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Abstract In 1976 I was looking for a suitable subject for my PhD thesis. My thesis advisor
Arie Hordijk and I found a lot of inspiration in Derman’s book (Finite state Markovian
decision processes, Academic Press, New York, 1970). Since that time I was interested in
linear programming methods for Markov decision processes. In this article I will describe
some results in this area on the following topics: (1) MDPs with the average reward criterion;
(2) additional constraints; (3) applications. These topics are the main elements of Derman’s
book.

1 Introduction

When Arie Hordijk was appointed at the Leiden University in 1976, I became his first PhD
student in Leiden. Hordijk was the successor of Guus Zoutendijk, who has chosen to leave
the university for a position as chairman of the executive board of the Delta Lloyd Group.
Zoutendijk was the supervisor of my master thesis and a leading expert in linear and non-
linear programming. Looking for a PhD project Hordijk suggested linear programming (for
short, LP) for the solution of Markov Decision Processes (for short, MDPs). LP for MDPs
was introduced by D’Epenoux (1960) for the discounted case. De Ghellinck (1960) as well
as Manne (1960) obtained LP formulations for the average reward criterion in the irreducible
case. The first analysis of LP for the multichain case was given by Denardo and Fox (1968).
Our interest was raised by Derman’s remark (Derman 1970, p. 84): “No satisfactory treat-
ment of the dual program for the multiple class case has been published”.

We started to work on this subject and succeeded to present a satisfactory treatment
of the dual program for multichained MDPs. We proved a theorem from which a simple
algorithm follows for the determination of an optimal deterministic policy (Hordijk and
Kallenberg 1979). In Sect. 3 we describe this approach. Furthermore, we present in Sect. 3
some examples which show the essential difference between irreducible, unichained and
multichained MDPs. These examples show for general MDPs:

L. Kallenberg (�)
Mathematical Institute, University of Leiden, P.O. Box 9512, 2300 RA Leiden, The Netherlands
e-mail: kallenberg@math.leidenuniv.nl

mailto:kallenberg@math.leidenuniv.nl


64 Ann Oper Res (2013) 208:63–94

1. An extreme optimal solution of the dual program may have in some state more than one
positive variable and consequently an extreme feasible solution of the dual program may
correspond to a nondeterministic policy (Example 2).

2. Two different solutions may correspond to the same deterministic policy (Example 3).
3. An nonoptimal solution of the dual program may correspond to an optimal deterministic

policy (Example 4).
4. The results of the unichain case cannot be generalized to the general single chain case

(Example 5).

The second topic of this article concerns additional constraints. Chapter 7 of Derman’s
book deals with this subject and has as title “State-action frequencies and problems with
constraints”. This chapter may be considered as the starting point for the study of MDPs
with additional constraints.

For unichained MDPs with additional constraints, Derman has shown that an optimal
policy can be found in the class of stationary policies. We have generalized these results in
the sense that for multichained MDPs stationary policies are not sufficient; however, in that
case there exists an optimal policy in the class of Markov policies. This subject is presented
in Sect. 4.

Derman’s book also deals with some applications, for instance optimal stopping and
replacement problems. In the last part, Sect. 5, of this paper we will discuss LP methods for
the following applications:

1. Optimal stopping problems.
2. Replacement problems:

(a) General replacement problems;
(b) Replacement problems with increasing deterioration;
(c) Skip to the right problems with failure;
(d) Separable replacement problems.

3. Multi-armed bandit problems.
4. Separable problems with both the discounted and the average reward criterion.

2 Notations and definitions

Let S be the finite state space and A(i) the finite action set in state i ∈ S. If in state i action
a ∈ A(i) is chosen, then a reward ri(a) is earned and pij (a) is the transition probability that
the next state is state j .

A policy R is a sequence of decision rules: R = (π1,π2, . . . , π t , . . . ), where πt is the
decision rule at time point t , t = 1,2, . . . . The decision rule πt at time point t may depend
on all available information on the system until time t , i.e., on the states at the time points
1,2, . . . , t and the actions at the time points 1,2, . . . , t − 1.

Let C denote the set of all policies. A policy is said to be memoryless if the decision rules
πt are independent of the history; it depends only on the state at time t . We call C(M) the
set of the memoryless policies. Memoryless policies are also called Markov policies.

If a policy is memoryless and the decision rules are independent of the time point t , then
the policy is called stationary. Hence, a stationary policy is determined by a nonnegative
function π on S × A, where S × A = {(i, a) | i ∈ S, a ∈ A(i)}, such that

∑
a πia = 1 for

every i ∈ S. The stationary policy R = (π,π, . . . ) is denoted by π∞. The set of stationary
policies is notated by C(S).

If the decision rule π of a stationary policy is nonrandomized, i.e., for every i ∈ S, we
have πia = 1 for exactly one action a, then the policy is called deterministic. A deterministic
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policy can be described by a function f on S, where f (i) is the chosen action in state i.
A deterministic policy is denoted by f ∞ and the set of deterministic policies by C(D).

A matrix P = (pij ) is a transition matrix if pij ≥ 0 for all (i, j) and
∑

j pij = 1 for
all i. Notice that P is a stationary Markov chain. For a Markov policy R = (π1,π2, . . . ) the
transition matrix P (πt ) is defined by

{P (πt )}ij =
∑

a

pij (a)πt
ia

and the vector r(πt ), defined by

{r(πt )}i =
∑

a

ri(a)πt
ia,

is called the reward vector.
Let the random variables Xt and Yt denote the state and action at time t . Given starting

state i, policy R and a discount factor α ∈ (0,1), the discounted reward and the average
reward are denoted by vα

i (R) and φi(R), respectively, and defined by

vα
i (R) =

∞∑

t=1

αt−1
Ei,R{rXt (Yt )}

and

φi(R) = lim inf
T →∞

1

T

T∑

t=1

Ei,R{rXt (Yt )},

respectively.
The value vectors vα and φ for discounted and average rewards are defined by vα

i =
supR vα

i (R), i ∈ S, and φi = supR φi(R), i ∈ S, respectively.
A policy R∗ is a discounted optimal policy if vα

i (R∗) = vα
i , i ∈ S; similarly, R∗ is an

average optimal policy if φi(R
∗) = φi , i ∈ S. It is well known that, for both discounted

as average rewards, an optimal policy exists and can be found within C(D), the class of
deterministic policies.

An MDP is called irreducible if, for all deterministic decision rules f , in the Markov
chain P (f ) all states belong to a single ergodic class.

An MDP is called unichained if, for all deterministic decision rules f , in the Markov
chain P (f ) all states belong to a single ergodic class plus a (perhaps empty and decision
rule dependent) set of transient states. In the weak unichain case every optimal deterministic
policy f ∞ has a unichain Markov chain P (f ); in the general single chain case at least one
optimal deterministic policy f ∞ has a unichain Markov chain P (f );

An MDP is called multichained if there may be several ergodic classes and some transient
states; these classes may vary from policy to policy.

An MDP is communicating if for every i, j ∈ S there exists a deterministic policy f ∞,
which may depend on i and j , such that in the Markov chain P (f ) state j is accessible from
state i.

It is well known that for irreducible, unichained and communicating MDPs the value
vector has identical components. Hence, in these cases one uses, instead of a vector, a scalar
φ for the value.
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3 LP for MDPs with the average reward criterion

3.1 The irreducible case

In Chap. 6, pp. 78–80, of Derman’s book the following result can be found, which originates
from Manne (1960).

Theorem 1 Let (v∗, u∗) and x∗ be optimal solutions of (1) and (2), respectively, where

min

{

v | v +
∑

j

{δij − pij (a)}uj ≥ ri(a), (i, a) ∈ S × A

}

(1)

and

max

⎧
⎨

⎩

∑

i,a

ri(a)xi(a)

∣
∣
∣
∣
∣
∣

∑
i,a{δij − pij (a)}xi(a) = 0, j ∈ S∑
i,a xi(a) = 1

xi(a) ≥ 0, i ∈ S,a ∈ A(i)

⎫
⎬

⎭
. (2)

Let f ∞∗ be such that x∗
i (f∗(i)) > 0, i ∈ S. Then, f ∞∗ is well defined and an average optimal

policy. Furthermore, v∗ = φ, the value.

3.2 The unichain case

Theorem 2 Let (v∗, u∗) and x∗ be optimal solutions of (1) and (2), respectively. Let S∗ = {i |∑
a x∗

i (a) > 0}. Choose f ∞∗ such that x∗
i (f∗(i)) > 0 if i ∈ S∗ and choose f∗(i) arbitrarily if

i /∈ S∗. Then, f ∞∗ is an average optimal policy. Furthermore, v∗ = φ, the value.

This linear programming result for unichained MDPs was derived by Denardo (1970).
I suppose that Derman was also aware of this result, although it was not explicitly men-
tioned in his book. Theorem 2 on p. 75 and the subsequent text on p. 76 are the reason of
my supposition. The result of Theorem 2, but with a different proof, is part of my thesis
(Kallenberg 1980), which was also published in Kallenberg (1983).

3.3 The communicating case

Since the value vector φ is constant in communicating MDPs, the value φ is the unique
v∗-part of an optimal solution (v∗, u∗) of the linear program (1). One would expect that an
optimal policy could also be obtained from the dual program (2). The next example shows
that—in contrast with the irreducible and the unichain case—in the communicating case the
optimal solution of the dual program doesn’t provide an optimal policy, in general.

Example 1 S = {1,2,3}; A(1) = {1,2}, A(2) = {1,2,3}, A(3) = {1,2}. r1(1) = 0,
r1(2) = 2; r2(1) = 1, r2(2) = 1, r2(3) = 3; r3(1) = 2; r3(2) = 4. p12(1) = p11(2) = p23(1) =
p21(2) = p22(3) = p32(1) = p33(2) = 1 (other transitions are 0). This is a multichain and
communicating model. The value is 4 and f ∞∗ with f∗(1) = f∗(2) = 1, f∗(3) = 2 is the
unique optimal deterministic policy.

The primal linear program (1) becomes for this model

min

{

v

∣
∣
∣
∣
∣

v + u1 − u2 ≥ 0;v ≥ 2;v + u2 − u3 ≥ 1;v − u1 + u2 ≥ 1

v ≥ 3;v − u2 + u3 ≥ 2;v ≥ 4

}

with optimal solution v∗ = 4; u∗
1 = 0, u∗

2 = 3, u∗
3 = 5 (v∗ is unique; u∗ is not unique).
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The dual linear program is

maximize 2x1(2) + x2(1) + x2(2) + 3x2(3) + 2x3(1) + 4x3(2)

subject to

x1(1) − x2(2) = 0

− x1(1) x2(1) + x2(2) − x3(1) = 0

− x2(1) + x3(1) = 0

x1(1) + x1(2) + x2(1) + x2(2) + x2(3) + x3(1) + x3(2) = 1

x1(1), x1(2), x2(1), x2(2), x2(3), x3(1), x3(2) ≥ 0

For the optimal solution x∗, we obtain: x∗
1 (1) = x∗

1 (2) = x∗
2 (1) = x∗

2 (2) = x∗
2 (3) =

x∗
3 (1) = 0; x∗

3 (2) = 1 (this solution is unique).
Proceeding as if this were a unichain model, we choose arbitrary actions in the states 1

and 2. Clearly, this approach may generate a nonoptimal policy.

So, we are not able—in general—to derive an optimal policy from the dual program (2).
However, it is possible to find an optimal policy with some additional work. In Example 1
we have seen that the optimal solution x∗ provides an optimal action in state 3, which is the
only state of S∗ = {i | ∑

a x∗
i (a) > 0}. The next theorem shows that the states of S∗ always

provide optimal actions. For the proof we refer to Kallenberg (2010).

Theorem 3 Let x∗ be an extreme optimal solution of (2). Take any policy f ∞∗ such that
x∗

i (f∗(i)) > 0, i ∈ S∗. Then, φj (f
∞∗ ) = φ, j ∈ S∗.

Note that S∗ �= ∅ (because
∑

i,a x∗
i (a) = 1) and that we can find, by Theorem 3, optimal

actions f∗(i) for all i ∈ S∗. Furthermore, one can easily show that S∗ is closed in the Markov
chain P (f∗).

Since we have a communicating MDP, one can find for each i /∈ S∗ an action f∗(i) such
that in the Markov chain P (f∗) the set S∗ is reached from state i with a strictly positive prob-
ability after one or more transitions. So, the set S\S∗ is transient in the Markov chain P (f∗).
Therefore, the following search procedure provides the remaining optimal actions for the
states S\S∗.

Search procedure

1. If S∗ = S: stop;
Otherwise go to step 2.

2. Pick a triple (i, a, j) with i ∈ S\S∗, a ∈ A(i), j ∈ S∗ and pij (a) > 0.
3. f∗(i) := a, S∗ := S∗ ∪ {i} and go to step 1.

A second way to find an optimal policy for communicating MDPs is based on the fol-
lowing theorem which is due to Filar and Schultz (1988).

Theorem 4 An MDP is communicating if and only if for every b ∈ R
|S| such that

∑
j bj = 0

there exists a y ∈ R
|S×A|
+ such that

∑
i,a{δij − pij (a)}yi(a) = bj for all j ∈ S.

The following procedure also yields an optimal deterministic policy. This is based on
results for multichained MDPs which are discussed in Sect. 3.4.
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Determination y-variables

1. Choose β ∈ R
|S| such that βj > 0, j ∈ S and

∑
j βj = 1.

2. Let bj = βj − ∑
a x∗

j (a), j ∈ S.

3. Determine y∗ ∈ R
|S×A|
+ such that

∑
i,a{δij − pij (a)}y∗

i (a) = bj , j ∈ S.
4. Choose f∗(i) such that y∗

i (f∗(i)) > 0 for all i ∈ S\S∗.

Example 1 (continued)

Search procedure:
S∗ = {3}.
i = 2; a = 1; j = 3; f∗(2) = 1; S∗ = {2,3}.
i = 1; a = 1; j = 2; f∗(1) = 1; S∗ = {1,2,3}.
Determination y-variables:
Choose β1 = β2 = β3 = 1

3 .
Let b1 = 1

3 , b2 = 1
3 , b3 = − 2

3 .

The system
∑

i,a{δij − pij (a)}yi(a) = bj , j ∈ S becomes:

y1(1) − y2(2) = 1
3

− y1(1) + y2(1) + y2(2) − y3(1) = 1
3

− y2(1) + y3(1) = − 2
3

with a nonnegative solution y∗
1 (1) = 1

3 , y∗
2 (1) = 2

3 , y∗
2 (2) = y∗

3 (1) = 0 (this solution is not
unique). Choose f∗(1) = f∗(2) = 1.

Remarks

1. The verification of an irreducible or communicating MDP is computationally easy (see
Kallenberg 2002); generally, the verification of a unichain MDP is N P -complete as
shown by Tsitsiklis (2007).

2. It turns out that the approach with the search procedure can also be used for the weak
unichain case.

3.4 The multichain case

For multichained MDPs the programs (1) and (2) are not sufficient. For general MDPs the
following dual pair of linear programs were proposed by Denardo and Fox (1968):

min

⎧
⎨

⎩

∑

j

βjvj

∣
∣
∣
∣
∣

∑
j {δij − pij (a)}vj ≥ 0, (i, a) ∈ S × A

vi + ∑
j {δij − pij (a)}uj ≥ ri(a), (i, a) ∈ S × A

}

(3)

and

max

⎧
⎪⎨

⎪⎩

∑

(i,a)

ri(a)xi(a)

∣
∣
∣
∣
∣
∣
∣

∑
i,a{δij − pij (a)}xi(a) = 0, j ∈ S

∑
a xj (a) + ∑

i,a{δij − pij (a)}yi(a) = βj , j ∈ S

xi(a), yi(a) ≥ 0, i ∈ S,a ∈ A(i)

⎫
⎪⎬

⎪⎭
, (4)

where βj > 0 for all j ∈ S.
In Denardo and Fox (1968) it was shown that if (v∗, u∗) is an optimal solution of the

primal problem (3), than v∗ = φ, the value vector.
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Notice that if the value vector φ is constant, i.e., φ has identical components, then∑
j {δij −pij (a)}v∗

j = ∑
j {δij −pij (a)}φ = {1 − 1}φ = 0. Hence, the first set of inequalities

of (3) is superfluous and (3) can be simplified to (1) with as dual program (2).
Furthermore, Denardo and Fox have derived the following result (see pp. 73–75 in Der-

man 1970).

Lemma 1 Let f ∞∗ ∈ C(D) be an optimal policy and let (v∗ = φ,u∗) be an optimal solution
of the primal program (3). Then,

{∑
j {δij − pij (f∗)}φj = 0, i ∈ S

φi + ∑
j {δij − pij (f∗)}u∗

j = ri(f∗), i ∈ R(f∗)

where R(f∗) = {i | i is recurrent in the Markov chain P (f∗)}.

Lemma 1 asserts that in any optimal solution of the primal program (3) one can always se-
lect actions f∗(i) such that

∑
j {δij −pij (f∗)}φj = 0, i ∈ S, and φi +∑

j {δij −pij (f∗)}u∗
j =

ri(f∗) for all i in a nonempty subset S(f∗) of S. Furthermore, the following result holds,
given such policy f ∞∗ and a companion S(f∗) (see pp. 75–76 in Derman 1970).

Lemma 2 If all states of S\S(f∗) are transient in the Markov chain P (f∗), then policy f ∞∗
is an average optimal policy.

If we are fortunate in our selection of f ∞∗ , then the states of S\S(f∗) are transient in the
Markov chain P (f∗) and policy f ∞∗ is an average optimal policy. However, we may not be
so fortunate in our selection of f ∞∗ . In that case, Derman suggests the following approach
to find an optimal policy (see pp. 76–78 in Derman’s book 1970). Let S1 be defined by

S1 =
{

i

∣
∣
∣
∣
∣
∃a ∈ A(i) such that

{∑
j {δij − pij (a)}vj = 0

vi + ∑
j {δij − pij (a)}uj = ri(a)

}

. (5)

By Lemma 1, S\S1 must consist entirely of transient states under every optimal policy.
Let S2 be defined by

S2 =

⎧
⎪⎨

⎪⎩
i ∈ S1

∣
∣
∣
∣
∣
∣
∣

∃a ∈ A(i) with

{∑
j {δij − pij (a)}vj = 0

vi + ∑
j {δij − pij (a)}uj = ri(a)

which satisfies pij (a) = 0 for all j ∈ S\S1

⎫
⎪⎬

⎪⎭
. (6)

Also by Lemma 1, the states of S1\S2 must be transient under at least one optimal pol-
icy f ∞∗ . Let S3 and A3(i), i ∈ S3 be defined as

S3 = S\S2; A3(i) =
{

a ∈ A(i)

∣
∣
∣
∣

∑

j

{δij − pij (a)}φj = 0

}

, i ∈ S3. (7)

Consider the following linear program

min

{∑

j∈S3

wj

∣
∣
∣
∣

∑

j∈S3

{δij − pij (a)}wj ≥ si(a), i ∈ S3, a ∈ A3(i)

}

, (8)

where si(a) = ri(a) − ∑
j /∈S3

{δij − pij (a)}u∗
j − φi .
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Theorem 5

(1) The linear program (8) has a finite optimal solution.
(2) Let w∗ be an optimal solution of (8). Then, for each i ∈ S3 there exists at least one action

f∗(i) satisfying
∑

j∈S3
{δij − pij (f∗)}w∗

j = si(f∗).
(3) Let f ∞∗ be such that

{∑
j {δij − pij (f∗)}φj = 0, i ∈ S2

φi + ∑
j {δij − pij (f∗)}u∗

j = ri(f∗), i ∈ S2

and
∑

j∈S3
{δij − pij (f∗)}w∗

j = si(f∗), i ∈ S3. Then, f ∞∗ is an average optimal policy.

Hence, in order to find an optimal policy in the multichain case, by the results of Denardo
and Fox (1968) and Derman (1970), one has to execute the following procedure:

1. Determine an optimal solution (v∗, u∗) of the linear program (3) to find the value vector
φ = v∗.

2. Determine, by (5), (6) and (7), the sets S1, S2, S3 and A3(i), i ∈ S3.
3. Compute si(a) = ri(a) − ∑

j /∈S3
{δij − pij (a)}u∗

j − φi , i ∈ S3, a ∈ A3(i).
4. Determine an optimal solution w∗ of the linear program (8).
5. Determine an optimal policy f ∞∗ as described in Theorem 5.

This rather complicated approach elicited from Derman the remark (see Derman 1970,
p. 84): “No satisfactory treatment of the dual program for the multiple class case has been
published”, which was for Hordijk and myself the reason to start research on this topic. In
Hordijk and Kallenberg (1979) the following result was proved.

Theorem 6 Let (x∗, y∗) be an extreme optimal solution of the dual program (4). Then, any
stationary deterministic policy f ∞∗ such that

{
x∗

i (f∗(i)) > 0 if i ∈ S∗
y∗

i (f∗(i)) > 0 if i /∈ S∗
, where S∗ =

{

i |
∑

a

x∗
i (a) > 0

}

,

is well-defined and is an average optimal policy.

This result is based on the following propositions, where:

− Proposition 1 is related to Lemma 1;
− Proposition 2 is related to the definitions of S2;
− Proposition 3 is related to Lemma 2; it also uses the property that the columns of positive

variables of an extreme optimal solution are linearly independent.

Proposition 1 Let (v∗ = φ,u∗) be an optimal solution of program (3). Then,

{∑
j {δij − pij (f∗)}φj = 0, i ∈ S

φi + ∑
j {δij − pij (f∗)}u∗

j = ri(f∗), i ∈ S∗.

Proposition 2 The subset S∗ of S is closed in the Markov chain P (f∗).

Proposition 3 The states of S\S∗ are transient in the Markov chain P (f∗).
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The correspondence between feasible solutions (x, y) of (4) and randomized stationary
policies π∞ is given by the following mappings. For a feasible solution (x, y) the corre-
sponding policy π∞(x, y) is defined by

πia(x, y) =
⎧
⎨

⎩

xi (a)∑
a xi (a)

if
∑

a xi(a) > 0

yi (a)∑
a yi (a)

if
∑

a xi(a) = 0.
(9)

Conversely, for a stationary policy π∞, we define a feasible solution (xπ , yπ ) of the dual
program (4) by

{
xπ

i (a) = {∑j βj {P ∗(π)}j i} · πi(a)

yπ
i (a) = {∑j βj {D(π)}j i + ∑

j γj {P ∗(π)}j i} · πi(a),
(10)

where P ∗(π) and D(π) are the stationary and the deviation matrix of the transition matrix
P (π); γj = 0 on the transient states and constant on each recurrent class under P (π) (for
the precise definition of γ see Hordijk and Kallenberg 1979).

Now, we will present some examples which show the essential difference between irre-
ducible, unichained and multichained MDPs.

Example 2 It is well-known that in the irreducible case each extreme optimal solution has
exactly one positive x-variable. It is also well known that in other cases some states can have
no positive x-variables, i.e., S∗ is a proper subset of S.

This example shows an MDP with an extreme optimal solution which has two positive
x-variables for some state. Hence, the two corresponding deterministic policies, which can
constructed via Theorem 6, are both optimal.

Furthermore, this extreme feasible solution is mapped on a nondeterministic policy.
Let S = {1,2,3}; A(1) = {1}, A(2) = {1}, A(3) = {1,2}; r1(1) = 1, r2(1) = 2, r3(1) = 4,
r3(2) = 3; p13(1) = p23(1) = p31(1) = p32(2) = 1 (other transitions are 0).

The dual program (4) of this MDP is (take β1 = β2 = 1
4 , β3 = 1

2 ):

maximize x1(1) + 2x2(1) + 4x3(1) + 3x3(2)

subject to

x1(1) − x3(1) = 0

x2(1) − x3(2) = 0

−x1(1) − x2(1) + x3(1) + x3(2) = 0

x1(1) + y1(1) − y3(1) = 1
4

x2(1) + y2(1) − y3(2) = 1
4

x3(1) + x3(2) − y1(1) − y2(1) + y3(1) + y3(2) = 1
2

x1(1), x2(1), x3(1), x3(2), y1(1), y2(1), y3(1), y3(2) ≥ 0

The feasible solution (x, y), where x1(1) = x2(1) = x3(1) = x3(2) = 1
4 , y1(1) = y2(1) =

y3(1) = y3(2) = 0, is an extreme optimal solution. Observe that state 3 has two positive
x-variables.

Example 3 This example shows that the mapping (9) is not a bijective mapping. Let
S = {1,2,3,4}; A(1) = {1}, A(2) = {1,2}, A(3) = {1,2}, A(4) = {1}; p12(1) = p23(1) =
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p24(2) = p33(1) = p31(2) = p44(1) = 1 (other transitions are 0). Since the rewards are not
important for this property, we have omitted these numbers.

The constraints of the dual program are (take βj = 1
4 , 1 ≤ j ≤ 4):

x1(1) − x3(2) = 0

−x1(1) + x2(1) + x2(2) = 0

−x2(1) + x3(2) = 0

−x2(2) = 0

x1(1) + y1(1) − y3(2) = 1
4

x2(1) + x2(2) − y1(1) + y2(1) + y2(2) = 1
4

x3(1) + x3(2) − y2(1) + y3(2) = 1
4

x4(1) − y2(2) = 1
4

x1(1), x2(1), x2(2), x3(1), x3(2), x4(1), y1(1), y2(1), y2(2), y3(2) ≥ 0

First, consider the feasible solution (x1, y1) with x1
1 (1) = x1

2 (1) = 1
4 , x1

2 (2) = x1
3 (1) = 0,

x1
3 (2) = x1

4 (1) = 1
4 ; y1

1 (1) = y1
2 (1) = y1

2 (2) = y1
3 (2) = 0. This feasible solution is mapped on

the deterministic policy f ∞
1 with f1(1) = f1(2) = 1, f1(3) = 2, f1(4) = 1.

Then, consider the feasible solution (x2, y2) with x2
1 (1) = x2

2 (1) = 1
6 , x2

2 (1) = x2
3 (1) = 0,

x2
3 (2) = 1

6 , x2
4 (1) = 1

2 , y2
1 (1) = 1

6 , y2
2 (1) = 0, y2

2 (2) = 1
4 , y2

3 (2) = 1
12 . This feasible solution

is mapped on the deterministic policy f ∞
2 with f2(1) = f2(2) = 1, f2(3) = 2, f2(4) = 1.

Notice that (x1, y1) �= (x2, y2) and f ∞
1 = f ∞

2 .

Example 4 This example shows that a feasible nonoptimal solution can be mapped on an
optimal policy. Let S = {1,2,3}; A(1) = A(2) = {1,2}, A(3) = {1}; p12(1) = p13(2) =
p21(1) = p22(2) = p33(1) = 1 (other transitions are 0); r1(1) = 1, r1(2) = r2(1) = r2(2) =
r3(1) = 0.

The dual program for this model is (take β1 = β2 = β3 = 1
3 ):

maximize x1(1)

subject to

x1(1) + x1(2) − x2(1) = 0
x2(1) − x1(1) = 0

−x1(2) = 0
x1(1) + x1(2) + y1(1) + y1(2) − y2(1) = 1

3

x2(1) + x2(2) − y1(1) + y2(1) = 1
3

x3(1) − y1(2) = 1
3

x1(1), x1(2), x2(1), x2(2), x3(1), y1(1), y1(2), y2(1) ≥ 0

The solution (x, y) given by x1(1) = 1
6 , x1(2) = 0, x2(1) = 1

6 , x2(2) = 0, x3(1) = 2
3 ,

y1(1) = 0, y1(2) = 1
3 , y2(1) = 1

6 is a feasible solution, but not an optimal solution. No-
tice that x∗

1 (1) = x∗
2 (1) = x∗

3 (1) = 1
3 and all other variables 0 is an optimal solution and that

the x-part of the optimal solution is unique. However, the policy f ∞ which corresponds to
(x, y) has f (1) = f (2) = f (3) = 1 and is an optimal policy.
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Example 5 In this last example, we show that the general unichain case needs an approach
different from the unichain case; even the additional search procedure is not sufficient. In
the general unichain case the value vector is a constant vector and the linear programs (1)
and (2) may be considered. Let S = {1,2,3}; A(1) = {1}, A(2) = A(3) = {1,2}; r1(1) =
r2(1) = 0, r2(2) = r3(1) = 1, r3(2) = 0; p12(1) = p21(1) = p22(2) = p33(1) = p32(2) = 1
(other transitions are 0). This is a general unichained MDP, because the policy f ∞ with
f (1) = 1, f (2) = f∗(3) = 2 is an optimal policy and has a single chain structure. The dual
program (2) of this model is:

maximize x2(2) + x3(1)

subject to

x1(1) − x2(1) = 0
−x1(1) + x2(1) − x3(2) = 0
−x3(2) = 0
x1(1) + x2(1) + x2(2) + x3(1) + x3(2) = 1
x1(1), x2(1), x2(2), x3(1), x3(1) ≥ 0

x given by x1(1) = x2(1) = x2(2) = x3(2) = 0, x3(1) = 1 is an extreme optimal solution. In
state 3, the policy corresponding to x chooses action 1. The choice in state 2 for an optimal
policy has to be action 2. Since the set of the states 1 and 2 is closed under any policy, it is
impossible to search for actions in these states with transitions to state 3.

4 State-action frequencies and problems with constraints

4.1 Introduction

“State-action frequencies and problems with constraints” is the title of chapter 7 of Derman’s
book. This chapter may be concerned as the starting point for the study of MDPs with
additional constraints. In such problems it is not obvious that optimal policies exist. It is also
not necessarily true that optimal policies, if they exist, belong to the class C(D) or C(S).

MDPs with additional constraints occur in a natural way in all kind of applications. For
instance in inventory management, where one wants to minimize the total costs under the
constraint that the shortage is bounded by a given number.

In general, for MDPs with additional constraints, a policy which is optimal simultane-
ously for all starting states does not exist. Therefore, we consider problems with a given
initial distribution β , i.e., βj is a given probability that state j is the starting state. A special
case is βj = 1 for j = i and βj = 0 for j �= i, i.e., that state i is the (fixed) starting state.

In many cases reward and cost functions are specified in terms of expectations of some
function of the state-action frequencies. Given the initial distribution β , we define for any
policy R, any time point t and any state-action pair (i, a) ∈ S ×A, the action-state frequency
xR

ia(t) by

xR
ia(t) =

∑

j∈S

βj · PR{Xt = i, Yt = a | X1 = j}. (11)

For the additional constraints we assume that, besides the immediate rewards ri(a), there
are also certain immediate costs ck

i (a), i ∈ S, a ∈ A(i) for k = 1,2, . . . ,m.
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Let β be an arbitrary initial distribution. For any policy R, let the average reward and the
k-th average cost function with respect to the initial distribution β be defined by

φ(β,R) = lim inf
T →∞

1

T

T∑

t=1

∑

j∈S

βj ·
∑

i,a

PR{Xt = i, Yt = a | X1 = j} · ri(a) (12)

and

ck(β,R) = lim inf
T →∞

1

T

T∑

t=1

∑

j∈S

βj ·
∑

i,a

PR{Xt = i, Yt = a | X1 = j} · ck
i (a). (13)

A policy R is a feasible policy for a constrained Markov decision problem, shortly CMDP,
if the k-the cost function is bounded by a given number bk for k = 1,2, . . . ,m, i.e., if
ck(β,R) ≤ bk , k = 1,2, . . . ,m.

An optimal policy R∗ for this criterion is a feasible policy that maximizes φ(β,R), i.e.,

φ(β,R∗) = sup
R

{φ(β,R) | ck(β,R) ≤ bk, k = 1,2, . . . ,m}. (14)

For any policy R and any T ∈ N, we denote the average expected state-action frequencies
in the first T periods by

xT
ia(R) = 1

T

T∑

t=1

xR
ia(t), (i, a) ∈ S × A. (15)

By X(R) we denote the limit points of the vectors {xT (R), T = 1,2, . . . }. For any T ∈ N,
xT (R) satisfies

∑
(i,a) x

T
ia(R) = 1; so also

∑
(i,a) xia(R) = 1 for all x(R) ∈ X(R).

Since Pπ∞{Xt = i, Yt = a | X1 = j} = {P t−1(π)}j i · πia , (i, a) ∈ S × A for all π∞ ∈
C(S), we have limT →∞ xT

ia(π
∞) = ∑

j∈S βj {P ∗(π)}j i · πia , i.e., X(π∞) consists of only
one element, namely the vector x(π), where xia(π) = {βT P ∗(π)}i · πia , (i, a) ∈ S × A.

Let the policy set C1 be the set of convergent policies, defined by

C1 = {R | X(R) consists of one element}. (16)

Hence, C(S) ⊆ C1. Furthermore, define the vector sets L, L(M), L(C), L(S) and L(D) by

L = {x(R) ∈ X(R) | R is an arbitrary policy};
L(M) = {x(R) ∈ X(R) | R is a Markov policy};
L(C) = {x(R) ∈ X(R) | R is a convergent policy};
L(S) = {x(R) ∈ X(R) | R is a stationary policy};
L(D) = {x(R) ∈ X(R) | R is a deterministic policy}.

The following result is due to Derman (1970, pp. 93–94).

Theorem 7 L = L(M) = L(S) = L(D), where L(S) and L(D) are the closed convex hull
of the sets L(S) and L(D), respectively.
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4.2 The unichain case

Derman has also shown (Derman 1970, pp. 95–96) that in the unichain case a feasible
CMDP has an optimal stationary policy. He showed that L(S) = X, where

X =

⎧
⎪⎨

⎪⎩
x ∈ R

|S×A|

∣
∣
∣
∣
∣
∣
∣

∑
i,a{δij − pij (a)}xi(a) = 0, j ∈ S

∑
i,a xi(a) = 1

xi(a) ≥ 0, i ∈ S, a ∈ A(i)

⎫
⎪⎬

⎪⎭
. (17)

Since X is a closed convex set, this result also implies that L(S) = L(S). Hence, the CMDP
(14) can be solved by the following algorithm.

Algorithm 1

1. Determine an optimal solution x∗ of the linear program

max

⎧
⎪⎪⎪⎨

⎪⎪⎪⎩

∑

i,a

ri(a)xi(a)

∣
∣
∣
∣
∣
∣
∣
∣
∣

∑
i,a{δij − pij (a)}xi(a) = 0, j ∈ S

∑
i,a xi(a) = 1

∑
i,a ck

i (a)xi(a) ≤ bk, k = 1,2, . . . ,m

xi(a) ≥ 0, (i, a) ∈ S × A

⎫
⎪⎪⎪⎬

⎪⎪⎪⎭

. (18)

(if (18) is infeasible, then problem (14) is also infeasible).
2. Take

π∗
ia =

{
x∗

i (a)/x∗
i , a ∈ A(i), i ∈ S∗

arbitrary otherwise,

where x∗
i = ∑

a x∗
i (a) and S∗ = {i | x∗

i > 0}.

4.3 The multichain case

The multichain case was solved by Hordijk and Kallenberg (see Kallenberg 1980, 1983 and
Hordijk and Kallenberg 1984). First, they generalized Theorem 7 in the following way.

Theorem 8 L = L(M) = L(C) = L(S) = L(D).

Then, they showed that L = XY , where

XY =

⎧
⎪⎨

⎪⎩
x

∣
∣
∣
∣
∣
∣
∣
∃y s.t.

∑
i,a{δij − pij (a)}xia = 0, j ∈ S

∑
a xja + ∑

i,a{δij − pij (a)}yia = βj , j ∈ S

xia, yia ≥ 0, (i, a) ∈ S × A

⎫
⎪⎬

⎪⎭
. (19)

From the above results it follows that any extreme point of XY is an element of L(D). The
next example shows the converse statement is not true, in general.

Example 6 Take the MDP with S = {1,2,3}; A(1) = {1,2}, A(2) = {1,2}, A(3) = {1};
p12(1) = p13(2) = p22(1) = p21(2) = p33(1) = 1 (other transitions are 0). Since the rewards
are not important for this property, we have omitted these numbers. Let β1 = β2 = β3 =
1
3 . Consider f ∞

1 , f ∞
2 , f ∞

3 , where f1(1) = 2, f1(2) = 1, f1(3) = 1; f2(1) = 2, f2(2) = 2,
f2(3) = 1; f3(1) = 1, f3(2) = 1, f3(3) = 1.



76 Ann Oper Res (2013) 208:63–94

For these policies one easily verifies that:

x11(f
∞
1 ) = 0, x12(f

∞
1 ) = 0, x21(f

∞
1 ) = 1

3
, x22(f

∞
1 ) = 0, x31(f

∞
1 ) = 2

3
;

x11(f
∞
2 ) = 0, x12(f

∞
2 ) = 0, x21(f

∞
2 ) = 0, x22(f

∞
2 ) = 0, x31(f

∞
2 ) = 1;

x11(f
∞
3 ) = 0, x12(f

∞
3 ) = 0, x21(f

∞
3 ) = 2

3
, x22(f

∞
1 ) = 0, x31(f

∞
1 ) = 1

3
.

Since x(f ∞
1 ) = 1

2 x(f ∞
2 ) + 1

2 x(f ∞
3 ), x(f ∞

1 ) is not an extreme point of XY .
In order to solve the CMDP (14) we consider the linear program

max

⎧
⎪⎪⎪⎨

⎪⎪⎪⎩

∑

i,a

ri(a)xi(a)

∣
∣
∣
∣
∣
∣
∣
∣
∣

∑
i,a{δij − pij (a)}xi(a) = 0, j ∈ S

∑
a xj (a) + ∑

i,a{δij − pij (a)}yi(a) = βj , j ∈ S
∑

i,a ck
i (a)xi(a) ≤ bk, 1 ≤ k ≤ m

xi(a), yi(a) ≥ 0, (i, a) ∈ S × A

⎫
⎪⎪⎪⎬

⎪⎪⎪⎭

.

(20)
The next theorem shows how an optimal policy for the CMDP (14) can be computed. This
policy may lie outside the set of stationary policies.

Theorem 9

(1) Problem (14) is feasible if and only if problem (20) is feasible.
(2) The optima of (14) and (20) are equal.
(3) If R is optimal for problem (14), then x(R) is optimal for (20).
(4) Let (x, y) be an optimal solution of problem (20) and let x = ∑n

k=1 pkx(fk), where
pk ≥ 0 and

∑n

k=1 pk = 1 and C(D) = {f ∞
1 , f ∞

2 , . . . , f ∞
n }. Let R ∈ C(M) such that∑

j βj · PR{Xt = i, Yt = a | X1} = ∑
j βj · ∑k pk· Pf ∞

k
{Xt = i, Yt = a | X1} = βj } for

all (i, a) ∈ S × A and all t ∈ N. Then, R is an optimal solution of problem (14).

To compute an optimal policy from an optimal solution (x, y) of the linear program (20),
we first have to express x as x = ∑n

k=1 pkx(f ∞
k ), where pk ≥ 0 and

∑n

k=1 pk = 1. Next,
we have to determine the policy R = (π1,π2, . . . ) ∈ C(M) such that R satisfies

∑
j βj ×

PR{Xt = i, Yt = a|X1} = ∑
j βj · ∑

k pk · Pf ∞
k

{Xt = i, Yt = a|X1} = βj } for all (i, a) ∈
S × A and all t ∈ N. The decision rules πt , t ∈ N, can be determined by

πt
ia =

⎧
⎨

⎩

∑
j βj ·∑k pk{P t−1(fk)}ji ·δafk (i)
∑

j βj ·∑k pk{P t−1(fk)}ji
if

∑
j βj · ∑k pk{P t−1(fk)}j i �= 0

arbitrary if
∑

j βj · ∑k pk{P t−1(fk)}j i = 0.

Hence, the following algorithm constructs a policy R ∈ C(M) ∩ C1 which is optimal for
CMDP problem (14).

Algorithm 2

1. Determine an optimal solution (x∗, y∗) of linear program (20) (if (20) is infeasible, then
problem (14) is also infeasible).

2. (a) Let C(D) = {f ∞
1 , f ∞

2 , . . . , f ∞
n } and compute P ∗(fk) for k = 1,2, . . . , n.

(b) Take

xk
ia =

{∑
j βj · {P ∗(fk)}j i a = fk(i)

0 a �= fk(i)
, i ∈ S, k = 1,2, . . . , n.
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3. Determine pk , k = 1,2, . . . , n as feasible solution of the linear system

⎧
⎨

⎩

∑n

k=1 pkx
k
ia = x∗

ia, a ∈ A(i), i ∈ S
∑n

k=1 pk = 1
pk ≥ 0 k = 1,2, . . . , n

4. R = (π1,π2, . . .), defined by

πt
ia =

{ ∑
j βj ·∑k pk{P t−1(fk)}ji ·δafk (i)
∑

j βj ·∑k pk{P t−1(fk)}ji
if

∑
j βj · ∑k pk{P t−1(fk)}j i �= 0

arbitrary if
∑

j βj · ∑k pk{P t−1(fk)}j i = 0

is an optimal policy for problem (14).

In the next example Algorithm 2 is applied on a CMDP.

Example 7 Let S = {1,2,3}; A(1) = {1,2}, A(2) = {1}, A(3) = {1,2}; p12(1) = p13(2) =
p22(1) = p33(1) = p32(2) = 1 (other transitions are 0); r1(1) = 0, r1(2) = 0, r2(1) = 1,
r3(1) = r3(2) = 0; β1 = 1

4 , β2 = 3
16 , β3 = 9

16 . As constraints we have bounds for the value
x21(R) : 1

4 ≤ x21(R) ≤ 1
2 . If we apply Algorithm 2 we obtain the following.

maximize x2(1)

subject to

x1(1) + x1(2) = 0

− x1(1) − x3(2) = 0

− x1(2) + x3(2) = 0

x1(1) + x1(2) + y1(1) + y1(2) = 1
4

x2(1) − y1(1) − y3(2) = 3
16

x3(1) + x3(2) − y1(2) + y3(2) = 9
16

x2(1) ≤ 1
2

− x2(1) ≤ − 1
4

x1(1), x1(2), x2(1), x3(1), x3(2), y1(1), y1(2), y3(2) ≥ 0

with optimal solution: x∗
1 (1) = 0, x∗

1 (2) = 0, x∗
2 (1) = 1

2 , x∗
3 (1) = 1

2 , x∗
3 (2) = 0; y∗

1 (1) = 0,
y∗

1 (2) = 1
4 , y∗

3 (2) = 5
16 .

There are four deterministic policies:

f1(1) = 1, f1(2) = 1, f1(3) = 1; f2(1) = 1, f2(2) = 1, f2(3) = 2;
f3(1) = 2, f3(2) = 1, f3(3) = 1; f4(1) = 2, f4(2) = 1, f4(3) = 2.

The corresponding vectors x1, x2, x3, x4 are:

x1
1 (1) = 0; x1

1 (2) = 0; x1
2 (1) = 7

16
; x1

3 (1) = 9

16
; x1

3 (2) = 0.

x2
1 (1) = 0; x2

1 (2) = 0; x2
2 (1) = 1; x2

3 (1) = 0; x2
3 (2) = 0.
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x3
1 (1) = 0; x3

1 (2) = 0; x3
2 (1) = 3

16
; x3

3 (1) = 13

16
; x3

3 (2) = 0.

x4
1 (1) = 0; x4

1 (2) = 0; x4
2 (1) = 1; x4

3 (1) = 0; x4
3 (2) = 0.

For the numbers p1,p2,p3,p4 ≥ 0 such that p1x
1 + p2x

2 + p3x
3 + p4x

4 = x∗ and∑4
k=1 pk = 1, we obtain: p1 = 8

9 , p2 = 1
9 , p3 = 0, p4 = 0.

Since

P t(f1) =
⎛

⎝
0 1 0
0 1 0
0 0 1

⎞

⎠ and P t(f2) =
⎛

⎝
0 1 0
0 1 0
0 1 0

⎞

⎠ for all t ∈ N,

we obtain R = (π1,π2, . . . ) with πt
11 = 1, t ∈ N; πt

21 = 1, t ∈ N; πt
31 = { 8

9 t=1

1 t≥2
; πt

32 =
{ 1

9 t=1

0 t≥2
.

Remark Algorithm 2 is unattractive for practical problems. The number of calculations
is prohibitive. Moreover, the use of Markov policies is inefficient in practice. There-
fore, we also analyze the problem of finding an optimal stationary policy, if one ex-
ists.

For any feasible solution (x, y) of (20) we define a stationary policy π∞(x, y) in a
slightly different way as by (9). The difference is caused by the fact that for constrained
MDPs βj can be equal to zero in one or more states j , while in unconstrained MDPs we
take βj > 0 for all states j .

πia(x, y) =

⎧
⎪⎨

⎪⎩

xi(a)/xi if
∑

a xi(a) > 0

yi(a)/yi if
∑

a xi(a) = 0 and
∑

a yi(a) > 0

arbitrary if
∑

a xi(a) = 0 and
∑

a yi(a) = 0.

(21)

In Kallenberg (1983) the following lemmata can be found.

Lemma 3 If (x∗, y∗) is an optimal solution of problem (20) and the Markov chain
P (π(x∗, y∗)) has one ergodic set plus a (perhaps empty) set of transient states, then
π∞(x∗, y∗) is an optimal policy for problem (14).

Lemma 4 If (x∗, y∗) is an optimal solution of problem (20) and x∗ satisfies x∗
i (a) =

πia(x
∗, y∗) · {βT P ∗(π(x∗, y∗))}i for all (i, a) ∈ S ×A, then π∞(x∗, y∗) is an optimal policy

for problem (14).

Lemma 5 If (x∗, y∗) is an optimal solution of problem (20) and furthermore x∗
i (a)/x∗

i =
y∗

i (a)/y∗
i for all pairs (i, a) with i ∈ S+, a ∈ A(i), where x∗

i = ∑
a x∗

ia , y∗
i = ∑

a y∗
ia and

S+ = {i | x∗
i > 0, y∗

i > 0}, then the stationary policy π∞(x∗, y∗) is an optimal policy for
problem (14).

The next example shows that for an optimal solution (x∗, y∗) of (20), the policy
π∞(x∗, y∗) is not an optimal solution of (14), even in the case that (14) has a stationary
optimal policy.
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Example 7 (continued)
Consider the MDP model of Example 7, but with as constraint x21(R) ≤ 1

4 . The linear pro-
gram (20) for this constrained problem is:

maximize x2(1)

subject to

x1(1) + x1(2) = 0

− x1(1) − x3(2) = 0

− x1(2) + x3(2) = 0

x1(1) + x1(2) + y1(1) + y1(2) = 1
4

x2(1) − y1(1) − y3(2) = 3
16

x3(1) + x3(2) − y1(2) + y3(2) = 9
16

x2(1) ≤ 1
4

x1(1), x1(2), x2(1), x3(1), x3(2), y1(1), y1(2), y3(2) ≥ 0

with optimal solution x∗
1 (1) = 0, x∗

1 (2) = 0, x∗
2 (1) = 1

4 , x∗
3 (1) = 3

4 , x∗
3 (2) = 0; y∗

1 (1) =
0, y∗

1 (2) = 1
4 , y∗

3 (2) = 1
16 and with optimum value 1

4 . The corresponding stationary policy
π∞(x∗, y∗) gives π12 = π21 = π31 = 1, so this policy is in fact deterministic. This policy is
not optimal, because φ(π∞(x∗, y∗)) = 3

16 < 1
4 , the optimum of the linear program. Consider

the stationary policy π∞ with π11 = 1
4 , π12 = 3

4 , π21 = π31 = 1. For this policy we obtain
x12(π

∞) = 1
4 and φ(π∞) = 1

4 , the optimum value of the linear program. So, this policy is
feasible and optimal.

If the conditions of Lemma 5 are not satisfied, we can try to find for the same x∗ an-
other y∗, say y, such that (x∗, y) is feasible for (20), and consequently also optimal, and
satisfies the conditions of Lemma 5. To achieve this, we need yi(a)/yi = πia , a ∈ A(i),
i ∈ {j | x∗

j > 0, yj > 0}, which is equivalent to yi(a) = yi · πia , a ∈ A(i), i ∈ {j | x∗
j > 0}.

Hence, y has to satisfy the following linear system in the y-variables (x∗ is fixed)
{∑

i /∈S∗
∑

a{δij − pij (a)}yi(a) + ∑
i∈S∗ {δij − pij (π)}yi = βj − x∗

j , j ∈ S

yi(a) ≥ 0, i /∈ S∗, a ∈ A(i);yi ≥ 0, i ∈ S∗, with S∗ = {j |∑a x∗
j (a) > 0}. (22)

Example 7 (continued)
The optimal solution (x∗, y∗) with x∗

1 (1) = 0, x∗
1 (2) = 0, x∗

2 (1) = 1
4 , x∗

3 (1) = 3
4 , x∗

3 (2) = 0;
y∗

1 (1) = 0, y∗
1 (2) = 1

4 , y∗
3 (2) = 1

16 does not satisfy x∗
i (a)/x∗

i = y∗
i (a)/y∗

i for all a ∈ A(i),
i ∈ S+, because S+ = {3} and x∗

3 (2)/x∗
3 = 0 and y∗

3 (2)/y∗
3 = 1. The system (22) becomes

y1(1) + y1(2) = 4
16 ; −y1(1) = − 1

16 ; −y1(2) = − 3
16 ; y1(1), y1(2) ≥ 0. This system has the

solution y1(1) = 1
16 , y1(2) = 3

16 . The stationary policy π∞ with π11 = 1
4 , π12 = 3

4 , π21 =
π31 = 1 is optimal for problem (14).

Remark If the x-part of problem (20) is unique and (22) is infeasible, then problem (14)
has no optimal stationary policy. If the x-part of problem (20) is not unique and (22) is
infeasible, then it is still possible that there exists an optimal stationary policy. In that case
we can compute every extreme optimal solution of the linear program (20), and for each of
these extreme optimal solutions we can perform the above analysis in order to search for an
optimal stationary policy. We show an example of this approach.
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Example 8 Take the MDP with S = {1,2,3}; A(1) = {1,2}, A(2) = {1,2}, A(3) = {1};
p12(1) = p13(2) = p22(1) = p21(2) = p33(1) = 1 (other transitions are 0). r1(1) = r1(2) = 0,
r2(1) = 1, r2(2) = 0, r3(1) = 1. Let β1 = β2 = β3 = 1

3 . Add as only constraint x21(R) ≥ 1
9 .

The formulation of the linear program (20) becomes:

maximize x2(1) + x3(1)

subject to

x1(1) + x1(2) − x2(2) = 0
− x1(1) + x2(2) = 0

− x1(2) = 0
x1(1) + x1(2) + y1(1) + y1(2) − y2(2) = 1

3

x2(1) + x2(2) − y1(1) + y2(2) = 1
3

x3(1) − y1(2) = 1
3

− x2(1) ≤ − 1
9

x1(1), x1(2), x2(1), x3(1), x3(2), y1(1), y1(2), y3(2) ≥ 0

with extreme optimal solution x∗
1 (1) = 0, x∗

1 (2) = 0, x∗
2 (1) = 1

9 , x∗
2 (2) = 0, x∗

3 (1) = 8
9 ;

y∗
1 (1) = 0, y∗

1 (2) = 5
9 , y∗

2 (2) = 2
9 and with optimum value 1. The x-part of this problem

is not unique. It can easily be verified that x̂1(1) = 0, x̂1(2) = 0, x̂2(1) = 2
3 , x̂2(2) = 0,

x̂3(1) = 1
3 ; ŷ1(1) = 1

3 , ŷ1(2) = 0, ŷ2(2) = 0 is also an extreme optimal solution. For the first
extreme optimal solution (x∗, y∗) system (22) becomes

y1(1) + y1(2) = 1

3
; −y1(1) = 2

9
; y1(2) = −5

9
; y1(1), y1(2) ≥ 0.

This system is obviously infeasible.

For the second extreme optimal solution (x̂, ŷ) we can apply Lemma 5, which gives that
the deterministic policy f ∞∗ with f∗(1) = f∗(2) = f∗(3) = 1 is an optimal solution.

Remarks

1. Discounted MDPs with additional constraints
These problems have always a stationary optimal policy. The analysis for this kind of
problems is much easier than for MDPs with the average reward as optimality criterion
(see Kallenberg 2010).

2. Multiple objectives
Some problems may have several kinds of rewards or costs, which cannot be optimized
simultaneously. Assume that we want to maximize some utility for an m-tuple of im-
mediate rewards, say utilities uk(R) and immediate rewards rk

i (a), (i, a) ∈ S × A, for
k = 1,2, . . . ,m. For each k one can find an optimal policy Rk , i.e., uk

i (Rk) ≥ uk
i (R), i ∈ S,

for all policies R. However, in general, Rk �= Rl if k �= l, and there does not exist one pol-
icy which is optimal for all m rewards simultaneously for all starting states. Therefore,
we consider the utility function with respect a given initial distribution β . Given this ini-
tial distribution β and a policy R, we denote the utilities by uk(β,R). The goal in multi-
objective optimization is to find an β-efficient solution, i.e., a policyR∗ such that there ex-
ists no other policy R satisfying uk(β,R) ≥ uk(β,R∗) for all k and uk(β,R) > uk(β,R∗)
for at least one k. These problems can be solved, for both discounted rewards and average
rewards, by CMDPs (for more details, see Kallenberg 2010).
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5 Applications

5.1 Optimal stopping problems

In Chap. 8 of Derman’s book (Derman 1970) optimal stopping of a Markov chain is dis-
cussed. Derman considers the following model. Let {Xt, t = 1,2, . . . } be a finite Markov
chain with state space S and stationary transition probabilities pij . Let us suppose there ex-
ists an absorbing state 0, i.e., p00 = 1, such that P{Xt = 0 for some t ≥ 1 | X1 = i} = 1 for
every i ∈ S. Let ri , i ∈ S, denote nonnegative values.

When the chain is absorbed at state 0, we can think of the process as having been stopped
at that point in time and we receive the value r0. However, we can also think of stopping the
process at any point in time prior to absorption and receiving the value ri if i is the state of
the chain when the process is stopped. If our aim is to receive the highest possible value and
if r0 < maxi∈S ri , then clearly we would not necessarily wait for absorption before stopping
the process.

By a stopping time τ , we mean a rule that prescribes the time to stop the process. Optimal
stopping of a Markov chain is the problem to determine the stopping time τ such that E{rXτ |
X1 = i} is maximized for all i ∈ S. Let Mi = maxτ E{rXτ | X1 = i}, i ∈ S. Derman has
shown the following result.

Theorem 10 If v∗ is an optimal solution of the linear program

min

⎧
⎨

⎩

∑

j

vj

∣
∣
∣
∣
∣

vi ≥ ri, i ∈ S

vi ≥ ∑
j pij vj , i ∈ S

}

, (23)

then Mi = v∗
i , i ∈ S.

In Kallenberg (1983) this approach is generalized in the following way:

− the assumption ri ≥ 0, i ∈ S, is omitted;
− if we continue in state i, a cost ci is incurred for all i ∈ S;
− we can determine not only Mi , i ∈ S, but also the states S0 in which it is optimal to stop.

The results are based on properties for convergent MDPs with as optimality criterion the
total expected reward over an infinite horizon. The following theorem shows the result.

Theorem 11 Let v∗ and (x∗, y∗) be optimal solutions of the following dual pair of linear
programs

min

⎧
⎨

⎩

∑

j

vj

∣
∣
∣
∣
∣

vi ≥ ri, i ∈ S

vi ≥ −ci + ∑
j pij vj , i ∈ S

}

(24)

and

max

{
∑

i

rixi −
∑

i

ciyi

∣
∣
∣
∣
xj + yj − ∑

i pij yi = 1, j ∈ S

xi, yi ≥ 0, i ∈ S

}

. (25)

Then, Mi = v∗
i , i ∈ S and S0 = {i ∈ S | x∗

i > 0}.
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Furthermore, we have the following result for monotone optimal stopping problems, i.e.,
problems that satisfy pij = 0 for all i ∈ S1, j /∈ S1, where S1 = {i ∈ S | ri ≥ −ci +∑

j pij rj }.
So, S1 is the set of states in which immediate stopping is not worse than continuing for one
period and than choose to stop. The set S1 follows directly from the data of the model.

Theorem 12 In a monotone optimal stopping problem a one-step look ahead policy, i.e., a
policy that stops in the states of S1 and continues outside S1, is an optimal policy.

5.2 Replacement problems

5.2.1 General replacement problem

In a general replacement model we have state space S = {0,1, . . . ,N}, where state 0 cor-
responds to a new item, and action sets A(0) = {1} and A(i) = {0,1}, i �= 0, where action
0 means replacing the ‘old’ item by a new item. We consider in this model costs instead of
rewards. Let c be the cost of a new item.

Furthermore, assume that an item of state i has trade-in-value si and maintenance
costs ci . If in state i action 0 is chosen, then ci(0) = c − si + c0 and pij (0) = p0j , j ∈ S;
for action 1, we have ci(1) = ci and pij (1) = pij , j ∈ S. In contrast with other replacement
models, where the state is determined by the age of the item, we allow that the state of the
item may change to any other state.

In this case the optimal replacement policy is in general not a control-limit rule. As
optimality criterion we consider the discounted reward. For this model the primal linear
program is:

min

⎧
⎨

⎩

N∑

j=0

βjvj

∣
∣
∣
∣
∣

∑N

j=0(δij − αp0j )vj ≥ −c + si − c0, 1 ≤ i ≤ N
∑N

j=0(δij − αpij )vj ≥ −ci, 0 ≤ i ≤ N

⎫
⎬

⎭
, (26)

where βj > 0, j ∈ S. Because there is only one action in state 0, namely action 1, we have
vα

0 = −c0 + α
∑N

j=0 p0j v
α
j .

Hence, instead of vi −α
∑N

j=0 p0j vj = ∑N

j=0 (δij −αp0j )vj ≥ −c+si −c0, we can write
vi − v0 ≥ −c + si , obtaining the equivalent linear program

min

⎧
⎨

⎩

N∑

j=0

βjvj

∣
∣
∣
∣
∣

vi − v0 ≥ ri, 1 ≤ i ≤ N
∑N

j=0(δij − αpij )vj ≥ −ci, 0 ≤ i ≤ N

⎫
⎬

⎭
, (27)

where ri = −c + si , i ∈ S. The dual linear program of (27) is:

max

⎧
⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎩

N∑

i=1

rixi −
N∑

i=0

ciyi

∣
∣
∣
∣
∣
∣
∣
∣
∣
∣

−∑N

i=1 xi + ∑N

i=0(δi0 − αpi0)yi = β0

xj + ∑N

i=0(δij − αpij )yi = βj , 1 ≤ j ≤ N

xi ≥ 0, 1 ≤ i ≤ N

yi ≥ 0, 0 ≤ i ≤ N

⎫
⎪⎪⎪⎪⎬

⎪⎪⎪⎪⎭

. (28)

For this linear program the following result can be shown. For the proof we refer to Kallen-
berg (2010).

Theorem 13 There is a one-to-one correspondence between the extreme solutions of (28)
and the set of deterministic policies.
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Consider the simplex method to solve (28) and start with the basic solution that corre-
sponds to the policy which chooses action 1 (no replacement) in all states. Hence, in the
first simplex tableau yj , 0 ≤ j ≤ N , are the basic variables and xi , 1 ≤ i ≤ N , the nonbasic
variables. Take the usual version of the simplex method in which the column with the most
negative cost is chosen as pivot column. It turns out, see Theorem 14, that this choice gives
the optimal action for that state, i.e., in that state action 0, the replacement action, is opti-
mal. Hence, after interchanging xi and yi , the column of yi can be deleted. Consequently,
we obtain the following greedy simplex algorithm.

Algorithm 3 (Greedy simplex algorithm)

1. Start with the basic solution corresponding to the nonreplacing actions.
2. If the reduced costs are nonnegative: the corresponding policy is optimal (STOP).

Otherwise:
(a) Choose the column with the most negative reduced cost as pivot column.
(b) Execute the usual simplex transformation and delete the pivot column.

3. If all columns are removed: replacement in all states is the optimal policy (STOP).
Otherwise: return to step 2.

Theorem 14 The greedy simplex algorithm is correct and has complexity O(N3).

Remark 1 For the proof of Theorem 14 we also refer to Kallenberg (2010). The linear
programming approach, as discussed in this section, is related to a paper by Gal (1984), in
which the method of policy iteration was considered.

Remark 2 An optimal stopping problem may be considered as a special case of a replace-
ment problem with as optimality criterion the total expected reward, i.e., α = 1. In an optimal
stopping problem there are two actions in each state. The first action is the stopping action
and the second action corresponds to continue. If the stopping action is chosen in state i,
then a final reward ri is earned and the process terminates. If the second action is chosen,
then a cost ci is incurred and the transition probability of being in state j at the next decision
time point is pij , j ∈ S. This optimal stopping problem is a special case of the replacement
problem with p0j = 0 for all j ∈ S, ci(0) = −ri and ci(1) = ci for all i ∈ S. Hence, also for
the optimal stopping problem, the linear programming approach of this section can be used
and the complexity is also O(N3).

Remark 3 With a similar approach, the average reward criterion for an irreducible general
replacement problem can be treated.

5.2.2 Replacement problem with increasing deterioration

Consider a replacement model with state space S = {0,1, . . . ,N + 1}. An item is in state 0
if and only if it is new; an item is in state N + 1 if and only if it is inoperative. In states
1,2, . . . ,N there are two actions: action 0 is to replace the item by a new one and action 1 is
not to replace the item. In the states 0 and N + 1 only one action is possible (no replacement
and replacement by a new item, respectively) and call this action 1 and 0, respectively. The
transition probabilities are:

pij (0) =
{

0, 1 ≤ i ≤ N + 1, j �= 0

1, 1 ≤ i ≤ N + 1, j = 0
; pij (1) = pij , 0 ≤ i ≤ N, 1 ≤ j ≤ N + 1.
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We assume two types of cost, the cost c0 ≥ 0 to replace an operative item by a new one and
the cost c0 + c1, where c1 ≥ 0, to replace an inoperative item by a new one. Thus, c1 is the
additional cost incurred if the item becomes inoperative before being replaced. Hence, the
costs c are:

ci(0) = c0, 1 ≤ i ≤ N; cN+1(0) = c0 + c1; ci(1) = 0, 0 ≤ i ≤ N.

We state the following assumptions, which turn out to be equivalent (see Lemma 6).

Assumption 1 The transition probabilities are such that for every nondecreasing function
xj , j ∈ S, the function F(i) = ∑N+1

j=0 pijxj is nondecreasing in i.

Assumption 2 The transition probabilities are such that for every k ∈ S, the function
Gk(i) = ∑N+1

j=k pij is nondecreasing in i.

Lemma 6 The Assumptions 1 and 2 are equivalent.

The significance of Lemma 6 is that Assumption 1 can be verified by the verification of
Assumption 2, which can be verified only using the data of the model. Assumption 2 means
that this replacement model has increasing deterioration.

We first consider the criterion of discounted costs. For this criterion the following result
can be shown, which is based on the property that the value vector vα

i , 0 ≤ i ≤ N + 1, is
nondecreasing in the states i.

Theorem 15 If Assumption 1 (or 2) holds and if the state i∗ is such that i∗ = max{i |
α

∑
j pij v

α
j ≤ c0 + α

∑
j p0j v

α
j }. Then, the control-limit policy f ∞∗ which replaces in the

states i > i∗ is a discounted optimal policy.

Theorem 15 implies that the next algorithm computes an optimal control-limit policy
for this model. Similar to Algorithm 3 it can be shown that the complexity of Algorithm 4
is O(N3).

Algorithm 4 (Computation of an optimal control-limit policy)

1. (a) Start with the basic solution corresponding to the nonreplacing actions in the states
i = 1,2, . . . ,N and to the only action in the states 0 and N + 1.

(b) Let k = N (the number of nonbasic variables corresponding to the replacing actions
in the states i = 1,2, . . . ,N ).

2. If the reduced costs are nonnegative: the corresponding policy is optimal (STOP).
Otherwise:
(a) Choose the column corresponding to state k as pivot column.
(b) Execute the usual simplex transformation.
(c) Delete the pivot column.

3. If all columns are removed: replacement in all states is the optimal policy (STOP).
Otherwise: return to step 2.

Next, we consider the criterion of average cost. By Theorem 15, for each α ∈ (0,1) there
exists a control-limit policy f ∞

α that is α-discounted optimal. Let {αk, k = 1,2, . . . } be any
sequence of discount factors such that limk→∞ αk = 1.
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Since there are only a finite number of different control-limit policies, there is a subse-
quence with one of these policies. Therefore, we may assume that f ∞

αk
= f ∞

0 for all k. Let
f ∞ be any policy in C(D). Since f ∞

0 = f ∞
αk

is optimal for all k, we have

(1 − αk)v
αk (f ∞) ≥ (1 − αk)v

αk (f ∞
0 ) for k = 1,2, . . . .

Letting k → ∞, we obtain for every f ∞ ∈ C(D),

φ(f ∞) = lim
k→∞

(1 − αk)v
αk (f ∞) ≥ lim

k→∞
(1 − αk)v

αk (f ∞
0 ) = φ(f ∞

0 ).

Therefore, the following result holds.

Theorem 16 If Assumption 1 (or 2) holds, then there exists a control-limit policy f ∞∗ such
that φ(f ∞∗ ) ≤ φ(f ∞) for all policies f ∞ ∈ C(D).

Remark The results of this section, with the exception of Algorithm 4, have been developed
by Derman (1963).

5.2.3 Skip to the right model with failure

This model is slightly different from the previous one, replacement with increasing deteri-
oration. Let the state space S = {0,1, . . . ,N + 1}, where state 0 corresponds to a new item
and state N + 1 to failure. The states i, 0 ≤ i ≤ N , may be interpreted as the age of the item.
The system has in state i (0 ≤ i ≤ N ) a failure probability pi during the next period. When
failure occurs in state i, which is modeled as being transferred to state N + 1, there is an
additional cost fi . In state N + 1 the item has to be replaced by a new one. In the states
1 ≤ i ≤ N there are two actions. Action 0 replaces the item immediately by a new one, so it
has the same transitions as state 0; the replacement cost is c. By action 1 the system moves,
when there is no failure, from state i to the next state i + 1: the system skips to the right,
i.e., the age of the item increases. Furthermore, in state i there are maintenance cost ci .

The action sets, the cost of a new item, the maintenance costs and the transition proba-
bilities are as follows.

A(0) = {1}; A(i) = {0,1}, 1 ≤ i ≤ N; A(N + 1) = {0}.

1 ≤ i ≤ N + 1 : pij (0) =
{

1 − p0 j = 1

p0 j = N + 1
; ci(0) = c + c0 + p0f0

0 ≤ i ≤ N : pij (1) =
{

1 − pi j = i + 1

pi j = N + 1
; ci(1) = ci + pifi

We impose the following assumptions:

(A1) c ≥ 0; ci ≥ 0, fi ≥ 0, 0 ≤ i ≤ N .
(A2) p0 ≤ p1 ≤ · · · ≤ pN , i.e., older items have greater failure probability.
(A3) c0 + p0f0 ≤ c1 + p1f1 ≤ · · · ≤ cN + pNfN , i.e., the expected maintenance and failure

costs grow with the age of the item.
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Take any k ∈ S. Since

N+1∑

j=k

pij (1) =
{

pi i ≤ k − 2

1 i ≥ k − 1
,

this summation is, by assumption A2, nondeceasing in i. Hence, Assumption 2 and conse-
quently also Assumption 1 of the previous section, is satisfied. This enables us to treat this
model in a similar way as the model with increasing deterioration. In this way we can derive
the following result.

Theorem 17 Let the assumptions (A1), (A2) and (A3) hold, and let i∗ = max{i | ci +pifi +
α

∑
j pij (1)vα

j ≤ c + c0 + p0f0 + α
∑

j p0j (1)vα
j }. Then, the control-limit policy f ∞∗ which

replaces in the states i > i∗ is an optimal policy.

Remarks

1. For the proof of Theorem 17 we refer to Kallenberg (1994).
2. Algorithm 4 is also applicable to this model.
3. Similarly as in the previous section it can be shown that for the average cost criterion

there exists also a control-limit optimal policy.
4. In Derman (1970, pp. 125–130) a surveillance-maintenance-replacement model is dis-

cussed. This model is solved in the following way:
(a) A fractional linear programming formulation is developed from which an optimal

policy can be derived.
(b) This fractional linear programming can be transformed into a normal linear program.

This transformation is due to Derman and his student Klein (see Derman 1962 and
Klein 1962). See Charnes and Cooper (1962) and Wagner and Yuan (1968) for more
general treatment of linear fractional programming.

5.2.4 Separable replacement problem

Suppose that the MDP has the following structure: S = {0,1,2, . . . ,N}; A(i) = {1,2, . . . ,

M}, i ∈ S; pij (a) = pj (a), i, j ∈ S, a ∈ A(i), i.e., the transitions are state independent;
ri(a) = si + t (a), i ∈ S, a ∈ A(i), i.e., the rewards are separable.

As example, consider the problem of periodically replacing a car. The age of a car can
be 0,1, . . . ,N . When a car is replaced, it can be replaced not only by a new one (state 0),
but also by a car in an arbitrary state a, 1 ≤ a ≤ N . Let si be the trade-in-value of a car of
state i, t (a) the costs of a car of state a. Then, ri(a) = si − t (a) and pij (a) = pj (a), where
pj (a) is the probability that a car of state a is in state j at the next decision time point.

The next theorems show that a one-step look ahead policy is optimal both for discounted
as for undiscounted rewards.

Theorem 18 The policy f ∞
1 , defined by f1(i) = a1 for all i, where a1 is such that −t (a1)+

α
∑

j pj (a1)sj = max1≤a≤M{−t (a) + α
∑

j pj (a)sj }, is an α-discounted optimal policy.

Theorem 19 The policy f ∞
2 , defined by f2(i) = a2 for all i, where a2 is such that −t (a2)+∑

j pj (a2)sj = max1≤a≤M{−t (a) + ∑
j pj (a)sj }, is an average optimal policy.
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5.3 Multi-armed bandit problems

5.3.1 Introduction

The multi-armed bandit problem is a model for dynamic allocation of a resource to one of n

independent alternative projects. Any project may be in one of a finite number of states, say
project j in the set Sj , j = 1,2, . . . , n. Hence, the state space S is the Cartesian product S =
S1 × S2 × · · · × Sn. Each state i = (i1, i2, . . . , in) has the same action set A = {1,2, . . . , n},
where action k means that project k is chosen, k = 1,2, . . . , n. So, at each stage one can be
working on exactly one of the projects.

When project k is chosen in state i—the chosen project is called the active project—the
immediate reward and the transition probabilities only depend on the active project, whereas
the states of the remaining projects are frozen. Let rik and pikj , j ∈ Sk denote these quantities
when action k is chosen. The total discounted reward criterion is chosen.

It was shown by Gittins and Jones (1974, 1979) that an optimal policy is the policy that
selects project k in state i = (i1, i2, . . . , in), where k satisfies

Gk(ik) = max
1≤j≤n

Gj (ij )

for certain numbers Gj(ij ), ij ∈ Sj , 1 ≤ j ≤ n. Such a policy is called an index policy.
Surprisingly, the number Gj(ij ) only depends on project j and not on the other projects.
These indices are called the Gittins indices.

As a consequence, the multi-armed bandit problem can be solved by solving a sequence
of n one-armed bandit problems. This is a decomposition result by which the dimensionality
of the problem is reduced considerably. Algorithms with complexity O(

∑n

j=1 n3
j ), where

nj = |Sj |, 1 ≤ j ≤ n, do exist for the computation of all indices.

5.3.2 A single project with a terminal reward

Consider the one-armed bandit problem with stopping option, i.e., in each state there are
two options: action 1 is the stopping option and then one earns a terminal reward M and
by action 2 the process continues with in state i an immediate reward ri and transition
probabilities pij . Let vα(M) be the value vector of this optimal stopping problem. Then,
vα(M) is the unique solution of the optimality equation

vα
i (M) = max

{

M,ri + α
∑

j

pij v
α
j (M)

}

, i ∈ S, (29)

and of the linear program

min

⎧
⎨

⎩

∑

j

vj

∣
∣
∣
∣
∣

∑
j {δij − αpij }vj ≥ ri, i ∈ S

vi ≥ M, i ∈ S

⎫
⎬

⎭
. (30)

Furthermore, we have the following results.

Theorem 20 Let (x, y) be an extreme optimal solution of the dual program of (30), i.e.,

max

⎧
⎨

⎩

∑

j

rixi + M ·
∑

j

yi

∣
∣
∣
∣
∣

∑
i{δij − αpij }xi + yj = 1, i ∈ S

xi, yi ≥ 0, i ∈ S

⎫
⎬

⎭
. (31)
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Then, the policy f ∞ such that

f (i) =
{

2 if xi > 0

1 if xi = 0

is an optimal policy.

Lemma 7 vα
i (M) − M is a nonnegative continuous nonincreasing function in M , for all

i ∈ S.

Define the indices Gi , i ∈ S, by Gi = min{M | vα
i (M) = M}. Hence, vα

i (Gi) = Gi and,
by Lemma 7, vα

i (M) = M for all M ≥ Gi . For these indices one can show the following
theorem.

Theorem 21 For any M , the policy f ∞ ∈ C(D) which chooses the stopping action in state
i if and only if M ≥ Gi is optimal.

For M = Gi both actions (stop or continue) are optimal. Hence, an interpretation of the
Gittins index Gi is that it is the terminal reward under which in state i both actions are
optimal. Therefore, this number is also called the indifference value.

5.3.3 Multi-armed bandits

Consider the multi-armed bandit model with an additional option (action 0) in each state.
Action 0 is a stopping option and then one earns a terminal reward M . One can show the
following result.

Theorem 22 For any state i = (i1, i2, . . . , in) and any terminal reward M , the policy that
takes the stopping action if M ≥ Gij for all j = 1,2, . . . , n and continues with project k if
Gik = maxj Gij > M , is an optimal policy.

The preceding theorem shows that the optimal policy in the multi-project case can be
determined by an analysis of the n single-project problems, with the optimal decision in
state i = (i1, i2, . . . , in) being to operate on that project k having the largest Gik if this value
is greater than M and to stop otherwise.

Several methods have been proposed for the computation of the Gittins indices. We men-
tion the contributions of Katehakis and Veinott (the restart-in-state method, see Katehakis
and Veinott 1987), Varaiya, Walrand and Buyukkoc (the-largest-remaining-index method,
see Varaiya et al. 1985), and Chen and Katehakis (the linear programming method, see Chen
and Katehakis 1986). In this article we present the parametric linear programming method
proposed in Kallenberg (1986). This method has for a project with N states complexity
O(N3).

5.3.4 The parametric linear programming method

We have already seen that for a single project with terminal reward M the solution can be
obtained from a linear programming problem, namely program (31). For M big enough,
e.g., for M ≥ C = (1 − α) · maxi ri , we know that vα

i (M) = M for all states i. Furthermore,
we have seen that the Gittins index Gi = min{M | vα

i (M) = M}.
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One can solve program (31) as a parametric linear programming problem with parame-
ter M . Starting with M = C one can decrease M and find for each state i the largest M for
which it is optimal to keep working on the project, which is in fact min{M | vα

i (M) = M} =
Gi , in the order of decreasing M-values.

One can start with the simplex tableau in which all y-variables are in the basis and in
which the x-variables are the nonbasic variables. This tableau is optimal for M ≥ C. De-
crease M until we meet a basis change, say the basic variable yi will be exchanged with
the nonbasic variable xi . Then, we know the M-value which is equal to Gi . In this way we
continue and repeat the procedure N times, where N is the number of states in the current
project. The used pivoting row and column do not influence any further pivoting step, so we
can delete these row and column from the simplex tableau.

We can easily determine the computational complexity. Each update of an element in
a simplex tableau needs at most two arithmetic operations (multiplication and divisions as
well as additions and subtractions). Hence, the total number of arithmetic operations in this
method for a project with N states, is at most 2 · ∑N

k=1 k2 = 1
3N(N + 1)(2N + 1) = O(N3).

Remark The problem of assigning one of several treatments in clinical trials can be for-
mulated as a multi-armed bandit problem. Derman and Katehakis (1987) have used the
characterization of the Gittins index as a restart-in-state problem (see Katehakis and Veinott
1987) to calculate efficiently the Gittins values for clinical trials. The characterization of
the Gittins index as a restart-in-state problem is related to a general replacement problem as
treated by Derman in his book (Derman 1970, pp. 121–125).

5.4 Separable problems

5.4.1 Introduction

Separable MDPs have the property that for certain pairs (i, a) ∈ S × A:

(1) the immediate reward is the sum of two terms, one depends only on the current state and
the other depends only on the chosen action: ri(a) = si + ta .

(2) the transition probabilities depend only on the action and not on the state from which
the transition occurs: pij (a) = pj (a), j ∈ S.

Let S1 × A1 be the subset of S × A for which the pairs (i, a) satisfy (1) and (2). We also
assume that the action sets of A1 are nested: let S1 = {1,2, . . . ,m}, then A1(1) ⊇ A1(2) ⊇
· · · ⊇ A1(m) �= ∅. Let S2 = S\S1, A2(i) = A(i)\A1(i), 1 ≤ i ≤ m and A2(i) = A(i), m +
1 ≤ i ≤ N . We also introduce the notation B(i) = A1(i)\A1(i + 1), 1 ≤ i ≤ m − 1 and
B(m) = A1(m). Then, A1(i) = ⋃m

j=i B(j) and the sets B(j) are disjunct. We allow that S2,
A2 or B(i), 1 ≤ i ≤ m − 1, are empty sets.

If the system is observed in state i ∈ S1 and the decision maker will choose an action
from A1(i), then, the decision process can be considered as follows. First, a reward si is
earned and the system makes a zero-time transition to an additional state N + i. In this
additional state there are two options: either to take an action a ∈ B(i) or to take an action
a ∈ A1(i)\B(i) = A1(i + 1). In the first case the reward ta is earned and the process moves
to state j with probability pj (a), j ∈ S; in the second case we are in the same situation as
in state N + i, but now in N + i + 1, i.e., a zero-time transition is made from state N + i to
state N + i + 1.

A lot of dynamic decision problems are separable, e.g., the automobile replacement prob-
lem which was first considered by Howard (see Howard 1960)
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5.4.2 Discounted rewards

The description in the introduction as a problem with zero-time and one-time transitions
gives rise to the transformed model with N + m states and to the following linear program
for the computation of the value vector vα :

min

⎧
⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎩

N∑

i=1

vi +
m∑

i=1

yi

∣
∣
∣
∣
∣
∣
∣
∣
∣
∣

vi ≥ ri(a) + α
∑N

j=1 pij (a)vj , 1 ≤ i ≤ N, a ∈ A2(i)

vi ≥ si + yi, 1 ≤ i ≤ m

yi ≥ ta + α
∑N

j=1 pj (a)vj , 1 ≤ i ≤ m, a ∈ B(i)

yi ≥ yi+1, 1 ≤ i ≤ m − 1

⎫
⎪⎪⎪⎪⎬

⎪⎪⎪⎪⎭

. (32)

The first set of inequalities corresponds to the non-separable set S × A2 with one-time tran-
sitions; the second set inequalities to the zero-time transitions from the state i to N + i,
1 ≤ i ≤ m; the third set of inequalities to the set S1 × B with one-time transitions and the
last set inequalities corresponds to the zero-time transitions from the state N + i to N + i+1,
1 ≤ i ≤ m − 1.

The dual of program (32), where the dual variables xi(a), λi , wi(a), ρi correspond to the
four sets of constraints in (32), is:

max
N∑

i=1

∑

a∈A2(i)

ri(a)xi(a) +
m∑

i=1

siλi +
m∑

i=1

∑

a∈B(i)

wi(a) (33)

subject to the constraints

N∑

i=1

∑

a∈A2(i)

{δij − αpij (a)}xi(a) +
m∑

i=1

δijλi −
m∑

i=1

∑

a∈B(i)

pj (a)wi(a) = 1, 1 ≤ j ≤ N

ρj − ρj−1 − λj +
∑

a∈B(j)

wj (a) = 1, 1 ≤ j ≤ m − 1

−ρm−1 − λm +
∑

a∈B(m)

wm(a) = 1

xi(a) ≥ 0, 1 ≤ i ≤ N, a ∈ A2(i); λi ≥ 0, 1 ≤ i ≤ m;
wi(a) ≥ 0, 1 ≤ i ≤ m, a ∈ B(i); ρi ≥ 0, 1 ≤ i ≤ m − 1.

Without using the transformed problem, the linear program to compute the value vector
vα is:

min

{
N∑

i=1

vi

∣
∣
∣vi ≥ ri(a) + α

N∑

j=1

pij (a)vj , 1 ≤ i ≤ N, a ∈ A(i)

}

. (34)

The following result can be shown.

Lemma 8 Let the vector v be feasible for (34) and define the vector y by yi =
maxa∈A1(i){ta + α

∑N

j=1 pj (a)vj }, 1 ≤ i ≤ m. Then,

(1) (v, y) is a feasible solution of (32).
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(2)
∑N

i=1 vi + ∑m

i=1 yi ≥ ∑N

i=1 vα
i + ∑m

i=1 maxa∈A1(i){ta + α
∑N

j=1 pj (a)vα
j }.

Since vα is the unique optimal solution of (34), we have shown that (vα, yα), with
yα

i = maxa∈A1(i){ta + α
∑N

j=1 pj (a)vα
j }, 1 ≤ i ≤ m, is the unique optimal solution of (32).

The next theorem shows how an optimal policy can be found from an optimal solution of
problem (33).

Theorem 23 Let (x∗, λ∗,w∗, ρ∗) be an optimal solution of (33). Define S∗ = {j |
∑

a∈A2(j) x
∗
j (a) > 0} and kj = min{k ≥ j | ∑

a∈B(k) w
∗
k (a) > 0}, j ∈ S\S∗. Take any pol-

icy f ∞∗ ∈ C(D) such that x∗
j (f∗(j)) > 0 if j ∈ S∗ and w∗

kj
(f∗(j)) > 0 if j ∈ S\S∗. Then,

f ∞∗ is well-defined and a discounted optimal policy.

5.4.3 Average rewards—unichain case

Consider the problem again in the transformed model with N +m states and with zero-time
and one-time transitions. This interpretation gives rise to the following linear program for
the computation of the value vector φ.

min

⎧
⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎩

x

∣
∣
∣
∣
∣
∣
∣
∣
∣
∣

x + yi ≥ ri(a) + ∑N

j=1 pij (a)yj , 1 ≤ i ≤ N, a ∈ A2(i)

yi ≥ si + zi, 1 ≤ i ≤ m

x + zi ≥ ta + ∑N

j=1 pj (a)yj , 1 ≤ i ≤ m, a ∈ B(i)

zi ≥ zi+1, 1 ≤ i ≤ m − 1

⎫
⎪⎪⎪⎪⎬

⎪⎪⎪⎪⎭

. (35)

The dual of program (35), where the dual variables xi(a), λi , wi(a), ρi correspond to the
four sets of constraints in (35), is:

max
N∑

i=1

∑

a∈A2(i)

ri(a)xi(a) +
m∑

i=1

siλi +
m∑

i=1

∑

a∈B(i)

wi(a) (36)

subject to the constraints

N∑

i=1

∑

a∈A2(i)

{δij − pij (a)}xi(a) +
m∑

i=1

δijλi −
m∑

i=1

∑

a∈B(i)

pj (a)wi(a) = 0, 1 ≤ j ≤ N

ρj − ρj−1 − λj +
∑

a∈B(j)

wj (a) = 0, 1 ≤ j ≤ m − 1

−ρm−1 − λm +
∑

a∈B(m)

wm(a) = 0

N∑

i=1

∑

a∈A2(i)

xi(a) +
m∑

i=1

∑

a∈B(i)

wi(a) = 1

xi(a) ≥ 0, 1 ≤ i ≤ N, a ∈ A2(i); λi ≥ 0, 1 ≤ i ≤ m;
wi(a) ≥ 0, 1 ≤ i ≤ m, a ∈ B(i); ρ0 = 0; ρi ≥ 0, 1 ≤ i ≤ m − 1.
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Without using the transformed problem, the linear program to compute the value φ is:

min

{

x

∣
∣
∣x + yi ≥ ri(a) +

N∑

j=1

pij (a)yj , 1 ≤ i ≤ N, a ∈ A(i)

}

. (37)

Lemma 9 Let (x, y) feasible for problem (37) and define the vector z by zi = maxa∈A1(i){ta +
∑N

j=1 pj (a)yj } − x, 1 ≤ i ≤ m. Then, (x, y, z) is a feasible solution of (35) and x ≥ φ.

Since any optimal solution (x∗, y∗) of problem (37) satisfies x∗ = φ, the optimum value
of (35) is also φ. Furthermore, (x∗ = φ,y∗, z∗) is an optimal solution of program (35), where
z∗
i = maxa∈A1(i){ta + ∑N

j=1 pj (a)y∗
j } − φ for i = 1,2, . . . ,m. The next theorem shows how

an optimal policy can be found from an optimal solution of problem (36).

Theorem 24 Let (x∗, λ∗,w∗, ρ∗) be an optimal solution of (36). Define S∗ = {j |
∑

a∈A2(j) x
∗
j (a) > 0} and kj = min{k ≥ j | ∑

a∈B(k) w
∗
k (a) > 0}, j ∈ Sw∗ , where Sw∗ = {j ∈

S\S∗ | ∑a∈A1(j) w
∗
j (a) > 0}. Take any policy f ∞∗ ∈ C(D) such that x∗

j (f∗(j)) > 0 if j ∈ S∗,
w∗

kj
(f∗(j)) > 0 if j ∈ Sw∗ and f∗(j) arbitrarily chosen if j /∈ S∗ ∪ Sw∗ . Then, f ∞∗ is an

average optimal policy.

5.4.4 Average rewards—general case

Again, the interpretation of the transformed model gives rise to consider the following linear
program in order to compute the value vector φ.

min

⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

N∑

j=1

xj +
m∑

j=1

wj

∣
∣
∣
∣
∣
∣
∣
∣
∣
∣
∣
∣
∣
∣
∣
∣
∣
∣
∣
∣

xi ≥ ∑N

j=1 pij (a)xj , 1 ≤ i ≤ N, a ∈ A2(i)

xi ≥ wi, 1 ≤ i ≤ m

wi ≥ ∑N

j=1 pj (a)xj , 1 ≤ i ≤ m, a ∈ B(i)

wi ≥ wi+1, 1 ≤ i ≤ m − 1

xi + yi ≥ ri(a) + ∑N

j=1 pij (a)yj , 1 ≤ i ≤ N, a ∈ A2(i)

yi ≥ si + zi, 1 ≤ i ≤ m

wi + zi ≥ ta + ∑N

j=1 pj (a)yj , 1 ≤ i ≤ m, a ∈ B(i)

zi ≥ zi+1, 1 ≤ i ≤ m − 1

⎫
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎬

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎭

. (38)

The dual of program (38), where the dual variables yi(a), μi , zi(a), σi , xi(a), λi , wi(a),
ρi correspond to the eight sets of constraints in (38), is:

max
N∑

i=1

∑

a∈A2(i)

ri(a)xi(a) +
m∑

i=1

siλi +
m∑

i=1

∑

a∈B(i)

tawi(a) (39)
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subject to the constraints

N∑

i=1

∑

a∈A2(i)

{δij − pij (a)}yi(a) +
m∑

i=1

δijμi

−
m∑

i=1

∑

a∈B(i)

pj (a)zi(a) +
∑

a∈A2(i)

xj (a) = 1, 1 ≤ j ≤ N

σj − σj−1 − μj +
∑

a∈B(j)

wj (a) +
∑

a∈B(j)

zj (a) = 1, 1 ≤ j ≤ m

N∑

i=1

∑

a∈A2(i)

{δij − pij (a)}xi(a) +
m∑

i=1

δijλi

−
m∑

i=1

∑

a∈B(i)

pj (a)wi(a) = 0, 1 ≤ j ≤ N

ρj − ρj−1 − λj +
∑

a∈B(j)

wj (a) = 0, 1 ≤ j ≤ m

ρ0 = ρm = σ0 = σm = 0; xi(a), yi(a), zi(a), wi(a), λi, μi, ρi, σi ≥ 0

for all i and a.
Without using the transformed problem, the linear program to compute the value φ is:

min

⎧
⎨

⎩

N∑

j=1

xj

∣
∣
∣
∣
∣

∑N

j=1{δij − pij (a)}xj ≥ 0, 1 ≤ i ≤ N, a ∈ A(i)

xi + ∑N

j=1{δij − pij (a)}uj ≥ ri(a), 1 ≤ i ≤ N, a ∈ A(i)

⎫
⎬

⎭
. (40)

Theorem 25 Let (x∗,w∗, y∗, z∗) and (y∗,μ∗, z∗, σ ∗, x∗, λ∗,w∗, ρ∗) be optimal solutions
of the problems (38) and (39), respectively. Let mi and ni defined by mi = min{j ≥ i |∑

a∈B(j) w
∗
j (a) > 0} and ni = min{j ≥ i | ∑

a∈B(j){w∗
j (a) + z∗

j (a)} > 0}. Take any policy
f ∞∗ ∈ C(D) such that

x∗
i

(
f∗(i)

)
> 0 if i ∈ S∗, where S∗ = ∑

a∈A2(i) x
∗
i (a) > 0;

w∗
mi

(
f∗(i)

)
> 0 if i /∈ S∗ and λ∗

i > 0;
y∗

i

(
f∗(i)

)
> 0 if i /∈ S∗, λ∗

i = 0 and y∗
i

(
f∗(i)

)
> 0;

w∗
ni

(
f∗(i)

)
> 0 if i /∈ S∗, λ∗

i = ∑
a∈A2(i) y

∗
i (a) = 0 and

∑
a∈A1(i) w

∗
ni

(a) > 0;
z∗
ni

(
f∗(i)

)
> 0 if i /∈ S∗, λ∗

i = ∑
a∈A2(i) y

∗
i (a) = ∑

a∈A1(i) w
∗
ni

(a) = 0.

Then, (1) x∗ = φ; (2) f ∞∗ is well-defined and an average optimal policy.

Remark De Ghellinck and Eppen (1967) have examined separable MDPs with the dis-
counted rewards as optimality criterion. Denardo introduced in Denardo (1968) the notion
of zero-time transitions. Discounted and averaging versions (for the unichain case) are then
shown to yield special linear programming formulations. In the discounted case, the linear
program is identical to that of De Ghellinck and Eppen. Kallenberg (1992) has shown that
for the average reward criterion also in the multichain case a special linear program can be
used to solve the original problem.

Open Access This article is distributed under the terms of the Creative Commons Attribution Noncommer-
cial License which permits any noncommercial use, distribution, and reproduction in any medium, provided
the original author(s) and source are credited.
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