (3�7). The e�ects of

copy number alterations may be re�ected by changes in expression of genes in the af-

fected chromosomal regions. There are various publications on human osteosarcoma gene

expression, but few show robust bioinformatics (as described by Kuijjer et al. (8)). Of-

ten, small sample sizes and heterogeneity within groups result in only a small number of

signi�cant genes, on which usually no correction for multiple testing is applied. Another

problem when studying osteosarcoma gene expression data is the lack of an osteosarcoma
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benign precursor lesion and its debated cell of origin�although it becomes clearer that

the mesenchymal stem cell or its derivative is the progenitor of osteosarcoma (9, 10).

The disease seems to develop suddenly as a full-blown tumor, rendering it di�cult to

detect early drivers of osteosarcomagenesis. We have previously determined di�erential

expression related to speci�c clinical parameters (8, 11). In addition, we have compared

osteosarcoma with osteoblastoma�a benign tumor which develops at the same site as

osteosarcoma, but which does not progress into the latter. This comparison of human os-

teosarcoma with a control tissue showed that cell cycle regulation is the most signi�cantly

altered pathway in osteosarcoma (12).

There are advantages of integrating copy number and expression data when aiming to

identify driver genes. First, copy number data analysis of tumors with complex genomic

pro�les may return numerous bystander or hitch-hiker genes, as copy number alterations

may occur not only because they are advantageous for the tumor but also as a result of

general genomic instability. Regions of copy number alteration may therefore encompass

no driver gene at all, or may include additional genes. Also, some genes with altered

copy numbers may not be expressed in the tumor due to tissue-speci�c expression. These

aspects hamper the identi�cation of drivers of tumorigenesis, especially when the number

of recurrent genes in such tumors is high. Second, at the mRNA level, drivers a�ect

downstream genes and switch on feedback mechanisms, again rendering it di�cult to

determine the real osteosarcoma drivers in a pool of di�erentially expressed genes (13).

Integration of DNA copy number and gene expression data �lters out at least part of such

bystanders and of genes that act downstream of drivers of tumorigenesis, because most of

these genes have altered copy numbers, but no change in expression, or vice versa, while

drivers are both ampli�ed and upregulated, or deleted and downregulated. Particularly

osteosarcoma is genetically extremely unstable and therefore genomic data analysis of

this tumor type would bene�t from an approach that distinguishes driver genes from the

numerous more random genetic events.

Nonpaired integrative analysis may be performed by determining recurrent regions

of copy number alterations which have higher than expected numbers of di�erentially

expressed genes. Paired integrative analysis is a more powerful method, because the re-

lationship between copy number alterations and gene expression can be inferred in each

speci�c sample, instead of being based on averaged quantities. A statistically correct

method for paired integrative analysis of these di�erent data types has not yet been de-

�ned. Paired integrative analysis is usually performed by selecting genes based on the

correlation between gene expression and copy number levels, such as is performed by the

recently published methods DR-Integrator (14) and Regularized dual Canonical Correla-

tion Analysis (15). However, gains and losses may not necessarily directly translate to the

same quantity of change in expression levels (13), and important genes may be overlooked

this way. A method where paired integrative analysis is detected for speci�c chromosomal

regions with altered genomic and transcriptional status does exist (16), but this method
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is not optimal for tumors such as osteosarcoma with highly unstable genomes, since copy

number values are normalized to the mean copy number over each array, and this mean

value may be altered in such tumors. Two methods, PARADIGM and CNAmet, combine

di�erent types of data on a gene-based level. In PARADIGM, integration of di�erent

data types is used to detect patient-speci�c pathway activities (17). CNAmet returns

genes that show di�erential expression between samples with and without methylation

and/or copy number alteration (18). This elegant approach may however hamper the

identi�cation of genes that are regulated by other frequently altered genes, such as TP53

and MDM2 in osteosarcoma.

Aiming to identify osteosarcoma driver genes, we performed both nonpaired and paired

integrative analyses on high-grade osteosarcoma prechemotherapy biopsy data. We com-

bined results from analyses as compared with di�erent control sets�mesenchymal stem

cells (MSCs) and osteoblasts, so that we did not exclude one of these proposed progenitors

as the cell of origin of osteosarcoma. We show that the paired integrative analysis returns

more a�ected genes than the nonpaired integrative analysis. There is an overrepresenta-

tion of genes involved in genomic stability in osteosarcoma samples. The identi�ed genes

may be important drivers in osteosarcomagenesis.

Materials and methods

Ethics statement

All biological material was handled in a coded fashion. Ethical guidelines of the individual

European partner institutions were followed and samples and clinical data were handled

in a coded fashion and stored in the EuroBoNeT biobank.

Patient material and cell lines

Genome-wide expression pro�ling was performed on pretreatment diagnostic biopsies of

84 resectable high-grade osteosarcoma patients from the EuroBoNeT consortium (www.

eurobonet.eu). Clinicopathological details of these samples can be found in Table 7.1.

Human bone-marrow-derived MSCs were obtained from �ve osteosarcoma patients and

seven healthy donors. Osteoblasts (n = 3) were derived from MSCs on osteogenic dif-

ferentiation. MSCs and osteoblasts were characterized and handled as described (12).

Copy number analysis was performed on 32 pretreatment diagnostic biopsies, of which 29

overlapped with the 84 samples used for expression analysis.

Copy number microarray data analysis

A�ymetrix Genome-Wide Human SNP 6.0 arrays (A�ymetrix, Santa Clara, CA) were

used for SNP data analysis. Genomic DNA preparation, labeling, hybridization, and

www.eurobonet.eu
www.eurobonet.eu
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Category Patient characteristics Number of biopsies (%)
Institution LUMC, Netherlands 36 (42.9)

IOR, Italy 12 (14.3)
LOH, Sweden 3 (3.6)

Radiumhospitalet, Norway 1 (1.2)
WWUM, Germany 32 (38.1)

Location primary tumor Femur 40 (47.6)
Tibia/Fibula 28 (33.3)
Humerus 11 (13.1)

Axial skeleton 1 (1.2)
Unknown/other 4 (4.8)

Histological subtype Osteoblastic 52 (61.9)
Chondroblastic 9 (10.7)
Fibroblastic 7 (8.3)
Telangiectatic 4 (4.8)
Minor subtype 11 (13.1)

Unknown 1 (1.2)
Huvos grade 1 or 2 38 (45.2)

3 or 4 33 (39.3)
Unknown/NA 14 (16.7)

Metastasis at diagnosis Yes 14 (16.7)
No 69 (82.1)

Unknown 1 (1.2)
Sex Male 54 (64.3)

Female 29 (34.5)
Unknown 1 (1.2)

Age < 20 years 64 (76.2)
>= 20 years 19 (22.6)
Unknown 1 (1.2)

Table 7.1: Clinicopathological details.
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scanning were performed as described by Kresse et al. (7). Microarray data preprocess-

ing was performed as described previously (19). Hybridization quality was estimated

by the genotype call rate using the Birdseed genotype calling algorithm in Genotyping

Console (version 4.0, A�ymetrix). Samples of poor quality were excluded from further

analyses. We performed copy number analysis in Nexus software version 5 (Biodiscovery,

El Segundo, CA) using CNCHP log ratio �les generated by Genotyping Console using

27 controls as a baseline, which is a subset of the reference set of 29 samples which was

used by Pansuriya et al. (19). We rejected two samples based on results from the qual-

ity control analysis in Genotyping Console. Circular Binary Segmentation (CBS)-based

SNPRank Segmentation was used to identify aberrant genomic regions. To be included as

frequently aberrant, a copy number alteration was called when detected in at least 35%

of all cases. Correlation of copy number alterations with clinical data was performed in

Nexus software, with correction for multiple testing.

Genome-wide gene expression microarray data analysis

Osteosarcoma tissue handling, RNA isolation, synthesis of cDNA, cRNA ampli�cation,

hybridization of cRNA onto the Illumina Human-6 v2.0 Expression BeadChips (Illumina,

San Diego, CA), and microarray data processing and quality control in the statistical lan-

guage R version 2.10 (20) were performed as described previously (11). High correlations

between these microarray data and corresponding qPCR results have been demonstrated

previously (11). Unsupervised hierarchical cluster analysis was performed using R package

pvclust with default settings (21).

Data deposition

MIAME-compliant copy number and gene expression data have been deposited in the

GEO database (www.ncbi.nlm.nih.gov/geo/, superseries accession number GSE33383).

Detection of signi�cantly di�erentially expressed genes

We performed a LIMMA analysis (22) in order to determine di�erential expression be-

tween high-grade osteosarcoma samples (n = 84) and control tissues�MSCs (n = 12)

and osteoblasts (n = 3). Also, gene expression di�erences between MSCs and osteoblasts

were determined. We used a Benjamini and Hochberg False Discovery Rate (FDR) of

0.05 as cut-o� for signi�cance.

Nonpaired integrative analysis

Nonpaired integrative analysis was performed by importing lists of di�erentially expressed

genes into the Copy Number module of Nexus software version 5. Based on the length of

www.ncbi.nlm.nih.gov/geo/
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the gene list, Nexus software performs a Fisher's exact test in order to determine whether

the number of di�erentially expressed genes in a speci�c region with a signi�cant copy

number alteration is larger than expected by chance. Genes present in such regions of

copy number alteration with FDR-adjusted p-values (Q-bounds in Nexus software) < 0.05

were returned from this integrative analysis. We did not apply any restrictions on the

size of copy number aberrations. A few small altered regions that did not encompass

an entire gene were detected, but these regions did not return genes upon integration

with expression data. Nexus software only reports genes which are both gained and

overexpressed, or both deleted and downregulated.

Paired integrative analysis

For the paired integrative analysis, copy number data of all autosomal overlapping genes

between the copy number and gene expression data were exported from Nexus software,

and converted into a binary matrix containing all genes with a gain (1) and no gain (0),

and a similar binary matrix for losses. As in the nonpaired integrative analysis, we did

not apply any restrictions on the size of copy number alterations. Gene expression data

of each probe for each sample were normalized against average gene expression values of

the corresponding probes over all control samples (either expression data from 12 MSCs

or from three osteoblasts)�this was performed by subtracting the average expression of

the control samples from the expression levels of the sample of interest, since these are

log-transformed expression values. For both analyses, only genes that were signi�cantly

di�erentially expressed between the 84 osteosarcoma samples and the speci�c control set

were analyzed, in order to make sure that all genes returned from the integrative analysis

were signi�cantly di�erentially expressed. Subsequently, genes that overlapped between

the copy number binary matrices and that matched the fold change of expression (upreg-

ulation for genes with gains, and downregulation for genes with losses) were returned as

two-way contingency tables using scripts in R. Genes that were altered in two types of data

were further �ltered by applying the sample recurrence criterion of 35%. This generated

lists of recurrent two-way altered genes. The odds ratios for having both copy number

and expression changes were calculated for di�erent combinations, for instance gain and

upregulation. We used Bonferroni corrected Chi-square or Fisher's exact p-values < 0.05

to determine signi�cance.

Gene set enrichment

GO term enrichment was tested using Bioconductor package topGO (23). Lists of signi�-

cantly a�ected genes were compared with all genes eligible for the analysis. GO terms with

Fisher's exact p-values < 0.0001, as calculated by the weight01 algorithm from topGO,

were de�ned signi�cant.
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Genomic instability scores and survival analysis

We calculated genomic instability scores for 83 (out of the 84) osteosarcoma biopsies

(for one sample no follow-up data were available) and all controls, as well as for two

normal bone samples (obtained from cancer patients at the Norwegian Radium Hospital),

20 osteosarcoma xenografts (Kresse et al., unpublished data, and Kuijjer et al. (8)), 19

osteosarcoma cell lines (24), and the HeLa cervical cancer cell line. For calculation of

the genomic instability scores, we refer to the article by Carter et al. (25). In short, this

method calculates per sample per probe the expression of that particular probe minus the

mean expression of that probe over all samples. For each sample, the sum of these values

for all probes present in the genomic instability signature is calculated. This value is then

compared between all samples and thus gives a relative measure of genomic instability.

We used 24 genes of the CIN25 signature, because for one gene no probe was present

on the Illumina v2.0 BeadChip. For genes with multiple probes, we used the probe that

showed the highest variation in expression levels. We determined metastasis-free survival

using the Kaplan-Meier method and performed a Logrank test for trend using GraphPad

Software (La Jolla, CA, www.graphpad.com).

Results

Recurrent chromosomal regions with copy number aberrations in

high-grade osteosarcoma

Thirty two high-grade osteosarcoma prechemotherapy biopsies were hybridized to Af-

fymetrix SNP 6.0 arrays in order to determine recurrent copy number alterations. In

total, 67 regions with recurrent alterations were detected, of which 35 regions had copy

number gain, and 32 copy number loss (see Supporting Information Table 1 (available

online (26))). Recurrent gains were present on chromosome arms 1p, 1q, 4p, 5p, 6p, and

8q, and losses on chromosome arms 1p, 1q, 2q, 3q, 6q, 7q, 8p, 10p, 10q, 12p, 13q, 15q,

16p, and 16q. A genome-wide frequency plot of copy number alterations is shown in

Figure 7.1. No signi�cant correlation was detected for speci�c regions with copy number

alterations and clinical information (tested clinical parameters are shown in Table 7.1).

Comparison of osteoblasts and MSCs

Unsupervised hierarchical cluster analysis resulted in separate clusters for biopsies and

cell lines. Within the cell line cluster, osteosarcoma cell lines formed one subcluster,

whereas MSCs and osteoblasts formed a second subcluster (Supporting Information Figure

1 (available online (26))). This indicates that the control cell lines are more similar

to one another than to osteosarcoma cells. On the basis of hierarchical clustering of

gene expression data, we cannot determine the cell of origin of osteosarcoma. A total
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Figure 7.1: Genome-wide frequency plot of copy number alterations on chromosomes 1�22 in
32 high-grade osteosarcoma prechemotherapy biopsies. Left of the chromosomes: loss, right:
gain.

of 1, 382 genes were di�erentially expressed between osteoblasts and MSCs. GO term

enrichment resulted in seven signi�cant GO terms, which are represented in Supporting

Information Figure 2 (available online (26)). In summary, GO term enrichment showed

di�erences in cellular structure, proliferation, and apoptosis. Genes showing signi�cant

di�erences between both control cell types, however, can nonetheless be di�erentially

expressed between osteosarcoma samples and both control cell types, thus can still be

important drivers of osteosarcomagenesis. We therefore set out to select genes that showed

di�erential expression in osteosarcoma as compared with both MSCs and osteoblasts.

Gene expression signature of high-grade osteosarcoma

We detected 12, 542 and 2, 939 probes encoding for genes that were signi�cantly dif-

ferentially expressed between the 84 osteosarcoma biopsies and MSCs and osteoblasts,

respectively. MA plots, showing log-intensity ratios and log-intensity averages for both

analyses, are depicted in Supporting Information Figure 3 (available online (26)). A total

of 1, 679 probes overlapped between both analyses, of which 1, 639 were either up- or

downregulated in both. GO term analysis on the genes represented by these 1, 639 probes

showed an enrichment of apoptosis and signal transduction genes. Antigen processing and

presentation, as well as angiogenesis were also overrepresented (Supporting Information

Figure 4 (available online (26))).
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Paired integrative analysis is more sensitive than nonpaired inte-

grative analysis

Nonpaired integrative analysis was performed on data from 32 samples hybridized on SNP

arrays and from 84 samples hybridized on gene expression arrays, whereas paired analysis

was performed on a subset of 29 samples for which both SNP and expression data were

available. In total, 16, 105 autosomal genes were represented both on SNP and on gene

expression arrays. Nonpaired integrative analysis resulted in 253 signi�cantly a�ected

genes in osteosarcoma biopsies versus mesenchymal stem cells, whereas 71 genes were de-

tected when osteoblasts were used as a control. A total of 45 genes were identi�ed in both

analyses versus MSCs and versus osteoblasts (Figure 7.2). Of these 45 genes, 23 were also

Figure 7.2: Venn diagram with numbers of
a�ected genes in both nonpaired and paired
analyses, and in osteosarcoma biopsies ver-
sus MSCs and versus osteoblasts. NP: non-
paired integrative analysis, P: paired inte-
grative analysis, OB: analysis of osteosar-
coma biopsies versus osteoblasts, MSC: anal-
ysis of osteosarcoma samples versus mes-
enchymal stem cells.

detected in expression analyses of a panel of 19 osteosarcoma cell lines (24) versus MSCs

and osteoblasts (Supporting Information Figure 5A (available online (26))). For the paired

integrative analyses, we determined whether the number of genes with gain combined with

overexpression and with loss combined with downregulation was higher than expected per

sample, based on the numbers of copy number alterations and gene expression changes in

the whole genome. This was true for most samples, as depicted in Figure 7.3, in which the

odds ratios and signi�cance of data dependencies are shown. Paired integrative analysis

resulted in 445 and 138 genes when compared with MSCs and osteoblasts, respectively.

A total of 101 genes overlapped between these di�erent analyses (Figure 7.2), and of this

set, 31 genes were also detected in the cell line expression data (Supporting Information

Figure 5B (available online (26)), Table 7.2). Hence, paired analyses detected > 90% of all

genes found with corresponding nonpaired analyses. In addition, approximately twice as

many genes as found in the corresponding nonpaired analyses were detected (Figure 7.2,

Supporting Information Figure 6 (available online (26))). Note that in the paired analysis

fewer samples are included. Thus, paired analysis gives more robust results despite the

lower sample size. Changing the threshold of FDR-adjusted p-values in the nonpaired

integrative analysis from 0.05 to 0.15 (data not shown) did not alter this ratio.
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A B

Figure 7.3: Dependence of gene copy number and gene expression data. The heatmaps depict
odds ratios for the numbers of genes per sample which show gain and overexpression (overGain),
gain and underexpression (underGain), loss and overexpression (overLoss), and loss and under-
expression (underLoss). Chi-square tests, or, in case a group contained < 10 genes, Fisher's
exact tests, were performed in order to evaluate whether the number of genes reported from the
integrative analysis was higher than expected by chance. ∗ Bonferroni-corrected p-values < 0.05.
A, Osteosarcoma biopsies versus MSCs, B, versus osteoblasts.
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Symbol Cytoband CNA CNA freq (%) logFC
CLCC1 1p13.3 Gain 41.4 1.24
MCM4 8q11.21 Gain 37.9 1.35
AKR1C3 10p15.1 Loss 37.9 -1.94
AKR1C4 10p15.1 Loss 37.9 -1.34
ARHGAP22 10q11.22 Loss 37.9 -0.45
PGBD3 10q11.23 Loss 41.4 -0.82
ARID5B 10q21.2 Loss 48.3 -2.33
REEP3 10q21.3 Loss 48.3 -0.51
HERC4 10q21.3 Loss 51.7 -1.31
PBLD 10q21.3 Loss 48.3 -0.29
RUFY2 10q21.3 Loss 48.3 -0.20
KIAA1279 10q22.1 Loss 43.1 -0.57
SRGN 10q22.1 Loss 43.1 -2.26
AIFM2 10q22.1 Loss 44.8 -0.52
CHST3 10q22.1 Loss 48.3 -1.17
FAS 10q23.31 Loss 44.8 -0.42
PCGF5 10q23.32 Loss 37.9 -0.34
PPP1R3C 10q23.32 Loss 37.9 -2.89
AVPI1 10q24.2 Loss 37.9 -2.35
BLOC1S2 10q24.31 Loss 37.9 -0.51
CASC2 10q26.11 Loss 44.8 -0.18
FAM45A 10q26.11 Loss 39.7 -0.78
ERCC6 13q11.23 Loss 41.4 -0.52
WASF3 13q12.13 Loss 44.8 -2.43
C13orf33 13q12.3 Loss 48.3 -2.26
LHFP 13q14.11 Loss 48.3 -1.89
WBP4 13q14.11 Loss 55.2 -0.93
TSC22D1 13q14.11 Loss 58.6 -1.39
RCBTB1 13q14.2 Loss 58.6 -0.25
LATS2 13q21.11 Loss 44.8 -0.96
DCUN1D3 16p12.3 Loss 37.9 -1.39

Table 7.2: Candidate osteosarcoma driver genes. All frequencies and fold changes are mean
values of both integrative analyses�osteosarcoma biopsies versus MSCs and osteosarcoma biop-
sies versus osteoblasts. For genes for which more than one probe was present on the array, the
probe with the highest fold change was used. Cytoband: UCSC cytogenetic band, CNA: copy
number aberration, CNA freq: copy number aberration frequency (for n = 29), logFC: log fold
change in biopsies (negative means downregulation, positive means upregulation).
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Genomic instability genes play a role in osteosarcoma progression

We calculated genome instability scores using the method of Carter et al. (25), which

compares levels of gene expression of a previously de�ned genomic instability signature

between samples in a dataset, for all osteosarcoma biopsies and di�erent control tissues

and cell lines (Figure 7.4A). The osteosarcoma biopsies showed highly variable scores,

A B C

Figure 7.4: Genomic instability scores and metastasis-free survival. A, Genomic instability
scores for high-grade osteosarcoma biopsies, normal bone, osteosarcoma xenografts and cell lines,
the HeLa cell line, and mesenchymal stem cells (MSC) and osteoblasts (OB), as calculated by the
method of Carter et al. (25). B, Metastasis-free survival Kaplan-Meier curves for four quartiles of
genomic instability scores. C, Metastasis-free survival Kaplan-Meier curves for the total amount
of genes with copy number gains and losses, using a cut-o� based on the median amount of genes
per sample showing copy number aberration.

whereas genomic instability scores for the controls, normal bone, MSCs, and osteoblasts

were relatively low. High instability scores were detected for osteosarcoma xenografts, cell

lines, and the HeLa cell line, in increasing order. This signature predicted for metastasis-

free survival in osteosarcoma samples as well (Figure 7.4B), with high scores correlating

with shorter metastasis-free survival (Logrank test for trend p-value = 0.0112). As ex-

pected, the total number of genes with copy number gains or losses, which is a direct

measure of genomic instability from the SNP data, was predictive for progression as well

(Logrank test p-value = 0.018, Figure 7.4C).

Candidate osteosarcoma driver genes

The 31 genes returned by the paired integrative analysis on clinical samples that also

were di�erentially expressed in osteosarcoma cell lines are shown in Table 2, together

with their chromosomal locations, aberration frequencies, and log fold changes. A total

of 22/31 genes have been described to play a role in cancer. Interestingly, one third of

these 22 genes have a role in cell cycle regulation, matching the importance of cell cycle

and replication in osteosarcomagenesis as was found both using the genomic instability

scores of the expression data and the overall chromosomal instability as detected in the

copy number data (Figure 7.4).
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Discussion

In this study, we report copy number and gene expression alterations in high-grade os-

teosarcoma prechemotherapy biopsies, and then integrate these data in order to detect

osteosarcoma driver genes. Copy number analyses, which were obtained with high-den-

sity SNP microarrays, showed very high genomic instability in the osteosarcoma biopsies.

The pattern of aberrations is in line with previous studies using aCGH and SNP arrays,

which show recurrent gains in chromosome arms 1p, 6p, and 8q, and losses in chromosome

10. The previously reported recurrent ampli�cation on chromosome arm 17p (3�6) is not

listed, because we used a very strict cut-o� for aberration frequency (35%). Aberration

frequencies of 17% (4) and 26% (6) were previously found on chromosome arm 17p, and

a distinct ampli�cation in 17p with an aberration frequency of 21% can be seen in Figure

1. We chose such a high cut-o� for recurrent aberrations in order to enrich for selected

genetic events and exclude the numerous haphazard alterations that can be attributed

to the high genomic instability of high-grade osteosarcoma. In addition, we previously

determined that this cut-o�, as compared with cut-o�s of 15% and 50%, showed the most

consistent results in subsequent network and pathway analyses on osteosarcoma cell line

SNP data (data not shown). For genome-wide gene expression analyses, both MSCs and

osteoblasts were used as control cells, and we only considered overlapping genes between

both comparisons, in order to make sure the a�ected genes were di�erentially regulated in

osteosarcoma when compared with its putative progenitor cells. This analysis identi�ed a

large number (n = 1, 639) of probes encoding for di�erentially expressed genes. Many of

these genes encode tissue type-speci�c proteins, as is shown in the GO term enrichment

analysis, and appear as upregulated in osteosarcoma biopsies because the in vitro grown

control cells, MSCs and osteoblasts, lack surrounding stroma and are nurtured under other

conditions. Antigen processing and presentation as well as angiogenesis pathways were

expected to be upregulated, as macrophages and other in�ltrating cells are present in os-

teosarcoma tissue (11), and as angiogenesis plays a role in osteosarcoma progression (27).

Nevertheless, most stroma-derived gene expression is �ltered out by integration with copy

number data, as this expression is not a result of underlying copy number changes. In

addition to stroma-related gene sets, GO term analysis showed enrichment in apoptosis

and signal transduction genes, which are probably altered in the osteosarcoma tumor cells

and not in the stroma. Because genes with concordant changes in copy number and gene

expression are likely to be enriched in drivers of tumorigenesis, we performed integrative

analyses on both types of data.

We found a remarkable increase in signi�cant di�erential genes in paired compared

with nonpaired analysis, i.e. 101 versus 45. In general, paired integrative analysis was

advantageous over nonpaired integrative analysis, identifying roughly twice as many genes,

also when di�erent aberration frequency cut-o�s or less stringent cut-o�s for signi�cance

were used in the nonpaired analysis. Nonpaired analysis as performed in Nexus software
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compares the number of di�erentially expressed genes in a region of copy number aber-

ration with the expected number of di�erentially expressed genes, which is based on the

total number of di�erentially expressed genes over the whole genome. This method may

be too rigorous, because an altered copy number region may encompass tissue-speci�c

genes, which may not be expressed in the particular tumor tissue. These genes then have

altered copy number, but no di�erence in expression. If an altered copy number region

contains a relatively large number of such genes plus only a few candidate drivers, the

entire region will be removed from the output of the analysis, which increases the amount

of false negatives. Moreover, in the cancer gene expression pro�le, a large number of

genes downstream of drivers, i.e. directly or indirectly regulated by drivers, or present in

feedback loops will be di�erentially expressed. This increases the total number of di�er-

entially expressed genes, which again lowers the chance that a speci�c altered region is

returned from the nonpaired integrative analysis as signi�cantly a�ected. Furthermore,

a single di�erentially expressed gene in a certain region of copy number alteration may

still exert its driving function, and this driving function usually does not depend on the

proportion of di�erentially expressed genes in the same region. Because of this, and be-

cause our method of paired integrative analysis is gene-based and not region-based, we

did not perform a correction based on the total number of di�erentially expressed genes

when compared with the a�ected copy number regions in the paired analysis in R, and

this may be an additional reason why more genes are returned from the paired analysis.

However, in all samples, except for one (L3438), the number of genes showing both copy

number alteration and di�erential expression was higher than expected when compared

with the numbers of copy number alterations and di�erentially expressed genes over the

whole genome. This was signi�cant for the vast number of samples (28/29, 23/29, 27/29,

and 23/29, for combinations gain and overexpression, loss and underexpression in biopsies

versus MSCs, and gain and overexpression, loss and underexpression in biopsies versus

osteoblasts, respectively, as shown in Figure 7.3).

Genomic instability scores showed that the instability in osteosarcoma tissues ranges

from a level comparable to that of the controls, to the high instability levels of repeatedly

passaged tumors in xenografts and osteosarcoma cell lines. We demonstrated both on

copy number data, as well as by applying a genomic instability gene signature to genome-

wide gene expression data, that high genomic instability in osteosarcoma is correlated

with poor metastasis-free survival. This suggests that genes playing a role in genomic

instability may be potent drivers of osteosarcoma progression, as has been reported for

various other tumor types (25). Paired integrative analysis con�rmed this result, as one

third of the genes with a possible role in tumorigenesis had a function connected to the

cell cycle. Of these genes, MCM4 showed gain and overexpression and was only detected

by the paired integrative analysis. MCM4 is part of the minichromosome maintenance

complex, which functions as a replication helicase, with a role in maintaining genomic

stability (28). This gene has been reported overexpressed in various tumor types (29�31).
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Genes that were detected in both nonpaired and paired analyses were all deleted and

underexpressed. AVPI1, or arginine vasopressin-induced 1, may be involved in cell cy-

cling (32). ERCC6 is involved in transcription-coupled nucleotide excision repair, which

is a critical survival pathway protecting against cancer (33). RCBTB1, a candidate tu-

mor suppressor, was recently shown to have growth inhibitory activity in osteosarcoma

cells by regulating pathways of DNA damage/repair and apoptosis (34). LATS2, or large

tumor suppressor homolog 2, plays a critical role in centrosome duplication, maintenance

of mitotic �delity, and genomic instability (35). Positive feedback between the p53 and

Lats2 tumor suppressors prevents tetraploidization (36), which could be an initiating step

in osteosarcomagenesis, leading to genomic instability (37, 38). Also, a role of Lats2 in

quenching of the increased genomic instability of H-Ras-induced transformation has been

identi�ed (36). DCUN1D3 encodes for a UVC-responsive protein involved in cell cycle

progression and cell growth (39). Additional candidate genes with no direct role in cell

cycle regulation include for example genes with a role in apoptosis (AIFM2, BLOC1S2,

FAS) and metabolism (AKR1C3 and -4). Some previously reported genes with a driver

role in osteosarcoma were not identi�ed, mainly because our high cut-o� for recurrence.

For example, CDKN2A, MDM2, and E2F2 had recurrence frequencies of 28%, 17%, and

34%, respectively (in the dataset of 29 samples). CDKN2A and MDM2 were not sig-

ni�cantly di�erentially expressed, but E2F2 was consistently signi�cantly overexpressed

with log fold changes > 1.50 in all analyses (biopsies and cell lines as compared with

di�erent controls). TP53 and RB1 aberrations were present in > 35% of all samples (38%

and 69%, respectively). TP53 was signi�cantly downregulated in biopsies as compared

with both controls, but not in the osteosarcoma cell line dataset. RB1 showed signi�-

cant downregulation when compared with MSCs, but not with osteoblasts, indicating a

di�erence between these controls in RB1 signaling. We set our cut-o� for recurrence to

35% and only selected genes present both in osteosarcoma biopsies as well as in cell lines

as compared with two di�erent control sets, in order to select for the most important

osteosarcoma drivers. Using this method, we were able to detect previously unreported

driver genes.

In summary, we have shown that an individual gene-based paired integrative analysis

of copy number and gene expression data performs better than a region-based nonpaired

analysis. Several osteosarcoma candidate driver genes, especially genes playing a role in

cell cycle progression, have been identi�ed. Additional research, particularly functional

studies, should reveal whether these genes are early or late drivers in osteosarcomagenesis.
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Abstract

High-grade osteosarcoma is an aggressive primary bone tumor, with a peak incidence at

adolescence. Osteosarcoma karyotypes are heterogeneous, and characterized by a high

degree of genomic instability, rendering it di�cult to detect recurrent driver genes in

this tumor type. By performing A�ymetrix SNP 6.0 microarray data analysis of 29

prechemotherapy biopsies, we observed that loss of heterozygosity (LOH) often cooccurs

with copy number gains. We performed paired integrative analysis with genome-wide

expression data in order to determine which genes show di�erential expression in regions

of LOH and gain, and integrated data from biopsies with data from 12 cell lines, which

resulted in the identi�cation of 29 recurrent genes with LOH, gain, and overexpression. We

validated LOH of candidate tumor suppressor genes by Sanger sequencing and screened

for mutations in candidate genes, as osteosarcoma cells may have selected for LOH and

ampli�cation of mutated tumor suppressors. We did not identify recurrent mutations,

suggesting that these genes do not have a tumor driving function. Fluorescence in situ

hybridization (FISH) analysis of candidate gene XRCC6BP1 showed that this gene was

present on homogeneous staining regions (HSRs) in 1/2 cell lines. As we detected a large

number of recurrent candidate oncogenes by paired integrative analysis of LOH, gain, and

overexpression, it may be valuable to determine whether these candidate oncogenes are

present on HSRs in osteosarcoma.

Background

High-grade osteosarcoma is the most frequent primary malignant bone tumor, a�ecting

roughly �ve persons in a population of one million each year (1). The tumor is highly

aggressive, leading to distant metastases in approximately 45% of all patients. Since the

introduction of neoadjuvant chemotherapy in the 1970s, survival pro�les have reached a

plateau. In order to identify speci�c targets for therapy it is important to screen for recur-

rent driver genes in osteosarcoma. High-grade osteosarcoma karyotypes are characterized

by a high level of genomic instability, often harboring numerous numerical and structural

changes, and high degree of aneuploidy (2). This results in many frequently a�ected genes

in osteosarcoma, which may not all be important drivers, and thus renders it di�cult to

determine which genes are true drivers of osteosarcomagenesis. Integration of genomic

and transcriptomic data will �lter out most bystander and tissue-speci�c genes, and can

thereby result in a more speci�c list of candidate recurrent drivers. We previously de-

tected novel osteosarcoma driver genes by integrating high-throughput copy number and

gene expression data (3). Zygosity status can also be retrieved from SNP microarray data,

which we describe in the present study.

Loss of heterozygosity (LOH) and allelic imbalance have been studied in osteosarcoma

to quite some extent, and several recurrent regions have been described in detail (4�8).
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Smida et al. reported that the amount of LOH negatively correlated with survival (9).

This may be a readout of general genomic instability of the tumor, as for multiple human

cancers (10), including osteosarcoma (3), it has been shown that genomic instability is

predictive for survival, but LOH of speci�c regions may play an important role in tumori-

genesis of osteosarcoma. Loss of heterozygosity caused by the loss of one allele may cause

downregulation of the transcript, which may especially be relevant for tumorigenesis when

an a�ected tumor suppressor gene shows haploinsu�ciency (11). In osteosarcoma, TP53,

RB1, and PTEN are frequently deleted (2), and these genes could drive tumorigenesis by

haploinsu�ciency, although one study found that the LOH state of RB1 is not associated

with prognosis (12). CDKN2A, another tumor suppressor often a�ected in osteosarcoma,

also shows hemizygous losses which may have a role in tumorigenesis, although small

homozygous deletions in this gene are also seen (13). LSAMP is frequently focally deleted

in osteosarcoma, and may have a role as haploinsu�cient tumor suppressor (6�8). Copy

neutral LOH (CN-LOH), which is LOH without change in copy number, may play a role

in tumorigenesis as well, as is for example shown in hematological malignancies (14). In

a study of osteosarcoma samples on A�ymetrix 10 K 2.0 SNP arrays, it was reported

that 28% of LOH events result from CN-LOH (6). Regions of LOH accompanied by gains

have not yet been discussed in high-grade osteosarcoma, but have been described in other

cancer types, e.g. in lung cancer (15) and triple-negative breast cancer (16). Tumor cells

could in theory select for a region of ampli�ed LOH in case a mutated tumor suppressor

with a gain-of-function or partial dominant negative function is a�ected, with deletion of

the wild-type gene and ampli�cation and overexpression of the mutated gene. Another

advantage for the tumor of stretches of LOH accompanied by gains is that tumor sup-

pressors with inactivating mutations and oncogenes can have tumor-promoting activities

at the same time (17).

In the present study, we analyzed high-throughput SNP data of osteosarcoma pre-

treatment biopsies, and detected that LOH is often accompanied by copy number gains.

By paired integrative analysis of LOH, copy number gain, and gene expression of os-

teosarcoma biopsy and cell line data, we identi�ed 29 candidate driver genes, exhibiting

both LOH and copy number gains. Gene set enrichment on genes in regions of LOH

accompanied by gains and overexpression of the transcript returned pathways important

in tumorigenesis and genomic instability. We validated a selection of candidate tumor

suppressor genes by Sanger sequencing and Fluorescence In Situ Hybridization (FISH).

Mutation analysis of a selection of candidate tumor suppressors did not reveal any recur-

rent mutations. Further studies need to be performed to determine the role of drivers in

these regions.
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Methods

SNP microarray data analysis

Previously published A�ymetrix Genome-Wide Human SNP 6.0 arrays were used for SNP

microarray data analysis of high-grade osteosarcoma pretreatment biopsies (GEO acces-

sion number GSE33383) and of high-grade osteosarcoma cell lines (GEO accession number

GSE36003). Microarray data preprocessing was performed as described in Pansuriya et

al. (18). We previously described quality control and detection of aberrant regions (3).

We used recommended settings for detection of LOH and allelic imbalance in A�ymetrix

SNP 6.0 data�a minimum LOH length of 500 kb, a homozygous frequency threshold

of 95%, a homozygous value threshold of 0.8, and a heterozygous imbalance threshold

of 0.4. High gain, gain, and losses were de�ned using log2 ratio cut-o�s of 0.6, 0.2, and

-0.2, respectively, which are slightly more conservative cut-o�s than recommended by the

software (0.6, 0.18, and -0.18 for A�ymetrix SNP 6.0 data). We selected 29 patients for

which gene expression microarray data were available, so that we could perform a paired

integrative analysis. Of the 19 cell lines, 12 passed our quality control (143B, HAL, HOS,

IOR/MOS, IOR/OS10, IOR/OS15, IOR/SARG, KPD, MG-63, MNNG-HOS, OSA, and

SAOS-2). For all cell lines, expression data was available. Aberration frequency cut-o�s

of 5% (at least 2 samples out of 29) and of 15% (at least 2 samples out of 12) were used

to detect recurrent regions in biopsies and in cell lines, respectively.

Genome-wide gene expression microarray data analysis

Genome-wide gene expression Illumina Human-6 v2.0 microarray data were previously

published (GEO accession number GSE33383 for biopsies, GSE42351 for osteosarcoma

cell lines). Microarray data processing and quality control in the statistical language R

version 2.14 (19) were performed as described previously (20). Mesenchymal stem cells

(MSCs, n = 12) and osteoblasts (n = 3) were used as control samples, as described by

Kuijjer et al. (3) (GEO accession number GSE33383).

Paired integrative analyses

A detailed description of the paired integrative analysis can be found in Kuijjer et al. (3).

For this study, we generated di�erent binary �les, including all genes that showed both

LOH and copy number loss (1) or not (0), and LOH and copy number gain (1) or not (0).

Gene expression data were normalized against average gene expression of the correspond-

ing probes over all control samples (MSCs or osteoblasts). Di�erent from our previous

study, we included all genes�not only the subset of genes with signi�cant di�erential ex-

pression. Genes were determined to be a�ected when frequencies of recurrent aberrations

were higher than 5% and log fold changes > 1. Finally, only overlapping genes between
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analyses with both control samples were considered of interest.

GO term enrichment

Gene set enrichment was performed using Bioconductor package topGO (21). Lists of

signi�cantly a�ected genes were compared with all genes eligible for the analysis. GO

terms with Fisher's exact p-values < 0.001, as calculated by the weight01 algorithm from

topGO, were de�ned signi�cant.

Other statistical analyses

Comparisons between the number of genes with both LOH and loss, and with both LOH

and gain were performed using Pearson's chi-square test. All p-values were below 0.001.

Primer design

Primers for PCR ampli�cations were designed with a universal M13 tail in order to be

able to use one set of universal primers for all sequencing reactions (M13 tail forward

5'-TGTAAAACGACGGCCAGT-3' and reverse 3'-CAGGAAACAGCTATGACC-5'). In

order to �rst validate the LOH detected with the SNP arrays, we selected A�ymetrix SNP

probes for XRCC6BP1, RASD1, and LLGL1 according to the population frequencies of

the speci�c SNPs. Population frequency data from A�ymetrix validation studies (www.

Affymetrix.com) were assessed in order to select probes with frequencies close to an even

distribution (50%/50%). We determined the number of SNPs to be evaluated for each

gene by minimizing the chance of false positive homozygosity to less than 5%. Primers

were designed up- and downstream of the SNPs using Primer 3 (www.Primer3.com) and

the UCSC genome browser (www.genome.ucsc.edu). Primer sequences can be found

in Additional Table 8.1. For mutation analysis primers were designed for the exons of

XRCCBP1, PLEKHO1, and TCC19 using Primer 3 (www.Primer3.com) and the UCSC

genome browser (www.genome.ucsc.edu) (Additional Table 8.2).

Sanger sequencing

The procedure for PCR ampli�cation is described in Rozeman et al. (22). The following

PCR protocol was used: 5min at 95◦C, 3 cycles of 10sec at 95◦C and 10sec of 60◦C, fol-

lowed by 10sec of 72◦C. Sequencing was performed at Macrogen (Macrogen Europe, Am-

sterdam, the Netherlands), Baseclear (Leiden, the Netherlands), and the Leiden Genome

Technology Center (Leiden, the Netherlands). Sequences were analyzed with the Mutation

Surveyor software, Softgenics (State College, PA) and Chromas software (Technelysium

Pty Ltd, Helensvale, Australia).

www.Affymetrix.com
www.Affymetrix.com
www.Primer3.com
www.genome.ucsc.edu
www.Primer3.com
www.genome.ucsc.edu
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Fluorescent in situ hybridization (FISH)

Metaphase preparations of osteosarcoma cell lines KPD and SAOS-2 and of a control cell

line were obtained using colcemid as in Pajor et al. (23). The BAC probe for XRCC6BP1

(BAC/Fosmid ID RP1160O7) was ordered from the BacPac Resource Centre at Chil-

dren's Hospital Oakland Research Institute (Oakland, CA) and was labeled with biotin-

16-2'-deoxyuridine-5'-triphosphate (Bio-16-dUTP) using a Nick translation method. The

centromere probe for chromosome 12 (23) was labeled with digoxigenin-11-dUTP. For

immunodetection, the following antibodies were used: streptavidin-Texas Red (1 : 100),

mouse-anti-digoxin (1 : 1, 000), goat-anti-streptavidin-bio (1 : 100), rabbit-anti-mouse-

FITC (1 : 1, 000), and goat-anti-rabbit-FITC (1 : 100). FISH was scored by counting red

and green probes in 50 metaphase and 50 interphase nuclei per cell line.

Results

LOH and allelic imbalance in osteosarcoma biopsies

We set out to determine recurrent LOH in high-grade osteosarcoma. From SNP data anal-

ysis, we could demonstrate that LOH and allelic imbalance was detected less frequently

than CN gains and losses (Figure 8.1). Recurrent LOH (frequency > 5%) was detected

Figure 8.1: This �gure shows the distribution of frequencies of LOH (blue) and allelic imbalance
(purple) on a background of frequencies of copy number gains (green) and losses (red) for the 29
osteosarcoma biopsies.

for 9.4% of all analyzed genes. The highest percentage of recurrent LOH detected in
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this dataset was 35%. Recurrent allelic imbalance was seen in 0.14% (23 genes), while

recurrent total allelic loss was detected in 0.16% (25 genes, including TP53 and RB1) of

all analyzed genes, with highest recurrent frequencies of 7% and 55%, respectively.

LOH is often accompanied by copy number gains

On average, 0.05% of all genes show LOH and loss of DNA. A chi-square test demonstrated

that LOH and loss occurred less frequent than expected (log odds −1.55, p-value <
0.0001). Also copy neutral LOH occurred less frequent than expected (log odds −1.75,
p-value < 0.0001). Based on a comparison of the allelic ratio overview of the genome

with CN gains and losses, LOH appears to often cooccur with gain at the other allele

(Figure 8.1). On average, 1.10% of all genes show LOH and gain at the other allele in

the same sample. Chi-square test veri�ed that LOH accompanied by copy number gains

indeed occurred more frequently than expected (log odds 2.44, p-value < 0.0001).

Integration of LOH, gain, and di�erential expression

In order to identify genes present in regions of LOH and gain (LOH-gain) which also

were di�erentially expressed and hence may have a tumor driving function, we performed

paired integrative analyses of LOH-gain and expression in the dataset of osteosarcoma

pretreatment biopsies. Paired integrative analysis of these biopsies as compared with

MSCs resulted in 148 up- and 17 downregulated genes in combination with LOH-gain,

while the analysis where osteoblasts were used as a control resulted in 135 up- and 9 down-

regulated genes in combination with LOH-gain. Of these a�ected genes, 114 upregulated

and 5 downregulated genes overlapped between both analyses.

The same approach was taken for the analysis of high-grade osteosarcoma cell line data.

This analysis returned 137 up- and 44 downregulated genes in combination with LOH-gain

in osteosarcoma compared with MSCs, and 134 up- and 35 genes when compared with

osteoblasts. In total, 97 upregulated genes and 20 downregulated genes overlapped. Of

the 119 genes being over- and underexpressed together with LOH-gain in osteosarcoma

biopsies as compared with MSCs and osteoblasts, 29 showed recurrent LOH-gain in com-

bination with signi�cant di�erential overexpression in both analyses of osteosarcoma cell

lines (Figure 8.2A). No genes showing LOH and CN gain together with downregulation

overlapped (Figure 8.2B).

Involvement of cell cycle pathways

GO term enrichment was performed on the 29 a�ected genes obtained with the analysis

of biopsies and cell lines. This resulted in three signi�cant GO terms�S-phase of mi-

totic cell cycle (GO:0000084), double-strand break repair via non-homologous end-joining

(GO:0006303), and M/G1 transition of mitotic cell cycle (GO:0000216), including genes
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Figure 8.2: Depicted are the numbers of returned genes from the paired integrative analysis on
LOH with gain and A, upregulation or B, downregulation, as compared with MSCs or osteoblasts
(OB), in both osteosarcoma biopsies and cell lines.

such as CDK4, MCM4, and XRCC6BP1 (Table 8.1). Literature review (www.genecards.

org) indicated that 17/29 genes may have an oncogenic role and 2/29 a tumor suppressive

role.

GO ID Term Ann Sign Exp weight01 Genes a�ected
0000084 S phase of mitotic cell cycle 114 4 0.26 0.00013 CDK4, MCM4,

PSMB4, PSMD4

0006303 double-strand break repair
via NHEJ

10 2 0.02 0.00023 PRKDC,
XRCC6BP1

0000216 M/G1 transition of mitotic
cell cycle

67 3 0.16 0.00049 MCM4, PSMB4,
PSMD4

Table 8.1: GO terms signi�cantly enriched for genes with LOH-gain and overexpression. GO
ID: GO-term ID, Term: GO term, Ann: number of annotated genes, Sig: number of signi�cant
genes, Exp: number of genes expected to be signi�cant, weight01: p-value obtained with weight01
algorithm, NHEJ: non-homologous end-joining.

Validation by Sanger sequencing

Tumor suppressor genes which are present in a region of LOH and gain may be partic-

ularly interesting, because a tumor cell could select for a mutant allele with a partial

dominant negative or altered function. We therefore set out to identify mutations in tu-

mor suppressor genes present in these regions of LOH and gain. Yet, false positive regions

of LOH may be returned from SNP data analysis in regions of high CN ampli�cation as

a technical artifact. Hence, we validated regions of LOH and gain by Sanger sequencing.

For validation, we selected the candidate tumor suppressor gene XRCC6BP1. In addition,

www.genecards.org
www.genecards.org
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we chose to validate the gene LLGL1, which showed LOH and gain in the SNP data of cell

line IOR/OS15 and allelic imbalance and gain in cell line IOR/SARG. We also validated

RASD1, which showed recurrent LOH and gain, but downregulation when compared with

osteoblasts. We validated LOH in the cell lines which showed LOH and gain in the par-

ticular genes in the SNP data analysis. The selected genes harbored homozygous as well

as heterozygous SNPs when analyzed on normal blood donor DNA. Sequencing of the

selected SNPs in and around XRCC6BP1 in the cell lines KPD and SAOS-2, and of the

SNPs in and around RASD1 in cell lines 143B, HOS, and IOR/OS15 and the diagnostic

biopsy L2613 revealed only homozygous SNPs. For LLGL1, we detected homozygosity

in cell line IOR/OS15, but heterozygosity in cell line IOR/SARG, which was detected

as allelic imbalance in SNP microarray data analysis. The probabilities for obtaining

false positive results in the Sanger sequencing validation were 0.001, 0.037, and 0.019

for XRCC6BP1, RASD1, and LLGL1, respectively. These �ndings therefore con�rm the

detection of homozygosity by the SNP microarray data analysis.

Nature of the ampli�cation

The copy number state of the XRCC6BP1 locus in the a�ected cell lines was analyzed by

FISH (Figure 8.3). For KPD, 42/50 metaphase cells had four copies of chromosome 12, of

which two were negative for the XRCC6BP1 probe. In addition, these cells showed more

than ten homogeneous staining regions (HSR) for XRCC6BP1. 8/50 cells had only two

copies of chromosome 12, of which one harbored XRCC6BP1, and showed 5�10 HSRs per

cell. In 50/50 SAOS-2 metaphases, in contrast, we detected two copies of chromosome 12

harboring the XRCC6BP1 locus, and two additional chromosomes without a chromosome

12 centromere, but with signals for XRCC6BP1. These results do not prove homozygosity

of the locus, but do illustrate the di�erent levels of ampli�cation in the di�erent cell lines.

These ampli�cations identi�ed with FISH corresponded to results from the SNP data

analysis, as we detected a high gain in KPD and a normal gain in SAOS-2.

Mutation analysis of selected genes

We performed Sanger sequencing for the entire coding region of XRCC6BP1, one of the

two candidate tumor suppressor genes with recurrent LOH-gain and overexpression, but

did not identify any mutation in this gene, indicating that the wild-type allele is ampli�ed

in the osteosarcoma cell lines KPD and SAOS-2, which harbor the region of LOH and

gain. We therefore expanded our list of candidate genes with tumor suppressor genes

showing upregulation when compared with MSCs only (2/11 genes may have a tumor

suppressive function), and when compared with osteoblasts only (3/5 genes may have a

tumor suppressive function). The coding region of PLEKHO1, which showed overexpres-

sion only when compared with osteoblasts, was sequenced and analyzed for mutations in

cell lines which showed this aberration�HOS, IOR/MOS, and IOR/SARG. No mutations
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A

B

C

Figure 8.3: FISH depicting A, a control
metaphase cell, B, a metaphase cell of KPD
with arrows indicating examples of HSRs,
and C, a metaphase cell of SAOS-2 with ar-
rows indicating XRCC6BP1 alleles not lo-
cated on chromosome 12. Green: probe for
the centromere of chromosome 12, red: BAC
probe for XRCC6BP1.
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could be identi�ed, but we were not able to sequence the �rst exon of this gene. Mutation

analysis of TTC19, which showed overexpression compared to MSCs, revealed a point

mutation in exon 7 in the cell line IOR/OS10, but no mutations in the other a�ected cell

lines (143B, HOS, IOR/OS15, IOR/SARG) and in two additionally analyzed diagnostic

biopsies showing LOH and gain (L3437, L3469) were detected, indicating that the mu-

tation in TTC19 is not recurrent in osteosarcoma. The mutation, R274G, however, was

predicted to be possibly damaging with a score of 0.752 (sensitivity of 0.85, speci�city of

0.92) by PolyPhen-2 (24).

Discussion

By analysis of high-grade osteosarcoma high-throughput genomic data, we demonstrated

that, in osteosarcoma, recurrent LOH happens less frequently than copy number aberra-

tions such as gains and losses. Interestingly, we found that LOH was more often accom-

panied by copy number gains than expected by chance. Tumor suppressor genes showing

overexpression in recurrent regions of gain and LOH may be drivers if these genes har-

bor mutations leading to a gain-of-function or partial dominant negative function. We

thus screened for mutations in candidate tumor suppressor genes in these regions. Of

the 29 genes that were recurrently a�ected in all comparisons, two may have a possible

tumor suppressive role�XRCC6BP1 and PRKDC. We performed mutation analysis for

XRCC6BP1, or XRCC6 binding protein 1 / Ku70 binding protein 3, which is involved

in non-homologous end-joining (NHEJ) of DNA double strand breaks (25). XRCC6BP1

has been reported to be ampli�ed and overexpressed in an alternatively spliced isoform

in human gliomas, which may interfere with the normal function of the DNA-PK com-

plex (26). In regions of LOH-gain in osteosarcoma cell lines, XRCC6BP1 did not harbor

any recurrent mutations. We did not screen for mutations in PRKDC, or DNA-PK cat-

alytic subunit, a Ser/Thr kinase which also plays a role in NHEJ (27), because of its

size (over 13kb). We did analyze two additional genes, PLEKHO1 and TTC19, which

showed recurrent LOH and gain, but which were overexpressed only in comparison with

osteoblasts, or only in comparison with MSCs, respectively. No mutations in PLEKHO1

(pleckstrin homology domain containing, family O member 1), a gene with a role in regu-

lation of the actin cytoskeleton (28) with an inhibitory e�ect on PI3K/Akt signaling (29),

were detected, but we were unable to sequence exon 1 of this gene. We did detect a mu-

tation in TTC19 (tetratricopeptide repeat domain 19), of which the protein is reported

to be involved in oxidative phosphorylation in mitochondria (30), and which may play a

role in cytokinesis as well (31). The mutation detected results in a arginine to glycine

substitution at codon 274 of the TTC19 protein and was predicted as possibly damag-

ing. However, the mutation was only found in 1/6 samples analyzed, and is therefore not

recurrent. A shortcoming of these mutation analyses is that only exons were sequenced,

and mutations in e.g. intronic regions may also a�ect the protein function, for example
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by a�ecting alternative splicing. We thus cannot exclude that these genes harbor any

recurrent mutations.

A weakness of this study is that we did not have paired control samples available for

the SNP microarray data analysis. Using paired control samples helps in avoiding the

false-positive regions of LOH which are detected when comparing tumor samples with an

independent set of controls, because of patient-speci�c inherited segments of homozygos-

ity (32). A second limitation in the analysis of these data is that high-grade osteosarcoma

is extremely genomically unstable. Copy number aberrations that are returned by data

analysis are relative changes against the background copy number state of the samples,

and therefore true copy number states are not uncovered (33). Regions of copy number

gain could, e.g. in a tetraploid background, consequently represent even higher gains

than what is expected based on assumption of a near-diploid background. In the case of

an unbalanced gain, the detection of the other allele may be low, which can lead to the

detection of a false-positive region of LOH. Because of these considerations, we validated

a selection of genes in regions of recurrent LOH-gain by Sanger sequencing. All regions

we tested were indeed detected as homozygous for the all SNPs. However, in a highly

ampli�ed region, Sanger sequencing may also not be sensitive enough to detect the se-

quence of an allele of which only one copy is present. We therefore cannot conclude that

these regions are actually homozygous, although for regions of low ampli�cation this is

probably the case.

FISH analysis of XRCC6BP1 revealed four copies of chromosome 12 in both cell lines,

of which two harbored the XRCC6BP1 locus and two not. In addition, cell line KPD

showed numerous homozygous staining regions. These results could be an indication of

LOH and ampli�cation of the other allele with intrachromosomal HSRs, but allele-speci�c

FISH should be performed to clarify whether these are true cases of LOH. Nevertheless,

FISH validated the copy number states that were detected by SNP microarray data anal-

ysis, as the gain detected in SAOS-2 was represented by four copies of the gene, and

the high gain detected in KPD was represented by > 10 copies of the XRCC6BP1 locus

in FISH, thereby con�rming the detection algorithm for copy number gain we used was

appropriate for these samples. Chromothripsis, or chromosome scattering, is reported

to be present in bone tumors with a frequency of at least 25% (34). In chromothripsis,

part of the genome generally oscillates between two states, with the higher copy number

state retaining heterozygosity and the lower copy number state showing LOH. The regions

of LOH-gain we detected in the osteosarcoma SNP data could represent chromothripsis,

since it would be possible that small oscillating regions were not detected due to the den-

sity of the probes targeting SNPs on the microarray and the detection algorithm. Such

regions may be returned as larger regions of CN gain harboring LOH. A characteristic

of chromothripsis is the presence of double minutes�small circular extra-chromosomal

DNA fragments, which may be highly ampli�ed in the tumor cell, and which frequently

harbor oncogenes in cancer cells (35). The HSRs which were detected in cell line KPD
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may represent chromosomal integration of double minutes, especially considering 17/29

genes detected by our analysis are possible oncogenes. It would thus be interesting to

characterize whether the regions that we detected are recurrent HSRs or double minutes,

and what the function of these oncogenes is in tumorigenesis of osteosarcoma.
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High-grade osteosarcoma is a primary bone tumor with complex genetic alterations, for

which targeted therapy is lacking. The aim of this thesis was to use high-throughput

molecular data analysis of high-grade osteosarcoma specimens and model systems, in order

to learn more on osteosarcomagenesis and to �nd possible ways to inhibit this process.

Chapter 1 and Chapter 2 give an introduction and literature review on microarray

data analysis of high-grade osteosarcoma.

In Chapter 3 we provide a rationale for the use of model systems for osteosarcoma.

It describes di�erential expression for the clinical parameters sex, tumor location (femur,

humerus, �bula/tibia), response to preoperative chemotherapy (poor responders, or Hu-

vos grade 1�2, versus good responders, or Huvos grade 3�4), and histological subtype

(osteoblastic, chondroblastic, �broblastic osteosarcoma). Importantly, as we describe in a

previous study performed by our group (1), no signi�cantly di�erentially expressed genes

were detected between poor and good responders to preoperative chemotherapy, even

though a substantial amount of tumor samples was analyzed (see also Chapter 2). Several

publications do report di�erences between poor and good responders, but used relatively

small sample sizes, and did not apply correction for multiple testing. An analysis of gene

expression pro�les of the three described histological subtypes showed that these di�ered

signi�cantly. Sets of �broblastic- and of chondroblastic osteosarcoma-speci�c genes were

determined, and were enriched in genes with a role in cellular growth and proliferation

and in the chondroid extracellular matrix, respectively. Using nearest shrunken centroids

classi�cation, an expression signature consisting of 24 probes that could predict for his-

tological subtype was generated. This pro�le was validated on an independent dataset

of osteosarcoma and control samples. Interestingly, this prediction pro�le was able to

classify histological subtypes of the primary tumor from which the tested osteosarcoma

xenografts and cell lines were derived, even though such material often lacks extracellular

matrix. This implicates that the mRNA expression pro�les of these model systems are

representative for the primary tumor, and favor the use of osteosarcoma xenografts and

cell lines in studying osteosarcoma biology. This is of particular importance given the

rarity of this tumor as well as the di�culties to obtain adequate tissue.

Targets for treatment of high-grade osteosarcoma

Di�erent comparative analyses of the various types of data that were available led to

the discovery of a number of particular ways to target this tumor. In Chapter 4, we

compared patients who developed metastases within �ve years with patients who did

not develop metastases within this time frame. The list of signi�cantly di�erentially ex-

pressed genes was enriched in macrophage-associated genes expressed by in�ltrating cells

(approximately 50% of all genes), which were all overexpressed in patients who did not

develop metastases. Tumor-associated macrophages (TAM) of both the M1- (antitumor)

and M2 (protumor)-type were quanti�ed with IHC in additional cohorts. The total count
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of M1- and M2-type macrophages was signi�cantly correlated with a better overall sur-

vival. This is in contrast with most epithelial tumor types, which often show a correlation

between (M2-type) in�ltrating macrophages and poor survival. However, mesenchymal

tumor cells may not need the guidance of the in�ltrate to metastasize, and tumor-associ-

ated macrophages may have a more antitumorigenic role in osteosarcoma (2). Moreover,

macrophages are plastic cells, and it could be that M2-type macrophages polarize towards

M1-type macrophages after chemotherapy due to the release of danger signals by the dy-

ing tumor cells. The results of Chapter 4 provide a rationale for adjuvant treatment

of high-grade osteosarcoma patients with macrophage-activating and recruiting agents,

such as liposomal muramyl tripeptide phosphatidylethanolamine (L-MTP-PE). This drug

has been previously shown to increase overall survival in canine and in human osteosar-

coma (2, 3), although interpretation of the results obtained from the latter study has been

di�cult, due to the 2x2 factorial design; standard adjuvant chemotherapy treatment plus

L-MTP-PE and/or ifosfamide. This study showed that two additional drugs did not show

signi�cant interaction (p-value = 0.101) and therefore the treatment arms were pooled.

A signi�cant di�erence was then found for overall survival, but not for event-free survival

(EFS). In an unpooled analysis, EFS for patients treated with L-MTP-PE and ifosfamide

was signi�cantly improved when compared with patients treated with ifosfamide alone,

but EFS arms of patients with only the standard adjuvant chemotherapy and patients

who received L-MTP-PE without ifosfamide were not signi�cantly di�erent (3). Further

testing of this drug in osteosarcoma is therefore necessary, and this will, in the near future,

be initiated in a phase II study in patients with metastatic and/or relapsed osteosarcoma.

In addition to di�erences between high-grade osteosarcoma tumors with di�erent clin-

ical features, we studied common gene expression changes between sets of tumors and

control samples. In Chapter 5, mRNA expression in osteosarcoma cell lines was com-

pared with expression in osteosarcoma progenitors. Global pathway analyses pointed to

di�erences in mRNA expression of the IGF1R pathway. Speci�cally genes negatively

regulating this pathway upstream the IGF1 receptor showed downregulation in osteosar-

coma, of the highest degree (i.e. the highest negative fold changes in the dataset). We

therefore hypothesized that this pathway can be inhibited at the receptor level, and that

this may inhibit growth of these tumors. Osteosarcoma cell lines were treated with a

dual kinase inhibitor OSI-906, which inhibits both the insulin receptor (IR) and IGF1R,

as IR can take over downstream signaling in case IGF1R is blocked, thereby inducing

resistance to single IGF1R targeting (4, 5). Inhibition with OSI-906 resulted in an inhibi-

tion of proliferation of 3/4 osteosarcoma cells, and may therefore be a promising drug for

treatment in addition to adjuvant chemotherapy. Other pathways with a role in bone de-

velopment, namely canonical Wnt signaling (6) and TGFβ/BMP signaling (7), have been

reported to play a role in osteosarcomagenesis. Because of the role of IGF1R signaling

in bone development and growth, it is not surprising that this pathway is deregulated in

osteosarcoma. Notably, in a recent case�parent study, two SNPs in the growth hormone
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(GH)/IGF1 pathway (in IGF2R and IGFALS) were signi�cantly associated with osteosar-

coma incidence (8). Interestingly, one of the very few genes which were overexpressed in

patients developing metastases within 5 years (Chapter 4) was the growth hormone recep-

tor (GHR), which was also frequently ampli�ed (in 34% of all samples). IGF1 synthesis is

largely dependent on growth hormone signaling (9), and an association between osteosar-

coma and height/growth has been reported. The speci�c roles of the GH/IGF1 axis in

osteosarcoma tumor growth and metastasis remain to be elucidated. The osteosarcoma

cell line panel shows a variable expression of GHR, and includes four cell lines with high

expression of GHR. These cell lines could be utilized to further experimentally examine

this pathway in osteosarcoma.

Chapter 6 described Ser/Thr kinome pro�ling analysis of two osteosarcoma cell lines

using a peptide microarray. Although it is not yet possible to directly infer what kinase

caused di�erential phosphorylation of the identi�ed peptides, by pathway analysis we

detected hyperphosphorylation directly downstream of Akt, pointing to active PI3K/Akt

signaling. We treated osteosarcoma cells with MK-2206, an Akt inhibitor, which inhibited

proliferation of 2 out of 3 cell lines. Inhibition of the PI3K/Akt signaling pathway may

therefore also be a possible target for treatment of these tumors.

The e�ects of IGF1R and Akt inhibitors on osteosarcoma cell proliferation should be

studied further, in order to determine why these cells stop proliferating after treatment

(this may for example be ascribed to induction of apoptosis). In addition, the drugs need

to be tested in combination with chemotherapy, in order to check for synergy and also in

order to rule out toxicity of a combined treatment, as targeted treatment using a single

drug against these signal transduction pathways will probably not be able eliminate all

osteosarcoma tumor cells, and patients may develop resistance to targeted treatment. In

addition, if targeted treatments will be used to treat osteosarcoma patients, the genomic

and mutational status of associated pathway players should be determined, because pa-

tients with downstream aberrations may be insensitive to treatment, as was shown in

Chapter 6 for the 143B cell line, which is insensitive to Akt inhibitor MK-2206, most

probably due to its oncogenic transformation of KRAS.

Integrative analysis and genomic instability

A main �nding of this thesis regards genomic instability, which appears to be a�ected

in all data types studied�the genome, transcriptome, and kinome. In Chapter 6, an

integrative analysis shows that pathways with a role in genomic stability are enriched for

overexpressed genes, as well as for hyperphosphorylation of peptides, implying that not

only gene expression, but also kinase activity is deregulated in these pathways.

In addition to complementing two di�erent data types as was performed in Chapter 6,

integrative analysis can also be performed by applying intersections of both data types.

This is useful in the analysis of copy number and gene expression data, because di�erently
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from kinase activity and transcript expression, the in�uence of DNA copy number of a

speci�c gene on the mRNA expression levels of that particular gene is more direct than

the in�uence of kinase activity on gene expression, since kinases usually act quite far

upstream of transcription factors in a speci�c pathway. Di�erent methods for performing

integrative analyses on gene expression and copy number data exist, as is described in

Chapter 7 of this thesis. We tested the performance of two of such methods�a non-

paired and a paired analysis�on the high-grade osteosarcoma dataset. In the nonpaired

analysis, genes showing signi�cant di�erential expression as compared with the control

samples were returned when present in recurrent regions with copy number alterations

that contained a higher number of signi�cantly di�erentially expressed than expected by

chance. For the paired analysis, a new approach was developed in statistical language

R. This method determined cooccurrence of copy number changes and signi�cant di�er-

ential expression. A comparison of both methods on osteosarcoma data illustrated that

the paired analysis returned more genes with biological relevance over a larger number

of regions, even though fewer samples were used for this analysis, since complete RNA

expression�DNA copy number pairs were available for 29/32 cases. By using a conserva-

tive approach and by combining the results of di�erent paired analyses, we identi�ed 31

candidate osteosarcoma drivers with high frequency of occurrence and signi�cant di�er-

ences in expression. While most of these genes were not yet reported in osteosarcoma,

more than two-thirds of the genes have been described to play a role in cancer. A large

number of our candidate genes had a role in cell cycle regulation, stressing the possible role

of genomic instability in driving osteosarcoma progression. This was further evaluated by

calculating genomic instability scores, which showed that higher genomic instability corre-

lated with poorer metastasis-free survival. In addition, a negative correlation between the

total amount of copy number aberrations and metastasis-free survival was detected. We

determined correlation with metastasis-free survival, and not overall survival, because of

the limited follow-up available. Metastasis-free survival, however, highly correlates with

overall survival, as only a small percentage of patients with resectable metastases survive.

Some issues can be raised with regard to the selection of the method we applied to

identify candidate driver genes. For determining recurrent copy number aberrations, we

used a cut-o� for frequency. This will result in the detection of mostly broad events

(e.g. the ampli�cation of an entire chromosome arm). Focal events may be detected as

well, but this method of analysis does not directly pinpoint speci�c targets (alterations

with selective bene�ts) of recurrent copy number aberrations. Focal events are most

often determined by the identi�cation of the minimal common region of overlap of a copy

number aberration, but this approach is prone to misidenti�cation of the driver gene,

especially when the recurrence frequency of the driver event is low (10), which is one of

the reasons why we did not take this approach. Even though broad events do have a

higher prevalence in most cancer types (low-level aberrations a�ecting a chromosome arm

or an entire chromosome), determining focal alterations may have great power to identify
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important genes in cancer (11). Importantly to note is also that both types of events

may have di�erent biological consequences. A method exist which can distinguish broad

and focal events from each other and from background (i.e. passenger) events (GISTIC,

Beroukhim et al. (12)). It would be therefore interesting to perform this method to the

osteosarcoma data set, in order to also identify signi�cant recurrent focal aberrations.

Results obtained with this analysis could return less frequently occurring aberrations,

which are speci�cally selected for in a subset of the tumors. Using our integrative method,

which does not �lter out passenger copy number alterations statistically (as is done in

GISTIC), but which integrates copy number with expression data, we were able to identify

those signi�cantly di�erentially expressed genes of which a large part (at least 35%) of

all tumors could be explained by an underlying copy number aberration. This approach

gives us more information on osteosarcomagenesis in general (i.e. genes are a�ected in

a high percentage of osteosarcoma samples). In addition to our list of new candidate

osteosarcoma drivers, determining signi�cant focal copy number events could provide us

with some additional possible targets for treatment of a subset of osteosarcoma patients.

Candidate drivers need to be validated in an experimental setting. For the detected

ampli�ed and overexpressed genes this can be done by shRNA studies, but the e�ects of

deleted tumor suppressors are more challenging to validate, especially because a�ecting a

single gene will probably not be su�cient to stop tumor growth in cells with large amounts

of aberrations. Because the majority of osteosarcomas do not have a known benign or less

malignant precursor lesion, it is di�cult to study tumor evolution, and to discriminate

between early and late events in tumorigenesis of osteosarcoma. The detection of early

drivers is important�it will reveal the �rst steps a normal cell takes in order to become

tumorigenic, and these �ndings may be used in for example diagnostics. Genomic instabil-

ity appears to play a major role in osteosarcoma, and in at least 25% (13), but probably

in total approximately 50% of all high-grade osteosarcomas, this can be explained by

chromothripsis. However, how chromothripsis exactly occurs, and what happens in the

other half of osteosarcomas is yet unknown. By using the right model systems, these

mechanisms can be studied. This is for example ongoing in studies which make use of the

injection of di�erent passages of transformed MSCs in mice and zebra�sh (14, 15) upon

which their tumorigenicity can be assessed. Furthermore, conditional transgenic mouse

models are useful tools to follow osteosarcomagenesis from the normal cell to the fully

malignant tumor.

Finally, in Chapter 8, loss-of-heterozygosity (LOH) calls were integrated with copy

number calls and expression. This approach identi�ed a high cooccurrence of LOH and

copy number gains. Such regions may harbor mutated tumor suppressor genes. Because

the detected LOH may have been a technical artifact, we validated the LOH of a subset

of tumor suppressors by Sanger sequencing and �uorescence in situ hybridization (FISH).

Sanger sequencing may not be sensitive enough to pick up LOH in regions of high am-

pli�cation, but using FISH we con�rmed regions of low level gains. In these regions,
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the LOH which was detected with both the SNP microarray and Sanger sequencing was

probably not an artifact. Mutation analysis of a subset of genes did, however, not de-

tect any recurrent mutations. In order to improve the accuracy of mapping regions of

LOH in osteosarcoma, an analysis which includes paired tumor�control samples should

be performed.

FISH analysis detected homozygous staining regions (HSRs) in samples with high level

gains. Oncogenes may be present in HSRs, and could be associated with chromothripsis.

It will therefore be of interest to perform FISH on these regions of high ampli�cation,

to validate whether these oncogenes are indeed highly ampli�ed. Targeting a speci�c

oncogene that is highly ampli�ed could be bene�cial in osteosarcoma, as the tumor may be

addicted to such an oncogene. In osteosarcoma, screening with high-throughput methods

for such events may detect possible patient-speci�c treatment options.

Summary

In summary, by high-throughput data analysis of pretreatment biopsies of a relatively

large, homogeneous cohort of osteosarcoma patients, which was collected as a collabo-

rative e�ort by EuroBoNeT, we discovered a protective role of macrophages against the

development of metastases. In addition, the IR/IGF1R and PI3K/Akt signaling path-

ways were discovered as potential targets for treatment. By integrative genomic analyses,

the genomic complexity of this tumor was con�rmed, and a correlation of genomic com-

plexity with metastasis-free survival was identi�ed. A conservative integrative approach

to �lter out passenger genes from driving events resulted in a list of mostly new, highly

frequent candidate drivers in osteosarcoma. Most convincingly, genes playing a role in

the maintenance of genomic stability have a considerable driving role in osteosarcomage-

nesis, as these pathways were a�ected in all three data types studied (mRNA expression,

copy number data, and the kinome screen). Figure 9.1 summarizes the results obtained

from these studies. This thesis provides the �rst steps in unraveling the genomic and

transcriptomic landscape of this highly genomically unstable tumor. The research of os-

teosarcoma genomics at an even higher resolution (Next Generation Sequencing) will,

together with the proposed future studies discussed in this chapter, help to better under-

stand this highly genomically unstable tumor, and will provide indispensable knowledge

on cancer evolution, diagnostics, prognostics, and targeted therapies.
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Nederlandse samenvatting

Het hooggradig osteosarcoom is een maligne primaire bottumor, welke met name bij ado-

lescenten en jonge volwassenen voorkomt op de plaats waar tijdens de pubertijd snelle

botgroei plaatsvindt. Het is een zeer agressieve tumor, welke in 45% van de patiënten

uitzaait, meestal naar de longen. De 5-jaars overleving van osteosarcoom patiënten is

ongeveer 60�70%. Behandeling van het hooggradig osteosarcoom bestaat uit chemothe-

rapie en operatieve verwijdering van de tumor. Een gerichte behandeling tegen speci�ek

osteosarcoom cellen, zoals dit bijvoorbeeld bestaat in de vorm van tamoxifen tegen oes-

trogeenreceptor-positieve borsttumoren, bestaat niet. Osteosarcoom tumor cellen hebben

vele en complexe afwijkingen in het DNA. In dit proefschrift is zogenaamde high-through-

put moleculaire data analyse gebruikt, om genoomwijd het osteosarcoom op verschillende

niveaus, zoals DNA en mRNA, te kunnen bestuderen, met als doel meer over deze tu-

mor te weten te komen en eventuele gerichte behandelingen tegen het osteosarcoom te

kunnen identi�ceren. In de inleidende hoofdstukken van dit proefschrift, hoofdstuk 1

en hoofdstuk 2, worden de verschillende microarray technieken�SNP-, genexpressie- en

kinoompro�lering�besproken die gebruikt zijn in dit proefschrift, en wordt in een litera-

tuuronderzoek een samenvatting gegeven van de tot nu toe gepubliceerde studies waarin

dit soort technieken gebruikt zijn om het osteosarcoom te bestuderen.

Hoofdstuk 3 betreft mRNA expressie data analyse van pre-operatieve osteosarcoom

biopten en modellen van het osteosarcoom, zoals cellijnen en diermodellen. Dit hoofdstuk

beschrijft di�erentiële expressie tussen osteosarcoom biopten van verschillende groepen

patiënten, bijvoorbeeld geslacht, de locatie van de primaire tumor in het lichaam van

de patiënt, de reactie op de pre-operatieve chemotherapie en het histologische subtype

van de tumor. Een opmerkelijke bevinding is dat er geen verschil in expressie bestaat

tussen biopten van patiënten met een goede of slechte reactie op pre-operatieve chemo-

therapie. In tegenstelling tot een aantal publicaties waarin wel verschillen in genexpressie

beschreven worden, is in onze studie gecorrigeerd voor herhaaldelijk testen�een statis-

tische methode die toegepast moet worden als meerdere hypotheses worden getest, zoals

het geval is bij het analyseren van microarray data. De meest voorkomende histologische
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subtypes van het conventionele osteosarcoom�osteoblastisch, chondroblastisch en �bro-

blastisch osteosarcoom�vertoonden onderling verschillende genexpressiepro�elen. Het

expressiepro�el van het �broblastaire osteosarcoom was verrijkt met genen die een rol

spelen bij groei en proliferatie, terwijl het pro�el speci�ek voor het chondroblastaire os-

teosarcoom verrijkt was met genen die een rol spelen bij de chondroïde extracellulaire

matrix van deze tumorcellen. Met behulp van een classi�catiemethode werd een pro�el

van 24 probes (die met bepaalde genen corresponderen) ontwikkeld, welke het histolo-

gische subtype van de pre-operatieve biopten kon bepalen. Dit pro�el werd vervolgens

toegepast op genexpressie data verkregen uit osteosarcoomcellen en diermodellen en kon

de histologische subtypes van de originele tumor waaruit deze modellen waren ontstaan

correct classi�ceren. Deze modellen hebben minder of geen extracellulaire matrix, de ei-

genschap waarop de verschillende histologische subtypes van het osteosarcoom van elkaar

onderscheiden worden. Dit impliceert dat genexpressiepro�elen van deze osteosarcoom-

modellen nog steeds representatief zijn voor de primaire tumor waaruit deze ontwikkeld

zijn, en is daarom een beweegreden om deze modellen te gebruiken in onderzoek naar het

osteosarcoom indien er niet genoeg primair materiaal beschikbaar is.

Gerichte therapieën tegen het hooggradig osteosarcoom

Met behulp van verschillende analyses van verscheidene datasets zijn een aantal speci�eke

manieren ontdekt om deze tumor te bestrijden. In hoofdstuk 4 zijn genexpressiepro-

�elen van twee groepen patiënten met elkaar vergeleken�patiënten welke binnen 5 jaar

uitzaaiingen ontwikkelden en patiënten bij wie in een periode van 5 jaar geen uitzaaiingen

gevonden werden. De lijst van genen die signi�cant verschilden in expressie was verrijkt

met macrofaag-geassocieerde genen, welke door tumor in�ltrerende cellen tot expressie

gebracht werden. Deze genen vertoonden allen overexpressie in de patiëntgroep zonder

metastasen. Het totale aantal tumor-geassocieerde macrofagen van type M1 (anti-tumor)

en type M2 (pro-tumor) associeerde in aanvullende cohorten met een betere prognose. De

resultaten van hoofdstuk 4 verscha�en een reden om osteosarcoompatiënten naast chemo-

therapie tevens met macrofaag-activerende/aantrekkende middelen te behandelen. Een

voorbeeld hiervan is het medicijn liposomal muramyl tripeptide phosphatidylethanola-

mine (L-MTP-PE), wat in een fase III trial de prognose van patiënten met osteosarcoom

kon verbeteren.

Naast het testen van verschillen in genexpressie tussen groepen van hooggradig osteo-

sarcoom biopten met verschillende klinische karakteristieken, is genexpressie van het os-

teosarcoom ook vergeleken met controles. In hoofdstuk 5 zijn verschillen in genexpressie

bepaald tussen osteosarcoomcellijnen en voorlopercellen van het osteosarcoom. Een glo-

bale pathway analyse wees op verschillen in de IGF1R signaaltransductieroute, welke een

rol speelt bij botgroei. Negatieve regulatoren van de IGF1 receptor waren sterk downgere-

guleerd in de osteosarcoomcellen, wat zou kunnen duiden op een verhoogde activiteit van
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deze signaalstransductieroute. Deze route werd daarom vervolgens in osteosarcoomcellen

geïnhibeerd met kinaseremmer OSI-906, welke niet alleen IGF1R, maar ook de insuline

receptor kan remmen, wat noodzakelijk is om resistentie tegen remming van IGF1R tegen

te gaan. Inhibitie met OSI-906 resulteerde in verlaagde proliferatie in drie van de vier ge-

teste osteosarcoomcellijnen. OSI-906 zou derhalve een veelbelovend geneesmiddel kunnen

zijn voor de behandeling van het osteosarcoom, naast de gebruikelijke chemotherapie.

In hoofdstuk 6 wordt Serine/Threonine kinoompro�lering van twee osteosarcoom-

cellijnen beschreven. Voor deze studie is een peptide microarray gebruikt, welke peptides

bevat die gefosforyleerd kunnen worden door kinases die aanwezig zijn in de cellysaten.

Met behulp van een pathway analyse werd ontdekt dat de PI3K/Akt signaaltransductie-

route verrijkt was met hyperfosforylering van moleculen direct downstream van Akt. Deze

signaaltransductieroute speelt een rol bij celdeling en celgroei en kan geremd worden met

verschillende medicijnen. Osteosarcoomcellijnen werden behandeld met de Akt remmer

MK-2206, welke proliferatie van twee van de drie geteste cellen kon remmen. Inhibitie

van de PI3K/Akt signaaltransductieroute is dan ook een mogelijke manier om deze tumor

gericht te kunnen behandelen.

Genomische instabiliteit

Een tweede bevinding van dit proefschrift betreft genomische instabiliteit, welke zijn stem-

pel drukt op verschillende niveaus�DNA, mRNA en kinaseactiviteit�in de tumorcel. De

geïntegreerde analyse beschreven in hoofdstuk 6, toegepast op signaaltransductieroutes

van verschillende types data, laat zien dat signaaltransductieroutes die een rol spelen in

het behouden van genomische stabiliteit verrijkt zijn in zowel overexpressie van genen als

hyperfosforylering van peptiden. Geïntegreerde analyse kan ook uitgevoerd worden op

genniveau, door naar genen te kijken die aangedaan zijn in de te bestuderen data types.

Deze methode kan gebruikt worden bij het combineren van DNA en genexpressie data,

omdat de hoeveelheid DNA een directe invloed heeft op de expressie van het betre�ende

gen. In hoofdstuk 7 worden twee methoden voor geïntegreerde analyse besproken�de

gepaarde en de ongepaarde geïntegreerde analyse�en toegepast op data van osteosarcoom

biopten en cellijnen. In de ongepaarde analyse zijn alle genen meegenomen die signi�-

cant di�erentiële expressie vertonen ten opzichte van de controle celculturen. Signi�cant

di�erentieel tot expressie komende genen die zich bevinden in gebieden met genomische

veranderingen, welke een hoger aantal van zulke genen bevatten dan verwacht, zijn hier

kandidaatgenen. In de gepaarde analyse wordt van alle genen die signi�cant di�erentieel

tot expressie komen bepaald of deze in hetzelfde weefsel of in dezelfde cellijn tevens in een

gebied van ampli�catie of deletie liggen. Dit zijn vervolgens kandidaat kanker-drijvende

genen. Met gepaarde analyse werden meer kandidaatgenen gedetecteerd in de bestudeerde

osteosarcoomdataset dan met de ongepaarde analyse. Een conservatieve aanpak waarin

alleen kandidaatgenen meegenomen werden die zowel in biopten als cellijnen, en vergele-
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ken met verschillende controle celculturen gevonden waren, resulteerde in een lijst van 31

osteosarcoom kandidaatgenen, welke in minstens 35% van alle osteosarcomen aangedaan

waren. Het overgrote deel van deze kandidaatgenen was voorheen nog niet ontdekt in

osteosarcoma, en meer dan twee derde van de genen speelt een mogelijke rol in kanker.

Een groot aantal van deze kandidaatgenen is belangrijk voor reguleren van bijvoorbeeld

de celcyclus, wat aangeeft dat het verlies van genomische stabiliteit een rol speelt in het

osteosarcoom. Deze bevinding werd verder geëvalueerd door het berekenen van bepaalde

genomische instabiliteit scores, waaruit bleek dat hogere genomische instabiliteit gecorre-

leerd was met slechtere prognose. Tevens werd een negatieve correlatie tussen het totale

aantal DNA kopieveranderingen en prognose waargenomen.

Tenslotte is in hoofdstuk 8 loss-of-heterozygosity (LOH) data geïntegreerd met DNA

kopie en genexpressie data. LOH gaat veelal gepaard met DNA ampli�catie. Zulke ge-

bieden zouden tumor suppressor genen kunnen bevatten, welke door bijvoorbeeld een

dominant negatieve mutatie voordeel kunnen hebben van de ampli�catie. Door hoge

ampli�catie kan echter vals positieve LOH gedetecteerd worden, vandaar dat LOH voor

een aantal tumor suppressor genen gevalideerd werd met behulp van Sanger sequencing

en �uorescence in situ hybridization (FISH). Sanger sequencing detecteerde geen hete-

rozygositeit in deze genen, maar deze methode is wellicht óók niet sensitief genoeg om

heterozygositeit te kunnen detecteren in het geval van een hoge ampli�catie van één al-

lel. Met behulp van FISH werden zowel hoge ampli�catie als lage ampli�catieniveaus in

verschillende samples weergegeven, welke overeenkwamen met de SNP data. LOH in lage

ampli�catieniveaus zijn waarschijnlijk geen artifact, en tumor suppressorgenen die in deze

gebieden liggen zouden interessante mutatie kunnen bevatten. Mutatieanalyse van een

aantal tumor suppressorgenen wees echter niet op mutaties in deze genen. Zogenaamde

homozygous staining regions (HSRs) werden met behulp van de FISH techniek gedetec-

teerd in osteosarcoomcellen met hoge ampli�catieniveaus. Deze hoog geampli�ceerde ge-

bieden zijn wellicht geassocieerd met chromothripsis (het uiteenvallen van chromosomen)

en bevatten mogelijk oncogenen waartegen gerichte, tumor-speci�eke therapieën gebruikt

zouden kunnen worden.

Conclusie

In dit proefschrift is `high-throughput' data analyse beschreven van een relatief grote

microarray dataset bestaande uit osteosarcoom pre-operatieve biopten, cellijnen en xeno-

transplantaten, welke beschikbaar werd gesteld door het FP6 netwerk EuroBoNeT. Met

behulp van data analyse is gevonden dat macrofaag-activerende middelen en IGF1R en

Akt remmers mogelijke adjuvante therapieën kunnen zijn in de behandeling van het osteo-

sarcoom. Geïntegreerde genomische analyses wezen op de genomische complexiteit van

deze tumor, en de rol van genomische instabiliteit ten opzichte van agressiviteit van het os-

teosarcoom. Een conservatieve benadering om zogenaamde passagiergenen weg te �lteren,
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zodat genen die een belangrijke rol spelen bij tumorgenese gedetecteerd kunnen worden

resulteerde in een lijst van 31 kandidaatgenen die frequent in het hooggradig osteosarcoom

aangedaan zijn op DNA en expressieniveau, waaronder meerdere genen die een rol spelen

bij het behouden van genomische stabiliteit. Met dit proefschrift zijn de eerste stappen

voor het in kaart brengen van het genoom- en transcriptoomlandschap van het hooggradig

osteosarcoom in gang gezet. Deze informatie is onmisbaar voor het begrijpen van deze

zeer genomisch instabiele tumor en voor het ontwikkelen van diagnostische/prognostische

methoden en nieuwe therapieën.
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