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SECOND VARIATION OF ZHANG’S λ-INVARIANT ON THE MODULI
SPACE OF CURVES

By ROBIN DE JONG

Abstract. We compute the second variation of the λ-invariant, recently introduced by S. Zhang, on
the complex moduli space Mg of curves of genus g ≥ 2, using work of N. Kawazumi. As a result
we prove that (8g+4)λ is equal, up to a constant, to the β-invariant introduced some time ago by R.
Hain and D. Reed. We deduce some consequences; for example we calculate the λ-invariant for each
hyperelliptic curve, expressing it in terms of the Petersson norm of the discriminant modular form.

1. Introduction. Recently, independently S. Zhang [27] and N. Kawazumi
[16] introduced a new interesting real-valued function ϕ on the moduli spaceMg

of complex curves of genus g≥ 2. Its value at a curve [X]∈Mg is given as follows.
Let H0(X,ωX) be the space of holomorphic differentials on X, equipped with the
hermitian inner product

(α,β) �−→ i

2

∫

X
α∧β.(1.1)

Choose an orthonormal basis (η1, . . . ,ηg) of H0(X,ωX), and put:

μX =
i

2g

g∑

k=1

ηk ∧ηk.

Note that μX is a volume form on X, independent of the chosen basis; in fact, μX
can be identified with the pullback, along any Abel-Jacobi map, of a translation
invariant (1,1)-form on the jacobian ofX. LetΔAr be the Laplacian on L2(X,μX )

determined by setting

∂∂

πi
f =ΔAr(f) ·μX ,

and let (φ�)∞
�=0 be an orthonormal basis of real eigenfunctions of ΔAr, with eigen-

values 0= λ0 < λ1 ≤ λ2 ≤ ·· · .
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276 R. DE JONG

Definition 1.1. (S. Zhang, N. Kawazumi) We define the ϕ-invariant ϕ(X) of
X to be the real number

ϕ(X) =
∑

�>0

2
λ�

g∑

m,n=1

∣∣
∣
∣

∫

X
φ� ·ηm∧ηn

∣∣
∣
∣

2
.

It is not difficult to check that ϕ(X) is indeed an invariant of X.
One important reason for studying ϕ is its significance in number theory, dis-

covered by Zhang. Briefly, with the invariant it can be shown that the Bogomolov
conjecture (for curves over number fields) follows naturally from a standard con-
jecture of Hodge index type of Gillet-Soulé (we briefly recall this relationship in
Section 2 below). In order to see this implication, one uses that the ϕ-invariant is
strictly positive. Indeed, the ϕ-invariant can only vanish if each ηm∧ηn is perpen-
dicular to all φ�. This would imply that each ηm∧ηn is proportional to μX , but that
is not the case under our assumption that g ≥ 2 (cf. [27], Remark after Proposition
2.5.3).

In view of its ramifications in number theory, it is of interest to try to study
further properties of ϕ in detail. A first important step is in the work [16] of
Kawazumi. The main theorem in [16] furnishes an expression for the second vari-
ation of ϕ onMg, connecting ϕ with certain canonical 2-forms over the universal
curve Cg overMg associated (following work of S. Morita) to the standard rep-
resentation H of Sp2g(Z), its third exterior power ∧3H , and the “primitive part”
∧3H/H of the latter. Here H is seen as a subrepresentation of ∧3H by wedging
with the standard polarization form in ∧2H .

In this paper we will use Kawazumi’s result to establish some new properties
of ϕ. More precisely: we determine its behavior in a neighborhood of the bound-
ary ofMg in the Deligne-Mumford compactificationMg, and we calculate ϕ for
hyperelliptic curves.

In order to establish these results, it turns out to be convenient to consider the
following variant of ϕ, also introduced in [27].

Definition 1.2. (Zhang) Let δF onMg be Faltings’s delta-invariant from [7],
and put δ = δF −4g log(2π). We define the λ-invariant to be the real-valued func-
tion

λ=
g−1

6(2g+1)
ϕ+

1
12
δ(1.2)

onMg.

Our main result in this paper is that (8g+ 4)λ can be directly related to the
function β onMg, introduced by R. Hain and D. Reed around ten years ago [12].
This β-invariant is defined as follows. LetJ (∧3H/H) be the Griffiths intermediate
jacobian fibration overMg associated to ∧3H/H , and let B̂ be the pullback, along
the graph of the canonical polarization, of the standard Gm-biextension line bundle
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on J (∧3H/H)× ˇJ (∧3H/H). The holomorphic line bundle B̂ comes with a natu-
ral hermitian metric ‖ · ‖B̂. Let ν :Mg→J (∧3H/H) be the normal function that
maps each curve X to the point in the intermediate jacobian of ∧3H1(X)/H1(X)

associated, by the Griffiths Abel-Jacobi map, to the Ceresa cycle X −X− in the
jacobian of X.

By a result of Morita one has ν∗B̂ ∼= L⊗8g+4, where L= detRπ∗ω is the deter-
minant of the Hodge bundle onMg. The isomorphism is unique up to a non-zero
scalar, as the only invertible holomorphic functions on Mg are scalars. Denote
by ‖ · ‖biext a metric on L⊗8g+4 that one obtains by pulling back ‖ · ‖B̂ along ν,
and transporting it to L⊗8g+4 using a Morita isomorphism. Denote by ‖ · ‖Hdg the
metric on L⊗8g+4 induced by the Hodge metric (1.1) on L.

The Hain-Reed β-invariant [12] is given by the ratio of these two metrics.

Definition 1.3. (R. Hain, D. Reed) We define the β-invariant onMg to be the
real-valued function

β = log
(‖ · ‖biext
‖ · ‖Hdg

)
.

Note that the β-invariant is only defined up to an additive constant onMg.
Our main result is

THEOREM 1.4. The equality (8g+4)λ= β holds, up to a constant depending
only on g.

The proof essentially boils down to a comparison of the second variations on
Mg of left and right hand side. Let ωHR be the first Chern form of (L,‖ ·‖1/(8g+4)biext )

and let ωHdg be that of (L,‖ · ‖1/(8g+4)Hdg ). Then the differential equation

∂∂

πi
β = (8g+4)(ωHR−ωHdg)

holds onMg . With this, Theorem 1.4 will follow from

THEOREM 1.5. The second variation of Zhang’s λ-invariant overMg satisfies

∂∂

πi
λ= ωHR−ωHdg.

Our proof of Theorem 1.5 will be based on Kawazumi’s calculation of the
second variation of ϕ referred to above. Thus, by equation (1.2), our contribution
is essentially to find a convenient expression for the second variation of the Faltings
delta-invariant overMg.

Theorem 1.4 allows us to determine the asymptotic behavior of ϕ along the
boundary components of the Deligne-Mumford compactification Mg. This now
follows immediately from earlier results: in [12] the asymptotic behavior of β is
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computed, and for the Faltings delta-invariant δF , this was done by J. Jorgenson
[14] and R. Wentworth [22], independently. Combining these results using equa-
tion (1.2) we obtain:

COROLLARY 1.6. Let X → D be a proper family of stable curves of genus
g ≥ 2 over the unit disk. Assume that X is smooth and that Xt is smooth for t �= 0.
• If X0 is irreducible with only one node, then

ϕ(Xt)∼−g−16g
log |t|

as t→ 0.
• IfX0 is reducible with one node and its components have genera i and g− i

then
ϕ(Xt)∼−2i(g− i)

g
log |t|

as t→ 0.

Here, if f,g are two functions on the punctured unit disk, the notation f ∼ g
denotes that f − g is bounded as t→ 0. The corollary implies that ϕ is a “Weil
function” onMg (see [14], Section 6 for a discussion). It would be very interesting
to know whether ϕ is also a Morse function onMg , and if so, whether its behavior
at its critical points can be effectively analyzed.

Our next result concerns the calculation of the λ- and ϕ-invariant of a hyper-
elliptic curve. Over the hyperelliptic locus in genus g ≥ 2 one can make the metric
‖ · ‖Hdg fairly explicit, using the discriminant modular form Δg (see Section 6 for
details). The metric ‖ · ‖HR turns out to be constant over the hyperelliptic locus.
Putting these facts together one is led to the following theorem.

THEOREM 1.7. Let ‖Δg‖ be the Petersson norm of Δg and let n =
( 2g
g+1
)
.

Then on the hyperelliptic locus in genus g, the λ-invariant is given, up to a constant
depending only on g, by

(8g+4)nλ=−(8g+4)ng log(2π)− g log∥∥Δg

∥
∥.

By using a recent result due to K. Yamaki [24] we will prove that the constant
implied by the theorem actually vanishes.

COROLLARY 1.8. On the hyperelliptic locus in genus g, the ϕ-invariant is
given by

(2g−2)nϕ=−8(2g+1)ng log(2π)−3g log‖Δg‖− (2g+1)nδF ,

where δF is Faltings’s delta-invariant.

The result of Yamaki and the above corollary together confirm a conjecture
about the value of ϕ for hyperelliptic curves put forward in [6].
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2. Number theoretic context. Before we start, we would like to explain
briefly the role played by ϕ in number theory. We refer to [27] for a more detailed
exposition and proofs. This section can be read independently of the others.

Let k be a number field, and let X be a smooth, projective and geometrically
connected curve of genus g≥ 2 with semistable reduction over k. Then the function
ϕ gives rise to real invariants associated to each archimedean place v of k, by
considering the base change ofX along v. As is explained in [27], one also has a ϕ-
invariant associated to each non-archimedean place of k. In this case, the definition
of ϕ is in terms of the combinatorics of the semistable reduction graph of X at v.
This “finite” ϕ-invariant vanishes at places v of good reduction.

Now let ξ be a k-rational point of Pic1X such that (2g− 2)ξ is the class of
a canonical divisor on X. Let Δξ in CH2(X3) be the modified diagonal cycle in
X3 associated to ξ as defined by B. Gross and C. Schoen in [8]. We call Δξ a
canonical Gross-Schoen cycle on X3. It turns out that the invariant ϕ occurs as a
local contribution in a formula relating the self-intersection 〈Δξ,Δξ〉 (defined in
[8]) ofΔξ to the admissible self-intersection of the relative dualizing sheaf (ω,ω)a
(defined in [25]) of X. More precisely, we have that the formula

(ω,ω)a =
2g−2
2g+1

(
〈Δξ,Δξ〉+

∑

v

ϕ(Xv) logNv
)

(2.1)

holds. Here the sum is taken over all places v of k. The Nv are certain canonical
local factors, and we have written Xv for X⊗kv. This formula is in fact the main
result of [27].

The significance of formula (2.1) is that it sheds a new light on the strict posi-
tivity of (ω,ω)a (ex-Bogomolov conjecture, proved in the nineties by E. Ullmo [21]
and Zhang [26]). First of all, the self-intersection of the canonical Gross-Schoen
cycle 〈Δξ,Δξ〉 should be non-negative by a standard conjecture (of Hodge index
type) of Gillet-Soulé (cf. [27], Section 2.4). Next, if v is non-archimedean, the in-
variant ϕ(Xv) is non-negative. This follows from a result of Z. Cinkir [2]. Finally,
for archimedean places v, the value ϕ(Xv) is positive, as explained in the Introduc-
tion. These remarks together show that Gillet-Soulé’s standard conjecture naturally
implies the strict positivity of (ω,ω)a, via equation (2.1).

Actually, Cinkir in [2], Theorem 2.11 proves the following conjecture of Zhang
from [27]: for the non-archimedean ϕ-invariant there exists a lower bound

ϕ(Xv)≥ c(g)δ0+
[g/2]∑

i=1

2i(g− i)
g

δi(2.2)
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where for each i = 0, . . . , [g/2] the invariant δi denotes the number of singular
points in the special fiber of Xv such that the local normalization of that fiber at
x is connected if i = 0 or a disjoint union of two curves of genera i and g− i if
i > 0, and where c(g) is a positive constant depending only on g. In fact, one can
take c(g) = g−1

6g if the reduction graph at v is “elementary” in the sense that every
edge is included in at most one cycle (the latter fact was already proved by Zhang
in [27]). From (2.2) it is then clear that in particular the number ϕ(Xv) is non-
negative. Note that one might view our Corollary 1.6 as an archimedean analogue
of Cinkir’s result; the asymptotics moreover have similar shapes.

To finish this section we remark that by [27], Section 1.4 there exists a natu-
ral non-archimedean analogue of the λ-invariant as well. By an application of the
Noether formula for semistable arithmetic surfaces [7, 18], equation (2.1) translates
into the formula

degdetRπ∗ω =
g−1

6(2g+1)
〈Δξ,Δξ〉+

∑

v

λ(Xv) logNv.(2.3)

It follows that the local λ-invariants serve to connect the self-intersection of the
Gross-Schoen cycle with the (non-normalized) stable Faltings height degdetRπ∗ω
of X over k (cf. [27], equation (1.4.2)).

3. Preliminaries. In this section we review some notions and results from
the papers [11, 12] by Hain and Reed. We follow these sources quite closely, the
most important difference being that we will usually work on the level of differen-
tial forms rather than on the level of cohomology classes.

As is customary, we view the moduli spaces Ag andMg of principally polar-
ized complex abelian varieties and of smooth projective complex curves, respec-
tively, as orbifolds. Let (VZ,Q : ∧2VZ → Z(−n)) be a polarized integral Hodge
structure of odd weight n=−2i+1 and let GSp2g →GSp(VZ,Q) be an algebraic
representation, together with a lift of the structure morphism S→ GSp(VR,Q),
where S is the Deligne torus, to GSp2g,R. Let (VZ,Q) be the corresponding varia-
tion of polarized Hodge structures overAg. We denote byJ (VZ) the Griffiths inter-
mediate jacobian fibration over Ag associated to VZ. Thus, if VA is the fiber of the
local system VZ at the point A of Ag, the fiber of J (VZ) at A is the complex torus
J(VA) = (VA⊗C)/(F−i+1(VA⊗C)+ ImVA). The holomorphic tangent bundle
of J(VA) is equipped with a canonical hermitian inner product derived from Q.
This hermitian inner product determines a translation-invariant global 2-form on
J(VA).

PROPOSITION 3.1. There exists a unique 2-form wV on J (VZ) such that the
restriction of w to each fiber over Ag is the translation-invariant form associated
to Q, and such that the restriction of w along the zero-section is trivial.

Proof. This is in [12], Section 5. �
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We also mention the following result. Suppose that VZ has weight −1. From
[9], Section 3 we recall that the (standardGm-) biextension line bundle B associated
to VZ is the set of isomorphism classes of mixed Hodge structures whose weight
graded quotients are isomorphic to Z,VZ and Z(1). It has a natural projection to the
product J(VZ)× ˇJ(VZ) where J(VZ) = ExtH(Z,VZ) is the Griffiths intermediate
jacobian of VZ, given by M �→ (M/W−2M,W−1M). This projection equips B
with the structure of a line bundle over J(VZ)× ˇJ(VZ). The polarization of VZ
furnishes a canonical morphism λ : J(VZ)→ ˇJ(VZ). By pulling back along (id,λ)
one obtains from B a line bundle B̂ over J(VZ). By abuse of language we refer to
B̂ as the biextension line bundle over J(VZ). Proposition 7.3 of [12] then states the
following.

PROPOSITION 3.2. Suppose that VZ is a variation of polarized Hodge struc-
tures of weight −1 over Ag. Let B̂ be the biextension line bundle over J (VZ),
obtained by applying the above construction to each of the fibers of J (VZ). Then
B̂ has a canonical hermitian metric. The first Chern form of B̂ with this metric is
equal to 2wV .

We will be mainly concerned with the cases where VZ is equal to either H ,
∧3H or ∧3H/H , where H =H1(X,Z) is the first homology group of a compact
Riemann surface X of genus g ≥ 2. The polarization is given by the standard in-
tersection form QH = (,) on H . Note that the form QH identifies H with its dual.
The Hodge structure H is mapped into ∧3H by sending x to x∧ζ , where ζ in ∧2H
is the dual of QH .

The polarizations on the Hodge structures ∧3H and ∧3H/H are given explic-
itly as follows (cf. [12], p. 204). The form Q∧3H on ∧3H sends

(
x1∧x2∧x3,y1∧ y2∧ y3

) �−→ det
(
xi,yj

)
.

Next, one has a contraction map c : ∧3H →H , defined by

x∧ y∧ z �→ (x,y)z+(y,z)x+(z,x)y.(3.1)

One may verify that the composite H →∧3H →H induced by c and ∧ζ is equal
to (g− 1) times the identity. Denote the projection ∧3H → ∧3H/H by p. The
projection p has a canonical splitting j (after tensoring with Q), defined by

p(x∧ y∧ z) �→ x∧ y∧ z− ζ ∧ c(x∧ y∧ z)/(g−1).

With these definitions, the form Q∧3H/H on ∧3H/H is given by

(u,v) �→ (g−1)Q∧3H(j(u), j(v)).

We denote by wH , w∧3H and w∧3H/H the 2-forms on the Griffiths intermediate
jacobian fibrations J (H), J (∧3H) and J (∧3H/H) over Ag whose existence is
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asserted by Proposition 3.1. Note that J (H) is just the universal abelian variety
over Ag.

PROPOSITION 3.3. On J (∧3H), the equality of 2-forms

(g−1)w∧3H = c∗wH +p∗w∧3H/H

holds.

Proof. According to [11], Proposition 18 we have (g− 1)Q∧3H = c∗QH +

p∗Q∧3H/H . We obtain the result by taking the associated canonical 2-forms. �

Let π : Cg→Mg be the universal curve overMg, viewed as an orbifold. As is
explained in [11], Introduction we have a commutative diagram

J (H)

Cg

π

��

κ
������������� μ ��

ν

������������� J (∧3H)

c

��

p

��

��

J (∧3H/H)

��
Mg �� Ag.

Here κ is the map sending a pair (X,x) where X is a curve and x is a point on
X to the class of (2g− 2)x−ωX in the jacobian J of X. The map μ is called
the “pointed harmonic volume” (introduced by B. Harris, cf. [13]) and sends a
pair (X,x) to the point associated, by the Griffiths Abel-Jacobi map, to the Ceresa
cycle at x, i.e., the (homologically trivial) cycle in J given as Xx−X−x where Xx

is the curve X embedded in J using x and X−x = [−1]∗Xx. The map ν is called
the “harmonic volume” and is just defined as the composite of μ with the map
p : J (∧3H)→J (∧3H/H) induced by the projection ∧3H →∧3H/H . The map
ν factors overMg, hence defines a Griffiths normal functionMg →J (∧3H/H)

that we shall also denote by ν.
It will be useful to pass fromMg , Cg and J (H) to the level-2 moduli orb-

ifolds Mg[2], Cg[2] and J (H)[2]; see for example [10], Section 7.4 for precise
definitions. The orbifoldMg[2] can be endowed with a universal theta character-
istic α, i.e., a consistent choice of an element α ∈ Picg−1X for each curve X such
that 2α is the canonical divisor class. We consider the map

jα : Cg[2]−→J (H)[2]
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given by sending (X,x) to the class of (g−1)x−α on the jacobian J of X. Note
that κ= 2jα.

Let eJ be the 2-form

eJ =− 1
2g(2g+1)

(2κ∗wH +3μ∗w∧3H)(3.2)

over Cg. By a result of Morita [19] (see also [11], Theorem 6) this 2-form represents
the class of ω−1Cg/Mg

in H2(Cg,Q), where ωCg/Mg
is the relative dualizing sheaf of

Cg overMg. Recall from the Introduction that we have a 2-form ωHR onMg by
taking the pullback, along ν, of the first Chern form of (B̂,‖ · ‖B̂), and dividing by
8g+4.

PROPOSITION 3.4. Over Cg[2], we have an equality

j∗αwH =−g(g−1)
2

eJ − 3
2
ωHR

of 2-forms.

Proof. Upon replacing H1(X,Z) byH1(X,Z(−1)) one views the variation of
Hodge structures overAg determined by ∧3H/H to be one of weight −1 (cf. [12],
Section 4). Proposition 3.2 gives that the first Chern form of (B̂,‖ · ‖B̂) equals
2w∧3H/H so that

ν∗w∧3H/H = (4g+2)ωHR.

Proposition 3.3 then yields

(g−1)μ∗w∧3H = κ∗wH +(4g+2)ωHR.

Combining this equality with the definition of eJ we find

κ∗wH =−2g(g−1)eJ −6ωHR
(cf. [11], Theorem 1). On the other hand we have [2]∗wH = 4wH , which follows
from the fact that wH restricts to a translation-invariant (1,1)-form in each fiber,
and κ= 2jα which together give

κ∗wH = 4j∗α(wH).

The proposition follows. �

4. Kawazumi’s result. In this section we state Kawazumi’s result on the
second variation of the ϕ-invariant onMg. His result expresses the second varia-
tion of ϕ in terms of the differential form eJ on Cg, introduced above, and a second
differential form eA on Cg which we introduce next.
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Let X be a compact Riemann surface of genus g ≥ 2. From [1] we obtain that
the line bundle O(Δ) on X ×X, where Δ is the diagonal, comes equipped with
a natural hermitian metric given by ‖1‖(x,y) =G(x,y), where G is the Arakelov
Green’s function. Fixing x on X, the function G(x, ·) is determined by the set of
equations

∂∂

πi
logG(x, ·) = μX − δx,

∫

X
logG(x,y)μX(y) = 0.

By demanding that the adjunction (residue) isomorphism

O(−Δ)|Δ→ ωX

where ωX is the holomorphic cotangent bundle to X should be an isometry we
obtain a canonical hermitian metric ‖ ·‖Ar on ωX . Globalizing this construction we
obtain a canonical hermitian metric ‖·‖Ar on ωCg/Mg

. Denote by eA the first Chern
form of the dual metric on ω−1Cg/Mg

. Kawazumi’s theorem is then the following.

THEOREM 4.1. (Kawazumi [16]) On Cg, the differential equation

eA− eJ =
1

2g(2g+1)
∂∂

πi
ϕ

is satisfied.

Actually the main result of [16] reads

eA− eJ =
−2i

2g(2g+1)
∂∂ ag.

One verifies directly that the function ag as defined in the Introduction of [16] is
equal to 1

2πϕ, and that the 2-form eA on Cg as defined in [16] is the one defined
above. We would like to explain that the 2-form eJ defined in (3.2) is equal to the
2-form called eJ in [16]. The latter is written (cf. Definition (3.10) in [16]) as

eJ =− 1
2g(2g+1)

(M1+M2)(η
⊗2
1 ),

where the following notation is used. Let HZ be the local system over Ag associ-
ated toH and consider the derived local systemsHR =HZ⊗R andHC =HZ⊗C

over Ag andMg. We use the same notation to denote their pullbacks on Cg. Note
that when pulled back along Cg, the intermediate jacobian fibration J (∧3H) can
be seen as a torus bundle over Cg with fiber ∧3H ⊗ (R/Z). Both M1,M2 are real
forms in Hom(∧2(∧3HC),C), hence global 2-forms on J (∧3H), coinciding with
the forms C1,C2 from [19]. By the discussion in Remark 20 of [11] we can there-
fore write M1 = 2c∗wH and M2 = 3w∧3H on J (∧3H) where c : ∧3H → H is
the contraction map (3.1). The section η⊗21 of the local system ∧2(∧3HC) over Cg
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is the one induced by the section η1 = η′1+ η′1 of the local system ∧3HC where,
as is explained in the introduction to [16], the section η′1 of ∧3HR is the first vari-
ation of the pointed harmonic volume μ : Cg → J (∧3H). We obtain M1(η

⊗2
1 ) =

2μ∗c∗wH = 2κ∗wH andM2(η
⊗2
1 ) = 3μ∗w∧3H and the equality of Kawazumi’s eJ

with the one in (3.2) follows.

5. Proof of the main theorem. In this section we prove Theorems 1.4 and
1.5. Let δF be the Faltings delta-invariant onMg (see [7], p. 402 for its defini-
tion). A convenient expression for its second variation is given by the following
proposition.

PROPOSITION 5.1. Over Cg[2], we have an equality

j∗αwH =−g(g−1)
2

eA− 3
2
ωHdg− 1

8
∂∂

πi
δF

of 2-forms.

Proof. We refer to [7], p. 413 for the first half of this proof. On J (H)[2] we
have a universal theta divisor Θα. When restricted to the jacobian J of a curve
X, the divisor Θα is equal to the image of the canonical theta divisor on Picg−1X
under the isomorphism Picg−1X → J defined by x �→ x−α. Further, the orbifold
J (H)[2] can be written as a quotient of the analytic variety C

g×Hg where Hg is
the Siegel upper half space of complex symmetric g-by-g matrices with positive
definite imaginary part. When pulled back to C

g ×Hg, for a suitable choice of
universal theta characteristic the divisorΘα can be given analytically by Riemann’s
standard theta function θ. As a result, the line bundle O(Θα) on J (H)[2] comes
equipped with a natural hermitian metric; the norm of θ in this metric is given by

‖θ‖= (det Imτ)1/4 exp(−π ty (Imτ)−1 y)|θ(z,τ)|

where z = x+ iy is in Cg and τ is in Hg. With this metric, the first Chern form w0
of O(Θα) equals

w0 = wH +
1
2
ωHdg(5.1)

(cf. [11], Proposition 2). Now as is explained in [11], Section 3 there exists a canon-
ical isomorphism

j∗αO(Θα)−→ ω⊗g(g−1)/2⊗L−1

of line bundles over Cg[2], given by sending j∗αθ to a suitable Wronskian differ-
ential. By Lemma 3.2 of [4] the norm of this isomorphism is equal to exp(δF /8),
when L is equipped with the Hodge metric given by (1.1), and ω is equipped with
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the Arakelov metric ‖ · ‖Ar. By taking first Chern forms we find

j∗αw0 =−g(g−1)2
eA−ωHdg− 1

8
∂∂

πi
δF .

We obtain the proposition by inserting (5.1). �

From Propositions 3.4 and 5.1 we infer that

g(g−1)
2

(
eA− eJ)=−1

8
∂∂

πi
δF +

3
2
ωHR− 3

2
ωHdg.(5.2)

By combining this equation with Kawazumi’s result Theorem 4.1 and equation
(1.2) we obtain Theorem 1.5.

Proof of Theorem 1.4. Theorem 1.4 follows from Theorem 1.5 once one
knows that the only pluriharmonic functions onMg are constants. But this follows
from the fact that Mg allows a surjection from Teichmüller space in genus g,
which is contractible, and the fact that the only invertible holomorphic functions
onMg are constants (cf. [12], Lemma 2.1). �

Remark 5.1. A shorter and perhaps more natural proof of Theorem 1.4 (and
hence of its corollaries) would be possible once one knows how to carry through
some of the arguments in [27] in terms of line bundles on a suitable level coverM′

g

ofMg . For example, one would like to interpret Zhang’s result (2.1) as stating,
among other things, that there exists a line bundle 〈Δξ,Δξ〉 onM′

g , together with
a canonical isomorphism 〈Δξ,Δξ〉⊗2g−2→〈ω,ω〉⊗2g+1 of norm exp(−(2g−2)ϕ)
overM′

g , where 〈ω,ω〉 is Deligne’s pairing of the relative dualizing sheaf ω with
itself. We will return to these matters in a future paper.

6. Hyperelliptic curves. In this section we prove Theorem 1.7. Let Hg
be the orbifold moduli space of complex hyperelliptic curves of genus g ≥ 2. We
start by reviewing the construction of the discriminant modular form Δg on Hg.
It generalizes the usual discriminant modular form of weight 12 in the theory of
moduli of elliptic curves.

Let n=
( 2g
g+1
)
and r =

(2g+1
g+1

)
. LetHg again be the Siegel upper half-space of

symmetric complex g× g-matrices with positive definite imaginary part. For z in
C
g (viewed as a column vector), a matrix τ in Hg and η,η′ in 1

2Z
g we define the

(classical) theta function with characteristic η =
[ η′
η′′
]
to be

θ[η](z,τ) =
∑

n∈Zg

exp(πit(n+η′)τ(n+η′)+2πit(n+η′)(z+η′′)).
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For any subset S of {1,2, . . . ,2g+1}we define a theta characteristic ηS as follows:
let

η2k−1 =

⎡

⎢⎢
⎣

t

(
0, . . . ,0,

1
2
,0, . . . ,0

)

t

(
1
2
, . . . ,

1
2
,0,0, . . . ,0

)

⎤

⎥⎥
⎦ , 1≤ k ≤ g+1,

η2k =

⎡

⎢⎢
⎣

t

(
0, . . . ,0,

1
2
,0, . . . ,0

)

t

(
1
2
, . . . ,

1
2
,
1
2
,0, . . . ,0

)

⎤

⎥⎥
⎦ , 1≤ k ≤ g,

where each time the non-zero entry in the top row occurs in the kth position. Then
we put ηS =

∑
k∈S ηk where the sum is taken modulo 1. Let T be the set of subsets

of {1,2, . . . ,2g+ 1} of cardinality g+1. Write U = {1,3, . . . ,2g+1} and let ◦ de-
note the symmetric difference. The discriminant modular form Δg is then defined
to be the function

Δg(τ) = 2−(4g+4)n
∏

T∈T
θ[ηT◦U ](0, τ)8

on Hg. It follows from results in [17], Section 3 that the function Δg is a modu-
lar form on the congruence subgroup Γg(2) = {γ ∈ Sp(2g,Z)|γ ≡ I2g mod 2} of
weight 4r.

Now let τ in Hg be the period matrix of a complex hyperelliptic curve X of
genus g marked with a canonical basis of homology determined by an ordering
of the set of Weierstrass points on X (see [20], Chapter IIIa, Section 5). We put
‖Δg‖(τ) = (det Imτ)2r|Δg(τ)|. Then for a given hyperelliptic curve [X] ∈Hg the
value of ‖Δg‖(τ) on a period matrix on a canonical basis associated to X does
not depend on the choice of such a matrix. We find that ‖Δg‖ is a well-defined
real-valued function on Hg.

We remark that Hg extends as a moduli stack of hyperelliptic curves over Z.
Further, there exists an up to sign unique global trivializing section Λ of the line
bundle L⊗8g+4 over Hg that extends as a trivializing section of L⊗8g+4 over Z (cf.
[5], Proposition 3.1). It is possible to give an explicit formula for ‖Λ‖Hdg over Hg
in terms of ‖Δg‖.

PROPOSITION 6.1. Let Λ be the (up to sign unique) global trivializing section
of L⊗8g+4 over Z. Then the formula

‖Λ‖nHdg = (2π)4g
2r‖Δg‖g

holds.

Proof. For this we refer to the proof of Theorem 8.2 in [5]. �
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For the biextension metric onHg we have the following result (cf. [12], Propo-
sition 6.7).

PROPOSITION 6.2. The metric ‖ · ‖biext restricted to the trivial line bundle
L⊗8g+4 over Hg is a constant metric.

Proof. The Ceresa cycle is zero for any hyperelliptic curve X. Indeed, when
X is embedded into its jacobian using a Weierstrass point, the involution [−1]
on the jacobian restricts to the hyperelliptic involution on X. Further, at zero the
biextension line bundle B̂ restricts canonically to C with its standard Euclidean
metric. �

It follows that β =− log‖Λ‖Hdg, up to a constant. From Theorem 1.4 we then
deduce

(8g+4)λ=− log‖Λ‖Hdg,

up to a constant. Upon applying Proposition 6.1 one then obtains

(8g+4)nλ=−4g2r log(2π)− g log‖Δg‖=−(8g+4)ng log(2π)− g log‖Δg‖,

up to a constant, and Theorem 1.7 is proven.
Using a recent result of K. Yamaki [24] it is possible to actually compute the

constant implied by Theorem 1.7. Let X be a hyperelliptic curve of genus g ≥ 2
with semi-stable reduction over a non-archimedean local field k. Let ε be Zhang’s
epsilon-invariant of X (cf. [27], Section 1.2). Define the invariant ψ as

ψ = ε+
2g−2
2g+1

ϕ.

Let X be the special fiber of a regular semistable model of X over the ring of
integers of k. We say that a double point x of X is of type 0 if the local normal-
ization of X at x is connected. We say that x is of type i, where i = 1, . . . , [g/2],
if the local normalization of X at x is the disjoint union of a curve of genus i and
a curve of genus g− i. Let ι be the involution on X induced by the hyperellip-
tic involution on X. Let x be a double point of type 0 on X . If x is fixed by ι,
we say that x is of subtype 0. If x is not fixed by ι, the local normalization of X
at {x,ι(x)} consists of two connected components, of genus j and g− j− 1, say,
where 1≤ j ≤ [(g−1)/2]. In this case we say that the pair {x,ι(x)} is of subtype j.
Let ξ0 be the number of double points of subtype 0, let ξj for j = 1, . . . , [(g−1)/2]
be the number of pairs of double points of subtype j, and let δi for i= 1, . . . , [g/2]
be the number of double points of type i. Equality (1.2.5) and Theorem 3.5 of [24]
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imply that

ψ =
g−1
2g+1

ξ0+

[(g−1)/2]∑

j=1

6j(g− j−1)+2g−2
2g+1

ξj+

[g/2]∑

i=1

(
12i(g− i)
2g+1

−1
)
δi.

By [27], Section 1.4 the non-archimedean λ-invariant is given by

λ=
g−1

6(2g+1)
ϕ+

1
12

(ε+ δ) =
1
12

(ψ+ δ).

Here δ denotes the total number of singular points in the fiber at v. We obtain

(8g+4)λ= gξ0+

[(g−1)/2]∑

j=1
2(j+1)(g− j)ξj +

[g/2]∑

i=1
4i(g− i)δi.

By the local Cornalba-Harris equality [3, 15, 23] this simplifies to

(8g+4)λ=− log‖Λ‖

where now the right hand side denotes the order of vanishing of Λ along the closed
point of the spectrum of the ring of integers of k. Now take a hyperelliptic curveX
of genus g overQ. AsΛ furnishes a non-zero section of the Hodge bundle detRπ∗ω
we have the formula

(8g+4)degdetRπ∗ω =−
∑

v

log‖Λ‖v logNv

for the (non-normalized) stable Faltings height of X over a finite field extension
of Q where X acquires semi-stable reduction. By equation (2.3) and the known
vanishing of 〈Δξ,Δξ〉 in the hyperelliptic case (cf. Section 4 of [8]), one obtains
that the constant implied by Theorem 1.7 actually vanishes.
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